Relative Frobenius Formula

Avraham Aizenbud, Nir Avni and Yoav Krauz

March 22, 2016

Abstract

For a finite group G, Frobenius found a formula for the values of the function $\sum_{\text{Irr} \, G} (\dim \pi)^{-s}$ for even integers s, where $\text{Irr} \, G$ is the set of irreducible representations of G. We generalize this formula to the relative case: for a subgroup H, we find a formula for the values of the function $\sum_{\text{Irr} \, G} (\dim \pi)^{-s}(\dim \pi^H)^{-t}$. We apply our results to compute the E-polynomials of Fock–Goncharov spaces and to relate the Gelfand property to the geometry of generalized Fock–Goncharov spaces.

Contents

1 Frobenius’ formula 2
2 Relative representation theory 2
3 Relative version of Frobenius’ formula 3
4 A criterion for Gelfand pairs 3
5 Fock–Goncharov spaces 4
6 Proof of Theorem 3.1 8
7 Acknowledgments 9
A An alternative proof of the Frobenius formula 9
B The spherical character 9
1 Frobenius’ formula

Let S be a compact surface and let G be a finite group. A fundamental formula of Frobenius relates the number of homomorphisms from the fundamental group of S to G and the dimensions of the irreducible representations of G:

Theorem 1.1. Let S be a compact surface of genus k and let G be a finite group. Then,

$$|G|^{2k-1} \sum_{\pi \in \text{Irr } G} (\dim \pi)^{2-2k} = |\text{Hom}(\pi_1(S), G)| = \left| \left\{ (x_1, y_1, \ldots, x_k, y_k) \in G^{2k} \mid [x_1, y_1] \cdots [x_k, y_k] = 1 \right\} \right|,$$

where $\text{Irr } G$ is the set of (isomorphism classes of) irreducible representations of G.

For example, $k = 0$ gives $\sum_{\pi \in \text{Irr } G} (\dim \pi)^2 = |G|$, whereas from $k = 1$ we get

$$|\text{Irr } G| = \frac{1}{|G|} \cdot \left| \left\{ (x, y) \in G^2 \mid xy = yx \right\} \right| = \sum_{x \in G} \frac{|C_G(x)|}{|G|} = \sum_{x \in G} \frac{1}{|x^G|} = |G//G|.$$

Theorem 1.1 also has versions for compact Lie groups and for pro-finite groups (see [Wit91, AA]).

Theorem 1.1 is the case $g = 1$ of the following theorem:

Theorem 1.2. Let G be a finite group and let $g \in G$. Then,

$$|G|^{2k-1} \sum_{\pi \in \text{Irr } G} (\dim \pi)^{1-2k} \chi_\pi(g) = \left| \left\{ (x_1, y_1, \ldots, x_k, y_k) \in G^{2k} \mid [x_1, y_1] \cdots [x_k, y_k] = g \right\} \right|.$$

In this paper, we generalize Frobenius’ formula to the relative case, i.e., we replace the representation theory of a group G by the harmonic analysis on some G-space X. We apply our result for Gelfand pairs and the Hodge theory of Fock–Goncharov spaces.

2 Relative representation theory

Relative representation theory is motivated by the following example:

Example 2.1. Let H be a (finite) group, and consider H as a $H \times H$-set via the action

$$(h_1, h_2) \cdot h := h_1 h h_2^{-1}.$$

Consider the space $\mathbb{C}[H]$ of complex-valued functions on H as a representation of $H \times H$. We have

$$\mathbb{C}[H] = \bigoplus_{\pi \in \text{Irr } H} \pi \otimes \pi^*.$$
This example shows that understanding the $H \times H$-representation $\mathbb{C}[H]$ “is the same” as understanding the representation theory of H. One can reformulate many concepts of the representation theory of H in terms of the $H \times H$-representation $\mathbb{C}[H]$. Relative representation theory (also known as abstract harmonic analysis) deals with those concepts considered in a wider generality: a group G acting on a set X and the representation of G on $\mathbb{C}[X]$.

