On property of least common multiple to be a D-magic number

V.L. Gavrikov
Institute of Ecology and Geography
Siberian Federal University
600041 Krasnoyarsk, pr. Svobodnyi 79
Russian Federation
vgavrikov@sfu-kras.ru

Abstract

Least common multiple (lcm) has been shown to possess the property of D-magic number, that is, its least significant digit 0 does not change when the number is transferred into all other numbering systems with smaller bases. The number $lcm + 1$ preserves this property as well.

Keywords: D-magic number, numbering systems, least common multiple, least significant digit

1 Introduction

Least common multiple (lcm) is a function which was often referred to as having two arguments, i.e. $lcm[x_1, x_2]$ but can be easily reformulated to any number of arguments, $lcm[x_1, x_2, \ldots, x_n]$.

The function has been widely known for being used at formulating of encryption algorithms, both in classical works [1] and in later research on encryption keys [2]. Because of its important applications properties of $lcm[]$ are of interest. An identity has been proven [3] that relates $lcm[]$ of binomial coefficients to $lcm[]$ of the sequence of indices of the coefficients. A typical behavior of $lcm[]$ of random subsets $\{1, \ldots, n\}$ [4] has also been studied.

In this work, some properties of divisibility of $lcm[]$ function are explored that lead to a sort of invariance of the least significant digit of a number when the number is transferred to a different numbering system.

As usual, when a multidigit integer is transferred to a numbering system its least significant digit (as well as other digits) changes, e.g., $64_{10} = 100_8$, $100_{10} = 244_6$. Sometimes however the transfer to another numbering system does not lead to the change in the least significant digit, e.g., $126_{10} = 176_8$, $101_{10} = 401_5$.

From these observations let us put a more general question: how can one get the the number that does not change its least significant digit when being transferred to another numbering system?
2 Formulation

Definition 2.1. For an arbitrary base-L numbering system, D-magic number M is such a number that does not change its least significant digit when being transferred to any other base-l numbering system, with $l < L$.

An integer number M in base-L system may be represented in decimal form:

$$M_L = L \cdot n + j,$$

where n is the number of tens in M_L and j is the least significant digit of M_L, with $j < L$.

If l is the base of numbering system then the transfer from M_L to M_l will include calculations of remainders from division by l both $L \cdot n$ and j. Provided these remainders are known a new value for j is received.

If $L \cdot n$ in Eq. (1) is divisible without a remainder by all l, $2 \leq l < L$, and $j < l$ then j will not change when M_L is transferred to any base-l system. There is an infinite quantity of numbers divisible by all $2 \leq l < L$ but the minimal of them is only one. And this number is least common multiple. In other words, $lcm[\forall l, 2 \leq l < L]$ is a D-magic number in base-L system (as well as in all systems with bases smaller than L). Therefore, calculation of $lcm[\cdot]$ is the very algorithm to get D-magic numbers.

3 Illustrations

It is easy to find, e.g., in base-ten system, such a number that will be divisible without a remainder by 10, 9, 8, 7, 6, 5, 4, 3, 2. As well known, $lcm[10, 9, 8, 7, 6, 5, 4, 3, 2] = 2520$ (see sequence A003418 in On-line Encyclopedia of Integer Sequences OEIS http://oeis.org/A003418).

A transfer of decimal number 2520 to any numbering system with bases $l < 10$ does not change the least significant digit (in this particular case $j = 0$):

l	M_l
10	2520
9	3410
8	4730
7	10230
6	15400
5	40040
4	213120
3	10110100
2	100111011000

Moreover, in case $j = 1$ (see Eq. [1]) this least significant digit will not change as well:
If \(j \in \{2, 3, 4, 5, 6, 7, 8\} \) such a property (constance of least significant digit) holds only at \(j < l \).

Remark 3.1. Thus \(\text{lcm}[10, 9, 8, 7, 6, 5, 4, 3, 2] \) equal to 2520 not only is \(D \)-magic number itself for base-ten numbering system but also produces a set of \(D \)-magic numbers–by adding of least significant digit \(j < 10 \).

Let us now look at how this approach works at \(L \neq 10 \).

For base-eight system, \(\text{lcm}[8, 7, 6, 5, 4, 3, 2] = 840_{10} = 1510_8 \). It can be seen that base-eight number 1510 does not change least significant digit when being transferred into numbering systems with bases 7, 6, 5, 4, 3, 2:

\(l \)	\(M_l \)
8	1510
7	2310
6	3520
5	11330
4	31020
3	10110101
2	100111011001

Correspondingly, the base-eight number \(1511_8 \) will also not change least significant digit when transferred into system with bases smaller than 8.

Another example, base-16 numbering system. \(\text{lcm}[16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2] = 720720_{10} = af_{16} \). The transfer of number \(af_{16} \) into systems with bases smaller than 16 gives:

\(l \)	\(M_l \)
8	1510
7	2310
6	3520
5	11330
4	31020
3	10110101
2	1101001000

Correspondingly, the base-eight number \(1511_8 \) will also not change least significant digit when transferred into system with bases smaller than 8.

Another example, base-16 numbering system. \(\text{lcm}[16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2] = 720720_{10} = af_{16} \). The transfer of number \(af_{16} \) into systems with bases smaller than 16 gives:
Therefore least common multiple of 2, 3, 4, 5 . . . L is a D-magic number for the numbering system with the base L (maximum of this sequence). A convenient algorithm could be as follows: 1) first, one gets lcm[2, 3, 4, 5 . . . L] for base-ten system and then 2) transfers it into system with the base L. This procedure leads to the number having 0 as least significant digit.

Adding of unity 1 to the list significant digit 0 brings about another D-magic number. Adding of a digit \(j \in \{2, 3, 4, 5 . . . L - 1\} \) to the least significant digit produces a set of set number that are partly D-magic; when being transferred into base-\(l \) systems the least significant digit \(j \) of them will not change only when \(j < l \).

References

[1] Shannon C.E. 1949. Communication theory of secrecy systems. Bell Labs Technical Journal 28(4): 656–715.

[2] Rivest R.L., Shamir A., Adleman L. 1978. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2): 120–126.

[3] Farhi, B. 2009. An identity involving the least common multiple of binomial coefficients and its application. The American Mathematical Monthly, 116(9): 836–839.

[4] Cilleruelo J., Rué J., Šarka P., Zumalacárregui A. 2014. The least common multiple of random sets of positive integers. Journal of Number Theory, 144: 92–104.