REVIEW
Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies

NK El-Mallawany,1,10 JK Frazer2,10, P Van Vlierberghe1, AA Ferrando3,4,5, S Perkins6, M Lim7, Y Chu8 and MS Cairo8,9

T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms.

Blood Cancer Journal (2012) 2, e65; doi:10.1038/bcj.2012.8; published online 13 April 2012

Keywords: T-cell; NK-cell; lymphoblastic lymphoma; ALCL; PTCL

INTRODUCTION
T-cell lymphomas encompass several hematological cancers in children and adolescents. Arising in cells of the innate and adaptive immune systems, T- and natural killer (NK)-cell neoplasms comprise over 20 distinct entities in the current World Health Organization (WHO) schema (Table 1 and Figure 1).1,2 The most common types in pediatric patients are T-cell lymphoblastic lymphoma (T-LBL) and anaplastic large cell lymphoma (ALCL). Of the other rarely occurring pediatric T-cell neoplasms, peripheral T-cell lymphoma-not otherwise specified (PTCL-NOS) is seen most frequently. Most of these lymphomas are aggressive diseases3,4 that present formidable diagnostic and therapeutic challenges. In this review, we update the biologic features of several T-cell lymphomas in children and adolescents, with a focus on their molecular pathology and its implications for novel therapeutics.

T-LBL IN CHILDREN AND ADOLESCENTS
After Burkitt lymphoma, LBL is the second most common pediatric non-Hodgkin lymphoma (NHL). In 80–90% of LBL, disease is T-cell lineage, unlike acute lymphoblastic leukemia (ALL) where precursor B-cell is typical. Thus, T-LBL is the most common pediatric T-cell lymphoma.5–7 Historically, T-LBL and T-ALL have been considered variant clinical manifestations of the same disease, but genomic and gene expression studies reveal molecular differences between T-LBL and T-ALL.8,9 Clinical features also subtly differentiate these cancers, with T-LBL tending to have earlier and local relapses, and T-ALL more often having central nervous system (CNS) involvement at diagnosis.10–12

Children with T-LBL frequently present with supra-diaphragmatic mass. Overlapping symptoms in T-LBL and T-ALL derive from their shared propensity to manifest with hepatic, splenic, and nodal enlargement, as well as with mediastinal mass. Serious sequelae from these clinical features can occur, including obstructive airway compromise and superior vena cava syndrome; both may require emergent glucocorticoid and/or radiation therapy.13 T-LBL is often advanced at diagnosis (stage III–IV), unlike B-cell LBL, which primarily is a localized disease of skin, bone, or lymph node. Accordingly, stage I and II T-LBLs are relatively rare. As no molecular features can yet reliably differentiate LBL from ALL, the clinical finding of ≥25% of marrow infiltration by malignant lymphoblasts continues to define ALL, while 5–25% marrow involvement is regarded as stage IV LBL.14

Current treatments for pediatric T-LBL
Children with limited disease (stage I–II) T-LBL do well, with long-term overall survival (OS) of 85–90%.5–7,14 Disease-free survival is lower at 63–73%, but relapsed patients show good responses to salvage therapy.15 As in advanced-stage T-LBL, ALL protocols are the basis of treatment for T-LBL patients with localized disease.16 These patients are treated without local surgery or radiation, and do not receive craniospinal radiation

1Department of Pediatrics, New York-Presbyterian, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, USA; 2Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; 3Institute of Cancer Genetics, Columbia University, New York, NY, USA; 4Department of Medicine, New York-Presbyterian, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, USA; 5Department of Pathology and Cell Biology, New York-Presbyterian, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, USA; 6Department of Hematopathology, University of Utah, Salt Lake City, UT, USA; 7Department of Hematopathology, University of Michigan, Ann Arbor, MI, USA; 8Department of Pediatrics, New York Medical College, Valhalla, NY, USA and 9Departments of Medicine, Pathology, Microbiology, Immunology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA. Correspondence: Dr MS Cairo, Department of Pediatrics, New York Medical College, Munger Pavilion, Room 110-A, Valhalla, NY 10595, USA.

E-mail: mitchell cairo@nymc.edu

10Equal primary and first authorship contribution.

Received 24 June 2011; revised 14 December 2011; accepted 6 February 2012
Two studies have explored completely omitting CRT in advanced disease, including CNS-positive patients. A European Organization for Research and Treatment of Cancer (EORTC) trial showed omission of CRT did not raise CNS relapse rates, with 78% 6-year EFS. Although only three CNS-positive patients participated in this trial, the overall low rate of CNS relapse validates that intrathecal treatments can safely replace CRT in stage III–IV, CNS-negative patients. This study also identified response to a prednisone-only prephase as an important prognostic factor. Patients in complete remission (CR) after prephase (16/121 patients) had 100% EFS, but only 14% EFS was seen in prednisone-resistant T-LBL. St Jude’s NHL13 trial also eliminated CRT. Like their institutional ALL regimen, NHL13 used high-dose MTX every 8 weeks and added a re-induction phase during maintenance. This study had an impressive 83% EFS in advanced T-LBL, despite its lack of CRT.

Therapies for relapsed pediatric T-LBL

Historically, children with refractory or relapsed LBL have poor prognoses, with 10% 5-year OS. Most relapses occur within 2 years of diagnosis (Figure 2). Successful outcomes have been reported in recurrent T-LBL using intense re-induction chemotherapy followed by either autologous (auto-) or allogeneic stem cell transplant (allo-SCT), but these series each contained 10 or fewer T-LBL patients, so reliable survival figures are not available. Modestly effective re-induction regimens include ICE (ifosfamide, carboplatin, and etoposide; 92% response rate seen in a 40 patient cohort containing 24 relapsed NHL) and DECAL (dexamethasone, etoposide, cisplatin, high-dose cytarabine and l-asparaginase; 50% response rate in a 58 patient NHL cohort, including 26 LBL cases).

Chemo-sensitive relapses have better outcome after auto or allo-SCT. Relapses after allo-SCT were less common in a group of 204 LBL patients (most of whom had T-LBL), but higher transplant-related mortality was felt to offset any survival benefit. However, this remains an open question. In one relapsed T-LBL BFM cohort, OS was quite low (14%; 4/28 patients), but all 4 long-term survivors received allo-SCT. Yet, because only 2 patients received auto-SCT in this study (9 received allo-SCT and 17 chemotherapy-only), these data do not convincingly favor allo- over auto-SCT. However, other studies imply that graft vs lymphoma effect after allo-SCT may help prevent relapses. Specifically, one series of 53 refractory or recurrent LBL patients showed much higher EFS after allo- compared with auto-SCT (40% vs 4%). A second study of 48 refractory or relapsed LBL patients (32 with T-LBL) also demonstrated higher EFS and OS in the allo-SCT group. All study examined T-LBL exclusively, their large sample sizes and the preponderance of T-cell disease within LBL both suggest that results are likely generalizable to T-LBL.

Future therapies for pediatric T-LBL

To date, new therapies for T-LBL are limited. The novel purine analog nelarabine shows promise in relapsed and refractory T-ALL, but not T-LBL. Impetus for the use of nelarabine in T-cell cancer was suggested by the finding that purine nucleoside phosphorylase-deficient patients develop T-cell cytophenias because of toxic deoxyguanosine triphosphate levels in T cells. As a deoxyguanosine triphosphate derivative, nelarabine resists purine nucleoside phosphorylase-mediated degradation and shows marked T-lymphocyte toxicity. In a phase II COG study, T-ALL patients in first relapse had a 55% response rate, and 48% of patients achieved CR. Unfortunately, nelarabine lacked similar efficacy in T-LBL, and 18% of patients exhibited severe (grade 3) CNS toxicity, such as peripheral neuropathy, hallucinations, and seizures. Other novel agents targeting frequent NOTCH1 and mammalian target of rapamycin (mTOR) kinase upregulation in therapy (CRT) prophylaxis. The following discussion will focus on therapies for advanced (stage III–IV) T-LBL patients. Advanced pediatric T-LBL outcomes improved dramatically on the 10-drug LSAJ regimen. Most LBL therapies can be traced to this protocol, with nearly all current strategies comprised of induction, consolidation, re-intensification, and maintenance phases. The specific timing and doses of some agents may vary, but overall, treatments since 2000 have achieved 70–90% event-free survival (EFS) with 12- to 24-month regimens (Table 2).

Many treatment protocols advanced LBL therapy over the past 15 years; highlights of these studies are briefly summarized: The German Berlin–Frankfurt–Münster (BFM)-90 regimen administered CRT to all advanced patients, independent of CNS involvement. Although EFS was 90% in stage III–IV patients, long-term effects prompted ensuing studies to apply CRT to only CNS-positive patients. The Italian lymphoma non-Hodgkin long-term effects prompted ensuing studies to apply CRT to only CNS-positive patients. The Italian lymphoma non-Hodgkin long-term effects prompted ensuing studies to apply CRT to only CNS-negative patients. The Children’s Oncology Group (COG) used an intense and truncated (12-month) multi-agent protocol for advanced T-LBL. This yielded a 78% EFS, similar to longer ALL-based regimens. Early reports from the current COG study testing high-dose MTX and early intensification suggest that neither intervention improves EFS.

