A Note on the Global Attractivity of a Discrete Model of Nicholson’s Blowflies*

B.G. ZHANG and H.X. XU
Department of Applied Mathematics, Ocean University of Qingdao, Qingdao 266003, P.R. China

(Received 4 February 1999)

In this paper, we further study the global attractivity of the positive equilibrium of the discrete Nicholson’s blowflies model

\[N_{n+1} - N_n = -\delta N_n + pN_{n-k}e^{-aN_{n-\tau}} \quad n = 0, 1, 2, \ldots \]

We obtain a new criterion for the positive equilibrium \(N^* \) to be a global attractor, which improve the corresponding results obtained by So and Yu (J. Math. Anal. Appl. 193 (1995), 233–244).

Keywords: Attractivity, Positive equilibrium, Discrete Nicholson’s blowflies model

AMS Subject Classification: 39A10

I. INTRODUCTION

The delay difference equation

\[N_{n+1} - N_n = -\delta N_n + pN_{n-k}e^{-aN_{n-\tau}} \quad n = 0, 1, 2, \ldots \]

is a discrete analogue of the delay differential equation

\[N'(t) = -\delta N(t) + pN(t-\tau)e^{-aN(t-\tau)} \quad t \geq 0, \]
which has been used in describing the dynamics of Nicholson’s blowflies [2,4–6].

By the biology consideration, we assume that \(\delta \in (0, 1), \ p, a \in (0, +\infty), \) and \(k \in \mathbb{N} = \{0, 1, 2, \ldots \}. \)

The initial condition is

\[N_j = \varphi_j \geq 0, \quad j \in \{-k, -k+1, \ldots, 0\}, \quad (2) \]

and \(\varphi_j > 0, \) for some \(j \in \{-k, -k+1, \ldots, 0\}. \)

By a solution of (1) and (2) we mean a sequence \(\{N_n\} \) which satisfies (1) for \(n = 0, 1, 2, \ldots \) as well as the initial condition (2). Clearly, the unique solution \(\{N_n\} \) of the above initial value problem is positive for all large \(n \) [1].

* This work is supported by NNSF of China.
1 Corresponding author.
If $p > p$, then Eq. (1) has a unique positive equilibrium N^p and

$$N^p = \frac{1}{a} \ln \left(\frac{p}{\delta} \right).$$

(3)

The global attractivity of N^p was studied by Kocic and Lada [3] and So and Yu [1] respectively. The recent result is the following [1].

THEOREM A Assume that $p > p$ and that

$$[(1 - p)^{-k - 1} - 1] \ln \left(\frac{p}{\delta} \right) \leq 1.$$

(4)

Then any nontrivial solution N_n of (1) and (2) satisfies

$$\lim_{n \to \infty} N_n = N^p.$$

In this note, our purpose is to improve condition (4). Exactly speaking, we will show some conditions for the global attractivity of N^p when (4) does not hold. Our results are discrete analogues of the results in [2].

To prove our main results, we need some known results.

LEMMA 1 [1] Let $\{N_n\}$ be a solution of (1) and (2). Then

$$\limsup_{n \to \infty} N_n \leq \frac{p}{ae^6}.$$

(5)

As in [2], the following system of inequalities

$$(y + \ln(1 + (y/aN^p))) \leq M(e^{-x} - 1),$$

$$x + \ln(1 + (x/aN^p)) \geq M(e^{-y} - 1),$$

(6)

play an important role in our analysis, where $M = aN^p[(1 - p)^{-k - 1} - 1] = [(1 - p)^{-k - 1} - 1] \ln(p/\delta).$

Let

$$D = \{(x, y) : -aN^p < x \leq 0 \leq y < \infty\}.$$

(7)

LEMMA 2 [2] If one of the following conditions holds:

(i) $M \leq 1$;
(ii) $M < 1 + (1/aN^p)$ and $aN^p \geq (\sqrt{5} - 1)/2$;
(iii) $M \leq 1 + (1/aN^p)$ and

$$aN^p > (\sqrt{1 + 4\sqrt{3} - 1}/2),$$

then (6) has a unique solution $x = y = 0$ in D.

II. MAIN RESULTS

The following theorem provides a new sufficient condition for the equilibrium $N^p = (1/a)\ln(p/\delta)$ to be a global attractor.

