The von Hippel-Lindau Tumor Suppressor Protein and Clear Cell Renal Carcinoma

William G. Kaelin, Jr.

Abstract

Germ line VHL tumor suppressor gene loss-of-function mutations cause von Hippel-Lindau disease, which is associated with an increased risk of central nervous system hemangioblastomas, clear cell renal carcinomas, and pheochromocytomas. Somatic VHL mutations are also common in sporadic clear cell renal carcinomas. The VHL gene product, pVHL, is part of a ubiquitin ligase complex that targets the α-subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF) for polyubiquitylation, and hence, proteasomal degradation, when oxygen is available. pVHL-defective clear cell renal carcinomas overproduce a variety of mRNAs that are under the control of HIF, including the mRNAs that encode vascular endothelial growth factor, platelet-derived growth factor B, and transforming growth factor α. In preclinical models, downregulation of HIF-α, especially HIF-2α, is both necessary and sufficient for renal tumor suppression by pVHL. These observations are probably relevant to the demonstrated clinical activity of vascular endothelial growth factor antagonists in clear cell renal carcinoma and form a foundation for the testing of additional agents that inhibit HIF, or HIF-responsive gene products, in this disease.
alleles are grossly normal with respect to HIF (20, 21). The products of type 2C VHL alleles are defective, however, with respect to another pVHL function, i.e., down-regulation of atypical protein kinase C activity (22–25). Increased atypical protein kinase C activity, and consequent up-regulation of JunB, seems to promote the survival of pheochromocytoma cells when growth factors such as nerve growth factor become limiting (22).

In VHL disease, stochastic loss of the remaining wild-type VHL allele in the kidney causes the development of renal cysts (26). The precise cell of origin in these lesions is debated but might be a distal renal tubular epithelial cell (26). Regardless of the cell of origin, it is presumed that mutations at other loci are required to convert these cysts to renal cell carcinomas. A total of 40% to 80% of sporadic clear cell renal carcinomas are linked to biallelic VHL inactivation, and in some of 40% to 80% of sporadic clear cell renal carcinomas, little or no VHL mRNA is produced as a result of promoter hypermethylation (1).

Restoration of wild-type pVHL function in VHL−/− renal carcinoma cells suppresses their ability to form tumors in nude mice (27, 28). Although pVHL does not grossly alter cell proliferation under standard cell culture conditions, it induces a number of phenotypes in vitro that are likely to correlate with tumor suppression in vivo. These include enhanced cell cycle exit under low serum conditions and enhanced cell differentiation in monolayer and spheroid growth assays (29–34). In particular, restoration of pVHL function in VHL−/− renal carcinoma cells is able to induce a mesenchymal to epithelial transition.

VHL+/− mice develop liver hemangiomas but do not develop the lesions typical of human VHL disease (35). Similar hepatic lesions develop after Cre recombinase–mediated inactivation of VHL in the livers of VHL flox/flox mice (35, 36). These lesions are characterized by elevated levels of HIF-α and HIF-responsive gene products such as VEGF. Importantly, these lesions do not develop in mice that lack HIF-1α, also called aryl hydrocarbon receptor nuclear translocator (ARNT1), suggesting that HIF-α function is necessary for these pathologic changes (37). In a complementary set of experiments, we found that hepatic expression of a stabilized version of HIF-2α in genetically engineered mice is sufficient to induce many of the pathologic changes attributed to pVHL loss (38).

VHL−/− embryos are not viable, and conditional, systemic, inactivation of VHL in adult mice is lethal (36, 39). Haase and coworkers recently reported that inactivation of VHL in the mouse kidney, using Cre recombinase under the control of the phosphoenolpyruvate carboxykinase promoter, caused the development of polycystic and renal cysts (40). These results, however, are complicated by the fact that the Cre transgene was also expressed in the liver. Renal pathology was not observed in a mouse in which VHL was inactivated in a systemic mosaic pattern (36).

HIF-α, especially HIF-2α, seems to play a special role with respect to VHL−/− renal carcinogenesis. First, VHL−/− renal carcinomas seem to produce both HIF-1α and HIF-2α or HIF-2α alone (17). Second, the appearance of HIF-2α in VHL−/− preneoplastic lesions arising from VHL−/− kidneys is associated with increased dysplasia (26). Third, the elimination of HIF-2α, like the restoration of pVHL function, is sufficient to suppress VHL−/− tumor growth in vivo (41, 42).

