On a generalization of Kelly’s combinatorial lemma

Aymen BEN AMIRA 1, Jamel DAMMAK 1, Hamza SI KADDOUR 2,*

1 Department of Mathematics, Faculty of Sciences of Sfax, B.P. 802, 3018 Sfax, Tunisia
2 ICJ, Department of Mathematics, University of Lyon, University Claude-Bernard Lyon1,
43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Abstract: Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. A generalization in terms of a family of t-elements subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.

Key words: Set, matrix, graph, tournament, isomorphism

1 Introduction

Kelly’s combinatorial lemma is the assertion that the number $s(F, G)$ of induced subgraphs of a given graph G, isomorphic to F, is determined by the deck of G, provided that $|V(F)| < |V(G)|$, namely $s(F, G) = \frac{1}{|V(G)| - |V(F)|} \sum_{x \in V(G)} s(F, G - x)$ (where $G - x$ is the graph induced by G on $V(G) \setminus \{x\}$).

In terms of a family \mathcal{F} of t-elements subsets of a v-element set, it simply says that $|\mathcal{F}| = \frac{1}{v - t} \sum_{x \in V(G)} |\mathcal{F}_{-x}|$ where $\mathcal{F}_{-x} := \mathcal{F} \cap [E \setminus \{x\}]^t$.

Pouzet [23, 24] gave the following extension of this result.

Lemma 1.1 (M. Pouzet [23]) Let t and r be integers, V be a set of size $v \geq t + r$ elements, U and U' be sets of subsets T of t elements of V. If for every subset K of $k = t + r$ elements of V, the number of elements of U which are contained in K is equal to the number of elements of U' which are contained in K, then for every finite subsets T' and K' of V, such that T' is contained in K' and $K' \setminus T'$ has at least $t + r$ elements, the number of elements of U which contain T' and are contained in K' is equal to the number of elements of U' which contain T' and are contained in K'.

* Correspondence: sikaddour@univ-lyon1.fr
2000 Mathematical Subject Classification: 05C50, 05C60.
In particular if $|V| \geq 2t + r = t + k$, we have this particular version of the combinatorial lemma of Pouzet:

Lemma 1.2 (M. Pouzet [23]) Let v, t and k be integers, V be a set of v elements with $t \leq \min(k, v-k)$, U and U' be sets of subsets T of t elements of V. If for every subset K of k elements of V, the number of elements of U which are contained in K is equal to the number of elements of U' which are contained in K, then $U = U'$.

We denote by $n(U, K)$ the number of elements of U which are contained in K, thus Lemma 1.2 says that if $n(U, K) = n(U', K)$ for every subset K of k elements of V then $U = U'$. Here we consider the case where $n(U, K) \equiv n(U', K)$ modulo a prime p for every subset K of k elements of V; our main result, Theorem 1.3 is then a version, modulo a prime p, of the particular version of the combinatorial lemma of Pouzet.

Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. Pouzet’s combinatorial lemma has been used several times in reconstruction problems (see for example [1, 11, 15, 16, 18, 19]). Pouzet gave a proof of his lemma via a counting argument [24] and latter by using linear algebra (related to incidence matrices) [23] (the paper was published earlier).

Let n, p be positive integers, the decomposition of $n = \sum_{i=0}^{n(p)} n_i p^i$ in the basis p is also denoted $[n_0, n_1, \ldots, n_{n(p)}]_p$ where $n_{n(p)} \neq 0$ if and only if $n \neq 0$.

Theorem 1.3 Let p be a prime number. Let v, t and k be non-negative integers, $k = [k_0, k_1, \ldots, k_{k(p)}]_p$, $t = [t_0, t_1, \ldots, t_{t(p)}]_p$. Let V be a set of v elements with $t \leq \min(k, v-k)$, U and U' be sets of subsets T of t elements of V. We assume that for every subset K of k elements of V, the number of elements of U which are contained in K is equal (mod p) to the number of elements of U' which are contained in K.

1) If $k_i = t_i$ for all $i \neq t(p)$ and $k_{t(p)} > t_{t(p)}$, then $U = U'$.
2) If $t = t_{t(p)} p^{t(p)}$ and $k = \sum_{i=t(p)+1}^{k(p)} k_i p^i$, we have $U = U'$, or one of the sets U, U' is the set of all t element-subsets of V and the other is empty, or (whenever $p = 2$) for all t-element subsets T of V, $T \in U$ if and only if $T \notin U'$.

Our proof of Theorem 1.3 is an application of properties of incidence matrices due to D.H. Gottlieb [16], W. Kantor [17] and R.M. Wilson [27], we use Wilson’s Theorem (Theorem 2.2).

In a reconstruction problem of graphs up to complementation [10], Wilson’s Theorem yielded the following result:

Theorem 1.4 ([10]) Let k be an integer, $2 \leq k \leq v - 2$, $k \equiv 0$ (mod 4). Let G and G' be two graphs on the same set V of v vertices (possibly infinite). We assume that $e(G_{G(K)}$ has the same parity as $e(G'_{G(K)})$ for all k-element subsets K of V. Then $G' = G$ or $G' = \overline{G}$.

Here we look for similar results whenever $e(G_{G(K)}) \equiv e(G'_{G(K)})$ modulo a prime p. As an illustration of Theorem 1.3 we obtain the following result.
Theorem 1.5 Let \(p \) be a prime number and \(k \) be an integer, \(2 \leq k \leq v-2 \). Let \(G \) and \(G' \) be two graphs on the same set \(V \) of \(v \) vertices (possibly infinite). We assume that for all \(k \)-element subsets \(K \) of \(V \), \(e(G_{\mid K}) \equiv e(G'_{\mid K}) \pmod{p} \).

1) If \(p \geq 3 \), \(k \not\equiv 0 \pmod{p} \), then \(G' = G \).

2) If \(p \geq 3 \), \(k \equiv 0 \pmod{p} \), then \(G' = G \), or one of the graphs \(G, G' \) is the complete graph and the other is the empty graph.

3) If \(p = 2 \), \(k \equiv 2 \pmod{4} \), then \(G' = G \).

We give another illustration of Theorem 1.3 to graphs in section 4, and to tournaments in section 5.

2 Incidence matrices

We consider the matrix \(W_{t,k} \) defined as follows: Let \(V \) be a finite set, with \(v \) elements. Given non-negative integers \(t, k \), let \(W_{t,k} \) be the \(\binom{v}{t} \times \binom{v}{k} \) matrix of 0's and 1's, the rows of which are indexed by the \(t \)-element subsets \(T \) of \(V \), the columns are indexed by the \(k \)-element subsets \(K \) of \(V \), and where the entry \(W_{t,k}(T,K) \) is 1 if \(T \subseteq K \) and is 0 otherwise. The matrix transpose of \(W_{t,k} \) is denoted \(W_{t,k}^T \).

We say that a matrix \(D \) is a diagonal form for a matrix \(M \) when \(D \) is diagonal and there exist unimodular matrices (square integral matrices which have integral inverses) \(E \) and \(F \) such that \(D = EMF \). We do not require that \(M \) and \(D \) are square; here ”diagonal” just means that the \((i,j)\) entry of \(D \) is 0 if \(i \neq j \). A fundamental result, due to R.M. Wilson [27], is the following.

Theorem 2.1 (R.M. Wilson [27]) For \(t \leq \min(k, v-k) \), \(W_{t,k} \) has as a diagonal form the \(\binom{v}{t} \times \binom{v}{k} \) diagonal matrix with diagonal entries

\[
\binom{k-i}{t-i} \text{ with multiplicity } \binom{v}{i} - \binom{v}{i-1}, \quad i = 0, 1, \ldots, t.
\]

Clearly from Theorem 2.1 rank \(W_{t,k} \) over the field \(\mathbb{Q} \) is \(\binom{v}{t} \), that is Theorem 2.3 due to Gottlieb [16]. On the other hand, from Theorem 2.1 follows rank \(W_{t,k} \) over the field \(\mathbb{Z}/p\mathbb{Z} \), as given by Theorem 2.2.

