Estimation of Optimal Dynamic Treatment Regimes via Gaussian Process Emulation: A Technical Report

Daniel Rodriguez Duque, David A. Stephens, Erica E.M. Moodie

McGill University

May 27, 2021

Abstract

Causal inference of treatment effects is a challenging undertaking in and of itself; inference for sequential treatments leads to even more hurdles. In precision medicine, one additional ambitious goal may be to infer about effects of dynamic treatment regimes (DTRs) and to identify optimal DTRs. Conventional methods for inferring about DTRs involve powerful semi-parametric estimators. However, these are not without their strong assumptions. Dynamic Marginal Structural Models (MSMs) are one semi-parametric approach used to infer about optimal DTRs in a family of regimes. To achieve this, investigators are forced to model the expected outcome under adherence to a DTR in the family; relatively straightforward models may lead to bias in the optimum. One way to obviate this difficulty is to perform a grid search for the optimal DTR. Unfortunately, this approach becomes prohibitive as the complexity of regimes considered increases. In recently developed Bayesian methods for dynamic MSMs, computational challenges may be compounded by the fact that at each grid point, a posterior mean must be calculated. We propose a manner by which to alleviate modelling difficulties for DTRs by using Gaussian process optimization. More precisely, we show how to pair this optimization approach with robust estimators for the causal effect of adherence to a DTR to identify optimal DTRs. We examine how to find the optimum in complex, multi-modal settings which are not generally addressed in the DTR literature. We further evaluate the sensitivity of the approach to a variety of modelling assumptions in the Gaussian process.

1 Introduction

As our capacity grows to capture and store data, the questions we ask are to become more complex. In health research, ambitious data-guided questions may be asked in the quest for precision medicine where researchers seek to tailor treatment to patient-specific characteristics. This tailoring requires sets of decision rules, termed dynamic treatment regimes (DTRs), that take patient information as inputs, and that output a treatment recommendation.
Often, researchers are interested in asking causal questions about these DTRs. Most notably, what is the causal effect of adherence to a specific DTR and what might the optimal DTR be. The search for an optimum is an important one in medicine, as we want to avoid over-treatment, but we also want to provide sufficient care. Answering questions about DTRs is challenging, even in data-rich environments; more data may correctly suggest we can ask tougher questions, but the curse of dimensionality tells us that we cannot escape thinking about statistical models in order to arrive at conclusions.

In the frequentist setting, inferential methods for dynamic treatment regimes have been traditionally performed via semi-parametric models. These include dynamic marginal structural models (MSMs) [Orellana et al., 2010], g-estimation of structurally nested mean models [Robins, 1986], Q-learning [Zhao et al., 2009] and outcome weighted learning [Zhao et al., 2012]. For Bayesians, where modelling the entire probabilistic dynamics is often required for inference, a variety of methods for DTRs have also been proposed, including Saarela et al. [2015], Murray et al. [2018], Arjas and Saarela [2010], Rodriguez Duque et al. [2021], and Xu et al. [2016]. Though much of the Bayesian literature in this area has focused on adapting existing frequentist estimation approaches for DTRs, the computationally intensive nature of Bayesian inference limits their usability. In this work, we focus on eliminating some of the modelling challenges with DTRs in order improve the usability of methods, be they frequentist or Bayesian.

Our work is motivated by the use of Dynamic MSMs, where a Bayesian version was recently also proposed [Rodriguez Duque et al., 2021]. Dynamic MSMs allow for the estimation of the value of a DTR within a given family. For example, researchers may posit the marginal mean model for the value of a DTR, g, where g belongs to a family of DTRs indexed by r e.g. $Y^{\psi} = \beta_0 + \beta_1 \psi + \beta_2 \psi^2$. Unfortunately, we cannot be certain that this model is correctly specified, or that it will correctly identify the optimal regime within the family. This is exemplified by Appendix A figure 1 where a quadratic fit to the data does not yield the true response surface and certainly does not identify the optimizer. One way around this issue is to estimate the expected outcome under each regime in the family, if there is a finite number of them, or to estimate the expected outcome of a large set of regimes and then extrapolate the value to other regimes. This approach is particularly attractive as we have access to powerful estimators for the expected outcome of these regimes. Unfortunately, this approach may require too much computation time, particularly in settings with many stages, complex decision rules, and a variety of confounders. This computational challenge may be exacerbated in Bayesian settings where computation is often a challenge. Though we focus on Dynamic MSMs, this issue extends to methods beyond Dynamic MSMs. For example Xu et al. use g-computation along with non-parametric models to identify an optimal regime in a small family. However, it is unclear how their method may be used feasibly and robustly when the number of possible regimes is infinite.

Propitiously, there may be a way around this computational bottleneck by making use of well-designed computer
experiments with the aim of identifying outcome-optimizing DTRs. Though our focus will be on designing computer experiments for alleviating the modelling issues with Dynamic MSMs and their Bayesian counterpart, this approach can be connected to other estimation procedures. Traditionally, data-driven optimization was performed using a regression-based approach termed response surface methods. However, these methods may not be well suited for identifying optimal responses. Huang et al. mention that response surfaces may be inefficient as they attempt to predict the response curve over the entire feasible domain, as opposed to in a neighbourhood of the optimum. Additionally, regression models are usually relatively simple, and may not fit complex systems adequately over the entire domain. Consequently, the literature has focused on a more modern approach using Gaussian processes (GP) to perform computer experiments. A GP is a stochastic process for which all outcome vectors, regardless of the dimension, are multivariate normally distributed. Models arising from the GP assumption are generally termed Kriging models. These models are widely used in two settings: 1) researchers have access to data and they would like to fit a flexible model, which may be used for prediction in unobserved locations 2) researchers are working with a function that is expensive to evaluate and they would like to have a fast approximation of this function, thereby minimizing the number of function evaluations needed to emulate the surface. Often, emulation is done for the purpose of optimization. The latter is what falls into the computer experiments literature. What is unusual about our setting is that computer experiments are usually applied to settings where the actual input output relationship is known, just difficult to evaluate. In our setting, we only have access to the estimated response surface, and it is the estimators that may be timely to evaluate. Effectively, this is a novel application of the methods.

Sacks et al. [1989] were among the first works to explore using GP for computer experiments. Later, Currin et al. [1991] used a similar methodology but in a Bayesian context. O’Hagan et al. [1999] argued that a Bayesian perspective was crucial for deterministic functions as, for fixed input, the output does not change. Consequently, uncertainty about the response surface is epistemic, not aleatory thereby making a frequentist approach haphazard. That being said, a fully Bayesian treatment of this problem is often highly complex and some compromises must be made. We take this into consideration and seek practical methods that find compromises between the Bayesian and Frequentist approach. One concern may be, as with any optimization procedure, that there exist local maxima within the operating domain of interest, making the identification of a global maximum more difficult. Jones et al. [1998] assuage these concerns by emphasizing that response surface methodology is good for modelling non-linear multimodal functions. The GP assumption means that we must specify a covariance and mean function. Additionally, as we hope to select points sequentially, we require an infill criterion; a criterion which suggests what is the best place to sample from next, based on some desirable characteristics. There are a variety of infill criteria in the literature. Most notably, the expected improvement criterion has been well studied and is known to balance exploration of the input space with exploitation of the optimizing region. Although
this is a great infill criterion, it does encounter theoretical problems in stochastic settings.

In the most straightforward setting, there are a variety of modeling choices in order to fully specify the GP model. Most important are the choice of covariance kernel, and mean function related to the multivariate normal distribution. Some authors have explored the use of covariance functions. For example, Simpson et al. found that Gaussian correlation function performs well in 1, 3, and 4 dimensional settings, and Matérn correlation functions perform well in two-dimensional problems. On the other hand Roustant et al. [2012] found that the Gaussian kernel, which is infinitely differentiable, does not yield stable covariance matrices. Contrastingly, they found that the Matérn 5/2 covariance kernel, which is twice differentiable, gives much better conditional covariance matrices. Beyond these sorts of empirical investigations, there has been some work on model selection for Gaussian Processes, some of which is reviewed in Shi and Choi [2011].

What is unique about our approach is that we are looking to emulate an estimation surface as a means to approximate the value surface of a family of regimes. Knowing the estimation surface is unbiased for the true response surface, we examine whether the resulting emulated surface is also unbiased, in particular with respect to the optimum. What is particular about this problem is that if we could use the estimator point-wise, we would get a non-smooth curve, which is what poses difficulties with the value search approach. There are several reasons as to why this lack of smoothness is present and indeed it is a finite sample issue. Contrastingly, as investigators, we are likely interested in smoothing out this noisy curve, leading to a more interpretable model for prediction. The consequence of this fact implies that we should consider GP model with an additional stochastic component. Furthermore, there is no reason to think that the observed noise will be homoskedastic about a smooth curve. There are several sources of variability that may lead to heteroskedastic noise: 1) Measurement Error, possibly including more variability in treatment arm than in response arm 2) Relatively smaller sample-size in some regions of the regime input-space than others 3) Patient responses being more distant from the value function in some areas of the input-space than others. We will more precisely exemplify these considerations in the in the following sections.

