Diversity and abundance of dragonflies and damselflies in Tampa Bay, Florida

Meredith A. Krause¹, Thomas Koster¹, Bryan N. MacNeill¹, Daniel J. Zydek¹, Nicholas T. Ogburn¹, Jonathan Sharpin¹, Robert Shell¹, and Marc J. Lajeunesse¹.*

Abstract
Little is known about the community of dragonflies and damselflies in Tampa Bay, Florida, USA. To address this gap, we conducted 2 longitudinal surveys of adult odonates in a natural floodplain of the Hillsborough River in 2013 and 2017. Along with abundance and species diversity, we also measured intraspecific variation in body size, sexual dimorphism, wing-cell asymmetry, and water mite ectoparasitism. Our first weekly survey from Oct 2013 to Oct 2014 sampled 327 adults (230 female, 97 male) from 8 dragonfly species, with the eastern pondhawk (Erythemis simplicicollis Say; Odonata: Libellulidae) representing 79% of captures, followed by the second most abundant (14%), the Florida non-native and neotropical hyacinth glider (Miathyria marcella Selys; Odonata: Libellulidae). Our second weekly survey from Sept to Dec 2017, which focused on both damselflies and dragonflies and captured 205 adults from 8 species, with the fragile forktail (Ischnura posita Hagen; Odonata: Coenagrionidae) being the most abundant with 70% of captures. Female-biased sexual size dimorphism was found in both E. simplicicollis and I. posita; however, both sexes were equally variable in size and symmetric in a meristic trait. Female and male M. marcella were equally variable, monomorphic, and symmetric. Combining symmetry data from each sex, only I. posita damselflies were asymmetric overall. Finally, we did not observe any parasitism by larval water mites in either survey. We aim to continue surveys to track seasonal and climate-driven changes in dragonfly diversity and phenology in this region.

Key Words: wing-cell asymmetry; fluctuating asymmetry; phenology; flight season; sexual size dimorphism; Odonata

Resumen
Poco se sabe sobre la comunidad de libélulas (Odonata: Libellulidae) y caballitos del diablo (Odonata: Coenagrionidae) en Tampa Bay, Florida, EE. UU. Para abordar esta falta, realizamos 2 encuestas longitudinales de odonatos adultos en una llanura de inundación natural del Río Hillsborough en el 2013 y el 2017. Junto con la abundancia y la diversidad de especies, también medimos la variación intraespecífica en el tamaño del cuerpo, el dimorfismo sexual, la simetría de las células del ala, y el ectoparásitismo de los ácaros acuáticos. Nuestro primer sondeo semanal del 2013 a octubre del 2014, muestreó 327 adultos (230 hembras, 97 machos) de 8 especies de libélulas, con Erythemis simplicicollis Say (Odonata: Libellulidae) presente en el 79% de las capturas, seguido por el segundo más abundante (14%), Miathyria marcella Selys (Odonata: Libellulidae), una especie no nativa de la Florida. Nuestro segundo sondeo semanal desde septiembre hasta diciembre del 2017, se enfocó sobre los caballitos del diablo y las libélulas y capturó 205 adultos de 8 especies, con Ischnura posita Hagen (Odonata: Coenagrionidae) la especie más abundante en el 70% de las capturas. Se encontró dimorfismo sexual de tamaño sesgado hacia las hembras tanto en E. simplicicollis como en I. posita; sin embargo, ambos sexos fueron igualmente variables en tamaño y simétricos en su rasgo merístico. Las hembras y los machos de M. marcella fueron igualmente variables, monomórficos y simétricos. Combinando datos de simetría de cada sexo, solo I. daita caballitos del diablo fueron asimétricos en general. Finalmente, no observamos ningún parasitismo por los ácaros acuáticos sobre las larvas en ninguna de los sondeos. Nuestro objetivo es continuar los sondeos para rastrear los cambios estacionales y climáticos en la diversidad y fenología de las libélulas en esta región.

