Moss-made pharmaceuticals: from bench to bedside

Ralf Reski,1,2,3,*, Juliana Parsons1 and Eva L. Decker1

1Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
2FRIAS - Freiburg Institute for Advanced Studies, Freiburg, Germany
3BIOS - Centre for Biological Signalling Studies, Freiburg, Germany

Received 13 March 2015; revised 16 April 2015; accepted 17 April 2015.
*Correspondence (Tel +49 761 2036969; fax +49 761 2036967; email ralf.reski@biologie.uni-freiburg.de)

Keywords: ADCC, biobetter, knockout moss, Morbus Fabry, moss bioreactor, Physcomitrella patens.

Summary

Over the past two decades, the moss Physcomitrella patens has been developed from scratch to a model species in basic research and in biotechnology. A fully sequenced genome, outstanding possibilities for precise genome-engineering via homologous recombination (knockout moss), a certified GMP production in moss bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein glycosylation, remarkable batch-to-batch stability and a safe cryopreservation for master cell banking are some of the key features of the moss system. Several human proteins are being produced in this system as potential biopharmaceuticals. Among the products are tumour-directed monoclonal antibodies with enhanced antibody-dependent cytotoxicity (ADCC), vascular endothelial growth factor (VEGF), complement factor H (FH), keratinocyte growth factor (FGF7/KGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), asialo-erythropoietin (asialo-EPO, AEPO), alpha-galactosidase (aGal) and beta-glucocerebrosidase (GBA). Further, an Env-derived multi-epitope HIV protein as a candidate vaccine was produced, and first steps for a metabolic engineering of P. patens have been made. Some of the recombinant biopharmaceuticals from moss bioreactors are not only similar to those produced in mammalian systems such as CHO cells, but are of superior quality (biobetters). The first moss-made pharmaceutical, aGal to treat Morbus Fabry, is in clinical trials.

Introduction

Most recombinant biopharmaceuticals are complex human glycoproteins. Therefore, the benchmarks for any production system are mammalian cell factories, especially CHO cells, which were derived from Chinese hamster ovaries (Beck et al., 2008; Durocher and Butler, 2009). The use of plants as alternative expression hosts is on the rise because their cultivation may be easier, less expensive and per se excludes possible contaminations of the product with infectious agents deleterious to the patient, which should make downstream processing and safety tests more straightforward and thus less expensive (Fischer et al., 2004; other articles in this special issue). Consequently, several plant-made pharmaceuticals (PMPs) are already in clinical studies (Paul and Ma, 2011; Sabalza et al., 2014), and the first product, Taliglucerase alfa, a beta-glucocerebrosidase to treat Morbus Gaucher (Shaaltiel et al., 2007), was released to the market in 2012 by Pfizer/Protalix.

In comparison with the benchmarks, three major challenges remain before plants can be widely used as alternative cell factories:

1. The amounts of recombinant products need to be enhanced by several techniques.
2. Although the core di-antennary N-glycan-structure on glycoproteins is the same between human and plants, specific differences do exist and can affect stability, efficacy and tolerance by the patient’s immune system.
3. The prerequisite for approval is a production of the drug according to good manufacturing practice (GMP) guidelines, which requires production in self-contained systems such as bioreactors.

Within this special issue on Molecular Farming, we concentrate on the production of PMPs utilizing the moss Physcomitrella patens as a production host. Broader information on specific aspects of this topic can be found in previous reviews. The basic concept was described in Decker and Reski (2004), different aspects of glycoprotein production were discussed in Decker and Reski (2007), and the production process is reviewed in Decker and Reski (2008). Detailed reviews on glyco-engineering aspects can be found in Decker and Reski (2012) and in Decker et al. (2014). Instead, we aim here at providing a concise review of the system, the established enabling technologies, and the most current update on the status of produced potential biopharmaceuticals.

The moss system

Bryophyte (comprising mosses, hornworts and liverworts) research has a long history with several important contributions to basic science (reviewed in Reski, 1998a). From an evolutionary point of view, mosses are situated halfway between single-celled algae and complex seed plants, which are divergent by an evolutionary distance of about one billion years (Lang et al., 2008). As in algae, the dominant phase of moss development is haploid (gametophytic), while the dominant phase in all seed plants is at least diploid (sporophytic). Mosses can be grown in self-contained systems like Petri dishes, Erlenmeyer flasks or bioreactors in pure mineral media without any organic additions.
such as antibiotics, carbon sources or growth regulators and under highly controlled environmental conditions (Cerff and Posten, 2012; Hohe and Reski, 2005; Hohe et al., 2002a). Even under these conditions, the moss *P. patens* can complete its life cycle with the release of persistent spores. Sexual reproduction, however, is only initiated under low temperature and short day conditions (Hohe et al., 2002b). Therefore, no spores are formed under production conditions.

