HLA-DQB1* alleles and genetic susceptibility to type 1 diabetes mellitus

Youssef M Mosaad, Fatma A Auf, Shereen S Metwally, Ashraf A Elsharkawy, Amany K El-Hawary, Rasha H Hassan, Ziyad E Tawhid, Farha A El-Chennawi

Youssef M Mosaad, Fatma A Auf, Shereen S Metwally, Ziyad E Tawhid, Farha A El-Chennawi, Unit of Clinical Immunology, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura 35111, Egypt
Ashraf A Elsharkawy, Amany K El-Hawary, Unit of Pediatric Endocrinology and Diabetes, Mansoura Faculty of Medicine, Children’s Hospital, Mansoura 35111, Egypt
Rasha H Hassan, Unit of Pediatric Infectious Disease and Malnutrition, Mansoura Faculty of Medicine, Children’s Hospital, Mansoura, 35111, Egypt

Author contributions: Mosaad YM, Elsharkawy AA and Tawhid ZE contributed equally to this work; Auf FA, Metwally SS and El-Chennawi FA designed the research; Mosaad YM and Tawhid ZE performed the research; all members contributed new reagents/analytic tools; Elsharkawy AA, El-Hawary AK and Hassan RH provided the clinical samples, data, and follow-up of patients; Mosaad YM, Elsharkawy AA, El-Hawary AK and Hassan RH wrote the paper.

Correspondence to: Youssef M Mosaad, Professor, Unit of Clinical Immunology, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt. youssefmosaad@yahoo.com
Telephone: +20-50-2247042 Fax: +20-50-2267563
Received: March 19, 2012 Revised: June 27, 2012
Accepted: August 8, 2012 Published online: August 12, 2012

Abstract

AIM: To determine human leukocyte antigen (HLA)-DQB1 allele association with susceptibility to type 1 diabetes (T1D) and to clinical and laboratory findings.

METHODS: This study was conducted on 85 unrelated Egyptian children with T1D recruited consecutively from the Pediatric Diabetes Endocrinology outpatients Clinic; Mansoura University Children’s Hospital, Egypt. Patient mean follow up period was 2.5 years. Patients were subdivided according to level of HbA1c (optimal/suboptimal control < 8.5% and poor control ≥ 8.5%). The control group consisted of 113 unrelated age- and sex-matched healthy subjects without T1D or other autoimmune diseases. Genomic DNA extraction was done for all subjects using a DNA isolation kit. HLA-Class II-DQB1 allele typing was carried out with a polymerase chain reaction-sequence-specific oligonucleotide probe using an INNO-LIPA HLA-DQB1 update kit.

RESULTS: Significant differences were detected between Egyptian patients with T1D and control groups in the frequencies of DQB1*02 [44.4% vs 18.6%, corrected P value (Pc) < 0.001] and DQB1*03 (41.2% vs 24.4%, Pc < 0.001). Significant differences were also observed between control groups and T1D patients in the frequencies of DQB1*05 (14.6% vs 7.2%, P = 0.029) and DQB1*06 (34.1% vs 7.2%, P < 0.001). However, after correction for multiple comparisons, the significance was retained for HLA-DQB1*06 (Pc < 0.001) but lost for HLA-DQB1*05. HLA-DQB1*0201, *0202, *030201 were positively associated with T1D (Pc = 0.014, Pc < 0.001, and Pc < 0.001 respectively), while HLA-DQB1*060101 was negatively associated (Pc < 0.001) with the condition. Although the HLA-DQB1 alleles 030101 and 050101 were significantly higher in controls (P = 0.016, P = 0.025 respectively), both of them lost statistical significance after correction of P value. The frequency of the HLA-DQB1 genotypes 02/02, 02/03, and 03/03 was higher in T1D patients, and the frequency of the genotypes 03/06, 05/06, and 06/06 was higher in controls, these differences being statistically significant before correction. After correction, the genotypes 02/02, 02/03 in T1D, and the genotypes 03/06, 05/06, and 06/06 in controls were still significant (Pc = 0.01, Pc < 0.001, and Pc < 0.001 respectively). Non-significant associations were found between the frequency HLA-DQB1 alleles and genotypes in T1D in relation to the grade of diabetic control, Microalbuminuria, age, gender, age of presentation, weight, height, frequency of diabetic ketoacidosis (P =
Type 1 diabetes (T1D) mellitus is an organ-specific autoimmune disease characterized by T-cell-mediated destruction of pancreatic islets\cite{10,12}. This study was conducted on 85 unrelated Egyptian children with T1D recruited consecutively from the Pediatric Diabetes Endocrinology outpatient Clinic; Mansoura University Children’s Hospital, Egypt. Studied patients were 35 males and 50 females. Patient mean age range was 12.52 ± 2.98 years (range 3.5-16 years) with mean age of presentation 8.5 ± 3.1 years. Patient mean follow up period was 2.5 years (range 1-6 years). Patients were subdivided according to level of HbA1c (optimal/suboptimal control < 8.5% and poor control ≥ 8.5%)\cite{25,26}.

