Evolutionary response to the Qinghai-Tibetan Plateau uplift: phylogeny and biogeography of *Ammopiptanthus* and tribe Thermopsideae (Fabaceae)

Wei Shi 1,2, Pei-Liang Liu 3, Lei Duan 4, Bo-Rong Pan Corresp., 1,2, Zhi-Hao Su 1

1 Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, Urumqi, Xinjiang, China
2 Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan, Xinjiang, China
3 College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
4 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

Corresponding Author: Bo-Rong Pan
Email address: brpan@ms.xjb.ac.cn

Previous works resolved diverse phylogenetic positions for genera of the Fabaceae tribe Thermopsideae, without a thoroughly biogeography study. Based on sequence data from nuclear ITS and four cpDNA regions (*matK*, *rbcL*, *trnH-psbA*, *trnL-trnF*) mainly sourced from GenBank, the phylogeny of tribe Thermopsideae was inferred. Our analyses support the genera of Thermopsideae, with the exclusion of *Pickeringia*, being merged into a monophyletic Sophoreae. Genera of Sophoreae were assigned into the Thermopsoid clade and Sophoroid clade. Monophyly of *Anagyris*, *Baptisia* and *Piptanthus* were supported in the Thermopsoid clade. However, the genera Thermopsis and Sophora were resolved to be polyphyletic, which require comprehensive taxonomic revisions. Interestingly, *Ammopiptanthus*, consisting of *A. mongolicus* and *A. nanus*, nested within the Sophoroid clade, with *Salweenia* as its sister. *Ammopiptanthus* and *Salweenia* have a disjunct distribution in the deserts of northwestern China and the Hengduan Mountains, respectively. Divergence age was estimated based on the ITS phylogenetic analysis. Emergence of the common ancestor of *Ammopiptanthus* and *Salweenia*, divergence between these two genera and the split of *Ammopiptanthus* species occurred at approximately 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively, which may be in response to the second, third and fourth main uplifts of the Qinghai-Tibetan Plateau, respectively.
Evolutionary response to the Qinghai-Tibetan Plateau uplift: phylogeny and biogeography of *Ammopiptanthus* and tribe Thermopsideae (Fabaceae)

Wei Shi¹,²*, Pei-Liang Liu³*, Lei Duan⁴*, Bo-Rong Pancorresp., ¹, ², Zhi-Hao Su¹

Correspondence to B.-R. Pan (brpan@ms.xjb.ac.cn)

¹ Key Laboratory of Biogeography and Bioresources in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, 830011 Urumqi, China

² Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, 838008 Turpan, China

³ College of Life Sciences, Northwest University, 710069 Xi’an, China

⁴ Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China

*These authors contributed equally to this work.
Abstract:

Previous works resolved diverse phylogenetic positions for genera of the Fabaceae tribe Thermopsideae, without a thoroughly biogeography study. Based on sequence data from nuclear ITS and four cpDNA regions (\textit{matK}, \textit{rbcL}, \textit{trnH-psbA}, \textit{trnL-trnF}) mainly sourced from GenBank, the phylogeny of tribe Thermopsideae was inferred. Our analyses support the genera of Thermopsidae, with the exclusion of \textit{Pickeringia}, being merged into a monophyletic Sophoreae. Genera of Sophoreae were assigned into the Thermopsoid clade and Sophoroid clade. Monophyly of \textit{Anagyris}, \textit{Baptisia} and \textit{Piptanthus} were supported in the Thermopsoid clade. However, the genera \textit{Thermopsis} and \textit{Sophora} were resolved to be polyphyly, which require comprehensive taxonomic revisions. Interestingly, \textit{Ammopiptanthus}, consisting of \textit{A. mongolicus} and \textit{A. nanus}, nested within the Sophoroid clade, with \textit{Salweenia} as its sister. \textit{Ammopiptanthus} and \textit{Salweenia} have a disjunct distribution in the deserts of northwestern China and the Hengduan Mountains, respectively. Divergence age was estimated based on the ITS phylogenetic analysis. Emergence of the common ancestor of \textit{Ammopiptanthus} and \textit{Salweenia}, divergence between these two genera and the split of \textit{Ammopiptanthus} species occurred at approximately 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively, which may be in response to the
second, third and fourth main uplifts of the Qinghai-Tibetan Plateau, respectively.

Introduction:

Thermopsidaceae (Yakovlev 1972) is a small tribe in Fabaceae, comprising six genera, *Ammopiptanthus* S.H. Cheng, *Anagyris* L., *Baptisia* Vent., *Pickeringia* Nutt. ex Torr. & A. Gray, *Piptanthus* Sweet and *Thermopsis* R.Br. ex W.T. Aiton, with a total of ca. 45 species.

Thermopsidaceae ranges from the Mediterranean Basin, central and northeastern Asia to temperate North America (Lock 2005; Turner 1981; Wang 2001). Early phylogenetic works supported that the genera composing Thermopsidaceae, except for *Pickeringia*, were nested in the “core Genistoids” group, which always contains quinolizidine alkaloids (Crisp et al. 2000; Wojciechowski et al. 2004). A subsequent study conducted by Wang et al. (2006) resolved two clades in this tribe: the genus *Ammopiptanthus* clade and the “core genera” clade, consisting of *Anagyris*, *Baptisia*, *Piptanthus* and *Thermopsis*. However, Thermopsidaceae was not monophyletic, because *Sophora* nested within this tribe. Based on the plastid marker *matK*, recent analyses conducted by Cardoso et al. (2012a, 2013) treated the five genera of Thermopsidaceae, *Ammopiptanthus*, *Anagyris*, *Baptisia*, *Piptanthus* and *Thermopsis*, into a narrowly defined tribe Sophoreae. However, Zhang et al. (2015a) accepted the tribe Thermopsidaceae and their two
phylogenetic trees showed different positions of *Sophora*. The monophyly and genera included in the tribe Thermopsideae are thus controversial and the relationship between Thermopsideae and *Sophora* remains unclear. Within Thermopsideae, *Anagyris* (Ortega-Olivencia 2009), *Baptisia* (Larisey 1940a; Turner 2006), *Pickeringia* (Wojciechowski 2013), *Piptanthus* (Turner 1980; Wei 1998; Wei & Lock 2010) and *Thermopsis* (Chen et al. 1994; Czefranova 1970; Larisey 1940b; Peng 1992; Sa 1999; Sa 2000) were studied taxonomically, phylogenetically and biogeographically.

Within Thermopsieae, *Ammopiptanthus* is a small genus, established by Cheng (1959) on the basis of *A. mongolicus* (Maxim.) Cheng. and *A. nanus* (M. Pop.) Cheng f., and being widely accepted (Yakovlev 1988; Yakovlev et al. 1996; Wei 1998). But Wei & Lock (2010) unified the two species. Although some phylogenetic studies indicated a well-supported *Ammopiptanthus* (Cardoso et al. 2013; Wang et al. 2006), the infra- and inter-generic phylogeny of this genus needs further research. Zhang et al. (2015a) inferred a diverging time for *Ammopiptanthus* from the “core Genera” clade, but some closely related Sophoreae genera were not sampled (see Cardoso et al. 2013; Wang et al. 2006), which may have affected the accuracy of the dating.

The effects of geological and climatic factors play a key role in the spatiotemporal
The uplifts of the Qinghai-Tibetan Plateau (QTP) lead to a long-term climate oscillation in central and northern Asia. At 45–30 Ma, the collision of the Indian plate and the Asian plate triggered the first uplifting of the QTP, the Himalayan orogeny and the retreat of the Tethys (Harrison et al. 1992; Shi et al. 1999); the second main uplift (ca. 25 Ma) changed the planetary wind system and initiated the Asian monsoon (Chen et al. 1999; Li 2001; Shi et al. 1998, 1999; Teng et al. 1997). The third (7–8 Ma; Harrison et al. 1992; Liu et al. 2001; Wang et al. 2008; Zheng & Yao 2006) and fourth uplifting of QTP (3.6–2.5 Ma; Chen et al. 1999; Li & Fang 1999; Li 2001; Tang & Liu 2001; Zheng & Yao 2006) rendered the Asian interior cooler and drier, so evergreen forests vanished. The Tertiary broadleaf forest in Central Asia was taken over by drought-withstanding shrubs and herbs (Meng et al. 2015).

