Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.

Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology

1. Introduction

Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. Several plant-derived drugs are in use today, including, for example, vinblastine (from Catharanthus roseus (L.) G. Don, used to treat childhood leukemia); paclitaxel (from Taxus brevifolia Nutt., used to treat ovarian cancer); morphine (from Papaver somniferum L., used to treat pain); and quinine (from Cinchona spp., used to treat malaria) [5]. Not only are phytochemicals useful medicines in their own right, but compounds derived from them or inspired by them have become useful medicines [6,7]. For example, Artemisia annua L., a plant originally used in Traditional Chinese Medicine to treat fever, is the source of artemisinin, a clinically-useful antimalarial sesquiterpenoid [8]; the antihypertensive drug reserpine, isolated from the roots of Rauvolfia serpentina (L.) Benth. ex Kurz., has been used in Ayurveda to treat insanity, epilepsy, insomnia, hysteria, eclampsia, as well as hypertension [9]; Dysphania ambrosioides (L.) Mosyakin and Clemants (syn. Chenopodium ambrosioides L.) is used in several Latin American cultures as an internal anthelmintic and external antiparasitic [4] and has shown promise for treatment of cutaneous leishmaniasis [10]. The biological activity of D. ambrosioides has been attributed to the monoterpenoid endoperoxide ascaridole.

Unfortunately, much of the traditional medicine knowledge of Native North American peoples has been lost due to population decimation and displacement from their native lands by European conquerors (see, for example: [11–14]). Nevertheless, there are still some remaining sources of...
information about Native American ethnobotany [15,16]. In addition, there are several sources of Cherokee ethnobotany [17–22].

The Cherokee Native Americans are a tribe of Iroquoian-language people who lived in the southern part of the Appalachian Mountain region in present-day northern Georgia, eastern Tennessee, and western North Carolina and South Carolina at the time of European contact [13] (Figure 1A). During and after the American Revolution, Cherokee wars with European settlers resulted in the surrender of vast amounts of territory. Gold was discovered on Cherokee land in north Georgia and the Treaty of New Echota (1835) ceded all Cherokee land east of the Mississippi River to the United States. Congress passed the Indian Removal Act in 1830, and the forced eviction of as many as 16,000 Cherokee took place during the fall and winter of 1838–1839 to a new territory in north-eastern Oklahoma (Figure 1B). During this “Trail of Tears”, an estimated one-fourth of the Cherokee died. However, at the time of the removal, a few hundred Cherokee successfully escaped to the mountains of western North Carolina, forming what is now the Eastern Band of Cherokee Indians.

In this review, I have consulted the ethnobotanical sources for plants used in Cherokee traditional medicine [15–24] and I have carried out a literature search using Google Scholar, PubMed, ResearchGate, and Science Direct for phytochemical analyses on the plant species. Note that in many instances, the phytochemistry was determined by plants not collected in the south-eastern United States; many of the species have been introduced to other parts of the world and some species are native to other continents besides North America. The phytochemistry, therefore, may be affected by the different geographical and climatic conditions [25]. Sources reporting the phytochemical constituents, regardless of geographical origin, have been included.
Figure 1. Cherokee territorial lands [26]. (A) "Map of the former territorial limits of the Cherokee 'Nation of' Indians", i.e., prior to displacement of Euro-Americans. (B) "Map showing the territory originally assigned Cherokee 'Nation of' Indians", i.e., after the forcible relocation known as the "Trail of Tears".

2. Cherokee Aromatic Medicinal Plants and Their Phytochemical Constituents

The plants used by the Cherokee people for traditional medicines for which the phytochemistry has been investigated are summarized in Table 1.
Table 1. List of Cherokee aromatic medicinal plants, their traditional uses, and phytochemical constituents and biological activities.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Acer rubrum L.	Sapindaceae	Red maple	analgesic (cramps), eye soreness	bark	Leaves: 1-O-galloyl-α-L-rhamnose, 1-O-galloyl-β-D-glucose, gallic acid, methyl gallate, ethyl gallate, m-digallate, ethyl digallate	[15]
					Leaves: gallic acid, methyl gallate, ethyl gallate, m-digallate, ethyl m-digallate, 1-O-galloyl-β-D-glucose, 1-O-galloyl-α-L-rhamnose, kaempferol 3-O-β-D-glucoside, kaempferol 3-O-β-D-galactoside, quercetin 3-O-β-D-glucoside, quercetin 3-O-β-L-rhamnoside and quercetin	[27]
					Leaves: major gallotannins: maplexin B, ginnalin B, ginnalin C, ginnalin A, maplexin F and a pair of isomers, 6-O digalloyl-2-O-galloyl-1,5-anhydro-D-glucitol and 2-O digalloyl-6-O-galloyl-1,5-anhydro-D-glucitol; ginnalin A was the predominant gallotannin	[28]
					Bark: catechin, epicatechin gallate, procyanidin A₄, procyanidin A₂, quercetin-3-O-α-L-rhamnopyranoside, quercetin-3-O(3′-O-galloyl)-α-L-rhamnopyranoside, quercetin-3-O(2′-O-galloyl)-α-L-rhamnopyranoside, rotrachelogenin-6′-O-β-D-glucopyranoside, 7,8-dihydroxy-6-ethoxy coumarin, phloridzin, methyl vanillate, 3,5-dihydroxy-4-methoxybenzoic acid, and 3-methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloyl)-glucopyranoside	[29]
					Bark: gallotannins, named maplexins A-E; showed α-glucosidase inhibitory activity	[30]
					Bark: gallotannins, maplexins F-I; phenolic glycosides, rubrumosides A-B. The maplexins showed α-glucosidase inhibitory activity	[31]
					Bark: Maplexins C and D showed cytotoxic activity on HCT-116 and MCF-7 cells	[32]
					Leaves and flowers: 2-methoxy-1-O-galloyl-myo-inositol, 1-O-(3′-methoxy-galloyl)-β-D-glucose	[33]
Acer saccharinum L.	Sapindaceae	Silver maple	analgesic (cramps), eye soreness	bark	Leaves: methyl gallate; cytotoxic to B16 melanoma in mice	[15]
					Leaves: glucitol-core containing gallotannins (GCCs), ginnalins A-C, maplexins B, D, and F; phenolics, methyl syringate, methyl gallate, and 3-methoxy-4-hydroxyphenol-1-β-D-(6-galloyl)-glucopyranoside; sesquiterpenoid pubinird A	[34]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
------------------------	--------------	-------------	------------------------	-----------	--	-------
Achillea millefolium L.	Asteraceae	Yarrow	hemorrhages (leaves), fever (infusion)	leaves	Herb: 5-hydroxy-3,6,7,4′-tetramethoxyflavone, artemetin, casticin	[15]
					Herb: chlorogenic acid, vicemin-2, luteolin-7-O-glucoside, rutin, apigenin-7-O-glucoside, luteolin, and apigenin	[35]
					Herb: apigenin, luteolin, centauredin, β-sitosterol, 3β-hydroxy-11α,13-dihydro-costunolide, desacylmatricarin, leucodin, achill, 8α-angeloy-lexocodin and 8α-angeloy-achillin	[38]
					Herb: chlorogenic acid, rutin, luteolin 7-O-glucoside, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, apigenin 4′-O-glucoside, apigenin 7-O-glucoside, luteolin 4′-O-glucoside, 3,5-dicaffeoylquinic acid; luteolin and apigenin 7-O-glucoside showed notable antiplasmodial activity	[39]
					Herb: 5-O-caffeoylquinic acid, quercetin O-hexoside, 3,4-O-dicaffeoylquinic acid, quercetin O-acetylhexoside, cis-3,5-O-dicaffeoylquinic acid, trans-3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, apigenin 7-O-glucoside, luteolin O-acetylhexoside, apigenin O-acetylhexoside	[40]
					Herb: chlorogenic acid, 3,5-dicaffeoyl quinic acid, 4,5-dicaffeoyl quinic acid, apigenin 7-O-glucoside, luteolin	[41]
					Flowers: methyl achimillate A, methyl achimillate B, methyl achimillate C, all three compounds active against P-388 leukemia in vivo (mouse)	[42]
					Herb: dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside, apigenin, apigenin-7-O-β-D-glucopyranoside, luteolin, luteolin-7-O-β-D-glucopyranoside, rutin, 3,5-dicaffeoylquinic acid, and chlorogenic acid; apigenin and luteolin showed in vitro estrogenic activity	[43]
					Herb: hydroalcoholic extract showed antinociceptive activity	[44]
					Herb: rutin, schaftoside, isoschaftoside, luteolin-7-O-glucoside (major), apigenin-7-O-glucoside (major), luteolin-7-malonylglicoside, apigenin-7-malonylglicoside, luteolin, apigenin	[45]
					Herb: five flavonoids (apigenin, luteolin, centauredin, casticin and artemetin) and five sesquiterpenoids (paulitin, isopaulitin, paulostachyin C, desacylmatricarin and sintrin); centaureadin, casticin, and paulitin showed good in vitro cytotoxic activity on HeLa, MCF-7, and A-431 cells	[46]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	-------------	--------------	-----------	--------------------------------------	------
Aesculus pavia L.	Sapindaceae	Red buckeye	tumors, infections (poultice of nuts)	nuts	Fruits: polyhydroxyoleane triterpenoid saponins (aesculiosides Ia–Ie, IIa–IId, and IVa–IVc)	[54]
Fruits: 13 polyhydroxyoleane pentacyclic triterpenoid saponins, aesculiosides Ia–IIa, and Ila–IIIa, together with 18 known compounds: aesculiosides Ia–Ie, IIa–IId, and IVa–IVc, 3-O-[β-D-galactopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,15a,16a,21β,22α,28-hexahydroxyolean-12-ene, 3-O-[β-D-glucopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,16a,21β,22α,24β,28-hexahydroxyolean-12-ene, 3-O-[β-D-galactopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,16a,21β,22α,24β,28-pentahydroxyolean-12-ene, R1-barrigenol, scopolin, and 5-methoxyscopolin. Aesculioside Ic, 3-O-[β-D-galactopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,15a,16a,21β,22α,28-hexahydroxyolean-12-ene, 3-O-[β-D-glucopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,16a,21β,22α,24β,28-hexahydroxyolean-12-ene, 3-O-[β-D-galactopyranosyl(1→2)-α-L-arabinofuranosyl(1→3)-β-D-glucuronopyranosyl-21,22-O-diangeloyl-β,16a,21β,22α,24β,28-pentahydroxyolean-12-ene, showed broad cytotoxic activity	[55]					
Herb EO: 1,8-cineole (24.6%), camphor (16.7%), α-pinene (10.2%), weak antimicrobial activity on *Streptococcus pneumoniae*, *Clostridium perfringens*, and *Candida albicans*	[48]					
Herb EO: germacrene D (6.1%), chamazulene (48.3%); shows antitypanosomal activity (*Trypanosoma cruzi*)	[49]					
Herb EO: α-pinene (0.6–10.0%), camphene (0.4–15.4%), β-pinene (1.9–38.7%), limonene (1.4–3.8%), γ-terpinene (3.5–13.1%), β-caryophyllene (4.4–13.8%), germacrene D (1.7–10.7%), cadinene (0.7–32.2%)	[50]					
Herb supercritical CO\(_2\) extract: myrcene (4.9%), p-cymene (5.4%), 1,8-cineole (16.2%), γ-terpinene (9.4%), camphor (38.4%), bornyl acetate (4.3%)	[51]					
Herb EO: β-pinene (4.3%), 1,8-cineole (15.2%), β-cubebene (4.0%), germacrene D (14.1%), τ-cadinol (4.4%)	[52]					
Herb EO: sabinene (5.4%), 1,8-cineole (24.5%), trans-sabinene hydrate (10.2%), cis-sabinene hydrate (4.6%), camphor (4.9%), terpinen-4-ol (5.6%), bornyl acetate (4.0%), germacrene D (7.2%)	[53]					
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Aesculus pavia L.	Sapindaceae	Red buckeye	tumors, infections (poultice of nuts)	nuts	Fruits: oleane saponins (vaccaroside A, vaccaroside B), showed in vitro cytotoxic activity on FL normal human amniotic cells and A-549 human lung carcinoma cells [56]	
Ageratina altissima (L.) R.M. King and H. Rob. (syn. *Eupatorium rugosum* Houtt.)	Asteraceae	White snakeroot	fever, tonic, urinary diseases	root	Leaves: oleane saponins (escins Ia, Ib, Ila, Ilb, Illa) [57]	
Allium canadense L.	Amaryllidaceae	Meadow garlic	cathartic, diuretic	entire plant	Herb: cysteine sulfoxides: methin, allin, propin [63]	
Allium cernuum Roth	Amaryllidaceae	Nodding onion	fever	entire plant	Herb: diosgenin [64]	

Fruits: oleane saponins (vaccaroside A, vaccaroside B), showed in vitro cytotoxic activity on FL normal human amniotic cells and A-549 human lung carcinoma cells [56]

Leaves: prenylated coumarin pavietin; flavonol glycosides quercetin 3-O-α-rhamnosi (quercitrin), quercetin 3-O-α-arabinosi, and isorhamnetin 3-O-α-arabinosi (distichin). Pavietin showed antifungal activity on *Guignardia aesculi* [57]

Aerial parts: tremetone, 6-hydroxytremetone, dehydrotremetone; tremetone cytotoxic on murine melanoma (B16F1) cells [60]

Aerial parts: tremetone, dehydrotremetone [61]

Aerial parts: tremetone, 6-hydroxytremetone, dehydrotremetone, dehydrotremetone, 2-senecioyl-4-acetylphenol, 2-senecioyl-4-(1-methoxyethyl)phenol, 6-acetyl-2,2-dimethylchroman-4-one, 6-acetyl-7-methoxy-2,2-dimethylchromene, 6-acetyl-8-methoxy-2,2-dimethylchromene, 6,7-dimethoxy-2,2-dimethylchromene, and 6-(1-hydroxyethyl)-7-methoxy-2,2-dimethylchromene. Tremetone, hydroxygremetone, dehydrotremetone toxic in goldfish assay [62]

Herb: cysteine sulfoxides: methin, allin, propin [63]

Herb: diosgenin [64]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Allium tricoccum	Amaryllidaceae	Wild leek	tonic (entire plant)	entire plant	Herb: methanesulfiniothioic acid S-methyl ester, methanesulfiniothioic acid S-2-propenyl ester, 2-propene-1-sulfiniothioic acid S-methyl ester, methanesulfiniothioic acid S-(E)-1-propenyl ester, methanesulfiniothioic acid S-(Z)-1-propenyl ester, (E)-1-propenesulfiniothioic acid S-2-propenyl ester (allicin), 1-propenesulfiniothioic acid S-2-propenyl ester, 2-propene-1-sulfiniothioic acid S-(E)-1-propenyl ester, 2-propene-1-sulfiniothioic acid S-(Z)-1-propenyl ester, (E)-1-propenesulfiniothioic acid S-2-propenyl ester, 1-propenesulfiniothioic acid S-(E)-1-propenyl ester, (E)-1-propenesulfiniothioic acid S-2-propenyl ester, methyl 1-(methylsulfinyl)propyl disulfide, methyl (E)-1-(1-propenylsulfinyl)propyl disulfide, 1-(methylsulfinyl)propyl disulfide, (E)-1-propenyl 1-(2-propenylsulfinyl)propyl disulfide, 2-propenyl 1-(2-propenylsulfinyl)propyl disulfide, (E)-1-propenyl 1-(1-propenylsulfinyl)propyl disulfide, diosgenin saponin: diosgenin 3-O-[α-rhamnosyl(1→2)]-β-glucoside, 3-O-[α-rhamnosyl(1→2)]-β-glucoside, 3-O-[α-rhamnosyl(1→2)]-β-glucoside, several of these saponins showed molluscicidal activity	[65]
Allium vineale	Amaryllidaceae	Wild garlic	carminative, cathartic,	entire plant	Herb: molluscicidal saponins (nuatigenin 3-O-[α-rhamnosyl(1→2)]-β-glucoside, 3-O-[α-rhamnosyl(1→2)]-β-glucoside	[66]

[Table 1. Cont.]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Medicinal Herbs¹						
Aralia nudicaulis L.	Araliaceae	Wild sarsaparilla	root infusion taken as a blood tonic	root	Herb: flavones: chrysoeriol-7-([2''-O-4'']-feruloyl)]-β-D-glucoside, chrysoeriol, isorhamnetin-3-β-D-glucoside, and quercetin	[68]
					Herb EO: methyl (E)-1-propenyl disulfide (2.6-12.5%), benzaldehyde (up to 16.4%), dimethyl trisulfide (3.8-17.4%), allyl (E)-1-propenyl disulfide (7.9-12.5%), allyl methyl trisulfide (7.9-13.2%), diallyl trisulfide (2.8-10.5%), p-vinylguaiacol (52-6.5%), 5-methyl-1,2,3,4-tetrahydiane (up to 6.1%)	[69]
Aralia spinosa L.	Araliaceae	Devil’s walking stick	root (poisonous) used for emetic, venereal diseases	root	Leaf EO: (2E)-hexenal (13.8-29.8%), myrcene (13.9-15.1%), β-caryophyllene (8.2-15.7%), α-humulene (1.9-4.9%), germacrene D (28.0-37.3%), (E)-nerolidol (1.2-10.4%)	[70]
Arnica cordifolia Hook.	Asteraceae	Arnica	pain reliever, anti-inflammatory	flowers	Aerial parts: flavonoids: hispidulin, genkwanin, quercetin 3-methyl ether, quercetin 3-gentiobioside, quercetin 3-diglucoside, 6-methoxykaempferol 3-glicoside, isouercitrin, astragalin, neptirin, and glucofuselolin	[71]
Aruncus dioicus (Walter) Fernald	Rosaceae	Goatsbeard	beaten root applied to bee stings	root	Phytchemistry of Eurasian varieties studied, but not North American varieties	[72]
Aruncus dioicus var. *kamtschaticus* (Maxim.) H. Hara^a	Rosaceae	Goatsbeard	beaten root applied to bee stings	root	Aerial parts: aruncin A, aruncin B, aruncide A, aruncide B, aruncide C; aruncin B showed cytotoxic activity on Jurkat T cells	[73]

¹ Certain scientific names were not converted into natural language due to their uniqueness or complexity. The provided information is based on the content of the table and the context of the listed scientific names, families, common names, Cherokee uses, and chemical constituents.
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
A. dioicus var. *kamtschaticus*	*A*	Aerial parts: aruncin B, cytotoxic to Jurkat T cells (apoptosis, microtubule damage)	[77]			
A. dioicus var. *kamtschaticus* a	*A*	Aerial parts: palmitic acid, 10-monocosanol, pentacosan-1-ol, phytol, β-sitosterol, β-sitosterol-3-β-D-glucopyranoside, 2,4-dihydroxycinnamic acid, hyperoside, uridine, and adenosine; β-sitosterol-3-β-D-glucopyranoside cytotoxic to HL-60 cells; 2,4-dihydroxycinnamic acid and hyperoside showed antioxidant (DPPH radical-scavenging) activity	[78]			
A. dioicus var. *kamtschaticus* a	*A*	Aerial parts: sambunigrin, prunasin, aruncide A, aruncide C, 1-O-caffeoyl-β-D-glucopyranose, and caffeic acid; aruncide C cytotoxic to HeLa cells; aruncide A cytotoxic to HL-60 cells; 1-O-caffeoyl-β-D-glucopyranoside cytotoxic to MCF-7 cells	[79]			
A. dioicus (Italy)	*A*	Young shoots: 4-O-cafeoylglucose, chlorogenic acid, dicaffeoylglucose isomer I, dicaffeoylglucose isomer II, 3,5-dicafeoylquinic acid, prunasin	[80]			

Asarum canadense L. Aristolochi-aceae Wild ginger vermicide (root), wounds (poultice of leaves) root, leaves | Leaves: chalcone glycosides (chalconaringenin 2′,4′-di-O-glucoside and chalconaringenin 2′-O-glucoside-4′-O-gentiobioside) and flavonol glycosides (quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, quercetin 3-O-rhamnopyranoside, kaempferol 3-O-galactoside, kaempferol 3-O-glucoside, kaempferol 3-O-galactoside-7-O-rhamnoside and iso-rhamnetin 3-O-rhamnopyranoside) | [81] |
Rhizome EO: 4-methyleugenol (44.5%), linalyl acetate (41.1%), geraniol (7.4%), linalool (5.3%)	[82]
Rhizome EO: 4-methyleugenol (53.6%), linalool (19.4%), 4-terpineol (6.9%)	[83]
Rhizome EO: 4-methyleugenol (53.6%), linalool (12.5%), 4-terpineol (6.9%)	[84]

Asclepias tuberosa L. Apocyn-aceae Butterfly weed cough root | Roots: steroids (ascandroside, Δ5-calotropin, Δ5-calotropin 3′-O-β-D-glucoside, Δ5-calotropin (3′S)-3′-thiazolidinone, Δ5-calotropin (3′R)-3′-thiazolidinone-5-oxide) | [86] |
Roots: Pregnane steroid (ikemagenin, lineolon, pleurogenin) glycosides	[87]
Aerial parts: Pregnane steroid glycosides (tuberosides A1–L2)	[88]
Aerial parts: Pregnane steroid glycosides (tuberosides B1 and B2)	[89]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Asclepias tuberosa L.	Apocynaceae	Butterfly weed	cough	root	Roots: Pregnane steroid glycosides (tuberosides A₀, B₀, B₁, C₁, D₁, D₂, E₂, F₂, G₁, H₁, I₂, I₃, K₁, K₂, M₁, N₁, O₁, P₁, and Q₁)	[22]
Baptisia australis (L.) R. Br.	Fabaceae	Wild indigo	cold infusion	plant	Flavonoids: afrormosin 7-0-β-D-glucoside, apigenin 7-0-β-D-glucoside, luteolin 7-0-β-D-glucoside, formononetin 7-0-β-D-glucoside, formononetin, and afrormosin; coumarin triflorizin	[91]
					Isoflavonoid: texasin 7-0-β-D-glucoside	[92]
Berberis canadensis Mill.	Berberidaceae	American barberry	bark infusion for diarrhea	bark	Alkaloids: (+)-sparteine and (-)-N-methylcytisine	[93]
					Callus culture: isouquinoline alkaloid jatrorrhizine	[94]
Betula nigra L.	Betulaceae	River birch	dysentery, colds	leaves	Bud EO: benzyl alcohol (2.4-5.0%), nonanal (0.7-6.6%), eugenol (28.7-55.3%), tricosane (1.6-8.0%), heptacosane (6.2-39.1%)	[95]
					Leaf EO: linalool (9.8-19.2%), eugenol (6.7-13.5%)	[95]
					Bark EO: hexanal (0.8-5.8%), (Z)-hexenol (0-7.8%), o-methylarilose (0.3-5.3%), octanoic acid (0.2-7.4%), eugenol (trace-8.8%), decanoic acid (0.6-24.4%), dodecanoic acid (0.7-29.2%), palmitic acid (8.8-43.7%), heptacosane (2.5-24.3%)	[95]
					Bark: betulonaldehyde, lupeol, betulin, betulinic acid, betulin caffeate	[96]
					Buds: combretol, 5-hydroxy-3,4′,7-trimethoxyflavone	[97]
					Buds: 3,5-dihydroxy-4′,7-dimethoxyflavone	[98]
Callicarpa americana L.	Lamiaceae	American beautyberry	Alabama tribe of Native Americans (not Cherokee) used a decoction of roots/branches sweat bath for rheumatism, fever	roots, branches		[15]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	
Callicarpa americana				Leaf EO: 1-octen-3-ol (8.5%), β-pinene (8.8%), α-humulene (10.1%), humulene epoxide II (13.9%), intermediol (9.5%), callicarpenal (4.3%); the EO was selectively toxic toward the cyanobacterium Oscillatoria perornata	[99]	
				Leaf EO: α-humulene, humulene epoxide II, intermediol, callicarpenal; intermediol and callicarpenal showed mosquito repellent activity (*Aedes aegypti*, *Anopheles stephensi*)	[100]	
				Leaves: callicarpenal and intermediol; both showed tick repellent activity	[101]	
				Fruiting branches: clerodane diterpenoids:	[102]	
				12(S),16ξ-hydroxy-16ξ-methoxycleroda-3,13-dien-15,16-olide,		
				12(S)-hydroxy-16ξ-methoxycleroda-3,13-dien-15,16-olide,		
				12(S)-hydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,11(E),13-trien-15,16-olide,		
				3β,12(S)-dihydroxycleroda-4(18),13-dien-15,16-olide, and		
				12(S)-hydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,11(E),13-trien-15,16-olide,		
				12(S),16ξ-dihydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,13-dien-15,16-olide,		
				2-formyl-16ξ-hydroxy-3-A-norcleroda-2,13-dien-15,16-olide,		
				12(S),16ξ-dihydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,11(E),13-trien-15,16-olide,		
				12(S)-hydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,11(E),13-trien-15,16-olide,		
				12(S)-hydroxycleroda-3,13-dien-15,16-olide,		
				16ξ-hydroxycleroda-3,13-dien-15,16-olide,		
				2-formyl-16ξ-hydroxy-3-A-norcleroda-2,13-dien-15,16-olide,		
				showed broad-spectrum cytotoxic activity		
Calycanthus floridus	Calycanth-aceae	Eastern sweetshrub	bark sap used on sores; bark infusion used on hives. Root strong emetic.		Flowers: anthocyanin pigments: cyanidin-3-glucoside, cyanidin-3-rutinoside	[15]
				Herb EO: α-pinene, 1,8-cineole (major), borneol, bornyl acetate	[103]	
				Herb EO: (E)-β-ocimene (13.8%)	[104]	
C. floridus var. oblongifolius				FloraEO: α-pinene (10.2%), β-pinene (8.6%), 1,8-cineole (33.1%), bornyl acetate (14.1%), α-terpinyl acetate (5.8%), elemol (8.2%)	[105]	
Boudford and Spongberg (Iran)				Herb EO: (E)-β-ocimene (13.8%)	[106]	
C. floridus var. oblongifolius (Iran)				Stem EO: α-pinene (10.0%), β-pinene (7.2%), 1,8-cineole (31.7%), bornyl acetate (12.6%), α-terpinyl acetate (6.8%), elemol (9.0%)	[107]	
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------------------	-------------------	-------------	--	------------	--	-------
Caulophyllum thalictroides (L.)	Berberidaceae	Blue cohosh	root decoction given as sedative and anticonvulsive; root taken internally to treat rheumatism	root	Roots: alkaloids: N-methylcytisine, baptifoline, anagyrine, magnoflorine (major)	[108]
					Roots: quinolizidine alkaloids: N-methylcytisine, baptifoline (major), anagyrine	[109]
					Roots: alkaloids: thalictroidine, taspine, magnoflorine, anagyrine, baptifoline, 5,6-dehydro-α-isolupanine, α-isolupanine, lupanine, N-methylcytisine, and sparteine; N-methylcytisine showed teratogenic activity	[110]
					Roots: piperidine alkaloids (caulophyllumine A, caulophyllumine B), quinolizidine alkaloids (anagyrine, lupanine, O-acetylbaptifolin, N-methylcytisine), oleanane saponins (caulosides A, B, C, D, G, H, leonticin D, ciwujianoside A, saponin PE)	[111]
					Roots: alkaloids, O-acetylbaptifolin, anagyrine, caulophyllumine B, lupanine showed cytochrome-P450 inhibitory activity	[112]
					Roots: oleanane saponins: caulosides A, B, C, D, G, leonticin D, and 3-O-β-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl-ehinosyctic acid 28-O-α-L-rhamnopyranose(1→4)-β-D-glucopyranoside	[113]
					Roots: 22 oleanane saponins; several showed cytotoxicity on HL-60 cells	[114]
					Roots: oleanane saponins caulosides A-D exert anti-inflammatory effects by inhibiting expression of iNOS and proinflammatory cytokines	[115]
Ceanothus americanus L.	Rhamnaceae	New Jersey tea	root infusion taken for "bowel complaints"	root	Root bark: peptide alkaloids (ceanothine A, B, Ceanotheamine A, B)	[116]
					Root bark: peptide alkaloid amercine	[117]
					Root bark: peptide alkaloids (ceanothine D, E, frangularine, adouetine-X, adouetine-Y)	[118]
Cercis canadensis L.	Fabaceae	Redbud	bark infusion used for severe coughs	inner bark	Bark EO: 1-hexanol (23.3%), hexanoic acid (18.2%), (2E)-hexenoic acid (3.4%)	[119]
Chelone glabra L.	Plantaginaceae	Balmony	herb used to treat skin problems; herb infusion taken as a digestive tonic	herb	Leaves: iridoid glycoside catalpol	[120]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
----------------------	--------------	-------------	-----------------------	-----------	--	------
Cichorium intybus	**Asteraceae**	Chickory	infusion of root as tonic	root	Sesquiterpene lactones (8-deoxylactucin, lactucin, lactupicrin)	15
					Leaves and roots: sesquiterpene lactones (lactucin, 11β,13-dihydrolactucin, jacquinelin, 8-deoxylactucin, lactucopicrin, crepidiaside B, loliolide), p-hydroxyphenylacetic acid methyl and ethyl esters, cichoniside B, sonchuside A, ixerisoside D, magnolialide	121
					Root: sesquiterpene lactones (lactucin, lactupicrin)	122
					Leaves and roots: sesquiterpene lactones (guaianolides, lactucin, lactucopicrin, 11β,13-dihydrolactucin)	123
					Flowers: anthocyanin pigments: delphinidin 3,5-di-O-(6-O-malonyl-β-D-glucoside) and delphinidin 3-O-(6-O-malonyl-β-D-glucoside)-5-O-β-D-glucoside; delphinidin 3-O-β-D-glucoside-5-(6-O-malonyl-β-D-glucoside) and delphinidin 3,5-di-O-β-D-glucoside	124
Cimicifuga racemosa	**Ranunculaceae**	Black cohosh	root used to stimulate menstruation; root infusion used for rheumatism, coughs, colds	root	Rhizome: triterpene glycosides (actein, 27-deoxyactein, cimicifugoside M, and cimicifugoside)	15
(L.) Nutt. (syn. *Actaea racemosa* L.)					Rhizome: triterpene glycosides (cimiaceroside A, 25-O-methylcemigenol-3-O-β-D-xylopyranoside, 27-deoxyactein, 23-O-acetylsengmanol-3-O-β-D-xylopyranoside, 16β,23,22β,25-diepoxy-12β-acetoxy-3β,23,24β-trihydroxy-9,19, cyclolanost-7-ene-3-O-β-D-xylopyranoside)	126
					Rhizome: triterpene glycosides (12β-acetoxycimigenol-3-O-β-D-xylopyranoside, 25-acetoxycimigenol xyloside, cimigenol-3-O-β-D-xylopyranoside, acetylshengmanol 3-O-β-D-xylopyranoside, foetidinol-3-O-β-xyloside, cimicifugoside H-2, 25-O-methylcemigenol xyloside, 21-hydroxycimigenol-3-O-β-D-xylopyranoside, 24-en-7,8-didehydrocimigenol-3-xyloside, cimidahurinine, cimidahurine, and cimufugin)	127
					Rhizome: triterpene glycosides (cimiracemosides A–H, 27-deoxyactein, 26-deoxycimicifugoside, actein, acetyl shengmanol xyloside, cimicifugoside (cimiragensol-3-O-β-D-xylopyranoside), cimiaceroside A, 12β-hydroxycimigenol-3-O-β-D-xylopyranoside, and 12β-hydroxycimigenol-3-O-α-L-arabinopyranoside)	128
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	-------------	--------------	-----------	-------------------------------------	------
Rhizome: triterpene glycosides (cimigenol) 3-O-α-L-arabinopyranoside, 25-O-methoxycimigenol 3-O-α-L-arabinopyranoside, 12β-hydroxycimigenol 3-O-α-L-arabinopyranoside, 27-deoxyactein, actein, cimiracemoside F, cimiracemoside G, cimiracemoside H, 25-O-acetyl-12β-hydroxycimigenol 3-O-α-L-arabinopyranoside, 23-O-acetylcimigenol 3-O-α-L-arabinopyranoside, (2R,23R,24S)-12β-acetyloxy-16β,22,25-diepoxy-23,24-dihydroxy-9,19-cyclolanostan-3β-yl α-L-arabinopyranoside)						[130]
Rhizome: triterpene glycosides (cimiracemoside H, 26-deoxyactein, 23-O-acetylcimigenol 3-O-β-D-xylopyranoside, actaeaepoxide 3-O-β-D-xylopyranoside, 25-O-acetylcimigenol 3-O-α-L-arabinopyranoside, 25-O-acetylcimigenol 3-O-β-D-xylopyranoside)						[131]
Rhizome: triterpene glycosides (actein, 23-epi-26-deoxyactein, 23-O-acetylcimigenol 3-O-β-D-xylopyranoside, cimiracemoside D, 25-O-acetylcimigenol 3-O-β-D-xylopyranoside, and cimigenol)						[132]
Rhizome: triterpene xylosides (cimipodocarpaside)						[133]
Rhizome: triterpene xylides (cimigenol xyloside, 26-deoxyactein, cimicifugoside H-1, and 24-acetylhydroshengmanol xyloside)						[134]
Rhizome: triterpene xylides (isocimipodocarpaside, 23-epi-26-deoxycimicifugoside, 23-epi-26-deoxyactein, 25-anhydrocimigenol xyloside, 25-O-acetylcimigenol xyloside, 3′-O-acetylcimicifugoside H-1)						[135]
Rhizome: Cimicidol 3-O-β-D-xyloside (slightly hepatotoxic)						[136]
Rhizome: fukiic and piscidic acid esters: (2E-caffeoylfukiic acid (fukinolic acid), 2E-feruloylfukiic acid (cimicifugic acid A), 2E-isofuruloylfukiic acid (cimicifugic acid B), 2E-feruloylpiscidic acid (cimicifugic acid E) and 2E-isofuruloylpiscidic acid (cimicifugic acid F), free caffeic, ferulic and isoferulic acids)						[137]
Rhizome: phenylpropanoid esters (cimiracemates A–D)						[138]