Enabling technologies

Vector-free genetic transformation of *P. patens* has been established by conferring antibiotic resistance to wild-type moss (Schaefer et al., 1991). Shortly afterwards, it became evident that this moss is suitable for precise gene targeting (GT) via homologous recombination (HR) (Kammerer and Cove, 1996; Schaefer and Zryjd, 1997). Because of its outstanding high rate of HR and the haploid nature of its dominant growth phase, GT was subsequently used to disrupt genes of interest and infer gene functions from these knockout mosses in a reverse genetics approach without complex backcrosses (Girke et al., 1998; Strepp et al., 1998) and even allowing high-throughput analyses (Egener et al., 2002). Protocols for culture media, protoplast isolation and regeneration, and for PEG-mediated transformation have been optimized, allowing for the simultaneous disruption of multiple different genes in one experiment (Hohe and Reski, 2002; Hohe et al., 2004; Schween et al., 2003, 2005). The high rate of GT is a clear advantage for glyco-engineering of moss when compared to similar approaches in seed plants (Reski, 1998b; Schaefer and Zryjd, 2001). However, as alternatives to the complete destruction of genes via GT (Kamisugi et al., 2006), methods for base-specific genome alterations and for creating fusion proteins in the original genomic context (Mosquina et al., 2009; Mueller et al., 2014) as well as for a gradual down-regulation of gene expression via artificial microRNAs (Khraiwesh et al., 2008, 2010) have also been established in *P. patens*.

A wide variety of promoter elements have been evaluated for transgene expression in moss, including bacterial (Reutter et al., 1998), endogenous (Jost et al., 2005) and seed plant promoters (Holtorf et al., 2002). Collectively, the set of suitable promoter fragments allows for a control of gene expression over three orders of magnitude (Horstmann et al., 2004). This includes promoter elements which can be induced by temperature (Saidi et al., 2005), chemicals (Kubo et al., 2013) or red light (Müller et al., 2014). Astonishingly, *P. patens* accepts a wide variety of components of the transcription, translation and secretion machineries, originally developed and optimized for recombinant production in CHO cells (Gitzinger et al., 2009). In addition, endogenous signal sequences are used to direct recombinant proteins through the ER, and finally secrete them to the culture medium (Schaff et al., 2005). Alternatively, the product can be integrated into the membrane, thus functionalizing the moss with extracellular catalytic and/or binding activities (Morath et al., 2014). Product stability in the medium can be enhanced by stabilizing additives or by the co-expression of human serum albumin (Baur et al., 2005a). A transient expression assay was developed for fast proof-of-concept studies (Baur et al., 2005b).

The *P. patens* genome comprises 500 Mb distributed on 27 chromosomes (Reski et al., 1994). It has been fully sequenced (Rensing et al., 2008) as third plant genome subsequent to the genomes of *Arabidopsis thaliana* and poplar. The full genome information is freely available via www.cosmoss.org and is constantly improved (Zimmer et al., 2013). A variety of whole genome transcription profiling data sets were published (e.g. Beike et al., 2015; Richardt et al., 2010), which have been integrated into a transcriptomic platform allowing analysis of transcript abundances, and thus indirectly promoter activity, under different culture conditions (Hiss et al., 2014). For the production of biopharmaceuticals, large-scale processes have to be implemented. Bioreactors have been used for plant cell cultures (Kieran et al., 1997) and transgenic hairy root cultures (Giri and Narasu, 2000) as they provide containment and are easy to control, thus facilitating production under GMP conditions. Different kinds and sizes of photobioreactors have been established for the controlled large-scale culture of *P. patens*: the first production was achieved in a 2-L foil-reactor (Reutter and Reski, 1996), subsequently followed by 5 L, 10 L and 20 L stirred glass tanks (Hohe et al., 2002a), which are still the ‘working horses’ in the laboratory. A further upscale to 100 L was achieved by the development of tubular photobioreactors (Perner-Nochta et al., 2007). Currently, for commercial production under GMP-certified conditions, 100 L and 500 L disposable wave reactors are in use (Niederrüüger et al., 2014; Figure 1). While plant cell cultures show a high degree of genetic instability, the so-called somaclonal variation (Larkin and Scowcroft, 1981; Phillips et al., 1994), moss tissue culture is genetically stable over long periods of time (von Stackelberg et al., 2006), because it relies on differentiated moss plants instead of undifferentiated plant cell cultures.

An important issue in GMP regulations is the molecular characterization of the producing cell factories. Once characterized and approved, subsequent production has to rely on identical clones that have to be stored in master cell banks (MCBs). This can easily be achieved for clonal moss tissues, as they can be stored for years over liquid nitrogen and survive this cryopreservation to 100% even after years (Schulte and Reski, 2004). Probably, such a highly controlled cryopreservation period is only limited by human civilization, because recently a moss has been regrown in the laboratory after surviving 1500 years in the Antarctic permafrost (Roads et al., 2014). To facilitate international moss research, noncommercial moss strains are cryopreserved and distributed by the International Moss Stock Center (IMSC) in Freiburg, Germany (www.moss-stock-center.org).

