D0-brane realizations of the resolution of a reduced singular curve

Chien-Hao Liu and Shing-Tung Yau

Abstract

Based on examples from superstring/D-brane theory since the work of Douglas and Moore on resolution of singularities of a superstring target-space Y via a D-brane probe, the richness and the complexity of the stack of punctual D0-branes on a variety, and as a guiding question, we lay down a conjecture that any resolution $Y' \to Y$ of a variety Y over \mathbb{C} can be factored through an embedding of Y' into the stack $\mathfrak{M}_r(Y)$ of punctual D0-branes of rank r on Y for $r \geq r_0$ in \mathbb{N}, where r_0 depends on the germ of singularities of Y. We prove that this conjecture holds for the resolution $\rho : C' \to C$ of a reduced singular curve C over \mathbb{C}. In string-theoretical language, this says that the resolution C' of a singular curve C always arises from an appropriate D0-brane aggregation on C and that the rank of the Chan-Paton module of the D0-branes involved can be chosen to be arbitrarily large.

Key words: D-brane, resolution, singularity; punctual D0-brane, stack; singular curve, normalization; embedding, separation of points, separation of tangents.

MSC number 2010: 14E15, 14A22, 81T30.

Acknowledgements. In fall 2011, Baosen Wu gives a topic course at Harvard on moduli of coherent sheaves. This note arises from a series of originally-casual-but-later-serious discussions with him. Despite his generosity, insisting that he plays only a mild role in this, we regard him as a coauthor and thank him for serving as a sounding board to our preliminary thought, catching an incompleteness of the first draft of the note, and influencing our mathematical understanding of B-branes and other issues. C.-H.L. thanks in addition Carl Mautner for discussions on constructible/perverse sheaves that influence his thought on A-branes; Sean Keel for an exceptional lecture on mirror symmetry and answers to his various questions; Clay Cordova, Babak Haghighat, Cumrun Vafa for discussions on new issues on A-branes; Lara Anderson, Feng-Li Lin, Li-Sheng Tseng for conversations that enrich his stringy culture; Nir Avni, Jacob Lurie, C.M., B.W. for topic courses, fall 2011; and Ling-Miao Chou for moral support. S.-T.Y. thanks in addition Department of Mathematics at National Taiwan University for the intellectually rich environments and hospitality. The project is supported by NSF grants DMS-9803347 and DMS-0074329.
Chien-Hao Liu dedicates this note to
the Willmans, a musical family that influenced him in every aspect during his teen-years;
and his music teachers (time-ordered)
 Cheng-Yo Lin, Bai-Chung Chen, Natalia Colocci, Kathy McClure, Janet Maestre
 who brought another dimension to his life;
and to Ann and Ling-Miao for the double flutes/flute∗-piano duets he forever cherishes.

∗(From C.-H.L.) Special thanks to Langus, a then-9-year-old kid when entering accidentally my life and who motivated me to re-pick up the instrument after its being discarded for more than a decade.
0. Introduction and outline.

The work [D-M] of Michael Douglas and Gregory Moore on resolution of singularities of a superstring target-space Y via a D-brane probe (i.e., the realization of a resolution Y' of Y as a space of vacua – namely, a moduli space in quantum-field-theoretical sense – of the world-volume quantum field theory of the D-brane probe) has influenced many studies both on the mathematics and the string-theory side. (See also a related work [J-M] of Clifford Johnson and Robert Myers.) The attempt to understand the underlying geometry behind the setup of [D-M] is indeed part of the driving force that leads us to the current setting of D-branes in the project (cf. [L-Y1] and [L-Y2]). Based on examples[3] from superstring/D-brane theory since [D-M], the richness and the complexity of the stack $M_{\text{stack}}^{0,\infty}(Y)$ of punctual D0-branes on a variety Y, and as a guiding question, we lay down in this note[1] a conjecture that any resolution $Y' \rightarrow Y$ of a variety Y over \mathbb{C} can be factored through an embedding of Y' into the stack $M_{\text{stack}}^{0,\infty}(Y)$ of punctual D0-branes of rank r on Y for $r \geq r_0$ in \mathbb{N}, where r_0 depends on the germ of singularities of Y; cf. Sec. 1. For the one-dimensional case, we prove that this conjecture holds for the resolution $\rho : C' \rightarrow C$ of a reduced singular curve C over \mathbb{C}; cf. Sec. 2. In string-theoretical language, this says that the resolution C' of a singular curve C always arises from an appropriate D0-brane aggregation on C and that the rank of the Chan-Paton module of the D0-branes involved can be chosen to be arbitrarily large.

Remark 0.1. [another aspect]. It should be noted that there is another direction of D-brane resolutions of singularities (e.g. [As], [Br], [Ch]), from the point of view of (hard/massive/solitonic) D-branes (or more precisely B-branes) as objects in the bounded derived category of coherent sheaves. Conceptually that aspect and ours (for which D-branes are soft in terms of string tension) are in different regimes of a refined Wilson’s theory-space of $d = 2$ supersymmetric field theory-with-boundary on the open-string world-sheet. Being so, there should be an interpolation between these two aspects. It would be very interesting to understand such details.

