Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates

Javier Ortega-Hernández, Rudy Lerosey-Aubril, Sarah R. Losso & James C. Weaver

Recent years have witnessed a steady increase in reports of fossilized nervous tissues among Cambrian total-group euarthropods, which allow reconstructing the early evolutionary history of these animals. Here, we describe the central nervous system of the stem-group chelicerate *Mollisonia symmetrica* from the mid-Cambrian Burgess Shale. The fossilized neurological anatomy of *M. symmetrica* includes optic nerves connected to a pair of lateral eyes, a putative condensed cephalic synganglion, and a metameric ventral nerve cord. Each trunk tergite is associated with a condensed ganglion bearing lateral segmental nerves, and linked by longitudinal connectives. The nervous system is preserved as reflective carbonaceous films underneath the phosphatized digestive tract. Our results suggest that *M. symmetrica* illustrates the ancestral organization of stem-group Chelicerata before the evolution of the derived neuroanatomical characters observed in Cambrian megacheirans and extant representatives. Our findings reveal a conflict between the phylogenetic signals provided by neuroanatomical and appendicular data, which we interpret as evidence of mosaic evolution in the chelicerate stem-lineage.
E

xceptionally preserved fossils represent a valuable source of morphological information that allows us to reconstruct the origin and early evolutionary history of disparate animal groups that inhabit the modern biosphere1–4. The study of extinct soft-bodied organisms from marine deposits has become fundamental for understanding the sudden appearance of animal macrofossils during the Cambrian Explosion, and the increasing availability of material from different deposits reveals a broader spectrum of exceptional preservation than traditionally considered possible. Burgess Shale-type (BST) sites—defined by the preservation of non-biomineralizing organisms as carbonaceous compressions in marine shale—demonstrate that in addition to external features such as eyes and limbs, various aspects of the internal anatomy may also become fossilized and reveal substantial morphological details. For example, guts commonly occur as either carbonaceous compressions5,6 or three-dimensional mineralized replicates9–12, as are seldom muscle fibers12–14. An increasing number of studies published within the last decade have also reported the preservation of nervous systems in Cambrian macrofossils7,15–24, challenging the notion that brains and nerves are too delicate to be captured in the fossil record1,25.

With a few exceptions21,26,27, most instances of exceptionally preserved nervous systems in Cambrian BST deposits are restricted to members of total-group Euarthropoda, including gilled lobopodians20, radiodonts17, fuxianhuiids15,19,28, megacheirans16,22,24 and bivalved forms18,29,30. These records encompass a broad phylogenetic sampling, which allows reconstructing the complex evolutionary history of the central nervous system (CNS) in this phylum, clarifying the segmental origin of euarthropod head structures, and illuminating the ancestral neuroanatomical organization of extant representatives28,31. Yet, further discoveries of palaeoneuroanatomical data in other euarthropod groups are still critically needed for comprehensively understanding the early macroevolution of the CNS in this megadiverse phylum, and testing competing phylogenetic hypotheses.

Here, we describe the CNS organization in the mollisoniid euarthropod *Mollisonia symmetrica* from the mid-Cambrian (Wuliuan) Burgess Shale in British Columbia (Figs. 1–4 and Supplementary Figs. 1, 2). The *Mollisonia* is an extinct group composed of only four valid genera (*Corcorania, Mollisonia, Thelxiopa, Urokordia*) with occurrences in various Cambrian–Ordovician BST deposits of North America, South China, Wales, Morocco, and possibly Australia (reviewed in refs. 32,33). Although mollisoniids are characterized by a distinctive exoskeletal morphology, including a head shield with deep anterolateral ocular notches, a parallel-sided thorax consisting of 7–14 freely articulating tergites, and a pygidial shield with marginal spines, until recently little had been known or even hypothesized concerning their relationships with other euarthropods32. The discovery of appendicular data in *Mollisonia plenovenatrix* from the Burgess Shale, suggesting a phylogenetic position within stem-group chelicerates, has prompted a substantial revaluation of the significance of mollisoniids for euarthropod evolution34. We explore the significance of our palaeoneuroanatomical data on mollisoniids within the context of the chelicerate stem-lineage, and address its broader implications for the evolution of the euarthropod CNS organization by the mid-Cambrian.

