On finding exact and approximate solutions to fractional systems of ordinary differential equations using fractional natural adomian decomposition method

Mahmoud S. Alrawashdeh and Seba Migdady

Abstract
In this work, we present proofs for new theorems that deal with natural transform method (NTM) with Caputo derivative. Also, we give exact and approximate solutions to systems of fractional differential equations along with fractional ordinary and partial differential equations using the fractional natural decomposition method (FNDM). The Caputo derivative is used here to minimize the amount of computational, and this is of great significance for large-scale problems. The work outlines the significant features of the FNDM. Our work can be considered as another technique to existing methods, and will have many applications in variant areas of science and engineering.

Keywords
Fractional Differential Equations, Caputo Derivative, Natural Transform, System Differential Equations, Adomian Method.

AMS Classification: 45A05, 45B05, 45D05, 45E10, 45G15, 45J05.

Received 20 March 2021; Revised received 22 November 2021; accepted 27 January 2022

Introduction
Fractional derivatives have proven their capability to describe several phenomena associated with memory and aftereffects due to their non-locality property. Such phenomena are commonplace in physical processes, biological structures, and cosmological phenomena. For instance, the fractional Kelvin-Voigt rheological models have been employed to examine the low applied force frequencies. For this reason, this became necessary to illuminate the solutions of the models that describe these phenomena. Several analytical techniques were presented to achieve their objectives. Actually, all these approaches were accommodation for the existing methods to handle the integer case models which is natural since the fractional derivative generalizes the classical derivative to an arbitrary order.

Recently, fractional calculus and their applications have been treated by many researchers. As fractional derivative models are becoming increasingly popular among the wider scientific community, is the main motivation to study numerical schemes for fractional differential equations. There are many applications of fractional differential equations and just to name few: control systems, elasticity, electric drives, circuits systems, continuum mechanics, heat transfer, quantum mechanics, fluid mechanics, signal analysis, biomathematics, biomedicine, social systems and bio-engineering. Lately, many techniques discussed the way how to explore approximate solutions of FDEs, such as FDTM, the fractional sub-equation method, the fractional natural decomposition method (FNDM), the modified homotopy perturbation method (MHPM), the Conformable Sumudu Decomposition Method (CADM) and the (FADM). The outline of our work

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, 22110, Jordan

Corresponding author:
Mahmoud S. Alrawashdeh, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, 22110, Jordan. Email: msla@just.edu.jo

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
is as follows: First, in Chapters 2, we give the history of natural transform method, definitions of fractional derivatives. In Chapter 3, we present proofs to theorems related to the Caputo derivatives. Chapter 4 is devoted for applications model of FDEs using the proposed method. In chapter 5, we solve fractional systems of ODEs. Finally, our concluding remarks is presented, in chapter 6, to outline of what we have accomplished in this research.

Related Materials

We explore some definitions terminologies of natural transform that will be needed later on in the proofs of our results, (see for example,22,11,12).

Definition 1: We say a function \(\varphi(y) \in C_a \), where \(v \in \mathbb{R} \), \(y > 0 \), if \(\exists r \in \mathbb{R} \) with \(r > v \), such that \(\varphi(y) = y^r(f(y)) \), and \(f(y) \in C[0, \infty) \), and we say \(\varphi(y) \in C^k \), if \(f(k) \in C_a \) where \(k = 1, 2, 3, \ldots \).

Definition 2: If \(k - 1 < \nu < k \), \(k \in \mathbb{N} \), \(y > 0 \), \(\varphi \in C^k \). We define the Caputo type of \(\nu \) as

\[
\mathcal{C}^k \varphi(y) = y^k \mathcal{D}^k \varphi(y) = \frac{1}{\Gamma(k-\nu)} \int_0^y (y-t)^{k-\nu-1} \varphi(t) dt. \tag{1}
\]

Definition 3:23 The Mittag-Leffler in two parameters is given by

\[
E_{\nu,\eta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\nu k + \eta)}, \quad v > 0, \quad \eta > 0, \quad z \in \mathbb{C}.
\]

Definition 4: Let \(H(t) \) denote the Heaviside function, more precisely \(H(t) = 1 \) for \(t > 0 \) and \(H(t) = 0 \) for \(t < 0 \). We introduce a real-valued function, on which \(\mathcal{N}^+ \)-transform can be defined on \([0, \infty) \), where \(s > cu \), \(c > 0 \). Let \(\varphi(t) \) be continuous on \(\mathbb{R} \). For some \(K \), \(c > 0 \). Consider

\[
\mathbb{B} = \{ \varphi(t) \mid 0 < K e^{\nu t} H(t) + K e^{-\nu t} H(-t) \}. \tag{2}
\]

Note that for any \(\varphi(t) \) in the class \(\mathbb{B} \) we have

\[
\int_{-\infty}^{\infty} e^{\nu t} \varphi(t) dt = K \int_0^\infty e^{\nu t} e^{\nu t} dt + K \int_{-\infty}^0 e^{\nu t} e^{-\nu t} dt
\]

\[
= K \int_0^\infty e^{t(u + c)} dt + K \int_{-\infty}^0 e^{t(c u) dt},
\]

which is convergent provided that \(s > cu \). Then, we define the natural transform

\[
\mathcal{N}^+ (\varphi(t)) = R(s, u) = \int_0^\infty e^{s t} \varphi(t) dt. \tag{3}
\]

Alternatively,

\[
\mathcal{N}^+ (\varphi(t)) = R(s, u) = \frac{1}{u} \int_0^\infty e^{\frac{t}{u}} \varphi(t) dt. \tag{4}
\]

Note that one can obtain the Laplace transform and the Sumudu transform if we plug in \(u = 1, s = 1 \) in the above equations, respectively.