Fourth, tumor suppression by pVHL can be overridden by HIF-2α but not by HIF-1α (41, 43–45). Finally, type 2B pVHL mutants, which are associated with a high risk of renal carcinoma, are more definitive with respect to HIF-α regulation than type 2A mutants (46). Collectively, these results implicate dysregulation of HIF target genes as playing a causal role in the pathogenesis of pVHL-defective clear cell renal carcinomas.

Why pVHL and HIF, both of which are ubiquitously expressed, play such an important role in human clear cell renal carcinoma is not clear, but several observations might be relevant. First, renal epithelia seem to be particularly sensitive to the mitogenic effects of the HIF-responsive growth factor transforming growth factor α among various epithelia tested (47). Second, hypoxia and HIF cause the up-regulation of cyclin D1 (Fig. 1), which with its catalytic partners, cdk4 and cdk6, stimulates cell proliferation by directing the phosphorylation of the pRB tumor suppressor protein, in renal epithelia but not in other cell types (45, 48–50). Finally, portions of the kidney in mammals (especially the medulla) are hypoxic at rest (51). Epigenetic differences between the kidney and other organs that allow renal cells to proliferate in a hypoxic environment might also make them more susceptible to the oncogenic effects of pVHL loss/HIF activation.

Kidney cancers are notoriously resistant to standard chemotherapy and radiotherapy. It has been suggested that this resistance might be due, at least in part, to increased levels of the transcription factor nuclear factor κB (52, 53). Loss of VHL leads to increased nuclear factor κB activity and resistance to apoptosis (54, 55). One study suggested that increased levels of HIF-α were necessary and sufficient for the activation of nuclear factor κB, although this work needs to be independently

1 Liangjie Li and Kaelin W.G., unpublished data.
corroborated (56). We have obtained evidence of a HIF-independent link between pVHL and nuclear factor κB.

These considerations suggest that drugs which target HIF, or HIF-responsive gene products, should be effective in the treatment of renal carcinomas. Unfortunately, DNA-binding transcription factors, with the exception of the steroid hormone receptors, have proven difficult to inhibit with drug-like small organic molecules. However, a number of drugs have been identified that indirectly down-regulate HIF-α, including drugs that inhibit mTOR (57–61), HSP90 (62, 63), and histone deacetylases (64). These drugs clearly warrant investigation in pVHL-defective renal carcinomas. In one phase 3 trial, patients with poor prognosis renal carcinoma treated with the mTOR inhibitor, CCI-779, fared better than patients treated with IFN with respect to time to progression and overall survival (65).

HIF-responsive gene products that are suspected or known to play a role in renal tumorigenesis include VEGF, platelet-derived growth factor B, c-Met (66–68), transforming growth factor α (47, 69, 70), transforming growth factor β (71), CXCR4 (and its ligand SDF1; refs. 72, 73), and certain matrix metalloproteinase (refs. 74, 75; Fig. 1). It is worth noting that overproduction of VEGF probably occurs very early during the development of VHL−/−renal cell carcinomas and therefore reduces the selection pressure to activate “collateral” angiogenic pathways (26, 76, 77). This might explain why renal cell carcinomas are the only solid tumors where agents that inhibit VEGF, or its receptor KDR, have significant activity as single agents. Indeed, two such agents (sorafenib and sunitinib) were recently approved by the Food and Drug Administration for this indication. These drugs both inhibit KDR in addition to some other receptor tyrosine kinases, including the platelet-derived growth factor receptor. This might be fortuitous because dual inhibition of VEGF and platelet-derived growth factor signaling is more effective at inducing the regression of established tumor blood vessels than is VEGF blockade alone in preclinical models (78, 79).

It will be important to determine whether the VHL genotype influences the responsiveness to VEGF inhibitors, as well as the molecular basis for acquired or de novo resistance. VEGF inhibitors can now serve as a platform for building rational combinations that target additional HIF-responsive growth factors and/or incorporate drugs that down-regulate HIF itself.

Open Discussion

Dr. Atkins: Is something other than the hypoxia-inducible factor driving the von Hippel-Lindau wild-type clear cell renal cancer?

Dr. Kaelin: In most VHL wild-type renal carcinoma cell lines, it looks like HIF is regulated appropriately, meaning at least it is responsive to hypoxia. I don’t know what is driving VHL wild-type clear cell renal cancer.

