Tris(2-mercaptoimidazolyl)hydroborato Cadmium Thiolate Complexes, [TmBu]CdSAr: Thiolate Exchange at Cadmium in a Sulfur-Rich Coordination Environment

Ava Kreider-Mueller, Patrick J. Quinlivan, Jonathan S. Owen,* and Gerard Parkin*+
Department of Chemistry, Columbia University, New York, New York 10027, United States

Supporting Information

ABSTRACT: A series of cadmium thiolate compounds that feature a sulfur-rich coordination environment, namely [TmBu]CdSAr, have been synthesized by the reactions of [TmBu]CdMe with ArSH (Ar = C6H4-4-F, C6H4-4-But, C6H4-4-OMe, and C6H4-3-OMe). In addition, the pyridine-2-thiolate and pyridine-2-selenolate derivatives, [TmBu]CdSPy and [TmBu]CdSePy have been obtained via the respective reactions of [TmBu]CdMe with pyridine-2-thione and pyridine-2-selone. The molecular structures of [TmBu]CdSAr and [TmBu]CdEPy (E = S or Se) have been determined by X-ray diffraction and demonstrate that, in each case, the [CdS4] motif is distorted tetrahedral and approaches a trigonal monopyramidal geometry in which the thiolate ligand adopts an equatorial position; [TmBu]CdSPy and [TmBu]CdSePy, however, exhibit an additional long-range interaction with the pyridyl nitrogen atoms. The ability of the thiolate ligands to participate in exchange was probed by 1H and 19F nuclear magnetic resonance (NMR) spectroscopic studies of the reactions of [TmBu]CdSC6H4-4-F with ArSH (Ar = C6H4-4-But or C6H4-4-OMe), which demonstrate that (i) exchange is facile and (ii) coordination of thiolate to cadmium is most favored for the p-fluorophenyl derivative. Furthermore, a two-dimensional EXSY experiment involving [TmBu]CdSC6H4-4-F and 4-fluorothiophenol demonstrates that degenerate thiolate ligand exchange is also facile on the NMR time scale.

INTRODUCTION
Thiolate ligands are prevalent in the coordination chemistry of both transition and main group metals, having found important applications in the fields of bioinorganic chemistry and nanoscience. For example, many enzymes feature metal coordination by the thiolate groups of cysteine residues, as illustrated by a large variety of zinc enzymes, such as liver alcohol dehydrogenase, 5-aminolevulinate dehydratase, the Ada DNA repair protein, and zinc finger proteins. Indeed, the first cadmium enzyme discovered likewise exhibits coordination by cysteine thiolate groups, but it should be noted that such coordination is additionally associated with (i) a mechanism of cadmium toxicity and (ii) the ability of metallothionein to protect against cadmium toxicity. With respect to applications in nanoscience, cadmium–thiolate coordination has also been used as a means to cap cadmium chalcogenide nanoparticles. Therefore, in view of the current relevance of cadmium–thiolate interactions, we report here an investigation of thiolate exchange at cadmium in a sulfur-rich coordination environment.

RESULTS AND DISCUSSION
The tris(2-mercaptopimidazolyl)hydroborato ligand system, [TmBu] (Figure 1), has been shown to be effective for providing an L₂X₃[S₄] donor array for a variety of metal centers. For example, this class of ligands has been utilized for investigating zinc enzymes that have sulfur-rich active sites.
Subsequently, we demonstrated that \([\text{TmBu}]\text{CdSAr}\) derivatives could also be obtained by treatment of \([\text{TmBu}]\text{CdMe}\) with \(\text{ArSH} (\text{Ar} = \text{C}_6\text{H}_5, \text{C}_6\text{H}_4\text{-}4\text{-Me})\).\(^{24}\) Since a variety of thiols are commercially available (in contrast to TlSAr), we have used the latter method to extend the series of \([\text{TmBu}]\text{CdSAr}\) derivatives (\(\text{Ar} = \text{C}_6\text{H}_4\text{-}4\text{-F}, \text{C}_6\text{H}_4\text{-}4\text{-But}, \text{C}_6\text{H}_4\text{-}4\text{-OMe}, \text{or C}_6\text{H}_4\text{-}3\text{-OMe}\)), as illustrated in Scheme 1. The molecular structures of all of the \([\text{TmBu}]\text{CdSAr}\) derivatives have been determined by X-ray diffraction, as illustrated in Figures 2–5, and selected bond lengths and angles are listed in Table 1.

The coordination geometry of the cadmium center in each \([\text{TmBu}]\text{CdSAr}\) derivative is distorted tetrahedral, as indicated by the deviation of the four-coordinate \(\tau_4\) and \(\tau_δ\) geometry indices\(^{33}\) from the idealized value of 1.00 for a tetrahedral geometry (Table 3). Specifically, the distortion is such that the structures approach a trigonal monopyramidal geometry (0.85) in which the thiolate ligand adopts an equatorial position. In this regard, the sum of the three bond angles \(\Sigma_{\text{S-Cd-S}}\) that approximate the equatorial plane \(333.7°\)–\(347.2°\) (Table 3) is greater than the idealized tetrahedral value \(328.5°\).

With respect to the coordination of the thiolate ligands, the Cd–SAr bond lengths are \(\sim 0.1\) Å shorter than the average Cd–S bond lengths associated with the \([\text{TmBu}]\) ligands (Table 1), which is in accord with the latter involving a dative covalent component to the bonding interaction.\(^{34}\) The Cd–S–Ar bond angles exhibit little variation \(103.77(9)°–106.39(11)°\) and are comparable to the mean value of 106.5\(^°\) for structurally characterized cadmium arylthiolate compounds listed in the Cambridge Structural Database (CSD).\(^{35}\) Despite the similar Cd–SAr bond lengths and Cd–S–Ar bond angles, however, the Cd–S–C\text{ipso}–C\text{ortho} torsion angles (Figure 6) vary significantly (Table 2), with \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}4\text{-F}\) having the smallest Cd–S–C\text{ipso}–C\text{ortho} torsion angle \(2.09°\) and \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}4\text{-OMe}\) having the largest torsion angle \(42.81°\). Of note, \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}4\text{-OMe}\) and \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}3\text{-OMe}\) have similar torsion angles, which suggests that steric effects do not have much influence in this system. Since the distance between the \text{ortho} hydrogen and the cadmium varies with the torsion angle, it is appropriate to consider the possibility that the small torsion angle for \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}4\text{-F}\) could reflect an agostic interaction.\(^{36}\) The Cd–H distance \(2.70\) Å, however, is considerably longer than the sum of the covalent radii of Cd and H \(1.75\) Å\(^{37}\) and is also longer than the Cd···H–B distance in \([\kappa^2\text{TmBu}]_2\text{Cd}\) \(2.49\) Å.\(^{24}\) As such, it is not reasonable to attribute the orientation of the aryl group of \([\text{TmBu}]\text{CdSC}_6\text{H}_4\text{-}4\text{-F}\) to an agostic interaction, and crystal packing effects are more likely responsible for the variation of torsion angles.

