Supplementary Material

Evolutionary history of quadrupedal walking gaits shows Mammalian release from locomotor constraint.

ALEXA N. WIMBERLY1,*, GRAMHAM J. SLATER 1,2, & MICHAEL C. GRANATOSKY1,3

1Department of Organismal Biology and Anatomy, University of Chicago, Chicago 60637, USA
2Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
3Department of Anatomy, New York Institute of Technology, Old Westbury, New York, 11568 USA

*Corresponding Author. Email: awlamprecht@uchicago.edu

Contents

S1 Methods 2
S1.1 Calculation of Duty Factor and Phase ... 2
S1.2 Limitations .. 2
S1.3 Phylogenetic ANCOVA ... 3

S2 Supplementary Figures .. 5

S3 Supplementary Tables .. 9
S1 Methods

S1.1 Calculation of Duty Factor and Phase

"Hildebrand Plots" are used to visualize footfall patterns by using two quantitative variables to describe quadrupedal locomotion. Traditionally, Hildebrand Plots are first broken up into walking and running based on duty factor (i.e. the percentage of time each foot is on the ground in a steady gait). The second variable of consideration is phase, or the time it takes for a given hindfoot to follow the forefoot on the same side of the body. Limb phases can be divided along an axis into lateral (i.e., a given hindfoot is followed by the ipsilateral forefoot) and diagonal (i.e., a given hindfoot is followed by the contralateral forefoot) sequence gaits. Within each designated sequence, there is another breakdown into a lateral (i.e., fore- and hindfoot on the same side of the body contact ground at roughly the same time) or diagonal (i.e., the diagonally opposing forefoot and hindfoot contact at similar times) couplets [25, 26, 27].

The Hildebrand plot representing phase and duty factor for our data can be found in Main Text Figure 1. We only collected animal gait information if there was a duty factor of above 50%, indicating a walking gait. Footfall data were collected from 244 quadrupedal terrestrial species throughout Gnathostomata. If values were not recorded in the literature (see S2), they were gathered from freely available internet videos. Videos were used if the full gait sequence could be accounted for (duration of time from when a given hindfoot touches the substrate to the next time it contacts), and if footfalls or limb loading could clearly be observed.

Although the equation below uses the right side of the body as an example, it can be used for the left side of the body as well. In practice, we took data from whichever side of the body was clearly visible in the video. A YouTube converter (y2mate.guru) was used to download each video and VirtualDub V.1.9.11 (http://www.virtualdub.org/) was used to observe footfall timings frame by frame in order to calculate duty factor and phase. The frame number for each action was taken in order to calculate the equations below. If several gait cycles were observed for a given species, the average phase and duty factor was used. Only walking strides (duty factors > 50) were used for subsequent analyses.

We calculated phase (time for the forefoot to follow the hindfoot on the same side of the body divided by total stride duration) as,

\[
\text{Phase} = \frac{\text{RFD} + \text{RHD}_1}{\text{RHD}_2 + \text{RHD}_1}\tag{1}
\]

where \(\text{RHD}_1 \) = first time the right hindfoot touches ground, \(\text{RHD}_2 \) = second time the right hindfoot touches ground, and \(\text{RFD} \) = right forefoot touches ground [27]. We calculated duty factor (time on the ground divided by total stride length) as,

\[
\text{Duty Factor} = \frac{\text{RHU} + \text{RHD}_1}{\text{RHD}_2 + \text{RHD}_1}.	ag{2}
\]

where all abbreviations follow that of equation 1 and \(\text{RHU} \) = right hindfoot up.

S1.2 Limitations

We recognize several limitations exist within this study regarding our data collection techniques. First is the use of freely available internet videos for data collection. We are not the first group to use this approach [53] and consider this practice to be a resourceful way to gather informative data on gait parameters. Calculating duty factor and phase only requires the timing of footfalls by identifying actions from individual frames, and therefore does not depend on certain video procedures such as specific frame rates or views. While there may
be justified concerns about the physical condition of the animals in the online videos, we only used videos in which the animal appeared healthy and did not deviate from a continuous gait (i.e., not limping, etc.). A supplementary file is provided with the downloaded videos used for data collection if the link provided in the citation (Table S1) is no longer working.

Another important consideration when evaluating our data is speed, which is known to affect several biomechanical gait variables (e.g. [6, 9, 10, 17]). While experimental designs should make every effort to either standardize locomotor speed across trials in initial data collection or account for the confounding influence of speed through appropriate statistical testing, we were unable to account for this in our study. However, in the context of this study we only collected data that included walking gaits (i.e., duty factor > 50%), which assured physiologically similar gaits across subjects [24]. Although our sample is large, and to our knowledge represents one of the most taxonomically diverse samples of tetrapod gaits to date (244 species of Tetrapoda with the inclusion of a few select non-tetrapod Gnathostomes that demonstrate symmetrical quadrupedal walking gaits), we recognize that this sample does not represent all species. Related to this, many species are capable of quite a bit of intraspecific variation (e.g., [31]) that was not accounted for in our initial sampling. These limitations should be considered when interpreting the results of our manuscript, and we hope that future studies will test our conclusions while taking these potentially confounding issues into account.

In this study, we used the total length of the hindlimb as our proxy for limb length. Arguably, a more appropriate proxy would have been effective limb length, which takes into account differences in crouch versus extended limb postures during locomotor behaviors [25]. However, effective limb length is rarely reported in the literature and this would have severely reduced our phylogenetic diversity. Similarly, we used total limb length as a proportion of the cubed root of body mass to reflect relative limb length. While such a ratio is valid, overall body mass includes both the mass of the limbs themselves and the head. A more appropriate measure would have been just to use linear trunk length (i.e., shoulder to hip length) as the denominator. However, as with effective limb length, this measurement is not available for most species. Reconstructing trunk length from isolated vertebrae is marked with its own challenges. Isolating our sample to only species where a trunk length was available would limited the phylogenetic scope of our sample.

S1.3 Phylogenetic ANCOVA

We used phylogenetic regressions to assess the scaling of phase with body mass, limb length, relative limb length, and duty factor (see Methods). These last two factors, in particular, have been proposed as important determinants of limb phase; relative limb length as a predictor of LSLC gaits [25, 26, 27] and duty factor as a positive correlate of phase due to mechanical work constraints [53]. Our evolutionary regressions (Main Text Fig. 3) found no support for these hypotheses but it is notable that the long-limbed primates are conspicuous outliers in these plots (Main Text Figs 3C,D) and [53] noted that limb phase in Primates appeared to follow a distinct scaling relationship with duty factor, relative to other tetrapods. Thus, it is possible that the lack of predicted relationships in these analyses results from the influence of these distinctive taxa.

