cAMP Has Distinct Acute and Chronic Effects on Aquaporin-5 in Lung Epithelial Cells*

Received for publication, September 24, 2004, and in revised form, November 5, 2004
Published, JBC Papers in Press, November 9, 2004, DOI 10.1074/jbc.M411038200

Venkataramana Sidhaye‡, Jason D. Hoffert§, and Landon S. King¶¶

From the ‡Department of Medicine, Division of Pulmonary and Critical Care Medicine, and the §Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224 and the ¶¶Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892

Aquaporin-5 (AQP5) is present on the apical membrane of epithelial cells in various secretory glands as well as on the apical membrane of the airway epithelium, airway submucosal glands, and type I pneumocytes, where it can participate in respiratory tract water homeostasis. We examined the effects of cAMP on AQP5 distribution and abundance. When AQP5-expressing mouse lung epithelial cells were treated with cAMP or the β-adrenergic agonist terbutaline, a biphasic AQP5 response was observed. Short term (minutes) exposure to cAMP produced internalization of AQP5 off of the membrane and a decrease in protein abundance. Both of these responses were blocked by inhibition of protein kinase A and the decrease in abundance was blocked by chloroquine, indicating lysosome-mediated degradation. Sustained cAMP exposure (hours) produced an increase in membrane localization and increased abundance; these effects were also blocked by protein kinase A inhibition. The β-adrenergic agonist terbutaline produced changes in AQP5 abundance in mouse trachea and lung, consistent with our findings in cultured epithelial cells. Purified AQP5 protein was phosphorylated by protein kinase A but not protein kinase C or casein kinase II, and aquaporin-5 was phosphorylated in cultured cells after long term (but not short term) exposure to cAMP. These studies indicate that cAMP and β-adrenergic agonists produce distinct short and long term effects on AQP5 distribution and abundance that may contribute to regulation of lung water homeostasis.

Aquaporins are water-specific membrane channel proteins that participate in a wide array of physiologic processes (1). The presence or absence of an aquaporin is the primary determinant of membrane osmotic water permeability. Aquaporin-5 (AQP5)\(^1\) is an apical membrane water channel found at several sites in mammals, including corneal and pancreatic epithelium, seroey cells in salivary and lacrimal glands, and airway submucosal glands, bronchial epithelium, and type I pneumocytes of the respiratory tract (2–5). Studies of isolated salivary gland epithelial cells (6, 7) and type I pneumocytes (8) demonstrate that AQP5 expression confers high level membrane water permeability. An in vivo role for AQP5 in water homeostasis is strongly indicated by studies of AQP5-null mice, which have reduced salivary (6, 7), sweat (9), and airway submucosal gland secretions (10) as well as by recent investigation of persons with Sjögren’s syndrome, in whom disrupted AQP5 membrane targeting probably contributes to the clinical hallmarks of dry eyes and dry mouth (11, 12).

Information regarding the regulation of abundance and distribution of AQP5 is relatively limited. Stimuli such as tumor necrosis factor-α (13) and adenoviral infection (14) have been shown to reduce AQP5 expression, whereas hypertonic stress increases AQP5 in cultured lung epithelial cells as well as in lungs and secretory glands of hyperosmolar rats (15). Pilocarpine-stimulated recruitment of AQP5 to the plasma membrane of salivary gland epithelial cells has been proposed (16); however, no redistribution has been observed by direct visualization (17), and little is known about regulation of AQP5 membrane targeting.

The aquaporin to which AQP5 is most closely related genetically is AQP2, located in the collecting duct of the kidney (1). In response to cAMP, either directly or downstream of vasopressin receptor activation, AQP2 is rapidly translocated from an intracellular vesicular pool to the apical plasma membrane, and AQP2 expression is increased (18). Several lines of evidence implicate cAMP in the regulation of physiologic processes in the lung. In the alveolus, β-adrenergic agonists increase intracellular cAMP and accelerate alveolar fluid reabsorption, an effect believed to be mediated principally by increased sodium transport (19). In the airways, the effects of β-adrenergic agonists and cAMP on smooth muscle relaxation and on the inflammatory mediators in mucosal secretions in asthmatics are well described (20). cAMP-mediated effects on ciliary beat frequency (21–23) and cystic fibrosis transmembrane conductance regulator activation (24) contribute to regulation of mucociliary transport and the aqueous surface layer, and in animal models prolonged increases in intracellular cAMP increase airway secretions (25). However, little is known about the overall effect of cAMP on transport proteins that may contribute to generation or modulation of the airway surface layer (20).

