Comparative Genomics of *Pandoraea*, a Genus Enriched in Xenobiotic Biodegradation and Metabolism

Charlotte Peeters¹, Evelien De Canck¹, Margo Cnockaert¹, Evie De Brandt¹, Cindy Snauwaert², Bart Verheyde¹, Eliza Depoorter¹, Theodore Spilker³, John J. LiPuma³ and Peter Vandamme¹,²*

¹Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium; ²BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium; ³Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States

Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 *Pandoraea* reference strains and field isolates revealed several clusters that included no taxonomic reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 strains for whole-genome sequence analysis and for a comparative genomics study that also included 41 publicly available *Pandoraea* genome sequences. The phylogenomic analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise digital DNA–DNA hybridization values and their confidence intervals, average nucleotide identity analyses using the OrthoANIu algorithm, and a whole-genome phylogeny reconstruction based on 107 single-copy core genes using bcgTree. These analyses, along with subsequent chemotaxonomic and traditional phenotypic analyses, revealed the presence of 17 novel *Pandoraea* species among the strains analyzed, and allowed the identification of several unclassified *Pandoraea* strains reported in the literature. The genus *Pandoraea* has an open pan genome that includes many orthogroups in the ‘Xenobiotics biodegradation and metabolism’ KEGG pathway, which likely explains the enrichment of these species in polluted soils and participation in the biodegradation of complex organic substances. We propose to formally classify the 17 novel *Pandoraea* species as *P. anapnoica* sp. nov. (type strain LMG 31117T = CCUG 73385T), *P. anhela* sp. nov. (type strain LMG 31108T = CCUG 73386T), *P. aquatica* sp. nov. (type strain LMG 31011T = CCUG 73384T), *P. bronchicola* sp. nov. (type strain LMG 20603T = ATCC BAA-110T), *P. capi* sp. nov. (type strain LMG 20602T = ATCC BAA-109T), *P. captiosa* sp. nov. (type strain LMG 31118T = CCUG 73387T), *P. cepalis* sp. nov. (type strain LMG 31106T = CCUG 39680T), *P. commovens* sp. nov. (type strain LMG 31010T = CCUG 73378T), *P. communis* sp. nov. (type strain LMG 31110T = CCUG 73383T), *P. eparura* sp. nov. (type strain LMG 31012T = CCUG 73380T), *P. horticelens* sp. nov. (type strain LMG 31112T = CCUG 73379T), *P. iniqua* sp. nov. (type strain LMG 31009T = CCUG 73381T).
INTRODUCTION

Members of the genus *Pandoraea* have emerged as rare opportunistic pathogens in persons with cystic fibrosis (Jørgensen et al., 2003; Johnson et al., 2004; Pimentel and MacLeod, 2008; Kokcha et al., 2013; Ambrose et al., 2016; Martina et al., 2017; See-Too et al., 2019) and several cases of chronic colonization and patient-to-patient transfer in this patient group have been reported (Jørgensen et al., 2003; Atkinson et al., 2006; Degand et al., 2015; Pugès et al., 2015; Ambrose et al., 2016; Dupont et al., 2017; Greninger et al., 2017). In addition to causing infection in cystic fibrosis patients, *Pandoraea* isolates have been recovered from blood and from samples from patients with chronic obstructive pulmonary disease or chronic granulomatous disease (Coenye et al., 2000; Sahin et al., 2003). Although the small number of patients involved and underlying diseases make it difficult to identify these bacteria as the cause of clinical deterioration (Martina et al., 2017; Green and Jones, 2018), one report described sepsis, multiple organ failure and death in a non-cystic fibrosis patient who underwent lung transplantation for sarcoidosis (Strjewski et al., 2003).

Of the 11 validly named *Pandoraea* species, six (i.e., *Pandoraea* apista, *Pandoraea* norimbergenis, *Pandoraea* pulmonicola, *Pandoraea* pnomenusa, *Pandoraea* spuторum, and *Pandoraea* fibrosis) have been recovered from human clinical specimens (Coenye et al., 2000; See-Too et al., 2019), while *Pandoraea* faecigallinarum, *Pandoraea* oxalativorans, *Pandoraea* terrae, *Pandoraea* thiooxydans, and *Pandoraea* vervacii have been isolated from environmental samples (Anandham et al., 2010; Sahin et al., 2011; Jeong et al., 2016). An uncultivated endosymbiont of the trypanosomatid *Novymonas esmeraldas* represents an additional *Pandoraea* species which was provisionally named *Candidatus* *Pandoraea* novymonadis (Kostygov et al., 2017).

A growing number of reports demonstrate that soil and water participate in the biodegradation of complex organic substances including lignin (Shi et al., 2013; Kumar et al., 2018b; Liu et al., 2019), biodiesel and petroleum by-products (de Paula et al., 2017; Sarkar et al., 2017; Tirado-Torres et al., 2017), *p*-xylene (Wang et al., 2015), 8-hexachlorocyclohexane (Pushiri et al., 2013), di- *n*-butyl phthalate (Yang et al., 2018), biphenyl, benzoate and naphthalene (Uhlik et al., 2012), and tetracycline (Wu et al., 2019) and *β*-lactam antibiotics (Crofts et al., 2017). A particularly well-documented *Pandoraea* strain, i.e., *JB1* (LMG 31106T), was isolated in the 1980s from garden soil (Parsons et al., 1988) and was able to use biphenyl, 2-, 3- and 4-chlorobiphenyl, *m*-*toluate,* *p*-*toluate,* *n*aphthalene, *m*-hydroxybenzoate and diphenylmethane (Springael et al., 1996). Although this strain also represented a separate novel *Pandoraea* species, it was not formally classified (Coenye et al., 2000) pending the availability of more than one strain representing the same novel species, a taxonomic practice that has been largely abandoned today.

The genome sequences of several strains with bioremediation potential have been reported, but a growing number of studies fail to provide species-level identification of such strains (Pushiri et al., 2013; Chan et al., 2015; Kumar M. et al., 2016; Crofts et al., 2017; Liu et al., 2018; Wu et al., 2019). In addition, in our studies on the diversity and epidemiology of opportunistic pathogens in persons with cystic fibrosis, we isolated a considerable number of *Pandoraea* strains that represent novel species (unpublished data). The present study aimed to clarify the taxonomy and formally name these novel *Pandoraea* species, and to make reference cultures and whole-genome sequences of each of these versatile bacteria publicly available.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

Isolates representing novel *Pandoraea* species are listed in Table 1, along with their isolation source details. These strains were initially assigned to the genus *Pandoraea* on the basis of sequence analysis of 16S rRNA, *gyrB* or *recA* genes (data not shown). Well-characterized reference strains and recent field isolates identified in the present study as established *Pandoraea* species are listed in Supplementary Table S1. Strains were grown aerobically on Tryptone Soya Agar (Oxoid) and incubated at 28°C. Cultures were preserved in MicroBank™ vials at −80°C.

