High NO₂ Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate?

Michal Vojtisek-Lom 1,2,*, Miroslav Suta 3, Jitka Sikorova 1 and Radim J. Sram 1,∗

1 Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague, Czech Republic; jitka.sikorova@iem.cas.cz (J.S.); radim.sram@iem.cas.cz (R.J.S.)
2 Department of Automotive, Combustion Engine and Railway Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic
3 Center for Environment and Health, Thámova 1275/21, 301 00 Plzeň, Czech Republic; miroslav.suta@centrum.cz

* Correspondence: michal.vojtisek@fs.cvut.cz or michal.vojtisek@tul.cz; Tel.: +420-774-262-854

Abstract: This work examines the effects of two problematic trends in diesel passenger car emissions—increasing NO₂/NOₓ ratio by conversion of NO into NO₂ in catalysts and a disparity between the emission limit and the actual emissions in everyday driving—on ambient air quality in Prague. NO₂ concentrations were measured by 104 membrane-closed Palmes passive samplers at 65 locations in Prague in March–April and September–October of 2019. NO₂ concentrations measured by city stations during those periods were comparable with the average values during 2016–2019. The average measured NO₂ concentrations at the selected locations, after correcting for the 18.5% positive bias of samplers co-located with a monitoring station, were 36 μg/m³ (range 16–69 μg/m³, median 35 μg/m³), with the EU annual limit of 40 μg/m³ exceeded at 32% of locations. The NO₂ concentrations have correlated well (R² = 0.76) with the 2019 average daily vehicle counts, corrected for additional emissions due to uphill travel and intersections. In addition to expected “hot-spots” at busy intersections in the city center, new ones were identified, i.e., along a six-lane road V Holešovičkách. Comparison of data from six monitoring stations during 15 March–30 April 2020 travel restrictions with the same period in 2016–2019 revealed an overall reduction of NOₓ, that stricter vehicle NOₓ emission limits, introduced in the last decade or two, have so far failed to sufficiently reduce the ambient NO₂ concentrations, and there is no clear sign of remedy of Dieselgate NOₓ excess emissions.

Keywords: NO₂; passive sampler; Dieselgate; Prague; traffic volume; citizen science; air quality; public policy; health effects

Highlights
• NO₂ measured by 104 passive samplers at 65 places in Prague, corrected mean 36 μg/m³
• NO₂ increases with traffic intensity corrected for intersections and hills
• High NO₂/NOₓ ratios and excess NOₓ emissions from diesel cars a culprit
• Not much improvement after “Dieselgate”
• Reductions below 40 μg/m³ suggested based on health evidence literature review

1. Introduction

Mobile sources, including on-road vehicles, remain to be one of the largest contributors to the air pollution in most metropolitan areas in Europe, with particulate matter and...
nitrogen oxides (NOx, defined as a sum of nitric oxide NO and nitrogen dioxide NO2) being of highest concern. Outdoor air pollution is now being considered one of the leading causes of premature death [1], with estimated tolls of approximately half a million premature deaths annually in the EU [2], and associated economic damage around 5% of HDP in Central Europe [3]. At the same time, the state-of-the-art technology of the internal combustion engine has improved considerably over the last decades. Very low levels of sulfur and metals in the fuel have allowed the introduction of three-way catalysts on spark ignition engines, a common technology used throughout the U.S. over the last four decades with a somewhat delayed deployment in Europe, and the introduction of diesel particle filters on virtually all on-road diesel engines manufactured in the last decade. The emissions of nitrogen oxides, primarily NO, on engines operating with excess air remained a challenge, being ultimately resolved about a decade ago with selective catalytic reduction (SCR) systems on heavy-duty vehicles [4] and more recently also on light-duty vehicles.

In the EU, the concentrations of NO2, deemed to be more detrimental to human health than NO, are limited and monitored in the ambient air. Overall, the concentrations of NO2 have not been decreasing as fast as those of other key pollutants. In the Czech Republic, the concentrations of NO2 at most air quality monitoring stations have been, according to the data in [5], decreasing by on the order of 1% a year over the last two decades. A gradual decrease of NO2 concentrations in the overall atmosphere above the Czech Republic over the last decade has been also reported from remote sensing satellite measurements [6]. NO2 in ambient air originates both from direct (primary) emissions and from gradual conversion of NO into NO2 [7]. While the total emissions of NOx have been gradually decreasing, there is no apparent trend of a decrease in NO2 primary emissions over the last 15 years [6]. One of the culprits of high primary NO2 emissions are diesel vehicles, which have been, over the last two decades, equipped with oxidation catalysts, which convert a considerable portion of NO into NO2. In the U.S., average NO2/NOx ratio in vehicle exhaust (all vehicles, including predominantly gasoline cars and light trucks and predominantly diesel heavy trucks) was 5.3% [8], compared to approximately 15% in Europe [9].

This paper explores a hypothesis that the observed decrease in NO2 concentrations falls short of that expected based on order-of-magnitude decrease in vehicle NOx emissions limits and that non-compliant diesel cars could substantially contribute to this shortfall. The underlying aspects of NOx emissions and the adverse health effects of NO2 are summarized. The results of a monitoring NO2 with passive samplers are reported and discussed in light of these findings. As an additional insight, the effects of coronavirus related restrictions on NO and NO2 concentrations in Prague are reported and discussed.

2. Review of Trends and Shortcomings in NO2 and NOx Emissions from Vehicles

Nitrogen oxide (NO) is formed in combustion processes from atmospheric nitrogen and oxygen at high temperatures [10,11], which are generally associated both with efficient combustion and with high thermal efficiency of the engine. Subsequent oxidation of NO in the atmosphere yields primarily nitrogen dioxide (NO2), a brownish irritant gas. Other oxides of nitrogen—N2O2, N2O3, N2O4, N2O5—are generated in small concentrations, are unstable and short-lived in the atmosphere. The oxides of nitrogen are summarily referred to as NOx, although there is no precise definition. Often, NOx is evaluated as the sum of NO and NO2. Technically, the sum of NOx also includes nitrous oxide (N2O), which is, however, not hazardous to human health, but is a potent greenhouse. NOx leads to the formation of nitrous acid (HNO2) [12,13], nitric acid (HNO3) and a variety of salts such as ammonium nitrate, present in the atmosphere as particulate matter [14]. Photodissociation of NO2 under the presence of sunlight produces NO and atomic oxygen, which reacts with molecular oxygen to form ozone [15], a highly reactive compound generally harmful to human health, organisms and plants. NOx and ground-level (tropospheric) ozone are, together with particulate matter, the principal part of urban air pollution.
On spark ignition engines, CO and VOC, principally a product of incomplete oxidation of fuel and to a lesser extent engine lubricating oil, and NO\textsubscript{x} have been successfully abated by the combination of three-way catalysts [16] and by maintaining stoichiometric air–fuel ratio through closed-loop control of the quantity of fuel injected [17]. This technology has proven to be remarkably efficient.

On diesel engines, the emissions of NO\textsubscript{x} have been, at first, controlled through delayed combustion timing and exhaust gas recirculation, both associated with a slight fuel penalty, and at a later time, with NO\textsubscript{x} storage and reduction catalysts and selective reduction catalysts (SCR). The reduction of NO\textsubscript{x} has historically come at an expense of both capital and operating costs, with operating costs including either fuel (notably on older vehicles using delayed combustion, exhaust gas recirculation, NO\textsubscript{x} storage and reduction catalysts) or a reducing agent used in SCR (mostly aqueous solution of urea, known as diesel exhaust fluid or “AdBlue”). These costs have motivated, over the last few decades, many manufacturers and vehicle users to circumvent NO\textsubscript{x} reduction efforts, as the savings were realized by them directly, while considerably larger overall damage to human health was born by the society, a problem known as the Tragedy of the Commons [18]. A widespread practice of dual engine mapping in the U.S. in the 1990s [19,20] has led to the gradual extension of vehicle emissions limits to ordinary on-road operation first of heavy-duty and later of light-duty vehicles [21–23]. In the heavy-duty vehicle engine sector, many recent studies now show that on-road NO\textsubscript{x} emissions of newer heavy-duty vehicles have been successfully reduced by an order of magnitude except for low-load operation typical for congested urban areas. Quiros et al. [24] reports NO\textsubscript{x} emissions of 2013 and 2014 model year heavy trucks of 0.36 g/km during motorway operation in California. Jiang et al. [25] reports, for similar conditions, 0.3 g/km NO\textsubscript{x} during extraurban and motorway operation. Grigoratos et al. [26] reports NO\textsubscript{x} emissions during motorway operation in Europe of 0.07, 0.08, 0.17 and 0.24 g/kWh for four trucks and 0.80 g/kWh for a bus. Giechaskiel et al. [22] reports NO\textsubscript{x} emissions of a garbage collection truck of less than 0.4 g/kWh during extraurban operation (note: for heavy vehicles, emissions per kWh roughly correspond to emissions per km).

Unfortunately, this has not been the case with light-duty vehicles with diesel engines, highly prevalent in Europe, where they account for several tens of percent of vehicle registration and in Prague, for about two thirds of vehicles counted on the road [27]. Large portion of European automobile diesel engines produced over the last one to two decades have been reported to emit substantially, often by an order of magnitude, more NO\textsubscript{x} on the road than during the type approval test [28–32]. Weiss et al. [29] reports on-road NO\textsubscript{x} emissions factors 0.76 ± 0.12 g/km for Euro 4, 0.71 ± 0.30 g/km for Euro 5 and 0.21 ± 0.09 for Euro 6. In a more recent study by Suarez-Bertoa et al. [23], NO\textsubscript{x} emissions from Euro 6 diesel cars varied substantially from mid tens to mid hundreds of milligrams of NO\textsubscript{x} per kilometer, with a median value of about 0.2 g/km NO\textsubscript{x} during the city-motorway test.

At the same time, on nearly all light-vehicle diesel engines of the last decade or so, oxidation catalysts are used to convert NO into NO\textsubscript{2}, as higher concentrations of NO\textsubscript{2}, around 10%, are beneficial both for the combustion of soot in DPF and for the “fast” reduction of NO\textsubscript{x} in SCR catalysts. As a result, NO\textsubscript{2} from newer engines accounts for 10% of NO\textsubscript{x} [33,34]. On passenger cars and light-duty trucks, NO\textsubscript{2}/NO\textsubscript{x} ratios of around 10–15% up to Euro 3 and 25–30% for Euro 4 and 5 were found in a London remote sensing study [35]. In the U.S., NO\textsubscript{2}/NO\textsubscript{x} ratio from heavy duty diesel trucks have doubled from around 7% in 2010 (average of trucks passing on the road in a given year, not a model year of the vehicles) to around 15% in 2018 [36]. This increase, however, did not result in an absolute increase in NO\textsubscript{2} emissions, as total NO\textsubscript{x} emissions have decreased dramatically due to the widespread use of SCR catalysts. According to Preble [36], “Fleet-average NO\textsubscript{2} emission rates remained about the same, despite the intentional oxidation of engine-out NO to NO\textsubscript{2} in DPF systems, due to the effectiveness of SCR systems in reducing NO\textsubscript{x} emissions and mitigating the DPF-related increase in primary NO\textsubscript{2} emissions”.

