Influence of seasonality on macroinvertebrate diversity associated with the aquatic fern *Salvinia biloba* Raddi

Rennen Leite Martins Coutinho, Isabella Rodrigues Lancellotti, Arthur Ribeiro Flores & Marcelo Guerra Santos

Universidade do Estado do Rio de Janeiro - Faculdade de Formação de Professores, Departamento de Ciências, Brazil.

Abstract. The genus *Salvinia* is composed of fast-growing floating ferns, capable of surviving in different environmental conditions. Some authors suggest that the relationships between this genus and macroinvertebrates may serve as water quality indicators. The present study aimed to determine the influence of seasonality and water quality on macroinvertebrate diversity associated with the *Salvinia biloba* Raddi. Water and fern were collected in rainy and dry seasons and was made by comparing values obtained in laboratory trials or instantaneous field measures.

Aquatic macrophytes are plants whose photosynthesizing structure is floating, permanently or periodically submerged (Cook 1996; Organs & Gastral 1996). Aquatic macrophytes provide fauna shelter, a refuge from predators, oviposition sites, and diversified food sources, given that they are also substrate for peripheral algae, and filter organic particles that can be used by detritivores (Tvinnihno-Strixino et al. 2000; Dornfeld & Fonseca-Gessner 2005).

Aquatic macroinvertebrates, such as arachnids, insects, crustaceans, and mollusks, are groups of invertebrates over one-millimeter-long at the end of the larval stage or in the imaginal phase and can be seen with the naked eye (Mungan et al. 2010; Buss et al. 2016). Aquatic macroinvertebrates can be classified based on their habitat, as follows: planktonic, nektonic, pleustonic or benthic, with variations such as epibenthic, which inhabit both water bodies and the substrate, normally in different stages of life (Mungan et al. 2010).

The macroinvertebrate community contributes to water quality since they are efficient bioindicators that describe all environmental stresses (Dornfeld & Fonseca-Gessner 2005). They are more effective than biological inferences made by comparing values obtained in laboratory trials or instantaneous field measures.

Aquatic ferns belong to the genera *Salvinia* and *Azolla* (Salviniaceae); *Marsilea*, *Pilularia* and *Regnellidium* (Marsileaceae) and *Isoëtes* (Isoëtaceae) (PPG I 2016). Species of the genus *Marsilea* are popularly known as four-leaf clovers or lucky clovers. Maiz & Reeder (2009) reported the occurrence of weevils (small beetles) that use sporocarps of *Marsilea mollis* B.L. Robins & Fern as a breeding site. In the Pantanal region of Mato Grosso state and Central Amazonia, Brazil, Sousa (2008) recorded aquatic and semi-aquatic species of Curculionoidea (Insecta, Coleoptera) associated with species of *Azolla*, *Salvinia auriculata* Aubl. and *Salvinia minima* Baker.

Most studies on the interaction between insects and aquatic ferns involve species of the genus *Salvinia* (Pelli & Barbosa 1998a, 1998b; Callisto et al. 2002; Prellvitz & Albertoni 2004; Dornfeld & Fonseca-Gessner 2005; Berivan et al. 2006; Sousa 2008). These species exhibit very fast growth, sometimes completely covering the water surface (Berforth 1992), making them an important substrate for establishing associations with fauna (Callisto et al. 2002).

The genus *Salvinia* contains 12 species worldwide (PPG I 2016), 10 of which can be found in Brazil (Salviniaceae in Flora do Brasil 2020). Interactions with aquatic insects were recorded in four of these: *S. auriculata* (Callisto et al. 2002; Prellvitz & Albertoni 2004; Berivan et al. 2006; Sousa 2008), *S. herzogii* de la Sota (Prellvitz & Albertoni 2004), *S. minima* (Sousa 2008) and *S. molesta* D.S. Mitch (Pelli & Barbosa 1998a, 1998b).
Table 1. Cover, *Salvinia biloba* Raddi leaf area and density of associated aquatic macroinvertebrates in different seasons of the year.

	Rainy 2016	Dry 2017
Cover area on the water surface	100%	30%
Submerged leaf length	5.235 ± 2.55 cm	3.23 ± 0.94 cm
Estimated submerged leaf area	0.3268 m²	0.2018 m²
No. of macroinvertebrates	142	419
Density	434 individuals/m²	2,076 individuals/m²
Richness	12	14
compared to low and medium densities, likely caused by competition for nutrients in the water and the need to raise absorption. Medeiros et al. (2017) demonstrated experimentally higher S. auriculata in conditions of moderate shade compared to other light conditions, concluding that a shaded environment does not limit the clonal growth of this plant, but does produce more branches.