To investigate this possibility, we performed phylogenetically informed Analyses of Covariance (pANCOVA) using the gls.ancova function from the EvoMap package [49] for R. This method employs a generalized least squares framework to assess whether models with separate intercepts, slopes, or intercepts and slopes for two or more group level effects provide a better fit to the data than a single slope - single intercept model [50]. We compared the fit of models allowing for different combinations of slopes and intercepts for Primates and non-primate mammals for arcsine phase as a function of relative limb length and of arcsine duty factor.

For relative limb length, we recovered non-significant relationships with phase for non-primate mammals (arcsine phase = 0.5524221 + 0.0797901 x log(relative limb length); t=0.746929, p = 0.4566) and Primates (arcsine phase = 0.8780632 - 0.0082062 x log(relative limb length); t=-0.0379004, p = 0.9700) when analyzed separately (Fig. S4). Unsurprisingly, this result yields no support for differences in slope using pANCOVA (Table S4). The larger intercept found for Primates, compared with non-primate mammals, suggests that
primates may simply occupy a stable but higher phase regime than other mammals, irrespective of relative limb length. Support for a two-intercept model is weak, but not unsubstantial ($F=3.35$, $p = 0.0692$), and better sampling may lend support to this model.

For arcsine duty factor (Fig. S4), we recover non-significant relationships with phase for non-primate mammals ($\text{arcsin phase} = 0.6102991 + 0.0320012 \times \text{arcsine duty factor}; t=0.249758, p = 0.8032$) and Primates ($\text{arcsin phase} = 1.2493816 - 0.4347258 \times \log(\text{relative limb length}); t=-1.557660, p = 0.1295$), though the primate scaling relationship is more pronounced than that of non-primates and is clearly more negative. Phylogenetic ANCOVA does not provide support for a distinct slope model alone, but support ($t=3.7, p = 0.056$) is recovered for variable intercepts, with Primates again exhibiting a higher ancestral phase, relative to duty factor, compared with non-primate mammals. Some degree of support for distinct slopes and intercepts is also present (Table S4). Taken as a whole, these results provide no further support for Hildebrand’s hypothesis that relative limb length drives the use of LSLC gaits or Usherwood and Self-Davies’ hypothesis that mechanical work demands constrain the relationship between duty factor and phase to be positive. They do corroborate the idea that Primates are distinctive, relative to other mammals, in their use of symmetric walking gaits.
S2 Supplementary Figures
Figure S1: 95% credible set of rate shifts from BAMM analysis of phase. For each panel, f is the frequency of that shift configuration in the posterior sample. A shift in mammals (yellow clade) is recovered in all most credible configurations. A single additional shift within Lepidosauria is recovered in about 70% of the credible set but the precise location of this shift cannot be determined.
Figure S2: The configuration with the highest posterior probability recovers a single shift in the branch leading to mammals (red branches).
Figure S3: Mean rates of phase evolution, averaged over all possible shift configurations. Branch labels indicate marginal probabilities of a shift occurring along that edge. The large label corresponds to the mammalian shift. Smaller labels correspond to uncertain shift positions in acrodont squamates, which result in the fastest model-averaged rates of all.
S3 Supplementary Tables

Table S1: Table with species information and references for duty factor and phase. The reported numbers for each gait parameter are the averaged value if several strides were taken. Habitat categories were determined using gait sources and Animal Diversity Web (https://animaldiversity.org/). Q = aquatic, A = arboreal, T = terrestrial. FMNH = Field Museum of Natural History, Chicago IL; NMNH = Smithsonian National Museum of Natural History, Washington D.C.; UWBM = University of Washington Burke Museum, Seattle WA. Data on stride number was not reported in [38].