Precision glyco-engineering

Post-translational addition of sugar moieties to proteins occurs in the ER and the Golgi apparatus in a multistep process. These sugars can be attached either to the amide group of asparagine (N-glycosylation), or the hydroxyl group of serine, threonine, hydroxylsine or hydroxyproline (O-glycosylation). Whereas consensus sequences for O-glycosylation are almost unpredictable for mammalian proteins (Julienius et al., 2005), they are well defined for N-glycosylation. In general, the basic structure of N-glycosylation is conserved between humans and plants. The latter, however, show a higher uniformity of N-glycosylation patterns between different tissues and across species (Bosch et al., 2013). This feature is an additional argument for plants as production hosts, because it implies a higher batch-to-batch reproducibility and higher homogeneity of PMP compared to conventional products. Although evolutionary apart from seed plants by 500 million years, the moss *P. patens* performs N-glycosylation similar to them (Koprivova et al., 2003; Viétor et al., 2003). Genes
Mosses contain far more genes involved in secondary metabolism than seed plants (Rensing et al., 2007). Some of these metabolites possess well-known human health benefits (Beike et al., 2014; Reski and Frank, 2005). Therefore, one side-aspect of the field is the metabolic engineering of moss to enhance the production of secondary metabolites with commercial value. A breakthrough in this respect was the expression of a taxadiene synthase from Taxus brevifolia (Anterola et al., 2009), an enzyme responsible for the synthesis of a precursor of paclitaxel, a widely used anticancer drug (Baird et al., 2010). Another target for engineered mosses is the fragrance industry. In this respect, a patchoulol synthase and an alpha/beta-santalene synthase have been expressed in P. patens (Zhan et al., 2014). Patchoulol and alpha/beta-santalol are two sesquiterpenoids used in fragrances (Faraldos et al., 2010; Jones et al., 2011).

The first human protein produced in the moss system was the vascular endothelial growth factor (VEGF) (Baur et al., 2005a; Gorr et al., 2001; Koprivova et al., 2004), which has a central function in angiogenesis and in cancer (Goel and Mercurio, 2013; Roskoski, 2007). Human complement factor H (FH) is the key regulator of the alternative pathway of complement activation and a protectant against oxidative stress (Weismann et al., 2011). Because it is a large protein of 155 kDa and contains 40 disulphide bonds, it is a difficult-to-express protein. Therefore, attempts are ongoing to produce bioactive but truncated versions (mini FH) in insect cells (Hebecker et al., 2013). Full-length FH has been successfully produced in moss with biological activity in vitro (Böttner-Mainik et al., 2011). After having confirmed full biological activity in different bioassays, this protein will be further evaluated in FH-deficient knockout mice. FH supply is a potential treatment for kidney diseases such as atypical haemolytic uremic syndrome (aHUS) and C3 glomerulopathies (Sethi et al., 2012) and for age-related macular degeneration (AMD) (Bradley et al., 2011). A moss-made FH may be a cost-effective and more compliant alternative to the monoclonal antibody eculizumab, which is limited to the treatment of aHUS, has severe side effects (Schmidtko et al., 2013) and, moreover, is the most expensive biopharmaceutical worldwide with treatment costs of about 400,000 Euro per year and patient.

Several human growth factors (FGF7/KGF, EGF and HGF) that are used in mammalian cell culture have been produced in the moss system (Niederkrüger et al., 2014). FGF7/KGF (keratinocyte growth factor) is the first commercially available moss-made human protein, intended for in vitro use (www.greenovation.com). Based on these experiences, moss has been suggested as a potential production host for vaccines (Rosales-Mendoza et al., 2014). As no adverse effects of moss consumption are known, vaccine-producing moss may be directly administered as an oral vaccine. Thus, expensive protein purification could be avoided. The first moss-made candidate vaccine is a chimeric Env-derived HIV multi-epitope protein that is immunogenic in mice (Orellana-Escobedo et al., 2015).

Biobetters from moss

Plants are prevalently discussed as alternative production hosts because of lower costs and increased safety. It is believed that they may produce human proteins in a similar way as, for example, CHO cells do. For the production of such biosimilars, extensive glyco-engineering approaches have to be made as discussed above and in more detail in Decker et al. (2014). However, examples are emerging that these inherent differences...
between plants and mammals may favour plant cell factories, as they, at least in some cases, produce superior biopharmaceuticals, so-called biobetters. A discussion on biosimilars and biobetters can be found in Beck (2011). A glyco-optimized monoclonal antibody (IgG1 IGN314) that was developed to recognize tumour-associated glycosylation patterns (Lewis Y) was produced in moss. It was 40 times more effective at inducing lysis in three different tumour cell lines than the same antibody produced in CHO cells (Schuster et al., 2007). Unlike mammals, plants lack the alpha-1,6-linked fucose residue at the base of the bi-antennary N-glycan structure. The moss-made antibody lacking this sugar moiety was obviously far more efficient in antibody-dependent cellular Table 1 Compilation of recombinant proteins produced in the moss Physcomitrella patens

