Pulsations in the atmosphere of the roAp star HD 24712 – II. Theoretical models

Hideyuki Saio,1⋆ Tanya Ryabchikova2 and Mikhail Sachkov2

1Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
2Institute of Astronomy, Russian Academy of Science, Pyatnitskaya 48, 119017 Moscow, Russia

Accepted 2009 December 18. Received 2009 December 18; in original form 2009 November 18

ABSTRACT
We discuss pulsations of the rapidly oscillating Ap (roAp) star HD 24712 (HR 1217) based on non-adiabatic analyses taking into account the effect of dipole magnetic fields. We have found that all the pulsation modes appropriate for HD 24712 are damped, i.e. the κ-mechanism excitation in the hydrogen ionization layers is not strong enough to excite high-order p modes with periods consistent with observed ones, all of which are found to be above the acoustic cut-off frequencies of our models.

The main (2.721 mHz) and the highest (2.806 mHz) frequencies are matched with modified l = 2 and 3 modes, respectively. The large frequency separation (∼68 μHz) is reproduced by models which lay within the error box of HD 24712 on the Hertzsprung–Russell diagram. The nearly equally spaced frequencies of HD 24712 indicate the small frequency separation to be as small as ∼0.5 μHz. However, the small separation derived from theoretical l = 1 and 2 modes is found to be larger than ∼3 μHz. The problem of equal spacing could be resolved by assuming that the spacings correspond to pairs of l = 2 and 0 modes; this is possible because magnetic fields significantly modify the frequencies of l = 0 modes. The amplitude distribution on the stellar surface is strongly affected by the magnetic field resulting in the predominant concentration at the polar regions. The modified amplitude distribution of a quasi-quadrupole mode predicts a rotational amplitude modulation consistent with the observed one.

Amplitudes and phases of radial velocity variations for various spectral lines are converted to relations of amplitude/phase versus optical depth in the atmosphere. Oscillation phase delays gradually outward in the outermost layers indicating the presence of waves propagating outward. The phase changes steeply around log τ ∼ −3.5, which supports a T–τ relation having a small temperature inversion there.

Key words: stars: individual: HD 24712 – stars: magnetic fields – stars: oscillations.

1 INTRODUCTION
HD 24712 (HR 1217, DO Eri) is a prototype of the rapidly oscillating Ap (roAp) stars that consist of about 40 members. The oscillations, with periods ranging from ∼6 to ∼20 min, are high radial-order p modes affected by strong magnetic fields of 1 to 25 kG.

The 6.15 min light variation of HD 24712 was discovered by Kurtz (1981). Matthews et al. (1988) first discovered radial velocity (RV) variations with an amplitude of 400 ± 50 m s⁻¹. A Whole Earth Telescope (WET) campaign found eight frequencies with rotational side lobes as presented in Kurtz et al. (2005); the paper also gives a thorough review of preceding research on this star. From accurate RV measurements, Mkrtichian & Hatzes (2005) obtained two additional frequencies. Ryabchikova et al. (2007, hereafter Paper I) studied oscillation amplitudes and phases corresponding to the two highest amplitude modes for ∼600 unblended spectral lines of different elements/ions, and found a diversity of these pulsational characteristics in two-thirds of them.

The magnetic field of HD 24712 has been studied by many authors as reviewed in Ryabchikova et al. (1997). Bagnulo et al. (1995) derived a polar magnetic strength of $B_p = 3.9$ kG, a rotational inclination (angle between line of sight and rotation axis) of $i = 137°$ (or 43°) and a magnetic obliquity (the angle between the rotation and magnetic axes) of $β = 150°$ (or 30°). Ryabchikova et al. (1997) found that a slightly higher strength of $B_p = 4.4$ kG is more consistent with their polarimetric observations. Recently, by inverting rotationally modulated polarized spectra, Lüftinger et al. (2008) found that HD 24712 has a nearly dipole magnetic field with the

*E-mail: saio@astr.tohoku.ac.jp
strength varying between 2.2 and 4.4 kG, depending on the rotation phase.

One of the reasons why oscillations of roAp stars are important lies in the fact that many (often regularly spaced) oscillation frequencies are excited simultaneously giving great potential for asteroseismic studies. One difficulty in applying asteroseismology to roAp stars is that strong magnetic fields affect the high-order p modes in complex ways. Although the frequency of an oscillation mode generally increases with increasing magnetic field strength, it occasionally jumps down by ~10 to 30 μHz and then starts increasing again (Cunha & Gough 2000; Saio & Gautschy 2004). At present, there are three independent methods to calculate magnetic effects on high-order p modes: the method of Cunha & Gough (2000) is based on a variational principle; the other two use truncated expansions with spherical harmonics to present the angular dependencies of eigenfunctions (Dziembowski & Goode 1996; Bigot et al. 2000; Saio & Gautschy 2004). The results from those three methods roughly agree with each other as discussed by Cunha (2006) and by Saio (2008).

A further complexity arises if the rotation effect is taken into account. Bigot & Dziembowski (2002) investigated the oscillation properties taking into account both effects of rotation and magnetic field. In our present investigation, however, we disregard the effect of rotation on the frequency and eigenfunctions for simplicity, hoping that the effect is small because the pulsation periods, ~6 min, are very much shorter than the ≈12-d rotation period of HD 24712.

Previously, theoretical pulsation models based on the method of Saio (2005) were compared with the observed frequencies for γ Equ (Gruberbauer et al. 2008), 10 Aql (Huber et al. 2008) and HD 101065 (Mkrichian et al. 2008). Those attempts were more or less successful, although the required strength of the magnetic fields in models tended to be larger than that measured by the Zeeman splitting of spectral lines. In this paper, we provide the same modelling of HD 24712 and for the first time we compare not only oscillation frequencies but also the amplitude and phase variations in the atmosphere of HD 24712.

