A STATISTICAL THEORY OF HEAVY ATOMS:
ENERGY AND EXCESS CHARGE

HONGSHUO CHEN, RUPERT L. FRANK, AND HEINZ SIEDENTOP

Abstract. The purpose of this note is to give an elementary derivation of a lower bound on the relativistic Thomas-Fermi-Weizsäcker-Dirac functional of Thomas-Fermi type and to apply it to get an upper bound on the excess charge of this model.

1. Introduction

The description of heavy atoms suffered for a long time from the fact that the naive adaptation of Thomas-Fermi to the relativistic setting leads to a functional that is unbounded from below (see Gombas [6, §14] and [7, Chapter III, Section 16.] for reviews). As late as 1987 Engel and Dreizler [3] solved this problem deriving a relativistic Thomas-Fermi-Weizsäcker-Dirac functional E_{TFWD}^Z from quantum electrodynamics. For atoms of atomic number Z and electron density ρ and velocity of light c the functional, written in Hartree units, is

$$E_{TFWD}^Z(\rho) := T^W(\rho) + T^{TF}(\rho) - X(\rho) + V(\rho).$$

The first summand on the right is an inhomogeneity correction of the kinetic energy generalizing the Weizsäcker correction. Using the abbreviation $p(x) := (3\pi^2\rho(x))^{1/3}$,

$$T^W(\rho) := \int_{\mathbb{R}^3} \frac{3\lambda}{8\pi^2} (\nabla p(x))^2 c f(p(x)/c)^2$$

with $f(t) := t(t^2 + 1)^{-\frac{3}{2}} + 2\lambda(t^2 + 1)^{-1}\text{arsin}(t)$ where arsin is the inverse function of the hyperbolic sine and $\lambda \in \mathbb{R}_+$ is given by the gradient expansion as 1/9 but in the non-relativistic analogue sometimes taken as an adjustable parameter (Weizsäcker [10], Yonei and Tomishima [11], Lieb [9, 8]). The second summand is the relativistic generalization of the Thomas-Fermi kinetic energy. It is

$$T^{TF}(\rho) := \int_{\mathbb{R}^3} \frac{c^5}{8\pi^2} T^{TF}(\frac{p(x)}{c})$$

with $T^{TF}(t) := t(t^2 + 1)^{3/2} + t^3(t^2 + 1)^{1/2} - \text{arsin}(t) - \frac{8}{3}t^3$. The third summand is a relativistic generalization of the exchange energy. It is

$$X(\rho) := \int_{\mathbb{R}^3} \frac{c^4}{8\pi^2} X(\frac{p(x)}{c})$$

with $X(t) := 2t^4 - 3[t(t^2 + 1)^{1/2} - \text{arsin}(t)]^2$, and, eventually, the last summand is the potential energy, namely the sum of the electron-nucleus energy and the electron-electron energy. It is

$$V(\rho) := -Z \int_{\mathbb{R}^3} d\rho(x)|x|^{-1} + \frac{1}{2} \int_{\mathbb{R}^3} dx \int_{\mathbb{R}^3} dg(x) \rho(x)|x-y|^{-1} =: D[\rho].$$
We note that, as \(c \to \infty \), all integrands of \(E_{Z}^{\text{TFWD}} \) tend pointwise to the corresponding part of the non-relativistic Thomas-Fermi-Weizsäcker-Dirac functional

\[
E_{Z}^{\mu}(\rho) = \int_{R^3} dx \left(\frac{1}{2} |\nabla \sqrt{\rho}(x)|^2 + \frac{\gamma}{4} TF \rho(x) \frac{3}{9} \rho(x)^{1/3} - \frac{Z}{|x|} \rho(x) \right) + D[\rho]
\]

with \(\gamma_{TF} := (3\pi^2)^{3/2} \) suggesting that we might expect a lower bound of Thomas-Fermi type when \(c \) is large. We will prove in Section 2.2 that this is indeed true. The bound will allow us to implement the method of [4] in the present context and give an improved bound on atomic excess charges. This is carried through in Section 3.

