Pharmacokinetics and pharmacodynamics of isopropoxy benzene guanidine against Clostridium perfringens in an intestinal infection model

Yixing Lu¹,²†, Liuye Yang¹,²†, Wanying Zhang¹,², Jie Li¹,², Xianfeng Peng³, Zonghua Qin³, Zhenling Zeng¹,²* and Dongping Zeng¹,²*

¹Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, ²Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, ³Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China

This study aimed to evaluate the antibacterial activity of isopropoxy benzene guanidine (IBG) against C. perfringens based on pharmacokinetics/pharmacodynamics (PK/PD) modeling in broilers. The PK parameters of IBG in the plasma and ileal content of C. perfringens-infected broilers following oral administration at 2, 30, and 60 mg/kg body weight were investigated. in vivo PD studies were conducted over oral administration ranging from 2 to 60 mg/kg and repeated every 12 h for 3 days. The inhibitory I_{max} model was used for PK/PD modeling. Results showed that the MIC of IBG against C. perfringens was 0.5–32 mg/L. After oral administration of IBG, the peak concentration (C_{max}), maximum concentration time (T_{max}), and area under the concentration-time curve (AUC) in ileal content of broilers were 10.97–1,036.64 mg/L, 2.39–4.27 h, and 38.31–4,266.77 mg-h/L, respectively. After integrating the PK and PD data, the AUC$D_{0–24h}$/MIC ratios needed for the bacteriostasis, bacterialidal activity, and bacterial eradication were 4.00, 240.74, and 476.98 h, respectively. For dosage calculation, a dosage regimen of 12.98 mg/kg repeated every 12 h for 3 days was be therapeutically effective in broilers against C. perfringens with MIC \leq 2 mg/L. In addition, IBG showed potent activity against C. perfringens, which may be responsible for cell membrane destruction. These results can facilitate the evaluation of the use of IBG in the treatment of intestinal diseases in broilers caused by C. perfringens.

KEYWORDS
isopropoxy benzene guanidine, pharmacokinetic/pharmacodynamic (PK/PD), intestinal infection model, Clostridium perfringens, broiler
Introduction

Necrotizing enteritis (NE) is widely spread in broilers, which poses a major economic burden on poultry industry worldwide (1). NE was first described by Parish (2), with high morbidity and mortality (3). The pathogen of NE is Clostridium perfringens (C. perfringens), a Gram-positive spore-forming anaerobic bacteria (4). Toxins produced by C. perfringens can cause gastroenteritis, enterocolitis or enterotoxaemia in humans and animals (5). The use of antibiotic growth promoters in livestock industry must be decreased worldwide to delay the spread of antibiotic resistance (6, 7). However, these measures lead to the high prevalence of NE (8). Broilers are prone to NE at 2–6 weeks of age (9). Antibiotic therapy can effectively control NE. Drug resistance of Clostridium perfringens clinical isolates is becoming common because of the frequent use of antibiotics (10). Thus, developing new drugs different from existing drugs is an effective method to overcome antibiotic resistance.

Guanidine compounds have been widely used in the treatment of various diseases because of their biological activities, and they are potential candidates for structural modification of new drugs (11–13). Liu et al. reported that metformin, an antidiabetic drug, promotes intracellular accumulation of doxycycline to restore antibiotic activity against multidrug-resistant bacteria (14). Pi et al. reported that robenidine analog NCL195 alone or in combination with EDTA, polymyxin B non-apetide, and polymyxin B has good antibacterial activity against various bacteria including Staphylococcus aureus (15). As a new candidate for substituted guanidine compounds, isopropoxy benzene guanidine (IBG) has been proven to be effective against Gram-positive bacteria (16, 17). IBG disrupts the cell membranes of drug-resistant Enterococci and Staphylococcus aureus. In addition, IBG can affect colistin against colistin-resistant Salmonella (18). IBG supplementation effectively improves the average daily gain and reduces diarrhea rate of broilers without adverse reactions (19).

The present study sought to determine the pharmacokinetic (PK) data of IBG in plasma and ileal content. The PK/pharmacodynamics (PD) indexes required for different levels of antibacterial effectiveness by using the inhibitory IMAX model were also analyzed. Furthermore, the formulation of the dosage regimen of IBG in broilers could be used to formulate a reasonable dosage for treating NE.

