GENERALIZED LOOSE EDGE FACTORIZATION THEOREMS

BERND SCHÖBER

Abstract. We extend a factorization theorem by Gwoździewicz and Hejmej from the ring of formal power series to any complete regular local ring R. More precisely, let $f \in R$ and assume that its Newton polyhedron has a loose edge such that the initial formal of f along the latter is a product of two coprime polynomials, where one of them is not divided by any variable. Then this provides a factorization of f in R. As a consequence we obtain a factorization theorem for Weierstraß polynomials with coefficients in R, which generalizes an earlier result by Rond and the author.

1. Introduction

The goal of this article is a generalization of a factorization result by Gwoździewicz and Hejmej from $\mathbb{K}[[x_1, \ldots, x_n]]$ to any (complete) regular local ring. (See the results below). We reduce their proof to the essence which is the fact that $\mathbb{K}[[x_1, \ldots, x_n]]$ is complete and provide a new viewpoint via projections of the Newton polyhedron. Note that R may even have mixed characteristics.

Let $(R, m, \mathbb{K} = R/m)$ be a regular local ring (not necessarily complete) with regular system of parameters $(x) = (x_1, \ldots, x_n)$. We denote by \hat{R} the m-adic completion of R. (If R is complete, we have $\hat{R} = R$). For an element $f \in R$, one can define the notion of a Newton polyhedron $NP(f) \subset \mathbb{R}_{\geq 0}^n$. The latter is a closed convex set with the property $NP(f) + \mathbb{R}_{\geq 0}^n = NP(f)$ and coming from the set of exponents of an expansion of f. A loose edge of $NP(f)$ is a compact face of dimension one, say $E \subset NP(f)$, that is not contained in any compact face of $NP(f)$ of dimension ≥ 2. (In fact, we study loose edges in the slightly more general setting of F-subsets later). Associated to such an edge, we have the initial form in $E(f)$ of f (determined by those terms of an expansion contributing to the edge in the polyhedron) which lies in a graded ring $\text{gr}_E(R)$ that is isomorphic to a polynomial ring $\mathbb{K}[X_1, \ldots, X_n]$. (In the remaining introduction, we use this identification without mentioning). For more details on these objects, we refer to sections 2 and 3.

Theorem 1.1. Let R be a regular local ring. Let $f \in R$ be an element in R such that the Newton polyhedron $NP(f)$ has a loose edge E. Suppose that the initial form in $E(f)$ of f along E is a product of two coprime polynomials G and H, where G is not divided by any variable. Then there exist elements $\hat{g}, \hat{h} \in \hat{R}$ in the completion of R such that

$$f = \hat{g} \cdot \hat{h} \quad \text{in} \ \hat{R}$$

and $\text{in}_{E_1}(\hat{g}) = G$ and $\text{in}_{E_2}(\hat{h}) = H$, for certain faces E_1, E_2 of dimension at most one such that $E = E_1 + E_2$.

We cannot avoid to pass to the completion since the construction of the elements \hat{g} and \hat{h} is not necessarily finite and hence may lead to an infinite series.

2010 Mathematics Subject Classification. 13A05, 12E05, 13F25, 14B05, 32S25.

The author is supported by the DFG-project "Order zeta functions and resolutions of singularities" (DFG project number: 373111162).
Corollary 1.2. Assume that the Newton polyhedron of \(f \in R \) has a loose edge and at least three vertices. Then \(f \) is not irreducible in \(\hat{R} \).

Corollary 1.3. Assume that the Newton polyhedron of \(f \in R \) has a loose edge \(\mathcal{E} \). If \(f \) is irreducible in \(\hat{R} \), then \(\mathcal{E} \) is the only compact edge of \(\text{NP}(f) \) and

\[
in_{\mathcal{E}}(f) = \epsilon \cdot P^k,
\]

where \(\epsilon \in K^\times \) is a unit and \(P \in K[X_1, \ldots, X_n] \) is an irreducible polynomial. Moreover, if the residue field \(K \) is algebraically closed, \(P = X^\alpha + \lambda X^\beta \), for some \(\lambda \in K^\times \) and \(\alpha - \beta \in \mathbb{Z}^n \) is a primitive lattice vector.

An edge \(\mathcal{E} \) is called descendant if it is parallel to a vector \(\delta = (\delta_1, \ldots, \delta_n) \in \mathbb{R}^n \) such that \(\delta_i \geq 0 \), for \(1 \leq i \leq n - 1 \), and \(\delta_n < 0 \).

Theorem 1.4. Let \(f \in R[z] \). Assume that the Newton polyhedron \(\text{NP}(f) \) has a descendant, loose edge \(\mathcal{E} \). If \(\text{in}_{\mathcal{E}}(f) \) is a product of two coprime polynomials \(G, H \in K[X_1, \ldots, X_n, Z] \), where \(G \) is monic with respect to \(Z \), then there exist \(\hat{g}, \hat{h} \in \hat{R}[z] \) such that

\[
f = \hat{g} \cdot \hat{h} \quad \text{in} \quad \hat{R}[z]
\]

where \(\hat{g} \in \hat{R}[z] \) is monic, \(\text{in}_{\mathcal{E}}(\hat{g}) = G \) and \(\text{in}_{\mathcal{E}}(\hat{h}) = H \), for certain faces \(\mathcal{E}_1, \mathcal{E}_2 \) of dimension at most one such that \(\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 \).

In Theorems 1.1 and 1.4, \(\mathcal{E}_1 \) is a compact edge of \(\text{NP}(\hat{g}) \) parallel to \(\mathcal{E} \) and \(\mathcal{E}_2 \) is either a compact edge of \(\text{NP}(\hat{h}) \) parallel to \(\mathcal{E} \) or a vertex.

