Extrapolation of scattering data to the negative-energy region. III. Application to the p–^16O system
L. D. Blokhintsev, A. S. Kadyrov, A. M. Mukhamedzhanov, and D. A. Savin
Phys. Rev. C 98, 064610 — Published 26 December 2018
DOI: 10.1103/PhysRevC.98.064610
Extrapolation of scattering data to the negative-energy region. III. Application to the \(p-^{16}O \) system

L. D. Blokhintsev1,2,* A. S. Kadyrov3,† A. M. Mukhamedzhanov4,‡ and D. A. Savin1,§

1Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
2Pacific National University, Khabarovsk 680035, Russia
3Curtin Institute for Computation and Department of Physics and Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
4Cyclotron Institute, Texas A\&M University, College Station, Texas 77843, USA

The problem of analytic continuation of the scattering data to the negative-energy region to obtain information on asymptotic normalization coefficients (ANCs) of bound states is discussed. It is shown that a recently suggested \(\Delta \) method \cite{11} to use for the analytic continuation the quantity \(\Delta_l(E) \) (which is defined below in Section II) rather than the ERF \(K_l(E) \). The \(\Delta_l(E) \) function does not contain the pure Coulomb terms. We call the continuation method, which uses the \(\Delta \) function, the \(\Delta \) method. In \cite{11} this method is called the reduced ERF method.

Note that the validity of employing \(\Delta_l(E) \) was not obvious, which resulted in some discussion. The authors of Refs. \cite{12,13} claimed that they proved the mathematical correctness of the \(\Delta \) method. However, this assertion contradicts the results of Refs.\cite{11,14}.

In the present work, we consider the question of the validity and applicability of the \(\Delta \) method. It is shown that the \(\Delta \) method in the strict mathematical sense is not an analytic continuation of a partial-wave scattering amplitude to the region of negative energies, however, it can be used for practical purposes for sufficiently large charges and masses of colliding particles. Then both ERF and \(\Delta \) methods are employed to analyze the \(p-^{16}O \) system and determine the ANCs for ground and excited states of \(^{17}F \) and \(^{16}O \) system.

The paper is organized as follows. Section II contains the general formalism of the elastic scattering for the

*Electronic address: blokh@srdr.sinp.msu.ru
†Electronic address: a.kadyrov@curtin.edu.au
‡Electronic address: akram@comp.tamu.edu
§Electronic address: rhdp@mail.ru

I. INTRODUCTION

Using scattering data may give valuable information on the features of bound states, particularly on asymptotic normalization coefficients (ANCs), which, in contrast to binding energies, cannot be directly measured. The ANCs are fundamental nuclear characteristics that are important, for example, for evaluating cross sections of peripheral astrophysical nuclear reactions \cite{1-4}. One of the direct ways to extract ANCs from experimental data is the analytic continuation in the energy plane of the partial-wave elastic scattering amplitudes, obtained by the phase-shift analysis, to the pole corresponding to a bound state. Such a procedure, in contrast to the method of constructing optical potentials fitted to scattering data, allows one to circumvent an ambiguity problem associated with the existence of phase-equivalent potentials \cite{5,6}.

The conventional procedure for such extrapolation is the analytic approximation of the experimental values of the effective-range function (ERF) \(K_l(E) \) with the subsequent continuation to the pole position \((l \) is the orbital angular momentum). The ERF method has been successfully employed to determine the ANCs for bound (as well as resonant) nuclear states in a number of works (see, e.g. \cite{7-9} and references therein).

The ERF is expressed in terms of scattering phase shifts. In the case of charged particles, the ERF for the short-range interaction should be modified. Such modification generates additional terms in the ERF. These terms depend only on the Coulomb interaction and may far exceed, in the absolute value, the informative part of the ERF containing the phase shifts. This fact may hamper the practical procedure of the analytic continuation and affect its accuracy. It was suggested in Ref. \cite{10} to use for the analytic continuation the quantity \(\Delta_l(E) \) (which is defined below in Section II) rather than the ERF \(K_l(E) \). The \(\Delta_l(E) \) function does not contain the pure Coulomb terms. We call the continuation method, which uses the \(\Delta \) function, the \(\Delta \) method. In \cite{11} this method is called the reduced ERF method.

