The quantum mitochondrion and optimal health

Alistair V.W. Nunn†*, Geoffrey W. Guy† and Jimmy D. Bell*†

†Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, U.K.
†GW Pharmaceuticals, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K.

Abstract
A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as ‘tunnelling’ and ‘coherence’ while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis – a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level.

Introduction
In the light of recent scientific advances Theodosius Dobzhansky’s quote should be updated [1]: nothing in biology makes sense except in the light of evolution and quantum physics. It is now proposed that evolution and natural selection of self-replicating molecules started in a chemical sense, well before recognisable biological life developed [2]. From a thermodynamic perspective, life can be described as a ‘dissipative structure’ driven by an energy gradient that increases the entropy of its surroundings. Despite the energy cost of storing and utilizing information, natural selection selects the fittest. In effect, some molecules, if subject to perturbation, appear to self-organize and show emergent behaviour leading to complexity [3].

This flow of information is dependent on electric fields and can take the form of just about any type of molecule – ranging from electrons and protons, to metal ions, neurotransmitters, hormones, proteins, energy molecules, RNA and DNA. Environmental perturbation generates a signal that initiates a corrective response. Systems that fail to do this are rapidly eliminated by natural selection. A cell can thus be viewed thermodynamically as a semi-open system that allows energy to enter and waste entropy to leave. As a cell grows, it becomes more and more difficult for it to maintain internal order due to a rapid increase in volume, but as soon as it undergoes mitosis, the smaller daughter cells increase their ‘order’. In effect, basic thermodynamic effects drive replication. Similarly, if energy levels fall, it becomes increasingly difficult for the cell to survive as its internal order also falls, ultimately leading to death [4]. This therefore is just another way of saying that living beings ‘eat order and excrete negative entropy’ [5].

From a biological point of view the ability to process and utilize information could be described as ‘intelligence’. This would suggest that mild stresses that perturb homeostasis resulting in beneficial adaptation to better resist it, otherwise known as hormesis, may underlie the evolution of intelligence – and could play a role in maintaining it [6]. In effect, all life displays ‘intelligence’ as an inevitable consequence of natural selection in a variable environment. The flip side to this is of course that life, and therefore intelligence, could not have evolved in a totally benign environment, and that reduction or removal of hormetic stresses would lead to a slow deviation from optimal function. Given that ‘quantum effects’ are being recognized as pivotal in many fundamental biological processes [7], it follows that together with the concept of ‘hormesis’, the ability to live in ‘optimal health’ must encompass these principles.

‘Hormesis’ describes a biological phenomenon that has long been observed whereby a low dose ‘stressor’ induces adaptation in an organism such that it can better resist it. It was only given a name in the 1940s from the ancient Greek ‘hormaein’, meaning ‘to urge on’ [8]. The concept has had a chequered history and it is only recently becoming more widely accepted within the scientific and clinical community [9]. In biological terms hormesis has been described as ‘an organisinal strategy for optimal resource allocation that ensures homeostasis is maintained’ [10]. Classically, hormesis has also been described by toxicologists as a biphasic response of low dose stimulation and/or beneficial effect and...
high dose inhibitory and/or toxic effect; it has also been defined by Mattson as ‘a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism’ [11]. Today we know that multiple mechanisms underpin hormesis [12] and that it has been widely observed in the toxicological literature; these data are summarized in a database (see [13]). Overall, because hormesis can often induce many benefits biologically, it may be essential in disease prevention and possibly treatment.

From thermal vents to advanced intelligence; the mitochondrion

One of the strongest emerging theories, due to the ubiquity of the proton gradient in cells, is that life commenced in alkaline thermal vents at the bottom of the oceans. These vents exhibit large stable proton gradients which over 1000s of years, and with natural selection, probably gave rise to two orders of life – archaea and bacteria. At some point these two forms came together in a biosymbiotic coupling, with the latter becoming the mitochondrion, which enabled the development of the eukaryote and complex life. Critically, because most of the bacterium’s genes ended up in the nucleus, and only a few stayed in the nascent mitochondrion, this forced the evolution of two sexes due to the need to ensure minimal mitochondrial heteroplasmy. Any large mismatch between mitochondrial genes encoded in the nucleus and those encoded in the mitochondrion could result in reduced efficiency of the electron transport chain (ETC), so potentially enhancing ROS and reducing energy production; it is thought that this could determine both lifespan and the rate of aging [14].

Thus mitochondria have been key in the evolution of complex life, as they enable vast amounts of ‘information’ to be stored and processed in a cell by supplying almost unlimited amounts of energy [15]. Apart from the importance of DNA transferring information between generations, from the living organism’s perspective, it is also important to ‘remember’ the past, ‘predict’ the future and therefore be ‘aware’ of the present. It therefore follows that memory has been defined as the capacity of organisms to benefit from their past [16]. Without energy there can be no memory, and thus no awareness. This may explain why our brains require so much; even at rest approximately 20% of the total body energy consumption arises from the brain. Stimulate it, and it rapidly increases its energy demand, however, the precise increase in energy use by action potentials from baseline in the resting states is thought to be only approximately 10% or so, with the rest of the energy being used on housekeeping tasks, resting potential, postsynaptic receptors, neurotransmitter recycling, vesical cycling and calcium homoeostasis [17]. The majority of the energy is supplied by mitochondria and is consumed at the synapses [18]. Calculations suggest that the active brain can generate approximately 30 μmol ATP/g-min, which is not too dissimilar to what a human leg muscle is generating during a marathon [19]. In contrast, anaesthesia reduces cerebral baseline metabolic rate by 30–70% [20]. Although sleep is also associated with decreased metabolism, it is essential to restore optimum performance [21]; bigger brains may have evolved, in part, to decrease the need for sleep by reducing the time taken to clear metabolites by decreasing the neuronal density to area ratio [22]. Thus the mitochondrion is essential for advanced informational structures like the brain. Certainly in humans, research does suggest that fluid intelligence is related to the metabolic efficiency of the mitochondrion [23].

