Simple and Rapid Detection of Vancomycin-Resistance Gene from Enterococci by Loop-Mediated Isothermal Amplification

Yun Hee Baek1,§,*, Seung Bok Hong2,§,* and Kyeong Seob Shin3,4,†,*

1Department of Microbiology, Chungbuk National University College of Medicine, Cheongju 28644, Korea
2Department of Clinical Laboratory Science, Chungbuk Health & Science University, Cheongju 28150, Korea
3Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea
4Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea

We developed a simple and rapid method for detecting vancomycin resistance genes, such as vanA and vanB, using loop-mediated isothermal amplification (LAMP). To identify not only vancomycin resistance genes, but also the genus Enterococcus, primers were designed for vanA, vanB, and 16S rRNA. Screening for vancomycin susceptibility in Enterococcus was performed using Etest (bioMérieux Inc). The results of the LAMP assay were compared to those of real-time RT-PCR. The optimal conditions for the LAMP assay were 65°C for 60 min. The detection limits of the LAMP assay for vanA, and vanB were 2 × 10⁷ copies/reaction. Compared to RT-PCR, the sensitivities and specificities of LAMP for 16S rRNA, vanA, and vanB were 100/100%, 100/100%, and 100/100%, respectively. The vanA genotype-vanB phenotype accounted for 57.5% (46/80) of the vancomycin-resistant Enterococci samples collected from 2016 to 2019. In conclusion, the LAMP assay developed in this study showed high sensitivity and specificity for vancomycin-resistant genes. Moreover, due to the simplicity and rapidity of the LAMP assay, its use can be very useful in clinical microbiology laboratories.

Key Words: Vancomycin-resistant Enterococci (VRE), Loop-mediated isothermal amplification, vanA, vanB, 16S rRNA

INTRODUCTION

Vancomycin-resistant enterococci (VRE) has rapidly spread and emerged as a major nosocomial problem worldwide, since first being isolated in 1986 (Uttley et al., 1988; Bonten et al., 2001). VRE can cause a variety of invasive infections including intraabdominal infection, bacteremia, and endocarditis. Invasive VRE infections are difficult to treat and are associated with high mortality (Chiang et al., 2017). Moreover, the transferability of the vanA gene from Enterococci to Staphylococcus aureus can cause serious problems (Niederhäusern et al., 2011).

Rapid and accurate detection of VRE is required for timely antimicrobial treatment and infection control. Culture-based methods to detect VRE are time-consuming, taking several days to complete (2~5 days). Various PCR-based methods have been used for rapid detection of VRE in many hospitals. PCR-based methods are highly sensitive and specific for vanA-type VRE; however, these methods require special
machines and experienced technicians. Moreover, many false-positive results are reported for \textit{vanB} VRE, mainly due to the non-enterococcal \textit{vanB} gene, which can be found in anaerobic bacteria in the gut (Ballard et al., 2005; Graham et al., 2008).

Recently, loop-mediated isothermal amplification (LAMP) has been used for the detection of various infections (Harakudo et al., 2005; Misawa et al., 2007; Yamazaki et al., 2008). Compared to PCR, LAMP has the advantage of simplicity, rapidity of detection (by the naked eye) and a short amplification time under isothermal conditions. Moreover, LAMP can amplify DNA with high sensitivity and efficacy; it relies on autocycling strand displacement DNA synthesis performed using the Bst DNA polymerase large fragment. LAMP shows high specificity when a set of four specifically designed inner and outer primers are used (Notomi et al., 2000; Li et al., 2017).

This study aimed to develop and evaluate a LAMP assay designed for simple and rapid detection of the \textit{vanA} and \textit{vanB} genes.

