Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina

Riccardo Natoli,1,2 Yuan Zhu,2,5 Krisztina Valter,1,2 Silvia Bisti,2,3,5 Janis Eells,2,4 Jonathan Stone2,5

1Division of Biomedical Sciences & Biochemistry, Research School of Biology, Australian National University; Sydney, Australia; 2ARC Centre of Excellence in Vision Science, Sydney, Australia; 3Department of Science and Biomedical Technology, University of L’Aquila, Coppito II, Via Vetoio, L’Aquila, Italy; 4Department of Biomedical Sciences University of Wisconsin Milwaukee, Milwaukee, WI; 5Bosch Institute, Discipline of Physiology and Save Sight Institute, University of Sydney, Sydney, Australia

Purpose: To identify the genes and noncoding RNAs (ncRNAs) involved in the neuroprotective actions of a dietary antioxidant (saffron) and of photobiomodulation (PBM).

Methods: We used a previously published assay of photoreceptor damage, in which albino Sprague Dawley rats raised in dim cyclic illumination (12 h 5 lux, 12 h darkness) were challenged by 24 h exposure to bright (1,000 lux) light. Experimental groups were protected against light damage by pretreatment with dietary saffron (1 mg/kg/day for 21 days) or PBM (9 J/cm2 at the eye, daily for 5 days). RNA from one eye of four animals in each of the six experimental groups (control, light damage [LD], saffron, PBM, saffronLD, and PBMLD) was hybridized to Affymetrix rat genome ST arrays. Quantitative real-time PCR analysis of 14 selected genes was used to validate the microarray results.

Results: LD caused the regulation of 175 entities (genes and ncRNAs) beyond criterion levels (p<0.05 in comparison with controls, fold-change >2). PBM pretreatment reduced the expression of 126 of these 175 LD-regulated entities below criterion; saffron pretreatment reduced the expression of 53 entities (50 in common with PBM). In addition, PBM pretreatment regulated the expression of 67 entities not regulated by LD, while saffron pretreatment regulated 122 entities not regulated by LD (48 in common with PBM). PBM and saffron, given without LD, regulated genes and ncRNAs beyond criterion levels, but in lesser numbers than during their protective action. A high proportion of the entities regulated by LD (>90%) were known genes. By contrast, ncRNAs were prominent among the entities regulated by PBM and saffron in their neuroprotective roles (73% and 62%, respectively).

Conclusions: Given alone, saffron and (more prominently) PBM both regulated significant numbers of genes and ncRNAs. Given before retinal exposure to damaging light, thus while exerting their neuroprotective action, they regulated much larger numbers of entities, among which ncRNAs were prominent. Further, the downregulation of known genes and of ncRNAs was prominent in the protective actions of both neuroprotectants. These comparisons provide an overview of gene expression induced by two neuroprotectants and provide a basis for the more focused study of their mechanisms.

The photoreceptors (rods and cones) of mammalian retina are the most specialized, metabolically active and fragile of the nerve cells of the retina [1–3]. Photoreceptors are also the most vulnerable of retinal cells to genetic stress, induced by mutations in genes whose expression is specific to photoreceptors, and in ubiquitously expressed genes [4,5]. The breakdown of photoreceptor stability is a major element of age-related retinal disease, and therefore of age-related blindness [6].

The stress-induced death of photoreceptors is accompanied by damage to the survivors [7–9]. Both death and damage appear to be caused by oxidative stress, i.e., by the damaging effects of partially reduced forms of oxygen, often called reactive oxygen species. Absorption of light (the normal function of photoreceptor outer segments) increases oxidation of their lipids, creating morphological and functional damage as light exposure is increased [10–12]. The idea that light-induced damage is caused by oxidative stress is supported by evidence that levels of endogenous antioxidants increase following light damage [13–15], and that exogenous antioxidants are protective [15–21], for cones [22,23] as well as rods.

We have explored the neuroprotective potential of the ancient spice saffron, which shows a strong protective effect against light-induced damage of photoreceptors [24]. The stigmata of Crocus sativus contain powerful antioxidants (crocin, crocetin) in biologically high concentrations [25]; their multiple C=C bonds give the stigmata their color, fragrance, taste, and antioxidant potential. Their concentration in saffron may be an evolutionarily special case, as the plant is a sterile triploid bred by vegetative propagation for its fragrance, taste, color, and medicinal properties. In a
recent double blind clinical trial [26], saffron (2 μg/day over 12 weeks) induced a partial but consistent recovery of the electroretinogram elicited from the macula, and of visual acuity. We have also pioneered the use of photobiomodulation (PBM) as a retinal neuroprotectant. Red to infrared (600–1,000 nm) light at low intensities promotes wound healing in skin and oral mucosa [27], and protects photoreceptors from toxin- [28], genetic- [29], and light-induced [30] damage. Furthermore, it reduces laser-induced retinal scarring. PBM delivered transcranially reduces cerebral pathology in animal models of brain damage [31–33] and in human ischemic stroke [34]. PBM acts partly by repairing mitochondrial function and upregulating oxidative phosphorylation [35]. Again, no harmful side effects have been reported at the doses used in this in vivo work (daily doses of 5 J/cm² or less). To develop the understanding of these neuroprotective effects, we have used microarray techniques to identify the genes regulated by saffron and PBM in their protective actions.

METHODS

Experimental organization: The protective potential of dietary saffron, and of PBM, was tested using a light damage assay. Animals were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and with protocols approved by the ANU Animal Ethics Committee. Young adult Sprague Dawley rats aged P80–120 were reared in 5 lux cyclic light, and prepared in six groups. Each group comprised two males and two females.

Control—These animals were raised in 5 lux cyclic light, as above. They were routinely fed a vegetable (potato or rice) matrix, developed as a biodegradable packaging material, and used the same matrix as vehicle for feeding them with saffron.

Saffron-exposed only—Animals were fed saffron at 1 mg/kg/day for 3 weeks. Saffron (stigmata of *Crocus sativus*, from the Abbruzzo region in Italy) was soaked in water (at 2 mg of spice/ml H₂O) and 12 h was allowed for the major antioxidants, which are water-soluble [25], to dissolve fully. The solute was then fed to the rats by injecting a small volume into a piece of the vegetable matrix, which the animal readily ingested. The volume for each daily feed was calculated to provide the solutes from 1 mg of saffron/kg bodyweight. Tissue was collected 24 h after the last feed.

Photobiomodulation-exposed only—Animals were exposed to 670 nm red light from a WARP 75 source (60mW/cm², Quantum Devices Inc., Barneveld, WI). Animals were handled gently over several days until they were adapted to handling. Each was then gently restrained with a towel and held under a Plexiglas platform with the head ~2.5 cm below the platform. The WARP75 device was placed on top of the platform and turned on for 3 min. This arrangement provided a fluence of 9 J/cm² at the eye. The animals did not hide from or appear agitated by the red light. Animals were treated in this way once daily for 5 days at 9:00 AM. Tissue was collected 24 h after the last treatment.

Light-damaged only—The animals were kept individually in Plexiglas cages, with food kept on the floor of the cages and water offered from transparent containers, to ensure uniform exposure. After overnight dark adaptation, animals were exposed to bright (1,000 lux) light for 24 h, from a white fluorescent source. Exposure began and ended at 9:00 AM.