Table 1. Cont.
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Collinsonia canadensis L.	Lamiaceae	Heal-all	decoction taken as emetic	leaves	Rhizome: polyphenolics (actaealactone, cimicifugic acid G, protocatechuc acid, protocatechualdehyde, p-coumaric acid, caffeic acid, methyl caffeate, ferulic acid, ferulate-1-methyl ester, isoferulic acid, 1-isoferuloyl-â-D-glucopyranoside, fukinolic acid, and cimicifugic acids A, B, and D–F)	[141]
Collinsonia canadensis L.	Lamiaceae	Heal-all	decoction taken as emetic	leaves	Rhizome: alkaloids (cyclocimipronidine, cimipronidine methyl ester, cimipronidine, dopargine, salsolinol, 3-hydroxytyrosol 3-O-glucoside)	[142]
Conyza canadensis (L.) Cronquist (syn. *Erigeron canadensis* L.)	Asteraceae	Horseweed	leaves used for toothache	leaves	Leaf EO: germacrene D (46.0%), β-caryophyllene (5.3%), elemicin (3.6%), β-elemene (3.3%)	[143]
Conyza canadensis (L.) Cronquist (syn. *Erigeron canadensis* L.)	Asteraceae	Horseweed	decoction of herb used to treat diarrhea	herb	Roots: triterpene glycosides, hederagenin-3-O-α-L-arabinopyranoside (leontoside A), 3-O-α-L-arabinopyranosylcollinsogenin (collinsonin), 3-O-β-D-glucopyranosyl(1′′→3′)α-L-arabinopyranosylhederagenin (collinsonidin)	[144]
Conyza canadensis (L.) Cronquist (syn. *Erigeron canadensis* L.)	Asteraceae	Horseweed	leaves used for toothache	leaves	Leaf and stem exudates: flavonoids, 2,5-dihydroxy-6,7-dimethoxyflavanone, baicalein-6,7-dimethyl ether, norwogenin-7,8-dimethyl ether, and tectochrysin (5-hydroxy-7-methoxyflavone)	[145]
Mikasuki and Seminole			Native Americans used the plant to treat sore throats and respiratory complaints			[146]
Conyza canadensis (L.) Cronquist (syn. *Erigeron canadensis* L.)	Asteraceae	Horseweed	leaves used for toothache	leaves	Whole plant: β-sitosterol, stigmasterol, β-sitosterol 3-O-β-D-glucoside, harmine, and sphingolipid	[147]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	-------------	--------------	-----------	--------------------------------------	------
Whole plant: sphingolipids, 1,3,5-trihydroxy-2-hexadecanoylamino-(6E,9E)-heptacosdiene, 1,3,5-trihydroxy-2-hexadecanoylamino-(6E,9E)-heptacosdiene-1-O-glucopyranoside, 1,3-dihydroxy-2-hexanoylamino-(4E)-heptadecene; p-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 3,5-dimethoxybenzoic acid, 3β-hydroxyolean-12-en-28-oic acid, and 3β-erythrodiol					[148]	
Aerial parts: triterpenoid erigeronol (showed potent anti-melanoma cytotoxicity)					[149]	
Whole plant: conyzolide, conyzoflavone (both showed antimicrobial activities)					[150]	
Whole plant: 8R,9R-dihydroxymatricarinate methyl ester, matricarine methyl ester, matricarine lactone, 3β,16β,20β-trihydroxytaraxast-3-0-palmitoyl ester, friedelin, friedelinol, β-sitosterol, α-spinasterol, 3-isopropenyl-6-oxoheptanoic acid, 9-hydroxy-10Z,12E-octadecenoic acid, (+)-hydroxydihydrodieneocarvenol, 3′,4′,5,7-tetrahydroxydihydroflavone, 9,12,13-trihydroxy-10(Z)-octadecenoic acid					[151]	
Whole plants: phenylprobanoyl esters (rel-(1S,2R,3R,5S,7R)-methyl 7-caffeoyloxymethyl-2-hydroxy-3-feruloyloxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate, rel-(1S,2R,3R,5S,7R)-methyl 7-feruloyloxymethyl-2-hydroxy-3-feruloyloxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate, and rel-(1R,2R,3R,5S,7R)-methyl 7-feruloyloxymethyl-2-feruloyloxy-3-hydroxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate)					[152]	
Aerial parts: enyne derivatives, (2Z,8Z)-matricaria acid methyl ester, (4Z,8Z)-matricaria lactone, and (4Z)-lachnophyllum lactone					[153]	
Aerial parts: (4Z)-lachnophyllum lactone, (4Z,8Z)-matricaria lactone, (2Z,8Z)-matricaria acid methyl ester; (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone showed antifungal activity against Aspergillus niger, Cladosporium sp., and Penicillium digitatum					[154]	
Flowering parts: polyphenolic-polysaccharide (anticoagulant, antiplatelet activity)					[155]	
Roots: dihydroxypyranones conyzapyranone A and B; 4E,8Z-matricaria-lactone, 4E,8Z-matricaria-γ-lactone, 9,12,13-trihydroxy-10(Z)-octadecenoic acid, epifriedelanol, friedelin, taraxerol, simiarenol, spinasterol, stigmasterol, β-sitosterol, and apigenin; conyzapyranone B, 4E,8Z-matricaria-γ-lactone, and spinasterol showed cytotoxic activity					[156,157]	
Roots: triterpenoid 3β-erythrodiol (inhibits MKN-45 gastric cell proliferation)					[158]	
Roots: salicylic acid, methyl gallate					[159]	
Roots: lanostane triterpenoids conyzagenin-A, conyzagenin-B					[160]	
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	-------------	--------------	-----------	-------------------------------------	------
Coreopsis tinctoria Nutt.	Asteraceae	Tickseed	root tea for diarrhea	Aerial parts EO: limonene (76.0%), α-santalene (5.8%), δ-3-carene (3.9%), myrcene (3.6%)	[161]	
			root	Aerial parts EO: limonene (57.9–81.1%), (E)-β-ocimene (0.7–9.1%), trans-α-bergamoten (5.6–8.9%), (Z)-β-farnesene (tr-11.1%).	[162]	
				Aerial parts EO: limonene (50.0–70.3%) and (E)-β-ocimene (4.0–7.5%)	[163]	
				Aerial parts EO: limonene (70.0%), trans-α-bergamotene (7.0%)	[164]	
				Aerial parts EO: limonene (77.7–89.4%), trans-α-bergamotene (1.5–3.8%), β-pinene (0.8–6.6%), carvone (0.5–1.8%)	[165]	
				Aerial parts EO: (E)-β-Farnesene (14.6%), spathulenol (14.1%) and limonene (12.3%)	[166]	
				Aerial parts EO: limonene (31.2%), camphene (14.2%) and germacrene D (11.3%)	[167]	
				Aerial parts EO: limonene (68.3%), δ-3-carene (15.9%)	[168]	
				Root EO: (2Z,8Z)-matricaria ester (88.2–93.9%)	[169]	

Plant: polyacetylenes, (2S)-(3Z,11E)-decadiene-5,7,9-triyne-1,2-diol and (2E)-(3E,11Z)-decadiene-5,7,9-triyne-1,2-diol | [170] |

Plant: seven compounds made up the major contributions of antioxidant activity in C. tinctoria, including okanin, isoakanin, marein, flavanomarein, 5,7,8,3′-tetrahydroxyflavanone-7-O-glucoside, 3,5-dicaffeoylquinic acid, and chlorogenic acid | [171] |

Flowers: C14 polyacetylene glycosides coreosides A–D | [172] |

Buds: C14 polyacetylene glycosides coreosides E and F | [173] |

Flowers: C14 polyacetylene glycosides coreosides A, B, D, and E | [174] |

Flowers: chalcone marein, flavanone flavanomarein | [175] |

Flowers: chalcone okanin-4′-O-β-D-glucopyranoside; flavonoids flavanomarein okanin-4′-O-β-D-glucopyranoside, quercetatin 7-O-β-D-glucopyranoside, (2R,3R)-dihydroquercetin 7-O-β-D-glucopyranoside, okanin, quercetin, butein, 2S-3′,4′,7′-triarylhydroxyflavanone, (2R,3R)-3,4′,5,6,7-penta-arylhydroxyflavanone, (2R,3R)-3,4′,5,6,7-penta-arylhydroxyflavanone, and 2S-3′,5,5′,7-tetraarylhydroxyflavanone | [176] |

Flowers: flavonoids (flavanomarein, flavanokanin, quercetatin-7-O-glucoside, marein) | [177] |

Flowers: flavonoids (+)-catechin, kaempferol-3-O-glycoside, quercetin-3-O-glycoside, quercetin-3-O-rutinoside | [178] |
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Cornus florida L.	Cornaceae	Dogwood	bark chewed for headache	bark	Flowers: flavonoids (taxifolin, taxifolin-7-O-β-D-glucopyranoside, isookanin, flavanomarein, quercetagetin-7-O-β-D-glucopyranoside, 5,7,3′,5′-tetrahydroxyflavanone-7-O-β-D-glucopyranoside), chalcones (okanin, marenin), and phenolic acids (chlorogenic acid, 3,5-di-O-cafeoylquinic acid, 4,5-di-O-cafeoylquinic acid)	[179]
			bark decoction used for fevers, body aches; bark poultice used on sores/ulcers	bark		
Datura stramonium L.	Solanaceae	Jimson weed	leaf poultice applied to boils, leaves smoked for asthma	leaves	Flowers: quercetagetin-7-O-glucoside, marenin (major), 1,3-dicaffeoylquinic acid, okanin, acetylmarein	[180]
					Flowers: taxifolin-7-O-glucoside, flavanomarein, quercetagetin-7-O-glucoside, okanin 4′-O-glucoside, okanin, chlorogenic acid	[181]
					Flowers: chlorogenic acid, (R/S)-flavanomarein, butin-7-O-β-D-glucopyranoside, isookanin, taxifolin, 5,7,3′,5′-tetrahydroxyflavanone-7-O-β-D-glucopyranoside, marenin, and okanin	[182]
					Fruits: flavonoids (marenin, flavanomarein, quercetagetin-7-O-glucoside, okanin aurone, leptosidin, luteolin, apigenin) and phenolic acids (chlorogenic acid, caffeic acid)	[183]
					Cornus florida. Bark: saponins (sarsapogenin-O-β-D-xylopyranosyl-(1→2)-β-D-galactopyranoside and sarsapogenin-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside)	[185]
Diospyros virginiana L.	Ebenaceae	Persimmon	bark infusion for venereal diseases, sore throat and mouth; syrup for oral thrush, bloody discharge from bowels	bark		[17]
						[186]
						[187]
						[188]
						[189]
						[190]

Ref. - References for the chemical constituents and activities.
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Epilobium angustifolium L.	Onagraceae	Fireweed	eye conditions due to asthma, allergies	herb	Herb: quercetin 3-O-(6′′-galloyl)-galactoside, kaempferol 3-O(6′′-p-coumaryl)-glucoside, quercetin 3-O-glucuronide, oenothein B; oenothein B inhibited the endopeptidases neutral endopeptidase (NEP) and angiotensin converting enzyme (ACE)	[190]
					Herb: oenothein B (a dimeric macrocyclic ellagitannin) inhibits proliferation of SK-N-SK and PC-3 cells	[190]
					Herb: oenothein B enhances IFNy production by lymphocytes	[190]
					Herb: ellagitannins (oenothein B, oenothein A, tetramer, pentamer, hexamer, heptamer)	[190]
					Flowers and leaves: ellagitannins (oenothein B, oenothein A, tetramer, pentamer, hexamer, heptamer)	[190]
Equisetum hyemale L.	Equiset-aceae	Horsetail	infusion taken for kidneys	plant	Stems: (E)-feruloyl-4-β-glucoside, (Z)-feruloyl-4-β-glucoside, (E)-caffeoyl-3-β-glucoside, kaempferol 3-sophoroside-7-β-glucoside, herbacetin-3-sophoroside-8-β-glucoside	[190]
Eryngium puccinellum Michx.	Apiaceae	Baneberry, Rattlesnake master	remedy for snakebites	root	Aerial parts: 2-(sophorosyl)-1-(4-hydroxyphenyl)etheneone	[190]
			remedy for snakebites		Plant extracts showed inhibition of *Crotalus* proteases	[190, 17]
			urinary-tract inflammation modulator	root	Aerial parts EO: polyacetylenes (falkarinone, falkarinol, yuccifolol, 1,8-heptadecadiene-4,6-diyn-3,9-diol)	[200]
					Leaf EO: α-pinene (7.6%), terpinolene (17.8%), β-carophyllene (6.2%), germacrene D (18.3%), bicyclogermacrene (8.8%), falkarinol (9.6%)	[200]
					Root EO: α-pinene (4.7%), terpinolene (25.8%), 2,3,6-trimethylbenzaldehyde (13.9%), trans-β-bergamotene (18.6%)	[200]
					Whole plant: triterpenoid saponins (eryngiosides A-L, saniculasaponin III), flavonoid (kaempferol) glycosides, polyphenolics (caffeates)	[200]

Fruits: polyphenolics (methyl gallate, gallic acid, luteolin, quercetin, myricetin, quercitin 3-O-α-rhamnoside, myricetin 3-O-β-glucoside, myricetin 3-O-β-glucuronide)

Roots: 4-hydroxy-5,6-dimethoxy-2-naphthalene-2-carbaldehyde, 12,13-didehydro-20,29-dihydrobetulin, 7-methyljuglone, diospyrin, isodiospyrin, shinarolone, lupeol, betulin, betulinic acid, betulinaldehyde, and ursolic acid
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Erythronium americanum	Liliaceae	Trout Lily	leaves crushed and juice poured over wounds	leaves	The phytochemistry of E. yuccifolium has been reviewed	[205]
Eupatorium maculatum L.	Asteraceae	Joe-Pye weed	root infusion for kidney, dropsy	root		[15]
					α-Methylenebutyrolactone	[206]
Eupatorium perfoliatum L.	Asteraceae	Boneset	infusion of the plant taken as a tonic, for colds, sore throat, and influenza	plant		[15]
					Aerial parts: guianolide and germacranolide sesquiterpene lactones, flavonoids (eupafolin, hispidulin, patuletin, and kaempferol)	[209]
					Aerial parts: guianolide and germacranolide sesquiterpene lactones	[15]
					Leaves: polyphenolics (protocatechuic acid, hyperoside, quercetin, rutin)	[210]
					Aerial parts: extracts show anti-inflammatory activity, but not immunostimulatory activity	[213]
					Aerial parts: caffeic acid derivatives (5-cafeoylquinic acid (chlorogenic acid), 3-cafeoylquinic acid (neochlorogenic acid) and 3,5-dicafeoylquinic acid, 2,5-dicafeoylglycic acid, 3,4-dicafeoylglycic acid, and 2,4- or 3,5-dicafeoylglycic acid)	[214]
					Aerial parts: glycosides of kaempferol and quercetin; quianolides	[216]
					Aerial parts EO: (E)-Anethole (16.5%), carvone (7.6%), selin-11-en-4a-ol (5.5%)	[217]
Fagus grandifolia	Fagaceae	American Beech	nuts chewed for worms	nuts	Bark: monolignols [(Z)-coniferyl alcohol, (Z)-sinapyl alcohol, (Z)-coniferin, (Z)-isoconiferin, (Z)-syringin]	[155]
Frasera caroliniensis	Gentianaceae	American Columbo	root used to treat dysentery	root	Root: xanthones (1-hydroxy-2,3,4,7-tetramethoxyxanthone, 1-hydroxy-2,3,4,5-tetramethoxyxanthone, 1-hydroxy-2,3,7-trimethoxyxanthone, 1-hydroxy-2,3,5-trimethoxyxanthone, 1-hydroxy-2,3,5-trimethoxyxanthone, swerchirin, 1,3-dihydroxy-4,5-dimethoxyxanthone)	[218]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Fraxinus americana L.	Oleaceae	American ash	tonic of inner bark taken for liver and stomach problems	bark	Plant: iridoid (loganic acid), secoiridoid (gentiopicroside), and xanthones [1,3-diOH-4,5-diMeO-xanthone, 1-OH-2,3,5-triMeO-xanthone, 1-OH-2,3,4,5-tetraMeO-xanthone, 1-OH-2,3,4,7-tetraMeO-xanthone, 1,8-diOH-3,5-diMeO-xanthone (swerchirin)]	[218]
					Bark: oleoside, syringin, hydroxypinoresinol glycoside, verbascoside, ligustroside	[15]
					Leaves: secoiridoid glucosides (demethylligstroside, (2”R)-2”-hydroxyoleuropein, (2”S)-2”-hydroxyoleuropein, fraxamoside, framerosi, oleoside dimethyl ester, oleuropein, ligstroside, nuezhenide, (2”R)-2”-methoxyoleuropein, (2”S)-2”-methoxyoleuropein)	[219]
					Seeds: catechins (epicatechin, catechin-3-O-gallate, epigallocatechin, epigallocatechin-3-O-gallate, epigallocatechin-(4β-8)-epicatechin, epicatechin-3-O-gallate-(4β-8)-epigallocatechin-3-O-gallate), procyanidins (procyanidin B-1, procyanidin B-3)	[220]
Geranium maculatum L.	Geraniaceae	Wild geranium	cuts, sores, oral thrush	plant	Plant EO: citronellol (38%), geraniol (16%), citronellyl formate (10.4%), and linalool (6.45%)	[221]
Hamamelis virginiana L.	Hamamelidaceae	Witch hazel	bark infusion used on sores	bark	Bark: hamamelitannin cytotoxic to HT-29 colon tumor cells	[222]
					Leaves: gallotannins (hydrolyzable tannins: monogalloyl, heptagalloyl, octagalloyl, and nonagalloyl hexoses), caffeoylquinic acids (3-, and 5-), kaempferol glycoside	[223]
					Bark: polymeric proanthocyanidins (condensed tannins).	[224]
					Bark: tannins, antioxidant, cytotoxic to SK-Mel-28 melanoma cells	[225]
					Bark: condensed (proanthocyanidins) and hydrolyzable (galloylhamameloses) tannins	[226]
Helenium autumnale L.	Asteraceae	Sneezeweed	root infusion used to prevent menstruation after childbirth, dried leaves used to induce sneezing	roots, leaves	Apparently the root extract has not been examined	[15]
					Aerial parts: dihydromexicanin E	[227]
					Aerial parts: flexuosin A	[228]
					Aerial parts: helenalin	[229]
					Aerial parts: tenuulin	[230]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------	------------------	-------------------	-------------------------------	---------------	--	------
Helenalin					Helenalin is cytotoxic (human epithelial type 2, HEp-2, cells)	[232]
Whole plant: *carolenin*	and *carolenalin*				Whole plant: *carolenin* and *carolenalin*	[233]
Flowers: *helenalin*	*autumnolide*				Flowers: *helenalin*, *autumnolide*, mesicanin I, *helenalin* is cytotoxic	[234]
Plant: *dihydroflorilenalin*					Plant: *dihydroflorilenalin*	[235]
Plant: 4-O-tigloyl-11,13-dihydroautumnolide					Plant: 4-O-tigloyl-11,13-dihydroautumnolide	[236]
Helenalin					Rhizomes: alkaloids (berberine, 8-oxotetrahydrothalifendine, canadine, and β-hydrastine); berberine shows antitubercular activity	[237]
Aerial parts: *berberine*					Rhizomes: *berberine* alkaloids (berberine, β-hydrastine, canadine and canadaline); berberine is antibacterial.	[238]
Rhizomes: *alkaloids*	*berberine*,				Rhizomes: *alkaloids* (berberine, canadine, β-hydrastine, and isocorypalmine)	[239]
Rhizomes: *alkaloids*	*hydastinine*,				Rhizomes: *alkaloids* (hydastinine, hydrastine, canadine, berberine, canadine)	[240]
Aerial parts: *leaves*	*hydrastinine*,				Leaves: 3′,4′-dimethoxy-2-(methoxycarbonyl)benzoic acid, 3,3′,5,5′-tetrahydroxy-7,4′-dimethoxy-6,8-C-dimethyl-flavone, (±)-chilenine, (2R)-5,4′-dihydroxy-6-C-methyl-7-methoxy-flavanone, 5,4′-dihydroxy-6,8-di-C-methyl-7-methoxy-flavanone, noroxyhydrastinine, oxyhydrastinine, 4′,5′-dimethoxy-4-methyl-3′-oxo-(1,2,5,6-tetrahydro-4H-1,3-dioxole)-4′,5′-benzo[1-ε]1,2-oxazocin)-2-spiro-10-phtalan	[241]
Hypericum gentianoides	*Hyperikeae*	*St. John’s wort*	root poultice used for stakebite	root	Leaves: flavonoids (sideroxylin, 8-desmethyl-sideroxylin, and 6-desmethyl-sideroxylin); inhibit N or A multidrug resistance pump; synergistic antibacterial activity with berberine	[242]
Aerial parts: *acyl-phloroglucinols*	*saroaspidin A, uliginosin A*	Hyperaspidinol (Hyperaspidinol)	St. John's wort	root	Aerial parts: acyl-phloroglucinols (saroaspidin A, uliginosin A, hyperaspidinol)	[243]
Aerial parts: *acyl-phloroglucinols*	*saroaspidin A, uliginosin A*	Hyperaspidinol (Hyperaspidinol)	St. John's wort	root	Aerial parts: acyl-phloroglucinols (5′-prenyl-phlorisobutyrophenone, saroaspidin A, uliginosin A, hyperaspidinol)	[244]
Aerial parts: *chlorogenic acid, hyperoside, isoquercitrin, quercitrin, quercetin, at least 9 acyl-phloroglucinols (not identified). The acyl-phloroglucinols fraction reduced prostaglandin E2 synthesis in mammalian macrophages*					Aerial parts: chlorogenic acid, hyperoside, isoquercitrin, quercitrin, quercetin, at least 9 acyl-phloroglucinols (not identified). The acyl-phloroglucinols fraction reduced prostaglandin E2 synthesis in mammalian macrophages	[245]

Table 1. Cont.
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Hypericum hypericoides (L.) Crantz	Hypericaceae	St. John’s wort	root poultice used for stakebite	root	Roots: prenylated benzophenones (clusianone, 7-epi-clusianone, 18-hydroxy-7-epi-clusianone, 18-hydroxyclusianone, and 18-hydroxyhyperibone K)	[246]
Iris versicolor L.	Iridaceae	Blue flag, Snake lily	eyewash	root	powerful cathartic rhizome	[18]
					root poultice used to treat sores	[24]
					Rhizomes: iridals (17,26-dihydroxyiridial, 16-hydroxyiridial, 17-hydroxyiridial, 26-hydroxyiridial, 10-deoxy-17-hydroxyiridial, iriversical)	[247]
Juglans nigra L.	Jugland-aceae	Black walnut	bark infusion used on sores	bark	Bark: juglone, α-hydroxyjuglone-4-glucoside, myricetin, myricitrin, sakuranetin, sakuranin, and neosakuranin	[15]
					Unripe fruit: naphthoquinones (dihydroplumbagin, 3-methylplumbagin, isoplumbagin)	[248]
					Husk: naphthoquinones (juglone, plumbagin, regiolone), sterols (stigmasterol, β-sitosterol), flavonoids (taxifolin, kaempferol, quercetin, myricetin)	[249]
					Leaf EO: α-Pinene (6.3–11.4%), β-caryophyllene (17.3–20.4%), germacrene D (7.1–22.5%), juglone (1.0–8.8%)	[250]
Juncus effusus L.	Juncaceae	Common rush	plant decoction used as emetic	plant	Medullae: p-Coumaroylglycerides (juncysyl esters A and B)	[15]
					Plant: cinnamoylglycerols (1-O-coumaroylglycerol, 1-O-feruloylglycerol, 1-O-coumaroylglycerol, juncysyl ester A, 1-O-(4-methoxycinnamoylglycerol), 1-O-(4-methoxycinnamoylglycerol), 1-O-(4-methoxycinnamoylglycerol), 2-O-(4-methoxycinnamoylglycerol), 1,2-di-O-feruloylglycerol, 1,3-di-O-coumaroylglycerol)	[252]
					Plant: 8-dihydroxy-1,7-dimethyl-8-vinyl-10,11-dihydro-dibenz[b,f] oxepin (showed brine shrimp lethality)	[253]
					Stems: cycloartane glucosides (juncosides II-V)	[254]
					Plant: cycloartane triterpenoids (lagerenol, cycloartane-3β,24S,25-triol, cycloart-22Z-ene-3β,25-diol, sterculin A, cycloart-25-ene-3β,24-diol, 3-hydroxycycloart-25-ene-24-one, 24S,25-epoxycycloartan-3β-ol)	[255]
					Plant: cycloartane glucoside juncoside I	[256]
					Medullae: phenanthrenes (juncunins E–G, dehydrojuncuenins D–E), juncuin E cytotoxic to MCF-7 and HeLa cells	[257]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Underground parts: phenanthrenes (dehydroeffusol, juncusol), compounds showed UVA light-enhanced antimicrobial activities due to DNA binding						[259]
Plant: phenanthrenes (4-ethenyl-9,10-dihydro-1,8-dimethyl-2,7-phenanthrenediol, 4-ethenyl-9,10-dihydro-7-methoxy-1,8-dimethyl-2-phenanthrenol, 4-ethenyl-9,10-dihydro-3,8-dimethyl-1,7-phenanthrenediol, 4-ethenyl-9,10-dihydro-7-methoxy-3,8-dimethyl-1-phenanthrenol, 4-ethenyl-9,10-dihydro-7-hydroxy-8-methyl-2-phenanthrenecarboxylic acid)						[260]
Plant: phenanthrenes (juncuenin F 2-methyl ether, 4-formyl-9,10-dihydro-3,7-dihydroxy-2,8-dimethylphenanthrene, 5-ethenyl-9,10-dihydro-1,7-dimethyl-2,3-phenanthrenediol, 9,10-dihydro-1,7-dihydroxy-4-(1-hydroxyethyl)-2,8-dimethylphenanthrene, 9,10-dihydro-6,6-dihydroxy-5-(1-hydroxyethyl)-1,7-dimethylphenanthrene, 9,10-dihydro-2,6-dihydroxy-5-(1-methoxyethyl)-1,7-dimethylphenanthrene, 4-ethenyl-9,10-dihydro-7-hydroxy-8-methyl-1-phenanthrenecarboxylic acid)						[261]
Plant: phenanthrenes (2-hydroxy-7-(hydroxymethyl)-1-methyl-5-vinyl-9,10-dihydrophenanthrene, 2-hydroxy-6-(hydroxymethyl)-1-methyl-5-vinyl-9,10-dihydrophenanthrene, 2-hydroxy-5-(hydroxymethyl)-1,7-dimethyl-9,10-dihydrophenanthrene, 2,7-dihydroxy-5-(hydroxymethyl)-1,8-dimethyl-9,10-dihydrophenanthrene, 2-hydroxy-5-(hydroxymethyl)-7-methoxy-1,8-dimethyl-9,10-dihydrophenanthrene, 5-(1-ethoxy)-2,7-dihydroxy-1,8-dimethyl-9,10-dihydrophenanthrene, 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-[5,6-b]-4',5'-dihydro-4',5'-dihydrofuran)						[262]
Plant: phenanthrene glucosides (Effusides I–V)						[263]
Aerial parts: phenanthrenes (7-carboxy-2-hydroxy-1-methyl-5-vinyl-phenanthrene, 2,7-dihydroxy-1-methyl-5-aldehyde-9,10-dihydrophenanthrene, dehydroeffusol, dehydrojuncusol, 7-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene, 8-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene, effusol, and juncusol; effusol and juncusol showed anxiolytic and sedative activities)						[264]
Medullae: diterpenoid effusenone A, phenanthrene (5-hydroxymethyl)-1-methylphenanthrene-2,7-diol, pyrenes 1-methylpyrene-2,7-diol and 7-methoxy-8-methylpyren-2-ol						[265]
Medullae: phenanthrenes (effusol, dehydroeffusol, dehydroeffusol)						[266]
Medullae: phenanthrenes (effusol, dehydroeffusol, juncusol, dehydrojuncusol, juncuenin B, dehydrojuncuenin B, juncuenin D, and effususol A), flavonoids (luteolin and luteolin 5-methyl ether), and 4-hydroxy-2,3-dimethyl-2-non-en-4-olide)						[267]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Juniperus virginiana L.	Cupress-aceae	Eastern red cedar	decoction of berries given for worms; infusion of some part taken for colds; ointment used on skin diseases	various	Plant: tetrahydropyrene glucosides (4,5,9,10-tetrahydro-2,7-dihydroxy-1,6-dimethylpyrene monoglucoside and diglucoside) [268]	
					Medullae: phenanthrene dimers (effususins A–D); effususins A and B showed cytotoxic activity against several tumor cell lines; effususin B showed inflammatory activity (inhibition of NO production in LPS-stimulated RAW 264.7 cells) [269]	
					Phenanthrenes from medullae of Juncus effusus show cytotoxic activity against several tumor cell lines; some also show inhibition of NO production indicating anti-inflammatory potential [270]	
					The phenanthrene dehydroeffusol shows anxiolytic and sedative effects (mouse model) [271]	
					The phenanthrenes effusol and dehydroeffusol activate GABA_A receptors, explaining the traditional Chinese use of the plant as a sedative and anxiolytic agent [272]	
Lactuca canadensis L.	Asteraceae	Canada lettuce	infusion taken for pain and calming nerves	plant	Roots: sesquiterpene lactones (3-epizaluzanin C glucoside, 9-hydroxydehydroeleucodin glucoside, zaluzanin C, 11β,13-dihydrozaluzanin C, 3-epizaluzanin C, 11β,13-dihydro 3-epizaluzanin C, vernoflexuoside, 11β,13-dihydro vernoflexuoside, macroclinside A, ixerin F, picriside B, santamarin, 11β,13-dihydro santamarin, arnemefolin, 1-epidehydrosoerivanin, armefolin, 1-episoerivanin, 3α-hydroxyreynosin and 1-epierivanin) [277]	
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------	-------------------	-------------	-------------------------------------	-----------	--------------------------------------	------
Liatris spicata (L.)	Asteraceae	Blazing star	tonic, tincture used on pains	root	Flavonoid glycosides: quercitin 3-glucoside, quercitin 3-rutinoside, and quercitin 3-glucoside-7-rhamnoside	[15]
					Leaf: major volatiles: α-pinene, mesityl oxide, β-pinene, myrcene, 2,4-heptadienal, β-caryophyllene, germacrene D, caryophyllene oxide	[278]
					Aerial parts: guaianolide sesquiterpenoid spicatin	[280]
					Corms (underground stems): sterols (stigmasterol and its 3-O-glucoside), triterpene (obtusifoliyl acetate), benzofurans: (euparin and 6-hydroxy-3-methoxysteretone), phenolic acids (protocatechuic, vanillic and ferulic acid) and a sesquiterpene lactone igalan. Iglan showed cytotoxic activity on Hep-G2 cells	[281]
Lindera benzoin (L.)	Lauraceae	Spicebush	infusion for measles, cough	bark	Leaf EO: 6-methyl-5-hepten-2-one (42.9%), β-caryophyllene (7.7%), bicyclogermacrene (5.1%), b-cadinene (4.9%), and (E)-nerolidol (4.8%)	[15]
					Twigs EO: α-pinene (5.9%), sabine (6.8%), α-phellandrene (4.2%), 1,8-cineole (45.4%), α-terpineol (6.8%)	[282]
					Fruit EO: myrcene (4.7%), α- phellandrene (64.6%), β- phellandrene (11.2%)	[283]
					Fruit: (6Z,9Z)-pentadecadien-2-one, (6Z,9Z,12Z)-pentadecatrien-2-one, (E)-nerolidol, isolinderanolide, isolinderenolide, isoobtusilactone A, obtusilactone A, isoobtusilactone B, obtusilactone C, and linderanolide	[284]
Liquidambar styraciflua	Altingiaceae	Sweet gum	inner bark for diarrhea, externally for wounds, sores, ulcers	bark	Bark: shikimic acid	[15]
					Bark: pentacyclic triterpenoids (25-acetoxy-3α-hydroxysterol-12-en-28-oic acid, 3α,25-dihydroxyol-12-en-28-oic acid, 6β-hydroxy-3-oxo-29(29)-en-28-oic acid, and 3,11-dioxolane-12-en-28-oic acid); 25-acetoxy-3α-hydroxyol-12-en-28-oic acid showed broad cytotoxic activity against a panel of human tumor cell lines	[285]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	-------------	--------------	-----------	-------------------------------------	------
Liriodendron tulipifera L.	Magnoliaceae	Tulip tree	bark infusion taken for pinworms, cholera, coughs, rheumatism	bark	Bark: lignans (liriosol, syringic acid methyl ester, pinoresinol, syringaresinol), aporphine alkaloids (O-methyl-N-noraporphine, N-(2-hydroxy-2-phenylethyl)-benzamidine)	[292]
					Bark: aporphine alkaloids (asimilobine, norushinsunine, norglaucine, liriodenine, anonaine, oxoglucine); the aporphine alkaloids showed antimalarial activity	[293]
					Leaves: germacranolide sesquiterpenoids (peroxyferolide, lipiferolide); showed antiproliferative and cytotoxic activities	[293]
					Leaves: aporphine alkaloids (anonaine, norstephalagine, liridinine, normuciferine, caaverine, lirindine, lyciscamine), a coumarin (scopoletin), a germacranolide (epitulipinolide diepoxide), polyphenolics (β-oryzanol, formylsyringaldehyde, syringaldehyde, syringic acid, vanillic acid), sterols (β-sitosterol, stigmasteryl); anonaine, liridinine, lyciscamine, and epitulipinolide diepoxide significantly inhibited proliferation of A375 melanoma cells	[294]
					Leaves: germacranolide (dihydrocrypysaroside, 11,13-dehydrolanuginolide, laurenbiolide) and guaianolide (β-cyclofiferolide) sesquiterpenoids	[295]
					Aerial parts: lignans (sesamin, syringaresinol, dihydrodehydrodiconiferyl alcohol, salvinal, guaiacylglycerol-5-O-4′-dihydroconiferyl ether, guaiacylglycerol-8-O-4′-sinapyl alcohol ether, tanegol, 5,5′-dimethoxy-7-o xoariciresinol), phenolics (3-hydroxy-4-methoxyacetophenone, 4-acetoxyethylphenol), germacranolide (paramicholide), and blumenol A	[296]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	-----------------	-------------------	--	-------------------	--	------
Lobelia cardinalis L.	Campanu-laceae	Cardinal flower	root infusion for worms, rheumatism; leaf infusion for colds, fever; root poultice for sores	root, leaves	Roots: germacranolides (tulipinolide, epitulipinolide)	[297]
					Leaf EO: (Z)-β-Ocimene (6.1–59.4%), (E)-β-ocimene (4.4–24.0%), β-elemene (8.2–23.5%), germacrene D (4.8–43.5%), bicyclogermacrene (3.0–21.5%); β-ocimenes cytotoxic to MDA-MB-231 and HEK293 cells	[298]
					Bark EO: α-Pinene (6.7–11.3%), camphene (1.1–5.0%), β-pinene (6.0–19.1%), myrcene (2.4–11.7%), limonene (4.5–12.0%), β-phellandrene (up to 13.7%), (Z)-β-ocimene (30.6–53.9%), bornyl acetate (2.6–13.3%)	[299]
Lobelia inflata L.	Campanu-laceae	Indian tobacco	root poultice used on pains; root/leaf poultice used on ringworm, insect bites	root, leaves	Aerial parts: alkaloid lobinaline	[15]
					Hairy root culture: diacetylene triol lobetyol + glucosides lobetyolin and lobetyolinin	[300]
					Leaves: anthocyanin cyanidin-3-O-(6-O-[4-(3-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyranosyl]-5-O-β-glucopyranoside	[301]
Lobelia siphilitica L.	Campanu-laceae	Great blue lobelia	root infusion for worms; leaf infusion for colds, fever	root, leaves	Aerial parts: piperidine alkaloids (lobeline, lobelianine, norlobeline, norlobelanine, lobelanidine, norlallosemidamine, 8-ethyl-10-phenyllobelolidol, 8-ethyl-10-phenyllobelolidol)	[15]
					Aerial parts: piperidine alkaloids (8,10-diphenyllobelidiol, 8,10-diphenyllobelidiol, 8-ethyl-10-phenyl-lobelolidol, 8-ethyl-10-phenyl-lobelolidol, 8-ethyl-10-phenyl-dehydrolobelolidol, 8-ethyl-10-phenyl-dehydrolobelolidol, lobeline, lobelidine, lobelanine)	[302]
Lycopus virginicus L.	Lamiaceae	Virginia bugleweed	tea, root applied to snakebite	plant, root	Aerial parts: piperidine alkaloids (lobeline, cis-8,10-diphenyllobelidol, (S)-2-[25,6R]-1-methyl-6-(2-oxo-2-phenylethyl)piperidin-2-yl]1-phenylthethyl acetate, 6-[([E]-2-3-methoxyphenylethenyl)]-2,3,4,5-tetrahydrpyridine) and the diacetylene lobelolin	[15]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	----------------	-------------	-------------------------	------------	---	--------
Magnolia acuminata (L.)	Magnoli-aceae	Cucumber magnolia	bark infusion for toothache	bark	Aerial parts: flavone glucuronides (7-O-β-D-glucuronides of apigenin, acacetin, and luteolin as well as the methyl ester of apigenin 7-O-β-D-glucuronide)	[307]
					Root bark: lignans (calopiptin, galgravin, veraguensin, and acuminatin)	[308]
					Root bark: alkaloids (anolobine, N-methylidcarpine methiodide, N,N′-dimethyl-2,11,11-dihydro-1,10-dimethoxyaporphine iodide), lignans (calopiptin, galgravin, veraguensin, acuminatin), sesquiterpene lactone (costunolide), sterol (β-sitosterol)	[309]
					Leaves: alkaloids (asimilobine, lirioderine, norarmepavine, roemerine, armepavine, magnocurarine, magnoflorine)	[310]
Menispernum canadense L.	Menisperm-aceae	Common moonseed	root used for skin diseases	root	Roots: alkaloid dauricine	[311]
					Roots: alkaloids (acutumine, acutumidine, dauricine, daurinoline, N′-desmethyldauricine, magnoflorine, N,N-dimethyldauricine, dehydrocheilanthifoline)	[312]
Monarda didyma L.	Lamiaceae	Scarlet beebalm	infusion abortifacient; poultice for colds, headache	leaves	Several essential oil chemotypes are known	[15]
					Floral EO: sabine (5.0%), γ-terpinene (5.3%), p-cymene (11.0%), linalool (64.5%)	[313]
					Leaf EO: linalool (74.2%), bornyl acetate (5.7%), germacrene D (5.3%)	[313]
					Commercial EO (Pam'innov, Le Chaffaut-Saint-Julson, Provence, France): geraniol (89.5%)	[314]
					Leaf EO: δ-3-carene (4.5%), p-cymene (10.5%), γ-terpinene (9.3%), thymol (57.3%), EO showed antifungal and DPPH radical inhibitory activities	[315]
					Leaf EO: γ-terpinene (7.0%), α-terpinene (7.0%), p-cymene (20.1%), borneol (11.7%), 1-octen-3-ol (21.7%), thymol (12.3%), thymoquinone (10.1%)	[316]
					Leaf EO: γ-terpinene (6.6%), p-cymene (33.9%), thymol (38.0%), thymoquinone (12.8%)	[316]
					Leaf EO: p-cymene (17.0%), carvacrol (69.7%)	[316]
					Leaf EO: p-cymene (17.0%), linalool (29.3%), 1-octen-3-ol (9.8%), thymol (5.5%), thymoquinone (22.3%)	[316]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
----------------	--------	-------------	--------------	-----------	--------------------------------------	------
Monarda fistulosa L.	Lamiaceae	Wild bergamot	fevers, colds	plant	Several subspecies are known	[15]
Oenothera biennis L.	Onagraceae	Evening primrose	eye conditions due to asthma, allergies; poultice on boils	root		[15]

