RESEARCH ARTICLE

Extraction and Phytochemicals Determination of Traditional Medicinal Plants for Anti-microbial Susceptibility Test

Firew Admasu Hailu, Israel Petros, Abdurezak Murad
Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia

ABSTRACT
The study were conducted at Dilla University, College of Natural Sciences, Biological Sciences laboratories.

Background: Ethiopia is a country with many ethnic groups, cultures and beliefs which in turn have contributed to the high diversity of traditional health care knowledge and practices of traditional medicine from local growth plants, animals and minerals for various physical and mental disorders of human and livestock population that passed from generation to generation for centuries. Medicinal plants contributors to pharmaceutical, agricultural and food industries in the world. The use of medicinal plants in the industrialized societies has been traced to extraction and development of several drugs used in order to heal some diseases having inhibiting effect against pathogenic microorganism.

Objective: The main objective of this study was Extraction and Phytochemicals determination of traditional medicinal plants for anti microbial susceptibility test.

Methodology: The extraction and identification of some phytochemicals crude compound which used for antimicrobial susceptibility test from plant sample such as Ocimum lamiifolium (OL), Croton maerosth (CM) and Ruta chalepesis (RC) were conducted. Plant samples are collected, powdered using mortal and pistil and extracted using ethanol and some susceptibility tests were performed to identify some phytochemicals compound.

Result: The main result of Antimicrobial activity test showed that the crude extract of OL has the highest zone of inhibition. The highest yield of crude extract (38.21%) was obtained from Croton maerosth (CM) which followed by Ruta chalepesis (RC) (32.43%). However, the lowest yield (28.37%) was obtained from Oscpmum lamiifolium (OL).

Conclusion: Traditional Medicine is used by many people to managing numerous conditions; it’s accessible and effective on antimicrobial activity. Therefore, it plays a significant role by reducing life-threatening ailments of people and other animals.

KEYWORDS: Extraction, Traditional Medicine, Phytochemicals determination.

Correspondence: Firew Admasu Hailu, Department of Biology, College of Natural Sciences, Dilla University, Dilla, Ethiopia, P. O. Box 419. Email: firew.admasu@gmail.com

Copyright © 2020 Firew AH et al. This is an open access article distributed under the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION
Historically, learning via observation and experimentation indicates that plants have played as a major role for traditional medication and used to promote health of human beings. Traditional medicinal plants are used as remedies of safe for health, cost effective, almost free from serious side effect and also used as health practice, approaches, knowledge and beliefs. They are obtained from plant, animal and mineral based which used for spiritual therapies, being the plants are the most important source of medication. They used to apply in single or in combination to treat, diagnose and prevent illness and maintain well-being (WHO, 2001; Mazid, et al., 2012).

The people did not have the scientific insight to explain the use of traditional medicinal plants are found in many of the healing cultures of the world based on the assumption that the appearance of plant may give clues to their medicinal properties and interpreted as God’s signature on the plant. For example, red juice and sap, is associated with blood and menstrual elements and also yellow flower and alkaloid containing latex of some plants associated with bile and jaundice is crude extract used successfully to treat jaundice (Gurib-Fakim, 2006).

The traditional medicinal plant bioactive compounds are obtained mostly from plant leaves and used as an
alternative medication for the treatment of tonic diuretic, antiphlogistic and blood purifier and also used as remedy against chronic ulcers, chronic eczema, chronic nervous disease, chronic rheumatism, cholera amonorrhoea, madness, piles and fistula. The powder of the dried leaves is often given with milk in mental disability for the improvement of the memory. The fresh juice of leaves is grown as alternative in jaundice, fevers and gonorrhoea. The same is also useful for children’s in cutaneous diseases and for the improvement of nervous system (Mazid, et al., 2012). Ailments have over the years been a scourge and a threat to mankind. People from different cultural backgrounds have used different herbal plants, plant extracts, animal products and mineral substances (Addae-Mensah, 1992) as the means to care, cure and treat ill-health, with disease prevention, and with health promotion (Curtis and Take, 1996) since pre-historic times. Definition of traditional medicine by WHO as diverse health practices, approaches, knowledge and beliefs incorporating plant, animal, and/or mineral based medicines, spiritual therapies, manual techniques and exercises applied singularly or in combination to maintain well-being, as well as to treat, diagnose or prevent illness (WHO, 2002; 2000).

