Impact of neutrophil–lymphocyte ratio on long-term outcome in patients with craniopharyngioma

Jing Zhang, MDa, Min He, MDb, Zhiyong Liu, MDa, Yanlin Song, MDa, Yuelong Wang, MDa, Ruichao Liang, MDa, Hongxu Chen, MDa, Jianguo Xu, MD, PhD*

Abstract
Neutrophil–lymphocyte ratio (NLR) is a poor prognostic factor in many tumors including glioblastoma multiforme (GBM), colorectal, and prostate cancer. The aim of this study was to investigate the prognostic value of preoperative NLR in patients with craniopharyngioma.

Around 149 patients of craniopharyngioma surgically treated were analyzed. The Department of Neurosurgery, West China Hospital from January 2008 to December 2010, including 84 males and 65 females aged from 6 to 70 years were retrospectively reviewed, and preoperative NLR was analyzed. Overall survival (OS), progression free survival (PFS), and quality of life (QOL) were evaluated.

The 5-year OS and PFS rates were 81.21% and 75.84%. Preoperative NLR was significantly correlated with OS (HR = 1.44, 95% Cl 1.16–1.79, P = .001) and PFS (HR = 1.46, 95% Cl 1.22–1.74, P < .001). The best cut-off value of NLR was found to be 4 based on the receiver operator characteristics (ROC) curve. Patients with NLR ≥4 had a significantly worse QOL (P = .039), lower OS rate (P = .009), and PFS rate (P < .001).

Preoperative NLR may be a simple, readily available, and valid predictor of long-term outcome in craniopharyngioma. We suggest that the NLR can provide effective guidance to neurosurgeons for more information about the tumor and prognostic evaluation.

Abbreviations: ASBS-Q = anterior skull base surgery questionnaire, CP = craniopharyngioma, CT = computed tomography, GBM = glioblastoma multiforme, G-CSF = granulocyte-colony stimulating factor, GTR = gross total resection, HR = hazard ratio, IL-6 = interleukin-6, MRI = magnetic resonance imaging, NLR = neutrophil-lymphocyte ratio, OS = overall survival, PFS = progression free survival, QOL = quality of life, ROC = receiver operator characteristics, TNF = tumor necrosis factor, VEGF = vascular endothelial growth factor.

Keywords: craniopharyngioma, neutrophil–lymphocyte ratio, prognosis, survival

1. Introduction
Craniopharyngioma (CP) is a histologically benign tumor originating from remnants of Rathke’s pouch and is located in the sellar and/or parasellar area. It accounts for 2% to 5% of all primary intracranial tumors and 5.6%–13% of intracranial neoplasms in children. Patients may have a variety of manifestations, such as visual, neurological, and hypothalamo-pituitary dysfunction. Surgical resection followed by postoperative radiation, in cases of residual tumor, is the main treatment strategy. Despite its nonmalignant feature, it can be linked with a poor prognosis due to the anatomical involvement and surgical damnification of hypothalamic areas. Prognostic predictors including sex, age, tumor size, location, and treatment were considered for possible association with recurrence and quality of life in patients suffering CP. However, it is still very difficult to predict the prognosis of CP, and it is worthwhile to explore new prognostic factors.

Recently, Hanahana et al. emphasized the importance of uncontrolled inflammation in driving tumor proliferation. Neutrophil-lymphocyte ratio (NLR) is an easy way to evaluate inflammation that is inexpensive and readily available from the complete blood cell count. Increased pretreatment NLR has recently been shown to be a poor prognostic factor in many tumors including lung cancer, breast cancer, gastrointestinal cancers, urologic cancers, glioblastoma multiforme (GBM), gynecologic cancers, and metastatic disease. Prognostic predictors like degenerative changes and inflammation were common features. And inflammation may cause more tumor adhesion and infiltration to adjacent brain. Even worse, this would make gross total resection (GTR) more difficult. We hypothesized the prognostic role of NLR in...
We used SPSS 23.0 (SPSS, Inc., Chicago, IL) for Apple’s operating system to perform data analysis. Data were expressed as mean ± standard deviation for normally distributed variables and median ± interquartile range for non-normally distributed variables. The distribution of the variables was analyzed with the Kolmogorov–Smirnov test. The difference between 2 groups was tested by Independent Student’s t-tests for normally distributed variables and Mann–Whitney U test for nonparametrically distributed variables. The chi-square test or Fisher exact test was used to compare categorical variables. The bivariate relationship between 2 continuous variables was assessed using the Spearman’s correlation coefficient. Univariate and multivariate Cox proportional hazard regression models were constructed to explore the association of NLR and other clinical factors with PFS and OS. OS and PFS were estimated using the Kaplan–Meier method, and differences in PFS and OS were examined with the log-rank test. All tests were 2-sided and P values of ≤ .05 were considered as being statistically significant.