Stress is required to maintain the complexity of the brain

The energy requirements of the brain are not surprising, given its complexity: The human brain has approximately 80–100 billion neurons, approximately a 10-fold increase since our Miocene ancestors 10 million years ago [24,25]. In humans, one estimate suggests that there could be an average of approximately 7000 synapses per cell in the neocortex, with a total of approximately 0.15 × 10^{15} synapses in the cortex [26]. Others have suggested that there may be as many as 10^{14} synapses in the cerebral cortex, and approximately 10^{13} in the cerebellar cortex [27]. Overall, this indicates that the human brain contains at least 10^{14} to 10^{15} synapses. Furthermore, there may be at least 26 distinguishable synaptic strengths, corresponding to 4.7 bits of information at each synapse [28].

Thus mitochondria have been key in the evolution of complex life, as they enable vast amounts of ‘information’ to be stored and processed in a cell by supplying almost unlimited amounts of energy [15]. Apart from the importance of DNA transferring information between generations, from the living organism’s perspective, it is also important to ‘remember’ the past, ‘predict’ the future and therefore be ‘aware’ of the present. It therefore follows that memory has been defined as the capacity of organisms to benefit from their past [16]. Without energy there can be no memory, and thus no awareness. This may explain why our brains require so much; even at rest approximately 20% of the total body energy consumption arises from the brain. Stimulate it, and it rapidly increases its energy demand, however, the precise increase in energy use by action potentials from baseline in the resting states is thought to be only approximately 10% or so, with the rest of the energy being used on housekeeping tasks, resting potential, postsynaptic receptors, neurotransmitter recycling, vesical cycling and calcium homoeostasis [17]. The majority of the energy is supplied by mitochondria and is consumed at the synapses [18]. Calculations suggest that the active brain can generate approximately 30 μmol ATP/g-min, which is not too dissimilar to what a human leg muscle is generating during a marathon [19]. In contrast, anaesthesia reduces cerebral baseline metabolic rate by 30–70% [20]. Although sleep is also associated with decreased metabolism, it is essential to restore optimum performance [21]; bigger brains may have evolved, in part, to decrease the need for sleep by reducing the time taken to clear metabolites by decreasing the neuronal density to area ratio [22]. Thus the mitochondrion is essential for advanced informational structures like the brain. Certainly in humans, research does suggest that fluid intelligence is related to the metabolic efficiency of the mitochondrion [23].

The quantum angle

The brain is not simply a computer system and as Roger Penrose has proposed, it may utilize quantum principles to enable it to process information and generate awareness [31]. Quantum theories of the mind have led to a whole new field of science – ‘quantum neurophysics’ [32], which mirrors the idea
that life is anchored in the quantum world [33]. Interestingly, it is now becoming clear that bacteria can transfer electrons both between the same species and with other species in a form of symbiosis via ‘bacterial nanowires’. In effect, these are biological conductors; they can transfer energy. Significantly, this ‘conductance’ appears to have been solved in at least two ways by nature: one is more similar to classical metallic conductance based on free electron theory, whereas the other seems to depend on quantum effects – such as ‘tunnelling’ [34]. It therefore seems likely that the brain is probably also using quantum effects at some level – although precisely how much, or how little, is still unknown.

Quantum literally means ‘how much’, but is today used to describe the minimum unit of energy or matter. It was Planck who realized that there was a minimal ‘quantum of action’, in effect, there is a minimum change that can be measured in nature, which became known as Planck’s constant, or \(h \), which equals \(6.6 \times 10^{-34} \) J/s. The implications from this were profound, not least of which was that any measurement of nature is based on quantum effects, and that the size and shape of things is also determined by Planck’s constant. It also means that there is always motion within matter; at the molecular level, the shape of things is determined by an average and motion is therefore ‘fuzzy’, and it is impossible to assign both momentum and position of a particle. It also means that the so called ‘energy barriers’ normally encountered in most physical/biological/chemical system may not be barriers at all. This describes one of the most fascinating principles of the quantum world, ‘tunnelling’. The phenomenon of ‘tunnelling’ explains how objects can permeate energy barriers without the necessary energy because they can exist as probability waves; the likelihood of this can be predicted by the Schrödinger equation. This basically tells us that the ability to do this depends on their energy and mass, and the width of the barrier. It is actually quite likely for very small particles like electrons and protons, but extremely unlikely for large objects such as humans. Thus increasing temperature can enhance the effect as it can impart more energy, although as we will discuss later, it also can inhibit it. The possibility that electrons could move along enzymes in such way was first suggested by Szent-Györgyi in 1941 [35], but it was DeVault and Chance in 1966 [36] who proposed it could be due to quantum tunnelling. See Box 1 for a more in depth explanation of some aspects of quantum physics.