2. Bound on the Energy

2.1. The Domain of \(E_{Z}^{\text{TFWD}} \). First we discuss the domain of the functional. To this end, we write \(F(t) := \int_{0}^{t} f(s) ds \) for the antiderivative of \(f \). Then

\[
T^{W}(\rho) = \frac{3\lambda c^2}{8\pi^2} \int_{R^3} dx |\nabla (F \circ (p/c))(x)|^2.
\]

This allows to define \(E_{Z}^{\text{TFWD}} \) on

\[
P := \{ \rho \in L^{1}(R^3) | \rho \geq 0, D[\rho] < \infty, F \circ p \in D^{1}(R^3) \}.
\]

2.2. Lower Bound. We turn to the lower bound itself and address the parts separately.

2.2.1. The Weizsäcker Energy. Since \(F(t) \geq t \sqrt{\text{arsin}(t)} / 2 \) (see [2] Formula (90))), Hardy’s inequality gives the lower bound

\[
T^{W}(\rho) \geq \frac{3\lambda c}{2\pi^2} \int_{R^3} dx \frac{p(x)^2 \text{arsin}(p(x)/c)}{|x|^2} = \frac{3\lambda c}{2\pi^2} \int_{R^3} dx \frac{p(x)^2 \text{arsin}(\frac{p(x)}{c})}{|x|^2} =: \mathcal{H}(\rho).
\]

2.2.2. The Potential Energy. Pick a density \(\sigma \in P \) of finite mass and set \(\varphi_{\sigma} := Z/| \cdot |^{-1} \right) \sigma \in | \cdot |^{-1} \). Since \(\sigma \) is nonnegative, we have \(\varphi_{\sigma}(x) \leq Z/|x| \). Then

\[
\mathcal{V}(\rho) = -\int_{R^3} dx \varphi_{\sigma}(x) \rho(x) - 2D(\sigma, \rho) + D[\rho] \geq -\int_{R^3} dx \varphi_{\sigma}(x) \rho(x) - D[\sigma].
\]

Splitting the integrals at \(s \), using (9), and Schwarz’s inequality yields

\[
\mathcal{V}(\rho) \geq -\int_{p(x)/c < s} dx \varphi_{\sigma}(x) \rho(x) - Z \int_{p(x)/c \geq s} dx \frac{p(x)^2}{|x|} \frac{\text{arsin}(\frac{p(x)}{c})}{\text{arsin}(\frac{p(x)}{c})} - D[\sigma] \geq -\int_{p(x)/c \geq s} \frac{Z}{\text{arsin}(s)^{2/3}} \mathcal{H}(\rho)^{2/3} T_{s}(\rho)^{2/3} - D[\sigma],
\]

with \(T_{s}(\rho) := \int_{p(x)/c < s} dx \rho(x)^{2/3} \).

2.2.3. The Thomas-Fermi Term. First, we note that

\[
\mathbb{R}_{+} \to \mathbb{R}_{+}, \ t \mapsto T^{TF}(t)/t^{5},
\]

is strictly monotone decreasing from 4/5 to 0 and

\[
\mathbb{R}_{+} \to \mathbb{R}_{+}, \ t \mapsto T^{TF}(t)/t^{4},
\]
is strictly increasing from 0 to 2. Thus
\[
\mathcal{T}^{TF}(\rho) = \int_{p(x) \leq s} \frac{e^5}{8\pi^2} \sqrt{5\mathcal{T}^{TF}(\rho(x))} + \int_{p(x) > s} \frac{e^5}{8\pi^2} \sqrt{\mathcal{T}^{TF}(\rho(x))}
\]
(13) \geq \int_{p(x) \leq s} \frac{3}{10} \frac{5^{TS}(s)}{4s^3} \gamma_{\mathcal{T}^{TF}}(\rho(x)) \frac{1}{2} + \int_{p(x) > s} \frac{5^{TS}(s)}{8s^4} \gamma_{\mathcal{T}^{TF}}^{\frac{1}{2}} c_{\mathcal{T}_{\geq}}(\rho).

2.2.4. Exchange Energy. Since \(X \) is bounded from above and \(X(t) = O(t^4) \) at \(t = 0 \), we have that for every \(\alpha \in [0, 4] \) there is a \(\xi_0 \) such that \(X(t) \leq \xi_0 t^\alpha \). We pick \(\alpha = 3 \) in which case \(\xi_0 \approx 1.15 \). Thus
\[
\mathcal{X}(\rho) \leq \frac{c_{\xi_0}}{4\pi} N = \xi cN.
\]
with \(\xi := \xi_0/(4\pi) \approx 0.0914 \).