Abbreviation	Full name	Original expressing organism	Function	MW (kDa)	References
GUS	Beta-glucuronidase	Escherichia coli	Hydrolyses β-glucuronic acid residues from glucuronides giving rise to coloured products; reporter protein	68	Reutter and Reski, 1996
VEGF	Vascular endothelial growth factor	Human	Plays an important role in angiogenesis by inducing the proliferation of endothelial cells	28	Gorr et al., 2001; Koprivova et al., 2004; Baur et al., 2005a
HSA	Human serum albumin	Human	Used as stabilizing agent for therapeutic proteins	66	Baur et al., 2005b
GFP-talin	Green fluorescent protein-talin	Aequorea victoria/mouse	Used to label F-actin filaments; reporter protein	48	Saidi et al., 2005
IgG1 IGN314	Glyco-optimized version of antibody IGN311	Human	Antibody recognizing tumour-associated glycosylation pattern Lewis Y	150	Schuster et al., 2007; Kirchis et al., 2012
AEPO	Asialo-erythropoietin	Human	Displays anti-apoptotic activity. Potential treatment of stroke	30	Weise et al., 2007; Parsons et al. 2012
SEAP	Placental secreted alkaline phosphatase	Human	Dephosphorylation; reporter protein	75	Gitzinger et al., 2009
AMY	Alpha-amylose	Bacillus stearothermophilus	Hydrolyses internal alpha-(1,4)-D-glucosidic linkages on starch, glycogen and related polysaccharides.	64	Anterola et al., 2009
Taxadiene synthase	Taxadiene synthase	Taxus brevifolia	Enzyme responsible for the synthesis of a precursor of paclitaxel, a widely used anticancer drug.	75	Gitzinger et al., 2009
FH	Complement factor H	Human brevifolia	Key regulator of the alternative pathway of complement activation. Potential treatment of atypical haemolytic uremic syndrome or C3 glomerulopathies	155	Böttner-Mainik et al., 2011
AGal	Alpha-galactosidase	Human	Catalyses the cleavage of terminal galactose from ceramide trihexosides. Enzyme replacement therapy in Fabry disease (lysosomal storage disease)	46	Niederkrüger et al., 2014
GBA	Beta-glucocerebrosidase	Human	Catalyses the cleavage of glucose from glucocerebrosides. Enzyme replacement therapy in Gaucher disease (lysosomal storage disease)	60	Niederkrüger et al., 2014
FGF7/KGF	Keratinocyte growth factor	Human	Promotes proliferation of keratinocytes. Re-epithelialization of wounds. Used in many in vitro mammal cell cultures	19–28	Niederkrüger et al., 2014
EGF	Epidermal growth factor	Human	Promotes proliferation of epithelial cells	6	Niederkrüger et al., 2014
HGF	Hepatocyte growth factor	Human	Potent mitogen. It regulates cell proliferation and morphogenesis. It plays a key role in tissue regeneration. Used in in vitro mammal cell culture	100	Niederkrüger et al., 2014
PTS	Patchoulol synthase	Pogostemon cablin	Synthesis of patchoulol, a sesquiterpenoid used as fragrance	64	Zhan et al., 2014
STS	Alpha/beta-santalene synthase	Santalum album	Synthesis of alpha/beta-santalol, a sesquiterpenoid used as fragrance	66	Zhan et al., 2014
Poly HIV	Multi-epitope fusion protein from the human immunodeficiency virus	ArtificialHIV	HIV vaccine candidate	33	Orellana-Escobedo et al., 2015
cytotoxicity (ADCC) than the CHO-derived antibody (Kircheis et al., 2012) and thus a clear biobetter.

Erythropoietin (EPO) is the major hematopoietic hormone (cytokine) and has multiple effects besides the well-known induction of red blood cell maturation in bone marrow. Additional effects in kidney function, angiogenesis, neurogenesis, the immune response and in preventing apoptosis are well documented (Lombardo et al., 2011). Besides that, EPO has an inglorious use in illegal doping activities. Functional EPO has been produced in moss (Weise et al., 2007). The protein was, however, decorated with so-called Lewis A (Le⁺) structures, as was the similar product from Nicotiana benthamiana (Castillo et al., 2013). Such Le⁺ epitopes are biomarkers for certain types of cancer (Rho et al., 2014) and, thus, should be avoided on PMPs. A single gene responsible for the synthesis of Le⁺ epitopes in P. patens was identified and deleted from the moss genome. The resulting asialo-EPO (AEOPO) was of a remarkably high uniformity with almost only one glycosylation form and devoid of Le⁺ epitopes and any other plant-specific glyco-epitopes (Parsons et al., 2012). Such an asialo-EPO does not promote the maturation of red blood cells, and thus cannot be abused for doping, but exerts neuroprotective and anti-apoptotic functions, and therefore could be beneficial in stroke treatment without the potential thrombembolic risk of EPO (Kaneko et al., 2013; Sirén et al., 2009). To enhance the safety and efficiency of moss-made asialo-EPO even further, a gene was identified and eliminated from the moss genome that is responsible for an undesired non-human prolyl-hydroxylase in plants. This hydroxyproline is the anchor site for plant-typical O-glycosylation, which is also undesired in PMPs (Parsons et al., 2013). Thus, moss-made asialo-EPO appears to be a safe biobetter for a variety of indications.

Morbus Gaucher and Morbus Fabry are two orphan lysosomal storage diseases with severe implications (Boustany, 2013; Lieberman et al., 2012), which can be treated by an enzyme replacement therapy (Beck, 2010). Both enzymes, human alpha-galactosidase (αGal) for Fabry and beta-glucocerebrosidase for Gaucher disease, are being produced in moss. A detailed analysis of glycan structures from different batches proved a higher homogeneity and a significantly enhanced batch-to-batch stability compared to commercially available drugs that are produced in mammalian cell lines (Niederkrüger et al., 2014). Thus, the production system itself is able to produce superior biopharmaceuticals. In addition, moss-made αGal lacks the terminal mannose phosphorylation and thus is imported into cells via mannose receptors and not mannose-6 phosphate receptors, yielding better pharmacokinetics in Fabry mice. Moss-made αGal has successfully passed toxicity testing and is currently in clinical trials (www.greenovation.com).

