Фавипиравир: скрытая опасность мутагенного действия

Жирнов О.П. 1,28, Чернышова А.И.2,3

1 Институт вирусологии им. Д.И. Ивановского Национального исследовательского центра эпидемиологии и микробиологии им. Н.Ф. Гамалеи, Москва, Россия;
2 Русско-немецкая академия медико-социальных и биотехнологических наук, Москва, Россия;
3 Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет), Москва, Россия

Аннотация
Антивирусный химиопрепарат фавипиравир (ФП) имеет свойства функционального конкурента гуанозина и аденоznазы, в инфицированных клетках претерпевает химическую трансформацию ферментами клетки в нуклеотидную форму — ФП-рибозилтрифосфат, который способен связываться с вирусной РНК-зависимой РНК-полимеразой и встраиваться в цепочку вирусной РНК, вызывая заметное мутагенное действие посредством транзиций в геноме РНК-содержащих вирусов, преимущественно G→A и C→U. Усиление синтеза мутантных форм виронов под действием ФП, помимо вирусингибирующего эффекта, несет угрозу появления новых опасных вирусных штаммов с повышенной патогенностью для человека и животных и приобретённой устойчивостью к химиопрепарату. Для минимизации мутагенного эффекта ФП возможны синтез новых модификаций ФП, лишенных способности встраиваться в молекулу синтезированной РНК; комбинированное применение ФП с противовирусными химиопрепаратами иного механизма действия и направленными на различные вирусные и/или клеточные мишени; курсовое применение при строгом врачебном контроле высоких терапевтических доз ФП для усиления летального мутагенного эффекта на инфекционный вирус в организме-реципиенте для предотвращения размножения его мутантных форм.

Ключевые слова: коронавирусы, фавипиравир, химиотерапевтические мишени, химиопрепараты, мутагенез

Источник финансирования. Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-65-0006).

Конфликт интересов. Авторы декларируют отсутствие ясных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Жирнов О.П., Чернышова А.И. Фавипиравир: скрытая опасность мутагенного действия. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(2): 213–220.
DOI: https://doi.org/10.36233/0372-9311-114

Favipiravir: the hidden threat of mutagenic action

Oleg P. Zhirnov1,28, Alyona I. Chernyshova2,3

1 The Russian-German Academy of Medico-Social and Biotechnological Sciences, Moscow, Russian;
2 The D.I. Ivanovsky Institute of Virology, The N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
3 The I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

Abstract
The antiviral drug favipiravir (FVP), which is a structural analogue of guanosine, undergoes chemical transformation in infected cells by cellular enzymes into a nucleotide form — favipiravir ribose triphosphate (FVP-RTP). FVP-RTP is able to bind to viral RNA-dependent RNA polymerase and integrate into the viral RNA chain, causing a significant mutagenic effect through G→A and C→U transitions in the viral RNA genome. Besides the virus inhibiting effect, the increased synthesis of mutant virions under the action of FPV possess a threat of
the emergence of novel threatening viral strains with high pathogenicity for humans and animals and acquired resistance to chemotherapeutic compound. There are three ways to minimize this mutagenic effect of FP:

1) Synthesis of new FPV modifications lacking the ability to integrate into the synthesized viral RNA molecule.
2) The combined use of FPV with antiviral chemotherapeutic drugs of a different mechanism of action directed at various viral and/or host cell targets. (3) Permanent application of high therapeutic doses of FPV under the strict medical control to enhance the lethal mutagenic effect on an infectious virus in the recipient organism to prevent the multiplication of its mutant forms.

Keywords: coronaviruses, favipiravir, chemotherapeutic targets, antivirals, mutagenesis

Funding source. This work was carried out with the financial support of the Russian Science Foundation (Grant No. 21-65-0006).