Materials and methods

Antibiotic and bacteria

Isopropoxy benzene guanidine (99.9%) was provided by Guangzhou Insighter Biotechnology (Guangzhou, China). Tryptone-sulfite-cycloserine agar was obtained from Guangdong Huankai Microbial Technology (Guangdong, China). Twenty-four isolates of C. perfringens were used, including a standard strain (ATCC13124) was purchased from the Chinese Veterinary Culture Collection Center and 23 strains isolated from broilers in five cities in Guangdong province from March to November in 2021.

Animals

Two-week-old healthy Sanhuang broilers with weights 100 ± 10 g were used in this study. Broilers were allowed 7-day acclimation prior to experiments. All broilers were allowed with antibiotic-free food and water supply ad libitum. All procedures were approved by the Institutional Animal Care and Use Committee of South China Agricultural University (Approval Number: 2022A001).

Determination of MIC, MBC, MPC, and PAE

The susceptibility of the selected C. perfringens isolates to IBG in MH broth was evaluated in accordance with the micro-dilution method recommended by the CLSI (20). Minimal inhibitory concentration (MIC) was defined as the lowest concentration of IBG that inhibited the visible bacterial growth after 24 h of incubation. The MIC in ileal content was also evaluated in using the micro-dilution method (21). The mutant prevention concentration (MPC) of IBG was determined using the agar method (22). The 10^{10} CFU/mL C. perfringens strains were inoculated on the agar plates containing serial concentration of IBG (1 MIC, 2 MIC, 4 MIC, 8 MIC, 16 MIC, and 32 MIC) and cultured at 37°C for 72 h. The MPC was defined as the lowest concentration of IBG on agar plates without bacterial growth.

For the post-antibiotic effect (PAE) determination, the bacterial was exposed to three different concentrations (1 MIC, 2 MIC, and 4 MIC) of IBG for 1 or 2 h. The media containing IBG was removed by centrifuge at 12,000 × g for 5 min. The bacterial was re-grew in fresh media without IBG for another 24 h. The bacterial numbers were determined at different time points. The PAE was the time difference (in hours) for antimicrobial-treated bacterial to increase in number by 1 log10 minus the same determination for non-treated cultures of the same test bacterial (23).

In vitro time-killing curves

Different concentrations of IBG: 1/4MIC, 1/2MIC, 1MIC, 2MIC, and 4MIC were prepared in MH broth, the tubes
were then inoculated with *C. perfringens* (10⁶ CFU/mL) and incubated at 37°C. The bacterial count (CFU/mL) was determined for each tube after 0, 1, 2, 4, 6, 8, 12, and 24 h of incubation. In brief, 100 µL of culture was obtained for each time point, and serially diluted, and the colonies were counted the next morning. The limit of detection (LOD) was 10 CFU/mL. All experiments were performed in triplicate.

Establishing *C. perfringens* infection model

Based on references and proper modification (24, 25), broilers were infested by oral challenging with coccidial sporulated oocysts propagated from field isolates (30,000/in 1 mL/bird). After 4 days, broilers oral gauge with 1 mL of culture containing 10⁶ CFU/mL of *C. perfringens* ATCC13124 for 3 days. Broilers were observed after inoculation for clinical symptoms and pathological changes.

Pharmacokinetics of IBG in a *C. perfringens* infection model

A total of 132 broilers were randomly divided into three groups and a single dose of 2, 30, or 60 mg/kg body weight (b.w.) IBG following oral gavage. At 0.08, 0.25, 0.50, 0.75, 1, 2, 4, 6, 8, 12, and 24 h after oral administration of IBG, four broilers in each group were euthanized to collect ileal contents and blood samples. The concentration of IBG in plasma and ileal content was determined by validated high-performance liquid chromatography (HPLC). In brief, ileal contents (0.5 g) were extracted with 1.5 mL of 1% formic acid acetonitrile, homogenized for 1 min, and centrifuged (13,000 g, 10 min) to obtain supernatant. Subsequently, 0.5 mL of supernatant was added to 1 mL 1% formic acid acetonitrile. After being vortexed (1 min) and centrifuged (13,000 g, 10 min), the supernatant was filtered through a 0.22 µm membrane for concentration analysis. The calibration range was 0.20–20 µg/g. Intraday and interday precision levels varied from 1.1 to 7.2% and from 1.7 to 6.5%, respectively. The LOD and limit of quantification (LOQ) were 0.10 and 0.20 µg/g, respectively. A 0.20 mL aliquot of plasma sample mixed with 0.80 mL of 1% formic acid acetonitrile. After being vortexed (1 min) and centrifuged (13,000 g, 10 min), the supernatant was filtered through a 0.22 µm membrane for concentration analysis. The calibration range was 0.02–1 µg/mL. Intraday and interday precision levels varied from 1.9 to 9.1% and from 2.4 to 8.1%, respectively. The LOD and LOQ were 0.005 and 0.010 µg/mL, respectively. The concentration data of IBG in the plasma and intestinal content were submitted to a non-compartmental analysis in Phoenix WinNonlin® 8.2 (Certara, L.P., Princeton, NJ, USA). The corresponding intestinal content concentration-time profiles after multiple dosage regimens were predicted using Phoenix’s non-parametric superposition function based on the single-dose intestinal content PK concentration-time profile.