Theorems 1.1, 1.4 and Corollaries 1.2, 1.3 generalize Theorems 1.1, 1.4 and Corollaries 1.2, 1.3 of [GHe], where the case \(R = K[[x_1, \ldots, x_n]] \) is considered. The key step to transfer the proofs of [GHe] into the more general setting is to lift an element \(G \in \text{gr}_\mathcal{E}(R) \) of the graded ring to an element \(g \in R \). (Note that \(g \) is not unique in general. Besides that, we provide a different perspective on the refinement of the grading of \(\text{gr}_\mathcal{E}(R) \), by considering the projection of \(\mathbb{R}_{\geq 0}^n \) along the vector \(\delta \in \mathbb{R}^n \) determined by the direction of the edge \(\mathcal{E} \). In particular, we show that \(\mathcal{E} \) being loose implies that the projection of the Newton polyhedron along \(\delta \) has exactly one vertex corresponding to \(\mathcal{E} \) (Lemma 3.10). In contrast to [GHe], we formulate convex geometry results that are used to study Newton polyhedra with loose edges in a more general variant in terms of \(F \)-subsets.

In [GHe] section 3, one may find other known results for which our results can be considered as generalizations. In particular, Theorem 1.4 is some kind of generalization of a result by Rond and the author [RS], where \(R = K[[x_1, \ldots, x_n]] \), for any field \(K \) and \(f \in R[z] \) is a Weierstraß polynomial of degree \(d \) such that the projection of \(\text{NP}(f) \) along an edge containing \((0, \ldots, 0, d) \in \mathbb{R}_{\geq 0}^{n+1} \) has exactly one vertex. This type irreducibility criterion is very useful in the study of quasi-ordinary hypersurfaces (see [ACLM] or [MS]). Therefore, our main results open interesting new directions in the context of constructing Teissier’s overweight deformations [T] following the philosophy of [MS].

Throughout the article, we use multi-index notation: \(x^A := x_1^{a_1} \cdots x_n^{a_n} \) for some \(A = (A_1, \ldots, A_n) \in \mathbb{Z}_{\geq 0}^n \).

2. Newton Polyhedron and Graded Rings

We provide the definitions of the Newton polyhedron and the initial form along a face of the Newton polyhedron.

Let \((R, m, K = R/m)\) be a regular local ring (not necessarily complete) and let \((x) = (x_1, \ldots, x_n)\) be a regular system of parameters for \(R \). We consider \(f \in R \setminus \{0\} \).
Since R is Noetherian and since the map $R \subset \hat{R}$ is faithfully flat, f has a finite expansion

$$f = \sum A \rho_A x^A, \quad \text{for } \rho_A \in R^x \cup \{0\}.$$

The *Newton polyhedron* $\text{NP}(f) := \text{NP}(f, x)$ of f is defined as the smallest closed convex subset of $\mathbb{R}^n_{\geq 0}$ containing all points of the set

$$\{ A \in \mathbb{Z}^n_{\geq 0} \mid \rho_A \neq 0 \} + \mathbb{R}^n_{\geq 0}.$$

A linear form $L = L_\lambda : \mathbb{R}^n \to \mathbb{R}$ is a map defined by

$$L(v) := \lambda_1 v_1 + \ldots + \lambda_n v_n = \langle \lambda, v \rangle,$$

for $v = (v_1, \ldots v_n) \in \mathbb{R}^n$ and some fixed $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_{\geq 0}$. Given L, we define

$$\Delta(L) := \{ v \in \mathbb{R}^n_{\geq 0} \mid L(v) \leq 1 \}.$$

If $\lambda \in \mathbb{Q}^n_{\geq 0}$, then L is called rational. If $\lambda \in \mathbb{R}^n_{\geq 0}$, then we say that L is positive.

A closed convex subset $\Delta \subset \mathbb{R}^n_{\geq 0}$ such that $\Delta + \mathbb{R}
{\geq 0} = \Delta$ is called a F-subset of $\mathbb{R}^n{\geq 0}$, see [H] p. 260. We extend this notion by calling a closed convex subset $\Delta \subset \mathbb{R}^n$ a \hat{F}-subset if $\Delta + \mathbb{R}^n_{\geq 0} = \Delta$. Clearly, $\text{NP}(f)$ is an example of a F-subset.

Definition 2.1. Let $\Delta \subset \mathbb{R}^n_{\geq 0}$ be a F-subset of \mathbb{R}^n. A convex subset $\mathcal{F} \subset \Delta$ is called a face of Δ if there exists a linear form L such that

$$\Delta \cap \Delta(L) = \mathcal{F}.$$

If L is positive, then \mathcal{F} defines a compact face. A vertex of Δ is a compact face $v \in \Delta$ of dimension zero. An edge of Δ is a compact face $E \subset \Delta$ of dimension one.

A positive linear form $L : \mathbb{R}^n \to \mathbb{R}$, induces a monomial valuation ν_L on R via

$$\nu_L(\rho x^A) := L(A), \quad \text{for } \rho \in R^x, \ A \in \mathbb{Z}^n_{\geq 0}.$$

For $f = \sum A \rho_A x^A \in R \setminus \{0\}$ as before, we have

$$\nu_L(f) = \min \{ L(A) \mid A \in \mathbb{Z}^n_{\geq 0} : \rho_A \in R^x \}.$$

Definition 2.2. Let (R, m, K) be as before and let $L : \mathbb{R}^n \to \mathbb{R}$ be a positive linear form. The graded ring of R associated to L is defined as

$$\text{gr}_L(R) := \bigoplus_{\rho \in \mathbb{R}^n_{\geq 0}} \mathcal{P}_a/\mathcal{P}_a^+, \quad \text{where } \mathcal{P}_a := \{ f \in R \mid \nu_L(f) \geq a \} \text{ and } \mathcal{P}_a^+ := \{ f \in R \mid \nu_L(f) > a \}.$$

Let $f = \sum A \rho_A x^A \in R$ be as before. The L-initial form of f is defined as

$$\text{in}_L(f) := \text{in}_L(f)_x := \sum_{A : L(A) = \nu_L(f)} \mathcal{P}_a X^A \in \mathcal{P}_{\nu_L(f)}/\mathcal{P}_{\nu_L(f)}^+ \subset \text{gr}_L(R),$$

where $\mathcal{P}_a := \rho_A \mod m \in K$ and $(X) = (X_1, \ldots, X_n)$ denotes the images of (x) in $\text{gr}_L(R)$.

