Chronic Myeloid Leukemia in 2020

Rüdiger Hehlmann

Correspondence: Rüdiger Hehlmann (e-mail: hehlmann.eln@gmail.com).

Abstract

New insights have emerged from maturing long-term academic and commercial clinical trials regarding optimum management of chronic myeloid leukemia (CML). Velocity of response has unexpectedly proved less important than hitherto thought, does not predict survival, and is of unclear relevance for treatment-free remission (TFR). Serious and cumulative toxicity has been observed with tyrosine kinase inhibitors that had been expected to replace imatinib. Generic imatinib has become cost-effective first-line treatment in chronic phase despite chronic low-grade side-effects in many patients. Earlier recognition of end-phase by genetic assessment might improve prospects for blast crisis (BC). TFR has become an important new treatment goal of CML. To reflect this new situation ELN has recently revised and updated its recommendations for treating CML. After a brief review of 175 years of CML history this review will focus on recent developments and on current evidence for treating CML in 2020.

Introduction

Twenty-two years after the first patients with chronic myeloid leukemia (CML) were treated with the tyrosine kinase inhibitor (TKI) imatinib, outcome exceeds all expectations: most CML patients achieve a normal life expectancy, some in sustained treatment-free remissions (TFR) may operationally be cured. Some expectations remain unmet, however. Most patients require life-long maintenance therapy. Also, progression to blast crisis still occurs in 5% to 7% of patients and remains a challenge. CML has not become the model disease for treating other leukemias or cancers. But the principle of elucidation of pathogenesis as a successful approach to treatment of cancer has been impressively shown in CML.

Success came a long way. CML was first described in 1844/5 when Virchow coined the term leukemia (Leukämie).1-5 Bone marrow was proposed early as possible tissue of origin of CML,6 but a definite diagnosis became possible only 82 years later when the Philadelphia (Ph)-chromosome was discovered and then the translocation t (9;22) was identified as hallmarks of the disease.7,8 The subsequent molecular dissection of the chromosomal breakpoints with identification of the BCR-ABL fusion products laid the groundwork for molecular CML-diagnostics and for targeted therapy with BCR-ABL Tyrosine kinase inhibitors (TKI) as the current treatment principle of choice. Molecular BCR-ABL1 monitoring in CML with derivation of the International Scale (IS) has become the posterchild for molecular monitoring of other leukemias and diseases. Early palliative treatments were arsenic (Fowler’s solution, 5 to 10 drops 3 x daily for several weeks)9,10 and splenic irradiation,11 the mainstays of treatment until 1953 when busulfan was introduced.12 Hydroxyurea, available since 1963,13 was easier to handle, had fewer side effects than busulfan and prolonged survival modestly.14 Bone marrow transplantation was introduced in the late seventies15 and provided the first cures.16 At the same time interferon alpha (IFN) was shown to induce complete cytogenetic remissions (CCR) in a substantial minority of patients,17 usually younger patients. Randomized studies18-20 documented prolongation of survival with IFN which became the treatment of choice, although its exact mechanism of action is still not fully understood.21 The benefit by IFN had just been recognized (ASH management recommendations 1999)22 when BCR-ABL tyrosine kinase inhibition was introduced.

The detection of the ABL-oncogene was a byproduct of the search for a human leukemia virus in the 1960s and early 1970s. The first oncogenes (SRC, MYC) were isolated from chicken leukemia viruses.23,24 ABL was isolated from the acutely transforming murine Abelson leukemia virus in 1980.25 Numerous other oncogenes, isolated from retroviruses and from genomes of normal cells, followed. Many oncogenes, amongst them SRC and ABL, encoded kinase activities that most notably phosphorylated tyrosine, a rarely phosphorylated amino acid.23,26 This finding gained significance for CML when it was recognized that the human ABL oncogene homologue was located on chromosome 9 at the breakpoint of t (9;22).22 The discovery of fusion transcripts of ABL with BCR sequences from chromosome 2228 led to transfection experiments and the observation that BCR-ABL sequences induced leukemia in mice.29,30 Since BCR-ABL1’s oncogenic properties were mainly connected to its tyrosine kinase activity, it was the logical next step to define an inhibitor specific for bcr-abl tyrosine kinase suitable for therapeutic use in humans.31

ELN Foundation, Weinheim; Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany.
The author declares no conflicts of interest.
Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
HemaSphere (2020) 4:5(e468), http://dx.doi.org/10.1097/HSS.0000000000000468.
Received: 14 May 2020 / Accepted: 9 July 2020
The first trial with imatinib, a phase I study with poor risk CML patients, started in 1998. The stunning results convinced even skeptics that further studies were indicated. In 1999, a group of international investigators on CML met in Biarritz, France, to discuss the results and to convince Novartis to produce imatinib (at that time still STI571) in sufficient quantities for larger phase II and III trials. A letter sent by the group to Dr Daniel Vasella, then CEO of Novartis, recommending scale-up of the production of imatinib made the difference (The Magic Bullet).

The development of tyrosine kinase inhibitor (TKI) therapy and of molecular monitoring has been extensively reviewed by ELN and will not be repeated here. But recent developments of current importance as discussed by ELN in its most recent recommendations, will be highlighted in this review.