We shall use the well-known gamma function through out this paper

\[
\Gamma(z) = \int_0^\infty e^{-t} t^{-1} dt, \quad z > 0, \tag{5}
\]

where \(\Gamma(z + 1) = z \Gamma(z) \).

Important Properties

Some basic properties of the N-transforms are given as follows22,11,12

Property 1: \(\mathcal{N}^+(1) = \frac{1}{\nu} \).

Property 2: \(\mathcal{N}^+(y^\nu) = \frac{1}{\nu} \mathcal{N}^+(y^\nu)(\nu t)^{\nu - 1}, \quad \nu > -1. \)

Property 3: \(\mathcal{N}^+(^D_{\nu} \varphi(t))(s, u) = \frac{\nu}{s} \mathcal{N}^+(\varphi(t))(s, u) - \frac{\nu}{s} \varphi(0). \)

Natural Caputo Fractional Derivatives

Here we give detailed proofs to some theorems of N-transform of Caputo fractional derivative. The proofs of theorem (1) was given in another published paper by the first author.

Caputo Fractional Derivative

For the sake of readers, we give just some of natural transforms properties. We direct the reader for more properties to see for example,22,11,12

Theorem 1: If \(\nu \in \mathbb{Z}^+ \), where \(k - 1 \leq \nu < k \). Then, the \(\mathcal{N}^+ \)-transform of Caputo derivative of \(\varphi(t) \) is

\[
\mathcal{N}^+(D^\nu_{\nu} \varphi(t)) = \frac{s^\nu}{u^\nu} \mathcal{N}^+(\varphi(t)) - \sum_{m=0}^{k-1} \frac{s^{\nu(m+1)} \varphi(m)}{u^{\nu m} (D^\nu \varphi(t))_{t=0}}. \tag{6}
\]

Theorem 2: The natural transform of the Caputo derivative for \(\varphi(t) = 1 \) is given by

\[
\mathcal{N}^+(D^\nu_{\nu} (1)) = 0. \tag{7}
\]

Proof.: From Eq. (6), we have

\[
\mathcal{N}^+(D^\nu_{\nu} (1)) = \frac{s^\nu}{u^\nu} \mathcal{N}^+(1) - \sum_{m=0}^{k-1} \frac{s^{\nu(m+1)} (D^\nu \varphi(t))_{t=0}}{u^{\nu m} (D^\nu \varphi(t))_{t=0}}
\]

\[
= s^\nu \frac{1}{u^\nu} s^{\nu - 1} \nu [1] - 0
\]

\[
= s^\nu \frac{1}{u^\nu} s^{\nu - 1} \nu [1] - 0
\]

The proof of Theorem (2) is complete. \(\square \)
Theorem 3: (a) The natural transform of the Caputo derivative for $q(t) = t$ with $0 < u \leq 1$ is given by

$$N^+(D^u_0 f(t)) = \frac{s^u - 2}{u^{u-1}}. $$

(b) The natural transform of the Caputo derivative for $q(t) = t$ with $k - 1 < u \leq k$, and $k = 2, 3, 4, \ldots$ is

$$N^+(D^u_k f(t)) = 0. $$

Proof.: First note that $f'(t) = 1$, $f''(t) = 0$, \ldots, $f^{(k-1)}(t) = 0$.

Case 1. $0 < u \leq 1$. From Eq. (6), we have

$$N^+(D^u_0 f(t)) = \frac{s^u}{u^2}N^+(t) - \sum_{m=0}^{k-1} \frac{(s^u - m)(m+1)}{u^{m+1}} (D^m f(t))_{t=0}$$

$$= \frac{s^u}{u^2} - \frac{s^u - 1}{u^3} [0]$$

$$= \frac{s^u - 2}{u^3}. $$

Case 2. $k - 1 < u \leq k$, and $k = 2, 3, 4, \ldots$.

We get from Eq. (6),

$$N^+(D^u_k f(t)) = \frac{s^u}{u^2}N^+(t) - \sum_{m=0}^{k-1} \frac{(s^u - m)(m+1)}{u^{m+1}} (D^m f(t))_{t=0}$$

$$= \frac{s^u}{u^2} - \frac{s^u - 1}{u^3}[0] - \frac{s^u - 2}{u^4}[1] - \cdots - \frac{s^u - n}{u^{n+1}}[0]$$

$$= \frac{s^u - 2}{u^4} - \frac{s^u - 2}{u^5} = 0. $$

The proof of Theorem (3) is complete. \square

Theorem 4: The natural transform of the Caputo derivative for $q(t) = \frac{x^u}{a^u}$ is

$$N^+(D^u_{\frac{x^u}{a^u}} f(t)) = \frac{x^u - k}{a^{u-k+1}}. $$

with $k = 3, 4, \ldots$.

