Brain structural changes in regions within the salience network in patients with functional constipation

Zhenzhen Jia1,2 · Guanya Li1,2 · Yang Hu1,2 · Hao Li1,2 · Wenchao Zhang1,2 · Jia Wang1,2 · Lei Zhang1,2 · Zongxin Tan1,2 · Shuai Lv1,2 · Karen M. von Deneen1,2 · Shijun Duan3 · Guangbin Cui3 · Yi Zhang1,2 · Yongzhan Nie4

Accepted: 1 February 2022 / Published online: 12 March 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Functional constipation (FCon) is one of the common functional gastrointestinal disorders (FGID). Previous studies reported alterations in cortical morphometry as well as changes in white matter (WM) fiber tracts and thalamo-limbic/parietal structural connectivity (SC). However, whether patients with FCon are implicated in changes in gray matter (GM) volume and associated SC remains unclear. Voxel-based morphometry (VBM) was first employed to examine differences in GM volume between 48 patients with FCon and 52 healthy controls (HC). Diffusion tensor imaging (DTI) with probabilistic tractography analysis was then employed to explore alterations in SC of these regions. Results showed abdominal symptoms were positively correlated with anxiety (SAS). Two sample t-test showed patients with FCon had decreased GM volumes in the right middle frontal gyrus (MFG_R), left insula (INS_L), and anterior cingulate cortex (ACC, \(P_{FWE} < 0.05 \)) which were negatively correlated with abdominal symptoms and difficulty of defecation respectively. Seed-based SC analysis showed patients with FCon had decreased fractional anisotropy of the ACC-right MFG and bilateral INS-MFG tracts. These findings reflect FCon is associated with changes in GM volumes and corresponding SC in brain regions within the salience network.

Keywords Functional constipation · Diffusion tensor imaging · Voxel-based morphometry · Gray matter volume · Salience network

Introduction

Functional constipation (FCon), is one of the common functional gastrointestinal disorders (FGID) (Alame & Bahna, 2012; De Giorgio et al., 2015; Koppen et al., 2015) with an average female-male ratio of 2.1:1 (Mugie et al., 2010) and a prevalence ranging from 0.7% to 79% in clinical practice (Alame & Bahna, 2012; Koppen et al., 2015; Mugie et al., 2010). FCon features infrequent bowel movements, difficulty of defecation, large and/or hard stools, excessive straining, and is usually associated with abdominal distension/pain (Alame & Bahna, 2012; De Giorgio et al., 2015; Koppen et al., 2015). These symptoms have imposed a huge burden on families and society because of impaired quality of life (Bongers et al., 2009) and emotional status (Jones et al., 2006).

In recent years, neuroimaging has been gradually employed to assess brain structural and functional changes in patients with FCon (Ma et al. 2021; Liu et al., 2021; Hu et al., 2020; Li et al., 2021; Zhu et al., 2016; Zhang et al., 2020; Jin et al., 2019). Previous resting-state functional
magnetic resonance imaging (RS-fMRI) report showed that FCon related brain functional abnormalities were in areas associated with emotional modulation including anterior insula-aINS, hippocampal gyrus-HIPP, orbital frontal cortex-OFC, and dorsal anterior cingulate cortex-dACC (Zhu et al., 2016). Further Granger causality analysis indicated that a stronger effective connectivity from the dACC and HIPP to the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the supplementary motor area (SMA) and precentral (PreCen) to aINS and HIPP, reflecting abnormalities in sensory and behavioral responses (Zhu et al., 2016). Another RS-fMRI report was designed to examine gender-related differences in resting-state brain activity and functional connectivity in FCon patients, and results showed lower basal brain activities (i.e., insula-INS, PreCen, thalamus, and OFC), and decreased INS-OFC connectivity in female FCon patients than in males and its negative correlation with anxiety in women and abdominal distension in men (Jin et al., 2019). One study combining graph theory with RS-fMRI showed that FCon had small-worldness and a low normalized clustering coefficient, indicating reduced brain functional connectivity, which were predominately related to the rostral anterior cingulate cortex (emotional processing), SMA (motor-control), and thalamus (somatic/sensory) (Liu et al., 2021). One newly published study reported FCon showed decreased activity in fractional amplitude of low-frequency fluctuation in the perigenual anterior cingulate cortex, dorsomedial prefrontal cortex and precuneus and enhanced PreCen-thalamus connectivity and attenuated precuneus-thalamus connectivity (Li et al., 2021). Another published study about alterations of white matter network reported patients with FCon showed increased nodal characteristics in the right middle frontal gyrus (MFG), left superior frontal gyrus, right anterior cingulate and paracinculate and decreased nodal characteristics in the left caudate and left thalamus (Ma et al., 2021). Those aforementioned fMRI studies highlight that FCon is mainly associated with dysfunction of emotional processing implicated in salience network (SN) including ACC and INS.

