Removal of Pathogenic pollutants using electrocoagulation using aluminium electrodes

Shereen A Abdul-Husain¹, Sawsan Alramahi²
¹ Department of Civil Engineering, College of Engineering, University of Warith AL-Anbiya’a, Kerbala, Iraq.
Email: Shereen@uowast.edu.iq

Abstract. Pathogenic contamination of fresh waste bodies is some of the most harmful types of water contamination where in aquatic environment the pathogenic microorganisms can reproduce, which may pollute the marine environment overall. In addition, there are serious side effects with microbial infection. Some many pasteurization processes, like membrane separation and additives, have therefore been used to remove microorganisms from wastewater. Most of these processes are inefficient or hazardous, like the chemical treatment. Lately, electrocoagulation process, due to the environmental safety and comparatively low operational costs, has paid considerable attention to remove pathogenic contamination of sewage treatment plant effluent. During this analysis, the consequences of the changing of the electrical current change from 0.5 to 1.5 mA/cm² were examined on the ability of aluminium-based electrocoagulation unit for sewage treatment by disabling pathogenic pollutants. The findings demonstrated that the density of the current was increased to increasing the E. coli elimination (an indicator of pathogenic pollutants removal) to reach a current density of 2 mA/cm² the strongest deactivation (83.2%). Rising the current density increases the bacterial removal. However, the increase in the current density increases the treatment cost.

Keyword: Electrocoagulation, pathogenic contamination, aluminium.

1. Introduction
The population of the world is now subjected to various pollution sources, such as water, air, and soil pollution, which adversely affect human welling and life on earth [1, 2]. The contamination of the water, which can be described as the existence of undesirable contaminants in water, is an emerging burden due to wastewater disposal or the normal occurrence of a contaminant's overconcentration [3-5]. The contamination of the water is regard as one of the most harmful type of contamination due to the low volume of potable water on this planet which is less than 0.3 percent of earth water bodies and because the incapability of people to live without water for very short time [6-8]. In everyday lives, industrial sector and large-scale farming also contribute to a worrying trend towards contamination of water bodies both ground and surface water bodies [9-12]. One clear indication is a 75% rise in water bodies phosphate quantity compared with its pre-industrial revolution concentrations [13, 14]. Regrettably, like phosphorus, the levels of certain pollutants rose by so many times owing to industrialisation, include but are not restricted to nutrients [15-18], toxic substances [19-23], dyes [24, 25], fluoride [26-29], phenols [30], and organic material [31]. Water problems have been more severe because of the effect on water use of climate change[32-36], sharing on Earth planet of water and
people[37-41]. The oil industry which has been exponentially expanding over the last decade, for example, generates large quantities of wastewater containing high levels of toxic toxins, like arsenic, organic compounds, and biological contaminants. As described earlier, water contaminants, including toxic substances, phenols, painting chemicals, organic compounds and fertilizer, are sadly endless, leaving about half of the total worldwide population lacking healthy water supply in the upcoming years [42-45].

Biological contaminants are regarded as the most hazardous contaminants among water contaminates owing to their potential to substantial increase in numbers inside the water in comparatively short times and their serious effects on human health [22, 46]. Exceeding 1 million people have been confirmed to die worldwide annually due to diseases linked to water contamination. In addition, it has been identified that a significant number of water bodies are biologically contaminated in developed nations; for example, approximately 1/3 of Bangladesh's underground water sources were considered contaminated with biological pollutants. The lack of successful techniques of sterilization, in particular in developing countries, actually increased the biological contamination of water bodies [22]. Accordingly, many disinfection processes, including chlorine, UV radiation, magnetic charges and metallic salts, have been used to eliminate microbial contaminants from polluted water [21]. In a synthetic wastewater which includes toxic metals, nanoparticles of magnesium metal oxide have been used to disable the E. coli, and it was found that nanomaterials of magnesium metal ions completely kill all E. coli in 30 minutes treatment [47, 48]. Many technologies, though, are costly like nanoparticles or dangerous because they are producing toxic by-products like chlorination and chemical treatment [49]. Furthermore, certain technologies like biological reactors produces huge sludge volumes that involve costly dewatering processes before they are disposed of [50] or adopted as recycling materials [51-57].

