Boosting in Univariate Nonparametric Maximum Likelihood Estimation

YunPeng Li ZhaoHui Ye

Abstract—Nonparametric maximum likelihood estimation is intended to infer the unknown density distribution while making as few assumptions as possible. To alleviate the over parameterization in nonparametric data fitting, smoothing assumptions are usually merged into the estimation. In this paper a novel boosting-based method is introduced to the nonparametric estimation in univariate cases. We deduce the boosting algorithm by the second-order approximation of nonparametric log-likelihood. Gaussian kernel and smooth spline are chosen as weak learners in boosting to satisfy the smoothing assumptions. Simulations and real data experiments demonstrate the efficacy of the proposed approach.

Index Terms—Nonparametric maximum likelihood estimation, boosting, smoothing spline, kernel, second-order approximation.

I. INTRODUCTION

NONPARAMETRIC maximum likelihood estimation (NPMLE) \cite{1,2,3} has received much attention in recent years. It has been successfully applied to various problems in signal processing, statistical learning, and pattern recognition. Given finite independent identically distributed random samples from an unknown distribution, the goal of NPMLE is to estimate the probability density with as few assumptions as possible. Unfortunately, NPMLE’s optimization over an infinite-dimensional function space often leads to the unbounded likelihood and overfitting. The remedy to alleviate these defects is merging additional assumptions or constraints into the estimation. These assumptions confine the nonparametric density estimation to certain functional spaces. One of the most popular methods is to impose the smoothing constraint on the unknown distribution to restrict the estimation.

There are currently two common approaches to utilize the smoothing constraint: restriction methods and regularization methods. Conventional restriction methods control the smoothing degree via predetermined smoothing parameters (such as the number of bins in the histogram, the number of observations in the nearest-neighbor method, the bandwidth in kernel methods \cite{4,5,6} and the local polynomials \cite{7,8}). Another kind of restriction methods supposes the unknown distribution satisfies (log-concavity \cite{13} and monotonicity \cite{14}). In regularization methods, penalty terms (such as roughness \cite{15,16}, L_1 penalty \cite{17}, total variation \cite{18}) are designed to control the smoothing degree. For roughness penalty, nonparametric maximum penalty likelihood is analyzed in the reproducing kernel Hilbert spaces \cite{19} and one of its estimates is proven to be a positive exponential smooth spline \cite{20} with knots only at the sample points \cite{19,21}.

However, most of the restriction and selection methods have to determine the tuning parameters beforehand \cite{9,22}, resulting in a lack of flexibility in inference. In this paper, a selection method is introduced to NPMLE in the boosting form. The proposed algorithm adaptively scans the function spaces and includes only those that contribute significantly to estimation.

Our contributions are as follows.

1) We derive the boosting algorithm from the second-order approximation of nonparametric log-likelihood.
2) We select several weak learners for boosting NPMLE. Different from the regularization methods, those weak learners share the fixed smoothing degree at each iteration. The only meta-parameter in boosting NPMLE is the number of boosting iterations.

II. PROPOSED METHOD

Let X be a random variable in \mathbb{R} with probability density $p(x)$. Given N independent identically distributed samples X_1, X_2, \cdots, X_N, we model the density estimate \(\hat{p}(x) \) in the form of Gibbs distribution.

$$\hat{p}(x) = \frac{e^{f(x)}}{ \int e^{f(x)} dx} \quad (2)$$

where $f(x)$ is assumed to be a smooth function in \mathbb{R}. The log likelihood $L(f)$ is defined as the function of $f(x)$.

$$L(f) = \frac{1}{N} \sum_{i=1}^{N} \log \hat{p}(X_i) \quad (2)$$

Supposing that x_1, x_2, \cdots, x_n are the n unique elements of X_1, X_2, \cdots, X_N in ascending order, we calibrate their frequencies q_i as

$$q_i = \frac{1}{N} \# \{ j \leq N | X_j = x_i \} \quad (3)$$

where $\#$ is the counting function. We restrict the support of \(\hat{p}(x) \) in $[x_1, x_n]$. The trapezoidal rule is used for numerical integration in equation (1). Then, the estimation \(\hat{p}(x) \) is the log-likelihood $L(f)$ are adjusted in the following form

