The growing role of methane in anthropogenic climate change

M Saunois1, R B Jackson2, P Bousquet3, B Poulter4 and J G Canadell3

1 Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
2 Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305–2210, USA
3 Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT 59717, USA
4 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia

E-mail: marielle.saunois@lsce.ipsl.fr

Abstract
Unlike CO2, atmospheric methane concentrations are rising faster than at any time in the past two decades and, since 2014, are now approaching the most greenhouse-gas-intensive scenarios. The reasons for this renewed growth are still unclear, primarily because of uncertainties in the global methane budget. New analysis suggests that the recent rapid rise in global methane concentrations is predominantly biogenic—most likely from agriculture—with smaller contributions from fossil fuel use and possibly wetlands. Additional attention is urgently needed to quantify and reduce methane emissions. Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO2 mitigation.

Introduction
Atmospheric methane (CH4) has experienced puzzling dynamics over the past 15 years. After a period of relative stagnation in the early 2000s (+0.5 ± 3.1 ppb yr−1 increase on average for 2000–2006), atmospheric methane concentrations have increased rapidly since 2007 at more than ten times this rate (+6.9 ± 2.7 ppb yr−1 for 2007–2015; figure 1 top left; Dlugokencky 2016). The atmospheric growth rate of methane accelerated to +12.5 ppb in 2014 and +9.9 ppb in 2015, reaching an annual average concentration of 1834 ppb in 2015 (Dlugokencky 2016). Because of this acceleration, the evolution of atmospheric methane over the last three years is inconsistent with the mitigation required in the Representative Concentration Pathways (RCP) of 2.5, 4 and 6 W m−2 and now most closely aligns with the RCP 8.5 W m−2 (figure 1 top left) (Fujino et al 2006, Clarke et al 2007, Riahi et al 2007, van Vuuren et al 2007). This emerging dynamic highlights methane’s growing contribution to global warming relative to the observed slower growth rates of CO2 over the past three years (Le Quéré et al 2016, ESSD; figure 1 top right, Jackson et al 2016) and a relatively constant growth rate of nitrous oxide (N2O) (Hartmann et al 2013).

The global methane budget
The balance of surface sources and sinks determines the global methane budget. Surface sources include methane originating from biogenic (wetlands, lakes, agriculture, waste/landfill, permafrost), thermogenic (fossil fuel usage and natural seeps), pyrogenic (biomass and biofuel burning) or mixed (hydrates, geological) sources. Dominant sinks include methane oxidation by the hydroxyl radical (OH) and other radicals in the atmosphere as well as methanotrophy in soils. Based on a new ensemble of atmospheric studies, global emissions are estimated at 559 [540–568] Tg CH4 yr−1 for the 2003–2012 decade (Saunois et al 2016). Tropical sources, including both natural and anthropogenic sources represent two-thirds of total global emissions and are dominated by emissions from wetlands (figure 2). Approximately two-thirds of global emissions are also attributable to anthropogenic activities, including those from both mid-latitudes and the tropics (e.g., agriculture and waste, figure 2).

Changes in the methane budget since 2007
Despite substantial knowledge about the location, size and trends of methane sources and sinks, the relative...
Contribution explaining the recent atmospheric increase remain uncertain (e.g. Nisbet et al 2014, 2016). Based on activity data and emission factors from various anthropogenic sectors, bottom-up inventories of anthropogenic emissions estimate an increase of fossil-related emissions of 3–4 Tg each year since 2007 (EPA 2012; EDGAR 2014). Using ethane measurements and methane-to-ethane ratios, Haussmann et al (2016) also suggest a substantial contribution of fossil-related emissions (18%–73% of the total increase in atmospheric methane). 13CH$_4$ isotopic observations show a significant depletion of 13C in the atmosphere (\sim−0.12‰ in seven years), suggesting that increases in methane emissions after 2006 are primarily biogenic and are more consistent with sources from agriculture than natural wetlands (Nisbet et al 2016; Schaefer et al 2016). Recent bottom-up inventories estimate an increase in agricultural annual emissions of 3–5 Tg between 2006 and 2012, mostly from Africa and Asia, whereas wetland emissions were estimated to be mostly unchanged between 2006 and 2012 (Poulter et al 2016). Meanwhile, biomass burning emissions decreased by 2–3 Tg yr$^{-1}$ between 2007 and 2013 compared to 2000 and 2006, although the recent El Niño conditions have lead to abnormally large peat fires in Indonesia (Van der Werf et al 2016). Not accounting for this long-term decrease in the 13C-heavy methane source from biomass burning, and based on 13C atmospheric observations and on an enriched database for isotopic source signatures, Schwietzke et al (2016) even find decreasing fossil fuel emissions since 2000, a different conclusion than reached in most other recent studies.