All patients were treated by basal-bolus insulin regimen (3 rapid acting human insulin does as a bolus dose before the main meals and one intermediate acting human insulin does at bed time). Serum cholesterol measurement was carried out for all patients after overnight fast for 8-12 h. Patients were diagnosed with microalbuminuria if two of three consecutive urine samples showed elevated albumin excretion\cite{27}.

The control group consisted of 113 unrelated age- and sex-matched healthy subjects without TID or other autoimmune diseases such as autoimmune thyroid disease, living in the same geographical area and with the same ethnic origin as patients. Written informed consent was obtained from the parents of patients and controls after approval of the study protocol by the local ethical committee.

HLA class II - DQB1 allele typing

Genomic DNA extraction was done for all samples using a DNA isolation kit (QIAmp DNA blood mini kit Cat. 51104, Qiagen, Gmbh). HLA-Class II -DQB1 allele typing was done carried out with a polymerase chain reaction-sequence-specific oligonucleotide probe using an INNO-LiPA HLA-DQB1 update kit (Lot number 152003, Innogenetics, Belgium). Test conditions were according to manufacturer’s instruction.
Statistical analysis
To compare the frequency of HLA-DQB1 alleles in children with T1D and controls, the conventional \(\chi^2 \) test with Yates’ correction for continuity, when appropriate, was used. SPSS version 17 was used for statistical analysis. The odds ratio (OR) was calculated with \(2 \times 2 \) contingency tables. The 95% confidence intervals were obtained using Cornfield’s approximation. Data was analyzed by one-way ANOVA for multiple comparisons. The \(P \) value was corrected (\(P_c \)) for the number of alleles tested. The level of significance was set at 95%. \(P \) value less than 0.05 was considered significant.

RESULTS
The average weight and height of studied patients were 44.55 ± 14.51 kg and 144.6 ± 15.55 cm respectively. Microalbuminuria was found in only 5 patients. The average serum cholesterol level was 163.95 ± 28.1, and the HbA1c average level was 7.98 ± 1.59. Optimal/suboptimal control of HbA1c level was found in 57 patients, and poor control in 28 patients (Table 1).

Significant differences were detected between Egyptian patients with T1D and control groups in the frequencies of DQB1*02 (44.4% vs 18.6%, \(P_c < 0.001 \), OR: 3.5) and DQB1*03 (41.2% vs 24.4%, \(P_c < 0.001 \), OR: 2.17). Significant differences were also observed between control groups and T1D patients in the frequencies of DQB1*05 (14.6% vs 7.2%, \(P = 0.029 \), OR: 0.45) and DQB1*06 (34.1% vs 7.2%, \(P < 0.001 \), OR: 0.15). However, after correction for multiple comparisons, the significance was retained for HLA-DQB1*06 (\(P_c < 0.001 \)) but lost for HLA-DQB1*05.

From analysis of the frequency of allele subtypes in T1D patients and controls, HLA-DQB1*0201, *0202, *030201 were found to be positively associated with T1D (\(P_c = 0.014 \), \(P_c < 0.001 \), and \(P_c < 0.001 \) respectively), while HLA-DQB1*060101 was negatively associated (\(P_c < 0.001 \)). Although the HLA-DQB1 alleles 030101 and 050101 were significantly higher in controls (\(P = 0.016 \), \(P = 0.025 \) respectively), both of them lost statistical significance after correction of \(P \) value (Table 2).