Palabras Claves: asimetría de células de ala; asimetría fluctuante; fenología temporada de vuelo; dimorfismo de tamaño sexual; Odonata

The phenology of many dragonflies have been shifting forward in time due to a warming climate (e.g., Hassall et al. 2007; Dingemanse & Kalkman 2008), and several geographic range expansions also have been reported (e.g., Beckemeyer 2009; McMurray & Simon 2011). Natural history surveys are key to informing the extent and rates of these trends; however, ongoing gaps in geographic information impede global assessments and predictions (Reece & McIntyre 2009). This is concerning given that since the second half of the 20th century Florida has experienced rampant urbanization, eutrophication, freshwater modification and loss (Nagy et al. 2012), taxa introductions (Frank & McCoy 1992), and is poised for considerable climate change effects (Paulson 2001).

Here we report the first longitudinal surveys of adult dragonflies and damselflies in the Tampa Bay region (Hillsborough County, Florida, USA) since 1965 (Paulson 1999). The aims of our surveys are to: (1) determine...
the community composition in this county with a long-term goal to track shifts in phenology and range expansion among dragonflies (following Paulson 2001), and (2) report intraspecific measures of body size, fluctuating asymmetry, and parasitism. This intraspecific information is useful to provide insight on environmental stress (Daufresne et al. 2009; Gardner et al. 2011; McCauley et al. 2014), and how these stressors interact with a warming world to impact the phenology and ranges of dragonflies and damselflies (Hassall et al. 2007; Richter et al. 2008).

Materials and Methods

We conducted 2 surveys of adult dragonflies (Odonata: Anisoptera) and damselflies (Odonata: Zygoptera) at the University of South Florida Riverfront Park, Tampa, Florida, USA, located along a natural floodplain of the Hillsborough River (Hillsborough County, Florida, USA; 28.0705°N, 82.3786°W). This area is mostly fresh water wetland with hardwood hammocks, pine flatwoods, cypress domes, and open mowed recreational space for picnics, and a disc golf course. Lettuce Lake Conservation Park (97 ha) is located on the neighboring side of the river. The nearest previous survey of odonates was completed in Manatee County, Florida, USA, which is about 80 km south (i.e., Manatee River; Paulson 1966).

In our first survey, 1 individual sampled only dragonflies weekly for 1 yr (6 Oct 2013 to 5 Oct 2014) around midday (about 11:00 A.M. to 2:00 P.M.) for 1 h with a canvas sweep net. There are 2 sampling gaps in this survey: the park was closed on 20 Oct 2013, and again from 14 Dec 2013 to 6 Jan 2014. Our second survey occurred weekly from 22 Sep 2017 to 1 Dec 2017 in the late afternoon (about 3:00 P.M. to 5:00 P.M.). Here, 4 to 5 individuals sampled both dragonflies and damselflies for 25 min using canvas sweep nets, butterfly nets, and scoop nets. There are 4 sampling gaps in this second survey: 29 Sep 2017, 3 Nov 2017, 10 Nov 2017, and 24 Nov 2017. Finally, all captured odonates were placed into coin envelopes or jars marked with date and time, then then transported back to the University of South Florida for −10 °C freezer preservation.

Species and sex of each preserved specimen were identified following Garrison et al. (2006), Beckemeyer (2009), and Paulson (2011). As a surrogate of body size (Serrano-Menanes et al. 2008), the distance from nodus to pterostigma of left forewings was measured with digital calipers (± 0.02 mm; Pittsburgh item #93293, Carmarillo, California, USA). We estimated sexual size dimorphism in mean body size (mm) of each sex using linear regression models Z-tests (α = 0.05), and when possible, we used linear mixed models to control for sampling effects between our 2 surveys (by treating survey identity as a random effect). Finally we compared the variance in body sizes with F-tests (assuming the ratio of the variances of males and females as one). Linear regression models analyses were performed in base R (R Core Team 2013) and linear mixed models with the lmer() function of the lme4 R package (Bates et al. 2015).

