Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in Southeast Asia, reliable to monitor resistance surveillance in Africa?

Francis Foguim Tsombeng1,2,3, Mathieu Gendrot1,2,3, Marie Gladys Robert1,2,3, Marylin Madamet1,2,3,4 and Bruno Pradines1,2,3,4*

Abstract
Mutations in the propeller domain of Plasmodium falciparum kelch 13 (Pfk13) gene are associated with artemisinin resistance in Southeast Asia. Artemisinin resistance is defined by increased ring survival rate and delayed parasite clearance half-life in patients. Additionally, an amplification of the Plasmodium falciparum plasmepsin II gene (pfpm2), encoding a protease involved in hemoglobin degradation, has been found to be associated with reduced in vitro susceptibility to piperaquine in Cambodian P. falciparum parasites and with dihydroartemisinin–piperaquine failures in Cambodia. The World Health Organization (WHO) has recommended the use of these two genes to track the emergence and the spread of the resistance to dihydroartemisinin–piperaquine in malaria endemic areas. Although the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, few reports on clinical failures suggest that k13 and pfpm2 would not be the only genes involved in artemisinin and piperaquine resistance. It is imperative to identify molecular markers or drug resistance genes that associate with artemisinin and piperaquine in Africa. K13 polymorphisms and Pfpm2 copy number variation analysis may not be sufficient for monitoring the emergence of dihydroartemisinin–piperaquine resistance in Africa. But, these markers should not be ruled out for tracking the emergence of resistance.

Keywords: Malaria, Plasmodium falciparum, Anti-malarial drug, Resistance, In vitro, Dihydroartemisinin, Piperaquine, Plasmepsin II, K13

Background
According to the World Health Organization (WHO), artemisinin-based combination therapy (ACT) has been recommended as treatment of uncomplicated falciparum malaria since 2001. However, Plasmodium falciparum parasites resistant to artemisinin derivatives emerged in Southeast Asia, and more particularly in western Cambodia, Myanmar, Thailand and Laos [1–6]. More recently, the emergence of P. falciparum resistance to dihydroartemisinin–piperaquine was observed in Cambodia, where recrudescent infections had rapidly increased [7–9], and then in Vietnam [10, 11]. However, dihydroartemisinin–piperaquine is little-used in African countries for the treatment of uncomplicated malaria, where artemether–lumefantrine and/or artesunate–amodiaquine are currently used. Only Senegal has adopted dihydroartemisinin–piperaquine as a third alternative first-line regimen. Dihydroartemisinin–piperaquine has
emerged as a potential combination for chemoprevention in pregnant women and children in Africa [12–14].

According to the WHO, the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa. There is currently no evidence of failing efficacy of dihydroartemisinin–piperaquine in Africa. The latest published studies showed that PCR-corrected adequate clinical and parasitological response (APCR) at day 42 ranged between 94.6 and 100% for the treatment of uncomplicated *P. falciparum* malaria in children treated between 2011 and 2017 in Africa (Tanzania, Rwanda, Mali, Guinea, Burkina Faso, Angola, Niger) [15–20]. However, there are some rare cases of clinical failures with dihydroartemisinin–piperaquine in Africa [15]. Two cases of late treatment failure after 30 and 32 days were reported in Italian travelers returning from Ethiopia and treated with dihydroartemisinin–piperaquine [21, 22]. Additionally, some clinical failures in travelers returning from Africa, and confirmed by an expected plasmatic level of dihydroartemisinin–piperaquine, were obtained in the French national reference centre for malaria (unpublished personal data). The genes involved in resistance to artemisinin derivatives and piperaquine in Southeast Asia do not properly explain these few clinical failures observed in Africa [22–27]. It is imperative to monitor the emergence of dihydroartemisinin–piperaquine resistance in Africa. But, are *k13* and *plasmspsin II* genes reliable to survey resistance in Africa?

Artemisinin derivative resistance

The emergence and spread of resistance to artemisinin derivatives were observed in Southeast Asia [1–6]. This resistance was associated with delayed parasite clearance half-lives (>5 h) after artemisinin-based monotherapy treatment or ACT [1, 4, 28, 29]. Additionally, slow in vivo parasite clearance half-life was correlated with in vitro resistance manifested an increase in the ring-stage survival rate after contact with 700 nM of artemisinin for 6 h, evaluated with a new phenotypic assay, the in vitro ring-stage survival assay or RSA [30–33].

