Global fits for the spectral index of the cosmological curvature perturbation

Laura Covi1 and David H. Lyth2,
1DESY Theory Group, Notkestrasse 85, D-22603 Hamburg, Germany
2Physics Department, Lancaster University Lancaster LA1 4YB, Great Britain

ABSTRACT
Best-fit values of the spectral index of the curvature perturbation are presented, assuming the ΛCDM cosmology. Apart from the spectral index, the parameters are the Hubble parameter, the total matter density and the baryon density. The data points are intended to represent all measurements which are likely to significantly affect the result. The cosmic microwave anisotropy is represented by the COBE normalization, and heights of the first and second peaks given by the latest Boomerang and Maxima data. The slope of the galaxy correlation function and the matter density contrast on the 8h^{-1}\text{Mpc} scale are each represented by a data point, as are the expected values of the Hubble parameter and matter density. The ‘low-deuterium’ nucleosynthesis value of the baryon density provides a final data point, the fit giving a value about one standard deviation higher. The reionization epoch is calculated from the model by assuming that it corresponds to the collapse of a fraction $f \gtrsim 10^{-4}$ of matter. We consider the case of a scale-independent spectral index, and also the scale-dependent spectral index predicted by running mass models of inflation. In the former case, the result is compared with the prediction of models of inflation based on effective field theory, in which the field value is small on the Planck scale. Detailed comparison is made with other fits, and other approaches to the comparison with theory.

Key words: cosmology: theory – early Universe – cosmic microwave background – large-scale structure of Universe

1 INTRODUCTION
The spectral index n, giving the scale dependence of the spectrum P_R of the primordial curvature perturbation, will be a powerful discriminator between models of inflation when it is accurately determined. Just before the release of the latest Boomerang \cite{deBernardis2000} and Maxima data \cite{Hanany2000} on the cosmic microwave background (cmb) anisotropy, we reported \cite{Lyth2000} a global fit to the key pieces of available data. We considered the case of a practically scale-independent spectral index, comparing the best-fit value with some models of inflation based on effective field theory. We went on to consider the running mass models, corresponding to a spectral index with strong scale dependence, and demonstrated that such scale dependence was allowed by the data.

In the present paper, we update the fit by including the Boomerang and Maxima results for the height of the second peak of the cmb anisotropy, for consistency taking the height of the first peak from the same source. The best-fit values of the spectral index and other parameters are different from the previous case, but not dramatically so, while the value of χ^2, though higher, is still acceptable. We consider in some detail the implication of our results for some models of inflation based on effective field theory, drawing a distinction between such models and ad hoc parameterizations of the potential. In the running mass model, strong scale dependence of the spectral index is still permitted by the data.

As with our previous fit, we assume the ΛCDM cosmology, in which the Universe is flat and the dark matter is cold. Flatness is the naive prediction of inflation, and there is at present no firm motivation for considering modifications of the simplest dark matter hypothesis. The model, then, consists of the ΛCDM cosmology, the assumption that a gaussian primordial curvature perturbation is the only one, and the assumption about reionization that we shall discuss shortly.

2 THE FIT
Figure 1. The top panels show nominal 1- and 2-σ bounds on n. In the left-hand panel the reionization epoch z_R is fixed. In the right-hand panel, is fixed instead the fraction f of matter which is assumed to have collapsed when at the epoch of reionization. (The corresponding reionization redshift, at best fit, is in the range 10 to 26.) The bottom panels show χ^2, with three degrees of freedom.

Table 1. Fit of the ΛCDM model to presently available data, assuming reionization when a fraction $f = 10^{-2.2}$ of matter has collapsed. (Corresponding redshift at best fit is $z_R = 18$). The scale-independent spectral index n is a parameter of the model, and so are the next three quantities. Every quantity except n is a data point, with the value and uncertainty listed in the first two rows. The result of the least-squares fit is given in the lines three to five. All uncertainties are at the nominal 1-σ level. The total χ^2 is 6.3 with three degrees of freedom.

	n	$\Omega_b h^2$	Ω_c	h	\bar{T}	\bar{c}_s	$\sqrt{\bar{C}_{\ell}^{1st}}$	$\bar{C}_{\ell}^{2nd}/\bar{C}_{\ell}^{1st}$
data		0.019	0.35	0.65	0.23	0.56	74.0 µK	0.38
error		0.002	0.075	0.075	0.035	0.059	5 µK	0.06
fit	0.987	0.021	0.38	0.62	0.19	0.56	70.8 µK	0.49
error	0.051	0.002	0.06	0.05	—	—	—	—
χ^2		0.002	0.4	3.3	0.002	0.4	3.3	
The fit minimizes χ^2 with the assigned error bars. The data set is the one given in the first two rows of Table 1, plus the accurate value provided by COBE at the relevant scale k_{COBE}. \[\frac{2}{5} \frac{P_R}{k^2} (k_{\text{COBE}}) = 1.94 \times 10^{-5}. \] (1)

This data set is the same as for the earlier fit, except that the height of the first peak is now taken from the Boomerang/Maxima data, and the ratio of second to first peak height from the same source is now included. For both peaks, we used the pair of data points nearest to the expected peak position, one point from each of the two data sets. The random and systematic errors for each point were added in quadrature, and then the weighted average was taken. The theoretical peak heights were in both cases taken from the output of the CMBfast package (CMBfast 2000), linearly interpolated as described earlier (Lyth & Covi 2000) for the first peak.