THEOREM 1 Assume that $p > p$ and the assumption in Lemma 2 holds. Then any nontrivial solution $\{N_n\}$ of (1) and (2) satisfies

$$\lim_{n \to \infty} N_n = N^p.$$

Proof Let

$$N_n = N^p + \frac{1}{a} x_n.$$

Then $\{x_n\}$ is a solution of the equation

$$x_{n+1} - x_n + \delta x_n + aN^p(1 - e^{-x_n})$$

$$- \delta x_n e^{-x_n} = 0, \quad n = 0, 1, 2, \ldots.$$

(8)

Since $N_n > 0$ for all large n, it follows that $x_n > -aN^p$ for all large n.

To prove this theorem, it is sufficient to prove

$$\lim_{n \to \infty} x_n = 0.$$

Lemma 1 implies that $\{x_n\}$ is bounded above. Let

$$\mu = \limsup_{n \to \infty} x_n \quad \text{and} \quad \lambda = \liminf_{n \to \infty} x_n.$$

(9)

Then $-aN^p \leq \lambda \leq \mu < \infty$. We claim that $\lambda = \mu = 0$.

For the case $\{x_n\}$ is eventually nonnegative or eventually nonpositive, this has been proved in the proof of Theorem 2 in [3]. Therefore it is sufficient to consider the case that $\{x_n\}$ is an oscillatory solution of (8).

Our purpose is to prove that $\lambda = \mu = 0$ under the assumptions. There are four possible cases:

1. $\lambda = \mu = 0$;
2. $\mu > 0$ and $\lambda = 0$;
(3) \(\mu = 0 \) and \(\lambda < 0 \);
(4) \(\mu > 0 \) and \(\lambda < 0 \).

The cases 2 and 3 can be considered to be special cases of case 4. Now we consider case 4.

In this case, there exists a sequence \(\{n_i\} \) of positive integers such that

\[
k < n_1 < n_2 < \cdots < n_i < n_{i+1} \to \infty \text{ as } i \to \infty.
\]

and \(x_{n_i} < 0 \) and \(x_{n_{i+1}} \geq 0 \), for \(i = 1, 2, \ldots \),

and for each \(i = 1, 2, \ldots \), the terms of the finite sequence \(x_j \) for \(n_i < j < n_{i+1} \) assume both positive and negative values. Let \(m_i \) and \(M_i \) be integers in \((n_i, n_{i+1})\) such that for \(i = 1, 2, \ldots \)

\[
x_{M_i} = \max \{ x_j : n_i < j < n_{i+1} \},
\]

and

\[
x_{m_i} = \min \{ x_j : n_i < j < n_{i+1} \}.
\]

We can assume without loss of generality that for \(i = 1, 2, \ldots \)

\[
x_{M_i} > 0, \quad x_{M_i} - x_{M_{i-1}} \geq 0 \quad \text{and} \quad \lim_{i \to \infty} x_{M_i} = \mu > 0,
\]

while

\[
x_{m_i} < 0, \quad x_{m_i} - x_{m_{i-1}} \leq 0 \quad \text{and} \quad \lim_{i \to \infty} x_{m_i} = \lambda < 0.
\]

Then there exist subsequence \(\{q_i\} \) of \(\{m_i\} \) and subsequence \(\{Q_i\} \) of \(\{M_i\} \) such that

\[
x_{Q_i} > 0, \quad x_{Q_i} - x_{Q_{i-1}} \geq 0 \quad \text{and} \quad \lim_{i \to \infty} x_{Q_i} = \mu > 0,
\]

while

\[
x_{q_i} < 0, \quad x_{q_i} - x_{q_{i-1}} \leq 0 \quad \text{and} \quad \lim_{i \to \infty} x_{q_i} = \lambda < 0.
\]

It follows from (8) and (10) that

\[
x_{Q_{i+1}} + aN^* \leq x_{Q_{i-k+1}} + aN^* e^{-x_{Q_{i-k+1}}},
\]

thus

\[
x_{Q_i} + aN^* = (1 - \delta)(x_{Q_{i-k+1}} + aN^*) + \delta(x_{Q_{i-k+1}} + aN^*) e^{-x_{Q_{i-k+1}}}
\]

\[
\leq (1 - \delta)(x_{Q_{i-k+1}} + aN^*) e^{-x_{Q_{i-k+1}}}
\]

\[
+ \delta(x_{Q_{i-k+1}} + aN^*) e^{-x_{Q_{i-k+1}}}
\]

\[
= x_{Q_{i-k+1}} + aN^* e^{-x_{Q_{i-k+1}}}
\]

that is

\[
x_{Q_i} + aN^* \leq (x_{Q_{i-k+1}} + aN^*) e^{-x_{Q_{i-k+1}}}.
\]

