Growth and yield performance of mutant ginger (Zingiber officinale Rosc.) lines in South-Eastern Nigeria

Mary N. Abua¹, Godfrey A. Iwo¹, Macauley A. Ittah¹, Ekemini E. Obok², Richmond E. Edugbo²

¹Department of Crop Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, Nigeria.
²Department of Agronomy, Michael Okpara University of Agriculture, Umuahia, Nigeria.

ABSTRACT
A field evaluation on growth and yield performances of 15 mutant lines and two landraces of Zingiber officinale (Rosc.) was conducted in Cross River State, Nigeria, in 2016 and 2017. The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replications in each of the three locations, Calabar, Ikom, and Ogoja. Combined analysis of variance showed significant (p < 0.05) growth and yield differences among the 17 ginger genotypes. Nine mutant lines, UG1-5-04, UG1-5-35, UG2-9-01, UG1-13-02, UG1-7-24, UG1-5-38, UG1-5-31, UG2-11-03, and UG1-5-18, had superior rhizome yield ranging from 18.44 to 22.06 t/ha and were significantly different (p > 0.05) from the two landraces, UG1 (14.39 t/ha) and UG2 (14.72 t/ha). Mutant UG2-9-01 had the highest average number of rhizomes per plant (21.44) and the longest rhizomes (20.46 cm). Mutant UG1-5-04 had the highest total rhizome yield per hectare (22.06 t/ha). The overall performance of the nine mutant ginger lines across the 2 years was superior and similar (p < 0.05) in Ogoja and Ikom locations in comparison with Calabar location. The two locations, Ikom and Ogoja, were recommended as the most suitable environments for the cultivation of the nine promising mutant lines of ginger in Cross River State.

1. INTRODUCTION
Ginger (Zingiber officinale Rosc.) is an important spice in the family Zingiberaceae with 90 species [1]. Ginger plant is refreshingly aromatic but it is the rhizome (raw or processed) that is valued as a spice. Ginger is produced in more than 25 countries in the world. Nigeria, Nepal, India, China, Indonesia, Thailand, Korea, Philippines, Australia, and Malaysia are the major growing countries. Ginger as a spice is produced on a large scale in Nigeria for export compared to other spices like garlic, onion, and pepper and highly valued in the international market because of its aroma, pungency, and oleoresin content [2]. Ginger is extremely important in the production of curry powder and gingerbread and in some beers and other beverages. In addition to their medicinal qualities, ginger extracts may also serve as a natural larvicide agent [3]. The refreshing aroma with strong taste makes ginger an important ingredient of most world food processing industries [4].

The production trend of ginger in Nigeria is low when compared to other export crops due to its poor yields which can be attributed to the lack of improved varieties [5]. In spite of these poor yields, Nigeria is the main producer and exporter of ginger in Africa and ranks 4th in the world after India, China, and Nepal [6]. The average production of ginger in Nigeria annually is 50,000 metric tonnes [7], out of which about 10% is used locally as fresh ginger while 90% is processed for both local usage and export. Owing to its status as a minor crop, ginger attracts little research effort; as a result, the yields have remained generally low due to lack of improved varieties [8].

The major constraint to ginger production in Nigeria is narrow gene pool, poor flowering, and lack of seed set [1]. Unsuitable soils and unfavorable ecological factors as well as lack of improved varieties are reasons for low yield and productivity [9]. Over 60 years of ginger cultivation in Nigeria, farmers have relied entirely on two local landraces, namely, UG1 and UG2 [10]. This lack of improved varieties has resulted in the low yields obtained by ginger farmers in Nigeria. However, new ginger lines have been developed through mutation breeding; these mutant lines must be evaluated in different agroecological zones to determine
their growth and yield performance, adaptation, and superiority before they are released for wide cultivation. This has prompted this research across three locations in Cross River State, Nigeria. Thus, the objective of the study was a 2-year (2016 and 2017) field evaluation of growth and yield performances of 15 mutant lines and two landraces of ginger at three geographically distinct locations (Calabar, Ikom, and Ogoja) in Cross River State, Nigeria.

2. MATERIALS AND METHODS

2.1. Experimental Site

This experiment was carried out across three locations in Cross River State, Nigeria, during the 2016 and 2017 cropping seasons (March to December). The locations were Calabar (4.975°N, 8.3417°E) (soil pH: 5.7, effective cation exchange capacity (ECEC): 7.94, and soil texture: loamy sand), usually with an annual rainfall of 2,915–3,500 mm and optimum temperature of 26°C, Ikom (5.9617°N, 8.7206°E) (soil pH: 5.8, ECEC: 11.74, and soil texture: sandy clay loam), with an annual rainfall of 2,250–2,332 mm and optimum temperature of 27°C, and Ogoja (6.6548°N, 8.7977°E) (soil pH: 5.2, ECEC: 5.57, and soil texture: sandy loam), with an annual rainfall of 1,848–2,200 mm and optimum temperature of 28.7°C [11]. The three locations were previously cropped to leafy vegetables under conventional organic farming management. Tables 1–3 give an overview of the actual rainfall, sunshine, temperature, and relative humidity recordings at the three experimental sites during the study period.

2.2. Planting Materials and Source

Seventeen ginger genotypes consisting of fifteen (15) mutant lines (UG1-11-07, UG1-13-02, UG1-2-35, UG1-5-04, UG1-5-18, UG1-5-22, UG1-5-31, UG1-5-35, UG1-5-38, UG1-5-48, UG1-5-49, UG1-5-52, UG1-7-24, UG2-11-03, and UG2-9-01) and two local check landraces (UG1 and UG2) were sourced from National Root Crop Research Institute (NRCRI), Umudike, Nigeria. The 15 mutant lines were derived from the existing landraces UG1 and UG2 by exposing them to different doses of gamma-ray irradiation. The mutant lines derived from UG1 were exposed to 2GY, 5GY, 7GY, 11GY, and 13GY doses of gamma-ray to give the following mutant lines: UG1-2-35, UG1-5-04, UG1-5-18, UG1-5-22, UG1-5-31, UG1-5-35, UG1-5-38, UG1-5-48, UG1-5-49, UG1-5-52, UG1-7-24, UG1-11-07, and UG1-13-02. The mutant lines derived from UG2 were exposed to 9GY and 11GY doses of gamma-ray to give the following mutant lines: UG1-9-01 and UG2-11-03.

