Biochemical Characterization of Human Anti- Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum
Gaëtan Vanier, Franziska Hempel, Philippe Chan, Michael Rodamer, David Vaudry, Uwe Maier, Patrice Lerouge, Muriel Bardor

To cite this version:
Gaëtan Vanier, Franziska Hempel, Philippe Chan, Michael Rodamer, David Vaudry, et al.. Biochemical Characterization of Human Anti- Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum. PLoS ONE, Public Library of Science, 2015, 10 (10), pp.e0139282. 10.1371/journal.pone.0139282 . hal-01841078

HAL Id: hal-01841078
https://hal-normandie-univ.archives-ouvertes.fr/hal-01841078
Submitted on 17 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae *Phaeodactylum tricornutum*

Gaëtan Vanier¹, Franziska Hempel², Philippe Chan³, Michael Rodamer⁴, David Vaudry⁵, Uwe G. Maier², Patrice Lerouge¹, Muriel Bardor¹,⁵*

¹ Laboratoire Glycobiologie et Matrice Extracellulaire végétale Equipe d’Accueil 4358, Faculté des sciences et techniques, Université de Rouen, Normandie Université, Institut de Recherche et d’Innovation Biomédicale, Végétale Agronomie Sol Innovation, Mont-Saint-Aignan, France, ² LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany, ³ PISSARO Proteomic Platform, Normandie Université, Institut de Recherche et d’Innovation Biomédicale, Mont-Saint-Aignan, France, ⁴ Agilent Technologies, Waldbronn, Germany, ⁵ Institut Universitaire de France, Paris, France

* muriel.bardor@univ-rouen.fr

Abstract

Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, *Phaeodactylum tricornutum*. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of *P. tricornutum* as an emerging host for the production of biopharmaceuticals and prove that *P. tricornutum* is suitable for producing recombinant proteins bearing high mannose-type N-glycans.
Introduction

The biopharmaceuticals market is valued at greater than US$100 billion, which includes more than 200 product types [1]. Among the various categories (e.g., hormones, cytokines, and growth factors), monoclonal antibodies (mAbs) and their derivatives form the largest group of biopharmaceuticals. For example, in 2010 in the US, mAbs represented 36% of all protein therapeutics sold, with overall sales of US$18.5 billion [2]. In 2011, the global market for mAbs was estimated at $44.6 billion and forecast to rise at an annual growth rate of 5.3% to nearly $58 billion in 2016 (www.bccresearch.com/market-research/biotechnology). mAbs are actually used to prevent or treat a variety of serious medical conditions affecting millions of people annually. This includes diseases such as cancers, immune disorders, inflammation, and infectious diseases [3]. Today, Chinese Hamster Ovary (CHO) cell lines are considered as the gold-standard for the biopharmaceutical industry, due to their ability to carry out complex post-translational modifications, including human-like glycosylation [4]. CHO cell lines are currently responsible for the production of nearly 50% of the 28 mAbs marketed in the United States or European Union [5]. However, the constantly increasing need for large quantities of biopharmaceuticals, their high production cost in CHO cells, and factors related to virus contamination have encouraged the development of new alternative production systems. Among those, there is an increasing interest for the use of microalgae as bioreactors for large-scale production of biopharmaceuticals [6,7]. Similarly to CHO cells, microalgae combine high growth rates, easy handling, and the capacity to perform post-translational modifications such as N-glycosylation [8–11], which are crucial for biopharmaceutical folding, half-life and activity [12]. Moreover, the use of microalgae as cell factories, because of their phototrophic lifestyle, will allow reduction of the biopharmaceutical production costs [6,13]. Proofs-of-concept for biopharmaceutical productions in microalgae have been made [6,7]. Most of these productions have been performed in the green microalga, *Chlamydomonas reinhardtii* [14–17]. This includes successful production of the single-chain antibody directed against the glycoprotein D of the herpes simplex virus [14], human erythropoietin (EPO; [15]), vascular endothelial growth factor (VEGF; [16]) and the mAb 83K7C [17]. However, except for the recombinant EPO that was produced through genome nuclear expression [15], all other microalgae biopharmaceuticals have been produced through chloroplastic expression, which is unsuitable for protein post-translational modifications.

Recently, the diatom *P. tricornutum* has also been used to produce biopharmaceuticals. Indeed, successful production of monoclonal human antibodies directed against the Hepatitis B virus surface antigen (HBsAg), either secreted or retained in the endoplasmic reticulum (ER) has been reported [18, 19]. These algae-made recombinant antibodies were shown to be fully-assembled [18, 19] and functional *in vitro* [18].

Here, we biochemically characterize the HBsAg antibodies produced in *P. tricornutum* by analyzing their post-translational modifications including their N-glycosylation heterogeneity and their susceptibility to proteolytic degradation. A specific attention has also been paid to the signal peptide cleavage site. This represents a first attempt to assess the critical quality attributes of algae-made antibodies. Overall, this study brings new insights in regards to secretion, post-translational modification, and intracellular trafficking of proteins in diatoms. This will help with maximizing the potential of microalgae as a biopharmaceuticals production system.

Materials and Methods

Antibody production and purification

P. tricornutum cell lines producing human IgG antibodies against the Hepatitis B Virus surface protein (HBsAg, clones CL4mAb+DDEL #12 and CL4mAb-DDEL #11, [18] and [19]) were
grown under agitation (150 rpm) and continuous illumination (80 μmol photons per m² per sec) in f/2 medium containing 1.5 mM NH₄Cl as nitrogen source. At a density of approximately 7 x 10⁶ cells.ml⁻¹ of culture were shifted to fresh f/2 medium containing 0.9 mM NaNO₃ instead of NH₄Cl to induce antibody expression for two days. Subsequently, intracellular antibodies from the cell extract of strain CL4mAb+DDEL #12 were purified through affinity chromatography using Protein A sepharose according to [18]. Secreted antibodies from the culture medium of cell line CL4mAb-DDEL #11 were concentrated with centrifugal filter columns (cut off 10 kDa) as described in [19] and then resuspended in water. For antibody quantification, the Easy-Titer Human IgG assay kit was used according to the manufacturer instructions. All antibody samples were frozen in liquid nitrogen and stored at -80°C before proceeding with further biochemical analyses. All the experiments described below have been repeated independently at least twice.

