Chromo-Natural Inflation in the Axiverse

Ippei Obata1,2, Takashi Miura2,\dagger and Jiro Soda2,\ddagger

1Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
2Department of Physics, Kobe University, Kobe, 657-8501, Japan

(Dated: December 25, 2014)

Abstract

We study chromo-natural inflation in the axiverse. More precisely, we investigate natural inflation with two axions coupled with a SU(2) gauge field. Assuming a hierarchy between the coupling constants, we find that for certain initial conditions, conventional natural inflation commences and continues for tens of e-foldings, and subsequently chromo-natural inflation takes over from natural inflation. For these solutions, we expect that the predictions are in agreement with observations on CMB scales. Moreover, since chromo-natural inflation occurs in the latter part of the inflationary stage, chiral primordial gravitational waves are produced in the interesting frequency range higher than 10^{-10}Hz, which might be detectable by future gravitational wave observations.

PACS numbers: Valid PACS appear here
I. INTRODUCTION

As is well known, an inflationary scenario [1] resolves issues of the standard big-bang model such as the horizon problem and, more importantly, gives rise to explanation of the origin of the anisotropy of the cosmic microwave background radiation (CMB) and large scale structures of the universe. However, there exists no conclusive model for inflation based on particle physics. The difficulty stems from the fact that we need fine tunings of the inflaton potential to realize slow roll inflation and reconcile resultant predictions with observations. In fact, from particle physics point of view, it is difficult to keep these fine tunings against radiative corrections. Especially, the mass of a scalar field is quite sensitive to the quantum loop corrections. Thus, we need some symmetry to protect the potential from radiative corrections.

Natural inflation [2] is proposed as a solution of the fine-tuning problem. There, the shift symmetry of the axion protect the mass from radiative corrections. This symmetry slightly breaks down due to the non-perturbative quantum effect and consequently an appropriate periodic potential is generated. Provided a super-Planckian axion decay constant, it turned out that natural inflation can explain the CMB observations such as the spectral index [3]. Moreover, it accommodates a large tensor-to-scalar ratio \(r \gtrsim 0.1 \) reported by BICEP2 [4]. However, it would be difficult to realize the super-Planckian axion decay constant in the context of superstring theory or any other fundamental theory [5, 6]. To resolve the issue, we need models where the effective axion decay constant is super-Planckian although the actual axion decay constant is sub-Planckian. So far, all of the models proposed to achieve this aim resorted to multi-field generalization of natural inflation. For example, aligned inflation [7], monodromy inflation [8], and N-flation [9] can be categorized into natural inflation with multiple scalar fields. Extra natural inflation utilize a component of gauge fields [10]. Moreover, chromo-natural inflation [11] is natural inflation with a SU(2) gauge field where slow-roll inflation is realized by the coupling between the axion and the gauge field. This is also a kind of multi-field extension of natural inflation. Interestingly, apparently different gauge-flation model also belongs to this class [12–14] (see also a review [15]). Similar idea is also proposed for ablelian models [16].

Remarkably, chromo-natural inflation has a peculiar feature that sizable chiral gravitational waves can be produced during inflation. This happens because of the transient tachyonic instability due to the CP violating axion coupling to the gauge field. Note that the instability occurs only for one of the helicity modes because of CP violation. Note that this phenomenon appears in infla-
tion models which have an axion coupling not only with non-abelian but also with abelian gauge fields [17–21]. However, in the framework of chromo-natural inflation, either too much gravitational waves are produced or large non-Gaussianity of curvature perturbations are created during inflation. Indeed, there is no phenomenologically allowed region in the parameter space [19, 20]. Hence, it is legitimate to say chromo-natural inflation with a single axion is not viable from phenomenological point of view.

In the spirit of multi-field extension, however, it is natural to consider chromo-natural inflation with multiple axions. Indeed, there appear many axions with various decay constants and coupling constants in view of the superstring theory landscape, which is dubbed axiverse [22]. Recently, multi-natural inflation has been intensively studied [7, 9, 23]. Nevertheless, the effect of gauge fields is ignored in the setup of the multi-natural inflation. In this paper, we study chromo-natural inflation with two axions and investigate if sizable chiral gravitational waves can be produced without conflicting with CMB observations. In fact, we find that conventional natural inflation occurs on CMB scales, which enables us to circumvent large non-gaussianity and overproduction of gravitational waves on these scales. Moreover, we show that chromo-natural inflation commences after tens of e-foldings, which implies that chiral primordial gravitational waves become sizable in the interesting frequency range where pulsar timing observation and interferometer detectors are available for detection of them.

This paper is organized as follows: In section 2, we present a chromo-natural inflation model with two axion fields and derive equations of motions for the homogeneous fields. In section 3, we investigate the inflationary dynamics. We find that natural inflation occurs first and chromo-natural inflation takes over from natural inflation for a class of initial conditions. In section 4, we evaluate chiral primordial gravitational waves produced during inflation. It turns out that the amplitude of chiral gravitational waves is enhanced on small scales, which might be detectable by future observations. The final section is devoted to conclusion.

