Second Transmembrane Helix (M2) and Long Range Coupling in Ca\(^{2+}\)-ATPase*

Received for publication, May 27, 2014, and in revised form, September 19, 2014. Published, JBC Papers in Press, September 22, 2014. DOI 10.1074/jbc.M114.584086

Takashi Daiho\(^1\), Kazuo Yamasaki, Stefania Danko, and Hiroshi Suzuki

From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan

Background: The catalytic A domain of Ca\(^{2+}\)-ATPase moves substantially and connects to distant Ca\(^{2+}\) sites through transmembrane helices M1 and M2.

Results: Systematic mutation along M2 profoundly and differentially affects cytoplasmic and luminal gating and catalysis.

Conclusion: M2 plays region- and catalytic step-specific roles in Ca\(^{2+}\) transport.

Significance: M2 is a conduit for coupling A domain movements to transport ion gating.

The actuator (A) domain of sarco(endo)plasmic reticulum Ca\(^{2+}\)-ATPase not only plays a catalytic role but also undergoes large rotational movements that influence the distant transport sites through connections with transmembrane helices M1 and M2. Here we explore the importance of long helix M2 and its junction with the A domain by disrupting the helix structure and elongating with insertions of five glycine residues. Insertions into the membrane region of M2 and the top junctional segment impair Ca\(^{2+}\) transport despite reasonable ATPase activity, indicating that they are uncoupled. These mutants fail to occlude Ca\(^{2+}\). Those at the top segment also exhibited accelerated phosphoenzyme isomerization E1P → E2P. Insertions into the middle of M2 markedly accelerate E2P hydrolysis and cause strong resistance to inhibition by luminal Ca\(^{2+}\). Insertions along almost the entire M2 region inhibit the dephosphorylated enzyme transition E1 → E1. The results pinpoint which parts of M2 control cytoplasm gating and which are critical for luminal gating at each stage in the transport cycle and suggest that proper gate function requires appropriate interactions, tension, and/or rigidity in the M2 region at appropriate times for coupling with A domain movements and catalysis.

Sarco(endo)plasmic reticulum Ca\(^{2+}\)-ATPase (SERCA1a)\(^2\), a representative member of the P-type ion transporting ATPases, catalyzes Ca\(^{2+}\) transport coupled with ATP hydrolysis (Fig. 1A) (for recent reviews, see Refs. 1–3). The enzyme is activated by the binding of two cytoplasmic Ca\(^{2+}\) ions at the cytoplasmic-facing high affinity transport sites (E2 to E1Ca\(_{2}\) in Fig. 1) and autophosphorylated at Asp\(^{351}\) with MgATP to form an ADP-sensitive phosphoenzyme (E1P), which reacts with ADP to regenerate ATP in the reverse reaction. Upon E1P formation, the two bound Ca\(^{2+}\) are occluded in the transport sites (E1PCa\(_{2}\)). The subsequent isomeric transition to the ADP-insensitive E2P form results in rearrangements of the Ca\(^{2+}\) binding sites to deocclude Ca\(^{2+}\), open the release path, and reduce the affinity, thus releasing Ca\(^{2+}\) into the lumen. Finally, the Asp\(^{351}\)-acylphosphate in E2P is hydrolyzed to form a Ca\(^{2+}\)-unbound inactive E2 state. During the hydrolysis, the Ca\(^{2+}\) release path is closed, thereby preventing possible luminal Ca\(^{2+}\) access to the transport sites and Ca\(^{2+}\) leakage.

In the transport cycle, the three cytoplasmic domains N, P, and A undergo large movements and change their organizational state, a repositioning that is coupled to rearrangements in transmembrane helices and thereby changes in the transport sites (1–15). Most remarkable is the motion of the A domain, which functions in cytoplasmic and luminal gating to regulate Ca\(^{2+}\) binding and release as well as the E2P hydrolysis. The critical importance of the M1/M2 segment, which forms a V-shaped rigid body connected with the A domain, for luminal gating is nicely demonstrated by the crystal structures of catalytic intermediates with bound substrate analogs (9, 11). The long helix M2 connects directly with the A domain at their junction (A/M2-junction) and moves largely together with the A domain and also changes its secondary structure, unwinding/rewinding with consequent length changes, during the Ca\(^{2+}\) transport cycle (Fig. 1A). Notably, a long helix structure of M2 and the A domain motions are common features in P-type ion-transporting ATPases (16–20). With the Ca\(^{2+}\)-ATPase, we previously demonstrated (21, 22) that Tyr\(^{122}\) and Leu\(^{119}\) at the A/M2-junction and the top part of M2 (M2top) form a hydrophobic interaction network, which includes a Tyr\(^{122}\)-hydrophobic cluster (an interaction with the P domain (Val\(^{706}/\)Val\(^{726}\)), with the loop connecting the A domain and M3 (A/M3-linker, Ile\(^{232}\)), and with the A domain (Ile\(^{179}/\)Leu\(^{180}\)) in E2P) and that this formation is critical for stabilizing E2P structure with the luminal gate open and the potential for hydrolytic activity at the catalytic site. However, the importance of other M2 regions as well as of the long M2 helix structure itself has not yet been fully explored.
In this study, we focus on each region of the long helix M2: transmembrane M2m, cytoplasmic M2c, M2top, and A/M2-junction (Fig. 1B). We explored their roles and the functional significance of the changes in secondary structure and length for the coupling of the different conformational steps that are required to efficiently convert the chemical energy of ATP hydrolysis into the changes in accessibility, orientation, and affinity of the Ca\(^{2+}\) binding transport sites.