There are a number of pathogenic microorganisms such as bacteria, fungi, viruses, etc are the main causative agents of infectious diseases that is a critical challenge to health and they are believed to be one of the main causes of increasing the rates of morbidity and mortality worldwide (Drusano, 2004). Various infections and disorders are caused by bacterial and fungal pathogens such as Aspergillus, Bacillus, Candida, Cryptococcus, Klebsiella, Proteus, Pseudomonas, Salmonella, Staphylococcus and Trichophyton (Bibi et al., 2011). The natural remedies and medicinal plants are the main resources for the physicians, especially in developing countries, depend on plants for medicines (Amabye and Shalkh, 2015). The importance of plants to homeopathy and modern medicine is correlated to their chemical constituents such as such as terpenoids, phenolics, alkaloids, flavonoids, amino acids, saponins, glycosides, diterpenes, triterpenes and their compatibility with the human body. It is expected that more than 30% of the worldwide sales of drugs is based mainly on plant products (Patwardhan et al., 2004, De Fatima et al., 2002). Plants of the family Rutaceae are a source of huge variety of natural products with antibacterial, antifungal, antioxidant, spasmyloctic, anthelmintic, emmenagogue, antitumoral, analgesic, anti-inflammatory, and antidepressant activities (Raghav et al., 2006, Di Stasi et al., 2002). In many countries, medicinal plants are cultivated for its pharmacological and biological activity and it is widely used for treatment of gastric, diuretic, inflammation, headache and rheumatism disorders. Analysis of the chemical constituents of R. chalepensis extracts revealed that the aerial parts contain alkaloids, phenols, flavonoids, amino acids, saponins and furocoumarins (Kacem et al., 2015). Therefore, conducting the present study on the title of extraction and phytochemicals determination of traditional medicinal plants such as Ruta Chalepesis, Ocimum Lamifolium and Croton Maerosth for Anti-microbial Susceptibility Test is important.

Globally: millions of people rely on traditional medicinal plants not only for primary health care, but also for income generation and livelihood improvement (WHO, 2002). Annual sales of herbal based medicines are ranged from 7.5-108 billion US$ worldwide (Schert, et al., 2004). And in Canada annual market sales of medicinal plants reached 400 million US$ in 2001 (WHO, 2005) and are growing at a pace of 15% annually (Lafreniere and Chenier, 1997). Traditional medicinal plants are widely used in different part of the world for curing diseases. They have maintained their popularity in developing world. These medicinal plants are also rapidly spreading in the industrialized countries. For instance, in china, about 30%-50% of the total medicinal consumptions was obtained from traditional herbal preparations in Ghana, Mali, Nigeria and Zambia, the first line of treatment for 60% of children with high fever resulting from malaria are the use of herbal medicines at their home (Bannerman, et al., 1993; WHO, 2003).

In Africa: up to 80% of the population uses traditional medicines for primary health care (WHO, 2003). Several African countries traditional birth attendants assist in majority of births using traditional plants (Bannerman, et al., 1993; WHO, 2003). Traditional Medicine is assuming greater importance in the primary health care of individuals and communities in many developing countries (Peltzer and Mngundanganiso, 2008; WHO, 2002). These approaches to health care belong to the traditions of each culture, and have been handed down from generation to generation (WHO, 1996). Tribes, cultures and indigenous people of nations throughout the world have evolved system of traditional medicine for generations, and communities have found most of these medical practices valuable and affordable and still depend on them for their health care needs. The WHO estimates that about 60% of the world’s people uses herbal medicine for treating their sicknesses and up to 80% of the population living in the African Region depends on traditional medicine for some aspects of primary health care (WHO, 2000).