2.2.5. The Total Energy. Adding everything up yields
\[
\mathcal{E}_Z^{TFWD}(\rho) \geq \frac{3\pi^2 \xi c}{2\sqrt{\pi}} H(\rho) + \frac{3}{8s^4} 5^{TS}(s) \gamma_{\mathcal{T}^{TF}}^{\frac{1}{2}} c_{\mathcal{T}_{\geq}}(\rho) - \frac{Z}{\mathcal{R}(\mathcal{X}(\rho))} \gamma_{\mathcal{T}^{TF}}^{\frac{1}{2}} \mathcal{R}(\mathcal{X}(\rho)) \frac{1}{2}
\]
(15) + \int_{p(x) < s} \frac{5^{TS}(s)}{8s^4} \gamma_{\mathcal{T}^{TF}}^{\frac{1}{2}} \varphi(x) \rho(x) - \varphi(x) \rho(x) \right) - D[\sigma] - \xi cN.

We pick \(s \in \mathbb{R}_+ \) such that the sum of the first three summands of (15) is a complete square, i.e., fulfilling
\[
\sqrt{\frac{3\pi^2}{2\sqrt{\pi}} 5^{TS}(s)(3\pi^2)^{\frac{1}{2}}} = \frac{Z}{\xi cN} 2\sqrt{\pi}.
\]
(16)

The solution is uniquely determined, since \(5^{TS}(s)/s^4 \) is strictly monotone increasing from 0 to 2 and \(\sqrt{\mathcal{R}(\mathcal{X}(\rho))} \) is also monotone increasing from 0 to \(\infty \). Call the corresponding \(s \) \(s_0 \). Obviously, \(s_0 \) depends only on \(\kappa := Z/(c\sqrt{\lambda}) \) and is strictly monotone increasing from 0 to \(\infty \).

Eventually we pick \(\sigma(x) := \rho(x) \theta(s - p(x)) \). Summing the first three terms of the second line of (15) yields the Thomas-Fermi functional with Thomas-Fermi constant \(\gamma_{c}(s_0) \) evaluated at \(\sigma \). Minimizing this functional and scaling in \(\gamma \) yields
\[
\mathcal{E}_Z^{TFWD}(\rho) \geq - \frac{4s_0^5}{5^{TS}(s_0)} e^{TF} Z^\frac{1}{2} - \xi cN
\]
(17)
where \(-e^{TF} \) is the Thomas-Fermi energy of hydrogen (with the physical value of the Thomas-Fermi constant, namely \(\gamma_{TF} \)).

The function \(s_0 \) tends exponentially to \(\infty \) as \(\kappa \to \infty \). Thus (17) is merely an exponential lower bound for large \(Z \) and fixed \(\lambda \) and \(c \). However, if we fix \(\kappa \in \mathbb{R}_+ \), then we have a Thomas-Fermi type lower bound with a correction term linear in \(cN \). In conclusion we have

Theorem 1. For given \(c, \lambda, Z \in \mathbb{R}_+ \), set \(\kappa := Z/(c\sqrt{\lambda}) \). Define \(s_0 : \mathbb{R}_+ \to \mathbb{R}_+ \) by \((16) \), set \(\xi := \max\{X(t)/t^4/t \in \mathbb{R}_+\}/(4\pi) \), and write \(-e^{TF} \) for the Thomas-Fermi energy of hydrogen. Then, for all \(\rho \in P \) with \(\int \rho = N \),
\[
\mathcal{E}_Z^{TFWD}(\rho) \geq - \frac{4s_0^5}{5^{TS}(s_0)} e^{TF} Z^\frac{1}{2} - \xi cN.
\]
(18)
Moreover, \(s_0 \) is strictly monotone increasing with \(s_0(0) = 0 \) and \(s_0(\kappa) \to \infty \) as \(\kappa \to \infty \).
3. Application on the Excess Charge Problem

In this section we will show that the bound \([17]\) allows for an adaptation of the ideas of \([11, 13]\) and show a bound on the excess charge of the relativistic Thomas-Fermi-Weizsäcker-Dirac atom which complements the bound obtained in \([2]\) in the absence of the exchange term.

