Ras1 involved in the antifungal resistance of Candida albicans and the inhibition of farnesol on the resistance of biofilms

CURRENT STATUS: POSTED

Lulu Zuo
Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China

Shengyan Chen
Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China

Zhenzhen Zhang
Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China

Liuliu Jiang
Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China

Xin Wei
Jiangsu Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, 210029, China

weixinart@163.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-5811-5500

DOI: 10.21203/rs.2.13264/v1

SUBJECT AREAS
Applied & Industrial Microbiology General Microbiology

KEYWORDS
C. albicans biofilms, antifungal, resistance, farnesol, RAS1
Abstract

Background: Farnesol enhances the susceptibility of Candida albicans biofilms to antifungals, while the molecular mechanisms of this behavior are poorly understood. RAS1 regulates the hyphal growth of C. albicans, and farnesol inhibited hyphal growth by RAS1 regulation, while the role of RAS1 in the resistance of C. albicans biofilms and the molecular mechanism of the RAS1 in the farnesol-relevant antifungal capacity to C. albicans biofilms is still unknown. The study hypothesized that Ras1 involved in the antifungal resistance of C. albicans and the inhibition of farnesol on the resistance of biofilms.

Results: The susceptibility assays showed that RAS1 over-expressing strain (RAS1OE) increased the resistance of C. albicans in both planktonic and biofilm form to antifungals, while RAS1 deletion strain (ras1Δ/Δ) reduced that to antifungals. The SMIC50 of the antifungals were increased with the mature of the biofilms formed from the mutant and the wild strains. Exogenous farnesol decreased the resistance of RAS1OE to antifungals, including fluconazole, amphotericin B, itraconazole, caspofungin, terbinafine, 5-fluorocytosine and nystatin. The inhibitory effects of farnesol on the antifungal resistance of the biofilms from the RAS1OE were in accordance to almost all of the growth phases. Moreover, exogenous farnesol decreased the resistance of biofilms from RAS1OE more obviously than that from the wild strains (P<0.05). In addition, Morphological observation showed that that RAS1OE increased hyphal growth the biofilms, while ras1Δ/Δ reduced that of the biofilms. Compare to the wild-type strain, the inhibitory effects of farnesol on hyphal growth were more obvious to the RAS1OE, while less obvious to the ras1Δ/Δ. Furthermore, farnesol reduced the level of Ras1 and the expression of RAS1 of the biofilms formed from the RAS1OE strain compared with those of the untreated controls at all studied phases. Moreover, farnesol reduced the level of Ras1 and the expression of RAS1 of the biofilms formed from RAS1OE more obviously than that from the wild strains. Conclusions: Ras1 involved in the antifungal resistance of Candida albicans, and the inhibition of farnesol on the resistance of biofilm.

Background

The fungus Candida albicans, an opportunistic human pathogen, is commonly found in the biofilms of the oral cavity and gastrointestinal tract. The biofilms of C. albicans are significantly less susceptible
to antimicrobial agents than that of the planktonic cells, which seriously weakens the effectiveness of antifungals [1]. Indeed, 65~80% of *C. albicans* infections were associated with biofilms [2, 3]. The extensive use of antifungals has led to the increased resistance of the biofilms to the few existing antifungals. Thus, it is crucial to explore the mechanisms of therapeutic or preventive strategies targeting biofilm-related infections.

Previous studies have demonstrated that farnesol prevented the germination of yeast cells into mycelia, repressing hyphal growth and biofilm formation [4, 5]. Further studies showed that farnesol enhanced the microbial susceptibility to antibiotics of *Staphylococcus aureus* [6], *Paracoccidioides brasiliensis* [7], *Streptococcus mutans* [8], and *Fusarium graminearum* [9]. Another *in vitro* study showed that farnesol inhibited the development of *C. albicans* biofilms formed from the resistant strains, and farnesol in combination with fluconazole, itraconazole and 5-fluorocytosine had synergistic effects against *C. albicans* biofilms [10]. Farnesol possibly via regulation of the ergosterol biosynthesis pathway [11] to enhance the susceptibility of planktonic *C. dubliniensis* and *C. albicans* to fluconazole [6]. However, the exact mechanism underlying the farnesol-mediated increase in susceptibility to various antifungals is poorly understood in *C. albicans* biofilms.

C. albicans RAS proteins are small GTPases that can trigger the MAPK and cAMP signaling pathway, and involved in morphogenesis [4, 12], stress resistance [13] and the maintenance of the hyphal state [14]. Ras1 protein are highly conserved signaling proteins that play central roles in key physiological processes, in this process *RAS1* regulates a diverse array of phenotypes that are critical for both commensal and pathogenic lifestyles within the host [15]. Recent data suggest that MAPK and cAMP signaling pathways not only regulate the morphogenesis of *C. albicans* but also participate in the drug resistance of *C. albicans* biofilms [16]. However, the role of *RAS1* in the resistance of *C. albicans* biofilms was not discussed in these previous studies, which need to be further studied.

The molecular mechanism of the *RAS1* in regulating the farnesol-relevant antifungal capacity to *C. albicans* biofilms is still unknown. In the present study, we hypothesized that *RAS1* is associated to the antifungal resistance of *C. albicans* biofilm, and also involved in the regulation of farnesol on the resistance of *C. albicans* biofilm. To test this hypothesis, the antifungal resistance of *C. albicans*
biofilms formed by RAS1 mutant strains (including RAS1 overexpressing strain (RAS1OE) and deletion strain (ras1Δ/Δ) and the wild strains was examined in the presence or absence of farnesol. Meanwhile, the morphological changes were examined using confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). In addition, the effects of farnesol on the expression of RAS1 and Ras1 in C. albicans biofilms formed from the studied strains were analyzed using RT-qPCR and western blot, respectively.

