The purpose of this mini-review was to focus on energy deficiency in Endurance Sports – Focus on Rowing. A secondary purpose was to present practical approaches for the detection of energy-deficient athletes and strategies to alleviate some of the effects detrimental to athletic performance.

We present an approach of combining indirect calorimetry and advanced imaging to quantify reductions in resting metabolic rate, which can be reduced by as much as 10% in energy-deficient athletes and has been linked to performance impairments. While dietary treatment should be the first approach in these cases, there are situations in which a negative balance cannot be avoided, such as desired weight loss or sports which emphasize low body weights or leanness.

As energy conservation is linked to the downregulation of key endocrine pathways related to musculoskeletal health, we explore strategies that protect the functional capacity of lean tissues in these states, including targeted exercise and increased dietary protein consumption.

Summary

- Athletes and particularly endurance athletes, such as rowers, expend considerably more energy than their sedentary counterparts, which increases their risk of failing to match these elevated requirements through their diet. Contrary to textbook knowledge, the resulting state of energy deficiency does not necessarily lead to weight loss, as metabolic adaptations can conserve energy to return to energy balance at a lower set-point.

- The purpose of this mini-review was to focus on energy deficiency in endurance athletes, with special reference to the sport of rowing. A secondary purpose was to present practical approaches for the detection of energy-deficient athletes and strategies to alleviate some of the effects detrimental to athletic performance.

- We present an approach of combining indirect calorimetry and advanced imaging to quantify reductions in resting metabolic rate, which can be reduced by as much as 10% in energy-deficient athletes and has been linked to performance impairments. While dietary treatment should be the first approach in these cases, there are situations in which a negative balance cannot be avoided, such as desired weight loss or sports which emphasize low body weights or leanness.

- As energy conservation is linked to the downregulation of key endocrine pathways related to musculoskeletal health, we explore strategies that protect the functional capacity of lean tissues in these states, including targeted exercise and increased dietary protein consumption.

Endurance Athletes, Performance

Adaptive Thermogenesis, Bone Health,

Energy Balance, Resting Metabolic Rate,

KEY WORDS:

Energiebilanz, Ruheenergieumsatz, Adaptive Thermogenese, Knochengesundheit, Ausdauersportler, Leistungsfähigkeit

Introduction

One of the features of high-performing athletes are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-country skiers (36). These PAL levels are much higher than those reported in the normal population, which are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-country skiers (36). These PAL levels are much higher than those reported in the normal population, which are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-country skiers (36). These PAL levels are much higher than those reported in the normal population, which are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-country skiers (36). These PAL levels are much higher than those reported in the normal population, which are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-country skiers (36). These PAL levels are much higher than those reported in the normal population, which are their elevated energy requirements (29). In the normal population, the mean physical activity level (PAL), which describes the ratio of total daily energy expenditure (TDEE) to resting metabolic rate (RMR) is in the range of 1.6-1.7 (43), which translates to average TDEE values between approximately 1500 and 2500 kcal/d. In athletes and particularly endurance athletes, PAL and TDEE levels can be two- to three-fold greater. In studies which used gold-standard methodologies to quantify TDEE (doubly-labelled water) and RMR (indirect calorimetry), PAL levels in the ranges of 2.0-2.3, 2.8-3.2 and 3.4-4.0 have been reported in distance runners (6, 34), swimmers (41), and cross-country skiers (36), respectively. So far, the highest sustainable PAL levels of 3.5-5.5 have been reported in German high-performance endurance athletes and in athletes selecting for a high-PAL lifestyle, such as distance runners and cross-country skiers (39). Furthermore, PAL levels of 3.5 have been reported in several studies with professional distance runners (10, 36), swimmers (41), and cross-count
Textbook knowledge suggests that a negative energy balance results in weight loss via the mobilization of energy stores from fat and lean tissues in efforts to balance the imposed energy deficit (9). In addition to providing energy, the loss of metabolically active body tissue also results in a reduction in energy expenditure, thereby reducing the initial energy deficit (10). However, this reduction is typically not sufficient to balance the imposed deficit completely and therefore requires additional reductions in TDEE to return to a physiologically preferential state of equilibrium at a lower set-point. In fact, it is well documented that almost any induction of an energy deficit leads to adaptive reductions in RMR in response to energy restriction (24). The component of TDEE which has the greatest potential for energy conservation is RMR, as an athlete’s training and competition is typically very regimented and non-exercise physical activity is primarily driven by environmental factors. While the likelihood of athletes entering a negative energy balance in efforts to balance the imposed energy deficit is much higher, whether it is through reducing dietary intake or gain via an energy surplus are rare and challenging (7). However, the likelihood of athletes entering a negative energy balance is much higher, whether it is through reducing dietary intake to achieve or maintain a low body weight in sports with weight limitations (e.g. lightweight rowing), endurance sports, or anti-gravity sports, as the result of disordered eating and clinical eating disorders, or the inability to match the increased expenditure as a result of training and competition (18). The etiology of chronic energy deficiency, i.e. a long-term mismatch between energy intake and expenditure, have been reviewed extensively in the context of the female athlete triad (5), and more recently under the term relative energy deficiency in sports (RED-S), a more encompassing approach to include a broader athletic population and numerous health-related outcomes aside from bone and menstrual health (22, 23). In contrast, the purpose of the present mini-review, which resulted from an invited presentation at the 2018 World Rowing Conference held in Berlin, Germany, was to highlight issues specific to endurance sports and more specifically rowing, with a special emphasis on practical approaches for the detection of energy-deficient athletes and strategies to alleviate some of the effects detrimental to athletic performance.

