Some Applications of the Mellin Transform to Branching Processes

Wolfgang P. Angerer

UAM Cuajimalpa
Departamento de Matemáticas Aplicadas y Sistemas
D.F. México

April 16, 2008
Abstract
We introduce a Mellin transform of functions which live on all of \(\mathbb{R} \) and discuss its applications to the limiting theory of Bellman-Harris processes, and specifically Luria-Delbrück processes. More precisely, we calculate the life-time distribution of particles in a Bellman-Harris process from their first-generation offspring and limiting distributions, and prove a formula for the Laplace transform of the distribution of types in a Luria-Delbrück process in the Mittag-Leffler limit. As a by-product, we show how to easily derive the (classical) Mellin transforms of certain stable probability distributions from their Fourier transform.

AMS (2000) subject classification. 44A05, 60J80.

Keywords and phrases. Mellin transform, branching processes, stable probability distributions.
1 Introduction

In this note, we shall concern ourselves with some applications of the Mellin transform to the theory of branching processes; see Sections 4 and 5 for further motivation. We start with a definition of the Mellin transform for functions that live on all of \mathbb{R}. Next, we give an overview of the classical definition of the Mellin transform and some of its properties. This is material which, except perhaps for the Plancherel formula, is well-known and might as well have fitted into an appendix. We prove our main theorem (which is actually nothing more than a formula to relate the Mellin transform of a function to its Laplace transform) in Section 3. The final two sections are applications of the main theorem.

To begin, let X and Y be two \mathbb{R}-valued random variables such that $P(X \leq x) =: F(x)$ and $P(Y \leq y) =: G(y)$. Consider their product XY. Then, by total probability,

$$P(XY \leq z) = \int_{-\infty}^{\infty} P(XY \leq z | Y \in dy) P(Y \in dy)$$

$$= \int_{-\infty}^{0} P(X \geq zY^{-1} | Y \in dy) dG(y)$$

$$+ \int_{0}^{\infty} P(X \leq zY^{-1} | Y \in dy) dG(y) + P(0 \leq z) \cdot g_0,$$

if G charges $\{0\}$. It follows that if X and Y are independent,

$$P(XY \leq z) = \int_{-\infty}^{0} (1 - F(zy^{-1})) dG(y) + \int_{0}^{\infty} F(zy^{-1}) dG(y) + P(0 \leq z) \cdot g_0,$$

and if they both have a density, then

$$f \ast g(z) := \int_{0}^{\infty} \left[f(zy^{-1})g(y) + f(-zy^{-1})g(-y) \right] \frac{dy}{y}$$

is the density of the product XY. $f \ast g$ is called the Mellin convolution of f and g. We would like to calculate its Mellin transform (see the following section for the definition and a number of properties of the Mellin transform). To that end, we define

$$(f \ast g)^+(z) = f \ast g(z) \cdot I_{\mathbb{R}^+}(z) \tag{1}$$

and

$$(f \ast g)^-(z) = f \ast g(-z) \cdot I_{\mathbb{R}^-}(-z) = f \ast g(-z) \cdot I_{\mathbb{R}^+}(z) \tag{2}.$$

Then both $(f \ast g)^+$ and $(f \ast g)^-$ live on \mathbb{R}^+. Now we define the Mellin transform of $f \ast g$ as the pair

$$\mathcal{M}[f \ast g(x); s] := \left(\mathcal{M}(f \ast g)^+(s), \mathcal{M}(f \ast g)^-(s) \right),$$

3
of Mellin transforms of $f \otimes g^+$ and $f \otimes g^-$, and similarly for any other function that lives on \mathbb{R}. (We reserve the symbol \mathcal{M} for the Mellin transform of functions f that live on \mathbb{R}^+.) Now

$$\mathcal{M}(f \otimes g)^+(s) = \int_0^\infty (f \otimes g)^+(z) z^{s-1} \, dz = \int_0^\infty f(x) g(z) z^{s-1} \, dz$$

$$= \int_0^\infty \int_0^\infty \left[f(zy^{-1})g(y) + f(-zy^{-1})g(-y) \right] \frac{dy}{y} z^{s-1} \, dz$$

$$= \int_0^\infty y^s g(y) \int_0^\infty f(zy^{-1}) \left(\frac{z}{y} \right)^{s-1} d \left(\frac{z}{y} \right) \frac{dy}{y}$$

$$+ \int_0^\infty y^s g^-(y) \int_0^\infty f(-zy^{-1}) \left(\frac{z}{y} \right)^{s-1} d \left(\frac{z}{y} \right) \frac{dy}{y},$$

so that

$$\mathcal{M}(f \otimes g)^+(s) = \mathcal{M}f^+(s) \mathcal{M}g^+(s) + \mathcal{M}f^-(s) \mathcal{M}g^-(s).$$

Similarly, one finds

$$\mathcal{M}(f \otimes g)^-(s) = \mathcal{M}f^+(s) \mathcal{M}g^-(s) + \mathcal{M}f^-(s) \mathcal{M}g^+(s).$$

Define a product \odot of two Mellin transforms according to

$$\mathcal{M}[f(x); s] \odot \mathcal{M}[g(x); s] := (\mathcal{M}f^+(s) \mathcal{M}g^+(s) + \mathcal{M}f^-(s) \mathcal{M}g^-(s), \mathcal{M}f^+(s) \mathcal{M}g^-(s) + \mathcal{M}f^-(s) \mathcal{M}g^+(s)) .$$

We have proved

Theorem 1 Let X and Y be random variables with densities f and g, respectively. Then

$$\mathcal{M}[f \otimes g(x); s] = \mathcal{M}[f(x); s] \odot \mathcal{M}[g(x); s].$$

This is well-known for functions that live on \mathbb{R}^+. The multiplication \odot is the same as the multiplication rule for hyperbolic numbers [9]; it remains to see whether this observation has more than curiosity value.

