Difficulties of neuropsychological diagnosis of unilateral neglect in the management of patients with ischemic stroke

Abstract. The article considers the topical problem of neurology, neurobiology and cognitive psychology — the question of pathogenetic mechanisms of origin and development of unilateral neglect after a cerebral infarction. The paper analyzes the scientific literature on the neuropsychological signs of hemineglect syndrome, its causes, features, manifestations and methods of rehabilitation. The role of the laws of neuroaesthetics in the perception and reproduction of environmental information in the brain is shown. New data on the peculiarities of the influence of the laws of neuroaesthetics on the process of the unilateral neglect formation are presented. It is emphasized that the principles of neuroaesthetics in oxidative stress after vascular catastrophe of the brain create conditions for the development of the pathological circle, the manifestation of which is lack of attention and loss of ability to respond to stimuli in one half of the field of view. It is determined that the exact neuroanatomy of unilateral neglect is complex and remains the subject of future researches for further cognitive rehabilitation of patients after cerebral infarction.

Keywords: unilateral neglect; hemineglect; neuroaesthetics; stroke; review

Unilateral neglect (or hemineglect) is a neuropsychological syndrome, the feature of which is the loss of the ability to respond to contralesional stimuli, despite intact sensory or motor nerve pathways [1–4]. In other words, visuospatial neglect of the opposite side of the focus develops, as well as ignoring and not realizing the motor deficit [5].

The causes for the development of the neglect phenomenon might be: cerebral infarction, traumatic brain injury, space-occupying lesion and brain surgery [2].

The most common cause of this syndrome is a stroke in the subdominant hemisphere (right) [6]. Hemineglect in the lesion of the left hemisphere is much less common [7–9] because it is the right hemisphere that plays a key role in the processes of attention [10]. The lack of compensation for right-sided damage is explained by the fact that the left hemisphere perceives only the opposite side of space, while the right hemisphere perceives both sides [11].

It is believed that a certain concentration and distribution of neurotransmitters regulate attention. This distribution is uneven in different hemispheres of the brain. The noradrenaline mediator system produces norepinephrine and serotonin, which are especially important for the processes of excitation and scanning the environment. This system is lateralized to the right hemisphere. The part of the thalamus that connects to the right hemisphere has a higher concentration of norepinephrine than the part that connects to the left hemisphere (Fig. 1). This asymmetry can be traced in the area of the cerebral cortex. Pathological processes in the structure of the right hemisphere damage to the norepinephrine mediator system. This damage reduces sensitivity and the ability to respond quickly to new environmental stimuli [10, 12].

There are several approaches to the classification of hemineglect syndrome. The unilateral neglect can be classified as egocentric or allocentric ignoring [14]. This classification is built based on the perception of spatial landmarks [10]. For a long time, it was considered that neuroanatomically and pathogenetically these two processes are completely different [15]. However, over time, it turned out...
that these different behavioral disorders have a single pathogenetic mechanism [16].

In egocentric hemineglect, the midline is determined from the central axis of the patient’s neck, torso, and retina (spectator-oriented), whereas in allocentric hemineglect, the midline is determined from the central axis of the stimulus, regardless of its position in the environment (stimulus-oriented). In the vast majority of patients with the phenomenon of ignoring, egocentric hemineglect is observed [14, 17]. In other words, a person with the lesion of the right hemisphere becomes after a stroke, it becomes much more difficult to process information on the “non-electronic” side, of the brain as a result of perception can be a source of pleasure and relieve stress or, conversely, suppress and cause discomfort [22, 23].

If we are based on the doctrine of neuroaesthetics, then some of its laws can explain the mechanisms of development of unilateral neglect. So, one of them is the law of attraction proportionality. After a disease, infection and disease [24], so it is less attractive for the principle of bilateral symmetry, and asymmetry is associated with infection and disease [24], so it is less attractive for perception by our nervous system. Hence our innate desire to prefer something proportional and symmetrical. After a vascular catastrophe, a unilateral neurological deficit develops in the cerebral hemisphere, which provokes asymmetry of the whole body and its functions. Therefore, it is natural that the nervous system tries to alleviate stress and ignore this situation.