In Europe, NO\textsubscript{x} emissions from diesel cars have not, however, decreased in proportion to the decreasing emissions limits. A recent on-road study in Prague reports the mean emissions of Euro 5 and 6 diesel cars and vans of over 0.1 g/km NO\textsubscript{2} and over 0.5 g/km NO\textsubscript{x} \cite{37}, while a recent study of one of the most common diesel cars (Euro 6) reported about 0.15 g/km over WLTC cycle, and about 0.4 g/km over the Artemis driving cycle \cite{38}, which is more than the 0.08 g/km Euro 6 limit for total NO\textsubscript{x} (with which the vehicle reasonably complied over the NEDC cycle).

The presumption of the regulators that increased the NO\textsubscript{2}/NO\textsubscript{x} ratio after the oxidation catalyst and before the DPF, highly beneficial both for DPF and SCR operation, will be mitigated by the rather high efficiency of the NO\textsubscript{x} aftertreatment, envisioned in both U.S. EPA and EU emissions standards, which has been compromised by intentional acts resulting in diminished, or even zero, efficiency of the NO\textsubscript{x} aftertreatment. Examples of such acts include dual-mapping of the engines by the manufacturers (a prime example of which is “Dieselgate”) and disabling of the SCR (and emulating its proper functioning to the on-board diagnostics by “SCR emulators”) by vehicle operators. Under such conditions, relatively high amounts of NO\textsubscript{2}, intended to be reduced in NO\textsubscript{x} aftertreatment, are emitted out of the tailpipe. Logically, this results in very high, and much higher than intended, primary emissions of NO\textsubscript{2} in the streets. This finding is consistent with the rather slow decrease in NO\textsubscript{2} concentrations.

3. Review of the Impact of NO\textsubscript{2} to Central Nervous System in Children and Adults

The first experimental data were obtained several decades ago, indicating that air pollution may induce behavioral changes. Singh \cite{39} studied the effect of NO\textsubscript{2} exposure on pregnant mice, exposed during gestation day 7–18. Prenatal exposure significantly altered the righting reflex and aerial righting score. These results suggest that maternal NO\textsubscript{2} exposure produce deficits in the functional capability of the offspring.

Wang et al. \cite{40} was the first one, who studied the impact of NO\textsubscript{2} exposure to children’s neurobehavioral changes. They studied this effect in the year 2005 on two groups of children (A \(N = 431\), B \(N = 430\)) in the age of 8–10 years using neurobehavioral testing. Group A was exposed to 7 \(\mu g\) NO\textsubscript{2}/m\(^3\), group B to 36 \(\mu g\) NO\textsubscript{2}/m\(^3\). Children from the polluted area showed poor performance in all tests: visual simple reaction time, continuous performance, digit symbol, pursuit aiming and sign register. This study found a significant relationship between chronic low-level traffic related air pollution and neurobehavioral function in exposed children.

Guxens et al. \cite{41} analyzed the association between prenatal exposure, diet and infant mental development in four regions in Spain, in 1889 children, who were exposed to 29.0 \(\pm\) 11.2 \(\mu g\) NO\textsubscript{2}/m\(^3\) (20.1–36.8). Infant mental development was evaluated at 14 months by Bailey Scales of Mental Development. Exposure to NO\textsubscript{2} did not show a significant association with mental development. Inverse association was observed in infants whose mothers reported low intake of fruit/vegetables during pregnancy (−4.13 (−7.06, −1.21)). This study suggests that antioxidants in fruits and vegetables during pregnancy may modulate an adverse effect of NO\textsubscript{2} on infants’ mental development.

Kim et al. \cite{42} investigated the association between maternal exposure to NO\textsubscript{2} of 49.4 \(\mu g/m^3\) (25.9–84.8) and neurodevelopment in children in Korea (mental development index (MDI) and the psychomotor development index (PDI) by Bailey scales of mental development) at ages 6, 12 and 24 months. This study used 455–371 children. NO\textsubscript{2} exposure impaired psychomotor development (\(\beta = −1.30\); \(p = 0.05\)). At 6 months NO\textsubscript{2} affected MDI (\(\beta = −3.12\); \(p < 0.001\)) and PDI (\(\beta = −3.01\); \(p < 0.001\)). These data suggest that exposure to NO\textsubscript{2} may delay neurodevelopment in early childhood.

A similar study was organized in Spain on 438 mother-child pairs by Lertxundi et al. \cite{43} at 15 months of age, using the Bailey scales of mental development. A 1 \(\mu g\) NO\textsubscript{2}/m\(^3\) increase during pregnancy decreased the mental score (\(\beta = −0.29\); 90% CI: −0.47; −0.11). Prenatal residential exposure to NO\textsubscript{2} adversely affects infant motor and cognitive development.
A prospective cohort study was conducted with 2715 children aged 7–10 years in Barcelona, Spain, as a part of the BREATHE project (brain development and air pollution ultrafine particles in school children [44]). Children were tested every 3 months with a computerized test. Cognitive development was assessed with the n-back and the attentional network test as working memory and inattentiveness. NO₂ exposure was completed in the outdoors in a low traffic region 40.5 ± 9.6 μg/m³ and high traffic region 56.1 ± 11.5 μg/m³. Children attending schools with higher NO₂ pollution had an 11.5% (95% CI 8.9%–12.5%) slower working memory and slower growth in all cognitive measurements, which means a smaller improvement in cognitive development.

Pujol et al. [45] selected from this cohort 263 children, aged 8–12 years, for magnetic resonance investigation (MRI) to analyze brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites and functional connectivity. Outdoor NO₂ exposure was 46.8 ± 12.0 μg/m³/year and indoor NO₂ exposure was 29.4 ± 11.7 μg/m³/year. Higher NO₂ exposure was associated with slower brain maturation with changes specifically concerning the functional domain.

Forns et al. [46] evaluated 2897 children from the Barcelona cohort within the BREATHE project. NO₂ exposure in schools was 29.82 μg/m³ (11.47–65.65) and outdoor was 48.46 μg/m³ (25.92–84.55). Behavioral development was assessed using the strengths and difficulties questionnaire (SDQ), which was filled out by parents. NO₂ exposure was positively associated with SDQ total difficulties scores, suggesting more frequent behavioral problems. This study was understood as the first one to evaluate the impact of air pollution on behavioral development in schoolchildren using both indoor and outdoor air pollution levels measured at schools. NO₂ outdoor levels (IQR = 22.26 μg/m³) significantly increased total difficulties score (1.07, 95% CI: 1.01, 1.14, p < 0.05). NO₂ exposure at school is associated with worse general behavioral development in schoolchildren.

Min and Min [47] studied in Korea 8936 children born in the year 2002 and followed them for the next 10 years, investigating the relationship between exposure to NO₂ and attention-deficit hyperactive disorder (ADHD). They diagnosed 313 children with ADHD. The hazard ratio (HR) associated with the increase in 1 μg of the NO₂/m³ was 1.03 (95% CI: 1.02–1.04). Comparing infants with lowest tertile of NO₂ exposure with the highest tertile of NO₂, HR = 2.10 (95% CI: 1.54–2.85), exposure had a 2 fold increased risk of ADHD. The study showed a significant association between exposure to NO₂ and the incidence of ADHD in children.

Sentis et al. [48] evaluated prenatal and postnatal exposure to NO₂ and attentional function in children at 4–5 years of age in four regions of Spain (N = 1298). The attentional function was evaluated by the Conners kiddie continuous performance test (K-CPT). The prenatal NO₂ level was 31.1 μg/m³ (18.4–37.9). Higher exposure to prenatal levels of NO₂ was associated with a 1.12 ms (95% CI: 0.22, 2.02) increase in hit reaction time and 6% increase in the number of emission errors (95% CI: 1.01, 1.11) per 10 μg/m³ increase in prenatal NO₂. Higher exposure to NO₂ during pregnancy is associated with impaired attentional function, especially increased inattentiveness in children aged 4–5 years. This reduced attentional function in population could lead to poor educational indicators. It seems to be important that this effect was observed with NO₂ concentrations lower than EU standard 40 μg/m³.

Sunyer et al. [49] followed in 2012–2013 2687 school children from Barcelona, assessing children’s attention process 4 times every three months, using the attention network test (ANT). NO₂ indoor pollution was 30.09 ± 9.51 μg/m³ and ambient air pollution was 37.75 ± 18.41 μg/m³. Daily ambient levels were negatively associated with all attention processes (children in the bottom quartile of daily exposure to NO₂ had a 14.8 ms (95% CI: 11.2, 18.4) faster response time than those in the top quartile, which corresponds to a 1.1 month delay (95% CI: 0.84, 1.37) in natural development). Short-term exposure to NO₂ is associated with potential harmful effects on neurodevelopment.

Forns et al. [50] examined after 3.5 years the cohort of children from Barcelona (N = 1439), whose cognitive development was evaluated 4 times in the years 2012/2013 [43].
Working memory was estimated by a computerized n-back test. Exposure to NO\textsubscript{2} was related to the slower development of working memory ($\beta = -4.22$, 95% CI: -6.22, -2.22). These reductions corresponded to a -20% (95% CI: -30.1, -10.7) change in annual working memory development associated with one interquartile range increase in outdoor NO\textsubscript{2}. Forns et al. [50] observed a persistent negative association between NO\textsubscript{2} levels at school and cognitive development over a course of 3.5 years. Therefore, they suggested that highly exposed children might face obstacles to fully achieve their academic goals.

Vert et al. [51] analyzed association between exposure to NO\textsubscript{2} and mental disorders on 958 residents from Barcelona (45–74 years old). Long-term residential exposure (period 2009–2014) was related to patients’ self-reported history of anxiety and depression disorders. NO\textsubscript{2} exposure corresponded to $57.3 \mu\text{g}/\text{m}^3$ (50.7–62.7). NO\textsubscript{2} increased the odds ratio for depression of 2.00 (95% CI: 1.37, 2.93) for each 10 $\mu\text{g} \text{NO}_2/\text{m}^3$ increase. The study shows that long-term exposure to NO\textsubscript{2} may increase the incidence of depression.

Alemany et al. [52] analyzed on the group of children from the BREATHE project ($N = 1667$ at the age of 11 years), if there is any association between traffic-related air pollution and the $\epsilon 4$ allele of the apolipoprotein E gene, which is understood as a genetic risk factor for Alzheimer’s disease. NO\textsubscript{2} exposure at the home address was $54.25 \pm 18.40 \mu\text{g}/\text{m}^2$ and at schools was $47.74 \pm 12.95 \mu\text{g}/\text{m}^3$. NO\textsubscript{2} exposure increased behavioral problems scores (characterized by SDQ) in $\epsilon 4$ carriers ($N = 366$) vs. non-carriers ($N = 1223$) 1.14 (95% CI: 1.04, 1.26) vs. 1.02 (95% CI: 0.95, 1.10, $p = 0.04$) and was associated with smaller caudate volume in $\epsilon 4$ carriers ($N = 37$) vs. non-carriers ($N = 126$) -737.9 (95% CI: -1201.3, -274.5) vs. -157.6 (95% CI: -388.8, 73.6, $p = 0.03$). Annual average NO\textsubscript{2} concentrations in children’s schools were associated with smaller caudate volume and higher behavior problem scores among APOE $\epsilon 4$ allele carriers. It is possible that $\epsilon 4$ carriers are more vulnerable to neuroinflammatory and oxidative stress induced by air pollution exposure.