Leaf EO: α-terpineol (35.9%, 99% L-enantiomer), thymol methyl ether (14.0%), linalool (5.0%, 100% L-enantiomer) | WNS"

Leaves and flowers: flavonoids (rutin, hyperoside, quercitrin, luteolin, quercetin) | [320] |

Leaf EO: p-cymene (9.2%), thymol (72.9%), carvacrol (6.8%), thymoquinone (5.8%) | [316] |

Aerial parts EO: myrcene (8.1%), α-phellandrene (13.7%), β-phellandrene (17.0%), p-cymene (13.5%), thymol (26.5%) | [322] |

Aerial parts EO: myrcene (35.4%), 1-octen-3-ol (10.3%), carvacrol (39.1%); the EO and carvacrol showed good mosquito (*Aedes aegypti*) repellent activity | [323] |

Aerial parts EO: myrcene (8.6–8.7%), α-phellandrene (13.7–14.0%), p-cymene (13.2–13.3%), thymol (28.4–33.4%); EO showed anticandidal and antibacterial activity | [318] |

Leaf EO: α-terpineol (35.9%, 99% L-enantiomer), thymol methyl ether (14.0%), linalool (5.0%, 100% L-enantiomer) | WNS"

Leaf EO: p-cymene (21.2%), 1-octen-3-ol (7.1%), carvacrol (46.8%), thymoquinone (21.3%) | [316] |

Aerial parts EO (M. didyma var 80-1A): p-cymene (8.2%), linalool (55.4%), geraniol (20.7%); EO inhibited mycelial growth spore germination of *Botrytis cinerea* | [317] |

Aerial parts EO: p-cymene (12.6%), γ-terpinene (15.9%), thymol (41.2%), carvacrol (15.2%); EO inhibited mycelial growth spore germination of *Botrytis cinerea* | [317] |

Aerial parts EO: δ-3-carene (4.1–4.5%), p-cymene (10.2–10.3%), γ-terpinolene (9.2%), thymol (59.4–64.3%); EO showed anticandidal and antibacterial activity. | [318] |

Aerial parts EO: p-cymene (10.3%), terpinolene (9.2%), thymol (59.3%); EO showed anti-germination activity against several "weed" seeds | [319] |
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Panax quinquefolius L.	Araliaceae	American ginseng	root used as tonic	root		
Root (wild): ginsenosides [Rb₁ (2.81%), Rb₂ (0.09%), Rb₃ (0.42%), Rd (0.29%), Re (1.42%), and Rg₁ (0.94%)]					[333]	
Root: ginsenosides [Rb₁, Rb₂, Re, Rd, Re, and Rg₁]					[334]	
Root (cultivated): ginsenosides [Rb₁ (3.70%), Rb₂ (0.05%), Re (0.41%), Rd (0.42%), Re (0.50%), and Rg₁ (0.13%)]					[335]	
Root (cultivated): ginsenosides [Rb₁ (1.85%), Rb₂ (0.04%), Rb₃ (0.04%), Re (0.29%), Rd (0.29%), Re (2.05%), Rg₁ (0.25%), and F₁ (0.20%)]					[336]	
Root (cultivated): polyacetylenes (falcarinol, panaxydol)					[337]	
Root (cultivated): ginsenosides [Rb₁ (4.94%), Rb₂ (0.04%), Re (0.39%), Rd (0.60%), Re (1.75%), and Rg₁ (0.13%)]					[338]	
Leaves (wild): ginsenosides [Rb₁ (0.17%), Rb₂ (1.04%), Re (0.18%), Rd (1.08%), Re (0.93%), and Rg₁ (0.14%)]					[333]	
Leaves (cultivated): ginsenosides [Rb₁ (0.28%), Rb₂ (1.82%), Rb₃ (4.64%), Re (0.56%), Rd (2.82%), Re (3.42%), Rg₁ (0.96%), and F₁ (1.94%)]					[336]	
Review of chemical analysis of *P. quinquefolius*					[339]	
Review of pharmacology and toxicology of *P. quinquefolius*					[340]	
Review of ginsenosides in *P. quinquefolius*					[341]	
Review of pharmacology of *P. quinquefolius*					[342]	
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
---------------------------------------	---------------	-------------	------------------------	-----------	---	------
Panax trifolius L.	Araliaceae	Dwarf ginseng	root used as tonic	root	Leaves: flavonoids (kaempferol-3,7-dirhamnoside and kaempferol-3-gluco-7-rhamnoside), ginsenosides (ginsenoside-Rd, -Rc, -Rb3 and notoginsenoside-Fe)	[343]
					Leaves: ginsenosides (Ro, Rb1, Rb2, Rc)	[344]
Parthenocissus quinquefolia (L.)	Vitaceae	Virginia creeper	infusion taken for jaundice		Stem: resveratrol oligomers, parthenocissins A and B, were isolated in addition to three known stilbenes (resveratrol, piceatannol, resveratrol 3-glucoside)	[345]
Parthenocissus quinquefolia (L.)	Vitaceae	Virginia creeper	infusion taken for jaundice		Stem: oligostilbenes, parthenocissins M and N, together with two known compounds, miyabenol C and ε-viniferin	[346]
Parthenocissus quinquefolia (L.)	Vitaceae	Virginia creeper	infusion taken for jaundice		Leaves: β-amyryl palmitate; shows thrombin inhibitory activity	[347]
Passiflora incarnata L.	Passifloraceae	Passion flower	root infusion used for boils, earache, to wean babies; poultice for wounds	root	Plant: C-Glycosidic flavonoids (schaftoside, isoschaftoside, isovetexin-2′-O-glucopyranoside and isoorientin-2′-O-glucopyranoside)	[348]
Passiflora incarnata L.	Passifloraceae	Passion flower	root infusion used for boils, earache, to wean babies; poultice for wounds	root	Plant: flavonoid glycosides (vicenin-2′, schaftoside, isoschaftoside isoorientin-2′-O-glucoside, orientin, novirhin-2′-O-glucoside, swertisin, orientin isovitexin, vitexin)	[349]
Passiflora incarnata L.	Passifloraceae	Passion flower	root infusion used for boils, earache, to wean babies; poultice for wounds	root	Plant: flavonoid glycoside (isoscoparin-2′-O-glucoside)	[350]
Passiflora incarnata L.	Passifloraceae	Passion flower	root infusion used for boils, earache, to wean babies; poultice for wounds	root	Plant: C-glycosidic flavonoid (6-β-D-glucopyranosyl-8-β-D-ribopyranosyl apigenin)	[351]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	The phytochemistry of P. incarnata has been reviewed	[352]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	Roots: triterpenoid saponins (phytolaccasides A, D, E)	[353]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	Roots: triterpenoid saponin (phytolaccoside B)	[354]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	Roots: triterpenoid saponins (phytolaccasaponins B, E, G)	[355]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	Roots: triterpenoid saponins (phytolaccasaponins N1–N5, esculetoside H, esculetoside A = phytolaccoside E, esculetoside M, esculetoside B = phytolaccoside B, esculetoside S, esculetoside R-28-O-glucoside, esculetoside L)	[356]
Phytolacca americana L.	Phytolaccaceae	Pokeweed	poultice used for ulcers; root infusion used for eczema	root	Roots: phytosterol α-spinasterol	[357]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------	-------------	-------------	--	-----------	--	-------------
Pinus virginiana Mill.	Pinaceae	Pine	wash for skin ulcers/sores; sap used on stubborn sores; syrup from inner bark for coughs/congestion; inner bark used for intestinal worms and parasites.	bark	Bark EO: α-pinene (43.1%), β-pinene (24.8%), β-phellandrene (13.9%)	[18]
					Leaf EO: α-pinene (22.8%), β-pinene (25.1%), β-phellandrene (14.3%), α-terpineol (8.7%)	[273]
Plantago lanceolata L.	Plantaginaceae	Narrowleaf plantain	infusion or poultice used for bites and stings	plant	Herb: purpureaside A, lavandulifolioside B, acteoside, luteolin-3',7-diglucuronide, isoacteoside, luteolin-7-glucuronide, and luteolin	[358]
					Herb: phenolic acids: p-hydroxybenzoic acid, vanillic acid, gallic acid, cinnamic acid, chlorogenic acid (major); flavonoids: apigenin, luteolin, luteolin-7-O-glucoside. Extract shows antioxidant, COX-1-inhibitory, 12-LOX-inhibitory, and weak cytotoxic activity	[359]
					Herb: iridoid glycosides: aucubin and catalpol	[360]
Plantago major L.	Plantaginaceae	Common plantain	infusion or poultice used for bites and stings	plant	Review, Herb: aucubin, melittoside, asperuloside, melampyroside, plantarenaloside, zeoroside, majoroside, 10-hydroxyjasmonoside, 10-acetoxysinfloside, acteoside, plantamajoside	[364]
					Review, Herb: caffeic acid derivatives (caffeic acid, chlorogenic acid, plantamajoside, acteoside), flavonoids (apigenin 7'-glucoside, baicalein, hispidulin, hispidulin 7'-glucuronide, homoplantaginin, luteolin 7-glucoside, luteolin 7-diglucoside, luteolin 6-hydroxy-4'-methoxy-7'-galactoside, nepetin 7'-glucoside, plantaginin, scutellaran), iridoid glycosides (asperuloside, aucubin, catalpol, gardoside, geniposidic acid, majoroside, 10-acetoxysinfloroside, 10-hydroxysinfloroside, melittoside), triterpenoids (oleanolic acid, ursolic acid, 18β-glycyrrhetinic acid). Bioactivities of extracts includes wound healing activity, anti-inflammatory, analgesic, antioxidant, weak antibiotic, immune modulating and antiulcerogenic activity	[365]
					P. major compounds showed antiviral activity: caffeic acid on herpesvirus (HSV-1) and adenovirus (ADV-3); chlorogenic acid on ADV-11	[366]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------	--------	------------------------	---------------------------------	-----------	--	-------------
Platanus occidentalis L.	Platanaceae	American sycamore	infusion of inner bark for cough, measles, urinary infection	bark	Herb: anti-MRSA flavonoids (kaempferol 3-O-α-L-(2′,3′-di-E-p-coumaroyl)rhamnoside, kaempferol 3-O-α-L-(2′-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside, and kaempferol 3-O-α-L-(2′,3′-di-Z-p-coumaroyl)rhamnoside)	[15]
Podophyllum peltatum L.	Berberidaceae	Mayapple	anthelmintic, sores	root	Roots: aryltetralin lignans (podophyllotoxin, picropodophyllotoxin, α-peltatin, β-peltatin, desoxypodophyllotoxin)	[15]
					Roots: aryltetralin lignans (podophyllotoxin, 4′-demethylpodophyllotoxin, α-peltatin, β-peltatin, desoxypodophyllotoxin, podophyllotoxone, isopicropodophylline, 4′-demethylisopicropodophyllotoxin, and 4′-demethylisopicropodophylline)	[373]
					Plants: aryltetralin lignans (podophyllotoxin 4-O-β-D-glucopyranoside, epipodophyllotoxin 4-O-β-D-glucopyranoside, 4′-demethylpodophyllotoxin, α-peltatin, epipodophyllotoxin, podophyllotoxin, β-peltatin, 1,2,3,4-dehydrodesoxypodophyllotoxin)	[375]
Polygala senega L.	Polygalaceae	Seneca snakeroot	snakebite	root	Root: triterpenoid saponin senegen-II	[376]
					Root: triterpenoid saponins (senegen III, senegen IV)	[377]
					Root: oligosaccharide esters (senegose A, senegose B, senegose C, senegose D, senegose E)	[378]
					Root: oligosaccharide esters (senegose F, senegose G, senegose H, senegose I)	[379]
					Root: oligosaccharide esters (senegose J, senegose K, senegose L, senegoseM, senegose N, senegose O)	[380]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Polygonum aviculare L.	Polygon-aceae	Prostrate knotweed	fish poison	plant	Root: triterpenoid saponins (senegen II, senogen III, *E*-senegasaponin A, *E*-senegasaponin B, *Z*-senegasaponin A, *Z*-senegasaponin B, *Z*-senegen II, *Z*-senegen III)	[381]
					Root: essential oil [hexanoic acid (33.6%), methyl salicylate (26.5%), n-hexanal (5.3%) and o-cresol (3.5%)]	[382]
					Root: triterpenoid saponins (senegen II, senogen III, senegen IV, senegasaponin A, senegasaponin B)	[383]
Polygonum hydropiper L.	Polygon-aceae	Marshpepper knotweed	fish poison	plant	Plant: lignan aviculin; flavonoids (juglanin, avicularin, astragalin, and betmidin)	[384]
					Plant: naphthoquinone 6-methoxyplumbagin, also β-sitosterol, oleanolic acid, and 5,6,7,4′-tetramethoxyflavone	[385]
					Aerial parts: flavonoids (avicularin, liquiritin, cinaroside)	[386]
					Plant: flavonol glucuronides [myricetin 3-O-β-D-glucuronide, mearsetin 3-O-β-D-glucuronide, quercetin 3-O-β-D-glucuronide, isorhamnetin 3-O-β-D-glucuronide, kaempferol 3-O-β-D-glucuronide, kaempferol 3-O-[2′-O-acetyl-β-D-glucuronide], isorhamnetin 3-O-[2′-O-acetyl-β-D-glucuronide], quercetin 3-O-[2′-O-acetyl-β-D-glucuronide], quercetin 3-O-[3′-O-acetyl-β-D-glucuronide], and kaempferol 3-O-[3′-O-acetyl-β-D-glucuronide]]	[387]
					Leaves: flavonoids (myricetin, quercetin, kaempferol, myricitrin, desmanthin-1, isoquercitrin, avicularin, juglanin) and gallic acid	[388]
					Aerial parts: flavonoids (avicularin, juglanin, myricitrin, isoastragalin, isoquercitrin, kaempferol-5,7-di-O-β-D-glucopyranoside, and kaempferol 5-O-α-L-rhamnopyranosyl(1→2)-O-β-D-glucopyranoside), lignan aviculin, and loliolide and 1,6-digalloylglucose	[389]
Polygonum hydropiper L.	Polygon-aceae	Marshpepper knotweed	fish poison	plant	Plant: polygodial	[390]
					Plant: drimane sesquiterpenoids (warburanal, polygodial, isopolygodial, polygonal, isodrimeninol, drimenol, confertifolin)	[391]
					Plant: flavonoids [rutin (0.58-0.93%), hyperin (0.37-0.63%), isoquercitrin (0.08-0.38%), quercitrin (0.55-0.95%), catechin (0.06-0.09%), epicatechin (0.05-0.08%), quercitin (0.28-0.65%), kaempferol (0.28-0.53%), isorhamnetin (0.03-0.04%)]	[392]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Polymnia canadensis L.	Asteraceae	Whiteflower leafcup	Houma Native American use (not Cherokee) applied	leaves	Leaves: drimane sesquiterpenoids (polygenic acid, 11-ethoxycinnamolide, polygodial acetal, valdivioside, and fuegin), drimane norsesquiterpenoids (isopolygalic and polygone)	[393]
			a leaf poultice to swellings			
Polymnia uvedalia (L.)	Asteraceae	Leafcup, Bear’s foot	bruised root used on cuts, burns	root	Germacranolide sesquiterpenoids (uvedalin, isouvedalin, 2′,3′-dehydromelnerin A, 9-hydroxy-2′,3′-dehydromelnerin A), ent-kaurane diterpenoids (ent-12-hydroxy-16-kauren-19-oic acid, ent-18-hydroxy-16-kauren-19-oic acid derivatives, ent-16-kauren-3,19-diol derivatives, ent-12,18-di-hydroxy-16-kauren-19-oic acid derivatives)	[247]
(syn. Smallanthus uvedalia (L.) Mack.)						
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
---------------------------	----------------	-------------	------------------	-----------	--	-----------
Prunella vulgaris L.	Lamiaceae	Heal-all	sore throat, cuts, burns	plant	Leaf EO: selin-1 1-en-4a-ol (14.9%), cis-eudesma-6,11-diene (9.4%), 1,10-di-epi-cubenol (8.0%), spathulenol (5.8%) and germacrene D (5.1%)	[402]
					Leaf EO: aromadendrene (55.4%), cucumber alcohol (8.5%) and phytol (5.1%)	[403]
					Aerial parts: rosmarinic acid, ursolic acid, oleanolic acid	[404]
					Aerial parts: rosmarinic acid, ursolic acid, oleanolic acid	[405]
					Aerial parts: four triterpenes, i.e., betulinic acid, ursolic acid, 2a,3a-dihydroxyurs-12-en-28-oic acid, and 2a-hydroxyursolic acid	[406]
					Aerial parts: polyacetylenic acids (octadeca-9,11,13-triyne acid and trans-octadec-13-ene-9,11-diyne acid)	[407]
					oleanane-skeleton triterpenoid saponins, 3(β,4β,16α)-16a-carboxy-16,24-dihydroxy-28-norolean-12-en-3-yl-1β-D-glucopyranosidouronic acid, (3β,4β,16α)-17-carboxy-16,24-dihydroxy-28-norolean-12-en-3-yl-1β-D-glucopyranosidouronic acid methyl ester, and (3β,4β)-24-hydroxy-16-oxo-28-norolean-12-en-3-yl-4-O β-xylopyranosyl-β-D-glucopyranosidouronic acid	[408]
					Aerial parts: 15 triterpene acids (olenic acid, ursolic acid, 2a,3a,19a-trihydroxyurs-12-en-28-oic acid, 2a,3a-dihydroxyurs-12-en-28-oic acid, maslinic acid, 2a,3a,19a,23-tetrahydroxyurs-12-en-28-oic acid, 2a,3a,23-trihydroxyurs-12-en-28-oic acid, 2a,3β-dihydroxyurs-12-en-28-oic acid, 2a,3β,24-trihydroxyolea-12-en-28-oic acid, (12R,13S)-2a,3a,24-trihydroxy-12,13-cycloartane-14-en-28-oic acid, 2a,3a,24-trihydroxyurs-12,20(30)-dien-28-oic acid, 2a,3a,24-trihydroxyolea-12-en-28-oic acid, 2a,3β,19a,24-tetrahydroxyurs-12-en-28-oic acid 28-O-β-glucopyranoside, 2a,3a,19a,24-tetrahydroxyurs-12-en-28-oic acid 28-O-β-glucopyranoside, prunuloside A); four flavonoids (quercetin 3-β-D-glucopyranoside, kaempferol 3-0-a-L-rhamnopyranosyl(1→6)-β-D-glucopyranoside, kaempferol 3-β-D-glucopyranoside, quercetin 3-0-a-L-rhamnopyranosyl(1→6)-β-D-glucopyranoside), four phenolics (caffeic acid, p-hydroxybenzoic acid, rosarinic acid, and 2-hydroxy-3-(3′,4′-dihydroxyphenyl)propanoic acid); and a diterpene (trans-phytol)	[409]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Prunus serotina Ehrh.	Prunaceae	Black cherry	bark infusion for colds	bark	Aerial parts: polyphenolics (butyl rosmarinate, ethyl rosmarinate, methyl rosmarinate, rosmarinic acid, 3,4,α,3-trihydroxy-methyl phenylpropionate, and p-coumaric acid) [410]	
					Aerial parts: phenolics (quercetin, rutin, rosmarinic acid, caffeic acid, chlorogenic acid ferulic acid, protocatechuic acid) [411]	
					Aerial parts: polygalacerebroside, ursolic acid, β-amyrin, quercetin, quercetin-3-O-β-D-galactoside, α-spinasterol, stigmasterol, β-sitosterol, daucosterol [412]	
Pseudognaphalium	Asteraceae	Rabbit tobacco	infusion of herb for coughs, colds, flu	herb	Leaves: flavonoids (avicularin, nourtin, hyperoside, narcissin, rutin, quercetin 3-O-neohesperidoside, 3-O-(2′-O-α-L-rhamnopyranosyl)-β-D-galactopyranoside) [413]	
obtusifolium (L.)					Leaves: chlorogenic acid (1.08-2.30%), rutin (0.10-0.35%), hyperoside (1.20-2.23%), reynoutrin (0.06-0.44%), guajiverin (0.07-0.22%), avicularin (0.98-1.82%), juglanin (0.04-0.20%) [414]	
Hilliard and B.L. Burtt					Leaves: triterpenoids (corosolic acid (0.137%), oleanolic acid (0.129%), ursolic acid (0.884%)) [415]	
(syn. *Gnaphalium*					Leaves: hyperoside, prunin, ursolic acid [416]	
obtusifolium L.)					Leaves: chlorogenic acid, hyperoside, benzaldehyde [417]	
					Leaf EO: benzyl alcohol (20.3%), benzaldehyde (12.1%), cinnamyl alcohol (4.7%), cinnamaldehyde (4.1%) [416]	
					Flowers: chlorogenic acid (0.65-1.96%), rutin (0.17-0.31%), hyperoside (0.08-1.59%), reynoutrin (0.08-0.21%), guajiverin (0.10-0.28%), avicularin (0.20-0.95%), juglanin (0.08-0.16%) [414]	
					Bark: triterpenoids (ursolic acid, ursolic aldehyde, 2α,3α-dihydroxysper-12-en-28-oic acid) [418]	
					Bark: flavonoids (4′-methoxynaringenin, naringenin, dihydrokaempferol, eriodictyol) [419]	
Pseudognaphalium	Asteraceae	Rabbit tobacco	infusion of herb for coughs, colds, flu	herb	Plant: flavonoid obtusifolin [420]	
obtusifolium (L.)					Plant: flavonoids (gnaphalin A, methylgnaphalin) [421]	
Hilliard and B.L. Burtt					Plant: flavonoid 3,5,7-trihydroxy-6,8-dimethoxyflavone [422]	
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------	----------------	-----------------	---------------------------------------	-----------	--	------------
Pycnanthemum flexuosum (Walter) Britton, Sterns and Poggenb.	Lamiaceae	Mountain mint	leaf infusion for headache, colds, fevers	leaves	Whole plant: vanillic acid 1-O-[β-D-apiofuranosyl]-β-D-glucopyranoside, (4S,5R)-4-hydroxy-5-phenyl-tetrahydrofuran-2-one, luteoline 7-O-[β-D-glucopyranosyl]-1→2)-β-D-glucopyranoside, 4′-O-methyllypolaetin 7-O-[β-D-glucopyranosyl]-(1→2)-β-D-glucopyranoside, apigenin 7-O-[6-O-acetyl-β-D-glucopyranosyl]-(1→2)-β-D-glucopyranoside, isoquercitrin 4-O-methyl ether 7-O-[6-O-acetyl-β-D-glucopyranosyl]-(1→2)-β-D-glucopyranoside, apigenin 7-O-[6-O-(E-coumaroyl)β-D-glucopyranoside], 3′-hydroxy-4-O-methylisoquercitrin 7-O-[6-O-acetyl-β-D-glucopyranosyl]-(1→2)-6,8-0-acetyl-β-D-glucopyranoside, acteoside, leucosceptoside A, martynoside, artselaeroside A, stachyoside B, and chlorogenic acid	[423]
Quercus alba L.	Fagaceae	White oak	bark infusion for dysentery, antiseptic, fever	bark	Bark: tannins	[424]
Ranunculus acris L. *a*	Ranunculaceae	Tall buttercup	leaf poultice for abscesses; leaf infusion for sore throat	leaves	Aerial parts: ranunculin	[425]
Rhamnus caroliniana Walter	Rhamnaceae	Buckthorn	itching skin, sores	berries, bark	Bark: chrysophanol, phywicin, ararobin, orachrysone, 1-docosanol	[426]
Rhus glabra L.	Anacardiaceae	Smooth sumac	bark decoction to wash blisters	bark	Bark EO: chrysarobin (24.2%), piperine (15.4%), and pacharin (7.5%)	[426]
					Branches: methyl gallate, 3,5-dihydroxy-4-methoxybenzoic acid, gallic acid, methyl gallate and 3,5-dihydroxy-4-methoxybenzoic acid showed antibacterial activity	[427]
					Leaves: myo-inositol, 1-docosanol, β-sitosterol, β-sitosterol glucoside, mixture of homologous alkanes (C₁₄-C₃₅, major heptacosane)	[428]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-----------------------	---------------------	-------------	---------------------------------------	-----------	--	--------
Rhus hirta Harv. ex Engl.	Anacardi-aceae	Staghorn sumac	bark decoction to wash blisters	bark	Fruits: major components: sumadin B-3-O-(2”-gallloyl)-galactoside-3’’’-O-glucoside, 7-O-methyl-cyanidin-3-O-(2”-gallloyl)-galactoside; shows anti-oxidant activity	[429]
Rhus spp. (as above)	Anacardi-aceae	Infusion of berries for urinary tract infections, thrush	berries	Fruits: major components: sumadin B-3-O-(2”-gallloyl)-galactoside-3’’’-O-glucoside, 7-O-methyl-cyanidin-3-O-(2”-gallloyl)-galactoside; shows anti-inflammatory activity	[430]	
Robinia pseudacacia L.	Fabaceae	Black locust	bark chewed as emetic	bark	Bark: lectins (RPbAI and RPrAI)	[15]
Rubus allegheniensis Porter	Rosaceae	Allegheny blackberry	leaf infusion for diarrhea	leaves	Root: lectins (RPbAI and RPrAI)	[435]
Rubus idaeus L. *a*	Rosaceae	Red raspberry	leaf infusion for pain; root infusion cathartic	roots, leaves	Leaf extract: triterpenoids (tormentic acid, euscaphic acid, myrianthic acid, ziyu glycoside II, sericic acid, and 19-hydroxy-2,3-secours-12-ene-2,3,28-trioic acid 3-methyl ester)	[436]
Rubus idaeus L. *a*	Rosaceae	Red raspberry	leaf infusion for pain; root infusion cathartic	roots, leaves	Leaf extract: triterpenoid glycosides (3β-(O-β-D-glucopyranosyl)-olean-12-ene-1α,2α,3β-triol, 28-(O-β-D-glucopyranosyl)-urs-12-ene-2α,3β,19α-trihydroxy-28-oic acid, and 3β-(O-β-D-glucopyranosyl)-olean-12-ene-1α,2α,3β-trihydroxy-28-oic acid)	[437]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Leaf extracts:					tannins (ellagic acids, ellagitannins, sanguin H-6 and H-10, and the trimers lambertianin D and lambertianin C, as well as methyl gallate), phenolic acids (chlorogenic acid, p-coumaric, ferulic, protocatechuic, gentisic, caffeoylhartc, feruloylhartc, and p-coumaroyl-glucoside acids, as well as p-hydroxybenzoic and vanillic acids), terpenoids (terpinolene, 3-oxo-α-ionol, α- and β-amyrin, squalene and cycloartenol)	
Rudbeckia fulgida	Asteraceae	Orange coneflower	root used for ear medicine	root	Leaf EO: β-caryophyllene (10.0%), γ-muurolene (8.9%), germacrene D (30.1%), δ-cadinene (17.8%)	[439]
Rudbeckia hirta	Asteraceae	Black-eyed Susan	root infusion taked for sexually transmitted diseases (STDs)	root	Leaf EO: (2E)-hexenal (20.2%), (E)-β-ocimene (15.2%), γ-muurolene (8.1%), germacrene D (23.6%), δ-cadinene (16.2%)	[440]
Rudbeckia laciniata	Asteraceae	Souchan, Green-headed coneflower	tonic, skin wash	leaves	Aerial parts: lignans ((+)4,4’-O-diangeloylpinoresinol, (+)4,4’-O-diangeloylmethioresinol, (+)4,4’-O-diangeloylsyringaresinol, and (+)-syringaresinol)	[441]
					Aerial parts: flavonoid glycosides (quercetin 3-O-α-L-arabinofuranosyl(1”→6”)-β-D-galactopyranoside, quercetin 3-O-α-L-arabinopyranosyl(1”→6”)-β-D-galactopyranoside, quercetin 3-O-β-D-xylopyranosyl(1”→2”)-β-D-glucopyranoside, and quercetin 3-O-β-D-glucopyranoside, isorhamnetin 3-O-β-D-glucopyranoside), quinic acid derivatives (3,5-O-trans-dicaffeoylquinic acid methyl ester, 3,5-O-trans-dicaffeoylquinic acid methyl ester, 3,4-O-trans-cafeoylquinic acid, 3,5-O-trans-dicaffeoylquinic acid)	[442]
					Roots: sesquiterpene rudbeckianone	[443]
					Roots: sesquiterpene lactone rudbeckiolide	[444]
Sambucus canadensis	Adoxaceae	American elder	berry infusion for rheumatism; infusion of flowers taken for fever; leaves used to wash sores	plant	Root extract: sesquiterpenoids (sesquiterpene, igalan, lacinan-8-ol)	[445]