In extensive preliminary experiments, we first introduced a series of mutations at various positions throughout: insertions of 1–5 glycine residues, deletions of 1–4 successive residues, glycine substitutions of 2 or 3 successive residues, and some specific substitutions. In detailed kinetic analyses, we found that results were most clear with the insertions of five glycine residues (5Gis), which disrupt the helix structure and elongates, showing profound region-specific and catalytic step-specific effects. Therefore, we present here the results obtained for the 5Gi insertions. Our results demonstrate that different parts of the A/M2 link play a critical role in synchronizing gating of the two Ca\(^{2+}\) at the transport sites on both sides of the membrane, and each is therefore part of the mechanism for coupling catalytic and transport site structural events. M2 and its connection with the A domain have a role distinct from that of the A/M1´-linker loop (23–25), although both are needed to coordinate coupling.

EXPERIMENTAL PROCEDURES

Mutagenesis and Expression—The pMT2 expression vector (26) carrying rabbit SERCA1a cDNA with a desired mutation was constructed as described previously (24). Transfection of pMT2 DNA into COS-1 cells and preparation of microsomes from the cells were performed as described (27). The amount of expressed SERCA1a was quantified by a sandwich enzyme-linked immunosorbent assay (28).

Ca\(^{2+}\)-ATPase Activity and Ca\(^{2+}\) Transport Activity—Activities of expressed SERCA1a were obtained essentially as described previously (29). The rate of ATP hydrolysis was determined at 25 °C in a mixture containing 1–5 μg of microsomal protein, 0.1 mM [γ\(^{32}\)P]ATP, 0.1 M KCl, 7 mM MgCl\(_2\), 0.1 mM CaCl\(_2\), 5 mM potassium oxalate, and 50 mM MOPS/Tris (pH 7.0). The Ca\(^{2+}\)-ATPase activity of expressed SERCA1a was obtained by subtracting the ATPase activity determined in the presence of 1 μM thapsigargin (TG), a specific inhibitor of SERCA, with conditions otherwise as above. The rate of Ca\(^{2+}\) transport was determined with \(^{45}\)Ca\(^{2+}\) and nonradioactive ATP, otherwise as above. The Ca\(^{2+}\) transport activity of expressed SERCA1a was obtained by subtracting the activity determined in the presence of 1 μM TG, with conditions otherwise as above.

Formation and Hydrolysis of EP—Phosphorylation of SERCA1a in microsomes with [γ\(^{32}\)P]ATP or \(^{32}\)P, and dephos-
Phosphorylation of 32P-labeled SERCA1a were performed under conditions described in the legends to Figs. 4–9. The reaction was quenched with ice-cold trichloroacetic acid containing Pi.

Precipitated proteins were separated by 5% SDS-PAGE at pH 6.0 according to Weber and Osborn (30). The radioactivity associated with the separated Ca$^{2+}$-ATPase was quantified by digital autoradiography as described (31). The amount of EP in expressed SERCA1a was obtained by subtracting the background radioactivity determined in the presence of 1 μM TG, with conditions otherwise as above.

Ca$^{2+}$ Occlusion in EP—Microsomes were phosphorylated for 1 min at 0 °C in a mixture containing 1–5 μg of microsomal protein, 5 μM ATP, 0.1 M KCl, 7 mM MgCl$_2$, 10 μM 45CaCl$_2$, 1 μM A23187, and 50 mM MOPS/Tris (pH 7.0) and immediately filtered through a 0.45-μm nitrocellulose membrane filter (Milipore). The filter was washed extensively with a washing solution (1 mM EGTA, 0.1 M KCl, 7 mM MgCl$_2$, and 20 mM MOPS/Tris (pH 7.0)), and 45Ca$^{2+}$ remaining on the filter was quantified as described (24). The amount of Ca$^{2+}$ occluded at the transport sites of EP in the expressed SERCA1a was obtained by subtracting the amount of nonspecific Ca$^{2+}$-binding determined in the presence of 1 μM TG, with conditions otherwise as above. The amount of EP formed was determined with nonradioactive Ca$^{2+}$ and $[^{32}$P]ATP under otherwise the same conditions as above by membrane filtration, and the radioactivity remaining on the filter was quantified.