Epidemiology

Median age at diagnosis of CML is approximately 56 to 57 years in Western countries as estimated from the EU TOS and SIMPLICYT registries. Patients older than 70 years make up more than 20%. In developing countries with younger populations median age is less than 50 years. The incidence per year per 100,000 population varies by age and ranges between 1 and 2 depending on the age of the respective populations.

Initial diagnostic workup

The workup at baseline includes the following examinations (Table 1).

The preferred risk score for CML in the TKI era is the EU TOS long-term survival (ELTS) score whose accuracy to predict death from CML is higher than the Sokal score (Table 2). Identification of transcript type is important for molecular monitoring, since atypical transcripts may give false negative test results and is also of prognostic importance. The shorter e13a2 transcript is reportedly associated with shorter survival and a longer time to DMR compared with the longer e14a2 transcript.

Table 1	Initial Diagnostic Workup.
- Complete blood count (CBC) with differential at the microscope	
- Marrow cytology	
- Cytogenetics	
- Polymerase chain reaction (PCR) for detection and identification of BCR-ABL1 transcripts	
- Physical examination with special attention to spleen size	
- Electrocardiogram	
- Standard biochemistry with hepatitis serology	

Table 2	Assessment of Risk Score (ELTS score).	
Score	Calculation	Definition of risk groups
ELTS	0.0025 × (age/10)	Low risk: < 1.5680
	+0.0615 × spleen size	Intermediate risk: 1.5680–2.2185
	+0.1052 × blood blasts	High risk: > 2.2185
	+0.4104 × (platelet count/1000)	0.5

ELTS: EU TOS score for long-term survival considering disease-specific death, age in years, spleen size in cm below the left costal margin measured by palpation (maximum distance); percentage blood blasts; platelets per 10^9. All values must be collected before any treatment. To calculate the ELTS score, go to http://www.leukemia-net.org/content/leukemias/cml/elts_score/index_eng.html.

Based on evidence from a registry of transcript types in 45,503 newly diagnosed patients from 45 countries transcript type may be helpful to predict response to treatment, outcome of treatment, and TFR. Several additional risk factors have been implicated, but so far none has been validated or found useful except reticulin content in a bone marrow biopsy and high-risk additional chromosomal abnormalities (ACA; Table 3). High-risk ACAs predict poorer response to TKIs and a higher risk of progression. Whereas the 2013 ELN-recommendations considered ACA a warning sign, the 2020 ELN recommendations upgraded ACA to a high-risk sign for treating patients.

First-line treatment

With few exceptions, the current first-line treatment is a TKI. A short course of hydroxyurea may be given in symptomatic patients while a diagnosis of CML is pending. Currently, 4 TKIs are approved for first-line treatment by the FDA and EMA: imatinib (Glivec®, Novartis), dasatinib (Sprycel®, Bristol-Myers Squibb), nilotinib (Tasigna®, Novartis), and bosutinib (Bosulif®, Pfizer). Radotinib (Supect®, Dae Wong Pharma) has been approved in South-Korea only and is not further considered here.

Imatinib is effective in all phases of CML, and therapy has resulted in a normal life expectancy of most patients treated in chronic phase (CP) in clinical trials and population-based registries. No serious toxicity has surfaced after more than 20 years of use. DMR was achieved in more than 80% of patients which is stable in more than 70% allowing attempts at treatment discontinuation to achieve treatment-free remissions alleviating chronic low-grade side-effects such as fatigue and muscle cramps.

Generic imatinib is now available worldwide and has become cost-effective initial therapy in CP. If a generic drug meets the national standards of a country involved in quality, bioavailability and efficacy, generic imatinib is an acceptable alternative to a branded product. The 2020 ELN recommendations state generic and brand product dosing should be the same. Monitoring the response to generics should also be the...
same as with branded drugs. If there is a change in therapy from a brand to a generic product, enhanced vigilance for the first six months is advised. Patients should continue the same generic brand if possible, to avoid potential side-effects due to changes in drug structure, bioavailability and drug preparation.

Imatinib resistance, second generation TKI, and second-line treatment

Second generation TKIs (2G-TKI, dasatinib, nilotinib, bosutinib) were developed following recognition of imatinib kinase domain (KD) resistance mutations which occur in 4.6% of 1531 CP CML patients over 10 years making it relatively rare. The higher potency of 2G-TKIs resulting in more rapid responses and relief of symptoms compared to imatinib when used in second-line led to their use also as first-line therapy. By recognizing imatinib resistant mutations, fewer patients progressed to blast crisis (BC). These positive effects, however, were counterbalanced by drug-induced adverse effects. 5- and 10-year data of randomized trials indicate survival with 2G-TKI first-line is similar to imatinib. The high rates of adverse effects to 2G-TKI (particularly pleural effusions in more than 25% of dasatinib-treated patients and serious vascular events with linear increase to 25% by 10 years in nilotinib-treated patients) argue against the use of 2G-TKI in first-line therapy.

For second-line treatment, patients must be carefully selected considering the comorbidities and the side-effects of 2G-TKI. In the case of failure to imatinib, a change of therapy is mandatory and should be accompanied by investigating BCR-ABL1 KD mutations (Table 3). In the case of intolerance, the decision to change may be subjective depending in part on the patient, the physician and options of supportive care. Response criteria are the same as for first-line treatment.

Since dasatinib has pleuro-pulmonary toxicity, previous pleuro-pulmonary disease is a strong contraindication. A dose reduction from the approved dose of 100mg/day in CP to 50mg/day may reduce toxicity.