Table 1. WHO 2008 classification of precursor and mature T/NK-cell neoplasms

Neoplasms	Precursor T-cell neoplasms	Mature T/NK-cell neoplasms
Leukemic or disseminated	T-lymphoblastic leukemia/lymphoma	
T-cell prolymphocytic leukemia	T-cell large granular lymphocytic leukemia	
Chronic lymphoproliferative disorders of NK cells	Adult T-cell leukemia/lymphoma (HTLV1 positive)	
Systemic EBV-positive T-cell lymphoproliferative disorders of childhood		
Extranodal	Extranasal NK/T-cell lymphoma, nasal type	
Enteroepithelial-associated T-cell lymphoma	Hepatosplenic T-cell lymphoma	
Extranodal-cutaneous	Mycosis fungoides	
Sezary syndrome	Primary cutaneous CD30⁺ lymphoproliferative disorders	
Primary cutaneous anaplastic large cell lymphoma	Lymphomatoid papulosis	
Subcutaneous panniculitis-like T-cell lymphoma	Primary cutaneous gamma-delta T-cell lymphoma	
Primary cutaneous aggressive epidermotropic CD8⁺ cytotoxic lymphoma		
Nodal	Anaplastic lymphoblastic T-cell lymphoma	
Anaplastic large cell lymphoma, ALK positive	Anaplastic large cell lymphoma, ALK negative	
Peripheral T-cell lymphoma, NOS	Primary cutaneous small/malignant CD4⁺ T-cell lymphoma	

Abbreviations: ALK, anaplastic lymphoma kinase; EBV, Epstein-Barr virus; HTLV1, human T-cell lymphotropic virus-1; NK, natural killer; NOS, not otherwise specified; WHO, World Health Organization.
T-LBL are being investigated in vitro. Finally, phase I studies are also testing another purine nucleoside phosphorylase inhibitor, forodesine, in T-cell malignancy. However, these trials investigate adults with PTCL rather than pediatric T-LBL.

As salvage rates for relapsed T-LBL are dismal and promising novel agents do not exist, delineating prognostic factors that predict relapse would be useful in stratifying high-risk patients for intensified upfront treatment regimens. Currently, such factors are not well established in pediatric T-LBL. Aside from the striking EORTC result where response to a 1-week prednisone pre-phase predicted opposite extremes in EFS, other clinical prognostic factors are lacking. Assessment of treatment responses via laboratory testing, molecular studies, or radiographically (such as 2-deoxy-2-[18F]fluoro-o-glucose positron emission tomography) are all tenable options to identify high-risk patients early-on.

The paucity of cytogenetic and molecular features linked to T-LBL clinical response presents intriguing opportunities for study. One recent discovery is the finding that chromosome 6q loss of heterozygosity in T-LBL predicts a higher risk of relapse, but other cryptic karyotypic features may also exist. Meanwhile, our assessment of low-level minimal disseminated disease (MDD) and minimal residual disease is also improving, with T-cell receptor (TCR) PCR assays able to quantify these reliably. Flow cytometry can also detect occult disease, and these two techniques have
been compared with respect to their detection and quantification of MDD and minimal residual disease in T-LBL. In a separate study using a 0.01% MDD threshold, two-thirds of patients had MDD-positive marrow at diagnosis (Figure 3a). Critically, patients with high marrow MDD had much lower 2-year EFS (52%) than patients with <5% MDD (EFS = 89%; Figure 3b). These data clearly demonstrate poor outcomes in stage III patients with higher MDD. However, prior BFM studies have shown no prognostic difference between stage III and IV T-LBL patients. Similarly, stage IV patients with gross marrow disease (6–24% blasts) treated with COG-based therapy greatly exceed the poor 2-year EFS seen in these high-MDD stage III patients. This curious contradiction alludes to important questions that remain in T-LBL biology. Further study of the aforementioned predictors and discovery of new prognostic features will permit prospective studies to determine which at-risk groups may benefit from intensified treatments, like allo-SCT, as first-line approaches.

For instance, a new T-ALL type was recently described with markedly poor prognosis, raising the question of whether this group might also be relevant to T-LBL. This new type, dubbed early T-cell precursor ALL (ETP-ALL), has distinct biology from classic precursor T-ALL. ETP-ALL retains stem-cell features and has high genomic instability. In a cohort of over 200 T-ALL cases, over 12% met ETP-ALL criteria. These patients had higher minimal residual disease during induction (Figure 4a) and increased rates of induction failure and relapse (Figure 4b). To optimally treat these patients, St Jude’s now performs allo-SCT in first remission for ETP-ALL. Analyses of T-LBL specimens are needed to determine if ‘ETP-LBL’ exists, and if so, whether a similar therapeutic strategy might be warranted.

Figure 2. Time and site of disease recurrence in children with relapsed lymphoblastic lymphoma. I, patients with T-LBL; X, patients with precursor B-cell lymphoblastic lymphoma; BM, bone marrow. (*) Patient was treated on a high-risk arm and experienced relapse during an intensive phase of treatment 11 months after start of therapy. Reprinted from Burkhardt et al.10

Table 2. Advanced disease lymphoblastic lymphoma in children

Cooperative Gp.	BFM11	BFM19	St Jude23	EORTC-CLG22	AIEOP18	CCG20
Patients (N)	101	335	41	121	55	85
Protocol	NHL-BFM-90	NHL-BFM-95	NHL13	CLG 58881	LNH-92	CCG 5941
Duration (months)	24	24	32	24	24	12
CRT	All patients	CNS+ only	None	None	CNS+ only	CNS+ only
CNS- dose	0 or 12 Gy	NA	None	None	NA	NA
CNS+ dose	0, 18, or 24 Gy	0, 12, or 18 Gy	None	None	18 Gy	18 Gy
EFS (Est)	90%	84%	83%	78%	69%	78%

Abbreviations: AIEOP, Italian Association of Pediatric Hematology and Oncology; BFM, Berlin-Frankfurt-Munster; EORTC-CLG, European Organization for Research and Treatment of Cancer-Children’s Leukemia Group; CCG, Children’s Cancer Group; CNS, central nervous system; CRT, cranial radiation therapy; EFS, event-free survival; Est, estimate; LNH, lymphoma non-Hodgkin; NA, not applicable; NHL, non-Hodgkin lymphoma. *On BFM-90, children under 1 year received no CRT, CNS+ children 1–2 years received 18 Gy, and CNS+ children ≥2 received 24 Gy. **On BFM-95, children under 1 year received no CRT, CNS+ children 1–2 years received 12 Gy, and CNS+ children ≥2 received 18 Gy. Reprinted from Cairo.5

Molecular basis of T-cell lymphoblastic neoplasia and therapeutic implications

Patients with T-LBL and T-ALL present similar challenges, so understanding the molecular origins of these diseases is vital for efforts to develop better treatment outcomes. It is generally accepted that malignant transformation is a multistep process of genetic mutations that arrest differentiation and allow uncontrolled cell growth.41,42 In T-lymphoblastic cancers, these genetic events have been queried extensively.43,44 T-LBL and T-ALL share some cytogenetic and molecular features, implying these diseases are closely related neoplasms.41 As most analyses of T-lymphoblastic neoplasia have studied T-ALL, not all of this impressive body of work may apply to T-LBL. However, efforts have been undertaken to compare the genetic and genomic origins of these related diseases, and they reveal both shared features and potentially important differences.45,46

Juxtaposition of the TCRβ or TCRαβ enhancers with proto-oncogenes via chromosomal translocations can mis-activate many transcription factors or repressors.47 Such TCR-driven translocations are seen in about 33% of T-ALL cases, and
dysregulate basic helix-loop-helix and homeobox transcription factors, LIM-only domain transcriptional regulators, or other oncogenes like \textit{NOTCH1} and \textit{MYB}. Non-TCR translocations are also described which create oncogenic fusion proteins such as \textit{MLL-ENL}, \textit{CALM-AF10}, and \textit{SET-NUP214}.48,49

Expression profiling in T-ALL supports the paradigm that oncogenic transcription factors can disrupt the normal pathways governing cell proliferation, differentiation, and survival during T-cell development.50-52 As specific translocations and expression patterns are associated with T-cell developmental arrest at distinct stages, it is believed that these genetic events can define different molecular subtypes of T-ALL.44

However, two other common genetic lesions are present across many T-ALL subtypes. The most prevalent genetic abnormality in T-ALL is inactivation of \textit{CDKN2A} and \textit{CDKN2B} at chromosome 9p21. Deletions at this locus occur in >70% of T-ALL.53 Another frequent aberration is activating mutation(s) in the \textit{NOTCH1} proto-oncogene, which are seen in over half of T-ALL cases.54 Other rare but recurrent genetic lesions in T-ALL include mutations activating \textit{JAK1}, \textit{FLT3}, and \textit{RAS}.55-57 or inactivating the tumor suppressors \textit{NFI}, \textit{PTEN}, and \textit{WT1}.58-60 Mutations in these genes are infrequent, so it is not yet clear whether they occur in several T-ALL types like \textit{CDKN2A/N2B} and \textit{NOTCH1}.

\textit{NOTCH1} activation is important to T-ALL pathogenesis. \textit{NOTCH1} normally promotes T-cell lineage commitment by lymphoid progenitors,61 and blocking its signaling in progenitors impedes T-cell development, instead favoring the B-cell lineage.62,63 A role for \textit{NOTCH1} in T-ALL was first suspected because of a rare translocation, t(7;9)(q34;q34.3). This rearrangement coupled the \textit{TCRb} locus to \textit{ICN1}, the IntraCellular portion of \textit{NOTCH1}, a constitutively active form of the protein.64 \textit{NOTCH1}'s role was further substantiated by animal models where \textit{NOTCH1} and \textit{ICN1} can induce T-ALL and T-LBL \textit{in vivo}.65,66

Scrutiny of the \textit{NOTCH1} pathway has led to a novel therapeutic strategy. Cell surface \textit{NOTCH1} undergoes proteolysis to generate active \textit{ICN1}, including a cleavage by the enzyme gamma-secretase. Consequently, gamma-secretase inhibitors (GSIs) inhibit \textit{NOTCH1} signaling (Figure 5). GSIs block growth in some T-ALL cell

Figure 3. Prevalence, degree, and impact of marrow involvement in children with T-cell lymphoblastic lymphoma (T-LL). (a) Percentage of T-LL cells in bone marrow at diagnosis as detected by flow cytometry, according to disease stage based on conventional criteria. Horizontal bars indicate median value for each group. (b) Event-free survival stratified by level of T-LL cells in bone marrow at diagnosis as measured by flow cytometry: <5% and ≥5% T-LL cells. Reprinted from Coustan-Smith et al.39