Ours is the first fit which takes account of both Boomerang and Maxima data, and which at the same time...
is global in that there is an attempt to include in some form all data which is likely to significantly constrain the model. Apart from cmb data, we include the summaries of data on the galaxy correlation function and the cluster abundance provided by the quantities $\tilde{\Gamma}$ and $\tilde{\sigma}_8$, admittedly subjective estimates of Ω_b and h (based on observations [Turner 1999, Freedman 2000, Bahcall et al. 1999] that have nothing to do with the large-scale structure), and the low-
deuterium” nucleosynthesis estimate of the baryon density (Olive, Steigman & Walker 2000). Of course, we recognize that our choice of data points and error bars is subjective. For one thing, much of the uncertainty is systematic making the minimization of χ^2 not strictly justified. For another, the device of representing many different measurements by a single error bar loses information. In particular, we have dropped measurements of the cmb anisotropy away from the first and second peaks, which are included for instance by [Tegmark, Zaldarriaga & Hamilton 2000]. Nevertheless, it seems to us reasonable to prefer some kind of global fit over fits that arbitrarily keeps only selected pieces of information such as, for instance, the cmb anisotropy. Moreover, as can be seen from Fig. 2, we can to some extent justify our procedure a posteriori observing that our best fit results are giving a good interpolation also of the cmb data we are neglecting (in the second peak region our fit is out by two standard deviations, but the situation does not become worse as one moves away from the peak): this is surely not a chance, but due to the fact that the ΛCDM model gives a good account of the shape of the peaks, so that the most important constraint comes indeed from the peak heights.

Before describing our results, we want to describe our treatment of the reionization redshift z_R. Previously reported fits regard z_R as a parameter, to be either fixed at some reasonable value, or else to be included in the fit. We prefer an estimate of z_R provided by the ΛCDM model itself. Apart from having the virtue of keeping information which otherwise is lost, the use of this estimate will lead to a more realistic lower bound on n. The estimate is obtained by assuming that reionization occurs when some fraction $f \ll 1$ of the matter has collapsed into gravitationally bound structures, that epoch being estimated from the Press-Schechter formalism [Fukugita, Peebles & Turner 1999, Press & Schechter 1974]. Such a parameterization gives a reasonable estimate of z_R. For fixed f, z_R decreases over the range of z_R corresponding to the best fit increases from 10 to 26. For comparison, we show in the left-hand panel of Figure 1 the result with z_R fixed at various values. Over the range 10 < z_R < 26, the upper bound on n is similar to the one which fixes f (at the value reproducing z_R at best fit). In contrast, the lower bound on n depends strongly on z_R, but relatively weakly on f. The reason is that with fixed f in our adopted range, low values of n give low values of z_R. At the same time, the dependence of our result on the assumption concerning reionization is not entirely insignificant. Representative cases are given in the panels of Figure 3 along with some theoretical predictions that we shall discuss later.

Taking the central value $f = 10^{-2.2}$, the best-fit parameters are shown in Table 1. The calculated data points are all within one standard deviation or so of their observed values, except for the height of the second peak relative to that of the first which is high by almost two standard deviations, and the χ^2 per degree of freedom is still perfectly reasonable. The calculated cmb anisotropy is compared with the full Boomerang/Maxima data set in Figure 2, where the spectrum of the primordial curvature perturbation is also shown.

We have also investigated the effect of omitting part of our data set. First, we omitted the data point for $\Omega_b h^2$ (coming from nucleosynthesis), and found a best fit value $\Omega_b h^2 \approx 0.29$ in qualitative agreement with other analyses ([Duffy et al. 2000, Tegmark, Zaldarriaga & Hamilton 2000]). This is five standard deviations higher than our data point, which in our view means that the fit is of little interest. Second, we omitted h and/or Ω_0. Omitting just one of them makes little difference, because their best-fit values are strongly correlated, but omitting both of them again leads to values far away from the expectation ($\Omega_0 \approx 0.7$ and $h \approx 0.45$) so that this fit too is of little interest.

