Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger

December 20, 2020

Abstract

For a long time it is well-known that high-dimensional linear parabolic partial differential equations (PDEs) can be approximated by Monte Carlo methods with a computational effort which grows polynomially both in the dimension and in the reciprocal of the prescribed accuracy. In other words, linear PDEs do not suffer from the curse of dimensionality. For general semilinear PDEs with Lipschitz coefficients, however, it remained an open question whether these suffer from the curse of dimensionality. In this paper we partially solve this open problem. More precisely, we prove in the case of semilinear heat equations with gradient-independent and globally Lipschitz continuous nonlinearities that the computational effort of a variant of the recently introduced multilevel Picard approximations grows polynomially both in the dimension and in the reciprocal of the required accuracy.

Contents

1 Introduction and main results 1
2 Analysis of semi-norms 4
 2.1 Setting . 4
 2.2 Expectations of random fields . 4
 2.3 Properties of the semi-norms . 5
3 Multilevel Picard approximations 8
 3.1 Setting . 8
 3.2 Properties of the approximations . 9
 3.3 Upper bound for the exact solution . 11
 3.4 Error analysis for multilevel Picard approximations . 12
 3.5 Analysis of the computational effort . 16

1 Introduction and main results

Parabolic partial differential equations (PDEs) are a fundamental tool in applied mathematics for modelling phenomena in engineering, natural sciences, and man-made complex systems. For instance, semilinear PDEs appear in derivative pricing models which incorporate nonlinear risks such as default risks, interest rate risks, or liquidity risks, and PDEs are employed to model reaction diffusion systems in chemical engineering. The PDEs appearing in the above examples are often high-dimensional where the dimension corresponds to the number of financial assets such as stocks, commodities, interest rates, or exchange rates in the involved hedging portfolio.

In the literature, there exists no result which shows that essentially any of the high-dimensional semilinear PDEs appearing in the above mentioned applications can efficiently be solved approximately. More precisely, to the best of our knowledge, there exists no result in the literature which shows in the case of general semilinear PDEs with globally Lipschitz continuous coefficients that the computational effort of an approximation algorithm grows at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. In this sense no numerical algorithm is known to not suffer from the so-called curse of dimensionality, see also the discussion after Theorem 1.1 below for details.

AMS 2010 subject classification: 60H35; 65C30; 65M75

Key words and phrases: curse of dimensionality, high-dimensional PDEs, information based complexity, tractability of multivariate problems, high-dimensional semilinear BSDEs, multilevel Picard approximations, multilevel Monte Carlo method
In this work we overcome the curse of dimensionality in the numerical approximation of semilinear heat equations with gradient-independent and globally Lipschitz continuous nonlinearities. As approximation algorithm we analyze a variant of the recently introduced multilevel Picard (MLP) approximations in E et al. [15], see [1] below for the method and the paragraph after Theorem 1.1 below for a motivation hereof. The main result of this article (Theorem 1.1 below) shows in the case of general semilinear heat equations with gradient-independent and globally Lipschitz continuous nonlinearities that there exists $C \in (0, \infty)$ such that for every PDE dimension $d \in \mathbb{N}$ we have that the computational cost of the proposed approximation algorithm (see [1] below) to achieve an approximation accuracy $\varepsilon > 0$ is bounded by $Cd^{1+p(1+\delta)}e^{-2(1+\delta)}$, where the parameter $p \in [0, \infty)$ corresponds to the polynomial growth of the terminal condition and the nonlinearity of the PDE under consideration (see Theorem 3.8 below for details).

This is essentially (up to an arbitrarily small real number $\delta \in (0, \infty)$) the same computational complexity as the plain vanilla Monte Carlo algorithm (see, e.g., [19] [23] [24] [21] achieves in the case of linear heat equations). In particular, in the language of information-based complexity this work proves, for the first time, that general semilinear heat equations with gradient-independent and globally Lipschitz continuous nonlinearities and polynomially growing terminal conditions are polynomially tractable in the setting of stochastic approximation algorithms (cf., e.g., Novak & Wozniakowski [33 Chapter 1] and Novak & Wozniakowski [34 Chapter 9]) to illustrate the contribution of this article, we now present in the following result, Theorem 1.1 below, a special case of Theorem 3.8 below, which is the main result of article.

Theorem 1.1. Let $T \in (0, \infty)$, $L, p \in [0, \infty)$, $\Theta = \cup_{n \in \mathbb{N}} \mathbb{R}^n$, let $\xi_d \in \mathbb{R}^d$, $d \in \mathbb{N}$, satisfy $\sup_{d \in \mathbb{N}} \| \xi_d \|_{\mathbb{R}^d} < \infty$, let $g_d : \mathbb{R}^d \to \mathbb{R}$, $d \in \mathbb{N}$, and $f_d : [0, T] \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$, $d \in \mathbb{N}$, be continuous functions which satisfy for all $t \in [0, T]$, $d \in \mathbb{N}$, $x \in \mathbb{R}^d$, $v, w \in \mathbb{R}$ that $|f_d(t, x, v)| + |g_d(x)| \leq L(1 + \| x \|_{\mathbb{R}^d})$ and $|f_d(t, x, v) - f_d(t, x, w)| \leq L|v - w|$, let (Ω, \mathcal{F}, P) be a probability space, let $W^{d, \delta} : [0, T] \times \Omega \to \mathbb{R}^d$, $\theta \in \Theta$, $d \in \mathbb{N}$, be independent standard Brownian motions, let $\mathcal{R}_d : [0, T] \times \Omega \to \mathbb{R}^d$, $\theta \in \Theta$, be i.i.d. continuous stochastic processes which satisfy for all $t \in [0, T]$, $\theta \in \Theta$ that $\mathcal{R}_d(\theta) \in [t, T]$, $\theta \in \Theta$, be independent, let $U_{\theta, M}^{d, 0} : [0, T] \times \mathbb{R}^d \to \mathbb{R}$, $n, M \in \mathbb{Z}$, $\theta \in \Theta$, $d \in \mathbb{N}$, satisfy for all $d, n, M \in \mathbb{N}$, $\theta \in \Theta$, $t \in [0, T]$, $x \in \mathbb{R}^d$ that $U_{\theta, M}^{d, 0}(t, x) = 0$ and

\[
U_{\theta, M}^{d, 0}(t, x) = \left[\sum_{i=0}^{n-1} \mathbb{I}_n(l)f_d(\mathcal{R}_d^{0, (i+1), (i)}, \xi_d) + W^{d, 0}(\mathcal{R}_d^{0, (i+1), (i)} - \mathcal{R}_d^{0, (i), (i)}, \xi_d) + W^{d, (\mathcal{R}_d^{0, (i+1), (i)} - \mathcal{R}_d^{0, (i), (i)})} \right] + \sum_{i=1}^{M} \mathbb{I}_n(l)f_d(\mathcal{R}_d^{0, (i+1), (i)}, \xi_d) + W^{d, 0}(\mathcal{R}_d^{0, (i+1), (i)} - \mathcal{R}_d^{0, (i), (i)}, \xi_d) + W^{d, (\mathcal{R}_d^{0, (i+1), (i)} - \mathcal{R}_d^{0, (i), (i)})} \right] \quad (1)
\]

and for every $d, n \in \mathbb{N}$, $\theta \in \Theta$, $t \in [0, T]$, $x \in \mathbb{R}^d$ let $\text{Cost}_{d,n} \in \mathbb{N}$ be the number of realizations of scalar standard normal random variables which are used to compute one realization of $U_{\theta, M}^{d, 0}(t, x)$ (see [39] below for a precise definition). Then

(i) for every $d \in \mathbb{N}$ there exists a unique at most polynomially growing continuous function $u_d : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ which is a viscosity solution of

\[
(\mathcal{P}) u_d(t, x) + \frac{1}{2}(\Delta_x u_d)(t, x) + f_d(t, x, u_d(t, x)) = 0 \quad (2)
\]

with $u_d(T, x) = g_d(x)$ for $t \in (0, T)$, $x \in \mathbb{R}^d$ and

(ii) for every $\delta \in (0, \infty)$ there exist $n : \mathbb{N} \times (0, 1] \to \mathbb{N}$ and $C \in (0, \infty)$ such that for all $d \in \mathbb{N}$, $\varepsilon \in (0, 1]$ it holds that $\text{Cost}_{d,n_\varepsilon} \leq Cd^{1+p(1+\delta)}e^{-2(1+\delta)}$ and

\[
\left(\mathbb{E} \left[|u_d(0, \xi_d) - U_{d, n_\varepsilon, n_\varepsilon}^{d, 0}(0, 0)|^2 \right] \right)^{1/2} \leq \varepsilon. \quad (3)
\]

Theorem 1.1 is an immediate consequence of Theorem 3.8 and Beck et al. [6 Corollary 3.9]. In Theorem 1.1 and in the following presentations of this article we frequently use the standard norms on \mathbb{R}^d, $d \in \mathbb{N}$. In particular, we note that for all $d \in \mathbb{N}$, $v = (v_1, v_2, \ldots, v_d) \in \mathbb{R}^d$ it holds that $\| v \|_{\mathbb{R}^d} = |v_1|^2 + |v_2|^2 + \ldots + |v_d|^2)^{1/2}$. We now motivate the multilevel Picard approximations in [1]. For this assume the setting of Theorem 1.1 and let $d \in \mathbb{N}$. The Feynman-Kac formula then implies that the exact solution u_d of the PDE (2) satisfies for all $t \in (0, T)$, $x \in \mathbb{R}^d$ that

\[
u_d(t, x) = \mathbb{E} \left[g_d(x) + W^{d, 0}_{T-t} \right] + \int_t^T \mathbb{E} \left[f_d(s, x + W^{d, 0}_{s-t}, u_d(s, x + W^{d, 0}_{s-t})) \right] ds. \quad (4)
\]

This is a fixed-point equation for u_d. To this fixed-point equation we apply the well-known Picard approximation method and a telescope sum and let $u_{d,n} : [0, T] \times \mathbb{R}^d \to \mathbb{R}$, $n \in \mathbb{Z}$, be functions which satisfy for all $t \in [0, T]$,
\(x \in \mathbb{R}^d, n \in \mathbb{N} \) that \(u_{d,-1}(t, x) = u_{d,0}(t, x) = 0 \) and that

\[
\begin{align*}
 u_{d,n}(t, x) &= E \left[g_d(x + W_{T-t}^d) \right] \\
 &= \int_t^T E \left[f_d(s, x + W_{t-s}^d, u_{d,n-1}(s, x + W_{T-s}^d)) \right] ds. \\
 &= \sum_{l=0}^{n-1} \int_t^T E \left[f_d(s, x + W_{t-s}^d, u_{d,l}(s, x + W_{T-s}^d)) - 1_N(l) f_d(s, x + W_{t-s}^d, u_{d,l-1}(s, x + W_{T-s}^d)) \right] ds.
\end{align*}
\]

Next we apply a multilevel Monte Carlo approach to the non-discrete expectations and time integrals. The crucial idea for this is that the summands on the right-hand side of (5) are cheap to calculate for small \(l \in \mathbb{N}_0 \) and are small for large \(l \in \mathbb{N}_0 \) since then \(u_{d,l} - u_{d,l-1} \) is small. For this reason, for every \(n \in \mathbb{N} \) we approximate the expectation and the time integral on level \(l \in \mathbb{N}_0 \) with an average over \(M^{n-l} \) independent copies for the \(n \)-th approximation. This motivates the multilevel Picard approximations \(1 \). For more details on the derivation of the multilevel Picard approximations see E et al. \(15 \). The main difference between the approximation algorithms in \(1 \) above and the approximation algorithms introduced in \(15 \) is that in this article we approximate time integrals by the Monte Carlo method (inspired by \(27, 39 \)) instead of deterministic quadrature rules with fixed deterministic time grids and this modification considerably simplifies the analysis and allows us to establish \(4 \) under merely Lipschitz continuity assumptions in the generality of Theorem \(1 \) above. Roughly speaking, a key advantage of employing the Monte Carlo method instead of deterministic quadrature rules as in \(15 \) is that the proposed approximation algorithms in \(1 \) are somehow unbiased with respect to the temporal variable in the sense that the biases of the proposed approximation algorithms in \(1 \) do not involve any temporal discretization error any more.

Next we relate Theorem \(1 \) to results in the literature. Classical deterministic methods such as finite elements or sparse grid methods suffer from the curse of dimensionality. Also methods based on backward stochastic differential equations (introduced in Pardoux & Peng \(25 \)) such as the Malliavin calculus based regression method (introduced in Briand & Touzi \(10 \)), the projection on function spaces method (introduced in Gobet et al. \(20 \)), cubature on Wiener space (introduced in Crisan & Manolarakis \(13 \)), or the Wiener chaos decomposition method (introduced in Briand & Labart \(11 \)) have not been shown to not suffer from the curse of dimensionality, see Subsections 4.3–4.6 in E et al. \(10 \) for a more detailed discussion. Moreover, recently a nested Monte Carlo method has been proposed in Warin \(35, 38 \). Simulations show that the nested Monte Carlo method is efficient for non-large \(T \) but the method has not been shown to not suffer from the curse of dimensionality. Branching diffusion methods (cf., e.g., \(25, 28, 27, 9 \)) exploit that solutions of semilinear PDEs with polynomial nonlinearities are equal to expectations of certain functionals of branching diffusion processes and these expectations are then approximated by the Monte Carlo method. Branching diffusion methods have been shown to not suffer from the curse of dimensionality under restrictive conditions on the initial value, on the time horizon and on the nonlinearity; see, e.g., Henry-Labordere et al. \(27 \) Theorem 3.12.