Since L takes only values in a discrete subset of \mathbb{R}, the set $\{ a \in \mathbb{R}_{\geq 0} \mid \mathcal{P}_a/\mathcal{P}_a^+ \neq 0 \}$ is a discrete subset of \mathbb{R}. We observe that $\text{in}_L(f)$ is weighted homogenous of degree $\nu_L(f)$ with respect to the weights on (x) given by L. Since L is positive, we have

$$\text{gr}_L(R) \cong K[X_1, \ldots, X_n].$$

Definition 2.3. Let $f = \sum A \rho_A x^A \in R$ be as before. Let $\mathcal{F} \subset \text{NP}(f)$ be a compact face of the Newton polyhedron and let $L_\mathcal{F} : \mathbb{R}^n \to \mathbb{R}$ be a positive linear form determining \mathcal{F}. The initial form of f along \mathcal{F} is defined as the $L_\mathcal{F}$-initial form of f,

$$\text{in}_\mathcal{F}(f) := \text{in}_{L_\mathcal{F}}(f) \in \text{gr}_\mathcal{F}(R) := \text{gr}_{L_\mathcal{F}}(R) \cong K[X_1, \ldots, X_n].$$

Without loss of generality, we can choose $L_\mathcal{F}$ rational.
3. Loose Edges and Projected Polyhedra

We recall the notion of a loose edge and some of their properties proven in [GHe]. Furthermore, we provide a different viewpoint via a suitable projection of a given \(F \)-subset. Even though [GHe] considers only the case \(R = \mathbb{K}[x_1, \ldots, x_n] \), the proofs apply in our more general setting since the statements are either on the convex geometry of a \(F \)-subset or on the properties of the graded ring \(\text{gr}_L(R) \cong \mathbb{K}[X_1, \ldots, X_n] \), for some positive linear form \(L \).

Definition 3.1. Let \(\Delta \subset \mathbb{R}_{\geq 0}^n \) be a \(F \)-subset of \(\mathbb{R}_{\geq 0}^n \). A loose edge of \(\Delta \) is a compact edge \(E \subset \Delta \) that is not contained in any compact face of \(\Delta \) of dimension \(\geq 2 \).

Lemma 3.2. Let \(\Delta \subset \mathbb{R}_{\geq 0}^n \) be a \(F \)-subset with a loose edge \(E \subset \Delta \) that has ends \(\alpha, \beta \in \mathbb{R}_{\geq 0}^n \). Let \(L : \mathbb{R}^n \to \mathbb{R} \) be a linear form such that \(L(\alpha) = L(\beta) \). For every \(\gamma \in \Delta \), we have \(L(\gamma) \geq L(\alpha) \).

The same proof as for [GHe] Lemma 2.1 applies. In fact, this is also a corollary from Lemma 3.10 below.

The crucial point in the previous result is that \(L \) is a linear form that is not necessarily positive, see the example below. For positive linear forms the statement is true for any compact face of \(\Delta \).

Example 3.3. Let \(\Delta \subset \mathbb{R}_{\geq 0}^3 \) be the \(F \)-subset defined given by the three vertices \(\alpha = (1, 0, 0), \beta = (0, 1, 0) \), and \(\gamma = (0, 0, 1) \). Consider the linear form \(L : \mathbb{R}^3 \to \mathbb{R} \) with \(L(v_1, v_2, v_3) = v_1 + v_2 \). Clearly, the edge \(E \) with ends \(\alpha \) and \(\beta \) is not loose. We observe that \(L(\alpha) = L(\beta) = 1 > 0 = L(\gamma) \).

Lemma 3.4. Let \(\Delta \subset \mathbb{R}_{\geq 0}^n \) be a \(F \)-subset with a loose edge \(E \subset \Delta \) that has ends \(\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{R}_{\geq 0}^n \). If \(\min\{\alpha_1, \beta_1\} = \ldots = \min\{\alpha_n, \beta_n\} = 0 \), then \(\alpha \) and \(\beta \) are the only vertices of \(\Delta \).

The same proof as for [GHe] Lemma 2.2 applies. This can also be deduced from Lemma 3.10.

A \(F \)-subset \(\Delta \subset \mathbb{R}_{\geq 0}^m, m \in \mathbb{Z}_+ \), is called orthant if it has exactly one vertex, i.e., if \(\Delta = v + \mathbb{R}_{\geq 0}^m \), for some \(v \in \mathbb{R}_{\geq 0}^m \). This notion plays an important role in [RS].

Remark 3.5. The main result of [RS] uses the associated polyhedron \(\Delta_P := \Delta(P; x; z) \subset \mathbb{R}_{\geq 0}^d \) of a Weierstraß polynomial \(P = z^d + \sum_{(A,b)} \rho_{A,b} x^A z^b \in \mathbb{K}[x_1, \ldots, x_n][z] \), where \(\rho_{A,b} \in \mathbb{K} \). Here, \(\Delta_P \subset \mathbb{R}_{\geq 0}^n \) is the projection of the Newton polyhedron \(\text{NP}(P) \subset \mathbb{R}_{\geq 0}^{n+1} \) from the distinguished point \((0, \ldots, 0, d) \) onto the subspace determined by the variables \((x_1, \ldots, x_n) \). In other words, \(\Delta_P \) is the smallest \(F \)-subset containing all points of the set \(\{ d \cdot \frac{A}{z^b} | \rho_{A,b} \neq 0 \} \). The interesting case in [RS] is when \(\Delta_P \) is orthant. Then the unique vertex corresponds to a descendant edge of \(\text{NP}(P) \) (that is not necessarily loose).