In Ethiopia: up to 80% of the population uses traditional medicine due to cultural acceptability of healers and local pharmacopeias, the relatively low cost of traditional medicine and difficult access to modern health facilities. In 2000 only 9.45% of all deliveries in Ethiopia were attended by trained attendants and health workers. The rest were attended by traditional birth attendants or relatives (Lambert, 2001). Ethno botany is defined as the interaction of “local people with the natural environment: how they classify, manage and use plants available around them”. In general, ethno botany is the scientific investigations of plants as used in indigenous culture for food, medicine, magic, rituals, building, household utensils and implements, musical instruments, firewood, pesticides, clothing, shelter and other purposes (Falsetto S., 2008)

Statement of the problem: Medicinal plants are played significant role in medication phytochemicals that extract from medicinal plants are used to cure different diseases
or ailments, but public does not use it properly because of lack of awareness on how to use traditional medicinal plant. Therefore, the main problems that initiate the researchers to undertake this research was that there is no study on public perception on the use of traditional medicine, extraction and phytochemical analyses from medicinal plant for anti-microbial susceptibility test and still there are unknown plants and plant parts probability used as a medication to treat some diseases and also documented as remedies. In addition, there is no link between healers and modern health workers to exchange their knowledge on the method of preparation, route of administrations, effectiveness, safety as well as storage and awareness about the pharmaceutical use of traditional medicinal plants also to modify as modern drug usage.

Objective of study: the main Objective of this study was to extraction and phytochemicals determination of Ruta Chalepesis, Ocimum Lamifolium and Croton Maerosth traditional medicinal plants for anti-microbial susceptibility test. Specifically, to identify the part of plant that is used for the preparation of traditional medicine, and to extract and identify some composition of chemical from crude extract of selected traditional medicinal plant. The main significance of the study is extraction and phytochemicals analysis from medicinal plant for antimicrobial susceptibility test, for documentation as remedies and also to create awareness and link between healers and modern health workers to exchange their knowledge. It may used as a basic information source about indigenous knowledge on medicinal plants preparation, part used, types of ailments, path of administration, it may also used as a baseline for further studies in the area on medicinal plants and animals and to recommended conservation and protection measures of medicinal plants and animals biodiversity.

METHODS
Description of Study Area
Dilla town is located at Gedeo zone, southern nation and nationality people region of Ethiopia. The town has latitude and longitude 38°18’36”E and 6°24’30”N with an elevation of 1570 meter above from sea level and 360km distance from the capital city of Ethiopia, Addis Ababa. The climate of Gedeo zone is characterized as warm humid temperature. The Gedeo zone is endowed with two rain season from March to May and July to December with interruption of 3 to 4 dry season. The climate is suitable for abundant forest cover. The population of Dilla town was around 59,150, the total number of male 31,068 and female 28,082 (PS, 2012). Gedeo zone contain one hospital established by government. The main economic activity and source of income in the district is farming.

Antimicrobial Susceptibility Testing
Antibacterial activity test: the standard Kirby-Bauer disk diffusion method was used to determine the antimicrobial susceptibility testing (Bauer et al., 1996). Media such as nutrient agar (NA) and nutrient broth (NB) was used as cultural medium. Bacterial inoculums were prepared by suspend the freshly grown bacteria in 5 ml sterile NB and the turbidity was adjusted to that of a 0.5 Mcfar land standard. A concentration of 1-2x10^8 CFU/ml of bacterial inoculate was used. The media were poured onto 60mm diameter Petri plates (4mm agar thickness). A 0.1 ml of each bacterial suspension were obtained from nutrient broth (NB) and inoculated on to fresh media of nutrient agar (NA). The bacterial suspensions were uniformly distributed using swabs. Plates were allowed to stand for 15 min. Then, 6mm diameter disks were impregnated with the crude extract of medicinal plant. The impregnated disks were symmetrically placed onto the medium by using sterile tweezers. The plates were incubated aerobically at 28°C for 24hrs. Based on the method described by Ayoola et al. (2008) the plant leaf samples phytochemical compositions were analyzed.

