A Case of *Burkholderia pseudomallei*: Mycotic Aneurysm Linked to Exposure in the Caribbean via Whole-Genome Sequencing

Lisa J. Speiser,1 Sabirah Kasule,1 Carina M. Hall,1 Jason W. Sahl,1 David M. Wagner,2 Chris Saling,1 Amy Kole,1 Andrew J. Meltzer,1 Victor Davila,1 Robert Orenstein,1 Thomas Grys,1 and Erin Graf1

1Mayo Clinic Arizona, Phoenix, Arizona, USA, and 2Northern Arizona University, Flagstaff, Arizona, USA

Meliodosis, an infection caused by *Burkholderia pseudomallei*, has a very high risk of mortality when treated, with an even higher risk of fatality if undiagnosed or not treated appropriately. It is endemic to Asia, Australia, South America, and the Caribbean; however, the number of meliodosis cases reported in the United States has been increasing. Therefore, physicians should be aware of this clinical entity and its possible presentations. Mycotic aneurysms due to *B. pseudomallei* are extremely rare, accounting for ~1%–2% of cases. Here we describe a rare case of meliodosis presenting as a mycotic aneurysm in the United States, highlight the potential for diagnostic challenges and epidemiologic concerns, and provide a review of mycotic aneurysm cases due to *B. pseudomallei* published to date.

Keywords. aneurysm; *Burkholderia;* meliodosis; mycotic; *pseudomallei*

Meliodosis is an infection caused by *Burkholderia pseudomallei*, an aerobic gram-negative rod-shaped bacterium commonly found in surface waters and muddy soils [1]. It is endemic to Asia, Australia, South America, and the Caribbean, with the majority of reported cases from Thailand and northern Australia [2]. Cases outside of endemic regions typically occur in visitors with symptoms arising after departure [3]. Recently, the Centers for Disease Control and Prevention (CDC) described 4 cases of meliodosis in the United States [4]. Whole-genome sequencing revealed these strains to be closely related to those found in South Asia; however, none of these individuals traveled internationally [4]. The source of these infections was ultimately found to be a contaminated aromatherapy spray [5]. As the number of cases reported in the United States has been increasing, clinicians and laboratories need to consider the diagnosis of meliodosis and be aware of its possible presentations. Here, we describe a rare case of meliodosis presenting as a mycotic aneurysm in the United States and highlight the important diagnostic challenges and epidemiological concerns.

CASE

A 58-year-old male with type 2 diabetes mellitus presented to our emergency department on December 21, 2020, with a 3-day duration of acute-onset epigastric and right-sided back pain. He normally resides in Kentucky and works for a large engineering firm specializing in heating, ventilation, and air conditioning (HVAC) systems for commercial buildings. His job entails frequent national and international travel to survey the land for new systems. In August 2020, he traveled to the Dominican Republic for work, where he was frequently exposed to soil. In September 2020, he developed a 1-week duration of fevers, myalgias, and arthralgias, for which he received doxycycline for suspected rickettsial infection. At the end of September, he traveled to Homestead, Florida, where he worked for the next 2 months.

In December 2020, he and his wife traveled across the Southern United States in their recreational vehicle. He had a job in Blythe, California, and there he developed epigastric and right-sided back pain, for which he presented to our emergency department (ED) in Phoenix, Arizona, on December 21, 2020. Blood cultures (BCs) were obtained on admission. A computed tomography (CT) of the abdomen/pelvis with contrast revealed a 2.1-cm penetrating atherosclerotic ulcer of the proximal right iliac artery with marked surrounding inflammatory changes. A mycotic process was considered, and workup was initiated; however, the consensus was that the aortic ulceration was most likely atherosclerotic. He was taken to the operating room (OR) on December 22, 2020, for endovascular repair of the right common iliac artery atherosclerotic ulcer with an endoprosthesis and discharged the following day. BC remained no growth. His serologic workup for infectious etiologies also returned negative.

