Review article

Src is required for migration, phagocytosis, and interferon beta production in Toll-like receptor-engaged macrophages

Ming-Chei Maa*, Tzeng-Horng Leub,c,d,**

*Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
bInstitute of Basic Medical Sciences, China Medical University, Taichung 404, Taiwan
cDepartment of Pharmacology China Medical University, Taichung 404, Taiwan
dCenter of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan

Received 3rd of March 2016 Accepted 31st of March 2016

© Author(s) 2016. This article is published with open access by China Medical University

1. Introduction

Rous sarcoma virus (RSV), the first identified oncogenic retrovirus, carries the \textit{src} oncogene that encodes a 60-kDa nonreceptor tyrosine kinase \cite{1}. Its cellular homologue (\textit{c-src}) encodes the proto-oncogene product \textit{c-Src} that acts as a co-transducer of transmembrane signals elicited from a spectrum of polypeptide growth factor receptors, including the platelet derived growth factor receptor (PDGFR) and the epidermal growth factor receptor (EGFR) \cite{2}. Remarkably, Src knockout mice do not exhibit any obvious functional or phenotypic abnormalities except osteopetrosis \cite{3}, which is a skeletal abnormality caused by a defect in osteoclasts \cite{4}. Osteoclasts are multinucleated cells derived from the hematopoietic precursors of the monocyte/macrophage lineage with high Src expression \cite{5}. During bone homeostasis, osteoclasts function as resorbers of mineralized bone \cite{6}. The absence of Src results in the impairment of bone resorption, which can be partly attributable to the suppression of osteoclast motility \cite{6}. Despite Src being highly expressed and indispensable in osteoclasts, it’s barely detected in macrophages. This led to the speculation that Src was not involved in macrophage physiology. However, considering the close relationship between macrophages and osteoclasts, it is a reasonable assumption that Src should be pivotal in macrophage functions. Indeed, the expression of Src is inducible in macrophages exposed to various TLR ligands including lipopolysaccharide (LPS), peptidoglycan (PGN), polyinosinic-polycytidylic acid (polyI:C), and CpG-oligodeoxynucleotides (CpG) \cite{7}. In addition to its elevated expression, the activity of Src is also greatly augmented and contributes to a diverse number of macrophage functions such as migration \cite{7, 8}, phagocytosis \cite{9}, and interferon-beta (IFN-\textbeta) secretion in macrophages. These physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-xB target, which can be induced by various TLR ligands, (2) Src can mediate NF-xB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.

2. Macrophages

Macrophages are pivotal participants in innate immunity and act as sentinels in immune responses since they can eliminate opsonized pathogens through diverse cell surface receptors and present antigens to cells to initiate adaptive immunity. In a developing embryo, the progenitors of macrophages differentiate

\textbf{Keywords:}
Src;
Toll-like receptors;
IFN-\textbeta;
Macrophage activation

\textbf{ABSTRACT}

As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-\textbeta) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-xB target, which can be induced by various TLR ligands, (2) Src can mediate NF-xB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.
in the yolk sac into monocytic tissue macrophages under the influence of macrophage colony-stimulating factor (M-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF). In adults, pluripotent stem cells in bone marrow develop into promonocytes (macrophage progenitors). Unlike the short-lived and non-proliferating monocyte-derived macrophages present at inflammatory sites, tissue-derived macrophages maintain their numbers through homeostatic proliferation and appear to survive for at least six weeks [11]. Resident macrophages display obvious heterogeneity in their location, cell surface markers, and function [12]. Though circulating monocytes can give rise to resident tissue macrophages, the underlying mechanisms that direct the specification of macrophages into functionally distinct subsets are still unclear. Notably, macrophages can orchestrate immune responses by inducing inflammation, which regulates both the activation and the mobilization of various immune effector cells to promote innate and adaptive immune responses. Disturbing the regulation of macrophage functions results in pathological disorders such as sepsis, autoimmune disorders, and atherosclerosis.