TABLE 1. TaqMan Probes used for qPCR

Name	Gene symbol	TaqMan assay ID
angiotensinogen (serpin peptidase inhibitor, clade A, member 8)	Agt	Rn00593114_m1
Beta actin	Actb (Control)	Rn00667869_m1
carnitine O-octanoyltransferase	Crot	Rn00583174_m1
chemokine (C-C motif) ligand 2	Ccl2	Rn01456716_g1
endothelin 2	Edn2	Rn00561135_m1
fatty acid binding protein 5, epidermal	Fabp5	Rn00821817_g1
fibroblast growth factor 2	Fgf2	Rn00570809_m1
glyceraldehyde-3-phosphate dehydrogenase	Gapdh (Control)	Rn99999916_s1
glial fibrillary acidic protein	Gfap	Rn00566603_m1
glutathione peroxidase 3	Gpx3	Rn00673916_g1
heme oxygenase (decycling) 1	Hmox1	Rn01536933_m1
optineurin	Optn	Rn00595346_m1
signal transducer and activator of transcription 3	Stat3	Rn00562562_m1
suppressor of cytokine signaling 3	Socs3	Rn00585674_s1
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1	Smarcd1	Rn01533317_m1

Listing of all TaqMan probes used in this project including the reference genes Gapdh and Beta Actin.
Saffron light damaged—Animals in this group were fed saffron for 3 weeks, as above. At 9:00 AM on the last day of feeding, they were exposed to damaging light for 24 h, as above. Tissue was collected at the end of this 24 h period.

Photobiomodulation light damaged—Animals in this group were exposed to PBM, as above, for 5 days. Beginning at 9:00 AM on the last day of treatment, they were exposed to damaging light for 24 h, as above. Tissue was collected at the end of this 24 h period.

Tissue collection: At the points in the protocol specified above, animals were euthanized with Lethabarb (60 mg/kg intraperitoneally). The retina from one eye of each animal was dissected free immediately, and placed in an individual tube containing RNA later (Ambion Biosystems, Austin, TX), and stored at 4 °C overnight. The following day, tubes were transferred to −80 °C. The fellow eye was fixed by immersion in 4% (W/V) paraformaldehyde for examination of morphology and immunohistochemistry.

Fellow eyes were marked on the superior aspect with indelible pen for future orientation, enucleated and immersion-fixed in 4% (W/V) paraformaldehyde for 3 h, washed in 1× PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄ at pH of 7.4) thrice, then cryoprotected by immersion in 15% (W/V) sucrose overnight. Eyes were sectioned at 12 μm on a cryostat in the superior-inferior axis.

RNA extraction and analysis: RNA was extracted and purified using previously published methods [36]. To determine the...
Affymetrix (Santa Clara, CA) Rat Genome ST arrays. These induced in the six experimental groups, we used 18 Microarray analysis: number was greater than 8.5. in the same way as RNA extracted for the GeneChip Quantitative polymerase chain reaction: accession number GSE22818. Information (NCBI’s) Gene Expression Omnibus [37] and are uploaded to the National Center for Biotechnology microarray data discussed in this publication have been criteria that p<0.05 and the fold-change in expression >2. The significantly changed by treatment were selected using the calculate the probability P that the expression of a gene had and control group, two-sample Student tests were used to tests were used to account for individual sample variability and biologic triplicate (to account for biologic variability), with fold changes determined using comparative cycle threshold (Ct; delta-delta ct). Both glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and β-actin (Actb) were used as reference genes in all qPCR experiments. To study the changes in gene expression induced in the six experimental groups, we used 18 Affymetrix (Santa Clara, CA) Rat Genome ST arrays. These microarrays contain over 700,000 twenty-five-mer oligonucleotide features representing 27,342 genes. Labeling, hybridization, washing, and scanning of the microarray were performed at the Australian Cancer Research Foundation (ACRF) Biomolecular Resource Facility at the John Curtin School of Medical Research, Australian National University, following the manufacturers’ specifications. The arrays were scanned on the Affymetrix GeneChip 3000 7G high resolution scanner and analyzed using the GeneSpring GX v10 software (Agilent Technologies) and Partek Genomic Suite 6.4 Software (Partek Inc., St. Louis, MO). The hierarchical clustering was performed using GeneSpring on the full entity list (genes plus noncoding RNA [ncRNA]) for each of the six groups. Normalization was performed using the Robust Multichip Average (RMA) algorithm and only gene expression levels with statistical significance (p<0.05) were recorded as being “present” above background levels. Genes with expression levels below this statistical threshold were considered “absent.” For the box and whisker plot, we first ran a multivariate ANOVA (ANOVA) analysis on the six groups to identify genes whose expression was significantly varied (p<0.05, fold-change >2). This yielded a list of 187 entities, from which the box and whisker plot was generated. The Partek Genomic Suite was used to identify genes and ncRNAs whose expression differed between experimental groups, typically between one experimental group and one control group. Data in the form of a computerized version of the .DAT file (CEL) files were imported and gene expression values were derived using the RMA algorithm on the “core” metaprobe list, which represents RefSeq genes and full-length GenBank mRNAs. For each comparison between treatment and control group, two-sample Student t tests were used to calculate the probability P that the expression of a gene had not changed. Genes and ncRNAs whose expression was significantly changed by treatment were selected using the criteria that p<0.05 and the fold-change in expression >2. The microarray data discussed in this publication have been uploaded to the National Center for Biotechnology Information (NCBI’s) Gene Expression Omnibus [37] and are accessible through gene expression omnibus (GEO) Series accession number GSE22818. Quantitative polymerase chain reaction: RNA for quantitative polymerase chain reaction (qPCR) was handled in the same way as RNA extracted for the GeneChip experiments. Three biologic groups were used, with one animal in each treatment group. Superscript III and the accompanying standard protocol (Invitrogen, Carlsbad, CA) were used to convert 1 μg of retinal RNA to cDNA (cDNA). TaqMan® (Applied Biosystems, Foster City, CA) Gene Expression Mastermix (Cat# 4369514) and probes (Table 1) were used to assess the validity of gene expression changes identified in the microarray experiment using a StepOne Plus qPCR machine and StepOne software v2.1 (Applied Biosystems). Assays were performed in duplicate (to account for individual sample variability) and biologic triplicate (to account for biologic variability), with fold changes determined using comparative cycle threshold (Ct; delta-delta ct). Both glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and β-actin (Actb) were used as reference genes in all qPCR experiments. Figure 1 shows the protection of light-stressed photoreceptors in rat retina achieved in the current work, confirming previous reports for saffron [24] and PBM [30]. Light stress caused the death of photoreceptors, shown as TUNEL-labeling of cells in the ONL (Figure 1B). Pretreatment with saffron or PBM reduced the number of TUNEL-positive cells in the ONL (Figure 1C, for PBM), as well as reducing the light-induced thinning of the ONL (data not shown). When quantitative data were pooled (Figure 1D), significant differences were apparent between the LD group on the one hand, and the saffron-treated and PBM-treated groups on the other (control versus LD, p<0.002 on two-tailed t test; LD versus saffron LD, p<0.0025; LD versus PBM/LD, p<0.002). Tdt-mediated dUTP nick end labeling and quantification: Cell death was assessed by the TdT-mediated dUTP nick end labeling (TUNEL) technique to identify the fragmentation of DNA characteristic of apoptotic cells, following a previously published protocol [38] but using a fluorophore, Alexa 594, to visualize the enzymatic reaction. TUNEL-labeled sections were scanned from superior to inferior edge in 1 mm steps and the number of TUNEL-positive profiles in each 1 mm of the outer nuclear layer (ONL) was recorded. The frequency of TUNEL-positive profiles per mm of ONL was averaged from at least two sections per animal, and three or four animals were analyzed for each condition. The Student t test was used to compare the effects of different treatment conditions. To demonstrate cell survival, the DNA-specific dye bisbenzimide (Calbiochem, La Jolla, CA) was used. Sections were incubated in the dye, diluted 1:10,000 in 1× PBS for 2 min at room temperature. RESULTS Global analyses of gene expression: Four approaches were used to gain an overview of entity (gene and ncRNA) expression changes in the present data.
Figure 2. Hierarchical clustering diagram. This diagram shows the degree of similarity/difference between the 18 samples used in this study. Each column represents a sample; there were three control samples, three samples from retinas (each retina from a different animal) treated only with saffron, three from retinas/animals treated only with photobiomodulation (PBM), three from retinas/animals treated only with light damage (LD), three from retinas/animals treated with PBM and LD, and three from retinas/animals treated with saffronLD. The columns are arranged so that the most similar ones are next to each other. The branching lines at the top indicate in more detail the columns/samples that are most similar/different.

