Association of vitamin D receptor TaqI and Apal genetic polymorphisms with nephrolithiasis and end stage renal disease: a meta-analysis

Tajamul Hussain1*, Shaik M. Naushad2, Anwar Ahmed1, Salman Alamery1,3, Arif A. Mohammed1, Mohamed O. Abdelkader3 and Nasser Abobakr Nasser Alkhrm3

Abstract

Background: The deficiency of vitamin D receptor (VDR) or its ligand, vitamin D3, is linked to the development of renal diseases. The TaqI (rs731236) and Apal (rs7975232) polymorphisms of VDR gene are widely studied for their association with renal disease risk. However, studies have largely been ambiguous.

Methods: Meta-analysis was carried out to clarify the association of TaqI (2777 cases and 3522 controls) and Apal (2440 cases and 3279 controls) polymorphisms with nephrolithiasis (NL), diabetic nephropathy (DN) and end stage renal disease (ESRD).

Results: The VDR TaqI C-allele under allele contrast was significantly associated with ESRD in both fixed effect and random effect models, and ApaI C-allele with ESRD only under fixed effect model. Cochrane Q-test showed no evidence of heterogeneity for TaqI polymorphism and a significant heterogeneity for ApaI polymorphism. No publication bias was observed for both the polymorphisms.

Conclusions: The present meta-analysis identifies TaqI and ApaI polymorphisms of VDR gene as risk factors for renal diseases.

Keywords: Vitamin D receptor gene polymorphism, End stage renal disease, Nephrolithiasis, Diabetic nephropathy, Meta-analysis

Introduction

In human skin, solar rays facilitate the formation of vitamin D3 from 7-dehydrocholesterol. The vitamin D3 undergoes two-step hydroxylation to form 25-hydroxy vitamin D3 (25-OHD3) and biologically active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) [1]. Vitamin D receptor (VDR) is a ligand-activated transcriptional factor requiring 1,25(OH)2D for its activation [2]. The deficiency of 25OHD or VDR is reported to activate renin-angiotensin system resulting in high angiotensin II levels, which damage renal parenchyma leading to increased risk for renal disease [3]. Considering the pivotal role of VDR in maintaining normal renal function, a number of studies have explored the possibility of association of VDR gene polymorphisms with renal disease risk. Among VDR polymorphisms reported to date, Apal, and TaqI are widely studied for their association with ESRD, NL and DN [4–6]. The Apal variant (rs7975232), which results in A to C transition, is located in the intron 8 of VDR gene, while TaqI variant (rs731236), which results in T to C transition is located in exon 9 [7].

The rs7975232 (NG_008731.1:g.64978G>T) is an intronic variant predicted to influence splice site changes that might affect the translation of VDR. The frequency of this variant is high as evidenced by 734 and 16,751 homozygous mutants in 1000G and ExAC databases.
The rs731236 (NG_008731.1:g.65058 T > C) variant is near the exon-intron boundary (GCTG/attg) and hence likely to influence splicing and thus might affect the translation of VDR. The frequency of this variant is lower than that of rs7975232 with 242 and 7505 homozygous mutants identified in 1000G and ExAC databases.

Importantly, genetic studies examining the role of TakI and ApaI polymorphisms in the pathogenesis of NL, DN and ESRD remained ambiguous [4–6, 8–12]. Considering the significance of VDR signaling in the protection against renal diseases and the ambiguity in the studies relating VDR gene polymorphism with the disease etiology, present meta-analysis comprising 2669 renal disease cases and 3342 controls was carried out to clarify the association of VDR gene TaqI (rs731236) and ApaI (rs7975232) in PubMed, Medline and google scholar databases. All the free full texts were retrieved and wherever full text was not available, reprint request was sent to the corresponding author of the respective article. The criteria to include in the meta-analysis were: 1) availability of full text of the article, 2) inclusion of studies involving both cases and controls (either online or through reprint from the corresponding author), 3) availability of raw data on genotypes, and 4) restricting to studies published in only English language. The information related to each study such as first author, year of study, ethnic group or population studied, distribution of genotypes in cases and controls etc. was computed. The decision on the studies to be included in meta-analysis was taken by all the authors of this study.

