ERRATUM

Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications

Sadiq Abiola Raji¹, Abimbola Patricia Idowu Popoola¹, Sisa Leslie Pityana¹,², Olawale Muhammed Popoola³,⁴, Fatai Olufemi Aramide¹,⁵, Monnamme Tlotleng², Nana Kwamina Kum Arthur²

¹Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa
²National Laser Centre, Council of Scientific and Industrial Research (NLC-CSIR), Pretoria, South Africa
³Department of Electrical Engineering, Tshwane University of Technology, Pretoria, South Africa
⁴Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, South Africa
⁵Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo State, Nigeria

Erratum to: Raji SA, Popoola API, Pityana SL, Popoola OM, Aramide FO, Tlotleng M, Arthur NKK. Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications. Rijeka: IntechOpen; 2019. DOI: 10.5772/intechopen.85538.

The publisher is correcting [1] following an authors’ request.

An error occurred with regard to the list of authors.

By publishing this erratum the publisher is adding two authors in the list of authors, who were by mistake omitted from the original chapter:
- Monnamme Tlotleng - National Laser Centre, Council of Scientific and Industrial Research (NLC-CSIR), Pretoria, South Africa;
- Nana Kwamina Kum Arthur - National Laser Centre, Council of Scientific and Industrial Research (NLC-CSIR), Pretoria, South Africa.

Changes have been made in online and print versions of the chapter.

This erratum is published in agreement with the authors.

The publisher regrets any inconvenience this might have caused to the readership.

References

[1] Raji SA, Popoola API, Pityana SL, Popoola OM, Aramide FO, Tlotleng M, Arthur NKK. Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications. Rijeka: IntechOpen; 2019. DOI: 10.5772/intechopen.85538.