Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

Doo-Byoung Oh1,2,*

1Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KIRIBB), 2Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, Korea

Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]

INTRODUCTION

A lysosome is an acidic cellular organelle containing more than 60 hydrolytic enzymes for digestion and recycling of various macromolecules. Lysosomal storage diseases (LSDs) are caused by genetic defects resulting in deficiencies of these enzymes, which leads to massive accumulation of undigested macromolecules in lysosomes (1). This accumulation induces lysosomal and cellular dysfunctions progressively leading to the failures of multiple tissues and organs including the brain, viscera, bone and connective tissues. The LSD patients seem normal at birth but develop clinical manifestations (such as abnormal enlargement of organs, coarsening of hair and facial features, and skeletal and central nervous system defects) mainly in infancy/childhood and often end up with early death (1-4).

For treatment of LSDs, bone marrow transplantation, enzyme replacement therapy (ERT), and substrate reduction technology are currently available (1, 2, 4). Although bone marrow transplantation was the only therapy available in the past, it is now mainly used in the cases where ERT does not work (1, 2). Substrate reduction therapy uses an inhibitor for an enzyme involved in the synthesis of the accumulated compound and has only one approved drug (Miglustat) for Gaucher disease (2). Several novel approaches including pharmacological chaperones and gene therapy are under the development, however these still await evaluation in clinical trials (2, 4). In contrast, ERT has 10 approved therapeutic enzymes for 7 LSDs at present after their efficacy and safety have already been confirmed by clinical trials (1-4) (Table 1). However, there still exist several limitations such as immune reactions, low efficiency of lysosomal targeting and difficult delivery to central nervous system. To overcome these limitations, several strategies have been employed to develop next generation therapeutic enzymes, especially focusing on increasing the targeting efficiency and/or crossing the blood brain barrier. Many of these approaches include glycan remodeling in order to change the tissue distribution and improve the cellular uptake and lysosomal targeting. Here, we provides the insights into the glycan structures that are important for lysosomal targeting and current glyco-engineering strategies to improve ERT efficiency.

Mannose-6-phosphate (M-6-P) glycan modification for trafficking to lysosome

A pre-made N-glycan precursor (Glc3Man9GlcNac2) is attached
to glycoproteins including lysosomal enzymes by oligosaccharyl transferase in the endoplasmic reticulum (ER) during the co-translational secretion process. After trimming of the three terminal glucosecs and one mannose residues of the N-glycan in the ER, the enzymes move to the Golgi apparatus and undergo further glycan trimming and modification. Here, some high-mannose type glycans of lysosomal enzymes are modified to contain M-6-Ps in a two-step reaction (Fig. 1) (5-7). As a first step in the cis-Golgi complex, UDP-GlcNAc:lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) recognizes lysosomal enzymes and then transfer GlcNAc-1-phosphate from UDP-GlcNAc to the C6 hydroxyl groups of a specific mannose residue (GlcNAc-1-phosphate-6-O-mannose). GlcNAc-1-phosphotransferase, a heterohexameric complex (α1β2γ2) encoded by two genes (8, 9), has been known to recognize common conformational structures of lysosomal enzymes in which lysine residues are the major determinants (10, 11). In the second step, N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (uncovering enzyme) removes the outer GlcNAc and leaves a phosphate group linked to the mannose residue (phosphate-6-O-mannose) of the N-glycan, which is called an M-6-P glycan (Fig. 1). The uncovering enzyme encoded by the NAGPA gene is a type I membrane protein and exists as a tetramer that cycles between the trans-Golgi network (TGN) and the plasma membrane (6, 7).