FIGURE 2. Expression levels. The expression levels of wild-type and 5Gi mutant SERCA1a in the microsomes prepared from COS-1 cells were determined and shown as values relative to the total amount of protein in the microsomes. Statistical significance compared with the wild type is shown as follows: *, $p < 0.05$; ‡, $p < 0.01$. Error bars, S.D.

FIGURE 3. Ca$^{2+}$-ATPase and oxalate-dependent Ca$^{2+}$ transport activities. A, the specific activities of the expressed SERCA1a 5Gi mutants were determined and shown as values relative to the respective wild-type activities (ATP hydrolysis, 0.594 ± 0.028 mol of P/min/mg of SERCA1a protein ($n = 5$); oxalate-dependent Ca$^{2+}$ transport, 0.116 ± 0.006 mol of Ca$^{2+}$/min/mg SERCA1a protein ($n = 5$), very similar to the values obtained by our group and other groups under optimum conditions with the microsomes prepared from the COS cells (e.g. see Refs. 29, 47–49)). Typical time courses of P liberation and Ca$^{2+}$ accumulation in the wild type and mutant 5Gi-91/92 are shown in the inset. B, the coupling ratio (i.e. Ca$^{2+}$ transport activity per Ca$^{2+}$-ATPase activity (Ca$^{2+}$/ATP)), is shown as a percentage of the wild-type ratio. In A and B, statistical significance compared with the respective wild-type value is shown; *, $p < 0.05$; ‡, $p < 0.01$. C, the mutational effects of residues in B are visualized with α-carbon coloring on M2; green, Ca$^{2+}$/ATP higher than 80% of the wild type (coupled transport); yellow, 80 to 60% (slightly uncoupled); red, less than 60% (severely uncoupled). Error bars, S.D.
The expression level of wild-type SERCA1a in the microsomes is 2% of total microsomal protein. Those of the 5Gi mutants are reduced but still high enough to perform all functional analyses.

We introduced 5Gi mutations and performed functional analyses. We first determined the expression levels of the wild type and mutants through the transport cycle. In Figs. 4–7, we assessed possible effects of 5Gi mutations on the overall transport cycle. Fig. 4 shows the specific Ca\(^{2+}\) transport activities of SERCA1a mutants and wild type at 10 µM Ca\(^{2+}\) in the presence of 5 mM oxalate.

RESULTS

Protein Expression Level—For understanding possible structural roles of each of the M2 regions and the functional significance of its helix structure and changes during the transport cycle (unwinding/elongation) (Fig. 1), we introduced 5Gi insertions in M2 and performed functional analyses. We first determined the expression levels of the wild type and mutants in the microsomes prepared from COS-1 cells (Fig. 2). The expression level of wild-type SERCA1a in the microsomes is ~2% of total microsomal protein. Those of the 5Gi mutants are comparable, although a few show a level that is somewhat reduced but still high enough to perform all functional analyses.

ATP Hydrolysis, Ca\(^{2+}\) Transport, and Their Coupling—First, we explored possible effects of 5Gi mutations on the overall transport cycle. Fig. 3A shows the specific Ca\(^{2+}\)-ATPase and oxalate-dependent Ca\(^{2+}\) transport activities of SERCA1a mutants and wild type at 10 µM Ca\(^{2+}\) in the presence of 5 mM oxalate. Here, the activities were determined during the linear part of P\(_1\) liberation and Ca\(^{2+}\) transport (inset) and defined as the fraction that is sensitive to inhibition by 1 µM TG, a highly specific and subnanomolar affinity SERCA inhibitor (34). We first confirmed that the mutants all retain TG sensitivity by observing that TG (1 µM) completely inhibits EP formation from [γ\(^{-32}\)P]ATP in 10 µM Ca\(^{2+}\), conditions essentially the same as the activity measurements. We found that TG reduces the EP value in all cases to a background radioactivity level as in the wild type (i.e. less than 1% of the maximum EP level). The background radioactivity level is actually the same as that obtained in the absence of Ca\(^{2+}\) without TG.

Most insertions reduce both activities (Fig. 3A). Importantly, some mutations at specific regions decrease Ca\(^{2+}\) transport/ATPase activity ratios (Ca\(^{2+}\)/ATP, Fig. 3B). The insertions in M2m and those in the A/M2-junction cause severe uncoupling (i.e. almost no Ca\(^{2+}\) transport despite fair ATP hydrolysis). This contrasts with mutations at M2c, which result in normal coupling. At M2top (aa 116–119), uncoupling increases with proximity of the 5Gi insertions to the A/M2-junction.