Proof.: First note that

$$f'(t) = \frac{(k-2)k^{k-2}}{k!}, f''(t) = \frac{(k-1)(k-2)(k-3)}{k!}, \ldots, f^{(n-1)}(t) = \frac{(k-1)(k-2)\cdots(k-n+1)k^{k-n}}{k!}. $$

One can conclude from Eq. (6),

$$N^+(D^u_{\frac{x^u}{a^u}} f(t)) = \frac{x^u}{u^2}N^+(t) - \sum_{m=0}^{n-1} \frac{(x^u - m)(m+1)}{u^{m+1}} (D^m f(t))_{t=0}$$

$$= \frac{x^u}{u^2} - \frac{x^u - 1}{u^3} [0] - \frac{x^u - 2}{u^4}[1] - \cdots - \frac{x^u - n}{u^{n+1}}[0]$$

$$= \frac{x^u - 2}{u^4} - \frac{x^u - 2}{u^5} = 0. $$

The proof of Theorem (4) is complete. \square

Theorem 5: The natural transform of the Caputo derivative for $q(t) = e^{at}$ is

$$N^+(D^u_{e^{at}} f(t)) = \frac{a^u}{u^2}N^+(t) - \sum_{m=0}^{n-1} \frac{(e^{at} - m)(m+1)}{u^{m+1}} (D^m f(t))_{t=0}$$

$$= \frac{a^u}{u^2} - \frac{a^u - 1}{u^3} [0] - \frac{a^u - 2}{u^4}[1] - \cdots - \frac{a^u - n}{u^{n+1}}[0]$$

$$= \frac{a^u - 2}{u^4} - \frac{a^u - 2}{u^5} = 0. $$

The proof of Theorem (5) is complete. \square

Theorem 6: The Caputo Fractional Natural Transform of $f(t) = \frac{x^u}{a^u}$, $a \neq b$ is

$$N^+(D^u_{\frac{x^u}{a^u}} f(t)) = \frac{x^u - k}{a^{u-k+1}}. $$

with $k = 3, 4, \ldots$.

Proof.: First note that

$$f'(t) = \frac{(k-2)k^{k-2}}{k!}, f''(t) = \frac{(k-1)(k-2)(k-3)}{k!}, \ldots, f^{(n-1)}(t) = \frac{(k-1)(k-2)\cdots(k-n+1)k^{k-n}}{k!}. $$

$$N^+(D^u_{\frac{x^u}{a^u}} f(t)) = \frac{x^u}{u^2}N^+(t) - \sum_{m=0}^{n-1} \frac{(x^u - m)(m+1)}{u^{m+1}} (D^m f(t))_{t=0}$$

$$= \frac{x^u}{u^2} - \frac{x^u - 1}{u^3} [0] - \frac{x^u - 2}{u^4}[1] - \cdots - \frac{x^u - n}{u^{n+1}}[0]$$

$$= \frac{x^u - 2}{u^4} - \frac{x^u - 2}{u^5} = 0. $$

The proof of Theorem (6) is complete. \square
The proof of Theorem (6) is complete.

Applications of FNDM for Fractional ODEs and PDEs

For this section, we shall implement the new scheme to solve two nonlinear fractional ODEs and we present solution to the diffusion fractional differential equations. Finally, we present numerical tables for these examples for multiple values of ν and t.

Methodology of FDM

Consider the general nonlinear (FODE)

$$^{\nu}D_{t}^{\alpha} \phi(t) + L(\phi(t)) + F(\phi(t)) = g(t),$$

where $t > 0$ and $0 < \nu \leq 1$, and along with initial condition

$$\phi(0) = h(t),$$

where $^{\nu}D_{t}^{\alpha} \phi(t)$ is the Caputo derivative for $\phi(t)$, L is the linear differential operator and F represents the nonlinear part. Also $g(t)$ is the non-homogeneous part.

Applying Theorem 1 to Eq. (11) one can conclude

$$\mathcal{N}^{+} \left[^{\nu}D_{t}^{\alpha} \left(\frac{e^{bt} - e^{at}}{b - a} \right) \right] = \frac{s^{\alpha}}{w^{\alpha}} \left[\frac{e^{bt} - e^{at}}{b - a} \right] - \sum_{k=0}^{n-1} \frac{s^{\alpha-(k+1)}}{w^{\alpha-k}} [D^{k} f(t)]_{t=0},$$

$$= \frac{s^{\alpha}}{w^{\alpha}} \left[\frac{u}{(s - au)(s - bu)} \right] - \sum_{k=0}^{n-1} \frac{s^{\alpha-(k+1)}}{w^{\alpha-k}} [D^{k} f(t)]_{t=0},$$

$$= \frac{u^{1-a}\alpha \omega}{(s - au)(s - bu)} - \frac{1}{b-a} \left[\frac{s^{\alpha-1}}{u^{\alpha}} + \sum_{k=0}^{n-1} \frac{s^{\alpha-n}}{u^{\alpha-(n-k+1)}} (b^{n-1} - a^{n-1}) \right],$$

$$= \frac{u^{1-a}\alpha \omega}{(s - au)(s - bu)} - \frac{1}{b-a} \sum_{k=0}^{n-1} s^{\alpha-(k+1)} (b^{k} - a^{k}),$$