2.3. Field Layout, Experimental Design, and Data Collection

This experiment was a split plot laid out in a Randomized Complete Block Design with three replications. An experimental plot measuring 26 × 8 m (208 m²) was used for this research in each of the locations. Each experimental unit measured 1 × 2 m (2 m²) with 0.5 m alley. The ginger setts or rhizomes weighing 10 g were planted in rows with inter- and intrarow spacing of 50 cm giving a plant population density of 40,000 kg/ha. Each rhizome was planted 4–5 cm beneath the soil with the growth buds facing up so that the shoots can grow towards the surface. Mulching was carried out immediately after planting using Chromolaena odorata (L.) R. M. King & H. Rob (commonly called Siam weed). Suitable agronomic practices were carried out. Nitrogen-Phosphorus-Potassium 15-15-15 fertilizer was applied at 120 kgN/ha in a split dose of 80 and 40 kg at 2 and 6 weeks after planting. Weeds were manually controlled at 2 and 6 weeks after planting (before fertilizer application). The fields were under rainfed irrigation.

Data were collected on the following traits during growth and development: sprouting percentage (%), establishment count (%),

| Table 1. Monthly weather conditions at Ikom in 2016 and 2017 (January–December). |
|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Month	Rainfall (mm)	Sunshine (hours)	Tmax (°C)	Tmin (°C)	RH (%)					
	2016	2017	2016	2017	2016	2017	2016	2017	2016	2017
January	0.0	49.9	7.43	7.32	35.1	34.1	20.0	22.0	68	75
February	7.4	0.0	6.11	6.81	37.4	35.2	23.3	20.9	72	71
March	131.5	64.3	5.08	6.80	33.8	36.7	24.7	25.3	83	76
April	157.7	210.3	6.07	6.69	34.2	33.5	24.7	24.0	83	82
May	383.7	247.6	7.04	6.47	32.9	32.3	23.6	23.6	83	86
June	402.5	223.8	5.20	5.90	31.5	31.5	23.6	23.3	87	87
July	538.7	329.0	4.22	3.63	30.2	29.8	23.0	23.4	92	91
August	422.8	407.1	2.33	2.02	30.1	28.7	23.4	22.7	92	91
September	234.3	343.3	3.28	3.05	31.0	30.3	20.5	23.2	91	87
October	236.5	328.1	6.37	4.36	32.6	31.6	22.9	23.5	86	84
November	9.4	66.3	7.56	4.54	34.0	32.5	23.4	23.3	83	83
December	0.0	4.6	6.78	4.22	33.9	33.7	22.3	21.4	77	76
Total	2,524.5	2,274.3	67.5	61.8	–	–	–	–	–	–
Mean	210.38	189.53	5.62	5.15	33.06	32.49	22.95	23.05	83.08	82.42

\(t_{0.05, 11} = 2.26 \) NS, \(t_{0.05, 11} = 2.26 \) NS, \(t_{0.05, 11} = 2.26 \) NS, \(t_{0.05, 11} = 2.26 \) NS

NS: paired student’s T-test of the mean weather condition for the 2 years is not significant at 95% confidence level

*Calculation of cumulative value (i.e., total) not applicable. Thus, the use of dash.
and plant height (cm); at full maturity and harvest (by uprooting each plant in the sample plot), the following data were obtained: number of leaves per plant, leaf area (cm²), number of tillers per plant, number of rhizome fingers per plant, rhizome length (cm), and rhizome yield (t/ha). Data obtained were checked for homogeneity of variance and normality using Levene and Shapiro–Wilk tests, respectively, before being subjected to a two-way analysis of variance (ANOVA) using GenStat® for Windows® version 8.1 (VSN International Ltd, Hemel Hempstead, UK), and significant means were separated using Duncan Multiple Range

Month	Rainfall (mm)	Sunshine (hours)	Tmax (°C)	Tmin (°C)	RH (%)					
	2016	2017	2016	2017	2016	2017	2016	2017	2016	2017
January	0.0	25.4	5.10	4.30	33.7	33.4	22.9	23.4	69	82
February	3.5	0.0	5.30	5.60	35.2	33.9	24.7	24.0	78	82
March	194.9	133.7	4.50	4.00	32.6	33.2	24.0	24.7	87	83
April	203.4	417.2	4.20	4.80	32.4	33.3	24.2	23.3	87	86
May	421.1	284.7	4.60	4.70	32.1	31.3	23.8	23.0	86	88
June	261.0	352.2	2.70	3.60	30.6	30.8	22.7	23.0	88	89
July	445.6	437.2	1.70	1.60	29.3	29.0	22.6	22.8	91	91
August	299.2	611.4	1.10	1.10	28.7	28.2	22.8	22.7	93	94
September	363.3	356.0	2.10	1.80	29.3	29.0	23.1	23.4	91	90
October	95.1	180.3	2.10	2.90	30.9	30.4	23.0	23.4	87	88
November	1.2	289.2	5.20	4.60	31.9	31.4	23.6	23.4	87	88
December	0.6	32.3	4.70	4.00	33.2	32.5	22.8	23.9	83	81
Total	2,288.9	3,119.6	43.3	43.0	-	-	-	-	-	-

Table 3. Monthly weather conditions at Ogoja in 2016 and 2017 (January–December).

Month	Rainfall (mm)	Sunshine (hours)	Tmax (°C)	Tmin (°C)	RH (%)					
	2016	2017	2016	2017	2016	2017	2016	2017	2016	2017
January	0.0	3.2	8.10	7.20	36.1	36.0	18.3	21.8	33	54
February	0.0	0.0	9.00	7.80	35.8	37.5	22.6	20.2	48	35
March	44.9	0.0	7.60	5.70	33.4	35.5	25.0	24.6	74	71
April	126.4	154.7	5.80	5.60	33.4	35.5	25.0	24.6	74	71
May	209.3	362.1	6.20	3.80	33.3	38.3	23.9	23.5	79	78
June	167.1	152.5	3.40	3.00	32.3	32.4	23.4	23.5	80	80
July	309.2	164.6	3.00	4.80	30.7	31.2	23.1	23.3	85	84
August	333.1	367.6	3.20	4.00	30.8	30.1	23.4	23.0	86	85
September	255.8	285.8	5.00	3.50	32.7	31.0	23.4	22.9	84	83
October	288.0	222.5	4.80	4.20	32.6	32.6	23.9	23.5	80	80
November	25.9	46.1	8.00	4.70	33.4	34.2	24.0	23.0	77	79
December	0.0	0.0	6.80	5.00	35.8	35.4	21.6	20.7	58	53
Total	1,759.7	1,759.1	70.9	59.3	-	-	-	-	-	-
Mean	146.64	146.59	5.91	4.94	33.52	34.39	23.16	22.97	71.33	70.50

NS =: paired student’s t-test of the mean weather condition for the 2 years is not significant at 95% confidence level.

a: Calculation of cumulative value (i.e., total) not applicable.
Table 4. Mean sprouting percentages (%) of 17 ginger lines in Calabar, Ikom, and Ogoja at 4WAP (2016 and 2017 early season plantings).

