Zoonotic leishmaniasis and control in Ethiopia

Wossenseged Lemma

1Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia

2Tropical Infectious Diseases Research Center (TIDR), University of Gondar, Gondar, Ethiopia

ARTICLE INFO

Keywords: Leishmaniasis, Zoonosis, Anthroponosis, Vectors, Reservoirs, Control, Ethiopia

ABSTRACT

Visceral leishmaniasis and cutaneous leishmaniasis are important public health problems in Ethiopian lowland and highland areas respectively. Failure of antimonial drugs to respond in some diffused cutaneous leishmaniasis and HIV/AIDS-leishmaniasis co-infected patients, side effects of these drugs, highly mutilating diagnostic procedures and high health care expense are among the problems associated with leishmaniasis. Control of leishmaniasis requires proper understanding of human parasites transmissions (anthroponotic or zoonotic or both). The aim of this review was to elaborate different ecologies of leishmaniasis based on evidences from previous researches and information from literatures obtained from different sources including PubMed to describe zoonotic leishmaniasis in Ethiopia with possible control methods. Although vectors of leishmaniasis in Ethiopia are not endophelic, night indoor visits of Phlebotomus vectors for possible blood meal on human have been indicated. Thus, application of indoor and domestic residual insecticides spraying, use of insecticide impregnated fine meshed bed net for visceral leishmaniasis, community based manipulation (destruction) and residual insecticide fogging of hyrax-sand fly habitats for cutaneous leishmaniasis are the visible vector and reservoir control methods that can be used for control of these diseases in Ethiopia. Use of repellants during night outdoor activities of people in the endemic areas requires further investigations.

1. Introduction

Visceral leishmaniasis (VL, also known as kala-azar), post-kala-azar dermal leishmaniasis, cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis are the four clinical forms of leishmaniasis that are caused by more than 20 Leishmania species (Kinetoplastida: Trypanosomatidae) and transmitted by the bite of 98 proven or suspected sandflies vectors in the Old and New Worlds[1,2]. The classical VL or kala-azar is characterized by fever, malaise, weight loss, hyperpigmentation and hepatomegaly. Post-kala-azar dermal leishmaniasis is caused due to complication of VL which is characterized by occurrence of skin lesions, or nodules, mainly on the face, after 2–7 years of unsuccessful treatment of VL. In India, patients with post-kala-azar dermal leishmaniasis are considered to be the most important reservoirs of the parasites and responsible for man to man (anthroponotic) VL transmission[3]. CL can be divided into localized CL, diffused CL and recidivate. Localized CL is a type of manifestation with sores or ulcers on exposed part of the body such as arms, legs and faces, which remain localized and may heal spontaneously. Leishmania aethiopica (L. aethiopica), Leishmania major (L. major), Leishmania tropica (L. tropica) and Leishmania infantum (L. infantum) are the four parasites in the Old World that cause localized CL[1]. Diffused CL due to L. aethiopica, however, consists of painless nodular lesions over wide area of the body which is non-self-healing and sometime unresponsive to standard sodium stibogluconate treatment[4].
Globally, 0.2–0.4 million VL, 0.7–1.2 CL cases and about 20 000–30 000 VL related deaths occur annually from 350 million leishmaniasis risk population in 98 endemic countries[5]. Of the entire current VL incidence reported, about 90% cases are from seven countries (Brazil, Ethiopia, India, Kenya, Somalia, South Sudan and Sudan). Similarly, the majority of CL cases occur in only nine countries (Afghanistan, Algeria, Brazil, Colombia, Iran, Pakistan, Peru, Saudi Arabia and Syria)[5,6]. In Ethiopia, 3 700–7 400 VL and 20 000–50 000 CL cases are reported annually[7,8] with almost similar trend in incidence of VL at present[5]. It could be due to zoonotic nature of leishmaniasis in Ethiopia where drug case management could not decrease incidences of leishmaniasis as humans are incidental (dead end) hosts. The highest HIV prevalence (35%) among all leishmaniasis patients in Ethiopia is reported from northwest Ethiopia[9] where VL incidence is around 60%[8].