The rapid growth of some Salvinia species can pose a serious environmental threat by enabling them to spread across the entire water surface, restricting light penetration and removing nutrients. As a result, they compete with native plants, reducing habitat diversity and limiting food sources in the food chain, especially fish. However, they can also be used as bioremediators in sewage treatment (Robinson et al. 2010).

Macroinvertebrates associated with Salvinia biloba. The Simpson’s Diversity Index (1-D) didn’t show difference between rainy (0.9167) and dry (0.9286) seasons (Table 2). However, in the rainy season, 142 macroinvertebrates were identified, divided into 12 morphospecies, with a density of 434 individuals/m³. In the dry season, there were 419 individuals in 14 morphospecies, with a density of 2,076 individuals/m³ (Table 2). Prellvitz & Albertoni (2004), who analyzed a population of Salvinia spp. (S. auriculata e S. herzogii) for one year, found an decrease in macroinvertebrate density during the dry compared to the rainy season, correlating this fact to the hydrodynamics of the area affected by high rainfall and the non-destructuring of the community associated with the lack of substrate for short periods.

The Sørensen similarity index indicated a similarity of 53.84% in macroinvertebrate diversity between the dry and rainy seasons (Table 2). The morphospecies Chironomidae sp.1 (Diptera) had higher relative species density in the rainy season (57.71%), followed by Odonata Zygoptera sp.1 (17.44%). In the dry season, Chironomidae sp.2 displayed the highest density (73.98%), followed by Gerromorpha sp.1 (9.54%) (Table 2). Dornfeld & Fonseca-Gessner (2005) report a predominance of mosquitoes from the family Chironomidae associated with aquatic macrophytes, including aquatic ferns. SILVEIRA et al. (2016) also report Chironomidae as an indicator taxon in different stages of leaf decomposition in S. auriculata.

Hemiptera Gerromorpha density was higher in the dry season, a period with the lowest pollution index (175 UFC/mL). According to Silva (2009), the richness of the family Gerromorpha showed a positive relation with the Habitat Integrity Index, that is, a rise in environmental integrity raises the species richness of this family.

The family Culicidae (Diptera) are known to be vectors of human and animal diseases, typically associated with the family Flaviviridae, which cause diseases such as yellow fever, dengue fever and Nile fever (Clairouin 2009; Flores & Weiblen 2009). The family Ceratopogonidae is associated with Salvinia infestation (Parys & Johnson 2013).

Dornfeld & Fonseca-Gessner (2005) compared the eating habit predominance of Diptera associated with Salvinia sp. and Myriophyllum sp. (Haloragaceae), where predators and detritivore collectors predominate in the Salvinia, due to the facility of submerged leaves to retain organic matter, which justifies the abundance of Odonata and Chironomidae, predators and detritivores, respectively.
Microbiological analyses demonstrated a difference in water quality between the dry and rainy seasons, the latter with worse water quality. There was a greater percentage of *S. biloba* cover in the rainy season, likely due to the poor water quality, since this species benefits from the higher organic matter content in the water. Greater species richness associated with *S. biloba* stands was found during the dry season. However, the decline in stand cover in the dry season promoted higher macroinvertebrate density. The family Chironomidae exhibited greater relative density in both seasons, but in the dry season, with less pollution, the morphospecies with the second highest density was Gerromorpha sp. 1 (Hemiptera). Studies indicate that an increase in environmental integrity raises the species richness of this family, corroborating the results found here. A greater sampling effort should be undertaken to broaden knowledge regarding the association between macroinvertebrates and *Salvinia* species, in order to determine their correlation with water bodies.

ACKNOWLEDGMENT

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERJ (Fundaçao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) and PROCIENCIA (Scientific, Technical and Artistic Production Incentive Program) of UERJ (Universidade do Estado do Rio de Janeiro) for financial support. Special thanks to A dos S Portugal and TG da Silva for their help in collecting and screening the material. Microbiology laboratory of the Faculdade de Formação de Professores of the UERJ for water analysis.

REFERENCES

Bervian, C, L Pedotti-striquer & S Favero, 2006. Heterópteros (Insecta) aquáticos e semi-aquáticos associados a *Salvinia auriculata* (Salvinaceae) em três ambientes do Pantanal do Rio Negro, Município de Aquidauana, MS. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, 10: 143-152.

