Breast cancer screening during the Syrian crisis: A cross-sectional study

SARA HUSEIN1*, IBRAHEM HANAFI2*, MARAM BALOULI1, ZEIN BARADI1, YUSRA ALSHEIKH1, DANA ABO SAMRA3, MAHER SALAMOON4

1 Faculty of Medicine, Damascus University, Damascus, Syria; 2 Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Damascus University, Damascus, Syria; 3 Department of Gynecology, Faculty of Medicine, Damascus University, Damascus, Syria; 4 Eye surgical Hospital, Damascus, Syria; 5 Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, Damascus University, Damascus, Syria; 6 Department of Oncology, Faculty of Medicine, Damascus University, Damascus, Syria

Keywords
Breast cancer, Syria, breast cancer screening, breast self-examination, healthcare inaccessibility

Introduction
Although breast cancer has a lower incidence in developing countries, mortality rates are higher, mainly due to delay in diagnosis and the poor diagnostic and therapeutic capacities. Although screening texts have been available for quite a long time, delayed and advanced presentation is still common, especially in developing countries. The decade-long Syrian crisis has severely crippled the healthcare system and depleted the already-limited capacities of the healthcare services, which under prioritized the care provided to unurgent cases like breast cancer. This study aimed to investigate the practices of breast cancer screening among breast cancer patients.

Methods
A cross-sectional study conducted in Al-Beiruni Hospital at Damascus University in 2019, through personal interviews using a structured questionnaire.

Results
The sample consisted of 519 patients with breast cancer. One-hundred twenty (23.2%) of them reported undergoing one or more of the different screening methods at least once every six months prior to diagnosis. Several factors had a statistically significant association with the probability of undergoing or performing screening methods including living in large cities, having fewer children, having a full-time or part-time job, and the level of education. Patients who reported having a relative diagnosed previously with breast cancer or any other malignancies were also more likely to screen themselves. Inaccessibility to healthcare services, which was exaggerated by the armed conflicts, had a significant association with less practicing of the screening methods too (OR: 0.4 [0.3-0.7]).

Conclusion
The Syrian war and its direct and indirect consequences negatively affected screening practices of breast cancer.

* These authors contributed equally to the work and share first authorship.
in conflict zones, and suggested an important role for the awareness of patients and their screening practices to mitigate the lack of healthcare accessibility [16]. The aim of this study is to investigate the practices of BCS among Syrian patients and to discover their association with different demographic factors.

Methods

Patients
This cross-sectional study was conducted in Al-Beiruni Hospital, the leading Syrian cancer center affiliated with Damascus University. Data collection took place in the period between August and December 2019, and only patients with a diagnosis of BC were recruited. Patients with neurological or psychiatric illnesses that hinder the data collecting process were excluded. Patients were approached in the waiting area of the BC clinic or department and were interviewed by one of four senior medical students at Damascus University. Data collectors were all trained on the tool of measurement and frequent meetings were held to discuss difficulties confronted during data collection. Interviews lasted for 10-20 minutes and a paper survey was filled out during the interview by the interviewer.

Questionnaire
The questionnaire consisted of three sections. The first asked about demographic information including: age, address, occupation, educational qualification, and healthcare services accessibility. The second inquired about BCS methods such as breast self-examination (BSE), clinical breast examination (CBE), and mammography as well as the frequency of applying these methods. In this section, patients were also asked about the source of information about BCS. The third section included questions about patients’ medical and family history such as personal history of BC or benign breast diseases, and family history of malignancies. The questionnaire was in Arabic, which is the mother language for all participants. The final version of the questionnaire was first piloted by different data collaborators on 25 patients from different social, educational, and financial backgrounds to confirm that they can tolerate the time required and answer the questions free of interrater variability and without concern regarding consistency and structure.

Informed Consent and Ethical Approval
Data collaborators explained to the patients about the study and its measures and aims before the interviews, and participation in the interviews was voluntary. Assurance of the confidentiality of the data was also conveyed to the patients and a verbal informed consent was taken from them for the aim of publishing the anonymous data. The interviews were done in a private room near the waiting area of the BC clinic. This study was approved by the local ethical committee of the hospital and the Syrian Association of Medical Oncology.