EP Formation from ATP and E1P → E2P Isomerization—We then analyzed each of the steps and intermediates in the Ca\(^{2+}\) transport cycle. In Figs. 4–7, we assessed possible effects of 5Gi
mutations on the properties of the phosphorylated intermediates. E1P (occludes Ca\(^{2+}\) at the transport sites) and E2P (releases Ca\(^{2+}\) into the lumen). We first determined in Fig. 4 the total amount of EP (EP\(_{\text{total}}\), sum of E1P and E2P) and the E2P fraction at steady state. The analysis was made in the presence of K\(^{+}\), which strongly accelerates hydrolysis of E2P and therefore suppresses its accumulation in the wild type (35). The 5Gi insertions at aa 103–115 in M2m to M2c markedly decrease EP\(_{\text{total}}\) (Fig. 4A). The decrease seems to correlate well with Ca\(^{2+}\) insensitivity of the EP hydrolysis rate in these mutants (see Fig. 7). It is also possible that a very rapid E2P hydrolysis and a very slow E2 \(\rightarrow\) E1 transition in these mutants (cf. Figs. 7 and 8) may contribute to the decrease in EP\(_{\text{total}}\).

Otherwise, 5Gi mutants in M2c are largely wild-type-like; E2P accumulation, the E1P to E2P isomerization rate (Figs. 4B and 5), and coupled Ca\(^{2+}\) transport are unremarkable. At M2m, E2P accumulation is considerably higher in some 5Gi mutants (5Gi-91/92, 5Gi-92/93, 5Gi-97/98, and 5Gi-101/102 to 5Gi-104/105) (Fig. 4B); EP isomerization is slightly faster than in the wild type (Fig. 5); and coupling in Ca\(^{2+}\) transport is substantially reduced as noted above.

At the M2top and A/M2-junction (aa 116–119 and 120–126), almost all EP\(_{\text{total}}\) is E2P in the 5Gi mutants despite the presence of K\(^{+}\) (Fig. 4). In these mutants, EP isomerization is markedly accelerated (Fig. 5), and E2P hydrolysis is strongly retarded (as shown in Fig. 7), consistent with the dominant E2P accumulation. Ca\(^{2+}\) transport is substantially uncoupled from ATPase activity as noted above.

Ca\(^{2+}\) Oclusion in EP—In Fig. 6, the amount of \(^{45}\)Ca\(^{2+}\) occluded in EP was determined after EP formation under otherwise the same conditions as in Fig. 4. In the wild type, approximately two Ca\(^{2+}\) ions were occluded in EP\(_{\text{total}}\) (comprising mostly E1P; Fig. 4B), in agreement with established mechanisms. 5Gi mutants at the luminal end of M2m (5Gi-87/88 and 5Gi-89/90) and those at the M2c region (aa 106–115) occluded approximately two Ca\(^{2+}\) in E1P (cf. Fig. 4B), which fits with their coupled Ca\(^{2+}\) transport although turnover is severely inhibited.

In contrast, in 5Gi mutants at M2m aa 91–105, all of which show severe uncoupling (cf. Fig. 3B), no Ca\(^{2+}\) is occluded despite reasonable E1P accumulation. Bound Ca\(^{2+}\) must escape from the E1P state, probably to the cytoplasmic side, to account...
for the uncoupling. For 5Gi mutants at M2top to the A/M2-junction region (aa 116–126), we also did not observe Ca\(^{2+}\)-occlusion, but in this case, it is rather due to the dominant E\(_{2P}\) accumulation and very rapid E\(_{P}\) isomerization (Figs. 4 and 5). Nevertheless, in the uncoupled mutants, especially at the A/M2-junction, the Ca\(^{2+}\)-occlusion must escape from E\(_{1P}\) or during E\(_{P}\) isomerization to the cytoplasmic side, showing the critical importance of this junctional region to keep the gate closed. The increased severity of uncoupling as the 5Gi insertions approach the A/M2-junction emphasizes its importance in coupling. In summary, 5Gi insertions in the central section of M2 have little effect on cytoplasmic gating, whereas those on either side block gate closure, although mutations at M2top (i.e. at the border region between M2c and A/M2-junction) exhibit mixed properties.