2 MODELS

2.1 Unperturbed models

For unperturbed models, we adopted spherically symmetric evolutionary models calculated with OPAL opacity tables (Iglesias & Rogers 1996). Table 1 lists various assumptions adopted for each series of evolutionary models. Except for AH 165C, envelope convection is suppressed, assuming a strong magnetic field to stabilize convection. For the envelope convection included in AH 165C, we used a local mixing-length theory with a mixing length of 1.5 times the pressure scaleheight.

We considered two types of T–τ relations in the optically thin outer layers (Fig. 1). One of them is a standard relation (denoted as ‘SS’ in Table 1) obtained from equation (10) of Shibahashi & Saio (1985). The other one (denoted as ‘Ap’ in Table 1) is a relation obtained by Shulyak et al. (2009) for the self-consistent atmospheric model of HD 24712 that takes into account element stratification including rare-earth elements. The latter relation has a small temperature inversion at log τ5000 ≈ −3.5, where abundances of praseodymium (Pr) and neodymium (Nd) increase steeply outward. (Although the optical depth in Shulyak et al.’s relation refers to τ5000, optical depth at a wavelength of 5000 Å, we assume in our present paper that τ5000 is not very different from Rosseland mean optical depth τ.)

We have computed models with and without helium (He) depletion in the outermost layers (the sixth column of Table 1). In the He-depleted models, the He abundance is calculated as Y = 0.01 + (Y1 − 0.01)(x2 + x3) (cf. Balmforth et al. 2001), where Y1 is the (initial) He abundance in the interior, x2 and x3 are fractions of He ii and He iii, respectively.

Fig. 2 shows the evolutionary tracks of AD 160, AD 165, AD 170, AD 170Z25 and AD 150Z1 with the position of HD 24712 with error bars. The type of T–τ relation, on/off of the He depletion, and on/off of the envelope convection hardly change the evolutionary tracks on the Hertzsprung–Russell (HR) diagram. The stellar masses for the metal rich (Z = 0.025) and metal poor (Z = 0.01) cases are chosen such that the evolutionary tracks pass close to the position of HD 24712.

We have adopted the effective temperature Teff = 7250 ± 150 K (or log Teff = 3.860 ± 0.009) obtained by Ryabchikova et al. (1997) and confirmed by Shulyak et al. (2009). The range of effective temperature is consistent with Teff = 7330 ± 140 K derived by Wade (1997) and Teff = 7350 K determined by Lüftinger et al. (2008).

Shulyak et al. (2009) estimated the radius of HD 24712 to be R = 1.772 ± 0.043 R⊙ by combining the spectral energy distribution and the Hipparcos parallax π = 20.32 ± 0.39 mas (van Leeuwen 2007). These estimates for the effective temperature and radius

Table 1. Unperturbed model parameters.

Name	M/M⊙	X	Z	T(τ)	He dep.	Conv
AD 160	1.60	0.70	0.02	Ap	Y	N
AD 165	1.65	0.70	0.02	Ap	Y	N
AD 170	1.70	0.70	0.02	Ap	Y	N
AH 165	1.65	0.70	0.02	Ap	N	N
AH 165C	1.65	0.70	0.02	Ap	N	Y
AD 170Z25	1.70	0.695	0.025	Ap	Y	N
AD 170Z25	1.70	0.695	0.025	Ap	N	N
AD 150Z1	1.50	0.71	0.01	Ap	Y	N
AH 150Z1	1.50	0.71	0.01	Ap	N	N
SD 160	1.60	0.70	0.02	SS	Y	N
SD 165	1.65	0.70	0.02	SS	Y	N
SD 170	1.70	0.70	0.02	SS	Y	N
SH 165	1.65	0.70	0.02	SS	N	N
Figure 2. Evolutionary tracks and the position of HD 24712 with error bars. Solid lines show the evolutionary tracks for a standard composition of \((X, Z) = (0.7, 0.02)\). Open squares indicate the loci of models giving best fits to the observed frequencies for various cases listed in Table 1. At those positions, models have large frequency separations similar to 68 \(\mu\)Hz, which is determined mainly by stellar mass and radius.

yield \(L/L_\odot = 0.891 \pm 0.041\) for the luminosity of HD 24712, which was used to place HD 24712 on the HR diagram (Fig. 2). We note that the adopted luminosity and temperature of HD 24712 are consistent with the values used in previous analysis by Cunha, Fernandes & Monteiro (2003) \(L/L_\odot = 0.892 \pm 0.041\) and \(T_{\text{eff}} = 3.869\pm0.006\)K, where the luminosity (based on the Hipparcos parallax) was taken from Matthews, Kurtz & Martinez (1999).

2.2 Pulsation models

We have obtained non-adiabatic frequencies and eigenfunctions for axisymmetric high-order \(p\) modes based on the method described in Saio (2005) except for the outer-boundary condition and the perturbation of radiation. Since all of the observed oscillation frequencies in HD 24712 are above the acoustic cut-off frequencies of the models considered here, we used a running-wave condition for the mechanical outer-boundary condition at \(\log \tau \approx -6\).

Applying a standard method (see e.g. Unno et al. 1989) to the mechanical equations (A3) and (A4) of Saio (2005), we obtain a running-wave condition as

\[
\frac{V}{2\chi_p} \left[1 - i \sqrt{4\omega^2 \chi_p/V - 1} \right] Y_2 = \omega^2 Y_1,
\]

where \(\chi_p \equiv (\partial \ln P/\partial \ln \rho)_T\) with \(P\) and \(\rho\) being pressure and matter density, respectively, and the other symbols are the same as in Saio (2005). In deriving the equation, we have assumed the oscillations are isothermal at the outer boundary.