SDS-PAGE analysis
The SDS-PAGE gel run in non-reducing conditions has been performed and stained according to [18, 19].

NuPAGE Bis-Tris Gel electrophoresis
Protein marker (5 μL of PageRuler Plus Prestained Protein Ladder, BP3603 Series, Thermo Scientific) and purified recombinant antibodies (3 to 30 μg diluted in 1X NuPAGE LDS Sample Buffer [50 mM Tris-HCl pH 6.8, 2% SDS, 6% glycerol, 1% β-mercaptoethanol, 0.004% bromophenol blue]) were loaded and separated on a NuPAGE Bis-Tris Gel 4–12%, 10 wells (Life Technologies) using reducing conditions. Separation was performed at a constant voltage 180V in the NuPAGE MOPS SDS running buffer (Life Scientific). After the migration, the gel was stained with Coomassie Brilliant Blue R–250 (Thermo Scientific).

Quantification of the site occupancy by densitometry
Evaluation of the N-glycosylation site occupancy percentage was assessed by densitometry using the ImageJ software. Briefly, for each interesting lane of the NuPAGE Bis-Tris gel electrophoresis, squares were used to select the zone of interest. Then, the selection was treated using the submenu of ImageJ software with the option called gel analysis thus generating lane profile plots. Lines were drawn manually on the plots to define precisely each area. Finally, the peak areas under the curve were measure using the wand tool.

Sample preparation before mass spectrometry analysis
The heavy and light chains of the antibodies (30 μg) were separated on a NuPAGE Bis-Tris gel electrophoresis as described earlier. The two bands corresponded respectively to the heavy and light chains of the antibody were excised from the gel and cut into several pieces. Then, the gel pieces were washed several times with a solution mixture composed of 0.1M NH₄HCO₃ pH 8 and 100% CH₃CN (v: v). The samples were dried down in a SpeedVac centrifuge (Thermo Fisher) for few minutes. After a reduction step with 0,1M dithiothreitol (DTT) for 45 min at 56°C and alkylation with 55 mM iodoacetamide (IAA) for 30 min at room temperature in the dark, proteomic-grade trypsin was added (1μg per protein band; Promega) and placed at 4°C during 45 min prior to an overnight incubation at 37°C. After the protease digestion, the gel pieces were incubated subsequently in a 50% CH₃CN solution, 5% formic acid solution, 0.1M NH₄HCO₃, 100% CH₃CN and finally in 5% formic acid to extract the resulting peptide and
glycopeptide mixture. The sample was finally dried down before further analysis using the high sensitivity nanospray LC-Chip MS QTOF from Agilent Technologies, U.S.A.

Protein identification and site-specific distribution of N-glycans

MS analyses were performed using the nano-LC1200 system coupled to a QTOF 6520 mass spectrometer equipped with a nanospray source and a LC-Chip Cube interface (Agilent Technologies). Briefly, peptide and glycopeptide mixture was enriched and desalted on a 360 nL RP-C18 trap column and separated on a Polaris (3-μm particle size) C18 column (150 mm long x 75 μm inner diameter; Agilent Technologies). A 33-min linear gradient (3–75% acetonitrile in 0.1% formic acid) at a flow rate of 320 nL.min⁻¹ was used, and separated peptides were analyzed with the QTOF mass spectrometer. Full autoMS scans from 290 to 1700 m/z and autoMS/MS from 59 to 1700 m/z were recorded. In every cycle, a maximum of 5 precursors sorted by charge state (2⁺ preferred and single-charged ions excluded) were isolated and fragmented in the collision cell. Collision cell energy was automatically adjusted depending on the m/z. Scan speed raise based on precursor abundance (target 25000 counts/spectrum) and precursors sorted only by abundance. Active exclusion of these precursors was enabled after 3 spectra within 1.5 min, and the threshold for precursor selection was set to 1000 counts.

Peptide N-glycosidase F digestion

The peptide N-glycosidase F (PNGase F; Roche) digestion was performed on P. tricornutum peptides and glycopeptides mixture according to [8].

Interpretations of the MS spectra

Raw data were analyzed using MassHunter (B.06.00; Agilent Technologies). First, compound list was extracted using the "Find Compounds by Molecular Features" submenu of Masshunter Bioconfirm workflow (Agilent Technologies) with the following parameters: peaks filter with height, 1000 counts; peak spacing tolerance, 0.0025 m/z, plus 7.0 ppm; charge state, 3 maximum; isotope model, peptides. Then, using the "Define and Match sequences" submenu, heavy and light chains were imported and were edited with cysteine carbamidomethylation and methionine oxidation as global modifications and with trypsin digestion including 2 miss cleavages maximum. The sequences were matched with the extracted compound lists. The corresponding proposed spectral annotations were checked manually and the sequence coverage was calculated manually. Moreover, the extracted ion chromatogram (EIC) was selected to interpret manually glycans, glycopeptides and tryptic peptides MS and MS/MS spectra.

The LC-MS and MS-MS data have been uploaded to the Figshare public repository and are accessible through the link: http://figshare.com/articles/Production_of_glycosylated_human_anti_Hepatitis_B_monoclonal_antibodies_in_the_microalgae_Phaeodactylum_tricornutum/1489703.

SignalP 4.1 prediction server

SignalP 4.1 server (http://www.cbs.dtu.dk/services/SignalP/) was used to predict the presence and location of the signal peptide cleavage sites in the protein sequences. The input sequences (mAb heavy and light chains) in FASTA format were used. For each chain, submission was performed choosing eukaryotes as organism group, D-cutoff values by default, PNG for graphics output and a standard output format.
Relative quantification of glycoforms

The peak intensities of the tri- and dicharged ions were added for each individual glycopeptide and the resulting value was used to calculate the relative percentage of each glycoform which was normalized to the sum of peak intensities of all the glycoforms.