Synthesis and Structural Characterization of \([\text{TmBu}]\text{CdSPy}\) and \([\text{TmBu}]\text{CdSePy}\). In addition to arylthiolate compounds, \([\text{TmBu}]\text{CdSAr}\), we have also synthesized the
pyridine-2-thiolate \(^{38}\) counterpart, \([\text{TMBut}]\text{CdSPy}\), via the reaction of \([\text{TMBut}]\text{CdMe}\) with pyridine-2-thione \(^{39}\) (Scheme 2). The molecular structure of \([\text{TMBut}]\text{CdSPy}\) has been determined by X-ray diffraction (Figure 7), which indicates that it exists as a discrete mononuclear compound. Although a variety of metal compounds derived from 2-mercaptopyridine have been reported,\(^{38}\) the formation of \([\text{TMBut}]\text{CdSPy}\) is noteworthy because there is only one pyridine-2-thiolate cadmium compound listed in the CSD,\(^{35}\) namely \([\text{Cd(SPy)}\text{H}_{2}]\text{Cd} \text{SAr}\), furthermore, \([\text{Cd(SPy)}\text{H}_{2}]\) is polymeric with each sulfur bridging two cadmium atoms.

Selected bond lengths and angles for \([\text{TMBut}]\text{CdSPy}\) are summarized in Table 4, indicating that the Cd–S bond length [2.4946(8) Å] is comparable to the Cd–SAr bond lengths in the aforementioned \([\text{TMBut}]\text{CdSAr}\) complexes (Table 1). Despite the similar Cd–S bond lengths, however, the bond angle at the thiolate sulfur [91.95(10)°] is much smaller than those of the arylthiolate compounds listed in Table 1 [103.77(9)–106.39(11)°]. In addition to a small angle at sulfur, the Cd–S–C–N torsion angle is close to zero (0.35°), both of which indicate that the pyridine ring is oriented in a position that would maximize a Cd–N interaction. Of note, these structural features are not present in the pyridine-2-thione adduct, \([\text{Cd(SPyH)}_{2}]\)\(^{12}\). Specifically, the bond angles at the sulfur atoms of \([\text{Cd(SPyH)}_{2}]\) will be much larger than those for \([\text{TMBut}]\text{CdSPy}\), as are the torsion angles (121.0° and 175.0°).

Moreover, despite the favorable orientation of the pyridine ring of \([\text{TMBut}]\text{CdSPy}\) to participate in a Cd–N interaction, the

Table 1. Selected Bond Lengths (angstroms) and Angles (degrees) for \([\text{TMBut}]\text{CdSAr}\)
compound
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Bu}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{O} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{3-OMe}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{4-OMe}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{4-F}\)

Data taken from ref 24.

Table 2. Bond Angles and Torsion Angles Pertaining to the Thiolate Ligands of \([\text{TMBut}]\text{CdSAr}\)
compound
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Bu}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{O} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{4-F}\)

Data taken from ref 24.

Table 3. Four-Coordinate \(\tau_{\text{E}} \text{Cd–S–E} \text{Cd} \text{SArg} (\text{deg})\) Values for \([\text{TMBut}]\text{CdSAr}\) and \([\text{TMBut}]\text{CdEPy} (\text{E} = \text{S or Se})\)
compound
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{Bu}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{O} \text{Me}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{3-OMe}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{4-OMe}\)
\([\text{TMBut}]\text{CdSC}_{6}\text{H}_{4} \text{4-F}\)
\([\text{TMBut}]\text{CdSPy}\)
\([\text{TMBut}]\text{CdSePy}\)

Values assuming no Cd–N interaction.

DOI: 10.1021/acs.inorgchem.7b00296

Inorg. Chem. 2017, 56, 4643–4653
The Cd···N distance of 2.766 Å is distinctly longer than the average value of 2.350 Å for structurally characterized cadmium pyridine compounds listed in the CSD.35,44 As such, it is evident that the Cd···N interaction in [TmBut]CdSPy cannot be regarded as strong. Pyridine-2-thiolate ligands are known to coordinate to a single metal center via three possible coordination modes (Figure 8),40,45 namely, \(\kappa^1\)–S,46 \(\kappa^1\)–N,47 and \(\kappa^2\)–S,N,46a,48 so it is apparent that [TmBut]CdSPy possesses a structure that lies on the border between \(\kappa^1\)–S and \(\kappa^2\)–S,N coordination modes.

Interestingly, even though the Cd···N interaction is not strong, the presence of the nitrogen does, nevertheless, have an impact on the cadmium coordination geometry. For example, one of the Cd–S bonds involving the [TmBut] ligand is distinctly longer than the other two. Specifically, the sulfur that is approximately trans to the nitrogen atom [S(3)–Cd–N, 154.92\(^\circ\)] has a Cd–S(3) bond length of 2.6438(7) Å, whereas the other two have bond lengths of 2.5509(7) and 2.5633(7) Å. For further comparison, the longest Cd–S bond length involving the [TmBu] ligand for the thiolate compounds listed in Table 1 is 2.5784(6) Å. Neglecting the Cd···N interaction, the \(r_4\) parameter (0.74) is smaller than the values for the other [TmBu]CdSAr compounds. As such, the cadmium center of the [CdS\(_4\)] moiety is approaching a trigonal monopyramidal geometry in which the longest Cd–S bond occupies the axial position. In accord with the approximate trigonal monopyramidal description for the [CdS\(_4\)] moiety, the PyS–Cd–S angle involving the axial sulfur of the [TmBu] ligand [95.63(2)\(^\circ\)] is close to 90\(^\circ\), whereas the corresponding value for [TmBu]-CdSPh [108.12(2)\(^\circ\)] is close to the tetrahedral angle. Furthermore, the sum of the three bond angles (\(\Sigma_3\)–Cd–S) that approximate the equatorial plane (354.9\(^\circ\)) is very close to that required for a trigonal monopyramidal geometry.
for a planar arrangement (360.0°). Thus, the structure of [TmBu]CdSePy may be considered to be intermediate between trigonal monopyramidal [CdS₄] and distorted trigonal bipyramidal [CdS₃N].

