Critical line of 2+1 flavor QCD: Toward the continuum limit

Paolo Cea
Dipartimento di Fisica dell’Università di Bari and INFN - Sezione di Bari, I-70126 Bari, Italy

Leonardo Cosmai
INFN - Sezione di Bari, I-70126 Bari, Italy

Alessandro Papa
Dipartimento di Fisica dell’Università della Calabria
and INFN - Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy

(Dated: November 6, 2018)

We determine the continuum limit of the curvature of the pseudocritical line of QCD with \(n_f = 2+1 \) staggered fermions at nonzero temperature and quark density. We perform Monte Carlo simulations at imaginary baryon chemical potentials, adopting the HISQ/tree action discretization, as implemented in the code by the MILC collaboration. Couplings are adjusted so as to move on a line of constant physics, as determined in Ref. [1], with the strange quark mass \(m_s \) fixed at its physical value and a light-to-strange mass ratio \(m_l/m_s = 1/20 \). The chemical potential is set at the same value for the three quark species, \(\mu_q = \mu_s = \mu \). We attempt an extrapolation to the continuum using the results on lattices with temporal size up to \(L_t = 12 \). Our estimate for the continuum value of the curvature \(\kappa \) at zero baryon density, \(\kappa = 0.020(4) \), is compared with recent lattice results and with experimental determinations of the freeze-out curve.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw

INTRODUCTION

The phase diagram of strongly interacting matter in the temperature \((T)\) - baryon density plane remains a challenge for theoretical physics. Although there is little doubt that it features a low-temperature hadronic phase, with broken chiral symmetry, and a high-temperature deconfined phase, with restored chiral symmetry, the question about the precise location and the exact nature of the transition between these two phases is still open. Yet, the answer to this question has many phenomenological implications: the region of the phase diagram with high \(T \) and small baryon density is relevant for the physics of the early Universe, whereas the region of low \(T \) and high baryon density is interesting for the astrophysics of some compact objects, but other corners of the phase diagram are not less interesting (see Ref. [2] for an overview).

Relativistic heavy-ion collisions provide us with a unique opportunity to infer properties of the transition: depending on the energy of the ion beams and on the mass number of the colliding ions, the fireball generated in the collision could fulfill the temperature and baryon density conditions under which the deconfined phase appears as a transient state, before the system freezes out into hadrons, which are then detected. Thermal-statistical models, assuming approximate chemical equilibrium at the chemical freeze-out point, are able to describe the particle yields at a given collision energy in terms of two parameters only, the freeze-out temperature \(T \) and the baryon chemical potential \(\mu_B \). The collection of freeze-out parameters extracted from experiments with different collision energy lie on a curve in the \((T, \mu_B)\)-plane, extending up to \(\mu_B \lesssim 800 \text{ MeV} \) (see Fig. 1 of Ref. [3] or Ref. [4] for a recent re-analysis of experimental data).

Quantum ChromoDynamics (QCD) is widely accepted as the theory of strong interactions and, as such, must encode all the information needed to precisely draw the phase diagram in the \((T, \mu_B)\)-plane. As a matter of fact, only some corners of it can be accessed by first-principle applications of QCD, in the perturbative or in the nonperturbative regime. Here we focus on the lattice approach of QCD, based on the idea of discretizing the theory on a Euclidean space-time lattice and simulating it by Monte Carlo numerical simulations as a statistical system, with Boltzmann weight given by \(\exp(-S_E) \), where \(S_E \) is the QCD Euclidean action. The region of the phase diagram where \(\mu_B/(3T) \lesssim 1 \) is within the reach of this approach and one can therefore address, at least inside this region, the problem of determining the shape taken by the QCD pseudocritical line separating the hadronic from the deconfined phase.

There is no \textit{a priori} argument for the coincidence of the QCD pseudocritical line with the chemical freeze-out curve: if the deconfined phase is realized in the fireball, in cooling down the system first re-hadronizes, then reaches the chemical freeze-out. This implies that the freeze-out curve lies below the pseudocritical line in the \(\mu_B-T \) plane. It is a common working hypothesis that the delay between chemical freeze-out and rehadronization is so short that the two curves lie close to each other and can therefore be compared. Under the assumptions of charge-conjugation invariance at \(\mu_B = 0 \) and analyticity around this point, the QCD pseudocritical line, as well as...
the freeze-out curve, can be parameterized, at low baryon densities, by a lowest-order expansion in the dimensionless quantity $\mu_B/T(\mu_B)$, as

$$T(\mu_B) = T_c(0) - \kappa \left(\frac{\mu_B}{T_c(0)} \right)^2 + \ldots,$$

where $T_c(0)$ and κ are, respectively, the pseudocritical temperature and the curvature at vanishing baryon density.

Direct Monte Carlo simulations of lattice QCD at nonzero baryon density are hindered by the well known “sign problem”; S_E becomes complex and the Boltzmann weight loses its sense. Several ways out of this problem have been devised (see Ref. [5] for a review): redesigning the Monte Carlo updating algorithms for a complex weight loses its sense. Several ways out of this problem has been devised (see Ref. [5] for a review): redesigning the Monte Carlo updating algorithms for a complex weight loses its sense. Several ways out of this problem has been devised (see Ref. [5] for a review): redesigning the Monte Carlo updating algorithms for a complex weight.

