FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2

Byunghoon Kang¹, Youngjin Lee², Jaewoo Lim¹,³, Dongeun Yong⁴, Young Ki Choi⁵,⁶, Sun Woo Yoon¹, Seungbeom Seo¹,⁷, Soojin Jang¹,³, Seong Uk Son¹,³, Taejoon Kang¹, Juyeon Jung¹,³, Kyu-Sun Lee¹, Myung Hee Kim², *, and Eun-Kyung Lim¹,³, *

¹BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

²Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

³Department of Nanobiotechnology, KIRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

⁴Department of Laboratory Medicine and Research Institute of Bacterial Resistance, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

⁵Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, 776 Isunhwan-ro, Seowon-gu, Cheongju 28644, Republic of Korea

⁶Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Gumjeong-gu, Busan 46241, Republic of Korea

Corresponding Author

Eun-Kyung Lim*
Tel: 82-42-879-8456; Fax: 82-42-879-8492; E-mail: eklim1112@kribb.re.kr

Myung Hee Kim*
Tel: 82-42-879-8219; E-mail: mhk8n@kribb.re.kr
Fig. S1. Synthetic scheme for SARS-CoV-2 detection using hACE2 mimic peptide-beacon (COVID19-PEB) [Cy3-TTTTGGGG- I EEQA KTFL DKFN HEAE DLFY QSSL ASWK-CCCCCAAAA-BHQ2].
Fig. S2. Interacting residues between human angiotensin-converting enzyme 2 (hACE2) and spike (S) protein. Residues (colored circles), salt bridge (red line), hydrogen bonds (blue lines), and hydrophobic interactions (orange dashed-lines) are illustrated in this figure. This figure was generated using the PDBsum server.[1]
Fig. S3. Western blot image of full membrane showing detection of SARS-CoV-2 S protein RBD and Bovine Serum Albumin by ACE2 mimic peptide-biotin.
Fig. S4. Fluorescence intensity according to time change after COVID19-PEB treatment to i) SARS-CoV-2 (blue), ii) S protein RBD (red), and iii) BSA (yellow) ($n = 3$).
Fig. S5. Fluorescence detection of different concentrations of variant spike (S) protein receptor-binding domain (RBD) (a: alpha variant, b: beta variant, c: gamma variant and d: delta variant) using COVID19-PEB: i) Fluorescence intensity *<0.05, **<0.005 ***<0.0005 (n = 3) and ii) relative fluorescence intensity (F_{NT} : fluorescence intensity in the absence of target protein
(nontreatment, NT)).

Anti-biotin HRP

a)
SARS-CoV-2 alpha variant S protein RBD + hACE2 mimic peptide-biotin

b)
SARS-CoV-2 beta variant S protein RBD + hACE2 mimic peptide-biotin

c)
SARS-CoV-2 gamma variant S protein RBD + hACE2 mimic peptide-biotin

d)
SARS-CoV-2 delta variant S protein RBD + hACE2 mimic peptide-biotin

e)
Bovine Serum Albumin + hACE2 mimic peptide-biotin

Fig. S6. Western blot images depicting detection of a) SARS-CoV-2 alpha variant S protein RBD, b) SARS-CoV-2 beta variant S protein RBD, c) SARS-CoV-2 gamma variant S protein RBD, d) SARS-CoV-2 delta variant S protein RBD, and e) Bovine Serum Albumin by hACE2 mimic peptide-biotin.
Number	E Ct value	RdRp Ct value	N Ct value	
1	26.87	26.76	26.42	
2	32.13	32.44	32.58	
3	35.49	37.5	36.05	
4	28.19	28.21	27.95	
5	34.68	33.74	34.45	
6	35.35	35.56	34.64	
7	35.72	34.37	36.43	
8	32.7	32.91	32.12	
9	34.64	36.26	33.57	
10	21.98	21.31	21.88	
11	29.13	29	29.11	
12	27.58	27.4	28.13	
13	32.83	32.41	31.86	
14	36.13	36.26	37.26	
15	21.27	20.73	21.73	
	16	35.01	34.03	32.86
---	----	-------	-------	-------
17	23.31	22.75	23.4	
18	22.63	22.11	23.48	
19	25.8	26.25	26.44	
20	35.22	35.75	34.73	
21	36.25	36.01	36.35	
22	32.52	33.32	31.2	
23	32.97	33.6	32.83	
24	33.76	33.61	33.54	
25	30.65	31.15	31.04	
26	38.14	38.09	37.2	
27	18.16	17.82	17.75	
28	10.79	12.27	12.9	
29	11.87	13.25	13.17	
30	31.53	32.32	31.25	

Table S1. Diagnostic result of COVID-19 patients using PCR at Yonsei University Severance Hospital. (Sample type: Positive nasopharyngeal swab specimens, N=30)
References

[1] R.A. Laskowski, J. Jablonska, L. Pravda, R.S. Varekova, J.M. Thornton, PDBsum: Structural summaries of PDB entries, Protein Sci 27 (2018) 129-134.