Relationship between bilirubin free radical and formation of pigment gallstone

Xiang-Tao Liu, Jian Hu

INTRODUCTION
For years, gallstone has been nearly the most common illness in digestive system all over the world, especially in China\(^\text{1-5}\), and there are many methods to treat this illness\(^\text{6-10}\), including many Chinese traditional medicines. Although some therapies were successful in the end, the best way to deal with the illness is to prevent it before it occurs. So it is important to clarify the key factors that promote the formation of gallstone. Although there were lots of researches in this field that intended to discover the secrets behind the gallstone\(^\text{11-42}\), there are still lots of phenomena we cannot explain now.

For the mechanism of formation of pigment gallstone, the earliest suggestion came from Maki\(^\text{42}\). He indicated that bacterial infection induced the hydrolysis of conjugated bilirubin and increased the level of free bilirubin, which was the critical factor for gallstone formation. However, there are many cases of gallstone without bacterial infection. Moreover, the increase of bilirubin concentration is only an essential condition for the precipitation of bilirubin, but not enough to form stone.

In 1982, Elek et al\(^\text{43}\) reported the ESR signal of pigment gallstone. Its intensity varied linearly with quantity of bilirubin. It gave a hint that the formation of pigment gallstone was likely to be linked with free radicals. Recently, a lot of facts indicate that free radicals are the triggers or important links of many diseases. They are relative to cell damages and mutation. In view of the relationship of pigment gallstone with inflammation and accompanying damages of liver, kidney, gastrointestinal system, probably there are certain carriers of free radicals in the circulation and the free radicals cause cell damages. Based on the Elek’s experiment, the carrier might be bilirubin. However, we have to illustrate:

Firstly, the attackers during inflammation are superoxide free radicals and hydroxyl radicals, then, how can we link the formation of pigment gallstone to these free radicals.

Secondly, whether or not bilirubin free radicals formed in situ during inflammation can induce cell damages and initiate the following pathological processes.

In this report, we demonstrate that bilirubin free radicals can be formed under the attack of other free radicals and induce evident cell damages. Then, the relationship between the formation of pigment gallstone and bilirubin free radicals will be discussed.

FORMATION OF BILIRUBIN FREE RADICAL AND ITS CHEMICAL NATURE
As we find, solid bilirubin absorbs oxygen reversibly when exposed to air, and meanwhile bilirubin free radicals are detectable by ESR\(^\text{44}\). ESR spectra showed that the free radicals signals of solid bilirubin were composed of a semiquinone signal and a superoxide radical signal (Figure 1). The former may be formed from the carbonyl group, while the latter may be bound with a metal ion, especially the iron that might be released from the haem from which bilirubin was produced. High spin Fe (II) or Fe (III) was found to be coordinated with four tetrapyrrol nitrogens, which was the same as in haem. Various free radical sources, such as FeSO\(_4\) + EDTA, XO/XOD and \(^{60}\)Co-irradiation were used to generate bilirubin free radicals. The ESR signals obtained were in accordance with those of natural pigment gallstone\(^\text{45}\) (Figure 2). Moreover, the ESR signals of bilirubin became diminished after treatment with free radicals scavengers, such as SOD, mannitol and vitamin C, or ligand of Fe\(^{2+}\) or Fe\(^{3+}\)\(^\text{46}\).

The above results support a mechanism suggested by Foote for photoxidation of bilirubin\(^\text{47}\); (where BR refers to bilirubin, and T1 represents the transition state of the reaction)

\[
\text{So(BR) \ h} \ \text{v} \ T1(BR) \ \text{O}_2^- \ \cdot \ \text{BR} + \text{O}_2^- \cdot \ [-\text{BR} + \text{O}_2^-] \ [\text{BR} + \text{O}_2^-] \ \text{products}
\]

Bilirubin free radicals in solution were showed to be more complex than solid bilirubin free radicals. According to the ESR signals and computer simulation, it was deduced that the signals were composed of three groups of free radicals signals: \(-\text{O}_2^- \cdot -\ R\ Chi^-\) (Figure 3)\(^\text{48}\), \(\text{O}_2^-\) was from natural bilirubin, and the other two free radicals might be generated during attack of \(\text{O}_2^-\) to C-C bond. In
some experiments, only ·OH was trapped by DMPO, which was considered as the dismutation product of O$_2^\cdot$. In experiment at 77K, semiquinone signal also could be identified just as in solid bilirubin.