We define a monotone increasing function \(\alpha : \mathbb{R} \to \{0, \pi/2\}\) by
\[
\alpha(s) := \begin{cases}
0 & s \leq 0 \\
\frac{3}{8} s & s \in (0, 1) \\
\frac{\pi}{2} & s \geq 1
\end{cases}
\]

We introduce two localization functions
\[
R := \sin \alpha s \quad \text{and} \quad L := \cos \alpha s,
\]
and corresponding localization functions \(U\) and \(O\) on \(\mathbb{R}^3\) defined by
\[
U(x) := L \left(\frac{\omega \cdot x - l}{s} \right), \quad O(x) := R \left(\frac{\omega \cdot x - l}{s} \right)
\]
with the parameters \(\omega \in \mathbb{S}^2\), \(l \in \mathbb{R}_+\), and \(s \in (0, \infty)\). For later use, we write \(A := \text{supp}(\nabla U)\) for the support of the gradient of \(U\) and \(O\).

Assume \(\rho_N\), with associated \(p_N := (3\pi^2 \rho_N)^{\frac{1}{2}}\), is a minimizer of \(E^{\text{TFWD}}_Z\) under the constraint
\[
\int_{\mathbb{R}^3} \rho(x) dx = N.
\]

In abuse of notation, we sometimes write the occurring energy functionals instead of depending on \(\rho\) as depending on \(p\), i.e., \(p\) instead of \(p^1/(3\pi^2)\).

Our starting point is the binding condition following directly from the variational principle by pushing the \(O\)-part away from the \(U\)-part
\[
E^{\text{TFWD}}_Z(U p_N) + E^{\text{TFWD}}_0(O p_N) - E^{\text{TFWD}}_Z(p_N) \geq 0
\]
which is true, since
\[
\frac{1}{3\pi^2} \int_{\mathbb{R}^3} (U(x)^3 + O(x)^3)p_N(x)^3 dx \leq \frac{1}{3\pi^2} \int_{\mathbb{R}^3} (U(x)^2 + O(x)^2)p_N(x)^3 dx
\]
\[
= \int_{\mathbb{R}^3} \rho_N(x) dx = N
\]
and the infima under the constraint \([22]\) and the constraint
\[
3\pi^2 \int_{\mathbb{R}^3} p(x)^3 dx = \int_{\mathbb{R}^3} \rho(x) dx \leq N
\]
agree by \([1]\), Section 3.5]. The corresponding argument, namely pushing the charge difference between \(N\) and the charge of the minimizer to infinity, is a standard argument and works also when the Dirac term is included.

We also have by the product rule
\[
\int_{\mathbb{R}^3} dx |\nabla(U p)(x)|^2 f(U p(x)/c)^2 + |\nabla(O p)(x)|^2 f(O p(x)/c)^2
\]
\[
\leq \int_{\mathbb{R}^3} dx |\nabla(U p)(x)|^2 + |\nabla(O p)(x)|^2 f(p(x)/c)^2
\]
\[
= \int_{\mathbb{R}^3} dx |\nabla p(x)|^2 f(p(x)/c)^2 + \int_{\mathbb{R}^3} dx p(x)^2 |\nabla U(x)|^2 + |\nabla O(x)|^2 f(p(x)/c)^2
\]
\[
= \int_{\mathbb{R}^3} dx |\nabla p(x)|^2 f(p(x)/c)^2 + s^{-2} \int_{\mathbb{R}^3} dx |\alpha'(\omega \cdot x - l)/s| f(p(x)/c)^2,
\]
since \(f \) is monotone increasing.

An elementary calculation shows that there is a constant \(\mu \) such for all \(t \in \mathbb{R}_+ \)
\[
(27) \quad f(t)^2 \leq \mu t.
\]
The optimal constant, namely \(\max \{ f(t)^2/t | t > 0 \} \), is \(\mu \approx 1.66 \) achieved at \(t \approx 1.45 \).

For \(\alpha \in \mathbb{R}_+ \) and \(x \in \mathbb{R}^3 \) we claim
\[
(28) \quad \int_{S^2} \frac{d\omega}{4\pi} (\omega \cdot x - \alpha) = \frac{|x|}{4} [(1 - \alpha/|x|^2)]^2
\]
(see [4] for a related formula). Since the left side is independent of the direction of \(x \) and equals \(|x| \int_{S^2} d\omega (4\pi)^{-1} (\omega \cdot x/|x| - \alpha/|x|) \), it suffices to show (28) for \(x = e_3 \):
\[
\int_{S^2} \frac{d\omega}{4\pi} (\omega \cdot e_3 - \alpha) = \frac{1}{2} \int_0^\pi d\theta \sin \theta (\cos \theta - \alpha) = \frac{1}{2} \int_{\min(1,\alpha)}^1 d\alpha (u - \alpha)
\]
\[
= \frac{1}{4} [(1 - \alpha)^2 + \alpha].
\]