$$\hat{p}(x) = \frac{e^{f(x)}}{ \sum_{i=1}^{n} a_i e^{f(x_i)}} \quad (4)$$

YunPeng Li was with the Department of Automation, Tsinghua University, Beijing, China e-mail: liyp18@mails.tsinghua.edu.cn
ZhaoHui Ye was with the Department of Automation, Tsinghua University, Beijing, China e-mail: yezhaohui@mail.tsinghua.edu.cn
\begin{align*}
L(f) &= \sum_{i=1}^{n} q_i \log \hat{p}(x_i) \\
&= \sum_{i=1}^{n} q_i f(x_i) - \log \sum_{i=1}^{n} a_i e^{f(x_i)} \\
&= \sum_{i=1}^{n} q_i f(x_i) - \log \sum_{i=1}^{n} a_i e^{f(x_i)} \\
&\geq 1 + \mathcal{L}(f) \\
&\geq 1 + \mathcal{L}(f)
\end{align*}

To avoid the summation in logarithm in equation (5), we replace the original \(L(f) \) with a simpler surrogate \(\tilde{L}(f) \) according to the inequality \(\log v \leq -1 + v \).

\begin{align*}
\mathcal{L}(f) &= \sum_{i=1}^{n} q_i f(x_i) - \sum_{i=1}^{n} a_i e^{f(x_i)} \\
&\approx \sum_{i=1}^{n} q_i f(x_i) - \sum_{i=1}^{n} a_i e^{f(x_i)} \\
&\geq 1 + \mathcal{L}(f)
\end{align*}

It can be proved that the original \(L(f) \) and surrogate \(\tilde{L}(f) \) have an identical maximum point. Thus, we optimize the surrogate \(\tilde{L}(f) \) as the objective function in the NPMLE.

In the remaining part, we firstly derive the boosting algorithm to optimize \(\tilde{L}(f) \). Then we select several weak learners to validate the proposed method.

A. Boosting NPMLE

Boosting \([23]\) is a technique of combining multiple weak learners to produce a powerful committee, whose performance is significantly better than any of the weak learners. It works by applying the weak learner sequentially to a dataset of weighted form. For applying the boosting principle to NPMLE, we express \(f(x) \) as a combination of weak learner \(b(x; \gamma_m) \)

\[f(x) = \sum_{m=1}^{M} b(x; \gamma_m) \]

where \(M \) is the number of boosting iterations and \(m \) is the index of the single iteration. At each iteration, we train a single weak learner \(b(x; \gamma_m) \) on the weighted data, characterized by a set of parameters \(\gamma_m \). Thus, the maximum log-likelihood in \(\mathcal{L}(f) \) is changed into a boosting form

\[\max_{\{\gamma_m\}} \mathcal{L}(\sum_{m=1}^{M} b(x; \gamma_m)) \]

We define the \(f(x) \) at iteration as \(f_m(x) \).

\[f_m(x) = \sum_{i=1}^{m} b(x; \gamma_i) \]

\[= f_{m-1}(x) + b(x; \gamma_m) \]

The key of boosting is that no earlier parameters \(\gamma \) are adjusted at the current \(m \) iteration. To acquire \(f_m(x) \), we optimize a subproblem based on former \(f_{m-1}(x) \) sequentially.

\[\max_{\gamma_m} \mathcal{L}(f_{m-1}(x) + b(x; \gamma_m)) \]

A second-order approximation \(\mathcal{L}(f_m; f_{m-1}) \) is used to solve \(\mathcal{L}(f_m) \) on equation (11).

\[\mathcal{L}(f_m; f_{m-1}) \approx \mathcal{L}(f_{m-1}(x)) \]

\[+ \sum_{i=1}^{n} (q_i - a_i e^{f_{m-1}(x_i)})(f_m(x_i) - f_{m-1}(x_i)) \]

\[+ \sum_{i=1}^{n} \frac{1}{2} - a_i e^{f_{m-1}(x_i)}(f_m(x_i) - f_{m-1}(x_i))^2 \]

