Design of Low Power Barrel Shifter using Pulsed Latches

Surya A.
Department of electronics and Communication Engineering
Anjali Ammal-Mahalingam Engineering College
Kovilvenni, Thiruvarur

ABSTRACT
In this paper, a barrel shifter is a specialized digital electronic circuit with the purpose of shifting an entire data word by a specified number of bits by using combinational logic and sequential logic used. Multiplexer based 8-bit barrel shifter circuit is implemented using the hardware description language —Verilog. The proposed barrel shifter architecture implementation shows reduction in power consumption

Keywords
Multiplexer, verilog HDL, power, pulsed latches, microwind.

1. INTRODUCTION
1.1 Barrel shifters
Barrel shifters are specialized electronic circuits used to shift the bits of binary data and often employed by embedded digital signal processors and other general-purpose processors in order to manipulate data. Data shifting is required for various low-level data applications such as floating-point arithmetic operations, bit indexing and variable-length coding. A barrel shifter is able to complete the shift in a single clock cycle, giving it a great advantage over a simple shifter which can shift n bits in n clock cycles. It is used in conjunction with a processor’s arithmetic logic unit (ALU) or otherwise embedded in the ALU itself.[1]

A barrel shifter is able to shift the bits of binary data by moving it from one multiplexer to the next, with the supported number of bits dictated by how many multiplexers are used.

The formula for determining how many multiplexers are required is n log2(n) where n is the number of bits supported. So for an 8-bit barrel shifter the calculation is 8 × log2(8) = 8 × 3 = 24

1.2 Pulsed latches:
Pulsed latch circuits retain the advantages of both latches and flip-flops, offering higher performance and lower power consumption within a conventional ASIC design environment. Pulsed latch technique has been used to reduce the delay of various shift registers without increasing any power consumption.[3]

1.3 Multiplexer
The multiplexer, shortened to “MUX”, is a combinational logic circuit designed to switch one of several input lines through to a single common output line by the application of a control signal. Multiplexers operate like very fast acting multiple position rotary switches connecting or controlling multiple input lines called “channels” one at a time to the output [4].

2. OPERATING PRINCIPLE
2.1 Latches
When the clock is high, D flows through to Q as if the latch were just a buffer, but when the clock is low, the latch holds its present Q output even if D changes. Fig.1 shows the level triggered latch.[6]

2.2 Pulsed Latch
Pulsed latch systems eliminate one of the latches from each cycle and apply a brief pulse to the remaining latch. [5]

If the pulse is shorter than the delay through the combinational logic, we can still expect that a token will only advance through one clock cycle on each pulse.

In a pulsed system, the pulse width is tpw.

Fig.1 level triggered latch

Fig.2 timing diagram of latch

Fig.3 pulsed Latch

Fig.4 timing diagram of Pulsed latch
2.2.1 Max-Delay Constraints
The clock period must be at least,
\[T_c > \max (\text{tpcq} + \text{tpd}, \text{tpcq} + \text{tpd} + \text{tsetup} - \text{tpw}) \]
Therefore, maximum allowable logic delay
\[\text{tpd} < T_c - \max (\text{tpcq}, \text{tpcq} + \text{tsetup} - \text{tpw}) \]

2.2.2 Minimum Delay Constraint:
If the hold time is large and the contamination delay is small,
data can incorrectly propagate through two successive elements on one clock edge, corrupting the state of the system.

For Pulsed latch : \(t_{cd} > t_{hold} - t_{ccq} + t_{pw} \)

2.3 Multiplexer
Digital multiplexer (MUX) selects binary information from one of many input lines and directs it to a single output line. Data selector (2 : 1 MUX)[15]. Inputs: 2n data inputs, n select lines. Output: 1 data output line. The block diagram of 2-to-1 Mux is shown in figure.

![Graphical symbol](image1)

Table.1 Truth table

S1	S2	S3	Out
0	0	0	11
0	0	1	12
0	1	0	13
0	1	1	14
1	0	0	15
1	0	1	16
1	1	0	17
1	1	1	18

![Graphical symbol](image2)

Table.2 Truth table

2.4 Multiplexer
An 8-to-1 multiplexer is a digital device that selects one of the eight input lines to the output line by using three-bit selection line. The block diagram of 8-to-1 Mux is shown in figure.

![Graphical symbol](image3)

3. CIRCUIT DIAGRAM
3.1 Conventional 8-bit Barrel Shifter using Multiplexer
The above circuit shows a multiplexer based 8-bit barrel-shifter[8]. The circuit allows rotating the input data word right, where the amount of rotating is selected by the control inputs. Several microprocessors include barrel-shifters as part of their ALUs to provide fast shift or rotate open.

The circuit shown above consists of three stages of 2:1 multiplexers. When all multiplexer select inputs are active (low), the input data passes straight through the cascade of the multiplexers and the output data \((q_7..q_0)\) is equal to the input data \((d_7. d_0)\). When \(S2\) control signal is selected, the first stage of multiplexers performs a rotate-right by one bit operation, due to their interconnection to the next lower input. Similarly, the second stage of multiplexers performs a rotate-right by two bits when \(S1\) control signal is selected. Here the corresponding multiplexer inputs are connected to their second next-lower input.

Finally, the third stage of multiplexers performs a rotate-right by four bits, when \(S0\) control signal is selected.

