A minimally invasive treatment option for large metastatic brain tumors: long-term results of two-session Gamma Knife stereotactic radiosurgery

Shoji Yomo and Motohiro Hayashi

Abstract

Background: Large brain metastases (BM) remain a significant cause of morbidity and death for cancer patients despite current advances in multimodality therapies. The goal of the present study was to evaluate the efficacy and limitations of 2-session Gamma Knife stereotactic radiosurgery (SRS) for patients with large BM.

Methods: This is a prospective, open-label and single arm study analyzing 58 consecutive patients who received 2-session SRS for large BM (≥10 mL). The median age was 66 years, and the median Karnofsky performance status (KPS) score was 70. SRS was the initial treatment in 51 large tumors (84%) and was used as salvage after failed prior treatments for 10 tumors (16%). The fraction protocol was 20-30 Gy given in 2 fractions with 3–4 weeks between fractions. Overall survival (OS) and neurological death (ND), local tumor control and KPS were analyzed.

Results: The median follow-up time was 9.0 months. One- and 2-year OS rates were 47% and 20%, respectively. The median OS time was 11.8 months (95% CI: 5.5-15.6). The causes of death were intracranial local progression in 5 cases, meningeal carcinomatosis in 3 and progression of the primary lesion in 39. One- and 2-year ND-free survival rates were 91% and 84%, respectively. In 52 of 61 large BM (85%) with sufficient radiological follow-up data, 6- and 12-month local tumor control rates were 85% and 64%, respectively. The mean KPS improved from 70 at the 1st SRS to 82 at the 2nd; the first follow-up mean KPS was 87 (P < 0.001). Symptomatic radiation injury developed and required conservative treatment in 3 patients (5%).

Conclusions: Long-term follow-up showed that two-session Gamma Knife SRS achieved durable tumor control rates as well as acceptable treatment-related morbidity. This treatment method may potentially merit being offered to patients with large BM who are in poor condition or are otherwise ineligible for standard care.

Keywords: Brain metastases, Stereotactic radiosurgery, Gamma knife
rates and low morbidity [9]. In line with the results of our pilot study, we continued to accumulate experience with this treatment strategy in order to elucidate its long-term efficacy and safety. Prognostic factors related to patient survival and local tumor control rates were also investigated.

Methods

Patient population

Based on previous results obtained in our pilot study, the inclusion criteria were extended as follows: i) patients with large BM (volume ≥ 10 mL regardless of prior treatment), ii) tumors not causing clinical signs of impending cerebral herniation, iii) tumors ineligible for surgical resection due to inaccessibility, the number of intracranial lesions and systemic disease states. In principle, surgical resection was recommended for large BM causing neurological symptoms refractory to corticosteroid therapy. In the event of surgery not being feasible, 2-session SRS was carefully conducted. All patients and/or their relatives were fully informed that 2-session SRS remains an unproven strategy in terms of safety and efficacy, and all provided written informed consent. San-ai Hospital Institutional Review Board approved this prospective clinical trial in September 2009.

Between September 2009 and July 2013, 60 consecutive patients with large BM were eligible for the present prospective clinical trial. However two of these patients could not complete the treatment protocol due to systemic disease progression. Thus the current study included a series of 58 patients with 61 large BM who completed 2-session SRS. Thirty-seven patients were male and 21 were female with a median age of 66 years (range: 32–88 years). The median Karnofsky performance status (KPS) score at the time of SRS was 70 (range: 30–100) and there were 3, 27 and 28 patients, respectively, in recursive partitioning analysis (RPA) classes I, II and III [10]. The median interval between primary diagnosis and initial SRS was 12.2 months (range: 0–192 months). In 17 patients (29%), neurological deficits caused by large BM were the initial symptoms of cancer. Forty-five patients (78%) had active systemic disease and/or extra-central nervous system (CNS) metastases and 21 (36%) underwent systemic chemotherapy at approximately the time of the initial SRS. Twenty-six patients (45%) had a single BM, the others multiple BM. The median number of BM at the initial SRS was 2 (range: 1–8). Two-session SRS was conducted as an initial treatment for 51 tumors (84%) and as a salvage procedure for 10 tumors (16%). Microsurgical resection for BM had been performed before SRS in 14 patients and prior whole brain radiotherapy (WBRT) had been conducted at the referring regional hospitals in 4 others. Patient characteristics are summarized in Table 1.

