Anatomy of the $tthh$ Physics at HL-LHC

Lingfeng Li
With Yingying Li and Tao Liu
(Hong Kong U. of Sci. and Tech.)

arXiv: 1905.XXXXX
May 2019, Pheno, PITT
Motivation

Higgs self-coupling is the key to probe Higgs nature.

A lot of efforts have been made using $pp \rightarrow hh$ channel:

[1801.06093, 1802.04319, 1308.6302, 1301.3492, 1606.09408, 1803.04359, 1506.03302, 1205.5444, 1606.03302, 1205.5444,(would be a long list)]
Pessimistic Projections at HL-LHC:
[ATL-PHYS-PUB-2016-023]

Sample	No cuts	Trigger	One lepton	≥7 jets	≥5 b-tags	η(b_i, b_j)	≥6 b-tags
t\bar{t}HH(HH → b\bar{b}b\bar{b})	990	513	253	139	29	25	6
t\bar{t}H(H → b\bar{b}) + jets	610,000	500,000	290,000	69,000	1,580	1,200	90
t\bar{t}Z(Z → b\bar{b}) + jets	270,000	220,000	125,000	26,000	600	390	30
t\bar{t}b\bar{b} + jets	5,900,000	4,800,000	2,800,000	460,000	9,700	5,500	400
total background	6,800,000	5,500,000	3,200,000	550,000	11,900	7,100	520

Meanwhile: tthh final states also found in new resonance productions in BSM such as:

- ttH production with H → hh decay (2HDM, MSSM...)
- TT (Top Partner) with T → th (Composite Higgs Models)

0.25-0.3 σ at HL-LHC?
Cross Section Crisis

Xsec of di-Higgs production @ 14 TeV: ~35 fb
Xsec of tthh production @ 14 TeV: ~1 fb!

For SM, ~ 3000 tthh events produced @ HL-LHC

⇒ γγ final states are too scarce for HL-LHC.
(Potentially useful for future colliders...)
Different Final States

Multi-\(b+1\) lepton:

Same-sign di-lepton:

- High multiplicity
- Large combinatorial backgrounds
Multivariable Analysis
Use Boosted Decision Tree (BDT)

Correlations between different objects:

\[\Delta R, \Delta \eta, \text{invariant mass} \ldots \]

Reconstructed Objects:

We reconstruct more object than usually needed in order to be resilient:
2 tops and 3 Higgs are reconstructed

Low level information:

\[p_T \text{ of leptons/ } H_T/ N_{\text{jet}} \ldots \]
5 exclusive channels are analysed with BDT:

5(or more)\(b\)+1 lepton

5(or more)\(b\) + OS dilepton

SS dilepton (w/ >=4 b jets)

Multi-lepton (w/ >=4 b jets)

2\(\tau\) jets (w/ >=4b jets & 1 lepton)
The two leading channels

Multi-b + lepton: Dominant background $tt+4b$

Same-sign dilepton/ Multilepton: Dominant background $tttt$
Multivariable Analysis (Result)

	No cut	Preselection	5b1\(\ell\)	5b2\(\ell\)	SS2\(\ell\)	Multi-\(\ell\)	\(\tau\tau\)
\(tthh\)	2.9e3	7.37e2	50.9 (97.2)	6.1 (12.0)	14.6 (15.7)	8.6 (9.2)	3.6 (3.8)
\(tt4b\)	1.1e6	1.79e5	6.56e3 (1.31e4)	664 (1.30e3)	212 (223)	115 (121)	94.1 (95.1)
\(tt2b2c\)	3.1e5	4.28e4	621 (1.73e3)	59.4 (163)	38.0 (42.4)	24.1 (26.8)	43.6 (48.6)
\(ttVV\)	4.4e4	3.64e3	20.7 (52.7)	3.5 (6.4)	51.8 (60.9)	32.4 (36.5)	3.1 (3.9)
\(4t\)	3.54e4	1.30e4	350 (804)	68.3 (152)	592 (635)	307 (324)	59.8 (64.2)
\(ttbbV\)	8.29e4	1.54e4	353 (765)	47.8 (105)	114 (124)	203 (221)	22.2 (24.2)
\(ttbbh\)	4.68e4	1.04e4	608 (1.15e3)	69.0 (136)	91.0 (98.0)	53.4 (56.2)	24.2 (25.9)
\(tthV\)	4.65e3	881	28.1 (58.5)	4.1 (9.1)	8.8 (9.5)	18.5 (19.9)	2.3 (2.5)
Total	1.6e6	2.65e5	8.53e3 (1.76e4)	918 (1.88e3)	1.11e3 (1.19e3)	753 (806)	249 (265)