The idea of projecting from the distinguished point corresponding to \(z^d \) comes from resolution of singularities and is used to provide refined information on a given singularity, see [H], [CP2], [CS], [S].

Setup 3.6. We fix a \(F \)-subset \(\Delta \subset \mathbb{R}_{\geq 0}^n \) that has a loose edge \(E \subset \Delta \) with ends \(\alpha, \beta \in \Delta \). Let \(L : \mathbb{R}^n \to \mathbb{R} \) be a positive linear form determining the edge \(E \). We define \(\delta := \beta - \alpha \).

Since \(\alpha = (\alpha_1, \ldots, \alpha_n) \neq \beta = (\beta_1, \ldots, \beta_n) \), we may assume without loss of generality \(\beta_n < \alpha_n \). This implies \(\delta_n < 0 \). Note that \(L(\delta) = L(\beta) - L(\alpha) = 0 \) and hence there exists at least one \(i \in \{1, \ldots, n - 1\} \) such that \(\delta_i > 0 \).
Further, let \((R, m, \mathbb{K})\) be a regular local ring with regular system of parameters \((x_1, \ldots, x_n)\). Recall that we denote the images of the latter in \(\text{gr}_L(R)\) by capital letters \((X_1, \ldots, X_n)\) and \(\text{gr}_L(R) \cong \mathbb{K}[X_1, \ldots, X_n]\).

We adapt the idea of projecting a \(F\)-subset \(\Delta \subset \mathbb{R}^n \geq 0\) in a suitable way to some \(\mathbb{R}^{n-1}\). Our goal is to obtain a refinement of the grading \(\text{gr}_L(R) = \bigoplus a \mathcal{P}_a/\mathcal{P}_a^+\). For this, we do not project from a particular point, but along the vector \(\delta\) that is defined by the difference of the ends of the fixed loose edge \(E\).

Construction 3.7 (Projection in direction \(\delta\)). Let \(\delta = (\delta_1, \ldots, \delta_n) \in \mathbb{R}^n\) be any vector with \(\delta_n < 0\) and \(\delta_i > 0\), for at least one \(i \in \{1, \ldots, n-1\}\). Let \(v = (v_1, \ldots, v_n) \in \mathbb{R}^n_{\geq 0}\). The projection of \(v\) along \(\delta\) to \(\mathbb{R}^{n-1}\) is given by

\[
\text{pr}_\delta(v) := \left(v_1 - \frac{v_n}{\delta_n} \cdot \delta_1, \ldots, v_{n-1} - \frac{v_n}{\delta_n} \cdot \delta_{n-1} \right) \in \mathbb{R}^{n-1}.
\]

Note that \(v - \frac{v_n}{\delta_n} \cdot \delta = (\text{pr}_\delta(v), 0)\) and \(\text{pr}_\delta(v + u) = \text{pr}_\delta(v) + \text{pr}_\delta(u)\). This provides a map \(\text{pr}_\delta : \mathbb{R}^n_{\geq 0} \rightarrow \mathbb{R}^{n-1}\).

For \(w \in \mathbb{R}^{n-1}\), we define

\[
I_{\delta,w} := \text{pr}_\delta^{-1}(w) \cap \mathbb{Z}^n_{\geq 0} = \{ v \in \mathbb{Z}^n_{\geq 0} \mid \text{pr}_\delta(v) = w \} \subset \mathbb{Z}^n_{\geq 0}.
\]

Remark 3.8. (1) The condition \(\delta_n < 0\) and \(\delta_i > 0\), for at least one \(i\), (up to reordering the coordinates) is equivalent to the property that the line generated by \(\delta\) does not intersect \(\mathbb{R}^n_{\geq 0}\) only in the origin, i.e., \((\delta \cdot \mathbb{R}) \cap \mathbb{R}^n_{\geq 0} = \{0\}\).

This is essential to obtain that \(I_{\delta,w}\) is a finite set.

(2) It is possible that \(\text{pr}_\delta(v) \in \mathbb{R}^{n-1} \setminus \mathbb{R}^n_{\geq 0}\). For example, if we consider \(\delta = (-1, 1, -1)\) and \(v = (0, 0, a)\), then \((\text{pr}_\delta(v), 0) = v + a \cdot \delta = (-a, a, 0)\), for every \(a \in \mathbb{R}_{\geq 0}\). We observe that \(\mathbb{R}^2_\delta\) has a non-compact face that is not parallel to a coordinate axis:

\[
\begin{array}{c}
\begin{tikzpicture}
\fill[red!30!white] (0,0) rectangle (3,3);
\draw[thick] (0,0) -- (3,0);
\draw[thick] (0,0) -- (0,3);
\draw[thick] (0,0) -- (3,3);
\end{tikzpicture}
\end{array}
\]

(3) Suppose \(\Delta, \mathcal{E}, \delta\) are as in Setup 3.6. We have \(\text{pr}_\delta(v) \in \mathbb{R}^{n-1}_{\geq 0}\), for all \(v \in \mathbb{R}^n_{\geq 0}\) if and only if \(\mathcal{E}\) is descendant (i.e., \(\delta_n < 0\) and \(\delta_i \geq 0\) for all \(i \in \{1, \ldots, n-1\}\)).

In particular, \(\mathbb{R}^{n-1}_{\delta} = \mathbb{R}^{n-1}_{\geq 0}\) in this case.