Pharmacodynamics of IBG in an intestinal infection model

Infected broilers were treated gavage two times a day for three successive days with 0, 2, 5, 10, 20, 30, 40, and 60 mg/kg b.w. of IBG (n = 4) to evaluate the in vivo effectiveness of IBG. Treatment started at 12 h post-infection. At 24 h after the last dose, the intestinal content was sampled sterily and homogenized for CFU determination (26). Broilers in the control group were sacrificed before and 24 h after IBG treatment.

Analysis of the PK/PD relationship

The in vivo PK/PD relationships of IBG in intestinal infection were simulated using the Iᵣₑₓₘₐₓ model in the WinNonlin® 8.2 (Certara, L.P., Princeton, NJ, USA) using the following equation (27):

\[
E = E₀ \frac{Iᵣₑₓₘₐₓ \cdot X}{I₅₀ + X}
\]

where E₀ is the difference in bacterial count of (log₁₀ CFU/g) control samples. Iᵣₑₓₘₐₓ is the maximum antimicrobial growth inhibition determined as the change in log₁₀ CFU/g after treatment with IBG. X is the predictive variable (AUC₀–₂₄ₖ/MIC), and I₅₀ is the X value producing 50% of the maximum antibacterial effect.

The potential optimal dosage can be calculated using the following equation (28, 29):

\[
Dose = \frac{(AUC/MIC) \cdot MIC \cdot CL \cdot fu \cdot F}{Iᵣₑₓₘₐₓ \cdot MIC \cdot CL \cdot fu \cdot F}
\]

where dose (per day) is at a steady state; CL is the clearance per day; AUC/MIC is the targeted endpoint for optimal efficacy in hours; MIC is the target pathogen; F is the bioavailability factor, and fu is the free fraction of the drug.

Cell membrane integrity assay

Cell membrane integrity assay was performed as a previous report (30). *Clostridium perfringens* ATCC13124 were grown overnight at 37°C in an anaerobic system. Then culture cells were washed and resuspended in PBS (pH 7.4) to obtain
OD$_{600}$ of 0.5, followed by the addition of 0.5 µmol/L of propidium iodide (PI; Beyotime, Catalog No. ST511) in the presence of IBG (final concentrations ranging from 0 to 16 mg/mL). After incubation for 30 min, fluorescence was measured by using a Hitachi F-7000 Fluorescence Spectrometer with an excitation and emission wavelengths of 535 and 615 nm, respectively.

Membrane depolarization assay

The membrane potential of cells was using a fluorescent probe DiSC$_3$(5) as described previously (14). Then bacterial cells were washed and suspended with 5 mmol/L of HEPES (pH 7.0, plus 5 mM glucose). OD$_{600}$ of bacterial suspension was standardized to 0.5 in the same buffer, and 0.5 µmol/L of 3,3-dipropylthiadicarbocyanine iodide DiSC$_3$(5) (Aladdin, Catalog No. D131315) was added. After incubation at 37°C for 30 min, 190 µL of probe-labeled bacterial cells was added to a 96-well plate and 10 µL of IBG (final concentrations ranging from 0 to 16 mg/mL) was added. After incubation at 37°C for 30 min, fluorescence was measured with an excitation wavelength at 622 nm and an emission wavelength at 670 nm.

Proton motive force assay

The PMF of C. perfringens ATCC13124 treated with IBG was measured with pH-sensitive fluorescence probe BCECF-AM (20 × 10$^{-6}$ M, UElandy Catalog No. B3016). After the fluorescence was stabilized, varying IBG were added. The excitation and emission wavelengths on the fluorescence spectrometer were set to 488 and 525 nm, respectively.