Convention. Standard notations, terminology, operations, facts in (1) algebraic geometry; (2) coherent sheaves; (3) resolution of singularities; (4) stacks can be found respectively in (1) [Ha]; (2) [H-L]; (3) [Hi], [Ko]; (4) [L-MB].

- All varieties, schemes and their products are over \mathbb{C}; a ‘curve’ means a 1-dimensional proper scheme over \mathbb{C}; a ‘stack’ means an Artin stack.
- The ‘support’ $\text{Supp}(\mathcal{F})$ of a coherent sheaf \mathcal{F} on a scheme Y means the scheme-theoretical support of \mathcal{F}; \mathcal{I}_Z denotes the ideal sheaf of a subscheme of Z of a scheme Y.
- The current note continues the study in [L-Y1] [arXiv:0709.1515 [math.AG], D(1)], [L-Y2] [arXiv:0901.0342 [math.AG], D(3)], and [L-Y3] [arXiv:0907.0263 [math.AG], D(4)] with some background from [L-L-S-Y] [arXiv:0809.2121 [math.AG], (2)]. A partial review of D-branes and Azumaya noncommutative geometry is given in [L-Y4] [arXiv:1003.1178 [math.SG], D(6)]. Notations and conventions follow these early works when applicable.

1 Unfamiliar readers are highly recommended to use keyword search to get a taste of the vast literature.
2 In part, for a subsection of a talk under the title ‘Azumaya noncommutative geometry and D-branes - an origin of the master nature of D-branes’ to be delivered in the workshop Noncommutative algebraic geometry and D-branes, December 12 – 16, 2011, organized by Charlie Beil, Michael Douglas, and Peng Gao, at Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY.
3 For mathematicians: See [W-K] for the origin of the notion of Wilson’s theory-space and, for example, [H-I-V] and [H-H-P] for the case of $d = 2$ supersymmetric quantum field theories with boundary.
1 The stack of punctual D0-branes on a variety and an abundance conjecture.

We collect a few most essential definitions and setups for this sub-line of the project. Readers are referred to [L-Y4] for a more thorough review of the first part of the project and stringy-theoretical remarks on how inputs from [Po1], [Po2], and [Wi] lead to such a setting.

D-branes as morphisms from Azumaya noncommutative spaces with a fundamental module.

Our starting point is the following prototypical definition of D-branes that comes from a mathematical understanding of [Po1], [Po2] from Joseph Polchinski and [Wi] from Edward Witten based on how Alexandre Grothendieck developed the theory of schemes in modern (commutative) algebraic geometry:

Definition 1.1. [D-brane]. Let \(Y \) be a variety (over \(\mathbb{C} \)). A D-brane on \(Y \) is a morphism \(\varphi \) from an Azumaya noncommutative space-with-a-fundamental-module \((X^{A}, \mathcal{E}) := (X, \mathcal{O}^{A}_{X}, \mathcal{E}) \) to \(Y \). Here, \(X \) is a scheme over \(\mathbb{C} \), \(\mathcal{E} \) a locally free \(\mathcal{O}_{X} \)-module, and \(\mathcal{O}^{A}_{X} = \text{End}_{\mathcal{O}_{X}}(\mathcal{E}) \); and \(\varphi \) is defined through an equivalence class of gluing systems of ring homomorphisms given by \(\varphi^{\sharp} : \mathcal{O}_{Y} \to \mathcal{O}^{A}_{X} \). The rank of \(\mathcal{E} \) is called the rank of the D-brane.

Similar to the fact that the data of a morphism \(f : X \to Y \) between schemes can be encoded completely by its graph \(\Gamma_{f} \) as a subscheme in \(X \times Y \), the data of \(\varphi \) is also encoded completely by its graph \(\Gamma_{\varphi} \):

Definition 1.2. [\(\varphi \) in terms of its graph \(\Gamma_{\varphi} \)]. The graph of a morphism in Definition 1.1 is given by an \(\mathcal{O}_{X \times Y} \)-module \(\hat{\mathcal{E}} \) that is flat over \(X \) and of relative dimension 0. In detail, let \(pr_{1} : X \times Y \to X \), \(pr_{2} : X \times Y \to Y \) be the projection map, and \(f_{\varphi} : \text{Supp}(\hat{\mathcal{E}}) \to Y \) be the restriction of \(pr_{2} \). Then \(\hat{\mathcal{E}} \) defines a morphism \(\varphi \) in Definition 1.1 as follows:

- \(\mathcal{E} = pr_{1 \ast} \hat{\mathcal{E}} \);
- note that \(\text{Supp}(\hat{\mathcal{E}}) \) is affine over \(X \); thus, the gluing system of ring homomorphisms
 - \(f^{\sharp}_{\varphi} : \mathcal{O}_{Y} \to \mathcal{O}_{\text{Supp}(\hat{\mathcal{E}})} \) defines a gluing system of ring-homomorphisms
 - \(\varphi^{\sharp} : \mathcal{O}_{Y} \to \text{End}_{\mathcal{O}_{X}}(\mathcal{E}) = \mathcal{O}^{A}_{X} \), which defines \(\varphi \).
It is worth emphasizing that, \textit{unlike} the standard setting for a morphism between ringed topological spaces in commutative geometry, in general φ specifies only a correspondence from X to Y via the diagram

$$
\begin{array}{c}
X_{\varphi} \coloneqq \text{Supp}(\tilde{E}) \\
\pi_{\varphi} \downarrow \\
X
\end{array} \xymatrix{ \ar[r]^{f_{\varphi}} & Y }
$$

not a morphism from X to Y.