Results

Ras1 of the C. albicans biofilms is regulated by farnesol

The results showed that RAS1 expression and Ras1 level were down-regulated in the biofilms of C. albicans SC5314 and the resistant strain exposed to farnesol at four different growth phases (6, 12, 24 and 36 h) (P<0.01) (Fig. 1).

C1: Untreated C. albicans SC5314; F1: farnesol-treated C. albicans SC5314; C2: untreated resistant strain; F2: farnesol-treated resistant strain. F1/C1 and F2/C2: Comparison of gene expression between the farnesol-treated and untreated groups of C. albicans biofilms.

RAS1 and Ras1 were down-regulated in the biofilms of C. albicans SC5314 and the resistant strain exposed to farnesol at four different growth phases. Farnesol: 200 µM; *: P<0.05; **: P<0.01.

Ras1 involved in the resistance of C. albicans to antifungals

For the spot assay, RAS1OE was more resistant to fluconazole (4 µg/ml) and itraconazole (0.5 µg/ml) than the wild-type strain (pCaEXP-CAI4) (Fig. 2). Moreover, ras1Δ/Δ was more susceptible to fluconazole (4 µg/ml), itraconazole (0.5 µg/ml), amphotericin B (2 µg/ml), nystatin (2 µg/ml), caspofungin (0.5 µg/ml), terbinafine (15 µg/ml) and 5-fluorocytosine than the wild-type strain (SN152) (Fig. 2).

In the spot assay, antifungals were added to the medium at a concentration of 4 µg/ml for fluconazole, 2 µg/ml for amphotericin B, 0.5 µg/ml for caspofungin, 15 µg/ml for terbinafine, 0.5 µg/ml for itraconazole, 2 µg/ml for nystatin and 8 µg/ml for 5-fluorocytosine. Then, 5µl of tenfold serial dilutions of the suspensions were spotted onto YPD plates in the presence or absence of antifungals.
with serial concentration gradients.

For the XTT-reduction assay, biofilms formed from the RAS1OE strain showed higher SMIC$_{50}$ values for fluconazole (at 12 h and 24 h biofilms), 5-fluorocytosine (at 6 h and 12 h biofilms), nystatin (at 6 h, 12 h and 24 h biofilms), itraconazole, amphotericin B, caspofungin and terbinafine (at 6 h, 12 h, 24 h and 36 h biofilms) than did those biofilms formed from the wild-type strain (Table 1). Furthermore, biofilms formed from ras1Δ/Δ showed lower SMIC$_{50}$ values for itraconazole (at 6 h, 12 h and 24 h biofilms), amphotericin B (at 12 h and 24 h biofilms), nystatin (at 6 h biofilms), fluconazole, caspofungin, terbinafine and 5-fluorocytosine (at the 6 h and 12 h biofilms), than did those biofilms formed from the wild-type strain (SN152) (Table 1). On the other hand, the SMIC$_{50}$ of the antifungals were increased with the mature of the biofilms formed from all the studied strains. As the biofilms grown for 36 h, the SMIC$_{50}$ of the antifungals against the biofilms were similar between that formed from the ras1Δ/Δ and the wild strain.

Table 1. The SMIC values of antifungals in C. albicans biofilms of mutant strains with and without farnesol

Farnesol (µM)	pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ
6 h				
0	>1024	>1024	128	4
100	>1024	256	128	8
200	>1024	128	64	4
300	>1024	128	64	4
12 h				
0	512	>1024	1024	128
100	512	256	1024	128
200	512	256	1024	128
300	512	256	1024	1024
24 h				
0	1024	>1024	1024	1024
100	1024	1024	1024	1024
200	512	1024	1024	1024
300	512	1024	1024	1024
36 h				
0	>1024	>1024	1024	1024
100	>1024	>1024	1024	1024
200	>1024	>1024	1024	1024
300	>1024	>1024	1024	1024
Farnesol (µM)	pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ
-------------	----------	--------	-------	--------
6 h				
0	>16	64	16	4
100	>16	16	16	4
200	>16	1	8	4
300	>16	16	4	4
12 h				
0	>16	128	>256	4
100	>16	64	256	4
200	>16	1	>256	4
300	>16	64	4	4
24 h				
0	>16	256	>256	>64
Farnesol (µM)	SMIC50 of Amphotericin B (µg/ml)			
----------------	---------------------------------			
	pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ
6 h				
0	1	4	8	8
100	0.5	4	8	1
200	1	4	4	4
300	1	2	2	2
12 h				
0	0.5	64	8	4
100	0.5	8	4	4
200	0.5	4	4	4
300	0.5	16	2	2
24 h				
0	1	64	32	16
100	1	8	16	16
200	0.5	8	8	8
300	1	16	8	8
36 h				
0	0.25	64	32	32
100	0.25	8	2	2
200	0.125	16	2	2
300	0.125	16	2	2

Farnesol (µM)	SMIC50 of Caspofungin (µg/ml)			
	pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ
6 h				
0	0.125	1	16	4
100	0.0625	0.0625	0.25	0.25
200	0.0625	0.25	0.25	0.25
300	0.0625	0.0625	0.25	0.25
12 h				
0	>8	32	32	4
100	>8	0.125	0.5	0.5
200	0.25	0.25	0.5	1
300	0.25	0.0625	0.25	0.25
24 h				
0	>8	32	64	64
100	>8	16	0.5	0.5
200	>8	0.25	0.25	0.5
300	>8	2	0.5	0.5
36 h				
0	>8	32	>64	>64
100	0.25	0.125	0.5	0.5
200	0.125	0.5	0.5	0.5
300	0.0625	16	0.25	0.5

