ON SETS OF IRREDUCIBLE POLYNOMIALS CLOSED BY
COMPOSITION

ANDREA FERRAGUTI, GIACOMO MICHELI, AND RETO SCHNYDER

Abstract. Let S be a set of monic degree 2 polynomials over a finite
field and let C be the compositional semigroup generated by S. In this
paper we establish a necessary and sufficient condition for C to be consist-
ing entirely of irreducible polynomials. The condition we deduce depends
on the finite data encoded in a certain graph uniquely determined by the
generating set S. Using this machinery we are able both to show exam-
pies of semigroups of irreducible polynomials generated by two degree 2
polynomials and to give some non-existence results for some of these sets
in infinitely many prime fields satisfying certain arithmetic conditions.

1. Introduction

Since irreducible polynomials play a fundamental role in applications and
in the whole theory of finite fields (see for example [1, 2, 3, 4, 5, 6]), related
questions have a long history (see for example [7, 8, 9, 10, 11, 12, 13]). In
this paper we specialize on irreducibility questions regarding compositional
semigroups of polynomials. This kind of question has been addressed in the
specific case of semigroups generated by a single quadratic polynomial, see for
example in [6, 5, 11, 10], for analogous results related to additive poly-
nomials, see [14, 15]. It is worth mentioning that one of these results [11, Lemma 2.5]
has been recently used in [16] by the first and the second author of the present
paper to prove [12, Conjecture 1.2].

Throughout the paper, q will be an odd prime power, $F_q[x]$ the univariate
polynomial ring over the finite field F_q and $\text{Irr}(F_q[x])$ the set of irreducible
polynomials in $F_q[x]$. Let us give an example which motivates this paper.
For a prime p congruent to 1 modulo 4, we can fix in $F_p[x]$ two quadratic
polynomials $f = (x - a)^2 + a$ and $g = (x - a - 1)^2 + a$ such that both a and
$a + 1$ are non-squares in F_p. One can experimentally check that any possible
composition of a sequence of f’s and g’s is irreducible (for a concrete example,
take $q = 13$, $(x - 5)^2 + 5$ and $g = (x - 6)^2 + 5$). Let us denote the set of such
compositions by C. A couple of observations are now necessary:

2010 Mathematics Subject Classification. 11T06.
Key words and phrases. Finite Fields; Irreducible Polynomials; Semigroups; Graphs.
The Second Author is thankful to SNSF grant number 161757.
• In principle, it is unclear whether a finite number of irreducibility checks will ensure that C is a subset of $\text{Irr}(F_q[x])$.
• The fact that $C \subseteq \text{Irr}(F_q[x])$ is indeed pretty unlikely to happen by chance, as the density of degree 2^n monic irreducible polynomials over F_q is roughly $1/2^n$. Thus, if C satisfies this property, one reasonably expects that there must be an algebraic reason for that.

We address these issues by giving a necessary and sufficient condition for the semigroup $C \subset F_q[x]$ to be contained in $\text{Irr}(F_q[x])$. In addition, this condition is algebraic and can be checked by performing only a finite amount of computation over F_q, answering both points above.

In Section 2 we describe the criterion (Theorem 2.4 and Corollary 2.5) and provide a non-trivial example (Example 2.7) of a compositional semigroup in $F_q[x]$ contained in $\text{Irr}(F_q[x])$ and generated by two polynomials.

In Section 3 we show the non-existence of such C whenever q is a prime congruent to 3 modulo 4 and the generating polynomials are of a certain form (Proposition 3.2). Example 3.3 shows that these conditions are indeed sharp.

2. A GENERAL CRITERION

In order to state our main result, we first need the following definition, which describes how to build a finite graph encoding only the useful (to our purposes) information contained in the generating set of the semigroup.

Definition 2.1. Let q be an odd prime power, F_q the finite field of order q and \mathcal{S} a subset of $F_q[x]$. We denote by $G_{\mathcal{S}}$ the directed multigraph defined as follows:

- the set of nodes of $G_{\mathcal{S}}$ is F_q;
- for any node $a \in F_q$ and any polynomial $f \in \mathcal{S}$, there is a directed edge $a \to f(a)$. We label that edge with f.

