Tighter monogamy relations in multipartite systems

Zhi-Xiang Jin *
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Jun Li †
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Tao Li ‡
School of Science, Beijing Technology and Business University, Beijing 100048, China

Shao-Ming Fei §
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany

October 15, 2018

Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C, the entanglement of formation E, negativity N_c and Tsallis-q entanglement T_q. Monogamy relations for the αth power of entanglement have been derived, which are tighter than the existing entanglement monogamy relations for some classes of quantum states. Detailed examples are presented.

*Corresponding author: jzxjinxia@126.com
†Corresponding author: lijunnl123@163.com
‡Corresponding author: litao@btbu.edu.cn
§Corresponding author: feishm@mail.cmu.edu.cn
1 INTRODUCTION

Due to the essential roles played in quantum communication and quantum information processing, quantum entanglement [1, 2, 3, 4, 5, 6, 7, 8] has been the subject of many recent studies in recent years. The study of quantum entanglement from various viewpoints has been a very active area and has led to many impressive results. As one of the fundamental differences between quantum and classical correlations, an essential property of entanglement is that a quantum system entangled with one of the other subsystems limits its entanglement with the remaining ones. The monogamy relations give rise to the distribution of entanglement in the multipartite quantum systems. Moreover, the monogamy property has emerged as the ingredient in the security analysis of quantum key distribution [9].

For a tripartite system A, B, and C, the usual monogamy of an entanglement measure \mathcal{E} implies that [10]

$$
\mathcal{E}_{A|BC} \geq \mathcal{E}_{AB} + \mathcal{E}_{AC}.
$$

However, such monogamy relations are not always satisfied by all entanglement measures for all quantum states. In fact, it has been shown that the squared concurrence C^2 [11, 12] and entanglement of formation E^2 [13] satisfy the monogamy relations for multiqubit states. The monogamy inequality was further generalized to various entanglement measures such as continuous-variable entanglement [14, 15, 16], squashed entanglement [10, 17, 18], entanglement negativity [19, 20, 21, 22, 23], Tsallis-q entanglement [24, 25], and Renyi entanglement [26, 27, 28].

In this paper, we derive monogamy inequalities which are tighter than all the existing ones, in terms of the concurrence C, the entanglement of formation E, negativity N_c, and Tsallis-q entanglement T_q.

2 Tighter Monogamy Relations for Concurrence

We first consider the monogamy inequalities satisfied by the concurrence. Let H_X denote a discrete finite-dimensional complex vector space associated with a quantum subsystem X. For a bipartite pure state $|\psi\rangle_{AB}$ in vector space $H_A \otimes H_B$, the concurrence is given by [29, 30, 31]

$$
C(|\psi\rangle_{AB}) = \sqrt{2[1 - \text{Tr}(\rho_A^2)]},
$$

where ρ_A is the reduced density matrix by tracing over the subsystem B, $\rho_A = \text{Tr}_B(|\psi\rangle_{AB}\langle\psi|)$. The concurrence for a bipartite mixed state ρ_{AB} is defined by the convex roof extension $C(\rho_{AB}) = \min_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C(|\psi_i\rangle)$, where the minimum is taken over all possible decompositions of $\rho_{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i|$, with $p_i \geq 0$, $\sum_i p_i = 1$ and $|\psi_i\rangle \in H_A \otimes H_B$.

For a tripartite state $|\psi\rangle_{ABC}$, the concurrence of assistance is defined by [32, 33]

$$
C_a(|\psi\rangle_{ABC}) \equiv C_a(\rho_{AB}) = \max_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C(|\psi_i\rangle),
$$

2
where the maximum is taken over all possible decompositions of $\rho_{AB} = \text{Tr}_C(\psi_{ABC})\langle \psi \rangle = \sum p_i |\psi_i\rangle_{AB}\langle \psi_i|$. When $\rho_{AB} = |\psi\rangle_{AB}\langle \psi|$ is a pure state, one has $C(|\psi\rangle_{AB}) = C_\alpha(\rho_{AB})$.

For an N-qubit state $\rho_{AB_1\cdots B_{N-1}} \in \mathcal{H}_A \otimes \mathcal{H}_{B_1} \otimes \cdots \otimes \mathcal{H}_{B_{N-1}}$, the concurrence $C(\rho_{A|B_1\cdots B_{N-1}})$ of the state $|\psi\rangle_{A|B_1\cdots B_{N-1}}$, viewed as a bipartite state under the partition A and $B_1, B_2, \ldots, B_{N-1}$, satisfies

\begin{equation}
C^\alpha(\rho_{A|B_1B_2\cdots B_{N-1}}) \\
\geq C^\alpha(\rho_{A|B_1}) + C^\alpha(\rho_{A|B_2}) + \cdots + C^\alpha(\rho_{A|B_{N-1}}),
\end{equation}

for $\alpha \geq 2$, where $\rho_{AB_1} = \text{Tr}_{B_2B_3\cdots B_{N-1}}(\rho_{AB_1\cdots B_{N-1}})$. The relation (1) is further improved so that for $\alpha \geq 2$, if $C(\rho_{AB_1}) \geq C(\rho_{A|B_1\cdots B_{N-1}})$ for $i = 1, 2, \ldots, m$ and $C(\rho_{AB_1}) \leq C(\rho_{A|B_1\cdots B_{N-1}})$ for $j = m+1, \ldots, N-2$, $\forall 1 \leq m \leq N - 3, N \geq 4$, then

\begin{equation}
C^\alpha(\rho_{A|B_1B_2\cdots B_{N-1}}) \\
\geq C^\alpha(\rho_{A|B_1}) + \frac{\alpha}{2} C^\alpha(\rho_{A|B_2}) + \cdots + \left(\frac{\alpha}{2}\right)^{m-1} C^\alpha(\rho_{A|B_m}) \\
+ \left(\frac{\alpha}{2}\right)^m [C^\alpha(\rho_{A|B_{m+1}}) + \cdots + C^\alpha(\rho_{A|B_{N-1}})],
\end{equation}

and for all $\alpha < 0$,

\begin{equation}
C^\alpha(\rho_{A|B_1B_2\cdots B_{N-1}}) < K[C^\alpha(\rho_{A|B_1}) + C^\alpha(\rho_{A|B_2}) + \cdots + C^\alpha(\rho_{A|B_{N-1}})],
\end{equation}

where $K = \frac{1}{1-t}$.