Now let us prove

\[
x_{Q_{i-k+1}} < 0,
\]

assume the contrary, then \(x_{Q_{i-k+1}} = 0 \) or \(x_{Q_{i-k+1}} > 0 \). If \(x_{Q_{i-k+1}} = 0 \), then \(x_{Q_i} \leq 0 \), which contradicts (10). If \(x_{Q_{i-k+1}} > 0 \), then \(x_{Q_{i-k+1}} > x_{Q_i} \),

\[
\lim_{i \to \infty} x_{Q_{i-k+1}} \geq \lim_{i \to \infty} x_{Q_i} = \mu,
\]

on the other hand, we have

\[
\lim_{i \to \infty} x_{Q_{i-k+1}} \leq \lim_{i \to \infty} x_{M_i} = \mu,
\]

so we get

\[
\lim_{i \to \infty} x_{Q_{i-k+1}} = \mu,
\]

then taking the limit in (12), we obtain

\[
\mu + aN^* \leq (\mu + aN^*) e^{-\mu},
\]

which implies \(\mu \leq 0 \) that contradicts (10), so (13) holds.

From (12) and (13), we have

\[
x_{Q_i} + aN^* < aN^* e^{-x_{Q_{i-k+1}}}.
\]
therefore
\[x_{Q_i-k-1} < -\ln\left(1 + \frac{x_{Q_i}}{aN^*}\right). \] (15)

For given \(\varepsilon > 0 \), by (9), there exists a positive integer \(n^* \) such that
\[\lambda - \varepsilon < x_n < \mu + \varepsilon, \quad \text{for} \ n \geq n^* - k, \]
this induce \(x_{n-k}e^{-x_{n-k}} < \mu + \varepsilon \), for \(n \geq n^* \).

Rewriting Eq. (8) into the following form:
\[
(1 - \delta)^{-n-1}x_{n+1} - (1 - \delta)^{-n}x_n
+ a\delta N^*(1 - \delta)^{-n-1}(1 - e^{-x_{n-k}})
- \delta(1 - \delta)^{-n-1}x_{n-k}e^{-x_{n-k}} = 0. \] (16)

Now summing (16) up from \(n = Q_i - k - 1 \) (assuming \(Q_i - k - 1 \geq n^* \)) to \(n = Q_i - 1 \). we have
\[
(1 - \delta)^{-Q_i}x_{Q_i} = (1 - \delta)^{-Q_i+k+1}x_{Q_i-k-1} - a\delta N^*
\times \sum_{n=Q_i-k-1}^{Q_i-k-1} (1 - \delta)^{-n-1}(1 - e^{-x_{n-k}})
+ \delta \sum_{n=Q_i-k-1}^{Q_i-k-1} (1 - \delta)^{-n-1}x_{n-k}e^{-x_{n-k}}
< (1 - \delta)^{-Q_i+k+1}x_{Q_i-k-1} + a\delta N^*
\times \sum_{n=Q_i-k-1}^{Q_i-k-1} (1 - \delta)^{-n-1}(e^{-\lambda + \varepsilon} - 1)
+ \delta \sum_{n=Q_i-k-1}^{Q_i-k-1} (1 - \delta)^{-n-1}(\mu + \varepsilon)
= (1 - \delta)^{-Q_i+k+1}x_{Q_i-k-1}
+ [(\mu + \varepsilon) + aN^*(e^{-\lambda + \varepsilon} - 1)]
\times (1 - \delta)^{-Q_i}[1 - (1 - \delta)^k]. \]

Substituting (15) into the above inequality, we get
\[
(1 - \delta)^{-Q_i}x_{Q_i} < -(1 - \delta)^{-Q_i+k+1} \ln\left(1 + \frac{x_{Q_i}}{aN^*}\right)
+ [(\mu + \varepsilon) + aN^*(e^{-\lambda + \varepsilon} - 1)]
\times (1 - \delta)^{-Q_i}[1 - (1 - \delta)^k]. \]

and
\[
x_{Q_i} + (1 - \delta)^{k+1} \ln\left(1 + \frac{x_{Q_i}}{aN^*}\right)
< [\mu + \varepsilon] + aN^*(e^{-\lambda + \varepsilon} - 1)[1 - (1 - \delta)^k]. \]

let \(i \to \infty, \varepsilon \to 0 \), we get
\[
\mu + (1 - \delta)^{k+1} \ln\left(1 + \frac{\mu}{aN^*}\right)
\leq [\mu + aN^*(e^{-\lambda} - 1)][1 - (1 - \delta)^k]. \]