ATP determination

Intracellular ATP levels of C. perfringens ATCC13124 were determined using an Enhanced ATP Assay Kit (Beyotime, Catalog No. 50027). C. perfringens ATCC13124 grown overnight at 37°C in an anaerobic system was washed and resuspended to obtain OD$_{600}$ of 0.5 with PBS (pH 7.4). After treating with different concentrations (0–16 mg/L) of IBG for 30 min, bacterial cultures were centrifuged and the supernatant was removed. Bacterial precipitates were lysed with lysozyme and centrifuged, and the supernatant was prepared for measurement at intracellular ATP levels. Recording in the luminescence model using the Hitachi F-7000 Fluorescence Spectrometer.

Results

In vitro susceptibility testing and time-killing assays

MICs of IBG against 23 C. perfringens strains varied, ranging from 0.5 to 32 mg/L. The percentage of each MIC (0.5, 1, 2, 4, 8, 16, and 32 mg/L) was 8.70, 21.74, 34.78, 13.04, 8.70, 8.70, and 4.35%, respectively. The MIC distribution is shown in Figure 1. The MIC and MBC of IBG against C. perfringens ATCC13124 in MH broth were 2 and 4 mg/L, whereas those in ileal content were eight times higher at 16 and 32 mg/L, respectively. The MPC in the medium was eight times higher than the MIC, with a value of 16 mg/L. The PAE of C. perfringens exposed to IBG for 1 and 2 h ranged from 0.39 to 1.37 h and from 0.82 to 1.51 h, respectively (Table 1). The in vitro time-killing curves of IBG against C. perfringens ATCC13124 in MH broth are illustrated in Figure 2. The time-killing curves imply a concentration–dependent killing characteristic of IBG. When C. perfringens was exposed to IBG with a concentration >2 mg/L, the continuous inhibitory effect on bacterial growth could be observed.

Pharmacokinetics analysis

The concentration–time profiles of plasma and intestinal content in C. perfringens-infected broilers following single oral gavage at 2, 30, and 60 mg/kg is shown in Figure 3. The PK parameters of IBG in plasma and intestinal content are illustrated in Table 2. After oral administration, IBG had a significantly lower AUC$_{last}$ and C$_{max}$ in plasma vs. in intestinal content ($P < 0.01$). In plasma, AUC$_{last}$ and C$_{max}$ ranged from 0.38 to 2.18 mg·h/L and from 0.08 to 0.27 mg/L, respectively. In intestinal content, AUC$_{last}$ and C$_{max}$ ranged from 38.31 to 4,266.77 mg·h/L and from 10.97 to 1,036.64 mg/L, respectively. A good linearity of IBG was observed in the intestine ($R^2 ≥ 0.988$ for C$_{max}$ and AUC$_{last}$).
TABLE 1 Antibacterial activity of IBG against C. perfringens ATCC13124.

Concentration	MIC (mg/L)	MBC (mg/L)	MPC (mg/L)	Expose 1 h	Expose 2 h	
Artificial medium	2	4	16	1 MIC	0.39	0.82
				2 MIC	0.85	0.92
				4 MIC	1.37	1.51
Ileal content	16	32	–	–	–	

PK/PD analysis

At the start of IBG therapy, bacterial burdens were 8.05 ± 0.25 log_{10} CFU/g. The most effective IBG dosage regimens result in the reduction of bacterial number at the start of treatment (4.06 ± 0.19 log_{10} CFU/g). The relationship between the effect of IBG against C. perfringens and each of the PK/PD indices in the intestinal infection model is shown in Figure 4. The PK/PD index of AUC_{0−24h}/MIC (R^2 > 0.9542) had a strong correlation with antibacterial activity in the intestinal infection model. The AUC_{0−24h}/MIC ratios required for various efficacy targets are shown in Table 3.

IBG disrupted cell membrane in multiple ways

Based on IBG killing against C. perfringens in vitro and in vivo, we try to elucidate its potential mechanisms. In addition, IBG killing against Staphylococcus aureus and Enterococcus by damaging cell membrane (16, 17), may exert antibacterial activity against C. perfringens in a similar manner. Thus, we first tested the effect of IBG on the permeability of the cytoplasmic membrane. We used a fluorescent probe PI to assess the effect of IBG on the inner membrane of the bacteria as previously described (31). The results showed that IBG increased...
TABLE 2 Pharmacokinetic parameters of IBG in plasma and ileal content following single gavage in *C. perfringens*-infected broilers.