On December 27, 2020, he developed severe back and lower abdominal pain and presented to an ED in Palo Verde, California, where a CT was performed on December 27, 2020, that did not reveal an endoleak, expansion of the aneurysm, or a ruptured ulcer. However, a repeat CT scan on January 7, 2021, showed an enlarging inflammatory mass around the aortic bifurcation consistent with an abscess and infected stent graft. He returned to the OR on January 11, 2021, for explant of his
graft and stent, with debridement of the mycotic process, and aortoiliac reconstruction with a rifampin-soaked bifurcated Dacron graft. Intraoperatively, frank caseating purulent material was encountered surrounding the native aorta. Samples were obtained, including a large piece of tissue from the anterior wall of the collection, and sent for culture.

Within 18 hours, aerobic cultures revealed pinpoint growth on sheep blood agar. Gram stain of the growth demonstrated small, gram-negative rods (Figure 1A). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was performed (Bruker Daltonics, Inc.) and provided an unvalidated identification of *Burkholderia thailandensis* on January 16, 2021. Due to concerns for the unvalidated result potentially being suggestive of *B. pseudomallei*, biochemical testing was performed, which demonstrated a negative catalase reaction inconsistent with *Burkholderia* species. However, the isolate was later confirmed as *B. pseudomallei* via polymerase chain reaction specific to *B. pseudomallei* by a public health laboratory. As this is a Select Agent, the clinical laboratories were responsible for destroying all cultures within 7 days of identification or transfer to a certified Select Agent BSL-3 laboratory. The isolate was transferred first to the US Centers for Disease Control and Prevention for Susceptibility testing. It was also sent to Northern Arizona University, where susceptibilities were performed using the broth microdilution method as described in the CLSI guidelines with susceptible/resistant breakpoints used from CLSI M45 [6]. The clinical isolate of *B. pseudomallei* demonstrated a typical susceptibility and resistant profile for *B. pseudomallei* with susceptibility to trimethoprim-sulfamethoxazole, doxycycline, amoxicillin/clavulanic acid, and ceftazidime. Growth of *B. pseudomallei* was observed on all culture media including anaerobic, mycobacterial, and fungal cultures, demonstrating classic wrinkled colonies (Figure 1B).

Whole-genome sequencing (WGS) was performed on the isolate. Comparison of the draft WGS with multiple published and several unpublished *B. pseudomallei* genome sequences revealed that this patient’s isolate was most closely related to isolates found in the Americas (Figure 2). More specifically, it appeared to cluster with isolates from the Caribbean, sharing the closest identity to an isolate described from a fatal case in Puerto Rico, which was not associated with travel outside of Puerto Rico [7]. Notably, the genome of the infecting strain contained 60 unique genes not present in any other examined *B. pseudomallei* genomes, suggesting a possible adaptation.

The patient was treated with intravenous ceftazidime for an 8-week course for vascular graft infection, followed by lifelong oral suppression with oral trimethoprim-sulfamethoxazole. To date, he continues to do well without any further complications.

DISCUSSION

Mycotic aneurysms due to *B. pseudomallei* account for only 1%–2% of cases [8, 9]. To date, 77 cases have been described in the literature, which we have summarized here in Table 1. All cases either lived in, or traveled to, endemic regions. The majority of these were males with underlying medical conditions, such as diabetes or renal disease. Most presented with nonspecific symptoms of fevers and chills (56 out of 77 cases), followed by abdominal and back pain.

B. pseudomallei is a facultative intracellular pathogen capable of survival and replication in phagocytic cells, including macrophages, allowing it to evade clearance from the host [10]. We theorize that our patient was infected with *B. pseudomallei* while in the Dominican Republic, where he was exposed to soil frequently as part of his surveying the land for new HVAC systems. He likely became bacteremic resulting in fever and body aches in September, which was misdiagnosed at the time as rickettsial infection. In the setting of bacteremia, *Burkholderia* likely seeded a site of atherosclerosis. However, the 30-day course of doxycycline he received was enough to suppress his
infection, but not fully treat it. Once antibiotics were stopped, *Burkholderia* was able to grow, causing an intense inflammatory response with marked neutrophilic inflammation and giving the appearance of an atherosclerotic ulcer on imaging. Post–surgical intervention, *B. pseudomallei* continued to replicate, developing an abscess on the patient’s newly placed aortic graft.

