Degradation of Diclofenac Sodium by the UV/Chlorine Process: Reaction Mechanism, Influencing Factors and Toxicity Evaluation

qingsong li
water resources and environmental Institutie,Xiamen university of technology

Chengran Lai
Xiamen University of Technology

Jianwei Yu (jwyu@rcees.ac.cn)
Chinese Academy of Sciences

Jingyu Luo
Suzhou University of Science and Technology

Jing Deng
Zhejiang University of Technology

Guoxin Li
Xiamen University of Technology

Weizhu Chen
Third Institute of Oceanography State Oceanic Administration: Third Institute of Oceanography Ministry of Natural Resources

Boqiang Li
Zhejiang University of Technology

Guoyuan Chen
Xiamen University of Technology

Research Article

Keywords: Diclofenac sodium, UV/chlorine, Toxicity, Degradation intermediates, RCS, chlorination

DOI: https://doi.org/10.21203/rs.3.rs-475892/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Degradation of diclofenac sodium by the UV/chlorine process: Reaction mechanism, influencing factors and toxicity evaluation

Qingsong Lia, Chengran Laia, Jianwei Yub*, Jingyu Luoc*, Jing Dengd, Guoxin Lia, Weizhu Chene, Boqiang Lid, Guoyuan Chena

aWater Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, PR China.

bKey Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.

cSchool of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.

dCollege of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, PR China.

eThird Institute of Oceanography, Ministry of Natural Resources, People Republic of China, Xiamen 361005, China.

*Corresponding author: Jianwei Yu and Jingyu Luo

E-mail addresses: jwyu@rcees.ac.cn, 1713075361@qq.com.
Abstract

This study examined the reaction mechanism, influencing factors and toxicity of diclofenac sodium (DS) degradation by ultraviolet (UV)/chlorine process. The UV/chlorine was capable of eliminating DS from water. The DS degradation during the UV/chlorine process followed a pseudo-first-order kinetic model that was influenced by chlorine dosage, solution pH, humic acid and bicarbonate concentrations. The free chlorine affects not only DS elimination, but the contribution of various active species as well. Increasing free chlorine dosage from 1 to 7 mg·L\(^{-1}\) increased the first-order rate constant of NaClO, ·OH and reactive chlorine species (RCS) from 0.00063, 0.00328 and 0.00203 min\(^{-1}\) to 0.00233, 0.0101 and 0.0974 min\(^{-1}\), respectively, and increased the contribution of RCS from 8.20% to 75.71%, while the contribution of UV, NaClO, and ·OH were declined from 76.02%, 2.54% and 13.24% to 14.63%, 1.81%, and 7.85%, respectively. The contribution of RCS became increasingly prominence with the increment of free chlorine dosage. The \(k_{obs,UV/chlorine,DS}\) value decreased from 0.0797 to 0.0445 min\(^{-1}\) as pH increased from 5.0 to 8.0. The presence of bicarbonate and natural organic matter both exerted an inhibitory effect on DS degradation. Eleven intermediate products were identified and the degradation pathway involved C-N cleavage, condensation, hydroxylation, and decarboxylation was proposed. The UV/chlorine process effectively reduced acute toxicity and was superior to chlorination. The genotoxicity induced by a chlorinated solution treated by the UV/chlorine process exhibited negative genotoxicity. These results show that the UV/chlorine process is capable for the degradation and detoxification of DS.

Keywords: Diclofenac sodium; UV/chlorine; Toxicity; Degradation intermediates; RCS; chlorination

Introduction

Pharmaceuticals and personal care products (PPCPs) are notable emerging organic contaminants in the aquatic environment due to their frequently occurrence and potential adverse impact on ecosystems and human health (Baalbaki et al. 2016; Deng et al. 2020; Kosma et al. 2014; Padhye et al. 2014; Richardson and Ternes 2014). As can be used as non-selective cyclooxygenase inhibitor and non-steroidal anti-inflammatory agent with antipyretic and analgesic
actions, diclofenac sodium (DS) is one of widely used PPCPs and the annual consumption in China is approximately 1000 metric tons (Halling-Sørensen et al. 1998; Kümmerer 2009; Liu and Wong 2013; Stepanova et al. 2013; Vieno et al. 2007; Zhang et al. 2008). Owing to its broad applications, residuals of DS have been detected widely in sewage water, surface water and drinking water, with concentrations ranging from ng·L\(^{-1}\) to μg·L\(^{-1}\) (Gómez et al. 2006; Kasprzyk-Hordern et al. 2008; Larsson et al. 2007; Stepanova et al. 2013; Stülten et al. 2008; Ziylan and Ince 2011). Even in trace concentrations, DS is a potentially toxic metabolite and exerts a negative effect on the growth of terrestrial animals and aquatic organisms, moreover, DS also can promote drug resistance among pathogens and potentially threatening human health (Czech and Oleszczuk 2016; Letzel et al. 2009).

Conventional water and wastewater treatment technologies (e.g., coagulation and sedimentation) cannot effectively destruct DS (Carballa et al. 2004; Joss et al. 2006; Kimura et al. 2007; Stülten et al. 2008; Ternes et al. 2002, 2004; Vieno et al. 2007; Zhang et al. 2008). Therefore, effective technologies must be developed to eliminate DS from water. Many methods such as activated carbon adsorption (Westerhoff et al. 2005), chlorine disinfection (Westerhoff et al. 2005), ultrasonic irradiation (Hartmann et al. 2008), ozonation (O\(_3\)) (Rosal et al. 2009; Westerhoff et al. 2005), UV/O\(_3\) (Justoa et al. 2013), Fenton oxidation (Ravina et al. 2002), UV/Fenton (Bae et al. 2013), UV/TiO\(_2\) (Rizzo et al. 2009), and UV/H\(_2\)O\(_2\) (Kim et al. 2014) have been investigated for DS removal. UV disinfection is a promising treatment technology for drinking water because it can provide a high level of disinfection without chemical addition. Chlorine is the most commonly used chemical disinfectant with the advantages of low cost, high efficiency and persistence (Liu et al. 2019). The combined UV/chlorine process can yield various highly oxidized radicals such as hydroxyl radicals (⋅OH), as well as reactive chlorine species (RCS) (e.g. chlorine atom radical (Cl\(^-\)), dichloride radicals (Cl\(_2\)\(^-\)), and hypochlorous acid radical (ClO\(_\text{H}^\cdot\))), ⋅OH or RCS plays a major role in the removal of a wide range of contaminants. Furthermore, the UV/chlorine process has been proved to effectively remove many micropollutants and maintaining residual disinfection capacity in drinking water distribution.
systems to provide multiple disinfection barriers (Fang et al. 2014; Jin et al. 2011; Qin et al. 2014; Wang et al. 2017; Xu et al. 2020; Yang and Zhang 2019; Yang et al. 2021; Zhang et al. 2019). The UV/chlorine process has been confirmed to be superior to UV/H\textsubscript{2}O\textsubscript{2} process for the degradation of micropollutants (Guo et al. 2018). Consequently, in view of the extensive use of free chlorine and the advantages of UV/chlorine process as an emerging advanced oxidation process (AOP), it is worth examining whether the UV/chlorine process can substantially enhance the DS degradation in comparison to the effectiveness of free chlorine or UV alone, and determined the contributions of different reactive species for DS removal. If so, the UV/chlorine process could be used as a water treatment method to remove DS, especially if such an investigation also showed the ecotoxicity control efficiency of the treatment solution to be satisfactory.

The main objectives of this study were to: (1) investigate the degradation kinetics of DS during the UV/chlorine treatment; (2) reveal the contributions of different reactive species to DS degradation; (3) evaluate different factors (i.e., chlorine dosage, pH, HA, and common anions) on the degradation behaviors; (4) explore the transformation pathways of DS; and (5) assess the changes of acute toxicity and genotoxicity during DS degradation.