Carey et al. [53] investigated the incidence of dementia to residential level of NO\textsubscript{2} in London. Among 130,978 adults aged 50–79 years was, in the period 2005–2013, 2181 subjects diagnosed with dementia (39% Alzheimer’s disease and 29% vascular dementia). The average annual concentration of NO\textsubscript{2} was $37.1 \pm 5.7 \mu\text{g}/\text{m}^3$. Higher risk of Alzheimer’s disease was observed in subjects exposed to the highest concentrations of NO\textsubscript{2} (>41.5 $\mu\text{g}/\text{m}^3$) vs. subjects with the lowest concentrations of NO\textsubscript{2} (<31.9 $\mu\text{g}/\text{m}^3$) (HR = 1.40, 95% CI 1.12–1.74). These associations were more consistent for Alzheimer’s disease than vascular dementia. Study found evidence of a positive association between residential level of NO\textsubscript{2} across London and being diagnosed with dementia.

Roberts et al. [54] explored the effect of NO\textsubscript{2} exposure to mental health problems in children in London, U.K. ($N = 284$). Symptoms of anxiety, depression, conduct disorder and ADHD were assessed at ages 12 and 18. NO\textsubscript{2} concentration in the year 2007 was $37.9 \pm 5.5 \mu\text{g}/\text{m}^3$ (IQR 34.1–41.7). They did not observe any association between NO\textsubscript{2} exposure in childhood and mental health problems at age 12. However, they detected association between NO\textsubscript{2} exposure and subsequent development of symptoms and clinically diagnosable depression and conduct disorders at age 18. They demonstrated that NO\textsubscript{2} exposure at age 12 years was significantly associated with major depressive disorder at age 18.

Prenatal exposure to NO\textsubscript{2} and sex dependent infant cognitive and motor development was analyzed by Lertxundi et al. [55] in children at 4–6 years of age, in four regions in Spain ($N = 1119$). Infant neuropsychological development was assessed by McCarthy scales: verbal, perceptive-manipulative, numeric, general cognitive, memory and motor. NO\textsubscript{2} exposure during pregnancy was from 18.7 ± 6.1 to $41.8 \pm 10.7 \mu\text{g}/\text{m}^3$. The majority of cognitive domains were negative for NO\textsubscript{2}, associations were more negative for boys, statistically significant for memory, global cognition and verbal. These findings indicate a greater vulnerability of boys in domains related to memory, verbal and general cognition.

Jorcano et al. [56] assessed association between NO\textsubscript{2} and depressive and anxiety symptoms, and aggressive symptoms in children of 7–11 years, related to their prenatal
and postnatal exposure. Data were analyzed in 13,182 children from eight European population-based cohorts. Prenatal NO$_2$ levels ranged from 15.9 to 43.5 µg/m3, postnatal levels ranged from 14.0 to 43.5 µg/m3. A total of 1108 (8.4%) and 870 (6.6%) children were classified as having depressive and anxiety symptoms, and with aggressive symptoms. Obtained results suggest that prenatal and postnatal exposure to NO$_2$ is not associated with depressive and anxiety symptoms or aggressive symptoms in children of 7–11 years old.

Loftus et al. [57] used the mother–child cohort from the CANDLE study and analyzed the impact of prenatal NO$_2$ exposure (22.3 ± 7.1 µg/m3) and postnatal exposure (16.2 ± 4.7 µg/m3) on childhood behavior ($N = 975$). In the sample 64% were African American, 53% had a household annual income below USD 35,000 and the child’s age was 4.3 years. Mothers completed the child behavior checklist, a measure of problem behaviors in the past two weeks. The 4 µg/m3 higher prenatal NO$_2$ was positively associated with externalizing behavior (6%, 95% CI: 1, 11%) and the effect of postnatal exposure was stronger (8%, 95% CI: 0, 16%). Prenatal NO$_2$ exposure was also associated with significant internalizing and externalizing behaviors. NO$_2$ exposure is positively associated with child behavior problems and African American and low SES children may be more susceptible.

Kulick et al. [58] examined in 5330 participants from the Northern Manhattan area of New York City the effect of long-term exposure to NO$_2$ (annual estimates $57.4 ± 22.1$ µg/m3) and PM$_{2.5}$ (annual estimates $13.1 ± 4.8$ µg/m3), predominantly in women, with a median age of 75.2 (±6.46) years. A + IQR increase of residential NO$_2$ was predictive of a 22.5D (95% CI, 0.30, −0.14) low global cognitive score at baseline and a more rapid decline (−0.06 SD; 95% CI −0.08, −0.04) in global cognitive function between biennial visits.

Erikson et al. [59] studied the association between NO$_2$ exposure and total gray matter and total white matter volumes in adults, using sample from UK Biobank. Participants were recruited from 2006 to 2010, a subset with magnetic-resonance brain imaging (MRI) included 18,292 participants, with an average age of 62 (44–80) and NO$_2$ levels were $25.61 ± 6.86$ µg/m3. The mean total gray-matter volume was 708,111 mm3 (±47,940), the mean total white-matter volume was 708,111 mm3 (±40,696). The total gray-matter volume was inversely associated with NO$_2$ ($b = −103$, $p < 0.01$). The effect of NO$_2$ on gray-matter volume was more pronounced in females ($b = 161$, $p < 0.05$). Obtained findings suggest that NO$_2$ concentrations lower than EU standard could be associated with reduced total gray-matter.

All reviewed studies indicate a significant health risk of NO$_2$ exposure at concentrations lower than the EU annual limit of 40 µg/m3:

- Prenatal exposure impaired attentional function at the age of 4–5 years;
- Induce neurobehavioral changes in children at the age of 8–10 years;
- Affect attention process in children aged 8–12 years and induced changes are persistent for another 3.5 years;
- Increase major depressive disorder at age 18;
- Increase the incidence of dementia;
- Exposure to NO$_2$ is associated with reduced total gray-matter.

The overall evidence presented in the mentioned studies suggests that attainment of the current EU annual limit for NO$_2$ of 40 µg/m3 may not be sufficient for the protection of human health and further reductions of NO$_2$ concentrations would be beneficial and should be considered. In Switzerland, the current limit for the annual average of NO$_2$ is 30 µg/m3.

4. Measurement of NO$_2$ in Prague by Passive Samplers

To build up on this hypothesis, the measurements of NO$_2$ concentrations at various locations by passive samplers are examined. Some of the results were presented by Deutsche Umwelthilfe [60] as preliminary data; in this study, the results from Prague were examined in a greater detail.

For passive monitoring, membrane-closed Palms tube [61] passive samplers (Passam, Switzerland [62]) were used. Several hundreds of samplers were placed at selected locations
in the Czech Republic, out of which 65 were in Prague, during spring and fall of 2019 (46 and 58 samplers, respectively, a total of 104 samplers), each time for a period of approximately one month. The placement of the tubes generally followed the requirements set in the EU air quality directive (2008/50)—placement away from buildings at a breathing height 1.5–4 m, away from larger obstructions, and for traffic sites, within 10 m of curbside and, in most cases, over 25 m from intersections. In some cases, the samplers were placed closer to intersections, and in some cases, the samplers were placed in less conspicuous places such as behind a traffic sign (see photo in Figure 1), to reduce the chances of tampering. The expanded uncertainty (95% confidence) of the measurement given by the manufacturer is 18.3% for a concentration range 20–40 µg/m³ [62]. The location of samplers is shown on an overview map in Figure 1. The same map also shows the locations of the national air quality monitoring stations referred to in this study.

![Map of sampling locations](image)

Figure 1. Locations of the passive samplers and air quality monitoring stations used for comparison in this study. Photo of a sampler is shown in the upper right corner. (Map source: www.mapy.cz (accessed on 18 May 2021), © Seznam.cz, a.s., used with permission).

The measured concentrations are given in Table 1. For the spring campaign, the dates of the sampling are listed in the “spring measurement period” column, while for the fall campaign, a value is given when a measurement has taken place during the three sampling periods, as some locations were sampled twice. The spring, fall and overall average concentrations, divided by a correction factor of 1.185 (will be explained later in the manuscript) are given. For each location, the average daily vehicle traffic counts reported by the City of Prague Highway Department for 2019 [63] are reported. This table also reports vehicle counts adjusted for additional emissions due to inclines and intersections, these adjustments are discussed later in the manuscript.
Table 1. Measured NO\textsubscript{2} concentrations and average daily vehicle counts.

Location	NO\textsubscript{2} Measurements by Passive Samplers	Spring Measurement Period	Concentration as Analyzed [µg/m3]	Adjusted (div 1.185) Concentrations	Traffic Vehicles/Day	Hill Climb	Inter-Section	>6 tons Excl. Zone		
			Spring	Fall	Average	Total Vehicles	Heavy Vehicles	Adjusted		
31 Budějovická	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
32 Hlída 5. května 39	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
33 Na Veselé	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
34 Sokolská/Ježná	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
35 Ježná/Štěpánská	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
36 Jugoslávských partyzánů 27	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
37 Na Všestětí	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
38 Kaříkov - Svatovítšká	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
39 Svatovítšká/tunnel	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
40 Na Obrechové	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
41 Dejvice train station	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
42 Hradčanská (metro station)	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
43 Veletřínská/Sochařská	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
44 Janovského/Veletřínská	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
45 Křižovnická	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
46 Vinohradská/Flora	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
47 Flora-mall (bus stop)	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
48 Bílovec/Flora (bus stop)	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
49 Vršovická (Slavia main train stop)	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
52 Rumunská/Sokolská	9 March–6 April	30 August–29 September	29 September–30 October	March–April						
120 Severní Spořilov podchod	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
121 Chodov/Dálnice	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
122 Ženíšekova/Na Korábě	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
123 Vychovatelna (bus)	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
124 Rokosa (podchod)	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
125 V Holešovičkách 8/10	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
126 Hotel Pawlowia	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
127 main train station	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
128 Hrušická 6 (balcony)	13 March–24 April	13 March–24 April	13 March–24 April	13 March–24 April						
NO₂ Measurements by Passive Samplers	Spring Measurement Period	Concentration as Analyzed [µg/m³]	Adjusted (div 1.185) Concentrations	Traffic Vehicles/Day	Hill Climb	Intersection	>6 tons Excl. Zone			
--------------------------------------	---------------------------	----------------------------------	---------------------------------------	----------------------	-----------	-------------	-------------------			
Location	March–April	30 August–29 September	7 September–30 October	29 September–30 October	Spring	Fall	Average	Total Vehicles	Heavy Vehicles	Adjusted
129 hlavni 25 (balcony)	13 March–24 April	29	25	25	8000	200	8,000	50%		
130 Havni/most	13 March–24 April	37	31	31	50,487	7400	75,731	100%		
181 Kotevní 2	19 March–24 April	32	27	27	26,500	600	26,500	100%		
182 Strakonická 21/23	19 March–24 April	41	35	35	54,753	3300	54,753	100%		
183 Svornosti 19a	19 March–24 April	48	41	41	11,800	300	11,800	100%		
184 Zborovská 3	19 March–24 April	48	44	44	14,500	300	58,000	100%		
185 V Botanice 4 (regional government)	19 March–24 April	56	49	63	25,028	500	100,112	100%		
186 V Botanice (bank)	19 March–24 April	43	44	37	22,000	500	88,000	100%		
187 Plzeňská 14, Hotel IBIS	19 March–24 April	49	42	35	32,700	700	130,800	100%		
188 Radlická 14/Anděl	19 March–24 April	48	48	41	25,030	600	100,120	100%		
189 Ostrovského	19 March–24 April	43	41	36	23,191	500	92,762	100%		
190 Bíla Karlin	19 March–24 April	32	28	27	25,028	500	100,112	100%		
191 Poběžní (business center)	19 March–24 April	43	40	37	31,200	1200	31,200	100%		
192 Poběžní (monitoring station)	19 March–24 April	38	30	32	31,200	1200	31,200	100%		
193 Negrellího viadukt	19 March–24 April	33	39	28	13,335	800	13,335	100%		
194 Florenc (bus step)	19 March–24 April	46	42	39	14,612	800	58,448	100%		
195 Nám. Republiky (Kotva)	19 March–24 April	47	40	40	83,000	300	33,200	100%		
Mezibranská 3	none	84	79	69	59,645	1800	298,225	100%		
Sokolská/Ječná, Prague	none	74	63	58	55,445	1700	277,225	100%		
Rumunská/Legerova, Prague	none	62	52	48	45,452	1300	181,808	100%		
Buřenská, Prague	none	48	40	40	28,300	800	113,200	100%		
Vysočanská, Prague	none	26	22	22	15,700	400	15,700	100%		
Vysočanská (CHMU), Prague	none	37	31	31	37,035	1600	148,140	100%		
Table 1. Cont.