Class	Order	Species	Strides	Duty Factor	Phase	Ref	Habitat
Actinopterygii	Cypriniformes	Cryptotora thamicola	6	65.45	51.18	[11]	Q
Actinopterygii	Lophiiformes	Antennarius striatus	5	67.65	46.04	[71]	Q
Lissamphibia	Anura	Kassina maculata	1	78	44	[53]	T
Lissamphibia	Anura	Agalychnis calidryas	3	82.27	34.26	[61]	A
Lissamphibia	Anura	Breviiceps mossambicus	5	67.87	39.09	[139]	T
Lissamphibia	Anura	Lepidobatrachus laevis	4	65.02	39.04	[125]	Q
Lissamphibia	Anura	Pelobates syriacus	4	79.99	32.39	[106]	T
Lissamphibia	Anura	Phyllomedusa hypochondrialis	6	70.03	39.18	[110]	A
Lissamphibia	Anura	Rana catesbeiana	4	71.77	39.79	[89]	T
Lissamphibia	Anura	Rhinella marina	7	75.30	39.05	[104]	T
Lissamphibia	Urodela	Ambystoma tigrinum	1	80	40	[53]	T
Lissamphibia	Urodela	Andrias japonicus	1	74	40	[53]	Q
Lissamphibia	Urodela	Ambystoma maculatum	8	72.14	44.34	[83]	T
Lissamphibia	Urodela	Ambystoma mexicanum	2	53.82	44.86	[88]	Q
Lissamphibia	Urodela	Ambystoma texanum	10	67.68	44.50	[179]	T
Lissamphibia	Urodela	Cryptobranchus alleganiensis	4	59.39	50.30	[120]	Q
Lissamphibia	Urodela	Dicamptodon tenebrosus	5	72.08	36.42	[68]	T
Lissamphibia	Urodela	Hynobius kimurae	2	71.09	49.49	[117]	T
Lissamphibia	Urodela	Necturus maculosus	3	71.88	41.67	[105]	Q
Lissamphibia	Urodela	Plethodon vehiculum	6	71.46	45.36	[150]	T
Lissamphibia	Urodela	Psuedotriton ruber	5	75.77	49.59	[77]	Q
Lissamphibia	Urodela	Rhyacochitlon variegatus	4	77.13	43.83	[75]	Q
Lissamphibia	Urodela	Salamandra infrnimaculata	4	76.46	36.91	[60]	T
Lissamphibia	Urodela	Taricha torosa	7	65.59	38.16	[96]	T
Archelosaurus	Crocodylia	Alligator mississippiensis	3	87	42	[83]	T
Archelosaurus	Crocodylia	Caiman crocodilus	2	78	43	[83]	T
Archelosaurus	Crocodylia	Crocodylus palustris	1	78	49	[83]	T
Class	Order	Species	Strides	Duty Factor	Phase	Ref	Habitat
-----------------------	--------------------	--------------------------	---------	-------------	-------	-----	---------
Archelosauria	Crocodilia	Gavialis gangeticus	1	52.24	41.79	116	T
Archelosauria	Opisthocomiformes	Opisthocomus hoazin	4	92.96	39.06	116	T
Archelosauria	Testudines	Centrochelys sulcata	2	82	42	53	T
Archelosauria	Testudines	Apalone spinifera	2	70.71	39.05	53	T
Archelosauria	Testudines	Carettochelys insculpta	2	58.41	50.47	83	T
Archelosauria	Testudines	Chelodina piscata	1	84.88	51.16	83	T
Archelosauria	Testudines	Chelydra serpentina	2	62.91	55.49	53	T
Archelosauria	Testudines	Chersina angulata	4	67.22	39.93	53	T
Archelosauria	Testudines	Chrysemys picta	3	73.43	29.35	53	T
Archelosauria	Testudines	Cuora amboinensis	2	74.57	41.57	53	T
Archelosauria	Testudines	Deirochelys reticularia	3	73.58	43.29	53	T
Archelosauria	Testudines	Podocnemis expansa	2	73.05	45.21	53	T
Archelosauria	Testudines	Terrapene carolina	2	59.63	43.38	53	T
Archelosauria	Testudines	Testudo horsfieldii	41	83.88	38.64	53	T
Chondrichthyes	Orectolobiformes	Hemiscyllium ocellatum	6	71.49	47.37	53	Q
Dipnoi	Lepidosireniformes	Protopterus annectens	3	66.76	43.84	53	Q
Lepidosauria	Squamata	Acantodactylus boskianus	-	53	57	53	T
Lepidosauria	Squamata	Ameiva ameiva	-	53	38	53	T
Lepidosauria	Squamata	Eumeces schneideri	-	73	50	53	T
Lepidosauria	Squamata	Lepidodoma flaminiculatum	1	80.53	55.45	53	T
Lepidosauria	Squamata	Oplurus cuvieri	20	52.04	52.18	53	T
Lepidosauria	Squamata	Sceloporus malachiticus	20	52.93	52.13	53	T
Lepidosauria	Squamata	Smaug warreni	2	53.45	50.34	53	T
Lepidosauria	Squamata	Trachelotyphus peteri	-	72	43	53	T
Lepidosauria	Squamata	Tropidurus torquatus	1	50.12	44.24	53	T
Lepidosauria	Squamata	Tupinambis teguixin	-	56	34	53	T
Lepidosauria	Squamata	Varanus exanthematicus	-	69	40	53	T
Lepidosauria	Squamata	Amblablychnys cristatus	1	85	41	53	T
Lepidosauria	Squamata	Conolophus pallidus	1	84	47	53	T
Lepidosauria	Squamata	Eublepharis macularius	2	79	43	53	T
Lepidosauria	Squamata	Iguana iguana	2	75	44	53	T
Lepidosauria	Squamata	Pogona vitticeps	1	78	48	53	T
Lepidosauria	Squamata	Anolis carolinensis	4	77.74	40.03	53	A
Lepidosauria	Squamata	Anolis equestris	2	60.19	43.70	53	A
Lepidosauria	Squamata	Anolis proboscis	2	64.31	36.67	53	A
Lepidosauria	Squamata	Aspidoscelis ornata	3	58.89	52.22	53	T
Lepidosauria	Squamata	Basiliscus plumifrons	1	50	33.33	53	T
Lepidosauria	Squamata	Chamaeleo calyptratus	8	65.55	44.07	53	A
Lepidosauria	Squamata	Chamaeleo namaquensis	6	75.03	40.94	53	T
Lepidosauria	Squamata	Chamaeleo zealandicus	6	65.35	59.22	53	T
Lepidosauria	Squamata	Ecleopos zuerwaldi	1	66.67	33.33	53	T
Lepidosauria	Squamata	Furcifer pardalis	8	70.06	35.15	53	A
Lepidosauria	Squamata	Grkko gecko	2	57.08	28.99	53	A
Lepidosauria	Squamata	Heloderma suspectum	6	71.11	46.69	53	T
Lepidosauria	Squamata	Lanthanotus borneensis	3	60.22	48.04	53	T
Lepidosauria	Squamata	Matobosaurus validus	2	69.83	52.72	53	T
Lepidosauria	Squamata	Moloch horridus	4	90.03	36.07	53	T
Lepidosauria	Squamata	Phrynosoma platyrhinos	1	60.01	58.33	53	T
Lepidosauria	Squamata	Podarcis siculus	7	61.15	43.41	53	T
Lepidosauria	Squamata	Shinisaurus crocodilurus	1	76.19	57.14	53	T
Lepidosauria	Squamata	Tiliqua scincoides	6	68.69	46.92	53	T
Lepidosauria	Squamata	Timon lepidus	3	69.72	42.5	53	T
Lepidosauria	Squamata	Trioceros jacksonii	4	61.35	42.08	53	A
Lepidosauria	Squamata	Xenosaurus platyrhinos	1	85	60	53	T
Lepidosauria	Squamata	Stellagama stellio	3	51.49	50.11	53	T
Mammalia	Afrotheria	Dendrohyrax arbores	1	57.55	22.22	53	A
Mammalia	Afrotheria	Orycteropus afer	3	69.78	49.46	53	T
Mammalia	Afrotheria	Elephas maximus	1	73	19	53	T
Mammalia	Afrotheria	Loxodonta africana	4	74	17	53	T
Mammalia	Artiodactyla	Cephalophus natalensis	2	60	22.5	53	T

