Long-Term Use of Antibiotics and Risk of Parkinson’s Disease in the Nurses’ Health Study

Natalia Palacios,1,2 Éilis J O’Reilly,2,3 Michael A. Schwarzschild,4 and Alberto Ascherio2,5

1University of Massachusetts, Lowell, MA, USA
2Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
3School of Public Health, University College Cork, Cork, Ireland
4Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
5Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

Correspondence should be addressed to Natalia Palacios; natalia_palacios@uml.edu

1. Introduction

The involvement of the gastrointestinal system in Parkinson’s disease (PD) is increasingly appreciated, and PD is now recognized as a systemic disease. A number of studies have reported alterations in the gut microbiome in PD patients compared with controls. Alterations in specific genera as well as reductions in the overall bacterial diversity of the gut microbiome have been observed in PD [1].

Antibiotic use is associated with rapid changes in taxonomic richness, diversity, and evenness of the gut microbiome [2] and opens up the opportunity of invasion by pathogenic bacteria [3]. Furthermore, antibiotic administration has been shown to alter the metabolism, protein activity, and gene expression of the microbiota [4]. Although, in healthy individuals, the microbiota generally partially recovers after antibiotic treatment has stopped, antibiotic-induced changes can persist for years [2]. The changes in the gut microbiome induced by antibiotic administration have been shown to be similar to those seen in persons with chronic diseases, and gastrointestinal inflammation, which can be induced by antibiotics, has been observed in PD [5].

Long-term use of antibiotics, especially early in life, has been linked with obesity, allergies, and other chronic diseases [6].
disorders [6–9]. In the Nurses’ Health Study (NHS), self-reported retrospective history of antibiotic use has been linked to increased risk of colorectal adenoma [10]. In this study, we explored among participants in the NHS whether use of antibiotics contribute to predict risk of PD.

2. Methods

2.1. Study Population. The NHS cohort was established in 1976 when 121,700 female-registered nurses enrolled by filling out a mailed health-related baseline questionnaire. Since baseline, NHS participants have completed mailed follow-up questionnaires every two years, reporting their health habits and disease outcomes, including PD. Follow-up rates have averaged over 90% at each follow-up cycle in this cohort. All subjects provided informed consent to participate in the study and the research project was approved by the Institutional Review Board (IRB) at Harvard Medical School.

2.2. Exposure Ascertainment. On the 2004 follow-up questionnaire, NHS participants answered the following question: “for each of the following periods of your life, please add up the total amount of time you used antibiotics (excluding skin creams, mouthwash, and isoniazid)” for time periods between ages 20–39, 40–59, and 60+. The response categories consisted of “none,” “less than 15 days,” “15 days to 2 months,” “2–4 months,” “4 months–2 years,” “2–3 years,” “3–5 years,” and “5+ years.” The participants also reported the most common reason for the antibiotic use, including respiratory infection, chronic bronchitis, urinary tract infection, dental, acne/rosacea, and other reasons.

On the 2008 questionnaire, participants were asked “during the past 4 years, what is the total amount of time you used antibiotics (excluding skin creams, mouthwash or isoniazid)”? They were also asked to report the most common reason for antibiotic use: respiratory infection, chronic bronchitis, UTI, dental, acne/rosacea, and other reasons.

2.3. Ascertainment of PD Cases. PD identification and diagnostic confirmation procedures in the NHS have been described in prior publications [11]. Briefly, we asked NHS participants to self-report incident PD on biennial questionnaires. When a study participant self-reported PD, we sought permission from the study participant to contact their treating neurologist and obtain a medical record. If such permission was granted, we asked the treating physician for confirmation of the diagnosis and a copy of the patient’s medical record. A neurologist specialized in movement disorders (M.A.S.) reviewed the medical records and assessed whether a diagnosis of PD was definite, probable, possible, or not indicated. If a medical record could not be obtained, participants were considered to have PD if the treating neurologist or internist indicated that the diagnosis of PD is definite or probable. Only definite or probable cases were included in our analyses.