Note that the validity of employing \(\Delta_l(E) \) was not obvious, which resulted in some discussion. The authors of Refs. \cite{12,13} claimed that they proved the mathematical correctness of the \(\Delta \) method. However, this assertion contradicts the results of Refs.\cite{11,14}.

The problem associated with the existence of phase-equivalent potentials [5, 6].
superposition of a short-range and the Coulomb interactions which is necessary for the subsequent discussion. The validity and applicability of the Δ method is discussed in Sect. III. Experimental $p^{-16}\text{O}$ phase shifts are used to determine the ANCs for ^{17}F in Sect. IV. Throughout the paper we use the system of units in which $\hbar = c = 1$.

II. BASIC FORMALISM

In this section, we recapitulate basic equations which are necessary for the subsequent discussion. The Coulomb-nuclear amplitude of the elastic scattering of particles 1 and 2 is given by

$$f_{NC}(k) = \sum_{l=0}^{\infty} (2l+1) \exp(2i\sigma_l) \frac{\exp(2i\delta_l) - 1}{2ik} \frac{(2l)!}{\Gamma(l+1+2i\eta)} \, P_l(\cos \theta).$$ (1)

Here k is the relative momentum of particles 1 and 2, θ is the center of mass (c.m.) scattering angle, $\sigma_l = \arg \Gamma(l+1+i\eta)$ and δ_l are the pure Coulomb and Coulomb-nuclear phase shifts, respectively, and $\Gamma(z)$ is the Gamma function. The Coulomb parameter for the $1+2$ scattering state is given as

$$\eta = Z_1 Z_2 e^2 \mu / k,$$ (2)

where the relative momentum k is related to the relative energy of these particles E by $k = \sqrt{2\mu E}$, $\mu = m_1 m_2 / (m_1 + m_2)$, m_i and $Z_i e$ are the mass and the electric charge of particle i, $i = 1, 2$.

The behavior of the Coulomb-nuclear partial-wave amplitude $f_l = (\exp(2i\delta_l) - 1) / 2ik$ is irregular near $E = 0$. Therefore, one can introduce renormalized Coulomb-nuclear partial-wave amplitude \tilde{f}_l [16–18] according to

$$\tilde{f}_l = \exp(2i\sigma_l) \frac{\exp(2i\delta_l) - 1}{2ik} \left(\frac{(2l)!}{\Gamma(l+1+2i\eta)} \right)^2 e^{\pi \eta}. \quad (3)$$

Eq. (3) can be rewritten as

$$\tilde{f}_l = \frac{\exp(2i\delta_l) - 1}{2ik} C_l^{-2}(\eta), \quad (4)$$

where $C_l(\eta)$ is the Coulomb penetrability factor (or Gamow factor) determined by

$$C_l(\eta) = \left[\frac{2\pi \eta}{\exp(2\pi \eta) - 1} v_l(\eta) \right]^{1/2}, \quad (5)$$

$$v_l(\eta) = \prod_{n=1}^{l} (1 + \eta^2 n^2) \quad (l > 0), \quad v_0(\eta) = 1. \quad (6)$$

It was shown in Ref. [16] that the analytic properties of \tilde{f}_l on the physical sheet of E are analogous to the ones of the partial-wave scattering amplitude for the short-range potential and it can be analytically continued into the negative energy region.