Before stating the next definition, we recall that for any monic polynomial f of degree 2 there exist unique pair $(\alpha_f, \beta_f) \in \mathbb{F}_q^2$ such that $f = (x - \alpha_f)^2 - \beta_f$.

Definition 2.2. Let \mathcal{S} be a subset of $F_q[x]$ consisting of monic polynomials of degree 2. We call the set $D_{\mathcal{S}} := \{-\beta_f \mid f \in \mathcal{S}\} \subseteq F_q$, the \mathcal{S}-distinguished set of F_q.

The following result is just an inductive extension of the classical Capelli’s Lemma.

Lemma 2.3 (Recursive Capelli’s Lemma). Let K be a field and f_1, \ldots, f_l be a set of irreducible polynomials in $K[X]$. The polynomial $f_1(f_2(\cdots (f_l)\cdots))$ is
irreducible if and only if the following conditions are satisfied
\[
\begin{aligned}
&f_1 \text{ is irreducible over } K[X] \\
&f_2 - \alpha_1 \text{ is irreducible over } K(\alpha_1)[X] \text{ for a root } \alpha_1 \text{ of } f_1 \\
&f_3 - \alpha_2 \text{ is irreducible over } K(\alpha_1, \alpha_2)[X] \text{ for a root } \alpha_2 \text{ of } f_2 - \alpha_1 \\
&\vdots \\
&f_l - \alpha_{l-1} \text{ is irreducible over } K(\alpha_1, \ldots, \alpha_{l-1})[X] \text{ for a root } \alpha_{l-1} \text{ of } f_{l-1} - \alpha_{l-2}
\end{aligned}
\]

Proof. Given Capelli’s Lemma [11, Lemma 2.4], the proof is straightforward by induction.

We are now ready to state and prove the main theorem.

Theorem 2.4. Let \(S \) be a set of generators for a compositional semigroup \(C \subseteq \mathbb{F}_q[x] \). Suppose that \(S \) consists of polynomials of degree 2. Then we have that \(C \subseteq \text{Irr}(\mathbb{F}_q[x]) \) if and only if no element of \(-D_S = \{b_f \mid f \in S\} \subseteq \mathbb{F}_q \) is a square and in \(G_S \) there is no path of positive length from a node of \(D_S \) to a square of \(\mathbb{F}_q \).

Proof. It is clear that \(C \) contains a reducible polynomial of degree 2 if and only if one element of \(-D_S \) is a square. Thus we can assume that \(S \) consists only of irreducible polynomials.

We now show that in \(G_S \) there is a path of positive length from a node of \(D_S \) to a square if and only if \(C \) contains a reducible polynomial of degree greater or equal than 4.

First, suppose that the composition \(f_1 f_2 \cdots f_{l+1} \) is a reducible polynomial of minimal degree, with \(f_i \in S \) and \(f_i = (x - a_i)^2 - b_i \) for \(i \in \{1, \ldots, l + 1\} \) and \(l \geq 1 \). Whenever \(\beta \) is not a square in \(\mathbb{F}_q \), we denote by \(\sqrt{T^2 - \beta} \) a root of the polynomial \(T^2 - \beta \) in the algebraic closure of \(\mathbb{F}_q \). By Capelli’s Lemma applied to the composition of \(f_1 \cdots f_l \) and by the minimality of the degree of \(f_1 f_2 \cdots f_{l+1} \), we have that the following elements are not squares in their field of definition:

\[
\begin{aligned}
\beta_0 &= b_1 \\
\beta_1 &= b_2 + a_1 + \sqrt{\beta_0} \\
\beta_2 &= b_3 + a_2 + \sqrt{\beta_1} \\
&\quad \vdots \\
\beta_{l-1} &= b_l + a_{l-1} + \sqrt{\beta_{l-2}}.
\end{aligned}
\]