Now, the Kriging literature can be divided in two: settings with non-noisy observations and settings with noisy observations. The former is relatively straighforward: there is a given input and a fixed output; the GP is a great model for computer experiments in this setting. The setting of stochastic Kriging is somewhat more nuanced. Much of the literature defines stochastic Kriging as emulating a response surface where at each experimental point the output varies when re-evaluated at the same input. In settings that don’t involve sequential sampling of points this definition is sufficient. However, when sequential sampling is required, more care should be taken in defining the problem. There are some settings where we have a noisy function, as characterized by how jittery it is, but there is no variability when re-evaluated. As Forrester et al. [2006] puts it, there is no uncertainty in the output, even if it is noisy around the true smooth curve. This nuance is certainly consequential when identifying infill criteria for
stochastic kriging. In some cases, we do gain information by re-sampling at the same data-point—in others we do not.

There is much literature on stochastic Kriging. Picheny and Ginsbourger [2014] provide an overview of these methods. There is also a growing literature on \(GP\)s with heteroskedastic noise. For example, Ankenman et al. incorporate heteroskedastic noise by making the covariance model richer and then using plug in estimators. They show that correctly accounting for both sampling and response-surface uncertainty has an impact on experiment design, response-surface estimation, and inference. Frazier et al. also discuss heteroskedastic error and propose a method for financial time series. Yin et al. [2011] used kriging with a nugget effect, to allow for heteroscedastic noise as they note that not accounting for noise in the Kriging model, estimates of covariance parameters may be highly variable. They propose a modified nugget effect that seems to alleviate some of the issues with heteroscedasticity. An interesting fully-Bayesian approach is presented by Goldberg et al. [1997] which seeks to place a gaussian process prior on the log noise level, yielding two gaussian processes priors. As mentioned above, a fully Bayesian treatment is timely, but some work has been done on alleviating these issues. For example, Wang has looked at fast MCMC procedures for gaussian processes with heteroskedastic noise. Thinking about practicality, Kersting et al. [2007] follow the same approach as Goldberg et al. however they do not use Monte Carlo and use a most likely heteroscedastic Gaussian processes approach. Zhang and Ni offer an improvement on most likely heteroskedastic \(GP\)s. Jalali et al. provide a comparison of kriging-based algorithms for optimization with heterogeneous noise. They adapt some of the infill criteria, which were originally designed for homogeneous noise.

There are a variety of infill criterions. Huang et al. provide one way in which to use infill to sequentially sample new points via an augmented expected improvement. Frazier et al. propose method for noisy data called knowledge gradient. Picheny et al. [2013] provides a review for noisy kriging methods and infill criteria. Most infill criteria for stochastic settings seek to allow re-evaluations at already sampled points. However, this is not desirable in our setting as we noted that there is no variability in the output. There are other technical issues in revisiting already sampled points with the \(GP\), for example ill-conditioned matrix. Frazier and Wang [2016] provide a brief overview of Bayesian optimization for noisy and non-noisy data. Interestingly, they emphasize that the expected improvement can actually lead to have some optimality results (for one extra sampled points), but this optimality disappears in stochastic settings. Forrester et al. [2006] seeks to use the expected improvement criterion in noisy settings by proposing a re-interpolation approach to optimization. This is the approach that we focus on.

Most work done on this sort of optimization has been done either through a frequentist lens, which is not well supported, or via empirical Bayes. Besides the fully Bayesian approaches already mentioned, there has been work on incorporating MAP estimation, for example as in Lizotte [2008].
1.1 Inferential Setting

We consider a sequential decision problem with \(K \) decision points and a final outcome \(Y \) to be observed at stage \(K + 1 \). Decisions taken up to stage \(k \) give rise to a sequence of treatments \(\bar{z}_k = (z_1, ..., z_k) \), \(z_j \in \{0, 1\} \). At each stage \(k \), a set of covariates \(x_k \) is available for decision-making and it is assumed that these consist of all time-fixed and time-varying confounders. To denote covariate history up to time \(k \), we write \(\bar{x}_k = \{x_1, ..., x_k\} \). Subscripts are omitted when referencing history through stage \(K \). Then, all patient information is given by \(b = (\bar{x}, \bar{z}, y) \). We denote a DTR-enforced treatment history by \(g(\bar{x}) = (g_1(x_1), ..., g_K(\bar{x}_K)) \). Our focus is restricted to deterministic DTRs.

Throughout, we will consider a family of DTRs, which will be indexed by \(\psi \in I \) to give \(G = \{g^\psi(\bar{x}); \psi \in I\} \). The index is omitted when it is clear that our focus lies on a single DTR. We refer to the value function as the function that takes as input \(\psi \) and returns \(E[y|g^\psi] \). Point-wise evaluation of an estimator for the value function for a range of \(\psi \) leads to what we term the estimator surface.

2 Background

Consider the following model:

\[
\upsilon_i = f(\psi_i) + \epsilon_i \text{ with } \epsilon_i \sim N(0, \gamma^2(\psi_i)) \quad (1)
\]

Bayesian non-parametric inference allows us to place a prior \(d\pi(f) \) on \(f \in F \). Heuristically, we can consider the following Bayesian updating equation:

\[
P(f \in A|\upsilon) = \frac{\int_A L_n(f) d\pi(f)}{\int_F L_n(f) d\pi(f)}, \quad A \subset F \quad (2)
\]

This reflects the fact that there is epistemic uncertainty in the form of \(f \). This problem is further complicated by the fact that we may not get to observe \(f \), but only a noisy version, namely \(\upsilon \). Indeed, the prior that we place is on the value function. Available to us is the estimator function which we assume varies around the true curve. Now, to make matters more concrete, suppose we have data \(D = \{\psi_i, \upsilon_i\}_{i=1}^n \), where \(\psi_i \) may be a p-dimensional column vector. Then define the entire set of observations by \(\psi = (\psi_1, ..., \psi_n)^T \), \(\upsilon = (\upsilon_1, ..., \upsilon_n) \) and \(f = (f_1, ..., f_n) \). Furthermore, for conciseness, we denote \(\gamma^2 = (\gamma^2(\psi_1), ..., \gamma^2(\psi_n)) \). Now, motivated by the Bayesian perspective, we place a Gaussian process (GP) prior on the form of our function of interest \(f \). This has the consequence that for any finite set of observations \(\psi, f|\psi \sim N(\mu_0f, K) \). \(K \) is the covariance matrix calculated through a covariance function \(k(\psi_i, \psi_j) \), usually dependent on parameters \((\theta_f, \sigma_f^2)\). For example the Matern5/2 covariance:

\[
k(\psi_i, \psi_j) = \sigma_f^2 \left(1 + \frac{\sqrt{3}|\psi_i - \psi_j|}{\theta} \right) \exp\left(-\frac{\sqrt{3}|\psi_i - \psi_j|}{\theta}\right) \quad (3)
\]

Generally, then, the GP requires specifying a set of hyperparameters \(\eta_f = (\mu_0, \theta_f, \sigma_f^2) \). Without further knowledge of the problem it is challenging to specify values for these hyperparameters. Specifying priors for these hyperparameters
is possible, but it may increases the computational issues. More commonly, empirical Bayes is used to estimate the hyperparameters, as exemplified in Shi and Choi [2011]. Alternatively, MAP estimation may be used. Regardless if MAP or empirical Bayes, conditional on fixing these hyperparameters, standard arguments for the conditional distribution of a multivariate normal distribution yield the posterior distribution to be:

\[f_{n+1} | \psi_{n+1}, \eta_f, \gamma^2, D \sim N(\mu_{f_{n+1}}, \sigma^2_{f_{n+1}}) \]

\[\mu_{f_{n+1}} = \mu_0 + k^T (K + S)^{-1}(\nu - \mu_f) \]

\[\sigma^2_{f_{n+1}} = k(\psi_{n+1}, \psi_{n+1}) - k^T (K + S)^{-1}k \]

(4)

\(S \) is a diagonal matrix of noise variances with the \(i \) entry equal to \(\gamma_i^2 = \gamma^2(\psi_i) \). From an empirical Bayes perspective, the parameters are not random variable; they are fixed values. Consequently, they need not be included in the conditioning, we do this however for compatibility with the MAP approach. Now, this model, unlike the more well known \(\mathcal{GP} \) model for computer experiments, does not interpolate the observed data. Meaning that, \(\mu_{f_{n+1}} \) does not necessarily cross already observed sample points; it is a regressive model. This is desirable, as we are after a smooth response curve, but we only have access to a noisy curve obtained from point-wise evaluation of the estimator. To recover the interpolating model, we must just set \(\gamma^2(\psi_i) = 0 \). As Forrester et al. [2006] point out, the interpolation property of a \(\mathcal{GP} \) occurs when there is no measurement error in the data observation mechanism and comes from seeing that the posterior variance is zero at already sampled points, which is immediate from the following:

\[k^T K^{-1} k = k(\psi_i - \psi_i) = k(\psi_{n+1}, \psi_{n+1}). \]

(5)

