INTRODUCTION

The Zingiberaceae family is a group of plants that are widely used as raw materials for traditional medicines, herbs and spices, food coloring, cloth, antimicrobials, insecticides, and in the food industry (de Souza Tavares et al., 2013; Gowda, Kress, & Htun, 2012; Harit, Barapatre, Prajapati, Aadil, & Senapati, 2013; Jan, Rabbani, & Shinwari, 2012; Tripathi, Chawla, Upadhyay, & Trivedi, 2013; Velayudhan, Dikshit, & Abdul Nizar, 2012). One potential medicinal plant from this family that has been widely cultivated is galangal (*Kaempferia galanga* L.). As a medicinal plant, galangal contributes 6.33% of biopharmaceutical plants in Indonesia (Salim & Munadi, 2017), and has been used in herbal medicine with proven efficacy and safety based on clinical trials equivalent to modern medicine trials (Pujiasmanto, 2009).

Galangal productivity in Indonesia in 2017 was 1.77 kg/m² and decreased in 2018 and 2019 by 1.46 kg/m² and 1.45 kg/m², respectively (BPS, 2019). Galangal productivity in the three main producing center provinces in West Java, Central Java, and East Java in 2019 only reached 4.26 kg/m², which was still lower than ginger and turmeric at 5.77 kg/m² and 6.82 kg/m², respectively. Domestic galangal production has not currently met the market demand in Indonesia for the drug and cosmetic industry, which has caused the product to be imported from China, Malaysia, Thailand, India, Vietnam, Pakistan, and Myanmar, even though the imported quality does not necessarily meet the standards for large industrial production in Indonesia (DINPERINDAG JATENG, 2014; Putri et al., 2014). The increasing market demand for galangal products, coupled with the plant’s ability to grow over a wide area encourages farmers to cultivate this plant in new...
potential areas.

The selection of new cultivation areas must consider the ever-changing agroecological conditions of each location, to produce the desired yield and quality of medicinal plants (Purwadi, 2011). Rostiana, Rosita, & Rahardjo (2009) stated that galangal optimally grows at an altitude of 50–600 m asl with the range daily temperature of 25-30°C, 2500–4000 mm/year rainfall, and full sunlight or 25–30% shading up to the plant reached 6 months old. Galangal prefers soil with good drainage, clay to sandy loam texture, and soil pH ranges 5.5–6.5. Further information regarding the suitability of different agroecological conditions is needed to support the expansion of galangal production. For example, altitude differences alter environmental conditions, such as sunlight intensity, air temperature, wind, and rainfall (Unal, Guvensen, Dereboylu, & Ozturk, 2013).

The essential oil and ethyl-p-methoxycinnamate (EPMC) contents are quality parameters that can be measured by analyzing galangal rhizomes, and vary widely in various environments. The EPMC is a galangal identity compound derived from cinnamic acid derivatives that contributes to the distinctive taste and plant aroma (Tripathi, Chawla, Upadhyay, & Trivedi, 2013). The chemical contents and essential oil components of galangal vary depending on the genotype and planting location. This indicates an interaction between genetic traits and a growing environment is expressed by the chemical components and active ingredients. EPMC levels have been measured at 2.27–17.92% at optimally harvested rhizomes, after 10-12 months of planting (Rostiana & Subaryanti, 2010). The chemical components of other galangal essential oils are pentadecane, 1,8-cineole, 3-carene, borneole, camphene, kaempherol, kaempherid, cinnamaldehyda, p-methoxycinnamic acid, pinene, thymol, methyl cinnamate, and ethyl cinnamate (Munda, Saikia, & Lal, 2018; Srivastava et al., 2019; Yang et al., 2018).

Cultivar selection is expected to produce potential genotype that has wider adaptation to suboptimal conditions (Cramer, Urano, Delrot, Pezzotti, & Shinozaki, 2011; Ncube, Finnie, & Van Staden, 2012; Pavarini, Pavarini, Niehues, & Lopes, 2012; Ramakrishna & Ravishankar, 2011). Anggraito et al. (2018) has stated that a genotype when grown in different environments will produce different secondary metabolite compounds.

Metabolomics aims to identify and quantify metabolite compounds in an organism under certain conditions (Árbona, Manzi, de Ollas, & Gómez-Cadenas, 2013; Kusano et al., 2015). The metabolomic approach has been widely used as a tool for studying organisms subjected to biotic and abiotic stress and offers a more comprehensive analysis of metabolite profiles when plant metabolic conditions change (Widodo et al., 2009). Various strategies are used to detect and measure the presence of metabolite compounds, including liquid chromatography-mass spectrometry (LC-MS). Metabolite profile analysis through LC-MS is carried out in the liquid phase due to its wide detection ability (Obata & Fernie, 2012), and its ability to detect secondary metabolite groups in plants (Sangwan et al., 2015). For example, the results of LC-MS analysis on Curcuma aeruginosa rhizomes detected 175 compounds, which were dominated by the sesquiterpenes group and were divided into two clusters based on their antioxidant activity (Septaningsih, Darusman, Afendi, & Heryanto, 2018). Growth stage, environment, plant material, and post-harvest processes are the main factors that influence the biosynthesis and composition of metabolites in rhizomes (Yudthavorasit, Wongravee, & Leepipatpiboon, 2014).

Secondary metabolite compounds, such as essential oils, resins, mucilages, and tannins, are stored in idioblast cells (Victório, Kuster, & Lage, 2011), which are contained in a tissue that is different in shape, size, content, and function from the surrounding cells (Nugroho, 2018). Oil-filled idioblasts in the rhizome of Zingiber officinale are located in pith tissue (Liu, Specht, Zhao, & Liao, 2020). Oil cell-containing idioblasts have also been reported in the rhizome of Alpinia zerumbet (Victório, Kuster, & Lage, 2011). The number of oil cells increases with plant age, as seen in the adult rhizomes of Zingiber officinale (10–12 MAP), which had more essential oils than the younger plants did (Mu, Liu, Kuang, Zou, & Liao, 2015). Similar results were also reported by Liu, Specht, Zhao, & Liao (2020), that the amount of starch decreased in mature rhizomes, while the number of oil cells increased.

This study aimed to assess and analyze the chemical components of galangal rhizome essential oils, obtain metabolite profiles from selected galangal accessions, and analyze the density of idioblast cells of seven accessions of galangal. The selection was based on the most promising...
accession in producing EPMC constituents when planted under different agroecological conditions. The results are expected to open up opportunities for further researches related to secondary metabolites in galangal rhizomes, especially PBG and PCT accessions as candidates for superior varieties.

MATERIALS AND METHODS

Time and Locations

The planting materials were gathered from Central Java and East Java from December 2016 to April 2017. The experiment was carried out in two different sites, i.e. at the altitude of 214 m a.s.l. (location A), and at 780 m a.s.l. (location B) from June 2017 until May 2018. Climatic conditions and soil fertility of both locations were presented in Table 1 and Table 2. The isolation of essential oils was carried out at the testing laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMCRI), Cimanggu, Bogor, Indonesia. Chemical components of galangal rhizome essential oils were determined using gas chromatography-mass spectroscopy (GC-MS) and analyzed at the DKI Jakarta Regional Health Laboratory, Rawasari, Central Jakarta, Indonesia. Metabolite compound profiles were analyzed using liquid chromatography-mass spectroscopy (LC-MS) at the Advanced Laboratory of IPB University. Idioblast cell density was analyzed at the Laboratory of Ecology and Plant Resources, Department of Biology, Faculty of Mathematics and Natural Science, IPB University.