Two species of *Ammopiptanthus* disjunctively distributed in the southwestern Mongolian Plateau and the southwestern Pamir Plateau (Wei 1998). Liu et al. (1996) suggested that the ancestor of this genus emerged in the southern hemisphere, dispersing northwards when the Tertiary forest expanded due to the uplift of the QTP and the retreat of the Tethys. Subsequent studies postulated a southern Laurasian origin for *Ammopiptanthus* and regarded this genus as a relic of the Tertiary flora (Sun 2002a; Sun & Li 2003; Wang 2001). Based on molecular
evidence, Wang et al. (2006) and Zhang et al. (2015a) supported the relic status postulated for
Ammopiptanthus, proposing that its ancestral area was in central Asia. However, the existing
phylogeny-based biogeographic analyses used an inadequate sample of the tribe Sophoreae,
which is closely related to Thermopsideae (Cardoso et al. 2012a; Cardoso et al. 2013; Azani et al.
2017), leading to possible inaccuracies in the bioinformatic inferences.

We herein employ existing GenBank sequences and newly generated sequences of the
nuclear ITS and the plastid *matK*, *rbcL*, *trnL-trnF* and *psbA-trnH* gene regions, with an extensive
sampling for Thermopsideae and Sophoreae, to a) test the monophyly and systematic status of
Thermopsideae; and b) infer the phylogeny and biogeography of *Ammopiptanthus*.

Materials and methods

Sampling scheme

Nine haplotypes of the two species of *Ammopiptanthus* found by Su et al. (2016) were
included in the present study. Both species of *Salweenia* Baker f. were sampled (Yue et al. 2011).

The nuclear internal transcribed spacer (ITS) sequences for *Salweenia wardii* Baker f. and
Maackia amurensis Rupr. and the plastid *psbA-trnH* and *trnL-trnF* intergenic spacer sequences
for *Maackia amurensis* were generated for the present study. The DNA extraction, amplification and sequencing methods followed Su et al. (2016). All other ITS, *matK, rbcL, trnL-trnF* and *psbA-trnH* sequences were obtained from GenBank. Guided by the phylogenetic analyses of *Ammopiptanthus* by Wang et al. (2006) and Zhang et al. (2015a), and the phylogeny of the Genistoids s.l. (Cardoso et al. 2012b; Crisp et al. 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003), we included all the available species of Thermopsideae and Sophoreae s.s. in our analyses. In total, we sampled 21 species in *Thermopsis*, seven species of *Piptanthus*, two species of *Anagryris*, six species of *Bapstisia*, 13 species of *Sophora*, three species in *Maackia*, two species in *Euchresta* and one species in each of the following genera: *Ammodendron*, *Ammothamnus* and *Echinosophora*. Some other species of the Genistoids s.l. were also selected according to previous phylogenetic frameworks (Cardoso et al., 2012b, 2013). *Ormosia* was set as the outgroup. The specific taxa, including their GenBank accession numbers, are shown in Table 1.

Phylogenetic analyses

Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the Geneious v.8.1.2 platform (Kearse et al. 2012) with default settings and manual adjustments. The
best-fit substitution models for the ITS1, 5.8S, ITS2, \textit{matK}, \textit{psbA-trnH}, \textit{rbcL} and \textit{trnL-trnF} regions were determined separately using jModelTest v.2.1.7 (Darriba et al. 2012). Phylogenetic relationships were inferred using Bayesian inference (BI) as implemented in MrBayes v.3.2.5 (Ronquist & Huelsenbeck 2003) and maximum likelihood (ML) analysis with RAxML v.8.2 (Stamatakis 2014). The nuclear ITS dataset was partitioned into ITS1, 5.8S and ITS2 partitions. For the concatenated plastid dataset, data was partitioned separately for \textit{matK}, \textit{psbA-trnH}, \textit{rbcL} and \textit{trnL-trnF}. Two independent analyses for BI were conducted, with one cold and three incrementally heated Markov chain Monte Carlo (MCMC) chains run for 10,000,000 generations. Trees were sampled every 1,000 generations. All Bayesian analyses produced split frequencies of less than 0.01, showing convergence between the paired runs. The first 2,500 trees were discarded as burn-in and the remaining trees were used to construct a 50\% majority-rule consensus tree and posterior probabilities (PP). For the ML analyses, a rapid bootstrap analysis was performed with a random seed, 1,000 alternative runs, and the same partition scheme as in the Bayesian analysis. The model parameters for each partition of the dataset were optimized using RAxML with the GTRCAT command. Trees were visualized in FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). The ML bootstrap support values (BS) were labeled
on the corresponding branches of the BI trees.

Estimation of divergence times

Divergence times were estimated using the ITS dataset and the BEAST v.2.4.3 package (Bouckaert et al. 2014). The ITS dataset was partitioned into the ITS1, 5.8S and ITS2 partitions, and nucleotide substitution models were unlinked across the three partitions. Models were determined using jModelTest. The log normal relaxed clock model was used, and the clock model was linked across partitions. The birth-death model was employed and was linked across partitions. Two independent MCMCs were each run for 50,000,000 generations, and samples were stored every 1,000 generations. The effective sample size (ESS) of each sampled parameter and the convergence between runs were checked using Tracer v.1.6 (http://beast.bio.ed.ac.uk/Tracer). The ESSs of all parameters exceeded 200, and the two independent runs were convergent. After removing a 25% burn-in from each run, the trees from the two runs were combined by using LogCombiner (Bouckaert et al. 2014). The maximum clade credibility tree was found and annotated using TreeAnnotator (Bouckaert et al., 2014), and only the branches with a posterior probability of greater than 0.5 were annotated. The dated tree was visualized in FigTree v.1.4.3.
Calibration points were chosen from the molecular dating analysis of Fabaceae conducted by Lavin et al. (2005). In the matK phylogeny reported in Lavin et al. (2005), the essential Genistoid crown clade (excluding Ormosia Jacks.) had been set to a minimum of 56 million years ago (Ma) according to fossil records (Herendeen & Dilcher 1990; Crepet & Herendeen 1992). This clade was equal to our ingroup clade; therefore, the crown age of our ingroup was set as an exponential distribution with a mean of 1 and an offset of 56 Ma. The Genistoid crown age had been estimated as 56.4 ± 0.2 Ma (Lavin et al. 2005); this age was used to set the age of the root of our tree as a normal distribution with a mean of 56.4 Ma and a standard deviation of 0.2 Ma. The age of the most recent common ancestor (MRCA) of Bolusanthus speciosus Harms and Spartium junceum Linn. was set as a normal distribution with a mean of 45.2 Ma and a standard deviation of 2.2 Ma. The age of the MRCA of Piptanthus nepalensis Sweet and Baptisia australis R.Br. was set as a normal distribution with a mean of 26.5 Ma and a standard deviation of 3.4 Ma, according to the ages of the equivalent nodes that were previously estimated by Lavin et al. (2005).

Results

Phylogenetic analyses
Since plastid sequences putatively evolve as a single molecule, sequences of the four plastid markers (\textit{matK}, \textit{rbcL}, \textit{psbA-trnH} and \textit{trnL-trnF}) were concatenated. Phylogenetic analyses were conducted on both the nuclear and four combined plastid data sets (Figs. 1–3: Fig.1 emphasized the position of \textit{Pickeringia}; Figs. 2–3 intensified the sampling for Sophoreae). The models used in the Bayesian analyses were as follows: \textit{matK}: GTR+G; \textit{psbA-trnH}: HKY+G; \textit{rbcL}: HKY+I+G; \textit{trnL-trnF}: GTR+G; ITS1: GTR+G; 5.8S: K80+G; ITS2: GTR+G. The ITS and plastid tree topologies were distinct with regard to some key groups, thus we analyzed them separately.