The amplitude \tilde{f}_l can be expressed in terms of the Coulomb-modified ERF $K_l(E)$ [16, 18] by

$$\tilde{f}_l = \frac{k^{2l}}{K_l(E) - 2\eta k^{2l+1} h(\eta)v_l(\eta)} - \frac{k^{2l}}{k^{2l+1} C_l^2(\eta)(\cot \delta_l - i)}, \quad (7)$$

$$\h(\eta) = \psi(\eta) + \frac{1}{2\eta} - \ln(\eta), \quad (8)$$

$$\Delta_l(E) = k C_l^2(\eta) \cot \delta_l, \quad (9)$$

and $\psi(x)$ is the digamma function. $\Delta_l(E)$ is the Δ function introduced in [10]. It was shown in [16] that function $K_l(E)$ defined by Eq. (10) is analytic near $E = 0$ and can be expanded into a Taylor series in E. In the absence of the Coulomb interaction ($\eta = 0$), $K_l(E) = k^{2l+1} \cot \delta_l(k)$.

If the $1+2$ system has a bound state 3 $= (1 2)$ with the binding energy $\varepsilon > 0$ in the partial wave l, then the amplitude f_l has a pole at $E = -\varepsilon$. The residue of f_l at this point is expressed in terms of the ANC $C_{l3 \to 1+2}^{(l)}$ [17] as

$$\text{res} \tilde{f}_l(E) |_{E = -\varepsilon} = \lim_{E \to -\varepsilon} [(E + \varepsilon) \tilde{f}_l(E)]$$

$$= -\frac{1}{2\mu} \left[\frac{(l)!}{\Gamma(l+1+\eta_0)} \right]^2 \left[C_{l3 \to 1+2}^{(l)} \right]^2, \quad (10)$$

where $\eta_0 = Z_1 Z_2 e^2 \mu / k$ is the Coulomb parameter for the bound state 3 and κ is the bound-state wave number.

III. ON THE VALIDITY AND APPLICABILITY OF THE Δ METHOD

In this Section, we discuss general properties of the Δ method suggested in Ref. [10]. Within this method, one uses for the analytic continuation the quantity $\Delta_l(E)$ given by Eq. (12) rather than the ERF $K_l(E)$ of Eq. (10). The reasons for introducing the Δ method are outlined above in the introduction. However, the validity of employing $\Delta_l(E)$ was not obvious since $\Delta_l(E)$, in contrast to $K_l(E)$, possesses an essential singularity at $E = 0$.

For brevity, the subsequent formulas in this section are written for the s-wave case and index $l = 0$ is omitted. Nevertheless, all reasonings are valid for arbitrary l.

Consider the partial-wave amplitude f. We write

$$\tilde{f}(E) = \frac{1}{D(E)}, \quad (11)$$

where

$$D(E) = k C^2(\eta) \cot \delta - ik C^2(\eta) \equiv \Delta(E) - ig(E). \quad (12)$$
If the Coulomb interaction is switched off, then
\[C^2(\eta) = 1, \quad D(E) = k \cot \delta - ik. \] (17)

Denote \(E = E_+ \) if \(E > 0 \) and \(E = E_- \) if \(E < 0 \).

Note that \(ig(E_+) \) is pure imaginary. At \(E = 0 \) the latter has the essential and square-root singularities. On the other hand, \(ig(E_-) \) is complex. Also, \(\text{Im} \Delta(E_+^* - ig(E_+)) \) should be continued rather than only \(\Delta(E_+) \). Note that in the \(\Delta \) method \(\Delta(E_-^*) \) is approximated by polynomials or rational functions in \(E \) and then continued to \(E_- \) where the approximated \(\Delta(E_-^*) \) is equated to the whole denominator \(D(E_-) \) and the position of the pole of \(f(E) \) corresponding to a bound state is determined by the condition \(\Delta(E_-^*) = 0 \).

Obviously, such a procedure cannot be regarded as mathematically correct. In particular, it does not reproduce the square-root singularity (the normal threshold) of \(f(E) \) at \(E = 0 \). The analytic continuation of \(\Delta(E_-) \) thus obtained back to \(E_+ \) results in a wrong equation \(\text{Im} f(E_+) = 0 \).

