ARTICLE

Cycles with two blocks in k-chromatic digraphs

Ringi Kim1 | Seog-Jin Kim2 | Jie Ma3 | Boram Park4

1Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
2Department of Mathematics Education, Konkuk University, Seoul, Republic of Korea
3School of Mathematical Sciences, University of Science and Technology of China, Hefei, P.R. China
4Department of Mathematics, Ajou University, Suwon, Republic of Korea

Correspondence
Boram Park, Department of Mathematics, Ajou University, Suwon, Republic of Korea.
Email: borampark@ajou.ac.kr

Abstract
Let k and ℓ be positive integers. A cycle with two blocks $c(k, \ell)$ is a digraph obtained by an orientation of an undirected cycle, which consists of two internally (vertex) disjoint paths of lengths at least k and ℓ, respectively, from a vertex to another one. A problem of Addario-Berry, Havet and Thomassé [J. Combin. Theory Ser. B 97 (2007), 620–626] asked if, given positive integers k and ℓ such that $k + \ell \geq 4$, any strongly connected digraph D containing no $c(k, \ell)$ has chromatic number at most $k + \ell - 1$. In this article, we show that such digraph D has chromatic number at most $O((k + \ell)^2)$, improving the previous upper bound $O((k + \ell)^4)$ of Cohen et al. [Subdivisions of oriented cycles in digraphs with large chromatic number, to appear]. We also show that if in addition D is Hamiltonian, then its underlying simple graph is $(k + \ell - 1)$-degenerate and thus the chromatic number of D is at most $k + \ell$, which is tight.

KEYWORDS
chromatic number, cycle with two blocks, digraph coloring, strongly connected digraph

1 | INTRODUCTION

Throughout this article, all graphs G and digraphs D are simple, that is, there are no loops and no multiple edges in G or D (though a pair of opposite arcs is allowed in D). Unless otherwise specified, by a path, a walk, or a cycle in a digraph D we always mean a directed one. The length $|P|$ of a walk P is the number of arcs it contains. An orientation of a graph G is a digraph obtained by giving a direction to each edge of G, and the underlying graph of a digraph D is the simple graph obtained by ignoring the directions of the arcs. For a digraph D, $A(D)$ means the set of the arcs in D and we use $E(D)$ for the set of edges of the underlying graph of D. The chromatic number $\chi(D)$ of a digraph D is the chromatic number of its underlying graph. And we say D is n-chromatic if $\chi(D) = n$.

© 2017 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/jgt J Graph Theory. 2018;88:592–605.
A classic theorem of Gallai and Roy [10,15] says that any \(n \)-chromatic digraph contains a path with \(n \) vertices. This motivates the study of \(n \)-universal digraphs, that is, digraphs contained in any \(n \)-chromatic digraphs. It is known that \(n \)-universal digraphs must be oriented trees (an orientation of an undirected tree), and Burr [4] conjectured that every oriented tree of \(n \) vertices is \((2n - 2) \)-universal, which remains open (for more information see [8,11,13,14]). For positive integers \(k \) and \(\ell \), a path with two blocks \(P(k, \ell) \) is an orientation of the undirected path of \(k + \ell + 1 \) vertices having two maximal paths, that is, either starting with \(k \) forward arcs followed by \(\ell \) backward arcs, or starting with \(k \) backward arcs followed by \(\ell \) forward arcs. In [7], El-Sahili conjectured that every path of \(n \geq 4 \) vertices with two blocks is \(n \)-universal. El-Sahili and Kouider [9] proved that every such path is \((n + 1) \)-universal, and then Addario-Berry, Havet, and Thomassé [1] confirmed the conjecture.

For positive integers \(k \) and \(\ell \), a cycle with two blocks \(c(k, \ell) \) (or we call it a 2-block cycle) is a digraph obtained by an orientation of an undirected cycle, which consists of two internally (vertex) disjoint paths of lengths at least \(k \) and \(\ell \), respectively, from a vertex to another one. A natural question is to ask if a digraph with high chromatic number can contain a 2-block cycle \(c(k, \ell) \). In [2], Benhocine and Wojda proved that every tournament of \(n \geq 4 \) vertices contains a 2-block cycle \(c(k, \ell) \) for any positive integers \(k \) and \(\ell \) with \(k + \ell = n \), except four tournaments. However, for general digraphs the answer is no: as shown by Gyárfás and Thomassen (see [1]), there exist digraphs with arbitrary large chromatic number which contain no cycles with two blocks. A digraph \(D \) is strongly connected (or strong, for short) if for any two vertices \(u \) and \(v \) of \(D \), there are a path from \(u \) to \(v \) and a path from \(v \) to \(u \). The authors of [1] noted that the digraphs found by Gyárfás and Thomassen are not strongly connected, and they proposed the following problem on cycles with two blocks for strongly connected digraphs.

Problem 1.1 (Addario-Berry, Havet, and Thomassé [1]). Let \(D \) be an \(n \)-chromatic strongly connected digraph, \(n \geq 4 \), and let \(k \) and \(\ell \) be positive integers such that \(k + \ell = n \). Does such \(D \) contain a 2-block cycle \(c(k, \ell) \)?

We indicate that Problem 1.1 is false by an example when \(n \) is small, appeared in the work [2] of Benhocine and Wojda. See Figure 1, which shows a 5-chromatic strongly connected digraph without \(c(4, 1) \). This problem also can be viewed as an extension of the following classic theorem of Bondy [3], which asserts the statement for cycles. (A cycle can be considered as a 2-block cycle \(c(k, 0) \).)

Theorem 1.2 (Bondy [3]). Any strong digraph \(D \) contains a cycle of length at least \(\chi(D) \).

We mention that a different extension of Bondy's theorem was obtained in [5]. Very recently, among other results, Cohen, Havet, Lochet, and Nisse [6] first obtained a finite upper bound of \(\chi(D) \) for strong digraphs \(D \) containing no \(c(k, \ell) \). Precisely, they proved the following.
Theorem 1.3 (Cohen, Havet, Lochet, and Nisse [6]). Let k and ℓ be integers such that $k \geq \ell \geq 2$ and $k \geq 4$, and D a strong digraph with no 2-block cycle $c(k, \ell)$. Then
\[
\chi(D) \leq (k + \ell - 2)(k + \ell - 3)(2\ell + 2)(k + \ell + 1).
\]

In this article, we improve the above upper bound $O((k + \ell)^4)$ to $O((k + \ell)^2)$ using a quite different approach from [6]. The following is our main result.

Theorem 1.4. Let k and ℓ be integers such that $k \geq \ell \geq 1$ and $k \geq 2$, and D a strong digraph with no 2-block cycle $c(k, \ell)$. Then
\[
\chi(D) \leq 2(2k - 3)(k + 2\ell - 1) < 12k^2.
\]

As a key step and a result of independent interest, we consider Hamiltonian digraphs and obtain the following tight result. A digraph D is Hamiltonian, if it contains a Hamiltonian cycle, that is, a cycle passing through all vertices of D. For a positive integer d, a digraph D is d-degenerate, if its underlying graph G is d-degenerate, that is, any subgraph of G contains a vertex having at most d neighbors (or having degree at most d) in it. Note that if a graph G is d-degenerate, then it is $(d + 1)$-colorable.