Furthermore, we note that with this model, which takes model parameters as given, the expression for the variance at a new point differs from the frequentist literature which has an additional correction term. However, Forrester et al. [2006] clarify that this correction term is negligible in practice. Consequently the discrepancy between the frequentist and empirical Bayes approach is not particularly consequential. Lastly, the resulting posterior for the noisy observations is:

\[\nu_{n+1} | \psi_{n+1}, \eta_f, \gamma^2, \gamma^2_{n+1}, D \sim N(\mu_{\nu_{n+1}}, \sigma^2_{\nu_{n+1}}) \]

\[\mu_{\nu_{n+1}} = \mu_{f_{n+1}} \]

\[\sigma^2_{\nu_{n+1}} = k(\psi_{n+1}, \psi_{n+1}) - k^T (K + S)^{-1}k + \gamma^2_{n+1} \]

(6)

2.1 Homoskedastic Inference

We assume that the noise variance is homoskedastic, meaning \(\gamma^2(\psi_i) = \gamma^2, \forall i \). Now, if we had access to this model, we could additionally combine it with MAP estimation in order arrive at an approximation for \(p(\nu_{n+1} | \psi_{n+1}, D) \). Then we could use this posterior predictive distribution to compute what will be clarified later as an expected improvement measure, in order to complete our computer experiment. Overall, we are interested in computing
quantities in equation 4 and 6 in order to arrive at $p(v_{n+1}|x_{n+1}, D)$. An empirical Bayes approach assumes all hyperparameters are known and so $p(v_{n+1}|x_{n+1}, D) = p(v_{n+1}|x_{n+1}, \eta_f, \gamma^2, \gamma^2_{n+1}, D)$, where marginalization has been done over f. In actuality, these parameters are computed by maximizing the marginal distribution $p(v|\psi, \eta_f, \gamma^2)$. Note that γ^2 is not actually a hyperparameter, but it is still maximized in the same way as in Shi and Choi [2011]. Efficient computational approaches to identifying the maximizers of this marginal likelihood can be found in Park and Back [2001] and Roustant et al. [2012].

Now, if we were interested in incorporating priors for some of the hyperparameters, we may do so via MAP estimation and denote by η_f^{map} the maximizer of $p(\eta|D)$. Then, MAP estimation assumes that $p(\eta|D) \approx \mathbb{I}_{\eta_f^{map}}(\eta_f)$. This leads to the following approximation for the posterior predictive distribution:

$$p(v_{n+1}|\psi_{n+1}, D) \approx p(v_{n+1}|\psi_{n+1}, \eta_f^{map}, D) = \int p(v_{n+1}|\psi_{n+1}, \eta_f, D) \mathbb{I}_{\eta_f^{map}}(\eta_f) d\eta_f$$ (7)

Indeed we need not place a prior on each element of η_f. Shi and Choi [2011] mention that when non-informative priors are used, MAP estimation is the same as empirical Bayes. Lizotte [2008] has examined MAP inference for deterministic computer experiment under a log-normal prior for θ. We remind the reader that we seek to perform a stochastic computer experiment.

2.2 Heteroskedastic Inference

Now, as we mentioned, there are reasons to believe the response surface exhibits heteroskedastic noise. Consequently we review one approach for experimenting on data of this type. Following Zhang and Ni [2020], we model $e_i = \log(\gamma^2_i)$ with an independent Gaussian process with covariance function $k_e(\psi_i, \psi_j)$ and with parameters $\eta_e = (\mu_0,e, \theta_e, \sigma^2_e)$. Note that this is now an interpolating Gaussian process. For now, we are interested in performing the following marginalization

$$p(v_{n+1}|\psi_{n+1}, \eta_f, \eta_e, D) = \int \int p_1(v_{n+1}|\psi_{n+1}, \eta_f, e, c_{n+1}, \eta_e, D)p_2(e, c_{n+1}|\psi_{n+1}, \eta_e, D)de dc_{n+1}$$

Based on our assumptions p_2 is normal with posterior mean and variance as described in the general setup. If we are using empirical Bayes, then η_f and η_e are not really hyperparameters; they are fixed values. Consequently this marginalization is the right approach in order to arrive at a posterior predictive distribution. However, we note that this marginalization does not work if we choose to incorporate hyperparameters and their priors. In that case p_2 is not the only term in the posterior dependent on e, and so this is not the correct posterior to integrate over. Literature has termed this approach Most Likely Heteroskedastic GP Regression. Indeed, then, this Heteroskedastic approach is more amenable to an empirical Bayes approach and does not lend itself very coherently to MAP estimation of the hyperparameters. As we will note, though, this approach very much resembles MAP inference with regard to the distribution of the posterior error variances. First, we make an important observation: we do not have access to data
\(e_1, \ldots, e_n \). We later review how these can be estimated, but for now we proceed as if they were known. Now, using the following approximation: \(p(e, e_{n+1} | x_{n+1}, \eta_e, \mathcal{D}) \approx \delta(\tilde{e}, \tilde{e}^*) \), where \(\tilde{e}, \tilde{e}^* \) denote the maximizers of \(p_2 \) leads us to:

\[
p_1(\psi_{n+1} | \psi_{n+1}, \eta_f, \eta_e, \mathcal{D}) = \int \int p(\psi_{n+1} | x_{n+1}, \theta_f, e, e_{n+1}, \mathcal{D}) \delta(\tilde{e}, \tilde{e}_{n+1})(e, e_{n+1}) de_{n+1} \\
\approx p(y_{n+1} | \psi_{n+1}, \eta_f, \eta_e, \tilde{e}, \tilde{e}_{n+1}, \mathcal{D}).
\]

(8)

Consequently, the right hand of the equation above tells us that the posterior that we are interested in can be approximated by a Gaussian Process with mean and variance given in equation 6, where \(\gamma(\psi_i) \)s are replaced with \(\tilde{e}_i \)s. As we mentioned, data on \(e_1, \ldots, e_n \) is needed in order to infer about the second \(\mathcal{GP} \). In short, this requires obtaining the residuals of a \(\mathcal{GP} \) model fit on data \(\upsilon_1, \ldots, \upsilon_n \) and fitting the second \(\mathcal{GP} \) to a transformation of these, the full procedure being laid out in [Zhang and Ni, 2020].

We now have regressive homoskedastic and heteroskedastic models for the desired response surface. This is excellent, except for the fact that now it becomes a challenge to use traditional infill methods like the Expected Improvement method to be defined later. In particular, in order to guarantee that the expected improvement identify the true optimum as the number of experimental points increases, we need the posterior variance in already sampled locations to be zero [Forrester et al., 2006] [Locatelli, 1997]. This is a reasonable requirement because although we know there is error in the sample locations, we know that in our setting there is no uncertainty in the result. This property is achieved by obtaining an interpolating surface through the values predicted by the \(\mathcal{GP} \) regression at the sampled locations.

2.3 Re-interpolation

The re-interpolation methods allows us to place a \(\mathcal{GP} \) prior on the posterior mean of the analysis above. In particular, we are saying that the posterior mean does not vary when re-evaluated at the posterior outcome. This is the essense of the reinterpolation model presented by [Forrester et al., 2006]. Simply, this model uses the predictions of the mean of \(\psi_{n+1}, \mathcal{D} \), call these \((\hat{v}_1, \ldots, \hat{v}_n) \) in order to obtain a new dataset \(\mathcal{D}' = \{ \hat{v}_1 \}_{i=1}^n \). Then we obtain a similar heuristic as before:

\[
p(\hat{v}_{n+1} | \psi_{n+1}, \mathcal{D}') = p(\hat{v}_{n+1} | \psi_{n+1}, \hat{\eta}_f, \mathcal{D}')
\]

(9)

Note that the hat in \(\hat{\eta}_f \) is not used to indicate an estimated quantity, but rather the the parameter belonging to the \(\hat{v} \) process. Now, the main idea behind this is that the mean of the \(\upsilon \) and \(\hat{v} \) processes are the same, while the variance of the \(\hat{v} \) process possesses the characteristics that we are after: it is zero at already sampled points. \(K \) and \(k \) remain unchanged, so \(\theta \) is not re-optimized [Forrester et al., 2006]. The reinterpolation approach has not previously been used in a heteroskedastic noise setting, so we show that it still applies in Appendix A. In particular, it must
be that $\mu_{w} = \hat{\mu}_{0w}$. We note that this approach only works from an empirical Bayes’ approach on the prior mean. Otherwise, a MAP approach that includes a prior for the mean would yield a different equations for the posterior means.

2.4 Infill Criteria

Then, we return to the question of an appropriate infill criterion when we are interested in performing minimization. The expected improvement in our setting is given by: \[E[I(\psi)] = E[\max(\hat{v}_{\min} - \hat{v}(\psi)) + D^T]. \] The expectation is taken with respect to the posterior distribution and $\hat{v}_{\min} = \min(\hat{v}_1, ... \hat{v}_n)$. Further computation yields: \[E[I] = (\hat{v}_{\min} - \hat{\mu}_{\psi})\Phi\left(\frac{\hat{v}_{\min} - \hat{\mu}_{\psi}}{\hat{\sigma}_{\psi}}\right) + \hat{\sigma}_{\psi}\phi\left(\frac{\hat{v}_{\min} - \hat{\mu}_{\psi}}{\hat{\sigma}_{\psi}}\right) \] when $\hat{\sigma}_{\psi} > 0$ and 0 otherwise. Φ is the CDF of the standard normal distribution and ϕ is the corresponding pdf. We can see from this expression how exploitation and exploration are balanced.