We note, however, that in the case of a purely short-range interaction \(\text{Im} D(E_+) \) decreases as \(\sqrt{E} \) at \(E \to 0 \) and in the presence of a repulsive Coulomb potential it decreases exponentially:
\[\text{Im} D(E_+)|_{E \to 0} \approx e^{-\gamma/\sqrt{E}}, \quad \gamma = \pi \sqrt{\mu} Z_1 Z_2 e^2. \] (18)

And not only \(\text{Im} D(E_+) \) but all its derivatives tend to zero at \(E \to +0 \) as distinct from the case of neutral particles scattering. Hence, in the presence of the Coulomb interaction there is a range of values of \(E \) in the vicinity of \(E = 0 \) in which one can neglect \(\text{Im} D(E_+) \) and consider that \(D(E_+) \approx \Delta(E_+) \). Within this range \(D(E_+) \) can be approximated by a polynomial or a rational function of \(E \) and then continued to \(E_- \). The size of this range can be qualitatively determined by the condition
\[|E| \ll \gamma^2. \] (19)

The problem of the validity and applicability of the \(\Delta \) method was discussed in Refs. [11, 14, 19]. It was stated in Refs. [11, 14] that the \(\Delta \) method can be employed to obtain information on bound states if their energy and the energy of scattering states used to approximate the \(\Delta \) function satisfy the condition
\[|E| \leq (Z_1 Z_2 e^2)^2 \mu/2. \] (20)

As is noted in [11], the right-hand side of (20) is just the nuclear Rydberg energy: \(1 \text{ Ry} = (Z_1 Z_2 e^2)^2 \mu/2 \). For systems \(d + \alpha \) and \(\alpha +^{12} \text{C} \) considered in [14] \(1 \text{ Ry} = 0.13 \text{ MeV} \) and 10.7 MeV, respectively. These values clearly illustrate the conclusion made in [14] that the \(\Delta \) method is quite appropriate for \(\alpha +^{12} \text{C} \) but fails for \(d + \alpha \) due to a very narrow range of allowed energy values.

Inference. In the strict mathematical sense the \(\Delta \) method is not an analytic continuation of the denominator of the amplitude \(f \) from the region \(E > 0 \) to the region \(E < 0 \), but it can still be used for practical purposes for sufficiently large charges and masses of colliding particles. The assertion about a strict mathematical proof of the correctness of the \(\Delta \) method [12] is incorrect. This inference agrees with the results obtained in [11, 14].

The \(\Delta \) method was used in [13] to obtain ANCs for resonant nuclear states. In this regard, we would like to note that no special methods are needed for this purpose. Both the ERF and \(\Delta \) methods were introduced to overcome the problem of the Coulomb singularity at \(E = 0 \). However, the Coulomb-nuclear scattering amplitude does not possess the Coulomb singularity in the vicinity of resonances. Hence, one can simply continue analytically \(\cot \delta \) from the real positive half-axis of \(E \) to the resonance pole.

IV. THE \(p-^{16} \text{O} \) SYSTEM

Consider the \(p-^{16} \text{O} \) system. For this system \(m_1 = m_p = 938.272 \text{ MeV} \), \(m_2 = m_{16 \text{O}} = 14895.079 \text{ MeV} \), \(Z_1 Z_2 = 8 \). \(^{17} \text{F} \) nucleus has two bound states: the ground state \(5/2^+ \) (\(t = 2 \)) and the excited state \(^{17} \text{F}^* (0.4953 \text{ MeV}; 1/2^+) \), \(t = 0 \). The binding energies of \(^{17} \text{F}(\text{ground}) \) and \(^{17} \text{F}^* (0.4953 \text{ MeV}) \) in the \(p-^{16} \text{O} \) channel are 0.6005 MeV and 0.1052 MeV, respectively [20].