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For citation: Zhirnov O.P., Chernyshova A.I. Favipiravir: the hidden threat of mutagenic action. Journal of microbiology, epidemiology and immunobiology = Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(2): 213–220. DOI: https://doi.org/10.36233/0372-9311-114

Введение

Хорошо известно, что вирусы являются облигатными паразитами, полностью зависимыми от организма-хозяина. Это свойство вирусов существенно затрудняет создание и поиск лекарственных средств, которые способны специфически ингибировать вирус, но при этом не оказывать вредного воздействия на биохимические процессы макроорганизма-хозяина. Данное обстоятельство является главной причиной ограниченности арсенала активных противовирусных препаратов. Пандемия COVID-19 еще раз обнажила данную медицинскую проблему, поскольку на сегодня в медицинской практике практически отсутствуют специфические лекарства против данного коронавируса.

На текущий момент можно выделить 6 главных направлений разработки лекарств в отношении коронавирусов:

1) ингибиторы вирусной полимеразы;
2) ингибиторы вирусной протеазы Мpro, участвующей в формировании активной полимеразы вируса;
3) ингибиторы клеточных протеаз, участвующих в активации вирусного белка S, регулирующего вход вируса в клетку-мишень;
4) ингибиторы депротеинизации вируса в клеточных эндосомах;
5) препараты, полученные на основе рекомбинантных интерферонов-α2 и -β1;
6) препараты, созданные на основе противовирусных антител [1, 2].

В каждом из перечисленных направлений ведутся интенсивные исследования по поиску и созданию эффективных лекарств противовирусного действия.

В последний год в связи с поиском и созданием химопрепаратов против COVID-19 приостановлено внимание обращено на лекарства из первой группы — ингибиторы вирусной РНК-зависимой РНК-полимеразы (RNA dependent RNA polymerase — RdRp). В частности, надежды возлагаются на вещество, получившее название фавипиравир (ФП) — 6-фтор-3-гидрокси-пиразинкарбоксамид [3, 4]. Данное вещество было синтезировано и запатентовано японскими учеными Y. Furuta и H. Egawa в конце 1990-х гг. [5]. Последующие исследования показали, что это соединение областает высокой активностью в отношении большей группы вирусов, включая РНК-содержащие вирусы, такие как вирусы гриппа, бунья-, арена-, флаци-, пикоранавирусы и др. Серьезным недостатком ФП является его выраженная побочная токсичность для реципиентного макроорганизма, которая обусловлена тератогенными и эмбриотоксическими свойствами препарата [6, 7]. По этой причине в мировой практике ФП разрешен к ограниченному применению при строгом врачебном контроле при угрожающем течении гриппа или COVID-19.

По структуре ФП имеет заметное сходство с нуклеозидами и функционально конкурирует с гуанозином и аденоzinом (рис. 1), обладая способностью связываться с вирусными РНК-полимеразами и ингибировать их функцию [8]. Поскольку РНК-полимеразы многих вирусов имеют консервативную структуру и сходный механизм катализа [9, 10], ФП, нарушая специфическую функцию RdRp, обладает активностью в отношении широкого круга РНК-содержащих вирусов [4, 8, 11]. Однако в последнее время появились сообщения о наличии вирус-специфических различий связывания ФП в области нуклеотид акцепторного центра у РНК-полимераз различных вирусов [12].

ФП как аналог гуанозина эффективно распознается и модифицируется клеточными ферментами, в частности гипоксантин-гумин-фосфорилтрансферазой (HGPRТ), посредством присоединения остатка рибозы (рибозилирования) [13–15]. Образовавшийся ФП-рибозилфосфат претерпевает дополнительное рибозилирование рибозильным остатком, приобретая своими свойствами нуклеозидтрифосфата (ФП-рибозилфосфат — ФП-РТФ) и способность встраивания в цепочку вновь синтезируемой молекулы вирусной РНК посредством вирусной RdRp [16, 17]. Встраивание нуклео-
оцидных аналогов в вирионную РНК затрудняло и нарушало комплементарное спаривание оснований при матричном синтезе цепочек РНК вирусной полимеразой.

