Secrecy by Witness-Functions on Increasing Protocols

Jaouhar Fattahi
Computer Science Department
Université Laval
Québec, QC, Canada
jaouhar.fattahi.1@uwaterloo.ca

Mohamed Mejri
Computer Science Department
Université Laval
Québec, QC, Canada
mohamed.mejri@ift.ulaval.ca

Hanane Houmani
Computer Science Department
University Hassan II
Casablanca, Morocco
hanane.houmani@ift.ulaval.ca

Abstract—In this paper, we present a new formal method to analyze cryptographic protocols statically for the property of secrecy. It consists in inspecting the level of security of every component in the protocol and making sure that it does not diminish during its life cycle. If yes, it concludes that the protocol keeps its secret inputs. We analyze in this paper an amended version of the Woo-Lam protocol using this new method.

Keywords- Analysis; Cryptographic protocols; Secrecy.

I. INTRODUCTION

In this paper, we present the witness-functions as a new formal method for analyzing protocols and we run an analysis on an amended version of the Woo-Lam protocol using one of them. The Witness-Functions have been recently introduced by Fattahi et al. [1]–[5] to statically analyze cryptographic protocols for secrecy. A protocol analysis with a witness-function consists in inspecting every component in the protocol in order to make sure that its security never drops between any receiving step and a subsequent sending one. If yes, the protocol is said to be increasing and we conclude that it keeps its secret inputs. We use the witness-function to evaluate the security of every component in the protocol.

This paper is organized as follows:
— First, we give some notations that we will use in this paper;
— then, in the section III we give some abstract conditions on a function to be safe for a protocol analysis and we state that an increasing protocol keeps its secret inputs when analyzed using such functions;
— then, in the sections III and IV we present the witness-function and we highlight its advantages, particularly its static bounds. We state the theorem of protocol analysis with the witness-functions, as well;
— then, in the section V we run an analysis on an amended version of the Woo-Lam protocol and we interpret the results;
— finally, we compare our witness-functions with some related works and we conclude.

NOTATIONS

Here, we give some notations and conventions that will be used throughout the paper.

+ We denote by \(\mathcal{C} = (\mathcal{M}, \xi, \models, \mathcal{K}, \mathcal{L}, \Gamma, \gamma) \) the context containing the parameters that affect the analysis of a protocol:
 - \(\mathcal{M} \): a set of messages built from the algebraic signature \((\mathcal{N}, \Sigma) \) where \(\mathcal{N} \) is a set of atomic names (nonces, keys, principals, etc.) and \(\Sigma \) is a set of functions (\(\text{enc} \) encryption, \(\text{dec} \) decryption, \(\text{pair} \) concatenation (denoted by "." here), etc.), i.e. \(\mathcal{M} = T_{(\mathcal{N}, \Sigma)}(\mathcal{X}) \). We use \(\Gamma \) to denote the set of all substitution from \(\mathcal{X} \to \mathcal{M} \). We designate by \(\mathcal{A} \) all atomic messages (atoms) in \(\mathcal{M} \), by \(\mathcal{A}(m) \) the set of atomic messages in \(m \) and by \(\mathcal{I} \) the set of principals including the intruder \(I \). We denote by \(k^{-1} \) the reverse key of a key \(k \) and we consider that \((k^{-1})^{-1} = k \).
 - \(\xi \): the theory that describes the algebraic properties of the functions in \(\Sigma \) by equations. e.g. \(\text{dec}(\text{enc}(x, y), y^{-1}) = x \).
 - \(\models \): is the inference system of the intruder under the theory. Let \(\mathcal{M} \) be a set of messages and \(m \) a message. \(\mathcal{M} \models m \) designates that the intruder is able to infer \(m \) from \(\mathcal{M} \) using her capacity. We extrapolate this notation to traces as following: \(\rho \models m \) designates that the intruder can infer \(m \) from the messages of the trace \(\rho \).
 - \(\mathcal{K} \): is a function from \(\mathcal{I} \) to \(\mathcal{M} \), that assigns to any principal a set of atomic messages describing her initial knowledge. We denote by \(K_{I}(I) \) the initial knowledge of the intruder, or simply \(K(I) \) where the context is obvious.
 - \(\mathcal{L} \): is the security lattice \((\mathcal{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \bot) \) used to assign security values to messages. A concrete example of a lattice is \((2^\mathcal{F}, \subseteq, \sqcap, \sqcup, \bot, \emptyset) \) that will be used in this paper.
 - \(\Gamma, \gamma \): is a partial function that assigns a value of security (type) to a message in \(\mathcal{M} \). Let \(\mathcal{M} \) be a set of messages and \(m \) a signle message. We write \(\Gamma m \sqsubseteq \gamma m \) when \(\exists m' \in \mathcal{M} \Gamma m' \sqsubseteq \gamma m' \). If yes, we write \(\Gamma, \gamma \models m \).
 - \(\mathcal{R} \): is the relation of secrecy. We denote by \(\mathcal{R}_G(p) \) the set of the generalized roles extracted from \(p \). A generalized role is an abstraction of the protocol where the emphasis is put on a specific principal and all the unknown messages.
are replaced by variables. More details about the role-based specification could be found in [6].

