Review Article

Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation

Miyong Yun 2, Young-Su Yi 1,*

1 Department of Life Science, Kyonggi University, Suwon, Republic of Korea
2 Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea

ARTICLE INFO
Article history:
Received 16 September 2019
Received in Revised form 16 December 2019
Accepted 17 December 2019
Available online 24 December 2019

Keywords:
Ginseng
Ginsenoside
Inflammasome
Inflammation
Inflammatory caspase

ABSTRACT
Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

© 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inflammation is an innate immune response that protects the body against microbial infection and cellular stress and is characterized by five hallmarks: redness, swelling, heat, pain, and loss of tissue functions [1–3]. The inflammatory response is initiated through recognizing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs) expressed on or in inflammatory cells [1,2,4]. The inflammatory response consists of two main consecutive steps: priming and triggering. Priming is a preparatory step in activating intracellular signal transduction cascades in inflammatory pathways, such as nuclear factor-kappa B (NF-κB), activator protein-1, and interferon regulatory factors, resulting in inflammatory gene expression and inflammatory mediator generation [5–7]. By contrast, triggering is the boosting step in activating inflammasomes, protein complexes comprising intracellular PRRs, and inflammatory molecules, resulting in gasederin D (GSDMD)–mediated pyroptosis, an inflammatory cell death via forming membrane GSDMD pores, as well as the caspase-1–mediated maturation and secretion of proinflammatory cytokines, interleukin (IL)-1β, and IL-18, through the GSDMD pores [8–13].

Cysteine–aspartic proteases (caspases) are a family of endoproteases that hydrolyze the substrates after aspartic acid residues with their specific cysteine protease activity [14]. Caspases consist of an N-terminal caspase recruitment domain (CARD; caspase-1, 2, 4, 5, 9, 11, and 12) or two N-terminal death effector domains (DED; caspase-8 and 10), sequentially followed by large (~20 kDa) and small (~10 kDa) catalytic domains. However, executioner caspases, such as caspase-3, 6, 7, and 14, lack both CARD and DED and have only large and small catalytic domains. Caspases are initially generated as inactivezymogens (procaspases), and caspases are activated by proteolytic cleavage of dimeric or often oligomeric

Abbreviations: AIM2, Absent in melanoma 2; ASC, Apoptosis-associated speck-like protein containing CARD; Caspase, Cysteine aspartate—specific protease; CARD, C-terminal caspase recruit domain; COX-2, Cyclooxygenase-2; DAMP, Danger-associated molecular pattern; IFHD, Functional-to-find domain; GSDMD, Gasdermin D; HIN, Hematopoietic interferon-inducible nuclear protein; IL, Interleukin; LPS, Lipopolysaccharide; LRR, Leucine-rich repeat; NACHT, Nucleotide-binding and oligomerization domain; NO, Nitric oxide; NLR, Nucleotide-binding oligomerization domain-like receptor; NF-κB, Nuclear factor-kappa B; PGE2, Prostaglandin E2; PAMP, Pathogen-associated molecular pattern; PRR, Pattern-recognition receptor; PYD, N-terminal pyrin domain; RGE, Korean Red Ginseng; ROS, Reactive oxygen species.

* Corresponding author. Department of Life Science, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea.

E-mail address: yysi@kgu.ac.kr (Y.-S. Yi).

https://doi.org/10.1016/j.jgr.2019.12.006
p1226-8453 e2093-4947/$ – see front matter © 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Journal of Ginseng Research

journal homepage: http://www.ginsengres.org
procaspases into large and small subunits in response to specific stimuli, followed by the molecular interaction of these subunits to form active homodimeric or heterodimeric caspases. Historically, caspases were identified as inducers of apoptosis, a form of programmed cell death that removes old and injured cells [15]. Interestingly, recent studies identified new types of caspases involved in inflammatory responses, named as inflammatory caspases, and have uncovered the molecular mechanisms by which these inflammatory caspases induce pyroptosis, an inflammatory cell death that promotes the secretion of proinflammatory cytokines, IL-1β, and IL-18 [16]. Accumulating evidence has shown that dysregulation of caspase functions in biological processes is strongly associated with inflammation, autoimmune, tumorigenesis, and infectious pathologies [17–19].

Panax ginseng (Korean ginseng) is a perennial slow-growing plant that is cultivated mostly in the East Asian and North American countries. Ginseng has long been used as traditional herbal medicine as itself or in combination with other medicines to treat various human diseases, including cancers, diabetes, hypertension, stroke, cardiovascular, neurodegenerative, infectious, and inflammatory diseases [20–29]. Similar to other plants, ginseng comprises four main parts: berries, leaves, stalks, and roots, but the general term ginseng indicates its root. Because ginseng contains much water, it is easily decaying at room temperature; therefore, it is often processed to red ginseng by repeated steaming and drying. Studies have shown that red ginseng contains higher contents of bioactive compounds showing better biological activity and lower adverse effects compared with fresh ginseng [30]. Many efforts have been made on identifying the constituents in ginseng, and it has been reported that ginseng contains various bioactive compounds, including ginsenosides, alkaloids, glucosides, polysaccharides, and polyepitides exerting antiaging, antiadibiotic, immunoregulatory, neuroregulatory, anticancer, lipid-regulatory, and antithrombotic activities [31]. Of these, ginsenosides are the major constituents in ginseng. Ginsenosides are a class of natural steroidal glycosides and triterpenoid saponins, and major bioactive compounds in ginseng, ginsenosides have been identified in both humans and mice, and despite the difference in amino acid length (human and mouse caspase-1: 404 and 402 amino acids, respectively), both consist of N-terminal CARD, a large catalytic subunit (p20), and C-terminal small catalytic subunit (p10) (Fig. 1). The first indication of the functional involvement of caspases in inflammatory responses was reported by the discovery of caspase-1 to facilitate the proteolytic processing and maturation of IL-1β and IL-18 cytokines, critical inflammatory mediators [43,44]. Proteolytic maturation of inactive pro-IL-1β and pro-IL-18 and secretion of mature active IL-1β and IL-18 were defective in caspase-1-deficient mice, which were more resistant to endotoxin lipopolysaccharide (LPS)-induced septic shock [45,46] and intestinal inflammation [47]. Caspase-1 is activated by associating with multiple canonical nucleotide-binding and oligomerization domain-like receptor (NLR) family (NLRP1, NLRP3, and NLR4C) or absent in melanoma 2 (AIM2) inflamasomes in response to inflammasome-stimulating ligands. Recruitment of the inactive caspase-1 to these canonical inflammasomes with or without the help of a bipartite adapter, apoptosis-associated speck-like protein (ASC), results in the proteolytic cleavage of caspase-1, which is activated by forming a homodimer of processed p20–p10 subunits [8,10]. The active caspase-1 subsequently induces the proteolytic cleavage of GSDMD, and the cleaved N-terminal GSDMD fragments move to the cell membrane and generate the GSDMD pores, resulting in pyroptosis. The active caspase-1 also induces the proteolytic maturation of active IL-1β and IL-18, and these active proinflammatory cytokines are secreted through the GSDMD pores (Fig. 2).