References:
[439] [440] [441] [442] [443] [444] [445]

(Rudbeckia fulgida Aiton Asteraceae Orange coneflower root used for ear medicine root [15]
(Rudbeckia hirta L. Asteraceae Black-eyed Susan root infusion taken for sexually transmitted diseases (STDs) root [15]
(Rudbeckia laciniata L. Asteraceae Souchan, Green-headed coneflower tonic, skin wash leaves [15]
(Sambucus canadensis L. Adoxaceae American elder berry infusion for rheumatism; infusion of flowers taken for fever; leaves used to wash sores plant [15]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Flowers:						
rutin						[446]
Fruits:						
anthocyanins (cyanidin 3-sambubioside-5-glucoside, cyanidin 3,5-diglucoside, cyanidin 3-sambubioside, cyanidin 3-glucoside, cyanidin 3-O-(6-O-Z-p-coumaroyl-2-O-β-D-xylopyranosyl)-β-D-glucopyranoside-5-O-β-D-glucopyranoside, cyanidin 3-O-(6-O-E-p-coumaroyl-2-O-β-D-xylopyranosyl)-β-D-glucopyranoside-5-O-β-D-glucopyranoside (major), cyanidin 3-O-(6-O-E-p-coumaroyl-2-O-β-D-xylopyranosyl)-β-D-glucopyranoside)				[447]		
Rhizome:						
alkaloids (sanguinarine, chelerythrine, protopine)						[450]
alkaloids [protopine (0.32–0.74%), allocryptopine (0.34–0.77%), sanguinarine (1.38–4.45%), chelerythrine (0.99–2.57%), chelurubine (0.37–0.87%), chelilutine (0.78–1.83%), sanguilutine (0.49–1.03%)]						[451]
alkaloids (sanguinarine and chelerythrine-antimycobacterial)						[452]
alkaloids (sanguinarine, chelerythrine, protopine-anti-Helicobacter pylori)						[453]
alkaloids (sanguinarine (2.81–3.96%), chelerythrine (1.38–2.88%))						[454]
alkaloids (sanguinarine, chelerythrine, sanguilutine, chelurubine, chelirubine, protopine, and allocryptopine)						[455]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Sassafras albidum (Nutt.) Nees	Lauraceae	Sassafras	bark decoction for skin diseases, sexually-transmitted diseases; poultice for wounds and sores	bark	Leaf EO: (3Z)-hexenol (2.5–9.9%), α-pinene (3.2–12.2%), camphene (0.3–5.4%), limonene (5.7–16.6%), linalool (3.5–6.7%), neral (9.9–18.1%), geranial (10.7–26.5%), β-caryophyllene (5.1–12.5%), caryophyllene oxide (0.4–19.0%)	[456]
					Root EO: safrole (85%), camphor (3.25%), and methyleugenol (1.10%)	[457]
					Bark EO: α-pinene (37.9–61.5%), camphene (2.9–5.1%), β-pinene (10.0–13.0%), 1,8-cineole (7.3–10.0%), and α-terpineol (4.2–11.6%)	[458]
					Bark: sesamin, spinescin, β-sitosterol, hexatriacontanol, and 1-triacontanol; sesamin and spinescin showed antileishmanial activity	[459]
Saururus cernuus L.	Saururaceae	Lizard’s tail	mashed roots poultice for wounds	root	Aerial parts: lignans (austrobailignan-5, veraguensin, guaiacin, saucercoxin)	[460]
					Plant: lignans (manassantin A, manassantin B, saucercoxin)	[461]
					Aerial parts: indole alkaloids (sauristolactam, cepharanone B)	[462]
					Aerial parts: lignans (saururin, saururenin, saururinone, austrobailignan 6, calopiptin, galbacin, zuonin A)	[463]
					Aerial parts: lignans (sauriol A, sauriol B)	[464]
					Aerial parts: lignans (licrin A, sauercoxin, dihydroguaiaretic acid, sauriol A, sauritol B, saucercoxin, and saucercoxin methyl ether)	[465]
					Aerial parts: diterpenoid 12,13-dehydrogeranylgeraniin	[466]
					Aerial parts: lignans (manassantin B, 4-O-demethylmanassantin B)	[467]
					Stems and leaves: lignans (manassantin A, manassantin B, manassantin B4, 4-O-methylsaucercoxin, vorrucosin, austrobailignan-5)	[468]
Scutellaria lateriflora L.	Lamiaceae	Blue skullcap	root infusion for monthly period, diarrhea; root decoction to expel afterbirth, for breast pains, and for nerves	root	Review	[469]

Review
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Senecio aureus L.	Asteraceae	Golden ragwort	infusion of plant taken to prevent pregnancy/induce abortions	plant	Eremophilane sesquiterpenoids (trans-9-oxofuranoelemiphilane, 8a-ethoxy-10aH-ermophileneolide, 3a-angeloyloxy-9-oxo-10aH-furanoelemiphilane)	[479]

Aerial parts ED: δ-cadinene (27%), calamenene (15.2%), β-selinene (9.2%), α-cubenene (4.2%), α-humulene (4.2%), and α-bergamotene (2.8%)
[470]

Aerial parts: neo-clerodane diterpenoids (scutelaterin A, scutelaterin B, scutelaterin C, ajugapitin, and scutecyprol A)
[471]

Herb: flavonoids baicalin and baicalein (aglycone)
[472]

Aerial parts: indole alkaloids (melatonin, serotonin); flavonoids (baicalin, baicalein, wogonin, scutellarin)
[473]

Herb: flavonoids (viscidulin III, chrysos, baicalin, oroxylin A, wogonin); phenolics (trans-verbascoside, trans-martynoside)
[474]

Aerial parts: coumarins (scuteflorin A, scuteflorin B, decursin)
[475]

Stem: flavonoids [scutellarin (0.08%); phenolic [acteoside (0.05%)]]
[476]

Root: flavonoids [baicalin (0.05%), baicalein (0.06%), wogonin (0.20%), oroxylin A (0.02%)]
[476]

Leaf: flavonoids [scutellarin (0.92%), baicalin (0.05%)]
[476]

Aerial parts: flavonoids (apigenin, luteolin, baicalein, wogonin, 6-methoxy-luteolin 4'-methyl ether, isoscutellarin 8-O-β-D-glucuronide, apigenin 7-O-β-D-glucuronide, luteolin 7-O-β-D-glucuronide, baicalin, wogonin 7-O-β-D-glucuronide, wogonin 7-O-β-D-glucuronide methyl ester, eriodictyol, naringenin, naringenin 7-O-β-D-glucuronide), phenolics (acteoside, nonoside D, leucosceptoside A, martynoside, isosceposide); lignan (syringaresinol 4'-O-β-D-glucopyranoside)
[477]

Aerial parts: flavonoids (norwogonin-7-O-glucuronide, baicalin, dihydrobaicalin, galangin-7-O-glucuronide, dihydrooroxylin A,7-O-glucuronide, oroxylin A,7-O-glucuronide, wogonin-7-O-glucuronide, 5,7-dihydroxy-6,8-dimethoxyflavone-7-O-glucuronide, dihydrowogonin-7-O-glucuronide, baicalin, wogonin, oroxylin A, chrysin); phenolic (5-(β-D-glucopyranosyl)-3-hydroxy-trans-stilbene-2-carboxylic acid)
[478]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
Silphium compositum	Asteraceae	Rosin weed	tonic	plant	Leaves: flavonoid glycosides (isorhamnetin 3-O-α-L-rhamnosyl (1″″′→6″)-O-β-D-galactopyranoside 7-O-β-L-apiofuranoside, quercetin 3-O-α-L-rhamnosyl (1″″′→6″)-O-β-D-galactopyranoside 7-O-β-L-apiofuranoside, quercetin 3-O-α-L-rhamnosyl (1″″′→6″)-O-β-D-galactopyranoside, and quercetin 3-O-β-D-galactopyranoside)	[15]
Solanum carolinense L.	Solanaceae	Carolina horsenettle	leaf infusion for worms	leaves	Leaves: steroidal glycoside (carolinoside) is shown to be O-(α-pentulopyranosyl)-(1→4)-O-(α-L-arabinopyranosyl)-(1→1)-D-glucopyranose	[15]
S. odora Aiton	Asteraceae	Goldenrod	bee stings, sore throat	flowers	Roots: ethyl N,N-bis(4-dimethylaminobutyl) carbamate (solaurethine). Other compounds reported for the first time in this species include solamine (principal base), cuscohygrine and anabasine	[481]
S. odora f. odora	Asteraceae	Goldenrod	bee stings, sore throat	flowers	Flowering parts EO: methyl chavicol (70.8%), myrcene (12.5%), methyl eugenol (5.8%), limonene (4.5%)	[15]
Stillingia sylvatica L.	Euphorbiaceae	Queen’s delight	root tincture for STDs	root	Roots: stillingia factors S1–S6 (2-hydroxydaphnetoxin diterpenoids)	[484]
Symphyotrichum novae-angliae (L.) G.L. Nesom (syn. *Aster novae-angliae* L.)	Asteraceae	New England aster	root poultice for pain	root	Leaf EO: (2E)-hexenal (31.0%), α-pinene (16.4%), germacrene D (25.5%), β-cadinene (14.3%)	[440]
Thalictrum dioicum L.	Ranunculaceae	Early meadowrue	root infusion for diarrhea	root	Bis-benzylisoquinoline alkaloids (thalctropine, thalidoxine, pennsylvanine, thalmetaline, thalictrogamine)	[485]
Tilia americana L.	Tiliaceae	American basswood	inner bark decoction for diarrhea, coughs, boils	bark	Pallidine and corydine alkaloids	[487]
T. americana var. mexicana (Schldl.) Hardin	Tiliaceae	American basswood	inner bark decoction for diarrhea, coughs, boils	bark	Flowers: quercetin and kaempferol derivatives; showed sedative and anxiolytic activity	[488]
Table 1. Cont.

Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
T. americana var. *mexicana*			Flowers: tiliroside, quercetin, quercitrin, kaempferol; showed anxiolytic activity		[489]	
T. americana var. *mexicana*			Flowers: quercetin; showed analgesic activity		[490]	
T. americana var. *mexicana*			Flowers: quercetin, kaempferol; showed anxiolytic activity		[491]	
T. americana var. *mexicana*			Flowers and leaves: flavonoids quercetin, rutin, isoquercetin; extract showed anticonvulsant activity		[492]	
Tsuga canadensis (L.) Carrière	Pinaceae	Eastern hemlock	bark poultice for itching skin; stem tips for kidneys	bark, leaves	Foliar EO: α-pinene (17.6%), camphene (11.5%), isobornyl acetate (43.4%)	[15]
					Foliar EO: α-pinene (13.2%), camphene (7.8%), isobornyl acetate (42.9%)	[493]
					Foliar EO: tricyclene (1.6–5.1%), α-pinene (4.1–15.1%), camphene (3.0–11.1%), myrcene (0.5–21.1%), isobornyl acetate (22.0–55.8%), α-humulene (3.6–9.8%), germacrene D (1.4–21.3%)	[494]
					Foliar EO: tricyclene (3.1–7.8%), α-pinene (11.6–22.7%), camphene (7.8–15.9%), isobornyl acetate (32.8–50.7%), α-humulene (up to 9.2%), germacrene D (up to 6.4%)	[495]
					Foliar EO: α-pinene (13.9, 5.4%), camphene (13.3, 3.4%), limonene (6.0, 7.0%), piperitone (4.3, 7.7%), isobornyl acetate (38.6, 37.0%)	[496]
Viburnum prunifolium L.	Adoxaceae	Black haw shrub	bark infusion as tonic for female bleeding	bark	Bark: biflavonoid amentoflavone	[497]
					Bark: indoid glycosides (2-O-acetyldihydrostemsid, 2-O-trans-p-coumaroyldihydrostemsid, 2-O-acetylpatrinosid, and patrinoside)	[498]
Vicia caroliniana Walter	Fabaceae	Vetch	pains, rheumatism	plant	Bark: 1-methyl-2,3-dibutyl hemimellitrate	[499]
					Aerial parts EO: phytone (2.2–21.5%), methyl roughanate (1.9–29.5%), palmitic acid (9.9–28.1%), (E)-phytol (15.8–36.1%)	[500]
Xanthorrhiza simplicissima Marshall	Ranunculaceae	Yellow root	root infusion for cramps, as tonic	root		[501]
Scientific Name	Family	Common Name	Cherokee Use	Part Used	Chemical Constituents and Activities	Ref.
-------------------------	-----------	----------------------	---	-----------	--	------
Zanthoxylum americanum	Rutaceae	Common prickly ash	bark infusion for swollen joints	bark	Root: alkaloids (berberine, jatrorrhizine, magnoflorine) [502]	
					Whole plant: alkaloids berberine and puntarenine [503]	
					Roots: bisbenzylisoquinoline alkaloids (obamegine and oxyacanthine) [504]	
Zanthoxylum clava-herculis	Rutaceae	Hercules’s club	Houma tribe of Native Americans (not Cherokee) used the bark for toothache	bark	Bark: pyranocoumarins (dipetaline, alloxanthoxyletin, xanthoxyletin, xanthyletin) and lignans (sesamin, asarinin) [505]	
					Leaf EO: α-thujene (0.2–5.6%), limonene (43.6–73.0%), 1,8-cineole (12.9–43.3%), linalool (up to 11.3%) [506]	
					Bark EO: sabinene (47.0%), limonene (18.7%), terpinen-4-ol (12.9%) [507]	
					Bark: asarinin, sesamin, neoherculin, xanthoxylol-γ,γ-dimethylallyl ether, pipertol-γ,γ-dimethylallyl ether, pluviatol-γ,γ-dimethylallyl ether [508]	
					Bark: chelerythrine [509]	

* Non-native. † Commercial (dōTERRA) essential oil. ‡ W. N. Setzer (unpublished).
3. Cherokee Aromatic Medicinal Plants Currently in Use as Herbal Medicines

3.1. Achillea millefolium L.

Achillea millefolium (yarrow) is native to temperate regions of the Northern Hemisphere but has been introduced worldwide [510]. The traditional medical uses of *A. millefolium* have been reviewed and the plant has been used since ancient times as a wound-healing agent and to treat gastrointestinal complaints [510–512]. Consistent with this, the Cherokee have also used *A. millefolium* as an antihemorrhagic; for healing wounds, treating bloody hemorrhoids and bloody urine, and for bowel complaints [15,17,510]. In addition, infusions of *A. millefolium* have been used as a treatment for fever [15,17,510]. Yarrow extract has shown spasmogenic effects on murine and human gastric antrum, consistent with its traditional use to treat dyspepsia [513]. In a double-blind clinical trial, *A. millefolium* ointment was shown to reduce pain, inflammation, and ecchymosis in episiotomy wound healing [514].

The essential oils of *A. millefolium* have shown wide variation depending on geographical location and growing season. Volatile oil samples from Turkey [48] and Macedonia [51] were dominated by 1,8-cineole and camphor, whereas the essential oil from Lavras, Brazil, was rich in chamazulene [49]. The essential oil from Lithuania showed wide variation in composition depending on morphological type (flower color) as well as plant phenology [50]; γ-terpinene and cadinene (isomer not identified) were the major components during the flowering phase, but β-pinene was abundant during the vegetative phase. Conversely, *A. millefolium* leaf essential oil from Portugal was rich in 1,8-cineole during the flowering phase, but germacrene D dominated the oil during the vegetative phase [53].

The non-volatile chemical components of *A. millefolium* are generally dominated by phenolics (e.g., chlorogenic acid and other quinic acid derivatives) and flavonoids and flavonoid glycosides (e.g., luteolin, apigenin, and quercetin, and their glycosides) [38–42,44,46,47]. Chlorogenic acid has shown in vivo wound-healing properties in rat models [515,516]. Likewise, the flavonoid apigenin [517,518] as well as an apigenin glycoside [519] have shown in vivo wound-healing effects in rodent models. Similarly, luteolin [520–522], luteolin-7-O-glucoside [523], quercetin [524–526] and several quercetin glycosides [527–531] have shown wound-healing effects.

3.2. Caulophyllum thalictroides (L.) Michx.

A decoction of the roots of *C. thalictroides* (blue cohosh) has been used by the Cherokee as an anticonvulsive (to treat “fits and hysterics”) and antirheumatic [15]. The plant is also used as a gynecological aid, to promote childbirth and to treat womb inflammation [15]. These traditional uses are in apparent contrast to the observed toxic effects (convulsions, respiratory paralysis) of the plant observed in range animals such as sheep [108]. The rhizome of *C. thalictroides* contains several quinolizidine alkaloids, including N-methylcytisine (also known as caulophylline), baptifoline, anagyrine, and lupanine [108,110,112]. *N*-Methylcytisine is known to stimulate the central nervous system, and in high doses causes convulsions followed by paralysis [532]. Acute lupanine toxicity is characterized by neurotoxic effects including decreased cardiac contractility, blocking of ganglionic transmission and contraction of uterine smooth muscle [533]. This latter effect explains the traditional Cherokee use to promote childbirth. Apparently, lupanine, in lower doses, does not exhibit sub-chronic, chronic, reproductive, or mutagenic toxic effects [533]. Both *N*-methylcytisine [110] and anagyrine [534] have been shown to be teratogenic, however. The aporphine alkaloid magnoflorine, on the other hand, has shown sedative and anxiolytic effects [535] and may be responsible for the anti-convulsive and sedative uses of *C. thalictroides* in Cherokee traditional medicine.

Lee and co-workers [115] have shown that the oleanolic acid glycosides caulosides A–D exert anti-inflammatory effects by way of inhibiting expression of inducible nitric oxide synthase (iNOS) and the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). The anti-inflammatory effects of *C. thalictroides* triterpene saponins are consistent with the Cherokee traditional uses to treat rheumatism and inflammation.
3.3. Cimicifuga racemosa (L.) Nutt. (syn. Actaea racemosa L.)

Black cohosh (C. racemosa) has been a popular herbal supplement for many years [536]. The plant is reputed to possess anti-inflammatory, diuretic, sedative, and antitussive activities [511], and the root has been reported to have estrogic activity [537–539]. Fukinolic acid [137] and formononetin [511] have been reported to be estrogic constituents of C. racemosa rhizome. The traditional Cherokee use of C. racemosa rhizome to stimulate menstruation [15] is consistent with the reported estrogic activity. There have been conflicting reports regarding the estrogic activity of C. racemosa rhizome, however [540–542], and a survey of 13 populations of C. racemosa in the eastern United States failed to detect the presence of formononetin [543]. Molecular docking studies have suggested that C. racemosa triterpenoids are unlikely estrogen receptor binding agents, but any estrogic activity of C. racemosa extract is probably due to phenolic components such as cimicifugic acid A, cimicifugic acid B, cimicifugic acid G, cimiciphenol, cimiciphenone, cimiracemate A, cimiracemate B, cimiracemate C, cimiracemate D, and fukinolic acid [544]. Although recent evidence suggests the estrogen receptor not to be a target of C. racemosa phytochemical constituents, other biomolecular targets may be involved. Rhizome extracts of C. racemosa have been shown to interact with the serotonin receptor [545], the µ-opioid receptor [546,547] as well as the γ-aminobutyric acid type A (GABA_A) receptors [548]. Modulation of these receptors may contribute to some of the biological effects of C. racemosa extracts.

Reviews of several randomized clinical trials have failed to demonstrate efficacy of C. racemosa on menopausal symptoms [549,550]. However, one randomized, placebo-controlled double-blind clinical trial with menopausal women, concluded that C. racemosa extract showed superiority over a placebo in ameliorating menopausal disorders [551]. Clinical studies have generally suggested C. cimicifuga use to be safe, but there have been some case reports indicating safety concerns [552].

The Cherokee have also used infusions of C. racemosa rhizome to treat rheumatism, coughs, and colds [15]. Aqueous extracts of C. racemosa have demonstrated reduction of the release of pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) in whole blood, and the prominent active component responsible was isoferulic acid [553]. The ethyl acetate fraction of the aqueous extract of C. racemosa was also shown to suppress the release of TNF-α, due to cimiracemate A [554]. Aqueous extracts reduced inducible nitric oxide synthase (iNOS) protein expression as well as iNOS mRNA levels, but did not inhibit iNOS enzymatic activity; the triterpenoid glycoside 23-epi-26-deoxyactein was found to be the active principle in the extract [555]. These effects likely explain the anti-inflammatory activities of C. racemosa and their traditional uses to treat rheumatism and other inflammatory diseases.

3.4. Hamamelis virginiana L.

Hamamelis virginiana, American witch hazel, is a shrub or small tree, native to eastern North America. Several Native American tribes have used the plant for numerous medicinal purposes. Decotions of the bark or the stems of witch hazel have been used as a topical lotion for cuts, bruises, insect bites, external inflammations, and other skin problems [15]. In addition, the Cherokee people took infusions of witch hazel for periodic pains, to treat colds, sore throats, and fevers. Modern uses of witch hazel include treatment of hemorrhoids, inflammation of the mouth and pharynx (leaf only), inflammation of the skin, varicose veins, wounds and burns [537]. Hamamelis virginiana leaves contain up to 10% tannins, including gallic acid, polygallocatein, hamamelitin and analogs, flavonoids, and proanthocyanidins [511], which are responsible for the observed astrigent, anti-inflammatory, and hemostatic effects [537]. The bark also contains hamamelitin and analogs, and proanthocyanidins [511].

The aqueous ethanol extract of H. virginiana showed anti-inflammatory activity in the croton oil mouse ear edema test [556] as well as the induced rat paw edema assay, confirming its use as an anti-inflammatory agent [557]. The extract also showed notable antiviral activity against Herpes simplex virus type 1 (HSV-1) [556]. Hamamelitin and galloylated proanthocyanidins from H. virginiana were found to be potent inhibitors of 5-lipoxygenase (5-LOX) [558]. Hamamelis
proanthocyanidins were found to stimulate cell growth of keratinocytes, enhancing cell growth, and are likely responsible for the dermatological use of tannin-containing witch hazel preparations [559]. *Hamamelis* tannins have also shown cytotoxic activity against HT-29 human colorectal adenocarcinoma cells [223] and antiviral activity against influenza A virus and human papillomavirus [560].

The anti-inflammatory activity of witch hazel was demonstrated in a clinical study using a lotion prepared from *H. virginiana* distillate, which showed suppression of erythema after ultraviolet (UVB) light exposure [561]. Similarly, in a clinical trial with patients suffering from atopic eczema, a cream containing *H. virginiana* distillate significantly reduced skin desquamation, itching and redness [562]. Of course, *H. virginiana* distillate will not contain tannins.

3.5. *Hydrastis canadensis* L.

Goldenseal (*Hydrastis canadensis*), a perennial herb in the Ranunculaceae, is native to eastern North America from Ontario, Canada, south to Alabama and Georgia [563]. The Cherokee used the root decoction of goldenseal as a tonic and wash for local inflammations; took the root decoction orally to treat cancer, dyspepsia, and general debility [15]. Goldenseal is still used in herbal medicine to control muscle spasms, treat cancer, increase blood pressure, treat gastrointestinal disorders, manage painful and heavy menstruation, treat infections topically, and reduce swelling [537,564].

The major components in goldenseal root are isoquinoline alkaloids hydrastine, berberine, and canadine, and berberine likely accounts for the biological activities of goldenseal. Berberine has shown in vitro cytotoxic activity to HeLa human epitheliod cervix carcinoma, SK-OV-3 human ovarian carcinoma, HEp2 human laryngeal carcinoma, HT-29 human colorectal adenocarcinoma, MKN-45 human gastric cancer, HepG2 human hepatocellular carcinoma, MCF-7 and MDA-MB-231 human breast adenocarcinoma cell lines [565–568]. The cytotoxicity of berberine can be attributed to DNA intercalation [569–571] and modulation of the human epidermal growth factor receptor 2 (HER2)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway [572,573]. Berberine has also shown antibacterial activity against *Staphylococcus aureus* [238,574], and *Helicobacter pylori* [453]; antiparasitic activity against *Entamoeba histolytica*, *Giardia lamblia*, *Trichomonas vaginalis*, *Trypanosoma brucei*, *Trypanosoma congolense*, *Leishmania braziliensis panamensis*, *Leishmania major*, and *Plasmodium falciparum* [575–578]; and anti-inflammatory activity in a serotonin-induced mouse paw edema assay [579]. In a randomized, double-blind, placebo-controlled clinical trial with patients suffering from acute watery diarrhea due to cholera, berberine showed a significant reduction in stool volume compared to the placebo [580]. Several clinical studies have demonstrated antihyperlipidemic effects of berberine in humans [581].

3.6. *Juncus effusus* L.

Juncus effusus (common rush) is native to North and South America, Europe, Asia, and Africa [563]. There are numerous varieties and subspecies of *J. effusus* with at least two in eastern North America [582]. The Cherokee took a decoction of the plant as an emetic, while an infusion was used to wash babies to strengthen them and prevent lameness [15]. In Chinese Traditional Medicine (TCM), *J. effusus* is used as a sedative, anxiolytic, antipyretic, and to reduce swelling. Extracts of *J. effusus* have revealed several cinnamoylglycerides [252,253], cycloartane triterpenoids [255–257], phenanthrenes [258–264,266,267,269–272,583,584], and pyrenes [265,268]. Dehydroeffusol, effusol, and juncusol, phenanthrenes isolated from *J. effusus*, have shown anxiolytic and sedative effects in a mouse model [264,271], likely due to modulation of the gamma-amino butyric acid type A (GABA_A) receptor [272]. The GABA_A modulatory activity may account for the TCM use of *J. effusus* as a sedative and anxiolytic agent. Several *J. effusus* phenanthrenes have shown inhibition of NO production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells, indicating anti-inflammatory activity [270].
3.7. Panax quinquefolius L.

American ginseng (Panax quinquefolius) is a member of the Araliaceae and is native to eastern North America [585]. Ginseng root from P. ginseng or P. notoginseng, has been used for thousands of years in the Asian traditional medicine. Panax quinquefolius is currently cultivated in the United States, Canada, and China, and is used as a medical tonic worldwide. Native Americans have used P. quinquefolius for numerous medical problems as well as a general tonic [15], and European settlers had also utilized this plant for similar purposes [586]. The Cherokee used the root as an expectorant, to treat colic, oral thrush, and as a general tonic [15].

The phytochemistry and pharmacology of P. quinquefolius has been reviewed several times [333,339,341,342]. The major components in P. quinquefolius roots are triterpenoid glycosides, the ginsenosides, as well as several polyacetylenes. The ginsenosides have shown anti-inflammatory, antiproliferative, hepatoprotective, cardioprotective, neuroprotective, cholesterol-lowering, and cognitive improvement [340].

Several clinical trials have been carried out using P. quinquefolius extracts. In terms of cognitive function, a randomized, double-blind, placebo-controlled crossover trial, P. quinquefolius extract showed significant improvement in working memory, choice reaction time and “calmness” [587]. A clinical trial to study the effects of P. quinquefolius extract on cancer-related fatigue showed a promising significant trend in relieving fatigue [588]. Panax quinquefolius extracts were found to be clinically effective in preventing upper respiratory infections in healthy adult senior citizens [589,590].

3.8. Sanguinaria canadensis L.

Bloodroot (Sanguinaria canadensis, Papaveraceae) is native to eastern North America [591]. The plant has been used by Native Americans as a traditional medicine for a variety of ailments [455]. The Cherokee used a decoction of the root, in small doses, for coughs, lung inflammations, and croup, and a root infusion was used as a wash for ulcers and sores [15]. The roots are rich in isoquinoline alkaloids, including sanguinarine, chelerythrine, sanguilutine, chelilutine, sanguirubine, chelirubine, protopine, and allocryptopine [455]. The traditional Cherokee uses of bloodroot as a cough medicine/respiratory aid as well as for treating ulcers and sores can be attributed to the antimicrobial activities of the isoquinoline alkaloids [592]. Thus, for example, sanguinarine has shown antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) [593], biofilm-forming Candida spp. [594], Mycobacterium spp. [452], and Helicobacter pylori [453].

3.9. Scutellaria lateriflora L.

Infusions of the roots of blue skullcap (Scutellaria lateriflora, Lamiaceae) were used by the Cherokee for monthly periods and to treat diarrhea; root decoctions were used as an emetic to expel afterbirth and to remedy breast pains [15]. Interestingly, the aerial parts, rather than the roots, are currently used as an herbal medicine as an anxiolytic, sedative and antispasmodic [511,537,595,596].

The phytochemistry and pharmacology of S. lateriflora have been reviewed [469]. The secondary metabolites from the aerial parts of S. lateriflora are dominated by flavonoid glycosides (baicain, dihydrobaicain, lateriflorin, ikonnikoside I, scullarin (scutellarein-7-O-glucuronide), and oroxylin A-7-O-glucuronide, and 2-methoxy-chrysin-7-O-glucuronide), flavonoid aglycones (baicalein, oroxylin A, wogonin, and lateriflorein), phenylpropanoids (caffeic acid, cinnamic acid, p-coumaric acid, and ferulic acid), and clerodane diterpenoids (scutelaterin A, scutelaterin B, scutelaterin C, ajugapitin, and scutecyprol A) [469]. The essential oil from the aerial parts of S. lateriflora (collected in northern Iran) was composed largely of sesquiterpene hydrocarbons, δ-cadinene (27%), calamenene (15.2%), β-elemene (9.2%), α-cubenene (4.2%), α-humulene (4.2%), and α-bergamotene (2.8%) [470].