MATERIALS AND METHODS

Bacterial strains

A total of 128 strains of Enterococci, including 88 strains of VRE and 40 strains of vancomycin-susceptible Enterococci (VSE), were included in this study. Among 88 VRE, 2 reference strain with \textit{vanB} genotype and 2 clinical strains with \textit{vanC} genotype were included. The remaining 84 VRE were clinical strains: 78 \textit{vanA} \textit{E. faecium}, 4 \textit{vanA} \textit{E. faecalis}, 1 \textit{E. avium} and 1 \textit{E. raffinosus} (Table 1). To evaluate the specificity of the LAMP assay for 16S rRNA, 12 reference strains, including 6 gram positive cocci (\textit{Staphylococcus aureus} ATCC 25923, \textit{Staphylococcus epidermidis} ATCC 12228, \textit{Streptococcus pneumoniae} ATCC 49619, \textit{Streptococcus agalactiae} ATCC 12386, \textit{Streptococcus bovis} ATCC 49147), 5 gram negative rods (\textit{Escherichia coli} ATCC 29522, \textit{Klebsiella pneumoniae} ATCC 70063, \textit{Enterobacter cloacae} ATCC 70032, \textit{Pseudomonas aeruginosa} ATCC 27853, \textit{Acinetobacter baumannii} ATCC 19606) and 2 yeasts (\textit{Candida albicans} TIMM 3316 and \textit{Candida parapsilosis}) were used.

Vancomycin susceptibility (n)	Species of Enterococci (n)	Genotype by RT-PCR
	\textit{E. faecalis} (6)	\textit{vanA} 4 \textit{vanB} 2*
	\textit{E. faecium} (78)	78 0
	\textit{E. avium} (1)	1 0
	\textit{E. raffinosus} (1)	1 0
	\textit{E. casseliflavus} (1)†	0 0
	\textit{E. gallinarum} (1)	0 0
	\textit{E. faecalis} (20)	0 0
	\textit{E. faecium} (20)	0 0

Abbreviations: RT, real-time; VRE, vancomycin-resistant Enterococci; VSE, vancomycin-susceptible Enterococci
*\textit{E. faecalis} ATCC 700802 and ATCC 51299
†\textit{E. casseliflavus} and \textit{E. gallinarum} has inherent \textit{vanC} gene

DNA extraction from bacterial isolates

A single colony was diluted with 200 μL sterile saline and boiled for 10 min at 100 °C. After boiling, the bacteria-containing liquid was centrifuged for 30 sec at 12,000 rpm. The supernatant was used as the template for real-time RT-PCR and LAMP.

Identification of bacteria and antimicrobial susceptibility test

Identification of bacteria was performed using the VITEK 2 system (bioMérieux Inc., Durham, NC, USA). The minimum inhibitory concentration (MIC) of vancomycin and teicoplanin was determined by the Etest (bioMérieux Inc.) according to the manufacturer's instructions. The concentration of 0.5 MF (1.0×10^6 CFU/mL) was inoculated to Muller-Hinton agar and incubated for 24 h at 35°C in a non-CO₂ incubator. The breakpoints were also described in the Clinical and Laboratory Safety Institute guidelines (CLSI, 2018).

Primer design and optimization of reaction conditions for LAMP and RT-PCR assay

Gene sequences of 16S rRNA, \textit{vanA}, and \textit{vanB} were searched for in the GenBank database and analyzed with CLC Genomics Workbench (Qiagen, Hilden, Germany) to
identify highly conserved regions. LAMP primer sets were designed using Explorer V5 software (Eiken Chemical Co. Ltd., Tokyo, Japan). Primer sets included two external primers (forward outer primer F3 and backward outer primer B3), two internal primers (forward inner primer FIP and backward inner primer BIP), and two loop primers (forward loop primer LF and backward loop primer LB). All primers were synthesized by Bionics, Inc. (Seoul, Korea). Detailed information for the three primer sets used in this study is presented in Table 2 and Fig. 1.

