Nonlinear Current Response of a d-wave Superfluid

T. Dahm
Max-Planck-Institute for Physics of Complex Systems,
Nöthnitzer Str. 38, D-01187 Dresden, Germany

D.J. Scalapino
Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A.

Despite several efforts the nonlinear Meissner effect in d-wave superconductors, as has been discussed by Yip and Sauls in 1992, has not been verified experimentally in high-T_c superconductors at present. Here, we reinvestigate the nonlinear response expected in a d-wave superconductor. While the linear $|\vec{H}|$ field dependence of the penetration depth, predicted by Yip and Sauls, is restricted by the lower critical field and can be masked by nonlocal effects, we argue that the upturn of the nonlinear coefficient of the quadratic field dependence is more stable and remains observable over a broader range of parameters. We investigate this by studying the influence of nonmagnetic impurities on the nonlinear response. We discuss the difficulties of observing this intrinsic d-wave signature in present day high-T_c films and single crystals.

PACS: 74.25.Nf, 74.20.Fg, 74.72.-h

I. INTRODUCTION

In a $d_{x^2−y^2}$-wave superconductor, quasi-particles near the nodes of the gap give rise to an intrinsic nonlinear electrodynamic response. Yip and Sauls discussed this and suggested that at sufficiently low temperatures this nonlinearity would lead to an increase in the penetration depth λ which would vary as the magnitude of the magnetic field $|\vec{H}|$ with a coefficient that depended upon the orientation of the field relative to the nodes. Although there have been various experimental studies of the magnetic field dependence of the penetration depth, there are at present no observations which are in agreement with the size, field, and temperature dependence predicted in Ref. 1. It is known that impurities can wash out the linear H dependence, leading to an H^2 dependence for λ and recently Li et al. have argued that nonlocal effects, except for special orientations of the field, will lead to a quadratic dependence below a cross-over field of order H_{c1}. Thus, the magnitude $|\vec{H}|$ signature of a $d_{x^2−y^2}$-wave state in the penetration depth may be difficult at best to observe.

However, as discussed by Xu, Yip and Sauls, at higher temperatures the temperature dependence of the coefficient of the quadratic field term in the penetration depth shows a clear deviation from the exponentially decaying temperature behavior which would be observed in a fully gapped s-wave superconductor. In particular for a $d_{x^2−y^2}$ gap, this coefficient exhibits a $T^{−1}$ temperature dependence so that contrary to the s-wave case, the strength of the H^2 contribution increases as T is decreased until it saturates due to impurities, nonlocal effects, or possibly, for the magnetic field oriented along the nodes, the crossover to the Yip-Sauls $|\vec{H}|$ dependence. It is this aspect of the nonlinear response that we wish to explore.

As we have previously discussed, the quadratic term in the penetration depth leads to a nonlinear inductance which gives rise to third order intermodulation effects. This nonlinearity in fact represents a problem for superconducting communication filters and care must be taken to reduce its presence. However, from the point of view of studying the nonlinear superconducting response, microwave intermodulation effects provide a sensitive probe. Here we present results which illustrate the type of nonlinear dependence that can be expected.

In Section II we study the field and temperature dependence of the nonlinear superfluid density for a clean d-wave superconductor. The crossover between the $|\vec{H}|$ linear Yip-Sauls regime and the quadratic regime with its divergent coefficient are discussed. Section III illustrates the corresponding behavior expected to be seen in harmonic generation and intermodulation. In Section IV we study the influence of nonmagnetic impurities in order to see how stable these signatures of the d-wave state are. We will see that the increase of the nonlinear coefficient at low temperatures appears to be more stable than the $|\vec{H}|$ linear behavior due to its restriction by the lower critical field H_{c1}. We discuss the difficulties in observing these signatures in present day high-T_c systems. Section V contains our conclusions.