	\(\sigma_{\text{cut}}\)	\(\sigma_{\text{(S/B)}_{\text{cut}}}\)	\(\sigma_{\text{BDT}}\)	\(\sigma_{\text{(S/B)}_{\text{BDT}}}\)	\(\sigma_{\text{com}}\)
	0.46 (0.62)	0.17 (0.23)	0.39 (0.40)	0.28 (0.29)	0.20 (0.20)
\(\sigma_{\text{BDT}}\)	0.42 (0.40)	0.47 (0.55)	1.1 (1.1)	0.9 (0.9)	1.1 (1.1)
\(\sigma_{\text{(S/B)}_{\text{BDT}}}\)	0.59 (0.79)	0.21 (0.30)	0.45 (0.46)	0.33 (0.35)	0.21 (0.21)
\(\sigma_{\text{com}}\)	1.2 (1.0)	1.3 (1.6)	1.6 (1.6)	1.6 (1.9)	1.6 (1.6)

All Channel Combined, \(~1\sigma\) @HL-LHC (Lead by multi-b + 1 lepton channel)

Comparable with other channels:
- VBF (pp → hhjj) channel: \(~0.8\sigma\) @HL-LHC
 [F. Bishara et al., 1611.03860]
- Vhh channel: <0.1\(\sigma\) @HL-LHC
 [K. Nordström and A. Papaefstathiou, 1807.01571]
A More Complete EFT Measurement

The $tthh$ contact interaction (dimension scaled by VEV) is general in Composite Higgs Models

$$\mathcal{L} \supset -y \frac{m_t}{v} tth - \kappa \frac{1}{3!} \frac{3m_h^2}{v} h^3 - c_t \frac{1}{2!} \frac{m_t}{v^2} tthh$$

Yukawa \quad Trilinear \quad $tthh$ contact

$$y \equiv \frac{y_{tth}}{y_{tth}^{SM}} = 1, \quad \kappa \equiv \frac{\lambda_{hhh}^{SM}}{\lambda_{hhh}^{SM}} = 1, \quad c_t = 0$$

$$\sigma(tthh)_{14} = 0.81 + 0.14\kappa + 0.04\kappa^2 + 0.28c_t + 0.21\kappa c_t + 0.44c_t^2 \text{ (fb)}$$

See also [R. Contino et al., 1205.5444]
Including Kinematic Effects

The dependence on c_t is significant
Results Including Kinematic Effects

2 similar but different BDT's sensitive to c_t / κ are trained.

Improved sensitivity in c_t direction.

The result from tthh channel may help eliminating the Xsec degeneracy of gluon fusion channels at large κ.
Future Projections (27/100 TeV)

Larger c_t and κ sensitivity

$\sigma(tthh)_{27} = 3.81 + 0.53\kappa + 0.24\kappa^2 + 0.99c_t + 1.25\kappa c_t + 3.59c_t^2$ (fb)

$\sigma(tthh)_{100} = 56.5 + 4.61\kappa + 6.30\kappa^2 + 10.3c_t + 27.4\kappa c_t + 116.9c_t^2$ (fb)
The sensitivity to both of the total Xsec change and c_t induced kinematics further constrains the shape.

Including Higgs to diphoton final states will further improve the performance: Topic for future studies!

The major SM backgrounds increase by a factor ~ 5.7 @27 TeV

~ 105 times larger background Xsec @100 TeV
In type II 2HDM (and hence SUSY models!), \(H \rightarrow hh \) decay is important when \(m_H < 350 \text{ GeV} \) and still survives until ~500 GeV.

Top partners have typical BR(T→th) ~ 25% - 50%

QCD Pair production: \(\sigma(TT^c) \sim 1 \text{ fb} \) when \(m_T \sim 1.6 \text{ TeV} \)
Resonance $tt+H$ production

The resonance searches are still lead by multiple b channels

Up to ~ 450 GeV when $\tan \beta = 1$

Low $\tan \beta$: larger ttH production

comparable with other channels rely on $pp \rightarrow H$, such as $H \rightarrow \tau \tau$
tthh final state can solely constraint BR(T → th)~50% case up to ~1.7 TeV, and BR(T → th)~50% case up to ~1.5 TeV.

When BR(T → th) becomes small, shall combine with other channels.
Gordon Research Seminar (Jun. 29-30)
Gordon Research Conference (Jun. 30 – Jul. 5)

Application Still Opens Until June 1!
Thank you!
Let's take a break.
Backup Slides
Triggers Considered (Following ATLAS)

1. Single lepton trigger: one isolated lepton with $p_T > 25$ GeV.

2. Two lepton trigger: two isolated leptons. Electrons need to have $p_T > 17$ GeV and muons $p_T > 14$ GeV.

3. Three muon trigger: at least three isolated muons.

4. Four b-jet trigger: at least four b jets (77% tagging efficiency), or two b-jets (85%) + two b-jets (70%), with each of them having $p_T > 35$ GeV.