E\(_{2P}\) Hydrolysis—Then we assessed possible effects of 5Gi mutations on the E\(_{2P}\) hydrolysis rate and luminal Ca\(^{2+}\)-induced back-inhibition of hydrolysis that reflect luminal gate closure during hydrolysis. The closure prevents luminal Ca\(^{2+}\) access to the transport sites and leakage. Here we determined the E\(_{2P}\) hydrolysis rate directly by first phosphorylating the enzyme with \(^{32}\)Pi in the absence of Ca\(^{2+}\) and K\(^{+}\) and the presence of 35% (v/v) Me\(_2\)SO, which strongly favors E\(_{2P}\) formation in the reverse reaction (36), and then diluting the phosphorylated protein with a large volume of nonradioactive Pi and K\(^{+}\) without Ca\(^{2+}\) (open bars in Fig. 7). In regions M2m (aa 87–102), M2top (aa 116–119), and the A/M2-junction (aa 120–126), the 5Gi insertions strongly retard E\(_{2P}\) hydrolysis. In contrast, at the top of M2m (aa 103–105) and the entire M2c region (aa 106–115), the insertions stimulate hydrolysis 3–10-fold. Importantly, those mutants showing marked acceleration of E\(_{2P}\) hydrolysis are insensitive to luminal Ca\(^{2+}\)-induced back-inhibition. Here, the E\(_{2P}\) hydrolysis rate was determined in the presence of 3 (gray bars) or 2 mM Ca\(^{2+}\) and ionophore A23187. In the wild type, E\(_{2P}\) hydrolysis is completely blocked by 3 mM Ca\(^{2+}\) due to Ca\(^{2+}\) binding to the open luminal transport sites (open luminal gate) in E\(_{2P}\), in agreement with previous findings. Thus, accessibility to the Ca\(^{2+}\) sites from the luminal side in E\(_{2P}\), reflecting open gate status, can be assessed by the back-inhibition (22, 24, 37–42). All of the mutants with accelerated E\(_{2P}\) hydrolysis are resistant against inhibition by Ca\(^{2+}\) even at 20 mM. The luminal gate is tightly closed, preventing access of Ca\(^{2+}\) to its binding site, or Ca\(^{2+}\) binding is possibly no longer coupled to a large change in the rate of hydrolysis. The results, either way, indicate the importance of the M2c region for coupling catalysis and luminal gate closure during E\(_{2P}\) hydrolysis. Notable also, 5Gi mutants at aa 95–101 with retarded hydrolysis exhibit partial resistance to inhibition by luminal Ca\(^{2+}\) although less than those at aa 103–115.

E\(_{2}\) → E\(_{1}\) Transition—After E\(_{2P}\) hydrolysis, the enzyme in the inactive E\(_{2}\) state is reactivated for the next transport cycle by two Ca\(^{2+}\)-binding from the cytoplasmic side to the high affinity transport sites forming E\(_{1}\)Ca\(_{2}\). In this activation, the E\(_{2}\) state is
isomerized first to a transient E1 state (ready to accept Ca\(^{2+}\)) with an open cytoplasmic gate and a high Ca\(^{2+}\) affinity (E2 → E1 transition; Fig. 1). Here we measured possible effects of 5Gi mutations on the transition itself (Fig. 8) as well as the affinity of the Ca\(^{2+}\) binding sites (Fig. 9).

The rate of the transition can be quantified by measuring the rate of phosphoenzyme formation following the addition of Ca\(^{2+}\) plus ATP to Ca\(^{2+}\)-deprived Ca\(^{2+}\)-ATPase. The assay takes advantage of the fact that subsequent steps (Ca\(^{2+}\) binding, ATP binding, and phosphorylation) are relatively fast. The transition is pH-sensitive, and we have found that pH 7.0 is ideal for studying the effect of mutations because, even in wild-type, at lower pH, the rate is rather slow, and at higher values, it approaches that of the subsequent steps, notably the rate of hydrolysis of ATP. Apparent K\(_A\) values increase somewhat (up to 5-fold) (Fig. 9) yet still remain in the high affinity (1–1.5 \(\mu M\)) range. The Hill coefficients hover around the usual 2. Evidently, M2 has little to do with cytoplasmic Ca\(^{2+}\) binding itself, consistent with the fact that the Ca\(^{2+}\) binding sites consist of M4, M5, M6, and M8 (Fig. 1).

DISCUSSION

We find that almost the entire M2 section plays a crucial role in coupling movements of the A domain and catalysis with gating at the transport sites. Although 5Gi insertions in border regions of the M2 sections mostly exhibit mixed kinetic properties, in general, two main regions can be distinguished: namely that in the middle (M2c), where the long M2 helix breaks during E2P hydrolysis, and that on either side (M2m, M2top, and A/M2-junction). Our results show that the former controls luminal gating, whereas the latter controls cytoplasm gating. In addition, insertions in part of M2 (aa 94–103) have mixed kinetic effects, probably reflecting its structural role in the M1/M2 V-shaped body and involvement in gating on both sides of the membrane with long range effects on the catalytic
Second Transmembrane Helix and Coupling in Ca\(^{2+}\)-ATPase

FIGURE 8. EP formation from E2 and 1Ca\(^{2+}\) states. A, microsomes expressing wild type or mutant were preincubated for 20 min at 25 °C in 50 μl of a mixture containing 1–5 μg of microsomal protein, 1 μM A23187, 0.1 mM KCl, 7 mM MgCl\(_2\), 50 mM MOPS/Tris (pH 7.0), and 1 mM EGTA with and without 1.2 mM CaCl\(_2\) (to form the Ca\(^{2+}\)-bound (open bar) and unbound (closed bar) states, respectively). After cooling, an equal volume of a phosphorylation mixture containing 10 μM \(^{32}\)P-ATP and 1 mM EGTA with 1.2 or 2.4 mM CaCl\(_2\) (to give 0.2 mM Ca\(^{2+}\) -bound and Ca\(^{2+}\)-unbound states) (otherwise as above) was added at 0 °C, and the EP formation time course was followed. In the inset, typical examples with the wild type and mutant 5Gi-119/120 are shown. Solid lines show the least squares fit to a single exponential, and the rates thus determined are shown in the main panel. The Ca\(^{2+}\)-unbound state was denoted as E2 for simplicity, and the ratio of the two rates is shown in B. In A and B, statistical significance compared with the respective wild-type value is shown: *, p < 0.05; †, p < 0.01. C, the observed effects on the rate-limiting process E2 → E1 in B are visualized with α-carbon coloring: green, no effect or acceleration (ratio higher than 35%); yellow, retardation (ratio 30–15%); red, marked retardation (ratio lower than 15%). Error bars, S.D.