The M-6-P glycans of lysosomal enzymes are recognized by M-6-P receptors (MPRs) for lysosomal delivery. There are two MPRs; a cation-dependent (CD)-MPR with a molecular weight (MW) of 46 kDa and a cation-independent (CI)-MPR with a MW of 300 kDa (5-7). MPRs are type I transmembrane glycoproteins distributed over the TGN, endosomes, and plasma membrane (6, 7). CD-MPR has a luminal domain of 159 amino acids with M-6-P binding ability, while CI-MPR contains 15 homologous repeating domains of ~150 amino acids; domains 3 and 9 have high affinity M-6-P binding sites, and domain 11 provides a binding site for insulin-like growth factor II (IGF II) (6, 7). As a multi-functional protein, CI-MPR can bind other ligands including IGF II, retinoic acid, and urokinase-type plasminogen activator receptor (5, 6). Studies using knockout mice lacking CD- or CI-MPR have shown that both MPRs are required to deliver all lysosomal enzymes, as three populations exist, CD-MPR-dependent, CI-MPR-dependent, and those dependent on both receptors (5, 7).

In the TGN, the M-6-P glycans of lysosomal enzymes are recognized by MPRs, which are delivered to the early endosome through clathrin-coated vesicles requiring the interaction of MPRs with coat proteins (Fig. 1) (5-7). As the early endosomes mature to late endosomes, accompanied by pH decrease, lysosomal enzymes are released from MPRs, which avoids the delivery of MPRs to lysosomes where they can be digested (7). Finally, selective transfer of lysosomal enzymes to lysosomes is achieved by the fusion of late endosomes with lysosomes, which begins to digest the macromolecules at acidic pH 5 which is maintained by a membrane ATP-driven H+ pump (7).

Most therapeutic enzymes are delivered to lysosomes by CI-MPR-mediated endocytosis

Some fractions of lysosomal enzymes, instead of trafficking to lysosomes via M-6-P pathway, escape binding to MPRs in the TGN and exit to extracellular spaces (Fig. 1) (5-7). Such secreted enzymes can be recaptured by the MPRs located at plasma membranes and delivered to lysosomes by receptor-
mediated endocytosis. CI-MPR is responsible for this M-6-P-dependent endocytosis in physiological conditions, although small amounts of both CD- and CI-MPRs exist at plasma membranes. Most of the therapeutic enzymes used in ERT exploit this "secretion-recapture" pathway for cellular uptake and lysosomal targeting. When therapeutic enzymes carrying M-6-P glycans are administrated to the body, they can be recognized and internalized to cells by CI-MPR at the plasma membranes (7). Seven therapeutic enzymes for the treatment of six LSDs (all enzymes except Imiglucerase, Velaglucerase alfa, and Taliglucerase alfa for Gaucher disease) employ this interaction between their M-6-P glycans and CI-MPR for targeting to lysosomes (Table 1). They are usually secreted from overexpressing Chinese hamster ovary (CHO) cells or human fibroblasts as glycoproteins containing heterogeneous N-glycans (complex type and M-6-P glycans).

Fabry disease arises from a deficiency in α-galactosidase (GLA), which results in accumulation of globotriaosylceramide (Gb3) and lysoGb3. For the treatment, there are two approved GLAs, Agalsidase alfa and Agalsidase beta, which are produced from human fibroblasts and CHO cells, respectively. They are homodimeric glycoproteins with three N-glycosylation sites in each monomer; one site comprises a complex type glycan with terminal sialic acids, while the other two sites are mainly attached to M-6-P glycans (12). A comparative glycan analysis study showed that Agalsidase beta has higher levels of M-6-P and sialic acid than Agalsidase alfa, which correlates with the better efficacy of Agalsidase beta to reduce the accumulated Gb3 in human Fabry fibroblasts and Fabry (α-galactosidase knockout) mice (12-14). However, significant differences in therapeutic efficacies were not observed in a small clinical study (34 Fabry disease patients) with the treatment of either Agalsidase alfa or Agalsidase beta at the same dose (0.2 mg/kg) (15). These results may be related to the marginal difference in M-6-P contents between the two GLAs, which was revealed by a recent comparative study of the M-6-P contents of six therapeutic enzymes (16), with the M-6-P contents of Agalsidase alfa and Agalsidase beta being 2.1 and 2.9 mol/mol enzyme, respectively.