Theorem 1.5. Let k and ℓ be positive integers such that $k + \ell \geq 3$, and D a Hamiltonian digraph with no 2-block cycle $c(k, \ell)$. Then D is $(k + \ell - 1)$-degenerate, which implies that $\chi(D) \leq k + \ell$.

When $k = \ell = 1$, if a Hamiltonian digraph D has no 2-block cycle $c(k, \ell)$, then D is an induced cycle and so $\chi(D) \leq 3 = k + \ell + 1$ and the equality holds only when D is an odd cycle. The strong tournament T in Figure 1 shows the tightness of Theorem 1.5.

We introduce some basic notation and terminology. Let D be a digraph. For two walks P and Q of D, if the terminal vertex of P and the starting vertex of Q are the same, then we denote by $P + Q$ the walk through P and then Q. For a cycle C of D and any two vertices u and v on C, we denote by uCv the subpath of C from u to v along C. For $S \subseteq V(D)$, we denote by $D[S]$ the induced subdigraph of D on the vertex set S. Let G be a graph. For a vertex u of G, the neighborhood $N_G(u)$ of u contains all neighbors of u in G, and the closed neighborhood $N_G[u]$ of u is defined by $N_G[u] := N_G(u) \cup \{u\}$. In addition, we denote by $\delta(G) = \min_{u \in V(G)} |N_G(u)|$. For a positive integer k, denote $[k] := \{1, 2, \ldots, k\}$.

The article is organized as follows. In Section 2, we prove Theorem 1.5 for Hamiltonian digraphs. And in Section 3, we complete the proof of Theorem 1.4 for general strong digraphs.

2 | HAMILTONIAN DIGRAPHS: PROOF OF THEOREM 1.5

We devote this section to prove Theorem 1.5. Throughout this section, if D is a digraph, G is its underlying graph, and $S \subseteq A(D)$, then we allow, with slight abuse of notation, to denote by $E(S)$ for the set of edges of G obtained by ignoring the directions of arcs of S. We begin with the following useful lemma, which will be iteratively applied later.

Lemma 2.1. Let D be a digraph which has a Hamiltonian cycle C, and G its underlying graph. Suppose that u, v, x, y are four distinct vertices such that $uv, xy \in E(G) \setminus E(C)$ such that $x \in V(uCu)$ and $y \in V(vCy)$ (see Figure 2). For positive integers k and ℓ, if $|uCx| \geq k - 1$ and $|vCy| \geq \ell - 1$, then D contains a 2-block cycle $c(k, \ell)$, unless one of the following occurs:

(a) $|uCx| = k - 1$ and $(u, v), (y, x) \in A(D)$, or
(b) $|vCy| = \ell - 1$ and $(v, u), (x, y) \in A(D)$.
Proof. Note that there are four different cases of the directions of the edges uv and xy. If $(u, v), (x, y) \in A(D)$, then $uCx + (x, y)$ and $(u, v) + vCy$ are internally disjoint paths from u to y of length $|uCx| + 1$ and $|vCy| + 1$, respectively. If $(u, v), (y, x) \in A(D)$, then uCx and $(u, v) + vCy$ are internally disjoint paths from u to x of length $|uCx|$ and $|vCy| + 2$, respectively. If $(v, u), (x, y) \in A(D)$, then $(v, u) + uCx$ and vCy are internally disjoint paths from y to x of length $|uCx| + 1$ and $|vCy| + 1$, respectively. Now it is easy to verify the conclusion, under the above observations.

The following lemma will be essential for Theorem 1.5.

Lemma 2.2. Let k and ℓ be positive integers such that $k + \ell \geq 3$. Let D be a Hamiltonian digraph and G its underlying graph. If $\delta(G) \geq k + \ell$, then D contains a 2-block cycle $c(k, \ell)$.

Proof. Suppose for a contradiction that D has no 2-block cycle $c(k, \ell)$. Let $C = v_0, v_1, \ldots, v_{n-1}, v_0$ be a Hamiltonian cycle of D, where $n = |V(D)| \geq k + \ell + 1$.

Claim 1. There is no r such that either $v_r v_{r+k+1} \in E(G)$ or $v_r v_{r+\ell+1} \in E(G)$.

Proof of Claim 1. Suppose that such r exists. By symmetry between k and ℓ, we may assume that $v_0 v_{k+1} \in E(G)$. Note that $v_0, v_1, \ldots, v_{k+\ell}$ are distinct vertices in G, since $k + \ell + 1 \leq |V(G)|$. Thus $v_0 v_{k+1}$ is an edge not in $E(C)$ if $|V(G)| = n > k + 2$. To reach the final contradiction, we prove a series of assertions (1.1) \sim (1.4) as follows (see Figure 3 for illustration).

(1.1) $N_G[v_k] = V(v_0 Cv_{k+\ell})$.

FIGURE 2 Figures for Lemma 2.1

FIGURE 3 Figures for Claim 1
Suppose not, then in view of $|N_G(v_k)| \geq k + \ell'$, v_k has a neighbor $w \in V(v_{k+\ell'+1}C_{n-1})$ in G. Then $k + \ell' + 1 \leq n - 1$ or $k + 2 < n$. Thus the edges v_0v_{k+1} and v_kw are in G but not in $E(C)$. Since $|v_0C_{\ell'}| \geq k$ and $|v_{k+1}Cw| \geq \ell'$, Lemma 2.1 then forces a 2-block cycle $c(k, \ell')$ in D. This contradiction completes the proof of (1.1).

(1.2) If $\ell' \geq 2$, then $(v_{k+1}, v_0), (v_k, v_{k+\ell'}) \in A(D)$ (see Figure 3(ii)).

Suppose that $\ell' \geq 2$. Then $v_kv_{k+\ell'} \in E(G) \setminus E(C)$. Moreover, $n > k + 2$ and so v_0v_{k+1} is not an edge of $E(C)$. By considering the pair of edges v_0v_{k+1} and $v_kv_{k+\ell'}$ of G not in $E(C)$, since $|v_0C_{\ell'}| \geq k$ and $|v_{k+1}C_{\ell'}| \geq \ell' - 1$, Lemma 2.1 shows that, to avoid $c(k, \ell')$, the orientation of these edges in D are $(v_{k+1}, v_0), (v_k, v_{k+\ell'}) \in A(D)$.

(1.3) $k \geq 2$ and thus, v_{k-1} is a vertex distinct from v_0.

Otherwise, $k = 1$ and so $\ell' \geq 2$, implying that $(v_k, v_{k+\ell'}) \in A(D)$ by (1.2); then the arc $(v_k, v_{k+\ell'})$ and the path $v_kC_{\ell'}$ together form a 2-block cycle $c(k, \ell')$ (where $k = 1$), a contradiction.

(1.4) $N_G[v_{k-1}] = V(v_0C_{\ell'})$.