Taylor expanding the relevant observables around $\mu_B = 0$, Taylor expanding the relevant observables around $\mu_B = 0$, Taylor expanding the relevant observables around $\mu_B = 0$, Taylor expanding the relevant observables around $\mu_B = 0$, using the canonical formulation \[11, 12\], using the density of states method \[13\] and simulating the theory at imaginary chemical potentials and performing the analytic continuation to real ones \[14-21\].

The numerical evidence gathered so far in QCD with $n_f = 2 + 1$ physical and or almost physical quark masses points to a scenario with a smooth crossover between the hadronic and the deconfined (or chirally symmetric) phase at $\mu_B = 0$, with a pseudocritical temperature $T_c(0)$ of about 155 MeV \[1, 22\]. This crossover behavior should persist in some neighborhood of $\mu_B = 0$, up to the onset of a first-order transition at some value of $\mu_B > 0$.

The state-of-the-art of lattice determinations of the curvature κ, up to the very recent papers of Ref. \[20, 21\], is summarized in Fig. 10 of Ref. \[19\]: depending on the lattice setup and on the observable used to probe the transition, the value of κ can change even by almost a factor of three. The lattice setup dependence stems from the kind of adopted discretization, the lattice size, the choice of quark masses and chemical potentials, the procedure to circumvent the sign problem. This dependence would totally disappear if, ideally, all groups would use the same lattice setup. A contribution to the understanding of the impact of the lattice setup dependence is provided in the Appendix B of Ref. \[19\]. The dependence on the probe observable is, instead, irreducible: since a smooth crossover is taking place rather than a true phase transition, one cannot define a bona fide order parameter whose behavior would permit to uniquely locate the transition point; instead, for any adopted surrogate observable, a different transition point should be expected, at least in principle.

On the side of the determinations of the freeze-out curve, two recent determinations \[3, 4\] of κ, both based on the thermal-statistical model, but the latter of them including the effect of inelastic collisions after freeze-out, give two quite different values of κ, each seeming to prefer a different subset of lattice results (see Fig. 3 of Ref. \[18\] for a snapshot of the situation).

The aim of this work is to contribute to a better understanding of the systematics underlying lattice determinations of the curvature κ, by corroborating our previous determination \[18\] with an extrapolation to the continuum limit and by comparing it with experimental analyses of the freeze-out curve.

Our lattice setup is as follows. We simulate the HISQ/tree action of the MILC collaboration with 2+1 staggered fermions on lattices with temporal extension $L_t = 6, 8, 10$ and 12 and aspect ratio equal to four. We work on the line of constant physics (LCP) as determined in Ref. \[1\], with the strange mass set at the physical value and the light quark mass fixed at $m_l = m_s/20$. As discussed in Ref. \[1\], this amounts to tune the strange quark mass until the mass of the fictitious $\eta_{s\bar{s}}$ meson matches the lowest order perturbation theory estimate $m_{\eta_{s\bar{s}}} = \sqrt{2m_{K}^2 - m_{\pi}^2}$. Consequently within our simulations the pion mass is $m_\pi \simeq 160$ MeV.

We perform simulations at imaginary quark chemical potentials, assigning the same value to the three quark species, $\mu_q = \mu_s = \mu$, then extrapolate to real chemical potentials. Our probe observables are the disconnected susceptibility of the light quark chiral condensate and its renormalized counterpart. Simulating the theory at imaginary chemical potentials poses no restriction on the lattice size or in the choice of the couplings. However, the periodicity in $\text{Im}(\mu) / T$ of the partition function \[23\] implies that the information gathered outside a narrow interval of imaginary chemical potentials is redundant. For the setup with $\mu_l = \mu_s = \mu$, this interval can be chosen as the region $0 \leq \text{Im}(\mu) / T \leq \pi / 3$. A safe extrapolation of the critical line to real chemical potentials requires that it exhibits a smooth dependence on imaginary chemical potential over this interval, a condition which must be checked to be satisfied a posteriori by our data.

The preference to the disconnected susceptibility of the light quark chiral condensate has multiple motivations \[1\]. First of all, for small enough quark masses, its contribution to the chiral susceptibility dominates over the connected one, which is harder to compute; then, it shows a strong sensitivity to the transition; finally, it is exempt from additive renormalization, undergoing only a multiplicative one. This translate into a very precise determination of the critical couplings at imaginary μ, which is the main prerequisite of a safe extrapolation to the real values of μ.