We rewrite the above inequality:
\[
\mu + \ln\left(1 + \frac{\mu}{aN^*}\right) \leq M(e^{-\lambda} - 1). \] (17)

In a similar way, we have
\[
\lambda + \ln\left(1 + \frac{\lambda}{aN^*}\right) \geq M(e^{-\mu} - 1). \] (18)

Then we establish the following system of inequalities:
\[
\begin{cases}
\mu + \ln\left(1 + (\mu/aN^*)\right) \leq M(e^{-\lambda} - 1), \\
\lambda + \ln\left(1 + (\lambda/aN^*)\right) \geq M(e^{-\mu} - 1).
\end{cases} \] (19)

For case 2, the system of inequalities corresponding to (19) is
\[
\begin{cases}
\mu + \ln\left(1 + (\mu/aN^*)\right) \leq M(e^{-\lambda} - 1), \\
\lambda = 0.
\end{cases} \] (20)

It is obvious that (20) holds iff \(\lambda = \mu = 0 \).

For case 3, the system of inequalities corresponding to (19) is
\[
\begin{cases}
\mu = 0, \\
\lambda + \ln\left(1 + (\lambda/aN^*)\right) \geq M(e^{-\mu} - 1).
\end{cases} \] (21)

Similarly, (21) holds iff \(\lambda = \mu = 0 \).

Thus it will suffice to consider case 4, for (19) in
case 4, by Lemma 2, we get \(\lambda = \mu = 0 \). So the proof is complete.
Remark 1 In cases 2 and 3 in Theorem 1, we add some reasonable conditions to \(aN^* \). We know

\[
M = aN^*[(1 - \delta)^{-k-1} - 1] \leq 1 + \frac{1}{aN^*},
\]

on the right side of which there is nothing to do with \(\delta \) and \(k \). While \(1 + (1/aN^*) \to \infty \) as \(aN^* \to 0^+ \), properly choosing the values of \([(1 - \delta)^{-k-1} - 1] \), we can let \(M \) equal or infinitely tend to the value of \(1 + (1/aN^*) \), then \(M \) can be changed to arbitrarily large. Obviously this is not reasonable.

Remark 2 Theorem 4.1 in [1] only applies to the case \(M \leq 1 \), while Theorem 1 in this paper not only applies to \(M \leq 1 \) but also to \(M > 1 \). So the results in this paper improve those in [1].

Example Consider the delay difference equation

\[
N_{n+1} - N_n = -\frac{1}{4}N_n + \frac{1}{4}e^{(\sqrt{5} - 1)/2}N_{n-3}e^{-2N_{n-3}},
\]

then we can calculate

\[
aN^* = \frac{\sqrt{5} - 1}{2} \quad \text{and} \quad [(1 - \delta)^{-k-1} - 1] = \frac{175}{81},
\]

thus,

\[
M \approx 1.335 \quad \text{and} \quad 1 + \frac{1}{aN^*} = \frac{\sqrt{5} + 3}{2} \approx 2.618.
\]

The conditions in Theorem 1 are satisfied. Thus

\[
N^* = \frac{\sqrt{5} - 1}{4}
\]

is a global attractor or (22). But Theorem 4.1 in [1] cannot apply to this case.

References

[1] J.W.-H. So and J.S. Yu. On the stability and uniform persistence of a discrete model of Nicholson’s blowflies. J. Math. Anal. Appl. 193 (1995), 233–244.
[2] Li Jingwen. Global attractivity in Nicholson’s blowflies, Appl. Math.-JCU II B (1996), 425–436.
[3] V.Lj. Kocic and G. Ladas. Oscillation and attractivity in a discrete model of Nicholson’s blowflies, Appl. Anal. 38 (1990), 21–31.
[4] W.S. Gurney, S.P. Blythe and R.M. Nisbet. Nicholson’s blowflies revisited. Nature 287 (1980), 17–21.
[5] M.R.S. Kulenovic, G. Ladas and Y.G. Sficas. Global attractivity in Nicholson’s blowflies, Appl. Anal. 43 (1992), 109–124.
[6] J.W.-H. So and J.S. Yu. Global attractivity and uniformly persistence in Nicholson’s blowflies, Differential Equations Dynam. Systems 2 (1994), 11–18.
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Event	Date
Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk