Managing acute colorectal obstruction by "bridge stenting" to laparoscopic surgery: Our experience

Pierfrancesco Bonfante, Luigi D’Ambra, Stefano Berti, Emilio Falco, Massimo Vittorio Cristoni, Romolo Briglia

Abstract

AIM: To verify the clinical results of the endoscopic stenting procedure for colorectal obstructions followed by laparoscopic colorectal resection with "one stage anastomosis".

METHODS: From March 2003 to March 2009 in our surgical department, 48 patients underwent endoscopic stenting for colorectal occlusive lesion: 30 males (62.5%) and 18 females (37.5%) with an age range from 40 years to 92 years (median age 69.5). All patients enrolled in our study were diagnosed with an intestinal obstruction originating from the colorectal tract without bowel perforation signs. Obstruction was primitive colorectal cancer in 45 cases (93.7%) and benign anastomotic stenure in 3 cases (6.3%).

RESULTS: Surgical resection was totally laparoscopic in 69% of cases (24 patients) while 17% (6 patients) of cases were video-assisted due to the local extension of cancer with infiltrations of surrounding structures (urinary bladder in 2 cases, ileus and iliac vessels in the others). In 14% of cases (5 patients), resection was performed by open surgery due to the high American Society of Anesthesiologists score and the elderly age of patients (median age of 89 years). We performed a terminal stomy in only 7 patients out of 35, 6 colostomies and one ileostomy (in a total colectomy). In the other 28 cases (80%), we performed bowel anastomosis at the same time as resection, employing a temporary ileostomy only in 5 cases.

CONCLUSION: Colorectal stenting transforms an emergency operation into an elective operation performable in a totally laparoscopic manner, limiting the confection of colostomy with its correlated complications.

Key words: Colorectal cancer; Laparoscopy; Colonic stenting; Intestinal obstruction; Endoscopy

INTRODUCTION

Colorectal obstruction represents a common problem due to pelvic neoplasms, such as gynecological, prostatic, colorectal and urinary bladder in 90% of cases or due to bowel inflammatory conditions, such as Crohn’s disease and ischemic or diverticular stenosis. Colorectal cancer causes a complete or incomplete obstruction in 8%-29% of cases and obstruction represents 85% of surgical emergencies for colon cancer. Bowel obstruction leads to some complications like dehydration, hypo-
Bonfante P et al. Bridge stenting to laparoscopic surgery

volumic shock, renal or pulmonary acute failure, intestinal perforation, peritonitis etc. These conditions are a worse prognostic factor for elderly patients with high American Society of Anesthesiologists (ASA) or Acute Physiology and Chronic Health Evaluation score or with locally advanced or metastatic cancer (almost 40% of this kind of patients) above 3[16-19]. For these reasons, emergency management of this kind of condition is characterized by a high morbidity (40%-60%) and mortality rate (3%-19%)[18] but, for some authors, also 27%-40%[14,15-19], considering that the mortality rate for the same operation performed electively ranges from 0.9%-6%[11,13,19]. In addition, it is peremptory to stress that these conditions are correlated to a high temporary or definitive colostomy rate (24%-40%), with negative impact on the quality of life for the patient (in terms of limited social and sexual life), on the social costs and with the consequent necessity for the patient to undergo one or more operations to re-establish intestinal continuity[10,16,21,22]. Consequently, these reasons have prompted research for alternative therapeutic ways; contemporaneously, the encouraging results of a stenting procedure achieved in esophageal, duodenal, biliary and vascular districts have led to experimental use of endoscopic stenting initially as palliative treatment of tumoral colonic stenosis and subsequently as preparation for curative colonic surgery (“bridge to surgery”)[23,24].

In fact, the possibility of not performing a surgical decompression of the bowel using an endoscopic stent allows for a palliation therapy in patients with severe comorbidity or advanced cancer, avoiding a surgical emergency and allowing elective surgery with several benefits. This procedure allows improvement in the general condition of patients who are often wasted and dehydrated, reducing post operative mortality and morbidity; it allows diagnostic procedures with complete staging and the optimal pre-operative cleansing of the large bowel, allowing anastomosis in one stage and avoiding a temporary ileo or colostomy (one stage procedure). Although an intestinal stent is expensive, its use decreases the overall cost because it reduces the costs of surgery, hospital stay and intensive therapy from 19.7% to 28.8%, as reported by some authors[25,27], and the costs of ileo or colostomy with its correlated complications (paresis, stenosis, cutaneous irritation). In some studies, the cost of palliative stenting is less than surgical palliation by 50% and the cost of the “bridge to surgery treatment” is less than surgery, from 12%-20%[28,29].