Following Lajeunesse (2007), wing-cell asymmetry was measured as the difference in wing-cell counts between the right and left forewings, where wing-cells were counted from nodus to pterostigma using a 10× loupe. To calculate and compare asymmetry frequency among individuals, a mixed-effect logistic regression model (with logit function) was implemented with the glmer() function of the lme4 package. This model included survey identity as a random-factor to control for sampling differences among the 2 surveys. A Z-test from a logistic model including a parity offset was used to test whether the ratio of asymmetric and symmetric individuals deviate from an equal frequency of observation between asymmetric and symmetric odonates (i.e., parity = 0.5). Finally, the ratio of asymmetric individuals and 95% confidence intervals were first estimated with the predicted values from the logistic model using the glht() function from the multcomp R package (Hothorn et al. 2014), and then using the inv.logit() function (generalized inverse logit function) from gtools R package (Warnes et al. 2013) to back-transform the 95% confidence intervals into a non-logged ratio scale.

Results

SPECIES RICHNESS, ABUNDANCE, AND FLIGHT SEASON

In total, 532 dragonflies and damselflies from 12 species (9 dragonflies, 3 damselflies) were sampled (Table 1). Four of the 9 dragonfly species sampled in our first survey (N = 327) were not recaptured in our second, but our second survey (N = 205) included a previously unsampled species (little blue dragonlet, Erythrodialyx minuscula Rambur; Odonata: Libellulidae). Finally, all damselflies captured in our second survey were forktails (Odonata: Coenagrionidae).

The most abundant dragonfly species at our site was the eastern pondhawk (Erythemis simplicicollis Say; Odonata: Libellulidae), making up 49.8% of all captures (N = 265) and 81% from our first survey, which focused primarily on dragonflies (Table 1). Based on samples from both surveys, its estimated flight season is from 13 Apr to 13 Oct (Fig. 1), which matches very closely the typical rainy season in the Tampa Bay area (May to Nov). The second most abundant dragonfly, the non-Florida native hacyhin glider (Miathyria marcella Selys; Odonata: Libellulidae), represented 12% of all captures (N = 64). Its flight season appears bivoltine (Fig. 1), with a short season occurring at the beginning of the rainy season (30 Mar–18 May) and a second near the end (21 Aug–20 Sep). The third most abundant was the red saddlebags (Tramea anusta Hagen; Odonata: Libellulidae; N = 11) with a short flight season near the end of the rainy season (21 Sep–1 Dec). Finally in rank order of abundance, the following species represented only 3% of all captures: Pachydiplax longipennis Burmeister (Odonata: Libellulidae; N = 7; flight season: 7 Jul–22 Aug), Phanogomphus minutus Rambur (formerly Gomphus minutus; Odonata: Gomphidae; N = 3), Celithemis eponina Drury (Odonata: Libellulidae; N = 2), E. miniscula (Odonata: Libellulidae; N = 2), Aphylia williamsoni Gloyd (Odonata: Gomphidae; N = 1), and Pantala flavescens Fabricius (Odonata: Libellulidae; N = 1).

Among the damselflies surveyed, the most abundant was the fragile forktail (I. posita; Odonata: Coenagrionidae; N = 144), which were sampled the entire span of our second survey (22 Aug 22–1 Dec; Fig. 1). Finally, we captured few citrine forktails (Ischnura hastata Say; Odonata: Coenagrionidae; N = 4) and Rambur’s forktails (Ischnura ramburii Selys; Odonata: Coenagrionidae; N = 1).