3. Results

3.1. Patient characteristics

One hundred and forty-nine patients (female 65, male 84; median age 36, range 6–70) with CP who underwent surgery between January 2008 and December 2010 were finally enrolled in the study. The distributions of clinical and prognostic factors were shown in Table 1. The postoperative stay was 14 ± 17 days. A total of 101 (67.79%) patients achieved gross total resection. Eleven patients died during perioperative period. The tumor size was 4.17 ± 4.01 cm². Tumors were mainly located supra- and intrasellar (91) and supra-sellar (51). Patients have different endocrinopathies, such as growth hormone deficiency, hypogonadism, hypothryoidism, hypoadrenalism, and diabetes insipidus. Thirty patients received radiation therapy. The mean NLR was 3.10 ± 1.59.

Thirty-six of 149 (24.16%) had elevated NLR (≥ 4) at baseline. The distributions of clinical factors and long-term outcome between patients with preoperative NLR ≥ 4 versus < 4 were shown in Table 2. Median follow-up time was 80 months (71.79 ± 27.04, range 1–102). Average increase in BMI was 1.20 ± 0.64 in living individuals. Median ASBS-Q score was 3.34 ± 3. Median progression free survival was 82 months (83.00 ± 9.72, range 66–102). Median overall survival was 83 months (83.00 ± 10.00, range 66–102). Among the entire cohort, 5-year PFS rate was 75.84% while 5-year OS rate was 81.21%, respectively.

3.2. Univariate and multivariate analysis of factors associated with OS and PFS (Table 1)

In the univariate analysis, gross total resection of the tumor (HR = 0.10, 95% CI 0.04–0.26, P < .001), radiation therapy (HR = 0.13, 95% CI 0.02–0.98, P = .047) and NLR (HR = 1.49, 95% CI 1.24–1.78, P < .001) were associated with OS. Also gross total resection of the tumor (HR = 0.12, 95% CI 0.06–0.25, P < .001), radiation therapy (HR = 0.27, 95% CI 0.08–0.88, P = .03), and NLR (HR = 1.50, 95% CI 1.28–1.76, P < .001) were associated with PFS. Other factors were not significantly associated with OS or PFS.

In the multivariate analysis, factors associated with OS were NLR (HR = 1.44, 95% CI 1.16–1.79, P = .001), radiation therapy (HR = 0.05, 95% CI 0.01–0.41, P = .005) and gross total resection (HR = 0.11, 95% CI 0.05–0.29, P < .001). Besides, NLR (HR = 1.46, 95% CI 1.22–1.74, P < .001), radiation therapy (HR = 0.11, 95% CI 0.03–0.37, P < .001) and gross total resection (HR = 0.13, 95% CI 0.06–0.27, P < .001) were associated with PFS.
Table 1