Antimicrobial Susceptibility Test

- Firstly the leaf part of medicinal plant were collected.
- Next to that dried the leaf of medicinal plant in the laboratory.
- Then grinding the leaf of each by mortal and pistil
- The powder measured by beam balance each 37g for three plant leaf extract.
- Then mixed with solvent ethanol by three separated flask and shakes by mechanical shaker for 24hr
- After that the solution was filtered by filter paper in each flask.
- Then evaporate the ethanol solvent separate from crude extract by rotator evaporation.
- Next to rotator evaporation the crude extract were kept in a tightly closed bottle in a refrigerator at 4°C until used for anti-microbial susceptibility testing.
RESULTS

Extraction and phytochemical contents determination of medicinal plants for Anti-microbial Susceptibility Test.

Different percentage yield of crude extract were obtained from Ocimum lamifolium (OL), Croton maerosth (CM), and Ruta chalepesis (RC), selected medicinal plant. The percentage yield was calculated as following: percentage yield = (weight of crude extract /weight of sample) x100. The result of percentage yield for these some selected medicinal plants depicted in table 1. In this study, the highest yield of crude extract (38.21%) was obtained from Croton maerosth (CM) which followed by Ruta chalepesis (RC) (32.43%). However the lowest yield (28.37%) was obtained from Ocimum lamifolium (OL). The result of this study, phytochemical content analysis of three medicinal plants such as Ruta Chalepesis, Ocimum Lamifolium and Croton Maerosth all indicated that the presence of glycosides, flavonoids, sterols, alkaloids, protein, Resins, Lactones and tannins in different proportion.

The weight of all samples are 37g, but after rotary evaporator Croton maerosth higher weight of crude extract but Ocimum lamifolium lower weight of crude extracts and the medium was Ruta chalepesis.

- In these study crude extract is high low inhibition zone.
- The crude extract very low is high inhibition zone of medicinal plants.

Some traditional medicinal plants contain some bioactive and phytochemical compounds. The present study has been shown that Ocimum lamifolium (OL) Croton maerosth (Cm) and Ruta chalepesis (Rc) contain some phytochemical compound. The crude extract of all the studied plants leaves contain phytosterol, steroids and tannin phytochemical compounds which are bluish green, yellow with green fluorescence and yellow precipitate in color after screening have been conducted, respectively.
DISCUSSION

Extraction and Phytochemicals Determination of Traditional Medicinal Plants for Anti-microbial Susceptibility Test.

This study states that the presence of anti-microbial susceptibility test in *Oscpmum lamifolium* (OL), *Ruta chalepensis* (Rc) and *Croton maerosth* (Cm), the leaf extracted result indicated that the highest activity of *Oscpmum lamifolium* with inhibition zone. This show leaf of *Oscpmum lamifolium* has high ability to inhibit bacteria with appropriate solvent and phytochemical content composition indicated that the presence of carbohydrates, flavonoids, sterols, alkalds, proteins, Resins, Lactones and tannins. The study by Alhadi, et al., (2015) stated that preliminary phytochemical screening of *Cordia Africana* showed that the presence of saponons, cumarins, tannins, triterpenes and flavonoids in the different plants parts and also noted that anthraquinones, glycosides and cyanogenic glycoside were absence from *C.Africana* plant parts. However, they reported a sterol only from the stem parts. Different phytochemical compounds were isolated from *Cordia sinensis* and these compounds includes flavonoids, saponins, sterols and sugars (Naval, et al., 2011). The study conducted by (vijayakumari, 2011) result shown that *Rotulaaquatic* contains alkalds, flavonoids, phenols, saponins, terpenoids, Anthraquinones and anthocyanin. The present result showed that the tested medicinal plants *Croton maerosth* has less inhibiting effect against bacteria than result reported by Alhadi, et al., (2015) while they were conducted on leaves of *Cordia Africana*. Extract exhibited effects against most of the tested organisms with zones of inhibition ranging from (14-30 mm) and the largest inhibition against *Apergillus niger* give (30 mm). The stem of *C. Africana* extract exhibited effects against most of the tested organism with zones of inhibition ranging from (14-20 mm) and the largest inhibition against *Candia albicans* gives (20). The bark of *C. Africana* extract exhibited effects against most of the tested organism with zone of inhibition ranging from (18-22 mm) and the largest inhibition against *Sphenococccus aureus* gives (22mm) (Alhadi, et al., 2015).