2. Zoonotic VL and reservoir hosts

Generally, incrimination of reservoir hosts to show zoonotic leishmaniasis requires intensive ecological investigations including the demonstration for theirgregarious abundance, survival at least during non-transmission season of the parasites, ability to remain infected without any sign and symptom and capacity to present the human Leishmania parasites in their skin or circulation for sand fly vectors bites[0,11]. All VL cases are due to intrusion of human into sylvatic zoonotic Leishmania donovani (L. donovani) parasite cycle which might circulate among the most probably rodent reservoir hosts by the vectors[12]. The only probable man-Phlebotomus orientalis (P. orientalis) vector-man L. donovani transmission cycle happened in Libo-kemkem district during 2004/5 epidemic, following the possible introduction of the diseases from Metema–Humera VL endemic lowlands by seasonal migrant laborers to non-immunized highland population[13]. The epidemic was controlled soon by drug case management of Medecins Sans Frontieres Greece working team. Of 7 161 suspected VL patients screened serologically (direct agglutination test) during 2005–2011, the direct agglutination test positivity rates were around 14% for 2005–2006 epidemic period and suddenly collapsed to about 2.8% during 2007–2008 with further decline to around 2% during 2009–2011[14]. The sero-prevalence rate in suspected individuals after epidemic period was lower than the sero-prevalence rate of around 5% in general population in human Leishmania parasites circulate among different rodent populations. In order to see infectiousness of rodents to the sand fly vectors, laboratory experimental infections are also needed by allowing the vectors to feed on infected rodents for subsequent re-isolation of human Leishmania parasites from the vectors. Population dynamics of rodents is also needed for demonstration of their survival during rainy Leishmania non-transmission season[12].

Generally, VL in Ethiopia is associated with settlement, agricultural involvements and guarding animals by rural farmers, seasonal migrant and non-migrant laborers in extra-domestic lowland areas[12]. Although VL in Ethiopia has been reported as zoonotic[12,19], the status of man-sand fly-man anthropoontic and animal-sand fly-animal-sand fly-man zoonotic transmissions require a proper description before design and use of any VL control tools[20,21]. Considering leishmaniasis in Ethiopia as anthropoontic as a whole[21,22] without evidence can mislead the control options. This review paper aimed to elaborate the different ecologies and evolutionary relationships of Leishmania parasites with vectors and reservoir hosts to describe zoonotic leishmaniasis before suggesting possible control methods in Ethiopia.

3. Zoonotic CL and reservoir hosts

Hyraxes in Ethiopia and Kenya highlands are the only perfect reservoir hosts of CL in Old World as they are long-lived, formgregarious colonies, share a habitat with Phelobotomus species and create ideal breeding sites for sand fly in their latrine[23–25]. Hyraxes and sand flies are infected at least seasonally[23,25]. In Ethiopian highlands, intense outbreaks of CL are usually associated with the existence of hyraxes[23]. There is no doubt about zoonotic transmission of CL in Ethiopian highlands.

4. Evolution and zoonotic leishmaniasis in Ethiopia (East Africa)

The first hematophagous winged insect appeared on earth during the Cretaceous [140 million years ago (MYA)][26]. Fossil evidence indicated the existence of 100 million-year-old amastigotes and possible control methods in Ethiopia.
promastigotes of Leishmania like *Paleoleishmania proterus* in the extinct sand fly (*Palaearctobia barnoti*) with non-human vertebrate (reptiles) blood (dixenous life cycle) in Burmese amber in the supper content (Gondwana)[27]. The evolution of dixenous *Euleishmania* (*Leishmania, Viannaia and Sauroleishmania subgrena*) and *Paraleishmania* from monoxenous trypanosomatid in the supper continents (Gondwana) were also reported between 90 and 140 MYA[28]. Gondwana origin of Leishmania (dixenous parasitism) were also reported recently[29]. After the split of Gondwana, the Second 20–30 million-year-old fossilized extinct sand fly *Lutzomyia adiketis* with *Paleoleishmania neotropicum* trypanosomatid parasite preserved in amber was found from the Dominican Republic (New World)[30]. These results supported the Neotropical/African Origin of Leishmania theory which states the separation of Gondwana in the Mesozoic era resulted in the evolution of the genus Leishmania into subgenera Leishmania and Sauroleishmania in Africa, and Viannaia and Paraleishmania in South America[31]. Evolution of human blood-feeding in insects (anthropophagy) started from about 10 million years ago[32]. That means Leishmania parasite cycle was maintained in non-human vertebrates and sand fly vectors for million years in sylvatic system both in New and Old worlds before the evolution of human on earth and beginning of anthropophagy[33]. The Old World Leishmania (Leishmania) parasites originated approximately 30 MYA[28,29] with the earlier separation of the ancestral *L. donovani* form those of *L. aethiopica*, *L. tropica* and *L. major*[29]. Evidence for African origin of Old World leishmaniasis derived from the fact that all Old World *Leishmania* species (*L. aethiopica*, *L. donovani*, *L. infantum*, *L. major* and *L. tropica*) are found in Africa with their intimate relationships with certain rodent species and hyraxes[31] in addition to the restriction of *L. aethiopica* in Ethiopian and Kenyan Highlands[31,33].