The previous leads to

Definition 3.9. Let \(\delta = (\delta_1, \ldots, \delta_n) \in \mathbb{R}^n\) be any vector with \(\delta_n < 0\) and \(\delta_i > 0\), for at least one \(i \in \{1, \ldots, n-1\}\). A \(F\)-subset \(\Delta \subset \mathbb{R}^{n-1}\) is called \(\delta\)-orthant if it is of the form \(\Delta = w + \mathbb{R}^{n-1}_{\geq 0} + \mathbb{R}^{n-1}_{\geq 0}\), for a unique vertex \(w \in \mathbb{R}^{n-1}\).

Using this notation, we can provide a connection to [RS].
Lemma 3.10. Let Δ, E, δ be as in Setup 3.6. Since E is a loose edge, we obtain that the projection $\Delta_\delta \subset \mathbb{R}^{n-1}$ is δ-orthant. In particular, if E is descendant, then $\Delta_\delta \subset \mathbb{R}_{\geq 0}^{n-1}$ is orthant.

In general, the converse statement is not true, i.e., if Δ_δ is δ-orthant for some vector $\delta \in \mathbb{R}^n$, then δ does not necessarily determine a loose edge of Δ.

Proof. The result follows by the same arguments as [RS] Corollary 2.7 iv): Let $w_1 = \text{pr}_\delta(\alpha) = \text{pr}_\delta(\beta)$ be the vertex of Δ_δ coming from the projection of the ends of E. Suppose Δ_δ is not orthant. Then there exists at least one further vertex $w_2 \in \Delta_\delta$, $w_2 \neq w_1$, such that the segment $[w_1, w_2]$ is contained in the boundary of Δ_δ. Hence, there exists a vertex $\gamma \in \Delta$ with $\text{pr}_\delta(\gamma) = w_2$. Clearly, α, β, γ are pairwise different and the triangle defined by these three points is a face of Δ. This contradicts the assumption that the edge given by α and β is loose. \hfill \Box

Observation 3.11. Let $\Delta, E, L, \delta, R, (x)$ be as in Setup 3.6. Since δ is given by E, we have

$$\text{gr}_L(R) = \bigoplus_{w \in \mathbb{R}^{n-1}} S_{\delta,w},$$

where $S_{\delta,w}$ is the K-vector space with basis $B_{\delta,w} := \{X^A \mid A \in I_{\delta,w}\}$. Let us point out that the set $\{w \in \mathbb{R}^{n-1} \mid S_{\delta,w} \neq 0\} \subset \mathbb{R}^{n-1}$ is a discrete subset. Further, for all $w \in \mathbb{R}^{n-1}$ such that $S_{\delta,w} \neq 0$, there exists at least one $v \in \mathbb{Z}_{\geq 0}^n$ with $\text{pr}_\delta(v) = w$.

This is compatible with $\text{gr}_L(R) = \bigoplus_{a \in \mathbb{R}_{\geq 0}} P_a/P_a^+$. For $a \in \mathbb{R}_{\geq 0}$, let $R_a := P_a/P_a^+$, which is the K-vector space with basis $B_a := \{X^A \mid A \in \mathbb{Z}_{\geq 0}^n \land L(A) = a\}$, and we define $I_{L,a} := \{w \in \mathbb{R}^{n-1} \mid L(w,0) = a\}$. We have $B_a = \bigcup_{w \in I_{L,a}} B_{\delta,w}$. Note that is a disjoint union and all but finitely many of the appearing $B_{\delta,w}$ are empty. Therefore,

$$R_a = \bigoplus_{w \in I_{L,a}} S_{\delta,w}.$$

We remark that the property $L(\delta) = 0$ is crucial. The following pictures illustrates the compatibility:

The black triangle are all points $v \in \mathbb{R}_{\geq 0}^3$ for which $L(v) = a$, for some fixed positive linear form $L : \mathbb{R}^3 \to \mathbb{R}$ and $a \in \mathbb{R}_+$. The blue dashed lines show the projection lines (from $\mathbb{R}_{\geq 0}^3$ to $\mathbb{R}^2 \times \{0\}$) along a vector $\delta \in \mathbb{R}^3$ with $L(\delta) = 0$ (with δ descendant on the left and δ not descendant on the right). The triangle on the right determined by the dotted lines is a subset of $\{v \in \mathbb{R}^3 \mid L(v) = a\}$. As we see, there are $v \in \mathbb{R}_{\geq 0}^2$ such that $\text{pr}_\delta(v) \in \mathbb{R}^2 \setminus \mathbb{R}_{\geq 0}^2$.
In the situation of the previous observation, we have \(L(\alpha) = L(\beta) \) if \(\alpha \) and \(\beta \) denote the end points of the loose edge \(\mathcal{E} \). (Recall Lemma 3.2). Furthermore, we have \(\text{pr}_\delta(\alpha) = \text{pr}_\delta(\beta) =: u \), by construction, and hence \(X^\alpha, X^\beta \in S_{\delta,u} \).

Let us point out that the constructed grading on \(\text{gr}_L(R) \cong \mathbb{K}[X_1, \ldots, X_n] \) given by \(\bigoplus_{w \in \mathbb{Z}^n_{\geq 0}} S_{\delta,w} \) is a variant of the grading \(\bigoplus_{w \in \mathbb{Z}^n_{\geq 0}} R_w \) by [GHe] (which is defined by a certain weight \(\omega \), see loc. cit. before Lemma 2.4). The key in their construction is to choose a particular basis \(\xi_1, \ldots, \xi_n \in \mathbb{Z}^n_{\geq 0} \) of the vector space \(\mathbb{R}^n \) such that the projection along \(\delta \) becomes the projection to the first this \(n - 1 \) coordinates with respect to \(\xi_1, \ldots, \xi_n \) (see loc. cit. Lemma 2.3).