The flavonoids scullarin and baicain and the phenylpropanoid ferulic acid have shown in vitro estrogenic effects [597,598], and may be responsible for the traditional Cherokee uses of S. lateriflora.
Consistent with the current herbal medicinal use of *S. lateriflora*, the plant has shown anti-convulsant activity in rodent models of acute seizures, attributable to the flavonoid constituents [474]. Baicalin has shown anti-convulsant activity in pilocarpine-induced epileptic model in rats [599], while wogonin has shown anti-convulsant effects on chemically-induced and electroshock-induced seizures in rodents [600]. In addition, scutellarin has shown relaxant activity using rodent aorta models [601,602], while wogonin showed smooth muscle relaxant activity in rat aorta [603] and rat uterine smooth muscle [604]. On the other hand, both baicalin and baicalein inhibited NO-mediated relaxation of rat aortic rings [605]. Baicalein and baicalin have shown anxiolytic activity [606]. Apparently, baicalin and wogonin exert their anxiolytic effects through allosteric modulation of the GABA_A receptor by way of interaction at the benzodiazepine site [607,608]. Conversely, baicalein promotes anxiolytic effects via interaction with non-benzodiazepine sites of the GABA_A receptor [609]. There have apparently been no clinical trials on the root extracts of *S. lateriflora*.

However, in randomized, double-blind, placebo-controlled crossover clinical trials, the anxiolytic effects of *S. lateriflora* herbal treatments significantly enhanced overall mood without reducing cognition or energy [610,611].

4. Conclusions

This is not a complete list of the phytochemistry of Cherokee aromatic medicinal plants. Numerous plants described in the Cherokee ethnobotanical literature [15–24] have not been investigated for phytochemical constituents or pharmacological activity. In addition, in many instances the phytochemistry is not sufficiently characterized, particularly in terms of the plant tissues used in Cherokee traditional medicine. In this review, there are numerous instances where the phytochemical constituents and the biological activities associated with them correlate with the traditional Cherokee uses of the plant, but there are several instances where there is no apparent correlation. Therefore, much work is needed to add to our knowledge of the pharmacological properties of the chemical components, not to mention potential synergistic or antagonistic interactions.

Funding: This research received no external funding.

Acknowledgments: This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. *Molecules* **2016**, *21*, 559. [CrossRef] [PubMed]
2. Qin, G.; Xu, R. Recent advances on bioactive natural products from Chinese medicinal plants. *Med. Res. Rev.* **1998**, *18*, 375–382. [CrossRef]
3. Patwardhan, B.; Vaidya, A.D.B.; Chorghade, M. Ayurveda and natural products drug discovery. *Curr. Sci.* **2004**, *86*, 789–799.
4. Duke, J.A.; Bogenschutz-Godwin, M.J.; Ottesen, A.R. *Duke’s Handbook of Medicinal Plants of Latin America*; CRC Press: Boca Raton, FL, USA, 2009.
5. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. *Biotechnol. Adv.* **2015**, *33*, 1582–1614. [CrossRef] [PubMed]
6. DeCorte, B.L. Underexplored opportunities for natural products in drug discovery. *J. Med. Chem.* **2016**, *59*, 9295–9304. [CrossRef] [PubMed]
7. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. *J. Nat. Prod.* **2016**, *79*, 629–661. [CrossRef] [PubMed]
8. Pinheiro, L.C.S.; Feitosa, L.M.; da Silveira, F.F.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. *An. Acad. Bras. Cienc.* **2018**, *90*, 1251–1271. [CrossRef] [PubMed]
Bunkar, A.R. Therapeutic uses of Rauwolfia serpentina. Int. J. Adv. Sci. Res. 2017, 2, 23–26.

Monzote Fidalgo, L. Essential oil from Chenoaedium ambrosioides as a promising antileishmanial agent. Nat. Prod. Commun. 2007, 2, 1257–1262.

Cave, A.A. The Pequot War; University of Massachusetts Press: Amherst, MA, USA, 1996.

Roundtree, H.C. Pocahontas’s People: The Powhatan Indians of Virginia through Four Centuries; University of Oklahoma Press: Norman, OK, USA, 1990.

Ehle, J. Trail of Tears: The Rise and Fall of the Cherokee Nation; Anchor Books: New York, NY, USA, 1988.

Brown, D. Bury My Heart at Wounded Knee: An Indian History of the American West; Picador: New York, NY, USA, 2007.

Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998.

Hutchens, A.R. Indian Herbalogy of North America; Shambala Publications: Boulder, CO, USA, 1991.

Hamel, P.B.; Chilitoskey, M.U. Cherokee Plants and Their Uses—A 400 Year History; Herald Publishing Company: Sylva, NC, USA, 1975.

Garrett, J.T. The Cherokee Herbal; Bear & Company: Rochester, VT, USA, 2003.

Mooney, J. The sacred formulas of the Cherokees. In Seventh Annual Report of the Bureau of Ethnology; Powell, J.W., Ed.; Government Printing Office: Washington, DC, USA, 1891; pp. 301–397.

Banks, W.H. Ethnobotany of the Cherokee Indians. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 1953.

Cozzo, D.N. Ethnobotanical Classification System and Medical Ethnobotany of the Eastern Band of the Cherokee Indians. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2004.

Winston, D. Nvwoti; Cherokee medicine and ethnobotany. J. Am. Herb. Guild 2001, 2, 45–49.

Core, E.L. Ethnobotany of the southern Appalachian Aborigines. Econ. Bot. 1967, 21, 199–214. [CrossRef]

Ray, L.E. Podophyllum peltatum and observations on the Creek and Cherokee Indians: William Bartram’s preservation of Native American pharmacology. Yale J. Biol. Med. 2009, 82, 25–36. [PubMed]

Vanhaelen, M.; Lejoly, J.; Hanocq, M.; Molle, L. Climatic and geographical aspects of medicinal plant constituents. In The Medicinal Plant Industry; Wijesekera, R.O.B., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 59–76.

Royce, C.C. Map of the Former Territorial Limits of the Cherokee Nation of “Indians”; Map Showing the Territory Originally Assigned Cherokee “Nation of” Indians. Available online: https://www.loc.gov/item/99446145/ (accessed on 24 October 2018).

Abou-Zaid, M.M.; Nozzolillo, C. 1-O-galloyl-α-L-rhamnose from Acer rubrum. Phytochemistry 1999, 52, 1629–1631. [CrossRef]

Abou-Zaid, M.M.; Nelson, B.V.; Nozzolillo, C.; Arnason, J.T. Ethyl m-digallate from red maple, Acer rubrum L., as the major resistance factor to forest tent caterpillar, Malacosoma disstria Hbn. J. Chem. Ecol. 2001, 27, 2517–2527. [CrossRef] [PubMed]

Ma, H. Phytochemical and Biological Investigation of Gallotannins from Red Maple (Acer rubrum) Species. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2014.

Wan, C.; Yuan, T.; Xie, M.; Seeram, N.P. Acer rubrum phenolics include A-type procyandins and a chalcone. Biochem. Syst. Ecol. 2012, 44, 1–3. [CrossRef]

Wan, C.; Yuan, T.; Li, L.; Kandhi, V.; Cech, N.B.; Xie, M.; Seeram, N.P. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg. Med. Chem. Lett. 2012, 22, 597–600. [CrossRef] [PubMed]

Yuan, T.; Wan, C.; Liu, K.; Seeram, N.P. New maplexins F-I and phenolic glycosides from red maple (Acer rubrum) bark. Tetrahedron 2012, 68, 959–964. [CrossRef]

González-Sarrias, A.; Yuan, T.; Seeram, N.P. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem. Toxicol. 2012, 50, 1369–1376. [CrossRef] [PubMed]

Zhang, Y.; Ma, H.; Yuan, T.; Seeram, N.P. Red maple (Acer rubrum) aerial parts as a source of bioactive phenolics. Nat. Prod. Commun. 2015, 10, 1409–1412. [PubMed]

Bailey, A.E.; Asplund, R.O.; Ali, M.S. Isolation of methyl gallocate as the antitumor principle of Acer saccharinum. J. Nat. Prod. 1986, 49, 1149–1150. [CrossRef] [PubMed]

Bin Muhsinah, A.; Ma, H.; DaSilva, N.A.; Yuan, T.; Seeram, N.P. Bioactive glucitol-core containing gallotannins and other phytochemicals from silver maple (Acer saccharinum) leaves. Nat. Prod. Commun. 2017, 12, 83–84.
37. Falk, A.J.; Smolenski, S.J.; Bauer, L.; Bell, C.L. Isolation and identification of three new flavones from *Achillea millefolium* L. *J. Pharm. Sci.* 1975, 64, 1838–1842. [CrossRef] [PubMed]

38. Benetis, R.; Radušienė, J.; Janulis, V. Variability of phenolic compounds in flowers of *Achillea millefolium* wild populations in Lithuania. *Medicina* 2008, 44, 775–781. [CrossRef] [PubMed]

39. Glasl, S.; Mucaji, P.; Werner, I.; Presser, A.; Jurenitsch, J. Sesquiterpenes and flavonoid aglycones from a Hungarian taxon of the *Achillea millefolium* group. *Z. Naturforsch.* 2002, 57, 976–982. [CrossRef]

40. Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from *Achillea millefolium* L. and their bioactivity. *Acta Biochim. Pol.* 2011, 58, 203–209. [PubMed]

41. Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P. P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial *Achillea millefolium* L. and bioactivity of the methanolic extract, infusion and decoction. *Food Chem.* 2013, 141, 4152–4160. [CrossRef] [PubMed]

42. Dall’Acqua, S.; Bolego, C.; Cignarella, A.; Gaion, R.M.; Innocenti, G. Vasoprotective activity of standardized *Achillea millefolium* extract. *Phytomedicine* 2011, 18, 1031–1036. [CrossRef] [PubMed]

43. Tozyo, T.; Yoshimura, Y.; Sakurai, K.; Uchida, N.; Takeda, Y.; Nakai, H.; Ishi, H. Novel antitumor sesquiterpenoids in *Achillea millefolium*. *Chem. Pharm. Bull.* 1994, 42, 1096–1100. [CrossRef] [PubMed]

44. Innocenti, G.; Vegeto, E.; Dall’Acqua, S.; Ciana, P.; Giorgetti, M.; Agradi, E.; Sozzi, A.; Fico, G.; Tomè, F. In vitro estrogenic activity of *Achillea millefolium* L. *Phytotherapy* 2007, 14, 147–152. [CrossRef] [PubMed]

45. Pires, J.M.; Mendes, F.R.; Negri, G.; Duarte-Almeida, J.M.; Carlini, E.A. Antinociceptive peripheral effect of *Achillea millefolium* L. and *Artemisia vulgaris* L.: Both plants known popularly by brand names of analgesic drugs. *Phyther. Res.* 2009, 23, 212–219. [CrossRef] [PubMed]

46. Guédon, D.; Abbe, P.; Lamaison, J.L. Leaf and flower head flavonoids of *Achillea millefolium* L. subspecies. *Biochim. Syst. Ecol.* 1993, 21, 607–611. [CrossRef]

47. Csupor-Löffler, B.; Hajdú, Z.; Zupkó, I.; Réthy, B.; Falkay, G.; Forgo, P.; Hohmann, J. Antiproliferative effect of flavonoids and sesquiterpenoids from *Achillea millefolium* s.l. on cultured human tumour cell lines. *Phyther. Res.* 2009, 23, 672–676. [CrossRef] [PubMed]

48. Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of *Achillea millefolium* ssp. *millefolium* Afan. *Acta Biochim. Pol.* 2003, 50, 187–202. [CrossRef]

49. Santoro, G.F.; Cardoso, M.G.; Gustavo, L.; Guimarães, L.G.L.; Mendonça, L.Z.; Soares, M.J. *Trypanosoma cruzi*: Activity of essential oils from *Achillea millefolium* L., *Syzgium aromaticum* L. and *Ocimum basilicum* L. on epimastigotes and trypomastigotes. *Exp. Parasitol.* 2007, 116, 283–290. [CrossRef] [PubMed]

50. Bimbiraitė, K.; Ragžinskienė, O.; Maruška, A.; Kornýšova, O. Comparison of the chemical composition of four yarrow (*Achillea millefolium* L.) morphotypes. *Biologia* 2008, 54, 208–212. [CrossRef]

51. Boclevska, M.; Sovová, H. Supercritical CO₂ extraction of essential oil from yarrow. *J. Supercrit. Fluids* 2007, 40, 360–367. [CrossRef]

52. Barghamadi, A.; Mehrdad, M.; Sefidkon, F.; Yamini, Y.; Khajeh, M. Comparison of the volatiles of *Achillea millefolium* L. obtained by supercritical carbon dioxide extraction and hydrodistillation Methods. *J. Essent. Oil Res.* 2009, 21, 259–264. [CrossRef]

53. Figueiredo, A.C.; Barroso, J.G.; Pais, M.S.S.; Scheffer, J.J.C. Composition of the essential oils from leaves and flowers of *Achillea millefolium* L. ssp. *millefolium*. *Flavour Fragr. J.* 1992, 7, 219–222. [CrossRef]

54. Zhang, Z.; Li, S.; Zhang, S.; Gorenstein, D. Triterpenoid saponins from the fruits of *Aesculus pavia*. *Phytochemistry* 2006, 67, 784–794. [CrossRef] [PubMed]

55. Zhang, Z.; Li, S. Cytotoxic triterpenoid saponins from the fruits of *Aesculus pavia* L. *Phytochemistry* 2007, 68, 2073–2086. [CrossRef] [PubMed]

56. Sun, Z.; Zhang, M.; Wu, Y.; Wan, A.; Zhang, R. Bioactive saponins from the fruits of *Aesculus pavia* L. *Fitoterapia* 2011, 82, 1106–1109. [CrossRef] [PubMed]

57. Curir, P.; Galeotti, F.; Dolci, M.; Barile, E.; Lanzotti, V. Pavietin, a coumarin from *Aesculus pavia* with antifungal activity. *J. Nat. Prod.* 2007, 70, 1668–1671. [CrossRef] [PubMed]

58. Ferracini, C.; Curir, P.; Dolci, M.; Lanzotti, V.; Alma, A. *Aesculus pavia* foliar saponins: Defensive role against the leafminer *Cameraria ohridella*. *Pest Manag. Sci.* 2010, 66, 767–772. [CrossRef] [PubMed]

59. Lanzotti, V.; Termolino, P.; Dolci, M.; Curir, P. Paviosides A–H, eight new oleane type saponins from *Aesculus pavia* with cytotoxic activity. *Bioorg. Med. Chem.* 2012, 20, 3280–3286. [CrossRef] [PubMed]
60. Beier, R.C.; Norman, J.O.; Reagor, J.C.; Rees, M.S.; Mundy, B.P. Isolation of the major component in white snakeroot that is toxic after microsomal activation: Possible explanation of sporadic toxicity of white snakeroot plants and extracts. *Nat. Toxins* 1993, 1, 286–293. [CrossRef] [PubMed]

61. Lee, S.T.; Davis, T.Z.; Gerdner, D.R.; Stegelmeier, B.L.; Evans, T.J. Quantitative method for the measurement of three benzofuran ketones in rayless goldenrod (*Isocoma pluriflora*) and white snakeroot (*Ageratina altissima*) by high-performance liquid chromatography (HPLC). *J. Agric. Food Chem.* 2009, 57, 5639–5643. [CrossRef] [PubMed]

62. Lee, S.T.; Davis, T.Z.; Colegate, S.M.; Cook, D.; Green, B.T.; Meyerholtz, K.A.; Wilson, C.R.; Stegelmeier, B.L.; Evans, T.J. Tremetone and structurally related compounds in white snakeroot (*Ageratina altissima*): A plant associated with trembles and milk sickness. *J. Agric. Food Chem.* 2010, 58, 8560–8565. [CrossRef] [PubMed]

63. Fritsch, R.M.; Keusgen, M. Occurrence and taxonomic significance of cysteine sulphoxides in the genus *Allium* L. (*Alliaceae*). *Phytochemistry* 2006, 67, 1127–1135. [CrossRef] [PubMed]

64. Sobolewska, D.; Michalska, K.; Podolak, I.; Grabowska, K. Steroidal saponins from the genus *Allium*. *Phytochem. Rev.* 2016, 15, 1–35. [CrossRef] [PubMed]

65. Calvey, E.M.; White, K.D.; Matusik, J.E.; Sha, D.; Block, E. *Allium* chemistry: Identification of organosulfur compounds in ramp (*Allium triquetrum*) homogenates. *Phytochemistry* 1998, 49, 359–364. [CrossRef]

66. Chen, S.; Snyder, J.K. Molluscicidal saponins from *Allium vineale*. *Tetrahedron Lett.* 1987, 28, 5603–5606. [CrossRef]

67. Chen, S.; Snyder, J.K. Diosgenin-bearing molluscicidal saponins from *Allium vineale*. An NMR approach for the structural assignment of oligosaccharide units. *J. Org. Chem.* 1989, 54, 3679–3689. [CrossRef]

68. Demirtas, I.; Erenler, R.; Elmastas, M.; Goktasoglu, A. Studies on the antioxidant potential of flavones of garlic (*Allium sativum*). *Phytochem. Res.* 2006, 20, 219–227. [CrossRef] [PubMed]

69. Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The chemical compositions of the volatile oils of garlic (*Allium sativum*) and wild garlic (*Allium vineale*). *Foods* 2017, 6, 63. [CrossRef] [PubMed]

70. Li, H.; O’Neill, T.; Webster, D.; Johnson, J.A.; Gray, C.A. Anti-mycobacterial diynes from the Canadian medicinal plant *Aralia nudicaulis*. *J. Ethnopharmacol.* 2012, 140, 141–144. [CrossRef] [PubMed]

71. Davé, P.C.; Vogler, B.; Setzer, W.N. Chemical compositions of the leaf essential oils of *Aralia spinosa* from three habitats in Northern Alabama. *Am. J. Plant Sci.* 2011, 02, 507–510. [CrossRef]

72. Wolf, S.J.; Denford, K.E. Flavonoid variation in *Arnica cordifolia*: An apomictic polyploid complex. *Biochem. Syst. Ecol.* 1983, 11, 111–114. [CrossRef]

73. Merfort, I.; Wendisch, D. Sesquiterpene lactones of *Arnica cordifolia*, subgenus *austromontana*. *Phytochemistry* 1993, 34, 1436–1437. [CrossRef]

74. Nemattollahi, F.; Rustaiyan, A.; Larjani, K.; Madimi, M.; Masoudi, S. Essential oil composition of *Artemisia biennis* Willd. and *Pulicaria undulata* (L.) C.A. Mey., two Compositae herbs growing wild in Iran. *J. Essent. Oil Res.* 2006, 18, 339–341. [CrossRef]

75. Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of *Artemisia essential oils*. *Phytochemistry* 2008, 69, 1732–1738. [CrossRef] [PubMed]

76. Jeong, S.Y.; Jun, D.Y.; Kim, Y.H.; Min, B.-S.; Min, B.K.; Woo, M.H. Monoterpenoids from the aerial parts of *Aruncus dioicus* var. *kamtschaticus* and their antioxidant and cytotoxic activities. *Bioorg. Med. Chem. Lett.* 2011, 21, 3252–3256. [PubMed]

77. Han, C.R.; Jun, D.Y.; Woo, H.J.; Jeong, S.-Y.; Woo, M.-H.; Kim, Y.H. Induction of microtubule-damage, mitotic arrest, Bcl-2 phosphorylation, Bax activation, and mitochondria-dependent caspase cascade is involved in human Jurkat T-cell apoptosis by aruncin B from *Aruncus dioicus* var. *kamtschaticus*. *Bioorg. Med. Chem. Lett.* 2012, 22, 945–953. [CrossRef] [PubMed]

78. Zhao, B.T.; Jeong, S.Y.; Vu, V.D.; Min, B.S.; Kim, Y.H.; Woo, M.H. Cytotoxic and anti-oxidant constituents from the aerial parts of *Aruncus dioicus* var. *kamtschaticus*. *Nat. Prod. Sci.* 2013, 19, 66–70.

79. Vo, Q.H.; Nguyen, P.H.; Zhao, B.T.; Thi, Y.N.; Nguyen, D.H.; Kim, W.I.; Seo, U.M.; Min, B.S.; Woo, M.H. Bioactive constituents from the n-butanolic fraction of *Aruncus dioicus* var. *kamtschaticus*. *Nat. Prod. Sci.* 2014, 20, 274–280.
80. Fusani, P.; Piwowarski, J.P.; Zidorn, C.; Kiss, A.K.; Scartezzini, F.; Granica, S. Seasonal variation in secondary metabolites of edible shoots of Buck’s beard [Aruncus dioicus (Walter) Fernald (Rosaceae)]. Food Chem. 2016, 202, 23–30. [CrossRef] [PubMed]

81. Iwashina, T.; Kitajima, J. Chalcone and flavonol glycosides from Asarum canadense (Aristolochiaceae). Phytochemistry 2000, 55, 971–974. [CrossRef]

82. Bauer, L.; Bell, C.L.; Gearien, J.E.; Takeda, H. Constituents of the rhizome of Asarum canadense. J. Pharm. Sci. 1967, 56, 336–343. [CrossRef]

83. Motto, M.G.; Secord, N.J. Composition of the essential oil from Asarum canadense. J. Agric. Food Chem. 1985, 33, 789–791. [CrossRef]

84. Abe, F.; Yamauchi, T. An androstane bioside and 3’-thiazolidinone derivatives of doubly-linked cardenolide glycosides from the roots of Asclepias tuberosa. Chem. Pharm. Bull. 2000, 48, 991–993. [CrossRef] [PubMed]

85. Garneau, F.; Collin, G.; Gagnon, H. Chemical composition and stability of the hydrosols obtained during essential oil production. I. The case of Melissa officinalis L. and Asarum canadense L. Am. J. Essent. Oils Nat. Prod. 2014, 2, 54–62.

86. Abe, F.; Yamauchi, T. An androstane bioside and 3’-thiazolidinone derivatives of doubly-linked cardenolide glycosides from the roots of Asclepias tuberosa. Chem. Pharm. Bull. 2000, 48, 991–993. [CrossRef] [PubMed]

87. Warashina, T.; Noro, T. 8,14-Secopregnane glycosides from the aerial parts of Asclepias tuberosa. Phytochemistry 2011, 72, 1865–1875. [CrossRef] [PubMed]

88. Warashina, T.; Noro, T. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa. Chem. Pharm. Bull. 2000, 48, 1017–1022. [CrossRef] [PubMed]

89. Warashina, T.; Noro, T. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from roots of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts. Phytochemistry 2011, 72, 1865–1875. [CrossRef] [PubMed]

90. Warashina, T.; Umehara, K.; Miyase, T.; Noro, T. 8,12,8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts. Phytochemistry 2011, 72, 1865–1875. [CrossRef] [PubMed]

91. Lebreton, P.; Markham, K.R.; Swift, W.T., III; Mabry, T.J. Flavonoids of Baptisia australis (Leguminosae). Phytochemistry 1967, 6, 1675–1680. [CrossRef]

92. Markham, K.R.; Swift, W.T.; Mabry, T.J. A new isoflavone glycoside from Baptisia australis. J. Org. Chem. 1968, 33, 462–464. [CrossRef] [PubMed]

93. Fraser, A.M.; Robins, D.J. Incorporation of enantiomeric [1-2H]cadaverines into the quinolizidine alkaloids (+)-sparteine and (−)-N-methylcytisine in Baptisia australis. J. Chem. Soc. Chem. Commun. 1986, 1986, 545–547. [CrossRef]

94. Zenk, M.H.; Rueffer, M.; Amann, M.; Deus-Neumann, B. Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes. J. Nat. Prod. 1985, 48, 725–738. [CrossRef]

95. Woods, K.E.; Jones, C.D.; Setzer, W.N. Bioactivities and compositions of Betula nigra essential oils. J. Med. Act. Plants 2013, 2, 1–9.

96. Hua, Y.; Bentley, M.D.; Cole, B.J.W.; Murray, K.D.; Alford, A.R. Triterpenes from the outer bark of Betula nigra. J. Wood Chem. Technol. 1991, 11, 503–516. [CrossRef]

97. Wollenweber, E. Rare methoxy flavonoids from buds of Betula nigra. Phytochemistry 1976, 15, 438–439. [CrossRef]

98. Wollenweber, E. New flavonoids from Betula nigra. Phytochemistry 1977, 16, 295. [CrossRef]

99. Tellez, M.R.; Dayan, F.E.; Schrader, K.K.; Wedge, D.E.; Duke, S.O. Composition and some biological activities of the essential oil of Callicarpa americana (L.). J. Agric. Food Chem. 2000, 48, 3008–3012. [CrossRef] [PubMed]

100. Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [CrossRef] [PubMed]

101. Carroll, J.F.; Cantrell, C.L.; Klun, J.A.; Kramer, M. Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Exp. Appl. Acarol. 2007, 41, 215–224. [CrossRef] [PubMed]

102. Jones, W.P.; Lobo-Echeverri, T.; Mi, Q.; Chai, H.-B.; Soejarto, D.D.; Cordell, G.A.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic constituents from the fruiting branches of Callicarpa americana collected in southern Florida. J. Nat. Prod. 2007, 70, 372–377. [CrossRef] [PubMed]
103. Collins, R.P.; Chang, N.; Knaak, L.E. Anthocyanins in *Caulophyllum thalictroides*. *Am. Midl. Nat.* 1969, 82, 633–637. [CrossRef]

104. Miller, E.R.; Taylor, G.W.; Eskew, M.H. The volatile oil of *Caulophyllum thalictroides*. *J. Am. Chem. Soc.* 1914, 36, 2182–2187. [CrossRef]

105. Collins, R.P.; Halim, A.F. Essential leaf oils in *Caulophyllum thalictroides*. *Planta Med.* 1971, 20, 241–243. [CrossRef]

106. Akhlaghi, H. Chemical composition of the essential oil from flowers of *Caulophyllum thalictroides* L. var. oblongifolius (Nutt.) D.E. Boufford & S.A. Spongberg from Iran. *J. Pharm. Biomed. Anal.* 2014, 2, 111–114.

107. Akhlaghi, H. Chemical composition of the essential oil from stems of *Caulophyllum thalictroides* L. var. oblongifolius from Iran. *Chem. Nat. Compd.* 2008, 44, 661–662. [CrossRef]

108. Woldemariam, T.Z.; Betz, J.M.; Houghton, P.J. Analysis of aporphine and quinolizidine alkaloids from *Caulophyllum thalictroides* by densitometry and HPLC. *J. Pharm. Biomed. Anal.* 1997, 15, 839–843. [CrossRef]

109. Betz, J.M.; Andrzejewski, D.; Troy, A.; Casey, R.E.; Obermeyer, W.R.; Page, S.W.; Woldemariam, T.Z. Gas chromatographic determination of toxic quinolizidine alkaloids in blue cohosh *Caulophyllum thalictroides* (L.) Michx. *Phytochem. Anal.* 1998, 9, 232–236. [CrossRef]

110. Kennelly, E.J.; Flynn, T.J.; Mazzaola, E.P.; Roach, J.A.; McCloud, T.G.; Danford, D.E.; Betz, J.M. Detecting potential teratogenic alkaloids from blue cohosh rhizomes using an in vitro rat embryo culture. *J. Nat. Prod.* 1999, 62, 1385–1389. [CrossRef]

111. Ali, Z.; Khan, I.A. Alkaloids and saponins from blue cohosh. *Phytochemistry* 2008, 69, 1037–1042. [CrossRef]

112. Madgula, V.L.M.; Ali, Z.; Smillie, T.; Khan, I.; Walker, L.A.; Khan, S.I. Alkaloids and saponins as cytochrome P450 inhibitors from blue cohosh (*Caulophyllum thalictroides*) in an in vitro assay. *Planta Med.* 2009, 75, 329–332. [CrossRef]

113. Jhoo, J.-W.; Sang, S.; He, K.; Cheng, X.; Zhu, N.; Stark, R.E.; Zheng, Q.Y.; Rosen, R.T.; Ho, C.-T. Characterization of the triterpene saponins of the roots and rhizomes of blue cohosh (*Caulophyllum thalictroides*). *J. Agric. Food Chem.* 2001, 49, 5969–5974. [CrossRef]

114. Matsuo, Y.; Watanabe, K.; Mimaki, Y. Triterpene glycosides from the underground parts of *Caulophyllum thalictroides*. *J. Nat. Prod.* 2009, 72, 1155–1160. [CrossRef]

115. Lee, Y.; Jung, J.-C.; Ali, Z.; Khan, I.A.; Oh, S. Anti-inflammatory effect of triterpene saponins isolated from blue cohosh (*Caulophyllum thalictroides*). *Evid. Based Complement. Altern. Med.* 2012, 2012, 798192. [CrossRef]

116. Warnhoff, E.W.; Pradhan, S.K.; Ma, J.C. *Ceanothus* alkaloids I. Isolation, separation, and characterization. *Can. J. Chem.* 1965, 53, 2594–2602. [CrossRef]

117. Klein, F.K.; Rapoport, H. *Ceanothus* alkaloids. Americine. *J. Am. Chem. Soc.* 1968, 90, 2398–2404. [CrossRef]

118. Servis, R.E.; Kosak, A.I.; Tschesche, R.; Frohberg, E.; Fehlhaber, H.-W. Peptide alkaloids from *Ceanothus americanus* L. (Rhamnaceae). *J. Am. Chem. Soc.* 1969, 91, 5619–5624. [CrossRef]

119. Steinberg, K.M.; Satyal, P.; Setzer, W.N. Chemical composition of the bark essential oil of *Cercis canadensis* L. (Fabaceae). *Am. J. Essent. Oils Nat. Prod.* 2017, 5, 15–17. [CrossRef]

120. Bowers, M.D.; Boockvar, K.; Collinge, S.K. Iridoid glycosides of *Chelone glabra* (Scrophulariaceae) and their sequestration by larvae of a sawfly, *Tenthredo grandis* (Tenthredinidae). *J. Chem. Ecol.* 1993, 19, 815–823. [CrossRef]

121. St. Pyrek, J. Sesquiterpene lactones of *Cinchorium intybus* and *Leontodon autumnalis*. *Phytochemistry* 1985, 24, 186–188. [CrossRef]

122. Kisiel, W.; Zielinska, K. Guaianolides from *Cichorium intybus* and structure revision of *Cichorium* sesquiterpene lactones. *Phytochemistry* 2001, 57, 523–527. [CrossRef]

123. Bischoff, T.A.; Kelley, C.J.; Karchesy, Y.; Laurantos, M.; Nguyen-Dinh, P.; Arefi, A.G. Antimalarial activity of lactucin and lactucopicrin: Sesquiterpene lactones isolated from *Cichorium intybus* L. *J. Ethnopharmacol.* 2004, 95, 455–457. [CrossRef] [PubMed]

124. Wesołowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. *J. Ethnopharmacol.* 2006, 107, 254–258. [CrossRef] [PubMed]
125. Nørbaek, R.; Nielsen, K.; Kondo, T. Anthocyanins from flowers of Cichorium intybus. Phytochemistry 2002, 60, 357–359. [CrossRef]

126. He, K.; Zheng, B.; Kim, C.H.; Rogers, L.; Zheng, Q. Direct analysis and identification of triterpene glycosides by LC/MS in black cohosh, Cimicifuga racemosa, and in several commercially available black cohosh products. Planta Med. 2000, 66, 635–640. [CrossRef] [PubMed]

127. Bedir, E.; Khan, I.A. Cimicaroneside A: A new cyclolanostanol xyloside from the rhizome of Cimicifuga racemosa. Chem. Pharm. Bull. 2000, 48, 425–427. [CrossRef] [PubMed]

128. Watanabe, K.; Mimaki, Y.; Sakagami, H.; Sashida, Y. Cycloartane glycosides from the rhizomes of Cimicifuga racemosa. J. Nat. Prod. 2000, 63, 905–910. [CrossRef] [PubMed]

129. Li, W.; Chen, S.; Fabricant, D.S.; Angerhofer, C.K.; Fong, H.S.; Farnsworth, N.R.; Fitzloff, J.F. High-performance liquid chromatographic analysis of black cohosh (Cimicifuga racemosa) constituents with in-line evaporative light scattering and photodiode array detection. Anal. Chim. Acta 2002, 471, 61–75. [CrossRef]

130. Nuntanakorn, P.; Jiang, B.; Einbond, L.S.; Yang, H.; Kronenberg, F.; Weinstein, I.B.; Kennelly, E.J. Polyphenolic constituents of Actaea racemosa. Journal Nat. Prod. 2006, 69, 314–318. [CrossRef] [PubMed]

131. Gödecke, T.; Larkin, D.C.; Nikolic, D.; Chen, S.-N.; van Breemen, R.B.; Farnsworth, N.R.; Pauli, G.F. Guanidine alkaloids and Pictet-Spengler adducts from black cohosh (Cimicifuga racemosa). J. Nat. Prod. 2009, 72, 433–437. [CrossRef] [PubMed]

132. Azimova, S.S.; Gluchenkova, A.I. (Eds.) Collinsonia canadensis L. In Lipids, Lipophilic Components and Essential Oils from Plant Sources; Springer: London, UK, 2012; p. 401.

