Sex-specific and sex-chromosome regulatory evolution underlie widespread misregulation of inter-species hybrid transcriptomes

Santiago Sánchez-Ramírez*, Jörg G. Weiss¹, Cristel G. Thomas¹,², Asher D. Cutter¹

¹Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
²Los Alamos National Laboratory, Los Alamos, NM, USA

*Corresponding authors: santiago.sanchez@gmail.com, asher.cutter@utoronto.ca
Abstract

When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that underlie the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Divergence in cis- and trans-acting regulatory controls evolve despite stabilizing selection on gene expression, being hastened by directional selection with adaptation, sexual selection, and inter-sexual conflict. Dysfunctional sex-biased gene expression, in particular, may provide an important source of genetic incompatibilities, with more severe misregulation expected for the heterogametic sex. Here, we characterize and compare male and female transcriptome profiles for sibling species of Caenorhabditis nematodes, C. briggsae and C. nigoni, and allele-specific expression in their F₁ hybrids to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, we find broad misregulation of sex-biased genes in F₁ hybrids that is most pronounced for the X-chromosome, supporting a "large-X" effect, and that counters expectations by disproportionately affecting hybrid females. Hybrid male misexpression, however, is greater in magnitude, with spermatogenesis genes especially prone to high divergence in both expression and coding sequences that may explain elevated sterility of hybrid males, consistent with "faster male" and "fragile male" models for Haldane’s rule. Regulatory and coding divergence overall correlate only weakly, however, and downregulation of male-biased genes in females implicates trans-acting modifiers in the evolutionary resolution of inter-sexual conflicts. This work identifies important differences between the sexes in how regulatory networks diverge that contributes to sex-biases in how genetic incompatibilities manifest during the speciation process.

Keywords: Caenorhabditis, regulatory evolution, sex-biased expression, genome evolution, genetic incompatibilities, hybridization, cis-trans regulation, Haldane's rule
Author's summary

Many mutations that affect traits as species diverge do so by altering gene expression. Such gene regulatory changes also accumulate in the control of static traits, due to compensatory effects of mutation on multiple regulatory elements. Theory predicts many of these changes to cause inter-species hybrids to experience dysfunctional gene expression that leads to reduced fitness, disproportionately affecting the sex chromosomes and sex-biased gene expression. Our analyses of genome-wide expression data from *Caenorhabditis* nematode roundworms support these predictions. We find widespread rewiring of gene regulation despite extensive morphological stasis, and conserved overall expression profiles, that is a hallmark of these animals. Misregulation of expression in both sexes is most severe for genes linked to the X-chromosome, sperm genes show distinctive signatures of divergence, and differences between the sexes in regulatory evolution implicate resolved historical sexual conflicts over gene expression. This work clarifies how distinct components of regulatory networks evolve and contribute to sex differences in the manifestation of genetic incompatibilities in the speciation process.
Introduction

Many kinds of reproductive barriers can contribute to speciation (1,2), with genetically intrinsic post-zygotic barriers a kind that makes speciation irreversible. Such intrinsic barriers result from disrupted developmental programs due to divergence in the regulatory controls of and functional activity within genetic networks. Consequently, research for decades has aimed to decipher the identity and general features of genetic changes that accumulate by selection and genetic drift to lead to Dobzhansky-Muller (DM) incompatibilities in hybrids of diverging populations, due to non-additive, negatively-epistatic interactions among genes (1,3). It is therefore crucial to decipher how genes and gene expression evolve to understand how gene regulation influences post-zygotic reproductive isolation through misregulated gene interactions in hybrids (3–6).

Evolution of the regulatory controls over gene expression influences much phenotypic evolution (5,7), despite stabilizing selection as a prevailing force acting to preserve expression profiles (8–12). Expression differences between species accrue in predictable ways. Regulatory differences between species disproportionately involve the evolutionary accumulation of mutations to cis-regulatory elements, facilitated by such changes being predisposed to additivity and low pleiotropy of effects on traits and fitness (13,14). In contrast, larger, more pleiotropic effects can result from trans-regulatory changes that occur at distant genomic positions, such as to transcription factors, chromatin regulators, and small RNA genes. Consequently, theory predicts trans-regulatory mutations to fix less readily and to contribute fewer differences between species, despite their large mutational target size and disproportionate contribution to genetic variation within a species (4,13–15). Studies nevertheless commonly find both cis- and trans-regulatory differences between species (16–19). Indeed, the coevolution of changes to both cis- and trans-acting factors represents one plausible outcome of stabilizing selection on expression level. The compensatory effects of such coevolved cis- and trans-regulatory changes yield an overall conserved expression profile (4,11,20), but this multiplicity of changes are predisposed to generating misexpression in F1 hybrids due to dysfunctional cis-by-trans regulatory interactions (5,21).
Decomposing the changes of gene networks into their \textit{cis}- and \textit{trans}–regulatory components, however, presents a challenge to studying gene regulatory evolution. One way to address this problem is with hybrid cross experiments that assess differential expression between two closely related species and from allele-specific expression (ASE) in their \(F_1 \) hybrids (5,11,22). Differences in gene expression between species reveal the joint effects of \textit{cis}- and \textit{trans}-regulatory divergence, whereas differences in ASE within \(F_1 \) hybrids typically represent the effects of \textit{cis}-regulatory divergence alone (22). Studies of this kind have unveiled broad empirical patterns of regulatory evolution, whether carried out in flies (16,23), mice (24), plants (17,18), or yeast (19,25). In particular, this work has shown substantial regulatory divergence in both \textit{cis} and \textit{trans}, extensive non-additivity, and disrupted regulation and misexpression in \(F_1 \) hybrids. Whether these patterns hold for the nematode phylum is, as yet, unknown, and the links between regulatory mechanisms and sex-biases in expression remain incompletely resolved.

Hybrid dysfunction of developmental programs, outward phenotypes, and fitness may often trace their origins to gene misregulation, from transcriptional to post-translational levels (5,6). Sex-biased misregulation, therefore, should underlie sex-biased developmental and fitness effects in hybrid individuals. Misexpression of male-biased genes and genes related to spermatogenesis links misregulation to male sterility in hybrids, with supporting empirical evidence in several kinds of animals (24,26–29). In organisms with chromosomal sex determination, more severe defects typically occur in hybrid individuals carrying heterogametic sex chromosomes (i.e., XO males in \textit{Caenorhabditis} nematodes). This Haldane's rule pattern can arise from dominance effects (30), faster molecular evolution of genes with male-biased expression (31), greater sensitivity of male developmental programs to perturbation (31), and faster evolution of sex-linked loci (32), among other causes (33,34). Because of the prominent role that the X-chromosome plays in reproductive isolation (35–37), we might also expect to find greater expression divergence and misexpression for X-linked genes compared to autosomes (5,26,27,38,39), with the caveat that genes with male-specific expression might not
necessarily be abundant on the X-chromosome (40–42). Thus, distinguishing between abnormal expression in hybrids for X-linked genes overall and for sex-biased autosomal genes is important to decipher the genetic mechanisms that underpin Haldane's rule in particular and hybrid dysfunction in general.

Caenorhabditis nematode roundworms provide an especially tractable system to study speciation genomics (34). The growing number of Caenorhabditis species known to science conform to the biological species concept, with a few cases where sibling species can produce some viable and fertile adult hybrid offspring (43,44). The C. briggsae × C. nigonoi species pair is one such case, where recent divergence (~3.5 Ma (45)) allows them to form hybrids of both sexes. Haldane's rule is fulfilled: F₁ male hybrids exhibit both greater infertility and inviability in crosses of C. nigonoi females to C. briggsae males, with nearly total hybrid male inviability in the reciprocal cross (46–48). The disproportionate loss of genes with male-biased expression in the C. briggsae lineage has the potential to disrupt genetic networks in a sex-biased way to disproportionately compromise hybrid male fitness (45,49–51). In an effort to identify and locate incompatibility loci between these two species, Bi et al. (52) associated hybrid male inviability and sterility with most of the X-chromosome, suggesting a large-X effect. Moreover, analysis of X-chromosome introgression lines revealed that X-autosome incompatibility involving misregulation of the 22G class of small RNAs led to down-regulation of spermatogenesis genes as a contributor to hybrid male sterility, in addition to autosomal factors responsible for hybrid inviability (29,53). Here, we analyze mRNA transcriptome expression for each sex from each of C. briggsae, C. nigonoi, and their F₁ hybrids. Using ASE profiles, we then quantify cis- and trans-acting regulatory causes of expression divergence to link genomic change to sex-biased expression, chromosomal features, and hybrid dysfunction.
Results

Extensive expression divergence between species and between the sexes involve the X-chromosome. Each species and sex show distinctive overall transcriptome profiles that are further distinguishable from each sex of F₁ inter-species hybrids (Fig. 1A). In the contrast of pure C. briggsae and C. nigoni transcriptomes, we found more differentially expressed genes for females and hermaphrodites, hereafter jointly referred to as females for brevity, than for males. For the 12,115 one-to-one orthologs analyzed, females had a total of 66% (7,903) of genes differentially expressed between species, compared to 53% (6,391) for males (Fig. 1B). The X-chromosome shows the most extreme differences in expression between species, with both males and females showing significantly higher expression of X-linked genes in C. briggsae than in C. nigoni (Fig. 1C). Autosomes, by contrast, showed greater abundance of genes with higher expression in C. nigoni, albeit only significantly only for Chromosome I in females (Fig. 1C; Fisher’s exact test; \(P < 0.05 \)).