By comparison to pyridine-2-thiolate compounds, their selenium counterparts have received comparatively little attention, and there are only two structurally characterized cadmium pyridine-2-selenolate derivatives listed in the CSD, namely, Cd(SePy)₂(tmeda)₅¹b and Cd(SePy)₃,₅¹c of which the latter is polymeric. In this regard, we have extended this investigation to the synthesis of the selenium counterpart, [TmBu]CdSePy, as illustrated in Scheme 2. The molecular structure of [TmBu]CdSePy has been determined by X-ray diffraction (Figure 9), thereby demonstrating that the pyridine-2-selenolate ligand coordinates in a predominantly κ⁻Se manner, in contrast to the κ²-Se,N coordination mode observed for Cd(SePy)₂(tmeda).₅¹b Specifically, whereas the Cd–Se bond length of [TmBu]CdSePy [2.5709(4) Å] is shorter than that of Cd(SePy)₂(tmeda) [2.734(3) and 2.735(3) Å],ₖ the Cd···N distance of [TmBu]CdSePy (3.000 Å) is much longer than those for Cd(SePy)₂(tmeda) [2.399(19) and 2.40(2) Å]. Furthermore, the Cd···N distance of [TmBu]CdSePy is also considerably longer than that for [TmBu]CdSPy (2.766 Å).ₕ The Cd–Se···C–N torsion angle (0.95°) is, nevertheless, close to zero, so that it is appropriately located to participate in a potential Cd···N interaction. In this regard, the Cd–S bond [2.6361(5) Å] of the [TmBu] ligand that is approximately trans to the nitrogen is distinctly longer than the other two [2.5513(6) and 2.5594(6) Å], such that the structure approaches trigonal monopyramidal (τ₄ = 0.75). Furthermore, the sum of the three bond angles (Σ₋Cd–S) that approximate the equatorial plane is 353.6°. Thus, even though the Cd···N distance is long, the presence of the nitrogen has an impact on the cadmium coordination geometry in a manner similar to that observed for [TmBu]CdSPy.

Figure 9. Molecular structure of [TmBu]CdSePy.

Thiolate Exchange between [TmBu]CdSAr and Ar′SH.
To evaluate the factors that influence the coordination of thiolate ligands to cadmium, we have investigated thiolate exchange reactions involving [TmBu]CdSAr and Ar′SH to determine which substituents promote thiolate coordination. For example, [TmBu]CdSCH₂C₆H₄-4-F reacts rapidly with Ar′SH (Ar′ = C₆H₄-4-But’ or C₆H₄-4-OMe) to yield an equilibrium mixture comprising [TmBu]CdSCH₂C₆H₄-4-F, [TmBu]CdSAr, and the respective thiols (Scheme 3), as monitored by ¹H and ¹⁹F nuclear magnetic resonance (NMR) spectroscopy. The derived equilibrium constants are summarized in Table S, which illustrates that coordination of thiolate is favored for the more electron-withdrawing fluoride substituent. This observation is in accord with our previous studies with coordination of alkoxide to zinc, which shows that such coordination is also favored for electron-withdrawing substituents. The thermodynamics of the cadmium thiolate exchange reactions are dictated by the differential effect of the substituent on the Cd–SAr and H–SAr bond energies. On the basis of the aforementioned zinc alkoxide study, the observed thermodynamic trend can be rationalized by electron-withdrawing substituents increasing the Cd–SAr bond dissociation energies to a greater degree than the H–SAr bond dissociation energies. Alternatively, in terms of arguments based on heterolyc bond dissociation energies, electron-withdrawing substituents weaken Cd–SAr bonds to a smaller degree than they do for H–SAr bonds.

While the equilibrium studies described above indicate that thiolate exchange is facile on the chemical time scale, two-dimensional EXSY studies involving [TmBu]CdSCH₂C₆H₄-4-F and 4-fluorothiophenol indicate that degenerate thiolate ligand exchange is also facile on the magnetization transfer NMR time scale (Figure 10). Spécifiquement, the observation of an off-diagonal cross peak between the ¹⁹F NMR spectroscopic signals for [TmBu]CdSCH₂C₆H₄-4-F and 4-fluorothiophenol. The observation of thiolate exchange between [TmBu]CdSAr and ArSH (Ar = C₆H₄-4-F) complements the observation that exchange of thiolate ligands between zinc and cadmium centers of [TmBu]ZnSCH₂C(O)N(H)Ph and [TmBu]CdSCH₂C(O)N(H)Ph is also facile on the NMR time scale.

CONCLUSIONS
A series of cadmium thiolate compounds that feature a sulfur-rich coordination environment, namely [TmBu]CdSAr, have been synthesized by the reactions of [TmBu]CdMe with ArSH (Ar = C₆H₄-4-F, C₆H₄-4-But’, C₆H₄-4-OMe, or C₆H₄-3-OMe). The molecular structures of the thiolate compounds have been determined by X-ray diffraction, which demonstrate that the coordination geometry is distorted tetrahedral and approaches a trigonal monopyramidal geometry in which the thiolate ligand adopts an equatorial position. The pyridine-2-thiolate pyridine-2-selenolate derivatives, [TmBu]CdSPy and [TmBu]CdSePy, have also been obtained via the respective reactions of [TmBu]CdMe with pyridine-2-thione and pyridine-2-selone, and X-ray diffraction studies demonstrate that the nitrogen of the pyridine ring exhibits a long-range interaction with the cadmium. The ability of the thiolate ligands to participate in exchange was probed by ¹H and ¹⁹F NMR spectroscopic studies of the reactions of [TmBu]CdSCH₂C₆H₄-4-F with ArSH (Ar = C₆H₄-4-But’ or C₆H₄-4-OMe), which demonstrate that (i) exchange is facile and (ii) coordination of thiolute to cadmium is most favored for the p-fluorophenyl derivative. Furthermore, a two-dimensional EXSY experiment involving [TmBu]CdSCH₂C₆H₄-4-F and 4-fluorothiophenol demonstrates that degenerate thiolate ligand exchange is also facile on the NMR time scale.