Beyruth, Z, 1992. Macrófitas aquáticas de um lago marginal ao rio Embu-mirim, São Paulo, Brasil. Revista de Saúde Pública, 26: 272-282. DOI: https://doi.org/10.1590/S0034-89101992000400010

Boschilia, SM, SM Thomaz & PA Piana, 2006. Plasticidade morfológica de *Salvinia herzogii* (de La Sota) em resposta à densidade populacional. Acta Scientiarum Biological Sciences, 28: 35-39. DOI: https://doi.org/10.4025/actascibiolsci.v28i1.1056

Brower, JE, JH Zar & CN Von ende, 1997. *Field and Laboratory Methods for General Ecology*. Estados Unidos, McGraw-Hill.

Buss, DF, FO Roque, KC Sonoda, PB Medina junior, M Stefanes; HRV Imbimbo, ML Kuhlmann, MC Lamparelli, LG Oliveira, J Molozi, MCS Campos, MV Junqueira, R Ligeiro, TP Moulton, N Hamada, R Mugnai & DF Baptista, 2016. Macroinvertebrados Aquáticos como Bioindicadores no Processo de Licenciamento Ambiental no Brasil. Biodiversidade Brasileira, 6: 100-113.

Callisto, M, FAR Barbosa & P Moreno, 2002. Influência de plantações de *Eucalyptus* sobre a macrofauna associada a *Salvinia auriculata* no Sudeste do Brasil. Brazilian Journal

Classes	Morphospecies	Rainy season	Relative density	Dry season	Relative density
Arachnida	Araneae sp. 1	1	0.67	1	0.23
	Acariformes sp.1	0	0	1	0.23
	Acariformes sp.2	0	0	1	0.23
Coleoptera	Coleoptera Dystiscidae (*Celina* sp.)	1	0.67	0	0
	Coleoptera sp.1 larva	0	0	1	0.23
	Coleoptera sp.2 larva	0	0	1	0.23
Diptera	Diptera Ceratopogonida	4	2.68	0	0
	Diptera Chironomidae sp.1	86	57.71	20	4.77
	Diptera Chironomidae sp.2	9	6.04	310	73.98
	Diptera Culicidae sp.1	1	0.67	9	2.14
Hemiptera	Hemiptera (Hebridae)	1	0.67	0	0
	Hemiptera Gerromorpha sp. 1	0	0	40	9.54
	Hemiptera Gerromorpha sp. 2	0	0	14	3.34
	Hemiptera sp.3	0	0	1	0.23
Lepidoptera	Lepidoptera larva	3	2.01	0	0
Odonata	Odonata Zygoptera sp.1	26	17.44	10	2.38
	Odonata Anisoptera sp.1	9	6.04	4	0.95
	Odonata Anisoptera sp.2	1	0.67	6	1.43
Maxillopoda	Copepoda	7	4.69	0	0
Total of individuals		149		419	
Richness		12		14	
Simpson's Diversity Index (1-D)		0.9167		0.9286	
Sørensen similarity index		53.84%			