Since Dohmoto et al.[31] first described the successful stenting of a rectal occlusive tumor in inoperable patients in 1991, several studies have been performed to evaluate the safety and the efficacy of the new promising procedure[27,34].

During these years, techniques and devices were modified; from rigid and plastic endoprosthesis commonly used in the tracheobronchial, esophageal and vascular district[27,35] (with a perforation rate 22%-30% and increased risk of dislocation, obstruction and inhibition of peristalsis) to modern self expanding flexible metal stents easier to use in flexure and tight stenosis and with a considerably lower rate of complications[37].

The only disadvantage of this kind of stent is the neoplastic growth through the mesh; for this reason, polyurethane coated stents have been successively proposed.

At the beginning, the flexure or descending colon localization was a contraindication to the stenting procedure but actually any anatomic site is precluded. In fact, although at least 70% of obstructive lesions occur in the left colon, similar lesions of other colonic segments, including the ascendant colon, are successfully treated[28,38]. Right sided occlusions might be managed by an emergency operation with a limited morbidity and mortality rate compared to left sided resections. Other than site lesion, the length also does not constitute a contraindication to stenting, even if lesions less than 3 cm are technically more manageable[29]. The success rate reported in the literature ranges from 64% to 100%[10,13,36,39].

The stenting procedure is considered the first line treatment for neoplastic stenosis, both as a bridge to surgery and as palliative therapy in patients not amenable for surgery on oncological reasons, poor general conditions or in the case of no informed consent[21,25,32,38,40].

This approach has been recently criticized in the palliative use of a stent because, except for occlusion, it does not solve symptoms like pain, rectal tenesmus, bleeding and anemia; despite that, it has been approved by the FDA[29].

The only contraindication is the presence of colic perforation which requires an immediate laparotomy or laparoscopy.

The use of a stent in benign pathology has sporadic confirmation in the literature[41-44] but is controversial due to the lack of randomization studies and there being other ways of avoiding occlusion. For example, dilatation is considered a valid alternative in Crohn’s stenosis, with a success rate of 80%-90%[45,46] but with short-term results.

MATERIALS AND METHODS

The aim of our study was to verify the clinical results of the endoscopic stenting procedure for colorectal obstructions followed by laparoscopic colorectal resection with “one stage anastomosis”.

From March 2003 to March 2009 in our surgical department, 48 patients underwent endoscopic stenting for colorectal occlusive lesions: 30 males (62.5%) and 18 females (37.5%) with an age range of 40-92 years (median age 69.5). All patients enrolled in our study were diagnosed with an intestinal obstruction originating from the colorectal tract without bowel perforation signs. Diagnosis of intestinal obstruction was made on the basis of clinical history, symptoms and physical examination of the patient, who underwent radiological examinations like abdominal X-ray, colon X-ray evaluation with
a water-soluble gastrografin enema and, in some cases, an abdominal computed tomography scan. The obstruction was primitive colorectal cancer in 45 cases (93.7%) and benign anastomotic stricture in 3 cases (6.3%). All patients underwent a cleansing enema before the endoscopic procedure and had a pre-medication intravenous injection of 2 mg of Midazolam® (Midazolam-hameln pharmaceuticals gmbh, Hameln, Germany) during the examination without anesthetic assistance. The procedure was done using an endoscope because it allowed easier prosthetic placement, mainly for tumor obstruction located above the rectal peritoneal reflection, allowing visualization in real time of the successfully stenting and allowing the biopsy of the lesion. Stents positioned endoscopically are limited in their gauge because they have to pass inside the endoscope.

The procedure was always performed using a guidewire inserted through the endoscope duct, moving it beyond the obstruction and then inserting the stent using Seldinger’s technique. We have never performed any kind of dilatation or laser treatment of the obstruction to allow stenting. We have always utilized the same Wallflex® system (Boston Scientific Corporation) of 25 mm gauge, with variable length according to the site and the extension of the obstruction, provided with a releasing device through the scope through-the-scope. This kind of stenting system costs about 1630 Euro.