A: With two exceptions, the three samples from each experimental group resembled each other more than samples in other experimental groups. The exceptions were PBMLD1, which resembled the PBM samples more closely than the other two PBMLD groups; saffronLD1, which resembled the PBMLD samples more closely than the other saffron LD groups. Of the three treatments used (PBM, saffron, LD), LD induced the most variable response by all assessments used.

B: When expression values in the three samples of each of the six experimental groups were averaged, a distinct pattern of similarities emerged. The three saffron-only samples were closer to control than the PBM-only, suggesting that saffron by itself regulates fewer genes/entities than PBM. The LD-treated groups clustered together, with the two treated groups (PBMLD and SaffronLD) resembling each other more closely than the LD group. That is, treatment by PBM and Saffron before LD had broadly similar effects on the LD-induced regulation of genes/entities.
Hierarchical clustering analysis—The hierarchical clustering of individual replicates (Figure 2A) indicates that the patterns of gene expression in the three samples of each group were highly reproducible. Of the 18 samples (3 samples in each of 6 groups), 16 clustered most closely with samples from the same group. One exception was PBMLD1, which clustered with the PBM samples; the other was saffronLD1 (SafLD1), which clustered with two of the PBMLD samples. Because the saffron and PBM samples clustered closely within their respective groups, the two exceptions suggest some variability in the impact of LD on gene expression.

The pattern of clustering obtained when the group replicates were averaged is shown in Figure 2B. The three samples exposed to LD cluster together, separate from the three groups not exposed, indicating that LD has a strong impact on retinal gene expression. In the three non-LD groups, the saffron-treated sample clustered closer to control retina, suggesting that PBM alone has a stronger effect on retinal gene expression than saffron alone. Within the three LD-exposed groups, the retinas also exposed to photoreceptor-protective treatment (PBMLD, SafLD1) show gene expression closer to each other than to the LD group, suggesting that PBM and saffron modify the gene expression induced by LD in broadly similar ways.

Distributions of gene expression in the six averaged samples—the box and whisker plot—An overview of gene expression in our six experimental groups is gained from the “box and whisker” plot in Figure 3. There were 187 genes included in these analyses; these were selected by a multi-ANOVA analysis of the six experimental groups (p<0.05, fold change [FC]>2).

For each sample, the plot shows the median expression value of these genes as the horizontal line across the box. The upper and lower ends of the box mark the first and third quartile values, so that the box “contains” half of the sample value; the extensions show 1.5xIQR, where IQR is the interquartile range for the sample. The red lines indicate “outliers,” genes or ncRNAs whose expression level was greater or less than 1.5xIQR from the median.

LD caused the median expression value to rise from the control value, with the expression of many entities (genes or ncRNAs) lying in outlier regions (12 above, 16 below). Saffron has relatively little effect on the distribution of gene expression levels, but PBM narrows the distribution and creates outliers. These two protective treatments thus seem to have distinctive effects. Finally, the effect of PBM and saffron given before LD was to reduce the LD-induced increase of the median and to reduce the number of outliers (to none in PBMLD, one in saffron LD).

Venn diagram analysis: entities associated with neuroprotection A third overview of entity regulation associated with the neuroprotective actions of PBM and saffron is given by a Venn diagram analysis (Figure 4); numbers are shown separately for known genes and ncRNAs. The diagram is applied to three sets of regulated entities—those regulated by LD (compared to control); those regulated...
by LD when preceded by PBM (compared to control): and those regulated by LD when preceded by saffron feeding (compared to control). LD regulated 175 entities. Of these, 50 (44 known genes, 6 ncRNAs) were not regulated beyond criterion when LD was preceded by conditioning with PBM (PBMLD) or with saffron (SafLD). That is, the expression of these 50 entities (listed in Table 2) was suppressed by both PBM and saffron conditioning. Their suppression may be important in the protective actions of PBM and saffron.

When saffron was given to the animal before light damage (SafLD), the expression of a large number of entities (48 in common with PBM and 74 unique to saffron) were regulated, and were not regulated by LD; i.e., their regulation can be attributed to saffron and may be important in its protective effect. Similarly, when the retina was conditioned by PBM before exposure to LD, the expressions of 67 entities (48 in common with saffron and 19 unique to PBM) was regulated, which were not regulated by LD. Their regulation can be attributed to PBM and may be important in the protective effect of PBM. The entities regulated by saffron and PBM given before LD, and not by LD, are listed in Table 3.

By separating known genes from ncRNAs, the Venn diagram analysis draws attention to the prominence of ncRNAs among the entities regulated by both saffron and PBM when they are exerting their protective actions. For example, LD regulated 175 entities, of which only 13 (7.5%) were ncRNAs. Saffron preceding LD regulated 244 entities, of which 83 (34%) were ncRNAs; while PBM preceding LD regulated 116 entities, of which 51 (44%) were ncRNAs. Among the 48 entities regulated by PBM and saffron, but not by LD, and which are therefore potentially neuroprotective entities, 39 (81%) were ncRNAs.