Finally, we investigated the effective of omitting one or both of the large-scale structure data points $\tilde{\Gamma}$ and $\tilde{\sigma}_8$. Eliminating both leads to best-fit values for $\tilde{\Gamma}$ and $\tilde{\sigma}_8$ which are respectively three and four standard deviations below the data. Here again, we take the view that such a fit is of little interest. (For the record, the fit gives $n = 0.89 \pm 0.07$, in qualitative agreement with another analysis ([Kinney, Melli & Raiteri 1999]).) Omitting just one of them makes little difference to the fit, because they are again strongly correlated. In particular, lowering n lowers both the magnitude of the spectrum on the relevant scales (measured by $\tilde{\sigma}_8$) and its slope (measured by $\tilde{\Gamma}$).

Our fit is similar to another one ([Tegmark, Zaldarriaga & Hamilton 2000]) (to be referred to as TZH), with two important differences. First, the TZH data set did not include $\tilde{\sigma}_8$ (nor any other constraint on the normalization of the spectrum in the regime of large scale structure), while it replaced our $\tilde{\Gamma}$ by a fit to the shape of the galaxy correlation functions from a recent infrared survey ([Saunders et al. 2000]). The other difference is that the reionization redshift was left as a free parameter, which in accordance with our finding makes the best fit value practically zero. With this data set, the best fit of TZH gives parameters similar to ours, with spectral index $n = 0.91 \pm 0.05$ (1-sigma) to be compared with our $z_R = 0$ result $n = 0.95 \pm 0.03$. Using the best-fit parameters of TZH, we find $\tilde{\Gamma} = 0.17$ and $\tilde{\sigma}_8 = 0.48$, both significantly lower than the data points we assigned to these quantities. We believe that this is the main reason

† After the original version of this paper appeared on the archive, a more or less global fit did appear [Tegmark, Zaldarriaga & Hamilton 2000], which will be discussed later.

‡ The alternative ‘high deuterium’ estimate corresponds to a much lower baryon density, which is disfavoured by the Boomerang/Maxima data.

§ The result for $10^{-1} < f < 1$ is not shown, because in the approximation that we are using ([Lyth & Covi 2000]) it is the same as for the case $f = 10^{-1}$.

¶ As mentioned earlier, TZH also use a large data set of cmb anisotropy measurements, but this difference from our treatment seems to be less crucial.

© 0000 RAS, MNRAS 000, 000–000
3 MODELS OF INFLATION

3.1 The general framework

Our next objective is to compare the observational constraint on n with some models of inflation. Before getting to the details, it will be as well to describe the general framework within which we operate, since it radically differs both from the ‘reconstruction’ program (Lidsey et al. 1997) and from a proposed ‘small/large/hybrid’ classification of potentials (Dodelson, Kinney & Kolb 1995; Kinney, Melchiorri & Riotto 2000).

Inflation is supposed to do two separate jobs. One is to evolve the Universe from a generic initial condition at t_0, presumably the Planck scale, without either collapsing or becoming empty. The other is to set, after inflation is over, the initial conditions that describe the observable Universe, in particular the primordial curvature perturbation. The second job is done during the last fifty or so e-folds of inflation, while observable scales are leaving the horizon. To produce the nearly scale-invariant perturbation that we see, inflation during this era presumably has to be of the slow-roll variety, which implies that $\rho^{1/4}$ is at least a couple of orders of magnitude below the Planck scale (Eq. 3 below). For our purpose, a ‘model of inflation’ is a model of this era, which alone is accessible to observation.

At the most primitive level, a model of inflation is a form for the potential during inflation, and a specification of the field value at the end of slow-roll inflation. (In hybrid models, the field value at the end of slow-roll inflation is not determined by the form of the potential during inflation, because the end corresponds to the de-estabilization of some non-inflaton field.) At this primitive level, though, one has complete freedom in choosing the form of the potential during inflation, and consequently very little predictive power. In order to reduce the freedom, one therefore looks for guidance to effective field theory.

Effective field theory provides the framework for the Standard Model of particle physics and for its phenomenological extensions. It is supposed to be valid on energy scales far below the ultra-violet cutoff Λ_{UV}, which is at most of order the Planck scale. In this regime, the unknown physics beyond the cutoff is ignored (in a renormalizable theory) or else encoded by the inclusion of the leading non-renormalizable term(s). In contrast, an attempt to use the effective theory on scales approaching the cutoff would require an infinite number of non-renormalizable terms, leading to a complete loss of predictive power. In the present context, the relevant non-renormalizable terms are contributions to V of the form $\lambda_n \phi^n / \Lambda_{\text{UV}}$, with expected coefficients $\lambda_n \sim 1$. In models based on effective field theory the non-renormalizable terms are essentially ignored, and taking optimistically $\Lambda_{\text{UV}} \sim M_p$, this neglect requires $|\phi| \ll M_p$ (Sometimes one forbids non-renormalizable terms in $V(\phi)$ by invoking a suitable symmetry, but according to current ideas this is likely to work only for a limited number of terms (Lyth & Riotto 1999; Stewart & Cohn 2000).)