Во-первых, ФП-зависимое затруднение спаривания оснований вызывало преждевременную терминацию синтеза цепей РНК и образование коротких дефектных фрагментов вирусных РНК [18, 19]. Во-вторых, встраивание ФП в синтезируемую новую цепь РНК происходило с нарушением уотсон-криковского спаривания и приводило к мутациям (транзициям), преимущественно двух типов: G→A и C→U [8, 16, 20–22]. Частота таких ошибок в вирусных РНК в инфицированных клетках возрастала с увеличением концентрации ФП в питательной среде. При этом уровень мутаций, особенно транзиций G→A и C→U, в вирусных РНК возрастал в 3–12 раз в инфицированных клетках, инкубируемых с ФП, и достигал уровня 10–1 мутаций/нуклеотид в вирусном геноме при концентрации ФП 500 мкМ [23]. Подавляющая часть мутированных молекул РНК была нефункциональной, что оказывало летальное мутагенное действие на размножение вируса, т.к. нарушало образование полноценного инфекционного вируса и приводило к формированию неинфекционной вирусной популяции и заметному снижению инфекционного процесса [24, 25]. В результате ФП-индукированного мутагенного действия развивался так называемый абортивный тип вирусной инфекции. При этом важно иметь в виду, что мутагенное действие ФП не приводило к полному подавлению размножения вируса. Так, при концентрации ФП в среде 500 мкМ, которая рассматривается как эффективная терапевтическая [3, 26–30], урожай инфекционных вирусных частиц снизился лишь в 100–1000 раз до уровня 10^3 инфекционных частиц в 1 мл питательной среды [23, 31].

На рис. 2 схематически проиллюстрировано трехстороннее соотношение: (1) нарастание мутаций (транзиций) в геноме вируса по мере (2) снижения количеств вновь синтезируемого инфекционного вируса в популяции, формирующейся (3) при увеличении концентрации ФП в инкубационной среде заражённых клеточных культур. Наиболее опасной
в плане появления вирусных мутантов служит зона средних концентраций ФП (отмечена штриховкой на рис. 2), когда при наличии относительно высоко-
го уровня мутаций вирус еще сохраняет инфекцион-
ность и способность к размножению. Вполне оче-
видно, что сохраняющийся остаточный пул мути-
рованных и инфекционных виронов формировал основу для отбора мутантных вариантов вируса с непредсказуемыми и опасными свойствами, вклю-
чая приобретение резистентности к химиопрепара-
ту, расширение органного пантропизма и усиления его патогенности для людей.

Мишени противовирусного действия фавипиравира

Противовирусное действие ФП складывается из трех главных механизмов, которые обусловле-
ны его структурными свойствами аналога пирими-
динового нуклеозида. Благодаря такому сходству
mолекулы рибозилированного ФП функционально конкурируют с гуанозином и аденоzinом и их РТФ в биосинтетических путях (каксадах) в инфициро-
ванных клетках, происходящих с участием вирус-
ной RdRp. В результате такой интерференции ФП нарушают процесс синтеза полноценных молекул
вирусных РНК, что приводит к подавлению репро-
dукции вируса [8, 16, 21, 22]. Известны три главные
mишени противовирусного действия ФП.