Conclusions

A wide variety of human glyco-proteins are currently produced in mammalian cell factories such as CHO cells. With the advent of personalized medicine, the demand for such recombinant biopharmaceuticals will increase steeply. Plant-based systems are being developed as cost-effective and safe alternative production hosts. Among those, the moss system has unique advantages because it combines the best of both worlds. Some moss-made pharmaceuticals have superior quality compared to conventional products from insect or mammalian cell factories, as evidenced by a forty times better ADCC and better batch-to-batch reproducibility with regard to protein glycosylation. Pre-clinical and clinical trials are underway to evaluate whether the moss system is suitable to provide next-generation biopharmaceuticals as clear biobetters.

Acknowledgements

This work was supported by contract research ’Glykobiologie/Glykomik’ of the Baden-Württemberg Stiftung (to E.L.D. and R.R.) and by the Excellence Initiative of the German Federal and State Governments (EXC294 to R.R.). We thank Dr. med. Karsten Häffner for comments on the article and Anne Katrin Prowse for proof-reading of the article.

Conflict of interest

R.R. is an inventor of the moss bioreactor and a founder of Greenovation Biotech GmbH. He currently serves as advisory board member of this company. E.L.D., J.P. and R.R. are inventors of patents and patent applications related to the topics discussed here. The Chair of Plant Biotechnology at the University of Freiburg, headed by R.R., developed and hosts the resources www.cosmoss.org and www.moss-stock-center.org.

References

Anterola, A., Shanle, E., Perroud, P.-F. and Quatrano, R. (2009) Production of taxa-(4,11(12))-dien-6-one by transgenic Physcomitrella patens. Transgenic Res. 18, 655–660.

Baird, R.D., Tan, D.S.P. and Kaye, S.B. (2010) Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nat. Rev. Clin. Oncol. 7, 575–582.

Baur, A., Reski, R. and Gorr, G. (2005a) Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol. J. 3, 331–340.

Baur, A., Kaufmann, F., Rolli, H., Weise, A., Luethje, R., Berg, B., Braun, M., Baemejer, W., Kietzmann, M., Reski, R. and Gorr, G. (2005b) A fast and flexible PEG-mediated transient expression system in plants for high level expression of secreted recombinant proteins. J. Biotechnol. 119, 332–342.

Beck, M. (2010) Emerging drugs for lysosomal storage diseases. Expert Opin. Emerg. Drugs 15, 495–507.

Beck, A. (2011) Biosimilar, biobetter and next generation therapeutic antibodies. MABs, 3, 107–110.

Beck, A., Wagner-Rousset, E., Bussat, M.-C., Lokteff, M., Klinguer-Hamour, C., Haeuw, J.-F., Goetsch, L., Wurch, T., Dorsselaer, A.V. and Corvaia, N. (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechnol. 9, 482–501.

Beike, A.K., Jaeger, C., Zink, F., Decker, E.L. and Reski, R. (2014) High contents of very long chain polyunsaturated fatty acids in different moss species. Plant Cell Rep. 33, 245–254.

Beike, A.K., Lang, D., Zimmer, A.D., Wüst, F., Trautmann, D., Wiedemann, G., Beyer, P., Decker, E.L. and Reski, R. (2015) Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol. 205, 869–881.

Bosch, D., Castillo, A., Loos, A., Schots, A. and Steinckelner, H. (2013) N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19, 5503–5512.

Boustany, R.-M.N. (2013) Lysosomal storage diseases - the horizon expands. Nat. Rev. Neurol. 9, 583–598.

Bradley, D.T., Zipfel, P.F. and Hughes, A.E. (2011) Complement in age-related macular degeneration: a focus on function. Eye, 25, 683–693.

Büttrner-Mainik, A., Parsons, J., Jérôme, H., Hartmann, A., Lamer, S., Schaaf, A., Schlüer, A., Zipfel, P.F., Reski, R. and Decker, E.L. (2011) Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol. J. 9, 373–383.
Castillo, A., Neumann, L., Gättinger, P., Strasser, R., Vorauer-Uhl, K., Sterovsky, T., Altmann, F. and Steinkellner, H. (2013) Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS ONE, 8, e54836.

Cerff, M. and Posten, C. (2012) Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light – a kinetic study. Biotechnol. J. 7, 527–536.

Decker, E.L. and Reski, R. (2004) The moss bioreactor. Curr. Opin. Plant Biol. 7, 166–170.

Decker, E.L. and Reski, R. (2007) Moss bioreactors producing improved biopharmaceuticals. Curr. Opin. Biotechnol. 18, 393–398.

Decker, E.L. and Reski, R. (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst. Eng. 31, 3–9.

Decker, E.L. and Reski, R. (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep. 31, 453–460.

Decker, E.L., Parsons, J. and Reski, R. (2014) Glyco-engineering for biopharmaceutical production in moss bioreactors. Front. Plant Sci. 5, 346.

Durocher, Y. and Butler, M. (2009) Expression systems for therapeutic glycophosphorylation production. Curr. Opin. Biotechnol. 20, 700–707.