It is becoming clear that components of living systems use quantum principles, for instance, by absorbing light energy and transferring it across a series of molecules – a fundamental quantum process, where quantum entanglement can be viewed as a form of quantum superposition [40]. One of the factors that can influence coherence is the environmental temperature, as this indicates the energy of a particle, and thus its ability to interact with other components. The higher its energy, the more likely it is to disrupt it. For many years, it was thus thought that life was simply too ‘warm and wet’ for coherence to occur. As it now turns out, this is far from being correct, as life has actually tuned itself

Box 1. A bit more on quantum physics

To explain quantum tunnelling, one of the basic concepts underlying the quantum world is that of wave–particle duality; De Broglie showed that just as a photon can behave both as a wave and a particle, all particles could have a ‘wave function’ ascribed to them – matter-waves. This was pivotal, as electrons could thus also behave as waves. The wave function also displays something called ‘phase’, in effect quantum particles behave as a rotating cloud, and thus can be influenced by magnetic fields; they have ‘spin’. Spin explains Pauli’s exclusion principle and why atoms, or planets, don’t collapse in on themselves and matter feels ‘hard’. However, tunnelling also depends on ‘quantum coherence’ such that an electron, proton, atom or a group of atoms, exist in ‘quantum superposition’ – in effect, or they exist as a collection of all possible states. Another facet of this is ‘entanglement’, or as Einstein put it, ‘spooky action at a distance’ – which describes the ability of two entangled particles to ‘know’ the state of the other when one is observed, regardless of distance – instantaneously. This is known as ‘non-locality’, as encompassed by Bell’s theorem; this is a profound departure from classical physics. Bell’s inequality has now been tested repeatedly, and the most recent experiment does strongly suggest that quantum entanglement is entirely real [37]. From the quantum point of view, once entangled, two particles have to be regarded as the same entity, irrespective of distance. Thus entanglement is not only key to understanding reality, but is key to many current and future technologies, including quantum computing [38].

However, when particles are observed, they appear in one particular state and thus display classical properties we associate with the everyday world. Thus to exist in a non-classical quantum state, they need to be isolated from external interference from the environment; as soon as this system interacts with it, it becomes ‘decoherent’ and they would appear to behave as particles rather than probability waves; effectively they are being ‘observed’ (a sort of Schrödinger’s cat condition). The more particles involved, the quicker the quantum state collapses – as maintaining a coherent state becomes increasingly difficult with increasing size due to interaction with the environment. This is why a tennis ball, although it can be technically be assigned a wave length, is always observed as a tennis ball; calculating its de Broglie wavelength, which is obtained by dividing the Planck constant by the ball’s momentum, is approximately \(10^{-34} \) m, whereas that of an electron, with a rest mass energy of 0.511 MeV, at 1 eV, is 1.2 nm. It is also why a cat does not exist in superposition; it is intimately coupled to its environment. The important message here is that microscopically, coherence is possible, not only for single entities, such as electrons, but also for larger groups of atoms – indicating that they can behave as one entity. But this state is rapidly lost via interaction with the wider
environment; this is explainable thermodynamically, because most 'environments' contain vast number of molecules that display randomness. This is why we view the world macroscopically. For a basic introduction to quantum physics, a good starting point is the 30-second quantum theory book, edited by Brian Clegg [39], or for a more detailed over-view, the free to down load text book: 'Motion mountain – adventures in physics, volume IV, the quantum of change', edition 28.1, 2016, by Christoph Schiller (http://www.motionmountain.net/) is a good, but more in-depth reference.

to use thermal vibrations to 'pump' coherence, rather than disrupt it, which results in a phenomenon known as 'quantum beating'. This effect has been detected in bacterial light harvesting complexes and essentially represents a coherent superposition of electronic states, analogous to a nuclear wavepacket in the vibrational regimen. In essence, the energy in light can be harvested very efficiently and transferred using wavelike resonance. There is thus a 'goldilocks zone' to optimize efficiency; in effect, just the right amount of 'noise' can result in enhanced 'coherence' and 'tunnelling' due to stimulating particular vibrational modes in proteins – so called exciton-vibrational coupling (vibronic coupling) [41–44]. For example, tubulin contains chromophoric aromatics molecules such as tryptophan, and thus may play a role in coherent energy transfer; key in this maybe their free pi electrons [45,46]. Today long-range electron tunnelling is thought to occur in many proteins, and seems to be enhanced by particular molecules, such as the aromatics – which occur more frequently in oxidoreductases, which are key components of respiratory chains [47]. Crucially, it is now thought that electron tunnelling plays an important role in how mitochondria produce energy [48,49] and ensures a tight coupling between electron flow and protonation via a process known as 'redox tuning' [50]. In effect, electron tunnelling appears to be a pivotal component of mitochondrial function. It would be interesting to speculate on the role of temperature in this quantum effect: could temperature increase the ability to tunnel further, but disrupt coherence more readily? Is there a so called 'sweet spot'?

Certainly, it seems likely that quantum tunnelling and entanglement were essential for the beginnings of life, especially in relation to photosynthesis, allowing a greater spectrum of photons to be gathered and more efficient transfer of electrons [40,51]. Indeed, many biomolecules may have been selected for their 'quantum criticality', and thus behave somewhere between an insulator and a conductor, so also potentially acting as charge carriers [52]. Practical examples include quantum effects used in bird navigation [53], an explanation of how photosynthesis works [41], and possibly, even olfaction [54]. The recent discovery that lysozyme appears to demonstrate a 'Fröhlich condensate' [55], when combined with concept that strong electromagnetic fields generated by mitochondria could generate 'water order', and thus protect against decoherence [56], is perhaps further evidence. In fact, emerging mathematical models suggest that quantum coherence can be maintained for significant periods of time, orders of magnitude longer in complex biological systems than in simple quantum systems at room temperature – in effect the system can hover in the 'Poised Realm' between the pure quantum and incoherent classical worlds [57]. Thus, although computers may rely on quantum principles, life has been using them since the beginning, and what we see today is the result of billions of years of natural selection. So it appears that to fully understand biology, we have to embrace the quantum world, and this may begin to explain why life is generally so efficient.