Plant Materials and Instruments

Six accessions of galangal: Purbalingga (PBG), Cilacap (CLP), Purworejo (PWJ), Karanganyar (KRA), Pacitan (PCT), Madiun (MAD), and one control variety of Galesia 2 (GAL 2) were studied. The origin of galangal accessions used is listed in Table 3. GC-MS (Agilent Technologies 7890-5975, Germany), LC-MS (Thermo Scientific, Germany), and a light microscope (Olympus CX23, Japan) with a digital camera (OptiLab, Mikonos) were used for analysis.

Table 1. The average climatic conditions at the two locations at 214 and 780 m a.s.l. from June 2017 to May 2018

Location	Altitude (m a.s.l.)	Light intensity (%)	Temperature (°C)	Relative humidity (%)	Rainfall (mm/year)	The amount of rain (day/year)
A	214	21-64	27-28	76-86	3605	243
B	780	26-70	21-23	79-93	3276	252

Remarks: Source = The Climatology Station at Darmaga Bogor; Value indicates lowest-highest.

Experimental Design

This study was designed in a split-plot randomized block experiment with 3 replications. The growing locations in different altitudes (214 and 780 m a.s.l.) served as the main plot, and galangal accessions were designated as the subplot. The number of experimental units was 54 plots and the size of each plot was 2.4 x 1.2 m. The plant density on each plot was 60 plants with a planting distance of 15 x 20 cm.

Research Implementation

The planting materials were shiny skin, slightly hard meat textures, healthy rhizomes, and free from pest and disease and physical defects. The planting materials should also have 3–9 g in weight, 2–3 shoots with a height less than 1 cm. Galangal seedlings were planted at the depth of 7 cm with the shoots facing upward. Manure (20 t/ha), urea (250 kg/ha), SP 36 (200 kg/ha), and KCl (200 kg/ha) or the equivalent of 8.64 kg/plt of manure, 90 g/plot urea, 70 g/plot SP 36, and 70 g/plot KCl were applied to the soil. Galangal cultivation techniques were following Rostiana, Rosita, & Rahardjo (2009). Harvesting was carried out 12 months after planting.

Essential oil isolation was carried out based on Bhuiyan, Begum, & Anwar (2013) using the hydrodistillation method. Essential oil components were analyzed using GC-MS, and metabolite profiles were analyzed using LC-MS (Han, Lee, Kim, & Lee, 2015). Idioblast cell density analysis was performed based on methods published by Subaryanti (2005). The fresh rhizome was sliced using a razor blade, then immersed in 5% NaOH for 48 hours. After rinsing with distilled water, the rhizome slices were stained with 0.03% Sudan IV, then 1–2 drops of glycerin were given. The density of the idioblast cells was calculated using a light microscope. The calculation was carried out in four fields of view with three replications. The formula for the number of idioblast cells obtained was divided by the field of view (cells/mm²).
Results and Discussion

General Conditions of the Planting Locations

Based on the combined environmental condition data from June 2017–May 2018, the air temperature at location A ranged from 27-28°C, relative humidity was 76–86%, light intensity was 21–64%, total rainfall was 3605 mm/year, and the number of rainy days per year was 243. At location B, the air temperature was 21–23°C, relative humidity was 79–93%, light intensity was 26–70%, total rainfall was 3276 mm/year, and the number of rainy days per year was 252 (Table 1).

In general, the agro-climatic conditions of the planting sites at the two locations were quite good. Air temperature and light intensity influenced the growth and development of galangal accessions. The air temperature at location B was lower than the air temperature at location A, but the light intensity at location B was higher than the light intensity at location A, which was not optimal. Soil conditions influenced rhizome yield and the number of rhizomes. The results of soil analysis were listed in Table 2. The organic carbon content at location A was classified as mid-level but was low at location B. The total N and C/N ratios at both locations were low. The CEC value was moderate and the soil texture was classified as clay and dusty. According to Rostiana, Rosita, & Rahardjo (2009), high yield galangal production requires special soil requirements: textured clay to sandy loam, land slope < 3%, with latosol, regosol soil types, associations between latosol-andosol, regosol-latosol, and regosol-lithosol, and soil pH

Table 2. The soil fertility condition at two locations

Location	Soil texture (%)	C/N ratio	pH	CEC (MEK/g)		
	Sand	Dust	Clay			
A	9.7	10.3	80.1	6.8	5.0	18.8
B	9.9	28.7	61.4	6.0	5.4	19.7

Table 3. Accessions of galangal used in this study based on their altitudes

No.	Accessions	Village	District	Regency	State	Altitudes (m asl)
1	PBG	Bedagas	Pengadegan	Purbalingga	Central Java	100
2	CLP	Tayem	Karangpucung	Cilacap	Central Java	100
3	PWJ	Kaliboto	Bener	Purworejo	Central Java	300
4	KRA	Sambirejo	Jumantono	Karanganyar	Central Java	300
5	PCT	Ngunut	Bandar	Pakitan	East Java	600
6	MAD	Doho	Dolopo	Madiun	East Java	600
7	GAL 2	Balittro	Balittro	Balittro	West Java	-

Data Analysis

The data were analyzed by analysis of variance at 95% confidence level using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA). The mean comparison was performed using Duncan’s Multiple Range Test at α = 5% (Mattjik & Sumertajaya, 2006). The essential oil components of the GC-MS chromatogram were identified and compared with spectroscopic data available in the Wiley W9N11.L database. Identification of metabolites from the LC-MS chromatogram was carried out by matching the m/z value in the mass array table with the accurate mass of metabolites from the Zingiberaceae family in the Natural Products Dictionary (dnp.chemnetbase.com). The identification phase of LC-MS was based on an online database and a database that is independently compiled. The online database for metabolite compounds in the Zingiberaceae family refers to the Kyoto Encyclopedia of Genes and Genomes Pathway Database (http://www.genome.jp/kegg/pathway.html), Pubchem (https://PubChem.ncbi.nlm.nih.gov/), and The Human Metabolome Database (HMDB) (http://www.hmdb.ca). The independently compiled database refers to metabolite compounds found in the Zingiberaceae family through LC-MS detection which have been reported in several scientific publications and have been summarized in this study (Asamenew et al., 2019; Han, Lee, Kim, & Lee, 2015). Multivariate analysis was performed using the MetaboAnalyst 4.0 program (http://www.metaboanalyst.ca) (Xia & Wishart, 2016).
The Content and Yield of Essential Oils of Galangal

One indicator of the quality of galangal rhizomes is the high content of essential oils. Essential oils (volatile oil) are a complex mixture of volatile and non-volatile compounds from plants that have a distinctive smell and taste (Sirousmehr, Arbabi, & Asgharipour, 2014; Tisserand & Young, 2014). Essential oils are also known as etheric oils, and aromatic oils. Essential oils are a large group of vegetable oils that are viscous at room temperature, volatile, and give a distinctive aroma. Essential oils are generally colorless to pale yellow (Moghaddam & Meh dizadeh, 2017), and are widely used in health products, cosmetics, and perfume, as well as in the pharmaceutical and the food and beverage industry (Sánchez-González, Vargas, González-Martínez, Chiralt, & Cháfer, 2011). Essential oils also provide physiological and ecological functions for plants, including protection against predators and pests, attracting pollinators, strengthening the immune system, and being used for the interaction and communication between organisms and their environment (Bouwmeester, Schuurink, Bleeker, & Schiestl, 2019; Meena, Jangra, Wadhwa, Monika, & Wati, 2017).