Methods

Data extraction

The literature retrieval was carried out using keywords: vitamin D receptor or VDR, renal disease, nephrolithiasis or urolithiasis, diabetic nephropathy, TaqI (rs731236) and ApaI (rs7975232) in PubMed, Medline and google scholar databases. All the free full texts were retrieved and wherever full text was not available, reprint request was sent to the corresponding author of the respective article. The criteria to include in the meta-analysis were: 1) availability of full text of the article, 2) inclusion of studies involving both cases and controls (either online or through reprint from the corresponding author), 3) availability of raw data on genotypes, and 4) restricting to studies published in only English language. The information related to each study such as first author, year of study, ethnic group or population studied, distribution of genotypes in cases and controls etc. was computed. The decision on the studies to be included in meta-analysis was taken by all the authors of this study.
Meta-analysis

The data computed in four columns wherein first two columns represent the number of variant alleles in cases and controls and last two columns represent the number of ancestral alleles in cases and controls. Log (odds ratio) or effect size and standard error (SE) are calculated based on these four column data. Based on these two parameters, variance (SE^2), weight and 95% confidence interval of effect size were calculated. Cochrane Q test and I^2 (0.00) statistics showed no evidence of heterogeneity in association. Egger’s test revealed no evidence of publication bias (p = 0.14). The VDR TaqI C-allele, under allele contrast fixed effect model, was associated with renal diseases calculated collectively for DN, ESRD and NL (OR: 1.11, 95% CI: 1.03–1.20, p = 0.008). (Figure 2) As shown Table 2, subtype analysis revealed TaqI C- allele to be associated with ESRD (OR: 1.17, 95% CI: 1.02–1.34, p = 0.03) (Fig. 2). Among the different ethnic groups, Turkish population showed strong association between VDR TaqI polymorphism and renal disease in allele contrast model (C vs. T, OR: 1.19, 95% CI: 1.01–1.42, p = 0.04). Sensitivity analysis revealed that omitting either of the studies had no effect on overall outcome of disease risk.

Results

Figure 1 depicts the data extraction process for the meta-analysis. Of the 16 case-control studies retrieved on the association of TaqI polymorphism with renal disease (Table 1), four studies showed deviation from Hardy-Weinberg equilibrium [7, 13–15]. Among the different population groups included in this meta-analysis, the largest being that of Turkish representing five case-control studies [16–20], two studies from India [21, 22] and one each from China [23], Ireland [24], Italy [25], Spain [26] and Croatia [27]. In total, the final meta-analysis was based on the data of 2777 cases and 3522 controls representing 16 case-control studies.

Table 1 Distribution of VDR TaqI polymorphism in different case-control studies

Author	Year	Country	Renal disease type	Genotypes C-allele frequency
Wang	2016	China	ESRD	215 197 40 474 358 72
Cakir	2016	Turkey	NL	35 44 19 31 29 10
Guha	2015	India	NL	58 82 60 65 58 77
Martin	2010	Ireland	DN	225 327 103 249 327 98
Ozkaya	2003	Turkey	NL	33 27 4 50 30 10
Mossetti	2003	Italy	NL	80 104 36 35 66 13
Bucan	2009	Croatia	DN	5 6 3 13 14 6
Nosratabadi	2010	Iran	DN	9 55 36 4 63 33
Goknar	2015	Turkey	NL	25 41 12 14 43 3
Tripathi	2010	India	ESRD	105 115 38 267 228 74
Mittal	2010	India	NL	56 61 8 84 50 16
Moyano	2007	Spain	NL	15 23 13 9 11 1
Gunes	2006	Turkey	NL	37 63 10 61 73 16
Seyhan	2007	Turkey	NL	27 35 18 13 25 2
Aykan	2015	Turkey	NL	67 61 36 66 86 15
Han	2015	China	NL	102 6 0 160 16 4

The following studies were shown to have deviation from HWE: Guha et al. (p < 0.0001), Nosratabadi et al. (p = 0.0008), Goknar et al. (p = 0.0008) and Han et al. (p = 0.0008)