Yang and colleagues (26) observed cAMP induction of AQP5 mRNA and protein expression in cultured lung epithelial cells after several hours of exposure. We examined the effects of cAMP on AQP5 regulation in a similar manner, but we observed a more complex response. In this study, we described biphasic effects of cAMP and β-adrenergic agonists on AQP5 protein trafficking and abundance. Short term exposure to cAMP produces internalization of AQP5 off of the plasma membrane and lysosomal degradation of the protein, whereas sus-

* This work was supported by NHLBI, National Institutes of Health Grants F32-HL074515 (National Research Service Award) (to V. S.) and R01-HL70217 and by American Heart Association Grant-in-aid AHA-0255234N (to L. S. K.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Johns Hopkins Asthma and Allergy Center 4B-64, 5501 Hopkins Bayview Circle, Baltimore, MD 21224. Tel.: 410-550-1224; Fax: 410-550-2612; E-mail: lsking@jhmi.edu.

\(^{1}\) The abbreviations used are: AQP, aquaporin; pCPT-cAMP, 8-(4-chlorophenylthio)adenosine 3’,5’-cyclic monophosphate; PKA, protein kinase A; PKC, protein kinase C; CKII, casein kinase II; MOPS, 3-(N-morpholino)propanesulfonic acid.
cAMP Regulation of AQP5

3591

tained exposure to cAMP results in AQP5 induction and membrane targeting. These findings indicate that dynamic regulation of AQP5 distribution and abundance by cAMP may contribute to water homeostasis in both the proximal and distal respiratory tracts.

EXPERIMENTAL PROCEDURES

Materials—Electrophoresis reagents were from Bio-Rad. Reagents for enhanced chemiluminescence (ECL+) were from Amersham Biosciences. Bicinchoninic acid (BCA) protein assay kit was from Pierce. Affinity-purified polyclonal antibodies to the carboxyl terminus of rat AQP5 have been described previously (27). Antibodies to the Na,K-ATPase a1 subunit were from Upstate Biotechnology (Lake Placid, NY). Horseradish peroxidase-coupled secondary antibodies specific for rabbit or mouse immunoglobulins were from Amersham Biosciences. MG132 and lactacystin were purchased from Calbiochem-Novabiochem. pCPT-cAMP, chloroquine and H89 were purchased from Sigma.

RESULTS

AQP5 have been described previously (27). Antibodies to the Na,K-ATPase a1 subunit were from Upstate Biotechnology (Lake Placid, NY). Horseradish peroxidase-coupled secondary antibodies specific for rabbit or mouse immunoglobulins were from Amersham Biosciences. MG132 and lactacystin were purchased from Calbiochem-Novabiochem. pCPT-cAMP, chloroquine and H89 were purchased from Sigma.

Expression and Purification of AQP5—Human AQP5 was purified from protease-deficient (pexylΔ) Saccharomyces cerevisiae expressing pYES2 (Invitrogen) containing human AQP5 in the multicloning site. Membranes were solubilized in 200 ml of buffer A (100 mM K₂HPO₄, 10% glycerol, 200 mM NaCl, 100 pl V-seryl-glutamine, 10 mM HEPES, pH 7.2, 50 units/ml penicillin, 0.1 mg/ml streptomycin, 3% (w/v) 2 M-l-glutamine, 30 min or 8 h), in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.

