Experiments on the difference between semantic similarity and relatedness

Peter Kolb
University of Potsdam

NODALIDA '09
Odense, 15th May 2009
overview

• semantic similarity vs. semantic relatedness
• relevance of the distinction for NLP applications
• distributional semantics
• DISCO
• evaluation data
• experiments
• conclusion
• future work
Semantic similarity

- numeric, continuous measure of similarity between pairs of words
- used for ontology learning, information retrieval, word sense disambiguation, recognition of textual entailment, and many more

Semantic similarity vs. semantic relatedness

- similarity: lexical items have similar meaning
- usually defined via synonymy and hyponymy
- similar words can be substituted for each other
- e.g.: palm - tree, doctor - surgeon, mention - remark
semantic relatedness

- broader concept: similar → related
- words connected by any kind of lexical or functional association
- meronymy, antonymy, is-a-way-of-doing, is-a-symptom-of, ...
- words from the same semantic field (doctor - hospital)
- words associated by common co-occurrence
- do not have to be substitutable for each other in context
- do not have to belong to the same part-of-speech category
relevance of the distinction

• some NLP applications work better with the either or the other type of similarity relation

• e.g. detecting term variants for search term expansion:
 - doctor: physician physican dotcor doctors medic
 - doctor: hospital nurse illness

• same for paraphrasing, thesaurus generation, ...

• for word sense disambiguation: palm - coconut is as useful as palm - tree
distributional semantics

- compute word similarities from distribution of words in text corpora
- words with similar meaning occur in similar contexts
- relation between words, not word senses: rock \rightarrow jazz pop stone sand ...
- many different methods have been proposed
- LSA (Landauer & Dumais 1997): build term-document matrix, apply algebraic dimension reduction technique, compare terms (rows) of the reduced matrix
- PMI-IR (Turney 2001): similarity $:= \text{mutual information value of co-occurrence in web pages}$
distributional semantics (2)

- few evaluations regarding influence of generation method on the type of the resulting word space:
 - stricter (syntactic) contexts lead to “tighter” similarities
 - indirect co-occurrence results in tighter similarities than direct co-occurrence
 - severe dimensionality reduction (by Random Indexing or frequency cutoffs) leads to retrieval of more loosely related words
- what about other reduction techniques and parameters?
DISCO

- tokenize, eliminate function words
- count co-occurrences in ±3 word window, record position within window:

-3	-2	-1	+1	+2	+3	
the	nuts	provide	palm	oil	while	the

- `<palm, -2, nuts>, <palm, +1, oil>, ...`
- co-occurrence matrix: words x features (v x f · r)
DISCO (2)

- transform co-occurrence frequencies into weights using formula based on mutual information
- compare all words via their feature sets using measure of vector similarity
 - distributionally similar words (indirect, second-order co-occurrences)
 - e.g.: *bread - bake, eat, crispy*
 - *cake - bake, eat, crispy*
 - *bread* and *cake* will be similar (even if they didn’t co-occur themselves)
DISCO (3)

• example: *palm* - *palms coconut olive pine citrus oak mango cocoa banana bananas trees fingers* ...

• now view this list of distributionally similar words as feature vector describing *palm*

• compare two words based on their sets of distributionally similar words

• makes use of higher-order co-occurrences

• this is also achieved in LSA by SVD [Kontostathis & Pottenger 2006]

 ➢ two DISCO measures: DISCO1 and DISCO2
evaluation data

- semantic relatedness [Finkelstein et al. 2001]: 353 word pairs with averaged relatedness rating by 16 subjects
- semantic similarity: WordNet::Similarity [Pedersen et al. 2004]
 - Perl module based on WordNet
 - implements three measures of semantic relatedness: Hirst-St.Onge (hso), Lesk, vector pairs (vp)
 - six measures of semantic similarity: Jiang and Conrath (jcn), Leacock and Chodorow (lch), Lin, path length, Resnik (res), Wu and Palmer (wup)
 - similarity measures exclusively based on WordNet’s IS-A noun hierarchy and synsets
exp1: relatedness

- measure correlation of systems with Finkelstein’s relatedness gold standard:
 - DISCO1 and DISCO2 based on 267 million tokens from Wikipedia
 - PMI-IR using AltaVista
 - LSA using http://lsa.colorado.edu
 - WordNet::Similarity
exp1: relatedness

vectors	LSA	PMI-IR	DISCO1	DISCO2
0.41	0.56	0.63	0.39	0.51

hso	lesk	vp	jcn	lch	lin	path	res	wup
0.35	0.21	0.39	0.23	0.35	0.30	0.38	0.36	0.30

- DISCO2 significantly better than DISCO1 (Fisher’s z-score transformation, $\alpha = 0.05$)
- higher-order co-occurrences can partly substitute for SVD
- PMI-IR significantly better than DISCO2
- WordNet-based measures perform quite poorly
exp2: similarity

- correlation of systems with WordNet::Similarity

	jcn	lch	lin	path	res	wup	avg.
PMI-IR	0.14	0.12	0.06	0.15	0.22	0.11	0.13
LSA	0.16	0.26	0.21	0.29	0.28	0.22	0.24
DISCO1	0.38	0.39	0.33	0.45	0.43	0.33	0.38
DISCO2	0.15	0.40	0.39	0.35	0.44	0.40	0.36
exp.2: similarity

- DISCO2 not better than DISCO1
- LSA worse than DISCO
- higher-order co-occurrences/SVD do not help in computing semantic similarity?
- PMI-IR based on direct co-occurrence: bad for computing similarity
exp.3: DISCO1 parameters

- BNC instead of Wikipedia (only 40% of size)
- correlation of DISCO1 with relatedness gold standard (finkel353) drops from 0.39 to 0.34
- correlation with similarity gold standard (res) still at 0.43
 - measures of relatedness profit from more input data
 - (difference is not significant at $\alpha = 0.05$)
exp. 3-2: window position

- DISCO1 with window position features vs. pure bag-of-words window

	finkel353	res
DISCO1 WPT	0.34	0.43
DISCO1 bag-of-words	0.32	0.12
exp.3-3: lemmatization

- lemmatize the corpus with the Tree Tagger

	finkel353	res
DISCO1 WPT	0.34	0.43
DISCO1 WPT	0.36	0.41
lemmatized		
exp.3-4: dependency triples

- dependency-parse the corpus with Minipar
- syntactic dependency triples

	finkel353	res
DISCO1 WPT	0.34	0.43
DISCO1 WPT	0.36	0.39
dependency		
exp.3-5: frequency cutoff

- matrix size $\nu \times f \cdot r$
- reduce size of f by frequency

	f	finkel	res
101,000	0.34	0.43	
50,000	0.37	0.43	
20,000	0.40	0.45	
10,000	0.41	0.46	
5,000	0.40	0.43	
1,000	0.38	0.43	
500	0.36	0.33	
exp.3-6: SVD

- apply SVD to reduced DISCO1-10K matrix
- reduce from $v \times 10,000 \cdot r$ to $v \times 300$

	finkel	jcn	lch	lin	path	res	wup
DISCO1-10K	0.41	0.62	0.52	0.50	0.52	0.46	0.47
DISCO1-10K-SVD	0.55	0.46	0.37	0.41	0.39	0.38	0.35
conclusion

- there's a difference between semantic similarity and relatedness
- difference has practical consequences for NLP applications
- techniques for word space construction produce word spaces that are biased towards the one or the other type of similarity
Future work

- Which kind of word space should be applied to a given problem?
- For which applications is the similarity-relatedness distinction relevant?
- How to improve semantic similarity?