Expression changes: identified genes and noncoding RNA Given the prominence of ncRNAs among the entities regulated by saffron and PBM when conditioning LD, we surveyed the relative numbers of genes and ncRNAs in the seven comparisons shown in Figure 5A. As already noted, LD regulated a large number of known genes, but few ncRNAs. Conversely, ncRNAs outnumber known genes in the action
Probeset ID	Gene assignment	Gene symbol	RefSeq	p-value	FC (LD/C)
10901166	angiopoietin-like 4	Angptl4	NM_199115	0.046613	2.20489
10738477	ADP-ribosylation factor 4-like	Arf4l	NM_001107052	0.027718	−2.1323
10865442	complement component 1, s subcomponent	C1s	NM_138900	0.027086	2.0311
10847761	C444 molecule	C44	NM_012924	0.017188	2.40207
10711649	chemokine (C-X-C motif) ligand 11	Cxcl11	NM_182952	0.041843	2.71709
10827231	cysteine-rich, angiogenic inducer, 61	Cyr6l	NM_031327	0.024324	2.07091
10890654	estrogen receptor 2 (ER beta)	Esr2	NM_012754	0.009894	2.32768
10714890	Fas (TNF receptor superfamily, member 6)	Fas	NM_139194	0.01695	2.9447
10886031	FBJ osteosarcoma oncogene	Fos	NM_022197	0.008085	4.3039
10797527	growth arrest and DNA-damage-inducible, gamma	Gadd45	NM_001077640	0.01695	2.700818
10867306	hypothetical protein LOC683514	LOC683514	NM_001077640	0.01695	2.700818
10934056	moesin	Msn	NM_030863	0.031765	2.04966
10896814	myeloid differentiation primary response gene 88	Myd88	NM_198130	0.014129	2.34728
10928658	nuclear factor of kappa light polypeptide gene enhancer i	Nfkbia	NM_00107095	0.00217	2.32112
10750848	nuclear factor of kappa light polypeptide gene enhancer	Nfkbi	NM_00107095	0.00217	2.32112
10823635	purinergic receptor P2Y, G-protein coupled 12	P2ry12	NM_022800	0.017115	2.38721
10792421	plasminogen activator, tissue	Plat	NM_013151	0.004342	2.38492
10911484	proteoglycan homolog (Cialis gallus)	Prng	NM_001037651	0.027196	4.05211
10842745	protein tyrosine phosphatase, non-receptor type 1	Ptpn1	NM_012637	0.008085	2.394211
10821581	similar to hypothetical protein MGC42105	RGD1308116	ENSRNOT00000021964	0.015255	−2.2474
10710930	similar to hypothetical protein DKFZp434I2117	RGD1308215	ENSRNOT00000021964	0.015255	−2.2474
10803006	similar to hypothetical protein B230399E16	RGD13559694	ENSRNOT00000021964	0.015255	−2.2474
10882514	similar to hypothetical protein B230399E16	RGD13560224	ENSRNOT00000021964	0.015255	−2.2474
10885581	similar to hypothetical protein	RGD13562590	ENSRNOT00000021964	0.015255	−2.2474
10800434	ring finger protein 125	Rnf125	NM_00108424	0.037824	2.3249
10893918	strawberrynotch homolog 2 (Drosophila)	Shn2	NM_00108424	0.037824	2.3249
10765195	selectin, platelet	Selp	NM_00108424	0.037824	2.3249
10704505	solute carrier family 1 (neutral amino acid transporter), schlafen 2	Slc1a5	NM_175758	0.028834	2.70661
10736795	superoxide dismutase 2, mitochondrial	Sod2	NM_00107031	0.048056	2.03465
10717935	stanniocalcin 1	Stc1	NM_031123	0.064806	2.26891
10781273	T-cell acute lymphocytic leukemia 2	Tal2	NM_001109462	0.012626	2.32825
10783880	translutaminase 1, K polypeptide	Tgml1	NM_031659	0.012214	2.7564
10887306	tumor necrosis factor, alpha-induced protein 2	Tnfaip2	NM_00113763	0.038454	2.32289
10859697	tumor necrosis factor receptor superfamily, member 1a	Tnfrsf1a	NM_013091	0.013832	2.4615
10829313	transient receptor potential cation channel, subfamily	Trpm2	NM_001011559	0.009704	−2.04814
10802422	tubulin, beta 6	Tubb6	NM_001025675	0.015119	2.4974
10802595	zinc finger protein 516	Znf516	ENSRNOT00000021964	0.000278	2.01399
10813949	zinc finger protein 622	Znf622	ENSRNOT00000014423	0.011767	2.11

Genes and ncRNAs (44 known genes, 6 ncRNAs) whose expression was significantly regulated by light damage (LD), and whose regulation was reduced below criterion when the retina was conditioned by photobiomodulation (PBM) and by saffron. These reductions in regulation may be important for the protective effects of PBM and saffron.
Table 3: Genes and ncRNAs Regulated by Photobiomodulation and Saffron Conditioning, but Not by Light Damage Alone (9 Known Genes, 39 ncRNAs)

Probeset ID	Gene Symbol	RefSeq	p-value	FC (PBMLD/C)	FC (SafLD/C)
10758134	fatty acid binding protein 12	NM_001134614	0.03715	−2.09977	−2.09843
10797597	isoleucyl-tRNA synthetase	NM_001100572	0.01099	2.21568	2.14011
10796326	optineurin	NM_145081	0.001857	−2.04049	−2.16666
10810322	similar to calmegin	BC097408	0.011866	2.57427	2.03946
10753017	similar to Putative protein C21orf45	BC167102	0.000554	−2.95657	−2.95334
10722429	ubiquitin C	NM_017314	0.006248	2.05098	3.55913
10722449	—	—	0.000643	2.05098	3.55913
10722435	—	—	0.000759	2.05098	3.55913

Genes and ncRNAs regulated by photobiomodulation (PBM) and saffron conditioning, but not by light damage (LD) alone (9 known genes, 39 ncRNAs). Their regulation by PBM and saffron conditioning suggests that they are important in the protective effects of both PBM and saffron.
of PBM on the control retina (PBM versus control); in the action of PBM when exerting its protective action against LD (PBM-MLD versus LD); and in the protective action of saffron (saffron-MLD versus LD). It seems likely that the regulation of ncRNAs accounts for a significant part of the protective effect.

This suggestion is supported by the difference comparison in Figure 5B. Measuring only changes in the numbers of genes and ncRNAs whose expression was significantly regulated by saffron or PBM before LD, the protective actions of saffron and PBM are both associated with increases in the number of ncRNAs regulated, and decreases in the numbers of identified genes whose expression was regulated.

As a final step, we considered the directions of entity expression changes in these several conditions (Figure 5C, Figure 4D). The most striking outcome of this separation is that the protective effects of PBM and saffron are associated with a decrease in the number of known genes upregulated, and an increase in the number of ncRNAs downregulated.

Validation by real-time PCR: Thirteen genes were chosen for RT–PCR validation of the microarray outcomes; those chosen were strongly regulated and/or retina-relevant. Five genes (Crot, Optn, Edn2, Smarcad1, Gpx3) were significantly regulated by saffron in the LD assay. Crot and smarcad1 are involved in fatty acid metabolism, Edn2 in retinal signaling in response to injury, and Gpx3 in antioxidative activity. Optn acts as an mgluR1 receptor on retinal bipolar cells. Fapbp5 is also saffron-regulated, and related to fatty acid metabolism. Fgf and GFAP are proteins upregulated by stress; Stat3 and Soc3 are related to transduction pathways, eci2 to inflammatory responses, and Agt and heme oxygenase 1 (Hmox1) to cardiovascular control.

Figure 6 shows a comparison for each of the 13 genes between its regulation as assessed by the microarray procedure and its regulation as assessed by RT–PCR. The correlation between the two techniques appears particularly close for ccl2, Soc3, Stat3, Cro, Edn2, Hmox1, Fapbp5, and smarcad. Common trends, with quantitative differences at some sample points, are evident for Optn, GFAP, Agt, Fgf2, and Gpx3. Overall, the correlation between the two techniques seems strong.

Entities associated with the protective actions of saffron and photobiomodulation listed:

Light damage–induced regulation inhibited by photobiomodulation or saffron—The genes and ncRNAs whose regulation by LD was inhibited by PBM or saffron are listed in Table 2; as noted above, this inhibition affected principally (88%) known genes (44 known genes, 6 ncRNAs). All 50 entities were upregulated by LD; they are therefore candidates for genes and regulatory elements whose upregulation is damaging to photoreceptors.

Regulation by photobiomodulation and saffron, but not LD—Table 3 lists genes and ncRNAs that were not regulated by LD but were regulated by PBM and saffron when conditioning (protecting) photoreceptors challenged by LD. Figure 7 shows that the effects of PBM and saffron on their regulation were highly correlated. The entity regulation shown in Table 3 contrasts in two ways with the pattern of regulation in Table 2: Most of the entities whose regulation was changed by saffron and PBM conditioning were ncRNAs...
(81%), and all the ncRNAs and half the known genes were downregulated.

Regulation by PBM or saffron, but not light damage

—Further candidates for genes and ncRNAs protective to
photoreceptors can be found in 74 entities (37 known genes, 37 ncRNAs) regulated by saffron (but not by PBM) when conditioning/protecting photoreceptors (Table 4), and in the 19 entities (9 known genes, 10 ncRNAs) regulated by PBM (but not by saffron) when conditioning/protecting photoreceptors (Table 5).

