Column Generation for Optimization Problems in Communication Networks

Ziye Jia, Qihui Wu, Chao Dong, Chau Yuen, and Zhu Han

ABSTRACT

Numerous communication networks are emerging to serve the various demands and improve the quality of service. Heterogeneous users have different requirements on quality metrics, such as delay and service efficiency. Besides, the networks are equipped with different types and amounts of resources, and how to efficiently optimize the usage of such limited resources to serve more users is the key issue for communication networks. One powerful mathematical optimization mechanism to solve the above issue is column generation (CG), which can deal with the optimization problems with complicating constraints and block angular structures. In this article, we first review the preliminaries of CG. Further, the branch-and-price (BP) algorithm is elaborated, which is designed by embedding CG into the branch-and-bound scheme to efficiently obtain the optimal solution. The applications of CG and BP in various communication networks are then provided, such as space-air-ground networks and device-to-device networks. In short, our goal is to help readers with the applications of the CG optimization tool in terms of problem formulation and solution. We also discuss the possible challenges and prospective directions when applying CG in the communication networks.

INTRODUCTION

With the increment of various requirements in the 5G and beyond techniques, heterogenous communication networks, such as the space-air-ground networks, multi-access edge computing (MEC) networks, device-to-device (D2D) networks, Internet of Vehicles, satellite networks, and body area networks, are constantly emerging to support different applications. A significant challenge in these communication networks is the optimization decision-making, to satisfy a large number of users’ requests with various quality of service (QoS) metrics, and at the same time to maximize network performance and resource efficiency. Specific categories of the optimization problem in these networks include routing decision, virtual network function deployment, resource competition, etc. The optimization decision is based on the characteristics of communication networks, as well as QoS demands of various users. Consequently, it is significant to design efficient algorithms for the optimization decision problem in communication networks.

Regardless of the network types, mathematical programming has extensive applications in the optimization decision problems. The decision problem has a certain optimization objectives (e.g., energy utilization), a couple of decision variables (e.g., integer or linear), and is restricted by multiple constraints (e.g., resource capacity constraints). With the increment of network scale, both the number of decision variables and the number of constraints will increase, which results in unacceptable computation complexity in practice for the optimal decision. However, most problems have the special structure within the decision variables or constraints, and if the complicating variables or constraints are separated, the decomposition scheme will be available. As for the optimization problem with complicating constraints, the decomposition scheme will be available. As for the optimization problem with complicating constraints and block angular structures, column generation (CG) is applicable for acquiring a suboptimal solution with high efficiency.

As one of the effective decomposition methods, CG is based on the Minkowski’s theory and Dantzig-Wolfe decomposition [1], via decomposing the original intractable problem into a master problem (MP), and a couple of independent pricing problems (PPs). Compared with the original problem, both the MP and PP have smaller scale variables and constraints, and can be handled with a lower computational burden. In particular, CG leverages the block angular structure of the original problem when ignoring the complicating constraints, and the complicating constraints will be handled in MP. CG has been widely used in various communication networks, as the use cases shown in Fig. 1. In this work, we provide the preliminaries and recent applications of CG, as well as the analyses and tricks to deal with the MP and PP in different communication networks. Besides, since CG may have lost the optimality during the iteration between MP and PP, we also introduce the branch-and-price (BP) scheme [2], which works by embedding CG into the classical branch-and-bound framework to efficiently guarantee the optimal solution. Finally, a variety of challenges and possible schemes are analyzed for future research directions.

BASICS OF COLUMN GENERATION

PRELIMINARY OF COLUMN GENERATION

Primarily, CG is applicable for the optimization problem in the form of linear programming and integer programming with complicating constraints.
The premise of CG is that the remaining constraints of the original problem are in the block angular structure if the complicating constraints are dropped. The remaining problem can be tackled in parallel, while the complicating constraints can be handled in MP [4]. In detail, the basic idea behind CG is decomposing the original problem into two smaller scale problems: a MP and a series of PPs. The iteration between MP and PPs will finally obtain the solution for the original problem.

Moreover, to help readers without background on this area to better understand the technique, a simple and general optimization problem with complicating constraints and block angular structure is illustrated in Fig. 2, to clarify the problem properties, such as the block angular structure, MP and PP. Specifically, from the optimization problem in Fig. 2, it is noted that C1 is a complicating constraint since it is related to all variables x_1, x_2, and x_3, while constraints C3–C4 are respectively related to different variables, and such a problem structure is known as the block angular structure [2]. An optimization problem with constraints in the form of block angular can be handled by the CG mechanism with efficiency, since the complicating constraints can be removed and only handled in the MP, while the residual constraints are independent with different variables, which forms mutually independent PPs. For instance, in Fig. 2, PP1 is only related to constraint C2 and x_2, and PP2 is only related to constraint C3 and x_2. Hence, these PPs can be solved concurrently, which further improves the solution efficiency.