From analysis of HLA-DQB1 genotypes in T1D patients and controls, the frequency of the genotypes 02/02, 02/03, and 03/03 was found to be higher in T1D patients, and the genotypes 03/06, 05/06, and 06/06 was higher in controls, with these differences being statistically significant before correction. After correction, the genotypes 02/02, 02/03 in T1D, and the genotypes 03/06, 06/06 in controls still showed significant differences (\(P_c = 0.01 \), \(P_c < 0.001 \), \(P_c < 0.001 \), and \(P_c = 0.04 \), respectively) (Table 3).

In the analysis of the frequency HLA-DQB1 alleles and genotypes in T1D in relation to grade of diabetic control (Table 4), Microalbuminuria, age, gender, age of presentation, weight, height, frequency of diabetic ketoacidosis (\(P = 0.42 \)), serum cholesterol, and level of fasting and post-prandial C-peptide (\(P = 0.83 \), \(P = 0.9 \), respectively), only non-significant associations were found (data not shown).

DISCUSSION
T1D mellitus is a chronic disease which most frequently presents in childhood[28,29]. It is classified into type 1B (idiopathic) and 1A diabetes mellitus, mediated through the immune system[30,31]. In T1D 1A, a genetically susceptible individual presents with loss of tolerance to the pancreatic islet tissue triggered by environmental factors[32] and develops a progressive, immune-mediated destruction of pancreatic islet \(\beta \) cell[31,32].

T1D is considered a multifactorial condition with complex interactions between genetic and environmental factors[28,31]. There is evidence showing that 40%-50% of the inherited susceptibility to the disease is contributed by HLA-DR-DQ[33]. The association of specific HLA-DQB1 alleles and genotypes with T1D susceptibility/protection depends on the ethnicity and racial background of each population. For example, in Caucasians T1D is positively associated with DQB1*0201 and DQB1*0302, while in Japanese it is associated with DQB1*0401 and DQB1*0303.

From the results of the current study, significant positive associations were found with HLA-DQB1*02 and DQB1*03 (\(P_c < 0.001 \), OR = 3.5, OR = 2.17 respectively) and a negative association with DQB1*06 (\(P < 0.001 \), OR: 0.15) in Egyptian children with T1D. At the same time, HLA-DQB1*0201, *0202, *030201 were positively associated (\(P_c = 0.014 \), \(P_c < 0.001 \), \(P_c < 0.001 \) respectively), and HLA-DQB1*060101 was negatively associated (\(P_c < 0.001 \)) with T1D. The strongest positive association was found for HLA-DQB1*030201, followed by *0202, and finally *0201 (OR = 19.2, OR = 14.4, and OR = 2.21, respectively). To the best of our knowledge, the present study is the first to identify a positive association between

Table 1 Clinical and laboratory characteristics of type 1 diabetes mellitus patients

Characteristic	% (%)
Age (mean ± SD, yr)	12.52 ± 2.99
Age of presentation (mean ± SD, yr)	8.5 ± 3.1
Gender: mean/female	35 (41.2)/50 (58.8)
Weight (kg)	44.55 ± 14.51
Height (cm)	144.6 ± 15.35
Microalbuminuria	
Yes	80 (94.1)
No	5 (5.9)
Frequency of DKA	
Yes	1.22 ± 0.91
No	0.34 ± 0.28
C-peptide (fasting)	
Yes	0.58 ± 0.64
No	0.34 ± 0.28
C-peptide (post-prandial)	
Yes	163.95 ± 28.1
No	7.98 ± 1.59
Serum cholesterol	
Yes	57 (67.1)
No	80 (94.1)
Grades of HbA1c control	
Optimal/suboptimal	57 (67.1)
Poor	28 (32.9)

The results of the current study, significant positive associations were found with HLA-DQB1*02 and DQB1*03 (\(P_c < 0.001 \), OR = 3.5, OR = 2.17 respectively) and a negative association with DQB1*06 (\(P < 0.001 \), OR: 0.15) in Egyptian children with T1D. At the same time, HLA-DQB1*0201, *0202, *030201 were positively associated (\(P_c = 0.014 \), \(P_c < 0.001 \), \(P_c < 0.001 \) respectively), and HLA-DQB1*060101 was negatively associated (\(P_c < 0.001 \)) with T1D. The strongest positive association was found for HLA-DQB1*030201, followed by *0202, and finally *0201 (OR = 19.2, OR = 14.4, and OR = 2.21, respectively). To the best of our knowledge, the present study is the first to identify a positive association between

