Abstract
In this paper a discussion of the detailed operation of the interleavers used by the turbo codes defined on the telecommunications standards cdma2000 (3GPP2 C.S0024-B V2.0) and W-CDMA (3GPP TS 25.212 V7.4.0) is presented. Differences in the approach used by each turbo interleaver as well as dispersion analysis and frequency analysis are also discussed. Two examples are presented to illustrate the complete interleaving process defined by each standard. These two interleaving approaches are also representative for other communications standards.

Keywords: Turbo coding, cdma2000, W-CDMA, 3G, interleaving, digital communications.

1. Introduction

Near one decade ago the IMT2000 initiative of the International Telecommunication Union identified five base station-mobile station air interfaces for the third-generation mobile communications systems (3G). It seems clear at the present however that the two technologies that will be dominating the global market of third generation mobile communications systems are cdma2000 and W-CDMA [1].
The salient feature of third generation mobile communications systems is its high capacity for transmitting information over the system data channels. By 1997 IMT2000 defined in Recommendation ITU-R M.1225 test data rates of 2048 kbit/s, 144 kbit/s and 64 kbit/s for indoors, pedestrian and vehicular traffic respectively [2] for purposes of evaluating the third-generation technologies. As expected, the continuing evolution of mobile technologies has left behind these values with much higher speeds. For instance, the Ultra Mobile Broadband™ (UMB™) air interface specification [3] is intended to deliver downlink and uplink data rates of 288 Mbit/s and 75 Mbit/s respectively using a bandwidth of 20 MHz.

To offer these high data rates with access terminals increasingly both small and functional it is imperative to work at the limit of efficiency in data transmission.

As it is well known in 1948 C. E. Shannon proved that the fundamental limit of digital transmission on channels with white noise is given by the classic channel capacity formula \(C = W \log_2 (1 + S/N) \), where \(C \) is the capacity in bit/s, \(W \) is the channel bandwidth in Hz, and \(S/N \) is the signal to noise ratio at the receiver.

However, finding an error correction system able to achieve this limit meant extensive research for several decades. After more than forty years of research the concept of turbo coding developed by Claude Berrou and Alain Glavieux [4] finally proved that it was possible to reach the limit of channel capacity with an encoding scheme that could be constructed in practice.

While turbo coding is not the only technique known to be able to attain the channel capacity limit [5] it is certainly the most commonly used channel coding technique for data channels in contemporary mobile communications systems.

According to the inventors the turbo coding principle was born from the experimentation with the feedback concept applied to the error correcting problem using convolutional codes [6]. At the core of a turbo coding system there is a fundamental constitutive element called interleaver. An interleaver is a system that changes the positions of input data according to an established position permutation algorithm. Inside the turbo coding process the function of the interleaving block is to help in providing codes vectors with the highest possible level of randomness (ideally, independent vectors) [7] so that the resulting code resembles as close as possible the concept of random coding used by C. E. Shannon in [8] to prove the channel capacity theorem. Therefore the interleaver is a fundamental element for the performance of a turbo code [9].

The understanding of interleaving is a subject of high interest to the specification of physical layers for both wired and wireless transmission technologies. The aim of this article is to show in detail how the turbo interleavers defined in the
The article is organized as follows: Section 2 provides an overview of the turbo interleavers defined in cdma2000 and W-CDMA standards. In Section 3 two detailed examples of the turbo interleaving done by each standard are described. Section 4 shows a dispersion analysis for each interleaver. Finally, in section 5 the main findings and observations of this work are presented.

For a full discussion of the theory of the interleavers described in this article references [12] and [13] can be consulted.

2. Description of the cdma2000 and W-CDMA turbo interleavers

W-CDMA and cdma2000 use different strategies for the interleaving carried out by its turbo coding systems. The cdma2000 interleaver is based on the principle of generating the interleaving positions through a counter that generates addresses which are modified through a preset table and a function that reverses the order of the bits. The resulting address vectors determine the permutation of the input data. In cdma2000 the input to the interleaver and the output data form the interleaver are defined as arrays (vectors) of length N_{turbo}. The values that the N_{turbo} variable can take are defined by the standard.