Definition 1.2 suggests another equivalent description of φ.

\textbf{Definition 1.3. [\(\varphi\) as morphism to stack of D0-branes].} Let $\mathcal{M}^{0_{A_{zf}}} (Y)$ be the stack of 0-dimensional \mathcal{O}_Y-modules. It follows from Definition 1.2 that this is precisely the stack of D0-branes on Y in the sense of Definition 1.1 and, hence, the notation. Then, a morphism φ in Definition 1.1 is specified by a morphism $\hat{\varphi} : X \rightarrow \mathcal{M}^{0_{A_{zf}}} (Y)$.

The stack of punctual D0-branes on a variety and an abundance conjecture.

\textbf{Definition 1.4. [stack of punctual D0-branes].} Let Y be a variety. By a punctual 0-dimensional \mathcal{O}_Y-module, we mean a 0-dimensional \mathcal{O}_Y-module \mathcal{F} whose $\text{Supp}(\mathcal{F})$ is a single point (with structure sheaf an Artin local ring). By Definition 1.2, \mathcal{F} specifies a D0-brane on Y, which is called a punctual D0-brane. It is a morphism from an Azumaya point with a fundamental module to Y that takes the fundamental module to a punctual 0-dimensional \mathcal{O}_Y-module. Let $\mathcal{M}_{r}^{0_{A_{zf}}}(Y)$ be the stack of punctual D0-branes of rank r on a variety Y. It has an Artin stack with atlas constructed from Quot-schemes. There is a morphism $\pi_Y : \mathcal{M}_{r}^{0_{A_{zf}}}(Y) \rightarrow Y$ that takes \mathcal{F} to $\text{Supp}(\mathcal{F})$ with the reduced scheme structure. π_Y is essentially the Hilbert-Chow/Quot-Chow morphism.

The following two conjectures are motivated by the various examples in string theory concerning D-brane resolution of singularities of a superstring target-space and the richness and the complexity of the stack $\mathcal{M}^{0_{A_{zf}}} (Y)$:

\textbf{Conjecture 1.5. [D0-brane resolution of singularity].} Any resolution $Y' \rightarrow Y$ of a variety Y can be factored through an embedding of Y' into the stack $\mathcal{M}_{r}^{0_{A_{zf}}}(Y)$ of punctual D0-branes of rank r on Y for any $r \geq r_0$ in \mathbb{N}, where r_0 depends only on the germ of singularities of Y.

Conjecture 1.5 is a weaker form of the following stronger form of an abundance conjecture:

\textbf{Conjecture 1.6. [abundance].} Any birational morphism $Y' \rightarrow Y$ between varieties over \mathbb{C} can be factored through an embedding of Y' into the stack $\mathcal{M}_{r}^{0_{A_{zf}}}(Y)$ of punctual D0-branes of rank r on Y for any $r \geq r_0$ in \mathbb{N}, where r_0 depends only on the germ of singularities of Y and the germ of singularities of Y'.

This says that all the birational models of and over Y are already contained in the stack $\mathcal{M}_{r}^{0_{A_{zf}}}(Y)$ of punctual D0-branes on Y. All the birational transitions between birational models of and over Y happens as correspondences inside $\mathcal{M}_{r}^{0_{A_{zf}}}(Y)$ (and hence the name of the conjecture) – an intrinsic stack over Y, locally of finite type, that is canonically associated to Y.

3
Remark 1.7. [string-theoretical remark]. A standard setting (cf. [D-M]) in D-brane resolution of singularities of a (complex) variety Y (which is a singular Calabi-Yau space in the context of string theory) is to consider a super-string target-space-time of the form $\mathbb{R}^{(9-2d)+1} \times Y$ and an (effective-space-time-filling) D$(9-2d)$-brane whose world-volume sits in the target space-time as a submanifold of the form $\mathbb{R}^{(9-2d)+1} \times \{p\}$. Here, d is the complex dimension of the variety Y and $p \in Y$ is an isolated singularity of Y. When considering only the geometry of the internal part of this setting, one sees only a D0-brane on Y. This explains the role of D0-branes in the statement of Conjecture 1.5 and Conjecture 1.6. In the physics side, the exact dimension of the D-brane (rather than just the internal part) matters since supersymmetries and their superfield representations in different dimensions are not the same and, hence, dimension does play a role in writing down a supersymmetric quantum-field-theory action for the world-volume of the D$(9-2d)$-brane probe. In the above mathematical abstraction, these data are now reflected into the richness, complexity, and a master nature of the stack $\mathcal{M}_{\rho}^{0\text{A}_f}$ (Y) that is intrinsically associated to the internal geometry. The precise dimension of the D-brane as an object sitting in or mapped to the whole space-time becomes irrelevant.