2 The Mellin Transform

Let f be a complex-valued function on $\mathbb{R}^+ \cup \{0\}$ such that the integral

$$\mathcal{M}[f(x); s] := \int_0^\infty f(x) x^{s-1} \, dx$$

exists for all complex s in the fundamental strip $\langle \alpha, \beta \rangle := \{ s \in \mathbb{C} : \alpha < \Re(s) < \beta \}$. Then $\mathcal{M}[f(x); s]$ is called the Mellin transform of f with respect to s. In what follows, we shall only be concerned with the Mellin transform of functions which live on \mathbb{R}^+, and consequently write $\mathcal{M}f$ or $\mathcal{M}f(s)$ instead of $\mathcal{M}[f(x); s]$ when this is feasible. The Mellin transform has a number of interesting properties. We start with...
Lemma 1
\[M[f(\lambda x); s] = \lambda^{-s} M[f(x); s] \] (5)
and
\[M[f(x^\mu); s] = \mu^{-1} M[f(x); s/\mu] . \] (6)

Proof. Consider
\[M[f(\lambda x^\mu); s] = \int_0^\infty f(\lambda x^\mu) x^{s-1} \, dx \]
\[= \frac{1}{\mu} \int_0^\infty f(\lambda y) y^{s/\mu-1} y^{1/\mu-1} \, dy = \frac{\lambda^{-s/\mu}}{\mu} \int_0^\infty f(x) x^{s/\mu-1} \, dx . \]

Now set \(\lambda = 1 \) or \(\mu = 1 \). \(\Box \)

This was easy. The following is a little harder:

Theorem (Mellin Inversion) 2 Suppose \(\gamma \) belongs to the fundamental strip of \(f \). Then
\[f(x) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} Mf(s) x^{-s} \, ds . \]

We first prove the following

Lemma 2
\[\frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} Mf(s) \, ds = f(1) . \]

Proof of the lemma. Fix \(\varepsilon > 0 \). Then, because \(e^{s^2} \) is analytic in \(s \) everywhere in the complex plane, we have
\[\int_{\gamma - i\infty}^{\gamma + i\infty} e^{\pi\varepsilon^2 s^2} \, ds = \int_{-\infty}^{\infty} e^{\pi\varepsilon^2 s^2} \, ds = \frac{i}{\varepsilon} , \]
and so
\[\frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{\pi\varepsilon^2 s^2} Mf(s) \, ds = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{\pi\varepsilon^2 s^2} \int_0^\infty f(z) z^{s-1} \, dz \, ds \]
\[= \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{\pi\varepsilon^2 s^2} \int_{-\infty}^\infty f(e^{-y}) e^{-ys} \, dy \, ds \]
\[= \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(e^{-y}) \int_{\gamma - i\infty}^{\gamma + i\infty} e^{\pi\varepsilon^2 s^2} e^{-2\pi\varepsilon y(2\pi\varepsilon)^{-1}} \, ds \, dy \]
\[= \frac{1}{2\pi \varepsilon} \int_{-\infty}^{\infty} f(e^{-y}) e^{-\pi y^2(2\pi\varepsilon)^{-2}} \, dy = \int_{-\infty}^{\infty} f(e^{-2\pi\varepsilon y}) e^{-\pi y^2} \, dy . \]

Now let \(\varepsilon \to 0 \). \(\Box \)
Proof of the theorem. By the lemma and the scaling property (5), we have

\[
\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} Mf(s) x^{-s} \, ds = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} M[f(xy); s] \, ds = f(xy) \bigg|_{y=1} = f(x),
\]

which concludes the proof. □

The following theorem is in a similar spirit.

Theorem (Plancherel Formula) 3 Suppose \(\gamma \) belongs to the fundamental strip of both \(f \) and \(g \). Then

\[
\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} Mf(s) \overline{Mg(s)} \, ds = \int_0^\infty f(x) g(x) x^{2\gamma-1} \, dx.
\]

Proof. As for the proof of Lemma (2), one checks that

\[
\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} Mf(s) \, ds = \overline{f(1)}
\]

and

\[
\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} Mf(s) x^{-s} \, ds = \frac{x^{-2\gamma}}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} Mf(s) \left(\frac{1}{x}\right)^{-s} \, ds = x^{-2\gamma} f(1/x).
\]

Then

\[
\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{\pi s^2} Mf(s) \overline{Mg(s)} \, ds
\]

\[
= \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{\pi s^2} \int_0^\infty f(x) x^{s-1} \, dx \int_0^\infty y^{-2\gamma} g(1/y) y^{s-1} \, dy \, ds
\]

\[
= \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{\pi s^2} \int_{-\infty}^{\infty} f(e^{-u}) e^{-us} \, du \int_{-\infty}^{\infty} e^{-2\gamma v} g(e^{-v}) e^{vs} \, dv \, ds
\]

\[
= \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(e^{-u}) \int_{-\infty}^{\infty} e^{-2\gamma v} g(e^{-v}) \int_{\gamma-i\infty}^{\gamma+i\infty} e^{\pi s^2} e^{-2\pi \varepsilon(u-v)(2\pi \varepsilon)^{-1}} \, ds \, dv \, du
\]

\[
= \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{-2\gamma v} g(e^{-v}) \int_{-\infty}^{\infty} f(e^{-u-v}) e^{-\pi(u-v)^2(2\pi \varepsilon)^{-2}} \, du \, dv
\]