Farnesol (µM)	SMIC50 of Terbinafine (µg/ml)					
	pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ		
6 h						
0	>256	512	64	16		
100	>256	256	>512	>512		
200	>256	256	>512	>512		
300	>256	256	>512	>512		
12 h						
0	>256	>512	512	64		
100	>256	256	>512	>512		
200	>256	256	>512	>512		
300	>256	512	>512	>512		
24 h						
0	>256	>512	>512	>512		
100	>256	512	>512	>512		
200	>256	512	>512	>512		
300	>256	512	>512	>512		
36 h						
0	>256	>512	>512	>512		
100	>256	64	>512	>512		
200	>256	512	>512	>512		
Farnesol (µM)	SMIC₅₀ of 5-Flucytosine (µg/ml)					
--------------	--------------------------------------					
		300	>256	512	>512	>512
pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ			
6 h						
0	2	512	>512	256		
100	1	4	512	128		
200	2	2	512	256		
300	16	16	512	128		
12 h						
0	256	512	>512	128		
100	1	4	512	512		
200	4	4	16	64		
300	16	0.5	512	512		
24 h						
0	512	512	>512	>512		
100	2	4	512	512		
200	8	2	512	512		
300	64	0.5	512	512		
36 h						
0	512	512	>512	>512		
100	0.5	0.5	512	512		
200	16	2	512	512		
300	64	64	512	512		

Farnesol (µM)	SMIC₅₀ of Nystatin (µg/ml)					
pCaEXP-CAI4	RAS1OE	SN152	ras1Δ/Δ			
6 h						
0	2	4	4	2		
100	4	4	8	8		
200	2	2	4	8		
300	4	4	8	8		
12 h						
0	4	8	4	4		
100	4	4	8	8		
200	2	2	4	8		
300	4	4	16	16		
24 h						
0	4	8	4	4		
100	2	8	4	8		
200	2	2	4	8		
300	4	4	16	16		
36 h						
0	8	8	4	4		
100	4	8	8	8		
200	2	2	4	8		
300	0.5	1	16	16		

Effects of farnesol on the susceptibility of the biofilms formed from the RAS1 mutant strains to antifungals

Significant SMIC reductions were observed between farnesol-treated and untreated control when farnesol was added to the biofilms of the RAS1OE strains. Compared to the control, farnesol decreased the resistance of RAS1OE to fluconazole (at the 6 h, 12 h and 24 h biofilms), amphotericin B (at the 12 h, 24 h and 36 h biofilms), itraconazole, caspofungin, terbinafine, 5-flurocytosine and nystatin (at the 6 h, 12 h, 24 h and 36 h biofilms). Moreover, the inhibitory effects of farnesol on the antifungal resistance (including fluconazole, itraconazole, amphotericin B, nystatin, caspofungin and 5-flucytosine) of RAS1OE were more obvious than that on the wild-type strain (PCaEXP-CAI4) \((P<0.05)\)
(Table 1). In addition, the inhibitory effects of farnesol on the antifungal resistance of the biofilms from the RAS1OE strain were in accordance to almost all of the growth phases.

In addition, compared to the control, farnesol decreased the resistance of the biofilms formed from ras1Δ/Δ to amphotericin B and caspofungin (at 6, 12, 24 and 36 h biofilms). However, farnesol did not decrease the resistance of the biofilms formed from ras1Δ/Δ to fluconazole, itraconazole and 5-flurocytosine. On the other hand, farnesol increased the resistance of the biofilms formed from ras1Δ/Δ to the nystatin (at the 6h, 12, 24 and 36 h biofilms) and terbinafine (at the 6 and 12 h biofilms) (Table1). The inhibitory effects of farnesol on the resistance of C. albicans biofilm from the RAS1-deletion strain are not accordance at all the growth phase.

The morphologic changes of biofilms

Both CLSM and SEM observations showed that the inhibitory effects of farnesol on the hyphal growth of RAS1OE were more obvious than that on the wild-type strain (Fig.3 and Fig.5), while the inhibitory effects of farnesol on hyphal growth of the ras1Δ/Δ were less obvious than those on the wild-type strain (Fig. 4 and Fig. 6). The CLSM showed that the biofilms of RAS1OE and ras1Δ/Δ exposed to farnesol showed fewer hyphae but more pseudohyphae and blastospores than did those control without farnesol (Fig.3 C1D1, C2D2 and Fig. 4 G1H1, G2H2), respectively. In addition, the biofilms formed from RAS1OE had more extensively grown hyphae and pseudohyphae with few blastospores than did those formed from the wild strain (pCaEXP-CAI4) (Fig. 3 A1C1, A2C2, A3C3, A4C4). Moreover, the biofilms formed from ras1Δ/Δ had fewer hyphae but more pseudohyphae and blastospores than did those formed from the wild strain (SN152) (Fig. 4 E2G2, E3G3).

A: farnesol-untreated pCaEXP-CAI4; B: farnesol-treated pCaEXP-CAI4; C: farnesol-untreated RAS1OE; D: farnesol-treated RAS1OE. A1, B1, C1 and D1 show 6 h C. albicans biofilms; A2, B2, C2 and D2 show 12 h C. albicans biofilms; A3, B3, C3 and D3 show 24 h C. albicans biofilms; A4, B4, C4 and D4 show 36 h C. albicans biofilms. The biofilms of C1C2 showed fewer hyphae but more pseudohyphae and blastospores than did those of D1D2. The inhibitory effects of C1D1, C2D2 were more obvious than did that of A1B1, A2B2. Magnification: 400×; farnesol: 200 µM.