To optimize the reaction conditions of LAMP, various reaction temperatures and times were used. LAMP was carried with a master mix solution containing 5 μL of WarmStart® colorimetric LAMP master mix (New England Biolabs Inc., Ipswich, MA, USA), 1 μL of F3 and B3 primer, 1 μL of FIP and BIP primer, and 1 μL of LF and LB primer for each reaction. A volume of 2 μL DNA template extracted from the bacterial isolate was added to the master mix and incubated at 65°C for 60 min. The mixture was then heated at 80°C for 10 min for enzyme inactivation. A color change of phenol red pH indicator from pink to yellow, due to a decrease in pH in the presence of extensive amplified DNA, indicated a positive LAMP reaction. LAMP results were also confirmed by 2% agarose gel electrophoresis and the "ladder-like" amplified DNA products indicated a positive LAMP reaction. To confirm the LAMP results, RT-PCR (CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) was also performed using SYBR Green (Bio-Rad) with 10 pmol of outer primers (F3 and B3) and 2 μL DNA template. The PCR conditions were as follows: initial denaturation at 95°C for 5 min, 35 cycles of denaturation at 95°C for 30s, annealing at 60°C for 30s, elongation at 72°C for 30s, and a final elongation step of 72°C for 5 min.

Detection limits of LAMP assay for the 16S rRNA, vanA and vanB genes

To determine the detection limits of the LAMP assay for

Table 2. The sequences of primers for LAMP assay used in this study

Target gene	Primer	Sequence (5’ → 3’)
16S rRNA	F3³	GCCGCGGTAAATACGTAGG
	B3³	TGGCCACTCGTGGTCTTC
	FIP	CGGGGGGAGGGATGCTTTC
	BIP	CTCCACCGGCGGATGCTTTC
	LF	AAGAAACCAGCTCGCTCG
	LB	GAAACTGGGAGACTTTGAGTGC
vanA	F3	GATATTACTTGTTAAAAAGAACCAG
	B3	TCCCAGCATTTCGGCAA
	FIP	CTTGTATGGATCCATCTCACCCCATGTTGATTGATGCAATTTCAG
	BIP	TGGTTGATAATTGTCGCCGATCCATTCTGTGTAACG
	LF	TGAATTCGCAACAGAAG
	LB	TGGATATTCGAAAGCTGAGA
vanB	F3	TACGGAATGGGAAGCAGA
	B3	CAAGCTGCGGAGGCTTTC
	FIP	AGCCTGGTTCGGATGCCTGTCCCGATTCGCTTTCGCAGTTCAG
	BIP	CTGTTCCGCTTTGTGATGCCGGGATCCGAGGATGCAAG
	LF	CCATGCGTTTTCTATCCG
	LB	ATGCAGGAGAGTAGTGTG

³Two outer primers F3 and B3 were also used as primers of real-time PCR for 16S rRNA, vanA and vanB

Abbreviations: loop-mediated isothermal amplification; FIP, forward inner primer; BIP, backward inner primer; LF, forward loop primer; LB, backward loop primer.
Fig. 1. Primer designed for 16S rRNA, vanA, vanB loop-mediated isothermal amplification (LAMP) assays. Nucleotide sequences of 16S rRNA (A), vanA (B), vanB (C) and the location of LAMP primers. The forward and backward inner primers are F1c-F2 and B1c-B2 sequences, respectively. The forward and backward outer primers are F3 and B3, respectively.

A. 16S rRNA

```
492 AACTACGTGCGACGACCGGCGGTAATTGCGGCTAGGCGGGCCGTTCTTGAAGGCTATGGATCTTCTGAGGAAAGGGCCGTTTGCTGAGGAGGCTATGGATCTTCTGGCTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCGAAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAAAGTGCGTAGATATATGGAGGAACACCAGTGGCGAGGGATTACTTGTTAAAAAGAACCATGAAATATGAAATCAACCATTGATGCTAGCTGCTTCCCGGTTTTGCATGCAAGTCACTGGTGAAGATGGATCCATACAAGGTGCAGGGAATGGGAAGCCGACGTCTCCCCGCCATACTCTCAGGATAGGAAAACGCATGGCCTGCTTGTCATGAAAGA800
```