We denote by M_0^p the set of messages (closed and with variables) generated by $R_G(p)$, by M_p the set of closed messages generated by substitution in terms in M_0^p. We denote by R^- (respectively R^+) the set of received messages (respectively sent messages) by a principal in the role R.

Conventionally, we use uppcases for sets or sequences and lowerscases for single elements. For example α atom α be a context.

More details about the role-based specification could be found in [6].

Definition II.1. (Well-built Function) Let F be a function and C be a context.

F is C-well-built iff:

$\forall M, M_1, M_2 \subseteq M, \forall \alpha \in F(\alpha, \{\alpha\}) = \bot$;

$A(M): \begin{cases} F(\alpha, M_1 \cup M_2) = F(\alpha, M_1) \cap F(\alpha, M_2); \\ F(\alpha, M) = \Gamma, \text{ if } \alpha \notin A(M). \end{cases}$

A well-built function F must return the infimum for an atom α that appears in clear in M to express the fact that it is exposed to everybody in M. It should return for it in the union of two sets, the minimum of the two values evaluated in each set apart. It returns the supremum for any atom α that does appear in M to express the fact that none could deduce it from M.

Definition II.2. (Invariant-by-Intruder Function) Let F be a function and C be a context.

F is C-invariant-by-intruder iff:

$\forall M \subseteq M, m \in M, M \models \sigma \Rightarrow \forall \alpha \in A(m), (F(\alpha, m) \subseteq F(\alpha, M)) \lor (\forall K(\alpha) \subseteq \Gamma(\alpha))$. An invariant-by-intruder function F is such that, when it assigns a security value to an atom α in a set of messages M the intruder can never deduce, using her knowledge, from M another message m in which this value decreases (i.e. $F(\alpha, m) \not\subseteq F(\alpha, M)$), except when α is intentionally destined to the intruder (i.e. $\Gamma(\alpha) \not\subseteq \Gamma(\alpha)$).

Definition II.3. (Safe Function) Let F be a function and C be a context.

F is C-safe iff:

$\begin{cases} F \text{ is } C\text{-well-built} \\ F \text{ is } C\text{-invariant-by-intruder} \end{cases}$

A safe function F is well-built and invariant-by-intruder.

Definition II.4. (F-Increasing Protocol) Let F be a function, C be a context and p be a protocol. p is F-increasing in C iff:

$\forall R, r \in R_G(p), \forall \sigma \in \Gamma : \mathcal{X} \rightarrow \mathcal{M}_p$ we have:

$\forall \alpha \in A(M), F(\alpha, r^+) \subseteq \sqcap \alpha \cap F(\alpha, R^-)$

An F-increasing protocol generates permanently traces with atomic messages having always a security value, evaluated by F, higher when sending (i.e. in r^+) than it was on its reception (i.e. in R^-).