Two important examples of representation theoretical concepts that have relative counterparts are Schur’s Lemma, whose relative counterpart is the Gelfand property (see Definition 4.1 below) and the notion of a character, whose relative counterpart is the notion of spherical (or relative) character (see Definition B.1 below).

3 Relative version of Frobenius’ formula

We prove the following theorem in §6:

Theorem 3.1. Let G be a finite group acting on a finite set X, let $g \in G$, and let $k \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{\geq 1}$. Then:

$$\sum_{\pi \in \operatorname{irr} G} \frac{\dim(\operatorname{Hom}_G(\pi, \mathbb{C}[X]))^m}{\dim \pi^{m+2k-1}} \chi_\pi(g) = \frac{1}{\# G^{m+2k-1}} \cdot \# \{ p_1, \ldots, p_m \in X, h_1, \ldots, h_m, a_1, \ldots, a_k, b_1, \ldots, b_k \in G \mid h_i \in G_{p_i}, \prod_{i=1}^m h_i \cdot \prod_{i=1}^k [a_i, b_i] = g \} =$$

$$= \frac{1}{\# G^{m+2k-1}} \sum_{h_2, \ldots, h_m, a_1, \ldots, a_k, b_1, \ldots, b_k \in G} \# X^{g^{-1}, h_2 \cdots h_m : [a_1, b_1] \cdots [a_k, b_k]} \prod_{i=2}^m \# X^{h_i},$$

where $[a, b] := aba^{-1}b^{-1}$ is the commutator of a and b.

In Appendix B we reformulate this theorem in terms of spherical characters.

4 A criterion for Gelfand pairs

Recall the definition of Gelfand pairs:

Definition 4.1. Let G be a finite group.

1. Assume that G acts on a finite set X. We say that X is multiplicity free if, for any $\pi \in \operatorname{Irr}(G)$, we have $\dim \operatorname{Hom}_G(\pi, \mathbb{C}[X]) \leq 1$.

2. Let $H < G$. We say that (G, H) is a Gelfand pair if G/H is a multiplicity free G-set.

Theorem 3.1 gives us the following criterion for Gelfand pairs:

Corollary 4.2. Let $H \subset G$ be a pair of groups, and let $X = G/H$. Then the pair (G, H) is a Gelfand pair if and only if

$$
\sum_{g,h\in G} \#X^{[g,h]} = \sum_{g,h\in G} \#X^g \cdot \#X^h \cdot \#X^{gh}.
$$

In fact, Theorem 3.1 implies also the following more general statement:

Corollary 4.3. Let $H \subset G$ be a pair of groups and let $X = G/H$. For every $k, m \in \mathbb{Z}_{\geq 0}$ denote:

$$
f(k, m) := \sum_{h_1, \ldots, h_m, a_1, \ldots, a_k, b_1, \ldots, b_k \in G} \#X^{h_1 \cdots h_m \cdot [a_1, b_1] \cdots [a_k, b_k]} \prod_{i=1}^m \#X^{h_i}.
$$

Then, the following are equivalent:

- The pair (G, H) is a Gelfand pair.
- For every $k, m \in \mathbb{Z}_{\geq 0}$ and $0 < l \leq k$, we have $f(k-l, m) = f(k, m + 2l)$.
- For some $k, m \in \mathbb{Z}_{\geq 0}$ and $0 < l \leq k$, we have $f(k-l, m) = f(k, m + 2l)$.

5 Fock–Goncharov spaces

Theorem 3.1 can also be interpreted as a counting formula for (generalized) Fock–Goncharov spaces, which we proceed to define. The setting for this section is as follows: let \overline{S} be a compact surface, let $p_1, \ldots, p_m \in \overline{S}$, $m \geq 1$, be distinct points, and denote $S = \overline{S} \setminus \{p_1, \ldots, p_m\}$. Such S is called a surface of finite type. Choose a base point $s \in S$ and, for each $i = 1, \ldots, m$, choose a representative $\tau_i \in \pi_1(S, s)$ from the conjugacy class corresponding to a circle around p_i.