Growing evidence have showed that brain functional abnormalities might be associated with structural changes (Hao et al., 2013; Hubbard et al., 2016; Wang et al., 2020). Previous MRI study reported cortical morphometric alterations in brain areas involved with emotional processing (MFG, dACC, and OFC), self-referential processing (precuneus/posterior cingulate cortex), and somatic/motor-control (SMA) in FCon group (Hu et al., 2020). Cortical morphological abnormalities may be related to changes in WM microstructure (Tannes et al., 2010). Another recent study showed that FCon was related to changes in thalamo-limbic/parietal structural connectivity (SC), highlighting the integration of the thalamus in the brain structural network (Zhang et al., 2020). However, few studies have been performed to examine the alterations in gray matter (GM) volume and associated SC in patients with FCon.

In addition, one structural MRI study on irritable bowel syndrome (IBS), a typical subtype of FGID, displayed significant alterations in GM volumes in the MFG, anterior cingulate cortex (ACC), INS, and HIPP in patients with IBS (Zhao et al., 2018). Diffusion tensor imaging (DTI) also detected abnormalities in SC between INS and ACC in IBS patients (Chen et al., 2011). Female IBS patients had decreased GM volumes in the INS, MFG, ACC, and HIPP (Labus et al., 2014). These previous brain imaging studies on IBS consistently recorded changes in brain regions implicated in emotional processing and modulation, especially in the aINS and ACC, which are key nodes of the SN (Chang et al., 2013; Garcia-Larrea, 2012; Mayer et al., 2015). The SN, which includes INS, ACC, and MFG, is responsible for integrating all kinds of sensory information and directing specific brain regions to respond appropriately (Peters et al., 2016). However, whether FCon is implicated in structural abnormalities in the SN has not been investigated yet.

The current study was designed to explore the brain structural changes in FCon patients. Thus, voxel-based morphometry (VBM) was first employed to explore differences in GM volumes between 48 FCon patients and 52 healthy controls (HC), and regions showing significant differences were then selected as seed regions for probabilistic tractography to feature regional SC as quantified by fractional anisotropy (FA), mean- (MD), axial- (AD), and radial diffusivity (RD). The study aimed to test whether: (a) FCon is associated with decreased GM volumes in brain regions involved with interoceptive and emotional processing, particularly the SN. (b) FCon is associated with alterations in SC of brain regions within the SN.

Materials and methods

Participants

The experimental protocol was approved by the Institutional Review Board of Xijing Hospital and registered in the Chinese Clinical Trial Registry Center as: ChiCTR-OOB-15006347 (http://www.chictr.org.cn). The experiments were conducted in accordance with the Declaration of Helsinki. Fifty-four patients with FCon were recruited from a clinical site at Xijing Hospital affiliated with the Air Force Medical University in Xi’an, China. Fifty-two HC subjects were recruited from the local community. All participants in the experiment were right-handed. They signed an informed consent form as well as performed a full physical examination with history. FCon was diagnosed using Rome IV criteria through a gastroenterologist experienced in FGID.
diagnosis (Drossman, 2016). FCon subjects with various main bowel habits such as functional defecatory disorders, slow transit constipation, and a combination of the two types were included in the experiment and constipation after childbirth, congenital giant colon/redundant sigmoid colon/ pelvic floor muscle relaxation, psychiatric/medical/neurological disorders demanding instant treatment, and existing medicine taken that might influence the central nervous system were removed. Four females and two males with dental implants were excluded from the experiment. Then, the study included fifty-two HC subjects and forty-eight patients with FCon. All subjects were demanded to finish several self-administered questionnaires, such as difficulty of defecation and Patient Assessment of Constipation Symptoms Questionnaire which consists of abdominal symptoms, rectal symptoms, and stool symptoms (Frank et al., 1999). All subjects finished the ZUNG self-rating anxiety scale (SAS) (Zung, 1971) and ZUNG self-rating depressive scale (SDS) (Zung, 1965) to estimate the severity of their anxiety/depression (Table 1). The study excluded all subjects with anxiety/depression.