Animal Protocols—Animal studies were undertaken with protocols approved by the Johns Hopkins School of Medicine Animal Care and Use Committee. Mice (20–30 gm) were given subcutaneous injections of either sterile water (control) or terbutaline (7 or 10 mg/kg). All mice were allowed free access to water and food. Animals were sacrificed by cervical dislocation, and right ventricles were perfused with chilled phosphate buffered saline until free-blued. Tissues and 30 min or 8 h, in the presence of orthovanadate, in serum-free media using standard conditions (30). Cells were harvested at stated time, and AQP5 was immunoprecipitated as described previously (31). Anti-AQP5 immunoprecipitations were resolved by SDS-PAGE for visualization with autoradiography. Cells were tested in basal conditions and after incubation with pCPT-cAMP (100 μM) to test for inducible phosphorylation.
AQP5 membrane labeling after long term stimulation. Short term cAMP stimulation and also seemed to limit the increase in fluorescence revealed that H89 blocked internalization of AQP5 after specific binding. MLE-12 cells were pre-incubated with the PKA inhibitor H89 (30 μM) for 30 min, then fixed and permeabilized for labeling with antibodies to the α1 subunit of the Na,K-ATPase. Immunofluorescence was performed using confocal microscopy and the images of xy (top) and xz (bottom) planes are displayed. B, MLE-12 cells were incubated in control media or with terbutaline (100 μM) for 2 min or 8 h. Anti-AQP5 immunofluorescence was confirmed using surface biotinylation. The cAMP-mediated redistribution of AQP5 observed with immunofluorescence was confirmed using surface biotinylation. Consistent with the results of immunofluorescence, the amount of AQP5 available at the plasma membrane for binding to biotin was greatly reduced after 30 min of stimulation with pCPT-cAMP (Fig. 3). After 8 h of cAMP exposure, biotinylated AQP5 was increased, indicating an increase in AQP5 at the plasma membrane. PKA inhibition with H89 blocked both the short and long term effects of cAMP on AQP5 distribution (Fig. 3).

Incubation of cells with the PKA inhibitor H89 blocked the internalization of AQP5 off of the plasma membrane after short term exposure to cAMP (Fig. 1C). In addition, H89 also blocked the apparent increase in plasma membrane AQP5 after stimulation with cAMP for 8 h, suggesting that PKA activation is required for both components of this biphasic response (Fig. 3). The cAMP-mediated redistribution of AQP5 observed with immunofluorescence was confirmed using surface biotinylation. Consistent with the results of immunofluorescence, the amount of AQP5 available at the plasma membrane for binding to biotin was greatly reduced after 30 min of stimulation with pCPT-cAMP (Fig. 3). After 8 h of cAMP exposure, biotinylated AQP5 was increased, indicating an increase in AQP5 at the plasma membrane. PKA inhibition with H89 blocked both the short and long term effects of cAMP on AQP5 distribution (Fig. 3).

To determine whether cAMP-mediated AQP5 redistribution in mouse lung epithelial cells was conserved in human cells, we transfected Beas-2B cells, a commonly used human lung epithelial cell line, with human AQP5. These cells have no detectable AQP5 protein. After transfection, unstimulated Beas-2B cells exhibit apical AQP5 (Fig. 4). After stimulation with cAMP...
levels at 24 h (Fig. 5A), increase in protein abundance, which had returned to baseline was observed after incubation of cells with terbutaline (Fig. 5B). A similar pattern of early reduction followed by a later increase in AQP5 (Fig. 5B) produced an overall increase in AQP5 abundance at later times (Fig. 6). In contrast, although it was internalized by PKA, AQP5 permeability was not statistically different. A single injection of terbutaline (7 mg/kg) produced a decrease in AQP5 abundance in the trachea within 1 h that was sustained at 3 h (Fig. 9A and B). Eight hours after terbutaline injection, there was a non-significant trend toward increased AQP5 expression in the trachea. 7 mg/kg of terbutaline did not alter AQP5 abundance in the peripheral lung (Fig. 8C); however, a single injection of 10 mg/kg produced a 40% reduction in AQP5 in peripheral lung after 30 min, followed by a trend toward an increase in AQP5 at 24 h, consistent with potential regulation of AQP5 by β-adrenergic receptor activation in vivo.

Fig. 5. Effects of cAMP stimulation on AQP5 abundance. MLE-12 cells were incubated with control media, pCPT-cAMP (100 μM) (A), or terbutaline (100 μM) (B) and harvested at the specified times. Immunoblots of cell lysates were probed with anti-AQP5 antibodies. cAMP and terbutaline had biphasic effects on AQP5 abundance in cell lysates.

Fig. 6. cAMP-induced AQP5 degradation occurs in lysosomes. MLE-12 cells were incubated in control or pCPT-cAMP-supplemented media (100 μM) in the presence of absence of the lysosome inhibitor chloroquine (100 μM), and harvested at the designated times for anti-AQP5 immunoblots of cell lysates. Chloroquine blocked the short term cAMP-induced reduction in AQP5 abundance.

Fig. 7. PKA inhibition blocks cAMP-induced changes in AQP5 abundance. Cells were incubated with control media or media containing pCPT-cAMP (100 μM) in the presence or absence of H89 (30 μM), and harvested after 30 min or 8 h. Immunoblots of cell lysates were examined for AQP5 abundance. PKA inhibition blocked both the short term decrease and long term increase in AQP5 abundance.