Figure 4. (a) Prevalence of minimal residual disease (MRD) during the early phases of therapy for patients with early T-precursor (ETP) vs standard T-ALL. MRD levels were measured by flow cytometry. Horizontal bars indicate median values, if above 0.01%. (b) Kaplan-Meier plots showing cumulative incidence of remission failure or hematopoietic relapse in patients with standard T-lymphoblastic leukemia (T-ALL; red) vs early T-precursor (ETP-ALL; blue) treated on St Jude protocols. Curves start at time of diagnosis. Outcome estimates at 10 years of follow-up are shown; \textit{P}-values are from the log-rank test. Reprinted from Coustan-Smith et al.40
lines and cause cell cycle arrest and apoptosis of primary T-ALL cells.54,67 Added to glucocorticoids, GSIs show potent anti-T-ALL effects \textit{in vivo}, and also diminish the gastrointestinal toxicity seen with GSIs alone. Combining GSIs with glucocorticoids can also induce apoptosis in previously glucocorticoid-resistant T-ALL.68 Unfortunately, loss of the tumor-suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) confers GSI resistance to T-ALL cell lines.59 However, as PTEN-null T cells are highly sensitive to AKT inhibitors, combined NOTCH1 and phosphatidylinositol 3-kinase (PI3K)/AKT therapies are also being investigated in T-ALL.59,69

Targeting of the mTOR pathway is similarly being explored, as simultaneous GS- and mTOR-inhibition shows synergy in T-ALL.70,71 Similarly, because NOTCH1 regulates nuclear factor kappaB (NF-\kappaB) signaling, GSIs synergize with bortezomib, which inhibits NF-\kappaB (Figure 5).72 Another target of NOTCH1 is CCR7, a chemokine receptor that mediates CNS infiltration by T-ALL.73 As the CNS represents a relatively common site of relapse, GSIs may be able to prevent CNS recurrence. Although promising, clearly, it remains to be seen whether these ideas will improve T-ALL outcomes, and if they can be extrapolated to T-LBL treatment.

ALCL IN CHILDREN AND ADOLESCENTS

ALCL comprises about 10\% of pediatric NHL. It was recognized as a distinct disease in the 1980s,76 and much of its biology is now understood.77 ALCL has two presentations: systemic ALCL and primary cutaneous ALCL occurring exclusively in skin.78 Categorized as a mature T-cell lymphoma, most ALCLs have TCR gene rearrangements even if they lack T-cell antigen expression.79 In children and adolescents, systemic ALCL is associated with anaplastic lymphoma kinase (ALK) gene translocations, denoting the disease as ALK+. The most common translocation creates an

Figure 5. Targeted treatment strategies for T-LBL. Glucocorticoid binding causes nuclear translocation of cytoplasmic receptors, which then bind glucocorticoid response elements (GREs) to promote transcription of pro-apoptotic genes, leading to cell death. Other drugs block pathways needed for growth and survival of malignant T-cell lymphoblasts. GSIs prevent release of intracellular notch (ICN1) from membrane-tethered heterodimeric NOTCH1 protein. Combined glucocorticoid and GSI therapies show synergy, but pten deletions can subvert reliance upon activated NOTCH1. Inhibitors of phosphatidylinositol 3-kinase (PI3K), AKT, and mTOR counteract this, thereby restoring GSI-sensitivity. One of the activities of ICN1 is to augment NF-\kappaB signaling. Blocking proteosomal degradation can stabilize inhibitors of NF-\kappaB (IkB), allowing Bortezomib to cooperate with GSI as well (figure design by Yaya Chu, New York Medical College).
ALK expression profiling and genomic analyses of ALCL suggest that ALK differently and have differing prognoses. Apart from rare in children.80 Children typically present with advanced stage with neoplastic cells, and a small cell variant (10%) of primarily lymphohistiocytic variant (10%) with benign histiocytes admixed the common variant (75%) composed chiefly of hallmark cells, the and giant cell variants.79 ALCL.85 Also, primary cutaneous ALCL is nearly always III-IV by St Jude criteria and 75% were Ann Arbor stage III or IV. disease. A compendium of 225 childhood ALCL patients treated stems from encouraging French data in relapsed ALCL, where Extramedinal disease was common (68%), with skin (26%), bone (14%), and soft-tissues (15%) all relatively frequently involved.86 B symptoms were seen in 54%, consistent with prior reports.86,87 Despite these aggressive features, both marrow and CNS invasion are uncommon in pediatric ALCL, occurring in <10% and <5% of cases, respectively.85,86,88

Current treatments for pediatric ALCL
The optimal approach for limited disease is not established, as both B-NHL and T-ALL regimens show similar efficacy. EFS may be as high as 100% for children with localized ALCL (stage I–II resected) as shown in the NHL-BFM-90 trial using 2 months of combined chemotherapy.89 Previously, St Jude’s reported 75% EFS in children with localized CD30+ large cell lymphoma (presumably ALCL) treated with three cycles of CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), either with or without maintenance therapy.90

Advanced pediatric ALCL treatment has evolved over the past two decades. Different strategies have achieved 65–75% EFS with either B-NHL protocols or LSA2L-type therapies (Table 4).89,91–95 Other trials have used a doxorubicin, prednisone, and vincristine (APO) backbone. Pediatric Oncology Group (POG)-9315 added intermediate-dose MTX and high-dose cytarabine to APO, but this did not improve efficacy, with MTX and cytarabine causing greater toxicity. Children on the APO-only arm had 75% 2-year EFS.92 COG is evaluating the addition of weekly vinblastine to APO. This stems from encouraging French data in relapsed ALCL, where

Table 3. Recurrent chromosomal translocations involving ALK in cancers

Chromosomal translocation	Partner protein	Frequency (%)	Fusion protein (kDa)	Cellular localization	Type of tumor	Refs
t(2;5)(p23;q35)	Nucleophosmin (NPM)	75–80	NPM–ALK (80)	Cytoplasm	ALK+ ALCL and ALK+ IMT	193–196
t(12;12)(p22;q21)	Tropomyosin 3 (TPM3)	12–18	TPM3–ALK (104)	Cytoplasm	ALK+ ALCL and IMT	197–199
t(2;3)(p12;q21)	TRK-fused gene (TFG)	2	TFG–ALK (137,97,85)	Cytoplasm	ALK+ ALCL	200, 201
inv(2)(p23;q35)	ATIC	2	ATIC–ALK (96)	Cytoplasm	ALK+ ALCL and IMT	202–204
t(2;17)(p22;q13)	Clathrin heavy chain-like 1 (CLTC1)	2	CLTC1–ALK (250)	Granular cytoplasmic	ALK+ ALCL, IMT and	205–207
t(2;23)(p11–12)	Moezin (MSN)	<1	MSN–ALK (125)	Cell-membrane associated	ALK+ ALCL	208, 209
t(2;19)(p12;p13)	Tropomyosin 4 (TPM4)	<1	TPM4–ALK (95–105)	Cytoplasm	ALK+ ALCL and IMT	198, 210
t(2;17)(p13;q25)	ALO17	<1	ALO17–ALK (ND)	Cytoplasm	ALK+ ALCL	211
t(22;23)(p11q21) or	RAN-binding protein 2 (RANBP2)	<1	RANBP2–ALK (160)	Periphery of the nucleus	IMT	212
inv(2)(p11q22)	Non-muscle myosin heavy chain (MYH9)	<1	MYH9–ALK (220)	Cytoplasm	ALK+ ALCL	213
t(2;21)(p21;p15q31)	Cysteiny1-RNA synthetase (CARS)	<1	CARS–ALK (130)	Unknown	IMT	211, 214
inv(3)(11q22–24)	Unknown	<1	Unknown	Granular cytoplasmic	ALK+ ALCL	215
t(4;6)(p23;q21)	SEC13 homologue A (S.cerevisiae) (SEC31L1)	<1	SEC31L1–ALK (ND)	Cytoplasm	IMT	216
inv(2)(p12;p23)	Echinoderm microtubule-associated protein-like4 (EML4)	6	EML4–ALK (ND)	Unknown	NSCLC	217

Abbreviations: ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; ALO17, ALK lymphoma oligomerization partner on chromosome 17; ATIC, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase; DLBCL, diffuse large B-cell lymphoma; IMT, inflammatory myofibroblastic tumors; ND, not determined; NSCLC, non-small-cell lung cancer; Refs, references. Reprinted from Chiarle et al.77

Table 4. Advanced anaplastic large cell lymphoma in children

Protocol(s)	BFM99	POG92	SFOP91	St Jude90	MSKCC107	CCG93	BFM, SFOP, and UKCCSG96	EICNHL98
Patients (%)	89	67	9315	89	19	19	225	352
Protocol(s)	NHL-BFM-90	86–90	POG	HM89–91	CHOP-based	LSA2L–LSA2	225–941	225
Duration (months)	2–5	12	7–8	6–18	14–36	12	2–8	2–8
EFS (Ext) 2–5 years	76%	73%	66%	57%	56%	68%	69%	75%
OS 2–5 years	93%	83%	84%	84%	80%	81%	94%	94%

Abbreviations: BFM, Berlin–Frankfurt–Munster; CCG, Children’s Cancer Group; EICNHL, European Intergroup for Childhood NHL; EFS, event-free survival; Est, estimate; MSKCC, Memorial Sloan Kettering Cancer Center; NHL, non-Hodgkin lymphoma; OS, overall survival; POG, Pediatric Oncology Group; SFOP, French Pediatric Oncology Group; UKCCSG, United Kingdom Children’s Cancer Study Group. Adapted from Cairo.9
10/12 patients responded to weekly vinblastine. Unfortunately, a recent COG report showed merely worse myelosuppression with vinblastine, with an equivalent 77% 2-year EFS.