II. THE NONLINEAR SUPERFLUID DENSITY

The current density in a superconductor is given by the sum of the superfluid flow j_s and the quasi-particle backflow contribution

$$j = j_s + j_{qp} \quad (1)$$

with

$$j_{qp} = \frac{4en}{mv_F} \int_0^\infty dk \int \frac{d\Theta}{2\pi} v_F \cos \Theta.$$

\[\text{arXiv:cond-mat/9908332v1 [cond-mat.supr-con]} \ 24 \ Aug \ 1999. \]
\[f \left(\sqrt{\epsilon^2 + \Delta^2} (\Theta) + \frac{m v_F}{n e} j_s \cos \Theta \right). \]

Here, \(f(\epsilon) = 1/[1 + \exp(\epsilon/|T|)] \) is the Fermi function and we have taken a simple circular Fermi surface with a \(d_{x^2-y^2} \) gap. As has been discussed by Li et al., nonlocal effects will become important for current flow along the antinodal direction for a magnetic field oriented perpendicular to the \(\text{CuO}_2 \) planes. However, nonlocal effects are negligible for current flow along a nodal direction. Here and in the following we will therefore study this second case using the \(d \)-wave angular dependence

\[\Delta (\Theta) = \Delta (T) \sin 2\Theta. \]

Here, for convenience, we have chosen our coordinates such that \(\Theta = 0 \) corresponds to the nodal direction. We have checked that qualitatively very similar results are found for current flow along the antinodal direction, if nonlocal effects are neglected. The superfluid density \(n_s \) is defined by

\[j = \frac{n_s}{n} j_s \]

so that

\[\frac{n_s}{n} |_{j_s = 0} = 1 + 4 \int_0^\infty d\epsilon \int \frac{d\Theta}{2\pi} \cos \Theta \cdot f \left(\sqrt{\epsilon^2 + \Delta^2 (\Theta)} + \frac{m v_F}{n e} j_s \cos \Theta \right). \]

(4)

with \(j_c = n e \Delta_0/m v_F \) the pair breaking current density. In the limit \(j_s \to 0 \), we have

\[\frac{n_s (j_s = 0)}{n} = 1 + 4 \int_0^\infty d\epsilon \int \frac{d\Theta}{2\pi} \cos \Theta \cdot f \left(\sqrt{\epsilon^2 + \Delta^2 (\Theta)} \right). \]

(5)

Setting

\[\delta n_s = n_s (j_s = 0) - n_s (j_s) \]

we have for the nonlinear contribution to the superfluid density

\[\frac{\delta n_s (j_s)}{n} = -4 \int_0^\infty d\epsilon \int \frac{d\Theta}{2\pi} \cos \Theta \cdot f \left(\sqrt{\epsilon^2 + \Delta^2 (\Theta)} + \frac{m v_F}{n e} j_s \cos \Theta \right) + 4T \int_0^\infty d\epsilon \int \frac{d\Theta}{2\pi} \cos^2 \Theta \cdot \frac{df}{d\epsilon} \left(\sqrt{\epsilon^2 + \Delta^2 (\Theta)} \right). \]

(6)

At small current flow this is related to the nonlinear change in penetration depth \(\Delta \lambda \) via

\[\frac{\Delta \lambda}{\lambda} \approx \frac{1}{2 n} \frac{\delta n_s}{n}. \]

(7)

It is this nonlinear part of the superfluid density that we will study.

There are some simple limiting cases. As discussed by Yip and Sauls, when \(j_s/j_c \ll T/\Delta_0 \), then one can expand Eq. (8) in powers of \(j_s/j_c \) so that

\[\frac{\delta n_s}{n} = \beta (T) \left(\frac{j_s}{j_c} \right)^2 \]

(9)

with

\[\beta (T) = -\frac{2}{3} \left(\frac{\Delta_0^3}{T^3} \right) \int_0^\infty d\epsilon \int \frac{d\Theta}{2\pi} \cos^4 \Theta \cdot \frac{df}{d\epsilon} \left(\sqrt{\epsilon^2 + \Delta^2 (\Theta)} \right). \]

(10)

At low temperatures this expression yields

\[\beta (T) \approx \frac{1}{12} \frac{T}{T_0}. \]

(11)

the \(1/T \) divergence mentioned above. Alternatively, in the low temperature limit where

\[\frac{n_s (j_s = 0)}{n} = 1 - 2 \ln 2 \left(\frac{T}{\Delta_0} \right) \]