Pompe disease, caused by a deficiency in lysosomal α-glucosidase (GAA), leads to myopathy especially in skeletal muscles, heart, liver, and the nervous system. Early attempts using GAs prepared from Aspergillus niger and human placenta were not successful due to inappropriate glycan modification and/or low dose (17, 18). In contrast, clinical studies using recombinant GAs produced from the milk of transgenic rabbits and CHO cell cultures have shown beneficial effects on survival, cardiomyopathy, motor function, and growth (19, 20).
Glyco-engineering for Therapeutic Enzymes
Doo-Byoung Oh

Glycan remodeling of β-glucocerebrosidase led to successful ERT for Gaucher disease

The first therapeutic enzyme for LSDs was the β-glucocerebrosidase (GCase) purified from human placenta for the treatment of Gaucher disease, especially type I without the involvement of the central nervous system (1-3). A deficiency in this enzyme results in accumulation of glycosphingolipids in the macrophages of liver, bone marrow, and spleen. Initial attempts to use placenta-derived GCase containing complex type glycans, were disappointing due to the fact that the unmodified enzyme was not targeted to the macrophages. After sequential removal of the terminal sialic acid, galactose, and GlcNAc, exposing mannose residues of tri-mannosyl core glycans, it could be successfully delivered to macrophages having mannose receptors (MRs) at the plasma membrane and a MR-mediated endocytosis system. From then, all of the approved Gcases have been engineered to have N-glycans with terminal mannose residues for targeting to MRs on macrophages (22, 23). Because the placenta-derived Gcase suffered from its limited amounts, it was later replaced with recombinant Gcase (Imiglucerase) produced from CHO cells, and further processed with sequential exoglycosidase digestions for exposing terminal mannose residues. It is the first successful case employing the glyco-engineering strategy to enhance targeting to disease-affected cells (22, 23).

Besides Imiglucerase, there are two other approved recombinant Gcases, Velaglucerase alfa (Shire Pharmaceuticals Inc.) and Taliglucerase alfa (Protalix Pharmaceuticals Inc.) (Table 1). Velaglucerase alfa is produced from a human fibroblast carcinoma cell line and manipulated to contain N-glycans with terminal mannose residues by kitunensisine treatment to the culture medium. Kitunensisine treatment blocks the mannose trimming step by inhibiting mannosidase I, which leads to generation of high-mannose type glycans (Manα1,GlcNAcβ1) (22). Taliglucerase alfa is produced from plant cells (carrot root cells) and is targeted to plant storage vacuoles, which generates plant pauci-mannose type N-glycans (Manα1,Xylα1,Fucα1,GlcNAcβ1) having exposed terminal mannose residues without an additional processing step (22). Although there are apparent variations in N-glycan structures, a comparison study of all three enzymes showed similar results in in vitro enzyme activity, ex vivo cellular uptake, and in vivo tissue distribution assays (22). However, in another study using monocytes isolated from a Gaucher patient, Taliglucerase alfa had a lower efficiency of uptake than the others (24). The concern that the prolonged use of Taliglucerase alfa containing the plant-specific glycan structures β-(1,2)-xylose and core α-(1,3)-fucose may induce an immune reaction such as an allergy still remains (23). In addition, Velaglucerase alfa has a concern related to its longer mannose chains, which was shown to bind more efficiently to an undesirable target, mannose binding lectin, in serum (25).

Glyco-engineering strategies to increase M-6-P glycan content

As glyco-engineered Gcases displayed successful efficacy through the targeting of MRs on macrophages, glyco-engineering strategies to increase the M-6-P glycan content have also been actively applied to the development of therapeutic enzymes with improved lysosomal targeting. Such approaches are especially focused on recombinant GAA for Pompe disease because it has a very low content of M-6-Ps (0.7 mol/mol enzyme) compared with other enzymes (2.1-3.2 mol/mol enzyme) (Table 1); high doses of GAA (20-100 mg/kg) can only partially reduce the glycogen level in skeletal muscles, which are the most severely affected tissues and known to have a low level of CI-MPR (26). In order to overcome this limitation, Genzyme researchers introduced additional M-6-P moieties onto GAA by enzymatic engineering or chemical conjugation of M-6-P glycans.