1. Прямое ингибирование вирусных полимераз

Это действие ФП обусловлено прямым уг-
nаванием и связыванием нуклеозидной формы
ФП-РТФ вирусными РНК-полимеразами, включая
полимеразу коронавирусов, и блокированием её
полимеразной функции. В результате замедляется
ингибирование и снижается синтез вирусных молекул в инфицированных клетках [4]. Эти исследования наиболее широко проведены на вирусах гриппа. Но поскольку
механизмы каталитического действия вирусных
РНК-полимераз имеют значительное структурное и
функциональное сходство, есть все основания пола-
tать, что они имеют общие параметры и характерны для полимераз большинства семейств РНК-содерж-
ящих вирусов, включая вирусы гриппа, коронави-
русы, пикорна-, арена-, рабдо-, парамиксо-, флави-
, гепадно-, норовирусы и др. [10, 23, 32]. Следует
отметить, что среди РНК-содержащих вирусов
РНК-полимеразы COVID-19 по скорости присоеди-
нения нуклеотидов в 10 раз превосходит РНК-поли-
меразы вирусов гриппа, ящура и Эбола [23]. Такая
быстрая коровавирусной полимеразы, необходи-
мая коронавирусам для транскрипции гигантского
генома около 30 × 10³ нуклеотидов, делает РНК-по-
лимеразу (белок nsp12) наименее точной и допуска-
ющей в несколько раз больше ошибок (мутаций),
чем РНК-полимеразу других вирусов. Мутагенное
действие ФП усугубляет эту особенность полиме-
разы коронавируса COVID-19 и дополнительно
повышает уровень мутаций в 3–12 раз, что способ-
ствует эффективности его летального мутагенеза на
коронавирусы.

Вместе с тем коронавирусы, в отличие от дру-
гих РНК-вирусов, имеют белок nsp14, который
обладает функцией уточнения матричного счита-
вания для исправления части сделанных ошибок
и компенсации действия ФП [33]. Важная особен-
ность ФП состоит в том, что его эффектор ФП-РТФ
обладает высокой избирательностью на вирусный
синтез и практически не влияет на клеточный мета-
болизм, поскольку такого класса ферментов, как
RdRp, нет в клетках млекопитающих. Так, сравне-
ние RdRp вируса гриппа с ДНК-зависимой РНК-по-
лимеразой клеток млекопитающих показало, что
50% ингибирующая концентрация активного веще-
ства для ФП в отношении указанных РНК-полиме-
раз составляла 0,3 мкМ и более 950 мкМ соответ-
ственно [3].

2. Преждевременная терминация синтеза вирусных РНК

ФП, имея лишь частичное сходство с пури-
новым основанием гуанина и в некоторой степе-
ни аденина, не может обеспечить полноценную
комплементарность его спаривания с цитозином
и урацилом при синтезе дочерних молекул РНК [11].
Отсутствие полной комплементарности затрудняет
работу полимеразы и вызывает ее остановку на
нуклеотид РНК, что приводит к преждевременному об-
рыву синтеза РНК и формированию коротких моле-
кул РНК [18, 19]. Важно отметить, что доля гуанина
в геноме SARS-CoV-2 невысока (около 17,5%), по-
этому упомянутое действие ФП, направленное на
это основание, может дополнительно усиливать
летальный эффект на данный вирус [23]. Феномен
образования преждевременно терминированных
defектных вирусных РНК, интерферирующих с
полноценными вирусными молекулами РНК, при-
водит к ингибированию размножения вируса [8, 16,
21, 22].

3. Встраивание ФП-РТФ в молекулы РНК и образование мутантных форм вируса

ФП-РТФ способен встраиваться в синтезирую-
щиеся молекулы вирусных РНК и вызывать мута-
tии в геномной или субгеномной РНК, которая вхо-
дит в состав синтезируемых виронов. В результате
этого механизма формируется вирусная популяция
defектных неинфекционных виронов, которые со-
ставляют подавляющую часть вирусной популяции
при высоких концентрациях ФП (250 мкМ и более)
[8, 16, 20, 21, 22]. Такие мутантные вирусы не спо-
собны поддерживать полноценное многоцикличное
размножение вируса, но могут инициировать так
называемую абортивную инфекцию клеток-мише-

ней без образования полноценного инфекционного вируса. Данный механизм получил название мутагенного действия химопрепарата на вирусное потомство. Поскольку ФП-РТФ является аналогом (конкурентом) гуанозина и частиочно аденоzinа (A/G), его мутагенное действие в инфицированных вирусом клетках приводит к заменам (так называемым транзициям) в вирусном геноме главным образом двух типов: G→A и C→U [31]. Это структурно-функциональное свойство ФП лежит в основе его мутагенного действия.