1 Unpublished data
Class	Order	Species	Strides	Duty Factor	Phase	Ref	Habitat
Mammalia	Artiodactyla	Okapia johnstoni	4	60.65	16.91	T	
Mammalia	Artiodactyla	Viconoga pacos	41	55.81	12.93	T	
Mammalia	Artiodactyla	Hippopotamus amphibius	4	76	45	T	
Mammalia	Artiodactyla	Oryx gazella	2	66.66	14.81	T	
Mammalia	Artiodactyla	Pecari tajacu	2	65.17	23.79	T	
Mammalia	Artiodactyla	Cephalophus silvicoltor	2	67.2	23.12	T	
Mammalia	Artiodactyla	Tragelaphus strepsiceros	3	62.68	32.03	T	
Mammalia	Artiodactyla	Giraffa camelopardalis	5	68	14	T	
Mammalia	Artiodactyla	Camelus dromedarius	2	75.02	22.79	T	
Mammalia	Artiodactyla	Ammotragus levis	1	71	26	T	
Mammalia	Artiodactyla	Camelus bactrianus	1	72	21	T	
Mammalia	Artiodactyla	Sus scrofa	2	70.80	25.75	T	
Mammalia	Artiodactyla	Moschidae meminna	2	68.18	20.76	T	
Mammalia	Artiodactyla	Aepyceros melampus	1	68	19	T	
Mammalia	Artiodactyla	Bison bison	1	71	16	T	
Mammalia	Artiodactyla	Bos taurus	5	69	29	T	
Mammalia	Artiodactyla	Capra aegagrus	1	72	23	T	
Mammalia	Artiodactyla	Camelus dromedarius	2	72.68	32.03	T	
Mammalia	Artiodactyla	Camelus bactrianus	1	72	21	T	
Mammalia	Artiodactyla	Sus scrofa	2	70.80	25.75	T	
Mammalia	Artiodactyla	Moschidae meminna	2	68.18	20.76	T	
Mammalia	Artiodactyla	Aepyceros melampus	1	68	19	T	
Mammalia	Artiodactyla	Bison bison	1	71	16	T	
Mammalia	Artiodactyla	Bos taurus	5	69	29	T	
Mammalia	Artiodactyla	Capra aegagrus	1	72	23	T	
Mammalia	Artiodactyla	Camelus bactrianus	1	72	21	T	
Mammalia	Artiodactyla	Sus scrofa	2	70.80	25.75	T	
Mammalia	Artiodactyla	Moschidae meminna	2	68.18	20.76	T	
Mammalia	Artiodactyla	Aepyceros melampus	1	68	19	T	
Class	Order	Species	Strides	Duty Factor	Phase	Ref	Habitat
-----------------------	------------------	------------------------------	---------	-------------	-------	-----	---------
Mammalia	Dasyuromorphia	Sarcophilus harrisii	4	62.32	20.12		T
Mammalia	Dasyuromorphia	Dasyurus maculatus	16	64.27	41.40		T
Mammalia	Didelphimorphia	Philander opossum	18	62.84	54.05		T
Mammalia	Didelphimorphia	Caluromys philander	85	67.03	58		A
Mammalia	Didelphimorphia	Monodelphis domestica	15	68.60	46.31		T
Mammalia	Didelphimorphia	Didelphis virginiana	2	76.54	34.86		T
Mammalia	Diprotodontia	Dasyurus breviceps	160	61.5	45		A
Mammalia	Diprotodontia	Phascolarctos cinerreus	4	69.70	45.51		T
Mammalia	Diprotodontia	Vombatus ursinus	2	67.33	22.42		T
Mammalia	Diprotodontia	Vombatus ursinus	13	63.66	33.33		T
Mammalia	Eulipotyphla	Talpa europaea	1	62.96	33.33		T
Mammalia	Eulipotyphla	Erinaceus europaeus	1	62.96	33.33		T
Mammalia	Monotremata	Zaglossus bruijni	3	67.16	24.28		T
Mammalia	Monotremata	Ornithorhynchus anatinus	10	58.60	44.36		T
Mammalia	Monotremata	Tachyglossus weberi	1	65.77	28.92		T
Mammalia	Monotremata	Tachyglossus weberi	28	67.24	24		T
Mammalia	Peramelemorpha	Equus asinus	1	73	25		T
Mammalia	Perissodactyla	Ceratotherium simum	2	68	21		T
Mammalia	Perissodactyla	Tapirus bairdii	2	65.01	21.97		T
Mammalia	Perissodactyla	Tapirus terrestris	1	70	26		T
Mammalia	Perissodactyla	Tapirus indicus	1	61	26		T
Mammalia	Perissodactyla	Equis burchellii	28	67	24		T
Mammalia	Perissodactyla	Equis caballus	2	67	24		T
Mammalia	Pilosa	Myrmecophaga triactyla	1	70	27		T
Mammalia	Pilosa	Cyclopes didactylus	2	87.63	64.59		A
Mammalia	Pilosa	Bradytarsus variegatus	1	78.57	52.04		A
Mammalia	Pilosa	Choloepus didactylus	37	72.63	49.43		A
Mammalia	Primates	Ateles paniscus	46	60.60	63.99		A
Mammalia	Primates	Nycticebus pygmaeus	22	53.52	55.67		A
Mammalia	Primates	Mandrillus sphinx	2	64.00	56.09		T
Mammalia	Primates	Ateles geoffroyi	24	60.68	71.88		A
Mammalia	Primates	Lemur catta	89	64.50	65.25		T
Mammalia	Primates	Aotus nancyma	34	59.59	58.38		A
Mammalia	Primates	Leontopithecus rosalia	2	65.77	58.27		A
Mammalia	Primates	Papio ursinus	2	64.76	56.90		T
Mammalia	Primates	Loris tardigradus	33	51.89	55.85		A
Mammalia	Primates	Gorilla gorilla	2	61.55	43.43		T
Mammalia	Primates	Pan troglodytes	2	62.78	48.06		T
Mammalia	Primates	Pygathrix nemaeus	7	63.21	64.94		A
Mammalia	Primates	Cebus capucinus	39	55.98	62.84		A
Mammalia	Primates	Rhinopithecus roxellana	193	69.44	62.15		A
Mammalia	Primates	Macaca fascicularis	60	60.21	63.08		T
Mammalia	Primates	Ateles fuscipes	22	59.80	71.24		A
Mammalia	Primates	Alouatta seniculus	27	68.33	56.90		A
Mammalia	Primates	Saimiri sciureus	98	54.26	58.77		A
Mammalia	Primates	Pithecia pithecia	28	65.78	28.92		A
Mammalia	Primates	Chiropotes satanas	31	66.84	44.79		A
Mammalia	Primates	Sapajus apella	29	65.60	49.54		A
Mammalia	Primates	Macaca mulatta	22	62.76	63.03		T
Mammalia	Primates	Trachypithecus hainihensis	12	60.93	61.45		A
Mammalia	Primates	Cheirogaleus medius	32	54.58	55.44		A
Mammalia	Primates	Duabentonia madagascariensis	50	57.36	65.79		A
Mammalia	Primates	Hapalemur griseus	20	61.92	64.62		A
Mammalia	Primates	Pygathrix cinerea	15	66.19	64.50		A
Mammalia	Primates	Varecia variegata	57	57.20	64.54		A
Mammalia	Primates	Eulemur mongoz	29	53.53	62.44		A
Mammalia	Primates	Propithecus coquereli	49	63.27	62.89		T
Mammalia	Primates	Trachypithecus delacouri	6	60.89	59.73		A
Mammalia	Primates	Trachypithecus phayrei	11	63.83	61.25		A
Mammalia	Primates	Trachypithecus poliophaeus	10	60.99	64.10		A

