The K_2CO_3 fusion curve revisited: New experiments at pressures up to 12 GPa

Meili Wang*,**, Qiong Liu*,**, Toru Inoue***, Baosheng Li**,†, Samuel Pottish†, Justin Wood†, Cuiping Yang*** and Renbiao Tao*,**

*Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871, China
**School of Earth and Space Sciences, Peking University, Beijing 100871, China
***Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
†Mineral Physics Institute, State University of New York, Stony Brook, New York 11794, USA

The melting temperatures of K_2CO_3 were experimentally determined to be $1220 \pm 20 \, ^\circ\text{C} (4.0 \pm 0.5 \, \text{GPa})$, $1290 \pm 10 \, ^\circ\text{C} (9.0 \pm 0.5 \, \text{GPa})$, and $1313 \pm 10 \, ^\circ\text{C} (11.5 \pm 0.5 \, \text{GPa})$ in a 2000 ton split-sphere apparatus and $1195 \pm 15 \, ^\circ\text{C} (5.0 \pm 0.5 \, \text{GPa})$ in a 1000 ton uniaxial split-cylinder apparatus. The fusion curves of K_2CO_3 were calculated up to ~12.0 GPa for various K_0' (pressure dependence of bulk modulus) values of the liquid, according to the thermodynamic properties for crystalline and liquid K_2CO_3. On the basis of these experimental results and fusion curves of K_2CO_3, the K_0' for liquid K_2CO_3 is constrained to be ~14.4 ± 1.1 at pressures lower than 5.0 GPa in a third-order Birch-Murnaghan equation of state (EOS). However, the results at pressures above 9.0 GPa deviate from this trend, which suggests a possible phase transformation in either the crystalline or liquid phase of K_2CO_3 between 5.0 and 9.0 GPa. Determination of liquid K_0' allows the density of K_2CO_3 liquid to be calculated at high pressure. In comparison with other common carbonates, K_2CO_3 is shown to have the lowest melting temperature.

Keywords: K_2CO_3, Fusion curve, High pressure, Phase transition

INTRODUCTION

Research on potassium recycling in subduction zones has attracted considerable interest of geologists (e.g., Domnik and Holloway, 1996; Schmidt, 1996; Konzett and Fei, 2000). Mantle carbonatite melts with high-alkali contents have been reported by the studies of inclusions in fibrous diamonds (Navon, 1991; Sobolev et al., 1998; Zedgenizov et al., 2004; Hwang et al., 2006; Tomlinson et al., 2006; Klein-BenDavid et al., 2007). High pressure experiments on the partial melting of lithospheric mantle and subducted rocks indicate that near solidus melts of carbonated peridotite (Ghosh et al., 2009; Brey et al., 2011), carbonated eclogite (Dasgupta et al. 2004; Yaxley and Brey 2004; Litasov and Ohtani, 2010; Kiseeva et al., 2013), and carbonated pelite (Grassi and Schmidt, 2011a, 2011b) show strong alkali enrichment. Chemical analyses of erupted products from Oldoinyo Lengai volcano also show high alkali content at 15–19 wt% and 4–5 wt% for Na_2O and K_2O, respectively (Keller et al., 2010).

As the first melt formed from carbonated mantle (Dalton and Presnall, 1998; Dasgupta et al., 2004; Brey et al., 2011; Grassi and Schmidt, 2011a), carbonatite melt is considered as an efficient agent for mantle metasomatism owing to its high reactivity, high mobility, and high concentrations of incompatible trace elements (e.g., Green and Wallace, 1988; Dalton and Wood, 1993; Yaxley et al., 1998). Minor amounts of K_2O in the lithospheric mantle and subducted rocks can cause appreciable decreases in their solidus temperatures of 300 °C at 10 GPa for carbonated peridotites (Brey et al., 2011), 50–150 °C at 3–5 GPa for eclogites (Spandler et al., 2008), and 100–300 °C at 8 and 13 GPa for carbonated pelites (Grassi and Schmidt, 2011a). In addition, the high conductivities of carbonate melt containing alkalies in the asthenosphere are suggested to be responsible for the presence of low velocity zones (LVZ) at the top of the 410 km discontinuity (Gaillard et al., 2008; Sifre and Gaillard, 2012). Moreover, alkali carbonates can be used as
a medium for the formation of diamonds in the Earth’s mantle (Paliyano & al., 1999, 2002; Sokol & al., 2000). It is thus essential to understand the behavior of alkali carbonate liquids at mantle conditions, which has been discussed only in recent studies (Dobson & al., 1996; Liu & Lange, 2003; Liu & al., 2007; Litasov & al., 2013; Shatskiy & al., 2013a, 2013b). In the research of Litasov & al. (2013), the true solidi of Na–K-bearing carbonate systems at high pressure were determined, and the possibility of subducting alkaline carbonates melting at the transition zone was reported. Phase relations in simple binary carbonate systems such as K₂CO₃–MgCO₃ and Na₂CO₃–CaCO₃ have been studied by Shatskiy & al. (2013a, 2013b).

