The vascular flora of the Sutai Khairkhan Mountain Nature Reserve, Mongolia

Vanjil Gundegmaa1, Tsogtbayar Dashmaa1, Chuntai Bilegtmandakh2, Zagarjav Tsegmed3, Joscelyn Norris4, Batlai Oyuntsetseg5, Andrey S. Erst6 & Shukherdorj Baasanmunkh7*

ABSTRACT
In this study we examined the floristic diversity of the Sutai Khairkhan Mountain Nature Reserve in western Mongolia’s Altai Mountain range. This nature reserve area was established in 2019 and compared to nearby reserves, its flora is relatively understudied. From field surveys in 2014, 2019, and 2020, we collected about 400 herbarium specimens from various habitats and different altitudes in the reserve. We identified total of 317 taxa including 10 subspecies and three varieties of vascular plants belonging to 157 genera and 45 families. Among these, five species are nationally endemic, 27 species are endemic to Altai Mountains, and 37 species are threatened, including two critically endangered, 11 endangered, 16 vulnerable, and eight near threatened. In addition, we rediscovered Microula tibetica var. pratensis (Maxim.) W.T. Wang after 40 years. This first complete checklist of the SKMNR flora amplifies the value of protecting the diverse and threatened plants in the reserve and creates a baseline to assess future population changes.

Keywords: Microula tibetica, vascular plants, protected area, west Mongolia, Altai endemic.

1 Department of Biology, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, Mongolia
2 Department of Geography and Geology, Khovd University, Khovd, Mongolia
3 Laboratory of Flora and Plant Systematics, Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
4 Reubenstein School of Environment and Natural Resources, University of Vermont, Vermont, United States
5 Department of Biology, School of Arts and Science, National University of Mongolia, Ulaanbaatar, Mongolia
6 Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia
7 Department of Biology and Chemistry, Changwon National University, Changwon, South Korea

* corresponding author

Manuscript received: 28.08.2021
Review completed: 05.01.2022
Accepted for publication: 26.01.2022
Published online: 28.01.2022

The Altai Mountains, also known as the Altai Mountain Country (AMC), are located in the western part of the Altai-Sayan Ecoregion, and lies at the junction of four countries: Russia, Kazakhstan, China, and Mongolia (Kamelin 2005, Vaganov et al. 2019). One of the biggest parts of the AMC is located in western Mongolia which includes the Khovd (Kho), Mongolian Altai (MA), and Dzugarian Gobi (DzG) phytogeographical regions according to Grubov (1982). West Mongolia is a center of high vascular plant diversity comprises approximately 2000 taxa, which contains large number of endemic and threatened plant species compared to other parts of Mongolia (Pyak et al. 2008, Onolova et al. 2010, Oyuntsetseg et al. 2017, Baasanmunkh et al. 2019a, b, 2021a). Several high elevation mountains in the Mongolian part of the Altai Mountain range include Munkhkhairkhan, Jargalan, Bumbat, Baatar, Sutai Khairkhan, and Tsambagarav. The Sutai Khairkhan Mountain Nature Reserve (SKMNR) belongs to the Mongolian Altai (MA) phytogeographical region in western Mongolia (Grubov 1982).
In the past, the flora of western Mongolia was quite well studied by botanists mainly from Mongolia, Russia and Germany. A number of researchers have given much attention to the new species and new records of the vascular plants from western Mongolia (Zhao et al. 2018, Gundegmaa & Munkh-Erdene 2018, Nobis et al. 2019, Pyak & Pyak 2018, Pyak et al. 2020, Ovchinnikova 2020, Baasanmunkh et al. 2020, Shiga et al. 2020). Additionally, in western Mongolia, a few studies on floristic diversity have recently been conducted in the protected areas such as Strictly Protected Areas (SPA), National Parks (NP) as well as Nature Reserves (NR). For example, Oyuntsetseg et al. (2017) contributed a floristic survey on the Munkhkhairkhan NP and Baasanmunkh et al (2021a) provided an annotated checklist of vascular plants in the Dzungarian Gobi region including the Great Gobi B Strictly Protected Area (SPA) and part of Bulgan Ikh Ongog NP. Despite this research, several nature reserve areas, particularly in western Mongolia, such as the SKMNR, are still underexplored, particularly in regards to documenting their floristic diversity, endemism, and threatened vascular plants. The SKMNR covers a 172713.9-hectare area and was established in 2019 under the Ministry of Environment, Green Development and Tourism (https://eic.mn/spa/). Moreover, the Sutai Khairkhan Mountain is one of the sacred mountains in Mongolia, according to UNESCO (https://whc.unesco.org/en/tentativelists/6068/).

To date, approximately 3200 species of vascular plants have been recognized in Mongolia (Urgamal et al. 2014, 2019a, Shiga et al. 2020, Baasanmunkh et al. 2021b, Yano et al. 2021). In addition, several new species and new records were described from western Mongolia (Zhao et al. 2018, Nobis et al. 2019, Pyak et al. 2019, Ovchinnikova 2020). More recently, Saussurea odorata E. Pjak was described as a new species from the Mongolian Altai (MA) region (Pyak et al. 2020) and critically endangered Saussurea bogdaiensis Yu J.Wang & J.Chen was also newly discovered in Mongolia in the Dzungarian Gobi region (Baasanmunkh et al. 2020). Additionally, nine aquatic plants were recently found at the Khar-Urs Lake NP in western Mongolia (Shiga et al. 2020). As shown by these recent publications, a number of new plant species are still being found and many unknown species remain to be discovered in Mongolia.

Based on our three years of field observations, this paper provides the first full checklist of floristic diversity of the Sutai Khairkhan Mountain NR area and reviews the conservation status of rare species.

MATERIAL AND METHODS

The Sutai Khairkhan Mountain Nature Reserve (46°40′–46°34′N 99°26′–93°53′E) is located in the Khovd and Gobi-Altai provinces of Mongolia and belongs to the MA phytogeographical region of Mongolia (Figs 1, 2). The dominant vegetation types here are alpine, high mountain, and mountain steppe. The Sutai Khairkhan, the mountain at the center of the SKMNR, rises 4000 m a.s.l. and is one of the highest mountains in the Altai Mountain system.