The content and yield of essential oils were significantly influenced (p < 0.05) by the interaction between location and galangal accessions (Table 4). The essential oil content from location A was 0.98–3.22% and 1.33–2.80% at location B. The yield of essential oil at location A was 0.50–2.67%, and at location B. The highest essential oil content was obtained at both locations A and location B from MAD (3.22%) and PBG (2.80%), respectively. The highest yield was obtained from PBG (5.12%) at location B. MAD accession at location A is different from other accessions, except with GAL 2, meanwhile, PBG accession in location B is different from KRA accession. The essential oil contents that met the quality standards of SNI and MMI included from KRA accession. The essential oil contents that meanwhile, PBG accession in location B is different from other accessions, except with GAL 2, at location B. MAD accession at location A is the highest yield was obtained from PBG (5.12%) at location B. The highest essential oil yield was obtained from PBG (2.80%) at location B. The content and yield of essential oils of galangal rhizome in the two planting locations varied greatly but met the Indonesian National Standard, > 2% (BSN, 2005), and the Indonesian Materia Medica standard of 2.4–3.9% (DEPKES RI, 1977) was MAD and GAL 2 at location A and PBG, CLP, PCT, and MAD at location B. Our findings are consistent with those of Armando (2009), who found that the yield of essential oils from galangal rhizomes was 2.8–5.8%. Karami, Khoshbakht, Esmaili, & Maggi (2020) reported that the quantity and quality of *Oliveria decumbens* essential oils are affected by environmental factors such as altitude, temperature, latitude, and soil properties such as soil acidity and sand content.

The high essential oil content (3.22%) of the MAD accession at location A is predicted to be related to nutrients, particularly the organic carbon content of the soil since the organic carbon content at location A was higher than at location B (2.74 and 1.76%, respectively) (Table 2). Yulipriyanto (2010) reported that the availability of organic carbon in the soil increases microorganism populations since microorganisms thrive when organic matter is available as a food source. Soils richer in organic matter and minerals produced higher essential oil yields (Fernández-Sestelo & Carrillo, 2020). Soil microelements are very important for the optimal sustainability of enzymatic processes (Purwoko, 2007). The availability of nutrients, especially organic carbon content, will also increase the essential oil levels as secondary metabolites (Widyastuti & Sugiarso, 2003). Suryawati & Murniyanto (2011) reported that the organic carbon content increases the essential oil content in the ginger rhizome (*Zingiber officinale*). In addition to nutrients (organic carbon), adequate rainfall (130–526 mm/month) at location A was also responsible for the high levels of essential oils in the MAD accessions. A greater amount of annual rainfall produced a higher essential oil yield and of better quality (Fernández-Sestelo & Carrillo, 2020). Water available in the soil is absorbed by the roots through xylem vessels, then is transported to the stems and leaves. In the leaves, water is used to synthesize organic compounds such as carbohydrates, fats, proteins, and other organic materials (Lakitan, 2018; Taiz & Zeiger, 2010).

Several other factors also affect the levels of the essential oils, such as soil fertility, genetic variation, growing environment, and geographic conditions (Aragaw, Alamerew, Michael, & Tesfaye, 2011; Bermawie, Syahid, Ajjiah, Puriwiyanti, & Martono, 2013; da Costa et al., 2014; Kavitha, Khoshbakht, Esmaeil, & Maggi, 2020) reported that the quantity and quality of *Oliveria decumbens* essential oils are affected by environmental factors such as altitude, temperature, latitude, and soil properties such as soil acidity and sand content.
The control variety, GAL 2, also had high essential oil levels at location A (2.31%). GAL 2 is a superior variety that is highly responsive and more stable in a variety of growing environments. GAL 2 also adapts specifically to growing environments with an altitude of 350–650 m asl, and its essential oil content usually reaches 2.06–6.64% (Rostiana & Effendi, 2007; Rostiana, Haryudin, & Rosita, 2006). The high essential oil content from the PBG accession at location B is thought to be related to genetic factors, light intensity, and air temperature. The light intensity at location B was 26–70% higher than at location A, which was 21–64% (Table 1). Light as an energy source activates the photosynthetic process; the photosynthate produced from the photosynthetic process is then translocated to the rhizome as a storage organ (sink) (Buntoro, Rogomulyo, & Trisnowati, 2014). Photosynthate in the form of starch is not always used as energy for growth (primary metabolite), but can also be converted into other secondary metabolites, such as essential oils (Widiyanto & Siarudin, 2013). Thus, the light intensity can increase essential oil levels (Rehman, Hanif, Mushtaq, Mochona, & Qi, 2016), especially since galangal requires 25–30% full light intensity or shade until the plants are 6 months old (Rostiana, Rosita, & Rahardjo, 2009). In turmeric plants (Curcuma domestica), 70% light intensity produced the highest amount of essential oil contents (4.77%) (Syahid, Syukur, Kristina, & Pitono, 2012). Since the PBG accessions have been cultivated for long periods in their place of origin (Purbalingga) at an altitude of 100 m asl, it is thought to have been able to adapt to the test location altitude of 780 m asl and temperature of 21–23°C. Fernández-Sestelo & Carrillo (2020) reported that higher altitudes favored obtaining higher essential oil quality.

The optimal altitude for galangal growth is 50–600 m asl, at a temperature of 25–30°C (Rostiana, Rosita, & Rahardjo, 2009). Long light exposure accompanied by low air temperatures results in maximum photosynthetic production in the form of carbohydrates (Yaqob & Nawchoo, 2017), which are used as a substrate for the formation of essential oils through glycolysis. Glycolysis produces pyruvic acid, which undergoes various reactions to become geranyl pyrophosphate, a precursor compound of essential oils (Croteau, Kutchan, & Lewis, 2000). In Porcelia macrocarpa, maximum essential oil levels were obtained at low temperatures (da Silva et al., 2013).

Table 4. The essential oil content and yield of galangal accessions at different locations

Location	Accessions	Essential oils (%)	Yield (%)
A (214 m a.s.l.)	PBG	1.40 c-f	1.77 b-d
	CLP	0.98 f	0.53 e
	PWJ	1.06 ef	0.65 e
	KRA	1.17 d-f	0.50 e
	PCT	1.01 f	2.38 bc
	MAD	3.22 a	2.67 b
	GAL 2	2.31 a-e	2.51 bc
Means	1.59	1.57	
B (780 m a.s.l.)	PBG	2.80 ab	5.12 a
	CLP	2.22 a-f	2.16 b-d
	PWJ	1.76 b-f	1.71 cd
	KRA	1.33 c-f	1.25 de
	PCT	2.53 a-c	2.67 b
	MAD	2.37 a-d	2.35 bc
	GAL 2	1.66 b-f	2.11 b-d
Means	2.09	2.48	

Remarks: Numbers followed by the same letters on the same column are not significantly different based on DMRT 5%
Table 5. The components of essential oil of galangal rhizome at different altitudes from GC-MS analysis in percent area