Instead of effective field theory, one may hope to use a deeper theory like string theory, which would determine the coefficients of all of the non-renormalizable terms. Such a theory might predict that the coefficients of these terms are very small (in Planck units), making it easy to have inflation with very large field values. This approach does yield some proposals for the potential of moduli (Lyth & Riotto 1999; Banks, Dine & Motl 2000), perhaps leading to inflation with a potential of the form $V \sim V_0 - \frac{1}{2} m^2 \phi^2 + \cdots$ (last row of Table 3) which would require a field variation of order M_p. (A different stringy proposal (Dvali & Tye 1999) does not lead to a viable model.) This exception apart, it seems that at the present time predictive models have to be based on effective field theory, in which the relevant values of the inflaton field are small on the Planck scale. We do not know whether Nature has chosen this option, or has instead chosen inflation with large field values, but we take the view that in the latter case there is at present no theoretical guidance as to the form of the potential. Hence we focus on the effective field theory models.

** Even the relatively restrictive slow-roll paradigm presented below leads only to the gravitational wave constraint $r = -6.2 n_T$ and the flatness conditions $|n - 1| \ll 8, |n_T| \ll 2$. †† In the usual case, that the real inflaton field ϕ is the radial part of some complex field, the origin $\phi = 0$ can be taken as the fixed point of the symmetries of the renormalizable field theory. If the inflaton field is the angular part (a pseudo-Goldstone boson) it runs over only a finite range, and its origin within this range is arbitrary. Irrespective of the definition of the origin, the neglect of non-renormalizable terms requires the range of ϕ spanned by relevant field values to be much less than Λ_{UV}, and most of the following discussion goes through if this requirement replaces the assumption the ϕ itself is small. Note that the assumption of small ϕ is a minimal one, necessary to justify the neglect of non-renormalizable terms but by no means always sufficient (Lyth & Riotto 1999).

© 0000 RAS, MNRAS 000, 000–000
Table 2. Predictions for the spectral index n, in terms of the number of e-folds N to the end of slow-roll inflation. Ignoring the slight scale-dependence, $N = N_{\text{COBE}}$ is around 50 with the standard cosmology. For rows two and three there is a maximum amount of inflation, corresponding to N_{max}. All constants are positive, and p is an integer except for the mutated model. (The mutated model can also give a potential of the same form as ‘new’ inflation with any p bigger than 2.) In the top and bottom rows n can be far from 1, while in the other cases it is typically close to 1.

	$V(\phi)/V_0$	$\frac{1}{2}(n-1)$
Positive mass-squared	$1 + \frac{m^2}{V_0} \phi^2$	$\frac{M_p^2m^2}{V_0}$
Self interaction ($p \geq 3$)	$1 + c\phi^p$	$\frac{M_p^2m^2}{V_0}$
Dynamical symmetry breaking ($p \geq 1$)	$1 + c\phi^{-p}$	$\frac{M_p^2m^2}{V_0}$
Loop correction	$1 + c\ln \frac{\phi}{\phi_0}$	$\frac{M_p^2m^2}{V_0}$
Mutated ($-1 < p < \infty$)	$1 - c\phi^{-p}$	$\frac{M_p^2m^2}{V_0}$
‘New’ ($p \geq 3$)	$1 - c\phi^p$	$\frac{M_p^2m^2}{V_0}$
Negative mass-squared	$1 - \frac{m^2}{V_0} \phi^2$	$-\frac{M_p^2m^2}{V_0}$

Figure 3. The horizontal lines show the 1- and 2-σ bounds on n, with different panels corresponding to different assumptions about the epoch of reionization. Also shown is the dependence of n on N_{COBE}, according to some of the models shown in Table 2. From top to bottom these are the logarithmic potential, new inflation with $p = 4$, and new inflation with $p = 3$. Significant lower bounds on N_{COBE} are obtained for the new inflation models. Taken seriously, the 1-σ bound would practically rule out the $p = 3$ model.
3.2 Slow-roll inflation

Slow-roll inflation, with a single-component inflaton field, is described by the following basic set of formulas (Lyth & Riotto 1999; Liddle & Lyth 2000). In these formulas, ϕ is the inflaton field, and V is its potential during inflation. The other quantities are the Planck mass $M_{P} = 2.4 \times 10^{18}$ GeV, the scale factor of the Universe a, the Hubble parameter $H = \dot{a}/a$, and the wavenumber k/a of the cosmological perturbations. We assume the flatness conditions

$$\epsilon \ll 1, \quad [\eta] \ll 1$$

$$\epsilon \equiv \frac{1}{2} M_{P}^2 \frac{V'}{V}^2$$

$$\eta \equiv \frac{M_{P}^2 V''}{V},$$

leading to the slow-roll expression $3H\dot{\phi} \simeq -V'$.