2. Inflammatory caspases

Caspases induce apoptotic cell death by playing as either initiators (caspase-2, 8, 9, and 10) or executioners (caspase-3, 6, and 7), and these caspases play critical roles in promoting apoptotic cell death in response to various stimuli. Cell death was also observed in macrophages infected with the gram-negative bacteria, Shigella flexneri or Salmonella typhimurium [37,38]. Interestingly, the features of this type of cell death were distinct from those of apoptosis and later characterized as a novel type of cell death induced by inflammatory responses, now known as pyroptosis [39,40]. Similar to apoptosis, caspases are actively involved in pyroptosis, whereas caspases functioning in pyroptosis are different from caspases involved in apoptosis; therefore, these caspases that play roles in innate immune responses are named as “inflammatory caspases.” Pyroptosis is the cell death process induced by inflammatory responses to dispose pathogen-laden macrophages and clear infected intracellular pathogens in response to a variety of PAMPs and DAMPs. Pyroptosis involves the activation of inflammasomes, intracellular protein complexes, comprising intracellular PRRs and inflammatory molecules, and inflammatory caspases, leading to cell lysis due to GSDMD-mediated membrane pore formation and water influx—mediated osmotic pressure, followed by the secretion of proinflammatory cytokines, IL-1β and IL-18 [10,39,41,42]. Several types of inflammatory caspases have been identified (Fig. 1) and demonstrated to play a pivotal role in inflammasome activation pathways during inflammatory responses.

2.1. Caspase-1

Several types of novel caspases have been identified in mammals to play a pivotal role in inflammatory responses. The first caspase identified as inflammatory caspase was caspase-1. Caspase-1 is found in both humans and mice, and despite the difference in amino acid length (human and mouse caspase-1: 404 and 402 amino acids, respectively), both consist of N-terminal CARD, a large catalytic subunit (p20), and C-terminal small catalytic subunit (p10) (Fig. 1). The first indication of the functional involvement of caspases in inflammatory responses was reported by the discovery of caspase-1 to facilitate the proteolytic processing and maturation of IL-1β and IL-18 cytokines, critical inflammatory mediators [43,44]. Proteolytic maturation of inactive pro-IL-1β and pro-IL-18 and secretion of mature active IL-1β and IL-18 were defective in caspase-1-deficient mice, which were more resistant to endotoxin lipopolysaccharide (LPS)-induced septic shock [45,46] and intestinal inflammation [47]. Caspase-1 is activated by associating with multiple canonical nucleotide-binding and oligomerization domain-like receptor (NLR) family (NLRP1, NLRP3, and NLR4C) or absent in melanoma 2 (AIM2) inflamasomes in response to inflammasome-stimulating ligands. Recruitment of the inactive caspase-1 to these canonical inflammasomes with or without the help of a bipartite adapter, apoptosis-associated speck-like protein (ASC), results in the proteolytic cleavage of caspase-1, which is activated by forming a homodimer of processed p20–p10 subunits [8,10]. The active caspase-1 subsequently induces the proteolytic cleavage of GSDMD, and the cleaved N-terminal GSDMD fragments move to the cell membrane and generate the GSDMD pores, resulting in pyroptosis. The active caspase-1 also induces the proteolytic maturation of active IL-1β and IL-18, and these active proinflammatory cytokines are secreted through the GSDMD pores (Fig. 2).

2.2. Caspase-11

After the discovery of caspase-1 as an inflammatory caspase, other types of caspases have been further identified in mammals [48,49]. Bacterial toxins have been shown to induce inflammatory responses in macrophages by activating inflammasome pathways, leading to IL-1β secretion. Unexpectedly, NLRP3 inflammasome activation and subsequent IL-1β secretion induced by cholera toxin B have been observed to be abolished in bone marrow–derived macrophages (BMDMs) isolated from the 129S6 mouse strain that expresses the truncated and nonfunctional caspase-11 due to polymorphisms in the caspase-11 gene locus [48]. In addition, these
mice were also much more resistant to septic shock induced by a lethal dose of LPS, an endotoxin in the outer membrane of gram-negative bacteria [48]. A series of follow-up studies have further shown that caspase-11-induced inflammatory responses are activated by gram-negative bacterial infection [50–52], suggesting that caspase-11 is a novel inflammatory caspase not yet identified as a component involved in the canonical inflammasome pathway and plays a unique role during the inflammatory responses in macrophages. Moreover, the molecular mechanism by which caspase-11 induces inflammatory responses in macrophages is different from that of canonical inflammasome pathways; therefore, caspase-11-mediated inflammatory responses were described as a “noncanonical inflammasome” pathway [53–55]. Similar to caspase-1, caspase-11 comprises an N-terminal CARD, a large catalytic subunit (p20), and a C-terminal small catalytic subunit (p10), with a length of 373 amino acids (Fig. 1). Caspase-11 directly interacts with intracellular LPS, and LPS–caspase-11 complexes are oligomerized to form the caspase-11 noncanonical inflammasome in macrophages infected with gram-negative bacteria [53–55]. Subsequently, the caspase-11 noncanonical inflammasome cleaves GSDMD at the aspartic acid residue at the 276th position (Asp276) to produce N-terminal and C-terminal GSDMD fragments, and the cleaved N-terminal GSDMD fragments move to the cell membrane, followed by GSDMD pore production, leading to pyroptosis (Fig. 2). The caspase-11 noncanonical inflammasome also promotes caspase-1 function by activating the NLRP3 inflammasome. The underlying mechanism by which caspase-11 noncanonical inflammasome activates NLRP3 inflammasome is still poorly understood; however, some studies reported that K+ efflux, an essential and sufficient process for NLRP3 inflammasome activation, is induced during inflammatory responses [56,57]. Another study also reported that N-terminal GSDMD fragments produced by caspase-11 noncanonical inflammasome activate NLRP3 inflammasome in macrophages [58]. Caspase-1 activated by caspase-11 noncanonical inflammasome facilitates the proteolytic maturation of the inactive pro-IL-1β and pro-IL-18 to produce active IL-1β and IL-18, and these proinflammatory cytokines are secreted through the GSDMD pores.