No.	Compounds	PBG	CLP	PWJ	KRA	PCT	MAD	GAL 2							
1	**EPMC**	27.97	74.77	59.90	30.89	13.28	43.72	12.51							
2	Ethyl cinnamate	-	5.39	-	8.51	9.71	8.90	4.95	5.17	9.40	9.15	-	8.16	-	
3	3-carene	3.83	-	2.36	-	-	9.13	-	3.40	-	7.95	1.13	-	-	
4	4-tetradecene	-	-	-	-	1.82	1.65	-	-	-	-	2.19	-	-	
5	1,8-cineole	1.22	-	-	-	-	-	-	-	-	1.40	-	1.33	-	
6	Naphtalene	1.51	-	-	-	-	-	-	-	-	-	-	-	-	
7	Cinnamic acid	-	-	-	-	-	-	-	-	-	12.33	-	11.68	-	
8	Endo-borneol	-	-	-	-	-	1.68	1.04	-	-	-	-	-	-	
9	trans-geraniol	-	-	-	-	-	-	-	-	-	-	-	-	-	
10	2-propenoic acid	9.02	-	7.73	12.99	-	-	-	-	-	-	-	-	-	
11	Pentadecane	17.54	8.10	8.80	17.44	31.66	17.62	26.49	6.79	26.49	-	36.98	16.93	13.74	
12	8-heptadecane	-	-	-	1.72	-	-	-	-	-	1.79	-	1.23	-	
13	Patchouli alcohol	-	1.87	-	-	-	-	-	-	-	2.99	-	1.47	-	
14	2-murolene	-	-	-	-	-	-	4.30	1.79	4.30	-	1.19	-	-	
15	Germacrene-B	-	-	-	-	1.23	-	1.23	-	-	-	-	-	-	
16	Caryophyllene	-	-	-	-	2.66	-	-	-	-	2.05	-	-	-	
17	α-amorphene	-	-	-	-	-	-	-	-	-	1.20	-	-	-	
	Means	10.18	**29.42**	19.56	15.92	13.79	15.11	8.24	11.34	21.76	28.88	9.75	23.0	9.19	15.11

Remarks: – is not detected
Chemical Components in Galangal Essential Oil and EPMC Constituents

The chemical composition of essential oils varies greatly and can include aliphatic, aromatic, and terpenoid structures. Volatile components of essential oils are usually aromatic terpenes, aldehydes, ketones, phenols, volatile acids, and esters (Butnariu & Sarac, 2018). Several research results have indicated that galangal rhizomes contain significant EPMC aromatic compounds that can be fractionated from essential oils (Raina, Abraham, & Sivaraj, 2015; Rostiana & Subaryanti, 2010), as well as from the methanol extract of galangal rhizomes (Srivastava et al., 2019; Umar et al., 2012). Our findings confirm the results of these previous studies since EPMC was detected in all tested galangal accessions at both locations (Table 5). Chemical component differences in the galangal rhizomes planted at location A and B are thought to be due to differences in each accession's response to the environmental growing conditions since the chemical components are influenced by water availability and soil nutrients through a biosynthetic process related to enzyme activity (Bettaieb, Zakhama, Aidi Wannes, Kchouk, & Marzouk, 2009). Table 5 lists the 15 chemical components of galangal rhizome essential oil from location A, and the 10 compounds from location B. High levels of EPMC compounds were found at both location A (12.5–71.6%) and location B (30.9–74.8%). Accessions with the highest EPMC content from location A and B were PCT (71.6%) and PBG (74.8%), respectively. Other components of galangal essential oils were 2-propenoic acid (7.73–12.99%), caryophyllene (2.05–2.66%), 3-carene (1.13–9.13%), γ-muurolene (1.19–4.30%), patchouli alcohol (1.47–2.99%), and 1,8-cineole (1.22–1.40%). The chemical components found in galangal in China included EPMC, ethyl cinnamate, pinene, camphene, 3-carene, 1,8-cineole, borneol, encarvone, thymol, methyl cinnamate, cubenol, selinonol, bisabolol, and palmitic acid (Guzman, 2014). In plants, it plays an important physiological role in growth, development, reproduction, and disease resistance (Salvador et al., 2013).

Metabolite Profile of Galangal by LC-MS

Five accessions were selected based on the abundance of EPMC content for further analysis using LC-MS. These accessions were CLP (59.9%) and PCT (71.6%) from location A, PBG (74.8%), MAD (39.8%), and GAL 2 (43.1%) from location B. The interaction of various metabolite compounds in various metabolic processes is necessary for the survival of an organism. These processes are particularly important in plants, as they are unable to move locations in times of biotic or abiotic stress. The production and concentration of metabolite compounds are determined by each plant's genetics and environmental conditions (Hardy & Hall, 2012; Weckwerth & Kahl, 2013). The metabolomic approach offers a comprehensive analysis of metabolite compound profiles under changing metabolic conditions and environmental conditions (Widodo et al., 2009). Heatmap analysis combined with a hierarchical cluster analysis was performed on the five selected accessions. The results were divided into two clusters based on their metabolite content. Cluster one had one accession (PCT) with the genkwanin compound as a metabolite
Subaryanti et al.: Oil Components and Metabolite Profiles in Galangal

marker. Ten compounds were detected in cluster one: tectochrysin, gingerol, demethoxicurcumin, genkwanin, shogaol, phenylalanine, dihydroparadol, routine, galangin, and gingerone. Cluster two included four accessions (CLP, PBG, MAD, GAL 2), with eight compounds detected in CLP, 10 compounds in PBG, 2 compounds in MAD, and 6 compounds in GAL 2. The composition of compounds in cluster two included hydroxybenzoic acid, tryptophan, coumaric acid, paradol, trimethoxyflavonol, curdione, gingerdiol, gingerol, bornyl acetate, caffeic acid, EPMC, retusine, gallic acid, curcumin, dihydroxyferulic acid, hexahydroxycurcumin, shogaol, kaempferol, nobletin, furanodiene, galanganol, and oleamide. The marker compounds of cluster two were curdione in CLP; EPMC and turmerone in PBG; and galanganol and oleamide in GAL 2 (Fig. 1).

Fig. 1. The heatmap profile combined with hierarchical cluster analysis on selected galangal rhizome metabolite data at different altitudes from LC-MS analysis
This approach has been successful in uncovering the metabolic changes associated with various sample conditions in both plants and other organisms (Chiu et al., 2016; Gupta & De, 2017; Olawode, Tandlich, & Cambray, 2018), and has also succeeded in identifying metabolite markers related to the environmental conditions of plants (Gupta & De, 2017). Plants cannot move to avoid environmental changes, which can cause poor development and growth (Jorge et al., 2016). The ability of plants to survive these conditions depends on their ability to adapt, which involves stress sensing, signal transduction, and the activation of several stress-related genes and metabolites. The metabolite compounds found in this study are thought to have a relationship with the environmental conditions at each location. Influenced by environmental factors, the respective group of secondary metabolites acts as a chemical interface between the plant and its environment. The chemical interaction between plants and their environment is mediated mainly by the biosynthesis of secondary metabolites, which exert their biological roles, as a plastic adaptive response to their environment. Such chemical interaction often includes variations in the production of plant metabolites (Gutbrodt, Dorn, Unsicker, & Mody, 2012; Pavarini, Pavarini, Niehues, & Lopes, 2012). Therefore, the study of these variations is very useful in the chemical characterization of plants of the same species which are collected from different regions and this is when the different geographical origin of plant material is taken into account (Vilela et al., 2013). Some processes can be the main sources of variation in the levels of metabolites for individual plant species. These processes involve long term acclimation or local adaptation, seasonal differences related to phenology or environmental changes in the biotic and abiotic factors, geographical differences involving different populations (genetic differences within a plant species), or different environmental conditions of the growth location of the specific individuals, especially when they have genetic homogeneity (i.e. cultivars and/or clones) (Rahimmalek et al., 2009).