In an enzymatic engineering approach (27), the recombinant GAA carrying high-mannose type glycans was purified from the medium of CHO cells cultured in the presence of kitunensisine (a mannosidase I inhibitor). It was further engineered to have additional M-6-P glycans by two-step enzyme reactions comprising the first GlcNAC-1-phosphotransferase reaction (for the generation of a GlcNAC-1-phosphate-6-O-mannose structure) and the second uncovering enzyme reaction (for removal of the outer GlcNAC in order to generate a M-6-P moiety (phosphate-6-O-mannose). This engineered GAA (referred to as HP-GAA) was shown to have a relatively higher M-6-P content (∼3.5 mol/mol enzyme) compared with that (∼1.3 mol/mol enzyme) of the unmodified GAA. HP-GAA showed the increased binding to MPR and subsequent enhanced uptake by cells in culture (21). However, in vivo experiments using Pompe (GAA knockout) mice showed that HP-GAA was not as effective due to the fact that it mainly contained high-mannose type glycans, which led to the nonproductive targeting by MRs on endothelial cells and macrophages (21). This suggested that
GlcNAc-1-phosphotransferase recognizing high-mannose type
glycans at the specific sites within the conformational motif
(10, 11) should be engineered to convert the glycans at all
sites to M-6-P glycans in order to avoid MR binding.

In contrast to the unsuccessful targeting of HP-GAA, a series
of approaches employing chemical conjugation of M-6-P gly-
cans have been shown to improve the clearance of accumu-
lated glycogen in the skeletal muscles of Pompe mice as well
as MPR binding and subsequent targeting to lysosomes (28-32).
In a proof-of-concept study, Genzyme researchers isolated
M-6-P glycans from recombinant GLA (Agalsidase beta) and,
after derivatization to glycosylhydrazines, attached these M-6-P
glycan to periodate-oxidized sialic acids of GAA using carbo-
yl chemistry (28). The resulting modified GAA showed an
increased affinity for CI-MPR and an improved clearance of gly-
cogen in Pompe mice. However, the process of M-6-P glycan
isolation from recombinant GAA was not appropriate for
scale-up and the isolated glycans were highly heterogeneous.

To overcome these limits, instead of natural M-6-P glycans, the
researchers conjugated a synthetic M-6-P glycan optimized for
the CI-MPR binding. It contains a hexamannose structure
linked to two phosphates (P$_2$-Man$_6$GlcNAc$_2$) without un-
necessary terminal mannose residues (29). The GAA con-
jugated to the synthetic M-6-P glycan (neo-GAA) has a higher
affinity (K$_d$ 2-3 nM) for the CI-MPR than the GAA conjugated
to natural M-6-P glycans (K$_d$ 50-100 nM). Moreover, con-
jugation of the synthetic M-6-P glycan did not increase the
binding affinity for MR, suggesting that the internal mannose
residues present in the synthetic M-6-P glycan have a very low
affinity for MR, unlike free terminal mannose residues found in
natural M-6-P glycans. It is an important issue because MR
binding leads to unproductive uptake by endothelial cells and
macrophages. Compared with unmodified GAA, neo-GAA
showed approximately a 20-fold more efficient cellular uptake
and a comparable reduction in glycogen levels in Pompe
mice, with an approximate 8-fold lower dose in the heart and
an approximate 4-fold lower dose in skeletal muscles.