Theorem II.5. (Security of Increasing Protocols) Let F be a C-safe Function and p an F-increasing protocol.

p keeps its secret inputs.

The theorem [13] states that a protocol is secure when verified by a safe function F on which it is proved increasing. That is, if the intruder manages to infer a secret α (get it in clear), then its value returned by F is the infimum because F is well-built. That could not happen due to the protocol rules because the protocol is increasing by F unless α has initially the infimum. In this case, α was not from the beginning a secret. That could not happen neither by using the capacity of the intruder because F is invariant-by-intruder. Therefore, the secret is kept forever.

III. Safe Functions

Now, we define three practical functions that meet the conditions or safety: F_{MAX}^{EK}, F_N^{EK} and F_{EK}^{EK}. Each function among them returns for an atom α in a message m:

1) if α is encrypted by a key k, where k is the most external protective key (shortly the external protective key denoted by EK) that satisfies: $\forall k^{-1} \Gamma \supseteq \Gamma(\alpha)$, any subset among the principals that know k^{-1} and the principals that travel with α under the same protection by k. At this step:

a) F_{MAX}^{EK} returns the set of all these candidates;

b) F_N^{EK} returns the set of principals that travel with α under the same protection by k;

c) F_{EK}^{EK} returns the set of principals that know k^{-1}.

2) for two messages linked by an operator other than an encryption by a protective key (e.g. pair), the union of two values evaluated in the two messages apart by F.

3) if α does not have a protective key in m, the infimum to express the fact that it could be discovered by an intruder from m;

4) if α does not appear in m, the supremum to reflect that it could not be discovered by anybody from m;

A such function is well-built by construction. It is invariant-by-intruder too. The main idea of its invariance by intruder property is that the returned candidates (principals) are selected from a section (a component of m) protected by k (invariant by intruder). Hence, to alter this section (to lower the value of security of an atom α), the intruder must
previously have got the atomic key k^{-1}, so her knowledge should satisfy: $\Gamma K(I) \models K^{-1}$. Since the key k^{-1} must satisfy: $\Gamma K(I) \models K^{-1}$, then the knowledge of the intruder satisfy: $\Gamma K(I) \models K^{-1}$ too (transitivity of "\models" in the lattice), which is the definition of an invariant-by-intruder function.

It is very important to mention that we consider the form m_1 of a message m that removes keys that cancel out (i.e. $dec(enc(m,k),k^{-1})_1 = m$). We suppose in this paper that we do not have any other special algebraic properties in the equational theory. This will be the scope of a future work.

Example III.1. Let α be an atom, m be a message and k_{ab} be a key such that: $\Gamma \alpha = \{A,B,S\}; m = \{A,\{S,\alpha,D\}_{k_{ab}}\} = \Gamma \alpha$;

$\Gamma k_{ab} = \{A,B\}$;

$F_{MAX}^EK(\alpha,m) = \Gamma k_{ab} \cup \{A,\alpha\}_{k_{ab}}$ = \{A,B\} \cup \{A,\alpha\}_{k_{ab}} = \{A,B,S,D\}$.

$F_{MAX}^N(\alpha,m) = \{A,S,D\}$.

In the rest of this paper F refers to any of the functions F_{MAX}^E, F_{MAX}^N and F_{MAX}^EK.

IV. The witness-functions

According to the theorem II.5 if a protocol p is proved F-increasing on its valid traces using a safe function F, then it is secure. However, the set of valid traces is infinite. In order to be able to analyze a protocol from within its finite set of the generalized roles, we should adapt a safe function to the problem of substitution (variables) and look for an additional mechanism that allows us to propagate any decision made on the generalized roles to valid traces. The witness-functions are this mechanism. But first, let us introduce the derivative messages. A derivative message is a message of the generalized roles from which we exclude variables that do not contribute to the evaluation of security. This is described in the definition IV.1.