Unfortunately, there were no blood cultures obtained at the time of his initial fevers in September, so there is no way to prove he was bacteremic with *B. pseudomallei*. The authors here also considered the possibility that he may have obtained *B. pseudomallei* while he was in Florida. He did encounter hurricanes during this time when he was wading in water and working in marshy ground. Phylogenetic analysis would also support this as a possibility, as his strain came from the Americas. However, we felt that the more likely explanation was that he acquired *B. pseudomallei* from the Dominican Republic, became symptomatic, and the oral doxycycline suppressed his infection but did not fully treat it. While he travelled extensively throughout the United States and Europe, he had no other travel to melioidosis-endemic areas.

Appropriate specimens for culture are dependent on the clinical presentation. In our case, specimens were obtained from the purulence that was encountered intraoperatively. Growth typically appears quickly; thus routine incubation times for aerobic cultures are sufficient for recovery. The classic wrinkled morphology is not visible before day 3 in culture, leading to difficulties in recognition. Bacterial isolates with morphologic characteristics concerning for *B. pseudomallei* should be referred to public health laboratories if it cannot be ruled out via biochemical testing inside a biosafety cabinet. Although some MALDI-TOF systems either provide or can have spectra added to presumptively identify *B. pseudomallei*, the system used in the case presented would have required full validation of a research use–only spectral database for clinical application under the Clinical Laboratory Improvement

Figure 2. Phylogenetic analysis.
Table 1. Case Reports of *B. pseudomallei* Mycotic Aneurysms

Variable	Present Review (2021) [16–54] (n = 46)	Wu et al. (2020) [56] (n = 8)	Annunatsiri et al. (2008) [57] (n = 17)	Low et al. (2005) [55] (n = 6)
Variable	**Age, mean, y**	**Male, No. (%)**	**Comorbidities, No. (%)**	**Location of exposure, No. (%)**
Age, mean, y	60.7	60.4	61.1	59.7
Male, No. (%)	43 (83.5)	8 (100)	14 (82.3)	6 (100)
Comorbidities, No. (%)				
None	12 (26.1)	1 (12.5)	8 (470)	Not reported
Any	30 (65.2)	7 (87.5)	9 (52.9)	6 (100)
Previous melioidosis	6 (13)	Not reported	Not reported	Not reported
Pre/diabetes	15 (32.6)	2 (25)	2 (11.8)	3 (50)
CKD	2 (4.3)	Not reported	4 (23.5)	Not reported
HTN	9 (19.6)	6 (75)	2 (11.8)	2 (33.3)
HLD	2 (4.3)	Not reported	Not reported	1 (16.7)
Atherosclerosis	9 (19.6)	4 (50)	Not reported	1 (16.7)
Location of exposure, No. (%)				
Southeast Asiaa	31 (67.4)	Not reported	17 (100)	6 (100)
Brazil	1 (2.2)	Not reported	Not reported	Not reported
India	6 (13)	Not reported	Not reported	Not reported
East Asiaa	4 (8.7)	8 (100)	Not reported	Not reported
Australia	1 (2.2)	Not reported	Not reported	Not reported
Dominican Republic	1 (2.2)	Not reported	Not reported	Not reported
Presenting features, No. (%)				
Fever	35 (76.1)	5 (62.5)	13 (76.5)	3 (50)
Localized paina	23 (50)	8 (100)	17 (100)	6 (100)
Respiratory symptoms	9 (19.6)	4 (50)	6 (35.2)	Not reported
Palpable mass	3 (6.5)	Not reported	15 (88.2)	Not reported
Illness duration, median (range), d	15 (2–180)	60 (90–150)	21 (14–365)	7 (1–21)
Location of aneurysm, No. (%)				
Abdominal aorta	23 (50)	6 (75)	14 (82.3)	5 (83.3)
Thoracic aorta	8 (17.4)	Not reported	1 (5.9)	Not reported
Othera	21 (45.6)	2 (12.5)	2 (11.8)	1 (16.7)
Positive cultures, No. (%)				
Blood	27 (58.7)	8 (100)	7 (41.2)	6 (100)
Aneurysm	23 (50)	8 (100)	11 (64.7)	4 (66.7)
Other	14 (30.4)	6 (75)	Not reported	3 (50)
Common inpatient antibiotic therapies, No. (%)				
Ceftazidime	26 (56.5)	4 (50)	Not reported	6 (100)
Meropenem/mipinem	11 (23.9)	5 (62.5)	Not reported	1 (16.7)
TMP-SMX	10 (21.7)	2 (25)	Not reported	2 (33.3)
Othera	12 (26.1)	2 (25)	Not reported	2 (33.3)
Table 1. Continued