ESRD end stage renal disease, NL nephrolithiasis, DN diabetic nephropathy
Of the 13 case-control studies (2440 cases and 3279 controls) retrieved on the association of ApaI polymorphism with renal disease (Table 3), five studies deviated from Hardy-Weinberg equilibrium [7, 15, 19, 21, 28]. Among the studies in accordance with HWE equilibrium, 3 studies were from Turkey [16, 17, 20], two from China [14, 23], and one each from Ireland [24] and Iran [29]. Cochrane Q-test (Q: 17.01, p = 0.03) and I² (48.3) statistics showed high-degree of heterogeneity in association. Egger’s test revealed no evidence of publication bias (p = 0.54). The fixed effect model showed positive association of VDR ApaI polymorphism with all the renal disease cases (C vs. A, OR: 1.10, 95% CI: 1.01–1.19), whereas, random effect model showed null association (OR: 1.05, 95% CI: 0.93–1.19) (Fig. 3). Sensitivity analysis for ApaI polymorphism revealed that the sources of heterogeneity are two studies i.e. Wang et al. and Tripathi et al. However, overall trend suggests ApaI variant as a risk factor for renal disease. As shown in Table 4, subgroup analysis revealed association of VDR ApaI polymorphism with ESRD (C vs. A, OR: 1.31, 95% CI: 1.15–1.50, p = 0.0001) and no association with NL and DN.

Discussion

Deficiency of vitamin D or defective activation of VDR by its ligand, 1,25-dihydroxy vitamin D results in secondary hyperparathyroidism, angiotensin II-mediated renal damage and renal disease pathogenesis [3]. On the other hand, VDR activation suppressed inflammatory cell infiltration and inhibited nuclear factor-κB activation [30]. Likewise, active vitamin D3 and lentivirus-mediated transforming growth factor-β (TGF-β) interference effectively reduced renal fibrosis in rat models [31]. These observations highlight the importance of VDR signaling in maintaining normal renal function. Accordingly, a number of studies have investigated the effects of polymorphisms in VDR gene on renal disease etiology. Among these, TaqI, and ApaI polymorphisms are widely studied [4–6]. However, there is a considerable ambiguity among these genetic studies, possibly stemming from sample size, ethnicity or gene-environmental interactions [4–6, 8–12]. To clarify whether TaqI and apal
Table 2: Subgroup analysis showing disease-specific risk with VDR TaqI polymorphism

Model	Type of disease	N	OR	95% CI	P value
Allele contrast (A vs. a)	Overall	16	1.11	[1.0262; 1.1967]	0.009
	ESRD	2	1.17	[1.0171; 1.3357]	0.028
	NL	11	1.09	[0.9673; 1.2356]	0.153
	DN	3	1.07	[0.9250; 1.2322]	0.371
Recessive model (AA vs. Aa+aa)	Overall	16	1.19	[0.9266; 1.5392]	0.170
	ESRD	2	1.14	[0.8497; 1.5235]	0.386
	NL	11	1.32	[0.8084; 2.1503]	0.268
	DN	3	1.11	[0.8527; 1.4432]	0.439
Dominant model (AA+Aa vs. aa)	Overall	16	1.14	[1.0234; 1.2709]	0.017
	ESRD	2	1.24	[1.0367; 1.4863]	0.019
	NL	11	1.09	[0.9148; 1.2930]	0.342
	DN	3	1.09	[0.8737; 1.3505]	0.456
Overdominant (Aa vs. AA + aa)	Overall	16	0.99	[0.8106; 1.2040]	0.904
	ESRD	2	1.19	[0.9904; 1.4233]	0.063
	NL	11	0.92	[0.6575; 1.2975]	0.647
	DN	3	1.01	[0.8261; 1.2289]	0.940
pairw1 (AA vs. aa)	Overall	16	1.20	[1.0117; 1.4232]	0.036
	ESRD	2	1.26	[0.9280; 1.7151]	0.138
	NL	11	1.23	[0.9346; 1.6077]	0.141
	DN	3	1.11	[0.8801; 1.5149]	0.528
pairw2 (AA vs. Aa)	Overall	16	1.16	[0.8525; 1.5857]	0.341
	ESRD	2	1.01	[0.7443; 1.3803]	0.932
	NL	11	1.30	[0.7200; 2.3483]	0.384
	DN	3	1.09	[0.8304; 1.4407]	0.524
pairw3 (Aa vs. aa)	Overall	16	1.09	[0.9167; 1.2888]	0.337
	ESRD	2	1.24	[1.0233; 1.4966]	0.028
	NL	11	1.04	[0.7873; 1.3666]	0.795
	DN	3	1.07	[0.8487; 1.3425]	0.577