If these conditions are not satisfied, then the approximations have not been shown to not suffer from the curse of dimensionality and simulations, e.g., for Allen-Cahn equations, indicate that the method fails to converge in this case. Moreover, the multilevel Picard approximations introduced in E et al. \(15 \) have been shown to not suffer from the curse of dimensionality under very restrictive assumptions on the regularity of the exact solution; see \(15, 31 \). In addition, numerical simulations for deep learning based numerical approximation methods for PDEs (cf., for example \(14, 3, 17, 18, 22, 26, 36, 37, 8, 2 \)) indicate that such approximation methods seem to overcome the curse of dimensionality under restrictive conditions on the regularity of the exact solution. Hence, it has been proven that it overcomes the curse of dimensionality in the numerical approximation of nonlinear PDEs but there exist no rigorous mathematical results which demonstrate this conjecture. To the best of our knowledge, the scheme \(1 \) in Theorem \(1 \) above is the first numerical approximation scheme in the scientific literature for which it has been proven that it overcomes the curse of dimensionality in the numerical approximation of general gradient-independent semilinear heat PDEs.

After the preprint version of this article has been published, several follow-up research articles which are based on this work have appeared. In particular, we refer to \(10 \) for MLP approximations of the form \(1 \) in the case of semilinear Kolmogorov PDEs involving a second order differential operator with varying coefficients instead of just the Laplacian, we refer to \(5 \) for MLP approximations of the form \(1 \) in the case of semilinear PDEs with non-globally Lipschitz continuous nonlinearities, we refer to \(29 \) for MLP approximations of the form \(1 \) in the case of semilinear PDEs with gradient-dependent nonlinearities, we refer to \(4 \) for MLP approximations of the form \(1 \) in the case of semilinear elliptic PDEs, and we also refer to \(7 \) for several numerical simulations for MLP approximations of the form \(1 \) in the case of Allen-Cahn PDEs (see \(7 \) Subsection 3.1), in the case of Sine-Gordon type PDEs (see \(7 \) Subsection 3.2), in the case of systems of semilinear heat PDEs (see \(7 \) Subsection 3.3), and in the case of semilinear Black-Scholes PDEs (see \(7 \) Subsection 3.4).
exact solutions of the PDEs in (2) and the numerical approximations proposed in this work. In Section 3 we subsequently develop the overall complexity analysis for the proposed numerical approximation algorithms to establish Theorem 3.3 in Subsection 3.3 below and, thereby, to prove Theorem 1.1 in this introductory section. More formally, in Subsection 3.1 we formulate the MLP approximation algorithms proposed in this work and the framework which we employ in our error analysis for the proposed MLP approximation algorithms. In Subsection 3.2 we establish several basic properties of the proposed MLP approximation algorithms and in Subsection 3.3 we prove a priori estimates for the exact solutions of the PDEs under consideration. Our error analysis for the proposed MLP approximation algorithms can be found in Subsection 3.3. In Subsection 3.5 we combine this error analysis with a computational cost analysis for the proposed MLP approximation algorithms to accomplish the overall complexity analysis for the proposed MLP approximation algorithms.

2 Analysis of semi-norms

In this section we introduce in Subsection 2.1 a family of suitable semi-norms for a certain class of random fields. In Subsection 2.2 we formulate a few basic consequences of Fubini’s theorem. For the formulations of Lemma 2.2, Lemma 2.3, and Lemma 2.4 we recall that for every $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, let $\mathbf{W} : [0,T] \times \Omega \to \mathbb{R}^d$ be a standard Brownian motion with continuous sample paths, and for every $k \in \mathbb{N}_0$ and every $(\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F})/\mathcal{B}(\mathbb{R})$-measurable function $V : [0,T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$ let $\|V\|_k \in [0,\infty]$ be the extended real number given by

$$
\|V\|_k = \begin{cases}
\mathbb{E}\left[|V(0,\xi)|^2\right] & : k = 0 \\
\frac{1}{T^k} \int_0^T \frac{t^{k-1}}{(k-1)!} \mathbb{E}\left[|V(t,\xi + \mathbf{W}_t)|^2\right] dt & : k \geq 1.
\end{cases}
$$

Observing that Setting 2.1 specifies in (7) for every $k \in \mathbb{N}_0$ and every $(\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F})/\mathcal{B}(\mathbb{R})$-measurable function $V : [0,T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$ the quantity $\|V\|_k$. Note that for every topological space (X,\mathcal{X}) it holds that the Borel sigma-algebra $\mathcal{B}(X)$ is the smallest sigma-algebra that contains \mathcal{X}.

2.2 Expectations of random fields

In this subsection we formulate in Lemma 2.2, Lemma 2.3, Lemma 2.4 and Corollary 2.5 below some elementary consequences of Fubini’s theorem. For the formulations of Lemma 2.2, Lemma 2.3, and Lemma 2.4 we recall that for every probability space $(\Omega,\mathcal{F},\mathbb{P})$, every measurable space (S,S), every \mathcal{F}/\mathcal{S}-measurable function $Y : \Omega \to S$, and every $A \in S$ it holds that $(Y(\mathcal{P})_2)(A) = \mathbb{P}(Y \in A) = \mathbb{P}(Y^{-1}(A))$ (pushforward measure).

Lemma 2.2. Let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, let $\mathcal{G} \subseteq \mathcal{F}$ be a sigma-algebra on Ω, let (S,S) be a measurable space, let $U = (U(s))_{s \in S} = (U(s,\omega))_{s \in S,\omega \in \Omega} : S \times \Omega \to [0,\infty]$ be an $(\mathcal{S} \otimes \mathcal{G})/\mathcal{B}([0,\infty))$-measurable function, let $Y : \Omega \to S$ be a \mathcal{F}/\mathcal{S}-measurable function, assume that Y and \mathcal{G} are independent, and let $\Phi : S \to [0,\infty]$ satisfy for all $s \in S$ that $\Phi(s) = \mathbb{E}[U(s)]$. Then

(i) it holds that $U(Y) = (\Omega \ni \omega \mapsto U(Y(\omega),\omega) \in [0,\infty))$ is an $\mathcal{F}/\mathcal{B}([0,\infty))$-measurable function and

(ii) it holds that $\mathbb{E}[U(Y)] = \mathbb{E}[\Phi(Y)] = \int_S \mathbb{E}[U(s)](Y(\mathcal{P})_2)(ds)$.

Lemma 2.3. Let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, let (S,δ) be a separable metric space, let $U = (U(s))_{s \in S} = (U(s,\omega))_{s \in S,\omega \in \Omega} : S \times \Omega \to [0,\infty]$ be a continuous random field, let $Y : \Omega \to S$ be a random variable, assume that U and Y are independent, and let $\Phi : S \to [0,\infty]$ satisfy for all $s \in S$ that $\Phi(s) = \mathbb{E}[U(s)]$. Then

(i) it holds that $U(Y) = (\Omega \ni \omega \mapsto U(Y(\omega),\omega) \in [0,\infty))$ is an $\mathcal{F}/\mathcal{B}([0,\infty))$-measurable function and

(ii) it holds that $\mathbb{E}[U(Y)] = \mathbb{E}[\Phi(Y)] = \int_S \mathbb{E}[U(s)](Y(\mathcal{P})_{B(S)})(ds)$.

Lemma 2.4. Let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, let (S,δ) be a separable metric space, let $U = (U(s))_{s \in S} = (U(s,\omega))_{s \in S,\omega \in \Omega} : S \times \Omega \to \mathbb{R}$ be a continuous random field, let $Y : \Omega \to S$ be a random variable, assume that U and Y are independent, and assume that $\int_S \mathbb{E}[|U(s)|^2](Y(\mathcal{P})_{B(S)})(ds) < \infty$.

Then
(i) it holds that \(U(Y) = (\Omega \ni \omega \mapsto U(Y(\omega), \omega) \in \mathbb{R}) \) is an \(\mathcal{F}/\mathcal{B}(\mathbb{R}) \)-measurable function and

(ii) it holds that \(\mathbb{E}[U(Y)] < \infty \) and \(\mathbb{E}[U(Y)] = \int_S \mathbb{1}_{\{s \in S, |U(s)| < \infty \}} (s) \mathbb{E}[U(s)] (Y(P)(s)) (ds) \).

Corollary 2.5. Let \((\Omega, \mathcal{F}, \mathbb{P}) \) be a probability space, let \((S, \delta) \) be a separable metric space, let \((E, \mathcal{E}) \) be measurable space, let \(U_1, U_2 : S \times \Omega \rightarrow \mathbb{R} \) be continuous random fields, let \(Y_1, Y_2 : E \times \Omega \rightarrow S \) be random fields, assume for all \(i \in \{1, 2\} \) that \(U_i \) and \(Y_i \) are independent, assume that \(U_1 \) and \(U_2 \) are identically distributed, and assume that \(Y_1 \) and \(Y_2 \) are identically distributed. Then it holds that \(U(Y_1) = (E \times \Omega \ni (e, \omega) \mapsto U_1(Y_1(e), \omega) \in \mathbb{R}) \) and \(U_2(Y_2) = (E \times \Omega \ni (e, \omega) \mapsto U_2(Y_2(e), \omega) \in \mathbb{R}) \) are identically distributed random fields.

2.3 Properties of the semi-norms

In this subsection we establish in Lemma 2.6, Lemma 2.7, Lemma 2.8, Lemma 2.9, Lemma 2.10 and Lemma 2.11 a few basic properties for the quantities in (7) in Setting 2.1 above. The proof of Lemma 2.6 is clear and therefore omitted.

Lemma 2.6 (Semi-norm property). Assume Setting 2.1, let \(k \in \mathbb{N}, \lambda \in \mathbb{R}, \) and let \(U, V : [0, T] \times \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \) be \((\mathcal{B}([0, T] \times \mathbb{R}^d) \otimes \mathcal{F})/\mathcal{B}(\mathbb{R}) \)-measurable functions. Then

(i) it holds that \(\|U + V\|_k \leq \|U\|_k + \|V\|_k \) and

(ii) it holds that \(\|\lambda U\|_k = |\lambda|\|U\|_k \).

Lemma 2.7 (Expectations). Assume Setting 2.1, let \(U : [0, T] \times \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \) be a continuous random field, assume that \(U \) and \(W \) are independent, and assume for all \(t \in [0, T], x \in \mathbb{R}^d \) that \(\mathbb{E}[|U(t, x)|] < \infty \). Then it holds that

\[\|U\|_d^2 = \mathbb{E}[|U(0, \xi)|^2] = |\mathbb{E}[U(0, \xi)]|^2 \leq \mathbb{E}[|U(0, \xi)|^2] = \|U\|_d^2. \]

Next observe that (11) ensures that for all \(l \in \mathbb{N} \) it holds that

\[\|\mathbb{E}[U]\|_l^2 = \|v\|_l^2 = \frac{1}{T} \int_0^T \frac{d^{l-1}}{(l-1)!} \mathbb{E}[|v(t, \xi + W_t)|^2] dt. \]

Moreover, note that the integral transformation theorem, Jensen’s inequality, Lemma 2.8 the hypothesis that \(U \) is a continuous random field, and the hypothesis that \(U \) and \(W \) are independent ensure that for all \(t \in [0, T] \) it holds that

\[\mathbb{E}[|v(t, \xi + W_t)|^2] = \int_{\mathbb{R}^d} |v(t, x)|^2 \mu_t(dx) = \int_{\mathbb{R}^d} |U(t, x)|^2 \mu_t(dx) \]

\[\leq \int_{\mathbb{R}^d} \mathbb{E}[|U(t, x)|^2] \mu_t(dx) = \mathbb{E}[|U(t, x)|^2]. \]

This and (10) imply that for all \(l \in \mathbb{N} \) it holds that

\[\|\mathbb{E}[U]\|_l^2 \leq \frac{1}{T} \int_0^T \frac{d^{l-1}}{(l-1)!} \mathbb{E}[|U(t, \xi + W_t)|^2] dt \rightarrow \|\mathbb{E}[U]\|_l^2. \]

Combining this and (11) establishes (12). The proof of Lemma 2.7 is thus completed.

Lemma 2.8 (Linear combinations of i.i.d. random variables). Assume Setting 2.1, let \(k \in \mathbb{N}, n \in \mathbb{N}, r_1, \ldots, r_n \in \mathbb{R}, \) let \(U_1, \ldots, U_n : [0, T] \times \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \) be continuous i.i.d. random fields, assume that \((U_i)_{i \in \{1, \ldots, n\}} \) and \(W \) are independent, and assume for all \(t \in [0, T], x \in \mathbb{R}^d \) that \(\mathbb{E}[|U_i(t, x)|] < \infty \). Then it holds that

\[\|\sum_{i=1}^n r_i (U_i - \mathbb{E}[U_i])\|_k \leq |U_1 - \mathbb{E}[U_1]|_k \left[\sum_{i=1}^n |r_i|^2 \right]^{1/2} \leq \|U_i\|_k \left[\sum_{i=1}^n |r_i|^2 \right]^{1/2}. \]

Proof of Lemma 2.8 Throughout this proof let \(\mathcal{G} \subseteq \mathcal{F} \) satisfy that \(\mathcal{G} = \sigma(U_i)_{i \in \{1, \ldots, n\}} \), let \(v_i : [0, T] \times \mathbb{R}^d \times \Omega \rightarrow \mathbb{R}, i \in \{1, 2, \ldots, n\}, \) satisfy for all \(i \in \{1, 2, \ldots, n\}, t \in [0, T], x \in \mathbb{R}^d \) that \(v_i(t, x) = U_i(t, x) - \mathbb{E}[U_i(t, x)], \) and let \(\mu_t : \mathcal{B}(\mathbb{R}^d) \rightarrow [0, 1], t \in [0, T], \) be the probability measures which satisfy for all \(t \in [0, T], B \in \mathcal{B}(\mathbb{R}^d) \) that \(\mu_t(B) = \mathbb{P}(\xi + W_t \in B). \) Note that the fact that \(U_1, \ldots, U_n \) are continuous random fields, Beck et al. [2] Lemma
Furthermore, note that the hypothesis that \mathcal{G} and \mathbf{W} are independent, Lemma 2.2, the fact that for all $t \in [0, T]$, $x \in \mathbb{R}^d$ it holds that $v_1(t, x), v_2(t, x), \ldots, v_n(t, x)$ are i.i.d. random variables with $\mathbb{E}[v_1(t, x)] < \infty$ and $\mathbb{E}[v_1(t, x)] = 0$, and Klenke [22] Theorem 2.4 therefore demonstrate that for all $t \in [0, T]$ it holds that

$$
\mathbb{E}
\left[
\sum_{i=1}^{n} r_i(t, \xi + \mathbf{W}_t)^2\right]
= \int_{\mathbb{R}^d} \mathbb{E}
\left[
\sum_{i=1}^{n} r_i(t, x)^2\right]
\mu_t(dx)
= \int_{\mathbb{R}^d} \sum_{i=1}^{n} |r_i|^2 \mathbb{E}
\left[
|v_1(t, x)|^2\right]
\mu_t(dx)
= \left[\sum_{i=1}^{n} |r_i|^2 \right] \mathbb{E} \left[|v_1(t, \xi + \mathbf{W}_t)|^2 \right].
$$

