Seasonal prevalence, body condition score and risk factors of bovine fasciolosis in South Africa

Ishmael Festus Jaja,⁎ Borden Mushonga, Ezekiel Green, Voster Muchenje

Abstract

Fasciolosis is an important zoonotic disease that is responsible for a significant loss in food resource and animal productivity. The objectives of this study were to determine the seasonal prevalence and risk factors associated with Fasciola infection in cattle. The results were obtained by coprology, antemortem and post-mortem survey of three abattoirs (HTPA1, n = 500, HTPA2, n = 400, and LTPA, n = 220). The seasonal prevalence of Fasciola infection was 10.4%, 12.8% and 10.9%, during summer, 11.2%, 10.8% and 8.6%, during autumn, 9.8%, 6.5% and 5.9% during winter and 8.2%, 7.8% and 5.9%, during spring in the three abattoirs HTPA1, HTPA and LTPA respectively. There was a significant association (p < 0.05) between the intensity of infection and body condition score (BCS) of cattle at each abattoir. Factors such as age [HTPA1 (OR = 3.6, CI = 1.2, 10.2), and LTPA (OR = 3.8, CI = 2.4, 6.1)], sex [LTPA (OR = 4.2, CI = 2.5, 7.0)], breed [HTPA2 (OR = 2.3, CI = 1.3, 4.1) and LTPA (OR = 2.5, CI = 1.3, 5.0)] and BCS had significant (p < 0.01–0.001) influence on the prevalence of fasciolosis. In conclusion, the infection with Fasciola spp was higher in the summer than in the winter; a positive association was established between the prevalence of fasciolosis and poor body condition in study animals. This study, therefore, suggests that fasciolosis could be causing substantial production losses, mainly due to cattle weight loss and liver condemnation.

1. Introduction

Fasciolosis is a disease predominantly found in ruminants and wildlife. Fasciola hepatica and Fasciola gigantica are the two main species responsible for most infections. Fasciola hepatica is cosmopolitan in nature because of its ability to infect a variety of species, while Fasciola gigantica is more common in tropical countries, though both species are found in Africa and Asia (Dorny, Prat, Deckers, & Gabriel, 2009; Mas-Coma, Bargues, & Valero, 2005). Fasciolosis is a disease of both veterinary and public health importance, infecting over 600 million animals. The infection causes massive loss through liver condemnation, reduced production of milk, meat, wool, veterinary care, metabolic disease as well as mortality (Khanjari et al., 2014; Terefe, Wondimu, & Gachen, 2012; Toet, Piedrafita, & Spithill, 2014; Zeleke, Menkir, & Desta, 2013). Reports on economic losses due to fasciolosis in South Africa are scanty. However, in other African countries, several millions of dollars have been lost due to this disease (Cadmus & Adesokan, 2009; Dawe, Abattoir, Mebrahuit, & Bekaa, 2013; Kock, Wolmarans, & Bornman, 2003; Mucheka, Lamb, Pfuenyeni, & Mukaratirwa, 2015; Pfuenyeni & Mukaratirwa, 2004).

Globally, the production losses due to Fasciola infections in livestock exceed US$3 billion/year (Buffoni et al., 2010; Elliott, Kelley, Rawlin, & Spithill, 2015).

Studies carried out in recent years have shown fasciolosis to be a significant public health problem. About 17 million persons in several countries are infected and 180 million people at risk of the infection worldwide (Ashraft & Mas-Coma, 2014; Dorny et al., 2009; Mas-Coma et al., 2005; Torgerson & Macpherson, 2011). In South Africa, three cases had previously been reported in 1964, and two new cases recently reported in the Western Cape Province (Black, Ntusi, Sted, Mayosi, & Mendelson, 2013). The number of infected people in Asia and Africa could be higher than stated as many cases are not reported (Ahmadi & Meshkekhar, 2010; Ashraft & Mas-Coma, 2014). Also, human cases where estimates are based on faecal egg count may be underestimated as patients with pre-patent, ectopic and low-grade infections excrete very low egg numbers (Slifko, Smith, & Rose, 2000).

Rainfall, solar radiation, and global warming are common conditions promoting the distribution of Galba truncatula and Radix natalensis which are the intermediate host of Fasciola spp. (Elliott et al., 2015;...
Novobilský, Novák, Björkman, & Höglund, 2015). In South Africa, these snails are commonly found in streams, water channels, dams, ditches, ponds, rivers and swamps (Black et al., 2013; Kock et al., 2003). Under such wet conditions, cercariae develop from the snail and swim until they find and attach to vegetation, sheds it tails and secrete a protective coat, forming the encysted infective stage called metacercariae. Cattle become infected primarily by ingesting the metacercarial cysts on the soil, forage and contaminated drinking water (Ashrafi & Mas-Coma, 2014; Kaplan, 2001; Mucheka et al., 2015).