II. CHROMO-NATURAL INFLATION WITH TWO AXIOMS

In this section, we present an inflationary model in the axiverse and derive equations of background motions. Specifically, we consider two axionic fields \(\chi \) and \(\omega \) which couple with a SU(2) gauge field \(A_\mu^a \). The field strength of the gauge field \(F_{\mu\nu}^a \) is defined by

\[
F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g \epsilon^{abc} A_\mu^b A_\nu^c ,
\] (1)
where g is its gauge coupling constant and ϵ^{abc} is the Levi-Civita symbol whose components are structure constants of SU(2) gauge field. The action reads
\[
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} (\partial \mu \chi)^2 - \frac{1}{2} (\partial \nu \omega)^2 - V(\chi, \omega) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}^a - \frac{1}{4} \left(\lambda_1 \frac{\chi}{f} + \lambda_2 \frac{\omega}{h} \right) \tilde{F}^{\mu\nu} F_{\mu\nu}^a \right],
\]
(2)
where we used units $\hbar = c = 1$ and $M_{pl} = (8\pi G)^{-1/2} = 1$. Here, g is a determinant of a metric $g_{\mu\nu}$ (note that it is not related with the gauge coupling constant), R is a Ricci scalar, and (f, h) are decay constants of axions. The dual field strength tensor $\tilde{F}^{\mu\nu}$ is defined by
\[
\tilde{F}^{\mu\nu} = \frac{1}{2!} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}^a, \quad \epsilon^{0123} = \frac{1}{\sqrt{-g}}.
\]
(3)
We introduced coupling constants of axions to the gauge field λ_χ, λ_ω. Here, we assume that there exists a hierarchy between λ_χ and λ_ω value: $\lambda_\chi \sim O(1) \ll \lambda_\omega$. Then we can practically set $\lambda_\chi = 0$.
(4)
The potential for axions $V(\chi, \omega)$ is given by
\[
V(\chi, \omega) \equiv \mu_1^4 \left[1 - \cos \left(\frac{\chi}{f} \right) \right] + \mu_2^4 \left[1 - \cos \left(\frac{\omega}{h} \right) \right] \\
\equiv U(\chi) + W(\omega),
\]
(5)
where μ_1, μ_2 are dynamically generated energy scales. We assume that the energy scales of two axions are the same:
\[
\mu_1 = \mu_2 \equiv \mu.
\]
(6)
We verified that there is no qualitative difference even in the presence of the difference in energy scales as long as its hierarchy is not so large.

Let us consider homogeneous background dynamics in this set-up. As to the metric, we use a spatially flat metric
\[
ds^2 = -N(t)^2 dt^2 + a(t)^2 \delta_{ij} dx^i dx^j,
\]
(7)
where N is the lapse function and we set $N = 1$ after taking the variation of the action. The axions are homogeneous $\chi = \chi(t)$, $\omega = \omega(t)$. As a gauge condition, we choose the temporal gauge $A_0^a = 0$.
(8)
We also take an ansatz
\[
A_i^a = a(t) \phi(t) \delta_i^a,
\]
(9)
which is invariant under the diagonal transformation of the spatial rotation SO(3) and the SU(2) gauge symmetry. It is known that this configuration is dynamically stable [24]. Thus, their field strength \(F_{\mu \nu} \) can be deduced as

\[
F_{\alpha i}^a = \frac{d(a\phi)}{dt} \delta_i^a, \quad F_{ij}^a = g \varepsilon^{abc} A_i^b A_j^c = g a^2 \phi^2 \varepsilon_i^a.
\]

(10)

Substituting these configurations into the action, we obtain the following background action

\[
S = \int d^4x \frac{a^3}{N} \left[-3 \frac{\dot{a}^2}{a^2} + \frac{1}{2} \dot{\chi}^2 + \frac{1}{2} \dot{\omega}^2 - N^2 V + \frac{3}{2} \left(\frac{\dot{\phi}}{\phi} \right)^2 a^2 - \frac{3}{2} N^2 g^2 \phi^4 - 3Ng h \frac{\phi^2}{a} (a\phi) \right],
\]

(11)

where a dot denotes a derivative with respect to the cosmic time \(t \). Taking the variation with respect to \(N \) and setting \(N = 1 \) after the variation, we obtain the Hamiltonian constraint

\[
3H^2 = \frac{1}{2} \dot{\chi}^2 + \frac{1}{2} \dot{\omega}^2 + \frac{3}{2} \left(\frac{\dot{\phi}}{\phi} \right)^2 a^2 + \frac{3}{2} g^2 \phi^4 + V,
\]

(12)

where \(H \equiv \dot{a}/a \) is the Hubble parameter. The equations for inflatons and gauge fields read

\[
\ddot{\chi} + 3H \dot{\chi} + U_\chi = 0,
\]

(13)

\[
\ddot{\omega} + 3H \dot{\omega} + W_\omega = -3 \frac{\lambda_{\omega}}{h} g \phi^2 (\dot{\phi} + H\phi),
\]

(14)

\[
\ddot{\phi} + 3H \dot{\phi} + (H + 2H^2)\phi + 2g^2 \phi^3 = g \frac{\lambda_{\omega}}{h} \phi^2 \dot{\omega}.
\]