Regulation by LD, SaffronLD, and PBMLD—Genes found to be regulated by SaffronLD and LD (Table 6), PBMLD and LD (Table 7), and SaffronLD, PBMLD, and LD (Table 8) are shown in the corresponding tables. These genes are not discussed as the changes in expression levels are likely due to LD and not saffron or PBM.

DISCUSSION
The present results provide an overview of gene and ncRNA regulation associated with the neuroprotective actions of PBM and saffron. The analyses used were chosen partly to provide validation of the method, for example the hierarchical clustering analysis in Figure 2 and the microarray-PCR comparison in Figure 6. In addition, they allow a compare-and-contrast discussion of the possible actions of saffron and PBM.

The box-and-whisker presentation in Figure 3 suggests that PBM and saffron acting on the retina in the absence of a light challenge have distinct effects. Saffron has relatively little effect on the expression of genes by the retina, but when given as pretreatment to LD, saffron reduced the large changes in gene expression induced by LD. PBM by itself had a much more significant effect on retinal gene expression than saffron, narrowing the distribution of entity expression changes and generating many “outliers.” PBM given as pretreatment to LD reduced the gene expression caused by LD toward control levels.

The Venn diagram analysis allowed a logical separation of lists of genes and ncRNAs whose regulation appears to contribute to neuroprotection; it also draws attention to the prominence of ncRNAs (rather than known genes) among the entities regulated during the protective action of PBM and saffron.
Probeset ID	Gene_assignment	Gene symbol	RefSeq	p-value	FC (SafLD/C)
10808041	alanyl-tRNA synthetase	Aars	NM_001100517	0.009419	2.12845
10920371	coiled-coil domain containing 72	Cc2d72	NM_001126048	0.000362	-2.15161
10753771	C4a7 molecule	Cx77a	NM_019195	0.005381	-2.18358
10840985	cytochrome c oxidase subunit 1 IV isoform 2	Cox4d	NM_053472	0.006367	-2.04762
10860548	carnitine O-octanoyltransferase	Crot	NM_031987	0.000412	2.42699
10871623	endothelin 2	Edn2	NM_012549	0.003864	3.91444
10791631	ectonucleotide pyrophosphatase/phosphodiesterase 6	Enpp6	NM_001107311	0.000012	2.16424
10740335	fascin homolog 2, actin-bundling protein, retinal (Stro)	Fscn2	NM_001107072	0.002804	2.03501
10938219	glyceraldehyde 3-phosphate dehydrogenase	Gpd3	NM_001107093	0.000010	2.67228
10736080	glutathione peroxidase 3	Gpx3	NM_022525	0.00182	-2.7933
10715200	helicase, lymphoid specific	Hells	NM_001106371	0.000088	2.2618
10863430	hexokinase 2	Hk2	NM_012525	0.029119	-2.24022
10733856	interferon gamma inducible protein 18	Ifi47	NM_172019	0.001063	2.31444
10714003	interferon-induced protein with tetratricopeptide repeat and PDZ domain	Ifit3	NM_001107093	0.000010	2.67228
10753784	intraflagellar transport 57 homolog (Chlamydomonas)	Ift57	NM_001107093	0.000010	2.67228
10818573	interleukin 12a	I12a	NM_053390	0.003212	-2.04998
10804187	leucyl-tRNA synthetase	Lars	NM_0011009637	0.000471	2.05987
10932110	mediator complex subunit 14	Med14	XM_228713	0.02603	2.23949
10923270	oligonucleotide/oligosaccharide-binding fold containin	Obfc2a	NM_001107093	0.000010	2.67228
10858003	pterin-4-alpha-carbinolamine dehydratase/dimerization c	Pcbd1	NM_001007601	0.009857	-2.05998
10799566	phosphodiesterase 8A	Pde8a	NM_198767	0.005571	-2.00121
10889475	peroxidasin homolog (Drosophila)	Pxdn	ENSRNOT00000060139	0.00349	-2.6691
10885138	RNA binding motif, single stranded interacting protein	Rbm2	NM_001025460	0.02005	-2.15586
10716145	similar to enolase (46.6 kDa) (2J223)	Rgd1308333	NM_001134505	0.015495	2.04964
10820022	similar to Acl147	Rgd1563254	NM_001107093	0.002919	-2.23707
10771190	similar to ATP-binding cassette, sub-family G (WHI)	RGD1564709	NM_001107093	0.042466	2.04858
10797566	sphingosine-1-phosphate receptor 3	Slpr3	ENSRNOT00000019473	0.00326	2.25911
10750282	solute carrier family 5 (inositol transporters), member 3	Sk5a3	NM_053390	0.002179	2.1573
10842440	solute carrier family 9 (sodium/hydrogen exchanger), m	Sk9a8	NM_001025281	0.000656	2.12805
10899174	SWI/SNF related, matrix associated, actin dependent r	Smared1	NM_001108752	0.002766	-2.04334
10831606	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	Tap1	NM_032055	0.011581	2.37179
10902375	TBC1 domain family, member 15	Tbc1d15	ENSRNOT0000005207	0.00945	2.0265
10858370	ubiquitin specific peptidase 18	Usp18	NM_001104058	0.019532	2.19315
10907681	zinc finger protein 385A	Zfp385a	NM_001135088	0.000479	-2.11791
10846652	zinc finger protein 385B	Zfp385b	NM_001107736	0.001897	2.15179
10840061	—	—	—	—	—
10924441	—	—	—	—	—
10891487	—	—	—	—	—
10886490	—	—	—	—	—
10898158	—	—	—	—	—
10893226	—	—	—	—	—
10891505	—	—	—	—	—
10886554	—	—	—	—	—
10731193	—	—	—	—	—
10843907	—	—	—	—	—
10875117	—	—	—	—	—
10801781	—	—	—	—	—
10825167	—	—	—	—	—
10722735	—	—	—	—	—
10803991	—	—	—	—	—
10819500	—	—	—	—	—
10766880	—	—	—	—	—
10938281	—	—	—	—	—
Genes and ncRNAs regulated saffron conditioning, but not by photobiomodulation (PBM) and not by light damage (LD) alone (37 known genes, 37 ncRNAs). Their regulation by saffron conditioning suggests that they are important in the protective action of saffron, and not of PBM.					
Genes and ncRNAs regulated by photobiomodulation (PBM) conditioning, but not saffron and not by light damage (LD) alone (9 known genes, 10 ncRNAs). Their regulation by PBM conditioning suggests that they are important in the protective effects of PBM, but not in the protective action of saffron. Entities regulated by PBM, when exerting its protective action (9 known genes, 10 nc RNAs)					
Gene symbol	p-value	FC (LD/C)	FC (SafLD/C)		
-------------	---------	-----------	-------------		
angiotensinogen (serpin peptidase inhibitor, clade A, member)	0.003178	2.63853	2.72153		
baculoviral IAP repeat-containing 3	−0.0037	−2.29985	−2.04435		
caspase 3, apoptosis related cysteine protease	0.001718	2.62625	2.20589		
chemokine (C-C motif) ligand 2	0.001026	4.06268	3.00096		
chemokine (C-C motif) ligand 7	0.000248	4.68541	2.67958		
cytokine inducible SH2-containing protein	0.003605	10.9118	7.35678		
cardiotrophin-like cytokine factor 1	0.002851	2.39137	2.33589		
chemokine (C-X-C motif) ligand 1 (melanoma growth stimulator)	0.003066	21.4607	7.85562		
emopamil binding protein-like	0.002801	−3.04631	−2.17671		
heme oxygenase (decycling) 1	0.008369	5.70686	2.9304		
interleukin 17 receptor B	0.00072	2.00698	2.2033		
myo-inositol oxygenase	0.002983	−2.24009	−2.20493		
myeloid leukemia factor 1	0.0008	12.1207	5.47872		
metallothionein 2A	0.002073	9.97229	5.45083		
receptor accessory protein 6	8.44E-05	−3.21858	−2.57593		
similar to hypothetical protein MGC38716	0.005265	2.07828	2.02776		
RGD1564171	0.003087	2.42088	2.40646		
Table 6. Continued.