The quantum mitochondrion

Clearly a lot more 'quantum effects' are taking place in mitochondria than previously assumed. Certainly, the close association between ROS generation and the ETC, and the discovery of 'mitochondrial oscillators', which has enhanced the understanding of complex non-linear systems [58] – is highly relevant. Data suggest that mitochondria have evolved to generate energy at a 'redox sweet spot', where without too much stress, they can maximize energy production with minimal ROS, but if the ETC becomes either too reduced or oxidized, ROS signalling occurs – the so called 'Redox-Optimized ROS Balance' (R-ORB) hypothesis; a key component of this is antioxidant defence [59]. The combination of increased ROS and increased ADP/ATP is a powerful signal for mitochondrial biogenesis and/or localized induction of production of ETC components. The latter effect is well described by the CoRR hypothesis (Colocation of gene and gene product for Redox Regulation of gene expression) [62]. In this instance, this would have a number of effects ranging from stimulation of growth, to a localized activation of uncoupling proteins (UCPs), which are activated by ROS; these are well described effects relating to redox [61].

If electron tunnelling is so important in controlling electron flow through the ETC, does this indicate that other quantum effects may also be involved? Could 'entanglement' be used to signal? For instance, during electron bifurcation, it has been suggested that the semiquinone-Rieske cluster can exist in a triplet state in complex III involving a spin–spin exchange; during this reaction, two electrons are taken from ubiquinol and sent in two different directions [62]. Interestingly, Marais and colleagues have proposed that as weak magnetic fields can reduce triplet products in photosynthetic organisms, a high-spin Fe²⁺ ion within the ETC can generate an effective magnetic field that can reduce ROS production. In effect, a quantum protective mechanism in photosynthesis [63]. If the triplet state can be used for bird navigation [53], could this hint that it is used in other biological processes as well? The link between triplet states and fields is particularly interesting – suggesting that ROS could be signalling in more ways than we realized.
But quantum effects are not just limited to electrons – proton tunnelling may be key in enzymatic reactions [64], whereas other small molecules can also be described by wave functions, for instance, calcium, sodium and potassium. This might mean that these highly important elements, for instance, in enabling action potentials, may also incorporate quantum effects, and may play a role ion channel selectivity; these ideas have been used to account for differences between those predicted by the Hodgkin–Huxley equation and what has been observed in neural circuits [65,66].

There is also one other area that field strength might modulate – and that is mitochondrial dynamics. Skulachev has suggested that fused mitochondria could act as ‘power cables’ [67]; it is thus interesting that Reynaud has shown that mitochondria can be made to fuse using electric fields \textit{in vitro} [68]. This would be in keeping with the ideas of Fröhlich about energy transfer involving vibronic coupling, in particular, between mitochondria and microtubules [69]. Certainly, it has been long known that electrics fields affect cell function and shape: calcium has a strong effect on the electrical energy transfer and transistor-like properties of microtubules [70]. It has also been suggested that differences in mitochondrial function in cancer alter electric fields, in particular, affecting water order and coherence – which could be involved in the disease process [71]. Cancer is clearly associated with changes in mitochondrial dynamics and ultrastructure [72]. Overall, it seems that mitochondrial fusion induced by mild stress or reduced nutrients tends to enhance oxidative phosphorylation, whereas too much stress, excess nutrients, disease and inflammation, including cancer, induces fragmentation which usually leads to mitophagy and reduced oxidative phosphorylation [73].

This might suggest a quantum control system. For example, too little energy production coupled to increased usage is indicated by an increase in the ADP/ATP ratio, which would be associated with increased ETC oxidation, which might initially reduce ROS, but the collapsing mitochondrial membrane potential (m\(\Delta\Psi\)) might reduce quantum coherence. This might reduce quantum tunnelling efficiency, which could then lead to an increase in ROS. Hence, both calorie restriction and increased metabolic demand would generate an adaptive response (hormetic trigger) to improve mitochondrial function. As the mitochondrial potential is restored, and mitochondrial mass and/or efficiency increased, quantum tunnelling would become more efficient and ATP levels re-established and ROS minimized. Equally, if the cell is exposed to high levels of nutrients, but does not use much ATP, then the ETC would become highly reduced and the mitochondrion could hyperpolarise – in the presence of oxygen this might lead to a rapid flow of electrons through the ETC and the formation of free radicals, which also effectively inhibit functioning. This points at a quantum coherence ‘sweet spot’, where the field strength has to be just right. An interesting possibility is that the sweet spot could coincide with a degree of mitochondrial fusion and alignment of the fields. Overall this means it is necessary to think ‘quantum’ when viewing how mitochondria function; Figure 1 summarizes the concept.

\section*{Why stress (hormesis) is needed for optimal health}

When all of the above is put together it suggests that natural selection has worked over billions of years to incorporate all possible quantum efficiencies in response to stress and is based on the emergent behaviour resulting from the perturbation of a complex system. The captured information that enables this is encoded in DNA, which is the result of billions of cycles of informational storage, which might be explained by the informational cycle of Brillouin [86]. This means that although life can keep going without too much stress, it is very likely that its robustness will decrease if it is not perturbed, as a key factor maintaining structure, natural selection of efficient systems under stress, has been removed. However, with the right amount of stress, the most efficient system is maintained. A key marker for this is mitochondrial health, which plays a fundamental role in the aging process.