(15)

Here, we defined

\[
U_\chi \equiv \frac{dU}{d\chi} = \frac{\mu^4}{f} \sin \left(\frac{\chi}{f} \right), \quad W_\omega \equiv \frac{dW}{d\omega} = \frac{\mu^4}{h} \sin \left(\frac{\omega}{h} \right).
\]

(16)

The equation for the scale factor \(a(t) \) is given by

\[
\dot{H} = -\frac{1}{2} \dot{\chi}^2 - \frac{1}{2} \dot{\omega}^2 - (\dot{\phi} + H\phi)^2 - g^2 \phi^4.
\]

(17)

We can expect that \(\chi \) plays a role of inflaton for natural inflation, \(\omega \) becomes an inflaton for chromo-natural inflation. We will see that both types of inflation can occur for appropriate initial conditions.

III. AN INFLATIONARY DYNAMICS

In this section, we discuss an inflationary trajectory of this two-field inflation. We perform numerical calculations with the following sets of parameters: \((f, h, \mu, g, \lambda_{\omega}) = (5, 5 \times 10^{-4}, 10^{-2}, 10^{-3}, 1.5 \times 10^{3}) \). Note that this example is not the only way to realize our set-up.
We recall the property of each inflation at first. From (13) the slow-roll equation for χ reads
\[3H\dot{\chi} + U_{,\chi} \approx 0. \] (18)
This is a conventional single field slow-roll equation. If natural inflation is dominant, slow-roll parameters in terms of the potential are defined by
\[\epsilon_V \approx \frac{1}{2} \left(\frac{U_{,\chi}}{U} \right)^2, \quad \eta_V \approx \frac{U_{,\chi\chi}}{U}, \] (19)
where $U_{,\chi\chi}$ is the second order derivative of $U(\chi)$ with respect to χ. On the other hand, from Eqs. (14) and (15), slow-roll equations for ω and the gauge field read
\[3H\dot{\omega} + W_{,\omega} \approx -3\frac{\lambda}{h}\phi^2(\phi + H\phi), \] (20)
\[3H\dot{\phi} + 2H^2\phi + 2g^2\phi^3 \approx g\frac{\lambda}{h}\phi^2\dot{\omega}. \] (21)
Chromo-natural inflation happens when the “magnetic drift” term (the coupling term of axion to the gauge sector) is sufficiently large: $\lambda^2 g^2 \phi^4 \gg h^2 H^2$ (note that $g^2 \phi^4 \ll H^2$ during inflation). Then diagonalising (20) and (21) for $\dot{\omega}$ and $\dot{\phi}$, we obtain the slow-roll equations
\[\frac{\lambda}{h}\omega \approx -\frac{H W_{,\omega}}{\lambda g^2 \phi^4} - \frac{H^2}{g\phi} + 2g\phi, \] (22)
\[\dot{\phi} \approx -H\phi - \frac{h W_{,\omega}}{3\lambda g \phi^2}. \] (23)
Since ϕ is almost constant during chromo-natural inflation, its value becomes
\[\phi \approx \phi_{\text{min}} \equiv -\left(\frac{h W_{,\omega}}{3g\lambda H} \right)^{1/3}. \] (24)
Substituting the above value (24) into the first term in the right hand side of Eq. (22), we can deduce the slow-roll equation for ω as
\[\frac{\lambda}{h}\omega \approx 2g\phi + \frac{2H^2}{g\phi} \equiv -2H \left(1 + \frac{m_{\phi}^2}{m_{\phi}} \right), \] (25)
where we defined the following parameter
\[m_{\phi} \equiv \frac{g\phi}{H}. \] (26)
We show that this parameter is relevant to the chiral instability of gauge fluctuations and plays a crucial role for determining the amount of gravitational waves generated by gauge fields. From
these slow-roll conditions, if chromo-natural inflation is dominant, slow-roll parameters defined by the Hubble parameter are written by

\[\epsilon_H \approx \frac{h}{\lambda_\omega} \frac{1 + m_\phi^2 W_\omega}{W}, \quad (27) \]

\[\eta_H \approx \frac{h}{\lambda_\omega} \frac{1 + m_\phi^2 (2W_\omega - \frac{W_{\omega\omega}}{W})}{m_\phi}, \quad (28) \]

where \(W_{\omega\omega} \) is the second order derivative of \(W(\omega) \) with respect to \(\omega \).