Twenty-four hours after stenting, we performed an abdominal X-ray to evaluate the correct placement of prosthesis and the absence of free intra abdominal air. Then the patient can resume oral intake, a half liquid diet, and can complete the diagnostic course and eventually have pre-surgical preparation.

The technical success rate (correct placement and expansion of prosthesis) of our series was about 95.8% and clinical success rate was about 100% (relief of occlusion and abdominal deflating). The only two failures occurred in a patient affected by obstructed stenosis that was not amenable to be crossed by a ground wire; therefore, he underwent an emergency operation. Complications occurred in 2 patients (4.2%): one dislocation and one perforation. The latter case was caused by a cecal break due to air insufflation during stenting. In 13 cases (27%), the stenting procedure represented the only therapeutic and palliative option because the patients were in a poor clinical condition, were old and affected by serious comorbidity. The remnant of 35 patients (73%) consequently underwent surgical bowel resection and the median time of bridge to surgery was 9.2 d, ranging from 2 to 78 d. Of these patients, twenty were male (57.1%) and fifteen female (42.9%), with a median age of 69 years. Sixteen were ASA II, thirteen ASA III and six ASA IV. The site of obstruction is shown in Table 1.

Surgical resection was totally laparoscopic in 69% of cases (24 patients) while 17% (6 patients) of cases were video-assisted due to the local extension of cancer with infiltrations of surrounding structures (urinary bladder in 2 cases, ileus and iliac vessels in the others). In 14% of cases (5 patients), resection was performed by open surgery due to the high ASA score and the elderly age of patients (median age of 89 years). We performed a terminal stomy in only 7 of 35 patients, 6 colostomies and one ileostomy (in a total colectomy). In the other 28 cases (80%), we performed bowel anastomosis at the same time of resection, employing a temporary ileostomy only in 5 cases; the latter presented a higher than 3 risk factor for anastomotic leakage.

The type of surgical resection is shown in Table 2. Mean operative time was 220 min for laparoscopic surgery and 183 min for open surgery. The histological characteristics of cancer are represented in Table 3.

At the time of diagnosis, 22.8% of patients had distant metastasis. 51.4% of cases were found to have a metastatic lymph node (25.7% N1 and 25.7% N2) with a median of 18.2 lymph nodes isolated for specimen (range 7-35). The number of lymph nodes removed during laparoscopic resection was mild major of that removed in open surgery, 19.1 ± 17.9.

Table 1 Site of obstruction

Patients	Site of obstruction
2	Transverse colon
3	Splenic flexure
29	Descending/sigmoid colon
9	Upper rectum
5	Middle rectum

Table 2 Type of resections

Laparoscopic	Open	Assisted
Right colectomy	3	-
Segmentary resection	3	2
Left colectomy	9'	-
Proctectomy	7'	-
Hartmann	2'	1'
Total colectomy	-	2'

Table 3 Histological characteristics of specimen n (%) (Grading and TNM (UICC system))

Grading and TNM (UICC system)
G2
G2/3
G3
T2
T3
T4
N*
N1
N2
M*

TNM: Tumor node metastasis; UICC: Union for International Cancer Control.
The margin anastomosis free from disease was on average 4.4 cm (range: 2.8-5 cm) without any significant difference between the open and laparoscopic approach (4.1 cm open vs 4.8 cm laparoscopic).

Median hospital stay after laparoscopic resection was 8.3 d and 12.1 d after open surgery. Median time of flatus was 3 d, resumption of oral intake was within 4 d, bladder catheter was usually removed on the fourth day and drainage tube on the sixth day (range: 4-8) and in these cases, the laparoscopic approach highlighted a shorter mean time. Complications occurred in 8 patients (22.8%), as shown in Table 4, and there was no mortality in our series.

DISCUSSION

In the last decade, the high mortality and morbidity rate occurring after emergency colorectal resection for intestinal obstructions have become well-known as complications related to colostomy, including alterations of the sexual and quality of life.