Suppose not, then in view of $|N_G(v_{k-1})| \geq k + \ell'$, v_{k-1} has a neighbor $w \in V(v_{k+\ell'+1}C_{n-1})$ in G. Then $k + \ell' + 1 \leq n - 1$ or $k + 2 < n$, and so $v_0v_{k+1} \in E(G) \setminus E(C)$. By (1.3), as $k \geq 2$, $v_{k-1} \neq v_0$, and so $v_{k-1}w \in E(G) \setminus E(C)$. By considering two edges $v_0v_{k+1}, v_{k-1}w \in E(G) \setminus E(C)$, since $|v_0C_{\ell'}| = k - 1$ and $|v_{k+1}Cw| \geq \ell'$, by Lemma 2.1, we get that $(v_0, v_{k+1}), (w, v_{k-1}) \in A(D)$. We cannot have $\ell' \geq 2$, as otherwise it would contradict (1.2). Thus, $\ell' = 1$, then the path $v_0C_{\ell'+1}$ and the arc (v_0, v_{k+1}) form a 2-block cycle $c(k, \ell')$ (where $\ell' = 1$), a contradiction. This proves (1.4).

As $k \geq 2$, we now observe that v_0v_k and $v_{k-1}v_{k+\ell'}$ are edges of $E(G) \setminus E(C)$ (see Figure 3(i)). Since $|v_0C_{\ell'-1}| = k - 1$ and $|v_kC_{\ell'+\ell'}| = \ell'$, applying Lemma 2.1, we obtain that $(v_0, v_k), (v_{k+\ell'}, v_{k-1}) \in A(D)$. If $(v_{k+1}, v_0) \in A(D)$, then the paths $(v_{k+1}, v_0) + v_0C_{\ell'+1}$ and $v_{k+1}C_{\ell'+1} + (v_{k+\ell'}, v_{k-1})$ form a 2-block cycle $c(k, \ell')$ of D, a contradiction. Hence, we must have $(v_0, v_{k+1}) \in A(D)$ and by (1.2), we have $\ell' = 1$. Then (v_0, v_{k+1}) and $v_0C_{\ell'}$ form a 2-block cycle $c(k, \ell')$ (where $\ell' = 1$). This completes the proof of Claim 1.

As $k + \ell' \geq 3$, from now on we may assume that $\ell' \geq 2$. We choose two vertices u and v such that $uv \in E(G) \setminus E(C)$ and the length of uCv is as small as possible but at least $k + 1$. Note that such an edge uv exists as $\delta(G) \geq k + \ell' \geq k + 2$. We may assume that $u = v_0$ and $v = v_{r}$, where $n - 1 > r \geq k + 1$.

By Claim 1, it follows that $r \geq k + 2 \geq 3$ (see Figure 4(ii)). We also note that by the minimality of r, v_r
has at most $k + 1$ neighbors in $V(v_0Cv_r)$ and so it has at least $\ell - 1$ neighbors in $V(v_{r+1}Cv_{n-1})$ and so $\ell - 1 \leq n - r - 1$ and so $r + \ell - 1 \leq n - 1$. Thus, $v_0, v_1, \ldots, v_{r+\ell-2}, v_{r+\ell-1}$ are all distinct vertices in G.

Claim 2. $N_G[v_{r-1}] = V(v_{r-k-1}Cv_{r+\ell-1})$ and $N_G[v_{r-2}] = V(v_{r-k-2}Cv_{r+\ell-2})$.

Proof of Claim 2. By the minimality of r, we observe that v_{r-1} has no neighbors in $V(v_0Cv_{r-k-2})$. If v_{r-1} has a neighbor w in $V(v_{r+\ell}Cv_{n-1})$, then by Lemma 2.1, the edges $v_0v_r, v_{r-1}w \in E(G) \setminus E(C)$ force a 2-block cycle $c(k, \ell')$ in D, a contradiction. Therefore, $N_G(v_{r-1}) \subseteq V(v_{r-k-1}Cv_{r+\ell-1})$. As v_{r-1} has at least $k + \ell'$ neighbors in G, it follows that $N_G[v_{r-1}] = V(v_{r-k-1}Cv_{r+\ell-1})$.

Consider v_{r-2}. If v_{r-2} has a neighbor w in $V(v_{r+k-1}Cv_{n-1})$, then by Lemma 2.1, the edges $v_0v_{r-2}, v_{r-2}w \in E(G) \setminus E(C)$ force a 2-block cycle $c(k, \ell')$, a contradiction. Therefore, we conclude that $N_G(v_{r-2})$ is a subset of $V(v_0Cv_{r+\ell-2})$. If $r = k + 2$, then $v_0 = v_{r-k-2}$ and so $N_G(v_{r-2}) \subseteq V(v_{r-k-2}Cv_{r+\ell-2})$. When $r \geq k + 3$, by the minimality of r, one can observe that v_{r-2} has no neighbors in $V(v_0Cv_{r-k-1})$, which implies that $N_G(v_{r-2}) \subseteq V(v_{r-k-2}Cv_{r+\ell-2})$. As $|N_G(v_{r-2})| \geq k + \ell'$, it follows that $N_G[v_{r-2}] = V(v_{r-k-2}Cv_{r+\ell-2})$. This proves Claim 2.

We are ready to arrive at the final contradiction. For simplicity, let (see Figure 4(ii)):

$$y_1 = v_{r-k-2}, \quad u_1 = v_{r-k-1}, \quad x = v_{r-2}, \quad v = v_{r-1}, \quad y_2 = v_{r+\ell-2}, \quad u_2 = v_{r+\ell-1}.$$

By Claim 2, $u_2, x, y_2 \in E(G)$. Note that u_2 and xy_2 are edges not in $E(C)$, since $n \geq \ell + 2$. Since $|vCy_2| = \ell - 1$ and $|uxC| = n - \ell - 1 \geq k$, by Lemma 2.1, we have $(x, y_2) \in A(D)$. As $k = 1$, then the arc (u_2, u_2) and the path vCu_2 form a 2-block cycle $c(k, \ell')$ in D. Thus $k \geq 2$.

By Claim 2 again, $u_1, x, y_1 \in E(G)$. Since $k \geq 2$ and so $n \geq k + 2$, u_1v and x, y_1 are edges not in $E(C)$. As $|uxC| = k - 1$ and $|vCy_1| = n - k - 1 \geq \ell'$, by Lemma 2.1, we have $(u_1, v), (y_1, x) \in A(D)$. Then the two paths $u_1C + (x, y_2)$ and $(u_1, v) + vCy_2$ have the length k and ℓ', respectively, and so they induce a 2-block cycle $c(k, \ell')$ in D. We reach a contradiction and this completes the proof of Lemma 2.2.

Now we can derive Theorem 1.5 from Lemma 2.2.