Materials and methods

Chemicals and materials

DS (≥ 99.5%) was obtained from Dr. Ehrenstorfer GmbH (Augsburg, Germany). Acetonitrile (HPLC grade) was provided from Merck (Darmstadt, Germany). The chemicals including 4-nitroquinoline-N-oxide, dimethyl sulfoxide, o-nitrophenyl-\(\beta\)-D-galactopyranoside, sodium dodecyl sulfate (SDS) (≥ 95%) and humic acid (technical grade) were purchased from Sigma-Aldrich (Buchs, Switzerland). Nitrobenzene (NB, HPLC grade > 99%) was purchased from CNW (Dusseldorf, Germany). Sodium hypochlorite (NaClO) (active chlorine ≥ 5.2%) was acquired from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). *Salmonella typhimurium* (TA1535/PSK1002) was purchased from Molecular Toxicology Inc. (Boone, NC, USA). The
lyophilized *Vibrio fischeri* (strain NRRL-B-11177) was obtained from Macharey-Nagel (ref. 945 022) (Düren, Germany).

All chemicals used for solutions (NaCl, NaOH, HNO$_3$, Na$_2$HPO$_4$, NaH$_2$PO$_4$, etc.) were reagent grade. All solutions were prepared with ultrapure water produced from a Milli-Q® water purification system (Millipore Corp., Billerica, MA, USA).

Experimental setup

All experiments were conducted in a 1-L photochemical reactor (Fig. S1). The ultraviolet radiation was provided by a 4 W low-pressure mercury lamp (working at 254 nm). The incident light irradiance was 3.0 μW·cm$^{-2}$ at 17.5 cm from the UV lamp tube, as measured by a UV radiometer (TN-2365, Taina Electronics Co. Ltd., Ningbo, China).

Unless specifically mentioned, experiments were performed in batch mode at a temperature of 25 °C and the initial solution pH was 6.82. Solution pH was adjusted by adding 0.1 mol·L$^{-1}$ NaOH or HNO$_3$. A 1-L solution containing 550 μg·L$^{-1}$ DS was first prepared in the beaker, then a desired dosage of free chlorine (0, 1.0, 3.0, 5.0 or 7.0 mg·L$^{-1}$) was added and the obtained solution was mixed using the magnetic stirrer. The UV lamp was preheated for 2 min and then initiated the reaction. 5 mL samples were taken out periodically, and the residual free chlorine was quenched immediately by adding an excessive amount of sodium thiosulfate.

Analytical methods

Free chlorine was analyzed using the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method. An AQ4000 portable colorimeter (Thermo Scientific, Massachusetts, USA) was used to measure the concentration of free chlorine.

A high performance liquid chromatography system (LC-20AB, Shimadzu, Kyoto, Japan) equipped with a Shimadzu SPD-M20A diode array detector was employed to analyze the concentrations of DS and NB. The mobile phase solvent used for DS and NB analysis consisted of
pure water and acetonitrile (50% pure water (0.05% trifluoroacetic acid) and 50% acetonitrile for DS, 65% pure water and 35% acetonitrile for NB) at a flow rate of 1.0 mL/min. The inertsil reverse-phase ODS-SP column (250 mm × 4.6 mm × 5 μm; GL Sciences, Inc., Tokyo, Japan) temperature was maintained at 40 °C. The detection wavelength of DS and NB were set at 275 and 262 nm, respectively, and the injected volume was 10 μL. The pH of the solution was measured with a pH/mV Meter (Ohaus, Changzhou, China).

The intermediates was identified using a Waters liquid phase-mass spectrometry system equipped with 2767 sample manager, 515 HPLC pump, 2489 UV/visible light detector and 3100 mass detector. The mass spectrometry conditions were set as follows: desolvation temperature and source temperate were 350 °C and 120 °C, respectively; desolvation gas flow and cone gas flow were 500 L/h and 50 L/h, respectively; capillary voltage was 3000 V and injection volume was 20 μL. Chromatographic conditions were set as follow. The mobile phase was consist of acetonitrile and water (65:35) with a flow rate of 1.0 mL·min⁻¹, the working wavelength was 265 nm, the injection volume was 10 μL. Positive APCI mode was adopted for the identification of both DS and its transformation products.

Measurement of acute toxicity and genetic toxicity

A Luminometer BioFix®Lumi-10 aportable luminometer (Macherey-Nagel, Düren, Germany) was employed to determine the acute toxicity of water samples through the Microtox® test and lyophilized *Vibrio fischeri* (UNE-EN-ISO 11348-3 2007). The genetic toxicity was examined by SOS/umu assay which was performed using *Salmonella typhimurium* and a microplate absorbance reader (Spectramax® M2e, Molecular Devices Corp., San Jose, CA, USA) in a 96-cell microplate.

The withdrawn samples were dechlorinated by sodium thiosulfate immediately for acute toxicity
testing. To provide suitable conditions for the bacteria, the pH was controlled between 6.0 and 8.0
and the temperature maintained at 15°C. The acute toxicity was expressed as the relative inhibition
ratio of luminescence (%).

The SOS/umu assay was performed according to a previously reported method with some
modifications (Elisabeth et al. 1998; Li et al. 2018; Oda et al. 1985). In the present study,
ampicillin was adopted as an antibacterial agent with a concentration of 50 mg L⁻¹. The incubation
time of the mixture of exponentially growing bacterial suspension (300 μL) and water samples (3
μL) was extended to 4.5 h at 37 °C on a reciprocal shaker at 800 rpm. The enzymatic reaction time
was set as 20 min at 37 °C on a reciprocating shaker (800 rpm). The β-galactosidase activity (unit)
was determinated by Eq. (1):

\[
β\text{-Galactosidase activity (Unit)} = \frac{1000 \times (A_{415} - 1.75 \times A_{570})}{t \times v \times A_{595}}
\]

(1)

where \(A_{415}, A_{570}\) and \(A_{595}\) are the absorbances at 415, 570 and 595 nm, respectively, \(t\) is the
enzyme reaction time (min), and \(v\) is the dilution rate of the bacterial suspension.

The genotoxicity in the SOS/umu test can be judged by the induction ratio (IR):

\[
IR = \frac{Unit_{sample}}{Unit_{solvent\ control}}
\]

(2)

where \(Unit_{sample}\) and \(Unit_{solvent\ control}\) are the β-galactosidase activity (unit) of water sample and
solvent control, respectively.

In general, if the calculated IR value exceeds 1.5, the water sample can be considered positive (Jin
et al. 2016).

Prior to the SOS/umu test, the reacted DS solution was enriched via HC-18 solid extraction
column (CNW Technologies, Shanghai, China). The extract was evaporated by nitrogen gas and
then re-dissolving in 500 μL dimethyl sulfoxide.
The acute and chronic toxicity of DS and its degradation intermediates on three aquatic organisms (fish, Daphnia, and green algae) during the UV/chlorine process were predicted by the ecological structure-activity relationships (ECOSAR, EPA) simulation program (version 1.11) (Li et al. 2019; Zhuang et al. 2019).

Results and discussion

DS degradation

Effect of free chlorine in the UV/chlorine process

The DS degradation kinetics were conducted at different free chlorine dosages (0, 1, 3, 5 and 7 mg·L\(^{-1}\)) during the UV/chlorine treatment. Fig. 1 displayed the DS degradation curves as a function of free chlorine concentration (0–7 mg·L\(^{-1}\)) during the UV/chlorine process.

Fig. 1 Effect of chlorine on DS degradation in the UV/chlorine process. Conditions: \([\text{DS}]_0 = 550 \mu g\cdot L^{-1}, \text{light intensity} = 3.0 \mu w\cdot cm^{-2}, \text{pH} = 6.82.\]

The degradation of DS followed pseudo-first-order kinetics during the UV/chlorine process, which can be expressed as Eq. (3).

\[
\frac{-d[\text{DS}]}{dt} = k_{\text{obs,UV/chlorine,DS}} [\text{DS}]_t
\]

where \(k_{\text{obs,UV/chlorine,DS}} \text{ (min}^{-1}\) represents the pseudo-first-order rate constant.