Now let \(\varepsilon \to 0 \) and change variables. □

We now continue with the derivation of
3 The Main Theorem

The gist of the paper is the following

Theorem 4 Let \(f \) be a function on \(\mathbb{R} \) with bilateral Laplace transform

\[
\varphi(u) := \int_{-\infty}^{\infty} e^{-ux} f(x) \, dx
\]

and Mellin transform \(\mathcal{M}[f(x); s] = (\mathcal{M}f^+(s), \mathcal{M}f^-(s)) \). Define

\[
\alpha^+ := \sup \{ \alpha \in \mathbb{R} : \lim_{x \to \infty} e^{\alpha x} f^+(x) = 0 \}
\]

and

\[
\alpha^- := \sup \{ \beta \in \mathbb{R} : \lim_{x \to \infty} e^{\alpha x} f^-(x) = 0 \}.
\]

Suppose that \(\alpha^+ \) and \(\alpha^- \) are strictly larger than zero, and choose for \(\beta \) any number in \(\mathbb{R}^- \) such that \(0 < -\beta < \min(\alpha^+, \alpha^-) \). Then we have, for \(s > 0 \) and in the fundamental strip of \(f^+ \) and \(f^- \),

\[
\mathcal{M}f^+(s) = \frac{\Gamma(s)}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \varphi(u) (-u)^{-s} \, du
\]

and

\[
\mathcal{M}f^-(s) = \frac{\Gamma(s)}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \varphi(-u) (-u)^{-s} \, du.
\]

Furthermore,

\[
\varphi(u) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M}f^+(s) \Gamma(1-s) \, u^{s-1} \, ds
\]

\[
+ \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M}f^-(s) \Gamma(1-s) \, (-u)^{s-1} \, ds
\]

for any \(\gamma \) that belongs to the fundamental strips of both \(f^+ \) and \(f^- \).

Proof. We first prove the theorem under the assumption that \(f \) is concentrated on \(\mathbb{R}^+ \), such that \(f = f^+ \), and we may write \(\mathcal{M}f \) for its Mellin transform. Choose \(\beta := \beta^+ \) as required. By Laplace inversion, we have

\[
f(x) = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \varphi(u) e^{ux} \, du
\]

and so

\[
2\pi i \mathcal{M}f(s) = \int_{0}^{\infty} \int_{\beta-i\infty}^{\beta+i\infty} \varphi(u) e^{ux} \, du \, x^{s-1} \, dx.
\]
The standard trick here is often to first convolve f with some $(\pi \varepsilon)^{-1/2} e^{-x^2/\varepsilon}$. The Laplace transform of the latter is $e^{\varepsilon u^2/4}$, and

\[
\int_0^\infty \int_{\beta-i\infty}^{\beta+i\infty} e^{\varepsilon u^2/4} \varphi(u) e^{ux} du \, dx \\
= \int_{-\beta-i\infty}^{\beta+i\infty} e^{\varepsilon u^2/4} \varphi(-u) \frac{1}{u^s} \int_0^\infty e^{-x} \, x^{s-1} \, dx \, du \\
= \Gamma(s) \int_{\beta-i\infty}^{\beta+i\infty} e^{\varepsilon u^2/4} \varphi(u) (-u)^s \, du,
\]

where interchanging the order of integration is permissible because the integrand becomes exponentially small if either u or x are of the order $\sim \varepsilon^{-1}$. One can then undo the convolution by letting $\varepsilon \to 0$. As for the converse, choose γ in the fundamental strip of f. Then

\[
f(x) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M} f(s) \, x^{-s} \, ds,
\]

and

\[
\int_0^\infty \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M} f(s) \, x^{-s} \, ds \, e^{-ux} \, dx
\]

\[
= \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M} f(s) u^{s-1} \int_0^\infty \, e^{-x} \, dx \, ds = \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M} f(s) \Gamma(1-s) \, u^{s-1} \, ds.
\]

To justify the interchange of the order of integration, one can Mellin convolve f with $(\pi \varepsilon)^{-1/2} e^{-(\log x)^2/\varepsilon}$, whose Mellin transform is $e^{\varepsilon u^2/4}$, and then again undo the convolution by letting $\varepsilon \to 0$. This proves the theorem in case f is concentrated on \mathbb{R}^+. For the general case, let φ^+ and φ^- be the Laplace transforms of f^+ and f^-, respectively. Then

\[
\varphi(u) = \int_0^\infty f^+(x) e^{-ux} \, dx + \int_0^\infty f^-(x) e^{ux} \, dx = \varphi^+(u) + \varphi^-(u),
\]

and

\[
\mathcal{M} f^+(s) = \frac{\Gamma(s)}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \varphi(u) \, (-u)^{-s} \, du - \frac{\Gamma(s)}{2\pi i} \int_{-\beta-i\infty}^{\beta+i\infty} \varphi^-(u) \, (-u)^{-s} \, du,
\]

by what we have proved already. Now φ^- cannot have any singularities in the half-plane $\Re(s) > -\beta$. We therefore can close the contour of integration in the second integral along a semi-circle of radius r and find, by analyticity of φ^-,

\[
\int_{\beta-i\infty}^{\beta+i\infty} \varphi^-(u) \, (-u)^{-s} \, du = -r \int_{-\pi/2}^{\pi/2} \varphi^-(re^{i\theta}) \, (re^{i\theta})^{-s} \, d\theta,
\]

8
which is of order
\[
r^{1-s} \int_{-\pi/2}^{\pi/2} e^{-r \cos \theta} \, d\theta \leq 2r^{1-s} \int_{0}^{\pi/2} e^{-r(1-2\theta/\pi)} \, d\theta = \pi r^{-s} (1 - e^{-r})
\]
in absolute value, and therefore tends to 0 if \(s > 0 \). This proves (9). (10) is proved in a similar manner, and (11) is an easy consequence of (12) and (13). □

Although we shall not use it as heavily, we note the following variant of Theorem 4:

