Clinicopathological and genetic findings of infantile nodular fasciitis

Yan Qiu, Xue Hu, Xin He, Wen-Jing Zeng, Hong-Ying Zhang

Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

To the Editor: Nodular fasciitis (NF) has been described as a rapidly growing benign soft tissue tumor with fibroblastic/myofibroblastic proliferation. It commonly involves the upper extremities of adults aged 20 to 40 years. Due to its rapid growth rate, high cellularity, and brisk mitosis, these lesions are easily confused with soft tissue sarcomas in the diagnosis-making process. Recent findings indicated that recurrent gene rearrangement of ubiquitin-specific protease 6 (USP6), located at 17p13.2, favors the clonally proliferative nature of NF. USP6 rearrangements have been discovered in approximately 90% of NF cases and >65% of NFs harbor myosin heavy chain 9 (MYH9)-USP6 fusions with a type I (exon 1–exon 1) or type II (exon 1–exon 2) pattern. Thus, USP6 rearrangements have been adopted as a valuable diagnostic biomarker for discriminating challenging cases from their histologic mimics. NF is frequently seen in adulthood but extremely rare in infants. Here, we evaluated the clinical, pathologic, and genetic features of infantile NF to understand the tumorigenesis mechanism underlying this entity.

This study was approved by the West China Hospital Institutional Review Board. A systematized nomenclature of medicine search of the hospital surgical pathology Institutional Review Board. A systematized nomenclature of medicine search of the hospital surgical pathology institutional review boards was performed. A total of 11 cases were identified from July 2008 to August 2020. The diagnosed age ranged from 4 to 23 months (median 11 months). Imaging data (including ultrasound and computed tomography) were available in four cases and unclear boundaries were shown in three of these cases (75%). All patients underwent surgical excision and the resected tumors were 1.4 to 4.0 cm (median 1.5 cm) in the largest dimension. Totally, five lesions were located in the subcutis, four in the muscle, one was identified in the parotid gland connective tissue, and one case lacked in-depth information. The resection of most specimens showed an ill-defined, firm nodule with a gray-white appearance. Histologically, muscular invasion was observed in five of the 11 patients [Figure 1A]. All tumors were mainly composed of spindle cells arranged in a fascicular pattern [Figure 1B]. Most cases (7/11) presented abundant fat spindle cells with a small amount of lymphocyte infiltration, while some lesions showed spindle cells with medium density and apparent inflammatory cell infiltration. Most cases (7/11) presented with microscopic changes. Red blood cell extravasation was not obvious in most cases (9/11). Scattered osteoclastic giant cells were observed in five of the 11 (45.5%) patients. The mitotic figures ranged from 1 to 13 per 10 high-power fields (HPFs) in these cases [Figure 1C]. Immunohistochemical staining was conducted, and all the cases with available data were positive for smooth muscle actin (SMA) [Figure 1D] and negative for desmin. The MIB-1 index was available in nine cases and ranged from 8% to 25%. The details of the clinicopathological data are shown in Supplementary Table 1, http://links.lww.com/CM9/A736.

Fluorescence in situ hybridization was performed to detect USP6 gene rearrangement (ZytoVision, Bremerhaven, Germany). Nine of the 11 cases (81.8%) showed positivity for USP6 rearrangement, and the percentage of split red-green signals ranged from 15% to 78%; among these cases, eight showed balanced rearrangement with one-fusion (1F), one-green (1G), and one-red (1G) (1F + 1G + 1R) signal patterns [Figure 1E]. In contrast, one case showed unbalanced rearrangement, of which 55% of cells showed a one-fusion and one-red (1F + 1R) [Figure 1F] signal pattern. Two cases were negative for USP6 rearrangement. Notably, the tissues of seven cases with USP6 rearrangement were retrievable for reverse
transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing. The RT-PCR primers for detecting common fusion types of USP6 are listed in Supplementary Table 2, http://links.lww.com/CM9/A736. The results showed that only one case was positive for MYH9-USP6 with a type I [Figure 1G] and type II [Figure 1H] pattern, while six were negative for MYH9-USP6 in either type I or type II pattern [Supplementary Table 3, http://links.lww.com/CM9/A736].

No other treatment was provided after the simple surgical excisions. Follow-up information was available for 81.8% (9/11) of the patients who underwent tumor excision, with a median follow-up duration of 51 months (range: 5–121). Among these nine patients, there were two patients who developed local recurrence in 5 months after surgery; among which one was performed with re-excision and has been alive without evidence of recurrence for 19 months after the second operation, while another one has been alive with relapsed tumor for 3 months. All the other seven patients were disease-free after surgery.