Then we find that \(\dot{\omega} \) can be very small compared to \(\dot{\chi} \) due to the magnetic drift factor. In fact, we can approximate

\[\left| \frac{\dot{\omega}}{\dot{\chi}} \right| \approx \frac{2V}{U_\chi} \frac{h}{\lambda_\omega} \frac{1 + m_\phi^2}{m_\phi}, \quad (29) \]

where the factor \(h/\lambda_\omega \) must be small in order for chromo-natural inflation to occur. When the rate (29) is sufficiently small, the inflationary trajectory of this dynamics is almost along \(\chi \) direction, that is, natural inflation becomes dominant. Once the slow-roll conditions for \(\chi \) break down, the trajectory goes along \(\omega \) direction and chromo-natural inflation occurs. Thus, we expect that there exist the solutions which realize a natural inflation on CMB scales and a chromo-natural inflation on scales smaller than CMB scales. We can roughly estimate the number of e-foldings \(N_e \) as a sum of the number of e-foldings for each trajectory

\[N_e \equiv N_{e\chi} + N_{e\omega}, \quad (30) \]

where we defined

\[N_{e\chi} \equiv \int_{t_i}^{t_m} H dt, \quad (31) \]

\[N_{e\omega} \equiv \int_{t_m}^{t_f} H dt \approx \int_{\omega_m}^{\omega_f} \frac{H}{\dot{\omega}} d\omega. \quad (32) \]

Note that natural inflation becomes dominant during \(t_i < t < t_m \) and chromo-natural inflation occurs until \(t = t_f \). Unfortunately, it is difficult to evaluate \(N_{e\chi} \) analytically because both the dynamics of \(\chi \) and \(\omega \) are relevant in general. However, we can estimate \(N_{e\omega} \) from the attractor value (24) and the slow roll equation (25)

\[N_{e\omega} \approx -\int_{\tilde{\omega}_m}^{\tilde{\omega}_f} \frac{2^{2/3} 3^{2/3}}{3} \frac{H^{4/3} g^{2/3} \lambda_\omega^{4/3} H^{1/3} \sin \tilde{\omega}^{1/3}}{3^{1/3} g^{4/3} \mu^{8/3} \sin \tilde{\omega}^{2/3}} d\tilde{\omega}, \quad (33) \]

where \(\tilde{\omega} \equiv \omega/h \). We are interested in the solution where \(N_{e\omega} \lesssim N_{\text{COBE}} \equiv 50 \sim 60 \). Practically, we can set \(\tilde{\omega}_f \) zero. Thus, from (33), we can numerically deduce the condition \(\tilde{\omega}_m \lesssim 0.12\pi \) for the
parameters \((f, h, \mu, g, \lambda_\omega) = (5, 5 \times 10^{-4}, 10^{-2}, 10^{-3}, 1.5 \times 10^3)\). Fortunately, for small \(\tilde{\omega}\), the number of e-foldings \(N_{ew}\) can be estimated as

\[
N_{ew} \approx \int_{\omega_f}^{\tilde{\omega}_m} \frac{\tilde{\omega}}{2} \left[\frac{12 \mu^4 g^2 \lambda_\omega^4}{\mu^4} \right]^{1/3} \left[\log \left(1 + \left(\frac{\lambda_\omega \mu^4}{12 g^2} \right)^{2/3} \tilde{\omega}(t)^2 \right) \right] d\tilde{\omega},
\]

where

\[
\tilde{\omega}_m = \left. \frac{1}{4} \left(\frac{12 g^2 \lambda_\omega^2}{\mu^4} \right)^{1/3} \log \left(1 + \left(\frac{\lambda_\omega \mu^4}{12 g^2} \right)^{2/3} \tilde{\omega}(t_m)^2 \right) \right|_{\omega_f} \]

Substituting the parameters into above formula, we actually see inequality \(\tilde{\omega}_m \lesssim 0.12 \pi\) holds for achieving the condition \(N_{ew} \leq N_{COBE} = 50 \sim 60\).

As to the initial conditions for \(\chi\) and \(\omega\), we numerically find that there are many cases for which the inequality \(N_{ew} \leq N_{COBE}\) holds and natural inflation becomes dominant on CMB scales. In FIG I, we plotted the region in the space of initial conditions where the conditions \(N_e \gtrsim N_{COBE}\) and \(N_{ew} \lesssim N_{COBE}\) are satisfied.

![FIG. 1: The region (white) of initial values which satisfies conditions \(N_e \gtrsim N_{COBE}\) and \(N_{ew} \lesssim N_{COBE}\) under a restriction \(\pi/2 \leq \tilde{\chi}_i \leq 9\pi/10\) (\(\tilde{\chi}_i = \chi_i/f\)). The top blue line represents \(N_{ew} \sim N_{COBE}\) and bottom blue line is the lower bound which satisfies both \(N_{ew} \gtrsim 0\) and \(N_e \gtrsim N_{COBE}\). Hence in the middle white band we can find phenomenologically viable solutions with chiral gravitational waves.](image)

For these cases, we expect that chiral gravitational waves on CMB scales are suppressed and all other observational constraints are satisfied. The point is that the number of e-foldings corresponding to CMB scales mainly depends on \(\chi\) because \(\chi\) is dominant contribution of potential
energy compared to \(\omega \). This means that the adiabatic curvature perturbation is almost the same as that of natural inflation.

IV. CHIRAL GRAVITATIONAL WAVES

In the previous section, we found chromo-natural inflation can take over from the conventional natural inflation. Hence, we expect that sizable chiral gravitational waves are produced in the interesting range of frequencies, which might be detectable by interferometer detectors such as advanced LIGO \[25\] or KAGRA \[26\]. Let us examine if this actually occurs or not.