Proof of Theorem 1.5. It suffices to show that any Hamiltonian digraph D with no $c(k, \ell')$ is $(k + \ell - 1)$-degenerate. Suppose the above statement is false, and let D be a counterexample to it with minimum number of vertices. That is, D is an n-vertex Hamiltonian digraph with no $c(k, \ell')$ and is not $(k + \ell - 1)$-degenerate, but any Hamiltonian digraph with no $c(k, \ell')$ and with less than n vertices is $(k + \ell - 1)$-degenerate. Let G be the underlying graph of D and $C = v_0, v_1, \ldots, v_{n-1}, v_0$ a Hamiltonian cycle of $D.$

If $\delta(G) \geq k + \ell'$, then by Lemma 2.2, D contains a 2-block cycle $c(k, \ell')$, a contradiction. Thus there exists some vertex in G which has less than $k + \ell'$ neighbors. We may assume $|N_G(v_0)| \leq k + \ell - 1$. Let D' be the digraph obtained from D by deleting v_0 and adding an arc (v_{n-1}, v_1), and G' be the underlying graph of D'. Clearly D' is Hamiltonian, G' is an underlying graph of D', and $G - v_0$ is a subgraph of G'. Suppose D' contains a 2-block cycle $c(k, \ell')$, say H'. If the arc (v_{n-1}, v_1) is not in H', then H' is a subgraph of D, which yields a contradiction. Thus H' does use (v_{n-1}, v_1). However, the digraph obtained from H' by replacing the arc (v_{n-1}, v_1) with the path v_{n-1}, v_0, v_1 of length two is a 2-block cycle $c(k, \ell')$ as well, which is contained in D, a contradiction. Hence, the Hamiltonian digraph D'' contains no 2-block cycle $c(k, \ell')$. Then by our hypothesis, D'' is $(k + \ell' - 1)$-degenerate and so is G'. Since $G - v_0$ is a subgraph of G' and $|N_G(v_0)| \leq k + \ell - 1$, it follows that G (and thus D) is also $(k + \ell - 1)$-degenerate. This completes the proof of Theorem 1.5.
3 | PROOF OF THEOREM 1.4

In this section, we will prove Theorem 1.4 for general strong digraphs. The plan is first to reduce the upper bound of $\chi(D)$ to $\chi(F)$ for some special subdigraphs F of a strong digraph D (this part will be done in Subsection 3.1); and then we study some structural properties on F in Subsection 3.2; and finally in Subsection 3.3, we obtain the upper bound for $\chi(F)$ and complete the proof.

First, we introduce some notation and terminology that will play important roles in the coming proofs. Let D be a digraph and $S \subseteq V(D)$. Let D/S denote the contraction of S in D, i.e., the digraph obtained by contracting S into a new vertex v_S and adding arcs (x, y) of the following two kinds:

(a) $x = v_S$ and $y \in V(D) \setminus S$, if there exists $(w, y) \in A(D)$ for some $w \in S$,

(b) $x \in V(D) \setminus S$ and $y = v_S$, if there exists $(x, w) \in A(D)$ for some $w \in S$.

For a vertex $v \in V(D/S)$, the preimage $\varphi(v)$ of v is defined by

$$\varphi(v) = \begin{cases} S & \text{if } v = v_S \\ \{v\} & \text{otherwise.} \end{cases}$$

And for $B \subseteq V(D/S)$, the preimage $\varphi(B)$ of B is defined to be $\varphi(B) = \bigcup_{v \in B} \varphi(v)$.

We say a strong digraph T is a cycle-tree if there is an ordering C_0, C_1, \ldots, C_m of all cycles in T such that for $1 \leq i \leq m$,

$$|V(C_i) \cap \left(\bigcup_{j:0 \leq j \leq i-1} V(C_j) \right)| = 1.$$

We also say this ordering C_0, C_1, \ldots, C_m is a cycle-tree ordering of T. See Figure 5 for an illustration of a cycle-tree. A cycle-tree T is called a cycle-path, if there exists an ordering C_0, C_1, \ldots, C_m of all cycles of T such that $|V(C_i) \cap V(C_j)| \leq 1$ for any distinct $i, j \in \{0, 1, \ldots, m\}$, and the equality holds if and only if $|i - j| = 1$. Here, the cycles C_0 and C_m are called the end-cycles of T, and the length of such a cycle-path is defined to be m.

Cycle-trees have some “tree-like” properties. For two distinct cycles C, C' of a cycle-tree T, there exists a uniquely determined cycle-path in T with end-cycles C and C', which we denote by $\Lambda_T(C, C')$. Moreover, for any two vertices $u, v \in V(T)$, there also exist a unique path from u to v and a unique path from v to u in T, which we denote by $uT v$ and $vT u$, respectively.
3.1 Reducing $\chi(D)$ to $\chi(F)$

Let k and ℓ be integers such that $k \geq \ell \geq 1$ and $k \geq 2$, and let D be a strong digraph with no 2-block cycle $c(k, \ell)$. In this subsection, we will partition $V(D)$ so that each part induces a certain subdigraph F and show that $\chi(D)$ can be bounded from above by the maximum $\chi(F)$ (see Lemma 3.3).

We first define a sequence of strong digraphs $D^{(0)}, D^{(1)}, \ldots, D^{(m)}$ and a sequence of cycles $C^{(0)}, C^{(1)}, \ldots, C^{(m-1)}$ as follows. Initially, let $D^{(0)} = D$. Now suppose that $D^{(i)}$ has been defined. If $\chi(D^{(i)}) \geq 2k - 2$, then in view of Theorem 1.2, $D^{(i)}$ has at least one cycle of length at least $2k - 2$. Let $C^{(i)}$ be a longest cycle in $D^{(i)}$ and let $D^{(i+1)} = D^{(i)}/V(C^{(i)})$, which is the digraph obtained from $D^{(i)}$ by contracting $V(C^{(i)})$. Otherwise, $\chi(D^{(i)}) \leq 2k - 3$ and we then stop. This procedure is well defined since for a strong digraph, a contraction of a set of vertices which induces a strong subdigraph is also strong.

We emphasize that the above definition will be fundamental and we will constantly refer to it in the coming proofs. Let us collect some properties on $D^{(j)}$ and $C^{(j)}$. It is clear that $\chi(D^{(m)}) \leq 2k - 3$, and $C^{(j)}$ is a subgraph of $D^{(j)}$ for each $j \in \{0, 1, \ldots, m - 1\}$. Denote the collection of the lengths of $C^{(j)}$'s by

$$L := \left\{ \left| C^{(0)} \right|, \left| C^{(1)} \right|, \ldots, \left| C^{(m-1)} \right| \right\}.$$

The following is also easily obtained from the fact that each $C^{(j)}$ is chosen to be a longest one in $D^{(j)}$. We omit the proof.

Proposition 3.1. $|C^{(0)}| \geq |C^{(1)}| \geq \cdots \geq |C^{(m-1)}| \geq 2k - 2$.

For each $j \in \{0, 1, \ldots, m\}$, $D^{(j)}$ is also a strong digraph with no 2-block cycle $c(k, \ell)$.

Proposition 3.2. For each $j \in \{0, 1, \ldots, m\}$, $D^{(j)}$ contains no $c(k, \ell)$.

Proof. We prove by induction on j. The base case $j = 0$ follows as D contains no $c(k, \ell)$. Suppose that $D^{(j)}$ contains no $c(k, \ell)$. If $D^{(j+1)} = D^{(j)}/C^{(j)}$ contains a 2-block cycle $c(k, \ell)$ (call this subdigraph H), then it is straightforward to see that the subdigraph of $D^{(j)}$ obtained from H by uncontracting $C^{(j)}$ also contains a 2-block cycle $c(k, \ell)$, a contradiction. This proves the proposition. ■

For each $v \in V(D^{(m)})$ and $j \in [m]$, we recursively define the jth preimage $\varphi^{(j)}(v)$ of v as follows: let $\varphi^{(1)}(v) = \varphi(v) \subseteq V(D^{(m-1)})$ and for $2 \leq j \leq m$,

$$\varphi^{(j)}(v) = \varphi\left(\varphi^{(j-1)}(v)\right) \subseteq V(D^{(m-j)}).$$

In particular, $\varphi^{(m)}(v) \subseteq V(D)$. So $\{\varphi^{(m)}(v) \mid v \in V(D^{(m)})\}$ forms a partition of $V(D)$.