Figure 1
Schematic display of our approach combining whole-body imaging with indirect calorimetry to quantify reductions in resting metabolic rate. RMR_{pred}: predicted Resting Metabolic Rate; k_i: tissue-specific metabolic rate (in kcal/kg); T_i: size of specific tissue (in kg).

Figure 2
Summary of the proposed mechanisms and consequences of energy deficiency on the musculoskeletal system.

Summary of the proposed mechanisms and consequences of energy deficiency on the musculoskeletal system.
adipose tissue, bone) using established tissue-coefficients (26). We have validated this approach in a group of female athletes with exercise-associated amenorrhea, a well-established model of chronic energy deficiency (3), whose measured RMR was ~9% (~100 kcal/d) lower than that predicted based on tissue and organ expenditure (15). While amenorrhea represents a clear clinical sign which has been linked to energy deficiency for many years (20), its diagnosis in female athletes involves the exclusion of other causes (4). Further, subclinical menstrual disturbances which may go unnoticed by the athletes, have also been linked to energy status (3). As such, the confirmation of RMR suppression can provide additional evidence for the role of energy deficiency in the etiology of menstrual disturbances, especially since it involves tools commonly available to sports nutrition practitioners. Further, energy deficiency is more likely to go unnoticed in male athletes, whose reproductive function appears to be less vulnerable by energy status (32), as well as female athletes using hormonal contraception. In these cases, RMR measurements may be a first step in the detection of energy deficiency. In fact, unpublished data from various athlete and non-athlete groups suggests that other at-risk groups, such as male athletes involved in leanness sports (8), exhibit similar reductions in RMR. Confirmation of energy deficiency may complement available screening tools and make it easier for athletes and their support staff to adopt appropriate dietary treatment approaches (5, 22, 23).

While quantifying RMR reduction may be an important tool to detect chronically energy-deprived athletes, the RMR reduction is nothing but the product of underlying metabolic adaptations, i.e. a symptom. Therefore, other metabolic, endocrine or clinical markers are required to determine causal and mechanistic factors contributing to RMR suppression. In amenorrheic athletes, the RMR suppression was not only associated with the suppression of the reproductive hormones estrogen and progesterone, it also correlated with reductions in key metabolic hormones, such as leptin and T3 (15). These findings provide real-life evidence of previous seminal studies by Anne Loucks and colleagues who established a direct and dose-dependent relationship between energy availability and alterations in hormones related to energy status (e.g. leptin, thyroid hormones), the growth hormone/IGF-1 axis, stress hormones and reproductive function (19). By directly impacting bone health via suppressed bone formation and elevated bone resorption (16, 35) and possibly muscle protein turnover via reduced protein synthesis and elevated protein breakdown (2, 30), these metabolic and endocrine consequences of energy deficiency (Figure 2) can compromise an athlete’s health by increasing the likelihood of musculoskeletal injuries such as bone stress injuries and fractures (39).