2.3. Caspase-4/5

Caspase-11 was initially discovered in mice; however, human caspases with similar functions with mouse caspase-11 in inflammatory responses were not found. Therefore, many efforts have been made in identifying the human homologs of mouse caspase-11. Similar to mouse caspase-11, human caspase-4 and 5 reportedly directly interacts with LPS derived from gram-negative bacteria, followed by the formation of the oligomeric caspase-4/5 noncanonical inflammasome, leading to pyroptosis [49]. Similar to other inflammatory caspases, human caspase-4/5 also comprise an N-terminal CARD, a large catalytic subunit (p20), and a C-terminal small catalytic subunit (p10) (Fig. 1). However, their sizes are quite different, and caspase-4 and 5 are 377 and 434 amino acids in length, respectively, (Fig. 1). Recent studies have further shown that caspase-4/5 noncanonical inflammasomes induced the proteolytic activation of GSDMD and caspase-1 by direct interaction between caspase-4/5 and intracellular LPS, leading to pyroptosis by GSDMD-mediated pore formation and caspase-1–promoted maturation and IL-1β and IL-18 secretion through GSDMD pores (Fig. 2) [49,59–64]. Differences in functions might exist between mouse caspase-11 and human caspase-4/5 during inflammatory responses, which has not been demonstrated yet; however, evidence shows that caspase-4/5 are accepted as human counterparts of mouse caspase-11 that play a pivotal role in inflammasome-activated inflammatory responses by directly recognizing intracellular LPS.

2.4. Caspase-12

Caspase–12 is found in both humans and rodents. Functional full-length caspase-12 is expressed in rodents; however, caspase-12 exists in full length and truncated forms because of the alternative splicing in humans (Fig. 1) [63]. Caspase-12 is not expressed in 75% of the human population, including all Caucasians and most Africans, Americans, and Asians, whereas the remaining 25% population of North and sub-Saharan Africans express full-length caspase-12 with proteolytically inactive pseudoprotease activity.
Caspase-12 belongs to the inflammatory caspase subfamily based on phylogenetic clustering [14]; however, the role of caspase-12 and molecules functionally interacting with caspase-12 has been poorly understood to date. Early studies suggested that caspase-12 plays a role in the endoplasmic reticulum (ER) stress-mediated apoptosis; however, the recent scientific consensus is that caspase-12 is not necessary for apoptosis. Population and in vivo studies using animal models of infectious diseases and sepsis have further shown the role of full-length caspase-12 in inflammatory responses. Interestingly, in contrary to other inflammatory caspases, caspase-12 acts as a negative regulator of inflammatory responses. Caspase-12 inhibits inflammatory responses by suppressing caspase-1 and IL-1β secretion, and this inhibitory function is independent on protease activity [67]. In addition, bacterial clearance and resistance to endotoxin-induced septic shock were also enhanced in mice deficient with the caspase-12 gene, and the protease activity of caspase-12 was not required for this effect [68]. Moreover, decreased inflammatory and innate immune responses and enhanced susceptibility to sepsis were observed in ~20% of the sub-Saharan African population who expresses the full-length functional caspase-12 [69]. These studies strongly suggest that caspase-12 is an anti-inflammatory or a proinflammatory caspase because of a limited number of studies, and given the contradictory observations, further studies investigating the roles of caspase-12 in inflammatory responses are highly required.

3. Regulatory roles of ginseng on inflammatory caspases

3.1. Effect on caspase-1

Saponin, a natural glycoside with a wide range of pharmacological properties, is the major constituent in ginseng. Therefore, efforts have been made in isolating the saponins from ginseng and evaluating their effects on caspase-1 functions.

Li et al prepared total saponins of Panax notoginseng (TSPN) and evaluated the effect of TSPN on caspase-1 in rats with cerebral ischemia-reperfusion injury. Inflammation and oxidative stress interactively play critical roles in ischemia-reperfusion injury [71]. TSPN exhibits a neuroprotective effect by reducing caspase-1 expression, which is elevated in the brain tissue of rats with ischemia-reperfusion injury [72], indicating that the protective effect of TSPN on the neuroinflammatory disease is associated with the inhibition of inflammatory caspase-1 activation. A similar study conducted by Tang et al [73] investigated the effect of Panax...
Oral administration of Rd alleviated the symptoms of colitis and mechanism by which ginsenoside Rd ameliorates colitis in mice. These results provide the evidence that Cs IVa memory and spatial learning in the mouse neuroblastoma cell line, N2A cells transfected with mutant effect in in the aging process by inhibiting in inflammatory responses. Therefore, despite the suppressive effect of total in inflammatory diseases. AD2 (20(R)-dammarane-3b, 20, 25-tetrol; 25-OH-PPD; 25-OCH3-PPD) is a rare ginsenoside and has reportedly exerted various pharmacological effects. However, Rg3 has been poorly studied in mast cell inflammation. Kee and Hong [81] investigated the effect of Rg3 on inflammation. Ginsenoside Rg3 has been poorly studied in mast cell inflammation by using rat mast cell lines. Rg3 reduced histamine production and release from mast cells, HMC-1 and RBL-2H3, by inhibiting caspase-1 activation and also protected mice against anaphylaxis shock stimulated by IgE and compound 48/80, indicating that Rg3 can be a therapeutic agent that could treat allergic inflammatory diseases. AD2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD; 25-OCH3-PPD) is a rare ginsenoside, and Su et al [82] evaluated the antihepatic fibrosis effect of AD2 prepared from P. notoginseng and its underlying mechanism by using mice with thioacetamide-induced hepatic fibrosis. AD2 exhibited an antihepatic fibrosis effect by inhibiting inflammatory molecules, including caspase-1 associated with the pathogenesis of hepatic fibrosis in the liver tissues of mice with thioacetamide-induced hepatic fibrosis, suggesting that AD2 could be a potential pharmacological agent in ameliorating liver fibrosis by targeting inflammatory caspase-1.

