Supplement of

Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins

Anthony Jourdon et al.

Correspondence to: Anthony Jourdon (jourdon_anthony@hotmail.fr) and Guillaume Duclaux (guillaume.duclaux@unice.fr)

The copyright of individual parts of the supplement might differ from the article licence.
Figure S1

Weak Lower Crust

$\alpha = 15^\circ$

Extension
Transpression
Compression
Strike-slip

$\varepsilon_{II} (s^{-1})$

10^{-19} 10^{-18} 10^{-17} 10^{-16} 10^{-15}

Plastic (brittle) strain

β factor

1 1.5 2 2.5 3
Figure S2

Weak Lower Crust
\(\alpha = 30^\circ \)

Mantle exhumation age
(Myr)

\(\beta \) factor

Plastic (brittle) strain
\(\varepsilon^p (s^{-1}) \)

Extension

Transpression

Compression

Strike-slip

\(\beta = 1.5 \)

\(\beta = 2 \)

\(\beta = 2.5 \)

\(\beta = 3 \)
Figure S3

Strong Lower Crust

$\alpha = 30^\circ$

Mantle exhumation age (Myr)

β factor

Plastic (brittle) strain

$\dot{\varepsilon}^{\text{II}}$ (s^{-1})

Extension

Transpression

Compression

Strike-slip

10^{-19}

10^{-18}

10^{-17}

10^{-16}

10^{-15}
Figure S4

Weak Lower Crust

\(\alpha = 45^\circ \)

Mantle exhumation age

(\text{Myr})

\(\beta \) factor

1 2 3 4 5

1 1.5 2 2.5 3

\(\varepsilon^\text{II} \) (s\(^{-1}\))
Figure S6

Weak Lower Crust

$\alpha = 75^\circ$

Mantle exhumation age (Myr)

Plastic (brittle) strain $\varepsilon^H (s^{-1})$

β factor

Extension
Transpression
Compression
Strike-slip

$10^{-19} \quad 10^{-18} \quad 10^{-17} \quad 10^{-16} \quad 10^{-15}$