The field study was conducted in 2014, 2019 and 2020. During this time, we collected approximately 400 herbarium specimens from different elevations and various vegetation types. Species were identified using the standard guides of Grubov (1982), Flora of Mongolian series, Flora of China (cFlores 2008), and Endemic Plants of the Altai Mountain Country (Pyak et al. 2008). The accepted name of each species follows the Plants of the World Online (POWO 2020, http://www.plantsoftheworldonline.org/). The status of national endemic plants follows Baasanmunkh et al. (2021c), and endemic plants of the AMC follows Erst et al. (2021). Threatened plant species were based on Nyambayar et al. (2011), Oyuntsetseg et al. (2018) and Urgamal et al. (2019b). The regional distribution points for each species were based on Grubov (1982), Guhanov (1996), Urgamal et al (2014), German (2015) and Baasanmunkh et al. (2021a). The voucher specimens were deposited in the herbarium of the National University of Mongolia (UBU). The species data of each protected areas were derived from literature (if available) as well as Mongolian Protected Areas (http://mpa.gov.mn/). The grid distribution map of Miralta tibetica var. pratenis Maxim. W.T. Wang was created in ArcGis, using the same approach as Baasanmunkh et al. (2022).
RESULTS

From three years of field surveys, approximately 400 herbarium collections were gathered; many of these samples have one or several duplicates. From the collections, we identified 317 vascular plant taxa (10 subspecies and 3 varieties) belonging to 157 genera and 45 families in the SKMNR (Fig. 2; Appendix 1). The angiosperms are represented by 308 species belonging to 151 genera. Additionally, four species of fern and fern allies in three genera as well as three species of gymnosperms belonging to three genera, were noted. Among these, the family with the greatest species diversity was Asteraceae with 48 species, followed by Fabaceae (27 species), Rosaceae (27 species), Caryophyllaceae (24 species) and Poaceae (23 species). The largest genus was Potentilla L. with 17 species followed by Oxypogon DC. (13 species), Artemisia L. (11 species) and Salsola DC. (9 species), shown in Table 1.

In addition, 11 species were newly found in the MA region (Table 2) which were previously only recorded in several other phytogeographical regions of the country. For example, Microsia tibetica var. pratensis (Maxim.) W.T. Wang was found again in the MA region, after 40 years; we provided more information about this rediscovery below (see Taxonomic treatment).

We also found 37 threatened plants including critically endangered (two species), endangered (11 species), vulnerable (16 species) and near threatened (8 species) from the Sutai Khairkhan Mountain NR (Table 3). Examples of some rare and threatened plants were also photographed for documentation, namely Leontopodium exscapa (C.A. Mey.) F. Dvorsk (Fig. 3A), Corydalis inconspicua Bunge ex Ledeb. (Fig. 3B), Saussurea gladiolus Herder (Fig. 3C), Drosera altaica (C.A. Mey.) Bunge (Fig. 3D), and Waldheimia tridentifolia Kar. & Kir. (Fig. 3E) in this area. For example, S. gladiolus was frequently distributed in Mongolia but there are no wild photographs to date.

DISCUSSION

The Mongolian Altai region has one of the highest diversities of vascular plants compared to other regions of Mongolia (Neuffer et al. 2003, Urgamal et al. 2014, Gundegmaa et al. 2018, Baasanmunkh et al. 2019, 2021). Approximately 1700 species of vascular plants have been recognized in this region which accounts for 53% of Mongolia’s vascular plants (Gubanov 1996, Neuffer et al. 2003, Urgamal et al. 2014, Bekket et al. 2015, Oyuntsetseg et al. 2017, Baasanmunkh et al. 2021). In addition, we found 11 species which had not been recorded before in the MA region, according to Urgamal et al. (2014). Furthermore, we re-discovered the wild population of Microsia tibetica var. pratensis (Maxim.) W.T. Wang after 40 years.

The Altai Mountain parts of Mongolia has a large number of endemic plants and threatened plant species compared to other parts of Mongolia (Pyak et al. 2008, Oyuntsetseg et al. 2018, Baasanmunkh et al. 2019, Erst et al. 2021). Recently, Erst et al. (in press) updated and revised the checklist of endemic plants of the AMC which contains 302 species with representative herbarium barcodes. Among these, we documented 27 species in the SKMNR which shares about 9% of the species in the AMC. Furthermore, Erst et al. (in press) determined that the species richness is 312 species based on botanical-geographical subdivisions of the AMC. According to Erst et al. (2021), there are two subdivisions, namely Khobdo-Tonkhiil (ZM3) and South-Mongolia (UM), that have relatively few species with 10 and 4 species, respectively. However, our results show a much higher species richness of about 27 endemic plants that occur in the SKMNR ZM3 subdivision because of our more comprehensive field surveys.

Since 2011, over 600 species’ regional conservation status in Mongolia has been assessed (Nyambayar et al. 2011, Oyuntsetseg et al. 2018, Baasanmunkh et al. 2019, Urgamal et al. 2019, Baasanmunkh et al. 2021c). We documented about 30 of these threatened species in the SKMNR.

The Sutai Khairkhan Mountain NR is a small area compared to the whole Altai Mountain range; however, it contains a high diversity of vascular plants including endemic and threatened plant species (Fig. 2). Additionally, because it is one of the largest mountain ranges in western Mongolia, it’s flora must not be overlooked as it is significant to our understanding of the conservation of these species.

Table 1. The most represented families (≥14 taxa) and genera (≥8 taxa) in the Sutai Khairkhan Mountain Nature Reserve.

Family	Number of taxa	Genus	Number of taxa
Asteraceae	48	Potentilla	17
Fabaceae	27	Oxypogon	13
Rosaceae	27	Artemisia	11
Caryophyllaceae	24	Saussurea	9
Poaceae	23	Astragalus	8
Ranunculaceae	14	Pedicularia	8

Table 2. List of newly recorded species in the Mongolian Altai region.

Taxon	Family
Astragalus brevifolius Ledeb.	Fabaceae
Carex caurinaeflora Fisch. & C.A. Mey. ex Kunth	Cyperaceae
Dasiphora parviflora (Fisch. ex Lehm.) Juz.	Rosaceae
Eritrichium alpinum Ovezinikova	Boraginaceae
Koeleria maritima (Ledeb.) Schult.	Poaceae
Leymus chinensis (Trin.) Tzvelev	Poaceae
Microsia tibetica var. pratensis (Maxim.) W.T. Wang	Boraginaceae
Minuartia stricta (Sw.) Hiern	Caryophyllaceae
Potentilla minor (Huds.) Opiz	Polygonaeceae
Potentilla argentea Soják	Poaceae
Stellaria longifolia Muhl. ex Willd.	Caryophyllaceae

Table 3. Status of taxa, endemic, and threatened plants in the Sutai Khairkhan Mountain Nature Reserve.

IUCN status	Family	Genus	Species	Endemic & Altai Endemic species	Threatened species
Total	45	157	317	32	37
Critically Endangered (CR)	2	2	2	2	2
Endangered (EN)	6	8	11	5	11
Vulnerable (VU)	11	15	16	4	16
Near threatened (NT)	7	8	8	3	8
rare alpine plants. This complete checklist improves the current floristic knowledge of the SKMNR area, increases its conservation value, and provides a baseline for future research. This checklist is only foundational; additional studies should include vegetation surveys, hotspot richness surveys, and detailed distribution map of rare species in the SKMNR to further inform management and conservation strategies. Because alpine vegetation can move higher in elevation due to climate changes, and Mongolian’s mountain taiga is predicted to be replaced by steppe species (Sainnemekh et al. 2022), monitoring the changes in plant community and rare species distribution, is needed. New distribution records of rare or endemic species can greatly affect our understanding of their abundance, threats, and genetics. Therefore, close studies of these species are needed to update the Mongolian Red List and inform the reserve’s management to protect plant hotspots from overgrazing or other human disturbances.