Table 3: Distribution of VDR1 Apal polymorphism across different case-controls studies

Author	Year	Country	Renal disease type	Genotypes	Cases	Control	C-allele frequency
Wang [23]	2016	China	ESRD	AA AC CC	Cases	Control	Cases Controls
Cakir [20]	2016	Turkey	NL	43 40 15 26 34 10	0.36	0.39	
Ghorbanihagjo [29]	2014	Iran	CH	10 23 13 16 16 11	0.53	0.44	
Martin [24]	2010	Ireland	DN	185 323 147 200 322 152	0.47	0.46	
Ozkaya [16]	2003	Turkey	NL	13 30 21 4 50 36	0.56	0.68	
Zhang [28]	2012	China	DN	19 89 74 11 65 46	0.65	0.64	
Han [14]	2015	China	DN	2 50 56 18 80 82	0.75	0.68	
Nosratabadi [7]	2010	Iran	DN	9 64 27 9 63 28	0.59	0.60	
Goknar [15]	2016	Turkey	NL	24 42 12 11 40 9	0.42	0.48	
Tripathi [21]	2010	India	ESRD	80 116 62 171 324 74	0.47	0.41	
Mittal [22]	2010	India	NL	43 70 12 57 71 22	0.38	0.38	
Gunes [17]	2006	Turkey	NL	40 58 12 59 72 19	0.37	0.37	
Ayyan [19]	2015	Turkey	NL	14 5 145 12 0 155	0.90	0.93	

The following studies were shown to have deviation from HWE: Ozkaya et al. (p = 0.03), Nosratabadi et al. (p = 0.009), Goknar et al. (p = 0.03), Tripathi et al. (p < 0.0001) and Ayyan et al. (p < 0.0001)

ESRD end stage renal disease, NL nephrolithiasis, CH chronic hemodialysis, DN diabetic nephropathy
polymorphisms have a role in renal disease pathogenesis, this meta-analysis comprising 2777 renal disease cases including DN, NL and ESRD and 3522 healthy controls was carried out. The present meta-analysis revealed an increased disease risk for subjects harboring TaqI C-allele under fixed and random effect models. Subgroup analysis based on type of renal disease showed that VDR TaqI polymorphism is associated with ESRD in allele contrast model, whereas no significant association was found between TaqI polymorphism and DN and NL. In the case of ApaI polymorphism, Apal C-allele was found to be linked to ESRD, but not with DM or NL under fixed effect model. Earlier, Yang et al. performed a meta-analysis on 1510 cases and 1812 controls and found no association of BsmI, FokI, TaqI, and ApaI polymorphisms of VDR with end-stage renal disease. Inclusion of more studies benefited the current meta-analysis.

The direct role of solar rays in the synthesis of vitamin D is well known. In human skin, solar rays facilitate the formation of vitamin D3 from 7-dehydrocholesterol, which is evident from the presence of higher mean serum vitamin D levels in summer than in winter [32]. Likewise, higher vitamin D levels were found in populations living in regions known to have longer durations of sun exposure [33].

Conclusions

This meta-analysis revealed the association of VDR TaqI and ApaI polymorphisms with ESRD risk. This is the first meta-analysis study to simultaneously evaluate the association of DN, NL and ESRD with renal disease risk. Ethnicity, sample size, gene-environmental interactions appear to be responsible for inconsistencies observed in the association studies examining VDR polymorphisms and renal diseases. The limitations of this meta-analysis include; exclusion of studies where raw data or full text were not accessible and one-to-one correlation between vitamin D3 profile and risk could not be established as no parallel studies were conducted.
Table 4 Subgroup analysis showing disease-specific risk with VDR ApaI polymorphism