2.5 Design of Experiments

There are a variety of ways to select design points, we simply select them equally spaced within dimensions. Sometimes points are selected at random, but given the nature of our experiment, we want to eliminate variability due to the initial sample, and focus on the variability due to the estimation surfaces. Additionally, this makes optimization somewhat easier by reducing the variability of initial fits.

Another design choice that must be made is the covariance function. Choosing the covariance parameter is an important element. Some covariance function lead to smoother surfaces versus others, for example the sample paths of the associated Gaussian process have derivatives at all orders and are thus very smooth. Another common choice of covariance is the Matern covariance, which is mean square differentiable up to order k. Common choices are the Matern 5/2 covariance which is twice differential and the Matern 3/2 covariance which is differentiable once. These are also examples of anisotropic covariance functions, meaning that the curvature of the function may differ across directions.

[Martin and Simpson] mention that there are three issues in maximization. Ridges in the likelihood, multiple local optima, and ill-conditioned matrices. [Stein] mention that using Matern covariance, models they are unaware of any model that leads to multiple optimizers, however we have observed multiple optima in the non-interpolating model scenario. [Davis and Morris] determined that larger correlation ranges and closer located observations tend to result in larger condition numbers, a measure of the stability of a matrix inverse. We also found this in this work. [Sasena] used a nugget effect to alleviate issues with ill-conditioned matrices.
2.6 Estimation Surface

We focus on the IPW estimator, which can be evaluated on a grid of ψs in order to give the resulting estimation surface. The frequentist estimator is given by

$$\frac{1}{n} \sum_{i} w_{\psi} y_i$$

where,

$$w_{\psi} = \frac{1}{\prod_{j=1}^{K} p\sigma(z_j | \bar{z}_{j-1}, \bar{x}_{j-1}, \bar{b})}.$$

Clearly, as the complexity of $1_{g_{\psi}(\bar{z})}$ grows, performing a grid search on the resulting IPW surface becomes prohibitive. Additionally, this is not taking into account the non-smoothness of the IPW surface, which can possibly hinder the correct identification of an optimum.

Now an additional layer of complexity is encountered if we would like to perform Bayesian inference. Denoting by \ast, a draw from the posterior distribution, then the quantity we are after is:

$$E_{\psi}[y^*|\bar{b}] = E_{\psi}[w_{\psi} y^*|\bar{b}]$$

where,

$$w_{\psi} = \frac{1}{\prod_{j=1}^{K} p\sigma(z^*_j | \bar{z}^*_{j-1}, \bar{x}^*_{j-1}, \bar{b})}.$$

The right hand expectation is taken with respect to the posterior distribution in the observational world data generating mechanism. Under a non-parametric prior specification on the family of data generating distributions in the observational world, $P_{\mathcal{F}}$, we may compute a posterior by sampling a distribution from the non-parametric posterior, computing the expectation and averaging through, as in:

$$E_{\mathcal{F}}[E[w_{\psi} Y|\bar{b}, \mathcal{F}]]$$

A robust, non-informative choice of prior in the observational measure is the non-parametric Dirichlet process (\mathcal{DP}) prior, with posterior asymptotically concentrating around the true data generating distribution. In particular, when $\mathcal{DP}(\alpha, G_{\ast})$ is chosen such that $|\alpha| \rightarrow 0$, we obtain the non-parametric Bayesian bootstrap as the posterior predictive distribution. Under this specification, one sample drawn from the posterior \mathcal{DP} is given by

$$p(b^*|\bar{b}, \Pi) = \sum_{i=1}^{n} \pi_i \delta_{b_i}(b^*),$$

where $\Pi = (\pi_1, ..., \pi_n) \sim Dir(1, ..., 1)$ is a sample from the Dirichlet distribution with all concentration parameters equal to one. Under the Bayesian bootstrap assumptions, any distribution sampled from the posterior \mathcal{DP} is uniquely determined by Π. To compute functionals of the posterior predictive, we require

$$p(b_i^* \in A|\bar{b}, \Pi) = E_{\Pi}[p(b_i^* \in A|\bar{b}, \Pi)]$$

which may be estimated by resampling weights $(\pi_1, ..., \pi_n)$ from $Dir(1, ..., 1)$, and computing the average over all samples. Consequently, under the Bayesian bootstrap assumptions, we are able to compute the expected posterior experimental world utility via:

$$E_{\mathcal{F}}[E[w_{\psi} Y|\bar{b}, \mathcal{F}]] = E_{\Pi}[E[w_{\psi} Y|\bar{b}, \mathcal{F}]] = E_{\Pi} \sum_{i} \pi_i w_{\ast} y_i$$

(13)
Details of this approach can be found in [Rodriguez Duque et al., 2021]. It happens that under the Bayesian bootstrap prior, the mean value of the estimated regime is identical to the frequentist approach. For this reason, we focus on solving the IPW estimator. However, there are many other non-parametric priors that may be set, and most of these would require sophisticated MCMC methods to obtain a regime’s value at each point. This further emphasizes that a fully Bayesian treatment of the proposed problem requires even more computational power at each grid point, thereby cementing the need for a computer experiment methodology.

2.6.1 Sources of Variation

As we have already discussed, the estimation curves exhibit some interesting sources of variation, and this should be taken into account. In this section, we examine some of the possible sources of heteroskedastic variation that we may wish to account for in our modeling approach. We note additionally that Case I and II would only lead us to adapt our modeling strategy in finite samples. In this exploration, we limit ourselves to regimes of the form treat if $x > \psi$, as this is a common regime in the literature, and it has straightforward, interesting exemplary properties.

It turns out that this is a very useful regime to consider, as it leads to clear examples about how heteroskedasticity is manifested. Irrespective of the data generating mechanism, so long as it depends on binary treatment, we will observe two response curves: the treated curve and the untreated curve. What we must realize is that as ψ increases, only treated patients become non compliant and only untreated patients become compliant. Furthermore, for an increase from ψ_1 to ψ_2, only patients with covariate values $\psi_1 \leq x \leq \psi_2$ are eligible to become compliant/non-compliant. Of course, notice that in contrast to static treatment regimes, an individual can be simultaneously compliant with many many DTRs. These properties are important in examining the variability in the following.

The first case we consider is heteroskedasticity due to distance from regime response surface. The first source of heteroskedasticity relates to how close/far the treated and untreated lines are from the regime response surface. Consider the family of regimes: treat if $x > \psi; \psi in$. For a change from ψ_1 to ψ_2, there will be a set of patients who become non-compliant with regime ψ_2 and a set who become compliant. If either the newly compliant/non-compliant patients have a response value that is far away from the population level regime estimator, then these observations will have a lot of influence over the curve, specially for relatively small sample sizes. If the observations tend to have a response that is near the population average, then the IPW surface will exhibit less influence from these observations. Newly adherent or non/adherent patients tend to have similar outcome values as they have similar covariate values (this is why they become compliant or not). Appendix A shows an explicit example of this.

The second case is heteroskedasticity due to heteroskedastic noise at the individual level. Now, a natural source of noise in the estimator surface is heteroskedastic noise at the individual level. We examine this specifically with respect to the IPW estimator. If we consider an additive error term like $z_1\epsilon_1 + (1 - z_1)\epsilon_2$, where $\epsilon_1 = N(0, 5)$,
\(\epsilon_2 = N(0, 0.5) \). We might not think this is an issue, as for estimation via an estimating equation; it does not matter whether noise is heteroskedastic or homoskedastic, so long as it has zero mean. However, when attempting to estimate a response curve for the purposes of identifying a minimum, this may be consequential. Again if we consider regimes of the form \(x_1 > \psi \), what we should recall is that as \(\psi \) increases, we lose treated patients, and we gain untreated patients. This means that we are losing observations with high variability and gaining observations with low variability. In appendix A, we show an example of this, including the resulting heteroskedasticity in the estimator surface. Now, we may ask when it is reasonable to have such a data-generating mechanism, and in fact, whether it’s possible to have such an error structure. It is not unreasonable to assume that there is a different stochastic component for treated and untreated patients. Treatment may lead to relatively reliable improvements, but lack of treatment may lead to disease progression taking on a variety of forms, and therefore leading to higher variability.

The last consideration that may lead to heteroskedasticity in the estimation surface is the result of differing effective samples sizes across values of \(\psi \). It is well known that the IPW estimator for a regime \(\psi \) only uses patients who are compliant to the regime. Consequently, different regimes will use different number of patients to compute the value of the corresponding regime. This means that the estimator will exhibit differing levels of variability for a range of \(\psi \)s. In appendix A, we show an example where this is the case.

3 Simulations

There are a variety of metrics that can be used to evaluate the performance of a Gaussian Process model. suggested by [Sasena](This thesis also has good example of monotonic likelihood. Page 53.). Some previously suggested metrics are 1) \(f_1 \) metric: The number of iterations required before a point is sampled with an objective function value within 1 percent of the true solution 2) \(x_1 \) metric: The number of iterations required before a point is sampled within a box the size of plus/minus 1 of the design space range centered around the true solution 3) \(x_{\text{star}} \) metric: The Euclidean distance from the best sample point to the global solution.

3.1 Identification of Locally Optimal Regimes

When performing simulations involving DTRs, it is common to pose a data generating mechanism via regret functions, as opposed to blip functions. However, in a multi-modal setting is unclear how blips may help us, as it is unclear how to identify the optimal regime. For now, we focus on data-generating mechanisms based on blips, which has the added benefit of having a simpler form for the outcome.