2 Realizations of resolution of singular curves via D0-branes.

Let C be a reduced singular curve over \mathbb{C} and

$$\rho : C' \rightarrow C$$

be the resolution of singularities of C. In the current 1-dimensional case, the singularities of C are isolated and ρ is realized by the normalization of C. In particular, ρ is an affine morphism. The built-in \mathcal{O}_C-module homomorphism $\rho^* : \mathcal{O}_C \rightarrow \rho_* \mathcal{O}_{C'}$ determines a subsheaf $A_C \subset \mathcal{O}_{C'}$ of \mathcal{O}-subalgebras with the induced morphism $C' \rightarrow \text{Spec} A_C$ identical to ρ. Let $p' \in C'$ be a closed point, $p := \rho(p')$, and $m_{\rho'} = (t)$ (resp. m_ρ) be the maximal ideal of $\mathcal{O}_{C',p'}$ (resp. $\mathcal{O}_{C,p}$). Then $\rho^*(m_p) : \mathcal{O}_{C',p'} = (t^{n_{p'}})$ for some $n_{p'} \in \mathbb{N}$. $n_{p'} > 1$ if and only if $p \in C_{\text{sing}} := \text{the singular locus of } C$. We show in this section that:

Proposition 2.1. [one-dimensional case]. Conjecture 1.5 holds for $\rho : C' \rightarrow C$. Namely, there exists an $r_0 \in \mathbb{N}$ depending only on the tuple $(n_{p'})_{p' \in C_{\text{sing}}}$ and a (possibly empty) set $\{b.i.i.(p) : p \in C_{\text{sing}}, C \text{ has multiple branches at } p\}$ (cf. Definition 2.6), both associated to the germ of C_{sing} in C, such that, for any $r \geq r_0$, there exists an embedding $\tilde{\rho} : C' \hookrightarrow \mathcal{M}_{r}^{0\text{A}_f}(C)$ that makes the following diagram commute:

\[
\begin{array}{c}
\mathcal{M}_{r}^{0\text{A}_f}(C) \\
\downarrow \pi_C \quad \ quad
Lemma 2.2. [commutativity of push-forward and restriction]. Let \(p' \in C' \) be a closed point. Then \((\text{id}_{C'} \times \rho)_* (\mathcal{E}|_{\{p'\} \times C'}) = \mathcal{E}|_{\{p'\} \times C} \).

Proof. As \(\mathcal{E}' \) is flat over \(C' \) under \(p'_1 \), one has the exact sequence

\[
0 \rightarrow \mathcal{I}_{\{p'\} \times C'} \otimes_{\mathcal{O}_{C'}} \mathcal{E}' \rightarrow \mathcal{E}' \rightarrow \mathcal{E}|_{\{p'\} \times C} \rightarrow 0 .
\]

Since \(\text{id}_{C'} \times \rho \) is affine, \((\text{id}_{C'} \times \rho)_* : \text{Coh}(C') \rightarrow \text{Coh}(C) \) is exact and one has

\[
0 \rightarrow (\text{id}_{C'} \times \rho)_* (\mathcal{I}_{\{p'\} \times C'} \otimes_{\mathcal{O}_{C'}} \mathcal{E}') \rightarrow \mathcal{E} \rightarrow (\text{id}_{C'} \times \rho)_* (\mathcal{E}|_{\{p'\} \times C'}) \rightarrow 0 .
\]

where the top horizontal line is an exact sequence. This proves the lemma.

Remark/Notation 2.3. [general restriction over a base]. Lemma 2.2 holds more generally with \(p' \) replaced by a subscheme of \(C' \), by the same proof with the replacement. We’ll denote the restriction of a coherent sheaf \(\mathcal{F}' \) (resp. \(\mathcal{F} \)) on \(C' \times C' \) (resp. \(C' \times C \)) over a subscheme \(Z' \) of the base \(C' \) by \(\mathcal{F}|_{Z'} \) (resp. \(\mathcal{F}|_{Z'} \)).

Let \(v_{p'} \simeq \text{Spec}(\mathbb{C}[\varepsilon]) \), where \(\varepsilon^2 = 0 \), be the subscheme of the base \(C' \) that corresponds to the \(\mathbb{C} \)-algebra quotient \(\mathcal{O}_{C',p'} \rightarrow \mathbb{C}[\varepsilon] \) with \(t \mapsto \varepsilon \). Then the restriction of \(\mathcal{E}' \) over \(v_{p'} \) determines an element \(\alpha_{p'} \in \text{Ext}_C^1(\mathcal{E}'|_{v_{p'}}, \mathcal{E}'|_{v_{p'}}) \). Similarly, the restriction of \(\mathcal{E} \) over \(v_{p'} \) determines an element \(\alpha_{p'} =: \rho_* \alpha_{p'} \in \text{Ext}_C^1(\mathcal{E}|_{v_{p'}}, \mathcal{E}|_{v_{p'}}) \). Let \(p := \rho(p') \) and recall \(t \in \mathcal{O}_{C',p'} \) and \(n_{p'} \in \mathbb{N} \) from the beginning of this section. Let us first state an elementary criterion for non-splitability of a short exact sequence, whose proof is immediate:

Lemma 2.4. [criterion of non-splitability]. Let \(W \) be a scheme and

\[
0 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{G} \rightarrow \mathcal{F}_1 \rightarrow 0
\]

be an exact sequence of \(\mathcal{O}_W \)-modules that represents a class \(\beta \in \text{Ext}_W^1(\mathcal{F}_1, \mathcal{F}_2) \). Suppose that there exist a point \(w \in W \) and a local function \(f \in \mathcal{O}_{W,w} \) such that, for the associated \(\mathcal{O}_{W,w} \)-modules (still denoted the same), \(f \cdot \mathcal{F}_1 = f \cdot \mathcal{F}_2 = 0 \) while \(f \cdot \mathcal{G} \neq 0 \). Then, \(\beta \neq 0 \); namely, the above sequence doesn’t split.