In calculating the perturbation of radiation flux, we have adopted the Unno & Spiegel (1966) theory for the Eddington approximation, where the radiative flux is given as

\[
F_{\text{rad}} = -\frac{1}{3\kappa \rho} \nabla (acT^4 + \frac{1}{\kappa} \frac{dS}{\kappa}) ,
\]

where \(S, \kappa, a\) and \(c\) are entropy per unit mass, opacity per unit mass, the radiation constant and the speed of light, respectively. We used a linearized form of the above equation (Saio & Cox 1980). Including the \(dS/dt\) term with the running wave boundary condition is found to reduce the oscillation phase variation in the outermost layers, making it consistent with observations.

The angular dependences of eigenfunctions are expanded using axisymmetric spherical harmonics \(Y^{m=0}_\ell (\text{i.e. Legendre polynomials})\) with \(\ell = 2j - 2\) (even modes) or \(\ell = 2j - 1\) (odd modes), where \(j = 1, 2, \ldots, j_\ell\). An even (odd) mode is symmetric (anti-symmetric) with respect to the magnetic equator. The expansion is truncated as \(j_\ell = 12\) in most cases, but sometimes \(j_\ell = 14\) is adopted to have better accuracy in frequencies. To label the type of angular dependence of a mode, we use \(l_\ell\) which is equal to the \(\ell\) value of the component having the maximum kinetic energy among the expansion components. We note that the angular distribution of amplitude varies depending on the strength of magnetic field even for a fixed \(l_\ell\). To represent the strength of a dipole magnetic field we use the polar strength \(B_\rho\).

3 THEORETICAL RESULTS AND COMPARISONS TO OBSERVATIONS

3.1 Oscillation frequencies

We calculated non-adiabatic oscillation frequencies between \(\sim 2.5\) and \(\sim 2.9\) mHz for \(0 \leq l_\ell \leq 3\) including the effect of dipole magnetic fields in a range of \(2 \leq B_\rho (\text{Kg}^{-1}) \leq 7\). For the series listed in Table 1, we performed pulsation analyses for models having large frequency spacing comparable with that of HD 24712, i.e. 68 \(\mu\)Hz.

All the pulsation modes having frequencies comparable with the observed ones are found to be damped, i.e. no excited modes are found. The excitation mechanism for the oscillations of roAp stars is generally thought to be the \(\kappa\)-mechanism in the hydrogen ionization zone (Balmer et al. 2001; Cunha 2002). For cool roAp stars like HD 24712 and HD 101065 (Mkrtichian et al. 2008), however, the \(\kappa\)-mechanism seems not strong enough. The temperature inversion (Fig. 1) is too small to help excite high-order \(p\) modes as discussed in Gautschy, Saio & Harzenmoser (1998). It seems that we need a new excitation mechanism for cool roAp stars.

Fig. 3 shows an example of \(p\)-mode frequencies in a model as a function of \(B_\rho\) (the magnetic field strength at poles). The observed frequencies by a WET campaign (Kurtz et al. 2005) and the RV observation by Mkrtichian et al. (2008) are also shown. Different symbols correspond to different values of \(l_\ell\). Generally, the frequency of an oscillation mode increases with \(B_\rho\), but occasionally it jumps down by \(\sim 30\) \(\mu\)Hz and then starts increasing again. This property was discovered by Cunha & Gough (2000) and confirmed by Saio & Gautschy (2004). The expansion method adopted in this investigation fails around the frequency jump, where the distribution of kinetic energy among the components of expansion is broad.

Frequencies of different radial order for a given \(l_\ell\) vary approximately parallel as a function of \(B_\rho\) so that the large frequency separation \(\Delta \nu\) hardly changes with \(B_\rho\), where \(\Delta \nu = \nu(l_\ell, m) - \nu(l_\ell, m - 1)\) with \(n\) being the radial order of a mode. The top panel of Fig. 4 shows \(\Delta \nu\) calculated for \(l_\ell = 2\) modes in the model shown in Fig. 3. The large separation increases very slowly as a function of \(B_\rho\). This corresponds to an increase in the phase velocity of magnetoacoustic wave, \(\sqrt{c_4^2 + v_A^2}/B_\rho\), where \(c_4\) and \(v_A\) are the adiabatic sound speed and the Alfvén speed, respectively.

The bottom panel of Fig. 4 shows the small separation defined as \(\delta = \nu(l_\ell = 1; n) - 0.5[\nu(l_\ell = 2; n - 1) + \nu(l_\ell = 2; n)]\), calculated using the frequencies shown in Fig. 3. The small separation of the model is about 5 \(\mu\)Hz at \(B_\rho = 0\). In the presence of a
magnetic field, \(\delta \) varies from \(\sim 3 \) to \(\sim 6 \) \(\mu \)Hz. Generally, \(\delta \) increases with \(B_p \), but it jumps down at the frequency jumps discussed above. The gradual growth of \(\delta \) comes from the fact that the frequencies of \(l_m = 1 \) modes increase slightly more steeply with \(B_p \) than those of \(l_m = 2 \) modes. Just after the jump, \(\delta \) reaches a minimum which is considerably smaller than in the case of \(B_p = 0 \), but still significantly larger than the observed value \(\sim 0.5 \) \(\mu \)Hz, obtained by assuming that \(f_3 \) is a \(l_m = 1 \) mode and \(f_2 \) and \(f_4 \) are \(l_m = 2 \) modes. Such a small value of \(\delta \) cannot be reproduced by any model examined in the present paper. The problem of the small spacing of HD 24712 is not unique. Bruntt et al. (2009) found a small spacing that is essentially zero in another roAp star \(\alpha \) Cir – very much smaller than that of HD 24712. It is important to solve this problem of the small spacing; it could be related to a fundamental property of roAp stars.