The fundamental formula giving the spectrum of the curvature perturbation is

$$\frac{4}{25} P_{R}(k) = \frac{1}{15\pi^2 M_{P}^2} \frac{V^3}{V'^2},$$

where the potential and its derivatives are evaluated at the epoch of horizon exit $k = aH$. On the scale k_{COBE}, the COBE normalization Eq. (1) requires

$$V^{1/4} = 0.027\epsilon^{1/4} M_{P}.$$

To work out the value of ϕ at the epoch of horizon exit, one uses the relation

$$\ln(k_{\text{end}}/k) \equiv N(k) = M_{P}^{-2} \int_{\phi_{\text{end}}}^{\phi} \frac{V}{V'} d\phi,$$

where $N(k)$ is actually the number of e-folds from horizon exit to the end of slow-roll inflation. The biggest scale of interest may be taken as k_{COBE}, which using the definition in our earlier work (Lyth & Covi 2001) corresponds to $k_{\text{COBE}} \simeq 730 h^{-1}$ Mpc. Observations of the smaller scale cmb anisotropy and galaxy surveys take us down to say $k^{-1} \sim 10 h^{-1}$ Mpc, corresponding to a change $\Delta N \simeq 4$ to 5. At a given scale, N depends on the post-inflationary evolution of the scale factor, and for definiteness the COBE scale it is usefully written as

$$N_{\text{COBE}} \simeq 60 - \ln \left(\frac{10^{15} \text{ GeV}}{V^{1/4}} \right) - \frac{1}{3} \ln \left(\frac{V^{1/4}}{T_{\text{reh}}} \right) - N_{0}.$$

In this expression, T_{reh} is the reheat temperature after inflation, and V is the potential at the end of inflation. The final contribution $-N_{0}$ (negative in all reasonable cosmologies) encodes our ignorance about what happens between this reheat and nucleosynthesis. In the conventional cosmology, with the relatively high inflation scale occurring in most of our models, one expects $N_{\text{COBE}} \sim 50$ to 60, but late entropy release from thermal inflaton (Lyth & Stewart 1994) (or a low value of V) can make N_{COBE} much lower. In some of the inflation models that we shall consider, our bound on n will lead to a useful lower bound on N_{COBE}.

The spectral index n is defined by

$$n(k) - 1 \equiv \frac{d \ln P_{R}}{d \ln k},$$

and is given by Eqs. (3) and (6) as (Liddle & Lyth 1992)

$$n - 1 = 2\epsilon - 6\eta.$$

It defines the scale-dependence of the $P_{R}(k)$ leaving its value at (say) the COBE scale as the only other quantity required to completely specify it.

Finally, the spectrum of the primordial gravitational waves is characterized by its contribution r to the spectrum of the cmb anisotropy on the COBE scale (defined in a certain approximation and measured in units of the contribution of the curvature perturbation) and its spectral index n_{T}, which are given by (Liddle & Lyth 1992)

$$r = 12.4\epsilon,$$

$$n_{T} = -2\epsilon.$$

We are going to apply these slow-roll equations to models of inflation in which the relevant values of the inflaton field are small. Quite generally, such models predict that r is too small to observe in the foreseeable future, in accordance with the assumption of our fit (Lyth 1997). Indeed, applying Eq. (3) to the range of scales $\Delta N \simeq 4$ over which gravitational waves affect the cmb anisotropy, one finds

$$\frac{r}{0.1} \sim \left(\frac{\Delta \phi}{0.5 M_{P}} \right)^2,$$

where $\Delta \phi$ is the corresponding change in ϕ, and $r \simeq 0.1$ is the smallest signal that can be detected by the PLANCK satellite. A detectable signal therefore requires that the change in ϕ over relevant field values be large, and therefore that the value of ϕ itself be large for at least some relevant field values. We emphasize again that we have no idea whether Nature has chosen small or large field values, and that we focus on the small-field case because in our view only that case is at present understandable from the point of view of effective field theory.

For future reference, we note that the converse of the above result does not apply. The total change in ϕ after the COBE scale leaves the horizon can be large, in a model where the change over the relevant four e-folds is small. As a result, large-field models do not necessarily lead to significant gravitational waves. For instance, if V depends linearly on ϕ, then $N(\phi) \propto \phi$, and the change in ϕ after the COBE scale leaves the horizon is related to the change $\Delta \phi$ during four e-folds by $\phi_{\text{COBE}}/\Delta \phi \simeq N_{\text{COBE}}/4 \gg 1$.