Taxonomic treatment

Microula tibetica var. pratensis (Maxim.) W.T. Wang (Boraginaceae) = *Tretocarya pratensis* Maxim.

In the literature, *Tretocarya pratensis* Maxim. was first recorded in the Khangai region of central Mongolia (Grubov 1982, Biazrov et al. 1989). In addition, we examined the herbarium specimens from all available herbaria which we found four herbarium specimens only from Mongolian Academy of Science (UBA), Mongolia. These four specimens were collected from the Khangai region of Mongolia between 1971 and 1976. Since 1976, there have been no record of wild populations and herbarium specimens in the country. Almost 40 years later, we found it on the Sutai Khairkhan Mountain, where there were less than 50 individuals within 1 km² (Fig. 4D). In general, *Tretocarya pratensis* Maxim. was treated synonym of *Microula tibetica var. pratensis* (Maxim.) W.T. Wang by Zhu et al. (1995). According to Zhu et al. (1995), this varieties occurs only in the Qinghai, Xinjiang, and S. Xizang of China, but it is already distributed in Mongolia (Grubov 1982, Biazrov et al. 1989). In addition, Yu et al. (2012) confirmed two varieties *Microula tibetica* var. *pratensis* and *M. tibetica* var. *tibetica* are distinguished by nutlets and corolla limbs based on nutlet micro-morphology. Based on our collections, *Microula tibetica* var. *pratensis* is similar to *M. tibetica* var. *tibetica* but could easily be distinguished by the corolla limbs (1.2–1.8 mm wide; Fig. 4B) and nutlets with abaxial aperture (Fig. 4C) according to Zhu et al. (1995) and Yu et al. (2012).

Specimens examined. MONGOLIA. Khangai Region: Bayankhongor Province, Gurvanbulag sum, Shar Usnii Gol, 1971, D. Tsagaanmaam et al. s.n. (UBA); Bayankhongor Province, Erdenetsogt sum, Ovgor Khvren Mt, Namiin Gol, 22 July 1977, E. Ganbold et al. s.n. (UBA); Zavkhan province, Ongon sum, Ongontenger Mt, Chuluutiin gol, 3100 m a.s.l., 1974 (UBA); Khuvsgul province, Arbulag sum, Sumber brigad, Dund gilaadiin am, 1976, D. Tsagaanmaam et al. s.n. (UBA). Mongolian Altai Region: Gobi-Altai Province, Tonkhil sum, Sutai Mt, 46°34′59.59″N 93°37′55.32″E, 3281 m a.s.L., 16 July 2019, V. Gundegmaa et al. (UBU) (Fig. 5).
Flora of the Sutai Mountain in Mongolia

ACKNOWLEDGEMENTS

Our gratitude goes to Dr. D. Narantsetseg and Dr. Ya. Shileelegmaa (Mongolian National University of Education) for supporting our field survey. We also give many thanks to Dr. Zhao Liqing (Normal University of Inner Mongolia) for cross-checking plants and providing advice on our research. We extend our thanks to Mr. L. Jargal who took a photo of *Microula tibetica* nutlets. The research of Batlai Oyuntsetseg was supported by the National University of Mongolia (Grant No. P2021-4186). The research of Andrey Erst was supported by CSBG SB RAS (Grant No. AAAA-A21-121011290024-5).

LITERATURE CITED

Baasanmunkh, S., S. Takashi, B. Oyuntsetseg, K. Wesche, C.M. Ritz, K. Khaliunaa, J.Y. Kim, H.J. Jo, N. Batkhuu, G.Y. Chung & H.J. Choi 2019a. Contribution to the knowledge on the flora of Numrug Strictly Protected Area and some parts of East Mongolia. *Journal of Asia-Pacific Biodiversity* 12:284–301.

Baasanmunkh, S., B. Oyuntsetseg, K. Oyundelger, K. Khaliunaa, M. Urgamal, N. Batkhuu, T. Shiga, G.Y. Chung & H.J. Choi 2019b. Contribution to the knowledge on the flora of northern Mongolia. *Journal of Asia-Pacific Biodiversity* 12:643–660.

Baasanmunkh, S., N. Nyamgerel, G. Bayarmaa, B. Oyuntsetseg, K. Oyundelger & H.J. Choi 2020. A new record of critically endangered *Saussurea bogedaensis* (Asteraceae) from Dzungarian Gobi, Mongolia. *PhytoKeys* 160:109–121.

Baasanmunkh, S., B. Oyuntsetseg, C. Oyundari, K. Oyundelger, M. Urgamal, D. Darikhand, N. Soninkhishig, D. Nyambayar, K. Khaliunaa, Z. Tsegmed, A.A. Kechaykin, A.I. Shmakov, A.S. Erst, N. Friesen, K. Wesche &...
H.J. Choi 2021a. The vascular plant diversity of Dzungarian Gobi in western Mongolia, with an annotated check-list. *Phytotaxa* 501(1):001–055.

Baaanmunkh, S., B. Oyunstsetseg, P. Efimov, Z. Tsegmed, S. Vandandorj, K. Oyundelger, M. Urgamal, A. Undruul, K. Khaliunaa, T. Namuulin & H.J. Choi 2021b. Orchids of

Figure 4 *Microula tibetica* var. *pratensis* (Maxim.) W.T. Wang. A – general habitat; B – flowers; C – abaxial part of nutlet with aperture; D – distribution map (new wild locations in blue and herbarium collections in green). Photo: A, B – V. Gundegmaa, D – L. Jargal
Mongolia: Taxonomy, species richness, and conservation status. Diversity 13: 302.

Baasanmunkh, S., M. Urgamal, B. Oyunsetseg, A. Grabovskaya-Borodina, K. Oyundelger, V. Gundegmaa, Z. Tsegmed, A.A. Kechaykin, A.I. Pyak, L.Q. Zhao & H.J. Choi 2021. Updated checklist of vascular plants endemic to Mongolia. Diversity 13:619.

Baasanmunkh, S., B. Oyunsetseg, Z. Tsegmed, K. Oyundelger, M. Urgamal, G. Gantuya, C. Javzandolgor, N. Nyambayar, P. Kosachev & H.J. Choi 2022. Distribution of vascular plants in Mongolia – I part. Mongolian Journal of Biological Sciences 20:3–28.

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.

Biazrov, L.G., E. Ganbold, I.A. Gubanov & N. Ulziikhutag 1989. Flora of Khangai. Nauka, Lenningrad. 191 pp. (in Russian). [Виазров Л.Г., Ганболд Э., Губанов И.А., Улзихутаг Н. 1989. Флора Хангай. Л.: Наука. 191 с.]