For 30 min, confocal microscopy revealed that AQP5 had been internalized off the plasma membrane. This effect was blocked by pretreatment with H89.

cAMP Regulates AQP5 Protein Abundance in Lung Epithelial Cells—To examine the effects of cAMP on AQP5 protein abundance, MLE-12 cells were stimulated with pCPT-cAMP (100 μM), and cell lysates were probed for AQP5. Similar to its effects on distribution, cAMP stimulation produced biphasic effects on AQP5 protein abundance. Short term exposure to cAMP (30 min) produced a short term decrease in AQP5 protein abundance (Fig. 5A). Exposure to cAMP for 8 h led to a marked increase in protein abundance, which had returned to baseline levels at 24 h (Fig. 5A). In contrast, although it was internalized in response to cAMP (Fig. 2), Na,K-ATPase (α subunit) abundance was not affected by cAMP stimulation (Fig. 5A). A similar pattern of early reduction followed by a later increase in AQP5 was observed after incubation of cells with terbutaline (Fig. 5B).

The decrease in AQP5 abundance after short term cAMP stimulation indicated that active protein degradation was probably occurring. We observed previously that a different water channel protein, AQP1, is degraded in proteasomes (31). In contrast to our findings for AQP1, pretreatment of MLE-12 cells with proteasome inhibitors (MG132 or lactacystin) did not block short term AQP5 degradation (data not shown). However, pretreatment with the lysosome inhibitor chloroquine blocked the cAMP-induced decrease in AQP5 protein abundance and produced an overall increase in AQP5 abundance at later times (Fig. 6). In addition, pretreatment of the cells with H89 inhibited both the short term decrease and long term increase in AQP5 protein abundance (Fig. 7), indicating that both responses are PKA-mediated.

Terbutaline Regulates AQP5 Abundance in Vivo—To determine whether terbutaline might alter AQP5 abundance in vivo, mice were injected subcutaneously with sterile water or terbutaline, followed by harvest of the trachea and lungs at intervals. A single injection of terbutaline (7 mg/kg) produced a decrease in AQP5 abundance in the trachea within 1 h that was sustained at 3 h (Fig. 9A and B). Eight hours after terbutaline injection, there was a non-significant trend toward increased AQP5 expression in the trachea. 7 mg/kg of terbutaline did not alter AQP5 abundance in the peripheral lung (Fig. 8C); however, a single injection of 10 mg/kg produced a 40% reduction in AQP5 in peripheral lung after 30 min, followed by a trend toward an increase in AQP5 at 24 h, consistent with potential regulation of AQP5 by β-adrenergic receptor activation in vivo.

AQP5 Can Be Phosphorylated by PKA—Our observations indicate cAMP- and PKA-mediated changes in AQP5 trafficking and abundance; however, phosphorylation of AQP5 has never been demonstrated. To assess this possibility, human AQP5 was over-expressed in yeast, purified (Fig. 9A), and reconstituted into proteoliposomes. Analysis of the AQP5 primary sequence (ScanSite 2.0) revealed putative phosphorylation consensus sites for PKA, PKC, and CKII that are accessible on the cytoplasmic face. When proteoliposomes containing human AQP5 were incubated with each of these enzymes, PKA produced phosphorylation of AQP5, whereas PKC and CKII had no effect (Fig. 9B). The phosphorylated AQP5 monomer (~27 kDa) appeared as a doublet (confirmed by repeated studies); however, the reason for the doublet is not yet known, although a similar pattern is occasionally observed on standard protein immunoblots (see Fig. 5A). To determine whether phosphorylation altered the water permeability of AQP5, permeability of non-phosphorylated and phosphorylated human AQP5 were compared using stopped flow (Fig. 9C). As expected, purified AQP5 was highly water permeable. After phosphorylation by PKA, AQP5 permeability was not statistically different. Although purified AQP5 can be phosphorylated, it remained un-
AQP2-containing vesicles are translocated to the apical plasma membrane, and the collecting duct becomes highly water permeable (34–36). In parallel, vasopressin and elevated cAMP stimulates transcriptional activation of the AQP2 gene and increased abundance of the protein (37, 38).