Probeset ID	Gene_assignment	Gene_symbol	RefSeq	p-value	FC (LD/C)	FC (SaflLD/C)
10906926	Rho family GTPase 1	Rho1	NM_001013222	0.020945	2.01484	2.03486
10889399	radical S-adenosyl methionine domain containing 2	Rsad2	NM_138881	0.016232	12.7868	4.6819
10765173	selectin, endothelial cell	Sel	NM_138879	0.003772	2.68122	2.22527
10910406	sema domain, immunoglobulin domain (Ig), and GPI membr	Sema7a	NM_001108153	0.000297	-2.20198	-2.08698
10744687	solute carrier family 13 (sodium-dependent citrate trans	Slc13a5	NM_170668	0.00314	4.69584	3.06774
10805335	solute carrier family 14 (urea transporter), member 1	Slc14a1	NM_019346	0.000303	2.6531	2.87021
10804672	solute carrier family 26 (sulfate transporter), member 2	Slc26a2	NM_057127	0.015372	2.17668	2.02817
10823057	solute carrier family 7 (cationic amino acid transpor	Slc7a11	NM_001107673	0.000438	2.11226	2.16576
10935997	SFRS protein kinase 3	Srpk3	NM_184045	0.0002203	2.15515	2.54938
10927842	signal transducer and activator of transcription 1	Stat1	NM_032612	0.000288	3.0351	2.42253
10794345	sushi domain containing 3	Suxd3	NM_001107341	8.31E-06	-2.6654	-2.62958
10821959	threonyl-tRNA synthetase	Tars	NM_001006976	0.000161	2.33103	2.32162
10936482	TIMP metalloproteinase inhibitor 1	Timp1	NM_053819	0.002114	6.19945	3.69766
10919694	transmembrane protein 108	Tmem108	ENSRNOT00000014519	0.002274	-2.05022	-2.23734
10762108	transmembrane protein 116	Tmem116	NM_001159625	0.0003455	-2.39288	-2.23365
10874198	tumor necrosis factor receptor superfamily, member 9	Tnrsf9	NM_001025773	0.001067	4.29073	3.16758
10774171	uridine phosphorylase 1	Uppl	NM_001030025	0.001233	3.84779	2.06433
10720215	zinc finger protein 36	Zfp36	NM_133290	0.00113	4.38522	3.47823
10935061	—	—	—	0.000426	2.08993	2.27601
10766724	—	—	—	0.001338	3.06184	3.89387
10815496	—	—	—	0.003018	2.12199	2.05157
10802706	—	—	—	0.004766	2.01494	2.94154
10937867	—	—	—	0.006416	2.36821	2.21384

Genes and ncRNA regulated by both Saffron light damage (LD) and LD when compared to control. The change in expression indicates that these genes (76 genes in total including 71 coding and 5 noncoding RNAs) change in response to light damage and not the treatment paradigm.
Possible mechanisms of protection against light damage:
Our study builds upon previous work showing that there are global changes in gene expression due to LD [39–42] and that antioxidants can play a role in ameliorating this stress [15, 17,43,61]. A direct example is \(Hmox1 \), which has been previously found to be a marker for light-induced stress in the retina and could be controlled by the antioxidant dimethylthiourea [43]. Our results also show a reduction in the expression of \(Hmox1 \) in both the LD saffron and PBMLD treated samples. In contrast to these findings, a study by Sun and colleagues reported that overexpression of \(Hmox1 \) is protective to the retina [44]. This suggests that \(Hmox1 \) act as a marker for light-induced stress rather than playing a role in the etiology of the degeneration.

Tissue antioxidant proteins have been reported to be upregulated [13,14] or their activity increased [15] following light exposure; among others, glutathiones (Gpx1), thioredoxin-1, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase have been identified in these findings. In the present study, we found Gpx3 gene expression showed a reduction in the LD animals. Both saffron and PBM mitigated the changes in gene expression following LD, suggesting that both saffron and PBM have a direct regulatory effect on tissue oxidative protection.

Another possible protective mechanism involved in saffron and PBM treatment is through the reduction of inflammation due to the downregulation of chemokine (C-C motif) ligand 2 (\(ccl2 \)). CCL2 has been found to play an important role in inflammation by inducing leukocyte recruitment and activation [45] [46]. It has been shown to be elevated in many degenerative diseases of the central nervous system, such as multiple sclerosis [47], Alzheimer disease [48], Parkinson disease [49], and amyotrophic lateral sclerosis [50]. In the eye, \(ccl2 \) has been shown to play a role in the development of retinal degeneration; \(ccl2 \)-deficient mice develop age related macular degeneration (AMD) like symptoms [51]. Our results suggest that reducing \(ccl2 \) levels to near control levels has a direct correlation with the amount of cell death. Further investigation into the role of \(ccl2 \) in LD in the retina is required.

Different forms of neuroprotection: contrasts in entity expression: LD was used in this study as an assay of the protected/vulnerable status of photoreceptors. It is relevant to recall, however, that exposure to light also involves a neuroprotective action [52,53]. Prior light experience regulates photoreceptor vulnerability to light; both ambient light experienced over long periods and a briefer exposure to very bright light upregulate mechanisms that protect the photoreceptors from a subsequent light challenge.

Recently, we [54] drew a distinction among preconditioning pretreatments that make photoreceptors resistant to LD. The distinction was between pretreatments that damage photoreceptors (examples being light [above] or hypoxia [55]) but nevertheless protect surviving photoreceptors against subsequent stress, and pretreatments that are protective without themselves damaging photoreceptors (examples being saffron [24] and PBM [28, 29]). The present results show that the regulation of entity expression associated with light is very different from that associated with a nondamaging pretreatment in at least two ways. First, light regulates principally known genes, upregulating them; by contrast, PBM and saffron regulate large numbers of ncRNAs, mainly downregulating them.

How does saffron act?: The data provide some insight into how saffron acts to protect photoreceptors against LD in the present experiments. A simple, “direct action” hypothesis for the action of an antioxidant is that it does not interact with cells, but rather acts as a direct antioxidant, shortening the lifespan of reactive oxygen species, and reducing the damage they cause. This hypothesis would predict that saffron has little effect on retinal gene expression, and this prediction is not contradicted by the list of entities (data not shown) whose expression was regulated significantly by saffron without LD. The list is short (12 known genes, 5 ncRNAs), and only one entity (an ncRNA) was regulated more than threefold. The “direct action” hypothesis appears to be contradicted, however, by the large number of genes and ncRNAs which were significantly regulated by LD, and whose regulation was reduced significantly by saffron preconditioning (Table 2); and by the large number of genes and (especially) ncRNAs whose expression was significantly regulated by saffron when given as pretreatment to LD (Table 3 and Table 4). As already noted (Figure 5), a large proportion of the entities regulated in these two ways by saffron are ncRNAs, and further understanding of the protective action of saffron will require understanding of the roles of these sequences.