MRI acquisition

MRI scans were implemented between 9 A.M. and 10 A.M. to guarantee uniformity of judgments and to minimize diurnal variation. The experiment of the study was based on a 1.5 T Signa HDXT scanner (GE, Milwaukee, WI, USA). Firstly, the high-resolution structural images of all subjects were obtained by three-dimensional magnetization-prepared fast acquisition gradient-echo sequences with a voxel size of 1 mm³ as well as an axial fast-spoiled-gradient-echo sequence (matrix size = 256×256, TR = 9.1 ms, TE = 3.0 ms, slice thickness = 1 mm as well as 248 slices, and field-of-view = 512×512 mm²). Secondly, diffusion-weighted (DW) images (single shot spin echo planar imaging sequence) with 1 non-diffusion weighting (b = 0 s/mm²) and 25 non-collinear diffusion sensitizing directions (b = 1000 s/mm²) were obtained, and the parameters were: matrix size = 128×128, TR = 8000 ms, TE = 98.3 ms, field-of-view = 256×256 mm², 30 continuous axial slices, and slice thickness = 5 mm.

Voxel-based morphometry of gray and white matter volumes

The 3D structural images were analyzed by VBM toolbox (http://dbm.neuro.uni-jena.de/vbm/download/) and Statistical Parametric Mapping (SPM 12, https://www.fil.ion.ucl.ac.uk/spm/). Preprocessing steps containing realignment, bias-correction, tissue classification, and spatial normalization were implemented on the two groups respectively.

Statistical parametric mapping (identification of region of interest)

Voxel-wise analysis on GM brain mappings was implemented using SPM 12. Between HC and FCon groups, they were examined by a two-sample t-test with age/gender regressed out as covariates. Prominent GM volumes were chosen as regions of interest (ROIs) after whole brain family-wise error (FWE) correction (P < 0.05) at the minimum cluster size of 30 voxel level. Contralateral brain areas were also identified as ROIs. Five ROIs were selected for fiber tracking using Subcortical Structural probabilistic atlases (Desikan et al., 2006) and FSL’s Harvard–Oxford Cortical and AAL atlas (Tzourio-Mazoyer et al., 2002) including: ACC, right insula (INS_R), left insula (INS_L), right middle frontal gyrus (MFG_R), and left middle frontal gyrus (MFG_L).

DW-MRI tractography analysis

FMRIB’s Diffusion Toolbox (FDT), which is embedded in FMRIB Software Library (FSL) version 5.0.9 software package (http://www.fmrib.ox.ac.uk/fsl/), was employed to pretreatment DTI information as well as implement

| Table 1 Demographic and clinical information of HC and FCon groups |
|---|----------------|----------------|
| Age (years) & 38.0±2.0 & 43.4±1.8 & 0.052 |
| Gender & 34 F / 18 M & 37 F / 11 M & 0.198 |
| Depression (SDS) (0–80) & 40.8±1.4 & 43.2±1.1 & 0.167 |
| Anxiety (SAS) (0–80) & 36.6±1.0 & 39.0±0.9 & 0.074 |
| Difficulty of defecation (0–100) & N/A & 73.5±2.6 & N/A |
| Stool symptoms & N/A & 3.7±0.3 & N/A |
| Rectal symptoms & N/A & 8.3±0.9 & N/A |
| Abdominal symptoms & N/A & 2.4±0.3 & N/A |

Abbreviation: HC, healthy controls; FCon, functional constipation; SDS, ZUNG Self-rating Depressive Scale; SAS, ZUNG Self-rating Anxiety Scale; SE, standard error
Probabilistic tractography. Firstly, FSL Brain Extractor Tool (Smith, 2002) was employed to eliminate non-brain tissue. Eddy-current correction and head motion were conducted by FDT in the FSL. Secondly, Diffusion Tensor Imaging Fit (DTIFIT) in FDT was employed to fit a diffusion tensor model at each voxel of the pretreated eddy current corrected diffusion-weighted data and to obtain the FA, MD, AD, and RD maps. Then, Bayesian Estimation of Diffusion Parameters Obtained using Sampling Technique was used to evaluate the fiber direction distribution at every brain voxel (Hirsiger et al., 2016).