Definition 5.1. Let G be a group acting on a set X. An X-framed representation $\pi_1(S, s) \to G$ is a tuple (ρ, x_1, \ldots, x_m), where $\rho : \pi_1(S, s) \to G$ is a homomorphism, and $x_i \in X$ satisfy $\rho(\tau_i) x_i = x_i$. The collection of all X-framed representations is denoted by $\widehat{\mathcal{X}}_{S, s, (\tau_i), G, X}$.
If \(s' \) and \(\tau'_i \) are different choices of a point and loops, then there is a bijection (depending on a choice of a path from \(s \) to \(s' \)) between \(\hat{X}_{S,s,\tau_i,G,X} \) and \(\hat{X}_{S,s',\tau'_i,G,X} \). When no confusion arises, we will omit \(s \) and \(\tau_i \) from the notation.

If \(G \) is group scheme acting on a scheme \(X \), then the functor sending a scheme \(T \) to \(\hat{X}_{S,G(T),X(T)} \) is representable by a scheme that we denote by \(\hat{X}_{S,G,X} \).

Definition 5.2. Let \(G \) be a group scheme acting on a scheme \(X \). Then, \(G \) acts on \(\hat{X}_{S,G,X} \), and we denote the quotient stack by \(X_{S,G,X} \). Similarly, if a group \(G \) acts on a set \(X \), we denote the quotient groupoid \(G\backslash \hat{X}_{S,G,X} \) by \(X_{S,G,X} \).

Remark 5.3.

- If \(X \) is the flag variety of a reductive group \(G \), then the stack \(X_{S,G,X} \) was defined in [FG06]. The authors of [FG06] defined the notion of a framed \(G \) local system and showed that \(X_{S,G,X} \) is the moduli stack of framed \(G \) local systems on \(S \) (see [FG06, §2]). The notion of a framed \(G \) local system extends to general \(G \) and \(X \), and the same proof shows that \(X_{S,G,X} \) is the moduli space of framed \((G,X)\)-local systems.

- If \(G \) is connected, then, by Lang’s Theorem, \(X_{S,G,X}(\mathbb{F}_p) \cong X_{S,G(X(\mathbb{F}_p)),X(\mathbb{F}_p)} \).

In terms of the definitions above, Theorem 3.1 implies:

Theorem 5.4. Let \(G \) be a finite group acting on a finite set \(X \). Then
\[
\#\hat{X}_{S,G,X} = (\#G)^{1-\chi(S)} \sum_{\pi \in \text{Irr} G} \frac{\dim(\text{Hom}_G(\pi, \mathbb{C}[X]))\#(S \setminus S)}{\dim \pi - \chi(S)},
\]
and
\[
\text{vol}(X_{S,G,X}) := \sum_{x \text{ is an isomorphism class of } X_{S,G,X}} \frac{1}{\#\text{Aut}(x)} = (\#G)^{-\chi(S)} \sum_{\pi \in \text{Irr} G} \frac{\dim(\text{Hom}_G(\pi, \mathbb{C}[X]))\#(S \setminus S)}{\dim \pi - \chi(S)}.
\]

Corollary 5.5. Let \(G \) be a finite group acting on a finite set \(X \). The following are equivalent:

- \(X \) is a multiplicity free \(G \)-space.
- For any two non-compact surfaces of finite type \(S_1, S_2 \) such that \(\chi(S_1) = \chi(S_2) \), we have \(\text{vol}(X_{S_1,G,X}) = \text{vol}(X_{S_2,G,X}) \).
- There are two non homeomorphic non-compact surfaces of finite type \(S_1, S_2 \) such that \(\chi(S_1) = \chi(S_2) \) and \(\text{vol}(X_{S_1,G,X}) = \text{vol}(X_{S_2,G,X}) \).
Definition 5.6. We say that a set T of prime powers is dense if, for any finite Galois extension E/\mathbb{Q} and for any conjugacy class $\gamma \subset \text{Gal}(E/\mathbb{Q})$, there exists $p^n \in T$ such that p is unramified in E and $\gamma = Fr_p^n$.