Theorem 5 Let \(f \) be a function on \(\mathbb{R} \) with Mellin transform \((\mathcal{M}f^+, \mathcal{M}f^-)\) and Fourier transform
\[
f^*(y) := \int_{-\infty}^{\infty} e^{iyx} f(x) \, dx = \int_{0}^{\infty} e^{-iyx} f^-(x) \, dx + \int_{0}^{\infty} e^{iyx} f^+(x) \, dx.
\]
Then, for \(0 < s < 1 \),
\[
\mathcal{M}f^+(s) = \frac{\Gamma(s)}{\pi} \Re \left(\exp \left(-i \frac{s\pi}{2} \right) \int_{0}^{\infty} f^*(y) \, y^{-s} \, dy \right)
\]
and
\[
\mathcal{M}f^-(s) = \frac{\Gamma(s)}{\pi} \Re \left(\exp \left(i \frac{s\pi}{2} \right) \int_{0}^{\infty} f^*(y) \, y^{-s} \, dy \right).
\]
Moreover,
\[
f^*(y) = i \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M}f^+(s) \Gamma(1-s) \, y^{s-1} \, ds
\]
\[- i \int_{\gamma-i\infty}^{\gamma+i\infty} \mathcal{M}f^-(s) \Gamma(1-s) \, y^{s-1} \, ds
\]
for any \(\gamma \) that belongs to the fundamental strips of \(f^+ \) and \(f^- \).

Proof. We need the following

Lemma 3 For \(0 < s < 1 \),
\[
\int_{0}^{\infty} e^{\pm ix} x^{s-1} \, dx = \Gamma(s) \exp \left(\pm \frac{s\pi i}{2} \right).
\]

Proof of the lemma. We have
\[
\int_{0}^{\infty} e^{\pm ix} e^{-xu} \, dx = \frac{1}{u \mp i} = \frac{u}{u^2 + 1} \pm \frac{i}{u^2 + 1},
\]
and then, by Theorem 3
\[
\int_{0}^{\infty} \cos x e^{-\lambda x} x^{s-1} \, dx = \frac{\Gamma(s)}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{u + \lambda}{(u + \lambda)^2 + 1} (-u)^s \, du
\]
for arbitrary $\lambda > 0$. It then follows by the Residue theorem that
\[
\int_0^\infty \cos x e^{-\lambda x} x^{s-1} \, dx = \Gamma(s) ((\lambda - i)^{-s} + (\lambda + i)^{-s}) = \Gamma(s) \frac{\cos \left(-s \operatorname{arg}(\lambda - i) \right)}{\left(\lambda^2 + 1 \right)^{s/2}},
\]
which implies
\[
\int_0^\infty \cos x x^{s-1} \, dx = \Gamma(s) \cos \frac{s\pi}{2},
\]
by arbitrariness of λ. Similarly, one proves
\[
\int_0^\infty \sin x x^{s-1} \, dx = \Gamma(s) \sin \frac{s\pi}{2},
\]
and this already implies the lemma. \square

Proof of the theorem. Inverting the Fourier transform, we find
\[
2\pi f(x) = \int_{-\infty}^{\infty} f^*(y) e^{-ixy} \, dy,
\]
and so
\[
2\pi M f^+(s) = \int_0^\infty \int_{-\infty}^{\infty} f^*(y) e^{-ixy} y^{s-1} \, dx \, dy
= \int_0^\infty f^*(-y) \int_{-\infty}^{\infty} e^{i\pi y} x^{s-1} \, dx \, dy + \int_0^\infty f^*(y) \int_{-\infty}^{\infty} e^{-i\pi y} x^{s-1} \, dx \, dy
= \Gamma(s) \exp \left(i \frac{s\pi}{2} \right) \int_0^\infty f^*(-y) y^{-s} \, dy + \Gamma(s) \exp \left(-i \frac{s\pi}{2} \right) \int_0^\infty f^*(y) y^{-s} \, dy,
\]
by Lemma 3. But this already implies the first of Equations (15) - (17), because $f^*(-y) = f^*(y)$. (One again checks that interchanging the order of integration is permissible at worst after convoluting f with some $(\pi \varepsilon)^{-1/2} e^{-x^2/\varepsilon}$.) The rest are proved in a similar manner. \square

As an application, we now calculate the Mellin transforms of those stable probability distributions with Fourier transform
\[
\psi^*(y) := \psi^*_{\alpha,\theta}(y) := \exp \left(-|y|^{\alpha} e^{i\pi \theta \text{sgn} y/2} \right).
\]
Writing $e^{i\pi \theta/2} =: \zeta$, we find
\[
\int_0^\infty \psi^*(y) y^{-s} \, dy = \int_0^\infty \exp (-|y|^{\alpha} \zeta) y^{-s} \, dy
= \frac{1}{\alpha \zeta^{(1-s)/\alpha}} \int_0^\infty e^{-y} y^{(1-s)/\alpha-1} \, dy = \Gamma\left((1-s)/\alpha\right) \frac{\zeta^{(1-s)/\alpha}}{\alpha \zeta^{(1-s)/\alpha}}
= \frac{1}{\alpha} \Gamma\left((1-s)/\alpha\right) \left(\cos \frac{(1-s)\pi \theta}{2\alpha} + i \sin \frac{(1-s)\pi \theta}{2\alpha} \right),
\]
because $|\zeta| = 1$. Multiplication by $e^{-is\pi/2}$ and taking the real part then gives

$$
\mathcal{M}\psi^+(s) = \frac{\Gamma(s)\Gamma((1-s)/\alpha)}{\alpha\pi} \cos \left(\frac{(1-s)\pi\theta + s\pi\alpha}{2\alpha}\right)
= \frac{\Gamma(s)\Gamma((1-s)/\alpha)}{\alpha\pi} \sin \left(\frac{(1-s)\pi(\alpha - \theta)}{2\alpha}\right)
= \frac{\rho^+ \Gamma(s)\Gamma((1-s)/\alpha)}{\Gamma((1+\rho^+(1-s))\Gamma(1-\rho^+(1-s))},
$$

(19)

if we define

$$
\rho^+ = \frac{\alpha - \theta}{2\alpha},
$$

(20)

and make use of $\Gamma(s)\Gamma(1-s) = \pi\sin(\pi s)^{-1}$. (19) is equivalent to Formula 17 in [5] or Formula 6.8 in [6]. Similarly, one finds

$$
\mathcal{M}\psi^-(s) = \frac{\rho^- \Gamma(s)\Gamma((1-s)/\alpha)}{\Gamma((1+\rho^-(1-s))\Gamma(1-\rho^-(1-s))},
$$

(21)

if we define

$$
\rho^- = \frac{\alpha + \theta}{2\alpha}.
$$

(22)

In particular, $\mathcal{M}\psi^+(1) + \mathcal{M}\psi^-(1) = \rho^+ + \rho^- = 1$, as required.