In this work, we examine the stability of a single alkali carbonate, K₂CO₃, at high pressure by using fusion curve analysis (Lange, 2003), which is a comparison of phase equilibrium experiments on the melting reaction of a mineral that melts congruently with the calculated melting reaction for that mineral obtained from measured thermodynamic properties. The density and compressibility of potassium carbonate at high temperatures and high pressures can also be obtained from this method. However, controversies remain for the equation of state of carbonate liquids at mantle conditions, which has been measured at pressures lower than 3.2 GPa.

Phase equilibrium experiments

Most of the high pressure melting experiments were performed in a Kawai-type multi-anvil apparatus at GRC, Ehime University, Japan. The experiments at 5.0 GPa were conducted in a 1000-ton uniaxial split-cylinder apparatus (USCA–1000) at MPI, Stony Brook University, USA. For the experiments conducted at GRC, we used a 14/8 cell assembly, including 14 mm octahedron and 8 mm truncated edge lengths of tungsten carbide, with a semi-sintered (Mg,Co)O octahedron as the pressure medium and a cylindrical graphite as the heater. The starting materials were loaded into a Pt can with inner and outer diameters of 1.6 mm and 1.8 mm, respectively, which was capped with a second Pt can of 1.8 mm and 2.0 mm inner and outer diameters, respectively, to create a sample capsule, as adopted in the work of Inoue and Sawamoto (1992). The average capsule length was designed to be 1.5–1.8 mm in length. In most experiments, two sample capsules containing starting materials were placed symmetrically in one cell assembly to directly double-check the position of the Pt bead described below. Temperatures were measured with a W₉₅Re₁₅–W₇₅Re₂₅ thermocouple, in which the hot junction was placed in the center of the furnace between the two capsules to monitor the sample temperatures; the error was ±5 °C over the temperature range of the experiments. For the experiments conducted at Stony Brook University, the cell assembly was quite similar to that used in Ehime University. The major difference was that only one Pt capsule ~ 4 mm in length sealed with an arc welder graphite pencil was used at Stony Brook University, whereas two Pt capsules sealed by high pressure were used at Ehime University.

In all experiments, the pressure was applied first to the target ram loads, and the temperature was then increased to the desired value. The temperature was kept for 30–40 min before the run was quenched by turning off the electric power supply to the graphite furnace.

The method of bracketing the melting temperature of K₂CO₃ at high pressure involves the placement of a small Pt bead on top of tightly packed crystalline K₂CO₃ powder in the Pt capsule (Liu & al., 2007). In addition, a thin layer of K₂CO₃ powder was packed on top of the Pt bead.
to separate the bead from the capsule. The capsule was carefully marked to indicate the up direction. After the high-pressure experiment, the recovered sample was polished longitudinally under dry conditions to identify the position of the Pt bead. As shown in Figure 1, if the sample is melted completely, the Pt bead will drop to the bottom of the capsule owing to the higher density of the Pt bead compared with that of the carbonate liquid and the low viscosity of K$_2$CO$_3$ liquid. The Pt bead will stay on top of the capsule if melting does not occur. The two experimental conditions thus provide a bracket for the melting temperature. Another scenario is that the Pt bead will be in the middle part of the capsule when the sample partially melts and a boundary between the crystal and the liquid phase exists. In such a case, the melting temperature of K$_2$CO$_3$ can be calculated on the basis of the thermocouple readings and the distances between the position of the thermocouple and the liquid/crystal texture boundary of the two experimental runs at a fixed pressure by assuming a constant temperature gradient at the same pressure.