E: farnesol-untreated SN152; F: farnesol-treated SN152; G: farnesol-untreated ras1Δ/Δ; H: farnesol-
treated ras1Δ/Δ. E1, F1, G1 and H1 show 6 h C. albicans biofilms; E2, F2, G2 and H2 show 12 h C. albicans biofilms; E3, F3, G3 and H3 show 24 h C. albicans biofilms; E4, F4, G4 and H4 show 36 h C. albicans biofilms. The biofilms of G1G2 showed fewer hyphae but more pseudohyphae and blastospores than did those of H1H2. The inhibitory effects of G1H1, G2H2, G3H3, G4H4 were less obvious than did that of E1F1, E2F2, E3F3, E4F4. Magnification: 400×; farnesol: 200 µM

SEM analysis showed that the cells in farnesol-treated biofilms of RAS1OE and ras1Δ/Δ appeared in the short pseudohyphae and had a rough cell surface than did those in the biofilms without farnesol (Fig. 5 C1D1, C2D2, C3D3, C4D4 and Fig. 6 G1H1, G2H2, G3H3, G4H4). In addition, the biofilms formed from RAS1OE had more hyphae than did those formed from the control (pCaEXP-CAI4) (Fig. 5 A1C1, A2C2, A3C3, A4C4), while the biofilms formed from ras1Δ/Δ had fewer hyphae and more pseudohyphae than did those formed from the control (SN152) (Fig. 6 E2G2, E3G3, E4G4). The surface of the cells was similar between the biofilms of RAS1OE and ras1Δ/Δ.

A: farnesol-untreated pCaEXP-CAI4; B: farnesol-treated pCaEXP-CAI4; C: farnesol-untreated RAS1OE; D: farnesol-treated RAS1OE. A1, B1, C1 and D1 show 6 h C. albicans biofilms; A2, B2, C2 and D2 show 12 h C. albicans biofilms; A3, B3, C3 and D3 show 24 h C. albicans biofilms; A4, B4, C4 and D4 show 36 h C. albicans biofilms. The biofilms of C1-4 appeared in the short pseudohyphae and had a rough cell surface, while D1-4 appeared in the long hyphae and had smooth surfaces. The inhibitory effects of C1D1, C2D2 were more obvious than did that of A1B1, A2B2. Magnification: 2000×; farnesol: 200 µM

E: Farnesol-untreated SN152; F: farnesol-treated SN152; G: farnesol-untreated ras1Δ/Δ; H: farnesol-treated ras1Δ/Δ. E1, F1, G1 and H1 show 6 h C. albicans biofilms; E2, F2, G2 and H2 show 12 h C. albicans biofilms; E3, F3, G3 and H3 show 24 h C. albicans biofilms; E4, F4, G4 and H4 show 36 h C. albicans biofilms. The biofilms of G1-4 appeared in the short pseudohyphae and had a rough cell surface, while E1-4 appeared in the long hyphae and had smooth surfaces. The inhibitory effects of G1H1, G3H3, G4H4 were less obvious than did that of E1F1, E3F3, E4F4. Magnification: 2000×; farnesol: 200 µM

Farnesol decreased the expression of Ras1 in the biofilms formed from the RAS1OE strains
The results of RT-qPCR and western blotting showed that farnesol significantly reduced the expression of RAS1 and the level of Ras1 in the biofilms formed by RAS1OE compared with those of the untreated controls at all studied phases (P<0.05) (Figs. 7 and 8). Farnesol also significantly reduced the expression of RAS1 and the level of Ras1 in the biofilms formed by the wild-type strains compared with those of the untreated controls at all studied phases (P<0.05) (Figs. 7 and 8). Moreover, farnesol reduced the level of Ras1 and the expression of RAS1 more obviously in the biofilms of the RAS1OE than that of the wild strains (P<0.05). Meanwhile, there was no expression of RAS1 and Ras1 in the biofilms formed by ras1Δ/Δ, with or without farnesol.

Discussion

Previous investigations had clearly showed that RAS1 is required for the induction of hyphal growth and the maintenance of the hyphal state [12, 14], and also has a close relationship with pathogenic processes [17], such as cell adhesion and biofilm formation. While no study reported the role of Ras1 in the antifungal resistance of C. albicans and the relevant farnesol regulation mechanism of the biofilms, which were discussed in this study.

Our study found that the RAS1 involved in the antifungal resistance of C. albicans. For the C. albicans in planktonic form, RAS1-overexpressing strain increased resistance of planktonic C. albicans to fluconazole and itraconazole, and the RAS1 deletion strain reduced resistance to all the studied antifungals. For the C. albicans in biofilm form, the RAS1 overexpression increased the resistance of the biofilms to the fluconazole, itraconazole, amphotericin, nystatin, caspofungin, terbinafine, and 5-fluorocytosine, and RAS1 deletion reduced the resistance of those above antifungals. The findings indicated that RAS1 is associated with the antifungal resistance of C. albicans in planktonic and biofilms forms.