4 An Application to Bellman-Harris Processes

Let $\{Z_t\}_{t\geq 0}$ be a supercritical Bellman-Harris process with offspring distribution $\{\pi_k\}_{k=0}^\infty$ and life-time distribution G. Thus, $G(t)$ is the probability that a newborn individual survives at least until time t, and π_k is the probability that once it splits into a number Z_+ of progeny, it will split into exactly k of these. We denote by $f(s) := E(e^{sZ_+}) = \sum_{k=0}^\infty \pi_k s^k$ the corresponding generating function. By supercriticality, $\mu := f'(1) > 1$, and there exists $q \in [0,1)$ such that $f(q) = q$. We assume that G is non-lattice, that $G(0^+) = G(0) = 0$, and that $\mu > \infty$. Then there exist ‘constants’ χ_t (the Seneta constants) such that, on the set of non-extinction, $\chi_t Z_t$ converges almost surely to a non-degenerate random variable Z whose Laplace transform $\psi(u) = \mathbb{E}(e^{-uZ})$ satisfies

$$
\psi(u) = \int_0^\infty f \circ \psi(ue^{-\beta t}) dG(t),
$$

(23)

where β is the Malthusian parameter, that is, the unique root of

$$
\mu \int_0^\infty e^{-yt} dG(t) = 1,
$$

$y \in (0, \infty)$. There are only a few instances where the solution of (23) is known for given f and G. We turn the problem on its head: Suppose ψ were (the Laplace transform of some function g) such that it fulfills the conditions of Theorem 4. Then

$$
\mathcal{M}g(s) = \frac{\Gamma(s)}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \psi(u) (-u)^{-s} du
$$
for some suitably chosen value of β, and it follows by Equation (23) that
\[
\frac{2\pi i}{\Gamma(s)} Mg(s) = \int_{\beta - i\infty}^{\beta + i\infty} f \circ \psi(ue^{-t}) dG(t) \left(-u \right)^{-s} du = \int_{\beta - i\infty}^{\beta + i\infty} f \circ \psi(u) (-u)^{-s} du \int_{0}^{\infty} e^{-t(s-1)} dG(t).
\]

In other words, we have for the Laplace transform of G at s,
\[
\int_{0}^{\infty} e^{-ts} dG(t) = \frac{\int_{\beta - i\infty}^{\beta + i\infty} \psi(u) (-u)^{-s-1} du}{\int_{\beta - i\infty}^{\beta + i\infty} f \circ \psi(u) (-u)^{-s-1} du}.
\]

Example. Suppose that $g(x) \propto e^{-x^{\kappa-1}}$ for some $\kappa > 0$ and $f(s) = s^m$. Then
\[
\int_{\beta - i\infty}^{\beta + i\infty} \psi(u) (-u)^{-s-1} du = 2\pi i \frac{Mg(s+1)}{\Gamma(s+1)} = \frac{2\pi i}{\Gamma(s+1) \Gamma(\kappa)} \int_{0}^{\infty} e^{-x^{\kappa-1} x^s} dx = 2\pi i \frac{\Gamma(s+\kappa)}{\Gamma(s+1) \Gamma(\kappa)},
\]
which eventually implies that
\[
\int_{0}^{\infty} e^{-ts} dG(t) = \frac{\Gamma(s+\kappa) \Gamma(m\kappa)}{\Gamma(s+m\kappa) \Gamma(\kappa)}.
\]

and that G has a density:
\[
\frac{dG(t)}{dt} = \frac{\Gamma(m\kappa)}{\Gamma(\kappa) \Gamma(m\kappa-\kappa)} e^{-\kappa t} (1 - e^{-t})^{(m-1)\kappa-1}. \tag{24}
\]

In case f is a polynomial $f(s) = \sum_{j=1}^{m} \pi_j s^j$, we similarly obtain
\[
\int_{0}^{\infty} e^{-ts} dG(t) = \frac{\Gamma(s+\kappa)}{\Gamma(\kappa) \sum_{i=1}^{m} \frac{\Gamma(s+j\kappa)}{\Gamma(j\kappa)}}. \tag{25}
\]

It is not obvious that the function on the right-hand side of (25) has all the properties of a Laplace transform (most of all, complete monotonicity), but this is what we have shown. So the question is, When does the Laplace transform ψ of the random variable Z have an exponential tail? The answer is given by the following
Theorem 6 Let F_t be the PGF of particle numbers in a Bellman-Harris process at time t, and let f be the PGF of the corresponding first-generation offspring distribution. Say that f has exponential moments up to order $r > 0$ if $f(e^u) < \infty$ for $u < r$, and let $M_t := F_t'(1)$. Then F_t has exponential moments up to order $O(r/M_t)$. In particular, there exists $r' > 0$ such that Laplace transform

$$\tilde{\psi}(u) := \lim_{t \to \infty} F_t(e^{-u/M_t})$$

is analytic for $u > -r'$.