The need for improvement in disease surveillance in livestock is crucial, especially, as many emerging diseases that cause illnesses in humans are zoonoses (Thomas-Bachli, Pearl, Friendship, & Berke, 2012). In this regard, abattoir meat inspection plays a significant role in the surveillance and detection of a variety of diseases of human and animal health consequence (Alton, Pearl, Bateman, McNab, & Berke, 2010). More so, determining the status of fasciolosis creates awareness of the importance of the parasites to livestock productivity and their zoonotic importance (Kock et al., 2003; Mucheka et al., 2015). This survey becomes necessary in the absence of regional information on the prevalence of fasciolosis in cattle in the Eastern Cape Province. The aim of this study was to determine the seasonal prevalence of Fasciola infection, its effects on body condition score in cattle slaughtered at the selected abattoirs and to identify the risk factors associated with the disease.

2. Materials and methods

2.1. Ethical considerations

The research protocol was approved by the University of Fort Hare Research Ethics Committee, and an approval certificate was issued with reference number MUS071SJA01. A similar approval was obtained from the Department of Agriculture Forestry and Fisheries (DAFF) and the participating abattoirs.

2.2. Study area

The study was conducted at two high through-put abattoirs (HTPA1 and HTPA2), and one low through-put abattoir (LTPA). The HTPA1 is situated at 32.97°S and 27.87°E in the Bufo City Metropolitan, while the HTPA2 is located 31°54′S and 26°53′E in Enoch Mgijima municipality in the Chris Hani district of the Eastern Cape Province (ECP), South Africa. The LTPA is located in Raymond Mhlaba municipality, having the coordinate 32°.80S and 26°.90 E in the Amathole District of the ECP, South Africa. The study area receives approximately 480–850 mm of rainfall per year mostly in the summer. The ECP is situated about 586–2371 m above sea level, on average this high altitude causes the area to be occasionally covered in snow. The Köppen climate classification system (Fig. 1) describes the ECP as cold semi-arid climate (Bsk) to temperate oceanic climate (Cfb) (Markus, Jürgen, Christoph, Bruno, & Franz, 2006). The ambient temperature of the ECP during the period of study ranged from 18 °C to 39 °C with a mean temperature of 20.5 °C. The vegetation in the area varies from grasslands and thicket to forests and bushveld with Acacia karroo, Themeda triandra and Digitaria eriantha being the most dominant plant species. Agriculture statistic report shows that 28, 334 farmers are involved in livestock farming in the EC Province (Leohla, 2013).

2.3. Study design and signalment of cattle

A cross-sectional study of cattle in three abattoirs was conducted using ante-mortem (AMI) and post-mortem inspection (PMI). The study was carried out from July 2013 to June 2014 to determine the seasonality and severity/intensity of Fasciola infection in cattle slaughtered in the Eastern Cape Province. During the AMI, several risk factors were identified and faecal samples collected and scored for consistency. The faecal samples were collected for all the seasons including autumn (1st March to 31st May), winter (1st June to 31 August), spring (1st September to 31st November) and summer (1st December to 28 February) (WeatherSA, 2014). Sampled animals were marked and identified from slaughter to evisceration (PMI) for the purpose of liver inspection. Animal’s body condition score was determined using the method described by Tsotetsi and Mbati (2003). The age of animal was identified using records from the farmers. Where such records did not exist, age estimation was done using dentition (FSIS, 2013; Torell, Bruce, Kvasnicka & Conley, 1998). The animals were separated into two age groups to ease statistical analyses. Cattle ≤ 3 years were termed as young while those > 3 years were termed old. Study animals include males and females of different ages, which were transported to the abattoir from various locations. In the EC Province, the traditional livestock farming system that is common among rural farmers are extensive or semi-intensive where animals are grazed on fields and are occasionally supplemented with hay. Commercial farms favour a more organized pasture based feeding system. Animal breeds were identified by the use of abattoir records, where records were unavailable, or else breed phenotypic characteristics were used to establish breed type (Dupuy et al., 2013; Mpakama, Chulayo, & Muchenje, 2014; Soji, Mabusela, & Muchenje, 2015).

2.4. Sampling method

The sampling procedure was carried out using systematic random sampling. Sampling units were selected at equal intervals with the first cattle being selected randomly. The sample size was determined at a 90% confidence interval and 5% margin of error and an expected prevalence of 50% using the formula as given by Thrusfield (2005) and validated using a sample size calculator (Raosoft Inc USA see www.raosoft.com). In the preceding year, the total number of slaughtered animals were 26401 in the three abattoirs (HTPA1 = 21803, HTPA2 = 4078, and LTPA = 520). In the present study, the sample size was calculated to be 268, 254 and 179 for the three abattoirs namely HTPA1, HTPA2, and LTPA respectively. Slaughter records from the preceding year showed that a large number of animals were slaughtered at the abattoir. Thus, the sample size was increased to 500, 400 and 220 animals for the respective abattoirs to minimize the margin of error to below the 5% mark and to improve statistical precision (Regassa et al., 2013).