3.3 Some simple models

Effective field theory, with non-renormalizable terms essentially ignored, allows only a few different types of term for the variation of V. With the reasonable assumption that one such term dominates over the relevant range of ϕ, we arrive at essentially the models displayed in Table 2. Details of these models, with extensive references and possible complications, are given in (Lyth & Riotto 1999). One of these complications is the possibility, considered by several...
authors, that two terms need to be kept over the relevant range of \(\phi \). While this can happen, the dominance of one term is the generic situation in the sense that it holds over most of the potential’s parameter space [\(\text{[RAS, MNRAS]} \)].

When the COBE normalization is imposed on the prediction, the requirement that the relevant values of the inflaton field be small can generally be satisfied with physically reasonable values of the parameters. An exception is the potential \(V = V_0 - \frac{1}{2} m^2 \phi^2 + \cdots \), which requires \(\phi \sim M_P \) at the end of inflation (see below). The only other significant exception is the logarithmic potential, which requires \(\phi \sim M_P \) when cosmological scales leave the horizon, if the coupling is unsuppressed as in the case of D-term inflation.

Given the restriction on \(\phi \), the flatness conditions require that \(V_0 \) dominates the potential in all of the models, leading to simple expressions for \(\epsilon \) and \(\eta \). The contribution of gravitational waves is negligibly small in all of them, and the formula for \(n \) is well approximated by

\[
 n - 1 = 2\eta. \tag{12}
\]

The resulting prediction for \(n \) is shown in Table 2. Except in the first and last rows, the prediction depends on \(N \) and is therefore scale-dependent. However, since \(n \) is constrained to be close to 1, the scale-dependence is negligible over the cosmological range \(\Delta N \sim 4 \) (Lyth & Covi 2000), and accordingly one may set \(N = N_{\text{COBE}} \). The bottom two rows correspond to single-field inflation with a mass term or a self-interaction dominating, and an unspecified term stabilizing the potential after inflation. The other rows correspond to hybrid inflation, where a non-inflaton field is responsible for most of the potential during inflation. The loop correction is the one which arises with spontaneously broken global supersymmetry, as for example in ‘D-term inflation’. The ranges of \(p \) are the ones in which the prediction for the spectral index holds, and they can be achieved in effective field theory with at most a single non-renormalizable term.

The strongest prediction comes from the models giving \(n - 1 \propto 1/N \). It is shown in Figure 3 for the three most popular versions of these models, along with the observational bounds on \(n \). In the ‘new’ inflation models there is a non-trivial lower bound on \(N \), which would almost exclude the \(p = 3 \) model if the 1-\(\sigma \) bound were taken seriously.

Another case of interest is the potential \(V = V_0 - \frac{1}{2} m^2 \phi^2 + \cdots \). More or less independently of the additional terms which stabilize the potential, the vev of \(\phi \) is \(\langle \phi \rangle \sim \sqrt{2V_0/m^2} = [2/(1 - n)]^{1/2} M_P \). Depending on the nature of \(\phi \), this kind of inflation has been termed ‘natural’, ‘topological’ and ‘modular’ (see for instance Banks, Dine & Motl 2000 for a recent espousal of modular inflation).

In all cases the model is regarded as implausible if \(\langle \phi \rangle \) is much bigger than \(M_P \), which means that it is viable only if \(n \) is not too close to 1. Our 2-\(\sigma \) bound \(n \geq 0.9 \) implies \(\langle \phi \rangle \geq 4.5 M_P \), which may perhaps be regarded as already disfavouring these models.

3.4 Alternative views

The view we have taken is different from the one espoused in (Dodelson, Kinney & Kolb 1997; Kinney, Melchiorri & Riotto 2000). These authors consider the potentials in first, second, and last rows of Table 2 (and a linear potential) but unlike us they take such field-theoretic forms of the potential seriously even at \(\phi \geq M_P \). In particular, they consider the limit where the constant term is negligible, corresponding to monomial potentials like \(V \propto \phi^2 \). This procedure allows a significant gravitational wave contribution \(r \), and a wide range of \(n \) for each \(r \). Therefore, to delineate the allowed region of parameter space, the authors of (Kinney, Melchiorri & Riotto 2000) allow both \(n \) and \(r \) to vary. We, in contrast, consider only small field values, leading to negligible \(r \) which we set equal to zero. We take the view that in the regime \(\phi \geq M_P \), a single-power form for the variation of \(\phi \) is no more likely than any other, and therefore that the potentials in Table 2 have no special status in this regime.