Theorem 2.2 (R.M. Wilson [27]) For \(t \leq \min(k, v-k) \), the rank of \(W_{t,k} \) modulo a prime \(p \) is

\[
\sum \binom{v}{i} - \binom{v}{i-1}
\]

where the sum is extended over those indices \(i \), \(0 \leq i \leq t \), such that \(p \) does not divide the binomial coefficient \(\binom{k-i}{t-i} \).

In the statement of the theorem, \(\binom{v}{-1} \) should be interpreted as zero.

A fundamental result, due to D.H. Gottlieb [16], and independently W. Kantor [17], is this:
Theorem 2.3 (D.H. Gottlieb [16], W. Kantor [17]) For $t \leq \min(k, v - k)$, $W_{t,k}$ has full row rank over the field \mathbb{Q} of rational numbers.

It is clear that $t \leq \min(k, v - k)$ implies \(\binom{t}{i} \leq \binom{v}{k} \) then, from Theorem 2.3 we have the following result:

Corollary 2.4 For $t \leq \min(k, v - k)$, the rank of $W_{t,k}$ over the field \mathbb{Q} of rational numbers is $\binom{v}{k}$ and thus $\ker(W_{t,k}) = \{0\}$.

If $k := v - t$ then, up to a relabelling, $W_{t,k}$ is the adjacency matrix $A_{t,v}$ of the Kneser graph $KG(t,v)$ [15], graph whose vertices are the t-element subsets of V, two subsets forming an edge if they are disjoint. The eigenvalues of Kneser graphs are computed in [15] (Theorem 9.4.3), and thus an equivalent form of Theorem 2.3 is:

Theorem 2.5 $A_{t,v}$ is non-singular for $t \leq \frac{v}{2}$.

We characterize values of t and k so that $\dim \ker(W_{t,k}) \in \{0, 1\}$ and give a basis of $\ker(W_{t,k})$, that appears in the following result.

Theorem 2.6 Let p be a prime number. Let v, t and k be non-negative integers, $k = [k_0, k_1, \ldots, k_{k(p)}]$, $t = [t_0, t_1, \ldots, t_{t(p)}]$, $t \leq \min(k, v - k)$. We have:

1) $k_j = t_j$ for all $j < t(p)$ and $k_{t(p)} = t_{t(p)}$ if and only if $\ker(W_{t,k}) = \{0\}$ (mod p).

2) $t = t_{t(p)}p^{t(p)}$ and $k = \sum_{i=t(p)+1}^{k(p)} k_ip^i$ if and only if $\dim \ker(W_{t,k}) = 1$ (mod p) and \(\{1, 1, \ldots, 1\} \) is a basis of $\ker(W_{t,k})$.

The proof of Theorem 2.6 uses Lucas’s Theorem. The notation $a \mid b$ (resp. $a \nmid b$) means a divide b (resp. a not divide b).

Theorem 2.7 (Lucas’s Theorem [12]) Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_0, t_1, \ldots, t_{t(p)}]$ and $k = [k_0, k_1, \ldots, k_{k(p)}]$. Then

\[
\binom{k}{t} = \prod_{i=0}^{t(p)} \binom{k_i}{t_i} \pmod{p}, \quad \text{where} \quad \binom{k_i}{t_i} = 0 \text{ if } t_i > k_i.
\]

As a consequence of Theorem 2.7, we have the following result which is very useful in this paper.

Corollary 2.8 Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_0, t_1, \ldots, t_{t(p)}]$, and $k = [k_0, k_1, \ldots, k_{k(p)}]$. Then

\[p \mid \binom{k}{t} \] if and only if there is $i \in \{0, 1, \ldots, t(p)\}$ such that $t_i > k_i$.
Proof of Theorem 2.6. 1) We begin by the direct implication. We will prove \(p \nmid \binom{k-i}{t-i} \)
for all \(i = [i_0, i_1, \ldots, i_{t(p)}] \in \{0, \ldots, t\} \) with \(i_{t(p)} \leq t_{t(p)} \). Since \(k_j = t_j \) for all \(j < t(p) \), then \((t-i)_j = (k-i)_j \) for all \(j < t(p) \). As \(k_{t(p)} \geq t_{t(p)} \geq t_{t(p)} \) then \((k-i)_{t(p)} \geq (t-i)_{t(p)} \), thus, by Corollary 2.8 \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{0,1,\ldots,t\} \). Now from Theorem 2.2 rank \(W_{tk} = \sum_{i=0}^{t} \binom{i}{t} - \binom{i}{t-i} = \binom{i}{t} \). Then the kernel of \(W_{tk} \) (mod \(p \)) is \{0\}.

Now we prove the converse implication. From Theorem 2.1 \(\text{Ker} (W_{tk}) = \{0\} \) implies \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{0,1,\ldots,t\} \), in particular \(p \nmid \binom{i}{t} \). Then by Corollary 2.8 \(k_j \geq t_j \) for all \(j \leq t(p) \). We will prove that \(k_j = t_j \) for all \(j \leq t(p) \). By contradiction, let \(s \) be the least integer in \(\{0,1,\ldots,t(p)-1\} \), such that \(k_s > t_s \). We have \((t-(t_s+1)p^s)_s = p-1 \), \((k-(t_s+1)p^s)_s = k_s-t_s-1 \) and \(p-1 > k_s-t_s-1 \). From Corollary 2.8 \(p \mid \binom{k-(t_s+1)p^s}{t-(t_s+1)p^s} \), that is impossible.

2) Set \(n := t(p) \). We begin by the direct implication. Since \(0 = k_n < t_n \) then, by Corollary 2.8 \(p \mid \binom{k}{t} \). We will prove \(p \nmid \binom{k-i}{t-i} \) for all \(i = [i_0, i_1, \ldots, i_n] \in \{1,2,\ldots,t\} \).

Since \(k_j = t_j = 0 \) for all \(j < n \), then \((t-i)_j = (k-i)_j \) for all \(j < n \). From \(t_n \geq i_n \), we have \((t-i)_n \in \{t_n-i_n, t_n-i_n-1\} \). Note that \((k-i)_n \in \{p-i_n-1, p-i_n\} \) and \(p-i_n-1 \geq n-i_n \); thus \((k-i)_n \geq (t-i)_n \). So for all \(j \leq n \), \((k-i)_j \geq (t-i)_j \). Then, by Corollary 2.8 \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{1,2,\ldots,t\} \). Now from Theorem 2.2 rank \(W_{tk} = \sum_{i=1}^{t} \binom{i}{t} - \binom{i}{t-i} = \binom{i}{t} - 1 \), and thus dim \(\text{Ker} (W_{tk}) = 1 \). Now \((1,1,\ldots,1)W_{tk} = \left(\binom{1}{t}, \binom{1}{t}, \ldots, \binom{1}{t} \right) \).

Since \(p \mid \binom{1}{t} \), then \((1,1,\ldots,1)W_{tk} \equiv 0 \) (mod \(p \)). Then \(\{(1,1,\ldots,1)\} \) is a basis of the kernel of \(W_{tk} \) (mod \(p \)).

Now we prove the converse implication. Since \(\{(1,1,\ldots,1)\} \) is a basis of the kernel of \(W_{tk} \) (mod \(p \)) and \((1,1,\ldots,1)W_{tk} = \left(\binom{1}{t}, \binom{1}{t}, \ldots, \binom{1}{t} \right) \), then \(p \mid \binom{1}{t} \). Since \(\dim \text{Ker} (W_{tk}) = 1 \), then from Theorem 2.2 \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{1,2,\ldots,t\} \).