Особенности и последствия мутагенного действия фавипиравира

В результате мутагенного действия ФП его применение приводит к значительному повышению частоты мутаций в геноме синтезируемых вирусов. Прирост таких мутаций имеет дозозависимый характер: при более высоких концентрациях препарата (> 100 мкМ) частота составляет 10^{–1}–10^{–2} мутирований на 1 нуклеотид в геноме, тогда как при пониженных концентрациях эта величина находится на уровне 10^{–3} (рис. 2) [16, 26, 31]. Такой эффект мутагена порождает два важных последствия. При высоких концентрациях ФП количество мутаций чрезмерно, что несовместимо с жизнеспособностью образующегося вирусного потомства, — так называемое летальное действие. При низких концентрациях мутаций заметно снижается, но остается достаточным для обеспечения заметного повышения генетического разнообразия генетического разнообразия генетического разнообразия вирусного потомства на фоне сохранения его жизнеспособности [23, 31].

Стимулирование мутагенеза вирусного гено́ма приводит к ускорению микрозвольного инфицирования вируса. Во-первых, при усилении мутагенезе возрастает частота возникновения мутантных форм вируса, устойчивых к своему мутагенному препарату, так называемых ускользающих вирусных мутантов [8, 11, 22]. Во-вторых, за счет возникающих мутантных форм вируса возрастает общее генетическое разнообразие вирусной популяции, что заметно увеличивает вероятность появления опасных вирусных вариантов, обладающих повышенной контагиозностью и патогенностью для человека и расширенным кругом хозяев, создающим предпосылки для быстрого перехода таких мутантных вариантов на домашних и сельскохозяйственных животных и формирования новых связей в круге хозяев вируса между человеком и животными. В результате могут возникать новые миграционные потоки вируса между различными видами животных, а также человеком.

Усилению процесса появления мутантных форм вируса в результате широкого лечебного применения мутагенного препарата(ов) может способствовать возникновение опасной эпидемической проблемы. Эта проблема возникновения опасных вирусных мутантов представляется особенно реальной в случае бессистемного применения химопрепаратов мутагенного типа, особенно в случае свободного доступа к лекарству при отсутствии эффективного врачебного контроля его применения и мониторинга используемых терапевтических доз.

Пути снижения рисков появления опасных вирусных мутантов при применении химопрепаратов мутагенного типа действия

При применении химопрепаратов, обладающих мутагенным действием на вирус, для повышения мутагенного порога, затрудняющего возникновение генетического разнообразия инфекционного вируса и появление опасных вирусных мутантов, логично предложить три основных и практически реализуемых пути.

Первый путь для минимизации угрожающего мутагенного эффекта на вирус состоит в усовершенствовании структуры химопрепарата. Модификация структуры мутагенного химопрепарата, в частности ФП, должна заключаться в том, чтобы устранить его способность встраиваться в синтезируемую цепочку РНК и тем самым вызвать терминацию её синтеза и образование клеток, неспособных к синтезированию вирусных частиц. При этом, чтобы устранить его способность встраиваться в синтезируемую цепочку РНК и тем самым вызвать терминацию её синтеза, необходимо обеспечить его преждевременную деградацию вирусом, — так называемое обрывное действие. При низких концентрациях мутаций заметно снижается, но остается достаточным для обеспечения заметного повышения генетического разнообразия вирусного потомства на фоне сохранения его жизнеспособности [23, 31].