Due to restricted geographic range of *L. aethiopica* parasite, vectors in Ethiopian and Kenyan highlands[23,34,35] and hyraxes in Africa and middle east[36,37], African origin of *L. aethiopica*/*L. tropica*-hyrax system has been indicated[38–40]. Isoenzyme characterization of the four different *Leishmania* promastigotes cultures of the isolates obtained from wild caught *Phlebotomus saeuces* (*P. saeuces*) and *Phlebotomus sergenti* in Ethiopia rift valley in the Istituto Superiore di Sanita Rome (Italy) has also identified the existence of *L. tropica* and *L. aethiopica* in Ethiopian lowlands[41]. In Ethiopia, outside the previously reported *L. tropica* case in Afar region, in the rift valley[40], other seven cutaneous *Leishmania* patients presenting the typical *L. tropica* features (recidivate) were reported from Italian Dermatological Center in Mekelle, Ethiopia[42]. Based on evidences from reservoir hosts, sand fly vectors distribution and cases, it is possible to suggest that the ancestral *L. tropica* and *L. aethiopica* in Ethiopia or East Africa could give rise to the following: *L. aethiopica*-Phlebotomus longipes (*P. longipes*) and *Phlebotomus pedifer* (*P. pedifer*)-hyrax system in Ethiopian/Kenyan highlands, *L. tropica* (*L. killickii*)-sand fly-hyrax system in Namibia and *L. tropica* (*L. killickii*)-sand fly-rudent system in north Africa and *L. tropica*-sand fly (*P. sergenti* and *P. saeuces*)-hyrax system in Africa and Mediterranean region. BLAST genome databases searches of sequences of internal transcribed spacer 1 regions of *L. aethiopica* isolates from CL patients in Ethiopia and a *L. aethiopica* reference strain (MHOM/ET/1972/L102) showed 99% homology among themselves compared to 90% homology to *L. tropica* and 83% to *L. major* isolates[43]. The ancestral *L. major* form separated earlier before ancestral *L. tropica* and *L. aethiopica* radiated into the present time *L. aethiopica* in hyrax system and zoonotic and anthropoionic *L. tropica* system in different part of Old World[29]. *L. major* has the most primitive *Leishmania-Aricanthis* system in sub-Saharan Africa which assumed to give rise the *L. major*-Psammomys, Meriones, and *Rhombomys* systems[44]. An African origin of *L. major* and reservoir systems are also possible. In Ethiopia or elsewhere, *L. major* infection has not been reported in hyraxes; however, *L. major* was identified from an *Aricanthis* species and sandflies (*Phlebotomus duboscqii*) in the lowlands of Southern Ethiopia[45,46]. Probably, Zoonotic *L. major* and *L. donovani* transmissions evolved from a common ancestor in African[29] in non-human reservoir hosts before evolution of anthropoionic transmission in India and radiation of *L. donovani* into *L. infantum* in Mediterranean region[31,33]. Monophyletic origin of *L. donovani* and *L. infantum* complex[47] has been indicated with most probable East African origin of all the strains of *L. donovani* complex[47,48]. Movement of people and their domestic animals to the New World during historical time most probably brought *L. infantum* strains into the New World which later evolved to *Leishmania chagasi*[49,50].