First, let us prove that \(t = t_n p^s \). Note that \(t_n \neq 0 \) since \(t \neq 0 \). Since \(p \mid \binom{1}{t} \) then, from Corollary 2.8 there is an integer \(j \in \{0,1,\ldots,n\} \) such that \(t_j > k_j \). Let \(A := \{j < n : t_j \neq 0\} \). By contradiction, assume \(A \neq \emptyset \).

Case 1. There is \(j \in A \) such that \(t_j > k_j \). We have \((t-p^n)_j = t_j, (k-p^n)_j = k_j \). Then from Corollary 2.8 we have \(p \mid \binom{k-p^n}{t-p^n} \), that is impossible.

Case 2. For all \(j \in A, t_j \leq k_j \). Then \(t_n > k_n \). We have \((t-p^n)_n = t_n, (k-p^n)_n = k_n \). Then, from Corollary 2.8 we have \(p \mid \binom{k-p^n}{t-p^n} \), that is impossible.

From the above two cases, we deduce \(t = t_n p^s \).

Secondly, since \(p \mid \binom{1}{t} \), then by Corollary 2.8 \(t_n > k_n \). Let us show that \(k_n = 0 \). By contradiction, if \(k_n \neq 0 \) then \((t-p^n)_n = t_n - 1 > k_n - 1 = (k-p^n)_n \). From Corollary 2.8 \(p \mid \binom{k-p^n}{t-p^n} \), that is impossible. Let \(s \in \{0,1,\ldots,n-1\} \), let us show that \(k_s = 0 \). By contradiction, if \(k_s \neq 0 \) then \((t-p^n)_s = p-1, (k-p^n)_s = k_s-1 \), thus \((t-p^n)_s > (k-p^n)_s \), so, from Corollary 2.8 \(p \mid \binom{k-p^n}{t-p^n} \), that is impossible.
3 Proof of Theorem 1.3.

Let $T_1, T_2, \ldots, T_{(v)}$ be an enumeration of the t-element subsets of V, let $K_1, K_2, \ldots, K_{(v)}$ be an enumeration of the k-element subsets of V and $W_{t,k}$ be the matrix of the t-element subsets versus the k-element subsets.

Let w_U be the row matrix $(u_1, u_2, \ldots, u_{(v)})$ where $u_i = 1$ if $T_i \in U$, 0 otherwise. We have

$$w_U W_{t,k} = (|\{T_i \in U : T_i \subseteq K_1\}|, \ldots, |\{T_i \in U : T_i \subseteq K_{(v)}\}|).$$

$$w' U W_{t,k} = (|\{T_i \in U' : T_i \subseteq K_1\}|, \ldots, |\{T_i \in U' : T_i \subseteq K_{(v)}\}|).$$

Since for all $j \in \{1, \ldots, (\binom{v}{k})\}$, the number of elements of U which are contained in K_j is equal (mod p) to the number of elements of U' which are contained in K_j, then $(w_U - w_{U'}) W_{t,k} = 0$ (mod p), so $w_U - w_{U'} \in \text{Ker}(W_{t,k})$.

1) Assume $k_i = t_i$ for all $i < t(p)$ and $k_{t(p)} \geq t_{t(p)}$. From 1) of Theorem 2.6 $w_U - w_{U'} = 0$, that gives $U = U'$.

2) Assume $t = t_{t(p)}p^{t(p)}$ and $k = \sum_{i=(t(p))}^{k_{t(p)}} k_ip^i$. From 2) of Theorem 2.6 there is an integer $\lambda \in [0, p-1]$ such that $w_U - w_{U'} = \lambda(1, 1, \ldots, 1)$. It is clear that $\lambda \in \{0, 1, -1\}$. If $\lambda = 0$ then $U = U'$. If $\lambda = 1$ and $p \geq 3$ then $U = \{T_1, T_2, \ldots, T_{(v)}\}$, $U' = \emptyset$. If $\lambda = -1$ and $p = 2$ then $U' = \{T_1, T_2, \ldots, T_{(v)}\}$, $U = \emptyset$, or $T \in U$ if and only if $T \not\in U'$. If $\lambda = -1$ and $p \geq 3$ then $U' = \{T_1, T_2, \ldots, T_{(v)}\}$, $U = \emptyset$, or $T \in U$ if and only if $T \not\in U'$. \hfill \square

4 Illustrations to graphs

Our notations and terminology follow [2]. A digraph $G = (V, E)$ or $G = (V(G), E(G))$, is formed by a finite set V of vertices and a set E of pairs of distinct vertices, called arcs of G. The order (or cardinal) of G is the number of its vertices. If K is a subset of V, the restriction of G to K, also called the induced subdigraph of G on K is the digraph $G|_K := (K, K^2 \cap E)$. If $K = V \setminus \{x\}$, we denote this digraph by G_{-x}. Let $G = (V, E)$ and $G' = (V', E')$ be two digraphs. A one-to-one correspondence f from V onto V' is an isomorphism from G onto G' provided that for $x, y \in V$, $(x, y) \in E$ if and only if $(f(x), f(y)) \in E'$. The digraphs G and G' are then said to be isomorphic, which is denoted by $G \simeq G'$. A subset I of V is an interval [13, 26] (or a clan [11], or an homogenous subset [14]) of G provided that for all $a, b \in I$ and $x \in V \setminus I$, $(a, x) \in E(G)$ if and only if $(b, x) \in E(G)$, and the same for (x, a) and (x, b). For example, \emptyset, $\{x\}$ where $x \in V$, and V are intervals of G, called trivial intervals. A digraph is then said to be indecomposable [26] (or primitive [11]) if all its intervals are trivial, otherwise it is said to be decomposable. We say that G is a graph (resp. tournament) when for every distinct vertices x, y of V, $(x, y) \in E$ if and only if $(y, x) \in E$ (resp $(x, y) \in E$ if and only if $(y, x) \not\in E$); we say that $\{x, y\}$ is an edge of the graph G if $(x, y) \in E$, thus E is identified with a subset of
Let $G = (V, E)$ be a graph, the complement of G is the graph $\overline{G} := (V, [V]^2 \setminus E)$. We denote by $e(G) := |E(G)|$ the number of edges of G. The degree of a vertex x of G, denoted $d_G(x)$, is the number of edges which contain x. A 3-element subset T of V such that all pairs belong to $E(G)$ is a triangle of G. Let $T(G)$ be the set of triangles of G and let $t(G) := |T(G)|$. A 3-element subset of V which is a triangle of G or of \overline{G} is a 3-homogeneous subset of G. We set $H^{(3)}(G) := T(G) \cup T(\overline{G})$, the set of 3-homogeneous subsets of G, and $h^{(3)}(G) := |H^{(3)}(G)|$.

Another proof of Theorem 1.4 using Theorem 1.3. Here $p = 2$, $t = 2 = [0, 1]_p$ and $k = [0, 0, k_2, \ldots]_p$. From 2) of Theorem 1.3 $U = U'$, or one of the sets U, U' is the set of all 2-element-subsets of V and the other is empty, or for all 2-element subsets T of V, $T \in U$ if and only if $T \not\in U'$. Thus $G' = G$ or $G' = \overline{G}$. \hfill \qed

Proof of Theorem 1.5. We set $U := E(G), U' := E(G')$. For all $K \subseteq V$ with $|K| = k$, we have: $\{|\{(x, y) \subseteq K : (x, y) \in U\}| = E(G_{1|K})\}$ and $\{|\{(x, y) \subseteq K : (x, y) \in U'\}| = E(G'_{1|K})\}$. Since $e(G_{1|K}) \equiv e(G'_{1|K}) (\mod p), then |\{|\{(x, y) \subseteq K : (x, y) \in U\}| = |\{|\{(x, y) \subseteq K : (x, y) \in U'\}| (\mod p)\}$.

