Review of the existing maximum residue levels for 2,5-dichlorobenzoic acid methylester according to Article 12 of Regulation (EC) No 396/2005

European Food Safety Authority (EFSA),
Alba Brancato, Daniela Brocca, Luis Carrasco Cabrera, Chloe De Lentdecker, Zoltan Erdos, Lucien Ferreira, Luna Greco, Samira Jarrah, Dimitra Kardassi, Renata Leuschner, Christopher Lythgo, Paula Medina, Ileana Miron, Tunde Molnar, Ragnor Pedersen, Hermine Reich, Christina Riemenschneider, Angela Sacchi, Miguel Santos, Alois Stanek, Juergen Sturma, Jose Tarazona, Anne Theobald, Benedicte Vagenende and Laura Villamar-Bouza

Abstract
According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance 2,5-dichlorobenzoic acid methylester. To assess the occurrence of 2,5-dichlorobenzoic acid methylester residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Directive 91/414/EEC as well as the European authorisations reported by Member States. No risk to consumers is expected from the authorised uses. However, due to the lack of data, it was not possible to identify a relevant marker compound and to derive MRLs. Hence, if risk managers would have interest to enforce potential misuses, further data may need to be generated.

© 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: 2,5-dichlorobenzoic acid methylester, MRL review, Regulation (EC) No 396/2005, consumer risk assessment, benzoic acid, plant growth regulator, fungicide

Requestor: European Commission

Question number: EFSA-Q-2009-00148

Correspondence: pesticides.mrl@efsa.europa.eu
Acknowledgement: EFSA wishes to thank the rapporteur Member State Germany for the preparatory work on this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018. Reasoned Opinion on the review of the existing maximum residue levels for 2,5-dichlorobenzoic acid methylester according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2018;16(6):5331, 15 pp. https://doi.org/10.2903/j.efsa.2018.5331

ISSN: 1831-4732

© 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

2,5-Dichlorobenzoic acid methylester was included in Annex I to Directive 91/414/EEC on 1 September 2009 by Commission Directive 2008/125/EC, and has been deemed to be approved under Regulation (EC) No 1107/2009, in accordance with Commission Implementing Regulation (EU) No 540/2011, as amended by Commission Implementing Regulation (EU) No 541/2011. As the active substance was approved after the entry into force of Regulation (EC) No 396/2005 on 2 September 2008, the European Food Safety Authority (EFSA) is required to provide a reasoned opinion on the review of the existing maximum residue levels (MRLs) for that active substance in compliance with Article 12(1) of the aforementioned regulation.

As the basis for the MRL review, on 16 May 2017 EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit their national Good Agricultural Practices (GAPs) by 16 June 2017, in a standardised way, in the format of specific GAP forms allowing the rapporteur Member State Germany to identify the critical GAPs, in the format of specific GAP overview file. According to the information provided in the GAP forms, only use in grafted vines is currently authorised within the European Union (EU). The rapporteur Member State (RMS) did not report any uses authorised in third countries that might have a significant impact on international trade.

On the basis of all the data submitted by Member States, EFSA, according to the process, should ask Germany as the designated RMS, to complete the Pesticide Residues Overview File (PROFile) and to prepare a supporting evaluation report. The PROFile and evaluation report were provided by the RMS to EFSA on 3 January 2018. Following a completeness check undertaken by EFSA, a request for further clarifications was addressed to the RMS on 27 February 2018. After having considered all the information provided, EFSA finalised the completeness check report which was made available to Member States on 16 May 2018.

Based on the information provided by the RMS and Member States and taking into account the conclusions derived by EFSA in the framework of Directive 91/414/EEC, EFSA prepared in May 2018 a draft reasoned opinion, which was circulated to Member States for consultation via a written procedure. Comments received by 6 June 2018 were considered during the finalisation of this reasoned opinion. The following conclusions are derived.

Residues of 2,5-dichlorobenzoic acid methylester are not expected to occur in any plant or animal commodities since its unique and restricted use as a pesticide (wine grapes after grafting) is not expected to result in significant residues in wine grapes. Codex maximum residue limits (CXLs) are not available for 2,5-dichlorobenzoic acid methylester and no uses authorised in third countries were notified to the RMS.