2.5. Coprological sampling

During the AMI, Faecal samples of (n = 500 from the HTPA1), (n = 400 from the HTPA2) and (n = 220 from the LTPA) were collected per rectum using sterile surgical gloves and were examined grossly for their appearance. While the numbers of eggs per gram of feces (EPG) were ed microscopically by size and morphological appearance. When the numbers of eggs per gram of feces (Epg) were determined by sedimentation method using a McMaster chamber (Dorchies, 2007; Martínez-Pérez, Robles-Pérez, Rojo-Vázquez, & Martínez-Valladares, 2012) and the intensity of infection were extrapolated using a severity index defined by Royal Veterinary College London and Food and Agriculture Organisation index of 2009. The intensity of infection according to Epg per gram (Epg) was subdivided into three namely, 1–500 (mild infection), 501–1000 (moderate infection) and above 1000 EPG (severe infection) (Degheu, Abera, Yohannes, & Tolosa, 2011). During the PMI, livers from cattle slaughtered were inspected for flukes by cutting open the major bile ducts into...
the liver parenchyma. The presence of adult flukes was recorded so as to compare the result with those of the coprology.

2.6. Statistical analysis

The data was captured in the standard data sheet and preliminary quantitative data analysis performed using Microsoft® Excel (2007) mathematical functions. The information was later imported into the Statistical Package for Social Sciences (SPSS) version 22 (SPSS Inc., Chicago, IL) for exploratory data analysis to validate the data and evaluate crude associations by using 2×2 cross-tabulation tables in which descriptive statistics and summary measures were calculated. The statistical association between seasonal prevalence (winter, spring, summer and autumn) and risk factors were evaluated separately for each abattoir (HTPA1, HTPA2, and LTPA) using chi-square analysis of independence and logistic regression. The degree of association of the prevalence and the risk factors was determined using Odds Ratio. The proportions and intensity of infection (mild, moderate and severe) was calculated as the number of positive faecal samples over the total number of faecal samples examined in each category (mild, moderate and severe). The seasonal prevalence of fasciolosis was calculated as the number of positive faecal samples per season divided by the total number of faecal samples obtained in the same season and expressed as a percentage of the total number of previously selected cattle in that season.

3. Results

The percentage of animals infected with liver fluke was (39.6% and 25.6%), (37.8% and 24.8%) and (32.3% and 19.5%) for HTPA1, HTPA2, and LTPA during PMI and coprological survey (cprlg) respectively. Liver flukes were found more in summer and autumn than in winter and spring. A similar trend was observed during Fasciola egg count (Table 1).

In Table 3, animals with good body condition (BCS) shed less egg of fasciola (p < 0.001) compared to those with animals with poor BCS. However, animals with moderate BCS had the highest prevalence of infection at the HTPA. In the LTPA, it was observed that no animal with good BCS was infected. Conversely, at the LTPA, no animal with poor BCS had a mild infection of fasciolosis. Regarding the intensity of Fasciola infection, the results show a significant association (p < 0.001) between BCS and the intensity of infection in all abattoirs (Table 2). Sex and breed were the two most important risk factors that were significantly associated (p < 0.001) with a high rate of fasciolosis at the HTPA1 and HTPA2. The association between the prevalence of Fasciola and sex/breed in the three abattoirs were (30.6, 60.9 and 27.4) and (56.7, 70.5 and 9.1) for HTPA1, HTPA2, and LTPA respectively. Local breeds (22.6%, 22.2%, and 14.5%) recorded more ova of Fasciola than cattle cross (17%, 15.5 and 17.7%) in both HTPA1 and HTPA2 in contrast with the LTPA where faecal samples from crossed animals harboured more eggs of Fasciola. Other risk factors that were commonly associated with the prevalence of Fasciola Spp can be found in Table 3. At the low throughput abattoir (LTPA), factors such as age (young: 18.2% and old: 14.1%) and sex (male: 29.1% and female: 3.2%) BSC were positively correlated (p < 0.001) with the level of fasciolosis observed in cattle.
4. Discussion

The abattoir is the final destination for most food animals and is important in the farm to fork chain for meat product. Animals processed at these facilities represent, to some extent, a valid cross-section of the livestock population in the EC Province, and thus the abattoir can be a source of information on the epidemiology of animal diseases (Alton et al., 2010; Dupuy et al., 2013; Jaja, Mushonga, Green, & Muchenje, 2016; Regassa et al., 2012). Considering the endemic nature of liver fluke in most tropical and sub-tropical climates and its negative impact on animal production, the overall use of abattoir slaughter data coupled with coprology is beneficial. Results from this study constitute the first documented information on the seasonal prevalence of fasciolosis in slaughtered cattle in the Eastern Cape Province and are important in the formulation of the appropriate anthelmintic program against this parasite.