In W-CDMA the input and output of the interleaver are treated as matrices whose dimensions (rows and columns) depend on the total length of the input data, K. The values the variable K can take are also defined by the standard. The interleaving process takes place in two steps. First the positions of the bits for each row are permuted. Then the row positions are permuted (without changing the bits in each row). In summary, the American standard (cdma2000) treats input bits as an array (or vector), while the European standard (W-CDMA) treats the input data as a matrix. To change positions the American standard uses a counter while the European one uses permutation patterns of rows and columns. The following sub-sections describe in detail the operation of the cdma2000 and W-CDMA interleavers.

2.1 cdma2000 turbo interleaver

Figure 1 shows the flow diagram of the interleaver used by the cdma2000 turbo encoder, which has as input the packet_size variable which is used to determine from Table 1 both then n y N_{turbo} parameters. The value of n is an interleaving parameter defined as an integer in the range $3 \leq n \leq 7$. N_{turbo} is the actual number of information bits in the interleaving block and must satisfy the relationship $N_{turbo} \leq 2^{n+5}$.
The packet size is six bit longer than \textit{Nturbo} because the six trail bits are used to force the turbo encoder to the initial state after the codification of the \textit{Nturbo} data bits is complete.

Packet size	n	N\textsubscript{turbo}
256	3	250
512	4	506
1024	5	1018
2048	6	2042
4096	7	4090

The parameters in Table 1 are defined for reverse link channels i.e. channels going from the mobile station to the base station. For forward link channels the (base station to mobile) \(n \) is in the range \(5 \leq n \leq 7 \) and the values of \textit{packet size} and \textit{Nturbo} are different. The interleaving algorithm is the same for the reverse link as well as the direct link.
Figure 1 shows the sequential tasks that are performed within the interleaver proposed in the cdma2000 standard. The first task is to calculate the MSB address by taking the n least significant bits of the value of the address counter n most significant bits plus one.

Then Table 2 is indexed using the counter's five least significant bits. This lookup table indexing provides an LSB address of n bits.

Table 2. cdma2000 turbo interleaver lookup table

Index	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
0	1	5	27	3	15
1	1	15	3	27	127
2	3	5	1	15	89
3	5	15	1	13	1
4	1	1	13	29	31
The next step is to take the n least significant bits of the product of the previously obtained MSB and LSB addresses which will constitute the lower part, namely LSB_address, of the final address.

The higher part of the final address, namely MSB_address, is obtained by bit-reversing the five least significant bits of the counter.

MSB_address and LSB_address are then concatenated forming the final address which is stored at the Output_address vector if the final address is less than N_{turbo}, otherwise the address is discarded.

The counter is increased by one and the process is repeated until the N_{turbo} interleaving addresses are obtained.

The algorithm is designed so that with 2^{n+5} iterations is always possible to obtain the N_{turbo} required addresses, i.e. it is not possible for the iterations to end without having obtained all the interleaving addresses.
2.2 W-CDMA turbo interleaver

The turbo interleaver of the W-CDMA standard is based on a rectangular input bit matrix. This matrix is permuted both by columns and rows before the output bits are delivered. The input bits are denoted as \(x_1, x_2, x_3, x_4, x_5, \ldots, x_K \) where \(K \) is the number of input bits, where \(40 \leq K \leq 5114 \).

Figure 2 shows a flow diagram of the algorithm used by the W-CDMA turbo interleaver.