Because of the cardiovascular toxicity of nilotinib a history of coronary heart disease, cerebrovascular accidents and/or peripheral arterial occlusive disease represent strong contraindications to nilotinib. Also, hypertension, diabetes mellitus, hypercholesterolemia and a history of pancreatitis may be contraindications to using nilotinib. A dose-increase from the approved dose of 300mg twice daily is not recommended.

No relevant comorbidities and no strong contraindications to bosutinib have been identified. At the approved dose of 400mg/day annoying, but typically transient diarrhea occurs. Owing to the shorter observation time compared to the other TKI, no firm statement can be made regarding long-term safety.

Table 4

TKI Indications Based on ABL1 Kinase Domain Mutation Status.
T315I
F317L/V/I/C, T315A
V299L
Y253H, E255V/K, F359/V/C

* Data from in vitro studies suggest that E255K and, to a lesser extent, E255 V, might be less sensitive to bosutinib.

Table 5

Study	Dose (mg)	n	Age at diagnosis, median (years)	5-year survival (%)	10-year survival (%)	Median observation time (years)
CML-IV	Imatinib 400-800	1536	53	90	82	9.5
IRIS	Imatinib 400	553	50	89	83.3	10.9
MDACC	Imatinib 400	70	48.3	NR	80	9.9 (min. 8)
French Spirit	Imatinib 400-600	787	51	NR	85	10
ENEStnd	Imatinib 400	283	46	92	88.3	10
	Nilotinib 600	282	47	94	87.6	
Dasatinib	Imatinib 400	260	49	90	NA	5
	Dasatinib 100	259	46	91	91	

Median (estimate): IM = imatinib, Nilo = nilotinib, Dasa = dasatinib,
the genome and expression profiles of resistant CML cells may identify somatic mutations92,93 as early signs of progression, and lead to a genetically-based risk classification with the potential for non-BCR-ABL1 targeted therapy for resistant patients.82 BCR-ABL1 mutations can be detected with sensitivities of about 20% by Sanger sequencing and in about 3% by NGS. NGS is the recommended technology to detect clinically relevant BCR-ABL1 resistance mutations in patients not responding adequately to TKI.83,84

Allogeneic hematopoietic cell transplantation

Despite the superiority of drug treatment, allogeneic hematopoietic cell transplantation has retained a place in CP CML for patients with disease resistant to multiple TKIs or personal preferences.85,86 In resource poor countries the one time expense of a transplant may be more economical than life-long treatment with a TKI.

Transplants should be strongly considered in persons resistant to 2G-TKIs. Someone resistant to the initial 2G-TKI therapy has a low chance of achieving a durable response to an alternative TKI and should be assessed early for a transplant. Early transplantation as a rule improves outcome.87 If the patient has also failed ponatinib, risk of progression is high. Someone progressing to AP under treatment is a candidate for an immediate transplant. For a patient presenting in BC a return to a second CP (CP2) should be attempted. Return to CP2 improves transplantation outcome.85,88 Also, in patients with high-risk ACA and low blast counts early transplantation may improve survival.48 Transplant mortality in CP is low.85 but GvHD remains a problem. Transplantation in BC is a high-risk procedure and not advised. 37

Pregnancy and fertility

All TKIs are teratogenic and should be withheld during pregnancy.89,90 Low-level secretion of TKIs in breast milk contraindicates their use during breast-feeding.91 Sperm quality and morphology are unchanged after treatment with TKI.92 For more in-depth information see the ELN 2020 recommendations.37

Response monitoring and milestones

Timely recognition of suboptimal response or resistance to TKI requires regular monitoring. Hematologic and cytogenetic monitoring have been replaced in most instances by the more sensitive molecular monitoring with quantitative PCR-techniques for BCR-ABL1 transcripts.93,94 Transcript levels are reported in a standardized fashion according to the International Scale (IS).95–97 which underlies the response milestones guiding treatment (Table 6). Complete cytogenetic remission (CCR) has been shown to be equivalent to 0.1% BCR-ABL1 on the IS.98 DMR at the MR4 and MR4.5 levels is prognostic. Progression of CML is extremely rare at these levels.57 Patients may be operationally cured and require no further treatment. To test this possibility TKI discontinuation studies have been undertaken to determine optimum duration of treatment and of deep DMR, rate of TFR after discontinuation, and markers predictive of successful discontinuation,59,99 see paragraph on TFR below.

Quality of life

This is an important evolving field building on survival, but beyond the scope of this review.

In brief, since most patients receive TKIs for many years or even indefinitely, observation of quality of life in these patients and amelioration of chronic low-grade side-effects are important. Current research preferentially addresses tolerability of different TKIs.100,101 Replacement of one TKI by another may improve tolerability, but frequently at the expense of other, potentially more serious toxicity.102 Dose-reductions of TKIs are an option.100,103 Patient-reported outcome (PRO) questionnaires are encouraged to quantify chronic quality of life issues faced by CML patients.104

Treatment-free remission (TFR)

TFR is a new significant goal of CML management. A significant proportion of patients will achieve a DMR defined as BCR-ABL1 levels of MR4 and MR4.5 on the IS with current TKIs. Benchmark times for molecular response rates with imatinib are shown in Figure 1.