Второй путь, затрудняющий появление опасных мутантов, состоит в использовании комбинаций химопрепаратов с различным механизмом действия, направленных на различные вирусные белки и/или клеточные мишени. Имеются многочисленные данные для многих химопрепаратов, действующих на различные вирусные белки (ферменты), включая вирусную полимеразу, о том, что пассирование вирусов в присутствии одного химопрепарата (так называемая монотерапия) приводит к быстрому формированию вирусных мутантов, устойчивых к данному химопрепарату [8, 11, 22]. Как правило, устойчивый штамм имел мутацию в вирусном гене белка, против которого был направлен химопрепарат. Однако в случае совместного (параллельного) применения 2 и более химопрепаратов, действующих на различные вирусные белки и/или клеточные мишени, не удается наблюдать формирование мутантных штаммов даже после длительного пассирования вируса в присутствии комбинации.
химиопрепаратов [34–37]. На основании этих данных представляется рациональным и оправданным применение противовирусных химиопрепаратов, включая ФП, в комбинациях, в которых химиопрепараты имеют различные мишени противовирусного действия. Более того, такое комбинированное применение противовирусных лекарств имееет, как правило, значительно более высокую терапевтическую эффективность и синергидный противовирусный эффект [38–42].

Третий путь, позволяющий предотвратить опасные последствия мутагенного эффекта ФП, заключается в соблюдении диапазона оптимальных высоких доз препарата в организме реципиента. Таким образом, на этом этапе можно считать уровень перманентной концентрации в организме не менее 75 мкМ (~30 мг/кг массы) [23, 26]. Оценка мутагенных концентраций ФП в культуре инфицированных вирусом гиппапитов клеток показывает, что концентрация 125 мкМ и выше обеспечивает эффективную терминацию синтеза вирусных РНК и их летальный эффект [3], что заметно тормозит образование жизнеспособных виронов [8, 16, 21, 22, 43]. Экстраполяция этой концентрации с учетом биодоступности в организме человека дает поддерживающую терапевтическую дозу химиопрепарата 20–50 мг/кг массы пациента в сутки и выше [44]. При снижении лечебных концентраций ФП в организме инфицированного пациента будут синтезироваться значительные количества угрожающих мутантных форм вируса разной степени инфекционности и с непредсказуемыми свойствами.

Заключение

Усиление синтеза мутантных форм вирионов под действием ФП несет угрозу появления новых опасных вирусных штаммов с повышенной патогенностью для человека и животных и приобретен- ной устойчивостью к химиопрепарату. Для минимизации мутагенного эффекта ФП возможно синтез новых модификаций ФП, лишенных способности встраиваться в молекулу синтезированной РНК; комбинированное применение ФП с противовирусными химиопрепаратами иного механизма и направленными на различные вирусные и/или клеточные мишени; непрерывное применение при строгом врачеб- ном контроле высоких терапевтических доз ФП для усиления летального мутагенного эффекта на инфекционный вирус в организме-реципиенте для предотвращения размножения его мутантных форм.

Благодарность

Авторы выражают благодарность академику РАН Д.К. Львову за поддержку и полезные дискуссии.

Acknowledgement

The authors are grateful to Dmitry K. Lyov, Full Member of RAS, for support and useful discussions.
16. Baranovich T., Wong S.S., Armstrong J., Marjuki H., Webbby R.J., Webster R.G., et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A/H1N1 viruses in vitro. J. Virol. 2013; 87(7): 3741–51.
https://doi.org/10.1128/jvi.02346-12

17. Arias A., Thorne L., Goodfellow I. Favipiravir elicit antiviral mutagenesis during virus replication in vivo. E-Life. 2014; 3: e03679.
https://doi.org/10.7554/eLife.03679

18. Sanghavi H., Komuro T., Nishikawa H., Yoshida A., Takahashi K., Nomura N., et al. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob. Agents Chemother. 2013; 57(11): 5202–8.
https://doi.org/10.1128/aac.00649-13

19. Jin Z., Smith L.K., Rajwanshi V.K., Kim B., Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5'-triphosphate towards influenza A virus polymerase. PLoS One. 2013; 8(7): e68347.
https://doi.org/10.1371/journal.pone.0068347

20. de Ávila A.I., Gallego I., Soria M.E., Gregori J., Quer J., Esteban J.I., et al. Lethal mutagenesis of hepatitis C virus induced by Favipiravir. PLoS One. 2016; 11(10): e0164691.
https://doi.org/10.1371/journal.pone.0164691