These events can be limited by performing the “one stage resection” technique with an intra-operating wash out,[37] but it extends the surgical time and does not reduce complications due to bacterial migration, paralytic ileus, colonic handling etc. Other palliative procedures, such as endoscopic dilatation, laser, electrocauterization, cryo and photodynamic therapy,[47,48], require repeated applications without immediately resolving the stenosis like the stenting procedure does.

Seventeen years after the intuition of Dohmoto, following the earlier studies by Spinelli et al.[59] in 1992, Itabashi et al.[60] in 1993 and Saida et al.[61] in 1996, and after the multicenter trials conducted by Mainar et al.[62] in 1999, colorectal stenting has been demonstrated to be a safe and useful procedure, with a success rate ranging from 64% to 100%.[61,62] This procedure allows resolution of a bowel obstruction, a unique palliative treatment in cases of inoperable patients, and as preparation for surgery to reduce complications and colostomies related to an emergency operation. Endoscopic stenting manages a critical bowel occlusion by performing a suitable intestinal cleansing, a colonic decompression and, in the same breath, balances the general clinical condition of the patient with correct hydration, nutrition and antibiotic therapy in order to perform a colonic resection in safe conditions. The stenting procedure increases the primary anastomosis rate and reduces the colostomy rate.[67,63,64]

Recent meta-analysis trials[6,17,55] have demonstrated that endoscopic stenting significantly reduces the mean length of hospital stay by at least of 6-8 d, reduces the recourse to the intensive care unit, the morbidity and mortality rate and the colostomy rate from 24% to 8.2%.

Patients who underwent endoscopic stenting before surgery had ileus and consequently oral intake resumed earlier, a mean of 5 d earlier compared to patients who underwent emergency colonic resection without a preventative endoscopic procedure.[56,57]

Some authors[66] claim that stent expansion could promote a local or distal diffusion of neoplastic cells due to a squeezing out effect or possible bowel perforation (risk of 4%), but other recent studies[6,55,59,60] have demonstrated statistically significant differences of about 3 and 5 years survival rate between the use or not of a stenting procedure.

Complications due to stenting occur in about 30% of cases[60,62] and they are divided into early or late, depending on if they occur within or over 30 d. Early complications are more frequent in malignant neoplastic stenosis, while in benign stenosis, they are later[11,44].

Major complications are: dislocation or migration, perforation, break, re-obstruction with “cheesewiring” (cancer growth through the spaces of a metallic uncovered stent), fistulization, anorectal pain, incontinence and bleeding. Minor complications are intestinal hematoma and ulcerations.

Dislocation, reported in 4%-40% of cases,[21,23,34,61] frequently occurs in benign pathology because tumoral growth maintains the stent in situ, otherwise it becomes malignant pathology, chemo treated or after employing laser therapy because the cancer reduction causes increase of the bowel lumen, promoting stent dislocation[62,38,44,62]. Another cause of migration may be the presence of hard feces or the diameter and type of stent employed.

Perforation, reported in 1%-17% of cases,[6,10,21,38,44,51,63] is due to dilatation being performed before stent positioning and is also due to insertion, expansion and mucosal erosion caused by the stent. Perforation represents the most serious complication and it may spread tumor cells and result in a prompt emergency operation. A bowel stenosing lesion localized in the upper peritoneal reflection has a major risk of being perforated during the stenting procedure.

Late obstruction is a complication reported in the literature, with a rate ranging from 7% to 30%,[68,44], is caused by the cancer growth through the stent (cheesewiring) and the use of a covered stent reduces this kind of complication but increases the migration risk.[64]

Tumoral growth, both inside and around the stent, is a potential limiting factor of palliation therapy because it requires periodical substitution of the stent associated with Argon laser treatment.[33,39,63]. To avoid pain, it is essential that the terminal portion of the stent is positioned at least above the dentate line. For this reason, it is difficult to stent a tumoral lesion located within 5 cm.

Table 4 Complications

Complications	N
Major complications	
Acute myocardial infarction	1
Anastomotic leak†	1
Anastomotic dehiscence	1
Minor complications (fever, anemia requiring blood transfusion, prolonged post surgical ileus, wound infection)	5
Total (%)	8 (22.8%)

†Subclinical anastomotic leak in patient with ileostomy.

...
from the anal margin, considering an overlap of 1 cm is required.