Median times to MR4 are 2.9 years, to MR4.5 4.7 years. 5-year rates are 67% for MR4 and 53% for MR4.5.

Table 7 lists benchmarks of DMR that can be expected by 5 and 10 years after treatment with imatinib, nilotinib and dasatinib.55,57,67–69 Five-year follow-up of first-line bosutinib is not yet available.105

An attempt at treatment discontinuation can be considered, if sustained DMR of sufficiently long duration has been achieved. An initial observation of 12 patients94 showed that about half of them in DMR (no detectable BCR-ABL transcripts by PCR) stayed in remission after cessation of imatinib. In a follow-up study of 100 patients (STOP IMatinib or STIM study) 38% stayed in TFR after an observation period of 7 years.38,106 Most relapses occurred early within the first 6–12 months. Loss of MMR indicates failure of TFR.107 Virtually all relapsing patients regained their prior best response level after re-treatment.

A polymyalgia-like TKI withdrawal syndrome of musculoskeletal pain may occur in a third of patients which is usually self-limited, but may require treatment with acetaminophen, non-steroidal anti-inflammatory drugs or rarely a short course of oral steroids.108,109 A patient study reported that the TKI withdrawal syndrome if unmanaged may cause more morbidity than hitherto thought.110

Table 8 shows a selection of discontinuation studies after treatment with imatinib or the 2G-TKI dasatinib and nilotinib.

The largest of these studies = the Euro-SKI study of 755 mostly imatinib treated CML patients who had been in DMR at the MR4 level for at least 1 year = showed a TFR rate of 49% after

Time	Optimal	Warnings	Failure
Baseline	–	High-risk ACA	–
3 months	10%	>10%	>10%
6 months	1%	>1–10%	>10%
12 months	0.1%	>0.1–1%	>1%
Anytime	0.1%	>0.1–1%	>1%

Loss of MMR indicates failure after TFR.
3 years. Duration of MR 4 was determined as the most important predictor of TFR. Treatment discontinuation is feasible only in CP patients. Patients in advanced phases, particularly in BC, remain a challenge.

After failure of TFR, a second stop after additional treatment can result in a TFR-rate as high as 33% at 4 years, updated at EHA 2019. Interestingly, dose reduction prior to complete discontinuation to reduce side-effects may improve successful TFR (Destiny study). Another interesting observation is the finding in the ISAV study, by comparing TFR rates in younger and older patients, of significantly lower TFR rates in patients under 45 years of age which is in line with the observation of more aggressive disease in adolescents and young adults.

Several studies addressed the issue of changing from imatinib to a 2G-TKI to short the interval to DMR and TFR. A more rapid response was generally observed, but toxicity of 2G-TKI limits this approach.

In the TIDEL-II study, the dose of patients receiving imatinib 600 mg/day failing to reach time benchmarks was increased to imatinib 800 mg/day or medication was changed to nilotinib 2 × 400 mg/day. This approach was considered feasible.

In the ENEStcmr study, imatinib-treated patients in CCR were randomized to remain on imatinib or to change to nilotinib. The rate of DMR by 4 years was, as expected, higher in the nilotinib group, but only 57% of nilotinib-treated patients completed 4 years of nilotinib therapy. The study provided no information whether patients in DMR subsequently achieved TFR successfully. It should be remembered that most patients in durable DMR still harbor residual BCR-ABL1 sequences in their genomic DNA.

The ELN 2020 recommendations define the following requirements for TKI discontinuation for successfully achieving TFR (Table 9). It is recommended to consider TFR in appropriate patients after careful discussion employing the concept of shared decision making. First-line TKI, or a change to a 2G-TKI, for faster DMR are not recommended because of the more serious side-effects of 2G-TKI, their increased costs and absent information about the number of patients who might actually benefit. A change to 2G-TKI to improve the depth of response can be considered in selected patients in whom DMR has not been reached such as the motivated patient with a high priority for TFR, younger patients with low or intermediate risk disease or women who wish to become pregnant.

End phase CML and blast crisis

Outcome of patients in blast crisis (BC) treated with single agents, combination chemotherapy, and TKI alone and in combination with intensive chemotherapy remains unsatisfactory. Once BC has occurred, survival is generally less than one year with death due to infection or bleeding. New approaches are urgently needed.
Table 8
Selected TKI-discontinuation Studies, Update 2020.