In conclusion, we proved that bilirubin free radicals consisted of at least semiquinone free radicals and metal bound superoxide free radicals. In solution, O$_2^\cdot$ attacks bilirubin to generate ·H and RCH$_2^\cdot$, and also dismutates into ·OH. Because of the chemical properties of bilirubin free radical, its contributions to the formation of gallstone and its effects on cells discussed below become easier to understand.

PROPERTIES OF BILIRUBIN FREE RADICAL RELEVANT TO FORMATION OF PIGMENT GALLSTONE

To explore the polymerization of bilirubin induced by free radicals, IR and NMR were used to compare the polymerization of original bilirubin or bilirubin treated with free radicals sources. The only significant variation in IR spectra was the decrease of the absorbance at 990 cm$^{-1}$ (vinyl group). If the absorbance at 1610 cm$^{-1}$ (carboxyl group) was taken as the inner reference[49], the ratio A_{990}/A_{1610} was found to be 0.6470, 0.5646 and 0.5587 in untreated bilirubin and bilirubin treated with FeSO$_4$+EDTA and 60Co irradiation respectively. In NMR spectra, increase of the integral area of the methyl group (1.237 ppm) and decrease of that of the vinyl group (above 5 ppm) were observed (Figure 4).

Thus, we postulated that bilirubin molecules polymerized through the reaction between the vinyl group and the hydroxyl group by free radicals attack. This hypothesis was consistent with William’s suggestion[50].

By means of the light scattering method, the average molecular weight of the bilirubin free radicals in DMSO solution was determined in the range 60000-80000, which was higher than that of original samples (<20000). The particle size distribution was measured by means of Coulter counter and the result showed that bilirubin free radicals became larger[51]. A kinetic study showed that the treated bilirubin reacted with calcium ion more rapidly than the untreated sample, and the conditional solubility product was found to be lower. These results suggested that bilirubin free radicals tended to polymerize and deposit, leading to the formation of gallstone.
Based on the above results, we considered that during the gallstone formation bilirubin reacted with the active-oxygen species formed in vivo and was changed into free radicals, then polymerized, aggregated and calcified. This might be an important step of formation of pigment gallstone.

CYTOTOXICITY OF BILIRUBIN FREE RADICAL AND ITS CONTRIBUTION TO THE FORMATION OF PIGMENT GALLSTONE

It is well known that bilirubin is cytotoxic. In our experiments, we found that bilirubin free radicals could induce phospholipid peroxidation (LPO), lactate dehydrogenase (LDH) leakage from hepatocytes (Figure 5), and the decrease of intracellular total glutathione (GSH) and oxidized glutathione (GSSG) levels (Figure 6)[52].

The above effects can be diminished when hepatocytes were incubated with bilirubin treated with free radicals scavenger. So cytotoxicity of bilirubin might come from its chemical nature-free radical, just as what had been discussed above. In order to clarify the mechanism of bilirubin-induced cytotoxicity, we investigated effects of bilirubin free radicals on erythrocyte membrane. The SDS-PAGE results showed that after treatment of membrane with bilirubin free radicals, the integral area of band 1 and 2 decreased and some small molecular bands appeared between band 2 and 3 (Figure 7), which indicated that a part of membrane bound proteins, especially the spectrin, were degraded, then the membrane structure might be damaged. The above result was also supported by means of labeling membrane protein with fluorescamine (Figure 8)[53]. In addition, due to the degradation of membrane bound proteins, the increase of lateral movements of phospholipids, decrease of polarizability as well as decrease of microviscosity of erythrocyte membrane were observed by means of fluorescence polarization measurement[54]. The studies on the reaction between membrane and bilirubin free radicals showed that the process comprised three steps: firstly, a rapid formation of an electrostatic complex between bilirubin free radicals and polar groups of phospholipid, then a slow inclusion of bilirubin into hydrophobic core of membrane, and finally an erythrocyte membrane-induced bilirubin aggregation[55].

