Comparison of 16S Ribosomal RNA Targeted Sequencing and Culture for Bacterial Identification in Normally Sterile Body Fluid Samples: Report of a 10-Year Clinical Laboratory Review

In Young Yoo, M.D.1, On-Kyun Kang, M.T.1, Myoung-Keun Lee, M.T.1, Yae-Jean Kim, M.D.2, Sun Young Cho, M.D.3,4, Kyungmin Huh, M.D.3, Cheol-In Kang, M.D.3, Doo Ryeon Chung, M.D.3,4, Kyong Ran Peck, M.D.3, Hee Jae Huh, M.D.1, and Nam Yong Lee, M.D.1

1Department of Laboratory Medicine and Genetics, 2Division of Infectious Diseases, Department of Pediatrics, 3Division of Infectious Diseases, Department of Medicine, 4Center for Infection Prevention and Control, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

As 16S ribosomal RNA (rRNA)-targeted sequencing can detect DNA from non-viable bacteria, it can be used to identify pathogens from clinical samples even in patients pretreated with antibiotics. We compared the results of 16S rRNA-targeted sequencing and culture for identifying bacterial species in normally sterile body fluid (NSBF): cerebrospinal, pericardial, peritoneal and pleural fluids. Over a 10-year period, a total of 312 NSBF samples were evaluated simultaneously using 16S rRNA-targeted sequencing and culture. Results were concordant in 287/312 (92.0%) samples, including 277 (88.8%) negative and 10 (3.2%) positive samples. Of the 16 sequencing-positive, culture-negative samples, eight showed clinically relevant isolates that included Fusobacterium nucleatum subsp. nucleatum, Streptococcus pneumoniae, and Staphylococcus spp. All these samples were obtained from the patients pretreated with antibiotics. The diagnostic yield of 16S rRNA-targeted sequencing combined with culture was 11.2%, while that of culture alone was 6.1%. 16S rRNA-targeted sequencing in conjunction with culture could be useful for identifying bacteria in NSBF samples, especially when patients have been pretreated with antibiotics and when anaerobic infection is suspected.

Key Words: 16S ribosomal RNA, Sequencing, Culture, Diagnostic yield, Normally sterile body fluid

The identification of pathogens by culture of normally sterile body fluid (NSBF) is crucial for accurate diagnosis of invasive infections, including meningitis, pericarditis, peritonitis, and empyema [1]. However, culture frequently fails to detect clinically important pathogens owing to stringent growth requirements or prior empirical antibiotic treatment [2]. In recent years, broad-
Targeted sequencing vs culture in body fluids

Yoo IY, et al.

The 16S rRNA sequences were compared with those of reference strains in the NCBI GenBank database and the EzTaxon database (http://www.eztaxon.org/). Sequencing results were interpreted in accordance with the Clinical and Laboratory Standards Institute (CLSI) MM18-A guidelines [6]. The 16S rRNA-targeted sequencing and culture results were compared, and the concordance rate was determined. Clinically relevant isolates were defined as bacteria identified by either 16S rRNA-targeted sequencing or culture when the patient with identified bacteria exhibited clinical manifestations, laboratory findings and/or radiological evidence of infection, and clinical improvement in response to antibiotic treatment [9, 10]. Clinically relevant isolates were categorized by two doctors based on the clinical information of each patient.

Of the 312 samples, 26 (8.3%) and 19 (6.1%) were positive for bacteria identification by 16S rRNA-targeted sequencing and culture, respectively; 10 (3.2%) were positive by both methods, 16 (5.1%) were positive by 16S rRNA targeted sequencing only, nine (2.9%) were positive by culture only, and the remaining 277 (88.8%) were negative for bacteria identification by both methods. The concordance rate between methods was 92.0% (287/312). Of the 25 discordant samples, nine sequencing-negative, culture-positive samples showed three coagulase-negative staphylococcal, two streptococcal, one Enterococcus faecium, and three Enterobacteriaceae isolates (Fig. 1). Of these, six were clinically relevant isolates (see Supplemental Data Table S1). Of the 16 sequencing-positive, culture-negative samples, eight showed clinically relevant isolates (Fig. 1). All these samples were obtained from the patients pretreated with empirical antibiotics.
Fig. 1. Direct 16S ribosomal RNA sequencing versus culture for identifying bacteria in normally sterile body fluid samples (N=312). Clinically relevant isolates are indicated in bold.