Metabolomics is an interesting approach that has been used in the plant sciences, especially in ecological studies, in investigating the effects of environmental factors on plant metabolism. Metabolomic profile data have been utilized to compare different species from the same family, or individuals from populations from the same species growing under different environmental conditions, or changes in metabolite production of individuals within

Table 6. The density of idioblast cells in the cortex and pith of galangal accessions at different altitudes.

Locations (Altitude)	Accessions	Cortex (cells/mm²)	Pith (cells/mm²)
A (214 m a.s.l)	PBG	9.75 gh	77.8 b
	CLP	6.50 i	72.8 c
	PWJ	11.1 g	40.8 j
	KRA	10.5 gh	46.3 h
	PCT	9.33 h	90.5 a
	MAD	17.1 f	48.5 g
	GAL 2	3.83 j	39.6 jk
Mean		9.73	59.5
B (780 m a.s.l)	PBG	20.2 e	77.1 b
	CLP	29.6 d	59.3 f
	PWJ	31.9 c	45.3 h
	KRA	18.1 f	38.7 k
	PCT	68.3 a	66.3 d
	MAD	59.1 b	62.1 e
	GAL 2	17.7 f	42.8 i
Mean		34.9	55.9

Remarks: Numbers followed by the same letters on the same column are not significantly different based on DMRT 5%
the same population at different seasons (Arbona, Manzi, de Ollas, & Gómez-Cadenas, 2013; Jones et al., 2013). Due to the wide-distribution and great adaptive response capability of galangal to different environmental conditions, and its proficiency to yield potential therapeutic natural products, a specific and innovative metabolomics approach was used to obtain the respective chemical profiles of the samples and to correlate them with the environmental data (climate and soil) from distinct regions at different seasons (Raina, Abraham, & Sivaraj, 2015). The metabolomic approach is useful to understand how variations in plant metabolism can be a response to changes in the surrounding environmental conditions as reported by Sampaio, Edrada-Ebel, & Da Costa (2016) that the chemical features of *Tithonia diversifolia* in rationale with changes in environmental factors by taking into account the variations in metabolic profile perceived through the occurrence of major metabolites in various plant parts.

The Density of Idioblast Cell in Galangal Rhizome

The idioblast cell density was significantly (*p* < 0.05) influenced by the interaction between location and galangal accessions (Table 6). Idioblast density calculations were carried out in cells containing essential oils. The results of the idioblast density calculation showed that the distribution of idioblasts that contained oil cells was denser in the pith tissue than in the cortex tissue at both locations. Idioblasts that had the most oils were obtained from PCT (90.5 cells/mm²) at location A and PBG (77.1 cells/mm²) at location B. According to Nugroho (2018), idioblast cells are cells that are contained in a tissue that is different in shape, size, content, or function from the surrounding cells. Idioblasts in galangal plants contain oil cells and have a yellow to orange color, and they are denser in the pith tissue, which is thought to be related to the age of galangal at harvest (12 MAP). A higher number of idioblasts does not always lead to an increase in oil cells (de Souza, 2016). Instead, the number of oil cells increases with increasing plant age, causing the mature rhizomes to contain more essential oils than the young ones (Mu, Liu, Kuang, Zou, & Liao, 2015). Our results coincide with Liu, Specht, Zhao, & Liao (2020) that reported that *Zingiber officinale* rhizomes had the highest idioblast density in the pith. Oil cell-filled idioblasts were also detected in the rhizome of *Alpinia zerumbet* (Victório, Kuster, & Lage, 2011). Apart from essential oils, idioblast cells can also store various other secondary metabolite compounds in large quantities, such as crystals, resins, mucilages, and tannins (Nugroho, 2018).

The high amount of EPMC levels found in these two accessions (PBG and PCT) indicate that they are capable of thriving in a large range of environmental conditions and can potentially overcome environmental stress conditions better. Furthermore, high levels of EPMC increase galangal’s medicinal effectiveness and could help to alleviate the domestic galangal deficit in Indonesia. Thus, PBG and PCT are recommended as candidates for superior varieties. The suggestion that PBG and PCT optimally grow at an altitude of 200–800 m asl, temperature at 21–28°C, 3000–4000 mm/year rainfall, 75-95% humidity, and full sunlight or 21–70%. Soil conditions should allow for good drainage, with a clay texture to sandy loam, and soil pH 5–5.5. The other accessions that have the potential to be developed in the future are CLP (59.9%) and KRA (54.0%) based on the high EPMC content and MAD with the highest essential oil content (3.99%) compared to other accessions.

CONCLUSION

The components of galangal essential oil are EPMC, 2-propenoic acid, caryophyllene, 3-carene, ɤ-muurolene, patchouli alcohol, and 1,8-cineole. The highest EPMC levels were found in PCT at location A and PBG at location B. The metabolite profile of cluster one included PCT from location A. Cluster two was CLP from location A, as well as PBG, MAD, and GAL 2 from location B. The highest density of idioblast cells at location A was found in PCT and PBG at location B.

ACKNOWLEDGEMENT

The author thanks the Ministry of Research, Technology and Higher Education for research assistance funds through the 2015 Postgraduate Lecturer of Domestic Education (BPPDN) of Indonesia Scholarship for 2015.

REFERENCES

Anggraito, Y. U., Susanti, R., Iswari, R. S., Yuniastrate, A., Lisdiana, Nugrahangisih, W., … Bintari, S. H. (2018). *Metabolit sekunder dari tanaman: Aplikasi dan produksi*. Semarang, ID: Fakultas Matematika dan Ilmu Pengetahuan Alam,
Subaryanti et al.: Oil Components and Metabolite Profiles in Galangal

Universitas Negeri Semarang. Retrieved from http://lib.unnes.ac.id/31113/1/BOOK_CHAPTER_OKE_2018.pdf

Aragaw, M., Alamerew, S., Michael, G. H., & Tesfaye, A. (2011). Variability of ginger (Zingiber officinale Rosc.) accessions for morphological and some quality traits in Ethiopia. International Journal of Agricultural Research, 6(6), 444–457. https://doi.org/10.3923/ijar.2011.444.457

Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911. https://doi.org/10.3390/ijms14034885

Bermawie, N., Syahid, S., Aijah, N., Purwiyanti, S., & Martono, B. (2013). Stabilitas hasil dan mutu enam genotipe harapan jahe putih kecil (Zingiber officinale Rosc. var amarum) pada beberapa agroekologi. Jurnal Penelitian Tanaman Industri, 19(2), 58–65. https://doi.org/10.21082/jlitti.v19n2.2013.58-65

Bettaieb, I., Zakhama, N., Aïdi Wannes, W., Kchouk, M. et al. (2009). Characterezation of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245, 653–665. https://doi.org/10.1007/s00217-018-3188-z

Bicchi, R., Chotto, M. N., Fiumara, M. C., Chiozzato, R., Kutchan, T. M., & Lewis, N. G. (2000). Essential oil components and yields from leaves and rhizomes of Kaempferia galanga Linn. Chittagong University Journal of Biological Sciences, 3(1), 65–76. https://doi.org/10.3329/cubjs.v3i1.13407

Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. Plant Journal, 100, 892–907. https://doi.org/10.1111/tpj.14496