The cumulative mortality rate due to the stenting procedure ranges from 0.4% to 1%[10-39].

Even with the best results and limited complication rate, the colonic stenting procedure is still not widely accepted because it may be problematic to institute an emergency multidisciplinary approach and achieve a suitable training level. It is most common to perform a Hartmann colic resection or colostomy alone in high risk patients because large and controlled randomized trials are being waited for before introducing this approach in clinical practice.

In the last decade, the laparoscopic approach has been also extended to oncolological colorectal surgery, maintaining the specific advantages of laparoscopy as a minor surgical trauma, major comfort for patients (minor pain and minor analgesic needs), best esthetic result, minor hospital stay and minor post recovery complications but, at the same time, showing its safety, feasibility and oncological radicality available with the open approach.

Same randomized trials demonstrate the superiority of laparoscopic colectomy for cancer vs an open colectomy in terms of relapse and disease free survival[47,66,67].

In our experience, other than the above mentioned advantages, the stenting procedure has allowed us to do laparoscopic colorectal resection.

For the last decade in our surgical department, we have preferred the laparoscopic approach, whether to manage elective colorectal cancer or an emergency, to perform about 80% of total abdominal operations. One limit to advise against laparoscopy in managing intestinal occlusion is the distension of the small bowel resulting in a decreasing field of view. The stenting procedure allows avoidance of this problem.

In our study, we performed laparoscopic colon resection in 24 of 35 cases. Our results confirm stenting is a safe and feasible procedure, with an open conversion rate of 20% and without any intra-operating complications.

In conclusion, the treatment of stenotic colorectal obstruction by endoscopic decompression and subsequent laparoscopic resection with anastomosis represents a safe procedure, joining the advantages of respective mini invasive manoeuvres with excellent clinical results.

Colorectal stenting transforms an emergency operation burdened with remarkable risks, complications and mortality to an elective operation performable in a totally laparoscopic manner, limiting the confection of colostomy with its correlated complications.

REFERENCES

1 Deans GT, Krukowskii ZH, Irwin ST. Malignant obstruction of the left colon. Br J Surg 1994; 81: 1270-1276
2 Zorcolo L, Covotta L, Carlomagno N, Bartolo DC. Safety of primary anastomosis in emergency colo-rectal surgery. Colorectal Dis 2003; 5: 262-269
3 McGregor JR, O’Dwyer PJ. The surgical management of obstruction and perforation of the left colon. Surg Gynecol Obstet 1993; 177: 203-208
4 Griffith RS. Preoperative evaluation. Medical obstacles to surgery. Cancer 1992; 70: 1333-1341
5 Oehman U. Prognosis in patients with obstructing colorectal carcinoma. Am J Surg 1982; 143: 742-747
6 Tinley HS, Lovegrove RE, Purkayastha S, Sains PS, Weston-Petrides GK, Darzi AW, Tektis PP, Heriot AG. Comparison of colonic stenting and open surgery for malignant large bowel obstruction. Surg Endosc 2007; 21: 225-233
7 Phillips RK, Hittinger R, Fry JS, Fielding LP. Malignant large bowel obstruction. Br J Surg 1985; 72: 296-302
8 Umpleby HC, Williamson RC. Survival in acute obstructing colorectal carcinoma. Dis Colon Rectum 1984; 27: 299-304
9 Valerio D, Jones PF. Immediate resection in the treatment of large bowel emergencies. Br J Surg 1978; 65: 712-716
10 Khot UP, Lang AW, Murali K, Parker MC. Systematic review of the efficacy and safety of colorectal stents. Br J Surg 2002; 89: 1096-1102
11 Athreya S, Moss J, Urquhart G, Edwards R, Downie A, Poon FW. Colorectal stenting for colorectal obstruction: the indications, complications, effectiveness and outcome--a year review. Eur J Radiol 2006; 60: 91-94
12 Tektis PP, Kinsman R, Thompson MR, Stamatakis JD. The Association of Coloproctology of Great Britain and Ireland study of large bowel obstruction caused by colorectal cancer. Ann Surg 2004; 240: 76-81
13 Leitman IM, Sullivan JD, Brans D, DeCosse JJ. Multivariate