Radiosurgical techniques

Gamma Knife SRS was performed using the Leksell G stereotactic frame (Elekta Instruments, Stockholm, Sweden). The frame was placed on the patient’s head under local anesthesia and with mild sedation. All patients underwent both stereotactic magnetic resonance (MR) imaging and computed tomography (CT). High-resolution 3-D volumetric gadolinium-enhanced T1-weighted images and 2 mm in thickness T2-weighted images were used for dose planning with Leksell Gamma Plan software (Elekta Instruments). The fraction protocol for large BM was consistent with that used in our previous study: 20–30 Gy in 2 fractions with 3–4 weeks between fractions. However, in some patients it was necessary to postpone the second procedure due to the schedule for systemic chemotherapy. The fractionated dose was calculated using a linear quadratic (LQ) formula, as described by Brenner et al. [11,12]. Assuming alpha/beta to be 10 for BM, 20–30 Gy in two fractions was approximately equivalent to a single administration of 16–23 Gy. The median tumor volume (TV) of large BM at the 1st session was 16.4 mL (range: 10.0–56.1) and the median dose prescribed was 14 Gy (range: 10–
16) at the 45% isodose (range: 40–52). The median TV at the 2nd session was 8.9 mL (range: 2.3–42.6) and the median dose prescribed was 14 Gy (range: 10–15) at the 45% isodose (range: 40–60). The dosimetric profiles of 2-session SRS are summarized in Table 2. Synchronous small- to medium-sized metastases were treated with SRS at prescription doses ranging from 18 Gy to 22 Gy (median: 20 Gy) at either the first or the second session. The Leksell Gamma Knife Model C or Perfexion was used in all cases.

Post-SRS management and follow-up evaluation

In most patients with neurological symptoms, administration of oral steroids (dexamethasone 2–4 mg/day) was maintained between the two sessions and then tapered off over a maximum of 4 weeks after the second session. Clinical follow-up data as well as contrast-enhanced MR images were obtained every one to three months. Local control failure was defined as an increase in target lesion diameter of at least 20% as compared to the smallest documented TV on MR images, irrespective of whether the lesion was a true recurrence or delayed radiation injury. Delayed radiation injury was differentiated from tumor recurrence using serial MR imaging and, in selected cases, 11C-methionine positron emission tomography [13]. Salvage SRS was possible provided that the volume of the local tumor recurrence was small enough for single-dose SRS. If metachronous remote metastases were documented, they were also principally managed with repeat SRS. Surgical removal was indicated when neurological signs became refractory to conservative management, with a radiological diagnosis of local tumor progression or radiation necrosis. When leptomeningeal carcinomatosis or miliary parenchymal metastases were documented, WBRT was then considered unless it had been used previously. Toxic effects were recorded and graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Before closing the research database for analysis, the authors updated the follow-up data of patients who had not visited our outpatient department for more than two months. Inquiries about the date and mode of death were made by directly corresponding with the referring physician and/or the family of the deceased patient. Neurological death (ND) was defined as death attributable to CNS metastases including tumor recurrence and/or carcinomatous meningitis.