Proof. We can assume $f(0) = 0$, so $Z_t \to \infty$ almost surely. Because

$$e^u = F_t \circ \exp \left(\frac{M_t \log F_{-t}(e^u)}{M_t} \right)$$

(we write F_{-t} to denote the inverse of F_t), one readily checks that Theorem 6 holds true iff

$$\frac{d}{du} M_t \log F_{-t}(e^u) = \frac{e^{-\beta t} M_t e^u}{F_{-t}(e^u) e^{-\beta t} F_t' \circ F_{-t}(e^u)} < e^u$$

(supposing $u > 0$) remains bounded away from zero. Now $e^{-\beta t} M_t$ converges to something non-zero by the Kesten-Stigum theorem, so $F_t(e^u) \to \infty$ for $u > 0$ by convexity of F_t. But then $F_t \circ F_{-t}(e^u) = e^u$ implies $F_{-t}(e^u) \to 1$. All that is left show is that $e^{-\beta t} F_t' \circ F_{-t}(e^u)$ remains bounded. Write s instead of e^u. We have

$$F_t(s) = (1 - G(t))s + \int_0^t f \circ F_{t-u}(s) \, dG(u) ,$$

so

$$X_t(s) := e^{-\beta t} F_t'(s)$$

\[= e^{-\beta t} (1 - G(t)) + \int_0^t f \circ F_{t-u}(s) e^{-\beta u} F_u'(s) e^{-\beta (t-u)} dG(t-u)\]

\[= e^{-\beta t} (1 - G(t)) + \int_0^t \left(\frac{f' \circ F_u(s)}{\mu} - 1 \right) X_u(s) \, dG_{\beta}(t-u) + \int_0^t X_u(s) \, dG_{\beta}(t-u) ,\]

where we have introduced the measure

$$G_{\beta}(t) = \mu \int_0^t e^{-\beta u} \, dG(u) .$$
We now use the final expression in \(\text{(26)} \) to obtain

\[
\begin{align*}
\int_0^t X_u(s) \, dG_t(u) - \int_0^t e^{-\beta u} (1 - G(u)) \, dG_t(u) &= \\
= & \int_{u=0}^{t} \int_{v=0}^{u} \frac{f' \circ F_u(s)}{\mu} X_v(s) \, dG_t(u-v) \, dG_t(u) - \\
& \int_{v=0}^{t} \frac{f' \circ F_u(s)}{\mu} X_v(s) \int_{u=0}^{t} dG_t(u-v) \, dG_t(u) - \\
& \int_{v=0}^{t} \frac{f' \circ F_u(s)}{\mu} X_v(s) \, dG^\ast_\beta(t-v),
\end{align*}
\]

and find by induction and Fubini’s theorem,

\[
X_t(s) = e^{-\beta t} (1 - G(t)) + \int_0^t e^{-\beta u} (1 - G(u)) \, dU_t(u) + \\
\int_0^t \left(\frac{f' \circ F_u(s)}{\mu} - 1 \right) X_u(s) \, dU_t(u),
\]

(27)

or

\[
X_t(s) - X_t(1) = \int_0^t \left(\frac{f' \circ F_{t-u}(s)}{\mu} - 1 \right) X_{t-u}(s) \, dU_t(u),
\]

(28)

where

\[
U_\beta(t) = \sum_{i=1}^{\infty} G^2_{\beta,i}(t)
\]

is essentially the renewal measure for \(G_\beta \). Suppose \(X_t \circ F_t(s) \) does not remain bounded. Then we can find a sequence of values \(t_1, t_2, \ldots \) tending to infinity such that

\[
1 \leq \lim_{k \to \infty} \int_0^{t_k} \left(\frac{f' \circ F_{tk-u} \circ F_{-tk}(s)}{\mu} - 1 \right) \, dU_t(u).
\]

But \(Z_{tk}/Z_t \to e^{-\beta u} \) almost surely \(\text{[8]} \), hence

\[
\lim_{k \to \infty} F_{tk-u} \circ F_{-tk}(s) = \lim_{k \to \infty} \mathbb{E} \left(F_{-tk}(s) Z_{tk} Z_{tk-u}/Z_{tk} \right) \leq s^{-\beta u},
\]

by Jensen’s inequality. Therefore,

\[
1 \leq \int_0^{\infty} \left(\frac{f' \circ F_{s^{-\beta u}}(s)}{\mu} - 1 \right) \, dU_t(u) \simeq \frac{f''(1)}{\mu} \log s
\]

if \(s < e^r \) (recall that \(f \) has exponential moments up to order \(r \)), because \(dU_t(u) \) is essentially Lebesgue measure plus a term of order \(e^{-\alpha u} du \) for some \(\alpha \in (0, \beta] \) \(\text{[10]} \). But \(1 \leq O(\log s) \) is a contradiction for \(s \) sufficiently close to 1. The theorem follows.

\(\square \)
5 Limit Laws of Luria-Delbrück Processes

The Luria-Delbrück (LD) distribution arises as the distribution of types in a two-type Bellman-Harris process or, in a narrower sense, as a limiting distribution of types in such a process. If the life-time distribution is exponential and branching is binary, the theory of the LD distribution is essentially complete; see [1]. The same can be said if the life-time distribution of cells is exponential, but cells always produce a fixed number κ of mutant or non-mutant progeny [2, 7]. We shall refer to such a process as a $(1 - \rho, \kappa)$-Luria-Delbrück process, where ρ is the probability that upon division, a non-mutant cell produces one non-mutant and κ mutant daughter cells. Mutants only produce κ mutant progeny. The following theorem has been proved by Leona Schild in her diploma thesis:

Theorem [7] 7 Denote by L_n the number of non-mutants in a $(1 - \rho, \kappa)$-Luria-Delbrück process when population size has reached $n\kappa + 1$, and the process has been started from a single non-mutant individual. Then

$$\frac{L_n}{n^{1-\rho}} \to L \quad (29)$$

almost surely, and

$$L \overset{D}{=} B^{1-\rho} \cdot L_\kappa \cdot \kappa \quad (30)$$

where $\kappa = \kappa^{-1}$, B is $((1-\rho)\kappa, \rho \kappa)$-Beta distributed, and L_κ is κ-biased $(1-\rho)$-Mittag-Leffler.