In contrast to many other approaches, current advances of the electrocoagulation (EC) as a disinfection procedure for polluted wastewater have shown that biological contaminants can be removed within such a short amount of time [3, 28, 58]. The EC processes are also incredibly safe since there is no need of chemicals to be add to the water and harmful by-products from the reaction will not be generated [49]. To give a good instance, over 95 percent of Escherichia coli can be removed from of the artificial water sample in just about twenty minutes at a low operational cost, using Aluminium alloys EC units [49, 59]. In addition to the afore mentioned benefits, automating EC reactors with a suitable form of detectors like heat wave detectors is very simple [60-63]. Nevertheless, the effectiveness of the EC systems was also shown to rely on a number of operating factors like applied voltage, current density and adsorbent dosage [1, 16]. The effects of the density of the current on the removal of the E. coli's from municipal wastewater were investigated in this research.

2. Materials and methods

2.1. Experimental Setup

Experimentation was started using a 1500 mL (shape cylinder) plastic container, consisting of two aluminium electrodes. each electrode has a surface area of 450 cm2. Tests were initiated electrocoagulation device Because of its economy, large accessibility (including in underdeveloped nations), its low oxide potential, aluminium was included in this device [2]. Two holes were attached to the container, the high hole was used as an entrance for the liquid, the lower hole was used as outlet to extract samples to further analyse. To provide regulate the needed current density, the aluminium electrode was directly coupled a DC source of power.

The treatment using the EC was performed by the addition of 750 mL of the sample prepared within the device, and the supply voltage for the appropriate duration was turned on. All parameters of operation are maintained in all tests, except for the applied voltage. The experiments were conducted at 7.5 pH level (the true pH of the sewage specimen), time is 20 minutes and the temperature kept at 20 °C. The density of the electrical current density has been selected as a control variable in this analysis, as it...
played a huge part in the Ec system. The density of the electrical current has been demonstrated to regulate the thermal degradation of electrode (generating metal oxides), which regulate the quality of elimination of selected contaminants [5]. Besides, cathodes are often used to produce Hydrogen ions that is accountable for raising the coagulated contaminants in foam onto the solution's surface [5]. The treatment method has been introduced at three separate current densities that are 0.5 mA/cm², 1 mA/cm² and 1.5 mA/cm² to examine the impact of the current density on the elimination of the microbes from municipal sewage. The performance of neutralization of the bacteria using the EC technique was measured using the following equation [49]:

\[
\text{Neutralization(\%)} = \frac{\text{Start cell count} - \text{End cell count}}{\text{Start cell count}} \times 100
\]

The current density influence was measured based on the power usage of the aluminium EC using following equation:

\[
\text{Energy (kWh/m}^3\text{)} = \frac{\text{Current density (ampere)\times Cell potential (voltage)\times treatment time (hour)}}{1000 \times \text{Volume of water sample (m}^3\text{)}}
\]

2.2. Wastewater samples

During February 2020, a sewage samples were taken utilizing plastic bottles at Karbala wastewater treatment plant, situated in the city of Karbala, Iraq where each sample has a size of 3 litres capacity. The E. coli cells were used as indicator to investigate the performance of the EC system in terms of bacterial disinfection of municipal wastewater. The analytical procedure was undertaken based on the current methodology proposed by the American Public Health Association using the filtration membrane technique. After 24-hour incubation time at 35 °C, the number of E. coli colonies was recorded before and after the sewage treatment.

3. Results

The electrical current density regulates the removal of contaminants, as was discussed in earlier part of this research, through both regulation of the generated metal oxides and hydrogen ions within the EC reactor. The results of changing the current density of the neutralization of the E. coli have been examined using 0.5 and 1 and 1.5 mA/cm². The pH level of the sewerage was 7.5 and the treatment duration was 20 minutes. The temperature of the samples was 20 °C and the size was 1500 mL. The influence of the electrical current density on the neutralization of the E. coli is presented in Figure 1. The removal efficiency of E. coli was found to boost with elevated current densities. it was found that it was at a current density of 0.5 mA/cm², the removal percentage was about 35 percent and increased significantly to be around 83.5 percent using a current density of 1.5 mA/cm². As stated above, the change in the neutralization of E. coli at elevated current stems from a rise in the quantity of metal oxides produced and the production of the hydrogen ions, resulted in a significant enhancement in E. coli neutralization.
Figure 1: Electrical current density influence on E. coli removal.