BPS. (2019). Statistik tanaman biofarmaka Indonesia 2018. Jakarta, ID: Badan Pusat Statistik. Retrieved from https://www.bps.go.id/publication/2019/10/769ba24004819d2bb96bd633/statistik-tanaman-biofarmaka-indonesia-2018.html

BSN. Simplisia kencur (2005). Indonesia: Badan Standardisasi Nasional. Retrieved from https://dokumen.tips/documents/rempah-bubuk-simplisia-kencur-sni-01-7085-2005.html

Bunthor, B. H., Rogomulyo, R., & Trisnowati, S. (2014). Pengaruh takaran pupuk kandang dan intensitas cahaya terhadap pertumbuhan dan hasil temu putih (Curcuma zedoaria L.). Vegetalika, 3(4), 29–39. Retrieved from https://jurnal.ugm.ac.id/jbp/article/view/5759

Butnariu, M., & Sarac, I. (2018). Essential oils from plants. Journal of Biotechnology and Biomedical Science, 1(4), 35–43. https://doi.org/10.14302/issn.2576-6694.jbbs-18-2489

Chiu, C. Y., Yeh, K. W., Lin, G., Chiang, M. H., Yang, S. C., Chao, W. J., … Huang, J. L. (2016). Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE, 11(2), e0149823. https://doi.org/10.1371/journal.pone.0149823

Chrysargyris, A., Mikallou, M., Petropoulos, S., & Tzortzakis, N. (2020). Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy, 10(5), 727. https://doi.org/10.3390/agronomy10050727

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163

Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (Secondary metabolites). In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (pp. 1250–1318). American Society of Plant Physiologists. Retrieved from https://instruct.uwo.ca/biology/407b/restricted/pdf/Chpt24.pdf

da Costa, O. B., Del Menezzi, C. H. S., Benedito, L. E. C., Resck, I. S., Vieira, R. F., & Bizzo, H. R. (2014). Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Alemão) collected during the daytime. International Journal of Forestry Research, 2014, 982576. https://doi.org/10.1155/2014/982576
da Silva, E. B. P., Soares, M. G., Mariane, B., Vallim, M. A., Pascon, R. C., Sartorelli, P., & Lago, J. H. G. (2013). The Seasonal variation of the chemical composition of essential oils from Porcella macrocarpa r.e. fifies (Annonaceae) and their antimicrobial activity. Molecules, 18(11), 13574–13587. https://doi.org/10.3390/molecules18113574

de Souza Tavares, W., de Sousa Freitas, S., Grazziotti, G. H., Parente, L. M. L., Lião, L. M., & Zanuncio, J. C. (2013). Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops and Products, 46, 158–164. https://doi.org/10.1016/j.indcrops.2013.01.023

de Souza, E. L. (2016). The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends in Food Science and Technology, 56, 1–12. https://doi.org/10.1016/j.tifs.2016.07.012

DEPKES RI. (1977). Materia medika Indonesia (1st ed.). Jakarta, ID: Departemen Kesehatan Republik Indonesia. Retrieved from https://www.onesearch.google.com/scholar_lookup?title=Estimation+of+genetic+variability+in+turmeric+%28Curcuma+longa+L.%29+germplasm+using+agro-mometabolomics+and+its+use+in+ecology. Austral Ecology, 38(6), 713–720. https://doi.org/10.1111/aecl.12019

Fernández-Sestelo, M., & Carrillo, J. M. (2020). Environmental effects on yield and composition of essential oil in wild populations of spike lavender (Lavandula latifolia Medik.). Agriculture, 10(12), 626. https://doi.org/10.3390/agriculture10120626

Gowda, V., Kress, W. J., & Htun, T. (2012). Two new species of gingers (Zingiberaceae) from Myanmar. PhytoKeys, 13, 5–14. https://doi.org/10.3887/phytokeys.13.2670

Gupta, P., & De, B. (2017). Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin and gentisic acid levels in leaves of tolerant varieties. Plant Signaling and Behavior, 12(7), e1335845. https://doi.org/10.1080/15592342.2017.1335845

Gutbrodt, B., Dorn, S., Unsicker, S. B., & Mody, K. (2012). Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology, 22, 101–111. https://doi.org/10.1007/s00049-012-0102-1

Guzman, J. D. (2014). Natural cinnamic acids, synthetic derivatives, and hybrids with antimicrobial activity. Molecules, 19(12), 19292–19349. https://doi.org/10.3390/molecules191219292

Han, J. S., Lee, S., Kim, H. Y., & Lee, C. H. (2015). MS-based metabolite profiling of aboveground and root components of Zingiber mioga and Officinale. Molecules, 20(9), 16170–16185. https://doi.org/10.3390/molecules200916170

Hardy, N. W., & Hall, R. D. (2012). Plant metabolomics: Methods and protocols. New York: Humana Press. https://doi.org/10.1007/978-1-61779-594-7

Harit, J., Barapatra, A., Prajapati, M., Aadil, K. R., & Senapati, S. (2013). Antimicrobial activity of rhizome of selected Curcuma variety. International Journal of Life Sciences Biotechnology and Pharma Research, 2(3), 1–7. Retrieved from http://www.ijlsp.com/index.php?m=content&c=index&a=show&catid=120&id=131

Jan, H. U., Rabbani, M. A., & Shinwari, Z. K. (2012). Estimation of genetic variability in turmeric (Curcuma longa L.) germplasm using agromorphological traits. Pakistan Journal of Botany, 44, 231–238. Retrieved from https://scholar.google.com/scholar_lookup?title=Estimation+of+genetic+variability+in+turmeric+%28Curcuma+longa+L.%29+germplasm+using+agro-morphological+traits&author=Jan%2C+H.U.+%26+Shinwari%2C+Z.K.+%26+Rabbani%2C+M.A.+%26+Shinwari%2C+Z.K.&c=index&a=show&catid=120&id=131

Jones, O. A. H., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J., & Svendsen, C. (2013). Metabolomics and its use in ecology. Austral Ecology, 38(6), 713–720. https://doi.org/10.1111/aecl.12019

Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas-Oates, J., & António, C. (2016). Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35(5), 620–649. https://doi.org/10.1002/mas.21449

Karami, A., Khoshbakht, T., Esmaeili, H., & Maggi, F. (2020). Essential oil chemical variability in Oliveria decumbens (Apiaceae) from different
regions of Iran and its relationship with environmental factors. *Plants*, 9(6), 680. https://doi.org/10.3390/plants9060680

Kavitha, P. R., & Menon, M. V. (2013). Effect of potassium and secondary nutrients on the essential oil and oleoresin contents in kacholam (Kaempferia galanga L.). *Journal of Tropical Agriculture*, 51(1), 105–110. Retrieved from http://jtripag.kau.in/index.php/ojs2/article/view/288

Komala, I., Supandi, Nurhasni, Betha, O. S., Yardi, Mufidah, S., ... Sutar. (2017). Microwave-assisted synthesis of p-methoxycinnamamides and p-methoxy-β-nitrostyrenes from ethyl p-methoxycinnamate and screening their anti-inflammatory activity. *Natural Product Communications*, 12(8), 1265–1268. https://doi.org/10.1177/1934578x1701200830

Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A., & Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. *Molecular Plant*, 8(1), 58–67. https://doi.org/10.1016/j.molp.2014.11.010