Corollary 2.5. [push-forward of jet]. Continuing the main-line discussions and notations. Let \(\alpha' \) be given by the exact sequence

\[
0 \rightarrow \mathcal{E}|_{v_{p'}} \rightarrow \mathcal{F}' \rightarrow \mathcal{E}|_{v_{p'}} \rightarrow 0
\]

of \(\mathcal{O}_{C'} \)-modules. Denote the same for the associated exact sequence of \(\mathcal{O}_{C',p'} \)-modules. As such, suppose that there is an \(l \in \mathbb{N} \) such that \((t^{n_{p'}})^l \cdot \mathcal{E}' = 0 \) while \((t^{n_{p'}})^{l+1} \cdot \mathcal{F}' \neq 0 \). Then \(\alpha \neq 0 \) in \(\text{Ext}_C^1(\mathcal{E}|_{v_{p'}}, \mathcal{E}|_{v_{p'}}) \).

Proof. Note that the multiplication of \(t \) by an invertible element in \(\mathcal{O}_{C',p'} \) (i.e. by an element in \(\mathcal{O}_{C',p'} - \mathfrak{m}_{p'} \)) won’t alter its nilpotency behavior on the modules in question. The corollary follows immediately from Lemma 2.4 and the observation that, up to a multiplication by an invertible element in \(\mathcal{O}_{C',p'} \), one may assume that \(t^{n_{p'}} \in \rho^*(\mathcal{O}_{C,p}) \).

\[\Box\]
Separation of points in \(\rho^{-1}(p) \) via punctual D0-branes at \(p \).

Let \(p \in C_{\text{sing}} \) and \(\hat{C} \) be the formal neighborhood (as an ind-scheme) of \(p \) in \(C \). Then each irreducible component \(\hat{C}_i, i = 1, \ldots, k \), of \(\hat{C} \) corresponds to a branch of the germ of \(p \) in \(C \). Assume that \(k \geq 2 \). Then the intersection of two distinct components \(\hat{C}_i \) and \(\hat{C}_j \) of \(\hat{C} \) is represented by a punctual 0-dimensional subscheme \(Z_{ij} = Z_{ji} \) of \(C \) at \(p \) of finite length \(l_{ij} = l_{ji} \).

Definition 2.6. [branch intersection index]. For \(k \geq 2 \), define the branch intersection index \(b.i.i.(p) \) at \(p \in C_{\text{sing}} \) to be

\[
b.i.i.(p) := \max\{l_{ij} : 1 \leq i, j \leq k; i \neq j\}.
\]

Let \(p \in C_{\text{sing}}, \rho^{-1}(p) = \{p'_1, \ldots, p'_k\} \), and \(\hat{C}'_i \) be the formal neighborhood of \(p'_i \) in \(C' \). Then \(\rho : C' \to C \) induces a morphism \(\hat{\rho}_i : \hat{C}'_i \to \hat{C}_i \) of ind-schemes, for \(i = 1, \ldots, k \). The image \(\hat{\rho}_i(\hat{C}'_i) \) is a branch of \(\hat{C} \), which we may assume to be \(\hat{C}_i \), after relabeling, since different \(\hat{C}'_i \)'s are mapped to different branches of \(\hat{C} \) under \(\hat{\rho}_i \). Let \(m_{p'_i} = (u_i) \) be the maximal ideal of \(\mathcal{O}_{C', p'_i} \).

- \(\mathcal{F}'_{i,l} \) be the 0-dimensional \(\mathcal{O}_{C', \mathcal{F}'} \)-module \(\mathcal{O}_{C', \mathcal{F}'} / (u_i^{n_{p'_i}^{(l)})} \);
- \(\hat{\mathcal{F}}_{i,l} \) be the \(\mathcal{O}_{\mathcal{C}', \mathcal{F}'} \)-module associated to \(\mathcal{F}'_{i,l} \);
- \(\mathcal{F}_{i,l} \) be the \(\mathcal{O}_{C} \)-module \(\rho_* \mathcal{F}'_{i,l} \);
- \(\hat{\mathcal{F}}_{i,l} \) be the \(\mathcal{O}_{C} \)-module \(\hat{\rho}_i \ast \hat{\mathcal{F}}_{i,l} = \rho_* \mathcal{F}_{i,l} \).