B. vanA

```
229 GATTACTTTGATAAAAGAACCATGAAATATGAAATCAATGGATGACTGCTTTGACATGCGAACATGAAAGATGGGCGTAAGGAAGATGGGCGTACATCATAACAGGGGCCGTCGTGTTTGAATTGTCCGGTATCCCTTTTGTTAGGCAGAAGCTCAGCAATTGTGACAAATCTGGTACATCAGTGGCGAAAATGCTGGGATACGGAATGGGAAGCCGACGTCTCCCCGCCATACTCTCAGGATAGGAAAACGCATGGCCTGCTTGTCATGAAAGA
```

C. vanB

```
168 TACGGAATGGGAAGGCCGACTCTCCCCGCCATACTCTCGCCGGATAGGAAAACGCATGGCCTGCTTGTCATGAAAGA
```

Fig. 2. Visual (A) and agarose gel (B) images of the 16S rRNA, vanA, vanB loop-mediated isothermal amplification (LAMP) product of vancomycin-resistant Enterococci (VRE) on various reaction times. The yellow color change of pH indicator was interpreted positive for amplification of DNA (A). The electrophoresis was performed at 2% agarose gel and amplified products typically showed the ladder like shape (B). The positive reaction of LAMP assay for vanA, 16S rRNA and vanB was observed at 20 min, 30 min, and 40 min, respectively and the best reaction of the three genes was obtained at 65°C and 60 min. Abbreviations: N, negative (non-Enterococcus, Staphylococcus aureus ATCC 29212); N* (vancomycin susceptible Enterococcus, E. faecalis ATCC 29212).
the 16S rRNA, \textit{vanA}, and \textit{vanB} genes, the inoculum with VRE was continuously subjected to 10-fold step dilution from 10^8 to 10^2 CFU/mL. The experiment was repeated three times.

Specificity of the LAMP assay for 16S rRNA in the genus Enterococcus

The specificity of the LAMP assay for 16S rRNA was evaluated using 12 reference strains (see Bacterial strains section in Material and Methods).

Performance of the LAMP assay using clinical strains

To evaluate the performance of the LAMP assay for detection of the \textit{vanA} and \textit{vanB} genes, the LAMP assay and RT-PCR were performed simultaneously on 128 strains of Enterococci with resistance (88) or susceptibility (40) to vancomycin. RT-PCR served as the reference method.

RESULTS

In the reference strains of VRE (\textit{vanA} and \textit{vanB} type) and VSE, LAMP to the \textit{vanA}, 16S rRNA, and \textit{vanB} genes was observed at 20, 30, and 40 min after amplification, respectively. The optimal conditions for the LAMP assay were 65°C for 60 min (Fig. 2). Therefore, subsequent tests were performed under those conditions.

Detection limit of LAMP

The detection limits of LAMP were 20 copies/reaction (10^4 CFU/mL) for 16S rRNA and 200 copies/reaction (10^5 CFU/mL) for \textit{vanA} and \textit{vanB}, which is 200 copies per reaction. Abbreviations: N, negative, M, molecular size ladder.

![Fig. 3. Visual (A) and agarose gel (B) images of the \textit{vanA} and \textit{vanB} loop-mediated isothermal amplification (LAMP) product of VRE isolated at serial diluted concentration ($10^2 ~ 10^8$ CFU/mL). The amplified products typically showed the ladder like shape at 10^5 CFU/mL for \textit{vanA} and \textit{vanB}, which is 200 copies per reaction. Abbreviations: N, negative, M, molecular size ladder.](image)

Table 3. The results of loop-mediated isothermal amplification method for the detection of \textit{vanA}, \textit{vanB} and 16S rRNA gene from 140 strains

Phenotypic ID	AST†	Gene‡	LAMP results for \textit{vanA}, \textit{vanB} and 16S rRNA			
Enterococci (128)			**vanA**+\textit{vanB}⁻	**vanA**⁻\textit{vanB}⁺	**vanA**⁻\textit{vanB}⁻	**16S rRNA**
VRE (88)			84	0	0	84
\textit{vanA} (84)			0	2	0	2
\textit{vanB} (2)			0	0	2	2
\textit{vanC} (2)			0	0	0	0
VSE (40)			ND	40	40	
Non-Enterococci (12)‡			0	0	12	0

Abbreviations: ID, identification; AST, antimicrobial susceptibility testing; VRE, vancomycin-resistant Enterococci; VSE, vancomycin susceptible Enterococci; ND, not detection; LAMP, loop mediated isothermal amplification.