Study	TKI	Min. treatment duration (years)	n	Depth of MR	Min. duration of MR (years)	RFS with at least MMR	References
Euro-SKI	IM	3	755	MR4	1	49% at 2 years	Sautkic et al., 2018
STIM	IM	2	100	MR5	2	37% at 10 years	Etienne et al., 2017
TWISTER	IM	3	40	MR4.5	2	45% at 42 months	Ross et al., 2013
A-STIM	IM	3	80	UMRD	2	64% at 23 months	Rousselot et al., 2014
KID study	IM	3	126	MR4.5	2	58% at 2 years	Lee et al., 2016
STIM2	IM	2	200	MR4.5	2	46% at 2 years	Zang 2018 ASH a. 4252
ISAIV	IM	2	112	UMRD	1.5	52% at 22 months	Mori et al., 2015
STOP 2G-TKI	Dasa / Nilo	2	60	MR4	2	ca. 55% at 4 years	Rea et al., 2017
DADI	Dasa 2nd line	ND	63	MR4	1	49% at 6 months	Imagawa et al., 2015
NILST	Nilo	2	87	MR4	2	59% at 1 year	Kadowaki et al., 2016
TRAD	IM / Dasa	3	75	MR4	2	58% at 6 months	Kim et al., 2016
Dasfree	Dasa	2	84	MR4	1	46% at 2 years	Shah et al., 2019
ENESTop	Nilo 2nd line	3	126	MR4	2	58% at 4 years	Hughes et al., 2016
STAT2	IM / Nilo	2	96	MR4	2	68% at 1 year	Takahashi et al., 2018
ENESTfreedom	Nilo	2	190	MR4	2	52% at 2 years	Hochhaus et al., 2017
D-STOP	IM / Dasa	ND	54	MR4	2	63% at 1 year	Kumagai et al., 2016
Spanish study	IM/Nilo/Dasa	3	236	MR4	2	64% at 4 years	Boluda et al., 2018
Routine Care	TKI	7.1	128	MR4	4	67% at 2.9 years	Rousselot 2019 ESH
RE-STIM	(2nd stop)	3.1 (med)	106	MR4.5	1.7 (med)	33% at 4 years	Logros et al., 2017
Total: 19			2718				33%–68% after 0.5–10 years

Table 9
Requirements for TKI Discontinuation.

Mandatory:
- CML in first CP only (data are lacking outside this setting)
- motivated patient with structured communication
- accessibility to high quality quantitative PCR using the International Scale (IS) with rapid turn-around of PCR test results
- patient agreement to more frequent monitoring after stopping treatment:
 - this means monthly for the first 6 months, every 2 months for months 6–12, and every 3 months thereafter
- accessibility to high quality quantitative PCR using the International Scale (IS) with rapid turn-around of PCR test results

Minimal (stop allowed):
- first-line therapy or second-line if intolerance was the only reason for changing TKI
- typical e13a2- or e14a2-BCR-ABL1 transcripts
- duration of TKI therapy >5 years (>4 years for 2G-TKI)
- duration of DMR (MR4 or better) >2 years
- no prior treatment failure

Optimal (stop recommended for consideration):
- duration of TKI therapy >5 years
- duration of DMR >3 years if MR4
- duration of DMR >2 years if MR4.5

Genetically-based risk assessment by ACA and somatic mutations has recently been proposed for a better recognition of patients at risk for progression to end-stage CML and BC. Currently, diagnosis of BC rests on the percentage of blasts (20% or 30%) in blood or marrow, but not all patients dying of CML reach the BC-defining blast levels. Earlier recognition of end-phase might enable earlier intervention to improve prospects for BC.

End-phase CML comprises early progression with emerging high-risk ACA and late progression with failing hematopoiesis and blast cell proliferation. Up to 90% of BC patients show chromosomal aberrations in addition to the Ph-chromosome (term major or minor route by Mitelman depending on their frequency in BC) and as many as 80% BCR-ABL1 KD mutations. Also, somatic mutations have been detected in BC and are associated with poor risk disease when detected at diagnosis. Blast increase in blood or marrow represents the end stage of progression.

High-risk ACA defined as the major route ACA +8, +Ph, i(17q), +19, +21, +17 (the ACA most frequently observed in BC), the minor route ACA -7q-, 3q26.2 and 11q23 rearrangements (less frequently observed, but negative impact on prognosis), and complex aberrant karyotypes herald death by CML in the presence of low blast counts.

Somatic mutations observed in BC and in poor risk patients include mutations of genes associated with poor outcome in other malignancies. They also might enable early identification of patients at risk of progression. Frequently mutated genes include RUNX1, ASXL1 and IKZF1. Patients with suboptimal responses by ELN criteria and with less than DMR after 2 years (less than MR4) should have a genetic evaluation. In patients with high-risk ACA more intensive treatment, for example, by hematopoietic cell transplantation (allo-HCT), may be indicated. Current treatment approaches to end-phase CML are summarized in Figure 2. Treatment depends on disease stage. Elimination of BCR-ABL1 by effective TKI treatment is expected to prevent progression.

Cytogenetic monitoring is indicated when response to therapy is unsatisfactory. When high-risk ACA emerge, intensification of treatment should be considered. There is also evidence that earlier transplantation is more successful in patients with high-risk ACA. An appropriate time for a change of treatment may be the emergence of high-risk ACA rather than waiting for an increase of blasts. AP should be treated as high-risk CML. Transplantation is recommended if response to drug treatment is not optimal. Treatment of BC consists of intensive combination chemotherapy based on AML regimens for myeloid, and ALL regimens for lymphoid, BC with or without a TKI, for instance dasatinib at the...
approved dose 140 mg/day for BC or ponatinib, in preparation for a prompt transplantation if possible. Flow cytometry distinguishes between lymphoid and myeloid BC allowing appropriate selection of treatment. Lymphoid BC has more treatment options and a better outcome than myeloid BC. In patients who cannot tolerate intensive chemotherapy regimens, a more palliative approach with less intensive therapy according to immunophenotype should be considered such as vincristine and prednisone in lymphoid BC.

There is evidence that emergence of high-risk ACA is an indication for a timelier change of treatment with better outcome. Comparing transplantation outcome in early and late end-phase, a clinically relevant, though not statistically significant difference of 30% in 2-year survival suggests that outcome of transplanted patients with high-risk ACA depends on disease stage similar to patients without ACA.