The metric with tensor perturbations reads

\[
ds^2 = a(\tau)^2 [-d\tau^2 + (\delta_{ij} + h_{ij})dx^i dx^j]
\]

(35)

where \(h_{ij} \) is transverse and traceless, \(h_{ii} = h_{ij}, j = 0 \). Using a new variable \(\psi_{ij} \equiv a(\tau)h_{ij} \), the quadratic action \(S_{EH} \) for the tensor perturbations is given by

\[
\delta S_{EH} = \int d^4x \frac{1}{2} \left[\frac{1}{4} \psi'^{ij} \psi_{ij} - \frac{1}{4} \psi^{ij,k} \psi_{ijk} - \left(\frac{3 a''}{4 a} - \frac{1}{2} \left(\frac{d}{a} \right)^2 \right) \psi^{ij} \psi_{ij} \right],
\]

(36)

where a prime represents a derivative with respect to a conformal time \(\tau \). From the action for the scalar field \(S_{scalar} \), we also have a contribution to the quadratic action for tensor perturbations

\[
\delta S_{scalar} = \int d^4x \left(-\frac{d^2}{4} \psi^{ij} \psi_{ij} \right) \left[\frac{1}{2a^2}(\chi'^2 + \omega'^2) - V \right].
\]

(37)

Next, we define the perturbation for the gauge field as follows:

\[
A^a_i = a\phi\delta^a_i + t^a_i,
\]

(38)

where \(t^a_i \) is also transverse and traceless, \(t^a_i = t^{ij}, j = 0 \). Note that we can treat the second term as a tensor since the index ”\(a \)” can be identified with the spatial index ”\(i \)”. Then, the action \(S_{gauge} \) for the gauge sector is given by

\[
\delta S_{gauge} = \int d^4x \left(-\frac{1}{4} \right) \left[-2t'^a_i t'^a_i - 2a^2 (a\phi)^2 \psi^{ij} \psi_{ij} + 4a (a\phi)' \psi^{ij} t'_{ij} + 2t^a_i t^a_i - 4g a\phi \epsilon^{abi} t^b_j t^a_i - 4g a\phi^2 \psi^{im} \epsilon^a_{ij} (t^a_{m,j} - t^a_{j,m}) - 4g^2 a^2 \phi^3 \psi^{ij} t_{ij} + \frac{3}{2} g^2 a^2 \phi^4 \psi^{ij} \psi_{ij} + \frac{\lambda_\omega}{f} \omega \left(2\epsilon^{ijk} t^a_i (t^a_j - t^a_k) - 2g (a\phi t^i_j) \right) \right].
\]

(39)
We can rewrite the total action in terms of Fourier components defined by
\[\psi_{ij}(x, \tau) = 2 \sum_{A=\pm} \int \frac{d^3k}{(2\pi)^3} e_{ij}^A(k) \psi_k^A(\tau)e^{ik \cdot x}, \]
\[t_{ij}(x, \tau) = \sum_{A=\pm} \int \frac{d^3k}{(2\pi)^3} e_{ij}^A(k) t_k^A(\tau)e^{ik \cdot x}, \]
where \(e_{ij}^A(k) \) are the polarisation tensors which satisfy the following normalization relation,
\[e_{ij}^A(k)e_{ij}^B(-k) = \delta^{AB}, \] and the index “\(A = \{ +, - \} \)” represents circular polarisation states defined by \(ik^i e^A_{ij}(k) = \pm k e^A_{am}(k) \). Thus, we get the following quadratic action for tensor perturbations
\[\delta S_{\text{tensor}} = \delta S_{\text{EH}} + \delta S_{\text{scalar}} + \delta S_{\text{gauge}} \]
\[= \frac{1}{2(2\pi)^3} \int d^3k d\tau \left[\frac{1}{2} \tilde{\psi}_k^{++} \tilde{\psi}_k^{++} - \frac{1}{2} k^2 \tilde{\psi}_k^{++} \tilde{\psi}_k^{++} + \frac{1}{2} \left(\frac{d''}{a} + 2 \left(\frac{a'}{a} \right) + \frac{\lambda}{a^2} - 2 g^2 a^2 \phi^4 \right) \tilde{\psi}_k^{++} \right]
+ \frac{1}{2(2\pi)^3} \int d^3k d\tau \left[\frac{1}{2} \tilde{t}_k^{+-} \tilde{t}_k^{+-} - \frac{1}{2} k^2 \tilde{t}_k^{+-} \tilde{t}_k^{+-} - \frac{\lambda}{a^2} \tilde{t}_k^{+-} \tilde{t}_k^{+-} + \frac{1}{2} \left(\frac{2 ga \phi + \frac{\lambda}{a} \phi}{h} \right) \tilde{t}_k^{+-} \right]
\equiv k g a \phi^2 (\tilde{\psi}_k^{++} + \tilde{t}_k^{+-}) + g^2 a^2 \phi^3 (\tilde{\psi}_k^{+-} + \tilde{t}_k^{++}) - \left(\frac{a'}{a} \right) \left(\frac{\tilde{\psi}_k^{++} + \tilde{t}_k^{+-}}{\tilde{\psi}_k^{++} + \tilde{t}_k^{+-}} \right). \]
Then, we get the equations of motion for tensor perturbations
\[\psi_k^{++} + \left(k^2 - \frac{a''}{a} - 2((\phi' + \frac{a'}{a} \phi)^2 - g^2 a^2 \phi^4) \right) \psi_k^{++} = -2 \left(\frac{a'}{a} \right) \phi \psi_k^{++}, \]
\[t_k^{+-} + \left(k^2 + \frac{\lambda}{a^2} \phi \right) \omega' + k \left(\frac{2 ga \phi + \frac{\lambda}{a} \phi}{h} \right) \omega' \right] \tilde{t}_k^{+-} = -2 \left(\frac{a'}{a} \right) \phi \tilde{t}_k^{+-}. \]
Now, we replace \(\tau \) with the following dimensionless parameter
\[x \equiv -k \tau. \]
Moreover, we can use the following slow-roll conditions
\[a(\tau) \approx -\frac{1}{H \tau}, \]
\[\phi' \approx 0, \]
\[\frac{\lambda}{a^2} \phi \approx \frac{1 + m^2}{m^2} Ha. \]
Then, (43) and (44) can be reduced to
\[\frac{d^2 \psi_k^{++}}{dx^2} + \left(1 - \frac{2}{x^2} - \frac{2}{x^2} (1 - m^2) \phi^2 \right) \psi_k^{++} \approx 2 \frac{\phi}{x} \frac{d \psi_k^{++}}{dx} + 2m \phi (m \pm x) \frac{\phi}{x} \psi_k^{++}, \]
\[\frac{d^2 \tilde{t}_k^{+-}}{dx^2} + \left(1 + \frac{m}{x^2} \right) \tilde{t}_k^{+-} \approx -2 \frac{\phi}{x} \frac{d \psi_k^{++}}{dx} + 2m \phi (m \pm x) \frac{\phi}{x} \psi_k^{++}, \]
where we defined