Recent published literature suggest that the human lifespan may be fixed, possibly at a maximum of approximately 125 years – with an asymptotic limit approximately 95 years [87–89]. However, the rate of aging is modifiable leading to the current situation of ‘accelerated aging’ in an obesogenic environment [90]; key to this process is its association with rising inflammation [91–93]. On the other hand it opens up the possibility for ‘healthy aging’. It has long been assumed that calorie restriction, which seems to suppress reproduction and increase longevity, improves somatic maintenance and suppresses excessive inflammation – possibly through resource reallocation [94]. However, it has also been suggested that it may not be simply about somatic maintenance per se, rather, calorie restriction-induced slowing of aging is simply a secondary effect brought about by increased autophagy and apoptosis to divert resources to support reproduction [95]. Further data that the lifespan is fixed, but with a modifiable asymptotic span, comes from the discovery of the epigenetic clock [96,97]. Thus although aging does have a stochastic element, there is a good argument that it is programmed, and this is related to epigenetic control of development – and is an example of antagonistic pleiotropy, the so called ‘short-sighted’ watchmaker hypothesis [98]. Some insight into this comes from the mitochondrion, which quite apart from controlling death, also controls the epigenome through Krebs’s cycle intermediates [99,100], which is itself controlled by inflammation that can increase ROS production [101]. Interestingly, the longer lived a species is, the more efficient its ETC, which results in a lower production of ROS, requiring less investment in antioxidant mechanisms and DNA repair [102]. The key point here is that mitochondrial function does decline with age and seems to be related to a Muller’s ratchet mechanism amplifying damaging mitochondrial DNA mutations – and is matched
Figure 1 | The quantum mitochondrion

This figure summarizes some quantum effects in biology: the green boxes represent those that appear to be established, the blue boxes those that have been suggested to be involved and the purple boxes some we believe might be involved. As living systems take in energy in order to store and utilize information, so effectively using free energy to do work to create a highly ordered state that becomes more efficient and selectable by natural selection, it exports disorder, so maintaining the second law of thermodynamics. Panel (A) Proven and predicted quantum effects in biology from the literature: (1) life evolved because of, and has incorporated basic quantum principles, such as entanglement and tunnelling [40,74]; (2) aromatic compounds, such as tryptophan, have pi electrons that can delocalize, and can enable quantum effects [75]; (3) the first real evidence for quantum effects has come from the reliance of photosynthesis on electron tunnelling [41,42]; (4) natural selection appears to have resulted in macromolecules tuned for quantum effects suggesting universal mechanisms of charge transport in living matter [52,57]; (5) quantum beating has been detected in living systems, in particular, in photosystems, suggesting life is using quantum effects [41,43,46]; (6) over 40 years ago Frohlich predicted that vibrational modes within proteins could condense leading to macroscopic coherence, this appears to have now been observed [55]; (7) tunnelling is now thought to be essential in both enzyme reactions and energy transfer, a quintessential component of the quantum world [47–51,64,76]; (8) bacteria live in colonies, often sharing electrons with different species, and it seems that electrons are ‘transported’ over long distances – it would be surprising if tunnelling was not involved, and this sharing between archaea and bacteria is suggestive of this process being adopted in eukaryotes [47,77–79]; (9) several groups now think that electron tunnelling is important in the ETC [48–50]; (10) an important component of electron tunnelling is the existence of super-complexes – these now appear to exist in all orders of life, and are key in both photosynthesis and respiration [80–82]. (11) ion channels play a key role in the brain, and it has been suggested that ion conduction could be described using quantum principles [65,66]; (12) alterations in electric fields surrounding the mitochondrion could play a significant role in changing ‘water order’ and be associated with disease states [56,83,84]; (13) long discussed theory that microtubules could be involved in resonant energy transfer and consciousness due to their quantum properties [45,75]; (14) the nuclear spin properties of phosphorous utilized by transfer of quantum entangled pairs across the synapse in Posner molecules, so effectively acting as a ‘qubit’ [85]. Panel (B) Some predictions of our own: (1) coherence could be controlled by mitochondrial potential, which in turn could enhance quantum tunnelling of electrons (as well, as possibly, other...
by a down-regulation of genes involved in mitochondrial function, but an up-regulation of innate immune genes [103]. Evidence does suggest a definite increase in somatic mtDNA heteroplasmy with age [104]. This of course suggests a very tight relationship between mitochondrial function, quantum efficiency, inflammation and aging.

What is clear is that although the global average life expectancy has increased in the last 20 years, the relative ‘healthy life expectancy’ (HALE) has not kept pace. For instance, in the UK, from 1990 to 2010, male HALE at birth rose from 62.8 to 65.7 and female from 65.9 to 67.9 years. In comparison, the absolute male life expectancy rose from 72.9 to 77.8 and the female from 78.3 to 81.9 years respectively. In effect, although absolute life expectancy has increased by 6.3 and 4.4% in males and females, respectively, HALE only rose by 4.5 and 3%, respectively, over the same time period. This is reflected globally, and seems to be mainly due to reductions in child and adult mortality, rather than years lost to disease – suggesting ‘morbidty expansion’ [105]. In effect, although average global life expectancy has gone up, it does not seem to be due to an increase in HALE, and is certainly not approaching anything like that possible for a human.