There are two main limitations in our setup. The first is that we work with a physical strange quark mass, but with light quarks a bit heavier than physical ones. Numerical results in $n_f = 2$ indicate a mild dependence of the curvature on the quark mass (see the discussion in Sec. III of Ref. \[17\]). If the same applies here, as we believe, our result for κ will only slightly underestimate (in
SIMULATION DETAILS AND NUMERICAL RESULTS

We perform simulations of lattice QCD with 2+1 flavors of rooted staggered quarks at imaginary quark chemical potential. We have made use of the HISQ/tree action as implemented in the publicly available MILC code, which has been suitably modified by us in order to introduce an imaginary quark chemical potential $\mu = \mu_B/3$. That has been done by multiplying all forward and backward temporal links entering the discretized Dirac operator by exp($i\alpha\mu$) and exp($-i\alpha\mu$), respectively: in this way, the fermion determinant is still real and positive, so that standard Monte Carlo methods can be applied. As already remarked above, in the present study we have $\mu = \mu_t = \mu_s$. This means that the Euclidean partition function of the discretized theory reads

$$Z = \int [DU]e^{-S_{\text{gauge}}} \prod_{q=u,d,s} \det(D_q[U,\mu])^{1/4},$$

where S_{gauge} is the Symanzik-improved gauge action and $D_q[U,\mu]$ is the staggered Dirac operator, modified as explained above for the inclusion of the imaginary quark chemical potential $\mu = \mu_B/3$. (See Ref. [23] and appendix A of Ref. [26] for the precise definition of the gauge action and the covariant derivative for highly improved staggered fermions).

All simulations make use of the rational hybrid Monte Carlo (RHMC) algorithm. The length of each RHMC trajectory has been set to 1.0 in molecular dynamics time units.

We have simulated the theory at finite temperature, and for several values of the imaginary quark chemical potential, near the transition temperature, adopting lattices of size $16^3 \times 6, 24^3 \times 6, 32^3 \times 8, 40^3 \times 10$ and $48^3 \times 12$. We have discarded typically not less than one thousand trajectories for each run and have collected from 4k to 8k trajectories for measurements.

The pseudocritical point $\beta_c(\mu^2)$ has been determined as the value for which the renormalized disconnected susceptibility of the light quark chiral condensate divided by T^2 exhibits a peak. The bare disconnected susceptibility is given by:

$$\chi_{l,\text{disc}} = \frac{n_f^2}{16L_s^3L_t} \left\{ \left(\langle TrD_q^{-1} \rangle^2 - \langle TrD_q^{-1} \rangle^2 \right) \right\}, \quad (3)$$

Here $n_f = 2$ is the number of light flavors and L_s denotes the lattice size in the space direction. The renormalized chiral susceptibility is defined as:

$$\chi_{l,\text{ren}} = \frac{1}{Z_{m}^2} \chi_{l,\text{disc}}. \quad (4)$$

The multiplicative renormalization factor Z_m can be deduced from an analysis of the line of constant physics for the light quark masses. More precisely, we have [26]:

$$Z_m(\beta) = \frac{m_l(\beta)}{m_l(\beta^*)}, \quad (5)$$

where the renormalization point β^* is chosen such that:

$$\frac{r_1}{a(\beta^*)} = 2.37, \quad (6)$$

where the function $a(\beta)$ is discussed below. In Fig. 1 is shown the multiplicative renormalization factor Z_m determined in the case when r_1 is used to set the scale (see below). To precisely localize the peak in $\chi_{l,\text{ren}}/T^2$, a Lorentzian fit has been used. For illustrative purposes, in Fig. 2 we display our determination of the pseudocritical couplings at $\mu/(\pi T) = 0.2i$ for all lattices considered in this work. The complete collection of results for the disconnected susceptibility of the light quark chiral condensate obtained in this work is presented in the Appendix.

To get the ratios $T_c(\mu)/T_c(0)$, we fix the lattice spacing through the observables r_1 and f_K, following the discussion in the Appendix B of Ref. [1]. For the r_1 scale the lattice spacing is given in terms of the r_1 parameter as:

$$\frac{a}{r_1}(\beta)_{m_l=0.05m_s} = \frac{c_0 f(\beta) + c_2 (10/\beta) f^3(\beta)}{1 + d_2 (10/\beta) f^2(\beta)}, \quad (7)$$

with $c_0 = 44.06$, $c_2 = 272102$, $d_2 = 4281$, $r_1 = 0.3106(20)$ fm.

On the other hand, in the case of the f_K scale we have:

$$a f_K(\beta)_{m_l=0.05m_s} = \frac{c_{f_f}(\beta) + c_{f_f}(10/\beta) f^3(\beta)}{1 + d_{f_f} (10/\beta) f^2(\beta)}, \quad (8)$$
with $c_0^K = 7.66$, $c_2^K = 32911$, $d_2^K = 2388$, $r_1 f_K \simeq 0.1738$.
In Eqs. (7) and (8), $f(\beta)$ is the two-loop beta function,
\[f(\beta) = (b_0(10/\beta))^{-b_1/(2\beta^2)} \exp(-\beta/(2b_0)) , \tag{9} \]
b_0 and b_1 being its universal coefficients.