On the other hand, \(\beta_l = b_{l+1} + a_l + \sqrt{\beta_{l-1}} \in \mathbb{F}_{q^{2^l}} \) is necessarily a square. For \(j < i \), let us denote by \(N^j_i : \mathbb{F}_{q^{2^j}} \to \mathbb{F}_{q^{2^i}} \) the usual norm map. We claim that the \(\mathbb{F}_q \)-norm \(N^0_l : \mathbb{F}_{q^{2^l}} \to \mathbb{F}_q \) maps \(\beta_l \) to \(f_1(\cdots f_l(-b_{l+1})) \cdot \cdots \), and this defines a path in \(G_S \) from \(-b_l\) to a square. This can be easily seen by first
decomposing N_1^l:

$$N_1^l = N_2^l \circ N_3^l \circ \ldots \circ N_{l-1}^l$$

and then by directly computing $N_2^l \circ N_3^l \circ \ldots \circ N_{l-1}^l(\beta_l)$. It is important indeed that $\beta_0, \beta_1, \ldots, \beta_{l-1}$ are not squares, as the computation above only gives the desired result when $(\sqrt{\beta_i})^{q^{2i}} = -\sqrt{\beta_i}$.

Conversely, suppose that in G_S there is a path to a square s. Choose such a path of minimal length, starting at some $-bf$ in the distinguished set, for some $f \in S$. Consider now the composition associated to this path: if $s = f_1 f_2 \cdots f_l (-b_{l+1})$, set $f_{l+1} = f$ and let $g := f_1 f_2 \cdots f_{l+1} \in \mathbb{F}_q[x]$. One can construct the β_i’s as before, i.e. $\beta_0 = b_1$ and for $i \in \{1, \ldots, l\}$, $\beta_i = b_{i+1} + a_i + \sqrt{\beta_{i-1}}$. We can suppose that the β_i’s for $i < l$ are all non-squares as otherwise, by taking the smallest d such that β_d is square, we find a composition $f_1 f_2 \cdots f_{d+1}$ that is reducible by Recursive Capelli’s Lemma, and then we are done.

As all the β_i’s, for $i < l$, can be supposed to be non-squares, we have as above that $N_0^l(\beta_l) = f_1 f_2 \cdots f_l (-b_{l+1}) = s$, which we have assumed to be a square. Now, recall that an element of a finite field is a square if and only if its norm is a square: this shows that g is reducible by Recursive Capelli’s Lemma. □

The reader should observe that this theorem generalizes [11, Proposition 2.3]. It is useful to mention the following corollary, which is immediate.

Corollary 2.5. Let S be a set of irreducible degree two polynomials and C defined as in Theorem 2.4. Then $C \subseteq \text{Irr}(\mathbb{F}_q[x])$ if and only if there is no path of positive length from a node of D_S to a square of \mathbb{F}_q.

Proof. It is enough to observe that whenever $S \subseteq \text{Irr}(\mathbb{F}_q[x])$ then $-D_S$ consists of non-squares. □

Remark 2.6. Given that C is generated by degree 2 polynomials, it is easy to observe that the datum of S is equivalent to the datum of C.

The following example shows a way to find examples of semigroups contained in $\text{Irr}(\mathbb{F}_q[x])$ when $q \equiv 1 \mod 4$.

Example 2.7. Let $q \equiv 1 \mod 4$ be a prime power, and let $a \in \mathbb{F}_q$ such that both a and $b = a + 1$ are non-squares. Define $f = (x-a)^2 + a$ and $g = (x-b)^2 + a$.

In this situation, we have $D_S = \{a\}$, and by assumption, $-a$, a and b are all non-squares. Since $f(a) = g(b) = a$ and $f(b) = g(a) = b$, all paths in G_S starting from a end in a non-square, and the conditions of Theorem 2.4 are satisfied. Figure 1 shows the relevant part of the graph G_S. The reader should observe that this is indeed the example mentioned in the introduction.
3. The case $p \equiv 3 \mod 4$

Whenever $q = p$ is a prime congruent to 3 modulo 4, we have the following non-existence results.