3. Toll-like receptors

The Toll-like receptors (TLRs) are a family of specialized proteins that induce protective immune responses when they detect pathogen-associated molecular patterns (PAMPs) in microbial pathogens. Toll was originally shown in Drosophila as an essential receptor for host defense against fungal infection [13]. Later, a mammalian homologue of the Toll receptor (now termed TLR4) was demonstrated to induce inflammatory responses [14]. Certain TLRs (i.e., TLR1, 2, 4, 5, 6 and 11) are found on the cell surface, while others (i.e., TLR3, 7, 8 and 9) are detected almost exclusively in intracellular compartments such as endosomes [15, 16]. TLR2 detects peptidoglycan (PGN), a major bacterial cell wall component. TLR3 recognizes viral double-stranded RNA [17]. TLR4 acts as a signaling receptor for lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria [18, 19]. TLR9 senses the unmethylated CpG-oligodeoxynucleotides (CpG) that are frequently found in bacteria, but not in vertebrate DNA [20]. Subsequent to recognition of a PAMP, TLR will recruit a variety of adaptors, including TRIF, MyD88, TRAM, and TIRAP/Mal. It is well-established that TLR9 requires MyD88, that TLR3 utilizes TRIF, that TLR2 needs MyD88 and TIRAP, and that TLR4 uses all four of the aforementioned adaptors [21]. Through individually preferential adaptors, TLR engagement triggers downstream signaling pathways that activate NF-xB or MAP kinase, which in turn produce proinflammatory cytokines required for host defensive strategies [16].

4. The Src family kinases

The Src family kinases (SFKs) is a family of kinases that play key roles in regulating signal transduction by various cell surface receptors in the context of a diversified cellular environment. Src is the prototypic member of SFKs that comprises Src, Yes, Fyn, Lck, Lyn, Fgr, Hck, Btk, and York [22]. While Src, Yes, and Fyn are ubiquitously expressed, the others are more selectively expressed in hematopoietic cell linages. Because of alternative splicing or the use of alternative start codons, several SFKs exhibit multiple isoforms. Structural similarity among the SFKs can be revealed by aligning their amino acid sequences. The conserved regions include: (1) the N-terminal myristoylation signal that mediates the attachment of SFKs with the plasma membrane; (2) the SH3 and SH2 domains that are responsible for direct protein-protein association; (3) the kinase domain; (4) the C-terminal regulatory domain. Tyr416 and Tyr527 located within the kinase domain and the C-terminal regulatory region respectively are two important phosphorylation sites. While the phosphorylation of Tyr416 is self-mediated, the phosphorylation of Tyr527 is mediated by CSK (C-terminal Src kinase) that downregulates SFK activity. According to X-ray crystallography analyses and mutational studies, Src has been proposed to be held in an inactive conformation by the intra-molecular interaction between Pi-Tyr527 and SH2 as well as the SH2/kinase linker and SH3 [23]. Src becomes active when these associations are disrupted.

4.1. Constitutive expression of myeloid-specific Src family kinases

Src, Yes, and Fyn can be detected in most tissues. In contrast, the other members of the SFK family are distributed mainly in cells of hematopoietic lineage [24]. Fgr, Hck, and Lyn are myeloid-specific SFK members that are predominantly expressed in macrophages. Given the development of the tumoricidal activity of LPS-stimulated murine peritoneal macrophages (PEMs) and the release of eicosanoid mediators from LPS-stimulated RAW264.7 macrophages are suppressed by herbimycin A (a tyrosine kinase inhibitor) [25], and considering TLR4 lacks an intrinsic tyrosine kinase activity, Fgr, Hck and Lyn seem to be the major players responsible for LPS-elicited tyrosyl phosphorylation and macrophage activation. Astonishingly, the full LPS responsiveness retained by the PEMs and the bone marrow-derived macrophages (BMDMs) derived from mice deficient of Fgr, Hck, and Lyn [26], implicates these three myeloid SFKs as being dispensable for LPS-induced macrophage activation. In the meantime, an intriguing question is also raised as to what the identity of the kinase that mediates tyrosyl phosphorylation required for the LPS-exerted effects in macrophages is.