EXPERIMENTAL SECTION
General Considerations. All manipulations were performed by using a combination of glovebox, high-vacuum, and Schlenk techniques under a nitrogen or argon atmosphere. Solvents were purified and degassed by standard procedures. NMR spectra were recorded on Bruker 300 DRX, Bruker 300 DPX, Bruker 400 Avance III, Bruker 400 Cyber-enabled Avance III, and Bruker 500 DMX spectrometers. ¹H NMR spectra are reported in parts per million relative to SiMe₄ (δ 0) and were referenced internally with respect to the protio solvent impurity (δ 7.16 for CDCl₃ and δ 5.32 for CHDCl₃). ¹³C NMR
spectra are reported in parts per million relative to SiMe4 (δ 0) and were referenced internally with respect to the solvent (δ 128.06 for CD2D6) and δ 53.84 for CD2Cl2).63 19F NMR spectra are reported in parts per million relative to Ar CdS (Ar = δ 164.9).64 Coupling constants are given in hertz. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum Two spectrometer, and the data are reported in reciprocal centimeters. Mass spectra were recorded on a JEOL JMS-HX110HF tandem mass spectrometer using fast atom bombardment (FAB). 4-Fluorothiophenol (Aldrich), 4-tert-butylbenzenethiol (Acros), 4-methoxythiophenol (Aldrich), and pyridine-2-thione (Aldrich) were obtained commercially and used without further purification. [TmBu][CdSC6H4-4-OMe].65 The resulting powder was washed with Et2O (~2 mL) to give [TmBu][CdSC6H4-4-F] as a white solid (110 mg, 50%). Crystals of [TmBu][CdSC6H4-4-F] suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Anal. Calc for [TmBu][CdSC6H4-4-F]: C, 45.2%; H, 5.3%; N, 11.7%. Found: C, 45.2%; H, 4.9%; N, 11.6%. 1H NMR (CD2D6): δ 1.41 (s, 27H, HB[C(NH3)2(C(CH3)3)]Cs), 6.37 (d, Jν=H = 2, 3H, HB[C(NH)(C(CH3)3)]Cs), 6.62 (d, Jν=H = 2, 3H, HB[C(NH3)2(C(CH3)3)]Cs), 6.77 (m, 2H, CdS(C6H4-4-F)), 7.86 (m, 2H, CdS(C6H4-4-F)). 13C[1H] NMR (CD2D6): δ 28.7 (9C, HB[C(NH3)2(C(CH3)3)]Cs), 59.4 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 114.7 (d, Jν=−C−F = 21, 2C, CdS(C6H4-4-F)), 117.0 (3C, HB[C(NH)(C(CH3)3)]Cs), 122.9 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 135.7 (d, Jν=−C−F = 7, 2C, CdS(C6H4-4-F)), 139.9 (d, Jν=−C−F = 3, 1C, CdS(C6H4-4-F)), 157.3 (3C, HB[C(NH)(C(CH3)3)]Cs), 158.5 (m), 155.6 (s), 154.6 (m), 153.6 (m), 152.6 (s), 149.6 (s), 139.9 (s), 135.7 (m), 133.4 (m), 132.3 (m), 130.8 (s), 130.2 (m), 129.9 (s), 127.9 (s), 126.3 (s), 125.9 (m), 124.5 (m), 123.7 (m), 122.9 (m), 121.2 (m), 119.2 (s), 117.1 (s), 112.9 (m), 108.9 (s), 107.0 (m), 106.1 (m), 103.3 (m), 101.4 (w), 98.4 (w), 92.9 (w), 81.9 (s), 77.3 (s), 75.7 (m), 732 (s), 688 (s), 626 (vs), 589 (m), 553 (m), 544 (s), 497 (m), 480 (w), 455 (w). FAB-MS: m/z 591.2 [M − CdSC6H4−4-F]+, M = [TmBu][CdSC6H4-4-F].

Synthesis of [TmBu][CdSC6H4-4-OMe] A solution of [TmBu][CdMe] (442 mg, 0.235 mmol) in C6H6 (~5 mL) was treated with 4-methoxythiophenol (37.5 µL, 0.305 mmol), resulting in immediate effervescence. The mixture was stirred at room temperature for 45 min, after which period the volatile components were removed in vacuo. The resulting powder was washed with pentane (~3 mL), yielding [TmBu][CdSC6H4-4-OMe] as a white solid (107 mg, 63%). Crystals of [TmBu][CdSC6H4-4-OMe] suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Anal. Calc for [TmBu][CdSC6H4-4-OMe]: C, 50.6%; H, 5.9%; N, 10.4%. Found: C, 51.0%; H, 5.7%; N, 10.0%. 1H NMR (CD2D6): δ 1.43 (s, 27H, HB[C(NH3)2(C(CH3)3)]Cs), 3.34 (s, 3H, CdS(C6H4-4-OMe)). 13C[1H] NMR (CD2D6): δ 29.1 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 55.6 (1C, CdS(C6H4-4-OMe)). 13C[1H] NMR (CD2D6): δ 29.1 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 55.6 (1C, CdS(C6H4-4-OMe)). 13C[1H] NMR (CD2D6): δ 29.1 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 55.6 (1C, CdS(C6H4-4-OMe)). 13C[1H] NMR (CD2D6): δ 29.1 (3C, HB[C(NH3)2(C(CH3)3)]Cs), 55.6 (1C, CdS(C6H4-4-OMe)). IR data for [TmBu][CdSC6H4-4-OMe]: 1398 (m), 1387 (m), 1373 (m), 1352 (m), 1334 (m), 1318 (m), 1301 (s), 1296 (m), 1283 (m), 1263 (s), 1245 (m), 1233 (m), 1225 (m), 1217 (m), 1208 (m), 1198 (m), 1187 (m), 1173 (m), 1163 (m), 1118 (m), 1101 (m), 1097 (m), 1087 (m), 1076 (m), 1064 (m), 1054 (m), 1031 (m), 1018 (m), 927 (w), 822 (s), 773 (w), 754 (m), 744 (m), 732 (m), 688 (s), 626 (vs), 589 (m), 553 (m), 544 (s), 497 (m), 480 (w), 455 (w). FAB-MS: m/z 591.2 [M − CdSC6H4−4-F]+, M = [TmBu][CdSC6H4-4-F].