While the assumption of a single power seems too restrictive, it might reasonably be argued that a combination of two or three powers (say positive integral powers) will be sufficiently flexible to cover a useful range of potentials. Why, then, in the large-field regime, do we not wish to focus in particular on the case that one power dominates, as we did for the small-field regime? Our answer illustrates beautifully the difference of view that we take in these two regimes.

In the small-field regime, each power listed in Table 2 has a more or less definite physical origin; for instance, positive powers correspond to different self-coupling terms for the inflaton. In that situation, it seems reasonable to regard the coefficients of these powers as parameters which, in the present state of theory, have more or less equal prior probability. Then, over most of parameter space (and even over most of the restricted region allowed by the COBE normalization) just one power dominates, making this the most likely situation. In the large-field case, on the other hand, we argue that a single power has no special significance, and neither do the parameters of an expansion consisting of several powers. Instead of single powers, one could choose a new basis consisting of linear combination of powers (say, Legendre polynomials instead of monomials) leading to new parameters which would have to be chosen specially to reproduce a single power. This leads us back to the position

Consider, for instance, the case that there are just two parameters, corresponding to the overall normalization of the two terms. At a given field value, parameter space then consists of a region where one term dominates and a region where the other term dominates, these regions being divided by a line corresponding to 50\% of each term. If we consider the cosmological range of field values, and interpret the ‘dominance’ of one term as say a factor of ten between them, the line becomes a band, but still a set of measure zero compared with all of parameter space. Finally, the cobo normalization corresponds to a line in parameter space, which will generically cross the band; only very exceptionally will the line lie within the band. See for an example Fig. 1 of (Buchmüller, Covi & Delépine 2000), which shows for a specific model that the full potential is well approximated by a single term in the region of dominance.

\[\text{[c] 0000 RAS, MNRAS 000, 000–000} \]
stated earlier, that in our view there is no theoretical guidance as to the form of the potential in the large-field regime.

Precisely this view provided the starting point of the ‘reconstruction’ program reviewed in Lidsey et al. (1997). The idea here is that, if significant gravitational waves are observed, then Eqs. (3), (6), (9) and (10), and more accurate versions (Stewart & Lyth 1993), involving one higher derivative of \(V \), may allow \(V \) to be reconstructed over the very limited range of \(\phi \) corresponding to horizon exit for cosmological scales. We have no comment on this purely phenomenological approach, except to emphasize that it works only if \(r \) is big enough to measure.

4 RUNNING MASS MODELS

We also considered the case of running mass inflation models, which give a spectral index with potentially strong scale dependence. The potential in this case is corresponds to a loop correction in the context of softly broken global supersymmetry, and is of the form

\[
V = V_0 \left(1 + \frac{1}{p} c \phi^p \ln (\phi/Q) \right). \tag{13}
\]

The case \(p = 2 \) corresponds to the a renormalizable interaction, which alone has been studied so far (Stewart 1997a, Covi 1999, Lyth & Roszkowski 1999, Covi & Lyth 1999). It gives a spectral index of the form

\[
\frac{n(k) - 1}{2} = s \exp(cN(k)) - c \tag{14}
\]

\[
\Delta N(k) = N(k_{\text{COBE}}) - N(k) \tag{15}
\]

These models invoke the loop correction coming from softly, as opposed to spontaneously, broken renormalizable global supersymmetry. In the simplest scenario, \(c \) is essentially the coupling strength of the field in the loop, which is expected to be of order 0.1 to (say) 0.01 in the case of a gauge coupling.

Because of the possibly strong scale dependence of the curvature perturbation, our procedure of calculating the reionization redshift in terms of the fraction \(f \) of matter collapsed becomes crucial. The results are insensitive to \(f \) in the reasonable range \(f \gtrsim 10^{-4} \), which would not at all be the case if we fixed instead the reionization redshift.

In Figure 3 we show the allowed region of parameter space, with \(f = 1 \). We see that \(c \sim 0.1 \) is indeed allowed, and Table 4 we show the result of a fit with \(c \) fixed at this value, with a central value \(f = 10^{-2.2} \). The corresponding cmb anisotropy and curvature spectrum are shown in Figure 4. Comparing with the corresponding figures for the case of a scale-independent spectral index, the scale-dependence generated by the coupling \(c = 0.1 \) is clearly visible. Although observation cannot yet distinguish clearly between the two cases, it is likely to do so in the future, deciding whether the inflaton has an unsuppressed coupling in this type of model. Note that, in contrast with the earlier fit (Lyth & Covi 2000), the maximum allowed value of \(n_{\text{COBE}} \) is now too small for over-production of primordial black holes at the end of inflation (Leach, Grivell & Liddle 2000) to be a problem.