Within each species, approximately half of genes exhibited significant sex biases in expression, which, in turn, are roughly evenly divided between male- and female-biased expression: 28% male-biased genes in C. briggsae (3,353 genes), 26% male-biased genes in C. nigoni (3,188 genes), 26% female-biased genes in C. briggsae (3,205 genes), and 24% female-biased genes in C. nigoni (2,878 genes). Male-biased genes did not exhibit strong enrichment for any chromosome in either species, whereas female-biased genes in C. briggsae were 1.6-fold enriched on Chromosome I and 3.3-fold depleted on the X-chromosome (Fig. 1E), consistent with previous studies in Caenorhabditis. The X-chromosome is significantly enriched, however, for non-sexually differentiated genes in both C. briggsae and C. nigoni (Fisher’s exact test, \(P < 0.05 \)) (Fig. 1E). Overall, expression profiles for C. briggsae hermaphrodites were masculinized relative to C. nigoni females (Fig. 1A), consistent with hermaphrodite production of both sperm and oocytes in an otherwise morphologically female soma.
Expression dominance in F₁ hybrids differs between males and females

We contrasted expression profiles of F₁ hybrids with their parent species to infer the expression inheritance of genes, i.e., to identify genes that exhibited additive, dominant (C. briggsae- and C. nigoni-like expression), or transgressive (overdominant and underdominant) expression patterns for each sex (Fig. 2A). Gene sets with distinct expression inheritance profiles revealed substantial differences between the sexes in terms of expression distance (Fig. 2B), number of genes (Fig. 2C), and enrichment across the genome (Fig. 2D).

The sexes differed most strikingly in their total number of transgressive genes (Fig. 2C). Transgressive genes are thought to be associated with hybrid dysfunction, as they represent expression phenotypes that are distinct from expression levels in either parent (28,54). Despite our expectation of an especially high number of misregulated genes in F₁ males due to their pronounced sterility, we found that just 21% (2,552) of genes show transgressive profiles in males (1,387 overdominant and 1,165 underdominant) compared to 55% (6,729) in females (3,284 overdominant and 3,445 underdominant) (Fig. 2A,C). However, we also found that Euclidean expression distances from the centroid of expression space are higher on average in males than in females for both overdominant (ordinary least-squared [OLS] regression, \(t = 6.28, P < 0.001 \)) and underdominant genes (OLS, \(t = 2.14, P < 0.05 \)), indicating especially deviant expression magnitude for those fewer transgressive genes in F₁ males (Fig. 2A,B). By contrast, genes with simple dominance or additive expression in F₁ males had consistently lower expression distance from the centroid than did F₁ females (Fig. 2A,B; OLS, \(P < 0.05 \)). These results are consistent with our multidimensional scaling analysis (Fig. 1A) that showed shorter expression distances for F₁ males to parental males, in contrast to more dissimilar expression profiles of F₁ females to parental females.

F₁ hybrids of both sexes had a relatively low percentage of genes with additive expression (6% or 698 genes in females; 7% or 872 genes in males) (Fig. 2C). By contrast, approximately 30% of genes expressed by each sex showed simple dominance, either matching C. briggsae or C. nigoni expression (27% or 3,878 genes in females; 31% or 3,297 genes in males). Hybrids of
both sexes consistently showed a higher number of genes with expression dominance matching *C. briggsae* (20% or 2,408 genes in males and 16% or 1,904 genes in females), compared to expression dominance matching *C. nigoni* (Fig. 2C; 12% or 1470 genes in males and 11% or 1393 in females). In both sexes, the ratio of genes with simple dominance matching either *C. briggsae* or *C. nigoni* expression is close to 1:1 consistently across all five autosomes (mean ratio = 1.15, sd = 0.13). In F₁ females, the X-chromosome, however, was 4-fold biased towards expression dominance matching *C. briggsae* (Fig. 2C,D).

Genes and traits with dysfunctional expression are often associated with the X-chromosome, and differences between the sexes are expected due to Haldane's rule (24,26,27,38). Consistent with these expectations, we found expression heritability profiles in F₁ males and females to vary across the genome, and to differ most conspicuously for the X-chromosome. The X-chromosome was enriched for underdominant genes in both F₁ males and females (Fig. 2C,D; Fisher's exact test, P < 0.05). The X-chromosome was also enriched for overdominant genes in F₁ males, whereas females had significant depletions of such genes on the X (autosomal enrichments: V in males, I and III in females) (Fig. 2C,D). These data show clear differences in expression heritability across chromosomes between the sexes and reflect distinct hybrid expression dynamics between autosomal and X-linked genes.

Regulatory divergence is modulated by differences in *cis* and *trans* effects between sexes. Identifying the spectrum of changes in *cis*- and *trans*-acting regulators is important to understand how selection influences the evolution of gene expression and its effects on hybrid phenotypes. Correspondingly, we classified the types of regulatory changes and examined gene misregulation in F₁ hybrids for each sex. We found that most expression divergence between species results from *cis*-only, *trans*-only, and enhancing *cis-trans* gene regulatory divergence (Fig. 2E,F), consistent with other ASE studies in flies (16,23), mice (24), plants (17,18) and yeast (19,25). Comparing regulatory divergence between sexes, we found double the number of *trans*-only changes involving genes expressed in females (20% or 2,461 genes) compared to
males (10% or 1,230 genes) (Fig. 2G). However, the sexes showed a reciprocal pattern for genes with cis-only divergence being more prevalent in males than in females (21% or 2,559 genes in males; 17% or 2,089 genes in females). Genes with cis-only and trans-only effects were not significantly enriched on any autosome for either sex, but genes expressed in males showed strong enrichment on the X-chromosome for trans-only regulatory changes as well as a depletion for cis-only changes (Fig. 2H; Fisher's exact test, \(P < 0.05 \)). While genes with *C. briggsae* expression dominance were commonly associated with cis-only effects, especially in F1 males, genes with *C. nigoni* dominant expression tended to show trans-only effects, especially for autosomes in F1 females (Fig. 3). In contrast, X-linked genes in F1 females rarely showed *C. nigoni* expression dominance displayed by either cis-only or trans-only effects (Fig. 3). In contrast, X-linked genes in both sexes have up to 3-fold higher proportion of genes showing *C. briggsae* expression dominance more often associated with trans-only effects (432:106 *C. briggsae : C. nigoni* in females; 329 : 274 in males) (Fig. 3). This skew is particularly notable for F1 males given that they carry the *C. nigoni* X-chromosome, and therefore these genes would be both misexpressed and misregulated. These observations together illustrate how regulatory changes have evolved in sex-specific ways toward disproportionately cis-only changes in males and trans-only changes in females, in addition to divergent impacts on the X-chromosome and on overall expression profiles between the parent species.

Furthermore, we categorized genes into 13 groups based on distinct combinations of species differences and sex differences in expression, including their interactions and looked at the proportion of genes with different cis- and trans-effects (gene groups M0-M12; Fig. 4A,E). Consistent with the idea that cis and trans changes each play distinct roles in sex-biased expression and sexual dimorphism (55), we find, on one hand, that trans-only changes in females are more often associated with male-biased genes, and on the other hand, that female-biased genes show more cis-only regulatory changes in males (Fig. 4E). This pattern suggests that different sex-specific regulatory controls have evolved to repress expression of genes biased for the opposite sex.
Hybrid misexpression is commonly due to overdominance involving genes with joint cis-trans regulatory changes. Genes exhibiting additive or transgressive expression profiles in F1 hybrids are often associated with dysfunctional traits, due to radically different expression from those of parent species. Genes with additive expression heritability may commonly reflect cis-only regulatory divergence, such that allele-specific transcriptional differences generate intermediate expression profiles in F1 hybrids (22,26,56). In line with this idea, we often found genes classified as additive to associate more often with significant cis-acting divergence in both sexes (i.e., cis-only and enhancing cis-trans effects; Fig. 3; Supplementary Fig. S4). However, expression additivity is not abundant in our analysis (Fig. 2C), suggesting that it is not a major source of phenotypic dysfunction in hybrids of this system.

Stabilizing selection on expression level is thought to be common in many species, at the molecular level enabled through the coevolutionary fine-tuning by changes to cis- and trans-acting factors (7,12). cis and trans changes with opposing effects can interact epistatically in hybrids to induce dysfunctional expression and allelic imbalance (21). Consistent with this idea, we found that transgressive genes with overdominant effects in hybrids often are associated with cis-trans regulatory changes in hybrids (43% or 539 genes in males and 42% or 1,312 genes in females; Fig. 3). In F1 males, a higher fraction of changes was compensatory (26%) compared to enhancing (17%). F1 females had the opposite pattern: a higher fraction of genes showed enhancing compared to compensatory changes (26% versus 16%). In contrast to genes with such overdominant expression profiles in F1 hybrids, underdominant genes consistently exhibited more conserved regulatory controls in both sexes (53% or 577 genes in males and 50% or 1,541 genes in females identified as conserved or ambiguous), suggesting alternative mechanisms of regulatory dysfunction. These results highlight how stabilizing selection can act differently on sex-specific transcript abundance, leading to opposing cis and trans effects that are dysfunctional in F1 hybrids.
To further assess the role that different regulatory controls play in the origin and maintenance of divergent sex-biased expression, we contrasted expression heritability and patterns of cis- and trans-regulatory divergence for male-biased and female-biased genes (Fig. 4D,E). We found that male-biased genes expressed in F1 females frequently show transgressive misexpression (underdominant) or have expression levels matching those of the species with lower expression (Fig. 4A,D). In contrast, male-biased genes expressed in F1 males tend to show expression dominance matching C. briggsae, regardless of which pure species had higher gene expression (Fig. 4A,D).