Within the aquaporin family, AQP5 is most similar genetically to AQP2. Perhaps as expected by extrapolations from AQP2, and consistent with the findings of Yang and colleagues (26), we observed that exposure of lung epithelial cells for several hours to cAMP, the β2-adrenergic agonist terbutaline (which binds its receptor and increases intracellular cAMP), or forskolin (which activates adenylate cyclase directly to increase cAMP) led to increased AQP5 labeling on the apical membrane and increased AQP5 protein abundance. Both of these effects were blocked by inhibition of PKA activation.

In marked contrast, our observations of distinct short term effects of cAMP on AQP5 were completely unexpected and have not been described. Immunofluorescence revealed that within minutes of addition of cAMP, terbutaline, or forskolin to MLE-12 cells, AQP5 was internalized from the plasma membrane, a result confirmed by examination of changes in surface biotinylation of AQP5 after cAMP treatment. When AQP5 was transfected into a commonly used human lung airway epithelial cell line (Beas-2B), we observed similar apical membrane labeling at baseline, with rapid internalization of AQP5 in response to cAMP. This finding indicates not only that internalization of AQP5 acutely in response to cAMP is conserved in both mouse and human cells but also that it is present in alveolar (MLE-12) and airway (Beas-2B) type cells. In the study by Yang and colleagues (26), AQP5 was predominantly intracellular at baseline, and after 24 h of cAMP stimulation, membrane labeling was observed. The reason for the discrepancy with our findings is not apparent. Both our group and theirs used MLE-12 cells from the same source and grown under the same conditions. We uniformly observe predominantly membrane labeling of AQP5 at baseline, consistent with in vivo observations in rat (3) and human lung (4).

In addition to altering protein distribution, cAMP markedly decreased AQP5 abundance within 30 min of exposure. Both the redistribution and degradation of AQP5 were blocked by PKA inhibition. The reduction in AQP5 was also blocked by chloroquine, indicating that after internalization, AQP5 is targeted to lysosomes for degradation. We were unable to detect AQP5 in the culture medium after cAMP stimulation by either immunoprecipitation of AQP5 or trichloroacetic acid precipitation of the medium; however, we cannot completely eliminate the possibility that some fraction of the apical AQP5 is released into the medium rather than being internalized, as has been shown for AQP2 after relief from vasopressin stimulation (3). It is noteworthy that we also observed short term reductions in AQP5 abundance in mouse trachea and peripheral lung after subcutaneous administration of terbutaline, followed over several hours by an increase in AQP5, indicating that this pattern of cAMP-mediated regulation of AQP5 expression is not an isolated in vitro phenomenon.

We examined cAMP effects on the α-subunit of the Na,K-ATPase simply as a control. Like AQP5, the α-subunit was rapidly internalized from the basolateral membrane in MLE cells in response to cAMP; however, in contrast to AQP5, the protein was not degraded. Endocytosis of the Na,K-ATPase α-subunit as a means of regulating its activity has been reported; however, PCK-mediated phosphorylation seems to be required (39, 40). Inhibition of Na,K-ATPase activity by PKA has been described previously (41, 42); however, no effect on distribution was included. The effects of PKA on the Na,K-ATPase α-subunit may be cell type-specific, and interactions

FIG. 8. Terbutaline alters AQP5 abundance in mouse trachea and lung. A, mice were injected with terbutaline (7 mg/kg; subcutaneous) or sterile water (100 μl) and tracheas were harvested for analysis of AQP5 expression by immunoblot. B, anti-AQP5 immunoblots from animals treated as in A were analyzed by densitometry. Results are expressed as percentage baseline (time 0) (n = 4 per group). C, mice were injected subcutaneously with 7 mg/kg (low dose) or 10 mg/kg (high dose) terbutaline. Lungs were harvested at the designated times for preparation of lung membranes, and anti-AQP5 immunoblots were analyzed by densitometry. Results are expressed as percentage of baseline (time 0) control (n = 4 per group). *, p < 0.05.

DISCUSSION

Regulation of water homeostasis is fundamental to the physiology of both the proximal and distal respiratory tracts. Several determinants of fluid flux in the respiratory tract have been identified; however, the molecular mechanisms regulating respiratory tract water homeostasis remain only partially defined. In this study, we examined the effects of the cAMP-PKA signaling pathway on the distribution and abundance of AQP5 in lung epithelial cells and have uncovered surprising complexity.