Definition IV.1. (Derivation) We define the derivative message as follows:

\[
\begin{align*}
\partial X\alpha &= \alpha \\
\partial X\epsilon &= \epsilon \\
\partial X\delta &= \delta \\
\partial X = f(m) &= f(\partial X m), f \in \Sigma \\
\partial_{S_1,S_2} m &= \partial_{S_1} \partial_{S_2} m \\
\end{align*}
\]

Then, we apply a safe function F to derivative messages. For an atom in the static neighborhood (i.e. in ∂m), we evaluate its security with no respect to variables. Else, for any message substituting a variable, it is evaluated as a constant block, whatever its content, and with no respect to other variables, if any. This is described by the definition IV.2.

Definition IV.2. Let $m \in \mathcal{M}_p^E, X \in \mathcal{X}_m$ and σ be a valid trace. For all $\alpha \in \mathcal{A}(m\sigma), \sigma \in \Gamma$, we denote by:

\[
F(\alpha, \partial X m\sigma) = \begin{cases}
F(\alpha, \partial m) & \text{if } \alpha \in \mathcal{A}(\partial m), \\
F(X, \partial X m) & \text{if } \alpha \notin \mathcal{A}(\partial m) \text{ and } \alpha = X\sigma.
\end{cases}
\]

The application in the definition IV.2 could not be used to analyze protocols. It is harmful. Let us examine its deficiency in the example IV.3.

Example IV.3. Let m_1 and m_2 be two messages of \mathcal{M}_p^E such that $m_1 = \{\alpha.D.X\}_{k_{ab}}$ and $m_2 = \{\alpha.Y\}_{k_{ab}}$ and $\Gamma \alpha = \{A,B\}$. Let $m = \{\alpha.D.B\}_{k_{ab}}$ be in a valid trace.

$F_{MAX}^E(\alpha, \partial X m) = \{A,B,D\}$, if $m = m_1\sigma_1 | X\sigma_1 = B$;

$\{A,B\}$, if $m = m_2\sigma_2 | Y\sigma_2 = D.B$

Therefore, $F_{MAX}^E(\alpha, \partial X m)$ is not a function on $m\sigma$ (i.e. it returns two possible values for the same preimage).

The witness-function in the definition IV.2 fixes this deficiency: it looks for all the origins m of the substituted message $m\sigma$ in the generalized roles, applies the application in the definition IV.2 and returns the minimum that obviously exists and is unique in a lattice.

Definition IV.4. (Witness-Function) Let $m \in \mathcal{M}_p^E, X \in \mathcal{X}_m$ and σ be a valid trace. Let p be a protocol and F be a C-safe Function. We define a witness-function $W_{p,F}$ for all $\alpha \in \mathcal{A}(m\sigma), \sigma \in \Gamma$, as follows:

\[
W_{p,F}(\alpha, m\sigma) = \bigsqcup_{\exists \sigma' \in \Gamma, m\sigma' = m\sigma} F(\alpha, \partial X m' \sigma')
\]

A witness-function $W_{p,F}$ is safe when F is. Indeed, it is easy to verify that it is well-built. It is invariant-by-intruder as well since the returned values (principal identities) are those returned by F applied to derivative messages of the origins of $m\sigma$. Derivation does not add new candidates, it just removes some of them, but returns always candidates from the same invariant section by the intruder when the message is substituted.

Since the target of the witness-functions is to analyze protocols statically and since it still depends on α (runs), we will bind it in two static bounds and use them for analysis instead of the witness-function itself. The lemma IV.3 provides these bounds.