Despite the strong evidence of the ginsenoside-mediated inhibitory effect on caspase-1 in the inflammatory responses and diseases, several studies explored the caspase-1 inhibitory effect of the mixture of ginseng components and other herbal agents. Saengmaeksan (SMS) is a Korean traditional herbal prescription comprising Ginseng Radix, P. ginseng root, and two different herbal agents, Liriopis Tuber and Schisandrae Fructus, and has been reported to be commonly used in Korea in treating some diseases, including respiratory and cardiovascular diseases. Jeong et al [83] investigated the caspase-1-targeted anti-inflammatory effect of SMS in mouse peritoneal macrophages. SMS reduced the inflammatory responses by inhibiting the production of inflammatory mediators, such as cyclooxygenase-2 and nitric oxide, and suppressing the activation of NF-κB and caspase-1 in the mouse.
peritoneal macrophages stimulated with LPS, suggesting that SMS can potentially be used as an anti-inflammatory prescription that contains a ginseng component to treat inflammatory diseases. Igongsan (IGS) is another Korean traditional herbal prescription containing a ginseng component consisting of five different herbs, Ginseng Radix, Atractylodis Rhizoma Alba, Poria Sclerotium, Glycyrrhizae Radix et Rhizoma, and Citri Unshiu Pericarpium has been used to treat various inflammatory diseases. Kim et al. [84] evaluated the caspase-1-targeted anti-inflammatory effect of IGS in the mouse peritoneal macrophages. IGS decreased the production of inflammatory mediators, such as proinflammatory cytokines and prostaglandin E2 (PGE) and also downregulated the expression of inflammatory genes, such as cyclooxygenase-2 and inducible nitric oxide synthase, in the mouse peritoneal macrophages stimulated with LPS. In addition, IGS inhibited NF-κB and caspase-1 activation in LPS-stimulated mouse peritoneal macrophages [84], strongly suggesting that IGS plays an anti-inflammatory role by negatively modulating inflammatory caspase-1 and NF-κB pathway activation in macrophages. These results provide insights into the development of IGS as a novel anti-inflammatory prescription to treat inflammatory diseases by targeting NF-κB and inflammatory caspase-1.

As discussed earlier, fresh ginseng easily decays because of the high quantity of moisture, and demoisturizing fresh ginseng by repeated steaming and drying produces red ginseng, which has higher contents of bioactive constituents and lowers adverse effects compared with fresh ginseng [30]. Therefore, several studies investigated the regulatory effect of red ginseng on caspase-1 activation in inflammatory responses. Kim et al. [85] prepared Korean Red Ginseng (KRG) extract (RGE) and investigated its effect on inflammasome activation in human and mouse macrophages. RGE inhibited both NLRP3 and AIM2 inflammasomes activation, resulting in caspase-1 activation, IL-1β secretion, and pyroptosis significantly suppressed in the RGE-treated mouse BMDMs and inflammasome activation in human and mouse macrophages. In addition, ginsenosides Rg1 and Rh3 were identified as critical components in RGE to inhibit the activation of these inflammasomes in macrophages [85]. These results suggest that RGE, especially two Rg1 and Rh3 ginsenosides in RGE have an anti-inflammatory activity by inhibiting the activation of NLRP3 and AIM2 inflammasomes and their common downstream effector, caspase-1 in macrophages. Kim et al. [86] also prepared the Korean Red Ginseng (KRG) extract and investigated its effect on caspase-1 in the drug-induced adverse effect, irreversible sensorineural hearing damage. KRG protected cisplatin-induced exacerbation of
Caspase Type	Compound	Roles	Models	Ref.	
Caspase-1	Total saponins	TSPN	TSPN reduced caspase-1 mRNA expression in cerebral ischemia-reperfusion injury rats	Rats cerebral ischemia-reperfusion injury	[72]
	SPJ		SPJ improved cognitive decline in aging rats	Aging rats with cognitive decline	[75]
			SPJ reduced caspase-1 expression in aging rats		
Ginsenoside	Rg1		Rg1 reduced symptoms and biomarkers of allergic rhinitis in mice	Mice with allergic rhinitis	[76]
			Rg1 inhibited caspase-1 activation in nasal mucosa tissue of disease mice		
Cs IVa			Cs IVa ameliorated HFD-induced inflammation in adipose tissue of mice	Mice with HFD-induced inflammation	[77]
			Cs IVa inhibited activation of NLRP3 pathway and caspase in mice and BMMDS		
Rf			Rf ameliorated AD-induced inflammatory responses by downregulating caspase-1 expression and facilitated AD clearance in mutant APP695-transfected N2A cells	APP695-transfected N2A cells	[78]
			Rf administration significantly improved neuronal functions in AD-induced Alzheimer disease mice	Mice with Alzheimer disease	
Rd			Rd alleviated colitis symptoms and reduced proinflammatory cytokine production in DSS-induced mice with colitis	LPS-stimulated THP-1 cells	[79]
			Rd suppressed the activation of NLRP3 inflammasome and caspase-1 in LPS-stimulated THP-1 cells	Mice with colitis	
CK			CK ameliorated diabetic nephropathy in mice with HFDSTZ-induced diabetic nephropathy and HBZY-1 cells	HBZY-1 cells	[80]
			CK downregulated expression of NLRP3 inflammasome components, including caspase-1 and proinflammatory cytokines	Mice with diabetic nephropathy	
			Caspase-1 inhibition suppressed proinflammatory cytokine production		
Rg3			Rg3 reduced histamine production and release from mast cells by inhibiting caspase-1 activation	HMC-1 and RBL-2H3 cells	[81]
			Rg3 protected mice against anaphylaxis shock	Mice with anaphylactic shock	
			Rg3 exhibited anaphylactic shock by inhibiting caspase-1		
AD2			AD2 exhibited antihypertrophic fibrosis by inhibiting caspase-1 in the hepatic fibrosis mouse livers	Mice with hepatic fibrosis	[82]
Ginseng mixture	SMS		SMS reduced COX-2 and NO production in LPS-stimulated peritoneal macrophages	LPS-stimulated mouse peritoneal macrophages	[83]
			SMS inhibited caspase-1 and NF-κB in LPS-stimulated peritoneal macrophages		
			SMS decreased proinflammatory cytokine and PGE2 production and downregulated COX-2 and iNOS expression in LPS-stimulated peritoneal macrophages		
			SMS inhibited caspase-1 and NF-κB in LPS-stimulated peritoneal macrophages		
IGS			IGS decreased proinflammatory cytokine and PGE2 production and downregulated COX-2 and iNOS expression in LPS-stimulated peritoneal macrophages	LPS-stimulated mouse peritoneal macrophages	[84]
			IGS inhibited caspase-1 and NF-κB in LPS-stimulated peritoneal macrophages		
Red ginseng	RGE		RGE suppressed NLRP3 and AIM2 inflammasome activation in BMMDS and THP-1 cells	BMMDS and THP-1 cells	[85]
			RGE inhibited caspase-1 activation, IL-1β secretion, and pyroptosis in BMMDS and THP-1 cells		
			RGE suppressed NLRP3 and AIM2 inflammasome activation in BMMDS and THP-1 cells		
			Rg1 and Rg3 of RGE suppressed NLRP3 and AIM2 inflammasome activation in BMMDS and THP-1 cells		
KRG			KRG protected cisplatin-induced hearing damage of mice	Cisplatin-stimulated HEI-OC1 cells	[86]
			KRG prevented cisplatin-induced cellular cytotoxicity, cytochrome c release, and production of ROS and IL-6 in cisplatin-stimulated HEI-OC1 cells	Cisplatin-injected mice	
			KRG inhibited NF-κB and caspase-1 activation in cisplatin-stimulated HEI-OC1 cells		