Our results are summarized in Table I. For all lattice sizes but $24^3 \times 6$ (where we have only one value of μ), the behavior of $T_c(\mu)/T_c(0)$ can be nicely fitted with a linear function in μ^2,
\[T_c(\mu)/T_c(0) = 1 + R_q \left(\frac{i\mu}{\pi T_c(\mu)} \right)^2, \tag{10} \]
which gives us access to the curvature R_q and, hence, to the curvature parameter $\kappa = -R_q/(9\pi^2)$ introduced in Eq. (1). On the $24^3 \times 6$ lattice the linearity in μ^2 has been assumed to hold, in order to extract R_q from the only available determination at $\mu/(\pi T) = 0.2i$.

For the sake of the extrapolation to the continuum limit, in Fig. 3 we report our determinations of R_q on the lattices $24^3 \times 6$, $32^3 \times 8$, $40^3 \times 10$, $48^3 \times 12$, and from the two different methods to set the scale, versus $1/L_t^2$.
Within our accuracy, cutoff effects on R_q are negligible, so that a constant fit works well over the whole region ($\chi^2 \simeq 0.99$), thus including also the smallest $24^3 \times 6$ lattice. Taking into account the uncertainties due to the continuum limit extrapolation,
\[\kappa = 0.020(4). \tag{11} \]
Our estimate of the uncertainties for the curvature given in Eq. (11) takes into account both the error in the fit minimization and the choice of the minimization function. We stress, however, that if we exclude from the fit the value on the lattice with the smallest L_t, i.e. the rightmost points in Fig. 3, the extrapolation to the continuum becomes largely undetermined. Indeed, with the values of R_q obtained in the present work (see Table III), the fit with a constant is rather stable even if $L_t = 6$ is excluded, but the fit with a linear function in $1/L_t^2$ in the latter case gives a much smaller value of the curvature κ, though with a large uncertainty (see Table III).

CONCLUSIONS AND DISCUSSION

We have studied QCD with $n_f = 2 + 1$ flavors discretized in the HISQ/tree rooted staggered fermion formulation and in the presence of an imaginary baryon chemical potential, with a physical strange quark mass and a light-to-strange mass ratio $m_l/m_s = 1/20$, and $\mu = \mu_l = \mu_s$.

We have estimated, by the method of analytic continuation, the continuum limit of the curvature of the pseudocritical line in the temperature - baryon chemical potential, defined in Eq. (1). The observable adopted to identify, for each fixed μ, the crossover temperature has been the disconnected part of the renormalized susceptibility of the light quark chiral condensate, in units of the squared temperature. This observable is convenient for many reasons: it dominates, for small enough
TABLE I. Summary of the values of the ratio $T_c(\mu)/T_c(0)$ for the imaginary quark chemical potentials μ considered in this work. The data for $\mu = 0$ on the $24^3 \times 6$, $32^3 \times 6$ and $48^3 \times 12$ lattices have been estimated from the disconnected chiral susceptibilities reported respectively on Tables X, XI and XII of Ref. [28]. The values of $T_c(\mu)/T_c(0)$ have been estimated from the disconnected chiral susceptibilities reported on Table XI of Ref. [28]. The values of $T_c(\mu)/T_c(0)$ evaluated fixing the lattice scale by r_1 and f_K are reported, respectively, in the third and in the fourth column of the table.

lattice	$\mu/(\pi T)$	$T_c(\mu)/T_c(0)$ (r_1 scale)	$T_c(\mu)/T_c(0)$ (f_K scale)
$16^3 \times 6$	0.15i	1.038(13)	1.043(14)
	0.2i	1.063(15)	1.070(15)
	0.25i	1.085(16)	1.095(18)
$24^3 \times 6$	0.2i	1.061(9)	1.067(10)
$32^3 \times 8$	0.15i	1.054(7)	1.059(8)
	0.2i	1.066(10)	1.071(11)
	0.25i	1.117(10)	1.126(10)
$40^3 \times 10$	0.15i	1.023(23)	1.024(24)
	0.2i	1.075(14)	1.079(15)
	0.25i	1.102(15)	1.107(15)
$48^3 \times 12$	0.15i	1.013(31)	1.013(33)
	0.2i	1.051(14)	1.052(15)
	0.25i	1.094(26)	1.097(25)

quark masses, the whole light chiral susceptibility, which would be much harder to implement; it undergoes only a multiplicative renormalization; it is strongly sensitive to the transition, thus allowing precise determinations of the pseudocritical temperatures.

We have found that, within the accuracy of our determinations, cutoff effects on the curvature are negligible already on the lattice with temporal size $L_t = 6$. Our determination of the curvature parameter, $\kappa = 0.020(4)$, is indeed compatible with the value quoted in our previous paper [18], $\kappa = 0.018(4)$, without the extrapolation to the continuum.