Proposition IV.5. (Witness-Function Bounds) Let $m \in \mathcal{M}_p^E$. Let F be a C-safe function and $W_{p,F}$ be a witness-function. For all $\alpha \in \Gamma$ we have:

\[
F(\alpha, \partial X m) \sqsupseteq W_{p,F}(\alpha, m\sigma) \sqsupseteq \bigsqcup_{\exists \sigma' \in \Gamma, m\sigma' = m\sigma} F(\alpha, \partial X m' \sigma')
\]

For a secret α in a substituted message $m\sigma$, the upper-bound $F(\alpha, \partial X m)$ evaluates its security from one confirmed origin m in the generalized roles, the witness-function $W_{p,F}(\alpha, m\sigma)$ from the set of the exact origins of $m\sigma$ (when running). The message m is obviously one of them. The lower-bound
Theorem IV.6. (Analysis Theorem) Let \(p \) be a protocol. Let \(F \) be a safe function. Let \(W_{p, F} \) be a witness-function. \(p \) keeps its secrecy inputs if:

\[
\forall R. r \in R_G(p), \forall \alpha \in A(r^+) \text{ we have:}
\]

\[
\bigwedge_{m' \in M^G_p} F(\alpha, \partial[\alpha]m') = \bigwedge \bigwedge_{m' \in M^G_p} F(\alpha, \partial[\alpha]m') \cap F(\alpha, \partial[\alpha]R^-)
\]

This theorem states a static criterion for secrecy. It derives directly from the theorem [1] and the lemma [5]. This allows us to analyze a protocol from within its generalized roles (finite set) and send any decision made-on to valid traces.

V. ANALYSIS OF THE WOO-LAM PROTOCOL (AMENDED VERSION) WITH A WITNESS-FUNCTION

Here, we analyze an amended version of the Woo-Lam protocol with a witness-function and we prove that this is correct for secrecy. This version is denoted by \(p \) in Table I.

Table I: Woo-Lam Protocol-Amended version

\(p \)	\(\{1, A \rightarrow B : A\} \), \(\{2, B \rightarrow A : N_b\} \), \(\{3, A \rightarrow B : (B,k_{ab})_{k_{ab}}\} \), \(\{4, B \rightarrow A : (N_b, A)k_{ab} k_{ab}\} \), \(\{5, S \rightarrow B : (N_b, A)k_{ab} k_{ab}\} \)

The role-based specification of \(p \) is \(R_G(p) = \{A_G, A^2_G, B^1_G, B^2_G, B^3_G, S^1_G\} \), where the generalized roles \(A^1_G, A^2_G \) of \(A \) are as follows:

\[
A^1_G = \{(i.1, A \rightarrow I(B) : A)\},
\]

\[
A^2_G = \{(i.1, A \rightarrow I(B) : A), (i.2, I(B) \rightarrow A : X), (i.3, A \rightarrow I(B) : (B,k_{ab})_{k_{ab}})\}
\]

The generalized roles \(B^1_G, B^2_G, B^3_G \) of \(B \) are as follows:

\[
B^1_G = \{(i.1, I(A) \rightarrow B : A), (i.2, B \rightarrow I(A) : N_b)\},
\]

\[
B^2_G = \{(i.1, I(A) \rightarrow B : A), (i.2, B \rightarrow I(A) : N_b)\},
\]

\[
B^3_G = \{(i.1, I(A) \rightarrow B : A), (i.2, B \rightarrow I(A) : N_b)\},
\]

The generalized role \(S^1_G \) of \(S \) is as follows:

\[
S^1_G = \{(i.4, I(B) \rightarrow S : (A,U, \{B,V\}_k_{ab})_{k_{ab}}), (i.5, S \rightarrow I(B) : (U, \{A,V\}_k_{ab})_{k_{ab}})\}
\]

Let us have a context of verification such that:

\[
\bigwedge_{m' \in M^G_p} F(\alpha, \partial[\alpha]m') = \bigwedge_{m' \in M^G_p} F(\alpha, \partial[\alpha]m') \cap F(\alpha, \partial[\alpha]R^-)
\]

We denote by \(W_{p, F}(\alpha, m) \) the lower-bound witness-function \(W_{p, F}(\alpha, m) \).