Results

Neurological preservation in MCZ 1811. MCZ 1811 is a completely articulated individual collected in 1925 by J. D. Houghton at the Raymond Quarry in Burgess Pass, and originally described by Percy Raymond in an upside-down orientation35. This specimen was designated as the holotype of the (now invalid) species *Houghtonites gracilis* by P. Raymond35, who also included within this new genus specimen USNM 57661 (Supplementary Fig. 3), the original holotype of *Mollisonia gracilis*36. Recent taxonomic revisions posit that *Houghtonites* represents a junior synonym of *Mollisonia*32, particularly since the perceived differences between these taxa used for the original erection of a distinct genus were based on the erroneous orientation of MCZ 181132. We follow the proposed synonymy of *Houghtonites* with *Mollisonia*, and formally assign MCZ 1811 to *M. symmetrica* (rather than *M. gracilis* as in ref. 34) based on the similarity with other small-sized specimens that have been previously attributed to this species32.

MCZ 1811 is preserved in dorsal view with a length (sag.) of 13 mm, and a maximum width (trans.) of 3.5 mm (Fig. 1). In accordance to the recently proposed diagnosis for *Mollisoniida*32,33, the body outline is elongate, subrectangular, and maintains a consistent width throughout (parallel-sided). The exoskeleton consists of a head shield that represents approximately one-fifth of the body length (sag.), followed by a trunk composed of seven freely articulating tergites with lateral pleurae with subtriangular tips, and a pygidium (i.e., fused posterior shield) of similar dimensions to the head shield, and which bears two pairs of short marginal spines projecting from the posterior margin. The head shield is pentagonal in outline, and features a pair of anterolateral concave notches that accommodate well-developed, bulging lateral eyes. Between them, a pair of short, seemingly uniramous structures project anteriorly; their precise nature, especially whether they represent cephalic appendages, is uncertain owing to preservation (Fig. 1 and Supplementary Fig. 1). MCZ 1811 also shows traces of additional putative cephalic appendages in the form of a pair of delicate rami splayed at either side of the head shield, but their identity as either endopods or exopods remains inconclusive.

MCZ 1811 contains exceptional details of the non-exoskeletal anatomy. Each prominent lateral eye displays a light-colored outer cuticular layer that completely surrounds a dark inner region (Figs. 1, 2 and Supplementary Fig. 1). Backscattered electron microscopy and elemental mapping demonstrate that the inner dark regions contain substantial organic carbon films, and that they are directly connected to the head by carbonaceous threads (Figs. 1b, d and 2). The complex morphologies and relative positions of the light outer layer, the inner carbonaceous dark region, and the carbonaceous threads suggest that these features correspond to the eye lens, the pigmented retina, and the optic nerves of euarthropod lateral eyes, respectively7. The optic nerves of both eyes converge medially within the head shield, and continue posteriorly as a single, wider strand of organic carbon that corresponds to the cephalic CNS (Fig. 2 and Supplementary Fig. 1). However, the incomplete preservation of the cephalic CNS mass makes it impossible to distinguish discrete neurological structures, nor to confidently identify tracts innervating any head appendages. The rest of the body features a wide digestive tract that runs sagittally from the posterior two-thirds of the head to the anterior two-thirds of the pygidium (Fig. 1b). It is flanked laterally by large, apparently paired, ovoid to subrectangular structures that we interpret as paired gut diverticulae (Fig. 1b, d); the latter organs are rich in carbon, calcium, and phosphorous, which suggests that they have been phosphatized (Fig. 2), as frequently observed in non-biomineralizing euarthropods from Burgess Shale9. A similar composition is displayed by the gut tract, except in two regions where it is replaced by a material more comparable in composition to the matrix surrounding the fossil (i.e., rich in silicon and aluminum; Fig. 2), and therefore possibly representing gut sediment infill. Although most of the ventral nerve cord (VNC) is obscured by the overlying gut tract throughout the trunk, MCZ 1811 shows one possible segmental nerve in the pygidium. This structure is perpendicular to the
digestive tract, but not directly connected to it, and is interpreted as possibly corresponding to the eighth pair of trunk appendages (Figs. 1b and 2). Alternatively, this structure could represent the incomplete remains of the digestive diverticula. The fossilized gut tract is split between part and counterpart of MCZ 1811. Close examination of the head region indicates that the anterior end of the gut tract is positioned on the layer above the cephalic CNS and corresponding optic nerves connected to the lateral eyes (Figs. 1d and 2). Elemental mapping reveals a significantly different composition of the cuticular exoskeleton (i.e., spatially variable, but consistently rich in silicon, and to a lesser extent aluminum and oxygen), including the eye lenses, compatible with aluminosilicates (Fig. 2). The latter minerals likely result from the transformation of the original carbon film during the late metamorphic stage characterizing the taphonomic history of the Burgess Shale.