Variable	Present Review (2021) [16–54] (n = 46)	Wu et al. (2020) [56] (n = 8)	Annunatsiri et al. (2008) [57] (n = 17)	Low et al. (2005) [55] (n = 6)
Underwent surgery, No. (%)	39 (84.8)	8 (100)	17 (100)	6 (100)
Suppressive antibiotics, No. (%)	30 (65.2)	Not reported	Not reported	6 (100)
Recurrence/aneurysm complications, No. (%)	11 (23.9)	0 (0)	3 (17.6)	3 (50)
Death, No. (%)	10 (2.17)	2 (25)	4 (23.5)	1 (16.7)

Abbreviations: CKD, chronic kidney disease; HLD, hyperlipidemia; HTN, hypertension; TMP-SMX, trimethoprim-sulfamethoxazole.

- Including Thailand, Vietnam, the Philippines, Singapore, Cambodia, Malaysia, and Indonesia.
- Including China, Taiwan, and Hong Kong.
- Presenting feature at first contact with medical system for mycotic aneurysm. Does not consider symptoms at subsequent encounters for recurrence.
- Localized pain, usually at the site of the aneurysm, including headache (intracerebral abscess), chest pain, abdominal pain, back pain, and groin pain.
- Durations were reported in months and days in the original document. To ease comparison across case series, we standardized data point month to 30 days and data point year to 365 days.
- Including aneurysms of the iliac artery, renal artery, an intracerebral artery in the frontal lobe, subclavian artery, femoral artery, profundus femoris artery, innominate artery, superior mesenteric artery, coronary artery, an intrapulmonary vessel, and splenic artery.
- Including doxycycline, amikacin, tetracycline, chloramphenicol, cefoperazone/sulbactam, ciprofloxacin, levofloxacin, and ceftriaxone.
- Including perigraft abscess, aorto-enteric fistula, infection of the graft, recurrence of pseudoaneurysm, and, in cases where aneurysm was not resected, aneurysm rupture.
- Antibiotics given in the setting of infected graft to suppress infection.

...
patient is unknown [15]. The isolate from the Arizona patient was closer to the 2 from Texas than to others from Central America, suggesting possible uncharacterized reservoirs in Texas [15].

CONCLUSIONS

Here we describe a rare presentation of B. pseudomallei mycotic aneurysm presenting in a nonendemic region likely acquired from traveling. This was successfully treated with surgical debridement in conjunction with ceftazidime followed by lifelong suppression with trimethoprim-sulfamethoxazole for the infected graft. The number of melioidosis cases reported in the United States, especially without travel outside of the Americas, has been increasing. As such, physicians should be aware of this clinical entity and diagnostic challenges when evaluating for possible infectious etiologies of mycotic aneurysms.

Acknowledgments

Financial support. No funding sources.