Let \(M^G_p = \{A_1, X_1, (B_1, K_{A_2 B_1}), K_{A_2 S_1}, A_3, N^i_{B_2}, Y_1, A_4, N^i_{B_3}, Y_2, K_{A_4 S_2}, N^1_{B_4}, A_5, Z_1, K_{A_5 S_3}, A_6, U_1, (B_5, V_1), K_{A_6 S_4}, K_{A_6 S_5}, K_{A_6 S_6}, U_2, (A_7, V_2), K_{A_7 S_7}, K_{A_7 S_8}, K_{A_7 S_9}\}

After elimination of duplicates, \(M^G_p = \{A_1, X_1, (B_1, K_{A_2 B_1}), K_{A_2 S_1}, A_3, N^i_{B_2}, Y_1, A_4, N^i_{B_3}, Y_2, K_{A_4 S_2}, N^1_{B_4}, A_5, Z_1, K_{A_5 S_3}, A_6, U_1, (B_5, V_1), K_{A_6 S_4}, K_{A_6 S_5}, K_{A_6 S_6}, U_2, (A_7, V_2), K_{A_7 S_7}, K_{A_7 S_8}, K_{A_7 S_9}\}

The variables are denoted by \(X_1, Y_1, Z_1, U_1, U_2, V_1 \) and \(V_2 \).

The static names are denoted by \(A_1, B_1, K_{A_2 B_1}, K_{A_2 S_1}, N^i_{B_2}, A_3, N^i_{B_3}, K_{A_4 S_2}, N^1_{B_4}, A_5, K_{A_5 S_3}, A_6, K_{A_6 S_4}, K_{A_6 S_5}, K_{A_6 S_6}, A_7, K_{A_7 S_7}, K_{A_7 S_8}, K_{A_7 S_9}\).

A. Analysis of the Generalized Roles of \(A \)

As defined in the generalized role \(A \), an agent \(A \) can participate in some session \(S^i \) in which she receives an unknown message \(X \) and sends the message \(\{B,k_{ab}\}_{k_{ab}} \). This is described by the following rule:

\[
S^i : \frac{X}{\{B,k_{ab}\}_{k_{ab}}}
\]

-Analysis of the messages exchanged in \(S^i \):

1- For any \(k_{ab} \):

a- When receiving: \(R_{S^i}^* = X \) (on receiving, we use the upper-bound):

\[
F(k^i_{ab}, \partial[k^i_{ab}]X) = F(k^i_{ab}, \epsilon) = \top (1.0)
\]
b- When sending: $r^+_S = \{B.k_{iab}\}_k_{as}$ (on sending, we use the lower-bound)
$$\forall k_{iab}, \{m' \in M_p^i | \exists \sigma' \in \Gamma.m' \sigma' = r^+_S \sigma'\}$$
$$= \forall k_{iab}, \{m' \in M_p^i | \exists \sigma' \in \Gamma.m' \sigma' = \{B.k_{iab}\}_k_{as} \sigma'\}$$
$$= \{(B_1.K_{A2B_i} \rightarrow k_{iab}, \{B.k_{iab}\}_k_{as})\} \text{ such that: } \sigma'_1 = \{B_1 \rightarrow B, K_{A2B_i} \rightarrow k_{iab}, K_{A2S_i} \rightarrow k_{as}\}$$

C. Analysis of the generalized roles of S

As defined in the generalized role S, an agent S can participate in some session S_i in which she receives the message $\{A.U.\{B.V\}_k_{as}\}_k_{as}$ and sends the message $\{U.\{A.V\}_k_{as}\}_k_{as}$.