Ginger line	Genotype*	Genotype × yearns	Genotype × locationns	Genotype × year × locationns		
	2016	2017	Calabar	Ikom	Ogoja	
UG1	62.89a	62.89a	62.89a	56.50a	63.00a	69.17a
UG1-11-07	81.50a	83.56e	79.44i	73.17a	85.67a	79.33a
UG1-13-02	66.89ec	62.78e	71.00e	62.83a	66.83a	71.00e
UG1-2-35	63.44a	62.78e	64.11a	62.83a	60.83a	66.67a
UG1-5-04	71.06ace	68.22e	73.89e	73.17a	65.00e	75.00e
UG1-5-18	64.11c	60.00e	68.22e	52.17c	71.17c	69.00e
UG1-5-22	73.11ace	76.56e	69.67e	69.00e	71.00e	79.33a
UG1-5-31	67.61b	64.22e	71.00e	67.00e	73.17a	62.67a
UG1-5-35	64.72a	63.89e	65.56e	52.50c	73.00e	68.67e
UG1-5-38	61.33a	59.89e	62.78e	60.67c	60.67e	62.67e
UG1-5-48	80.11bc	74.44e	80.78e	75.33a	69.00e	96.00e
UG1-5-49	66.83b	62.67f	71.00e	62.50c	60.67e	77.33a
UG1-5-52	66.22a	64.11e	68.33e	71.17c	56.50c	71.00e
UG1-7-24	73.11ace	68.22e	78.00e	66.83c	75.17c	77.33a
UG2	66.97c	64.17c	69.78e	68.92c	69.17c	62.83a
UG2-11-03	69.72ace	68.22c	71.22c	58.57c	77.00e	73.33a
UG2-9-01	74.44ac	73.67f	75.22c	58.50c	83.50o	81.33c
Mean	69.06	67.37c	70.76c	64.22c	69.5e	73.46c
SEM	1.15	1.83	1.39	2.45	1.61	1.54
CV (%)	16.89	19.40	13.99	22.21	13.48	12.23

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

NS: not significant.

*Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ k ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSDns).

*pSignificant at p < 0.05.

**Significant at p < 0.01.

Test (DMRT) at 5% level of significance [12]. Square-root (√x + 1) transformation was used for count data while percentages were log10 transformed. Interpreted results of the transformed data were back-transformed for presentation.

3. RESULTS AND DISCUSSION

3.1. Sprouting Percentage at 4 Weeks after Planting (4WAP)

Combined ANOVA showed highly significant differences in the sprouting percentages (4WAP) among the genotypes (p < 0.01) (Table 4). Years and locations showed no significant differences in sprouting percentage (p > 0.05). Year by genotype interaction, location by genotype interaction, and year by genotype by location interactions were also not significant. Although the difference was not significant (p > 0.05), the mean sprouting percentage in 2017 (70.76%) was higher than that of 2016 (67.37%). Across the three locations, Ogoja had the highest mean sprouting percentage (73.47%), followed by Ikom (69.50%), while Calabar (64.22%) had the lowest.

3.2. Establishment Count at 8 Weeks after Planting (8WAP)

The establishment counts of 17 ginger lines at 8WAP across three locations in 2 years are presented in Table 5. Combined ANOVA indicated that there was no significant difference (p > 0.05) in the establishment count of the ginger lines across genotypes, years, locations, and genotype by environment interactions.

3.2.1. Plant height

As presented in Table 6, ANOVA showed that plant height was significantly (p < 0.01) different across genotypes, location, and year. Year by genotype interaction and year by location by genotype interaction were not significant (p > 0.05). However, location by genotype interaction was very highly significant (p < 0.001). Among the genotypes, UG2-11-03 and UG1-7-24 produced the tallest plants. Across the three locations, the tallest plants were observed in Ogoja followed by those planted in Ikom then Calabar. The ginger lines planted in 2017 (57.83 cm) were significantly taller than those planted in 2016 (53.47 cm).
Table 5. Establishment count (%) of 17 ginger lines in Calabar, Ikom, and Ogoja at 8WAP (2016 and 2017 early season plantings).

Ginger line	Genotype^{NS}	Genotype × year^{N5}	Genotype × location^{NS}	Genotype × year × location^{NS}
	2016	2017	Calabar	Ikom
			Ogoja	Calabar
			Ogoja	Ikom
			Ogoja	Ogoja
UG1	76.16^a	78.00^a	75.22^a	79.33^a
UG1-11-07	88.39^a	87.78^a	89.00^a	93.83^a
UG1-13-02	77.33^a	78.11^a	76.56^a	73.17^a
UG1-2-35	79.44^a	89.11^a	69.78^a	81.50^a
UG1-5-04	80.33^a	83.67^a	77.00^a	79.50^a
UG1-5-18	73.06^a	70.89^a	75.22^a	64.67^a
UG1-5-22	82.11^a	86.22^a	78.00^a	91.83^a
UG1-5-31	77.28^a	78.00^a	76.56^a	77.33^a
UG1-5-35	74.56^a	80.78^a	68.33^a	89.83^a
UG1-5-38	74.67^a	75.33^a	74.00^a	81.67^a
UG1-5-48	82.17^a	86.33^a	78.00^a	81.50^a
UG1-5-49	79.33^a	79.33^a	79.33^a	77.17^a
UG1-5-52	75.22^a	76.56^a	73.89^a	81.50^a
UG1-7-24	82.17^a	80.78^a	83.56^a	79.50^a
UG2	78.06^a	78.00^a	78.11^a	87.60^a
UG2-11-03	84.22^a	87.67^a	80.78^a	73.17^a
UG2-9-01	80.72^a	79.33^a	82.11^a	75.17^a
Mean^a	79.1	80.93	77.38	79.71^a
SEM	0.97	1.36	1.34	1.78^a
CV (%)	12.35	12.00	12.39	13.04^a

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.
NS =: not significant at 5% probability level.
aExcluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ f ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}).