Cytoplasmic Gating in E2 → E1—Opening of the cytoplasmic gate takes place during the E2 → E1 transition. Our results show that 5Gi insertions along most of M2 (aa 94–119) markedly retard this transition, indicating the critical importance of the helix structure for a rapid transition. Consistently, the relevant crystal structures show that the unwound Asn111–Asn115 part of M2c in E2 is rewound in E1Mg\(^{2+}\), a change associated with the ~110° A domain rotation (14), and M2 becomes a contiguous helix in E1Mg\(^{2+}\), as in E1Ca\(^{2+}\). In the critical region aa 94–119, the lower half (aa 94–111) and the upper half (aa 111–119) change from broken and disengaged entities in E2 to making strong helix-helix contacts with M6 and M4C in E1, respectively (gray circle and yellow circle in panel b in Fig. 10A). These helix-helix interactions probably must stabilize the E1 structure, facilitating the E2 → E1 transition and opening of the cytoplasmic gate.

Cytoplasmic Gating in E1P and Its Isomerization—Once the two Ca\(^{2+}\) bind to the transport sites from the cytoplasmic side, closing of the gate to occlude the Ca\(^{2+}\) is effected by phosphorylation to E1P (9, 43, 44). Two sets of mutations, those in M2m and those in the M2top–A/M2-junction, but not in the middle at M2c, uncouple the pump and fail to occlude Ca\(^{2+}\), indicating the importance of these regions in stabilizing the closed cytoplasmic gate.

The immediate gating residue is Glu\(^{309}\), and Leu\(^{65}\) in M1 fastens it down as demonstrated previously (9, 43, 44). As seen (gray circle in panel d in Fig. 10B), the region around Leu\(^{65}\) in M2m is in close contact with Leu\(^{65}\) by hydrophobic interactions producing the M1/M2 V-shaped body and also directly with Glu\(^{309}\). The disruption of the hydrophobic Leu\(^{65}\) region probably allowed greater freedom of movement of Glu\(^{309}\), thereby permitting the Ca\(^{2+}\) to escape. It is also possible that luminal gate opening is also impaired because EP isomerization and opening depends on the motion of the M1/M2 V-shaped body, which is formed by the interactions of the hydrophobic Leu\(^{65}\) region with M1 (11).

In mutants at the A/M2-junction and M2top, we did not observe Ca\(^{2+}\) occlusion because of the low level of E1P (Figs. 5 and 6), but it is evident from the lack of transport that Ca\(^{2+}\) escaped from the transport sites either in E1P or during the isomerization to E2P. A properly stabilized M2 and A domain must be critical for maintaining a closed cytoplasmic gate. Interestingly, the severe uncoupling is accompanied by acceleration of EP isomerization. It is as if freedom from coupling

Site (9, 11). The results are best interpreted with reference to Fig. 10.
rechannels the energy into a faster transition. The extensive slack caused by the 5Gi insertions evidently uncoupled and accelerated E1P → E2P. In the change, E1Ca\(^2+\)−BeF\(^3−\)−ADP → E2BeF\(^3−\), the A/M2-junction−M2top loop region does indeed seem to be strained, because, for example, the distance between Glu\(^{117}\)−αC and Glu\(^{125}\)−αC increases from 14.3 Å in E1Ca\(^2+\)−BeF\(^3−\)−ADP (PDB code 1T5T) to 15.7 or 17.3 Å in E2BeF\(^3−\) (PDB code 2ZBE or 3B9B), thus by 1.4 or 3.0 Å.

The closer the M2top mutations get to the A/M2-junction the more severe the uncoupling, suggesting that M2top stabilizes the junction and a closed Glu\(^{309}\) gate. The M2top mutations also strongly accelerate EP isomerization; therefore, in the wild type, there must be some structural restriction here. Indeed, in the crystal structure of E1P (E1Ca\(^2+\)−BeF\(^3−\)−ADP), M2top interacts with the cytoplasmic half of M4 (M4C, yellow circle in Fig. 10B), and in E2P (E2BeF\(^3−\)), it interacts with the bottom of the P domain and α-helix 7 (yellow circle in panel e in Fig. 10B).