Neurological preservation in USNM 305093. USNM 305093 consists of a completely articulated individual (Fig. 3), which was collected by the Walcott family at the original Walcott Quarry that produced the holotype (USNM 57661; Supplementary Fig. 3)
of "Mollisonia gracilis"36, but not studied or figured until now. As-yet designated as Mollisonia sp. in the Smithsonian Institution Invertebrate Paleontology collections, we interpret USNM 305093 as a juvenile individual of Mollisonia symmetrica based on its small size, elongate general morphology, lack of genal spines, and the presence of three pairs of marginal spines on the pygidium. M. symmetrica is also the sole valid species of Mollisonia reported from this locality to date32.

USNM 305093 is preserved in lateral view, with a length (sag.) of 7.5 mm and a maximum height (trans.) of 1.7 mm (Fig. 3). As with all members of Mollisoniidae32, the dorsal exoskeleton consists of a head shield, a trunk with seven freely articulating tergites with well-developed pleurae, and a pygidium with posteriorly facing marginal spines. USNM 305093 lacks traces of preserved appendages, with the exception of a possible limb ramus below the head shield (Fig. 3c and Supplementary Fig. 2). Carbonaceous structures are not readily apparent under reflected light (Fig. 3a, b), but cross-polarized photography of the specimen under wet contrast reveals exceptional details of the neuroanatomy (Fig. 3c). Despite being clearly visible, backscattered electron imaging and elemental mapping did not detect substantial carbonaceous films in the internal anatomy of USNM 305093. As in MCZ 1811 (Figs. 1, 2 and Supplementary Fig. 1), a pair of bulbous lateral eyes protrude in front of the head shield, and each of these eyes is composed of a light-colored outer lens surrounding a discoid, dark-colored (Fig. 3b) or highly reflective (Fig. 3c and Supplementary Fig. 2) pigmented retina. Thick threads, interpreted as the optic nerves, run posteriorly from the

Fig. 2 Elemental maps of MCZ 1811 head and posterior regions. The specimen demonstrates preferential enrichment of carbon (C) and phosphorous (P) associated with labile soft tissues including the pigmented retina, optic nerves, gut tract, and paired diverticula. Furthermore, the presence of calcium (Ca) in the gut tract and diverticula indicates early diagenetic replacement by calcium phosphate. ey lateral eye, g gut tract, gd gut diverticulum, sn8 segmental nerve 8.
eyes toward the midline, where they merge into a single axial strand of highly reflective material that extends throughout the entire body. This axial strand is regarded as the CNS. Its cephalic portion is uniform in width (ca. 130 µm, trans.) and degree of reflectivity, except for a slightly wider posterior region which gives rise to a possible lateral nerve or cephalic appendage running toward the head shield left margin (Fig. 3c and Supplementary Fig. 2). Beyond its overall outline, the cephalic CNS lacks recognizable neuroanatomical features, such as distinct neuromeres, segmental nerves, or the esophageal foramen. By contrast, the VNC in the thoracic region is well defined, and consists of condensed ganglia, up to ca. 160 µm-wide (trans.), which are linked together by slender longitudinal connectives (Fig. 3c and Supplementary Fig. 2). The ganglia are metamerically organized, with each lying medially under each of the seven thoracic tergites. Several ganglia feature the proximal remains of ventrolaterally projecting bifurcating segmental nerves that would innervate the ventral limbs. These segmental nerves occasionally extend beyond the lateral margins of the tergites (e.g., the fifth and sixth segmental nerves; Figs. 3c and 4a). There are no well-differentiated ganglia under the pygidium, but three sets of conspicuous segmental nerves are visible, despite the absence of freely articulating tergites. Along with the three pairs of marginal spines (Fig. 3c and Supplementary Fig. 2) and dorsal ridges (the latter are not visible in this small specimen, but see Supplementary Fig. 3), these nerves support the hypothesis of a three-segmented pygidium in *Mollisonia*33. The axial reflective strand can be confidently interpreted as the CNS based on the direct connection to the eyes, discretely metameric and bilaterally symmetric organization, and detailed morphology including condensed ganglia with laterally oriented segmental nerves. An in-depth discussion of the taphonomy of mollisoniid neurological tissues is provided in the Supplementary Information.