Based on the slopes of the reaction relationships presented in Fig. 1, \(k_{\text{obs,UV/chlorine,DS}}\) values were found to be 0.01883 (0 mg·L\(^{-1}\) free chlorine dosage), 0.02477 (1 mg·L\(^{-1}\)), 0.0721 (3 mg·L\(^{-1}\)), 0.09017 (5 mg·L\(^{-1}\)) and 0.1287 min\(^{-1}\) (7 mg·L\(^{-1}\)), respectively. Additionally, \(k_{\text{obs,UV/chlorine,DS}}\) exhibited a linear relation with free chlorine dosage (\(k_{\text{obs,UV/chlorine,DS}} = 0.01565 + 0.01667[\text{Cl}_2]_0, R^2 = 0.9722\), Fig. 1 inset), which linearly magnified from 0.01883 to 0.1287 min\(^{-1}\) as the free chlorine dosage increased from 0 to 7 mg·L\(^{-1}\). \(k_{\text{obs,UV/chlorine,DS}}\) was determined to be of the same magnitude
as β-cyclocitral and β-ionone during UV irradiation and the UV/chlorine process (Kim et al. 2019).

The values of k_{obs} during treatment with free chlorine (3 mg·L$^{-1}$) and UV were determined to be 0.00075 and 0.01883 min$^{-1}$, respectively, while a much higher k_{obs} was obtained to be 0.0721 min$^{-1}$ for the UV/chlorine process (3 mg·L$^{-1}$). The UV/chlorine treatment resulted in a much higher k_{obs} which was 96.13 and 3.83 times higher than that for chlorine and UV alone, respectively. The hybrid UV irradiation and free chlorine process exerts a synergistic effect and accelerates DS degradation. DS can be degraded by ·OH, which can be generated during UV irradiation (Wols et al. 2015a). Free chlorine has a slower reaction rate with organic compounds, and a lower removal of DS has been observed during free chlorine oxidation (Rigobello et al. 2013; Sharma 2008; Soufan et al. 2012). Both HOCl and OCl$^-$ are presented in free chlorine solution, which can generate ·OH and ·Cl under UV light (Kovacic et al. 2016). Furthermore, these radicals can induce a series of chain reactions that lead to the generation of additional radicals, for example, ·OH, ·O$^-$, and RCS such as Cl· and Cl$_2$·, ·OCl, etc. The mechanism of the generated active radicals is shown in Eqs. (4)–(15) (Benitez et al. 2015; Bolton 2010; Chuang et al. 2017; Fang et al. 2014; Feng et al. 2007; Guo et al. 2017; Kim et al. 2016; Weidauer et al. 2016; Wu et al. 2016; Zhu et al. 2017). The species generated in the UV/chlorine process play an crucial role in DS degradation.

\[\text{NaClO+H}^+ \xrightleftharpoons[\text{pKa7.5}]{h^+} \text{HClO+Na}^+ \] (4)

\[\text{HClO} \xrightleftharpoons[\text{pKa7.5}]{h^+} \text{H}^++\text{ClO}^- \] (5)

\[\text{HClO} + h\nu \rightarrow \cdot\text{OH} + \cdot\text{Cl} \quad \Phi = 1.45 \text{ mol Einstein}^{-1} \] (6)

\[\text{OCl}^- + h\nu \rightarrow \cdot\text{O}^- + \text{Cl} \quad \Phi = 0.97 \text{ mol Einstein}^{-1} \] (7)
\[\cdot \text{OH} + \text{HClO} \rightarrow \cdot \text{OCl} + \text{H}_2\text{O} \quad k_1 = 2.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (8) \]

\[\cdot \text{OH} + \text{ClO}^- \rightarrow \cdot \text{OCl} + \text{OH}^- \quad k_2 = 8.8 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (9) \]

\[\cdot \text{Cl} + \text{HClO} \rightarrow \cdot \text{OCl} + \text{Cl}^- + \text{H}^+ \quad k_3 = 3.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (10) \]

\[\cdot \text{Cl} + \text{ClO}^- \rightarrow \cdot \text{OCl} + \text{Cl}^- \quad k_4 = 8.2 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (11) \]

\[\cdot \text{O}^- + \text{H}_2\text{O} \rightarrow \cdot \text{OH} + \text{OH}^- \quad k_5 = 1.8 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (12) \]

\[\cdot \text{Cl} + \text{Cl}^- \rightarrow \cdot \text{Cl}_2^- \quad k_6 = 6.5 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \quad (13) \]

\[\cdot \text{OH} + \text{OH}^- \rightarrow \cdot \text{O}^- + \text{H}_2\text{O} \quad k_7 = 1.3 \times 10^{10} \text{ M}^{-1}\text{s}^{-1} \quad (14) \]

\[\cdot \text{Cl} + \text{OH}^- \rightarrow \text{ClO}^- \cdot \quad k_8 = 1.8 \times 10^{10} \text{ M}^{-1}\text{s}^{-1} \quad (15) \]

DS degradation can be ascribed to UV, chlorination, radicals (\(\cdot \text{OH}, \cdot \text{O}^-, \text{and RCS such as } \cdot \text{Cl}^- \text{ and Cl}_2^-, \cdot \text{OCl} \)) that were induced through free chlorine irradiated by UV light. The \(\cdot \text{O}^-\) has a low reactivity with organic matter, and the contribution of \(\cdot \text{O}^-\) during the UV/chlorine reaction is often neglected or underestimated (Fang et al. 2014; Kim et al. 2020; Nikravesh et al. 2020). Therefore, the DS degradation by the UV/chlorine process was simply described by Eq. (16):

\[k_{\text{obs, UV/chlorine, DS}} = k_{\text{obs, UV, DS}} + k_{\text{obs, chlorine, DS}} + k_{\text{OH,DS}}[\cdot \text{OH}]_{\text{UV/chlorine}} + k_{\text{obs, RCS}} \quad (16) \]

where \(k_{\text{obs, UV/chlorine, DS}} \text{ (min}^{-1}\) represents the determined pseudo-first-order reaction rate constant during the UV/chlorine process, and \(k_{\text{obs, UV, DS}} \text{ (min}^{-1}\) represents the pseudo-first-order reaction rate constant for UV photodegradation, \(k_{\text{obs, chlorine, DS}} \text{ (min}^{-1}\) represents the pseudo-first-order reaction rate constant for free chlorine oxidation, \(k_{\text{OH,DS}} \text{ (M}^{-1}\text{s}^{-1})\) represents the second order kinetic rate constant for \(\cdot \text{OH} \text{ and DS}, [\cdot \text{OH}]_{\text{UV/chlorine}} \text{ (M)}\) represents the steady-state concentration of \(\cdot \text{OH} \text{ during the UV/chlorine process, and } k_{\text{obs, RCS}} \text{ (min}^{-1}\) represents the pseudo-first-order reaction rate constant for RCS during the UV/chlorine process.

The effect of free chlorine on the contribution of diverse radicals for DS degradation deserves
further investigation. $k_{\text{obs, UV/chlorine, DS}}$, $k_{\text{obs, UV/DS}}$ and $k_{\text{obs, chlorine, DS}}$ can be determined through the UV/chlorine treatment, direct UV photolysis and free chlorine oxidation, respectively. Furthermore, $k_{\text{OH,DS}}$ (M$^{-1}$s$^{-1}$) can be determined by UV/H$_2$O$_2$ oxidation as described in Text S1. The determined second-order rate constant of DS with ·OH ($k_{\text{OH,AAP}}$) is 2.97×10^9 M$^{-1}$s$^{-1}$.