1) $p \geq 3, t = 2 = [2]_p$ and $k_0 \geq 2$. From 1) of Theorem 1.3 $U = U'$, thus $G = G'$.
2) $p \geq 3, t = 2 = [2]_p$ and $k_0 = 0$. From 2) of Theorem 1.3 we have $U = U'$ or one of U, U' is the set of all 2-element subsets of V and the other is empty. Then $G = G'$ or one of the graphs G, G' is the complete graph and the other is the empty graph.
3) $p = 2, t = 2 = [0, 1]_p$ and $k = [0, 1, k_2, \ldots]_p$. From 1) of Theorem 1.3 we have $U = U'$, thus $G = G'$. \hfill \qed

The following result concerns graphs G and G' such that $h^{(3)}(G_{1|K}) \equiv h^{(3)}(G'_{1|K})$ modulo a prime p, for all k-element subsets K of V.

Theorem 4.1 Let G and G' be two graphs on the same set V of v vertices. Let p be a prime number and k be an integer, $3 \leq k \leq v - 3$.

1) If $h^{(3)}(G_{1|K}) = h^{(3)}(G'_{1|K})$ for all k-element subsets K of V then G and G' have the same 3-element homogeneous sets.

2) Assume $p \geq 5$. If $k \neq 1, 2 (\mod p)$ and $h^{(3)}(G_{1|K}) \equiv h^{(3)}(G'_{1|K}) (\mod p)$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous sets.

3) If $(p = 2$ and $k \equiv 3 (\mod 4))$ or $(p = 3$ and $3 \mid k), and h^{(3)}(G_{1|K}) \equiv h^{(3)}(G'_{1|K}) (\mod p)$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous sets.

Proof. $H^{(3)}(G) = \{\{a, b, c\} : G_{1[a,b,c]}$ is a 3-element homogeneous set$\}$. We set $U := H^{(3)}(G)$ and $U' := H^{(3)}(G')$. For all $K \subseteq V$ with $|K| = k$, we have: $\{|\{T \subseteq K : T \in U\}| = H^{(3)}_{G_{1|K}}$ and $\{|\{T \subseteq K : T \in U'\}| = H^{(3)}_{G'_{1|K}}$. Set $t := |T| = 3$.

1) Since $h^{(3)}(G_{1|K}) = h^{(3)}(G'_{1|K})$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}$. From Lemma 1.2 it follows that $U = U'$, then G and G'
have the same 3-element homogeneous sets.

2) Since \(h^{(3)}(G_{|K}) \equiv h^{(3)}(G'_{|K}) \) (mod \(p \)) for all \(k \)-element subsets \(K \) of \(V \) then \(|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \) (mod \(p \)).

Case 1. \(p \geq 5, t = 3 = [3]_p, k = [k_0, \ldots]_p \) and \(t_0 = 3 \leq k_0 \). From 1) of Theorem 1.3 we have \(U = U' \), thus \(G \) and \(G' \) have the same 3-element homogeneous sets.

Case 2. \(p \geq 5, t = 3 = [3]_p, k = [0, k_1, \ldots]_p \). By Ramsey’s Theorem [25], every graph with at least 6 vertices contains a 3-element homogeneous set. Then \(U \) and \(U' \) are nonempty, so from 2) of Theorem 1.3 \(U = U' \), thus \(G \) and \(G' \) have the same 3-element homogeneous sets.

3) Since \(h^{(3)}(G_{|K}) \equiv h^{(3)}(G'_{|K}) \) (mod \(p \)) for all \(k \)-element subsets \(K \) of \(V \) then \(|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \) (mod \(p \)).

Case 1. \(p = 2, t = 3 = [1, 1]_p \) and \(k \equiv 3 \) (mod \(4 \)). In this case, \(k = [1, 1, k_2, \ldots]_p \), then from 1) of Theorem 1.3 we have \(U = U' \), thus \(G \) and \(G' \) have the same 3-element homogeneous sets.

Case 2. \(p = 3, t = 3 = [0, 1]_p \) and \(k = [0, k_1, \ldots, k_{k(p)}]_p \).

Case 2.1. \(k_1 \in \{1, 2\} \), then from 1) of Theorem 1.3 we have \(U = U' \), thus \(G \) and \(G' \) have the same 3-element homogeneous sets.

Case 2.2. \(k_1 = 0 \). By Ramsey’s Theorem [25], every graph with at least 6 vertices contains a 3-element homogeneous set. Then \(U \) and \(U' \) are nonempty, so from 2) of Theorem 1.3 \(U = U' \), thus \(G \) and \(G' \) have the same 3-element homogeneous sets.

Let \(G = (V, E) \) be a graph. From [26], every indecomposable graph of size 4 is isomorphic to \(P_4 = (\{0, 1, 2, 3\}, \{\{0, 1\}, \{1, 2\}, \{2, 3\}\}) \). Let \(P^{(4)}(G) \) be the set of indecomposable induced subgraphs of \(G \) of size 4, we set \(p^{(4)}(G) := |P^{(4)}(G)| \). The following result concerns graphs \(G \) and \(G' \) such that \(p^{(4)}(G_{|K}) \equiv p^{(4)}(G'_{|K}) \) modulo a prime \(p \), for all \(k \)-element subsets \(K \) of \(V \).

Theorem 4.2 Let \(G \) and \(G' \) be two graphs on the same set \(V \) of \(v \) vertices. Let \(p \) be a prime number and \(k \) be an integer, \(4 \leq k \leq v - 4 \).

1) If \(p^{(4)}(G_{|K}) = p^{(4)}(G'_{|K}) \) for all \(k \)-element subsets \(K \) of \(V \) then \(G \) and \(G' \) have the same indecomposable sets of size 4.

2) Assume \(p^{(4)}(G_{|K}) \equiv p^{(4)}(G'_{|K}) \) (mod \(p \)) for all \(k \)-element subsets \(K \) of \(V \).

a) If \(p \geq 5 \) and \(k \not\equiv 1, 2, 3 \) (mod \(p \)), then \(G \) and \(G' \) have the same indecomposable sets of size 4.

b) If \((p = 2, 4 \mid k \) and \(8 \nmid k) \) or \((p = 3, 3 \mid k - 1 \) and \(9 \nmid k - 1) \), then \(G \) and \(G' \) have the same indecomposable sets of size 4.

c) If \(p = 2 \) and \(8 \mid k \), then \(G \) and \(G' \) have the same indecomposable sets of size 4, or for all 4-element subsets \(T \) of \(V \), \(G_{|T} \) is indecomposable if and only if \(G'_{|T} \) is decomposable.

Proof. Let \(U := \{T \subseteq V : |T| = 4, G_{|T} \simeq P_4\} = P^{(4)}(G), U' := \{T \subseteq V : |T| = 4, G'_{|T} \simeq P_4\} = P^{(4)}(G') \). For all \(K \subseteq V \), we have \(\{T \subseteq K : T \in U\} = P_4(G_{|K}) \) and \(\{T \subseteq K : T \in U'\} = P_4(G'_{|K}) \). Set \(t := |T| = 4 \).

1) Since \(p^{(4)}(G_{|K}) = p^{(4)}(G'_{|K}) \) then \(|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}| \). From
Lemma 1.2: $U = U'$, then G and G' have the same indecomposable sets of size 4.

2) We have $p^4(G|K) \equiv p^4(G'|K)$ (mod p) for all k-element subsets K of V, then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}|$ (mod p).

a) Case 1. $p \geq 5$, $t = 4 = [4]_p$, $k = [k_0, \ldots]_p$ and $t_0 = 4 \leq k_0$. From 1) of Theorem 1.3 we have $U = U'$, thus G and G' have the same indecomposable sets of size 4.