August 15, 2012 | Volume 3 | Issue 8 |
Table 2 HLA-DQB1 allele frequency in type-1 diabetes mellitus group vs control group n (%)

HLA-DQB1 allele	Patient (n = 85)	Control (n = 113)	OR	95% CI	P value	Pc value
02	68 (44.4)	38 (18.6)	3.5	2.19-5.65	< 0.001	< 0.001
0201	49 (32.0)	36 (16.7)	2.21	1.35-3.62	0.001	NS
0202	19 (12.4)	2 (1.0)	14.4	3.3-62.8	< 0.001	< 0.001
03	63 (41.2)	50 (24.4)	2.17	1.38-3.41	< 0.001	< 0.001
030101	4 (2.6)	18 (8.8)	0.279	0.09-0.84	0.016	NS
030201	56 (36.6)	6 (2.9)	19.2	7.9-45.9	< 0.001	< 0.001
04	0	17 (8.3)	-	-	NS	NS
05	11 (7.2)	30 (14.6)	0.45	0.22-0.93	0.029	NS
050101	6 (3.9)	21 (10.2)	0.35	0.14-0.91	0.025	NS
050201	6 (3.3)	1 (0.5)	6.9	0.79-59.6	0.043	NS
06	11 (7.2)	70 (34.1)	0.15	0.07-0.29	< 0.001	< 0.001
060101	2 (1.3)	51 (24.9)	0.04	0.01-0.17	< 0.001	< 0.001
0603	4 (2.6)	-	2.37	2.1-2.7	0.020	NS
060401	4 (2.6)	1 (0.5)	5.48	0.64-49.5	0.090	NS

HLA: Human leukocyte antigen; OR: Odds ratio; NS: Not significant; Pc value: P value corrected for 14 comparisons. Significant P value if < 0.05.

Table 3 HLA-DQB1 genotype¹ frequency in type 1 diabetes mellitus group vs control n (%)

HLA-DQB1 genotype	Patient (n = 85)	Control (n = 113)	OR	95% CI	P value	Pc value
02/02	14 (16.5)	3 (2.7)	7.23	2.01-26.1	0.001	0.01
02/05	38 (44.7)	8 (7.1)	10.61	4.56-24.5	< 0.001	< 0.001
02/04	-	7 (6.3)	1.01	1.02-1.18	0.01	NS
02/06	6 (7.1)	4 (3.5)	2.07	0.56-7.57	0.26	NS
02/05	6 (7.3)	16 (14.2)	0.46	0.17-1.23	0.16	NS
03/03	12 (14.1)	6 (5.3)	2.93	1.05-18.6	0.033	NS
03/05	4 (4.7)	8 (7.1)	0.65	0.19-2.23	0.48	NS
03/06	2 (2.4)	22 (19.5)	0.1	0.02-0.44	< 0.001	< 0.001
05/06	1 (1.2)	11 (9.7)	0.11	0.01-0.87	0.012	NS
06/06	2 (2.4)	16 (14.2)	0.15	0.03-0.65	0.004	0.04

¹Genotypes with frequency more than 5%. HLA: Human leukocyte antigen; OR: Odds ratio; NS: Not significant; Pc value: P value corrected for 10 comparisons. Significant P value if < 0.05.

Table 4 HLA-DQB1 genotype¹ frequency in relation to grades of diabetic control n (%)

HLA-DQB1 genotype	Optimal control (n = 57)	Poor control (n = 28)	OR (95% CI)	P value
02/02	10 (65.9)	4 (60.5)	1.277 (0.36-4.49)	0.703
02/03	26 (34.1)	12 (39.5)	1.19 (0.45-2.79)	0.810
02/05	4 (39.4)	2 (28.9)	0.981 (0.18-5.71)	0.983
02/06	5 (53.0)	1 (63.2)	2.59 (0.29-23.35)	0.379
03/03	7 (7.6)	5 (7.9)	0.644 (0.19-2.25)	0.488
03/05	3	1	1.5 (0.15-15.11)	0.729
06/06	1	1	0.482 (0.03-8.01)	0.603

¹Genotypes with frequency more than 5%. HLA: Human leukocyte antigen; OR: Odds ratio. Significant P value if ≤ 0.05. Optimal/suboptimal control < 8.5, poor control ≥ 8.5.