If we explore rules of the form treat if \(x > \psi \) and if the data-generating mechanism is of the form \(Y = x_1 + z_1 g(x_1) \), then the globally optimal regime is still relatively straightforward to identify: treat if \(g(x_1) > 0 \). However, depending
on the form of $g(x_1)$, it is likely that this regime will not be in the family of interest, and may not be clinically meaningful or straightforward to implement. This makes the issue of identifying the regime in the family sightly more complex. In the family of interest, the optimal threshold ψ^* is the one that maximizes $\int_0^\infty g(x)f(x)dx$. When $g(x)$ is a polynomial, computing these integrals should not be too difficult. In fact, in some cases the optimum should be obvious from the plot of $g(x)f(x)$, as the integral is the area under this curve. We look for the regime that maximizes or minimizes this area. Of course, we note that the distribution of x dictates the form of the value function, and consequently of the optimal regime in the family. This contrasts the case with the global optimum which is invariant of the distribution of x.

3.2 Simulation I: Single Stage Example

The simulation setup is as follows, we used a sample size of $n=1000$, to generate covariate $x_1 \sim U(-1.5, 1.5)$, treatment $z_1 \sim \text{Binom}(p = \expit(2x_1))$, error distributions $\epsilon_1 = N(0, \sigma = 0.25)$ $\epsilon = N(0, \sigma = 0.05)$ and final outcome $y = -(x_1 + .8) \ast x_1 \ast (x_1 - .9)z_1 + z_1\epsilon_1 + (1-z_1)\epsilon_2$. We explored the regime $x_1 > \psi$, $\psi \in (-1.5, 1.5)$.

With this data-generating mechanism, the systematic component of y varies from -2 to 2.5. The optimal regime represents a 5 % improvement (in the range of y) over the worst regime in the class. In figure [1] we observe the value function for this problem and the result of a point-wise estimation of the IPW estimator for each ψ, across multiple replicates. It is visually evident that the function has two local minima, but only one global minimum at 0.9. Contrary to common belief, a grid search for the minimum may not work well, as evidenced from panel (b).

Though this is a bimodal problem that emphasizes the issue with grid search, can think that the issue also existing more locally around the optimum.

The computer experiment was setup such that 15 equidistant points were taken to fit the initial model. Then, additional points were taken up to 25 additional points. To perform statistical comparisons, we performed 150 replications for each procedure. We attempted to compare the results for models assuming no noise, homoskedastic noise, and the heteroskedastic method described previously. In the following tables, all standard errors are Monte Carlo standard errors. Confidence intervals for the minimizing ψ are produced by multiple draws from the posterior multivariate normal distribution with appropriate mean and covariance. For each curve drawn from the multivariate normal, a grid search was performed to identify the minimum. This results in a distribution of minimums. Note that the grid search is only necessary if we are interested in confidence intervals. Otherwise, the minimizer from the EGO algorithm. Note that the min from the EGO algorithm is not necessarily exactly the min of the posterior mean; EGO algorithm only considers points to be minimizers from the set of visited points, this is different from identifying the min by doing a grid search on the posterior mean.
From figure 1, we see the results of three modeling strategies: an interpolating model, a homoskedastic model, and a heteroskedastic model. These curves are shown after sampling 25 additional points using the expected improvement as the infill criterion. We see why the interpolating model is likely to under-perform, occasionally, due to noise in the fit there will be a minimizer of the IPW surface that is not around 0.9. Panel (b) and (c) are smoothed compared to the interpolating fit. We see that the heteroskedastic fit is less wiggly than the homoskedastic fit; this makes sense, as the heteroskedastic fit allows for data to display larger deviations in some regions of the plot than others. However, it is unclear whether this more appropriate modeling will benefit or hinder the identification of a global minimum. We remind the reader that are setup is slightly different than the one in usual computer experiments; we have a target surface that for a given sample is approximated by an IPW estimation surface. This estimation surface is known to be unbiased for the target. We then emulate the IPW surface to obtain the emulation surface. The IPW surface is only an intermediary in the whole process, and what we are interested in comparing is the target surface with the emulation surface.

Table 1 and 2 show the simulations results across 150 replicates, for each modeling type. We see that there is some improvement in the accuracy of the identified optimum as the number of new experimental points increases. However, we note that the mean across replicates is not unbiased; this is due to the multimodality of the problem. It is clear why this is from figure 3, which shows the estimated optimum for each replicate, across all additional samples. Occasionally, the identified identified minimum is not in the vicinity of the global minimizer, thereby skewing the distribution. We note that this problem is much more worrisome when using the interpolating model, as would be expected. We note further that the mean of the grid search minimums is highly biased, with high variability.

Table 2 shows us that the homoskedastic and heteroskedastic methods are close to the target most of the time,
even only after five additional points have been sampled. The interpolating model does not perform as badly, when we consider the median, but we note that the variability is much higher than in the other two methods. It also does not improve with increasing experimental points. Even the grid search is closer to target in this case, though not quite, but the variability is two orders of magnitude higher than the magnitude of the homoskedastic and heteroskedastic methods.

The converge column in the tables indicate how many replications, out of the 150, completed without issue. Ideally, this would be all replications, but given the nature of the problem there are a few issues that can arise when performing optimization using these models. In a real-data analysis setting these issues can be remedied in straightforward says. Issues that can arise include 1) ill-conditioned matrices because the infill criteria suggests multiple nearly identical points or 2) likelihoods that have a very shallow maximizer, or with score values asymptoting to zero, thereby throwing off the optimization algorithm. These are solvable by adding a small nugget effect to the covariance matrix or by being more careful about domain of optimization. Of course, across replications this is not feasible. That being said most of our simulations completed without issue, and so there is no cause for concern. We did observe, however, that when the noise in the problem increases, to perhaps unrealistic levels, the proportion of models that do not converge increases as well.

Table 1: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.26 (0.838).

	Mean (SD)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.614 (0.628)	0.639 (0.612)	0.613 (0.627)	0.614 (0.631)	0.576 (0.669)	0.531 (0.704)	150	
Homoskedastic	0.717 (0.539)	0.769 (0.465)	0.826 (0.356)	0.818 (0.365)	0.814 (0.372)	0.794 (0.413)	148	
Heteroskedastic	0.703 (0.546)	0.773 (0.457)	0.803 (0.399)	0.778 (0.446)	0.803 (0.402)	0.776 (0.447)	144	

Table 2: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.83 (1.68).

	Median (IQR)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.857 (0.138)	0.857 (0.145)	0.857 (0.148)	0.857 (0.141)	0.857 (0.152)	0.857 (0.163)	150	
Homoskedastic	0.857 (0.076)	0.893 (0.079)	0.897 (0.08)	0.898 (0.082)	0.894 (0.081)	0.895 (0.068)	148	
Heteroskedastic	0.857 (0.071)	0.89 (0.073)	0.894 (0.072)	0.898 (0.076)	0.9 (0.072)	0.893 (0.072)	144	

Table 3 and 4 show the consequences of estimating procedure on the value of the optimal regime. We see that in this case, the grid search values, does not deviate as much as the grid search optimum. This is because the two minima in the function have similar values. However, we do note that the grid search still does exhibit more bias.
than the homoskedastic and heteroskedastic approaches. Interestingly, unlike for the optimal regime, the estimation of the value does not really improve substantially with additional experimental points.

Table 3: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649). Grid search value: -0.177 (0.015).

Method	Mean (SD)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	-0.169 (0.016)	-0.171 (0.016)	-0.172 (0.015)	-0.173 (0.015)	-0.173 (0.015)	-0.174 (0.015)	150	
Homoskedastic	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.014)	-0.167 (0.015)	-0.167 (0.014)	-0.167 (0.014)	148	
Heteroskedastic	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.014)	-0.167 (0.014)	-0.167 (0.014)	144	

Table 4: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649). Grid search value -0.176 (0.021).

Method	Median (IQR)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	-0.169 (0.019)	-0.171 (0.021)	-0.172 (0.02)	-0.173 (0.021)	-0.173 (0.021)	-0.173 (0.021)	150	
Homoskedastic	-0.169 (0.02)	-0.167 (0.019)	-0.167 (0.019)	-0.167 (0.02)	-0.167 (0.02)	-0.167 (0.019)	148	
Heteroskedastic	-0.167 (0.019)	-0.167 (0.02)	-0.167 (0.02)	-0.168 (0.019)	-0.167 (0.019)	-0.167 (0.019)	144	

From table 5, we see that the coverage probability for the optimal regime. It is uncommon for literature on computer experiments to present any coverage probabilities. This may be because it is computationally expensive to do so. For this reason, we only present intervals for five additional points and for 25 additional points. We see that the intervals for the homoskedastic method are closer to nominal than the approach that acknowledges heteroskedasticity. This may be because the variance close to the optimum is smaller than the overall variance, thereby making confidence intervals smaller. This table also shows that increasing the number of experimental points, increases the coverage; this is more to do with accuracy increasing with an improving model.

Table 5: Coverage probability for 95% confidence intervals across 150 replications

	+5 Points	+25 Points
Interpolating	0.88	0.99
Homoskedastic	0.92	0.97
Heteroskedastic	0.76	0.82

In appendix B, we show results for a variety of different setups, including smaller sample sizes, a different covariance function, and a log normal prior on the covariance parameter θ.