The current study showed a proportion of liver condemnation of between 32–39.6%. Reports on liver condemnation due to fasciolosis in South Africa is scanty both at regional and national levels (Kock et al., 2003). However, a 10% rate of condemnation of liver in cattle and sheep because of fasciolosis was reported in 1956 (Black et al., 2013). Thus, this shows an increase in the prevalence of fasciolosis in the province. The findings in this study are similar to those conducted in neighbouring Zimbabwe, where a prevalence of 37.1% of fasciolosis in the liver of cattle was established (Pfukenyi & Mukaratirwa, 2004).

Conversely, a higher prevalence rate of 53.9% was reported in a study of slaughtered cattle in a study on fasciolosis, OR: odd ratio, CI: confidence interval, X²: chi-square, *: significant at p < 0.05, **: significant at p < 0.01, ***: significant at p < 0.001, NS: not significant. In the formulation of the appropriate anthelmintic program against this parasite.

The current study showed a proportion of liver condemnation of between 32–39.6%. Reports on liver condemnation due to fasciolosis in South Africa is scanty both at regional and national levels (Kock et al., 2003). However, a 10% rate of condemnation of liver in cattle and sheep because of fasciolosis was reported in 1956 (Black et al., 2013). Thus, this shows an increase in the prevalence of fasciolosis in the province. The findings in this study are similar to those conducted in neighbouring Zimbabwe, where a prevalence of 37.1% of fasciolosis in the liver of cattle was established (Pfukenyi & Mukaratirwa, 2004). Conversely, a higher prevalence rate of 53.9% was reported in a study on fasciolosis in Zambia (Philben et al., 2004). However, studies conducted elsewhere in Africa (Cadmus & Adesokan, 2009; Mellau, Nonga, & Karimuribo, 2011, 2012; Phiri, 2006; Regassa et al., 2013); Asia (Khanjari et al., 2014; Khoramian et al., 2014; Lat-lat et al., 2006; Yibar et al., 2015) and Europe (Alton, Pearl, Bateman, McNab, & Berke, 2012; Dupuy et al., 2013; Dupuy, Demont, Ducrot, Calavas, & Gay, 2014; Theodoropoulos, Theodoropoulos, Petrakos, Kanzoura, & Kostopoulos, 2002; Thomas-Bachil, Pearl, Friendship, & Berke, 2014) corroborated the finding in the present study.

Differences in the prevalence of fasciolosis in the three abattoirs
may be caused by multiple factors, including changes in climatic condition (Dorny et al., 2009; Gajadhar, Scandrett, & Forbes, 2006; Kaplan, 2001; Khanjari et al., 2014; Martínez-Pérez et al., 2012). The underlying factors adequately support the replication of intermediate host causing heightened infections in cattle. The availability of the intermediate host responsible for the transmission of *Fasciola* spp. in South Africa, has been reported. Although *P. columella* is more widely distributed in South Africa, *R. natalensis* has been shown to be the paramount intermediate host of *F. gigantica* in the country, while *G. truncacula* is common in low-temperature regions of South Africa and Lesotho (Kock et al., 2003). In Europe, *G. truncacula* is the intermediate host of *F. hepatica*, but its role in the epidemiology of fasciolosis in South Africa is unknown. Likewise, the role of *P. columella* in the transmission of *F. hepatica* and *F. gigantica* in South Africa has not been validated (Kock et al., 2003). More so, livestock husbandry/management practices such as excessively irrigated and swampy pasture field as well as abandoned unhygienic drinking troughs encourage the multiplication of snail species. Also, farmers poor knowledge, access to adequate veterinary services and improper use of anthelmintics may alter the dynamics of *Fasciola* spp. in endemic areas and further promote the prevalence of fasciolosis (Bekele, Tesfay, & Getachew, 2010; Musemwa et al., 2008; Seimenis, 2012).

The low sensitivity of the sedimentation technique used may have contributed to the difference noted in the result of this study (cprlg and PMI). On the other hand, the PMI include livers with gross pathology caused by immature fluke infection, which cannot be detected through coprological examination (Pfukenyi & Mukaratirwa, 2004). Several studies (Kenyu, Kassuku, Msaliwa, Monrad, & Kysgaard, 2006; Nzelawae, Kassuku, Stothard, Coles, & Eisler, 2014; Pfukenyi, Mukaratirwa, Willingham, & Monrad, 2007; Phiri et al., 2005; Tsotetsi & Mbati, 2003) have been conducted on the prevalence of *Fasciola* spp. using egg counting method. Many of these research reported results which were consistent with our finding.

The intensity of infection and the effect of fasciolosis was greater in cattle with poor BCS. Many studies on the relationship between BCS and fasciolosis has shown that there is a positive association between fasciolosis and cattle weight loss (Abunna, Asfaw, Megersa, & Regassa, 2010; Aragaw, Negus, Denbarga, & Sheferaw, 2012; Dawu et al., 2013; Demissie, Birku, & Biadgilign, 2012; Eguar & Gashaw, 2012; Howell et al., 2012; Terefe et al., 2012; Wondwosen, Addis, & Tefera, 2012). The outcomes of these studies underpin the relevance of the findings of the present study. However, it is expected that animals in good intensive management systems and with adequate veterinary care should be in better body condition than cattle extensively managed with little veterinary input. In Uganda, a study of bovine fasciolosis at increasing altitudes showed that most animals at low altitude under free grazing feeding system were significantly underweight with a high prevalence of *Fasciola* eggs in contrast to animals at high altitude regularly fed plantain leaves (Howell et al., 2012).