Then, one has the following lemma:

Lemma 2.7. [separation by punctual modules]. \(\text{length}(\text{Supp}(\mathcal{F}_{i,l})) \geq l \) and \(\text{Supp}(\hat{\mathcal{F}}_{i,l}) \subset \hat{C}_i \). In particular, if \(l > b.i.i.(p) \), then \(\mathcal{F}_{1,l}, \ldots, \mathcal{F}_{k,l} \) are punctual 0-dimensional \(\mathcal{O}_C \)-modules at \(p \) that are non-isomorphic to each other.

Proof. As in the previous theme, we may assume that \(u_i^{n_{p'_i}^{(l)}} = \rho^2(f_i) \) for some \(f_i \in m_{p} \subset \mathcal{O}_{C,p} \).

Let \(h \in \mathbb{C}[x] \) be a polynomial in one variable. Then, by construction, \(h(u_i^{n_{p'_i}^{(l)}}) \cdot \mathcal{F}_{i,l} = 0 \) if and only if \(h \in (x^l) \). In other words, \(h(f_i) \cdot \mathcal{F}_{i,l} = 0 \) if and only of \(h \in (x^l) \). It follows that there exists a local section \(m_{i,l} \) of \(\mathcal{F}_{i,l} \) such that \(f_i^{l-1} \cdot m_{i,l} \neq 0 \). Consider the sub-\(\mathcal{O}_C \)-module \(\mathcal{O}_C \cdot m_{i,l} \simeq \mathcal{O}_C / \text{Ann}(m_{i,l}) \) of \(\mathcal{F}_{i,l} \), where \(\text{Ann}(m_{i,l}) \) is the annihilator of \(m_{i,l} \) in \(\mathcal{O}_{C,p} \). Then,

\[
m_{i,l}, f_i \cdot m_{i,l}, \ldots, f_i^{l-1} \cdot m_{i,l}
\]

are \(\mathbb{C} \)-linearly independent in \(\mathcal{F}_{i,l} \), which implies that

\[
1, f_i, \ldots, f_i^{l-1}
\]

are \(\mathbb{C} \)-linearly independent in \(\mathcal{O}_{C,p} \). Since

\[
\text{Span}_\mathbb{C}\{1, f_i, \ldots, f_i^{l-1}\} \cap \text{Ann}(m_{i,l}) = 0
\]

as \(\mathbb{C} \)-vector subspaces in \(\mathcal{O}_{C,p} \), one has that \(\text{length}(\text{Supp}(\mathcal{O}_{C,p} / \text{Ann}(m_i))) \geq l \) and, hence, that \(\text{length}(\text{Supp}(\mathcal{F}_{i,l})) \geq l \). The rest of the lemma are immediate.

We say that \(p'_1, \ldots, p'_k \in \rho^{-1}(p) \subset C' \) are separated by the punctual \(\mathcal{O}_C \)-modules \(\mathcal{F}_{1,l}, \ldots, \mathcal{F}_{k,l} \) at \(p \in C \) when \(\mathcal{F}_{1,l}, \ldots, \mathcal{F}_{k,l} \) as constructed above are non-isomorphic to each other.
Construction of embeddings $C' \to \mathcal{M}^{0\mathcal{A}_f}_{r_0}(C)$ that descend to ρ.

We now proceed to prove Proposition 2.1 in three steps.

Step (a): Examination of a local model.

Consider the local ring $\mathcal{O}_{C' \times C', (p', p')} = \mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}$. (For simplicity of phrasing, here we use ‘\simeq’ to mean ‘standard canonical isomorphism’.) Let $m_{p'} = (t_1) \subset \mathcal{O}_{C', p'}$ be the maximal ideal of the first factor and $m_{p'} = (t_2) \subset \mathcal{O}_{C', p'}$ be the maximal ideal of the second factor. Given $r \in \mathbb{N}$, compare the following two quotient $\mathcal{O}_{C' \times C', (p', p')}$-modules:

$$M_1 := \frac{\mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}}{(t_1 \otimes 1 - 1 \otimes t_2)^r, t_1 \otimes 1} \quad \text{and} \quad M_2 := \frac{\mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}}{(t_1 \otimes 1 - 1 \otimes t_2)^r, t_1^r \otimes 1}.$$

M_1 corresponds to the restriction of the $\mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}$-module $\mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}/(t_1 \otimes 1 - 1 \otimes t_2)^r$, which is flat over C' (the first factor), to over $p' \in C'$ (the first factor) while M_2 corresponds to the restriction of the same $\mathcal{O}_{C', p'} \otimes_{\mathbb{C}} \mathcal{O}_{C', p'}$-module to over $v_{p'} \simeq \text{Spec}(\mathbb{C}[t_1]/(t_1^r)) \simeq \text{Spec}(\mathbb{C}[\varepsilon]) \subset C'$ (the first factor). They fit into an exact sequence, representing a class in $\text{Ext}^1_{\mathcal{O}_C}(M_1, M_1)$ (here $C' = \text{the second factor}$),

$$0 \to M_1 \xrightarrow{a} M_2 \xrightarrow{b} M_1 \to 0$$

of $\mathbb{C}[\varepsilon]$-modules with

$$M_1 = \text{Span}_{\mathbb{C}} \left\{ 1 \otimes 1, 1 \otimes t_2^2, \ldots, 1 \otimes t_2^{r-1} \right\};$$