Results and Discussion

Assembly of full-length recombinant monoclonal antibodies

Monoclonal antibodies (mAbs) directed against the Hepatitis B virus Antigen (HBsAg) have been produced recombinantly in the diatom, *P. tricornutum*, as previously described [18,19]. Those mAbs were either produced with (ER-retained mAb) or without (secreted mAb) a C-terminal DDEL (Asp-Asp-Glu-Leu) ER-retention signal. The ER-retained mAb was extracted and purified from the cell extracts using affinity chromatography with Protein A-sepharose according to [18]. The secreted mAb was concentrated from the culture medium using centrifugal filter columns as described in [19]. To analyze the full-length assembly of the two mAbs, the samples were separated by gel electrophoresis in non-reducing conditions (Fig 1A). A band H2L2 has been observed demonstrating that *Phaeodactylum tricornutum* is able to produce fully-assembled mAbs. However, other fragments could also be detected (Fig 1A). Those could correspond to misfolded or incorrectly assembled proteins or degradation fragments. A quantification of these products was performed directly on the stained gel using a densitometry analysis. In the retained version of the recombinant antibody, the fully-assembled antibody represents around 70% of the protein while in the secreted version, it represents up to 74% (Fig 1A).

Protein sequence analysis of recombinant monoclonal antibodies

To assess the quality of, and biochemically characterize, the mAbs, a glycoproteomic approach using Agilent Technologies LC-Chip Cube MS with a high resolution QTOF mass spectrometer was performed. The heavy and light chains of the algae-made antibodies were first separated on a NuPAGE Bis-Tris gel via electrophoresis. This allowed detection of two major bands at the expected molecular weights for antibody heavy and light chains (Fig 1B). These bands were then excised from the gel, alkylated with iodoacetamide, and finally digested with trypsin. The resulting tryptic peptides were analyzed on a nano-LC1200 system coupled to a QTOF 6520 mass spectrometer. Peptide coverages of 55% for the heavy chain with DDEL and 70% for the heavy chain without DDEL were obtained (Fig 1C). With regards to light chains, 60% of tryptic peptides were identified by LC-ESI MS in both cases (Fig 1D). Large size tryptic digest that are not ionized efficiently by mass spectrometry explained the overall 55 to 70% peptide coverage.

C-terminal ends of algae-made mAbs

To ensure its retention in the ER, light and heavy chains of the HBsAg mAbs were expressed including a C-terminal DDEL signal fusion [18]. One C-terminal peptide carrying DDEL was detected in the LC-ESI MS and MS/MS profiles of the heavy chain from the ER-retained mAb (Fig 2A). This peptide resulted from a trypsin miss cleavage after the C-terminal K467 (S460LSLPGK467DDEL471). Moreover, the C-terminal G234ECDEL240 sequence was identified in the tryptic digest of the light chain (Fig 2B), thus confirming the presence of the DDEL retention signals on both light and heavy chains of the ER-retained mAb. These results demonstrate that there is no C-terminal proteolysis occurring on the recombinant proteins within the diatom cells.

Additionally, particular attention has been paid to the C-terminal sequence of the secreted mAb as it is well established that C-terminal lysine processing of the heavy chain is one
Fig 1. Protein analysis of algae-made HBsAg recombinant antibodies.

A) SDS-PAGE gel in non-reducing conditions and stained with Coomassie blue. Lane 1: Molecular Weight; Lane 2: secreted mAb (1 μg); Lane 3: Molecular Weight; Lane 4: ER-retained mAb (1 μg).

B) NuPAGE gel electrophoresis of mAbs produced in *P. tricornutum*. The gel has been run under reducing conditions and was stained with Coomassie blue. Lane 1: Molecular Weight; Lane 2: secreted mAb (3 μg); Lane 3: ER-retained mAb (3 μg).

C) Heavy chain protein sequence of the antibody directed against HBsAg produced in *P. tricornutum* (GenBank accession number JF970210) plus or minus the DDEL ER-retention signal. This sequence include the signal peptide and the methionine is the first amino acid.

D) Light chain protein sequence of the antibody directed against HBsAg produced in *P. tricornutum* (GenBank accession number JF970211) plus or minus the DDEL ER-retention signal. This sequence include the signal peptide and the methionine is the first amino acid. The peptides highlighted in grey are the ones which have been observed by LC-ESI MS analysis of tryptic digests for the heavy chain of the secreted mAb and for light chains of both
ER-retained and secreted mAbs. The underlined peptides are the ones which have been observed by LC-ESI MS analysis of tryptic digests for the heavy chain of the ER-retained mAb. The heavy chain potential N-glycosylation site is in bold (N317ST). The arrows indicate the signal peptide cleavage sites.

Fig 2. Mass spectrometry analysis of the C-terminal peptides of the heavy and light chains of the ER-retained mAb produced in P. tricornutum. A) MS/MS spectrum of the S460LSLSPGKDDEL471 ([M+2H]²⁺ precursor ion at m/z 630.82). B) MS/MS spectrum of the G234ECDDEL240 ([M+H]⁺ precursor ion at m/z 837.29). For both spectra, Y and B ions have been identified and the peptide sequence can be rebuilt from either ones.

doi:10.1371/journal.pone.0139282.g002
ions observed in the MS/MS spectrum confirmed the presence of the C-terminal lysine (Fig 3), thus demonstrating the capability of *P. tricornutum* to produce recombinant antibodies with consistent and homogeneous C-terminal ends in contrast to secreted mAbs from CHO cells which are highly heterogeneous.