A mechanistic scenario for the EP isomerization and gating with respect to the A/M-junction−M2top may be as follows. During the E1P → E2P isomerization, the A domain rotates and pulls on A/M2-junction−M2top, straining it to detach from M4C. The P domain/M4/M5 entity is now able to incline toward the underside of the A domain to produce new interactions with M2top (Fig. 10B). In these coupled motions, the M1/M2 V-shaped body and M4/M5 probably move coordinately, keeping the Glu\(^{309}\) gate closed. Kinetically, coupling and proper Ca\(^{2+}\) handling have an energy cost: the rate-limiting slow EP isomerization. Ca\(^{2+}\) deoclusion and release from E2PCa\(^2+\) involves further inclination of the A and P domains due to strain in the A/M1′-linker, with the A domain lodging above the P domain in E2PCa\(^2+\), and the luminal gate opens to release Ca\(^{2+}\) (24, 25). Thus, the A domain’s M2 link and A/M1′-linker have distinct functions; the former keeps the cytoplasmic gate closed, and the latter is needed for opening the luminal gate, both regions coupling A domain motions with gating.
Second Transmembrane Helix and Coupling in Ca2+-ATPase

The importance of an intact A/M2-junction–M2top interaction is further underpinned by the fact that mutations in the M2c region do not have the same deleterious effects (uncoupling with accelerated EP isomerization) because the interactions of M2top with the M4C/P-domain and of M2m (M1/M2 V-shaped body) to fix the Glu309 gate are normal in these mutants. Also, M2c does not interact strongly with other parts both in E1P and E2P and does not change structure (is not strained) during the EP isomerization. The mutations here are silent. Also, as noted above, the A domain motion driving Ca2+ into the lumen after the EP isomerization is controlled to a significant extent by the A/M1 linker, another cytoplasmic link (24, 25), and evidently not by M2c.

Luminal Gating—Opening of the luminal gate and Ca2+ release is effected during E1P → E2P, and the latter Ca2+-free state becomes susceptible to Ca2+ binding from the lumen at high Ca2+ concentrations (back-inhibition). The gate closes during E2P hydrolysis E2P → E2−P° with most of Ca2+-binding residues protonated, according to both biochemical evidence (7) and relevant crystal structures (9, 11, 12).

We find that E2P hydrolysis is markedly accelerated by 5Gi insertions at aa 103–115 in the M2c region, in sharp contrast to the marked retardation by those at adjacent regions aa 87–102 on M2m and aa 116–125 on M2top–A/M2-junction (Fig. 7). Significantly, acceleration is accompanied by the almost complete resistance against inhibition by luminal Ca2+ even up to 20 mM. Most of these mutants (aa 106–115) are well coupled in terms of Ca2+ transport/ATP hydrolysis ratios. Therefore, Ca2+ must be released to the lumen, but the binding sites are unavailable for Ca2+ rebinding from the lumen due to the rapid E2P hydrolysis and closure of the luminal gate. Alternatively, luminal Ca2+ binding is no longer coupled to a large change in the rate of hydrolysis.

The results indicate that a proper unwinding/elongation on M2c with properly controlled E2P hydrolysis may be critical for coupling the change in E2P → E2−P° at the catalytic site with the luminal gate closure. The 5Gi insertions exaggerated both coupled structural events. Physiologically, the setting of the luminal Ca2+ concentration is governed by the Ca2+-induced back-inhibition of E2P hydrolysis (22, 24, 37–42, 45). In the wild type, the regionally limited partial unwinding/elongation in M2c appears critical for the set point, but it comes with an energy cost: slow but properly controlled gate closing coupled to E2P hydrolysis.

Then, in the structural change mimicking E2P → E2−P° (Fig. 10B), a part of helical M2c, Asn111–Ala115, unwinds and extends 7 Å, which is due to strain exerted through a 25° rotation of the A domain upon water attack at the active site to effect hydrolysis (11). Thereby, the lower part of M2 moves downward 6 Å, inclines, and presses the M1/M2 V-shaped rigid body on M3 and M4 to close the luminal gate (11). In E2−P°, the interactions between M2c and the rest of the protein are rather weak, whereas those between the regions on either side and protein are helix to helix, extensive, and therefore fixed (yellow and green circles in panel g in Fig. 10B). Thus, it appears that M2 is literally pulled apart at M2c. Evidently, the 5Gi mutations in this weak region facilitate and exaggerate (possibly causing elongation of up to ~17 Å) these processes, resulting in an activation of hydrolysis and fast and tight closure of the transport sites (or uncoupling). Consistently, mutations that disrupt the strong helix to helix interactions at the bottom of M2c (aa 103–110) with the M1’ helix alongside resulted in accelerated and luminal Ca2+-resistant E2P hydrolysis.