(14)

This and (7) imply that

$$
\left| \sum_{i=1}^{n} r_i (U_i - \mathbb{E}[U_i]) \right|^2 = \left| \sum_{i=1}^{n} r_i |v_i| \right|^2 = \mathbb{E} \left[\sum_{i=1}^{n} r_i |v_i|^2 \right] = \left[\sum_{i=1}^{n} |r_i|^2 \right] \mathbb{E} \left[|v_1(0, \xi)|^2 \right]
= \left[\sum_{i=1}^{n} |r_i|^2 \right] \|U_1 - \mathbb{E}[U_1]\|^2.
$$

(15)

Moreover, observe that (7) and (14) show that for all $t \in \mathbb{N}$ it holds that

$$
\left| \sum_{i=1}^{n} r_i (U_i - \mathbb{E}[U_i]) \right|^2 = \left| \sum_{i=1}^{n} r_i |v_i| \right|^2 = \frac{1}{T} \int_{0}^{T} \left[\sum_{i=1}^{n} |r_i|^2 \right] \mathbb{E} \left[|v_1(t, \xi + \mathbf{W}_t)|^2 \right] dt
= \left[\sum_{i=1}^{n} |r_i|^2 \right] \|U_1 - \mathbb{E}[U_1]\|^2.
$$

(16)

Next observe that (7) assures that

$$
\|U_1 - \mathbb{E}[U_1]\|^2 = \|v_1\|^2 = \mathbb{E} \left[|v_1(0, \xi)|^2 \right] = \mathbb{E} \left[|U_1(0, \xi) - \mathbb{E}[U_1(0, \xi)]|^2 \right]
= \mathbb{E} \left[|U_1(0, \xi)|^2 \right] - \|U_1(0, \xi)\|^2 \leq \mathbb{E} \left[|U_1(0, \xi)|^2 \right] = \|U_1\|^2.
$$

(17)

Furthermore, note that the hypothesis that \mathcal{G} and \mathbf{W} are independent and Lemma 2.2 assure that for all $t \in [0, T]$ it holds that

$$
\mathbb{E} \left[|v_1(t, \xi + \mathbf{W}_t)|^2 \right] = \int_{\mathbb{R}^d} \mathbb{E} \left[|v_1(t, x)|^2 \right] \mu_t(dx)
= \int_{\mathbb{R}^d} \mathbb{E} \left[|U_1(t, x) - \mathbb{E}[U_1(t, x)]|^2 \right] \mu_t(dx)
\leq \int_{\mathbb{R}^d} \mathbb{E} \left[|U_1(t, x)|^2 \right] \mu_t(dx) = \mathbb{E} \left[|U_1(t, \xi + \mathbf{W}_t)|^2 \right].
$$

(18)

This and (7) demonstrate that for all $t \in \mathbb{N}$ it holds that

$$
\|U_1 - \mathbb{E}[U_1]\|^2 = \|v_1\|^2 = \frac{1}{T} \int_{0}^{T} \left[\sum_{i=1}^{n} |r_i|^2 \right] \mathbb{E} \left[|v_1(t, \xi + \mathbf{W}_t)|^2 \right] dt
\leq \frac{1}{T} \int_{0}^{T} \left[\sum_{i=1}^{n} |r_i|^2 \right] \mathbb{E} \left[|U_1(t, \xi + \mathbf{W}_t)|^2 \right] dt = \|U_1\|^2.
$$

(19)

Combining this, (15), (16), and (17) establishes that

$$
\left| \sum_{i=1}^{n} r_i (U_i - \mathbb{E}[U_i]) \right|^2 = \left[\sum_{i=1}^{n} |r_i|^2 \right] \|U_1 - \mathbb{E}[U_1]\|^2 \leq \left[\sum_{i=1}^{n} |r_i|^2 \right] \|U_1\|^2.
$$

(20)

This completes the proof of Lemma 2.8.

Lemma 2.9 (Lipschitz property of F). Assume Setting 2.7 let $k \in \mathbb{N}_0$, and let $U, V : [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$ be continuous random fields. Then

(i) it holds that $F(U) = ([0, T] \times \mathbb{R}^d \times \Omega \ni (t, x, \omega) \mapsto \left[F([0, T] \times \mathbb{R}^d \ni (s, z) \mapsto U(s, z, \omega) \in \mathbb{R}) \right](t, x) \in \mathbb{R})$ is a continuous random field and

(ii) it holds that $\|F(U) - F(V)\|_k \leq L\|U - V\|_k$.

Proof of Lemma 2.9 Throughout this proof let $\pi_{t,x} : \left([0, T] \times \mathbb{R}^d, \mathbb{R}\right) \to \mathbb{R}$, $t \in [0, T]$, $x \in \mathbb{R}^d$, satisfy for all $t \in [0, T]$, $x \in \mathbb{R}^d$, $v \in C([0, T] \times \mathbb{R}^d, \mathbb{R})$ that $\pi_{t,x}(v) = v(t, x)$ and let $\Omega : \Omega \to C([0, T] \times \mathbb{R}^d, \mathbb{R})$ satisfy for all $\omega \in \Omega$, $t \in [0, T]$, $x \in \mathbb{R}^d$ that $\Omega(\omega)(t, x) = U(t, x, \omega)$. Note that for all $t \in [0, T]$, $x \in \mathbb{R}^d$, $\omega \in \Omega$
it holds that \((F(U))(t,x,\omega) = [F(\mathcal{U}(\omega))](t,x) = \pi_{t,x}[F(\mathcal{U}(\omega))] \). Hence, we obtain for all \(t \in [0,T], x \in \mathbb{R}^d \)
that \((\Omega \ni \omega \mapsto (F(U))(t,x,\omega)) = \pi_{t,x} \circ F \circ \Omega \). The fact that \(\mathcal{U} \) is \(\mathcal{F}/(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}))\)-measurable, the fact that for all \(t \in [0,T], x \in \mathbb{R}^d \)
holds that \(\pi_{t,x} \) is \(\mathcal{B}(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}))/\mathcal{B}(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}))\)-measurable, and the fact that \(F \) is \(\mathcal{B}(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}))/\mathcal{B}(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}))\)-measurable (cf. \(\text{(6)} \)) hence assure that for all \(t \in [0,T], x \in \mathbb{R}^d \)
holds that \((\Omega \ni \omega \mapsto (F(U))(t,x,\omega)) = \mathcal{F}/(\mathcal{B}(\mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R})))\)-measurable. Combining this with the fact that for all \(v \in \mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}) \)
holds that \(F(v) \in \mathcal{C}([0,T] \times \mathbb{R}^d, \mathbb{R}) \) demonstrates that \(F(U) \) is a continuous random field. This establishes Item \(\text{(i)} \). Next observe that \(\text{(5)} \) and \(\text{(7)} \) show that

\[
\|F(U) - F(V)\|_0^2 = \mathbb{E}[(F(U) - F(V))(0,\xi)]^2 \leq \mathbb{E}[L^2(U-V)(0,\xi)]^2 = L^2\|U-V\|_0^2. \tag{21}
\]

Moreover, note that \(\text{(5)} \) and \(\text{(7)} \) imply that for all \(l \in \mathbb{N} \) it holds that

\[
\|F(U) - F(V)\|_l^2 = \frac{1}{T} \int_0^T \left(\frac{t}{T-t} \right)^{l-1} \mathbb{E} \left[\left| (F(U) - F(V))(t,\xi + \mathcal{W}_l) \right|^2 \right] dt \leq \frac{1}{T} \int_0^T \left(\frac{t}{T-t} \right)^{l-1} \mathbb{E} \left[L^2(U-V)(t,\xi + \mathcal{W}_l) \right]^2 dt = L^2\|U-V\|_l^2. \tag{22}
\]

Combining this and \(\text{(21)} \) establishes Item \(\text{(iii)} \). The proof of Lemma \(\text{2.9} \) is thus completed.

Lemma 2.10 (Monte Carlo time integrals). Assume Setting \(\text{2.7} \) let \(k \in \mathbb{N}_0, \) let \(U : [0,T] \times \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \) be a continuous random field, let \(v : \Omega \rightarrow [0,1] \) be a \(\mathcal{U}_{[0,1]} \)-distributed random variable, let \(R_\iota : [0,T] \times \Omega \rightarrow \mathbb{R} \) satisfy

for all \(t \in [0,T] \) that \(R_\iota \equiv t + (T-t)\xi \), \(\omega \) \([0,T] \times \mathbb{R} \) be a standard Brownian motion with continuous sample paths, and assume that \(U, \mathcal{W}, \mathcal{R} \) are independent. Then it holds that

\[
\|[0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \mapsto (t-t)\mathcal{U}(R_{\iota t}, x + \mathcal{W}_{R_t} - \mathcal{W}_t) \|_{k+1} \leq T \|U\|_{k+1}. \tag{23}
\]

Proof of Lemma 2.10 Throughout this proof let \(V(t) = (V_s(t)(\omega))_{s \in [t,T], \omega \in \Omega} : [t,T] \times \Omega \rightarrow \mathbb{R}, t \in [0,T] \), be the random fields which satisfy for all \(t \in [0,T], s \in [t,T] \) that \(V(t) = U(s,\xi + \mathcal{W}_t + \mathcal{W}_s - \mathcal{W}_t) \). Observe that the fact that \(\mathcal{W}, \mathcal{R} \) and \(U \) are independent, the hypothesis that \(U \) is a continuous random field, Lemma \(\text{2.3} \) the fact that for all \(t \in [0,T], s \in [t,T] \) it holds that \(\mathcal{W}_t + \mathcal{W}_s - \mathcal{W}_t \) and \(\mathcal{W}_s \) are identically distributed ensure that for all \(t \in [0,T], s \in [t,T] \) it holds that

\[
\mathbb{E}\left[\left[V_s(t) \right]^2 \right] = \mathbb{E}\left[\left[U(s,\xi + \mathcal{W}_t + \mathcal{W}_s - \mathcal{W}_t) \right]^2 \right] = \int_{\mathbb{R}^d} \mathbb{E}\left[\left[U(s,\xi + x) \right]^2 \right] \left[\mathbb{P}(\mathcal{W}_t + \mathcal{W}_s - \mathcal{W}_t) \right] (dx) = \mathbb{E}\left[\left[U(s,\xi + \mathcal{W}_s) \right]^2 \right]. \tag{24}
\]

The fact that \(V(t) \) is a continuous random field, the fact that \(V(0) \) and \(R_0 \) are independent, Lemma \(\text{2.3} \) the fact that \(\mathcal{R}_0 \) is uniformly distributed on \([0,T]\), and \(\text{(7)} \) hence establish that

\[
\|[0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \mapsto (t-t)\mathcal{U}(R_{\iota t}, x + \mathcal{W}_{R_t} - \mathcal{W}_t) \|_{2} \leq \mathbb{E}\left[\left[T U(R_0, \xi + \mathcal{W}_R, \mathcal{W}_{R_0}, \mathcal{W}_R) \right]^2 \right] = T^2 \mathbb{E}\left[\left[V_{R_0}(t) \right]^2 \right] = \frac{T^2}{T} \int_0^T \mathbb{E}\left[\left[V_{R_0}(t) \right]^2 \right] dt = \frac{T^2}{T} \int_0^T \mathbb{E}\left[\left[U(t,\xi + \mathcal{W}_t) \right]^2 \right] dt = T^2\|U\|_2^2. \tag{25}
\]

In addition, observe that the fact that \(V(t) \in [0,T] \) and \(R \) are independent, the fact that \(V(t), t \in [0,T] \), are continuous random fields, the fact that for all \(t \in [0,T] \) it holds that \(\mathcal{R}_t \) is uniformly distributed on \([t,T]\), Lemma \(\text{2.3} \) Tonelli’s theorem, and \(\text{(24)} \) demonstrate that for all \(l \in \mathbb{N} \) it holds that

\[
\|[0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \mapsto (t-t)\mathcal{U}(R_{\iota t}, x + \mathcal{W}_{R_t} - \mathcal{W}_t) \|_l \leq T \mathbb{E}\left[\left[T U(R_0, \xi + \mathcal{W}_R, \mathcal{W}_{R_0}, \mathcal{W}_R) \right]^2 \right] = T^2 \mathbb{E}\left[\left[V_{R_0}(t) \right]^2 \right] = \frac{T^2}{T} \int_0^T \mathbb{E}\left[\left[V_{R_0}(t) \right]^2 \right] dt \leq \frac{T^2}{T} \int_0^T \int_0^t \mathbb{E}\left[\left[U(s,\xi + \mathcal{W}_s) \right]^2 \right] ds dt = T^2\|U\|_{l+1}. \tag{26}
\]

Combining this and \(\text{(25)} \) establishes \(\text{(23)} \). The proof of Lemma \(\text{2.10} \) is thus completed.
Lemma 2.11. Assume Setting [4,1] let \(k \in \mathbb{N}_0 \), let \(g: \mathbb{R}^d \to \mathbb{R} \) be a \(\mathcal{B}(\mathbb{R}^d)/\mathcal{B}(\mathbb{R}) \)-measurable function, let \(v: [0, T] \times \mathbb{R}^d \to \mathbb{R} \) be a \(\mathcal{B}([0, T] \times \mathbb{R}^d)/\mathcal{B}(\mathbb{R}) \)-measurable function, let \(\mathcal{W}: [0, T] \times \Omega \to \mathbb{R}^d \) be a standard Brownian motion with continuous sample paths, and assume that \(\mathcal{W} \) and \(\mathcal{W} \) are independent paths. Then it holds that

\[
\begin{align*}
(i) \quad & \|v\|_k \leq \frac{1}{\sqrt{k!}} \left(\sup_{t \in [0, T]} \left(\mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \right)^{1/2} \right) \quad \text{and} \\
(ii) \quad & \|v\|_k \leq \frac{1}{\sqrt{k!}} \left(\sup_{t \in [0, T]} \left(\mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \right)^{1/2} \right).
\end{align*}
\]