A relatively large theoretical \(\delta \) means that the frequency of an \(l_m = 1 \) mode is slightly larger than the mean of the adjacent two \(l_m = 2 \) modes. It is interesting to note that \(l_m = 0 \) modes cross \(l_m = 1 \) modes at \(B_p \approx 5 \) kG (Fig. 3). In other words, the frequency of each \(l_m = 0 \) mode is slightly smaller than the frequency of the adjacent \(l_m = 1 \) mode at \(B_p \approx 5 \) kG. Therefore, the problem of equal spacing of HD 24712 can be solved if we assign \(l_m = 0 \) modes (rather \(l_m = 1 \) modes) to \(f_1 \), \(f_3 \) and \(f_5 \), and consider that \(B_p \) happens to have a value near the crossings between \(l_m = 0 \) and \(1 \) modes. The solution has some weaknesses, however, (1) for the \(l_m = (2, 0, 2) \) combination to become equally spaced, \(B_p \) should have a particular value at which the frequency of an \(l_m = 0 \) mode is just equal to the mean of the two adjacent \(l_m = 2 \) modes; it looks unlikely for such a coincidence to be realized in \(\alpha \) Cir, too; (2) as we will discuss below, the amplitude of an \(l_m = 0 \) mode modulates with rotation phase differently from the observed total light variations. Nevertheless, we will consider both possibilities for the mode identifications for \(f_1 \), \(f_3 \) and \(f_5 \).

The observed frequencies of HD 24712 were compared to models having \(\Delta \nu \sim 68 \) \(\mu \)Hz for each evolution sequence listed in Table 1. The quality of the fits was estimated by the mean deviation (MD) of model frequencies (for \(l_m \leq 3 \)) from the nine observed ones. The WET \(f_7 \) frequency was not included in calculating the MD because it differs from \(f_6 \) only by \(2.4 \) \(\mu \)Hz and no models can fit both frequencies. In calculating MDs, we adopted equal weights for all the frequencies because observational errors are much smaller than the theoretical uncertainties which can be estimated as \(\sim 1 \) \(\mu \)Hz from the scatter seen in Fig. 4.

Table 2 lists parameters and the MD of the best-fitting model for each model series, where MDs in parentheses refer to the values obtained including \(l_m = 0 \) modes. Generally, including \(l_m = 0 \) modes yields much better agreement. The positions of these best models on the HR diagram are shown by square symbols in Fig. 2. The position of HD 24712 on the HR diagram is consistent with a \(1.65 \) \(M_\odot \) model with normal composition and with a \(1.70 \) \(M_\odot \) model with a heavy-element abundance of \(Z = 0.025 \). The quality

\[
\Lambda \nu = 0.9247 \quad \log T_{\text{eff}} = 3.8585 \quad \log R = 0.2690
\]

\[
\delta = \nu(\ell = 1, n) - 0.5\{\nu(\ell = 2, n-1) + \nu(\ell = 2, n)\}
\]
The distribution of the MD of theoretical frequencies from the observed ones on the plane of \(B_p\) and stellar radius along the evolution sequence AD 165. Darker parts have smaller MDs. Contours drawn for MDs of 1.5, 2 and 3 \(\mu\)Hz. The white areas have MDs greater than 10 \(\mu\)Hz. Although the MD in this diagram was calculated without including \(l_m = 0\) modes, the distribution of the MD with \(l_m = 0\) modes is similar.

of the frequency fit is practically independent of the type of \(T_\star - \tau\) relations, He depletion or the efficiency of convection. The MDs of the best-fitting models tend to be smaller when the position of the models on the HR diagram is close to the position spectroscopically determined for HD 24712.

Although Cunha et al. (2003) concluded that a metal-poor abundance was preferred, Table 2 indicates that our metal-poor cases are no better than the other cases. The discrepancy might arise from the fact that their adopted radius of HD 24712, \(\log (R/R_\odot) \approx 0.231\), is somewhat smaller than ours.

The magnetic field strength for each best-fitting model is determined mainly by the requirement that the frequency difference between \(f_8\) and \(f_6\) be equal to the frequency difference \(|v(n_4 + 1J_m = 2) - v(n_4 + 1J_m = 3)|\) which varies weakly as a function of \(B_p\) (Fig. 3), where \(n_4\) is the radial order for the main frequency \(f_4\), i.e. \(v(n_4;J_m = 2) = f_4\). [We note that at \(B_p = 0\), \(|v(n;\ell = 2) - v(n;\ell = 3)|\) is always much larger than the frequency separation between \(f_8\) and \(f_6\) (or \(f_7\)).] Since the magnetic field effect on pulsations is stronger in less dense atmospheres for a given frequency and \(B_p\), the required magnetic field strength tends to be smaller for more massive or He-depleted models. Considering the fact that the spectroscopically determined magnetic field strength is \(B_p \approx 4.4\) kG (Section 1), a He-depleted model of AD 165 or AD 170Z25 is better for the model of HD 24712.

Fig. 5 shows the distribution of the MDs on the \(\log R-\log R_\odot\) plane for AD 165 models, where \(R\) means stellar radius. Darker parts indicate smaller MDs. Theoretical frequencies are interpolated with respect to \(\log R\) along the evolutionary model sequence, but not interpolated with respect to \(B_p\) (frequencies are obtained at every 0.1 kG).

As stellar radius changes, the oscillation frequencies change with keeping \(\Delta v\) approximately constant. Therefore, at a fixed \(B_p\), the MD becomes small cyclically with varying \(\log R\), when regularly spaced observed frequencies (\(f_{m1}, f_{m2}\) and from \(f_1\) to \(f_6\)) become close to \(l_m = 1\) and 2 modes. This corresponds to the cyclic appearances of dark bands in Fig. 5.