The result of this study on phytochemicals contents determination of medicinal plants with the sample of *Ruta chalepensis* were almost similar with the result of Mohammed et al., (2014), Lunga et al., (2014), and Dahija et al., (2014). Phytochemical content analysis of *Ruta Chalepesis*, indicated that the presence of carbohydrates and/or glycosides, flavonoids, sterols and/or triterpenes, alkaloids, protein and/or amino acids, Resins, Lactones and/or esters and tannins. On the other hand, saponin, anthraquinones, cardinolides, and oxidase enzyme were absent. The presence of variations in phytochemicals groups in any plant can be used as promising support of possible presence of biological activities (Mohammed et al., 2014, Lunga et al., 2014, Dahija et al., 2014).

CONCLUSION

The phytochemical compounds have been isolated from selected traditional medicinal plants such as *Croton maerosth* (Cm), *Oscpmum lamifolium* (Ol) and *Ruta chalepensis* (Rc). Generally, the highest crude extract was obtained from Cm which followed by Rc. However, the lowest yield was obtained from Ol Among the extract obtained, the Ol showed the maximum zone of inhibition against gram positive bacteria isolated from water sample. Traditional Medicinal plants and animals are easily accessible in Ethiopia, cheaper, and effective in treating various diseases using plant products but safety conditions of the practice of the traditional medicine is not safe as compared with the use of modern medicine.

RECOMMENDATIONS

Based on the result of the study the following recommendations are forwarded:

- Plant resources are the main source of life on earth science. Thus governmental officials and NGOs should participate on conservation of medicinal plants
- The government, Non-Governmental Organizations (NGOs) and other stakeholders must see the need to invest in research, education, equipment and other infrastructure which will help make people accrue maximum benefit from traditional medicine.
- The traditional medicine are cheaper, easily accessible, effective to treated various diseases, using plant products but safety conditions of the practice of the traditional medicine is not safe as compared with the use of modern medicine. Because of most of traditional medicinal plants users are illiterate. So, it is recommended giving continuous training for healers concerning safety, efficiency dosage and other related issues of medicinal plants remedies to connect with modern medications.
- Studies are needed on the public perception on traditional medicinal plants and animals, types and parts used, method of preparation, route of administrations, safety as well as storage and the use of traditional medication on Ailments.

Table 1: Percentage yield of crude extract for some selected Medicinal plants.

List of tests	Some selected Medicinal plants	Oscpmum lamifolium	Ruta chalepensis	Croton maerosth
Mean of weight of samples	37g	37g	37g	
Weight of extracts	10.5g	12g	14.14g	
Percentage yield (%)	28.37	32.43	38.21	

Table 2: The comparison of crud extract of medicinal plant and inhibition zone.

Sample of medicinal plants	Crude extract	Inhibition zone
Oscpmum lamifolium	Low	High
Ruta chalepensis	Medium	Medium
Croton maerosth	High	Low

Health Sci. 2020; 1: 7p
ACKNOWLEDGMENTS
First of all we would like to thank Almighty God (Allah) for letting as to be healthy and accomplish this study. Secondly, we would like to thank Dilla University, Zoology and microbiology laboratory staff for their supporting as during study time. Finally, we would like to thank our friends from chemistry staff for sharing and providing as some laboratory materials.