(12)

and \(j_s/j_c \gg T/\Delta_0 \) we have the Yip-Sauls result

\[\frac{\delta n_s (j_s)}{n} = \frac{1}{2} \frac{\lambda}{j_c} - 2 \ln 2 \left(\frac{T}{\Delta_0} \right) \]

(13)

For the calculations presented in the following we choose \(\Delta_0/T_c = 3 \), a value that fits low temperature penetration depth data on YBCO [1].
For $T/T_c = 0.005$ the two limits in Eqs. (10) and (14) are shown in Fig. 3 along with the numerical result obtained by numerically integrating Eq. (8). Here we see a crossover from a quadratic dependence on j_s/j_c for $j_s/j_c < T/T_c$ to a linear dependence when j_s/j_c becomes larger than T/T_c. As has been pointed out by Yip and Sauls, this linear j_s/j_c dependence can be observed at low temperatures due to the fact that a type II superconductor will enter the vortex state, if the current density level j_s/j_c becomes larger than T/T_c. At small values j_s/j_c, $\delta n_s/n$ has approximately the same slope, but the curves are shifted down by an amount proportional to T/T_c. At the same time the convergence radius of the Taylor expansion decreases like $1/\delta T$ upon lowering the temperature.

At the same time the convergence radius of the Taylor expansion decreases like $1/\delta T$ upon lowering the temperature. The two limiting cases Eqs. (18) (for $T/T_c = 0.001$) and (19) are shown as the solid and the dotted line, respectively. Fig. 3 shows a double logarithmic plot of j_3/j_c versus j_0/j_c for three different values of T/T_c, and the crossover from Eq. (18) (solid line) to Eq. (19) (dotted line) is clearly seen. Note, that due to the prefactor $\beta(T)$ in Eq. (18) the nonlinear response j_3/j_c in the low j_0/j_c regime increases, when the temperature is lowered. Fig. 4 shows the temperature dependence of j_3/j_c for $j_0/j_c = 0.01$ along with the high temperature limit from Eq. (18). The third harmonic amplitude j_3 follows the $1/T$ divergence until T/T_c falls below $j_0/j_c = 0.01$. Below that point j_3 saturates due to the crossover to the Yip-Sauls limit Eq. (19). This low temperature peak in the third harmonic amplitude is a consequence of the nodes of the d-wave state and does not exist for an s-wave superconductor.

\[
\frac{j_3}{j_c} = \frac{1}{\pi} \int_0^{2\pi} dx \sin 3x \frac{n_s(j_s \sin x)}{n} j_s \sin x. \quad (17)
\]

In the 'high temperature limit', $T/T_c \gg j_s/j_c$ we find using Eq. (11)

\[
j_3 = \frac{1}{4} \beta(T) \frac{j_0^3}{j_c^2} \quad (18)
\]

and in the 'low temperature limit', $T/T_c \ll j_s/j_c$ using Eq. (14) we have

\[
j_3 = \frac{4}{15\pi} \frac{j_x^2}{j_c^2}. \quad (19)
\]

III. HARMONIC GENERATION AND INTERMODULATION

The nonlinear response to an applied microwave field such that the microwave frequency is small compared to the quasi-particle relaxation time can be determined from Eqs. (3) and (4). If

\[
j_s(t) = j_{0s} \sin \omega t \quad (15)
\]

then

\[
j(t) = \frac{n_s(j_s(t))}{n} j_s(t) \quad (16)
\]

Now, only odd frequency terms arise since $n_s(j_s) = n_s(-j_s)$. For example, the third harmonic $j_3 \sin 3\omega t$ has an amplitude

\[
j_3 = 1/\pi \int_0^{2\pi} dx \sin 3x \frac{n_s(j_s \sin x)}{n} j_s \sin x. \quad (17)
\]
One can also explore two-tone intermodulation which is important in communication filter applications. Here

\[j_s(t) = j_{s1} \sin \omega_1 t + j_{s2} \sin \omega_2 t \]