In the following, we show that these monogamy inequalities satisfied by the concurrence can be further refined and become even tighter. For convenience, we denote $C_{AB_i} = C(\rho_{AB_1})$ the concurrence of ρ_{AB}, and $C_{A|B_1B_2\cdots B_{N-1}} = C(\rho_{A|B_1\cdots B_{N-1}})$. We first introduce two lemmas.

Lemma 1. For any real number x and t, $0 \leq t \leq 1$, $x \in [1, \infty]$, we have $(1 + t)x \geq 1 + (2^x - 1)t^x$.

Proof. Let $f(x, y) = (1 + y)^x - y^x$ with $x \geq 1$, $y \geq 1$, then $\frac{\partial f}{\partial y} = x[(1 + y)^{x-1} - y^{x-1}] \geq 0$. Therefore, $f(x, y)$ is an increasing function of y, i.e., $f(x, 1) = 2^x - 1$. Set $y = \frac{1}{t}$, $0 < t \leq 1$, and we obtain $(1 + t)^x \geq 1 + (2^x - 1)t^x$. When $t = 0$, the inequality is trivial. \qed

Lemma 2. For any $2 \otimes 2 \otimes 2^{n-2}$ mixed state $\rho \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, if $C_{AB} \geq C_{AC}$, we have

\begin{equation}
C^\alpha_{A|BC} \geq C^\alpha_{AB} + (2^\frac{x}{2} - 1)C^\alpha_{AC},
\end{equation}

for all $\alpha \geq 2$.

3
Proof. It has been shown that $C_{AB}^2 \geq C_{AC}^2 + C_{BC}^2$ for arbitrary $2 \otimes 2 \otimes 2^{n-2}$ tripartite state ρ_{ABC} [11, 37]. Then, if $C_{AB} \geq C_{AC}$, we have

$$C_{A|BC}^\alpha \geq (C_{AB}^2 + C_{AC}^2)^{\frac{\alpha}{2}}$$

$$= C_{AB}^\alpha \left(1 + \frac{C_{AC}^2}{C_{AB}^2}\right)^{\frac{\alpha}{2}}$$

$$\geq C_{AB}^\alpha \left[1 + (2^{\frac{\alpha}{2}} - 1) \frac{C_{AC}^2}{C_{AB}^2}\right]$$

$$= C_{AB}^\alpha + (2^{\frac{\alpha}{2}} - 1)C_{AC}^\alpha$$

where the second inequality is due to Lemma 1. As the subsystems A and B are equivalent in this case, we have assumed that $C_{AB} \geq C_{AC}$ without loss of generality. Moreover, if $C_{AB} = 0$ we have $C_{AB} = C_{AC} = 0$. That is to say the lower bound becomes trivially zero. ■

From Lemma 2, we have the following theorem.

Theorem 1. For an N-qubit mixed state, if $C_{AB} \geq C_{A|B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $C_{AB} \leq C_{A|B_{j+1} \cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, $\forall 1 \leq m \leq N - 3$, $N \geq 4$, then we have

$$C_{A|B_1B_2 \cdots B_{N-1}}^\alpha \geq C_{AB_1}^\alpha + (2^{\frac{\alpha}{2}} - 1)C_{AB_2}^\alpha + \cdots + (2^{\frac{\alpha}{2}} - 1)^{m-1}C_{AB_m}^\alpha$$

$$+ (2^{\frac{\alpha}{2}} - 1)^m C_{AB_{m+1} \cdots B_{N-1}}^\alpha \quad (5)$$

for all $\alpha \geq 2$.

Proof. From the inequality (4), we have

$$C_{A|B_1B_2 \cdots B_{N-1}}^\alpha \geq C_{AB_1}^\alpha + (2^{\frac{\alpha}{2}} - 1)C_{AB_2}^\alpha + \cdots + (2^{\frac{\alpha}{2}} - 1)^m C_{AB_m}^\alpha$$

$$+ (2^{\frac{\alpha}{2}} - 1)^m C_{AB_{m+1} \cdots B_{N-1}}^\alpha. \quad (6)$$

Similarly, as $C_{AB} \leq C_{A|B_{j+1} \cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, we get

$$C_{A|B_{m+1} \cdots B_{N-1}}^\alpha \geq (2^{\frac{\alpha}{2}} - 1)C_{AB_{m+1}}^\alpha + (2^{\frac{\alpha}{2}} - 1)^{m+1} C_{AB_{m+2} \cdots B_{N-1}}^\alpha$$

$$+ (2^{\frac{\alpha}{2}} - 1)^{m+1} C_{AB_{N-1}}^\alpha. \quad (7)$$

Combining (6) and (7), we have Theorem 1. ■

4
As for $\alpha \geq 2$, $(2^{\frac{n}{2}} - 1)^m \geq (\alpha/2)^m$ for all $1 \leq m \leq N - 3$, our formula (5) in Theorem 1 gives a tighter monogamy relation with larger lower bounds than (11), (2). In Theorem 1, we have assumed that some $C_{AB_i} \geq C_{A|B_{i+1} \cdots B_{N-1}}$ and some $C_{AB_i} \leq C_{A|B_{i+1} \cdots B_{N-1}}$ for the $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}}$. If all $C_{AB_i} \geq C_{A|B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, N - 2$, then we have the following conclusion:

Theorem 2. If $C_{AB_i} \geq C_{A|B_{i+1} \cdots B_{N-1}}$ for all $i = 1, 2, \cdots, N - 2$, then we have

$$C_{A|B_{1} \cdots B_{N-1}}^{2} \geq C_{AB_1}^{2} + (2^{\frac{n}{2}} - 1)C_{AB_2}^{2} + \cdots + (2^{\frac{n}{2}} - 1)^{N-3}C_{AB_{N-2}}^{2} + (2^{\frac{n}{2}} - 1)^{N-2}C_{AB_{N-1}}^{2},$$

(8)

Example 1. Let us consider the three-qubit state $|\psi\rangle$ in the generalized Schmidt decomposition form [38, 39],

$$|\psi\rangle = \lambda_0|000\rangle + \lambda_1 e^{i\varphi}|100\rangle + \lambda_2|101\rangle + \lambda_3|110\rangle + \lambda_4|111\rangle,$$

(9)

where $\lambda_i \geq 0$, $i = 0, 1, 2, 3, 4$ and $\sum_{i=0}^{4} \lambda_i^2 = 1$. From the definition of concurrence, we have $C_{A|BC} = 2\lambda_0 \sqrt{\lambda_2 \lambda_3 + \lambda_4}^2$, $C_{AB} = 2\lambda_0 \lambda_2$, and $C_{AC} = 2\lambda_0 \lambda_3$. Set $\lambda_0 = \lambda_1 = \frac{3}{2}$, $\lambda_2 = \lambda_3 = \lambda_4 = \frac{\sqrt{3}}{6}$, one has $C_{A|BC} = \frac{\sqrt{2}}{3}$, $C_{AB} = C_{AC} = \frac{\sqrt{2}}{6}$, then $C_{A|BC}^\alpha = \left(\frac{\sqrt{2}}{2}\right)^\alpha$, $C_{AB}^\alpha + C_{AC}^\alpha = 2\left(\frac{\sqrt{2}}{6}\right)^\alpha$, $C_{AB}^\alpha + \frac{\alpha}{2}C_{AC}^\alpha = (1 + \frac{\alpha}{2})\left(\frac{\sqrt{2}}{6}\right)^\alpha$, $C_{AB}^\alpha + (2^{\frac{n}{2}} - 1)C_{AC}^\alpha = 2^{\frac{n}{2}}\left(\frac{\sqrt{2}}{6}\right)^\alpha$. One can see that our result is better than the results in [34] and [35] for $\alpha \geq 2$; see Fig 1.

3 TIGHTER MONOGAMY REALATIONS FOR EoF

The entanglement of formation (EOF) [40, 41] is a well-defined important measure of entanglement for bipartite systems. Let H_A and H_B be m- and n-dimensional ($m \leq n$) vector spaces, respectively. The EOF of a pure state $|\psi\rangle \in H_A \otimes H_B$ is defined by

$$E(|\psi\rangle) = S(\rho_A),$$

(10)

where $\rho_A = \text{Tr}_B(|\psi\rangle \langle \psi|)$ and $S(\rho) = -\text{Tr}(\rho \log_2 \rho)$. For a bipartite mixed state $\rho_{AB} \in H_A \otimes H_B$, the entanglement of formation is given by

$$E(\rho_{AB}) = \min_{\{p_i, |\psi_i\rangle\}} \sum_i p_i E(|\psi_i\rangle)$$

(11)

with the minimum taking over all possible pure-state decompositions of ρ_{AB}.
Denote $f(x) = H \left(\frac{1 + \sqrt{1 - x}}{2} \right)$, where $H(x) = -x \log_2(x) - (1 - x) \log_2(1 - x)$. From (10) and (11), one has $E(|\psi\rangle) = f \left(C^2(|\psi\rangle) \right)$ for $2 \otimes m$ ($m \geq 2$) pure state $|\psi\rangle$, and $E(\rho) = f \left(C^2(\rho) \right)$ for two-qubit mixed state ρ. It is obvious that $f(x)$ is a monotonically increasing function for $0 \leq x \leq 1$. $f(x)$ satisfies the following relations:

$$f^\sqrt{2}(x^2 + y^2) \geq f^\sqrt{2}(x^2) + f^\sqrt{2}(y^2),$$

(12)

where $f^\sqrt{2}(x^2 + y^2) = [f(x^2 + y^2)]^\sqrt{2}$.

It has been shown that the EOF does not satisfy the inequality $E_{AB} + E_{AC} \leq E_{A|BC}$ [43]. In [44], the authors showed that EOF is a monotonic function satisfying $E^2(C^2_{A|B_i=B_i}\cdots B_{N-1}) \geq E^2(\sum_{i=1}^{N-1} C^2_{AB_i})$. For N-qubit systems, one has [34]

$$E^\alpha_{A|B_1\cdots B_{N-1}} \geq E^\alpha_{AB_1} + E^\alpha_{AB_2} + \cdots + E^\alpha_{AB_{N-1}}$$

(13)

for $\alpha \geq \sqrt{2}$, where $E^\alpha_{A|B_1\cdots B_{N-1}}$ is the entanglement of formation of ρ in bipartite partition $A|B_1B_2\cdots B_{N-1}$, and E_{AB_i}, $i = 1, 2, \cdots, N - 1$, is the EOF of the mixed states $\rho_{AB_i} = \text{Tr}_{B_i\cdots B_{N-1}} \rho$. It is further proved that for $\alpha \geq \sqrt{2}$, if $C_{AB_i} \geq C_{A|B_1\cdots B_i企业的标记为“i”}$, then $C_{AB_i} \leq C_{A|B_1\cdots B_{j-1}\cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2, \forall 1 \leq m \leq N - 3, N \geq 4$, then [35]

$$E^\alpha_{A|B_1\cdots B_{N-1}} \geq E^\alpha_{AB_1} + (\alpha/\sqrt{2})E^\alpha_{AB_2} + \cdots + (\alpha/\sqrt{2})^{m-1}E^\alpha_{AB_m} + (\alpha/\sqrt{2})^m(E^\alpha_{AB_{m+1}} + \cdots + E^\alpha_{AB_{N-2}}) + (\alpha/\sqrt{2})^mE^\alpha_{AB_{N-1}},$$

(14)
In fact, generally we can prove the following results.