This report presented 11 infantile NFs and reviewed the published literature to deeply understand this entity’s characteristics. Although a few previous studies have reported NF in childhood and summarized the clinical and pathological features, none of them focused on infantile patient groups.[5,6] After carefully reviewing the previous literature, it was found that patients <2 years old have been sporadically reported in previous studies by other researchers [Supplementary Table 4, http://links.lww.com/CM9/A736]. In the current study, the lesions were most frequently found in the head and neck, which may differ from those in adults or even in older children. Although NF has been suggested to be a trauma-related lesion, no patients in this study were reported to have a trauma...
Surgical resection is a common treatment for NF and cases, most of the patients showed many hypercellular Chinese Medical Journal 2021;134(22)
www.cmj.org

identifications in the English literature. Unbalanced rearrangements were
showed much higher cellularity and brisk mitoses (13/10 HPF). To further understand the role of an unbalanced
USP6 rearrangement and clinicopathological features.

In clinical work, accurate histopathologic diagnosis is crucial, as misdiagnosis may lead to aggressive or excessive
treatment. In our series of cases, most cases showed high
Cell sarcomas, such as infantile
USP6 status, combined with the clinicopathologic, molecular,
and genetic characteristics of infantile NF histologic mimics, can be useful in the diagnosis-making process.[3]

Surgical resection is a common treatment for NF and recurrences are rare.[1] However, in our cohort, the longest
duration period was up to 12 months, and no signs of
regression were observed. Two of the nine patients in
the present study showed recurrence in 5 months postoperatively.
Both these two lesions of the two patients were revealed as masses in the auricle of the ear. Local resection
was performed to remove these masses. The recurrence
may have resulted from the positive margin because of the
difficulty of achieving complete surgical excision around
the ear.[3] Therefore, we suggest that complete surgery is
the optimal treatment for infantile NF, if possible.

In conclusion, we have summarized the clinicopathological
features and identified USP6 rearrangements and MYH9-
USP6 fusion in a series of infantile NFs, which increases
our knowledge in this field. We argue that this entity may
have some special characteristics, but further studies with
large cohorts are still needed to obtain a more comprehensive characterization in the future.

Funding
This work was supported by grants from the National Natural Science Foundation of China (Nos. 81972520 and
81472510), Key R&D (Major Science and Technology Project) Project of Sichuan Science and Technology
Department (No. 2020YFS0270), and the 135 Project for Disciplines of Excellence-Clinical Research Incubation
Project, West China Hospital, Sichuan University (No. 2018HXFH011).

Conflicts of interest
None.

References
1. Olivera AM, Wang J, Wang WL. Nodular Fasciitis. Soft Tissue and Bone Tumours. WHO Classification of Tumours 5th ed.Lyon:
International Agency for Research on Cancer; 2020. 49–50.
2. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seyes AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by
MYH9-USP6 gene fusion. Lab Invest 2011;91:1427–1433. doi: 10.1038/labinvest.2011.118.
3. Qiu Y, Peng R, Chen H, Zhuang H, He X, Zhang H. Atypical nodular
fasciitis with a novel PAPAH1B1-USP6 fusion in a 22-month-old boy.
Virchows Arch 2020. doi: 10.1007/s00428-020-02792-x.
4. Lu Y, He X, Qiu Y, Chen H, Zhuang H, Yao J, et al. Novel CTNNB1-USP6 fusion in intravascular fasciitis of the large vein identified by
next-generation sequencing. Virchows Arch 2020;477:435–439. doi:
10.1007/s00428-020-02792-x.
5. Pandian TK, Zeidnam MM, Ibrahim KA, Moir CR, Ishinati MB,
Zarrouq AE. Nodular fasciitis in the pediatric population: a single
center experience. J Pediatr Surg 2013;48:1486–1489. doi: 10.1016j.
pedsurg.2012.12.041.
6. Bermsch-Stolz CJ, Kelly DR, Muensterer OJ, Pressley JG. Single
institution series of nodular fasciitis in children. J Pediatr Hematol
Oncol 2010;32:334–337. doi: 10.1097/MPH.0b013e3181d6305.
7. Guo R, Wang X, Chou MM, Asmann Y, Weng er DE, Al-Ibraheemi A, et al. PPP6R3-USP6 amplification: novel oncogenic mechanism in
malignant nodular fasciitis. Genes Chromosomes Cancer 2015;55:
640–649. doi: 10.1002/gcc.21366.
8. Teramura Y, Yamazaki Y, Tanaka M, Sugiura Y, Takazawa Y, Takeuchi K, et al. Case of mesenchymal tumor with the PPP6R3-USP6 fusion,
possible nodular fasciitis with malignant transformation. Pathol Int 2019;69:706–709. doi: 10.1111/pin.12851.

How to cite this article: Qiu Y, Hu X, He X, Zeng WJ, Zhang HY. Clinicopathologic and genetic findings of infantile nodular fasciitis. Chin Med J 2021;134:2768–2770. doi: 10.1097/CMD.00000000000010727.