Sinks may also be playing a role in the rapid rise in atmospheric methane over the last decade (figure 1). Using a chemistry-transport model run over 40 years, Dalsøren et al (2016) infer a stabilization of OH concentrations after 2006, in contrast to a total 3% increase since the late 1990s (8% since the 1970s). Stabilized OH concentrations can increase methane lifetimes and may help explain the atmospheric methane increase as well, as a decrease of 1% in atmospheric OH concentrations is roughly equivalent to \sim5 Tg yr$^{-1}$ of increased methane emissions (e.g. Saunois et al 2016).

These various factors notwithstanding, there is no consensus scenario of methane sources and sinks that explains the atmospheric increase since 2007 (Kirschke et al 2013). Recent evidence from atmospheric observations suggests three main contributors for emission changes. The first element is an increase in biogenic emissions, mostly from agriculture (13C compatible, Schaefer et al 2016). The second is an increase of fossil-
related emissions (ethane-compatible, Haussmann et al 2016). The third is a decrease of biomass burning emissions (13C compatible and cancelling a fossil fuel increase, Van der Werf et al 2016). The necessity of an anthropogenic emission increase can still be reduced by a possible stagnation of OH concentrations or by regional contributions from wetland emissions, such as emissions fluctuations resulting from drought conditions in South America (e.g., in 2010–2011; Basso et al 2016).

At the regional scale, methane emissions contributing to the observed atmospheric increase since 2006 are most likely tropical, although some mid-latitude regions, such as China, also appear to contribute to the increase (e.g., Bergamaschi et al 2013). To date, no significant contribution to the atmospheric increase from Arctic regions has been found, except in 2007 and attributable then to a relatively warm and late summer (Dlugokencky et al 2011). Contrary to a recent estimate based on three different atmospheric inversions (Turner et al 2016), no trend in US methane emissions is found in the ensemble of inversions gathered in Saunois et al (2016), and thus a substantial contribution of US shale gas industry to the recent methane atmospheric increase seems unlikely (Bruhwiler et al 2016).

Strategies to reduce uncertainties on the methane budget

Scientific breakthroughs are needed to predict methane emissions today and in the future, particularly with a changing climate. First, annual to decadal CH$_4$ emissions from natural wetlands and other inland water systems are highly uncertain. The sum of all natural methane sources as inferred by process-based bottom-up modelling is too large by about 30% compared to the constraint provided by methane atmospheric mixing ratios. The strategy to address this issue requires developing and synthesizing (i) direct methane flux measurements in the field to constrain the parametrizations of land surface models similarly to Fluxnet-CO$_2$, (ii) process-based models for lakes, rivers, and permafrost methane emissions (e.g., Tan and Zhuang 2015 for lakes), and (iii) dynamic global high resolution maps (50–100 m) with all inland water surfaces consistently categorized to avoid double counting emitting surfaces (Yamazaki et al 2015).

Second, the partitioning of CH$_4$ emissions and sinks by region and process needs to be better constrained by atmospheric observations and process-based models. Beyond the recurring need for a broader network of methane observations, it is essential (i) to extend observations of tracers more specific to individual methane sources and sinks such as methane isotope concentrations and emission signatures (Röckmann et al 2011; Schaefer et al 2016) and ethane (Haussmann et al 2016), and (ii) to improve the estimation of magnitude and trend of OH radicals by better quantifying its sources and sinks in chemistry climate models (e.g. Dalsoren et al 2016). The latter will benefit from a recent inter-comparison of chemistry climate models (the Chemistry...
Climate Model Initiative (CCMI) update of Lamarque et al (2013) and CMIP6 simulations scheduled for the next IPCC report. Breakthrough technologies already allow high precision measurements of methane and its isotopes at the surface, for instance using cavity ring down spectrometers such as in Maher et al. (2014). Future LIDAR measurements from space will provide the first low-bias global estimate of methane atmospheric columns all year round beginning in ~2020 (Kiemle et al. 2014). The partitioning of emissions will also benefit from efforts to improve and regularly update anthropogenic inventories.