Pressure calibration and temperature gradient

For the experiments conducted at GRC, pressure at a high temperature of ~1400 °C was calibrated on the basis of the high-pressure phase transformation of olivine (Akaogi, 2007), where the partitioning of Mg and Fe between olivine and wadsleyite or wadsleyite and ringwoodite were used to estimate the pressure. The compositions of the used pressure markers were (Mg$_{0.91}$Fe$_{0.09}$)$_2$SiO$_4$, (Mg$_{0.8}$Fe$_{0.2}$)$_2$SiO$_4$, or (Mg$_{0.3}$Fe$_{0.7}$)$_2$SiO$_4$ depending on the experimental pressures. In most experiments, the pressure marker was placed between the two capsules. For the experiments conducted at MPI, the pressure was calibrated on the basis of the phase equilibrium of quartz–coesite and coesite–stishovite (Zhang et al., 1993). The error of the pressure was estimated to be ±0.5 GPa.

The thermal gradients across the sample charges were examined by two different heights of boundaries between crystalline and liquid K$_2$CO$_3$ at the same pressure, according to its similar melting temperature at a fixed pressure (Fig. 1). However, this method was simply a rough procedure in which the radial thermal gradient was ignored. The thermal gradients were estimated to be about 47 °C/mm at 9.0 GPa and 64 °C/mm at 11.5 GPa. Moreover, Kyoko N. Matsukage (personal communication) estimated the thermal gradient at 1 bar to be 65 °C/mm by using a two-pyroxene thermometer (Gasparik, 1990) with results similar to those in our study. The thermal gradient was found to increase with increasing pressure. The thermal gradients at 4.0 and 5.0 GPa were not determined because the melting temperature of K$_2$CO$_3$ can be bracketed between 1210–1230 °C and 1190–1200 °C, respectively.

THERMODYNAMIC CALCULATION OF THE FUSION CURVE

The equation used to calculate the crystal–liquid equilibrium for K$_2$CO$_3$ as a function of temperature and pressure is

\[
\Delta H_{T_f} + \int_{T_f}^{T} \Delta C_p(T)\,dT - T\left(\Delta S_{T_f} + \int_{T_f}^{T} \frac{\Delta C_p(T)}{T}\,dT\right) = -\int_{P_t}^{P} \Delta V(P)\,dP
\]

where \(T_f\) is the one-bar melting temperature of crystalline K$_2$CO$_3$, \(\Delta H_{T_f}\) and \(\Delta S_{T_f}\) are the enthalpy and entropy differences between liquid and solid K$_2$CO$_3$ at \(T_f\), respectively, \(\Delta C_p(T)\) is the heat capacity of the liquid minus that of the solid, and \(\Delta V(P)\) is the volume of the liquid minus that of the solid (Lange, 2003). The data needed to calculate the fusion curve include: (1) the melting temperature of K$_2$CO$_3$ at 1 bar; (2) the enthalpy and the entropy of fusion at 1 bar; (3) the heat capacity of K$_2$CO$_3$ crystal and liquid; and (4) the volume, thermal expansivity, and compressibility of K$_2$CO$_3$ crystal and liquid. The values or equations for the thermodynamic properties used in Equation 1 which have been summarized by Liu et al. (2007), are listed in Table 1. In addition, the compressibility of the crystalline K$_2$CO$_3$ was obtained from unpublished theoretical data (S.A.T. Redfern, personal communication). An uncertainty of ±10% can lead to an uncertainty in the fusion temperature of ±50 °C or the \(K'_o\) value of ±1.3 at 5 GPa. Among the thermodynamic data required, the only unknown is the pressure dependence of the liquid bulk modulus: \(K'_o\).

For calculations of the fusion curve below 1 GPa, the \(K'_o\) value for the liquid can be neglected. However, in order to obtain accurate fusion curve of K$_2$CO$_3$ at high pressure (>1 GPa), the incorporation of the pressure dependence of the liquid and crystal compressibilities into the liquid and crystal volume expression in Equation 1 are required. In this study, the third-order Birch–Murnaghan equation of state (EOS), a truncated series expansion derived from finite-strain theory (Birch, 1978), was used to model the volume of K$_2$CO$_3$. The third-order form is

\[
P = \frac{3}{2}K_{T,0}\left[R^2 - R^1\right]^2\left[1 - \frac{3}{4}(4 - K'_o)\left(R^2 - 1\right)\right]
\]