Synthesis of [TmBu][CdSC6H4-3-OMe] A solution of [TmBu][CdMe] (106 mg, 0.175 mmol) in C6H6 (~10 mL) was treated with 3-methoxythiophenol (30.0 µL, 0.242 mmol), resulting in immediate effervescence. The mixture was stirred at room temperature for 1 h, after which period the volatile components were removed in vacuo. The resulting

Table 5. Equilibrium Constants (K) for the Reaction of
[TmBu]+CdSC6H4-4-F with ArSH

Ar	K
C6H4-4-F	1.00
C6H4-4-Bu′	0.21
C6H4-4-OMe	0.19

Figure 10. 19F two-dimensional EXSY experiment demonstrating exchange of the SAr groups between [TmBu]+CdSAr and Ar′SH (Ar′ = C6H4-4-F).

Synthesis of [TmBu]+CdSC6H4-4-F. A solution of [TmBu]+CdMe (218 mg, 0.361 mmol) in C6H6 (~9 mL) was treated with 4-fluorothiophenol (40.0 µL, 0.375 mmol), resulting in immediate effervescence. The mixture was stirred at room temperature, and the volatile components were removed in vacuo after a period of 40 min.
powder was washed with pentane (2 × 3 mL) and EtOH (3~mL), yielding [Tm′_{But}]CdSC<sub>H₄-3-OMe]. As a white solid (86 mg, 67%). Crystals of [Tm′_{But}]CdSC<sub>H₄-3-OMe] suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Anal. Calcd for [Tm′_{But}]CdSC<sub>H₄-3-OMe]: C, 50.6%; H, 5.9%; N, 10.4%. Found: C, 51.3%; H, 6.5%; N, 9.5%. 1H NMR (CDCl₃): δ 1.7 (s, 27H, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 3.71 (s, 1H, CdSeC_H₄-4-OMe), 6.84 (m, 1H, CdSeC_H₄-4-OMe), 6.85 (d, J_{H-H} = 8, 2H, HB[C(NH₂)(C=CH₂)](CS)), 6.94 (m, 2H, CdSeC_H₄-4-OMe), 7.03 (d, J_{H-H} = 2, 3H, HB[C(NH₂)(C=CH₂)](CS)), 127.4 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 129.6 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 129.9 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 136.1 (1C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 153.5 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 163.7 (1C, HB[C(CH₃)₃](C(=CH₂))₂(CS)). 13C{1H} NMR (CD₂Cl₂): δ 29.2 (9C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 59.6 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 117.0 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 117.4 (1C, CdSeC_H₄-H), 123.2 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 128.8 (1C, CdSeC_H₄-H), 130.4 (1C, CdSeC_H₄-H), 134.1 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)).

Synthesis of [Tm′_{But}]CdSePy. A solution of [Tm′_{But}]CdMe (86.5 mg, 0.143 mmol) in C_H₄ (5 mL) was treated with pyridine-2-thione (20 mg, 0.275 mmol), in resulting effervescence. The mixture was stirred at room temperature for 45 min, after which period the volatile components were removed in vacuo. The resulting powder was washed with pentane (~3 mL) to give [Tm′_{But}]CdSePy as a white solid (117 mg, 66%). Crystals of [Tm′_{But}]CdSePy suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Anal. Calcd for [Tm′_{But}]CdSePy: C, 41.8%; H, 5.1%; N, 13.1%. Found: C, 41.0%; H, 4.8%; N, 12.7%. 1H NMR (CDCl₃): δ 1.7 (s, 27H, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 6.78 (m, 1H, CdSeC_H₄-H), 6.86 (d, J_{H-H} = 2, 3H, HB[C(NH₂)(C=CH₂)](CS)), 7.04 (d, J_{H-H} = 2, 3H, HB[C(NH₂)(C=CH₂)](CS)), 7.17 (m, 1H, CdSeC_H₄-H), 7.48 (m, 1H, CdSeC_H₄-H), 7.82 (m, 1H, CdSeC_H₄-H). 13C{1H} NMR (CDCl₃): δ 29.2 (9C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 59.6 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 117.0 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 117.4 (1C, CdSeC_H₄-H), 123.2 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)), 128.8 (1C, CdSeC_H₄-H), 130.4 (1C, CdSeC_H₄-H), 134.1 (3C, HB[C(CH₃)₃](C(=CH₂))₂(CS)).

Thiolate Exchange between [Tm′_{But}]CdSeAr and Ar′SH. (a) A solution of [Tm′_{But}]CdSeH₄-F in C_D₄ (0.7 mL) was treated with Ar′SH (Ar = C_H₄-4-But or C_H₄-4-OMe, 1 equiv), and the sample was monitored by 1H NMR spectroscopy, thereby demonstrating the formation of an equilibrium mixture (Table 5). As previously noted, hydrogen bonding is not considered to perturb the equilibrium constant significantly. (b) A solution of [Tm′_{But}]CdSeH₄-F in C_D₄ (0.7 mL) was treated with 4-fluorothiophenol, and exchange at room temperature was demonstrated by a 19F two-dimensional EXSY experiment.
REFERENCES

(1) (a) Dance, I. G. The structural chemistry of metal thiolate complexes. *Polyhedron* 1986, 5, 1037−1104. (b) Blowzer, P. J.; Dilworth, J. R. Thiolo-complexes of the transition metals. *Coord. Chem. Rev.* 1987, 76, 121−185. (c) Gimeno, M. C. Thiolates, Selenolates, and Tellurolates. *Handbook of Chalcogen Chemistry*; Royal Society of Chemistry: London, 2007; Chapter 2.1, pp 33−80.

(2) (a) Holm, R. H.; Ciurlis, S.; Weigel, J. A. Subsite-specific structures and reactions in native and synthetic [Fe4S4] cubane-type clusters. *Prog. Inorg. Chem.* 1990, 38, 1−74. (b) Krebs, B.; Henkel, G. Transition-metal thiolates: from molecular fragments of sulfidic solids to models for active centers in biomolecules. *Angew. Chem., Int. Ed. Engl.* 1991, 30, 769−788. (c) Coucouvanis, D. Use of preassembled Fe/S and Fe/Mo/S clusters in the stepwise synthesis of potential analogues of the Fe/Mo/S site in nitrogenase. *Acc. Chem. Res.* 1991, 24, 1−8. (d) Mohamed, A. A.; Abdou, H. E.; Chen, J.; Bruce, A. E.; Bruce, M. R. M. Perspectives in Inorganic and Bioinorganic gold sulfur chemistry. *Comments Inorg. Chem.* 2002, 23, 321−334. (e) Solomon, E. I.; Gorelsky, S. I.; Dey, A. Metal-thiolate bonds in bioinorganic chemistry. *J. Comput. Chem.* 2006, 27, 1415−1428. (f) Okhi, Y.; Tatsumi, K. Thiolate-bridged iron-nickel models for the active site of [NiFe] hydrogenase. *Eur. J. Inorg. Chem.* 2011, 2011, 973−985. (g) Stiefel, E. I. Transition metal sulfur chemistry: Biological and industrial significance and key trends. *ACS Symp. Ser.* 1996, 653, 2−38. (h) García-Vázquez, J. A.; Romero, J.; Sousa, A. Electrochemical synthesis of metalloccenes of bidentate thiolates containing nitrogen as an additional donor atom. *Coord. Chem. Rev.* 1999, 193−195, 691−745.