Potential conflicts of interest. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Author contributions. Lisa J. Speiser, DO: involved in case, both the Infectious Disease Attending and epidemiologist, primary author of manuscript. Sabirah Kasule, MD: involved in case, literature review, and table creation. Carina M. Hall, PhD: phylogenetic analysis and editing of manuscript. Jason W. Sahl, PhD: phylogenetic analysis and editing of manuscript. David M. Wagner, PhD: phylogenetic analysis and editing of manuscript. Chris Saling, MD: involved in case and editing of manuscript. Amy Kole, PA: involved in case and contributed to writing treatment portion. Andrew Meltzer, MD, MBA: involved in case and editing of manuscript. Victor Davila, MD: involved in case and editing of manuscript. Robert Orenstein, DO: involved in case and editing of manuscript. Thomas Gryis, PhD: involved in Microbiology portion and editing of manuscript. Ervin Graf, PhD: involved in Microbiology portion and writing Micro portion of manuscript as well as editing.

Patient consent. This report does not include factors necessitating patient consent.

References

1. Dance DA. Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. Acta Trop 2000; 74:159–68.
2. White NJ. Melioidosis. Lancet 2003; 361:1715–22.
3. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005; 18:383–416.
4. Centers for Disease Control and Prevention. Statement on melioidosis cases. Available at: https://www.cdc.gov/media/releases/2021/s0909-melioidosis.html. Accessed 29 September 2021.
5. Centers for Disease Control and Prevention. 2021 multistate outbreak of melioidosis. Available at: https://www.cdc.gov/melioidosis/outbreak/2021/index.html. Accessed 1 February 2022.
6. Clinical and Laboratory Standards Institute. CLSI_M45_Bp-3rd Edition. Available at: https://clsi.org/standards/products/microbiology/documents/m45/. Accessed 29 September 2021.
7. Dorman SE, Gill VJ, Gallin JJ, Holland SM. Burkholderia pseudomallei infection in a Puerto Rican patient with chronic granulomatous disease: case report and review of occurrences in the Americas. Clin Infect Dis 1998; 26:889–94.
8. Currie BJ, Fisher DA, Howard DM, et al. Endemic melioidosis in tropical Northern Australia: a 10-year prospective study and review of the literature. Clin Infect Dis 2000; 31:981–6.
9. Laohapensang K, Rutherford RB, Arworn S. Infected aneurysm. Ann Vasc Dis 2010; 3:16–23.
10. Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderia pseudomallei. Infect Immun 1996; 64:782–90.
11. Inglish T, Rolim D, Rodriguez J. Clinical guideline for diagnosis and management of melioidosis. Rev Inst Med Trop Sao Paulo 2000; 48:1–4.
12. Wiersinga WJ, Virk HS, Torres AG, et al. Melioidosis. Nat Rev Dis Primers 2018; 4:17107.
13. Almazara M, Barberis C, Bravo M, et al. Un caso de melioidosis en la Argentina. Medicina 2011; 71:39–41.
14. Currie BJ, Mayo M, Ward LM, et al. The Darwin Prospective Melioidosis Study: a 30-year prospective, observational investigation. Lancet Infect Dis 2021; 21:1737–46.
15. Cossaboom CM, Marinova-Petkova A, Strykso J, et al. Melioidosis in a resident of Texas with no recent travel history, United States. Emerg Infect Dis 2020; 26:1295–9.
16. Panginnakkod S, Ramachandran A, Bollimutha P, Habibi R, Kumar Arjal R, Gopalakrishnan V. Burkholderia aeroetium aneurysm: a case report and review of the literature. Case Rep Infect Dis 2017; 2017:6206395.