Bekket, U., A.A. Kechaykin, I.Y. Yevdokimov, P.A. Kosachev & A.I. Shmakov 2015. New findings about flora of West Mongolia. Acta Biologica Sibirica 1(2):132–139.
Appendix 1. A checklist of vascular plants in the SKM NR, with the growth form, status, elevation, phytogeographical regions, and herbarium code for each species. (Growth form: H – herb, T – tree, S – shrub, SS – subshrub; Status: E – Endemic, AE – Altai Endemic, CR – Critically Endangered, EN – Endangered, VU – Vulnerable, NT – Near Threatened. Distribution of phytogeographical regions based on Urgamal et al. (2014) and new distribution records marked by +): 1 – Khuvsgul, 2 – Khentei, 3 – Khangai, 4 – Mongolian Dauria, 5 – Foothills of Great Khingan, 6 – Khovd, 7 – Mongolian Altai, 8 – Middle Khalkh, 9 – East Mongolia, 10 – Depression of Great Lakes, 11 – Valley of Lakes, 12 – East Gobi, 13 – Gobi Altai, 14 – Dzungarian Gobi, 15 – Transaltai Gobi, and 16 – Alashan Gobi.

Taxon	Growth form	IUCN status	Elevation, m a.s.l (low to high)	Region	Herbarium code
FERNS AND FERN ALLIES					
Asplenium					
Asplenium altajense (Kom.) Grubov	H	2100–2500	1,3,4,7,10,13	SU20190306	
Cystopteris					
Cystopteris fragilis (L.) Bernh.	H	2600–3300	1–10,13,14,15	SU20190310	
Ophioglossum					
Botrychium lunaria (L.) Sw.	H	2800–3000	1,2,3,4,5,7	SU20200507	
Woodsia					
Woodsia ilvensis (L.) R. Br.	H	2600–3000	1,2,3,4,7,8,9	SU20190307	
Woodsia glabella R. Br.	H	2600–3100	1,7,10	SU20190311	
GYMNOSPERMS					
Pinaceae					
Larix sibirica Ledeb.	T	2000–2500	1,2,3,4,6,7,8,10,14	SU20200220	
Cupressaceae					
Juniperus pseudoabiesina Fisch. & C.A.Mey.	S	EN	2600–3000	SU20140601	
Ephedraceae					
Ephedra monosperma J.G.Gmel. ex C.A.Mey.	SS	2000–2500	1–8,10,12,13	SU20190204	
ANGIOSPERMS					
Amaranthaceae					
Blitum virgatum L.	H	1600–2000	3,4,6,7,12–15	SU20200908	
Chenopodium album L.	H	1500–2100	1–16 (all regions)	SU20190212	
C. frutescens C.A.Mey.	SS	AE	1500–2000	SU20140310	
Genusia dasyphylla (Fisch. & C.A. Mey.) Freitag & G. Kadereit	H	1500–2200	3–16	SU20200903	
Krascheniinikia ceratoidea (L.) Gueldenst.	SS	1500	1,3,4,6,7,8,10–16	SU20190101, SU20200906	
Salsola collina Pall.	H	1700–2300	2–15	SU20200907	
Suaeda tschujensis Pall.	H	1500–2000	6,7	SU20140206	
Amaryllidaceae					
Allium altaicum Pall.	H	2800–3050	1,2,3,4,6,7,8,10,13,14	SU20140504	
Allium mongolicum Regel	H	1500–2100	3,4–6	SU20200802	
A. polybrotzey Turcz. ex Regel	H	1600–2000	1,2,3,4,7–13,15,16	SU20200803	
Allium protratum Trevir.	H	1800–2300	1–13	SU20190106	
Allium pumilum Vved.	H	2000–2600	6,7	SU20190105	
Apiaceae					
Bupleurum bicaule Helm	H	1500–2300	1,2,3,4,6–13	SU20200602, SU20200709	
Bupleurum mongolicum V.M. Vinogr.	H	3000–3550	7,13,14	SU20201510	
Carum carvi L.	H	1800–3000	1–5,7,8,9,10,14	SU20200215	
Fenouilopsis hystrix (Bunge) Pimenov	H	1900–2700	2,3,4,6–11,13,15	SU20190108, SU20200101, SU2020026	
Neogaya simplex (L.) Meisn.	H	2100–3000	1,2,3,4,6,7,13,14	SU20190504	
Ostericum tenax (Pall. ex Schult.) Y.C. Chu	H	2200–3000	1,2,3,4,6–10,13	SU20190508, SU20200503	
Seseli buchtormense (Fisch. ex Hornem.) W.D.J. Koch	H	2100–3000	7,14	SU2021405	
Seseli condensatum (L.) Rehb. f.	H	2100–3000	1,2,3,6,7,8,10,14	SU2021340	
Asteraceae					
Ajania grubovii Maldashev	SS	E	1500	SU20140102	
Artemisia argyrophylla Ledeb.	SS	AE	1800–2100	SU20200410	
Artemisia campestris subsp. borealis (Pall.) H.M.Hall & Clem	H	2000–2600	1,2,3,4,6,7,10,13	SU20190203, SU20200910, SU2021002	
Artemisia draconculus L.	H	1500–2500	1–15	SU20140202, SU20140304, SU20190102, SU20190201, SU20190302, SU20190101, SU20201001	
Artemisia draconculus var. pamirica (C.Winkl.) Y.R.Ling & Humphries	H	1800–2500	3,6,7,10,11,12,13	SU20200204, SU20200302, SU20200404	
Appendix 1. Continued