In this section we present the proton ANCs of \(^{17} \text{F} \) for the first excited state and for the ground state obtained by extrapolation of the ERF and \(\Delta \) functions to the bound state poles of \(^{17} \text{F} \). They should be compared with the experimental proton ANCs \(C_0 \) for the virtual decay \(^{17} \text{F} \to ^{16} \text{O}(2s_1/2^+) + p \) and \(C_2 \) for the virtual decay \(^{17} \text{F} \to ^{16} \text{O}(1d_3/2^+) + p \) shown in Table I. These ANCs are obtained from analyses of the astrophysical \(S_{160} \)-factors [21], the peripheral proton transfer reactions populating the ground and excited states of \(^{17} \text{F} \) [15, 22] and the radiative capture \(^{16} \text{O}(p, \gamma)^{17} \text{F} \) reaction [23]. The table also shows \(C_0 \) determined from fitting the effective field theory (EFT) \(S \)-factor to the experimental one [24]. Similar results for \(C_0 \) and \(C_2 \) were also obtained in Ref. [25]. Below we explore the extrapolation of the elastic scattering data to the bound states of \(^{17} \text{F} \) to obtain the proton’s ANCs of its excited and ground states. We demonstrate that the addressed here method of the extrapolation of the elastic scattering data to the negative energy region can be considered as another very useful practical method to extract the ANCs from the experimental data.

The proton ANCs of \(^{17} \text{F} \) were also calculated using various theoretical approaches, see, for example, [26, 27]. In particular, the results of microscopic calculations [26]
are as follows: \(C_0 = 91.14 \text{ fm}^{-1/2} \), \(C_2 = 0.97 \text{ fm}^{-1/2} \) for the V2 potential and \(C_0 = 86.42 \text{ fm}^{-1/2} \), \(C_2 = 1.10 \text{ fm}^{-1/2} \) for the MN potential.

According to \([11, 14]\), the larger the charges and masses of colliding particles, the less the error associated with the use of the \(\Delta \) method. The numerical parameter, which characterizes the accuracy of the \(\Delta \) method, is the value of the Rydberg energy of the given system (see Section III above). For the \(p-^{16}O \) system \(1 \text{ Ry}= 1.50358 \text{ MeV} \). This value is between the values 0.13 MeV and 10.7 MeV corresponding to the Rydberg energies for the \(d+\alpha \) and \(\alpha+^{12}C \) systems, respectively. Remind that the \(\Delta \) method turned out to be quite successful for \(\alpha+^{12}C \) but failed for \(d+\alpha \) [14].

The ANC is obtained by analytic approximation of the ERF and \(\Delta \) function by polynomials in \(E \) and the subsequent analytic continuation of these polynomials to the negative energy region. The coefficients of the polynomials are determined by the \(\chi^2 \) method using the experimental phase shifts for \(p-^{16}O \) elastic scattering. To ensure the correct experimental position of a bound-state pole, the values of ERF and \(\Delta \) function at \(E = -\varepsilon \) are added as fitting parameters to their values at positive energies: \(K_i(E)|_{E=-\varepsilon} = 2\eta k^{2+1} h (\eta) v_1 (\eta)|_{E=-\varepsilon}, \) \(\Delta_i(E)|_{E=-\varepsilon} = 0. \)

To employ the \(\chi^2 \) criterion, the errors equal to \(\pm 1^\circ \) are applied to phase shifts \(\delta_i(E). \) If \(\delta_i + 1^\circ \) exceeds 180\(^\circ\), the value 179.99999999\(^\circ\) is used instead of \(\delta_i + 1^\circ. \) We use Eqs. (13) and (14) to find the ANCs.