Interestingly, genes expressed in F1 males are more commonly underdominant when they correspond to male-biased genes than to genes that have a female-biased expression pattern (623 genes among male-biased genes vs 281 genes among female-biased genes), suggesting male-biased regulatory networks are more fragile. This idea is also supported by male-biased genes having a higher proportion of genes with enhancing or compensatory cis-trans changes (835 genes in male-biased genes vs 398 genes in female-biased genes). By contrast, female-biased genes in F1 females are predominantly overdominant (Fig. 4D) and are more often associated with cis and enhancing cis-trans changes, which suggest that female gene regulatory networks can be more resilient to misexpression, which may translate to similar resilience for traits such as fertility (46).

Faster regulatory and molecular evolution of male-biased and spermatogenesis genes

Sexual selection and sexual conflict are predicted to drive faster rates of molecular evolution and expression divergence (36,57,58). Consistent with these predictions, we found that male-biased genes have higher average expression divergence (OLS, $P < 0.001$) and faster rates of molecular evolution (K_a/K_s, OLS, $P < 0.05$) than female-biased genes (Fig. 4B,C). Compared to sex-neutral genes, however, the signal for faster sequence evolution was weak (K_a/K_s, OLS, $P = 0.3$), despite remaining strong for elevated expression divergence (OLS, $P < 0.001$).
We observed the highest expression divergence as well as high average rates of molecular evolution in the distinctive set of genes with male-biased expression, higher expression in *C. briggsae* than *C. nigoni*, and with a species-by-sex interaction (M6) (Fig. 4B,C). The species-by-sex interaction in M6 indicated a masculinized expression profile for *C. briggsae* hermaphrodites, implicating a role for them in sperm production. To test this idea, we looked at *C. elegans* genes previously identified as spermatogenesis genes (42) and found their orthologs in *C. briggsae* and *C. nigoni* to be 13-fold enriched in the M6 group (Fig. 4F; Fisher's exact test, *P* < 0.05) and depleted from the X-chromosome, consistent with previous observations for sperm genes in *Caenorhabditis* (34,40,41).

These orthologs to spermatogenesis genes, however, did not show strong misexpression (i.e., overdominant and underdominant genes) or enrichment of misexpressed genes in F1 hybrid males among autosomes, except for chromosome V (Fig. 4G,H upper panel). More commonly, they showed expression dominance matching *C. nigoni* (24% or 225 genes vs. 12% or 109 *C. briggsae* dominant genes) or had no change in expression from either parent (38% or 360 genes for "no change" and "ambiguous" categories). For F1 males, X-linked genes showing expression divergence and dominance matching *C. briggsae* levels in hybrid males should be effectively misexpressed, as regulation is controlled mostly by trans-acting factors coming from the *C. briggsae* autosomal background that interact with the *C. nigoni*-derived X-chromosome, and therefore represent misexpression (Supplementary Fig. S3; also see (26)). We observed a 1.4-fold enrichment, although not significant (Fisher's exact test, *P* = 0.31, odds ratio = 1.42), of genes with these effects on the X-chromosome of hybrid males (Fig. 4H). Furthermore, transgressive expression on the X-chromosome in F1 males should be driven by enhancing and/or compensatory cis-trans changes, for which we observed significant enrichments on the X (Fig. 4H lower panel; Fisher's exact test, *P* < 0.05). Together, these results show that, although there are fewer X-linked spermatogenesis genes compared to autosomes (Fig. 4G), they show high levels of X-linked expression dysfunction (61%, 37 genes of 61 X-linked genes). In addition, it suggests that modest number of key genes may dictate X-autosome incompatibilities and X-linked misregulation and misexpression with effects on hybrid male fertility.
Genome architecture and molecular evolution moderately affect regulatory divergence.

Given that protein-coding sequence evolution and gene composition vary non-randomly along chromosomes in many *Caenorhabditis* species in association with the chromosomal recombination landscape, we asked whether distinct chromosomal domains would also associate with the degree of cis-regulatory divergence. We find higher molecular divergence between the genomes of *C. briggsae* and *C. nigoni* in chromosomal arms compared to centers in noncoding sequences upstream of protein-coding genes (Fig. 5A), in addition to protein-coding sequence divergence (Supplementary Fig. S5; also see (45)). These observations are consistent with the idea of stronger purifying selection on mutations to genes and their cis-regulatory regions when linked to chromosome centers. Despite the elevated molecular divergence in arm regions (Fig. 5A), we only found modest elevation of ASE divergence for genes on arms, being strongest for chromosome V for both sexes (Fig. 5B). Moreover, we found no significant differences in the magnitude of regulatory divergence, in either cis or trans, between chromosome arms and centers (Fig. 5C; cis-only OLS, male \(P \) value = 0.51, female \(P \) value = 0.62; trans-only OLS, male \(P \) value = 0.18, female \(P \) value = 0.44). Similarly, we observed only a weak positive correlation between ASE divergence and rates of molecular evolution (Fig. 5D-F, linear regression for \(K_a/K_s \): adjusted \(R = 0.019, m = 0.015, P < 0.0001; K_a \): adjusted \(R = 0.023, m = 0.006, P < 0.0001; 1-P_{\text{cons}} \): adjusted \(R = 0.003, m = 0.01, P < 0.0001\)). Overall, these patterns indicate that rates of divergence for gene expression and their cis-regulatory controls are largely decoupled from protein-coding sequence evolution.
Discussion

Regulatory control over gene expression is an important component of phenotypic evolution (13). As species diverge and accumulate mutations, selection will permit regulatory changes that maintain transcript levels as well as changes that allow exploration of new phenotypic space when they confer a fitness advantage. Sexual selection and sexual conflict can further promote such genomic divergence, both in terms of molecular evolution (e.g., rapid coding or regulatory sequence evolution for male-biased genes) and in terms of gene expression (e.g., divergence in sex-biased gene expression levels) (36,57,58). In interspecies hybrids, sexually driven sources of genomic divergence can disrupt gene networks to create negative epistatic interactions that manifest as sex-biased hybrid sterility or inviability and generate reproductive isolation. Here we document extensive regulatory divergence in the face of both conserved and divergent gene expression, with prominent influences of sex-biases and genomic location on the potential to induce misexpression in interspecies hybrids.

Symmetry in species- and sex-specific ratios of differentially expressed genes implicates extensive developmental system drift.

C. briggsae and *C. nigoni* acquired substantial divergence at the DNA level since they diverged from their common ancestor ~35 million generations ago (3.5 Mya assuming 10 generations per year), including ~20% sequence divergence for synonymous sites, changes to genome size, and disproportionate loss of short male-biased genes in *C. briggsae* since its transition in reproductive mode to androdioecy (45,51). Despite this genomic divergence, hybridization between these species yields viable and fertile F$_1$ females, while hybrid males suffer complete sterility and severe inviability depending on the cross direction (34,46). While in some systems, such as fruit flies and plants, hybrids can exhibit an expression bias towards the parental species tending to show higher expression (16,18,23), we observe no such effect (Fig. 1B; Fisher's exact test, P value = 0.76). This symmetry in expression suggests that demographic effects do not bias regulatory changes toward either increased or decreased expression in this system, as could occur if regulatory changes fix more rapidly in species like *C. briggsae* with
lower effective population sizes. However, autosomes tend to have more genes with slightly higher expression in *C. nigoni* whereas X-linked genes tend to have much higher expression in *C. briggsae*. This chromosomal pattern implicates a disproportionate role for divergence of the X-chromosome in mediating misexpression in *Caenorhabditis* hybrids.

Despite our evidence of substantial expression divergence, 34% of genes in females (4,212 genes) and 47% of genes in males (5,724 genes) show no differential expression between species. Stabilizing selection on transcript abundance is recognized as a common force acting to conserve expression levels between species (8–10,12). Mechanistically, conservation of the expression phenotype can occur, despite sequence evolution, when co-evolution changes both *cis*- and *trans*-regulatory elements: if a *trans*-acting mutation fixes due to a pleiotropic benefit on other loci, selection would favor fixation of any subsequent compensatory mutation in *cis* that returns expression to optimal levels at the focal locus (5,59). We find evidence of extensive compensatory *cis-trans* divergence in gene regulation between *C. briggsae* and *C. nigoni*. Such coevolution represents just one mechanism leading to "developmental system drift," in which the molecular controls over developmental pathways can diverge while resulting in little or no change to their phenotypic outputs (4,60,61). In *Caenorhabditis* nematodes, developmental system drift and stabilizing selection have been invoked as mechanisms leading to a high degree of phenotypic stasis and morphological constraint (62–65). Gene network conservation despite *cis*-regulatory divergence has been demonstrated by inter-species promoter swaps in *Caenorhabditis*, showing both robustness in regulatory networks and new functionalization in specific cell types (20,66,67). Our results overall support these views.