Nitrobenzene (NB) can react with ·OH exclusively with a second-order rate constant of 3.9×10^9 M$^{-1}$s$^{-1}$, and it does not react with other radicals (Fang et al. 2014; Ji et al. 2017). Because of this inherent property, NB was often chosen as a radical probe compound for calculating the contribution of ·OH in AOPs. The NB degradation by the UV/chlorine process was simply described by Eq. (17):

$$k_{\text{obs, UV/chlorine, NB}} = k_{\text{obs, UV, NB}} + k_{\text{obs, chlorine, NB}} + k_{\text{OH,NB}}[\text{OH}]_{\text{UV/chlorine}} \quad (17)$$

$[$·OH$]_{\text{UV/chlorine}}$ can be determined at different free chlorine dosage during the UV/chlorine process as detailed in Text S2. The values of $[$·OH$]_{\text{UV/chlorine}}$ were determined to be 6.62×10^{-11} (1 mg·L$^{-1}$), 1.12×10^{-10} (3 mg·L$^{-1}$), 1.55×10^{-10} (5 mg·L$^{-1}$) and 2.03×10^{-10} M (7 mg·L$^{-1}$), respectively. Then the pseudo-first-order reaction rate constant $k_{\text{OH,DS}}[\text{OH}]_{\text{UV/chlorine}}$ during the UV/chlorine process can be obtained by the product of $[$·OH$]_{\text{UV/chlorine}}$ and the calculated $k_{\text{OH,DS}}$. Accordingly, by applying Eq. (16), the values of $k_{\text{obs, RCS}}$ (min$^{-1}$) can be determined (detailed calculation method is presented in Supporting Information (Text S3)). The contribution of various radical species can be calculated (Fig. 2).

Fig. 2 Contributions of RCS, chlorination, UV and ·OH to DS degradation by the UV/chlorine process under different chlorine dosage. Conditions: $[\text{DS}]_0 = 550$ μg·L$^{-1}$, light irradiance = 3.0 μW·cm$^{-2}$, $[\text{Cl}_2]_0 = 1.0, 3.0, 5.0$ and 7.0 mg·L$^{-1}$, pH = 6.82.
As can be seen in Fig. 2, RCS played a prominence role in DS degradation when the dosage of free chlorine was greater than 3 mg·L$^{-1}$. RCS accounted for 65.14-75.71% of the DS elimination during the UV/chlorine process, and the contribution increased with the increase of free chlorine dosage. However, UV photolysis plays an dominant role on DS degradation when the free chlorine dosage was 1 mg·L$^{-1}$, and the corresponding contribution even reached up to 76.02%. It's worth noting that ·OH play an indistinctive role in DS degradation (7.85-13.24%). Similar results have been observed during the degradation of diatrizoate (Hu et al. 2018), and 1H-benzotriazole (Lee et al. 2019) in the UV/chlorine process, in which the degradation of targeted pollutant was mainly ascribed to the generated RCS rather than chlorination. The free chlorine addition may influence not only DS elimination, but the contribution of various active species. Increasing free chlorine dosage from 1 to 7 mg·L$^{-1}$ increased the first-order rate constant of NaClO, ·OH and RCS from 0.00063, 0.00328 and 0.00203 min$^{-1}$ to 0.00233 (increased by 2.69 times), 0.0101 (increased by 2.08 times) and 0.0974 min$^{-1}$ (increased by 46.98 times), respectively, and increased the contribution of RCS from 8.20% to 75.71%, while the contributions of UV, NaClO, and ·OH were declined from 76.02%, 2.54% and 13.24% to 14.63%, 1.81% and 7.85%, respectively. The contribution of RCS becomes increasingly prominence with the increase of free chlorine dosage.

Effect of solution pH

The existing form of chlorine (HOCl or OCl$^{-}$) is affected by solution pH, which also impacts the photon absorption efficiency during the photolysis of chlorine (Watts and Linden, 2007). The influence of pH (pH 5–8) on DS degradation was investigated during the UV/chlorine process and the results were presented in Fig. 3.

The DS degradation followed pseudo-first-order kinetics in all investigated pH conditions.
The \(k_{\text{obs}} \) value gradually decreased from 0.0797 min\(^{-1}\) at pH 5.0 to 0.0445 min\(^{-1}\) at pH 8.0. This result showed that acidic conditions were more effective for DS degradation than neutral and alkaline conditions.

Fig. 3 Effect of pH on DS degradation in the UV/chlorine process. Conditions: \([\text{DS}]_0 = 550 \mu\text{g}\cdot\text{L}^{-1}\), light irradiance = 3.0 \(\mu\text{w}\cdot\text{cm}^{-2}\), and \([\text{Cl}_2]_0 = 3.0 \text{ mg}\cdot\text{L}^{-1}\).

Solution pH can affect the formation of radicals and the existing form of DS. HOCl and OCl\(^-\) possess different quantum yield coefficient of 1.45 and 0.97 mol Einstein\(^{-1}\)(254 nm), respectively (Eqs. (6) – (7)) (Feng et al. 2007; Ye et al. 2017). Thus, pH affects the generation of HO\(^-\) and Cl\(^-\) by their influence on the quantum yield of chlorine photolysis. As the pH gradually increases, the partition coefficient of HClO decreases and the proportion of ClO\(^-\) increases. Correspondingly, the formation of HO\(^-\) and Cl\(^-\) decreases, and ClO\(^-\) produces O\(^-\) rather than HO\(^-\) through photolysis (Eq. (7)). On the other hand, ClO\(^-\) is the dominant form of chlorine in alkaline conditions and is more competitive with \(\cdot\text{OH}\) and \(\cdot\text{Cl}\) than HClO (the dominant chlorine species under acidic conditions). The rate constants of OCl\(^-\) with \(\cdot\text{OH}\) (8.8 \(\times\) 10\(^9\) M\(^{-1}\)s\(^{-1}\)) and \(\cdot\text{Cl}\) (8.2 \(\times\) 10\(^9\) M\(^{-1}\)s\(^{-1}\)) are higher than those of HOCl with \(\cdot\text{OH}\) (2.0 \(\times\) 10\(^9\) M\(^{-1}\)s\(^{-1}\)) and \(\cdot\text{Cl}\) (3.0 \(\times\) 10\(^9\) M\(^{-1}\)s\(^{-1}\)). Thus, the reaction rate constants between \(\cdot\text{OH}\) or \(\cdot\text{Cl}\) and HOCl or OCl\(^-\) both reach 10\(^9\) magnitudes, which indicates that OCl\(^-\) can be treated as radical scavenger. Moreover, under alkaline conditions a large amount of OH\(^-\) also quickly react with HO\(^-\) and Cl\(^-\) (Eqs. (14) and (15)), which consume the generated HO\(^-\) and RCS and result in a reduction of DS removal.

Previous studies have suggested that the degradation of organic pollutants, especially ionizable organic pollutants, was highly pH-dependent (Cheng et al. 2015; Saien and Khezrianjoo 2008; Stewart et al. 2008). DS is a weakly acidic compound and its pKa is 4.0 at 25 °C (Ahuja et al. 2006), so it deprotonates in pH range of 5–8, which results in a reduction of DS removal.

Effect of natural organic matter

The effect of natural organic matter (NOM) on DS degradation in the UV/chlorine process
was investigated using commercially prepared humic acid at different concentrations (Fig. 4).

Fig. 4 Effect of NOM concentration on DS degradation in the UV/chlorine process. Conditions:

\[[\text{DS}]_0 = 550 \mu g \cdot L^{-1}, \text{light irradiance} = 3.0 \mu W \cdot cm^{-2}, [\text{Cl}_2]_0 = 3.0 \text{mg} \cdot L^{-1}, \text{pH} = 6.82. \]

As shown in Fig. 4, the \(k_{\text{obs}} \) value decreased from 0.0721 min\(^{-1}\) to 0.0223 min\(^{-1}\) as NOM concentration increased from 0 to 7.00 mg \cdot L\(^{-1}\). The results demonstrated that the presence of NOM hindered DS elimination during the UV/chlorine process.

NOM can react with \(\cdot \text{OH} \) (2.5×10\(^{-4}\) mg L\(^{-1}\)s\(^{-1}\)), \(\cdot \text{Cl} \) (1.3×10\(^{-4}\) mg L\(^{-1}\)s\(^{-1}\)) and ClO\(\cdot\) (1.3×10\(^{-4}\) mg L\(^{-1}\)s\(^{-1}\)) and generally deemed to be a radical scavenger (Fang et al. 2014; Guo et al. 2017; Lee et al. 2007). Furthermore, NOM exerts an internal filtering effect during UV photolysis and prevents some or all of the UV light from reaching the target pollutant. Thus, increasing NOM concentrations reduces the contributions made by free chlorine, HO\(\cdot\) and RCS. Nevertheless, other researchers have reported that NOM can be activated under UV irradiation to produce solvated electrons, HO\(\cdot\), \(\cdot \text{O}_2 \) and reactive triplet states as reactive species (Aguer et al. 1999; Zhang and Hsu-Kim 2010).