3.2.2. Number of leaves per plant

Combined ANOVA (Table 7) showed that genotype (<i>p < 0.01</i>) and location (<i>p < 0.05</i>), year by genotype interaction (<i>p < 0.05</i>), and location by genotype interaction (<i>p < 0.01</i>) significantly affected the number of leaves per plant of the ginger lines. Year and year by location by genotype interaction were not significant (<i>p > 0.05</i>), and the mutant line, UG1-13-02, produced the highest number of leaves per plant and was similar to check UG1 but significantly different (<i>p < 0.05</i>) from check UG2. Overall, ginger lines planted in Ikom had the highest number of leaves per plant followed by Calabar while Ogoja had plants with the fewest number of leaves.

3.2.3. Leaf area

Highly significant (<i>p < 0.01</i>) differences in leaf area were observed across genotypes, locations, years, and location by genotype interaction (Table 8). Year by genotype interaction and year by location by genotype interaction were not significant (<i>p > 0.05</i>). The leave sizes of each of the checks (UG1 and UG2) were larger than those of their mutant derivatives. Ginger lines planted in Ogoja produced significantly larger leaves than those planted in Ikom and Calabar. The leaves of ginger planted in 2017 (34.37 cm²) were significantly larger than those planted in 2016 (31.53 cm²). In Ikom, the largest leaves were produced by UG1 and UG2, while in Calabar, they were below the location average. In Ogoja, UG2 had the highest mean leaf area, while UG1-2-35 plants produced significantly smaller mean leaf area.

3.2.4. Number of tillers per plant

The number of tillers per plant was significantly (<i>p < 0.01</i>) affected by genotype and location by genotype interaction (Table 9). Location, year by genotype interaction, and genotype by year by location interaction did not significantly (<i>p > 0.05</i>) affect the number of tillers per plant. UG2-11-03 produced the highest number of tillers per plant and was not significantly different (<i>p > 0.05</i>) from all the UG1-5 mutants. Ginger lines planted in 2016 had a significantly(<i>p < 0.05</i>) higher number of tillers (16.40) than those of 2017 (10.20). The number of tillers had an inconsistent trend across locations.
The number of rhizome fingers per plant was significantly affected by genotype, location, location by genotype interaction, year by genotype interaction, and year by location by genotype interaction (p < 0.01) except for the year effect (p > 0.05) (Table 10). The highest number of rhizome fingers was produced in Ogoja followed by Ikom, while Calabar had the least rhizome fingers. Consequently, there was a progressive increase in the mean number of rhizome fingers across the locations from year 2016 to year 2017.

3.2.6. Rhizome length

Significant differences in rhizome length were recorded for genotype (p < 0.01), location (p < 0.01), year (p < 0.05), year by genotype interaction (p < 0.01), location by genotype (p < 0.01), and year by location by genotype (p < 0.01) (Table 11). The mean rhizome length of the ginger lines planted in the three locations was significantly (p < 0.05) different from each other with Ogoja producing the longest rhizomes followed by Ikom, while Calabar produced the shortest rhizomes. The mean rhizome length of 2017 was significantly (p < 0.05) longer than those of 2016.
Table 7. Mean number of leaves per plant of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotype**	Genotype × year*	Genotype × location**	Genotype × year × location***									
		2016	2017	Calabar	Ikom	Ogoja	Calabar	Ikom	Ogoja	Calabar	Ikom	Ogoja	
UG1	UG1-1-31	16.61abc	14.78bc	18.44bc	16.83bc	18.50bc	14.50bc	13.67c	17.33c	13.33c	20.00c	19.67c	15.67c
UG1-1-07	15.44bc	15.67bc	15.22bc	14.83bc	18.17bc	13.33bc	14.33bc	16.76b	17.67b	15.00c	15.33c	16.76b	11.67c
UG1-13-02	18.17b	16.89b	19.44bc	16.00bc	20.67bc	17.83bc	12.67c	20.33b	17.67b	19.33c	21.00c	18.00c	
UG1-2-35	15.67a	15.22a	16.11ac	15.33ac	17.00c	14.67ac	14.67a	17.00b	14.00b	16.00b	17.00b	15.33a	
UG1-5-04	15.17a	14.00bc	16.33bc	17.00c	16.17bc	12.33bc	14.00b	15.00b	13.00b	20.00c	17.33c	11.67c	
UG1-5-18	16.06abc	13.67a	18.44bc	12.67bc	18.17bc	17.33bc	8.00a	16.33a	16.67a	17.33a	20.00a	18.00a	
UG1-5-22	17.50bc	15.00a	20.00a	19.83bc	16.17bc	16.50bc	14.33c	16.47bc	16.00b	25.33c	17.67c	17.00c	
UG1-5-31	15.22a	15.22bc	15.33bc	14.33c	16.00bc	15.67c	14.00b	16.00b	15.00c	14.67c	16.00c		
UG1-5-35	15.44bc	15.11b	15.78bc	16.83bc	14.67bc	14.83bc	16.00b	15.00c	14.33c	17.67c	14.33c	15.33c	
UG1-5-38	16.94abc	15.78bc	18.11bc	14.83bc	18.00bc	18.00bc	14.00c	16.67b	16.67b	15.67c	19.33c	19.33c	
UG1-5-48	16.56abc	15.44a	17.67bc	16.33c	22.17c	11.17c	13.33c	21.33c	11.67c	19.33c	20.00c	10.67c	
UG1-5-49	15.94bc	14.22bc	17.67bc	16.00bc	16.83bc	15.00c	12.67c	16.33d	13.67a	19.33c	17.33c	16.33c	
UG1-5-52	16.22abc	15.22bc	17.22bc	16.17bc	19.00c	13.50ac	14.33c	17.67b	13.67b	18.00c	20.33c	13.33c	
UG1-7-24	15.72bc	15.00b	16.44bc	16.00bc	18.17bc	13.00bc	13.67c	18.33c	13.00c	18.33c	18.00c	13.00c	
UG2	UG2-1-03	15.83bc	15.22bc	16.44bc	12.67c	21.33c	13.50c	12.67c	20.00a	13.00c	12.67c	22.67c	14.00c
UG2-9-01	16.83abc	17.00e	16.67bc	15.67bc	18.33bc	16.50bc	14.67c	19.33c	17.00c	16.67c	17.33c	16.00c	
Mean†	16.26	15.30	17.23	15.88	18.00	14.90	13.75	17.39	14.75	18.02	18.78	15.06	
SEM	0.281	0.34	0.41	0.55	0.38	0.36	0.43	0.51	0.43	0.69	0.54	0.59	
CV (%)	17.42	15.76	16.92	20.03	12.32	14.03	12.85	12.08	11.92	15.75	11.94	16.09	

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

NS = Not significant in the footnotes.

*Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}).

4. DISCUSSION

In the present study, it is established that the variation in genotypes was highly significant for all the measured traits except establishment count. The ginger mutant lines were significantly different (p < 0.05; p < 0.01) in their mean performances for sprouting percentage, plant height, number of leaves per plant, leaf length, leaf width, leaf area, number of tillers per plant, number of rhizome fingers per plant, rhizome length, and rhizome yield. These significant variations in the phenotypic expression of the various characteristics might be due to the inherent genetic properties of the ginger mutant lines; this reveals the presence of considerable genetic variations in the ginger mutant lines for these attributes [13]. It also implies the potentials of these mutant lines to be used as source material for the genetic improvement of growth and yield characters in ginger in these areas. According to Sumanth et al. [14], the success of any crop improvement programme depends on the extent of genetic variations that exist in the available germplasm of that crop. Ginger lines used in this study were inconsistent in their performances across the different characters. Similar significant variations among ginger genotypes were also observed by Goudar et al. [15], Jatoi and Watanabe [13], and Aragaw et al. [16] who reported significant genotype differences across several growth and yield characters in ginger. The superior performance in yield and other characters in some of the mutant lines over the check landraces from which they were derived showed that the variability created by mutation had positive effects on the mutant lines. Improvements in the growth and yield traits of different crops through mutation breeding have been reported by several crop breeders [4,17–19]. Inducing mutation has been considered an established method for increasing genetic variability in many crops. Mutation breeding is an essential tool in crop improvement of vegetatively propagated crops, especially in plants with reproductive sterility. According to Food and Agriculture Organization of the United Nations [20], over 2,450 varieties in different crops developed through mutation breeding have been commercially released. This includes vegetatively propagated crops such as garlic, cassava, turmeric, and potato. Breeding of ginger is greatly challenged by poor flowering and seed set and a great number of crop improvement programmes of these genotypes are limited to evaluation and selection of naturally
Table 8. Mean leaf area (cm²) of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotype**	Genotype × year*	Genotype × location**	Genotype × year × location***								
		Year*	Location*	Year × location*								
		2016	2017	Calabar	Ikom	Ogoja						
UGI	37.20a	35.89a	38.51a	23.77ab	49.13a	38.70ab	19.83a	49.13a	38.70a	27.70a	49.13a	38.70a
UGI-11-07	33.23b	32.98c	33.48c	28.22b	36.60bc	34.87bc	25.87b	36.60b	36.47c	30.50b	36.60b	33.27c
UGI-13-02	32.66c	32.17c	33.14c	28.88bc	35.33bc	33.75bc	22.97b	35.37b	38.17c	34.80c	35.30c	29.33c
UGI-2-35	29.22d	29.00c	29.44c	29.20a	28.12bc	30.35bc	27.20a	28.37b	31.43c	31.20a	27.87c	29.27c
UGI-5-04	32.56e	32.37c	32.74c	22.75a	42.80a	32.12b	21.67a	42.80b	32.63c	23.83b	42.80b	31.60c
UGI-5-18	27.65f	24.78b	30.52b	22.07a	29.18a	31.70b	12.87a	29.17a	32.30a	31.20a	29.20a	31.10a
UGI-5-22	33.62c	31.30a	35.94a	32.50a	36.83a	31.53a	24.33a	36.83a	32.73a	40.67a	36.83a	30.33a
UGI-5-31	28.27f	27.73b	28.81ab	24.95c	26.60b	32.37b	22.70a	26.67b	33.83b	27.20c	26.53b	32.70b
UGI-5-35	30.11f	29.93a	30.28b	29.87bc	26.30bc	34.15a	29.20a	36.40a	30.53a	26.40a	34.10a	
UGI-5-38	30.44f	30.54a	30.33a	24.32bc	26.92a	40.08b	22.97b	27.90b	40.77b	25.67b	25.93a	39.40a
UGI-5-48	33.91f	32.06a	35.77a	29.62b	29.95bc	42.17bc	23.30a	30.70a	42.17b	35.93a	29.20a	47.17f
UGI-5-49	32.13f	30.17a	34.09a	26.43b	29.55bc	40.40b	20.27a	29.60b	40.63b	32.60a	29.50a	40.17f
UGI-5-52	30.05bc	27.84a	34.26b	31.67b	26.07bc	32.42b	22.57b	26.13b	34.83b	40.77b	26.00b	30.00b
UGI-7-24	35.37f	32.46a	38.29a	36.72b	27.73a	41.67c	28.47a	27.73a	41.20a	45.00a	27.73a	42.13f
UG2	39.43a	37.08a	41.79a	25.50a	45.53ab	47.27b	18.70a	45.60a	46.93a	32.30a	45.47a	47.60a
UG2-11-03	38.87a	36.39a	41.36a	32.05a	39.97a	44.60d	24.53a	40.00a	44.63a	39.50a	39.93a	44.57a
UG2-9-01	35.41a	33.30a	37.51a	26.58a	39.97a	40.27b	20.47a	39.40a	40.00a	32.70a	39.30a	40.53a
Mean*	32.90	31.53	34.46	27.94	33.88	37.16	22.82	24.03	37.74	33.08	33.74	36.29
SEM	0.76	1.17	0.93	1.22	1.25	0.95	0.95	1.78	1.13	1.40	1.82	1.54
CV (%)	23.21	26.54	19.27	25.49	21.58	14.82	17.15	21.52	12.32	17.51	22.30	17.35

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

NS = not significant.

*Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ X ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year x location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}).