The following two lemmas are the ingredients for the proof of Theorem 1.1. For them, we need to introduce a variant of the set \(M \) defined in [GHe] before Lemma 2.4: Let \(L : \mathbb{R}^n \to \mathbb{R} \) be a positive linear form and let \(\delta \in \mathbb{R}^n \) be a vector with \(\delta_n < 0 \) and \(L(\delta) = 0 \). We define

\[
M_\delta := \text{pr}_\delta(\mathbb{Z}^n_{\geq 0}) \subset \mathbb{R}^{n-1}.
\]

Clearly, for \(w_1, w_2 \in M_\delta \), we have \(w_1 + w_2 \in M_\delta \) and \(\text{dim} S_{\delta,u} > 0 \) implies \(u \in M_\delta \).

Note that \(M_\delta \neq M \) (of [GHe]). In particular, \(\text{dim} S_{\delta,w} \neq 0 \) for every \(w \in M_\delta \).

Lemma 3.12. Let \(\Delta, \mathcal{E}, L, \delta, R \) be as in Setup 3.6. Let \(u \in \mathbb{R}^{n-1} \) and \(w \in M_\delta \). Assume that \(S_{\delta,u} \) contains two coprime monomials. Then

\[
\text{dim} S_{\delta,u+w} = \text{dim} S_{\delta,u} + \text{dim} S_{\delta,w} - 1.
\]

The same arguments as in the proof for [GHe] Lemma 2.4 apply: Using that the dimension of \(S_{\delta,u} \) coincides with the number of elements in \(I_{\delta,u} \) (analogously for \(\text{dim} S_{\delta,u} \)), the proof reduces to the combinatorial problem of determining the number of points in \(\mathbb{Z}^n_{\geq 0} \) appearing on the sum of two parallel segments. For more details, we refer to [GHe].

The assumption that \(S_{\delta,u} \) contains two coprime monomials is essential as the following example shows. This is the reason, why we have to impose in Theorem 1.1 that \(G \) is not divided by any variable. Another example for this (in the context of factoring a given element \(f \in R \)) is given in [GHe] Remark 2.6.

Example 3.13. Let \(R := \mathbb{K}[x_1, x_2] \), for any field \(\mathbb{K} \). Consider \(\delta = (3, -2) \in \mathbb{R}^2 \). For \(w \in \mathbb{R} \), we have

\[
\text{pr}_\delta^{-1}(w) = \{ v = (v_1, v_2) \in \mathbb{R}^2_{\geq 0} \mid 2v_1 + 3v_2 = 2w \}.
\]

The following picture shows \(\text{pr}_\delta^{-1}(3.5) \) (red), \(\text{pr}_\delta^{-1}(6.5) \) (blue), and \(\text{pr}_\delta^{-1}(10) \) (black), where filled points are lattice points corresponding to elements in \(I_{\delta,w} \).

Thus, \(\text{dim} S_{\delta,3.5} = \#I_{\delta,3.5} = 1 \), \(\text{dim} S_{\delta,6.5} = \#I_{\delta,6.5} = 2 \), and \(\text{dim} S_{\delta,10} = \#I_{\delta,10} = 4 \). In particular, \(\text{dim} S_{\delta,3.5} + \text{dim} S_{\delta,6.5} - 1 = 2 \neq 4 = \text{dim} S_{\delta,10} \). But clearly, \(S_{\delta,6.5} \) does not contain two coprime monomials.
Lemma 3.14. Let $\Delta, \mathcal{E}, L, \delta, R$ be as in Setup 3.6. Let $G \in S_{\delta,u}$ and $H \in S_{\delta,w}$ be coprime polynomials. If G is not divisible by any monomial, then

$$GS_{\delta,u+i} + HS_{\delta,u+i} = S_{\delta,u+w+i}, \quad \text{for every } i \in \mathcal{M}_\delta.$$

The same proof as in [GHe] Lemma 2.5 applies: The idea is to show that the sequence

$$0 \to S_{\delta,i} \xrightarrow{\Phi} S_{\delta,u+i} \times S_{\delta,u+i} \xrightarrow{\Psi} S_{\delta,u+w+i} \to 0$$

is exact, where $\Phi(\eta) := (\eta H, -\eta G)$, for $\eta \in S_{\delta,i}$, and $\Psi(\psi, \varphi) := \psi G + \varphi H$, for $(\psi, \varphi) \in S_{\delta,u+i} \times S_{\delta,u+i}$. The non-trivial part is the surjectivity of Ψ which can be deduced using Lemma 3.12. For more details, we refer to [GHe].

In order to adapt the proof of Theorem 1.1 for Theorem 1.4, one needs the following two results.

Lemma 3.15. Let $\Delta, \mathcal{E}, L, \delta, R$ be as in Setup 3.6. Let $G \in S_{\delta,u}$ and $H_j \in S_{\delta,w_j}$, for $u, w_j \in \mathcal{M}_\delta$ and $j \in \{1, 2\}$. Assume that, for every $i \in \mathcal{M}_\delta$,

$$GS_{\delta,w_j+i} + H_j S_{\delta,u+i} = S_{\delta,u+w_j+i}, \quad j \in \{1, 2\}.$$

Then, we have, for every $i \in \mathcal{M}_\delta$,

$$GS_{\delta,w_1+w_2+i} + H_1 H_2 S_{\delta,u+i} = S_{\delta,u+w_1+w_2+i}.$$

The same proof as in [GHe] Lemma 2.7 applies: This is a short computation applying the hypothesis in a clever way. For details, we refer to [GHe].

