PEDIATRIC RHEGMATOGENEOUS RETINAL DETACHMENT: ANALYSIS AND PREDICTIVE FACTORS FOR POST-OP VISUAL OUTCOME OF 64 PEDIATRIC RHEGMATOGENEOUS RETINAL DETACHMENT

Vivek Som¹, Girish Gadre², Anil Kulkarni³

HOW TO CITE THIS ARTICLE:
Vivek Som, Girish Gadre, Anil Kulkarni. "Pediatric Rhegmatogeneous Retinal Detachment: Analysis and Predictive Factors for Post-Op Visual Outcome of 64 Pediatric Rhegmatogeneous Retinal Detachment". Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 45, June 04; Page: 7823-7827, DOI: 10.14260/jemds/2015/1138

ABSTRACT: OBJECTIVE: Evaluation of cases pediatric rhegmatogenous retinal detachment and the factors affecting the final outcome after RD surgery. Study also aims to analyze characteristics of type of retinal breaks, other eye findings and etiological factors in pediatric rhegmatogenous retinal detachment. SETTING: Vivekanand Netralaya, Lions NAB Eye hospital, Miraj. MATERIAL AND METHODS: This is a retrospective nonrandomized case series involving 64 consecutive cases of pediatric rhegmatogenous retinal detachment. Detailed evaluation of case records were done with reference to the types of retinal breaks, associated findings, etiological factors and the factors affecting the visual outcome of these cases. RESULTS: Male to female ratio of 4.8:1. Most common etiological factors for retinal detachment were high myopia in 43.7% (28), open globe injury in 23.4% (15), blunt trauma in 9.37% (6). Commonest retinal break noted was atrophic hole in 51.5% (33). Factors associated with poor outcome were Pre-op vision < HM 100%, Lensectomy 82.3%, cataract 70.5%, post synechiae 35.3%, use of LPFC 35.3%, closed funnel RD 29.4%. Overall anatomical success rate achieved was 95.3%, with major cause of less vision as old RD 34.4%. CONCLUSION: Predisposing factors for poorer visual outcome was Pre-op vision <HM, Lensectomy, cataract, post synechiae, closed funnel RD. With major cause of less vision as old RD. Most common post op complications were related with retained silicon oil. Final anatomical and visual outcome were encouraging (95.3%) despite late initial presentation and high rates of macular detachment and PVR at initial presentation. KEYWORDS: Pediatric, Rhegmatogenous Retinal detachment, vitrectomy.

INTRODUCTION: Pediatric rhegmatogenous retinal detachment (RRD) accounts for 3.2% to 5.6% of all RRD cases.¹ In contrast to RRD in adults, children usually present late and have clinical features attributable to a longstanding retinal detachment such as macular involvement and proliferative vitreoretinopathy (PVR).² Presence of amblyopia, systemic association and preoperative and postoperative examination difficulties due to lack of cooperation from the children make things more complex. Intraoperatively the anatomic variations from the adult eye make things more challenging. Consequently, guidelines obtained from studies of adult cases may be inappropriate for the management of pediatric RRD.

AIMS AND OBJECTIVES: The study is a retrospective case series which was done to evaluate the visual outcome and the predictive factors in cases of pediatric rhegmatogenous retinal detachment. Study also aims to analyze characteristics of type of retinal breaks, other eye findings and etiological factors in pediatric RRD.
MATERIALS AND METHODS: The present nonrandomized retrospective case series includes 64 cases of pediatric rhegmatogenous retinal detachment. Case records of all subjects aged 0-18 yrs with retinal detachment intervened from June 2006 to January 2009 were reviewed retrospectively. Thorough evaluation of the case records for history, presentation, clinical findings with special reference to slit lamp biomicroscopy, indirect ophthalmoscopy and surgical intervention done and follow up records was done. Patients with minimum follow up of 12 weeks were included, with mean follow up of 5.2 months. Only patients having rhegmatogenous retinal detachment were included.

RESULTS: Detailed review of 64 pediatric RRD cases revealed following findings. Male to female ratio of 4.8:1, suggests male preponderance. Average age of presentation was 12.8 yrs (range 4-17 yrs).