Taxon	Growth form	IUCN status	Elevation, m a.s.l. (low to high)	Region	Herbarium code	
Artemisia frigida Wild.	SS		1500–2100	1–16 (all regions)	SU20190203, SU20190202, SU20200402	
Artemisia laciniata Wild.	H		1600–2500	1–5,7,8,9,10,12,14	SU20190202, SU20190204	
Artemisia macrocephala Jacquem. ex Besser	H		1500–2600	1–16 (all regions)	SU20190205, SU20200203	
Artemisia mongolica (Fisch. ex Besser) Nakai	H		1600–2000	1–15	SU20190301	
Artemisia pycnostigma Ledeb.	H		1500–2500	1–4,6,7,8,10,11,13,14	SU20190103, SU20190303, SU20190305	
Artemisia steleomanniana Besser	SS		1500–2500	2,3,6–15	SU20200601	
Artemisia strenuicifolia Krasch.	S		2000–3000	6,7,8,10–16	SU20191014	
Askellia pygmaea (Ledeb.) Sennikov	H		2900–3250	1,3,6,7	SU20190305, SU20190102	
Aist alpinus L.	H		1600–2700	1–10,13	SU20190702	
Aist alpinus Willd.	H		1500–2100	1,2,3,4,6,7,8,10,12–16	SU20140306	
Aist flaviculus subsp. flaviculus	H		2100–2500	1,2,3,4,6,7	SU20200202	
Aistrotalassum central-asiaticum Novopokr.	SS	LC	1800–2000	7,8,9,11–16	SU20140406	
Aistrotalassum heteroptiapalid Novopokr.	SS	AE, NT	1500–1800	6,7,10,14	SU20140502	
Carthamus occultum (Stev.) C.A.Mey.	H		2000–2800	1,2,3,4,6–11,14	SU20201302	
Cephalanthera tenuifolia (Willd.) Sennikov	H		1800–2300	1–11,13,14	SU20190603	
Cerastium chrysanthe (Ledeb.) Turez.	H		3000–3300	1,2,3,6,7,10	SU20190403	
Dromicium turkestanicum Cavill.	H		3050–3200	3,7,14	SU20190311	
Eritrichium pauciflorum DC.	H		AE	2100–2600	7,14	SU20190308, SU20190301
Eryngium eriocalyx	H		2100–2500	1,2,3,6,7,13	SU20190303	
Eryngium petoletarius Vierh.	H		2200–2500	3,7	SU20190306	
Loentopodium nanum (Hook.f. & Thomson ex C.B.Clarke) Hand.-Mazz.	H		2100–3200	7,16	SU20140103, SU20190403	
Loentopodium ochroleucum Beauverd	H		2100–3300	1,2,3,6,7,13	SU20140402, SU20190808	
Saussurea glacialis Herder	H		EN	<3500	3,6,7,13	SU20190501, SU20190305
Saussurea latifolia Ledeb.	H		VU	1600–2500	3,7	SU20190107
Saussurea leucophylla Schrenk	H		VU	2000–2200	1,3,6,7,13	SU20190109
Saussurea erysii Khann. & Krasnob.	H		AE, EN	3000–3300	7	SU20140505, SU20140203
Saussurea pruica N.D.Simpson	H		2000–3000	3,6,7,8,10,11,13,14	SU20140305	
Saussurea pseudoalpina N.D.Simpson	H		2600–3000	1,2,3,6,7,13,14	SU20170105	
Saussurea rachromanensis Kom. ex Lipsch.	H		E	2000–3000	1,2,3,6,7,13,14	SU20140501
Saussurea schizaniana (Wydler) Fisch. ex Herder	H		3000–3300	1,2,3,6,7,13	SU20140405	
Saussurea subsacculata (Ledeb.) Serg.	H		VU	3000–3300	1,3,6,7,13	SU20140302
Scorzoner a ikonnikovii Lipsch. & Krasch.	H		1800–2300	3,6–15	SU20090703	
Senecio dubitabilisii C.Jeffrey & Y.L.Chen	H		1800–2200	2,3,7,8,10–15	SU20090608	
Tanacetum changtangicum (Krasch. ex Grubov) K.Bremer & Humphries	H		E, EN	2900–3300	3,7,10	SU20190312, SU20190210
Tanacetum lanuginosum Sch.Bip. & Herder	H		3000–3300	1,6,7,13	SU20190113	
Tanacetum pulchrum (Ledeb.) Sch.Bip.	H		3000–3300	3,7,13	SU20140409	
Taraxacum ceratophorum (Ledeb.) DC.	H		VU	2300–3000	3,67	SU20140406
Taraxacum discodendron (Ledeb.) Ledeb.	H		VU	2000–3000	1,2,3,4,6–10,12,13	SU20200110
Taraxacum junatorii Tevzev	H		E	2600–3000	3,7,13,14	SU20140306
Taraxacum lyratum (Ledeb.) DC.	H		AE	2600–3000	1,3,6,7,13	SU20130403
Tephrosia integrifolia (L.) Holub	H		3000–3300	1,2,3,4,6,7,8,9,13	SU20190314	
Tephrosia pruica (N.D.Simpson) Holub	H		1800–2000	1,3,6,7,13,14	SU20190315	
Waldheimia tristadetifolia Kar. & Kir.	H		<3500	1,3,6,7,13	SU20190403, SU20140404	

Boraginaceae

Taxon	Growth form	IUCN status	Elevation, m a.s.l.	Region	Herbarium code	
Amblyosorus rupestris (Georgii) Popov	H		2200–3000	1–9,13	SU20200309	
Ceratocephalum caesius DC.	H		AE, VU	2000–2500	3,7,13,14	SU20140204
Erinrichium alpinum Ovczirkova	H		AE, VU	2100–2800	6,7+	SU20200310
Erinrichium paniculatum DC.	H		2100–2600	1–8,13	SU20200312	
Microsila tibetica var. pratensis (Maxim.) W.T.Wang	H		3000–3300	3,7+	SU20190401	
Mynotis alpestris F.W.Schmidt	H		2500–3300	1,2,3,4,6,7,9,14	SU20200313	
Mynotis asiatica (Vesterg.) Schischk. & Serg	H		2100–2800	1,2,3,4,6,7,9,14	SU20200505	
Mynotis anupshirica O.D.Nikif.	H		2100–2800	7,13	SU20190309	
Appendix 1. Continued

Taxon	Growth form	IUCN status	Elevation, m (low to high)	Region	Herbarium code
Brassicaceae					
Draba aizanoi Maxim.	H		1500–2100	6,7,8,10–16	SU20200607
Draba altaica (C.A.Mey.) Bge	H	VU	3000–3300	6,7,10	SU20201407
Draba sarothroides	H		2100–2500	1,2,3,4,6,7,13	SU20200313
Drosophila angustifolia	H		2600–3300	1,2,3,4,6,7,13	SU20190316
Drosophila nemorosa	H		2600–3300	1–10,13	SU20190502
Drosophila oreades Schrenk	H	<3500	1,3,6,7,13		SU20190503, SU20201506
Leptota excisa (C.A.Mey.) E.Dvorak	H	AE	<3500	1,6,7	SU20190402
Pachyseris grandiflora (C.A.Mey.) Bunge	H	AE	3000–3300	1,3,6,7,13	SU20190408
Pulsatilla camtschatica (DC.) C.A.Mey.	H		1500–2100	1–4,6,9,11,13,15,16	SU20140103
Smelowskia altaica (Pall.) Regel	H		3000–3350	1,3,4,6,7,10,13	SU20190307
Smelowskia altaica (Poljak.) Botsch	H	AE, VU	3000–3300	6,7	SU20190303
Smelowskia calyculata (Stephan ex Willd.) C.A.Mey.	H	<3500	1,3,6,7,13,14		SU20190401
Caprifoliaceae					
Eremogone meyeri (Fenzl) Ikonn.	H		2100–2500	1–11,13	SU20140105
Heterochroa desertorum	H		2500–3000	1–10,13	SU20200504
Draba nemoralis (L.) Bunge	H		2500–3000	1–7,10,14	SU20200508
Eremogenes andru志a (Grubov) Ilonnn.	H	EN	2200–3000	13,7	SU20140411
Eremogenes meyeri (Fenzl) Ilonnn.	H		2300–3000	2,3,4,6,7,9,10,12,13	SU20140105
Eremogenes mongolicus (Schischk.) Ilonnn.	H	AE, EN	2500–3000	7	SU20200413
Heterocentron desertorum Bunge	H		1500–2300	1,2,3,4,6–13,16	SU20190113
Mimula striga (Sw.) Hiern	H	NT	2500–3200	1,2,3,7+	SU20190303, SU202016
Salvia viridis (L.) Schreber	H		2300–3500	1,2,3,6,7,14	SU20190418
Silene amara (L.) Schrenk	H		2100–3300	6,7,10,14	SU20190315
Silene chamaemorpha Turcz.	H		2100–3300	1,2,3,6,7,9,10,12,13	SU20190114
Silene sanguinea (Fisch., C.A.Mey. & Avé-Lall.) Bocquart	H		2600–3000	1–7,9,12,13	SU20190317, SU20190315
Silene uralesis subsp. apetala (L.) Bocquart	H		2000–3000	1,2,3,6,7,10,13,14	SU20140303
Stellaria brachypetala Bunge	H		2000–2600	3–7,9,11,13,14	SU20200501
Stellaria dichotoma L.	H	LC	1800–2500	1–14	SU20200902
Stellaria imbricata Bunge	H		2000–2500	6,7,14	SU20190318
Stellaria longifolia Mühl. ex Willd.	H		2100–2800	1,2,3,4,5,7+,9	SU20190509
Stellaria palustris Elhrh. ex Hoffm.	H		2100–2500	2,3,7,9	SU20200319
Stellaria poikilophylla Grubov	H	AE, VU	2000–2800	6,7	SU20190207
Crassulaceae					
Crassula gemmata (Low) Sweet	H		1500–2200	1,2,3,4,6–15	SU20200102
Rhodobalanus squarrosula (Fisch. & C.A.Mey.) Fisch.	H		2900–3300	1,2,3,4,6,7,13	SU20190410, SU20210107
Rhodobalanus rupestris L.	H	VU	2500–3300	1–8,13,14	SU20140412
Rhodobalanus stephani (Cham.) Traur. & C.A.Mey.	H	AE	3000–3300	7	SU20190321, SU20140604
Cyperaceae					
Carex atrata Schkuhr	H		2600–3000	1,3,7	SU20190316
Carex ericetorum Fisch. & C.A.Mey. ex Kunth	H		2600–3000	1,2,3,4,5,7+,8,9	SU20200408
Carex duriuscula (C.A.Mey.) Fisch.	H		1500–3300	1–14,16	SU20200414
Carex melanocarpa Turcz.	H		2600–3000	1,3,7	SU20210107, SU20210206
Carex myurosoides (L.) Vill.	H		2600–3300	1,2,3,4,6,7,10,13,14	SU20210110, SU20210211
Carex pediformis (C.A.Mey.) Fisch.	H		2100–3000	1–9,13,14	SU20190322, SU20200412
Eriophorum angustifolium Honck.	H		2900–3300	1–7,9,10,11	SU20140413
Eriophorum brunniei Turcz.	H		3000–3300	1,3,5,6,7	SU20140414
Flora of the Sutai Mountain in Mongolia