In a related study, Demissie et al. (2012) observed 85.9% prevalence rate of fasciolosis in animals with poor body condition, 55.1% in medium body condition and 34.5% prevalence in animals with good body condition animals. At the sub-acute/chronic stage of infection, inappetence and anorexia related to the activities of migrating flukes and associated cirrhosis may likely occur. The difference noted in the result of this study (cprlg and PMI) may have caused by immature *F. gigantica* eggs in contrast to animals at high altitude regularly fed plantain leaves (Howell et al., 2012).

In a related study, Demissie et al. (2012) observed 85.9% prevalence rate of fasciolosis in animals with poor body condition, 55.1% in medium body condition and 34.5% prevalence in animals with good body condition animals. At the sub-acute/chronic stage of infection, inappetence and anorexia related to the activities of migrating flukes and associated cirrhosis may likely occur. The difference noted in the result of this study (cprlg and PMI) may have caused by immature *F. gigantica* eggs in contrast to animals at high altitude regularly fed plantain leaves (Howell et al., 2012).

The significant positive association (P < 0.001) between body condition score and the intensity of infection observed in this study (Table 3), may be a direct consequence of the pathogenesis of fasciolosis. Considering the important role of the liver in homeostasis and the overall metabolism of animals, loss of body condition score in infected cattle could be as a result of *Fasciola* infection and likely relate, in part, to metabolic perturbation (Alvarez Rozas et al., 2015).

The result of the current study revealed that infection rate was significantly higher in young animals than in old animals in all the three abattoirs (Table 3). Age and breed can influence natural bovine fasciolosis in an endemic area, cattle at this age frequently graze pastures, which may increase the likelihood of infection with *F. hepatica* metacercariae (Sánchez-Andrade et al., 2002). More so, the low prevalence in older cattle can be due to the high immunogenicity of the parasite, which aids in the stimulation of acquired immunity in older animals (Khan, Saidj, Khan, Iqbal, & Hussain, 2010). The difference in the occurrence of the *Fasciola* infection between young and old cattle in the three abattoirs could also be due to the stage of disease, sampling method and previous use of anthelmintic medication before transportation to the slaughterhouse. The prevalence of *Fasciola* in male and female cattle differ due to several reasons, including grazing disparity between both sexes especially if the cow is pregnant, sampling methods, and the fact that female animals are mainly used for reproductive purposes and seldom for beef production hence are likely not to be regularly slaughtered at abattoirs, thereby affecting the number of females sampled during the study (Dawa et al., 2013; Khan et al., 2010; Zeleke et al., 2013).

Despite the small number of local breeds slaughtered at both the HTPA1 and HTPA2 (Table 3), the occurrence of fasciolosis in these animals is understandable, given that, poorly resourced rural farmers predominantly farm local breeds and seldom have access to veterinary care and modern farming techniques (Musemwa et al., 2008). Furthermore, local breeds in many communities graze open fields and have access to stagnant water, from where infection with *Fasciola* metacercariae may likely occur. The differences in the number of sampled breeds (local and exotic/crosses) can be attributed to the export potential of exotic breeds over local breeds since both HTPA1 and HTPA2 are export abattoirs. Other factors likely responsible for the slaughter of fewer local breeds may be due to their poor meat yielding capacity, suitability for meeting criteria of carcass classification system, low demand by import markets and high rate of condemnation of meat/offals from poorly managed animals (MSA, 2000; Ndou et al., 2011; Scholtz, Bester, Mamabolo & Ramsay, 2008; Soji et al., 2015). On the other hand, the LTPA is not an export abattoir, and it is located proximal to rural settlement and receives cattle supply from its surrounding communities. These communal cattle producers may not have medicine and proper disease control infrastructure. Therefore, their animals may be susceptible to disease due to the high costs, absence or inappropriate-ness of the available animal health and production inputs (Musemwa et al., 2008; Seimenis, 2012; Soji et al., 2015).

5. Conclusion

This study demonstrated a high prevalence and a high intensity of liver flukes in cattle with poor body condition in three abattoirs in the Eastern Cape Province of South Africa. The results suggest that fasciolosis causes a reduction in cattle body weight and may lead to substantial production losses and bovine liver condemnation at slaughter. Some of the factors associated with the prevalence of fasciolosis were identified, and these include age, sex, and breed of the animals and BCS. The development of nematode and trematode resistance to various groups of anthelmintics is a major problem facing the livestock industry. An investigation on the use, dosage, and storage, as well as anthelmintic resistance, is recommended. Also, farmers’ knowledge of parasite life cycles and the dynamics that contribute to their spread should be assessed as this will assist in the timely application of prophylaxis. There is also the need for more studies aimed at understanding the challenges faced by farmers in the implementation of modern farming techniques. Rigorous and sustained integrated herd health planning to mitigate the prevalence and intensity of fluke infections is required. The report of new cases of human fasciolosis in South Africa and the nexus between animal and human *Fasciola* infection justifies calls for continuous epidemiological surveillance.
Competing interests

The authors declare that they have no financial or personal relationships which may have inappropriately influenced them in writing this article.

