LETTER

Wavelength-tunable sub-picosecond optical switch over entire C-band using nonlinear optical loop mirror

Ryoya Hirata1, Toshihiko Hirooka, Masato Yoshida, and Masataka Nakazawa

Abstract We present a wavelength-tunable ultrafast optical switch using a nonlinear optical loop mirror (NOLM), which has a low walk-off characteristic between the signal pulse and the control pulse thanks to the use of a dispersion-flattened highly nonlinear fiber. A 400-fs switching speed and an extinction ratio of > 32 dB were obtained from 1528 to 1565 nm. The NOLM was applied to the 320 to 40 Gbaud demultiplexing of DQPSK Nyquist pulse signals, and error-free operation was achieved over the entire C-band.

Key words: Optical switch, nonlinear optical loop mirror, optical time-division multiplexed transmission, highly nonlinear fiber

Classification: Optical hardware (fiber optics, microwave photonics, optical interconnects, photonic signal processing, photonic integration and modules, optical sensing, etc.)

1. Introduction

All-optical switches have many useful applications in ultrahigh-speed optical communication, signal processing, and network control [1-4]. For example, a high-speed optical switch is a key device for demultiplexing optical time-division multiplexed (OTDM) signals in ultrahigh-speed OTDM transmissions [5]. Among various switching devices, semiconductor optical amplifiers (SOA) [6-12] and fiber-based switches [13-22] have attracted a lot of attention. SOAs feature compactness, high stability, and low switching power [6-8]. Although the operating speed of an SOA is limited by the slow gain recovery time, this can be cancelled by adopting a Mach-Zehnder interferometer configuration with a symmetric Mach-Zehnder (SMZ) switch [9], and a switching speed of ~1 ps has been demonstrated [10-12].

For fiber-based all-optical switches such as a nonlinear optical loop mirror (NOLM) [21], a subpicosecond switching speed has been achieved owing to the femtosecond response time of fiber Kerr nonlinearity [22]. By taking advantage of this ultrafast response, a NOLM has been successfully applied to a demultiplexer for ultrahigh-speed OTDM transmission at a single-channel speed of > 1 Tbit/s [23-25]. In general, the switching efficiency of fiber-based switches is limited by the dispersion profile as it causes walk-off between the data and control pulses. However, the wavelength dependence of the group delay characteristics makes it difficult to realize a NOLM with wide-range wavelength tunability, which is required for OTDM demultiplexing in WDM systems.

In this paper, we describe wavelength-tunable ultrafast optical switching over the entire C-band using a low walk-off NOLM that employs a dispersion-flattened highly nonlinear fiber (HNLF). A 400-fs switching speed is obtained from 1528 to 1565 nm with a fixed wavelength control pulse in the L-band. We use the NOLM to demonstrate the error-free wavelength-tunable demultiplexing of a 320 Gbaud DQPSK signal over the entire C-band.

2. Configuration of wavelength-tunable low walk-off NOLM

Figure 1 shows the basic configuration for OTDM demultiplexing using a NOLM. The launched OTDM signal is first divided into two parts by a 50:50 coupler. The two parts then propagate in clockwise and counterclockwise directions through an HNLF loop. The control pulse is coupled in the loop and co-propagates with the signal propagating in the counterclockwise direction, where the OTDM signal is given a phase shift of π by cross-phase modulation during propagation in the HNLF. After the circulation, the two counterpropagating signals are recombined at a 50:50 coupler and then demultiplexed.
signals interfere, and only the π phase-shifted tributary can be output from the NOLM. We previously demonstrated the OTDM demultiplexing of 2.56-Tb/s signals at a switching speed of 230 fs with a NOLM [25].

In addition to demultiplexing a broadband OTDM signal in a single channel, the NOLM can be used to demultiplex multi-channel WDM-OTDM signals. For this purpose, the wavelength tunability of the NOLM is very important. The wavelength of the control pulse λ_c must also usually be changed for each signal wavelength λ_s to reduce walk-off. However, if the HNLF is dispersion-flattened, the control pulse can be fixed to a single λ_c because of the low walk-off characteristics, which makes switching simple.