However, sequence divergence and developmental system drift in regulatory pathways occurring after speciation are expected to resolve deleterious transcriptomic changes differently and independently among diverging lineages. In hybrids, uncoupled regulatory mechanisms from the two parental genomes can lead hybrids to experience misregulation and therefore misexpression (6). Such a mechanism underlying misexpression could represent a Dobzhansky-Muller incompatibility because genetic interactions untested by natural selection
will likely be detrimental (1). The clearest signal of misexpression in hybrids is the sharp contrast in the fraction of sex-biased genes: ~90% in hybrids vs ~50 in each parental species (Fig. 1D). Moreover, the usual depletion of female-biased gene expression from Caenorhabditis X-chromosomes is even more extreme in F₁s due in part to transgressive underdominance effects and, unusually, the X-chromosome is highly enriched for male-biased expression in F₁s (Figs. 1E, 2C,D) (40,41). The strong downward misexpression (underdominance) observed for the X in females, but not as strong for the X of males is likely to be responsible for this trend. In combination with our analyses showing extensive compensatory cis-trans regulatory divergence, these results implicate extensive developmental systems drift of genetic networks between C. briggsae and C. nigoni. Sex-specific and chromosome-dependent cis- and trans-regulatory changes contribute to differences in F₁ hybrid expression inheritance between sexes. Abundant transgressive expression is a signature of rampant misexpression in F₁ hybrids. In particular, studies in flies and mice have shown that misexpression of X-linked genes confers male sterility in F₁ interspecies hybrids (24,27,28,68), which contributes to more severe hybrid male dysfunction (Haldane’s rule). C. briggsae × C. nigoni hybrids also obey Haldane’s rule (46–48), so we expected more misexpression in hybrid males. In contrast, we find that it is hybrid females that experience more extensive transgressive misexpression of genes across the genome that exceed the expression extremes of either parental species (Fig. 2A,C). Most female-biased transgressive genes show overdominant misexpression whereas male-biased transgressive genes tend toward underdominant misexpression (M8-M12 vs M3-M7, Fig. 4D). Excluding spermatogenesis genes (most of which are male-biased, but also expressed in C. briggsae hermaphrodites; Fig. 4F), it is plausible that cis- and/or trans-regulatory changes acquired after speciation favoring female-biased expression experienced selection to sustain upregulation, behaving in an overdominant manner in hybrids. Indeed, overdominant genes with cis-trans divergence in females have disproportionately evolved "enhancing" regulatory changes (Figs. 2G, 3, 4E). The low magnitude of expression divergence among overdominant and female-biased genes (Figs. 2B, 4B), however, together with the fact that hybrid females are
fertile, suggests that overdominant expression does not impact fitness as negatively as does regulatory divergence that leads to underdominance in hybrids.

Interestingly, we find that regulatory controls suppressing or enhancing male-biased expression in F1 females is largely due to trans-only regulatory changes, particularly among genes that show both male-biased expression and expression divergence between the parent species (Fig. 4E). Many of these trans-acting regulatory changes tend to be more strongly associated with C. nigoni dominant expression in females among autosomes, contrasting with cis-regulatory changes which are more strongly associated with C. briggsae dominant expression in males (Fig. 3). These results align well with observations of downregulation of spermatogenesis genes, such as fog-1, by specific transcription factors (i.e., tra-1), and sperm-specific expression depending more on upstream promoter regions than 3-UTRs in C. elegans (69,70). One potential explanation involves the fixation of regulatory changes that facilitate resolution of genomic inter-sexual conflict through sex-biased expression (i.e., Rice's hypothesis (71)). For example, more sexual conflict is expected in outcrossing than selfing species, such as C. nigoni, due to stronger sexual selection of male traits (72). To avoid traits that are detrimental to females but improve male performance, genomic conflict resolution by means of sex-biased expression may be attained faster through trans-regulatory changes, which are more pleiotropic, downregulating male-biased genes in females. This logic aligns with the hypothesis that sex-biased expression is partly driven by selection acting to resolve sexual conflict by means of modifier alleles or regulators (55,71). However, the fact that trans-only regulatory changes do not predominate in the control of female-biased genes in males (Fig. 4E), suggests that regulatory mechanism to resolve genomic sexual conflict act in different ways for the two sexes.

Several studies associate regulatory divergence in cis-acting factors with genome-wide expression profiles that enhance sex-specific traits and sex-biased expression (55,73,74). Our analyses are consistent with these observations in terms of the higher proportion of genes under cis-only compared to trans-only regulatory divergence among genes with significant sex-
biased expression in their respective sex (i.e., male-biased in males; **Fig. 4E**). When also considering genes with *cis-trans* divergence, however, we see that a large portion of sex-biased genes show significant *trans*-divergence (**Fig. 4E; Supplementary Fig. S6**), highlighting the importance of both *cis* and *trans* effects for the development of sexually dimorphic traits in *Caenorhabditis*.

The abundance of underdominant genes in hybrid females, while perhaps counterintuitive, is not surprising in this system given that the egg-bearing sex in the *C. briggsae* parent is actually a hermaphrodite. Many of the genes in hybrid females that show underdominant effects would otherwise show male-biased expression (**Fig. 4B**), suggesting that they may compromise spermatogenesis to effectively convert F$_1$ hermaphrodites into females; a complementary view to the idea that hermaphroditism is 'recessive' to femaleness in a simple Mendelian manner (46).

The role of faster evolution in male-biased genes and autosome vs X-chromosome incompatibilities in hybrid male dysfunction

Because of sexual selection and sexual conflict, male-biased genes are expected to evolve faster, resulting in higher rates of protein-coding and gene expression divergence (36,57,58). Faster evolution of male-biased genes is the premise behind the "faster male" and "fragile male" hypotheses to explain the high incidence of hybrid male sterility in XY and X0 heterogametic systems (31). While we find that male-biased genes collectively do not show a strong signal of faster molecular evolution, the subset of male-biased genes that show exceptionally high expression divergence do have faster evolving coding sequences (M4 and M6; **Fig. 4A-C**). Additionally, these genes are implicated in spermatogenesis, based on *C. elegans* orthologs, and show upregulated expression in sperm-producing *C. briggsae* hermaphrodites as well as males of both species (M6; **Fig. 4F**). These findings accord with faster molecular evolution of spermatogenesis and male germline genes of *C. elegans* (75–77). Their rarity on the X-chromosome (**Fig. 4G**), however, suggests the "faster X" model does not provide a compelling explanation for Haldane's rule on hybrid sterility (32). Nevertheless, our
transcriptome analyses support the idea that the X-chromosome plays an especially important role in hybrid male sterility. This "large-X" effect arises despite just a few highly dysfunctional X-autosome incompatibilities between *C. briggsae* x *C. nigoni* potentially explaining hybrid male sterility (52,53), in contrast to the numerous X-linked hybrid male sterility factors reported for *Drosophila* (35,37).

Gene expression in hybrid males predominantly shows either simple dominance or no change (Fig. 2C). While it is tempting to speculate that regulatory changes affecting males tend to be generally more conserved as males of different species share the same reproductive role, reduced sexual selection in *C. briggsae* males (77), genomic divergence (50,51), and clear sex differences in hybrid fertility (46,47), suggest otherwise. If most transgressive expression occurs in the gonad, then the small and defective gonad development of F1 males may have led to their observed paucity of transgressive expression. Two non-mutually exclusive ways in which hybrid male dysfunction (i.e., sterility) can arise are: 1) through misexpression and misregulation of X-linked genes involved with male function, and 2) through negative epistatic interactions (i.e., incompatibilities) between X-linked and autosome genes involved in male-specific pathways. Our results suggest that both cases are plausible.

First, the paucity of X-linked sex-biased genes in parental genotypes of *Caenorhabditis* species suggests that any misregulation and misexpression on the X might exert little downstream impact (Fig. 1E; (40,41)). However, misexpression of X-linked genes in hybrids is relatively common compared to autosomes in both sexes (Fig. 2D), with hybrid males having higher relative incidence of effectively misregulated genes (*trans*-only, enhancing and compensatory *cis-trans* changes) compared to female hybrids (Fig. 2H). We find that *trans*-acting factors often contribute to misexpression in both sexes (Figs. 2H, 3). In hybrid females, *trans*-acting factors largely drive the expression of X-linked genes with *C. briggsae* dominant and underdominant expression, unlike autosomes (Fig. 3). In hybrid males, this effect is even more pronounced, in part due to our inference that all X-linked genes with *C. briggsae* dominant expression arise from *trans*-only effects. These findings are consistent with previous observations, particularly in
Drosophila, of trans-acting changes sex-specific causing misregulation of X-linked genes (26,74,78).