4.2. Inducible expression of Src

In a previous time-course study, we observed that in addition to immediate and transient activation, SFKs also exhibited sustained and long-lasting activity that was speculated to be crucial for LPS-mediated responses in macrophages [27]. However, the intact LPS responsiveness observed in PEMs and BMDMs from fgr-/- hck-/- lyn-/- mice implies that Fgr, Hck, and Lyn are not obligatory for macrophage activation. Due to the expression of the non-myeloid SFKs being barely detectable in resting macrophages, one might speculate that the myeloid SFKs, with their high expression, perform the house-keeping job while the expression and activity of the critical non-myeloid SFK(s) should be induced for macrophages to defend pathogenic invasions. Considering that Src is indispensable for the resoring activity of macrophage-related osteoclasts [28], it is therefore likely to be the long-sought SFK responsible for LPS-evoked macrophage activation. Indeed, LPS enhances the expression of Src in both PEMs and RAW264.7 macrophages in a time-dependent manner [8]. Similar upregulation of Src in PEMs recovered from LPS-challenged rats further indicates its physiological significance [8, 27]. Intriguingly, Src induction is also detected in PEMs, BMDMs, and RAW264.7 macrophages treated with CpG-oligodeoxynucleotides (CpG, TLR9 ligand), peptidoglycan
Phagocytosis is a phylogenetically conserved process that is pivotal to innate immunity. Through a spectrum of phagocytic receptors (i.e., Fcy receptors and complement receptor 3) and TLRs, macrophages detect the presence of various pathogens in the body [32, 33]. Engagement of these receptors triggers the activation of a series of intracellular signaling pathways that lead to membrane trafficking as well as dynamic and rapid cytoskeletal rearrangements that are required for macrophage phagocytosis. Interestingly, reduced Src expression and impaired phagocytosis are observed simultaneously in LPS-treated PEMS from C3H/HeN mice (with defective TLR4) as compared to those from C3H/HeN mice (with wild type TLR4) [9]. This finding suggests that LPS-mediated Src expression is TLR4-dependent and Src participates in LPS-induced phagocytosis. Indeed, Src attenuation hampers LPS-evoked phagocytosis and FAK PI-Tyr861, which can be rescued by ectopic Src. Consistent with the involvement of FAK in integrin-mediated macrophage phagocytosis of Yersinia pseudotuberculosis [34], FAK attenuation diminishes the uptake of GFP-E. coli in LPS-treated macrophages [9]. In contrast, the knockdown of Lyn does not affect this LPS-triggered event.

5. Src and macrophage migration

Macrophages exhibit increased motility when encountering TLR ligands [7]. Notably, this process is PP2-sensitive, indicating the involvement of SFKs. In contrast to the almost unaltered expression of the myeloid SFKs, the enhanced expression of Src mediated by activated TLRs prompts its importance in macrophage movement. Indeed, Src knockdown has been observed to lead to suppressed CpG-, LPS-, PGN-, and polyI:C-eicted motility in RAW264.7 macrophages, and ectopically expressed avian Src restored this defect [7, 8]. Focal adhesion kinase (FAK), a downstream target of Src, can regulate focal adhesion turnover and migration in fibroblasts [29]. Src mediates FAK Pi-Tyr861, an indicator of FAK activation [30]. Macrophages devoid of FAK display mobility defects that coincide with increased protrusive activity at the cell periphery, decreased adhesion turnover, and an inability to form stable lamellipodia for directional migration [31]. Consistent with the elevated FAK Pi-Tyr861 in CpG-, LPS-, PGN-, and polyI:C-treated RAW264.7, FAK-deficient macrophages exhibit impaired migration in response to various TLR ligands. Of note, concordant with its constant expression in TLR engaged macrophages, Lyn attenuation does not hamper macrophage mobility. Given that Src is NO- and cGMP-inducible, simultaneously augmented Src expression, elevated activity of Src and FAK as well as cell movement are observed in macrophages exposed to SNAP and 8-Br-cGMP. Furthermore, the suppressed CpG-, LPS-, PGN-, and polyI:C-evoked motility in iNOS-null macrophages can be rescued by SNAP and 8-Br-cGMP [7]. These findings corroborate that the NO/cGMP pathway contributes to Src induction and macrophage mobility via TLR ligands.