Summary and prospects

Based on the results of maturing long-term clinical trials management of CP-CML is again changing profoundly. All randomized studies that compare imatinib 400 mg once daily with 2G-TKIs, imatinib 400 mg with dose increase, or imatinib combined with IFN alpha or low-dose cytarabine have failed to improve OS. Although deeper molecular responses occurred more rapidly with 2G-TKIs, with imatinib dose increase or with imatinib in combination with peg-IFN alpha, these events did not translate into better OS than with imatinib at a standard dose of 400 mg daily. Nevertheless, these studies provided greater insights in the safety and efficacy of the drugs, as well as benchmarks for molecular response as a basis for individualized treatment and eventually treatment discontinuation. The studies showed that survival has moved close to that of the general population. Now more patients die of CML-unrelated causes than from CML. The goal of treatment in these patients is better supportive care and management of side-effects of treatments aiming at best possible quality of life.

A new important development has been recognizing that treatment can be successfully stopped in a substantial minority of patients depending upon whether duration of both treatment and DMR are long enough to make TFR a feasible option. TFR is an important new goal of CML management which should be discussed with appropriate patients.

Figure 2. Management strategy for end-phase CML. The red arrow indicates progression to the worse. CP2 = second chronic phase.

Stage	Management
Prevention of progression	Elimination of BCR-ABL1 by effective TKI treatment
Emergence of high-risk ACA	High-risk patients, observe closely, consider intensification of treatment (ponatinib, early allo-HCT)
AP	To be treated as high-risk CML; proceed to allo-HCT if response not optimal
Primary BC	Start with imatinib, change to a 2G-TKI according to KD-mutation profile (dasatinib at 140mg/day)
Resistance to 2G-TKI (first or second-line)	Ponatinib or experimental agent
Failure to ponatinib	Assessment for allo-HCT, donor search
Progress to BC	High-risk of progression, early allo-HCT recommended
	Attempt at return to CP2
	Outcome with currently available TKI poor
	Addition of chemotherapy based on AML regimens for myeloid BC (such as dasatinib or ponatinib + FLAG-IDA or ALL regimens for lymphoid BC (such as imatinib or dasatinib + hyperfractionated CVAD) recommended
	Choice of TKI should be based on prior therapy and BCR-ABL1 KD-mutational status
	After CP2 is achieved proceed to allo-HCT immediately.
Regarding changing therapy from imatinib to a 2G-TKI in a patient with stable CCR or MMR, but in whom the level of DMR (< MR< 4) was insufficient to warrant consideration of discontinuation, no recommendation can be made in view of the risk of serious cumulative toxicity of 2G-TKI.

Current challenges on the path to cure of CML are increasing the proportion of patients in whom treatment can be successfully discontinued, and the further decrease of patients who progress to BC. This can be achieved by optimizing treatment with available drugs, by developing new drugs with better efficacy and by better recognition of patients at risk for progression and of optimum conditions for treatment discontinuation (duration of DMR, duration of treatment, other factors such as risk score, age, gender), and by more intensive treatment of patients not responding well enough, respectively. Of urgency is still the optimum conditions for treatment discontinuation (duration of DMR, duration of treatment, other factors such as risk score, age, gender), and by more intensive treatment of patients not responding well enough, respectively. Of urgency is still the optimum conditions for treatment discontinuation (duration of DMR, duration of treatment, other factors such as risk score, age, gender), and by more intensive treatment of patients not responding well enough, respectively. Of urgency is still the optimum conditions for treatment discontinuation (duration of DMR, duration of treatment, other factors such as risk score, age, gender), and by more intensive treatment of patients not responding well enough, respectively.

Finally, factors causing CML remain of interest. The only established risk factor is still radiation as observed after the atomic bombs on Hiroshima and Nagasaki. Better epidemiologic studies and registries may provide an answer.

Acknowledgements

The author thanks Drs. Richard T Silver and Robert P. Gale for critically reading the manuscript, and Johannes Hehlmann for support.