Probabilistic fiber tractography was calculated for every participant by probtrackx2 to produce the most likely connectivity distribution between ROI pairs. Tractography parameters were: 5000 samples per seed voxel, 0.2 curvature threshold, subsidiary fiber volume threshold of 0.01, step length of 0.5 mm, and a maximum number of steps 2000. Final-tract mask was obtained by overlapping the i-tract and j-tract, which respectively represent a seed mask and a target mask. The mean value of FA/MD/AD/RD within the final-tract mask connecting each ROI pair was calculated (Hirsiger et al., 2016). Participants who failed tractography/ROI conversion were removed from the data analysis (resulting in 2 HC subjects and 3 patients with FCon exclusions) (Hirsiger et al., 2016).

Diffusion is usually measured with FA, MD, AD, and RD. FA is a commonly used method to measure anisotropy, which is sensitive to WM microstructure changes (Basser, 1995; Madden et al., 2012). Decreased FA may indicate disordered or damaged WM and fiber structure caused by demyelization or axonal loss. AD and RD are specific to the type of changes: axial and radial (Alexander et al., 2007; Thomason & Thompson, 2011). AD is sensitive to axons and changes in AD can be caused by decreased axonal branching or damage (Budde et al., 2009). RD is sensitive to myelin and demyelination or myelination may lead to changes in RD (Song et al., 2002). MD is the average rate of water diffusion independent of direction, which decreases with heightened myelination (Madden et al., 2009). MD values increased when water diffusion is not restricted by fibers, reflecting WM metabolism at the cellular level (Chanraud et al., 2010).

Association between behaviors and GM/DTI
Partial correlation analysis with age and gender as covariates was conducted to evaluate the correlations among GM volumes, diffusion parameters, and clinical variables. Bonferroni correction was used for multiple comparisons, and significance level was set at $P < 0.0028$ ($0.05/18$) between GM volumes/DTI parameters and clinical variables.

Results

Demographic characteristics
The study included forty-eight patients with FCon (age 43.4 ± 1.8 years, range 20—50 years, 11 males) and fifty-two HC subjects (age, education, gender, SDS, and SAS matched, $P > 0.05$; age 38.0 ± 2.0 years, range 20—50 years, 18 males) (Table 1). Table 1 showed difficulty of defecation, stool symptoms, rectal symptoms, and abdominal symptoms in FCon group. Abdominal symptoms were positively correlated with SAS in patients with FCon ($r = 0.46, P = 0.001$, Fig. 1D).

Alterations in GM volumes
FCon group showed significant decreases in GM volumes in INS_L, ACC, and MFG_R than HC ($P_{FWE} < 0.05$, Fig. 1A, B). GM volume in the INS_L was negatively correlated with abdominal symptoms ($r = -0.51, P = 0.0003$), and GM volume in the ACC was negatively correlated with difficulty of defecation in the FCon group ($r = -0.46, P = 0.0011$, Fig. 1C).

Alterations in SC
FCon group showed significant decreased FA of the right MFG-ACC, left INS-left MFG, and right INS-right MFG tracts than HC (Bonferroni correction, $P < 0.0005$, Fig. 2 and Table 2).

Discussion
VBM and DTI with probabilistic tractography analysis were employed to explore differences in brain GM volume and SC between FCon and HC groups. FCon group showed abdominal symptoms were positively correlated with SAS and significant decreases in GM volumes in the INS, ACC, and MFG involved in interoceptive and emotional processing. GM volume in the INS was negatively correlated with abdominal symptoms, and GM volume in the ACC was negatively correlated with difficulty of defecation in the
Fig. 1 Two-sample t-test for GM volumes. (A and B) Compared with HC subjects, patients with FCon exhibited decreased GM volumes in the INS_L, ACC, and MFG_R (cluster size-corrected, $P_{FWE} < 0.05$). Age and gender were regressed out as covariates. (C) Behavioral measurements were significant negatively correlated with GM volumes. (D) Correlations between behavioral measurements.

