A dataset of factors influencing intentions for organic farming in Vietnam

Thi-Phuong-Linh Nguyena,*, Thu-Thuy Nguyena, Xuan-Hau Doana, Manh-Linh Trana, Nhat-Minh Trana, Thi-Dao Nguyenb

a National Economics University, 207 Giai Phong, Hanoi, Vietnam
b Banking Academy, 12 Chua Boc, Hanoi, Vietnam

\textbf{A R T I C L E \ I N F O}

Article history:
Received 13 August 2020
Revised 25 November 2020
Accepted 25 November 2020
Available online 29 November 2020

Keywords:
Organic farming
Vietnam
Intention of farmers
Theory of planned behavior
Norm activation model

\textbf{A B S T R A C T}

This paper presents a survey dataset on factors influencing farmers' intention to produce organic farming in Hanoi, Vietnam. The survey was designed based on the theoretical integration model of theory of planned behavior (TPB) and norm activation model (NAM) including 7 factors, 33 items inherited from previous studies to collect information of the respondents and 5 other items used to find out the respondent's characteristic include: gender, age, educational qualification, farming experience and farming annual income. Questionnaires were sent directly to farmers at their home or farm in October 2019. 318 valid questionnaires were collected for the study of intentions for organic farming. The dataset was obtained as a reference source for later studies on organic farming development and organic farming production intent/behavior promotion.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Agriculture
Specific subject area	Organic farming, intention of farmer, theory of
	planned behavior, norm activation model
Type of data	Table
How data were acquired	Questionnaire
Data format	Raw
Parameters for data collection	Participants who farmers in the Hanoi, Vietnam are practicing conventional farming, decided to participate in the survey voluntarily
Description of data collection	Data were collected through direct distribution and collection from farmers in Hanoi, Vietnam in October 2019. The data set includes 318 valid responses.
Data source location	Region: Asia
	Country: Vietnam
	Latitude and longitude: 21.028511, 105.804817
Data accessibility	Data with the article

Value of the Data

• The dataset describes the assessment of farmers in Hanoi, Vietnam on organic farming production based on seven factors from the TPB-NAM integrated model including: intention, attitude, subject norms, perceived behavioral control, personal norm, awareness of consequences and ascription of responsibility. At the same time, the dataset also includes 5 characteristics of the respondent: gender, age, educational qualification, farming experience and farming annual income.
• The data set explores factors influencing the intentions of organic farming of farmers in Hanoi, Vietnam.
• The dataset is the source of reference for state management agencies in making policies to promote organic farming production, contributing to building a sustainable national agriculture in developing countries like Vietnam.

1. Data Description

Organic farming increases farmers’ income, while also helping to protect environmental pollution by avoiding harmful chemicals and fertilizers [12]. Organic farming is an important tool for achieving green yields and reducing the negative effects of conventional farming by removing synthetic chemical inputs during production [1]. Therefore, developing countries like Vietnam are trying to come up with policies to promote organic farming intentions of farmers. The dataset collected farmers’ opinions based on seven factors from the TPB-NAM integration model. In particular, TPB has been accepted and widely used in studies with the purpose of predicting individual intentions and behavior, empirical studies have shown the relevance of this theory in the study of farmers’ intentions/behavior [3,5,6,8,11]. NAM is derived from a pro-social context and has been widely used in many studies to explain not only pro-social intentions/behavior but also pro-environmental intentions/behavior in a wide range of contexts [2,4,7,9,14].

The data set was collected through a 2-part survey: the first part explores the respondents’ characteristics including: gender, age, educational qualification, farming experience and farming annual income (Table 1); the second part explores respondents’ consent to statements related to factors affecting the intention to produce organic agriculture (Table 2); Table 3 shows more detailed results between the variables. It took the farmer about 20 minutes to complete the entire survey. Valuable responses were obtained in 318 questionnaires. The questionnaire and answers were shown in the supplementary files.
The dataset includes: the respondent’s characteristics (Table 1) and seven factors: (1) intention; (2) attitude; (3) subject norms; (4) perceived behavioral control; (5) awareness of consequences; (6) ascription of responsibility; (7) personal norm (Table 2).