Our analysis (Fig. 1) showed that \textit{Pickeringia} was distantly related to the Thermopsideae genera. According to the detailed trees (Figs. 2 & 3), all genera of this tribe, except \textit{Pickeringia}, belonged to the well supported core Genistoids (PP = 1/BS = 100% and PP = 1/BS = 94% in Figs. 2 and 3, respectively). Four genera, \textit{Anagyris}, \textit{Baptisia}, \textit{Piptanthus} and \textit{Thermopsis}, clustered into the “Thermopsoid clade” (1/100% for ITS tree; 1/94% for plastid tree), within which \textit{Anagyris} (1/100% & 1/99%) and \textit{Baptisia} (1/100% & 0.95/95%) were shown to be monophyletic. The monophyly of \textit{Piptanthus} was also strongly supported by the ITS tree (1/99%). \textit{Ammopiptanthus}, appearing to be a sister group of \textit{Salweenia} (1/100% in both trees), was monophyletic (1/100% & 0.99/89%). These two genera were not related to the Thermopsoid
clade but nested in the Sophoroid clade (0.99/83% & 0.71/74%), which in turn formed a robustly
supported group (1/96% & 1/100% for the tribe Sophoreae; see Discussion) sister to the
Thermopsoid clade.

The sampled taxa from the tribes Crotalarieae, Genisteae and Podalyrieae formed a clade
(the PCG clade; 0.89/80% & 0.92/79%), while *Bolusanthus Harms* and *Dicraeopetalum Harms*
clustered together (the BOD clade; 1/100% in both trees). These two clades occupied a different
position in relation to Sophoreae (0.92/88% & 0.99/56%).

Estimating divergence time

Phylogenetic dating was conducted based on the ITS dataset (Fig. 4). The estimated mean
ages of the relevant clades and the 95% posterior density intervals (in parentheses) are as follows:

- 41.24 (35.2, 46.93) Ma for the Sophoreae plus PCG clade,
- 35.59 (28.88, 42.44) Ma for the Sophoroid plus Thermopsoid clade,
- 30.61 (22.91, 38.28) Ma for the *Maackia* plus its sister clade,
- 26.96 (19.36, 34.62) Ma for Node I,
- 4.74 (1.72, 8.77) Ma for Node II and
- 2.04 (0.67, 3.73) Ma for Node III.
Phylogenetic position of Thermopsidaceae

Thermopsidaceae, the widely distributed legume tribe containing six genera, was proposed by Yakovlev (1972), and was accepted in most subsequent studies (Lock 2005; Polhill 1994; Turner 1981; Wang 2001; Wei et al. 2010; Wei 1998; Yakovlev 1972). Phylogenetic research has indicated that most genera of this tribe are members of the core Genistoids, which in turn belongs to the Genistoid clade in a broad sense (Cardoso et al. 2012b; Cardoso et al. 2016; Cardoso et al. 2013; Crisp et al. 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003). However, the western North American endemic genus, *Pickeringia*, was an outlier from the core Genistoids (Fig. 1; see also Lavin et al. 2005; Wojciechowski 2013; Wojciechowski et al. 2004; Azani et al. 2017). Therefore, Lock (2005) suggested that this genus should be excluded from Thermopsidaceae. Our results confirm this exclusion (Fig. 1). *Pickeringia* (*x* = 7) also differs from other genera of Thermopsidaceae (*x* = 8) in basic chromosome number (Chen 1992; Goldblatt 1981; Pan & Huang 1993) and the absence of quinolizidine alkaloids (see Turner 1981; Käss & Wink 1994; Crisp et al. 2000; Doyle et al. 2000; Wink 2013). With the exclusion of *Pickeringia*, Cardoso et al. (2012b, 2013) proposed to merge
Thermopsidae into Sophoreae sensu Cardoso, which is characterized by free stamens, to render it monophyletic. Merging Thermopsidae into Sophoreae is verified by our results (Figs. 2 & 3).

A more inclusive Sophoreae sensu Cardoso can serve to avoid taxonomic over-fragmentation of the core Genistoids taxa and the establishments of new tribes based on many small clades. On the other hand, the clade comprising *Bolusanthus speciosus* Harms and *Dicraeopetalum mahafaliense* (M. Peltier) Yakovlev (the BOD clade), was included in Sophoreae by Cardoso et al. (2013), but was weakly supported. Such a relationship is not validated by our ITS tree (Fig. 2; it is also not supported by the likelihood bootstrap value of the plastid tree, see Fig. 3). The newly circumscribed Sophoreae, equal to Sophoreae sensu Cardoso but with the exclusion of the BOD clade, is further divided into the Thermopsoid clade and the Sophoroid clade (Figs. 2 & 3).

Cardoso et al. (2013) elevated *Ormosia* from Sophoreae as a distinct tribe (Ormosieae), yet our results do not confirm the affiliation of *Clathrotropis* with this tribe (Figs. 2 & 3).

The core Genistoids is composed of three robust groups: Sophoreae, the BOD clade and the PCG clade. Our ITS and plastid tree topologies are incongruent with regard to these clades.

Sophoreae forms a clade with the PCG clade in the ITS tree (Fig. 2), but the PCG clade is sister to the BOD clade in the plastid tree (Fig. 3). Although not all of the support values are significant
(BI posterior probability >0.95, ML bootstrap value >70%), the current case of topological discordance is similar to Xu et al. (2012), García et al. (2014) and Duan et al. (2016), which likely implied a chloroplast capture event in the origin of Sophoreae. Nevertheless, highly supported phylogenetic trees based on multi-locus nuclear and plastid genes are required to further verify this hypothesis.

Phylogeny of the Thermopsoid clade

The Thermopsoid clade includes four genera: *Anagyris*, *Baptisia*, *Piptanthus* and a polyphyletic *Thermopsis*. The clade is divided into two well supported groups: the Eurasian group and the American group (Figs. 2 & 3).

The monophyletic *Anagyris* (also see Ortega-Olivencia 2009) is endemic to the Mediterranean region, and belongs to the Eurasian group (Figs 2 & 3). The Eurasian group also includes the Hengduan-Himalaya-distributed genus *Piptanthus*, whose monophyly was accepted by Wang et al. (2006) and supported by our ITS results (Fig. 2). *Baptisia* is restricted to North America (central, northern and southern states of the U.S.A.) and is embedded within the American Thermopsoid group. Our analyses yielded robust support for this genus, similar to
Wang et al. (2006), Uysal et al. (2014) and Zhang et al. (2015a).

Previous studies (Uysal et al. 2014; Wang et al. 2006; Zhang et al. 2015a) and the present results (Figs. 2 & 3) indicate a polyphyletic *Thermopsis*, with its species being assigned into both the Eurasian and the American groups. It is obvious that *Thermopsis* needs further taxonomic revision. It is noteworthy that three Asian species, *Thermopsis fabacea* (Pall.) DC., *T. chinensis* Benth. ex S. Moore and *T. turcica* Kit Tan, Vural & Küçük., cluster with the American group, making the biogeography of this genus an attractive topic for future research. In addition, our trees failed to support the generic status of the monotypic *Vuralia* Uysal & Ertuğrul (= *Thermopsis turcica*), which was proposed by Uysal et al. (2014) mainly based on some unique morphological characters such as a three-carpellate ovary and indehiscent fruit.

Ammopiptanthus within the Sophoroid clade

Within the Sophoroid clade, the monophyletic *Maackia* Rupr. diverges first, and the remaining taxa are divided into two highly supported groups. The first group contains a non-monophyletic *Sophora* (also see (Cardoso et al. 2013; Kajita et al. 2001; Käss & Wink 1997; Lee et al. 2004; Wink & Mohamed 2003) and some allied Sophoreae genera, i.e., *Anmodendron*
Fisch. ex DC., *Ammothamnus* Bunge, *Echinosophora* Nakai and *Euchresta* Benn. *Sophora* is a widely distributed genus, and has been revised by various taxonomists (Bao 2010; Heenan et al. 2004; Ma 1990; Ma 1994; Tsoong 1981a; Tsoong 1981b; Vasil'chenko 1945; Yakovlev 1996).

The phylogeny and circumscription of the genus are long-standing puzzles that require considerable effort to solve.