2 Unpublished data
3 Unpublished data
Class	Order	Species	Strides	Factor	Phase	Ref	Habitat
Mammalia	Rodentia	Micromys minutus	66	66.63	34.05	31	T
Mammalia	Rodentia	Castor canadensis	3	74.16	36.68	172	T
Mammalia	Rodentia	Mus musculus	1	86	40	55	T
Mammalia	Rodentia	Sciurus niger	7	67.06	26.26	M.C.G. A	
Mammalia	Rodentia	Hydrochoerus hydrochaeris	2	69.21	28.16	106	T
Mammalia	Rodentia	Thallomys paedulcus	14	71.88	31.89	32	T
Mammalia	Rodentia	Rattus norvegicus	1	62	36	36	T
Mammalia	Rodentia	Muscardinus avellanarius	10	64.25	36.74	36	T
Mammalia	Rodentia	Myodes glareolus	54	68.35	25.86	50	T
Mammalia	Rodentia	Sciurus griseus	6	66.29	35.33	114	A
Mammalia	Rodentia	Erethizon dorsatum	2	75	29	53	T
Mammalia	Scandentia	Tupaia tana	2	64.62	38.08	173	A

4 Unpublished data
Table S2: Body mass (g) and absolute hindlimb length (mm) (sum of femur, tibia, and metatarsal III) data for mammalian species.

Order	Species	Body Mass	Ref	Limb Length
Afrotheria	Dendrohyrax arboreus	2981.11	25	147.37 FMNH 163768
Afrotheria	Elephas maximus	3269794.34	25	1902.45 FMNH 49894
Afrotheria	Loxodonta africana	3824539.93	25	1860 FMNH 52255
Afrotheria	Orycteropus afer	56175.2	25	399.58 FMNH 33477
Artiodactyla	Aepyceros melampus	52591.69	25	723 6
Artiodactyla	Alcelaphus busefalaphus	160937.86	25	805 6
Artiodactyla	Antilopahapagallus lervia	94202.22	25	628.97 FMNH 52423
Artiodactyla	Antilocapra americana	47450.01	25	733 6
Artiodactyla	Bison bison	624577.07	25	992 6
Artiodactyla	Bos taurus	618642.42	25	958 6
Artiodactyla	Bubalus bubalis	929500.97	25	815 6
Artiodactyla	Camelus bactrianus	554515.91	25	1291 FMNH 60013
Artiodactyla	Camelus dromedarius	492714.47	25	1418 FMNH 52325
Artiodactyla	Capra aegagrus	47386.47	25	546 6
Artiodactyla	Cephalophas natinski	12724.51	25	328.93 FMNH 10184
Artiodactyla	Cephalophas silvicullor	62006.6	25	615 FMNH 174410
Artiodactyla	Cervus elaphus	166562.5	25	859.0135 FMNH 8
Artiodactyla	Connochaetes taurinus	198619.68	25	920 6
Artiodactyla	Cervus elaphus	964654.73	25	1448.5 FMNH 34424
Artiodactyla	Capra aegagrus	75901.25	25	560 6
Artiodactyla	Okapia johnstoni	230001.14	25	900 FMNH 104923
Artiodactyla	Oreotragus oreotragus	13486.55	25	409 6
Artiodactyla	Oxyn gazella	188404.45	25	823 FMNH 127968
Artiodactyla	Ovis aries	39097.89	25	537 6
Artiodactyla	Ovis canadensis	74644.87	25	739 6
Artiodactyla	Pecari tajacau	21133.69	25	350.54 FMNH 134434
Artiodactyla	Saiga tatarica	37734.01	25	577 6
Artiodactyla	Sus scrofa	84471.54	25	534.89 FMNH 97884
Artiodactyla	Tragelaphus strepsiceros	206056.41	25	981 FMNH 18815
Artiodactyla	Viva pacos	44400.00	25	685 FMNH 121665
Carnivora	Acinonyx jubatus	49270.00	25	616.87 6
Carnivora	Aiurpoda melanoleuca	117999.99	25	552.3 6
Carnivora	Aiurul fulgens	5170.08	25	236.4 6
Carnivora	Panthera leo	175890.00	25	741.72 6
Carnivora	Panthera onca	8335.00	25	549.75 6
Carnivora	Panthera tigris	142000.00	25	744.94 6
Carnivora	Paradoxurus hermaphroditus	3200.00	25	227.38 FMNH 140476
Carnivora	Potos flavus	2441.81	25	234.89 7
Carnivora	Procyon lotor	6179.00	25	320 7
Carnivora	Ursus americanus	110500.00	25	639.7348 5
Carnivora	Ursus arctos	196287.5	25	709.5778 5
Carnivora	Ursus maritimus	371703.81	25	785.2356 5
Carnivora	Vulpes vulpes	4750.00	25	318.38 2
Carnivora	Zalophus wollebacki	158090.00	25	415 FMNH 226759
Chiropetra	Desmodus rotundus	23.1	25	47.471 5
Chiropetra	Mystacina tuberculata	13.9	25	41.573 5
Chiropetra	Pteropus vampyrus	1027.54	25	199.05 14
Cingulata	Dasypus novemcinctus	3580.00	25	161.78 31
Cingulata	Monodelphius domestica	40641.89	25	346.5 FMNH 72913
Dasyuromorphia	Dasyurus maculatus	3284.15	25	181.877 FMNH 57803
Dasyuromorphia	Myrmecobius fasciatus	511.44	25	112.04 FMNH 19982
Dasyuromorphia	Sarcophilus harrisii	8202.25	25	214.237 FMNH 46006
Didelphimorphia	Caluromys philander	246.47	25	105.05 2
Didelphimorphia	Didelphis virginiana	2290.00	25	154.79 31
Didelphimorphia	Monodelphius dasyurus	70.00	25	56.19 31
Didelphimorphia	Philander opossum	425.81	25	125.05 2
Diprotodontia	Acrobatis pygmaeus	13.84	25	36.888 UWBM 68896