One key driver for morbidity expansion is lifestyle-induced inflammation which is known to alter mitochondrial function, leading to accelerated aging. Reducing this might lead to a slowing of the aging rate. The best way to achieve this is no doubt via introduction of hormetic factors, such as exercise, and reduction of inflammation-inducing conditions, such as obesity. It has been long known that mitochondria play a key role in hormesis, as mildly stressing them induces a rebound adaptive response to improve their efficiency [106]. Inflammation, however, evolved to resist pathogens and invoke repair of damage and utilizes mitochondrion to this end – changing their function to increase ROS [101]; this, by its very nature, initially destroys larger structures. Although a good inflammatory response is essential for survival, it can rapidly accelerate the aging process if it becomes chronic. Thus, optimal health should not be viewed simply as an absence of disease, but rather as the induction of a more robust system that can more ably maintain homoeostasis in the face of challenges. In effect, we suggest that hormesis selects for the most efficient ETC, which slows down a perhaps inevitable feed forward loop of inflammation-driven mitochondrial dysfunction. Of course, evolution also selected for the induction of an inefficient ETC during inflammation. In fact, it is now becoming clear that the development of an innate immune system, and programmed cell death is ancient, evolving in prokaryotes [107–109]. So the fine tuning of the ETC to optimize survival of a species is truly ancient, and is very likely to encompass basic quantum effects. For modern warm blooded animals, this could even include temperature itself.

The inter-relationship and boundary between the coherent microscopic quantum realm, and the essentially decoherent macroscopic one could therefore be telling us a great deal. For example, the imposition of the decoherent environment on to a coherent one inside the mitochondrion would immediately change its state. It could be argued that this is in effect, hormetic. Induction of temporary decoherence in a system that normally relies on coherence, such as the ETC, would be a trigger to enhance adaptive function – for example, by creation of ROS. Thus aspects of mitochondrial function could be operating at the boundary between the quantum and classical world, where the environment modulates the. This might suggest that the mitochondrion could be acting as a sensor balanced between the two realms. Any change instantaneously alters its output. It is thus the interplay between the macroscopic world of decoherence and the microscopic world of coherence that determines mitochondrial function.

In summary, the central precept for this paper is that humans evolved in a quantum universe and that quantum effects are pivotal for optimal function. Central to this is that the emergence of complex systems can only take place in the presence of perturbation, where evolution selected for the ability to take on and process information. In effect, life and intelligence could be said to be one and the same thing. With the emergence of life came competition, which coupled with environmental challenges and the relentless imposition of natural selection, led to the evolution of higher and higher orders of intelligence and cognitive capabilities. Pivotal to this whole process was hormesis and its impact on mitochondria. Of course, a key survival strategy, besides adaptation, is the use of information to alter the environment, so providing a competitive edge. Humans reached this point 1000s of year ago suggesting that we should be living in good health throughout adult life. However, it seems that by making ourselves too comfortable and removing hormetic stressors, we are not achieving optimal
mitochondrial quantum efficiency and thus are unable to achieve and maintain optimal health.

Funding

This work was partly supported by funding from the Medical Research Council (MRC), UK.

References

1. Dobzhansky, T. (1973) Nothing in Biology Makes Sense except in the Light of Evolution. Am. Biol. Teacher 35, 125–129 CrossRef

2. Pross, A. (2012) What is Life? How Chemistry Becomes Biology, Oxford University Press, United Kingdom

3. Laughlin, S.B., de Ruiter van Steveninck, R.R. and Anderson, J.C. (1998) The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 CrossRef PubMed

4. Galbraith, R.A. and Frieden, B.R. (2013) The critical roles of information and nonequilibrium thermodynamics in an evolution of living systems. Bull. Math. Biol. 75, 589–601 CrossRef PubMed

5. Schrodinger, E. (1944) What is Life? The Physical Aspect of the Living Cell, Cambridge University Press

6. Nunn, A.V., Guy, G.W. and Bell, J.D. (2014) The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth. Nutr. Metab. 11, 34 CrossRef

7. Arndt, M., Juffmann, T. and Vedral, V. (2009) Quantum physics meets biology. HFSP J. 3, 386–400 CrossRef PubMed

8. Southam, C.M.E.J. (1943) Effects of extract of western red-cedar wood on certain wood-decaying fungi in culture. Phytophatology 22, 517–524

9. Calabrese, E.J. (2011) Toxicology revises its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ. Toxicol. Chem. 30, 2658–2673 CrossRef PubMed

10. Calabrese, E.J. and Baldwin, L.A. (2002) Defining hormesis. Hum. Exp. Toxicol. 21, 91–97 CrossRef PubMed

11. Mattson, M.P. (2008) Hormesis defined. Ageing Res. Rev. 7, 1–7 CrossRef PubMed

12. Calabrese, E.J. (2013) Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–606 CrossRef PubMed

13. Calabrese, E.J. and Blain, R.B. (2011) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul. Toxicol. Pharmacol. 61, 73–81 CrossRef PubMed

14. Lane, N. (2015) The Vital Question: Why is Life the Way It Is? Profile Books Ltd, Great Britain

15. Lane, N. and Martin, W. (2010) The energetics of genome complexity. Nature 467, 929–934 CrossRef PubMed

16. Tulving, E. (1985) How many memory systems are there? Am. Psychol. 40, 385–398 CrossRef

17. Howarth, C., Gloseon, P. and Attwell, D. (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232 CrossRef PubMed

18. Hans, J.J., Jolivet, R. and Attwell, D. (2012) Synaptic energy use and supply. Neuron 75, 762–777 CrossRef PubMed

19. Attwell, D. and Laughlin, S.B. (2001) An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 CrossRef PubMed

20. Hudetz, A.G. (2012) General anesthesia and human brain connectivity. Brain Connect. 2, 291–302 CrossRef PubMed

21. Krueger, J.M., Frank, M.G., Wisor, J.P. and Roy, S. (2015) Sleep function: toward elucidating an enigma. Sleep Med. Rev. 28, 42–50 CrossRef PubMed

22. Herculean-Houzel, S. (2015) Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution. Proc. Biol. Sci. 282, 20151853 CrossRef PubMed