Second, we find extensive expression dominance in F₁ males that disproportionately matches the C. briggsae expression level and that have strong cis effects (Fig. 3). Many of these genes also have biased expression of C. briggsae alleles (Supplementary Fig. S7) and therefore have the potential of disrupting gene networks as they may interact negatively with C. nigoni X-linked genes in hybrid males. Autosomal spermatogenesis genes, by contrast, tend to show C. nigoni-dominant expression in F₁ hybrid males (mean of 2.17-fold difference across autosomes relative to genes with C. briggsae-dominant expression) (Fig. 4G), consistent with previous work showing recessive effects of the C. briggsae autosomal portions of genetic incompatibilities (52). In addition, this prior work also showed that sterility in C. nigoni x C. briggsae hybrid males may not require many X-autosome incompatibilities (53). Despite their low abundance on the X-chromosome, X-linked spermatogenesis genes are often enriched for both misexpression and misregulation (Fig. 5C), potentially enhancing their role in hybrid dysfunction. Interestingly, we find that at least three X-linked spermatogenesis genes that are effectively misregulated (i.e. with trans-only, cis-trans enhancing and cis-trans compensatory regulatory changes) also have high rates of molecular evolution (Supplementary Fig. S8) and lie near to an X-chromosome segment implicated previously in hybrid male sterility (53). Our genome-wide transcriptome analysis of cis- and trans-regulatory divergence therefore reinforces some previous key inferences about hybrid dysfunction associated with males, spermatogenesis, and the X-chromosome.

Modest cis-regulatory divergence in spite of fast evolving chromosomal arms

Marked differences in recombination rates along chromosomes can modulate the rate and number of mutations fixed by direct selection as well as linked selection (79). Caenorhabditis nematodes have distinctive chromosomal arm regions with higher rates of molecular evolution and polymorphism compared to central regions (Fig. 5A; Supplementary Fig. S5; (45,80)), and therefore have a greater potential to facilitate fixation of weakly beneficial cis-regulatory
mutations. We first predicted no effect of genomic region on differences in trans regulatory
divergence and confirmed this null expectation. cis-regulatory divergence, however, showed
only a weak elevation in chromosome arms compared to centers, with the signal being
somewhat stronger in females and for some autosomes (Fig. 5B,C). We further looked at
broader correlations for both coding and non-coding upstream sequence divergence with cis
regulatory divergence (Fig. 5D) and found only weak positive correlations. In line with previous
studies (81,82), these results indicate that rates of regulatory divergence due to cis-acting
elements are largely decoupled from rates of molecular evolution.
Conclusion

We contrasted sex-specific transcriptomic profiles between *C. briggsae* and *C. nigoni* and their hybrids to understand how the evolution of *cis*‐ and *trans*-regulatory elements can drive F₁ hybrid dysfunction. Such evolution may arise from divergent expression changes as well as with stabilizing changes that lead overall expression to remain conserved between species. The sharp contrast of *Caenorhabditis* morphological stasis and extensive expression conservation between species with extensive misexpression in F₁ hybrids indicates substantial developmental system drift of regulatory networks that destabilize in hybrids to enforce reproductive isolation between species. Despite more extensive transgressive expression in hybrid females, they are fertile but unable to produce self-sperm compared to the entirely sterile hybrid males, suggesting that hybrid females may represent "demasculinized" hermaphrodites through the disruption of sperm‐specific regulatory networks. Despite the rarity of sex-biased genes on the X-chromosome, the X is home to disproportionate misexpression in both sexes, with misregulation in hybrid males largely through *trans*-acting factors. X‐autosome incompatibilities in hybrid males likely result from the propensity for *C. briggsae*-dominant autosomal expression via *cis*-acting factors yield allele-specific expression biases, and then interact negatively with *C. nigoni* X‐linked genes. Moreover, *C. nigoni*-dominant *trans*-acting factors may act to downregulate male-biased genes in females, supporting the idea of genomic sexual conflict resolution through modifier alleles (71). Finally, we find only weak correlations of *cis*-regulatory divergence with chromosome architecture and protein-coding and non-coding sequence divergence, indicating that regulatory and protein evolution are largely decoupled. Consequently, regulatory and structural Dobzhansky-Muller incompatibilities may accumulate independently of one another, and in distinct ways in the regulatory networks of each sex, in the build-up of reproductive isolation in the speciation process.
Material and Methods

Samples, RNA isolation, and sequencing

We cultured triplicate populations of isofemale *C. briggsae* (AF16) and *C. nigoni* (JU1421) on NGM-agar plates with *Escherichia coli* OP50 at 25°C, isolating total RNA via Trizol-chloroform-ethanol extraction from groups of approximately 500 individual age-synchronized young adult males or females (hermaphrodites) for each replicate sample. *C. briggsae* hermaphrodites are treated as the female sex for the purposes of this study, as their soma is phenotypically female despite the gonad producing a small number of sperm in addition to abundant oocytes. We also crossed in triplicate virgin *C. nigoni* females to male *C. briggsae* (isolated as L4 larvae) to produce F₁ hybrid progeny, with RNA isolated from male and female F₁ hybrids as for the parental pure species genotypes.

The triplicate mRNA samples for each sex and genetic group (*C. briggsae*, *C. nigoni*, F₁ hybrid) underwent 100bp read length, single-ended Illumina HiSeq sequencing at GenomeQuebec according to their standard TruSeq3 protocol. A total of ~250 million reads from these 18 barcoded samples spread across 4 lanes were cleaned for quality control using TRIMMOMATIC v0.38 (with arguments: ILLUMINA_CLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 SLIDING_WINDOW:4:15 MINLEN:36) (83).

Reference alignment and allele-specific read assignment

Following quality control trimming and filtering, we mapped sequence reads from each sample to the chromosome-level genome assembly and annotation of each species (*C. briggsae* WS271, https://osf.io/a4e8g/, *C. nigoni* 2018-01-WormBase https://osf.io/dkbwt/; (51)) using STAR v2.6 (https://github.com/alexdobin/STAR; (84)) with default parameters and adjusting for intron size (--alignIntronMin 40 --alignIntronMax 15600). Reads for all three genotype groups (*C. briggsae*, *C. nigoni*, F₁ hybrid) were mapped to both reference genomes.
To obtain allele-specific read counts in F$_1$ hybrids, we applied a competitive read mapping approach using a custom Python script (https://github.com/santiagosnchez/CompMap) that uses the PYSAM library (https://github.com/pysam-developers/pysam). We then compared the alignment score (AS) and number of mismatches (nM) to both reference genomes, retaining the best single read alignments and excluding ambiguous reads (i.e., alignments with the same value in both parents). We have high power to detect ASE, given ~20% neutral sequence divergence between *C. briggsae* and *C. nigoni* (45) that confers an expected ~5 nucleotide differences for every 100 bp of coding sequence (0.2 divergence * 0.25 fraction of synonymous sites * 100 bp). To account for potential mapping bias (85) and unaccounted ambiguous reads, we subjected all samples to competitive read-mapping (hybrids and pure species) and retained only unambiguously mapped reads.

Ortholog identification and read abundance quantification

We quantified gene expression abundance for a set of 12,115 genes that we inferred to be one-to-one reciprocal orthologs between *C. briggsae* and *C. nigoni*. To identify orthologs, we applied a phylogenetic approach using ORTHOFINDER v2.2.6 (86,87), based on longest-isoform peptide sequence translations for gene annotations of 28 *Caenorhabditis* species (88) (http://caenorhabditis.org/). BLASTp all-by-all searches were done separately on SciNet’s Niagara supercomputer cluster. ORTHOFINDER was run with default options, which included: -M dendroblast (gene tree reconstruction) and -I 1.5 (MCL inflation point). In further analysis of the final set of 12,115 orthologs, we excluded from a preliminary set of 15,461 orthologs those genes for *C. briggsae* and *C. nigoni* that could not be assigned to any of their six chromosomes (688 genes), that were associated with inter-chromosomal translocations (370 genes), that we could not estimate *K_\alpha*/*K_s* reliably (275 genes), or that exhibited low mRNA-seq read abundance (2013 genes; see below).

We quantified gene expression with HTSEQ-count v0.11 (89) for each ortholog in each species, ignoring strand-specific, non-unique, secondary, and supplementary alignments (arguments: -s no --nonunique none --secondary-alignments ignore --supplementary-alignments ignore). Raw
Differential expression analyses: contrasts between species, hybrids, and sexes

We used the R Bioconductor packages **LIMMA** (91) and **EDGER** (92) to assess differential expression. Gene-level raw expression counts were first normalized with **EDGER** based on library size using the 'trimmed mean of M-values' (TMM) method with the calcNormFactors function. Genes were then filtered based on the amount of expression using **EDGER**'s filterByExpr function (93). Expression counts were then log2-transformed using the **voom** mean-variance trend method to ensure consistent, normalized read counts across samples (94). Before statistically assessing differential expression, we summed the allele-specific counts from F1 hybrids to yield a single count of transcripts per gene. We visualized the overall expression distance between samples using a non-metric multi-dimensional scaling plot, which showed all three biological replicates to cluster consistently within their corresponding treatment (Fig. 1A). We inferred sex-biased gene expression by comparing differential expression profiles between males and females (or hermaphrodites) in each genetic group (C. briggsae, C. nigoni, F1 hybrids). We also quantified differential expression between the genetic groups in a pairwise manner (C. briggsae vs F1, C. briggsae vs C. nigoni, C. nigoni vs F1) for each sex separately. We then contrasted expression patterns between species (C. briggsae and C. nigoni) by looking at sex differences (sex-biased expression) and their interaction (expression ~ species * sex). Linear regression models were applied to make statistical inferences on differential expression with the *lmFit* and *eBayes* function in the **LIMMA** package with FDR = 0.05 for multiple test correction.