17
4 Discussion

Ultimately, we have determined that some value-search estimators may not be very robust in identifying optimal dynamic treatment regimes, in particular dynamic marginal structural models that require us to model the counterfactual outcome under compliance to a regime g^ψ in a family \mathcal{G}. Commonly, the DTR literature claims that value-search estimation can proceed with a grid search, so long as it is computationally feasible. Our simulation shows that a grid search is not always the right approach and can indeed lead to a very biased estimate for the
optimum. We have shown that a Gaussian optimization approach that accounts for variability in the estimated response surface more accurately and precisely estimates the optimal DTRs of interest. In the appendix, we further illustrated that the resulting success of the homoskedastic and heteroskedastic approaches are maintained for smaller samples sizes and differing modeling decisions.

A Appendix A: Heteroskedasticity

For all examples relating to heteroskedasticity, we focus on regimes of the form $x > \psi$. We refer to the value surface, as the surface produced by evaluating the value of a regime ψ for a range of ψ’s. We refer to the IPW surface as the surface that arises from point-wise evaluation of an estimator for the value of a regime ψ for a range of ψ. As described in the main text when going from regime ψ_1 to regime ψ_2 ($\psi_1 < \psi_2$), we can only lose treated patients and gain untreated patients.

A.1 Heteroskedasticity Type I

The first source of heteroskedasticity is interesting and unexpected. Mainly, it relates to the fact that patient-level responses can exhibit substantially higher levels of variability than the regime value surface. We consider the following data generating mechanism for the purposes of illustration.

- $Y = 1000(-x_1 + (x_1 + 0.8)x_1(x_1 - 0.2)(x_1 - 0.4)(x_1 - 0.8)z_1)$
- $n = 10000$, $x_1 \sim U(-1, 1)$, $z_1 \sim \text{bin}(1, 0.5)$

Note that $y|x_1, z_1$ is deterministically generated so as to avoid other sources of variability. In panel (a) of figure 5, we see the mean response for the treated and untreated patients, as well as the regime value surface. We note that in this scale, the surface looks flat, but it is actually multi-modal. In panel (b) of figure 5, we observe the IPW estimation surface, and we that there are clear signs of heteroskedasticity. Most notably, there is much more variability in the edges of the plot than in the middle. This variability depends mainly on three things 1) How close are the treated and untreated lines to the IPW surface 2) How many people become compliant 3) How many people become non-compliant.

It is clear from figure 5 that the IPW exhibits less variability around zero. This corresponds to when the treated and untreated lines are closest to the IPW surface. Conversely, when the lines are far from the IPW surface, more variability is observed. We may ask ourselves why there should be more variability if, in some cases, the treated line and the untreated lines are proximal to each other. In the presence of confounding, this arises because more treated patients are being lost than untreated patients. Now, in an unconfounded setting, for an increase in ψ, the number of
lost non-compliers is the same as the number of new compliers, on average. However, for a given finite sample there
may be more/less new compliers than non-compliers, and it is these differences that lead to variability in the curve,
even if treated and untreated response lines are similar. Now, this is mainly a finite sample issue. As more patients
contribute to the IPW estimator, it becomes harder to shift the mean by a large amount when a small number of
patients are added or taken away.

Figure 5: (a) Value surface and treated/untreated response curves (b) IPW estimation surface with treated and
untreated response

A.2 Heteroskedasticity Type II

We consider a simple data-generating mechanism that illustrates clearly that indeed heteroskedasticity does surface
at the estimator level.

- \(n = 1000, \epsilon_1 = N(0, 5), \epsilon_2 = N(0, 0.5) \)
- Homoskedastic Mechanism: \(y = 100(-2x_1 + O_1z_1 + \epsilon_1) \)
- Heteroskedastic Mechanism: \(y = 100(-2x_1 + x_1z_1 + z_1\epsilon_1 + (1 - z_1)\epsilon_2) \)
- \(x_1 \sim U(-10.5, 10.5) \) \(z_1 \sim \text{binom}(1, 0.5) \)

Again note that there is no confounding in this setup. This is done on purpose, as it ensures that the number of units
adherent to each regime is the same across \(\psi \). For the IPW estimator, conditional on known treatment propensity,
variance is related to the number of units adherent to a treatment; we refer to this as the effective sample size. As we
will see in Case III, confounding plays a role in the effective sample size and consequently on the variability structure.

Indeed, we observe that the variability of the IPW surface is heteroskedastic. We see from figure[4] that when there
is homoskedastic noise in the person-level mechanism, this transfers to homoskedastic noise in the IPW estimator.
The noise only plot is create by taking the weighted mean of the noise terms only. It is quite straightforward to see
why heteroskedasticity comes about for regimes of type treat if \(x_1 > \psi \). We have already established that, as we
move from left to right in the plots above, we lose treated patients and gain untreated patients. This means that
we are losing observations with high variability (\(\epsilon_1 \)), and gaining observations with low variability (\(\epsilon_2 \)). This has
the consequence of affecting the variability of the resulting estimator. Note that in this example, IPW weights were
computed with known treatment propensities.
A.3 Heteroskedasticity Type III

Now we exemplify how variability is a function of sample size, in particular, we note that a given set of data may be more informative about one regime versus another, leading to the notion of effective sample size. We may think that to show the consequences of effective sample size, we require changing the data distribution so that it concentrated in a particular region of thresholds ψ. However, this is not the only factor; the confounding structure also plays a role. Consider the following data generating mechanism:

- $y = 100(-2x_1 + x_1z_1)$
- $z_1 \sim \text{binom}(1, p), x_1 \sim (\Gamma(\alpha = 1/3, \beta = 2) - 1)$
- Confounding case: $p = \expit(2.5x_1)$, Non-confounding Case: $p = 0.5$.

With the data generating mechanism, we make use of both confounding and the x_1 distribution to change effective sample size. Furthermore we consider two cases confounded and unconfounded data because even an unconfounded dataset, which results in equal effective sample sizes across regimes, leads to heteroskedasticity. This heteroskedasticity is likely arising from Case I. From panels (b) and (c), we see that the effective sample size is the same across all regimes and that there is heteroskedasticity. Consequently to show that effective sample size further exacerbates the potential difficulties of heteroskedasticity, we must compare the variability in the unconfounded case with the variability in the confounded case, to see if there is a constant or uneven change in variability across regimes. An uneven change indicates further heteroskedasticity induced by the effective sample size.

Figure 6: n=1000 (a) IPW estimator; homoskedastic case (b) IPW estimator; heteroskedastic case; (c) Noise Component of heteroskedastic case
Now if we increase confounding, as a way to manage the effective sample size, we obtain the results in figure 8. We see that for higher values of ψ, the effective sample size falls. For these same values the standard deviation increases. Comparing the standard deviation in figure 7 and 8, we see that this change is not uniform, thereby informing us that effective sample size leads to further heteroskedasticity. To understand how this heteroskedasticity comes about note that the x_1 distribution is concentrated on the right side of the plot. Further note that as we move from left to right, we encounter more data, due to the data-generating mechanism, and a larger and larger portion of these patients are receiving treatment. Treated patients are exactly the patient we lose as we move right, and we are only gaining a small number of untreated patients. This results in the observed drop in effective sample size. Since the data distribution is concentrated on the right-side, we stand to lose more patients.

A.4 Re-Interpolation

We remind the reader that we are interested in showing that $\hat{\mu}_v = \mu_v$. For this, we first show $\mu_{0v} = \hat{\mu}_{0v}$. The empirical Bayes expression for μ_{0v} is given by:

$$
\mu_{0v} = \mu_f = \frac{1^T(K + S)^{-1}v}{1^T(K + S)1}
$$

First note that equation 14 in the main text tells us that $1(K + S)^{-1}1\mu_{0v} = 1(K + S)^{-1}v$. Now based on the mean given in equation 14, we are able to write the vector of predicted values as:
\[\hat{v} = 1\mu_0 + K(K + S)^{-1}(v - 1\mu_0) \]

(15)

Then substituting this into the expression for \(\hat{\mu}_0v \), analogous to expression 14, we obtain:

\[
\hat{\mu}_0v = \frac{1^T K^{-1} \hat{v}}{1^T K 1} = \frac{1K^{-1}1\mu_0v + 1(K + S)^{-1}(v - 1\mu_f)}{1K^{-1}1} = \mu_0v + \frac{1(K + S)^{-1}v - 1(K + S)^{-1}1\mu_0}{1K^{-1}1} = \mu_0v + 0
\]

(16)

Consequently plugging in the expression for \(\hat{v} \) into the expression for the posterior mean in the reinterpolation model we get

\[
\hat{\mu}_v = \hat{\mu}_0v + k^T K(\hat{v} - 1\hat{\mu}_0v)
\]

\[
= \hat{\mu}_0v + k^T K^{-1}1\mu_0 + K(K + S)^{-1}(y - 1\mu_f) - 1\hat{\mu}_0v
\]

\[
= \hat{\mu}_0v + k^T K^{-1}1\mu_0v + k^T (K + S)^{-1}(y - 1\mu_f) - k^T K^{-1}1\mu_0v
\]

\[
= \mu_0v + k^T (K + S)^{-1}(v - 1\mu_0v)
\]

\[
= \mu_v
\]

(17)

Then, the Kriging variance at a new sample point is \(\hat{\sigma}_v^2(\psi) = k(\psi, \psi) - k^T K^{-1}k \) and it has the desired property of having zero error at already sampled points. We remind the reader that, although we have not been explicit about it in the notation, the posterior mean also depends on \(\psi \), as \(\hat{\mu}_v(\psi) \). This allows us to use the expected improvement with all its usual features.