Figure 3 provides the detailed CG mechanism, including the flowchart of CG in Fig. 3a, and a vivid illustration of the iteration between the RMP and PP in Fig. 3b. Firstly, in Fig. 3a, the original problem is reformulated by transforming the decision variables according to the Minkowski’s theory, that is, a point in the convex hull of the original problem can be expressed as the linear combination of the extreme points of the convex hull [1]. Consequently, the extreme points become the decision variables of PP, and the linear combination coefficients turn into the decision variables.
of MP. Such a separation is known as the Dantzig-Wolfe decomposition. Since the enumeration of all columns for MP is impossible, just a fraction of active columns is considered, which is called the restricted master problem (RMP). To activate the iteration between RMP and PP, RMP should be initialized to obtain the basic columns, and such initialization can be implemented via heuristic algorithms according to the property of different networks. Besides, the initialization just needs to obtain a set of feasible solutions for RMP, and good initialization for RMP will reduce the iteration times between RMP and PP.

If RMP is a linear programming problem, its dual variables are directly calculated. Otherwise, if there exist integer variables in RMP, the linear programming relaxation of RMP (LRMP) is calculated, and the dual variables are obtained. For clarity, in Fig. 3a, the general case that RMP is not linear programming is considered. Then the dual variables of LRMP are provided to PP to update the optimization object of PP, which is also named as reduced cost, and PP can be solved directly by the optimization tools, such as CVX and MOSEK, to obtain the solutions and objective value (reduced cost). The solutions of PP are known as new columns, and the function of PP is used for generating new columns. After that, the value of reduced cost is verified to decide whether the new columns will be added to LRMP. Specifically, if the reduced cost is negative, the columns are added to RMP. Otherwise, the iteration between LRMP and PP is terminated, since in this case, the solution of LRMP cannot be further improved by adding new columns from PP.

At this point, the current LRMP is solved with the existing columns to obtain the final solutions. Note that if RMP is equivalent to LRMP, that is, RMP is a linear programming problem, the final solution of LRMP is the optimal solution of the original problem, since in this case, the original problem is equivalent to RMP. Besides, if RMP has integer decision variables and the final solutions of LRMP are integer values, the solutions are also the optimal solutions of RMP as well as the original problem. Otherwise, if the final solutions of LRMP are not integer, approximated methods should be employed to deal with the fractional solutions into integer. As such, the optimality may be lost and only the sub-optimal solutions are obtained. If the optimal solution need to be guaranteed, the BP algorithm should be applied here, which will be elaborated later. In addition, RMP has a better structure than the original problem, since compared with directly relaxing the original problem, the linear programming relaxation of RMP will yield a tighter bound [5].

Moreover, to clearly figure out the iteration between RMP and PP, Fig. 3b provides a vivid illustration. We can observe that the basic columns are initialized for the first RMP (RMP 1), and other solution set is still undiscovered as unknown columns. Then the dual variables are calculated to help update the objective (reduced cost) of PP, and meanwhile, the search direction of PP is also decided. After PP being solved, the reduced cost is verified. If the reduced cost is less than 0, the new columns generated by PP are added to RMP, and the column number of RMP is widened. Then the second RMP (RMP 2) is calculated and a new iteration between RMP and PP starts. Besides, it is observed that the solutions of PP, that is, the extreme points in PP, are corresponding to the columns in RMP, which explains why PP can help generate new columns for RMP. In addition, it is not necessary to obtain the optimal solution for PP in each iteration, and only the columns with negative reduced cost will be applicable. Hence, an approximation algorithm for PP with efficiency will be significant.