We are ready to prove the main lemma of this subsection.

Lemma 3.3. It holds that

$$\chi(D) \leq (2k - 3) \times \max_{v \in V(D^{(m)})} \chi\left(\mathcal{D}\left[\varphi^{(m)}(v)\right]\right).$$

Proof. Let $i := \max \chi(D[\varphi^{(i)}(v)])$ over all $v \in V(D^{(m)})$. We recall that $\chi(D^{(m)}) \leq 2k - 3$. So $V(D^{(m)})$ can be partitioned into $2k - 3$ independent sets, say $B_1, B_2, \ldots, B_{2k-3}$. (Here it is possible that $B_i = \emptyset$ for some $i \in [2k-3]$.) For each $i \in [2k-3]$, let V_i be the union of $\varphi^{(i)}(v)$ over all $v \in B_i$. So V_1, \ldots, V_{2k-3} form a partition of $V(D)$. Since B_i is independent in $D^{(m)}$, it is easy to see that for distinct vertices u and v of B_i, there are no arcs between $\varphi^{(i)}(u)$ and $\varphi^{(i)}(v)$ in D. This shows that for
each $i \in [2k - 3]$, the chromatic number of each induced subdigraph $D[V_j]$ is at most i, implying that $\chi(D) \leq (2k - 3) \cdot i$. This completes the proof of Lemma 3.3.

In the rest of this section, we let $F := D[\varphi(m)(s)]$ for an arbitrary vertex $s \in V(D(m))$.

3.2 Properties on F

In the following two lemmas we obtain some useful properties on F. Recall that L is the set of lengths of cycles $C(i)$s.

Lemma 3.4. If F has more than one vertex, then F contains a cycle-tree T as a spanning subdigraph such that the length of every cycle of T is from L (and thus at least $2k - 2$).

Proof. Recall that for each $j \in [m]$, the jth preimage $\varphi(j)(v)$ is a subset of $V(D^{(m-j)})$. Let

$$D_j := D^{(m-j)}[\varphi(j)(v)].$$

We prove by induction on $j \in [m]$ that every D_j either consists of $\{v\}$, or contains a cycle-tree T_j as a spanning subdigraph such that the length of every cycle of T_j is from L. This is clearly sufficient, as $F = D_m$. The base case $j = 1$ is trivial, as by definition, $\varphi(v)$ is either $\{v\}$ or the cycle $C(m-1)$ which is a spanning cycle-tree of D_1.

Now suppose that the statement holds for some $j \in [m]$ and we consider D_{j+1}. If D_j consists of $\{v\}$ (i.e., $\varphi(j)(v) = \{v\}$), then $\varphi(j+1)(v) = v$ or $C(m-j-1)$, and similarly as the base case, we see that the statement also holds for D_{j+1}. Hence, we may assume that D_j contains a cycle-tree T_j as a spanning subdigraph such that the length of every cycle of T_j is from L.

We point out that D_j and D_{j+1} are induced subgraphs of $D^{(m-j)}$ and $D^{(m-j-1)}$, respectively, and $D^{(m-j)} = D^{(m-j-1)} / C^{(m-j-1)}$, where the new vertex of $D^{(m-j)}$, say u, is obtained by contracting the cycle $C := C^{(m-j-1)}$. If $\varphi(j+1)(v) = \varphi(j)(v)$, then clearly $D_{j+1} = D_j$ and we are done. So we may assume that $\varphi(j+1)(v) \neq \varphi(j)(v)$. Then it must be the case that $u \in \varphi(j)(v) = V(D_j)$ and thus $V(D_{j+1}) = (V(D_j) \setminus \{u\}) \cup V(C)$. In fact, we also have $D_j = D_{j+1} / C$.

Since u is a vertex of D_j and D_j contains a spanning cycle-tree T_j with the described property, there exists a non-empty set C of cycles in T_j containing the vertex u. Take C' to be any cycle in C. Then there exist $x', y' \in V(C') \setminus \{u\}$ such that (x', u) and (u, y') are the two arcs of C' incident to u. Un-contracting back to D_{j+1}, we see there are two arcs (x', x) and (y', y') of D_{j+1} for some $x, y \in V(C)$.

We claim that $x = y$ for every such $C' \in C$. Suppose for a contradiction that $x \neq y$. Then there exists a path $P := (y, y') + y'CXx' + (x', x)$ in D_{j+1} from y to x such that

$$|P| \geq 1 + (|C'| - 2) + 1 = |C'| \geq 2k - 2 \geq k,$$

where the last inequality is from $k \geq 2$. If $|yCx| \geq \ell'$, then the paths P and yCx are internally disjoint paths in D_{j+1} from y to x of length at least k and ℓ', respectively, and thus they form a 2-block cycle $c(k, \ell')$ in D_{j+1} (and thus in $D^{(m-j-1)})$, a contradiction to Proposition 3.2. So we have $|yCx| \leq \ell' - 1$. Then $Q := P + xCy$ is a cycle in D_{j+1} such that (note $k \geq \ell'$ and $k \geq 2$)

$$|Q| = |P| + |C| - |yCx| \geq (2k - 2) + |C| - (\ell' - 1) > |C|,$$

contradicting the fact that $C = C^{(m-j-1)}$ is a longest cycle in $D^{(m-j-1)}$. This proves $x = y$.

For any $C' \in C$, we update C' to be a cycle C'' in D_{j+1} by replacing $(x', u), (u, y')$ with $(x', x), (x, y')$. Clearly, $|C''| = |C'| \in L$. We then can define a subdigraph T_{j+1} of D_{j+1} to be obtained from T_j by replacing all cycles $C' \in C$ with the corresponding C'' and by adding the new cycle $C^{(m-j-1)}$. It is
easy to check that T_{j+1} indeed is a spanning cycle-tree of D_{j+1}, and the length of every cycle of T_{j+1} is from L. This finishes the proof of Lemma 3.4.

Remark. From the proof of Lemma 3.4, we also see that during the contraction process (say from $D^{(m-j-1)}$ to $D^{(m-j)}$ by contracting the cycle $C = C^{(m-j-1)}$), either the spanning cycle-tree T_{j+1} of D_{j+1} remains unchanged, or C is a cycle in T_{j+1} and $T_j = T_{j+1}/C$. Hence, if we look at the whole contraction process, at each step the spanning cycle-tree T of F will either remain the same or contract one of its cycles.

From now on, we assume that F has at least two vertices and let T be a fixed cycle-tree of F guaranteed by Lemma 3.4. An arc (x, y) in F is called an *external arc* (with respect to T), if there is no cycle of T containing both x and y. The following lemmas states that for an external arc (x, y) in F, the path $yT x$ must be short.