Table 1. Clinically relevant isolates identified by only 16S ribosomal RNA-targeted sequencing in NSBF samples (N=8)

Sample	Bacteria identified by 16S ribosomal RNA gene PCR	% Identity	Antibiotic treatment prior to sampling	Treatment change after reporting	Final diagnosis
Cerebrospinal fluid	*Campylobacter showae*	569/569 (100%)	Ceftriaxone+Vancomycin	Ceftriaxone	Intraventricular abscess
	Fusobacterium nucleatum subsp. nucleatum	678/678 (100%)	Ampicillin+Ceftriaxone+Vancomycin	Ampicillin+Ceftriaxone	Meningitis
	Fusobacterium nucleatum subsp. nucleatum	445/445 (100%)	Cefepime+Vancomycin	Cefepime	Brain abscess with meningocerephalitis
	Streptococcus pneumoniae	724/728 (99.5%)	Ampicillin+Cefepime+Vancomycin	Ceftriaxone+Vancomycin	Pneumococcal meningocerephalitis
	Streptococcus pneumoniae	704/704 (100%)	Ceftriaxone+Vancomycin	Ampicillin+Ceftriaxone	Bacterial meningocerephalopathy
Pericardial fluid	*Staphylococcus species*	728/730 (99.7%)	Ceftriaxone+ Gentamicin+Rifampin+Vancomycin	Gentamicin+Nafcillin+Rifampin	Pericarditis
Pleural fluid	*Sphingomonas melonis*	584/584 (100%)	Meropenem+Azithromycin	Meropenem+TMP/SMX	Bronchopneumonia with pleural effusion
	Staphylococcus species	472/489 (97.5%)	Azithromycin+Cefotaxime	TMP/SMX	Pleural effusion

Abbreviations: NSBF, normally sterile body fluid; TMP/SMX, trimethoprim/sulfamethoxazole.
The distribution of clinical samples and identified species from the 35 samples positive by either 16S rRNA-targeted sequencing or culture or both is shown in Fig. 1. Most bacterial species were identified in CSF (N=18), of which S. pneumoniae was the clinically relevant species most frequently detected (N=4) by 16S rRNA-targeted sequencing. The second highest number of bacterial species were identified in pleural fluid (N=13); F. nucleatum subsp. vincentii was detected in these samples by both 16S rRNA-targeted sequencing and culture. All species isolated from pericardial (N=1) and peritoneal fluid samples (N=3) were clinically relevant.

Diagnostic yield increased from 6.1% (19/312) with culture to 11.2% (35/312) with the addition of 16S rRNA-targeted sequencing. Direct amplification and sequencing in clinical samples are especially useful for patients pretreated with antibiotics [11]. Consistent with this observation, all sequencing-positive, culture-negative samples were obtained from the patients with prior antibiotic treatment. Specifically, two of the four S. pneumoniae isolates (the most common bacterial meningitis pathogen [12]) were detected only by 16S rRNA-targeted sequencing. A retrospective review of the effects of parenteral antibiotic pretreatment in suspected S. pneumoniae meningitis suggested that CSF sterilization occurs only four hours after initiation of parenteral antibiotics [13]. Therefore, identifying pathogen DNA by 16S rRNA-targeted sequencing could be advantageous, especially in CSF samples when antibiotic pretreatment could affect CSF culture yield.

In this study, F. nucleatum subsp. nucleatum and C. showae were identified in CSF samples using 16S rRNA-targeted sequencing, but not using culture, because we do not routinely perform anaerobic culturing with CSF. F. nucleatum subsp. nucleatum causing several systemic infections and C. showae with unknown significance of pathogenicity are rarely isolated anaerobic gram-negative rods that are primarily involved in periodontal diseases [14, 15]. Similar to a previous study, we found that 16S rRNA-targeted sequencing is particularly valuable for identifying anaerobic pathogens that are difficult to culture [16].