Lemma 3.1. Let $p \equiv -1 \mod 8$ be a prime, and let $f = x^2 - b$ be a polynomial in $\mathbb{F}_p[x]$. Let C be the semigroup generated by f. Then C contains a reducible polynomial.

Proof. Assume for contradiction that $C \subset \text{Irr}(\mathbb{F}_p[x])$. First note that if b is a square, then f is reducible, so we can assume that b is not a square, and thus $-b$ is a square. Consider the set of iterates $T = \{ f(-b), f^2(-b), \ldots \} \subseteq \mathbb{F}_p$. By Corollary 2.5, C contains only irreducible polynomials if and only if T contains only nonsquares. So assume that this condition holds. Since T is finite, there exist $k < m \in \mathbb{N}_{>0}$ such that $f^m(-b) = f^k(-b)$. Choose k to be minimal. Now there are two cases: if $k > 1$, then there exist two distinct elements $u, v \in T$ such that $u^2 - b = v^2 - b$. Thus, $u = -v$, which implies that one between u and v is a square, a contradiction. If on the other hand $k = 1$, then we have $f^m(-b) = f(-b) = b^2 - b$, and so $f^{m-1}(-b)$ is either $-b$ or b. It can’t be $-b$, since that is a square, so we must have $f^{m-1}(-b) = b \in T$. Setting $u = f^{m-2}(-b)$, we get that $u^2 - b = b$ and so $u^2 = 2b$, which is a contradiction because 2 is a square in \mathbb{F}_p and consequently $2b$ is not. □

Proposition 3.2. Let $p \equiv 3 \mod 4$ be a prime. Let $f = x^2 - b_f$ and $g = x^2 - b_g$ be polynomials in $\mathbb{F}_p[x]$ with b_f, b_g distinct non-squares. Let $\mathcal{S} = \{ f, g \}$ and let C be the semigroup generated by \mathcal{S}. Then C contains a reducible polynomial.

Proof. Let $G_\mathcal{S}$ be the graph attached to \mathcal{S} as in Definition 2.1. Let $G'_\mathcal{S}$ be the induced subgraph consisting of all nodes of $G_\mathcal{S}$ that are reachable by some path of positive length starting from $-b_f$ or $-b_g$. That is, the edges of $G'_\mathcal{S}$ are just the edges of $G_\mathcal{S}$ starting and ending at a node in $G'_\mathcal{S}$. From now on, when we speak of nodes and edges, we will always be referring to nodes and edges in $G'_\mathcal{S}$. We call an edge from u to v an f-edge if it comes from the relation $f(u) = v$, while we call it a g-edge if it comes from $g(u) = v$. Since b_f and b_g are assumed nonsquare, we have by Corollary 2.5 that C contains a reducible polynomial if and only if at least one of the nodes of $G'_\mathcal{S}$ is a square. In the following, we assume for contradiction that $G'_\mathcal{S}$ consists only of non-squares.
Let us observe the following: suppose that there exists a node \(v \) of \(G'_S \) which is the target of two \(f \)-edges. By definition, this means that there exist two distinct nodes \(u, u' \in G'_S \) such that \(u^2 - b_f = u'^2 - b_f = v \). This implies that \(u' = -u \), and thus one between \(u \) and \(u' \) is a square, since \(-1\) is not a square in \(F_p \). This contradicts our assumption. By symmetry, the same applies to \(g \)-edges.

By the argument above, we see that every node is the target of at most one \(f \)-edge and one \(g \)-edge, and by counting edges that it is indeed exactly one of each.