It is interesting to extrapolate the critical line as determined in this work to the region of real baryon density and compare it with the freeze-out curves resulting from a few phenomenological analyses of relativistic heavy-ion collisions. This is done in Fig. 4 where we report two different estimates. The first is from the analysis of Ref. [3], based on the standard statistical hadronization model, where the freeze-out curve is parametrized as

$$ T_c(\mu_B) = a - b\mu_B^2 - c\mu_B^4, \quad (12) $$

with $a = 0.166(2)$ GeV, $b = 0.139(16)$ GeV$^{-1}$, and $c = 0.053(21)$ GeV$^{-3}$. The second estimate is from Ref. [29] and is based on the analysis of susceptibilities of the (conserved) baryon and electric charges. In fact, our critical line is in nice agreement with all the freeze-out points of Refs. [3, 29]. In particular, using our estimate of the curvature, Eq. (11), we get $b = 0.128(25)$ GeV$^{-1}$, in very good agreement with the quoted phenomenological value. The significance of the comparison presented in Fig. 4 with special reference to the question whether the pseudocritical line lies indeed above the freeze-out curve, can be increased at the (nonnegligible) price of reducing the uncertainties on $T_c(0)$ and on κ.

Some caveats are in order here. We do not expect our critical line to be reliable too far from $\mu = 0$: as a rule of thumb, we can trust it up to real quark chemical potentials of the same order of the modulus of the largest imaginary chemical potential included in the fit (10), i.e. $|\mu|/(\pi T) = 0.25$. This translates to real baryon chemical potentials in the region $\mu_B \lesssim 0.4$ GeV. Moreover, the effect of taking $\mu_s = \mu_l$ instead of $\mu_s < \mu_l$ should become visible on the shape of the critical line as we move away from $\mu = 0$ in the region of real baryon densities, thus reducing further the region of reliability of our critical line. So, from a prudential point of view, the agreement shown in Fig. 4 could be considered the fortunate combination of different kinds of systematic effects. We cannot however exclude the possibility that the message from Fig. 4 is to be interpreted in positive sense, i.e. the setup we adopted and the observable we considered may catch better some features of the crossover transition, thus explaining the nice comparison with freeze-out data. Indeed, our result for the continuum extrapolation of the curvature κ is in fair agreements with the recent es-
TABLE II. Summary of determinations of the curvature R_q for all values of L_t considered in this work, and from the two different methods to set the scale.

L_t	R_q (r$_1$ scale)	κ (r$_1$ scale)	R_q (f$_K$ scale)	κ (f$_K$ scale)
6	$-1.466(306)$	$0.017(3)$	$-1.646(336)$	$0.019(4)$
8	$-1.902(192)$	$0.021(2)$	$-2.041(206)$	$0.023(2)$
10	$-1.685(294)$	$0.019(3)$	$-1.769(309)$	$0.020(3)$
12	$-1.337(410)$	$0.015(5)$	$-1.394(415)$	$0.016(5)$

TABLE III. Summary of the fit of the curvature κ with the function $\kappa(L_t) = \kappa + A/L_t^2$, with A taken equal to zero or left free. The first column specifies the values of L_t included in the fit, the last column the reduced χ^2. The uncertainties on the fit parameters are obtained with 70% confidence level.

L_t included	κ	A	χ^2
6, 8, 10, 12	$0.01991(114)$	0	0.76
6, 8, 10, 12	$0.02014(449)$	$-0.015(259)$	0.89
8, 10, 12	$0.02048(127)$	0	0.80
8, 10, 12	$0.01182(748)$	$0.669(559)$	0.14

FIG. 4. $T_c(\mu_B)$ versus μ_B (units in GeV). Experimental values of $T_c(\mu_B)$ are taken from Fig. 1 of Ref. [3] (black circles) and from Fig. 3 of Ref. [29] (green triangles), for the standard hadronization model and for the susceptibilities of conserved charges respectively. The dashed line is a parametrization corresponding to $T_c(\mu_B) = T_c(0) - b\mu_B^2$ with $T_c(0) = 0.154(9)$ GeV and $b = 0.128(25)$ GeV$^{-1}$. The solid lines represent the corresponding error band.

ACKNOWLEDGMENTS

This work was in part based on the MILC collaboration’s public lattice gauge theory code. See http://physics.utah.edu/~detar/milc.html. This work has been partially supported by the INFN SUMA project. Simulations have been performed on BlueGene/Q at CINECA (Projects Iscra-B/EXQCD and INF14_npqcd), on the BC2S cluster in Bari and on the CSNIV Zefiro cluster in Pisa.

Appendix: Summary of data for the disconnected susceptibility of the light quark chiral condensate

In this Appendix (Tables XV through XVI), we summarize all the results for the disconnected chiral susceptibility obtained in our simulations for each considered value of the coupling β and for the corresponding physical temperature, as determined from the two different procedures to set the scale.