Due to the characteristics of humic acid, NOM can affect DS degradation in two different ways, either accelerating the reaction by stimulating production of HO\(\cdot\) or inhibiting the degradation by competing with other matrix components for absorption of the radiation. In this study, the inhibitory effect outweighed the promoting effect and NOM significantly inhibited DS degradation. Similar results also have been reported during the elimination of diuron (Xiang et al. 2018), iopamidol (Zhao et al. 2019), and microcystin-LR (Zhang et al. 2019) by the UV/chlorine process.
Bicarbonate (HCO$_3^-$) occurred in surface water and groundwater commonly acts as an radical scavenger in AOP systems (De Laat et al. 2011; Ma and Graham 2000). In this study, various levels of HCO$_3^-$ (0–100 mg·L$^{-1}$) were introduced to investigate the influence of HCO$_3^-$ on DS degradation (Fig. 5).

Fig. 5 Effect of HCO$_3^-$ on DS degradation in the UV/chlorine process. Conditions: [DS]$_0$ = 550 μg·L$^{-1}$, light irradiance = 3.0 μW·cm$^{-2}$, [Cl$_2$]$_0$ = 3.0 mg·L$^{-1}$, pH = 6.82.

As can be seen in Fig. 5, HCO$_3^-$ exerted an inhibitory effect on DS degradation during the UV/chlorine process. The k_{obs} value obviously decreased from 0.07181 min$^{-1}$ to 0.04657 min$^{-1}$ as the HCO$_3^-$ concentration increased from 0 to 100 mg·L$^{-1}$, and the k_{app} value decreased by 35.14%. It is worth noting that the introduction of HCO$_3^-$ mainly affects the intermediate reaction process and the removal efficiencies of DS after 60 min still maintain high value (> 96%).

HCO$_3^-$ can react with ∙Cl and ∙HO to generate carbonate radicals (CO$_3^-$·) with the second order rate constants of 2.2×10^9 M$^{-1}$s$^{-1}$ and 8.5×10^6 M$^{-1}$s$^{-1}$, respectively (Buxton et al. 1988; Matthew and Anastasio 2006). Thus, HCO$_3^-$ competes for ∙Cl and ∙HO, and thus decreasing DS removal.

The generated ∙OH can be consumed by HCO$_3^-$ to form CO$_3^-$·. Although CO$_3^-$· is a weaker radical and owns lower oxidizing capacity compared to HO$^·$ and Cl$^·$, it still degrades a variety of organic pollutants with rate constants in the order 10^6–10^7 M$^{-1}$s$^{-1}$ (Guo et al. 2018; Wols et al. 2015b). This result were similar to those of atrazine and trimethoprim degraded by UV/chlorine process (Kong et al. 2016; Wu et al. 2016).
Identification of intermediates and proposed pathways

To obtain the detailed information about DS degradation in the UV/chlorine process, the intermediates were analyzed using liquid chromatography-mass spectrometry and eleven intermediate products were identified (Table 1, Fig. S2).

Table 1 LC/MS data in ESI-negative mode for the DS intermediates and their proposed structures

Based on the detected intermediates, a possible degradation pathway for DS was put forward (Fig. 6). The condensation reaction, C-N cleavage, hydroxylation, and decarboxylation of the phenylacetic acid group were identified as the main degradation processes. 2,4-dichloroaniline and 2-hydroxyphenylacetic acid were considered as common transformation products obtained from the cleavage of C-N bond of DS (Cheng et al. 2015; Pérez-Estrada et al. 2005; Vogna et al. 2004).

Under the attack of RCS, 2,4,6-trichloroaniline and 2,5-dihydroxyphenyl acetate may be further reaction products.

The aromatic ring of DS can be easily attacked by -OH (Khabbaz and Entezari, 2017). The formation of carboxymethyl-2-(2,6-dichloro-phenylmino)-4-oxo-pentanedioic acid and hydroxyl-DS can be observed. The latter has been reported often by manganese oxide oxidation and chlorine dioxide oxidations (Huguet et al. 2013; Wang et al. 2014). Notably, hydroxyl-DS will further react with DS to produce [2-(2,6-Diohloro-4-\{2-[2-(2,6-dichloro-phenylamino) -phenyl]-acetoxy\}-phenylamino)-phenyl]-acetic acid in the condensation reaction. The attack of chlorine on the aromatic ring could lead to the generation of monochloro DS derivatives, as illustrated in other researches (Miyamoto et al. 1997; Quintana et al. 2010; Soufan et al. 2012).
However, the possible chlorination products of mono- and dichlorinated DS were not detected in this study. Previous research found that decarboxyl-DS can be generated from the decarboxylation of the phenylacetic acid group and transformed directly to an aldehyde group (Bartels et al. 2007; Pérez-Estrada et al. 2005). The formation of 2,6-dichloro-N-(2-methylphenyl) benzenamine, 1,7-dichloro-8-aldehyde-9H-carbazole and 1-chloro-8-methyl-9H-carbazole have not been reported in previous studies. Thus, this is the first study to define these three intermediate products, which may derive from decarboxyl-DCF via chlorination and cyclization reactions.

2,4,6-trichloroaniline, chlorophenol and other small molecule organic acids were ultimately formed and all of them underwent further reactions to eventually form H₂O, HCl and CO₂. It should be noting that the proposed pathway included only a part of the intermediates from DS degradation. Moreover, the unidentified disinfection byproducts were also likely generated during the UV/chlorine treatment. 2,4,6-trichloroaniline is a well known toxic compound, but the eco-toxicity of mono- and dichlorinated DS is still unclear (Bedner and MacCrehan 2006; Wang et al. 2019).

Fig. 6 Proposed pathway of DS degradation during the UV/chlorine process.

Toxicity assessment

Due to the production of various intermediates, it is essential to investigate the toxicity characteristics of the identified intermediates during the UV/chlorine process. The acute toxicity was defined as the half lethal concentration (LC₅₀) in fish and water fleas (*Daphnia* spp.) and the half effective concentration (EC₅₀) in green algae, and the chronic value (ChV) was expressed as
the geometric mean of the no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC). The ecotoxicity was simulated by ECOSAR program and summarized in Table S1. According to the toxicity assessment levels of the globally harmonized classification and labeling system for chemicals (Nations U 2019) (Table S2), the acute and ChV toxicity levels of DS and its degradation intermediates were determined and presented in Fig. 7 (a) and (b).

The values of $\text{LC}_{\text{50},96\text{hr}}$ (fish), $\text{LC}_{\text{50},96\text{hr}}$ (water fleas) and $\text{EC}_{\text{50},48\text{hr}}$ (green algae) for DS were 37.655, 25.754 and 41.414 mg·L$^{-1}$, respectively. DS itself appears to exert harmful acute effect on daphnia, fish, and green algae, while have a toxic chronic effect on daphnia and fish. The degradation intermediates m/z 619, m/z 589, m/z 126, and m/z 250 present higher acute toxicity and chronic toxicity. Conclusively, the intermediates generated during the UV/chlorine process appear to present aquatic toxicity, in contrast to the parent compound. However, m/z 362 may be completely harmless, the acute toxicity and chronic toxicity of m/z 193 are lower that that of DS, which can result in the reduction in ecotoxicity of the reacted solution.

Toxicity assessment of the individual DS and its degradation intermediates cannot reflect the whole toxic effect change of the reacted solution, which also influenced by other factors, such as concentration, interaction of the degradation intermediates. Therefore, the SOS/umu genotoxicity test and an acute toxicity test using luminescent bacteria ($V. \ fischeri$) were conducted to evaluate the toxicity of the resulted solution after treated by the UV/chlorine process. Before performing the Microtox$^\text{®}$ test and the SOS/umu genotoxicity test, Na$_2$S$_2$O$_3$ was introduced into the water sample to quench any residual free chlorine and the results were shown in Fig. 7(c) and (d).