133. Joshi, B.S.; Moore, K.M.; Pelletier, S.W.; Puar, M.S.; Pramanik, B.N. Saponins from Collinsonia canadensis. J. Nat. Prod. 1992, 55, 1468–1474. [CrossRef]

134. Stevens, J.F.; Ivancic, M.; Deinzer, M.L.; Wollenweber, E. A novel 2-hydroxyflavanone from Collinsonia canadensis. J. Nat. Prod. 1999, 62, 392–394. [CrossRef] [PubMed]

135. Hutton, K. A Comparative Study of the Plants Used for Medicinal Purposes by the Creek and Seminole Tribes. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2010.
147. Mukhtar, N.; Iqbal, K.; Anis, I.; Malik, A. Sphingolipids from Conyza canadensis. Phytochemistry 2002, 61, 1005–1008. [CrossRef]
148. Mukhtar, N.; Iqbal, K.; Malik, A. Sphingolipids from Conyza canadensis. Chem. Pharm. Bull. 2002, 50, 1558–1560. [PubMed]
149. Yan, M.M.; Li, T.Y.; Zhao, D.Q.; Shao, S.; Bi, S.N. A new derivative of triterpene with anti-melanoma B16 activity from Conyza canadensis. Chin. Chem. Lett. 2010, 21, 834–837. [CrossRef]
150. Shakirullah, M.; Ahmad, H.; Shah, M.R.; Imitiaz, A.; Ishaq, M.; Khan, N.; Badshah, A.; Khan, I. Antimicrobial activities of conyzolide and conyzoflavone from Conyza canadensis. J. Enzyme Inhib. Med. Chem. 2011, 26, 468–471. [PubMed]
151. Xie, W.D.; Gao, X.; Jia, Z.J. A new C-10 acetylene and a new triterpenoid from Conyza canadensis. Arch. Pharm. Res. 2007, 30, 547–551. [PubMed]
152. Pawlaczyk, I.; Czerchawski, L.; Kuliczkowski, W.; Karolko, B.; Pilecki, W.; Witkiewicz, W.; Ganczarz, R. Anticoagulant and anti-platelet activity of polyphenolic-polysaccharide preparation isolated from the medicinal plant Erigeron canadensis L. Thromb. Res. 2011, 127, 328–340. [CrossRef] [PubMed]
153. Queiroz, S.C.N.; Cantrell, C.L.; Duke, S.O.; Moraes, R.M.; Cerdeira, A.L. Bioassay-directed isolation and identification of phytotoxic terpenoids from horseweed (Conyza canadensis) and their inhibitory effects on catecholamine secretion. J. Nat. Prod. 2010, 73, 270–274. [CrossRef] [PubMed]
154. Porto, R.S.; Rath, S.; Queiroz, S.C.N. Conyza canadensis: Green extraction method of bioactive compounds and evaluation of their antifungal activity. J. Braz. Chem. Soc. 2017, 28, 913–919. [CrossRef]
155. Banday, J.A.; Farooq, S.; Qurishi, M.A.; Koul, S.; Razdan, T.K. Salicylic acid and methyl gallate from the roots of Conyza canadensis. Int. J. Chem. Anal. Sci. 2012, 3, 2–5.
156. Banday, J.A.; Farooq, S.; Qurishi, M.A.; Koul, S.; Razdan, T.K. Conyzagenin-A and B, two new epimeric lanostane triterpenoids from Conyza canadensis. Nat. Prod. Res. 2013, 27, 975–981. [CrossRef] [PubMed]
157. Curini, M.; Bianchi, A.; Epifano, F.; Bruni, R.; Torta, L.; Zambonelli, A. Compotion and in vitro antifungal activity of essential oils of Erigeron canadensis and Myrtus communis from France. Chem. Nat. Compd. 2003, 39, 191–194. [CrossRef]
158. Lis, A.; Góra, J. Chemical composition variability of the essential oil of Conyza canadensis. J. Essent. Oil Res. 2003, 15, 364–367. [CrossRef]
159. Tzakou, O.; Vagias, C.; Gani, A.; Yannitsaras, A. Volatile constituents of essential oils isolated at different growth stages from three Conyza species growing in Greece. Flavour Fragr. J. 2005, 20, 425–428. [CrossRef]
160. Lis, A.; Góra, J. Essential oil of Conyza canadensis (L.) Cronq. J. Essent. Oil Res. 2000, 12, 781–783. [CrossRef]
161. Stoyanova, A.; Georgiev, E.; Kermedchieva, D.; Lis, A.; Gora, J. Changes in the essential oil of Conyza canadensis (L.) Cronquist during its vegetation. J. Essent. Oil Res. 2003, 15, 44–45. [CrossRef]
162. Rustaiyan, A.; Azar, P.A.; Moradalizadeh, M.; Masoudi, S.; Ameri, N. Volatile constituents of three Compositae herbs: Anthemis altissima L. var altissima, Conyza canadensis (L.) Cronq. and Grantina aucieri Boiss. growing wild in Iran. J. Essent. Oil Res. 2004, 16, 579–581. [CrossRef]
163. Miyazawa, M.; Yamamoto, K.; Kameoka, H. The essential oil of Erigeron canadensis L. J. Essent. Oil Res. 1992, 4, 227–230. [CrossRef]
164. Choi, H.-J.; Want, H.-Y.; Kim, Y.-N.; Heo, S.-J.; Kim, N.-K.; Jeong, M.-S.; Park, Y.-H.; Kim, S. Composition and cytotoxicity of essential oil extracted by steam distillation from horseweed (Erigeron canadensis L.) in Korea. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 55–59.
169. Veres, K.; Csopers-Löffler, B.; Lázár, A.; Hohmann, J. Antifungal activity and composition of essential oils of *Conyza canadensis* herbs and roots. *Sci. World J.* 2012, 2012. [CrossRef] [PubMed]
170. Liu, Y.; Du, D.; Liang, Y.; Xin, G.; Huang, B.-Z.; Huang, W. Novel polyacetylenes from *Coreopsis tinctoria* Nutt. *J. Asian Nat. Prod. Res.* 2015, 17, 744–749. [CrossRef] [PubMed]
171. Lam, S.-C.; Lam, S.-F.; Zhao, J.; Li, S.-P. Rapid identification and comparison of compounds with antioxidant activity in *Coreopsis tinctoria* herbal tea by high-performance thin-layer chromatography coupled with DPPH bioautography and densitometry. *J. Food Sci.* 2016, 81, C2218–C2223. [CrossRef] [PubMed]
172. Zhang, Y.; Shi, S.; Zhao, M.; Chai, X.; Tu, P. Coreosides A-D, C14-polyacetylene glycosides from the capitula of *Coreopsis tinctoria* and its anti-inflammatory activity against COX-2. *Fitoterapia* 2013, 87, 93–97. [CrossRef] [PubMed]
173. Guo, J.; Wang, A.; Yang, K.; Ding, H.; Hu, Y.; Yang, Y.; Huang, S.; Xu, J.; Liu, T.; Yang, H.; et al. Isolation, characterization and antimicrobial activities of polyacetylene glycosides from *Coreopsis tinctoria* Nutt. *Phytochemistry* 2017, 136, 65–69. [CrossRef] [PubMed]
174. Du, D.; Jin, T.; Xing, Z.-H.; Hu, L.-Q.; Long, D.; Li, S.-F.; Gong, M. One new linear C14 polyacetylene glucoside with antiadipogenic activities on 3T3-L1 cells from the capitula of *Coreopsis tinctoria*. *J. Asian Nat. Prod. Res.* 2016, 18, 784–790. [CrossRef] [PubMed]
175. Dias, T.; Liu, B.; Jones, P.; Houghton, P.J.; Mota-Filipe, H.; Paulo, A. Cytoprotective effect of *Coreopsis tinctoria* extracts and flavonoids on 3T3-L1 cell and cytokine-induced cell injury in pancreatic MIN6 cells. *J. Ethnopharmacol.* 2012, 139, 485–492. [CrossRef] [PubMed]
176. Zhang, Y.; Shi, S.; Zhao, M.; Jiang, Y.; Tu, P. A novel chalcone from *Coreopsis tinctoria* Nutt. *Biochem. Syst. Ecol.* 2006, 34, 766–769. [CrossRef]
177. Dias, T.; Bronze, M.R.; Houghton, P.J.; Mota-Filipe, H.; Paulo, A. The flavonoid-rich fraction of *Coreopsis tinctoria* promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats. *J. Ethnopharmacol.* 2010, 132, 483–490. [CrossRef] [PubMed]
178. Abdureyim, A.; Abilz, M.; Sultan, A.; Eshbakova, K.A. Phenolic compounds from the flowers of *Coreopsis tinctoria*. *Chem. Nat. Compd.* 2013, 48, 1085–1086. [CrossRef]
179. Ma, Z.; Zheng, S.; Han, H.; Meng, J.; Yang, X.; Zeng, S.; Zhou, H.; Jiang, H. The bioactive components of *Coreopsis tinctoria* (Asteraceae) capitula: Antioxidant activity in vitro and profile in rat plasma. *J. Funct. Foods* 2016, 20, 575–586. [CrossRef]
180. Chen, L.X.; Hu, D.J.; Lam, S.C.; Ge, L.; Wu, D.; Zhao, J.; Long, Z.R.; Yang, W.J.; Fan, B.; Li, S.P. Comparison of antioxidant activities of different parts from snow chrysanthemum (*Coreopsis tinctoria* Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2’-azinobis(3-ethylbenzthiazoline-sulfonic acid)di ammonium salt-based assay. *J. Chromatogr. A* 2016, 1428, 134–142. [PubMed]
181. Deng, Y.; Lam, S.-C.; Zhao, J.; Li, S.-P. Quantitative analysis of flavonoids and phenolic acid in *Coreopsis tinctoria* Nutt. by capillary zone electrophoresis. *Electrophoresis* 2017, 38, 2654–2661. [CrossRef] [PubMed]
182. Yang, Y.; Sun, X.; Liu, J.; Kang, L.; Chen, S.; Ma, B.; Guo, B. Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (*Coreopsis tinctoria* Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. *Molecules* 2016, 21, 1307. [CrossRef] [PubMed]
183. Zálaru, C.; Crișan, C.C.; Călinescu, I.; Moldovan, Z.; Țârcomnicu, I.; Litescu, S.C.; Tatia, R.; Moldovan, L.; Boda, D.; Iovu, M. Polyphenols in *Coreopsis tinctoria* Nutt. fruits and the plant extracts antioxidant capacity evaluation. *Cent. Eur. J. Chem.* 2014, 12, 858–867. [CrossRef]
184. Wang, T.; Xi, M.; Guo, Q.; Wang, L.; Shen, Z. Chemical components and antioxidant activity of volatile oil of a Compositae tea (*Coreopsis tinctoria* Nutt.) from Mt. Kunlun. *Ind. Crops Prod.* 2015, 67, 318–323. [CrossRef]
185. Hostettmann, K.; Hostettmann-Kaldas, M.; Nakamishi, K. Molluscicidal saponins from *Cannabis sativa* Nutt. *Biochem. Syst. Ecol.* 1978, 61, 1990–1995. [CrossRef]
186. Robins, R.J.; Abraham, T.W.; Parr, A.J.; Eagles, J.; Walton, N.J. The biosynthesis of tropane alkaloids in *Datura stramonium*: The identity of the intermediates between N-methylpyrrolinium salt and tropinone. *J. Am. Chem. Soc.* 1997, 119, 10929–10934. [CrossRef]
187. Monforte-González, M.; Ayora-Talavera, T.; Maldonado-Mendoza, E.; Loyola-Vargas, V.M. Quantitative analysis of serpentine and ajmaline in plant tissues of *Catharanthus roseus* and hyoscyamine and scopolamine in root tissues of *Datura stramonium* by thin layer chromatography-densitometry. *Phytochem. Anal.* 1992, 3, 117–121. [CrossRef]
188. Lanfranchi, D.A.; Tomi, F.; Casanova, J. Enantiomeric differentiation of atropine/hyoscyamine by 13C NMR spectroscopy and its application to Datura stramonium extract. Phytochem. Anal. 2010, 21, 597–601. [CrossRef] [PubMed]
189. Mroczek, T.; Głowniak, K.; Kowalska, J. Solid-liquid extraction and cation-exchange solid-phase extraction using a mixed-mode polymeric sorbent of Datura and related alkaloids. J. Chromatogr. A 2006, 1107, 9–18. [CrossRef] [PubMed]
190. Fallas, A.L.; Thomson, R.H. Ebenaceae extractives. Part III. Binaphthaquinones from Diospyros species. J. Chem. Soc. C Org. 1968, 1968, 2279–2282. [CrossRef]
191. Rashed, K.; Cirić, A.; Glamočlija, J.; Soković, M. Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Ind. Crops Prod. 2014, 59, 210–215. [CrossRef]
192. Wang, X.; Habib, E.; León, F.; Radwan, M.M.; Tabanca, N.; Gao, J.; Wedge, D.E.; Cutler, S.J. Antifungal metabolites from the roots of Diospyros virginiana by overpressure layer chromatography. Chem. Biodivers. 2011, 8, 2331–2340. [CrossRef] [PubMed]
193. Kiss, A.; Kowalski, J.; Melzig, M.F. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN. Planta Med. 2004, 70, 919–923. [CrossRef] [PubMed]
194. Kiss, A.; Kowalski, J.; Melzig, M.F. Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmacia 2006, 61, 66–69. [PubMed]
195. Ramstead, A.G.; Schepetkin, I.A.; Quinn, M.T.; Jutila, M.A. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PLoS ONE 2012, 7, e50546. [CrossRef] [PubMed]
196. Baert, N.; Karonen, M.; Salminen, J.P. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1419, 26–36. [CrossRef] [PubMed]
197. Baert, N.; Kim, J.; Karonen, M.; Salminen, J.P. Inter-population and inter-organ distribution of the main polyphenolic compounds of Epilobium angustifolium. Phytochemistry 2017, 134, 54–63. [CrossRef] [PubMed]
198. Park, B.-J.; Tomohiko, M. Feruloyl, caffeoyl, and flavonol glucosides from Equisetum hyemale. Chem. Nat. Compd. 2011, 47, 363–365. [CrossRef]
199. Jin, M.; Zhang, C.; Zheng, T.; Yao, D.; Shen, L.; Luo, J.; Jiang, Z.; Ma, J.; Jin, X.-J.; Cui, J.; et al. A new phenyl glycoside from the aerial parts of Equisetum hyemale. Nat. Prod. Res. 2014, 28, 1813–1818. [CrossRef] [PubMed]
200. Price, J.I. An in vitro evaluation of the Native American ethnomedicinal plant Eryngium yuccifolium as a treatment for snakebite envenomation. J. Intercult. Ethnopharmacol. 2016, 5, 219–225. [CrossRef] [PubMed]
201. Yarnell, E.; Abascal, K. Natural approaches to treating chronic prostatitis and chronic pelvic pain syndromes. Altern. Complement. Ther. 2005, 11, 246–251. [CrossRef]
202. Ayoub, N.; Al-Azizi, M.; König, W.; Kubeczka, K.H. Essential oils and a novel polyacetylene from Eryngium yuccifolium Michaux. (Apiaceae). Flavour Fragr. J. 2006, 21, 864–868. [CrossRef]
203. Zhang, Z.; Li, S.; Ownby, S.; Wang, P.; Yuan, W.; Zhang, W.; Beasley, R.S. Phenolic compounds and rare polyhydroxylated triterpenoid saponins from Eryngium yuccifolium. Phytochemistry 2008, 69, 2070–2080. [CrossRef] [PubMed]
204. Wang, P.; Yuan, W.; Deng, G.; Su, Z.; Li, S. Triterpenoid saponins from Eryngium yuccifolium “Kershaw Blue”. Phytochem. Lett. 2013, 6, 306–309. [CrossRef]
205. Wang, P.; Su, Z.; Yuan, W.; Deng, G.; Li, S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm. Crop. 2012, 3, 99–120. [CrossRef]
206. Cavallito, C.J.; Haskell, T.H. α-Methylene butyrolactone from Erythronium americanum. J. Am. Chem. Soc. 1946, 68, 2332–2334. [CrossRef] [PubMed]
207. Tsuda, Y.; Marion, L. The alkaloids of Eupatorium maculatum L. Can. J. Chem. 1963, 41, 1919–1924. [CrossRef]
208. Wiedenfeld, H.; Hösch, G.; Roeder, E.; Dingermann, T. Lycopsamine and cumambrin B from Eupatorium maculatum. Pharmazie 2009, 64, 415–416. [PubMed]
209. Maas, M.; Hensel, A.; Da Costa, F.B.; Brun, R.; Kaiser, M.; Schmidt, T.J. An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry 2011, 72, 635–644. [CrossRef] [PubMed]
210. Herz, W.; Kalyanaraman, P.S.; Ramakrishnan, G.; Blount, J.F. Sesquiterpene lactones of Eupatorium perfoliatum. J. Org. Chem. 1977, 42, 2264–2271. [CrossRef] [PubMed]

211. Habtemariam, S. Activity-guided isolation and identification of free radical-scavenging components from ethanolic extract of boneset (leaves of Eupatorium perfoliatum). Nat. Prod. Commun. 2008, 3, 1317–1320.

212. Maas, M.; Deters, A.M.; Hensel, A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J. Ethnopharmacol. 2011, 137, 371–381. [CrossRef] [PubMed]

213. Maas, M.; Petereit, F.; Hensel, A. Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules 2009, 14, 36–45. [CrossRef] [PubMed]

214. Herz, W. Chemistry of the Eupatoriinae. Biochem. Syst. Ecol. 2011, 39, 1115–1137. [CrossRef]

215. Hensel, A.; Maas, M.; Sendker, J.; Lechtenberg, M.; Petereit, F.; Deters, A.; Schmidt, T.; Stark, T. Eupatorium perfoliatum L.: Phytochemistry, traditional use and current applications. J. Ethnopharmacol. 2011, 138, 641–651. [CrossRef] [PubMed]

216. Lewis, N.G.; Inciong, M.E.J.; Ohashi, H.; Towers, G.H.N.; Yamamoto, E. Exclusive accumulation of Z-isomers of monolignols and their glucosides in bark of Fagus grandifolia. Phytochemistry 1988, 27, 2119–2121. [CrossRef]

217. Stout, G.H.; Balkenhol, W.J. Xanthones of the Gentianaceae-I: Frasera caroliniensis. Tetrahedron 1969, 25, 1947–1960. [CrossRef]

218. Aberham, A.; Pieri, V.; Croom, E.M.; Ellmerer, E.; Stuppner, H. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. J. Pharm. Biomed. Anal. 2011, 54, 517–525. [CrossRef] [PubMed]

219. Eyles, A.; Jones, W.; Riedl, K.; Cipollini, D.; Schwartz, S.; Chan, K.; Herms, D.A.; Bonello, P. Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and two North American ash species (Fraxinus americana and Fraxinus pennsylvanica). J. Chem. Ecol. 2007, 33, 1430–1448. [CrossRef] [PubMed]

220. Takenaka, Y.; Tanahashi, T.; Shintaku, M.; Sakai, T.; Nagakura, N. Parida Secoiridoid glucosides from Parida in Eupatorium perfoliatum L.: Phytochemistry, traditional use and current applications. J. Ethnopharmacol. 2011, 39, 1115–1137. [CrossRef] [PubMed]

221. Aybek, A.; Zhou, J.; Malik, A.; Umar, S.; Xiao, Z. Catechins and proanthocyanidins from seeds of Fraxinus americana. Chem. Nat. Compd. 2015, 51, 565–567. [CrossRef]

222. Gallardo, A.; Picollo, M.I.; González-Audino, P.; Mougabure-Cueto, G. Insecticidal activity of individual and mixed monoterpenoids of Geranium essential oil against Pediculus humanus capitis (Phthiraptera: Pediculidae). J. Med. Entomol. 2012, 49, 332–335. [CrossRef] [PubMed]

223. Sánchez-Tena, S.; Fernández-Cachón, M.L.; Carreras, A.; Mateos-Martín, M.L.; Costoya, N.; Moyer, M.P.; Nuñez, M.J.; Torres, J.L.; Cascante, M. Hamamelitannin from witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells. J. Nat. Prod. 2012, 75, 26–33. [CrossRef] [PubMed]

224. Duckstein, S.M.; Stintzing, F.C. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS. Anal. Bioanal. Chem. 2011, 401, 677–688. [CrossRef] [PubMed]

225. Dauer, A.; Rimpler, H.; Hensel, A. Polymeric proanthocyanidins from the bark of Hamamelis virginiana. Planta Med. 2003, 69, 89–91. [CrossRef] [PubMed]

226. Touriño, S.; Lizárraga, D.; Carreras, A.; Lorenzo, S.; Ugartondo, V.; Mitjans, M.; Vinardell, M.P.; Julia, L.; Cascante, M.; Torres, J.L. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: Electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem. Res. Toxicol. 2008, 21, 696–704. [CrossRef] [PubMed]

227. Hartisch, C.; Kolodziej, H. Galloylhamameloses and proanthocyanidins from Hamamelis virginiana. Phytochemistry 1996, 42, 191–198. [CrossRef]

228. Lucas, R.A.; Smith, R.G.; Dorfman, L. The isolation of dihydromexicanin E from Helenium autumnale L. J. Org. Chem. 1964, 29, 2101. [CrossRef]

229. Herz, W.; Subramaniam, P.S.; Dennis, N. Constituents of Helenium species. XXIII. Stereochemistry of flexuosin A and related compounds. J. Org. Chem. 1969, 34, 2915–2917. [CrossRef]

230. Herz, W.; de Vivar, A.R.; Romo, J.; Viswanathan, N. Constituents of Helenium species. XIII. The structure of helenalin and mexicanin A. J. Am. Chem. Soc. 1963, 85, 19–26. [CrossRef]

231. Herz, W.; Subramaniam, P.S. Pseudoguianolides in Helenium autumnale from Pennsylvania. Phytochemistry 1972, 11, 1101–1103. [CrossRef]
232. Lee, K.-H.; Meck, R.; Piantadosi, C.; Huang, E.-S. Antitumor agents. 4. Cytotoxicity and in vivo activity of helenalin esters and related derivatives. J. Med. Chem. 1973, 16, 299–301. [CrossRef] [PubMed]

233. Furukawa, H.; Lee, K.-H.; Shingu, T.; Meck, R.; Piantadosi, C. Carolinen and carolalenin, two new guaianolides in Helenium autumnale L. from North Carolina. J. Org. Chem. 1973, 38, 1722–1725. [CrossRef] [PubMed]

234. Pettit, G.R.; Budzinski, J.C.; Cragg, G.M.; Brown, P.; Johnston, L.D. Antineoplastic agents. 34. Strophanthin and related compounds. J. Nat. Prod. 1986, 49, 51–59. [CrossRef]

235. Kozuka, M.; Lee, K.-H.; McPhail, A.T.; Onan, K.D. Structure and absolute stereochemistry of dihydroflorilinanol, a new sesquiterpene lactone from Florida Helenium autumnale L. Chem. Pharm. Bull. 1975, 23, 1895–1897. [CrossRef]

236. Furukawa, H.; Itsigawa, M.; Kumagai, N.; Ito, K.; McPhail, A.T.; Onan, K.D. Isolation and structure determination of 4-O-tigloyl-1,13-dihydroautoinolide, a new sesquiterpene lactone from North Carolina Helenium autumnale L. Chem. Pharm. Bull. 1978, 25, 1335–1337. [CrossRef]

237. Gentry, E.J.; Jampani, H.B.; Keshavarz-Shokri, A.; Morton, M.D.; Vander Velde, D.; Telikepalli, H.; Mitscher, L.A.; Shawar, R.; Humble, D.; Baker, W. Antitubercular natural products: Berberine from the roots of commercial Hydrastis canadensis powder. Isolation of inactive 8-oxotetrahydrothalifendine, canadine, β-hydрастine, and two new quinic acid esters, hycandic acid esters-1 and -2. J. Nat. Prod. 1996, 59, 1187–1193. [CrossRef] [PubMed]

238. Scassacchio, F.; Cometa, M.F.; Tomassini, L.; Palmery, M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med. 2001, 67, 561–564. [CrossRef] [PubMed]

239. Chadwick, L.R.; Wu, C.D.; Kinghorn, A.D. Isolation of alkaloids from goldenseal (Hydrastis canadensis rhizomes) using pH-zone refining countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 2445–2453. [CrossRef]

240. Le, P.M.; McCooye, M.; Windust, A. Characterization of the alkaloids in goldenseal (Hydrastis canadensis) root by high resolution Orbitrap LC-MSn. Anal. Bioanal. Chem. 2013, 405, 4487–4498. [CrossRef] [PubMed]

241. Leyte-Lugo, M.; Britton, E.R.; Foil, D.H.; Brown, A.R.; Todd, D.A.; Rivera-Chavez, J.; Oberlies, N.H.; Cech, N.B. Secondary metabolites from the leaves of the medicinal plant goldenseal (Hydrastis canadensis). Phytochim. Lett. 2017, 20, 54–60. [CrossRef] [PubMed]

242. Junio, H.A.; Sy-Cordero, A.A.; Ettefagh, K.A.; Burnes, J.T.; Micko, K.T.; Graf, T.N.; Richter, S.J.; Cannon, R.E.; Oberlies, N.H.; Cech, N.B. Synergy-directed fractionation of botanical medicines: A case study with goldenseal (Hydrastis canadensis). J. Nat. Prod. 2011, 74, 1621–1629. [CrossRef] [PubMed]

243. Babka, H.L.; Hillwig, M.L.; Price, J.; Maury, W.; Harslan, H.; Wu, L.; Wurtele, E.S. Hypericum gentianoides produces bioactive compounds in schizogenously formed glands. Microsc. Microanal. 2010, 16, 1160–1161. [CrossRef]

244. Crispin, M.C.; Hur, M.; Park, T.; Kim, Y.H.; Wurtele, E.S. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides. Physiol. Plant. 2013, 148, 354–370. [CrossRef] [PubMed]

245. Hillwig, M.L.; Hammer, K.D.P.; Birt, D.F.; Wurtele, E.S. Characterizing the metabolic fingerprint and anti-inflammatory activity of Hypericum gentianoides. J. Agric. Food Chem. 2008, 56, 4359–4366. [CrossRef] [PubMed]

246. Christian, O.E.; McLean, S.; Reynolds, W.F.; Jacobs, H. Prenylated benzenophenes from Hypericum hypericoides. Nat. Prod. Commun. 2008, 3, 1781–1786.

247. Dictionary of Natural Products Dictionary of Natural Products on DVD. J. Antibiot. 1994, 48, 261–266.

248. Gupta, S.R.; Ravindranath, B.; Seshadri, T.R. Polypheholns of Juglan nigra. Phytochemistry 1972, 11, 2634–2636. [CrossRef]

249. Binder, R.G.; Benson, M.E.; Flath, R.A. Eight 1,4-naphthoquinones from Juglans. Phytochemistry 1989, 28, 2799–2801. [CrossRef]

250. Lal, C.; Raja, A.S.M.; Pareek, P.K.; Shakyawar, D.B.; Sharma, K.K.; Sharma, M.C. Juglan nigra: Chemical constitution and its application on Pashmina (Cashmere) fabric as a dye. J. Nat. Prod. Plant Resour. 2011, 1, 13–19.

251. Paudel, P.; Satyal, P.; Dosoky, N.S.; Maharjan, S.; Setzer, W.N. Juglans regia and J. nigra, two trees important in traditional medicine: A comparison of leaf essential oil compositions and biological activities. Nat. Prod. Commun. 2013, 8, 1481–1486. [PubMed]

252. Jin, D.-Z.; Min, Z.-D.; Chiou, G.C.Y.; Linuma, M.; Tanaka, T. Two p-coumaroyl glycerides from Juncus effusus. Phytochemistry 1996, 41, 545–547.
253. Della Greca, M.; Fiorentino, A.; Monaco, P.; Previtera, L.; Sorrentino, M. Antialgal phenylpropane glycerides from Juncus effusus. *Nat. Prod. Lett.* 1998, 12, 263–270. [CrossRef]

254. Della Greca, M.; Fiorentino, A.; Molinaro, A.; Monaco, P.; Previtera, L. A bioactive dihydrodibenzoxepin from *Juncus effusus*. *Phytochemistry* 1993, 34, 1182–1184. [CrossRef]

255. Corsaro, M.M.; della Greca, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Cycloartane glucosides from *Juncus effusus*. *Phytochemistry* 1994, 37, 515–519. [CrossRef]

256. Della Greca, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Cycloartane triterpenes from *Juncus effusus*. *Phytochemistry* 1994, 35, 1017–1022. [CrossRef]

257. Della Greca, M.; Fiorentino, A.; Mangoni, L.; Molinaro, A.; Monaco, P.; Previtera, L. Juncoside I, a new cycloartanelactone glucoside from *Juncus effusus*. *Nat. Prod. Lett.* 1994, 4, 183–188. [CrossRef]

258. Su, X.-H.; Yuan, Z.-P.; Li, C.-Y.; Zhong, Y.-J.; Du, H.-J.; Wen, Y.-Y.; Li, Y.-F.; Liang, B. Phenanthrenes from *Juncus effusus*. *Phytochemistry* 1994, 37, 3149–3151. [CrossRef] [PubMed]

259. Hanawa, F.; Okamoto, M.; Towers, G.H. Antimicrobial DNA-binding photosensitizers from the common rush, *Juncus effusus*. *Photochem. Photobiol.* 2002, 76, 51–56. [CrossRef]

260. della Greca, M.; Fiorentino, A.; Mangoni, L.; Molinaro, A.; Monaco, P.; Previtera, L. 9,10-Dihydrophenanthrene metabolites from *Juncus effusus* L. *Tetrahedron Lett.* 1992, 33, 5257–5260. [CrossRef]

261. Della Greca, M.; Mangoni, L.; Molinaro, A.; Monaco, P.; Previtera, L. Cytotoxic 9,10-dihydrophenanthrenes from *Juncus effusus* L. *Tetrahedron* 1993, 49, 3425–3432. [CrossRef]

262. Della Greca, M.; Monaco, P.; Previtera, L.; Zarrelli, A.; Pollio, A.; Pinto, G.; Fiorentino, A. Minor bioactive dihydrophenanthrenes from *Juncus effusus*. *J. Nat. Prod.* 1997, 60, 1265–1268. [CrossRef]

263. Della Greca, M.; Fiorentino, A.; Previtera, L.; Zarrelli, A. Effusides I–V: 9,10-Dihydrophenanthrene glucosides from *Juncus effusus*. *Phytochemistry* 1995, 40, 533–535. [CrossRef]

264. Wang, Y.-G.; Wang, Y.-L.; Zhai, H.-F.; Liao, Y.-J.; Zhang, B.; Huang, J.-M. Phenanthrenes from *Juncus effusus* with anxiolytic and sedative activities. *Nat. Prod. Res.* 2012, 26, 1234–1239. [CrossRef] [PubMed]

265. Yang, G.Z.; Li, H.X.; Song, F.J.; Chen, Y. Diterpenoid and phenolic compounds from *Juncus effusus* L. *Helv. Chim. Acta* 2007, 90, 1289–1295. [CrossRef]

266. Shima, K.; Toyoda, M.; Asakawa, Y. Phenanthrene derivatives from the medullae of *Juncus effusus*. *Phytochemistry* 1991, 30, 3149–3151. [CrossRef]

267. Ishiuchi, K.; Kosuge, Y.; Hamagami, H.; Ozaki, M.; Ishige, K.; Ito, Y.; Kitanaka, S. Chemical constituents isolated from *Juncus effusus* induce cytotoxicity in HT22 cells. *J. Nat. Med.* 2015, 69, 421–426. [CrossRef] [PubMed]

268. Della Greca, M.; Fiorentino, A.; Monaco, P.; Previtera, L.; Zarrelli, A. Tetrahydropyrene glucosides from *Juncus effusus* L. *Nat. Prod. Lett.* 1995, 7, 85–92. [CrossRef]

269. Ma, W.; Liu, F.; Ding, Y.Y.; Zhang, Y.; Li, N. Four new phenanthrenoid dimers from *Juncus effusus* L. with cytotoxic and anti-inflammatory activities. *Fitoterapia* 2015, 105, 83–88. [CrossRef] [PubMed]

270. Ma, W.; Zhang, Y.; Ding, Y.Y.; Liu, F.; Li, N. Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of *Juncus effusus* L. *Arch. Pharm. Res.* 2016, 39, 154–160. [CrossRef] [PubMed]

271. Liao, Y.J.; Zhai, H.F.; Zhang, B.; Duan, T.X.; Huang, J.M. Anxiolytic and sedative effects of dehydroeffusol from *Juncus effusus* in mice. *Planta Med.* 2011, 77, 416–420. [CrossRef] [PubMed]

272. Singhuber, J.; Baburin, I.; Khom, S.; Zehl, M.; Urban, E.; Hering, S.; Kopp, B. GABAa Receptor modulators from the Chinese herbal drug junci medulla—The pith of *Juncus effusus*. *Planta Med.* 2012, 78, 455–458. [CrossRef] [PubMed]

273. Stewart, C.D.; Jones, C.D.; Setzer, W.N. Essential oil compositions of *Juniperus virginiana* and *Pinus virginiana*, two important trees in Cherokee traditional medicine. *Am. J. Essent. Oils Nat. Prod.* 2014, 2, 17–24.