The European intergroup ALCL99 trial, which is based on the BFM B-NHL treatment strategy, employed a less toxic regimen with high-dose MTX and no IT therapy. They reported 74% 2-year EFS and diminished toxicity. Until ALCL99, CNS-negative ALCL treatment usually included IT prophylaxis. With their recent success in preventing CNS relapse without IT treatment, perhaps reducing the number of high-dose MTX administrations should also be considered. For rare ALCL patients with CNS disease, CRT doses of 18–24 Gy, in addition to high-dose MTX and/or cytarabine plus IT chemotherapy, has been used.

Several prognostic factors have been identified in children with ALCL. Clinical features associated with poor outcome include visceral organ (liver, lung, or spleen) or mediastinal involvement, elevated lactate dehydrogenase (LDH), and diffuse skin disease. In addition, correlation between ALCL biology and outcome is now possible via PCR-based MDD detection of the NPM-ALK transcript. Higher levels of this mRNA in marrow predicted a 71% chance of relapse, in contrast to 18% in MDD-negative patients. Meanwhile, detection of endogenous anti-ALK antibodies are inversely correlated to ALCL dissemination and risk of relapse in ALK+ disease, implying that ALK may be a potential immunotherapeutic target. Additional results from the recent ALCL99 trial reveal that two less common ALCL variants, small cell and lymphohistiocytic, have a high risk of treatment failure, independent of clinical risk factors. Further advances in our ability to identify patients at high risk for relapse will enable appropriate application of intensified front-line therapies to potentially improve outcomes.

Relapsed ALCL is quite different from other pediatric NHL subtypes. Chemosensitivity of recurrent disease is a hallmark of childhood ALCL, rendering salvage strategies generally effective. Clinical behavior after relapse varies from aggressive to indolent, with a waxing and waning course. Historically, ALCL has been considered prone to late relapse, like other lymphomas seen in adult patients. However, a recent report describing 74 children and adolescents with recurrent ALCL revealed a median time of only 7.1 months between diagnosis and relapse. Of 58 patients who achieved remission after front-line therapy, only 18 recurred >1 year from original diagnosis. The prognostic significance of early vs late ALCL relapse remains an open question, with recurrences >1 year after diagnosis perhaps having superior outcome, but this finding has not been consistent in all cohorts. Late relapse again showed trends of better EFS and OS in the most recent report, but because these studies all compile data from patient groups who received differing initial treatments and relapse therapies, no definitive answer is yet available.

In a series of three French clinical trials over two decades, relapse therapies varied widely from single-agent vinblastine to multi-agent treatment to fully ablative chemotherapy with auto- or allo-SCT. Early relapses and failures with intensive initial regimens carry higher risk for treatment failure. Three-year disease-free survival did not differ in patients who received ablative SCT in CR2 vs chemotherapy alone. However, recent studies using allo-SCT in relapsed and refractory ALCL are promising, with 75% 3-year EFS seen in one 20 patient cohort.

Progress in ALCL treatment lies in both new targeted agents and optimizing risk stratification to identify patients who may benefit from front-line allo-SCT. The CD30 antigen is one compelling novel therapeutic target. Present in nearly all cases of childhood and adolescent ALCL, CD30 expression is controlled by ALK (Figure 6). SGN-35, an anti-CD30 monoclonal antibody, has shown even greater success than its predecessor SGN-30. Present in nearly all cases of childhood and adolescent ALCL, CD30 expression is controlled by ALK (Figure 6). SGN-35, an anti-CD30 monoclonal antibody, has shown even greater success than its predecessor SGN-30.
Phase I trials have examined SGN-35 monotherapy in patients with refractory/recurrent CD30+ ALCL and HL.115 Dose-limiting toxicities (thrombocytopenia, hyperglycemia, and febrile neutropenia) were used to derive a treatment dose of 1.8 mg/kg given every 3 weeks. At this dose, SGN-35 was generally well tolerated, with patients exhibiting primarily grade 1 or 2 adverse effects consisting of fatigue, nausea, neutropenia, and peripheral neuropathy (33% of patients) as well as fever, headache, back pain, and cough (25% of patients).117 At higher doses, one trial showed 7/8 patients achieving CR. In a second trial, also at higher SGN-35 doses, 7/28 patients achieved CR with an overall response rate (ORR) of 46%.116,117 These responses to monotherapy in heavily pre-treated patients offer exciting hope that adding SGN-35 to combination therapy will yield even better results in front-line therapy.

Development of other novel therapeutics has been fostered by advances in understanding of ALCL biology. Targets include the ALK protein itself, via small molecule and antibody-mediated inhibition. The ALK inhibitor NVP-TAE684 both prevented tumors and promoted pre-induced tumor regression in separate mouse models.118 Another kinase inhibitor, the dual MET/ALK inhibitor Crizotinib, also shows promise in ALK+ ALCL. Spurred on by the finding that some non-small cell lung carcinoma patients have a related translocation involving the ALK gene (EML4-ALK), Crizotinib is being developed as a targeted agent for cancers driven by constitutive ALK activity and was recently approved by the FDA in patients with lung cancer with the presence of an ALK mutation. Exciting results with this medication in refractory and relapsed ALK+ ALCL suggest this strategy holds great clinical promise.119

These data with ALK inhibitors agree with findings that circulating anti-ALK antibodies predict lower relapse rates, and have led to vaccination studies using the ALK antigen.120 Other investigations have focused on different aspects of ALCL biology. Although somatic mutations in ALCL are rare, sequencing identified 6 different mutations in 12/44 (27%) patients with ALK+ ALCL. Perforin (PRF1) mutations were particularly prevalent in ALCL, compared with control subjects where the A91V mutation was infrequently seen ($P < 0.01$).121 PRF1 mutations occur in other NHLs, and may impair cytotoxicity because of abnormal PRF1 conformation caused by the A91V mutation. Additionally, amplification of the sonic hedgehog (SHH) gene in a subset of ALK+ ALCL121 has been shown to lead to dysregulated SHH signaling.

Proteomic analyses of ALCL complement these landmark genomic studies and have been instrumental in understanding the ALK protein network.124,125 Proteomic signatures from cells expressing the NPM-ALK fusion show alterations in cellular processes including proliferation, ribosome synthesis, survival, apoptosis, angiogenesis, and cyto-architectural organization.124 Further studies revealed loss of cell adhesion caused by NPM-ALK expression in a kinase-dependent manner, as well as sensitivity of ALK+ ALCL to inhibition of the RAS, extracellular signal-regulated kinase (ERK) and FRS06 binding protein-rapamyin-associated protein (FRAP) mTOR signaling pathways.124 Understanding the molecular effects of ALK+ ALCL on these cellular pathways offers key insights into ALK+ ALCL biology.

Several potential therapeutic targets in ALCL have also been identified by proteomic studies. Constitutive CD25 expression by pediatric ALCL has led to \textit{in vitro} investigations of the anti-CD25 agent, denileukin diftitox.126,127 Identification of other downstream pathways interconnected with ALK has led to studies examining disruption of ALK-associated pathways. Heat shock protein 90 (Hsp-90) and the PI3K/Akt pathway both have interactions with the ALK protein network. \textit{In vitro} studies targeting Hsp-90 cause increased degradation of NPM-ALK and apoptosis of ALCL cell lines,128 while PI3K/Akt-null mice injected with NPM-ALK+ cells have impaired tumor formation.129 These advances in the genomics and proteomics of ALCL have enabled new therapeutic approaches. Combining new and less-toxic therapies offers exciting opportunities to enhance the efficacy and safety of therapies for future ALCL patients.

PTCL-NOS in Children and Adolescents

PTCLs are a heterogeneous group of cancers arising from mature T and NK cells. These diseases include all forms of T-cell lymphoma except T-lymphoblastic disease. PTCL-NOS is the second most common PTCL after ALCL. In children, PTCL-NOS accounts for about 1% of NHL cases.130 In contrast, it comprises about 4% of adult NHL.131 The biology of PTCL-NOS shows great diversity. Identifying the normal cells that correspond to the cellular origin of different PTCL-NOS diseases has been challenging. Several pan-T-cell antigens, as well as cytokotoxic and activated T-cell markers, are seen across different T-cell developmental stages.132 Although several cytogenetic abnormalities have been observed in PTCL-NOS, a specific schema of clinically useful classification has not been established.133 In fact, ALK translocations in ALCL represent the only recurrent genetic aberration in PTCL.134 Furthermore, apart from the frequent clonal TCR rearrangements seen in PTCL-NOS, other molecular changes vary and display no consistent pattern.135

Recent studies in PTCL-NOS biology have led to exciting findings. Genomic analyses of tumor specimens have linked rearranged expression of NF-kB genes to shortened survival.136 Another report used expression profiling to stratify PTCL-NOS into three subgroups: one notable for cyclin D2 expression, another with NF-xB1 and BCL-2 overexpression, and a third with high expression of genes in the interferon/janus kinase/signal transducers and activators of transcription pathway.136 Although further studies are needed to confirm these results and deepen our understanding as pertains to lymphomagenesis, they represent potentially important biological observations in PTCL-NOS.