B Appendix B: Simulations

B.1 Identification of Locally Optimal Regimes

We may ask how to identify the optimal DTR in a family of regimes treat if \(x_1 > \psi \) for a data-generating mechanism with \(Y = 1000(-x_1 + (x_1 + 0.5)(x_1 - 0.5)z_1) \), and \(x_1 \sim U(-1.5, 1.5) \). Plotting the graph of \(g(x)f(x) \) as defined in the main text and further evaluating the integral in order to obtain the value function for regimes in the family we obtain the following plots:
As we look to evaluate the integral of the curve in panel (b) we observe that as x_1 moves to the right, the integral gets smaller until -0.5. Between -0.5 and 0.5 the integral is larger as we are removing negative terms. Beyond 0.5, the integral gets smaller again as we are taking away positive terms. Indeed this leads us to the observed value function in panel (a). Now we change the distribution of x_1 to $x_1 \sim N(-1, 0.5)$ and examine the effects.

Figure 10: (a) Response to DTR (b) Plot of $g(x)f(x)$

Figure 10 demonstrates the same intuition as figure 10. Notably, the right hand side of $g(x)f(x)$ is no longer largely positive. This is due to the distributional change in x_1.

C Simulation I

The Matern covariance is identified by parameters ν, κ. This family of covariances has a particularly nice form when $\nu \kappa = \kappa + 1/2$. Generally κ is known to control how fast the correlation decays with distance, which determines
the low frequency (Coarse-scale) behaviour. ν is known to control the high frequency (fine-scale) smoothness of the sample paths.

In this section of the appendix, we explore a variety of different simulations settings.

C.1 Matern 3/2 Covariance

We first change the covariance from Matern 5/2 to Matern 3/2. In figure 11, we observe the visited points in the EGO algorithm, across 150 replicates. As expected, the algorithm spends more time around the true optimum of 0.9 for the homoskedastic and heteroskedastic approaches.

[Figure 11: Sampled Points for Matern 3/2 Covariance (a) Interpolating (b) Homoskedastic (c) Heteroskedastic]

We now examine the same type of results as in the main paper, but with this different covariance function. We note that the results are pretty similar. This is positive in some ways as it emphasizes that the results are robust to modeling decisions.

Table 6: Optimal threshold ψ for Matern 3/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.255 (0.84).

Mean (SD)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.63 (0.622)	0.639 (0.617)	0.659 (0.593)	0.655 (0.597)	0.606 (0.641)	0.549 (0.694)	149
Homoskedastic	0.688 (0.556)	0.792 (0.387)	0.817 (0.345)	0.823 (0.334)	0.834 (0.31)	0.849 (0.29)	150
Heteroskedastic	0.697 (0.538)	0.738 (0.5)	0.831 (0.316)	0.829 (0.314)	0.842 (0.289)	0.833 (0.322)	150

Table 7: Optimal threshold ψ for Matern 3/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.83 (1.68).

Median (IQR)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.857 (0.134)	0.857 (0.15)	0.87 (0.125)	0.87 (0.124)	0.857 (0.128)	0.857 (0.158)	149
Homoskedastic	0.857 (0.081)	0.886 (0.102)	0.883 (0.091)	0.887 (0.095)	0.885 (0.09)	0.892 (0.089)	150
Heteroskedastic	0.857 (0.08)	0.882 (0.082)	0.886 (0.091)	0.884 (0.084)	0.891 (0.094)	0.889 (0.095)	150
Table 8: Value at optimal threshold ψ for Matern 3/2 covariance, with constant mean (Known value: -0.1649). Grid search value: -0.177 (0.015).

	Mean (SD)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	-0.169 (0.015)	-0.172 (0.015)	-0.173 (0.015)	-0.173 (0.015)	-0.174 (0.015)	-0.174 (0.015)	-0.174 (0.015)	149
Homoskedastic	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	-0.167 (0.015)	150
Heteroskedastic	-0.168 (0.015)	-0.167 (0.014)	-0.167 (0.014)	-0.167 (0.014)	-0.167 (0.014)	-0.167 (0.014)	-0.167 (0.014)	150

Table 9: Value at optimal threshold ψ for Matern 3/2 covariance, with constant mean (Known value: -0.1649). Grid search value: -0.176 (0.021).

	Median (IQR)	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	-0.17 (0.019)	-0.171 (0.022)	-0.172 (0.02)	-0.172 (0.02)	-0.173 (0.021)	-0.173 (0.021)	-0.173 (0.021)	149
Homoskedastic	-0.168 (0.019)	-0.166 (0.019)	-0.167 (0.019)	-0.167 (0.019)	-0.167 (0.018)	-0.167 (0.018)	-0.167 (0.017)	150
Heteroskedastic	-0.167 (0.019)	-0.167 (0.019)	-0.167 (0.018)	-0.167 (0.019)	-0.167 (0.019)	-0.167 (0.019)	-0.167 (0.019)	150

Table 10: Coverage probability for 95% confidence interval across 150 replications

	+5 Points	+25 Points
Interpolating	0.92	0.99
Homoskedastic	0.93	0.95
Heteroskedastic	0.84	0.84

Figure 12: Optimal Threshold
In this section, we place a Log-Normal prior on the covariance parameters θ. We have already discussed that this approach is not necessarily very coherent with the heteroskedastic approach. Now, to calibrate this prior, we select the mean and variance parameters for the prior such that for an increment that is 10% of the range of ψ values, θ has 95th and 5th percent quantiles corresponding to a correlation between approximately 0 and 0.95.

We note that though the results are pretty much the same, models in all replications converged. This is similar to what Lizotte [2008] has observed: that this prior has a stabilizing effect on the parameter estimation process of these models.

Table 11: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.26 (0.838).

Type	Mean (SD) 1 Point	Mean (SD) +5 Points	Mean (SD) +10 Points	Mean (SD) +15 Points	Mean (SD) +20 Points	Mean (SD) +25 Points	Number Converge
Interpolating	0.614 (0.629)	0.624 (0.608)	0.596 (0.64)	0.57 (0.655)	0.571 (0.657)	0.548 (0.679)	150
Homoskedastic	0.713 (0.524)	0.791 (0.417)	0.802 (0.382)	0.767 (0.45)	0.743 (0.487)	0.768 (0.456)	150
Heteroskedastic	0.703 (0.534)	0.777 (0.445)	0.775 (0.43)	0.737 (0.495)	0.752 (0.483)	0.789 (0.418)	150
Table 12: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: 0.83 (1.68).

	Interpolating	Homoskedastic	Heteroskedastic
Median (IQR)	0.857 (0.138) 0.857 (0.157) 0.857 (0.151) 0.857 (0.152) 0.857 (0.153) 0.857 (0.155)	0.857 (0.078) 0.888 (0.004) 0.895 (0.079) 0.889 (0.08) 0.882 (0.089) 0.891 (0.076)	0.857 (0.069) 0.889 (0.096) 0.889 (0.089) 0.891 (0.097) 0.89 (0.086) 0.898 (0.07)
+1 Point			
+5 Points	0.857 (0.157) 0.857 (0.151) 0.857 (0.152) 0.857 (0.153) 0.857 (0.155)	0.888 (0.004) 0.895 (0.079) 0.889 (0.08) 0.882 (0.089) 0.891 (0.076)	0.889 (0.096) 0.889 (0.089) 0.891 (0.097) 0.89 (0.086) 0.898 (0.07)
+10 Points			
+15 Points			
+20 Points			
+25 Points			
Number Converge	150	150	150

Table 13: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649).

Grid search value: -0.177 (0.015).

	Interpolating	Homoskedastic	Heteroskedastic
Mean (SD)	-0.169 (0.016) -0.171 (0.015) -0.172 (0.015) -0.173 (0.015) -0.173 (0.015) -0.174 (0.015)	-0.167 (0.015) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014)	-0.167 (0.015) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014)
+1 Point			
+5 Points	-0.171 (0.02) -0.172 (0.015) -0.173 (0.015) -0.173 (0.015) -0.173 (0.015) -0.174 (0.015)	-0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014)	-0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014) -0.167 (0.014)
+10 Points			
+15 Points			
+20 Points			
+25 Points			
Number Converge	150	150	150

Table 14: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649).

Grid search value: -0.176 (0.021).