Maximizing \(\mathcal{L}(f_m; f_{m-1}) \) is equivalent to the minimizing of weighted least squares problem as follow,

\[\min_{\gamma_m} \sum_{i=1}^{n} \frac{1}{2} \omega_m^i (b(x_i; \gamma_m) - g_m(x_i))^2 \]

\[\omega_m^i = a_i e^{f_{m-1}(x_i)} \]

\[g_m(x_i) = \frac{q_i - \omega_m^i}{\omega_m^i} \]

where \(\omega_m^i \) is the weight and \(g_m(x_i) \) is the response of \(x_i \) in the current \(m \) iteration. For the next \(m+1 \) iteration, the updating rules concerning the weight and response are

\[\omega_m^{i+1} = \omega_m^i e^{b(x_i; \gamma_m)} \]

\[g_m^{i+1}(x_i) = \frac{q_i - \omega_m^{i+1}}{\omega_m^{i+1}} \]

The parameters \(\gamma_m \) in single \(b(x; \gamma_m) \) are determined by equation (13). Once all the weak learners \(b(x; \gamma) \) have been trained, \(f(x) \) is the combination of whole \(M \) weak learners, as illustrated schematically in Fig. 1. The whole algorithm is summarized in Alg. 1. Different from existing boosting algorithm in classification \([24]\) and regression \([25]\), boosting NPMLE updates the weight and response of data simultaneously.

B. Choices of weak learners

The choices of the weak learners \(b(x; \gamma_m) \) and the number of boosting iterations \(M \) are the key to boosting NPMLE. Although conventional classification and regression trees(CART) \([23]\)–\([25]\) can solve equation (13) efficiently, CART cannot satisfy the smoothing constraint required in boosting NPMLE due to its feature of piecewise constant. Despite boosting
method usually reduces training error as the increase of boosting iterations M, it can sometimes cause overfitting on future predictions.

In boosting NPMLE, ideal weak learners should meet several requirements:

1) the weak learners should satisfy the smoothing constraint in NPMLE to avoid over parameterization.

2) the weak learners can solve the weighted least squares in equation (13) efficiently.

3) the model complexity of the weak learners can be easily restricted during each boosting iteration m.

4) the weak learners should be robust to the large choice of boosting iterations M.

We select the Gaussian kernel and the smooth spline as weak learners in boosting NPMLE for the following reasons:

1) Gaussian kernel: kernel functions are basis functions for nonlinear mapping, determined by kernel choice and bandwidth. An L_2 penalty is added to equation (13) to control their model complexity by the lagrange multiplier λ. These models change from the simple fit to ordinary least squares as the decrease of λ. We select the extremely large choice of λ ($\lambda = 10^4$) in boosting NPMLE to constrain their model complexity.

2) smooth spline: different from CART method, smooth spline is piecewise cubic polynomials under the smoothing interpolation. It has been applied and analyzed in nonparametric estimation in regularization methods. We fix the complexity of smooth spline via a parameter named degree of freedom df ($df = 3$). With the increase of df from 2 to n, the $b(x; \gamma_m)$ changes from a simple line fit to ordinary least squares interpolation.

The selection methods in the proposed paper do not focus on the smoothing parameters for single $b(x; \gamma_m)$. We only determine these weak learners to be extremely simple in each iteration by the fixed λ (Gaussian kernel) or df (smooth spline). This is the fundamental difference between the existing regularization methods. As a result, our algorithm avoids the difficult choices of tuning parameters.

Besides, the extreme choices of large λ and small df enable boosting NPMLE robust to the large boosting iterations M.

III. Experiments and Results

In this section, simulations, and experiment on real data are designed to verify the performance of boosting NPMLE in univariate cases. The only tuning parameter is the number of boosting iterations M, more details are shown in Table I.

A. Improvement in data fitting

In the first simulation, we apply boosting NPMLE to density estimation of different distributions, ranging from discontinuous to continuous, the sample size N is 500. As can be seen in Fig. 2a when $M = 1$, Gaussian kernel and smooth spline do not fit well in all cases, while CART performs well only in uniform distribution owe to its feature of piecewise constant. After $M = 200$ boosting iterations, in Fig. 2b we find the estimation results of Gaussian kernel and smooth spline become closer to the ground-truth for all distributions, with performance surpassing CART. We can conclude that the performance of data fitting is significantly improved as the increase of boosting iterations M for Gaussian kernel and smooth spline, and the CART is actually not appropriate to be the weak learners in boosting NPMLE.