Considering that the unique and restricted GAP authorised in the EU is not expected to result in the presence of residues in food commodities, no consumer exposure is expected. However, due to the lack of data regarding plant and livestock metabolism, analytical methods for enforcement of residues and mammalian toxicology, EFSA is not in a position to recommend any enforcement measure against the potential illegal use of 2,5-dichlorobenzoic acid methylester. It is also not possible to verify whether the default MRL of 0.01 mg/kg, as defined by Regulation (EC) No 396/2005, provides sufficient consumer protection in case of misuse.

Although limited, the available information on mammalian toxicology was sufficient to demonstrate that 2,5-dichlorobenzoic acid methylester is harmful after oral administration. Furthermore, none of the other criteria that could support the inclusion of 2,5-dichlorobenzoic acid methylester into Annex IV of Regulation (EC) No 395/2005 is fulfilled. Therefore, 2,5-dichlorobenzoic acid methylester is not recommended for inclusion into Annex IV of Regulation (EC) No 396/2005.
Table of contents

- Abstract ... 1
- Summary ... 3
- Background .. 5
- Terms of reference .. 6
- The active substance and its use pattern ... 6
- Assessment .. 6
- Conclusion and recommendations ... 8
- References .. 8
- Abbreviations .. 9
- Appendix A – Summary of authorised uses considered for the review of MRLs 10
- Appendix B – List of end points ... 11
- Appendix C – Used compound codes .. 15
Background

Regulation (EC) No 396/20051 (hereinafter referred to as 'the Regulation') establishes the rules governing the setting and the review of pesticide maximum residue levels (MRLs) at European level. Article 12(1) of that Regulation stipulates that the European Food Safety Authority (EFSA) shall provide, within 12 months from the date of the inclusion or non-inclusion of an active substance in Annex I to Directive 91/414/EEC2 a reasoned opinion on the review of the existing MRLs for 2,5-dichlorobenzoic acid methylester. As 2,5-dichlorobenzoic acid methylester was included in Annex I to Council Directive 91/414/EEC on 1 September 2009 by means of Commission Directive 2008/125/EC,3 and has been deemed to be approved under Regulation (EC) No 1107/2009,4 in accordance with Commission Implementing Regulation (EU) No 540/2011,5 as amended by Commission Implementing Regulation (EU) No 541/2011,6 EFSA initiated the review of all existing MRLs for that active substance.

According to the legal provisions, EFSA shall base its reasoned opinion in particular on the relevant assessment report prepared under Directive 91/414/EEC. It should be noted, however, that, in the framework of Directive 91/414/EEC, only a few representative uses are evaluated, whereas MRLs set out in Regulation (EC) No 396/2005 should accommodate all uses authorised within the European Union (EU), and uses authorised in third countries that have a significant impact on international trade. The information included in the assessment report prepared under Directive 91/414/EEC is therefore insufficient for the assessment of all existing MRLs for a given active substance.

To gain an overview of the pesticide residues data that have been considered for the setting of the existing MRLs, EFSA developed the Pesticide Residues Overview File (PROFile). The PROFile is an inventory of all pesticide residues data relevant to the risk assessment and MRL setting for a given active substance. This includes data on:

- the nature and magnitude of residues in primary crops;
- the nature and magnitude of residues in processed commodities;
- the nature and magnitude of residues in rotational crops;
- the nature and magnitude of residues in livestock commodities;
- the analytical methods for enforcement of the proposed MRLs.

As the basis for the MRL review, on 16 May 2017, EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit their national Good Agricultural Practices (GAPs) that are authorised in different Member States by 16 June 2017, in a standardised way in the format of specific GAP forms. In the framework of this consultation, three Member States provided feedback on their national authorisations of 2,5-dichlorobenzoic acid methylester. According to the information provided, only use in grafted vines is currently authorised within the EU. The rapporteur Member State (RMS) did not report any uses authorised in third countries that might have a significant impact on international trade.

On the basis of all the data submitted by Member States, EFSA, according to the process, should ask Germany as the designated the designated RMS in the framework of Directive 91/414/EEC, RMS, to complete the PROFile and to prepare a supporting evaluation report (Germany, 2018). The PROFile and the supporting evaluation report were submitted to EFSA on 3 January 2018. Following a completeness check undertaken by EFSA, a request for further clarifications was addressed to the RMS on 27 February 2018. After having considered all the information provided, EFSA finalised the completeness check report which was made available to Member States on 16 May 2018.