BODY SIZE VARIABILITY

Because of the low number of captures for most species, we were only able to assess sexual size dimorphism in 3 species (Table 1). Combining data from both surveys, there was female-biased sexual size dimorphism in both E. simplicicollis (linear regression models by sex: t = −7.04; P < 0.001; N = 264; female mean wing-length: 15.18; SD = 0.73; N = 184; male mean wing-length: 14.53; SD = 0.55; N = 80), and I. posita (linear regression models by sex: t = −7.29; P < 0.001; N = 133; female mean wing-length: 8.39; SD = 1.067; N = 79; male mean wing-length: 7.12; SD = 0.85; N = 54). Comparing body size variability between sexes, there were no differences in wing-length variances for E. simplicicol-
Table 1. Summary of two odonate surveys in Tampa Bay (Florida, USA). In rank order of capture abundance (TOTAL SAMPLED), odonates are grouped by infraclass (INF) as Zygoptera (Z) or Anisoptera (A), and sex. Wing-size and wing-cell fluctuating asymmetry is reported here as the proportion of asymmetric individuals and their lower (L) and upper (U) 95% confidence intervals (CI) were estimated using the Clopper & Pearson (1934) method. Sample sizes (N) of measurements differ from capture numbers due to wing damage during transport and preservation.

Species	Inf	Sex	Total sampled	Mean	SD	N	Prop. [95% CI]	N
Erythemis simplicicollis (Say, 1839)	A	♂	180	15.12	0.6	178	0.51 [0.44, 0.59]	178
		♀	80	14.54	0.55	80	0.49 [0.37, 0.60]	80
Miathyria marcella (Selys in Sagra, 1857)	A	♂	32	14.06	0.5	31	0.41 [0.24, 0.59]	31
		♀	14	14.31	0.6	14	0 [0, 0.23]	14
Tramea anusta Hagen, 1861	A	♂	8	19.02	0.38	8	0.5 [0.16, 0.84]	8
		♀	2	18.90	0.99	2	1 [0.16, 1]	2
Pachydiplax longipennis (Burmeister, 1839)	A	♂	4	12.55	1.33	4	0.25 [0.01, 0.81]	4
		♀	3	11.20	0.26	3	1 [0.29, 1]	3
Phanogomphus minutus (Rambur, 1842)	A	♂	2	13.45	1.2	2	0.5 [0.01, 0.99]	2
Celithemis eponina (Drury, 1773)	A	♂	1	17.20	NA	1	0.03 [1]	1
Aphylla williamsoni (Gloyd, 1936)	A	♂	1	16.20	NA	1	0 [0.97]	1

FLUCTUATING ASYMMETRY

Table 1 shows the wing-length and fluctuating asymmetry for various odonate species. The data includes mean wing-length, standard deviation, sample size, and 95% confidence intervals. For example, *Erythemis simplicicollis* had a mean wing-length of 15.12 mm with a standard deviation of 0.6 mm, and the fluctuating asymmetry was 0.51 with 95% confidence intervals of [0.44, 0.59].

In contrast, *Miathyria marcella* had a mean wing-length of 14.54 mm with a standard deviation of 0.55 mm, and the fluctuating asymmetry was 0.49 with 95% confidence intervals of [0.37, 0.60].

WATER MITE PARASITISM

Ectoparasitic water mites were not found on any dragonfly or damselfly in either survey.

Discussion

Similar to Paulson’s (1966) observations, many of our estimated flight times indicate clear seasonality in Odonata activity in the Tampa Bay area, with either low abundance or absence during the coldest periods during the dry season (i.e., Nov–Mar). Tampa Bay is located...
at the southernmost frost point of the state (about 27.9506°N). Below this frost line, Odonata may have flight seasons yr round (Paulson 1999); however in Tampa Bay, there is still a high risk of at least 1 frost (0 °C) per dry season. In fact, our first survey experienced 0 °C on 7 Jan. This frost may explain the bivoltine flight time of the Neoptropical *M. marcella* (Fig. 1), because frost would have killed both adults and the invasive plant that nymphs use as habitat (the common water hyacinth, *Eichhornia crassipes* (Mart.) Solms (Commelinales: Pontederiaceae) (Beckemeyer 2009). The common water hyacinth is present at our site, but abundance has not been tracked for seasonal changes. Beginning in Mar and the start of the rainy season, the first dragonfly species to emerge were *M. marcella* and *E. simplicicollis* (Fig. 1), then later in the summer (about Jul), *C. eponina*, *P. longipennis*, and *A. williamsoni* emerged. The only species captured throughout the entire wet season until Oct was *E. simplicicollis*. Finally, the skimmer *T. onusta* emerged briefly in late fall (as also described by Paulson 1966), along with the second emergence of *M. marcella* (Fig. 1). Our second survey was too brief to estimate flight times of damselflies.