Discussion

Contrasting appendicular, exoskeletal, and neurological data. MCZ 1811 and USNM 305093 offer complementary dorsal and lateral views (respectively) that allow reconstructing the CNS of *Mollisonia symmetrica* almost in its entirety (Fig. 4). A closer comparison with the exoskeletal and appendicular data of *Mollisonia plenovenatrix*34 further informs the correlation between
internal and external anatomy. *M. plenovenatrix* was described as having a pair of well-developed lateral eyes, seven pairs of cephalic limbs (including putative minute chelicerae, three uniramous appendages, and three possibly biramous appendages), and 11 pairs of trunk appendages (seven thoracic, four pygidial) consisting of oval-shaped flattened exopods. The prominent lateral eyes of *M. plenovenatrix* are also expressed in *M. symmetrica*, albeit with a less oblong shape, and our studied specimens clearly show how the optic nerves converge towards the median region of the head (Figs. 1d, 2, 3c and Supplementary Fig. 1). Although the prominent eyes of *M. plenovenatrix* have been described as having three condensed dark masses interpreted as nested optic neuropils, we find no evidence of such structures in *M. symmetrica* (Figs. 1, 3 and Supplementary Fig. 1).

In particular, the previous claim of up to two optic neuropils composing the dark inner region of the lateral eyes in MCZ 1811 could not be confirmed by direct study of the specimen using optical and backscattered electron microscopes (Fig. 1 and Supplementary Fig. 1). The one-to-one correlation between the thoracic tergites and corresponding exopods in *M. plenovenatrix* perfectly matches the disposition of the VNC ganglia observed in USNM 305093 (Fig. 3c and Supplementary Fig. 3). However, the occurrence of three segmental nerve bundles in the pygidium of USNM 305093 (Fig. 3c) confirms that the pygidium of mollisoniids likely includes three, rather than four non-articulated appendage-bearing segments (contra ref. 34 see discussion in ref. 33). Additional evidence for this proposal comes from the presence of three pairs of dorsal ridges and marginal spines in the