The dark bands are inclined because oscillation frequencies increase gradually as \(B_p\) increases. They are interrupted at \(B_p \approx 3.5\)–3 kG, because oscillation frequencies jump there (see Fig. 3). The darkness of the bands varies alternatively, i.e. the MD is smaller when the frequencies \(f_{m2}, f_2, f_4\) and \(f_6\) are fitted with \(l_m = 2\) modes (as at \(B_p \approx 4.9\) kG in Fig. 3) rather than with \(l_m = 1\) modes, because in the former case the frequency \(f_8\) can be fitted well with an \(l_m = 3\) mode.

Thus, we identify the main frequency \(f_4\) as an \(l_m = 2\) mode because then the highest frequency \(f_8\) can be well fitted with an \(l_m = 3\) mode. This identification is different from that of Kurtz et al. (2003); they identified \(f_4\) as a deformed dipole \((l_m = 1)\) mode mainly based on the consistency of the amplitude of rotational side lobes. We will show below that due to a strong deformation of the amplitude over the stellar surface, the mean amplitude of the rotational side lobes for \(f_4\) agrees with that expected from a \(l_m = 2\) mode.

Fig. 6 is an echelle diagram for the model at \((\log R, B_p) = (0.269, 4.9\) kG) in Fig. 5. It is the best from the family of AD 165 models for \(B_p > 3\) kG with the MD of the model being 1.45 \(\mu\)Hz without \(l_m = 0\) modes and 1.04 \(\mu\)Hz if \(l_m = 0\) modes are included. (Although a smaller MD of 1.21 \(\mu\)Hz is realized at \((\log R, B_p) = (0.261, 2.1\) kG), the magnetic field strength in the model is smaller than the observational estimates (Section 1), and the phase variation in the atmosphere is inconsistent with observation.) Fig. 6 shows that although the large separation of the model agrees very well with observations, the small spacing defined by \(l_m = 1\) and 2 modes is too large by about 3 \(\mu\)Hz. This discrepancy disappears if \(f_1, f_3\) and \(f_5\) are fitted with \(l_m = 0\) modes rather than \(l_m = 1\) modes. In this case, the nearly equal spacings, \(f_5 - f_4 \approx f_4 - f_3 \approx f_3 - f_2 \approx f_2 - f_1 \approx 34\) \(\mu\)Hz, are realized by pairs of \(l_m = 2\) and 0.

In previous investigations, the identity of \(f_8\) was puzzling because it is separated from \(f_7\) (or \(f_6\)) by only 17 \(\mu\)Hz, half of the regular spacing. In our models, \(f_8\) can be well fitted with an \(l_m = 3\) mode. It is not clear, however, why no other \(l_m = 3\) modes are detected.

3.2 Amplitude modulation with rotation phase

Observed pulsation amplitudes of roAp stars change with magnetic (rotation) phase in such a way that the amplitude is maximum at the phase of magnetic maximum. This is interpreted by the oblique
pulsator model proposed by Kurtz (1982), i.e. an axisymmetric pulsation mode whose axis aligns with the magnetic axis which is in turn inclined to the rotation axis. As the star rotates one observes pulsations at varying aspect, which causes the amplitude modulation.

HD 24712, like other roAp stars, shows an amplitude modulation with the amplitude maximum occurring at the magnetic maximum as found by Kurtz et al. (1989) (see also Paper I). Theoretically, amplitude modulation of a pulsation mode can be obtained by integrating the amplitude distribution over the stellar disc assuming various values of the angle between pulsation axis (i.e. magnetic axis) and the line of sight expected during a rotation period.

Fig. 7 shows the amplitude of radiative flux variation as a function of \(\cos \theta \) for individual pulsation modes with various latitudinal degrees \(l_m \) for the best model of AD 165. \(\theta \) is the colatitude with respect to the magnetic axis. The frequency of each mode is close to one of the observed frequencies of HD 24712, although the amplitude distribution is insensitive to the pulsation frequency. Because of the presence of a strong magnetic field, the latitudinal distribution of pulsation amplitude significantly deviates from any single Legendre function \(P_l(\cos \theta) \). The amplitude around the equatorial region is strongly suppressed and it is more concentrated in the polar regions compared to the non-magnetic case. The \(l_m = 0 \) case is somewhat different from the other cases; it has a broad peak around the equator, which significantly influences amplitude modulation as discussed below.

It is remarkable that the amplitude distribution of the \(l_m = 1 \) mode in the hemisphere is very close to that of the \(l_m = 2 \) mode except that the latter (former) is symmetric (antisymmetric) to the equatorial plane. Since we see mostly one magnetic hemisphere of HD 24712, we expect that amplitudes in light variations and rotational amplitude modulations of \(l_m = 1 \) and 2 modes are comparable to each other.

Fig. 8 shows amplitude modulations predicted from the amplitude distributions shown in Fig. 7, assuming Bagulno et al.’s (1995) parameters: \(i = 137^\circ \), \(\beta = 150^\circ \). Magnetic maximum corresponds to the rotation phase of unity. All the modes except for \(l_m = 0 \) have maximum amplitudes at magnetic maximum in agreement with the observations by Kurtz et al. (1989).

Despite a considerable difference in the amplitude distributions between \(l_m = 1 \) and 3 (Fig. 7), the amplitude modulation curves are very similar. This comes from the fact that for an odd mode contributions from components of \(\ell \geq 3 \) to the light variation is very small compared with that of the \(\ell = 1 \) component, as discussed in Saio & Gautschy (2004).