Egner, T., Granado, J., Gustton, M.-C., Hohe, A., Hiltorf, H., Lucht, J.M., Rensing, S.A., Schlink, K., Schulte, J., Schween, G., Zimmermann, S., Duvenig, E., Rak, B. and Reski, R. (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol. 2, 6.

Faraldos, J.A., Wu, S., Chappell, J. and Coates, R.M. (2010) Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-2H1]farnesyl diphiphate catalyzed by recombinant patchoulisolase synthase. J. Am. Chem. Soc. 132, 2998–3008.

Fischer, R., Stoger, E., Schillberg, S., Christou, P. and Twyman, R.M. (2004) Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.

Giri, A. and Narasu, M.L. (2000) Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 18, 1–22.

Girke, T., Schmidt, H., Zahringer, U., Reski, R. and Heinz, E. (1998) Identification of a novel Delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15, 39–48.

Gitzinger, M., Alba-Dominguez, M., Roumenina, L.T., Reuter, S., Hyvärinen, S., Dragon-Durey, M.-A., Jokiranta, T.S., Sánchez-Corral, P. and Jösi, M. (2013) An engineered construct combining complement regulatory and surface-recognition domains represents a minimal-size functional Factor H. J. Immunol. 191, 912–921.

Hiss, M., Laule, O., Meskauskienė, R.M., Arif, M.A., Decker, E.L., Erkleben, A., Frank, W., Hanke, S.T., Lang, D., Martin, A., Neu, C., Reski, R., Richardt, S., Schallenberg-Rudinger, M., Szövényi, P., Tiko, T., Wiedemann, G., Wolf, L., Zimmermann, P. and Rensing, S.A. (2014) Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions. Plant J. 79, 530–539.

Hohe, A. and Reski, R. (2002) Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Sci. 163, 69–74.

Hohe, A. and Reski, R. (2005) From axenic sporulation to molecular farming. One century of bryophyte in vitro culture. Plant Cell Rep. 23, 513–521.

Hohe, A., Decker, E.L., Gorr, G., Schween, G. and Reski, R. (2002a) Tight control of growth and cell differentiation in phototrophically growing moss (Physcomitrella patens) bioreactor cultures. Plant Cell Rep. 20, 1135–1140.

Hohe, A., Rensing, S.A., Mildner, M., Lang, D. and Reski, R. (2002b) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol. 4, 595–602.

Hohe, A., Egner, T., Lucht, J.M., Hiltorf, H., Reinhard, C., Schween, G. and Reski, R. (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr. Genet. 44, 339–347.

Hiltorf, H., Hohe, A., Wang, H.L., Jugold, M., Rausch, T., Duvenig, E. and Reski, R. (2002) Promoter subfragments of the sugar beet V-type H+-ATPase subunit c isof orm drive the expression of transgenes in the moss Physcomitrella patens. Plant Cell Rep. 21, 341–346.

Horstmann, V., Huether, C.M., Jost, W., Reski, R. and Decker, E.L. (2004) Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol. 4, 13.

Huether, C.M., Lienhart, O., Baur, A., Stemmer, C., Gorr, G., Reski, R. and Decker, E.L. (2005) Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol. 7, 292–299.

Jones, C.G., Moniodis, J., Zulak, K.G., Scaffidi, A., Plummer, J.A., Ghisalberti, E.L., Barbour, E.L. and Bohmihan, J. (2011) Sandalwood fragrance biosynthesis involves squalensynthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J. Biol. Chem. 286, 17445–17454.

Jost, W., Link, S., Horstmann, V., Decker, E.L., Reski, R. and Gorr, G. (2005) Isolation and characterisation of three moss-derived beta-tubulin promoters suitable for recombinant expression. Curr. Genet. 47, 111–120.

Julienis, K., Malgaard, A., Gupta, R. and Brunak, S. (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiochemistry, 15, 153–164.

Kamisugi, Y., Schlink, K., Rensing, S.A., Schween, G., van Stackelberg, M., Cuming, A.C., Reski, R. and Cove, D.J. (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res. 34, 6205–6214.

Kammerer, W. and Cove, D.J. (1996) Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens. Mol. Gen. Genet. 250, 380–382.

Kaneko, N., Kakó, E. and Sawamoto, K. (2013) Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front. Cell. Neurosci. 7, 235.

Khrawi, B., Ossowsky, S., Weigel, D., Reski, R. and Frank, W. (2006) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 148, 684–693.

Khrawi, B., Arif, M.A., Meعلم, G.I., Ossowsky, S., Weigel, D., Reski, R. and Frank, W. (2010) Transcriptional control of gene expression by microRNAs. Cell, 140, 111–122.

Kien, P.M., MacLoughlin, P.F. and Malone, D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52.

Kircheis, R., Halanek, N., Köllner, I., Jost, W., Schuster, M., Gorr, G., Hajsazk, J. and Nechansky, A. (2012) Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314. MAbs, 4, 532–541.

Kopriwovna, A., Altmann, F., Gorr, G., Kopriwa, S., Reski, R. and Decker, E.L. (2003) N-glycosylation in the moss Physcomitrella patens is organized similarly to that in higher plants. Plant Biol. 5, 582–591.