As presented in Fig. 7(d), during UV irradiation, the acute toxicity (luminescence inhibition...
rate) of the reaction solution initially decreased from 18% (0 min) to 9% (5 min), but afterwards increased and reached a maximum inhibition rate of 26% at 30 min and finally decreased to 25% at 75 min. The slight increase of acute toxicity suggested that UV alone was not effective for reducing the acute toxicity of the reacted solution. This result was well consistent with previous finding in which DS solution was treated by chlorine dioxide (Wang et al. 2014).

During the UV/chlorine process, the luminescence inhibition rates were higher than those resulting from UV treatment alone in the early stage of the reaction (i.e., at sampling times of 5 min, 10 min and 30 min) except at 20 min (10%). However, the inhibition rate gradually decreased from 31.1% to 8% with prolonging the reaction time from 30 min to 75 min. The UV/chlorine treatment was superior to UV irradiation for the control of acute toxicity. As shown in Fig. 7(d), the relative inhibition rate after the UV/chlorine treatment decreased to 8% at 90 min, which was much lower than that of 25% achieved by UV irradiation alone.

Fig. 7 (a) Acute toxicity and (b) Chronic toxicity of DS and its degradation products; (c) Variation of genotoxicity during DS degradation by the UV/chlorine process; (d) Variation of acute toxicity during DS degradation by the UV and the UV/chlorine processes. Conditions: [DS]₀ = 550 μg·L⁻¹, light intensity = 3.0 μW·cm⁻², [Cl₂]₀ = 3.0 mg·L⁻¹, and pH = 6.82.

Fig. 7(c) showed the genotoxicity change induced by the chlorinated solution treated by the UV/chlorine process increased from 375.44 units (0 min) to a maximum β-galactosidase activity of 624.43 units (45 min). The corresponding removal efficiency at 45 min was 96.3%. The result of SOS/umu tests revealed that the intermediates generated during the UV/chlorine process showed a higher genotoxicity than DS itself. As the treatment time extended beyond 45 min, the
β-galactosidase activity gradually decreased and reached a minimum value of 400 units (90 min).

The initial value of IR was negative and showed no mutagenicity. However, the value of IR was 2.54 (>) at 45 min and exhibited obvious positive genotoxicity. Thereafter, the value of IR decreased to 1.33 at 90 min, which indicated that the treated solution did not possess any positive genotoxicity. It is noteworthy that the IR value for the reaction solution was higher than that for the parent compound. Combined effects of the byproducts might strengthen the genotoxicity of the resulted solution (Scheurell et al. 2009).

These observations clearly revealed that some intermediates possessing higher toxicity than DS itself were formed during the degradation process. The asynchronous elimination of DS and detoxification suggested that some chlorinated intermediates contributed to toxicity of the reaction solution in the UV/chlorine process even when DS has been effectively eliminated. The toxicity changes were primarily attributed to the concentration variation of the intermediate products. Nevertheless, the intermediate products were further degraded in the UV/chlorine process as the reaction progressed, thereby decreasing both acute toxicity and genotoxicity. The acute toxicity and genotoxicity of the reaction solution depends on not only the characteristics of the intermediate products, but also their concentrations. Due to a lack of standard materials, this issue could not be addressed in this research and will conduct an in-depth study on this issue.

Conclusions

Rapid and complete elimination of DS from water can be achieved by the UV/chlorine process. The degradation of DS can be well described using a pseudo-first-order model. The $k_{obs,UV/chlorine,DS}$ exhibits distinct dependence on solution pH and free chlorine dosage. The addition of free chlorine affects not only DS elimination, but the contribution of various active species as
well. Low solution pH is beneficial to DS degradation, while the presence of bicarbonate and
NOM retard the DS removal. The degradation of DS is mainly achieved by the attack of reactive
species. The relative contributions of ∙OH and RCS for DS elimination are dependent on free
chlorine dosage. During the UV/chlorine treatment, DS can be converted to 11 by-products. The
DS degradation pathway involves the C-N cleavage, condensation, hydroxylation, and
decarboxylation. The UV/chlorine process is superior to the use of chlorine alone for the reduction
of acute toxicity. The results of this study provide some valuable information for the application of
the UV/chlorine process in water treatment plants.

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (Grant
No. 51878582, 51978618, 41801219), the Natural Science Foundation of Fujian Province of
China (No. 2018J01526, 2019J01849), New Century Excellent Talents in Fujian Province
University (JA14227), The grants from Xiamen University of Technology (XPDKT19026).

Declaration of interests

- Ethics approval and consent to participate
 Not applicable
- Consent for publication
 Not applicable
- Availability of data and materials
 The datasets used and/or analysed during the current study are available from the corresponding
 author on reasonable request.
- Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

- **Funding**

This study was supported in part by the National Natural Science Foundation of China (Grant No. 51878582, 51978618, 41801219), the Natural Science Foundation of Fujian Province of China (No. 2018J01526, 2019J01849), New Century Excellent Talents in Fujian Province University (JA14227), The grants from Xiamen University of Technology (XPDKT19026).

- **Authors' contributions**

Qingsong Li: Funding acquisition, Resources, Writing - review & editing. Chengran Lai: Data Curation, Writing - Original Draft. Jianwei Yu: Supervision, Writing - Review & Editing. Jingyu Luo: Data Curation. Jing Deng: Funding acquisition, Resources, Writing - review & editing. Guoxin Li: Methodology, Validation. Weizhu Chen: Methodology, Validation. Boqiang Li: Resources. Guoyuan Chen: Methodology, Validation.

- **Acknowledgements**

This study was supported in part by the National Natural Science Foundation of China (Grant No. 51878582, 51978618, 41801219), the Natural Science Foundation of Fujian Province of China (No. 2018J01526, 2019J01849), New Century Excellent Talents in Fujian Province University (JA14227), The grants from Xiamen University of Technology (XPDKT19026).

References

Aguer JP, Richard C, Andreux F (1999) Effect of light on humic substances: production of reactive species. Analusis 27(5): 387-389.

Ahuja M, Dhake AS, Majumdar DK (2006) Effect of formulation factors on in-vitro permeation of
diclofenac from experimental and marketed aqueous eye drops through excised goat cornea.

Yakugaku Zasshi 126(12):1369-1375.

Baalbaki Z, Sultana T, Maere T, Vanrolleghem PA, Metcalfe CD, Yargeau V (2016) Fate and mass balance of contaminants of emerging concern during wastewater treatment determined using the fractionated approach. Sci Total Environ 573:1147-1158.

Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed fenton oxidation. Appl Catal B Environ 134-135:93-102.

Bartels P, von Tümpling W (2007) Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci Total Environ 374:143–55.

Bedner M, MacCrehan WA (2006) Transformation of by chlorination produces the toxicants 1, 4-benzoquinone and N-acetyl-p benzoquinone imine. Environ Sci Technol 40:516-522.

Benitez FJ, Acero JL, Real FJ, Roldán G, Rodríguez E (2015) Ozonation of benzotriazole and methylindole: kinetic modeling, identification of intermediates and reaction mechanisms. J Hazard Mater 282:224-232.

Bolton J (2010) Ultraviolet Applications Handbook. ICC Lifelong Learn Inc, Edmonton, Canada.

Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/O−) in aqueous solution. J Phys Chem Ref Data 17(2):513–886.

Cai A, Deng J, Xu M, Zhu T, Zhou S, Li J Wang G, Li X (2020) Degradation of tetracycline by UV activated monochloramine process: Kinetics, degradation pathways, DBPs formation and toxicity assessment. Chem Eng J 395:125090.

Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004)
Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918-2926.

Cheng H, Song D, Liu H, Qu J (2015) Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere 136:297–304.