Fig. 4 Morphological interpretation and reconstruction of mollisoniid exoskeletal and internal anatomy. **a** USNM 305093, interpretative diagram. **b** Dorsal morphology of *Mollisonia symmetrica*; appendicular data is omitted due to its incompleteness. **c** Internal anatomy showing the digestive system. **d** Central nervous system organization. The morphology and number of segmental nerves in the putative synganglion and esophageal foramen within the head shield are hypothetical, based on the appendicular data described for *Mollisonia plenovenatrix* from Burgess Shale and its suggested affinities with chelicerates. ca? putative cephalic appendage, cn connective, dr dorsal ridge, ey lateral eye, eyl eye lens, g gut tract, ga segmental ganglion, gd gut diverticulum, hs head shield, on optic nerve, pl pleura, pg pygidium, re retina, sn sn segmental nerve, syn? putative synganglion, Tn trunk tergite.
Mollisoniids reveal the ancestral condition of chelicerate CNS. Mollisoniids have been historically regarded as problematic owing to the scarcity of limb preservation and lack of clear synapomorphies that would link them to other groups of Cambrian euarthropods22,23,25 but recent phylogenetic analyses have investigated their affinities. A large data set of total-group Eurathropoda recovered mollisoniids as an early branching mono-plyetic clade of trilobitomorph artiopods within stem-group Chelicerata26. Incorporating appendicular data on Mollisonia plenovenatrix (e.g., minute chelicerae, trunk book gill-like exopods), a more recent analysis with smaller taxon sampling resolved Mollisonia as a stem-group chelicerate and the antennae-bearing artiopods as stem-group Mandibulata23. In order to explore the broader implications of M. symmetrica’s palaeoneuroanatomical data in the context of early chelicerate nervous system evolution, we performed Bayesian inference and maximum parsimony phylogenetic analyses (including equal and implied weights) that incorporate all known Cambrian taxa with neurological preservation (Supplementary Note; Supplementary Data 1). Mollisoniids are recovered as sister to a clade uniting sanctacaridids49,50, and megacheirans51,52. Where a stem group, Chelicerata (Fig. 5a) and could possibly even reflect that of crown-group Euarthropoda given the early branching position of mollisoniids within the chelicerate stem lineage24,26 (Supplementary Fig. 5). Mollisonia’s lateral eyes and their connection with the dorsal brain also suggest a plesiomorphic organization of the CNS compared to crown-wards representatives. Whereas several extant chelicerates (e.g., Limulus, arachnids) share the presence of paired sets of eyes (or doublets), each containing a single neuropil that lies outside of the protocereb rum27, Mollisonia features a single set of lateral eyes (Figs. 1–4). The presence of single lateral eyes in Mollisonia likely illustrates the ancestral organization of the chelicerate stem lineage before the evolution of the derived ocular and neurological characters found in extant representatives. Furthermore, the phylogenetic position of Mollisonia within stem-group Chelicerata (sensu refs. 34,39) (Fig. 5a and Supplementary Fig. 5) suggests that aspects of Mollisonia’s neuroanatomy may reflect the ancestral organization of crown-group Euarthropoda (Fig. 5a), as for instance the homonomous VNC in the trunk that is also known in mandibulates45–47. Mollisonia also confirms that the evolutionary reduction in the number of intersegmental peripheral nerves in the VNC represents a synapomorphy of crown-group Euarthropoda, which contrasts with the scaphidophoran-like ancestral VNC organization observed in the fuxianhuid (stem-group Euarthropoda) Chengjiangocaris kunmingensis19.

Mollisoniids support chelicerate affinities of megacheirans. Our results carry direct implications for understanding the diversity of the chelicerate stem group and the early evolution of the CNS in this lineage. In addition to mollisoniids, other proposed members of the Cambrian stem-group of Chelicerata include Habelia48, sanctacaridids49,50, and megacheirans51,52. Whereas there is growing support for the chelicerate affinities of Habelia and sanctacaridids based on their appendicular organization, and that both groups are close relatives of mollisoniids, the position of megacheirans has retained controversia13,33,54. Megacheirans are non-biomineralized euarthropods typified by the presence of a well-developed pair of raptorial “great appendages”, which have been interpreted as precursors of the chelicerate chelicerae (e.g., refs. 16,51,52,55 but see ref. 56 for an alternative hypothesis). They also share with eucharicrates the presence of a reduced labrum57,58, as recently documented in Leachtholia illecercosa55, and several neu-ronoanatomical features. Within Megacheira, neuroanatomical data is known from the leachtholiids Alalcomenaeus and Leachtholia, with the CNS organization in these taxa corroborated by multiple specimens from the lower and middle Cambrian of South China16,24 and North America22 that are preserved in dorsal and lateral views. The CNS of Alalcomenaeus supports a deutocerebral segmental origin for megacheirans great appendages, and also shows derived neurological characters shared with extant eucharicrates including the lateral eye doublets with a single neuropil outside the protocerebrum, a condensed synganglion-like structure that inver-nes the cephalic appendages, an extended esophageal foramen, and the presence of multiple connectives that extend into the posterior end of the body (Supplementary Fig. 1)7,16,22. The results of our phylogenetic analysis indicate that palaeoneuroanatomical data support a crown-ward position of megacheirans relative to mollisoniids within the chelicerate stem lineage, and thus a step-wise evolution of the CNS in this group (Fig. 5a and Supplementary Fig. 5). Although the presence of seven pairs of tightly packed appendages in the head of M. plenovenatrix26 suggests the presence of a condensed synganglion, confirmation of this feature will
require additional mollisoniid fossils with good anterior CNS preservation.