$$= \frac{s^{\alpha}}{u^{\alpha}} \left[\frac{u - (ub)}{s} \right] - \frac{s^{\alpha-1}}{u^{\alpha}} \left[\frac{1}{b-a} \sum_{k=0}^{n-1} \left(\frac{ub}{s} \right)^{k} \right] - \frac{s^{\alpha-1}}{u^{\alpha}} \left[\frac{1}{b-a} \sum_{k=0}^{n-1} \left(\frac{ub}{s} \right)^{k} \right] - \frac{s^{\alpha-1}}{u^{\alpha}} \left[\frac{1}{b-a} \sum_{k=0}^{n-1} \left(\frac{ub}{s} \right)^{k} \right],$$

$$= \frac{s^{\alpha+1-n} u^{\alpha-a} (b^{\alpha} - a^{\alpha}) + u^{\alpha+1-n} s^{\alpha-n} (b^{\alpha} - a^{\alpha})}{(b-a)(s - au)(s - bu)}.$$
The rest of polynomials can be obtained likewise. Substituting Eq. (15) and Eq. (16) into Eq. (14) one arrive at
\[
\sum_{n=0}^{\infty} q_n(t) = G(t) - \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(L\left(\sum_{n=0}^{\infty} q_n(t) + \sum_{n=0}^{\infty} A_n(t)\right)\right)\right).
\]
(19)

With the help of Eq. (19), one can arrive at
\[
q_0(t) = G(t)
\]
\[
q_1(t) = -\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(L\left(q_0(t) + A_0(t)\right)\right)\right)
\]
\[
q_2(t) = -\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(L\left(q_1(t) + A_1(t)\right)\right)\right)
\]
\[
q_3(t) = -\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(L\left(q_2(t) + A_2(t)\right)\right)\right)
\]
Eventually, we have the general recursive formula as
\[
q_{n+1}(t) = -\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(L\left(q_n(t) + A_n(t)\right)\right)\right), \ n \geq 1.
\]
(20)

Hence, our approximate solution of the form
\[
q(t) = \sum_{n=0}^{\infty} q_n(t).
\]
(21)

Numerical Examples

Example 1: Consider the nonlinear FDE in the form\(^{21}\):
\[
\alpha D^\nu q(t) + \phi^2(t) = 2q(t) + 1, \ 0 < \nu \leq 1,
\]
together with condition
\[
q(0) = 0
\]
(22)

Applying theorem 3.1 to equation (22), one arrive at
\[
\mathcal{N}^{-1}(\phi^2(t)) = \frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+\left(1 + 2\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(q(t)) - \frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))\right)
\]
\[
= \frac{u^\alpha}{\alpha^\alpha} + 2\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(q(t)) - \frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))
\]
(24)

Taking the \(N\)-transform inverse of Eq. (24) one conclude
\[
q(t) = \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha}\right) + 2\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))\right)
\]
\[
- \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))\right)
\]
(25)

Suppose a solution exist for \(q(t)\) and the nonlinear term \(\phi^2(t)\) is given as
\[
q(t) = \sum_{n=0}^{\infty} q_n(t), \ \phi^2(t) = \sum_{n=0}^{\infty} A_n(t).
\]
(26)

Note here,
\[
A_0 = (\phi_0)^2
\]
\[
A_1 = 2\phi_0 \phi_1
\]
\[
A_2 = 2\phi_0 \phi_2 + (\phi_1)^2
\]
\[
A_3 = 2\phi_0 \phi_3 + 2\phi_1 \phi_2.
\]

From Eq. (26), then Eq. (25) becomes
\[
q(t) = \sum_{n=0}^{\infty} q_n(t) = \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha}\right) + 2\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi(t))\right)
\]
\[
- \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))\right)
\]
(27)

Looking at both sides of Eq. (27), one can conclude
\[
q(t) = \sum_{n=0}^{\infty} q_n(t) = \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha}\right) + 2\mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi(t))\right)
\]
\[
- \mathcal{N}^{-1}\left(\frac{u^\alpha}{\alpha^\alpha} \mathcal{N}^+(\phi^2(t))\right)
\]
(28)

Likewise,
Thus, the approximate solution for \(\phi(t) \) becomes
\[
\phi(t) = \sum_{n=0}^{\infty} \phi_n(t)
= \phi_0(t) + \phi_1(t) + \phi_2(t) + \phi_3(t) + \cdots
\]
(28)

If we choose \(\nu = 1 \), then Eq. (28) becomes
\[
\phi(t) = 1 + \sqrt{2} \tanh \left(\sqrt{2} t + \frac{1}{2} \log \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right) \right).
\]
This exact solution agrees with the one exists in the literature (Figure 1 and Table 1).

Example 2: Let us consider one model of the time fractional diffusion of the form \(^\nu D_t^\nu \phi(x, t) = \phi_x(x, t) + \phi(x, t), \ t > 0, \ \ 0 < \nu \leq 1,
(29)

together with initial condition
\[
\phi(x, 0) = \cos(\pi x).
\]
Employ first theorem 1 to equation (29) and see that
\[
\mathcal{N}^\nu \left(\phi(x, t) \right) = \frac{\nu}{\sqrt[\nu]{x}} \sum_{k=0}^{\infty} \frac{\nu^{-(k+1)}}{\nu^k} D_t^\nu \phi(x, 0) + \frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right) + \frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right)
= \frac{1}{\nu^\nu} \phi(x, 0) + \frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right) + \frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right)
\]
(31)

![Diagram](image)

Figure 1. These are solutions for example 1 for distinct values of \(\nu \).