(20)

with \(\omega_1 \) and \(\omega_2 \) close in frequency so that the intermodulation frequency \(2\omega_1 - \omega_2 \) lies within the pass band of the filter. In this case we find for the amplitude \(j_{2\omega_1-\omega_2} \) of the intermodulation response at high temperatures\(^{[14]}\)

\[j_{2\omega_1-\omega_2} = \frac{3}{4} \beta(T) \frac{j_{s1}^2 j_{s2}}{j_c^2} \]

(21)

while at low temperatures, when \(j_{s2} \ll j_{s1} \)

\[j_{2\omega_1-\omega_2} = \frac{1}{2\pi} \frac{j_{s2}^3}{j_c} \]

(22)

and when \(j_{s1} \ll j_{s2} \)

\[j_{2\omega_1-\omega_2} = \frac{2}{3\pi} \frac{j_{s1} j_{s2}}{j_c}. \]

(23)

Thus, at fixed \(j_{s1} \) and \(j_{s2} \) the temperature dependence of \(j_{2\omega_1-\omega_2} \) will have the same qualitative behavior as \(j_3(T) \) in Fig.\(^{[4]}\).

This analysis shows that measurements of third harmonics and intermodulation allow to directly access the temperature dependence of the nonlinear coefficient \(\beta(T) \), utilizing Eqs.\(^{[15]}\) or \(^{[21]}\). In principle, this allows to probe experimentally whether this low temperature peak in \(\beta \) exists or not.

IV. INFLUENCE OF IMPURITIES

Now we wish to consider the influence of nonmagnetic impurities on the nonlinear response discussed in the previous sections in order to see how stable the \(d \)-wave signatures in the nonlinear response are.

In the presence of impurities the total current density is given by\(^{[13]}\)

\[j = -2j_c \int_{-\pi/2}^{\pi/2} \frac{d\Theta}{2\pi} \cos \Theta \int_{-\infty}^{\infty} \frac{d\omega}{\Delta_0} f(\omega) \cdot \left[N_+(\Theta, \omega) - N_-(\Theta, \omega) \right], \]

(24)

where \(N_\pm(\Theta, \omega) \) is the density of states for the comoving and countermoving quasiparticles, respectively:

\[N_\pm(\Theta, \omega) = \text{Im} \frac{\tilde{\omega} \pm \Delta_0 \frac{j_c}{\Delta_c} \cos \Theta}{\Delta^2(\Theta) - (\tilde{\omega} \pm \Delta_0 \frac{j_c}{\Delta_c} \cos \Theta)^2}. \]

(25)

Here, \(\tilde{\omega}(\omega) \) is the renormalized frequency and has to be determined by the selfconsistent equations\(^{[13]}\)

\[g_0 = -\int_{-\pi}^{\pi} \frac{d\Theta}{2\pi} \frac{\tilde{\omega} + \Delta_0 \frac{j_c}{\Delta_c} \cos \Theta}{\Delta^2(\Theta) - (\tilde{\omega} + \Delta_0 \frac{j_c}{\Delta_c} \cos \Theta)^2} \]

(26)

\[\tilde{\omega} = \omega - \Gamma \frac{g_0}{c^2 - g_0}. \]

(27)

Here, \(c \) is the cotangent of the scattering phase shift and \(\Gamma \) the scattering rate. Using Eqs.\(^{[24]}\) - \(^{[27]}\) along with Eqs.\(^{[4]}\) and \(^{[5]}\) we can extract \(\delta n_s(j_s)/n \) in the presence of nonmagnetic impurities.
as can nonlocal effects for current flow along the antinodal direction.]