For sequencing-positive, culture-negative samples, we also considered the possibility of false-positive 16S rRNA-targeted sequencing results due to contamination in the DNA extraction kit, PCR reagents, or samples [17]. Based on a thorough review of the 16 sequencing-positive, culture-negative samples, eight were inconsistent with the clinical context, suggesting contamination. Of these, Ralstonia picketti is a common contaminant in DNA extraction kits [18], and it was isolated from the pleural fluid of a patient with invasive pulmonary aspergillosis. The false-positive results can be derived from contaminants or nonviable bacteria and seem to be an inherent feature of PCR. Therefore, clinical correlation would be needed when a false-positive result is suspected.

Out of the nine sequencing-negative, culture-positive samples, six clinically relevant isolates were recovered from patients with bacterial meningitis, liver abscess, or pneumonia with combined empyema. Of these, two isolates, Klebsiella pneumoniae and S. constellatus, were recovered from a blood culture bottle, and one E. faecium isolate was recovered from an enrichment culture with thioglycolate broth. The false-negative sequencing results could be due to low microbial concentration and/or presence of PCR inhibitory substances in the samples subjected to 16S rRNA-targeted sequencing. Inhibitory substances may be present in the original sample and also may be unintentionally added as a result of the sample processing and DNA extraction from reagent [19].

This study has several potential limitations. First, the positive rates for culture were relatively low compared with those in a previous report, in which culture recovered 78.8% and 84.6% of significant isolates from peritoneal and pleural fluids [20]. The positive rates from culture in our study were 5.2% (8/154), 12.5% (3/24), and 7.6% (8/105) for CSF, peritoneal fluid, and pleural fluid samples, respectively. The main reason for low positive rates is that we included not only samples from the initial work-up but also follow-up samples obtained during empirical antibiotic treatment. In addition, many samples were collected from patients with a low probability of infection. Second, owing to the retrospective design of this study, we determined the clinical relevance of the isolates based solely on recorded, clinically important characteristics.

Despite these limitations, to our knowledge, this is the largest-scale single center study that summarizes the results of 16S rRNA-targeted sequencing in NSBF samples. We demonstrated that 16S rRNA-targeted sequencing in conjunction with culture can be useful for identifying the etiological agent in NSBF samples, especially when patients have been pretreated with antibiotics and when anaerobic infection is suspected.

Author Contributions

All authors have accepted their responsibility for the entire content of this manuscript and approved submission.
Conflicts of Interest

None declared.

Research Funding

None declared.

ORCID

In Young Yoo https://orcid.org/0000-0003-1505-846X
On-Kyun Kang https://orcid.org/0000-0002-1031-1991
Myoung-Keun Lee https://orcid.org/0000-0003-3977-8031
Yae-Jeon Kim https://orcid.org/0000-0002-8367-3424
Sun Young Cho https://orcid.org/0000-0001-9302-7149
Kyungmin Huh https://orcid.org/0000-0002-1741-4459
Cheol-In Kang https://orcid.org/0000-0001-8999-7561
Doo Ryeon Chung https://orcid.org/0000-0001-9627-101X
Kyong Ran Peck https://orcid.org/0000-0002-7464-9780
Hee Jae Huh https://orcid.org/0000-0001-8999-7561
Nam Yong Lee https://orcid.org/0000-0003-3688-0145