Taking the N-transform inverse of equation (31), we arrive at
\[
\phi(x, t) = \cos(\pi x) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right) \right)
+ \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi(x, t) \right) \right).
\]
(32)

Suppose that our solution for \(\phi(x, t) \) is
\[
\phi(x, t) = \sum_{n=0}^{\infty} \phi_n(x, t).
\]
(33)

From equation (33), one see Eq. (32) becomes
\[
\sum_{n=0}^{\infty} \phi_n(x, t) = \cos(\pi x) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\sum_{n=0}^{\infty} \phi_n(x, t) \right) \right)
+ \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\sum_{n=0}^{\infty} \phi_n(x, t) \right) \right).
\]
(34)

Looking at equation (34), one can get
\[
\phi_0(x, t) = \cos(\pi x)
\]
\[
\phi_1(x, t) = \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_0(x, t) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_0(x, t) \right) \right)
\]
\[
\phi_2(x, t) = \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_1(x, t) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_1(x, t) \right) \right)
\]
\[
\phi_3(x, t) = \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_2(x, t) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_2(x, t) \right) \right)
\]
We follow this direction to obtain
\[
\phi_{n+1}(x, t) = \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_{n+1}(x, t) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_{n+1}(x, t) \right) \right)
\]
Finally, with the help of Eq. (34), one can easily explore the rest of the iterations
\[
\phi_1(x, t) = \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_0(x, t) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\phi_0(x, t) \right) \right)
\]
\[
= \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(-\pi^2 \cos(\pi x) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\cos(\pi x) \right) \right)
\]
\[
= \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\cos(\pi x) \right) \right) + \mathcal{N}^{-\nu} \left(\frac{\nu^\nu}{\sqrt[\nu]{x}} \mathcal{N}^\nu \left(\cos(\pi x) \right) \right)
\]
\[
= \left(1 - \pi^2 \right) \cos(\pi x) \frac{\nu^\nu}{\sqrt[\nu]{x}} \frac{1}{\left(\Gamma(\nu + 1) \right)}. \]

Table 1. Numerical Values for example 1 for different values of \(\nu \).

\(t \)	\(\nu = 0.45 \)	\(\nu = 0.6 \)	\(\nu = 0.75 \)	\(\nu = 1 \)
	Numerical	Exact	Numerical	Exact
0.2	0.931788	0.702985	0.471891	0.241863
0.4	0.706152	1.02876	0.897507	0.564371
0.6	-0.432075	0.794303	1.11755	0.926696
0.8	-2.4294	-0.222495	0.873956	1.2210187
1	-5.21527	-2.18641	-0.117103	1.2535556
Likewise,

$$\phi_2(x, t) = (1 - \pi^2)^2 \cos(\pi x) \frac{t^{2\nu}}{\Gamma(2\nu + 1)}$$
$$\phi_3(x, t) = (1 - \pi^2)^3 \cos(\pi x) \frac{t^{3\nu}}{\Gamma(3\nu + 1)}.$$

Now, our approximate solution for $\phi(x, t)$ is

$$\phi(x, t) = \sum_{n=0}^{\infty} \phi_n(x, t)$$
$$= \phi_0(x, t) + \phi_1(x, t) + \phi_2(x, t) + \phi_3(x, t) + \cdots$$
$$= \cos(\pi x) \left(1 + (1 - \pi^2) \frac{t^{\nu}}{\Gamma(\nu + 1)} + (1 - \pi^2)^2 \frac{t^{2\nu}}{\Gamma(2\nu + 1)} + (1 - \pi^2)^3 \frac{t^{3\nu}}{\Gamma(3\nu + 1)} + \cdots \right)$$

Therefore, our exact solution is

$$\phi(x, t) = \cos(\pi x) E_\nu((1 - \pi^2)t^\nu).$$

Substitute $\nu = 1$ in Eq. (35) to conclude

$$\phi(x, t) = \cos(\pi x) e^{(1 - \pi^2)t}.$$

This is indeed the intended solution for equation (29) which exists throughout the literature (Figures 2 and 3).

Remark. Figure 2 shows that the solution peak is high and one can see that the peak of the solutions of the diffusion equation becomes more and more smooth as the fractional factor ν increases (Table 2).

Fractional Systems of Ordinary Differential Equations

Now let us examine two models of systems of FDEs. Then, we present numerical values in tables for some values of t. We only used 5^{th} order approximate solutions for the two functions.

Figure 2. Exact solutions for example 4.2 with $\nu = 0.25, \nu = 0.50$, respectively.