In order to find the nonlinear coefficient $\beta(T/T_c)$ it is advantageous to perform the calculation on the imaginary frequency axis. Then we find

$$\beta(T) = 2\Delta_0^2 \int_{-\pi}^{\pi} \frac{d\Theta}{2\pi} \cos^4 \Theta .$$

$$\pi T \sum_{\omega_n > 0} \Delta^2(\Theta) \Re \left\{ \frac{4\bar{\omega}_n^2 - \Delta^2(\Theta)}{(\bar{\omega}_n^2 + \Delta^2(\Theta))^{3/2}} \right\} .$$

Here, $\bar{\omega}_n$ are the renormalized Matsubara frequencies which have to be determined selfconsistently by the imaginary axis counterparts of Eqs. (26) and (27):

$$\bar{\omega}_n = \omega_n + \Gamma \frac{g_0}{c^2 + g_0^2}$$

$$g_0 = \int_{-\pi}^{\pi} \frac{d\Theta}{2\pi} \frac{\bar{\omega}_n}{\Delta^2(\Theta) + \bar{\omega}_n^2}$$

with $\omega_n = (2n+1)\pi T$ being the unrenormalized Matsubara frequencies.

Fig. 6 shows $\beta(T/T_c)$ for different scattering rates. Now, the $1/T$ divergence is cut off at low temperatures by the impurity scattering. However, a peak, signifying the underlying d-wave nature of the superconducting gap, still remains unless Γ/T_c becomes of the order of 0.1. Qualitatively similar results are found for nonn

As an illustration we show the density of states $N(\omega)$ in the presence of impurities in Fig. 7. Here one can see the impurity states generated at low energies $\omega/\Delta_0 < 0.05$. However, at higher energies there is still a broad region where $N(\omega)$ varies linearly with ω. At not too low temperatures the nonlinear response still picks up this linear variation resulting in an upturn of the nonlinear coefficient $\beta(T/T_c)$ upon lowering the temperature.

This signature of the d-wave state should remain observable over a much broader range of parameters than the $|H|$-linear regime discussed by Yip and Sauls. While the $|H|$-linear regime is limited by the lower critical field $\Gamma/T_c \lesssim H_{c1}/H_c \simeq 0.01$, this peak in $\beta(T/T_c)$ will remain until Γ/T_c becomes of the order of 0.1, making it a better candidate for a search of d-wave behavior in the nonlinear response. From the study in Ref. [2] we expect that this upturn of β should also remain visible, if one includes nonlocal effects for the case of current flow along the antinodal direction.

Some remarks concerning the difficulties of observing this behavior should be made at this point. In order to extract the coefficient β from measurements of the H-field dependence of the penetration depth λ one would need a very high resolution, as can be estimated from Eqs. (18) and (21): even if $j_s/j_c \simeq 0.01$ and for β we take a typical value of 4, we find $\Delta\lambda/\lambda \simeq 2 \times 10^{-4}$ which challenges existing techniques. A more direct way to measure β would be harmonic generation or intermodulation utilizing Eqs. (18) and (21) as has been discussed in the previous section. A study of the temperature dependence of intermodulation in high-T_c (TBCCO) films has been done in Ref. [16]. In that study no increase in intermodulation was found down to the lowest temperatures of 25 K, which might not be small enough, however. A similar result was found in measurements of third har-
monic generation in YBCO films. These studies also showed that the absolute magnitude of the nonlinear response is higher than expected from the intrinsic d-wave response discussed here. This and the study in Ref. [1] indicates that other sources of nonlinear behavior, as for example weak link grain boundaries which act as Josephson Junctions, [2] might dominate the nonlinear response in present day high-T_c films. Thus, the difficulties of observing d-wave behavior in the nonlinear response are mainly related to the existence of extrinsic effects even in the best presently available systems. Nevertheless, we suggest that a temperature dependent measurement of harmonic generation or intermodulation in the highest quality single crystals available today provides the best hope of observing d-wave behavior in the nonlinear response.

V. CONCLUSIONS

We studied the temperature and field dependence of the nonlinear electrodynamic response in a d-wave superconductor. The signatures of the d-wave state are the $|\vec{H}|$-linear regime, as discussed by Yip and Sauls, and an upturn of the nonlinear coefficient β in the quadratic regime at low temperatures. This coefficient can be directly measured by harmonic generation and intermodulation. While the $|\vec{H}|$-linear regime is limited by the lower critical field and can be masked by impurity scattering and nonlocal effects, the upturn of the coefficient β appears to be more stable and should remain observable over a broader range of parameters. We showed this explicitly by studying the influence of nonmagnetic impurity scattering. It is possible, however, that in present day high-T_c films and single crystals extrinsic effects still dominate the nonlinear response, masking this intrinsic signature of the d-wave symmetry.