Furthermore, there is increasing evidence that physical performance is also impacted by energy deficiency. However, as prospective experiments are challenging if not prohibitive in competitive athletes, most of the knowledge on the potentially detrimental effects of energy deficiency on performance is derived from observational studies. For example, Van Heest et al. followed a group of young elite female swimmers during a 12-week training period. In light of the connection between energy status and menstrual health, swimmers were retrospectively divided into groups based on their menstrual status. Confirming the presumed energy deficient state, swimmers with menstrual disturbances exhibited a 30% lower dietary energy intake when compared to swimmers with regular menses. Further, swimmers with menstrual disturbances demonstrated endocrine evidence of low energy availability, including reduced concentrations of thyroid hormones and IGF-1. More importantly, they exhibited a ~10% decrease in their 400-m swim performance over the course of the 12-week training period, whereas regularly menstruating swimmers improved their performance by 8% (42). A similar study was recently published by Woods et al., who monitored athletes of the Australian National Rowing Team participating in a 4-week intensified training program. While the training resulted in a 20-50% increase in training volume, the athletes failed to increase their dietary energy intake. As a result, athletes lost weight (~1.6 kg, 2%) and specifically fat mass (~2.2 kg, ~18%), providing strong evidence that they were in a negative energy balance over the course of the training period, an assumption that was further corroborated by a 5% reduction in RMR (~111 kcal/d). Analysis of 5-km time trial data demonstrated a 3.5% reduction in rowing performance, which was particularly evident during later stages of the time trial (~7%) (45).

Impact of Energy Deficiency on Athletic Performance

By directly impacting bone health via suppressed bone formation and elevated bone resorption (16, 35) and possibly muscle protein turnover via reduced protein synthesis and elevated protein breakdown (2, 30), these metabolic and endocrine consequences of energy deficiency (Figure 2) can compromise an athlete’s health by increasing the likelihood of musculoskeletal injuries such as bone stress injuries and fractures (39).

Furthermore, there is increasing evidence that physical performance is also impacted by energy deficiency. However, as prospective experiments are challenging if not prohibitive in competitive athletes, most of the knowledge on the potentially detrimental effects of energy deficiency on performance is derived from observational studies. For example, Van Heest et al. followed a group of young elite female swimmers during a 12-week training period. In light of the connection between energy status and menstrual health, swimmers were retrospectively divided into groups based on their menstrual status. Confirming the presumed energy deficient state, swimmers with menstrual disturbances exhibited a 30% lower dietary energy intake when compared to swimmers with regular menses. Further, swimmers with menstrual disturbances demonstrated endocrine evidence of low energy availability, including reduced concentrations of thyroid hormones and IGF-1. More importantly, they exhibited a ~10% decrease in their 400-m swim performance over the course of the 12-week training period, whereas regularly menstruating swimmers improved their performance by 8% (42). A similar study was recently published by Woods et al., who monitored athletes of the Australian National Rowing Team participating in a 4-week intensified training program. While the training resulted in a 20-50% increase in training volume, the athletes failed to increase their dietary energy intake. As a result, athletes lost weight (~1.6 kg, 2%) and specifically fat mass (~2.2 kg, ~18%), providing strong evidence that they were in a negative energy balance over the course of the training period, an assumption that was further corroborated by a 5% reduction in RMR (~111 kcal/d). Analysis of 5-km time trial data demonstrated a 3.5% reduction in rowing performance, which was particularly evident during later stages of the time trial (~7%) (45).