Lemma 3.16. Let $\Delta, \mathcal{E}, L, \delta, R, (x_1, \ldots, x_n)$ be as in Setup 3.6. Let $G \in S_{\delta,u}$ and $H \in S_{\delta,w}$ be coprime polynomials. If G is monic with respect to X_n, then

$$GS_{\delta,w+i} + HS_{\delta,u+i} = S_{\delta,u+w+i}, \quad \text{for every } i \in \mathcal{M}_\delta.$$

The same proof as in [GHe] Lemma 2.8 applies (recall also the paragraph before Lemma 2.8 in [GHe]): First, one proves the special case $G = X_n$ and $H \in S_{\delta,w} \cap \mathbb{K}[X_1, \ldots, X_{n-1}]$. The rest follows then by Lemmas 3.14 and 3.15. For more details, we refer to [GHe].

Remark 3.17. In contrast to [RS], we do not project from a distinguished point to \mathbb{R}^{n-1}. (One candidate for such a point would be the end point β of the loose edge.) The reason for projecting along the vector δ given by the loose edge is to obtain an appropriate refinement of the grading of $\text{gr}_E(R)$ such that Lemma 3.12 holds which is one of the key ingredients for the proofs.

Let us mention that the projection of $\text{NP}(f)$ along δ is δ-orthant if and only if the projection of $\text{NP}(f)$ from β to \mathbb{R}^{n-1}_0 is orthant. Hence, this is another reason why Lemma 3.10 yields a connection to [RS].

4. Proofs

We come to the proofs of the main theorems. The key step that allows to extend the results in [GHe] to any complete regular local ring is the following:

Let (R, m, \mathbb{K}) be a regular local ring, still not necessarily complete, with regular system of parameters $(x) = (x_1, \ldots, x_n)$. Let $\Delta \subset \mathbb{R}^n_{>0}$ be a F-subset, $\mathcal{E} \subset \Delta$ be a loose edge, and $L : \mathbb{R}^n \to \mathbb{R}$ be a positive linear form defining \mathcal{E}. As in Setup 3.6, we introduce $\delta \in \mathbb{R}^n$ with $\delta_n < 0$ and $L(\delta) = 0$.

Let $w \in \mathcal{M}_\delta$ and let $G \in S_{\delta,w} \subset \text{gr}_L(R) \cong \mathbb{K}[X_1, \ldots, X_n]$. We can write G as a finite sum

$$G = \sum_{A \in \mathbb{Z}^n_{>0}} \lambda_A X^A, \quad \text{for } \lambda_A \in \mathbb{K}.$$
Note that $\lambda_A \neq 0$ implies $pr_\delta(A) = w$. For every $A \in \mathbb{Z}_{\geq 0}^n$ with $\lambda_A \neq 0$, we choose $\rho_A \in R^\times$ with the property
\[\rho_A \equiv \lambda_A \mod m. \]
Otherwise, we set $\rho_A := 0 \in R$. Using this, we define
\[g := \sum_A \rho_A x^A \in R. \]
Clearly, the image of g in $gr_L(R)$ is G. (In fact, we can apply this procedure for any element in $gr_L(R)$, not only for those in $S_{\delta,w}$.) Note that g is not unique and, in particular, g depends on a choice of a system of representatives in R for the residue field $K = R/m$. On the other hand, if $K \subset R$, then we can uniquely choose $\rho_A := \lambda_A$.

Using the above, we adapt the proofs of [GHe] to prove our results. Even though this is straightforward, we believe it is more pedagogical to give the proofs of the theorems. Moreover, we present a slightly different argument using Lemma 3.10.

Proof of Theorem 1.1. Let $L : \mathbb{R}^n \to \mathbb{R}$ be a positive linear form defining the edge \mathcal{E}. Let
\[a_0 := \nu_L(f) \quad \text{and} \quad v := pr_\delta(\alpha) = pr_\delta(\beta) \in M_\delta \subset \mathbb{R}^{n-1}, \]
where $\alpha, \beta \in \mathcal{E}$ are the end points of the loose edge \mathcal{E}. Without loss of generality, we may assume that $\delta \in \mathbb{R}^n$ fulfills the properties of Setup 3.6.

By hypothesis, we have $in_L(f) = G \cdot H \in S_\delta$. We set $G_u := G \in S_{\delta,u}$ and $H_w := H \in S_{\delta,w}$, for $u, w \in M_\delta$. Let $g_u \in R$ (resp. $h_w \in R$) be a lift of G_u (resp. H_w), as described before. We define $\phi_1 := g_u \cdot h_w$, which is our first approximation of f. For
\[f_1 := f - \phi_1 = f - g_u \cdot h_w, \quad \text{we have} \quad a_1 := \nu_L(f_1) > a_0. \]
The vertices of $NP(f_1)$ lie in $\mathbb{Z}_{\geq 0}^n$ which implies that the vertices of $NP(f_1)_\delta$ are contained in M_δ. Since the projection $NP(f)_\delta$ is δ-orthant (Lemma 3.10), we get that each vertex of $NP(f_1)_\delta$ is of the form
\[v + i = u + w + i, \quad \text{for some} \quad i \in M_\delta, i \neq 0. \]
In particular, $in_L(f_1) \in gr_L(R)$ can be written as
\[in_L(f_1) = \sum_{i \in M_\delta} F_{u+w+i}^{(1)} \quad \text{for} \quad F_{u+w+i}^{(1)} \in S_{\delta,u+w+i}. \]
By assumption G_u is not divisible by a monomial, hence, by Lemma 3.14, we have
\[G_u S_{\delta,w+i} + H_w S_{\delta,u+i} = S_{\delta,u+w+i}, \quad \text{for every} \quad i \in M_\delta. \]
Thus, for every $i \in M_\delta$ with $L(u + w + i, 0) = a_1$, there are $H_{w+i} \in S_{\delta,w+i}$ and $G_{u+i} \in S_{\delta,u+i}$ such that $F_{u+w+i}^{(1)} = G_u H_{w+i} + H_w G_{u+i}$. We choose $h_{w+i}, g_{u+i} \in R$, as described before and define the second approximation of f by
\[\phi_2 := \left(g_u + \sum_{i \in M_\delta, i \neq 0} \sum_{L(u+w+i, 0) = a_1} g_{u+i} \right) \left(h_w + \sum_{i \in M_\delta, i \neq 0} \sum_{L(u+w+i, 0) = a_1} h_{w+i} \right) \in R. \]
Note that $\phi_2 = g_u h_w + \sum_{i \neq 0} g_{u+i} h_{w+i} + h_w g_{u+i} + \sum_{i,j \neq 0} g_{u+i} h_{w+j}$ and, by construction, $\nu_L(g_{u+i} h_{w+j}) > a_1$ since L is positive. If we define
\[f_2 := f - \phi_2, \quad \text{we have} \quad a_2 := \nu_L(f_2) > a_1. \]
We continue the construction and obtain
\[\hat{g} := \sum_{i \in M_\delta} g_{u+i}, \quad \hat{h} := \sum_{i \in M_\delta} h_{w+i} \in \hat{R}. \]
such that \(f = \hat{g} \cdot \hat{h} \) in the completion \(\widehat{R} \), as desired.