21. Guedj J., Pirokowski G., Jacob F., Madelain V., Nguyen T.H.T., Rodallec A., et al. Antiviral efficacy of Favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018; 15(3): e1002535.
https://doi.org/10.1371/journal.pmed.1002535

22. Goldhill D.H., te Velthuis A.J.W., Fletcher R.A., Langat P., Eloy P., Solas C., Touret F., Mentré F., Malvy D., de Lamballe E., et al. Experimental treatment with Favipiravir for COVID-19: An open-label controlled study. Intervirology. 2020; 63(1-6): 2–9.
https://doi.org/10.1007/s14467-020-18463-z

23. Grande-Pérez A., Lazaro E., Lowenstein P., Domingo E., Manrubia S.C. Suppression of viral infectivity through lethal deletions. Proc. Natl Acad. Sci. USA. 2018; 115(45): 11613–8.
https://doi.org/10.1073/pnas.1718806115

24. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., et al. Role of Favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2020; 115(2): E162–71.
https://doi.org/10.1016/j.ijid.2020.03.037

25. Perales C., Mateo R., Mateu M.G., Domingo E. Insights into lethal mutagenesis during virus replication and complementation by multiple point mutants. J. Mol. Biol. 2007; 369(4): 985–1000.
https://doi.org/10.1016/j.jmb.2007.03.074

26. Li X., Yang Y., Liu L., Yang X., Zhao X., Li Y., et al. Effect of Favipiravir on influenza virus. J. Med. Virol. 1987; 21(2): 161–7.
https://doi.org/10.1002/jmv.1890210208

27. Ortega J.T., Zambrano J.L., Jastrzebska B., Liprandi F., Ranjan H.R., Pujol F.H. Understanding severe acute respiratory syndrome coronavirus 2 replication to design efficient drug combination therapies. Interivirology. 2020; 63(1-6): 2–9.
https://doi.org/10.1159/000512141

28. Zhirmov O.P. High protection of animals lethally infected with influenza virus by aprotinin-riamantadine combination. J. Med. Virol. 1987; 21(2): 161–7.
https://doi.org/10.1002/jmv.1890210208

29. Furuta Y., Takahashi K., Kuno-Mackawa M., Sangawa H., Uehara S., Kozaki K., et al. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005; 49(3): 981–6.
https://doi.org/10.1128/AAC.49.3.981-986.2005

30. Du Y.X., Chen X.P. Response to “Dose rationale for Favipiravir use in patients infected with SARS-CoV-2". Clin. Pharmacol. Ther. 2020; 108(2): 190.
https://doi.org/10.1002/cpt.1878

31. Li G., De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020; 19(3): 149–50.
https://doi.org/10.1038/d41573-020-00016-0

32. Ferron F. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl. Acad. Sci. USA. 2018; 115(2): E162–71.
https://doi.org/10.1073/pnas.1718806115

33. Ferron F. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl. Acad. Sci. USA. 2018; 115(2): E162–71.
https://doi.org/10.1073/pnas.1718806115

34. Ilyushina N.A., Bovin N.V., Webster R.G., Govorkova E.A. Lethal mutagenesis of hepatitis C virus induced by Favipiravir. PLoS One. 2016; 11(10): e0164691.
https://doi.org/10.1371/journal.pone.0164691

35. Cai Q., Yang M., Liu D., Chen J., Shu D., Xia J., et al. Experimental treatment with Favipiravir for COVID-19: An open-label control study. Engineering (Beijing). 2020; 6(10): 1192–8.
https://doi.org/10.1016/j.jeng.2020.03.007

36. Joshi S., Parkar J., Ansari A., Vora A., Talwar D., Tiwaskar M., et al. Role of Favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2020; 102: 501–8.
https://doi.org/10.1016/j.ijid.2020.10.069

37. Iwashchenko A.A., Dmitriev K.A., Vostokova N.V., Azarova V.N., Blinov A.A., Egorova A.N., et al. AVIFAVIR for treatment of patients with moderate COVID-19: Interim results of a phase II/III multicenter randomized clinical trial. Clin. Infect. Dis. 2020; ciaa1176.
https://doi.org/10.1093/cid/ciaa1176