Factor	Distribution (n = 149)	Univariate analysis [HR (95% CI), P]	Multivariate analysis [HR (95% CI), P]		
		5-year OS	5-year PFS	5-year OS	5-year PFS
Gender (f/m)	65/84	1.01 (0.48–2.14), 0.978	0.88 (0.46–1.61), 0.634		
Age, years	36±39	1.00 (0.98–1.02), 0.816	0.99 (0.98–1.01), 0.475		
Postoperative stay, days	14±17	1.00 (0.97–1.03), 0.843	1.01 (0.98–1.03), 0.663		
Gross total resection	101 (67.79%)	0.10 (0.04–0.26), <0.001	0.12 (0.06–0.25), <0.001		
Perioperative death (n)	11	—	—		
Tumor size, cm²	4.17±4.01	1.29 (0.95–1.58), 0.160	1.45 (0.56–2.38), 0.100		
Tumor location (n)	1.24 (0.81–1.89), 0.319	1.03 (0.75–1.43), 0.846			
Endocrinopathy (n)	51				
GH deficiency	88	0.94 (0.45–1.99), 0.878	0.90 (0.49–1.67), 0.739		
Hypogonadism	81	0.96 (0.45–2.01), 0.903	0.87 (0.47–1.61), 0.667		
Hypothyroidism	50	0.77 (0.34–1.79), 0.533	0.88 (0.46–1.70), 0.690		
Hypoadrenalinism	49	0.95 (0.43–2.09), 0.893	0.96 (0.50–1.85), 0.898		
Diabetes insipidus	17	0.57 (0.14–2.42), 0.450	0.80 (0.29–2.25), 0.673		
Radiation therapy (n)	30	0.13 (0.02–0.98), 0.047	0.27 (0.08–0.88), 0.030		
NLR	3.10±1.59	1.49 (1.24–1.78), <0.001	1.50 (1.28–1.76), <0.001		

ASBS-Q = anterior skull base surgery questionnaire, BMI = body mass index, cm = centimeter, f/m = female/male, HR = hazard ratio, intra = intrasellar, n = number, NLR = neutrophil-lymphocyte ratio, NS = not significant, OS = overall survival, PFS = progression free survival, supra = suprasellar, yr = year.

† Described as median.
‡ Described as mean ± standard deviation.

3.3. NLR ≥4 versus <4 of factors and long-term outcome (Table 2)

Based on the receiver operating characteristic (ROC) curve, the best cut-off value of NLR was found to be 4 (Fig. 1). Moreover, median OS was 77 versus 80 months in patients with NLR ≥4 versus <4 (Fig. 2). The median PFS was 73 versus 78 months in patients with NLR ≥4 versus <4 (Fig. 3).

Tumor size was 5.6±3.52 cm² versus 4.07±1.58 cm² (P = .001) and gross total resection of the tumor was achieved in 15 versus 86 individuals (P < .001) in patients with NLR ≥4 versus

Table 2

Characteristic	All patients	NLR ≥4	NLR <4	P
Patient number (n)	149	36	113	.994
Gender (f/m)	65/84	21/15	66/47	.843
Age, years	36±39	37±27	36±32	.001
Tumor size, cm²	4.17±4.01	5.6±3.52	4.07±1.58	.001
Gross total resection	101	15	86	.118
Tumor location (n)	51	16	35	.138
Supra-	7	2	5	.780
Intra-	91	18	73	.118
Endocrinopathy (n)	88	21	67	.919
GH deficiency	81	19	62	.827
Hypogonadism	50	13	37	.709
Hypothyroidism	49	7	42	.049
Diabetes insipidus	17	5	12	.591
Increase in BMI (n=121)	1.20±0.64	1.31±0.54	1.17±0.66	.354
ASBS-Q score	3.34±3	2.70±2.04	3.45±1.60	.039
5-year OS rate	81.21%(121/149)	66.66%(24/36)	85.84%(97/113)	.009
5-year PFS rate	75.84%(133/149)	44.44%(16/36)	85.84%(97/113)	<.001

ASBS-Q = anterior skull base surgery questionnaire, BMI = body mass index, cm = centimeter, f/m = female/male, intra = intrasellar, n = number, NLR = neutrophil-lymphocyte ratio, NS = not significant, OS = overall survival, PFS = progression free survival, supra = suprasellar, yr = year.

† Described as median ± interquartile range.
‡ Described as mean ± standard deviation.

Prior to surgery.
<4. More individuals had hypoadrenalism in patients with NLR <4 ($P = .049$).

Patients with NLR ≥ 4 had an average ASBS-Q score of 2.70 ± 2.04, while those with NLR <4 had an average ASBS-Q score of 3.45 ± 1.60 ($P = .039$). Patients with NLR ≥ 4 had a 5-year OS rate of 66.66% (24/36) whereas patients with NLR <4 had a 5-year OS rate of 85.84% (97/113) in Kaplan–Meier curve ($P = .009$) (Fig. 2). The 5-year PFS rate was 44.44% (16/36) versus 85.84% (97/113) in patients with NLR ≥ 4 versus <4 ($P < .001$) (Fig. 3). No significant difference was found among other factors between patients with NLR ≥ 4 and <4.