Currently, azoles, polyenes, echinocandins and miscellaneous antifungals are the main antifungal families used in clinical practices. In this study, the antifungal susceptibilities of the studied strains were analyzed for the main antifungals including fluconazole, itraconazole, amphotericin B, nystatin, caspofungin, terbinafine and 5-fluorocytosine. Fluconazole/itraconazole impairs ergosterol synthesis
and leads to a cascade of membrane abnormalities in the fungus [18]. Amphotericin B/nystatin acts through pore formation at the cell membrane and induces the ergosterol sequestration after binding to ergosterol [19]. Caspofungin blocks the synthesis of β-(1,3)-D-glucan, an essential component of the fungal cell wall [20]. Terbinafine inhibits the ergosterol synthesis and preventing the conversion of squalene to lanosterol by inhibiting squalene epoxidase [21]. 5-fluorocytosine works by being converted into 5-fluorouracil inside the fungal, and blocks its ability to make protein [22]. These antifungal drugs have different mechanisms of action, then the effects of antifungals to the mutant strains might be complex. The results that RAS1 overexpression increased its susceptibility, and the RAS1 deletion decreased its susceptibility, to multiple antifungals with different mechanisms, implies that RAS1 might has a non-specific mechanism in regulating the resistance action of C. albicans against those antifungals.

In this study, farnesol decreased the expression of RAS1 gene and the level of Ras1 protein in C. albicans biofilm formed from the RAS1-overexpressing strain and the wild strain. Meanwhile, the inhibitory effects of farnesol on the resistance of C. albicans biofilm from the RAS1-overexpressing strain were more obvious than that formed from the wild-type strain (PCaEXP-CAI4) and the RAS1-deletion strain. The results suggested that RAS1 involve in the antifungal resistance regulated by farnesol. On the other hand, the effects of farnesol on the resistance of C. albicans biofilm from the RAS1-deletion strain are not closely accordance to that from the RAS1-overexpressing strain, farnesol decreased the resistance of the biofilms from RAS1-deletion strain to amphotericin B and caspofungin, while increased that to the nystatin and terbinafine. The possible reason for the results might be the antifungal resistance change of the C. albicans biofilms following the RAS1 deletion, and combined with the complexity of the multiple antifungals having different mechanisms, which caused the different results of the antifungal resistance of this strain.

Morphological observations in this study showed that the RAS1-overexpression increased the hyphal growth and the RAS1-deletion decreased the hyphal growth of the C. albicans biofilms. Previous studies showed that RAS1 deletion mutants are impaired in hyphal development under many different induction conditions [23]. The morphological observations of the deletion strain in the present study
were in accordance with the previous study. Furthermore, both CLSM and SEM observations showed that the inhibitory effects of farnesol on RAS1-overexpression were more obvious than that on the wild-type strain, and the inhibitory effects of farnesol on RAS1-deletion strain were less obvious than those on the wild-type strain. Combined with the results that farnesol increased the susceptibility of those biofilms to most antifungals, the morphological results suggested that farnesol decrease the hyphae growth through regulating the RAS1 expression of the biofilms, and involve in the antifungal resistance of C. albicans biofilms subsequently.

The formation of mature biofilms was composed of a series developed steps. The formation of C. albicans biofilms started with the initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h), and maturation (24-48 h) [24]. In this study the main stages of biofilm were investigated to clarify the effects of farnesol on RAS1 in C. albicans biofilms. A phase-specific mechanism might be involved in biofilm resistance, which appeared of the increased resistance of C. albicans with the mature biofilms (24h and 36 h). Because of this phase-specific increased resistance, the inhibitory effects of farnesol were reduced with the mature of biofilms. In addition, the study showed that the inhibitory effects of farnesol on Ras1 level and the antifungal resistance of the biofilms from the RAS1-overexpressing strain were in accordance to almost all of the growth phases, which indicated that RAS1 involved in the antifungal resistance caused by farnesol.

On the other hand, the effects of farnesol on the resistance of C. albicans biofilm from the RAS1-deletion strain are not accordance at the different growth phase. The possible reason of this might be the strain deleted RAS1 caused the resistance change of itself, a phase-specific mechanism involved in the resistance of biofilm, and other complicated and multiple factors affected the resistance of the biofilms of the RAS1-deletion strain, which need to be further discussed.

In conclusion, our data indicate that RAS1 involved in the resistance of C. albicans biofilms, and also involved in the inhibitory effects of farnesol on the resistance of C. albicans biofilms. To the best of our knowledge, no previous studies reported that RAS1 is associated with the resistance of C. albicans biofilms, and also no study of the RAS1 responding to farnesol associated with its antifungal
effectiveness or capacity. In addition, the observations that RAS1 deletion or over-expression, with or without farnesol, affected susceptibility to multiple antifungals with different mechanisms of action implies a non-specific effect. Additional research involving the specific molecular mechanisms should be further pursued to elucidate the antifungal resistance mechanisms of C. albicans biofilms.

Conclusion
The extensive use of antifungals has led to the increased resistance of C. albicans biofilms to the few existing antifungals. Farnesol enhances the susceptibility of Candida albicans biofilms to antifungals, while the mechanisms of this behavior are poorly understood. Thus, it is crucial to explore the mechanisms of preventive strategies for the farnesol-mediated increase in susceptibility to various antifungals targeting biofilm-related infections. RAS1 regulated the hyphal growth of C. albicans in the previous reports. For the first time, this study demonstrated that Ras1 involved in the antifungal resistance of Candida albicans, and also involved in the inhibition of farnesol on the resistance of biofilms.

Methods

Strains, plasmids and media
The strains and plasmids used in the study are listed in Table 2. The Wild-type clinical isolate SC5314 (American Type Culture Collection, America) and the resistant strain were used to identify the effects of farnesol on the RAS1 expression. The resistant strain derived from SC5314 induced via the serial fluconazole concentration gradient method until the MIC reached or exceeded 64 µg/ml. RAS1 overexpressing strain (RAS1OE) was generated from CAI4 (William A. Fonzi, Department of Microbiology and Immunology, Georgetown University, Washington, USA) using RAS1-pCaEXP plasmids. The wild-type strain PCaEXP-CAI4 was generated from CAI4 using the plasmid pCaEXP (BioVector NTCC Inc., China). RAS1 deletion strain (ras1Δ/Δ) was generated from SN152 (School of Pharmacy, The Second Military Medical University). Fusion PCR was performed to create disruption fragments of C. albicans HIS1 and LEU2 coding sequences, and the HIS1 and LEU2 disruption fragments were transformed into SN152 to obtain ras1Δ/Δ [25].