(continued on next page)
Caspase Type	Compound	Roles	Models	Ref.
Caspase-4	Extract EMGE	• EMGE inhibited proliferation of HepG2 cells • EMGE upregulated mRNA expression of caspase-4 in HepG2 cells • RH2 inhibited proliferation of H1229 cells • RH2 upregulated mRNA expression of caspase-4 in H1229 cells	HepG2 cells	[88]
Ginsenoside	Rh2	• H1229 cells	[91]	
Caspase-12	Extract WEG	• WEG restored PC12 cell viability reduced by corticosterone • WEG attenuated corticosterone-induced apoptosis of PC12 cells • WEG reduced ROS generation and caspase-12 expression in corticosterone-stimulated PC12 cells	Corticosterone-stimulated PC12 cells	[94]
Ginseng mixture	AS IV, Rg1, Rb1, R1	• Ginseng mixture ameliorated cerebral ischemia-reperfusion injury in mice • Ginseng mixture recovered neurocyte survival rate and reduced neurocyte apoptosis • Ginseng mixture suppressed expression of caspase-12 and proinflammatory cytokines, TNF-α, and IL-1β in the brain of the diseased mice	Mice with cerebral ischemia-reperfusion injury	[95]
Ginsenoside	Cs V	• MPP⁺-stimulated SH-SYSY cells	[96]	
	Rg1	• Rg1 attenuated progression of HFD-induced fatty liver disease • Rg1 inhibited lipid peroxidation and caspase-12 expression in HFD-induced NAFLD mice • Rg1 suppressed activation of NLRP3 inflammasome and secretion of IL-1β and IL-18 in HFD-induced NAFLD mice	Mice with HFD-induced NAFLD	[98]
Total saponins	PQS	• PQS protected cardiomyocytes from H/R-induced injury and apoptosis • PQS suppressed ER stress and caspase-12 activation in H/R-injured cardiomyocytes	Rat cardiomyocytes	[93]
	PTS	• PTS ameliorated acetonophen-induced liver injury in mice • PTS decreased serum levels of ALT and TNF-α in acetonophen-induced liver injury mice • PTS restored caspase-12 expression decreased by acetonophen in mouse livers	Mice with liver injury	[100]

AS IV, astragaloside IV; TNF-α, tumor necrosis factor-α; PTS, total protopanaxatriol (PPT) saponins of Panax quinquefolium; PQS, total saponins of Panax quinquefolium; HFD, high-fat diet; TSPN, total saponins of Panax notoginseng; SPJ, total saponins of Japanese ginseng; Cs IVa Chikusetsu saponin IVa; BMDMs, bone marrow–derived macrophages; RGE, Korean Red Ginseng extract; NLR, nucleotide-binding and oligomerization domain–like receptor; LPS, lipopolysaccharide; DSS, dextran sulfate sodium; CK, compound K; STZ, streptozotocin; SMS, Saengmaeksan; NF-κB, nuclear factor-kappa B; IGS, Igongsan; COX-2, cyclooxygenase-2; PGE2, Prostaglandin E2; iNOS, inducible nitric oxide synthase; AIM2, absent in melanoma 2; KRG, Korean Red Ginseng; Cs V, Chikusetsu saponin V; EMGE, enzyme-modified ginseng extract; ROS, reactive oxygen species; NAFLD, nonalcoholic fatty liver disease; H/R, hypoxia-reoxygenation; MPP, 1-methyl-4-phenylpyridinium ion; WEG, water extract of P. ginseng.
the hearing threshold in mice and also prevented cisplatin-mediated cellular cytotoxicity, cytochrome c release, and production of inflammatory mediators, such as reactive oxygen species (ROS) and IL-6 in HEI-OC1 auditory cells. Moreover, KRG inhibited NF-κB and caspase-11 activation in HEI-OC1 cells [86], suggesting that KRG ameliorates drug-induced hearing damage by suppressing inflammatory responses in the auditory cells through the inhibition of NF-κB and caspase-1-11, and also providing the potential of KRG as a promising remedy that can treat drug-mediated adverse effects.

Taken together, these studies strongly suggest that various ginseng preparations, including total ginseng saponins, single ginsenoside, herbal prescriptions containing ginseng components, and KRG play an anti-inflammatory role by effectively inhibiting inflammatory caspase-1-11, a downstream common and critical effector of the inflammasome activation pathway in inflammatory responses and diseases (Fig. 3A). Moreover, selective targeting of caspase-1 using ginseng preparations could be a promising strategy to treat various inflammatory diseases by suppressing inflammasome-activated inflammatory responses.

3.2. Effect on caspase-4

As discussed earlier, studies exploring the role of ginseng on inflammatory caspases have mostly focused on caspase-1 because it was first discovered as an inflammatory caspase. However, some studies also showed the role of ginseng on caspase-4, which is recently discovered as an inflammatory caspase [49].

Chronic inflammation causes tumorigenesis, tumor growth, malignant transformation, invasion, and metastasis, and inflammatory mediators during chronic inflammation exhibit multiple effects in the development of various cancers [87]. A study investigating the antitumor growth effect of ginseng by modulating caspase-4 was reported. Jang et al [88] prepared enzyme-modified ginseng extract (EMGE) by pulverizing ginseng roots and evaluated the effect of EMGE on the proliferation of human hepatocarcinoma cell line, HepG2 cells. EMGE significantly inhibited HepG2 cell proliferation; however, genetic analyses by cDNA microarray and quantitative real-time polymerase chain reaction showed that EMGE upregulated mRNA expression of caspase-4 in HepG2 cells. Because caspase-4 is known as an inflammatory caspase, caspase-4 mRNA expression is expected to be downregulated by EMGE to inhibit HepG2 cell proliferation. However, this result is also feasible because caspase-4 plays a dual role in inducing not only inflammatory responses but also endoplasmic reticulum (ER) stress-induced apoptosis [89,90], suggesting the possibility that the EMGE has an antiproliferative effect on cancer cells by facilitating the apoptotic function of caspase-4. Indeed, the EMGE also upregulated the expression of apoptosis-related genes, such as annexin A2, heat shock 70 kDa protein 9, apoptosis-inducing factor, mitochondrion-associated, 1, ubiquinol-cytochrome c reductase core protein II, and caspase-7 in HepG2 cells [88]. Therefore, these results indicate that EMGE plays an antiproliferative role in cancer cells by increasing the expression of caspase-4 and apoptosis-related enzymes. A similar study investigated the antitumor growth activity of ginseng by regulating caspase-4 in lung cancer cells. Ge et al [91] demonstrated the inhibitory role of ginsenoside Rh2 in the proliferation of lung cancer cell line, H1299 cells. Rh2 inhibited H1299 cell proliferation and upregulated caspase-4 expression in H1299 cells. Similar with the result by Jang et al [88], Rh2 suppresses lung cancer cell proliferation by promoting the apoptotic function of caspase-4, which is supported by the additional results that Rh2 induced H1299 cell apoptosis by upregulating the expression of the apoptosis-related genes, such as activating transcription factor 4 and CCAAT/enhancer-binding protein homologous protein [91]. These results indicate that Rh2 inhibits the proliferation of lung cancer cells in a similar way with EMGE by inducing the apoptotic function of caspase-4. Cell death, including apoptosis, plays a critical role in the regulation of inflammatory responses and may be the final outcome of inflammatory responses, which maintains tissue homeostasis by recognizing and removing invading pathogens and clearing dying cells [92], indicating that cell death and inflammatory responses are tightly linked and functionally interplay. Therefore, ginseng-mediated modulation of apoptosis by regulating caspase-4 expression and functions might have crosstalk with the inflammatory responses, suggesting the necessity for further studies that provide more direct evidence of the ginseng-mediated anti-inflammatory effect by inhibiting inflammatory caspase-4.