5 CONCLUSION

Continuing earlier work (Lyth & Covi 2000), we have fitted the ΛCDM model to a global data set, assuming that a gaussian primordial curvature perturbation is the only one. The data set now includes heights of the first two peaks in the cmb anisotropy, derived from the Boomerang and Maxima data. We focus on the spectral index \(n \), specifying the shape of the curvature perturbation, considering separately the case of a practically scale-independent spectral index, and the scale-dependent spectral index predicted by running mass inflation models. In contrast with other groups, we calculate the reionization epoch within the model on the assumption that it corresponds to the epoch when some fraction \(f \) of the matter collapses, the results being only mildly dependent on \(f \) in the reasonable range \(f \gtrsim 10^{-4} \).

For the scale-independent case, the bounds on \(n \) are given in Figure 3 for some typical values of \(f \), and for the case of no reionization. In the same Figure, the bounds are compared with the prediction of some forms of the inflationary potential which are suggested by effective field theory. The prediction depends on the number of \(c \)-folds \(N \) of inflation after cosmological scales leave the horizon, where \(N \lesssim 60 \) depends on the post-inflationary cosmology. For two of the models, the constraint on \(n \) rules out a significant portion of the \(n-N \) plane.

In the case of running mass models, the scale-dependent spectral index depends on parameters \(s \) and \(c \), the latter being related to the inflaton coupling which produces the running. We have delineated the allowed region in the \(s-c \) plane. An unsuppressed coupling \(c \sim 0.1 \) is allowed by the data, leading to a noticeable scale-dependence of the spectral index. The fit with \(c = 0.1 \) is less good than with a scale-independent spectral index, but still acceptable.

6 ACKNOWLEDGMENTS

We would like to thank A. D. Linde for useful comments on the first version of this paper.

REFERENCES

Armendariz-Picon C., Damour T., Mukhanov V., 1999, Phys. Lett., B458, 209.

Bahcall N.A., Ostriker J.P., Perlmutter S., Steinhardt P.J., 1999, Science, 284, 1481.

de Bernardis P. et al., 2000, Nature, 404, 955.

Banks M., Dine M., Motl L., hep-th/0007206.

Buchmüller W., Covi L., Delépine D., 2000, Phys. Lett., B491, 183.

CMBl Last website, http://www.sns.ias.edu/~matiasz/CMBfast/CMBfast.html

Covi L., 1999, Phys. Rev., D60, 023509.

Covi L., Lyth D.H., 1999, Phys. Rev., D59, 063515.

Covi L., Lyth D.H., Roszkowski L., 1999, Phys. Rev., D60, 023509.

Dodelson S., Kinney W.H., Kolb E.W., 1997, Phys. Rev., D56, 3207.

Dvali G., Tye S.H., 1999, Phys. Lett., B450, 72.

Freedman W.L., 2000, Physical Scripta, T85, 37.

German G., Ross G., Sarkar S., 1999, Phys. Lett., B469, 46.

Hanany S. et al., astro-ph/0005123.

Jaffe A.H. et al., astro-ph/0007335.
Figure 4. The parameter space for the running mass model. As discussed in (Lyth & Covi 2000), the model comes in four versions, corresponding to the four quadrants of the parameter space. In the left-hand panel, the straight lines corresponding to $n_{\text{COBE}} = 1.2, 1.0$ and 0.8, and the shaded region is disfavoured on theoretical grounds. In the right-hand panel, we show the region allowed by observation, in the case that reionization occurs when $f \sim 1$. To show the scale-dependence of the prediction for n, we also show in this panel the branches of the hyperbola $8sc = \Delta n \equiv n_s - n_{\text{COBE}}$, for the reference value $\Delta n = 0.04$.

Table 3. Fit of the ΛCDM model to presently available data. The scale-dependent spectral index is given by Eq. (14) with $c = 0.1$. Free parameters are $n_{\text{COBE}} = 1 + 2(s - c)$, and the next three quantities in the Table. Reionization is taken to occur when a fraction $f = 10^{-2.2}$ of matter has collapsed. (The corresponding redshift at best fit is $z_R = 21$.) Every quantity except n_{COBE} is a data point, with the value and uncertainty listed in the first two rows. The result of the least-squares fit is given in the lines three to five. All uncertainties are at the nominal 1-σ level. The total χ^2 is 8.4 with three degrees of freedom.

n_{COBE}	$\Omega_b h^2$	Ω_0	h	Γ	τ_6	$C_{\ell}^{1\text{st}}$	$C_{\ell}^{2\text{nd}} / C_{\ell}^{1\text{st}}$
data	0.019	0.35	0.65	0.23	0.56	74.0 μK	0.38
error	0.002	0.075	0.075	0.035	0.059	5 μK	.06
fit	0.94	0.021	0.40	0.59	0.19	67.6 μK	0.49
error	0.002	0.05	0.05				

χ^2 = 0.9, 4.6, 1.2, 0.2, 1.6, 3.5