Bonfante P et al. Bridge stenting to laparoscopic surgery
analysis of morbidity and mortality from the initial surgical management of obstructing carcinoma of the colon. Surg Gynec Obstet 1992; 174: 513-518

14 Biondo S, Parets D, Frago R, Martí-Ragué J, Kreisler E, De Oca J, Jauregutia E. Large bowel obstruction: predictive factors for postoperative mortality. Dis Colon Rectum 2004; 47: 1899-1897

15 Tobaruella E, Camuñas J, Enríquez-Navasvés JM, Diez M, Ratia T, Martin A, Hernández P, Lasa I, Martin A, Cambroñero JA, Granell J. Medical factors in the morbidity and mortal- ity associated with emergency colorectal cancer surgery. Rev Esp EnfermDig 1997; 89: 13-22

16 Stoianov KH, Karashmaralakov A, Iulianov A, Rachkov I, Vâlchev D. [An analysis of postoperative mortality in patients with large intestine obstructive lesions due to tumor origin]. Khirurgija (Sofia) 1998; 51: 17-19

17 Parker MC. Colorectal stenting. Br J Surg 2006; 93: 907-908

18 Buechta KJ, Boustany C, Caillouette R, Cohn I. Surgical management of the acutely obstructed colon. A review of 127 cases. Am J Surg 1988; 156: 163-168

19 Park JJ, Del Pino A, Orsay CP, Nelson RL, Bark BK, Cintron JR, Abecarian H. Stoma complications: the Cook County experience. Dis Colon Rectum 1999; 42: 1575-1580

20 Mulcahy HE, Skelly MM, Husain A, O’Donoghue DP. Long-term experience following curative surgery for malignant large bowel obstruction. Br J Surg 1996; 83: 46-50

21 Wholey MH, Levine EA, Ferral H, Castaneda-Zuniga W. Initial clinical experience with colonic stent placement. Am J Surg 1998; 175: 194-197

22 Carty NJ, Corder AP. Which surgeons avoid a stoma in treating left-sided colonic obstruction? Results of a postal questionnaire. Ann R Coll Surg Eng 1992; 74: 391-394

23 Knirim K, Wagner HJ, Bethge N, Keymling M, Vâlchev N. A controlled trial of an expandable metal stent for palliation of esophageal obstruction due to inoperable cancer. N Engl J Med 1993; 329: 1302-1307

24 Kaw M, Singh S, Gagnepa H, Azad P. Role of self-expandable metal stents in the palliation of malignant duodenal obstruction. Surg Endosc 2003; 17: 646-650

25 Arnell T, Stamos MJ, Takahashi P, Olja S, Sze G, Eysselein V. Colonic stents in colorectal obstruction. Am Surg 1998; 64: 986-988

26 Binkert CA, Ledermann H, Jost R, Saurenmann P, Decurtins M, Zollinger CL. Acute colonic obstruction: clinical aspects and cost-effectiveness of preoperative and palliative treatment with self-expanding metallic stents-a preliminary report. Radiology 1998; 206: 199-204

27 Harris GJ, Senagore AJ, Lavery IC, Fazio VW. The management of neoplastic colorectal obstruction with colonic endoluminal stenting devices. Am J Surg 2001; 181: 499-506

28 Osman HS, Rashid HI, Sathanathan N, Parker MC. The cost effectiveness of self expanding metal stents in the management of malignant left-sided large bowel obstruction. Colorectal Dis 2000; 2: 233-237

29 Xinopoulos D, Dimitrioupolous D, Theodosopoulos T, Tsamakidis K, Bitsakou G, Platoniotis G, Gontikakis M, Kontis M, Paraskes I, Vassilopoulos P, Paraskevas E. Stenting or stoma creation for patients with inoperable malignant colonic obstructions? Results of a study and cost-effectiveness analysis. Surg Endosc 2004; 18: 421-426

30 Targownik LE, Spiegel BM, Sack J, Hines OJ, Dulai GS, Grahnek IM, Farrell JJ. Colonic stent vs. emergency surgery for management of acute left-sided malignant colonic obstruction: a decision analysis. Gastrointest Endosc 2004; 60: 865-874

31 Dohmoto M. New method-endoscopic implantation of rectal stent in palliative treatment of malignant stenosis. Endosc Dig 1991; 3: 1507-1512