![Flow diagram for the W-CDMA standard's turbo interleaver algorithm](image)

As shown in Fig. 2, after verifying that the length of \(K \) is in the range established by the standard, then both the number of rows \(R \) and the number of columns \(C \) of the rectangular matrix are determined according to the rules given in Tables 3 and 4.
Table 3. Rules for determining the number of rows R

R	K
5	$40 \leq K \leq 159$
10	$(160 \leq K \leq 200) \lor (481 \leq K \leq 530)$
20	$K = \text{any other value}$

Table 4. Rules for determining the number of columns C

K	P	C
$481 \leq K \leq 530$	53	$C = p = 53$
$K \leq R \times (p + 1)$	Minimum p (see Table 5)	
		$C = p - 1$ if $(K \leq R \times (p - 1))$
		$C = p$ if $(R \times (p - 1) < K \leq R \times p)$
		$C = p + 1$ if $(R \times p < K)$

As shown in Table 4 when K is outside the range $481 \leq K \leq 530$, p is the lowest prime number such that $K \leq R \times (p + 1)$ and C is calculated according the third column of Table 4. The values for the prime number p are shown in Table 5.

Table 5. List of prime number p and primitive roots v

p	v	p	v	p	v	p	v	p	v
7	3	47	5	101	2	157	5	223	3
11	2	53	2	103	5	163	2	227	2
13	2	59	2	107	2	167	5	229	6
17	3	61	2	109	6	173	2	233	3
19	2	67	2	113	3	179	2	239	7
23	5	71	7	127	3	181	2	241	7
29	2	73	5	131	2	191	19	251	6
31	3	79	3	137	3	193	5	257	3
37	2	81	2	139	2	197	2	259	2
41	6	89	3	149	2	199	3	263	2
43	3	97	5	151	6	211	2	269	2

The matrix is filled with the K input bits by rows from top to bottom. If $R \times C > K$, then the matrix is zero (or one) padded.

The row permutation pattern which is represented by the vector $\langle T(i) \rangle_{i \in \{0,1,..,R-1\}}$ and depends on the number of input bits K as showed in Table 6.
Table 6. Rules for determining the row permutation pattern

K	R	Inter-row permutation patterns $\langle T(i) \rangle_{i=0,1,\ldots,R-1}$
$40 \leq K \leq 159$	5	$\langle 4,3,2,1,0 \rangle$
$(160 \leq K \leq 200) \lor (481 \leq K \leq 530)$	10	$\langle 9,8,7,6,5,4,3,2,1,0 \rangle$
$(2281 \leq K \leq 2480) \lor (3161 \leq K \leq 3210)$	20	$\langle 19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10 \rangle$
$K = \text{any other value}$	20	$\langle 19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,6,15,11 \rangle$

The next task is to calculate the permutation pattern for the columns in each row. This pattern is defined by the matrix $\langle U_i(j) \rangle_{j=0,1,\ldots,C-1}$ as indicated in Table 7.

Table 7. Column permutations Patterns

Condition	Column permutation pattern $\langle U_i(j) \rangle_{j=0,1,\ldots,C-1}$
$C = p$	$U_i(j) = s((j \times r_i) \mod (p-1)), j = 0,1,\ldots(p-2), U_i(p-1) = 0$
$C = p+1$	$U_i(j) = s((j \times r_i) \mod (p-2)), j = 0,1,\ldots(p-2), U_i(p-1) = 0$ and $U_i(p) = p$
	$K = R \times C$. exchange $U_{R-1}(p)$ with $U_{R-1}(0)$
$C = p-1$	$U_i(j) = s((j \times r_i) \mod (p-1)), j = 0,1,\ldots(p-2)$

In Table 7 the variable s corresponds to the base sequence $\langle s(j) \rangle_{j=0,1,\ldots,p-2}$ used to generate the column permutation pattern and is defined by the eq. (1):

$$s(j) = s([v \times s(j-1) \mod (p)]), j = 1,2,\ldots(p-2), s(0) = 1 \quad (1)$$

where v is the primitive root as defined in Table 5.