We explain our terms: By a $(1 - \rho)$-Mittag-Leffler distribution we mean a distribution whose Laplace transform is the Mittag-Leffler function

$$E_{1-\rho}(u) = \sum_{k=0}^{\infty} \frac{(-u)^k}{\Gamma((1-\rho)k + 1)} \quad (31)$$

Next, a κ-biasing of a random variable X with Laplace transform $E(e^{-uX})$ is a random variable X_κ whose Laplace transform is

$$\frac{E(X_\kappa e^{-uX})}{E(X_\kappa)} \quad (32)$$

We refer to [7] for further background. Our goal here is to deduce

Theorem [2] 8 The Laplace transform of L is

$$E(e^{-uL}) = \Gamma(\kappa) \sum_{i=0}^{\infty} \left(-\frac{\kappa}{i} \right) \frac{s^i}{\Gamma(i(1-\rho) + \kappa)} \quad (33)$$

(which has been proved in [2] in a rather indirect manner) directly from Theorem 7. We need the following
Lemma 4 Suppose \(Y \) is \((1 - \rho)\)-Mittag-Leffler distributed. Then its Mellin transform is
\[
\mathcal{M}Y(s) = \frac{\Gamma(s)}{\Gamma((1 - \rho)(s - 1) + 1)}.
\]

Proof. First observe that
\[
\frac{\Gamma((1 - \rho)(k + 1) + 1)}{\Gamma((1 - \rho)k + 1)} \sim k^{1-\rho},
\]
which implies that \(E_{1-\rho} \) is analytic on all of \(\mathbb{C} \). Also,
\[
\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{\zeta}}{\zeta^z} d\zeta,
\]
where \(\mathcal{H} \) is a Hankel contour encircling the negative axis in counterclockwise direction. We fix \(\varepsilon > 0 \), and choose for \(\mathcal{H} = \mathcal{H}(\varepsilon) \) a vaguely lollipop-shaped figure as follows: It runs along (in fact, just below) the negative axis from \(-\infty\) to \(-\varepsilon\), runs around the origin on a circle of radius \(\varepsilon \) in counterclockwise direction, and then returns to \(-\infty\) just above the negative axis. Then we have
\[
\int_{\mathcal{H}} \frac{e^{\zeta}}{\zeta^{(1-\rho)k+1}} d\zeta = \int_{-\infty}^{-\varepsilon} \frac{e^{r\zeta} e^{-i\pi}}{r^{(1-\rho)k+1} e^{-i\pi(1-\rho)k-i\pi}} dr
\]
\[
+ \int_{-\varepsilon}^{\pi} \frac{e^{r\zeta e^{i\theta}}} {e^{(1-\rho)k+1} e^{i\theta(1-\rho)k+i\theta}} d\theta + \int_{-\pi}^{-\infty} \frac{e^{r\zeta e^{i\theta}}} {r^{(1-\rho)k+1} e^{i\pi(1-\rho)k+i\pi}} dr,
\]
and the three integrands are \(\sim \varepsilon^{-(1-\rho)k} \) in order of magnitude. It follows that if \(|u| < \varepsilon^{1-\rho} \), the sequence of functions
\[
\sum_{k=0}^{n} (-u)^k \frac{e^{r\zeta e^{-i\pi}}} {r^{(1-\rho)k+1} e^{-i\pi(1-\rho)k-i\pi}}
\]
is uniformly convergent in \(r \), and that of
\[
\sum_{k=0}^{n} (-u)^k \frac{e^{r\zeta e^{i\theta}}} {e^{(1-\rho)k+1} e^{i\theta(1-\rho)k+i\theta}}
\]
is uniformly convergent in \(\theta \). It is therefore permissible to interchange the order of summation and integration in the following chain of equations, and we find
\[
E_{1-\rho}(u) = \frac{1}{2\pi i} \sum_{k=0}^{\infty} (-u)^k \int_{\mathcal{H}} \frac{e^{\zeta}}{\zeta^{(1-\rho)k+1}} d\zeta
\]
\[
= \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{\zeta}}{\zeta} \sum_{k=0}^{\infty} (-u)^k \zeta^{(1-\rho)k} d\zeta = \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{\zeta}}{\zeta + u\zeta^\rho} d\zeta. \quad (34)
\]
Now the right-hand side of Equation (34) defines an analytic function in \(u \) except possibly for those \(u \) which belong to the zero set \(\mathcal{H}_0(\varepsilon) := \{ u \in \mathbb{C} : \zeta + u\zeta^\rho = 0 \} \).
0 for some $\zeta \in \mathcal{H}(\varepsilon)$ of the denominator. But one readily checks that $\mathcal{H}_0(\varepsilon)$ is a Hankel contour around the positive axis that winds around the origin along a segment of a circle of radius $\varepsilon^{1-\rho}$, so that if we choose some $\overline{\varepsilon} > \varepsilon$, we have
\[
\int_{\mathcal{H}(\varepsilon)} \frac{e^\zeta}{\zeta + u\zeta^\rho} d\zeta = \int_{\mathcal{H}(\overline{\varepsilon})} \frac{e^\zeta}{\zeta + u\zeta^\rho} d\zeta
\]
on a (connected) segment of the open torus $\{u \in \mathbb{C} : \varepsilon^{1-\rho} < |u| < \overline{\varepsilon}^{1-\rho}\}$. By analytic continuation, then, (34) holds for all $u \in \mathbb{C} \setminus \mathcal{H}_0(\varepsilon)$, and in particular holds for all u for which $\Re(u) < -\varepsilon^{1-\rho}$. By Theorem 4 therefore, we can write
\[
\mathcal{M}Y(s) = -\frac{\Gamma(s)}{4\pi^2} \int_{\beta-i\infty}^{\beta+i\infty} \int_{\mathcal{H}} \frac{e^\zeta}{\zeta + u\zeta^\rho} (-u)^{-s} du d\zeta
\]
if $\beta < -\varepsilon^{1-\rho}$. Now one may interchange the order of integration (if necessary again after convoluting with $\sqrt{\pi \varepsilon} e^{-x^2/\varepsilon}$) and then apply the Residue theorem to find
\[
\mathcal{M}Y(s) = \frac{\Gamma(s)}{4\pi^2} \int_{\beta-i\infty}^{\beta+i\infty} \int_{\mathcal{H}} \frac{e^\zeta}{\zeta + u\zeta^\rho} (-u)^{-s} du d\zeta
\]
\[
= \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^\zeta}{\zeta + u\zeta^\rho} d\zeta
\]
which again follows from Hankel's representation of the reciprocal of the Gamma function. The proof of the lemma is complete. □