The former Thermopsideae member, *Ammopiptanthus*, which is sister to *Salweenia*, constitutes another entity in the Sophoroid clade (Figs. 2 & 3). Traditionally, *Ammopiptanthus* contains two species: *A. mongolicus* and *A. nanus* (Cheng 1959; Fu 1987; Li & Yan 2011; Wei 1998; Yakovlev 1996), while Wei & Lock (2010) merged the latter species into the former. Our results (Figs. 2 & 3) confirmed the specific status of *A. nanus*, which is confined to southwest Xinjiang in China and eastern Kyrgyzstan, compared to a non-overlapping range of *A. mongolicus* in northern Inner Mongolia, northern Gansu, eastern Xinjiang, China and southern Mongolia (Fig. 5). Taxonomic separation of the two species is also supported by morphological (Cheng 1959; Wei 1998), anatomical (Yuan & Chen 1993), cytological (Chen 1992; Liu et al. 1996; Pan & Huang 1993) and biochemical (Feng et al. 2011; Shi 2009; Wei et al. 2007; Wei & Shi 1995; Yin & Zhang 2004) evidence. Recently, Lazkov (2006) described a new species in
Kyrgyzstan: *Ammopiptanthus kamelinii* Lazkov. The type specimen is not significantly distinct from *A. nanus* and the type locality overlapped with that of *A. nanus*, so we suspend the recognition of *A. kamelinii*.

On the other hand, *Salweenia* was originally established as a monotypic genus in Sophoreae and Yue et al. (2011) identified a second species of this genus based on morphological and phylogenetic evidence. Both species are endemic to the Hengduan Mountains in southwest China.

Phylogenetic reconstruction based on the plastid *rbcL* sequence showed that *Salweenia* was sister to a *Maackia-Sophora-Euchresta* clade (Doyle et al. 1997). Its sistership with *Ammopiptanthus* is firstly discovered herein, which is further explicated as follow.

Biogeography of *Ammopiptanthus* and *Salweenia*

The abovementioned *Ammopiptanthus-Salweenia* group has a disjunct distribution. *Ammopiptanthus* is recorded from arid regions of northwest China, southern Mongolia and eastern Kyrgyzstan (Fig. 5A - C). In contrast, *Salweenia* is endemic to the Hengduan Mountains in the eastern Qinghai-Tibetan Plateau (QTP) (Fig. 5A & D). Several hypotheses have been proposed for the evolutionary history of *Ammopiptanthus*, most of which suggest that this genus
is a relic survivor of the Tertiary flora (Sun 2002a; Sun & Li 2003; Wang 2001; Wang et al. 2006; Zhang et al. 2015a). Yet these studies were conducted in the now outdated context of Thermopsidaceae, rather than the more informative context of Sophoreae. Furthermore, few studies have highlighted the sister relationship between *Ammopiptanthus* and *Salweenia*.

A central Asian origin for *Ammopiptanthus*, as suggested by Wang et al. (2006) and Zhang et al. (2015a), may be valid if judged by the unique habit in the northwest desert of China: it is the only evergreen broadleaf shrub in this region, which can be regarded as a symplesiomorphy associated with Tertiary flora. Additionally, *Salweenia* is an evergreen shrub (Yue et al., 2011); this similar habit further supports its sister relationship status with *Ammopiptanthus*. Due to the monophyly of the *Ammopiptanthus-Salweenia* group, the ancestral range of *Salweenia* is probably not in Gondwana as described in Li & Ni (1982) and Yue et al. (2011). Thus, we hypothesize the evolution of this group as described below (see Fig. 4). The Himalayan orogeny and uplifting of the QTP initiated the retreat of the Tethys (ca. 45–30 Ma; Harrison et al. 1992; Shi et al. 1999; Zhang & Fang 2016). The second major uplift of the QTP occurred at ca. 25 Ma, triggering the East Asian monsoonal climate of the Asian interior, including Central Asia, northwestern China and the Mongolian Plateau, which began to fluctuate, though evergreen...
forest temporarily remained (Teng et al. 1997; Chen et al. 1999; Shi et al. 1999; Li 2001; Zhang & Fang 2016). The common ancestor of *Ammopiptanthus* and *Salweenia* arose in the Tertiary evergreen forest of ancient Central Asia (the north coast of the Tethys) before 26.96 Ma (Fig. 4: Node I). During the expansion of the Central Asian evergreen forest, this common ancestor probably dispersed southwards along new land that emerged from the Tethys (as in Sun 2002b).

The third rapid uplift of the QTP happened 7–8 Ma (Harrison et al. 1992; Liu et al. 2001; Wang et al. 2008; Zheng & Yao 2006) and was followed by a major raising of the northwest QTP at ca. 4.5 Ma (Zheng et al. 2000), causing a cooler climate and aridification of the Asian inland. The Tertiary forest gradually gave way to psychrophytic and xerophytic shrubs and herbs (Sun 2002a; Meng et al. 2015). This dramatic environmental change possibly led to the divergence between *Ammopiptanthus* and *Salweenia* (ca. 4.74 Ma, see Fig. 4: Node II). The former, remained in the Asian interior, kept the evergreen shrubby habit, and acquired xeric characters, such as the pubescent, coriaceous leaves, in the arid central Asian habitat; while the latter retained more traits from Tertiary flora in the less disturbed and wetter region of the Hengduan Mountains (Sun 2002a, b; Sun & Li 2003).

The split of the two *Ammopiptanthus* species (2.04 Ma; see Fig. 4: Node III) is possibly a
response to the last (fourth) rapid uprising of the QTP, when aridification of the Asian interior intensified and the Loess Plateau formed, which potentially served as a geological barrier and facilitated speciation (3.6-2.5 Ma; Chen et al. 1999; Li & Fang 1999; Li 2001; Tang & Liu 2001; Zheng & Yao 2006). This estimated age is slightly older than that proposed in Su et al. (2016), who similarly suggested that the speciation of *Ammopiptanthus* was caused by climate oscillation and range shifts. *Ammopiptanthus nanus* grows in a dryer habitat than that of *A. mongolicus*; the former, therefore, possesses more xeric apomorphies such as shorter habit, usually 1-foliolate leaves, conspicuous leaf venation, thicker root cortex, more complex karyotype and more vulnerable phytocommunities (Cheng 1959; Pan & Huang 1993; Wei 1998; Zhang et al. 2007).

Such disjunction resulting from the QTP uplift can be found in other Fabaceae species. Examples are the infra-generic biogeography of some genera in the tribe Caraganeae (QTP-NW China/C Asia disjunction; see Zhang et al. 2010; Zhang et al. 2015b; Zhang et al. 2015c) and the inter-generic evolutionary history of *Gueldenstaedtia* and *Tibetia* (mesic E Asia-QTP disjunction; see Xie et al., 2016). Our results may provide new insight into the evolutionary pattern of an inter-generic QTP-Asian interior disjunctive distribution.

Conclusion
Thermopsideae is a widely spread tribe of Leguminosae, ranging in temperate Eurasia and North America, its phylogeny has been controversial for decades. According to our results, *Pickeringia* was excluded from Thermopsideae. The previous finding, that this tribe is part of an expanded Sophoreae, was confirmed herein. The re-delimited Sophoreae contained two clades: Thermopsoid and Sophoroid clade. Monophyly of *Anagyris*, *Baptisia* and *Piptanthus* were supported in the former clade. On the other hand, *Ammopiptanthus*, including *A. mongolicus* and *A. nanus*, nested within the Sophoroid clade, with *Salweenia* as its sister. The *Ammopiptanthus-Salweenia* clade displayed a disjunctive distribution in northwestern China-central Asia and Hengduan Mountains, respectively. The estimation of divergence ages showed the emergence of the common ancestor of *Ammopiptanthus* and *Salweenia*, divergence between these two genera and the split of *Ammopiptanthus* species are in response to the second, third and fourth main uplifts of the QTP, respectively.

Acknowledgments

We thank Dr. Ming-Zhou Sun for kindly providing samples and Prof. Zhao-Yang Chang for providing the photograph in Fig. 5D.
References

Akdeniz D, Ozmen A. 2011. Antimitotic effects of the biopesticide oxymatrine. *Caryologia* 64:117-120.

**Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, Boatwright JS, Borges LM, Brown GK, Bruneau A, Candido E, Cardoso D, Chung K-F, Clark RP, Conceicao AdS, Crisp M, Cubas P, Delgado-Salinas A, Dexter KG, Doyle JJ, Duminić J, Egan AN, de la Estrella M, Falcao MJ, Filatov DA, Fortuna-Perez AP, Fortunato RH, Gagnon E, Gasson P, Rando JG, Goulart de Azevedo Tozzi AM, Gunn B, Harsis D, Haston E, Hawkins JA, Herendeen PS, Hughes CE, Iganci JRV, Javadi F, Kanu SA, Kazempour-Osalo S, Kite GC, Klitgaard BB, Kochanova FJ, Koenen EJM, Kovar L, Lavin M, le Roux M, Lewis GP, de Lima HC, Lopez-Roberts MC, Mackinder B, Maia VH, Malecot V, Mansano VF, Marazzi B, Mattapha S, Miller JT, Mitsuyuki C, Moura T, Murphy DJ, Nageswara-Rao M, Nevada B, Neves D, Ojeda DI, Pennington RT, Prado DE, Prenner G, de Queiroz LP, Ramos G, Ranzato Filardi FL, Ribeiro PG, Rico-Arce MdL, Sanderson MJ, Santos-Silva J, Sao-Mateus WMB, Silva MJS, Simon MF, Sinou C, Snak C, de Souza ER, Spret J, Steele KP, Steier JE, Steeves R, Stirton CH, Tagane S, Torke BM, Toyama H, da Cruz DT, Vatanparast M, Wieringa JJ, Wink M, Wojciechowski MF, Yahara T, Yi T, and Zimmerman E. 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. *Taxon* 66:44-77.

Bao BJ, Vincent, MA. 2010. Sophora. In: Wu ZY, Hong, DY & Raven PH, eds. *Flora of China*. 10. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press. 85-93.

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS Comput Biol* 10:e1003537.

Cardoso D, de Lima HC, Rodrigues RS, de Queiroz LP, Pennington RT, Lavin M. 2012a. The realignment of Acosmium sensu stricto with the Dalbergioid clade (Leguminosae: Papilionoideae) reveals a proneness for independent evolution of radial floral symmetry among early-branching papilionoid legumes. *Taxon* 61:1057-1073.

Cardoso D, De Queiroz LP, Pennington RT, De Lima HC, Fonty É, Wojciechowski MF, Lavin M. 2012b. Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages. *American Journal of Botany* 99:1991-2013.

Cardoso D, Harris DJ, Wieringa JJ, São-Mateus WM, Batalha-Filho H, Torke BM, Prenner G, de Queiroz LP. 2016. A molecular-dated phylogeny and biogeography of the monotypic legume genus Haplormosia, a missing African branch of the otherwise American-Australian Brongniartieae clade. *Molecular Phylogenetics and Evolution*.

Cardoso D, Pennington R, De Queiroz L, Boatwright J, Van Wyk B-E, Wojciechowski M, Lavin M. 2013. Reconstructing the deep-branching relationships of the papilionoid...
legumes. *South African Journal of Botany* 89:58-75.

Chen CJ, Mendenhall MG, Turner BL. 1994. Taxonomy of Thermopsis (Fabaceae) in North America. *Annals of the Missouri Botanical Garden* 714-742.

Chen CJ, Zhu, XY, Yuan, YM. 1992. Cytological studies on the tribe Thermopsideae (Fabaceae) I: Report on karyotypes of eleven species of four genera. *Cathaya* 4:103-116.

Chen LX, Liu JP, Zhou XJ, Wang PX. 1999. Impact of uplift of Qinghai-Xizang Plateau and change of land-ocean distribution on climate over Asia. *Quaternary Sciences* 4:314-329.

Cheng SH. 1959. *Ammopiptanthus Cheng f.*, a new genus of Leguminosae from central Asia. *Botanicheskii Zhurnal* 44:1381-1386.

Crepet WL, Herendeen PS. 1992. Papilionoid flowers from the early Eocene of southeastern North America. In: Herendeen P, Dilcher D, eds. *Advances in legume systematics*. 4. Kew, Richmond: Royal Botanic Gardens. 43-55.

Crisp M, Gilmore S, Van Wyk BE. 2000. Molecular phylogeny of the genistoid tribes of papilionoid legumes. In: Herendeen P, Bruneau A, eds. *Advances in legume systematics*. 9. Kew, Richmond: Royal Botanic Gardens. 249-276.

Czefranova Z. 1970. *Series novae generis Thermopsis R.Br.* *Novitates Systematicae Plantarum Vascularium* 7:213-216.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature methods* 9:772-772.

Doyle J, Chappill J, Bailey C, Kajita T. 2000. Towards a comprehensive phylogeny of legumes: evidence from *rbcL* sequences and non-molecular data. In: Herendeen P, Bruneau A, eds. *Advances in Leguminosae systematics*. 9. Kew, Richmond: Royal Botanic Gardens, 1-20.

Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H. 1997. A phylogeny of the chloroplast gene *rbcL* in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation. *American Journal of Botany* 84: 541-554.

Duan L, Yang X, Liu PL, Johnson G, Wen J, Chang ZY. 2016. A molecular phylogeny of Caraganeae (Leguminosae, Papilionoideae) reveals insights into new generic and infrageneric delimitations. *PhytoKeys* 70:111-137.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* 32:1792-1797.

Feng WJ, Ou YF, Su YL, Li J, Ji TF. 2011. Chemical constituents of *Ammopiptanthus mongolicus*. *China journal of Chinese materia medica* 36:1040-1042.

Fu KT. 1987. *Ammopiptanthus* and *Thermopsis*. In: Liou YX, ed. *Flora in Desertis Reipublicae Populorum Sinarum*. 2. Beijing: Science Press, 230-232.

García N, Meerow AW, Soltis DE, Soltis PS. 2014. Testing deep reticulate evolution in Amaryllidaceae tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data. *Systematic Botany* 39:75-89.

Goldblatt P. 1981. Cytology and the phylogeny of Leguminosae. In: Polhill RM, Raven PH, eds. *Advances in legume systematics*. 1. Kew, Richmond: Royal Botanic Gardens. 427-463.

Harrison TM, Copeland P. 1992. *Raising tibet*. *Science* 255:1663.
Heenan PB, Dawson MI, Wagstaff SJ. 2004. The relationship of *Sophora* sect. *Edwardsia* (Fabaceae) to *Sophora tomentosa*, the type species of the genus *Sophora*, observed from DNA sequence data and morphological characters. *Botanical Journal of the Linnean Society* 146:439-446.

Herendeen PS, Dilcher DL. 1990. *Diplotropis* (Leguminosae, Papilionoideae) from the Middle Eocene of southeastern North America. *Systematic Botany* 15:526-533.

Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ. 2001. *rbcL* and legume phylogeny, with particular reference to Phaseoleae, Millettieae and allies. *Systematic Botany* 26:515-536.

Käss E, Wink M. 1994. Molecular phylogeny of the papilionoideae (family Leguminosae) - *rbcl* gene-sequences versus chemical taxonomy. *Botanica Acta* 108:149-162.

Käss E, Wink M. 1997. Phylogenetic relationships in the papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (*rbcL*) and ncDNA (ITS 1 and 2). *Molecular Phylogenetics and Evolution* 8:65-88.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647-1649.

Larisey MM. 1940a. A monograph of the genus *Baptisia*. *Annals of the Missouri Botanical Garden* 27:119-244.

Larisey MM. 1940b. A revision of the North American species of the genus *Thermopsis*. *Annals of the Missouri Botanical Garden* 27:245-258.

Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. *Systematic Biology* 54:575-594.

Lazkov G. 2006. Generis *Ammopiptanthus* S.H.Cheng (Fabaceae) species nova e Kyrgyzstania. *Novitates Systematicae Plantarum Vascularium* 38:134-138.

Lee WK, Tokuoka T, Heo K. 2004. Molecular evidence for the inclusion of the Korean endemic genus “*Echinosophora*” in *Sophora* (Fabaceae) and embryological features of the genus. *Journal of plant research* 117:209-219.

Li J, Fang X. 1999. Uplift of the Tibetan Plateau and environmental changes. *Chinese Science Bulletin* 44:2117-2124.