The variable r_i is the sequence of permuted prime integers defined in equation (2):

$$r_{T(i)} = q_i, i = 0,1,\ldots,R-1 \quad (2)$$

Where the subscript $T(i)$ is the row permutation vector given in Table 6 and q is the sequence of primes determined by the lowest primes q_i such that $\gcd(q_i, p-1) = 1, q_i > 6$ and $q_i > q_{(i-1)}, i = 1,2,\ldots,R-1$.

The original input matrix is first column permuted with the column permutation pattern $\langle U_i(j) \rangle_{j=0,1,\ldots,C-1}$ and then with the row permutation patterns $\langle T(i) \rangle_{i=0,1,\ldots,R-1}$. Finally data are read by columns from left to right. If extra zero
(or one) bits where initially padded these bits must be removed (the number of bits removed equals \(R \times C - K \)), producing the bits \(x'_1, x'_2, x'_3, x'_4, x'_5, ..., x'_K \).

3. Examples of operation

3.1 Turbo interleaver standard cdma2000

In this example a packet size \(\text{packet _ size} = 256 \) is used. Following the algorithm described in Fig. 1 we have:

1. From Table 1 \(n = 3 \) and \(N_{turbo} = 250 \).
2. Start the counter of \(n + 5 = 8 \) bits at zero, i.e. \(\text{counter} = 00000000 \).
3. Save the three most significant bits of counter in the \(\text{MSB} \) variable.
4. Save the five least significant bits of counter in the \(\text{LSB} \) variable.
5. Add 1 to \(\text{MSB} \), i.e. \(\text{MSB} = 001 \) for the first iteration
6. Use Table 2 with the five \(\text{LSBs} \) of counter and column \(n \) (\(\text{index} = 00000 \) for the first iteration) and store the \(n \)-bit result in \(\text{LSB} \), i.e. \(\text{LSB} = 001 \) for the first iteration.
7. Take the \(n \) least significant bits of the \(\text{MSB} \times \text{LSB} \) product and store it in \(T \).
8. Bit reverse the five least significant bits of counter and save it in \(\text{MSB_address} \), i.e. \(\text{MSB_address} = 00000 \) for the first iteration
9. Concatenate \(\text{MSB_address} \) and \(\text{LSB_address} = T \) into \(\text{Temp_address} \), i.e. \(\text{Temp_address} = 00000001 \) for the first iteration
10. If \(\text{Temp_address} < N_{turbo} \) then deliver valid \(\text{output_address} \), i.e. \(\text{output_address} = 00000001 \) for the first iteration
11. Add 1 to counter
12. Go to step 3

Table 8 shows the six addresses which are discarded during the process because of being greater than the value of \(N_{turbo} \).

Table 8. Example of invalid interleaving addresses

Address Counter	MSB = \(\text{MSB+1} \)	LSB = Table2[LSB,n]	MSB_address = reverse(\(\text{LSB_counter} \))	LSB_address = MSB \times LSB	Tempt_address = [MSB][LSB]
000 11111	001	011	11111	001x011 = 011	11111011 = 251 base 10
001 11111	010	011	11111	010x011 = 110	11111110 = 254 base 10
For this example, the input vector has 250 data, whose values for simplicity are consecutively numbered from one to two hundred and fifty. As the input vector is relatively large in size only some positions with their values are shown in Table 9. Figure 3 shows the interleaved output data vector.

Table 9. cdma2000 example input vector

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |

As can be seen in Figure 3 the input data has been totally interleaved from their original positions. For instance at position 16 is the element 242 and at position 242 is the element 233, whereas at the same positions in the input vector in Table 9 are the data 16 and 242 respectively.

Figure 4 shows the results of this example plotted in a Cartesian plane, where the x-axis represents the index and the...
y-axis the position of the output data.