Fig. 2 Alterations in SC between HC and FCon groups. FCon group showed significant decreased FA of the left INS-left MFG (A), right INS-right MFG (B), and ACC-right MFG (C, Bonferroni correction, $P < 0.0005$). Age and gender were regressed out as covariates.

Table 2 Differences in diffusion parameters between HC and FCon groups.

Fiber tracts between ROI pairs	Diffusion parameters	HC (N = 50) (Mean ± SE)	FCon (N = 45) (Mean ± SE)	HC vs. FCon P value
ACC – MFG_R	FA	0.388 ± 0.004	0.362 ± 0.004	<0.001
INS_L – MFG_L	FA	0.348 ± 0.003	0.328 ± 0.003	<0.001
INS_R – MFG_R	FA	0.342 ± 0.003	0.322 ± 0.003	<0.001

Abbreviation: HC, healthy controls; FCon, functional constipation; ACC, anterior cingulate cortex; INS, insula; MFG, middle frontal gyrus; L, left; R, right; SE, standard error; FA, fractional anisotropy.
FCon group. Results also showed significant decreased FA of the ACC-right MFG and bilateral INS-MFG tracts in FCon group.

Alterations in GM volume within SN

Results showed FCon group had decreased GM volumes in the INS, ACC, and MFG, which are key nodes of the SN (Peters et al., 2016). SN is essential for the integration of visceral and sensory information (Peters et al., 2016; Uddin, 2015).

Patients with FCon had decreased GM volume in the INS, which is consistent with changes in patients with IBS (Labus et al., 2014; Zhao et al., 2018). The INS is responsible for interoceptive information processing related to the organism, and plays a crucial role in integrating visceral sensation, emotional processing, and high-grade cognition (Craig, 2002; Critchley et al., 2004; Garcia-Larrea, 2012; Mayer et al., 2009; Starr et al., 2009; Uddin et al., 2017). A previous study reported that electrocortical stimulation of the INS caused visceral sensory responses, including abdominal sensation, stomach vibration, and vomiting (Stephani et al., 2011). Reduced GM volume in INS in FCon group might disrupt the internal information perception. Data showed the negative association between abdominal symptoms and GM volume in the INS in FCon group, and abdominal symptoms included pain in your stomach, stomach cramps, and bloating in your stomach, reflecting the role of the INS in sensing visceral pain (Keszthelyi et al., 2012). One RS-fMRI reported that FCon showed abnormal baseline brain activities in aINS and amplitude of low frequency fluctuation (ALFF) in aINS was negatively correlated with difficulty of defecation (Zhu et al., 2016). Another RS-fMRI study reported that FCon showed gender effects on baseline brain activity in the INS, and that ALFF in the INS was positively correlated with abdominal pain (Jin et al., 2019). A previous IBS study also reported that decreased excitatory neurotransmitter grades in aINS were related to abdominal pain (Bednarska et al., 2019). These previous studies indicate that INS is related to interoceptive processing of visceral sensation including abdominal pain and/or distension, and decreased GM volume in the INS might account for its functional abnormality reported in patients with IBS and FCon.

FCon group had also decreased GM volumes in areas related to emotional processing (ACC, MFG). The ACC is primarily concerned with executive-control of internal/external stimuli, affective responses to visceral sensation, and modulation of emotional responses (George et al., 2000).

The MFG is the additional cortical node of the SN (Peters et al., 2016), which is critically implicated in visceral sensory information, emotional processing, and cognitive-control (Hu et al., 2020; Liu et al., 2021). One study reported that FCon displayed reduced cortical thickness in the MFG and dACC, and duration of constipation was negatively correlated with cortical thickness in the ACC (Hu et al., 2020). FCon also showed abnormal baseline brain activities in the ACC (Zhu et al., 2016). One MRI study on IBS revealed abnormalities in the ACC during rectal stimulation (Wang et al., 2017). MFG was related to attention control and chronic pain modulation (Lorenz et al., 2003). Data showed that there was no significant association between the MFG and constipation symptoms, which might be related to the small sample size (controlling for age, gender, SAS, and SDS). However, in FCon group, GM volume in ACC had a negative association with difficulty of defecation. These findings suggested that constipation symptoms such as difficulty of defecation might not only be associated with abnormalities in function and cortical morphology, but also with changes in GM volumes in regions involved with emotional processing, highlighting the critical role of the ACC in FCon.