Under conditions of oxidative stress, in which the brain is after a stroke, it becomes much more difficult to provide the basic primary properties of attention (stability, volume, distribution, selectivity and concentration) [25]. In this case, another law of neuroaesthetics is connected with isolation of one module and distribution of attention [24]. The subconscious, which is already trying to ignore the asymmetric neurological deficit, begins
to focus on the healthy side and allocate it as the main module of perception.

The pathological circle of unilateral neglect from the standpoint of neuroaesthetics is fixed by the principle of peak displacement. In other words, the signal gains in the selected modality. As a result of redistribution and concentration of attention on one healthy side, hyperbolized perception of stimuli by sensory systems develops, and this leads to greater aesthetic pleasure than from stimuli under normal conditions. Vilayanur Ramachandran called this process of exaggerated perception a “superstimulus”.

However, there is a great deal of heterogeneity in neuroscience research on neurological correlates related to aesthetic experiences (e.g., evaluation and perception of attractive stimuli). This discrepancy is usually explained by the lack of consensus on the definition of “aesthetic experience”. Usually, trying to understand the biological and neural basis of aesthetic experience, to explain how aesthetic experiences are created in the brain, and to use our knowledge of brain mechanisms to inform our understanding of these experiences is certainly a necessary step. In this sense, the contribution of neuroaesthetics is crucial in shaping the understanding of aesthetic experience. However, the precondition for this is that neuroaesthetics becomes more critical and contextualized [26, 27].

Summarizing all the above, unilateral neglect (or hemineglect) is a complex heterogeneous neuropsychological syndrome, the final pathogenetic mechanism of which is not fully understood and has a large basis for further researches. Using some laws and principles of the modern discipline of neuroaesthetics, we can use neurobiological and psychological processes of the brain’s perception of beauty to try to explain the “interest” of consciousness in unilateral neglect.

The laws of peak displacement (or “superstimulus”), isolation, symmetry of neuroaesthetics make it possible to understand the biological and neural basis of the brain mechanisms of hemineglect syndrome, as well as their role in reducing shock to the patient’s mind under oxidative stress.

Further researches contextualized in this direction will significantly increase the effectiveness of rehabilitation of patients who have suffered from a brain infarction, the level of their social and household adaptation and, accordingly, the quality of life.

Conflict of interest. The authors declare the absence of a conflict of interest in the preparation of this article.

References

1. Jordan E. Pierce, Roberta Ronchi, Marine Thomasson, Irene Rossi, Carlotta Casati, Arnaud Say, Giuseppe Vallar, Patrik Vuilleumier. A novel computerized assessment of manual spatial exploration in unilateral spatial neglect. Neuropsychological Rehabilitation. 2021. doi: 10.1080/09602011.2021.1875850.

2. DeDios-Stern S., Durkin N.M., Soble J.R. Case of right hemispatial neglect and transcortical sensory aphasia following left occipitotemporalparietal glioblastoma resection. 2019. doi: 10.1080/23279095.2019.1590357.

3. Rossi S. Action and rehabilitation in hemispatial neglect. 2019. http://theses.gla.ac.uk/820.

4. Luuven M., Bartolomeo P. Attention and spatial cognition: neural and anatomical substrates of visual neglect. Ann. Phys. Rehabil. Med. 2017, 60(3). 124-129. doi: 10.1016/j.rehab.2016.01.004.

5. Іох Ю., Дуло О. Особливості порушення функцій в осіб із правопівкульним ішемічним інсультом, ускладненим неглектом із позиції фізичного терапевта. Молодіжний науковий вісім: Схід-ноєвропейський національний університет імені Лесі Українки. 2018. 32. 78-85.