	Interpolating	Homoskedastic	Heteroskedastic
Median (IQR)	-0.169 (0.019) -0.171 (0.02) -0.173 (0.019) -0.173 (0.02) -0.174 (0.021) -0.174 (0.02)	-0.168 (0.019) -0.166 (0.019) -0.167 (0.019) -0.167 (0.02) -0.167 (0.02) -0.167 (0.02)	-0.168 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019)
+1 Point			
+5 Points	-0.171 (0.02) -0.173 (0.019) -0.173 (0.02) -0.174 (0.021) -0.174 (0.02)	-0.166 (0.019) -0.167 (0.019) -0.167 (0.02) -0.167 (0.02) -0.167 (0.02)	-0.167 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019) -0.167 (0.019)
+10 Points			
+15 Points			
+20 Points			
+25 Points			
Number Converge	150	150	150

Table 15: Coverage probability for 95% confidence interval across 150 replications

	+5 Points	+25 Points
Interpolating	0.91	0.99
Homoskedastic	0.93	0.93
Heteroskedastic	0.83	0.85
C.3 Sample Size (n=500)

We further investigate the case of a smaller sample size. We observe that again the homoskedastic and heteroskedastic approaches work well, though there is slightly more variability in the optimum than for the larger sample size case. This is expected. We note that the grid search performs even worse.
Table 16: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: -0.11 (0.882).

	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.313 (0.813)	0.344 (0.809)	0.323 (0.816)	0.36 (0.8)	0.329 (0.815)	0.336 (0.823)	140
Homoskedastic	0.547 (0.69)	0.6 (0.672)	0.641 (0.651)	0.648 (0.622)	0.673 (0.596)	0.682 (0.579)	150
Heteroskedastic	0.453 (0.752)	0.576 (0.682)	0.623 (0.657)	0.615 (0.657)	0.627 (0.632)	0.597 (0.663)	138

Table 17: Optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known optimizer: 0.9). Grid search minimizer: -0.71 (1.728).

	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	0.857 (1.5)	0.857 (1.623)	0.849 (1.684)	0.852 (1.582)	0.838 (1.686)	0.844 (1.688)	140
Homoskedastic	0.857 (0.156)	0.894 (0.142)	0.897 (0.105)	0.893 (0.102)	0.893 (0.09)	0.89 (0.104)	150
Heteroskedastic	0.857 (1.566)	0.878 (0.158)	0.899 (0.131)	0.895 (0.117)	0.895 (0.105)	0.894 (0.132)	138

Table 18: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649). Grid search value: -0.185 (0.02).

	+1 Point	+5 Points	+10 Points	+15 Points	+20 Points	+25 Points	Number Converge
Interpolating	-0.174 (0.023)	-0.176 (0.023)	-0.177 (0.024)	-0.178 (0.023)	-0.179 (0.023)	-0.18 (0.023)	140
Homoskedastic	-0.169 (0.022)	-0.168 (0.022)	-0.168 (0.021)	-0.168 (0.021)	-0.168 (0.021)	-0.168 (0.021)	150
Heteroskedastic	-0.168 (0.021)	-0.167 (0.02)	-0.167 (0.021)	-0.167 (0.02)	-0.166 (0.02)	-0.167 (0.02)	138

Table 19: Value at optimal threshold ψ for Matern 5/2 covariance, with constant mean (Known value: -0.1649). Grid search value: -0.186 (0.029).

	Points 1	Points 5	Points 10	Points 15	Points 20	Points 25	Number Converge
Interpolating	-0.173 (0.034)	-0.176 (0.034)	-0.177 (0.034)	-0.177 (0.033)	-0.178 (0.034)	-0.179 (0.033)	140
Homoskedastic	-0.169 (0.033)	-0.168 (0.03)	-0.168 (0.03)	-0.169 (0.03)	-0.168 (0.031)	-0.168 (0.03)	150
Heteroskedastic	-0.169 (0.029)	-0.167 (0.028)	-0.168 (0.029)	-0.168 (0.029)	-0.168 (0.029)	-0.167 (0.029)	138
Table 20: Coverage probability for 95% confidence interval for 95% confidence interval

Type	+5 Points	+25 Points
Interpolating	0.89	0.99
Homoskedastic	0.88	0.91
Heteroskedastic	0.81	0.80

Figure 16: Optimal Threshold

Figure 17: Optimal Value
References

Bruce Ankenman, Barry L Nelson, and Jeremy Staum. Stochastic kriging for simulation metamodeling. In 2008 Winter Simulation Conference, pages 362–370. IEEE, 2008.

Elja Arjas and Olli Saarela. Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics, 6(2), 2010.

Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. Journal of the American Statistical Association, 86(416):953–963, 1991.

George J Davis and Max D Morris. Six factors which affect the condition number of matrices associated with kriging. Mathematical Geology, 29(5):669–683, 1997.

Alexander IJ Forrester, Andy J Keane, and Neil W Bressloff. Design and analysis of ”noisy” computer experiments. AIAA Journal, 44(10):2331–2339, 2006.

Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21(4):599–613, 2009.

Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. In Information Science for Materials Discovery and Design, pages 45–75. Springer, 2016.

Peter I Frazier, Jing Xie, and Stephen E Chick. Value of information methods for pairwise sampling with correlations. In Proceedings of the 2011 Winter Simulation Conference (WSC), pages 3974–3986. IEEE, 2011.

Paul W Goldberg, Christopher KI Williams, and Christopher M Bishop. Regression with input-dependent noise: A Gaussian process treatment. Advances in Neural Information Processing Systems, 10:493–499, 1997.

Deng Huang, Theodore T Allen, William I Notz, and Ning Zeng. Global optimization of stochastic black-box systems via sequential kriging meta-models. Journal of Global Optimization, 34(3):441–466, 2006.

Hamed Jalali, Inneke Van Nieuwenhuyse, and Victor Picheny. Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise. European Journal of Operational Research, 261(1):279–301, 2017.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th International Conference on Machine learning, pages 393–400, 2007.
Daniel James Lizotte. *Practical Bayesian Optimization*. PhD thesis, University of Alberta, Edmonton, Alta., Canada, 2008.

Marco Locatelli. Bayesian algorithms for one-dimensional global optimization. *Journal of Global Optimization*, 10 (1):57–76, 1997.

Jay D Martin and Timothy W Simpson. Use of kriging models to approximate deterministic computer models. *AIAA Journal*, 43(4):853–863, 2005.

Thomas A Murray, Ying Yuan, and Peter F Thall. A Bayesian machine learning approach for optimizing dynamic treatment regimes. *Journal of the American Statistical Association*, 113(523):1255–1267, 2018.

Anthony O’Hagan, JM Bernardo, JO Berger, AP Dawid, and Smith. Uncertainty analysis and other inference tools for complex computer codes. *Bayesian Statistics*, 6:503–524, 1999.

Liliana Orellana, Andrea Rotnitzky, and James M Robins. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: Main content. *The International Journal of Biostatistics*, 6(2), 2010.

Jeong-Soo Park and Jangsun Baek. Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram. *Computers & Geosciences*, 27(1):1–7, 2001.

Victor Picheny and David Ginsbourger. Noisy kriging-based optimization methods: a unified implementation within the diceoptim package. *Computational Statistics & Data Analysis*, 71:1035–1053, 2014.

Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of kriging-based infill criteria for noisy optimization. *Structural and Multidisciplinary Optimization*, 48(3):607–626, 2013.

James Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. *Mathematical Modelling*, 7(9-12):1393–1512, 1986.

Daniel Rodriguez Duque, David A Stephens, Erica EM Moodie, and Marina B Klein. Semi-parametric Bayesian inference for dynamic treatment regimes via dynamic regime marginal structural models. 2021.

Olivier Roustant, David Ginsbourger, and Yves Deville. Dicekriging, diceoptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization. *Journal of Statistical Software*, 51(1):54p, 2012.

Olli Saarela, David A Stephens, Erica EM Moodie, and Marina B Klein. On Bayesian estimation of marginal structural models. *Biometrics*, 71(2):279–288, 2015.
Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and analysis of computer experiments. *Statistical Science*, pages 409–423, 1989.

Michael James Sasena. *Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations*. PhD thesis, Citeseer, 2002.

Jian Qing Shi and Taeryon Choi. *Gaussian process regression analysis for functional data*. CRC Press, 2011.

Timothy W Simpson, Jonathan RA Maier, and Farrokh Mistree. A product platform concept exploration method for product family design. In *ASME Design Theory and Methodology*, volume 9, pages 1–219. ASME, ASMEDETC99/DTM, 1999.

Michael L Stein. *Interpolation of spatial data: some theory for kriging*. Springer Science & Business Media, 2012.

Chunyi Wang. *Gaussian process regression with heteroscedastic residuals and fast MCMC methods*. PhD thesis, 2014.

Yanxun Xu, Peter Müller, Abdus S Wahed, and Peter F Thall. Bayesian nonparametric estimation for dynamic treatment regimes with sequential transition times. *Journal of the American Statistical Association*, 111(515):921–950, 2016.

Jun Yin, Szu Hui Ng, and Kien Ming Ng. Kriging metamodel with modified nugget-effect: The heteroscedastic variance case. *Computers & Industrial Engineering*, 61(3):760–777, 2011.

Qiu-Hu Zhang and Yi-Qing Ni. Improved most likely heteroscedastic Gaussian process regression via bayesian residual moment estimator. *IEEE Transactions on Signal Processing*, 68:3450–3460, 2020.

Yingqi Zhao, Donglin Zeng, John Rush, and Michael Kosorok. Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107(499):1106–1118, 2012.

Yufan Zhao, Michael R Kosorok, and Donglin Zeng. Reinforcement learning design for cancer clinical trials. *Statistics in Medicine*, 28(26):3294–3315, 2009.