Acknowledgements

We are grateful to Dr. Gabriel Muteru and Mr. Morris Makepe of the Grahamstown Veterinary Laboratory, for the skilled technical assistance they offered. The National Research Foundation, (NRF/RTF-14013062856 and the DST/NRF Centre of Excellence in Food Security-Project 140702 - animal product safety) for proving the funds and to the participating abattoirs for allowing us to use their facility for research.

References

Abunna, F., Asfaw, L., Mergesa, B., & Regassa, A. (2010). Bovine fasciolosis: Coprological, abattoir survey and its economic impact due to liver condemnation at Soddo muni
cipal abattoir, Southern Ethiopia. Tropical Animal Health and Production, 42, 289–292.
Ahmadi, N. A., & Meshkehkar, M. (2010). Prevalence and long term trend of liver fluke infections in sheep, goats and cattle slaughtered in Khuzestan, southwestern Iran. Journal of Paramedical Sciences, 1, 26–31.
Alton, G. D., Pearl, D. L., Bateman, K. G., McNab, W. B., & Berke, O. (2010). Suitability of bovine parasite condemnations at provincially-inspected abattoirs in Ontario Canada for food animal syndromic surveillance. BMC Veterinary Research, 8, 88.
Alton, G. D., Pearl, D. L., Bateman, K. G., McNab, W. B., & Berke, O. (2010). Factors associated with whole carcass condemnation rates in provincially-inspected abattoirs in Ontario 2001–2007: Implications for food animal syndromic surveillance. BMC Veterinary Research, 6, 42.
Alvarez Rojas, C. A., Ansell, B. R., Hall, R. S., Gasser, R. B., Young, N. D., Jex, A. R., & Scheerlinck, J.-P. Y. (2015). Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasites & Vectors, 8, 124.
Arzaghi, K., Negoo, Y., Denbarga, Y., & Shiferaw, D. (2012). Fasciolosis in slaughtered cattle at Addis Ababa meat abattoir, Ethiopia. Global Veterinary, 8, 115–118.
Ashrafi, K., & Mas-Coma, S. (2014). Fasciola gigantica transmission in the zoonotic fascioliasis endemic lowlands of Gilan, Iran: Experimental assessment. Veterinary Parasitology, 205, 96–106.
Bekele, M., Tenfay, H., & Getachew, Y. (2010). Bovine Fasciolosis: Prevalence and its economic loss due to liver condemnation at Adwa Municipal Abattoir, North Ethiopia. Ejart, 1, 39–47.
Black, J., Ntusi, N., Stead, P., Mayosi, B., & Mendelson, M. (2013). Human fascioliasis in Zimbabwe. Revue Scientifique et Technique (International Office of Epizootics), 25, 595–606.
Bowen, M. H., Mubiru, J., Davies, E., LaGourse, E. J., Claridge, J., Williams, D. J., ... Stothard, J. R. (2012). Bovine fasciolosis at increasing altitudes: Parasitological and malacological sampling on the slopes of Mount Elgon, Uganda. Parasites & Vectors, 5, 196.
Jaja, I. F., Mushonga, B., Green, E., & Muchenje, V. (2016). Prevalence of lung lesions in slaughtered cattle in the Eastern Cape Province, South Africa. Journal of the South African Veterinary Association, 87, 9–19.
Kaplan, R. M. (2001). Fasciola hepatica: A review of the economic impact in cattle and considerations for control. Veterinary Therapeutics, 2, 40–50.
Kuyet, J. D., Kaukuki, A. A., Msiliva, L. P., Monrad, J., & Eyversgaard, N. C. (2006). Cross- sectional prevalence of helminth infections in cattle on traditional, small-scale and large-scale dairy farms in Iringa district, Tanzania. Veterinary Research Communications, 30, 45–55.
Kirma, M. N., Najid, M. S., Khan, M. K., Iqbal, Z., & Hussain, A. (2010). Gastrointestinal helmintiasis: Prevalence and associated determinants in domestic ruminants of district Toba Tek Singh, Pakistan. Parasitology Research, 107, 787–794.
Khanjari, A., Alhoon, A., Falah, S., Bagheri, M., Alizadeh, A., Falah, M., & Kjarnari, Z. (2014). Prevalence of fasciolosis and dicroceliosis in slaughtered sheep and goats in Amol Abattoir, Mazandaran, Northern Iran. Asian Pacific Journal of Tropical Disease, 4, 120–124.
Khoramian, H., Mohsen, Arabi, Osogo, M. M., Delavari, M., Hooshary, H., & Mohammadrezv, Arzeghi (2014). Prevalence of ruminant fascioliasis and their econo mic effects in Kashan, center of Iran. Asian Pacific Journal of Tropical Biomedicine, 4, S585–S589.