32 Tejerio E, Mainar A, Fernández L, Tobío R, De Gregorio MA. New procedure for the treatment of colorectal neoplastic ob- structions. Dis Colon Rectum 1994; 37: 1158-1159

33 Johnson R, Marsh R, Corson J, Seymour K. A comparison of two methods of palliation of large bowel obstruction due to irremovable colon cancer. Ann R Coll Surg Eng 2004; 86: 99-103

34 Camané F, Echenagusia A, Simó G, Turégano F, Vázquez J, Barreiro-Meiro I. Malignant colorectal obstruction treated by means of self-expanding metallic stents: effectiveness before surgery and in palliation. Radiology 2000; 216: 492-497

35 Choo IW, Do YS, Suh SW, Chun HK, Choo SW, Park HS, Kang SK, Kim SK. Malignant colorectal obstruction: treatment with a flexible covered stent. Radiology 1998; 206: 415-421

36 Rupp KD, Dohmoto M, Meffert R, Holzgreve A, Holibach G. Cancer of the rectum—palliative endoscopic treatment. Eur J Surg Oncol 1995; 21: 644-647

37 Wright KC, Wallace S, Charnsangavej C, Carrasco CH, Gi- anturco C. Percutaneous endovascular stents: an experimental evaluation. Radiology 1985; 156: 69-72

38 Baro TH, Dean PA, Yates MR, Canic C, Koehler RE. Expand- able metal stents for the treatment of colorectal obstruction: techniques and outcomes. Gastrointest Endosc 1998; 47: 277-286

39 Sebastian S, Johnston S, Geoghegan T, Torreggiani W, Buckley M. Pooled analysis of the efficacy and safety of self-expanding metal stenting in malignant colorectal obstruction. Am J Gastroenterol 2004; 99: 2051-2057

40 Spinelli P, Mancini A. Use of self-expanding metal stents for palliation of rectosigmoid cancer. Gastrointest Endosc 2001; 53: 203-206

41 Davidson R, Sweeney WB. Endoluminal stenting for benign colonic obstruction. Surg Endosc 1998; 12: 533-534

42 Paul L, Pinto I, Gómez H, Fernández-Lobato R, Moyano E. Metallic stents in the treatment of benign diseases of the col- on: preliminary experience in 10 cases. Radiology 2002; 223: 715-722

43 Adamsen S, Holm J, Meisner S, Meller P, Naver LP, West F, Wille-Jørgensen PA. Endoscopic placement of self-expanding metal stents for treatment of colorectal obstruction with long-term follow-up. Dan Med Bul 2000; 47: 225-227

44 Suzuki N, Saunders BP, Thomas-Gibson S, Ake C, Marshall M, Halligan S. Colorectal stenting for malignant and benign disease: outcomes in colorectal stenting. Dis Colon Rectum 2004; 47: 1201-1207

45 Brooker JC, Beckett CG, Saunders BP, Benson MJ. Endo- scopic dilation of Crohn’s strictures: long term outcomes in 85 consecutive patients. Gut 2000; 46: 29

46 Cackley M, Hedges AM, Cowling G, Hiele M, Rutgeerts P. Efficacy and safety of hydrostatic balloon dilation of ileo- colonic Crohn’s strictures: a prospective longterm analysis. Gut 1995; 36: 577-580

47 Dulucq JL, Wintringer P, Beyssac R, Barberis C, Talbi P, Mahajna A. One-stage laparoscopic colorectal resection after placement of self-expandable metallic stents for colorectal obstruction: a prospective study. Dig Dis Sci 2006; 51: 2365-2371

48 Mathus-Vliegen EM, Tytgat GN. Laser photocoagulation in the palliation of colorectal malignancies. Cancer 1986; 57: 2212-2216

49 Spinelli P, Dal Fante M, Mancini A. Self-expanding mesh stent for endoscopic palliation of rectal obstructing tumors: a preliminary report. Surg Endosc 1992; 6: 72-74

50 Itabashi M, Hamano K, Kameoka S, Asha. K Self-expand- ing stainless steel stent application in rectosigmoid stricture. Dis Colon Rectum 1993; 36: 508-511

51 Saída Y, Sumiyama Y, Nagao J, Takase M. Stent endopros- thesis for obstructing colorectal cancers. Dis Colon Rectum 1996; 39: 552-555