4. Discussion

Craniopharyngiomas are difficult intracranial lesions to treat due to its deep location and extremely variable growth pattern.[29,30] Although histologically benign, the tumor’s potential adhesion to adjacent vital brain structures makes gross total resection and follow-up treatment difficult. In recent studies, about 18% to 84%[3,6,29,31–37] of patients had gross total resection and the 5-year OS rates ranged from 54% to 96%.[29,36–41] In the present study, the 5-year OS rate was 81.21% and 67.79% (101/149) of patients had gross total resection.

The present study assessed the prognostic value of preoperative NLR in surgically treated patients with CP. According to the data we obtained from this study, preoperative NLR may be associated with QOL, OS, and PFS. In addition, NLR value of 4 was determined as cut-off value with a good sensitivity and acceptable specificity. In this retrospective study, patients with preoperative NLR <4 had a better long-term outcome and NLR ≥ 4 was an alarm signal of increased mortality risk. To our knowledge, this is the first study to assess the prognostic role of preoperative NLR in patients with CP.

Composed of 2 major component of immune system, NLR can be applied to clinical work as marker of a patient’s immune state prior to surgery. In the present study, higher NLR (≥ 4) was associated with larger tumor and worse long-term outcome. Clinical data from recent studies suggest that immune response plays a role in tumorigenesis.[12,13] Tumor and tumor-related neutrophils produce cytokines like vascular endothelial growth factor (VEGF), which promote angiogenesis, provoke tumor cells to proliferate, therefore, to further promote invasive growth, metastasis, and recurrence.[11,44–47] All the above mentioned are associated with worse QOL after surgical treatment and lower PFS rate.[3,33,36,48–51]

In neoplastic processes, neutrophil is consequence of tumor-related inflammatory cytokines including tumor necrosis factor (TNF), interleukin-6 (IL-6), and granulocyte-colony stimulating factor (G-CSF) by tumor cells.[52–57] Thus, a high level of neutrophil in peripheral blood may indicate tumor-associated
Figure 2. Kaplan–Meier curves showing overall survival, stratified by neutrophil-lymphocyte ratio (NLR). The median OS was 77 versus 80 months in patients with NLR \(\geq 4 \) versus \(< 4 \). NLR = neutrophil-lymphocyte ratio.

Figure 3. Kaplan–Meier curves showing progression free survival, stratified by neutrophil-lymphocyte ratio (NLR). The median PFS was 73 versus 78 months in patients with NLR \(\geq 4 \) versus \(< 4 \). NLR = neutrophil-lymphocyte ratio.
inflammation. In our study, patients with NLR ≥4 had lower gross total resection rate. This phenomenon could be explained by studies indicating a possible involvement of inflammation in the process of cyst formation and adhesion to adjacent brain tissue of craniopharyngioma.[37–38] And as mentioned before, such adhesion could make gross total resection more difficult. Besides, microscopically, craniopharyngioma tissue are closely connected with gliosis area induced by inflammatory in the adjacent brain tissues, which may result in recurrence even the patient had received gross total resection of the tumor.[37,39,60]

Gross total resection is associated with a favorable long progression free survival, better QOL and even cure. About 10\%–15\% of totally removed CP relapsed and nearly 80\% of patients were asymptomatic after total tumor resection during a long follow-up period. In the present study, gross total resection was related to better long-term outcome.

It is controversial whether age at diagnosis is associated with long-term outcome. Previous studies have shown that the younger patients had better outcome.[61] On the contrary, some studies have found younger survival in older patients.[13,62] Our result did not present any difference in long-term outcome with respect to age. The prognostic value of sex has not been studied in most of the patients.[36,38,63] In the present study, our data did not show any difference between the sexes. Besides, tumor size did not relate to 5-year OS and PFS in our research, data did not show any difference between the sexes. Besides, young patients had better outcome.[61] On the contrary, some studies have found longer survival in older patients.[13,62]

Microscopically, craniopharyngioma tissue are closely related to the adjacent hypothalamus. Subtotal resection and radiation therapy are safe and effective approaches to control the tumor and improve long-term outcome of the patients.[65–67] In our cohort, radiation therapy after subtotal resection was linked to OS and PFS.