$$M_2 = \text{Span}_{\mathbb{C}[\varepsilon]} \left\{ 1 \otimes 1, 1 \otimes t_2^2, \ldots, 1 \otimes t_2^{r-1} \right\}$$

$$\quad = \text{Span}_{\mathbb{C}} \left\{ 1 \otimes 1, 1 \otimes t_2^2, \ldots, 1 \otimes t_2^{r-1}, \varepsilon \otimes 1, \varepsilon \otimes t_2^2, \ldots, \varepsilon \otimes t_2^{r-1} \right\},$$

where $a = \text{multiplication by } \varepsilon$, and $b = \text{quotient by } \varepsilon M_1$. As $\mathbb{C}[\varepsilon]$-modules and with respect to the above bases (and with a vector identified as a column vector),

$$t_2 \text{ on } M_1 = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ \cdots & \cdots & \vdots & 1 \end{bmatrix}_{r \times r}$$

$$\text{and} \quad t_2 \text{ on } M_2 = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \varepsilon \\ \cdots & \cdots & \cdots & 1 \end{bmatrix}_{r \times r}.$$

Here all the missing entries in the $r \times r$-matrices are 0. It follows that, as $\mathcal{O}_{C', p'}$ (the second factor) -modules,

$$t_2^l \cdot M_1 = 0 \quad \text{if and only if } \ l \geq r \quad \text{while} \quad t_2^l \cdot M_2 = 0 \quad \text{if and only if } \ l \geq r + 1.$$

In particular, the above short exact sequence (of $\mathcal{O}_{C', p'}$-modules) doesn’t split.

Step (b): Construction of a local embedding $C' \to \mathcal{M}^{0\mathcal{A}_f}_{r_0}(C)$ that descend to ρ, for some $r_0 \in \mathbb{N}$.

Let

$$l_0 := 1 + \max\left\{ \text{b.i.i.}(p) : p \in C_{\text{sing}}, C \text{ has multiple branches at } p \right\}$$

(by convention, $l_0 = 1$ if C has only single branch at each $p \in C_{\text{sing}}$) and

$$r_0 := l_0 \cdot \text{l.c.m.}\{n_{p'} : p' \in C'\} \in \mathbb{N}.$$

(Here, l.c.m. = the ‘least common multiple’ in \mathbb{N}.) Since $n_{p'} = 1$ except for $\rho(p')$ in the finite set C_{sing}, r_0 is well-defined. Furthermore, since $\{n_{p'}\}_{\rho(p') \in C_{\text{sing}}}$ and $\{\text{b.i.i.}(p) : p \in C_{\text{sing}}\}$ (possibly
empty) depend only on the germ of C_{sing} in C, r_0 depends only on the germ of C_{sing} in C. Let \mathcal{E}' be the $\mathcal{O}_{C' \times C'}$-module
\[
\mathcal{E}' = \mathcal{O}_{C' \times C'}/I_{\Delta_c'}
\]
and $\tilde{\mathcal{E}} := (id_{C'} \times \rho)_*(\mathcal{E}')$ on $C' \times C$. Then, it follows from the construction and Lemma 2.7 that the induced morphism
\[
\tilde{\rho}_0 : C' \to \mathcal{M}^{0,0,l}_{\rho}(C)
\]
descends to ρ and sends distinct closed points of C' to distinct geometric points on $\mathcal{M}^{0,0,l}_{\rho}(C)$ (i.e. $\tilde{\rho}$ separates points of C'). Furthermore, it follow from the local study in Step (a) and Corollary 2.5 that all the extension classes $\alpha_{p'} \in \text{Ext}^1_C(\tilde{\mathcal{E}}_{p'}, \tilde{\mathcal{E}}_{p'})$, $p' \in C'$, $\tilde{\mathcal{E}}$ specifies are non-zero. This shows that $\tilde{\rho}_0$ separates also tangents of C' and hence is an embedding.

Step (c): Embeddings $C' \hookrightarrow \mathcal{M}^{0,0,l}_{\rho}(C)$ that descend to ρ, for all $r > r_0$.

Finally, to obtain an embedding $\tilde{\rho} : C' \to \mathcal{M}^{0,0,l}_{\rho}(C)$ for $r > r_0$ that descends to ρ, observe that the $\mathcal{O}_{C' \times C'}$-module $\mathcal{O}_{\Gamma\rho}$ has the following properties:

- The corresponding extension class $\tilde{\alpha}_{p'}$ in $\text{Ext}^1_C(\mathcal{O}_p, \mathcal{O}_p)$, where $p := \rho(p')$, vanishes if and only if $p \in C_{\text{sing}}$.

This implies that all the extension classes $\hat{\alpha}_{p'} \in \text{Ext}^1_C(\hat{\mathcal{E}}_{p'}, \hat{\mathcal{E}}_{p'})$, $p' \in C'$, as specified by the direct sum
\[
\hat{\mathcal{E}} := \hat{\mathcal{E}} \oplus \mathcal{O}_{\Gamma\rho}^{\oplus(r-r_0)}
\]
of $\mathcal{O}_{C' \times C'}$-modules, remain non-zero. Furthermore,
\[
\text{Supp}((\hat{\mathcal{E}} \oplus \mathcal{O}_{\Gamma\rho}^{\oplus(r-r_0)})|_{p' \times C}) = \text{Supp}(\hat{\mathcal{E}}_{p'}) \quad \text{for all } p' \in C'.
\]

It follows that the morphism $\tilde{\rho} : C' \to \mathcal{M}^{0,0,l}_{\rho}(C)$ specified by $\hat{\mathcal{E}}$ on $C' \times C$ separates both points and tangents of C' and, hence, is an embedding that descend to ρ.