where \(R = V_{T,0}/V_{T,0}\), \(V_{T,0}\) is the volume at temperature T.
Figure 1. Microphotographs of cut and polished charges for eight experiments that delineate the melting reaction at 4.0, 5.0, 9.0, and 11.5 GPa. The top four show the temperature of the thermocouple (TC) reading, the distance (average of seven positions) between the boundary and the position of the thermocouple junction, and the calculated melting temperature at a given pressure ($T_m = T_{TC} - \text{thermal gradient} \times \text{distance}$). The thermal gradient was roughly assumed to be linear with the distance. The error of the temperature gradient led to an uncertainty of ±1.0 in the calculated K_0' value of K$_2$CO$_3$ liquid assuming a maximum thermal gradient of 80 °C/mm.
and zero pressure (1 bar), \(V_{TP} \) is the volume at temperature T and pressure P, \(K_{T,0} \) is the bulk modulus \((K_{T,0} = 1/\beta_{T,0}) \) where \(\beta_{T,0} \) is the isothermal compressibility) at zero pressure, and \(K_0' \) is the pressure dependence of the bulk modulus at zero pressure.

Incorporation of the Birch-Murnaghan relation (Equation 2) into Equation 1 requires an integration that follows the method suggested by P. Asimow (outlined in the Appendix of Ghiorso et al., 2002), the resultant integral is shown by:

\[
\int V_{TP}^0 dP = PV_{TP}^0 - V_{T,0}^0 + \frac{9}{8} K_{T,0} V_{T,0}^0 (R^5 - 1)^2 \\
\times \left[1 + \frac{1}{2} (K'_0 - 4) \left(\frac{R^5}{R^5 - 1} \right) \right]
\]

Equation 3 allows the fusion curves of K\(_2\)CO\(_3\) to be calculated at high pressure for the liquid at various \(K_0' \) values.

RESULTS

Experimental results

All results of the high pressure experiments are summarized in Table 2. Photomicrographs of a selection of polished recovered samples are presented in Figure 1. Some of the recovered products from 9.0 to 11.5 GPa showed a distinct boundary between the crystal and the liquid, from which the melting temperature of K\(_2\)CO\(_3\) was calculated or bracketed according to the method discussed in the preceding section. The results indicate that the melting temperature of K\(_2\)CO\(_3\) was calculated or bracketed according to the method discussed in the preceding section. The results indicate that the melting temperature of K\(_2\)CO\(_3\) is 1220 ± 20 °C at 4.0 ± 0.5 GPa, 1195 ± 15 °C at 5.0 ± 0.5 GPa, 1290 ± 10 °C at 9.0 ± 0.5 GPa, and 1313 ± 10 °C at 11.5 ± 0.5 GPa. Shatskiy et al. (2015) reported that the melting temperature of K\(_2\)CO\(_3\) at 6 GPa is about 1425 °C, which is about 225 °C higher than those at 5 GPa determined in this study. Thus far, the difference has been difficult to explain. One possible reason is that Shatskiy et al. (2015) determined the melting of K\(_2\)CO\(_3\) from an image. In such a case, overestimation of the melting temperature is easy because of the unobvious difference between the separate melt and solid of K\(_2\)CO\(_3\). For the partially molten sample in the present study, the boundary between the crystal and liquid curve near the Pt bead exactly mimics the shape of the thermal gradient curve (e.g., OS2283 and OS2290), which proves the validity of our method of determining the melting temperature.

Table 1. Summary of thermodynamic data used to calculate the K\(_2\)CO\(_3\) fusion curve

Parameter	Value	Reference
\(T_f \)	1170 ± 2 K	Liu et al. (2007)
\(\Delta H_f \)	27.6 ± 0.4 KJ/mol	Rolin and Recapet (1964)
\(\Delta S_f \)	23.23 J/mol.K	Rolin and Recapet (1964)
\(C_p \) liquid	231 J/mol.K	Rolin and Recapet (1964)
\(C_p \) crystal	442.6 - 8914 \(T^{-0.5} \) + 34278267 \(T^{-2} \) - 5240000000 \(T^{-3} \) J/mol.K	Janz et al. (1963) and Liu et al. (2007)
\(V(T) \) crystal	64.248 ± 0.0095 \((T - 1078) \) cm\(^3\)/mol	Schneider and Levin (1973)
\(V(T) \) liquid	71.50 + 0.01640 \((T - 1100) \) cm\(^3\)/mol	Liu and Lange (2003)
\(\beta_T \) liquid	14.2 + 0.0059 \((T - 1100) \) \(10^{-6} \) bar\(^{-1} \)	Zhu et al. (1991) and Liu and Lange (2003)
\(K_0 \) crystal	45 GPa	Redfern, unpublished data
\(K' \) crystal	4	Redfern, fixed at 4 when calculating \(K_0' \) of crystal