1Identified by Vitek system and various biochemical reaction test (see text)
2Antimicrobial susceptibility testing for vancomycin and teicoplanin by E-test
3Gene for vancomycin resistance detected by real-time PCR
4Included 5 GPC (\textit{S. aureus}, \textit{S. epidermidis}, \textit{S. pneumoniae}, \textit{S. bovis}, \textit{S. agalactiae}), 5 GNR (\textit{E. coli}, \textit{K. pneumoniae}, \textit{E. cloacae}, \textit{P. aeruginosa}, \textit{A. baumannii}) and 2 yeasts (\textit{C. albicans}, \textit{C. parapsilosis})
CFU/mL) for \textit{vanA} and \textit{vanB} gene (Fig. 3).

Sensitivity and specificity of LAMP for 16S rRNA

Among 140 isolates, including 128 Enterococci and 12 non-Enterococci, the ability of RT-PCR and LAMP assay to detect the 16S rRNA gene of Enterococci was identical. The sensitivity and specificity of LAMP for 16S rRNA were both 100% (Tables 3, 4).

Evaluation of the performance of LAMP in detecting \textit{vanA} and \textit{vanB} from clinical strains

Among 86 VRE strains, with the exception of 2 intrinsic vancomycin-resistant isolates (\textit{vanC}-type VRE including \textit{E. casseliflavus} and \textit{E. gallinarum}), 84 isolates were found to be \textit{vanA} type and 2 were found to be \textit{vanB} type by RT-PCR. For 86 VRE strains, the ability of LAMP to detect the \textit{vanA} and \textit{vanB} genes was the same as that of RT-PCR (Table 3, 4).

The MIC of vancomycin and teicoplanin in vancomycin-resistant \textit{E. faecium} from 2016 to 2019

Among 80 isolates of \textit{E. faecium} harboring the \textit{vanA} gene collected from clinical specimens from 2016 to 2019, antimicrobial susceptibility testing revealed that 46 (57.5%) strains were of the \textit{vanB} phenotype (Table 5).

DISCUSSION

Various methods, including conventional antimicrobial susceptibility testing, use of chromogenic media (Delmas et al., 2007), and PCR (Palladino et al., 2003) have been used to detect vancomycin resistance from Enterococci. Recently, studies have been conducted to detect these genes using LAMP, which is faster and does not require special equipment (Kim et al., 2014; Huang et al., 2019). In this study, we developed a LAMP method that detects not only the \textit{vanA} and \textit{vanB} genes, but also the 16s rRNA gene in clinical strains of Enterococci.

LAMP showed high sensitivity and specificity for vancomycin resistance genes, and avoided the missed diagnoses associated with phenotypic detection of VRE. A response of LAMP to the \textit{vanA}, 16S rRNA, and \textit{vanB} genes was observed at 20, 30, and 40 min after amplification, respectively. The optimal conditions for the LAMP assay were 65°C for 60 min (Fig. 2). Therefore, subsequent tests were performed under those conditions. The quick response of LAMP to \textit{vanA} (20 min) would be very useful in many clinical situations where only that gene needs to be detected.

The detection limits of LAMP for \textit{vanA} and \textit{vanB} were 200 copies per reaction respectively, which is sufficient to detect these genes in a VRE colony. However, in clinical specimens, the amount of VREs is less than in colonies, so it is necessary to improve the detection ability.