Recall that \(L \) is a positive linear form on \(\mathbb{R}^n \) defining the edge \(\mathcal{E} \). Let \(\mathcal{E}_1 \) (resp. \(\mathcal{E}_2 \)) be the face of the Newton polyhedron of \(\hat{g} \) (resp. \(\hat{h} \)) determined by the same \(L \). We have that \(\text{in}_{\mathcal{E}_1}(\hat{g}) = G \) and \(\text{in}_{\mathcal{E}_2}(\hat{h}) = H \), \(\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 \), \(\text{in}_{\mathcal{E}}(f) = \text{in}_{\mathcal{E}_1}(\hat{g}) \cdot \text{in}_{\mathcal{E}_1}(\hat{h}) \), and \(\mathcal{E}_1 \) is parallel to \(\mathcal{E} \). (The latter is also true for \(\mathcal{E}_2 \) if it is not a vertex). \(\square \)

Corollary 1.2 is the same as for \([\text{GHe}]\) Corollary 1.2, except that the reference to loc. cit. Lemma 2.2 has to be replaced by Lemma 3.4 in the present paper.

Proof of Theorem 1.4. We follow \([\text{GHe}]\). Using Lemma 3.16 instead of Lemma 3.14 in the proof of Theorem 1.1, we find \(\overline{g}, \overline{h} \in \widehat{R}[[z]] \) such that \(f = \overline{g} \cdot \overline{h}, \) \(\text{in}_{\mathcal{E}_1}(\overline{g}) = G, \) \(\text{in}_{\mathcal{E}_2}(\overline{h}) = H, \) \(\mathcal{E}_1 + \mathcal{E}_2 = \mathcal{E} \).

Since \(\mathcal{E} \) is descendant and \(G \) is monic in \(Z \), the Newton polyhedron of \(\overline{g} \) has a vertex of the form \((0, \ldots, 0, d)\), for some \(d \in \mathbb{Z}^+ \). Hence, the monomial \(\epsilon z^d \) appears in an expansion of \(\overline{g} \), for some unit \(\epsilon \in \widehat{R}[[z]]^\times \). The Weierstraß preparation theorem ([B], Ch. VII, §3, no. 8, Proposition 6, p. 41) implies that there exist a unit \(u \in \widehat{R}[[z]]^\times \) and \(\hat{g} \in \widehat{R}[z] \) such that

\[
\overline{g} = u \hat{g}.
\]

We define \(\hat{h} := u^{-1} \overline{h} \) and obtain that \(f = \hat{g} \cdot \hat{h} \). Since \(f, \hat{g} \in \widehat{R}[z] \), we also have \(\hat{h} \in \widehat{R}[z] \).

The remaining parts of the theorem follow easily. \(\square \)

REFERENCES

[ACLM] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle Hernández, Quasi-ordinary singularities and Newton trees, *Mosc. Math. J.* 13 (2013), no. 3, 365–398.

[B] N. Bourbaki, *Eléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs*, Actualités Scientifiques et Industrielles, No. 1314 Hermann, Paris 1965 iii+146 pp.

[CP1] V. Cossart and O. Piltant, Characteristic polyhedra of singularities without completion, *Math. Ann.* 361 (2015), 157–167, DOI 10.1007/s00208-014-1064-0.

[CP2] , Resolution of Singularities of Arithmetical Threefolds II, preprint (2014), available on HAL:hal-01089140, to be published in *Jour. of Algebra*.

[CS] V. Cossart and B. Schober, A strictly decreasing invariant for resolution of singularities in dimension two, preprint (2014), arXiv:1411.4452.

[GHe] J. Gwoździewicz and B. Hejmej, Loose edges. preprint (2018), arXiv: 1807.04944.

[H] H. Hironaka, Characteristic polyhedra of singularities, *J. Math. Kyoto Univ.* 7 (1967), 251–293.

[MS] H. Mourtada, B. Schober, A polyhedral characterization of quasi-ordinary singularities, to appear in *Mosc. Math. J.*, Arxiv:1512.07507.

[RS] G. Rond and B. Schober, An irreducibility criterion for power series. *Proc. Amer. Math. Soc.*, 145 (2017), no. 11, 4731–4739.

[S] B. Schober, *Characteristic polyhedra of idealistic exponents with history*, Dissertation, Universität Regensburg (2013). http://epub.uni-regensburg.de/28877/

[T] B. Teissier, Overweight deformations of affine toric varieties and local uniformization. *Valuation theory in interaction*, 474–565, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014.

Bernd Schober, Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

E-mail address: schober@math.uni-hannover.de