A. ANC for the excited state of \(^{17}F \)

We begin with the analysis of the \(1/2^+, l = 0 \) state of the \(p-^{16}O \) system (\(l = 0 \)). For this state, we use the results of the latest phase shift analysis obtained in Ref. [28], in which 16 values of \(\delta_0 \) in the range of \(E= 0.3628 - 1.8738 \text{ MeV} \) are presented. First, let us consider the approximation of the ERF \(K_0(E) \). Our calculations are presented in the 2nd and 3rd columns of Table II. In this table, as well as in the following Table III, \(N \) denotes the power of the approximating polynomial. One sees that the obtained ANC \(C_0 \) is convergent with increasing \(N \). Convergence is achieved already with \(N = 3 \). Hence we can consider the variant \(N = 3 \) as sufficient. The results of the latest phase shift analysis obtained in Ref. [28]. Solid red line is the polynomial approximation with \(N = 1 \), dashed blue line is the polynomial approximation with \(N = 2 \). The lines corresponding to higher \(N \) are practically indistinguishable from the \(N = 2 \) line due to fast convergence. Therefore, they are not shown.

![FIG. 1: Polynomial approximation of \(K_0(E) \) for \(p-^{16}O \) scattering in the \(J^+ = 1/2^+ \) state. Black squares with error bars are the results obtained from the experimental scattering phase shifts [28]. Solid red line is the polynomial approximation with \(N = 1 \), dashed blue line is the polynomial approximation with \(N = 2 \). The lines corresponding to higher \(N \) are practically indistinguishable from the \(N = 2 \) line due to fast convergence. Therefore, they are not shown.](image)

Consider now the analytic continuation of the \(\Delta \) function. Function \(\Delta_0(E) \) is approximated by polynomials in the same way as for \(K_0(E) \). The polynomial approximation of \(\Delta_0(E) \) is shown in Fig. 2 and the results of the calculations are given in the 4th and 5th columns of Table II. It is seen that, similarly to the case of \(K_0(E) \), the ANC \(C_0 \) converges rapidly with increasing \(N \). Convergence is reached also with \(N = 3 \) and the result is \(C_0= 89.13140 \text{ fm}^{-1/2} \). This value does not deviate much from \(C_0= 101.86559 \text{ fm}^{-1/2} \) obtained using polynomial approximation of \(K_0(E) \). The difference between these values can be related to the approximate nature of the \(\Delta \) method. Note that the upper bound of the used energy interval (\(E= 1.8738 \text{ MeV} \)) slightly exceeds the value 1 \text{ Ry}= 1.50358 \text{ MeV} \) for the \(p-^{16}O \) system. As was
mentioned in Section III, 1 Ry can be considered as an upper bound for employing the Δ method. Note that the extrapolated ANCs are in a reasonable agreement with the experimental ANCs from Table I.

FIG. 2: Polynomial approximation of $\Delta_0(E)$ for $p^+^{16}O$ scattering in the $J^\pi = 1/2^+$ state. The notations are the same as in Fig. 1.

B. ANC for the ground state of ^{17}F

Owing to the absence of more recent phase shift analyses of $p^{16}O$ scattering in the $5/2^+$ state, we use the rather old results of the phase shift analysis [29] in which 9 values of $\delta_2(5/2)$ in the interval of $E = 2.35 - 6.60$ MeV were presented. The procedure is analogous to the one used for the excited state described above. The corresponding ANC is denoted by C_2. The results of the polynomial approximation of the ERF are shown in the 2nd and 3rd columns of Table III and in Fig. 3.

TABLE III: ANC C_2 for the ground state of ^{17}F.

N	C_2, fm$^{-1/2}$	χ^2	C_2, fm$^{-1/2}$	χ^2
1	0.71537	0.16	0.52260	0.36
2	0.87884	0.18	2.35850	0.19
3	0.87881	0.20	2.33879	0.22
4	0.87881	0.23	2.33876	0.26
5	0.87881	0.28	2.33876	0.31

It is seen that, similar to the case of the excited state of ^{17}F, the ANC C_2 quickly converges with increasing N. The convergent result for ANC of $C_2 = 0.88$ fm$^{-1/2}$ is achieved with $N = 3$. Note that the ANC obtained using $K_0(E)$ polynomial approximation is close to the ANCs from Table I.