DNA Preparation

DNA was extracted using an automated Maxwell® DNA preparation instrument (Promega, United States). The final
Strain	Other strains designations	Source	Depositor
Pandoraea anapnoica	sp. nov.		
LMG 31117^T	AU1288^T, CCUG 73385^T	CF patient (United States, 1999)	Own isolate
Pandoraea anhela	sp. nov.		
LMG 3108^T	AU12140^T, CCUG 73386^T	CF patient (United States, 2006)	Own isolate
Pandoraea aquatica	sp. nov.		
LMG 31011^T	CCUG 73384^T	Pond water in greenhouse (Belgium, 2013)	Own isolate
Pandoraea bronchicola	sp. nov.		
LMG 20603^T	CDC H652^T, ATCC BAA-110^T	CF sputum (United States, 1998)	CDC
R-10961	AU1775	CF patient (United States, 2000)	Own isolate
R-14318	AU12478	CF patient (United States, 2000)	Own isolate
R-52718	AU17726	CF patient (United States, 2009)	Own isolate
Pandoraea capi	sp. nov.		
LMG 20602^T	CDC G9805^T, ATCC BAA-109^T	Non-CF sputum (United States, 1996)	CDC
R-15265	AU2777	CF patient (United States, 2001)	Own isolate
R-52714	AU12983	CF patient (United States, 2007)	Own isolate
Pandoraea captiosa	sp. nov.		
LMG 31118^T	AU16660^T, CCUG 73387^T	CF patient (United States, 2008)	Own isolate
Pandoraea cepalis	sp. nov.		
LMG 31106^T	JB1^T, CCUG 39680^T	Garden soil (Netherlands)	M. Mergeay
LMG 31107		Soil of house plant (Belgium, 2003)	Own isolate
R-51030		Pond water in greenhouse (Belgium, 2013)	Own isolate
Pandoraea commovens	sp. nov.		
LMG 31010^T	CCUG 73378^T	CF patient (Belgium, 2002)	C. De Boeck
LMG 24770	AI-1218	Plant root surface (India, 2002)	M. Madhaiyan
R-15662	AU3099	CF patient (United States)	Own isolate
Pandoraea communis	sp. nov.		
LMG 31110^T	CCUG 73383^T	CF patient (Belgium, 2012)	D. Pierard
LMG 31111		River water (Belgium, 2002)	Own isolate
R-17388		Maize rhizosphere soil (Belgium, 2002)	Own isolate
R-20591		River water (Belgium, 2002)	Own isolate
Pandoraea eparura	sp. nov.		
LMG 31012^T	CCUG 73380^T	Soil of house plant (Belgium, 2003)	Own isolate
Pandoraea horticola	sp. nov.		
LMG 31112^T	CCUG 73379^T	Garden soil (Belgium, 2003)	Own isolate
Pandoraea iniqua	sp. nov.		
LMG 31099^T	CCUG 73377^T	Maize rhizosphere soil (Belgium, 2002)	Own isolate
LMG 31115	AU1290	CF patient (United States, 1999)	Own isolate
Pandoraea morbifera	sp. nov.		
LMG 31116^T	AU12324^T, CCUG 73389^T	CF patient (United States, 2006)	Own isolate
R-54947	AU23671	CF patient (United States, 2011)	Own isolate
Pandoraea nosoerga	sp. nov.		
LMG 31109^T	AU17017^T, CCUG 73390^T	CF patient (United States, 2008)	Own isolate
R-12863	AU12028	CF patient (United States, 2000)	Own isolate
R-13299	06BC450	CF patient (United States, 2000)	Own isolate
R-15344	AU2347	CF patient (United States, 2000)	Own isolate
R-34565		CF patient (Australia, 2006)	M. Aravena-Roman
R-46874		CF patient (Belgium, 2011)	G. leven
R-47614		CF patient (Belgium, 2011)	H. Franckx
R-50065		CF patient (Belgium, 2012)	G. leven
R-50587		CF patient (Belgium, 2013)	C. De Boeck
R-52720	AU14034	CF patient (United States, 2007)	Own isolate
R-52722	AU18716	CF patient (United States, 2009)	Own isolate

(Continued)
extract was treated with RNase (2 mg/ml, 5 µL per 100 µL extract) and incubated at 37°C for 1 h. DNA quality was checked using 1% agarose gel electrophoresis and DNA quantification was performed using the QuantiFluor ONE dsDNA system and the Quantus fluorometer (Promega, United States). DNA was stored at −20°C prior to further analysis.

Single Locus Sequence Analyses

Nearly complete 16S rRNA sequences were obtained as described previously (Peeters et al., 2013).

Partial recA gene sequences (663 bp) were amplified by PCR using forward primer 5′-AGG ACG ATT CAT GGA AGA WAG C-3′ and reverse primer 5′-GAC AAY GGB CGY GGV RTB CC-3′ (Spilker et al., 2009). Each 25 µl PCR reaction consisted of 1x PCR buffer (Qiagen), 1 U of Taq polymerase (Qiagen), 1 µl of each DNA (Peeters et al., 2013). PCR was performed using a Veriti 96 Well Thermal Cycler (Applied Biosystems). Initial denaturation for 2 min at 94°C was followed by 30 cycles of 30 s at 94°C, 45 s at 58°C and 1 min at 72°C, and a final elongation for 10 min at 72°C. Amplicons were purified using a NucleoFast 96 PCR clean-up kit (Macherey-Nagel). Sequencing primers (one per sequencing reaction) were the same as the amplification primers. Sequence analysis was performed with an Applied Biosystems 3130xl Genetic Analyzer and protocols of the manufacturer using BigDye Terminator Cycle Sequencing Ready kit. Sequence assembly was performed using BioNumerics v7.6 (Applied Maths, Belgium).

Partial gyrB sequences (573 bp) were amplified by PCR using forward primer 5′-GAC AAY GGB CGY GGV RTB CC-3′ (this study) and reverse primer 5′-YTC GTT GWA RCT GTC GTT CCA CTG C-3′ (Spilker et al., 2009). The PCR protocol was the same as for recA, except that 2 µM of primer was used and an annealing temperature of 60°C. Sequencing primers (one per sequencing reaction) were 5′-AGC ACA AGC ACG ARC CSA AGC G-3′ (this study) and the same reverse primer as for amplification. Sequence assembly and assembly were performed as described above for the recA gene.

Partial gltB sequences were amplified by PCR using forward primer 5′-CTG CAT CAT GAT GCG CAA GTG-3′ (Spilker et al., 2009) and reverse primer 5′-GTT GCC ACG GAA RTC GTT GG-3′ (this study). The PCR protocol was the same as for recA, except that 0.4 µM of primer was used. Sequencing primers (one per sequencing reaction) were the same as the amplification primers. Sequence analysis and assembly were performed as described above for the recA gene.

Gene sequences of recA, gyrB, and gltB were aligned based on their amino acid sequences using Muscle (Edgar, 2004) in MEGA7 (Kumar S. et al., 2016). Phylogenetic trees were constructed using RAxML v8.2.11 (Stamatakis, 2014) with the GTRCAT substitution model and 1000 bootstrap analyses. Visualization and annotation of the phylogenetic trees was performed using iTOL (Letunic and Bork, 2016).

Whole-Genome Sequencing

The genome sequences of 27 strains (Table 2 and Supplementary Table S2) were determined using the Illumina HiSeq4000 platform (PE150) at the Oxford Genomics Centre. Quality reports were created by FastQC. Reads were trimmed using Trimmomatic (Bolger et al., 2014) with the MAXINFO:50:0.8 and MINLEN:50 options. Genome size was estimated using kmc (Kokot et al., 2017) and reads were subsampled with seqtk1 to 80x coverage depth for assembly. Assembly was performed using SPAdes v3.12.0 (Bankevich et al., 2012) with error correction, default k-mer sizes (21, 33, 55, 77) and mismatch correction. Contigs were filtered on length (minimum 500 bp) and coverage (minimum 0.5x and maximum 8x overall coverage). Raw reads were mapped against the assemblies using bwa mem (Li, 2013) and contigs were polished using Pilon 1.22 (Walker et al., 2014) with default parameters. Quast (Gurevich et al., 2013) was used to create quality reports of the resulting assemblies. Annotation was performed using Prokka 1.12 (Seemann, 2014) with a genus-specific database based on publicly available genomes.

Publicly Available Genomes

All 41 publicly available (January 29, 2019) whole-genome sequences of Pandoraea bacteria were downloaded from the NCBI database (Table 2). Burkholderia cenocepacia J2315T was used as an outgroup in the phylogenomic analyses. For strains B-6 (Liu et al., 2018), E26 (Chan et al., 2015), PE-S2R-1 and PE-S2T-3 (Crofts et al., 2017) no annotation was available and therefore annotation was performed using Prokka as described above.

TABLE 1 | Continued

Strain	Other strains designations	Source	Depositor
Pandoraea pneumonica sp. nov.			
LMG 31114T	AU18032T, CCUG 73388T	CF patient (United States, 2009)	Own isolate
Pandoraea soli sp. nov.			
LMG 31014T	CCUG 73382T	Soil of house plant (Belgium, 2003)	Own isolate
Pandoraea terrigena sp. nov.			
LMG 31013T	CCUG 73381T	Soil of house plant (Belgium, 2003)	Own isolate

1. github.com/lh3/seqtk

CF, cystic fibrosis. LMG, BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Ghent, Belgium; CCUG, Culture Collection University of Gothenburg, Department of Clinical Bacteriology, Sahlgrenska University Hospital, Gothenburg, Sweden; CDC, Centers for Disease Control, United States Public Health Service, Atlanta, GA, United States.
TABLE 2 | Genomes included in the present study.