Kopriwovna, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriwa, S., Gorr, G., Reski, R. and Decker, E.L. (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol. J. 2, 517–523.

Kubo, M., Imai, A., Nishiyama, T., Ishikawa, M., Sato, Y., Kurata, T., Hiyawashi, Y., Reski, R. and Hasebe, M. (2013) System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS ONE, 8, e77356.

Lang, D., Zimmer, A.D., Rensing, S.A. and Reski, R. (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci. 13, 542–549.
Larkin, P.J. and Scowcroft, W.R. (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60, 197–214.

Lieberman, A.P., Puertollano, R., Raben, N., Slaugenhaupt, S., Walkley, S.U. and Ballabio, A. (2012) Autophagy in lysosomal storage disorders. Autophagy, 8, 719–730.

Lombardo, M., Kovacs, K. and Scheithauer, B.W. (2011) Endotheoprotein: a hormone with multiple functions. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 78, 41–53.

Morath, V., Truong, D.-I., Allbrecht, F., Polte, I., Ciccone, R.A., Funke, L.F., Reichart, L., Wolf, C.G., Brunner, A.-D., Fischer, K., Schneider, P.C., Bruggenjürgen, J.B., Fröhlich, F., Wiedemann, G., Reski, R. and Skerra, A. (2014) Design and characterization of a modular membrane protein anchor to functionalize the moss Physcomitrella patens with extracellular catalytic and/or binding activities. ACS Synth. Biol. 3, 990–994.

Mosquera, A., Katz, A., Decker, E.L., Rensing, S.A., Reski, R. and Ohad, N. (2009) Regulation of stem cell maintenance by the Polycorm protein FIE has been conserved during land plant evolution. Development, 136, 2433–2444.

Mueller, S.J., Lang, D., Hoemstein, S.W.N., Lang, E.G.E., Schuessele, C., Schmidt, A., Fluck, M., Leisibach, D., Niegl, C., Zimmer, A.D., Schlosser, A. and Rensing, S.A. (2014) Quantitative analysis of the mitochondriand plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. Plant Physiol. 164, 2081–2095.

Müller, K., Siegel, J., Jahne, F.R., Gerrer, K., Wend, S., Decker, E.L., Reski, R., Weber, W. and Z ürünler, M.D. (2014) A red light-controlled synthetic gene expression switch for plant systems. Mol. BiolSyst. 10, 1679–1688.

Niederkrüger, H., Dabrowska-Schlepp, P. and Sthaaf, A. (2014) Suspension culture of plant cells under phototrophic conditions. In: Industrial Scale Suspension Culture of Living Cells (Meyer, H.-P. and Schmidhalter, D.R., eds), pp. 259–292. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Orellana-Escobedo, L., Rosales-Mendoza, S., Romero-Maldonado, A., Parsons, J., Decker, E.L., Monreal-Escalante, E., Moreno-Fierros, L. and Reski, R. (2015) An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Rep. 34, 425–433.

Parsons, J., Altmann, F., Graf, M., Stadlmann, J., Reski, R. and Decker, E.L. (2007) Mass-produced basic of asialo-endotheoprotein devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol. J. 10, 851–861.

Parsons, J., Altmann, F., Arrenberg, C.K., Koprivova, A., Beike, A.K., Stemmer, C., Gorr, G., Reski, R. and Decker, E.L. (2012) Moss-based production of asialo-endotheoprotein devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol. J. 10, 851–861.

Perner-Nochta, I., Lucumi, A. and Posten, C. (2007) Photoautotrophic cell and tissue culture techniques on protoplast regeneration and early tissue cultures: breakdown of normal controls. In: Pathobiol. J. Immunopathol. Mol. Cell. Biol. 7, 127–137.

Phillips, R.L., Kaeppler, S.M. and Ollhoff, P. (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl. Acad. Sci. 91, 5222–5226.

Rensing, S.A., Ick, J., Fawcett, J.A., Lang, D., Zimmer, A., Rensing, S.A., Terry, A., Salamov, A., Shapiro, H., Lieberman, A.P., Puertollano, R., Raben, N., Slaugenhaupt, S., Walkley, S.U. and Ballabio, A. (2012) Autophagy in lysosomal storage disorders. Autophagy, 8, 719–730.

Reski, R. (1998a) Development, genetics and molecular biology of mosses. Bot. Acta, 111, 1–15.

Reski, R. (1998b) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci. 3, 209–210.

Reski, R. and Frank, W. (2005) Moss (Physcomitrella patens) functional genomics - Gene discovery and tool development, with implications for crop plants and human health. Brief. Funct. Genomic. Proteomic. 4, 48–57.

Reutter, K. and Reski, R. (1996) Production of a heterologous protein in bioreactor cultures of fully differentiated moss plants. Plant Tissue Cult. Biotech. 2, 142–147.

Reutter, K., Atzorn, R., Haderer, B., Schmülling, T. and Reski, R. (1998) Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. Planta, 206, 196–203.

Rho, J., Mø, J.R., Wright, W.S., Brenner, D.E., Stave, J.W., Gildersleeve, J.C. and Lampe, P.D. (2014) Discovery of sialyl Lewis A and Lewis X modified protein cancer biomarkers using high density antibody arrays. J. Proteomics, 96, 291–299.