Branch-and-Price for Optimality

If there exists integer decision variables in the original problem, the final results from CG may lose the optimality. To guarantee the optimality, BP is introduced by embedding CG into the branch-and-bound framework. Compared with the exhaustive search, BP will help obtain the optimal solution more efficiently, and there exist no optimality gap between the solution of BP and the optimal solution. As such, BP can serve as the benchmark for other sub-optimal algorithms. To illustrate the process of BP, Fig. 4 provides a view for BP mechanism. In detail, since the key point of BP is that CG is inserted in the branch-and-bound scheme, a search tree should be generated. By the way, the branch-and-bound framework works by building a search tree, and exploring the branches of the search tree to update the lower bound (LB) or upper bound (UB) until convergence. Note that
the search node in the search tree is corresponding to the decision variable in the original problem, that is, BP works branch at the search node with an original variable. The branch strategy on the decision variable of RMP is useless, since if any column is cut when branch, the column may be regenerated by PP as a new column, resulting in the endless loop [2]. Then, at each search node, CG is implemented, and the LB or UB is updated after executing CG. For example, in [6], if the solution of LRMP is integer and larger than the UB, the current node and its corresponding subtree are pruned. If the solution of LRMP is integer and less than the incumbent UB, UB is updated as the solution of LRMP, and the current search node is fathomed. If the solution of LRMP is fractional, it is served as the LB. The renewed UB and LB will help to cut the search tree, and obtain the final optimal solution when UB equals to LB or the search tree is empty. Compared with the traditional branch-and-bound scheme, due to CG, the solution of each node will be efficient, and the search tree will be cut faster.

Besides, the initial values of LB or UB can be obtained by a heuristic mechanism according to different network characteristics. For instance, in the satellite networks of [6] with a minimized optimization objective, the initial LB is obtained by a heuristic algorithm for RMP, since the UB is a feasible solution for the original problem, and LB is initialized as 0. Interested readers are recommended to the specific procedures of BP algorithm in [5] and [6].

In regard to the time complexity, according to [6], the complexity of the column generation searching the original integer programming problem is \(O(M_1 \cdot N_1 \cdot 2^{M_1}) \), in which \(M_1 \) and \(N_1 \) are the number of variables and constraints, respectively. When CG is applied, LRMP can be directly solved by the optimization tools, and the time-consuming procedure is the solution for the original problem, which is a small scale integer programming problem. The time complexity of PP is \(O(M_2 \cdot N_2 \cdot 2^{M_2}) \), in which \(M_2 \) is the number of variables and \(N_2 \) is the number of constraints of PP. Although it is still with the exponential complexity, due to that \(M_2 \ll M_1 \) and \(N_2 \ll N_1 \), the time complexity is significantly reduced. As for the time complexity of BP, in the worst case, it is \(O(M_1 \cdot N_1 \cdot 2^{M_1}) \). However, when CG is applied, the solution of each search node of the search tree will be faster, and the LB and UB will converge quickly due to the good initiali- zation in CG.

Applications in Communication Networks

CG has been employed in various communication network optimization design with the complicating constraints and block angular structures. Moreover, to acquire the optimal solution, BP is applied as an efficient scheme in these communication networks. A couple of use cases of CG and BP are listed in Table 1.

CG for Optical Networks

In [7], CG is applied for the multicast provision in the mixed-line-rate optical networks, with the objective of minimizing the total cost of transponder, wavelength channel, and employed wavelength number. Three types of binary integer variables and a continuous variable are employed in the system model, and the light path based multicast provision problem is formulated in the form of integer linear programming. To efficiently tackle the NP-hard problem, CG is employed to decompose the original problem into the PP of potential light path generation problem and the RMP to select the final solution light path with the minimum total cost. Besides, for acceleration, the elementary shortest path with resource constraints algorithm is applied in both initialization of RMP and PP, and the conflict graph based method for wavelength allocation is designed to efficiently obtain the final solution.

CG for Internet of Vehicles

In [8], it investigates the joint frequency scheduling and power control for the Internet of Vehicle networks, to maximize the total number of tuple links in a given scheduling time period. The specific problem is in the form of mixed-integer nonlinear programming with a binary variable indicating if a tuple link is applied for transmission and a continuous variable denoting the transmitting power. CG is employed with the RMP of a transmission power scheduling problem and PP of power control for tuple-links of each pattern. To accelerate the solution of CG, a greedy power allocation method is designed for PP.

CG for Space-Air-Ground Networks

A problem of joint UAV trajectory and Internet of Things (IoT) data collection assisted by satellite networks is studied in [9]. The purpose is to minimize the total energy cost of UAV with multiple resource restrictions and flow constraints. To figure out the problem with efficiency, CG is employed with RMP to optimize the best UAV trajectory from the feasible sets generated by PP. In addition, a heuristic algorithm based on the resource constrained shortest path is designed for the initialization of RMP as a warm start. Also, a shortest path based approximated scheme is designed for PP to reduce the computational complexity.

CG for MEC Networks

In [10], an IoT task offloading problem in the MEC network with latency requirement is presented, with the target to minimize the summarized resource consumption, and two types of binary denoting offloading decision and offloading configuration, which is in the form of integer programming. CG is applied for the optimization problem by iteration between the decomposed...
TABLE 1. Applications of column generation and branch-and-price in various networks.