This is described by the following rule:

$$S_i : \{A.U.\{B.V\}_k_{as}\}_k_{as} \rightarrow \{U.\{A.V\}_k_{as}\}_k_{as}$$

1- For any U:

b- When receiving: $R^-_{S_i} = \{A.U.\{B.V\}_k_{as}\}_k_{as}$ (on receiving, we use the upper-bound)
$$F(U, \partial[U]\{A.U.\{B.V\}_k_{as}\}_k_{as}) = F(U, \{A.U.\{B\}_k_{as}\}_k_{as}) = \{A, B, S\}$$

b-When sending: $r^+_S = \{U.\{A.V\}_k_{as}\}_k_{as}$ (on sending, we use the lower-bound)
$$\forall U, \{m' \in M_p^i | \exists \sigma' \in \Gamma.m' \sigma' = r^+_S \sigma'\}$$
$$= \forall U, \{m' \in M_p^i | \exists \sigma' \in \Gamma.m' \sigma' = \{U.\{A.V\}_k_{as}\}_k_{as} \sigma'\}$$
$$= \{(U_2, A.V_2) \rightarrow (A.V_2) \rightarrow V, K_{Bk_S} \rightarrow k_{bs}\}$$

$$W_{p,F}(\{U.\{A.V\}_k_{as}\}_k_{as}) = \{\text{Definition of the lower-bound of the witness-function}\}$$
$$F(U, \partial[U]\{U.\{A.V\}_k_{as}\}_k_{as}) = \{\text{Extracting the static neighborhood}\}$$
$$F(U, \partial[U]\{U.\{A.V\}_k_{as}\}_k_{as}) = \{\text{Derivation in the definition IV.1}\}$$

-Analysis of the messages exchanged in S_i:

1- For any N_b:

Since N_b is declared public in the context (i.e. $\Gamma N_b = \bot$), then we have directly:

$$W_{p,F}(N_b) \ni \Gamma N_b \ni F(N_b, \partial[N_b]A) = \bot$$

-Analysis of the messages exchanged in S_i:

1- For any N_b:

Since N_b is declared public in the context (i.e. $\Gamma N_b = \bot$), then we have directly:

$$W_{p,F}(N_b) \ni \Gamma N_b \ni F(N_b, \partial[N_b]Y) = \bot$$

2- For any Y:

Since when receiving, we have $F(Y, \partial[Y]) = F(Y, Y) = \bot$, then we have directly:

$$W_{p,F}(Y, \{A.N_b.Y\}_k_{as}) \ni \Gamma Y \ni F(Y, \partial[Y]) = \bot$$
\[
\begin{align*}
\{\{U_2, \{A_7, V_2\}, k_{U_2, V_2}\}, K_{U_2, V_2}, \sigma_1^1\},
\{N_{B_2}, \{A_5, Z_1\}, k_{B_2, V_2}, \sigma_2^1\}\right)
\text{such that:}
\begin{align*}
\sigma_1^1 &= \{U_2 \rightarrow U, A_7 \rightarrow A, V_2 \rightarrow V, K_{B_2, V_2} \rightarrow k_{b_2}\} \\
\sigma_2^1 &= \{U \rightarrow N_{B_2}, A_5 \rightarrow A, Z_1 \rightarrow V, K_{B_2, V_2} \rightarrow k_{b_2}\}
\end{align*}
\]

\(\mathcal{W}_{p,F}(U, \{A.V\}_{k_{b_2}}, k_{b_2})\)

From (3.5) and (3.6) we have: the messages exchanged in the session respect the theorem IV.6 (III)

\(\mathcal{W}_p(\{U, \{A.V\}_{k_{b_2}}, k_{b_2}\})\)

From (3.5) and (3.6) we have: the messages exchanged in the session respect the theorem IV.6 (III)

VIII. Conclusion and Future Work

In this paper, we presented a new framework to analyze statically cryptographic protocols for secrecy using the witness-functions. We successfully tested them on an amended version of the Woo-Lam protocol. In a future work, we will test them on protocols with theories [19]–[21] and on compose protocols [22]–[24]. We believe that our witness-functions will help to treat these problems.

References

[1] Jaouhar Fattahi, Mohamed Mejri, and Hanane Houmani. Secrecy by witness functions. In 5th Proceedings of the Formal Methods for Security Workshop co-located with the PETRI-NETS 2014 Conference, pages 34–52, 2014.