\[m \equiv 2(1 + m_\phi^2), \] \tag{51}
\[m_t \equiv 2\left(2m_\phi + \frac{1}{m_\phi}\right). \] \tag{52}

From these equations, we notice that the dynamics of tensor perturbations depends on the helicity. For the metric perturbations, we can neglect the term stemmed from gauge interactions in the left hand side of (49) since \(\phi \) is sufficiently smaller than Planck scale. Thus, the metric mode function is obtained as

\[
\psi^{\pm}_k(x) \approx \psi^{\pm}_{\text{vac}, k}(x) + 2 \int_0^\infty dx' G_{\text{vac}}(x, x') \left(\frac{\phi}{x'} \partial_x + m_\phi (m_\phi \pm x') \frac{\phi}{x'^2} \right) t^k_\pm(x'),
\] \tag{53}

where \(\psi^{\pm}_{\text{vac}, k}(x) \) is a mode fluctuation in de Sitter space,

\[
\frac{d^2 \psi^{\pm}_{\text{vac}, k}}{dx^2} + \left(1 - \frac{2}{x^2}\right) \psi^{\pm}_{\text{vac}, k} = 0,
\] \tag{54}

and \(G_{\text{vac}}(x, x') \) is its Green function,

\[
\left(\frac{d^2}{dx^2} + 1 - \frac{2}{x^2}\right) G_{\text{vac}}(x, x') = -\delta(x - x').
\] \tag{55}

Thus, the gravitational waves are sourced by the gauge fields. Hence, we need to know the dynamics of the gauge field perturbations. For simplicity, we ignore the backreaction of metric perturbations

\[
\frac{d^2 t^\pm_k}{dx^2} + \left(1 + \frac{m_t}{x^2} \pm \frac{m_t}{x}\right) t^\pm_k = 0.
\] \tag{56}

We can see that \(t^k_\pm \) has a tachyonic mass in the following time interval

\[
\frac{1}{2}(m_t - \sqrt{m_t^2 - 4m}) < x < \frac{1}{2}(m_t + \sqrt{m_t^2 - 4m}).
\] \tag{57}

Because of this instability, we can safely neglect the backreaction of metric perturbations.

It is easy to see the interval (57) depends on \(m_\phi \) and gets minimum value when \(m_\phi \approx 0.8 \). Thus we can expect that the dynamics of \(m_\phi \) determines the amount of chiral gravitational waves. Indeed, we found that \(m_\phi \) stays near the minimum \(m_\phi \approx 0.8 \) on CMB scales, so that we can avoid the overproduction of chiral gravitational waves. One may worry the stability of scalar fluctuations in chromo-natural inflation \([19, 20]\) . However, natural inflation occurs for the first tens of e-foldings in typical cases. Hence we would not need to worry about the instability.
FIG. 2: The time evolution of the gauge field $\phi(t)$ and $m_\phi(t)$ with $(\tilde{\chi}_i, \tilde{\omega}_i) = (\pi/2, \pi/9)$. Note that $\alpha(t)$ represents e-folds. It is depicted until $\alpha(t) \sim 50$. We see m_ϕ is small on CMB scales. Consequently, production of chiral gravitational waves is suppressed. Interestingly, m_ϕ increases during chromo-natural inflation.