Statistical analysis

The OS rate was calculated by the Kaplan-Meier product limit method. The ND rate was calculated employing Gray’s test [14], where death due to systemic disease progression was regarded as a competing event. For estimation of local tumor control rates, Gray’s test was used, with subsequent WBRT for other intracranial diseases being regarded as competing events. All of the above time-dependent analyses were based on the interval from the date of initial SRS treatment until the date of each event. To assess the impact on patient quality of life, KPS scores at each clinical stage were analyzed by the Friedman test. The Cox or Fine-Gray proportional hazards model [15] was employed, as appropriate, to investigate prognostic factors for OS and local tumor control rates. Prognostic candidates were selected with reference to previous studies [9,10,16,17]. A statistical processing software package, the "R" version 3.0.1 (The R Foundation for Statistical Computing, Vienna, Austria), was used for all statistical analyses. A P-value < 0.05 was considered to indicate a statistically significant difference.

Results

The median follow-up was 9.0 months and no patients were lost to follow-up. At the time of assessment, 11 patients (19%) were alive and 47 (81%) had died. One- and 2-year OS rates were 47% (95% CI: 34–59) and 20% (95% CI: 10–32), respectively (Figure 1a). The median OS time was 11.8 months (95% CI: 5.5–15.6). The proportional hazards model for OS is shown in Table 3. Controlled systemic disease (HR: 0.151, 95% CI: 0.057–0.405, $P < 0.001$), short interval from diagnosis to SRS (HR: 0.274, 95% CI: 0.127–0.593, $P = 0.001$) and a single BM (HR: 0.330, 95% CI: 0.166–0.656, $P = 0.002$) were identified as favorable prognostic factors independently predicting OS rates. The causes of death were local progression of large BM in 5 patients, meningeal carcinomatosis in 3 and progression of the primary lesion in 39. One- and 2-year ND-free survival rates were 91% (95% CI: 82–97) and 84% (95% CI: 73–93), respectively (Figure 1a).

In total, 52 of the 61 large BM (85%) had sufficient radiological follow-up data, and local tumor control rates were evaluated using these data because 9 patients died from extra-CNS progression before the first MR imaging follow-up examination could be performed.

Table 2 Radiosurgical parameters

Parameters	Median values (range)	
	1st SRS	2nd SRS
Tumor volume (mL)	16.4 (10.0–56.1)	8.9 (2.3–42.6)
Prescribed isodose volume (mL)	18.4 (10.8–56.7)	11.7 (3.6–45.9)
Prescribed dose (Gy)	14 (10–16)	14 (10–15)
Prescribed isodose (%)	45 (40–52)	45 (40–60)
Maximum dose (Gy)	31.1 (20–38.1)	29.2 (22.2–35.7)
D95 (Gy)	14.7 (10.2–18.6)	15.0 (9.6–17.5)

SRS = stereotactic radiosurgery, D95 = the dose 95% of the target volume receives.
Fourteen large BM were eventually diagnosed as local control failures at a median of 6.2 months (range: 1.0-14.5) after the initial session. Six- and 12-month local tumor control rates were 85% and 64%, respectively (Figure 1b). The proportional hazards model demonstrated TV decrease by more than half between two sessions to be the sole factor predicting higher local tumor control (HR: 0.087 95% CI: 0.009-0.832, \(P < 0.034\)) (Table 4). Salvage SRS was carefully applied for 8 large BM diagnosed as local recurrences. Although local control was achieved again in 6 cases, one of the remaining two continued to show tumor growth and the other developed the complication of delayed radiation injury, described in detail below. Microsurgery was required for three patients at a median of 4.9 months after the initial SRS (range: 1.0-14.7). Salvage WBRT was required in three patients at a median of 14.4 months after the initial SRS (range: 7.6-21.1) due to the subsequent development of multiple BM and/or leptomeningeal dissemination.

In all 49 patients with post-SRS neuroimaging follow-up, neurological status was evaluated at each visit. The mean KPS improved significantly from 70 (95% CI: 65–75) at the 1st session to 82 (95% CI: 78–87) at 2nd; the first follow-up mean KPS score was 87 (95% CI: 83–92) (\(P < .001\), Friedman test) (Figure 2). Eighteen of 22 patients whose pre-SRS KPS had decreased to less than 70 regained their independence in activities of daily living (KPS of 70 or more). On the other hand, four patients showed worsening of KPS at the first post-SRS evaluation. In two of these cases, deterioration was due to systemic disease progression while the others suffered persistent neurological symptoms.