![Fig. 4. Input vector vs output vector before and after interleaving](image)

3.2 Turbo interleaver standard W-CDMA

For this example a value of $K = 250$ input data is used. From Table 3 the number of rows R must be 20 and from Table 4 the number of columns C must be 13. This value for C is found as follows: from Table 5 the smallest prime such that $250 \leq 20 \times (p + 1)$ is $p = 13$; according to the rules in Table 4 as $20 \times 12 < 250 \leq 20 \times 13$ meets the condition $R \times (p + 1) < K \leq R \times p$, then $C = p = 13$. The rectangular matrix has then $20 \times 13 = 260$ elements.

In this example the input values, for simplicity are chosen to be the integers from 1 to 250 which are written by rows into the input matrix. Since the matrix size is greater than K the empty positions are filled with zeros as shown in Table 10.

According to the rules in Table 6 the row permutation pattern $\{T(i)\}_{i=0,1,...,19}$ for this case is $T = \{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$. Similarly, as in this example $C = p$, the column permutation patterns according to the rules in Table 7 are determined by equation (3):

$$U_j(r) = s((j \times r) \mod (13 - 1)), \quad j = 0,1,\ldots,12, \quad U_j(12) = 0$$ \hspace{1cm} (3)

Table 11 shows the base sequence which has been generated using Eq. (1) and which is used in Eq. (3).

To obtain the sequence of permuted prime integers r, the sequence of prime numbers q is needed. The sequence q must satisfy the condition $\gcd(q_i, 13 - 1) = 1, \quad q_i > 6$ and $q_i > q_{(i-1)}$, $i = 1,2,\ldots,19$, in this example giving as a result
\[q = [1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79] . \]

The permuted sequence \(r_i \) is then:

\[r_{r(i)} = q_i, i = 0, \ldots, 19, r_{r(i)} = [17, 61, 19, 59, 13, 23, 71, 29, 43, 7, 47, 31, 79, 41, 7, 43, 29, 71, 23, 13, 59, 19, 61, 17, 19, \ldots, 1, 0] \]

Table 12 shows the column permutation patterns produced by Eq. (3).

Table 13 shows the rectangular matrix after applying the permutation pattern \(U \) and Table 14 after applying the permutation pattern \(T \). Table 15 shows the resulting output after reading the matrix column by column. It can be observed at the first column of Table 15 the six fill-in zeros. Figure 5 shows the end result after pruning the fill-in zeros. Figure 6 shows this example's results plotted in a Cartesian plane where the x-axis represents the index and the y-axis the position of the output data.

Table 10. 20x13 matrix before interleaving

1	2	3	4	5	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52
53	54	55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76	77	78
79	80	81	82	83	84	85	86	87	88	89	90	91
92	93	94	95	96	97	98	99	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	116	117
118	119	120	121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	168	169
170	171	172	173	174	175	176	177	178	179	180	181	182
183	184	185	186	187	188	189	190	191	192	193	194	195
196	197	198	199	200	201	202	203	204	205	206	207	208
209	210	211	212	213	214	215	216	217	218	219	220	221
222	223	224	225	226	227	228	229	230	231	232	233	234
235	236	237	238	239	240	241	242	243	244	245	246	247
248	249	250	0	0	0	0	0	0	0	0	0	0

Table 11. Base sequence for row permutations \(\{s(j)\}_{j=0,1,\ldots,11} \)

1	2	4	8	3	6	12	11	9	5	10	7

Table 12. Column permutation matrix U_j.

2	7	11	9	10	3	13	8	4	6	5	12	1
2	3	5	9	4	7	13	12	10	6	11	8	1
2	12	5	6	4	8	13	3	10	9	11	7	1
2	8	11	6	10	12	13	7	4	9	5	3	1
2	7	11	9	10	3	13	8	4	6	5	12	1
2	12	5	6	4	8	13	3	10	9	11	7	1
2	8	11	6	10	12	13	7	4	9	5	3	1
2	7	11	9	10	3	13	8	4	6	5	12	1
2	12	5	6	4	8	13	3	10	9	11	7	1
2	8	11	6	10	12	13	7	4	9	5	3	1
2	7	11	9	10	3	13	8	4	6	5	12	1
2	12	5	6	4	8	13	3	10	9	11	7	1
2	8	11	6	10	12	13	7	4	9	5	3	1
2	7	11	9	10	3	13	8	4	6	5	12	1

Table 13. Rectangular matrix after column interleaving.