Possible Counterstrategies

Despite the above mentioned negative effects on health and performance of athletes, acute or chronic states of energy deficiency remain a part of competitive sports. Reasons for this continued problem include seasonal variations in training volume, the need to lose weight or improve body
composition, and regulations or traditions in specific sports, including light weight rowing. Given this conundrum, it is instrumental to develop diet and exercise strategies which minimize possible harmful effects for an athlete’s health or performance. For example, shifting weight loss away from functional tissues, such as skeletal muscle and bone, towards the loss of adipose tissue has the potential to maintain functional capacity (28). This can be achieved using exercise as a stimulus to preserve muscle mass, as data from our lab demonstrates. Young, healthy and endurance-trained men underwent repeated periods of severe energy deficiency, once with incorporation of exercise and once without exercise. To maintain equivocal conditions, participants were compensated for the additional energy cost of the prescribed exercise (14). Despite similar reductions in body weight and fat mass, the incorporation of exercise preserved lean mass (Figure 3) and prevented declines in submaximal weight and fat mass, the incorporation of exercise preserved lean mass and once without exercise. To maintain equilocomic conditions, the authors have no conflict of interest.

Conflict of Interest
The authors have no conflict of interest.

Conclusion and Outlook
The importance of adequate energy intake in athletes is reflected by the most recent position stand of the American College of Sports Medicine, which states that an “[…] appropriate energy intake is the cornerstone of the athlete’s diet because it supports optimal body function […]” (40), as well as other literature pertaining to RED-S (22, 23). Given the significance of adaptive reductions in energy expenditure, changes in body weight alone are insufficient measures of energy status. Instead, a careful evaluation of an athlete’s metabolic state, including an assessment of their RMR and body composition, may help identify energy-deficient athletes and can, especially when coupled with other clinical, metabolic and endocrine indicators, help steer appropriate dietary treatment strategies. When states of energy deficiency cannot be avoided at all costs, for example in sports that continue to emphasize low weight and/or leanness, some of the negative effects on the musculoskeletal system and performance may be alleviated through functional exercise and increased dietary protein. However, additional strategies may be needed to address other components of the RED-S framework which might be negatively impacted by energy deficiency.

References

(1) Byrne NM, Wood RE, Schutz Y, Hills AP. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int J Obes. 2012; 36: 1472-1478. doi:10.1038/ijo.2012.109

(2) Carbone JW, Pasiakos SM, Vislocky LM, Anderson JM, Rodriguez NR. Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Appl Physiol Nutr Metab. 2014; 39: 960-968. doi:10.1139/apnm-2013-0433

(3) De Souza MJ, Lee DK, Vanheest JL, Scheid JL, West SL, Williams NI. Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertil Steril. 2007; 88: 971-975. doi:10.1016/j.fertnstert.2006.11.171

(4) De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Godsbly M, Matheson G. Female Athlete Triad Coalition, American College of Sports Medicine, American Medical Society for Sports Medicine, American Bone Health Alliance. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference Held in San Francisco, CA, May 2012, and 2nd International Conference Held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014; 24: 96-119. doi:10.1016/S1077-4577(13)00095-3

(5) De Souza MJ, Nattiv A, Joy E, Misra M, Williams MJ, Mallinson RJ, Gibbs JC, OLMSTED M, GODSBLY M, MATHESON G; EXPERT PANEL. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference Held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014; 48: 289. doi:10.1136/bjsports-2013-093218

(6) Fudge BW, Westerterp KR, Kiplimai FK, Onywera VO, Boit MK, Kaysier B, Pitsiladis YP. Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition. Br J Nutr. 2006: 95: 59-66. doi:10.1079/BJN20051608

(7) Garth JE, Raastad T, Sundgot-Borgen J. Long-term effect of nutritional counselling on desired gain in body mass and lean body mass in elite athletes. Appl Physiol Nutr Metab. 2011; 36: 547-554. doi:10.1113/jnl.2011.0511

(8) Hagmar M, Berglund B, Brismar K, Hirschberg AL. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med. 2013; 23: 197-201. doi:10.1097/JSM.0b013e31827a8809

(9) Hall KD. What is the required energy deficit per unit weight loss? Int J Obes. 2008; 32: 573-576. doi:10.1038/sj.ijo.0803720

(10) Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011; 378: 826-837. doi:10.1016/S0140-6736(11)60812-X

(11) Hill RJ, Davies PS. Energy intake and energy expenditure in elite lightweight female rowers. Med Sci Sports Exerc. 2002; 34: 1823-1829. doi:10.1097/00005766-200211000-00020

(12) Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL, Simson E, et al. The biology of human starvation. University of Minnesota Press; Minne ed; 1950.