The dispersion and group delay characteristics of the dispersion-flattened HNLF (Furukawa Electric, HNLF170407-20) that we employed for the wavelength-tunable NOLM are shown in Fig. 2(a) and (b), respectively. The dispersion-flattened HNLF was 20-m long with a nonlinear coefficient of $\gamma = 22$ W$^{-1}$km$^{-1}$. The zero-dispersion wavelength is 1568 nm, and the dispersion slope is as low as 0.013 ps/nm2/km, which is 1/6 that of standard fiber. The low dispersion slope makes it possible to reduce the walk-off between signal and control pulses as shown in Fig. 2(b). We fixed the wavelength of the control pulse at 1595 nm regardless of the signal wavelength, where the walk-off was less than 100 fs for all the wavelengths in the C-band.

3. OTDM of Nyquist pulse to 320 Gbaud and its demultiplexing to 40 Gbaud using wavelength-tunable NOLM

We used this NOLM for wavelength-tunable OTDM demultiplexing from 320 to 40 Gbaud over the entire C-band. Figure 3(a) shows our experimental setup. At the transmitter, the CW output from a tunable laser diode was launched into an optical comb generator consisting of a dual-drive LiNbO$_3$ Mach-Zehnder modulator driven at 40 GHz [26]. After chirp compensation with a dispersion-compensating fiber (DCF), a 320 Gbaud DQPSK signal was obtained with an IQ modulator driven by a 40 Gbit/s, 2^{11}–1 PRBS and optical multiplexing from 40 to 320 Gbaud using a delay-line multiplexer. It was then shaped into a Nyquist pulse [27] with a roll-off factor $\alpha = 0$ and a bandwidth of 320 GHz using a programmable pulse shaper [28]. The waveform of the generated 320 Gbaud Nyquist OTDM signal is shown in Fig. 3(b). As shown by the white dots, the Nyquist OTDM signal is free from intersymbol interference (ISI) at each symbol location, and otherwise the pulses overlap greatly. A switching gate sufficiently narrower than the symbol period (3.13 ps) is needed to extract the ISI-free points, which exist only at the symbol

![Fig. 2](image1.png)

Fig. 2 GVD and group delay characteristics of dispersion-flattened HNLF. (a) GVD and (b) group delay.

![Fig. 3](image2.png)

Fig. 3 (a) Experimental setup for 320 to 40 Gbaud OTDM demultiplexing using the wavelength-tunable sub-picosecond NOLM. (b) Waveform of 320 Gbaud Nyquist OTDM signal.
period, from the overlapped Nyquist pulse train [27]. Our ultrafast NOLM is particularly advantageous for such ultrahigh-speed sampling.

At the receiver, the 320 Gbaud Nyquist OTDM signal and 40 GHz control pulses were coupled to the NOLM. The OTDM signal was launched at 24 dBm through a 3-dB coupler. It should be noted that SOA switches cannot generally tolerate such a high input power, and this constitutes a substantial advantage for the NOLM in terms of obtaining a high OSNR after demultiplexing. The timing offset between the signal and control pulses was optimized for each wavelength by using an optical delay line. Because of the low walk-off characteristics of the HNLF, zero timing offset is the optimum condition regardless of the wavelength. The NOLM includes polarization controllers that optimize the state of polarization of both the signal and control pulses to maximize the extinction ratio and switching efficiency. The insertion loss of the NOLM was 9.5 dB.

As a control pulse source, we used a 40 GHz mode-locked fiber laser (MLFL) operating at 1595 nm and emitting a 760-fs pulse [29], whose repetition rate was synchronized to a 40 GHz clock extracted from the OTDM signal. To compress the pulse, the MLFL output pulse was coupled to a 10-m HNLF with a normal GVD at a launch power of 26 dBm, in which the spectrum was broadened by self-phase modulation. It was then launched into a pulse shaper, where the spectrum was shaped into a sech profile and the chirp was compensated for so that a transform-limited sech pulse with a pulse width $\tau_{\text{FWHM}} = 580$ fs was obtained. The autocorrelation waveform of the generated control pulse is shown in Fig. 4(a).