Case 2. $p = 5$, $t = 4 = [4]_p$, $k = [0, k_1, \ldots]_p$. Since in every graph of order 5, there is a restriction of size 4 not isomorphic to P_4 then, from 2) of Theorem 1.3 $U = U'$, thus G and G' have the same indecomposable sets of size 4.

b) Case 1. $p = 2$, $t = 4 = [0, 0, 1]_p$ and $k = [0, 0, 1, k_3, \ldots, k_{k(p)}]_p$. From 1) of Theorem 1.3 we have $U = U'$, thus G and G' have the same indecomposable sets of size 4.

c) Case 2. $p = 2$, $t = 4 = [1, 1]_p$, $k = [1, k_1, \ldots, k_{k(p)}]_p$ and $t_1 = 1 \leq k_1$. From 1) of Theorem 1.3 $U = U'$, or for all 4-element subsets T of V, $T \in U$ if and only if $T \notin U'$. Thus G and G' have the same indecomposable sets of size 4, or for all 4-element subsets T of V, $G|T$ is indecomposable if and only if $G'|T$ is decomposable. □

In a reconstruction problem of graphs up to complementation [10], Wilson’s Theorem yielded the following result:

Theorem 4.3 (10) Let G and G' be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $5 \leq k \leq v - 2$, $k \equiv 1$ (mod 4). Then the following properties are equivalent:

(i) $e(G|K)$ has the same parity as $e(G'|K)$ for all k-element subsets K of V; and $G|K$, $G'|K$ have the same 3-homogeneous subsets;

(ii) $G' = G$ or $G' = \overline{G}$.

Here, we just want to point out that we can obtain a similar result for $k \equiv 3$ (mod 4), namely Theorem 4.4 using the same proof as that of Theorem 1.3.

The boolean sum $G \oplus G'$ of two graphs $G = (V, E)$ and $G' = (V, E')$ is the graph U on V whose edges are pairs e of vertices such that $e \in E$ if and only if $e \notin E'$.

Theorem 4.4 Let G and G' be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $3 \leq k \leq v - 2$, $k \equiv 3$ (mod 4). Then the following properties are equivalent:

(i) $e(G|K)$ has the same parity as $e(G'|K)$ for all k-element subsets K of V; and $G|K$, $G'|K$ have the same 3-homogeneous subsets;

(ii) $G' = G$.

Proof. It is exactly the same as that of Theorem 1.3 (see [10]). The implication $(ii) \Rightarrow (i)$ is trivial. We prove $(i) \Rightarrow (ii)$. We suppose V finite, we set $U := G \oplus G'$, let $T_1, T_2, \cdots, T_{\binom{k}{2}}$ be an enumeration of the 2-element subsets of V, let $K_1, K_2, \cdots, K_{\binom{k}{2}}$ be
an enumeration of the \(k \)-element subsets of \(V \). Let \(w_U \) be the row matrix \((u_1, u_2, \cdots, u_{\binom{v}{2}}) \) where \(u_i = 1 \) if \(T_i \) is an edge of \(U \), 0 otherwise.

We have \(w_U W_{2k} = (e(U_{1K_1}), e(U_{1K_2}), \cdots, e(U_{1K_{\binom{v}{2}}})) \). From the facts that \(e(G_{1K}) \) has the same parity as \(e(G'_{1K}) \) and \(e(U_{1K}) = e(G_{1K}) + e(G'_{1K}) - 2e(G_{1K} \cap G'_{1K}) \) for all \(k \)-element subsets \(K \), \(w_U \) belongs to the kernel of \(W_{2k} \) over the 2-element field. According to Theorem 2.2, the rank of \(W_{2k} \) (mod 2) is \(\binom{v}{2} - v + 1 \). Hence \(\text{dim} \text{Ker}(W_{2k}) = v - 1 \).

We give a similar claim as Claim 2.8 of [10], the proof is identical.

Claim 4.5 Let \(k \) be an integer such that \(3 \leq k \leq v - 2 \), \(k \equiv 3 \) (mod 4), then the kernel of \(W_{2k} \) consists of complete bipartite graphs (including the empty graph).

Proof. Let us recall that a star-graph of \(v \) vertices consists of a vertex linked to all other vertices, those \(v - 1 \) vertices forming an independent set. First we prove that each star-graph \(S \) belongs to \(\mathbb{K} \), the kernel of \(W_{2k} \). Let \(w_S \) be the row matrix \((s_1, s_2, \cdots, s_{\binom{v}{2}}) \) where \(s_i = 1 \) if \(T_i \) is an edge of \(S \), 0 otherwise. We have \(w_S W_{2k} = (e(S_{1K_1}), e(S_{1K_2}), \cdots, e(S_{1K_{\binom{v}{2}}})) \). For all \(i \in \{1, \ldots, \binom{v}{2}\} \), \(e(S_{1K_i}) = k - 1 \) if \(1 \in K_i \), 0 otherwise. Since \(k \) is odd, each star-graph \(S \) belongs to \(\mathbb{K} \). The vector space (over the 2-element field) generated by the star-graphs on \(V \) consists of all complete bipartite graphs; since \(v \geq 3 \), these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is \(v - 1 \) (a basis being made of star-graphs). Since \(\text{dim} \text{Ker}(W_{2k}) = v - 1 \), then \(\mathbb{K} \) consists of complete bipartite graphs as claimed.

\(\square \)

A claw is a star-graph of four vertices, that is a graph made of a vertex joined to three other vertices, with no edges between these three vertices. A graph is claw-free if no induced subgraph is a claw.

Claim 4.6 ([10]) Let \(G \) and \(G' \) be two graphs on the same set and having the same 3-homogeneous subsets, then the boolean sum \(U := G \oplus G' \) is claw-free.

From Claim 4.5, \(U \) is a complete bipartite graph and, from Claim 4.6, \(U \) is claw-free. Since \(v \geq 5 \), it follows that \(U \) is the empty graph. Hence \(G' = G \) as claimed.

\(\square \)

5 Illustrations to tournaments

Let \(T = (V, E) \) be a tournament. For two distinct vertices \(x \) and \(y \) of \(T \), \(x \rightarrow_T y \) (or simply \(x \rightarrow y \)) means that \((x, y) \in E \) and \((y, x) \notin E \). For \(A \subseteq V \) and \(y \in V \), \(A \rightarrow y \) means \(x \rightarrow y \) for all \(x \in A \). The degree of a vertex \(x \) of \(T \) is \(d_T(x) := |\{y \in V : x \rightarrow y\}| \). We denote by \(T^* \) the dual of \(T \) that is \(T^* = (V, E^*) \) with \((x, y) \in E^* \) if and only if \((y, x) \in E \). A transitive tournament or a total order or \(k \)-chain (denoted \(O_k \)) is a tournament of cardinality \(k \), such that for \(x, y, z \in V \), if \(x \rightarrow y \) and \(y \rightarrow z \), then \(x \rightarrow z \). If \(x \) and \(y \) are two distinct vertices of a total order, the notation \(x < y \) means that \(x \rightarrow y \). The tournament \(C_3 := \{\{0, 1, 2\}, \{(0, 1), (1, 2), (2, 0)\}\} \)
Let $T = (V, E)$ and $T' = (V, E')$ be two tournaments. Let p be a prime number and k be an integer, $2 \leq k \leq v - 2$. Let $G := T + T'$. We assume that for all k-element subsets K of V, $e(G_{|K}) \equiv 0 \pmod{p}$.

1) If $p \geq 3$, $k \not\equiv 0, 1 \pmod{p}$, then $T' = T$.
2) If $p \geq 3$, $k \equiv 0 \pmod{p}$, then $T' = T$ or $T' = T^*$.
3) If $p = 2$, $k \equiv 2 \pmod{4}$, then $T' = T$.
4) If $p = 2$, $k \equiv 0 \pmod{4}$, then $T' = T$ or $T' = T^*$.