Mode of expression inheritance in F1 hybrids

Based on patterns of expression in F1 hybrids relative to parent species, we classified genes into those having additive (intermediate), dominant (matching either of the species), overdominant (higher than both parents), and underdominant (lower than both parents) profiles (16) (McManus et al. 2010). Genes with no significant differences in expression between F1s and their parent species were deemed to have conserved regulatory controls resulting in no change.
in expression in F1s. Genes with additive effects had intermediate expression in F1s compared to both parental species, meaning that there were significant differences in expression between all groups in a manner where expression levels in F1s fall in between both species. Genes with dominant allelic effects were those with expression levels in F1s matching either one of the parent species (i.e. no significant differential expression), but with significant differential expression between species. Finally, genes with significant differential expression from both parents, but that were either significantly underexpressed (overdominant) or overexpressed (underdominant) compared to both species were regarded as transgressive. Genes falling outside any these specific categories were considered ambiguous.

We also measured absolute Euclidean distances in expression relative to the centroid or origin in expression space of F1 hybrids relative to both parent species. For example, for every gene we took the expression difference between F1s and C. briggsae and between F1s and C. nigoni as an xy coordinate system. Then, we measured the Euclidean distance from that point in expression space to the origin (0,0), reflecting no change in expression:

\[d = \sqrt{(\Delta_{F1/Cbr})^2 + (\Delta_{F1/Cni})^2} \]

Where \(\Delta_{F1/Cbr} \) and \(\Delta_{F1/Cni} \) are coefficients of differential expression between F1 hybrids and each parent species. This metric allowed us to visualize the magnitude of expression distance from a "conserved" expression profile.

cis- and trans- regulatory divergence

We also used ASE in F1s to quantify the extent and type of cis- and trans-regulatory differences between species. Expression divergence between parent species results from both cis- and trans-regulatory changes, whereas significant differential expression between alleles in F1s results from cis-regulatory divergence only (16). To quantify the extent of trans effects, we applied a linear model to test for differences in gene expression between parent species (P) and between alleles in F1 hybrids (ASE) using the following model: expression ~ species/group,
where "group" represented categorical variables pointing to data from P and ASE. The division operator of the function "/" measures expression ratios independently for each category in "group". We then used a post-hoc Wald-type test (linearHypothesis from the CAR package) to test for significant differences between both coefficients \(P[C. nigoni/C. briggsae] = ASE[C. nigoni/C. briggsae] \). \(P \) values were considered significant after a 5% FDR analysis (95).

We inferred the influence of cis- and trans-regulatory divergence on genes linked to autosomes, as well as to the X-chromosome in females, following the criteria in McManus et al. (16). This procedure allowed us to designate genes having undergone significant regulatory divergence due to cis-only, trans-only, and compensatory cis-trans effects. Genes with either significant synergistic (cis + trans) or antagonistic (cis x trans) cis-trans effects were grouped together as representing changes with enhancing cis-trans effects. Genes expressed with no significant differences between parents, ASE, or trans effects were deemed as conserved and those that did not strictly fit into any of the previous groups were considered ambiguous.

Given the hemizygous condition of the X-chromosome in males, we cannot use F1 ASE of X-linked genes in males to assess cis and trans regulatory divergence. However, we devised a scheme to assign different types of regulatory divergence to X-linked genes given differences in expression between male F1 hybrids and parent species (Supplementary Fig. S3; Wayne et al. 2004). Given that F1 males' X-chromosome derives solely from their maternal C. nigoni, X-linked genes that differ in expression between the parental species and showing C. nigoni dominant expression in hybrid males were considered as having significant cis-only effects, as differences in the C. briggsae trans autosomal environment did not lead to significant deviations from C. nigoni expression. Alternatively, X-linked genes in hybrid males found to be C. briggsae dominant reflect significant trans-only effects. This implies two things: 1) that X-linked cis elements in C. nigoni are not sufficiently different from their counterparts in C. briggsae to prevent C. briggsae trans regulators from acting on them; and 2) that C. nigoni trans-regulators on those pathways are potentially recessive. Supporting this assignment scheme, X-linked genes with cis-only effects on regulatory divergence have significantly higher rates of molecular
evolution compared to genes with trans-only effects (Supplementary Fig. S2; ordinary linear regression \(P \) value = 0.05 for \(K_a/K_s \) and \(P \) value < 0.05 for the proportion of conserved 5 bp windows 500 bp upstream). Consequently, we inferred compensatory cis-trans effects for X-linked genes in males where expression was not significantly different between parent species, but significantly different from F1 hybrid males. Lastly, we inferred significant enhancing cis-trans effects for those X-linked genes with intermediate (additive) expression in F1s, or with significant differential expression between parent species coupled to significantly higher or lower expression in F1s than in both parent species (Supplementary Fig. S3; (26)).

Molecular evolution in coding sequences

Orthologs in the genomes of both \(C. briggsae \) and \(C. nigoni \) were first aligned as protein coding sequences using MAFFT v7.407 (96). These alignments were then back-translated to coding sequence (CDS) alignments using the python program CODONALIGN (https://github.com/santiagosnchez/CodonAlign). We estimated rates of synonymous site (\(K_s \)) and non-synonymous site divergence (\(K_a \)) between the two aligned sequences using a custom Python script (https://github.com/santiagosnchez/DistKnKs) applying the Yang and Nielsen (2000) model implemented in BioPython (Cock et al. 2009). We also corrected \(K_s \) values for selection on codon usage using the effective number of codons (ENC; (97,98)) as a predictor in a linear model. In short, we fitted a linear regression model (\(K_s \sim \) ENC), which we used to predict \(K_s \) at the maximum value of ENC (=60). Then, we corrected the bias in \(K_s \) by adding the residuals of the linear model to that idealized value of \(K_s \) at ENC = 60. We refer to these corrected set of \(K_s \) estimates as \(K_s' \).

Upstream non-coding sequence conservation

Chromosome-level FASTA sequences for \(C. briggsae \) and \(C. nigoni \) were aligned using LASTZ (99), outputting alignment files for each chromosome in MAF format. We used BEDTOOLS’s v2.27 (100) flank function to generate 500 bp intervals of the 5' upstream flanking regions of each orthologous gene. We then used maf_parse from PHAST (101) to extract overlapping alignment
blocks of at least 500 bp long. We quantified sequence conservation as the average number of identical 5 bp non-overlapping windows between aligned DNA in both sequences.

Spermatogenesis genes

To infer genes involved with spermatogenesis, we downloaded a list *C. elegans* genes previously identified as spermatogenesis based on tissue-specific transcript abundance (42) ([Additional File 4](#)). We then used the BioMart tool of the WormBase Parasite website (102) to retrieve *C. briggsae* orthologs from the list of *C. elegans* genes. We cross-referenced *C. briggsae* orthologs to our own set of orthologs between *C. briggsae* and *C. nigoni* and annotated the 1,089 gene matches with a spermatogenesis tag.

Data availability

Raw sequencing data is to be submitted to Short Read Archive upon acceptance under XXXXXX accession number. Raw gene count data will be submitted to Gene Expression Omnibus. Scripts detailing bioinformatic and analytical procedures will be hosted on GitHub (https://github.com/santiagosnchez).
Acknowledgements

We thank Katja Kasimatis and Karl Grieshop for comments on previous versions of the manuscript. Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, the Ontario Research Fund - Research Excellence, and the University of Toronto. S.S.R. is supported by an EEB Departmental Postdoctoral Fellowship. A.D.C. is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
References

1. Coyne JA, Orr HA. Speciation. Sinauer Associates Incorporated; 2004.

2. Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8(3):336–52.

3. Orr HA. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995;139(4):1805–13.

4. Gordon KL, Ruvinovsky I. Tempo and mode in evolution of transcriptional regulation. PLoS Genet. 2012;8(1):e1002432.

5. Mack KL, Nachman MW. Gene regulation and speciation. Trends Genet. 2017;33(1):68–80.

6. Ortiz-Barrientos D, Counterman BA, Noor MAF. Gene expression divergence and the origin of hybrid dysfunctions. Genetica. 2006;129(1):71–81.

7. Lemos B, Meiklejohn CD, Cáceres M, Hartl DL. Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. Evolution. 2005;59(1):126–37.

8. Denver DR, Morris K, Streeelman JT, Kim SK, Lynch M, Thomas WK. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat Genet. 2005;37(5):544–8.

9. Rifkin SA, Houle D, Kim J, White KP. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature. 2005;438(7065):220–3.

10. Gilad Y, Oshlack A, Rifkin SA. Natural selection on gene expression. Trends Genet. 2006;22(8):456–61.

11. Signor SA, Nuzhdin S V. The evolution of gene expression in cis and trans. Trends Genet. 2018;34(7):532–44.

12. Bedford T, Hartl DL. Optimization of gene expression by natural selection. Proc Natl Acad Sci U S A. 2009;106(4):1133–8.

13. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8(3):206–16.

14. Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution. 2008;62(9):2155–77.

15. Wittkopp PJ. Genomic sources of regulatory variation in cis and in trans. Cell Mol Life Sci. 2005;62(16):1779–83.

16. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ. Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res. 2010;20(6):816–25.

17. Shi X, Ng DW-K, Zhang C, Comai L, Ye W, Chen ZI. cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis alloploids. Nat Commun. 2012;3(1):950–9.

18. Bell GDM, Kane NC, Rieseberg LH, Adams KL. RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol Evol. 2013;5(7):1309–23.

19. Tirosh I, Reikhav S, Levy AA, Barkai N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science. 2009;324(5927):659–62.