Third, uncertainties in the modelling of atmospheric transport and chemistry limit the optimal assimilation of atmospheric observations and increase the uncertainties of the inversion-derived flux estimates. Key steps should include the improvement of OH fields and other methane sinks (e.g., methane oxidation by other radicals), refinements in the horizontal and vertical model grids, parameterization of vertical mixing and representation of stratospheric concentrations. Such modelling improvements could be accomplished through regular inter-comparisons such as TRANSCOM (e.g., Patra et al. 2011) or CCMI (Lamarque et al. 2013) and through additional efforts for model validation (Bergamaschi et al. 2013).

Mitigation opportunities

Despite important uncertainties in methane sources and sinks, the recent increase in methane concentrations suggests a dominant anthropogenic contribution (either biogenic or thermogenic). Methane therefore offers growing opportunities for climate change mitigation that could allow a return to lower emission trajectories such as RCP6 or RCP4.5. Because of methane’s high global warming potential and short lifetime in the atmosphere compared to CO₂, its mitigation offers the possibility to slow climate change efficiently in a shorter time horizon. In addition to climate benefits, reducing methane emissions could help improve human health and crop production through simultaneous reductions in ozone production (West et al. 2013; Shindell 2016) and provide business and employment opportunities. A diverse set of strategies already exists, as proposed by multilateral partnerships such as the Global Methane Initiative (www.globalmethane.org) and the Climate and the Clean Air Coalition (www.ccacoalition.org), and supported further by the G7 Leaders Declaration in May 2016 (www.whitehouse.gov/the-press-office/2016/05/27/g7-ise-shima-leaders-declaration) to ‘recognize the importance of mitigating emissions of short-lived climate pollutants’. These opportunities include (i) venting and flaring of methane in coal-mines, while also improving worker safety, (ii) detecting and removing natural gas leaks, from wellpads upstream through the distribution chain downstream (e.g., McKain et al. 2015), (iii) covering landfills, which reduces methane emissions while producing biogas for energy and transport usage, and (iv) developing farm bio-digesters, which has been extensively applied in Germany and is spreading to other European countries (e.g., Lebuhn et al. 2014). Other strategies are being developed but need more research on potential unintended consequences. For example, modifying ruminants’ diet (e.g., linseed fed) to limit methane emissions is currently being examined but needs evaluation against the quality of meat and milk (e.g., Marette and Millet 2014) and against emissions of other greenhouse gases such as N₂O. Modification of rice agriculture practices (e.g., semi-inundated paddies, dry cultivation) is well tested and promising, assuming yield and quality of the staple food for more than 3 billion people can be guaranteed (e.g., Sun et al. 2016). Such mitigation policies in the agriculture and waste sectors are key to reducing methane emissions in most of the high emitting regions (figure 2).

Conclusions

Methane appears to play an increasing role in on-going anthropogenic climate change, particularly in light of the slowdown of CO₂ fossil fuel emissions over the past three years (figure 1, bottom right). Methane emissions from increasing agricultural activities seem to be a major, possibly dominant, cause of the atmospheric growth trends of the past decade (e.g., Herrero et al. 2016). The rapid increase in methane concentrations offers a growing mitigation opportunity, acknowledging the need to balance food security and environmental protection (Wollenberg et al. 2016). Keeping global warming below 2 °C is already a challenging target, with most of the attention placed primarily on CO₂ emissions. Such a target will become increasingly difficult if reductions in methane emissions are not also addressed strongly and rapidly.

Acknowledgments

The authors acknowledge the many scientists and funding agencies whose efforts and support contributed to the new Global Methane Budget released by the Global Carbon Project (globalcarbonproject.org). JGC thanks the support of the NESP-ESCC Hub.

References

Basso L S et al. 2016 Seasonality and interannual variability of CH₄ fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles. J. Geophys. Res. Atmos. 121: 168–84.

Bergamaschi P et al. 2013 Atmospheric CH₄ in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements J. Geophys. Res.: Atmos. 118: 7350–69.

Bruhwiler L M et al. 2016 US CH₄ emissions from oil and gas production: have recent large increases been detected? J. Geophys. Res. submitted.
Clarke L et al 2007 Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the US Climate Change Science Program and the Subcommittee on Global Change Research (Washington, DC: Department of Energy, Office of Biological & Environmental Research) p 154

Dalsøren S B et al 2016 Atmospheric methane evolution the last 40 years Atmos. Chem. Phys. 16 3099–126

Dlugokencky E J, Nisbet E G, Fisher R and Lowery D 2011 Global atmospheric methane: budget, changes and dangers Phil. Trans. R. Soc. A 369 2058–72

Dlugokencky E J 2016 NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends_ch4/)(Accessed: 18 July 2016)