In contrast to the other cases, amplitude of the \(l_m = 0 \) mode is maximum at the magnetic minimum, although the modulation amplitude is small. This is caused by a broad peak of amplitude near the equator, seen in Fig. 7. The property of the amplitude modulation of the \(l_m = 0 \) mode indicates that the largest amplitude mode of HD 24712 cannot be matched with a \(l_m = 0 \) mode, although it is still possible that \(l_m = 0 \) modes are involved in the pulsations of this star without influencing the total signal very much.

The observed ratio of the minimum to the maximum amplitude can be read as \(~0.3\) from fig. 1 of Kurtz et al. (1989), which is consistent with the theoretical predictions for \(l_m = 1, 2 \) and 3. More quantitative comparisons are possible by using rotational side lobes in the Fourier spectrum. The rotational side lobes are characterized by the quantity

\[
\gamma^+ = \frac{A_{-1} + A_{+1}}{A_0}.
\]

where \(A_0 \) refers to the amplitude of the central frequency and \(A_{-1} \) and \(A_{+1} \) refer to the amplitudes of the first lower- and higher frequency side lobes, respectively. (For our theoretical side lobes \(A_{-1} = A_{+1} \) because we do not include Coriolis force effects.) The value of \(\gamma^+ \) for each mode in Fig. 8 is indicated in parentheses. The value of \(\gamma^+ \) depends on the latitudinal degree \(l_m \), but it is insensitive to the frequency, i.e. pulsation modes with the same \(l_m \) but different radial orders have similar values of \(\gamma^+ \).

Kurtz et al. (2005) obtained \(\gamma^+ \) for each of the frequencies of HD 24712; among them the values for the three main frequencies \(f_2, f_3 \) and \(f_4 \) are well determined with uncertainties less than...
Theoretical oscillation phase modulations in light and velocity
\[\delta \phi = -5845 \gamma_{III} \]
cores, depths of formation were
\[1 - 4927 \gamma_{III} 0.55 \] (Fig. 8), not very different from the observed
\[\tau_{1729-1738} \] lies in the
\[0.9 \] in the amplitude distribution (Fig. 7).
\[l \] (changing from negative to positive) for each mode
\[l \gamma_{III} - 6.1 \] is
\[\approx -2 \) is
\[\approx 5410 \]
refers to the RV at log
\[6053 \] is the RV at log
\[6090 \]
\[6196 \) is
\[6145 \]
\[5988 \]
\[6090 \] is the RV at log
\[150 \]
\[- l \]

Figure 9. Theoretical oscillation phase modulations in light and velocity variations for each mode shown in Fig. 7. In each panel oscillation phases at \(\delta L = 0 \) and at \(V_{rad} = 0 \) (from negative to positive) are plotted as a function of the rotation phase, where \(V_{rad} \) refers to the RV at log \(\tau \approx -6 \).

6 per cent. The mean value from 2000 and 1986 data is 0.60 for \(f_4 \), and 0.64 for \(f_2 \). We have matched \(f_4 \) and \(f_2 \) with \(l_n = 2 \) modes which have \(\gamma^+ = 0.55 \) (Fig. 8), not very different from the observed values. On the other hand, the mean value for \(f_3 \) is 0.83, which is considerably higher than 0.63 expected for an \(l_n = 1 \) mode. As discussed above and indicated in Fig. 6, \(f_3 \) is also close to an \(l_n = 0 \) mode having \(\gamma^+ = 0.99 \). The observed value of \(\gamma^+ \) lies in the middle between \(\gamma^+ \)'s of \(l_n = 1 \) and 0 modes. This could indicate the possibility for the frequency \(f_3 \) to be a superposition of the \(l_n = 1 \) and 0 modes.

The amplitudes of the second rotational side lobes are predicted to be about 10 times smaller than those of the first side lobes. For example, the amplitude of the second side lobes of \(f_4 \) (\(l_n = 2 \)) is expected to be about 30 \(\mu \)mag, which is smaller than the amplitude of the highest noise peaks (80 \(\mu \)mag) in the analysis of Kurtz et al. (2005).

Fig. 9 shows rotational modulations of pulsation phase at \(\delta L = 0 \) and at \(V_{rad} = 0 \) (changing from negative to positive) for each mode shown in Fig. 7, where \(V_{rad} \) is the RV at log \(\tau \approx -6 \). Except for the \(l_n = 0 \) case no rapid changes occur in pulsation phase as observed in some other stars [e.g. HR 3381 (HD 83368); Kurtz & Shibahashi 1986; Baldry & Bedding 2000]. This is because we see only one magnetic pole of HD 24712 with a configuration of \((\beta, i) = (150^\circ, 137^\circ) \). For the \(l_n = 0 \) mode, rapid changes in pulsation phase occur at the rotation phases \(\sim 0.8 \) and \(\sim 1.2 \). This comes from the presence of a nodal line at cos \(\theta \approx 0.9 \) in the amplitude distribution (Fig. 7).

For the \(l_n = 2 \) mode (the second panel from the top in Fig. 9), which corresponds to the main frequency \(f_4 \), the phase of the luminosity variations is nearly constant. The phase of the RV variations is also practically constant in the rotational phase interval 0.75–1.25, although it changes gradually at other phases. Simultaneous spectroscopic and photometric monitoring of HD 24712 (Sachkov et al. 2006; see also Paper I) performed between rotational phases 0.87 and 1.18 do not show phase variations, thus supporting theoretical predictions. The phase of the luminosity variations is always smaller than that of the RV variations, which means that the maxima (for example) of the luminosity variation precede the maxima of the RV variations. The maximum value of the phase difference is about 0.3 of the period and is realized when the rotation phase is around unity, i.e. when the pulsation amplitude is maximum (Fig. 8). This means that velocity maxima lag luminosity maxima by about 30 per cent of a pulsation period around the rotation phase when oscillation amplitude is maximum.