23. Nikolaidis, A., Baraqued, P.L., Kranz, M.B., Scavuzzo, C.J., Barbey, A.K., Kramer, A.F. and Larsen, R.J. (2016) Multivariate associations of fluid intelligence and NAA. Cereb. Cortex, doi: 10.1093/cercor/bhw070

24. Azvedo, F.A., Carvalho, L.R., Ginberg, I.T., Farrel, J.M., Ferretti, R.E., Leite, R.E., Jacob Filho, W., Lenti, R. and Herculean-Houzel, S. (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 CrossRef PubMed

25. Lenti, R., Azvedo, F.A., Andrade-Morais, C.H. and Pinto, A.V. (2012) How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 35, 1–9 CrossRef PubMed

26. Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J., Nyengaard, J.R. and Regeur, L. (2003) Ageing and the human neocortex. Exp. Gerontol. 38, 95–99 CrossRef PubMed

27. Braeitenberg, V. (2002) In defense of the cerebellum. Ann. N.Y. Acad. Sci. 978, 175–183 CrossRef PubMed

28. Bartol, T.M., Bremner, C., Kinney, J., Chirillo, M.A., Bourne, J.N., Harris, K.M. and Szejnowski, T.J. (2015) Nanoconnectomic upper bound on the variability of synaptic plasticity. Elle 4, 410778 CrossRef PubMed

29. Nunn, A.V., Guy, G.W. and Bell, J.D. (2015) Hormesis and cognitive function: an evolutionary/adaptive arabesque leading to longevity. In Diet and Exercise in Cognitive Function and Neurological Diseases (Faroqui, T. and Farooqui, A.A., eds), pp. 133–142, Wiley-Blackwell, USA and Canada

30. Sengupta, B., Friston, K.J. and Penny, W.D. (2014) Efficient gradient computation for dynamical models. Neuroimage 98, 521–527 CrossRef PubMed

31. Penrose, R. (1994) Shadows of the Mind, A Search for the Missing Science of Consciousness, Oxford University Press, Great Britain

32. Talaric, S. and Pregniolato, M. (2016) Quantum neuropsychics: from non-living matter to quantum neurobiology and psychopathology. Int. J. Psychophysiol. 103, 161–170

33. Al-Khalili, J. and Mcafeadden, J. (2014) Life on the Edge: The Coming of Age of Quantum Biology, Transworld Publishers, Great Britain

34. Lovley, D.R. and Malfankar, N.S. (2015) Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ. Microbiol. 17, 2209–2215 CrossRef PubMed

35. Szent-Gyorgyi, A. (1941) Towards a new biochemistry? Science 93, 609–611 CrossRef PubMed

36. Devault, D. and Chance, B. (1966) Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys. J. 6, 825–847 CrossRef PubMed

37. Schmid, R., Bancal, J.D., Allard, B., Fadel, M., Scarrani, V., Treullein, P. and Sangouard, N. (2016) Bell correlations in a Bose-Einstein condensate. Science 352, 441–444 CrossRef PubMed

38. Giribb, J. (2013) Computing with Quantum Cats; From Alan Turing to Teleportation In (, ed.), Transworld Publishers, London, UK

39. Ball, P., Clegg, B., Clifford, F., Close, F., Hebdon, S., Hellenmans, A., Holgate, S.A. and May, A. (2014) 30-Second Quantum Theory, The 50 Most Important Thought-Provoking Quantum Concepts, Each Explained In Half a Minute, ICON Books Ltd, London, UK

40. Tamulis, A. and Grigalavicus, M. (2014) Quantum entanglement in photoactive prebiotic systems. Synth. Syst. Biol. 8, 117–140 CrossRef PubMed

41. Engsl, G.S., Calabrese, J.R., Read, E.I., Aho, T.K., Manca, T., Cheng, Y.C.,, Blankenship, R.E. and Fleming, G.R. (2007) Evidence for waveguide energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 CrossRef PubMed

42. Fassiol, F., Dinshaw, R., Arpin, P.C. and Scholes, G.D. (2014) Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 20130901 CrossRef PubMed

43. Lim, J., Kafetz, D., Caycedo-Soler, M., Berlepsch, H., Huelga, S.F., Plenio, M.B., Zigmantas, D. and Hauer, J. (2016) Bell correlations in a Bose–Einstein condensate. Science 352, 1257–1260 CrossRef PubMed

44. Weber, S., Ohnes, E., Thurnauer, M.J., Norris, J.R. and Kothe, G. (1995) Light-generated nuclear quantum beats: a signature of photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 92, 7789–7793 CrossRef PubMed

45. Craddock, T.J., Friesen, D., Mane, J., Hameroff, S. and Tuszynski, J.A. (2014) The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface 11, 20140677 CrossRef PubMed
46. Coddack, T.J., Piel, A. and Tuszyński, J.A. (2014) Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? Integr. Neurosci. 13, 293-311. CrossRef PubMed

47. Winkler, J.R. and Gray, H.B. (2014) Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930-2939. CrossRef PubMed

48. Hayashi, T. and Stochesbukhov, A.A. (2011) Quantum electron tunneling in respiratory complex I. J. Phys. Chem. B 115, 5354-5364. CrossRef PubMed

49. Moser, C.C., Farid, T.A., Chobot, S.E. and Dutton, P.L. (2006) Electron tunneling chains of mitochondria. Biochim. Biophys. Acta 1757, 1096-1109. CrossRef PubMed

50. de Vries, S., Donner, K., Stampaard, M.J. and Friedrich, T. (2015) Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion. Angew Chem. Int. Ed. Engl. 54, 2846-2848. CrossRef PubMed