The time evolutions of ϕ and m_ϕ are shown in FIG.2. Remarkably, we can see that m_ϕ gets large value after the end of natural inflation. Therefore, sizable chiral primordial gravitational waves will be produced, which implies the possibility of detecting chiral gravitational waves on small scales. We can see these features in FIG.3. In this numerical calculation, we approximately took the parameters (ϕ, m_ϕ) constant. From FIG.2 we can see that enhanced gravitational waves start to appear in chromo-natural stage ($\alpha(t) \sim 30$).

In the case of FIG.2 the chiral primordial gravitational waves are produced in the frequency range higher than 10^{-10} Hz. Its amplitude is enhanced by the factor 10^3. This gives rise to the density parameter $\Omega_{\text{grav}} = 10^{-10}$ around the pulsar timing scale. Actually, the density parameter Ω_{grav} is more large in the high frequency region from mHz to kHz. We can detect the signal definitely by the space interferometer detector DECIGO [27] or eLISA [28], possibly even by the pulsar timing array SKA [29], advanced LIGO, and KAGRA.

V. CONCLUSION

We studied chromo-natural inflation in the axiverse and discussed generation of chiral primordial gravitational waves. Concretely speaking, we investigated natural inflation with two axions...
FIG. 3: We plotted the time evolutions of the amplitude of “–” mode of metric tensor perturbations with \((\tilde{\chi}_i, \tilde{\omega}_i) = (\pi/2, \pi/9)\) for several \((\phi, m\phi)\) values: \((\phi, m\phi) = (\pi/2, 0.5)\) (blue line), \((\phi, m\phi) = (-0.035, 2)\) (red line) and \((\phi, m\phi) = (-0.038, 4)\) (yellow line). These values correspond to \(\alpha(t) \sim 10\), \(\alpha(t) \sim 20\) and \(\alpha(t) \sim 30\) (see FIG.2). For initial conditions, we impose the Bunch-Davies vacuum conditions as \(x \rightarrow \infty\). Note that the amplitude is normalized by the vacuum fluctuation and parameters \((\phi, m\phi)\) are fixed in this numerical calculation. The amplitude is close to the vacuum fluctuation on CMB scales while it gets large on smaller scales.

coupled with a SU(2) gauge field. We assumed hierarchy between the axion coupling constants to gauge fields. Note that the coupling constants need not be small, rather one of them should be large so that chromo-natural inflation occurs. We assumed the axion which has strong coupling constant to the gauge field is energetically sub-dominant initially. This is natural because there are many axions except for the one with strongly coupled axion. Then, we found that conventional natural inflation commences, continues for tens of e-foldings, and subsequently, chromo-natural inflation takes over from natural inflation. Since the role of gauge fields in the early stage is negligible, we expect that the predictions are in agreement with observations on CMB scales. Thus, we concluded that overproduction of chiral gravitational waves in chromo-natural inflation model can
be circumvented in the axiverse. This is because the parameter of the gauge field m_ϕ is sufficiently small during natural inflation. We also found that m_ϕ increases in the course of chromo-natural inflation, which implies that chiral gravitational waves are enhanced on small scales. Remarkably, the chiral primordial gravitational waves are produced in an interesting frequency range higher than 10^{-10}Hz, which might be detectable in future gravitational wave observations such as pulsar timing experiment using SKA, advanced LIGO, eLISA, and KAGRA. Although other mechanisms can also produce chiral primordial gravitational waves [17, 30], since the spectrum of primordial gravitational waves in chromo-natural inflation is distinctive, the observations at several different frequencies will be able to discriminate the chromo-natural inflation with two axions from others.

Note that we treated natural inflation with super-Planckian decay constant. However, by using the mechanism in [7, 23] where a combination of two axions is used, we are able to get an “effective” super-Planckian decay constant from two sub-Planckian decay constants. Hence, in the context of multi-field extension of natural inflation, our model is phenomenologically viable.

For future work, we need to analyze the spectrum of chiral gravitational waves in detail to compare the predictions with observations. We should also study scalar perturbations and explicitly check stability of natural inflation with two axions [19, 20]. Moreover, we will seek a way to embed the current model into fundamental theory. We leave these issues for future work.

Acknowledgments

We would like to thank Kei Yamamoto for fruitful discussions. This work was supported by Grants-in-Aid for Scientific Research (C) No.25400251 and Grants-in-Aid for Scientific Research on Innovative Areas No.26104708.

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981), A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[2] K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990).
[3] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. (2014) [arXiv:1303.5076 [astro-ph.CO]], G. Hinshaw et al. [MAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013) [arXiv:1212.5226 [astro-ph.CO]].
[4] P. A. R. Ade et al. [BICEP2 Collaboration], Phys. Rev. Lett. 112, 241101 (2014) [arXiv:1403.3985 [astro-ph.CO]].
[5] K. Freese and W. H. Kinney, Phys. Rev. D 70, 083512 (2004) [hep-ph/0404012].