Paper I obtained phase lags of RV variations with respect to the light variations for various spectral lines. These phase lags are always negative, which means that luminosity maximum occurs after the RV maxima. For two other roAp stars, 10 Aql (Sachkov et al. 2008) and HD 101065 (Mkrtichian et al. 2008), the observed phase lags are positive, in the range 0.4–0.6 (10 Aql) and 0.16–0.19 (HD 101065), respectively. Allowing one cycle for the phase uncertainty, the negative phase lags in HD 24712 may be converted into the positive ones. Table 3 lists some results for the lines formed in the most superficial layers, where optical depth of the formation of each line has been obtained by using a non-local thermodynamic equilibrium (NLTE) model of Shulyak et al. (2009). Generally the phase lag \(\delta \phi \) decreases with depth, indicating oscillations propagate outward as discussed below. Table 3 shows that the phase lag around log \(\tau \approx -6 \) is about 0.3–0.4, roughly consistent with the theoretical prediction for the main frequency.

3.3 Amplitude and phase variations with depth

Paper I obtained amplitudes and phases of the RV variations in various spectral lines for the two highest amplitude modes (\(f_4 \) and \(f_2 \)) from time-resolved spectroscopic observations of HD 24712. In the present paper, we consider the results at a rotational phase of 0.94 [UV–Visual Echelle Spectrograph (UVES) observations close to the magnetic maximum]. For a representative sample of Pr II, Pr III, Nd II, and Nd III lines, as well as for the H\(\alpha \) core, depths of formation were calculated in NLTE approximation (Mashonkina, Ryabchikova & Ryabtsev 2005; Mashonkina et al. 2009) using a model atmosphere from Shulyak et al. (2009). In these iterative model calculations, empirical stratifications of the chemical elements such as Si, Ca, Cr, Fe, Sr, Ba, Pr and Nd were derived for each iteration. NLTE calculations were performed for Pr and Nd only, because these elements are concentrated in the uppermost atmospheric layers, while other elements have a tendency to be accumulated close to photosphere where NLTE effects may be neglected. Final element distributions were then used for depth of formation calculations. The
Figure 10. Optical depth versus phase delay (top panel) and amplitude (bottom panel) of RV variations for f4 (the main oscillation mode) obtained from various spectral lines of HD 24712. For Y И and Fe ИІ the phases shifted downward by a pulsation period are also shown. Various lines are theoretical relations for \(l_m = 2 \) modes having frequencies similar to f4 for some He-depleted models (see Table 1 for parameters of each model). In calculating theoretical relations, angles of \((i, \beta) = (137^\circ, 150^\circ)\) are assumed.

Figure 11. The same as Fig. 10 but for f2.

Results have been converted to the relations between optical depth and RV amplitude/phase. For Y И lines, no stratification analysis was performed, therefore, depth of line formation was calculated with a uniform yttrium distribution using an yttrium abundance log \((Y/N_{\text{tot}}) = 8.60\) derived from abundance analysis.

Figs 10 and 11 compare RV amplitude/phase–log \(\tau \) relations for f4 and f2, respectively, with the corresponding theoretical relations of \(l_m = 2 \) modes for He-depleted best models (Table 2). For Y И and Fe ИІ lines with very low RV amplitudes, pulsational phases are plotted twice: as defined originally in Paper I, and shifted downward by a pulsation period taking into account the one-period uncertainty in the phase relation. Similar comparisons for models without He depletion are given in Figs 12 and 13. In comparing the observed and theoretical relations, the theoretical amplitude is multiplied by an arbitrary factor, and the theoretical phase delay is fitted at the outer boundary (log \(\tau \approx -6 \)) by applying an arbitrary shift.

In the outermost layers, oscillation phase gradually delays toward the outer boundary indicating the presence of running waves propagating outward. This is consistent with the fact that all the observed oscillation frequencies of HD 24712 are larger than the acoustic cut-off frequencies of theoretical models. (If a reflective outer boundary condition is imposed, the phase in the outermost layers is nearly constant.) The gradient of the phase variation in the outermost layers is well reproduced by theoretical relations. We note that if the \(dS/dr \) term in equation (2) is dropped, the gradient
becomes steeper, indicating that the Unno & Spiegel (1966) theory is consistent with the observations.

The phase distribution in HD 24712 has a jump between $\tau \approx 10^{-4}$ and 10^{-3} for both f_4 and f_2, indicating the presence of a quasi-node there. This property agrees with the theoretical phase variations for A-models with the $T-\tau$ relation having a small temperature inversion at $\log \tau \approx -3.5$ (Fig. 1). A rapid phase change in S-models with the standard $T-\tau$ relation, however, occurs between $\tau \approx 10^{-3}$ and 10^{-2}, deeper than the phase jump derived from observations. Thus, the position of the phase jump supports the $T-\tau$ relation with a temperature inversion at $\log \tau \approx -3.5$ as obtained by Shulyak et al. (2009).

Whether the phase of theoretical models jump downward or upward depends on the assumption of He depletion, and sometimes on the strength of the magnetic field. Generally, phase tends to decrease inward at the quasi-node in He-depleted models, and to increase inward in models without He depletion. In the best model of the AH 165 series with $B_p = 5.5$ kG, the phase of RV variations for the main frequency f_4 decreases steeply inward at $\log \tau \approx -3$, while it increases steeply at the same layer if B_p is slightly increased to 5.8 kG (Fig. 12), although for the secondary frequency f_2, the phase increases steeply inward for both cases (Fig. 13). However, such a strong dependence of the direction of the phase jump on B_p does not occur in the other cases.