5. $3b + j$ trigger: at least three b-jets (70%) and one extra jet, with both having $p_T > 35$ GeV.

6. Di-τ trigger: two τ-jets with the leading(sub) one's having $p_T > 35(25)$ GeV.

7. $\tau + \ell$ trigger: one τ jet with $p_T > 25$ GeV and one $e(\mu)$ with $p_T > 17(14)$ GeV.
Resonance: Numerical Results

	5b1\ell\ (fb)	5b2\ell\ (fb)	SS2\ell\ (fb)	Multi-\ell\ (fb)	\(\tau\tau\) (fb)	Combined (fb)
\(ttH,\ m_H = 300\ \text{GeV}\)	3.6 (2.4)	10 (7.4)	6.8 (6.5)	9.2 (8.9)	12 (11)	2.5 (2.2)
\(ttH,\ m_H = 500\ \text{GeV}\)	2.6 (2.0)	7.6 (5.7)	5.3 (5.1)	7.4 (7.2)	8.0 (7.7)	2.0 (1.6)
\(TT,\ m_T = 1500\ \text{GeV}\)	0.33 (0.27)	1.4 (1.2)	0.87 (0.81)	1.1 (1.0)	1.5 (1.5)	0.24 (0.21)
\(TT,\ m_T = 1750\ \text{GeV}\)	0.31 (0.25)	2.4 (1.5)	0.64 (0.62)	0.87 (0.83)	1.4 (1.4)	0.20 (0.17)
\(TT,\ m_T = 2000\ \text{GeV}\)	0.35 (0.28)	3.0 (2.0)	0.63 (0.59)	1.0 (0.94)	2.0(1.8)	0.22 (0.19)
BDT variables	5b1ℓ	5b2ℓ	SS2ℓ	Multi-ℓ	$\tau\tau$	
------------------------	-----------	-----------	-----------	--------------	-------------	
N_j	✓	✓	✓	✓	✓	
H_T	✓	✓	✓	✓	✓	
MET	✓	✓	✓	✓	✓	
M_T	✓	/	/	/	/	
Leverage [43]	/	✓	✓	✓	/	
Max/Avg($\Delta\eta_{bb}$)	✓	✓	✓	✓	✓	
Min/Max/Avg($m_{b\bar{b}}$)	✓	✓	✓	✓	✓	
Min/Avg($R_{b\ell}$)	✓	✓	✓	✓	✓	
Centrality(b/j)	✓	✓	✓	✓	✓	
$p_T(b_i)$	5, 6	3-6	1-4	2-4	2-4	
$p_T(j_i)$	4	/	1-3	2	2-3	
$p_T(\ell_i)$	1	1, 2	1, 2	1-3	1	
$\eta(\ell_i)$	1	1, 2	1, 2	1-3	1	
p_T(fat j_i)	1	1	1	1	/	
m(fat j_i)	1	1	1	1, 2	/	
$O(t_i)$	1, 2	1, 2	1, 2	1, 2	1, 2	
$O(h_i)$	1-3	1-3	1-3	1-3	1-3	
R_{b_i,t_j}	/	/	1, 2	/	/	
R_{ℓ_i,h_j}	i=1, j=1, 2	/	i=1, 2, j=1, 2	i=1, j=1, 2	/	
R_{b_i,h_j}	1-3	1-3	1-3	1-3	1-3	
R_{b_i,ℓ_j}	i=1, j=1	i=1, j=1, 2	/	/	/	
R_{ℓ_i,t_j}	i=1-3, j=1	i=1, 2, j=1, 2	i=1, 2, j=2	i=1, j=1-3	i=1, 2, j=1	
m_{ℓ_i,ℓ_j}	/	1, 2	1, 2	1-3	/	
$p_T(\tau\tau/\ell\ell)$	/	✓	/	/	/	
$\eta(\tau\tau/\ell\ell)$	/	✓	/	/	/	
$R_{\ell_i,\tau\tau/\ell\ell}$	/	1, 2	/	/	1	
$R_{h_i,\tau\tau/\ell\ell}$	/	1, 2	/	/	1, 2	
$M_{\ell_i,\tau\tau}$	/	/	/	/	1	
Di-Higgs EFT Pheno
Reprojected from: [R. Contino et al., 1205.5444] & [C. Chen and I. Low, 1405.7040]