Different molecular markers, associated with in vitro resistance to artemisinin derivatives measured by standard phenotypic assays, were previously proposed. Polymorphisms in the *pfATPase6* gene, encoding the *P. falciparum* sarco-endoplasmic reticulum calcium-ATPase PfATPase 6 protein, were first associated with in vitro resistance [34], but not with in vivo delayed parasite clearance in *P. falciparum* parasites from the Thai-Cambodia border [35]. Amplification of the *P. falciparum* multidrug resistance 1 gene (*pfmdr1*) was also associated with in vitro reduced susceptibility to artemisinin derivatives [36–38], but never with delayed parasite clearance [39]. Additionally, mutations on *pfmdr1* genes were shown to be correlated with in vitro reduced susceptibility to artemisinin derivatives [40–42]. The involvement of polymorphisms in potential genes was evaluated, such as *pfubp1*, encoding the *P. falciparum* ubiquitin specific protease 1 [43–45], the gene encoding the RING E3 protein ubiquitin ligase [46, 47], *pfap2mu*, encoding the *P. falciparum* adaptor protein complex 2 mu subunit [44, 48], *pfmdr5*, encoding the *P. falciparum* multidrug resistance 5 protein [49] or *pfmdr6* encoding the *P. falciparum* multidrug resistance 6 protein [49–51]. Only mutations *pfap2mu* S160N and *pfubp1* E1525D/Q were found in cases of African imported *P. falciparum* malaria with clinical failure with ACT [25]. Whole-genome sequencing of the artemisinin-susceptible F32-Tanzania strain and the artemisinin-resistant F32-ART line, obtained after 5 years of artemisinin pressure, led to identification of several mutations (M476I, C580Y, R539T, Y493H, I543T and P574L) in the propeller domain of the *kelch 13* (*k13*) gene (PF3D7_1343700) that are associated with in vitro resistance to artemisinin [31, 52, 53]. These mutations were associated with artemisinin-resistant (high survival rate) Cambodian isolates evaluated with RSA [1, 31, 32]. Additionally, these mutations were also associated with in vivo delayed parasite clearance half-lives (>5 h) in Southeast Asia, including Cambodia, Vietnam, Thailand, Myanmar and China [1, 31, 54] or parasitaemia still positive on day 3 after 7 days of artesunate monotherapy or 3 days of ACT [23]. Another mutation, F446I, was predominant in Myanmar and associated with high survival rate and *P. falciparum* in vivo delayed clearance [55–58].

According to the WHO, the proportion of patients still parasitaemic on day 3 (10%) or with a parasite slow clearance half-life above 5 h (10%) after artesunate monotherapy or treatment with ACT, or carrying *k13* mutations associated with artemisinin resistance in Asia are indicators to identify emergence of suspected artemisinin resistance [59]. Resistance to artemisinin is confirmed when at least 5% of the patients carry parasites with *k13* resistance-associated mutations and 2% of the patients carry parasites with *k13* resistance-associated mutations and slow parasite clearance [59]. The WHO has recommended evaluate *k13* resistance-associated mutations to track emergence and spread of artemisinin resistance in Africa.

The main *k13* mutations involved in artemisinin resistance in Southeast Asia are not yet reported in Africa certainly due to an absence of artemisinin resistance in Africa [23, 60–68]. Artemisinin resistance due to *k13* mutations has not disseminated to African countries yet. However, clinical failures with ACT, although rare, were reported in Africa (Angola, Senegal, Zaire) or in imported falciparum cases from Africa (Angola, Ethiopia, Liberia, Uganda) and were not associated with *k13* resistance-associated mutations [21–25, 69–71]. In some cases, pharmacokinetic data were associated and allowed
to exclude sub-therapeutic drug exposure to dihydroartemisinin [21, 22]. On Senegalese patients, parasites were still detected on day 3 after ACT treatment and were wild-type for K13 [24]. An isolate from Equatorial Guinea collected from patient with early treatment failure after artemisinin–piperaquine showed in vitro survival rate higher than the rate observed in the control strains but lower than rate in Asian artemisinin-resistant strain with a C580Y mutation [72]. However, none of the mutations described in artemisinin resistance in Asia was detected. A new mutation (M579I) was identified.