**Significant at p < 0.05.

***Significant at p < 0.01.
Table 9. Mean number of tillers per plant of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotype**	Genotype × year**	Genotype × location**	Genotype × year × location**										
	Year**	Calabar	Ikom	Ogoja										
UGI		2016	2017											
UGI-11-07	14.06a-e	15.56a	12.56a	12.83a-e	14.00a-e	15.33a-d	17.67a	13.33a	15.67a	8.00a	14.67a	15.00a		
UGI-13-02	14.83bc	18.22a	11.44a	16.50bc	16.17bc	11.83ug	24.00a	16.67a	14.00a	9.00a	15.67a	9.67a		
UGI-2-35	15.33ab	18.78a	11.89a	15.17ad	14.50d	16.33d	22.67a	15.00a	18.67a	7.67a	14.00a	14.00a		
UGI-5-04	11.72ab	18.67a	7.78a	15.17ad	8.83b	11.17b	22.00a	11.00a	14.00a	8.33a	6.67a	8.33a		
UGI-5-18	11.39ab	13.33a	9.44a	8.17bh	10.17bh	15.83bc	11.00a	11.00a	18.00a	5.33a	9.33a	13.67a		
UGI-5-22	13.11ab	17.00a	9.22a	14.67d	11.67ug	13.00ug	21.33a	14.33a	15.33a	8.00a	9.00a	10.67a		
UGI-5-31	13.72ad	16.33a	11.19a	12.50a	14.17f	14.50d	18.00a	14.33a	16.67a	7.00a	14.00a	12.33a		
UGI-5-35	10.67a	13.00a	8.33a	13.17a	6.50a	12.33b	17.33a	7.33a	14.33a	9.00a	5.67a	10.33a		
UGI-5-38	12.44a-e	15.11a	9.78a	11.83a	13.17a	12.33a	16.33a	14.33a	14.67a	7.33a	12.00a	10.00a		
UGI-5-48	12.61bc	15.67a	9.56a	14.67d	9.00b	14.17f	21.00a	10.33a	15.67a	8.33a	7.67a	12.67a		
UGI-5-49	12.33bc	14.33a	10.33a	13.17a	12.83a	11.00b	17.00a	12.33a	13.67a	9.33a	13.33a	8.33a		
UGI-5-52	12.00bc	15.89a	8.11a	13.17a	10.00b	12.83a	18.67a	12.67a	16.33a	7.67a	7.33a	9.33a		
UGI-7-24	14.00d	17.33a	10.67a	12.33a	15.33d	14.33c	17.33a	18.67a	16.00a	7.33a	12.00a	12.67a		
UG2	13.89a-d	16.22a	11.56a	12.33a	14.17c	15.17d	18.67a	14.67a	15.33a	6.00a	13.67a	15.00a		
UG2-11-03	15.67a	19.78a	11.56a	15.17d	17.17a	14.67d	23.33a	17.67a	18.33a	7.00a	16.67a	11.00a		
UG2-9-01	14.94bc	11.33a	12.78a	12.50a	18.00a	14.33c	17.33a	17.67a	16.33a	7.67a	18.33a	12.33a		
Mean*	13.40	16.40a	10.34	13.50	13.07	13.62	19.43	13.90	15.86	7.57	11.86	11.37		
SEM	0.40	0.51	0.45	1.13	0.58	0.51	0.90	0.72	0.37	0.28	0.89	0.56		
CV (%)	34.10	22.17	30.88	48.84	25.48	21.85	18.99	21.24	9.52	14.99	29.30	20.18		

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

*Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ ε ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}).

NS: not significant.

*Significant at p < 0.05.

**Significant at p < 0.01.
Table 10. Mean number of rhizome fingers per plant of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotypea	2016	2017	2016	2017	2016	2017
		Calabar	Ikom	Ogoja	Calabar	Ikom	Ogoja
UG1	14.67						
12.22	17.11	14.33	15.17	14.50	8.00	15.00	13.67
UG1-11-07	10.44	10.89	10.00	9.67	10.83	10.83	11.67
UG1-13-02	15.17	14.67	15.67	11.17	15.50	18.33	10.00
UG1-2-35	13.28	13.78	12.78	9.00	15.67	15.17	10.67
UG1-5-04	15.89	15.56	16.22	9.67	16.67	21.33	9.67
UG1-5-18	12.94	11.22	14.67	10.17	14.67	14.00	6.67
UG1-5-22	10.56	9.89	11.22	9.83	10.17	11.67	10.00
UG1-5-31	13.39	12.89	13.89	10.00	16.33	13.83	10.00
UG1-5-35	15.17	14.56	15.78	12.00	14.17	19.33	12.00
UG1-5-38	14.44	13.56	15.33	10.33	17.17	15.83	8.33
UG1-5-48	19.06	20.44	17.67	13.33	19.83	24.00	18.33
UG1-5-49	14.06	19.22	13.67	10.67	16.83	14.67	9.00
UG1-5-52	15.06	16.00	14.11	10.33	19.17	15.67	9.33
UG1-7-24	16.89	15.33	18.44	9.17	12.67	28.83	8.33
UG2	14.83	15.33	14.33	9.67	14.67	20.17	9.33
UG2-11-03	17.44	19.22	15.67	13.00	18.33	20.50	13.67
UG2-9-01	21.44	20.44	22.44	13.17	28.83	22.33	13.67
Mean	14.98	14.69	15.28	10.91	16.30	17.77	10.51
SEM	0.5	0.69	0.73	0.50	0.76	0.83	0.67
CV (%)	33.72	33.28	34.31	26.48	27.10	27.37	26.25

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.
NS = Not significant in the footnote.
Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ e ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher's Least Significant Difference at 95% confidence level (LSD95).