Since the hydrazone bond used for generation of neo-GAA
is relatively unstable under physiological conditions, it was re-
placed with carbonyl-coupled oxime chemistry, which gen-
erated a more stable oxime-neo-GAA (Fig. 2A) (30). Due to the
fact that the use of oxime chemistry further improved its affin-
ity for CI-MPR, oxime-neo-GAA reduced the glycogen level in
the skeletal muscles of Pompe mice with an approximate
5-fold greater potency than the unmodified GAA. This study
showed that the chemistry used for M-6-P glycan conjugation
is important for therapeutic efficacy. Therefore, in the sub-
sequent study, various chemical conjugation strategies were
thoroughly compared (31). M-6-P glycan derivatives contain-
ing a thiol-reactive group, succinimide, hydrazide, or amino-
oxide linkers were conjugated to the free cysteines, lysines, or
oxidized N-glycans (containing periodate-oxidized sialic acid
or enzymatic-oxidized galactose) of GAA. After the evaluation
in vitro and in vivo, oxime-neo-GAA derived from the con-
jugation of aminooxy M-6-P glycans and periodate-oxidized
sialic acids was shown to still have the greatest potency in
Pompe mice (31). Clinical trials examining the safety and effi-
cacy of this GAA are currently underway (33). Recently, gly-

![Fig. 2. Schematic representations of glyco-engineering strategies to increase M-6-P glycan content. (A) Terminal sialic acids of GAA were
oxidized with periodate to generate the reactive aldehyde group, which reacts with the aminooxy group of the synthetic glycan (P$_2$-Man$_6$GlcNAc$_2$), generating oxime-neo-GAA. (B) Recombinant enzymes containing mannosylphosphorylated glycans were produced from
glyco-engineered yeast. Mannosylphosphorylated glycans of secreted enzymes can be unAPPED and trimmed with an uncapping enzyme
(such as CcH92_5) and an α-mannosidase to generate the M-6-P glycan structure optimized for CI-MPR binding and cellular uptake. Symbols are identical to those used in Fig. 1.](http://bmbreports.org)
can structures for efficient CI-MPR binding were determined using the chemical conjugation of various glycans containing phosphate groups (32). Zhou et al., reported that the tightest binding to CI-MPR was achieved with a hexamannose structure containing two phosphates, while the phosphorylated d-mannose moiety appears to be the minimal structure for binding.

Besides the enzymatic engineering and chemical conjugation strategies described above, approaches employing the reconstruction of the yeast glycosylation pathway have been highlighted due to the fact that it generated a high content of M-6-P glycans (34-38). Although yeasts do not have M-6-P glycans, they have high-mannose type glycans containing a mannosylphosphate linked to a mannose residue (mannose-1-phosphate-6-O-mannose) by the presence of an outer mannose at the non-reducing end. Therefore, through uncapping of this outer mannose, the mannosylphosphorylated mannose structure can be converted to the M-6-P moiety.

In order to generate recombinant yeasts producing enzymes carrying M-6-P glycans, three steps of engineering were carried out (34, 35, 37, 38). Firstly, the genes (such as OCH1 and MNN1) involved in the synthesis of yeast-specific glycan structures were disrupted. Secondly, the gene (such as MNN4, PNO1, or MPO1) enhancing mannosylphosphorylation was overexpressed. Finally, the outer mannose of the mannosylphosphorylated glycans was uncapped in vitro to expose the phosphate group. For this uncapping step, Chibata et al. used an enzyme cocktail secreted from a soil bacterium that was the first successful engineering of the conventional yeast Saccharomyces cerevisiae to produce a GLA containing M-6-P glycans (34). Recently, Dr. Callewaert's group in Belgium identified a glycosidase (CcGH92_5) with uncapping activity from Cellulosimicrobium cellulans (37). They showed that the recombinant GLA, which was produced from glyco-engineered Yarrowia lipolytica and modified by an in vitro process using the recombinant CcGH92_5 and MNN1, has >80% of M-6-P glycans (containing at least one M-6-P), corresponding to an approximate 15-fold higher M-6-P content than the approved GAA (Agalacysidase alfa) for Pompe disease. This yeast-generated GAA was delivered much more efficiently to lysosomes of Pompe patient's fibroblasts, and cleared the glycogen accumulated in the heart and muscles of Pompe mice with improved efficacy compared with Agalacysidase alfa (37). This promising result encouraged them to pursue preclinical and clinical development (37).