51. Tóth, F. (2013) Quantum tunneling to the origin and evolution of life. Curr. Org. Chem. 17, 1758-1770. CrossRef

52. Vattay, G., Fahlander, H., Lequoc, K., Lequoc, D. and Nicolau, C. (1989) Quantum criticality at the origin of life. J. Phys. Conf. Ser. 62, 012023. CrossRef

53. Zhang, Y., Genes, P.B. and Kais, S. (2015) The radical pair mechanism and the avian chemical compass: quantum coherence and entanglement. Int. J. Quantum Chem. 115, 1327-1341. CrossRef

54. Gane, S., Georgananis, D., Maniati, K., Varnavakis, M., Ragousis, N., Skoulakis, E.M. and Turin, L. (2013) Molecular vibration-sensing component in human cilia. PLoS One 8, e55780. CrossRef PubMed

55. Lundholm, J.V., Rodilla, H., Wahlgren, W.T., Duell, A., Bäuerle, G., Vukusic, J., Friedmann, R., Stake, J., Scheider, T. and Katona, G. (2015) Thermal radiation and genetic systems: colocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. USA. 112, 10231–10238. CrossRef PubMed

56. Cortassa, S., O’Rourke, B.A. and Aon, M.A. (2014) Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta 1837, 287-295. CrossRef PubMed

57. Allen, J.F. (2015) Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. USA. 112, 10231–10238. CrossRef PubMed

58. Malloiu, R.J. and Harper, M.E. (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51, 1066-1115. CrossRef PubMed

59. Sarewicz, W., Dutka, M., Pintscher, S. and Ossyczka, A. (2013) Triplet state of the semiquinone-Rieske cluster as an intermediate of electron bifurcation catalyzed by cytochrome bc1. Biochemistry 52, 6388-6395. CrossRef PubMed

60. Maras, A., Sinyavsky, T., Petruccione, F. and van Grondelle, R. (2015) A quantum protective mechanism in photosynthesis. Sci. Rep. 5, 8720. CrossRef PubMed

61. Roston, D., Islam, Z. and Kohan, A. (2014) Kinetic isotope effects as a probe of hydrogen transfer and from common enzymatic catalysts. Arch. Biochem. Biophys. 544, 96-104. CrossRef PubMed

62. Moradi, N., Scholkmann, F. and Salari, V. (2015) A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model. J. Integr. Neurosci. 14, 1–17. CrossRef PubMed

63. Simmhammer, J., Salari, V. and Reinhard, G. (2012) A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 11, 123–135. CrossRef PubMed

64. Skulachev, V.P. (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23-29. CrossRef PubMed

65. Reynaud, J.A., Labbe, H., Lequoc, K., Lequoc, D. and Nicolau, C. (1989) Electric field-induced fusion of mitochondria. FEBS Lett. 247, 106-112. CrossRef PubMed

66. Sabori, F. (2012) Frohlich systems in cellular physiology. Prag. Med. Rep. 113, 95–104. CrossRef

67. Skulachev, V.P. (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23-29. CrossRef PubMed

68. Skulachev, V.P. (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23-29. CrossRef PubMed

69. Lane, N. (2003) A unifying view of ageing and disease: the double-agent theory. J. Theor. Biol. 225, 331–347. CrossRef PubMed

70. Palminen, A., Huuskojarvi, J., Korho, Y.A., Kyröläinen, A., Kaarniranta, K. and Suuronen, T. (2008) Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflammm-aging. Ageing Res. Rev. 7, 83-105. CrossRef PubMed
93 Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. and De Benedictis, G. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N.Y. Acad. Sci. 908, 244–254 CrossRef PubMed

94 Speakman, J.R. and Mitchell, S.E. (2011) Caloric restriction. Mol. Aspects Med. 32, 159–221 CrossRef PubMed

95 Adler, M.I. and Bonduriansky, R. (2014) Why do the well-fed appear to die young? A new evolutionary hypothesis for the effect of dietary restriction on lifespan. Bioessays 36, 439–450 CrossRef PubMed

96 Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., Saltness, R.A., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A. et al. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 CrossRef PubMed

97 Lowe, D., Harvath, S. and Raj, K. (2016) Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531 PubMed

98 de Magalhaes, J.P. (2012) Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 26, 4821–4826 CrossRef PubMed

99 Wallace, D.C. and Fan, W. (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 CrossRef PubMed

100 Salminen, A., Kaarniranta, K., Hillunen, M. and Kauppinen, A. (2014) Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell. Signal. 26, 1598–1603 CrossRef PubMed

101 West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 CrossRef PubMed

102 Banu, G. (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal. 19, 1420–1445 CrossRef PubMed

103 Tower, J. (2015) Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch. Biochem. Biophys. 576, 17–31 CrossRef PubMed

104 Di, M., Schröder, R., Ni, S., Madea, B. and Stoneking, M. (2015) Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc. Natl. Acad. Sci. U.S.A. 112, 2491–2496 CrossRef PubMed

105 Salomon, J.A., Wang, H., Freeman, M.K., Vos, T., Flaxman, A.D., Lopez, A.D. and Murray, C.J. (2012) Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 CrossRef PubMed

106 Tapia, P.C. (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality. Med. Hypotheses 66, 832–843 CrossRef PubMed

107 Allocati, N., Masulli, M., Di Ilio, C. and De Laurenzi, V. (2015) Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 6, e1609 CrossRef PubMed

108 Marraffini, L.A. (2015) CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 CrossRef PubMed

109 Heussler, G.E., Cady, K.C., Koeppen, K., Bhuya, S., Stanton, B.A. and O’Toole, G.A. (2015) Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes. mBio 6, e00129–00115 CrossRef PubMed

Received 5 April 2016
doi:10.1042/BST20160096