B. Robustness to the choice of M

Although large M strikingly improves the data fitting in train stage, inappropriate choice of large M usually leads to overfitting in prediction for ordinary boosting methods. Another simulation is conducted to evaluate the robustness of boosting NPMLE concerning M. In this simulation, we use the Gaussian kernel and smooth spline as weak learners and fix the true distribution $p(x)$ as a Gaussian Mixture Model (GMM), where the sample size is $N = 500$.

$$p(x) = \beta \phi(x; \mu_1, \sigma_1^2) + (1 - \beta) \phi(x; \mu_2, \sigma_2^2)$$

$$\phi(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where $\beta \in [0, 1]$, $\mu_{1,2} = \pm 2.5$, $\sigma_{1,2}^2 = 2$. We increase the β from 0 to 1 and choose different M in boosting NPMLE. The KL divergence $D_{KL}(p||\hat{p})$ is used to measure the distance between the true distribution $p(x)$ and the estimation $\hat{p}(x)$.

$$D_{KL}(p||\hat{p}) = \int p(x) log \frac{p(x)}{\hat{p}(x)} dx$$
We use only the quantitative input feature age (age at onset) to predict the binary response chd (coronary heart disease). The conditional probabilities $p(\text{age}|\text{chd})$ are estimated by the proposed algorithms (smooth spline and Gaussian kernel) in Fig. 4. We use bayesian classifiers to compare boosting NPMLE with other NPMLE methods including log-concavity [28], kernel [29], and penalized spline [30] (both default parameters). Thanks to the robustness of boosting NPMLE, boosting iterations can be selected extremely large ($M = 2000$). The average misclassification rate on 100 random splits is recorded in Table II. Our algorithm is consistent with other NPMLE methods in this task.

IV. CONCLUSION

In this paper, a novel selection algorithm based on boosting has been proposed to solve NPMLE. We derive the boosting NPMLE by second-order approximation to log-likelihood. Different from ordinary boosting in supervised learning, our algorithm adjusts both the weight and response during the sequential routine. Several weak learners are chosen to comply with the smoothing assumptions required in NPMLE. Simulations and classification experiment validate the effectiveness of the proposed algorithm.

Fig. 2. Application of boosting to the density estimation with different boosting iterations. Smooth spline (blue), CART (green), and Gaussian kernel (black) work as weak learners to estimate the true distributions (red), the histograms (pink) are presented for comparing. (Top left) uniform distribution; (Top right) exponential distribution; (Bottom left) mixture of two double exponential distributions; (Bottom right) student distribution.

Fig. 3. Average KL divergence of boosting NPMLE in GMM based on 50 simulations. The ordinate is the KL divergence $D_{KL}(\hat{p}||\bar{p})$, and the abcissa represents the increasing sequence concerning β. In the left figure, smooth spline works as weak learners, while Gaussian kernel works as weak learners in right figure. In both figures, the corresponding weak learners have different number of iterations M such as $M = 1$ (purple), $1 < M < 1000$ (brown), $M = 1000$ (blue).

Fig. 4. Estimated conditional densities $p(\text{age}|\text{chd})$ to the South African Heart Disease dataset by boosting NPMLE. Histograms of age for the binary response chd separately.
REFERENCES

[1] J. Kiefer and J. Wolfowitz, “Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters,” The Annals of Mathematical Statistics, vol. 27, no. 4, pp. 887–906, 1956.

[2] S. J. Bean and C. P. Tsokos, “Developments in nonparametric density estimation,” International Statistical Review / Revue Internationale de Statistique, vol. 48, no. 3, pp. 267–287, 1980.

[3] A. J. Izenman, “Review papers: Recent developments in nonparametric density estimation,” Journal of the American Statistical Association, vol. 86, no. 413, pp. 205–224, 1991.

[4] E. Parzen, “On estimation of a probability density function and mode,” The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962. [Online]. Available: [http://www.jstor.org/stable/2237880]

[5] E. A. Nadaraya, “On non-parametric estimates of density functions and regression curves,” Theory of Probability and its Applications, vol. 10, no. 1, pp. 186–190, 1965.