The sech pulse was then coupled into the NOLM through a WDM coupler at an input power of 24 dBm as a control pulse. It should be noted that the wavelength of the control pulse ($\lambda_c = 1595$ nm) is in the anomalous dispersion regime ($D = 0.35$ ps/nm/km) as shown in Fig. 2(a), and thus the sech-shaped control pulse can propagate in the NOLM as a soliton [30]. In this case, the peak power of the control pulse is $P_c = 4.0$ W, while the peak power required for a fundamental soliton is calculated to be $P_{\text{Na}} = 0.776 (\lambda_c |D|A_{\text{eff}} / \pi c \tau_{\text{FWHM}}^2 n_2) = 200$ mW and the soliton period becomes $z_0 = 0.332 (2\pi c \tau_{\text{FWHM}}^2 / \lambda_c |D|) = 405$ m. Here, n_2 is the nonlinear coefficient, A_{eff} is the effective core area, and c is the speed of light. This indicates that the control pulse propagates as a higher-order soliton with a soliton order $N = (P_c/P_{\text{Na}})^{1/2} = 4.5$, and since the soliton period is much longer than the HNLF length of 20 m in the NOLM, soliton compression occurs during propagation in the NOLM. An autocorrelation waveform of the control pulse measured at the output of the 20-m HNLF is shown in Fig. 4(b). It can be seen that the pulse is compressed to 370 fs inside the NOLM. This offers an advantage in terms of ultrafast NOLM operation.

At the output of the NOLM, the demultiplexed 40 Gbaud DQPSK signal was separated from the control pulses with an optical bandpass filter, and then demodulated with a one-bit delay interferometer (DI) and detected with a 40 GHz balanced photo-diode (PD). Finally, the bit error rate (BER) was measured online with an error detector.

![Fig. 4 Autocorrelation waveform of the control pulse measured at the input (a) and output (b) of the NOLM, respectively.](image)

4. NOLM performance

Figure 5(a) shows the extinction ratio of the NOLM for various wavelengths in the C-band. An extinction ratio as high as 32 to 37 dB was obtained over the entire C-band, where a longer wavelength has a higher extinction ratio. We next measured the switching gate width of the NOLM by launching a CW probe light instead of an OTDM signal. The switching gate width for each wavelength is shown in Fig. 5(b), and a switching gate waveform measured at 1548.11 nm is shown in the inset. A switching gate width as narrow as 390–450 fs was successfully achieved for all the wavelengths. Such a narrow switching gate despite a control pulse width of
580 fs is a consequence of the soliton effect as described earlier. It can be seen that the gate width is broader for shorter and longer wavelengths because of the residual walk-off. The gate width is sufficiently narrower than the symbol period of 3.13 ps and applicable to the ultrafast sampling of the 320 Gbaud Nyquist OTDM signal shown in Fig. 3(b).

Figure 6 shows the demultiplexing characteristics of the present NOLM, where the BER characteristics are plotted against the received optical power for three wavelengths in Fig. 6(a) and the received power of each wavelength required for a BER of 10^{-9} is shown in Fig. 6(b). The demultiplexed waveform for a signal wavelength of 1548.11 nm is also shown in Fig. 6(c).

After the demultiplexing, the signal pulse broadened due to the 5 nm optical filter after the NOLM, which was used for removing the control pulses. As shown in these figures, we achieved error-free demultiplexing operation at all the channels in the C-band. Also, at a shorter wavelength, where the signal and the control pulses are sufficiently separated, there is no crosstalk and the receiver sensitivity is high as shown in Fig. 6(b). However, the power penalty incurred by demultiplexing was larger at shorter wavelengths. This is because the gain of the EDFA preamplifier installed at the NOLM output was lower at shorter wavelengths.