Additionally, 98.5% of Cambodian patients with isolates carrying C580Y or Y493H mutations on day 1 were negative on day 3 after dihydroartemisinin–piperaquine treatment [73]. Cambodian parasites with in vitro survival rates above the cut-off of 1% can lack the k13 mutations involved in artemisinin resistance in Cambodia [74]. Chinese patients with R539T mutant parasites imported from Angola and P574L mutant parasites from Equatorial Guinea all recovered after treatment with dihydroartemisinin–piperaquine [75].

These data suggest that other mechanisms than k13 mutations may explain artemisinin resistance, and more particularly in Africa. Mutations on falcipain 2a gene, encoding a cysteine protease and haemoglobinase and atg18 gene, encoding the autophagy-related protein 18, might be associated with artemisinin resistance in parasites from the China Myanmar-border [76–78]. Additionally, mutations in the actin-binding protein coronin (R100K, E107V or G50E) conferred high in vitro survival rate in Senegalese P. falciparum strains, and this in the absence of mutation on the k13 propeller gene [79].

Piperaquine resistance

Emergence of *P. falciparum* resistance to dihydroartemisinin–piperaquine was observed in Cambodia, where the prevalence of recrudescence infections rapidly increased [7–9], and then in Vietnam [10, 11]. Additionally, in vitro resistance to piperaquine was detected in Cambodia and increased rapidly between 2013 and 2015 [80]. Duplication of the *Plasmodium falciparum* plasmepsin II gene (*pfpm2*) (PF3D7_1408000), encoding a protease involved in haemoglobin degradation, has been found to be associated with reduced in vitro susceptibility to piperaquine in Cambodian *P. falciparum* parasites and with dihydroartemisinin–piperaquine failures in Cambodia [81, 82]. A new in vitro test, the piperaquine survival assay (PSA), was developed to follow piperaquine resistance [83]. *Plasmodium falciparum* dihydroartemisinin–piperaquine failures in Cambodia were associated with piperaquine survival rate above 10% or high piperaquine IC₅₀ above 90 nM estimated by in vitro standard assay [81–83].

However, the involvement of *pfpm2* in piperaquine resistance seems controversial in Africa. In Mali, the presence of *P. falciparum* isolates with *pfpm2* duplications was confirmed in only 7 out of 65 clinical failures with dihydroartemisinin–piperaquine [26]. Three patients harbouring parasites with two copies of *pfpm2* in Tanzania were successfully treated with dihydroartemisinin–piperaquine [84]. Additionally, only a single copy of *pfpm2* was detected in two isolates collected in imported malaria cases from Ethiopia and Cameroon after dihydroartemisinin–piperaquine failures [22, 27].

The use of dihydroartemisinin–piperaquine as intermittent preventive treatment during pregnancy did not select for *pfpm2* duplication in Uganda [85]. Ex vivo susceptibility to piperaquine in imported *P. falciparum* parasites from Africa, in Ugandan and Senegalese isolates was not associated with variation in *pfpm2* copy number ([86–88], unpublished personal data). Additionally, a recent publication showed that overexpression of *pfpm2* did not change the susceptibility of the 3D7 *P. falciparum* strain to piperaquine [89].

All these data suggest that *pfpm2* would not be the only gene that explains the resistance to piperaquine in Africa. The *P. falciparum* chloroquine resistance transporter gene (*pfCRT*) may be a causal gene because piperaquine is a dimer of chloroquine. Mutations in *pfCRT* could be involved in piperaquine resistance. However, the K76T mutation involved in chloroquine resistance was not associated with in vitro and ex vivo resistance to piperaquine [90, 91]. Novel mutations in *pfCRT*, like H97Y, F145I, M343L, C350R or G353V, seem to confer in vitro resistance to piperaquine in *P. falciparum* parasites [92–94]. However, there is no direct evidence of piperaquine inhibiting PfCRT.