With known genes, the present data allow mechanisms of saffron-induced protection to be postulated for further study.
Probeset ID	Gene symbol	Log2 Fold Change	p-value	RefSeq	NCBI Gene ID
10886640	Ahr	3.59834	0.000824	NM_013079	10889660
10790712	Agrp2	5.01215	0.003417	NM_001008516	10853521
10703532	Cathepsin b	3.28967	0.000175	NM_013079	10894100
10703532	Cathepsin b	3.28967	0.000175	NM_013079	10889660
10703532	Cathepsin b	3.28967	0.000175	NM_013079	10889660
10703532	Cathepsin b	3.28967	0.000175	NM_013079	10889660

Gains and loss of mRNA regulated by all groups light damage (LD). Saffron LD and photobiomodulation (PBM) LD when compared to control. The change in expression indicates that these genes (46 genes in total, including 44 coding and 2 noncoding RNAs) change in response to light damage and not the treatment paradigm.
As an example, one of the genes whose expression is upregulated specifically by saffron as part of its protective action against LD (Table 4) is *endothelin 2*. Expression of this gene is associated with the upregulation of the protective/ trophic factor fibroblast growth factor-2 (FGF-2), which is known to be protective against photoreceptors [56–58]. Upstream from *endothelin 2*, leukemia inhibitory factor is known to upregulate *endothelin 2* as part of the Jak/Stat pathway [59]; leukemia inhibitory factor expression has recently been shown to be protective to photoreceptors in the rat LD model [59]. Given the number of genes/entities involved, much detailed work will be required to define the mechanisms of the saffron-induced protection of photoreceptors.

How does photobiomodulation act?: Previous analyses of the neuroprotective action of PBM [29,35,60] have suggested that the energy of the radiation is absorbed by the mitochondrial enzyme cytochrome oxidase, which serves the key role of sequestering oxygen from the tissue for oxidative phosphorylation pathways, and the production of adenosine-5'-triphosphate (ATP). The result includes restoration of toxin-induced loss of ATP production and increased cell viability. Several studies suggest that the absorption of PBM upregulates intracellular pathways governing the redox state of the cell (reviewed [35]).

The present results confirm that PBM, given without LD, changes retinal gene expression in a significant number of entities, and that, given as a pretreatment to LD, PBM (like saffron) changes the expression of a large numbers of entities, reducing the LD-induced regulation of many (Table 2 and Table 3) and regulating many not affected by LD (Table 5). PBM, like saffron, appears to regulate many intracellular pathways when given as a pretreatment. As with saffron, a large proportion of the entities regulated by PBM are ncRNAs, and further understanding of the protective action of saffron will require understanding to the roles of these sequences.

Neuroprotection: multiple pathways: The present results add to the knowledge of the mechanisms by which photoreceptors, and presumably other neurons, can be protected from degeneration. The present analysis of the action of saffron suggests that its action is more than that of a direct antioxidant; rather, saffron appears to interact very significantly with gene expression. Saffron is a complex of molecules [25] that includes powerful antioxidants, as well as a range of bioactive molecules. Which of these potentially active molecules, or which combination of them, accounts for the neuroprotective action of saffron remains to be determined.

PBM seems to act through at least two pathways, by reducing inflammation and by reducing oxidative damage. Future investigation of the ncRNAs regulated by PBM and saffron could reveal further clues to their mechanism of protection.

ACKNOWLEDGMENTS

The authors are grateful to Ms R. Albarracin for her help in the animal experiments. This research was supported by the Australian Research Council through the ARC Centre of Excellence in Vision Science (CE0561903), by a grant-in-aid from the Sir Zelman Cowen Universities Fund and by Foundation Fighting Blindness (FFB) grants (TA-NE-0606–0348-UWI, TA-NP-0709–0465-UWI, and TA-NP-0709–0465-UWI).

REFERENCES

1. Lamb TD. Evolution of vertebrate retinal photoreception. Philos Trans R Soc Lond B Biol Sci 2009; 364:2911-24. [PMID: 19720653]
2. Winkler BS. Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 1981; 77:667-92. [PMID: 6267165]
3. Graymore C. Metabolism of the developing retina. Br J Ophthalmol 1959; 43:34-9. [PMID: 13618528]
4. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekstrom P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38:253-69. [PMID: 18982459]
5. Herrmann H. Mechanisms of cell specialization. Invest Ophthalmol 1969; 8:17-25. [PMID: 4885710]
6. Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peer J. Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 1999; 18:679-735. [PMID: 10530749]
7. Jozwick C, Valter K, Stone J. Reversal of functional loss in the P23H–3 retina by management of ambient light. Exp Eye Res 2006; 83:1074-80. [PMID: 16822506]
8. Chrysostomou V, Stone J, Stowe S, Barnett NL, Valter K. The Status of Cones in the Rhodopsin Mutant P23H–3 Retina: Light-Regulated Damage and Repair in Parallel with Rods. Invest Ophthalmol Vis Sci 2008; 49:1116-25. [PMID: 18326739]
9. Valter K, Kirk DK, Stone J. Optimising the structure and function of the adult P23H–3 retina by light management in the juvenile and adult. Exp Eye Res 2009; 89:1003-11. [PMID: 19729008]
10. Wiegand RD, Giusto NM, Rapp LM, Anderson RE. Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci 1983; 24:1433-5. [PMID: 6618806]
11. Tanito M, Yoshida Y, Kaidzu S, Ohira A, Niki E. Detection of lipid peroxidation in light-exposed mouse retina assessed by oxidative stress markers, total hydroxyoctadecadienoic acid and 8-iso-prostaglandin F2alpha. Neurosci Lett 2006; 398:63-8. [PMID: 16442211]
12. Organisciak DT, Darrow RM, Jiang YI, Marak GE, Blanks JC. Protection by dimethylthiourea against retinal light damage in rats. Invest Ophthalmol Vis Sci 1992; 33:1599-609. [PMID: 1559759]
13. Penn JS, Naash MI, Anderson RE. Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Exp Eye Res 1987; 44:779-88. [PMID: 3653273]
14. Gosbell AD, Stefanovic N, Scurr LL, Pete J, Kola I, Favilla I, de Haan JB. Retinal light damage: structural and functional effects of the antioxidant glutathione peroxidase-1. Invest Ophthalmol Vis Sci 2006; 47:2613-22. [PMID: 16723478]

15. Xie Z, Wu X, Gong Y, Song Y, Qiu Q, Li C. Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats. Curr Eye Res 2007; 32:471-9. [PMID: 17514533]

16. Ranchon I, Gorrand JM, Cluzel J, Droy-Lefais MT, Doly M. Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract. Invest Ophthalmol Vis Sci 1999; 40:1191-9. [PMID: 10235553]

17. Tomita H, Kotake Y, Anderson RE. Mechanism of protection from light-induced retinal degeneration by the synthetic antioxidant phenyl-N-tert-butylhydroxlate. Invest Ophthalmol Vis Sci 2005; 46:427-34. [PMID: 15671265]

18. Logvinov SV, Plotnikov MB, Varakuta EY, Zhdankina AA, Potapov AV, Mikhula EP. Effect of ascorvitin on morphological changes in rat retina exposed to high-intensity light. Bull Exp Biol Med 2005; 140:578-81. [PMID: 16758630]

19. Yilmaz T, Aydemir O, Ozercan IH, Ustundağ B. Effects of vitamin e, pentoxifylline and aprotinin on light-induced retinal injury. Ophthalmologica 2007; 221:352-6. [PMID: 17440277]

20. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 2005; 1740:101-7. [PMID: 15949675]

21. Costa BL, Fawcett R, Li GY, Safa R, Osborne NN. Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage. Brain Res Bull 2008; 76:412-23. [PMID: 18502318]

22. Korneika K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA 2006; 103:1300-5. [PMID: 16849425]

23. Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, Campochiaro PA. Oxidative Damage is a Potential Cause of Cone Cell Death in Retinitis Pigmentosa. J Cell Physiol 2005; 203:457-64. [PMID: 15744744]