Now, consider the sum

\[
\sum_{v \in G'_S} (f(v) - g(v)).
\]

On one hand, each node \(u \in G'_S \) appears exactly once as \(f(v) \) and once as \(g(v') \) for some \(v, v' \in G'_S \), so the sum is zero. On the other hand, it clearly holds that \(f(v) - g(v) = b_g - b_f \) for all \(v \). Letting \(n \) be the number of nodes in \(G'_S \), we get the equation

\[
0 = n(b_g - b_f) \text{ in } F_p.
\]

Since \(b_f \neq b_g \) by hypothesis, we must have \(p \mid n \). This is impossible however, since \(G'_S \) is not empty and consists only of nonsquares, so \(1 \leq n \leq \frac{p-1}{2} \).

The fact that the polynomials of Proposition 3.2 don’t have a linear term is of crucial importance. Let us see why by giving an explicit example of a semigroup of irreducible polynomials in \(\mathbb{F}_p[x] \) for which Proposition 3.2 does not apply (but \(p \equiv 3 \mod 4 \)).

Example 3.3. Let us fix \(p = 7 \) and

\[
f = (x - 1)^2 - 5 = x^2 + 5x + 3 \in \mathbb{F}_7[x]
\]

\[
g = (x - 4)^2 - 5 = x^2 + 6x + 4 \in \mathbb{F}_7[x].
\]

The set \(S = \{f, g\} \) has distinguished set \(D_S = \{-5\} \) and graph as in Figure 2. Since 5 is not a square, and we only look at paths of positive length, the final

![Figure 2. The nodes of \(G_S \) reachable from \(-5\).](image-url)
claim follows by checking that 3 and −1 are not squares modulo 7.

References

[1] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20. Cambridge university press, 1997.
[2] Gary L. Mullen and Daniel Panario. Handbook of finite fields. CRC Press, 2013.
[3] Michael O. Rabin et al. Fingerprinting by random polynomials. Center for Research in Computing Techn., Aiken Computation Laboratory, Univ., 1981.
[4] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In Advances in Cryptology—EUROCRYPT 2014, pages 1–16. Springer, 2014.
[5] Alina Ostafe and Igor E. Shparlinski. On the length of critical orbits of stable quadratic polynomials. Proceedings of the American Mathematical Society, 138(8):2653–2656, 2010.
[6] Omran Ahmadi, Florian Luca, Alina Ostafe, and Igor E. Shparlinski. On stable quadratic polynomials. Glasgow Mathematical Journal, 54(02):359–369, 2012.
[7] Shuhong Gao, Jason Howell, and Daniel Panario. Irreducible polynomials of given forms. Contemporary Mathematics, 225:43–54, 1999.
[8] Shuhong Gao and Daniel Panario. Tests and constructions of irreducible polynomials over finite fields. In Foundations of Computational Mathematics, pages 346–361. Springer, 1997.
[9] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics of Computation, 54(189):435–447, 1990.
[10] Rafe Jones. An iterative construction of irreducible polynomials reducible modulo every prime. Journal of Algebra, 369:114–128, 2012.
[11] Rafe Jones and Nigel Boston. Settled polynomials over finite fields. Proceedings of the American Mathematical Society, 140(6):1849–1863, 2012.
[12] Julio Andrade, Steven J. Miller, Kyle Pratt, and Minh-Tam Trinh. Special sets of primes in function fields. arXiv preprint arXiv:1309.5597, 2013.
[13] Joachim von zur Gathen. Irreducible trinomials over finite fields. Mathematics of Computation, 72(244):1987–2000, 2003.
[14] Anjula Batra and Patrick Morton. Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, i. JOURNAL OF MATHEMATICS, 24(2), 1994.
[15] Anjula Batra and Patrick Morton. Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, ii. Rocky Mountain J. Math.,
24(3):905–932, 09 1994.

[16] Andrea Ferraguti and Giacomo Micheli. On the existence of infinite, non-trivial F-sets. arXiv preprint arXiv:1602.06608, 2016.

Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland,
E-mail address: andrea.ferraguti@math.uzh.ch

Mathematical Institute, University of Oxford, Woodstock Rd., Oxford OX2 6GG, United Kingdom
E-mail address: giacomo.micheli@maths.ox.ac.uk

Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland,
E-mail address: reto.schnyder@math.uzh.ch