N-terminal signal peptide cleavage

Signal peptides play a crucial role in the targeting and translocation of secreted proteins within the lumen of the ER in eukaryotes. This often represents a limiting factor for the production of recombinant mAbs in eukaryotic cells. When the nascent protein with its signal peptide emerges from the ribosome, it is recognized by the signal recognition particle (SRP) and form a ribosome-signal peptide-SRP complex which is directing the nascent protein to the ER membrane. Such complex is then interacting with the SRP receptor, allowing the ribosome to bond to the translocon and finally leading to the transfer of the polypeptide into the ER. The SRP if then released and finally the signal peptide is recognized and cleaved off by signal peptide peptidases [24,25]. Genes encoding for putative signal peptide peptidases have been predicted and annotated in the *P. tricornutum* genome [26](http://genome.jgi-psf.org/Phatr2/Phatr2.home.html). However, the ability of these ER peptidases to cleave signal peptides of recombinant proteins in this diatom has not yet been investigated. Therefore, particular attention has been paid to the N-terminal sequences of the heavy and light chains of the algae-made antibodies. To determine the signal peptide cleavage sites occurring within the diatom cells for both light and heavy chains, manual searches were done among all of the MS and MS/MS data. In agreement with prediction and as observed in mammalian cells [27], cleavage of heavy chain signal peptide occurred after C_{19} (M_{1}EFGLSWVFLVALLRGVQC_{19}) in both secreted and ER-retained recombinant antibodies (Figs 1C and 4A), thus demonstrating that the microalga is able to efficiently cleave the signal peptide of the heavy chain using a signal peptide peptidase mechanism that is similar to the one occurring in mammalian cells and other eukaryotes [27–29]. This completes and reinforces previous datasets which conclude that the diatom *P. tricornutum* possesses the ER machinery required for polypeptide translocation and protein quality control [8,11]. Such mechanisms are similar if not identical to the ones previously described for other eukaryotes [30]. It is worth noting that the N-terminal peptide identified by MS and MS/MS...
for the heavy chain carries a N-terminal pyroglutamine residue (noted pQ on the Fig 4A). This modification is formed by cyclisation of the glutamine residue (Q) and is very often reported for recombinant mAbs produced in mammalian cells [3, 20, 21]. Such modification is described to be a chemical non-enzymatic modification occurring for the majority (up to 90%) during

Fig 4. Analysis of the N-terminal peptides of the secreted and ER-retained mAbs by mass spectrometry. A) MS/MS spectrum of the pQ20VQLVESGGVVQPGRSLR38 peptide from the heavy chain ([M+2H]2+ precursor ion at m/z 796.92). B) MS/MS spectrum of the E23IVMTQSPATLSVSPGER40 from the light chain ([M+2H]2+ precursor ion at m/z 951.48). C) MS/MS spectrum of the TLSVSPGER from the light chain ([M+2H]2+ precursor ion at m/z 473.25). pQ is indicated a N-terminal pyroglutamine residue formed by cyclisation of glucosamine. For all spectra, Y and B ions have been identified and allowed peptide sequencing.

doi:10.1371/journal.pone.0139282.g004
the cellular process [31,32]. It is also present on human IgGs as most of the N-terminal glutamine of heavy chains of human IgGs is cyclized to pyroglutamate [33].

Concerning the light chains, the N-terminal peptides resulting from cleavage of the light chain signal peptide after the G22 (E23IVMTQSPATLSVSPGER40) were detected in both ER-retained and secreted recombinant mAbs (Figs 1D and 4B). This result was expected as the signal peptide is known to be 22 amino acids long for the light chain of human antibodies [27], meaning again that the microalga cell is able to cleave the signal peptide from the light chain following a process similar to those observed in mammalian cells and other eukaryotes. However, a second N-terminal peptide resulting from a cleavage after the A31 (T32LSVSPGER40) was also identified by LC-ESI MS and MS/MS analysis of the light chain N-terminal peptides (Figs 1D and 4C). Comparison of the ion intensities for both light chain N-terminal peptides showed that the second N-terminal peptide resulting from the cleavage after the A31 accounts for around 90% of the total. Since this unexpected N-terminal peptide is observed in both secreted and retained mAbs, we postulate that it may result from the recognition of a second cleavage site by the diatom signal peptide peptidases, rather than post-synthesis proteolytic degradation of the light chains.

Other post-translational modifications

Search for other post-translational modifications has been performed on both ER-retained and secreted mAbs. Whereas no oxidation of methionine residues has been observed, one deamidation of the specific N335 residue on the peptide V322VSVLTVHQSDLNLGK337 has been observed by MS and further confirmed by MS/MS (Fig 5). Such asparagine deamidation has already been described on mAbs [34] and is influenced by many environmental factors such as pH, temperature, buffer composition [35,36].

N-glycosylation of algae-made mAbs

Then, we focused on the N-glycosylation of the algae-made mAbs as it is well known that N-glycosylation is an important quality attribute influencing functionality and stability of such recombinant glycoproteins [12]. Firstly, N-glycan profiles present on the ER-retained and
secreted mAbs were investigated. A search for glycopeptides in LC-ESI MS analysis was carried out using diagnostic ions at m/z 204 and 366. These fragments correspond to the oxonium ions of N-acetylhexosamine (HexNAc) residues and of hexose-HexNAc disaccharides observed in the MS/MS spectra of glycopeptides, respectively. In both ER-retained and secreted heavy chains, a single glycopeptide with various glycoforms was detected (Fig 6A). For the ER-retained antibody, the glycopeptide MS profile indicated that the heavy chain is glycosylated by high mannose-type N-glycans ranging from Man–5 to Man–9, with the major structures being Man–8 and Man–9 (Fig 6A). Structures of these glycopeptides were confirmed by analysis of fragmentation patterns obtained by MS/MS as illustrated for Man–9-containing E313EQYNSTYR321 glycopeptide in Fig 6B and for other glycoforms. In addition to diagnostic ions at m/z 204 and 366, m/z ions corresponding to the peptide carrying one GlcNAc (Y1 fragment ion) up to Man5–GlcNAc2 (Y5 fragment ions) or larger oligomannosides were also detected in the MS/MS spectra. The same analysis was carried out on glycopeptides from the secreted mAb. Surprisingly, similar glycoforms were detected on the N317 of the heavy chain from the secreted mAb. As shown in Fig 6A, only minor differences in the relative percentage from one glycan to another can be observed when comparing the ER-retained and secreted mAb N-glycan profiles.