On evaluation of the etiological causes predisposing factors for retinal detachment were high myopia in 43.7% (28), open globe injury in 23.4% (15), blunt trauma in 9.37% (6), Marfans syndrome 7.81% (5), pseudophakia in 6.25% (4). Other studies have reported that trauma accounts for about 40% of all cases as compared to about 11% in adults. In one series the major groups, in order of frequency, were myopia greater than 4 D, ocular trauma followed by FEVR. Another series reported that the detachment was associated most frequently with trauma (44%), myopia (15%), aphakia (10%), and retinopathy of prematurity (8%).

Thorough evaluation of the fellow eye was done and in uncooperative children at the end of surgical intervention evaluation of the fellow eye was done under anaesthesia. In the fellow eye 25% (16) cases had Retinal detachment, 21.9% (14) had treatable peripheral retinal degeneration & 32.8% (21) cases had vision less than 3/60 in other eye.

Evaluation of the type of break was done preoperatively and intraoperatively and the commonest retinal break noted was atrophic hole in 51.5% (33), dialysis was seen in 15.6% (10), Giant Retinal Tear in 14.6% (9) & only 6.25% (4) had Horse Shoe Tear. Macula-off RD was present in 87.5% (56), 26 (40.6%) had PVR>C3, and 12 (18.7%) had subretinal PVR. Different surgical interventions were undertaken depending on the type of retinal detachment and sixteen (25%) cases underwent scleral buckling & rest required vitrectomy. 59.37% (38) cases required lensectomy, 67.7% (43) required oil as tamponade.

The final outcome was then evaluated with respect to the predisposing factors for less postoperative visual recovery. Factors associated with poor outcome were Pre-op vision <HM 100%, Lensctomy 82.3%, oil as tamponade 88.2%, cataract 70.5%, post synchiae 35.3%, use of LPFC 35.3%, closed funnel RD 29.4%. Our findings correlate with the observations made by Gonzales C R et al, that younger age (P=0.019), worse initial vision (P=0.008), greater extent of retinal detachment (P=0.007), and presence of proliferative vitreoretinopathy (grade C or worse) (P=0.008) were associated with worse anatomical outcomes.

	BCVA (<1/60) n = 17	BCVA (1/60-6/60) n = 10	BCVA (>6/60) n = 37
Exotropia	6 (35.3%)	3 (30%)	10 (37%)
High myopia	2 (11.8)	0	6 (16.2)
P trauma	4 (23.5)	2 (20)	7 (18.9)
One eyed	5 (30)	2 (20)	6 (16.2)
Other eye RD	2 (11.8)	4 (40)	10 (27)
Preop va < 1/60	17 (100)	6 (60)	22 (59.4)
Cataract	14 (70.58)	4 (40)	14 (32.4)
Post synechie 6 (35.3) 3 (30) 2 (5.4)
Macula off 17 (100) 8 (80) 31 (83.8)
PVR D2 5 (29.4) 1 (10) 0
Lensectomy 14 (82.3) 6 (60) 18 (48.6)
Oil as tamponade 15 (88.2) 6 (60) 22 (59.4)
LPFC use 6 (35.3) 0 3 (8.1)
Recurrences 3 (17.6) 0 7 (18.9)
Old Rd 9 (52.9) 4 (40) 8 (21.6)
Sec glaucoma 2 (11.8) 1 (10) 5 (21.6)

BCVA	Pre-operative (n = 64)	Post-operative (n = 64)
PL	45 (70.3)	2 (3.1)
PL <1/60	7 (10.9)	7 (10.9)
1/60-3/60	9 (14)	10 (15.6)
3/60-6/60	3 (4.7)	6 (9.4)
6/60-6/18	0	30 (46.8)
>6/18	0	9 (14)

Pre-operatively 81.2% had vision < 1/60 which postoperatively improved to >6/60 in 60.9% & 14% remained <1/60.

In the follow up the eyes were evaluated for the problems and complications and it was noted that commonest postoperative problem was oil emulsification 17.2% (11), recurrent Retinal detachment occurred in 14 % (9) and secondary glaucoma developed in 9.4%. Out of 9 recurrences who were reoperated 7 cases had retina attached till last follow up, and two remained detached, overall anatomical success rate is 95.3%, with major cause of less vision as old RD 34.4%.

DISCUSSION: When we reviewed other studies, most of them were from pre-vitrectomy era and also included limited etiological and selective surgical procedures which limited the scope of comparison with the present study which included not only sclera buckling but vitrectomy. We had similar results in relation to etiology, other eye findings, late presentation, high rate of macula off RD, PVR, type of breaks, complication rates.