CONCLUSIONS

Based on our results, we considered that there were two ways by which bilirubin free radicals promoted the formation of pigment gallstone. On the one hand, due to the properties of free radicals, bilirubin free radicals formed in vivo were more liable to polymerize...
and aggregate, then induced the formation of stone. On the other hand, the damages on hepatocytes induced by bilirubin free radicals also impaired the cell function, then led to the disorder of metabolism, which gave rise to the formation of stone indirectly, as well as symptoms in digestive systems. The whole process is illustrated as follows:

References

1. Zhuang QX, Sun GH. Analysis of 91 cirrhotic patients complicated by cholelithiasis. *Xin Xiaohuabingxue ZaZhi* 1994;2(Suppl 2):20
2. Zhang CP, Zhang DX, Han B. The cystic diseases in liver cirrhosis. *World J Gastroenterol* 1999;5:321-322
3. Hu ZQ, Wu DJ, Wang Y, Wang YH, Xu GN. Clinical analysis of patients with gallstones concomitant gastroduodenal diseases. *Xin Xiaohuabingxue ZaZhi* 1996;4:260-261
4. Chen G, Wang P, Shi JS, Qin XL. A clinical study of the relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis. *World J Gastroenterol* 1997;3:255-256
5. Jungst D, Niemeyer A, Müller J, Zündt B, Meyer G, Wilhelmi M, del Pozo R. Mucin and phospholipids determine viscosity of gallbladder bile in patients with gallstones. *World J Gastroenterol* 2000;6(Suppl 3):4-5
6. Shi JS, Ren B, Ma QJ, Cheng L, Luo J, Meng QC, Tian HP, Han MR. Effects of radical cholecystectomy on nutritional and immune status in patients with gallbladder carcinoma. *World J Gastroenterol* 2000;6(Suppl 3):255-256
7. Lin QY, Du JP, Zhang MY, Yao YG, Li L, Cheng NS, Yan LN, Xiao LJ. Relationship between bile elements of guinea pigs. *Xin Xiaohuabingxue ZaZhi* 1997;5:703-704
8. Tu XQ, Xiao YQ, Xu XG, Xu HB, Li WM, Liu YJ. Effects of bile concentration in rabbits. *Xin Xiaohuabingxue ZaZhi* 1997;5:755-756
9. Wang XY, Sun XP, Zhou Q, Yang JL, He ZY. Relationship between bile and biliary cholesterol in gallstone patients. *Xin Xiaohuabingxue ZaZhi* 1996;8:216-218
10. Wang CY, Yu HZ, Zhang WW. Effect of sex hormones on gallstone formation in rabbits. *Huaren Xiaohua Zhazhi* 1996;4:249-250
11. Hu ZQ, Wu DJ, Wang Y, Wang YH, Xu GN. Clinical analysis of patients with gallstones concomitant gastroduodenal diseases. *Xin Xiaohuabingxue ZaZhi* 1996;4:260-261
12. Chen G, Wang P, Shi JS, Qin XL. A clinical study of the relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis. *World J Gastroenterol* 1997;3:255-256
13. Lin QY, Du JP, Zhang MY, Yao YG, Li L, Cheng NS, Yan LN, Xiao LJ. Relationship between bile elements of guinea pigs. *China Natl J New Gastroenterol* 1997;3:257-259
14. Lu HD, Tian MG, Zhang XP, Li H. Influence of fever on biliary elements of gallstones. *China Natl J New Gastroenterol* 1997;3:265
15. Han TQ, Zhang SD, Tang WH, Jiang ZY. Bile acids in serum and gallbladder bile. *World J Gastroenterol* 1998;4:82-84
16. Wu XT, Xiao LJ, Li QX, Li JS. Detection of bacterial DNA from cholesterol gallstones by nested primers polymerase chain reaction. *World J Gastroenterol* 1998;4:234-237
17. Zhao JY, Xiao LJ, Zhi H, Shu Y, Cheng NS. Changes of lipid metabolism in plasma, liver, and bile during cholesterol gallstone formation in rabbit model. *World J Gastroenterol* 1998;4:337-339