We also focused on the N-glycosylation site occupancy located on the N317 on the primary protein sequence of the HBsAg mAbs produced in P. tricornutum presents a unique potential N-glycosylation site located in the CH2 domain of the heavy chain (Fig 1C). However, the heavy chain was revealed as two bands after NuPAGE gel electrophoresis separation, suggesting partial post-translational modifications of the heavy chains for both ER-retained and secreted mAbs (Fig 1B). To investigate whether the two heavy chain bands were due to partial N-glycosylation, LC-ESI MS analyses of tryptic digested heavy chains were carried out before and after deglycosylation with the peptide N-glycosidase F (PNGase F; [39,40]). Indeed, this enzyme is able to cleave off glycans N-linked to proteins and, at the same time, to convert asparagine (N) residues of the occupied N-glycosylation site into aspartic acid (D). This shift in peptide mass (+1 Da) enables the identification of glycosylated peptides by mass spectrometry [41]. As the recombinant mAbs were found to carry out high mannose-type N-glycans, the PNGase F was chosen for the mAb deglycosylation experiments instead of PNGase A, which is required specifically for glycoproteins carrying α(1, 3)-fucose residues on the proximal glucosamine of N-glycans [42]. Before deglycosylation, non-glycosylated E313EQYNSTYR321 peptides were detected at m/z 1189.5 in the heavy chain peptide digests of ER-retained and secreted mAbs. After deglycosylation, additional aspartic acid-containing E313EQYDSTYR321 peptides at m/z 1190.5 were found (Fig 7A and 7C). Amino acid sequences of these two peptides were confirmed by LC-ESI MS/MS analysis (Fig 7B and 7C). The ratio between both peptides using single and dicharged ion intensities indicated that around 70% of the N317 is glycosylated in both antibodies (Table 1). These results have been confirmed by densitometry analysis performed on the Coomassie blue stained gel electrophoresis (Fig 1A and Table 1). Such partial N-glycosylation has already been described for mAbs produced in CHO cells which can present, in the worst case scenario, up to 52% of non-glycosylated mAbs depending of the culture conditions [43]. Therefore, the diatom is as efficient as other expression systems, as far as mAb N-glycan site occupancy (macroheterogeneity) is concerned.

In eukaryotes, the N-glycan oligosaccharide precursor Glc3Man9GlcNAc2 is first synthesized and then transferred "en bloc" onto the asparagine of the consensus N-glycosylation sites (NXS/T/C) of nascent proteins. This initial step of the N-glycosylation processing occurs within the ER. This glycan precursor is submitted to the elimination of the terminal glucose units catalyzed by the α-glucosidases I and II followed by removal of a single mannose residue by an ER-mannosidase. This ER maturation allows the interaction with ER-resident lectins that ensure the quality control of secreted proteins. As a consequence, detection of Man–8 and
Fig 6. Analysis of the N-glycosylation of the heavy chain by mass spectrometry. A) MS spectrum of the glycopeptide from the heavy chain of the secreted and ER-retained antibodies produced in *P. tricornutum*. B) MS/MS spectrum of the glycopeptide bearing a Man–9 structure ([M+2H]^{2+} precursor ion at m/z 1527.57). Fragment ions were annotated using Domon and Costello nomenclature [37]. The asterisks indicate multiple fragment ions that have been identified but not annotated on the spectrum. Glycan structures are annotated with their proposed carbohydrate structure according to the symbolic nomenclature from the Consortium for Functional Glycomics [38]. Black square: N-acetylglucosamine; green circle: mannose.

doi:10.1371/journal.pone.0139282.g006
Fig 7. N-glycosylation site occupancy by mass spectrometry after PNGase F digestion. A) MS spectrum of the PNGase F deglycosylated peptide E313EQYDSTYR321 ([M+2H]^2+ precursor ion at m/z 595.76). B) MS/MS spectrum confirming the identification of the non-glycosylated E313EQYNSTYR321 peptide ([M+2H]^2+ precursor ion at m/z 595.27) C) MS/MS spectrum of the PNGase F deglycosylated E313EQYDSTYR321 peptide ([M+2H]^2+ precursor ion at m/z 595.76) from the heavy chain of the algae-made antibodies. For all spectra, Y and B ions have been identified and allowed peptide sequencing.

doi:10.1371/journal.pone.0139282.g007
Man–9 on the DDEL ER-retained mAbs is consistent with its retention in the ER. The presence of Man–5 to Man–7, in addition to the expected Man–8 and Man–9 structures, suggests that the ER retained algae-made antibody has been partially trimmed by the α-mannosidase I, an enzyme located in the cis-Golgi in eukaryotes and able to sequentially convert Man–8 into Man–5 by elimination of terminal α(1, 2)-mannose residues. Although the location in diatoms of such mannosidasases has not been elucidated to date, this observation is consistent with the model of ER retention, which is in fact based on retrograde trafficking from cis-Golgi to the ER. Indeed in this model, ER retrieval occurs by recognition of the protein C-terminal retention signal (DDEL in this study) by a specific receptor in the cis-Golgi network, followed by retrograde transport back to the ER. Such a N-glycosylation profile was previously reported for other ER-retained antibodies that have been earlier produced in transgenic plants using either a HDEL or KDEL retention signal [44–49].

The N-glycosylation site occupancy was calculated from the comparison of the ion intensity of the non-glycosylated versus deglycosylated peptides using single and discharged specific ions and from densitometry analysis of the two bands corresponding to heavy chains observed on the NuPAGE gel.