Figure 2 shows the detrimental consequences of raising the current density. The raising current density leads to a significant rise in energy usage. The current density increased from 0.5 to 1.5 mA/cm2 led to an increase the electricity usage from 2.1 to 6.3 kW/h/m3. Because of these findings, while existing densities is highly useful for the elimination of biological contaminants from water, their performance must be improved such that high energy losses can be avoided. Furthermore, the efficiency of the aluminium EC have been noticed to be in reasonable accordance with the literature [49].

Figure 2: The power usage based on the current density supplied.

4. Conclusion

The present work was carried out to assess the impact on the neutralization of E. coli by the EC approach of the current density. The findings revealed that the current density should never be overlooked in the electrocoagulation removal method of microbial from swage, and the neutralization of E. coli improved approximately 50 percent by raising the current density from 0.5 to 1.5 mA/cm2. This shows that the efficiency of aluminium EC can be enhanced by increasing the density of the electrical current. Nevertheless, the high-power usage increases energy demand, and hence the use of aluminium EC systems in the area of sewerage treatment may be limited. Additionally, parameters like electrode spacing and sewage temperature also play a significant role in the EC process, and further experiments must be conducted with the effects of the experimental variables on E. coli removal from sewage.
References

[1] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 12-22

[2] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 25-32

[3] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8

[4] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach Journal of Environmental Management 197 80-8

[5] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor Journal of Environmental Management 189 98-108

[6] Al-Marri S, AIQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, Alikzwinin R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012073

[7] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012033

[8] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16

[9] Isra’a S S, Al-Janabi A, Abdulredha M, Alkandari A, Abdellatif M and Yeboah D 2021 Reusing of furnace bottom ash as an adsorbent for phosphate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012006

[10] Jawad S F, Saddam N S, Adaami Q J, Kareem M M, Abdulredha M, Mubarak H A, Kot P, Gkantou M and AlKhayyat A 2021 Dye removal from textile wastewater using solar-powered electrocoagulation reactor. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012016

[11] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Al Masoodi Z, Sadique M and Hashim K J D i B 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations

[12] Shubbar A A, Jafer H, Abdulredha M, Al-Khafaji Z S, Nasr M S, Al Masoodi Z and Sadique M M J o B E 2020 Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days 30 101327

[13] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012031

[14] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljeffery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berline: Springer)
[15] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012064

[16] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012037

[17] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology *Procedia Engineering* 196 792-9

[18] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling settling batch reactor *Journal of Water Process Engineering* 20 207-16

[19] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012035

[20] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012034

[21] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor *Chemosphere* 247 125868-75

[22] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment *Journal of Cleaner Production* 280

[23] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljeferi M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies *Water Science and Technology* 83 1-17

[24] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012036

[25] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: *2nd International Scientific Conference*, (Al-Qadisiyah University, Iraq pp 12-22

[26] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faludi J, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012038

[27] Alyafei A, ALKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faludi J and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012032

[28] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulkredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water *Separation and Purification Technology* 210 135-44

[29] Hassan Alnaimi I J I, Abduljalaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of
concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants. In: *IOP Conference Series Materials Science and Engineering* (University of Kufa, Najaf, Iraq pp 1-9

[30] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes *Separation Science and Technology* 55 3184-94

[31] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljeferiy M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study *Desalination and Water Treatment* 150 406-12

[32] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M J P e 2017 Online monitoring of a sequencing batch reactor treating domestic wastewater 196 800-7

[33] Al-Sareji O J, Abdulredha M, Mubarak H A, Grmasha R A, Alnowaisry A, Kot P, Al-Khaddar R and Alkhayyat A 2021 Copper removal from water using carbonized sawdust. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012015