[2] Jaouhar Fattahi, Mohamed Mejri, and Hanane Houmani. New functions for secrecy on real protocols. In Fourth International Conference on Computer Science, Engineering and Applications (ICCSSEA 2014), Chennai, India, pages 229–250, 2014.

[3] J. Fattahi, M. Mejri, and H. Houmani. A Semi-Decidable Procedure for Secrecy in Cryptographic Protocols. Arxiv e-prints, August 2014.

[4] Jaouhar Fattahi, Mohamed Mejri, and Hanane Houmani. Introduction to witness-functions for secrecy in cryptographic protocols (in press). In The 2014 International Conference on Networks and Information, Nanjing, China, 2014.

[5] Jaouhar Fattahi, Mohamed Mejri, and Hanane Houmani. Relaxed Conditions for Secrecy in a Role-Based specification. International Journal of Information Security, 1:33–36, July 2014.

[6] Mourad Debbabi, Y. Legaré, and Mohamed Mejri. An environment for the specification and analysis of cryptography protocols. In ACSAC, pages 321–332, 1998.

[7] Mourad Debbabi, Mohamed Mejri, Nadia Tawbi, and I. Yahmadi. Formal automatic verification of authentication cryptographic protocols. In ICFEM, pages 50–59, 1997.

[8] Mourad Debbabi, Mohamed Mejri, Nadia Tawbi, and I. Yahmadi. From protocol specifications to flaws and attack scenarios: An automatic and formal algorithm. In WETICE, pages 256–262, 1997.

[9] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[10] Steve Schneider. Verifying authentication protocols in csp. IEEE Trans. Software Eng., 24(9):741–758, 1998.

[11] Hanane Houmani and Mohamed Mejri. Practical and universal interpretation functions for secrecy. In SECRYPT, pages 157–164, 2007.

[12] Hanane Houmani and Mohamed Mejri. Ensuring the correctness of cryptographic protocols with respect to secrecy. In SECRYPT, pages 184–189, 2008.

[13] Hanane Houmani and Mohamed Mejri. Formal analysis of set and and protocols using the interpretation functions-based method. Journal Comp. Netw. and Communic., 2012, 2012.

[14] Hanane Houmani, Mohamed Mejri, and Hamido Fujita. Secrecy of cryptographic protocols under equational theory. Knowl.-Based Syst., 22(3):160–173, 2009.

[15] Steve Schneider. Security properties and csp. In IEEE Symposium on Security and Privacy, pages 174–187, 1996.

[16] Steve A. Schneider and Rob Delicata. Verifying security protocols: An application of csp. In 25 Years Communicating Sequential Processes, pages 243–263, 2004.

[17] Siraj A. Shaikh and Vicky J. Bush. Analysing the woo-lam protocol using csp and rank functions. In WOSIS, pages 3–12, 2005.
[18] James Heather and Steve Schneider. A decision procedure for the existence of a rank function. *J. Comput. Secur.*, 13(2):317–344, March 2005.

[19] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding security properties for cryptographic protocols. Application to key cycles. *ACM Trans. Comput. Log.*, 11(2), 2010.

[20] Véronique Cortier and Stéphanie Delaune. Decidability and combination results for two notions of knowledge in security protocols. *J. Autom. Reasoning*, 48(4):441–487, 2012.

[21] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic methods in computational analysis of cryptographic systems. *J. Autom. Reasoning*, 46(3-4):225–259, 2011.

[22] Stefan Ciobaca and Véronique Cortier. Protocol composition for arbitrary primitives. 2012 IEEE 25th Computer Security Foundations Symposium, 0:322–336, 2010.

[23] Véronique Cortier. Secure composition of protocols. In TOSCA, pages 29–32, 2011.

[24] Véronique Cortier and Stéphanie Delaune. Safely composing security protocols. *Formal Methods in System Design*, 34(1):1–36, 2009.

NOTICE

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.