Strain	Project	Contigs	Size (bp)	%GC	CDS	References
P. apista DSM 16535T	PRJNA305052	2a	5,571,260	62.6	4,871	
P. apista DSM 18089	PRJEB30685	27	5,815,466	62.7	5,279	
P. apista AU2161	PRJNA284212	1a	5,574,863	62.7	4,655	Greninger et al., 2017
P. apista TF8025	PRJNA281013	1a	5,609,637	62.6	4,691	Greninger et al., 2017
P. apista TF81F4	PRJNA271830	1a	5,582,097	62.6	4,676	Greninger et al., 2017
P. apista FDAARGOS_126	PRJNA231221	1a	5,326,503	62.7	4,621	
P. apista PA_200	PRJNA287987	82	5,677,857	62.5	4,969	
P. apista PA_201	PRJNA287987	69	5,680,846	62.5	4,957	
P. apista Pa13324	PRJNA287987	132	5,656,881	62.7	4,987	
P. apista Pa14367	PRJNA287987	27	5,621,546	62.7	4,909	
P. apista Pa15518	PRJNA287987	106	5,631,909	62.7	4,924	
P. apista Pa16226	PRJNA287987	105	5,610,492	62.7	4,917	
P. apista Pa18364	PRJNA287987	193	5,571,260	62.7	4,978	
P. apista Pa18384	PRJNA287987	137	5,571,260	62.7	4,914	
P. apista Pa18495	PRJNA287987	139	5,571,260	62.7	4,961	
P. fibrosis 6399	PRJNA266749	70	5,571,260	62.7	4,928	
P. fibrosis 7641	PRJNA266749	66	5,571,260	62.7	4,928	
P. fibrosis LMG 31113	PRJNA270151	1a	5,605,513	62.7	5,237	
P. norimbergensis DSM 11628T	PRJNA305058	1a	6,167,370	63.1	5,237	
P. oxalativorans DSM 23570T	PRJNA286722	3a	5,732,664	63.5	4,858	
P. faecigallinarum DSM 23570T	PRJNA286722	1a	5,574,251	62.9	4,356	Ee et al., 2015
P. thiooxydans DSM 25325T	PRJNA285516	1a	4,464,186	63.2	3,999	
P. thiooxydans ATSB16	PRJNA309453	1a	4,464,185	63.2	4,388	Chan et al., 2015
P. vervacti NS15	PRJNA275368	2a	5,736,282	63.5	4,811	
P. anapnoica sp. nov. LMG 31117T	PRJNA275368	2a	5,736,282	63.5	4,811	
P. anhela sp. nov. LMG 31106T	PRJNA275368	2a	5,736,282	63.5	4,811	
P. aquatic sp. nov. LMG 31011T	PRJNA275368	2a	5,736,282	63.5	4,811	
P. bronchicola sp. nov. LMG 20603T	PRJNA275368	2a	5,736,282	63.5	4,811	
P. cepalis sp. nov. LMG 20602T	PRJNA275368	2a	5,736,282	63.5	4,811	
P. cepalis sp. nov. B-6	PRJNA169519	148	5,035,498	63.6	4,570	Liu et al., 2018

(Continued)
Phylogenomic Analyses

The GBDP approach was used to calculate pairwise digital DNA–DNA hybridization (dDDH) values and their confidence intervals (formula 2) using the Genome-to-Genome Distance Calculator (GGDC 2.1) under recommended settings (Meier-Kolthoff et al., 2013). ANI values were calculated with the OrthoANIu algorithm (Yoon et al., 2017). Whole-genome phylogeny was assessed based on 107 single-copy core genes found in a majority of bacteria (Dupont et al., 2012) using bcgTree (Ankenbrand and Keller, 2016). Visualization and annotation of the phylogenetic tree was performed using iTOL (Letunic and Bork, 2016). Data mapping, visualization and statistical analyses were performed using RStudio with R v3.5.2. Pearson’s chi-square analyses were used to test the association between different sets of categorical variables. When a significant relationship was found between two variables, we further examined the standardized Pearson residuals. Standardized Pearson residuals with high absolute values indicate a lack of fit of the null hypothesis of independence in each cell (Agresti, 2002) and thus indicate observed cell frequencies in the contingency table that are significantly higher or lower than expected based on coincidence.

DNA Base Composition

The G + C content of all strains was calculated from their genome sequences using Quast (Gurevich et al., 2013).

Biochemical Characterization

Biochemical characterization was performed as described previously (Draghi et al., 2014).

Fatty Acid Methyl Ester Analysis

After a 24 h incubation period at 28°C on Tryptone Soya Agar (BD), a loopful of well-grown cells was harvested and fatty acid methyl esters were prepared, separated and identified using the Microbial Identification System (Microbial ID) as described previously (Vandamme et al., 1992).

RESULTS AND DISCUSSION

Single Locus Sequence Analyses

The 16S rRNA gene sequences determined in the present study are publicly available through the GenBank/EMBL/DDBJ accession numbers listed in the species descriptions. Because the 16S rRNA sequences of Pandoraea species

TABLE 2 | Continued

Strain	Project	Contigs	Size (bp)	%GC	CDS	References
P. communis sp. nov. LMG 31010^T	PRJEB30753	26	6,036,949	62.6	5,308	This study
P. communis sp. nov. LMG 31110^T	PRJEB30740	17	5,708,603	62.6	5,067	This study
P. communis sp. nov. LMG 31111	PRJEB30741	55	5,566,071	62.5	5,064	This study
P. communis sp. nov. SD6-2	PRJNA174277	37	5,772,015	62.5	5,148	Pushiri et al., 2013
P. epapura sp. nov. LMG 31012^T	PRJEB30718	35	5,205,577	63.7	4,821	This study
P. horticola sp. nov. LMG 31112^T	PRJEB30744	68	6,008,490	62.3	5,378	This study
P. iniqua sp. nov. LMG 31009^T	PRJEB30748	17	6,339,129	63.1	5,521	This study
P. iniqua sp. nov. LMG 31115	PRJEB30749	14	6,296,634	63.1	5,445	This study
P. morbifera sp. nov. LMG 31116^T	PRJEB30750	47	5,233,298	64.7	4,676	This study
P. nosoerga sp. nov. LMG 31109^T	PRJEB30729	41	4,862,114	66.1	4,266	This study
P. pneumoniae sp. nov. LMG 31114^T	PRJEB30747	12	5,845,078	62.5	5,202	This study
P. soli sp. nov. LMG 31014^T	PRJEB30720	51	4,961,982	63.6	4,395	This study
P. terrigena sp. nov. LMG 31013^T	PRJEB30719	35	5,356,606	63.5	4,878	This study
Pandoraea sp. PE-S2R-1	PRJNA385617	189	6,227,302	63.1	5,387	Crofts et al., 2017
Pandoraea sp. PE-S2T-3	PRJNA385617	37	6,176,158	63.2	5,310	Crofts et al., 2017
Ca. Pandoraea novimonadis E262	PRJNA389045	6	1,157,259	43.8	968	Kostygov et al., 2017

^aStatus complete.
FIGURE 1 | Phylogenetic tree based on partial gyrB sequences of all Pandoraea strains examined. Sequences (495–573 bp) were aligned based on their amino acid sequences and phylogeny was inferred using the Maximum Likelihood method and GTR+CAT substitution model in RAxML. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches if greater than 50%. *Burkholderia cenocepacia J2315 (ATCC7720)* was used as outgroup. The scale bar indicates the number of substitutions per site. Isolates selected for whole-genome sequencing are shown in bold character type.
Peeters et al. Comparative Genomics of Pandoraea

FIGURE 2 | Phylogenetic tree based on 107 single-copy core genes. BcgTree was used to extract the nucleotide sequence of 107 single-copy core genes and to construct their phylogeny by partitioned maximum-likelihood analysis. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. *Burkholderia cenocepacia* J2315T was used as outgroup. Bar, 0.01 changes per nucleotide position.
TABLE 3 | Differential biochemical characteristics of all strains examined.