Table 2. Experimental results for K\(_2\)CO\(_3\) melting reaction

Run	P (GPa)	\(T \) (°C)	Pt bead position
OS2309	4	1130°	Top
OS2311	4	1180°	Top
OS2314	4	1210	Top
OS2318	4	1220	Middle
OS2316	4	1230	Bottom
OS2298	4	1250	Bottom
OS2296	4	1300	Bottom
OS2295	4	1350	Bottom
832	5	1130	Top
4	5	1155°	Top
833	5	1180°	Top
836	5	1190	Top
834	5	1200	Bottom
6	5	1223	Bottom
5	5	1249	Bottom
OS2265	9	1300	Top
OS2283	9	1335	Middle
OS2281	9	1350°	Middle
OS2259	9	1400	Bottom
OS2271	11.5	1300	Top
OS2267	11.5	1330	Middle
OS2279	11.5	1340	Middle
OS2290	11.5	1370	Middle
OS2267	11.5	1400°	Bottom

* TC broken.

The temperature is estimated from the relationship of power and resistance. Most of the melting temperature of K\(_2\)CO\(_3\) were determined by the successful experiments.
K_0' value for K$_2$CO$_3$ liquid at high pressure

The experimental results that bracket the location of the K$_2$CO$_3$ fusion curve in the P-T space are superimposed in Figure 2 on a family of fusion curves for different K_0' values for K$_2$CO$_3$ liquid calculated by using the third-order Birch-Murnaghan EOS. The phase equilibrium experiments in combination with the data of Liu et al. (2007) and Klement and Cohen (1975) constrain the value of liquid K_0' to be about 14.4 ± 1.1 at pressures lower than 5.0 GPa. However, the melting temperatures at pressures above 9.0 GPa deviate from this trend, which is related to the possible phase transitions of crystalline or liquid K$_2$CO$_3$ at high pressure and high temperature. Thus, the following discussion involves the validity of the K_0' value only at $<~6$ GPa. Moreover, when the errors in the 1 bar thermodynamic data are considered, which leads to an uncertainty of $\pm51 \degree C$ in the calculated fusion temperature at 5.0 GPa, as mentioned in Liu et al. (2007), the uncertainty in the liquid K_0' value varies by ±1.3 or ±1.2 units. The small difference of K_0' value for K$_2$CO$_3$ liquid between the present study, at 14.4, and that of Liu et al. (2007), at 13.7, could be attributed to systematic error from the different cell assembly.

DISCUSSION

Phase transformations for liquid and crystalline K$_2$CO$_3$

The structure of liquid K$_2$CO$_3$ at high pressure is fundamental for controlling its macroscopic properties. However, significantly fewer studies have been conducted on this topic in comparison to its structure at ambient pressure (Tissen and Janssen, 1990; Koura et al., 1996; Koishi et al., 2000). Molecular dynamics simulations of molten alkali carbonates reported by Tissen and Janssen (1990) suggest that the calculated coordination of K by oxygen at ambient pressure is between 5.36 and 6.5. With increasing pressure, a transformation in the liquid structure accompanying a change in coordination of K by oxygen is expected rather than an abrupt (first- or second-order) phase transition such as that occurring in minerals. For example, in a molecular dynamics simulations study of CaCO$_3$ melts from 0.01 GPa to 11.5 GPa, Genge et al. (1995) suggested that the coordination number for Ca-O changes from 5.128 at 0.067 GPa to 6.32 at 11.56 GPa; however, no obvious phase transition in liquid CaCO$_3$ was found.