6. Src and macrophage phagocytosis

Phagocytosis is a phylogenetically conserved process that is pivotal for innate immunity. Through a spectrum of phagocytic receptors (i.e., Fcy receptors and complement receptor 3) and TLRs, macrophages detect the presence of various pathogens in the body [32, 33]. Engagement of these receptors triggers the activation of a series of intracellular signaling pathways that lead to membrane trafficking as well as dynamic and rapid cytoskeletal rearrangements that are required for macrophage phagocytosis. Interestingly, reduced Src expression and impaired phagocytosis are observed simultaneously in LPS-treated PEMS from C3H/NeJ mice (with defective TLR4) as compared to those from C3H/HeN mice (with wild type TLR4) [9]. This finding suggests that LPS-mediated Src expression is TLR4-dependent and Src participates in LPS-induced phagocytosis. Indeed, Src attenuation hampers LPS-evoked phagocytosis and FAK PI-Tyr861, which can be rescued by ectopic Src. Consistent with the involvement of FAK in integrin-mediated macrophage phagocytosis of Yersinia pseudotuberculosis [34], FAK attenuation diminishes the uptake of GFP-E. coli in LPS-treated macrophages [9]. In contrast, the knockdown of Lyn does not affect this LPS-triggered event.

7. Src and macrophage interferon-beta (IFN-β) production

Type I interferon (IFN-I) comprises the IFN-α family and IFN-β and exerts a wide spectrum of biological functions including the inhibition of viral replication [35]. In addition to antiviral activity, IFN-α/β also regulates the homeostatic differentiation of natural killer cells, dendritic cells, B cells, T cells, and osteoclasts [36, 37]. Double-stranded RNA (dsRNA) induces phosphorylation of TLR3 and subsequently ignites signaling pathways to produce IFN-β. The expression of IFN-α/β is primarily regulated by multiple transcription factors such as HMG1(Y), NF-kB, AP1, and IRFs [38]. Activation of IRF3 and IRF7 promotes ifn gene transcription. Phosphorylation of TLR3 at both Tyr759 and Tyr858 independently mediates PI3K and TBK1 activation, leading to the phosphorylation and activation of IRF3 [39]. A biphasic (early versus late) TLR3 Pi-Tyr759 has been observed in dsRNA-stimulated macrophages. Src can directly phosphorylate TLR3 Tyr759 in vitro and in vivo. Markedly, Src-mediated late TLR3 Pi-Tyr759 leads to the nuclear accumulation of IRF3/IRF7 and the increase of IFN-β production. Also of note, via the down-regulation of Src, dsRNA-elicted TLR3 Pi-Tyr759, the nuclear accumulation of IFR3/IRF7, and IFN-β generation are inhibited in PEMS devoid of iNOS. Strikingly, TLR3 knockdown destabilizes Src and decreases the nuclear level of IRF3/IRF7 and IFN-β secretion in macrophages exposed to LPS, which is known to enhance Src and IFN-β expression [10]. Thus, there exists a “crosstalk” between TLR3 and TLR4, a communication which is Src-dependent and occurs in the TLR3-containing endosomes. Engaged TLR4 induces iNOS and Src expression, which leads to the complex formation between TLR3 and Src, an event that stabilizes Src and increases the following TLR3 Pi-Tyr759. However, Src induction, but not ifn-β transcription, is restored in dsRNA- or LPS-treated macrophages expressing 759F-TLR3. TLR3 Pi-Tyr759 seems not to be required for Src stabilization but plays a critical role in IFN-β generation [10]. Concurrent with the dispensability of Fgr, Hck, and Lyn for LPS/TLR4 signaling in macrophages, the depletion of any of the three myeloid SFKs does not affect TLR3 Pi-Tyr759. Moreover, Lyn knockdown does not suppress dsRNA-evoked ifn-β transcript and IFN-β secretion. It is noteworthy that FAK is involved in TLR-mediated macrophage migration and phagocytosis, but not in dsRNA-triggered IFN-β production in RAW264.7 macrophages.