Model	Type of disease	N	OR	95% CI	p-val
Allele contrast (A vs. a)	Overall	13	1.05	[0.9282; 1.1931]	0.4259
	ESRD	2	1.31	[1.1454; 1.4996]	0.0001
	NL	6	0.86	[0.7193; 1.0175]	0.0777
	CH	1	1.44	[0.7974; 2.5983]	0.2268
	DN	4	1.06	[0.9361; 1.1997]	0.3589
Recessive model (AA vs. Aa+aa)	Overall	13	1.10	[0.8891; 1.3548]	0.3865
	ESRD	2	1.85	[1.3925; 2.4544]	0.0000
	NL	6	0.77	[0.5591; 1.0553]	0.1035
	CH	1	1.15	[0.4482; 2.9300]	0.7760
	DN	4	1.06	[0.8695; 1.2818]	0.5840
Dominant model (AA+Aa vs. aa)	Overall	13	1.03	[0.8131; 1.3008]	0.8153
	ESRD	2	1.21	[0.7844; 1.8716]	0.3868
	NL	6	0.76	[0.5034; 1.1586]	0.2049
	CH	1	2.13	[0.8380; 5.4311]	0.1120
	DN	4	1.09	[0.8749; 1.3545]	0.4466
Overdominant (Aa vs. AA + a)	Overall	13	0.99	[0.8143; 1.2066]	0.9300
	ESRD	2	0.91	[0.4290; 1.9490]	0.8167
	NL	6	0.96	[0.6559; 1.3933]	0.8147
	CH	1	1.69	[0.7239; 3.9340]	0.2256
	DN	4	1.03	[0.8660; 1.2221]	0.7472
pairwise1 (AA vs. aa)	Overall	13	1.09	[0.8006; 1.4779]	0.5907
	ESRD	2	1.81	[1.3275; 2.4638]	0.0002
	NL	6	0.70	[0.4803; 1.0158]	0.6004
	CH	1	1.89	[0.6130; 5.8330]	0.2677
	DN	4	1.09	[0.8307; 1.4252]	0.5399
pairwise2 (AA vs. Aa)	Overall	13	1.10	[0.8709; 1.3854]	0.4280
	ESRD	2	1.74	[0.9540; 3.1683]	0.0709
	NL	6	0.86	[0.5968; 1.2327]	0.4068
	CH	1	0.82	[0.2948; 2.2927]	0.7082
	DN	4	1.02	[0.8306; 1.2477]	0.8635
pairwise3 (Aa vs. aa)	Overall	13	1.03	[0.7832; 1.3445]	0.8515
	ESRD	2	1.06	[0.5720; 1.9761]	0.8464
	NL	6	0.79	[0.4507; 1.3857]	0.4113
	CH	1	2.30	[0.8331; 6.3500]	0.1080
	DN	4	1.10	[0.8688; 1.3802]	0.4417

Abbreviations
1,25 (OH)2D3: 1,25-dihydroxyvitamin D3; 25-OHD3: 25-hydroxy vitamin D3; DN: diabetic nephropathy; ESRD: end stage renal disease; NL: nephrolithiasis; VDR: vitamin D receptor

Acknowledgments
Not applicable

Author’s contribution
TH conceived the study, participated in data analysis and manuscript writing, SMN participated in data analysis and manuscript writing, AA participated in data analysis, SA participated in data compilation and manuscript writing, AAM participated in data analysis and manuscript writing, MOA participated in data analysis, NANA participated in data compilation and manuscript writing. All authors have read and approved the manuscript.

Funding
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RG-1439-74.

Availability of data and materials
All data generated or analyzed during this study are included in this manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable
Competing interests
The authors declare that they have no competing interests.

Author details
1Center of Excellence in Biotechnology Research, Department of Biochemistry, College of Science Building 5, King Saud University, Riyadh 11451, Saudi Arabia. 2Biochemical Genetics, Sandor Life Sciences Pvt. Ltd, Hyderabad, India. 3Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.