A competing hypothesis, supported by several phylogenetic analyses, resolves megacheirans as a grade of stem-group euarthropods (Fig. 5b). However, such an early branching position implies the convergent evolution of multiple neuroanatomical and appendicular characters shared between megacheirians and eucharates, including the eye doublets with a single optic neuropil outside the protocerebrum, the condensed cephalic synganglion with extended esophageal foramen, the presence of posterior longitudinal connectives in the VNC, the raptorial first pair of appendages, and a reduced labrum. A position of megacheirans within total-group Chelicerata is more parsimonious (Supplementary Fig. 5), as it involves a single origin for several
Mozaic evolution in the chelicerate stem-lineage. The description of the CNS of *Mollisonia* reveals that appendicular and neuroanatomical data may carry conflicting phylogenetic signals in stem-group chelicerates. Whereas neurological characters strongly suggest a more derived condition in megacheirans compared to mollisoniids, the opposite is true for appendicular data. The presence of small chelicerae, possibly up to seven pairs of cephalic appendages, and book gill-like trunk exopods in *Mollisonia plenovenatrix* would favor a more crown-ward position relative to megacheirans, which feature deutocerebral great appendages, four pairs of cephalic appendages, and biramous trunk appendages. The lack of direct phylogenetic congruence between appendicular and neurological data denotes a degree of evolutionary independence of these two aspects of the anatomy in early chelicerates. This discrepancy recalls the presence of a mandibulate-like tripartite brain and lateral eyes with multiple nested neuropils in *Fuxianhuiia protea* despite the fact that the fuxianhuiid VNC features an ancestral scalidophoran-like organization, and that fuxianhuiids do not share all of them, the presence of paired axial protrusions on the tergites (e.g., *Habelia*, *Sanctacaris*, *Wisangocaris*, *Leancholia*) and a paddle-shaped tailspine with marginal spines (e.g., *Sanctacaris*, *Utahcaris*, *Wisangocaris*, and *Alakalomenaeus*, *Leancholia*, *Yohoiwa*).

Regardless of the position of megacheirans, both evolutionary scenarios carry the implication that the CNS of Pycnogonida, *Fuxianhuiida* (expressed in all of them), the presence of paired axial protrusions on the tergites (e.g., *Habelia*, *Sanctacaris*, *Wisangocaris*, *Leancholia*) and a paddle-shaped tailspine with marginal spines (e.g., *Sanctacaris*, *Utahcaris*, *Wisangocaris*, and *Alakalomenaeus*, *Leancholia*, *Yohoiwa*).

Methods

Fossil imaging and elemental analysis. Specimens were photographed with a Nikon D850 DSLR fitted with an AF-S Micro Nikor 60 mm lens (MCZ), and an Olympus DSX-110 inverted digital microscope (USNM). Backscattered scanning electron microscopy and energy dispersive spectroscopy-based elemental mapping were performed with a QEMSCAN 650-F (10 kV, WD: 14.6 mm) at the Department of Earth Sciences at the University of Cambridge, and a custom Tescan Vega GMU (20 kV, WD: 15 mm) at Harvard University. Figures were produced in Photoshop CS and Inkscape.
16. Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Straussfeld, N. J. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 366–367 (2013).

17. Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Straussfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).