The present study had several limitations. The first was that the study was a single-center retrospective study and more reliable findings should be confirmed in multi-center prospective cohort. Secondly, in 48 patients who underwent subtotal resection, only 30 of them received radiation therapy for various reasons, so data from radiation therapy is limited.

5. Conclusion

Preoperative NLR may be a simple, readily available, and valid predictor of long-term outcome in craniopharyngioma. It could not only reflect the local inflammatory information of the tumor and provide effective guidance to neurosurgeons for prognostic evaluation, but also suggest further exploration on tumor therapies based upon modulating host immune response. Patients with NLR ≥4 have worse long-term outcome and they are a more reasonable group to receive radiation therapy. However, more studies are warranted to verify our findings and address the underlying mechanisms.

Acknowledgments

We would like to thank the reviewers for their constructive comments.

Author contributions

Conceptualization: Jing Zhang, Min He, Jianguo Xu.

Data curation: Jing Zhang, Min He, Yanlin Song.

Formal analysis: Jing Zhang, Zhiyong Liu, Yanlin Song, Yuelong Wang, Ruichao Liang.

Investigation: Jing Zhang.

Methodology: Jing Zhang, Min He, Zhiyong Liu, Ruichao Liang, Hongxu Chen.

Project administration: Jing Zhang, Jianguo Xu.

Resources: Jing Zhang.

Software: Jing Zhang, Min He, Yanlin Song.

Supervision: Jianguo Xu.

Validation: Jing Zhang.

Visualization: Jing Zhang.

Writing – original draft: Jing Zhang, Min He, Zhiyong Liu, Yanlin Song, Yuelong Wang, Ruichao Liang, Hongxu Chen, Jianguo Xu.

Writing – review & editing: Jing Zhang, Min He, Zhiyong Liu, Yanlin Song, Yuelong Wang, Ruichao Liang, Hongxu Chen, Jianguo Xu.

References

1. Muller HL. Craniopharyngioma. Endocr Rev 2014;35:513–43.

2. Muller HL. Craniopharyngioma. Handbook Clin Neurol 2014;216:235–53.

3. Morello P, Losa M, Pozzebon G, et al. Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J Neurourol 2011;14:1330–9.

4. Ricke R, Paulius W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 2001;17:503–11.

5. Bunn GR, Surawicz TS, Witman PA, et al. The descriptive epidemiology of craniopharyngioma. J Neurourol 1998;98:547–51.

6. Karaviti K, Cudlip S, Adams CB, et al. Craniopharyngiomas. Endocrine Dev 2006;27:371–97.

7. Muller HL, Gebhardt U, Teske C, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol 2011;165:17–24.

8. Muller HL, Gebhardt U, Faldum A, et al. Xanthogranuloma, Rathke’s cist, and childhood craniopharyngioma: results of prospective multination studies of children and adolescents with rare sellar malformations. J Clin Endocrinol Metab 2012;97:3935–43.

9. Berekk A, Kiess W, Lustig RH, et al. Hypothalamic obesity in children. Obes Rev 2012;13:780–98.

10. Muller HL, Gebhardt U, Etavard-Gorris N, et al. Prognosis and sequelae in patients with childhood craniopharyngioma—results of HIT-ENDO and update on KRANIOPHARYNGEOM 2000. Klinische Padiatrie 2004;216:343–8.

11. Vidal S, Kovacs K, Lloyd RV, et al. Angiogenesis in patients with craniopharyngiomas: correlation with treatment and outcome. Cancer 2002;94:738–45.

12. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:339–45.

13. Goussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–7.

14. Grevennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883–99.

15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

16. Rambury RM, Teo MY, Power DG, et al. The association of pretreatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J Neurosurg 2011;114:1350–9.

17. Hu S, Liu Y, Li Q, et al. Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer 2015;15:617.

18. Walsh SR, Cook EJ, Goulder F, et al. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J Surg Oncol 2009;91:181–4.

19. Keizer M, Gottfried M, Ish-Shalom M, et al. Pretreatment neutrophil-to-lymphocyte ratio in metastatic castration-resistant prostate cancer patients treated with ketoconazole: association with outcome and predictive nomogram. Oncologist 2012;17:1508–14.