24. Maccarone R, Di Marco S, Bisti S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Invest Ophthalmol Vis Sci 2008; 49:1254-61. [PMID: 18326756]

25. Giaccio M. Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nutr 2004; 44:155-72. [PMID: 15239370]

26. FalsiniBPiccardiMMinnellaASavastanoCCapoluongoEFadda ABalestrazziEMaccaroneRBistiS. Saffron Supplementation Improves Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2010 [PubMed: 15239370]

27. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 2004; 4:559-67. [PMID: 16120414]

28. Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci USA 2003; 100:3439-44. [PMID: 12626762]

29. Eells JT, DeSmet KD, Kirk DK, Wong-Riley M, Whelan HT, Ver Hoeve JT, Nork M, Stone J, Valter K. Photobiomodulation for the Treatment of Retinal Injury and Retinal Degenerative Diseases. Proceedings of Light-Activated Tissue Regeneration and Therapy Conference. 2008

30. Qu C, Cao W, Fan Y, Lin Y. Near-infrared light protect the photoreceptor from light-induced damage in rats. Adv Exp Med Biol 2010; 664:365-74. [PMID: 20238037]

31. Onor A, Onor U, Chen J, Eilam A, Zhang C, Sadeh M, Lamp I, Streeter J, DeTaboa da L, Chopp M. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 2006; 37:2620-4. [PMID: 16946145]

32. Liang HL, Whelan HT, Eells JT, Wong-Riley MT. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium induced neurotoxicity. Neuroscience 2008; 153:963-74. [PMID: 18440709]

33. Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J. Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared (NIR) light treatment. J Comp Neurol 2010; 518:25-40. [PMID: 19882716]

34. Lamp I, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B, Perez J, Caparo C, Ilic S, Oron U. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 2007; 38:1843-9. [PMID: 17463313]

35. Hamblin M, Demidova N. Mechanisms of low-light therapy. In: Hamblin M, Waynart R, Anders J, Editors. Mechanisms for Low-Light Therapy. Bellingham, WA: The International Society for Optical Engineering, Proc SPIE; 2006. p. 1–12.

36. Natoli R, Provins J, Valter K, Stone J. Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina. Invest Ophthalmol Vis Sci 2008; 49:4561-7. [PMID: 18539939]

37. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30:207-10. [PMID: 11752295]

38. Maslim J, Valter K, Egensperger R, Holländer H, Stone J. Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Invest Ophthalmol Vis Sci 1997; 38:1667-77. [PMID: 9286255]

39. Chen L, Wu W, Denteve T, Zeng Y, Wang J, Tsui I, Tobias JW, Bennett J, Baldwin D, Dunaief JL. Light damage induced changes in mouse retinal gene expression. Exp Eye Res 2004; 79:239-47. [PMID: 15325571]

40. Rohrer B, Guo Y, Kuchithapautham K, Gilkeson GS. Eliminating complement factor D reduces photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci 2007; 48:5282-9. [PMID: 17962484]

41. Huang H, Frank MB, Dozmorov I, Cao W, Cadwell C, Knowlton N, Centola M, Anderson RE. Identification of mouse retinal genes differentially regulated by dim and bright
cyclic light rearing. Exp Eye Res 2005; 80:727-39. [PMID: 15862179]

42. Kassen SC, Ramanan V, Montgomery JE, T Burket C, Liu CG, Vihtelic TS, Hyde DR. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev Neurobiol 2007; 67:1009-31. [PMID: 17565703]

43. Kutty RK, Kutty G, Wiggert B, Chader GJ, Darrow RM, Organisciak DT. Induction of heme oxygenase 1 in the retina by intense visible light: Suppression by the antioxidant dimethylthiourea. Proc Natl Acad Sci USA 1995; 92:1177-81. [PMID: 7682656]

44. Sun MH, Pang JH, Chen SL, Kuo PC, Chen KJ, Kao LY, Wu JY, Lin KK, Tsao YP. Photoreceptor protection against light damage by AAV-mediated overexpression of heme oxygenase-1. Invest Ophthalmol Vis Sci 2007; 48:5699-707. [PMID: 18055822]

45. Manzo A, Caporali R, Montecucco C, Pitzalis C. Role of chemokines and chemokine receptors in regulating specific leukocyte trafficking in the immune/inflammatory response. Clin Exp Rheumatol 2003; 21:501-8. [PMID: 12942706]

46. Yoshiie O. Role of chemokines and chemokine receptors in leukocyte trafficking. Nippon Rinsho 2005; 63:437-43. [PMID: 15861693]

47. Banisor I, Leist TP, Kalman B. Involvement of beta-chemokines in the development of inflammatory demyelination. J Neuroinflammation 2005; 2:7. [PMID: 15730561]

48. Ishizuka K, Igata-Yi R, Kimura T, Hieshima K, Kukita T, Kin Y, Misumi Y, Yamamoto M, Nomiyama H, Miura R, Takamatsu J, Katsuragi S, Miyakawa T. Expression and distribution of CC chemokine macrophage inflammatory protein-1 alpha/LD78 in the human brain. Neuroreport 1997; 8:1215-8. [PMID: 9175116]

49. Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson's disease. J Neural Transm Suppl 2006; 70:373-81. [PMID: 17017556]

50. Wilsms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R. Intrathecal synthesis of monocyte chemotaxtractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol 2003; 144:139-42. [PMID: 14597108]

51. Chan CC, Ross RJ, Shen D, Ding X, Majumdar Z, Bojanowski CM, Zhou M, Salem N Jr, Bonner R, Tuo J. Ccl2/Cx3cr1 deficient mice: an animal model for age-related macular degeneration. Ophthalmic Res 2008; 40:124-8. [PMID: 18421225]

52. Penn JS, Tolman BL, Thum LA, Koutz CA. Effect of light history on the rat retina: timecourse of morphological adaptation and readaptation. Neurochem Res 1992; 17:91-9. [PMID: 1538829]

53. Liu C, Peng M, Laities AM, Wen R. Preconditioning with bright light evokes a protective response against light damage in the rat retina. J Neurosci 1998; 18:1337-44. [PMID: 9454843]

54. Zhu Y, Valter K, Stone J. Environmental Damage to the Retina and Preconditioning: Contrasting Effects of Light and Hypoxic Stress. Invest Ophthalmol Vis Sci. 2010 [PMID: 20393118]

55. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Remé CE. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 2002; 8:718-24. [PMID: 12068288]

56. Faktorovich EG, Steinberg RH, Yasumura D, Matthews MT, LaVail MM. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 1990; 347:83-6. [PMID: 2168521]

57. Valter K, Bisti S, Gargini C, Di Loreto S, Maccarone R, Cervetto L, Stone J. Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section. Invest Ophthalmol Vis Sci 2005; 46:1748-54. [PMID: 15851578]

58. O'Driscoll C, O'Connor J, O'Brien CJ, Cotter TG. Basic fibroblast growth factor-induced protection from light damage in the mouse retina in vivo. J Neurochem 2008; 105:524-36. [PMID: 18088352]

59. Bürgi S, Samardzija M, Grimm C. Endogenous leukemia inhibitory factor protects photoreceptor cells against light-induced degeneration. Mol Vis 2009; 15:1631-7. [PMID: 19693290]

60. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2005; 280:4761-71. [PMID: 15557336]

61. Tanito M, Kaidzu S, Anderson RE. Delayed loss of cone and remaining rod photoreceptor cells due to impairment of choroidal circulation after acute light exposure in rats. Invest Ophthalmol Vis Sci 2007; 48:1864-72. [PMID: 17389522]