(3) (a) Owen, J. S.; Park, J.; Trudeau, P.-E.; Alivisatos, A. P. Reaction of cadmium with thiolates at the molecular level. *Adv. Nutr.* 2014, 5, 2302. (b) Stillman, M. J. Historical perspectives on cadmium toxicology. *Toxicol. Appl. Pharmacol.* 2009, 238, 192−200. (c) Remelli, M.; Nurchi, V. M.; Lachowicz, J. I.; Medici, S.; Zoroddu, M. A.; Peana, M. Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. *Coord. Chem. Rev.* 2016, 327−328, 55−69.

(18) Rajesekharan-Nair, R.; Lutta, S. T.; Kennedy, A. R.; Reglinski, J.; Jafri, S. T.; Keating, D. M.; Christian, W.; Spicer, M. D. Soft scorpionate coordination at alkali metals. *Acta Crystallogr., Sect. C: Struct. Chem.* 2014, 70, 421−427.
(19) Green, M. L. H. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 1995, 500, 127−148. (b) Parkin, G. Classification of organotransition metal compounds. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mings, D. M. P., Eds.; Elsevier: Oxford, U.K., 2006; Vol. J, Chapter 1.01. (c) Green, J. C.; Green, M. L. H.; Parkin, G. The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. Chem. Commun. 2012, 48, 11481−11503. (d) Green, M. L. H.; Parkin, G. Application of the Covalent Bond Classification method for the teaching of inorganic chemistry. J. Chem. Educ. 2014, 91, 807−816.

(20) (a) Bridgewater, B. M.; Fillebeen, T.; Friesner, R. A.; Parkin, G. A zinc thiolate species which mimics aspects of the chemistry of the Ada repair protein and matrix metalloproteinases: The synthesis, structure and reactivity of the tris(2-mercapto-1-phenylimidazolyl)hydroborato complex \([\text{[TmBut} \text{Ph}_2\text{Zn} \text{OH}}\]. Inorg. Chem. 2000, 39, 1499−1496. (b) Melnick, J. G.; Zhu, G.; Bucella, D.; Parkin, G. Thiolate exchange in \([\text{[TmR} \text{Zn} \text{SR}_2}\], (25) (a) Melnick, J. G.; Parkin, G. Cleaving mercury-alkyl bonds: A functional model for mercury detoxification by MerB. Science 2007, 317, 225−227. (b) Melnick, J. G.; Yurkerich, K.; Parkin, G. On the chalcogenophilicity of mercury: Evidence for a strong Hg-Se bond in \([\text{[Tm} \text{Hg} \text{SeP}_2}\] and its relevance to the toxicity of mercury. J. Am. Chem. Soc. 2010, 132, 647−655.

(31) Cetin, A.; Ziegler, C. J. Coordinative flexibility in hydrotris-(methimazolyl)borate divalent metal compounds. Dalton Trans. 2006, 1006−1008.

(32) Viktora, M. A.; He, X.; Hsieh, J.; Mihalick, D. J.; Rabinovich, D. cited in ref 14d.

(33) \(r_2 = [360 - (\alpha + \beta)] / 141\), where \(\alpha\) and \(\beta\) are the two largest angles. \(r_2 = r_2(\beta/\alpha)\), where \(\beta > \alpha\). See: (a) Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamidine ligands: Structural analysis with a new four-coordinate geometry index, \(\tau\); Dalton Trans. 2007, 955−964. (b) Reineke, M. H.; Sampson, M. D.; Regin, A. L.; Kubiak, C. P. Synthesis and structural studies of nickel(0) tetracarbene complexes with the introduction of a new four-coordinate geometry index, \(\tau\). Inorg. Chem. 2015, 54, 3211−3217.

(34) Haaland, A. Covalent versus oxidative bonds to main group metals, a useful distinction. Angew. Chem., Int. Ed. Engl. 1989, 28, 992−1007.

(35) Searches of the Cambridge Structural Database were performed with version 5.37. See: Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171−179.

(36) (a) Brookhart, M.; Green, M. L. H.; Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 6908−6914. (b) Brookhart, M.; Green, M. L. H.; Wong, L. L. Carbon-hydrogen-transition-metal bonds. Proc. Inorg. Chem. 1988, 26, 1−124. (c) Brookhart, M.; Green, M. L. H. Carbon-hydrogen-transition-metal Bonds. J. Organomet. Chem. 1983, 250, 395−408.

(37) \(r_{[\text{Cd}]} = 1.44\,\text{Å}\) and \(r_{[\text{H}]} (\text{H}) = 0.31\,\text{Å}\). See: Cordero, J.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832−2838.

(38) Pyridine-2-thiolate is also known as pyridine-2-thionate. See ref 40.

(39) Pyridine-2-thione exists in equilibrium with the pyridine-2-thiol tautomer (also known as 2-mercaptopyridine). See: Morán, D.; Sukcharoenphon, K.; Puchta, R.; Schaefer, H. F.; Schleyer, P. V.; Hoff, C. D. 2-pyridinemethiol/2-pyridinedithione tautomeric equilibrium. A comparative experimental and computational study. J. Org. Chem. 2002, 67, 9061−9069.

(40) (a) Raper, E. S. Complexes of heterocyclic thionates.1. Complexes of monodentate and chelating ligands. Coord. Chem. Rev. 1996, 153, 199−255. (b) Raper, E. S. Complexes of heterocyclic thionates.2. complexes of bridging ligands. Coord. Chem. Rev. 1997, 165, 475−567. (c) Raper, E. S. Complexes of heterocyclic thione donors. Coord. Chem. Rev. 1985, 61, 115−184. (d) Akrivos, P. D. Recent studies in the coordination chemistry of heterocyclic thiones and thionates. Coord. Chem. Rev. 2001, 213, 181−210.