6. Kerkhoff G., Rode G., Clarke S. Treating neuromuscular deficits and spatial neglect. In: Platz T. (eds) Clinical pathways in stroke rehabilitation. Cham: Springer; 2021. doi: 10.1007/978-3-030-58505-1_11.

7. Heilman K.M., Abell T.V.D. Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology. 1980. 30. 327-330. doi: 10.1212/WNL.30.3.327.

8. Галкин А.С. и др. Возможности повышения эффективности реабилитации пациентов после инсульта с синдромом игнонарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014. 10. 30-34.

9. Ковальчук В.В., Шварцман Г.И., Гусев А.О. Причины невозвратности и способы устранения синдромов неглекции и “отталкивания” у пациентов после инсульта — факторов, препятствующих проведению адекватной реабилитации. Медицина-социальная экспертиза и реабилитация. 2013. 2. 50-53.

10. Laksmidewi Anak Agung Ayu Putri, Patu Lohita Rahmawati. Spatial frames of visual hemineglect in patient with high-grade glioma: a case report and review of literature. International Journal of Medical Reviews and Case Reports. 2020. 4(11). 95-99. doi: 10.5455/IJMRNCR.high-grade-glioma-visual.

11. Насонова Т.І. та ін. Синдром неглекту після ішемічного інсульта: діагностика, можливості лікування. Український вісник психоневрології. 2019. 27, 2(99). 8-14.

12. Bowen A., McKenna K., Tallis R.C. Reasons for variability in the reported rate of occurrence of unilateral spatial neglect after stroke. Stroke. 1999. 30. 1196-1202. doi: 10.1161/01.str.30.6.1196.

13. Ding Y.S. Progress in PET imaging of the norepinephrine transporter system. In: Dierckx R.A., Otte A., de Vries E.F., van Waarde A., Lamertmama A.A. (eds). PET and SPECT of neurobiological systems. Cham: Springer; 2021. doi: 10.1007/978-3-030-53176-8_20.

14. Ishii D., Osaki H., Yozu A., Ishibashi K., Kawamura K., Yamamoto S., Miyata M., Kohno Y. Ipsilesional spatial bias after a focal cerebral infarction in the medial agranular cortex: a mouse model of unilateral spatial neglect. Behav. Brain Res. 2018. 32. 78-85.

15. Karnath H., Ferber S., Kimmelbach M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature. 2001. 411. 950-3. doi: 10.1038/35082075.

16. Rorden C. et al. Allocentric neglect strongly associated with egocentric neglect. Neuropsychologia. 2012. 50(6). 1151-1157. doi: 10.1016/j.neuropsychologia.2012.03.031.

17. Kortte Kathleen, Hillis Argye. Recent advances in the understanding of neglect and anosognosia following right hemisphere stroke. Current Neurology and Neuroscience Reports. 2009. 9. 459-65. doi: 10.1007/s11910-009-0068-8.
Складнощі нейропсихологічної діагностики синдрому неглекту в рамках менеджменту пацієнтів з ішемічним інсультом

Резюме. У статті розглядається актуальна проблема неврології, нейробіології і когнітивної психології — питання патогенетичних механізмів виникнення та розвитку одно стороннього неглекту після інфаркту мозку. Проаналізовано наукову літературу щодо нейропсихологічних ознак синдрому гемінеглекту, його причин, особливостей, провів і методів реабілітації. Показано роль законів нейроестетики у сприйнятті і відтворенні інформації про довкілля в мозку. Наведені нові дані про особливості впливу законів нейроестетики на процес формування одностороннього неглекту. Підкреслюється, що принцепи нейроестетики при окиснювальному стресі після судинної катастрофи мозку створюють умови для розвитку па тологічного кола, проявом якого є відсутність уваги та втрата здатності реагувати на подразники в одній половині поля зору. Визначено, що точна нейроанатомія одностороннього неглекту є складною і залишається предметом майбутніх досліджень для подальшої когнітивної реабілітації пацієнтів після інфаркту мозку. Ключові слова: односторонній неглект; гемінеглект; нейроестетика; інсульт; огляд.