Due to the cascade of three stages, all three rotate [9] operations (by one bit, by two bits, by four bits and so on) can be activated independently from each other. For example, when both \(S2\) and \(S0\) are activated, the shifter performs a rotate-right by five bits.[11]
3.1.1 Port Specification

D7-D0	8-Bit Input
Q7-Q0	8-Bit Output
S2-S0	3-Bit Select Lines
If S0=1	Input Shift By 4 Bits
If S1=1	Input Shift By 2 Bits
If S2=1	Input Shift By 1 Bit

3.1.2 Rotate Operation:

The rotate operation is a shift where the bit which is shifted out of the vector LSB is inserted at its MSB. [10], [13]

3-Bit Opcode	Operation	
Left Rotate	Arithmetic	
0 0 0	0	Shift right logical
0 0 1	X	Rotate right
1 0 0	0	Shift left logical
1 0 1	1	Shift left arithmetic
1 1 X	Rotate left	

3.1.3 Truth Table of Barrel Shifter

SELECT LINES	INPUT D[7:0]	OUTPUT D[7:0]
S0 S1 S2		
0 0 0	00001111	00001111
0 0 1	00001111	10000111
0 1 0	00001111	11000011
0 1 1	00001111	11100001

4. PROPOSED DESIGN:

4.1 8-Bit Barrel Shifter using 2:1 Mux and Pulsed Latches

In this arrangement [14], the latch is transparent only during a short time after the active clock edge, while it is opaque otherwise, regardless of the timing waveform of the clock. In other words, the latch behaves as an edge-triggered storage element. The pulsed latch cannot be used in shift registers due to the timing problem occurred in latch. This timing problem can be overcome with the use of multiple non-overlapped delayed pulsed clock signals. The delayed pulsed clock signals are generated when a pulsed clock signal goes through delay circuits [16].

Method	Power(µw)	Method	Power(µw)
Conventional	1.85	Conventional	0.35
(2:1 mux)		(8:1 mux)	
Using pulsed	0.69	Using pulsed	0.32
latches		latches	

Table 3: Power comparison
5. SIMULATION RESULTS
Number of transistors connected to clock for pulsed latches [7] reduced to 12.5% and area is reduced to 57.6%.
The figure shows the barrel shifter using 2:1 mux and pulsed latch.

The figure shows the barrel shifter using 8:1 mux and pulsed latch.

The figure shows the timing diagram of the barrel shifter using mux and pulsed latches.

The figure shows the layout of the barrel shifter using mux and pulsed latches.
6. REFERENCES

[1] G. V. Nikhil ; B. P. Vaibhav ; Vishnu G. Naik ; B. S. Premananda, Design of low power barrel shifter and vedic multiplier with kogge-stone adder using reversible logic gates, 2017 International Conference on Communication and Signal Processing (ICCSP), Year: 2017

[2] M B Rakesh, Performance comparison of 8 bit & 32 bit logarithmic barrel shifter using Fredkin & SCRL gates, 2017 International Conference on Circuits, Controls, and Communications (CCUBE), Year: 2017

[3] P. Rajesh, D. Suresh Chandra, L. Sai Kumar, G. Kaushik, Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems, IJEC Vol. 7, Issue 2, April - June 2016

[4] S. B. Jondhale1, T. S. Mulla, S. S. Patil, Design and Implementation of 8 Bit Barrel Shifter Using 2:1 Multiplexer, Journal of Advances in Science and Technology Vol. 12, Issue No. 25, (Special Issue) December-2016

[5] Chekati Sirisha, K. Prakash, Pulsed Latches Methodology to Attain Reduced Power and Area Based On Shift Register, International Journal Of Engineering And Computer Science, Volume 5 Issue 10 Oct. 2016

[6] Prof. Sherief Reda, Design and Implementation of VLSI Systems, Lecture 24: Sequential Circuit Design

[7] Matthew Rudolf Pillmeier, Barrel shifter design, optimization, and analysis, Theses and Dissertations 2001.

[8] Moshe Morris Mano, Digital Design, Pearson Education, 2002.

[9] M. Seckora, Barrel Shifter or Multiply/Divide IC Structure, U.S. Patent 5,465,222, November 1995.

[10] J. Muwa, G. Fettweis, and H. Ne, Circuit for Rotating, Left Shifting, or Right Shifting Bits, U.S. Patent 5,978,822, December 1995.

[11] T. Thomson and H. Tam, Barrel Shifter, U.S. Patent 5,652,718, July 1997.

[12] G. F. Burns, Method for Generating Barrel Shifter Result Flags Directly from Input Data, U.S. Patent 6,009,451, December 1999.

[13] H. S. Lau and L. T. Ly, Left Shift Overflow Detection, U.S. Patent 5,777,906, July 1998.

[14] K. Dang and D. Anderson, High-Speed Barrel Shifter, U.S. Patent 5,416,731, May 1995.

[15] Prasad D Khandekar, Dr. Shaila Subbaram, Venkat Raman Vinjamoori, Low Power 2:1 MUX for Barrel Shifter First International Conference on Emerging Trends in Engineering and Technology.

[16] Shen-fu Hsiao, Jia-Stang Yeh, and Da-Yen Chen, High Performance Multiplexer Based Logic Synthesis Using Pass-transistor Logic, Taylor & Francis Group, VLSI Design, vol. 15(1), pp. 417-426, in year 2002.