Next we need

Lemma 5 Suppose B is $(1-\rho)\kappa, \rho \kappa)$-Beta distributed. Then the Mellin Transform of $B^{1-\rho}$ is
\[
\mathcal{M}B^{1-\rho}(s) = \frac{\Gamma(\kappa)}{\Gamma((1-\rho)\kappa) \Gamma((1-\rho)(s-1) + \kappa)}.
\]

Proof. We have
\[
P(B \leq x) = \frac{\Gamma(\kappa)}{\Gamma((1-\rho)\kappa) \Gamma(\rho \kappa)} \int_0^x y^{(1-\rho)\kappa-1}(1-y)^{\rho \kappa-1} dy.
\]
Then $P(B^{1-\rho} \leq x) = P(B \leq x^{(1-\rho)^{-1}})$, and
\[
\int_0^1 \frac{d}{dx} \int_0^{x^{(1-\rho)^{-1}}} y^{(1-\rho)\kappa-1}(1-y)^{\rho \kappa-1} dy x^{s-1} dx
\]
\[
= \int_0^1 \frac{d}{du} \int_0^u y^{(1-\rho)\kappa-1}(1-y)^{\rho \kappa-1} dy u^{(1-\rho)(s-1)} du
\]
\[
= \int_0^1 u^{(1-\rho)\kappa-1}(1-u)^{\rho \kappa-1} u^{(1-\rho)(s-1)} du = \frac{\Gamma(\rho \kappa) \Gamma((1-\rho)(s-1) + \kappa)}{\Gamma((1-\rho)(s-1)+\kappa)}.
\]
which already finishes the proof. □

It follows from Lemma 4 that the Mellin transform of a κ-biased Mittag-Leffler distribution is

$$\mathcal{M}Y_\kappa(s) = \frac{\Gamma(s + \kappa)}{\Gamma((1 - \rho)(s + \kappa - 1) + 1)} \frac{\Gamma(1 + (1 - \rho)\kappa)}{\Gamma(1 + \kappa)}.$$

Together with Lemma 5 and Theorem 1 this implies that the Mellin transform of L satisfies

$$\mathcal{M}L(s) = \frac{\Gamma(s + \kappa - 1)}{\Gamma((1 - \rho)(s - 1) + \kappa)}.$$

Specialising now to $s = i + 1$ for arbitrary integer $i \geq 0$, one has for the Laplace transform of L,

$$\mathbb{E}(e^{-uL}) = \sum_{i=0}^{\infty} \frac{\Gamma(i + \kappa)}{\Gamma((1 - \rho)i + \kappa)} \frac{(-u)^i}{i!}$$

$$= \sum_{i=0}^{\infty} \prod_{j=1}^{i} \frac{\kappa + j - 1}{j} \frac{(-u)^i}{\Gamma((1 - \rho)i + \kappa)} = \sum_{i=0}^{\infty} \left(-\frac{\kappa}{i} \right) \frac{u^i}{\Gamma(i(1 - \rho) + \kappa)}.$$

This was to be proved. □

Acknowledgment. The author thanks Leona Schild for a huge number of stimulating discussions. He is happy to acknowledge financial support from DFG and NWO as part of a Dutch-German research project on random spatial models from physics and biology, and honoured to acknowledge the personal support of Anton Wakolbinger.

References

[1] W.P. Angerer, An explicit representation of the Luria-Delbrück distribution, J. Math. Biol. 42 (2001) 145-74.

[2] W.P. Angerer, L. Schild, and A. Wakolbinger (2007) Scaling limits for Luria-Delbrück distributions, unpublished.

[3] Athreya, K. B., and P. E. Ney (1972) Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Bd. 196. Springer-Verlag, Berlin.

[4] Feller, W. (1971) An introduction to probability theory and its applications, Vol II. 2nd ed., Wiley Series in Probability and Mathematical Statistics, New York.

[5] F. Mainardi, G. Pagnini, and R. Gorenflo (2006) Mellin convolution for subordinated stable processes. J. Math. Sci. (N. Y.) 132, 637-642.
[6] F. Mainardi, Y. Luchko, and G. Pagnini (2001) The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153-192.

[7] L. Schild (2007) Ratio limits in Luria-Delbrück processes. Diploma thesis, JW-Goethe University, Frankfurt am Main.

[8] H.-J. Schuh, Seneta constants for the supercritical Bellman-Harris process, Adv. Appl. Probab. 14 (1982) 732-51.

[9] Sobczyk, G. (1995) The hyperbolic number plane. Coll. Math. J. 26, 268-80.

[10] Stone, C. (1965) On moment generating functions and renewal theory. Ann. Math. Stat. 36, 1298-1301.