Implementation of vibration signals receiving unit on Raspberry single-board computers

V A Faerman¹, A V Tsavnin² and S A Andreev²
¹Institute of System Integration and Security, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
²School of Computer Science & Robotics, Tomsk Polytechnic University, Tomsk, Russia
E-mail: fva@fb.tusur.ru

Abstract. The paper dedicated to vibration measurement system development on the Raspberry Pi basis. Main features of the solution are low-cost, easy access to components and functionality and flexibility provided by Raspberry Pi usage. Circuit solution and configuring procedures are presented and described. In particular, block diagram of the vibration measurement system with piezo-electric sensors. Two variants of the vibration measurement system, on the Raspberry Pi B+ and Raspberry Pi 3B correspondingly, were implemented and tested as well. In addition, two variants of impedance-matching device were implemented. Conducted and described experiments confirm performance both separate components and the whole solution. Presented results are applicable for correlation leak detectors new algorithmic solutions and in educational process.

1. Introduction
The main trend in modern instrument manufacturing is microprocessor devices usage as for different signal processing algorithms as for diagnostic purposes. Implemented algorithms determine operability and performance of microprocessor units generally [1].

Nowadays, new algorithms development and testing are main trend in the field of advanced facilities of technical diagnostics. New algorithms testing requires hardware and software solutions application for signal processing [2–4]. These solutions are applicable in educational process as a part of software-oriented education of engineers [5, 6].

In this paper vibration measurement system implementation on the low-cost Raspberry Pi computer basis. Developed solutions are used for time-delay estimation algorithms testing. The algorithms are used in leak detection correlation devices software, described in [6, 7].

2. Components and computers

2.1. Concept of the solution
The solution comprises four interconnected blocks: vibratacoustic sensors, interface module, ADC and single-board computer. Structural diagram of the solution depicted in Figure 1.

Interface module task is analog sensors output and ADC input impedance and level matching. Single-board computer that calculates and processes the data controls ADC.
2.2. Vibroacoustic Sensors
Piezo-electric accelerometers are used as a vibroacoustic sensors. Presented devices has the following features: low level of output voltage, that proportional to vibro acceleration of the oscillating object; sensor output circuit impedance influence on precision and frequency measurement range [8].

In the research accelerometers DN-3 and DN-4 [9] are used.

2.3. Hardware
According to Figure 1, Raspberry Pi B+ [10] and compatible Wolfson audio card is used for receiving, discretization and collecting signal records in stereo format [11]. Despite the presented devices are assumed to be obsolete and are not manufactured nowadays, they are still applicable for signal processing problem. In particular, in [12] said that Raspberry Pi B+ is powerful enough for time-delay estimation problem in real-time.

2.4. Raspberry Pi 3B
Alternative version of signal receiver implemented on the most-recent Raspberry Pi 3B+ basis [13]. The most significant feature is almost three times more powerful CPU in comparison to Raspberry Pi B+ [14]. HiFiBerry DAC+ ADC module [15] is used for signal discretization.

3. Impedance and level matching circuit
Necessary condition for proper signal receiving is output circuit level and impedance matching with ADC. According to sensors specification [9], in order to fix the lower bound of frequency range at level of tens of Herz, it is necessary for input impedance to be not less than 100 kOhm with input capacitance about 1µF.

Since sensors have different sensitivity and thus provide different level of output voltage, matching device gain has to be adjustable in wide range. As a result two devices were developed. Circuits of the devices are shown in Figure 2.

3.1. Matching circuit without filtering
Matching devices are constructed on the basis of the cascade of two serial-connected instrumentation and differential amplifiers. Instrumentational amplifiers application is native to measurement systems since it combines differential amplifiers advantages (high input impedance, coherent noise rejection) but it has stable gain value with low level of self noise [16].

Output amplifier provides necessary level of differential input impedance 200 kOhm with 1 µF capacitance. That yields that $f_{\text{min}} = 7\text{Hz}$ according to [9].