Conclusion

Mutations in K13 (C580Y, R539T, Y493H, I543T and P574L) and *pfpm2* duplications in *P. falciparum* are associated with in vitro resistance and clinical failures with dihydroartemisinin–piperaquine in Southeast Asia. Although the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, the first data on clinical failures and in vitro reduced susceptibility suggest that k13 and *pfpm2* would be not the only genes involved in artemisinin and piperaquine resistance. It is imperative to identify new genes to explain resistance to artemisinin and piperaquine in Africa. It is necessary to maintain tracking of the emergence and spread of k13 and *pfpm2* mutant parasites in Africa, which could be imported from Asia. This surveillance must be associated with the tracking of dihydroartemisinin–piperaquine clinical failures in Africa due to resistant parasites. Too few studies associate drug plasmatic measures to verify good compliance and pharmacokinetic to confirm resistance. African parasites may have their own genetic background preference to select
dihydroartemisinin–piperaccline resistance which surely differs from Southeast Asian parasites. These isolates should be characterized by assessing k13 polymorphisms, pfpm2 copy number variation, but also other potential marker of resistance. The identification of new genes involved in dihydroartemisinin–piperaccline resistance in Africa could be performed by systematic analysis of African resistant parasites by genome wide association study (GWAS).

Acknowledgements
Not applicable.

Authors’ contributions
FFT, MG, MGR, MM, and BP drafted the manuscript. All the authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France. 2 Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. 3 IHU Méditerranée Infection, Marseille, France. 4 Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France.

Received: 4 March 2019 Accepted: 17 August 2019

Published online: 23 August 2019

References
1. Ashley EA, Dhorda M, Fairhurst RM, Amarantunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:1411–23.
2. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. New Engl J Med. 2008;359:2619–20.
3. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.
4. Phyo AP, Nkoha S, Stepnevskas K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.
5. Bouillé M, Wittkowski B, Duru V, Srirawatt N, Nair SK, McDew-White M, et al. Artesinin-resistant Plasmodium falciparum K15 mutant alleles, Thailand-Myanmar border. Emerg Infect Dis. 2016;22:1503–5.
6. Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Relk M, et al. The spread of artesinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.
7. Amarantunga C, Lim P, Suon S, Sreng S, Mao S, Sophra C, et al. Dihydroartemisinin–piperaccline resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.
8. Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artesinin and piperaccline in Western Cambodia: dihydroartemisinin–piperaccline open-label multicenter clinical assessment. Antimicrob Agents Chemother. 2015;59:4719–26.
9. Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, et al. Dihydroartemisinin–piperaccline failure associated with a triple mutant including k13C580Y in Cambodia: an observational cohort study. Lancet Infect Dis. 2015;15:683–91.
10. Phuc BQ, Rasmussen C, Duong TT, Dong LT, Loi MA, Méndez D, et al. Treatment failure of dihydroartemisinin/piperaccline for Plasmodium falciparum malaria, Vietnam. Emerg Infect Dis. 2017;23:715–7.
11. Thanh NV, Thuy-Nhien N, Tuyen NT, Tong NT, Nha-Ca NT, Dong LT, et al. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin–piperaccline in the south of Vietnam. Malar J. 2017;16:27.
12. Kwambai TK, Dhabangi A, Idro R, Opoka R, Karuki S, Samuels AM, et al. Malaria chemoprevention with monthly dihydroartemisinin–piperaccline for the post-discharge management of severe anaemia in children aged less than 5 years in Uganda and Kenya: study protocol for a multicentre, two-arm, randomised, placebo-controlled, superiority trial. Trials. 2018;19:610.
13. Kajubi R, Ochieng T, Kakuru A, Jagnnathan P, Nakalembe M, Rusel T, et al. Monthly sulfadoxine–pyrimethamine versus dihydroartemisinin–piperaccline for intermittent preventive treatment of malaria in pregnancy: a double-blind, randomized, controlled, superiority trial. Lancet. 2019;393:1428–39.
14. Jagannathan P, Kakuru A, Okiring J, Muhindo MK, Natureeba P, Naklembe M, et al. Dihydroartemisinin–piperaccline for intermittent preventive treatment of malaria during pregnancy and risk of malaria in early childhood: a randomized controlled trial. PLoS Med. 2018;15:e1002606.
15. The West African Network for Clinical Trials of Antimalarial Drugs (WANE-CAM). Pyronaridine–artesunate or dihydroartemisinin–piperaccline versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomized, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:11378–90.
16. Mandara CI, Francis F, Chidu MG, Ngaala S, Mandike R, Mkude S, et al. High cure rates and tolerability of artesunate–amodiaquine and dihydroartemisinin–piperaccline for the treatment of uncomplicated falciparum malaria in Kibaha and Kigoma, Tanzania. Malar J. 2019;18:99.
17. Madara CI, Kavihe RA, Gesase S, Mghamba J, Ngadaya E, Mmbuji P, et al. High efficacy of artemether-lumefantrine and dihydroartemisinin–piperaccline for the treatment of uncomplicated falciparum malaria in Muheza and Kigoma Districts, Tanzania. Malar J. 2018;17:261.
18. Uwimana A, Penkunas MJ, Nisingizwe MP, Warsame M, Umalissa N, et al. Artemisinin-resistant malaria: a randomized, controlled, longitudinal, and controlled trial. Trans R Soc Trop Med Hyg. 2019;113:312–9.
19. Davlantes E, Dimbu PR, Ferreira CM, Joao MF, Pode D, Félix J, et al. Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaccline for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar J. 2018;17:144.
20. Grandesso F, Guindo O, Messe LV, Makarimi R, Traore A, Dama S, et al. Efficacy of artesunate–amodiaquine, dihydroartemisinin–piperaccline
and artemether–lumefantrine for the treatment of uncomplicated *Plasmodium falciparum* malaria in Maradi, Niger. Malar J. 2018;17:52.