HLA-DQB1*0202 and T1D (Table 2).

DQB1*0202 and DQB1*0302 were positively associated with T1D in various ethnic populations including Asians³⁴,⁳⁵, European³⁶-⁴³, and Americans³⁴,⁴⁶. Similar results were reported for Arab patients from Saudi Arabia³⁴,⁴⁶, Kuwait, Tunisia³⁴, Lebanon³⁴, and Israel³⁵. On the other hand, DQB1*0301 and DQB1*0601 were negatively associated with T1D in Korean³⁴, Latin American³⁵, Lebanese³⁴, Tunisian³⁴, Saudi children³⁴, Turkey³⁴, and Romanian³⁴ populations.

In the literature, there is only one previous study investigating the association of HLA-DQB1 alleles with T1D in Egyptians. Gaber et al³⁵ reported that HLA-DQB1*0201/*0302 were risk factors and *0601/*0603 were protective alleles. The two studies agree in relation to *0201, *0302, and *0601, but differ regarding *0603 in Gaber et al³⁵, and *0202 in the present work. HLA-DQB1*0603 was not detected in the controls of the present work. However, the present work was done on a different number of samples (85 patients vs 50 patients and 113 controls vs 50 controls) and a different geographical area (Delta region vs Cairo) from Gaber et al³⁵.
Egyptian are known to be of mixed ethnic origin (Middle Eastern, African and European)\cite{55}, so Egyptian studies are expected to add to the data available for different ethnic background\cite{56}. To the best of our knowledge, the present study is the first one to mention the positive association between HLA-DQB1*0202 and T1D (Table 2).

These same HLA-DQ molecules are associated with diabetes risk in various Caucasian and black populations although their relative frequency in background populations varies. This is also reflected in genotypes found among T1D patients and comparison of high risk genotype frequencies is most relevant to disease susceptibility\cite{57}. In Egyptian children with T1D, the genotypes 02/02, 02/03 were positively associated and the genotypes 03/06, 06/06 were negatively associated with the disease ($P_e = 0.01$, $P_c < 0.001$, $P_c < 0.001$, and $P_c = 0.04$, respectively) with the highest risk being with the heterozygote DQB1*02/*03 genotype (OR = 10.6) (Table 3). Similar findings were reported in the United States\cite{58}, Hungary\cite{59}, Romania\cite{60}, and Saudi Arabia\cite{61,62}.

The inheritance of HLA genes associated with T1DM would involve the presentation of diabetic autoantigen to autoreactive T-cells, thereby launching a T-cell activation cascade and the subsequent destruction of pancreatic β islet cells\cite{63}. It is tempting, therefore, to speculate that the DQB1*0201, DQB1*0302 genotypes and the homozygote DQB1*0201 genotype predispose to the stimulation of auto-reactive T-cells, thereby precipitating β-cell-directed immunity. Individuals carrying DQB1*0301, DQB1*0602 or DQB1*0602 may have a reduced affinity for diabetic autoantigen peptides, thereby explaining the dominant, protective nature of these peptides\cite{64}.

Geoad-epidemiological studies have highlighted that there is considerable geographic and ethnic variability not only in the incidence of T1D and its genetic determinants, but also in the acute and long-term complications and the resulting mortality risk associated with the disease. Comparisons of the genetic determinants of T1D in various populations have provided some evidence that the worldwide variation in incidence is at least partially determined by differences in genetic risk factors\cite{65}. Our results showed no correlation between HLA-DQB1 and diabetic nephropathy as the number of patients with microalbuminuria was considered as a limiting factor. Ronningen et al\cite{66} also found no association between HLA class II alleles and microalbuminuria. No significant association was found between HLA-DQB1 and the degree of diabetic control. Further investigation of this issue in a large group of diabetic patients of matched age, sex, diet and lifestyle is needed.