Lemma 3.5. Suppose that F has an external arc (x, y). Let C_x and C_y be the cycles of T containing x and y, respectively, such that $|\Lambda_T(C_x, C_y)|$ is the minimum. Let u and v be the common vertices of the first two and the last two cycles of the cycle-path $\Lambda_T(C_x, C_y)$, respectively. Then both $|vT x|$ and $|yT u|$ are at most $\ell - 2$.

Proof. Let $\Lambda_T(C_x, C_y) : C_0, C_1, \ldots, C_t$ for some $t \geq 1$. By Lemma 3.4, the length of each C_i is from L and at least $2k - 2$. Let γ be the maximum of $|C_i|$ over $0 \leq i \leq t$. Since $t \geq 1$, we have $\sum_{i=0}^t |C_i| \geq \gamma + (2k - 2)$.

Let $j \in [m]$ be the minimum integer such that $|C^{(j)}| = \gamma$. By the minimality, we point out that all contracting cycles $C^{(i)}$ obtained before $D^{(j)}$ have lengths strictly bigger than γ. By the remark after Lemma 3.4, this also shows that any cycle in $\Lambda_T(C_x, C_y)$ has not been contracted before $D^{(j)}$, and as a result, $D^{(j)}$ contains the induced subgraph H of F restricted on $\Lambda_T(C_x, C_y)$.

Note that by the choice of C_x and C_y, $x \neq u, v$ and $y \neq u, v$. We first prove that $|vT x| \leq \ell - 2$. Suppose for a contradiction that $|vT x| \geq \ell - 1$. If $|vT y| \geq k$, then $vT x + (x, y)$ and $vT y$ are internally disjoint paths from v to y of length at least ℓ and k, giving a 2-block cycle $c(k, \ell)$, a contradiction. Hence, $|vT y| \leq k - 1$, implying that $|yT v| \geq \ell - 1$ (as $C_i = vT y + yT v$). If $|xT v| \geq k$, then the paths $(x, y) + yT v$ and $xT v$ generate a 2-block cycle $c(k, \ell)$ in D, a contradiction. So $|xT v| \leq k - 1$. Let $C = (x, y) + yT v$. Then C is a cycle of length

$$|C| = \sum_{i=0}^t |C_i| + 1 - |xT v| - |vT y| \geq \gamma + (2k - 2) + 1 - (k - 1) - (k - 1) > \gamma.$$

Note that C is also a cycle of H and also a cycle of $D^{(j)}$. However, this is a contradiction, as $C^{(j)}$ has length γ and is a longest cycle in $D^{(j)}$. Therefore, it cannot happen that $|vT x| \geq \ell - 1$, and so $|vT x| \leq \ell - 2$.

We then show that $|yT u| \leq \ell - 2$. Suppose not that $|yT u| \geq \ell - 1$. Then the path $(x, y) + yT u$ has length at least ℓ. To avoid a 2-block cycle $c(k, \ell)$, we must have $|xT u| \leq k - 1$. But we also have $|uT x| \leq |vT x| \leq \ell - 2$. Therefore $|C_0| = |xT u| + |uT x| \leq (k - 1) + (\ell - 2) < 2k - 2$, a contradiction. This completes the proof.

Remark. From the proof of Lemma 3.5, we know that if F has an external arc (x, y), then it cannot happen that $|vT x| \geq \ell - 1$. This implies that if F has an external arc, then $\ell \geq 2$.

3.3 | Coloring \(F\)

In this subsection, our goal is to find a proper coloring of \(F\) using \(O(k + \ell)\) colors, which completes the proof of Theorem 1.4. Recall that \(\mathcal{T}\) is the spanning cycle-tree of \(F\) (fixed from Lemma 3.4). Fix a cycle-tree ordering \(C_0, C_1, \ldots, C_n\) of \(\mathcal{T}\). For simplicity, we write \(\Lambda_{\mathcal{T}}(C_i, C_j)\) as \(\Lambda(C_i, C_j)\).

We define two spanning subdigraphs \(F^{(1)}\) and \(F^{(2)}\) of \(F\) such that \(A(F) = A(F^{(1)}) \cup A(F^{(2)})\). Before proceeding, we need to introduce some notation. Let \(C\) be a cycle in \(\mathcal{T}\) with \(C \neq C_0\). We call the second-last cycle in \(\Lambda(C_0, C)\) the parent of \(C\) and denote it as \(p(C)\). The unique vertex \(p \in V(C) \cap V(p(C))\) is called the parent vertex of \(C\). Note that the notions of the parent cycle and the parent vertex are uniquely defined for all cycles of \(\mathcal{T}\) except \(C_0\). For every \(v \in V(F)\), let \(C_v\) be the cycle of \(\mathcal{T}\) containing \(v\), which has the shortest cycle-path to the cycle \(C_0\).

We then define a function \(\phi : V(\mathcal{T}) \rightarrow \{0, 1\}\) by letting

\[
\phi(v) = \begin{cases}
1 & \text{if } C_v \neq C_0 \text{ and } |vC_vp_v| (= |vT p_v|) \leq \ell - 2, \\
0 & \text{otherwise}
\end{cases}
\]

where \(p_v\) is the parent vertex of \(C_v\). Let \(F^{(2)}\) be the spanning subdigraph of \(F\) such that

\[
A(F^{(2)}) = \{(u, v) \mid (u, v) \text{ is an external arc of } F \text{ and } \phi(u) \neq \phi(v)\}.
\]

Let \(F^{(1)}\) be the spanning subdigraph of \(F\) such that \(A(F^{(1)}) = A(F) \setminus A(F^{(2)})\). Clearly, \(\phi\) is a proper coloring of \(F^{(2)}\) and thus we have

\[
\chi(F^{(2)}) \leq 2.
\]

(1)

To complete the proof of Theorem 1.4, it suffices (as we should see later) to show \(\chi(F^{(1)}) \leq k + 2\ell - 1\). This will be accomplished in Lemma 3.8, which in fact provides a slightly stronger result. In what follows, we first prove a useful lemma, showing that the external arcs of \(F^{(1)}\) satisfy some tree-like property.\(^1\) For an external arc \((u, v)\) of \(F\), we say \((u, v)\) is comparable if either \(C_u\) is a cycle in \(\Lambda(C_v, C_0)\) or \(C_v\) is a cycle in \(\Lambda(C_u, C_0)\).

Lemma 3.6. All external arcs of \(F^{(1)}\) are comparable.

Proof. Suppose for a contradiction that \(F^{(1)}\) contains an external arc \((u, v)\) which is not comparable. Note that \(\ell \geq 2\) by a remark after Lemma 3.5, and \(C_u, C_v, C_0\) are three distinct cycles of \(\mathcal{T}\). Let \(p_u\) and \(p_v\) be the parent vertices of \(C_u\) and \(C_v\), respectively. Also note that as \((u, v)\) is not comparable, \(p_u\) and \(p_v\) are the common vertices of the first two and the last two cycles in \(\Lambda(C_u, C_v)\), respectively.