2. Experimental Design, Materials and Methods

The survey was conducted directly at the farmer’s residence or farm in October 2019. The survey team received the support from Department of Science and Technology in Hanoi to list and approach the target farmers. Respondents were farmers who were practicing conventional farming in Hanoi, Vietnam. Respondents were selected at random but still ensured their representativeness in some regions that were promoting the conversion to organic farming such as Soc Son, Chuong My, Ba Vi, ... in Hanoi. Each farmer participating in the survey received a support of 2 US dollar after completing all the contents of the questionnaire which were distributed directly and collected by the survey team.

The survey team designed a survey of 38 items, of which 5 were about respondents’ characteristics, the remaining 33 items, are designed on a 5-point Likert scale (1: Strongly disagree; 2: Disagree; 3: Neutral; 4: Agree; 5: Strongly agree), focus on 7 factors: intention, attitude, subject norms, perceived behavioral control, personal norm, awareness of consequences and ascription of responsibility. All items in the survey are inherited from previous studies [10,13] and the replying is complete mandatory to ensure that the collected data does not contain missing data. The questionnaire did not use the reverse question, which was conducted directly by the survey team, with detailed observations and assisting farmers in the answer process. All responses of the respondents were imported into Excel software before importing to SPSS 22. Before the analysis, the variables were encoded (Tables 2 and 3) and the data were checked to ensure the validity of each questionnaire. After discarding invalid questionnaires, the final dataset contained 318 questionnaires.
Table 2
Descriptive results of participants’ responses

Variables	N	Min	Max	Mean	Std. Deviation
Intention (IN) (Cronbach’s Alpha = 0.782)					
IN1 I intend to practice organic farming in my farm over the next year.	318	1	5	3.09	1.121
IN2 I will expend effort in organic farming in my farm over the next year.	318	1	5	3.60	1.178
IN3 I am planning to practice organic farming in my farm over the next year.	318	1	5	3.06	1.076
Attitude (AT) (Cronbach’s Alpha = 0.804)					
AT1 Quality of product from organic farming is better than conventional farming.	318	1	5	3.44	1.279
AT2 Organic farming is good for farmers and the health of family members.	318	1	5	3.36	1.391
AT3 The products from organic farming are good for the consumer’s health.	318	1	5	3.44	1.228
AT4 The products from organic farming are good for the environment.	318	1	5	3.29	1.324
Subject norms (SN) (Cronbach’s Alpha = 0.870)					
SN1 Other farmer neighbors will change to organic farming.	318	1	5	3.48	1.094
SN2 Family members need the farmers to transform to organic farming.	318	1	5	3.37	1.210
SN3 Introduction and news releases from media, such as television, radio, or newspapers leads to organic farming.	318	1	5	3.45	1.160
SN4 Farmer groups on organic farming are better for exchanging information, production, and marketing.	318	1	5	3.40	1.146
SN5 Farmer groups on organic farming are better for exchanging information, production, and marketing.	318	1	5	3.46	1.125
SN6 Farmer groups on organic farming will influence others to join.	318	1	5	3.47	1.139
Perceived behavioral control (PBC) (Cronbach’s Alpha = 0.861)					
PBC1 Farmers know the difference between organic farming and conventional farming.	318	1	5	3.52	1.240
PBC2 Farmers know the processes and techniques of organic farming.	318	1	5	3.69	1.189
PBC3 Farmers have the self-confidence to carry out organic farming.	318	1	5	3.56	1.274
PBC4 Farmers have the self-confidence to receive an organic certificate.	318	1	5	3.62	1.214
PBC5 Farmers have the self-confidence to control productivity with organic farming.	318	1	5	3.63	1.210
Awareness of consequences (AC) (Cronbach’s Alpha = 0.861)					
AC1 Organic farming prevents pests and reduces beneficial insects.	318	1	5	2.84	1.437
AC2 Organic farming minimize soil contamination and erosion and improve fertility.	318	1	5	3.09	1.427
AC3 Organic farming help to minimize ground and surface water contaminations.	318	1	5	3.09	1.427
AC4 Organic farming prevent or reduce potential human health problems.	318	1	5	2.96	1.400
AC5 Organic farming help to improve environmental air quality.	318	1	5	3.07	1.377