21. Gibb J, Buonfrate D, Menegon M, Lunardi G, Anghelen A, Severini C, et al. Failure of dihydroartemisinin–piperaquine treatment of uncomplicated *Plasmodium falciparum* malaria in a traveller coming from Ethiopia. Malar J. 2016;15:525.

22. Russo G, L'Epicier M, Menegon M, Souza SS, Dongho BGD, Vullo V, et al. Dihydroartemisinin–piperaquine treatment failure in uncomplicated *Plasmodium falciparum* malaria case imported from Ethiopia. Infection. 2018;46:867–70.

23. Ménard D, Khim N, Beghin J, Adegkina AA, Alam MS, Amoudo O, et al. A worldwide map of *Plasmodium falciparum* K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64.

24. Madamet M, Kouta MB, Wade KA, Lo G, Diawara S, Fall M, et al. Absence of association between polymorphisms in the K13 gene and the presence of *Plasmodium falciparum* parasites at day 3 after treatment with artemisinin derivatives in Senegal. Int J Antimicrob Agents. 2017;49:754–6.

25. Sutherland CJ, Lansdell P, Sanders M, Muwanguzi J, van Schalkwyk DA, Kaur H, et al. pfk13-independent treatment failure in four imported cases of *Plasmodium falciparum* malaria treated with artemether–lumefantrine in the United Kingdom. Antimicrob Agents Chemother. 2017;61:e02382-16.

26. Inoue J, Silva M, Fofana B, Sanogo K, Martensson A, Sagara I, et al. *Plasmodium falciparum* pfalcapsin 2 duplications, West Africa. Emerg Infect Dis. 2018;24:1591–5.

27. Malvy D, Torrentino-Madament M, L'Ollivier C, Receveur MC, Jedd F, Delhaes L, et al. *Plasmodium falciparum* recrudescence two years after treatment of an uncomplicated infection without return to an area where malaria is endemic. Antimicrob Agents Chemother. 2018;62:e01892-17.

28. Flégga JA, Guerin PJ, White NJ, Stepnowska K. Standardizing the measurement of parasite clearance in *falciparum* malaria: the parasite clearance estimator. Malar J. 2011;10:339.

29. WWARN Parasite Clearance Study Group, Abdulla S, Ashley EA, Bassat Q, Bethell D, Börkman A, et al. Baseline data of parasite clearance in patients with *falciparum* malaria treated with artesunate: an individual patient data meta-analysis. Malar J. 2015;14:359.

30. Witkowski B, Amarantunga C, Khim N, Sint S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artesinin-resistant *Plasmodium falciparum* in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.

31. Arrey F, Witkowski B, Amarantunga C, Beghin J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant *Plasmodium falciparum* malaria. Nature. 2014;505:50–5.