Figure 3. Exact solutions for example 4.2 with $\nu = 0.75, \nu = 1$, respectively.
Example 3: Given the system of LFDE in the form:
\[cD_\nu t x(t) = 2x(t) + y(t), \quad 0 < \nu \leq 1 \]
\[cD_\eta t y(t) = x(t) + 2y(t), \quad 0 < \eta \leq 1 \]
(36)
together with value conditions
\[x(0) = 2, \quad y(0) = 1. \]
(37)
Applying the natural transform of equations (36) and (37), one conclude
\[N^+(x(t)) = \frac{2}{s} + 2 \frac{u^\nu}{s^\nu} N^+(x(t)) + \frac{u^\nu}{s^\nu} N^+(y(t)) \]
\[N^+(y(t)) = \frac{1}{s} + \frac{u^\eta}{s^\eta} N^+(x(t)) + 2 \frac{u^\eta}{s^\eta} N^+(y(t)) \]
(38)
Using the \(N^{-1} \) on equation (38) to arrive at
\[x(t) = 2 + 2 N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(x(t)) \right) + N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(y(t)) \right) \]
\[y(t) = 1 + N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(x(t)) \right) + 2 N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(y(t)) \right) \]
(39)
Suppose our solutions are of the forms
\[x(t) = \sum_{n=0}^{\infty} x_n(t), \quad y(t) = \sum_{n=0}^{\infty} y_n(t) \]
(40)
Then,
\[\sum_{n=0}^{\infty} x_n(t) = 2 + 2 N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(x(t)) \right) + N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(y(t)) \right) \]
\[\sum_{n=0}^{\infty} y_n(t) = 1 + N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(x(t)) \right) + 2 N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(y(t)) \right) \]
(41)
Using equation (41) we obtain
\[x_0(0) = 2 \quad y_0(0) = 1 \]
\[x_1(t) = 2 N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(x_0(t)) \right) + N^{-1} \left(\frac{u^\nu}{s^\nu} N^+(y_0(t)) \right) = \frac{5^\nu}{\Gamma(\nu+1)} \]
\[y_1(t) = -N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(x_0(t)) \right) + N^{-1} \left(\frac{u^\eta}{s^\eta} N^+(y_0(t)) \right) = \frac{4^\nu}{\Gamma(\eta+1)} \]

Table 2. Numerical results for Example 2 for distinct values for \(\nu \).

\(\nu \)	\(t \)	Numerical	Exact
0.25	0.02	0.20104552	0.20104552
0.04	0.17414299	0.28187077	0.28187077
0.06	0.15978332	0.23813296	0.23813296
0.08	0.1502041	0.21016121	0.21016121
0.1	0.14310464	0.19025412	0.19025412
0.5	0.14216061	0.25944897	0.25944897
0.04	0.12313769	0.19931273	0.19931273
0.06	0.11298741	0.16838543	0.16838543
0.08	0.10621033	0.14860641	0.14860641
0.1	0.10119026	0.13452998	0.13452998
0.5	0.10052276	0.18345812	0.18345812
0.04	0.087071497	0.14093539	0.14093539
0.06	0.079894162	0.11906468	0.11906468
0.08	0.075102048	0.1050806	0.1050806
0.1	0.071552321	0.09512706	0.09512706

Figure 4. Approximate solutions \(x(t), y(t) \) for example 1 with some values of \(\nu, \eta \), respectively.
Likewise,
\[x_2(t) = \frac{10t^{2\nu}}{\Gamma(2\nu + 1)} + \frac{4t^{\nu+\eta}}{\Gamma(\nu + \eta + 1)} \]
\[y_2(t) = \frac{8t^\eta}{\Gamma(2\eta + 1)} + \frac{5t^{\nu+\eta}}{\Gamma(\nu + \eta + 1)} \]

We proceed in a similar way to get
\[x_3(t) = \frac{20}{\Gamma(3\nu + 1)} t^{2\nu} + \frac{13}{\Gamma(2\nu + 1)} t^{\nu+2\eta} + \frac{8}{\Gamma(\nu + 2\eta + 1)} t^{\nu+2\eta} \]
\[y_3(t) = \frac{16}{\Gamma(3\nu + 1)} t^{3\nu} + \frac{28}{\Gamma(2\nu + 1)} t^{\nu+2\eta} + \frac{10}{\Gamma(\nu + 2\eta + 1)} t^{\nu+2\eta} \]
\[x_4(t) = \frac{40}{\Gamma(4\nu + 1)} t^{4\nu} + \frac{36}{\Gamma(3\nu + 1)} t^{3\nu + 2\eta} + \frac{30}{\Gamma(2\nu + 1)} t^{3\nu + 2\eta} \]
\[+ \frac{16}{\Gamma(\nu + 3\eta + 1)} t^{\nu+3\eta} y_4(t) = \frac{32}{\Gamma(4\nu + 1)} t^{4\nu} + \frac{36}{\Gamma(3\nu + 1)} t^{3\nu + 2\eta} \]
\[+ \frac{20}{\Gamma(2\nu + 2\eta + 1)} t^{2\nu + 2\eta} \]

Finally, the approximate solutions for these functions as
\[x(t) = \sum_{n=0}^{\infty} x_n(t) \]
\[y(t) = \sum_{n=0}^{\infty} y_n(t) \]