Appendix 1. Continued

Taxon	Growth form	IUCN status	Elevation, m a.s.l (low to high)	Region	Herbarium code
Euphorbiaceae					
Euphorbia mongolica (Prokh.) Prokh.	H		3,6,10,11,12,13	SU20190114	
Euphorbia potentii Prokh.	H		3,6,10,13	SU20140313	
Fabaceae					
Astragalus brevifolius Ledeb.	H		1,2,3,4,6,7,8,11,12,13	SU20200211	
Astragalus chinensis Bunge	H		3,6,10,12,13,14	SU20190115	
Astragalus denticulatus Ledeb.	H		7,15	SU20190217	
Astragalus eliptoides Ledeb.	H		7,10	SU20140111	
Astragalus gubanovii N.Ulz.	H		3,6,7,8,13	SU20201106	
Astragalus laevis Jaccq.	H		3,6,13	SU20140104	
Astragalus leptostachy Pal.	H		3,6,13	SU20140104	
Astragalus tsoyajensis Bunge	H	AE	7	SU200904	
Astragalus vallesiensis Kamelin	H		3,7,10-14	SU20200707	
Carex tenuifolia Ledeb.	S		3,6,10,11,13,14,15	SU20140104	
Chondrilla arundinacea monophylla Fisch.	H	VU	6,7,10,12,13,16	SU20200705	
Hedysarum alpinum L.	H		7-9	SU20140104	
Hedysarum inordinatum Turcz.	H		1,2,3,6,7,10,13	SU20140214	
Oxytropis acanthace Jurtzev	H		6,7	SU20160160	
Oxytropis aczephalia Ledeb.	SS	LC	3,6,7,10-16	SU20080805	
Oxytropis alzizica (Pall.) Pers.	H		6,7	SU20040142	
Oxytropis ampullata (Pall.) Pers.	H		2,3,7,8,9,12,13	SU20200708	
Oxytropis bungei Krom.	H		3,6,7,8,10-14	SU20190216	
Oxytropis intermedius Bunge	H	AE	3,6,7	SU20060113	
Oxytropis oligantha Bunge	H		3,6,7,10,13	SU20140104	
Oxytropis paniculata Bunge	H		1,6,7,13	SU20140151	
Oxytropis pumila Tisch. DC.	H		3,6,7,8,10,11,13	SU20200706	
Oxytropis saposhnikovii Krylov	H	AE, EN	7,10	SU20140303	
Oxytropis satureiica N.Ulz.	H	EN	3,6,7,10,11,13,14	SU20190117	
Oxytropis tchajaej Bunge	H	AE	1,7	SU20190216	
Trifolum eximium Stephan ex Ser.	H		1,2,3,4,6-11,13	SU20140103	
Vicia saturea Ledeb.	H		2,3,4,6-14,16	SU20140124	
Gentianaceae					
Comastoma falcatum (Turcz.) Toyok.	H		1,2,3,6,7,13	SU20190335	
Comastoma tenuillum (Rottl.) Toyok.	H		1,2,3,6,7,13	SU20050153	
Gentiana alpigena Pall.	H	EN	1,2,3,6,7,13	SU20140703	
Gentiana aquatica var. pseudoaquatica (Kusn.) S.Agrawal	H		1,2,3,4,6,7,8,9,13	SU20110105	
Gentiana decumbens Lf.	H		1-11,13,14	SU20140104	
Gentiana riparia Kar. & Kir.	H	CR	7,14	SU20110104	
Gentianella amarella subsp. acuta (Michx.) J.M.Gillett	H		1,2,3,4,6,7,8,9,13	SU20140103	
Gentianella azepica (Bunge) Holub	H		2,3,6,7,13	SU20100112	
Gentianopsis barbata (Froel.) Ma	H	LC	1-11,13,14	SU20140207	
Lamatorionum carinthiacum (Wulfen) A.Braun	H		1,2,3,4,6,7,8,11,13	SU20140417	
Geraniaceae					
Erinium tibetanum Edgew. & Hook.f.	H		4,6,7,8,10-16	SU20140208	
Geranium pratense L.	H		1,2,3,4,6,7,8,9,12,13	SU20001100	
Geranium pseudocularis J.Mayer	H		1-8,10	SU200111	
Grossulariaceae					
Ribes aciculare Sm.	S	NT	2,3,4,6,7,8,10,13,14	SU20140315, SU20140316	
Ribes petraeum Wulfen	S		2,3,4,7,14	SU20140416	
Iridaceae					
Iris potaninii Maxim.	H	LC	1,2,3,4,6-13	SU20190115	
Juncaceae					
Luzula multiflora subsp. silvica V.I.Kreez.	H		1,2,3,4,6,7	SU20140306	
Lamiaceae					
Dracaecophalum fruticosum Stephan ex Wildl.	SS		3,4,6,7,8,10-13,14	SU20190118	
Dracaecophalum imberbe Bunge	H		1,6,7	SU20190120	
Dracaecophalum orgioides Stephan ex Wild.	H		1,3,4,6,7,8,9,13,14	SU20190334	
Dracaecophalum subsph. bungeanum (Schischk. & Serg.) A.I.Budantsev	H		1,3,4,6,7,8,9,13,14	SU20190416	
Lagochilus ilicifolius Bunge ex Benth.	H		3,7,8,10-16	SU20190113	
Lagotis marcelliastrom (Stephan) Ikonn.-Gal.	H		3,6,7,13,14	SU20190115	