1 Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
2 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32. Repealed by Regulation (EC) No 1107/2009.
3 Commission Directive 2008/125/EC of 19 December 2008 amending Council Directive 91/414/EEC to include aluminium phosphide, calcium phosphide, magnesium phosphide, cyromazine, dodemorph, 2,5-dichlorobenzoic acid methylester, metamitron, sulcotrione, tebuconazole and triadimenol as active substances. OJ L 344, 20.12.2008, p. 78-88.
4 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
5 Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187–188.
6 Commission Implementing Regulation (EU) No 541/2011 of 1 June 2011 amending Implementing Regulation (EU) No 540/2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187–188.
Based on the information provided by the RMS and Member States and taking into account the conclusions derived by EFSA in the framework of Directive 91/414/EEC, EFSA prepared in May 2018 a draft reasoned opinion, which was submitted to Member States for commenting via a written procedure. All comments received by 6 June 2018 were considered by EFSA during the finalisation of the reasoned opinion.

The evaluation report submitted by the RMS (Germany, 2018) based on the information provided by Member States during the collection of data is considered as a main supporting document to this reasoned opinion and, thus, made publicly available.

In addition, key supporting documents to this reasoned opinion are the completeness check report (EFSA, 2018a) and the Member States consultation report (EFSA, 2018b). These reports are developed to address all issues raised in the course of the review, from the initial completeness check to the reasoned opinion and are made publicly available as background documents to this reasoned opinion.

Terms of reference

According to Article 12 of Regulation (EC) No 396/2005, EFSA shall provide a reasoned opinion on:

- the inclusion of the active substance in Annex IV to the Regulation, when appropriate;
- the necessity of setting new MRLs for the active substance or deleting/modifying existing MRLs set out in Annex II or III of the Regulation;
- the inclusion of the recommended MRLs in Annex II or III to the Regulation;
- the setting of specific processing factors as referred to in Article 20(2) of the Regulation.

The active substance and its use pattern

2,5-Dichlorobenzoic acid methylester is the used common name for methyl-2,5-dichlorobenzoate (IUPAC). There is no ISO common name.

2,5-Dichlorobenzoic acid methylester is a plant growth regulator and a fungicide for grafting of grapevines. It is used to improve callus formation but its mode of action is unknown.

The chemical structure of the active substance is reported in Appendix C.

2,5-Dichlorobenzoic acid methylester was evaluated in the framework of Directive 91/414/EEC with Germany designated as RMS. The representative use supported for the peer review process was plant growth regulator and fungicide for grafting in grapevines, indoor use only. Following the peer review, which was carried out by EFSA, a decision on inclusion of the active substance in Annex I to Directive 91/414/EEC was published by means of Commission Directive 2008/125/EC, which entered into force on 1 September 2009. According to Regulation (EU) No 540/2011, as amended by Commission Implementing Regulation (EU) No 541/2011, 2,5-Dichlorobenzoic acid methylester is deemed to have been approved under Regulation (EC) No 1107/2009. This approval is restricted to uses as plant growth regulator and fungicide for grafting of grapevines only.

For 2,5-dichlorobenzoic acid methylester, default MRL of 0.01 mg/kg is established according to Art 18(1)(b) of Regulation (EC) No 396/2005. Codex maximum residue limits (CXLs) for 2,5-dichlorobenzoic acid methylester are not available. There are no MRL changes occurred since the entry into force of the Regulation mentioned above.

For the purpose of this MRL review, the critical uses of 2,5-dichlorobenzoic acid methylester currently authorised within the EU, have been collected by the RMS and reported in the PROFile. The details of the critical GAP for 2,5-dichlorobenzoic acid methylester are given in Appendix A. The RMS did not report any use authorised in third countries that might have a significant impact on international trade.

Assessment

EFSA has based its assessment on the PROFile submitted by the RMS, the evaluation report accompanying the PROFile (Germany, 2018), the draft assessment report (DAR) and its addenda prepared under Council Directive 91/414/EEC (Germany, 2007, 2008) and the conclusion on the peer review of the pesticide risk assessment of the active substance 2,5-dichlorobenzoic acid methylester (EFSA, 2008).

The assessment is performed in accordance with the legal provisions of the uniform principles for evaluation and authorisation of plant protection products as set out in Commission Regulation (EU)
No 546/20117 and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (European Commission, 1997a-g, 2000, 2010a,b, 2015, 2017; OECD, 2011, 2013).