Location	Spring Measurement Period	March–April	30 August–29 September	7 September–30 October	29 September–30 October	Concentration as Analyzed [µg/m³] Adjusted (div 1.185)	Traffic Vehicles/Day	Traffic Vehicles	Hill Climb	Intersection	>6 tons Excl. Zone
Thámova/Sokolovská, Prague	none	28	24	24							
Radlická (ČSOB), Prague	none	38	32	32							
Radlická (Kotelná Park), Prague	none	33	28	28							
Resslova 1/3, Prague	none	52	44	44	33,027	700	148,622	50%	100%		
Spáťov 1, Prague	none	51	43	43							
Spáťov 2, Prague	none	34	28	28							
Boční/Jihovýchodní VII, Prague	none	28	24	24							
Pankrác 1 BAUHAUS, Prague	none	37	31	31							
Pankrác 2 Doubledinská, Prague	none	29	25	25							
Pankrác 3 viadukt, Prague	none	32	27	27							
Pankrác 4 Hvězdova 35, Prague	none	31	26	26							
Radlická/Klicperova, Prague	none	48	41	41	25,030	500	100,120	100%			
Suchdol AV ČR, Prague	none	20	17	17	0	0	0	0			
Suchdol AV ČR, Prague	none	19	16	16	0	0	0	0			
4.1. Validation by Comparison with the Air Quality Monitoring Network

According to [64], passive diffusion tubes for measuring NO\textsubscript{2} concentrations in air were originally developed in the late 1970s for personal monitoring. They have been widely used in Europe for spatial and temporal measurement of NO\textsubscript{2} concentrations. The method has been found to be cheap, simple, and “provides concentration data in most circumstances that are sufficiently accurate for assessing exposure and compliance with Air Quality criteria” [64]. Reporting on a series of comparison tests, Buzica et al. [65] have concluded that “In the case of NO\textsubscript{2}, all the results of the laboratory and field experiments respected the requirements necessary for the demonstration of equivalence” and that the MCPT are equivalent to the reference methods for assessment of NO\textsubscript{2}. Passive diffusion tubes were reported to show a positive bias when sampling close to sources of NO, such as roadside or street canyons [64]. At the same time, prolonged (several weeks) sampling periods were reported to lead to negative bias [64]. A review done by the Joint Research Center of the European Commission [66], done in part to assess the feasibility of using the samplers for the long-term monitoring of nitrogen dioxide, with the particular aim of checking compliance with the European Union annual limit value of 40 µg/m3, citing a range of previous studies, reports that the “precision of the sampler showed that it is usually better than 5% when using a barrier or shelter to reduce effects of wind-induced turbulence” and that “the relative expanded uncertainty of individual results was estimated to be 32% for worst-case conditions”, with lower values, generally <25%, obtained, for example, by parallel measurements with a reference method, by direct approaches, concluding that overall, “the Palms tube is at least suitable for performing long-term measurements of NO\textsubscript{2} for indicative purposes, and possibly even for fixed measurements”. Recent review of biases associated with Palms tube type passive samplers by Heal et al. [67] suggests that “The effect of net bias can be reduced by application of a local “bias adjustment” factor derived from colocations of PDTs with a chemiluminescence analyzer. When this is carried out, the PDT is suitable as an indicative measure of NO\textsubscript{2} for air quality assessments”.

To evaluate the bias, the data from passive samplers were compared to the data from selected relevant stations of the national air quality monitoring network, listed in Table 2. The national network uses chemiluminescence analyzers capable of measuring both NO and total NO\textsubscript{x}, with NO\textsubscript{2} calculated as the difference of total NO\textsubscript{x} and NO. The uncertainty of the measurements is periodically determined through analysis of reference samples, repeated measurements of the same sample, interlaboratory exercises, and for 2019, was reported to be a combination of absolute uncertainty of 2.3 µg/m3 and a relative uncertainty of 12.3% [68].

The results of this comparison are given in Figure 2. In each case, the value reported by the passive sampler was compared to the average of hourly values from the monitoring station over the period during which the sampler was exposed. The three larger points (in red/orange) represent two samplers colocated with the Karlin monitoring station over two separate one-month periods and one sampler colocated with the Vysočanská monitoring station, show a linear correlation with a slope of 1.185 (at zero intercept; standard error of slope 0.008; differences passive sampler vs. monitoring station of +20%, +17% and +18%). While it can be argued that a regression of three points has a limited meaning, in this case, it shows that three different samplers, each used in a different time period, has produced readings that are a consistent multiple of the monitoring station data. Additionally, two samplers placed at the city urban background reference station for particulate matter (Suchdol campus of the Czech Academy of Sciences, last two lines in Table 1) during the same time period show a relative difference of 6%. These findings are in line with the 5% precision of the Palms tube samples reported in [66].
Table 2. Measured NO₂ concentrations and average daily vehicle counts—monitoring network.

Station	NO₂ Measurements by the National Air Quality Monitoring Network	Average of 1-h Concentrations [µg/m³]	Average Concentrations	Traffic Vehicles/Day	Hill Climb	Inter-Section	>6 tons Excl. Zone					
	9 March–6 April	19 March–21 April	30 August–29 September	7 September–30 October	29 September–30 October	Spring	Fall	2016–2019	Actual	Adjusted		
Legerova	46	62	45	45	54	45	51	46,300	1300	185,200	100%	1
Namesti Republiky	29	35	26	36	32	31	30	10,400	300	41,600	100%	1
Kobylisy	20	21	26	26	20	26	20	0	0	0	0	0
Průmyslová	31	32	31	32	32	31	31	37,035	37,035	37,035	37,035	37,035
Vysočanská	29	37	31	33	31	35	37,035	3500	3500	37,035	37,035	37,035
Karlin	32	26	32	26	26	29	31,200	1200	1200	31,200	31,200	31,200
Figure 2. Comparison of passive sampler reported NO\textsubscript{2} concentrations to the corresponding average values from corresponding monitoring stations. Larger points circled in red denote the colocation of the sampler at the monitoring station.

Smaller blue points in Figure 2 show additional locations. Two samplers were placed at an urban background monitoring station Suchdol, however, data from this station was not available, and the readings are compared with another background monitoring station in Kobylys. Two samplers were placed near Náměstí Republiky monitoring station, but a few dozen meters away and near an exit/entrance ramp to a large shopping center underground parking garage. Two samplers were placed on the corner of Legerova and Rumunská, near the monitoring station but at an intersection controlled by a traffic light. The readings from these four samplers were higher than from the monitoring station, which can be reasonably expected as they were near stopped and accelerating vehicles. The slope for the additional samplers was 1.17 with a standard error of 0.09; it should be noted that differences between actual NO\textsubscript{2} concentrations at the sampler and at the monitoring station are most likely the largest source of uncertainty.

Additional samplers close to the Legerova station (about 150 m from a large intersection) were closer to intersections and therefore exposed to additional cross-traffic, in addition to the increase in emissions rates in the vicinity of intersections. Two samplers were also placed at the Legerova monitoring station (urban hotspot) in the spring of 2019, but both were stolen. Additional samplers were placed near the Karlin monitoring station and near the Náměstí Republiky monitoring stations, and in the general vicinity of the Legerova station. The NO\textsubscript{2} concentrations reported for the samplers were compared with the average NO\textsubscript{2} concentrations measured by the monitoring station, obtained by averaging data over the time the samplers were exposed on the site.

Additional samplers used in the comparison were at reasonably close locations with not overly dissimilar traffic, and were not too far from the 15\% tolerance reported by the Defra report [64]. It should be noted that the tolerance is applicable to the deviation of the sampler-reported and reference value, and not to the differences due to the samplers being at different locations with different emissions characteristics.

For all subsequent data analysis, the concentrations from the passive samplers were divided by the regression slope of 1.185. It should be noted that while this correction represents the best judgment by the authors, it is based on limited data and could be viewed as arbitrary, as the difference could arise out of the 12.3\% uncertainty of the reference measurement the manufacturer-reported 18\% expanded uncertainty of the passive sampler.
4.2. Comparison of NO$_2$ during Passive Samplers Deployment with Long-Term Averages

The variation of climatic and weather conditions is an additional source of bias to consider when comparing passive samplers to annual mean values. Figure 3 shows that the average values of NO$_2$ recorded at the monitoring stations over sampling periods of individual samplers (different four-week periods in March–April 2019) did not dramatically differ from annual means during the last four years (2016–2019), although differences in trends were observed among the stations. For example, the Legerova urban hotspot station exhibited an annual average of 51 µg/m3 (2016–2019), compared to 46 µg/m3 during the period of 9 March–April 6 and 62 µg/m3 during 19 March–24 April. The Náměstí Republiky urban background station had a 2016–2019 average of 30 µg/m3, compared to 29 µg/m3 during 9 March–6 April and 35 µg/m3 during 19 March–24 April. It should be noted that the NO$_2$ concentrations were generally lower during mid-March and higher during mid-April. Overall, the NO$_2$ concentrations during the sampling periods are believed to be representative of the annual average concentrations.

![Figure 3. Comparison of monitoring station NO$_2$ averages during sampling periods with four-year average.](image)

The consistency of the measurement by passive samplers during spring and fall periods is shown, along with data from the reference monitoring stations, in Figure 4. The slope of regression (with intercept forced through zero) was 0.91 ± 0.05 for the monitoring stations and 0.92 ± 0.02 for the passive samplers, showing that the monitoring stations and the passive samplers reported the same overall trends in NO$_2$ concentrations.