2	7	11	9	10	3	13	8	4	6	5	12	1	
15	16	18	22	17	20	26	25	23	19	24	21	14	
28	38	31	32	30	34	39	29	36	35	37	33	27	
41	47	50	45	49	51	52	46	43	48	44	42	40	
54	55	57	61	56	59	65	64	62	58	63	60	53	
67	73	76	71	75	77	78	72	69	74	70	68	66	
80	86	89	84	88	90	91	85	82	87	83	81	79	
93	98	102	100	101	94	104	99	95	97	96	103	92	
106	116	109	110	108	112	117	107	114	113	115	111	105	
119	129	122	123	121	125	130	120	127	126	128	124	118	
132	137	141	139	140	133	143	138	143	134	136	135	142	131
145	155	148	149	147	151	156	146	153	152	154	150	144	
158	168	161	162	160	164	169	159	166	165	167	163	157	
171	177	180	175	179	181	182	176	173	178	174	172	170	
184	190	193	188	192	194	195	189	186	191	187	185	183	
197	198	200	204	199	202	208	207	205	201	206	203	196	
210	220	213	214	212	216	221	211	218	217	219	215	209	
223	228	232	230	231	224	234	229	225	227	226	233	222	
236	237	239	243	238	241	247	246	244	240	245	242	235	
249	250	0	0	0	0	0	0	0	0	0	0	248	
Table 14. Rectangular matrix after both column and row interleaving

	249	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	248	
	119	129	122	123	121	125	130	120	127	126	128	124	118							
	184	190	193	188	192	194	195	189	186	191	187	185	183							
	54	55	57	61	56	59	65	64	62	58	63	60	53							
	2	7	11	9	10	3	13	8	4	6	5	12	1							
	28	38	31	32	30	34	39	29	36	35	37	33	27							
	67	73	76	71	75	77	78	72	69	74	70	68	66							
	93	98	102	100	101	94	104	99	95	97	96	103	92							
	158	168	161	162	160	164	169	159	166	165	167	163	157							
	236	237	239	243	238	241	247	246	244	240	245	242	235							
	132	137	141	139	140	133	143	138	134	136	135	142	131							
	106	116	109	110	108	112	117	107	114	113	115	111	105							
	171	177	180	175	179	181	182	176	173	178	174	172	170							
	223	228	232	230	231	224	234	229	225	227	226	233	222							
	41	47	50	45	49	51	52	46	43	48	44	42	40							
	15	16	18	22	17	20	26	25	23	19	24	21	14							
	210	220	213	214	212	216	221	211	218	217	219	215	209							
	80	86	89	84	88	90	91	85	82	87	83	81	79							
	197	198	200	204	199	202	208	207	205	201	206	203	196							
	145	155	148	149	147	151	156	146	153	152	154	150	144							

Table 15. Rectangular matrix after reading column by column

	249	119	184	54	15	210	80	197	145
	250	129	190	55	16	220	86	198	155
	0	122	193	57	18	213	89	200	148
	0	123	188	61	22	214	84	204	149
	0	121	192	56	17	212	88	199	147
	0	125	94	59	20	216	90	202	151
	0	130	195	65	26	221	91	208	156
	0	120	189	64	25	211	85	207	146
	0	127	186	62	23	218	82	205	153
	0	126	191	58	19	217	87	201	152
	0	128	187	63	24	219	83	206	154
	0	124	185	60	21	215	81	203	150
	248	118	183	53	14	209	79	196	144
Fig. 5. W-CDMA interleaved output data

Fig. 6. Input vector vs output vector before and after interleaving, packet size = 250

3.3 Some test vectors with binary digits

As example vectors Tables 16 and 17 shows the results for the one hundred ones followed one hundred and fifty zeros vector, and the complementary vector (one hundred fifty zeros followed by one hundred ones) for W-CDMA and
cdma2000 respectively.