Fig. 1. Capture dates of 12 odonate species captured between Oct 2013 to Oct 2014 (top panel), and again from Sep 2017 to Dec 2017 (bottom panel) in the University of South Florida’s Riverfront Park in Tampa, Florida, USA. Dashed lines indicate the start and end of surveys, and shaded areas indicates the typical wet season. Blocks indicate the wk when individuals were captured; spaces without blocks indicate periods when no individuals were captured.

Odonates may indicate aquatic and terrestrial environmental health because of their semi-aquatic life cycles (Bustos-Baez & Frid 2003; Bybee et al. 2016), and because their body size and fluctuating asymmetry may be used as surrogates of environmental stress (Jentzsch et al. 2003). This includes sexual size dimorphism because environmental stress or change can impact nymph growth between females and males (Baker 1986). There was some variability in these traits among the odonates we surveyed. We found that female *E. simplicicollis* were larger, but not more variable than males in forewing-length, which confirms other reports of female-biased sexual size dimorphism based on body-length (McVey & Smittle 1984) and wing-loading (mg per cm²; Locklin & Vodopich 2010). Female-biased sexual size dimorphism also was found among *I. posita* damselflies; however, size data for this species is limited, but Serrano-Meneses et al. (2008) reported this species as slightly male-biased. Likewise we could not find reports of sexual size dimorphism for *M. marcella* dragonflies; however, we found them to be monomorphic. We did not find differences in symmetry in either sex for *E. simplicicollis*, *I. posita*, or *M. marcella*; however, when combining data from each sex, *I. posita* damselflies were asymmetric. However, it is difficult to assess whether this asymmetry has functional importance at this site without clear stressors to link this asymmetry.

Following Lajeunesse (2007), the primary environmental stressor we aimed to measure was larval water mite parasitism; however, we did not capture any parasitized odonates at our site. Many of these species do have reports of water mite parasitism; for example, see Mitchell (1961) for *E. simplicicollis*; Botman et al. (2002) and Mlynarek et al. (2013) for *I. posita*; and Rodrigues et al. (2013) for *M. marcella* water mite parasitism within its native range (Brazil). Water mites are found in almost every type of freshwater habitat, but uncommonly in marine or brackish water (Wolcott 1905), and there are several permanent and temporary freshwater sources near our site. Our sampling site is located on the banks of the Hillsborough River which empties into Tampa Bay, and its salinity can fluctuate with the tides. However, this fluctuation is unlikely to affect water mite activity in our river section, which is over 32.2 km (20 miles) upriver from the mouth, and separated by the Hillsborough River Reservoir dam. Our sampling site also has several ephemeral ponds and swamp land that can dry up during the dry season (about 1 km); however, we sampled only near the river’s edge since 23 Apr 2015, when 1 parasitized *I. posita* damselfly parasitized
was captured (MJ Lajeunesse, personal observation). This female had 23 water mite larvae (7 thorax and 16 abdomen), which were dark orange with dark brownish-black spots, and 1 larvae was lodged between the ovipositor and the last abdominal (10th) segment. Given the lack of parasitized damselflies in our second survey, this parasitized individual may have migrated from a neighboring site and future surveys will target these ephemeral ponds to improve water mite sampling.