Alterations in SC within SN

Previous studies reported abnormal brain activation in the INS, ACC, MFG, thalamus, OFC, HIPP, and PreCen during visceral stimulation in patients with FCon (Hu et al., 2020; Jin et al., 2019; Liu et al., 2021; Zhang et al., 2020; Zhu et al., 2016). One recent study using DTI with probabilistic tractography reported FCon was implicated in changes in the SC of thalamo-limbic/parietal circuits (Zhang et al., 2020). In the current study, alterations in the SC within SN were assessed by FA/MD/AD/RD, indicating that WM fiber tracts make a valuable contribution towards patients with FCon (Ellingson et al., 2013; Fang et al., 2017).

Results showed significant decreased FA of the ACC-right MFG. Previous fMRI studies reported that the ACC and MFG were implicated in emotional regulation processing (Beauregard et al., 2001; Hu et al., 2020; Zhu et al., 2016). One cortical morphometric study reported that FCon displayed reduced cortical thickness in the dACC and MFG (Hu et al., 2020). Another study combining DTI and RS-fMRI reported that patients with borderline (Koppen et al., 2015) personality disorder showed abnormal SC and functional connectivity between the ACC and MFG (Lei et al., 2019). Thus, our data indicated that abnormal SC between the ACC and MFG might be associated with dysfunction in emotional regulation processing in patients with FCon.

The current study also showed significant decreased FA of the bilateral INS-MFG tracts. A previous RS-MRI report revealed that FCon patients showed increased ALFF in the aINS (Zhu et al., 2016). Another study reported FCon displayed reduced cortical thickness in the MFG (Hu et al., 2020). These findings suggested that abnormal SC between the INS and MFG is associated with emotional processing of visceral sensations.
Conclusion

The study was designed to examine brain GM volume and corresponding SC changes in FCon patients. Results showed abdominal symptoms were positively correlated with anxiety (SAS) and FCon group had lower GM volumes in the ACC, MFG, and INS than HC. GM volume in the INS was negatively correlated with abdominal symptoms, and GM volume in the ACC was negatively correlated with difficulty of defecation. Results also showed significant decreased FA of the ACC-right MFG and bilateral INS-MFG tracts in FCon group. These discoveries reflect that FCon is involved in changes in GM volumes and corresponding SC in brain regions within the salience network.

Acknowledgements

We thank all participants and their families for participating in our study. This work was supported by the National Natural Science Foundation of China under Grant Nos. 82172023; the Open Funding Project of National Key Laboratory of Human Factors Engineering, Grant No. 6142222190103; and National Clinical Research Center for Digestive Diseases, Xi’an, China under Grant No. 2015BAI13B07.

Authors’ contribution

Study concept and design (YN, YZ, and GL), diagnosis (YN, YZ, and GL), image data collection (GC, SD, and ZI), data analysis (ZJ, GL, YH, and HL), data interpretation (KMY and YZ), writing of manuscript (ZJ and YZ), and review and approval of manuscript (all authors).

Declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients included in the study.

Conflict of Interest

The authors declare no conflict of interest.