The clinical presentations of PTCL-NOS can be as varied as its biological characteristics. Patients often exhibit generalized lymphadenopathy (frequently cervical) or extranodal disease of the liver, spleen, skin, and marrow. Most patients have advanced stage disease with high LDH at diagnosis, as well as B-symptoms like fever, night sweats, and/or weight loss. These features derive from increased cytokine production by malignant T cells, and can even cause the hyper-inflammatory signs of hemophagocytic syndrome.3

Treatment strategies for PTCL, including PTCL-NOS, are similarly varied. It has been challenging to develop and establish effective regimes because clinical experience in pediatric PTCL is sparse and individual studies are hampered by too few patients. Overall, while a few PTCL types require unique approaches (for example, adult T-cell leukemia/lymphoma (ATLL) and Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (T-LPD) of childhood, ALCL, and some cutaneous entities), other PTCL patients receive similar therapies irrespective of subtype. The largest pediatric PTCL cohorts are studies from the USA and the UK. The COG analyzed 20 pediatric patients over a 9-year period. This cohort had 12 PTCL-NOS patients; other diagnoses included extranodal NK/T-cell lymphoma nasal type, subcutaneous panniculitis-like T-cell lymphoma (SPTCL), and enteropathy-type T-cell lymphoma. Treatments varied based upon clinical staging. Advanced stage III–IV disease received a regimen of doxorubicin, prednisone, vincristine, mercaptopurine, and MTX ± alternating therapy with high-dose cytarabine and intermediate-dose MTX. Localized stage I–II patients were treated with CHOP. Patients with localized disease fared well; only 2 relapsed and 9/10 survived. In advanced disease cases, 6/10 relapsed and only 5 survived. These results are markedly better than typically seen in adults with PTCL. However, while CHOP seems adequate for...
localized cases, the 50% OS of advanced stage patients leaves room for improvement.137

The UK experience was similar. This study retrospectively analyzed 25 PTCL cases in children and adolescents over 20 years. A similar distribution of PTCL subtypes was seen with 68% categorized as PTCL-NOS. Remaining diagnoses included angio-immunoblastic T-cell lymphoma (AITL), angiocentric PTCL, and SPTCL. Patients received either B-NHL CHOP-like regimens or T-ALL therapy. In children with PTCL-NOS, 9/12 survived after T-ALL therapy, but 4/5 died following B-NHL treatment. Like the COG study, when analyzed by extent of disease, most patients (9/12) with local stage I–II disease survived, but only 6/12 advanced stage patients survived. The authors concluded that T-ALL therapy was appropriate for children with PTCL-NOS, but prognoses for children with advanced stage disease remain guarded.130

Adults with PTCL generally have inferior outcome. Five-year OS in adult studies ranges from 25 to 45% with many treatment strategies used.138–140 Chemotherapy regimens for adults frequently include CHOP-like therapy, and incorporation of cytarabine, cisplatin, and etoposide have not bolstered survival rates. Owing to poor outcomes, high-dose chemotherapy followed by auto- or allo-SCT has also been explored. High-dose chemotherapy with auto-SCT has been attempted in both the initial diagnosis and relapse setting. In patients with refractory or recurrent disease, OS after auto-SCT is about 33%.141 Some studies report slightly higher OS rates of 39–48%, but these cohorts included ALCL patients, who typically do well with auto-SCT salvage therapy. When separated out, non-ALCL PTCL cases had OS closer to 30% in these same studies.142

Attempts with front-line auto-SCT in newly diagnosed PTCL have yielded only marginally better results. A large Italian study in high-risk PTCL patients who received up-front auto-SCT reported long-term OS rates of 39%. OS was hampered by the fact that many patients progressed before auto-SCT and never received transplantation. But, in patients who did receive high-dose chemo and auto-SCT, 12-year disease-free survival rate was improved to 55%.143

Allo-SCT has also been used in high-risk PTCL. This strategy provides the advantages of infusing a known lymphoma-free graft, as well as potential graft-vs-lymphoma effects. Although patients receiving allo-SCT have proven lower relapse risks (compared with auto-SCT), historically high rates of transplant-related mortality in fully ablative conditioning regimens have offset any survival advantage.144 Better success has been achieved using allo-SCT with reduced intensity conditioning regimens. In a pilot study of 17 patients with refractory and recurrent disease (eight after failed auto-SCT), 3-year progression-free survival was 64%, and only one patient experienced transplant-related mortality.145 These results offer hope for this notoriously recalcitrant disease.

Establishing prognostic criteria for high-risk PTCL is important to identify patients who may be candidates for intensified treatment. As mentioned above, pediatric studies show patients with advanced stage disease have markedly worse outcomes than localized stage I–II disease.130,131 In adults, the International Prognostic Index (IPI) provides risk stratification. The IPI incorporates features such as stage, LDH level, patient age, multifocal extranodal disease involvement, and performance status. Its validity in adult PTCL-NOS patients was verified in a Canadian study of 117 patients. Those with an IPI score of 0–1 (30% of the cohort) had 64% 5-year OS, while those with IPI > 2 (70% of patients) had OS of only 30%.146 A Prognostic Index for PTCL-NOS (PI) model was established based on IPI principles and results from a series of nearly 400 patients. Four variables were used to stratify prognostic groups: age, performance, LDH, and marrow involvement. Five-year OS rates by PIIT score were: 0, 62%; 1, 53%; 2, 33%; and > 2, 18%.147 In applying this schema to pediatric patients, advanced disease markers like high LDH and marrow involvement would portend worse prognoses.

Considering the poor outcomes of high-risk PTCL patients, new therapeutic strategies are desperately needed. Agents being investigated include compounds from various pharmacological classes including nucleoside analogs, antifolates, histone deacetylase and proteasome inhibitors, anti-angiogenesis agents, and monoclonal antibodies. Of nucleoside analogs, pentostatin and gemcitabine have been most promising. A single institution study of 10 patients demonstrated 60% ORR to gemcitabine with refractory/recurrent disease.147 Nelarabine, on the other hand, achieved only 11% ORR and showed marked toxicity.148 The histone deacetylase-inhibitor depsipeptide showed a 26% ORR in a phase II trial,149 and the anti-angiogenic bevacizumab has induced CR in case reports of refractory/recurrent AITL.150,151 Pralatrexate, an anti-folat, has shown promise in phase I–II trials with 47% ORR in 26 patients with T-cell lymphoma, many with PTCL-NOS.152 This work has expanded to a multicenter trial, and interim data show a 29% ORR in 65 patients, with 11% of patients achieving CR.153 Combining liposomal doxorubicin with the proteasome inhibitor bortezomib has proven safe and effective in other advanced hematological malignancies.154 Proteasome inhibitors promote apoptosis and other anti-proliferative properties by inhibiting the NF-κB pathway. Bortezomib thus is an attractive candidate drug for PTCL-NOS diseases with demonstrated overexpression of NF-κB target genes.156 Bortezomib has also been studied in refractory and relapsed cutaneous T-cell lymphomas, where 67% ORR was seen with single-agent therapy. Alternatively, most cases in that trial were mycosis fungoides, one of two PTCL-NOS patients also responded.155 Current efforts add bortezomib to first-line PTCL agents,156 with in vitro testing of cutaneous PTCL demonstrating synergy between bortezomib and the histone deacetylase inhibitor suberoylanilide hydroxamic acid.157

Monoclonal antibody therapies have gained considerable momentum in the treatment of pediatric lymphomas over the past decade. These successes have fostered interest evaluating them in PTCL as well. Alemtuzumab is a humanized monoclonal antibody targeting CD52, an antigen expressed on most lymphocytes. It showed a 36% ORR as a single agent in a pilot study of patients with refractory/recurrent PTCL. However, excessive infectious complications prompted premature closure of this study after five patients suffered from treatment-related mortality.158 More recently, alemtuzumab was combined with CHOP as front-line therapy. This regimen had 41% 1-year EFS, with an acceptable toxicity profile.159 Other monoclonal antibodies have been explored in cutaneous T-cell lymphomas and their role in PTCL is unclear. These include the anti-CD4 antibody zanolimubum, and the anti-CD25 antibodies daclizumab and denileukin diftox.160,161 Despite this wide arsenal of novel therapeutics and the guardedly optimistic results achieved by reduced intensity allo-SCT in PTCL, it remains crucial to pursue the biologic underpinnings of these diseases. Given their rare occurrence, it is unlikely they will ever be amenable to large-scale clinical trials to empirically test all possible therapies. It will therefore continue to be important to identify biological markers that provide scientific rationale to help guide treatment choices that optimize therapeutic outcomes for this challenging and diverse group of patients.

RARE T- AND NK-CELL LYMPHOMAS IN CHILDREN AND ADOLESCENTS

A number of rare lymphomas originating from mature T and NK cells account for an incredibly diverse spectrum of malignancies (Figure 1).162 These lymphomas vary widely by geography and ethnicity with a considerably higher prevalence in Asia.131 Although certain diseases have well-described etiologies

Blood Cancer Journal © 2012 Macmillan Publishers Limited
(for example, human T-cell lymphotropic virus-1 (HTLV-1) in ATL and EBV in EBV⁺ T-LPD), for most rare T- and NK-cell lymphomas, a link is not determined.3

Over 20 mature T- and NK-cell lymphomas are listed in Table 1. The 2008 WHO Classification of Lymphoid Neoplasms subdivides T- and NK-cell lymphomas into four clinical presentation-based groups: leukemic/disseminated, extranodal, extranodal-cutaneous, and nodal. Among mature T- and NK-cell lymphomas, the leukemic/disseminated group includes HTLV-1⁺ ATL and systemic EBV⁺ T-cell LPD of childhood. Extranodal diseases include extranodal NK/T-cell lymphoma, hepatosplenic lymphoma, enteropathy-associated T-cell lymphoma, and others. Cutaneous forms include mycosis fungoides/Sezary syndrome, primary cutaneous CD3⁺ CD56⁺ LPD (discussed previously with ALCCL, SPTCL, and primary cutaneous gamma/delta (γ/δ) T-cell lymphoma. Nodal entities include ALCCL, ATL, and PTCL-NOS. The remainder of this review will discuss several rare T- and NK-cell lymphomas in children and adolescents.