Our visual and anatomical outcome are better, possibly due to improved technique of surgical intervention and tamponading agents (Most of our cases had undergone vitrectomy, lensectomy and oil tamponade).

Studies	Number of Cases	Type of Sx (%)	Anatomical Results (%)	Visual outcome (%) (>3/60)
Fivgas et al¹	29	28 72	72	41
Butler et al	15	80 -	86	53
Weinberg et al²	39	41 46	79	50
Yokohama²	55	76 -	87	65
Nagpal²	111	61 38	78	48
Our study	64	25 75	87	70

Comparative chart review of different studies
ORIGINAL ARTICLE

Studies	N	Mean age	Macula off	PVR (%)	Bilat (%)	Breaks (%)
Fivgas et al¹	29	9.6	79	45	22	HST-55
Butler et al	15	12.4	67	-	-	Dialys-33
Weinberg et al⁶	39	10	74	31	26	GRT-15
Yokohama²	55	12	-	22	-	Holes-40
Nagpal⁷	111	13.6	97	45	11	Holes-35
Our study	64	12.8	88	59	25	Holes-51

CONCLUSION: Management of pediatric cases though challenging with the problems of late presentation and difficult early diagnosis, associated conditions complicating the Retinal detachment like trauma, marfans syndrome, etc., various anatomical challenges like difference in surgical landmarks, relative instrument size and intraoperative challenges like corneal clouding, retinal incarceration, increased risk of iridodialysis, haemorrhage and traction on peripheral retina, etc. can be managed adequately in most of the cases.

Myopia and trauma were most common cause of RRD in children as was also noted by Lemrini F et al.(⁸) Fellow eyes had treatable vision threatening problems. Overall anatomical success rate in the present study was 95.3%. Predisposing factors for less post-op vision was Pre-op vision < HM, Lensectomy, Oil as tamponade, cataract, post synechiae, closed funnel RD. Major cause of poor visual recovery was old RD. Most common post op complications were related with retained silicon oil. Final anatomical and visual outcome were encouraging despite late initial presentation and high rates of macular detachment and PVR as initial presentation.

REFERENCES:

1. Fivgas GD et al. Pediatric rhegmatogenous retinal detachment. Retina 2001; 21: 101-6.
2. Yokoyama T, Kato T, Minamoto A. et al Chatacteristics and surgical outcome of pediatric retinal detachment. Eye 2004; 18: 889-92.
3. Haimann MH et al. Epidemiology of retinal detachment. Arch Ophthalmol 1982; 100:189-92.
4. Winslow RL et al Juvenile rhegmatogenous retinal detachment, Ophthalmology 1978; 85: 607-18.
5. Gonzales CR, Singh S, Yu F, Kreiger AE, Gupta A, Schwartz SD, Pediatric rhegmatogenous retinal detachment: clinical features and surgical outcomes: Retina. 2008 Jun; 28 (6): 847-52.
6. Weinberg DV, Lyon AT, Greenwald MJ, Mets MB, Rhegmatogenous retinal detachments in children: risk factors and surgical outcomes: Ophthalmology. 2003 Sep; 110(9):1708-13.
7. Nagpal M et al, juvenile rhegmatogenous retinal detachment. Indian J ophthalmol 2004; 52:297-302.
8. Lemrini F, Dafallah L, Kabbaj A. [Retinal Detachment in children.] J Fr Ophtalmol 1993; 16: 159-164.
AUTHORS:
1. Vivek Som
2. Girish Gadre
3. Anil Kulkarni

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Ophthalmology, Regional Institute of Ophthalmology, Gandhi Medical College, Bhopal.
2. Assistant Professor, Department of Ophthalmology, Krishna Medical College and Research Institute, Karad.
3. Professor and HOD, Department of Ophthalmology, Bharti Vidyapeeth Deemed University and Medical College, Sangli.

FINANCIAL OR OTHER COMPETING INTERESTS: None

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Vivek Som,
Assistant Professor,
Department of Ophthalmology,
Regional Institute of Ophthalmology,
Gandhi Medical College,
Bhopal.
E-mail: drvsom@hotmail.com

Date of Submission: 13/09/2014.
Date of Peer Review: 15/09/2014.
Date of Acceptance: 11/10/2014.
Date of Publishing: 03/06/2015.