The notation used for both input and output vectors uses binary and hexadecimal format to avoid the ambiguity that may cause the size of the input data not being a multiple of four.

Table 16. W-CDMA and cdma2000 interleaving test vectors. Input data: 100 ones and 150 zeros

Input	Output
00	00B03E0B01E1607C2C0F8581F0B03E1603C2C0F8580F0B03E1603C2C0F82C0F8
W-CDMA	00754545554A8A8A8A951515152A2A2A2A545454545454545454A8A8A95151555
cdma2000	00754545554A8A8A8A951515152A2A2A2A545454545454545454A8A8A95151555

Table 17. W-CDMA and cdma2000 interleaving test vectors. Input data: 150 zeros and 100 ones

Input	Output
00	014CC154CC169982D3305A66094CC169982D3304A66094CC129982D330553305
W-CDMA	014CC154CC169982D3305A66094CC169982D3304A66094CC129982D330553305
cdma2000	2AAA2A2A155454542AA8AAA855515150AA2A2A2A2AA2A2AA2A155454542AA8AAA8

In Table 16 and 17 it can easily be seen that the input data are interleaved in a different way by the turbo interleaver of each standard. For instance, in W-CDMA it appears several times consecutive ones at the output (nibbles B16 and C16, for example) but they never come from consecutive positions at the input vector. In cdma2000 it never appears for this example consecutive ones at the output vector.

4. Dispersion analysis

Although the output produced by interleavers (Figures 3 and 5) seem to have elements of randomness, it should be noticed that the transformation $T[x] = y$ between input and output positions is both deterministic and bijective, i.e. the mapping is fixed, one to one and for all y there is a single x and vice versa.

Because of this reason it is more useful to calculate the average interleaving distance, defined as the average value of the distance between the input and output positions, L_{avg}, as well the standard deviation of these distances.

Table 18 shows the values of L_{avg} and standard deviation for different lengths of input data. As shown in Table 18 the values of L_{avg} and standard deviation are very similar for the two compared standards.
Similarly, as noted at the histograms of interleaving distance versus frequency of Figure 7 and 8 for 250 data, the dispersion patterns are statistically similar. Patterns obtained for higher input values have similar behavior.

Tabla 18. L_{avg} distance of interleaving

Length of input data	L_{avg} cdma2000	L_{avg} W-CDMA	Standard deviation cdma2000	Standard deviation W-CDMA
250	82.19	81.54	58.36	59.23
506	168.96	170.78	118.63	121.65
1018	334.60	333.27	240.71	240.58
2042	678.2	679.68	481.04	483.78
4090	1369.9	1358.8	965.65	964.15

The interleaving process does not mean that all positions must change at the output. For example, in cdma2000 for an input size equal to 506 positions 68, 84 and 338 appear at the same positions at the interleaver's output. For W-CDMA for the same input size (506) it happens the same with position 385.

Fig. 7. Interleaving distance versus frequency for W-CDMA, packet size = 250

Fig. 8. Interleaving distance versus frequency for cdma2000, packet size = 250
5. Conclusions

- In essence the principle of interleaving used in cdma2000 is based on manipulating a counter whose value defines the mapping position at the output. Instead, the turbo interleaver used by the W-CDMA standard is based on a permutation method using prime numbers for generating permutations for both rows and columns in a rectangular matrix.

- While output vectors appear to be randomly distributed, the transformation which defines the mapping between input and output positions in both W-CDMA and cdma2000 turbo interleavers is bijective and of deterministic nature, i.e. mapping between input and output is fixed.