Scenario	Problem description	Objective	Decision variables	RMP	PP	Improvements
Optical network [7]	Multicast provision in mixed-line optical networks.	Minimize the total cost	- Binary variable denoting whether a light path uses the link. Continuous variable indicating the total cost.	Select the light path with the minimum total cost.	Potential light path generation.	- The elementary shortest path with resource constraints algorithm is used.
Internet of Vehicles [6]	Joint frequency scheduling and power control for Internet of Vehicles networks.	Maximize the total number of tuple links in the scheduling time.	- Binary variable indicating whether a tuple-link is used for transmission during the scheduling time. Continuous variable of transmission power.	Transmission pattern scheduling problem.	Power control for tuple-links of each pattern.	- A greedy power allocation method is applied.
Space-air-ground network [9]	Joint offloading in MEC with latency requirement.	Minimize the summarized resource consumption.	- Binary variable denoting whether an offloading configuration is used. Binary variable indicating whether a virtual node is included in the offloading configuration.	Decide the optimal offloading configuration.	Generate additional offloading configurations.	- A heuristic algorithm designed for the initialization of RMP as a warm start.
Wireless body area network [11]	User admission with interference in wireless body area network.	Maximize the total accessed users with time assignment.	- Binary variable denoting whether a user accesses the network. Continuous variable indicating the time assignment to feasible candidate groups.	Select the candidate group with minimum time assignment.	Promising candidate group generation.	- A greedy initialization algorithm for RMP. Maximum weighted independent set based approximation method for PP.

Branch-and-price

Network Type	Network Type Description	Objective	Decision variables	RMP	PP	Improvements
Device-to-device network [5]	Resource management for the device-to-device assisted fog computing.	Maximize the total management profit.	- Binary variable indicating whether a user selects a certain candidate server and an offloading channel. Continuous variable of transmission power from a user allocated on a link with a certain channel.	The optimal link subset selection.	Candidate feasible link subset generation.	- Add additional branching constraints.
Satellite network [6]	Resource allocation for software defined satellite networks.	Minimize the total communication resource consumption.	- Binary variable indicating whether a virtual network function deploys on a satellite. Binary variable denoting whether the data is routed by a satellite-to-satellite link.	Service path selection for all tasks.	Service path generation for each task.	- K-shortest path based mechanism is used in both RMP and PP. Beam search for branching in the search tree. A heuristic algorithm for the last RMP.
Data center network [12]	Dynamic mapping of gNB to the software virtual machine pool.	Minimize cloud computing and energy cost, and max processed traffic load.	- Binary variable denoting whether a gNB is mapped on a virtual machine. Binary variable indicating whether a virtual node is active.	Decide the optimal mapping set.	Generate the gNBs to VM pool mapping association.	- Generate additional costs to RMP to shrink the bound.

CG for Wireless Body Area Networks

In [11], it focuses on the problem of user admission with interference in wireless body area network, with the objective of maximizing the total accessed users with time assignment. There are two types of variables: the binary variable denoting whether a user can access the network and the continuous variable indicating time assignment to feasible candidate groups. The formulated problem is in the form of mixed integer nonlinear programming. To tackle the intractability, CG is employed. Therein, RMP is used for selecting the candidate group with minimum time assignment, and PP generates the promising candidate user group. Besides, an accelerated CG algorithm assisted by a greedy initialization algorithm for RMP and a maximum weighted independent set based approximation method for PP is further proposed for solution efficiency.

BP for D2D Assisted Fog Computing Networks

In [5], BP is employed to tackle the problem of link scheduling, channel assignment as well as the power control in D2D assisted fog computing networks, which is in the form of mixed integer nonlinear programming. In detail, at each search node, CG is applied to efficiently obtaining the optimal solution at the current node by RMP of selecting the optimal feasible link subset and PP of generating the possible feasible set. Besides, additional branching constraints are added to accelerate convergence. Further, a greedy algorithm for the original problem based on sequential multiple resource allocation is designed to acquire suboptimal solution with high efficiency, especially in the large fog-computing system.

BP for Satellite Networks

A resource allocation problem for the software defined satellite networks is presented in [6], with the objective to minimize the summarized communication resource consumption in a time horizon. BP is employed to handle the formulated problem, and in each search node, CG is...
employed by RMP of selecting the optimal service path and PP to generate the potential service paths for RMP. To accelerate the pruning for the branch tree, the K-shortest path based scheme is employed to initialize RMP and solve PP. Besides, the beam search is applied to accelerate the search tree cutting, and a heuristic algorithm is designed for the last RMP to obtain tighter UB.