We estimate the various parts of (23) separately. We begin with the Weizsäcker terms and get using (26) and (27)
\[
\tau^W(U\rho_N) + \tau^W(O\rho_N) - \tau^W(p_N)
\]
\[
\leq \frac{3\lambda}{8\pi^2s^2} \int_{0 < \omega \cdot x < t < \infty} dx \alpha'((\omega \cdot x - t)/s) p_N(x)^2 \rho_N(x)\leq \frac{3\lambda\mu}{32s^2} \int_{0 < \omega \cdot x < t < \infty} dx p_N(x)^3
\]
\[
(29) = \frac{9\pi^2\lambda\mu}{32s^2} \int_{0 < \omega \cdot x < t < \infty} dx p_N(x).
\]
Integration over \(t \in \mathbb{R}_+ \) and \(\omega \in \mathbb{S}^2 \) and using (25) yields
\[
\int_{S^2} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dt \left(\tau^W(U\rho_N) + \tau^W(O\rho_N) - \tau^W(p_N) \right)
\]
\[
\leq \frac{9\pi^2\mu}{128s^2} \int_{S^2} \frac{d\omega}{\pi} \int_{\mathbb{R}_+} dx (\omega \cdot x - (\omega \cdot x - s)_+) p_N(x)
\]
\[
= \frac{9\pi^2\mu}{128s^2} \int_{S^2} \frac{d\omega}{\pi} \int_{\mathbb{R}_+} dx [(\omega \cdot x)_+ - (\omega \cdot x - s)_+] p_N(x)
\]
\[
= \frac{9\pi^2\mu}{128s^2} \int_{\mathbb{R}_+} dx |x|[1 - ((1 - \frac{s}{|x|})^2)] p_N(x)
\]
\[
= \frac{9\pi^2\mu}{128s^2} \left(\int_{s < |x|} dx 2s^2 \frac{x^2}{|x|^2} p_N(x) + \int_{|x| > s} dx p_N(x) \right) \leq \frac{3\pi^2\mu N}{2s^2}.
\]

Next we estimate the combined Thomas-Fermi-Exchange part of (23). To this end we introduce the functions \(a \) and \(b \) on \(\mathbb{R}_+ \) defined by
\[
(31) \quad a(t) := \frac{c^5}{8\pi^2} T^F(t) + \frac{c^4}{8\pi^3} \frac{1}{2} [t(t^2 + 1)^{1/2} - \frac{At}{2}]^2.
\]
\[
(32) \quad b(t) := \frac{c^4}{8\pi^3} 2^4 t^4.
\]
Pick now \(f_1, \ldots, f_n \in \mathbb{R}_+ \) with \(f_1^2 + \ldots + f_n^2 = 1 \). Since \(a, \ldots, a^{(n)} \) are all positive, we have
\[
(33) \quad a''(f_i t) \leq a''(t)
\]
because \(f_1 \leq 1 \). Since also \(a(0) = a'(0) = a''(0) = a'''(0) \), integration of (33) yields successively \(a''(f,t) \leq f_a a''(t), a'(f,t) \leq f_a^2 a'(t), \) and \(a(f,t) \leq f_a^3 a(t) \). (See [11] Formula 3.135 for a similar argument for \(T_{TF} \).)

Thus, we get

\[
T_{TF}(u_{PN}) - \mathcal{X}(u_{PN}) + T_{TF}(O_{PN}) - \mathcal{X}(O_{PN}) - (T_{TF}(p_N) - \mathcal{X}(p_N))
\]

\[
= \int_{\mathbb{R}^3} dx [a(U(x)\frac{p_N(x)}{c}) + a(O(x)\frac{p_N(x)}{c}) - a(\frac{p_N(x)}{c})]
\]

\[
+ b(\frac{p_N(x)}{c}) - b(U(x)\frac{p_N(x)}{c}) - b(O(x)\frac{p_N(x)}{c})]
\]

\[
\leq \int_{\mathbb{R}^3} dx [(U(x)^3 + O(x)^3) - (U(x)^4 + O(x)^4) - (p_N(x)^3)]
\]

\[
\leq \frac{1}{4} \max \left\{ \frac{1 - \cos(t)^4 - \sin(t)^4}{1 - \cos(t)^3 - \sin(t)^3} \middle| t \in [0, \pi/2] \right\} \int_A dx \left(\frac{p_N(x)^3}{(a(\frac{p_N(x)}{c}))^2} \right)
\]

\[
\leq \frac{2 + \sqrt{2}}{2\pi} \int_A dx \left(\frac{p_N(x)^3}{T_{TF}(\frac{p_N(x)}}{c}) \right).
\]