Characteristic	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28								
Growth at 45°C a	-	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Growth at 5% NaCl	+	+	-	+	+	+	+	-	-	-	-	-	-	+	+	+	-	-	+	-	-	-	-	-	-	+	+	-	-	-	+	-	-	+		
Growth at 6% NaCl	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Growth on MacConkey agar	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Catalase activity	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hydrolysis of tween 20	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hydrolysis of tween 80	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alkaline phosphatase	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Acid phosphatase	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
C4 esterase activity	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Naphthol-AS-β-d-glucuronide	w	+	+	w	w	+	+	+	w	+	+	w	+	+	w	w	-	w	-	w	w	-	w	w	w	w	w	w	w	w	w	w	w	w	w	w
Nitrate reduction	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Assimilation of D-glucose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Assimilation of D-gluconate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Assimilation of caprate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Assimilation of citrate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Assimilation of phenylacetate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Species: 1, P. anapnoica LMG 31117 T; 2, P. anhela LMG 31108 T; 3, P. apista LMG 16407 T; 4, P. aquatica LMG 31011 T; 5, P. bronchicola LMG 20603 T; 6, P. capi LMG 20602 T; 7, P. captiosa LMG 31118 T; 8, P. cepalis LMG 31106 T; 9, P. commovens LMG 31010 T; 10, P. communis LMG 31110 T; 11, P. ecanura LMG 31012 T; 12, P. faecigallinarum LMG 28171 T; 13, P. fibrosis LMG 29628 T; 14, P. horticola LMG 31112 T; 15, P. iniqua LMG 31009 T; 16, P. morbillifer LMG 31116 T; 17, P. norimbergensis LMG 18379 T; 18, P. nosoerga LMG 31109 T; 19, P. oxalativorans LMG 28169 T; 20, P. pneumonia LMG 31114 T; 21, P. promenusa LMG 18087 T; 22, P. pulmonicola LMG 18106 T; 23, P. sol LMG 31014 T; 24, P. sputorum LMG 18819 T; 25, P. terrae LMG 30175 T; 26, P. terrigena LMG 31013 T; 27, P. thiooxydans LMG 24779 T; 28, P. vervacti LMG 28170 T.

*Growth characteristics were recorded after 4 days of incubation, except for P. thiooxydans LMG 24779 T for test results were recorded after 7 days of incubation.

+ present; −, absent; w, weak reaction.
show high levels of similarity (Coenye et al., 2000; Daneshvar et al., 2001), gyrB gene sequence analysis has been introduced for species level identification of Pandoraea isolates (Coenye and LiPuma, 2002). To provide more robust phylogenetic analysis, partial sequences of the gyrB gene, and also of the recA and gltB genes were generated for a total of 84 Pandoraea reference strains and field isolates, and were used to construct phylogenetic trees (Figure 1 and Supplementary Figures S1, S2). The gltB, gyrB and gltB sequences determined in the present study are publicly available through the GenBank/EMBL/DDBJ accession numbers listed in Figure 1 and Supplementary Figures S1, S2 and in the species descriptions.

Overall, the three phylogenetic trees had comparable topologies, but while taxonomic reference strains of established Pandoraea species (Supplementary Table S1) and several groups of field isolates formed well-delineated clusters, others did not (Figure 1 and Supplementary Figures S1, S2). Each of these phylogenetic trees was therefore used to select a total of 27 isolates (shown in bold character type in Figure 1 and Supplementary Figures S1, S2) for whole-genome sequence analysis. These included 6 isolates that were tentatively assigned to established Pandoraea species using single locus sequence analyses, 20 isolates that clustered separately or whose assignment was equivocal, and P. terrae LMG 30175, the sole Pandoraea type strain for which there was no publicly available whole-genome sequence at the time of writing.

TABLE 4 | Fatty acid composition of all strains examined.

Fatty acid composition	1	2	3	4	5	6	7	8	9	10	11	12	13	14
C12:0	3.40	3.18	3.48	9.30	2.22	3.16	3.48	4.54	9.69	4.42	4.30	2.34	9.07	4.19
C12:0 2-OH	Tr	1.09	1.99	1.09	1.90	1.30	1.24	ND	Tr	Tr	ND	Tr	1.61	Tr
C14:0	Tr	1.77	1.06	Tr	1.88	ND	Tr							
C14:0 2-OH	ND	1.01	ND	Tr	ND	Tr	ND	ND						
C16:0	18.95	20.54	20.21	18.38	23.45	16.09	15.29	15.29	17.76	18.82	15.47	15.77	19.98	17.45
C16:0 2-OH	1.01	1.13	Tr	Tr	1.01	1.28	1.78	1.21	Tr	1.67	1.22	Tr	ND	1.56
C16:0 3-OH	6.32	8.46	8.65	7.18	6.98	7.31	8.57	6.39	6.48	9.50	6.82	8.83	5.83	10.96
C16:0 2-0H	1.29	Tr	4.27	1.08	1.45	2.04	1.99	3.99	Tr	1.76	3.47	5.00	ND	2.76
C17:0 cyclo	19.83	18.78	20.57	13.72	26.44	19.46	20.35	14.29	9.14	18.10	9.52	8.30	2.47	20.72
C18:0	Tr	ND	ND	Tr	ND	Tr	ND	ND						
C18:1 2-OH	3.39	3.35	3.91	3.07	2.49	5.18	5.94	2.71	2.17	3.15	3.54	5.86	ND	3.84
C18:1 ω7c	18.07	13.55	8.90	19.62	10.03	16.95	4.80	17.38	25.76	11.86	25.08	21.23	28.21	4.38
C19:0 cyclo ω8c	13.93	14.04	11.06	8.41	11.84	13.54	23.14	13.82	3.97	13.79	5.93	3.40	Tr	17.86
Summed feature 2*	7.02	8.64	10.79	9.12	7.70	7.87	9.95	8.22	8.98	9.89	7.87	10.13	7.72	11.65
Summed feature 3*	3.52	4.12	3.38	8.16	3.05	3.55	1.20	11.01	12.47	4.51	14.42	13.42	22.01	2.22

Species: 1, P. anapnoica LMG 31117; 2, P. anhela LMG 31108; 3, P. apista LMG 16407; 4, P. aquatica LMG 31017; 5, P. bronchiola LMG 20603; 6, P. capri LMG 20602; 7, P. capsula LMG 31116; 8, P. cepalis LMG 31015; 9, P. comnovens LMG 31010; 10, P. communis LMG 31107; 11, P. eparus LMG 31012; 12, P. faecigallinarum LMG 28171; 13, P. fibrosa LMG 29626; 14, P. horteculus LMG 31112; 15, P. iniqua LMG 31009; 16, P. morbifera LMG 31116; 17, P. norimbergensis LMG 18379; 18, P. nosoerga LMG 31003; 19, P. oxalitovorans LMG 28169; 20, P. pneumoniae LMG 31147; 21, P. pumenera LMG 18087; 22, P. pulmonicola LMG 18106; 23, P. soli LMG 31104; 24, P. spurtorum LMG 18819; 25, P. terrae CML 30175; 26, P. terrigena LMG 31018; 27, P. thiooxydans LMG 24779; 28, P. vervacti LMG 28179. Those fatty acids for which the amount for all taxa was <1% are not included, therefore, the percentages may not add up to 100%. Tr, trace amount (<1%); ND, not detected. *Summed feature 2 comprises iso-C_{16:0} and/or C_{14:0}3-OH; summed feature 3 comprises iso-C_{15:0}2-OH and/or C_{16:1}ω7c.
Genome Characteristics
The assembly of the Illumina HiSeq 150 bp paired end reads resulted in assemblies with 12–113 contigs and a total of 4.86–6.45 Mbp (Table 2 and Supplementary Table S2). The number of predicted CDS in the newly sequenced genomes ranged from 4,266 to 5,652 (Table 2). No clustered regularly interspaced short palindromic repeats (CRISPRs) were identified. The annotated assemblies of these 27 genomes were submitted to the European Nucleotide Archive and are publicly available through the GenBank/EMBL/DDBJ accession numbers listed in Table 2 and in the species descriptions. The G + C content of the newly sequenced strains, as calculated from their genome sequences, ranged from 62.3 to 66.1 mol% (Table 2). These values are similar those of other Pandoraea genomes, except for Ca. Pandoraea novymonadis that has a G + C content of 43.8% (Kostygov et al., 2017).