274. Adams, R.P. Cedar wood oil—Analyses and properties. In *Essential Oils and Waxes*; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin, Germany, 1991; pp. 159–173.

275. Tumen, I.; Süntar, I.; Eller, F.J.; Keleş, H.; Akkol, E.K. Topical wound-healing effects and phytochemical composition of heartwood essential oils of *Juniperus virginiana* L., *Juniperus occidentalis* Hook., and *Juniperus ashei* J. Buchholz. *J. Med. Food* 2013, 16, 48–55. [CrossRef] [PubMed]

276. Renouard, S.; Lopez, T.; Hendrawati, O.; Dupre, P.; Doussot, J.; Falguieres, A.; Ferroud, C.; Hagege, D.; Lamblin, F.; Laine, E.; et al. Podophyllotoxin and deoxypodophyllotoxin in *Juniperus bermudiana* and 12
other *Juniperus* species: Optimization of extraction, method validation, and quantification. *J. Agric. Food Chem.* **2011**, *59*, 8101–8107. [CrossRef] [PubMed]

277. Michalska, K.; Sznerier, E.; Kisiel, W. Sesquiterpene lactones from *Lactuca canadensis* and their chemotaxonomic significance. *Phytochemistry* **2013**, *90*, 90–94. [CrossRef] [PubMed]

278. Kagan, J. The flavonoid pigments of *Liatris spicata*. *Phytochemistry* **1968**, *7*, 1205–1207. [CrossRef]

279. Karlsson, K.; Wahlberg, I.; Enzell, C.R. Volatile constituents of the *Liatris* species, *L. spicata, L. elegans* and *L. gracilis*. *Acta Chem. Scand.* **1973**, *27*, 1613–1621. [CrossRef] [PubMed]

280. Herz, W.; Poplawski, J.; Sharma, R.P. New guaianolides from *Liatris* species. *J. Org. Chem.* **1975**, *40*, 199–206. [CrossRef]

281. Ezzat, M.I.; Ezzat, S.M.; El Deeb, K.S.; El Fishawy, M. In vitro cytotoxic activity of the ethanol extract and isolated compounds from the corms of *Liatris spicata* (L.) Willd on HepG2. *Nat. Prod. Res.* **2017**, *31*, 1325–1328. [CrossRef] [PubMed]

282. Setzer, W.N. Chemical composition of the leaf essential oil of *Lindera benzoin* growing in North Alabama. *Am. J. Essent. Oils Nat. Prod.* **2016**, *4*, 1–3.

283. Tucker, A.O.; Maciarello, M.J.; Burbage, P.W.; Sturtz, G. Spicebush (*Lindera benzoin* (L.) Blume var. benzoin, Lauraceae): A tea, spice, and medicine. *Econ. Bot.* **1994**, *48*, 333–336.

284. Anderson, J.E.; Ma, W.; Smith, D.L.; Chang, C.-J.; McLaughlin, J.L. Biologically active *γ*-lactones and methylketoalkenes from *Lindera benzoin*. *J. Nat. Prod.* **1992**, *55*, 71–83. [CrossRef] [PubMed]

285. Martin, E.; Duke, J.; Pelkki, M.; Clausen, E.C.; Carrier, D.J. Sweetgum (*Liquidambar styraciflua* L.): Extraction of shikimic acid coupled to dilute acid pretreatment. *Appl. Biochem. Biotechnol.* **2010**, *162*, 1660–1668. [CrossRef] [PubMed]

286. Sakai, K.; Fukuda, Y.; Matsunaga, S.; Tanaka, R.; Yamori, T. New cytotoxic oleanane-type triterpenoids from the cones of *Liquidambar styraciflua*. *J. Nat. Prod.* **2004**, *67*, 1088–1093. [CrossRef] [PubMed]

287. Rajan, K.; Nelson, A.; Adams, J.P.; Carrier, D.J. Phytochemical recovery for valorization of loblolly pine and sweetgum bark residues. *ACS Sustain. Chem. Eng.* **2011**, *5*, 4258–4266. [CrossRef] [PubMed]

288. Doskotch, R.W.; Wilton, J.H.; Ashour, M.L.; Eid, S.Y.; Labib, R.M.; Sporer, F.; Wink, M. The structure of tulipinolide and epitulipinolide. *Econ. Bot.* **1973**, *27*, 1613–1621. [CrossRef] [PubMed]

289. Ezzat, M.I.; El Deeb, K.S.; El Fishawy, M. Hepatoprotective and antioxidant polyphenols from a standardized methanolic extract of the leaves of *Liquidambar styraciflua*. *Bull. Fac. Pharm. Cairo Univ.* **2015**, *53*, 117–127. [CrossRef]

290. El-Readi, M.Z.; Ezzat, S.M.; El Deeb, K.S.; El Fishawy, M. In vitro cytotoxic activity of the ethanol extract and isolated compounds from the corms of *Liatris spicata* (L.) Willd on HepG2. *Nat. Prod. Res.* **2017**, *31*, 1325–1328. [CrossRef] [PubMed]

291. El-Readi, M.Z.; Ezzat, S.M.; El Deeb, K.S.; El Fishawy, M. In vitro cytotoxic activity of the ethanol extract and isolated compounds from the corms of *Liatris spicata* (L.) Willd on HepG2. *Nat. Prod. Res.* **2017**, *31*, 1325–1328. [CrossRef] [PubMed]

292. Chen, C.-L.; Chang, H.-M. Lignans and aporphine alkaloids in bark of *Liriodendron tulipifera*. *Phytochemistry* **1978**, *17*, 779–782. [CrossRef]

293. Graziose, R.; Rathinasabapathy, T.; Lategan, C.; Poulev, A.; Smith, P.J.; Grace, M.; Lila, M.A.; Raskin, I. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from *Liriodendron tulipifera* L. *J. Ethnopharmacol.* **2011**, *133*, 26–30. [CrossRef] [PubMed]

294. Kang, Y.-F.; Liu, C.-M.; Kao, C.-L.; Chen, C.-Y. Antioxidant and anticancer constituents from the leaves of *Liriodendron tulipifera*. *Molecules* **2014**, *19*, 4235–4245. [CrossRef] [PubMed]

295. Doskotch, R.W.; Wilton, J.H.; Harraz, F.M.; Fairchild, E.H.; Huang, C.T.; El-Feraly, F.S. Six additional sesquiterpene lactones from *Liriodendron tulipifera*. *J. Nat. Prod.* **1983**, *46*, 923–929. [CrossRef]

296. Jeong, E.J.; Kim, N.-H.; Heo, J.-D.; Lee, K.Y.; Rho, J.-R.; Kim, Y.C.; Sung, S.H. Antifibrotic compounds from *Liriodendron tulipifera* attenuating HSC-T6 proliferation and TNF-α production in RAW264.7 cells. *Biol. Pharm. Bull.* **2015**, *38*, 228–234. [CrossRef] [PubMed]

297. Doskotch, R.W.; El-Feraly, F.S. The structure of tulipinolide and epitulipinolide. *Cytotoxic sesquiterpenes from Liriodendron tulipifera* L. *J. Org. Chem.* **1970**, *35*, 1928–1936. [CrossRef] [PubMed]

298. Miller, S.L.; Villanueva, H.E.; Palazzo, M.C.; Wright, B.S.; Setzer, W.N. Seasonal variation and bioactivity in the leaf oil of *Liriodendron tulipifera* growing in Huntsville, Alabama. *Nat. Prod. Commun.* **2009**, *4*, 839–843. [PubMed]
299. Smith, A.L.; Campbell, C.L.; Walker, D.B.; Hanover, J.W.; Miller, R.O. Geographic variation in the essential oil monoterpenes of Liriodendron tulipifera L. Biochem. Syst. Ecol. 1988, 16, 627–630. [CrossRef]
300. Brown, D.P.; Rogers, D.T.; Pomerleau, F.; Siripurapu, K.B.; Kulshrestha, M.; Gerhardt, G.A.; Littleton, J.M. Novel multifunctional pharmacology of lobalnine, the major alkaloid from Lobelia cardinalis. Fitoterapia 2016, 111, 109–123. [CrossRef] [PubMed]
301. Yamanaka, M.; Ishibashi, K.; Shimomura, K.; Ishimaru, K. Polyacetylene glucosides in hairy root cultures of Lobelia cardinalis. Phytochemistry 1996, 41, 183–185. [CrossRef]
302. Doskotch, R.W.; Flom, M.S. Acuminatin, a new bis-phenylpropide from Menispermum canadense. J. Essent. Oil-Bear. Plants 2009, 12, 519–522. [CrossRef] [PubMed]
303. Bucar, F.; Kartnig, T. Flavone glucuronides of Magnolia acuminata L. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1971.
304. Vodopivec, B.M.; Wang, J.; Moller, A.L.; Krake, J.; Lund, T.; Hansen, P.E.; Nielsen, S.L. Differences in the structure of anthocyanins from the two amphibious plants, Lobelia cardinalis and Nesea crassicaulis. Nat. Prod. Res. 2013, 27, 655–664. [CrossRef] [PubMed]
305. Tognolini, M.; Barocelli, E.; Ballabeni, V.; Bruni, R.; Bianchi, A.; Chiavarini, M.; Impicciatore, M. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Flavour Fragr. J. 2006, 21b, 76–86. [CrossRef] [PubMed]
306. Resting, J.R.; Tolderlund, I.-L.; Pedersen, A.F.; Witt, M.; Jaroszewski, J.W.; Staerk, D. Piperidine and tetrahydropyridine alkaloids from Lobelia siphilitica and Hippobroma longiflora. J. Nat. Prod. 2009, 72, 312–315. [CrossRef] [PubMed]
307. Kursinszki, L.; Szöke, É. Analysis of polyacetylenes by HPLC in hairy root cultures of Lobelia inflata cultivated in bioreactor. Chromatographia 2004, 60, S235–S238. [CrossRef]
308. Kursinszki, L.; Ludányi, K.; Szöke, É. LC-DAD and LC-MS-MS analysis of piperidine alkaloids of Lobelia inflata L. (in vitro and in vivo). Chromatographia 2008, 68, S27–S33. [CrossRef]
309. Yamanaka, M.; Ishibashi, K.; Shimomura, K.; Ishimaru, K. Polyacetylene glucosides in hairy root cultures of Lobelia cardinalis. Phytochemistry 1996, 41, 183–185. [CrossRef]
310. Furmanowa, M.; Jozefowicz, J. Alkaloids as taxonomic markers in some species of Magnolia L. and Liriodendron L. Acta Soc. Bot. Pol. 1980, 49, 527–535. [CrossRef]
311. Manske, R.H.F. An alkaloid from Menispermum canadense L. Can. J. Res. 1943, 21b, 17–20. [CrossRef]
312. Knapp, J.E. The Isolation and Characterization of Alkaloids of Caulophyllum thalictroides (L.) Michx. Part II. The Isolation and Characterization of Alkaloid and Neutral Principles of Magnolia acuminata L. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1971.
313. Furmanowa, M.; Jozefowicz, J. Alkaloids as taxonomic markers in some species of Magnolia L. and Liriodendron L. Acta Soc. Bot. Pol. 1980, 49, 527–535. [CrossRef]
314. Adebayo, O.; Bélanger, A.; Khanizadeh, S. Variable inhibitory activities of essential oils of three Monarda species on the growth of Botrytis cinerea. Can. J. Plant Sci. 2013, 93, 987–995. [CrossRef]
315. Mattarelli, P.; Epifano, F.; Minardi, P.; Di Vito, M.; Modesto, M.; Barbanti, L.; Bellardi, M.G. Chemical composition and antimicrobial activity of essential oils from aerial parts of Monarda didyma and Monarda fistulosa cultivated in Italy. J. Essent. Oil-Bear. Plants 2017, 20, 76–86. [CrossRef]
316. Gwinn, K.D.; Ownley, B.H.; Greene, S.E.; Clark, M.M.; Taylor, C.L.; Springfield, T.N.; Trently, D.J.; Green, J.F.; Reed, A.; Hamilton, S.L. Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive Monarda herbage. Phytopathology 2010, 100, 493–501. [CrossRef] [PubMed]
317. Adebayo, O.; Bélanger, A.; Khanizadeh, S. Variable inhibitory activities of essential oils of three Monarda species on the growth of Botrytis cinerea. Can. J. Plant Sci. 2013, 93, 987–995. [CrossRef]
318. Mattarelli, P.; Epifano, F.; Minardi, P.; Di Vito, M.; Modesto, M.; Barbanti, L.; Bellardi, M.G. Chemical composition and antimicrobial activity of essential oils from aerial parts of Monarda didyma and Monarda fistulosa cultivated in Italy. J. Essent. Oil-Bear. Plants 2017, 20, 76–86. [CrossRef]
319. Ricci, D.; Epifano, F.; Fraternale, D. The essential oil of Monarda didyma L. (Lamiaceae) exerts phytotoxic activity in vitro against various weed seeds. Molecules 2017, 22, 222. [CrossRef] [PubMed]
320. Savickienė, N.; Dagilytė, A.; Barsteigienė, Z.; Kazlauskas, S.; Vaiciūnienė, J. Flavonoid analysis and anti-inflammatory activity of the leaves of Monarda fistulosa L. jieduoze ir lapuose. Medicina 2002, 38, 1119–1122. [PubMed]
321. Mazza, G.; Chube, B.B.; Kiehn, F. Essential oil of Monarda fistulosa L. var. menthaefolia, a potential source of geraniol. Flavour Fragr. J. 1987, 2, 129–132. [CrossRef]
322. Contaldo, N.; Bellardi, M.G.; Cavicchi, L.; Epifano, F.; Genovese, S.; Curini, M.; Bertaccini, A. Phytochemical effects of phytoplasma infections on essential oil of Monarda fistulosa L. *Bull. Insectol.* 2011, 64, S177–S178.

323. Tabanca, N.; Bernier, U.R.; Ali, A.; Wang, M.; Demirci, B.; Blythe, E.K.; Khan, S.I.; Baser, K.H.C.; Khan, I.A. Bioassay-guided investigation of two *Monarda* essential oils as repellents of yellow fever mosquito *Aedes aegypti*. *J. Agric. Food Chem.* 2013, 61, 8573–8580. [CrossRef] [PubMed]

324. Ahmad, A.; Ali, M.; Tandon, S. New oenotheranolanosterol A and B: Constituents from the *Oenothera biennis* roots. *Chin. J. Chem.* 2010, 28, 2474–2478. [CrossRef]

325. Singh, R.; Trivedi, P.; Bawankule, D.U.; Ahmad, A.; Shanker, K. HILIC quantification of oenotheranolanosterol A and B from *Oenothera biennis* and their suppression of IL-6 and TNF-α expression in mouse macrophages. *J. Ethnopharmacol.* 2012, 141, 357–362. [CrossRef] [PubMed]

326. Shukla, Y.N.; Srivastava, A.; Kumar, S.; Kumar, S. Phytotoxic and antimicrobial constituents of *Argyreia speciosa* and *Oenothera biennis*. *J. Ethnopharmacol.* 1999, 67, 241–245. [CrossRef]

327. Ahmad, A.; Singh, D.K.; Fatima, K.; Tandon, S.; Luqman, S. New constituents from the roots of *Oenothera biennis* and their free radical scavenging and ferric reducing activity. *Ind. Crops Prod.* 2014, 58, 125–132. [CrossRef]

328. Shukla, Y.N.; Srivastava, A.; Kumar, S. Aryl, lipid and triterpenoid constituents from *Oenothera biennis*. *Indian J. Chem.* 1999, 38, 705–708.

329. Montserrat-de la Paz, S.; Fernández-Arche, M.A.; Ángel-Martin, M.; García-Giménez, M.D. Phytochemical characterization of potential nutraceutical ingredients from evening primrose oil (*Oenothera biennis* L.). *Phytochem. Lett.* 2014, 8, 158–162. [CrossRef]

330. Wettasinghe, M.; Shahidi, F.; Amarowicz, R. Identification and quantification of low molecular weight phenolic antioxidants in seeds of evening primrose (*Oenothera biennis* L.). *J. Agric. Food Chem.* 2002, 50, 1267–1271. [CrossRef] [PubMed]

331. Zadernowski, R.; Naczk, M.; Nowak-Polakowska, H. Phenolic acids of *Borago officinalis* L. and *Oenothera biennis* L. (*Oenothera biennis* L.). *Phytochem. Anal.* 2005, 16, 272–277. [CrossRef] [PubMed]

332. Assinewe, V.A.; Baum, B.R.; Gagnon, D.; Arnason, J.T. Phytochemistry of wild populations of *Panax quinquefolius* L. (North American ginseng). *J. Agric. Food Chem.* 2003, 51, 4549–4553. [CrossRef] [PubMed]

333. Wang, A.; Wang, C.Z.; Wu, J.A.; Osinski, J.; Yuan, C.S. Determination of major ginsenosides in *Panax quinquefolius* (American ginseng) using high-performance liquid chromatography. *Phytochem. Anal.* 2005, 16, 272–277. [CrossRef] [PubMed]

334. Corbit, R.M.; Ferreira, J.F.S.; Ebbs, S.D.; Murphy, L.L. Simplified extraction of ginsenosides from American ginseng (*Panax quinquefolius* L.) for high-performance liquid chromatography-ultraviolet analysis. *J. Agric. Food Chem.* 2005, 53, 9867–9873. [CrossRef] [PubMed]

335. Qu, C.; Bai, Y.; Jin, X.; Wang, Y.; Zhang, K.; You, J.; Zhang, H. Study on ginsenosides in different parts and ages of *Panax quinquefolius* L. *Food Chem.* 2009, 115, 340–346. [CrossRef]

336. Christensen, L.P.; Jensen, M.; Kidmose, U. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (*Panax quinquefolium* L.) by high-performance liquid chromatography. *J. Agric. Food Chem.* 2006, 54, 8995–9003. [CrossRef] [PubMed]

337. Wang, C.-Z.; Aung, H.H.; Ni, M.; Wu, J.-A.; Tong, R.; Wicks, S.; He, T.-C.; Yuan, C.-S. Red American ginseng: From pharmacology to toxicology. *Food Chem. Toxicol.* 2017, 107, 362–372. [CrossRef] [PubMed]

338. Yang, W.-Z.; Hu, Y.; Wu, W.-Y.; Ye, M.; Guo, D.-A. Saponins in the genus *Panax* L. (Araliaceae): A systematic review of their chemical diversity. *Phytochemistry* 2014, 106, 7–24. [CrossRef] [PubMed]

339. Yuan, C.-S.; Wang, C.-Z.; Wicks, S.M.; Qi, L.-W. Chemical and pharmacological studies of saponins with a focus on American ginseng. *J. Ginseng Res.* 2010, 34, 160–167. [CrossRef] [PubMed]
343. Lee, T.M.; Der Marderosian, A.H. Studies on the constituents of dwarf ginseng. *Phytoh. Res.* 1988, 2, 165–169. [CrossRef]

344. Lui, J.H.-C.; Staba, E.J. The ginsenosides of various ginseng plants and selected products. *J. Nat. Prod.* 1980, 43, 340–346. [CrossRef]

345. Tanaka, T.; Inumui, M.; Murata, H. Stilbene derivatives in the stem of *Parthenocissus quinquefolia*. *Phytochemistry* 1998, 48, 1045–1049. [CrossRef]

346. Yang, J.B.; Wang, A.G.; Ji, T.F.; Su, Y.L. Two new oligostilbenes from the stem of *Parthenocissus quinquefolia*. *J. Asian Nat. Prod. Res.* 2014, 16, 275–280. [CrossRef] [PubMed]

347. Chistokhodova, N.A.; Zhiviriga, I.; Nguyen, C.; Miles, G.D.; Uzhegova, N.A.; Solodnikov, S.Y. Mass spectral characterization of flavonoids in extracts *Plantago lanceolata*. *Chromatogr. B* 2014, 562, 435–446.

348. Li, Q.; van den Heuvel, H.; Delorenzo, O.; Corthout, J.; Pieters, L.A.C.; Vlietinck, A.J.; Claeys, M. Mass spectral characterization of C-glycosidic flavonoids isolated from a medicinal plant (*Passiflora incarnata*). *J. Chromatogr. B* 1991, 562, 851–857.

349. Raffaelli, A.; Mercuri, G.; Toja, E. E. Mass spectrometric characterization of flavonoids in extracts *Passiflora incarnata*. *J. Chromatogr. A* 1997, 777, 223–231. [CrossRef]

350. Rahman, K.; Krenn, L.; Kopp, B.; Schubert-Zsilavecz, M.; Mayer, K.K.; Kopp, B.; Schubert-Zsilavecz, M.; Mayer, K.K.; Kubelka, W. Isoscinaparin-2′-O-glucoside from *Passiflora incarnata*. *Phytochemistry* 1997, 45, 1093–1094. [CrossRef]

351. Chimichi, S.; Mercati, V.; Moneti, G.; Raffaelli, A.; Toja, E. Isolation and characterization of an unknown flavonoid in dry extracts *Passiflora incarnata*. *Nat. Prod. Lett.* 1998, 11, 225–232. [CrossRef]

352. Dhawan, K.; Dhawan, S.; Sharma, A. *Passiflora*: A review update. *J. Ethnopharmacol.* 2004, 94, 1–23. [CrossRef] [PubMed]

353. Rønsted, N.; Göbel, E.; Franzyk, H.; Jensen, S.R.; Olsen, C.E. Chemotaxonomy of *Plantago*. Iridoid glucosides and caffeoyl phenylethanoid glycosides. *Phytochemistry* 2000, 55, 337–348. [CrossRef] [PubMed]

354. Wang, L.; Bai, L.; Nagasawa, T.; Hasegawa, T.; Yang, X.; Sakai, J.; Oka, S.; Hirose, K.; et al. Two new oligostilbenes from the stem of *Parthenocissus quinquefolia*. *Phytochemistry* 2014, 104, 340–346. [CrossRef] [PubMed]

355. Gonda, S.; Kiss, A.; Emri, T.; Batta, G.; Vasas, G. Filamentous fungi from *Passiflora incarnata*. *Phytochemistry* 1978, 19, 1315–1317. [CrossRef]

356. Seung, I.J.; Kang, J.K.; Min, K.C.; Kyung, S.K.; Lee, S.; Seon, H.A.; Seung, H.B.; Ju, H.S.; Young, S.J.; Bong, K.C.; et al. α-Spinasterol isolated from the root of *Phytolacca americana* and its pharmacological property on diabetic nephropathy. *Planta Med.* 2004, 70, 736–739.

357. Fleer, H.; Verspoel, E.J. Antispasmodic activity of an extract from *Plantago lanceolata* L. and some isolated compounds. *Phytomedicine* 2007, 14, 409–415. [CrossRef] [PubMed]

358. Beara, I.N.; Lesjak, M.M.; Orčić, D.Z.; Simin, N.D.; Četojević-Simić, D.D.; Božin, B.N.; Mimica-Dukić, N.M. Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related plantain species: *Plantago altissima* L and *Plantago lanceolata* L. *J. Ethnopharmacol.* 2012, 47, 64–70. [CrossRef]

359. Darrow, K.; Bowers, M.D. Phenological and population variation in iridoid glycosides of *Plantago lanceolata* (Plantaginaceae). *Biochem. Syst. Ecol.* 1997, 25, 1–11. [CrossRef]

360. Marak, H.B.; Biere, A.; Van Damme, J.M.M. Direct and correlated responses to selection on iridoid glycosides in *Plantago lanceolata* L. *J. Evol. Biol.* 2000, 13, 985–996. [CrossRef]

361. Gonda, S.; Tóth, L.; Gyémánt, G.; Braun, M.; Emri, T.; Vasas, G. Effect of high relative humidity on dried *Plantago lanceolata* L. leaves during long-term storage: Effects on chemical composition, colour and microbiological quality. *Phytochem. Anal.* 2012, 23, 88–93. [CrossRef] [PubMed]

362. Gonda, S.; Kiss, A.; Emri, T.; Batta, G.; Vasas, G. Filamentous fungi from *Plantago lanceolata* L. leaves: Contribution to the pattern and stability of bioactive metabolites. *Phytochemistry* 2013, 86, 127–136. [CrossRef] [PubMed]

363. Rønsted, N.; Göbel, E.; Franzyk, H.; Jensen, S.R.; Olsen, C.E. Chemotaxonomy of *Plantago*. Iridoid glucosides and caffeoyl phenylethanoid glycosides. *Phytochemistry* 2000, 55, 337–348. [CrossRef] [PubMed]
365. Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 2000, 71, 1–21. [CrossRef]
366. Chiang, L.C.; Chiang, W.; Chang, M.Y.; Ng, L.T.; Lin, C.C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiv. Res. 2002, 55, 53–62. [CrossRef]
367. Zaccchigna, M.; Cateni, F.; Faudale, M.; Sosa, S.; Della Loggia, R. Rapid HPLC analysis for quantitative determination of the two isomeric triterpenic acids, oleanolic acid and ursolic acid, in Plantago major. Sci. Pharm. 2009, 77, 79–86. [CrossRef]
368. Tarvainen, M.; Suomela, J.-P.; Kallio, H.; Yang, B. Triterpene acids in Podophyllum peltatum. J. Nat. Prod. 2009, 72, 2141–2144. [CrossRef] [PubMed]
369. Kolak, U.; Boğa, M.; Uruşak, E.A.; Ulubelen, A. Constituents of Plantago major subsp. media with antioxidant and anticholinesterase capacities. Turk. J. Chem. 2011, 35, 637–645.
370. Kartini, P.; Siripong, P.; Vallisuta, O. HPTLC simultaneous quantification of triterpene acids for quality control of Plantago major L. and evaluation of their cytotoxic and antioxidant activities. Ind. Crops Prod. 2014, 60, 239–246. [CrossRef]
371. Stenholm, Å.; Göransson, U.; Bohlin, L. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L. Phytochem. Anal. 2013, 24, 176–183. [CrossRef] [PubMed]
372. Ibrahim, M.A.; Mansoor, A.A.; Gross, A.; Ashfaq, M.K.; Jacob, M.; Khan, S.I.; Hamann, M.T. Methicillin-resistant Staphylococcus aureus (MRSA)-active metabolites from Platanus occidentalis (American sycamore). J. Nat. Prod. 2009, 72, 406–408. [CrossRef] [PubMed]
373. Bedows, E.; Hatfield, G.M. An investigation of the antiviral activity of Podophyllum peltatum. J. Nat. Prod. 1982, 45, 725–729. [CrossRef] [PubMed]
374. Jackson, D.E.; Dewick, P.M. Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum. Phytochemistry 1984, 23, 1147–1152. [CrossRef]
375. Bastos, J.K.; Burandt, C.L.; Nanayakkara, N.P.; Bryant, L.; McChesney, J.D. Quantitation of aryltetralin lignans in plant parts and among different populations of Podophyllum peltatum by reversed-phase high-performance liquid chromatography. J. Nat. Prod. 1996, 59, 406–408. [CrossRef]
376. Tsukitani, Y.; Kawanishi, S.; Shoji, J. Studies on the constituents of Senegae Radix. II. The structure of senegin-II, a saponin from Polygala senega latifolia Torrey et Gray. Chem. Pharm. Bull. 1973, 21, 791–799. [CrossRef]
377. Tsukitani, Y.; Shoji, J. Studies on the constituents of Senegae Radix. III. The structures of senegin-III and -IV, saponins from Polygala senega Linne var. latifolia Torrey et Gray. Chem. Pharm. Bull. 1973, 21, 1564–1574. [CrossRef]
378. Saitoh, H.; Miyase, T.; Ueno, A. Senegoses A-E, oligosaccharide multi-esters from Polygala senega var. latifolia Torr. et Gray. Chem. Pharm. Bull. 1993, 41, 1127–1131. [CrossRef] [PubMed]
379. Saitoh, H.; Miyase, T.; Ueno, A. Senegoses F-I, oligosaccharide multi-esters from the roots of Polygala senega var. latifolia Torr. et Gray. Chem. Pharm. Bull. 1993, 41, 2125–2128. [CrossRef] [PubMed]
380. Saitoh, H.; Miyase, T.; Ueno, A.; Atarashi, K.; Saiki, Y. Senegoses J-O, oligosaccharide multi-esters from the roots of Polygala senega L. Chem. Pharm. Bull. 1994, 43, 641–645. [CrossRef]
381. Yoshikawa, M.; Murakami, T.; Ueno, T.; Kadoya, M.; Matsuda, H.; Yamahara, J.; Murakami, N. E-Senegasaponins A and B, Z-senegasaponins A and B, Z-senegins II and III, new type inhibitors of ethanol absorption in rats from Senagae Radix, the roots of Polygala senega L. var latifolia Torrey et Gray. J. Ethnopharmacol. 1995, 43, 350–352. [CrossRef] [PubMed]
382. Hayashi, S.; Kameoka, H. Volatile compounds of Polygala senega L. var. latifolia Torrey et Gray. Flavour Fragr. J. 1995, 10, 273–280. [CrossRef]
383. Arai, M.; Hayashi, A.; Sobou, M.; Ishida, S.; Kawachi, T.; Kotoku, N.; Kobayashi, M. Anti-angiogenic effect of triterpenoidal saponins from Polygala senega. J. Nat. Med. 2011, 65, 149–156. [CrossRef] [PubMed]
384. Kim, H.J.; Woo, E.-R.; Park, H. A novel lignan and flavonoids from Polygonum aviculare. J. Nat. Prod. 1994, 57, 581–586. [CrossRef]
385. Al-Hazimi, H.M.A.; Haque, S.N. A new naphthoquinone from Polygonum aviculare. Nat. Prod. Lett. 2002, 16, 115–118. [CrossRef] [PubMed]
386. Yunuskhodzhaeva, N.A.; Eshbakova, K.A.; Abdullabekova, V.N. Flavonoid composition of the herb Polygonum aviculare. Chem. Nat. Compd. 2010, 46, 803–804. [CrossRef]
387. Graniec, S.; Czerwińska, M.E.; Zyzynska-Granica, B.; Kiss, A.K. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia 2013, 91, 180–188. [CrossRef] [PubMed]
388. Nugroho, A.; Kim, E.J.; Choi, J.S.; Park, H.-J. Simultaneous quantification and peroxynitrite-scapenging activities of flavonoids in Polygonum aviculare L. herb. J. Pharm. Biomed. Anal. 2014, 89, 93–98. [CrossRef] [PubMed]

389. Yang, H.H.; Hwangbo, K.; Zheng, M.S.; Cho, J.H.; Son, J.-K.; Kim, H.Y.; Baek, S.H.; Choi, H.C.; Park, S.Y.; Kim, J.-R. Quercetin-3-O-β-d-glucuronide isolated from Polygonum aviculare inhibits cellular senescence in human primary cells. Arch. Pharm. Res. 2014, 37, 1219–1233. [CrossRef] [PubMed]

390. Barnes, C.S.; Loder, J.W. The structure of polygodial: A new sesquiterpene dialdehyde from Prunella vulgaris. Phytochemistry 1980, 21, 2895–2898. [CrossRef]

391. Fukuyama, Y.; Sato, T.; Asakawa, Y.; Takemoto, T. A potent cytotoxic warburganal and related drimane-type sesquiterpenoids from Polygonum hydropiper. J. Agric. Food Chem. 1992, 40, 1349–1351. [CrossRef]

392. Peng, Z.F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N.K.; Chia, T.F.; Tan, S.N.; Chia, L.S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. samples using nanomagnetic powder three-phase hollow fibre-based liquid-phase microextraction combined with ultrahigh performance liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2011, 54, 311–316. [CrossRef] [PubMed]

393. Miyazawa, M.; Tamura, N. Components of the essential oil from sprouts of Polygonum hydropiper. Flavour Fragr. J. 2007, 22, 188–190. [CrossRef]

394. Maheswaran, R.; Ignacimuthu, S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol. Environ. Saf. 2013, 97, 26–31. [CrossRef] [PubMed]

395. Morteza-Semnani, K.; Saeedi, M.; Akbarzadeh, M. The essential oil composition of Prunella vulgaris. J. Essent. Oil Bear. Plants 2012, 15, 662–666. [CrossRef]

396. Chen, Y.; Yu, M.; Zha, J.; Zhang, L.; Guo, Q. Optimisation of potassium chloride nutrition for proper growth, physiological development and bioactive component production in Prunella vulgaris L. PLoS ONE 2013, 8, e66259. [CrossRef] [PubMed]

397. Ryu, S.Y.; Oak, M.-H.; Yoon, S.-K.; Cho, D.-I.; Yoo, G.-S.; Kim, T.-S.; Kim, K.-M. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Med. 2000, 66, 358–360. [CrossRef] [PubMed]

398. Yoon, M.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Park, M.S.; Cha, B.; Kim, J.C. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens. Lett. Appl. Microbiol. 2010, 51, 511–517. [CrossRef] [PubMed]

399. Gu, X.-J.; Li, Y.-B.; Li, P.; Qian, S.-H.; Zhang, J.-F. Triterpenoid saponins from the spikes of Prunella vulgaris. Helv. Chim. Acta 2007, 90, 72–78. [CrossRef]
409. Lee, I.K.; Kim, D.H.; Lee, S.Y.; Kim, K.R.; Choi, S.U.; Hong, J.K.; Lee, J.H.; Park, Y.H.; Lee, K.R. Triterpenoid acids of *Prunus vulgaris* var. *lilacina* and their cytotoxic activities in vitro. *Arch. Pharm. Res.* 2008, 31, 1578–1583. [PubMed]

410. Wang, Z.J.; Zhao, Y.Y.; Wang, B.; Ai, T.M.; Chen, Y.Y. Depsides from *Prunella vulgaris*. *Chin. Chem. Lett.* 2000, 11, 997–1001.