Received: 29 August 2019 Accepted: 28 November 2019

References
1. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(11):319–20.
2. Oquendo LA, Boucher BJ, Valla D. Vitamin D: a brief overview. Am J Clin Nutr. 2010;92(5 Suppl):1522S–5S.
3. Chandel N, Ayasios K, Wen H, Lan X, Hoque S, Saleem MA, Malhotra A, Singhal PC. Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes. Exp Mol Pathol. 2017;102(1):97–105.
4. Yang L, Wu F, Yang J, Mo J. Associations among four polymorphisms (BsmI, FokI, TaqI and Apal) of vitamin D receptor gene and end-stage renal disease: a meta-analysis. Arch Med Res. 2015;46(1):11–7.
5. Yang L, Wu F, Yang J, Mo J. Vitamin D receptor gene polymorphisms in association with diabetic nephropathy: a systematic review and meta-analysis. BMC Med Genet. 2017;18(1):95.
6. Zhou TB, Jiang ZP, Huang MF. Association of vitamin D receptor BsmI (rs1544410) gene polymorphism with the chronic kidney disease susceptibility. J Recept Signal Transduct Res. 2015;35(3):154–7.
7. Norratabadi R, Arababadi MK, Salehabad VA, Shamsizadeh A, Mahmodi M, Sayadi AR, Kennedy D. Polymorphisms within exon 9 but not intron 8 of the vitamin D receptor are associated with the nephropathic complication of type-2 diabetes. Int J Immunogenet. 2010;37(6):493–7.
8. Liu W, Chen M, Li M, Ma H, Tong S, Lei Y, Qi L. Vitamin D receptor gene (VDR) polymorphisms and the urolithiasis risk: an updated meta-analysis based on 20 case-control studies. Urolithiasis. 2014;42(1):45–52.
9. Zhang P, Nie W, Jiang H. Effects of vitamin D receptor polymorphisms on urolithiasis risk: a meta-analysis. BMC Med Genet. 2013;14:104.
10. Yin F, Liu J, Fan MX, Zhou XL, Zhang XL. Association between the vitamin D receptor gene polymorphisms and diabetic nephropathy risk: a meta-analysis. Nephrol Dial Transplant. 2015;23(1):107–16.
11. Liu Z, Liu L, Chen X, He W, Yu X. Associations of vitamin D receptor gene polymorphisms with diabetes-microwave complications: a meta-analysis. Gene. 2014;546(1):16–20.
12. Matana A, Popovic M, Torlak V, Punda A, Barbalic M, Zernuk T. Effects of genetic variants on serum parathyroid hormone in hyperparathyroidism and end-stage renal disease patients: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(21):e10834.
13. Guha M, Bankura B, Ghosh S, Pattanayak AK, Ghosh S, Pal DK, Puri A, Kundu AK, Das M. Polymorphisms in CaSR and CLDN14 genes associated with increased risk of kidney stone disease in patients from the eastern part of India. PLoS One. 2015;10(6):e0130790.
14. Han RX, Su B, Yang W, Liu H, Song D. Association between TaqI, Apal of vitamin D receptor gene polymorphism and type 2 diabetic nephropathy of the Han nationality in Kunming. Chin Med Herald. 2015;20(9):69–72.
15. Goeknar N, Oktm F, Torun E, Gok D, Demir AD, Kucukok M, Kilic U. The role of vitamin D receptor gene polymorphisms in Turkish infants with urolithiasis. Ren Fail. 2016;38(4):545–51.
16. Ozkaya D, Soylemezoglu O, Misirlioglu M, Gonen S, Buyan N, Hasanoglu E. Polymorphisms in the vitamin D receptor gene and the risk of calcium nephrolithiasis in children. Eur Urol. 2003;44(5):150–4.
17. Gunes S, Bilen CY, Kara N, Asci R, Bagci H, Yilmaz AF. Vitamin D receptor gene polymorphisms in patients with urolithiasis. Urol Res. 2006;34(1):47–52.
18. Seyhan S, Yavascaoglu I, Kiliçarslan H, Dogan HS, Kordan Y. Association of vitamin D receptor gene Taq I polymorphism with recurrent urolithiasis in children. Int J Urol. 2007;14(12):1060–2.