The ability of the LAMP assay to detect \textit{vanA} and \textit{vanB} genes in 88 VREs and 40 VSEs was consistent with that of RT-PCR. In Korea, \textit{vanB} type VRE is rarely isolated, and VREs are mostly composed of \textit{E. faecium}. In this study,

Table 4. The performance of loop mediated isothermal amplification for real time PCR for detection of \textit{vanA}, \textit{vanB} and 16S rRNA gene from 140 strains

Performance of loop-mediated isothermal amplification for three genes
\textit{vanA}

Sensitivity (%)
Specificity (%)

Table 5. Distribution of the MIC of vancomycin and teicoplanin in 80 VRE with \textit{vanA} genotype isolated from clinical specimen during 2016-2019 year

Type	Range of MIC (μg/mL)	Number of isolates (%)
\textit{vanA} \textit{vanA}	\textit{≥256} \textit{≥32~≥256}	34 (42.5%)
\textit{vanA} \textit{vanB}	\textit{≥256} \textit{0.5~16}	46 (57.5%)
Total	\textit{≥256} \textit{0.5~≥256}	80 (100%)

Abbreviation: MIC, minimal inhibitory concentration
only two vanB type VREs and six vancomycin-resistant E. faecalis were included. Additional vanB genotypes and Enterococcus species should be investigated to validate the LAMP assay. The vanC-type VRE has an innately low level of resistance to vancomycin, and is not routinely detected in clinical laboratories (Cetinkaya et al., 2000). Therefore, the detection of vanC gene was not performed in this study.

It is useful to simultaneously detect 16S rRNA and vancomycin resistance genes, because the vanB gene can be isolated from bacteria other than Enterococcus (Ballard et al., 2005; Graham et al., 2008). To evaluate the 16S rRNA detection performance of the LAMP assay, it was performed on 128 strains, including 12 reference strains; accurate results were obtained for all strains (Table 3, 4).

The vanA-genotype-vanA phenotype accounts for the majority of cases, but several studies have shown that the prevalence of the vanA-genotype-vanB phenotype is increasing, both in Korea and worldwide (Lauderdale et al., 2002; Lee et al., 2004). According to Jung et al. (Jung et al., 2014), the vanA genotype-vanB phenotype comprised 70% of cases in tertiary hospitals in Korea from 2010 to 2011. Therefore, it is becoming more difficult to distinguish VRE by phenotype alone, and genetic tests for the vanA and vanB genes are important for the treatment of infected patients and infection control. In this study, 80 VREs isolated from 2016 to 2019 had the vanA genotype-vanB phenotype, representing 56.7% of cases (46/80) (Table 5). The molecular basis of the vanA genotype-vanB phenotype discrepancy has yet to be identified, but it has been suggested that impairment of accessory proteins VanY and VanZ, genetic rearrangement (including deletion of both vanY and vanZ following insertion of IS1216V), and mutations in the vanS regulatory gene may be responsible for the loss of teicoplanin resistance (Simonsen et al., 2000; Lauderdale et al., 2002; Lee et al., 2004; Jung et al., 2014).

A limitation of this study was that the VRE colony was directly used in the LAMP reaction; the inhibitory effect of LAMP on clinical samples, such as fecal samples, was not evaluated. In the future, it will be necessary to evaluate the applicability of this method to clinical samples.

In conclusion, the multiplex LAMP assay developed in this study showed excellent sensitivity and specificity for the vanA and vanB genes, and good agreement with the RT-PCR results. Due to the simplicity and rapidity of the LAMP assay, its use can be very useful in clinical microbiology laboratories.

ACKNOWLEDGEMENT
This work was supported by the research grant of the Chungbuk National University Hospital in 2019.

CONFLICT OF INTEREST
The authors have declared no conflict of interest.

REFERENCES

Ballard SA, Grabsch EA, Johnson PD, Grayson ML. Comparison of three PCR primer sets for identification of vanB gene carriage in feces and correlation with carriage of vancomycin-resistant enterococci: interference by vanB-containing anaerobic bacilli. Antimicrob Agents Chemother. 2005. 49: 77-81.

Bonten MJ, Willems RJ, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis. 2001. 1: 314025.

Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Reviews. 2000. 13: 686-707.