Phylogenomic Analyses
The 27 genomes from the present study were compared to all 41 publicly available Pandoraea genomes (GenBank database, January 29, 2019), which included 6 unclassified Pandoraea strains (Pushiri et al., 2013; Chan et al., 2015; Crofts et al., 2017; Kumar et al., 2018a; Liu et al., 2018). Pairwise dDDH and ANI values among the 68 genome sequences were calculated and are listed in Supplementary Tables S3, S4, respectively. Species delineation based on the 70% dDDH (Meier-Kolthoff et al., 2013) and 95–96% ANI thresholds (Yoon et al., 2017) yielded 30 species, which included the 11 validly named species, Ca. Pandoraea novymonadis, a total of 17 novel species for which we propose the names shown in Table 1, and a novel species represented by strains PE-S2R-1 and PE-S2T-3 (Crofts et al., 2017) (see below). One of these novel species, i.e., Pandoraea cepalis, corresponds with Pandoraea genospecies 1, which we reported earlier (Coenye et al., 2000). Two novel species, i.e., Pandoraea capi and Pandoraea bronchicola, correspond with Pandoraea genospecies 3 and 4, respectively, reported by Daneshvar et al. (2001). Finally, the phylogenomic data (Figure 2 and Supplementary Tables S3, S4), but also each of the single locus sequence analyses, showed that Pandoraea genospecies 2 LMG 20602 should be classified as P. sputorum, which contradicts earlier wet-lab DNA-DNA hybridization results (Daneshvar et al., 2001).

The use of dDDH and ANI threshold levels was generally straightforward, yet some pairs of strains showed values close to the generally applied taxonomic threshold levels.
The frequency of orthologous versus non-orthologous CDS varies among species. Bar plots show the number of orthologous and non-orthologous CDS per species ($X^2(29) = 5863, p < 0.001$). (Supplementary Tables S3, S4) (Meier-Kolthoff et al., 2013; Yoon et al., 2017). The two strains classified as *P. capi* showed 96.4% ANI and 69.6% dDDH with a dDDH confidence interval of 66.6–72.5%, and these strains were therefore classified as the same species. Similarly, the three strains classified as *P. cepalis* showed 96.2–98.4% ANI, 68.4–86.0% dDDH, and the 70% dDDH threshold level was in the confidence interval; these strains were therefore classified as one species. *P. soli* LMG 31014T showed 95.0–95.8% ANI and 60.7–65.0% dDDH toward *P. cepalis* strains, and the 70% dDDH threshold level was not part of the confidence interval so this strain was also classified as a separate species. Similarly, *P. horticolen*s LMG 31112T showed 95.0–95.3% ANI and 60.0–62.2% dDDH toward *P. communis*, and the 70% dDDH threshold level was not part of the confidence interval so this strain was classified as a separate species.

The phylogenomic analyses also allowed us to identify 4 out of 6 unclassified *Pandoraea* strains for which genome sequences are publicly available: strain ISTKB (Kumar M. et al., 2016) was assigned to *P. capi*, strain B-6 (Liu et al., 2018) to *P. cepalis*, strain SD6-2 (Pushiri et al., 2013) to *P. communis*, and strain E26 (Chan et al., 2015) to *P. pnomenusa* (Figure 2 and Table 2). Finally, strains PE-S2R-1 and PE-S2T-3 (Crofts et al., 2017) formed a separate cluster, which represented yet another novel *Pandoraea* species that remains to be formally classified (Supplementary Tables S3, S4).

The phylogenomic tree based on 107 single-copy marker genes was well resolved and the clusters delineated by ANI and dDDH formed monophyletic groups with a high bootstrap support (Figure 2). The clades in the phylogenomic tree of the present study showed a branching order similar to a previously published tree based on 119 conserved proteins (Kostygov et al., 2017). The results of the phylogenomic analyses along with the clustering in the individual recA, gyrB, and gltB single locus sequence analyses (Figure 1 and Supplementary Figures S1, S2) were used to identify each of the 84 isolates included in the present study. *P. sputorum*
strain LMG 31121 clustered with the remaining *P. sputorum* strains in the *gyrB* and *gltB* trees but grouped aberrantly in the *recA* tree. In addition, *P. cepalis* proved particularly difficult to identify through single locus sequence analysis as it exhibited more variation in each of the sequences examined (Figure 1 and Supplementary Figures S1, S2) than any other *Pandoraea* species.

Phenotypic Characterization

The type strains of each of 11 established *Pandoraea* species and of 17 novel *Pandoraea* species reported in the present study were included in an extensive phenotypic characterization. Among *Pandoraea* species, *P. thiooxydans* only occupies a separate phylogenetic position (Figures 1, 2 and Supplementary Figures S1, S2) but also has a distinctive phenotype (Table 3). While all other *Pandoraea* species show normal growth on general microbiological growth media (i.e., they generate colonies of 1–4 mm in diameter after 2 days of incubation at 37°C), *P. thiooxydans* LMG 24779T requires prolonged incubation up to 7 days before the same colony size was obtained.

The following biochemical characteristics were shared by all *Pandoraea* strains investigated: growth at 15, 28, and 37°C, but not at 4°C; growth in the presence of 0–4% NaCl, but not in the presence of 6–10% NaCl; growth at pH 6, 7, and 8, but not at pH 4, 5, or 9. No anaerobic growth. Oxidase activity is present. No hydrolysis of starch or casein. No DNase activity. No denitrification. Assimilation of L-malate, but not L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, maltose or adipate. No fermentation of glucose. No indole production, esculin hydrolysis, arginine dihydrolase, urease or PNP-β-galactosidase activity, or liquefaction of gelatin. Leucine arylamidase activity is present, but no C₉-ester-lipase, C₁₄-lipase, valine or cystine arylamidase, trypsin, chymotrypsin, α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase or α-fucosidase activity.
An overview of biochemical characteristics useful for distinguishing the type strains of *Pandoraea* species is shown in Table 3.

The fatty acid profiles of all type strains are shown in Table 4. Both quantitative and qualitative differences were present. The predominant fatty acids in all strains investigated were C16:0, C17:0 cyclo, C18:0 3-OH, C18:1 ω7c, C19:0 cyclo ω8c, summed feature 2 (comprising C14:0 3-OH, C16:1 iso I, an unidentified fatty acid with equivalent chain length of 10.928, or C12:0 ALDE, or any combination of these fatty acids), or summed feature 3 (comprising C16:1 ω7c or C15:0 iso 2-OH or both).

Functional Genome Analyses

The 68 *Pandoraea* genomes in the present study comprised 331,123 CDS, of which 273,692 (83%) and 128,054 (39%) could be assigned to the COG and KEGG orthologies, respectively (Supplementary Table S5). Orthologous genes were identified to determine the conserved genome content of the genus *Pandoraea*. Ortholog analysis revealed 10,783 orthogroups (325,879 CDS) in total, of which 738 (51,633 CDS) were present in all genomes, 8,003 (207,937 CDS) were present in multiple species, 1,130 (3,581 CDS) were species-specific and 15 (36 CDS) were isolate-specific (Figure 3). For further analyses, the core orthogroups were defined as those present in all genomes or all genomes except *Ca. Pandoraea novymonadis* (n = 1,635). COG and KEGG could be assigned to 7,243 (67%) and 3,655 (34%) of a total of 10,783 orthogroups (Supplementary Table S6). A previous pan genome analysis of 36 *Pandoraea* genomes by Wu et al. (2019) revealed a core genome of 1,903 CDS. As shown by these authors, the pan genome of *Pandoraea* is open (Wu et al., 2019) and the number of core genes decreases with an increasing number of genomes analyzed.

The frequency of orthologous versus non-orthologous CDS varied significantly per isolate \([X^2(67) = 7423, p < 0.001]\) and species \([X^2(29) = 5863, p < 0.001]\). The number of non-orthologous CDS per genome ranged from 0 to 632, with *P. terrae* LMG 30175\(^T\) showing the highest percentage of non-orthologous CDS (Figure 4 and Supplementary Table S7). To identify biological functions that were over- or underrepresented in the core genome, we looked at the
COG and KEGG functional classification of the orthogroups versus their specificity (core, multiple species, single species or single isolate). The specificity of the orthogroups varied significantly among the COG categories \(X^2(66) = 522, p < 0.001\) and highest levels of the KEGG pathways \(X^2(10) = 130, p < 0.001\). The core orthogroups were significantly enriched in the COG categories Translation, ribosomal structure and biogenesis (J), Posttranslational modification, protein turnover, chaperones (O), Nucleotide transport and metabolism (F) and Coenzyme transport and metabolism (H) (Figure 5 and Supplementary Table S8) and in the KEGG pathway Genetic Information Processing (09120) (Figure 6 and Supplementary Table S9).