In contrast, mutations higher up, in the M2top–A/M2-junction, impede hydrolysis and closure, probably by affecting interactions with the A and P domains and the Tyr122-hydrophobic cluster, which was previously demonstrated to be critical for proper catalytic site formation in E2P with hydrolytic ability (yellow circle in panel g in Fig. 10B) (21, 22, 46). Mutations lower down, in aa 87–102 of M2m, disrupt arrangement of the transmembrane helices and probably cause a long range effect on the A and P domain interaction and catalytic site, thus retarding E2P hydrolysis. Note that mutants at the region aa 95–101 showed some resistance against luminal Ca2+-induced back-inhibition. This region forms the M1/M2 V-shaped body, and the downward movement of M2 with inclination of the body is critical for the luminal gate closure (9, 11). The 5Gi elongation in this region probably exaggerated such motions and tightened gate closure.

The long M2 helix and probably the A domain’s motion are common structural features in P-type ion-pumping ATPases (16–20). The strategy employed here of systematically introducing 5Gi insertions along M2 to disrupt the helix and relieve strain may be helpful for exploring the role of M2 in coupling A domain movements with gating and catalysis in other P-type ATPases.

Acknowledgments—We thank Dr. David H. MacLennan (University of Toronto) for the generous gift of SERCA1a cDNA and Dr. Randall J. Kaufman (Genetics Institute, Cambridge, MA) for the generous gift of the expression vector pMT2. We are also grateful to Dr. Chikashi Toyoshima (University of Tokyo) for helpful discussions. We thank Dr. Yasuaki Saijo (Asahikawa Medical University) for assistance in statistical analysis and Dr. David B. McIntosh for reviewing and improving the manuscript.

REFERENCES

1. Toyoshima, C. (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. *Arch. Biochem. Biophys.* 476, 3–11.
2. Toyoshima, C. (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. *Biochim. Biophys. Acta* 1793, 941–946.
3. Moller, J. V., Olesen, C., Winther, A.-M. L., and Nissen, P. (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. *Q. Rev. Biophys.* 43, 501–566.
4. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. *Nature* 405, 647–655.
5. Danko, S., Yamasaki, K., Daio, T., Suzuki, H., and Toyoshima, C. (2001) Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E, P and E, ATP states: a limited proteolysis study. *FEBS Lett.* 505, 129–135.
6. Toyoshima, C., and Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. *Nature* 418, 605–611.
7. Danko, S., Yamasaki, K., Daio, T., and Suzuki, H. (2004) Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum calcium Ca2+-ATPase. *J. Biol. Chem.* 279, 14991–14998.
8. Toyoshima, C., and Mizutani, T. (2004) Crystal structure of the calcium...
Second Transmembrane Helix and Coupling in Ca\(^{2+}\)-ATPase

Toyoshima, C., Nomura, H., and Tsuda, T. (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368

Toyoshima, C., Norimatsu, Y., Iwasawa, S., Tsuda, T., and Ogawa, H. (2007) How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc. Natl. Acad. Sci. U.S.A. 104, 19831–19836

Olesen, C., Picard, M., Winther, A. M., Gyrup, C., Morth, J. P., Oxvig, C., Møller, J. V., and Nissen, P. (2004) Structural basis of ion pumping by the calcium pump. Nature 450, 1036–1042

Azuma, K., and MacLennan, D. H. (1988) Mutation of aspartic acid residues of sarcoplasmic reticulum Ca\(^{2+}\)-ATPase cause inhibition of hydrolysis of the phosphoryoenzyme intermediate formed from inorganic phosphate. FEBS Lett. 244, 54–58

Daiho, T., Suzuki, H., Yamakawa, K., and Inesi, G. (1999) Mutations of Arg\(^{415}\) in the sarcoplasmic reticulum Ca\(^{2+}\)-ATPase cause inhibition of hydrolysis of the phosphoryoenzyme intermediate formed from inorganic phosphate. Biochemistry 38, 1289–1294

Nakamura, Y. (1984) Two alternate kinetic routes for the decomposition of the phosphorylated intermediate of sarcoplasmic reticulum Ca\(^{2+}\)-ATPase following Ca\(^{2+}\)-release. J. Biol. Chem. 259, 31629–31637
in interactions between the top part of second and fourth transmembrane helices in sarcoplasmic reticulum Ca2+-ATPase. *J. Biol. Chem.* **279**, 2202–2210.

47. Lytton, J., Westlin, M., and Hanley, M. R. (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. *J. Biol. Chem.* **266**, 17067–17071.

48. Garnett, C., Sumbilla, C., Belda, F. F., Chen, L., and Inesi, G. (1996) Energy transduction and kinetic regulation by the peptide segment connecting phosphorylation and cation binding domains in transport ATPases. *Biochemistry* **35**, 11019–11025.

49. Xu, C., Prasad, A. M., Inesi, G., and Toyoshima, C. (2008) Critical role of Val-304 in conformational transitions that allow Ca2+ occlusion and phosphoenzyme turnover in the Ca2+ transport ATPase. *J. Biol. Chem.* **283**, 3297–3304.