Botanica Pacifica. A journal of plant science and conservation. 2022. 11(1): 115–128

125
Appendix 1. Continued

Taxon	Growth form	IUCN status	Elevation, m a.s.l. (low to high)	Region	Herbarium code
Nepeta sibirica L.	H	1800–2250	2,3,6,7,10,13,14	SU20190122, SU20200806	
Panzerina canescens (Bunge) Sojak	H	NT	1600–2200	6,7,10,13	SU20140213
Panzerina lanata (L.) Sojak	H	1500–2150	2,3,4,6–14,16	SU20200807	
Ziziphora pamiricausia Juz.	H	2150–2500	7,14	SU20200121	
Liliaceae					
Gagea serotina (L.) Ker Gawl.	H	2600–3100	1,2,3,6,7,13	SU20140515	
Tulipa uniflora (L.) Besser ex Baker	H	VU	2000–2800	3,5,7,8,9,10,14	SU20190114
Orchidaceae					
Neottia camtschatea (L.) Rchb.f.	H	CR	2100–3100	1,2,3,7	SU20200512
Orobanchaceae					
Corydalis inconspicua Bunge ex Ledeb.	H	VU	3000–3350	1,2,7	SU20190413
Hypecoum lactiflorum (Kar. & Kir.) Pazij	H	1600–2100	3,4,6–16	SU20140111	
Papaver chakassicum Peschkova	H	2980–3250	6,7	SU20140314	
Papaver lapponicum (Tolm.) Nordh.	H	3000–3300	7	SU20190326	
Papaver pseudocanescens Popov	H	2500–3250	1–7,13	SU20190325, SU20201409	
Plantaginaceae					
Lagotis integrifolia (Wild.) Schischk.	H	2900–3150	1,2,3,7,13	SU20201407	
Linaria altaica Fisch.	H	2050–2500	3,6,7,10,14	SU20140107	
Linaria hepatica Bunge	H	NT	2100–2550	6,7,11,13,14	SU20190110
Plantago depressa Willd.	H	2000–2500	1–10,12,13	SU20190109	
Plantago kamarovii Pavlov	H	NT	2000–2500	1,3,6,7,13	SU20190325
Plantago major L.	H	1800–2100	2–14	SU20190109	
Veronica ciliata Fisch.	H	3100–3200	1,2,3,6,7	SU20190328	
Veronica densiflora Ldb.	H	2000–2500	2,7	SU20140107	
Veronica spicata L.	H	2100–2550	7,14	SU20190411	
Plumbaginaceae					
Limonium congestum (Ledeb.) Kuntze	H	AE	2900–3150	1,2,3,7,13	SU20140607
Poaceae					
Agropyron cristatum (L.) Gaertn.	H	1500–2800	1–16 (all regions)	SU20190211, SU20200612	
Alopecurus megallanicus Lam.	H	2600–3250	1,2,3,4,6,7,8,13	SU20140107	
Anthoxanthum glabrum (Trin.) Veldkamp	H	2100–2500	1–10	SU20190110	
Anthoxanthum monticola (Bigelow) Veldkamp	H	2600–3200	1,2,3,6,7,10	SU20200512	
Anthoxanthum nipponicum Honda	H	2050–3000	2–7	SU20201212	
Cleistogenes songorica (Roshev.) Ohwi	H	1500–2450	4,7–16	SU20200805	
Elymus glaucus L.	H	1600–2000	1–10,13–16	SU20140208	
Festuca alpina L.	H	1900–2550	1,3,4,6,7	SU20190214	
Festuca leniennis Drobow	H	1500–2200	1–9,13,15	SU20200804	
Hordeum brevisubulatum (Trin.) Link	H	1500–2000	1–14,16	SU20190213, SU20200209	
Koeleria alpina (Domin) Krylov	H	2000–3000	1–10,13	SU20190324	
Koeleria macrantha (Ledeb.) Schult.	H	1600–2500	1,2,3,4,5,7,8–13	SU20201103	
Leymus chionensis (Trin.) Tzvelev	H	1500–2100	1–6,7,8–14	SU20130106	
Leymus salsulus (Georgii) Tzvelev	H	1500–2000	1,2,3,4,6–16	SU20200605	
Neotritia splendens (Trin.) M.Nobis, P.D.Gudkova & A.Nowak	H	1500–2100	2,3,4,7–16	SU20200704	
Pileum alpinum L.	H	VU	2000–3000	7	SU20140607
Poa alpina L.	H	2000–3000	1,3,6,7,15	SU20200208	
Poa attenuata Trin.	H	1500–2500	1,2,3,4,6–10,12–15	SU20190323, SU20201201	
Poa glauca subsp. alpina (Trin.) Olonova & G.H.Zhu	H	1500–3000	1,2,3,6,7,10,13	SU20140414, SU20201003	
Appendix 1. Continued