Glycosylation site occupancy	Secreted mAb	ER-retained mAb		
	% of glycosylation based on ion intensities	% of glycosylation based on densitometry	% of glycosylation based on ion intensities	% of glycosylation based on densitometry
EEQYDSTYR	77	80	70	68
EEOYNSTYR	23	20	30	32

Table 1. Quantification of the N-glycosylation site occupancy.

The N-glycosylation site occupancy was calculated from the comparison of the ion intensity of the non-glycosylated versus deglycosylated peptides using single and discharged specific ions and from densitometry analysis of the two bands corresponding to heavy chains observed on the NuPAGE gel.

doi:10.1371/journal.pone.0139282.t001
fucosylated forms, on the secreted mAbs produced in \(P. \) tricornutum. These are probably either absent or at too low abundance for detection. As a consequence, Golgi maturation of high mannose-type N-glycans seems to be inefficient in this diatom or restricted to a certain population of secreted proteins. In this context, it will be interesting to better understand the regulation of the GnT I activity within \(P. \) tricornutum and to evaluate whether, in this microalgae, culture conditions and cell physiology may influence its glycosylation capabilities and allow the formation of complex-type N-glycans. Such effects of the culture and growth conditions on the N-glycosylation profiles of recombinant mAbs have already been extensively described for production in transgenic plant and mammalian cells [43,54–60].

The two recombinant anti-HBsAg mAbs that we analyzed in this paper and that carry high mannose-type N-glycans were previously described to be functional \textit{in vitro}, as they are able to recognize and bind to their specific antigen [18,19]. This is not surprising as the antigen binding functions are independent of the N-glycosylation of the Fc part. This would probably be untrue for the effector functions of these mAbs, including activation of the complement cascade by binding to C1q. Indeed, it has been well established that complex-type N-glycans, especially biantennary N-glycans bearing β(1, 4)-galactose in the terminal position are required for optimal binding of antibodies to all classes of receptors [51,61,62]. The presence of different glycans on the Fc part, such as high mannose-type glycans that are N-linked to the algae-made antibodies, might alter the effector functions of the anti-HBsAg mAbs by provoking distortion of the conformation of the Fc domains [50–52], thus leading to a reduction in its affinity for Fcγ receptors and C1q, as well as inducing a deficiency in antibody-dependent cell-mediated cytotoxicity (ADCC) [63]. Furthermore, \textit{in vivo} clearance of antibodies with high mannose-type N-glycans is increased by binding to the macrophage mannose receptor in the liver [64–66]. Therefore, taking into account the current N-glycan profiles of the ER-retained and secreted anti-HBsAg mAbs, we conclude that production in \(P. \) tricornutum of mAbs that are suitable for human injectable therapy, thus necessitating mAb effector functions, will require in the future intensive understanding of the diatom endogenous glycosylation machinery. Moreover, extensive glyco-engineering efforts have to be undertaken for optimizing mAbs production in this diatom.

Taken together, the data presented here highlight the potential use of \(P. \) tricornutum as a suitable platform for producing N-glycoproteins carrying high mannose-type N-glycans. This capability to produce and add mannose terminating N-glycans onto recombinant proteins could represent an eminent advantage for the production of glycosylated biopharmaceuticals, such as glucocerebrosidase (GBA), which requires effective targeting and internalisation into macrophages through the recognition of terminal mannose residues on the N-glycans by macrophage cell surface mannose receptors. Glucocerebrosidase is a lysosomal enzyme used in enzyme replacement therapy for treating Gaucher’s disease. Exogenous glucocerebrosidase is administered intravenously into patients and glucocerebrosidase preparation currently involves either extraction directly from human placenta or recombinant expression in CHO cells (Cerezyme®), which requires \textit{in vitro} post-purification exoglycosidase digestions to unravel the trimannose core (Man\(_3\)GlcNAc\(_2\)) using a combination of sialidase, galactosidase, and N-acetylgalcosaminidase. These \textit{in vitro} glycoengineering steps increase considerably the production costs [67]. Therefore, alternative expression systems that are capable of producing mannose terminated N-glycans have been developed as safe and cost effective production methods. These include cultured carrot cells [68] or transgenic plants [69]. The results described in this paper suggest that \(P. \) tricornutum could, in the near future, become an appropriate platform for the production of a glucocerebrosidase (GBA) biobetter that would be directly carry high mannose-type N-glycan structures without \textit{in vitro} trimming.
Conclusions

The data presented here show that the diatom *P. tricornutum* could be used for producing recombinant *N*-glycoproteins carrying high mannose-type *N*-glycans. Moreover, detailed analysis of the C-terminal ends of the heavy and light chains demonstrated the capability of *P. tricornutum* to produce recombinant antibodies with consistent and homogeneous C-terminal ends without proteolysis. Additionally, the MS and MS/MS analyses of the heavy chain *N*-terminal peptide in both secreted and ER-retained recombinant antibodies demonstrated that this diatom is able to efficiently cleave the signal peptide using a signal peptide peptidase mechanism that is similar to the one occurring in mammalian cells and other eukaryotes.

Acknowledgments

Authors would like to thank Dr F. Dardelle, Dr J. Hardouin, Mrs Carole Burel and Luc Arnaud, for initiating early experimental work on this project and for their technical support respectively.

Author Contributions

Conceived and designed the experiments: MB FH UGM PL. Performed the experiments: GV PC FH. Analyzed the data: MB GV PC FH PL UGM. Contributed reagents/materials/analysis tools: MR DV. Wrote the paper: MB GV FH PL UGM.