As to adverse effects, there were no cases with NCI-CTCAE grade 4 toxicities in the current series. Two patients had transient emesis, and both required brief hospitalization for intravenous steroid administration (CTCAE grade 3 toxicity). Symptomatic delayed radiation injury developed and necessitated conservative treatment in three patients (CTCAE grade 3 toxicity), eventually showing clinical and radiological stabilization. Of these, a woman who received salvage SRS for local recurrence of large BM needed further repeat bevacizumab treatment for refractory radiation injury, but this management ultimately had to be discontinued because of progressive anemia probably related to the bevacizumab.

Discussion

BM currently represent an important cause of cancer morbidity and mortality. The rationalized use of surgical resection, WBRT and SRS is key to successful treatment. Surgical resection has been a mainstay for large BM causing neurological deficits secondary to a mass effect, and this strategy can immediately eliminate neurological symptoms [18]. The combined approach of microsurgery followed by adjuvant radiotherapy has been recommended, if feasible, as means of decreasing both local and remote recurrence [19-22]. However, radical surgical resection of metastatic brain tumors in deep or eloquent locations may not necessarily be feasible because of the potential for neurological complications. Other factors such as a patient age, systemic disease progression and short life expectancy may make invasive treatment an unattractive option. SRS has been proved to be a safe
Table 3 Analysis of factors predicting patient survival after 2-session SRS (Cox proportional hazards model)

Covariate	Hazard ratio (95% CI)	P value
Young (≤ 65 y/o)	0.591 (0.299-1.17)	0.310
High KPS (≥ 90)	0.803 (0.437-1.48)	0.480
Controlled Extra-CNS disease	0.151 (0.057-0.405)	< .001
Short interval from cancer diagnosis to SRS (≤ 12 months)	0.274 (0.127-0.593)	0.001
Single BM	0.330 (0.169-0.656)	0.002

SRS = stereotactic radiosurgery, CI = confidence interval, KPS = Karnofsky performance status, CNS = central nervous system, BM = brain metastasis.

Table 4 Analysis of factors predicting local tumor control after 2-session SRS (Fine-Gray proportional hazards model)

Covariate	Hazard ratio (95% CI)	P value
Prior local treatment	2.48 (0.489-12.5)	0.270
Large tumor volume (> 20 mL)	0.600 (0.119-3.01)	0.530
High cumulative dose (> 30 Gy as D95)	0.261 (0.068-1.01)	0.051
Significant tumor volume decrease at 2nd session	0.087 (0.009-0.832)	0.034

SRS = stereotactic radiosurgery, CI = confidence interval, D95 = the dose 95% of the target volume receives.
failure based on the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines is stricter than that in other studies, where tumor size on follow-up gadolinium-enhanced MR images is compared with that at the time of treatment [4,17]. Such strict diagnostic criteria contributed to making this treatment strategy relevant, because salvage SRS could be applied in a timely manner when close image monitoring led to early detection of local recurrence. In fact, eight patients needed salvage SRS for local recurrence of large BM, and six of these were successfully managed. As the time-dependent curve of local tumor control indicated, local recurrences of large BM tended to be observed mostly within the first year after 2-session SRS and durable tumor control could be expected beyond this period. This means that vigilant follow-up in the first year after SRS is crucial for successful management of large BM. In the present series, a decrease in TV by more than half between the two sessions was the sole factor predicting the appropriate management of delayed symptomatic radiation injury [30,31].

The results of the present study must be interpreted with caution. As mentioned above, there is inherent selection bias because this was an open-label and single arm study. Thus the current study cannot address the potential role of SRS in comparison to surgical resection, the current standard of care for large BM. It is likely that patients with relatively mild neurological symptoms despite large intracranial tumors were assigned to 2-session SRS. In our opinion, the use of 2-session SRS should be limited to carefully selected patients who are ineligible for surgical resection and/or standard radiotherapy.