5. Ecologies of zoonotic VL

The two known ecological settings of VL in East Africa are black cotton soil usually with trees (*P. orientalis*-VL Ecology), redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12]. The termite mounds of redish soil of *P. orientalis*—*VL ecology*, redish soil with termite mounds (*Phlebotomus martini* (*P. martini*)) and *Phlebotomus ceriae* (*P. ceriae*)-VL ecology where the *P. orientalis*, *P. martini* and *P. ceriae* vectors and possible rodent reservoirs co-exist[12].
hosts. Dense mixed forests on black cotton soil in lowlands are not breeding sites of *P. orientalis* due to non-cracking or shallow cracking of the soil with wet underneath[51]. Human agricultural practice of transforming dense forest to agricultural fields, therefore, favors the expansion of VL ecologies or VL prevalence. VL incidences and vectors distributions in Ethiopia or other east African countries are, therefore, greatly influenced by presence of reservoir hosts, altitude, presence of black cracking soil or redish soil with termite mounds, temperature and rainfall. Temperature is known to affect survival of the parasite and the speed of development of the different stages in the life cycle. Tropical species like *P. orientalis* require 20–30 °C constant temperature for their survival and development[54]. During the study of environmental determinants affecting the distribution of *P. orientalis* and VL cases in Sudan, the positive sites for *P. orientalis* were characterized by higher maximum and minimum daily temperature than the negative site[55]. Rise in temperature accelerates the insect’s metabolic rates, increases egg production, makes blood feeding more frequent and shortens pathogens development within insects[56,57]. Rainfall is one of the most important climatic factors affecting the existence of *P. orientalis* and incidence of VL[51-53]. Peak *P. orientalis* was reported in March and April dry season and gradually decreases until decline to almost zero in August and September during rainy season[51,53]. Similarly, the presences of rain affect the presence of *P. martini* and *P. caele* in southern and southwestern Ethiopia[58]. The effect of altitude might be related with its effect on temperature and rainfall. Vectors of VL are rarely found at altitude more than 1 800 m above sea level. In Ethiopia, people contract VL when they either seasonally visit VL endemic areas during agriculture rainy seasons or when they shepherd animals or permanently settle on/near black cracking or redish soil with numerous micro and macro-termite mounds[12]. An epidemiological study using leishmanin skin test[59] and sero-prevalence studies[16] in Northwest Ethiopia have also shown most infections were acquired in extra-domestic habitats. After 7% (629/127 457) *P. orientalis* collected from both indoor and outdoor using 175 Center of Disease Control traps during 1997–2000 entomological investigations in eastern Gedaref states, *P. orientalis*-dog-*P. orientalis*-man or *P. orientalis*-man-*P. orientalis* (anthroponotic) VL transmissions were also been suspected[60]. That means *P. orientalis* has also a habit of visiting indoor at night for searching for blood meal like *P. longipes* in highlands of Ethiopia[23,25].

After analyzing several epidemics in Sudan, Hoogstraal and Heynemen[61] indicated exceptional wet years might have been related with those epidemics which resulted in man-fly-man anthropotonic transmissions in clustered villages[61,62]. In Ethiopia, the famous malaria epidemic in the whole country which affected 15 million people in 2003[63] and VL epidemic in the Libo-kemkem rural clustered villages during 2004 and 2005[13], might have been related with such exceptional wet year. It is not yet clear how wet year is associated with VL epidemic in East Africa as already reported[61]. But, a shift of habitats of *P. orientalis* from cracks of the black cotton soil to any shelters including tukuls (huts) during rain stress months (June–July)[52], can increase *P. orientalis*-human contact. The extent of habitat shift and rate of human bites could be greater in wet years.

Generally, *L. donovani* infection is a rural problem in Ethiopia, there is no active man-sand fly-man transmission in clustered villages, towns, urban and sub-urban areas except at the periphery of clustered villages (small towns) where cases occasionally reported mostly in children[19,64]. During two different parallel studies conducted in rural village of Tahtay Adiabo district and extra-domestic habitats of Kafat-Humera district in Tgray region during May, 2011–April, 2012, indoor, pre-domestic and dense mixed forests were not important breeding sites of *P. orientalis*[51,53]. Generally, VL in Ethiopia is zoonotic and VL incidence is associated with involvement of people to wild set up.