The Current work suggests that HLA-DQB1 alleles *030201, *0202, *0201, and genotypes 02/03, 02/02 may be a susceptibility risk factors for development of T1D in Egyptian children, and HLA-DQB1*060101 allele, 03/06, 06/06 genotypes may be protective factors. HLA-DQB1 alleles and genotypes do not contribute to the grade of diabetic control.

COMMENTS

Background

The existence of regional differences in the prevalence and nature of diabetes-related human leukocyte antigen (HLA) haplo- and genotypes as a function of the incidence of the disease within Europe and other regions, necessitates the collection of HLA genotype data from the perspective of prediction and prevention studies at the regional or national level.

Research frontiers

A significant positive associations were found with HLA-DQB1*0202 and DQB1*03 and a negative association with DQB1*06. HLA-DQB1*0201, *0202, *030201 were positively associated, and HLA-DQB1*060101 was negatively associated with type 1 diabetes (T1D).

Innovations and breakthroughs

The strongest positive association was found for HLA-DQB1*030201, followed by *0202, and finally *0201. The present study may be the first to mention the positive association between HLA-DQB1*0202 and T1D.

Applications

No significant association was found between HLA-DQB1 and the degree of diabetic control. Further investigation of this issue in a large groups of diabetic patients of matched age, sex, diet and lifestyle is needed.

Peer review

The authors examined HLA-DQB1 allele association with susceptibility to T1D in a cohort of Egyptian children. They concluded that HLA-DQB1 alleles *030201, *0202, *0201, and genotypes 02/03, 02/02 may be susceptibility risk factors for development of T1D, and HLA-DQB1*060101 allele, 03/06, 06/06 genotypes may be protective factors. HLA-DQB1 alleles and genotypes do not contribute to the grade of diabetic control.

REFERENCES

1. Anjos S, Polychronakos C. Mechanisms of genetic susceptibility to type 1 diabetes: beyond HLA. Mol Genet Metab 2004; 81: 187-195
2. Pugliese A, Eisenbarth GS. Type 1 diabetes mellitus of man: genetic susceptibility and resistance. Adv Exp Med Biol 2004; 552: 170-203
3. Bach JF. Infections and autoimmune diseases. J Autoimmun 2005; 25 Suppl: 74-80
4. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002; 51: 3353-3361
5. Høy H. Enterovirus infections and type 1 diabetes. Ann Med 2002; 34: 138-147
6. Myers MA, Hettiarachchi KD, Ludemann JP, Wilson AJ, Wilson CR, Zimmet PZ. Dietary microbial toxins and type 1 diabetes. Ann N Y Acad Sci 2003; 1005: 418-422
7. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987; 40: 1-14
8. Field LL. Genetic linkage and association studies of Type 1 diabetes: challenges and rewards. Diabetologia 2002; 45: 21-35
9. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SC, Jenkins SC, Palmer SM. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130-136
10. Demaine AG, Hibberd ML, Mangles D, Millward BA. A new marker in the HLA class I region is associated with the age at onset of IDDM. Diabetologia 1995; 38: 623-628
11. Khalil I, d’Auriol L, Gobet M, Morin L, Lepage V, Deschamps I, Park MS, Degos L, Galibert F, Hors J. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest 1990; 85: 1315-1319
12. She JX. Susceptibility to type 1 diabetes: HLA-DQ and DR revisited. Immunol Today 1996; 17: 323-329
13. Todd JA, Acha-Orbea H, Bell JJ, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, Timmerman L, Steinman L. A molecular basis for MHC class II-associated autoimmunity. Science 1988; 240: 1003-1009
Bonifacio E, Gale EA. Can we really predict diabetes? Diabetes 1993; 42: 213-220

Gale EA, Bingley PJ. Can we prevent IDDM? Diabetes Care 1994; 17: 339-344

Green A, Gale EA, Patterson CC. Incidence of childhood-onset insulin-dependent diabetes mellitus: the EURODIAB ACE Study. Lancet 1992; 339: 905-909

Cucca F, Muntoni F, Lampis R, Frau F, Argiolas L, Silvetti M, Angius E, Cao A, De Virgiliis G, Congia M. Combinations of specific DRB1, DQA1, DQB1 haplotypes are associated with insulin-dependent diabetes mellitus in Sardinia. Hum Immunol 1993; 37: 85-94