38. Eloy P., Solas C., Touret F., Mentre F., Malvy D., de Lamballerie X., et al. Dose rationale for Favipiravir use in patients infected with SARS-CoV-2. Clin. Pharmacol. Ther. 2020; 108(2): 188.
https://doi.org/10.1002/cpt.1877

39. Perales C., Gallego I., de Ávila A.I., Soria M.E., Gregori J., Quer J., et al. The increasing impact of lethal mutagenesis of viruses. Future Med. Chem. 2019; 11(13): 1645–57.
https://doi.org/10.4155/fmc-2018-0457

40. Li Y., Hardes K., Dahms S.O., Böttcher-Friebertshäuser E., Steinmetzer T., Than M.E., et al. Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells. Antiviral Res. 2015; 120: 89–100.
https://doi.org/10.1016/j.antiviral.2015.05.006

41. Beigel J.H., Yao Y., Beel P., Manusuthi W., Slanetzicki A., Dar S.M., et al. A randomized double-blind phase 2 study of combination antivirals for the treatment of influenza. Lancet Infect. Dis. 2017; 17: 1255–65.
https://doi.org/10.1016/S1473-3099(17)30476-0

42. Hurt A.C., Ison M.G., Hayden F.G., Hay A.J. Second isirv antiviral group conference: overview. Influenza Other Respir. Viruses. 2013; 7(Suppl. 3): 1–7.
https://doi.org/10.1111/irv.12207

43. Dunning J., Baille J.K., Cao B., Hayden F.G. Antiviral combinations for severe influenza. Lancet Infect. Dis. 2014; 14(12): 1259–70.
https://doi.org/10.1016/S1473-3099(14)70821-7

44. Du Y.X., Chen X.P. Response to "Dose rationale for Favipiravir use in patients infected with SARS-CoV-2". Clin. Pharmacol. Ther. 2020; 108(2): 190.
https://doi.org/10.1002/cpt.1878
Информация об авторах
Жирнов Олег Петрович — д.б.н., проф., чл.-корр. РАН, рук. лаб. вирусного патогенеза Института вирусологии им. Д.И. Ивановского НЦЭМ им. Н.Ф. Гамалеи, Москва, Россия; рук. лаб. вирусного патогенеза Русско-немецкой академии медико-социальных и биотехнологических наук, Москва, Россия, zhirnov@inbox.ru, https://orcid.org/0000-0002-3192-8405
Чернышова Алёна Игоревна — м.н.с. лаб. иммунологии Института вирусологии им. Д.И. Ивановского НЦЭМ им. Н.Ф. Гамалеи, Москва, Россия; н.с. Русско-немецкой академии медико-социальных и биотехнологических наук, Москва, Россия, https://orcid.org/0000-0003-1290-4042
Участие авторов. Все авторы внесли существенный вклад в проведение поисково-аналитической работы и подготовку статьи, прочли и одобрили финальную версию до публикации.

Статья поступила в редакцию 02.01.2021; принята к публикации 16.02.2021; опубликована 15.03.2021

Information about the authors
Oleg P. Zhirnov — D. Sci. (Biol.), Prof., Corr. Member of the RAS, Head, Laboratory of viral pathogenesis, D.I. Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia; Head, Laboratory of viral pathogenesis, Russian–German Academy of Medico-Social and Biotechnological Sciences, Moscow, Russia, zhirnov@inbox.ru, https://orcid.org/0000-0002-3192-8405
Alyona I. Chernyshova — junior researcher, Laboratory of immunology, D.I. Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia; researcher, Russian-German Academy of Medico-Social and Biotechnological Sciences, Moscow, Russia, https://orcid.org/0000-0003-1290-4042

Author contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published.

The article was submitted 02.01.2021; accepted for publication 16.02.2021; published 15.03.2021