Using (11) and (12) we get for any \(S \in \mathbb{R}_+ \)

\[
T_{TF}(u_{PN}) - \mathcal{X}(u_{PN}) + T_{TF}(O_{PN}) - \mathcal{X}(O_{PN}) - (T_{TF}(p_N) - \mathcal{X}(p_N))
\]

\[
\leq \frac{2 + \sqrt{2}}{2\pi} \int_{A_{p_N(x)/c} \leq S} dx \left(\frac{S^5}{T_{TF}(S)} p_N(x)^3 \right)
\]

\[
+ \frac{2 + \sqrt{2}}{2\pi} \int_{A_{p_N(x)/c} \leq S} dx \left(\frac{S^4}{cT_{TF}(S)} p_N(x)^4 \right)
\]

\[
\leq \frac{(2 + \sqrt{2})^3}{2\pi} \frac{S^5}{T_{TF}(S)} N + \frac{(2 + \sqrt{2})^4}{2\pi} \frac{S^4}{T_{TF}(S)} \int_{\mathbb{R}^3} dx \rho_N(x)^2.
\]

The external potential part yields

\[
- Z \int_{\mathbb{R}^3} dx \left(\frac{U(x)^3 - 1}{|x|} \right) \rho_N(x) \leq Z \int_{\omega x \leftarrow l > 0} dx \rho_N(x) |x|.
\]

Integration over \(l \) and averaging over the sphere yields

\[
- Z \int_{\mathbb{R}^3} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dl \int_{\mathbb{R}^3} dx \left(\frac{U(x)^3 - 1}{|x|} \right) \rho_N(x)
\]

\[
\leq Z \int_{\mathbb{R}^3} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dl \int_{\omega x \leftarrow l > 0} dx \rho_N(x) |x|
\]

\[
= Z \int_{\mathbb{R}^3} \frac{d\omega}{4\pi} \int_{\mathbb{R}^3} dx \rho_N(x) \left(\frac{\omega \cdot x}{|x|} + \rho_N(x) \right) = Z \int_{\mathbb{R}^3} dx \rho_N(x) = Z \frac{4}{N}.
\]

Finally, we address the electron-electron repulsion in (29). We have

\[
W(l, \omega) := D(U^3 \rho_N, U^3 \rho_N) + D(O^3 \rho_N, O^3 \rho_N)
\]

\[
- D((U^2 + O^2) \rho_N, (U^2 + O^2) \rho_N)
\]

\[
\leq - 2D(U^2 \rho_N, O^2 \rho_N) \leq \int_{\omega x \leftarrow l < 0} dx \int_{\omega y \leftarrow l > 0} \frac{\rho_N(x) \rho_N(y)}{|x - y|}.
\]
Integration in l and ω and using (28) yields

$$
\int_{\mathbb{R}^3} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dl W(l, \omega) \leq \int_{S^2} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dl \int_{|x-l|<0} dx \int_{|x-y|>l} dy \frac{\rho_N(x)\rho_N(y)}{|x-y|}
$$

$$
= - \int_{S^2} \frac{d\omega}{8\pi} \int_{\mathbb{R}_3} dl \int_{\mathbb{R}_3} dx \int_{\mathbb{R}_3} dy \left[\theta(l-\omega \cdot x)\theta(\omega \cdot y-s-l) + \theta(l-(\omega \cdot y))\theta(-\omega \cdot x-s-l) \right] \frac{\rho_N(x)\rho_N(y)}{|x-y|}
$$

$$
= - \int_{S^2} \frac{d\omega}{8\pi} \int_{\mathbb{R}_3} dl \int_{\mathbb{R}_3} dy \left(\omega \cdot (y-x)-s \right) \rho_N(x)\rho_N(y) \frac{\rho_N(x)\rho_N(y)}{|x-y|}
$$