Theorem 3. For any N-qubit mixed state $\rho \in \mathcal{H}_A \otimes \mathcal{H}_{B_1} \otimes \cdots \otimes \mathcal{H}_{B_{N-1}}$, if $C_{AB_i} \geq C_{A|B_{i+1}\cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $C_{AB_j} \leq C_{A|B_{j+1}\cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, $\forall 1 \leq m \leq N - 3$, $N \geq 4$, the entanglement of formation $E(\rho)$ satisfies

$$
E^\alpha_{A|B_1B_2\cdots B_{N-1}} \geq E^\alpha_{AB_1} + (2^t - 1)E^\alpha_{AB_2} + \cdots + (2^t - 1)^{m-1}E^\alpha_{AB_m} + (2^t - 1)^m(E^\alpha_{AB_{m+1}} + \cdots + E^\alpha_{AB_{N-2}}) + (2^t - 1)^mE^\alpha_{AB_{N-1}},
$$

for $\alpha \geq \sqrt{2}$, where $t = \alpha/\sqrt{2}$.

Proof. For $\alpha \geq \sqrt{2}$, we have

$$
f^\alpha(x^2 + y^2) = \left(f^{\sqrt{2}}(x^2 + y^2)\right)^t
\geq \left(f^{\sqrt{2}}(x^2) + f^{\sqrt{2}}(y^2)\right)^t
\geq \left(f^{\sqrt{2}}(x^2)\right)^t + (2^t - 1)\left(f^{\sqrt{2}}(y^2)\right)^t
= f^\alpha(x^2) + (2^t - 1)f^\alpha(y^2),
$$

where the first inequality is due to the inequality (12), and the second inequality is obtained from a similar consideration in the proof of the second inequality in (11).

Let $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i| \in \mathcal{H}_A \otimes \mathcal{H}_{B_1} \otimes \cdots \otimes \mathcal{H}_{B_{N-1}}$ be the optimal decomposition of $E_{A|B_1B_2\cdots B_{N-1}}(\rho)$ for the N-qubit mixed state ρ; then we have

$$
E_{A|B_1B_2\cdots B_{N-1}}(\rho) = \sum_i p_i E_{A|B_1B_2\cdots B_{N-1}}(|\psi_i\rangle)
= \sum_i p_i f\left(C^2_{A|B_1B_2\cdots B_{N-1}}(|\psi_i\rangle)\right)
\geq f\left(\sum_i p_i C^2_{A|B_1B_2\cdots B_{N-1}}(|\psi_i\rangle)\right)
\geq f\left(\left[\sum_i p_i C_{A|B_1B_2\cdots B_{N-1}}(|\psi_i\rangle)\right]^2\right)
\geq f\left(C^2_{A|B_1B_2\cdots B_{N-1}}(\rho)\right),
$$

where the first inequality is due to the fact that $f(x)$ is a convex function. The second inequality is due to the Cauchy-Schwarz inequality: $(\sum_i x_i^2)^{\frac{t}{2}}(\sum_i y_i^2)^{\frac{t}{2}} \geq \sum_i x_i y_i$, with $x_i = \sqrt{p_i}$ and $y_i = \sqrt{p_i} C_{A|B_1B_2\cdots B_{N-1}}(|\psi_i\rangle)$. Due to the definition.
of concurrence and that \(f(x) \) is a monotonically increasing function, we obtain the third inequality. Therefore, we have

\[
E^\alpha_{A|B_1,\cdots,B_{N-1}}(\rho) \\
\geq f^n(C^2_{A|B_1} + C^2_{A|B_2} + \cdots + C^2_{A|B_{m-1}}) \\
\geq f^n(C^2_{A|B_1}) + (2^t - 1)f^n(C^2_{A|B_2}) + \cdots + (2^t - 1)^{m-1}f^n(C^2_{A|B_{N-2}}) \\
+ (2^t - 1)^m f^n(C^2_{A|B_{N-1}}) \\
= E^\alpha_{A|B_1} + (2^t - 1)E^\alpha_{A|B_2} + \cdots + (2^t - 1)^{m-1}E^\alpha_{A|B_{N-2}} \\
+ (2^t - 1)^m E^\alpha_{A|B_{N-1}},
\]

where we have used the monogamy inequality in \([1]\) for \(N \)-qubit states \(\rho \) to obtain the first inequality. By using \([16]\) and the similar consideration in the proof of Theorem 1, we get the second inequality. Since for any \(2 \otimes 2 \) quantum state \(\rho_{AB} \), \(E(\rho_{AB}) = f\left[C^2(\rho_{AB}) \right] \), one gets the last equality.

As for \((2^\alpha/\sqrt{2} - 1) \geq \alpha/\sqrt{2} \) for \(\alpha \geq \sqrt{2} \), \([16]\) is obviously tighter than \([13],\ [14]\). Moreover, similar to the concurrence, for the case that \(C_{AB_i} \geq C_{A|B_{i+1}\cdots B_{N-1}} \) for all \(i = 1, 2, \cdots, N - 2 \), we have a simple tighter monogamy relation for the entanglement of formation:

Theorem 4. If \(C_{AB_i} \geq C_{A|B_{i+1}\cdots B_{N-1}} \) for all \(i = 1, 2, \cdots, N - 2 \), we have

\[
E^\alpha_{A|B_1,\cdots,B_{N-1}} \geq E^\alpha_{A|B_1} + (2^\alpha/\sqrt{2} - 1)E^\alpha_{A|B_2} + \cdots \\
+ (2^\alpha/\sqrt{2} - 1)^{N-2}E^\alpha_{A|B_{N-1}} \tag{17}
\]

for \(\alpha \geq \sqrt{2} \).