Freshly grown yeast cells from Sabourd’s Dextrose Agar (SDA) plates were incubated in yeast peptone
dextrose (YPD) medium and grown overnight in an orbital shaker at 30°C. The cells were collected and resuspended in RPMI 1640 supplemented with L-glutamine and buffered with morpholine propane sulfonic acid (Gibco Ltd., Paisley, U.K.). The solution was adjusted to a cell density of 1×10^6 cells/ml for the experiments. All experiments were performed in triplicate on three separate occasions.

Table 2. Strains and plasmids used in this study.

Strains	Genotype and Descriptiona	Reference
C. albicans strains		
SC5314	Wild-type clinical isolate	American Type Culture Collection, America
Resistant strain	derived from SC5314 induced via the serial fluconazole concentration gradient method until the MIC reached or exceeded 64 µg/ml	Yu LH et al. 2011 Xia J et al. 2017
CAI4	ura3::λimm434/ura3::λimm434 URA3 auxotrophic strain	Fonzi and Irwin (1993)
PCaEXP-CAI4	ura3::λimm434/ura3::λimm434-(pCaEXP URA3) Wild-type strain transformed with pCaEXP used as a control of overexpression experiments	In this study
RAS1OE	ura3::λimm434/ura3::λimm434-(RAS1-pCaEXP RAS1, URA3) RAS1-overexpressing strain	In this study
SN152	arg4/arg4 leu2/leu2 his1/his1 URA3/ura3::imm434 IRO1/iro1::imm434 Arg4, Leu2, His1 auxotrophic strain	Noble SM et al. (2005)
ras1Δ/Δ	arg4/arg4 leu2/leu2 his1/his1 URA3/ura3::imm434 IRO1/iro1::imm434 ras1::C.d.HIS1/ras1::C.m.LUE2	In this study
Plasmids		
pCaEXP	URA3 and MET3 promoter integrating plasmid	R. S. Care et al. (1999)
RAS1-pCaEXP	Constructed by integration of RAS1	In this study
pSN52	With HIS1 marker	Noble SM et al. (2005)
pSN40	With LUE2 marker	Noble SM et al. (2005)

a C.d., C. dubliniensis; C.m., C. maltose

Biofilm formation and farnesol treatment

Standardized suspensions of the strains were dispensed into flat-bottom microtiter dishes (Corning, Inc., N.Y., USA). The cells were incubated at 37°C in a moist chamber with 5% CO$_2$. After 2 h of incubation, non-adherent cells were removed by thoroughly washing the biofilms three times with
PBS. Then, the biofilms were formed depending on the selected time periods (6, 12, 24 and 36 h). For the farnesol treatment, equal volumes of farnesol (100-300 μM) or sterile water (with an equal concentration of methanol) were added to the farnesol-treated and untreated control groups, respectively. Stock solutions (100 mM) of farnesol (E, E farnesol; Sigma Chemical Co., St. Louis, Mo) were dissolved in 100% (vol/vol) methanol and frozen at -70°C until use. The effect of methanol on the growth of C. albicans was evaluated by testing different methanol concentrations without antifungals, ranging from 0.05–1% (v/v) [26]. The highest methanol concentration used in the microdilution plates was 0.1% (v/v), which presented no antifungal activity.

Susceptibility tests

The antifungals used in the tests were fluconazole (Sigma-Aldrich, St Louis, MO, USA), itraconazole (Selleckchem, Houston, TX, USA), amphotericin B (Sigma-Aldrich, St Louis, MO, USA), caspofungin (Sigma-Aldrich, St Louis, MO, USA), terbinafine (Selleckchem, Houston, TX, USA) and 5-flucytosine (Selleckchem, Houston, TX, USA), nystatin (Selleckchem, Houston, TX, USA).

The susceptibility of RAS1 mutant strains in planktonic form to antifungals was determined using a spot assay [27]. The mutant and the wild-type strains were incubated in YPD medium and grown for 16 h in an orbital shaker at 30°C. The yeast cells were harvested during the logarithmic growth phase, washed twice with PBS and suspended in fresh medium to an OD$_{600nm}$ of 1.0. Then, 5 μl of tenfold serial dilutions of the suspensions were spotted onto YPD plates in the presence or absence of antifungals with serial concentration gradients. Antifungals were added to the medium at a concentration of 4 μg/ml for fluconazole, 0.5 μg/ml for itraconazole, 2 μg/ml for amphotericin B, 0.5 μg/ml for caspofungin, 15 μg/ml for terbinafine, 8 μg/ml for 5-fluorocytosine and 2 μg/ml for nystatin. Growth differences were measured after incubation at 30°C for 48 h.