Proof of Lemma 2.11 First, observe that (7) and the fact that \(\mathcal{W}_T - \mathcal{W}_0 = \mathcal{W}_T \) and \(\mathcal{W}_T \) are identically distributed ensure that

\[
\begin{align*}
\|v\|_k \leq \frac{1}{\sqrt{k!}} \left(\sup_{t \in [0, T]} \left(\mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \right)^{1/2} \right).
\end{align*}
\]

Next note that the fact that \(\mathcal{W} \) and \(\mathcal{W} \) are independent standard Brownian motions assures that for all \(t \in [0, T] \) the random variables \(\mathcal{W}_T = \mathcal{W}_T + \mathcal{W}_T - \mathcal{W}_T \) and \(\mathcal{W}_T + \mathcal{W}_T - \mathcal{W}_T \) are identically distributed. The definition of the semi-norm in (7) therefore shows that for all \(l \in \mathbb{N} \) it holds that

\[
\begin{align*}
\|v\|_k \leq \frac{1}{\sqrt{k!}} \left(\sup_{t \in [0, T]} \left(\mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \right)^{1/2} \right).
\end{align*}
\]

Combining this and (27) proves Item (i). Next note that (7) implies that

\[
\|v\|_k \leq \frac{1}{\sqrt{k!}} \left(\sup_{t \in [0, T]} \left(\mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \right)^{1/2} \right).
\]

Furthermore, observe that (7) ensures that for all \(l \in \mathbb{N} \) it holds that

\[
\begin{align*}
\|v\|_k^2 \leq \frac{1}{T^l} \int_0^T \frac{t^{l-1}}{(l-1)!} \mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] dt \leq \frac{1}{T^l} \int_0^T \frac{t^{l-1}}{(l-1)!} \mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \sup_{t \in [0, T]} \mathbb{E} \left[\left| v(t, \xi + \mathcal{W}_t) \right|^2 \right] \quad \text{(30)}
\end{align*}
\]

This and (29) establish Item (ii). The proof of Lemma 2.11 is thus completed.

3 Convergence rates for multilevel Picard approximations for semilinear heat equations

In this section we develop the overall complexity analysis for the proposed numerical approximation algorithms to establish Theorem 3.3 in Subsection 3.3 below. More formally, in Subsection 3.1 we formulate the MLP approximation algorithms proposed in this work and the framework which we employ in our error analysis for the proposed MLP approximation algorithms. In Subsection 3.2 we establish several basic properties of the proposed MLP approximation algorithms and in Subsection 3.3 we prove a priori estimates for the solutions of the PDEs under consideration. Our error analysis for the proposed MLP approximation algorithms can be found in Subsection 3.4. In Subsection 3.5 we combine this error analysis with a computational cost analysis for the proposed MLP approximation algorithms to accomplish the overall complexity analysis for the proposed MLP approximation algorithms.

3.1 Setting

In this subsection we formulate the MLP approximation algorithms and introduce the framework which we employ in our error analysis for the proposed MLP approximation algorithms.

Setting 3.1. Assume Setting [2,1] let \(g \in C(\mathbb{R}^d, \mathbb{R}) \), \(u \in C([0, T] \times \mathbb{R}^d, \mathbb{R}) \) satisfy for all \(t \in [0, T] \), \(x \in \mathbb{R}^d \) that

\[
\begin{align*}
\mathbb{E}[g(x + \mathcal{W}_t)] & + \int_0^T \left(\mathbb{E} \left[\left| u(s, \xi + \mathcal{W}_s) \right|^2 \right] \right)^{1/2} ds \\
& + \int_t^T \mathbb{E} \left[\left| (F(u))(s, x + \mathcal{W}_{s-t}) \right| + \left| (F(0))(s, x + \mathcal{W}_{s-t}) \right| \right] ds < \infty
\end{align*}
\]
let \(\Theta = \cup_{n \in \mathbb{N}} \mathbb{Z}^n \), let \(W^\theta : [0, T] \times \Omega \to \mathbb{R}^d \), \(\theta \in \Theta \), be independent standard Brownian motions with continuous sample paths, let \(\xi^\theta : \Omega \to [0,1] \), \(\theta \in \Theta \), be independent \(U_{(0,1)} \)-distributed random variables, assume that \((W^\theta)_{\theta \in \Theta} \), \((\xi^\theta)_{\theta \in \Theta} \), and \(W \) are independent, let \(R^\theta : [0, T] \times \Omega \to [0, T] \), \(\theta \in \Theta \), satisfy for all \(t \in [0, T] \), \(\theta \in \Theta \) that \(R^\theta_t = t + (T-t)\xi^\theta \), and let \(U_{n,M}^\theta : [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R} \), \(n, M \in \mathbb{Z}, \theta \in \Theta \), satisfy for all \(n, M \in \mathbb{N}, \theta \in \Theta \), \(t \in [0, T] \), \(x \in \mathbb{R}^d \) that \(U_{n,M}^\theta(t, x) = U_{0,M}^\theta(t, x) = 0 \) and

\[
U_{n,M}^\theta(t, x) = \frac{1}{M^n} \sum_{i=1}^{M^n} g(x + W_{T_i}^{(\theta,0,-i)} - W_i^{(\theta,0,1-i)}) + \sum_{i=0}^{n-1} \frac{(T-t)}{M^{n-i}} \sum_{i=1}^{M^{n-i}} \left(F(U_{l,M}^{(\theta,1,i)}) - 1_N(l) F(U_{l-1,M}^{(\theta,1,i)}) \right) (R^\theta_{l,i}, x + W_{l,M}^{(\theta,1,i)} - W_i^{(\theta,1,1-i)}).
\]

3.2 Properties of the approximations

In this subsection we establish several basic properties of the in Subsection 3.1 introduced MLP approximation algorithms.

Lemma 3.2. Assume Setting [3.1] Then

(i) it holds for all \(n \in \mathbb{N}, M \in \mathbb{N}, \theta \in \Theta \) that \(U_{n,M}^\theta : [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R} \) is a continuous random field,

(ii) it holds for all \(n \in \mathbb{N}, M \in \mathbb{N}, \theta \in \Theta \) that \(\sigma(U_{n,M}^\theta) \subseteq \sigma((\xi_t^\theta)_{\theta \in \Theta}, (W_t^{(\theta,0)})_{\theta \in \Theta}) \),

(iii) it holds for all \(n, M \in \mathbb{N}, \theta \in \Theta \) that \(U_{n,M}^\theta, W^\theta, \) and \(\xi^\theta \) are independent,

(iv) it holds for all \(n, m \in \mathbb{N}, M \in \mathbb{N}, i, j, k, l \in \mathbb{Z}, \theta \in \Theta \) with \((i, j) \neq (k, l) \) that \(U_{n,M}^{(\theta,1,i)} \) and \(U_{m,M}^{(\theta,0,k,l)} \) are independent, and

(v) it holds for all \(n \in \mathbb{N}, M \in \mathbb{N} \) that \((U_{n,M}^\theta)_{\theta \in \Theta} \) are identically distributed.

Proof of Lemma 3.2 First, observe that the hypothesis that for all \(M \in \mathbb{N}, \theta \in \Theta \) it holds that \(U_{0,M}^\theta = 0 \), [3.3], Item [3] in Lemma 2.9 Beck et al. [2, Lemma 2.4], and Item [3] assure that for all \(n \in \mathbb{N}, M \in \mathbb{N}, \theta \in \Theta \) it holds that \(F(U_{n,M}^\theta) = (B([0, T]) \otimes \sigma(U_{n,M}^\theta)) / B(\mathbb{R}) \)-measurable. The hypothesis that for all \(M \in \mathbb{N}, \theta \in \Theta \) it holds that \(U_{0,M}^\theta = 0 \), [3.3], the fact that for all \(\theta \in \Theta \) it holds that \(W^\theta \) is \(B([0, T]) \otimes \sigma(W^\theta) / B(\mathbb{R}) \)-measurable, the fact that for all \(\theta \in \Theta \) it holds that \(\mathcal{R}^\theta \) is \(B([0, T]) \otimes \sigma(W^\theta) / B(\mathbb{R}) \)-measurable, and induction on \(n, M \) prove Item [3]. Furthermore, observe that Item [3] and the fact that for all \(\theta \in \Theta \) it holds that \((\xi_t^\theta)_{\theta \in \Theta}, (W_t^{(\theta,0)})_{\theta \in \Theta}, W^\theta, \) and \(\xi^\theta \) are independent establish Item [3]. In addition, note that Item [3] and the fact that for all \(i, j, k, l \in \mathbb{Z}, \theta \in \Theta \) with \((i, j) \neq (k, l) \) it holds that \(((\xi_t^{(i,j,\theta)})_{\theta \in \Theta}, (W_t^{(i,j,\theta)})_{\theta \in \Theta}) \) and \((\xi_t^{(k,l,\theta)})_{\theta \in \Theta}, (W_t^{(k,l,\theta)})_{\theta \in \Theta}) \) are independent prove Item [3]. Finally, observe that the hypothesis that for all \(M \in \mathbb{N}, \theta \in \Theta \) it holds that \(U_{0,M}^\theta = 0 \), the hypothesis that \((W^\theta)_{\theta \in \Theta} \) are i.i.d., the hypothesis that \((\mathcal{R}^\theta)_{\theta \in \Theta} \) are i.i.d., Items [3] – [5], Corollary 2.2, and induction on \(n, M \) establish Item [3]. The proof of Lemma 3.2 is thus completed.

Lemma 3.3 (Approximations are integrable). Assume Setting [3.1] Then it holds for all \(n \in \mathbb{N}, M \in \mathbb{N}, \theta \in \Theta, t \in [0, T], s \in [t, T], x \in \mathbb{R}^d \) that

\[
\mathbb{E} \left[U_{n,M}^\theta(s, x + W^\theta_{s-t}) \right] + \int_t^T |U_{n,M}^\theta(r, x + W^\theta_{r-t})| + |F(U_{n,M}^\theta)(r, x + W^\theta_{r-t})| \, dr < \infty.
\]

Proof of Lemma 3.3 Throughout this proof let \(M \in \mathbb{N}, \theta \in \Theta, x \in \mathbb{R}^d \). We claim that for all \(n \in \mathbb{N}, t \in [0, T], s \in [t, T] \) it holds that

\[
\mathbb{E} \left[U_{n,M}^\theta(s, x + W^\theta_{s-t}) \right] + \int_t^T |U_{n,M}^\theta(r, x + W^\theta_{r-t})| + |F(U_{n,M}^\theta)(r, x + W^\theta_{r-t})| \, dr < \infty.
\]

We now prove [3.5] by induction on \(n \in \mathbb{N} \). For the base case \(n = 0 \), note that [3.1] and the fact that \(U_{0,M}^\theta = 0 \) ensure that for all \(t \in [0, T], s \in [t, T] \) it holds that

\[
\mathbb{E} \left[U_{0,M}^\theta(s, x + W^\theta_{s-t}) \right] + \int_t^T |U_{0,M}^\theta(r, x + W^\theta_{r-t})| + |F(U_{0,M}^\theta)(r, x + W^\theta_{r-t})| \, dr
\]

\[
= \mathbb{E} \left[\int_t^T |(F(0)(r, x + W^\theta_{r-t})| \, dr < \infty.
\]