This concludes the proof of Proposition 2.1.

Remark 2.8. [non-uniqueness]. In general there can be other embeddings of C' into $\mathcal{M}^{0,0,l}_{\rho}(C)$ that descend also to ρ. Hence, the one constructed in the proof above is by no means unique.
References

[As] P. Aspinwall, A point’s point view of stringy geometry, J. High Energy Phys. 0301 (2003) 002, 15 pp. (arXiv:hep-th/0203111)

[Br] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), 613–632. (arXiv:math/0009053 [math.AG])

[Ch] J.-C. Chen, Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities, J. Diff. Geom. 61 (2002), 227–261. (arXiv:math/0202005 [math.AG])

[D-M] M.R. Douglas and G.W. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.

[Ei] D. Eisenbud, Commutative algebra - with a view toward algebraic geometry, GTM 150, Springer, 1995.

[Fu] W. Fulton, Intersection theory, Ser. Mod. Surv. Math. 2, Springer, 1984.

[Ha] R. Hartshorne, Algebraic geometry, GTM 52, Springer, 1977.

[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math. 79 (1964), 109–203; 205–326.

[H-H-P] M. Herbst, K. Hori, and D. Page, Phases of \(\mathcal{N} = 2 \) theories in \(1 + 1 \) dimensions with boundary, arXiv:0803.2045 [hep-th].

[H-I-V] K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror symmetry, arXiv:hep-th/0005247.

[H-L] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, 2nd., Cambridge Univ. Press, 2010.

[Jo] C.V. Johnson, D-branes, Cambridge Univ. Press, 2003.

[J-M] C.V. Johnson and R.C. Myers, Aspects of type IIB theory on ALE spaces, Phys. Rev. D55 (1997), 6382–6393. (arXiv:hep-th/9610140)

[Ko] J. Kollár, Lectures on resolution of singularities, Ann. Math. Studies, no. 166, Princeton Univ. Press, 2007

[K-S] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascade and \(\chi \)SB-resolution of naked singularities, J. High Energy Phys. (2000) 052, 35 pp. (arXiv:hep-th/0007191)

[K-W] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B536 (1999), pp. 199 - 218. (arXiv:hep-th/9807080)

[L-MB] G. Laumon and L. Moret-Bailly, Champs algébriques, Ser. Mod. Surveys Math. 39, Springer, 2000.

[L-Y1] C.-H. Liu and S.-T. Yau, Azumaya-type noncommutative spaces and morphism therefrom: Polchinski’s D-branes in string theory from Grothendieck’s viewpoint, arXiv:0709.1515 [math.AG]. (D(1))

[L-L-S-Y] S. Li, C.-H. Liu, R. Song, S.-T. Yau, Morphisms from Azumaya prestable curves with a fundamental module to a projective variety: Topological D-strings as a master object for curves, arXiv:0809.2121 [math.AG]. (D(2))

[L-Y2] C.-H. Liu and S.-T. Yau, Azumaya structure on D-branes and resolution of ADE orbifold singularities revisited: Douglas-Moore vs. Polchinski-Grothendieck, arXiv:0901.0342 [math.AG]. (D(3))

[L-Y3] ——–, Azumaya structure on D-branes and deformations and resolutions of a conifold revisited: Klebanov-Strassler-Witten vs. Polchinski-Grothendieck, arXiv:0907.0268 [math.AG]. (D(4))

[L-Y4] ——–, D-branes and Azumaya noncommutative geometry: From Polchinski to Grothendieck, arXiv:1003.1178 [math.SG]. (D(6))

[L-Y5] ——–, manuscript in preparation.

[Ma] H. Matsumura, Commutative ring theory, translated by M. Reid, Cambridge Stud. Math. 8, Cambridge Univ. Press, 1986.

[M-P] D.R. Morrison and M.R. Plesser, Non-spherical horizons, Adv. Theor. Math. Phys. 3 (1999), 1–81.

[Pol1] J. Polchinski, Lectures on D-branes, in “Fields, strings, and duality”, TASI 1996 Summer School, Boulder, Colorado, C. Eftimiu and B. Greene eds., World Scientific, 1997. (arXiv:hep-th/9611050)

[Pol2] ——–, String theory, vol. I: An introduction to the bosonic string; vol. II: Superstring theory and beyond, Cambridge Univ. Press, 1998.

[Wi] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996), 335–350. (arXiv:hep-th/9510135)

[Wu] B. Wu, Topics in the moduli theory of sheaves, course Math 265y given at Harvard University, fall 2011.

[W-K] K.G. Wilson and J. Kogut, The renormalization group and the \(\varepsilon \) expansion, Phys. Reports 12 (1974), 75–200.