Thus, with (28),

$$
\int_{S^2} \frac{d\omega}{4\pi} \int_{\mathbb{R}_+} dl W(l, \omega) \leq - \frac{1}{8} \int_{\mathbb{R}_3} dx \int_{\mathbb{R}_3} dy \rho_N(x)\rho_N(y) \left[\left(1 - \frac{s}{|x-y|} \right)^2 + \right]
$$

$$
= - \frac{N^2}{8} + \frac{1}{8} \int_{\mathbb{R}_3} dx \int_{\mathbb{R}_3} dy \rho_N(x)\rho_N(y) \left\{ 1 - \left(1 - \frac{s}{|x-y|} \right)^2 \right\}
$$

$$
= - \frac{N^2}{8} + \frac{1}{8} \int_{\mathbb{R}_3} dx \int_{\mathbb{R}_3} dy \rho_N(x)\rho_N(y) \times \left\{ \frac{1}{2s} - \left(\frac{s}{|x-y|} \right)^2 \right\} \quad s \geq |x-y|
$$

$$
\leq - \frac{N^2}{8} + \frac{s}{2} D[\rho_N]
$$

Inserting these estimates in (23) gives

$$
\frac{3\pi^2\lambda_N N}{8} + \frac{Z N}{4} - \frac{N^2}{8} + c_1(N) + \frac{c_2(S)}{c} \int_{\mathbb{R}^3} dx \rho_N(x)^{\frac{2}{3}} + \frac{s}{2} D[\rho_N] \geq 0
$$

or

$$
N \leq 2Z + \frac{3\pi^2\lambda_N N}{24s} + 2^2 \frac{D[\rho_N]}{N} + 8c_1(S) + \frac{8c_2(S)}{cN} \int_{\mathbb{R}^3} dx \rho_N(x)^{\frac{2}{3}}
$$

and after optimization in s

$$
N \leq 2Z + 3\pi\sqrt{2} \sqrt{\frac{\lambda_N D[\rho_N]}{N}} + 8c_1(S) + \frac{8c_2(S)}{cN} \int_{\mathbb{R}^3} dx \rho_N(x)^{\frac{2}{3}}.
$$

Now, we assume $\kappa = Z/(c\sqrt{\lambda})$ fixed and apply Theorem 1 with a factor 2 in front of the exchange term and Z replaced by $2Z$. This gives (13) but with the corresponding replacements, namely Z by $2Z$ and a factor 2 in front of ξcN. Therefore we get

$$
0 \geq \mathcal{F}_Z^{\text{FWD}}(\rho_N) = \frac{1}{2} T^W(\rho_N) + \frac{1}{2} T^{\text{TF}}(\rho_N) + \frac{1}{2} D[\rho_N]
$$

$$
+ \frac{1}{2} \left(T^W(\rho_N) + T^{\text{TF}}(\rho_N) + D[\rho_N] - \int_{\mathbb{R}^3} dx \frac{Z\rho_N(x)}{2|x|} - 2\mathcal{A}(\rho_N) \right) \geq \frac{1}{2} T^W(\rho_N) + \frac{1}{2} T^{\text{TF}}(\rho_N) + \frac{1}{2} D[\rho_N] - C\kappa Z^{7/3} - \xi cN.
$$

Thus, all three terms, $T^W(\rho_N)$, $T^{\text{TF}}(\rho_N)$, and $D(\rho_N)$ are bounded by a constant times $Z^{7/3} + cN$.

Now, $T^{\text{TF}}(t) \geq 2t^4 - (8/3)t^3$. Thus
\begin{equation}
\int_{\mathbb{R}^3} \rho_N(x)^{\frac{4}{3}} = \frac{c^4}{(2\pi^2)^{\frac{3}{2}}} \int_{\mathbb{R}^3} dx \left(\frac{\rho_N(x)}{c} \right)^{\frac{4}{3}} \leq \left(\frac{2}{\pi} \right)^{\frac{3}{2}} \left(e^{-1} T^{\text{TF}}(\rho_N) + cN \right) \leq D_\kappa (Z^\frac{4}{3} \lambda^\frac{1}{2} + N + cN)
\end{equation}
with a κ-dependent constant D_κ. Thus, (43) yields the following bound on the excess charge.