The critical GAP reported in this review is the same as the one assessed during the EU pesticides peer review of 2,5-dichlorobenzoic acid methylester (EFSA, 2008). It consists of one application immediately after grafting of vine (i.e. very early in the life-cycle of the crop). In a worst-case situation, this may correspond to ca. 4 years before a harvestable crop is produced. In these conditions, it is expected that residues of 2,5-dichlorobenzoic acid methylester are completely broken down at the time of harvest. Therefore, it was concluded that significant residues are not expected in wine grapes treated according to this GAP (EFSA, 2008). As the approval of 2,5-dichlorobenzoic acid methylester is restricted to grafting of grapevines only, the current authorised GAP reported during the present review is the same as the one considered in the peer review. Therefore, the above conclusion is still valid under the present review.

As a consequence, no consumer exposure is expected based on the currently authorised use. Therefore, the authorised use of 2,5-dichlorobenzoic acid methylester on wine grapes is not expected to pose risk to consumer’s health.

Nevertheless, risk managers might have an interest to apply enforcement measures against potential illegal uses of 2,5-dichlorobenzoic acid methylester within the EU as well as due to the presence of illegitimate residue levels in imported products. In order to assist risk managers in applying the most appropriate enforcement measures, EFSA assessed the available information with particular attention to the nature of residues in plant and livestock, the analytical methods and the toxicological reference values.

As studies on nature of residues in plant and livestock commodities are not available, it was not possible to identify any marker compound for enforcement. It is also noted that RMS and EURLs informed EFSA that no analytical methods were currently available for the enforcement of 2,5-dichlorobenzoic acid methylester in food commodities. Consequently, no residue definition could be proposed for this active substance and no MRLs could be derived for wine grapes. During the peer review, no toxicological reference values have been proposed due to the lack of information (EFSA, 2008).

Consequently, EFSA is not in a position to recommend any enforcement measure against potential misuses. Furthermore, due to lack of data on toxicology of the compound, it is also not possible to assess whether the default MRL of 0.01 mg/kg, as defined by Regulation (EC) No 396/2005, would provide adequate consumer protection in case of misuse.

It is noted that the RMS proposed to include 2,5-dichlorobenzoic acid methylester into Annex IV of Regulation (EC) No 395/2005. EFSA assessed this proposal based on the five criteria that could support such an inclusion according to the current guidance document (European Commission, 2015). The result of this assessment is reported in Table 1.

Criterion\(^{(a)}\)	Is criterion fulfilled?
1: The active substance is approved as a basic substance under Regulation (EC) 1107/2009	The criterion is not fulfilled
2: The compound is listed in Annex I of Regulation (EC) 396/2005	The criterion is not fulfilled
3: The compound has no identified hazardous properties	The criterion is not fulfilledWith the limited toxicity studies available, the compound has been shown to be harmful after oral administration (LD\(_{50}\): 1,030 mg/kg bw) In a 28-day rat toxicity study, a NOAEL of 100 mg/kg bw per day has been identified on the basis of clinical signs of neurotoxicity at 300 mg/kg bw per day (and more adverse effects were observed at 900 mg/kg bw per day) (EFSA, 2008)

\(^{7}\) Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11. 6.2011, p. 127–175.
Based on the above screening, EFSA does not recommend the inclusion of 2,5-dichlorobenzoic acid methylester into Annex IV of Regulation (EC) No 395/2005.

Conclusion and recommendations

Residues of 2,5-dichlorobenzoic acid methylester are not expected to occur in any plant or animal commodities since its unique and restricted use as a pesticide (wine grapes after grafting) is not expected to result in significant residues in wine grapes. CXLs are not available for 2,5-dichlorobenzoic acid methylester and no uses authorised in third countries were notified to the RMS. Considering that the unique and restricted GAP authorised in the EU is not expected to result in the presence of residues in food commodities, no consumer exposure is expected. However, due to the lack of data regarding plant and livestock metabolism, analytical methods for enforcement of residues and mammalian toxicology, EFSA is not in a position to recommend any enforcement measure against the potential illegal use of 2,5-dichlorobenzoic acid methylester. It is also not possible to verify whether the default MRL of 0.01 mg/kg, as defined by Regulation (EC) No 396/2005, provides sufficient consumer protection in case of misuse. Although limited, the available information on mammalian toxicology was sufficient to demonstrate that 2,5-dichlorobenzoic acid methylester is harmful after oral administration. Furthermore, none of the other criteria that could support the inclusion of 2,5-dichlorobenzoic acid methylester into Annex IV of Regulation (EC) No 395/2005 is fulfilled. Therefore, 2,5-dichlorobenzoic acid methylester is not recommended for inclusion into Annex IV of Regulation (EC) No 396/2005.