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.
NS = Not significant in the footnote.
Table 11. Mean rhizome length (cm) of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotype**	Genotype × year**	Genotype × location**	Genotype × year × location**										
		Year*		Location*		Year × location*								
		2016	2017	Calabar	Ikom	Ogoja	Calabar	2016	Ikom	Ogoja	Calabar	2017	Ikom	Ogoja
UGI		16.71	14.76	18.67	15.30	14.83	20.00	9.27	15.33	19.67	21.33	14.33	20.33	
UGI-11-07		11.06	10.89	11.22	13.00	10.50	9.67	12.33	11.33	9.00	13.67	9.67	10.33	
UGI-13-02		17.24	17.82	16.67	13.57	17.33	20.83	10.80	20.00	22.67	16.33	14.67	19.00	
UGI-2-35		15.21	15.98	14.44	12.47	16.83	16.33	11.60	18.00	18.33	13.33	15.67	14.33	
UGI-5-04		17.81	16.96	18.67	13.77	20.83	18.33	10.53	21.33	19.00	17.00	20.33	18.67	
UGI-5-18		17.52	15.03	20.00	12.05	18.67	21.83	6.10	17.67	21.33	18.00	19.67	22.33	
UGI-5-22		11.83	11.11	12.56	11.67	10.00	13.83	10.33	9.67	13.33	13.00	10.33	14.33	
UGI-5-31		17.82	16.53	19.11	13.13	20.17	20.17	11.27	19.67	18.67	15.00	20.67	21.67	
UGI-5-32		17.06	16.56	17.56	16.17	13.50	21.50	12.00	14.00	23.67	20.33	13.00	19.33	
UGI-5-38		16.81	14.73	18.89	14.27	16.00	20.17	8.87	15.00	20.33	19.67	17.00	20.00	
UGI-5-48		18.91	18.38	19.44	12.57	21.33	22.83	9.47	21.33	24.33	15.67	21.33	21.33	
UGI-5-49		15.07	14.47	15.67	14.37	16.00	14.83	10.73	16.33	18.00	15.67	13.33		
UGI-5-52		15.26	13.51	17.00	12.60	15.50	17.67	8.87	16.47	17.00	16.33	16.33	18.33	
UGI-7-24		18.84	18.58	11.91	12.37	16.67	25.50	8.73	21.00	26.00	16.00	16.33	25.00	
UG1		15.34	14.80	15.89	12.03	15.33	18.67	11.07	15.67	17.67	13.00	15.00	16.77	
UG1-11-03		18.09	17.96	18.22	16.10	18.33	19.83	12.87	19.00	22.00	19.33	17.67	17.67	
UG2-9-01		20.46	18.48	22.44	13.55	23.83	24.00	8.77	23.33	23.33	18.33	24.33	24.67	
Mean*		16.53	15.68	17.38	13.47	16.92	19.21	10.21	17.25	19.57	16.73	16.59	18.84	
SEM		0.45	0.73	0.50	0.68	0.64	0.69	0.41	0.91	1.03	0.63	0.93	0.96	
CV (%)		27.5	33.32	20.71	29.33	22.16	21.08	16.51	21.65	21.69	15.61	23.20	20.89	

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

*Excluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ i ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}).

*pSignificant at p < 0.05.

**Significant at p < 0.01.
Table 12. Mean rhizome yield (t/ha) of 17 ginger lines in Calabar, Ikom, and Ogoja (2016 and 2017 early season plantings).

Ginger line	Genotype**	Year**	Genotype × year**	Genotype × location**	Genotype × year × location**
		2016	2017		
		Calabar	Ikom	Ogoja	
		Calabar	Ikom	Ogoja	
		2016	2017		
		Calabar	Ikom	Ogoja	
UGI	14.39a	18.33b	10.44c	11.50d	20.17e
UGI-11-07	6.44e	10.22a	2.67c	10.67d	3.33e
UGI-13-02	19.61e	20.67f	18.56g	12.83a	19.50b
UGI-2-35	16.22h	16.33i	16.11k	8.00m	21.00n
UGI-5-04	22.06p	21.78q	22.33r	14.67s	28.83t
UGI-5-18	17.39d	15.33m	19.44c	14.67n	22.50o
UGI-5-22	7.67f	7.89g	7.44h	8.67i	2.50j
UGI-5-31	18.56l	18.89m	18.22n	17.33a	26.17k
UGI-5-35	21.06b	23.44	18.67c	21.83d	21.33e
UGI-5-38	18.67l	17.00	20.33p	13.17q	23.17r
UGI-5-48	14.22n	12.78o	15.67p	10.83q	7.17r
UGI-5-49	8.83m	7.00f	10.67s	13.83a	5.33c
UGI-5-52	15.00c	16.11	13.89b	18.50d	18.00e
UGI-7-24	19.50d	16.89	22.11b	16.50c	17.00p
UG2	14.72c	16.89	12.56b	11.83c	16.50g
UG2-11-03	18.44h	20.67j	16.22g	13.33i	23.50k
UG2-9-01	20.06i	20.33	19.78c	14.50f	23.17g
Mean*	16.05	16.50	15.10	13.10	17.48
SEM	0.73	1.05	1.03	1.07	1.46
CV (%)	46.06	45.22	47.24	47.56	48.8

Means of individual genotypes and their interactions with the same superscript within a column (or a group of columns under the same category) are not significantly different using DMRT.

NS = Not significant in the footnotes.

*aExcluding the genotype mean, post-hoc ANOVA tests of significant F-test for means separation (2 ≤ t ≤ 6) for year (i.e., means of 2016 and 2017), location (i.e., means of Calabar, Ikom, and Ogoja), and year × location (i.e., means of Calabar, Ikom, and Ogoja) in each of the years, 2016 and 2017) were done using Fisher’s Least Significant Difference at 95% confidence level (LSD_{0.05}.

**Significant at p < 0.05.

*Significant at p < 0.01.
occurring variations [21]. Induced mutation is therefore an alternative and reliable way of creating variability in these crops [18]. Hence, the observations recorded in the yield performances of the mutant lines used in this study have significant implications. The results also showed that location significantly affected the growth and the yield characters of the ginger lines.

The variation in yield in Ogoja and Ikom was not significantly different but was significantly higher than those of Calabar. This result suggests Ogoja and Ikom as favorable locations for ginger cultivation. Attoe et al. [22] also observed significant differences in the growth and yield parameters of ginger genotypes across soils of different locations in Cross River State. The high significant effects of genotype by environment interaction observed for yield and most of the traits clearly demonstrate that genotype and environment interaction across the environments play an important role in breeding adaptable genotypes to wide environments. The variations observed in yield and yield traits of the ginger lines across the locations and years may be attributed to the inherent transferable parental trait differences in the ginger lines as well as the environmental influence. Mohandas et al. [23] also observed significant genotype by environment interactions in some growth and yield traits of ginger. Alghamdi [24] reported that significant genotype by environment interactions suggests that, across environments, some genotypes were more stable than others. According to Ghaffari and Depao [25], yield differences attributed to environment are relevant to genotype evaluation and mega-environment investigations.

5. CONCLUSION
UG2-11-03 gave superior performances for plant height and number of tillers per plant. Its performances across the other traits were relatively high and above average for most. UG2-9-01 had the highest number of rhizomes per plant and also produced the longest rhizomes. With respect to rhizome yield, UG1-5-04 was the highest performing mutant line followed by UG1-5-35 and UG2-9-01. Ginger rhizome yields in Ogoja and Ikom were not significantly different from each other but both were significantly higher than that obtained in Calabar. The locations Ikom and Ogoja are recommended as good environments for ginger cultivation. The information obtained from this research work will be important in the development of excellent selection procedures for the improvement of ginger genotypes under this agroecology and also serve as a source of useful information for the cultivation of ginger in the region. However, further evaluation and testing of these ginger mutant lines in other agroecological zones and across different environments will be necessary before subsequent release.