FIG. 3: Polynomial approximation of $K_2(E)$ for $p^{16}O$ scattering in the $J^\pi = 5/2^+$ state. Black squares with error-bars are the results obtained from the experimental scattering phase shifts [29]. Other notations are the same as in Fig. 1.

The results of the polynomial approximation of $\Delta_2(E)$ are shown in 3rd and 4th columns of Table III and in Fig. 4. Although the results appear to converge, however they converge to an obviously wrong value. Most likely, this is due to the energy interval used for the approximation ($E = 2.35 - 6.60$ MeV) far exceeding the applicability limit of the Δ method for the $p^{16}O$ system of 1 Ry= 1.50358 MeV as discussed above.

FIG. 4: Polynomial approximation of $\Delta_2(E)$ for $p^{16}O$ scattering in the state $J^\pi = 1/2^+$. The notations are the same as in Fig. 3.

V. CONCLUSIONS

It is shown that the Δ method suggested in [10] is not strictly correct in the mathematical sense since it is not an analytic continuation of a partial-wave scattering am-
plitude to the region of negative energies. However, it can be used for practical purposes for sufficiently large charges and masses of colliding particles. It was demonstrated in the previous paper [14] that this method was effective for the $\alpha - {^{12}}C$ system ($Z_1Z_2 = 12$) but failed for the $d - \alpha$ system ($Z_1Z_2 = 2$). In the present work, both the ERF and Δ methods of analytic continuation of scattering data are applied to the $p - {^{16}}O$ system ($Z_1Z_2 = 8$) which can be considered as intermediate between $d - \alpha$ and $\alpha - {^{12}}C$ systems. Both methods are used to determine the ANCs for the ground 5/2$^+$ and excited 1/2$^+$ states of ^{17}F nucleus in the $p - {^{16}}O$ channel. Possible errors are added to experimental phase shifts.

The values of the ANC C_0 for the excited 1/2$^+$ state of ^{17}F obtained in the present paper on the basis of the phase-shift analysis of Ref. [28] are 101.9 fm$^{-1/2}$ and 89.1 fm$^{-1/2}$ for the ERF and Δ methods, respectively. They are not much different from each other. Note that both ANCs are in a reasonable agreement with the experimental ANCs for the ground $5/2^+$ and excited $1/2^+$ states of ^{17}F nucleus in the $p - {^{16}}O$ channel. Possible errors are added to experimental phase shifts.

Summarizing, in this paper we demonstrated that the polynomial approximation of $\Delta(E)$ leads to the ANC C_0 for the excited state $5/2^+$ extracted using the phase-shift analysis of ^{16}O scattering in the state $J^p = 5/2^+$ which is significantly higher than the range of this ANC available in the literature and should be considered as erroneous. Such a large discrepancy between the results of the ERF and Δ methods most likely is due to the fact that the energy interval used for the polynomial approximation of $\Delta(E)$ function far exceeds the limit of the applicability of the Δ method.

Acknowledgements

This work was supported by the Russian Science Foundation Grant No. 16-12-10048 (L.D.B.) and the Russian Foundation for Basic Research Grant No. 16-02-00049 (D.A.S.). A.S.K. acknowledges a support from the Australian Research Council. A.M.M. acknowledges support from the U.S. DOE Grant No. DE-FG02-93ER40773, the U.S. NSF Grant No. PHY-1415656, and the NNSA Grant No. DE-NA0003841.