Li JJ, Fang XM, Pan BT, Zhao ZJ, Song YG. 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area. *Quaternary Sciences* 21:381-391.

Li PQ, Ni CC. 1982. The formation and differentiation of the Leguminosae flora in Xizang (Tibet). *Acta Phytotaxonomica Sinica* 20:142-156.

Li XY, Yan P. 2011. Leguminosae. In: Sheng GM, ed. *Flora Xinjiangensis*. 3. Xinjiang: Xinjiang Science & Technology Publishing House, 11-12.

Liu S, Chi X, Li C, Yang R. 2001. The summarizing for the forming and uplifted mechanism of Qinghai-Tibet Plateau. *World Geology* 20:105-112.

Liu YH, Wang SM, Wang HS. 1996. A study on the chromosomal geography of
Ma CY. 1990. Review of the classificational system on the genus Sophora. *Bulletin of Botanical Research* 10:77-86.

Ma CY. 1994. *Sophora*. In: Wei Z, ed. *Flora Reipublicae Popularis Sinicae*. 40. Beijing: Science Press, 64-95.

Meng HH, Gao XY, Huang JF, Zhang ML. 2015. Plant phylogeography in arid Northwest China: retrospectives and perspectives. *Journal of Systematics and Evolution* 53(1): 33-46.

Meng HH, Su T, Gao XY, Li J, Jiang XL, Sun H, Zhou ZK. 2017. Warm-cold colonization: response of oaks to uplift of the Himalaya-Hengduan Mountains. *Molecular Ecology* 2017.

Ortega-Olivencia A. 2009. Systematics and evolutionary history of the circum-Mediterranean genus *Anagyris* L.(Fabaceae) based on morphological and molecular data. *Taxon* 58:1290-1306.

Pan BR, Huang SP. 1993. A cytological studies of genus *Ammopiptanthus*. *Acta Botanica Sinica* 35.

Peng ZX, Yuan YM. 1992. Systematic revision on Thermopsideae (Leguminosae) of China. *Acta Botanica Boreali-Occidentalia Sinica* 12:158-166.

Pennington RT, Lavin M, Ireland H, Klitgaard B, Preston J, Hu JM. 2001. Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast *trnL* intron. *Systematic Botany* 26:537-556.

Peters WS, Haffer D, Hanakam CB, van Bel AJ, Knoblauch M. 2010. Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. *American Journal of Botany* 97:797-808.

Polhill RM. 1994. Classification of the Leguminosae. In: Southon IW, Bisby FA, Buckingham J, Harborne JB, eds. *Phytochemical dictionary of the Leguminosae*. London: Chapman & Hall. XXXV-LVII.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19:1572-1574.

Sa R. 1999. Systematics of *Thermopsis* (Leguminosae). Ph.D. Thesis. Chinese Academy of Sciences.

Sa R, Sudebilige, Chen JR. 2000. Epidermal characters of leaves in *Thermopsis* and their biolocal significances. *Acta Agrestia Sinica* 8:66-76.

Shi W, Pan BR, Zhang Q. 2009. Comparison of element contents in habitat soil and plant leaves of *Ammopiptanthus nanus* and *A. mongolicus*. *Chinese Journal of Applied and Environmental Biology* 15:660-665.

Shi Y, Li J, Li B. 1999. Uplift of the Qinghai-Xizang (Tibetan) plateau and east Asia environmental change during late Cenozoic. *Acta Geographica Sinica-Chinese Edition*
514 54:20-28.
515 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
516 large phylogenies. *Bioinformatics* 30:1312-1313.
517 Su Z, Pan B, Zhang M, Shi W. 2016. Conservation genetics and geographic patterns of genetic
518 variation of endangered shrub *Ammopiptanthus* (Fabaceae) in northwestern China. *Conservation Genetics* 17:485-496.
519 Sun H. 2002a. Tethys retreat and Himalayas-Hengduanshan Mountains uplift and their
520 significance on the origin and development of the Sino-Himalayan elements and alpine
521 flora. *Acta Botanica Yunnanica* 24:273-288.
522 Sun H. 2002b. Evolution of arctic-tertiary flora in Himalayan-Hengduan Mountains. *Acta
523 Botanica Yunnanica* 24:671-688.
524 Sun H, Li Z. 2003. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. *Advances in
525 Earth Science* 18:852-862.
526 Tang M, Liu Y. 2001. On causes and environmental consequences of the uplift of Qinghai-
527 Xizang Plateau. *Quaternary Sciences* 21:500-507.
528 Teng JW, Zhang ZJ, Zhang BM, Zhang H. 1997. Environmental change and the uplift of
529 Tibetan Plateau. *Earth Science Frontiers* 4:247-254.
530 Tsoong PC, Ma CY. 1981a. A study on the genus *Sophora* Linn. *Acta Phytotaxonomica Sinica*
531 19:1-22.
532 Tsoong PC, Ma CY. 1981b. A study on the genus *Sophora* Linn. (Cont.). *Acta
533 Phytotaxonomica Sinica* 19:143-167.
534 Turner BL. 1980. Revision of The Genus *Piptanthus* (Fabaceae, Thermopsideae). *Brittonia*
535 32:281-285.
536 Turner BL. 1981. Thermopsodeae. In: Polhill RM, Raven PH, eds. *Advances in Legume
537 Systematics*. 1. Kew, Richmond: Royal Botanic Garden. 403-407.
538 Turner BL. 2006. Overview of the genus *Baptisia* (Leguminosae). *Phytologia* 88:253-268.
539 Uysal T, Ertuğrul K, Bozkurt M. 2014. A new genus segregated from *Thermopsis* (Fabaceae:
540 Papilionoideae): *Vuralia*. *Plant Systematics and Evolution* 300:1627-1637.
541 Vasil'chenko IT. 1945. *Sophora*. In: Komarov VL, ed. *Flora of the USSR*. 11. Leningrad:
542 Izdatel'stvo Akademii Nauk SSSR. 20-24.
543 Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y. 2008.
544 Constraints on the early uplift history of the Tibetan Plateau. *Proceedings of the National
545 Academy of Sciences* 105:4987-4992.
546 Wang H. 2001. A preliminary study on phytogeography of the tribe Thermopsideae
547 (Papilionaceae). *Acta Botanica Yunnanica* 23:17-28.
548 Wang HC, Sun H, Compton JA, Yang JB. 2006. A phylogeny of Thermopsideae
549 (Leguminosae : Papilionoideae) inferred from nuclear ribosomal internal transcribed
550 spacer (ITS) sequences. *Botanical Journal of the Linnean Society* 151:365-373.
551 Wang Y, Jiao P, Li B, Liu C. 2010. Tissue Culture and Regeneration of *Ammopiptanthus nanus*
552 (M.Pop.) Cheng f. *Plant Physiology Communications* 46:375-376.
553 Wei H, Wu P, Ge X, Liu M, Wei X. 2007. Chemical constituents of the seeds of
Ammopiptanthus (Leguminosae) and their systematic and ecological significance.

Biochemical Systematics and Ecology 35:274-280.

Wei KH, Gao SL, Huang HP. 2010. Tissue culture and generation of autotetraploid

Wei SQ. 1998. Thermopsideae. In: Cui HB, ed. Flora Reipublicae Popularis Sinicae. 42(2).

Beijing: Science Press. 88-411.

Wei Y, Shi QH. 1995. Spectrum analysis on the esterase isozymes of Ammopiptanthus. Arid

Zone Research 12:36, 53-54.

Wei Z, Lock JM. 2010. Fabaceae Tribe Thermopsideae. In: Wu ZY, Hong, DY, Raven PH, ed.

Flora of China. 10. Beijing & St. Louis: Science Press & Missouri Botanical Garden

Press. 100-104.

Wink M, Mohamed G. 2003. Evolution of chemical defense traits in the Leguminosae:

mapping of distribution patterns of secondary metabolites on a molecular phylogeny

inferred from nucleotide sequences of the rbcL gene. Biochemical Systematics and

Ecology 31:897-917.

Wink M. 2013. Evolution of secondary metabolites in legumes (Fabaceae). South African

Journal of Botany 89:164-175.

