A note on finitely generated quotients of locally compact groups

Linus Kramer*

May 13, 2014

Throughout, all topological groups are assumed to be Hausdorff. The identity component of such a group G is denoted G°. We call a topological group topologically finitely generated if it contains a finitely generated dense subgroup.

The aim of this note is to prove the following results. The finitely generated group Γ that appears in the theorems below is always endowed with the discrete topology.

Theorem A Let G be a topologically finitely generated locally compact abelian group, let Γ be a finitely generated group and let $\varphi : G \rightarrow \Gamma$ be an abstract epimorphism. Then φ is continuous.

Theorem B Let G be a Lie group whose identity component G° has finite index in G, let Γ be a finitely generated group and let $\varphi : G \rightarrow \Gamma$ be an abstract epimorphism. Then Γ is finite and φ is continuous.

The next result depends on Theorem B and on deep results by Iwasawa, Yamabe and Nikolov–Segal.

Theorem C Let G be topologically finitely generated locally compact group, with G/G° compact. Let Γ be a finitely generated group and let $\varphi : G \rightarrow \Gamma$ be an abstract epimorphism. Then Γ is finite and φ is continuous.

Proof of Theorem A. We proceed in three steps. The first two steps follow loosely the arguments in [10] Thm. 5.1.

1) The claim of Theorem A is true if G is compact and if Γ is finite.

Let e denote the exponent of Γ. Then $G^e = \{g^e \mid g \in G\} \subseteq G$ is a compact subgroup and G/G^e has finite exponent. Moreover, φ factors as

$$
\begin{array}{c}
G \\
\downarrow \pi \\
G/G^e
\end{array}
\xrightarrow{\varphi}
\begin{array}{c}
\Gamma \\
\downarrow \varphi
\end{array}
$$

*Supported by SFB 878
Let $\Xi \subseteq G$ be a finitely generated dense subgroup. Then $\pi(\Xi)$ is a finitely generated abelian group of finite exponent and therefore finite. On the other hand, $\pi(\Xi)$ is dense in G/G^e. Hence G/G^e is finite and thus $G^e \subseteq \ker(\varphi)$ is open. The claim follows.

2) The claim of Theorem A is true if G is compact.

For $\ell \in \mathbb{N}_{\geq 1}$ consider the composite

$$
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \Gamma \\
& \downarrow{\varphi_\ell} & \\
\Gamma / \Gamma^\ell & \\
\end{array}
$$

By the previous result, φ_ℓ is continuous. Hence $\ker(\varphi) = \bigcap_{\ell \geq 1} \ker(\varphi_\ell)$ is closed. Therefore $G/\ker(\varphi)$ is a countable locally compact group. A countable locally compact group is, by the Open Mapping Theorem [12] 6.19, discrete. Therefore $\ker(\varphi)$ is open and the claim follows.

3) The claim of Theorem A is true.

We may decompose the group G topologically as $G = \mathbb{R}^n \times H$, where H has a compact open subgroup K, see [5] Thm. 7.57 (i). Since \mathbb{R}^n is divisible and since a finitely generated abelian group contains no divisible elements besides the identity, φ factors as

$$
\begin{array}{ccc}
\mathbb{R}^n \times H & \xrightarrow{\varphi_0} & \Gamma \\
& \downarrow{pr_2} & \\
H & \xrightarrow{\tilde{\varphi}} & \\
\end{array}
$$

The restriction $\tilde{\varphi} : K \xrightarrow{} \Gamma_0 = \tilde{\varphi}(K)$ is continuous by 2), since $\Gamma_0 \subseteq \Gamma$ is also finitely generated. It follows that the restriction of φ to the open subgroup $\mathbb{R}^n \times K \subseteq G$ is continuous and open. Therefore φ is continuous.

In the proof of Theorem B we rely on the following fact which was observed in different degrees of generality by Goto [3], Ragozin [11] and George Michael [1]. For the sake of completeness, we include a proof.

Proposition Let G be a Lie group whose Lie algebra is semisimple. Suppose that $N \triangleleft G$ is an abstract normal subgroup. Then N is closed.

Proof. Since $G^0 \subseteq G$ is closed and open, it suffices to show that $N \cap G^0$ is closed in G^0. Hence we may assume that G is connected, and we proceed by induction on the dimension of G. The claim is clear if $\dim(G) = 0$. Let $N_1 \subseteq N$ denote the path component of the identity. If $N_1 = \{1\}$, then $N \subseteq \text{Cen}(G)$ and therefore N is closed. If N_1 is nontrivial, then $N_1 \triangleleft G$ is a nontrivial virtual normal Lie subgroup, see [3]. Its Lie algebra is then a nontrivial ideal in $\text{Lie}(G)$. Since $\text{Lie}(G)$ is semisimple, the virtual subgroup corresponding to any ideal in $\text{Lie}(G)$
is closed: it is the connected centralizer of the complementary ideal. Therefore \(N_1 \subseteq G \) is closed. Now we may apply the induction hypothesis to \(N/N_1 \subseteq G/N_1 \). It follows that \(N \subseteq G \) is closed.

\[\therefore \]