[1] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et al., Phys.Rev. D85, 054503 (2012), arXiv:1111.1710 [hep-lat].
[2] M. Stephanov, PoS LAT2006, 024 (2006), arXiv:hep-lat/0701002 [hep-lat].
[3] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys.Rev. C73, 034905 (2006), arXiv:hep-ph/0511094 [hep-ph].
[4] F. Becattini, M. Bleicher, T. Koleszar, T. Schuster, J. Steinheimer, et al., Phys.Rev.Lett. 111, 082302 (2013), arXiv:1212.2431 [nucl-th].
[5] O. Philipsen, PoS LAT2005, 016 (2006), arXiv:hep-lat/0510077 [hep-lat].
[6] C. Schmidt, ibid. LAT2006, 021 (2006), arXiv:hep-lat/0610116 [hep-lat].
[7] P. de Forcrand, ibid. LAT2009, 010 (2009),

paolo.cea@ba.infn.it
leonardo.cosmai@ba.infn.it
papa@cs.infn.it
TABLE IV. Data for the disconnected chiral susceptibility on the $16^3 \times 6$ lattice at $\mu/(\pi T) = 0.150i$; the second column gives χ_{disc} defined in Eq. (3), the fourth and sixth columns give χ_{ren}/T^2, with χ_{ren} defined in Eq. (4) and the temperature T (columns three and five, respectively) determined by the two different methods to set the scale.

β	χ_{disc}	T(MeV)	χ_{ren}/T^2	T(MeV)	χ_{ren}/T^2
		(μ_1 scale)		(f_K scale)	
6.000	0.939 (0.114)	147.3	25.5 (3.1)	138.2	27.7 (3.4)
6.050	0.495 (0.134)	154.6	14.0 (3.8)	145.8	15.0 (4.1)
6.100	1.133 (0.145)	162.3	33.2 (4.3)	153.8	35.4 (4.5)
6.125	1.260 (0.089)	166.3	37.6 (2.6)	158.0	39.8 (2.8)
6.150	1.273 (0.079)	170.4	38.6 (2.4)	162.3	40.7 (2.5)
6.175	1.187 (0.086)	174.6	36.6 (2.7)	166.7	38.4 (2.8)
6.195	1.093 (0.107)	178.1	34.1 (3.3)	170.2	35.6 (3.5)
6.200	0.944 (0.100)	178.9	29.5 (3.1)	171.1	30.8 (3.3)

TABLE V. Data for the disconnected chiral susceptibility on the $16^3 \times 6$ lattice at $\mu/(\pi T) = 0.200i$ (legend as in Table IV).

β	χ_{disc}	T(MeV)	χ_{ren}/T^2	T(MeV)	χ_{ren}/T^2
		(μ_1 scale)		(f_K scale)	
6.100	1.010 (0.105)	162.3	29.6 (3.1)	153.8	31.5 (3.3)
6.125	1.026 (0.063)	166.3	30.6 (1.9)	158.0	32.4 (2.0)
6.150	1.135 (0.081)	170.4	34.4 (2.5)	162.3	36.3 (2.6)
6.175	1.208 (0.095)	174.6	37.2 (2.9)	166.7	39.1 (3.1)
6.200	1.191 (0.093)	178.9	37.3 (2.9)	171.1	38.9 (3.0)
6.225	0.915 (0.095)	183.4	29.0 (3.0)	175.8	30.2 (3.2)
6.250	0.814 (0.078)	187.9	26.2 (2.5)	180.5	27.1 (2.6)
TABLE VI. Data for the disconnected chiral susceptibility on the $16^3 \times 6$ lattice at $\mu/(\pi T) = 0.250i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	$T (\text{MeV})$ (τ_1 scale)	$\chi_{l,\text{ren}}/T^2$	$T (\text{MeV})$ (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.150	0.899 (0.096)	170.4	27.3 (2.9)	162.3	28.8 (3.0)
6.180	1.089 (0.064)	175.5	33.7 (2.0)	167.5	35.3 (2.1)
6.186	1.078 (0.063)	176.5	33.5 (2.6)	168.6	35.0 (2.7)
6.200	1.117 (0.067)	178.9	34.0 (1.8)	171.1	35.6 (2.2)
6.250	0.784 (0.066)	187.9	25.2 (2.1)	180.5	26.1 (2.2)
6.300	0.561 (0.051)	197.3	18.5 (1.7)	190.2	19.0 (1.7)
6.350	0.189 (0.047)	207.2	6.4 (1.6)	200.5	6.5 (1.6)