Rningen KS, Spurkland A, Tait BD, Drummond B, Lopez-Larrea C, Baronda FS, Menendez-Diaz MJ, Caillat-Zucman S, Beaurard G, Garchon HJ, Ilenon J, Reijonen H, Knip M, Boehm BO, Rosak C, Lolleriger C, Ottenhoff T, Contu L, Carcassi C, Savi M, Zanelli P, Neri M, Hamaguchi K, Kimura T, Magli MC, Balducci P, Thorsby E. HLA class II associations in insulin-dependent diabetes mellitus among blacks, Caucasoids and Japanese. In: Tsuji K, Aizawa M, Sasazuki Z, Magli MC, Balducci P, Thorsby E. The crossroad of polyautoimmunity. In: Walker SE, Jara LJ, editors. Autoimmunity: From Basic Science to ClinicalPractice. New York: Springer; 2010: 18-213

Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224: 166-182

Mosaad YM, Elsharkawy AA, El-Deek BS. Association of CTLA-4 (+49A/G) gene polymorphism with type 1 diabetes mellitus in Egyptian children. Immunol Invest 2012; 41: 28-37

Nimri R, Weintroub N, Benzaquen H, Ofar M, Fayman G, Phillip M. Insulin pump therapy in youth with type 1 diabetes: a retrospective paired study. Pediatrics 2006; 117: 2126-2131

Doyle EA, Weinzimer SA, Steffen AT, Ahern JA, Vincent M, Tamborlane WV. A randomized, prospective trial comparing the efficacy of continuous subcutaneous insulin infusion with multiple daily injections using insulin glargine. Diabetes Care 2004; 27: 1554-1558

American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010; 33 Suppl 1: S1-S61

Anaya JM, Corena R, Abad V. Type I diabetes mellitus at the crossroad of polyautoimmunity. In: Walker SE, Jara LJ, editors. Endocrine Manifestations of Systemic Autoimmune Diseases. Handbook of Systemic Autoimmune Diseases. Johannesberg: Elsevier Ltd.; 2008: 211-220

Shapira Y, Agmon-Levin N, Shoentfeld Y. Defining and analyzing the epidemiology and human autoimmunity. J Autoimmun 2010; 34: J168-J177

Harrison LC, Honeyman MC, Morahan G, Wentworth JM, Elkasaby S, Colman PG, Fourlanos S. Type 1 diabetes: lessons for other autoimmune diseases? J Autoimmun 2008; 31: 306-310

Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009; 360: 1646-1654

Borchers AT, Libo R, Gershwin ME. The geopatoidiology of type 1 diabetes. Autoimmun Rev 2010; 9: A355-A365

Dorman JS. Molecular epidemiology of insulin-dependent diabetes mellitus. Epidemiol Rev 1997; 19: 91-98

Lee HC, Ikekami H, Fujita A, Park SW, Chung YS, Park JO, Lee JE, Lim SK, Kim KR, Huh KB, Kim YS, Lee DS, Kim DH. Role of HLA class II alleles in Korean patients with IDDM. Diabetes Res Clin Pract 1996; 31: 9-15

Katahira M, Ishiguro T, Segawa S, Kuzuya-Nagao K, Hara I, Nishikawa T. Reevaluation of human leukocyte antigen DR-DQ haplotype and genotype in type 1 diabetes in the Japanese population. Horm Res 2008; 69: 284-289

Cinek O, Kolousova S, Snajderova M, Sumnik Z, Sedláková F, Drevinka P, Vavrinec J. The crossroad of polyautoimmunity. In: Walker SE, Jara LJ, editors. Autoimmunity: From Basic Science to ClinicalPractice. New York: Springer; 2010: 18-213

Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in the crossroad of polyautoimmunity. In: Walker SE, Jara LJ, editors. Autoimmunity: From Basic Science to ClinicalPractice. New York: Springer; 2010: 18-213

Lambert AP, Gillespie KM, Thomson G, Cordell HJ, Todd JA, Gale EA, Bingley PJ. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J Clin Endocrinol Metab 2004; 89: 4037-4043