Conclusion

The present results confirm those of our earlier study. Two-session SRS for large BM in selected patients provided substantial neurological palliation with a low incidence of acute toxic effects. Long-term follow-up showed that two-session SRS achieved durable tumor control rates as well as acceptable treatment-related morbidity. Although only limited conclusions can be drawn from our study results, this treatment method merits being offered to patients with large BM who are in poor condition or are otherwise ineligible for standard care.
Abbreviations
BM: Brain metastases; SRS: Stereotactic radiosurgery; KPS: Karnofsky performance status; OS: Overall survival; ND: Neurological death; SRT: Stereotactic radiotherapy; RPA: Recursive partitioning analysis; CNS: Central nervous system; WBRT: Whole brain radiotherapy; MR: Magnetic resonance; CT: Computed tomography; LQ: Linear quadratic; TV: Tumor volume; CTCAE: Common terminology criteria for adverse events; RECIST: Response evaluation criteria in solid tumors.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SY performed the radiosurgical management of these patients and prepared the manuscript. MH provided critical review of the manuscript for important intellectual content. Both authors read and approved the final manuscript.

Acknowledgements
We are grateful to Bierta Barfod, M.D., M.P.H. for her help with the important intellectual content. Both authors read and approved the final manuscript.

Author details
1Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan. 2Saitama Gamma Knife Center, San-ai Hospital, Saitama, Japan.