References

EFSA (European Food Safety Authority), 2008. Conclusion on the peer review of the pesticide risk assessment of the active substance 2,5-dichlorobenzoic acid methylester. EFSA Journal 2008;6(10):180r, 50 pp. https://doi.org/10.2903/j.efsa.2008.180r

EFSA (European Food Safety Authority), 2018a. Completeness check report on the review of the existing MRLs of 2,5-dichlorobenzoic acid methylester prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 16 May 2018. Available online: www.efsa.europa.eu

EFSA (European Food Safety Authority), 2018b. Member States consultation report on the review of the existing MRLs of 2,5-dichlorobenzoic acid methylester prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 7 June 2018. Available online: www.efsa.europa.eu

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.

European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs), SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.
European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.

European Commission, 2015. Guidance document on criteria for the inclusion of active substances in Annex IV of Regulation (EC) N° 396/2005. SANCO 11188/2013-rev.2, 14 September 2015.

European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.10.3, June 2017

Germany, 2007. Draft assessment report on the active substance 2,5-dichlorobenzoic acid methylester prepared by the rapporteur Member State Germany in the framework of Council Directive 91/414/EEC, June 2007. Available online: www.efsa.europa.eu

Germany, 2008. Final addendum to the draft assessment report on the active substance 2,5-dichlorobenzoic acid methylester, compiled by EFSA, August 2008. Available online: www.efsa.europa.eu

Germany, 2018. Evaluation report prepared under Article 12.1 of Regulation (EC) No 396/2005. Review of the existing MRLs for 2,5-dichlorobenzoic acid methylester, January 2018. Available online: www.efsa.europa.eu

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online:

OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 04 September 2013.

Abbreviations

a.i. active ingredient
ADI acceptable daily intake
AP any other powder
AR applied radioactivity
ARfD acute reference dose
BBCH growth stages of mono- and dicotyledonous plants
bw body weight
CXL codex maximum residue limit
DAR draft assessment report
DAT days after treatment
EMS evaluating Member State
EURLs European Union Reference Laboratories for Pesticide Residues (former CRLs)
GAP Good Agricultural Practice
HR highest residue
IEDI international estimated daily intake
IESTI international estimated short-term intake
ISO International Organisation for Standardization
IUPAC International Union of Pure and Applied Chemistry
LOQ limit of quantification
Mo monitoring
MRL maximum residue level
NEU northern European Union
NOAEL no observed adverse effect level
OECD Organisation for Economic Co-operation and Development
PBI plant-back interval
PHI preharvest interval
PRIMo (EFSA) Pesticide Residues Intake Model
PROFile (EFSA) Pesticide Residues Overview File
RA risk assessment
RD residue definition
RMS rapporteur Member State
SANCO Directorate-General for Health and Consumers
SEU southern European Union
SMILES simplified molecular-input line-entry system
STMR supervised trials median residue
WHO World Health Organization
Appendix A – Summary of authorised uses considered for the review of MRLs

Critical indoor GAPs for Northern and Southern Europe (including post-harvest treatments)

Common name	Scientific name	Region	Outdoor/Indoor	Pest controlled	Formulation	Growth stage	Application	PHI or waiting period (days)	Comments			
Wine grapes	*Vitis vinifera*	NEU/SEU	Indoor	AT	Growth regulator	AP	0.0 g/kg	Local treatment - dipping	0	1	35 mg a.i./unit	Limited to grafted vines. Application immediately after grafting. Unit: 1,000 vines

AP: any other powder; GAP: Good Agricultural Practice; MRL: maximum residue level; BBCH: growth stages of mono- and dicotyledonous plants; PHI: preharvest interval; NEU: northern European Union; SEU: southern European Union; a.i.: active ingredient.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops	Crop groups	Crop(s)	Application(s)	Sampling (DAT)
(available studies)	–	–	–	–
	No study available but not required (EFSA, 2008)			

Rotational crops	Crop groups	Crop(s)	Application(s)	PBI (DAT)
(available studies)	–	–	–	–
	No study available but not required (EFSA, 2008)			

Processed commodities	Conditions	Investigated?
(hydrolysis study)	Pasteurisation (20 min, 90°C, pH 4)	No
	Baking, brewing and boiling (60 min, 100°C, pH 5)	No
	Sterilisation (20 min, 120°C, pH 6)	No
	No study available but not required (EFSA, 2008)	

- Can a general residue definition be proposed for primary crops? No
- Rotational crop and primary crop metabolism similar? Not applicable
- Residue pattern in processed commodities similar to residue pattern in raw commodities? Not applicable
- Plant residue definition for monitoring (RD-Mo)? No proposal
- Plant residue definition for risk assessment (RD-RA)? No proposal
- Conversion factor (monitoring to risk assessment)? Not relevant
- Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)? No analytical method available

DAT: days after treatment; PBI: plant-back interval.