9
This establishes \((35)\) in the base case \(n = 0\). For the induction step \(\mathbb{N}_0 \ni n - 1 \rightarrow n \in \mathbb{N}\) let \(n \in \mathbb{N}\) and assume that for all \(k \in \mathbb{N}_0 \cap [0, n), t \in [0, T), s \in [t, T]\) it holds that
\[
\mathbb{E} \left[|U^\theta_{k,M}(s, x + W^\theta_{s-t})| + \int_t^T |U^\theta_{k,M}(r, x + W^\theta_{r-t})| + \|(F(U^\theta_{k,M}))(r, x + W^\theta_{r-t})| \, dr \right] < \infty. \tag{37}
\]
Observe that the triangle inequality and \((33)\) ensure that for all \(t \in [0, T), s \in [t, T]\) it holds that
\[
\mathbb{E} \left[|U^\theta_{n,M}(s, x + W^\theta_{s-t})| \right] \leq \frac{1}{M^n} \sum_{i=1}^{M^n} \mathbb{E} \left[|g(x + W^\theta_{s-t} + W^\theta_{T}(s+0, -i) - W^\theta_{s}(s, 0, -i))| \right] \]
\[\]
\[+ \sum_{i=1}^{M^n} \sum_{i=1}^{M^{n-i}} \mathbb{E} \left[\left(F(U^\theta_{l,M}) - \mathbb{E}(n)(F(U^\theta_{l-1,M})) \right) \mathbb{E} \left((R^\theta_{s,t})_{s} + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s}) \right) \right]. \tag{38}
\]
In addition, note that the fact that for all \(i \in \mathbb{Z}\) it holds that \(W^\theta\) and \(W^\theta_{(0,i)}\) are independent Brownian motions assures that for all \(t \in [0, T), s \in [t, T], i \in \mathbb{Z}\) it holds that
\[
\mathbb{E} \left[|g(x + W^\theta_{s-t} + W^\theta_{T}(s+0, -i) - W^\theta_{s}(s, 0, -i))| \right] = \mathbb{E} \left[|g(x + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s})| \right]. \tag{39}
\]
Moreover, note that Lemma \((3.2)\) the hypothesis that \((W^\theta)_{\theta \in \Theta}\) are i.i.d., the hypothesis that \((R^\theta)_{\theta \in \Theta}\) are i.i.d., the hypothesis that \((W^\theta)_{\theta \in \Theta}\) and \((R^\theta)_{\theta \in \Theta}\) are independent, Lemma \((2.3)\) and the triangle inequality are assure that for all \(t \in [0, T), s \in [t, T]\) it holds that
\[
\sum_{i=1}^{M^n} \sum_{i=1}^{M^{n-i}} \mathbb{E} \left[\left(F(U^\theta_{l,M}) - \mathbb{E}(n)(F(U^\theta_{l-1,M})) \right) \mathbb{E} \left((R^\theta_{s,t})_{s} + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s}) \right) \right] \]
\[\]
\[- \leq 2 \sum_{i=1}^{M^n} \sum_{i=1}^{M^{n-i}} \mathbb{E} \left[\left(F(U^\theta_{l,M}) \right) (R^\theta_{s,t})_{s} + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s}) \right]. \tag{40}
\]
Furthermore, observe that Lemma \((3.2)\) the fact that for all \(l \in \mathbb{Z}\) it holds that \(W^\theta, W^\theta_{(0,l)}, R^\theta_{(0,l)}, \text{and } U^\theta_{(0,l)}\) are independent, and Lemma \((2.3)\) demonstrate that for all \(t \in [0, T), s \in [t, T], l \in \mathbb{N}_0 \cap [0, n)\) it holds that
\[
(T-s) \mathbb{E} \left[\left(F(U^\theta_{l,M}) \right) (R^\theta_{s,t})_{s} + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s}) \right] \]
\[\]
\[= \int_s^T \mathbb{E} \left[\left(F(U^\theta_{l,M}) \right) (r, x + W^\theta_{s-t} + W^\theta_{s(t), t} - W^\theta_{s(t), s}) \right] \, dr. \tag{41}
\]
Combining this, \((38), (39), \text{and } (40)\) with \((31), (37)\), and Tonelli’s theorem establishes that for all \(t \in [0, T), s \in [t, T]\) it holds that
\[
\mathbb{E} \left[|U^\theta_{n,M}(s, x + W^\theta_{s-t})| \right] \leq \frac{1}{M^n} \sum_{i=1}^{M^n} \mathbb{E} \left[|g(x + W^\theta_{T})| \right] + 2 \sum_{i=1}^{M^n} \int_s^T \mathbb{E} \left[|(F(U^\theta_{l,M}))(r, x + W^\theta_{r-t})| \right] \, dr \]
\[\]
\[= \mathbb{E} \left[|g(x + W^\theta_{T})| \right] + 2 \sum_{i=1}^{M^n} \int_s^T \mathbb{E} \left[|(F(U^\theta_{l,M}))(r, x + W^\theta_{r-t})| \right] \, dr < \infty. \tag{42}
\]
This, Tonelli’s theorem, and \((37)\) imply that for all \(t \in [0, T)\) it holds that
\[
\mathbb{E} \left[\int_t^T |U^\theta_{n,M}(s, x + W^\theta_{s-t})| \, ds \right] = \int_t^T \mathbb{E} \left[|U^\theta_{n,M}(s, x + W^\theta_{s-t})| \right] \, ds
\]
\[\]
\[\leq (T-t) \mathbb{E} \left[|g(x + W^\theta_{T})| \right] + 2 \sum_{i=1}^{M^n} \int_t^T \mathbb{E} \left[|(F(U^\theta_{l,M}))(r, x + W^\theta_{r-t})| \right] \, dr < \infty. \tag{43}
\]
The triangle inequality, Tonelli’s theorem, \((30)\), and \((31)\) hence prove that for all \(t \in [0, T]\) it holds that
\[
\mathbb{E} \left[\int_t^T |(F(U_{n,M}^t))(s, x + W_{s-}^t) - (F(U_{n,M}^t))(s, x + W_{s-}^t)| \, ds \right] = \int_t^T \mathbb{E} \left[|(F(U_{n,M}^t))(s, x + W_{s-}^t) - (F(U_{n,M}^t))(s, x + W_{s-}^t)| \right] \, ds
\]
\[
\leq \int_t^T \mathbb{E} \left[|(F(U_{n,M}^t) - F(0))(s, x + W_{s-}^t)| \right] \, ds + \int_t^T \mathbb{E} \left[|(F(0))(s, x + W_{s-}^t)| \right] \, ds
\]
\[
\leq \int_t^T \mathbb{E} \left[L(U_{n,M}^t)(s, x + W_{s-}^t) \right] \, ds + \int_t^T \mathbb{E} \left[|(F(0))(s, x + W_{s-}^t)| \right] \, ds < \infty.
\]

Induction, \((42)\), and \((43)\) hence establish \((35)\). The proof of Lemma 3.3 is thus completed.

\[\square\]

3.3 Upper bound for the exact solution

In this subsection we establish the upper bound \((45)\) below for the exact solution which is well-known in the literature and included here for the reason of being self-contained.

Lemma 3.4 (Upper bound for exact solution). Assume Setting \(3.1\) Then it holds that
\[
\sup_{t \in [0,T]} \left(\mathbb{E} \left[|u(t, \xi + \mathcal{W}_t)|^2 \right] \right)^{1/2} \leq e^{LT} \left(\mathbb{E} \left[|g(\xi + \mathcal{W}_T)|^2 \right] \right)^{1/2} + T \|F(0)\|_1.
\]

Proof of Lemma 3.4 Throughout this proof let \(\mathcal{W} : [0, T] \times \Omega \to \mathbb{R}^d\) be a standard Brownian motion with continuous sample paths, assume that \(\mathcal{W}\) and \(\mathcal{W}\) are independent, let \(\mu_t : \mathcal{B}([0,1]) \to [0, 1]\), \(t \in [0, T]\), be the probability measures which satisfy for all \(t \in [0, T]\), \(B \in \mathcal{B}(\mathbb{R}^d)\) that \(\mu_t(B) = \mathbb{P}(\xi + \mathcal{W}_t \in B)\), and assume w.o.g. that \(\mathbb{E} \left[|g(\xi + \mathcal{W}_T)|^2 \right] + \|F(0)\|_1 < \infty\). Observe that the integral transformation theorem, \((32)\), and the triangle inequality assure that for all \(t \in [0, T]\) it holds that
\[
\left(\mathbb{E} \left[|u(t, \xi + \mathcal{W}_t)|^2 \right] \right)^{1/2} = \left(\mathbb{E} \left[|u(t, \xi + \mathcal{W}_t)|^2 \right] \right)^{1/2} = \left(\int_{\mathbb{R}^d} |u(t, x)|^2 \mu_t(dx) \right)^{1/2}
\]
\[
= \left(\int_{\mathbb{R}^d} \mathbb{E} \left[g(x + \mathcal{W}_{T-t}) + \int_t^T (F(u))(s, x + W_{s-}) \, ds \right]^2 \mu_t(dx) \right)^{1/2}
\]
\[
\leq \left(\int_{\mathbb{R}^d} \mathbb{E} \left[|g(x + \mathcal{W}_{T-t})|^2 \mu_t(dx) \right] \right)^{1/2} + \left(\int_{\mathbb{R}^d} \mathbb{E} \left[\int_t^T (F(u))(s, x + W_{s-}) \, ds \right]^2 \mu_t(dx) \right)^{1/2}.
\]

Jensen’s inequality hence assures that for all \(t \in [0, T]\) it holds that
\[
\left(\mathbb{E} \left[|u(t, \xi + \mathcal{W}_t)|^2 \right] \right)^{1/2} \leq \left(\int_{\mathbb{R}^d} \mathbb{E} \left[|g(x + \mathcal{W}_{T-t})|^2 \right] \mu_t(dx) \right)^{1/2} + \left(\int_{\mathbb{R}^d} \mathbb{E} \left[\int_t^T (F(u))(s, x + W_{s-}) \, ds \right]^2 \mu_t(dx) \right)^{1/2}.
\]

Furthermore, observe that Lemma \(2.3\) and the fact that \(\mathcal{W}\) and \(\mathcal{W}\) are independent Brownian motions demonstrate that for all \(t \in [0, T]\) it holds that
\[
\left(\int_{\mathbb{R}^d} \mathbb{E} \left[|g(x + \mathcal{W}_{T-t})|^2 \right] \mu_t(dx) \right)^{1/2} = \left(\mathbb{E} \left[|g(\xi + \mathcal{W}_t + \mathcal{W}_{T-t})|^2 \right] \right)^{1/2} = \left(\mathbb{E} \left[|g(\xi + \mathcal{W}_t)|^2 \right] \right)^{1/2}.
\]

In addition, note that Minkowski’s integral inequality, Lemma \(2.3\) and the fact that \(\mathcal{W}\) and \(\mathcal{W}\) are independent Brownian motions imply that for all \(t \in [0, T]\) it holds that
\[
\left(\int_{\mathbb{R}^d} \mathbb{E} \left[\int_t^T (F(u))(s, x + W_{s-}) \, ds \right]^2 \mu_t(dx) \right)^{1/2} \leq \int_t^T \left(\int_{\mathbb{R}^d} \mathbb{E} \left[|(F(u))(s, x + W_{s-})|^2 \right] \mu_t(dx) \right)^{1/2} \, ds
\]
\[
= \int_t^T \left(\mathbb{E} \left[|(F(u))(s, \xi + \mathcal{W}_t + \mathcal{W}_{s-})|^2 \right] \right)^{1/2} \, ds.
\]
This, the triangle inequality, and (50) assure that for all \(t \in [0, T] \) it holds that

\[
\left(\int_{\mathbb{R}^d} \mathbb{E} \left[\left(\int_t^T |(F(u))(s, x + W_{s-t})| \, ds \right)^2 \right] \mu_2(dx) \right)^{1/2} \\
\leq \int_t^T (\mathbb{E} [(F(0))(s, \xi + W_s)^2])^{1/2} \, ds + \int_t^T (\mathbb{E} [(F(u) - F(0))(s, \xi + W_s)^2])^{1/2} \, ds
\leq \int_t^T (\mathbb{E} [(F(0))(s, \xi + W_s)^2])^{1/2} \, ds + \int_t^T (\mathbb{E} [L^2 u(s, \xi + W_s)^2])^{1/2} \, ds.
\]

Furthermore, note that Jensen’s inequality and (77) ensure that for all \(t \in [0, T] \) it holds that

\[
\int_t^T (\mathbb{E} [(F(0))(s, \xi + W_s)^2])^{1/2} \, ds = (T-t) \left(\frac{1}{T-t} \int_0^T (\mathbb{E} [(F(0))(s, \xi + W_s)^2])^{1/2} \, ds \right)^{1/2}
\leq (T-t) \left(\frac{1}{T-t} \int_0^T \mathbb{E} [(F(0))(s, \xi + W_s)^2] \, ds \right)^{1/2}
\leq \sqrt{T} \left(\int_0^T \mathbb{E} [(F(0))(s, \xi + W_s)^2] \, ds \right)^{1/2} = T \|F(0)\|_1.
\]

Combining this with (77), (75), and (50) implies that for all \(t \in [0, T] \) it holds that

\[
(\mathbb{E} [u(t, \xi + W_t)^2])^{1/2} \leq (\mathbb{E} [g(\xi + W_T)^2])^{1/2} + T \|F(0)\|_1 + L \int_t^T (\mathbb{E} [u(s, \xi + W_s)^2])^{1/2} \, ds.
\]

The hypothesis that \(\int_0^T (\mathbb{E} [u(t, \xi + W_t)^2])^{1/2} \, dt < \infty \) and Gronwall’s integral inequality hence establish that for all \(t \in [0, T] \) it holds that

\[
(\mathbb{E} [u(t, \xi + W_t)^2])^{1/2} \leq e^{LT} \left(\mathbb{E} [g(\xi + W_T)^2]^{1/2} + T \|F(0)\|_1 \right) \leq e^{LT} \left(\mathbb{E} [g(\xi + W_T)^2]^{1/2} + T \|F(0)\|_1 \right).
\]

The proof of Lemma 3.4 is thus completed.

\[\Box \]

3.4 Error analysis for multilevel Picard approximations

In this subsection we provide in Theorem 3.5 below our error analysis for the MLP approximation algorithms introduced in Subsection 2.6.