Data Analysis
Data collaborators entered survey data from the paper questionnaires into an electronic Google form. Data were later imported into Microsoft Excel 365 version 2011 (Build 13426.20404; year 2020) and analyzed using the Statistical Package for the Social Sciences version 23.0 (SPSS Inc., Chicago, IL, United States). Medians and interquartile ranges were used to represent continuous data, while counts and percentages were used for categorical data. Chi-square and Fisher’s exact tests were used to assess the association between practicing BCS and demographic and history data. An alpha value of 0.05 was used to determine the threshold of statistical significance. Additionally, a binary logistic regression model was created to investigate the independently associated predictors of BCS performance.

Results

Demographic Data
We interviewed 519 female BC patients, who were diagnosed between 2011 and 2019, but the median was 2018. Their ages at diagnosis ranged from 25 to 87, however, the ages at the point of data collection were between 27 and 88. Three-hundred-eighty-five (74.2%) patients were married, 411 (79.2%) lived in private apartments with their children, and 222 (42.8%) of them resided in the seven major cities (referred to as urban in this study). About a third (33.5%) of the participants had more than four children, while less than a fifth (17.5%) had no children at all. The most common work type was domestic work (74.4%), and only 105 (20.3%) patients had full- or part-time jobs. Smokers constituted 73 (14.1%) of the sample but negative smoking was the most common (44.5%). Almost a third (35.6%) of the patients did not have enough income to cover their needs, and only 7 (1.3%) could earn enough money for savings (Table I).

BCS Practices
Most of the patients in our sample (76.9%) had not performed BCS by the time of the diagnosis. BSE was the most frequent screening method, and it was practiced by 120 patients (23.2%). Whereas imaging and CBE were rarely performed. The most reported source of information was different media outlets including social media (81.7%; Table II).

Factors affecting BCS
Patients who reported possible healthcare accessibility had a higher percentage of screening practice (25.4%) than their counterparts (11%; P = 0.004). Similarly, patients from urban areas (28.4%) performed screening more than those who lived in rural areas (19.2%; P = 0.016). Although, age groups, body mass index (BMI), marital and financial status did not reach a statistically significant association with BCS, patients with one to three children (29.2%) were more likely to
undergo screening in comparison to patients who have more (19.5%; P = 0.025). On the other hand, patients who have a full- or part-time job (40%) had a higher percentage of BCS than housewives and retired patients (18.8%; P < 0.001). The level of education of patients (P < 0.001), their spouses (P < 0.001) and fathers (P = 0.001) had statistically significant associations with screening performance as well (Table III).

A binary logistic regression model was created

Tab. I. Demographic Data.

Gender	Count	Percentage	Education level of the patient	Count	Percentage
Female	519	100	Illiterate	99	19.1

Year of diagnosis

| 2018* | 2017-2019† | Primary education (6-9 years) | 259 | 46 |
| 48* | 41-55† | Secondary education (12 years) | 63 | 12.1 |

Age at the time of the study

| 50* | 43-57† | Higher education (university or higher education institutes) | 118 | 22.7 |

Weight (n = 231)

| 72* | 64-82† | Work status | 47 | 9.1 |

Height (n = 214)

| 160.5* | 158-165† | Part-time job (< 5 hours/day) | 58 | 11.2 |

BMI (n = 212)

| 1.76* | 1.67-1.88† | Full-time job | 35 | 7.0 |

Housewife

367 70.7

Obese

77 36.3

Overweight

71 33.5

Underweight

5 2.4

Housing unit

- Physical 42 8.1
- Office work 49 9.4
- Domestic 386 74.4
- Smoking
- Negative smoker 251 44.5
- Smoking period (n = 104) 11* 5-25†
- Financial status
- Enough for needs and savings 7 1.3
- Enough for basic needs 327 63.0
- Not enough for basic needs 185 35.6
- Consanguinity among parent
- Found 174 33.5

Residency

- Urban (living in the seven major Syrian cities) 222 42.8
- Rural (living in smaller cities or rural areas) 297 57.2

Marital status

- Widow 70 13.5
- Single 48 9.2
- Married 385 74.2
- Divorced 16 3.1

Number of children

- None 91 17.5
- One 19 3.7
- Two 47 9.1
- Three 95 18.3
- Four 93 17.9
- More than four 174 33.5

Diagnosed psychiatric diseases

- Depression 18 3.5
- Anxiety 3 0.6
- Schizophrenia 2 0.4
- Other diseases 2 0.4
- Psychiatric drugs
- Chronic drugs 20 3.9

Psychiatric drugs

* Median; † Interquartile range; § Damascus, Damascus suburbs, Aleppo, Homs, Latakia, Hama, and Tartus.