Dose (mg/kg)	Plasma	Ileal content						
	T_{max} (h)	C_{max}	AUC_{last}	$T_{1/2}$ (h)	T_{max} (h)	C_{max}	AUC_{last}	$T_{1/2}$ (h)
2	2	0.08	0.38	4.06	1.50	10.97	38.31	2.04
30	4	0.12	0.99	11.21	1.00	452.70	1,688.93	4.22
60	4	0.27	2.18	7.99	1.50	1,036.64	4,266.77	5.83
Mean ± SD	3.33 ± 0.94	–	–	7.75 ± 2.92	1.33 ± 0.24	–	–	4.03 ± 1.55

T_{max}, time of maximum observed concentration; C_{max}, maximum concentration; AUC_{last}, the area under the concentration–time curve from 0 h to the last sample time point; $T_{1/2}$, half-life.

FIGURE 4
Relationships between the effect of IBG against *C. perfringens* and PK/PD indices. AUC_{0-24h}/MIC in the intestinal infection model. R^2 is the coefficient of determination.

TABLE 3 PK/PD parameter of *in vivo* data after oral administration IBG in broilers.

Parameter	Unit	PK/PD fitting parameters
E_0	(log$_{10}$ CFU/g)	0.11
I_{max}	(log$_{10}$ CFU/g)	6.11
IC$_{50}$	h	232.03
AUC_{0-24h}/MIC for bacteriostatic action	h	4.00
AUC_{0-24h}/MIC for bactericidal action	h	240.74
AUC_{0-24h}/MIC for bacterial elimination	h	476.98

E_0, difference in number of bacteria counts (log$_{10}$ CFU/g) in a drug-free sample between 0 and 24 h; I_{max}, difference in greatest amount of antibacterial reduction (log$_{10}$ CFU/g); IC$_{50}$ is the AUC_{0-24h}/MIC value producing 50% of the maximal antibacterial effect.

IBG was also significantly decreased (Figure 5D). Collectively, IBG stimulates a membrane-dependent mechanism to exert an antibacterial effect.

Discussion

Due to overuse and misuse, and resistance to commonly used antibiotics, the control of *C. perfringens* is very difficult (38). Therefore, new antimicrobial drugs are needed for the effective management of necrotizing enteritis. IBG, as a novel guanidine substituted compound, has been shown to be effective against Gram-positive bacteria by disrupting cell membrane (16, 17). In this study, the MIC range of IBG to clinical *C. perfringens* strains was 0.5–32 mg/L. Given the differences in bacterial growth under *in vitro* and *in vivo* conditions, the MIC in MH broth and ileal content were detected in this study. The MIC of IBG against *C. perfringens* ATCC13124 in an MH broth and ileal content was 2 and 16 mg/L, respectively. In *in vitro* antibacterial effects of IBG under different conditions were quite different. Therefore, using the MIC in ileal content is more appropriate when calculating the PK/PD index of $AUC_{0-24 h}$/MIC.

Based on the PK results, the absorption and distribution of IBG in the intestine of broilers were rapid following oral gavage.
Mechanism of IBG against *C. perfringens*. (A) Increased permeability of the inner membrane of *C. perfringens* ATCC13124 treated with IBG (0–16 mg/L) for 30 min. (B) IBG dissipates membrane potential of *C. perfringens* ATCC13124. (C) Disruption of PMF with increased IBG by monitoring the fluorescence intensity of BCECF-AM-probed *C. perfringens* cells. (D) Decreased levels of intracellular ATP in *C. perfringens* ATCC13124 after treatment with IBG. All data are presented as mean ± SD, and the significant difference was determined by non-parametric one-way ANOVA (**p < 0.01, ***p < 0.001).

Therefore, IBG can be used to treat intestinal bacterial infections. Previous PK/PD studies mostly focused on the integration of PK and the serum or plasma of PD parameters to indicate the relationship between drug time-course and curative effect (39, 40). Taking the intestine as the target organ, the plasma concentration of oral non-absorbable drugs such as colistin is negligible, which cannot provide an effective quantification of the gastrointestinal antibacterial effect (41). In this investigation, we described the PK of IBG in *C. perfringens*-infected broiler ileal content for PK/PD investigations. The concentration of IBG in ileal content increased gradually after gavage, and then decreased rapidly with the transportation of chyme, which was similar to the pharmacokinetic characteristics of other oral non-absorbable drugs (24). Thus, we used intragastric administration once every 12 h for in vivo PD study.