The best-defined example of cAMP regulation of a water channel protein is that of AQP2. AQP2 resides in vesicles in renal collecting duct principal cells (18). Minutes after vasopressin binds its receptor on principal cells, intracellular cAMP increases, serine 256 on AQP2 is phosphorylated by PKA, known whether AQP5 is phosphorylated in cells under the conditions described above. To assess protein phosphorylation after cAMP stimulation of cultured cells, cells were metabolically labeled with 32P and exposed to cAMP for varying times, and AQP5 immunoprecipitates were examined by autoradiography. It is noteworthy that, after short term cAMP stimulation, no phosphorylation of AQP5 was observed; however, 8-h stimulation with cAMP produced phosphorylation of AQP5 in MLE-12 cells (Fig. 9D). The phosphorylated AQP5 monomer (~27 kDa) appeared as a doublet on repeated experiments, a pattern we also see occasionally on standard immunoblots (see Fig. 5A).
FIG. 9. Phosphorylation of AQP5. **A**, Coomassie showing purified AQP5 eluted by imidazole. **B**, purified AQP5 protein was reconstituted into liposomes and incubated with [γ-32P]ATP in the absence or presence of PKA, PKC, or CKII; (1) control liposomes; (2) AQP5-containing proteoliposomes. Samples were resolved by gel electrophoresis and exposed to film to assess phosphorylation. Only PKA produced AQP5 phosphorylation; higher MW bands consistent with oligomers of AQP5 can be seen. Labeling observed in the CKII lanes is at a higher MW than AQP5 and is consistent with autophosphorylation of CKII (50). **C**, control and AQP5-containing proteoliposomes were examined for water permeability by stopped flow. AQP5 was highly water permeable compared with control liposomes. Water permeability of phosphorylated AQP5 was not statistically different from nonphosphorylated AQP5. **D**, MLE-12 cells were incubated with 32P for 30 min, exposed to control media or media containing pCPT-cAMP (100 μM), and harvested at the specified times. Control immunoprecipitates (IgG) or anti-AQP5 immunoprecipitates were resolved by gel electrophoresis and exposed to film for assessment of phosphorylated proteins.
between PKA- and PKC-induced phosphorylation have been described previously (43, 44); the relevant mechanisms in MLE-12 cells have not been elucidated.

We provide the first evidence that we are aware of that AQ5p can be directly phosphorylated, a potential mechanism relevant to our observations of AQ5p redistribution and degradation. Whereas the long term effects of cAMP may be mediated by direct phosphorylation, the short term changes apparently do not require AQ5p phosphorylation. However, both the short and long term responses are PKA-mediated. It is possible that short term PKA stimulation facilitates phosphorylation of an AQ5p binding partner that mediates protein trafficking and subsequent changes in abundance.

Dynamic targeting of AQ5p on and off of the plasma membrane as a means of regulating water permeability has been proposed, but direct evidence that it does or can occur is limited. Ishikawa and colleagues (45, 46) examined rat salivary glands in response to secretagogues such as pilocarpine and reported that stimulation of secretion was accompanied by redistribution of AQ5p into a membrane fraction; no direct visualization was reported (16). Gresz and colleagues recently reported direct visualization of AQ5p distribution in rat salivary glands by immunofluorescence and immunoelectron microscopy and observed no change in AQ5p distribution in response to stimulation with pilocarpine or epinephrine (47). Mis-targeting of AQ5p in salivary and lacrimal glands has been reported in humans with Sjögren’s syndrome (11, 12); however, the mechanism of the trafficking defect, and its potential relationship to physiologic regulation of distribution, is undefined.

The physiologic implications of cAMP-mediated regulation of AQ5p are unclear, particularly given the biphasic effects we proposed, but direct evidence that it does or can occur is limited. Ishikawa and colleagues (45, 46) examined rat salivary glands in response to secretagogues such as pilocarpine and epinephrine (47). Mis-targeting of AQ5p in salivary and lacrimal glands has been reported in humans with Sjögren’s syndrome (11, 12); however, the mechanism of the trafficking defect, and its potential relationship to physiologic regulation of distribution, is undefined.

Acknowledgments—We thank Peter Agre and David Kozono for general comments and technical assistance.
cAMP Has Distinct Acute and Chronic Effects on Aquaporin-5 in Lung Epithelial Cells
Venkataramana Sidhaye, Jason D. Hoffert and Landon S. King

J. Biol. Chem. 2005, 280:3590-3596.
doi: 10.1074/jbc.M411038200 originally published online November 9, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M411038200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 50 references, 19 of which can be accessed free at http://www.jbc.org/content/280/5/3590.full.html#ref-list-1