The susceptibility of RAS1 mutant strains in biofilm to antifungals was determined using the XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide]-menadione (0.5 mg/ml XTT, 1 μM menadione) reduction assay (Sigma-Aldrich, St Louis, MO, USA) [28]. Colorimetric changes were analyzed in a microtiter plate reader (BioTek Instruments, Inc., VT, USA) at a wavelength of 490 nm, which measured the changes in the metabolic activity of the biofilms [29]. The biofilms were
incubated as described above. A series of antifungal agent-free wells and biofilm-free wells were also included to serve as the positive and negative controls. Drugs were prepared in serial 2-fold dilutions, and their final concentrations ranged from 4 to 1024 µg/ml for fluconazole, 1 to 256 µg/ml for itraconazole, 0.25 to 64 µg/ml for nystatin, amphotericin B and caspofungin, and 2 to 512 µg/ml for terbinafine and 5-flucytosine. Antifungals were added to the biofilms and incubated for an additional 24 h at 37°C. The value of the background OD measurement, obtained from biofilm-free wells processed in the same manner as the inoculated wells, was subtracted from the OD measurement of each well. After this subtraction, the percentage of growth in each well was calculated as the OD of each well/OD of the drug-free well. The lowest drug concentrations that inhibited biofilm growth by 50% were considered the sessile MIC\(_{50}\) (SMIC\(_{50}\)) of this antifungal.

The morphological observations using CLSM and SEM

Biofilms formed from the mutant strains, the wild-type strains, and the farnesol-treated strains were formed on the glass bottom of cell culture dishes for morphological observation. For CLSM observation, the formed biofilms were fixed with 4% paraformaldehyde overnight, washed with PBS and stained with 500 µl calcofluor white stain (0.0025 g/ml; Sigma Chemical Co., St. Louis, MO) [30] for 30 min at 37°C in the dark. The biofilms were observed using a Zeiss LSM700 microscope with a video capture system, automatic camera, image analysis hardware and software (Carl Zeiss, Inc., Oberkochen, Germany), and a 488 nm argon ion laser. For SEM observation, the formed biofilms were fixed with 2.5% glutaraldehyde solution overnight. The biofilms were subsequently washed twice with distilled water, dehydrated in an ethanol series (70% for 10 min, 95% for 10 min and 100% for 20 min) and air-dried overnight in a desiccator. Then, the biofilms were metalized by gold sputtering for 45 s in a High Vacuum Evaporator, followed by bonding to carbon double-side tape and processing for SEM (FEI Inc., Hillsboro, USA).

Ras1 of the biofilms regulated by farnesol via RT-qPCR and confirmed by Western blot analysis

RNA samples of the farnesol-treated and untreated control biofilms were purified using a modified hot phenol method [31]. The cDNA was synthesized using the reverse transcription system (TaKaRa, Bio
Co., Ltd., Dalian, China) and performed on an ABI 7300 Fast real-time PCR machine (Applied Biosystems, Rotkreuz, Switzerland) using qPCR SYBR Green Mix (Thermo Scientific, Waltham, MA, USA). The PCR program used was as follows: activation at 95°C for 10 min; 40 cycles of amplification (95°C for 15 s, 55°C for 1 min); 70°C for 20 s; cooling at 4°C. After amplification, a melting curve analysis was performed to ensure the absence of primer dimers. The expression of genes was calculated using the 2^{-ΔΔCt} method [11]. ACT1 was used as a reference gene. Primers were all designed by Shanghai Generay Bio-Tech Co., Ltd. (Table 3).

Total protein extracts were prepared as described for C. albicans biofilms using an immunoprecipitation protocol [32]. Protein concentrations were determined using a BCA Protein Assay Kit (Sigma-Aldrich, St. Louis, MO, USA). A total of 15 μg protein diluted in 6× loading buffer was separated on a 10% SDS-PAGE gel and then blotted onto PVDF membranes (Millipore, MA, USA). Membranes were blocked in 0.01 M PBS containing 5% skim milk and 0.1% Tween-20 at room temperature, followed by incubation of membranes overnight with the primary antibodies (Ras1, 1:1000 dilution; GAPDH, 1:8000 dilution; Bioworld, MN, USA) at 4°C. Membranes were then rinsed with PBST (0.01 M PBS plus 0.1% Tween-20) and incubated with secondary antibodies (1:10000 dilution, Bioworld, MN, USA) at room temperature for 1 h. Membranes were visualized with Super Signal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific Inc., Rockford, IL, USA) and exposed to Kodak X-ray films. GAPDH was used as an internal control in the experiments.

Table 3. Sequences of primers

Gene	Sequences
RAS1	F: GGTAAATCCGCTTTAACCATTCT
	R: GCCAGATATTCTTCTTGCCAG
ACTIN	F: GCCGGTGACGACGCTCAAGACTG
	R: CCGTGTCAATTGGGTATCTCAAGGTC

Statistical analysis

All quantitative experiments were performed in triplicate for statistical analyses. Data were analyzed using SPSS19.0 software (SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) were
used to analyze the differences between the groups, while a paired t-test was performed for intragroup comparisons. The rank sum test was used to analyze ranked data. Comparisons resulting in \(P \) values of less than 0.05 were considered statistically significant.

List Of Abbreviations

RAS1OE: *RAS1* overexpressing strain; CLSM: confocal laser scanning microscope; SEM: scanning electron microscopy; YPD: yeast peptone dextrose; ANOVA: One-way analysis of variance.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the National Natural Sciences Foundation of China under Grant No. 81271151 and No. 81371156. The Foundation of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2014-37).

Authors' contributions

XW conceived the study, participated in study design and data analysis and was responsible for writing and submitting the final manuscript. LLZ structured the *RAS1* overexpressing and deletion strains and performed statistical analysis and drafted the manuscript. SYC carried out the experimental studies relaxed to the XTT reduction assay, spot assay. ZZZ participated in RT-qPCR and western blot analysis. LLJ participated in morphological observations by CLSM and SEM. All authors read and approved the manuscript.
Acknowledgements

Not applicable

References

1. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. *J Bacteriol* 2001, **183**(18):5385-5394.