It is widely accepted that as crystalline solids transform to different polymorphs in response to varying pressure and temperature, they undergo large changes in structure and properties. Analogous density- or entrophy-driven phase transitions in the liquid state have been reported, such as those in phosphorus (Katayama et al., 2000) and cerium (Cadieu et al., 2013). If the liquid transition in K$_2$CO$_3$ indeed exists between 5.0 and 9.0 GPa, the thermodynamic properties of the K$_2$CO$_3$ liquid, such as C_v and C_p, would be affected, and the deviation of K_0' values for K$_2$CO$_3$ liquid at high pressure shown in Figure 2 can be explained, where the fusion curves were calculated through the thermodynamic data of α-K$_2$CO$_3$ phase.

Thus far, little information has been reported on the phase stability of crystalline K$_2$CO$_3$ simultaneously at high pressure and high temperature even though this type of data is also important for fusion curve calculation. Canavecic et al. (2006) used ab initio calculations to determine that ambient γ-K$_2$CO$_3$ transforms to β-Na$_2$CO$_3$ at 0.86 GPa, to γ-Na$_2$CO$_3$ at 2.75 GPa, and then to K$_2$CO$_3$-Type-11 at 48.16 GPa (computed via HF); to γ-Na$_2$CO$_3$ at 0.84 GPa and then to K$_2$CO$_3$-Type-11 at 37.3 GPa (computed via DFT). The α-K$_2$CO$_3$ phase did not appear in their results. Furthermore, Grzecznik et al. (2003) reported that the monoclinic Li$_2$CO$_3$ (C2/c) transformed to a new non-quenchable hexagonal polymorph (P6$_3$/mcm) above 10 GPa, where the carbonate groups are in a staggered configuration along the c-axis. However, the above results indicate that it is still difficult to determine the stable phase of K$_2$CO$_3$ during crystal-liquid equilibrium experiments at the conditions of this study. If the phase transition of crystal K$_2$CO$_3$ occurs between 5.0 and 9.0 GPa at...
high temperatures, the inconsistent trend of the K'_0 value shown in Figure 2, which was calculated by using the same phase, can also be explained.

Density of K$_2$CO$_3$ liquid with pressure

The density of liquid K$_2$CO$_3$ can be calculated to high pressure by using the third-order Birch–Murnaghan equation of state (EOS) (Eq. 2) with constraints on the K'_0 value. The one-bar density and bulk modulus for K$_2$CO$_3$ liquid used in this calculation are from Liu and Lange (2003) and Zhu et al. (1991). As illustrated in Figure 3, the density of liquid K$_2$CO$_3$ at 1500 °C with various liquid K'_0 values was calculated as a function of pressure up to 6.0 GPa, in which the density curve with a K'_0 value of 14.4 is highlighted. The calculated density of liquid K$_2$CO$_3$ at 1500 °C and 4.0 GPa is 2.16 g/cm3. The density of liquid K$_2$CO$_3$ is still significantly lower than those of silicate liquids, which is consistent with that suggested by Liu et al. (2007). For example, at 5.0 GPa and 1500 °C, the KAlSi$_3$O$_8$ liquid density is 2.65 g/cm3 (Lange, 2007), whereas the calculated density of K$_2$CO$_3$ liquid is 2.16 g/cm3. However, the density of K$_2$CO$_3$ liquid is lower than that of CaCO$_3$ liquid within the pressure range of this study. A molecular dynamics simulation conducted by Gege et al. (1995) suggested that CaCO$_3$ liquid density varies from 2.06 to 2.9 g/cm3 at pressures of 0.01–10.0 GPa, which causes a crossover between CaCO$_3$ liquid density and KAlSi$_3$O$_8$ liquid density at about 7.5 GPa, as shown in Figure 3. This type of crossover has also been observed in a molecular dynamics simulation conducted by Vuilleumier et al. (2014) but at much lower pressure of about 3.0 GPa.