Dr. Figlin: You said that with VHL loss, angiogenesis through the vascular endothelial growth factor pathway dominates. If that were true, wouldn’t we have seen more robust clinical activity from VEGF pathway inhibitors in the form of complete responses?

Dr. Kaelin: I am a believer of the preclinical work performed by Ellie Keshet in Israel and Doug Hannahan at the University of California, San Francisco, which strongly suggests that newly sprouting blood vessels, before they are properly invested with pericytes and surrounding stroma, are exquisitely sensitive to, and will regress upon, VEGF withdrawal. However, once you have a mature vessel that is properly enveloped with pericytes and stroma, VEGF inhibitors no longer cause regression; they cause stasis.

Dr. Kwon: Is there any thinking that HIF may be a relatively late player in tumor progression?

Dr. Kaelin: I cannot prove that VHL loss is an early event versus a late event in sporadic clear cell carcinoma. At least in VHL disease, it appears that VHL loss is an early event and sufficient to cause renal cysts. Therefore, your question really is why would VHL loss give rise to renal cysts? VHL loss leads to up-regulation of cyclin D1 and gives rise to transforming growth factor α. We know that one of the features of renal cystic diseases is increased proliferation of renal epithelial cells, which might be due to cyclin D1 or transforming growth factor-α. Another feature is alterations in epithelial stromal interactions, and there is a role for VHL in the regulation of the extracellular matrix. Again, it is partly related to HIF. Several groups have shown that when you inactivate VHL in a renal epithelial cell, the cell undergoes an epithelial to mesenchymal transition. You can reverse that by putting VHL back in. There are a lot of effects of VHL loss that might translate into renal cyst formation. Although you might have expected HIF deregulation to be a late event, at least in renal cancer, it can be an early event.

Dr. Kwon: Is there a possibility that the inadequacy of angiogenesis inhibition may be in part related to exacerbation of hypoxia of the tumor and subsequent induction of more HIF?

Dr. Kaelin: As the tumor expands and hypoxia occurs in the surrounding normal tissues that are being compressed, the normal host becomes a source of angiogenic growth factors. Therefore, as you treat these tumors with an angiogenesis inhibitor, it is likely that you exacerbate hypoxia.

Dr. Kwon: What are the driving molecules that push the inception of the tumor?

Dr. Kaelin: I have satisfied myself as best I can that HIF is the driver.

Dr. Sosman: Some recent data from Neal Rosen and his colleagues has shown that if you block mTOR, you induce a feedback that enhances AKT activity. Is that pathway important in renal cancer outside mTOR-regulating HIF?

Dr. Kaelin: mTOR inhibitors down-regulate HIF, at least in cell culture. I do not know whether indirect effects on AKT signaling might offset any benefits of down-regulating HIF.

Dr. Sukhatme: At least two reports have shown that if you introduce a nondegradable HIF1 into a tumorigenic cell line, you get a decreased growth rate, but if you introduce a dominant-negative you get even faster growth. Are you concerned about HIF inhibitors in this context or is there something peculiar about that data with HIF1-α versus HIF2-α?

Dr. Kaelin: Emerging data suggest that whether HIF1 can promote or inhibit tumor growth depends on what cell type are you looking at and in what context that cell is growing.
References

1. Kim WY, Kaelin WG. Role of VHL Gene mutation in human cancer. J Clin Oncol 2004;22:4991 – 5004.

2. Makino Y, Cao R, Svensson K, et al. Inhibitory PAS domain protein 2 (IPAS) is a negative regulator of hypoxia-inducible gene expression. Nature 2001;414:560 – 4.

3. Makino Y, Kanopka A, Wilson W, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor alpha subunit. J Biol Chem 2002;277:32405 – 8.

4. Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M. Human HIF-3α is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 2005;19:1396 – 406.

5. Onda K, Laurent LC, Sawai M, et al. HIFs targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464 – 8.

6. Yu F, White S, Zhao Q, Lee F. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Nat Protoc 2005;1:9630 – 96.

7. Jaakola P, Mole D, Tian Y, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468 – 72.

8. Masson N, Willam C, Maxwell P, Pugh C, Ratcliffe P. HIF-1α bound to VHL is a stimulus-sensitive proline hydroxylase. Proc Natl Acad Sci USA 2001;98:9630 – 5.