The GPU_FFT library allows unrelated data arrays to be grouped into batches immediately before calling the calculation function. It reduces the amount of time spent on context switches when processing large data sets [12]. A practical implication in our research is that when calculating the correlation, you can produce two forward FFTs with a single function call.
\[f_{\text{min}} = \frac{0.79 \left(R_S + R_3 \right)}{R_S \cdot R_3 \left(C_S + C_2 \right)}, \quad (1) \]

where \(R_S \) – sensor insulation resistance (10 GOhm);
\(C_S \) – sensor self capacitance with cable (2000 pF).

The second amplifier comprises dimmer for gain adjusting in the range from 1 to 3, in order to work
with both DN-3 and DN-4 sensors. The output of the circuit supplied with Zener diode based limiter
for avo\-iding ADC failure [17].

3.2. Matching circuit with low-pass filtering

The second circuit differ from the first by low-pass filter with cutoff frequency \(f_c = 50 \, \text{Hz} \)

\[f_c = \frac{1}{2\pi \left(R_3 + R_4 \right) C_2} \quad (2) \]

The filter reduces electric pickups influence [18]. Although, low-pass filter, according to (1), increase
\(f_{\text{min}} \) value to \(f_{\text{min}} = 577 \, \text{Hz} \), experiment shows operability of the device with frequencies from 100 Hz.

Figure 2. Electrical circuits of the matching devices variants (in the top – the one without filtering,
in the bottom – the one with low-pass filtering).

4. Implementation of the receiving unit

As well as aforementioned hardware software essential. Since the research conducted in Raspberry Pi
basis oriented way, software development comes down to single-board computer configuration.
4.1. Raspberry Pi B+ configuring

Single-board computer Raspberry Pi B+ with mounted Wolfson audio card configuring process includes the following steps: driver installation, record and playback interface choice and record format setting. In order to provide proper interfacing between Raspberry and audio card, the driver installation should be performed using “apt-get” utility for UNIX-based operating systems. The next step is record device choice. Since Wolfson audio card has several onboard interfaces such as Sony/Philips Digital Interface (SPDIF), digital microphones, etc. In the research 3.5 Line in connector is used and is activated via running Bash script “Record_from_lineIn.sh”. The final step is proper recording. In order to get record with required quality and properties, one has to form terminal command of the following format:

```
arecord –c 2 –f S16_LE –r 44100 <filename.wav>
```

where –c defines number of channels, in our case 2,
–f defines recording format (16-bit, Little Endian) and
–r defines sample rate.

4.2. Raspberry Pi 3B+ configuring

Since both Raspberry Pi B+ and Raspberry Pi 3B+ use the same UNIX-based operating system Raspbian Jessie, configuring process comprises almost the same steps as a Raspberry Pi B+. The main difference is that Hifiberry allows users to adjust inner gain value for input signal with hardware onboard jumpers. Possible values are 0dB, 12dB and 32db. For the experiment, 0 dB value was chosen in order not to inject additional disturbances.

4.3. Interfaces and wires

Stereo jack 3.5 mm was chosen as a connectors in order to simplify wiring and experiment conduction. Mono signals channels were soldered with each other.

System shown in Figure 3. The second variant of matching device was implemented in metal case for electromagnetic pickups reduction.

5. Operability test

Experiment was conducted in laboratory conditions. Experiment includes receiving two time-shifted copies of vibroacoustic signals. Through stereo amplifier, PC-plugged vibrodynamics utilized as a playback device. More detailed experiment description presented in [19]. Experimental setup shown in Figure 3.

In Figure 4 actual and reference signals spectrum characteristics are depicted. Spectrum difference is due to non-homogeneous surface where sensors and dynamics were positioned and time-delay between channels as well.

During the experiment it was discovered that time-delay estimation can be perform using received vibroacoustic signal copies. Time-delay estimation precision is 0.5 ms (1.5% of relative length of correlation function time scale, shown in Figure 4). This fact allows system to be utilized for leak detectors software testing in laboratory conditions [3].