References

1. Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010; 28: 917–924. doi:10.1038/nbt0910-917 PMID: 20829826
2. Aggarwal S. What’s fueling the biotech engine_2010 to 2011. Nat Biotechnol. 2011; 29: 1083–1089. doi:10.1038/nbt.2060 PMID: 22158359
3. Elvin JG, Couston RG, van der Walle CF. Therapeutic antibodies: Market considerations, disease targets and bioprocessing. Int J Pharm. 2013; 440: 83–98. doi: 10.1016/j.ijpharm.2012.09.039 PMID: 22227342
4. Jayapal KP, Wlaschin KF, Hu W, Yap MG. Recombinant protein therapeutics from CHO cells--20 years and counting. Chem Eng Prog. 2007; 103: 40.
5. Beck A, Reichert JM. Marketing approval of mogamulizumab. mAbs. 2012; 4: 419–425. doi: 10.4161/mabs.20996 PMID: 22699226
6. Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res. 2014; 1–13. doi: 10.1007/s11120-014-9994-7 PMID: 24659086
7. Mathieu-Rivet E, Kiefer-Meyer M-C, Vanier G, Ovide C, Burel C, Lerouge P, et al. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Plant Physiol. 2014; 5: 359. doi: 10.3389/fpls.2014.00359
8. Baiet B, Burel C, Saint-Jean B, Louvet R, Menu-Bouaouiche L, Kiefer-Meyer M-C, et al. N-glycans of Phaeodactylum tricornutum diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme. J Biol Chem. 2011; 286: 6152–6164. doi: 10.1074/jbc.M110.175711 PMID: 21169367
9. Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y. Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J Biol Chem. 2011; 286: 21340–21352. doi: 10.1074/jbc.M110.175042 PMID: 21515680
10. Mathieu-Rivet E, Schulm A, Arias C, Dardelle F, Schulze S, Mauff FL, et al. Exploring the N-glycosylation Pathway in Chlamydomonas reinhardtii Unravels Novel Complex Structures. Mol Cell Proteomics. 2013; 12: 3160–3183. doi: 10.1074/mcp.M113.028191 PMID: 23912651
11. Levy-Ontman O, Fisher M, Shottland Y, Weinstein Y, Tekoah Y, Arad SM. Genes involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga Porphyridium sp.: a bioinformatic study. Intl J Mol Sci. 2014; 15: 2305–2326. doi: 10.3390/ijms15022305 PMID: 24514561
12. Levy-Ontman O, Fisher M, Shottland Y, Weinstein Y, Tekoah Y, Arad SM. Genes involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga Porphyridium sp.: a bioinformatic study. Intl J Mol Sci. 2014; 15: 2305–2326. doi: 10.3390/ijms15022305 PMID: 24514561
13. Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep. 2011; 31: 479–494. doi: 10.1007/s00299-011-1186-8 PMID: 22080228

14. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci. 2003; 100: 438–442. PMID: 12522151

15. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 2009; 229: 873–883. doi: 10.1007/s00425-008-0879-x PMID: 19127370

16. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii: Production of therapeutic proteins in algae. Plant Biotechnol J. 2010; 8: 719–733. doi: 10.1111/j.1467-7652.2010.00503.x PMID: 20230484

17. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng. 2009; 104: 663–673. doi: 10.1002/bit.22446 PMID: 19562731

18. Hempel F, Lau J, Klingl A, Maier UG. Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum. PLoS ONE. 2011; 6: e28424. doi: 10.1371/journal.pone.0028424 PMID: 22164289

19. Hempel F, Maier UG. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Factories. 2012; 11: 126. doi: 10.1186/1475-2859-11-126

20. Liu H, Gasa-Bulceco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008; 97: 2426–2447. doi: 10.1002/jps.21180 PMID: 17828757

21. Brosnkon K, Jia FY. Therapeutic monoclonal antibodies and consistent ends: terminal heterogeneity, detection, and impact on quality. Curr Opin Biotechnol. 2014; 30: 140–146. doi: 10.1016/j.copbio.2014.06.012 PMID: 25022603

22. Luo J, Zhang J, Ren D, Tsi W-L, Li F, Amanullah A, et al. Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng. 2012; 109: 2306–2315. doi: 10.1002/bit.24510 PMID: 22473810

23. Tang L, Sundaram S, Zhang J, Carlson P, Matathia A, Parekh B, et al. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. mAbs. 2013; 5: 114–125. doi: 10.4161/mabs.22695 PMID: 23222183

24. Stern B, Olsen LC, Tröts se C, Ravneberg H, Pryme IF. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol. 2007; 2: 1–17.

25. Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta BBA—Protein Struct. 2013; 1828: 2828–2839. doi: 10.1016/j.bbapap.2013.03.033

26. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008; 451: 2426–2447. doi: 10.1038/nature06733. doi: 10.1002/jb.21180 PMID: 17828757

27. Song Z. Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics [Internet]. WO2014058389 A1, 2014. Available: http://www.google.com/patents/WO2014058389A1

28. Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. Biochim Biophys Acta. 2011; 1808; 912–924. doi: 10.1016/j.bbamem.2010.06.015 PMID: 20599535

29. Kobler L, Zehe C, Bode J. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng. 2013; 110: 1164–1173. doi: 10.1002/bit.24776 PMID: 23124363

30. Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci. 2007; 104: 11676–11681. doi: 10.1073/pnas.0704862104 PMID: 17606910

31. Rehder DS, Dillon TM, Pipes GD, Bondarenko PV. Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A. 2006; 1125: 164–175. doi: 10.1016/j.chroma.2005.10.053 PMID: 16297926

32. Dick LW, Kim C, Oiu D, Cheng K-C. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol Bioeng. 2007; 97: 544–553. doi: 10.1002/bit.21260 PMID: 17099914

33. Kaplan AP, Hood LE, Terry WD, Metzger H. Amino terminal sequences of human immunoglobulin heavy chains. Immunochemistry. 1971; 8: 801–811. PMID: 5135622
Stratton LP, Kelly RM, Rowe J, Shively JE, Smith DD, Carpenter JF, et al. Controlling deamidation

Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS

Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Skafer M, Kluger-Hamour C, et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009; 392:145–154. doi: 10.1016/j.ab.2009.05.043 PMID: 19497295