5 Used Capra hircus
6 Used Cephalophas monticola
Order	Species	Body Mass	Ref	Limb Length	Ref
Diprotodontia	Dendrolagus goodfellowi	7948.78	29	308.61	FMNH 98158
Diprotodontia	Lasiorhinus krueii	31849.99	29	275.66	FMNH 49085
Diprotodontia	Petaurus breviceps	120.76	29	77.81	FMNH 129430
Diprotodontia	Phascolarctos cinereus	6527.84	29	267.58	FMNH 19803
Diprotodontia	Pseudocheirus peregrinus	895.22	29	133.4	FMNH 134502
Diprotodontia	Trichosurus vulpecula	13208.8	39	213.82	
Diprotodontia	Vombatus ursinus	26000	29	275.66	FMNH 49085
Eulipotyphla	Erinaceus europaeus	777.95	29	101.65	
Eulipotyphla	Taipia europaea	87.53	29	46.28	
Monotremata	Ornithorhynchus anatinus	48142.73	39	158.79	
Monotremata	Tachyglossus aculeatus	3700	51	127.74	
Monotremata	Zaglossus bruijni	8951.71	29	212.55	
Peramelemorphia	Isoodon macrourus	1505.77	29	192.98	NMNH 238438
Perissodactyla	Ceratotherium simum	2285393.43	29	1057	
Perissodactyla	Equus asinus	164998.49	29	748.1695	
Perissodactyla	Equus burchelli	279160.65	29	881	
Perissodactyla	Equus caballus	403598.53	29	1063	
Perissodactyla	Tapirus bairdii	293781.59	29	665.65	FMNH 34665
Perissodactyla	Tapirus indicus	312209.19	29	359.22	
Pilosa	Bradypus variegatus	4136.36	29	217.35	FMNH 69589
Pilosa	Choledpus didactylus	6646.5	29	356.99	FMNH 95448
Pilosa	Cyclopes didactylus	263.95	29	91.86	FMNH 61853
Pilosa	Myrmecophaga tridactyla	295318.3	29	486.29	FMNH 28309
Primates	Alouatta seniculus	6398.31	29	359.22	
Primates	Aotus nancymaeae	791.03	29	215.28	FMNH 127397
Primates	Atelos fusciceps	9067.94	29	384.64	FMNH 68810
Primates	Atelos geoffroyi	7582.4	29	432.53	FMNH 121526
Primates	Atelos paniscus	8697.25	29	432.53	FMNH 121546
Primates	Cebus capucinus	3005.99	29	291.03	
Primates	Cheirogaleus medius	196.76	29	89.27	
Primates	Chiroptes satanas	2967.27	29	291.38	
Primates	Daubentonia madagascariensis	2731.37	29	362.12	
Primates	Eulemur mongoz	1771.13	29	313.78	
Primates	Gorilla gorilla	112588.99	29	713.32	FMNH 18402
Primates	Hapalemu griseus	916	29	214.86	
Primates	Lemur catta	2626.48	29	294.15	FMNH 127368
Primates	Leontopithecus rosalia	592.52	29	172.08	FMNH 134505
Primates	Loris tardigradus	249.22	29	132.74	FMNH 180671
Primates	Macaca fascicularis	4569.32	29	313.28	FMNH 61026
Primates	Macaca mulatta	6455.19	29	311.22	FMNH 99668
Primates	Mandrillus sphinx	16685.06	29	564.95	FMNH 121292
Primates	Nycticebus pygmaeus	342.32	29	144.04	FMNH 108856
Primates	Pan troglodytes	45000	29	613.14	
Primates	Papio ursinus	17722.44	29	407.61	FMNH 159985
Primates	Pithecus pithecus	1667.19	29	285.07	FMNH 95509
Primates	Propithecus coquereli	4189.27	29	482.8	
Primates	Pygathrix cinerea	10990	29	476.37	
Primates	Pygathrix nemaeus	9411.1	29	441.83	FMNH 214917
Primates	Rhinopithecus roxellana	13456.8	29	399.82	FMNH 31143
Primates	Saimiri sciureus	749.47	29	199.81	FMNH 93519
Primates	Sapajus apella	2758.38	29	290.62	FMNH 98046
Primates	Trachypithecus delacouri	8200	29	452.21	
Primates	Trachypithecus hatinhensis	8700	29	487.94	
Primates	Trachypithecus payrerl	7681.72	29	496.73	
Primates	Trachypithecus poliocephalus	9000	29	466.64	
Primates	Varecia variegata	3849.99	29	323.41	
Rodentia	Apodemus agrarius	21.11	29	59.96	FMNH 179117
Rodentia	Apodemus flavicolis	31.6	29	59.96	FMNH 179117
Rodentia	Castor canadensis	18124.41	29	201.94	FMNH 134455
Rodentia	Eretihzon dorsatum	7419.46	29	206	M.C.G.
Rodentia	Hydrochoerus hydrochaeris	48144.91	29	473.96	FMNH 51536

7Used Vombatus ursinus
8Zhe-Xi Luo personal collection
9Zhe-Xi Luo personal collection
10Used Ateles geoffroyi
11Used Apodemus mystacinus
12Used Apodemus mystacinus
13Unpublished data
Order	Species	Mass	Ref	Length	Ref
Rodentia	Mesocricetus auratus	98.6	[29]	65.02	[29] FMNH 122237
Rodentia	Micromys minutus	6.99	[29]	28.41	[29] FMNH 129466
Rodentia	Mus musculus	19.3	[29]	31.2	[29] FMNH 140454
Rodentia	Muscardinus avellanarius	29.19	[29]	41.44	[29] FMNH 157986
Rodentia	Myodes glareolus	20.73	[29]	38.86	[29] FMNH 163360
Rodentia	Rattus norvegicus	282.89	[29]	94.63	[29] FMNH 178182
Rodentia	Sciurus griseus	703.85	[29]	141.94	[29] FMNH 186950
Rodentia	Sciurus niger	765.9	[29]	179.8	[29] FMNH 211205
Rodentia	Thallomys paedulcus	77.7	[29]	49.64	[29] FMNH 145465
Scandentia	Tupaia tana	182.33	[29]	108.85	[29] FMNH 145465