Theorem 3.5. Assume Setting 2.7 and let \(N, M \in \mathbb{N} \). Then it holds that

\[
\left(\mathbb{E} \left[\left(U_{0,N,M}(0, \xi) - u(0, \xi) \right)^2 \right] \right)^{1/2} \leq e^{LT} \left(\mathbb{E} \left[g(\xi + W_T)^2 \right]^{1/2} + T \|F(0)\|_1 \right) \frac{e^{M/2(1+2LT)N}}{M^{N/2}}.
\]

Proof of Theorem 3.6. Throughout this proof assume w.l.o.g. that \(\mathbb{E} [g(\xi + W_T)^2] + \|F(0)\|_1 \leq \infty \). Note that Item 3 in Lemma 2.6 and Lemma 3.3 assure that for all \(n, k \in \mathbb{N}_0 \) it holds that

\[
\|U_{0,n,M} - u\|_k \leq \|U_{0,n,M} - U_{0,n,M}\|_k + \|U_{0,n,M} - u\|_k.
\]

Next observe that Lemma 2.6 Item 3 in Lemma 2.6 Lemma 3.2 Lemma 3.3 Corollary 2.3 and the fact that for all \(\theta \in \Theta, t \in [0, T] \) it holds that \(R_{t}^\theta \) is uniformly distributed on \([t, T]\) assure that for all \(t \in [0, T], x \in \mathbb{R}^d \), \(n \in \mathbb{N}, i, j, k \in \mathbb{Z}, \theta \in \Theta \) it holds that

\[
(T-t)\mathbb{E} \left[(F(U_{0,n,M}^{(0,k,i)}))(\mathcal{R}_{t}^{(0,j,i)}(x + W_{0,n,M}^{(0,j,i)} - W_{t}^{(0,j,i)})) \right] = \int_t^T \mathbb{E} \left[\left(F(U_{0,n,M}^{(0,k,i)}))(s, x + W_{0,n,M}^{(0,j,i)} - W_{t}^{(0,j,i)})) \right] \, ds
\leq \int_t^T \mathbb{E} \left[(F(U_{0,n,M}^{(0,k,i)}))(s, x + W_{t}^{(0,j,i)}) \right] \, ds.
\]

Combining this with the fact that for all \(t \in [0, T], \theta \in \Theta \) it holds that \(\mathbb{E} [g(x + W_T^\theta - W_T)] = \mathbb{E} [g(x + W_T^\theta - W_T)] < \infty \) and (35) ensures that for all \(n \in \mathbb{N}, t \in [0, T], x \in \mathbb{R}^d \) it holds that

\[
\mathbb{E} \left[U_{0,n,M}(t, x) \right] = \frac{1}{M^n} \sum_{i=1}^{M^n} \mathbb{E} [g(x + W_{T}^{(0,0,-i)} - W_{t}^{(0,0,-i)})] + \sum_{l=0}^{n-1} \frac{(T-t)}{M^{n-l}} \left[\sum_{i=1}^{M^{n-l}} \mathbb{E} \left[(F(U_{t}^{(0,l,i)})) - I_{N}(l)F(U_{t}^{(0,l,i)}) \right) (\mathcal{R}_{t}^{(0,l,i)}(x + W_{0,n,M}^{(0,l,i)}) - W_{t}^{(0,l,i)})) \right].
\]
This and (33) imply that for all \(n \in \mathbb{N}, k \in \mathbb{N}_0 \) it holds that

\[
\| U_{n,M}^0 - \mathbb{E}[U_{n,M}^0] \|_k \\
\leq \left\| \begin{array}{c}
\sum_{l=1}^{M^n} \frac{1}{\sqrt{M}} \left(g(x + W_T^{(0,0,-1)} - W_t^{(0,0,-1)}) \right) (\omega) - \mathbb{E}[g(x + W_T^{(0,0,-1)} - W_t^{(0,0,-1)})] \right\|_k \\
+ \sum_{l=0}^{n-1} \left\| \begin{array}{c}
\sum_{i=1}^{M^{n-l}} \frac{T}{M^{n-l}} \left((F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)}) \right) (\omega) \\
- \mathbb{E}[F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)})] \right\|_k
\end{array}\right.
\]

Moreover, note that Lemma 5.2, the hypothesis that \((W^\theta)_{\theta \in \Theta}\) are i.i.d., the hypothesis that \((\mathcal{R}^\theta)_{\theta \in \Theta}\) are i.i.d., Item 1 in Lemma 2.6, and Corollary 2.5 ensure that for all \(l \in \mathbb{N}_0 \) it holds that

\[
\| 0, T \times \mathbb{R}^d \times \Omega \ni (t, x, \omega) \rightarrow \left(F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)}) \right) (\omega) \in \mathbb{R}\]

are continuous i.i.d. random fields. Lemma 3.2, the hypothesis that \((W^\theta)_{\theta \in \Theta}\) are i.i.d., \(58\), and Lemma 2.8 therefore show that for all \(n \in \mathbb{N}, k \in \mathbb{N}_0 \) it holds that

\[
\| U_{n,M}^0 - \mathbb{E}[U_{n,M}^0] \|_k \\
\leq \left\| \begin{array}{c}
\sum_{l=1}^{M^n} \frac{1}{\sqrt{M}} \left(g(x + W_T^{(0,0,-1)} - W_t^{(0,0,-1)}) \right) (\omega) - \mathbb{E}[g(x + W_T^{(0,0,-1)} - W_t^{(0,0,-1)})] \right\|_k \\
+ \sum_{l=0}^{n-1} \left\| \begin{array}{c}
\sum_{i=1}^{M^{n-l}} \frac{T}{M^{n-l}} \left((F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)}) \right) (\omega) \\
- \mathbb{E}[F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)})] \right\|_k
\end{array}\right.
\]

Moreover, observe that Item 1 in Lemma 2.11 and the hypothesis that \((W^\theta)_{\theta \in \Theta}\) and \(W\) are independent assure that for all \(k \in \mathbb{N}_0 \) it holds that

\[
\| 0, T \times \mathbb{R}^d \times \Omega \ni (t, x, \omega) \rightarrow \left[g(x + W_T^{(0,0,-1)} - W_t^{(0,0,-1)}) \right] (\omega) \in \mathbb{R}\]

Furthermore, note that the hypothesis that \((W^\theta)_{\theta \in \Theta}\) are i.i.d., the hypothesis that \((\mathcal{R}^\theta)_{\theta \in \Theta}\) are i.i.d., the hypothesis that \((W^\theta)_{\theta \in \Theta}, (\mathcal{R}^\theta)_{\theta \in \Theta}\), and \(W\) are independent, Lemma 3.2 and Lemma 2.10 imply that for all \(n \in \mathbb{N}, k \in \mathbb{N}_0 \) it holds that

\[
\sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{n-l}}} \left\| [0, T] \times \mathbb{R}^d \times \Omega \ni (t, x, \omega) \rightarrow \left[F(U_{l,M}^{(0,1,1)} - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,-1,1)}))(\mathcal{R}_{t}^{(0,1,1)}, x + W_t^{(0,1,1)} - W_t^{(0,1,1)}) \right] (\omega) \right\|_k
\]
Item (i) in Lemma 2.6, the hypothesis that $U_{0,M} = 0$, and Lemma 2.9 therefore demonstrate that for all $n \in \mathbb{N}$, $k \in \mathbb{N}_0$ it holds that

$$\begin{align*}
\sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{(n-1)}}} \left\| [0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \rightarrow (T-t) \left[(F(U_{l,M}^{(0,1)}) - \mathbb{I}_N(l)F(U_{l-1,M}^{(0,1)}))((R_t^{(0,1,l)}, x + W_{l-1,M}^{(0,1,l)}) - W_{l-1,M}^{(0,1,l)}) \right] \right\|_k &= \leq T \sqrt{M^n} \left\| F(U_{0,M}^0) \right\|_{k+1} + \sum_{l=1}^{n-1} \frac{T}{\sqrt{M^{(n-1)}}} \left(\left\| F(U_{l,M}^0) - F(u) \right\|_{k+1} + \left\| F(u) - F(U_{l-1,M}^0) \right\|_{k+1} \right) \\
&\leq \frac{T}{\sqrt{M^n}} \left\| F(0) \right\|_{k+1} + \sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{(n-1)}}} \left[\left(2-1+n(l)\right) T \left\| U_{l,M}^0 - u \right\|_{k+1} \right] \\
&\leq \frac{T}{\sqrt{M^n}} \left\| F(0) \right\|_{k+1} + \sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{(n-1)}}} \left[\left(2-1+n(l)\right) T \left\| U_{l,M}^0 - u \right\|_{k+1} \right].
\end{align*}$$

In addition, observe that (7) ensures that for all $k \in \mathbb{N}_0$ it holds that

$$\begin{align*}
\| F(0) \|_{k+1} = \frac{1}{T} \int_0^T \frac{1}{\sqrt{M^n}} \mathbb{E} \left[F(0)(t, \xi + W_t) \right] \ dt \leq \frac{1}{T} \int_0^T \mathbb{E} \left[F(0)(t, \xi + W_t) \right] \ dt = \frac{1}{T} \| F(0) \|_2.
\end{align*}$$

Combining this with (60), (61), and (63) establishes that for all $n \in \mathbb{N}$, $k \in \mathbb{N}_0$ it holds that

$$\begin{align*}
\left\| U_{n,M}^0 - E[U_{n,M}^0] \right\|_k &\leq \frac{1}{\sqrt{M^n}} \left(\mathbb{E} \left[\left(g(\xi + W_T) \right)^2 \right] \right)^{1/2} + \frac{1}{\sqrt{M^n}} \left\| F(0) \right\|_1 + \sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{(n-1)}}} \left[\left(2-1+n(l)\right) T \right] \left\| U_{l,M}^0 - u \right\|_{k+1} \\
&= \frac{1}{\sqrt{M^n}} \left(\mathbb{E} \left[\left(g(\xi + W_T) \right)^2 \right] \right)^{1/2} + \frac{1}{\sqrt{M^n}} \left\| F(0) \right\|_1 + \sum_{l=0}^{n-1} \frac{1}{\sqrt{M^{(n-1)}}} \left[\left(2-1+n(l)\right) T \right] \left\| U_{l,M}^0 - u \right\|_{k+1}.
\end{align*}$$

Next observe that, (60), (67), and (69) demonstrate that for all $n \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$ it holds that

$$\begin{align*}
E[U_{n,M}^0(t,x)] &= \frac{1}{M^n} \sum_{l=0}^{M^n} \mathbb{E}[g(x + W_T^l - W_{t}^l)] + \sum_{l=0}^{M^n-1} \frac{1}{M^{n-l}} \sum_{l=0}^{M^n-l} \mathbb{E} \left[\left(F(U_{l,M}^0) - \mathbb{I}_N(l)F(U_{l-1,M}^0) \right)((R_t^l, x + W_{l,M}^0 - W_t^l) \right] \\
&= \mathbb{E}[g(x + W_T - W_t)] + (T-t) \sum_{l=0}^{M^n-1} \mathbb{E} \left[F(U_{l,M}^0)((R_t^l, x + W_{l,M}^0 - W_t^l) \right] - \mathbb{I}_N(l) \left[\mathbb{E} \left[F(U_{l-1,M}^0)((R_t^l, x + W_{l,M}^0 - W_t^l) \right] \\
&= \mathbb{E}[g(x + W_T - W_t)] + (T-t) \mathbb{E} \left[\left(F(U_{n-1,M}^0)((R_t^l, x + W_{l,M}^0 - W_t^l) \right] \\
&= \mathbb{E} \left[(T-t) \left(F(U_{n-1,M}^0) - F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right].
\end{align*}$$

In addition, note that (31), (32), Fubini’s theorem, and Lemma 2.4 assure that for all $t \in [0,T]$, $x \in \mathbb{R}^d$ it holds that

$$\begin{align*}
u(t,x) &= \mathbb{E}[g(x + W_T - W_t)] + \frac{1}{T} \int_0^T \mathbb{E} \left[(F(u))(s, x + W_s - W_t) \right] \ ds \\
&= \mathbb{E} \left[(F(u))(s, x + W_s - W_t) \right] + (T-t) \mathbb{E} \left[(F(u))(R_t^l, x + W_{l,M}^0 - W_t^l) \right] \\
&= \mathbb{E} \left[\left(F(U_{n-1,M}^0) - F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right].
\end{align*}$$

Combining this with (60) yields that for all $n \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$ it holds that

$$\begin{align*}
\mathbb{E}[U_{n,M}^0(t,x)] - u(t,x) &= (T-t) \left(\mathbb{E} \left[\left(F(U_{n-1,M}^0) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right] - \mathbb{E} \left[\left(F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right] \\
&= \mathbb{E} \left[(T-t) \left(F(U_{n-1,M}^0) - F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right].
\end{align*}$$

Lemma 2.7, Lemma 2.10, Lemma 2.9 and Lemma 3.2 hence show that for all $n \in \mathbb{N}$, $k \in \mathbb{N}_0$ it holds that

$$\begin{align*}
\left\| \mathbb{E}[U_{n,M}^0] - u \right\|_k &= \left\| [0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \rightarrow (T-t) \left(F(U_{n-1,M}^0) - F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right\|_k \\
&\leq \left\| [0,T] \times \mathbb{R}^d \times \Omega \ni (t,x,\omega) \rightarrow (T-t) \left(F(U_{n-1,M}^0) - F(u) \right)(R_t^l, x + W_{l,M}^0 - W_t^l) \right\|_k \\
&\leq T \left\| F(U_{n-1,M}^0) - F(u) \right\|_{k+1} \leq LT \left\| U_{n-1,M}^0 - u \right\|_{k+1}.
\end{align*}$$
This, (55), and (56) demonstrate that for all \(n \in \mathbb{N}, \, k \in \mathbb{N}_0 \) it holds that
\[
\|U^0_{n,M} - u\|_k \leq \frac{1}{\sqrt{M} \cdot k!} \left[\left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \right] + \frac{n-1}{\sqrt{M} \cdot (n-1)!} \sum_{l=0}^{n-1} \frac{LT}{\sqrt{M} \cdot (n-1)!} \|U^0_{l,M} - u\|_{k+1} + \frac{n-1}{\sqrt{M} \cdot (n-1)!} \sum_{l=0}^{n-1} \frac{2LT}{\sqrt{M} \cdot (n-1)!} \|U^0_{l,M} - u\|_{k+1}. \tag{70}
\]

For the next step let \(\varepsilon_n \in [0, \infty], \, n \in [0, N] \cap \mathbb{N}_0, \) satisfy for all \(n \in [0, N] \cap \mathbb{N}_0 \) that
\[
\varepsilon_n = \sup \left\{ \frac{1}{\sqrt{l,M}} \|U^0_{n,M} - u\|_k : j, k \in \mathbb{N}_0, j + n + k = N \right\} \tag{71}
\]
and let \(a_1, a_2 \in [0, \infty) \) be given by
\[
a_1 = \sup_{k \in \{0, \ldots, N\}} \frac{1}{\sqrt{l,M} \cdot k!} \left[\left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \right] \quad \text{and} \quad a_2 = 2LT. \tag{72}
\]

Observe that (70) implies that for all \(n \in [1, N] \cap \mathbb{N}, \, j, k \in \mathbb{N}_0 \) with \(j + n + k = N \) it holds that
\[
\frac{1}{\sqrt{l,M} \cdot k!} \|U^0_{n,M} - u\|_k \leq \frac{1}{\sqrt{l,M} \cdot k!} \left[\left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \right] + \frac{n-1}{\sqrt{M} \cdot (n-1)!} \sum_{l=0}^{n-1} \frac{2LT}{\sqrt{M} \cdot (n-1)!} \|U^0_{l,M} - u\|_{k+1} \leq a_1 + a_2 \sum_{l=0}^{n-1} \varepsilon_l. \tag{73}
\]

Hence, we obtain for all \(n \in [1, N] \cap \mathbb{N} \) that \(\varepsilon_n \leq (a_1 + a_2 \varepsilon_0)(1 + a_2)^{n-1} \leq \max\{a_1, \varepsilon_0\}(1 + a_2)^N. \tag{74} \)