6. Control of zoonotic VL

Control of zoonotic VL based on reservoir hosts in Ethiopia requires further studies. The rodents, the probable reservoir hosts of VL in Ethiopi[12,18], are found in domestic, pre-domestic, agricultural fields, forests and other wild areas[12]. It is not cost effective to target rodents of different species in wild setup to control VL. Strategies to control zoonotic VL better depend on vector control methods than controls based on reservoir hosts. Effective use of insecticides to control VL in Ethiopia requires proper understanding of VL ecologies in different foci. In VL-malaria endemic insecticide sprayed areas, *P. orientalis* would not visit indoor[65] compared to non-sprayed VL endemic rural villages where both indoor pyrethrum spray and sticky traps collections indicated indoor visit habit of *P. orientalis*[53] as already reported in eastern Sudan using Center of Disease Control-light trap collections[60]. A possible habitat shift from black cotton soil to any shelter including hollows in tree trunks in dense mixed forest, huts in rural villages and camps during June–July rainy season[51] could be the most important factor which increases *P. orientalis*-human contact and affects VL transmission. The control measures in *P. orientalis* VL ecologies, thus, should target both indoors of rural villages and camps of agriculture fields for indoor residual insecticide spraying in addition to the use of insecticide impregnated fine mashed bed nets. Efficacies of the exito-repellency of different insecticides and including the use of fine mash in preventing VL in endemic lowlands of Ethiopia have to be evaluated. Shelter seeking behavior in *P. martini* and *P. celia* during rainy season may not exist in southern Ethiopia where termite
mounds can protect sand flies from the moderate rain fall in the area. But, there is no clear evidence for these sand flies not visiting indoor at night seeking for blood meals. In P. martini and P. celiae VL ecologies, communities participated in indoor insecticide spraying campaign by including domestic termite mounds in addition to the proper use of insecticide impregnated fine mesh, most probably help to protect human from sand fly vectors bites or VL transmission. For P. orientalis, P. martini and P. celiae VL ecologies, working or sleeping outdoor unprotected from sand fly bites at night during agriculture seasons or guarding cattle are the main reason for the VL incidence[12,16]. An application of repellents like diethyltoluamide on the skin or clothing to prevent bites of sand fly vectors is most probably useful. Further studies on the efficacy of different repellents in preventing sand fly vectors bites in outdoor setups are required.

7. Control of zoonotic CL

For highland zoonotic CL control in Ethiopia (where hyraxes live mostly in crevices of basalt rocks in the gorges and tree cavities in forests), trapping, diagnosis and culling or treating infected hyraxes is almost impossible as it was practiced in dogs during attempt to control VL in Brazil[66]. But, it is cost effective and ethically sound to mobilize local communities and manipulate (destruct) the habitats of hyraxes very close to densely populated highly CL endemic areas so that hyraxes find some other further habitats, at least more than the flight range of P. longipes or P. pedifer (> 1 km). Man-made environmental management such as construction of bridge in “Silti” town in Southern Ethiopia, in contrary, has resulted in CL epidemic due to the creation of an ideal habitat for sandflies and hyraxes to reproduce underneath[24]. In a situation like this, where human-made environmental change results in increased risks for leishmaniasis, contractions should be made by taking into account the possible epidemics of leishmaniasis. Probably, environmental management for control of CL due to L. aethiopica in Ethiopian highlands is a more visible and cost effective method than a possible control by shooting hyraxes close to a heavily infected villages or by encouraging specific predators such as the eagle, mongoose, genet cat, etc. (biological control) as it was suggested by Ashford[18]. Successes in use of insecticides to control sand flies vectors of leishmaniasis in China and South America were reported[10]. Mostly CL endemic highland areas of Ethiopia are malaria free zones and neither insecticide impregnated bed nets nor indoor residual sprayings are practiced. P. longipes and P. pedifer are not endophilic, although they visit human dwellings at night and return to their outdoor resting sites[16]. Use of bed nets and residual insecticide spraying, during malaria control in some endemic areas for both malaria and leishmaniasis, may have little use due to exophilic behavior of CL vectors - Humans are also bitten by these vectors during the day time when they visit hyrax, P. longipes and P. pedifer habitats during fetching of water, collecting woods, guarding animals and so on[14,16]. In CL endemic villages, the effectiveness of fogging of insecticides in habitats where the vectors and hyraxes co-exist, has not been evaluated. Probably, fogging pre-domestic areas (where vectors and reservoir hosts of CL co-exist)[10] can be the second alternative of CL control in Ethiopian highlands where the incidence of CL also increased by frequent day visit of hyrax-sand fly habitats.