14 Used Muscardinus graphiurus
15 Used Myodes gapperi
16 Used Sciurus carolinensis
17 Used Grammomys macmillani
Table S3: Estimated ancestral phase values for key nodes derived using a phylogeny with temporal branch lengths and rate–based branch lengths

Clade	Time–based mean (95% CIs)	Rate–based mean (95% CIs)
Gnathostomes	44.44 (17.72–73.04)	46.76 (41.24–52.32)
Tetrapods	42.54 (24.19–62.03)	42.44 (37.14–47.83)
Amniotes	42.28 (25.21–60.36)	42.36 (36.32–48.52)
Mammals	37.99 (22.08–55.36)	40.68 (30.28–51.52)
Theria	37.90 (23.45–53.54)	41.46 (28.87–54.65)
Table S4: Comparison of fits for variable slope, variable intercept, and variable slope plus intercept models to single slope intercept models for phase as a function of relative limb length and of duty factor.

predictor	model	df	SS	F	P
relative	Common model	2	9.6684		
limb	Variable Slopes	3	9.5055	2.5876	0.1098
length	Variable Intercept	3	9.4586	3.3497	0.0692
	Variable Slope + Intercept	4	9.4522	1.7154	0.1834
arcsine	Common model	2	9.7178		
duty	Variable Slopes	3	9.6154	1.6069	0.2069
factor	Variable Intercept	3	9.4848	3.7081	0.056
	Variable Slope + Intercept	4	9.3603	2.864	0.0602
References

[1] Abourachid, A., Herrel, A., Decamps, T., Pages, F., Fabre, A.-C., Van Hoorebeke, L., Adriaens, D., and Amado, M. A. G. Hoatzin nesting locomotion: Acquisition of quadrupedal limb coordination in birds. Science advances 5, 5 (2019), eaat0787.

[2] Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology 253, 1 (2002), 76–108.

[3] Bennett, M., and Garden, J. Locomotion and gaits of the northern brown bandicoot, Isoodon macrourus,(Marsupialia: Peramelidae). Journal of Mammalogy 85, 2 (2004), 296–301.

[4] Bertram, J. E., and Brewner, A. A. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology 204, 2 (1990), 157–169.

[5] Biknevicius, A. R., Reilly, S. M., McElroy, E. J., and Bennett, M. B. Symmetrical gaits and center of mass mechanics in small-bodied, primitive mammals. Zoology 116, 1 (2013), 67–74.

[6] Bishop, P., Graham, D., Lamas, L., Hutchinson, J., Rubenson, J., Hancock, J., Wilson, R., Hocknull, S., Barrett, R., Lloyd, D., et al. The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs. PloS one 13, 2 (2018), e0192172.

[7] Brashares, J., Garland Jr, T., and Arcese, P. The ecology, behavior, and phylogeny of the African antelope. Behav Ecol 11 (2000), 452–463.

[8] Christiansen, P. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zoological Journal of the Linnean Society 116, 4 (2002), 685–714.

[9] Danner, S. M., Wilshin, S. D., Shevtsova, N. A., and Rybak, I. A. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. The Journal of physiology 594, 23 (2016), 6947–6967.

[10] England, S. A., and Granata, K. P. The influence of gait speed on local dynamic stability of walking. Gait & posture 25, 2 (2007), 172–178.

[11] Flammar, B. E., Suvarnaraksha, A., Markiewicz, J., and Soares, D. Tetrapod-like pelvic girdle in a walking cavefish. Scientific reports 6 (2016), 23711.

[12] Gambaryan, P. P., and Kuznetsova, A. An evolutionary perspective on the walking gait of the long-beaked echidna. Journal of Zoology 290, 1 (2013), 58–67.

[13] Gettyimages, and History, B. N. [https://www.gettyimages.com/detail/video/long-beaked-echidna-walks-past-in-forest-papua-new-5774, NJ USA, pp. 90–90].

[14] Granatosky, M. Forelimb and hindlimb loading patterns during quadrupedal locomotion in the large flying fox (Pteropus vampyrus) and common vampire bat (Desmodus rotundus). Journal of Zoology 305, 1 (2018), 63–72.

[15] Granatosky, M., and Schmitt, D. Forelimb and hind limb loading patterns during below branch quadrupedal locomotion in the two-toed sloth. Journal of Zoology 302, 4 (2017), 271–278.

[16] Granatosky, M. C., and Fitzsimons, A. Is all quadrupedalism the same? form-function relationships in behaviorally distinct asian colobines. Vietnamese Journal of Primatology 2 (2017), 59–72.

[17] Granatosky, M. C., McElroy, E. J., Lemelin, P., Reilly, S. M., Nyakatura, J. A., Andrade, E., Kilbourne, B. M., Allen, V. R., Butcher, M. T., Blob, R. W., et al. Variation in limb loading magnitude and timing in tetrapods. Journal of Experimental Biology 223, 2 (2020).

[18] Granatosky, M. C., Ross, C. F., Laird, M. F., Van Casteren, A., Chalk-Wilayto, J., Fogaca, M. D., Ledogar, J. A., Strait, D. S., Wright, B. W., and Usherwood, J. R. Work minimization and toppling concerns predict limb phasing in wild primates. In AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY (2019), vol. 168, WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, pp. 90–90.

[19] Granatosky, M. C., Schmitt, D., and Hanna, J. Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. Journal of Experimental Biology 222, 2 (2019).

[20] Granatosky, M. C., Tripp, C. H., Fabre, A.-C., and Schmitt, D. Patterns of quadrupedal locomotion in a vertical clinging and leaping primate (Propithecus coquereli) with implications for understanding the functional demands of primate quadrupedal locomotion. American journal of physical anthropology 160, 4 (2016), 644–652.

[21] Harding, L. E. Trachypithecus delacouri (Primates: Cercopithecidae). Mammalian Species 43, 880 (2011), 118–128.

[22] Harris, M. A., and Steudel, K. Ecological correlates of hind-limb length in the Carnivora. Journal of Zoology 241, 2 (1997), 381–408.