Remark 5.7.

• The Chebotarev Density Theorem says that the set of all primes is dense.

• The Grothendieck trace formula implies that if X_1, X_2 are two schemes such that $X_1(\mathbb{F}_q) = X_1(\mathbb{F}_q)$ when q ranges over a dense set of prime powers, then $X_1(\mathbb{F}_{p^n}) = X_1(\mathbb{F}_{p^n})$ for almost all primes p and for all natural numbers n.

The last corollary and [Kat08] implies:

Corollary 5.8. Let G be a group scheme over \mathbb{Z} acting on a scheme X. The following are equivalent:

• There is a dense set T of prime powers such that, for any $q \in T$, the set $X(\mathbb{F}_q)$ is a multiplicity free $G(\mathbb{F}_q)$ space.

• For all but finitely many primes p and for all n, the set $X(\mathbb{F}_{p^n})$ is a multiplicity free $G(\mathbb{F}_{p^n})$ space.

Moreover, if these conditions hold then, for any two non-compact surfaces S_1, S_2 such that $\chi(S_1) = \chi(S_2)$, the varieties $\hat{X}_{S_1,G,X}$ and $\hat{X}_{S_2,G,X}$ have the same E-polynomial1.

We will now apply Theorem 5.4 for the case of GL_n acting on its flag variety Fl_n. Recall that, if $\lambda = (\lambda_1, \ldots, \lambda_m)$ is a partition of n and λ^* is the conjugate partition, then

$$h_\lambda(i, j) = \lambda_i - j + \lambda_j^* - i + 1$$

is the length of the hook in the Young diagram corresponding to λ passing through the box (i, j). We prove the following:

Theorem 5.9.

•

$$\text{vol} \left(\mathcal{X}_{S,\text{GL}_n,\text{Fl}_n}(\mathbb{F}_q) \right) = (n!)^{\#S \setminus S} \sum_{\lambda \text{ is a partition of } n} q^{\sum (k-1)\lambda_k \chi(S)} \prod_{i,j : j \leq \lambda_i} \frac{q^{h_\lambda(i,j)} - 1}{h_\lambda(i,j)^{\#S \setminus S} - 1}.$$

1For the definition of the E-polynomial see e.g. [Kat08]
• The E polynomial of $\hat{X}_S^{GL_n(F_q)}$ is

$$(n!)^{\# S \setminus S} \prod_{k=1}^{n} (x^k y^n - x^k y^k) \sum_{\lambda} (xy)^{\sum_{k=1}^{n} \lambda_k \chi(S)} \prod_{i,j < \lambda_i} \frac{((xy)^{h_{ij}} - 1)^{-1} \chi(S)}{h_{ij} \# S \setminus S}.$$

For the proof, we collect the following facts:

Proposition 5.10 ([Jam84]). For every partition λ of n, there exists a unique irreducible representation R_{λ} of $GL_n(F_q)$ satisfying:

• R_{λ} appears in the permutation representation $\mathbb{C}[GL_n(F_q)/P_{\lambda}(F_q)]$, where P_{λ} is the standard parabolic corresponding to λ (see [Jam84, Chapter 11]).

• R_{λ} does not appear in the permutation representation $\mathbb{C}[GL_n(F_q)/P_\mu(F_q)]$, for $\mu < \lambda$ (see [Jam84, Chapter 15]).

• $$\dim R_\lambda = q^{\sum_{k=1}^{n} \lambda_k \chi(S)} \frac{\# GL_n(F_q)}{\prod_{i,j < \lambda_i} (q^{h_{ij}} - 1)}.$$

(see [Jam84, Page 2]).

Let $B \subset GL_n$ be the standard Borel. Taking $T_\lambda = R^{B(F_q)}_\lambda$, we get

Corollary 5.11. For every partition λ of n, we have

• T_λ appears in the representation $\mathbb{C}[GL_n(F_q)/P_{\lambda}(F_q)]^{B(F_q)}$.