![Figure 3. Experimental setup.](image-url)
Figure 4. Specters of the: a) power cross spectrum of the reference signal; b) power cross spectrum of the received signal; c) cross-correlation between channels of the received signals.

6. Conclusion
Developed and tested vibroacoustic signals processing on the Raspberry Pi single-board computer basis device is properly functioning and applicable as for research leak detector model as for educational purposes. One of the main advantages of Raspberry Pi-based solutions is high-performance (Raspberry Pi 3B+ in particular). It allows not only performing software signal processing including electrical pickup reducing, but also time-delay estimation in real-time scale.

The next step of the development is deploying software algorithms directly on single-board computers and their performance research. It gives the opportunity to get correlation leak finder functioning prototype that can be used with pipe virtual model and in field conditions as well. Another important direction of the future study is applying the receiving unit with the software [20] to developed lab bench [19] to use it in education as cyberphysical system. For this purpose, we have plans to develop a Matlab library to simulate a pipe rig in a bench using the methods applied in [21].

References
[1] Chen Y-K, Chakrabarti C, Bhattacharyya S, Bougard B 2009 IEEE Signal Proc. Mag. 26(6) 24–25
[2] Chen J, Benesty J, Bhattacharyya S, Huang G 2009 J. Acoust. Soc. Am. 138 1737
[3] Brennan M J, Kroll de Lima F, de Almeida F C L, Joseph P F, Paschoalini A T 2016 Appl. Acoust. 102 137–145
[4] Holovatyy A, Teslyuk V, Iwaniec M, Mashevska M 2017 Eastern-European Journal of Enterprise Technologies 6 52–62
[5] Fuchs H V, Riehle R 1991 Appl. Acoust. 33 1–19
[6] Ionel R 2015 Proc. of International conference of the IEEE Industrial Electronics Society 2465–2471
[7] Pasolini G 2017 IEEE Signal Proc. Mag. 34(4) 151–158
[8] Steps to selecting the right accelerometer 2017 Endevco Newsletters 7. Available at: https://endevco.com/news/newsletters/2012_07/tp327.pdf
[9] Characteristics of the vibration sensors DN-3, DN-4 2014 Datasheet in Russian. Available at: http://izmeri.ru/08.html
[10] Introducing the Raspberry Pi Model B+ 2015 Blog record. Available at: https://cdn-learn.adafruit.com/downloads/pdf/introducing-the-raspberry-pi-model-b-plus-plus-differences-vs-model-b.pdf
[11] Wolfson audio card user documentation 2014 Official datasheet. Available at: https://www.farnell.com/datasheets/1805130.pdf.
[12] Dalskov D 2014 Locating acoustic sources with multilateration: master thesis (Aalborg university)
[13] Raspberry Pi 3 model B+ 2018 Official datasheet. Available at: https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
[14] Raspberry Pi 3 B+ specs and benchmarks 2018 Official release. Available at: https://www.raspberrypi.org/magpi/raspberry-pi-3bplus-specs-benchmarks/
[15] HiFiBerry DAC + ADC Datasheet 2018 Official datasheet. Available at: https://www.hifiberry.com/build/documentation/datasheet-dac-adc/
[16] Tietze U, Schenk C, Schmidt E 2008 Electronic circuits (Berlin: Springer-Verlag)
[17] Andreev S A, Kim V L 2017 Proc. of the 2016 Int. Conf, on Information technologies in science, management, social sphere and medicine 1 803 doi: 10.2991/itsmsm-16.2016.70
[18] Kay A 2012 Operational amplifier noise: Techniques and tips for analyzing and reducing noise (Newnes: Elsevier)
[19] Faerman V, Tsavlin A 2019 AIP Proceedings 2195 020006
[20] Faerman V, Tsavlin A, Shvetsov M 2020 Journal of Physics Conference Series 1615 012004
[21] Tsavlin A, Efimov S, Zamyatin S 2020 Symmetry 12(7) 1092