Theorem 2. Assume that $\rho \in P$ with $E_Z^{\text{TPWD}}(\rho) = \inf E_Z^{\text{TFWD}}(P)$, set $N := \int_{\mathbb{R}^3} \rho(x) dx$, and assume κ and λ positive and fixed. Then, for large Z,
\begin{equation}
N \leq 2Z + O(Z^{\frac{2}{3}}).
\end{equation}
This should be compared to the bound $N \leq 2.56Z$ of [2, Formula (18)] for the relativistic Thomas-Fermi-Weizsäcker functional without exchange, i.e., even with exchange term included we are lead to an improved leading order. Note, however, it comes at a price, namely the ratio Z/c and λ is now fixed.

Acknowledgments

Partial support by the U.S. National Science Foundation through grants DMS-1363432 and DMS-1954995 (R.L.F.) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Germany’s Excellence Strategy EXC - 2111 - 390814868 (R.L.F., H.S.) is gratefully acknowledged. H.C. and H.S. thank the Institute of Mathematical Sciences at the National University of Singapore for support through the program *Density Functionals for Many-Particle Systems: Mathematical Theory and Physical Applications of Effective Equations* which inspired this work.

References

[1] Hongshuo Chen. *On the Excess Charge Problem in Relativistic Quantum Mechanics*. PhD thesis, Ludwig-Maximilians-Universität München, July 2019.

[2] Hongshuo Chen and Heinz Siedentop. On the excess charge of a relativistic statistical model of molecules with an inhomogeneity correction. *Journal of Physics A: Mathematical and Theoretical*, 53(39):395201, September 2020.

[3] E. Engel and R. M. Dreizler. Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizsäcker model. *Phys. Rev. A*, 35:3607–3618, May 1987.

[4] Rupert L Frank, Phan Thanh Nam, and Hanne Van Den Bosch. The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory. *Communications on Pure and Applied Mathematics*, 71(3):577–644, 2018.

[5] Rupert L. Frank, Phan Thanh Nam, and Hanne Van Den Bosch. The maximal excess charge in Müller density-matrix-functional theory. *Ann. Henri Poincaré*, 19(9):2839–2867, 2018.

[6] P. Gombás. *Die statistische Theorie des Atoms und ihre Anwendungen*. Springer-Verlag, Wien, 1 edition, 1949.

[7] P. Gombás. Statistische Behandlung des Atoms. In S. Flügge, editor, *Handbuch der Physik. Atome II*, volume 36, pages 109–231. Springer-Verlag, Berlin, 1956.

[8] Elliott H. Lieb. Analysis of the Thomas-Fermi-von Weizsäcker equation for an infinite atom without electron repulsion. *Comm. Math. Phys.*, 85(1):15–25, 1982.

[9] Elliott H. Lieb and David A. Liberman. Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Technical Report LA-9186-MS, Los Alamos National Laboratory, Los Alamos, New Mexico, April 1982.

[10] C. F. v. Weizsäcker. Zur Theorie der Kernmassen. *Z. Phys.*, 96:431–458, 1935.

[11] Katsumi Yonei and Yasuo Tomishima. On the Weizsäcker correction to the Thomas-Fermi theory of the atom. *Journal of the Physical Society of Japan*, 20(6):1051–1057, 1965.
COLLEGE OF MATHEMATICS AND STATISTICS, CHONGQING UNIVERSITY, CHONGQING 401331, CHINA

Email address: hongshuo.chen@gmail.com

MATHEMATISCHES INSTITUT, LUDWIG-MAXIMILANS UNIVERSITÄT MÜNCHEN, THERESIENSTR. 39, 80333 MÜNCHEN, GERMANY, AND MUNICH CENTER FOR QUANTUM SCIENCE AND TECHNOLOGY (MCQST), SCHELLINGSTR. 4, 80799 MÜNCHEN, GERMANY, AND MATHEMATICS 253-37, CALTECH, PASADENA, CA 91125, USA

Email address: rifrank@caltech.edu

MATHEMATISCHES INSTITUT, LUDWIG-MAXIMILANS UNIVERSITÄT MÜNCHEN, THERESIENSTRASSE 39, 80333 MÜNCHEN, GERMANY, AND MUNICH CENTER FOR QUANTUM SCIENCE AND TECHNOLOGY (MCQST), SCHELLINGSTR. 4, 80799 MÜNCHEN, GERMANY

Email address: h.s@lmu.de