8. Conclusions and future perspectives

Unlike the large repertoire of rearranged receptors utilized by T and B cells in adaptive immunity, innate immunity detects microorganisms via limited germline-encoded PAMP-recognition
receptors including TLRs. Irrespective of their utilization of different TIR-containing adaptors and their different localization, engaged TLRs activate NF-κB, and augment the expression of iNOS and proinflammatory cytokines [19]. Given that the aforementioned TLRs are located on either plasma membranes (i.e. TLR2 and TLR4) or endosomes (i.e. TLR3 and TLR9), and their mediated signaling pathways can be divided into MyD88-independent (i.e. TLR3) and -dependent (i.e. TLR2, TLR4 and TLR9) pathways, the iNOS-mediated upregulation of Src in response to various TLR engagements seems to be a general mechanism for diverse macrophage functions, including migration, phagocytosis, and IFN-β production. A simple model illustrating the responsible mechanism for TLR-triggering, Src-dependent migration, phagocytosis, and IFN-β production in macrophages is proposed in Figure 1. Given (1) Src is critical for the recruitment of macrophages and the progression of chronic inflammation; (2) Src is indispensable for phagocytosis and bacterial killing in LPS-exposed macrophages; and (3) Src mediates TLR3 Pi-Tyr759, which is required for IFN-β production, therefore the potential of Src to be the therapeutic target of a spectrum of inflammatory and infectious diseases can be highlighted. Strikingly, constitutive activation of Src results in TLR3 Pi-Tyr759 and IFN-β secretion in v-Src-transformed cells. It has been well-established that type I IFN possesses antiproliferation activity in cancer cells, thus TLR3 is expected to play a negative role in cancer cell growth. However, via association with Src, TLR3 increases Src stability and contributes to its mediated anchorage independent growth. Because of these results, TLR3 might be a potential target for anti-cancer therapy.

Fig. 1 - The participation of Src in migration, phagocytosis, and IFN-β production in TLR-engaged macrophages. Upon stimulation with various PAMPs (i.e. LPS, PGN, polyI:C, CpG) in macrophages, the respective TLRs are engaged to activate NF-κB and mediate the induction of iNOS. The subsequently elevated level of NO will augment the expression and activity of Src, which leads to mobilization, phagocytosis and phosphorylation of FAK, and IFN-β production via phosphorylation of TLR3 in macrophages. Because Src enhances the activity of NF-κB, a signal amplification loop can thereby be constructed. This model discloses a general mechanism underlying the activation of macrophages when their TLRs are occupied. The open arrow indicates increased expression and activity of the following protein.

Acknowledgments

This work was supported in part by grants from the Ministry of Science and Technology (MOST 104-2320-B-039-034 to M.-C.M.), and National Health Research Institute (NHRI-EX104-10420BI to T.-H.L.).

Open Access This article is distributed under terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided original author(s) and source are credited.