ACKNOWLEDGMENTS

The authors would like to thank C.P. Bidinosti, J.C. Booth, J. Halbritter, R.B. Hammond, W.N. Hardy, M.A. Hein, P.J. Hirschfeld, B.A. Willemsen, and P. Wölfle for valuable discussions. T. D. would like to thank Superconductor Technologies Inc. and the UCSB Physics Department for their hospitality during a stay, at which part of this work has been done. D.J.S. would like to acknowledge partial support under NSF DMR 98-17242.

1 S.K. Yip and J.A. Sauls, Phys. Rev. Lett. 69, 2264 (1992).

2 A. Maeda, Y. Iino, T. Hanaguri, N. Motohira, K. Kishio, and T. Fukase, Phys. Rev. Lett. 74, 1202 (1995); A. Maeda, T. Hanaguri, Y. Iino, S. Matsuoka, Y. Kokata, J. Shimoyama, K. Kishio, H. Asaoka, Y. Matsuishi, M. Hasegawa, and H. Takei, J. Phys. Soc. Jpn. 65, 3638 (1996).

3 A. Bhattacharya, I. Zutić, O.T. Valls, A.M. Goldman, U. Welp, and B. Veal, Phys. Rev. Lett. 82, 3132 (1999).

4 C.P. Bidinosti, W.N. Hardy, D.A. Bonn, and R. Liang, preprint [cond-mat/9808231]. C.P. Bidinosti et al, to appear in Phys. Rev. Lett.

5 A. Carrington, R.W. Giannetta, J.T. Kim, and J. Gapiñatzakis, Phys. Rev. B 59, R14173 (1999).

6 D. Xu, S.K. Yip, and J.A. Sauls, Phys. Rev. B 51, 16233 (1995).

7 M.-R. Li, P.J. Hirschfeld, and P. Wölfle, Phys. Rev. Lett. 81, 5640 (1998); preprint [cond-mat/9907189].

8 T. Dahm and D.J. Scalapino, J. Appl. Phys. 81, 2002 (1997); Appl. Phys. Lett. 69, 4248 (1996).

9 I. Zutić and O. T. Valls, Phys. Rev. B 58, 8738 (1998).

10 P.J. Hirschfeld, J. Phys. Chem. Solids 56, 1605 (1995); P.J. Hirschfeld, W.O. Putikka, and D.J. Scalapino, Phys. Rev. B 50, 10250 (1994).

11 B.A. Willemsen, K.E. Kihlstrom, and T. Dahm, Appl. Phys. Lett. 74, 753 (1999); B.A. Willemsen, T. Dahm, B.H. King, and D.J. Scalapino, to appear in IEEE Trans. Appl. Supercond.

12 G. Preosti, H. Kim, and P. Muzikar, Phys. Rev. B 50, 1259 (1994).

13 R. Fehrenbacher and M.R. Norman, Phys. Rev. B 50, R3495 (1994).

14 P.J. Hirschfeld and W.O. Putikka, Phys. Rev. Lett. 77, 3909 (1996).

15 P.J. Hirschfeld, P. Wölfle, and D. Einzel, Phys. Rev. B 37, 83 (1988).

16 B.A. Willemsen, K.E. Kihlstrom, T. Dahm, D.J. Scalapino, B. Gowe, D.A. Bonn, and W.N. Hardy, Phys. Rev. B 58, 6650 (1998).

17 J.C. Booth, J.A. Beall, D.A. Rudman, L.R. Vale, R.H. Ono, C.L. Holloway, S.B. Qadri, M.S. Ososký, E.F. Skelton, J.H. Claassen, G. Gibson, J.L. MacManus-Driscoll, N. Malde, and L.F. Cohen, to appear in IEEE Trans. Appl. Supercond.

18 J. Halbritter, J. Supercond. 8, 691 (1995).