20. Barrière A, Gordon KL, Ruvinovsky I. Coevolution within and between regulatory loci can
preserve promoter function despite evolutionary rate acceleration. PLoS Genet. 2012;8(9):e1002961-13.

21. Landry CR, Wittkopp PJ, Taubes CH, Ranz JM, Clark AG, Hartl DL. Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. Genetics. 2005;171(4):1813–22.

22. Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature. 2004;430(6995):85–8.

23. Wittkopp PJ, Haerum BK, Clark AG. Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet. 2008;40(3):346–50.

24. Mack KL, Campbell P, Nachman MW. Gene regulation and speciation in house mice. Genome Res. 2016;26(4):451–61.

25. Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HHS, et al. Natural selection on cis and trans regulation in yeasts. Genome Res. 2010;20(6):826–36.

26. Wayne ML, Pan YJ, Nuzhdin SV, McIntyre LM. Additivity and trans-acting effects on gene expression in male Drosophila simulans. Genetics. 2004;168(3):1413–20.

27. Turner LM, White MA, Tautz D, Payseur BA. Genomic networks of hybrid sterility. PLoS Genet. 2014;10(2):e1004162-23.

28. Gomes S, Civetta A. Hybrid male sterility and genome-wide misexpression of male reproductive proteases. Sci Rep. 2015;5(1):1–11.

29. Li R, Ren X, Bi Y, Ho VWS, Hsieh C-L, Young A, et al. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res. 2016;26(9):1219–32.

30. Turelli M, Orr HA. The dominance theory of Haldane’s rule. Genetics. 1995;140(1):389–402.

31. Wu CI, Davis AW. Evolution of postmating reproductive isolation: the composite nature of Haldane’s rule and its genetic bases. Am Nat. 1993;142(2):187–212.

32. Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. Am Nat. 1987;130(1):113–46.

33. Delph LF, Demuth JP. Haldane’s rule: genetic bases and their empirical support. J Hered. 2016;107(5):383–91.

34. Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol. 2018;27(19):3925–34.

35. Masly JP, Presgraves DC. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 2007;5(9):1890–8.

36. Koevoets T, Beukeboom LW. Genetics of postzygotic isolation and Haldane’s rule in haplodiploids. Heredity. 2008;102(1):16–23.

37. Presgraves DC. Evaluating genomic signatures of “the large X-effect” during complex speciation. Mol Ecol. 2018;27(19):3822–30.

38. Llopart A. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol Biol Evol. 2012;29(12):3873–86.

39. Meisel RP, Malone JH, Clark AG. Faster-X evolution of gene expression in Drosophila. PLoS Genet. 2012;8(10):e1003013.

40. Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased
expression profiles in *Caenorhabditis elegans*. Development. 2004;131(2):311–23.

Ortiz MA, Noble D, Sorokin EP, Kimble J. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode *Caenorhabditis elegans*. G3. 2014;4(9):1765–72.

Ma X, Zhu Y, Li C, Xue P, Zhao Y, Chen S, et al. Characterisation of *Caenorhabditis elegans* sperm transcriptome and proteome. BMC Genomics. 2014;15(1):1–13.

Baird SE, Seibert SR. Reproductive isolation in the Elegans-Group of *Caenorhabditis*. Nat Sci. 2013;05(04):18–25.

Ortiz MA, Noble D, Sorokin EP, Kimble J. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode *Caenorhabditis elegans*. G3. 2014;4(9):1765–72.

Thomas CG, Wang W, Jovelin R, Ghosh R, Lomasko T, Trinh Q, et al. Full-genome evolutionary histories of selfing, splitting, and selection in *Caenorhabditis*. Genome Res. 2015;25(5):667–78.

Woodruff GC, Eke O, Baird SE, Félix M-A, Haag ES. Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of *Caenorhabditis* nematodes. Genetics. 2010;186(3):997–1012.

Kozlowska JL, Ahmad AR, Jahesh E, Cutter AD. Genetic variation for postzygotic reproductive isolation between *Caenorhabditis briggsae* and *Caenorhabditis* sp. 9. Evolution. 2011;66(4):1180–95.

Bundus JD, Alaei R, Cutter AD. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane’s rule. Evolution. 2015;69(8):2005–17.

Thomas CG, Li R, Smith HE, Woodruff GC, Oliver B, Haag ES. Simplification and desexualization of gene expression in self-fertile nematodes. Curr Biol. 2012;22(22):2167–72.

Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, Ahearne TE, et al. Reproductive mode and the evolution of genome size and structure in *Caenorhabditis* nematodes. PLoS Genet. 2015;11(6):e1005323-25.

Yin D, Schwarz EM, Thomas CG, Felde RL, Korf IF, Cutter AD, et al. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science. 2018;359(6371):55–61.

Bi Y, Ren X, Yan C, Shao J, Xie D, Zhao Z. A genome-wide hybrid incompatibility landscape between *Caenorhabditis briggsae* and *C. nigoni*. PLoS Genet. 2015;11(2):e1004993-26.

Bi Y, Ren X, Li R, Ding Q, Xie D, Zhao Z. Specific interactions between autosomal and X-chromosomes cause hybrid male sterility in *Caenorhabditis* species. Genetics. 2019;212(3):801–13.

Renaut S, Nolte AW, Bernatchez L. Gene expression divergence and hybrid misexpression between lake whitefish species pairs *Coregonus* spp. *Salmonidae*). Mol Biol Evol. 2009;26(4):925–36.

Meiklejohn CD, Coolon JD, Hartl DL, Wittkopp PJ. The roles of *cis-* and *trans-*regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression. Genome Res. 2014;24(1):84–95.

Gibson G, Weir B. The quantitative genetics of transcription. Trends Genet. 2005;21(11):616–23.

Kasimatis KR, Nelson TC, Phillips PC. Genomic signatures of sexual conflict. J Hered.
Rowe L, Chenoweth SF, Agrawal AF. The genomics of sexual conflict. Am Nat.
2018;192(2):274–86.

Barrière A, Gordon KL, Ruvinsky I. Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration. PLoS Genet.
2012;8(9):e1002961-13.

True JR, Haag ES. Developmental system drift and flexibility in evolutionary trajectories. Evol Dev. 2001;3(2):109–19.

Verstert AJ, Ramani AK, McKay SJ, Fraser AG. Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet. 2012;8(9):e1002961-13.

Kiontke K, Barrière A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DHA, et al. Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol.
2007;17(22):1925–37.

Cutter AD. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol Biol Evol. 2008;25(4):778–86.

Woodruff GC, Willis JH, Phillips PC. Dramatic evolution of body length due to postembryonic changes in cell size in a newly discovered close relative of Caenorhabditis elegans. Evol Lett. 2018;2(4):427–41.

Mallard F, Noble L, Guzella T, Afonso B, Baer CF, Teotónio H. Selection and drift determine phenotypic stasis despite genetic divergence. 2019;

Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet. 2014;10(6):e1004435-15.

Barkoulas M, Vargas Velazquez AM, Peluffo AE, Félix M-A. Evolution of new cis-regulatory motifs required for cell-specific gene expression in Caenorhabditis. PLoS Genet. 2016;12(9):e1006278-23.

Civetta A. Misregulation of gene expression and sterility in interspecies hybrids: causal links and alternative hypotheses. J Mol Evol. 2016;82(4):176–82.

Merritt C, Rasoloson D, Ko D, Seydoux G. 3’UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol. 2008;18(19):1476–82.

Lamont LB, Kimble J. Developmental expression of FOG-1/CPEB protein and its control in the Caenorhabditis elegans hermaphrodite germ line. Dev Dyn. 2007;236(3):871–9.

Rice WR. Sex chromosomes and the evolution of sexual dimorphism. Evolution.
1984;38(4):735–42.

Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 2019;224(3):1080–94.

Coolon JD, Webb W, Wittkopp PJ. Sex-specific effects of cis-regulatory variants in Drosophila melanogaster. Genetics. 2013;195(4):1419–22.

Graze RM, McIntyre LM, Morse AM, Boyd BM, Nuzhdin S V, Wayne ML. What the X has to do with it: differences in regulatory variability between the sexes in Drosophila simulans. Genome Biol Evol. 2014;6(4):818–29.

Cutter AD, Ward S. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol Biol Evol. 2005;22(1):178–88.

Artieri CG, Haerty W, Gupta BP, Singh RS. Sexual selection and maintenance of sex:
evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis.

Mol Biol Evol. 2008;25(5):972–9.

Cutter AD, Morran LT, Phillips PC. Males, outcrossing, and sexual selection in Caenorhabditis nematodes. Genetics. 2019;213(1):27–57.

Stocks M, Dean R, Rogell B, Friberg U. Sex-specific trans-regulatory variation on the Drosophila melanogaster X chromosome. PLoS Genet. 2015;11(2):e1005015-19.

Barton NH. The reduction in fixation probability caused by substitutions at linked loci. Genet Res. 1994;64(3):199–208.

Cutter AD, Choi JY. Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae. Genome Res. 2010;20(8):1103–11.

Castillo-Davis CI, Hartl DL, Achaz G. cis-regulatory and protein evolution in orthologous and duplicate genes. Genome Res. 2004;14(8):1530–6.

Tirosh I, Barkai N. Evolution of gene sequence and gene expression are not correlated in yeast. Trends Genet. 2008;24(3):109–13.