EDGAR 2014 European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL) Emission Database for Global Atmospheric Research (EDGAR), release EDGARv4.2 FT2012 (http://edgar.jrc.ec.europa.eu)

EPA 2012 Global Anthropogenic Non-CO2 Greenhouse Gas Emissions 1990–2030, EPA 430-R-12-006 (Washington, DC: US Environmental Protection Agency)

Fujino J et al 2006 Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Multigas mitigation and climate policy Energy J. 27 343–53

Hartmann D L et al 2013 Observations: atmosphere and surface Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T F Stocker et al (Cambridge: Cambridge University Press)

Hausmann P, Sussmann R and Smale D 2016 Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top-down estimate from ethane and methane column observations Atmos. Chem. Phys. 16 3227–44

Herrero M et al 2016 Greenhouse gas mitigation potentials in the livestock sector Nat. Clim. Change 6 452–61

Jackson B B et al 2016 Reaching peak emissions Nat. Clim. Change 6 7–10

Kiome C et al 2014 Performance simulations for a spaceborne methane lidar mission J. Geophys. Res.: Atmos. 119 4365–79

Kirschke S et al 2013 Three decades of global methane sources and sinks Nat. Clim. Change 6 813–23

Lamarque J F et al 2013 The atmospheric chemistry and climate model intercomparison project (ACCMIP): overview and description of models, simulations and climate diagnostics Geosci. Model Dev. 6 179–206

Lebahn M, Munk B and Eifenerberger M 2014 Agricultural biogas production in Germany— from practice to microbiology basics Energy Sustainability Soc. 4 10

Le Quéré C et al 2016 Global carbon budget 2016 Earth System Science Data (doi:10.5194/essd-8-605-2016)

Maier D T, Santos I R and Tait D R 2014 Mapping methane and carbon dioxide concentrations and δ13C values in the atmosphere of two australian coal seam gas fields Water, Air Soil Pollut. 225 22316

Marette S and Millet G 2014 Economic benefits from promoting linseed in the diet of dairy cows for reducing methane emissions and improving milk quality Food Policy 46 140–9

McKain K et al 2015 Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts Proc. Natl Acad. Sci. USA 112 1941–6

Meinshausen M et al 2011 The RCP greenhouse gas concentrations and their extension from 1765 to 2300 Clim. Change 109 213

Nisbet E G, Dlugokencky E J and Bouquet P 2014 Methane on the rise–again Science 343 993–5

Nisbet E G et al 2016 Rising atmospheric methane: 2007–2014 growth and isotopic shift Glob. Biogeochem. Cycles 30 1356–70

Patra P K et al 2011 TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere Atmos. Chem. Phys. 11 12813–37

Poulter B et al 2016 Global wetland contribution to increasing atmospheric methane concentrations (2000–2012), submitted

Riahi K, Gruebler A and Nakicenovic N 2007 Scenarios of long-term socio-economic and environmental development under climate stabilization Technol. Forecast. Soc. Change 74 887–935

Röckmann T et al 2011 The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements Atmos. Chem. Phys. 11 13287–304

Saunois M et al 2016 The global methane budget: 2000–2012 Earth Syst. Sci. Data Discuss. 8 1–54

Schafer H et al 2016 A 21st century shift from fossil fuel to biogenic methane emissions indicated by 13CH4 Science 352 80–4

Schwietzke S et al 2016 Upward revision of global fossil fuel methane emissions based on isotope database Nature 538 88–91

Shindell D T 2016 Crop yield changes induced by emissions of individual climate-altering pollutants Earth’s Future 4 EF000377

Sun H, Zhou S, Fu Z, Chen G, Zou G and Song X 2016 A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions Sci. Rep. 6 28255

Tan Z and Zhuang Q 2015 Arctic lakes are continuous methane sources to the atmosphere under warming conditions Environ. Res. Lett. 10 054016

Turner A J et al 2016 A large increase in US methane emissions over the past decade inferred from satellite data and surface observations Geophys. Res. Lett. 43 2218–24

Van der Werf G 2016 http://globalfiredata.org/figures.html (Accessed: November 2016)

van Vuuren D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S and van Houweland R 2007 Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs Clim. Change 81 119–59

West J et al 2013 Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Nat. Clim. Change 3 885–9

Wollenberg E et al 2016 Reducing emissions from agriculture to meet the 2 °C target Glob. Change Biol. 22 3859–64

Yamazaki D, Trigg M A and Ikeshima D 2015 Development of a global ~90 m water body map using multi-temporal Landsat images Remote Sens. Environ. 171 337–51