Taken together, these two studies clearly demonstrated the antitumor growth effect of ginseng in cancer cells by modulating the expression of caspase-4, which plays as an apoptosis inducer (Fig. 3B). However, more studies investigating the regulatory roles of ginseng on caspase-4 functions as an inflammatory caspase during inflammatory responses and diseases are highly required. In addition, no study has investigated the regulatory roles of ginseng on caspase-11 functions, a mouse counterpart of human caspase-4, in the inflammatory responses to date; therefore, studies in this regard are also needed.

3.3. Effect on caspase-12

Unlike other inflammatory caspases, such as caspase-1, 4, 5, and 11, that induce inflammatory responses, caspase-12 was initially reported as an anti-inflammatory caspase that suppresses inflammatory responses by inhibiting caspase-1 activation and IL-1β secretion [67]. In accordance with this...
observation, caspase-12 deficiency resulted in increased bacterial clearance and resistance to septic shock in mice [68]. However, a recent study also reported caspase-12 as a proinflammatory caspase to induce caspase-1 activation and IL-1β and IL-18 secretion in the canonical and noncanonical inflammasome responses [70]. Despite these contradictory observations, the roles of ginseng in the regulation of caspase-12 functions have been investigated.

Several studies have reported caspase-12 as a proinflammatory caspase by demonstrating the suppressive effect of ginseng on caspase-12 in the inflammatory responses. Wang et al [93] prepared total saponins from the stems and leaves of Panax quinquefolium (PQS) and investigated its protective effect on myocardial ischemia-reperfusion injury in neonatal rat cardiomyocytes injured by hypoxia–reoxygenation. PQS protected the cardiomyocytes from hypoxia–reoxygenation–induced injury and apoptosis. Moreover, PQS also suppressed ER stress and caspase-12 activation in cardiomyocytes [93], indicating that PQS plays a protective role in myocardial ischemia-reperfusion injury by inhibiting ER stress and caspase-12 activation in cardiomyocytes. Jiang et al [94] also investigated the effect of the water extract of *P. ginseng* (WEG) on corticosterone-induced neurotoxicity and caspase-12 in the neuronal cell line PC12. WEG restored the PC12 cell viability reduced by corticosterone and attenuated the corticosterone-induced apoptosis of PC12 cells. A study of its mechanism further demonstrated that WEG reduced ROS generation and caspase-12 expression in PC12 cells [94]. Huang et al [95] prepared the ginseng mixture consisting of Astragaloside IV, ginsenoside Rg1, ginsenoside Rb1, and notoginsenoside R1 and investigated its effect on caspase-12 in mice with cerebral ischemia-reperfusion injury. Ginseng mixture ameliorated the cerebral ischemia-reperfusion injury in mice by recovering the necrocyte survival rate and reducing necrocyte apoptosis, and this ameliorative effect was accomplished by suppressing the expression of caspase-12 and proinflammatory cytokines, tumor necrosis factor-α and IL-1β, in the mice with the disease.

Similar with ginseng extract and ginseng mixture, the suppressive effect of single ginsenoside on caspase-12 in the inflammatory response was also shown. Yuan et al [96] prepared Chikusetsu saponin V (Cs V) from the Japanese ginseng, *Panax japonicas* and investigated the neuroprotective effect of Cs V in the human neuroblastoma cell line, SH-SYSY cells. Cs V protected the SH-SYSY cells against the 1-methyl-4-phenylpyridinium ion (MPP⁺)-induced cytotoxicity, and a study of its mechanism revealed that Cs V-mediated neuroprotective effect was achieved by reducing ROS generation and caspase-12 expression and increasing Sirt1, Mn-SOD, and caspase-12 expression in MPP⁺-stimulated SH-SYSY cells. Mn-SOD is an antioxidant enzyme, and Sirt1 protects the tissue from the oxidative stress by upregulating Mn-SOD expression [97]. Therefore, these results suggest that Cs V exerts neuroprotective activity by reducing oxidative stress and inflammatory responses by suppressing ROS generation and proinflammatory caspase-12 expression and inducing antioxidant enzyme expression in neuronal cells. Another study also reported the role of ginsenoside Rg1 on caspase-12 in nonalcoholic fatty liver disease (NAFLD). Xu et al [98] prepared a NAFLD mouse model by HFD and investigated the protective effect of Rg1 on NAFLD in the mice with the disease. Rg1 significantly attenuated the progression of HFD-induced fatty liver disease by inhibiting lipid peroxidation and caspase-12 expression in mice. Moreover, in accordance with previous observation [85,89], Rg1 suppressed the activation of NLRP3 inflammasome response and secretion of IL-1β and IL-18 in mice [98], suggesting that Rg1 plays a protective role in NAFLD by inhibiting caspase-12, lipid peroxidation, and NLRP3 inflammasome activation.