REFERENCES

1. Altun O, Almuhayawi M, Ullberg M, Özenci V. Rapid identification of microorganisms from sterile body fluids by use of FilmArray. J Clin Microbiol 2015;53:710-2.
2. Grif K, Heller I, Prodinger WM, Lechleitner K, Lass-Flörl C, Orth D. Improvement of detection of bacterial pathogens in normally sterile body sites with a focus on orthopedic samples by use of a commercial 16S rRNA broad-range PCR and sequence analysis. J Clin Microbiol 2012;50:2250-4.
3. Rampini SK, Bloemberg GV, Keller PM, Büchler AC, Dollenmaier G, Speck RF, et al. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin Infect Dis 2011;53:1245-51.
4. Sontakke S, Cadenas MB, Maggi RG, Diniz PP, Breitschwerdt EB. Use of broad range 16S rDNA PCR in clinical microbiology. J Microbiol Methods 2009;76:217-25.
5. Leber AL, ed. Clinical microbiology procedures handbook. 4th ed. Washington, DC: ASM Press, 2016;3:5-3.7.
6. CLSI. Interpretive criteria for identification of bacteria and fungi by targeted DNA sequencing, 2nd ed. CLSI MM18. Wayne, PA: Clinical and Laboratory Standards Institute. 2018.
7. Li X, Xing J, Li B, Wang P, Liu J. Use of tuf as a target for sequence-based identification of Gram-positive cocci of the genus Enterococcus, Streptococcus, coagulase-negative Staphylococcus, and Lactococcus. Ann Clin Microbiol Antimicrob 2012;11:31.
8. Dauga C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 2002;52:531-47.
9. Basein T, Gardiner BJ, Andujar Vazquez GM, Joel Chandranesan AS, Rabson AR, Doron S, et al. Microbial identification using DNA target amplification and sequencing: clinical utility and impact on patient management. Open Forum Infect Dis 2018;5:ofo257.
10. Varani S, Stanzani M, Paolucci M, Melchionda F, Castellani G, Nardi L, et al. Diagnosis of bloodstream infections in immunocompromised patients by real-time PCR. J Infect 2009;58:346-51.
11. Welinder-Olsson C, Dotevall L, Hogevik H, Jungnelius R, Trollfors B, Wahl M, et al. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin Microbiol Infect 2007;13:879-86.
12. Fiore AE, Moroney JF, Farley MM, Harrison LH, Patterson JE, Jorgensen JH, et al. Clinical outcomes of meningitis caused by Streptococcus pneumoniae in the era of antibiotic resistance. Clin Infect Dis 2009;50:71-7.
13. Kanegaye JT, Soleimanzadeh P, Bradley JS. Lumbar puncture in pediatric bacterial meningitis: defining the time interval for recovery of cerebrospinal fluid pathogens after parenteral antibiotic pretreatment. Pediatrics 2001;108:1169-74.
14. Yang CC, Ye JJ, Hsu PC, Chang CJ, Cheng CW, Leu HS, et al. Characteristics and outcomes of Fusobacterium nucleatum bacteremia-a 6-year experience at a tertiary care hospital in northern Taiwan. Diagn Microbiol Infect Dis 2011;70:167-74.
15. de Vries JJ, Arens NL, Manson WL. Campylobacter species isolated from extra-oro-intestinal abscesses: a report of four cases and literature review. Eur J Clin Microbiol Infect Dis 2008;27:1119-23.
16. Jenkins C, Ling CL, Cesieczuk HL, Lockwood J, Hopkins S, McHugh TD, et al. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J Med Microbiol 2012;61:483-8.
17. Velásquez-Mejía EP, de la Cuesta-Zuluaga J, Escobar JS. Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. Appl Microbiol Biotechnol 2018;102:67-77.
18. Yang CC, Ye JJ, Hsu PC, Chang CJ, Cheng CW, Leu HS, et al. Characteristics and outcomes of Fusobacterium nucleatum bacteremia-a 6-year experience at a tertiary care hospital in northern Taiwan. Diagn Microbiol Infect Dis 2011;70:167-74.
19. de Vries JJ, Arens NL, Manson WL. Campylobacter species isolated from extra-oro-intestinal abscesses: a report of four cases and literature review. Eur J Clin Microbiol Infect Dis 2008;27:1119-23.
20. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014;12:87.
21. Colbert CP and Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 1999;2:299-305.
22. Bourbeau P, Riley J, Heiter BJ, Master R, Young C, Pierson C. Use of the BacT/Alert blood culture system for culture of sterile body fluids other than blood. Clin J Clin Microbiol 1998;36:3273-7.
Supplemental Data Table S1. Clinically relevant isolates identified only by culture in normally sterile body fluid samples (N=6)

Body fluid	Gram staining result	Bacteria identified by culture	Antibiotic treatment prior to sampling	Treatment change after reporting	Final diagnosis
Cerebrospinal fluid	No microorganisms observed	Klebsiella aerogenes	Ceftazidime+Vancomycin	Meropenem	Bacterial meningitis
		Enterococcus faecium	Meropenem+Vancomycin	Vancomycin	Bacterial meningitis
	Gram-negative bacilli	Escherichia coli	Meropenem	Meropenem	Relapsed meningitis with E. coli
Pleural fluid	Gram-positive cocci	Streptococcus constellatus*	Cefotaxime+Vancomycin	Ampicillin/sulbactam	Pneumonia with combined empyema

*These were obtained from a blood culture bottle.