Hepatosplenic γ/δ T-cell lymphoma
Characterized by involvement of liver, spleen, and marrow, hepatosplenic γ/δ T-cell lymphoma is a rare and aggressive peripheral T-cell neoplasm. It is a disease of young adults with distinct male predominance. Marked hepatosplenomegaly with frequent marrow infiltration is typical, and patients notably present without lymphadenopathy. Up to 20% of cases arise in patients with chronic immune suppression, often after solid organ transplantation or prolonged exposure to azathioprine and infliximab. Recently, EBV-negative T-cell lymphomas with features of hepatosplenic T-cell disease were reported in inflammatory bowel disease patients receiving infliximab.163 Karyotypic studies consistently show isochromosome 7q, often with trisomy 8, and TCR rearrangements. Expression profiling showed high levels of NK-cell messages such as killer cell immunoglobulin-like and lectin-like receptors, compared with PTCL specimens with α/β phenotype.164 Ontology analysis revealed enrichment of genetic pathways for cellular defense responses, signal transduction, receptor activity, transmembrane receptor activity, and immunoglobulin G binding. Prognosis is grim, as most patients experience recurrent disease after brief responses to conventional chemotherapy.165 Long-term remissions have been reported in pediatric and adult patients receiving allo-SCT.166,167

Subcutaneous panniculitis-like T-cell lymphoma
The characteristic presentation of subcutaneous lesions distinguishes SPTCL. Although more common in adults, there are several reports of SPTCL in children and adolescents. Patients present with atypical T-cell infiltrates confined to subcutaneous tissues, resulting in panniculitic-appearing skin nodules and/or ulcerated lesions. SPTCL is usually local, with organ or node involvement uncommon. Clinical courses can be indolent, protracted, and aggressive, and patients may present with symptoms of hemophagocytic syndrome.166 T-cell phenotyping has delineated two distinct entities. The α/β type is more common and differs from the ominous primary cutaneous γ/δ T-cell lymphoma. Cutaneous γ/δ disease has similar clinical features to SPTCL, but is considered a variant of the hepatosplenic γ/δ T-cell lymphomas discussed above. α/β SPTCL and cutaneous γ/δ disease have different immunophenotypes (α/β: CD8⁺ CD56⁺ /βF1⁺; γ/δ: CD8⁺ CD56⁺ /βF1⁺), and α/β disease has less frequent features of hemophagocytosis and markedly better outcome. Patients with α/β SPTCL have been treated with multi-agent regimens with reasonable efficacy, whereas patients with cutaneous γ/δ disease have poor outcomes like cases of γ/δ hepatosplenic lymphoma.168

EBV-positive T-cell lymphoproliferative disorders
The 2008 WHO classification incorporated two types of EBV-associated T-cell LPD affecting the pediatric population: systemic EBV⁺ T-cell LPD of childhood and hydroa vacciniforme-like T-cell lymphoma. Both diseases occur predominantly in Asians and individuals of Native American descent from various regions of Latin America.

Systemic EBV-positive T-cell LPD of childhood
Most patients present with symptoms of a systemic hyper-inflamatory response with disease mimicking the presentation of hemophagocytic lymphohistiocytosis. Acute onset of fever and malaise often precedes the eventual development of hepatosplenomegaly and liver failure, with or without lymphadenopathy. This disease has rapid progression to multi-organ failure, hemophagocytic syndrome and death. Chronic active EBV infection has been documented in some patients before developing EBV⁺ T-cell LPD, but most cases are fulminant and arise with acute primary EBV infection. Fulminant cases are CD8⁺, whereas chronic active EBV-associated cases are CD4⁺. EBV-encoded RNA-1 is positive in neoplastic T cells that exhibit clonal TCR gene rearrangement and harbor EBV in a clonal episomal form. This severe illness is characterized by clonal proliferation of EBV-infected T cells with an activated cytotoxic phenotype. All cases are type A EBV, with either the wild type or a specific 30 base pair-deletion of the viral LMP1 gene. Frequent sites of involvement include liver, spleen, nodes, and marrow. The typical immunophenotype of tumor cells is CD2⁺ CD3⁻ CD56⁺. Transient chemotherapy responses are reported, but almost all cases have rapid disease progression ending in death.170

Hydroa vacciniforme-like lymphoma
Hydroa vacciniforme-like T-cell lymphoma is an EBV⁺ cutaneous malignancy occurring mostly in children. Linked to sun sensitivity, this condition primarily affects sun-exposed skin, and the face in particular. Papulovesicular eruptions precede ulceration and scarring. The clinical course is variable and skin lesions may be recurrent. Late in the disease, systemic symptoms develop such as fever, wasting, lymphadenopathy, and hepatosplenomegaly. Similar to EBV⁺ T-cell LPD, neoplastic cells have clonal TCR rearrangements and harbor EBV in a clonal episomal form. It is not clear whether the severe mosquito-bite allergy seen in chronic active EBV infection, which has similar cutaneous lesions of NK-cell derivation, is related to the hydroa vacciniforme-like lymphoma or a distinct entity in the spectrum of EBV-associated disorders. Both diseases are considered part of the spectrum of severe chronic active EBV, demonstrating a broad variation in clinical aggressiveness.171 Allo-SCT provides the only curative option for patients, but it remains to be seen whether novel EBV-specific cytotoxic T-lymphocyte (CTL) immunotherapies have a role in this unique disorder.172

Adult T-cell leukemia/lymphoma
ATLL is another rare T-cell malignancy associated with viral infection. It is associated with HTLV-1 infection, a virus endemic to regions including Japan, the Caribbean, parts of South America, West and Central Africa, and some of the Oceanic Islands. Infection with the HTLV-1 retrovirus carries an approximate 5% lifetime risk of developing ATLL.174 Although trophic for CD4⁺ T cells, HTLV-1 infection does not cause cytopathic destruction of CD4⁺ T cells. Rather, upon integration, it governs its own transcription using its regulatory protein Tax. Tax interacts with host proteins that can promote lymphomagenesis including the NF-κB pathway,175 trans-activating proteins that promote T-cell proliferation and apoptosis inhibition, proteins repressing cell cycle control and DNA repair, and multiple tumor suppressors.176
A second retroviral protein, HBZ, is also linked to the NF-kB and T-cell proliferation pathways. These retroviral proteins contribute to HTLV-1 pathogenesis, but the virus itself is not considered to be directly oncogenic. HTLV-1 infection induces humoral and cellular immune responses, and like EBV-induced lymphomas, impaired anti-HTLV-1 CTL responses are associated with ATLL. There are four clinical variants of ATLL: acute, lymphomatous, chronic, and smoldering. Acute is most common, with patients presenting with disseminated disease, systemic symptoms, organomegaly, and circulating malignant cells. The ATLL immunophenotype is usually CD2+/4+/5+/25+, with loss of pan-T marker CD7. CD8+ variants also exist. ATLL patients are typically immunocompromised with increased risk of opportunistic infection. Prognosis for acute and lymphomatous ATLL is dismal with median survival <1 year using standard chemotherapy. Evidence for a link between HTLV-1 and ATLL is substantiated by improved prognosis (30-40% survival) in patients treated with allo-SCT. Clearance of HTLV-1 proviral loads and suggestion of a graft-vs-lymphoma effect have been documented in multiple clinical trials, revealing promise for this immunotherapeutic approach.

Extranodal NK/T-cell lymphoma

Extraneal NK/T-cell lymphoma occurs primarily in Far and Southeastern Asia. The majority of cases (60-90%) present with nasal or upper airway masses, but extranasal disease is also described. Virtually all cases are EBV+, with cytoplasmic CD3 and CD56 surface expression. Most cases also test positive for cytotoxic proteins such as TIA-1, granzyme B, and perforin. Genomic profiling studies have shown several genomic losses and gains associated with NK-cell malignancies-deletion in 6q21 being most common. Meanwhile, expression profiling reveals high transcript levels for genes in the p53 pathway, anti-apoptosis pathways, and cytokine receptors in NK lymphoma cell lines as compared to normal NK cells. A tandem mass spectrometry-based proteomic analysis established overexpression of potential targets implicated in disease pathogenesis, including HSP90 and proliferating cell nuclear antigen. Moreover, in vitro inhibition of HSP90 with geldanamycin demonstrates reduced cell viability and increased apoptosis. NK-cell lymphomas are very aggressive and have poor outcomes, with 5-year OS of 32% in recent studies. Of note, extranasal NK disease has strikingly worse prognosis (9% 5-year OS) vs the more common nasal type (42% 5-year OS).

Angioimmunoblastic T-cell lymphoma

In contrast to the extranodal presentation of NK-cell lymphoma,AITL usually presents with lymphadenopathy. Clinical hallmarks include systemic disease features, with most patients manifesting generalized lymphadenopathy, B symptoms, elevated LDH, and hepatosplenomegaly. Many patients also present with pruritic skin rash. EBV and human herpesvirus-6 are detectable in many cases, but the implications of these findings are not clear. Histologically, AITL is characterized by proliferation of high endothelial venules and follicular dendritic cells. Tumors arise from CD4+ cells belonging to the follicular helper T-cell lineage. Determination of AITL molecular signatures has yielded a classifier schema comprised of three prominent patterns: a B-cell signature, a follicular dendritic-cell signature, and a cytokine signature, reflecting the relationship between the tumor cells and their microenvironment. Gene expression analyses in AITL show activation of the NFκB pathway and enrichment of genes denoting dendritic cell function and interleukin-6 signaling. Importantly, this study identified prognostic features predictive of poor outcome in the form of gene signatures reflecting immunosuppression: tolerogenic dendritic cells and CD31 stromal cells. Additionally, involvement of NFKB may provide a potential means to develop novel treatments. Like extranodal NK-cell lymphoma cases, AITL patients have poor survival outcomes with 5-year OS approximating 30%.

Rare T- and NK-cell lymphomas summary

Ultimately, PTCL lymphomas remain a diagnostic and therapeutic challenge. Although biologic studies have been performed in adult series, the rarity of pediatric PTCL cases hinders large-scale investigations on both the basic science and clinical fronts. To address this problem, COG has initiated collection of rare pediatric lymphomas and LPDs via study ANHL04B1. A central institutional review board facilitates prompt patient enrollment and expedited pathologic review of specimens to confirm these scarce diagnoses by a three-expert hematopathology panel. This study also gathers information regarding therapy chosen by the treating physicians and outcome. As these cases require individualized care, no specific therapy is linked to the ANHL04B1 study. Instead, its aim is to collect diagnostic, treatment, and outcome data on these rare diseases in children and adolescents. Meanwhile, as new therapeutics are continually tested in adults, it is likely that extrapolation from these studies will be necessary to improve outcomes in rare pediatric cases. As our biologic understanding of these diseases advances and new targets emerge, therapies will become more enlightened. Until such regimens have been proven, children with all subtypes of advanced stage, refractory, and recurrent PTCL may benefit from induction therapy followed by allo-SCT with reduced intensity conditioning regimens.