[1] A. M. Mukhamedzhanov and N. K. Timofeyuk, Yad. Fiz. (in Russian) 51, 679 (1990) [Sov. J. Nucl. Phys. (English transl.) 51, 431 (1990)].
[2] H. M. Xu, C. A. Gagliardi, R. E. Tribble, A. M. Mukhamedzhanov, and N. K. Timofeyuk, Phys. Rev. Lett. 73, 2027 (1994).
[3] A. M. Mukhamedzhanov and R. E. Tribble, Phys. Rev. C 59, 3418 (1999).
[4] R. E. Tribble, C. A. Bertulani, M. La Cognata, A. M. Mukhamedzhanov and C. Spitaleri, Rep. Prog. Phys. 77, 106901 (2014).
[5] L. D. Blokhintsev and V. O. Eremenko, Phys. At. Nucl. 71, 1219 (2008).
[6] Leonid Blokhintsev, Yuri Orlov, and Dmitri Savin, Analytic and Diagram Methods in Nuclear Reaction Theory (Nova Science Publishers, Inc., New York, 2017).
[7] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, and E. V. Kuznetsova, Phys. Rev. C 48, 2390 (1993).
[8] J.-M. Sparenberg, P. Capel, and D. Baye, Phys. Rev. C 81, 011601 (2010).
[9] B. F. Irgaziev and Yu. V. Orlov, Phys. Rev. C 91, 024002 (2015).
[10] O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017).
[11] D. Gaspard and J.-M. Sparenberg, Phys. Rev. C 97, 044603 (2018).
[12] Yu. V. Orlov, B.F. Irgaziev, and Jameel-Un Nabi, Phys. Rev. C 96, 025809 (2017).
[13] B. F. Irgaziev and Yu. V. Orlov, Phys. Rev. C 98, 015803 (2018).
[14] L. D. Blokhintsev, A. S. Kadyrov, A. M. Mukhamedzhanov, and D. A. Savin, Phys. Rev. C 97, 024602 (2018).
[15] C. A. Gagliardi, R. E. Tribble, A. Azhari, H. L. Clark, Y.-W. Lui, A. M. Mukhamedzhanov, et al., Phys. Rev. C 59, 1149 (1999).
[16] J. Hamilton, I. Överbö, and B. Tromborg, Nucl. Phys. B 60, 443 (1973).
[17] L. D. Blokhintsev, A. M. Mukhamedzhanov, and A. N. Safronov, Fiz. Elem. Chastits At. Yadra (in Russian) 15, 1296 (1984) [Sov. J. Part. Nucl. (English transl.) 15, 580]
[18] S. König, Effective quantum theories with short- and long-range forces, Dissertation, Bonn, August 2013.

[19] L. D. Blokhintsev, A. S. Kadyrov, A. M. Mukhamedzhanov, and D. A. Savin, Phys. Rev. C 95, 044618 (2017).

[20] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A564, 1 (1993).

[21] S. V. Artemov, S. B. Igamov, Q. I. Tursunmakhatov, and R. Yamukhamedov, Bull. RAN. Ser.Phys. [Izv. RAN. Ser. Fiz.] 73, 176 (2009).

[22] S. V. Artemov et al., Yad. Fiz. 59, 454 (1996) [Phys. Atom. Nucl. 59, 428 (1996)].

[23] J.T. Huang, C.A. Bertulani, and V. Guimarães, Atomic Data and Nuclear Data Tables 96 824 (2010).

[24] E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Ann. Phys. 367 13 (2016); arxiv: 1507.08675 (2015).

[25] R. Yarmukhamedov and D. Baye, Phys. Rev. C 84, 545 024603 (2011).

[26] D. Baye, P. Descouvemont, and M. Hesse, Phys. Rev. C 58, 545 (1998).

[27] J. Okołowicz, N. Michel, W. Nazarewicz, and M. Płoszajcak, Phys. Rev. C 85, 064320 (2012).

[28] V. Dubovichenko, N. Burtebayev, A. Dzhazairov-Kakhramanov, D. Zazulin, Z. Kerimkulov, et al., Chin. Phys. C, 41, 014001 (2017).

[29] R. A. Blue and W. Haeberli, Phys. Rev. 137.B, 284 (1965).

[30] N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett. 91, 232501 (2003).

[31] A. M. Mukhamedzhanov, Phys. Rev. C 86, 044615 (2012).

[32] S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Reports 386, 1 (2003).