Altbellii E, Blasetti A, Petrcelli R, Tumini S, Azzaroni R, Tiberti S, Battistini C, Merante D, Verrotti A, Fioroni MA, Iannarelli R, Pocia G, Papola F. HLA DR/DQ alleles and risk of type 1 diabetes in childhood: a population-based case-control study. Clin Exp Med 2005; 5: 72-79

Urcelay E, Santiago JL, de la Calle H, Martinez A, Méndez J, Ibarrá JM, Malunda C, Fernández-Arquero M, de la Concha EG. Type 1 diabetes in the Spanish population: additional factors to class II HLA-DR3 and -DR4. BMC Genomics 2005; 6: 56

Buc M, Bucová M, Javor J, Krivovízovská M, Stuchlíková M, Shawkatova I, Michalková D, Barák L, Jancová E, Petrek M. Associations between HLA class II alleles and type 1 diabetes mellitus in the Slovak population. Pediatr Diabetes 2006; 7 Suppl 1: S11-S61

Ei Wafai RJ, Chmaissem HN, Makki RF, Fakhoury H. Associa-
tion of HLA class II alleles and CTLA-4 polymorphism with type 1 diabetes. *Saudi J Kidney Dis Transpl* 2011; 22: 273-281

49 Haider MZ, Shaltout A, Alsaeid K, Qabazard M, Dorman J. Prevalence of human leukocyte antigen DQA1 and DQB1 alleles in Kuwaiti Arab children with type 1 diabetes mellitus. *Clin Genet* 1999; 56: 450-456

50 Stayoussf M, Benmansour J, Al-Irhayim AQ, Said HB, Rayana CB, Mahjoub T, Almawi WY. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia. *Clin Vaccine Immunol* 2009; 16: 1146-1150

51 Al-Jenaidi FA, Wakim-Ghorayeb SF, Al-Abbasi A, Arekat MR, Irani-Hakime N, Najm P, Al-Ola K, Motala AA, Almawi WY. Contribution of selective HLA-DRB1/DQB1 alleles and haplotypes to the genetic susceptibility of type 1 diabetes among Lebanese and Bahraini Arabs. *J Clin Endocrinol Metab* 2005; 90: 5104-5109

52 Kwon OJ, Brautbar C, Weintrob N, Sprecher E, Saphirman C, Bloch K, Pinhas-Hamiel O, Assah S, Vardi P, Israel S. Immunogenetics of HLA class II in Israeli Ashkenazi Jewish, Israeli non-Ashkenazi Jewish, and in Israeli Arab IDDM patients. *Hum Immunol* 2001; 62: 85-91

53 Gaber SA, Mazzola G, Berrino M, Canale L, Cormaglia M, Ghali I, Sergio Curtoni E, Amoroso A. Human leukocyte antigen class II polymorphisms and genetic susceptibility of IDDM in Egyptian children. *Diabetes Care* 1994; 17: 1341-1344

54 Lucotte G, Mercier G. Brief communication: Y-chromosome haplotypes in Egypt. *Am J Phys Anthropol* 2003; 121: 63-66

55 Badran WA, Fahmy I, Abdel-Megid WM, Elder K, Mansour R, Kent-First M. Length of androgen receptor-CAG repeats in fertile and infertile Egyptian men. *J Androl* 2009; 30: 416-425

56 Hermann R, Mijovic CH, Rayner M, Croft N, Kelly MA, Jenkins D, Soltész G, Barnett AH. HLA alleles and IDDM in children in Hungary: a comparison with Finland. *Hum Immunol* 2001; 62: 391-398

57 Todd JA. Etiology of type 1 diabetes. *Immunity* 2010; 32: 457-467

58 Price P, Cheong KY, Boodhoo A, Witt CS, McCann V, Christiansen FT, Alcock RJ. Can MHC class II genes mediate resistance to type 1 diabetes? *Immunol Cell Biol* 2001; 79: 602-606

59 Rønningen KS, Bangstad HJ, Undlien DE, Thorsby E. Influence of genetic factors (HLA class II genes, insulin-gene region polymorphisms) and metabolic control on the development of diabetic nephropathy. *Diabetes Res* 1993; 23: 31-40

S- Editor Wu X L- Editor Hughes D E- Editor Zheng XM