Thus,
\[x(t) = 2 + \frac{5t^\nu}{\Gamma(\nu + 1)} + \frac{10t^{2\nu}}{\Gamma(2\nu + 1)} + \frac{4t^{\nu+\eta}}{\Gamma(\nu + \eta + 1)} + \frac{20t^{3\nu}}{\Gamma(3\nu + 1)} \]
\[+ \frac{8t^{\nu+2\eta}}{\Gamma(\nu + 2\eta + 1)} + \frac{14t^{\nu+2\eta}}{\Gamma(2\nu + \eta + 1)} + \frac{5t^{\nu+3\eta}}{\Gamma(3\nu + \eta + 1)} \]
\[+ \cdots y(t) = 1 + \frac{4t^\eta}{\Gamma(\eta + 1)} + \frac{8t^{2\eta}}{\Gamma(2\eta + 1)} + \frac{5t^{\nu+\eta}}{\Gamma(\nu + \eta + 1)} \]
\[+ \cdots \]

Note that when \(\nu = \eta = 1 \), then the exact solutions are
\[x(t) = e^t + e^{2t}; \quad y(t) = -e^t + e^{3t}. \]

Example 4: Suppose we are given a system of LFDE of the form:
\[{}^cD^\nu x(t) = y(t) - 2x(t), \quad 0 < \nu \leq 1 \]
\[{}^cD^\eta y(t) = x(t) - 2y(t), \quad 0 < \eta \leq 1 \]

Together with two value conditions
\[x(0) = 2 \quad y(0) = 1. \]

Apply natural transform to equations (42) and (43), to get
\[\mathcal{N}^\nu(x(t)) = \frac{2}{s} + \frac{\nu^\nu}{s^\nu} \mathcal{N}^\nu(y(t)) - 2 \frac{\nu^\nu}{s^\nu} \mathcal{N}^\nu(x(t)) \]
\[\mathcal{N}^\eta(y(t)) = \frac{1}{s} + \frac{\eta^\eta}{s^\eta} \mathcal{N}^\eta(y(t)) - 2 \frac{\eta^\eta}{s^\eta} \mathcal{N}^\eta(x(t)) \]

Table 3. The numerical values for \(x(t) \) with some values for \(\nu \) and \(\eta \).

\(t \)	\(\nu = \eta = 0.5 \)	\(\nu = \eta = 0.6 \)	\(\nu = \eta = 0.75 \)	\(\nu = \eta = 1 \)
\(0.2 \)	14.4864	86.6865	5.21454	3.04352
\(0.4 \)	39.8447	22.5925	11.4568	4.81194
\(0.6 \)	81.6907	47.9029	23.3317	7.87177
\(0.8 \)	142.325	88.08192	43.831967	13.2487
\(1 \)	223.31317	146.51415	76.394554	22.8038

Figure 5. Approximate solutions \(x(t), y(t) \) for example 2 with some values of \(\nu, \eta \), respectively.
Thus, Eq. (45) become:

\[x(t) = 2 + \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x(t)) \right] \]

\[y(t) = 1 + \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y(t)) \right] \]

(45)

Suppose our approximate solutions are given as:

\[x(t) = \sum_{n=0}^{\infty} x_n(t); \quad y(t) = \sum_{n=0}^{\infty} y_n(t). \]

(46)

Thus, Eq. (45) become:

\[\sum_{n=0}^{\infty} x_n(t) = 2 + \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x(t)) \right] \]

\[\sum_{n=0}^{\infty} y_n(t) = 1 + \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y(t)) \right]. \]

(47)

Using the equations in (47) one concludes:

\[x_0(0) = 2; \quad y_0(0) = 1 \]

\[x_1(t) = \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y_0(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x_0(t)) \right] = -3 t^{\nu} \frac{\Gamma(\nu + 1)}{\Gamma(\nu + 1)} \]

\[y_1(t) = \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(x_0(t)) \right] - 2 \mathcal{N}^{-1} \left[\frac{\partial^{\nu}}{\partial t^{\nu}} N^+(y_0(t)) \right] = 0. \]

Likewise,

\[x_2(t) = \frac{6 t^{2\nu}}{\Gamma(2\nu + 1)} - \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} \]

\[y_2(t) = \frac{-3 t^{2\nu + 3\eta}}{\Gamma(\nu + 3\eta + 1)}. \]

We proceed as before to obtain:

\[x_3(t) = \frac{12 t^{2\nu + 2\eta}}{\Gamma(2\nu + 2\eta + 1)} \frac{6 t^{3\nu}}{\Gamma(2\nu + 3\nu + 1)} \]

\[y_3(t) = \frac{12 t^{2\nu + 3\eta}}{\Gamma(2\nu + 2\eta + 1)} \frac{15 t^{2\nu + 2\eta}}{\Gamma(2\nu + 3\nu + 1)} \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} \frac{24 t^{4\nu}}{\Gamma(4\nu + 1)} \]

Finally, the approximate solutions for these functions are as follows:

\[x(t) = \sum_{n=0}^{\infty} x_n(t); \quad y(t) = \sum_{n=0}^{\infty} y_n(t). \]

(48)