AUTHORS’ CONTRIBUTIONS
The participation of each author corresponds to the criteria of authorship and contributorship emphasized in the

REFERENCES
[1] Addae-Mensah, I. (1992). Towards a national scientific basis for herbal medicine–a phytochemists two decade contribution. Accra Ghana, University Press.
[2] Ahmad and Huxain (2008). Herbal preparation.
[3] Alhadi, E.A. (2015). Anti microbial and phytochemical screening of cordia Africana in Sudan. World journal of pharmaceutical research,4 (3):257-269.
[4] Amahy T.G., Shalik M.T. (2015). Phytochemical screening and evaluation of antibacterial activity of Ruta graveolens L- a medicinal plant grown around Mekelle, Tigray, Ethiopia. Nat. Prod. Chem. Res.3:6.
[5] Ayoola G.A., Coker H.A.B., Adesegun S.A., Adepooja-Bello Obaweya A.A., Ezennia E.C., Atangbayila T.O. (2008). Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in southwestern Nigeria. Trop. J. Pharm. Res. 7(3):1019–1024.
[6] Bannerman, R.H., Burton, G. and Chien, W. (1993). The traditional medicine and health care coverage. World Health Organization, Geneva, Switzerland.
[7] Bauer, A.W., Kirby, WMM., Sherris, JC., Turck, MD. (1966). Antibiotics susceptibility testing by standard single disk methods. The American Journal of Clinical pathology. 45(4):493-496
[8] Bibi Y., Nisa S., Chaudhary F.M., Zia M. (2011). Antibacterial activity of some selected medicinal plants of Pakistan. BMC Compl. Alter. 11:52.
[9] Buor, D. (1993). The Impact of Traditional Medicine on Health Delivery Services in Ghana: The Ashanti Situation. Journal of the University of Science and Technology, 13 (3).
[10] Buor, D. (2003). Analysing the primacy of distance in the utilization of health services in the Ahafo-Ano South district, Ghana. Int J Health Plann Mgmt, 18, 293–311.
[11] Cowan, M.M. (1999). Plant products as antimicrobial agents clin.Microbial. Rev 12; 564-582.
[12] Cragg., G.M. and J.N. David.(2001). National product drug discovery in the next Millenium. J.Pharm. Biol.39:8-17.
[13] Curtis, S. & Takek, A. (1996). Health and Societies: Changing Perspective. London, New York, Edward Arnold.
[14] Dahia S., Kakar J., Vide D., Maksumovic M., Paric A. (2014). Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chix) DC. extracts. Nat. Prod. Res. 28(24):2177-220.
[15] De Fatima A.B.M., Oliveira R.L.B., Mendes S.S., Silva P.D.A., Antoniolli A.R., Vilar I.C., Cavalcanti S.C.D.H., Blank A.F. (2002). Seed germination, phenology and antiedematogenic activity of Peperomia pellucida. Pharmacology. 2:12.
[16] DiStasi L.C., Oliveira G.P., Carvalhes M.A., Queiroz junio M., Tien O.S., Kahunami S.H., Reis M.S. (2002). Medicinal plants used in Brazilian tropical Atlantic forest. Fitoterapia, 73:69–91.
[17] Dussano G.L. (2004). Antimicrobial pharmacodynamics: critical interactions of “bug and drug” Nat. Rev. 2:289–300.
[18] Falsetto S. (2008). Brief study of ethnobotany: The Definitions and Origins of the investigation of indigenous people of a particular culture.
[19] Gurb-Fakim, A. (2006). Medicinal plant: traditions of yesterday and drugs of tomorrow molecular aspect of medicine 27:1-93.
[20] Harbone JB. (1998). Phytochemical methods: a Guide to modern techniques of plant analysis. Ed.3rd, Chapman and Hall, London, UK, Pp. 60-66.
[21] Ivanova, D.D.(2005). Polyphenol and antioxidant capacity of Bulgarian medicinal plant. J .Ethnopharmacol.96:145-150.
[22] Kacem M., Kacem I., Simon G., Ben Mansour A., Chaabouni S., Elfeki A., Bouazziz (2015). Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci.
[23] Lafreniere G. and Chenier NM. (1997). Herb regulation in Canada: background and issues Ottawa: Government of Canada, Parliamentary Research Branch, MR-149E.s
[24] Lambert, J. (2001). Traditional medicine and the bridge to better health.
[25] Lunga P.K., Qin X.J., Yang X.W., Kuiate J.R., Du Z.Z., Gating G. (2014). Antimicrobial steroidal saponin and oleane-type triterpenoid saponins from Paullinia pinnata, BMC Complement Altern. Med.;:14.369.
[26] Mandal, V; Y.Mohan and S.Hamalatha. (2007). Microwave assisted extraction- an innovative and promising extraction tool for medicinal plant research. Pharmacog. Rev. 1:7-18.
[27] Mazid, M., khan, T.A and Mohammed, F. (2012). Medicinal Plants of Rural India: A Review of Use by India Folks. Indo Global Journal of Pharmaceutical Science, 2(3): 286-304.
[28] Mohammed R.S., Abou Zeid A.H., El Hawary S.S., Sleem A.A., Ashour W.A. (2014). Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol Sci.; 21:547–553.
[29] Nawal Al-Musayeb, Perveen, S. Fatima, I. Nasir, M, and Hussain A. (2011). Antioxidant, Anti-Glycation and Anti-Inflammatory Activities of Phenolic Constituents from Cordia sinensis. Molecules, 16; 10214-10226.

Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly work in Medical Journals of the International Committee of Medical Journal Editors.
Indeed, all the authors have actively participated in the redaction, the revision of the manuscript, and provided approval for this final revised version.

COMETING INTERESTS
The authors declare no competing interests with this case.

FUNDING SOURCES
None.
[30] Patwardhan B., Vaidya A.D.B., Chorghade M. (2004). Ayurveda and natural products drug discovery. Curr. Sci.; 86:789–799.
[31] Peltzer, K., Preez, N. F., Ramlagan, S., & Fomundam, H. (2008). Use of traditional complementary and alternative medicine for HIV patients in KwaZulu-Natal, South Africa. BMC Public Health, 8, 255.
[32] Raghav S.K., Gupta B., Agrawal C., Goswami K., Das H.R. (2006). Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharm., 104:234–239.
[33] Scherr, S.J., White, A. and Kaimowitz, D. (2004). A new agenda for forest conservation and poverty reduction: making markets work for low-income producers Washington.
[34] Shenkute, Z. (2008). Personal interview with HMC Pharmacy services Pharmacist on topic of Ethiopian Traditional medicine use in patients.
[35] Shrikumar, S and T.K.Ravi. (2007). Approaches to words development and promotion of herbal drugs. Phcog. Rev.1:180-184.
[36] Twumasi, P. A. (1988). Social foundation of the interplay between traditional and modern systems. Accra: Ghana Universities Press (Inaugural Lecture).
[37] Vijayakumari B., Sasikala, V. and Radha S.R. (2011). Paramilitary phytochemical screening of the various extracts of ROTULA AQUATICA LOUR. World Journal of Pharmacy and Pharmaceutical Sciences, 2(6): 6371-6380.
[38] WHO. (2000). General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine
[39] WHO. (2001). Legal Status of Traditional Medicine and Complementary/ Alternative Medicine.
[40] WHO. (2002). World Health Organisation Traditional Medicine Strategy 2002–2005.
[41] WHO. (2003). Fact Sheet, Traditional Medicine, Geneva.
[42] WHO. (2005). National policy on traditional medicine and regulation of herbal medicines. Report of WHO global survey Geneva: World Health Organization.