Song Y, Schowen RL, Borchardt RT, Topp EM. Effect of pH on the rate of asparagine deamidation in polymeric formulations: pH–rate profile. J Pharm Sci. 2001; 90:141–156. PMID: 11169531

Stratton LP, Kelly RM, Rowe J, Shively JE, Smith DD, Carpenter JF, et al. Controlling deamidation rates in a model peptide: Effects of temperature, peptide concentration, and additives. J Pharm Sci. 2001; 90:2141–2148. doi: 10.1021/jp011655 PMID: 11745773

Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988; 5:397–409. doi: 10.1007/BF01049915

Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD, et al. Symbol nomenclature for glycoconjugates. Glycoconj J. 1988; 5:397–409. doi: 10.1007/BF01049915

Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem FEBS. 1991; 199:647–652

Le Mauff F, Mercier G, Chan P, Burel C, Vaudry D, Bardor M, et al. Biochemical composition of hagemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol J. 2014; 12:17–27. doi: 10.1111/j.1467-7652.2013.00200.x PMID: 24286971

Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry (Mosc). 1985; 24:4665–4671. doi: 10.1021/bi00338a028

Trettet V, Altmann F, März L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylgalacosamine residue. Eur J Biochem FEBS. 1991; 199:647–652

Le Mauff F, Mercier G, Chan P, Burel C, Vaudry D, Bardor M, et al. Biochemical composition of hagemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol J. 2014; 12:17–27. doi: 10.1111/j.1467-7652.2013.00200.x PMID: 24286971

Taga EM, Waheed A, Van Etten RL. Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond. Biochemistry (Mosc). 1984; 23:815–822

Liu B, Spearman M, Doering J, Lattová E, Perreault H, Butler M. The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol. 2014; 170:17–27. doi: 10.1016/j.jbiotec.2013.11.007 PMID: 24286971

Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsem S, et al. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A. 2003; 100:8013–8018. doi: 10.1073/pnas.0323472100 PMID: 12794960

Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, et al. Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylene and core-alpha(1,3)-fucose residues. Plant Biotechnol J. 2004; 2:279–287. PMID: 17134389

Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, et al. Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylene and core-alpha(1,3)-fucose residues. Plant Biotechnol J. 2004; 2:279–287. PMID: 17134389

Triguero A, Cabrera G, Cremata JA, Yuen C-T, Wheeler J, Ramírez NL. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogenously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J. 2005; 3:449–457. doi: 10.1111/j.1467-7652.2005.00137.x PMID: 17173632

Petruccelli S, Otegui MS, Lareu F, Tran Dinh O, Fitchette A-C, Circosta A, et al. A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J. 2006; 4:511–527. doi: 10.1111/j.1467-7652.2006.00200.x PMID: 17309727

Triguero A, Cabrera G, Royle L, Harvey DJ, Rudd RA, Dwek RA, et al. Chemical and enzymatic N-glycan release comparison for N-glycan profiling of monoclonal antibodies expressed in plants. Anal Biochem. 2010; 400:173–183. doi: 10.1016/j.ab.2010.01.027 PMID: 20109437

De Meyer T, Depicker A. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Plant Physiol. 2014; 156:473. doi: 10.3389/fpls.2014.00473

Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 1985; 316:452–457. doi: 10.1038/316452a0 PMID: 3927174

Jeffers R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998; 163:59–76. PMID: 9700502
55. Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, et al. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng. 2010; 107: 278–289. doi: 10.1002/bit.22800 PMID: 20506104

56. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009; 19: 936–949. doi: 10.1093/glycob/cwp079 PMID: 19494347

57. Butter M. Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems. Cytotechnology. 2006; 50: 57–76. doi: 10.1007/s10616-005-4537-x PMID: 19003071

58. Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, et al. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol. 2013; 83: 105–117. doi: 10.1007/s11103-013-0049-9 PMID: 23553222

59. Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, et al. Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol. 2014; 186: 98–109. doi: 10.1016/j.jbiotec.2014.05.024 PMID: 25014402

60. Ivarsson M, Villiger TK, Morbidelli M, Soos M. Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol. 2014; 188: 88–96. doi: 10.1016/j.jbiotec.2014.08.026

61. Leatherbarrow RJ, Dwek RA. Binding of complement subcomponent C1q to mouse IgG1, IgG2a and IgG2b: a novel C1q binding assay. Mol Immunol. 1984; 21: 321–327. PMID: 6610105

62. Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, et al. Role of Oligosaccharide Residues of IgG1-Fc in FcγRIIb Binding. J Biol Chem. 2001; 276: 45539–45547. PMID: 11567028

63. Jeffers R. Glycosylation of Recombinant Antibody Therapeutics. Biotechnol Prog. 2005; 21: 11–16. doi: 10.1021/bp040016j PMID: 15903235

64. Wright A, Morrison SL. Effect of C2-Associated Carbohydrate Structure on Ig Effector Function: Studies with Chimeric Mouse-Human IgG1 Antibodies in Glycosylation Mutants of Chinese Hamster Ovary Cells. J Immunol. 1998; 160: 3393–3402. PMID: 9531299

65. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011; 21: 949–959. doi: 10.1093/glycob/cwr027 PMID: 21421994

66. Alessandri L, Ouellette D, Acquah A, Rieser M, LeBlond D, Saltarelli M, et al. Increased serum clearance of oligomannose species present on a human IgG1 molecule. mAbs. 2012; 4: 509–520. doi: 10.4161/mabs.20450 PMID: 22669558

67. Weinreb NJ. Imiglucerase and its use for the treatment of Gaucher’s disease. 2008; Available: http://informahealthcare.com/doi/abs/10.1517/14656566.9.11.1987

68. Shaatli Y, Bartfeld D, Hashmuelli S, Baum G, Brill-Almon E, Galili G, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007; 5: 579–590. PMID: 17524049

69. He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, et al. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology. 2012; 22: 492–503. doi: 10.1093/glycob/cwr157 PMID: 22061999