52 Mainar A, De Gregorio Ariza MA, Tejerio E, Tobio R, Alfonso E, Pinto I, Herrera M, Fernández JA. Acute colorectal obstruc- tion: treatment with self-expandable metallic stents before scheduled surgery—results of a multicenter study. Radiology 1999; 210: 65-69
Martinez-Santos C, Lobato RF, Fradejas JM, Pinto I, Ortega-Deballón P, Moreno-Azcoita M. Self-expandable stent before elective surgery vs. emergency surgery for the treatment of malignant colorectal obstructions: comparison of primary anastomosis and morbidity rates. *Dis Colon Rectum* 2002; 45: 401-406

Meisner S, Hensler M, Knoop FK, West F, Wille-Jørgensen P. Self-expanding metal stents for colonic obstruction: experiences from 104 procedures in a single center. *Dis Colon Rectum* 2004; 47: 444-450

Saida Y, Sumiyama Y, Nagao J, Uramatsu M. Long-term prognosis of preoperative “bridge to surgery” expandable metallic stent insertion for obstructive colorectal cancer: comparison with emergency operation. *Dis Colon Rectum* 2003; 46: S44-S49

Tomiki Y, Watanabe T, Ishibiki Y, Tanaka M, Suda S, Yamamoto T, Sakamoto K, Kamano T. Comparison of stent placement and colostomy as palliative treatment for inoperable malignant colorectal obstruction. *Surg Endosc* 2004; 18: 1572-1577

Fiori E, Lamazza A, De Cesare A, Bononi M, Volpino P, Schillaci A, Cavallaro A, Cangemi V. Palliative management of malignant rectosigmoidal obstruction. Colostomy vs. endoscopic stenting. A randomized prospective trial. *Anticancer Res* 2004; 24: 265-268

Bhalagé C, Targarona EM, Sainz S, Montero O, Bendahat G, Kobus C, Garriga J, Gonzalez D, Pujol J, Trias M. Minimally invasive treatment for obstructive tumors of the left colon: endoluminal self-expanding metal stent and laparoscopic colectomy. Preliminary results. *Dig Surg* 2004; 21: 282-286

Carne PW, Frye JN, Robertson GM, Frizelle FA. Stents or open operation for palliation of colorectal cancer: a retrospective, cohort study of perioperative outcome and long-term survival. *Dis Colon Rectum* 2004; 47: 1455-1461

Law WL, Choi HK, Chu KW. Comparison of stenting with emergency surgery as palliative treatment for obstructing primary left-sided colorectal cancer. *Br J Surg* 2003; 90: 1429-1433

Vrazas JJ, Ferris S, Bau S, Faragher I. Stenting for obstructing colorectal malignancy: an interim or definitive procedure. *ANZ J Surg* 2002; 72: 392-396

Kinsman KJ, DeGregorio BT, Katon RM, Morrison K, Saxon RR, Keller FS, Rosch J. Prior radiation and chemotherapy increase the risk of life-threatening complications after insertion of metallic stents for esophagogastric malignancy. *Gastrointest Endosc* 1996; 43: 196-203

Canon CL, Baron TH, Morgan DE, Dean PA, Koehler RE. Treatment of colonic obstruction with expandable metal stents: radiologic features. *AJR Am J Roentgenol* 1997; 168: 199-205

Repici A, Reggio D, De Angelis C, Barletti C, Marchesa P, Musso A, Carucci P, Debernardi W, Falco M, Rizzetto M, Sarracco G. Covered metal stents for management of inoperable malignant colorectal strictures. *Gastrointest Endosc* 2000; 52: 735-740

Bhardwaj R, Parker MC. Palliative therapy of colorectal carcinoma: stent or surgery? *Colorectal Dis* 2003; 5: 518-521

Weeks JC, Nelson H, Gelber S, Sargent D, Schroeder G. Short-term quality-of-life outcomes following laparoscopically-assisted colectomy vs open colectomy for colon cancer: a randomized trial. *JAMA* 2002; 287: 321-328

Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, Visa J. Laparoscopic-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. *Lancet* 2002; 359: 2224-2229

S- Editor Wen LL L- Editor Roemmele A E- Editor Xiong L