Chiang H-Y, Perencevich NE, Nair R, Nelson RE, Samore M, Khader K, et al. Incidence and outcomes associated with infections caused by vancomycin-resistant enterococci in the United States: systematic literature review and meta-analysis. Infect Control Hosp Epidemiol. 2017. 38: 203-215.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing-Twenty-eighth Informational Supplement: M100-S28. CLSI, Wayne, PA, USA, 2018.

Delmas J, Robin F, Schweitzer C, Lesens O, Bonnet R. Evaluation of a new chromogenic medium, chromID VRE, for detection of vancomycin-resistant Enterococci in stool samples and rectal swabs. J Clin Microbiol. 2007. 45: 2731-2733.

Graham M, Ballard SA, Grabisch EA, Johnson PD, Grayson ML. High rates of fecal carriage of nonenterococcal vanB in both children and adults. Antimicrob Agents Chemother. 2008. 52: 1195-1197.

Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella.
Huang QQ, Liu BB, Zhu HF, Ma JJ, Tsui M, Yao BQ, et al. Rapid and sensitive detection of the \textit{vanA} resistance gene from clinical \textit{Enterococcus faecium} and \textit{Enterococcus faecalis} isolates by loop-mediated isothermal amplification. J Global Antimicrob Resist. 2019. 16: 262-265.

Jung MK, Ahn SH, Lee WG, Lee EH. Molecular epidemiology of vancomycin-resistant enterococci isolated from non-tertiary-care and tertiary-care hospitals in Korea. Epidemiol Infect. 2014. 142: 2372-2377

Kim HJ, Kim YJ, Yong DE, Lee K, Park JH, Lee JM, et al. Loop-mediated isothermal amplification of \textit{vanA} gene enables a rapid and naked-eye detection of vancomycin-resistant enterococci infection. J Microbiol Methods. 2014. 104: 61-66.

Lauderdale TL, McDonald LC, Shiau YR, Chen PC, Wang HY, Lai JF, Ho M. Vancomycin-resistant enterococci from humans and retail chickens in Taiwan with unique VanB phenotype-vanA genotype incongruence. Antimicrob Agents Chemother. 2002. 46: 525-527.

Lee WG, Hur JY, Cho SR, Lim YA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of \textit{vanA} cluster rearrangements. Antimicrob Agents Chemother. 2004. 48: 1379-1381.

Li Y, Fan P, Zhou S, Zhang L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog. 2017. 107: 54-61.

Misawa Y, Yoshida A, Saito R, Yoshida H, Okuzumi K, Ito N, et al. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant \textit{Staphylococcus aureus} (MRSA) in blood cultures. J Infect Chemother. 2007. 13: 134-140.

Niederhäusern SD, Bondi M, Messi P, Iseppi R, Sabia C, Manicardi G, et al. Vancomycin-resistant transferability from \textit{vanA} Enterococci to \textit{Staphylococcus aureus}. Current Microbiology. 2011. 62: 1363-1367.

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acid Res. 2000: 28: e63.

Palladino S, Kay ID, Costa AM, Lambert EJ, Flexman JP. Real-time PCR for the rapid detection of \textit{vanA} and \textit{vanB} genes. Diagn Microbiol Infect Dis. 2003. 45: 81-84.

Simonsen GS, Myhre MR, Dahl KH, Olsvik O, Sundsfjord A. Typeability of \textit{Tn1546}-like elements in vancomycin-resistant enterococci using long-range PCRs and specific analysis of polymorphic regions. Microb Drug Resist. 2000. 6: 49-57.

Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. Lancet. 1988. 1: 57-58.

Yamazaki W, Seto K, Taguchi M, Ishibashi M, Inoue K. Sensitive and rapid detection of cholera toxin-producing \textit{Vibrio cholerae} using a loop-mediated isothermal amplification. BMC Microbiol. 2008. 8: 94.

https://doi.org/10.15616/BSL.2020.26.3.149

Cite this article as: Baek YH, Hong SB, Shin KS. Simple and Rapid Detection of Vancomycin-Resistance Gene from Enterococci by Loop-Mediated Isothermal Amplification. Biomedical Science Letters. 2020. 26: 149-156.