Because many Pandoraea strains participate in the biodegradation of recalcitrant xenobiotics (Uhlik et al., 2012; Pushiri et al., 2013; Shi et al., 2013; Wang et al., 2015; Crofts et al., 2017; de Paula et al., 2017; Sarkar et al., 2017; Tirado-Torres et al., 2017; Kumar et al., 2018b; Yang et al., 2018; Liu et al., 2019; Wu et al., 2019), we specifically looked at the orthogroups in the KEGG pathway Xenobiotics biodegradation and metabolism (Figure 7). Most orthogroups in this pathway were present in multiple species \(n = 28\) and some were even present in the core Pandoraea genome \(n = 6\). This confirmed the potential of Pandoraea for degrading xenobiotics. In particular, the widespread capacity to utilize benzoate derivatives (Figure 7, pathways 362, 364, 627, and 633) explains why several strains have the potential to degrade lignin (Shi et al., 2013; Kumar et al., 2018a; Liu et al., 2019) and other aromatic compounds (Springael et al., 1996; Uhlik et al., 2012; Wang et al., 2015). Finally, P. fibrosis and P. thiooxydans showed a unique capacity to degrade specific compounds (Figure 7). P. fibrosis was only recently described and named after its origin from a cystic fibrosis patient (See-Too et al., 2019) but its unique capacity to degrade nitrotoluene derivatives is yet another example of the versatility in one Pandoraea species.

CONCLUSION

The present study extends the number of formally named Pandoraea species considerably and makes reference cultures and their whole-genome sequences publicly available. The genus Pandoraea further emerges as a group of environmental bacteria.
with strong biodegradation capacities and as opportunistic human pathogens, especially in persons with cystic fibrosis. Within this genus, *P. thiooxydans* and *P. terrae* and *Candidatus P. novymonadis* cluster outside the main *Pandoraea* lineage. The aberrant phylogenomic position of the former is further supported by a distinctive phenotype. The classification of these bacteria within this monophyletic genus could therefore be questioned.

Taking into account the source and identification of strains ISTKB (a rhizospheric soil isolate, Kumar M. et al., 2016) and B-6 (an eroded bamboo slip isolate, Liu et al., 2018), and, to be comprehensive as possible, also some additional unpublished own data (JL and PV), the novel species *P. aquatica*, *P. capi*, *P. cepalis*, *P. commovens*, *P. communis*, and *P. iniqua*, but also the established species *P. faecigallinarum*, *P. norimbergensis*, *P. pnomenusa*, and *P. fibrosis*, have all been isolated from both human clinical and environmental sources. Thus far, the novel species *P. anapnoica*, *P. anhela*, *P. bronchiosa*, *P. captiosa*, *P. morbifera*, *P. nosoerga*, and *P. pneumonia*, but also the established species *P. apista*, *P. palmonicola*, and *P. spetorum*, have all been isolated from human clinical sources only; while the novel species *P. etapara*, *P. horticolens*, *P. soli* and *P. terrigena*, and the established species *P. oxalativorans*, *P. terrae*, *P. thiooxydans*, and *P. verrucati* have thus far been isolated from environmental samples only.

The present study provides genomic, chemotaxonomic and phenotypic data that enable a formal proposal of 17 novel *Pandoraea* species as outlined below. By making reference in Table 3. The type strain is LMG 20602 (=ATCC BAA-110® = CDC H652®) and was isolated from cystic fibrosis patient in the United States in 1998. Its G + C content is 63.0 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 31101® are publicly available through the accession numbers LR536849, LR536869–LR536871, and CABPSN01000000, respectively.

Description of *Pandoraea aquatica* sp. nov.

Pandoraea aquatica sp. nov. (aqua'ti.ca. L. fem. adj. *aquatic* a dweller of water).

The phenotypic description is as presented above and in Table 3. Isolated from human clinical samples in the United States and from pond water in Belgium.

The type strain is LMG 31011® (=CCUG 73384®) and was isolated from pond water in a greenhouse in Belgium in 2013. Its G + C content is 62.9 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 31011® are publicly available through the accession numbers LR536849, LR536869–LR536871, and CABPSN01000000, respectively.

Description of *Pandoraea bronchicola* sp. nov.

Pandoraea bronchicola sp. nov. (bron.chi'co.la. L. neut. pl. n. bronchia, the bronchial tubes; L. suff. -cola [from L. incola] a dweller, inhabitant; N.L. fem. n. *bronchicola* a dweller of bronchi, coming from the bronchi).

The phenotypic description is as presented above and in Table 3. Isolated from human clinical samples in the United States.

The type strain is LMG 20603® (=CCUG 73385®) and was isolated from cystic fibrosis specimen in the United States in 1999. Its G + C content is 62.4 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 20603® are publicly available through the accession numbers LR536849, LR536869–LR536871, CABPSN01000000, and CABBPRV010000000, respectively.

Description of *Pandoraea anapnoica* sp. nov.

Pandoraea anapnoica sp. nov. (a.napnoi'ca. Gr. masc. adj. *anapnoikos* affecting respiration; N.L. fem. adj. *anapnoica* affecting respiration).

The phenotypic description is as presented above and in Table 3. Isolated from human clinical samples in the United States. The type strain is LMG 31117® (=CCUG 73385®) and was isolated from a cystic fibrosis specimen in the United States in 1999. Its G + C content is 62.4 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 31117® are publicly available through the accession numbers LR536849, LR536869–LR536886, and CABPSN010000000, respectively.

Description of *Pandoraea anhela* sp. nov.

Pandoraea anhela sp. nov. (an.he'la. L. fem. adj. *anhela* breathing).

The phenotypic description is as presented above and in Table 3. Isolated from human clinical samples in the United States.

The type strain is LMG 31108® (=CCUG 73386®) and was isolated from a cystic fibrosis specimen in the United States in 2006. Its G + C content is 63.4 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 31108® are publicly available through the accession numbers LR536848, LR536863–LR536865, and CABPSB0100000000, respectively.

Description of *Pandoraea capi* sp. nov.

Pandoraea capi sp. nov. (ca'pi. Gr. masc. n. *kapos* breath; N.L. gen. n. *capi* referring to the lung as niche of these bacteria).

The phenotypic description is as presented above and in Table 3. Isolated from human clinical samples in the United States and from rhizospheric soil in India.

The type strain is LMG 20602® (=ATCC BAA-109® = CDC G9805®) and was isolated from sputum of a non-cystic fibrosis patient in the United States in 1996. Its G + C content is 63.4 mol% (calculated based on its genome sequence). The 16S rRNA, *gltB*, *gyrB*, *recA* and whole-genome sequence of LMG 20602® are publicly available through the accession numbers LR536850, LR536884–LR536886, and CABPS0100000000, respectively.
Description of *Pandoraea captiosa* sp. nov.

Pandoraea captiosa sp. nov. (cap.ti.o’sa. L. fem. adj. captiosa, harmful, disadvantageous).

The phenotypic description is as presented above and in Table 3.

Isolated from human clinical samples in the United States.

The type strain is LMG 31012 (=CCUG 73380T) and was isolated from soil of a house plant in Belgium in 2003. Its G + C content is 63.7 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31012T are publicly available through the accession numbers LR536855, LR536923–LR536925, and CABPSH01000000, respectively.

Description of *Pandoraea cepalis* sp. nov.

Pandoraea cepalis sp. nov. [ce.pa’lis. Gr. n. kepos, garden; -alis L. adjective forming suffix, pertaining to; N.L. fem. adj. cepalis pertaining to garden (soil)].

The phenotypic description is as presented above and in Table 3.

Isolated from soil and water samples in Belgium and the Netherlands, from human clinical samples in the United States, and from historical bamboo slips in China.