CONCLUSION

The successful treatment of LSDs using ERT began with the glyco-engineering of GCase to contain N-glycans with terminal mannose residues for efficient targeting to macrophages, the most severely affected cells in Gaucher disease. For the other therapeutic enzymes, glyco-engineering strategies to increase M-6-P glycan content have been actively explored due to the fact that their lysosomal targeting depends on the binding to CI-MPR at the plasma membrane, which is a prerequisite for efficient digestion of lysosomal storages. A chemical conjugation strategy of the synthetic M-6-P glycan optimized for CI-MPR binding resulted in the development of oxime-neo-GAA with an approximate 5-fold greater potency. The strategy employing glyco-engineered yeast also produced GAA with a 15-fold higher M-6-P content, which greatly improved lysosomal delivery and therapeutic efficacy in Pompe mice. Such approaches show promise for the development of next generation therapeutic enzymes with improved efficacy for LSDs.

ACKNOWLEDGEMENTS

This work was supported by the grants from the Ministry of Trade, Industry & Energy [10048311] and the Next-Generation BioGreen 21 Program of the Rural Development Administration (PJ011078) in Republic of Korea.

REFERENCES

1. Ohashi T (2012) Enzyme replacement therapy for lysosomal storage diseases. Pediatr Endocrinol Rev 10 Suppl 1, 26-34
2. Ortolano S, Vieitez I, Navarro C and Spuch C (2014) Treatment of lysosomal storage diseases: recent patents and future strategies. Recent Pat Endocr Metab Immune Drug Discov 8, 9-25
3. Baldo BA (2015) Enzymes approved for human therapy: indications, mechanisms and adverse effects. BioDrugs 29, 31-55
4. Mechler K, Mountford WK, Hoffmann GF and Ries M (2015) Pressure for drug development in lysosomal storage disorders - a quantitative analysis thirty years beyond the US orphan drug act. Orphanet J Rare Dis 10, 46
5. Braulke T and Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793, 605-614
6. Kim JJ, Olson LJ and Dahms NM (2009) Carbohydrate recognition by the mannos-6-phosphate receptors. Curr Opin Struct Biol 19, 534-542
7. Coutinho MF, Prata MJ and Alves S (2012) Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 105, 542-550
8. Tiede S, Storch S, Lulke T et al (2005) Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta GlcNAc-1-phosphotransferase. Nat Med 11, 1109-1112
9. Kudo M, Bao M, D’Souza A et al (2005) The alpha- and beta-subunits of the human UDP-N-acetylgalactosamine:lysosomal enzyme N-acetylgalactosamine-1-phosphotransferase [corrected] are encoded by a single cDNA. J Biol Chem 280, 36141-36149
10. Qian Y, Lee I, Lee WS et al (2010) Functions of the alpha, beta, and gamma subunits of UDP-GlcNAc:lysosomal en-
ze N-acetylgalactosamine-1-phosphotransferase. J Biol Chem 285, 3360-3370
11. Sommerlade HJ, Selmer T, Ingendoh A et al (1994) Glyco-
sylation and phosphorylation of arylsulfatase A. J Biol Chem 269, 20977-20981
12. Lee K, Jin X, Zhang K et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13, 305-313
13. Sakuraba H, Murata-Ohsawa M, Kawashima I et al (2006) Comparison of the effects of galactosidase alpha and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 51, 180-188
14. Sohn Y, Lee JM, Park HR, Jung SC, Park TH and Oh DB (2013) Enhanced sialylation and in vivo efficacy of recombinant human alpha-galactosidase through in vitro glycosylation. BMB Rep 46, 157-162
15. Vedder AC, Linthurst GE, Houge G et al (2007) Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One 2, e598