8. Conclusions

The probability for anthroponotic transmission in scattered rural settlement and laborers working in agriculture fields is almost rare and it is better to consider leishmaniasis as zoonotic in Ethiopia with the vectors visiting indoor for blood meal. Thus, indoor insecticide residual spraying and use of fine mashed insecticide impregnated bed net are recommended for VL control. Domestic residual insecticide spraying in P. martini and P. celiae ecologies are also been suggested. The use of repellents during outdoor night activities requires further validations. Community based habitats manipulation and destruction of hyrax-P. longipes / P. pedifer by chasing hyraxes away from human settlement areas or residual insecticide fogging of these habitats are the visible options to control CL in highlands. More researches on investigations of zoonotic leishmaniasis are recommended.

Conflict of interest statement

The author declares that he has no conflict of interest.

Acknowledgments

The author would like to acknowledge the Bill and Melinda Gates Foundation Global Health Program for funding his Ph.D. study and creation of the opportunity to visit all kala-azar endemic areas during the investigations of zoonotic visceral leishmaniasis in all endemic foci in Ethiopia. The author would also like to acknowledge Professor Asrat Hailu for his intellectual support in all his careers.

References

[1] Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniasis and other diseases of public health concern. Med Vet Entomol 2013; 27: 123-147.
[2] World Health Organization. Global leishmaniasis update, 2006–2015: A turning point in leishmaniasis surveillance. WHO 2017; 92: 557-572.
[3] World Health Organization. Kala-azar elimination programme report of
van Griensven J, Gadisa E, Aseffa A, Hailu A, Beshah AM, Diro E. Treatment of cutaneous leishmaniasis caused by *Leishmania aethiopica*: A systematic review. *PLoS Negl Trop Dis* 2016; **10**: e0004495.

[5] Drugs for Neglected Diseases Initiative. *DNDi leishmaniasis fact sheet. DNDi leishmaniasis R&D pipeline update 2017.* [Online] Available from: https://www.dndi.org/diseases-projects/leishmaniasis. [Accessed on October 28, 2017.]

[6] World Health Organization. *Leishmaniasis fact sheet.[online].* Available from: http://www.who.int/mediacentre/factsheets/fs375/en/. [Accessed on October 28, 2017.]

[7] World Health Organization. *Leishmaniasis control in East Africa: Past and present effort and future needs.* World health situation and gap analysis; 2010 June 4–5; Addis Ababa, Ethiopia; Geneva: WHO; 2010.

[8] Alvar J, Velez ID, Bern C, Herrera M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. *PLoS One* 2012; **7**: e35671.

[9] Diro E, Lyen N, Ritmeijer K, Boelaert M, Hailu A, van Griensven J. Visceral leishmaniasis and HIV coinfection in East Africa. *PLoS Negl Trop Dis* 2014; **8**: e2869.

[10] World Health Organization, WHO Expert Committee on the Control of the Leishmaniases. *Control of the leishmaniases: Report of a WHO expert committee; 1989 Feb 6–10; Geneva, Switzerland.* Geneva: WHO; 2015.

[11] Ashford RW. Leishmaniasis reservoirs and their significance in control. *Clinics Dermatol* 1996; **14**: 523-532.

[12] Lemma W, Bizuneh A, Tekie H, Belay H, Wondimu H, Kassahun A, et al. Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting *Leishmania* infections in rodents. *Asian Pac J Trop Med* 2017; **10**: 418-422.

[13] Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, et al. Kala-azar outbreak in Libo Kembem, Ethiopia: Epidemiologic and parasitologic assessment. *Am J Trop Med Hyg* 2007; **77**: 275-282.

[14] Wondimeneh Y, Takele Y, Amnuaf A, Ferede G, Muluye D. Trend analysis of visceral leishmaniasis at Addis Zemen Health Center, Northwest Ethiopia. *Biomed Res Intern* 2014; **2014**: 545393.

[15] Hailu A, Gramiccia M, Kager PA. Visceral leishmaniasis in Aba-Roba, south–western Ethiopia: Prevalence and incidence of active and subclinical infections. *Ann Trop Med Parasitol* 2009; **103**: 659-670.