2. Di Domenico EG, Cavallo I, Guembe M, Prignano G, Gallo MT, Bordignon V, D'Agosto G, Sperduti I, Toma L, Ensoli F: The clinical Biofilm Ring Test: a promising tool for the clinical assessment of biofilm-producing Candida species. *Fems Yeast Res* 2018, **18**(3).

3. Nobile CJ, Johnson AD: *Candida albicans Biofilms and Human Disease*. *Annu Rev Microbiol* 2015, **69**:71-92.

4. Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA: Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. *Mol Microbiol* 2008, **67**(1):47-62.

5. Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Muhlschlegel FA: The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. *Eukaryot Cell* 2011, **10**(8):1034-1042.

6. Jabra-Rizk MA, Shirtliff M, James C, Meiller T: Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. *Fems Yeast Res* 2006, **6**(7):1063-1073.

7. Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Bao SN, Kyaw CM, Silva-Pereira I: Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and
morphogenesis. *Ann Clin Microbiol Antimicrob* 2009, **8**:13.

8. Arias LS, Delbem AC, Fernandes RA, Barbosa DB, Monteiro DR: Activity of tyrosol against single and mixed-species oral biofilms. *J Appl Microbiol* 2016, **120**(5):1240-1249.

9. Semighini CP, Murray N, Harris SD: Inhibition of Fusarium graminearum growth and development by farnesol. *FEMS Microbiol Lett* 2008, **279**(2):259-264.

10. Xia J, Qian F, Xu W, Zhang Z, Wei X: In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. *Biofouling* 2017, **33**(4):283-293.

11. Yu LH, Wei X, Ma M, Chen XJ, Xu SB: Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. *Antimicrob Agents Chemother* 2012, **56**(2):770-775.

12. Piispanen AE, Grahl N, Hollomon JM, Hogan DA: Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. *Mol Microbiol* 2013, **89**(1):166-178.

13. Deveau A, Piispanen AE, Jackson AA, Hogan DA: Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. *Eukaryot Cell* 2010, **9**(4):569-577.

14. Lindsay AK, Deveau A, Piispanen AE, Hogan DA: Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. *Eukaryot Cell* 2012, **11**(10):1219-1225.

15. Wachtler B, Wilson D, Haedicke K, Dalle F, Hube B: From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. *PLoS One* 2011, **6**(2):e17046.

16. Shapiro RS, Robbins N, Cowen LE: Regulatory circuitry governing fungal
development, drug resistance, and disease. Microbiol Mol Biol Rev 2011, 75(2):213-267.

17. Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh Tj: In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother 2015, 70(2):470-478.

18. Borecka-Melkusova S, Moran GP, Sullivan DJ, Kucharikova S, Chorvat D, Jr., Bujdakova H: The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 2009, 52(2):118-128.

19. Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ: A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 2006, 50(11):3708-3716.

20. Hao B, Cheng S, Clancy CJ, Nguyen MH: Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob Agents Chemother 2013, 57(1):326-332.

21. Koutsoulas C, Pippa N, Demetzos C, Zabka M: Preparation of liposomal nanoparticles incorporating terbinafine in vitro drug release studies. J Nanosci Nanotechnol 2014, 14(6):4529-4533.

22. Vermes A, Guchelaar HJ, Dankert J: Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000, 46(2):171-179.

23. Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL: Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob
Agents Chemother 2001, 45(9):2475-2479.

24. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME: Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 2006, 50(4):1463-1469.

25. Noble SM, Johnson AD: Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 2005, 4(2):298-309.

26. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL: Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 2002, 68(11):5459-5463.

27. Xiao J, Moon Y, Li L, Rustchenko E, Wakabayashi H, Zhao X, Feng C, Gill SR, McLaren S, Malmstrom H et al: Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness. PLoS One 2016, 11(10):e0164242.

28. da Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA: Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 2008, 19(4):364-369.

29. Manoharan RK, Lee JH, Kim YG, Lee J: Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by Candida albicans. Front Cell Infect Microbiol 2017, 7:447.

30. Richard ML, Nobile CJ, Bruno VM, Mitchell AP: Candida albicans biofilm-defective mutants. Eukaryot Cell 2005, 4(8):1493-1502.

31. Inglis DO, Sherlock G: Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell 2013, 12(10):1316-1325.

32. Cordeiro RA, Teixeira CE, Brilhante RS, Castelo-Branco DS, Paiva MA, Giffoni Leite JJ, Lima DT, Monteiro AJ, Sidrim JJ, Rocha MF: Minimum inhibitory concentrations of
amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. *Med Mycol* 2013, 51(1):53-59.

Figures

Figure 1

RAS1 and Ras1 regulated by farnesol via RT-qPCR and western blot.
Figure 2

Susceptibility tests of the RAS1 mutant strain of planktonic C. albicans
Figure 3

The morphological changes in 6 h, 12 h, 24 h and 36 h C. albicans biofilms of RAS1OE shown by CSLM.
Figure 4

Morphological changes in 6 h, 12 h, 24 h and 36 h C. albicans biofilms of ras1Δ/Δ shown by CSLM.
Figure 5

The morphological changes in 6 h, 12 h, 24 h and 36 h C. albicans biofilms of RAS1OE shown by SEM.
Figure 6

The morphological changes in 6 h, 12 h, 24 h and 36 h C. albicans biofilms of ras1Δ/Δ shown by SEM.
Figure 7

The expression of the RAS1 gene in farnesol-treated RAS1OE

6 h 12 h
RAS1
GAPDH

24 h 36 h
RAS1
GAPDH

Figure 8

The expression of the Ras1 protein in RAS1OE and pCaEXP-CAI4