Example 2. Let us consider the W state, \(|W\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle) \). We have \(E_{AB} = E_{AC} = 0.550048, E_{A|BC} = 0.918296 \), and then \(E^\alpha_{A|BC} = (0.918296)^\alpha, E^\alpha_{A|B} + E^\alpha_{A|C} = 2(0.550048)^\alpha, E^\alpha_{A|B} + \frac{1}{\sqrt{2}}E^\alpha_{A|C} = (1 + \frac{1}{\sqrt{2}})(0.550048)^\alpha \), \(E^\alpha_{AB} + (2^\alpha/\sqrt{2} - 1)E^\alpha_{AC} = 2^\alpha(0.550048)^\alpha \). It is easily verified that our results are better than the results in \([34]\) and \([35]\) for \(\alpha \geq \sqrt{2} \); see Fig 2.

4 TIGHTER MONOGAMY RELATIONS FOR NEGATIVITY

Another well-known quantifier of bipartite entanglement is the negativity. Given a bipartite state \(\rho_{AB} \) in \(\mathbb{H}_A \otimes \mathbb{H}_B \), the negativity is defined by \([15]\) \(N(\rho_{AB}) = (||\rho^T_{AB}|| - 1)/2 \), where \(\rho^T_{AB} \) is the partial transpose with respect to the subsystem \(A \), and \(||X|| \) denotes the trace norm of \(X \), i.e. \(||X|| = \text{Tr} \sqrt{XX^\dagger} \). Negativity is a computable measure of entanglement and is a convex function of \(\rho_{AB} \). It vanishes if and only if \(\rho_{AB} \) is separable for the \(2 \otimes 2 \) and \(2 \otimes 3 \) systems \([16]\).
Figure 2: Behavior of the EOF of $|W\rangle$ and its lower bound, which are functions of α plotted. The black solid line represents the EOF of the state $|W\rangle$ in Example 2, the red dashed line represents the lower bound from our result, and the blue dotted (green dot-dashed) line represents the lower bound from the result in [35] ([34]).

For the purpose of discussion, we use the following definition of negativity, $N(\rho_{AB}) = \frac{1}{2} \| \rho_T^A \| - 1$. For any bipartite pure state $|\psi\rangle_{AB}$, the negativity $N(\rho_{AB})$ is given by $N(|\psi\rangle_{AB}) = 2 \sum_{i<j} \sqrt{\lambda_i \lambda_j} = (\text{Tr} \sqrt{\rho_A})^2 - 1$, where λ_i are the eigenvalues for the reduced density matrix of $|\psi\rangle_{AB}$. For a mixed state ρ_{AB}, the convex-roof extended negativity (CREN) is defined as

$$N_c(\rho_{AB}) = \min \sum_i p_i N(|\psi_i\rangle_{AB}),$$

where the minimum is taken over all possible pure-state decompositions $\{p_i, |\psi_i\rangle_{AB}\}$ of ρ_{AB}. CREN gives a perfect discrimination of positive partial transposed bound entangled states and separable states in any bipartite quantum system [47, 48].

Let us consider the relation between CREN and concurrence. For any bipartite pure state $|\psi\rangle_{AB}$ in a $d \otimes d$ quantum system with Schmidt rank 2, $|\psi\rangle_{AB} = \sqrt{\lambda_0} |00\rangle + \sqrt{\lambda_1} |11\rangle$, one has $N(|\psi\rangle_{AB}) = \| |\psi\rangle \langle \psi|^{T_B} \| - 1 = 2 \sqrt{\lambda_0 \lambda_1} = \sqrt{2(1 - \text{Tr} \rho_A^2)} = C(|\psi\rangle_{AB})$. In other words, negativity is equivalent to concurrence for any pure state with Schmidt rank 2, and consequently it follows that for any two-qubit mixed state $\rho_{AB} = \sum_i p_i |\psi_i\rangle_{AB} \langle \psi_i|$, $N_c(\rho_{AB}) = \min \sum_i p_i N(|\psi_i\rangle_{AB})$ (19)

$$= \min \sum_i p_i C(|\psi_i\rangle_{AB})$$

$$= C(\rho_{AB}).$$

With a similar consideration of concurrence, we obtain the following result.
Theorem 5. For any N-qubit state $\rho \in \mathbb{H}_A \otimes \mathbb{H}_B_1 \otimes \cdots \otimes \mathbb{H}_{B_{N-1}}$, if $N_{eAB_i} \geq N_{eAB_1 \cdots B_{i-1}B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $N_{eAB_j} \leq N_{eA|B_1 \cdots B_{j-1}B_{j+1} \cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, $\forall 1 \leq m \leq N - 3$, $N \geq 4$, we have

$$N_{e A|B_1 \cdots B_{N-1}} \geq N_{eAB_1} + (2^\alpha - 1)N_{eAB_2} + \cdots + (2^\alpha - 1)^{m-1}N_{eAB_m}$$

$$+ (2^\alpha - 1)^m (N_{eAB_{m+1}} + \cdots + N_{eAB_{N-1}})$$

(20)

for all $\alpha \geq 2$.

In Theorem 5 we have assumed that some $N_{eAB_i} \geq N_{eA|B_1 \cdots B_{i-1}B_{i+1} \cdots B_{N-1}}$ and some $N_{eAB_j} \leq N_{eA|B_1 \cdots B_{j-1}B_{j+1} \cdots B_{N-1}}$ for the $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in \mathbb{H}_A \otimes \mathbb{H}_B_1 \otimes \cdots \otimes \mathbb{H}_{B_{N-1}}$. If all $N_{eAB_i} \geq N_{eA|B_1 \cdots B_{i-1}B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, N - 2$, then we have the following conclusion:

Theorem 6. If $N_{eAB_i} \geq N_{eA|B_1 \cdots B_{i-1}B_{i+1} \cdots B_{N-1}}$ for all $i = 1, 2, \cdots, N - 2$, then we have

$$N_{eA|B_1 \cdots B_{N-1}} \geq N_{eAB_1} + (2^\alpha - 1)N_{eAB_2} + \cdots + (2^\alpha - 1)^{N-2}N_{eAB_{N-1}}.$$

(21)