Received: 29 April 2014 Accepted: 29 May 2014 Published: 10 June 2014

References
1. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Faman N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumours and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 2000, 47:291–298.
2. Wiggenraad R, Verbeek-de Kanter A, Kal HB, Taphoorn M, Vissers T, Struikmans H. Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol 2011, 98:292–297.
3. Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiat Oncol 2006, 81:18–24.
4. Higuchi Y, Serizawa T, Nagasco O, Matsuda S, Ono J, Sato M, Iwadate Y, Saei N. Three-dose stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int J Radiat Oncol Biol Phys 2009, 74:1543–1548.
5. Kim YJ, Cho KH, Kim JY, Lim YK, Min HS, Lee SH, Kim HJ, Gwak HS, Yoo H, Lee SH: Single-dose versus fractionated stereotactic radiotherapy for brain metastasis. Int J Radiat Oncol Biol Phys 2011, 81:483–489.
6. Fokas E, Hensel M, Surber G, Kleinert G, Hamm K, Engenhart-Cabillic R. Stereotactic radiosurgery and fractionated stereotactic radiotherapy: comparison of efficacy and toxicity in 260 patients with brain metastases. J Neurooncol 2012, 109:91–98.
7. Wegner RE, Leeman JE, Kabolizadeh P, Rwigema JC, Mintz AH, Burton SA, Heron DE. Fractionated Stereotactic Radiosurgery for Large Brain Metastases. Am J Clin Oncol 2013.
8. Oemann EK, Kess MA, Todd JV, Collins BT, Hoffman R, Chaudhry H, Collins SP, Morris D, Ewend MG. The impact of radiosurgery fractionation and tumor radiobiology on the local control of brain metastases. J Neurosurg 2013, 119:311–134.
9. Yomo S, Hayashi M, Nicholson C. A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors. J Neurooncol 2012, 109:159–165.
10. Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, McKenna WG, Byhardt R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997, 37:467–751.
11. Brenner DJ, Martel MK, Hall EJ. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. Int J Radiat Oncol Biol Phys 1991, 21:819–824.
12. Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 2014, 88:254–262.
13. Hirabayashi T, Tsuyuguchi N, Iwai Y, Yamakawa K, Higashiyama S, Takamori R, Ohata K: Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008, 49:694–699.
14. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 1988, 16:1141–1154.
15. Fine JP, Gray RJ. A proportional hazards model for the subdivision of a competing risk. J Am Stat Assoc 1999, 94:495–509.
16. Yang HC, Kano H, Lunsford LD, Niranjan A, Flickinger JC, Kondziolka D: What factors predict the response of larger brain metastases to radiosurgery? Neurosurgery 2011, 68:682–690. discussion 690.
17. Han JH, Kim DG, Kim CY, Chung HT, Jung HW: Stereotactic radiosurgery for large brain metastases. Prog Neurol Surg 2012, 25:248–260.
18. Kalkanis SN, Kondziolka D, Gaspar LE, Tandberg E, Flickinger JC, Lunsford LD, Lacey J, Byhardt R. Stereotactic radiosurgery for large brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2010, 96:33–43.
19. Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, Marksberry WR, Foon KA, Young B: Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 1998, 280:1485–1489.
20. Kocher M, Soffetti R, Ablaciouli U, Valla S, Fauchon F, Baumert B, Farsett L, Truc-Shina T, Kortmann RD, Carrie C, Ben Hassel M, Kouri M, Valenius E, van den Berge D, Collette S, Collette L, Mueller RP: Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 2011, 29:134–141.
21. Robbins JR, Ryu S, Kalkanis S, Cogan C, Rock J, Movas B, Kim JH, Rosenblum ML: Radiosurgery to the surgical cavity as adjuvant therapy for resected brain metastasis. Neurosurgery 2012, 71:937–943.
22. Minniti G, Esposito V, Clarke E, Scaringi C, Lanzetta G, Salvati M, Raco A, Bozza A, Maurizi Enrico: Multidose stereotactic radiosurgery (9 Gy x 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys 2013, 86:623–629.
23. Serafina A, Ng B, Devitt M, Babb JS, Kawashima N, Formielli SC: Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 2014, 89:395–401.
24. Sugie C, Shibamoto Y, Ito M, Ogino H, Miyamoto A, Fukaya N, Niimi H, Hashizume T: Radiobiologic effect of intermittent radiation exposure in murine tumors. Int J Radiat Oncol Biol Phys 2005, 63:591–597.
25. Fuku Z, Kolesnik R: Engaging the vascular component of the tumor response. Cancer cell 2005, 8:909–91.
26. Sugie C, Shibamoto Y, Ito M, Ogino H, Miyamoto A, Fukaya N, Niimi H, Hashizume T: Radiobiologic effect of intermittent radiation exposure in murine tumors. Int J Radiat Oncol Biol Phys 2006, 64:591–624.
27. Lee CC, Yen CP, Xu Z, Schlesinger D, Sheehan J: Large intracranial metastatic tumors treated by Gamma Knife surgery: outcomes and prognostic factors. J Neurosurg 2014, 120:52–59.
28. Sharpton SR, Oemmann EK, Moore DT, Schreiber E, Hoffman R, Morris DE, Ewend MG: The volumetric response of brain metastases after stereotactic radiosurgery and its post-treatment implications. Neurosurgery 2014, 74:9; discussion 16; quiz 16.
29. Sperduto PW, Berkley B, Gaspar LE, Mehta M, Curran W: A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys 2008, 70:510–514.
30. Levin VA, Bidaout L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF: Randomized double-blind
placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2011, 79:1487–1495.

31. Deibert CP, Ahluwalia MS, Sheehan JP, Link MJ, Hasegawa T, Yomo S, Feng WH, Li P, Flickinger JC, Lunsford LD, Kondziolka D. Bevacizumab for refractory adverse radiation effects after stereotactic radiosurgery. J Neurooncol 2013, 115:217–223.

doi:10.1186/1748-717X-9-132
Cite this article as: Yomo and Hayashi: A minimally invasive treatment option for large metastatic brain tumors: long-term results of two-session Gamma Knife stereotactic radiosurgery. Radiation Oncology 2014 9:132.