• T_λ does not appear in the representation $\mathbb{C}[GL_n(F_q)/P_\mu(F_q)]^{B(F_q)}$, for $\mu < \lambda$.

The following is classical:

Proposition 5.12. For every partition λ of n, there exists a unique irreducible representation π_λ of S_n satisfying:

• π_λ appears in the permutation representation $\mathbb{C}[S_n/S_\lambda]$, where $S(\lambda_1, \ldots, \lambda_m) = S_{\lambda_1} \times \cdots \times S_{\lambda_m} \subset S_n$.

• π_λ does not appear in the permutation representation $\mathbb{C}[S_n/S_\mu]$, for $\mu < \lambda$.

• $\dim \pi_\lambda = \frac{n!}{\prod_{i,j < \lambda_i} (h_{ij} - 1)}$.
Proof of Theorem 5.9. Since \(\dim \text{Hom}(R_\lambda, \mathbb{C}[\mathbf{X}_n]) = \dim T_\lambda \), it is enough to show that \(\dim T_\lambda = \dim \pi_\lambda \), for every \(\lambda \). Recall that the Hecke algebra \(H^{S_n}(t) \) corresponding to the Coxeter group \(S_n \) is a (polynomial) one parameter family of algebras whose underlying vector space is \(\mathbb{C}[S_n] \); we denote the product in \(H^{S_n}(t) \) by \(*_t\). Recall that the product \(*_1\) is the convolution on \(\mathbb{C}[S_n] \) and that, if \(t \) is a prime power, then the product \(*_t\) corresponds to the convolution in \(\mathbb{C}[B(F_t) \backslash \mathbf{GL}_n(F_t)/B(F_t)] \) under the identification \(\mathbb{C}[B(F_t) \backslash \mathbf{GL}_n(F_t)/B(F_t)] \cong \mathbb{C}[S_n] \) given by the Bruhat decomposition. Let \(M_\lambda(t) \subset H^{S_n}(t) \) be the subspace of \(S_\lambda\)-right-invariant elements of \(\mathbb{C}[S_n] \). For every prime power \(t \), \(M_\lambda(t) \) is an ideal, and, hence, the same is true for every \(t \). Using the interpolation of the natural inner product, we get that, for \(t \in \mathbb{R}_{\geq 1} \), the algebra \(H^{S_n}(t) \) is semisimple, and, hence, there is an (analytic) trivialization of \(H^{S_n}(t) \) over \(\mathbb{R}_{\geq 1} \). Since there are only finitely many isomorphism types of representations of a given dimension, we get that \(M_\lambda(t) \) can also be trivialized over \(\mathbb{R}_{\geq 1} \). Corollary 5.11 and Proposition 5.12 imply that, under the algebra isomorphism \(\mathbb{C}[S_n] \rightarrow \mathbb{C}[B(F_q) \backslash \mathbf{GL}_n(F_q)/B(F_q)] \), the modules \(T_\lambda \) and \(\pi_\lambda \) are isomorphic, and hence have the same dimension.

6 Proof of Theorem 3.1

The case \(k = 0, m = 1 \) of theorem 3.1 is easy:

Lemma 6.1. Let \(G \) be a finite group acting on a finite set \(X \). Then:

\[
\sum_{\pi \in \text{Irr } G} \dim(\text{Hom}_G(\pi, \mathbb{C}[X])) \cdot \chi_\pi(g) = \chi_{\mathbb{C}[X]}(g) = \#X^g.
\] (1)

In order to deduce the general case we need a basic fact about convolution of characters. Recall that for two functions \(f, g \in \mathbb{C}[G] \), the convolution is defined by

\[
(f * g)(h) = \sum_{u \in G} f(u)g(u^{-1}h).
\]

Lemma 6.2. For any \(\pi, \tau \in \text{Irr } G \) we have:

\[
\chi_\pi * \chi_\tau = \delta_{\pi, \tau} \frac{\# G}{\dim(\pi)} \chi_\pi.
\]

Now we ready to prove the main theorem.