Table 2. Number of individuals and relative density of macroinvertebrates found in *Salvinia biloba* Raddi in the Aldeia River, São Gonçalo, RJ, Brazil.
of Biology, 62: 63-68. DOI: https://doi.org/10.1590/S1519-69842002000100008
Clairouin, IMN, 2009. Estudo dos Culícidos (Diptera: Culicidae) nos Cemitérios das Ilhas da Madeira e do Porto Santo. Dissertação (Mestrado em Parasitologia Médica) - Universidade Nova de Lisboa.
Cook, CDK, 1996. Aquatic and wetland plants of India. Estados Unidos, Oxford University Press.
Domingues, VO, GD Tavares, F Stüker, TM Michelot, LGB Reetz, CM Bertoncheli & R Hörner, 2007. Contagem de bactérias heterotróficas na água para consumo humano: comparação entre duas metodologias. Revista Saúde, 33: 15-19.
Dornfeld, CB & AA Fonseca-Gessner, 2005. Fauna de Chironomidae (Diptera) associada à Salvinia sp. e Myriophyllum sp. num reservatório do córrego do espraiado, São Carlos, São Paulo, Brasil. Entomologia y Vectores, 12: 181-192. DOI: https://doi.org/10.1590/S0328-03812005000200005
Flores, EF & R Weiblen, 2009. O vírus do Nilo Ocidental. Ciência Rural, 39: 604-612.
IDEXX, 2018. Teste Colilert. Available in: <https://www.idexx.com.br/pt-br/water/water-products-services/colilert/>. [Accessed on: 25.vii.2018].
Irgang, BE & CVS Gastal Jr., 1996. Macrófitas aquáticas da planície costeira do Rio Grande do Sul. Porto Alegre, Edição dos autores.
Mauz, K & JR Reeder, 2009. Marsilea mollis (Marsileaceae) sporocarps and associated insect parasitism in Southern Arizona. Western North American Naturalist, 69: 382-387. DOI: https://doi.org/10.3398/064.069.0312
Medeiros, JCC, GS Teodoro, JCF Silva & FF Coelho, 2017. Effects of Shade on Individual Ramet Growth and on Clonal Growth of the Aquatic Fern Salvinia auriculata (Salvinaceae). American Fern Journal, 107: 19-29. DOI: https://doi.org/10.1640/0002-8444-107.1.21
Mugnai, R, JL Nessimian & DF Baptista, 2010. Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro. Rio de Janeiro, Technical Books.
Oliveira, ACG, 2012. Bactérias heterotróficas e autotróficas envolvidas na remoção de nitrogênio de lixiviado de aterro sanitário em reator de leito móvel. Paraná, UEL. Dissertação (Mestrado em Engenharia de Edificações e Saneamento) - Universidade Estadual de Londrina.
Parys, KA & SJ Johnson, 2013. Biological control of common Salvinia (Salvinia minima) in Louisiana using Cyrtobagous salviniae (Coleoptera: Curculionidae). Florida Entomologist, 96: 10-18. DOI: https://doi.org/10.1653/024.096.0102
Pelli, A & FAR Barbosa, 1998a. Insect fauna associated with Salvinia molesta Mitchell in a lake of Lagoa Santa Plateau, Minas Gerais, Brazil. Verhandlungen des Internationalen Verein Limnologie, 26: 2125-2127. DOI: https://doi.org/10.1080/03680770.1995.11901118
Pelli, A & FAR Barbosa, 1998b. Insetos coletados em Salvinia molesta Mitchell (Salvinaceae), com especial referência às espécies que causam dano à planta, na lagoa Olhos d’Água, Minas Gerais, Brasil. Revista Brasileira de Entomologia, 42: 9-12.
PPG I, 2016. A community-derived classification for extant lycophytes and ferns. The Pteridophyte Phylogeny Group. Journal of Systematics, 54: 563-603. DOI: https://doi.org/10.1111/jse.12229
Prellvitz, LJ & EF Albertoni, 2004. Caracterização Temporal da Comunidade de Macroinvertebrados Associada a Salvinia spp. (Salvinaceae) em um Arroio da Planície Costeira do Rio Grande, RS. Acta Biológica Leopoldensia, 26: 213-223.
Robinson, RC, E Sheffield JM & Sharpe, 2010. Problem ferns: their impact and management, pp. 255-322. In: Mhlhtetrer, K, LR Walker & JM Sharpe (Eds.). Fern Ecology. England, Cambridge University Press.
Salvinaceae in Flora do Brasil, 2020. under construction. Floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB92032. [Accessed on: 04.iv.2020].
Silva, KD, 2009. Heteroptera aquáticos como bioindicadores na análise da conservação de micro-bacias hidrográficas do Rio Pindaiba-MT. Dissertação (Mestrado em Ciências Ambientais) - Universidade do Estado de Mato Grosso.
Silveira, LS, RT Martins & RG Alves, 2016. Invertebrate Colonization During Leaf Decomposition of Eichhornia azurea (Swartz) Kunth (Commelinaceae: Pontederiaceae) and Salvinia auriculata Aubl. (Salvinaceae) in a Neotropical Lentic System. EntomoBrasilis, 9: 10-17. DOI: https://doi.org/10.12741/ebrasilis.v9i1.548
Sousa, WO, 2008. Curculionídeos (Insecta, Coleoptera) associados às macrófitas aquáticas no pantanal mata-grossense e Amazônia central: taxonomia, ecologia, testes alimentar e de mergulho. Tese (Doutorado em Ciências Biológicas) - Universidade Federal do Paraná.
Souza-lima, R, JC Miranda & AS Portugal, 2012. Ictiofauna do Rio Aldeia, São Gonçalo, pp. 115-134. In: Santos, MG (Org.). Estudos Ambientais em regiões metropolitanas: São Gonçalo. Rio de Janeiro, EdUERJ, Rio de Janeiro. Trivinho-Stixino, S, L Correia & K Sonada, 2000. Phytophilus chironomidae (Diptera) and other macroinvertebrates in the ox-bow Infernão Lake (Jatai Ecological Station, Luiz Antonio, SP, Brazil). Revista Brasileira de Biologia, 60: 527-535. DOI: https://doi.org/10.1590/S0034-71082000000300018

Suggestion citation:
Coutinho, RLM, IR Lancellotti, AR Flores & MG Santos, 2020. Influence of seasonality on macroinvertebrate diversity associated with the aquatic fern Salvinia biloba Raddi. EntomoBrasilis, 13: e0889. Available on: doi: 10.12741/ebrasalis.v13.e0889