Proof. We set $G' :=$ The empty graph. Then $e(G_{|K}) \equiv e(G'_{|K}) \pmod{p}$.

1) From 1) of Theorem 1.5, G is the empty graph, then $T' = T$.
2) From 2) of Theorem 1.5, G is empty or the complete graph, then $T' = T$ or $T' = T^*$.
3) From 3) of Theorem 1.5, G is the empty graph, then $T' = T$.
4) From Theorem 1.4, G is the empty graph or the complete graph, then $T' = T$ or $T' = T^*$.

Let T be a tournament, we set $C^{(3)}(T) := \{\{a, b, c\} : T_{|\{a,b,c\}} \text{ is a 3-cycle}\}$, and $c^{(3)}(T) := |C^{(3)}(T)|$. Let $T = (V, E)$ and $T' = (V, E')$ be two tournaments, let k be a non-negative integer, T and T' are k-hypomorphic [7, 21] (resp. k-hypomorphic up to duality) if for every k-element subset K of V, the induced subtournaments $T'_{|K}$ and $T_{|K}$ are isomorphic (resp. $T'_{|K}$ is isomorphic to $T_{|K}$ or to $T^*_{|K}$). We say that T and T' are $(\leq k)$-hypomorphic if T and T' are h-hypomorphic for every $h \leq k$. Similarly, we say that T and T' are $(\leq k)$-hypomorphic up to duality if T and T' are h-hypomorphic up to duality for every $h \leq k$.

Theorem 5.2 Let T and T' be two tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $3 \leq k \leq v - 3$.

1) If $c^{(3)}(T_{|K}) = c^{(3)}(T'_{|K})$ for all k-element subsets K of V then T and T' are (≤ 3)-hypomorphic.
2) Assume $p \geq 5$. If $k \not\equiv 1, 2 \pmod{p}$, and $c^{(3)}(T_{|K}) \equiv c^{(3)}(T'_{|K}) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3)-hypomorphic.

3) If $(p = 2$ and $k \not\equiv 3 \pmod{4})$ or $(p = 3$ and $3 \mid k)$, and $c^{(3)}(G_{|K}) \equiv c^{(3)}(G'_{|K}) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3)-hypomorphic.

Proof. Since every tournament, of cardinality ≥ 4, has at least a restriction of cardinality 3 which is not a 3-cycle, then the proof is similar to that of Theorem 4.1.

Let T be a tournament, we set $D^+_4(T) := \{\{a, b, c, d\} : T_{\{a,b,c,d\}} \simeq \delta^+\}$, $D^-_4(T) := \{\{a, b, c, d\} : T_{\{a,b,c,d\}} \simeq \delta^-\}$, $d^+_4(T) := |D^+_4(T)|$ and $d^-_4(T) := |D^-_4(T)|$.

It is well-known that every subtournament of order 4 of a tournament is either a diamond, a 4-chain, or a 4-cycle subtournament. We have $c^{(3)}(O_4) = 0$, $c^{(3)}(\delta^+) = c^{(3)}(\delta^-) = 1$, $c^{(3)}(C_4) = 2$ and $C_4 \simeq C^*_4$.

Theorem 5.3 Let T and T' be two (≤ 3)-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v - 4$.

1) If $d^+_4(T_{|K}) = d^+_4(T'_{|K})$ for all k-element subsets K of V then T' and T are (≤ 5)-hypomorphic.

2) Assume $d^+_4(T_{|K}) \equiv d^+_4(T'_{|K}) \pmod{p}$ for all k-element subsets K of V.

a) If $p \geq 5$ and, $k \not\equiv 1, 2, 3 \pmod{p}$, then T' and T are (≤ 5)-hypomorphic.

b) If $(p = 3, 3 \mid k - 1$ and $9 \nmid k - 1)$ or $(p = 2, 4 \mid k$ and $8 \nmid k)$, then T' and T are (≤ 5)-hypomorphic.

c) If $p = 2$ and $8 \mid k$, then T' and T are (≤ 5)-hypomorphic or for all 4-element subset S of V, $T_{|S}$ is isomorphic to δ^+ if and only if $T'_{|S}$ is isomorphic to δ^-.

Proof. To prove that T' and T are (≤ 5)-hypomorphic, the following lemma shows that it is sufficient to prove that T' and T are (≤ 4)-hypomorphic.

Lemma 5.4 Let T and T' be two (≤ 4)-hypomorphic tournaments on at least 5 vertices. Then, T and T' are (≤ 5)-hypomorphic.

Now, let $U^+ := \{S \subseteq V : T_{|S} \simeq \delta^+\} = D^+_4(T)$, $U'^+ := D^+_4(T')$, $U^- := D^-_4(T)$ and $U'^- := D^-_4(T')$.

Claim 5.5 If T and T' are (≤ 3)-hypomorphic and $U^+ = U'^+$, then $U^- = U'^-$; T and T' are (≤ 5)-hypomorphic.

Proof. Let $S \in U^-$, $T_{|S} \simeq \delta^-$. Since T and T' are (≤ 3)-hypomorphic, then $T'_{|S} \simeq \delta^+$ or $T'_{|S} \simeq \delta^-$. We have $\{S \subseteq V : T'_{|S} \simeq \delta^+\} = \{S \subseteq V : T_{|S} \simeq \delta^+\}$, then $T'_{|S} \simeq \delta^-$, $S \in U'^-$ and $U^- = U'^-$. So, for $X \subseteq V$, if $T_{|X}$ is a diamond then $T'_{|X}$ is a diamond.

Now we prove that T and T' are 4-hypomorphic. Let $X \subseteq V$ such that $|X| = 4$. If $T_{|X} \simeq C_4$, then $c^{(3)}(T_{|X}) = 2$. Since T and T' are (≤ 3)-hypomorphic then $c^{(3)}(T'_{|X}) = 2$, thus $T'_{|X} \simeq T_{|X} \simeq C_4$. The same, if $T_{|X} \simeq O_4$, then $T'_{|X} \simeq T_{|X} \simeq O_4$. So, T' and T are (≤ 4)-hypomorphic. Then, From Lemma 5.4, T' and T are (≤ 5)-hypomorphic. From Claim 5.5, it is sufficient to prove that $U^+ = U'^+$.

For all $K \subseteq V$ with $|K| = k$, we have $\{S \subseteq K : S \in U^+\} = D^+_4(T_{|K})$ and
\{S \subseteq K : S \in U^+\} = D_1^+(T_K').
1) Since \(d_1^+(T_K) = d_1^+(T_K')\) then \(|\{S \subseteq K : S \in U^+\}| = |\{S \subseteq K : S \in U'^+\}|\). From Lemma 1.2, we have \(U^+ = U'^+\).

2) We have \(d_1^+(T_K) \equiv d_1^+(T_K') \pmod{p}\) for all \(k\)-element subsets \(K\) of \(V\), then \(|\{S \subseteq K : S \in U^+\}| \equiv |\{S \subseteq K : S \in U'^+\}| \pmod{p}\).

a) Case 1. \(p \geq 5\), \(t = 4 = [4]_p\), \(k = [k_0, \ldots]_p\) and \(t_0 = 4 \leq k_0\). From 1) of Theorem 1.3, we have \(U^+ = U'^+\).

Case 2. \(p \geq 5\), \(t = 4 = [4]_p\), \(k = [0, k_1, \ldots]_p\). Since every tournament of cardinality \(\geq 5\) has at least a restriction of cardinality 4 which is not a diamond, then from 2) of Theorem 1.3, \(U^+ = U'^+\).

b) Case 1. \(p = 3\), \(t = 4 = [1, 1]_p\), \(k = [1, k_1, \ldots , k_{k(p)}]_p\) and \(t_1 = 1 \leq k_1\). From 1) of Theorem 1.3, we have \(U^+ = U'^+\).