References

1. Donné A. Cours de microscopie complementaire des etudes medicales. Bailleure, Paris. 1844;135:196.
2. Bennett JH. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinburgh Med Surg J. 1845;64:413–423.
3. Virchow R. Weisses Blut. Frorieps Notzre. 1845;36:151–156.
4. Virchow R. Die Leukämie. In: Gesammelte Abhandlungen Zur Wissenschaftlichen Medizin. 1856, 19–211. Meidinger, Frankfurt.
5. Geary CG. The story of chronic myeloid leukemia. Brit J Haematol. 2000;110:2–11.
6. Neumann E. Über myelogene Leukämie. Berliner Klin Wochenschr. 1878;15:69–135.
7. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497–1501.
8. Rowley J. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243:290–293.
9. Lissauer. Zwei Fälle von Leucaemie. Berliner Klin. Wochenschrift. 1865;2:403.
10. Forkner CE, Scott TF. Arsenic as a therapeutic agent in chronic myelogenous leukemia. JAMA. 1931;97:3–6.
11. Minot GR, Buckman TE, Isaacs R. Chronic Myelogenous Leukemia: age, incidence, duration, and benefit derived from irradiation. JAMA. 1924;82:1489–1494.
12. Haut A, Abbott WS, Wintrobe MM, et al. Busulphan in the treatment of chronic myelocytic leukemia. The effect of long-term intermittent therapy. Blood. 1961;17:1–19.
13. Kennedy BJ. Hydroxyurea therapy in chronic myelogenous leukaemia. Cancer. 1972;29:1052–1056.
14. Chronic Myeloid Leukemia Trialists’ Collaborative GroupHydroxyurea versus busulphan for chronic myeloid leukemia: an individual patient data meta-analysis of three randomized trials. Br J Haematol. 2000;110:573–576.
15. Fefer A, Buckner CD, Thomas ED, et al. Cure of hematologic neoplasia with transplantation of marrow from identical twins. N Engl J Med. 1977;297:146–148.
16. Gruppo JM, Apperley JF, Jones L, et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med. 1986;314:202–207.
17. Talpaz M, Kantarjian HM, McCredie K, et al. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukaemia. N Engl J Med. 1986;314:1065–1069.
18. Italian Cooperative Study Group on Chronic Myeloid LeukemiaInterferon alfa-2a as compared with conventional chemotheraphy for the treatment of chronic myeloid leukemia. N Engl J Med. 1994;330:820–825.
19. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of interferon alpha with busulphan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood. 1994;84:4064–4077.
20. Allan NC, Richards SM, Shepherd CA. On behalf of the UK Medical Research Council’s Working Parties for Therapeutic Trials in Adult Leukaemia. UK Medical Research Council randomized, multicenter trial of interferon-alpha n1 for chronic myeloid leukemia: improved survival irrespective of cytogenetic response. Lancet. 1995;345:1392–1397.
21. Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann Hematol. 2015;94(Suppl 2):S195–207.
22. Silver RT, Woolf SH, Hehlmann R, et al. An evidence-based analysis of the effect of busulphan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the american society of hematolog- y: presented in part at the ASH Education Session, December 5, 1998, Miami Beach. FL. Blood. 1999;94:1517–1536.
23. Duesberg PH, Vogt PK. Differences between the ribonucleic acids of transforming and non-transforming avian tumor viruses. Proc Natl Acad Sci U S A. 1970;67:1673–1680.
24. Bister K, Vogt PK. Genetic analysis of the defective strain MC29 avian leuksis virus. Virology. 1978;88:213–221.
25. Witte ON, Dasgupta A, Baltimore D. Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature. 1980;283:826–831.
26. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978;75:2021–2024.
27. Heisterkamp N, Stephenson JR, Groffen J, et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukocyea. Nature. 1983;306:239–242.
28. Shitakawa E, Ishitsuka S, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature. 1985;315:550–554.
29. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bc/abl gene of the Philadelphia chromosome. Science. 1990;247:824–830.
30. Heilinger P, Jenster G, Ten Hoeve J, et al. Acute leukemia in bcr/ abl transgenic mice. Nature. 1990;344:251–253.
31. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat Med. 1996;2:561–566.
32. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1037–1037.
33. Vasella D, Slater R. Magic Cancer Bullet. 2004;Harper Business, New York.[2003]. ISBN: 0060010304.
34. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2010;110:573–576.
35. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27:6041.
36. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2010 update. Blood. 2010;116:2812–2823.
37. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–984.
103. Clark RE, Polydoros F, Apperley JF, et al. Initial reduction of therapy with dasatinib as first-line therapy in chronic myeloid leukemia: a population-based study. *Lancet Haematol*. 2016;6:e276–e284.

104. Soverini S, Bavaro L, De Benedittis C, et al. Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study. *Blood*. 2020;135:534–541.

105. Khoury HJ, Williams LA, Altahah E, et al. Chronic myeloid leukemia: what every practitioner needs to know in 2017. *Am Soc Clin Oncol Educ Book*. 2017;37:468–479.

106. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: final results from the randomized ENESTprime trial. *J Clin Oncol*. 2018;36:231.

107. Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. *J Clin Oncol*. 2017;35:298–305.

108. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. *J Clin Oncol*. 2014;32:424–430.

109. Richter J, Söderlund S, Lübking A, et al. Musculoskeletal pain in patients with chronic myeloid leukemia after discontinuation of imatinib: a tyrosine kinase inhibitor withdrawal syndrome. *J Clin Oncol*. 2014;32:2821–2823.

110. Lee SE, Choi SY, Song HY, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. *Haematologica*. 2016;101:717–723.

111. Sharf G, Marin C, Bradley JA, et al. Treatment-free remission in chronic myeloid leukemia: the patient perspective and areas of unmet needs. *Leukemia*. 2017;31:439–440.

112. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. *Blood*. 2013;122:515–522.

113. Nicolini FE, Duluco S, Guilhot J, et al. The evaluation of residual disease by digital PCR and TKI duration are critical predictive factors for molecular recurrence after stopping imatinib: first-line in chronic phase CML patients: results of the STIM2 Study. *Blood*. 2018;132:462.

114. Dong L, Yu LS, Mun YC, et al. Long-term follow-up after treatment discontinuation in patients with chronic myeloid leukemia: the Korean Imatinib Discontinuation (KID) study. *Biol Blood*. 2018;132:462.

115. Mori S, Bagge E, Le Couteur P, et al. Age and d PCR can predict relapse in CML patients who discontinued imatinib: The ISAV study. *Am J Hematol*. 2015;90:910–914.