(41) Hursthouse, M. B.; Khan, O. F. Z.; Mazid, M.; Motevalli, M.; O’Brien, P. The X-ray crystal structures of the cadmium complexes of pyridine-1-thiol and mercaptobenzothiazole, [\(\text{[Cd} \text{(C}_2\text{H}_4\text{S})_{2}\text{]}_{\text{2}}\) and [\(\text{[Cd} \text{(C}_2\text{H}_4\text{N}_2\text{S})_{2}\text{]}_\text{2}\)]]; Two unusual volatile polymeric complexes. Polyhedron 1990, 9, 541−544.

(42) In addition to pyridinethioate complexes, pyridinethione adducts are also known. For example, see: (a) Wang, X.-J.; Ni, Q.-L.; Bi, X.-S.; Jian, H.-X. Dichlorobis(pyridinium-2-thiato)cadmium(II). Acta Cry-

Article

DOI 10.1021/acs.inorgchem.7b00296
Inorg. Chem. 2017, 56, 4641−4653

Inorganic Chemistry
tallger, Sect. E: Struct. Rep. Online 2004, 60, m1859–m1860. (b) Wen, Y.-H.; Feng, Y.-L. Dichlorobis(pyridinium-2-thiolato)cadmium(II). Acta Crystallogr., Sect. E: Struct. Rep. Online 2005, 61, m767–m768. (c) Wang, X-J; Ni, Q-L; Shen, Z-S. Dibromobis(pyridine-2-H)-thione-x5cadmium(II). Acta Crystallogr., Sect. E: Struct. Rep. Online 2004, 60, m1918–m1919. (d) Rajalingam, U.; Dean, P. A. W.; Jenkins, H. A. Solution multcular (1P, 14Cd, 3S) magnetic resonance studies of cadmium complexes of heterocyclic aromatic thiones and the structure of [tetrazik(2(H)-pyridine-thione)cadmium] nitrate, [Cd(H2NS)4][NO3]2. Can. J. Chem. 2000, 78, 590–597. (43) Yang, H.; Han, X. L. Syntheses, crystal structures and cleavage mechanism of C–S bond in Cd(II) and Zn(II) complexes with tris(2-mercaptopyridyl)methane. Chinese J. Inorg. Chem. 2015, 31, 1597–1602. (44) Furthermore, it is longer than the Cd–N distances in the 3-trifluoromethyl derivative, Cd(3-CF3-pyS)2(bipy), which exhibits a bidentate coordination mode. (2.517 (2) and 2.576 (2) Å). See: Sousa-Pedrares, A.; Romero, J.; Arturo García-Vázquez, J.; Luz Durán, M.; Casanova, I.; Sousa, A. Electrochemical synthesis and structural characterization of zinc cadmium and mercury complexes of heterocyclic bidentate ligands (N, S). Dalton Trans. 2003, 1379–1388. (45) Pyridine-2-thiolate ligands may also bridge two metals. For example, see: (a) Wachtler, E.; Gericke, R.; Brendler, E.; Gerke, B.; Langer, T.; Pottgen, R.; Zuckevich, L.; Heine, T.; Wagler, J. Group 14 metal complexes [E-TM]IV: the role of the group 14 site as an L, X and Z-type ligand. Inorganic Chemistry 2013, 52, 3990–3997. (b) Borges dos Santos, R. M.; Martinho Simões, J. A. Energetics of the O–H bond in phenol and substituted phenols: A critical evaluation of the importance of changes in ground-state energies on the bond-dissociation enthalpies of the O–H bonds in phenols and the S–H Bonds in thiophenols. J. Am. Chem. Soc. 1994, 116, 6605–6610. (b) Borges dos Santos, R. M.; Martinho Simões, J. A. Energetics of the O–H bond in phenol and substituted phenols: A critical evaluation of the importance of changes in ground-state energies on the bond-dissociation enthalpies of the O–H bonds in phenols and the S–H Bonds in thiophenols. J. Am. Chem. Soc. 1994, 116, 6605–6610. (50) (a) Khasnis, D. V. V.; Bureeta, M.; Emge, T. J.; Brennan, J. G. 2,2′-Bipyridyl complexes of palladium(II) and platinum(II): crystal structure of [Pt2(PPh3)4Cl2][Pt(NC5H4Se)2FDCI(PPh3)]. J. Chem. Soc., Dalton Trans. 1989, 3208–3216. (b) Rong, Y.; Parkin, G. The synthesis and structures of tris(2-pyridylseleno)methyl zinc compounds with k2, k3, and k4-coordination modes. Aust. J. Chem. 2013, 66, 1306–1310. (c) Cheng, Y. F.; Emge, T. J.; Brennan, J. G. Pyridineselenolato complexes of tin and lead: Sn(2-SeNC3H5)2, Sn(2-SeNC3H5)4, Pb(2-SeNC3H5)2, and Pb(3-Me,Si-SeNC3H5)2. Volatile CVD precursors to group IV VI semiconductors. Inorg. Chem. 1996, 35, 342–346. (g) Sharma, R. K.; Kedarnath, G.; Wadawa, A.; Betty, C. A.; Vishwanad, B.; Jain, V. K. Diorganotin(IV) 2-pyridyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. Dalton Trans. 2012, 41, 12129–12138. (h) Sharma, R. K.; Kedarnath, G.; Jain, V. K.; Wadawa, A.; Pillai, C. G. S.; Nalliah, M.; Vishwanad, B. Copper(I) 2-pyridyl selenolates and tellurolates: Synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. Dalton Trans. 2011, 40, 9194–9201. (51) (a) Cheng, Y. F.; Emge, T. J.; Brennan, J. G. Polymeric Cd(Se-2-NCH3)2 and square-planar Hg(Se-2-NCH3)2 - Volatile CVD precursors to II-VI semiconductors. Inorg. Chem. 1994, 33, 3711–3714. (b) Sharma, R. K.; Kedarnath, G.; Wadawa, A.; Jain, V. K.; Vishwanad, B. Mononuclear pyridyl-2-thiolato complexes of cadmium and mercury: Synthesis, characterization and their conversion to metal selenide nanoparticles. Inorg. Chem. Acta 2011, 365, 333–339. (52) The Cd–Se bond length of [Tm3]CdSePy is also comparable to that of [Tm3]CdSePh. See ref 24. (53) The longer Cd–N distance for [Tm3H]CdSPy is consistent with the slightly larger angle at selenium [93.32(5)°] than at sulfur [91.95(10)°]. (54) Bergquist, C.; Storrie, H.; Koutcher, L.; Bridgewater, B. M.; Friesner, R. A.; Parkin, G. Factors influencing the thermodynamics of zinc alkoxide formation by alcoholysis of the terminal hydroxide complex, [TpH3PMe2ZnOH: An experimental and theoretical study relevant to the mechanism of action of liver alcohol dehydrogenase. J. Am. Chem. Soc. 2000, 122, 12651–12661. (55) For substituent effects on Ar–H bond dissociation energies, see: (a) Bordwell, F. G.; Zhang, X. M.; Satish, A. V.; Cheng, J. P. Assessment of the importance of changes in ground-state energies on the bond-dissociation enthalpies of the O–H bonds in phenols and the S–H Bonds in thiophenols. J. Am. Chem. Soc. 1994, 116, 6605–6610. (b) Borges dos Santos, R. M.; Martinho Simões, J. A. Energetics of the O–H bond in phenol and substituted phenols: A critical evaluation of literature data. J. Phys. Chem. Ref. Data 1998, 27, 707–739. (c) Borges dos Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Guedes, R. C.; Costa Cabral, B. J.; Martinho Simões, J. A. S–H bond dissociation enthalpies in thiophenols: A time-resolved photophysical calorimetry and quantum chemistry study. J. Phys. Chem. A 2002, 106, 9838–9899. (d) Kuznetsova, O. V.; Egorochkin, A. N.; Khamaletvina, N. M.; Domratcheva-Lvova, L. G. Bond dissociation energies in organometallic systems: substituent effects. J. Phys. Org. Chem. 2014, 27, 850–859. (e) Fu, Y.; Lin, B. L.; Song, K. S.; Liu, L.; Guo, Q. X. Substituent effects on the S–H bond dissociation energies of thiophenols. J. Chem. Soc. Perkin Trans. 2 2002, 1223–1230. (f) Rimarcik, J.; Lukes, V.; Klein, E.; Rottmannova, L. On the enthalpies of homolytic and heterolytic S–H bond cleavage in para and meta substituted thiophenols. Comput. Theor. Chem. 2011, 967, 273–283. (56) Other effects of electron-withdrawing substituents increasing M–SAr homolytic bond dissociation energies, see: (a) Zeng, Q.; Li, Z.; Wang, Y.; Zha, H.; Tao, O.; Wang, Y.; Guan; J.; Zhang, Y. Substituent effects on gas-phase homolytic Fe-O and Fe-S bond energies of m-G-C6H6Fe(O)CO(η5-C4H4) and m-G-C6H6FeSe(η5-C4H4) studied using Hartree-Fock and density functional theory methods. J. Phys. Org. Chem. 2016, 29, 172–184. (b) Zeng, Q.; Li, Z.; Dong, L.; Han, D.; Wang, R.; Li, X.; Bai, G. Remote substituent effects on gas-phase homolytic Fe-O and Fe-S bond energies of p-G-C6H6Fe(O)CO(η5-C4H4) and p-G-C6H6FeSe(η5-C4H4) studied using Hartree-Fock and density functional theory methods. J. Phys. Org. Chem. 2013, 26, 664–674. (c) Zhang, J.; Adhikary, A.; King, K. M.; Krause, J. A.; Guan, H. R. Substituent effects on Ni–S bond dissociation energies and bond kinetic stability of nickel arylthio complexes supported by a bis(phosphinite)-based pincer ligand. Dalton Trans. 2012, 41, 7959–7968. (57) Electron-withdrawing substituents decrease both M–SAr and M–SH heterolytic bond dissociation energies because the substituents stabilize the ArS+ anion to a greater extent than they do the respective
neutral molecules; however, the effect is expected to be smaller for the M−Sar bond because it is more polar than the H−Sar bond.