19. Aykan S, Tuken M, Gunes S, Akin Y, Ozturk M, Seyhan S, Yuruk E, Tenciz MZ, Yilmaz AF, Nguyen DP. Apa1. urol kinase and Taq1. vitamin D receptor gene polymorphisms in first-stone formers, recurrent stone formers, and controls in a Caucasian population. Urolithiasis. 2016;44(2):109–15.
20. Calic OJ, Yilmaz A, Demir E, Inciak K, Kose MO, Ercan Y. Association of the BsmI, Apal, TaqI, Trulit and Foki polymorphisms of the vitamin D receptor gene with nephrolithiasis in the Turkish population. Urol J. 2016;13(1):509–18.
21. Tripathi G, Sharma R, Sharma RK, Gupta SK, Sankhwar SN, Agrawal S. Vitamin D receptor genetic variants among patients with end-stage renal disease. Ren Fail. 2010;32(8):969–77.
22. Mittal RD, Mishra DK, Srivastava P, Manchanda P, Bid HK, Kapoor R. Polymorphisms in the vitamin D receptor and the androgen receptor gene associated with the risk of urolithiasis. Indian J Clin Biochem. 2010;25(2):119–26.
23. Wang LY, Zhang P, Wang HF, Qin ZW, Wei KB, Lv XA. Association of vitamin D receptor gene polymorphisms with end-stage renal disease and the development of high-turnover renal osteodystrophy in a Chinese population. Genet Mol Res. 2016;15(2).
24. Martin RJ, McKnight AJ, Patterson CC, Sadlier DM, Maxwell AP, Warren UKGSG. A rare haplotype of the vitamin D receptor gene is protective against diabetic nephropathy. Nephrol Dial Transplant. 2010;25(2):497–503.
25. Mossetti G, Vuotto P, Rendina D, Nusims F, Vicino RT, Giordano F, Cioffi M, Scoparosa F, Nunzavita V. Association between vitamin D receptor gene polymorphisms and tubular citrate handling in calcium nephrolithiasis. J Intern Med. 2003;253(2):194–200.
26. Moyano MJ, Gomez de Tejada MJ, Garcia Lozano R, Moruno R, Ortega R, Marti V, Sanchez Palencia R, Miranda MJ, Palma A, Perez Cano R. Alterations in bone mineral metabolism in patients with kidney stone disease and polymorphism of vitamin D receptor. Preliminary results. Nefrologia. 2007;27(6):694–703.
27. Bucan K, Ivanisvic M, Zernuk T, Borisaka V, Skrabic V, Vatavuk Z, Guletic D, Znoric L. Retinopathy and nephropathy in type 1 diabetic patients—association with polymorphisms of vitamin D-receptor, TNF, Neuro-D and IL-1 receptor 1 genes. Croat Antropol. 2009;53(Suppl)2:99–105.
28. Zhong H, Wang J, Yi B, Zhao Y, Liu Y, Zhang K, Cai X, Sun J, Huang L, Liao Q. BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population. Gene. 2012;495(2):183–8.
29. Ghorbanilaghi A, Argani H, Samadi N, Valizadeh S, Halajzadeh J, Yousefi B, Rashichzadeh N. Relationship between vitamin D receptor gene FokI and Apal polymorphisms and serum levels of fetuin-A, vitamin D, and parathyroid hormone in patients on hemodialysis. Iran J Kidney Dis. 2014;8(5):394–400.
30. Singh PK, van den Berg PR, Long MD, Vreugdenhil A, Grieshofer L, Ochs-Balcom HM, Wang J, Delcambre S, Heikkinen S, Carlberg C, et al. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-kappab binding that is linked to immune phenotypes. BMC Genomics. 2017;18(1):132.
31. Tian Y, Lu G, Yang Y, Zhang Y, Yu R, Zhu J, Xiao L, Zhu J. Effects of vitamin D on renal fibrosis in diabetic nephropathy model rats. Int J Clin Exp Pathol. 2014;7(6):3028–37.
32. Cinar N, Harmanci A, Yildiz BO, Bayraktar M. Vitamin D status and seasonal changes in plasma concentrations of 25-hydroxyvitamin D in office workers in Ankara, Turkey. Eur J Intern Med. 2014;25(2):197–201.
33. Leary PF, Zamfirova I, Au J, McCracken WH. Effect of latitude on vitamin D levels. J Am Osteopath Assoc. 2017;117(7):433–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.