Compressibility of K$_2$CO$_3$ liquid with pressure

In addition to calculating the liquid density of K$_2$CO$_3$ at a different pressure, it is also interesting to calculate the change in compressibility of liquid K$_2$CO$_3$ with pressure:

$$
\beta_T(P) = \frac{1}{K'_0} \left(\frac{\partial P}{\partial V} \right)_T
$$

where

$$
\left(\frac{\partial P}{\partial V} \right)_T = - \frac{1}{V_T} \left[\frac{\partial^2 P}{\partial V^2} \right]_T
$$

The combination of Equations 4 and 5 allows the compressibility of K$_2$CO$_3$ liquid to be calculated up to 6.0 GPa for various K'_0 values. The resultant family of liquid compressibility curves at 1500 °C is shown in Figure 4, along with that for crystalline K$_2$CO$_3$. A pronounced curvature in β_T of 14.4–22 is shown for these liquid K'_0 values, with β_T decreasing rapidly within the pressure range of 0–4.0 GPa followed by a less steep decrease toward the compressibility for the crystalline phase. This result is consistent with the observation reported by Liu et al. (2007). In contrast, the compressibility of crystalline K$_2$CO$_3$ decreases slowly with increasing...
pressure below 6.0 GPa. At ambient pressure at 1500 °C, the compressibility of K₂CO₃ liquid is more than 10 times greater than that for crystalline K₂CO₃; by 6.0 GPa, with a K_{0}' value of 14.4 for the liquid phase, the difference between the liquid and crystal is only 35.5%. These results suggest that at one bar, mechanisms of compression available to liquid K₂CO₃ are not accessible to its crystalline equivalent, as discussed in the work of Liu et al. (2007).

Melting of carbonates at high pressure

The melting of carbonates at high pressure and high temperature is an important issue for understanding the origin and evolution of carbonatites in the mantle. The melting curves of CaCO₃ (Irving and Wyllie, 1975; Suito et al., 2001), MgCO₃ (Irving and Wyllie, 1975), FeCO₃ (Tao et al., 2013, and K₂CO₃ (Shatskiy et al., 2015; this study) combined with typical subduction paths are given in Figure 5. This figure indicates that K₂CO₃ has a relatively low melting temperature compared with other common carbonates and that its melting curve is lower than the mantle geotherm at pressures higher than 9.0 GPa. In previous experiments (Dasgupta and Hirschmann, 2006; Ghosh et al., 2009; Grassi and Schmidt, 2011a, 2011b), mass–balance calculations often produce clear alkali and particularly K deficits in inferred subsolidus runs, although the near–solidus melts of carbonated peridotite and eclogite are enriched in alkalis. The results of this study indicate that K may be concentrated in K₂CO₃–rich liquid, where the melting of K₂CO₃ may occur at depths greater than 270 km.

In a study of the physical properties of molten carbonates, Gaillard et al., (2008) reported that alkali-rich molten carbonates such as (LiNaK)$_2$(CO$_3$)$_3$, (NaK)$_2$(CO$_3$)$_2$, and (NaKCa)(CO$_3$)$_2$ have electrical conductivity three orders of magnitude higher than those of molten silicates and up to five orders of magnitude higher than those of hydrated olivine, which can potentially explain the high asthenosphere conductivities. This observation was corroborated by Sifre et al. (2015) at high temperature and high pressure, in which a weak dependence of electrical conductivity on temperature, pressure, and chemical composition was found. Thus, the molten K₂CO₃ may also have high electrical conductivity, which can also contribute to high mantle conductivity. In addition, analyses of microinclusions in diamond (e.g., Sobolev et al., 1998; Hwang et al., 2006) and diamond-formation experiments (e.g., Pal’yanov et al., 1999, 2007) indicate that the composition of the diamond-forming medium can be roughly considered as ultrapotassic carbonate fluid. Considering the low melting temperature of K₂CO₃, we suggest that the existence of K₂CO₃–rich liquid may contribute to the formation of diamond in the mantle.

Most plutonic, older carbonatite complexes worldwide are dominated by either Ca–(calcite) or Mg–rich (dolomite) carbonate (Woolley and Kjarsgaard, 2008) with
the exception of alkali-rich natrocarbonatite lavas erupted at Oldoinyo Lengai in Tanzania (Dawson, 1962). However, many studies (Dawson, 1993; Zaitsev and Keller, 2006; Le Bas, 2008; Chen et al., 2013) argue that the parental carbonatite liquid is alkali-rich. Such a carbonate component could be easily lost within a few days through replacement by secondary calcite at atmospheric conditions, or the loss of alkalis can occur during melt evolution and crystallization such as that during fenitization of country rocks. Therefore, we suggest that alkali-rich carbonate melt may exist in the mantle and play an important role in the internal structure of the earth.