[6] J. Racine, “An efficient cross-validation algorithm for window width selection for nonparametric kernel regression,” Communications in Statistics - Simulation and Computation, vol. 22, no. 4, pp. 1107–1114, 1993.

[7] Local Regression Methods. New York, NY: Springer New York, 1999.

[8] M. D. Cattaneo, M. Jansson, and X. Ma, “Simple local polynomial density estimators,” Journal of the American Statistical Association, vol. 115, no. 531, pp. 1449–1455, 2020.

[9] N. Laird, “Nonparametric maximum likelihood estimation of a mixing distribution,” Journal of the American Statistical Association, vol. 73, no. 364, pp. 805–811, 1978.

[10] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the em algorithm,” SIAM Review, vol. 26, no. 2, pp. 195–239, 1984.

[11] M. D. Escobar and M. West, “Bayesian density estimation and inference using mixtures,” Journal of the American Statistical Association, vol. 90, no. 430, pp. 577–588, 1995.

[12] P. R. Hahn, R. Martin, and S. G. Walker, “On recursive bayesian predictive distributions,” Journal of the American Statistical Association, vol. 113, no. 523, pp. 1085–1093, 2018.

[13] R. J. Samworth, “Recent progress in log-concave density estimation,” Statist. Sci., no. 4, pp. 493–509, 11.

[14] M.-Y. Cheng, T. Gasser, and P. Hall, “Nonparametric maximum likelihood estimation under unimodality and monotonicity constraints,” Journal of Computational and Graphical Statistics, vol. 8, no. 1, pp. 1–21, 1999.

[15] I. J. GOODD and R. A. GASKINS, “Nonparametric roughness penalties for probability densities,” Biometrika, vol. 58, no. 2, pp. 255–277, 08 1971.

[16] B. W. Silverman, “On the estimation of a probability density function by the maximum penalized likelihood method,” The Annals of Statistics, vol. 10, no. 3, pp. 795–810, 1982.

[17] F. Bunea, A. Tsybakov, and M. Wegkamp, “Sparse density estimation with l1 penalties,” 06 2007, pp. 530–543.

[18] R. Koenker and I. Mizera, “Density estimation by the maximum penalized likelihood method,” 01 2006.

[19] G. F. de Montricher, R. A. Tapia, and J. R. Thompson, “Nonparametric maximum likelihood estimation of probability densities by penalty function methods,” Ann. Statist., vol. 3, no. 6, pp. 1329–1348, 11 1975.

[20] C. de Boor, A Practical Guide to Spline, 01 1978, vol. Volume 27.

[21] E. J. Wegman and I. W. Wright, “Splines in statistics,” Journal of the American Statistical Association, vol. 78, no. 382, pp. 351–365, 1983.

[22] C. Gu and J. Wang, “Penalized likelihood density estimation: Direct cross-validation and scalable approximation,” Statistica Sinica, vol. 13, pp. 811–826, 2003.

[23] P. Bühlmann and T. Hothorn, “Boosting algorithms: Regularization, prediction and model fitting,” Statist. Sci., vol. 22, no. 4, pp. 477–505, 11 2007.

[24] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[25] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 10 2001.

[26] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for cox’s proportional hazards model via coordinate descent,” Journal of Statistical Software, vol. 39, no. 5, pp. 1–13, 2011. [Online]. Available: [http://www.jstatsoft.org/v39/i05/]

[27] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning – data mining, inference, and prediction.” Springer New York, 2009, ch. 6, pp. 214–215. [Online]. Available: [https://web.stanford.edu/~hastie/ElemStatLearn/datasets/SAheart.data]

[28] L. Dijkstra and K. Ruif, “logcondens: Computations related to univariate log-concave density estimation,” Journal of Statistical Software, vol. 39, no. 6, pp. 1–28, 2011. [Online]. Available: [http://www.jstatsoft.org/v39/i06/]

[29] T. Duong, ks: Kernel Smoothing, 2020, r package version 1.11.7. [Online]. Available: [https://CRAN.R-project.org/package=ks]

[30] C. Kooperberg, logspline: Routines for Log spline Density Estimation, 2020, r package version 2.11.6. [Online]. Available: [https://CRAN.R-project.org/package=logspline]