![Graphs and diagrams](image-url)
5. Conclusion

We demonstrated wavelength-tunable ultrafast optical switching using a NOLM with a low walk-off characteristic. We achieved the error-free demultiplexing of a 320 Gbaud DQPSK Nyquist pulse signal from 1528 to 1565 nm by using a NOLM with fixed control pulses located in the L-band. The NOLM allows us to realize the ultrahigh-speed demultiplexing of OTDM-WDM signals and is expected to have the potential for applications to ultrafast optical networks and signal processing over a wide wavelength.

Acknowledgments

This work was supported by the JSPS Grant-in-Aid for Specially Promoted Research (26000009).

References

[1] H. Ishikawa Eds.: Ultrafast All-Optical Signal Processing Devices (Wiley 2008).
[2] A. Willner et al.: “All-optical signal processing,” J. Lightwave Technol. 32 (2014) 660.
[3] S. Wabnitz and B. J. Eggleton Eds.: All-Optical Signal Processing: Data Communication and Storage Applications (Springer 2015).
[4] A. Willner et al.: “All-optical signal processing techniques for flexible networks,” J. Lightwave Technol. 37 (2019) 21.
[5] H. G. Weber and M. Nakazawa Eds.: Ultrahigh-Speed Optical Transmission Technologies (Springer 2007).
[6] K. E. Stubkjaer: “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Topics Quantum Electron. 6 (2000) 1428.
[7] B. Dagens et al.: “SOA-based devices for all-optical signal processing,” OFC 2013, ThX1.
[8] T. Akiyama et al.: “Quantum-dot semiconductor optical amplifier,” Proc. IEEE 95 (2007) 1757.
[9] K. Tajima: “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32 (1993) L1746.
[10] S. Nakamura et al.: “168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch,” IEEE Photon. Technol. Lett. 13 (2001) 1091.
[11] S. Nakamura et al.: “Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated Symmetric-Mach-Zehnder switch,” OFC 2002, FD3.
[12] T. Hirooka et al.: “All-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch,” IEEE Photon. Technol. Lett. 21 (2009) 1574.
[13] G. P. Agrawal: Applications of Nonlinear Fiber Optics (Academic Press 2001).
[14] S. Watanabe and F. Futami: “All-optical signal processing using highly-nonlinear optical fibers,” IEICE Trans. Electron. E84-B (2001) 1179.
[15] P. Petropoulos et al.: “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. (2001) 1233.
[16] J. Hansryd et al.: “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron. 8 (2002) 506.
[17] S. Watanabe et al.: “An optical parametric amplified fiber switch for optical signal processing and regeneration,” IEEE J. Sel. Top. Quantum Electron. 14 (2008) 674.
[18] M. Hirano et al.: “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15 (2009) 103.
[19] S. Radic, “Parametric signal processing,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 670–680, Mar./Apr. 2012.
[20] S. Namiki et al.: “Ultrafast optical signal processing using fiber nonlinearities,” CLEO 2013, CF1E.3.
[21] N. J. Doran and D. Wood: “Nonlinear-optical loop mirror,” Opt. Lett. 13 (1988) 56.
[22] T. Yamamoto et al.: “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34 (1998) 1013.
[23] M. Nakazawa et al.: “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36 (2000), 2027.
[24] H. C. Hansen Mulvad et al.: “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45 (2009) 280.
[25] T. Hirooka et al.: “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express (2018) 27221.
[26] T. Sakamoto et al.: “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32 (2007) 1515.
[27] M. Nakazawa et al.: “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20 (2012) 1129.
[28] G. Baxter et al.: “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” OFC 2006, OTuF2.
[29] K. Harako et al.: “A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 μm,” IEICE Electron. Express 14 (2017) 20170829.
[30] G. P. Agrawal: Nonlinear Fiber Optics (Academic Press 1989).