TABLE VII. Data for the disconnected chiral susceptibility on the $24^3 \times 6$ lattice at $\mu/(\pi T) = 0.200i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	$T (\text{MeV})$ (τ_1 scale)	$\chi_{l,\text{ren}}/T^2$	$T (\text{MeV})$ (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.120	0.916 (0.107)	165.5	27.3 (3.2)	157.2	28.9 (3.4)
6.150	1.106 (0.136)	170.4	33.6 (4.1)	162.3	35.4 (4.4)
6.165	0.849 (0.079)	172.9	26.0 (2.4)	164.9	27.3 (2.5)
6.180	1.084 (0.073)	175.5	33.5 (2.3)	167.5	35.1 (2.4)
6.195	1.288 (0.078)	178.1	40.2 (2.4)	170.2	42.0 (2.3)
6.210	1.159 (0.087)	180.7	36.5 (2.7)	173.0	38.0 (2.9)
6.225	1.244 (0.098)	183.4	39.5 (3.1)	175.8	41.8 (3.2)
6.240	1.030 (0.070)	186.1	33.0 (2.2)	178.6	34.2 (2.3)
6.250	0.979 (0.160)	188.8	31.6 (5.1)	181.4	32.7 (5.3)
6.270	0.692 (0.062)	191.6	22.5 (2.0)	184.3	23.2 (2.1)
6.300	0.430 (0.038)	197.3	14.2 (1.2)	190.2	14.6 (1.3)
TABLE VIII. Data for the disconnected chiral susceptibility on the $32^3 \times 8$ lattice at $\mu/(\pi T) = 0.150$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T (MeV)	$\chi_{l,\text{ren}}/T^2$	T (MeV)	$\chi_{l,\text{ren}}/T^2$
6.415	0.646 (0.073)	165.5	39.7 (4.5)	160.9	40.1 (4.6)
6.424	0.730 (0.047)	167.0	45.0 (2.9)	162.4	45.5 (3.0)
6.429	0.780 (0.035)	167.8	48.2 (2.2)	163.2	48.6 (2.2)
6.436	0.865 (0.059)	169.0	53.6 (3.7)	164.4	54.1 (3.7)
6.450	0.962 (0.047)	171.3	59.8 (3.0)	166.8	60.3 (3.0)
6.460	0.883 (0.070)	173.0	55.1 (4.4)	168.6	55.4 (4.4)
6.470	0.776 (0.060)	174.6	48.6 (3.8)	170.3	48.8 (3.8)

TABLE IX. Data for the disconnected chiral susceptibility on the $32^3 \times 8$ lattice at $\mu/(\pi T) = 0.200$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T (MeV)	$\chi_{l,\text{ren}}/T^2$	T (MeV)	$\chi_{l,\text{ren}}/T^2$
6.390	0.585 (0.073)	161.7	35.6 (4.4)	156.8	36.2 (4.5)
6.423	0.751 (0.048)	166.8	46.3 (3.0)	162.2	46.8 (3.0)
6.445	0.757 (0.051)	170.4	47.0 (3.2)	166.0	47.4 (3.2)
6.460	0.834 (0.058)	173.0	52.1 (3.6)	168.6	52.4 (3.7)
6.475	0.808 (0.051)	175.5	50.7 (3.2)	171.2	50.9 (3.2)
6.488	0.860 (0.053)	177.7	54.2 (3.3)	173.5	54.3 (3.3)
6.515	0.565 (0.045)	182.4	35.8 (2.8)	178.3	35.8 (2.8)
6.550	0.420 (0.039)	188.7	26.9 (2.5)	184.8	26.8 (2.5)

[23] A. Roberge and N. Weiss, Nucl.Phys. B275, 734 (1986)
[24] E. Follana et al. (HPQCD Collaboration, UKQCD Collaboration), Phys.Rev. D75, 054502 (2007), arXiv:hep-lat/0610092 [hep-lat]
[25] A. Bazavov et al. (MILC), Rev. Mod. Phys. 82, 1349 (2010), arXiv:0903.3598 [hep-lat]

[26] A. Bazavov et al. (MILC collaboration), Phys.Rev. D82, 074501 (2010), arXiv:1004.0342 [hep-lat]
[27] http://physics.utah.edu/~detar/milc.html
[28] A. Bazavov et al. (HotQCD), Phys.Rev. D90, 094503 (2014), arXiv:1407.6387 [hep-lat]
[29] P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. Mantovani Sarti, et al., Phys.Lett. B738, 305 (2014), arXiv:1403.4903 [hep-ph]
TABLE X. Data for the disconnected chiral susceptibility on the $32^3 \times 8$ lattice at $\mu/(\pi T) = 0.250i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T(MeV) (r_1 scale)	$\chi_{l,\text{ren}}/T^2$	T(MeV) (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.420	0.613 (0.055)	166.4	37.7 (3.4)	161.7	38.2 (3.4)
6.455	0.555 (0.044)	172.1	34.6 (2.7)	167.7	34.8 (2.7)
6.490	0.792 (0.053)	178.1	49.9 (3.4)	173.8	50.0 (3.4)
6.525	0.753 (0.051)	184.2	47.8 (3.3)	180.2	47.8 (3.3)
6.560	0.568 (0.030)	190.6	36.5 (2.0)	186.7	36.3 (1.9)

TABLE XI. Data for the disconnected chiral susceptibility on the $40^3 \times 10$ lattice at $\mu/(\pi T) = 0.150i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T(MeV) (r_1 scale)	$\chi_{l,\text{ren}}/T^2$	T(MeV) (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.550	0.444 (0.043)	151.0	44.4 (4.3)	147.9	44.3 (4.3)
6.606	0.570 (0.070)	159.4	57.9 (7.1)	156.5	57.4 (7.0)
6.648	0.524 (0.037)	165.9	53.6 (3.8)	163.2	53.0 (3.8)
6.690	0.525 (0.048)	172.7	54.1 (4.9)	170.2	53.3 (4.8)
6.732	0.402 (0.035)	179.8	41.7 (3.6)	177.4	41.0 (3.5)