The type strain is LMG 31106T (=CCUG 39680T) and was isolated from garden soil in The Netherlands. Its G + C content is 63.7 mol% (calculated based on sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31106T are publicly available through the accession numbers LR536852, LR536896–LR536898, and CABPSL01000000, respectively.

Description of *Pandoraea commovens* sp. nov.

Pandoraea commovens sp. nov. (com.mo’vens. L. v. commoverere, to trouble, upset; L. pres. part. commovens troubling).

The phenotypic description is as presented above and in Table 3.

Isolated from human clinical samples in Belgium and the United States, from soil samples in Belgium, and from plant roots in India.

The type strain is LMG 31118T (=CCUG 73387T) and was isolated from a cystic fibrosis specimen in Belgium in 2002. Its G + C content is 63.3 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31118T are publicly available through the accession numbers LR536851, LR536893–LR536895, and CABPSQ01000000, respectively.

Description of *Pandoraea communis* sp. nov.

Pandoraea communis sp. nov. (com.mu’nis. L. fem. adj. communis common, widespread).

The phenotypic description is as presented above and in Table 3.

Isolated from human clinical, soil and water samples in Belgium, and from soil in Australia.

The type strain is LMG 31110T (=CCUG 73383T) and was isolated from sputum of a cystic fibrosis patient in Belgium in 2012. Its G + C content is 62.6 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31110T are publicly available through the accession numbers LR536854, LR536911–LR536913 and CABPSJ01000000, respectively.

Description of *Pandoraea epura sp.* nov.

Pandoraea epura sp. nov. (ep.a.ru’ra. Gr. masc. adj. epurauros, attached to the soil; N.L. fem. adj. epura attached to the soil).

The phenotypic description is as presented above and in Table 3.

The type (and thus far only) strain is LMG 31012T (=CCUG 73380T) and was isolated from soil of a house plant in Belgium in 2003. Its G + C content is 63.7 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31012T are publicly available through the accession numbers LR536855, LR536923–LR536925, and CABPSH01000000, respectively.

Description of *Pandoraea horticolens* sp. nov.

Pandoraea horticolens sp. nov. (hor.ti.co.lens. L. n. hortus garden; L. v. colere to dwell; L. pres. part. colens dwelling; N.L. part. adj. horticolens because the type strain was isolated from garden (soil)).

The phenotypic description is as presented above and in Table 3.

The type (and thus far only) strain is LMG 31112T (=CCUG 73379T) and was isolated from garden soil in Belgium in 2003. Its G + C content is 62.3 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31112T are publicly available through the accession numbers LR536857, LR536926–LR536928 and CABPSM01000000, respectively.

Description of *Pandoraea iniqua* sp. nov.

Pandoraea iniqua sp. nov. (in.‘i.qua. L. fem. adj. iniqua disadvantageous, hostile).

The phenotypic description is as presented above and in Table 3.

Isolated from soil samples in Belgium and human clinical samples in the United States.

The type strain is LMG 31009T (=CCUG 73377T) and was isolated from maize rhizosphere soil in Belgium in 2002. Its G + C content is 63.1 mol% (calculated based on its genome sequence). The 16S rRNA, *glyB*, *gyrB*, *recA* and whole-genome sequence of LMG 31009T are publicly available through the accession numbers LR536856, LR536929–LR536931, and CABPSF01000000, respectively.
Description of Pandoraea morbifera sp. nov.

Pandoraea morbifera sp. nov. (mor.bi’fe-ra, L. fem. adj. morbifera that brings disease).

The phenotypic description is as presented above and in Table 3.

Isolated from human clinical samples in the United States.

The type strain is LMG 31116T (=CCUG 73389T) and was isolated from a cystic fibrosis specimen in the United States in 2006. Its G + C content is 64.7 mol% (calculated based on its genome sequence). The 16S rRNA, gltB, gyrB, recA and whole-genome sequence of LMG 31116T are publicly available through the accession numbers LR536858, LR536935–LR536937, and CABBPSD0100000000, respectively.

Description of Pandoraea nosoerga sp. nov.

Pandoraea nosoerga sp. nov. (no.so.er’ga, Gr. masc. adj. nosoergos, causing sickness; N.L. fem. adj. nosoerga).

The phenotypic description is as presented above and in Table 3.

Isolated from human clinical samples in Australia, Belgium, Germany, United Kingdom and the United States.

The type strain is LMG 31109T (=CCUG 73381T) and was isolated from a cystic fibrosis specimen in the United States in 2008. Its G + C content is 66.1 mol% (calculated based on its genome sequence). The 16S rRNA, gltB, gyrB, recA and whole-genome sequence of LMG 31109T are publicly available through the accession numbers LR536861, LR536974–LR536976, and CABBPSK0100000000, respectively.

Description of Pandoraea pneumonica sp. nov.

Pandoraea pneumonica sp. nov. (pneu.mo’ni.ca, Gr. masc. adj. pneumonikos, of the lungs; N.L. fem. adj. pneumonica).

The phenotypic description is as presented above and in Table 3.

The type (and thus far only) strain is LMG 31013T (=CCUG 73383T) and was isolated from soil of a house plant in Belgium in 2003. Its G + C content is 63.5 mol% (calculated based on its genome sequence). The 16S rRNA, gltB, gyrB, recA and whole-genome sequence of LMG 31013T are publicly available through the accession numbers LR536862, LR536977–LR536979, and CABBPRU0100000000, respectively.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the European Nucleotide Archive PRJEB30806, PRJEB30685, PRJEB30686, PRJEB30687, PRJEB30688, PRJEB30689, PRJEB30690, PRJEB30807, PRJEB30745, PRJEB30746, PRJEB30808, PRJEB30691, PRJEB30692, PRJEB30809, PRJEB30810, PRJEB30693, PRJEB30694, PRJEB30695, PRJEB30696, PRJEB30697, PRJEB30699, PRJEB30700, PRJEB30701, PRJEB30698, PRJEB30811, PRJEB30702, PRJEB30703, PRJEB30812, PRJEB30704, PRJEB30705, PRJEB30706, PRJEB30707, PRJEB30708, PRJEB30714, PRJEB30709, PRJEB30710, PRJEB30711, PRJEB30712, PRJEB30713, PRJEB30813, PRJEB30814, PRJEB30815, PRJEB30755, PRJEB30724, PRJEB30725, PRJEB30726, PRJEB30727, PRJEB30728, PRJEB30721, PRJEB30722, PRJEB30723, PRJEB30757, PRJEB30715, PRJEB30716, PRJEB30717, PRJEB30753, PRJEB30752, PRJEB30754, PRJEB30740, PRJEB30741, PRJEB30742, PRJEB30743, PRJEB30718, PRJEB30744, PRJEB30748, PRJEB30749, PRJEB30750, PRJEB30751, PRJEB30729, PRJEB30730, PRJEB30731, PRJEB30732, PRJEB30733, PRJEB30734, PRJEB30735, PRJEB30736, PRJEB30737, PRJEB30738, PRJEB30739, PRJEB30747, PRJEB30720, and PRJEB30719.

AUTHOR CONTRIBUTIONS

PV, JL, and CP conceived the study. PV and CP wrote the manuscript. EDB, EDC, TS, and CP performed single locus sequence analyses. CP performed phylogenetic analyses. CP, ED, and BV carried out the genomic data analyses. EDC, MC, EDB, and CS carried out wet-lab phenotypical analyses. PV and JL conceived the study. PV and CP wrote the manuscript. EDB, EDC, TS, and CP performed single locus sequence analyses. CP performed phylogenetic analyses. CP, ED, and BV carried out the genomic data analyses. EDC, MC, EDB, and CS carried out wet-lab phenotypical analyses. PV and JL generated the required funding. All authors read and approved the final manuscript.
FUNDING

Part of this work was performed in the framework of the Belgian National Reference Centre for Burkholderia, supported by the Ministry of Social Affairs through a fund within the National Health Insurance System. This funding agency had no role in study design, data collection and interpretation, or the decision to submit the work for publication. JL and TS receive support from the Cystic Fibrosis Foundation (United States).