(58) For another example of electron-withdrawing substituents decreasing M−Sar heterolytic bond dissociation energies, see: Zeng, Q.; Li, Z.; Han, D.; Dong, L.; Zhai, H.; Liu, B.; Bai, G.; Zhang, Y. Hartree-Fock and density functional theory study of remote substituent effects on gas-phase heterolytic Fe-O and Fe-S bond energies of p-G-C₆H₄OFe(CO)₃(η⁵-C₅H₅) and p-G-C₆H₄SFe(CO)₃(η⁵-C₅H₅). J. Phys. Org. Chem. 2014, 27, 142–155.

(59) For the effect of electron-donating and electron-withdrawing substituents on heterolytic bond dissociation energies and pKₐ values, see ref55f and: Hunter, N. E.; Seybold, P. G. Theoretical estimation of the aqueous pKₐs of thiols. Mol. Phys. 2014, 112, 340–348.

(60) (a) Bain, A. D. Chemical exchange. Annu. Rep. NMR Spectros. 2008, 63, 23–48. (b) Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectros. 2003, 43, 63–103. (c) Perrin, C. L.; Dwyer, T. J. Application of 2-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 1990, 90, 935–967. (d) Dimitrov, V. S.; Vassilev, N. G. Dynamic NMR: A new procedure for the estimation of mixing times in the 2D EXSY experiments. A four-site exchange system studied by 1D and 2D EXSY spectroscopy. Magn. Reson. Chem. 1995, 33, 739–744.

(61) Note that the ¹⁹F line width of [TmBut₆]CdSC₆H₄-4-F in the absence of exchange is larger than that for HSC₆H₄-4-F.

(62) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. Cannula techniques for the manipulation of air-sensitive materials. In Experimental Organometallic Chemistry; Wayda, A. L., Daresbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 2, pp 6–23. (b) Burger, B. J.; Bercaw, J. E. Vacuum line techniques for handling air-sensitive organometallic compounds. In Experimental Organometallic Chemistry; Wayda, A. L., Daresbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 4, pp 79–98. (c) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley-Interscience: New York, 1986.

(63) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179.

(64) Dungan, C. H.; van Wazer, J. R. Compilation of Reported ¹⁹F NMR Chemical Shifts 1951 to mid 1967; Wiley-Interscience: New York, 1970.

(65) Laube, J.; Jäger, S.; Thöne, C. Synthesis and Structural Studies of Pyridine-2-selenolates – Reactions with Electrophilic Phosphorus(III) Compounds and Related Complex Chemistry. Eur. J. Inorg. Chem. 2001, 2001, 1983–1992.

(66) (a) Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Germany, 1981. (b) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.