Example 3. Let us consider again the three-qubit state $|\psi\rangle$ (9). From the definition of CREN, we have $N_{eA|BC} = 2\lambda_0 \sqrt{\lambda_2 + \lambda_3 + \lambda_4}$, $N_{eAB} = 2\lambda_0 \lambda_2$, and $N_{eAC} = 2\lambda_0 \lambda_3$. Set $\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \frac{\sqrt{3}}{9}$. One gets $N_{eA|BC} = (\frac{4\sqrt{3}}{9})^\alpha$, $N_{eAB} + N_{eAC} = 2(\frac{\sqrt{3}}{9})^\alpha$, $N_{eAB} + \frac{5}{2}N_{eAC} = (1 + \frac{5}{2})(\frac{\sqrt{3}}{9})^\alpha$, $N_{eAB} + (2^\alpha - 1)N_{eAC} = 2\sqrt{3}(\frac{\sqrt{3}}{9})^\alpha$. One can see that our result is better than the results in [34] and [36] for $\alpha \geq 2$; see Fig. 3.

5 Tighter monogamy relations for Tsallis-q entanglement

For a bipartite pure state $|\psi\rangle_{AB}$, the Tsallis-q entanglement is defined by [21]

$$T_q(|\psi\rangle_{AB}) = S_q(\rho_A) = \frac{1}{q-1}(1 - \text{tr}\rho_A^q),$$

(22)

for any $q > 0$ and $q \neq 1$. If q tends to 1, $T_q(\rho)$ converges to the von Neumann entropy, $\lim_{q \to 1} T_q(\rho) = -\text{tr} \ln \rho = S(\rho)$. For a bipartite mixed state ρ_{AB}, Tsallis-q entanglement is defined via the convex-roof extension, $T_q(\rho_{AB}) = \min \sum_i p_i T_q(|\psi_i\rangle_{AB})$, with the minimum taken over all possible pure-state decompositions of ρ_{AB}.

In [49], the author has proved an analytic relationship between Tsallis-q entanglement and concurrence for $\frac{\sqrt{3}}{2} \leq q \leq \frac{3+\sqrt{3}}{4}$:

$$T_q(|\psi\rangle_{AB}) = g_q(C^2(|\psi\rangle_{AB})),$$

(23)

for $\frac{\sqrt{3}}{2} \leq q \leq \frac{3+\sqrt{3}}{4}$.
Figure 3: Behavior of the concurrence of $|\psi\rangle$ and its lower bound, which are functions of α plotted. The black solid line represents the concurrence of $|\psi\rangle$ in Example 3, the red dashed line represents the lower bound from our result, and the blue dotted (green dot-dashed) line represents the lower bound from the result in [36] (34).

where the function $g_q(x)$ is defined as

$$g_q(x) = \frac{1}{q-1} \left[1 - \left(\frac{1 + \sqrt{1 - x}}{2} \right)^q - \left(\frac{1 - \sqrt{1 - x}}{2} \right)^q \right].$$

(24)

It has been shown that $T_q(|\psi\rangle) = g_q(C^2(|\psi\rangle))$ for $2 \otimes m$ ($m \geq 2$) pure state $|\psi\rangle$, and $T_q(\rho) = g_q(C^2(\rho))$ for two-qubit mixed state ρ in [24]. Hence, (23) holds for any q such that $g_q(x)$ in (24) is monotonically increasing and convex. In particular, $g_q(x)$ satisfies the following relations for $2 \leq q \leq 3$:

$$g_q(x^2 + y^2) \geq g_q(x^2) + g_q^2(y^2).$$

(25)

The Tsallis-q entanglement satisfies [24]

$$T_q^A|B_1B_2\cdots B_{N-1} \geq \sum_{i=1}^{N-1} T_q^{A|B_i},$$

(26)

where $i = 1, 2, \cdots N - 1$, $2 \leq q \leq 3$. It is further proved in [19]

$$T_q^2|A|B_1B_2\cdots B_{N-1} \geq \sum_{i=1}^{N-1} T_q^2|A|B_i,$$

(27)

with $\frac{5 - \sqrt{13}}{2} \leq q \leq \frac{5 + \sqrt{13}}{2}$. In fact, generally we can prove the following results.

Theorem 7. For an arbitrary N-qubit mixed state $\rho_{AB_1\cdots B_{N-1}}$, if $C_{A|B_i} \geq C_{A|B_{i+1}\cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $C_{A|B_j} \leq C_{A|B_{j+1}\cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, $1 \leq m \leq N - 3$, $N \geq 4$, then the αth power of Tsallis-q satisfies
the monogamy relation

\[
T^α_{A|B_1B_2\cdots B_{N-1}} \geq T^α_{AB_1} + (2^α - 1)T^α_{AB_2} + \cdots + (2^α - 1)^{m-1}T^α_{AB_m} \\
+ (2^α - 1)^m (T^α_{AB_{m+1}} + \cdots + T^α_{AB_{N-1}}) \\
+ (2^α - 1)^m T^α_{AB_{N-1}},
\]

(28)

where \(\alpha \geq 1\), \(T^α_{A|B_1B_2\cdots B_{N-1}}\) quantifies the Tsallis-\(q\) entanglement in the partition \(A|B_1B_2\cdots B_{N-1}\) and \(T^α_{AB_i}\) quantifies that in two-qubit subsystem \(AB_i\) with \(2 \leq q \leq 3\).

Proof. For \(\alpha \geq 1\), we have

\[
g^α_q(x^2 + y^2) \geq (g^α_q(x^2) + g^α_q(y^2))^α \\
\geq g^α_q(x^2) + (2^α - 1)g^α_q(y^2),
\]

(29)

where the first inequality is due to the inequality (25), and the second inequality is obtained from a similar consideration in the proof of the second inequality in (4).