Chuang Y, Chen S, Chinn CJ Mitch WA (2017) Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ Sci Technol 51:13859-13868.

Czech B, Oleszczuk P (2016) Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H$_2$O$_2$ and/or UV. Chemosphere 149:272-278.

De Laat J, Dao YH, El Najjar, NH, Daou C (2011) Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron (III)-nitrilotriacetate in water. Water Res 45(17):5654-5664.

Elisabeth W, Birgit F, Peter-Diedrich, H (1998) Genotoxicity Assay: umu-Test (ISO/DIS 13829, 2000), ISO/CD 13829, International Organization for Standardization (ISO), Berlin, Germany.

Fang J, Fu Y, Shang C (2014) The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ Sci Technol 48 (3):1859-1868.

Feng Y, Smith DW, Bolton JR (2007) Photolysis of aqueous free chlorine species (HOCl and OCI) with 254 nm ultraviolet light. J Environ Eng Sci 6 (3):277-284.

Gómez MJ, Petrović M, Fernández-Alba AR, Damià B (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. J Chromatogr A 1114(2):224-233.
Guo K, Wu Z, Shang C, Yao B, Hou S, Yang X, Song W, Fang J (2017) Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water. Environ Sci Technol 51:10431–10439.

Guo K, Wu Z, Yan S, Yao B, Song W, Hua Z, Zhang X, Kong X, Li X, Fang J (2018) Comparison of the UV/chlorine and UV/H₂O₂ processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Res 147:184-194.

Halling-Sørensen B, Nielsen SN, Lanzky PF, IngerslevF, Lützhøft HHC, Rgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357-393.

Hartmann J, Bartels P, Mau U, Witter M, Tümpling WV, Hofmann J, Nietzschmann E (2008) Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere 70(3):453-461.

Hu CY, Hou YZ, Lin YL, Li AP, Deng YG (2018) Degradation kinetics of diatrizoate during UV photolysis and UV/chlorination. Chem Eng J 360:1003–1010.

Huguet M, Deborde M, Papot S, Gallard H (2013) Oxidative decarboxylation of diclofenac by manganese oxide bed filter. Water Res 47:5400–5408.

Jin AJ, Feng L, Zhang LQ, Liu YZ (2016) Changes of the toxic potential of drinking water containing aminopyrine before and after chlorine disinfection as determined by the algal toxicity assay and the sos/umu assay. Int. Biodeter. Biodegra 113:269-275.

Jin J, El-Din MG, Bolton JR (2011) Assessment of the UV/Chlorine process as an advanced oxidation process. Water Res 45(4):1890-1896.
Ji Y, Shi Y, Wang L, Lu J (2017) Denitration and renitration processes in sulfate radical mediated
degradation of nitrobenzene. Chem Eng J 315:591–597.

Joss A, Zabczynski S, GöBel A, Hoffmann B, Löffler D, Mcardell CS, Ternes TA, Thomsen A, Siegrist
H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a
classification scheme. Water Res 40(8):1686-1696.

Justoa A, González O, Aceña J, Pérez S, Barceló D, Sans C, Esplugas S (2013) Pharmaceuticals and
organic pollution mitigation in reclamation osmosis brines by UV/H$_2$O$_2$ and ozone. J Hazard Mater
263:268-274.

Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care
products, endocrine disruptors and illicit drugs in surface water in South wales, UK. Water Res
42(13):3510-3518.

Khabbaz M, Entezari MH (2017) Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles. J
Environ Manage 187:416-423.

Kim IY, Kim MK, Yoon Y, Im JK, Zoh KD (2014) Kinetics and degradation mechanism of clofibric
acid and diclofenac in UV photolysis and UV/H$_2$O$_2$ reaction. Desalin. Water Treat
52(31-33):6211-6218.

Kim TK, Moon BR, Kim T, Kim MK, Zoh KD (2016) Degradation mechanisms of geosmin and
2-MIB during UV photolysis and UV/Chlorine reactions. Chemosphere 162:157-164.

Kim TK, Kim T, Cha Y, Zoh KD (2020) Energy-efficient erythromycin degradation using UV-LED
(275nm)/chlorine process: radical contribution, transformation products, and toxicity
evaluation. Water Res 185:116159
Kim T, Kim TK, Zoh KD (2019) Degradation kinetics and pathways of \(\beta\)-cyclocitral and \(\beta\)-ionone during UV photolysis and UV/chlorination reactions. J Environ Manage 239:8–16.

Kimura K, Hara H, Watanabe Y (2007) Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ Sci Technol 41(10):3708-3714.

Kong X, Jiang J, Ma J, Yang Y, Liu W, Liu Y (2016) Degradation of atrazine by UV/chlorine: efficiency, influencing factors, and products Water Res 90:15-23.

Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466-467:421-438.

Kovacic M, Perisic DJ, Biosic M, Kusic H, Babic S, Bozic Al (2016) UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environ Sci Pollut Res 23(15):14908-14917.

Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. J Environ Manage 90(8):2354-2366.

Larsson DGJ, Pedro CD, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751-755.

Lee C, Yoon J, Gunten UV (2007) Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res 41(3):581-590.

Lee JE, Kim MK, Lee JY, Lee YM, Zoh KD (2019) Degradation kinetics and pathway of 1H-benzotriazole during UV/chlorination process. Chem Eng J 359:1502–1508.

Letzel M, Metzner G, Letzel T (2009) Exposure assessment of the pharmaceutical diclofenac based on
long-term measurements of the aquatic input. Environ Int 35(2):363-368.

Li J, Zhou S, Li M, Du E, Liu X (2019) Mechanism insight of acetaminophen degradation by the UV/chlorine process: kinetics, intermediates, and toxicity assessment. Environ Sci Pollut Res 26(24):25012-25025.

Li Q, Yu J, Chen W, Ma X, Li G, Chen G, Deng J (2018) Degradation of triclosan by chlorine dioxide: reaction mechanism, 2,4-dichlorophenol accumulation and toxicity evaluation. Chemosphere 207:449-456.

Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208-224.

Liu L, Xing X, Hu C, Wang H, Lyu L (2019) Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. Chemosphere 219:971-980.

Ma J, Graham NJD (2000) Degradation of atrazine by manganese-catalysed ozonation-influence of radical scavengers. Water Res 34(15):3822-3828.

Matthew BM, Anastasio C (2006) A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1-bromide solutions. Atmos Chem Phys 6:2423-2437.

Miyamoto G, Zahid N, Uetrecht JP (1997) Oxidation of diclofenac to Reactive intermediates by Neutrophils, Myeloperoxidase, and hypochlorous acid. Chem Res Toxicol 10:414-419.

Neta P, Huie R, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17(3):1027–1284.
Nikravesh B, Shomalnasab A, Nayyer A, Aghababaei N, Ghanbari F (2020) UV/chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater. J Environ Chem Eng 8(5):104244.

Oda Y, Nakamura SI, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147(5):219-229.

Padhye LP, Yao H, Kung’U FT, Huang CH (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266-276.

Pérez-Estrada LA, Malato S, Gernjak W, Agüera A, Thurman EM, Ferrer I, Fernández-Alba AR (2005) Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39(21):8300-8306.

Qin L, Lin YL, Xu B, Hu CY, Tian FX, Zhang TY, Zhu WQ, Huang H, Gao NY (2014) Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes. Water Res 65:271-281.

Quintana JB, Rodil R, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodríguez D (2010) Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology. J Water Res 44:243-255.

Ravina M, Campanella L, Kiwi J (2002) Accelerated mineralization of the drug diclofenac via fenton reactions in a concentric photo-reactor. Water Res 36(14):3553-3560.

Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86:2813-2848.

Rigobello ES, Dantas ADB, Bernardo LD, Vieira EM (2013) Removal of diclofenac by conventional
drinking water treatment processes and granular activated carbon filtration. Chemosphere 92(2): 184-191.

Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO$_2$ photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 43(4):979-988.

Sharma VK (2008) Oxidative transformations of environmental pharmaceuticals by Cl$_2$, ClO$_2$, O$_3$, and Fe(VI): kinetics assessment. Chemosphere 73(9):1379-1386.

Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E (2009) Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O$_3$/H$_2$O$_2$). Chem Eng J 149(1):311-318.

Saien J, Khezrianjoo S (2008) Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO$_2$ process: optimization, kinetics and toxicity studies. J Hazard Mater 157(2-3):269-276.

Soufan M, Deborde M, Legube B (2012) Aqueous chlorination of diclofenac: Kinetic study and transformation products identification. Water Res 46:3377-3386.

Stepanova S, Praskova E, Chromcova L, Plhalova L, Prokes M, Blahova J, Svobodova Z (2013) The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environ Toxicol Phar 35(3):454-460.

Stewart DJ, Napolitano MJ, Bakhmutova-Albert EV, Margerum DW (2008) Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan. Inorg Chem 47(5):1639-1647.

Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected
metabolites in sewage effluents. Sci Total Environ 405(1-3):310-316.

Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure
the solid–water distribution coefficient (K_d) for pharmaceuticals and musk fragrances in sewage
sludge. Water Res 38(19):4075-4084.

Ternes TA, Meisenheimer M, Mcdowell D, Sacher F, Brauch HJ, Preuss G, Wilme U, Zulei-Seibert N
(2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):
3855-3863.

UN (2011) Globally harmonized system of classification and labelling of chemical (GHS), fourth
revised edition. United Nations Publications, New York.

Vieno NM, Härkki H, Tuhkanen T, Kronberg L (2007) Occurrence of pharmaceuticals in river water
and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41(14):
5077-5084.

Vogna D, Marotta R, Napolitano A, Andreozzi R, Ischia M (2004) Advanced oxidation of the
pharmaceutical drug diclofenac with UV/H$_2$O$_2$ and ozone. Water Res 38:414–422.

Wang AQ, Lin YL, Xu B, Hu CY, Xia SJ, Zhang TY, Chu WH, Gao NY (2017) Kinetics and modeling
of iodoform degradation during UV/chlorine advanced oxidation process. Chem Eng J 323:312-319.

Wang S, Yan LC, Zheng SS, Li TT, Fan LY, Huang T, Li C, Zhao YH (2019) Toxicity of some
prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic
action. Ecotox Environ Safe 167:138-145.

Wang Y, Liu H, Liu G, Xie Y (2014) Oxidation of diclofenac by aqueous chlorine dioxide:
identification of major disinfection byproducts and toxicity evaluation. Sci Total Environ 473-474:
437-445.
Watts MJ, Linden KG (2007) Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Res 41 (13):2871-2878.

Weidauer C, Davis C, Raeke J, Seiwert B, Reemtsma T (2016) Sunlight photolysis of benzotriazoles-identification of transformation products and pathways. Chemosphere 154:416-424.

Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocme-disruptor, pharmaceutica, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39(17):6649-6663.

Wols BA, Harmsen DJH, Wanders-Dijk J, Beerendonk EF, Hofman-Caris CHM (2015a) Degradation of pharmaceuticals in UV (LP)/H₂O₂ reactors simulated by means of kinetic modeling and computational fluid dynamics (CFD). Water Res 75:11-24.

Wols BA, Harmsen DJH, Beerendonk EF, Hofman-Caris CHM (2015b) Predicting pharmaceutical degradation by UV (MP)/H₂O₂ processes: a kinetic model. Chem Eng J 263:336-345.

Wu Z, Fang J, Xiang Y, Shang C, Li X, Meng F, Yang X (2016) Roles of reactive chlorine species in trimethoprim degradation in the UV/Chlorine process: kinetics and transformation pathways. Water Res 104:272-282.

Xiang H, Shao Y, Gao N, Xian L, An N, Tan C, Zheng Z (2018) Degradation of diuron by chlorination and UV/chlorine process: degradation kinetics and the formation of disinfection by-products. Sep Purif Technol 202:365-372.

Xu M, Deng J, Cai A, Ye C, Ma X, Li Q, Zhou S, Li X (2020) Synergistic effects of UVC and oxidants (PS vs. Chlorine) on carbamazepine attenuation: Mechanism, pathways, DBPs yield and toxicity assessment. Chem Eng J 413:127533.
Yang T, Mai J, Wu S, Liu C, Tang L, Mo Z, Zhang M, Guo L, Liu M, Ma J (2021) UV/chlorine process for degradation of benzothiazole and benzotriazole in water: efficiency, mechanism and toxicity evaluation. Sci Total Environ 760:144304.

Yang Z, Zhang Z (2019) Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect. Water Res 161:439-447.

Ye B, Li Y, Chen Z, Wu QY, Wang WL, Wang T, Hu HY (2017) Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: radical roles, influencing factors, and degradation pathway. Water Res 124:381–387.

Zhang Y, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151-1161.

Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3(7):473-476.

Zhang T, Hu Y, Jiang L, Yao S, Lin K, Zhou Y, Cui C (2019) Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chem Eng J 358:589-597.

Zhang X, He J, Xiao S, Yang X (2019) Elimination kinetics and detoxification mechanisms of microcystin-LR during UV/Chlorine process. Chemosphere 214:702-709.

Zhao X, Jiang J, Pang S, Guan C, Li J, Wang Z, Ma J, Luo C (2019) Degradation of iopamidol by three UV-based oxidation processes: Kinetics, pathways, and formation of iodinated disinfection byproducts. Chemosphere 221:270-277.

Zhu Y, Wu M, Gao N, Chu W, Li K, Chen S (2017) Degradation of phenacetin by the UV/chlorine advanced oxidation process: kinetics, pathways, and toxicity evaluation. Chem Eng J 335:520–529.
Zhuang J, Wang S, Tan Y, Xiao R, Chen J, Wang X, Jiang L, Wang Z (2019) Degradation of sulfadimethoxine by permanganate in aquatic environment: influence factors, intermediate products and theoretical study. Sci Total Environ 671:705–713.

Ziylan A, Ince NH (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J Hazard Mater 187(1-3):24-36.
Figure 1

Effect of chlorine on DS degradation in the UV/chlorine process. Conditions: \([\text{DS}]_0 = 550 \, \mu\text{g}\cdot\text{L}^{-1}\), light intensity = 3.0 \, \mu\text{W}\cdot\text{cm}^{-2}, \text{pH} = 6.82.
Figure 2

Contributions of RCS, chlorination, UV and OH to DS degradation by the UV/chlorine process under different chlorine dosage. Conditions: [DS]₀ = 550 µg·L⁻¹, light irradiance = 3.0 µW·cm⁻², [Cl₂]₀ = 1.0, 3.0, 5.0 and 7.0 mg·L⁻¹, pH = 6.82.
Figure 3

Effect of pH on DS degradation in the UV/chlorine process. Conditions: [DS]₀ = 550 μg·L⁻¹, light intensity = 3.0 μw·cm⁻², and [Cl₂]₀ = 3.0 mg·L⁻¹.
Figure 4

Effect of natural organic matter (NOM) concentration on DS degradation in the UV/chlorine process. Conditions: [DS]₀ = 550 μg·L⁻¹, light intensity = 3.0 μW·cm⁻², [Cl₂]₀ = 3.0 mg·L⁻¹, pH = 6.82.
Figure 5

Effect of HCO$_3^-$ on DS degradation in the UV/chlorine process. Conditions: [DS]$_0$ = 550 μg·L$^{-1}$, light intensity = 3.0 μW·cm$^{-2}$, [Cl$_2$]$_0$ = 3.0 mg·L$^{-1}$, pH = 6.82.
Figure 6

Proposed pathway of DS degradation during the UV/chlorine process.
Figure 7

(a) Acute toxicity and (b) Chronic toxicity of DS and its degradation products. (c) Variation of genotoxicity during DS degradation by the UV/chlorine process; (d) Variation of acute toxicity during DS degradation by the UV and the UV/chlorine processes. Conditions: [DS]₀ = 550 μg·L⁻¹, light intensity = 3.0 μW·cm⁻², [Cl₂]₀ = 3.0 mg·L⁻¹, and pH = 6.82.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupportingInformation.doc