Proof of theorem 3.1. Applying Lemma 6.2, the assertion follows by convolving (1) with itself \(m \) times and with the formula in Theorem 1.2. \(\square \)
Acknowledgments

We thank Inna Entova Aizenbud for a helpful conversation. A.A. was partially supported by ISF grant 687/13 and a Minerva foundation grant. N.A. was partially supported by NSF grant DMS-1303205. A.A. and N.A. were partially supported by BSF grant 2012247. N.A. thanks the Weizmann Institute for hospitality.

A An alternative proof of the Frobenius formula

Lemma 6.1 gives an alternative proof of the Frobenius formula (Theorem 1.1).

Let G be a finite group acting on a finite set X. For a representation π of G, define a function on $X \times X$ by

$$\chi^X_\pi(x, y) = \frac{1}{\#G} \sum_{h : hx = y} \chi_\pi(h). \tag{2}$$

Lemma A.1. Consider the 2-sided action of $G \times G$ on G. Let π be a representation of G. Then

$$\chi^G_{\pi \otimes \pi^*}(1, g) = \frac{1}{\#G \dim_\pi} \chi_\pi(g).$$

Proof.

$$\chi^G_{\pi \otimes \pi^*}(1, g) = \frac{1}{\#G} \sum_{h_1, h_2 : h_1 h_2^{-1} = g} \chi_\pi(h_1) \chi_\pi(h_1^{-1}) = \frac{(\chi_\pi \ast \chi_\pi)(g)}{\#G} = \frac{1}{\#G \dim_\pi} \chi_\pi(g),$$

where the last equality is by Lemma 6.2

Proof of Theorem 1.1. the case $k = 1$ follows from the Lemma 6.1 and lemma A.1. The general case follows by taking convolution power of the case $k = 1$ and using Lemma 6.2.

B The spherical character

The relative counterpart of the notion of the character of a representation is given in the following definition:

Definition B.1. Let G be a finite group acting on a finite set X. Let π be a representation of G.

9
1. Let $\phi : \pi \to \mathbb{C}[X]$ and $\psi : \pi^* \to \mathbb{C}[X]$ be morphisms of representations. Denote by ϕ^t and ψ^t the dual maps. We define the spherical character $\chi^\phi_\pi \psi \in \mathbb{C}[X \times X]$ by

$$\chi^\phi_\pi \psi(x, y) = \langle \phi^t(\delta_x), \psi^t(\delta_y) \rangle,$$

where $\delta_x \in \mathbb{C}[X] = \mathbb{C}[X]^*$ is the Kronecker delta function supported at x.

2. This definition extends (by linearity) to the case when $\phi \otimes \psi$ is replaced by any element of $\text{Hom}(\pi, \mathbb{C}[X]) \otimes \text{Hom}(\pi^*, \mathbb{C}[X]) = \text{End}(\text{Hom}(\pi, \mathbb{C}[X]))$.

Lemma B.2.

$$X^\pi := \chi^{\text{Id}_{\text{Hom}(\pi, \mathbb{C}[X])}}_\pi.$$

Proof. For $x \in X$, let $L^*_x : \text{Hom}_G(\pi, \mathbb{C}[X]) \to \pi^*$ be the linear map defined by

$$\phi \in \text{Hom}_G(\pi, \mathbb{C}[X]) \mapsto (u \in \pi \mapsto \phi(u)(x)).$$

Note that $\text{Hom}_G(\pi, \mathbb{C}[X])$, $\text{Hom}_G(\pi^*, \mathbb{C}[X])$ are naturally dual to each other by the pairing

$$\langle \phi, \psi \rangle := \sum_{x \in X} \langle L^*_x \phi, L^*_x \psi \rangle \quad (\phi \in \text{Hom}_G(\pi, \mathbb{C}[X]), \psi \in \text{Hom}_G(\pi^*, \mathbb{C}[X]))$$

therefore we shall identify $\text{Hom}_G(\pi^*, \mathbb{C}[X])$ with $\text{Hom}_G(\pi, \mathbb{C}[X])^*$.

Let $\phi \in \text{Hom}_G(\pi, \mathbb{C}[X])$, $\psi \in \text{Hom}_G(\pi^*, \mathbb{C}[X])$. Then by definition,

$$\chi^\phi_\pi \psi(x, y) = \langle \phi^t(\delta_x), \psi^t(\delta_y) \rangle = \langle L^*_x \phi, L^*_x \psi \rangle = \langle (L^*_x)^t \pi^* \rangle_L \pi^* \psi,$$

so $\chi^{\text{Id}_{\text{Hom}(\pi, \mathbb{C}[X])}}_\pi(x, y) = \text{tr}((L^*_x)^t \pi^* \psi)$. It is easy to see that $(L^*_x)^t : \pi \to \text{Hom}_G(\pi^*, \mathbb{C}[X])$ can be computed by

$$\forall u \in \pi, f \in \pi^* : ((L^*_x)^t u)(f) = \frac{1}{\#G} \sum_{h \in G} f(\pi(h)u) \delta_{hx}.$$

Now, $\chi^{\text{Id}_{\text{Hom}(\pi, \mathbb{C}[X])}}_\pi = \text{tr}((L^*_x)^t \pi^* \psi) = \text{tr}(L^*_x (L^*_x)^t \pi^* \psi)$. Note that $L^*_x (L^*_x)^t$ is the linear mapping $\pi^* \to \pi^*$ defined by

$$\forall f \in \pi^* : (L^*_x (L^*_x)^t f) = \left(u \in \pi \mapsto \frac{1}{\#G} \sum_{h \in G} \langle u, (\pi^*(h)f) \rangle \delta_{hy,x} \right) = \frac{1}{\#G} \sum_{h \text{ s.t. } hy=x} \pi^*(h)f$$

so

$$\chi^{\text{Id}_{\text{Hom}(\pi, \mathbb{C}[X])}}_\pi = \text{tr}(L^*_x (L^*_x)^t) = \frac{1}{\#G} \sum_{h \text{ s.t. } hy=x} \chi_{\pi^*}(h) = \frac{1}{\#G} \sum_{h \text{ s.t. } hx=y} \chi_{\pi}(h) = \chi^X_\pi(x, y)$$
We reformulate Theorem 3.1 in terms of the spherical character:

Theorem B.3. Let G be a finite group that acts on a finite set X. Then:

$$\sum_{\pi \in \text{Irr} G} \frac{\dim(\text{Hom}_G(\pi, \mathbb{C}[X]))^m}{\dim \pi^{m+2k-1}} \chi_\pi^X(x_1, x_2) = \frac{1}{\# G^{m+2k}} \cdot \# \{ p_1, \ldots, p_m \in X, h_1, \ldots, h_m, a_1, \ldots, a_k, b_1, \ldots, b_k \in G | h_i \in G_{p_i}, \prod_{i=1}^m h_i \cdot \prod_{i=1}^k [a_i, b_i], x_1 = x_2 \}.$$

References

[AA] Aizenbud, A.; Avni, N.; Representation growth and rational singularities of the moduli space of local systems. [Arxiv 1307.0371](http://arxiv.org/abs/1307.0371), to appear in Inventiones Mathematicae.

[FG06] V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmuller theory. Publications Mathematiques de l’Institut des Hautes Etudes Scientifiques 103/1, (2006).

[HR08] T. Hausel, F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties. Invent. Math. 174/3, (2008).

[Jam84] G.D. James, Representations of general linear groups, London Math. Soc. Lec. Notes Series, 94 (1984).

[Kat08] N. Katz, Appendix of [HR08]: E-polynomials, zeta-equivalence, and polynomial-count varieties. Invent. Math. 174/3, (2008).

[Wit91] Witten, Edward On quantum gauge theories in two dimensions. Comm. Math. Phys. 141 (1991), no. 1, 153–209.