PK-PD analysis has become an important tool for formulating rational dosage regimens and preventing the emergence of antimicrobial drug resistance (42). In this study, the PK/PD index of AUC$_{0-24h}$/MIC ($R^2 > 0.9542$) had a strong correlation with antibacterial activity in the intestinal infection model. The AUC$_{0-24h}$/MIC targets required to achieve bacteriostatic, bactericidal, and virtual eradication effect were 4.00, 240.74, and 476.98 h, respectively. According to the dosage equation, the dose regimen could be calculated. In this study, the MIC of *C. perfringens* isolate was 2 mg/L. For dosage calculation, bioavailability considered because of the extravascular route of administration, and Cl/F in ileal content was 0.03 ± 0.02 L/kg·h. fu was not required for using PD data generated in the small intestine (20). For the treatment of *C. perfringens* with MIC ≤ 2 mg/L, the dose of IBG for therapeutic
and elimination of \textit{C. perfringens} was 12.98 and 25.71 mg/kg repeated every 12 h, respectively.

This study was the first to demonstrate the antibacterial activity of IBG against \textit{C. perfringens in vitro and in vivo} and then determine the \textit{AUC}_{0−24 h}/\textit{MIC} targets in the intestine of broilers, which were simulated using an \textit{Imax} model. In addition, IBG displayed a potent antimicrobial activity against \textit{C. perfringens} by targeting the cell membrane. The results demonstrate that IBG has the promising potential to become a new class of antimicrobials for the treatment of \textit{C. perfringens} infections in broilers.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Ethics statement

The animal study was reviewed and approved by Institutional Animal Care and Use Committee of South China Agricultural University.

Author contributions

DZ and ZZ conceived this study and participated in its design and coordination. YL and LY designed the experiments and drafted the manuscript. YL, LY, and WZ carried out the \textit{in vivo} animal experiments. YL, LY, and JL carried out the mechanism experiments. XP and ZQ worked on the synthesis of compound IBG. DZ, ZZ, and YL conducted the PK/PD analysis. All authors read and approved the final manuscript.

Funding

This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 32121004).

Conflict of interest

Authors XP and ZQ were employed by Guangzhou Insighter Biotechnology Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Yang Q, Liu J, Robinson KJ, Whitmore MA, Stewart SN, Zhang G. Perturbations of the ileal microbiota by necrotic enteritis in broiler chickens. \textit{J Anim Sci Biotechnol.} (2021) 12:107. doi: 10.1186/s40104-021-00628-5
2. Parish WE. Necrotic enteritis in the fowl (\textit{Gallus gallus domesticus}). \textit{J Histopathology} of the disease and isolation of a strain of \textit{Clostridium welchii}. \textit{J Comp Pathol.} (1961) 71:377–93.
3. Lovland A, Kaldhaudal M, Redhead K, Skjerve E, Lillehaug A. Maternal vaccination against subclinical necrotic enteritis in broilers. \textit{Avian Pathol.} (2004) 33:83–92. doi: 10.1080/03945031001636255
4. Lepp D, Zhou Y, Ojha S, Mehdizadeh GI, Carere J, Yang C, et al. \textit{Clostridium perfringens} produces an adhesive pilus required for the pathogenesis of necrotic \textit{perfringens} enteritis in poultry. \textit{J Bacteriol.} (2021) 203:e00578–20. doi: 10.1128/JB.00578-20
5. Shrestha A, Ural PA, McClane BA. \textit{Enterotoxigenic Clostridium \textit{perfringens} enteric diseases}. \textit{Microbial Spectr.} (2018) 6.1128. doi: 10.1128/microbiolspec.GPP3-0003-2017
6. Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M. Antibiotic resistance–the interplay between antibiotic use in animals and human beings. \textit{Lancet Infect Dis.} (2003) 3:47–51. doi: 10.1016/S1473-3099(03)0490-0
7. Ungemach FR, Muller-Bahrle D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. \textit{Int J Med Microbiol.} (2006) 41:33–8. doi: 10.1016/j.ijmm.2006.01.059
8. Van Immerseel F, De Buck J, Pasmans F, Huysgebaert G, Haegebruck E, Ducatelle R. \textit{Clostridium perfringens} in poultry: an emerging threat for animal and public health. \textit{Avian Pathol.} (2004) 33:537–49. doi: 10.1080/03079450400013162
9. Engstrom BE, Fermer C, Lindberg A, Saarinen E, Baverud V, Gunnarsson A. Molecular typing of isolates of \textit{Clostridium perfringens} from healthy and diseased poultry. \textit{Vet Microbiol.} (2003) 94:225–35. doi: 10.1016/S0378-1135(03)00106-8
10. Martel A, Devries LA, Cauwerts K, De Gussem K, Decoster A, Haegebruck E. Susceptibility of \textit{Clostridium perfringens} strains from broiler chickens to antibiotics and anticoagulants. \textit{Avian Pathol.} (2004) 33:3–7. doi: 10.1080/030794504000163291
11. Rauf MK. Imtiaz-ud-Din, Baddah A. Novel approaches to screening guanidine derivatives \textit{Expert Opin Drug Discov.} (2014) 9:39–53. doi: 10.1517/174604414.2013.857308
12. Saczewski F, Balewski L. Biological activities of guanidine compounds, 2008 - 2012 update. \textit{Expert Opin Ther Pat.} (2013) 23:965–95. doi: 10.1517/13543776.2013.788645
13. Liu J, Li X, Guo Y. Recent advances in the isolation, synthesis and biological activity of marine guanidine alkaloids. \textit{Mar Drugs}. (2017) 15:324. doi: 10.3390/md15100324
14. Liu Y, Jia Y, Yang K, Li R, Xiao X, Zhu K, et al. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. \textit{Adv Sci.} (2020) 7:1902227. doi: 10.1002/advs.201902227
Veterinary Science