We claim that \(\phi(u) = 0\) and \(\phi(v) = 1\). If \(\phi(u) = 1\), then \(|uC_u p_u| \leq \ell - 2\) and so

\[
|p_u T u| \geq |p_u T u| = |p_u C_u u| = |C_u| - |uC_u p_u| \geq (k + \ell - 2) - (\ell - 2) = k > \ell - 2,
\]

a contradiction to Lemma 3.5. Thus \(\phi(u) = 0\). If \(\phi(v) = 0\), then \(|vC_v p_v| \geq \ell - 1\) and so

\[
|v T p_v| \geq |v T p_v| = |vC_v p_v| > \ell - 2,
\]

again a contradiction to Lemma 3.5. Thus \(\phi(v) = 1\).

Therefore, \(\phi(u) \neq \phi(v)\), implying that \((u, v) \notin F^{(1)}\). This completes the proof. \(\blacksquare\)

\(^1\) It may help understand the proof if one analogizes this as the property of the depth-first-search tree.
Recall that we have fixed a cycle-tree ordering C_0, C_1, \ldots, C_n of \mathcal{T}. For every $i \in [n]$, let p_i be the parent vertex of C_i. And for every $i \in \{0, 1, \ldots, n\}$, let F_i be the induced subdigraph of $F^{(1)}$ restricted on $V(C_0) \cup V(C_1) \cup \cdots \cup V(C_i)$. Note that $F_0 = F[V(C_0)]$ and $F_n = F^{(1)}$.

We say u is an external neighbor of v in F if (u, v) or (v, u) is an external arc of F.

Lemma 3.7. For every $i \in [n]$ and for any $v \in V(C_i) \setminus \{p_i\}$, the number of external neighbors of v in F_i is at most $\max\{0, \ell - 2\}$.

Proof. If F has no external arc, then it is trivial. Suppose that F has an external arc. Then $\ell \geq 2$ by the remark after Lemma 3.5. Fix $i \in [n]$ and $v \in V(C_i) \setminus \{p_i\}$. Let $\Lambda = \Lambda(C_i, C_0)$. By the definition of the cycle-tree ordering, Λ cannot contain cycles of \mathcal{T} of higher index than i, which follows that all cycles in Λ are contained in $V(F_i)$. In view of Lemma 3.6, we see that all external arcs of F_i between $V(C_i)$ and $V(F_{i-1})$ are those between $V(C_i)$ and $\Lambda \setminus V(C_i)$. Therefore, to prove the lemma, it suffices to show that the number of external neighbors of v in Λ is at most $\ell - 2$.

Let $S^+(v)$ be the set of vertices u on Λ such that (v, u) is an external arc of $F^{(1)}$, and let $S^-(v)$ be the set of vertices u on Λ such that (u, v) is an external arc of $F^{(1)}$. Note that the parent vertex p_i of C_i is the common vertex of the first two cycles in Λ. Let w be the common vertex of the last two cycles in Λ. So $w \in V(C_0)$. Let w^+ and w^- be the vertices of C_0 such that $|wC_0w^+| = \ell - 2$ and $|wC_0w^-| = \ell - 2$ (see Figure 6).

Claim 1. If $S^+(v) \neq \emptyset$, then $\phi(v) = 0$ and $|S^+(v)| \leq \ell - 2$.

Proof of Claim 1. Suppose that we take any $u \in S^+(v)$. We first prove that

$$|uT_{p_i}| \leq \ell - 2 \quad \text{and} \quad \phi(v) = \phi(u) = 0. \tag{2}$$

To see this, note that $\Lambda(C_i, C_0)$ is a subpath of Λ. So p_i is the common vertex of the first two cycles in $\Lambda(C_i, C_0)$. Let z be the common vertex of the last two cycles in $\Lambda(C_i, C_0)$. By Lemma 3.5, we have $|uT_{p_i}| \leq \ell - 2$ and $|p_iC_\ell v| = |p_iTv| \leq |zTv| \leq \ell - 2$, implying that $|vC_\ell p_i| \geq 2k - 2 - (\ell - 2) > \ell - 2$ and so $\phi(v) = 0$. Since (v, u) is an external arc in $F^{(1)}$, we have $\phi(u) = \phi(v) = 0$.

We then assert that $S^+(v) \subseteq V(w^-T_{p_i})$. Otherwise, there exists some $u \in S^+(v)$ such that $u \notin V(w^-T_{p_i})$. If $u \in V(C_0)$, then by the definition of w^-, we have $|uT_{p_i}| > |w^-C_0u| = \ell - 2$, a contradiction to (2). So $C_u \neq C_0$ and the parent vertex p_u of C_u is well defined. To have $u \notin V(w^-T_{p_i})$ and $\phi(u) = 0$, we must have $u \in zC_up_u$ and $|uC_up_u| > \ell - 2$, implying that $|uT_{p_i}| \geq |uC_up_u| > \ell - 2$, again a contradiction to (2). This proves the assertion.

Now let $u \in S^+(v)$ be the farthest vertex from p_i in the path $w^-T_{p_i}$. Then $S^+(v) \subseteq V(uT_{p_i}) \setminus \{p_i\}$. By (2), $|S^+(v)| \leq |V(uT_{p_i}) \setminus \{p_i\}| = |uT_{p_i}| \leq \ell - 2$, proving Claim 1.

Claim 2. If $S^-(v) \neq \emptyset$, then $\phi(v) = 1$ and $|S^-(v)| \leq \ell - 2$.

Proof of Claim 2. This will be similar to Claim 1. We first prove that for any $u \in S^-(v)$,

$$|p iT_u| \leq \ell - 2 \quad \text{and} \quad \phi(v) = \phi(u) = 1. \tag{3}$$
It is clear that the common vertex of the last two cycles in \(\Lambda(C_u, C_i) \) is \(p_i \). Let \(z \) be the common vertex of the first two cycles in \(\Lambda(C_j, C_i) \). Then by Lemma 3.5, we have \(|p_i \mathcal{T} u| \leq \ell - 2\) and \(|v \mathcal{T} p| \leq |v \mathcal{T} z| \leq \ell - 2\), the latter of which implies that \(\phi(v) = 1 \). Since \((u, v) \) is an external arc in \(F^{(1)} \), \(\phi(u) = \phi(v) = 1 \).

Next we show \(S^-(v) \subseteq V(p_i \mathcal{T} w^+) \). Suppose not, then there exists some \(u \in S^-(v) \) such that \(u \notin V(p_i \mathcal{T} w^+) \). If \(u \in V(C_0) \) (so \(u \in w^+C_0w \)), then by the definition of \(w^+ \), \(|p_i \mathcal{T} u| > |uC_0w^+| = \ell - 2 \), a contradiction to (3). Thus, \(C_u \neq C_0 \) and the parent vertex \(p_u \) is well defined. To have \(\phi(u) = 1 \) and \(u \notin p_i \mathcal{T} w^+ \), it must hold that \(u \in p_u C_u z \) and \(|uC_u z| \leq |uC_u p_u| \leq \ell - 2 \), implying that

\[
|p_i \mathcal{T} u| \geq |zC_u u| = |C_u| - |uC_u z| \geq (2k - 2) - (\ell - 2) > \ell - 2,
\]

a contradiction to (3).

Let \(u \in S^-(v) \) be the farthest vertex from \(p_i \) in the path \(p_i \mathcal{T} w^+ \). Then \(S^-(v) \subseteq V(p_i \mathcal{T} u) \setminus \{p_i\} \). By (3), \(|S^-(v)| \leq |p_i \mathcal{T} u| \leq \ell - 2 \). This proves Claim 2.