Wojciechowski MF. 2003. Reconstructing the phylogeny of legumes (Leguminosae): an early

21st century perspective. In: Klitgaard BB, Bruneau A, eds. Advances in legume

systematics. 10. Kew, Richmond: Royal Botanic Garden. 5-35.

Wojciechowski MF. 2013. The Origin and Phylogenetic Relationships of the Californian

Chaparral 'Paleoendemic' Pickeringia (Leguminosae). Systematic Botany 38:132-142.

Wojciechowski MF, Lavin M, Sanderson MJ. 2004. A phylogeny of legumes (Leguminosae)

based on analyses of the plastid matK gene resolves many well-supported subclades

within the family. American Journal of Botany 91(11): 1846-1862.

Xie YP, Meng Y, Sun H, Nie ZL. 2016. Molecular phylogeny of Gueldenstaedtia and Tibetia

(Fabaceae) and their biogeographic differentiation within Eastern Asia. PloS one

11:e0162982.

Xu B, Wu N, Gao XF, Zhang LB. 2012. Analysis of DNA sequences of six chloroplast and

nuclear genes suggests incongruence, introgression and incomplete lineage sorting in the

evolution of Lespedeza (Fabaceae). Molecular Phylogenetics and Evolution 62:346-358.

Yakovlev GP. 1972. A contribution to the system of the order Fabales Nakai (Leguminales

Jones). Botanicheskii Zhurnal 57.

Yakovlev GP. 1988. Thermopsis. In: Yakovlev GP, ed. Plants of Central Asia. 8a. Enfield &

Plymouth: Science Publishers, Inc. 12-17.

Yakovlev GP. 1996. Thermopsideae. In: Yakovlev GP, Sytin AK, Roskov YR, eds. Legumes of

Northern Eurasia: a checklist. Kew, Richmond: Royal Botanic Gardens. 461-465.

Yin LK, Zhang J. 2004. Change of the protein amino acid content in Ammopiptanthus Cheng f.

under the different habitats. Arid Zone Research 21:269-274.

Yuan YM, Chen JR. 1993. Anatomical evidence for phylogeny of the tribe Thermopsideae

(Fabaceae). Journal of Lanzhou University Natural Sciences:97-104.

Yue XK, Yue JP, Yang LE, Li ZM, Sun H. 2011. Systematics of the genus Salweenia
(Leguminosae) from Southwest China with discovery of a second species. *Taxon* 60:1366-1374.

Zhang J, Liao K, Li D, Yan Z, Zhang J. 2010. Distribution pattern and characteristics of *Ammopiptanthus mongolicus* in several different habitat conditions. *Journal of Arid Land Resources and Environment* 24:151-154.

Zhang LS, Fang XQ. 2016. Palaeogeography of China: formation of natural environment in China. Beijing: Science Press. 137-206.

Zhang ML, Wen ZB, Fritsch PW, Sanderson SC. 2015b. Spatiotemporal evolution of *Calophaca* (Fabaceae) reveals multiple dispersals in central Asian mountains. *PloS one* 10:e0123228.

Zhang ML, Wen ZB, Hao XL, Byalt VV, Sukhorukov AP, Sanderson SC. 2015c. Taxonomy, phylogenetics and biogeography of *Chesneya* (Fabaceae), evidenced from data of three sequences, ITS, *trnS-trnG* and *rbcL*. *Biochemical Systematics and Ecology* 63:80-89.

Zhang ML, Huang JF, Sanderson SC, Yan P, Wu YH, Pan BR. 2015a. Molecular biogeography of tribe Thermopsideae (Leguminosae): a Madrean-Tethyan disjunction pattern with an African origin of core genistoides. *BioMed research international* 2015.

Zhang Q, Pan BR, Zhang YZ, Duan SM. 2007. Analysis on the characteristics of communities of *Ammopiptanthus nanus* and *A. mongolicus*. *Arid Zone Research* 24:487-494.

Zheng D, Yao TD. 2006. Uplifting of tibetan plateau with its environmental effects. *Advances in Earth Science* 21:451-458.

Zheng H, Powell CM, An Z, Zhou J, Dong G. 2000. Pliocene uplift of the northern Tibetan Plateau. *Geology* 28:715-718.
Figure 1. Bayesian tree of the concatenated nuclear ITS (A) and the concatenated plastid data of \textit{matK}, \textit{rbcL}, \textit{trnL-trnF} and \textit{psbA-trnH} sequences (B) for Themopsideae and related genera. Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.

Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and its allies. Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.

Figure 3. Bayesian tree of the concatenated plastid data of \textit{matK}, \textit{rbcL}, \textit{trnL-trnF} and \textit{psbA-trnH} sequences, showing Sophoreae and its allies. Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.

Figure 4. Divergence times for Sophoreae/Themopsideae genera estimated by using BEAST based on the ITS dataset. Calibration points are marked by A–D. Node labels and bars represent the estimated mean ages (in Ma) and their 95% highest posterior density intervals. Node I, II and
III represent the divergence ages of 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively.

Figure 5. Distribution (A) and representative plants of Ammopiptanthus (B & C) and Salweenia (D). A: red - Ammopiptanthus (I: distribution of *A. mongolicus*; II: distribution of *A. nanus*), green - *Salweenia*; B: *Ammopiptanthus mongolicus*; C: *Ammopiptanthus nanus*; D: *Salweenia wardii*.
Table 1. Taxa names, sources and GenBank accession numbers of DNA sequences

New sequences generated in this study are indicated by an asterisk (*), Missing sequences are indicated by a dash (-).
Table 1. Taxa names, sources and GenBank accession numbers of DNA sequences. New sequences generated in this study are indicated by an asterisk (*). Missing sequences are indicated by a dash (-).

Species Pop.	GenBank Accession Number	Sources
Ammopiptanthus nanus	KP636563	
A	JQ820170	
	KP636577	
	KP636626	
Ammopiptanthus nanus A	KU178932	
	-	
	KU178934	
	KU178937	39.66° N, 74.75° E, 2290 m
Ammopiptanthus nanus B	KU178932	
	-	
	KU178935	
	KU178937	39.49° N, 74.88° E, 2512 m
Ammopiptanthus nanus C	KU178932	
	-	
	KU178934	
	KU178937	39.76° N, 76.39° E, 2350 m
Ammopiptanthus mongolicus	KP636562	
	JQ820168	
	KP636576	
	KP636624	
Ammopiptanthus mongolicus D	KU178933	
	-	
	KU178936	
	KU178938	41.63° N, 103.22° E, 1010 m
Ammopiptanthus mongolicus E	KU178933	
	-	
	KU178936	
	KU178939	40.49° N, 106.86° E, 1039 m
Ammopiptanthus mongolicus F	KU178933	
	-	
	KU178936	
	KU178940	38.98° N, 105.87° E, 1762 m
Ammopiptanthus mongolicus G	KU178933	
	-	
	KU178936	
	KU178941	37.99° N, 105.25° E, 1323 m
Ammopiptanthus mongolicus H	KU178933	
	-	
	KU178936	
	KU178940	37.93° N, 105.26° E, 1355 m
Ammopiptanthus mongolicus 270	KU178933	
	-	
	*	
	*	
Ammodendron conollyi	EF457705	
	-	
	-	
Ammodendron argenticium	-	
	-	
	AY386957	
	-	
Ammophamnus lehmannii	EF457706	
	-	
	-	
Anagyris foetida	AY091571	
	Z70122	
	KP230735	
	-	
	FJ499429	
Anagyris latifolia	FJ482248	
	-	
	-	
	FJ499419	
Anarthrophyllum desideratum	-	
	-	
	AY386923	
	-	
Anarthrophyllum rigidum	FJ839488	
	-	
	-	
	FJ839594	
Baptisia alba	AY773348	
	KPI26860	
	KP126860	
	-	
Baptisia cinerea	AY773350	
	-	
	-	
Baptisia tinctoria	Z72314 & Z72315	
	Z70120	
	-	
	-	
	AJ890964	