9. Conaway RC, Conaway JW. Activation of HIF1α. Annu Rev Biochem 2002;71:1553 – 60.

10. Brattain MG, Scott MP, Gandy J, et al. EGL-9 and mammalian homologs define a family of prolyl 4-hydroxylases that modify HIF. Science 2001;294:1317 – 21.

11. Bruick R, McKnight S. A conserved family of prolyl-4-hydroxylases involved in regulation of the hypoxia-inducible factor. Mol Cell Biol 2000;20:6428 – 30.

12. Iliopoulos O, Jiang C, Levy AP, Kaelin WG, Jr. Hypoxia-inducible factor-α chains activated by prolyl hydroxylation: independent function of two destruction domains in hypoxia-inducible factor-α chains. Mol Cell Biol 2001;21:4952 – 62.

13. Stupak P, Soucek D, Dvorsk H, Mukhopadhyay D. The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal carcinoma by blocking vascular site pathways. J Biol Chem 1997;272:27509 – 12.

14. Mandriota SJ, Tumer KJ, Davies DR, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2001;2:661 – 70.

15. Masson N, Willam C, Maxwell P, Pugh C, Ratcliffe P. HIF-1α bound to VHL is a stimulus-sensitive proline hydroxylase. Proc Natl Acad Sci USA 2001;98:9630 – 96.

16. Conaway RC, Conaway JW. Activation of HIF1α. Annu Rev Biochem 2002;71:1553 – 60.

17. Bruick R, McKnight S. A conserved family of prolyl-4-hydroxylases involved in regulation of the hypoxia-inducible factor. Mol Cell Biol 2000;20:6428 – 30.

18. Iliopoulos O, Jiang C, Levy AP, Kaelin WG, Jr. Hypoxia-inducible factor-α chains activated by prolyl hydroxylation: independent function of two destruction domains in hypoxia-inducible factor-α chains. Mol Cell Biol 2001;21:4952 – 62.

19. Mandriota SJ, Tumer KJ, Davies DR, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2001;2:661 – 70.

20. Masson N, Willam C, Maxwell P, Pugh C, Ratcliffe P. HIF-1α bound to VHL is a stimulus-sensitive proline hydroxylase. Proc Natl Acad Sci USA 2001;98:9630 – 96.

21. Conaway RC, Conaway JW. Activation of HIF1α. Annu Rev Biochem 2002;71:1553 – 60.

22. Lee S, Nakamura E, Yang H, et al. Neuronal apoptosis linked to EGLN3 prolyl hydroxylase and familial pheochromocytoma genotypes: developmental culling and cancer. Cancer Res 2005;65:5672 – 83.

23. Okuda H, Saitoh K, Hira S, et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 2001;276:43611 – 7.

24. Pal S, Sclafani MJ, Dvorak H, Mukhopadhyay D. The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal carcinoma by blocking vascular site pathways. J Biol Chem 1997;272:27509 – 12.

25. Mandriota SJ, Tumer KJ, Davies DR, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2001;2:661 – 70.

26. Masson N, Willam C, Maxwell P, Pugh C, Ratcliffe P. HIF-1α bound to VHL is a stimulus-sensitive proline hydroxylase. Proc Natl Acad Sci USA 2001;98:9630 – 96.

27. Conaway RC, Conaway JW. Activation of HIF1α. Annu Rev Biochem 2002;71:1553 – 60.

28. Masson N, Willam C, Maxwell P, Pugh C, Ratcliffe P. HIF-1α bound to VHL is a stimulus-sensitive proline hydroxylase. Proc Natl Acad Sci USA 2001;98:9630 – 96.

29. Aoki T, Abe A, Ichimura M, et al. E-cadherin binding to VHL tumor suppressor protein regulates the assembly of intercellular junctions in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res 1998;58:4957 – 62.

30. Davidowitz E, Schoenfeld A, Burk R. VHL induces renal cell differentiation and growth arrest through integration of cell-cell and cell-extracellular matrix signalling. Mol Cell Biol 2001;21:865 – 74.

31. Krishnamachary B, Zagzag D, Nagasawa H, et al. Activation of a prolyl 4-hydroxylase homolog regulates the assembly of cell-cell adhesion protein complexes involved in development of renal cell carcinoma cells grown as multicellular spheroids. J Biol Chem 2001;276:33854 – 60.

32. Calzada MJ, Esteban MA, Feijoo-Cuadros M, et al. The von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res 2006;66:1563 – 80.