Richardt, S., Timmerhaus, G., Lang, D., Qudeimat, E., Corrêa, L.G.G., Reski, R., Rensing, S.A. and Frank, W. (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and ascorbic acid signalling. Plant Mol. Biol. 72, 27–45.

Roads, E., Longton, R.E. and Convey, P. (2014) Millennial timescale regeneration in a moss from Antarctica. Curr. Biol. 24, R222–R223.

Rosinges-Mendoza, S., Orellana-Escobedo, L., Romero-Maldonado, A., Decker, E.L. and Reski, R. (2014) The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Rev. Vaccines, 13, 203–212.

Roskoski, R. J. (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hematol. 62, 179–213.

Sabalza, M., Christou, P. and Capell, T. (2014) Reombiant plant-derived pharmaceuticals: current technical and economic bottlenecks. Biotechnol. Lett. 36, 2367–2379.

Saidi, Y., Finka, A., Chakhpornian, M., Zryd, J.-P., Schafer, D.G. and Goloubinoff, P. (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol. Biol. 59, 697–711.

Schaefer, A., Tintelnot, S., Baur, A., Reski, R., Gorr, G. and Decker, E.L. (2005) Use of endogenous signal sequences for transient production and efficient secretion by moss Physcomitrella patens cells. BMC Biotechnol 5, 30.

Schaefer, D.G. and Zryd, J.-P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.

Schaefer, D.G. and Zryd, J.-P. (2001) The Moss Physcomitrella patens, now and then. Plant Physiol. 127, 1430–1438.

Schaefer, T., Zryd, J.-P., Knight, C.D. and Cove, D.J. (1991) Stable transformation of the moss Physcomitrella patens. Mol. Gen. Genet. 226, 418–424.

Schmidtko, J., Peine, S., El-Houssinei, Y., Pascal, M. and Meier, P. (2013) Treatment of atypical hemolytic uremic syndrome and thrombotic microangiopathies: a focus on Eculizumab. Am. J. Kidney Dis. 61, 289–299.

Schulte, J. and Reski, R. (2004) High throughput cryopreservation of 140,000 Physcomitrella patens mutants. Plant Biol. 6, 119–127.

Schuster, M., Jost, W., Mudd, G.C., Wiederkum, S., Schwager, C., Janzek, E., Altmann, F., Stadlmann, J., Stemmer, C. and Gorr, G. (2007) In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol. J. 2, 700–708.

Schwein, G., Hohe, A., Koprivova, A. and Reski, R. (2003) Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protop PCA development in a moss, Physcomitrella patens. J. Plant Physiol. 160, 209–212.

Schwein, G., Egener, T., Fritzowsky, D., Granado, J., Guitton, M.C., Hartmann, N., Hohe, A., Holtorf, H., Lang, D., Lucht, J.M., Reinhard, C., Reski, R., Schlink, K., Schulte, J. and Reski, R. (2005) Large-scale analysis of 73,329 Physcomitrella plants transformed with different gene disruption libraries: Production parameters and mutant phenotypes. Plant Biol. 7, 228–237.

Reski, R. (1998a) Development, genetics and molecular biology of mosses. Bot. Acta, 111, 1–15.
Sethi, S., Nester, C.M. and Smith, R.J.H. (2012) Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 81, 434–441.

Shaaltiel, Y., Bartfeld, D., Hashmueli, S., Baum, G., Brill-Almon, E., Galili, G., Dym, O., Boldin-Adamsky, S.A., Silman, I., Sussman, J.L., Futerman, A.H. and Aviezer, D. (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J. 5, 579–590.

Sirén, A.-L., Faßhauer, T., Bartels, C. and Ehrenreich, H. (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics, 6, 108–127.

von Stackelberg, M., Rensing, S.A. and Reski, R. (2006) Identification of genic SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biol. 6, 9.

Strepp, R., Scholz, S., Kruse, S., Speth, V. and Reski, R. (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl Acad. Sci. USA, 95, 4368–4373.

Vietor, R., Loutelier-Bourhis, C., Fitchette, A.-C., Margerie, P., Gonneau, M., Faye, L. and Lerouge, P. (2003) Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants. Planta, 218, 269–275.

Weise, A., Altmann, F., Rodriguez-Franco, M., Sjoberg, E.R., Bäumer, W., Launhardt, H., Kietzmann, M. and Gorr, G. (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Δ-fuc-t Δ-xyI-t mutant. Plant Biotechnol. J. 5, 389–401.

Wesniman, D., Hartvigsen, K., Lauer, N., Bennet, K.L., Scholl, H.P.N., Isa, P.C., Cano, M., Brandsblatter, H., Tsakonas, S., Skerka, C., Superti-Furga, G., Handa, J.T., Zipfel, P.F., Witztum, J.L. and Binder, C.J. (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature, 478, 76–81.

Zhan, X., Zhang, Y.-H., Chen, D.-F. and Simonsen, H.T. (2014) Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene. Front. Plant Sci. 5, 636.

Zimmer, A.D., Lang, D., Buchta, K., Rombauts, S., Nishiyama, T., Hasebe, M., de Peer, Y.V., Rensing, S.A. and Reski, R. (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genom. 14, 498.