2.4. Statistical Analysis. In the first set of analyses, we examined, using Cox proportional hazards regression, the association between self-reported antibiotic use at ages 20–39, 40–59, and 60+, reported in 2004, and risk of incident PD between 2004 and 2012. We calculated the age and multivariate-adjusted hazard ratios (HR) with 95% confidence intervals (95% CI) of PD according to category of antibiotic use with low antibiotic use (1–14 days) as the reference category because this category contained the greatest number of PD cases. Person-time based on age in months was accumulated from baseline (2004) until the date of first PD symptoms, death, last completed questionnaire, or end of follow-up (June 2012), whichever came first. Multivariate analyses were adjusted for age in months, smoking (never or ever), pack-years smoking and postmenopausal hormone (PMH) use (never, past, or current) at baseline in 2004.

In subsequent analyses, we examined the association between antibiotic use over the past four years, as reported in 2008 and subsequent risks of incident PD between 2008 and 2012. Due to a limited number of cases in these analyses, we calculated the age and multivariate-adjusted HR of PD comparing participants who reported any antibiotic use to those who reported no antibiotic use during the past four years. Person-time based on age in months was accumulated from baseline (2008) until the date of first PD symptoms, death, last completed questionnaire, or end of follow-up (June 2012), whichever came first. Multivariate analyses were adjusted for age in months, smoking (never or ever) pack-years and postmenopausal hormone (PMH) use (never, past, or current) at baseline.

3. Results

The baseline characteristics of the study participants according to categories of antibiotic use are shown in Table 1. Participants reporting higher use of antibiotics at ages 20–39 and 40–59 were somewhat younger, while the opposite was true for those reported higher use of antibiotic at ages above 60. At all three age ranges surveyed, as well as for past four years of antibiotic use, a higher proportion of participants reporting 2 months or more of antibiotic use were current PMH users and a lower proportion of participants were non-PMH users, compared with those reporting lower levels of antibiotic use.

Overall, antibiotic use at ages 20–39, 40–59, and 60+ present was not related to risk of incident PD. The HR comparing participants who used antibiotics for 2 months or more with those who used them for only 1–14 days was 0.98 (95% CI: 0.54, 1.78) for the period of 20–39 years, 1.44 (95% CI: 0.88, 2.33) for 40–59 years, and 0.88 (95% CI: 0.53, 1.47) for 65+ years. We also did not observe significant associations between recent 4-year antibiotic use in 2008 and risk of incidence of PD between 2008 and 2012. The HR comparing participants who ever used antibiotics during the past...
four years, as reported in 2008, compared with participants who never used them was 1.14 (0.62, 2.10). The results of these analyses are presented in Table 2.

4. Discussion
We did not observe a significant association between retrospective self-reported use of antibiotics at any age between 20 and 60+, as assessed in 2004, and risk of PD in participants of the Nurses’ Health Study. We also did not observe a significant association between recent antibiotic use (during the past four years), as reported in 2008, and risk of PD between 2008 and 2012.

An important limitation of our study was assessment of exposure, which required many participants to recall their antibiotic use decades in the past. Further, we have limited

| **Antibiotic use at age 20–39** | None | 1–14 days | 15 days to 2 months | More than 2 months | Missing |
|-------------------------------|------|----------|--------------------|--------------------|--------|
| Number of women               | 7,861| 29,180   | 10,683             | 4,177              | 7,736  |
| Age, years                    | 72.8±6.8 | 69.3±6.6 | 67.6±6.5            | 66.6±6.2            | 73.3±6.6 |
| Caffeine, mg/day              | 137.1±125.4 | 139.6±128.8 | 138.9±127.4         | 134.8±128.8         | 131.5±127.0 |
| Alcohol, g/day                | 5.8±10.3 | 6.1±10.8  | 6.2±10.8            | 5.7±10.9            | 5.5±10.0 |
| Pack-years smoking            | 11.8±19.1 | 13.1±19.9 | 12.3±19.0           | 12.5±19.4           | 13.0±20.2 |
| Nonsmoker, %                  | 48.4  | 44.3      | 44.5                | 44.0               | 46.0   |
| Past smoker, %                | 44.5  | 47.4      | 49.4                | 50.3               | 45.8   |
| Current smoker, %             | 6.9   | 8.2       | 5.9                 | 5.5                | 8.0    |
| Non-PMH user, %               | 26.4  | 21.8      | 17.9                | 16.3               | 21.9   |
| Past PMH user, %              | 52.6  | 55.8      | 57.8                | 56.6               | 55.4   |
| Current PMH user, %           | 13.8  | 17.3      | 20.8                | 24.2               | 14.9   |