[6] T. Banks, M. Dine, P. J. Fox and E. Gorbatov, JCAP 0306, 001 (2003) [hep-th/0303252].

[7] J. E. Kim, H. P. Nilles and M. Peloso, JCAP 0501, 005 (2005) [hep-ph/0409138].

[8] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003 (2008) [arXiv:0803.3085 [hep-th]].

[9] S. Dimopoulos, S. Kachru, J. McGreevy and J. G. Wacker, JCAP 0808, 003 (2008) [hep-th/0507205].

[10] N. Arkani-Hamed, H. C. Cheng, P. Creminelli and L. Randall, Phys. Rev. Lett. 90, 221302 (2003) [hep-th/0301218].

[11] P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302 (2012) [arXiv:1202.2366 [hep-th]]; E. Martinec, P. Adshead and M. Wyman, JHEP 1302, 027 (2013) [arXiv:1206.2889 [hep-th]].

[12] P. Adshead and M. Wyman, Phys. Rev. D 86, 043530 (2012) [arXiv:1203.2264 [hep-th]].

[13] M. M. Sheikh-Jabbari, Phys. Lett. B 717, 6 (2012) [arXiv:1203.2265 [hep-th]].

[14] A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Lett. B 723, 224 (2013) [arXiv:1102.1513 [hep-ph]].

[15] A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, Phys. Rept. 528, 161 (2013) [arXiv:1212.2921 [hep-th]].

[16] M. M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010) [arXiv:0908.4089 [hep-th]].

[17] A. Lue, L. M. Wang and M. Kamionkowski, Phys. Rev. Lett. 83, 1506 (1999) [astro-ph/9812088].

[18] L. Sorbo, JCAP 1106, 003 (2011) [arXiv:1101.1525 [astro-ph.CO]].

[19] P. Adshead, E. Martinec and M. Wyman, Phys. Rev. D 88, no. 2, 021302 (2013) [arXiv:1301.2598 [hep-th]].

[20] P. Adshead, E. Martinec and M. Wyman, JHEP 1309, 087 (2013) [arXiv:1305.2930 [hep-th]].

[21] S. Mukohyama, R. Namba, M. Peloso and G. Shiu, JCAP 1408, 036 (2014) [arXiv:1405.0346 [astro-ph.CO]].

[22] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, Phys. Rev. D 81, 123530 (2010) [arXiv:0905.4720 [hep-th]].

[23] R. Kappl, S. Krippendorf and H. P. Nilles, [arXiv:1404.7127 [hep-th]]; K. Choi, H. Kim and S. Yun, Phys. Rev. D 90, 023545 (2014) [arXiv:1404.6209 [hep-th]]; M. Czerny and F. Takahashi, Phys. Lett. B 733, 241 (2014) [arXiv:1401.5212 [hep-ph]]; M. Czerny, T. Higaki and F. Takahashi, JHEP 1405, 144 (2014) [arXiv:1403.0410 [hep-ph]].

[24] A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, JCAP 1201, 016 (2012) [arXiv:1109.5573 [hep-th]]; A. Maleknejad and E. Erfani, JCAP 1403, 016 (2014) [arXiv:1311.3361 [hep-th]].

[25] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker
and L. Sievers et al., Science 256, 325 (1992), B. P. Abbott et al. [LIGO Scientific Collaboration], Rept. Prog. Phys. 72, 076901 (2009) [arXiv:0711.3041 [gr-qc]].

[26] K. Somiya [KAGRA Collaboration], Class. Quant. Grav. 29, 124007 (2012) [arXiv:1111.7185 [gr-qc]], Y. Aso et al. [KAGRA Collaboration], Phys. Rev. D 88, no. 4, 043007 (2013) [arXiv:1306.6747 [gr-qc]].

[27] N. Seto, S. Kawamura and T. Nakamura, Phys. Rev. Lett. 87, 221103 (2001) [astro-ph/0108011], S. Kawamura, T. Nakamura, M. Ando, N. Seto, K. Tsubono, K. Numata, R. Takahashi and S. Nagano et al., Class. Quant. Grav. 23, S125 (2006), S. Kawamura, M. Ando, N. Seto, S. Sato, T. Nakamura, K. Tsubono, N. Kanda and T. Tanaka et al., Class. Quant. Grav. 28, 094011 (2011).

[28] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti, A. Bohe, C. Caprini and M. Colpi et al., GW Notes 6, 4 (2013) [arXiv:1201.3621 [astro-ph.CO]].

[29] C. L. Carilli and S. Rawlings, New Astron. Rev. 48, 979 (2004) [astro-ph/0409274].

[30] M. Satoh, S. Kanno and J. Soda, Phys. Rev. D 77, 023526 (2008) [arXiv:0706.3585 [astro-ph]]; C. R. Contaldi, J. Magueijo and L. Smolin, Phys. Rev. Lett. 101, 141101 (2008) [arXiv:0806.3082 [astro-ph]]; T. Takahashi and J. Soda, Phys. Rev. Lett. 102, 231301 (2009) [arXiv:0904.0554 [hep-th]].