(continued on next page)
Variables	N	Min	Max	Mean	Std. Deviation
Ascription of responsibility (AR) (Cronbach’s Alpha = 0.822)					
AR1 I feel responsible for the problems of not using organic agricultural practices.	318	1	5	3.49	1.278
AR2 I provoke environmental problems if I do not use organic farming in my farm.	318	1	5	3.53	1.214
AR3 I believe that every farmer must take responsibility for organic farming.	318	1	5	3.50	1.263
AR4 All farmers are responsible for human health hazards by pesticide overuse.	318	1	5	3.64	1.228
Personal norm (PN) (Cronbach’s Alpha = 0.812)					
PN1 I feel morally obliged to practice organic farming in my farm.	318	1	5	3.36	1.277
PN2 Organic farming is consistent with my moral principles, values, and beliefs.	318	1	5	3.35	1.212
PN3 I would feel guilty about not using organic farming in my farm.	318	1	5	3.45	1.216

Table 3
Correlations between variables and intention of farmers to produce organic farming.

Variable	Intention		
	IN1	IN2	IN3
Respondent characteristic			
RC1 Gender	0.011	0.009	-0.071
RC2 Age	-0.043	-0.031	-0.101
RC3 Educational qualification	-0.002	0.082	0.003
RC4 Farming experience	-0.027	-0.024	-0.109
RC5 Farming annual income	-0.054	-0.012	-0.128*
Attitude			
AT1 Quality of product from organic farming is better than conventional farming.	0.241**	0.132*	0.156**
AT2 Organic farming is good for farmers and the health of family members.	0.246**	0.139*	0.223**
AT3 The products from organic farming are good for the consumer’s health.	0.225**	0.193**	0.217**
AT4 The products from organic farming are good for the environment.	0.256**	0.124*	0.199**
Subject norms			
SN1 Other farmer neighbors will change to organic farming.	0.039	0.038	0.055
SN2 Family members need the farmers to transform to organic farming.	0.147**	0.168**	0.090
SN3 Introduction and news releases from media, such as television, radio, or newspapers leads to organic farming.	0.141*	0.124*	0.106
SN4 Farmer groups on organic farming are better for exchanging information, production, and marketing.	0.153**	0.167**	0.184**
SN5 Farmer groups on organic farming are better for exchanging information, production, and marketing.	0.165**	0.115*	0.182**
SN6 Farmer groups on organic farming will influence others to join.	0.090	0.079	0.107

(continued on next page)
Table 3 (continued)

Variable	Intention	IN1	IN2	IN3
Perceived behavioral control				
PBC1	Farmers know the difference between organic farming and conventional farming.	0.222**	0.178**	0.273**
PBC2	Farmers know the processes and techniques of organic farming.	0.206**	0.183**	0.221**
PBC3	Farmers have the self-confidence to carry out organic farming.	0.183**	0.174**	0.214**
PBC4	Farmers have the self-confidence to receive an organic certificate.	0.160**	0.152**	0.215**
PBC5	Farmers have the self-confidence to control productivity with organic farming.	0.172**	0.168**	0.200**
Awareness of consequences				
AC1	Organic farming prevents pests and reduces beneficial insects.	0.170**	0.156**	0.212**
AC2	Organic farming minimize soil contamination and erosion and improve fertility.	0.170**	0.117*	0.124*
AC3	Organic farming help to minimize ground and surface water contaminations.	0.211**	0.223**	0.252**
AC4	Organic farming prevent or reduce potential human health problems.	0.147**	0.121*	0.209**
AC5	Organic farming help to improve environmental air quality.	0.069	0.070	0.155**
Ascription of responsibility				
AR1	I feel responsible for the problems of not using organic agricultural practices.	0.220**	0.225**	0.175**
AR2	I provoke environmental problems if I do not use organic farming in my farm.	0.238**	0.244**	0.250**
AR3	I believe that every farmer must take responsibility for organic farming.	0.195**	0.170**	0.167**
AR4	All farmers are responsible for human health hazards by pesticide overuse.	0.240**	0.203**	0.250**
Personal norm				
PN1	I feel morally obliged to practice organic farming in my farm.	0.202**	0.090	0.215**
PN2	Organic farming is consistent with my moral principles, values, and beliefs.	0.239**	0.145**	0.280**
PN3	I would feel guilty about not using organic farming in my farm.	0.195**	0.164**	0.195**