Kock, K. N. De, Wolmarans, C. T., & Bornman, M. (2003). Distribution and habitats of the small mammal tronculo Fasciola, intermediate host of the liver fluke Fasciola hepatica, in South Africa. Journal of the South African Veterinary Association, 74, 117–122.
Lat-lat, H., Sani, R. A., & Sheikh-omar, A. R. (2006). Condemnation of lungs in abattoirs in peninular Malaysia due to parasitic infection from 1998 – 2004. Tropical Agriculture, 83, 61–68.
Lehohla, P. (2013). Census 2011 Agricultural households Key Highlights Report. No. 03-11 (2011). Pretoria.
Markus, K., Jürgen, G., Christoph, B., Bruno, R., & Franz, R. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
Martínez-Pérez, J. M., Robles-Pérez, D., Rojo-Vázquez, F. A., & Martínez-Valladares, M. (2012). Comparison of three different techniques to diagnose Fasciola hepatica in sheep experimentally and naturally infected sheep. Veterinary Parasitology, 190, 80–86.
Mas-Cosa, S., Bargues, M. D., & Valero, M. A. (2005). Fasciolosis and other plant-borne trematode zoosnoes. International Journal for Parasitology, 35, 1255–1278.
Mellau, L. S. B., Nonga, H. E., & Karimuribo, E. D. (2011). Slaughter stock abattoir survey of carcasses and organ/offal condemnations in Arusha region, northern Tanzania. Tropical Animal Health and Production, 43, 857–864.
Mellau, L. S. B., Nonga, H. E., & Karimuribo, E. D. (2011). A slaughterhouse survey of liver lesions in slaughtered cattle, sheep and goats at Arusha, Tanzania. Research Journal of Veterinary Science, 3, 179–188.
Mpakama, T., Chulayo, A. Y., & Muchenje, V. (2014). Bruising in slaughter cattle and its relationship with meat condemnation syndromes using cattle meat inspection data for syndromic sur
teillance purposes: A statistical approach with the 2005–2010 data.
Mukaratirwa, S. I. B., & Adesokan, H. K. (2009). Causes and implications of bovine organs/o
dal condemnations in some abattoirs in Western Nigeria. Bulletin of the University of Agricultural Sciences and Production, 64, 141–143.
Mohammarreza, Asgari (2014). Prevalence of ruminants fascioliasis and their eco
domic effects in Kashan, center of Iran. Asian Pacific Journal of Tropical Biomedicine, 4, S585–S589.
Nzalawahe, J., Kassuku, A. A., Stothard, J. R., Coles, G. C., & Eisler, M. C. (2014). Seasonal variation of Fasciola gigantica in cattle slaughtered in the major abattoirs of Zambia. Revue Scientifique et Technique (International Office of Epizootics), 33, 262–269.
Pfukenyi, D. M., & Mukaratirwa, S. (2004). A retrospective study of the prevalence and environmental factors on the spatial distribution of Fasciola hepatica in beef production systems and its implications on beef quality. African Journal of Agricultural Research, 3, 144–147.
Pfukenyi, D. M., Mukaratirwa, S., Willingham, A. L., & Monrad, J. (2007). Trematode infections in cattle in Arumeru District, Tanzania are associated with ir
rigation. Parasite & Vectors, 1, 107.
Pukone, S. M. M., & Mukaratirwa, S. (2004). A retrospective study of the prevalence and seasonal variation of Fasciola gigantica in cattle slaughtered in the major abattoirs of Zimbabwe between 1990 and 1999. Onderstepoort Journal of Veterinary Research, 71, 181–187.
Pulz, D. M., Mukaratirwa, S., Williaming, A. L., & Monrad, J. (2007). Epidemiological studies of parasitic gastrointestinal nematodes, cestodes and coci
dia infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe. Onderstepoort Journal of Veterinary Research, 74, 129–138.
Phiri, A. M. (2000). Common diseases leading to cattle condemnations and organ/offal condemnations at 3 abattoirs in the Western Province of Zambia and their zoonotic implications to consumers. Journal of the South African Veterinary Association, 77, 28–32.
Phiri, A. M., Phiri, K. I., Sikazwe, C. S., & Monrad, J. (2005). Short communication: prevalence of fasciolosis in Zambian cattle slaughtered at selected Abattoirs with

FSIS (2013). Using dentition to age cattle. Food Safety and Inspection Service, United States Department of Agriculture. Washington, DC: Available at: [http://www.fsis. usda.gov/OFF/OFO/TSC/bse_information.htm]. (Accessed 15 February 2013).