CONCLUSION

T- and NK-cell lymphomas in pediatric patients are a complex group of neoplasms arising from precursor T lymphoblasts or other mature T- and NK-cell subsets. T-LBL is the most common, representing one-third of childhood and adolescent NHL. Although the genomic and genetic underpinnings of T-ALL have been thoroughly scrutinized, much less is known about T-LBL molecular pathogenesis. It has been generally accepted that T-ALL and T-LBL are different manifestations of the same disease, but recent studies show that T-ALL and T-LBL have distinct genetic aberrations and non-identical expression patterns. Advances in T-ALL biology have led to novel therapeutics currently under investigation, but a deeper understanding of T-LBL and its relation to T-ALL is needed to enhance treatment outcomes for these patients. Among mature T-cell neoplasms, ALK+ ALCL is most prevalent. The genetic aberration defining this disease is, logically, a target for therapeutic intervention. ALK tyrosine kinase inhibitors are currently being tested in relapsed ALCL. Pediatric PTCLs arising from mature T cells are so rare that they are challenging to study. However, our increasing knowledge of their biologic features, coupled with attention to adult treatment strategies, will undoubtedly offer insights for pediatric PTCL. As our understanding of PTCL molecular pathogenesis continues to grow, there is cause for optimism. Ultimately, there is no inherent reason why childhood and adolescent T- and NK-cell lymphomas should not be equally curable to other pediatric lymphocyte cancers like HL, B-NHL, and ALL.

CONFLICT OF INTEREST

AAF has sponsored research from Merck and Pfizer on the use of GSIs for the treatment of T-ALL. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported in part by grants from the Pediatric Cancer Research Foundation, Marisa Fund, and Paul Luisi Foundation.
REFERENCES

1 T lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008, pp. 176 - 178.

2 Mature T- and NK-cell neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008, pp. 270 - 279.

3 Rodriguez-Abreu D, Filho VB, Zucza E. Peripheral T-cell lymphomas, unspecified (or not otherwise specified); a review. Hematol Oncol 2008; 26: 8 - 20.

4 El-Mallawany NK, Van Vlierberghe P, Ferrando AA, Lim M, Cairo MS. T-cell malignancies in children and adolescents: state of the clinical and biological science. In: Foss F (ed). T-Cell Lymphoproliferative Disorders. Humana Press: New York, 2012 (in press).

5 Cairo MS. Non-Hodgkin’s lymphoma and lymphoproliferative disorders in children. In: Carroll WL, Finlay J (eds). Cancer in Children and Adolescents. Jones and Bartlett Publishers: Sudbury, MA, 2010.

6 Cairo MS, Bradley MB. Lymphoma. In: Kliegman RM, Behrman RE, Jenson HB, Stanton BF (eds). Nelson Textbook of Pediatrics, 18th edn. Elsevier: Philadelphia, 2007, pp. 2123 - 2126.

7 Cairo MS, Raet E, Perkins SL. Non-Hodgkin’s lymphoma in children. In: Kufe DW, Bast RC, Hain WN, Hong WK, Pollock R, Weichselbaum RR, et al. (eds). Cancer Medicine, 7th edn. BC Decker Inc.: Hamilton, Ontario, Canada, 2005, pp 1962 - 1976.

8 Burkhardt B, Moerckie A, Klapper W, Greene F, Salzburg J, Damm-Welk C et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 2008; 49: 451 - 461.

9 Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Caroll WL et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2006; 47: 130 - 140.

10 Burkhardt B, Reiter A, Landmann E, Lang P, Lassay L, Dickerhoff R et al. Poor outcome for children and adolescents with progressive disease or relapse of lymphoblastic lymphoma: a report from the Berlin-Frankfurt-Muenster group. J Clin Oncol 2009; 27: 3363 - 3369.

11 Reiter A, Schrappe R, Ludwig WD, Tiemann M, Schraupes R, Zimmermann M et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 2000; 95: 416 - 421.

12 Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Münster. Leukemia 2000; 14: 2205 - 2222.

13 Bertsch H, Rudoler S, Needle MN, Malloy P, Sutter L, Belasco J et al. Emergent/ urgent therapeutic irradiation in pediatric oncology: patterns of presentation, treatment, and outcome. Med Pediatr Oncol 1998; 30: 101 - 105.

14 Link MP, Weinstein HJ. Malignant non-hodgkin lymphomas in children. In: Pizzo PA, Poplack DG (eds). Principles and Practice of Pediatric Oncology, 5th edn. Lippincott, Williams and Wilkins: Philadelphia, 2006, pp 722 - 747.

15 Meadrow AT, Spofford R, Jenkins RD, Kersey JH, Chilcote RR, Siegel S et al. Similar efficacy of 6 and 18 months of therapy with four drugs (COMP) for event-free survival for children with T-cell lymphoblastic lymphoma: a phase I/II study. Bone Marrow Transplant 1995; 15: 353 - 359.

16 Levine JE, Harris RE, Loberiza Jr FR, Armitage JO, Vose JM, Van Besien K et al. A comparison of allogeneic and autologous bone marrow transplantation for lymphoblastic lymphoma. Blood 2003; 101: 2476 - 2482.

17 Gros T, Hale GA, He W, Camitta BM, Sanders JE, Cairo MS et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin’s lymphoma in children and adolescents. Biol Blood Marrow Transplant 2010; 16: 223 - 230.

18 Mitsui T, Mori T, Fujita N, Inada H, Horibe K, Tsurusawa M et al. Retrospective analysis of relapsed or primary refractory childhood lymphoblastic lymphoma in Japan. Pediatr Blood Cancer 2009; 52: 591 - 595.

19 Blaise D, Blaney SM, Devrient T, Guerci P, Cervantes F et al. Phase II study of nesilimab (compound 506UB) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005; 23: 3376 - 3382.

20 Balakrishnan K, Nimmanapalli R, Ravandi F, Keating MJ, Gandhi V. Forodesine, an inhibitor of purine nucleoside phosphorylase, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2006; 108: 2392 - 2398.

21 Haux C, Itoh R, Kajihara M, Rogakou A, Ben-Daya M, Belhajj K et al. [18F]fluorodeoxy- D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood 2005; 106: 1376 - 1381.

22 Lovisa F, Mussolin L, Corral L, Pillon M, Cazzaniga G, Biondi A et al. TCR-based RQ-PCR assay for MDR in childhood lymphoblastic lymphoma of childhood. Hematol Oncol Rep Meeting 2009, (abstract); 3: 37.

23 Stark B, Avigad S, Luria D, Manor S, Reshef-Ronen T, Avrahami G et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III EFS, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer 2006; 47: 416 - 421.

24 Nakao C, Itti E, Rahmouni A, Bice P, Rain JI, Belhajj K et al. [18F]fluorodeoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood 2005; 106: 1376 - 1381.

25 Coustan-Smith E, Sandlund JT, Perkins SL, Chen H, Chang M, Abromowitch M et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol 2009; 27: 3533 - 3539.

26 Coustan-Smith E, Mullighan CG, Onciuc M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 147 - 156.
of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology, Blood 1998; 92: 3591–3598.

Laver JR, Kraveka JM, Hutchinson RE, Chang M, Kepner J, Schwenn M et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol 2005; 23: 541–547.

Lowe EJ, Stoop T, Perkins SL, Gross TG, Finlay J, Zwick D et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children's Cancer Group Study 5941. Pediatr Blood Cancer 2009; 52: 335–339.

Rosolen A, Pillon M, Garaventa A, Burnelli R, d’Amore ES, Giuliano M et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer 2005; 104: 2133–2140.

Williams DM, Hobsom R, Imeson J, Gerrard M, McCarthy K, Pinkerton CR. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children's Cancer Study Group chemotherapy regimens. Br J Haematol 2002; 117: 812–820.

Brugieres L, Quartier P, Le Deley MC, Pacquement H, Perel Y, Bergeron C et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children—a report from the French Society of Pediatric Oncology. Ann Oncol 2000; 11: 53–58.

Kraveka JM, Weitzman S, Smith L, Lynch JC, Chang M, Kinney M et al. Advanced-stage anaplastic large-cell lymphoma in children and adolescents: results of ABHL0131, a randomized phase III trial with standard APO (doxorubicin, prednisone, vincristine) versus consolidation with a regimen including vinblastine: a report from the Children’s Oncology Group. Hematol Meeting Rep 2009, (abstract); 3: 41.

Brugieres L, Le Deley MC, Rosolen A, Williams D, Horibe K, Wrobel G et al. Impact of the methotrexate administration dose on the need for intrathecal prednisone, vincristine) versus consolidation with a regimen including vinblas-

Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol 2010; 28: 3987–3993.

Cesaro S, Pillon M, Visentin G, Pucci MC, Gazzola MV, D’Amore E et al. Unrelated bone marrow transplantation for high-risk anaplastic large cell lymphoma in pediatric patients: a single center case series. Eur J Haematol 2005; 75: 22–26.

Woessmann W, Peters C, Lenhard M, Burkhardt B, Sykora KW, Dilloo D et al. Allogeneic haemopoietopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents—a Berlin-Frankfurt- Munster group report. Br J Haematol 2006; 133: 176–182.

Bartlett NL, Younes A, Carabasi MH, Forero A, Rosenblatt JD, Leonard JP et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 2008; 111: 1848–1854.

Fonseca-Torres A, Leonard JP, Younes A, Rosenblatt JD, Brice P, Bartlett NL et al. A phase II study of SGN-30 (anti-CD30mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol 2009; 146: 171–179.

Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363: 1812–1821.

Bartlett N, Forero-Torres A, Rosenblatt J, Fanale M, Hooning SJ, Thompson S et al. Complete remissions with SGN-35 weekly dosing: a phase I dose-escalation study in relapsed/refractory Hodgkin lymphoma or systemic ALCL patients. J Clin Oncol 2009, (abstract); 17: 8500.