ACKNOWLEDGMENTS

We thank the Oxford Genomics Centre at the Welcome Centre for Human Genetics (funded by Wellcome Trust grant reference 203141/Z/16/Z) for the generation and initial processing of the sequencing data. We thank colleagues of the following referring laboratories for depositing some of the strains listed in Table 1: D. Piéard (Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium), G. Ieven (Laboratory of Medical Microbiology, Universitair Ziekenhuis Antwerpen, Antwerp, Belgium), H. Franckx (Revalidation Centre Zeepreventorium, De Haan, Belgium) and K. De Boeck (Department of Pediatric Pulmonology and Infectious Diseases, Universitair Ziekenhuis Leuven, Leuven, Belgium).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.02556/full#supplementary-material
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. doi: 10.1093/bioinformatics/btt086
Jeong, S. E., Lee, H. J., Jia, B., and Jeon, C. O. (2016). Pandoraea terrae sp. nov., isolated from forest soil, and emended description of the genus Pandoraea Coenye et al., 2000. Int. J. Syst. Evol. Microbiol. 66, 3524–3530. doi: 10.1099/ijsem.0.001129
Jin, Z.-X., Wang, C., Dong, W., and Li, X. (2007). Isolation and some properties of newly isolated oxalate-degrading Pandoraea sp. OXJ-11 from soil. J. Appl. Microbiol. 103, 1066–1073. doi: 10.1111/j.1365-2672.2007.03363.x
Johnson, L. N., Han, J.-Y., Moskowitz, S. M., Burns, J. L., Qin, X., and Englund, J. A. (2004). Pandoraea bacteremia in a cystic fibrosis patient with associated systemic illness. Pediatr. Infect. Dis. J. 23, 881–882. doi: 10.1097/01.inf.0000136875.74613.2c
Jørgensen, I. M., Johansen, H. K., Frederiksen, B., Pressler, T., Hansen, A., Vandamme, P., et al. (2017). First time identification of Pandoraea sputorum sp. nov., isolated from lindane-contaminated soil. BMC Pulm. Med. 17:33. doi: 10.1186/s12890-017-0373-y
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P., and Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi: 10.1186/1471-2105-14-60
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., and Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185. doi: 10.1093/nar/gkm321
Parsons, J. R., Sijm, D. T. H. M., van Laar, A., and Hutzinger, O. (1988). Biodegradation of chlorinated biphenyls and benzoic acids by a Pseudomonas strain. Appl. Microbiol. Biotechnol. 29, 81–84. doi: 10.1007/BF00258355
Peeters, C., Depoorter, E., Praet, J., and Vandamme, P. (2016). Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J. Cyst. Fibros. 15, 769–775. doi: 10.1016/j.jcf.2016.02.014
Peeters, C., Zoonik, J. E. A., Spilker, T., Hird, T. J., LiPuma, J. J., and Vandamme, P. (2013). Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the Rhizosphere. Syst. Appl. Microbiol. 36, 483–489. doi: 10.1016/j.syapm.2013.06.003
Pimentel, J. D., and MacLeod, C. (2008). Misidentification of Pandoraea sp. isolated from sputum of a patient with cystic fibrosis and review of Pandoraea species infections in transplant patients. J. Clin. Microbiol. 46, 3165–3168. doi: 10.1128/JCM.00855-08
Pugus, M., Debelieks, S., Fayon, M., Mégraud, F., and Lehours, P. (2015). Persistent infection because of Pandoraea sp. isolated from a young cystic fibrosis patient resistant to antimicrobial treatment. Pediatr. Infect. Dis. J. 34, 1135–1137. doi: 10.1099/inf.0.026138-0
Pushiri, H., Pearce, S. L., Oakeshott, J. G., Russell, R. J., and Pandey, G. (2013). Draft genome sequence of Pandoraea sp. strain SD6-2, isolated from lindane-contaminated Australian soil. Genome Announc. 1:e00415-13. doi: 10.1128/genomeA.00415-13
Sahin, N. (2003). Oxalotrophic bacteria. Res. Microbiol. 154, 399–407. doi: 10.1016/S0923-2508(03)00112-8
Sahin, N., Tani, A., Kotan, R., Sedlacek, I., Kimbara, K., and Tamer, A. U. (2011). Pandoraea oxalotivorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea verrucati sp. nov., isolated from oxalate-enriched culture. Int. J. Syst. Evol. Microbiol. 61, 2247–2253. doi: 10.1099/ijsem.0.026138-0
Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., et al. (2017). Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for co-metabolism. Bioresour. Technol. 242, 15–27. doi: 10.1016/j.biortech.2017.05.010
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2668–2669. doi: 10.1093/bioinformatics/btu153
Sijm, D. T. H. M., van Laar, A., and Hutzinger, O. (2009). Expanded multilocus sequence typing for Burkholderia species. J. Clin. Microbiol. 47, 2607–2610. doi: 10.1128/JCM.00770-09
Springael, D., van Thor, J., Goorissen, H., Ryngaert, A., De Baere, R., Van Hauwe, P., et al. (1996). RP4:Mu3A-mediated in vivo cloning and transfer of a large foreign DNA fragment into a chlorobiphenyl catabolic pathway. Microbiology 142, 3283–3293. doi: 10.1099/003147-0
Shi, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Chen, Y., et al. (2013). Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slups. Bioprocess Biosyst. Eng. 36, 1957–1965. doi: 10.1007/s00449-013-1079-2
Spilker, T., Baldwin, A., Bumford, A., Dowson, C. G., and Matthihralingam, E., and LiPuma, J. J. (2009). Expanded multilocus sequence typing for Burkholderia species. J. Clin. Microbiol. 47, 2607–2610. doi: 10.1128/JCM.00770-09
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/bioinformatics/btu33
Stryjewski, M. E., LiPuma, J. J., Messier, R. H., Heller, L. B., and Alexander, B. D. (2003). Sepsis, multiple organ failure, and death due to Pandoraea pseudomume infection after lung transplantation. J. Clin. Microbiol. 41, 2225–2227. doi: 10.1128/JCM.41.5.2225–2227.2003
Tunge, O. (2011). GNU Parallel: the command-line power tool. Login USENIX Mag. 36, 42–47.
Peeters et al. Comparative Genomics of Pandoraea

Tirado-Torres, D., Acevedo-Sandoval, O., Rodriguez-Pastrana, B. R., and Gayoso-Canales, M. (2017). Phylogeny and polycyclic aromatic hydrocarbons degradation potential of bacteria isolated from crude oil-contaminated site. *J. Environ. Sci. Heal. Part A* 52, 897–904. doi: 10.1080/10934529.2017.1316170

Uhlik, O., Wald, J., Strejček, M., Musílova, L., Ridi, J., Hroudova, M., et al. (2012). Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. *PLoS One* 7:e40653. doi: 10.1371/journal.pone.0040653

Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., et al. (1992). Polyphasic taxonomic study of the emended genus *Arcobacter* with *Arcobacter butzleri* comb. nov. and *Arcobacter skirrowii* sp. nov., an Aerotolerant bacterium isolated from veterinary specimens. *Int. J. Syst. Bacteriol.* 42, 344–356. doi: 10.1099/00207713-42-3-344

Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakhikumar, S., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 9:e112963. doi: 10.1371/journal.pone.0112963

Wang, X., Wang, Q., Li, S., and Li, W. (2015). Degradation pathway and kinetic analysis for p-xylene removal by a novel *Pandoraea* sp. strain WL1 and its application in a biotrickling filter. *J. Hazard. Mater.* 288, 17–24. doi: 10.1016/j.jhazmat.2015.02.019

Wu, X., Wu, X., Shen, L., Li, J., Yu, R., Liu, Y., et al. (2019). Whole genome sequencing and comparative genomics analyses of *Pandoraea* sp. XY-2, a new species capable of biodegrade tetracycline. *Front. Microbiol.* 10:33. doi: 10.3389/fmicb.2019.00033

Yang, J., Guo, C., Liu, S., Liu, W., Wang, H., Dang, Z., et al. (2018). Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. *Environ. Sci. Pollut. Res.* 25, 17645–17653. doi: 10.1007/s11356-018-1862-0

Yoon, S.-H., Ha, S., Lim, J., Kwon, S., and Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. *Antonie Van Leeuwenhoek* 110, 1281–1286. doi: 10.1007/s10482-017-0844-4

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Peeters, De Canck, Cnockaert, De Brandt, Snauwaert, Verheyde, Depoorter, Spilker, LiPuma and Vandamme. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.