Case 2. \(p = 2\), \(t = 4 = [0, 0, 1]_p\) and \(k = [0, 0, 1, k_3, \ldots , k_{k(p)}]_p\). From 1) of Theorem 1.3, we have \(U^+ = U'^+\).

c) We have \(p = 2\), \(t = 4 = [0, 0, 1]_p\), \(k = [0, 0, 0, k_3, \ldots , k_{k(p)}]_p\). Since every tournament of cardinality \(\geq 5\) has at least a restriction of cardinality 4 which is not a diamond, and the fact that \(T\) and \(T'\) are 3-hypomorphic, then from 2) of Theorem 1.3, \(U^+ = U'^+\), thus \(T'\) and \(T\) are \((\leq 5)\)-hypomorphic, or for all 4-element subsets \(S\) of \(V\), \(T_{\mid S}\) is isomorphic to \(\delta^+\) if and only if \(T'_{\mid S}\) is isomorphic to \(\delta^-\).

\(\square\)

Given a digraph \(S = (\{0, 1, \ldots , m - 1\}, A)\), where \(m \geq 1\) is an integer, for \(i \in \{0, 1, \ldots , m - 1\}\) we associate a digraph \(G_i = (V_i, A_i)\), with \(|V_i| \geq 1\), such that the \(V_i\)'s are mutually disjoint. The lexicographic sum of \(S\) by the digraphs \(G_i\) or simply the \(S\)-sum of the \(G_i\)'s, is the digraph denoted by \(S(G_0, G_1, \ldots , G_{m-1})\) and defined on the union of the \(V_i\)'s as follows: given \(x \in V_i\) and \(y \in V_j\), where \(i, j \in \{0, 1, \ldots , m - 1\}\), \((x, y)\) is an arc of \(S(G_0, G_1, \ldots , G_{m-1})\) if either \(i = j\) and \((x, y) \in A_i\) or \(i \neq j\) and \((i, j) \in A\): this digraph replaces each vertex \(i\) of \(S\) by \(G_i\). We say that the vertex \(i\) of \(S\) is diluted by \(G_i\).

Let \(h\) be a non-negative integer. The integers below are considered modulo \(2h + 1\).

The circular tournament \(T_{2h+1}\) (see Figure 2) is defined on \(\{0, 1, \ldots , 2h\}\) by:

\(T_{2h+1, \{0, 1, \ldots , h\}}\) is the usual total order on \(\{0, 1, \ldots , h\}\), \(T_{2h+1, \{h+1, \ldots , 2h\}}\) is also the usual order on \(\{h+1, h+2, \ldots , 2h\}\), however \(\{i+1, i+2, \ldots , i+h\}\) \(\rightarrow\) \(T_{2h+1, \{0, 1, \ldots , i\}}\) for every \(i \in \{0, 1, \ldots , h-1\}\). A tournament \(T\) is said to be an element of \(D(T_{2h+1})\) if \(T\) is obtained by dilating each vertex of \(T_{2h+1}\) by a finite chain \(p_i\), then \(T = T_{2h+1}(p_0, p_1, \ldots , p_{2h})\). We recall that \(T_{2h+1}\) is indecomposable and \(D(T_{2h+1})\) is the class of finite tournaments without diamond [21].

We define the tournament \(\beta_6^+ := T_3(p_0, p_1, p_2)\) with \(p_0 = (0 < 1 < 2)\), \(p_1 = (3 < 4)\) and \(|p_2| = 1\) (see Figure 3). We set \(\beta_6^- := (\beta_6^+)^*\). For a tournament \(T = (V, E)\), we set \(B_6^+(T) := \{S \subseteq V : T_{\mid S} \simeq \beta_6^+\}\), \(B_6^-(T) := \{S \subseteq V : T_{\mid S} \simeq \beta_6^-\}\), \(b_6^+(T) := |B_6^+(T)|\) and \(b_6^-(T) := |B_6^-(T)|\).
Two tournaments T and T' on the same vertex set V are hereditarily isomorphic if for all $X \subseteq V$, $T|_X$ and $T'|_X$ are isomorphic [3].

Figure 2: Circular tournament T_{2h+1}

Figure 3: β_6^+. Let $G = (V, E)$ and $G' = (V, E')$ be two (≤ 2)-hypomorphic digraphs. Denote $D_{G,G'}$ the binary relation on V such that: for $x \in V$, $xD_{G,G'}x$; and for $x \neq y \in V$, $xD_{G,G'}y$ if there exists a sequence $x_0 = x, ..., x_n = y$ of elements of V satisfying $(x_i, x_{i+1}) \in E$ if and only if $(x_i, x_{i+1}) \notin E'$, for all i, $0 \leq i \leq n - 1$. The relation $D_{G,G'}$ is an equivalence relation called the difference relation, its classes are called difference classes.

Using difference classes, G. Lopez [19, 20] showed that if T and T' are (≤ 6)-hypomorphic then T and T' are isomorphic. One may deduce the next corollary.

Corollary 5.6 ([19, 20]) Let T and T' be two tournaments. We have the following properties:
1) If T and T' are (≤ 6)-hypomorphic then T and T' are hereditarily isomorphic.
2) If for each equivalence class C of $D_{T,T'}$, C is an interval of T and T', and $T'|_C$, $T|_C$ are (≤ 6)-hypomorphic, then T and T' are hereditarily isomorphic.

Lemma 5.7 [22] Given two (≤ 4)-hypomorphic tournaments T and T', and C an equivalence class of $D_{T,T'}$, then:
1) C is an interval of T' and T.
2) Every 3-cycle in $T|_C$ is reversed in $T'|_C$.
3) There exists an integer $h \geq 0$ such that $T|_C = T_{2h+1}(p_0, p_1, ..., p_{2h})$ and $T'|_C = T_{2h+1}^*(p'_0, p'_1, ..., p'_{2h})$ with p_i, p'_i are chains on the same basis, for all $i \in \{0, 1, ..., 2h\}$.
Theorem 5.8 Let T and T' be two (≤ 4)-hompomorphic tournaments on the same set V of v vertices. Let p be a prime number and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$ be an integer, $6 \leq k \leq v - 6$.

1) If $b_6^0(T|_K) = b_6^0(T'|_K)$ for all k-element subsets K of V then T' and T are hereditarily isomorphic.

2) Assume $b_6^0(T|_K) \equiv b_6^0(T'|_K) \pmod{p}$ for all k-element subsets K of V.

a) If $p \geq 7$, and $k_0 \geq 6$ or $k_0 = 0$, then T' and T are hereditarily isomorphic.

b) If $p = 5$, $k_0 = 1$ and $k_1 \neq 0$ or $(p = 3$, $k_0 = 0$ and $k_1 = 2)$ or $(p = 3$ and $k_0 = 1 = k_2 = 1$), then T' and T are hereditarily isomorphic.

Proof. Let $U^+ := \{S \subseteq V, T|_S \simeq \beta_6^+\} = B_6^+(T)$, $U'^+ := B_6^+(T')$, $U^- := \{S \subseteq V, T|_S \simeq \beta_6^-\} = B_6^-(T)$, $U'^- := B_6^-(T')$.

Every tournament of cardinality ≥ 7 has at least a restriction of cardinality 6 which is not isomorphic to β_6^+ and β_6^-. Then for all cases, similarly to the proof of Theorem 5.3, we have $U^+ = U'^+$. Let C be an equivalence class of $D_{T,T'}$, $S \in U^-$, $T|_S \simeq \beta_6^-$. Since T and T' are (≤ 3)-hompomorphic, then $T|_S \simeq \beta_6^+$ or $T'|_S \simeq \beta_6^-$. We have $\{S \subseteq V, T|_S \simeq \beta_6^+\} = \{S \subseteq V, T|_S \simeq \beta_6^-\}$, then $T'|_S \simeq \beta_6^-$, $S \in U^-$ and $U = U'^-$. Let $X \subseteq C$ such that $|X| = 6$; if $T_X \simeq \beta_6^-$ then, from 2) of Lemma 5.7, $T_X \simeq \beta_6^-$, that is impossible, so T_C and T'_C has not a restriction of cardinality 6 isomorphic to β_6^+ and β_6^-. Now we will prove that $T|_C$ and $T'|_C$ are (≤ 6)-hompomorphic.