Proof of Theorem B. The subgroup \(\varphi(G^\circ) = \Gamma_0 \subseteq \Gamma \) has finite index and is therefore also finitely generated. Therefore we may as well assume that \(G \) is connected. Let \(R \trianglelefteq G \) denote the solvable radical, i.e. the unique maximal connected solvable closed normal subgroup of \(G \). Then the Lie algebra \(\text{Lie}(G/R) \) is semisimple. We put \(N = \ker(\varphi) \). By the proposition above, \(NR \subseteq G \) is closed. Since \(G/N \) is countable, \(G/NR \) is countable and hence discrete. It follows that \(NR \subseteq G \) is open, hence \(G = NR \). Now we have \(\Gamma \cong NR/N \cong R/R \cap N \). The group \(R \) is divisibly generated, that is, it has a generating set consisting of divisible elements, see e.g. [7] 9.52. It follows that the abelianization \(\Gamma_{ab} \) of \(\Gamma \) is both divisible and finitely generated. Therefore \(\Gamma_{ab} = 1 \). On the other hand, \(\Gamma \) is solvable because \(R \) is solvable as an abstract group. It follows that \(\Gamma = \{1\} \).

\[\therefore \]

In the proof of Theorem C, we make use of the following two deep results.

Theorem (Nikolov–Segal) Let \(G \) be a compact group and let \(\Gamma \) be a finitely generated group. Suppose that \(\varphi : G \longrightarrow \Gamma \) is an abstract epimorphism. Then \(\Gamma \) is finite. If \(G \) is in addition topologically finitely generated, then \(\varphi \) is continuous and open.

Proof. This is Thm. 5.25 and Thm. 5.7 in [10].

Theorem (Iwasawa) Let \(G \) be a connected locally compact group. Then there exists a compact connected subgroup \(K \subseteq G \), a simply connected Lie group \(L \) and a continuous open epimorphism \(\varphi : L \times K \longrightarrow G \) with discrete kernel, such that \(\varphi(1, k) = k \) for all \(k \in K \).

Proof. Iwasawa proves a local version of this result in [5], p. 547, Theorem 11, assuming that \(G \) is a projective limit of Lie groups. Yamabe showed however that every locally compact group has an open subgroup which is a projective limit of Lie groups, see [9], p. 175. For the global formulation of Iwasawas’s Theorem that we use here, see also [2], [6] and [4] Sec. 4.

Proof of Theorem C. Let \(\Gamma_0 = \varphi(G^\circ) \). Since \(G/G^\circ \) is compact, the Theorem by Nikolov–Segal implies that \(\Gamma_0 \subseteq \Gamma \) has finite index. In particular, \(\Gamma_0 \) is also finitely generated. Hence we may assume that \(G \) is connected, and we have to show that then \(\Gamma \) is trivial. We put \(L \times K \longrightarrow G \) as in Iwasawa’s Theorem and we consider the composite \(\bar{\varphi} : L \times K \longrightarrow G \longrightarrow \Gamma \). Then \(\bar{\varphi} \) maps \(L \times \{1\} \) onto the finitely generated group \(\Gamma/\bar{\varphi}(\{1\} \times K) \). By Theorem B, \(\bar{\varphi}(\{1\} \times K) = \Gamma \). By Nikolov–Segal, \(\bar{\varphi}(\{1\} \times K) \) is finite. Since \(K \) is divisible by [6] 9.35, \(\bar{\varphi}(\{1\} \times K) \) is divisible and therefore trivial. Hence \(\Gamma \) is trivial.

\[\therefore \]

References

[1] A. A. George Michael, On normal subgroups of semisimple Lie groups, Results Math. 58 (2010), no. 1-2, 37–38. MR2672623 (2011i:22005)

[2] V. M. Gluškov, Structure of locally bicomplete groups and Hilbert’s fifth problem, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 2 (74), 3–41. MR0101892 (21 #698)
Translated as:
V. M. Gluškov, The structure of locally compact groups and Hilbert’s fifth problem, Amer. Math. Soc. Transl. (2) 15 (1960), 55–93. MR0114872 (22 #5690)

[3] M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157–162. MR0233923 (38 #2244)

[4] K. H. Hofmann and L. Kramer, Transitive actions of locally compact groups on locally contractible spaces, to appear in: Journal für reine und angewandte Mathematik.

[5] K. H. Hofmann and S. A. Morris, The structure of compact groups, de Gruyter Studies in Mathematics, 25, de Gruyter, Berlin, 1998. MR1646190 (99k:22001)

[6] K. H. Hofmann and S. A. Morris, Transitive actions of compact groups and topological dimension, J. Algebra 234 (2000), no. 2, 454–479. MR1801101 (2002a:22006)

[7] K. H. Hofmann and S. A. Morris, The Lie theory of connected pro-Lie groups, EMS Tracts in Mathematics, 2, European Mathematical Society (EMS), Zürich, 2007. MR2337107 (2008h:22001)

[8] K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR0029911 (10,679a)

[9] D. Montgomery and L. Zippin, Topological transformation groups, Interscience Publishers, New York, 1955. MR0073104 (17,383b)

[10] N. Nikolov and D. Segal, Generators and commutators in finite groups; abstract quotients of compact groups, Invent. Math. 190 (2012), no. 3, 513–602. MR2995181

[11] D. L. Ragozin, A normal subgroup of a semisimple Lie group is closed, Proc. Amer. Math. Soc. 32 (1972), 632–633. MR0294563 (45 #3633)

[12] M. Stroppel, Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006. MR2226087 (2007d:22001)

Linus Kramer
Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
linus.kramer@uni-muenster.de