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21.

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.

Stevenson KR, Coolon JD, Wittkopp PJ. Sources of bias in measures of allele-specific expression derived from RNA-seq data aligned to a single reference genome. BMC Genomics. 2013;14(1):513–36.

Fang G, Bhardwaj N, Robilotto R, Gerstein MB. Getting started in gene orthology and functional analysis. PLOS Comput Biol. 2010;6(3):e1000703–8.

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.

Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–40.

Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research. 2016;5:1438–49.

Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.

96. Katoh K. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–8.

97. Wright F. The “effective number of codons” used in a gene. Gene. 1990;87(1):23–9.

98. Fuglsang A. The “effective number of codons” revisited. Biochem Biophys Res Commun. 2004;317(3):957–64.

99. Harris RS. Improved pairwise alignment of genomic DNA. [Ph.D. Thesis, Pennsylvania State University]: Ph.D. Thesis, Pennsylvania State University; 1997.

100. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

101. Hubisz MJ, Pollard KS, Siepel A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief Bioinform. 2011;12(1):41–51.

102. Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite – a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.
Figure 1. Incidences of differentially expressed genes for 12,115 orthologs between species and sexes. (A) Non-metric multidimensional scaling (MDS) plot showing log₂ expression distances between samples. Sexes and species are well separated in expression space and hybrids present considerable distance from parental transcriptomic profiles (C. nigoni and hybrid female, F; C. briggsae hermaphrodite; male, M). (B) Histogram of log₂ expression divergence (C. nigoni/C. briggsae) for female (top panel) and male transcriptomes (bottom panel). (C) Enrichment of differentially expressed genes between species for females and males (log₂ odds ratio, i.e. observed/expected). Asterisks mark significant enrichments (positive values) or depletions (negative values) on chromosomes (P value < 0.05 and |log₂ odds ratio| > 0.5). On the legend, "no DE" denotes genes that are not significantly differentially expressed. (D) Number and percentage of genes that show significant sex-bias is greater in F₁ hybrids than parent species. (E) Enrichment of genes with significant sex-bias and sex-neutrality in parent species and F₁ hybrids for each chromosome. Same legend as D and asterisks denote same statistics as C.
Figure 2. Sex-specific differences in expression divergence and regulatory changes identify expression inheritance profiles between species. (A) Per-gene biplot of log₂ expression differences between F₁s and each parent species. (B) Box- and density plots of expression distance from the origin or centroid of F₁ hybrids for genes within a given expression inheritance category (see Materials and Methods). (C) Stacked barplot of gene counts in each expression inheritance group for each chromosome. (D) Per-chromosome enrichment (log₂ odds ratio, i.e. observed/expected) of genes in a given expression inheritance group. Asterisks mark significant enrichments (positive values) or depletions (negative values) on chromosomes (P value < 0.05 and |log₂ odds ratio| > 0.5). (E) Biplot of expression divergence between species (x-axis) versus allele-specific expression (ASE) in hybrids that indicates the magnitude cis-acting expression difference between alleles (y-axis). (F) Box- and density plots of the magnitude of absolute expression divergence between species for each type of cis and trans regulatory changes. (G) and (H) as for C and D, but indicating different types of cis and trans regulatory-change profiles. In F, G, and H, X-linked genes in males followed the classification scheme described in the Methods section and in Supplementary Fig. S3. Colors indicate different groups of genes with different expression inheritance (see legend for A-D) and cis and trans regulatory changes (see legend for E-H). Top panels in each of A-H correspond to female transcriptomes, bottom panels to male transcriptomes.)
Figure 3. X-autosome differences in regulatory controls between sexes underlie hybrid transcriptomic profiles relative to parent species. Heatmap of the number of genes in each expression inheritance group (y-axis) for each type of *cis* and *trans* regulatory changes (x-axis) for each chromosome (I-V, X) and each sex. X-linked genes in males followed the classification scheme described in the Methods section and in Supplementary Fig. S3.
Figure 4. Male-biased and spermatogenesis genes show higher expression divergence, molecular evolution, and sex-specific regulatory divergence. (A) Thirteen distinct species-by-sex gene expression gene groups (M0-M12). Columns indicate significant expression divergence due to species (C. briggsae higher expression in red, C. nigoni in blue), sex (male dark green, female or hermaphrodite light green), or species-by-sex interaction (black); gray indicates no significant differential expression. (B) Absolute expression divergence and (C) protein sequence divergence (K_{s}/K_{a}) differs across the M0-M12 species-by-sex profiles. (D) Species Proportion of genes within each species-by-sex gene groups differ in the relative representation of expression inheritance categories and (E) types of cis- and trans-regulatory divergence, distinctly for females (left panels) and males (right panels). (F) Spermatogenesis genes are significantly enriched in male-biased gene groups M4 and M6 (orthologs of C. elegans genes in Ma et al. 2014; see Methods; P value < 0.05 and $|\log_{2}$ odds ratio| > 0.5). (G) Spermatogenesis genes are rare on the X, with C. nigoni expression dominance in F1S disproportionately common on autosomes. (H) Misexpressed and misregulated spermatogenesis genes are significantly enriched in the X chromosome.
Figure 5. Chromosomal arm (green) and center (purple) regions differ strongly in (A) upstream sequence divergence (1-\(P_{\text{cons}}\); 5 bp windows within 500 bp upstream of each gene) but only moderately in (B) cis-regulatory divergence (log\(_2\) allele-specific expression, ASE; females on top). (A) Proportion of non-conserved 5 bp windows within 500 bp upstream of each gene (1-\(P_{\text{cons}}\)) for each chromosome. (B) Absolute magnitude of log2 allele-specific expression or cis-regulatory divergence for each chromosome in females and for autosomes only in males. Arms and centers are colored with green and purple colors, respectively. Black lines indicate general additive regression (GAM) trendlines. (C) Arm and center regions do not differ greatly in magnitude of either box- and density plots of total (absolute) cis-regulatory divergence (left two panels) or trans regulatory divergence (right two panels) for either male or female gene expression. The magnitude of cis-regulatory divergence shows weak positive correlations with (D) rates of mutation-adjusted protein evolution (\(K_a/K_s\), Spearman's \(\rho = 0.068, P < 0.0001\)); linear regression adjusted \(R = 0.019, m = 0.015, P < 0.0001\)), (E) overall protein evolution (\(K_a\), Spearman's \(\rho = 0.066, P < 0.0001\); linear regression adjusted \(R = 0.023, m = 0.006, P < 0.0001\)), and (F) non-coding upstream sequence evolution (1-\(P_{\text{cons}}\), Spearman's \(\rho = -0.0008, P > 0.05\); linear regression adjusted \(R = 0.003, m = 0.01, P < 0.0001\)). Color scale in D-F indicates density of points with brighter colors denoting higher density.
Supplementary Fig. S1. Qualitative examples of allele-specific expression with their classification of gene regulation type changes.
Supplementary Fig. S2. X-linked genes (n=1,939) with cis-acting effects have higher sequence divergence than other regulatory categories within (a) protein coding genes (K_s/K_s', ordinary least squares cis-only vs trans-only, $T=2.02, P < 0.05$) and (b) in upstream regions ($1-p_{cons}$, ordinary least squares cis-only vs trans-only, $T=2.48, P < 0.05$).
Supplementary Fig. S3. Qualitative examples to diagram regulatory divergence scoring for the X-chromosome in males that are hemizygous for the X.
Supplementary Fig. S4. The number of genes with additive expression dominance showing cis and trans regulatory changes is distinct for females and males. See also Figure 3 in the main text. Horizontal bars show 95% interval confidence from non-parametric bootstrapping.
Supplementary Fig. S5. Coding sequence evolutionary rates for replacement sites (K_a) and synonymous sites (K_s', adjusted for selection on codon usage) for 12,115 orthologs between C. briggsae and C. nigoni along the chromosome positions of the C. briggsae genome. Colors mark chromosome arms (green) and center (purple); black lines indicate general additive regression (GAM) trends.
Supplementary Fig. S6. Biplot of cis vs trans effects for genes with significant sex-bias. trans divergence was measured as the log$_2$ expression difference between parent species (cis and trans) - the log$_2$ expression difference between alleles in F1 hybrids (cis). Genes with cis-only and trans-only effects were kept as cis and trans respectively, whereas genes with significant joint cis-trans effects in this analysis were deemed cis if abs(cis) > abs(trans) and vice versa to be deemed trans. Error bars were calculated using non-parametric bootstrapping (n=1000). Female transcriptomes in top panels; males in bottom panels.
Supplementary Fig. S7. Number of autosomal genes with significant allele-specific expression showing simple expression dominance of one species (top panels) and transgressive over- or under-dominance. Genes with conserved regulation or trans-only effects were excluded for not having significant allele specific expression.
Supplementary Fig. S8. Protein-coding (A-B) and upstream non-coding (C) sequence divergence in X-linked spermatogenesis genes (n=61; also see Fig. 4F-H) with different types of regulatory divergence. (D) Shows gene density (n=1,939) for different cis and trans effects along Chromosome X. The shaded area near 10 Mbp marks genes with trans, enhancing cis-trans, and compensatory cis-trans effects with high protein-coding sequence divergence. This also overlaps with GFP-marked chromosome regions found to have sterility effects on hybrid males (Bi et al. 2019).