33. Kurban G, HUDON V, Duplan E, Ohh M, PAUSE A. Characterization of a von Hippel-Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res 2006;66:1313 – 9.

34. HAASE V, Glickman J, Socolovsky M, JAENICH R. Regulation of cyclin D1 expression through hypoxia-inducible factor α. Mol Cell Biol 2001;21:865 – 74.

35. BREIZ M, Rosen S. Hypoxia of the renal medulla its implications for disease. N Engl J Med 1995,332:604 – 9.

36. Oya M, Ohtsubo M, Takayangi A, Tsuchimasa K. Induction of cyclin D1 expression by expression of von Hippel-Lindau tumor suppressor gene by expression of estrogen receptor-alpha in renal cancer cells. Nephron 2000;86:388 – 96.

37. Oya M, Takayangi A, Hiriguchi A, et al. Increased nuclear factor-κB activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 2003;24:377 – 84.

38. An J, Fisher M, Rettig MB. VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341) through an NF-κB-dependent mechanism. Oncogene 2005;24:1563 – 70.

39. Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-κB-dependent antiapoptotic pathway. Cancer Res 2003;63:7076 – 80.

40. Renn T, Rettig MB. Mechanism of von Hippel-Lindau gene-mediated suppression of tumor necrosis factor α-induced NF-κB activity. Mol Cell Biol 2005;25:7546 – 56.

41. Hudson CC, Liu M, CHANG G, et al. Regulation of hypoxia-inducible factor-1α expression and function by the von Hippel-Lindau tumor suppressor target of rapamycin. Mol Cell Biol 2002;22:7004 – 14.

42. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor-1 expression by the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) protein kinase- A/PTEN/FRAP pathway in human prostate cancer

www.aacrjournals.org

683s

Clin Cancer Res 2007;13(2 Suppl) January 15, 2007

Downloaded from cincancerres.aacrjournals.org on June 5, 2021. © 2007 American Association for Cancer Research.
cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000;60:1541–5.
59. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 2003;278:29655–60.
60. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG, Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 2003;4:147–58.
61. Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006;12:122–7.
62. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cutitta F, Neckers LM. Hsp90 regulates a von Hippel-Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem 2002;277:29936–44.
63. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002;8: S55–61.
64. Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001;7:437–43.
65. Hudes G, Carducci M, Tomczak J, et al. A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-α (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC). JCO 2006 ASCO Annual Meetings Proceedings Part I 2006; 24:LBA4.
66. Hara S, Nakashiro KI, Klosek SK, Ishikawa T, Shintani S, Hamakawa H. Hypoxia enhances c-Met/ HGF receptor expression and signaling by activating HIF-1α in human salivary gland cancer cells. Oral Oncol 2006;42:593–8.
67. Hayashi M, Sakata M, Takeda T, et al. Up-regulation of c-met protooncogene product expression through hypoxia-inducible factor-1α is involved in trophoblast invasion under low-oxygen tension. Endocrinology 2005;146:4682–9.
68. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003;3:347–61.
69. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/– renal cancer. Cancer Res 2005;65: 5221–30.
70. Staller P, Sulikova J, Lisztwan J, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003;425:307–11.
71. Ziegzeg D, Krishnamachary B, Yee H, et al. Stromal cell-derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 2005; 65:6178–88.
72. Koочekpour S, Jeffers M, Wang P, et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999;19:5390–12.
73. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2α in von Hippel-Lindau renal cell carcinoma. Oncogene 2005;24:1043–52.
74. Zhuang Z, Bertheau P, Emmert-Buck M, et al. A microscopic dissection technique for archival DNA analysis of specific cell populations in lesions <1 mm in size. Am J Pathol 1995;146:620–5.
75. Lubensky IA, Gnarra JR, Bertheau P, Walther MM, Linehan WM, Zhuang Z. Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. Am J Pathol 1996;149:2089–94.
76. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103: 159–66.
77. Bergers G, Song S, Meyer-Morse N, Bergland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003;111:1287–95.
The von Hippel-Lindau Tumor Suppressor Protein and Clear Cell Renal Carcinoma

William G. Kaelin, Jr.

Clin Cancer Res 2007;13:680s-684s.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/13/2/680s

Cited articles
This article cites 77 articles, 42 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/13/2/680s.full#ref-list-1

Citing articles
This article has been cited by 19 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/13/2/680s.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/13/2/680s.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.