There are several ways we can improve the quality and scope of our surveys. Raebel et al. (2010) recommend collecting dragonfly exuviae for diversity surveys because it decreases capture biases (Lajeunesse et al. 2004), and in a similar vein, emergence traps also may provide better quality flight season data. These approaches avoid challenges with differentiating between site-residents and immigrants, which we could not separate in our surveys. Finally, Florida has a strong baseline of dragonfly and damselfly surveys in the early- to mid-20th century (Paulson 1966), but more recent surveys are lacking. We hope our surveys encourage more regional assessments throughout Florida. These would significantly improve long-term forecasts of changes in phenology and geographic ranges of odonates, especially if surveys span the broad latitudinal gradient of the Florida peninsula.

Acknowledgments

Support was provided by the University of South Florida, Tampa, Florida, USA.

References Cited

Baker RL. 1986. Effects of density, disturbance, and waste products on growth of larval Endallogla erubim (Hagen) (Odonata: Coenagrionidae). Canadian Entomologist 118: 325–328.

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

Beckemeyer RJ. 2009. First record of the dragonfly Mithraia marcella (Selys) for Kansas (Odonata: Anisoptera: Libellulidae). Transactions of the Kansas Academy of Science 112: 130–132.

Botman G, Coenen L, Lanciani CA. 2002. Parasitism of Ischnura posita (Odonata: Coenagrionidae) in Florida by two species of water mites. Florida Entomologist 85: 279–281.

Bustos-Baes S, Frid C 2003. Using indicator species to assess the state of macrobenthic communities. Hydrobiologia 496: 299–309.

Bybee S, Cordoba-Aguilar A, Durvey MC, Futahashi R, Hansson B, Lorenzo-Carbal la MO, Schilder R, Stoks R, Suvorov A, Svensson EJ, Sweegers J, Takahashi Y, Watts PC, Wallenreuther M. 2016. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology 13: 46. doi: 10.1186/s12983-016-0176-7

Byers CF. 1930. A Contribution to the Knowledge of Florida Odonata, including additions to the state list. University of Kansas Museum of Natural History 2: 101–103.

Daigle JY. 1978. A checklist of the Odonata from Orange County, Florida. Florida Entomologist 61: 201–204.

Davis WT. 1921. A new dragonfly from Florida. Bulletin of the Brooklyn Entomological Society 16: 109–111.

Dingemanse NJ, Kalkman VJ. 2008. Changing temperature regimes have advanced the phenology of British Odonata are related to climate. Global Change Biology 13: 933–941.

Dijkstra M, Reissig L. 1995. Ectoparasitism of damselflies by water mites in central Florida. Florida Entomologist 78: 643–649.

Dingemanse NJ, Kalkman VJ. 2008. Changing temperature regimes have advanced the phenology of British Odonata are related to climate. Global Change Biology 13: 933–941.

Dijkstra M, Reissig L. 1995. Ectoparasitism of damselflies by water mites in central Florida. Florida Entomologist 78: 643–649.

Dunkle SW. 1992. Distribution of dragonflies and damselflies (Odonata) in Florida. Florida Entomologist 65: 201–204.

Dunkle SW, Westfall MJ. 1982. Odonata, pp. 32–45 in Franz R [ed.], Rare and Endangered Biota of Florida, Vol. 6. University of Florida Press, Gainesville, Florida, USA.

Frank JH, McCoy ED. 1992. The immigration of insects to Florida, with a tabulation of records published since 1970. Florida Entomologist 75: 1–28.

Garrison RW, von Ellenreider N, Louton JA. 2006. Dragonfly Genera of the New World: An Illustrated and Annotated Key to the Anisoptera. Johns Hopkins University Press, Baltimore, Maryland, USA.

Hassall C, Thompson DJ, French GC, Harvey IF. 2007. Historical changes in the phenology of British Odonata are related to climate. Global Change Biology 13: 933–941.

Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S. 2014. Multcomp: simultaneous inference in general parametric models. Version 1.3–6. https://cran.r-project.org/web/packages/multcomp/ (last accessed 27 Dec 2019).

Jentzsch A, Kohler G, Schumacher J. 2003. Environmental stress and fluctuating asymmetry in the grasshopper Chorthippus parallelus (Acrididae: Gomphocerinae). Zoology 106: 117–125.