Younes A, Forero-Torres A, Bartlett NL, Leonard JP, Lynch C, Kennedy DA et al. Multiple complete responses in a phase 1 dose-escalation study of the antibody- drug conjugate SGN-35 in patients with relapsed or refractory CD30-positive lymphomas. Blood 2008, (abstract); 112: 1006.

Galkin AV, Melnick JS, Kim S, Mood TL, Li N, Li L et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA 2007; 104: 270–275.

Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 2011; 364: 775–776.

Palmer RH, Vernerson E, Grabe S, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 2009; 420: 345–361.

Cannella S, Santoro A, Bruno G, Pillon M, Mussolin L, Mangili G et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer 2007; 109: 2566–2571.

Clementi R, Locatelli F, Dupre L, Garaventa A, Enmi L, Degreg M et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 2005; 105: 4424–4428.

Singh RR, Cho-Vega JH, Davuluri Y, Ma S, Kasbidi F, Milotti C et al. Sonic hedgehog signaling pathway is activated in ALK-positive anaplastic large cell lymphoma. Cancer Res 2009; 69: 2550–2558.

Lim MS, Carlson ML, Crockett DK, Fillmore GC, Abdor DR, Elenitoba-Johnson OF et al. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways. Blood 2009; 114: 1585–1595.

Lim MS, Elenitoba-Johnson KS. Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma. Mol Cell Proteomics 2006; 5: 1787–1798.

Lim M, Tygeson J, Seiler C, Crockett D, Satwani P, Perkins S et al. Proteomic analysis of denileukin diftitox (Ontak) in patients with relapsed or refractory CD30-positive lymphomas. Blood 2008, (abstract); 3: 44.

Miles RR, Cairo MS, Satwani P, Zwick DL, Lones MA, Spota R et al. Immunophenotypic identification of possible therapeutic targets in paediatric non-Hodgkin lymphomas: a children’s oncology group report. Br J Haematol 2007; 138: 506–512.

Borroni P, Gastald P, Falini B, Rosolen A. Nucleophosphmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+)/CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 2002; 62: 1559–1566.

Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/ anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001; 61: 2194–2199.

Windsor R, Stillier C, Webb D. Peripheral T-cell lymphoma in childhood: population-based experience in the United Kingdom over 20 years. Pediatr Blood Cancer 2008; 50: 784–787.

An experimental evaluation of the non-Hodgkin Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood Proc Natl Acad Sci USA 1997; 94: 3909–3918.

Rudiger T, Geissinger E, Muller-Hermelink HK. ‘Normal counterparts’ of nodal peripheral T-cell lymphoma. Hematol Oncol 2006; 24: 175–180.

Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 2008; 141: 461–469.

© 2012 Macmillan Publishers Limited

BLOOD Cancer Journal
Heider U, Rademacher J, Lamottke B, Mieth M, Moebes M, von Metzler I et al. Genetic expression profiling of peripheral T-cell lymphoma, unclassified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004; 164: 1837 – 1848.

Martinez-Delgado B, Cuadros M, Horvath A, Ruiz de la Parte A, Roncador G, Alves J et al. Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 2005; 19: 2254 – 2263.

Ballester B, Ramuz G, Gisselbrecht C, Douzet G, Loi L, Loriot B et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene 2006; 25: 1560 – 1570.

Hutchison RE, Laver JH, Chang M, Muzzafar T, Desai S, Murphy S et al. Non-anaplastic peripheral T-cell lymphoma in childhood and adolescence: a Children’s Oncology Group study. Pediatr Blood Cancer 2008; 51: 29 – 33.

Gisselbrecht C, Gaulard P, Lepeau E, Coiffer B, Briere J, Haouz C et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood 1998; 92: 76 – 82.

Savage KJ. Peripheral T-cell lymphomas. Blood Rev 2007; 21: 201 – 216.

Savage KJ, Chhanabhai M, Gascoyne RD, Connors JM. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 2004; 15: 1467 – 1475.

Kewalramani T, Zelenetz AD, Teruya-Feldstein J, Hamlin P, Yahalom J, Horwitz S et al. Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol 2006; 134: 202 – 207.

Paolo C, Lucia F, Anna D. Hematopoietic stem cell transplantation in peripheral T-cell lymphomas. Leuk Lymphoma 2007; 48: 1496 – 1501.

Corradini P, Tarella C, Zallio F, Dodero A, Zanni M, Valagussa P et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 2006; 20: 1533 – 1538.

Mollee P, Lazarus HM, Lipton J. Why aren’t we performing more allografts after reduced-intensity conditioning followed by allogeneic transplantation of peripheral T-cell lymphoma: case report and review of the literature. J Pediatr Hematol Oncol 2005; 27: 607 – 610.

Konuma T, Ooi J, Takashashi S, Tomonari A, Tsukada N, Kobayashi T et al. Allogeneic stem cell transplantation for hematopoeitic gammadelta T-cell lymphoma. Leukemia Lymphoma 2007; 48: 630 – 632.

Medhi K, Kumar R, Ash A, Kumar L, Bakhshi S. Subcutaneous panniculitislike T-cell lymphoma with hemorrhagocytic: complete remission with BFM-90 protocol. J Pediatr Hematol Oncol 2008; 30: 558 – 561.

Willemsen R, Jansen PM, Cerroni L, Berti E, Santucci M, Assaf C et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 2008; 111: 838 – 845.

Ohshima K, Kimura H, Yoshino T, Kim CW, Ko YH, Lee SS et al. Proposed categorization of pathological states of EBV-associated T/natural killer cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int 2008; 58: 209 – 217.

Cohen JI, Kimura H, Nakamura S, Ko YH, Jaffe ES. Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting. 8 – 9 September 2008. Ann Oncol 2009; 20: 1472 – 1482.

Sato E, Ohga S, Kuroda H, Yoshida F, Nishimura M, Nagasawa M et al. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disease in Japan. Am J Hematol 2008; 83: 755 – 757.

Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene 2005; 24: 6058 – 6068.

Matsuoka M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 2003; 22: 5131 – 5140.

Li XY, Gainey RB. Mechanisms of NF-kappaB activation by the HTLV type I tax protein. AIDS Res Hum Retroviruses 2000; 16: 1583 – 1590.

Yoshida M. Multiple viral strategies of HTLV-I for dysregulation of cell growth control. Ann Rev Immunol 2001; 19: 475 – 496.

Zhao T, Yasunaga J, Satou Y, Nakao M, Takahashi M, Fujii M et al. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 2009; 113: 2755 – 2764.

Arnold J, Zimmerman B, Li M, Laimire MD, Green PL. Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008; 112: 3788 – 3797.

Arnulf B, Thorel M, Poirot Y, Tamouza R, Boulanger E, Jaccard A et al. Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients. J Clin Invest 2007; 119: 4293 – 4297.

Heider U, Rademacher J, Lamottke B, Mieth M, Moebes M, von Metzler I et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T-cell lymphoma. Eur J Haematol 2009; 82: 440 – 449.
183 Ishitsuka K, Tamura K. Treatment of adult T-cell leukemia/lymphoma: past, present, and future. *Eur J Haematol* 2008; **80**: 185 - 196.

184 Okamura J, Uike N, Utsunomiya A, Tansaki O, Raimondi SC, Shurtleff SA, Ma Z et al. A retrospective analysis of allogeneic hematopoietic stem cell transplantation for adult T cell leukemia/lymphoma. *Int J Hematol* 2007; **86**: 118 - 125.

185 Shiratori S, Yasumoto A, Tanaka J, Shimogami T, Yamamoto S, Nishio M et al. ALK: a distinct clinicopathologic entity.

186 Au WY, Weisenburger DD, Vose J, Armitage J, Weisenburger D, International peripheral T-cell and NK-cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. *Am J Pathol* 2000; **157**: 377 - 384.

187 Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, Au WY, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim WS, Sng I et al. Demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). *Blood* 2000; **95**: 3204 - 3207.

188 Cairo M, Day N, Shereck E, Ayello J, Elenitoba-Johnson K, Lim M (eds). Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. *Leukemia* 2009; **23**: 1139 - 1151.

189 Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. *J Clin Oncol* 2008; **26**: 4124 - 4130.

190 Zhou Y, Attiggaalle AD, Chuang SS, Dittmer KG, Shapiro DN, Saltman DL, Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M et al. Fusion of a kinase gene, ALK, to a nuclear protein gene, NPM, in non-Hodgkin’s lymphoma. *Science* 1994; **263**: 1281 - 1284.

191 Onciu M, Behm FG, Downing JR, Shurtleff SA, Raimondi SC, Ma Z et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM-ALK fusion transcript: report of 2 cases. *Blood* 2003; **102**: 2642 - 2644.

192 Adam P, Katzenberger T, Seeberger H, Gattenlohner S, Wolf J, Steinlein C et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. *Am J Surg Pathol* 2003; **27**: 1473 - 1476.

193 Lamant L, Kirstein MN, MBittenger D, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nuclear protein gene, NPM, in non-Hodgkin’s lymphoma. *Science* 1994; **263**: 1281 - 1284.

194 Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Touriol C, Greenland C, Lamant L, Puhlman B et al. Identification of MSN-ALK translocations in anaplastic large cell lymphoma. *Leukemia* 2003; **17**: 2144 - 2149.

195 Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Rahagb A, Chhanabhai M et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4–anaplastic lymphoma kinase gene fusion. *Blood* 2001; **98**: 1209 - 1216.

196 Lamant L, Kirstein MN, MBittenger D, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nuclear protein gene, NPM, in non-Hodgkin’s lymphoma. *Science* 1994; **263**: 1281 - 1284.

197 Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. *Blood* 1999; **93**: 3088 - 3095.

198 Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. *Int J Cancer* 2006; **81**: 2144 - 2149.

199 Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. *Am J Pathol* 2000; **156**: 781 - 789.

200 Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. *Am J Pathol* 2000; **156**: 781 - 789.

201 Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. *Nature* 2007; **448**: 561 - 566.

This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/