China: Turpan, Turpan Eremophytes Botanic Garden, Pan b. r. (TURP)
Species	GenBank Acc.	EMBL Acc.	GenBank Acc.	EMBL Acc.	NCBI Acc.					
Baptisia sphaerocarpa	AY773351	-	-	-	-					
Baptisia australis	AY091572	KF613006	AY386900	-	FJ499421					
Baptisia bracteata	AY773349	KP126854	KP126854	-	-					
Bolusanthus speciosus	EF457708	U74243	AF142685	-	AF310994					
Bowdichia nitida	JX124478	-	JX124419	-	JX124432					
Cadia purpurea	KF850559	U74192	JX295932	-	AF309863					
Castanospermum australe	*	*	*	*	USA: Sri Lanka, kandy, Rudd v.e.3339 (US)					
Calpurnia aurea	CAU59887	U74239	AY386951	-	AF310993					
Clathrotropis brachypetala	EF457714	-	-	-	AF309827					
Clathrotropis macrocarpa	-	-	JX295930	-	JX275957					
Crotalaria incana	JQ067262	JQ591662	GQ246141	JQ067481	KP691137					
Cyclolobium nutans	AF467041	-	AF142686	-	AF309857					
Cytisus scoparius	AF351120	KM360746	AY386902	-	KJ746350 &					
Diplotropis purpurea	JX124507	JQ625878	JX124418	GQ428691	JX124441					
Echinosophora koreensis	-	AB127036	-	-	AB127028					
Euchresta formosana	-	AB127039	-	-	AB127031					
Euchresta japonica	-	AB127040	-	-	AB127032					
Genista monspessulana	JF338307	KM360800	AY386862	-	JF338219 &					
Guianodendron praeclarum	JX124489	-	JX124403	-	JX124443					
Lupinus argenteus	AY338929	AY386956	-	-	AY618502 &AF538706					
Species	Accession 1	Accession 2	Accession 3	Accession 4	Accession 5	Accession 6	Accession 7	Accession 8	Accession 9	Accession 10
-------------------------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--------------
Maackia amurensis	*	Z70137	AY386944	*	*					
Maackia amurensis subsp. *buergeri*	-	AB127041	-	-	-					
Maackia chinensis	EF457721	-	-	-	-					
Maackia floribunda	-	AB127042	-	AB127043	AB127034					
Maackia tashiroi	-	AB127043	-	AB127035						
Ormosia amazonica	EF457724	GQ981820	-	GQ982307	AF309484					
Ormosia fordiana	KP092737	KP094453	KP093527	KP095377	-					
Ormosia costulata	-	JQ625915	GQ982055	GQ982308	-					
Ormosia costulata	-	-	JX295887	-	JX275917					
Pickeringia montana	*	-	*	*	*					
Ormosia arborea	-	KF981227	JX295939	-	-					
Piptanthus laburnifolius	KP636565	-	-	KP636579	KP636630					
Piptanthus nepalensis	AF215922	Z70123	AY386924	-	-					
Piptanthus nepalensis	FJ482250	-	-	KP636581	KP636631					
Piptanthus tomentosus	AY091570	-	-	-	-					
Piptanthus concolor	KP636564	-	-	KP636578	KP636629					
Piptanthus leiocarpus	AY091569	-	-	KP636580	-					
Piptanthus leiocarpus	KP636566	-	-	-	-					
Poecilanthe itapuana	KJ028462	AB045818	KJ028458	-	-					
Poecilanthe parviflora	KJ028463	-	KJ028459	-	AF208897					
Salweenia wardii	*	U74251	-	JF725689	JF725659					
Salweenia bouffordiana	-	-	-	JF725692	JF725662					
Sophora davidii	AY773352	Z70138	AY386958	JF725695	JF725665					

China: Jilin, Fusong, *Sun s.n.* (NENU)

Mexico: Tecate, *Moran r. 13982* (US)

China: Tibet, Qamdo, *Chang et al. QZ-491* (WUK)
Species	Accession 1	Accession 2	Accession 3	Accession 4	Accession 5
Sophora flavescens	FJ528290	Z70139	HM049520	JF725696	JF725666
Sophora velutina	FN813569	-	-	-	AF309828
Sophora jaubertii	Z72342 &	Z70140	-	-	-
Sophora macrocarpa	Z95563 &	Z95577	AY725479	JQ619975	-
Sophora inhambanensis	FN813570	KM894237	KM896910	-	-
Sophora tomentosa	HQ207666	AB127038	-	JX495463	AB127030
Sophora tetraphylla	AJ310734	-	-	-	-
Sophora howinsula	AY046514	-	-	-	-
Sophora microphylla	AY056075	AY725480	JQ619976	GQ248391	-
Sophora prostrata	AY056077	-	-	-	-
Sophora raivavaeensis	AY056080	-	-	-	-
Sophora toromiro	AY056079	GQ248696	GQ248201	GQ248392	-
Sophora viciifolia	-	KP088855	KP089313	-	-
Spartium junceum	DQ524327	KM360993	AY386901	HE966833	JF338264 &
Thermopsis inflata	AF123451	-	-	-	-
Thermopsis inflata 1	-	-	-	KP636586	KP636638
Thermopsis inflata 2	-	-	-	-	KP636639
Thermopsis inflata 3	-	-	-	KP636587	KP636640
Thermopsis smithiana	KP636573	-	-	KP636597	KP636650
Thermopsis turkestanica	KP636574	-	-	KP636598	KP636651
Thermopsis mongolica	KP636570	-	-	KP636594	KP636647
Thermopsis alpina	KP636567	-	JQ669594	KP636582	KP636632
Species	Accession 1	Accession 2	Accession 3	Accession 4	
-------------------------------	-------------	-------------	-------------	-------------	
Thermopsis alpina 1	AF123447	-	-	--	
Thermopsis alpina 2	-	-	-	KP636583	
Thermopsis alpina 3	-	-	-	KP636584	
Thermopsis alpina 4	-	-	-	KP636585	
Thermopsis lanceolata	AF123448	JQ669595	KP636589	KP636642	
Thermopsis lanceolata 1	-	-	-	KP636590	
Thermopsis przewalskii	KP636571	-	-	KP636596	
Thermopsis schischkinii	KP636572	-	-	KP636649	
Thermopsis yushuensis	KP636575	-	-	KP636599	
Thermopsis barbata	KP636568	-	-	KP636652	
Thermopsis licentiana	KP636569	-	-	-	
Thermopsis licentiana 1	-	-	-	KP636591	
Thermopsis licentiana 3	-	-	-	KP636592	
Thermopsis licentiana 4	-	-	-	KP636593	
Thermopsis turcica	JQ425645	KT175217	KT175216	KT175218	
Thermopsis chinensis	AF123443	-	-	GU396777	
Thermopsis macrophylla	AF123450	-	-	-	
Thermopsis divaricarpa	AY091575	-	-	-	
Thermopsis villosa	AY773355	-	-	-	
Thermopsis rhombifolia	KP861904	JX848468	AY386866	KP861905	
Thermopsis rhombifolia var. ovata	AF007468	-	-	-	
Thermopsis fabacea	AY091573	Z70121	-	-	
Thermopsis kaxgarica	-	-	-	KP636588	
Thermopsis montana	AY091574	-	-	AF385411	
* I will added the Genebank number after accepted
Figure 1

Figure 1. Bayesian tree of the concatenated nuclear ITS (A) and the concatenated plastid data of *matK*, *rbcl*, *trnL-trnF* and *psbA-trnH* sequences (B) for Themopsideae and related genera.

Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.
Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and its allies.

Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.
Figure 3. Bayesian tree of the concatenated plastid data of *matK*, *rbcL*, *trnL-trnF* and *psbA-trnH* sequences, showing Sophoreae and its allies.

Bayesian posterior probabilities and maximum likelihood bootstrap values are given above the branches.
Figure 4. Divergence times for Sophoreae/Themopsideae genera estimated by using BEAST based on the ITS dataset. Calibration points are marked by A–D.

Node labels and bars represent the estimated mean ages (in Ma) and their 95% highest posterior density intervals. Node I, II and III represent the divergence ages of 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively.
Figure 5. Distribution (A) and representative plants of Ammopiptanthus (B & C) and Salweenia (D).

A: red - Ammopiptanthus (I: distribution of A. mongolicus; II: distribution of A. nanus), green - Salweenia; B: Ammopiptanthus mongolicus; C: Ammopiptanthus nanus; D: Salweenia wardii.