Frontiers in Microbiol.

Lu et al. /one.tnum/zero.tnum./three.tnum/three.tnum/eight.tnum/nine.tnum/fvets./two.tnum/zero.tnum/two.tnum/two.tnum./one.tnum/zero.tnum/zero.tnum/four.tnum/two.tnum/four.tnum/eight.tnum

on systemic Gram-positive bacterial infection in mice. Front Microbiol. (2020) 11:1556. doi: 10.3389/fmicb.2020.01556

16. Zhang X, Han D, Pei P, Hao J, Lu Y, Wan P, et al. In vitro antibacterial activity of isoproxy benzene guanidine against multidrug-resistant Enterococci. Infect Drug Resist. (2019) 12:3943–53. doi: 10.2147/IDR.S234509

17. Zhang X, Xiong W, Peng X, Lu Y, Hao J, Qin Z, et al. Isoproxy benzene guanidine kills Staphylococcus aureus without detectable resistance. Front Microbiol. (2021) 12:633467. doi: 10.3389/fmicb.2021.633467

18. Kong L, Lu Y, Yang L, Zhang W, Zuo B, Peng X, et al. Pharmacokinetics and pharmacodynamics of colistin combined with isoproxy benzene guanidine against mcr-1-positive Salmonella in an intestinal infection model. Front Microbiol. (2022) 13:907116. doi: 10.3389/fmicb.2022.907116

19. Xiao QX, Qiang MH, Zhang SM, Ou YR, Peng XF. Effects of isoproxy benzene guanidine as a substitute for antibiotics on the performance and immune organ index of broilers. Anim Sci Abroad. (2018) 38:14–8.

20. CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard. 5th ed. Wayne: CLSI Supplement VET01S (2020).

21. Zhou YF, Yu Y, Sun J, Tao MT, Zhou WJ, Li X, et al. Ex vivo pharmacokinetic/pharmacodynamic relationship of valnemulin against Clostridium perfringens in plasma, the small intestinal and caecal contents of rabbits. Anaerobe. (2016) 39:150–7. doi: 10.1016/j.anaero.2016.04.005

22. Gebru E, Danto D, Choi MJ, Lee S, Kim YH, Park SC. Mutant prevention concentration and phenotypic and molecular basis of fluoroquinolone resistance in clinical isolates and in vitro-selected mutants of Escherichia coli from dogs. Vet Microbiol. (2012) 154:384–94. doi: 10.1016/j.vetmic.2011.07.003

23. Sang K, Hao H, Huang L, Wang X, Yuan Z. Pharmacokinetic-pharmacodynamic modeling of enrofloxacin against Escherichia coli in broilers. Front Vet Sci. (2015) 2:80. doi: 10.3389/fvets.2015.00080