6. ACKNOWLEDGMENTS
The authors wish to acknowledge the Ginger Research Unit of the NRCRI Umudike, Abia State, Nigeria, for making the ginger lines used for this research available.

7. CONFLICT OF INTEREST
The authors declared that there are no conflicts of interest.

8. AUTHOR CONTRIBUTIONS
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.

9. FUNDING
There is no funding to report.

10. ETHICAL APPROVALS
This study does not involve experiments on animals or human subjects.

11. PUBLISHER’S NOTE
This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES
1. Kizhakkayil J, Bhas S. Diversity, characterization and utilization of ginger: a review. Plant Genet Resour 2011;9:464–77; doi:10.1017/S1479262111000670
2. Famurewa AV, Emuekele PO, Jaiyeoba KF. Effect of drying and size reduction on the chemical and volatile oil content of ginger. J Med Plants Res 2011;5(14):2941–4; doi:10.5897/JMPR.9000476
3. Kalaivani K, Senthil N, Murugesan, GA. Biological activities of selected Lamiaceae and Zingiberaceae. Parasitol Res 2012;11(3):1261–8; doi:10.1007/s00436-011-2623-x
4. Sarwar A, Butt SJ. Evaluation of mutant lines of Rosa species. Adv Crop Sci Technol 2016;3(5):1–5; doi:10.4172/2329-8863.1000196
5. Amadi CO. (2012). Ginger breeding in Nigeria: challenges and prospect. J Appl Agric Res 2012;4(2):155–63.
6. Food and Agriculture Organization of the United Nations. Production quantity of ginger in metric tonnes. Food and Agriculture Organization of the United Nations, Rome, Italy, 2018.
7. Ezegwu W. Ginger export. A paper presented at 3-day National Workshop on massive cassava and ginger production and processing for local industries and export, held at Fati Muasu Hall. National Centre for Women development, Abuja, Nigeria, 2006.
8. Iwo GA, Ekaette EA. Genetic components analysis of yield related traits in some ginger genotypes. Niger J Genet 2010;23:81–5.
9. Nmadu IN, Marcus PL. Efficiency of ginger production in selected Local Government of Kaduna State, Nigeria. Int J Food Agric Econ 2013;1(2):39–52. Available via http://www.foodandagriculturejournal.com/Vol%20%20No%20%202039-52.pdf
10. Chukuwu GO, Emehuite JK. Fertilizer efficiency and productivity of ginger on a hapilyariscol in southern Nigeria. In: Akoroda MO (ed.). Root crops: the small processor and development of local food industries for market economy. Ibadan Polytechnic Venture, Ibadan, Nigeria, 2003.
11. Effiong J. Changing the pattern of use in the Calabar river catchment South eastern Nigeria. J Sustain Dev 2011;4(1):92–102; doi:10.5539/jsd.v4n1p92
12. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd edition, John Wiley & Sons, New York, NY, p 680, 1984.
13. Jatoi AS, Watanabe, KN. Diversity analysis and relationship among ginger landraces. Pak J Bot 2013;45(4):1203–14. Available via http://pakbs.org/pjbott/
14. Sumanth V, Suresh BG, Ram BJ, Srujana G. Estimation of genetic variability, heritability, and genetic advance for grain yield components in rice (Oryza sativa L.). J Pharmacol Phytochemistry 2017;6(4):1437–9. Available via https://www.phytojournal.com/archives/2017/vol6issue4/PartU/6-4-59-298.pdf

15. Goudar SA, Gangadharappa PM, Dodamani SM, Lokesh C, Dharamatti VU. Evaluation of ginger (Zingiber officinale) genotypes for growth and yield attributes. Int J Pure Appl Biosci 2017;5(2):994–9; doi:10.18782/2320-7051.2888

16. Aragaw MS, Alamerew G, Michael H, Tesfaye A. Variability of ginger (Zingiber officinale Rosc.) accessions for morphological and some quality traits in Ethiopia. Int J Agric Sci 2011;6:444–57; doi:10.3923/ijar.2011.444.457

17. Edirimanna EP, Korla BN. Induced variation for yield and quality characters of ginger (Zingiber officinale) using ethyl methane sulphonate. Ann Sri Lanka Dep Agric 2007;9:9–17.

18. Selvarasu A, Kandhasamy R. Analysis of variability, correlation and path coefficient in induced mutants of glory lily (Gloriosa superb L.). Int J Plant Breed 2013;7(1):69–75. Available via http://www.globalsciencebooks.info/Online/GSBOnline/images/2013/IJPB_7(1)/IJPB_7(1)69-75o.pdf

19. Raina A, Lasker RA, Khursheed S, Amin R., Tantray YR, Parveen K, et al. Role of mutation breeding in crop improvement – past, present and future. Asian Res J Agric 2016;2(2):1–13; doi:10.9734/ARJA/2016/29334

20. Food and Agriculture Organization of the United Nations. Ginger: post-production management for improved market access. Prepared by Plotto, A. Edited by Mazaud, F, Rotter, A and Steffel, K. Food and Agriculture Organization of the United Nations, Rome, Italy, 2006.

21. Givilidharan MP, Balakrishnan S. Gamma ray induced variability in vegetative and floral characters of ginger. Indian Cocoa, Areca nut Spices J 1992;15:68–72.

22. Attoe EE, Ojikpong TO, Kekong MA. Evaluation of growth and yield parameters of two ginger varieties in different soils of Cross Rivers State, Nigeria. Eur J Acad Essays 2016;3(3):109–20.

23. Mohandas, TP, Pradeep Kumar, T, Mayadevi, P, Aipe, KC, Kumaran, K. Stability analysis in ginger (Zingiber officinale Rosc.) genotypes. J Spices Aromat Crops 2000;9:165–7; http://updatepublishing.com/journal/index.php/josac/article/view/4574

24. Alghamdi SS. Yield stability of some soybean genotypes across diverse environments. Pak J Biol Sci 2004;7(12):2109–14; doi:10.3923/pjbs.2004.2115.2120

25. Ghaffari AA, Depao E. Agroclimatic zoning of Iranian cold drylands. In the Proceeding of the Iranian Crop Sciences Congress, Karaj, Iran, 2006, pp 42–48.

How to cite this article:
Abua MN, Iwo GA, Ittah MA, Obok EE, Edugbo RE. Growth and yield performance of mutant ginger (Zingiber officinale Rosc.) lines in South-Eastern Nigeria. J Appl Biol Biotech 2021; 9(05):110–123.