Tab. II. Breast cancer screening methods.

Frequency of BSE screening	Count	Percentage
Once per week	58	11.2
Once per month	39	7.5
Once every six months	23	4.4
Never	399	76.9

Type of screening

Self-examination	120	23.2
Clinical Breast examination	4	0.8
Mammogram or Ultrasound	15	2.9

Source of advice about screening (n = 120)

Medical professionals	10	8.3
Parents, neighbors, or friends	12	10
Social networks and media	98	81.7

A binary logistic regression model was created
for the significantly associated variables, namely, residence, work, number of children, smoking habits, healthcare accessibility, financial status, family history of malignancies and education of the patient, her husband and father. This model had a Nagelkerke R square of (20%; P < 0.001), a sensitivity of (23.3%), and a specificity of (94.2%). The model revealed that receiving secondary or higher education and having

Tab. III. Breast cancer screening practice and its association with different demographic factors.
Age at the time of the study
27-42
45-50
51-57
58-88
BMI (n = 212)
Normal range
Over- or under-weight
Residency
Urban
Rural
Healthcare services accessibility
Difficult
Possible
Housing unit
Private with children
Other accommodation options
Financial status
Not enough for the basic needs
Enough for the basic needs with/without savings
Marital status
Married
Other options
Children (n = 428)
One to three
More than three
Work
Full-time or part-time job
Housewife or retired
Education level (patient)
Illiterate
Primary education
Secondary and higher education
Education level (husband)
Illiterate
Primary education
Secondary and higher education
Education level (father)
Illiterate
Primary education
Secondary and higher education
Education level (mother)
Illiterate
Primary education
Secondary and higher education
Smoking
Never smoked / negative smoking
Smoker (currently or previously)

* Chi square test; † Fisher exact test; ‡ Significant at the level of 0.05; §These odds ratios were calculated against the other two classes of the question (illiterate and primary education) combined.
a family history of breast cancer had a significant association with BCS practices independently from the other predictors (Table V).

Discussion

To our knowledge, this is the first study to investigate BCS performance by BC patients in Syria. It was found that the rate of screening performance was low, and multiple factors that are thought to be related to the Syrian crisis (i.e., education and healthcare accessibility) had a significant impact on the practice of BCS.

Regarding the demographics of the sample, only seven patients (1.3%) had enough income for savings, and this is in line with the recent report, which showed that more than 83% of the population live below the upper poverty line due to the detrimental effects of the crisis on the Syrian economy [17]. Illiteracy on the other hand was reported by 19.1% of the sample, which is not surprisingly about 10% lower than the illiteracy rate of Syrian adult females in the latest nationwide statistics published in 2004 [18]. Participants of this study also reported a slightly higher percentage of employment than the rate of the whole population [19]. Lastly, the sample was nearly equally distributed between urban and rural areas. Hence, it could be stated that the sample is relatively representative of the Syrian BC patients.

Rates of BCS reported by the interviewed patients were lower than in other developing countries like Ghana, Jordan and Iran [20-22]. Rates of BSE in particular

Tab. IV. Breast cancer screening practice and its association with different personal and familial histories.
Personal history of benign breast disease
Yes
No
Personal history of breast malignancies
No
Personal history of other malignancies
No
Family history of benign breast disease
No
Family history of breast malignancies
No
Family history of malignancies
No

* Fisher’s exact test; † Significant at the level of 0.05l

Tab. V. A binary logistic regression model of demographic and medical history predictors of BCS performance.
Residing in urban areas
Having less than four children
Secondary or higher education (patient)
Secondary or higher education (husband)
Secondary or higher education (father)
Having a full-time or part-time job
Smoking currently or previously
Sufficient financial status
Possible healthcare accessibility
Family history of malignancies
Family history of breast cancer

* Standard error; † (expB); † Significant at the level of 0.05l
were lower than what was reported in Iraq, where the comparable healthcare system had also been crippled by war to some extent [20], but higher than reported in Qatar [23], where there is apparently more dependence on CBE and mammography most likely due to affluence and availability of resources. Regarding the source of information about BCS, a Jordanian study reported that 65% of its participants received information regarding BSE from Health-care workers [24]. In contrast, less than a tenth of the patients who perform screening in this study reported getting information about it from physicians. This was probably a result of the deterioration of the healthcare system and the inaccessibility of medical services in some Syrian regions during the crisis. In that regard, a study reported that the scarcity of physicians, hence, the hard access to them, put the media at the top of health-related information resources [22]. In Iran, where health care facilities were more accessible without current conflicts, a systematic review concluded that healthcare professionals were the most reported provider of information regarding BCS followed by media outlets [25].