Numerical Example: Due to the page limitation, we show only the results of [6]. Specifically, the numerical results are conducted in the scenario of 16 low earth orbit satellite network, constituting 4 × 4 Walker constellation and each orbit is composed of FOUR satellites. In particular, Fig. 5 provides the numerical results comparison of different methods in time cost (Fig. 5b) and optimization results (Fig. 5b). Except for the column generation and BP, the optimal results via the branch-and-bound is leveraged as a benchmark. The optimization results denote the total communication resource consumption, which is the optimization objective of [6]. By combining Figs. 5a and 5b, it is observed that the result of BP can obtain the optimal solution with low time cost, while CG can reach a near-optimal result with lower computational complexity.

BP for Software Defined Data Center Network

A dynamic mapping of next generation node-Bs (gNBs) to software virtual machine pool problem is proposed in [12], with the weighted objective to minimize the total cloud computing cost, processing power and to maximize the network traffic load processed by virtual machine pools. BP is employed for handling the problem, with the PP to generate the mapping association and RMP to decide the optimal mapping set. Besides, to accelerate the solution efficiency, additional cuts are added to RMP to shrink the bound.

As above, CG can acquire the near optimal solution with high efficiency in the network optimization problems discussed, while BP guarantees the optimality. Hence, CG is applicable to large-scale network optimization problems to obtain a satisfied solution with requirements of low time complexity.

Challenges and Directions

Although CG is an effective mechanism to tackle the optimization problem in communication networks, there still exist a few challenges:

- Time-consuming iterations between RMP and PP as well as the time cost of optimal solution of PP.
- The initialization and final integer solution decision for RMP.
- Long tail effect with the increasing iteration times between RMP and PP.
- CG used in the stochastic optimization.
- Acceleration of BP to acquire a less elegant but more efficient solution.

To tackle these challenges, the following tips will be helpful:

- As for the time-consuming iterations between RMP and PP, since the LRMP can be directly solved by optimization tools, the computational burden primarily comes from solving PP. Besides, a good solution for PP will help provide high-quality columns for RMP. In particular, the solution of PP can be acquired according to the property of PP in detailed networks, for example, a shortest-path problem [9]. In addition, the optimal solution for PP will decrease the iterations, however, to obtain the optimality is time-consuming, so there exists a trade-off between the iteration times and the solution quality of PP.

A feasible initial solution of RMP is necessary to activate the CG scheme [2], and a warm start will provide high-quality solution and help reduce the total time cost, for example, the heuristic warm initialization for RMP in [7]. In addition, if the final solution of RMP is not integer when the iteration between RMP and PP terminates, to address the efficiency and solution quality of RMP, an effective approximated mechanism for RMP is applicable. Besides, additional cuts can be generated and added to RMP to shrink the search area.

The long tail effect [13] results in too many iteration times, which can be dealt with by predefining an iteration value, since the final solution is nearly obtained, but the convergence speed is quite slow.
In the stochastic optimization problem with uncertainty demand, CG is available to tackle the problem with efficiency. For instance, in [14], the two-stage edge computing problem with uncertainty demand is handled by CG to acquire the solution with robustness.

To accelerate BP for a less elegant solution in practical applications, branching the search tree in a greedy fashion is available, for example, the beam search [15] to reduce the search tree. Besides, during the CG procedure of BP, UB, and LB can be efficiently updated after the approximation of RMP, which further expedites cutting down the search tree.

CONCLUSIONS

This work has reviewed the basics and details of CG applied in optimization decision problems, based on the problem structure, problem reformulation, and Dantzig-decomposition. In order to guarantee the optimality when applying CG to the integer programming problems, the BP mechanism has been elaborated by building the branch tree combined with CG. The existing applications of CG and BP in communication networks have been summarized and analyzed, including space-air-ground networks, D2D networks, MEC networks, body area networks, etc. It can be observed that CG is a powerful tool to handle the optimization problems in various communication networks to make efficient decision. In the applications of different communication networks with various metrics, CG and BP can be alternatively employed according to the specific network and computational complexity demands.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science Foundation of Jiangsu Province of China under Project BK20220883, in part by the Fundamental Research Funds for the Central Universities NO NS2022045, in part by the Natural Science Foundation of China under Grant 61931011, in part by the National Key R&D Program of China 2018YFB1800801, and in part by the Primary Research & Development Plan of Jiangsu Province No. BE2021013-4.

REFERENCES

[1] J. Desrosiers and M. E. Lübbecke, A Primer in Column Generation, Boston, MA: Springer US, 2005.
[2] C. Barnhart et al., “Branch-and-Price: Column Generation for Solving Huge Integer Programs,” Oper. Res., vol. 46, no. 3, May 1998, pp. 316–29.