Let \(\rho = \sum_i p_i |ψ_i⟩⟨ψ_i| \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}}\) be the optimal decomposition for the \(N\)-qubit mixed state \(ρ\); then we have

\[
T^α_{A|B_1B_2\cdots B_{N-1}}(ρ) \\
= \sum_i p_i T^α_{A|B_1B_2\cdots B_{N-1}}(|ψ_i⟩) \\
= \sum_i p_i g^α_q \left[C^2_{A|B_1B_2\cdots B_{N-1}}(|ψ_i⟩) \right] \\
\geq g^α_q \left[\sum_i p_i C^2_{A|B_1B_2\cdots B_{N-1}}(|ψ_i⟩) \right] \\
\geq g^α_q \left[\left(\sum_i p_i C^2_{A|B_1B_2\cdots B_{N-1}}(|ψ_i⟩) \right)^2 \right] \\
= g^α_q \left[C^2_{A|B_1B_2\cdots B_{N-1}}(ρ) \right],
\]

(30)

where the first inequality is due to the fact that \(g^α_q(x)\) is a convex function. The second inequality is due to the Cauchy-Schwarz inequality: \(\left(\sum_i x_i^2 \right)^{\frac{1}{2}} \left(\sum_i y_i^2 \right)^{\frac{1}{2}} \geq \sum_i x_i y_i\), with \(x_i = \sqrt{p_i}\) and \(y_i = \sqrt{p_i} C^2_{A|B_1B_2\cdots B_{N-1}}(|ψ_i⟩)\). Due to the definition of Tsallis-\(q\) entanglement and that \(g^α_q(x)\) is a monotonically increasing function,
we obtain the third inequality. Therefore, we have

\[
T_{qA|B_1B_2\cdots B_{N-1}}^\alpha (\rho) \\
\geq g_q^\alpha \left[\sum_i C^2(\rho_{AB_i}) \right] \\
\geq g_q^\alpha (C_{AB_1}) + (2^\alpha - 1)g_q^\alpha (C_{AB_2}) + \cdots \\
+ (2^\alpha - 1)^{m-1} g_q^\alpha (C_{AB_m}) \\
+ (2^\alpha - 1)^{m+1} (g_q^\alpha (C_{AB_{m+1}}) + \cdots + g_q^\alpha (C_{AB_{N-2}})) \\
+ (2^\alpha - 1)^m g_q^\alpha (C_{AB_{N-1}})
\]

\[
= T_{qAB_1}^\alpha + (2^\alpha - 1)T_{qAB_2}^\alpha + \cdots + (2^\alpha - 1)^{m-1}T_{qAB_m}^\alpha \\
+ (2^\alpha - 1)^{m+1} (T_{qAB_{m+1}}^\alpha + \cdots + T_{qAB_{N-2}}^\alpha) \\
+ (2^\alpha - 1)^m T_{qAB_{N-1}}^\alpha.
\]

(31)

where we have used the monogamy inequality in (1) for N-qubit states \(\rho \) to obtain the first inequality. By using (29) and the similar consideration in the proof of Theorem 1, we get the second inequality. Since for any \(2 \otimes 2 \) quantum state \(\rho_{AB_i}, T_q(\rho_{AB_i}) = g_q [C^2(\rho_{AB_i})] \), one gets the last equality.

Example 4. Let us consider again the three-qubit state \(|\psi\rangle \) (9). From the definition of Tsallis-\(q \) entanglement, when \(q = 2 \), we have \(T_{2A|BC} = 2\lambda_0^2 (\lambda_2^2 + \lambda_3^2 + \lambda_4^2), T_{2AB} = 2\lambda_0^2 \lambda_2^2, \) and \(T_{2AC} = 2\lambda_0^2 \lambda_3^2 \). Set \(\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \frac{\sqrt{5}}{5} \). One gets \(T_{2A|BC}^\alpha = \left(\frac{6}{25} \right)^\alpha, T_{2AB}^\alpha + T_{2AC}^\alpha = 2\left(\frac{2}{25} \right)^\alpha, T_{2AB}^\alpha + (2^\alpha - 1)T_{2AC}^\alpha = 2\alpha \left(\frac{2}{25} \right)^\alpha \). One can see that our result is better than that in [11] for \(\alpha \geq 2 \); see Fig. 4.
6 conclusion

Entanglement monogamy is a fundamental property of multipartite entangled states. We have presented monogamy relations related to the α power of concurrence C, entanglement of formation E, negativity N_c, and Tsallis-q entanglement T_q, which are tighter, at least for some classes of quantum states, than the existing entanglement monogamy relations for $\alpha > 2$, $\alpha > \sqrt{2}$, $\alpha > 2$, $\alpha > 1$, respectively. The necessary conditions that our inequalities are strictly tighter can be seen from our monogamy relations. For instance, (8) is tighter than the existing ones for $\alpha > 2$, for all quantum states where at least one of the C_{AB_i}’s ($i = 2, \cdots, N - 1$) is not zero, which excludes the fully separable states that have no entanglement distribution at all among the subsystems. Another case that $C_{AB_i} = 0$ for all $i = 2, \cdots, N - 1$ is the N-qubit GHZ state [50], which is genuine multipartite entangled. However, for the genuine entangled N-qubit W state [51], one has $C_{AB_i} = \frac{2}{N}$, $i = 2, \cdots, N - 1$. In general, most of states have at least one nonzero C_{AB_i} ($i = 2, \cdots, N - 1$).

Monogamy relations characterize the distributions of entanglement in multipartite systems. Tighter monogamy relations imply finer characterizations of the entanglement distribution. Our approach may also be used to further study the monogamy properties related to other quantum correlations.

Acknowledgments This work is supported by the NSF of China under Grant No. 11675113 and is supported by the Research Foundation for Youth Scholars of Beijing Technology and Business University QNJJ2017-03.