Lakitan, B. (2018). *Dasar-dasar fisiologi tumbuhan* (14th ed.). Depok, ID: PT. RajaGrafindo Persada. Retrieved from http://www.rajagrafindo.co.id/produk/dasar2-fisiologi-pertumbuhan/

Liu, H., Specht, C. D., Zhao, T., & Liao, J. (2020). Morphological anatomy of leaf and rhizome in *Zingiber officinale* Roscoe, with emphasis on secretory structures. *HortScience*, 55(2), 204–207. https://doi.org/10.21273/HORTSCI14555-19

Mattjik, A. A., & Sumertajaya, M. (2006). *Perancangan percoobaan dan aplikasi SAS dan minitab* (2nd ed.). Bogor, ID: IPB Press. Retrieved from https://scholar.google.com/scholar?cluster=13832081867703643652&hl=en&oi=scholarr

Meena, R. K., Jangra, S., Wadhwa, Z., Monika, & Wati, L. (2017). Role of plant volatiles in defense and communication. *International Journal of Current Microbiology and Applied Sciences*, 6(4), 300–313. https://doi.org/10.20546/ijcmsa.2017.604.033

Moghadam, M., & Meh dizadeh, L. (2017). Chemistry of essential oils and factors influencing their constituents. In *Soft Chemistry and Food Fermentation - Handbook of Food Bioengineering* (pp. 379–419). Academic Press. https://doi.org/10.1016/B978-0-12-811412-4.00013-8

Mu, N., Liu, H.-F., Kuang, Y.-F., Zou, P., & Liao, J.-P. (2015). Developmental processes of rhizome and ultrastructure of secretory cavities in *Zingiber officinale* Roscoe. *Journal of Tropical and Subtropical Botany*, 23(2), 151–159. Retrieved from http://caod.oriprobe.com/articles/44204871/Developmental_Processes_of_Rhizome_and_Ultrastructure_of_Secretory_Cav.htm

Munda, S., Saikia, P., & Lal, M. (2018). Chemical composition and biological activity of essential oil of *Kaempferia galanga*: A review. *Journal of Essential Oil Research*, 30(5), 303–308. https://doi.org/10.1080/10412905.2018.1486240

Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. *South African Journal of Botany*, 82, 11–20. https://doi.org/10.1016/j.sajb.2012.05.009

Nugroho, L. H. (2018). *Struktur dan produk jaringan sekretori tumbuhan* (2nd ed.). Yogyakarta, ID: Gadjah Mada University Press. Retrieved from https://ugmpress.ugm.ac.id/en/product/pertanian/taksonomi-umum-dasar-dasar-taksonomi-tumbuhan

Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. *Cellular and Molecular Life Sciences*, 69(19), 3225–3243. https://doi.org/10.1007/s00018-012-1091-5

Olawode, E. O., Tandlich, R., & Cambray, G. (2018). 1H-NMR profiling and chemometric analysis of selected honey from South Africa, Zambia, and Slovakia. *Molecules*, 23(3), 578. https://doi.org/10.3390/molecules23030578

Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. *Animal Feed Science and Technology*, 176(1–4), 5–16. https://doi.org/10.1016/j.anifeedsci.2012.07.002

Preetha, T. S., Hemantakumar, A. S., & Krishnan, P. N. (2016). A comprehensive review of *Kaempferia galanga* L. (Zingiberaceae): A high sought medicinal plant in tropical Asia. *Journal of Medicinal Plants Studies*, 4(3), 270–276. Retrieved from http://www.plantsjournal.com/archives/2016/vol4issue3/PartD/4-3-8-414.pdf

Pujiasmanto, B. (2009). *Strategi pengembangan budidaya tumbuhan obat dalam menunjang pertanian berkelanjutan*. Semarang, ID: Universitas Sebelas Maret Press. Retrieved from https://scholar.google.com/scholar?cluster=7429654309445760425&hl=en&oi=scholarr
Subaryana et al.: Oil Components and Metabolite Profiles in Galangal

Purwadi, E. (2011). Pengujian ketahanan benih terhadap cekaman lingkungan. Retrieved from https://www.duniapelajar.com/2011/05/23/pengujian-ketahanan-benih-terhadap-cekaman-lingkungan/

Purwoko, T. (2007). Fisiologi mikroba. Jakarta, ID: Bumi Aksara. Retrieved from http://opac.lib.ugm.ac.id/index.php?mod=book_detail&sub=BookDetail&act=view&typ=html&buku_id=646836&obyek_id=1

Putri, E. I. K., Rifin, A., Novindra, Daryanto, H. K., Hastuti, & Istriomah, A. (2014). Tangible value biodiversitas herbal dan meningkatkan daya saing produk herbal Indonesia dalam menghadapi masyarakat ekonomi ASEAN 2015. Jurnal Ilmu Pertanian Indonesia, 19(2), 118–124. Retrieved from https://journal.ipb.ac.id/index.php/JIPI/article/view/8807

Rahimmalek, M., Tabatabaei, B. E. S., Etemadi, N., Goli, S. A. H., Arzani, A., & Zeinalli, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products, 29(2–3), 348–355. https://doi.org/10.1016/j.indcrop.2008.07.001

Raina, A. P., Abraham, Z., & Sivaraj, N. (2015). Diversity analysis of Kaempferia galanga L. germplasm from South India using DIVA-GIS approach. Industrial Crops and Products, 69, 433–439. https://doi.org/10.1016/j.indcrop.2015.02.052

Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613

Rehman, R., Hanif, M. A., Mushraq, Z., Mochona, B., & Qi, X. (2016). Biosynthetic factories of essential oils: The aromatic plants. Natural Products Chemistry & Research, 4, 4. https://doi.org/10.4172/2329-6836.10000227

Rostiana, O., & Effendi, D. S. (2007). Teknologi unggulan kencur: Perbenihan dan budidaya pendukung varietas unggul. Bogor, ID: Pusat Penelitian dan Pengembangan Perkebunan Badan Penelitian dan Pengembangan Pertanian. Retrieved from https://dokumen.tech/document/teknologi-unggulan-kencur-kencur-1-2-varietas-unggul-gambir-4-bercau-dau.html

Rostiana, O., & Subaryanti. (2010). Yield and quality of five galangas (Kaempferia galanga L.) promising lines at different growth environments. Jurnal Bahan Alam Indonesia, 7(2), 152. Retrieved from http://portalgaruda.fli.unissula.ac.id/index.php?ref=curve&mod=viewarticle&article=414804

Rostiana, O., Haryudin, W., & Rosita, S. (2006). Stabilitas hasil lima nomor harapan kencur. Jurnal Penelitian Tanaman Industri, 12(4), 140–145. https://doi.org/10.21082/jjiltir.v12n4.2006.140-145

Rostiana, O., Rosita, S., & Rahardjo, M. (2009). Standar prosedur operasional budidayakah. Circular, 16, 13–24. Retrieved from http://baliitro.itb.bpk. pertanian.go.id/wp-content/uploads/2013/06/2-Kencur.pdf

Salim, Z., & Munadi, E. (2017). Info komoditi tanaman obat. Jakarta, ID: Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia. Retrieved from http://bppp.kemendag.go.id/media_content/2017/12/lsi_BRIK_Tanaman_Obat.pdf

Salvador, V. H., Lima, R. B., dos Santos, W. D., Soares, A. R., Böhm, P. A. F., Marchiosi, R., ... Ferrarese-Filho, O. (2013). Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE, 8(7), e69105. https://doi.org/10.1371/journal.pone.0069105

Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265. https://doi.org/10.1038/srep29265

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3(1), 1–16. https://doi.org/10.1007/s12393-010-9031-3

Sangwan, R. S., Tiwari, P., Mishra, S. K., Yadav, R. K., Tripathi, S., Kushwaha, A. K., & Sangwan, R. S. (2015). Plant metabolomics: An overview of technology platforms for applications in metabolism. In D. Barh, M. Khan, & E. Davies (Eds.), PlantOmics: The Omics of Plant Science (pp. 257–298). New Delhi, IN: Springer. https://doi.org/10.1007/978-81-322-2172-2_9

Septaningsih, D. A., Darusman, L. K., Afendi, F. M., & Heryanto, R. (2018). Liquid chromatography-mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma aeruginosa. Indonesian Journal of Chemistry, 18(1), 43–52. https://doi.org/10.22146/icj.25456
Subaryanti et al.: Oil Components and Metabolite Profiles in Galangal

Siromsruth, A., Arabi, J., & Asgari, M. R. (2014). Effect of drought stress levels and organic manures on yield, essential oil content, and some morphological characteristics of sweet basil (Ocimum basilicum). Advances in Environmental Biology, 8(4), 880–885. Retrieved from https://www.researchgate.net/publication/286156910_Effect_of_drought_stress_levels_and_organic_manures_on_yield_essential_oil_content_and_some_morphological_characteristics_of_sweet_basil_Ocimum_basilicum

Srivastava, N., Ranjana, Singh, S., Gupta, A. C., Shanker, K., Bawankule, D. U., & Luqman, S. (2019). Aromatic ginger (Kaempferia galanga L.) extracts with ameliorative and protective potential as a functional food, beyond its flavor and nutritional benefits. Toxicology Reports, 6, 521–528. https://doi.org/10.1016/j.toxrep.2019.05.014

Subaryanti. (2005). Karakteristik komponen hasil mutu kencur (Kaempferia galanga L) pada lingkungan tumbuh yang berbeda. IPB University. Retrieved from https://repository.ipb.ac.id/handle/123456789/13291

Suryawati, S., & Murniyanto, E. (2011). Hubungan sifat tanah Madura dengan kandungan minyak atsiri dan tingkat kelarutannya pada jahe (Zingiber officinale L.). Agrovigor: Jurnal Agroekoteknologi, 4(2), 99–104. Retrieved from https://journal.trunojoyo.ac.id/handle/123456789/401

Syahid, S. F., Syukur, C., Kristina, N. N., & Ptino, J. (2012). Adaptasi delapan nomor harapan kunyit (Curcuma domestica Vahl.) toleran naungan. Buletin Penelitian Tanaman Rempah Dan Obat, 23(2), 115–124. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/bultro/article/view/401

Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sunderland, Massachusetts: Sinauer Associates Inc. Publishers. Retrieved from https://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdf

Tisserand, R., & Young, R. (2014). Essential oil safety: A guide for health care professionals (2nd ed.). Elsevier. https://doi.org/10.1016/C2009-0-52351-3

Tripathi, M., Chawla, P., Upadhay, R., & Trivedi, S. (2013). Essential oils from family Zingiberaceae for antimicrobial activity - a review. International Journal of Pharma and Bio Sciences, 4(4), 149–162. Retrieved from https://ijpbs.net/details.php?article=2698

Umar, M. I., Asmawi, M. Z., Sadikun, A., Atangwo, I. J., Yam, M. F., Altaf, R., & Ahmed, A. (2012). Bioactivity-guided isolation of ethyl-p-methoxy-cinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules, 17(7), 8720–8734. https://doi.org/10.3390/molecules17078720

Unal, B. T., Guvensen, A., Dereboylu, A. E., & Ozturk, M. (2013). Variations in the proline and total protein contents in Origanum siiyleum L. from different altitudes of Spil mountain, Turkey. Pakistan Journal of Botany, 45(S1), 571–576. Retrieved from https://www.pakbs.org/pjbot/PDFs/45(S1)/76.pdf

Velayudhan, K. C., Dikshit, N., & Abdul Nizar, M. (2012). Ethnobotany of turmeric (Curcuma longa L.). Indian Journal of Traditional Knowledge, 11(4), 607–614. Retrieved from http://nopr.niscair.res.in/bitstream/123456789/14954/1/IJTK11%284%29%20607-614.pdf

Víctorio, C. P., Kuster, R. M., & Lage, C. L. S. (2011). Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (PERS.) Burtt & Smith under the influence of different plant growth regulators. Quimica Nova, 34(3), 430–433. https://doi.org/10.1590/S0100-40422011000300012

Vilela, E. C., Duarte, A. R., Naves, R. V., Santos, S. C., Seraphin, J. C., & Ferri, P. H. (2013). Spatial chemometric analyses of essential oil variability in Eugenia dysenterica. Journal of the Brazilian Chemical Society, 24(5), 873–879. https://doi.org/10.5935/0103-5053.201300099

Weckwerth, W., & Kahl, G. (2013). The handbook of plant metabolomics. Wiley-VCH. https://doi.org/10.1002/9783527699882

Widiyanto, A., & Siarudin, M. (2013). Karakteristik daun dan rendemen minyak atsiri lima jenis tumbuhan kayu puth. Jurnal Penelitian Hasil Hutan, 31(4), 235–241. https://doi.org/10.20886/jphh.2013.31.4.235-241

Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089–4103. https://doi.org/10.1093/jxb/erp243

Widyastuti, Y., & Sugiarso, S. (2003). Pengaruh beberapa tingkat dosis pupuk organik dan tiga jenis tanah pada pertumbuhan dan kandungan minyak atsisi ketumbar (Coriandrum sativum L.). Jurnal Bahan Alam Indonesia, 2(3), 105. Retrieved from http://
portalgaruda.fli.unissula.ac.id/index.php?ref=br
owse&mod=viewarticle&article=414701

Xia, J., & Wishart, D. S. (2016). Using metaboanalyst
3.0 for comprehensive metabolomics data
analysis. Current Protocols in Bioinformatics,
55(1), 14.10.1-14.10.91. https://doi.org/10.1002/
cpbi.11

Yang, Y., Tian, S., Wang, F., Li, Z., Liu, L., Yang, X., ... Li,
Y. (2018). Chemical composition and biological
activity of essential oil of Kaempferia galanga: A
review. International Journal of Agriculture and
Biology, 20(2), 457–462. Retrieved from http://
www.fspublishers.org/Issue.php?y=2018&v_
no=20&categoryID=151

Yaqoob, U., & Nawchoo, I. A. (2017). Impact of habitat
variability and altitude on growth dynamics and
reproductive allocation in Ferula jaeschkeana
Vatke. Journal of King Saud University -
Science, 29(1), 19–27. https://doi.org/10.1016/j.
jksus.2015.10.002

Yudthavorasit, S., Wongravee, K., & Leepipatpiboon,
N. (2014). Characteristic fingerprint based on
gingerol derivative analysis for discrimination
of ginger (Zingiber officinale) according
to geographical origin using HPLC-DAD
combined with chemometrics. Food Chemistry,
158, 101–111. https://doi.org/10.1016/j.
foodchem.2014.02.086

Yulipriyanto, H. (2010). Biologi tanah dan strategi
pengelolaannya. Yogyakarta, ID: Graha Ilmu.
Retrieved from https://opac.perpusnas.go.id/
DetailOpac.aspx?id=79981#