REFERENCES

[1] Weiss RA, Vogt PK. 100 years of Rous sarcoma virus. J Exp Med 2011; 208: 2351-5.
[2] Ishizawar R, Parsons SJ. C-Src and cooperation partners in human cancer. Cancer Cell 2004; 6: 209-14.
[3] Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693-702.
[4] Marks SC Jr. Congenital osteopetrotic mutations as probes of the origin, structure, and function of osteoclasts. Clin Orthop Relat Res 1984; 189: 239-63.
[5] Ash P, Loutit JF, Townsend KM. Osteoclasts derived from hematopoietic stem cells. Nature 1980; 283: 669-70.
[6] Sanjay A, Houghton A, Neff L, Didomenico E, Bardelcy C, Antoine E, et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 2001; 152: 181-95.
[7] Maa MC, Chant MY, Li J, Li YY, Hsieh MY, Yang CJ, et al. The iNOS/Src/FAK axis is critical in Toll-like receptor-mediated cell motility in macrophages. Biochem Biophys Acta 2011; 1813: 136-47.
[8] Maa MC, Chang MY, Chen YJ, Lin CH, Yu CJ, Yang YL, et al. Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. J Biol Chem 2008; 283: 31408-16.
[9] Chen YJ, Hsieh MY, Chang MY, Chen HC, Jan MS, Maa MC, et al. Eps8 protein facilitates phagocytosis by increasing TLR4/MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. J Biol Chem 2012; 287: 18806-19.
[10] Hsieh MY, Chang MY, Chen YJ, Li YK, Chuang TH, Yu GY, et al. The inducible nitric-oxide synthase (iNOS)/Src axis mediates Toll-like receptor 3 Tysrione 759 phosphorylation and enhances its signal transduction, leading to interferon-β synthesis in macrophages. J Biol Chem 2014; 289: 9208-20.
[11] Plowden J, Renshaw-Hoescher M, Engleman C, Katz J, Sambara S. Innate immunity in aging: impact on macrophage function. Aging Cell 2004; 3: 161-7.
[12] Gordon S, Fraser I, Nath D, Hughes D, Clarje S. Macrophages in tissues and in vitro. Curr Opin Immunol 1992; 4: 25-32.
[13] Lemaître B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;
[14] Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 94.
[15] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
[16] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140: 805-20.
[17] Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008; 29: 182-91.
[18] Akira S, Sató S. Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 2003; 35: 555-62.
[19] Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003; 15: 396-401.
[20] Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest 2007; 117: 1184-94.
[21] Kawai T, Akira S. Signaling to NF-κB by toll-like receptors. Trends Mol Med 2007; 13: 460-9.
[22] Leu TH, Maa MC. Functional implication of the interaction between EGF receptor and c-Src. Front Biosci 2003; 8: s28-38.
[23] Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997; 383: 595-602.
[24] Lowell CA. Src-family kinases: rheostats of immune cell signaling. Mol Immunol 2003; 41: 631-43.
[25] Weinstein SL, Gold MR, DeFranco AL. Bacterial lipopolysaccharide stimulates protein tyrosyl phosphorylation in macrophages. Proc Natl Acad Sci USA 1991; 88: 4148-52.
[26] Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr and Lyn. J Exp Med 1997; 185: 1661-70.
[27] Leu TH, Charoenfuprasert S, Yen CK, Fan CW, Maa MC. Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNF alpha secretion in macrophages. Mol Immunol 2006; 43: 308-16.
[28] Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R. Src kinase activity is essential for osteoclast function. J Biol Chem. 2004; 279: 17660-6.
[29] Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003; 116: 1409-16.
[30] Leu TH, Maa MC. Tyr-863 phosphorylation enhances focal adhesion kinase autophosphorylation at Tyr-397. Oncogene 2002; 21: 6992-7000.
[31] Owen KA, Pixley FJ, Thomas KS, Vicente-Manzanares M, Ray BJ, Horwitz AF, et al. Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. J Cell Biol 2007; 179: 1275-87.
[32] Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002; 20: 825-52.
[33] Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21: 317-37.
[34] Owen KA, Thomas KS, Bouton AH. The differential expression of Yersinia pseudotuberculosis adhesins determines the requirement for FAK and/or Pyk2 during bacterial phagocytosis by macrophages. Cell Microbiol 2007; 9: 596-609.
[35] Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 2007; 6: 975-90.
[36] De Maeyer E, De Maeyer-Guignard J. Type I interferons. Int Rev Immunol 1998; 17: 53-73.
[37] Farrar JD, Murphy KM. Type I interferons and T helper development. Immunol Today 2000; 21: 484-9.
[38] Hiscott J. Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 2007; 282: 15325-9.