20. Templeton AJ, McNamara MG, Seruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 2014;106:dp124.
[21] Gokhan S, Ozhaseenkler A, Mansur Durgun H, et al. Neutrophil lymphocyte ratios in stroke subtypes and transient ischemic attack. Eur Rev Med Pharmacol Sci 2013;17:653-7.

[22] Arbel Y, Finkelstein A, Halkin A, et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis 2012;225:456-60.

[23] Eldevik OP, Blaivas M, Gabrielsen TO, et al. Craniopharyngioma: radiologic and histologic findings and recurrence. AJNR Am J Neuro-radiol 1996;17:1427–39.

[24] Petito CK. Craniopharyngioma: prognostic importance of histologic findings. AJNR Am J Neuroradiol 1996;17:1441–2.

[25] Gil Z, Fliss DM. Quality of life in patients with skull base tumors: current status and future challenges. Skull Base 2010;20:11–8.

[26] Gil Z, Abergel A, Spektor S, et al. Development of a cancer-specific anterior skull base quality-of-life questionnaire. J Neurosurg 2004; 100:813–9.

[27] Gil Z, Abergel A, Spektor S, et al. Patient, caregiver, and surgeon perceptions of quality of life following anterior skull base surgery. Arch Otolaryngol Head Neck Surg 2004;130:1276–81.

[28] Gil Z, Abergel A, Spektor S, et al. Quality of life following surgery for anterior skull base tumors. Arch Otolaryngol Head Neck Surg 2003;129:1303–9.

[29] Fahlbusch R, Honnegger J, Paulus W, et al. Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg 1999; 90:237–50.

[30] Garnett MR, Puget S, Grill J, et al. Craniopharyngioma. Orphanet J Rare Dis 2007;2:18.

[31] Campbell PG, McGregor B, Lugnbuhl A, et al. Endocrinological and ophthalmological consequences of an initial endonasal endoscopic approach for resection of craniopharyngiomas. Neurosurgery Focus 2010;28:E8.

[32] Cavallo LM, Prevedello DM, Solari D, et al. Extended endoscopic endonasal transphenoidal approach for residual or recurrent craniopharyngiomas. J Neurosurg 2009;111:578–89.

[33] de Divitiis E, Cappabianca P, Cavallo LM, et al. Extended endoscopic transphenoidal approach for extrasellar craniopharyngiomas. Neurosurgery 2007;61(5 suppl 2):219–27. discussion 228.

[34] Dehdashi AR, Agha A, Witterick I, et al. Expanded endoscopic transsphenoidal approach for extrasellar craniopharyngiomas: experience with 168 patients. J Neurosurg 1999;90:237–50.

[35] Duff JF, Meyer FB, Istrup DM, et al. Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery 2000;46:291–302. discussion 302–9.

[36] Kazavitaiki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf) 2005;62:397–409.

[37] Van Effenterre R, Boch AL. Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg 2002;97:3–11.

[38] Stripp DC, Matty A, Janss AJ, et al. Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 2004;58:714–20.

[39] Pereira AM, Schmid EM, Schutte PJ, et al. High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin Endocrinol (Oxf) 2005;62:197–204.

[40] Regine WF, Mohuiddin M, Kramer S. Long-term results of pediatric and adult craniopharyngiomas treated with combined surgery and radiation. Radiother Oncol 1993;27:13–21.

[41] Bartlett JR. Craniopharyngiomas—a summary of 85 cases. J Neurol Neurosurg Psychiatry 1971;34:37–41.

[42] Pemberton LS, Dougall M, Magee B, et al. Experience of external beam radiotherapy given adjuvantly or as adjuvant following surgery for craniopharyngioma. Radiat Oncol 2005;7:99–104.

[43] Rajan B, Ashley S, Gorman C, et al. Craniopharyngioma—a long-term results following limited surgery and radiotherapy. Radiother Oncol 1993;36:1–0.

[44] Spolverato G, Maqood H, Kim Y, et al. Neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after resection for hepatopancreatico-biliary malignancies. J Surg Oncol 2015;111:868–74.