(13) KoeHLer K, De Souza MJ, Williams NI. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations. Eur J Clin Nutr. 2017; 71: 365-371. doi:10.1038/ejcn.2016.293
Energy Deficiency and Nutrition in Endurance Sports

(14) KOEHLER K, HOERNER NR, GIBBS JC, ZINNER C, BRAUN H, DE SOUZA MJ, SCHAENZER W. Low energy availability in exercisers is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016; 34: 1921-1929. doi:10.1080/02640414.2016.1142109

(15) KOEHLER K, WILLIAMS NJ, MALLINGON RJ, SOUTHMYD A, ALLAWAY HC, DE SOUZA MJ. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments. Am J Physiol Endocrinol Metab. 2016; 311: E840-E487. doi:10.1152/ajpendo.00110.2016

(16) LOCHER JL, GOSSBY TU, GOSS AM, KILGORE ML, GOWER B, ARD JD. Calorie restriction in overweight adults: Do benefits exceed potential risks? J Clin Endocrinol Metab. 2016; 86: 4-13. doi:10.1210/jc.2016.0309

(17) LOUCKS AB. Nutritional needs of the female athlete. Clin Sports Med. 1999; 18: 549-563. doi:10.1016/S0278-5919(05)70168-X

(18) LOUCKS AB, DE SOUZA MJ. Energy balance and body composition in sports and exercise. J Sports Sci. 2004; 22: 1-14. doi:10.1080/0264041031000140518

(19) LOUCKS AB, KIENS B, WRIGHT HH. Energy availability in athletes. J Sports Sci. 2011; 29: 57-815. doi:10.1080/02640414.2011.588958

(20) MANSOUR MM, LEBRUN C, MEYER N, LUNDY B, MELIN AK, MEYER NL, BLAuwET C, CONSTANTINI N, LEBRUN C, LUNDY B, MELIN AK, MEYER NL, SCHAENZER W. Energy balance and body composition related to reproductive function: The FASEB Journal. 2019; 33: 702.

(21) Meyer NL, SUNDGOT-BORGEN J, LOMHAN TG, ACKLAND TR, STEWART AD, MEYER NL, SUNDGOT-BORGEN J, LOHMAN TG, ACKLAND TR, STEWART AD, MEYER NL, SUNDGOT-BORGEN J, LOHMAN TG, ACKLAND TR, STEWART AD. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 1999; 64: 6118-32. doi:10.1093/ajcn/64.6.6118

(22) MOUNTJOY M, SUNDGOT-BORGEN J, BURKE LM, ACKERMAN KE, MULLER MJ, BOSY-WESTPHAL A. Increased protein intake prevents elevations in sclerostin during short-term diet- and exercise-induced weight loss. The FASEB Journal. 2019; 33: 702.

(23) MOUNTJOY M, SUNDGOT-BORGEN JK, BURKE LM, ACKERMAN KE, MULLER MJ, BOSY-WESTPHAL A. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012; 32: 287-309. doi:10.1146/annurev.nutr.012809.104655

(24) MOUNTJOY M, SUNDGOT-BORGEN JK, BURKE LM, ACKERMAN KE, MULLER MJ, BOSY-WESTPHAL A. Bone stress injuries in runners. Phys Med Rehabil Clin N Am. 2016; 27: 139-149. doi:10.1016/j.pmrj.2015.08.008

(25) MULLER MJ, BOSY-WESTPHAL A. Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring). 2013; 21: 218-228. doi:10.1002/oby.20027

(26) MULLER MJ, ENDERLE J, POURHASAN M, BRAUN W, EGELING B, LAGERPUSCH M, GLIER C-C, KENAYASIS JI, KIOS D, BOSY-WESTPHAL A. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015; 102: 807-819. doi:10.3945/ajcn.115.110973

(27) MULLER MJ, WANG Z, HEYMSFIELD SB, SCHAUZ T, BOSY-WESTPHAL A. Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metab Care. 2013; 16: 501-508.