The studies discussed previously successfully showed that ginseng preparations suppress the inflammatory responses by inhibiting caspase-12, which plays a proinflammatory role. By contrast, an interesting study reported caspase-12 as an anti-inflammatory caspase in the inflammatory responses. Acetaminophen, which is widely used as an antipyretic and analgesic agent, induces hepatic necrosis by promoting cytotoxicity and inflammatory responses in the liver, resulting in acute liver failure. Wang et al prepared total protopanaxatriol saponins of *P. notoginseng* (PTS) and investigated its effect on acetaminophen-induced liver failure and caspase-12 in mice. PTS ameliorated acetaminophen-damaged liver injury in mice by reducing the serum levels of alanine aminotransferases and tumor necrosis factor-α and restored caspase-12 expression decreased by acetaminophen in the mouse livers [100], indicating that PTS ameliorates liver injury by reducing cytotoxicity and inflammatory responses by increasing caspase-12 expression in liver. These results might suggest that caspase-12 is an anti-inflammatory caspase rather than a proinflammatory caspase because caspase-12 expression was upregulated by PTS, resulting in the alleviation of liver injury by decreasing inflammatory responses in the liver.

It is still unclear whether caspase-12 plays an anti-inflammatory or proinflammatory role in inflammatory responses and various inflammation-mediated diseases. In addition, caspase-12 has been reported as a dual player critically involved in inflammatory responses and ER stress–induced apoptosis [89,90]. Therefore, ginseng might exert multiple and complicated effects on caspase-12 functions to regulate various biological processes, including inflammatory responses, apoptosis, and other cellular responses. Therefore, further studies investigating the regulatory roles of ginseng in caspase-12 functions in various biological conditions are highly required. Fig. 3C shows the regulatory roles of ginseng on caspase-12 in the inflammatory responses and apoptosis.

4. Conclusion and perspectives

Inflammation is a defense mechanism that protects the body against various pathogens and dangers. Among the two main steps of inflammatory responses, triggering is the essential step in boosting inflammatory responses by activating inflammasomes in response to specific ligands, and inflammatory caspase activation is one of the hallmarks of inflammasome-activated inflammatory responses. To date, several inflammatory caspses have been discovered, and their roles in the inflammatory responses have been demonstrated. Given the evidence of the inflammatory caspses pivotal players in the inflammatory responses and diseases, many studies have focused on the development of anti-inflammatory therapeutics targeting inflammasome pathways and inflammatory caspses for various diseases. However, one of the major drawbacks of the anti-inflammatory small molecule drugs is that these agents are ineffective at low dosages and have adverse effects; therefore, complementary and alternative medicines have received much attention to overcome these problems associated with the small molecule drugs. Ginseng has long been traditionally used as an herbal medicine in ameliorating various human diseases, and many efforts have been successfully made on identifying the pharmacological components in ginseng and evaluating the anti-inflammatory activity in inflammatory responses and diseases. Interestingly, recent studies have shown the effect of ginseng on inflammatory caspases. Various preparations of ginseng, such as total saponins, extracts, ginseng-containing prescriptions, and ginsenosides isolated from ginseng show the suppressive effect on caspase-1, a first identified inflammatory caspase, and caspase-4, leading to inflammatory response suppression. Although, whether caspase-12 is a proinflammatory or anti-inflammatory...
caspase is still controversial, studies showed that ginseng suppresses or promotes caspase-12 functions in inflammatory responses. In addition, because caspase-12 has dual roles involved in inflammatory responses or ER stress–induced apoptosis [89,90], ginseng regulates inflammatory responses and other biological functions by modulating inflammatory responses or apoptosis mediated by caspase-12.

Despite these successful studies reporting the regulatory roles of ginseng on the inflammatory caspases, and several inflammatory caspases have been identified and investigated, identification of new inflammatory caspases, their roles in the inflammatory responses, and the effect of ginseng on these novel inflammatory caspases need to be further investigated. Studies examining whether caspase-12 is proinflammatory or anti-inflammatory and the effect of ginseng on caspase-12 functions in inflammatory responses are also needed because these are still unclear because of the limited number of studies. Moreover, despite many studies demonstrating that caspase-11 as a noncanonical inflammasome playing a pivotal role in the inflammatory responses, studies exploring the regulatory role of ginseng on caspase-11 in the inflammatory responses are highly required.

In conclusion, this review discussed the roles of ginseng to suppress inflammatory responses by regulating the functions of inflammatory caspases, as summarized in Table 1, and further suggested the insight into the potential of ginseng as a complementary and alternative medicine with strong anti-inflammatory action by modulating the functions of inflammatory caspases. Selective targeting the inflammatory caspases or intervention of functional interplay between inflammasomes and the downstream effectors, inflammatory caspases using ginseng preparations may be a promising approach for the development of efficacious and safe anti-inflammatory therapeutics to prevent and treat various inflammatory and inflammation-related diseases (Table 2).

Conflicts of interest

The authors declare that they have no conflict of interests regarding the contents of this article.

References

[1] Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.
[2] Takesuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805–20.
[3] Yi YS. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw 2016;16:337–43.
[4] Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018;18:627.
[5] Yi YS, Son YJ, Ryoo C, Sung GH, Kim JH, Cho JY. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm 2014;2014:270302.
[6] Yang Y, Kim SC, Yu T, Yi Y, Rhee MH, Sung GH, Yoo BC, Cho JY. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014;2014:352371.
[7] Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012;2012:979105.
[8] Yi YS. Regulatory roles of the caspase-11 non-canonical inflammasome in regulating inflammatory diseases. Immune Netw 2018;18:641.
[9] Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017;152:207–17.
[10] Man SM, Kariki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017;277:61–75.
[11] Lamkanfi M, Dixit VM. Mechanisms and functions of caspases. Cell 2014;157:1013–22.
[12] Yi YS. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020;155:142–55.
[13] Yi YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J Physiol Pharmacol 2018;22:1–15.
[14] Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9:358–61.
[15] Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol 2018;82:79–88.
[16] Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol 2016;26:R568–72.
[17] Prasad KV, Prabhakar BS. Apoptosis and autoimmune disorders. Autoimmunity 2003;36:323–30.
[18] Van Gorp H, Van Opdenbosch N, Lamkanfi M. Inflammasome-Dependent cytokines at the crossroads of health and autoinflammatory disease. Cold Spring Harb Perspect Biol 2019;11.
[19] Van Gorp H, Lamkanfi M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep 2019;20:204–57.
[20] Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137:1833–55.
[21] Ahuja A, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248–54.
[22] Hong BN, Ji MG, Kang TH. The efficacy of red ginseng in type 1 and type 2 diabetes in animals. Evid Based Complement Alternat Med 2013;2013:591181.
[23] Ernst E. Complementary/alternative medicine for hypertension: a mini-review. Wien Med Wochenschr 2005;155:386–91.
[24] Rastogi V, Santiago-Moreno J, Dore S. Ginseng: a promising neuroprotective strategy in stroke. Front Neurosci 2016;10:457.
[25] Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10:187–92.
[26] Kim KH, Lee D, Lee H, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239–47.
[27] Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, Min W, Lee HJ, Rhee MH, Kwak YS, et al. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J Ethnopharmacol 2017;198:5–14.
[28] Kim JH, Yi YS, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435–43.
[29] Yi YS. Ameloriative effects of ginseng on ginsenosides in rheumatic diseases. J Ginseng Res 2019;43:335–41.
[30] Lee SM, Bae BS, Park HW, Ahn NC, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384–91.
[31] Ru W, Wang D, Xu Y, He X, Sun YQ, Izen L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 2015;9:23–32.
[32] Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JO. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738094.
[33] Liu Y, Deng J, Fan DS. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway. Food Funct 2019;10:2538–51.
[34] Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161–6.
[35] Ong WY, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.
[36] Yi YS. Roles of ginsenosides in inflammasome activation. J Ginseng Res 2019;43:172–8.
[37] Monack DM, Raupach B, Hromockyj AE, Falkow S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 1996;93:9833–8.
[38] Zychlinsky A, Prevost MC, Sansonetti PJ, Shigella flexneri induces apoptosis in infected macrophages. Nature 1992;358:167–9.
[39] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001;9:113–4.
[40] Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 2000;38:31–40.
[41] Miao EA, Rajan JV, Ademir A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011;243:206–14.
[42] Robinson N, Ganesan R, Hegehus C, Kovacs K, Kufer TA, Virag L. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Mol Med 2019;25:103.
[43] Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA. NLRP3 inflammasomes in infection-related diseases. Immune Netw 2017;152:207–17.
Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA, Zamboni DS, Scott AM, Saleh M. The in
Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Tang YH, Zhang SP, Liang Y, Deng CQ. Effects of Panax notoginseng saponins on inflammation and ER stress-induced apoptotic responses in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2009;50:6006–17.