In terms of healthcare accessibility, the decade-long war in Syria had disastrous ramifications on the healthcare system. The destruction of medical facilities, killings of healthcare providers and the severe shortage of drugs and medical equipment caused a dramatic decline in the quality of medical services [26]. Moreover, almost half the physicians in Syria escaped the country which exaggerated the deficiency of medical services [26, 27]. As a result, only half the hospitals in some areas are properly working. Meanwhile the rest are either partly working, not working or cannot be reached, which led to the negligence and delay of treatment for noncritical cases [28]. Consequently, several besieged areas were left with no accredited oncologist or access to oncology treatment modalities, causing referral of patients to other areas or even towards other countries [16]. Many patients were also exposed to medical errors due to the treatment by an underqualified doctor [16]. The results of the current study were in line with these reports because patients who reported having possible access to healthcare applied BCS twice the rate of those who reported lack of healthcare accessibility. Wu et al. also confirmed these findings when they concluded that the BCS rises with the availability of specialized healthcare providers and medical tools for checkups [29].

On another level, this study found that urban areas have significantly higher rates of BCS, a result shared by other studies [29,30]. Wu et al. attributed this result to disparities in the financial status [29]. Secondly, patients in rural areas in Syria had to face dangerous and unreliable commute to access hardly reachable healthcare facilities [28]. Furthermore, prophylactic screening modalities were only reported in the capital Damascus [16]. In addition to that, the religious and conservative climate that prevails in rural regions could restrain BCS, where some women, especially in Muslim communities, might refuse to be examined by a male doctor to avoid any embarrassment or stigma of being diagnosed with BC, which could lead in some cases to divorce or being estranged by their families [31]. The unavailability of female healthcare workers and the embarrassment of the examination were reported as obstacles to BCS in Egypt by almost 40% of the participants [32]. Saudi women also denounced the idea of being screened by a male doctor and were more inclined to undergo screening if female professionals were available [33]. Lastly, it was found that women living in rural areas were more likely to lack awareness regarding BC [34,35], and that their information on BSE practice was more likely to be inadequate [36] in comparison to those who lived in urban areas. So, since the most powerful factor of BSE performance was possessing awareness about it [37], then the lack of information could justify the low performance of BCS and especially BSE in this study.

This study found that patients’ level of education, as well as the one of their spouses and fathers all had significant positive associations with performing BCS. Other studies also emphasized this positive association with the performance of BCS [23], and BSE [20, 35]. However, financial status did not affect the probability of performing BCS in our sample, which might be due to the fact that screening tests are available for free in community hospitals in Syria. This is in contrast with previous research in Saudi Arabia and Qatar that found high income to be a significant predictor of BCS performance despite the availability of free medical services in the country [23, 33]. However, the high income might have coincided with high education in these studies. A study in Egypt reported that high medical expenses were found as a considerable hindrance to seeking screening, in addition to difficulties in commute towards healthcare facilities [32]. Hence, even when medical care is available for free, people in developing countries still face other economic difficulties that need to be considered.

This study is in agreement with the outcomes of other studies which found that employed women have higher rates of BSE practice than their counterparts [20, 38, 39]. A possible explanation could be that most occupations require an educational certificate, hence, most job holders were educated. It might also be attributed to the fact that employment increased participants’ chances of getting informed about screening. However, reports also indicate that time shortage is an important obstacle that hinders performing BCS [33] and BSE [40], which means that employment could also play a negative role in screening.

Having a family history of BC specifically and other malignancies generally were found to be significant indicators for performing BCS in this study. This could be caused by the emotional impact of witnessing the agony of a relative, or because this brought awareness and knowledge about the disease into the family. Other studies report the same findings for BSE [20, 39, 41, 42]. However, Abdel-Aziz et al. did not reach statistical significance in the association between a family history of BC and BCS performance. This is
most likely due to the cultural suppression of such topics in Saudi Arabia [33]. A remarkable observation was also found by Mamdouh et al. who found that the presence of breast cancer in the family affected the perspective of participants who stated fewer barriers to BCS [32].

In light of what was discussed in this paper, it was found that the most effective measures in the direction of promoting BCS among women in Syria are to implement multilayered interventions that aim to increase the knowledge and practice of BCS in Syrian women, especially the inexpensive personal methods that do not necessitate improving healthcare facilities [16]. Population-based campaigns should be launched with the aim of raising women’s knowledge regarding BC [6], and the method of BSE as an easy and costless way of screening. These campaigns should focus on illiterate and unemployed women especially in the rural areas, who might be the most vulnerable. Secondly, increasing the numbers of female physicians might mitigate the factor of shyness, making it more comfortable for women to raise concerns and accept BCS programs [31, 33]. Interestingly, mammography campaigns could result in over-diagnosis of BC, which in turn will reduce the resources distributed for treatment in a developing country where shortage of resources already exists [5], and will result in imposing unjustified economic and emotional strain on an exhausted population. Therefore, to make a real change in the BC death rates in these countries, it is better to start with promoting a healthier lifestyle and enhancing management modalities [5]. This could be specifically true for a war-torn country like Syria, which is left with a drained healthcare system and a critical need for resources. Lastly, with the impaired healthcare system it might be more efficient to make use of the different media outlets to spread knowledge about BC and BCS. Although the sample of this study included patients who reported lack of access to healthcare services, this might not be representative of the true lack of accessibility nation-wide, because refugees and internally displaced populations in shelters are less likely to present to our center. However, since Al-Beiruni is a community hospital that provides oncology care for free, the sample should be representative of the Syrian BC patients excluding these two categories.

On the other hand, this is a retrospective study that might be susceptible to recall bias due to the time gap between the diagnosis and the time of the interview. However, self-reported BCS practices are more likely to be overreported, which might reflect even a lower prevalence of these screening practices.

Conclusion

Screening practices of breast cancer in the Syrian population are less common in comparison to countries with comparable populations and healthcare systems. The lack of healthcare accessibility, residing in rural areas, illiteracy, being unemployed, having more children, bad financial status and not having any family history of malignancies were associated with fewer breast cancer screening practices.

Availability of data and materials

The dataset supporting the conclusions of this article is available and can be shared upon request.

Acknowledgement

Authors are grateful to Leen Al-Khouri for her help during the data collection phase and to Massa Jabra and Marah Alsalkini for helping in representing the results and drafting the manuscript.

Conflict of interest statement

Authors have no competing interests to declare.

Authors’ contributions

SH and IH planned for the project and obtained the ethical approval. MB, ZB, and YA collected the data. IH did the data analysis. SH, IH, and DAS wrote the manuscript. MS critically revised the article. All authors revised and approved the final version of the article.

References

[1] Research AI of C. Worldwide cancer data | World Cancer Research Fund n.d. https://www.wcrf.org/dietandcancer/trends/worldwide-cancer-data (accessed January 10, 2021).

[2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jamal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. https://doi.org/10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020;70:313.

[3] Unar-Munguia M, Torres-Mejia G, Colchero MA, Gonzalez de Cosio T. Breastfeeding mode and risk of breast cancer: A dose-response meta-analysis. J Hum Lact 2017;33:422-434. https://doi.org/10.1177/0890334416683676

[4] Research AI of C. Breastfeeding & cancer | World Cancer Research Fund International n.d. https://www.wcrf.org/dietandcancer/exposures/lactation-breastfeeding (accessed January 10, 2021).

[5] Arslan AA, Formenti SC. Mammmography in developing countries: the risks associated with globalizing the experiences of the Western world. Nat Clin Pract Oncol 2009;6:136-137. https://doi.org/10.1038/ncponc1282

[6] Anderson BO, Cazap E, El Saghir NS, Yip CH, Khaled HM, Otero JV, Adebamowo CA, Badwe RA, Harford JB. Optimisation of breast cancer management in low-resource and middle-resource countries: executive summary of the Breast Health Global Initiative consensus, 2010. Lancet Oncol 2011;12:387-98. https://doi.org/10.1016/S1470-2045(11)70031-6

[7] Pace LE, Mpunga T, Hategekimana V, Dusengimana JM, Habineza H, Bigirimana JB, Mutumbira C, Mpanamusingo E.
BREAST CANCER SCREENING DURING THE SYRIAN CRISIS

Ngiruwa JP, Tapela N, Amoroso C, Shulman LN, Keating NL. Delays in breast cancer presentation and diagnosis at two Rural Cancer Referral Centers in Rwanda. Oncologist 2015;20:780-788. https://doi.org/10.1634/theoncologist.2014-0493

Porter P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N Engl J Med.2008;358:213-216. https://doi.org/10.1056/NEJM0708507

Coleman C. Early Detection and Screening for Breast Cancer. Semin Surg Oncol 2017;33:141-155. https://doi.org/10.1006/sonc.2017.02.009

Siu AL; U.S. Preventive Services Task Force. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med 2016;164:279-296. https://doi.org/10.7326/M15-2886. Erratum in: Ann Intern Med 2016;164:448

Zahl PH, Kalager M, Suhrk P, Nord E. Quality-of-life effects of screening mammography in Norway. Int J Cancer 2020;146:2104-2112. https://doi.org/10.1002/ijc.32559

Noroozi A, Tahmasebi R. Factors influencing breast cancer screening among Arab women in Qatar? BMJ Open 2015;5:e005596. https://doi.org/10.1136/bmjopen-2014-005596

Amit D, Shakor JK, Mohammed AK, Karotia D. Determinants of Breast Cancer Care at Times of Crisis and War: The Syrian Example. J Glob Oncol 2016;3:338-345. https://doi.org/10.7326/M15-2886. Erratum in: Breast Cancer (Auckl) 2018;12:1178223417752677. Erratum in: Breast Cancer (Auckl) 2019;3:1178223419834790

Shahzad M, Monla-Hassan J, Sankari A, Kherallah M, Atassi B, Rivera-Franco MM, Leon-Rodriguez E. Delays in Breast Cancer Presentation and Diagnosis at Two Rural Cancer Referral Centers in Rwanda. Oncologist 2015;20:780-788. https://doi.org/10.1634/theoncologist.2014-0493

Alkhalaf EH. Perceived barriers to breast cancer screening among a sample of Egyptian females. J Community Med 2014;21:119-124. https://doi.org/10.4103/2231-0770.102275

Abdel-Aziz SB, Amin TT, Al-Gadeeb MB, Alhassan AI, Al-Ramadan A, Al-Helal M, Bu-Mejdad M, Al-Hamad LA, Alkhalaf EH. Perceived barriers to breast cancer screening among Saudi women at primary care setting. J Prev Med Hyg 2018;59:E20-424/ Jpmh2018.59.1.689

Al-Mousa DS, Alakhras M, Hossain SZ, Al-Sa'di AG, Al Hasan M, Al-Hayek Y, Brennan PC. Knowledge, attitude and practices of breast cancer screening among a sample of Egyptian females. J Family Community Med 2014;21:119-124. https://doi.org/10.4103/2231-0770.102275

Nors’a’adah B, Rampal KG, Rahmah MA, Naing NN, Biswal Zahl PH, Kalager M, Suhrke P, Nord E. Quality-of-life effects of screening mammography in Norway. Int J Cancer 2016;184:448. https://doi.org/10.7326/M15-2886. Erratum in: Breast Cancer (Auckl) 2018;23:51-53. https://doi.org/10.7326/M15-2886. Erratum in: Breast Cancer (Auckl) 2018;23:51-53. https://doi.org/10.1136/bmjopen-2018-028705

Badr S, Abbara A, Sparrow A. War is the Enemy of Health. Pulmonary, Critical Care, and Sleep Medicine in War-Torn Syria. BMJ Open 2015;5:e005596. https://doi.org/10.1136/bmjopen-2014-005596

Bouya S, Balouchi A, Ahmadiarehsima S, Badaksh M. Knowledge and Source of Information About Early Detection Techniques of Breast Cancer Among Women in Iran: A Systematic Review. J Cancer Prev 2018;23:51-60. https://doi.org/10.15430/JCP.2018.23.1.51

Syria “the most dangerous place on earth for healthcare providers” – study | World news | The Guardian n.d. https://www.theguardian.com/world/2017/mar/15/syria-conflict-study-condemns-weaponisation-of-healthcare (accessed January 11, 2021).

Physicians for Human Rights - Syria Neighbors Must Let Doctors Practice n.d. https://phr.org/news/syrias-neighbors-must-let-doctors-practice/ (accessed January 10, 2021).

Kherallah M, Alahfez T, Sahloot Z, Eddin KD, Jamil G. Health care in Syria before and during the crisis. Avicenna J Med 2012;2:51-53. https://doi.org/10.4103/2231-0770.102275

Shaw JP, Hippe DS, Nakigudde G, Anderson BO, Muyinda W, Z, Molina Y, Scheel JR. Modifiable patient-related barriers and their association with breast cancer detection practices among Ugandan women without a diagnosis of breast cancer. PLoS One 2019;14:e0217938. https://doi.org/10.1371/journal.pone.0217938

Hwang JI, Donnelly TT, Ewashed C, McKiel E, Rafsin S, Kinch J. Sociocultural Influences on Arab Women’s Participation in Breast Cancer Screening in Qatar. Qual Health Res 2017;27:714-726. https://doi.org/10.1177/1049732315619373

Mamdouh HM, El-Hansy H, Kharbouf IF, Ismail HM, Tawfik MM, El-Bakya MA, El Shawkawy OW. Barriers to breast cancer screening among a sample of Egyptian females. J Family Community Med 2014;21:119-124. https://doi.org/10.4103/2230-8229.134771

Hasan M, Al-Hayek Y, Brennan PC. Knowledge, Attitude and Practice Around Breast Cancer and Mammography Screening Among Jordanian Women. Breast Cancer (Dove Med Press) 2020;12:231-242. https://doi.org/10.2147/BCTT.S275445

Esmail Hassan E, Seedhom AE, Mahfouz EM. Awareness about Breast Cancer and Its Screening among Rural Egyptian Women, Minia District: a Population-Based Study. Asian Pac J Cancer Prev 2017;18:1623-1628. https://doi.org/10.22034/ APJC.2017.18.6.1623

Al-Rifai BH, Loney T. Factors Associated with a Lack of Knowledge of Performing Breast Self-Examination and Unawareness of Cervical Cancer Screening Services: Evidence from the 2015 Egypt Health Issues Survey. Asian Pac J Cancer Prev 2017;18:2763-2769. https://doi.org/10.22034/ APJC.2017.18.10.2763

Noroozi A, Tahmassebi R. Factors influencing breast cancer screening behavior among Iranian women. Asian Pac J Cancer Prev 2012;12:1239-44.

Kardan-Souraki M, Moosazadeh M, Khani S, Hamzehgardeshti Z. Factors Related to Breast Cancer Screening in Women in the Northern Part of Iran: A Cross-Sectional Study. Open Access Maced J Med Sci 2019;7:637-642. https://doi.org/10.3889/oamjms.2019.045

Shaker JK, Mohammed AK, Karotia D. Determinants of Breast
Self-Examination Practice amongst Iraqi/Sulaimani Women using Champion Health Belief Model and Breast CAM. Int J Med Res Heal Sci 2019;8:51-9.

[40] Taleghani F, Kianpour M, Tabatabaiyan M. Barriers to Breast Self-examination among Iranian Women. Iran J Nurs Midwifery Res 2019;24:108-112. https://doi.org/10.4103/ijnmr.IJNMR_94_18

[41] Avci IA. Factors associated with breast self-examination practices and beliefs in female workers at a Muslim community. Eur J Oncol Nurs 2008;12:127-133. https://doi.org/10.1016/j.ejon.2007.11.006

[42] Kumarasamy H, Veerakumar AM, Subhathra S, Suga Y, Murugaraj R. Determinants of Awareness and Practice of Breast Self Examination Among Rural Women in Trichy, Tamil Nadu. J Midlife Health 2017;8:84-88. https://doi.org/10.4103/jmh.JMH_79_16

Received on March 3, 2021. Accepted on April 7, 2021.

Correspondence: Ibrahem Hanafi, Mazzah, Damascus, Syria - Tel. +49 1781417588 E-mail: Ibrahem.W.Hanafi@gmail.com

How to cite this article: Husein S, Hanafi I, Balouli M, Baradi Z, Alsheikah Y, Abo Samra D, Salamoon M. Breast cancer screening during the Syrian crisis: A cross-sectional study. J Prev Med Hyg 2021;62:E1-E528. https://doi.org/10.15167/2421-4248/jpmh2021.62.2.2056

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en