Lajeunesse MJ. 2007. Ectoparasitism of damselflies by water mites in central Florida. Florida Entomologist 90: 643–649.

Lajeunesse MJ, Forbes MB, Smith BP. 2004. Species and sex biases in ectoparasitism of dragonflies by mites. Oikos 106: 501–508.

Locklin JL, Vodopich DS. 2010. Eugregarine parasitism of Erythemis simplicicollis (Say) at a coastal wetland: a fitness cost to females? (Anisoptera: Libel- lulidae). Odonatologica 39: 319–331.

McMauley SJ, Davis CJ, Werner EE, Robeson II MS. 2014. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. Journal of Animal Ecology 83: 858–865.

McMurray Jr PD, Simon TP. 2011. New county distribution records of dragonflies and damselflies (Odonata) in Florida, Kentucky, and Tennessee. Journal of the Kentucky Academy of Science 72: 59–62.

McVey ME, Smittle BJ. 1984. Sperm precedence in the dragonfly Erythemis simplicicollis. Journal of Insect Physiology 30: 619–628.

Mitchell R. 1961. Behaviour of the larvae of Arrenurus fissicornis Marshall, a water mite parasitic on dragonflies. Animal Behaviour 9: 220–224.

Mlynarek JJ, Knee W, Forbes MR. 2013. Relative geographic range of sibling species of host damselflies does not reliably predict differential parasitism by wa- ter mites. BMC Ecology 13: 50. doi: 10.1186/1472-6785-13-50

Nagy RC, Lockaby BG, Kalin L, Anderson C. 2012. Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast. Hydrological Processes 26: 2019–2030.

Needham JG. 1946. Some dragonflies of early spring in southern Florida. Florida En- tomologist 28: 42–47.

Paulson D. 1999. Ischnura perpurna mclachian (Zygoptera: Coenagrionidae) has an endomorphomorphic female, and another suggestion to modify the terminology of female color polymorphism in Odonata. International Journal of Odonatology 2: 101–103.

Paulson D. 2001. Recent Odonata records from southern Florida. International Journal of Odonatology 4: 57–69.

Paulson D. 2011. Dragonflies and Damselflies of the East. Princeton University Press, Princeton, New Jersey, USA.

Paulson DR. 1966. Dragonflies of South Florida (Odonata: Anisoptera). Ph.D. disserta- tion, University of Miami, Coral Gables, Florida, USA.

R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project. org/ (last accessed 27 Dec 2019).

Reece BA, McIntyre NE. 2009. Community assemblage patterns of odonates inhabiting a wetland complex influenced by anthropogenic disturbance. Insect Conservation and Diversity 2: 73–80.

Richter O, Suhling F, Mueller O, Kern D. 2008. A model for predicting the emer- gence of dragonflies in a changing climate. Freshwater Biology 53: 1278–12792.

Rodrigues ME, Carriço C, Pinto ZT, Mendonça PM, Queiroz MM. 2013. First record of the dragonfly Arrenurus fuscicornis in Brazil. Biota Neotropica 13: 365–367.

Serrano-Meneses MA, Cordoba-Aguilar A, Azpilcueta-Amorin M, Gonzalez-Sori- ano E, Szekely T. 2008. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. Journal of Evolutionary Biology 2: 101–103.

Warnes GR, Bolker B, Lumley T. 2013. gtools: Various R Programming Tools. R package vers. 2.7.1. http://CRAN.R-project.org/package=gtools (last accessed 27 July 2019).

Westfall MJ. 1941. Notes on Florida Odonata. Entomology News 53: 94–132.

Westfall MJ. 1953. Notes on Florida Odonata, including additions to the state list. Florida Entomologist 36: 165–173.

Wolcott RH. 1905. A review of the genera of the water-mites. Transactions of the American Microscopical Society 26: 161–243.

Wright M. 1944. Notes on dragonflies in the vicinity of New Smyrna Beach, Florida. Florida Entomologist 27: 35–39.