[23] Hayssen, V. Patterns of body and tail length and body mass in Sciuridae. Journal of Mammalogy 89, 4 (2008), 852–873.
Tuataras and salamanders show that walking and running are ancient features of tetrapod locomotion.

Is primate-like quadrupedalism necessary for fine-branch locomotion? a test using sugar gliders.
[124] YouTube, and Osipina, G. [https://www.youtube.com/watch?v=oteYnhGhoY] 2017.
[125] YouTube, and Otters, S. S. [https://www.youtube.com/watch?v=jyH_6rnJ6py] 2017.
[126] YouTube, and P. [https://www.youtube.com/watch?v=w94F7lyHbfI] 2012.
[127] YouTube, and Perez, C. A. [https://www.youtube.com/watch?v=029r9CGdtn] 2016.
[128] YouTube, and Peta Budgetts. [https://www.youtube.com/watch?v=XOCuBpXi4zI] 2012.
[129] YouTube, and Play, P. F. [https://www.youtube.com/watch?v=Yc2i8jAOhWo] 2018.
[130] YouTube, and Queen, F. [https://www.youtube.com/watch?v=NCaZmxHVCye] 2014.
[131] YouTube, and Ramonkeybusiness. [https://www.youtube.com/watch?v=wr2y0000U9d] 2009.
[132] YouTube, and RareDesign. [https://www.youtube.com/watch?v=5q6NUrXaqks] 2010.
[133] YouTube, and RedDeery. [https://www.youtube.com/watch?v=sxawWKuA4JM] 2010.
[134] YouTube, and RedJer. [https://www.youtube.com/watch?v=460TVnS28bY] 2018.
[135] YouTube, and Report, T. W. [https://www.youtube.com/watch?v=V6PB-DM3jeQ] 2018.
[136] YouTube, and Reptiles, B. [https://www.youtube.com/watch?v=mk4Nod-yGbc] 2015.
[137] YouTube, and Rognan, C. [https://www.youtube.com/watch?v=VlaxZ0HfZov] 2011.
[138] YouTube, and Ryu, Y. [https://www.youtube.com/watch?v=2HYHaxxF98] 2014.
[139] YouTube, and S34nVideos. [https://www.youtube.com/watch?v=mp02PBSTJ0U] 2015.
[140] YouTube, and Schönbrunn, Z. T. [https://www.youtube.com/watch?v=AcCoFb8hPg] 2017.
[141] YouTube, and ScreenShot. [https://www.youtube.com/watch?v=igkusZs_Ues] 2015.
[142] YouTube, and Silverin, A. [https://www.youtube.com/watch?v=VoJ2v1-Mw0c] 2018.
[143] YouTube, and Siva, H. T. [https://www.youtube.com/watch?v=jff7TrnWUBa] 2013.
[144] YouTube, and SilverShifter100. [https://www.youtube.com/watch?v=qdSkCpHNaLE] 2012.
[145] YouTube, and Sine. [https://www.youtube.com/watch?v=Sch0yeEikuG] 2011.
[146] YouTube, and SjbpxifY. [https://www.youtube.com/watch?v=7qIbEy17bzw] 2016.
[147] YouTube, and Snailknives. [https://www.youtube.com/watch?v=ZvJskk3ly3y] 2008.
[148] YouTube, and Sunshine, L. [https://www.youtube.com/watch?v=HdCvS_J21vi] 2019.
[149] YouTube, and Sydney, T. Z. [https://www.youtube.com/watch?v=GoF9Lq9n9H] 2010.
[150] YouTube, and T., F. [https://www.youtube.com/watch?v=xvKhrdY99U] 2014.
[151] YouTube, and Tales, A. [https://www.youtube.com/watch?v=SncNhbF07t] 2017.
[152] YouTube, and Tesl3323. [https://www.youtube.com/watch?v=B7mYLpxK1] 2011.
[153] YouTube, and TheRoachKeeper. [https://www.youtube.com/watch?v=7MXgA2g288] 2009.
[154] YouTube, and TheTyro. [https://www.youtube.com/watch?v=51vYd5Mz5Q] 2015.
[155] YouTube, and Tos Uor. [https://www.youtube.com/watch?v=g1wjz_Q6p] 2016.
[156] YouTube, and Turnbull, R. [https://www.youtube.com/watch?v=n0KmLwaMMw] 2017.
[157] YouTube, and Unknown. [https://www.youtube.com/watch?v=3p25Spztak] n/a.
[158] YouTube, and Unknown. [https://www.youtube.com/watch?v=r22Sc9dUB28] n/a.
[159] YouTube, and Unknown. [https://www.youtube.com/watch?v=UvJv7yJ3z] n/a.
[160] YouTube, and V. O. [https://www.youtube.com/watch?v=kvblTqF350ko] 2016.
[161] YouTube, and Valencia, B. [https://www.youtube.com/watch?v=vi1bU_b91k] 2019.
[162] YouTube, and Videos, W. [https://www.youtube.com/watch?v=tzJoi_sZk3U] 2017.
[163] YouTube, and WEPTT. https://www.youtube.com/watch?v=q0ucfOcr2Pw 2016.
[164] YouTube, and WildFilmsIndia. https://www.youtube.com/watch?v=qaZSLBwBYaY 2011.
[165] YouTube, and Wilks, K. https://www.youtube.com/watch?v=MsTeF9jWQ-Q 2016.
[166] YouTube, and Wilson, M. https://www.youtube.com/watch?v=AuJ5Kra1oo 2010.
[167] YouTube, and Xavi. https://www.youtube.com/watch?v=0afco1plkJA 2010.
[168] YouTube, and Xavi. https://www.youtube.com/watch?v=4tMBevgXLU 2013.
[169] YouTube, and y Nativa, N. F. E. https://www.youtube.com/watch?v=x9cjYtCainw 2018.
[170] YouTube, and yu haru. https://www.youtube.com/watch?v=tIzuzuxm0B 2018.
[171] YouTube, and Zappers, Z. https://www.youtube.com/watch?v=fdTG6O4z82t8 2011.
[172] YouTube, and Zoo, D. https://www.youtube.com/watch?v=GnBlOc9F58 2018.
[173] YouTube, and ZooVisitorMM. https://www.youtube.com/watch?v=1YzrCteSzh 2008.
[174] YouTube, and. https://www.youtube.com/watch?v=K6M6t3B 2018.
[175] YouTube, S. N., and Camoriano/OSU, J. https://www.youtube.com/watch?v=tEb8JMDjS 2016.