![Figure 4. Comparison of spring and fall NO$_2$ concentrations.](image)
4.3. Effects of Traffic

For further analysis, all passive sampler measurements were divided by a factor of 1.185 (the slope of regression of passive sampler vs. reference NO\textsubscript{2}, see Figure 1).

The relationship between the vehicular traffic intensity and the NO\textsubscript{2} concentrations measured by the passive samplers is given in Figure 5. As samplers were used over two different periods, they are plotted separately in two series, one for each period, along with the average values from Legerova and Náměšť Republiky monitoring stations. It appears that there is a moderate positive trend of NO\textsubscript{2} increasing with traffic. Additionally, samplers located next to an uphill section of a divided highway (or a one-way street with the traffic going in the uphill direction) and next to an intersection tend to exhibit higher NO\textsubscript{2} concentrations. It also appears that the NO\textsubscript{2} concentrations are higher in urban canyons and congested streets of the city center and near intersections.

![Figure 5. Relationship between traffic intensity and NO\textsubscript{2} concentrations measured by passive samplers in spring and fall of 2019 and by the national monitoring network (average of 2016–2019).](image_url)

To account for additional emissions due to hills and intersections, the intensity of traffic traveling uphill was increased by 100% to account for additional fuel consumption, and for samplers located at intersections, the intensity of traffic was increased by 300% to account for fuel consumed at idle and when accelerating (where the intersection was without a major delay, such as time-synchronized signals at intersections of a larger one-way street with a side street or pedestrian crossing, the factor was reduced by one half). These adjustments factors were arbitrarily selected based on experience with vehicle emissions behavior (additional emissions due to climbing a hill, additional emissions due to idling at intersections and acceleration from intersections) and were independent of each other. (Note: as an example of rough calculation for a passenger car diesel engine, the acceleration of a 1500 kg car from 0 to 50 km/h requires a gain of kinetic energy of 145 kJ or 40 Wh, corresponding, at 250 g/kWh engine fuel consumption, to 10 g of fuel. The fuel consumption at idle is about 5 g/min. A one-minute stop and acceleration consumes 15 g of fuel. Driving at steady speed requires about 30 g of fuel per km, or 3 g per 100 m. If half of the cars stop and wait, the emissions in a 100 m segment around the intersection...
are 9 g, compared to 3 g in the case of free-flowing traffic. For simplicity, NO\textsubscript{x} emissions are assumed to be proportional to the fuel consumption.) The relationship between the adjusted vehicle volume and NO\textsubscript{2} concentrations is plotted in Figure 7.

Figure 6. Relationship between traffic intensity and NO\textsubscript{2} concentrations measured by passive samplers (average of all measurement periods) and by the national monitoring network (average of 2016–2019).

Figure 7. Relationship between adjusted traffic intensity (traffic count \times (1 + fraction of vehicles travelling uphill + 3 \times fraction of vehicles stopping at an intersection)) and NO\textsubscript{2} concentrations measured by passive samplers (average of all measurement periods) and by the national monitoring network (average of 2016–2019).
The relatively strong correlation between the adjusted traffic volumes and NO$_2$ concentrations ($R^2 = 0.78$ for September-October data and 0.76 for spring-fall averages; slope 0.13 ± 0.01; intercept 27 ± 1 µg/m3) suggests that “local” NO$_2$, comprising of primary NO$_2$ emitted from the tailpipe and NO$_2$ formed locally from NO by reaction with ozone (i.e., [69]), is a considerable and in many locations dominant source of NO$_2$. There is no observable difference between the sampling locations where truck traffic over 6 tons was excluded and the locations where it was not excluded. Overall, there seems to be a very strong correlation between the estimated relative intensity of mobile source emissions and the measured NO$_2$ concentrations. It is likely that the correlation could be further improved by taking into the account distance from the traffic, traffic on adjacent streets, tunnel exits and other compounding factors.

A similar plot of the regression of the dependency of NO$_2$ on adjusted traffic volumes is plotted separately for the spring and fall campaigns in Figure 8, with red line denoting the legal annual NO$_2$ limit of 40 µg/m3 and green line the Swiss federal limit of 30 µg/m3 (shown for illustration in support of the health review). The regression shows that NO$_2$ concentrations, in all cases, increased by 0.13 µg/m3 per 1000 vehicles daily traffic volume, adjusted for uphill and intersections, where adjusted traffic count is traffic count multiplied by a factor of $(1 + \text{fraction of vehicles travelling uphill} + 3 \times \text{fraction of vehicles stopping at an intersection})$. It should be noted that the intercept of the regression (25–28 µg/m3 in Figures 7 and 8; (standard error of slope is 0.01; standard error of intercept is 1 µg/m3) is higher than the “urban background” concentrations of 15–20 µg/m3, most likely due to accounting only for traffic on major roads and not for parking garages, taxi waiting areas, and similar locations. Even the urban background concentrations cannot be considered as NO$_2$ concentrations that would be theoretically be expected if no motor vehicles were operated in Prague, due to the dispersion and transport of the pollutants.

Figure 8. Relationship between adjusted traffic intensity (traffic count × (1 + fraction of vehicles travelling uphill + 3 × fraction of vehicles stopping at an intersection)) and NO$_2$ concentrations measured by passive samplers (average of all measurement periods) and by the national monitoring network (average of 2016–2019). EU annual limit of 40 µg/m3 NO$_2$ shown as a red line, Swiss federal limit of 30 µg/m3 NO$_2$ shown as a dotted green line.

Even at a rather conservative adjustment of the passive sampler readings (according to the regression, the sampler readings were 18% higher, however, this was, to a large extent, due to many samplers being at locations where the concentrations would reasonably be
expected to be higher than at the corresponding monitoring station), it is clear from Figure 7 that the annual average limit of 40 µg/m³ NO₂ is likely to be exceeded at numerous locations throughout Prague, generally, where the adjusted traffic volumes exceed the equivalent of 100 thousands of vehicles per day. This is, for example, the north-south passageway through the center city (Wilsonova, Sokolská and Legerova street) with many intersections, but also roads like V Holešovičkách (a six-lane road with 85–90 thousand vehicles per day, with a gradient of approximately 3%), a possible new hot-spot in Prague. In the worst case (intersection of two one-way streets with all vehicles traveling uphill), this limit could be reached already at 20 thousand vehicles per day, as also apparent from Figure 6.

5. Effects of Travel Restrictions on Ambient NO and NO₂ Concentrations

In order to assess the contribution of light and heavy vehicles to NO and NO₂ concentrations, hour-by-hour NO and NO₂ ambient air quality data from the national air quality monitoring network was analyzed for a period of 14 March–30 April 2020, during which travel restrictions were imposed, including the prohibition of all non-cargo international travel (truck traffic was exempted). For reference, the same period was assessed for four previous years.

A total of five stations in Prague were selected:

a. Legerova street, considered an urban hotspot, with about 45 thousand vehicles traveling daily in one direction (with similar traffic volumes in the opposite direction on a parallel street), primarily (97–98%) light-duty vehicles (trucks over 12 tons are restricted from entering inner Prague and trucks over 6 tons are restricted in the Prague historical district);

b. Vysošínská street and Průmyslová street, two traffic stations located on heavily traveled main roads used by local and transit truck traffic;

c. Náměstí Republiky, urban background station in a historical city center, on the border of pedestrian area

d. Kobylisy, a station in a suburban residential neighborhood

e. For comparison, a rural background station in Košetice, serving as the Czech national reference station, was used as a reference.

Arithmetic and geometric means and the NO₂/NOₓ ratios are plotted, for each station and all years, in Table 3. A single-factor analysis of variance (ANOVA) was performed to compare the variances among the five data sets (one for the year 2020, four for each of the reference years 2016–2019) with the differences within the sets. The associated p-value (p1) was compared to the p-value (p2) associated with the difference between mean for the year 2020 and the grand mean for all five years. The higher of the p2/p1 ratio and the p2 (ensuring that the significance of the difference of the year 2020 is much higher than the difference among the years) is then considered the resulting p-value of the test.

As an alternative analysis, the statistical difference of data from each year from the combined data set for all five years was evaluated using a t-test, and the p-value associated with the test for the year 2020 was divided by the average of the four p-values associated with each of the four reference years.

It is apparent from the Table 2 that NO concentrations significantly decreased at all three traffic stations, with a highest mean decrease of 46% at Legerova and at the Košetice rural background station. The decrease in NO₂ concentrations was lower than for NO at all Prague stations, highest at Legerova (20%), and even higher (40%) at the Košetice rural background station. As vehicles emit primarily NO, the NO₂/NOₓ ratio tends to increase with the age of the emissions, being lowest (around 60%) at Legerova street, 65–70% at Vysošínská, Průmyslová and Náměstí Republiky, 80% at the Kobylisy residential background station and around 90% at the rural station in Košetice. One possible interpretation of the increase in the NO₂/NOₓ ratio at Legerova could be that the primary emissions of both NO and NO₂ were reduced, with lower reduction in “background” NO₂ originating from NOₓ emitted elsewhere. Another possible explanation is the reaction
of NO with ozone, yielding NO\(_2\) [70]. Both March and April of 2020 were substantially sunnier than average—4 sunny days and 180 h of sunshine in March and 13 sunny days and 290 h of sunshine in April, compared to 1981–2010 average of about 3 sunny days and 120 h of sunshine for March and 3–4 sunny days and 180 h of sunshine for April [71].

Table 3. Comparison of NO and NO\(_2\) concentrations at six monitoring stations during March–April 2020 travel restrictions with the same period during the prior four years.