To obtain information on the He depletion in the atmosphere of HD 24712, further observations are needed to fill the gap between $\log \tau = -4$ and -3.

Towards deep interior, theoretical pulsation phase approaches a constant, i.e. nearly a standing wave is realized in the deep atmosphere. However, the innermost Fe I data for the main pulsation f_4 deviate considerably from the theoretical curves. A possible cause may be related to the surface element distribution; Fe is concentrated around the equator, while Y (as all rare-earth elements, including Pr and Nd) is concentrated near magnetic poles (Lüftinger et al. 2008).

Oscillation amplitude increases rapidly in the outermost layers due to a rapid decrease in the gas density. In the layers of $-5 < \log \tau < -4$, theoretical amplitude variations roughly agree with the observed ones for both f_4 and f_2. In the outermost layers with $\log \tau < -5$, however, theoretical amplitudes deviate significantly from the observations. Observed amplitudes level off in the most superficial layers, the cause of which is not clear; it could be the effect of non-linear dissipation, or the density stratification could differ significantly from our simple models.

4 CONCLUSIONS

We discussed theoretical models for the oscillations of the roAp star HD 24712 (HR 1217). Observed frequencies are fitted well with theoretical ones for models whose positions on the HR diagram are close to the position of HD 24712 determined by spectroscopy along with the Hipparcos parallax. The observed main frequency f_4 is identified as a quasi-quadrupole ($l_m = 2$) mode, whose amplitude on the surface is strongly concentrated in the polar regions and is suppressed significantly around the equator. The theoretical amplitude distribution predicts a rotational modulation of the pulsation amplitude which is consistent with the observations.

We modelled for the first time the distributions of the phase and amplitude of RV variations as a function of atmospheric height and compared these with the observed distributions. The gradual outward increase of phase lag in the outermost layers is well reproduced by theoretical results obtained with a running-wave outer-boundary condition. The presence of a steep phase change between $\log \tau \approx -4$ and -3 favours a $T-\tau$ relation with a temperature inversion at $\log \tau \approx -3.5$, rather than a standard $T-\tau$ relation.

Although our models agree with most of the observed properties of the oscillations in the atmosphere of HD 24712, we have recognized three problems to be solved in the future.

(i) The observed amplitude of velocity variation levels off in the outermost layers with $\log \tau < -5$, while in all the models we have calculated amplitude increases steeply outward in the layers with $\log \tau < -4$.

(ii) If the observed main frequencies are identified with $l_m = 2$ and 1 modes, to explain their nearly equal spacings the small frequency spacing defined as $\nu(n,l_m = 2) - \nu(n - 1, l_m = 2)$ must be as small as 0.5 μHz. For all the models calculated, however, the small spacing was always larger than ~ 3 μHz. The problem goes away if we assume that the observed equal spacings of frequencies are produced by $l_m = 2$ and 0 modes rather than $l_m = 2$ and 1 modes. However, this solution has a problem, $l_m = 0$ modes have rotational amplitude modulations different from the modulation seen in the light variations of HD 24712.

(iii) We have found no excited oscillation modes with frequencies appropriate for HD 24712; in other words, all the modes examined are damped ones. High-order p modes in roAp stars are generally thought to be excited by the κ-mechanism in the hydrogen ionization zone (Balmforth et al. 2001; Cunha 2002). However, the κ-mechanism does not seem to be strong enough to excite the supercritical high-order p modes in HD 24712. It is interesting to note that the inefficiency of the κ-mechanism is in common with the case of another cool roAp star HD 101065 having many regularly spaced frequencies (Mkrtichian et al. 2008). Probably we need to find a new excitation mechanism for these coolest roAp stars.

ACKNOWLEDGMENTS

We thank Dr. L. Mashonkina for providing us with the numerical data on the NLTE Pr–Nd line depth formation. HS thanks Chris Cameron for stimulating discussions. This work was supported by research grants from the RKFBI (08-02-00469a and 09-02-00002a) and from Leading Scientific School (4354.2008.2) to TR and MS.

REFERENCES

Bagulo S., Landi Degl’Innocenti E., Landolfi M., Leroy J. L., 1995, A&A, 295, 459
Baldry I. K., Bedding T. R., 2000, MNRAS, 318, 341
Balmforth N. J., Cunha M. S., Dolez N., Gough D. O., Vaucelain S., 2001, MNRAS, 323, 362
Bigot L., Dziembowski W. A., 2002, A&A, 391, 235
Bigot L., Provost J., Berthomieu G., Dziembowski W. A., Goode P. R., 2000, A&A, 356, 218
Brunnt H. et al., 2009, MNRAS, 396, 1189
Cunha M. S., 2002, MNRAS, 333, 47
Cunha M. S., 2006, MNRAS, 365, 153
Cunha M. S., Gough D. O., 2000, MNRAS, 319, 1020
Cunha M. S., Fernandes J. M. B., Monteiro M. J. P. F. G., 2003, MNRAS, 343, 831
Dziembowski W. A., Goode P. R., 1996, ApJ, 458, 338
Gautschy A., Saio H., Harzenmoser H., 1998, MNRAS, 301, 31
Grunerbaumen M. et al., 2008, A&A, 480, 223
Huber D. et al., 2008, A&A, 483, 239
Iglesias C. A., Rogers R. J., 1996, ApJ, 464, 943
Kurtz D. W., 1981, Inf. Bull. Var. Stars, 1915, 1
Kurtz D. W., 1982, MNRAS, 200, 807
Kurtz D. W., Shibahashi H., 1986, MNRAS, 223, 557

© 2010 The Authors. Journal compilation © 2010 RAS, MNRAS 403, 1729–1738

Pulsations of the roAp star HD 24712 1737