17. Ding CH, Hussin S, Tzar MN, Rahman MM, Ramli SR. A case of mycotic aneurysm due to Burkholderia pseudomallei. Pak J Med Sci 2013; 29:666–8.
18. Sidirim JJC, Rocha MPG, Bandeira TDJ PG, et al. Mycotic aneurysm caused by Burkholderia pseudomallei: report of a Brazilian strain genetically related to Thai strains. Clin Microbiol Infect 2011; 17:719–21.
19. Bodielsen J, Vammen S, Fuursted K, Hjort U. Mycotic aneurysm caused by Burkholderia pseudomallei in a previously healthy returning traveller. Case Rep 2014; 2014:bcr2013202824.
20. Luo CY, Ko WC, Lee HC, Yang YJ. Relapsing melioidosis as cause of iliac mycotic aneurysm: an indigenous case in Taiwan. J Vasc Surg 2003; 37:882–5.
21. Jang HR, Lee CW, Ok SJ, et al. Melioidosis presenting as a mycotic aneurysm in a Korean patient, diagnosed by 16S rRNA sequencing and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Int J Infect Dis 2015; 38:62–4.
22. Hazra DN, Sen I, Mahajan A, Agarwal S. Complete aortic thrombosis in a ruptured mycotic aneurysm due to infection with Burkholderia pseudomallei. Ind J Vasc Endovasc Surg 2019; 6:135–7.
23. Harison SJ, Rekha RA. Melioidosis: an unusual presentation as mycotic pseudoaneurysm of left superficial femoral artery. J Microbiol Infect Dis 2018; 8:162–4.
24. Roan JN, Luo CY, Tsai HL, Hu YN, Yang YJ, Lin PY. Surgical treatment of pseudoaneurysm of innominate artery infected with Burkholderia pseudomallei. Acta Cardioiogica Sinica 2013; 29:98–101.
25. Chlebicki MP, Kurup A, Sin YK. Burkholderia pseudomallei meningitis following inadequate treatment of melioidotic mycotic aneurysm. Singapore Med J 2008; 49:e219–21.
26. Li PH, Chau CH, Wong PC. Melioidosis mycotic aneurysm: an uncommon complication of an uncommon disease. Respir Med Case Rep 2015; 14:43–6.
27. Choek S, Le Si CG, Chung SJ, Ching IK. Aortic endograft infection secondary to Burkholderia pseudomallei: a case report and review of the literature. J Vasc Surg Cases Innov Tech 2021; 7:421–4.
28. Appukuttan A, Valsalan A, Shaji S, Gopal G. Lesser sac haematoma-melioidosis—a surgical surprise. J Evid Based Med 2021; 8:2349–50.
29. Ameziane T, Lecoules S, Algayres JP. Mycotic iliac aneurysm associated with Burkholderia pseudomallei. Int J Infect Dis 2010; 14:e381–2.
30. Barry M, Dada H, Barry M, Almohaya A, Aldrees A. Unusual presentation of melioidosis in a returning traveler. IDCases 2020; 20:e00809.
31. Mahmood A, Gajula C, Gajula P, et al. Burkholderia pseudomallei: a complicated, potentially fatal, case of melioidosis with a proposed management regimen. J Med Surg 2020; 2:2.
32. Padmaja K, Lakshmi V, Sudhaharan S, Malladi SVS, Gopal P, Ravinuthala KV. Unusual presentation of melioidosis in a case of pseudoaneurysm of descending thoracic aorta: review of two case reports. Res Cardiovasc Med 2015; 4:e27205.
33. Patel MA, Schmoker JD, Moses PL, Anees R, D’Agostino R. Mycotic arch aneurysm and aortoesophageal fistula in a patient with melioidosis. Ann Thorac Surg 2001; 71:1363–5.
34. Steinmetz I, Stossiek P, Hergenröther D, Bär W. Melioidosis causing a mycotic aneurysm. Lancet 1996; 347:1564–5.
35. Lee SS, Liu YC, Wang JH, Wann SR. Mycotic aneurysm due to Burkholderia pseudomallei. Clin Infect Dis 1998; 26:1013–4.
36. Schindler N, Gallagaro KD, Dougherty MJ, Diehl J, Modi KH, Braffman MN. Melioidosis presenting as an infected intrathoracic subclavian artery pseudoaneurysm treated with femoral vein interposition graft. J Vasc Surg 2002; 35:569–72.