18. Ortega-Hernández, J. Homology of head sclerites in Burgess Shale xiphosurans. Curr. Biol. 25, 1625–1631 (2015).

19. Yang, J. et al. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc. Natl Acad. Sci. USA 113, 2988–2993 (2016).

20. Park, T. Y. S. et al. Brain and eyes of a Cambrian great appendage. Proc. Natl Acad. Sci. USA 113, 2988–2993 (2016).

21. Parry, L. & Caron, J. B. Mosaic evolution and the pattern of transitions in the hominin cranium. Philos. Trans. R. Soc. B 370, 20150038 (2015).

22. Lan, T., et al. Lechnochilidae reveals the ancestral organization of the stem euarthropod brain. Current Biology 31, 4397–4404 (2021).

23. Liu, J., Steiner, M., Dunlop, J. A. & Shu, D. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids. Proc. R. Soc. B 285, 20181040 (2018).

24. Edgecombe, G. D., Ma, X., Straussfeld, N. J. Unlocking the early fossil record of the arthropod central nervous system. Philos. Trans. R. Soc. B 370, 20150038 (2015).

25. Howard, R. J., Edgecombe, G. D., Shi, X., Hou, X. & Ma, X. Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group eukaryote. BMC Evol. Biol. 20, 1–18 (2020).

26. Ma, X., Edgecombe, G. D., Hou, X., Goral, T. & Straussfeld, N. J. Preservationary pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).

27. Straussfeld, N. J. Wapiti revisited: intimations of behaviors. Arthrop. Struct. Dev. 45, 173–184 (2016).

28. Vannier, J., Aria, C. & Caron, J. B. Wapiti fieldiana Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. R. Soc. Open Sci. 5, 201722 (2018).

29. Ortega-Hernández, J., Janssen, R. & Budd, G. E. Origin and evolution of the panarthropod head–a palaeobiological and developmental perspective. Arthrop. Struct. Dev. 46, 354–379 (2017).

30. Lerosey, A. & Caron, J. B. Mosaic evolution and the pattern of transitions in the hominin cranium. Proc. Natl Acad. Sci. USA 108, 2338–2342 (2002).

31. Xu, X. et al. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).

32. Foley, R. A. Mosaic evolution and the pattern of transitions in the hominin lineage. Philos. Trans. R. Soc. B 371, 20150244 (2016).

33. Hopkins, M. J. & Lidgard, S. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proc. Natl Acad. Sci. USA 109, 20520–20523 (2012).

34. Lewis, P. O. Phylogenetic systematics turns over a new leaf. Trends Ecol. Evol. 16, 30–37 (2001).

35. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

36. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

37. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

38. Goloboff, P. A. Analyzing large data sets in reasonable times: solutions for model choice across a large model space. Cladistics 15, 415–428 (1999).

39. Nixson, K. C. The parsimony ratchet: a new method for rapid parsimony analysis. Cladistics 15, 407–419 (1999).

40. Whittington, P. M. & Mayer, G. The origins of the arthropod nervous system: insights from the Onychophora. Arthrop. Struct. Dev. 40, 193–209 (2011).

41. Smith, F. W., Bartels, P. J. & Goldstein, B. A. Hypothesis for the composition of the tardigrade brain and its implications for panarthropod brain evolution. Integr. Comp. Biol. 57, 546–559 (2017).
facilitating access to imaging facilities. Thanks to Iris Buisman (University of Cambridge) for assistance with use of electron microscopy facilities for preliminary elemental analyses at the Department of Earth Sciences, University of Cambridge (UK). Nicholas Strausfeld (University of Arizona) kindly shared photographs of the megacheiran *Alalectocraenaeus*. Published by a grant from the Wetmore Colles Fund.

Author contributions

J.O.-H. designed research, photographed fossil material, prepared figures, and performed phylogenetic analysis. J.O.-H and R.L.-A. interpreted results and wrote the manuscript with input from all authors. S.R.L. photographed fossil material, obtained elemental data, and prepared figures. J.C.W. obtained elemental data. All authors discussed and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28054-9.

Correspondence and requests for materials should be addressed to Javier Ortega-Hernández.

Peer review information Nature Communications thanks Peiyun Cong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

![Open Access](http://creativecommons.org/licenses/by/4.0/) This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.