24. Wang F, Mi K, Ahmad I, Xie S, Hussain HI, Yuan Z, et al. Antibacterial activity of cryoX against Clostridium perfringens in rabbits and a dosage regimen design based on pharmacokinetic-pharmacodynamic modeling. Microb Pathog. (2020) 141:103981. doi: 10.1016/j.micpath.2020.103981

25. Steinvuus B, Preetam VC, Guiram S, Reddy AR. Comparative evaluation of herbal coccidiosidistat with chemotherapeutic coccidostats on performance of broilers to control coccidiosis. Trop Anim Health Prod. (2020) 52:1985–9. doi: 10.1007/s11250-020-02220-x

26. Xiao X, Pei P, Jiang LJ, Lan WX, Xiao JY, Jiang YX, et al. In vivo pharmacokinetic/pharmacodynamic profiles of danofoxacin in rabbits infected with Salmonella typhimurium after oral administration. Front Pharmacol. (2018) 9:391. doi: 10.3389/fphar.2018.00391

27. Riviere JE, Toutain PL. Chapter 13: Simultaneous pharmacokinetic-pharmacodynamic modeling. In: Riviere JE, editor. Comparative Pharmacokinetics: Principles, Techniques & Applications. 2nd ed. Ames, IA: Wiley-Blackwell, John Wiley & Sons, Ltd. (2011). p. 255–94.

28. Toutain PL, Del CJ, Bousquet-Melou A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Rev Vet Sci. (2002) 73:105–14. doi: 10.1016/S0034-5288(02)00039-5

29. Toutain PL, Bousquet-Melou A, Martinez M. AUC/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J Antimicrob Chemother. (2007) 60:1185–8. doi: 10.1093/jac/dkm360

30. Song M, Liu Y, Huang X, Ding S, Wang Y, Shen J, et al. A broad-spectrum antibiotic adjurant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. (2020) 5:1040–50. doi: 10.1038/s41564-020-0723-x

31. Nicoletti I, Migliorati G, Pagliacci MC, Grignani E, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. (1991) 139:271–8. doi: 10.1016/0022-1759(91)90198-O

32. Hamamoto H, Urai M, Ishii K, Yasukawa K, Paudel M, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. (2015) 11:127–33. doi: 10.1038/nchembio.1710

33. Glasser NR, Kern SE, Newman DK. Phenazine reox cycling enhances anerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol. (2014) 92:399–412. doi: 10.1111/mmi.12566

34. Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. (2017) 25:456–66. doi: 10.1016/j.tim.2016.12.008

35. Antognelli C, Gambelunghe A, Taleis VN, Musi G. Reactive oxygen species induce apoptosis in bronchial epithelial BEAS-2B cells by inhibiting the antiglycation glyoxalase I defense: involvement of superoxide anion, hydrogen peroxide and NF-kappaB. Apoptosis. (2014) 19:102–16. doi: 10.1007/s10495-013-0902-y

36. Cochran SA, Findlay B, Bakhtyari A, Acero JZ, Rodriguez-Lopez EM, Mercier P, et al. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc Natl Acad Sci U S A. (2016) 113:1561–6. doi: 10.1073/pnas.1608623113

37. Maloney PC, Kasheft ER, Wilson TH. A protonmotive force drives ATP synthesis in bacteria. Proc Natl Acad Sci U S A. (1974) 71:3896–900. doi: 10.1073/pnas.71.10.3896

38. Burgess DS. Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest. (1999) 115:190–5. doi: 10.1378/chest.115.suppl_1.19S

39. Toutain PL, Pelligand L, Lees P, Bousquet-Melou A, Ferran AA, Turnidge JD. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: recent advances and critical appraisal. J Vet Pharmacol Ther. (2021) 44:172–200. doi: 10.1111/jvp.12917

40. Rodriguez-Gascon A, Solinis MA, Isla A. The Role of PK/PD Analysis in the development and evaluation of antimicrobials. Pharmaceutics. (2021) 13:833. doi: 10.3390/pharmaceutics13060833

41. Guyonnet J, Manco B, Baduel I, Kaltasov V, Alahadi MHFS, Lees P. Determination of a dosage regimen of colistin by pharmacokinetic-pharmacodynamic integration and modeling for treatment of GITE disease in pigs. Res Vet Sci. (2010) 88:307–14. doi: 10.1016/j.rvsc.2009.09.001

42. Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev. (2013) 65:1053–90. doi: 10.1124/pr.111.005769