Taxon	Growth, IUCN status	Elevation, m a.s.l (low to high)	Region	Herbarium code
Polygonaceae				
Atriplex panguen (M.Biech.) Jauh. & Spach	S	1800–2100	2–16	SU20090611
Bistorta elliptica (Wildl. ex Spreng.) V.V.Petrovsky, D.F.Murray & Elven	H	2600–3300	1,2,3,6,7	SU20140309
Bistorta vivipara (L.) Delarbre	H	2500–3250	1–4,6,7,8,10,13,14	SU20190320, SU20201101
Koennigia alpina (All.) T.M.Schust. & Reveal	H	2600–3300	1,2,3,4,6,7,8,14	SU20190114
Oxyria digyna (L.) Hill	H	3000–3300	1,2,3,6,7,13	SU20190317, SU20201205
Persicaria minor (Huds.) Opitz	H	2500–2800	7,10,14	SU20140207
Rheum compactum L.	H	2600–3150	1,2,3,4,6,7,12,13,14	SU20190318
Rheum nutans Sieveck. Pall.	H	1500–2000	7,8,10–16	SU200701
Ranunculus thyrsiflorus F. Fingerh.	H	2850–3200	1–14	SU20190319
Primulaceae				
Androsace bungeana Schischk. & Bobrov	H	2000–2600	1,2,3,6,7,9	SU20190319
Androsace dasyphylla Bunge	H	2600–3280	1,2,3,6,7,13	SU20140207
Androsace lactoflora Fisch. ex Willd.	H	2300–3000	1,2,3,4,6,7,9,14	SU20190316, SU20200808
Androsace lemanniana Spreng.	H	2800–3300	1,2,3,6,7,9	SU20190306
Androsace macrantha L.	H	2500–3200	2,3,4,6–10,13,14,15	SU20140308
Androsace septentrionalis L.	H	2300–3000	1–9,12,13	SU20190605
Primula algida Adams	H	2900–3250	3,6,7	SU20140513
Primula bukukunica Kvet.	H	3000–3280	7,11,13	SU20190410
Primula longispata Ledeb.	H	2100–2800	3,6,7,10,13,14	SU2000319
Primula nivalis Pall.	H	3050–3220	1,2,3,6,7,10	SU20140512
Ranunculaceae				
Aquilegia glandulosa Rapaces	H	2600–3000	1,2,3,4,6,7,13,14	SU20140508
Clematis alpina subsp. silvica (L.) Kunze	SS	2100–2500	1,2,3,4,6,7,8,10,13	SU20140301
Delphinium crisphalum Schrad. ex Spreng.	H	2800–3200	1,2,3,5,6,7	SU20140407
Delphinium instruction Ser.	H AE	2800–3100	3,6,7,14	SU20140408
Hallerpestes sarmentosa (Adams) Kom.	H	2600–3280	3,4,6–16	SU20190305
Laportetrium fumarioides (L.) Rehb.	H	1600–2200	1,2,3,4,6,7,8,9,13	SU20190901
Pulsatilla bungiana C.A.Mey.	H	1800–2100	4,6	SU20140205
Ramunculus longisulcatus Ledeb. ex A.Spreng.	H	2300–2800	1,2,3,4,6,7,11,14	SU20140509
Ramunculus pedatifidus Sm.	H	2400–2900	1–7,9,13	SU20140207
Ramunculus pseudoborcheri Schrenk.	H	3100–3300	1,2,3,6,7,13,14	SU20140411
Ramunculus sapozhnikovii Sebegol.	H AE	3080–3250	7	SU20140409
Trichocodon albium L.	H	2500–2800	1,2,3,4,6,7,13	SU20120707
Trichocodon foetidum L.	H	2100–2800	1,2,3,4,6–10,13,14	SU20190912
Trillosia alpina C.A.Mey.	H	2600–3000	6,7,14	SU20140506
Rosaceae				
Argentina anserina (L.) Rydb.	H	1600–3000	1–11,13,14,15	SU20201303
Chamaelebdis erecta (L.) Bunge.	H	2100–2500	1–13	SU20140046
Coluteaster uniflorus Bunge	S	2250–2900	1,2,3,7,8,13	SU20140510
Diaspilora parviflora (Fisch. ex Lehms.) Juz.	S	2100–2800	3,4,6,7,8+	SU20140409, SU20190410
Dryas oregona Juz.	SS	3100–3280	1,2,3,4,6,7	SU20120280
Frunotopsis saksowiana (Stephan) Chrtek & Sojak	SS	2600–3200	6,7,10,13,14	SU20140401
Potentilla agrimonioides M.Biech.	H	2500–3000	6,7,14	SU20190111
Potentilla altaica Bunge	H	2000–2600	1,6,7	SU20190110
Potentilla aphanes Sojak	H	2100–3000	3,6,7,10,13,14	SU20140408
Potentilla asterolophia Bunge	H	1800–2200	3,6,7,10,11	SU20190604
Potentilla conferta Bunge	H	2000–3100	1–9,12,13,14	SU20190911
Potentilla crebriodora Juz.	H	2150–2900	1,2,3,6,7	SU20190210, SU20190502
Potentilla gelida C.A.Meyer.	H	2100–2950	1,2,3,6,7,9,13,14	SU20140312, SU20120299
Potentilla kryloviana Th.Wolf	H	2000–3050	3,7,14	SU20140202
Potentilla nivea L.	H	1900–3100	1,2,3,4,6,7,13,14	SU20190206, SU20190210
Appendix 1. Continued

Taxon	Growth form	IUCN status	Elevation, m a.s.l (low to high)	Region	Herbarium code
Potentilla ozjorensis Peschkova	H		2000–2950	1,3,4,7	SU20200205
Potentilla pamirica Th.Wolf	H		2500–3180	6,7,10,14	SU20201403
Potentilla pamirudica Juz.	H		2950–3200	7,14	SU20201301
Potentilla rhodophylla Sojak	E		2000–2600	7	SU20190304
Potentilla sovirensis L.	H		2100–3000	1,2,3,4,6–13,15	SU20200405
Potentilla turgidina Sojak	H		2600–3100	2,3,4,5,7+,9	SU20190303
Potentilla terichilica Sobolevsk.	H		2100–2800	6,7	SU20200207
Potentilla turgistana Sojak	H		2950–3200	7,14	SU20200211
Rosa laxa Retz.	S	NT	2500–2800	6,7,13,14,15	SU20140705
Sibbaldia adpressa (Bge.) Juz.	H		1800–2600	1–13,15,16	SU20200606
Sibbaldianthes bifurca (L.) Kurtto & T.Erikk.	SS		1700–2500	1–14	SU20190209
Spiraea alpina Pall.	S		2200–3000	1,2,3,6,7	SU20140511
Rubiaceae					
Galium verum L.	H		1800–2500	1–10,13,14	SU20200108
Salicaceae					
Populus lasiocarpa Ledeb.	T		1700–2600	2,3,6,7,10,13,14	SU20140410
Salix arctica subsp. torulosa (Ledeb.) Hultén	S		3000–3250	1,3,6,7	SU20140507
Salix berberifolia Pall.	S		3000–3100	1,2,3,6,7,13	SU20140603
Salix terebratifolia Laksch.	S		2900–3100	1,2,6,7	SU20140404
Saxifragaceae					
Saxifraga cernua L.	H		2500–3000	1,2,3,6,7,8,9,13	SU20190316,
Saxifraga hirsula L.	H	EN	2800–3100	1–7,13	SU20190401
Saxifraga maroccana Tolm.	H		2900–3150	1,6,7,13,14	SU20190314
Saxifraga sibrica L.	H		3000–3200	1,3,6,7,10,13,14	SU20190302,
Solanaceae					
Physoclauma physioides (L.) G.Don	H		1800–2200	1,3–9,11,12,13	SU20140201
Ulmaceae					
Ulmus pumila L.	T		1600–2500	2–5,7,8,9,11,13,16	SU20140606
Urticaceae					
Urtica cannabina L.	H		1800–2600	2–10,12,13,14	SU20200104
Viburnaceae					
Adoxa moschatellina L.	H		2200–2500	1,2,3,5,6,7,13	SU20200506
Violaceae					
Violas dissecta Ledeb.	H		2800–3100	1–5,7,9,13	SU20140602
Zygophyllaceae					
Zygophyllum melongena Bunge	H		1500–2100	3,6,7,10,11,13,14	SU20140106