[16] Lemma W, Tekie H, Yared E, Balkew M, Gebre-Michael T, Warburg A, et al. Seroprevalence of *Leishmania donovani* infection in labour migrants and entomological risk factors in extra-domestic habitats of Kaffa-Humera lowlands - kala-azar endemic areas in the north-west Ethiopia. *Infect Dis* 2015; **99**: 1-8.

[17] Kenuh G, Dagmachew S, Almaz G, Abebe T, Takele Y, Hailu A, et al. Preliminary survey of domestic visceral leishmaniasis and risk factors in north-west Ethiopia. *Trop Med Intern Health* 2015; **20**: 205-210.

[18] Kassahun A, Sadlova J, Dvorakova V, Kostalova T, Rohousova I, Fryntah D, et al. Detection of *L.* *tropica* in Ethiopian wild rodents. *Acta Trop* 2015; **145**: 39-44.

[19] Yared S, Deribe K, Gebreselassie A, Lemma W, Akilulu E, Kirstein OD, et al. Risk factors of visceral leishmaniasis: A case control study in Northwest Ethiopia. *Parasit Vectors* 2014; **7**: 470.

[20] Gadisa E, Tsegaw T, Abera A, Elnaiem D, den Boer M, Aseffa A, et al. Eco-epidemiology of visceral leishmaniasis in Ethiopia. *Parasit Vectors* 2015; **8**: 381.

[21] Leta S, Dao T, Mesele F, Alemayehu G. Visceral leishmaniasis in Ethiopia: An evolving disease. *PLoS Negl Trop Dis* 2014; **8**: e3131.

[22] WHO. *Manual on visceral leishmaniasis control.* Geneva: World Health Organization; 1996.

[23] Ashford RW, Bray MA, Hutchinson MP, Bray RS. The epidemiology of cutaneous leishmaniasisin Ethiopia. *Trans R Soc Trop Med Hyg* 1973; **67**: 568–601.

[24] Lemma W, Hyrax and leishmaniasis. *Eih J Bio Med Health* 2008; **11**: 63-71.

[25] Lemma W, Ereno G, Gadisa E, Balkew M, Gebre-Michael T, Hailu A. A zoonotic focus of cutaneous in Addis Ababa, Ethiopia. *Parasit Vectors* 2009; **2**: 60

[26] Azar D, Nel A. Fossil psychodoid flies and their relation to parasitic diseases. *Mem Inst Oswaldo Cruz* 2005; **98**: 35-37.

[27] Poinar G Jr., Poinar R. *Paleolatvia proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber.* Protistology 2004; 155: 305-310.

[28] Harkins KM, Schwartz RS, Cartwright RA, Stone AC. Phylogenomic reconstruction supports supercontinent origins for *Leishmania.* *Infect Genet Ecol* 2016; **38**: 101-109.

[29] Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel trypanosomatid, *Zelonia australiensis* sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. *PLoS Negl Trop Dis* 2017; **11**: e0005215.

[30] Poinar J G. *Lutzomyia adileita* sp. n. (Diptera: Phlebotomidae), a vector of *Paleolatvia neotropicum* sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber. *Parasit Vectors* 2008; **1**: 22.

[31] Momen H, Cupolillo E. Speculations on the origin and evolution of the genus *Leishmania.* *Mem Inst Oswaldo Cruz* 2000; **95**(4): 583-588.

[32] Powell JR, Tabachnick WJ. History of domestication and spread of *Aedes aegypti*.* Mem Inst Oswaldo Cruz* 2013; **108**: 11-17.

[33] Molly M. Leishmaniasis: A review of the disease and the debate over the origin and dispersal of the causative parasite *Leishmania.* *Mocaclear Rev Biogeography* 2008; **1(1)**: Article 2.

[34] Sang D, Njeru W, Ashford R. A possible animal reservoir for *Leishmania tropica* in Kenya. *Ann Trop Med Parasitol* 1992; **86**: 311-312.

[35] Ashford R, Sang D. *Leishmania tropica* infection in Africa. In: Program and Abstract of Second International Congress on *Leishmania* and leishmanioses; 2001; Athens, Greece: Hellenic Pasteur institute; 2001.