B.1.1.2. Stability of residues in plants

Plant products	Category	Commodity	T (°C)	Stability (Months/years)
(available studies)	–	–	–	–
	No study available and not required			

Review of the existing MRLs for 2,5-dichlorobenzoic acid methylester
B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials

Crop	Region/ indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)\(^{(b)}\)	STMR (mg/kg)\(^{(c)}\)
Wine grapes	Indoor	–	No residues are expected according to the mode of application (application immediately after grafting of vine) (EFSA, 2008)	–	–	–

GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development; MRL: maximum residue level.
(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe; Indoor: indoor EU trials or Country code: if non-EU trials.
(b): Highest residue.
(c): Supervised trials median residue.
B.1.2.2. Residues in succeeding crops

Study Type	Not triggered
Confined rotational crop study (quantitative aspect)	
Field rotational crop study	

B.1.2.3. Processing factors

No processing studies are available for this active substance.

B.2. Residues in livestock

Not relevant.

B.2.1. Nature of residues and methods of analysis in livestock

B.2.1.1. Metabolism studies, methods of analysis and residue definitions in livestock

Livestock (available studies)	Animal	Dose (mg/kg bw per day)	Duration (days)	N rate/comment
				No study available but not required (EFSA, 2008)
Time needed to reach a plateau concentration in milk and eggs (days)	Not applicable			
Metabolism in rat and ruminant similar (Yes/No)	Not applicable			
Animal residue definition for monitoring (RD-Mo)	Not applicable			
Animal residue definition for risk assessment (RD-RA)	Not applicable			
Conversion factor (monitoring to risk assessment)	Not applicable			
Fat soluble residues (Yes/No)	Not relevant			
Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)	No analytical method available			

LOQ: Limit of quantification.

B.2.1.2. Stability of residues in livestock

Animal products (available studies)	Animal	Commodity	T (°C)	Stability (Months/years)
				No study available and not required

B.2.2. Magnitude of residues in livestock

B.2.2.1. Summary of the residue data from livestock feeding studies

Not relevant.

B.3. Consumer risk assessment

	Not allocated – not necessary (EFSA, 2008)
Highest IEDI, according to EFSA PRIMo	Not relevant
Assumptions made for the calculations	No consumer risk assessment was performed in this review as no toxicological reference values were allocated and presence of residues in food commodities is not expected when the active substance is used according to the authorised GAP
ARfD Not allocated – not necessary (EFSA, 2008)

Highest IESTI, according to EFSA PRIMo	Not relevant
Assumptions made for the calculations	No consumer risk assessment was performed in this review as no toxicological reference values were allocated and presence of residues in food commodities is not expected when the active substance is used according to the authorised GAP

ADI: acceptable daily intake; bw: body weight; IEDI: international estimated daily intake; PRIMo: (EFSA) Pesticide Residues Intake Model; WHO: World Health Organization; ARfD: acute reference dose; IESTI: international estimated short-term intake.

B.4. Proposed MRLs

Due to the lack of data regarding plant and livestock metabolism, analytical methods for enforcement of residues and mammalian toxicology, EFSA is not in a position to recommend any enforcement measure against the potential illegal use of 2,5-dichlorobenzoic acid methylester. It is also not possible to verify whether the default MRL of 0.01 mg/kg, as defined by Regulation (EC) No 396/2005, provides sufficient consumer protection in case of misuse.
Appendix C – Used compound codes

Code/trivial name(a)	IUPAC name/SMILES notation/InChiKey(b)	Structural formula(c)
2,5-dichlorobenzoic acid methylester	methyl 2,5-dichlorobenzoate Clc1ccc(Cl)cc1C(=O)OC SPJQBGHUDNAIC-UHFFFAOYSA-N	![Structural formula](image)

SMILES: simplified molecular-input line-entry system.

(a): The metabolite name in bold is the name used in the conclusion.
(b): ACD/Name 2015 ACD/Labs 2015 Release (File version N20E41, Build 75170, 19 December 2014).
(c): ACD/ChemSketch 2015 ACD/Labs 2015 Release (File version C10H41, Build 75059, 17 December 2014).