Claims 1 and 2 also show that at most one of \(S^+(v) \) and \(S^-(v) \) can be nonempty. Therefore, since the number of external neighbors of \(v \) in \(\Lambda \) is \(\max\{|S^+(v)|, |S^-(v)|\} \), it is at most \(\ell - 2 \). We have completed the proof of Lemma 3.7.

Lemma 3.8. \(F^{(1)} \) is \((k + 2\ell - 2)\)-degenerate.

Proof. If \(F \) has no external arc, then it is clear that from Theorem 1.5, \(F \) is \((k + \ell - 1)\)-degenerate by considering the cycles \(C_n, \ldots, C_0 \) (the reverse of the cycle-tree ordering) one by one. In the following, we assume that \(F \) has an external arc and so \(\ell \geq 2 \) by a remark after Lemma 3.5.

We prove by induction on \(i \in \{0, 1, \ldots, n\} \) that each of \(F_i \) is \((k + 2\ell - 2)\)-degenerate. Note that this is sufficient, as \(F_n = F^{(1)} \). The base case \(i = 0 \) follows from Theorem 1.5 directly: since \(F_0 = F[V(C_0)] \) is Hamiltonian with no 2-block cycle \(c(k, \ell) \), \(F_0 \) is \((k + \ell - 1)\)-degenerate and thus \((k + 2\ell - 2)\)-degenerate.

Suppose that \(F_{i-1} \) is \((k + 2\ell - 2)\)-degenerate. Consider \(F_i \), which is the union of \(F_{i-1}, F[V(C_i)] \) and the external arcs between \(V(C_i) \) and \(F_{i-1} \). As \(F[V(C_i)] \) is Hamiltonian with no \(c(k, \ell) \), by Theorem 1.5, we know \(F[V(C_i)] \) is \((k + \ell - 1)\)-degenerate. So there exists a linear ordering \(v_1, \ldots, v_j \) of \(V(C_i) \\setminus \{p_i\} \) such that for any \(j \in [r] \), \(u_j \) has at most \(k + \ell - 1 \) neighbors in \(F[\{v_1, \ldots, v_{j-1}\}] \). And Lemma 3.7 says that every vertex in \(V(C_j) \\setminus \{p_i\} \) has at most \(\max\{0, \ell - 2\} = \ell - 2 \) external neighbors in \(V(F_{i-1}) \\setminus \{p_i\} \). Combining the above, the ordering \(v_1, \ldots, v_i \) of \(V(C_i) \\setminus \{p_i\} \) also satisfies that for any \(j \in [r], u_j \) has at most \((k + \ell - 1) + (\ell - 2) + 1 = k + 2\ell - 2 \) neighbors in \(F[F_{i-1}] \cup \{v_1, \ldots, v_{j-1}\} \). This, together with that \(F_{i-1} \) is \((k + 2\ell - 2)\)-degenerate, implies that \(F_i \) is also \((k + 2\ell - 2)\)-degenerate, finishing the proof of Lemma 3.8.

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let \(D \) be a strong digraph with no 2-block cycle \(c(k, \ell) \). Among all vertices in \(V(D^{(m)}) \), choose \(v \in V(D^{(m)}) \) such that \(F := D[\phi^{(m)}(v)] \) has the maximum \(\chi(F) \). Define \(F^{(1)} \) and \(F^{(2)} \) as before. By (1) and Lemma 3.8, there exist proper colorings \(\rho_1 : V(F) \rightarrow [k + 2\ell - 1] \) of \(F^{(1)} \) and \(\rho_2 : V(F) \rightarrow [0, 1] \) of \(F^{(2)} \), respectively. Define \(\rho : V(F) \rightarrow [k + 2\ell - 1] \times [0, 1] \) by letting for every \(v \in V(F) \), \(\rho(v) = (\rho_1(v), \rho_2(v)) \). Since \(A(F) = A(F^{(1)}) \cup A(F^{(2)}) \), it is easy to verify that \(\rho \) is a proper coloring of \(F \), which implies that \(\chi(F) \leq 2(k + 2\ell - 1) \). By Lemma 3.3, it holds that \(\chi(D) \leq 2(2k - 3)(k + 2\ell - 1) \).

It will be interesting to improve the upper bound of Theorem 1.4 further, for instance, to \(O(k + \ell) \). We direct interested readers to [6] and the survey [12] for many related problems.
ACKNOWLEDGMENTS

Ringi Kim's work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. NRF-2017R1A2B4005020). Seog-Jin Kim's work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057008). Jie Ma's work was partially supported by the National Natural Science Foundation of China (NSFC) grants 11501539 and 11622110. Boram Park's work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A01053495).

ORCID

Ringi Kim http://orcid.org/0000-0001-5561-6513
Boram Park http://orcid.org/0000-0003-4102-1206

REFERENCES

[1] L. Addario-Berry, F. Havet, and S. Thomassé, Paths with two blocks in n-chromatic digraphs, J. Combin. Theory Ser. B 97 (2007), 620–626.
[2] A. Benhocine and A. P. Wojda, On the existence of specified cycles in a tournament, J. Graph Theory 7 (1983), 469–473.
[3] J. A. Bondy, Diconnected orientations and a conjecture of Las Vergeñas, J. Lond. Math. Soc. 14 (1976), 277–282.
[4] S. A. Burr, Subtrees of directed graphs and hypergraphs, Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1980), Congr. Numer. 28 (1980), 227–239.
[5] Z. Chen, J. Ma, and W. Zang, Coloring digraphs with forbidden cycles, J. Combin. Theory, Ser. B 115 (2015), 210–223.
[6] N. Cohen et al., Subdivisions of oriented cycles in digraphs with large chromatic number, to appear, arXiv:1605.07762.
[7] A. El-Sahili, Paths with two blocks in k-chromatic digraphs, Discrete Math. 287 (2004), 151–153.
[8] A. El-Sahili, Trees in tournaments, J. Combin. Theory Ser. B 92 (2004), 183–187.
[9] A. El-Sahili and M. Kouider, About paths with two blocks, J. Graph Theory 55 (2007), 221–226.
[10] T. Gallai, On directed paths and circuits, In: Theory of Graphs (P. Erdős and G. O. H. Katona, eds.), Academic Press, San Diego, CA, 1968, 115–118.
[11] R. Häggkvist and A. G. Thomason, Trees in tournaments, Combinatorica 11 (1991), 123–130.
[12] F. Havet, Orientations and colouring of graphs, manuscript.
[13] F. Havet and S. Thomassé, Oriented Hamiltonian path in tournaments: A proof of Rosenfelds conjecture, J. Combin. Theory Ser. B 78 (2000), 243–273.
[14] F. Havet and S. Thomassé, Median orders: A tool for the second neighborhood problem and Sumners conjecture, J. Graph Theory 35 (2000), 244–256.
[15] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Française Informat. Recherche Opérationnelle 1 (1967), 129–132.

How to cite this article: Kim R, Kim S-J, Ma J, Park B. Cycles with two blocks in k-chromatic digraphs. J Graph Theory. 2018;88:592–605. https://doi.org/10.1002/jgt.22232