14 March–30 April	µg/m\(^3\), Arithmetic Mean	µg/m\(^3\), Geometric Mean	Ratio				
Station	NO	NO\(_2\)	NO\(_3\)	NO	NO\(_2\)	NO\(_3\)	NO\(_2\)/NO\(_3\)
Náměstí							
2016	12.0 ± 14.0	20.2 ± 7.1	38.8 ± 26.4	6.9 ± 3.2	19.2 ± 1.4	33.5 ± 1.7	55.7 ± 2.1
2017	12.1 ± 12.5	33.1 ± 14.6	51.7 ± 50.8	9.4 ± 1.9	30.4 ± 1.5	46.0 ± 1.6	66.6 ± 1.5
2018	15.1 ± 19.5	35.2 ± 17.7	59.1 ± 43.7	9.8 ± 2.6	31.5 ± 1.6	49.1 ± 1.8	65.8 ± 1.8
2019	10.9 ± 14.2	31.9 ± 15.2	48.7 ± 33.5	7.5 ± 2.1	28.9 ± 1.5	41.9 ± 1.7	70.0 ± 1.7
2020	10.8 ± 10.6	27.8 ± 14.5	44.6 ± 28.2	8.0 ± 2.1	24.9 ± 1.6	38.4 ± 1.7	66.2 ± 1.2
Náměstí							
2016 vs.							
2016–2019	−14%	−7%	−10%	−3%	−8%	−9%	2%
Kočetice							
2016	0.5 ± 0.6	6.0 ± 2.6	6.8 ± 3.1	0.3 ± 2.0	5.4 ± 1.6	6.2 ± 1.6	90.4 ± 7%
2017	0.3 ± 0.4	7.3 ± 3.0	7.8 ± 3.2	0.3 ± 1.8	6.7 ± 1.5	7.2 ± 1.5	93.6 ± 9%
2018	0.3 ± 0.4	8.0 ± 2.7	4.3 ± 3.0	0.2 ± 2.6	5.1 ± 1.9	5.3 ± 1.9	90.9 ± 9%
2019	0.2 ± 0.3	6.0 ± 1.9	4.0 ± 2.1	0.1 ± 2.9	3.8 ± 1.8	3.9 ± 1.8	91.9 ± 3%
2020	0.2 ± 0.3	6.1 ± 1.7	3.5 ± 1.9	0.1 ± 2.8	2.7 ± 1.8	3.0 ± 1.8	90.9 ± 9%
Kočetice							
2016 vs.							
2016–2019	−22%	4%	−5%	14%	−2%	−8%	−6%

It should be noted, however, that the interplay of different factors is rather complex. For example, diminished traffic volumes result in lower frequency of low-speed driving in congested areas, during which the efficiency of exhaust aftertreatment is reduced, resulting in higher overall exhaust temperatures (and thus higher production of NO\(_2\) in oxidation catalysts), but also higher probability of SCR functionality (and thus lower NO\(_3\) emissions)—however, due to Dieselgate, the reality of NO\(_3\) aftertreatment efficiency is likely to be variable, questionable and poorly known.

Additionally, according to [72], it appears that on-road oxidation of NO by ambient O\(_3\) is a significant, but so far ignored, contributor to curbside and near-road NO\(_2\). This is in agreement with on-road NO\(_2\)/NO\(_3\) ratios in U.S. being reported to be 25–35% and substantially higher than anticipated tailpipe emissions rates [73].
6. Discussion

A detailed analysis of NO\textsubscript{2} concentrations measured by the passive samplers shows a clear correlation of NO\textsubscript{2} concentrations with daily traffic counts, adjusted for additional emissions due to uphill travel and stopping at intersections. This finding is in good agreement with the data from the monitoring stations, which, by themselves, are too sparse to make such inference. The correlation of NO\textsubscript{2} concentrations with vehicular traffic intensity is also apparent from the comparison of the data from state air quality monitoring stations during the period of 14 March–30 April 2020, during which travel restrictions were imposed, including the prohibition of all non-cargo international travel, with comparable periods of four previous years. Overall, the findings confirm that vehicular traffic, through primary NO\textsubscript{2} emissions (and possibly through fast reaction of primary NO with ozone), directly affects the NO\textsubscript{2} concentrations in the immediate vicinity.

This correlation, along with correlation of passive sampler readings and air quality monitoring stations, and good consistency of reported NO\textsubscript{2} concentrations among samplers used within the same location at different time periods, all suggest that passive samplers appear to provide, at a reasonable cost and effort, a fairly good image of the distribution of NO\textsubscript{2} concentrations. Judging from limited data, the passive samplers were found to measure about 18.5% higher values than the monitoring stations. Repeated—and most likely deliberate—removals of passive samplers from the immediate vicinity of the monitoring stations have prevented a more quantitative comparison. A comparison of a broader set of data reveals a slightly smaller bias, contributed to, in several cases, by the passive samplers being at more exposed locations (i.e., near the exit of a large underground parking garage) than the monitoring stations. The true bias could therefore be possibly even lower.

Since the trends are comparable within and outside the heavy truck exclusion area, this seems to be primarily an effect of cars and other lighter vehicles (per city statistics, about 90% of traffic is passenger cars [63]). Additionally, there is no correlation between the measured NO\textsubscript{2} concentrations and the heavy vehicle traffic count or between the measured NO\textsubscript{2} concentration and the fraction of heavy vehicles. This is in line with the findings that truck NOx emissions have decreased to a considerably higher extent than those of diesel cars in Europe.

The samplers at the locations with highest fraction of heavy vehicles (10–15%, vs. average for all locations 4%) and with the highest absolute heavy vehicle counts (7–16 thousands/day, vs. average 1.7 thousands/day) have measured 25–35 \(\mu g/m^3\) NO\textsubscript{2}, which is in the second lowest quartile (median concentration is 35 \(\mu g/m^3\)). This may also be, in part, due to a dependent factor that heavy vehicle traffic is limited in the high population density city center.

The monitoring station at Legerova street is most likely not the absolute hot-spot—it is expected that the emissions of NO\textsubscript{x} would be higher on the parallel street where the vehicles travel uphill (Legerova is one-way street downhill) and at nearby intersections. The street V Holešovičkách, a six-lane road, which is, unlike most other roads of similar size, immediately bordered by residential neighborhoods, with a traffic intensity approaching 100 thousand vehicles per day, a major increase after the opening of a new complex of tunnels providing an alternative route through congested areas, further complicated by a 3% grade, could easily be the next traffic hot-spot.

Considering the finding that about half of the vehicles traveling on the road are not older than 7 years [27], and the several-fold decrease in NO\textsubscript{x} emissions standards over the last decade and half, a much sharper decrease of NO\textsubscript{2} concentrations would be expected than the approximately 1% annually reported by Hűnová [5]; a higher reduction of about 2.5% annually was observed in Western Europe, and about 4.7% annually in United States and Canada [74]. Given the decrease in the limit values of roughly two thirds from Euro 3 (0.50 g/km NO\textsubscript{x}, 2000) to Euro 5 (0.18 g/km, 2009–2010) and from Euro 4 (0.25 g/km NO\textsubscript{x}, 2005) to Euro 6 (0.08 g/km, 2014–2015), the introduction of Euro 5 in late 2009 and Euro 6 in late 2014 should have resulted in about a two thirds NO\textsubscript{x} reduction in at least
half of the vehicles, or about one third reduction in NO\textsubscript{x} emissions in general. As learned from the analysis of the effects of traffic restrictions, the effect on NO\textsubscript{2} concentrations may be different, and possibly somewhat smaller than the reduction in NO\textsubscript{x} emissions, due to atmospheric chemistry. The effects of such a decrease could also have been diminished by an increase in traffic, however, in the center city, the intensity of automobile traffic has been stagnating, or even slightly decreasing.

The mediocre decrease in NO\textsubscript{2} concentrations, despite more dramatic reduction being expected from improving vehicle technology, is in line with earlier findings that the real NO\textsubscript{x} emissions of diesel vehicles did not decrease despite the decreasing emissions limits. The situation should have been, however, substantially remedied by ”post-Dieselgate” vehicles and by repairs of vehicles affected by Dieselgate. Since it was not, a question therefore arises as to the possibility that Dieselgate relevant repairs were not done on a sufficient number of vehicles and/or were not sufficiently effective and/or were reversed to the ”original factory conditions” by the vehicle owners. The authors do not have any reliable statistics on this matter. Furthermore, considering that all three mentioned situations could be associated with criminal offenses and/or considerable civil penalties, detailed investigation of the matter is likely to be considerably difficult.

If there is no assurance that the NO\textsubscript{2} concentrations will decrease dramatically due to a radical improvement in primary NO\textsubscript{x} emissions, the only other suitable strategy to improve the air quality is to reduce, to the extent required, the intensity of vehicular traffic. Contrary to the remote regions where automobiles are, in most cases, the only practical means of travel, Prague has an extensive network of public transit. According to the City of Prague statistics [63], only 29% of trips in Prague are done by automobile, 26% of trips are by walking and 42% of trips by public transit. Of the public transit, slightly over one third is done by subway, and another third by trams and commuter rail, which are, with the exception of a rather small number of diesel rail cars used on sparsely traveled rail lines, run on electric power, and therefore with very small effect on NO\textsubscript{2} emissions. The remaining third of trips is by diesel buses, the majority of which are equipped with SCR catalysts, and potentially reaching NO\textsubscript{x} emissions not much larger (and according to measurements possibly even smaller) levels, per kilometer and vehicle, than an average diesel car. It is therefore readily apparent that shifting from an average automobile to any other means of transport is likely to reduce the NO\textsubscript{2} concentrations. (Shift to electric power, compressed natural gas, or other ”clean” propulsion is a gradual process and is unlikely to be done, within a few years, on a sufficiently large number of vehicles to make a difference throughout the city).

7. Summary and Conclusions

Despite massive reductions in diesel cars NO\textsubscript{x} emission limits, of about two thirds from Euro 3 to Euro 5 and from Euro 4 to Euro 6, NO\textsubscript{2} concentrations throughout the Czech Republic have been decreasing at a mediocre rate of 1% annually.

A review of the underlying engine emissions trends shows that the conversion of NO into NO\textsubscript{2} in diesel oxidation catalysts, beneficial for regeneration of diesel particle filters and for the functioning of the SCR systems for NO\textsubscript{x} reduction, did not, contrary to the intentions of the legislation, go hand in hand with a major reduction of NO\textsubscript{x} emissions in subsequent (downstream) NO\textsubscript{x} aftertreatment devices. As a result, primary NO\textsubscript{2} emissions from light duty diesel vehicles are in most cases considerably higher than intended in the emissions legislation due to non-adherence of many manufacturers to the primary intent of the legislation.

A review of the health effects on NO\textsubscript{2} on children shows that all reviewed studies indicate a significant effect of prenatal NO\textsubscript{2} exposure to children’s neurobehavioral development, in adults to dementia at concentrations lower than EU standards of 40 µg/m3/year. These results should be understood as a strong recommendation to reduce the NO\textsubscript{2} concentrations below the current EU standard. All presented studies prove that NO\textsubscript{2} can
significantly deteriorate CNS and therefore this knowledge should be used to improve the quality of our lives.

To elucidate the effects of motorized traffic on NO\textsubscript{2} concentrations, data from 104 passive NO\textsubscript{2} samplers deployed at 65 locations in Prague during March–April and September–October of 2019 were examined. Comparisons with the national monitoring network show a positive bias of 18.5% for colocated samplers and 17% for samplers nearby (or in similar settings as) the monitoring stations. There was a good correlation among repeated measurements at the same locations. The data from the national air quality monitoring network show that the average concentrations in both spring and fall sampling periods were consistent with 2016–2019 averages.

The average measured NO\textsubscript{2} concentrations at the selected locations, after correcting for the 18.5% bias, were in the range of 16–69 μg/m3, with a mean of 36 μg/m3 and a median of 35 μg/m3, and were higher than the EU and national limit (annual average) of 40 μg/m3 at 32% of locations. The NO\textsubscript{2} concentrations have correlated well with the intensity of traffic (average daily vehicle counts), corrected for additional emissions due to uphill travel and due to idling at, and accelerating from, intersections. Several additional “hot-spots” were identified, in addition to the “hot-spot” monitoring station at Legerova street (2016–2019 NO\textsubscript{2} average of 51 μg/m3), where the vehicles travel on a slight decline on a one-way street: several intersections at Sokolská street, parallel with Legerova with uphill direction of travel, and emerging hot-spots along V Holešovičkách street, where the traffic intensity increased due to the opening of a new series of tunnels. Analysis of the effect of coronavirus related travel restrictions were evaluated by comparing the data from six monitoring stations (15 March–30 April 2020, relative to the same period during 2016–2019) reveal a reduction of NO, NO\textsubscript{2} and NO\textsubscript{x} (except for a small increase of NO\textsubscript{2} at one of the background stations), with NO reduction being, at high traffic locations, higher than that of NO\textsubscript{2}. The spatial analysis of data from passive samplers and time analysis of data during the travel restrictions both demonstrate a consistent positive correlation between traffic intensity and NO\textsubscript{2} concentrations along/near the travel path.