Walle VL, van de Walle L, Song D, New, DN, Kornfeld OS, Roose-Girma M, Anderson K, Warming S, Cuellar T, Lee BL, Stowe IB, Gupta A, Siegmund B. Interleukin-1beta converting enzyme (caspase-1) in intestinal infection. Immunol Rev 2015;265:75–84.

Lee BJ, Lee BJ, Jeon JY, Kim CH, Shin JH, Kim MY, KL, Park J, Lim H, Kim SH, et al. The anti-inflammatory effect of Panax ginseng extracts in colitis in mice. J Ginseng Res 2019;43:282–302.

Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation mediated by inhibiting NLRP3 inflammasome activation in mice. Biochem Biophys Res Commun 2002;293:722–27.

Yuan C, Liu C, Wang T, He Y, Zhou Z, Dun Y, Zhao H, Ren D, Wang J, Zhang C, et al. Chikusetsu saponin VI ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-kappaB signaling. Oncotarget 2017;8:31023–40.

Du Y, Fu M, Wang YT, Dong Z. Neuroprotective effects of ginsenoside Rf on amyloid-beta-induced neurotoxicity in vitro and in vivo. J Alzheimer's Dis 2018;64:309–400.

Lee BJ, Lee JY, Yang Y, Liu C, Xiu Z, Zhu Y, J, Peng S, Li TH, Chen Y, Zhao S, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018;155:366–75.

Song W, Wei L, Du D, Wang Y, Jiang S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-kappaB/p38 signaling pathway in high-fat diet-induced diabetic rats. Phytother Res 2019;33:443–49.

Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasomes via suppression of NF-kappaB/Caspase-1 activation. Immunopharmacol Immunotoxicol 2013;35:241–50.

Kim J, Shin HJ, Lee BJ, Kim DS, Lee JH, Jeong MY, KL, Park J, Lim H, Kim SH, et al. The anti-inflammatory mechanism of IgG3 in mouse peritoneal macrophages via suppression of NF-kappaB/Caspase-1 activation. Front Immunol 2011;2:98.

Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143–50.

Kim J, Kwak HJ, Kim DS, Choi HM, Sim JK, Kim SH, Um JY, Hong SH. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-kappaB and caspase-1 activation. Mol Med Rep 2015;12:315–22.

Multhoff G, Molls M, Radons J. Chronic inflammatory cancer development. Front Immunol 2011:2:98.

Jiang SL, Lee YW, Cho CK, Yoo HS, Jiang JH. Identification of target genes involved in the antiproliferative effect of enzyme-modified ginseng extract in NIH3T3 hepatic carcinoma cell. Evid Based Complement Alternat Med 2013;2013:502568.

Kang SJ, Lee YJ, Kang SG, Cho S, Yoon W, Lim JH, Min SH, Lee TH, Kim BM. Caspase-4 is essential for salicin-a induced apoptosis activating upstream of caspase-2 and gamma-H2AX in colon cancer cells. Oncotarget 2017:8;10033–48.

Bian ZM, Elner SG, Elner VM. Dual involvement of caspase-4 in inflammatory and ER stress-induced apoptotic responses in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2009;50:6006–14.

Ge G, Yan Y, Cai H. Ginsenoside Rb2 inhibited proliferation by inducing ROS-mediated ER stress-dependent apoptosis in lung cancer cells. Biol Pharm Bull 2011;34:2117–24.

Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015;2:12.

Wang C, Li YZ, Wang XR, Lu ZR, Shi DZ, Liu XH. Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress. Shock 2012;37:228–33.

Jiang Y, Li Z, Liu Y, Liu X, Chang Q, Liao Y, Pan R. Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecular mechanisms. J Ethnopharmacol 2015;159:102–12.

Huang XP, Ding H, Lu JD, Yang B, Deng BX, Deng CQ. Effects of the combination of the main active components of Astragalus and Panax notoginseng on inflammation and ER stress-induced apoptosis of nerve cells after cerebral ischemia-reperfusion. Am J Chin Med 2015;43:1419–38.

Yuan D, Wan JZ, Deng L, Zhang CC, Dun YW, Dai YW, Zhou YZ, Liu CQ, Wang T. Chikusetsu saponin V attenuates MPP+-induced neurotoxicity in SH-SY5Y cells via regulation of Sirt1/Mn-SOD and GRP78/caspase-12 pathways. Int J Mol Sci 2014;15:13209–22.
Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007;100:1512–21.

Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 2018;41:1638–44.

Zhang YQ, Wang XB, Xue RR, Gao XX, Li W. Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-kappaB/NLRP3 pathway in rats. Neuroreport 2019;30:893–900.

Wang S, Wang X, Luo F, Tang X, Li K, Hu X, Bai J. Panaxatriol saponin ameliorated liver injury by acetaminophen via restoring thioredoxin-1 and pro-caspase-12. Liver Int 2014;34:1068–73.