TABLE XII. Data for the disconnected chiral susceptibility on the $40^3 \times 10$ lattice at $\mu/(\pi T) = 0.200i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T(MeV) (r_1 scale)	$\chi_{l,\text{ren}}/T^2$	T(MeV) (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.575	0.420 (0.042)	154.7	42.3 (4.3)	151.7	42.0 (4.2)
6.600	0.425 (0.047)	158.4	43.1 (4.8)	155.5	42.7 (4.7)
6.630	0.407 (0.043)	163.1	41.6 (4.4)	160.3	41.1 (4.3)
6.655	0.525 (0.057)	167.0	53.8 (5.8)	164.4	53.1 (5.8)
6.680	0.550 (0.067)	171.1	56.7 (6.9)	168.5	55.8 (6.8)
6.730	0.481 (0.051)	179.4	49.9 (5.3)	177.1	49.0 (5.2)
6.775	0.297 (0.037)	187.3	31.0 (3.9)	185.1	30.4 (3.8)

TABLE XIII. Data for the disconnected chiral susceptibility on the $40^3 \times 10$ lattice at $\mu/(\pi T) = 0.250i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T(MeV) (r_1 scale)	$\chi_{l,\text{ren}}/T^2$	T(MeV) (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.645	0.386 (0.060)	165.4	39.5 (6.1)	162.7	39.0 (6.1)
6.664	0.368 (0.041)	168.5	37.8 (4.2)	165.8	37.3 (4.1)
6.714	0.552 (0.064)	176.7	57.2 (6.6)	174.3	56.3 (6.5)
6.764	0.421 (0.059)	185.3	43.9 (6.1)	183.1	43.0 (6.0)
6.810	0.193 (0.051)	193.6	20.2 (5.3)	191.5	19.8 (5.2)

TABLE XIV. Data for the disconnected chiral susceptibility on the $48^3 \times 12$ lattice at $\mu/(\pi T) = 0.150i$ (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	T(MeV) (r_1 scale)	$\chi_{l,\text{ren}}/T^2$	T(MeV) (f_K scale)	$\chi_{l,\text{ren}}/T^2$
6.780	0.242 (0.052)	145.3	36.1 (7.7)	145.3	36.1 (7.7)
6.730	0.374 (0.047)	149.5	55.9 (7.1)	149.5	55.9 (7.1)
6.780	0.433 (0.063)	156.8	65.3 (9.5)	156.8	65.3 (9.5)
6.815	0.475 (0.111)	162.1	71.9 (16.8)	162.1	71.9 (16.8)
6.830	0.382 (0.036)	164.4	57.9 (5.5)	164.4	57.9 (5.5)
6.880	0.466 (0.068)	172.3	71.1 (10.4)	172.3	71.1 (10.4)
6.930	0.247 (0.027)	180.5	37.8 (4.1)	180.5	37.8 (4.1)
6.980	0.191 (0.032)	189.1	29.3 (4.9)	189.1	29.3 (4.9)
TABLE XV. Data for the disconnected chiral susceptibility on the $48^3 \times 12$ lattice at $\mu/(\pi T) = 0.200$; (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	$T/\text{(MeV)}$	$\chi_{l,\text{ren}}/T^2$/	$T/\text{(MeV)}$	$\chi_{l,\text{ren}}/T^2$
		$(r_1 \text{ scale})$	f_K scale $\chi_{l,\text{ren}}/T^2$		
6.770	0.376 (0.049)	155.3	56.5 (7.4)	153.5	55.3 (7.3)
6.804	0.357 (0.033)	160.4	54.0 (5.0)	158.6	52.8 (4.8)
6.864	0.487 (0.054)	169.7	74.2 (8.2)	168.1	72.2 (8.0)
6.924	0.249 (0.028)	179.5	38.1 (4.3)	178.1	37.0 (4.2)
6.975	0.129 (0.034)	188.3	19.8 (5.2)	186.9	19.2 (5.1)

TABLE XVI. Data for the disconnected chiral susceptibility on the $48^3 \times 12$ lattice at $\mu/(\pi T) = 0.250$; (legend as in Table IV).

β	$\chi_{l,\text{disc}}$	$T/\text{(MeV)}$	$\chi_{l,\text{ren}}/T^2$/	$T/\text{(MeV)}$	$\chi_{l,\text{ren}}/T^2$
		$(r_1 \text{ scale})$	f_K scale $\chi_{l,\text{ren}}/T^2$		
6.650	0.274 (0.044)	138.5	40.4 (6.5)	136.3	39.9 (6.4)
6.750	0.175 (0.054)	152.4	26.3 (8.1)	150.5	25.8 (8.0)
6.864	0.300 (0.042)	169.7	45.7 (6.3)	168.1	44.5 (6.2)
6.900	0.418 (0.043)	175.6	64.0 (6.6)	174.1	62.2 (6.4)
6.950	0.278 (0.037)	183.9	42.6 (5.6)	182.6	41.4 (5.4)
6.975	0.224 (0.025)	188.3	34.4 (3.8)	186.9	33.4 (3.7)
7.025	0.153 (0.018)	197.2	23.6 (2.7)	196.0	22.8 (2.6)