| **Antibiotic use at age 40–59** | None | 1–14 days | 15 days to 2 months | More than 2 months | Missing |
|--------------------------------|------|----------|--------------------|--------------------|--------|
| Number of women               | 4,218| 29,742   | 14,316             | 5,443              | 5,918  |
| Age, years                    | 71.5±6.9 | 69.8±6.8 | 68.4±6.8            | 67.5±6.7            | 74.0±6.2 |
| Caffeine, mg/day              | 144.2±129.4 | 140.5±129.3 | 136.9±125.9         | 129.3±126.2         | 131.6±128.5 |
| Alcohol, g/day                | 6.2±11.0 | 6.2±10.9  | 5.8±10.3            | 5.5±10.3            | 5.3±10.2 |
| Pack-years smoking            | 11.8±19.3 | 12.8±19.5 | 12.7±19.6           | 12.8±19.7           | 13.0±20.4 |
| Nonsmoker, %                  | 49.6  | 44.7      | 44.6                | 43.8               | 46.5   |
| Past smoker, %                | 41.8  | 47.3      | 49.0                | 50.5               | 44.8   |
| Current smoker, %             | 8.4   | 7.8       | 6.3                 | 5.4                | 8.4    |
| Non-PMH user, %               | 32.1  | 22.4      | 17.9                | 14.8               | 23.1   |
| Past PMH user, %              | 48.3  | 55.6      | 58.1                | 57.7               | 53.7   |
| Current PMH user, %           | 11.9  | 16.7      | 20.1                | 23.9               | 14.8   |

| **Antibiotic use at age 60+** | None | 1–14 days | 15 days to 2 months | More than 2 months | Missing |
|--------------------------------|------|----------|--------------------|--------------------|--------|
| Number of women               | 9,001| 25,953   | 12,900             | 5,568              | 6,215  |
| Age, years                    | 67.5±6.6 | 70.8±6.3 | 71.5±6.0            | 72.5±6.0            | 62.5±6.8 |
| Caffeine, mg/day              | 148.0±133.3 | 140.0±130.1 | 135.9±125.1         | 128.7±126.1         | 132.5±123.8 |
| Alcohol, g/day                | 6.4±11.2 | 6.1±10.6  | 5.5±10.3            | 5.3±9.9             | 5.3±10.0 |
| Pack-years smoking            | 12.2±19.3 | 12.8±19.5 | 13.3±20.6           | 13.4±20.3           | 11.9±19.5 |
| Nonsmoker, %                  | 47.6  | 44.6      | 43.5                | 44.7               | 49.0   |
| Past smoker, %                | 43.4  | 47.5      | 49.3                | 49.0               | 42.8   |
| Current smoker, %             | 8.9   | 7.7       | 7.0                 | 6.1                | 7.9    |
| Non-PMH user, %               | 27.1  | 21.4      | 18.4                | 16.6               | 22.7   |
| Past PMH user, %              | 52.7  | 55.9      | 57.6                | 56.0               | 54.8   |
| Current PMH user, %           | 14.1  | 17.0      | 19.7                | 22.6               | 15.8   |

| **Antibiotic use during the past four years** | None | 1–14 days | 15 days to 2 months | More than 2 months | Missing |
|-----------------------------------------------|------|----------|--------------------|--------------------|--------|
| Number of women                               | 13,467| 22,343   | 13,470             | 4,163              | 330    |
| Age, years                                    | 73.9±6.9 | 73.0±6.7 | 72.6±6.7           | 72.9±6.9           | 78.6±6.1 |
| Caffeine, mg/day                              | 11.0±18.3 | 11.8±18.8 | 12.9±19.6          | 13.4±20.3          | 12.2±18.9 |
| Alcohol, g/day                                | 268.5±220.5 | 269.2±221.7 | 265.6±224.7         | 259.3±219.8         | 233.0±209.0 |
| Pack-years smoking                            | 5.1±9.2 | 4.9±8.9  | 4.9±8.8            | 4.7±8.7            | 4.7±8.7 |
| Nonsmoker, %                                  | 45.1  | 48.1      | 51.0                | 51.8               | 47.4   |
| Past smoker, %                                | 6.0   | 5.7       | 5.2                 | 4.5                | 6.4    |
| Current smoker, %                             | 48.7  | 46.1      | 43.7                | 43.5               | 46.2   |
| Non-PMH user, %                               | 25.6  | 20.5      | 16.9                | 14.6               | 21.3   |
| Past PMH user, %                              | 58.6  | 62.6      | 64.6                | 64.5               | 55.5   |
| Current PMH user, %                           | 9.2   | 11.6      | 14.0                | 16.1               | 10.2   |