16. Togawa T, Takada M, Aizawa Y, Tsukimura T, Chiba Y and Sakuraba H (2014) Comparative study on mannose 6-phosphate residue contents of recombinant lysosomal enzymes. Mol Genet Metab 111, 369-373
17. Lauer RM, Mascarinas T, Racela AS, Diehl AM and Brown BI (1968) Administration of a mixture of fungal glucosidases to a patient with type II glycosogenosis (Pompe’s disease). Pediatrics 42, 672-676
18. de Barys T, Jacquemin P, Van Hoof F and Hers HG (1973) Enzyme replacement in Pompe disease: an attempt with purified human acid alpha-glucosidase. Birth Defects Orig Artic Ser 9, 184-190
19. Van den Hout JM, Kamphoven JH, Winkel LP et al (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113, e448-457
20. Kishnani PS, Niculoiu M, Voit T et al (2006) Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 149, 89-97
21. McVie-Wylie AJ, Lee KL, Qiu H et al (2008) Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab 94, 448-455
22. Tekoah Y, Tzaban S, Kizhner T et al (2013) Glycosylation and functionality of recombinant beta-glucocerebrosidase from various production systems. Biotechnol Rep 33
23. Grabowski GA, Golember M and Shaaltiel Y (2014) Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112, 1-8
24. Berger J, Stimmern J, Bourgne C et al (2012) The uptake of recombinant glucocerebrosidase by blood monocytes from type 1 Gaucher disease patients is variable. Br J Haematol 157, 274-277
25. Van Patten SM, Hughes H, Huff MR et al (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 17, 467-478
26. Koeberl DD, Luo X, Sun B et al (2011) Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle. Mol Genet Metab 103, 107-112
27. Chavez CA, Bohnsack RN, Kudo M, Gotschall RR, Canfield WM and Dahms NM (2007) Domain 5 of the cation-independent mannose 6-phosphate receptor preferentially binds phosphodiesterases (mannose 6-phosphate N-acetylgalacosamine ester). Biochemistry 46, 12604-12617
28. Zhu Y, Li X, Kyazike J et al (2004) Conjugation of mannose 6-phosphate-containing oligosaccharides to acid alpha-glucosidase improves the clearance of glycogen in Pompe mice. J Biol Chem 279, 50336-50341
29. Zhu Y, Li X, McVie-Wylie A et al (2005) Carbohydrate-remodelled alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J 389, 619-628
30. Zhu Y, Jiang JL, Gumlaw NK et al (2009) Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 17, 954-963
31. Zhou Q, Stefano JE, Harrahy J et al (2011) Strategies for Neoglycan conjugation to human acid-alpha-glucosidase. Bioconjug Chem 22, 741-751
32. Zhou Q, Avila LZ, Konowicz PA et al (2013) Glycan structure determinants for cation-independent mannose 6-phosphate receptor binding and cellular uptake of a recombinant protein. Bioconjug Chem 24, 2025-2035
33. Kishnani PS and Beckemeyer AA (2014) New therapeutic approaches for Pompe disease: enzyme replacement therapy and beyond. Pediatr Endocrinol Rev 12 Suppl 1, 114-124
34. Chiba Y, Sakuraba H, Kotani M et al (2002) Production in yeast of alpha-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 12, 821-828
35. Akeboshi H, Kasahara Y, Tsuji D et al (2009) Production of human beta-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. Glycobiology 19, 1002-1009
36. Tsukimura T, Kawashima I, Togawa T et al (2012) Efficient uptake of recombinant alpha-galactosidase A produced with a gene-manipulated yeast in Fabry mice kidneys. Mol Med 18, 76-82
37. Tiels P, Baranova E, Piens K et al (2012) A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30, 1225-1231
38. Gill JY, Park JN, Lee KJ et al (2013) Increased mannosylphosphorylation of N-glycans by heterologous expression of YLMO1 in glyco-engineered Saccharomyces cerevisiae for mannose-6-phosphate modification. J Biotechnol 206, 66-74