411. Şahin, S.; Demir, C.; Malyer, H. Determination of phenolic compounds in *Prunella* L. by liquid chromatography-diode array detection. *J. Pharm. Biomed. Anal.* 2011, 55, 1227–1230. [CrossRef] [PubMed]

412. Gu, X.; Li, Y.; Mu, J.; Zhang, Y. Chemical constituents of *Prunus vulgaris*. *J. Environ. Sci.* 2013, 25, S161–S163. [CrossRef]

413. Olszewska, M. Flavonoids from *Prunus serotina* Ehrh. *Acta Pol. Pharm. Drug Res.* 2005, 62, 127–133.

414. Olszewska, M. Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and inflorescences of *Prunus serotina* Ehrh. *Acta Chromatogr.* 2007, 19, 253–269.

415. Olszewska, M. Optimization and validation of an HPLC-UV method for analysis of corosolic, oleanolic, and ursolic acids in plant material: Application to *Prunus serotina* Ehrh. *Acta Chromatogr.* 2008, 20, 643–659. [CrossRef]

416. Ibarra-Alvarado, C.; Rojas, A.; Luna, F.; Rojas, J.I.; Rivero-Cruz, B.; Rivero-Cruz, J.F. Vasorelaxant constituents of the leaves of *Prunus serotina* “capulin”. *Rev. Latinoam. Quim.* 2009, 37, 164–173.

417. Rivero-Cruz, B. Simultaneous quantification by HPLC of the phenolic compounds for the crude drug of *Prunus serotina* subsp. *capulin*. *Pharm. Biol.* 2014, 52, 1015–1020. [CrossRef] [PubMed]

418. Biessels, H.W.A.; van der Kerk-van Hoof, A.C.; Ketenes-van den Bosch, J.J.; Salemink, C.A. Triterpenes of *Prunus serotina* and *P. lautilia*. *Phytochemistry* 1974, 13, 203–207. [CrossRef]

419. Omar, S.; Lalonde, M.; Marcotte, M.; Cook, M.; Proulx, J.; Goel, K.; Durst, T.; Philogène, B.J.R.; Arnason, J.T. Insect growth-reducing and antifeedant activity in eastern North America hardwood species and bioassay-guided isolation of active principles from *Prunus serotina*. *Agric. For. Entomol.* 2000, 2, 253–257. [CrossRef]

420. Hänsel, R.; Ohlendorf, D.; Pelter, A. Obustifolin, ein Flavanon mit einem biogenetisch unüblichen C9-Baustein. *Z. Naturforsch. B* 1970, 25, 989–994. [CrossRef] [PubMed]

421. Wagner, H.; Maurer, G.; Farkas, L.; Hänsel, R.; Ohlendorf, D. Zur Struktur und Synthese von Gnapaaliin, Methyl-gnapaaliin aus *Gnaphalium obtusifolium* L. und Isognaphaliin aus *Achrocline satureoides*. *Chem. Ber.* 1971, 104, 1281–1288. [CrossRef]

422. Ohlendorf, D.; Schwarz, R.; Hänsel, R. 3,5,7-Trihydroxy-6,8-dimethoxyflavon aus *Gnaphalium obtusifolium*. *Arch. Pharm.* 1971, 304, 213–215. [CrossRef]

423. Murata, T.; Nakano, M.; Miyase, T.; Yoshizaki, F. Chemical constituents of aerial parts and roots of *Pycnanthemum flexuosum*. *Chem. Pharm. Bull.* 2014, 62, 608–612. [CrossRef] [PubMed]

424. Beebe, C.W.; Luvisi, F.P.; Happich, M.L. Tennessee Valley oak bark as a source of tannin. *J. Am. Leather Chem. Assoc.* 1953, 48, 32–41.

425. Bai, Y.; Benn, M.H.; Majak, W.; McDarmid, R. Extraction and HPLC determination of ranunculin in species of the buttercup family. *J. Agric. Food Chem.* 1965, 203–207. [CrossRef]

426. Saxena, G.; McCutcheon, A.R.; Farmer, S.; Towers, G.H.N.; Hancock, R.E.W. Antimicrobial constituents of *Rhus glabra*. *J. Ethnopharmacol.* 1994, 42, 95–99. [CrossRef]

427. Heckman, R.A. The Isolation and Identification of Organic Compounds from *Rhus glabra*. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1965.

428. Wu, T.; McCallum, J.L.; Wang, S.; Liu, R.; Zhu, H.; Tsao, R. Evaluation of antioxidant activities and chemical characterisation of staghorn sumac fruit (*Rhus hirta* L.). *Food Chem.* 2013, 138, 1333–1340. [CrossRef] [PubMed]

429. Peng, Y.; Zhang, H.; Liu, R.; Mine, Y.; McCallum, J.; Kirby, C.; Tsao, R. Antioxidant and anti-inflammatory activities of pyrananthocyanins and other polyphenols from staghorn sumac (*Rhus hirta* L.) in Caco-2 cell models. *J. Funct. Foods* 2016, 20, 139–147. [CrossRef]

430. Van Damme, E.J.M.; Barre, A.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Rougé, P.; Peumans, W.J. The bark of *Robinia pseudoacacia* contains a complex mixture of lectins. Characterization of the proteins and the cDNA clones. *Plant Physiol.* 1995, 107, 833–843. [CrossRef] [PubMed]
432. Rabijns, A.; Verboven, C.; Rougé, P.; Barre, A.; Van Damme, E.J.M.; Peumans, W.J.; De Ranter, C.J. Structure of a legume lectin from the bark of *Rudbeckia psuedoacacia* and its complex with N-acetylgalactosamine. *Proteins Struct. Funct. Genet.* 2001, 44, 470–478. [CrossRef] [PubMed]

433. Tian, F.; McLaughlin, J.L. Bioactive flavonoids from the black locust tree, *Robinia pseudocacia*. *Pharm. Biol.* 2000, 38, 229–234. [CrossRef]

434. Veitch, N.C.; Elliott, P.C.; Kite, G.C.; Lewis, G.P. Flavonoid glycosides of the black locust tree, *Robinia pseudocacia* (Leguminosae). *Phytochemistry* 2010, 71, 479–486. [CrossRef] [PubMed]

435. Duverger, E.; Delmotte, F.M. Purification of lectins from *Robinia pseudocacia* L. root-tips. *Plant Sci.* 1997, 123, 9–18. [CrossRef]

436. Ono, M.; Yasuda, S.; Komatsu, H.; Fujiwara, Y.; Takeya, M.; Nohara, T. Triterpenoids from the fruits and leaves of the blackberry (*Rabesia laciniata*) and their inhibitory activities on foam cell formation in human monocyte-derived macrophage. *Nat. Prod. Res.* 2014, 28, 2347–2350. [CrossRef] [PubMed]

437. Dwaranauskaitė, A.; Venskutonis, P.R.; Labokas, J. Comparison of quercetin derivatives in ethanolic extracts of red raspberry (*Rubus idaeus* L.) leaves. *Acta Aliment.* 2008, 37, 449–461. [CrossRef]

438. Vera, J.R.; Dacke, C.G.; Blunden, G.; Patel, A.V. Smooth muscle relaxant triterpenoid glycosides from *Rubus idaeus* (raspberry) leaves. *Nat. Prod. Commun.* 2006, 1, 705–710.

439. Ferlemi, A.-V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. *Antioxidants* 2016, 5, 17. [CrossRef] [PubMed]

440. Stewart, C.D.; Jones, C.D.; Setzer, W.N. Leaf essential oil compositions of *Rutbeckia fulgida* Aiton, *Rudbeckia hirta* L., and *Symphyotrichum nova-angliae* (L.) G.L. Nesom (Asteraceae). *Am. J. Essent. Oils Nat. Prod.* 2014, 2, 36–38.

441. Lee, S.Y.; Woo, K.W.; Kim, C.S.; Lee, D.U.; Lee, K.R. A new flavonol glycoside from the aerial part of *Rudbeckia fulgida* Aiton. *J. Agric. Food Chem.* 2003, 51, 2034–2036. [CrossRef] [PubMed]

442. Greathouse, G.A. Alkaloids from *Symphyotrichum nova-angliae* and their influence on growth of *Phymatotrichum omnivorum*. *Plant Physiol.* 1939, 5, 377–380. [CrossRef] [PubMed]

443. Inami, O.; Tamura, I.; Kikuzaki, H.; Nakatani, N. Stability of anthocyanins of *Sambucus canadensis* and *Sambucus nigra*. *J. Agric. Food Chem.* 1996, 44, 3090–3096. [CrossRef]

444. Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (*Sambucus canadensis*) and European elderberry (*S. nigra*) cultivars. *J. Sci. Food Agric.* 2007, 87, 2665–2675. [CrossRef] [PubMed]

445. Nakatani, N.; Kikuzaki, H.; Hikida, J.; Ohba, M.; Inami, O.; Tamura, I. Acylated anthocyanins from fruits of *Sambucus canadensis*. *Phytochemistry* 2013, 83, 755–757. [CrossRef]

446. Sando, C.E.; Lloyd, J.U. The isolation and identification of rutin from the flowers of elder (*Sambucus canadensis L.*). *J. Biol. Chem.* 1924, 58, 737–745.

447. Sango, D.A.; Hunter, M.D. Environmental and genotypic influences on isoquinoline alkaloid content in *Sanguinaria canadensis*. *J. Chem. Ecol.* 2001, 27, 1729–1747. [CrossRef] [PubMed]

448. Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, G.S.; Wright, C.W. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from *Psoralea corylifolia* and *Sanguinaria canadensis*. *J. Ethnopharmacol.* 2002, 79, 57–67. [CrossRef]

449. Mahady, G.B.; Pendland, S.L.; Stoia, A.; Chadwick, L.R. In vitro susceptibility of *Helicobacter pylori* to isoquinoline alkaloids from *Sanguinaria canadensis* and *Hydrastis canadensis*. *Phyther. Res.* 2003, 17, 217–221. [CrossRef] [PubMed]

450. Graf, T.N.; Levine, K.E.; Andrews, M.E.; Perlmutter, J.M.; Nielsen, S.J.; Davis, J.M.; Wani, M.C.; Oberlies, N.H. Variability in the yield of benzophenanthidine alkaloids in wildcrafted vs. cultivated bloodroot (*Sanguinaria canadensis* L.). *J. Agric. Food Chem.* 2007, 55, 1205–1211. [CrossRef] [PubMed]
455. Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Liu, L. *Sanguinaria canadensis*: Traditional medicine, phytochemical composition, biological activities and current uses. *Int. J. Mol. Sci.* 2016, 17, 1414. [CrossRef] [PubMed]
456. Kaler, K.M.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of *Sassafras albidum*. *Nat. Prod. Commun.* 2008, 3, 829–832.
457. Kamdem, D.P.; Gage, D.A. Chemical composition of essential oil from the root bark of *Sassafras albidum*. *Planta Med.* 1995, 61, 574–575. [CrossRef] [PubMed]
458. Kennedy, J.E.; Davé, P.C.; Harbin, L.N.; Setzer, W.N. Allelopathic potential of *Sassafras albidum* and *Pinus taeda* essential oils. *Allelopathy. J.* 2011, 27, 111–122.
459. Pulivarthi, D.; Steinberg, K.M.; Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial activity of compounds isolated from *Sassafras albidum*. *Nat. Prod. Commun.* 2015, 10, 1229–1230. [PubMed]
460. Rao, K.V.; Alvarez, F.M. Chemistry of *Saururus cernuus*. I. Saucernetin, a new neolignan. *J. Nat. Prod.* 1982, 45, 393–397. [CrossRef]
461. Rao, K.V.; Alvarez, F.M. Manassantins A/B and saucerneol: Novel biologically active lignoids from *Saururus cernuus*. *Tetrahedron Lett.* 1983, 24, 4947–4950. [CrossRef]
462. Rao, K.V.; Reddy, G.C.S. Chemistry of *Saururus cernuus*. V. Sauristolactam and other nitrogenous constituents. *J. Nat. Prod.* 1990, 53, 309–312. [CrossRef] [PubMed]
463. Rao, K.V.; Prakasa Rao, N.S. Chemistry of *Saururus cernuus*, VI: Three new neolignans. *J. Nat. Prod.* 1990, 53, 212–215. [CrossRef] [PubMed]
464. Kubanek, J.; Fenical, W.; Hay, M.E.; Brown, P.J.; Lindquist, N. Two antifeedant lignans from the freshwater macrophyte *Saururus cernuus*. *Phytochemistry* 2000, 54, 281–287. [CrossRef]
465. Hodges, T.W.; Hossain, C.F.; Kim, Y.-P.; Zhou, Y.-D.; Nagle, D.G. Molecular-targeted antitumor agents: The *Saururus cernuus* dioneolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. *J. Nat. Prod.* 2004, 67, 767–771. [CrossRef] [PubMed]
466. Hossain, C.F.; Kim, Y.-P.; Baerson, S.R.; Zhang, L.; Bruick, R.K.; Mohammed, K.A.; Agarwal, A.K.; Nagle, D.G.; Zhou, Y.D. *Saururus cernuus* lignans—Potent small molecule inhibitors of hypoxia-inducible factor-1. *Biochem. Biophys. Res. Commun.* 2005, 333, 1026–1033. [CrossRef] [PubMed]
467. Upton, R; DAyu, R.H. Skullcap Scutellaria lateriflora L.: An American nervine. *J. Herb. Med.* 2012, 2, 76–96. [CrossRef]
468. Yaghmai, M.S. Volatile constituents of *Scutellaria lateriflora* L. *Flavour Fragr. J.* 1988, 3, 27–31. [CrossRef]
469. Bruno, M.; Cruciatua, M.; Bondi, M.L.; Piozzi, F.; de la Torre, M.; Rodriguez, B.; Serrettaz, O. Neo-clerodane diterpenoids from *Scutellaria lateriflora*. *Phytochemistry* 1998, 48, 687–691. [CrossRef]
470. Awad, R.; Arnason, J.T.; Trudeau, V.; Bergeron, C.; Budzinski, J.W.; Foster, B.C.; Merali, Z. Phytochemical and biological analysis of skullcap (*Scutellaria lateriflora* L.): A medicinal plant with anxiolytic properties. *Phytomedicine* 2003, 10, 640–649. [CrossRef] [PubMed]
471. Cole, I.B.; Cao, J.; Alan, A.R.; Saxena, P.K.; Murch, S.J. Comparisons of *Scutellaria baikalensis*, *Scutellaria lateriflora* and *Scutellaria racemosa*: Genome size, antioxidant potential and phytochemistry. *Planta Med.* 2008, 74, 474–481. [CrossRef] [PubMed]
472. Zhang, Z.; Lian, X.Y.; Li, S.; Stringer, J.L. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora). *Phytomedicine* 2009, 16, 485–493. [CrossRef] [PubMed]
473. Li, J.; Ding, Y.; Li, X.; Ferreira, D.; Khan, S.; Smillie, T.; Khan, I.A. Scutelliflorins A and B, dihydropyranocoumarins from *Scutellaria lateriflora*. *J. Nat. Prod.* 2009, 72, 983–987. [CrossRef] [PubMed]
474. Islam, M.N.; Downey, F.; Ng, C.K.Y. Comparative analysis of bioactive phytochemicals from *Scutellaria baikalensis*, *Scutellaria lateriflora*, *Scutellaria racemosa*, *Scutellaria tomentosa* and *Scutellaria wrightii* by LC-DAD-MS. *Metabolomics* 2011, 7, 446–453. [CrossRef]
475. Kuroda, M.; Iwabuchi, K.; Mimaki, Y. Chemical constituents of the aerial parts of *Scutellaria lateriflora* and their α-glucosidase inhibitory activities. *Nat. Prod. Commun.* 2012, 7, 471–474. [PubMed]
478. Li, J.; Wang, Y.H.; Smillie, T.J.; Khan, I.A. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 63, 120–127. [CrossRef] [PubMed]

479. Zalkow, L.H.; Gelbaum, L.T.; Van Derveer, D. Eremophilane sesquiterpenes from Senecio aureus. J. Chem. Soc. Perkin Trans. 1979, 1542–1546. [CrossRef]

480. Williams, J.D. The Flavonoids and Phenolic Acids of the Genus Silphium and Their Chemosystematic and Medicinal Value. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2006.

481. Thacker, J.D.; Bordner, J.; Bumgardner, C. Carolinoside: A phytosteroidal glycoside from Solanum carolinense. Phytocochemistry 1990, 29, 2965–2970. [CrossRef]

482. Evans, W.C.; Somanabandhu, A. Bases from roots of Solanum carolinense. Phytochemistry 1977, 16, 1859–1860. [CrossRef]

483. Tucker, A.O.; Maciarello, M.J.; Clancy, K. Sweet goldenrod (Solidago odora, Asteraceae): A medicine, tea, and state herb. Econ. Bot. 1999, 53, 281–284. [CrossRef]

484. Adolf, W.; Hecker, E. New irritant diterpene-esters from roots of Thalictrum dioicum. Tetrahedron Lett. 1980, 21, 2887–2890. [CrossRef]

485. Shamma, M.; Rothenberg, A.S.; Salgar, S.S. Pallidine and corydine from Thalictrum dioicum. Lloydia 1999, 52, 461–468. [PubMed]

486. Shamma, M.; Rothenberg, A.S.; Salgar, S.S. Thalidine, a new isopavine alkaloid from Thalictrum dioicum. Lloydia 1999, 52, 395–398. [PubMed]

487. Shamma, M.; Salgar, S.S. Pallidine and corydine from Thalictrum dioicum. Phytochemistry 1973, 12, 1505–1506. [CrossRef]

488. Pérez-Ortega, G.; Guevara-Féfer, P.; Chávez, M.; Herrera, J.; Martínez, A.; Martínez, A.L.; González-Trujano, M.E. Sedative and anxiolytic efficacy of Tilia americana var. mexicana inflorescences used traditionally by communities of State of Michoacan, Mexico. J. Ethnopharmacol. 2008, 116, 461–468.

489. Herrera-Ruiz, M.; Román-Ramos, R.; Zamilpa, A.; Tortoriello, J.; Jiménez-Ferrer, J.E. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J. Ethnopharmacol. 2008, 118, 312–317. [CrossRef] [PubMed]

490. Martínez, A.L.; González-Trujano, M.E.; Aguirre-Hernández, E.; Moreno, J.; Soto-Hernández, M.; López-Muñoz, F.J. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 2009, 56, 564–571.

491. Aguirre-Hernández, E.; González-Trujano, M.E.; Martínez, A.L.; Moreno, J.; Kite, G.; Terrazas, T.; Soto-Hernández, M. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J. Ethnopharmacol. 2010, 127, 91–97.

492. Cardenas-Rodriguez, N.; Gonzalez-Trujano, M.E.; Aguirre-Hernandez, E.; Ruiz-Garcia, M.; Sampieri, A.; Coballase-Urrutia, E.; Carmona-Aparicio, L. Anticonvulsant and antioxidant effects of Tilia americana var. mexicana and flavonoids constituents in the pentylenetetrazole-induced seizures. Oxid. Med. Cell. Longev. 2014, 2014. [CrossRef] [PubMed]

493. Shaw, A.C. The essential oil of Tsuga canadensis (L.) Carr. J. Am. Chem. Soc. 1951, 73, 2859–2861. [CrossRef]

494. Lagalante, A.F.; Montgomery, M.E. Analysis of terpenoids from hemlock (Tsuga) species by solid-phase microextraction/gas chromatography/ion-trap mass spectrometry. J. Agric. Food Chem. 2003, 51, 2115–2120. [CrossRef] [PubMed]

495. Lagalante, A.F.; Lewis, N.; Montgomery, M.E.; Shields, K.S. Temporal and spatial variation of terpenoids in eastern hemlock (Tsuga canadensis) in relation to feeding by Adelges tsugae. J. Chem. Ecol. 2006, 32, 2389–2403. [CrossRef] [PubMed]

496. Lagalante, A.F.; Montgomery, M.E.; Calvosa, F.C.; Mirzabeigi, M.N. Characterization of terpenoid volatiles from cultivars of eastern hemlock (Tsuga canadensis). J. Agric. Food Chem. 2007, 55, 10850–10856. [CrossRef] [PubMed]

497. Craft, J.D.; Setzer, W.N. Leaf essential oil composition of Tsuga canadensis growing wild in North Alabama and Northwest Georgia. Am. J. Essent. Oils Nat. Prod. 2017, 5, 26–29.

498. Horhammer, L.; Wagner, H.; Reinhardt, H. Isolierung des Bis-(5,7,4-trihydroxy)-flavons, Amentoflavon aus der Rinde von Viburnum prunifolium L. (Amerikan Schneeball). Naturwissenschaften 1965, 7, 161–162. [CrossRef]
521. Bayrami, Z.; Khalighi-Sigaroodi, F.; Rahimi, R.; Farzaei, M.H.; Hodjat, M.; Baeeri, M.; Rahimifard, M.; Navaei-Nigieh, M.; Abdollahi, M.; Hajighaeae, R. In vitro wound healing activity of luteolin. *Res. J. Pharmaco... 2017*, *4*, 7.

522. Süntar, I.; Akkol, E.K.; Keles, H.; Yesilada, E.; Sarker, S.D.; Arroo, R.; Baykal, T. Efficacy of *Daphne oleoides* subsp. *kurdisca* used for wound healing: Identification of active compounds through bioassay guided isolation technique. *J. Ethnopharmacol.* 2012, *141*, 1058–1070.

523. Ozay, Y.; Güzel, S.; Erdogdu, I.H.; Yıldırım, Z.; Pehlivanoglu, B.; Turk, B.A.; Darcan, S. Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats. *Rec. Nat. Prod.* 2018, *12*, 350–366. [CrossRef]

524. Doersch, K.M.; Newll-Rogers, M.K. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. *Exp. Biol. Med.* 2017, *242*, 1424–1431. [CrossRef] [PubMed]

525. Ahmad, M.; Sultana, M.; Raina, R.; Pankaj, N.K.; Verma, P.K.; Prawez, S. Hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin-induced diabetic rats. *Pharmacogn. Mag.* 2017, *13*, S633–S639. [PubMed]

526. Rajamanickam, M.; Kalaivanan, P.; Sivagnanam, I. Antibacterial and wound healing activities of quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside isolated from *Salvia leucantha*. *Int. J. Pharm. Sci. Res.* 2013, *22*, 264–268.

527. Manivannan, R.; Prabakaran, K.; Ilayaraja, S. Isolation, identification and antibacterial and wound healing studies of *quercetin-3-O-α-L-rhamnopyranoside-2"-gallate*. *Int. J. Appl. Sci. Eng.* 2014, *12*, 99–106. [CrossRef] [PubMed]

528. Seoul, S.H.; Lee, S.-H.; Cha, P.-H.; Kim, M.-Y.; Min, D.S.; Choi, K.-Y. *Polygonum aviculare* leaves and isolation of an active component, quercetin 3-O-glucoside. *J. Ethnopharmacol.* 2010, *129*, 106–114. [CrossRef] [PubMed]

529. Clericuzio, M.; Tinello, S.; Burlando, B.; Ranzato, E.; Martinotti, S.; Cornara, L.; La Rocca, A. Flavonoid oligoglycosides from *Ophioglossum vulgatum* L. Having wound healing properties. *Planta Med.* 2012, *78*, 1639–1644. [CrossRef] [PubMed]

530. Anonymous. *Lupin Alkaloids in Food: A Toxicological Review and Risk Assessment*; Australia New Zealand Food Authority: Canberra, Australia, 2001.

531. Liu, Z.; Yang, Z.; Zhu, M.; Huo, J. [Estrogenicity of black cohosh (*Cimicifuga racemosa*) and its effect on estrogen receptor level in human breast cancer MCF-7 cells]. *Wei Sheng Yan Jiu* 2001, *30*, 77–80. [PubMed]

532. Seidlová-Wuttke, D.; Hesse, O.; Jarry, H.; Christoffel, V.; Spengler, B.; Becker, T.; Wuttke, W. Evidence for selective estrogen receptor modulator activity in a black cohosh (*Cimicifuga racemosa*) extract: Comparison with estradiol-17β. *Eur. J. Endocrinol.* 2003, *149*, 351–362. [CrossRef] [PubMed]

533. Mahady, G.B. Is black cohosh estrogenic? *Nutr. Rev.* 2003, *61*, 183–186. [PubMed]
542. Gaube, F.; Wolf, S.; Pusch, L.; Kroll, T.C.; Hamburger, M. Gene expression profiling reveals effects of *Cimicifuga racemosa* (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7. *BMC Pharmacol.* 2007, 7, 11. [CrossRef] [PubMed]

543. Kennelly, E.J.; Baggett, S.; Nuntanakorn, P.; Oseksi, A.L.; Mori, S.A.; Duke, J.; Coleton, M.; Kronenberg, F. Analysis of thirteen populations of black cohosh for formononetin. *Phytomedicine* 2002, 9, 461–467. [CrossRef] [PubMed]

544. Hartisch, C.; Kolodziej, H.; von Bruchhousen, F. Dual inhibitory activities of tannins from *Hamamelis virginiana* and related polyphenols on 5-lipoxygenase and lyso-PAF: Acetyl-CoA acetyltransferase. *Planta Med.* 1997, 63, 106–110. [CrossRef] [PubMed]

545. Deters, A.; Dauer, A.; Schnetz, E.; Fartasch, M.; Hensel, A. High molecular compounds (polysaccharides and proanthocyanidins) from *Hamamelis virginiana* bark: Influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. *Phytochemistry* 2001, 58, 949–958. [CrossRef]

546. Theisen, L.L.; Erdelmeier, C.A.J.; Spoden, G.A.; Boukhallouk, F.; Sausy, A.; Florin, L.; Müller, C.P. Tannins from *Hamamelis virginiana* bark extract: Characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus. *PLoS ONE* 2014, 9, e88062. [CrossRef] [PubMed]
561. Hughes-Formella, B.J.; Bohnsack, K.; Rippke, F.; Benner, G.; Rudolph, M.; Tausch, I.; Gassmueller, J. Anti-inflammatory effect of *Hamamelis* lotion in a UVB erythema test. *Dermatology* 1998, 196, 316–322. [CrossRef] [PubMed]

562. Dawid-Pač, R. Medicinal plants used in treatment of inflammatory skin diseases. *Postep. Dermatol. Alergol.* 2013, 30, 170–177. [CrossRef] [PubMed]

563. Missouri Botanical Garden Tropicos. Available online: www.tropicos.org (accessed on 27 July 2018).

564. Memorial Sloan Kettering Cancer Center Goldenseal. Available online: www.mskcc.org (accessed on 16 October 2018).

565. Correch, E.R.; Andujar, S.A.; Kurdelas, R.R.; Lechón, M.J.G.; Freile, M.L.; Enriz, R.D. Antioxidant and cytotoxic activities of canadine: Biological effects and structural aspects. *Bioorganic Med. Chem.* 2008, 16, 3641–3651. [CrossRef] [PubMed]

566. Kim, J.B.; Yu, J.-H.; Ko, E.; Lee, K.-W.; Song, A.K.; Park, S.Y.; Shin, I.; Han, W.; Noh, D.Y. The alkaloid berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. *Phytomedicine* 2010, 17, 436–440. [CrossRef] [PubMed]

567. Mazzini, S.; Bellucci, M.C.; Mondelli, R. Mode of binding of the cytotoxic alkaloid berberine with the double helix oligonucleotide d(AAGATTCCT)2. *Bioorganic Med. Chem.* 2002, 11, 505–514. [CrossRef]

568. Kumar, G.S.; Das, S.; Bhadra, K.; Maiti, M. Protonated forms of poly[d(G-C)] and poly(dG).poly(dC) and their interaction with berberine. *Bioorganic Med. Chem.* 2003, 11, 4861–4870. [CrossRef]

569. Ferraroni, M.; Bazzicalupi, C.; Bilia, A.R.; Gratteri, P. X-ray diffraction analyses of the natural isoquinoline alkaloids berberine and sanguinarine complexed with double helix DNA d(CGTA CG). *Chem. Commun.* 2011, 47, 4917–4919. [CrossRef] [PubMed]

570. Kuo, H.-P.; Chuang, T.-C.; Yeh, M.-H.; Hsu, S.-C.; Way, T.-D.; Chen, P.-Y.; Wang, S.S.; Chang, Y.-H.; Kao, M.-C.; Liu, J.-Y. Growth suppression of HER2-overexpressing breast cancer cells by berberine via modulation of the HER2/P13K/Akt signaling pathway. *J. Agric. Food Chem.* 2011, 59, 8216–8224. [CrossRef] [PubMed]

571. Kuo, H.-P.; Chuang, T.-C.; Tsai, S.-C.; Tseng, H.-H.; Hsu, S.-C.; Chen, Y.-C.; Kuo, C.-L.; Kuo, Y.-H.; Liu, J.-Y.; Kao, M.-C. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. *J. Agric. Food Chem.* 2012, 60, 9649–9658. [CrossRef] [PubMed]

572. Kawas, K.; Kimigamuchi, M.; Ueki, M.; Taniguchi, I. Antibacterial activity and structure-activity relationships of berberine analogs. *Eur. J. Med. Chem.* 2016, 112, 121 79 of 81.

573. Kaneda, Y.; Torii, M.; Tanaka, T.; Aikawa, M. In vitro effects of berberine sulphate on the growth and structure of *Entamoeba histolytica*. *Dermatologica* 1960, 30, 4917–4919. [CrossRef] [PubMed]

574. Vennerström, J.L.; Lovelace, J.K.; Waits, V.B.; Hanson, W.L.; Klayman, D.L. Berberine derivatives as antileishmanial drugs. *Antimicrob. Agents Chemother.* 1990, 34, 918–921. [CrossRef] [PubMed]

575. Ropivia, J.; Derbré, S.; Rouger, C.; Pagniez, F.; Le Pape, P.; Richomme, P. Isoquinolines from the roots of *Thalictrum flavum* and *Juncus effusus* aggregate in eastern North America. *Ann. Bot. Fenn.* 1980, 17, 183–191.
603. Qu, J.T.; Zhang, D.X.; Liu, F.; Mao, H.P.; Ma, Y.K.; Yang, Y.; Li, C.X.; Qiu, L.Z.; Geng, X.; Zhang, J.M.; et al. Vasodilatory effect of wogonin on the rat aorta and its mechanism study. Biol. Pharm. Bull. 2015, 38, 1873–1878. [CrossRef] [PubMed]

604. Shih, H.C.; Yang, L.L. Relaxant effect induced by wogonin from Scutellaria baicalensis on rat isolated uterine smooth muscle. Pharm. Biol. 2012, 50, 760–765. [CrossRef] [PubMed]

605. Huang, Y.; Wong, C.M.; Lau, C.W.; Yao, X.; Tsang, S.Y.; Su, Y.L.; Chen, Z.Y. Inhibition of nitric oxide/cyclic GMP-mediated relaxation by purified flavonoids, baicalin and baicalein, in rat aortic rings. Biochem. Pharmacol. 2004, 67, 787–794. [CrossRef] [PubMed]

606. Liao, J.F.; Hung, W.Y.; Chen, C.F. Anxiolytic-like effects of baicalein and baicalin in the Vogel conflict test in mice. Eur. J. Pharmacol. 2003, 464, 141–146. [CrossRef]

607. Hui, K.M.; Huen, M.S.Y.; Wang, H.Y.; Zheng, H.; Sigel, E.; Baur, R.; Ren, H.; Li, Z.W.; Wong, J.T.-F.; Xue, H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem. Pharmacol. 2002, 64, 1415–1424. [CrossRef]

608. Wang, F.; Xu, Z.; Ren, L.; Tsang, S.Y.; Xue, H. GABA_A receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology 2008, 55, 1231–1237. [CrossRef] [PubMed]

609. De Carvalho, R.S.M.; Duarte, F.S.; de Lima, T.C.M. Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav. Brain Res. 2011, 221, 75–82. [CrossRef] [PubMed]

610. Wolfson, P.; Hoffmann, D.L. An investigation into the efficacy of Scutellaria lateriflora in healthy volunteers. Altern. Ther. Health Med. 2003, 9, 74–78. [PubMed]

611. Brock, C.A.; Whitehouse, J.; Tewfik, I.; Towell, T. American skullcap (Scutellaria lateriflora L.): A randomised, double-blind placebo-controlled crossover study of its effects on mood in healthy volunteers. Phyther. Res. 2012, 28, 692–698. [CrossRef] [PubMed]