Gajadhar, A. A., Scandrett, W. B., & Forbes, L. B. (2006). Overview of food- and water-
borne zoonotic parasites at the farm level Toxoplasmosis. African Journal of Agricultural Research, 3, 229–234.
emphasizes on age, sex and origin. *Journal of Veterinary Medicine, 416*, 414–416.

Regassa, A., Moje, N., Megera, B., Beyene, D., Sheferaw, D., Debela, E., & Skjerve, E. (2013). Major causes of organs and carcass condemnation in small ruminants slaughtered at Luna Export Abattoir, Oromia Regional State, Ethiopia. *Preventive Veterinary Medicine, 110*, 139–148.

Sánchez-Andrade, R., Paz-Silva, A., Suárez, J. L., Panadero, R., Pedroza, J., López, C., ... (2002). Influence of age and breed on natural bovine fasciolosis in an endemic area (Galicia, NW Spain). *Veterinary Research Communications, 26*, 361–370.

Scholtz, M. M., Bester, J., Mamabolo, J. M., & Ramsay, K. A. (2008). Results of the national cattle survey undertaken in South Africa, with emphasis on beef. *Applied Animal Husbandry & Rural Development, 2008*(1), 1–9.

Seimens, A. (2012). Zoonoses and poverty - a long road to the alleviation of suffering. *Veternaria Italiana*, 48, 5–13.

Siliko, T. R., Smith, H. V., & Rose, J. B. (2000). Emerging parasite zoonoses associated with water and food. *International Journal of Parasitology, 30*, 1579–1593.

Soji, Z., Chikwanda, D., Chikwanda, A. T., Jaja, I. F., Mushonga, B., & Muchenje, V. (2015a). Relevance of the formal red meat classification in South Africa, with emphasis on beef. *Veterinary and Animal Science*, 4, 1–7.

Soji, Z., Mabusela, S. P., & Muchenje, V. (2015b). Associations between animal traits, carcass traits and carcass classification in a selected abattoir in the Eastern Cape Province, South Africa. *South African Journal of Animal Science, 45*, 278–287.

Terefe, D., Wondimu, A., & Gachen, D. F. (2012). Prevalence, gross pathological lesions and economic losses of bovine fasciolosis at Jimma municipal. *Journal of Veterinary Medicine and Animal Health, 4*, 6–11.

Theodoropoulos, G., Theodoropoulou, E., Petrichos, G., Kantozoura, V., & Kostopoulos, J. (2002). Abattoir condemnation due to parasitic infections and its economic implications in the region of Trikala, Greece. *Journal of Veterinary Medicine, 49*, 281–284.

Thomas-Bachli, A. L., Pearl, D. L., Friendship, R. M., & Berke, O. (2012). Suitability and limitations of portion-specific abattoir data as part of an early warning system for emerging diseases of swine in Ontario. *BMC Veterinary Research, 8*, 3.

Thrusfield, M. V., 2005. *Surveys In: Veterinary Epidemiology.* Blackwell Science Ltd, London.

Toetz, H., Piedrafita, D. M., & Spithill, T. W. (2014). Liver fluke vaccines in ruminants: strategies, progress and future opportunities. *International Journal for Parasitology, 44*, 915–927.

Torell, R., Bruce, B., Kvasnicka, B., Conley, K. (1998). Methods of determining age in cattle. *Nevada.*

Torgerson, P. R., & Macpherson, C. N. L. (2011). The socioeconomic burden of parasitic zoonoses: Global trends. *Veterinary Parasitology, 182*, 79–95.

Tsegaye, E., Mulugeta, B. S., & Begna, F. (2011). Prevalence of bovine fasciolosis and its economic significance in and around Assela, Ethiopia. *Shiferaw Mulugeta, Feyisa Begna, Ephrem Tsegaye. Global Journal of Medical Research, 11*, 5–13.

Tsotsitsi, A. M., & Mbatia, P. A. (2003). Parasitic helminths of veterinary importance in cattle, sheep and goats on communal farms in the northeastern Free State, South Africa. *Journal of the South African Veterinary Association, 74*, 45–48.

WeatherSA (2014). *South African Weather Service - How are the dates of the four seasons worked out?* http://www.weathersa.co.za/learning/weather-questions/82-how-are-the-dates-of-the-four-seasons-worked-out. (Accessed 15 April 2017).

Wondwosen, E., Addis, M., & Tefera, M. (2012). An abattoir survey on the prevalence and monetary loss of fasciolosis among cattle in Wolaita Sodo Town, Ethiopia. *Advances in Biological Research, 6*, 95–100.

Yibar, A., Selcuk, O., & Senlik, B. (2015). Major causes of organ/carcass condemnation and financial loss estimation in animals slaughtered at two abattoirs in Bursa Province, Turkey. *Preventive Veterinary Medicine, 118*, 28–35.

Zeleke, G., Menkir, S., & Desta, M. (2013). Original article Prevalence of ovine fasciolosis and its economic significance in Basona worana district, central Ethiopia. *Scientific Journal of Zoology, 2*, 81–94.