Moreover, observe that
\[
\sup_{k \in \{0, \ldots, N\}} \frac{1}{\sqrt{l,M} \cdot k!} = \frac{1}{M^N} \sup_{k \in \{0, \ldots, N\}} \frac{M^k}{k!} \leq \frac{1}{M^N} \sum_{k=0}^{\infty} \frac{M^k}{k!} = \frac{e^M}{M^N}. \tag{75}
\]

Therefore, we obtain that
\[
a_1 \leq \left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \leq \frac{e^{M/2}}{M^{N/2}}. \tag{76}
\]

In addition, note that the hypothesis that \(U^0_{0,M} = 0 \), Item (1) in Lemma 2.11, (75), and Lemma 3.4 ensure that
\[
\varepsilon_0 = \sup_{k \in \{0, \ldots, N\}} \frac{\|u\|_k}{\sqrt{M} \cdot (N-k)!} \leq \sup_{k \in \{0, T\}} \left[\mathbb{E} \left[\left(\left(\left[u(t, \xi + W_T) \right]^2 \right)^{1/2} \right) \right] \right] \left[\sup_{k \in \{0, \ldots, N\}} \frac{1}{\sqrt{M} \cdot (N-k)!} \right] \leq e^{LT} \left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \leq \frac{e^{M/2}}{M^{N/2}}. \tag{77}
\]

This and (76) assure that
\[
\max\{a_1, \varepsilon_0\} \leq e^{LT} \left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \leq \frac{e^{M/2}}{M^{N/2}}. \tag{78}
\]

Combining this with (72) and (74) establishes that
\[
\left(\mathbb{E} \left[(U^0_{N,M}(0, \xi) - u(0, \xi))^2 \right] \right)^{1/2} \leq e^{LT} \left(\mathbb{E} \left[(g(\xi + W_T))^2 \right] \right)^{1/2} + T \|F(0)\|_1 \leq \frac{e^{M/2}(1 + 2LT)^N}{M^{N/2}}. \tag{79}
\]

The proof of Theorem 3.5 is thus completed.
3.5 Analysis of the computational effort

In this subsection we combine the error analysis provided in Subsection 3.4 for the in Subsection 3.1 introduced MLP approximation algorithms with a computational cost analysis to establish in Theorem 3.8 the overall complexity analysis for the proposed MLP approximation algorithms.

In Lemma 3.6 below, for every \(n, M \in \mathbb{N} \) we think of \(\text{RV}_{n,M} \) as an upper bound for the sum of the number of realizations of scalar standard normal random variables which are required to compute one realization of \(U_{n,M}^0(0,0) \) in (85) below and the number of realizations of \(f : [0,1] \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R} \) on the second of the two summands on the right-hand side of (85) (the Monte Carlo sum involving the terminal condition \(q : \mathbb{R}^d \rightarrow \mathbb{R} \)). Additionally, roughly speaking, for every \(n, M \in \mathbb{N}, l \in \{0,1,\ldots , n-1\} \) one realization of \(U_{n,M}^0(0,0) \) employs \(d M^n \) realizations of scalar standard normal random variables and \(M^{n-1} \) on \([0,1] \) uniformly distributed random variables to evaluate the \((l+1) \)-th summand within the first of the two summands on the right-hand side of (85) (the Monte Carlo sum involving the difference of the nonlinearity \(f : [0,T] \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R} \)). Moreover, roughly speaking, for every \(n, M \in \mathbb{N}, l \in \{0,1,\ldots , n-1\} \) one realization of \(U_{n,M}^0(0,0) \) employs \(M^{n-1} \) realizations of \(U_{l+1,M}(t,x) \) for some suitable \(\theta \in \Theta, t \in [0,T] \), and \(x \in \mathbb{R}^d \). Note that for every \(n, M \in \mathbb{N}, \theta \in \Theta, t \in [0,T] \), \(x \in \mathbb{R}^d \) it holds that the number of realizations of scalar random variables required to compute one realization of \(U_{l+1,M}^0(t,x) \) is equal to the number of realizations of scalar random variables required to compute one realization of \(U_{n,M}^0(0,0) \).

Lemma 3.6 (Computational effort). Let \(d \in \mathbb{N} \) and \((\text{RV}_{n,M})_{n,M\in \mathbb{N}} \subseteq \mathbb{N}_0 \) satisfy for all \(n, M \in \mathbb{N} \) that \(\text{RV}_{0,M} = 0 \) and

\[
\text{RV}_{n,M} \leq d M^n + \sum_{l=0}^{n-1} \left[M^{n-l} \left(d + 1 + \text{RV}_{l,M} + \mathbb{I}_N(l) \text{RV}_{l-1,M} \right) \right].
\]

(80)

Then it holds for all \(n, M \in \mathbb{N} \) that \(\text{RV}_{n,M} \leq d (5M)^n \).

Proof of Lemma 3.6. First, observe that (80) and the fact that for all \(M \in \mathbb{N} \) it holds that \(\text{RV}_{0,M} = 0 \) imply that for all \(n \in \mathbb{N}, M \in \mathbb{N} \cap [2, \infty) \) it holds that

\[
(M^n \text{RV}_{n,M}) \leq d + \sum_{l=0}^{n-1} \left[M^{n-l} \left(d + 1 + \text{RV}_{l,M} + \mathbb{I}_N(l) \text{RV}_{l-1,M} \right) \right]
\]

\[
\leq d + (d + 1) \left[\sum_{l=0}^{n-1} M^{-l} \right] + \left[\sum_{l=0}^{n-1} M^{-l} \text{RV}_{l,M} \right] + \left[\sum_{l=0}^{n-2} M^{-(l+1)} \text{RV}_{l,M} \right]
\]

\[
= d + (d + 1) \left(\frac{1}{1 - M^{-1}} \right) + \left[\sum_{l=0}^{n-1} M^{-l} \text{RV}_{l,M} \right] + \frac{1}{M} \left[\sum_{l=0}^{n-2} M^{-l} \text{RV}_{l,M} \right]
\]

\[
\leq d + (d + 1) \left(\frac{1}{1 - \frac{1}{M}} \right) + \left(1 + \frac{1}{M} \right) \left[\sum_{l=0}^{n-1} M^{-l} \text{RV}_{l,M} \right]
\]

\[
= 3d + 2 + \left(1 + \frac{1}{M} \right) \left[\sum_{l=0}^{n-1} M^{-l} \text{RV}_{l,M} \right].
\]

The discrete Gronwall-type inequality in [1] Corollary 4.1.2 hence ensures that for all \(n \in \mathbb{N}, M \in \mathbb{N} \cap [2, \infty) \) it holds that

\[
(M^n \text{RV}_{n,M}) \leq (3d + 2) \left(2 + \frac{1}{M} \right)^{n-1}.
\]

(82)

This establishes that for all \(n \in \mathbb{N}, M \in \mathbb{N} \cap [2, \infty) \) it holds that

\[
\text{RV}_{n,M} \leq (3d + 2) \left(2 + \frac{1}{M} \right)^{n-1} M^n \leq (5d) 3^{n-1} M^n \leq d (5M)^n.
\]

(83)

Moreover, observe that the fact that \(\text{RV}_{0,1} = 0 \) and (80) demonstrate that for all \(n \in \mathbb{N} \) it holds that

\[
\text{RV}_{n,1} \leq d + \sum_{l=0}^{n-1} \left[(d + 1 + \text{RV}_{l,1} + \mathbb{I}_N(l) \text{RV}_{l-1,1}) \right] \leq d + n(d + 1) + 2 \sum_{l=1}^{n-1} \text{RV}_{l,1}.
\]

(84)

Hence, we obtain for all \(n \in \mathbb{N}, k \in \mathbb{N} \cap (0,n] \) that \(\text{RV}_{k,1} \leq d + n(d + 1) + 2 \sum_{l=1}^{k-1} \text{RV}_{l,1} \). Combining this with the discrete Gronwall-type inequality in [1] Corollary 4.1.2 proves that for all \(n \in \mathbb{N}, k \in \mathbb{N} \cap (0,n] \) it holds that \(\text{RV}_{k,1} \leq (d + n(d + 1)) 3^{k-1} \). The fact that for all \(n \in \mathbb{N} \) it holds that \((1 + 2n) 3^{n-1} \leq 5^n \) hence shows that for all \(n \in \mathbb{N} \) it holds that

\[
\text{RV}_{n,1} \leq (d + n(d + 1)) 3^{n-1} = d \left(1 + n \left(1 + \frac{1}{5} \right) \right) 3^{n-1} \leq d (1 + 2n) 3^{n-1} \leq d 5^n.
\]

(85)

Combining this with (83) completes the proof of Lemma 3.6.

\[\Box \]
Corollary 3.7. Assume Setting 3.1 assume that \(f \) and \(g \) are at most polynomially growing, and let \(\delta \in (0, \infty) \), \(C \in (0, \infty) \), \(\epsilon \in (0, 1) \), \(\langle \text{RV}_{n,M} \rangle_{n,M \in \mathbb{Z}} \subseteq \mathbb{N} \) satisfy for all \(n, M \in \mathbb{N} \) that

\[
\text{RV}_{0,M} = 0, \quad \text{RV}_{n,M} \leq dM^n + \sum_{i=0}^{n-1} M^{(n-i)}(d + 1 + \text{RV}_{i,M} + \mathbb{I}_{\geq 0}(i) \text{RV}_{i-1,M})
\]

and

\[
C = \max \left\{ 100, 5e^{LT} \left(\mathbb{E} \left[(g(\xi + W_T)^2 \right]^\frac{1}{2} + T \| F(0) \|_1 \right) \sup_{n \in \mathbb{N}} \left[\frac{(n+1)^2 + (4 + 8LT)n(2+\delta)}{n^{(n\delta)/2}} \right] \right\},
\]

Then

(i) it holds that \(C < \infty \) and

(ii) there exists \(N \in \mathbb{N} \) such that \(\text{RV}_{N,N} \leq C d e^{-2(\delta)+\delta} \) and \(\sup_{n \in \mathbb{N} \cap [N, \infty)} \mathbb{E} \left[\| U_{n,n}^0(0, \xi) - u(0, \xi) \|^2 \right] \leq \epsilon \).

Proof of Corollary 3.7. Throughout this proof let \(\epsilon \in (0, \infty) \), \(\kappa \in (0, \infty) \) satisfy

\[
c = e^{LT} \left(\mathbb{E} \left[(g(\xi + W_T)^2 \right]^\frac{1}{2} + T \| F(0) \|_1 \right) \quad \text{and} \quad \kappa = \sqrt{\frac{5}{(1 + 2LT)}}.
\]

Note that the fact that for all \(p \in (0, \infty) \) it holds that \(\mathbb{E} \left[\sup_{t \in [0,T]} \| W_t \|^p \right] < \infty \) and the hypothesis that \(f : [0, T] \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R}^d \to \mathbb{R} \) are at most polynomially growing functions ensure that \(c < \infty \). This establishes Item (i). Next observe that Theorem 3.3 (with \(N \leftrightarrow n \), \(M \leftrightarrow n \) in the notation of Theorem 3.3) ensures that for all \(n \in \mathbb{N} \) it holds that

\[
\mathbb{E} \left[\| T_{n,n}^0(0, \xi) - u(0, \xi) \|^2 \right]^\frac{1}{2} \leq \frac{ce^{n/2}(1 + 2LT)}{n^{n/2}} = \frac{ck^n}{n^{n/2}}.
\]

This proves that \(\limsup_{n \to \infty} \left(\mathbb{E} \left[\| T_{n,n}^0(0, \xi) - u(0, \xi) \|^2 \right] \right)^{\frac{1}{2}} = 0 \). Next let \(N \in \mathbb{N} \cap [2, \infty) \) satisfy

\[
N = \min \left\{ n \in \mathbb{N} \cap [2, \infty) : \sup_{m \in \mathbb{N} \cap [n, \infty)} \mathbb{E} \left[\| U_{n,m}^0(0, \xi) - u(0, \xi) \|^2 \right] \leq \epsilon \right\}
\]

Note that (90) implies that

\[
\epsilon \leq \mathbb{I}_{[2]}(N) + \mathbb{E} \left[\| U_{n,n}^0(0, \xi) - u(0, \xi) \|^2 \right] \mathbb{I}_{[3, \infty)}(N) \leq \mathbb{I}_{[2]}(N) + \frac{\kappa^{N-1} \mathbb{I}_{[3, \infty)}(N)}{(N-1)^{(N-1)/2}}.
\]

Next note that the fact that \(\sup_{n \in \mathbb{N} \cap [1 + 1/N, \infty)} = \epsilon \) ensures that

\[
\frac{N}{N-1} = \frac{N}{N-1} \leq 1 + \frac{1}{N-1} \leq N \epsilon.
\]

Lemma 3.4 and (91) hence demonstrate that

\[
\text{RV}_{N,N} \leq d(5N)^N = d(5N)^N e^{2\delta} = \epsilon^{2\delta} \leq d e^{-(2\delta)}\max \left\{ 100, (5N)^N \left(\frac{\kappa^{N-1}}{(N-1)^{(N-1)/2}} \right)^{2\delta} \right\}
\]

\[
\leq d e^{-(2\delta)}\max \left\{ 100, (5N)^N \left(\frac{\kappa^{N-1}}{(N-1)^{(N-1)/2}} \right)^{2\delta} \right\}
\]

\[
\leq d e^{-(2\delta)}\max \left\{ 100, (5N)^N \frac{\kappa^{N-1}(N-1)^{(N-1)/2}}{(N-1)^{(N-1)/2}} \right\} \leq d e^{-(2\delta)}\max \left\{ 100, \frac{\kappa^{2\delta} e \kappa^{N(N-1)^{(N-1)/2}}}{(N-1)^{(N-1)/2}} \right\}
\]

\[
\leq d e^{-(2\delta)}\max \left\{ 100, 5e c e^{2\delta} \sup_{n \in \mathbb{N}} \left[\frac{(n+1)(5\kappa^{n(2+\delta)})}{n^{(n\delta)/2}} \right] \right\}.
\]