18. Luo XZ, Wang LS, Lin SZ. An analysis of the relationship between ultrasonography and laparoscopic cholecystectomy. *World J Gastroenterol* 1998;4:218-220
19. Lin QY, Du JP, Zhang MY, Yao YG, Li L, Cheng NS, Yan LN, Xiao LJ. Relationship between bile elements of guinea pigs. *China Natl J New Gastroenterol* 1997;3:257-259
20. Wei GJ, Wang YC, Du F, Yu HJ. Dynamic and ultrastructural study of sphincter of Oddi in early-stage cholecystitis in rabbits with hypercholesterolemia. *World J Gastroenterol* 2000;6:102-106
21. Jiao XY, Shi JS, Wang JS, Yang YJ, He P. Effects of radical cholecystectomy on nutritional and immune status in patients with gallbladder carcinoma. *World J Gastroenterol* 2000;6:445-447
22. Zhou JF, Cai D, Zhu YG, Yang JL, Peng CH, Yu YH. A study on the relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis. *World J Gastroenterol* 2000;6:501-507
23. Lammeret F, Sudfeld S, Busch N, Matern S. Cholesterol crystal binding of biliary immunoglobulin A: visualization by fluorescence light microscopy. *World J Gastroenterol* 2001;7:198-202
24. Zhao JT, Qi GY, Gao BS, Li JS. Relationship between bile elements and cholelithiasis patients. *Xin Xiaohuabingxue ZaZhi* 1996;6:249-250
25. Zhu X. Survey of the relation between fatty liver and gallstone by ultrasonography. *Xin Xiaohuabingxue ZaZhi* 1996;6:258-259
26. Maki T. Pathogenesis of calcium bilirubinate gallstone. *Ann Surg* 1996;224:100-100
27. Elek G, Rockenbaumer A. The free radical signal of pigment gallstone. *Klinische Wochenschrift* 1982;60:33-35
28. Yang ZH, Wang K, Liu X. ESR and NMR studies of bilirubin free radicals as well as symptoms in digestive systems. The whole process is illustrated as follows:
radical. Sci China B 1991;8:847-852
45 Yang ZH, Wang K, Liu XT. The nature and source of ESR signal in bilirubin. Advances in free radical and medicine, Atomic Energy Press, Beijing, 1991;1:309-314
46 Liu XT, Sun FL, Zhao LW, Wang K, Yang ZH, Zhou YH. Polymerization, Aggregation and stable free radical formation of bilirubin induced by activ-oxygen free radical. Chin BJ 1990;6:437-443
47 Foote CS. Photosensitized Oxidation and Singlet Oxygen: Consequences in Biological Systems. Free Radicals in Biology, Vol.11, Pryor,W.A.,Ed.,Academic Press, 1976: 3
48 Liu XT, Yang ZH, Wang K, Xiao MF. Some chemical behavior of bilirubin free radical in solution. Advances in free radical and medicine, Atomic Energy Press, Beijing, 1991; 3: 35-42
49 Rege RV, Webster CC, Ostrow JD, Carr SH, Obkubo H. Validation of infrared spectroscopy for assessment of vinyl polymers of bile-pigment gallstones. Biochem J 1980;224:871-876
50 William B, Dwyer KR, Kennard CH. Black pigment or polybilirubinate gallstones. Ann Surg 1981;193:331-333
51 Liu XT, Tang B, Wang K. The interaction between calcium and bilirubin free radical in the presence of sodium cholate. Beijing Medi Univer 1990; 22:285-286
52 Liu XT, Liu HJ, Wang K. Studies on damages of rat hepatocyte induced by bilirubin free radical. Chin BJ 1995; 11:71-75
53 Liu XT, Wang K, Xiao MF, Shen LP. Damages of erythrocyte membrane induced by bilirubin free radicals. Chin BJ 1992; 8:597-601
54 Liu XT, Shen LP, Wan ZH, Wang K. Effect of bilirubin free radicals on the fluidity of erythrocyte membrane. Beijing Medi Univer 1993; 25:369-371
55 Liu XT, Wang K, Xu R. Interaction process of bilirubin free radical with erythrocyte membrane. Advances in free radical and medicine, Atomic Energy Press, Beijing, 1991; 3:14-21

Edited by Hu DK