Values in table are means (SD) or percentages and are standardized to the age distribution of the study population. Baseline is in 2004 for analyses of self-reported antibiotic use at ages 20–39, 40–59, and 60+ and in 2008 for analyses of past four years of antibiotic use. Value is not age-adjusted.
information on the type and dose of antibiotics. And, the number of women who reported prolonged use of antibiotics, which is more likely to affect PD risk, was small, as reflected in the wide confidence intervals of our HR estimate. Therefore, although the results of this study do not support an effect of antibiotic use on PD risk, larger investigations relying on records of antibiotics prescriptions would provide more definitive evidence.

### Data Availability

The data used to support the findings of this study are restricted by the Partner’s Healthcare Institutional Review Board in order to protect participant privacy. Data are available from the Nurses’ Health Study for researchers who meet the criteria for access to confidential data.

### Conflicts of Interest

The authors declare that they have no conflicts of interest.

### Acknowledgments

The Nurses’ Health Study was supported by UM1 CA186107. The Health Professionals Follow-up Study was supported by UM1 CA167552. Natalia Palacios received funding from the NIH (grant no. R01NS097723).

### References

[1] F. Scheperjans, “Gut microbiota, 1013 new pieces in the Parkinson’s disease puzzle,” *Current Opinion in Neurology*, vol. 29, no. 6, pp. 773–780, 2016.

[2] L. Dethlefsen and D. A. Relman, “Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation,” *Proceedings of the National Academy of Sciences*, vol. 108, no. Supplement_1, pp. 4554–4561, 2011.

[3] T. D. Lawley, S. Clare, A. W. Walker et al., “Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts,” *Infection and Immunity*, vol. 77, no. 9, pp. 3661–3669, 2009.

[4] A. E. Pérez-Cobas, M. J. Gosalbes, A. Friedrichs et al., “Gut microbiota disturbance during antibiotic therapy: a multi-omic approach,” *Gut*, vol. 62, no. 11, pp. 1591–1601, 2013.

[5] M. C. Houser, J. Chang, S. A. Factor et al., “Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease,” *Movement Disorders*, vol. 33, no. 5, pp. 793–804, 2018.

[6] A. Abreo, T. Gebretsadik, C. A. Stone, and T. V. Hartert, “The impact of modifiable risk factor reduction on childhood asthma development,” *Clinical and Translational Medicine*, vol. 7, no. 1, p. 15, 2018.

[7] S. A. Miller, R. K. S. Wu, and M. Oremus, “The association between antibiotic use in infancy and childhood overweight or obesity: a systematic review and meta-analysis,” *Obesity Reviews: An Official Journal of the International Association for the Study of Obesity*, vol. 19, no. 11, pp. 1463–1475, 2018.
[8] H. Neuman, P. Forsythe, A. Uzan, O. Avni, and O. Koren, “Antibiotics in early life: dysbiosis and the damage done,” FEMS Microbiology Reviews, vol. 42, no. 4, 2018.

[9] S. H. Rasmussen, S. Shrestha, L. G. Bjerregaard et al., “Antibiotic exposure in early life and childhood overweight and obesity: a systematic review and meta-analysis,” Diabetes, Obesity and Metabolism, vol. 20, no. 6, pp. 1508–1514, 2018.

[10] Y. Cao, K. Wu, R. Mehta et al., “Long-term use of antibiotics and risk of colorectal adenoma,” Gut, vol. 67, no. 4, pp. 672–678, 2018.

[11] N. Palacios, K. C. Hughes, E. Cereda, M. A. Schwarzschild, and A. Ascherio, “Appendectomy and risk of Parkinson’s disease in two large prospective cohorts of men and women,” Movement Disorders, vol. 33, no. 9, pp. 1492–1496, 2018.