References

Alame, A., & Bahna, H. (2012). Evaluation of Constipation. Clinics in Colon and Rectal Surgery, 25(01), 5–11.
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.
Basser, P. J. (1995). Inferring microstructural features and the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655–666.
Crichtley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189–195.
De Giorgio, R., Ruggeri, E., Stanghellini, V., Eusebi, L. H., Bazzoli, F., & Chiarioni, G. (2015). Chronic constipation in the elderly: A primer for the gastroenterologist. BMC Gastroenterology, 15(1), 130.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T.,Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.
Drossman, D. A. (2016). Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features, and Rome IV. Gastroenterology, 150(6), 1262–1279.
Ellingson, B. M., Mayer, E., Harris, R. J., Ashen-McNally, C., Naliboff, B. D., Labus, J. S., et al. (2013). Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain, 154(9), 1528–1541.
Fang, J., Li, S., Li, M., Chan, Q., Ma, X., Su, H., et al. (2017). Altered white matter microstructure identified with tract-based spatial statistics in irritable bowel syndrome: A diffusion tensor imaging study. Brain Imaging and Behavior, 11(4), 1110–1116.
Frank, L., Kleinman, L., Farup, C., Taylor, L., & Miner, P. J. (1999). Psychometric validation of a constipation symptom assessment questionnaire. Scandinavian Journal of Gastroenterology, 34(9), 870–877.
Garcia-Larrea, L. (2012). The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiologie Clinique, 42(5), 299–313.
George, B., Phan, L., & Michael, I. P. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6).
Hao, X., Xu, D., Bansal, R., Dong, Z., Liu, J., Wang, Z., et al. (2013). Multimodal magnetic resonance imaging: The coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Mapping, 34(2), 253–271.
Hirsiger, S., Koppelmans, V., Méritall, S., Lien, F., Erdeniz, B., Seidler, R. D., et al. (2016). Structural and functional connectivity in healthy aging: Associations for cognition and motor behavior. Human Brain Mapping, 37(3), 855–867.
Hu, C., Liu, L., Liu, L., Zhang, J., Hu, Y., Zhang, W., et al. (2020). Cortical morphometry alterations in brain regions involved in emotional, motor-control and self-referential processing in patients with functional constipation. Brain Imaging and Behavior, 14(5), 1899–1907.
in Psychiatric Disease and Treatment. *Frontiers in Systems Neuroscience*, 10, 104.

Smith, S. M. (2002). Fast robust automated brain extraction. *Human Brain Mapping*, 17(3), 143–155.

Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. *NeuroImage*, 17(3), 1429–1436.

Starr, C. J., Sawaki, L., Wittenberg, G. F., Burdette, J. H., Oshiro, Y., Quevedo, A. S., et al. (2009). Roles of the Insular Cortex in the Modulation of Pain: Insights from Brain Lesions. *Journal of Neuroscience*, 29(9), 2684–2694.

Stephani, C., Fernandez-Baca Vaca, G., Maciunas, R., Koubeissi, M., & Lüders, H. O. (2011). Functional neuroanatomy of the insular lobe. *Brain Structure and Function*, 216(2), 137–149.

Tamnes, C. K., Osbby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnnessen, P., & Walhovd, K. B. (2010). Brain Maturation in Adolescence and Young Adulthood: Regional Age-Related Changes in Cortical Thickness and White Matter Volume and Microstructure. *Cerebral Cortex*, 20(3), 534–548.

Thomason, M. E., & Thompson, P. M. (2011). Diffusion imaging, white matter, and psychopathology. *Annual Review of Clinical Psychology*, 7, 63–85.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. *NeuroImage*, 15(1), 273–289.

Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. *Nature Reviews Neuroscience*, 16(1), 55–61.

Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and Function of the Human Insula. *Journal of Clinical Neurophysiology*, 34(4), 300–306.

Wang, D., Zhang, X., Zhang, X., Huang, Z., & Song, Y. (2017). Magnetic resonance imaging analysis of brain function in patients with irritable bowel syndrome. *BMJ Gastroenterology*, 17(1).

Wang, Y., Ji, G., Hu, Y., Li, G., Ding, Y., Hu, C., et al. (2020). Laparoscopic sleeve gastrectomy induces sustained changes in gray and white matter brain volumes and resting functional connectivity in obese patients. *Surgery for Obesity and Related Diseases*, 16(1), 1–9.

Zhang, Z., Hu, Y., Lv, G., Wang, J., He, Y., & Zhang, L., et al. (2020). Functional constellation is associated with alterations in thalamo-parietal structural connectivity. *Neurogastroenterology & Motility*.

Zhao, L., Wang, Y., & Zhang, Y. (2018). Microstructural changes in the brain in elderly patients with irritable bowel syndrome. *Aging Medicine*, 1(2), 141–148.

Zhu, Q., Cai, W., Zheng, J., Li, G., Meng, Q., Liu, Q., et al. (2016). Distinct resting-state brain activity in patients with functional constipation. *Neuroscience Letters*, 632, 141–146.

Zung, W. W., Richards, C. B., & Short, M. J. (1965). Self-Rating Depression Scale in an Outpatient Clinic. *Archives of General Psychiatry*, 13(6), 508.

Zung, W. W. (1971). A Rating Instrument For Anxiety Disorders. *Psychosomatics*, 12(6), 371–379.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.