[34] ALWAN H H, SALEH L A, AL-MOHAMMED F M, ABDULREDHA M A J o E S and Technology 2020 EXPERIMENTAL PREDICTION OF THE DISCHARGE COEFFICIENTS FOR RECTANGULAR WEIR WITH BOTTOM ORIFICES 15 3265-80

[35] Hashim K S, Al Khaddar R, Jasm N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M, Alawsh R J S and Technology P 2019 Electrocoagulation as a green technology for phosphate removal from River water 210 135-44

[36] Hashim K S, Idowu I A, Jasm N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M J M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor 5 1413-8

[37] Abdulredha M, Kot P, Al Khaddar R, Jordan D, Abdulridha A J E, Development and Sustainability 2020 Investigating municipal solid waste management system performance during the Arba‘een event in the city of Kerbala, Iraq 22 1431-54

[38] Abdulredha M, Muhsin A A, Al-Janabi A, Alajmi B N, Gkantou M, Amoako-Attah J, Al-Jumeily D, Mustafina J and AlKhayyat A 2021 Using SF and CKD as cement replacement materials for producing cement mortar. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012007

[39] Abdulredha M, Rafid A, Jordan D and Alattabi A J P e 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? 196 771-8

[40] Abdulredha M, Rafid A, Jordan D and Hashim K J P E 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition 196 779-84

[41] Al-Anbari R, Alnakeeb A, Abdulredha M J E and Journal T 2013 Landfill site selection for Kerbala municipal solid wastes by using geographical information system techniques 32 13

[42] Abdulredha M, Al Khaddar R, Jordan D, Al-Attabi A and Alzeyadi A 2017 Public participation in solid waste management during mega festivals: A pilot study. In: *WCST World Congress on Sustainable Technologies Proceedings 2017*: Infonomics Society) pp 38-41

[43] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K J W M 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression 77 388-400

[44] Abdulredha M, Al-Khaddar R, Kot P, Jordan D and Abdulridha A 2018 Benchmarking of the Current Solid Waste Management System in Kerbala, Iraq, Using Wasteware Benchmark Indicators. In: *World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change*: American Society of Civil Engineers Reston, VA pp 40-8
[45] Abdulredha M, Kadhim N, Hussein A, Almutairi M, Alkhaddar R, Yeboah D and Hashim K 2021 Zeolite as a natural adsorbent for nitrogenous compounds being removed from water. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012082

[46] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment. In: *First International Conference on Materials Engineering & Science*, (Istanbul Aydin University (IAU), Turkey) pp 12-22

[47] Cai Y, Li C, Wu D, Wang W, Tan F, Wang X, Wong P K and Qiao X 2017 Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution *Chemical Engineering Journal* 312 158-66

[48] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processions during the Ashura religious event. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012075

[49] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater *Journal of Water Process Engineering* 33 101079-86

[50] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences *Waste Management* 87 761-71

[51] Shubbar A A, Jafer H, Dulaimi A, Hashim K, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach *Construction and Building Materials* 187 1051-60

[52] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq) pp 31-8

[53] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust *Journal of Building Engineering* 32 1-17

[54] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent *Advances in Cement Research* 32 1-38

[55] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations *Data in Brief* 31 105961-72

[56] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash *Karbala International Journal of Modern Science* 6 1-23

[57] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering* (Berlin: Springer)

[58] Aayef A N, Al Masoodi W T M, Kamel R J, Abdulredha M, Almansoori N A, Kot P and Muradov M 2021 An experimental study for adapting electrocoagulation as a technique for fluoride removal from water. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012012
[59] Abdulredha M, Al Khaddar R and Jordan D 2017 Hoteliers’ attitude towards solid waste source separation through mega festivals: A pilot study in Karbala. In: International Conference for Doctoral Research: BUID

[60] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89

[61] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23

[62] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy. In: 12th International Conference on Developments in eSystems Engineering (DeSE), (Kazan, Russia pp 429-33

[63] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59