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Based on the data set, further studies can study the relationships between the factors in the TPB-NAM integration model or separate each theory to find the factors that influence intentions to produce organic farming by farmers.

Ethics Statement

The authors kept to all ethical concerns during the data gathering process. The authors got the consent of the respondent when conducting surveys and ensured that all information was used for research purposes and was absolutely confidential.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This research is funded by National Economics University, Hanoi, Vietnam. The authors would like to express sincere thanks to farmers in the Hanoi, Vietnam for facilitating the survey team to collect data directly at home or on farm.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2020.106605.

References

[1] A. Asadollahpour, M. Omidinajafabadi, S. Jamalhosseini, Factors affecting the conversion to organic farming in Iran: a case study of mazandaran rice producers, Sci. Int. (Lahore) 26 (4) (2014) 1844–1860.
[2] S. Bamberg, G. Möser, Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour, J. Environ. Psychol. 27 (1) (2007) 14–25.
[3] J.A.R. Borges, A.G.O. Lansink, C.M. Ribeiro, V. Lutke, Understanding farmers’ intention to adopt improved natural grassland using the theory of planned behavior, Livestock Sci. 169 (2014) 163–174.
[4] M.F. Chen, P.J. Tung, Developing an extended theory of planned behavior model to predict consumers’ intention to visit green hotels, Int. J. Hospitality Manage. 36 (2014) 221–230.
[5] J. Deng, P. Sun, F. Zhao, X. Han, G. Yang, Y. Feng, Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models, Sci. Total Environ. 550 (2016) 382–390.
[6] M.D. Djamaaludin, Analysis intention of farmer card utilization using theory of planned behavior, J. Consumer Sci. 3 (2) (2018) 16–26.
[7] P. Harland, H. Staats, H.A. Wilke, Explaining proenvironmental intention and behavior by personal norms and the theory of planned behavior 1, J. Appl. Soc. Psychol. 29 (12) (1999) 2505–2528.
[8] D. Laepple, Farmer attitudes towards converting to organic farming, in: Teagasc Organic Proaduction Research Conference Proceedings, Teagasc , Ireland, 2008, December, pp. 114–121.
[9] M.C. Onwezen, G. Antonides, J. Bartels, The norm activation model: an exploration of the functions of anticipated pride and guilt in pro-environmental behaviour, J. Econ. Psychol. 39 (2013) 141–153.
[10] R. Rezaei, L. Safo, C.A. Damalas, M.M. Ganjkhani, Drivers of farmers’ intention to use integrated pest management: integrating theory of planned behavior and norm activation model, J. Environ. Manage. 236 (2019) 328–339.
[11] I. Senger, J.A.R. Borges, J.A.D. Machado, Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production, J. Rural Stud. 49 (2017) 32–40.
[12] A. Ullah, S.N.M. Shah, A. Ali, R. Naz, A. Mahar, S.A. Kalhoro, Factors affecting the adoption of organic farming in Peshawar-Pakistan, Agri. Sci. 6 (06) (2015) 587.
[13] P. Yanakitkul, C. Aungvaravong, Proposed conceptual framework for studying the organic farmer behaviors, Kasetsart J. Soc. Sci. (2017) 1–8.
[14] Y. Zhang, Z. Wang, G. Zhou, Antecedents of employee electricity saving behavior in organizations: an empirical study based on norm activation model, Energy Policy 62 (2013) 1120–1127.