References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[3] F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions, Phys. Rev. Lett. 92, 167902 (2004).
[4] K. Chen, S. Albeverio, and S. M. Fei, Concurrence of Arbitrary Dimensional Bipartite Quantum States, Phys. Rev. Lett. 95, 040504 (2005).
[5] H. P. Breuer, Separability criteria and bounds for entanglement measures, J. Phys. A: Math. Gen. 39, 11847 (2006).
[6] H. P. Breuer, Optimal Entanglement Criterion for Mixed Quantum States, Phys. Rev. Lett. 97, 080501 (2006).
[7] J. I. de Vicente, Lower bounds on concurrence and separability conditions, Phys. Rev. A 75, 052320 (2007).
[8] C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Optimal entanglement witnesses based on local orthogonal observables, Phys. Rev. A 76, 012334 (2007).

[9] M. Pawlowski, Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations, Phys. Rev. A 82, 032313 (2010).

[10] M. Koashi and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev. A 69, 022309 (2004).

[11] T. J. Osborne and F. Verstraete, General Monogamy Inequality for Bipartite Qubit Entanglement, Phys. Rev. Lett. 96, 220503 (2006).

[12] Y. K. Bai, M. Y. Ye, and Z. D. Wang, Entanglement monogamy and entanglement evolution in multipartite systems, Phys. Rev. A 80, 044301 (2009).

[13] T. R. de Oliveira, M. F. Cornelio, and F. F. Fanchini, Monogamy of entanglement of formation, Phys. Rev. A 89, 034303 (2014).

[14] G. Adesso and F. Illuminati, Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems, New J. Phys. 8, 15 (2006).

[15] T. Hiroshima, G. Adesso, and F. Illuminati, Monogamy Inequality for Distributed Gaussian Entanglement, Phys. Rev. Lett. 98, 050503 (2007).

[16] G. Adesso and F. Illuminati, Strong Monogamy of Bipartite and Genuine Multipartite Entanglement: the Gaussian Case, Phys. Rev. Lett. 99, 150501 (2007).

[17] M. Christandl and A. Winter, Squashed entanglement: An additive entanglement measure, J. Math. Phys. 45, 829 (2004).

[18] D. Yang et al., Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof, IEEE Trans. Inf. Theory 55, 3375 (2009).

[19] Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75, 062308 (2007).

[20] J. S. Kim, A. Das, and B. C. Sanders, Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity, Phys. Rev. A 79, 012329 (2009).

[21] H. He and G. Vidal, Disentangling theorem and monogamy for entanglement negativity, Phys. Rev. A 91, 012339 (2015).

[22] J. H. Choi and J. S. Kim, Negativity and strong monogamy of multiparty quantum entanglement beyond qubits, Phys. Rev. A 92, 042307 (2015).
[23] Y. Luo and Y. Li, Monogamy of α-th power entanglement measurement in qubit system, Ann. Phys. 362, 511 (2015).

[24] J. S. Kim, Tsallis entropy and entanglement constraints in multiqubit systems, Phys. Rev. A 81, 062328 (2010).

[25] J. S. Kim, Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy, Ann. Phys. 373, 197 (2016).

[26] J. S. Kim and B. C. Sanders, Monogamy of multi-qubit entanglement using Rényi entropy, J. Phys. A: Math. Theor. 43, 445305 (2010).

[27] M. F. Cornelio and M. C. de Oliveira, Strong superadditivity and monogamy of the Rényi measure of entanglement, Phys. Rev. A 81, 032332 (2010).

[28] Y.-X. Wang, L.-Z. Mu, V. Vedral, and H. Fan, Entanglement Rényi-entropy, Phys. Rev. A 93, 022324 (2016).

[29] A. Uhlmann, Fidelity and concurrence of conjugated states, Phys. Rev. A 62, 032307 (2000).

[30] P. Rungta, V. Buzek, C. M. Caves, M. Hillery, and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).

[31] S. Albeverio and S. M. Fei, A note on invariants and entanglements, J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001).

[32] T. Laustsen, F. Verstraete, and S. J. Van Enk, Local vs. joint measurements for the entanglement of assistance, Quantum Inf. Comput. 3, 64 (2003).

[33] C. S. Yu and H. S. Song, Entanglement monogamy of tripartite quantum states, Phys. Rev. A 77, 032329 (2008).

[34] X. N. Zhu and S. M. Fei, Entanglement monogamy relations of qubit systems, Phys. Rev. A 90, 024304 (2014).

[35] Z. X. Jin and S. M. Fei, Tighter entanglement monogamy relations of qubit systems, Quantum Inf. Proc. 16, 77 (2017).

[36] Z. X. Jin and S. M. Fei, Tighter monogamy relations of quantum entanglement for multiqubit W-class states, Quantum Inf. Proc. 17, 2 (2018).

[37] X. J. Ren and W. Jiang, Entanglement monogamy inequality in a $2 \otimes 2 \otimes 4$ system, Phys. Rev. A 81, 024305 (2010).

[38] A. Acín, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and R. Tarrach, Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States, Phys. Rev. Lett. 85, 1560 (2000).

[39] X. H. Gao and S. M. Fei, Estimation of concurrence for multipartite mixed states, Eur. Phys. J. Spec. Topics 159, 71 (2008).
[40] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996).

[41] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).

[42] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[43] V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).

[44] Y. K. Bai, N. Zhang, M. Y. Ye, and Z. D. Wang, Exploring multipartite quantum correlations with the square of quantum discord, Phys. Rev. A 88, 012123 (2013).

[45] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A. 65, 032314 (2002).

[46] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-State Entanglement and Distillation: Is there a Bound Entanglement in Nature?, Phys. Rev. Lett. 80, 5239 (1998).

[47] P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A. 232, 333 (1997).

[48] W. Dürr, J. I. Cirac, M. Lewenstein, and D. Bruß, Distillability and partial transposition in bipartite systems, Phys. Rev. A. 61, 062313 (2000).

[49] G. M. Yuan, W. Song, M. Yang, D. C. Li, J. L. Zhao, and Z. L. Cao, Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement, Sci. Rep. 6, 28719 (2016).

[50] D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett. 82, 1345 (1999).

[51] X. N. Zhu and S. M. Fei, General monogamy relations of quantum entanglement for multiqubit W-class states, Quantum Inf. Proc. 16, 53 (2017).