In addition, observe that the fact that \(\sqrt{5} \leq 4 \) assures that

\[
5\kappa^{(2+\delta)} \leq \sqrt{5}(1 + 2LT) \leq (4(1 + 2LT))^{(2+\delta)} = (4 + 8LT)^{(2+\delta)}.
\]

This and (93) prove that

\[
\text{RV}_{N,N} \leq d e^{-(2\delta)}\max \left\{ 100, 5e c e^{2\delta} \sup_{n \in \mathbb{N}} \left[\frac{(n+1)(4 + 8LT)^{n(2+\delta)}}{n^{(n\delta)/2}} \right] \right\} = C d e^{-(2\delta)}.
\]

This establishes Item (ii). The proof of Corollary 3.7 is thus completed. □
Theorem 3.8. Let $d \in \mathbb{N}$, $L, T, \delta \in (0, \infty)$, $\varepsilon \in (0, 1]$, $C \in (0, \infty)$, $\xi \in \mathbb{R}^d$, $\Theta = \bigcup_{n=1}^{\infty} \mathbb{Z}^n$, let $f \in C([0, T] \times \mathbb{R}^d \times \mathbb{R}, \mathbb{R})$, $g \in C(\mathbb{R}^d, \mathbb{R})$, $u \in C([0, T] \times \mathbb{R}^d, \mathbb{R})$ be at most polynomially growing functions, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W^0: [0, T] \times \Omega \to \mathbb{R}^d$, $\theta \in \Theta$, be independent standard Brownian motions with continuous sample paths, let $v^0: \Omega \to [0, 1]$, $\theta \in \Theta$, be independent $U(0,1)$-distributed random variables, assume that $(W^0)_{\theta \in \Theta}$ and $(v^0)_{\theta \in \Theta}$ are independent, assume for all $t \in [0, T]$, $x \in \mathbb{R}^d$, $v, w \in \mathbb{R}$ that

$$u(t, x) = \mathbb{E}\left[g(x + W^0_{T-t}) + \int_t^T f(s, x + W^0_{s-t}, u(s, x + W^0_{s-t})) \, ds \right],$$

$$C = \max \left\{ 100, 5e \left[e^{2T} \left(\frac{\mathbb{E}\left[|g(\xi + W^0_0)|^2 \right]}{\mathbb{E}\left[f(s, \xi + W^0_0, 0)^2 \right]} \right)^{1/2} + \sqrt{T} \left| f_0^T \mathbb{E}\left[f(s, \xi + W^0_0, 0)^2 \right] \right|^{1/2} \right\}^{2+\delta} \sup_{n \in \mathbb{N}} \left(\frac{n! (4 + 8T)^{2(2+\delta)}}{\mathbb{E}\left[|g(\xi + W^0_0)|^2 \right]^{1/2}} \right),$$

and $|f(t, x, v) - f(t, x, w)| \leq L|v - w|$, let $\mathcal{R}^0: [0, T] \times \Omega \to [0, T], \theta \in \Theta$, and $U_{\theta,M}^0: [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$, $n, M \in \mathbb{Z}$, $\theta \in \Theta$, satisfy for all $n, M \in \mathbb{N}$, $\theta \in \Theta$, $t \in [0, T]$, $x \in \mathbb{R}^d$ that $\mathcal{R}^0_t = t + (T-t)^d$, $U_{-1,M}^0(t, x) = U_{0,M}^0(t, x) = 0$, and

$$U_{n,M}^\theta(t, x) = \sum_{i=0}^{n-1} \sum_{i=1}^{M} \left[f(\mathcal{R}_t^{(\theta,i,i)}, x + W_{\mathcal{R}_t^{(\theta,i,i)}-t}^{(\theta,i,i)}, u_{t,M}^{(\theta,i,i)}(\mathcal{R}_t^{(\theta,i,i)}, x + W_{\mathcal{R}_t^{(\theta,i,i)}-t}^{(\theta,i,i)})) - \mathds{1}_n(t) f\left(\mathcal{R}_t^{(\theta,i,i)}, x + W_{\mathcal{R}_t^{(\theta,i,i)}-t}^{(\theta,i,i)}, U_{I,M}^{(\theta,i,i)}(\mathcal{R}_t^{(\theta,i,i)}, x + W_{\mathcal{R}_t^{(\theta,i,i)}-t}^{(\theta,i,i)}) \right) \right] + \sum_{i=1}^{M} \frac{g(x + W_{\mathcal{R}_t^{(\theta,0,0)}}^{(\theta,0,0)})}{M^n},$$

and let $(\mathcal{R}_{n,M})_{n,M \in \mathbb{N}} \subseteq \mathbb{N}$ satisfy for all $n, M \in \mathbb{N}$ that $\mathcal{R}_{0,0} = 0$ and

$$\mathcal{R}_{n,M} \leq dM^n + \sum_{i=0}^{n-1} \left[M^{(n-I)}(d + 1 + \mathcal{R}_{I,M} + \mathds{1}_n(t) \mathcal{R}_{I-1,M}) \right].$$

Then

(i) it holds that $C < \infty$ and

(ii) there exists $N \in \mathbb{N}$ such that $\mathcal{R}_{N,N} \leq Cd^{-\frac{2(2+\delta)}{\delta}}$ and $\sup_{n \in \mathbb{N}} \mathbb{E}\left[u_{n,M}^0(0, \xi) - u(0, \xi)^2 \right]^{1/2} \leq \varepsilon$.

Proof of Theorem 3.8. Throughout this proof let $F: C([0, T] \times \mathbb{R}^d, \mathbb{R}) \to C([0, T] \times \mathbb{R}^d, \mathbb{R})$ satisfy for all $v \in C([0, T] \times \mathbb{R}^d, \mathbb{R})$, $t \in [0, T], x \in \mathbb{R}^d$ that

$$(F(v))(t, x) = f(t, x, v(t, x)).$$

Observe that the hypothesis that for all $t \in [0, T], x \in \mathbb{R}^d, v, w \in \mathbb{R}$ it holds that $|f(t, x, v) - f(t, x, w)| \leq L|v - w|$ ensures that for all $v, w \in C([0, T] \times \mathbb{R}^d, \mathbb{R})$, $t \in [0, T], x \in \mathbb{R}^d$ it holds that

$$|(F(v))(t, x) - (F(w))(t, x)| = |f(t, x, v(t, x)) - f(t, x, w(t, x))| \leq L|v(t, x) - w(t, x)|.$$

Moreover, note that the hypothesis that $f: [0, T] \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R}^d \to \mathbb{R}$, and $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$ are at most polynomially growing functions and the fact that for all $p \in (0, \infty)$ it holds that $\mathbb{E}\left[\sup_{t \in [0, T]} \|W_T^0\|_{\mathbb{R}^d}^p \right] < \infty$ demonstrate that

$$\mathbb{E}\left[|g(x + W_T^0)|^2 \right] + \int_0^T \mathbb{E}\left[|u(s, \xi + W_s^0)|^2 \right]^{1/2} \, ds$$

$$+ \int_t^T \mathbb{E}\left[|(F(u))(s, x + W_s^0)| + |(F(0))(s, x + W_s^0)| \right] \, ds < \infty.$$

Combining this and (101) with Corollary 3.7 establishes Item (i). In addition, observe that (101), (102), and Corollary 3.7 establish Item (ii). The proof of Theorem 3.8 is thus completed.

Authors’ contributions

All authors made substantial contributions to the conception and the design of this work and all authors also substantially contributed to the drafting and the revisions of this work. Moreover, each of the authors gave his final approval for the publication of the final version of this article. In addition, each of the authors agrees to be accountable for all aspects of this work in ensuring that questions related to the accuracy or the integrity of any part of this work are appropriately investigated and resolved. Furthermore, each of the authors confirm that there is no other person who substantially contributed to this work.
Acknowledgements

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure and through the research grant HU1889/6-1. Christian Beck, Ramon Braunwarth, and Emilia Magnani are gratefully acknowledged for bringing a few typos into our notice.

References

[1] Agarwal, R. P. Difference equations and inequalities. Theory, methods, and applications. Marcel Dekker, Inc., 2000.

[2] Beck, C., Becker, S., Grohs, P., Jafari, N., and Jentzen, A. Solving stochastic differential equations and Kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018).

[3] Beck, C., E., W., Hutzenthaler, M., and Jentzen, A. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. Journal of Nonlinear Science 29, 4 (2019), 1563–1619.

[4] Beck, C., Gonon, L., and Jentzen, A. Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations. arXiv:2003.00596 (2020).

[5] Beck, C., Hornung, F., Hutzenthaler, M., Jentzen, A., and Kruse, T. Overcoming the curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations. arXiv:1907.06729 (2019).

[6] Beck, C., Hutzenthaler, M., and Jentzen, A. On nonlinear Feynman-Kac formulas for viscosity solutions of semilinear parabolic partial differential equations. arXiv:2004.03389 (2020).

[7] Becker, S., Braunwarth, R., Hutzenthaler, M., Jentzen, A., and von Wurstemberger, P. Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations. arXiv:2005.10206 (2020).

[8] Becker, S., Cheridito, P., and Jentzen, A. Deep optimal stopping. Journal of Machine Learning Research 20, 74 (2019), 1–25.

[9] Bouchard, B., Tan, X., Warin, X., and Zou, Y. Numerical approximation of BSDEs using local polynomial drivers and branching processes. Monte Carlo Methods and Applications 23, 4 (2017), 241–263.

[10] Bouchard, B., and Touzi, N. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Processes and their applications 111, 2 (2004), 175–206.

[11] Briand, P., and Labart, C. Simulation of BSDEs by Wiener chaos expansion. The Annals of Applied Probability 24, 3 (2014), 1129–1171.

[12] Creutzig, J., Dereich, S., Müller-Gronbach, T., and Ritter, K. Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9, 4 (2009), 391–429.

[13] Crisan, D., and Manolarakis, K. Probabilistic methods for semilinear partial differential equations. applications to finance. ESAIM: Mathematical Modelling and Numerical Analysis 44, 05 (2010), 1107–1133.

[14] E., W., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 4 (2017), 349–380.

[15] E., W., Hutzenthaler, M., Jentzen, A., and Kruse, T. Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. arXiv:1607.03295 (2016).

[16] E., W., Hutzenthaler, M., Jentzen, A., and Kruse, T. On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. Journal of Scientific Computing 79, 3 (2019), 1534–1571.

[17] E., W., and Yu, B. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics 6, 1 (2018), 1–12.

[18] Fujii, M., Takahashi, A., and Takahashi, M. Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs. arXiv:1710.07030 (2017).

[19] Giles, M. B. Improved multilevel Monte Carlo convergence using the Milstein scheme. In Monte Carlo and quasi-Monte Carlo methods 2006. Springer, Berlin, 2008, pp. 343–358.

[20] Gobet, E., Lemor, J.-P., and Warin, X. A regression-based Monte Carlo method to solve backward stochastic differential equations. The Annals of Applied Probability 15, 3 (2005), 2172–2202.

[21] Graham, C., and Talay, D. Stochastic simulation and Monte Carlo methods, vol. 68 of Stochastic Modelling and Applied Probability. Springer, Heidelberg, 2013. Mathematical foundations of stochastic simulation.

[22] Han, J., Jentzen, A., and E., W. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences 115, 34 (2018), 8505–8510.

[23] Heinrich, S. Monte Carlo complexity of global solution of integral equations. J. Complexity 14, 2 (1998), 151–175.

[24] Heinrich, S. Multilevel Monte Carlo methods. In Large-Scale Scientific Computing, vol. 2179 of Lect. Notes Comput. Sci. Springer, Berlin, 2001, pp. 58–67.
[25] Henry-Labordère, P. Counterparty risk valuation: a marked branching diffusion approach. \textit{arXiv}:1203.2369 (2012).
[26] Henry-Labordère, P. Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to CVA and IM. \textit{Available at SSRN}: http://dx.doi.org/10.2139/ssrn.3071506 (2017).
[27] Henry-Labordère, P., Oudjane, N., Tan, X., Touzi, N., and Warin, X. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. \textit{Annales de l’Institut Henri Poincaré, Probabilités et Statistiques} 55, 1 (2019), 184–210.
[28] Henry-Labordère, P., Tan, X., and Touzi, N. A numerical algorithm for a class of BSDEs via the branching process. \textit{Stochastic Process. Appl.} 124, 2 (2014), 1112–1140.
[29] Hutzenthaler, M., Jentzen, A., and Kruse, T. Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities. \textit{arXiv}:1912.02571 (2019).
[30] Hutzenthaler, M., Jentzen, A., and von Wurstemberger, P. Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks. \textit{to appear in Electron J Probab} (2019).
[31] Hutzenthaler, M., and Kruse, T. Multi-level Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities. \textit{To appear in Siam J Numer Anal} (2017).
[32] Klenke, A. \textit{Probability theory}. Universitext. Springer-Verlag London Ltd., London, 2008. A comprehensive course, Translated from the 2006 German original.
[33] Novak, E., and Woźniakowski, H. \textit{Tractability of multivariate problems. Vol. 1: Linear information}, vol. 6 of \textit{EMS Tracts in Mathematics}. European Mathematical Society (EMS), Zürich, 2008.
[34] Novak, E., and Woźniakowski, H. \textit{Tractability of multivariate problems. Volume II: Standard information for functionals}, vol. 12 of \textit{EMS Tracts in Mathematics}. European Mathematical Society (EMS), Zürich, 2010.
[35] Pardoux, É., and Peng, S. G. Adapted solution of a backward stochastic differential equation. \textit{Systems Control Lett.} 14, 1 (1990), 55–61.
[36] Raissi, M. Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations. \textit{arXiv}:1804.07010 (2018).
[37] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. \textit{arXiv}:1708.07469 (2017).
[38] Warin, X. Monte Carlo for high-dimensional degenerated Semi Linear and Full Non Linear PDEs. \textit{arXiv}:1805.05078 (2018).
[39] Warin, X. Nesting Monte Carlo for high-dimensional Non Linear PDEs. \textit{arXiv}:1804.08432 (2018).