- Considering the interleaving average distance and the variance of interleaving distance (Table 18) it can be observed that the W-CDMA and cdma2000 turbo interleavers have a very similar behavior even when their interleaving algorithms are substantially different.

- The distribution of distances, as can be seen at the histograms of Fig. 7 and Fig. 8, corroborate that the dispersion patterns of the W-CDMA and cdma2000 turbo interleavers are statistically quite similar.

References

[1] The accelerating migration to 3G technologies, CDMA development group, The Smart Money Is On 3G, August 2006, Available: http://www.cdg.org/resources/white_papers/files/Migration.pdf; Consulted December 13th 2007.
[2] Guidelines for evaluation of radio transmission technologies for IMT-2000, Recommendation ITU-R M.1225, 1997.
[3] Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification, 3rd Generation Partnership Project 2, Standard 3GPP2 C.S0084-001-0 version 2.0. August 2007.
[4] C. Berrou, A. Glavieux, P. Thitimajshima. “Near Shannon limit error-correcting coding and decoding: Turbo codes,” Proc. 1993 Int. Conf. Commun. Geneva. 1993. pp. 1064–1070.
[5] D. J. Costello, G. D. Forney, Jr. “Channel Coding: The Road to Channel Capacity,” Proceedings of the IEEE, Vol. 95, No. 6, pp. 1150–1177. Jun. 2007.
[6] C. Berrou, A. Glavieux. “Reflections on the Prize Paper: Near Shannon limit error-correcting coding and decoding: Turbo codes” IEEE Inform. Theory Society Newsletter, Vol. 48. 1998. pp. 24–29.
[7] G. Battail. “A Conceptual Framework for Understanding Turbo Codes” IEEE Journal on Selected Areas in Communications. Vol. 16, No.2, pp. 245–254. Feb. 1998.

[8] C. E. Shannon. “A mathematical theory of communication,” Bell Syst. Tech. J. Vol. 27, 1948. pp. 379–423 and 623–656.

[9] C. B. Schlegel, Lance C. Pérez, Trellis and turbo coding. New York, NJ: IEEE Press, 2004, ch. 10.

[10] cdma2000 High Rate Packet Data Air Interface Specification, 3rd Generation Partnership Project 2, Standard C.S0024-B version 2.0. Apr. 2007.

[11] Multiplexing and channel coding (FDD) (Release 7), 3rd Generation Partnership Project Standard 3GPP TS 25.212 version 7.6.0. Sept. 2007.

[12] O. Takeshita, D. Costello. “New Deterministic Interleaver Designs for Turbo Codes” IEEE Transactions on Information Theory. Vol. 46. 2000. pp. 1988–2006.

[13] A. Shibutani, H. Suda, F. Adachi. “Complexity reduction of turbo coding,” Proceedings, IEEE Vehicular Technology Conference VTC’99 Fall. 1999. pp. 1570-1574.

Fabio G. Guerrero, received a B.Eng. degree in telecommunications engineering from Universidad del Cauca, Popayan, Colombia (South America), 1992, and a M.Sc. degree in Real-Time Electronic Systems from Bradford University, UK, 1995. Currently, he works as telecommunications assistant lecturer in the Department of Electrical and Electronics Engineering of Universidad del Valle, Cali, Colombia (South America). His research interests include digital communications, telecommunication systems modeling, and next generation networks. He is member of the Communications Society of the IEEE and has served as reviewer for several international journals.

Maribell Sacanamboy, She received his 5-year Diploma in Electronics Engineering in 1999 from the Universidad Javeriana, Cali, Colombia (South America). Currently she is a M.Sc. student at the Electrical and Electronics Engineering School of the University of Valle, Cali. She is with the Department of Computer Science Engineering, Universidad Javeriana, Cali. Her research interests include digital design for communication systems, fuzzy logic, and computer architectures.