37. Boun KT, Biron F, Chidiac C, Ferry T. Imported melioidosis in France revealed by a cracking abdominal mycotic aneurysm in a 61-year-old man. Case Rep 2012; 2012:bcr2012006839.
38. Rao J, Kaushal AS, Hoong CK. Abdominal aortic pseudoaneurysm secondary to melioidosis. Asian J Surg 2009; 32:64–9.
39. Peltroche-Llacuahuanga H, Haase G. A deadly thorn: a case of imported melioidosis. Lancet 1999; 353:1016–7.
40. Pitaksinachaneekij S, Susaengrat W, Tangkulboriboon S, Eumkamara P, Seenawat P. Pseudomonas pseudomallei mycotic aneurysm of abdominal aorta: a report of 2 cases with successful operations. J Infect Dis Antimicrob Agents 1991; 8:115–7.
41. Noordin K, Abdullah MM, Natarajan C, Wahab YA, Abdullah K. Pseudoaneurysm of the renal artery associated with melioidosis. Br J Urol 1995; 75:680–1.
42. Elliott JH, Carson P, Currie BJ. Burkholderia pseudomallei mycotic aneurysm. Int Med J 2003; 33:323–4.
43. Wong PK, Ng PH. Melioidosis presenting with orbital cellulitis. Singapore Med J 1996; 37:220–1.
44. Tanyaowalak W, Sunthornyothin S, Luengtaviboon K, Suankratay C, Kulwichit W. Mycotic aneurysm caused by Burkholderia pseudomallei with negative blood cultures. Scand J Infect Dis 2004; 36:68–70.
45. Hemarajata P, Baghdadi JD, Hoffman R, Humphries RM. Burkholderia pseudomallei: challenges for the clinical microbiology laboratory. J Clin Microbiol 2016; 54:2866–73.
46. Azizi ZA, Yahya M, Lee SK. Melioidosis and the vascular surgeon: Hospital Kuala Lumpur experience. Asian J Surg 2005; 28:309–11.
47. Masakazu S, Fukuda T, Hisanaga, Tayama M. Treatment success of the infectious thoracic aneurysm that is rare. Niigata Med J 2012; 126:273.
48. Mackowiak PA, Trueba F, Blade JS, et al. A man with a saccular aneurysm of the left common iliac artery. Clin Infect Dis 2006; 43:945–7.
49. Shi L, Chen J, Yi G. Burkholderia pseudomallei was identified in a melioidosis aneurysm using polymerase chain reaction targeting 23S rRNA. Ann Vasc Surg 2020; 68:569–e13.
50. Lee SY, Sin YK, Kurup A, Agasthan T, Caleb MG. Stent-graft for recurrent melioidosis mycotic aortic aneurysm. Asian Cardiovasc Thorac Ann 2006; 14:e38–40.
51. Auvens C, Neuwirth C, Piroth L, Blot M. Infected aneurysm after returning from Southeast Asia: think Burkholderia pseudomallei! BMJ Case Rep CP 2019; 12:e228856.
52. Goh BK, Chen CY. Infected pseudoaneurysm of the femoral artery secondary to melioidosis infection of a previous femoropopliteal bypass graft. Ann Vasc Surg 2005; 19:90–3.
53. Yew KL, Choy CN, Kam JY, Kang Z. Intracoronary blood sampling with a microcatheter for the diagnosis of giant infective coronary aneurysm: melioidosis of the coronary artery mycotic aneurysm. Int J Cardiol 2015; 187:530–1.
54. Jayaprakash B, Rao NK, Patil N, Balaji O, Rau NR, Varghese G. Melioidosis: a rare case of hemoptyis with pseudoaneurysm. Res J Pharm Biol Chem Sci 2016; 7:1977–81.
55. Low JGH, Quek AML, Sin YK, Ang BSP. Mycotic aneurysm due to Burkholderia pseudomallei: case reports and literature review. Clin Infect Dis 2005; 40:193–8.
56. Wu H, Wang X, Zhou X, et al. Mycotic aneurysm secondary to melioidosis in China: a series of eight cases and a review of literature. PLoS Negl Trop Dis 2020; 14:e0008525.
57. Anunnatsiri S, Chetchotisakd P, Kularbkaew C. Mycotic aneurysm in Northeast Thailand: the importance of Burkholderia pseudomallei as a causative pathogen. Clin Infect Dis 2008; 47:1436–9.