(28) MURPHY C, MARKS-NELSON E, KOEHLER K. Increased Protein Intake Prevents Elevations in Sclerostin during Short-Term Diet- and Exercise-Induced Weight Loss. The FASEB Journal. 2019; 33: 702.

(29) NOAKES TD. The limits of endurance exercise. Basic Res Cardiol. 2006; 101: 408-417. doi:10.1007/s00395-006-0607-2

(30) PASIAROS SM, MARGOLIS LM, MCCLUNG JP, CAO JJ, WHIGHAM LD, COMBS GF, YOUNG AJ. Whole-body protein turnover response to short-term high-protein diets during weight loss: a randomized controlled trial. Int J Obes. 2014; 38: 1015-1018. doi:10.1038/ijo.2013.197

(31) PETERSEN J, BRAUN H, ZINNER C, KOEHLER K. Exercise Preserves fat-free mass, submaximal performance, and well-being during short-term energy deficiency: 3686 Board #125 June 4, 930 AM - 1100 AM. Med Sci Sports Exerc. 2016; 48: 1027.

(32) REDMAN LM, PHYSICAL ACTIVITY AND ITS EFFECTS ON REPRODUCTION. Reprod Bio Med Online. 2006; 12: 579-586. doi:10.1016/j.rbmo.2006.06.001

(33) RODRIGUEZ NR, DE MARCO NM, LANGLY S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009; 41: 709-731.

(34) SCHULZ LD, ALGER S, HARPER J, WILMORE JH, RAVUSSIN E. Energy expenditure of elite female runners measured by respiratory chamber and doubly labeled water. J Appl Physiol (1985). 1992; 72: 23-28.

(35) SHAPSES SA, SOKUMAR D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012; 32: 287-309. doi:10.1146/annurev.nutr.012809.104655

(36) SJODIN AM, ANDERSSON AB, HOGBERG JM, WESTERTERP KR. Energy balance in cross-country skiers: a study using doubly labeled water. Med Sci Sports Exerc. 1994; 26: 720-724. doi:10.1249/00005768-19940600-00011

(37) SPENST LF, MARTIN AD, DRINKWATER DT. Muscle mass of competitive male athletes. J Sports Sci. 1995; 11: 3-8. doi:10.1080/02640419308729956

(38) SPERLICH B, BECKER M, HOTHO A, WALLMANN-SPERLICH B, SAREBAN M, WINKERT K, STEINACKER JM, TREFF G. Sedentary Behavior among National Elite Rowers during Off-Training-A Pilot Study. Front Physiol. 2017; 8: 655. doi:10.3389/fphys.2017.00655

(39) TENFORDE AS, KRAUS E, FREDERICSON M. Bone Stress Injuries in Runners. Phys Med Rehabil Clin N Am. 2014; 25: 95-110. doi:10.1016/j.pmrj.2015.08.008

(40) THOMAS DT, ERDMAN KA, BURKE LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. 2016; 116: 501-528. doi:10.1016/j.jand.2015.12.006

(41) TRAPPE TA, GASTALDELLI A, JOSZI AC, TROUP IP, WOLFE RR. Energy expenditure of swimmers during high volume training. Med Sci Sports Exerc. 1997; 29: 950-954. doi:10.1097/00005768-199707000-00015

(42) VANHEEST JL, RODGERS CD, MAHONEY CE, DE SOUZA MJ. Ovarian Suppression Impairs Sport Performance in Junior Elite Female Swimmers. Med Sci Sports Exerc. 2014; 46: 156-166. doi:10.1249/ MSS.0b013e3182a32b72

(43) WESTERTERP KR. Limits to sustainable human metabolic rate. J Exp Biol. 2001; 204: 3183-3187.

(44) WESTERTERP KR, SARS WH, VAN ES M, TEN HOOR F. Use of the doubly labeled water technique in humans during heavy sustained exercise. J Appl Physiol (1985). 1986; 61: 2162-2167.

(45) WOODS AL, GARVICAN-LEWIS LA, LUNDY B, RICE AJ, THOMPSON KG. New approaches to determine fatigue in elite athletes during intensified training: Resting metabolic rate and pacing profile. PLoS One. 2017; 12: e0173807. doi:10.1371/journal.pone.0173807