From 3) of Lemma 5.7 there exists an integer $h \geq 0$ such that $T|_C = T_{2h+1}(p_0, p_1, \ldots, p_{2h})$, with p_i is a chain and $a_i \in p_i$ for all $i \in \{0, 1, \ldots, 2h\}$. Since $T|_C$ hasn’t a tournament isomorphic to β_6^+, then $h \leq 3$. Indeed, if $h \geq 4$, then $T|_{\{a_0,a_1,a_2,a_3,a_4,a_{3+h}\}} \simeq \beta_6^+$, and $\{a_0,a_1,a_2\}, \{a_3,a_4\}$ are two intervals of $T|_{\{a_0,a_1,a_2,a_3,a_4,a_{3+h}\}}$, that is impossible.

a) If $h = 3$, then $T|_C = T_7$. Indeed, if $a_0,b_0 \in V(p_0)$ then $T|_{\{a_0,b_0,a_1,a_2,a_3,a_5\}} \simeq \beta_6^+$, and $\{a_0,b_0,a_1\}, \{a_2,a_3\}$ are two intervals of $T|_{\{a_0,b_0,a_1,a_2,a_3,a_5\}}$, that is impossible.

b) If $h = 2$, then $T|_C = T_5$, or $T|_C$ is obtained by dilating one vertex of T_5 by a chain of cardinality 2. Indeed:

Case 1. $a_0,b_0,c_0 \in V(p_0)$, then $T|_{\{a_0,b_0,c_0,a_1,a_2,a_3\}} \simeq \beta_6^+$ and $\{a_0,b_0,c_0\}, \{a_1,a_2\}$ are two intervals of $T|_{\{a_0,b_0,c_0,a_1,a_2,a_3\}}$, that is impossible.

Case 2. If $a_i,b_i \in V(p_i)$ for all $i \in \{0,1\}$, then $T|_{\{a_0,b_0,a_1,a_3,a_4\}} \simeq \beta_6^+$ and $\{a_0,b_0,a_4\}, \{a_1,b_1\}$ are two intervals of $T|_{\{a_0,b_0,a_1,a_3,a_4\}}$, that is impossible.

Case 3. If $a_i,b_i \in V(p_i)$ for all $i \in \{0,1,2\}$, then $T|_{\{a_0,b_0,a_1,a_2,a_4\}} \simeq \beta_6^+$ and $\{a_0,b_0,a_1\}, \{a_2,b_2\}$ are two intervals of $T|_{\{a_0,b_0,a_1,a_2,a_4\}}$, that is impossible.

Case 3. If $h = 1$, then $T|_C$ is obtained by dilating one vertex of C_3 by a chain or by dilating two or three vertices of C_3 by a chain of cardinality 2.

d) If $h = 0$, then $T|_C$ is a chain.

In all cases, $T|_C$ and $T'|_C$ are (≤ 6)-hompomorphic. From 1) of Lemma 5.7 C is an interval of T' and T. Then, from 2) of Corollary 5.6 T and T' are hereditarily isomorphic. □
References

[1] Achour M, Boudabbous Y, Boussairi A. Les paires de tournois \{-3\}-hypomorphes, C R Math Acad Sci Paris 2012; 350 n° 9-10: 433–437.

[2] Bondy JA. Basic Graph Theory : Paths and circuits, Handbook of Combinatorics, Vol. I, Ed. Graham RL, Grötschel M and Lovász L. North-Holland, 1995, pp. 3–110.

[3] Bouaziz M, Boudabbous Y, El Amri N. Hereditary hemimorphy of \{-k\}-hemimorphic tournaments for \(k \geq 5\). J Korean Math Soc 2011; 48 n° 3: 599–626.

[4] Boudabbous Y. Isomorphie hereditaire et \{-4\}-hypomorphie pour les tournois. C R Math Acad Sci Paris 2009; 347 n° 15-16: 841–844.

[5] Boudabbous Y, Dammak J. Sur la \((-k)\)-demi-reconstructibilité des tournois finis. C R Acad Sci Paris Sér I Math 1998; 326 n° 9: 1037–1040.

[6] Boudabbous Y, Lopez G. Procédé de construction des relations binaires non \((\leq 3)\)-reconstructibles. C R Acad Sci Paris Sér I Math 1999; 329 n° 10: 845–848.

[7] Boudabbous Y, Lopez G. The minimal non-(\(\leq k\))-reconstructible relations. Discrete Math 2005; 291 n° 1-3: 19–40.

[8] Dammak J. Le seuil de reconstructibilité par le haut modulo la dualité des relations binaires finies. Proyecciones 2003; 22 n° 3: 209–236.

[9] Dammak J. La \((-5)\)-demi-reconstructibilité des relations binaires connexes finies. Proyecciones 2003; 22 n° 3: 181–199.

[10] Dammak J, Lopez G, Pouzet M, Si Kaddour H. Hypomorphy of graphs up to complementation. JCTB, Series B 2009; 99 n° 1: 84–96.

[11] Ehrenfeucht A, Rozenberg G. Primitivity is hereditary for 2-structures. Theoret Comput Sc 1990; 70 n° 3: 343–358.

[12] Fine NJ. Binomial coefficients modulo a prime. American Mathematical Monthly 1947; 54 : 589–592.

[13] Fraïssé R. Abritement entre relations et spécialement entre chaînes. Symposia Mathematica, (INDAM, Rome, 1969/70). London: Academic Press, 1971, 5: pp. 203–251.

[14] Gallai T. Transitiv orientierbare graphen. Acta Math Acad Sci Hungar 1967; 18: 25–66.

[15] Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001.
[16] Gottlieb DH. A certain class of incidence matrices. Proc Amer Math Soc 1966; 17: 1233–1237.

[17] Kantor, W. On incidence matrices of finite projection and affine spaces. Math Zeitschrift 1972; 124: 315–318.

[18] Kelly P.J.: A congruence theorem for trees. Pacific J Math 1957; 7: 961–968.

[19] Lopez G. Deux résultats concernant la détermination d’une relation par les types d’isomorphie de ses restrictions. C R Acad Sci Paris, Sér A 1972; 274: 1525–1528.

[20] Lopez G. Sur la détermination d’une relation par les types d’isomorphie de ses restrictions. C R Acad Sci Paris, Ser A, 1972; 275: 951–953.

[21] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and \((n – 1)\). I. Z Math Logik Grundlag Math 1992; 38 n° 1: 27–37.

[22] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and \((n – 1)\). II. Z Math Logik Grundlag Math 1992; 38 n° 2: 157–168.

[23] Pouzet M. Application d’une propriété combinatoire des parties d’un ensemble aux groupes et aux relations. Math Zeitschrift 1976; 150: 117–134.

[24] Pouzet M. Relations non reconstructibles par leurs restrictions. JCTB, Series B 1979; 26 n° 1: 22–34.

[25] Ramsey FP. On a problem of formal logic, Proc London Math Soc 1976; S2-30 n° 1: 264–286.

[26] Schmerl JH, Trotter WT. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Math. 1993; 113 n° 1-3: 191–205.

[27] Wilson RM. A diagonal form for the incidence matrices of \(t\)-subsets \(v.s. k\)-subsets. Europ J Combinatorics 1990; 11 n° 6: 609–615.