[36] Corbet G. The taxonomy of *Procavia capensis* in Ethiopia, with special reference to the aberrant tusks of *P. c. capillosa* Brauer (Mammaliele, Hyracoidea). *Bull Br Mus Nat Hist (Zool)* 1979; **36**: 251-259.

[37] Barry R, Shoshani J. *Heterohyrax brucei.* *Mammalian Species* 2000; **645**: 1-7.

[38] Lanotte G, Rioux JA, Serres E. Approche cladistique du genre...
Leishmania, Ross, 1903. A propos de 192 souche originaires de l’Ancien Monde. Analyse numérique de 50 zymodèmes identifiés par 15 enzymes et 96 isoenzymes. In: Rioux JA, editor. Leishmania, taxonomie et phylogénie; Applications eco-épidemiologiques. Montpellier: IMEE; 1986, p. 269-288.

Momen H, Cupolillo E. Speculations on the origin and evolution of the genus Leishmania. Mem Inst Oswaldo Cruz 2000; 95: 583-588.

Hailu A, Di Muccio, Abebe T, Hanegnaw M, Kager P, Gramiccia M. Isolation of L. tropica from an Ethiopian cutaneous leishmaniasis patient. Trans R Soc Trop Med Hyg 2006; 100: 53-58.

Gebre-Michael T, Balkew M, Ali A, Ludovisi A, Gramiccia M. Speculations on the origin and evolution of Old World leishmanial systems. In: JA Rioux, editor. Leishmania taxonomie et phylogene. Applications eco-épidemiologiques. Applications. Montpellier: IMEE; 1986, p. 269-288.

Kuhls K, Alam MZ, Cupolillo E, Ferreira GEMF, Mauricio IL, Oddone et al. Nocturnal activities and host preferences of Phlebotomus orientalis in extradomestic habitats of Kafka-Humera lowlands, Kala-azar endemic, Northwest Ethiopia. Parasit Vectors 2014; 7: 594.

Gebresilassie A, Kirstein OD, Yared S, Aklilu E, Moncz A, Tekie H, et al. Species composition of phlebotomine sand flies and biometrics of Phlebotomus orientalis (Diptera: Psychodidae) in an endemic focus of visceral leishmaniasis in Tahtay Adiyabo district, Northern Ethiopia. Parasite Vectors 2015; 8: 248

Ward RD. Some aspects of the biology of phlebotomine sand fly vectors. Adv Dis vector Res 1989; 6: 91-126.

Elnaïm A, Conners S, Thmoson M, Hassan M, Hassan H, Aboud A. Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 1998; 92: 877-887.

Ashford RW. The leishmaniases as model zoonoses. Am J Trop Med Hyg 2003; 69: 12-21.

Lambert M, Dereeje J, El-Sail SH, Bucheton B, Dessein A, Boni M, et al. The sandfly fauna in the visceral leishmaniasis focus of Gedaref in northeast Sudan. Trans R Soc Trop Med Hyg 2004; 98: 64-70.

Vourlekis JS, Ashford RW. The leishmaniases as model zoonoses. Am J Trop Med Hyg 2011; 84: 12-21.

Fuller GK, Lemna A, Haile T, Atwood CA. Kala-azar in Ethiopia. I. Leishmanin skin-test in Setit-Humera, a kala-azar endemic area in northern Ethiopia. Am J Trop Med Hyg 1976; 70: 147-163.

Hoogstraal J, Heyneman D. Leishmaniasis in the Sudan Republic. Am J Trop Med Hyg 1969; 8: 1091-1210.

World Health Organization. Africa malaria report. Geneva: WHO/Roll Back Malaria; 2003.

Yared S, Gebresilassie A, Aklilu E, Balkew M, Wurburg A, Hailu A, et al. Habitat preference and seasonal dynamics of Phlebotomus orientalis in urban and semi-urban areas of kala-azar endemic district of Kafka Humera, northwest Ethiopia. Acta Trop 2017; 166: 25-34.

Akilul E, Gebresilassie A, Yared S, Kindu M, Tekie H, Balkew M, et al. Studies on sand fly fauna and ecological analysis of Phlebotomus orientalis in the highland and lowland foci of kala-azar in northwestern Ethiopia. PLoS One 2017; 12(4): e0175308.

Tesh R. Control of zoonotic visceral leishmaniasis, is it time to change strategies? Am J Trop Med Hyg 1995; 52: 287-292.