32. Amarantunga C, Witkowski B, de D, Try V, Khim N, Miotto O, et al. *Plasmodium falciparum* founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother. 2014;58:4935–7.

33. Amarantunga C, Witkowski B, Khim N, Ménard D, Fairhurst RM. Artesinin resistance in *Plasmodium falciparum*. Lancet Infect Dis. 2014;14:449–50.

34. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, et al. Resistance of *Plasmodium falciparum* field isolates to in vitro artemether and point mutations of the SERCA-type PFLATPasε. Lancet. 2005;366:1960–3.

35. Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, et al. Exploring the contribution of candidate genes to artemisinin resistance in *Plasmodium falciparum*. Antimicrob Agents Chemother. 2010;54:2868–92.

36. Henriques D, Hallett RL, Seshir KB, Cadalla NB, Johnson RE, Burrow R, et al. Directional selection at the pfmdr1 pfcr, pfldp1, and pfap2mu loci of *Plasmodium falciparum* in Kenya children treated with ACT. J Infect Dis. 2014;201:2001–8.

37. Bonnington CA, Phyo AP, Ashley EA, Imwong M, Sriprawat K, Parker DM, et al. Failure of dihydroartemisinin–piperaquine treatment of uncomplicated *Plasmodium falciparum* parasites in pre- and post-ACTs in western Kenya. Sci Rep. 2015;5:8308.
WHO. Status report on artemisinin resistance (September 2014). Geneva.

Ouattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, et al. Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, et al. Emergence of mutations in the K13 Propeller gene of Plasmodium falciparum isolates from Dakar, Senegal in 2013–2014. Antimicrob Agents Chemother. 2015;60:24–7.

Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1237–9.

Quattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, et al. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg. 2015;92:1202–6.

Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Green-K, et al. K13-propeller polymorphisms in Plasmodium falciparum isolates from patients in Mayotte in 2013 and 2014. Antimicrob Agents Chemother. 2015;59:7878–81.

Muvanguzi J, Henriques G, Sawa P, Bousama T, Sutherland CJ, Beshe KB. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J. 2016;15:36.

Voumbo-Matoumona DF, Kouna LC, Madamet M, Maghendji-Nzondo S, Pradinis B, Lekana-Douki JB. Prevalence of Plasmodium falciparum antimalarial drug resistance genes in Southeastern Gabon from 2011 to 2014. Infect Drug Resist. 2018;11:1329–38.

Dieye B, Affara M, Sangare L, Joof F, Ndiaye YD, Gomis JF, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Senegal, Mali, and The Gambia. Am J Trop Med Hyg. 2016;95:1054–60.

Plucinski MM, Taludzic E, Morton L, Dimbu PR, Macpa AP, Fortes F, et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Ulge Provinces, Angola. Antimicrob Agents Chemother. 2015;59:4347–43.

Plucinski MM, Dimbu PR, Macpa AP, Ferreira CM, Samutondo C, Quinvina J, et al. Efficacy of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola. 2015. Malar J. 2017;16:62.

Lu F, Culleton R, Zhang M, Ramaprasad A, von Seidelein L, Zhou H, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. New Engl J Med. 2017;376:991–3.

Kheang ST, Sovannaroth S, Ek S, Chiy S, Chhun P, Mao S, et al. Prevalence of k13 mutation and day-3 positive parasitaemia in artemisinin-resistant malaria endemic area of Cambodia: a cross-sectional study. Malar J. 2017;16:372.

Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R, Demas A, et al. Artemisinin resistance without pfchcl3 mutations in Plasmodium falciparum isolates from Cambodia. Malar J. 2017;16:195.

Yang C, Zhang H, Zhou R, Qian D, Liu Y, Zhao Y, et al. Polymorphisms of Plasmodium falciparum k13-propeller gene among migrant workers returning to Henan Province, China from Africa. BMC Infect Dis. 2017;17:560.

Siddiqui FA, Cabrera M, Wang M, Braheur A, Kemirembe K, Wang Z, et al. Plasmodium falciparum Sequestrum Falcipin-2-a polymorphisms in South-east Asia and their association with artemisinin resistance. J Infect Dis. 2018;218:434–42.

Wang Z, Cabrera M, Yang L, Gupta B, Liang X, Kemirembe K, et al. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep. 2016;6:33891.