It follows that,

\[x(t) = 2 - \frac{3 t^{\nu}}{\Gamma(\nu + 1)} + \frac{6 t^{2\nu}}{\Gamma(2\nu + 1)} - \frac{3 t^{2\nu + 3\eta}}{\Gamma(3\nu + 1)} - \frac{3 t^{3\nu}}{\Gamma(3\nu + 1)} + \frac{6 t^{2\nu + 2\eta}}{\Gamma(2\nu + 2\eta + 1)} + \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} - \frac{24 t^{4\nu}}{\Gamma(4\nu + 1)} \]

\[y(t) = 1 - \frac{3 t^{\nu + 3\eta}}{\Gamma(\nu + 3\eta + 1)} + \frac{6 t^{2\nu + 2\eta}}{\Gamma(2\nu + 2\eta + 1)} + \frac{6 t^{2\nu + 3\eta}}{\Gamma(2\nu + 3\nu + 1)} - \frac{15 t^{2\nu + 2\eta}}{\Gamma(2\nu + 2\eta + 1)} - \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} - \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} - \frac{12 t^{3\nu}}{\Gamma(3\nu + 1)} \]

Note that when \(\nu = \eta = 1 \), then the exact solutions are

\[x(t) = e^{-3t} + e^{-t}; \quad y(t) = e^{-3t} - e^{-t}. \]

Conclusion

Prior to this work, many techniques were used to handle FDEs. We successfully explore solutions for both linear and nonlinear ordinary FDEs and systems of FDOODEs using the FNDM. We found exact and approximate solutions to systems of ordinary fractional differential equations and fractional diffusion differential equations such as diffusion model using fractional natural decomposition method (FNDM). The results showed that the new scheme is accurate and efficient. We were being able to explore solutions to physical models when \(\nu = \eta = 1 \). The next step for our research is to further apply the new scheme to other FDEs that arises in other areas of scientific fields.
Acknowledgements
We are thankful to the referees for their comments and remarks that will help in improving the quality of our work.

Funding
Funding not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors contributions
All authors contributed equally to the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

ORCID iD
Mahmoud S. Alrawashdeh https://orcid.org/0000-0003-1543-7443

References
1. Du M, Wang Z and Hu H. Measuring memory with the order of fractional derivative. Sci Rep 2013; 3: 3431.
2. Nigmatullin RR. To the theoretical explanation of the “universal response”. Phys Stat Solidi B 1984; 123(2): 739–745.
3. Coussot C, Kalyanam S, Yapp R et al. Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity. IEEE Trans Ultrason Ferroelectr., req Control 2009; 56(4): 715–725.
4. Song DY and Jiang TQ. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified jeffreys model and its application. Rheol Acta 1998; 37(5): 512–517.
5. Djordjevic VD, Jarić J, Fabry B et al. Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 2003; 31(6): 692–699.
6. Eringen AC and Edelen DG. On nonlocal elasticity. Int J Eng Sci 1972; 10(3): 233–248.
7. Adomian G. A new approach to nonlinear partial differential equations. J Math Anal Appl 1984; 102: 420–434.
8. Ghosh U, Sarkar S and Das S. Solution of system of linear fractional differential equations with modified derivative of Jumarie type. arXiv preprint arXiv:1510.00385, 2015.
9. Guo S, Mei L, Li Y et al. The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics. Phys Lett A 2012; 376: 407–411.
10. Podlubny I. Fractional Differential Equations. California: Academic Press, 1999.
11. Rawashdeh MS. The fractional natural decomposition method: Theories and applications. Math Methods Appl Sci 2017; 40(7): 2362–2376.
12. Rawashdeh MS and Hadeel A-J. Numerical solutions for systems of nonlinear fractional ordinary differential equations using the FNFM. Mediterranean Journal of Mathematics 2016; 13(6): 4661–4677.
13. Oldman KB and Spanier J. The Fractional Calculus. New York: Academic Press, 1974.
14. Baleanu D, Jassim HK and Al Qurashi M. Solving helmholtz equation with local fractional derivative operators. Fractal and Fractional 2019; 3(3): 43.
15. Hua Y, Luo Y and Lu Z. Analytical solution of the linear fractional differential equation by adomian decomposition method. J Comput Appl Math 2008; 215: 220–229.
16. Rawashdeh M. A new approach to solve the fractional harry dym equation using the FRDTM. Int J Pure Appl Math 2014; 95(4): 553–566.
17. Li ZB and He JH. Fractional complex transform for fractional differential equations. Math Comput Appl 2010; 15: 970–973.
18. Alrawashdeh MS and Bani-Issa S. An efficient technique to solve coupled–time fractional boussinesq–burger equation using fractional decomposition method. Advances in Mechanical Engineering 2021 Jun; 13(6): 16878140211025424.
19. Baleau D and Jassim HK. Exact solution of two-dimensional fractional partial differential equations. Fractal and Fractional 2020, 4(2): 21.
20. Obeidat NA and Bentil DE. New theories and applications of tempered fractional differential equations. Nonlinear Dyn 2021; 105(2): 1689–1702.
21. Momani S and Shawagfeh N. Decomposition method for solving fractional riccati differential equations. Appl Math Comput 2006; 182(2): 1083–1092.
22. Belgacem FBM and Silambarasan R. Maxwell’s equations solutions through the natural transform. 2012; 3(3): 313–323.
23. Mittag-Leffler GM. Sur la nouvelle fonction $E_{a}(x)$, CR Acad Sci Paris 1903; 137: 554–558.