It appears that decreases in vehicle NO\textsubscript{x} emission limits, introduced in the last decade or two, have failed to sufficiently reduce the ambient NO\textsubscript{2} concentrations in exposed locations in Prague. This is in part due to increased fraction of NO\textsubscript{2} in NO\textsubscript{x} in newer vehicles, and in part due to “a major disparity between the numerical value of the emission limit and the actual emissions in everyday driving”. Further, there is no apparent sign of, and it is far from clear that, the “excess emissions” of NO\textsubscript{x}, a problem known as Dieselgate, have been efficiently remedied.

Author Contributions: M.S. has organized the passive sampling campaign, selected locations, placed and removed samplers, and secured funding. R.J.S. has compiled the review of health effects. J.S. has participated in data analysis. M.V.-L. reviewed the engine emissions and did a large share of data analysis and manuscript writing. All authors have read and agreed to the published version of the manuscript.

Funding: The acquisition and analysis of the passive samplers was funded by Deutsche Umwelthilfe (Environmental Action Germany), Hackescher Markt 4, 10178 Berlin, Germany, www.duh.de (accessed on 18 May 2021). Evaluation of the passive samplers and some of the background research on emissions was done (M.V.) within the H2020 project no. 851002 uCARe. You can also reduce emissions. Review of the health effects and remaining work has been supported by the European Regional Development Fund under Grant Healthy Aging in Industrial Environment HAIE (CZ.02.1.01/0.0/0.0/16_019/0000798).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Most of the relevant data is contained in the manuscript. Sampling and analytical protocols associated with passive samplers are available from Miroslav Šuta. Traffic volume data are publicly available, see the link in the reference list. Data from the national air
quality monitoring network are a third-party data and must be requested directly from the Czech Hydrometeorological Institute.

Acknowledgments: The data from the national air quality monitoring network was provided by the Czech Hydrometeorological Institute. The authors thank Václav Novák, the Head of the Air Quality Information System Department, for providing the data and for helpful advice.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Health Effect Institute. State of Global Air Report. 2018. Available online: https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf (accessed on 8 February 2021).

2. European Environment Agency (EEA). Air Quality in Europe; European Environment Agency: Copenhagen, Denmark, 2020. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 8 February 2021).

3. World Bank. The Cost of Pollution: Strengthening the Economic Case for Action; World Bank: Washington, DC, USA, 2016. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/25013/108141.pdf?sequence=4&isAllowed=y (accessed on 8 February 2021).

4. Hesterberg, T.W.; Long, C.M.; Sax, S.N.; Lapin, C.A.; McClellan, R.O.; Bunn, W.B.; Valberg, P.A. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE). J. Air Waste Manag. Assoc. 2011, 61, 894–913. [CrossRef] [PubMed]

5. Hunova, I.; Baumelt, V.; Modlik, M. Long-term trends in nitrogen oxides at different types of monitoring stations in the Czech Republic. Sci. Total Environ. 2020, 699, 134378. [CrossRef]

6. Georgoulias, A.K.; van der, A.J.R.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Trends and trend reversal detection in 2 decades of tropospheric NO$_2$ satellite observations. Atmos. Chem. Phys. 2019, 19, 6269–6294. [CrossRef]

7. Casquero-Vera, J.A.; Lyamani, H.; Titos, G.; Borras, E.; Olmo, F.J.; Alados-Arboledas, L. Impact of primary NO$_x$ emissions at different urban sites exceeding the European NO$_x$ standard limit. Sci. Total Environ. 2019, 646, 1117–1125. [CrossRef] [PubMed]

8. Wild, R.J.; Dubé, W.P.; Aikin, K.C.; Eilerman, S.J.; Neuman, J.A.; Peischl, J.; Ryerson, T.B.; Brown, S.S. On-road measurements of vehicle NO$_x$/NO emission ratios in Denver, Colorado, USA. Atmos. Environ. 2017, 148, 182–189. [CrossRef]

9. Grange, S.K.; Lewis, A.C.; Moller, S.J.; Carslaw, D.C. Lower vehicular primary emissions of NO$_2$ in Europe than assumed in policy projections. Nat. Geosci. 2017, 10, 914–918. [CrossRef]

10. Zeldovich, Y.B. The Oxidation of Nitrogen in Combustion Explosions. Acta Physicochim. 1946, 21, 577–628.

11. Lavoie, G.A.; Heywood, J.B.; Keck, J.C. Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines. Combust. Sci. Technol. 1970, 1, 313–326. [CrossRef]

12. Gutzwiller, L.; Arens, F.; Baltensperger, U.; Gaggero, H.W.; Ammann, M. Significance of Semivolatile Diesel Exhaust Organics for Secondary HONO Formation. Environ. Sci. Technol. 2002, 36, 677–682. [CrossRef]

13. Kurtenbach, R.; Becker, K.H.; Gomes, J.A.G.; Kleffmann, J.; Lorzer, J.C.; Spittler, M.; Wiesen, P.; Ackermann, R.; Geyer, A.; Platt, U. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 2001, 35, 3385–3394. [CrossRef]

14. Heeb, N.V.; Zimmerli, Y.; Czerwinski, J.; Schmid, P.; Zennegg, M.; Haag, R.; Seiler, C.; Wieser, P.; Ackermann, R.; Geyer, A.; et al. Reactive nitrogen compounds (RNCs) in exhaust of advanced PM–NOx abatement technologies for future diesel applications. Atmos. Environ. 2011, 45, 3203–3209. [CrossRef]

15. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley and Sons: Hoboken, NJ, USA, 1998.

16. Mooney, J.J.; Thompson, C.E.; Dettingl, J.C. Three-Way Conversion Catalysts Part of the New Emission Control System. SAE Trans. 1977, 86, 1553–1562.

17. Falk, C.D.; Mooney, J.J. Three—Way Conversion Catalysts: Effect of Closed—Loop Feed—Back Control and Other Parameters on Catalyst Efficiency. SAE Trans. 1980, 89, 1822–1832.

18. Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [CrossRef]

19. Thompson, G.; Carder, D.; Clark, N.; Gautam, M. Summary of In-use NO$_x$ Emissions from Heavy-Duty Diesel Engines. SAE Int. J. Commer. Veh. 2009, 1, 162–184. [CrossRef]

20. United States Department of Justice (USDOJ). Clean Air Act Diesel Engine Cases. 2015. Available online: https://www.justice.gov/enrd/diesel-engines (accessed on 2 February 2021).

21. United States Code of Federal Regulations (US CFR). Volume 40, Part § 86.1370: Not-To-Exceed Test Procedures. 2000. As Amended by Subsequent Regulations. Available online: https://www.law.cornell.edu/cfr/text/40/86.1370 (accessed on 18 May 2021).

22. Gieshaskiel, B.; Gioria, R.; Carriero, M.; Lahde, T.; Forloni, F.; Perujo Mateos del Parque, A.; Martini, G.; Bissi, L.M.; Terenghi, R. Emission Factors of a Euro VI Heavy-duty Diesel Refuse Collection Vehicle. Sustainability 2019, 11, 1067. [CrossRef]

23. Suarez-Bertoa, R.; Valverde, V.; Clairotte, M.; Pavlovic, J.; Gieshaskiel, B.; Franco, V.; Kregar, Z.; Astorga-Llorens, M. On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environ. Res. 2019, 176, 108572. [CrossRef]
24. Quiros, D.C.; Thiruvengadam, A.; Pradhan, S.; Besch, M.; Thiruvengadam, P.; Demirgok, B.; Carder, D.; Oshinuga, A.; Huai, T.; Hu, S. Real-world emissions from modern heavy-duty diesel, natural gas, and hybrid diesel trucks operating along major California freeway corridors. *Emiss. Control Sci. Technol.* 2016, 2, 156–172. [CrossRef]

25. Jiang, Y.; Yang, J.; Cocker, D., 3rd; Karavalakis, G.; Johnson, K.C.; Durbin, T.D. Characterizing emission rates of regulated pollutants from model year 2012 + heavy-duty diesel vehicles equipped with DPF and SCR systems. *Sci. Total Environ.* 2018, 619–620, 765–771. [CrossRef]

26. Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Zacharof, N. Real world emissions performance of heavy-duty Euro VI diesel vehicles. *Atmos. Environ.* 2019, 201, 348–359. [CrossRef]

27. Skacel, J.; Vojtisek-Lom, M.; Beranek, V.; Pechout, M. Black Sheep—Detecting Polluting Vehicles on the Road Using Roadside Particle Measurement. In Proceedings of the ETH Conference on Combustion Generated Nanoparticles, Zurich, Switzerland, 18–21 June 2018. Available online: https://nanoparticles.ch/archive/2018_Skacel_PO.pdf (accessed on 2 February 2021).

28. Vojtisek-Lom, M.; Fenkl, M.; Dufek, M.; Mares, J. Off-Cycle, Real-World Emissions of Modern Light Duty Diesel Vehicles; SAE International: Warrendale, PA, USA, 2009. [CrossRef]

29. Weiss, M.; Bonnel, P.; Kuhlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G.; et al. Will Euro 6 reduce the NOx emissions of new diesel cars?—Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). *Atmos. Environ.* 2012, 62, 657–665. [CrossRef]

30. Ligerink, N.; Kadijk, G.; Mensch, P.; van Hausberger, S.; Rexeis, M. *Investigations and Real World Emission Performance of Euro 6 Light-Duty Vehicles*; Report TNO 2013 R11891; TNO: The Hague, The Netherlands, 2013; p. 53.

31. Franco, V.; Sanchez, F.P.; German, J.; Mock, P. Real-World Exhaust Emissions from Modern Diesel Cars: A Meta-Analyses of PEMS Emissions Data from EU (EURO 6) and US (TIER 2 BIN 5/ULEV II) Diesel Passenger Cars; White Paper; International Council Clean on Transportation (ICCT): Berlin, Germany, 2014.

32. Yang, L.; Franco, V.; Mock, P.; Kolke, R.; Zhang, S.; Wu, Y.; German, J. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars. *Environ. Sci. Technol.* 2015, 49, 14409–14415. [CrossRef] [PubMed]

33. Olsen, D.B.; Kohls, M.; Arney, G. Impact of oxidation catalysts on exhaust NO2/NOx ratio from lean-burn natural gas engines. *J. Air Waste Manag. Assoc.* 2010, 60, 867–874. [CrossRef]

34. Carslaw, D.C. Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions. *Atmos. Environ.* 2005, 39, 4793–4802. [CrossRef]

35. Carslaw, D.; Rhys-Tyler, G. Remote Sensing of NO2 Exhaust Emissions from Road Vehicles: A Report to the City of London Corporation and London Borough of Ealing; DEFRA: London, UK, 2013.