116. Mori S, Le Couteur P, Abruzzese E, et al. Imatinib Suspension and Validation (ISAV) study: final results at 79 months. *Blood*. 2018;132 (Supplement 1):461–461.

117. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. *Blood*. 2017;129:846–854.

118. Imagawa J, Tanaka H, Okada M, et al. Discontinuation of dasatinib in patients with chronic leukemia who have maintained deep molecular response for longer than 1 year (DADDI trial): a multicenter phase 2 trial. *Lancet Haematol*. 2015;2:e528–e535.

119. Kadowaki N, Kawaguchi T, Kuroda J, et al. Discontinuation of nilotinib in patients with chronic myeloid leukemia who have maintained deep molecular responses for at least 2 years: a multicenter phase 2 stop nilotinib (NiLLSt) trial. *Blood*. 2016;128:790–1790.

120. Kim DDH, Bence-Bruckler I, Forrest DL, et al. Treatment-free remission accomplished by dasatinib (TRAD): Preliminary results of the Pan-Canadian tyrosine kinase inhibitor discontinuation trial. *Blood*. 2016;128:1922–1922.

121. Sharif G, Marin C, Bradley JA, et al. Treatment-free remission in chronic myeloid leukemia: the patient perspective and areas of unmet needs. *Leukemia*. 2017;31:439–440.

122. Shafi N, Garcia-Gutierrez J, Jiménez-Velasco A, et al. Dasfere 2-year update: Dasatinib discontinuation in patients (PTS) with chronic myeloid leukemia in chronic phase (CML-CP) and deep molecular response (DMR; PF:408. HemaSphere. 2019;3(5):156.

123. Hughes TP, Boquipamini CM, Takahashi N, et al. Treatment-free remission in patients with chronic myeloid leukemia in chronic phase according to reasons for switching from imatinib to nilotinib: subgroup analysis from ENESTStop. *Blood*. 2016;128:792–1792.

124. Takahashi N, Nishiwaki K, Nakaseko C, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. *Haematologica*. 2018;103:1835–1842.

125. Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTFreedom study. *Leukemia*. 2017;31:1525–1531.
124. Kumagai T, Nakaseko C, Nishiwaki K, et al. Discontinuation of dasatinib after deep molecular response for over 2 years in patients with chronic myelogenous leukemia and the unique profiles of lymphocyte subsets for successful discontinuation: a prospective, multicenter Japanese trial (D-STOP Trial). Blood. 2016;128:791–799.

125. Hernández-Boluda JC, Pereira A, Pastor-Galán I, et al. Feasibility of treatment discontinuation in chronic myeloid leukemia in clinical practice: results from a nationwide series of 236 patients. Blood Cancer J. 2018;8:1–8.

126. Legros L, Nicolini FE, Etienne G, et al. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia. Cancer. 2017;123:4403–4410.

127. Pemmaraju N, Kantarjian H, Shan J, et al. Analysis of outcomes in adolescents and young adults with chronic myelogenous leukemia treated with upfront tyrosine kinase inhibitor therapy. Haematologica. 2012;97:1029–1035.

128. Kalmanti L, Saussele S, Lauseker M, et al. Younger patients with chronic myeloid leukemia do well in spite of poor prognostic indicators: results from the randomized CML study IV. Ann Hematol. 2014;93:71–80.

129. Yeung DT, Tang C, Vidovic L, et al. KIR2DL5B genotype predicts outcomes in CML patients treated with response-directed sequential imatinib/nilotinib strategy. Blood. 2015;126:2720–2723.

130. Hughes TP, Lipton JH, Spector N, et al. Deep molecular responses achieved in patients with CML-CP who are switched to nilotinib after long-term imatinib. Blood. 2014;124:729–736.

131. Hughes TP, Leber B, Cervantes F, et al. Sustained deep molecular responses in patients switched to nilotinib due to persistent BCR-ABL1 on imatinib: final ENESTcmr randomized trial results. Leukemia. 2017;31:2529–2531.

132. Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–1724.

133. Lichtin AE, Woolf SH, Silver RT, et al. Chronic myeloid leukemia-ASH practice guideline and beyond. Hematology. 1998;435–453.

134. Hehlmann R. How I treat CML blast crisis. Blood. 2012;120:737–747.

135. Hehlmann R, Saußele S, Voskanyan A, et al. Management of CML-blast crisis. Best Pract Res Clin Haematol. 2016;29:295–307.

136. Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–1724.

137. Radich JP, Deininger M, Abboud CN. NCCN Clinical practice guidelines in oncology. Chronic myeloid leukemia version. J Natl Comp Canc Netw. 2018;16:1108–1135.

138. Spiers AS. Metamorphosis of chronic granulocytic leukaemia: diagnosis, classification, and management. Br J Haematol. 1979;41:1–7.

139. Mitelman F, Levan G, Nilsson PG, et al. Non-random karyotypic evolution in chronic myeloid leukemia. Int J Cancer. 1976;18:24–30.

140. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002;107:76–94.

141. Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–1215.

142. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447.

143. Milojkovic D, Ibrahim A, Reid A, et al. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica. 2012;97:473–474.

144. Copland M, Slade D, Byrne J, et al. FLAG-IDA and ponatinib in patients with blast phase chronic myeloid leukemia: results from the phase III UK trials acceleration programme matchpoint trial. Blood. 2019;497.

145. Strati P, Kantarjian H, Thomas D, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014;120:373–380.