36. Preble, C.V.; Harley, R.A.; Kirchstetter, T.W. *Measuring Real-World Emissions from the On-Road Heavy-Duty Truck Fleet*; University of California: Berkeley, CA, USA, 2019.

37. Vojtisek-Lom, M.; Beranek, V.; Kliro, V.; Jindra, P.; Pechout, M.; Vorisek, T. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU6 light utility vehicles: Comparison of diesel and CNG. *Sci. Total Environ.* 2018, 616–617, 774–784. [CrossRef]

38. Pechout, M.; Kotek, M.; Jindra, P.; Macoun, D.; Hart, J.; Vojtisek-Lom, M. Comparison of hydrogenated vegetable oil and biodiesel effects on combustion, unregulated and regulated gaseous pollutants and DPF regeneration procedure in a Euro6 car. *Sci. Total Environ.* 2019, 686, 133748. [CrossRef]

39. Singh, J. Nitrogen dioxide exposure alters neonatal development. *Neurotoxicology* 1988, 9, 545–549.

40. Wang, S.Q.; Zhang, J.L.; Zeng, X.D.; Zeng, Y.M.; Wang, S.C.; Chen, S.Y. Association of traffic-related air pollution with children’s neurobehavioral functions in Quanzhou, China. *Environ. Health Perspect.* 2016, 124, 156–172. [CrossRef]

41. Kim, E.; Park, H.; Hong, Y.-C.; Ha, M.; Kim, Y.; Kim, B.N.; Kim, Y.; Roh, Y.M.; Lee, B.E.; Ryu, J.M.; et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: Mothers and Children Environmental Health (MOCEH) study. *Sci. Total Environ.* 2014, 481, 439–445. [CrossRef]

42. Lertxundi, A.; Baccini, M.; Letxundi, N.; Fano, E.; Aranbarri, A.; Martinez, M.D.; Ayerdi, M.; Santa-Marina, L.; Dorronsoro, M.; et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. *Environ. Int.* 2015, 80, 33–40. [CrossRef]

43. Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Foraster, M.; Garcia-Esteban, R.; Basagana, X.; et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: A prospective cohort study. *PLoS Med.* 2015, 12, e1001792. [CrossRef] [PubMed]

44. Pujol, J.; Martinez-Vilavella, G.; Macia, D.; Fenoll, R.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Blanco-Hinojo, L.; Capellades, J.; Querol, X.; et al. Traffic pollution exposure is associated with altered brain connectivity in school children. *NeuroImage* 2016, 129, 175–184. [CrossRef] [PubMed]

45. Forns, J.; Dadvand, P.; Foraster, M.; Alvarez-Pedrerol, M.; Rivas, I.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Garcia-Esteban, R.; Esnaola, M.; Cirach, M. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: A cross-sectional study. *Environ. Health Perspect.* 2016, 124, 529–535. [CrossRef] [PubMed]
47. Min, J.; Min, K. Exposure to ambient PM10 and NO2 and the incidence of attention-deficit hyperactivity disorder in childhood. *Environ. Int.* **2017**, *99*, 221–227. [CrossRef] [PubMed]

48. Sentis, A.; Sunyer, J.; Dalmou-Bueno, A.; Andiarena, A.; Ballester, F.; Ciracha, M.; Estarlich, M.; Fernandez-Somoano, A.; Ibarluzea, J.; Iniguez, C.; et al. Prenatal and postnatal exposure to NO2 and child attentional function at 4–5 years of age. *Environ. Int.* **2017**, *106*, 170–177. [CrossRef]

49. Sunyer, J.; Suades-Gonzales, E.; Garcia-Esteban, R.; Rivas, I.; Pujol, J.; Alvarez-Pedrerol, M.; Forns, J.; Querol, X.; Basagana, X. Traffic-related air pollution and attention in primary school children. Short-term association. *Epidemiology* **2017**, *28*, 181–189. [CrossRef]

50. Forns, J.; Dadvand, P.; Esnaola, M.; Alvarez-Pedrerol, M.; Lopez-Vicente, M.; Garcia-Esteban, R.; Cirach, M.; Basagana, X.; Guxens, M.; Sunyer, J. Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. *Environ. Res.* **2017**, *159*, 416–421. [CrossRef]

51. Vert, C.; Sanchez-Benavides, G.; Martinez, D.; Gotzens, X.; Gramunt, N.; Cirach, M.; Molinuex, J.L.; Sunyer, J.; Nieuwenhuijsen, M.J.; Crous-Bou, M.; et al. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study. *Int. J. Hyg. Environ. Health* **2017**, *220*, 1074–1080. [CrossRef]

52. Alemany, S.; Vilcyznska, M.J.; Pierrot, L.; Altung, H.; Ballester, F.; Cesaroni, G.; El Marroun, H.; Fernandez-Somoano, A.; Freire, C.; Hanke, W.; et al. Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts. *Environ. Int.* **2017**, *131*, 104927. [CrossRef] [PubMed]

53. Carey, I.M.; Anderson, H.R.; Atkinson, R.W.; Beever, S.; Cook, D.G.; Strachan, D.P.; Dajnak, D.; Gulliver, J.; Kelly, F.J. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. *BMJ Open* **2018**, *8*, e022404. [CrossRef]

54. Roberts, S.; Arsenault, L.; Barratt, B.; Danese, A.; Ogders, C.L.; Moffitt, T.E.; Reuben, A.; Kelly, F.J.; Fisher, H.L. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. *Psychiatry Res.* **2019**, *272*, 8–17. [CrossRef] [PubMed]

55. Lertxundi, A.; Andiarena, A.; Martinez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. *Environ. Res.* **2019**, *174*, 114–121. [CrossRef]

56. Jorcano, A.; Lubczynska, M.J.; Pierrot, L.; Altung, H.; Ballester, F.; Cesaroni, G.; El Marroun, H.; Fernandez-Somoano, A.; Freire, C.; Hanke, W.; et al. Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts. *Environ. Int.* **2017**, *131*, 104927. [CrossRef] [PubMed]

57. Loftus, C.T.; Ni, Y.; Szpiro, A.A.; Hazlehurst, M.F.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Young, M.; Karr, C.J.; et al. Exposure to ambient air pollution and early childhood behavior: A longitudinal cohort study. *Environ. Res.* **2020**, *208*, 109075. [CrossRef] [PubMed]

58. Kulick, E.R.; Wellenius, G.A.; Boehma, A.K.; Joyce, N.R.; Schupf, N.; Kaufman, J.D.; Mayeux, R.; Sacco, R.L.; Manly, J.J.; Elkind, M.S.V. Long-term exposure to air pollution and trajectories of cognitive decline among older adults. *Neurology* **2020**, *94*, e1782–e1792. [CrossRef] [PubMed]

59. Erickson, L.D.; Gale, S.D.; Anderson, J.E.; Brown, B.L.; Hedges, D.W. Association between exposure to air pollution and total gray matter and total white matter volumes in adults: A cross-sectional study. *Brain Sci.* **2020**, *10*, 164. [CrossRef] [PubMed]

60. Deutsche Umwelthilfe e.V. (DUH). NO2 Report Hotspots in Germany, Czech Republic, Slovenia, Bulgaria and Serbia. October 2019. Available online: https://www.duh.de/fileadmin/user_upload/download/Projektinformation/Verkehr/Abgasalarm/NO2_Report_17_10_19.pdf (accessed on 3 May 2021).

61. Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C. Personal Sampler for Nitrogen Dioxide. *Am. Ind. Hyg. Assoc. J.* **1976**, *37*, 570–577. [CrossRef]

62. Passam. NO2 Passive Sampler Data Sheet and Specifications, Switzerland. Available online: https://www.passam.ch/wp-content/uploads/2020/01/en_NO2lt.pdf (accessed on 2 February 2021).

63. Technická Správa Komunikaci hl. m. Prahy (TSK City of Prague Highway Department). Prague Transportation Yearbook. 2019. Available online: http://www.tsk-praha.cz/static/udi-rocenka-2019-en.pdf (accessed on 2 May 2021).

64. Cape, J.N. Review of the Use of Passive Diffusion Tubes for Measuring Concentrations of Nitrogen Dioxide in Air; DEFRA: London, UK, 2005.

65. Buzica, D.; Gerboles, M.; Piasance, H. The equivalence of diffusive samplers to reference methods for monitoring O3, benzene and NO2 in ambient air. *J. Environ. Monit.* **2008**, *10*, 1052–1059. [CrossRef]

66. Hafkenscheid, T.; Fromage-Marriette, A.; Goelen, E.; Hangartner, M.; Pfeffer, U.; Plaisance, H.; de Santis, F.; Saunders, K.; Svaams, W.; Tang, S.; et al. Review of the Application of Diffusive Samplers for the Measurement of Nitrogen Dioxide in Ambient Air in the European Union; EUR 23793 EN; OPOCE: Luxembourg, 2009. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC51106 (accessed on 3 May 2021).

67. Heal, M.R.; Laxen, D.P.H.; Marner, B.B. Biases in the Measurement of Ambient Nitrogen Dioxide (NO2) by Palms Passive Diffusion Tube: A Review of Current Understanding. *Atmosphere* **2019**, *10*, 357. [CrossRef]

68. Czech Hydrometeorological Institute (CHMI)—Air Quality Division. Air Pollution and Atmospheric Deposition in Data, The Czech Republic: Annual Tabular Overview 2019: Commentary on the Summary Annual Tabular Survey. Available online: https://www.chmi.cz/files/portal/docs/isko/tab_roc/2019_enh/pdf/kom.pdf (accessed on 2 May 2021).
69. Altshuller, A.P. Thermodynamic considerations in the interactions of nitrogen oxides and oxy-acids in the atmosphere. *J. Air Pollut. Control. Assoc.* 1956, 6, 97–100. [CrossRef]

70. Finlayson-Pitts, B.J.; Pitts, J.N. *Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications*; Academic Press: London, UK, 2000; p. 266. ISBN 9780122570605.

71. Czech Hydrometeorological Institute (CHMI). Historical Data—Meteorology and Climatology: Monthly Observation REPORTS—Weather Records for Prague. Available online: https://www.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-prehledy-pozorovani# (accessed on 2 May 2021).

72. Yang, B.; Zhang, K.M.; Xu, W.D.; Zhang, S.; Batterman, S.; Baldauf, R.W.; Deshmukh, P.; Snow, R.; Wu, Y.; Zhang, Q.; et al. On-Road Chemical Transformation as an Important Mechanism of NO₂ Formation. *Environ. Sci. Technol.* 2018, 52, 4574–4582. [CrossRef] [PubMed]

73. Richmond-Bryant, J.; Owen, R.C.; Graham, S.; Snyder, M.; McDow, S.; Oakes, M.; Kimbrough, S. Estimation of on-road NO₂ concentrations, NO₂/NOₓ ratios, and related roadway gradients from near-road monitoring data. *Air Qual. Atmos. Health* 2017, 10, 611–625. [CrossRef]

74. Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term trends worldwide in ambient NO₂ concentrations inferred from satellite observations. *Environ. Health Perspect.* 2016, 124, 281–289. [CrossRef] [PubMed]