ACKNOWLEDGMENTS

We thank Chunyin Zhou for his help with operating the high pressure apparatus and many machines at GRC, Ehime University. We are grateful to Rebecca Lange, Mark Ghiorso, and Qiang He for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China Nos. 41020134003, 40972028 to Liu, Q., NSF grant EAR1045630 to Li, B., and a Grant-in-Aid for Scientific Research (A) [KAKENHI] No. 20244086 from the Japan Society for the Promotion of Science (JSPS) to Inoue, T. Constructive reviews by two anonymous reviewers significantly improved the manuscript.

REFERENCES

Ai, Y. and Lange, R.A. (2008) New acoustic velocity measurements on CaO–MgO–Al2O3–SiO2 liquids: Reevaluation of the volume and compressibility of CaMgSi2O6–CaAl2Si2O8 liquids to 25 GPa. Journal of Geophysical Research: Solid Earth, 113, B04203, doi:10.1029/2007JB005010.

Akaogi, M., Ito, E. and Navrotsky, A. (1989) Olivine-modified spinel-spinel transitions in the system MgSiO3–FeSiO3 calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research: Solid Earth, 94, 15671–15685.

Birch, F. (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300-degree-K. Journal of Geophysical Research: Solid Earth, 83, 1257–1268.

Breby, G.P., Bulatov, V.K. and Girnis, A.V. (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chemical Geology, 281, 333–342.

Cadien, A., Hu, Q.Y., Meng, Y., Cheng, Y.Q., Chen, M.W., Shu, J.F., Mao, H.W. and Sheng, H.W. (2013) First-order liquid-liquid phase transition in Cerium. Physical Review Letters, 110, 125503, DOI: 10.1103/PhysRevLett.110.125503.

Cancarevic, Z., Schon, J.C. and Jansen, M. (2006) Alkali metal carbonates at high pressure. Zeitschrift für anorganische und allgemeine Chemie, 632, 1437–1448.

Chen, W., Kamenetsky, V.S. and Simonetti, A. (2013) Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nature Communications, 4, 2687, DOI: 10.1038/ncomms3687.

Dalton, J.A. and Wood, B.J. (1993) The compositions of primary carbonate melt and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119, 511–525.

Dalton, J.A. and Presnall, D.C. (1998) Carbonatitic melts along the solidus of model ilherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology, 131, 123–135.

Dasgupta, R., Hirschmann, M.M. and Withers, A.C. (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227, 73–85.

Dasgupta, R. and Hirschmann, M.M. (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440, 659–662.

Dawson, J.B. (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature, 195, 1075–1076.

Dawson, J.B. (1993) A supposed sovite from Oldoinyo Lengai, Tanzania: result of extreme alteration of alkali carbonatite lava. Mineralogical Magazine, 57, 93–101.

Deshpande, D.A., Ghormare, K.R., Deshpande, N.D. and Tankhivale, A.V. (1983) Dehydration of crystalline K2CO3·1.5H2O. Thermochimica Acta, 66, 255–265.

Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T., Shimomura, O. and Urakawa, S. (1996) In situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143, 207–215.

Domianik, K.J. and Holloway, J.R. (1996) The stability and composition of plagiogranitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochimica et Cosmochimica Acta, 60, 4133–4150.

Gaillard, F., Malki, M. and Iacono-Marziano, G. (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science, 322, 1363–1365.

Gasparik, T. (1990) A thermodynamic model for the enstatite-diopside join. American Mineralogist, 75, 1080–1091.

Genge, M.J., Price, G.D. and Jones, A.P. (1995) Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonate magmas. Earth and Planetary Science Letters, 131, 225–238.

Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W. and Kress, V.C. (2002) The pMelts: a revision of MLETS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3, doi:10.1029/2001GC000217.

Ghosh, S., Ohtani, E., Litasov, K.D. and Terasaki, H. (2009) Solids of carbonated peridotite from 10 to 20 GPa and origin of magnesio carbonatite melt in the Earth’s deep mantle. Chemical Geology, 262, 17–28.

Grassi, D. and Schmidt, M.W. (2011a) Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology, 162, 169–191.

Grassi, D. and Schmidt, M.W. (2011b) The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52,
Green, D.H. and Wallace, M.E. (1988) Mantle metasomatism by ephemerical carbonate melts. Nature, 336, 459–462.
Grzechnik, A., Bouvier, P. and Farina, L. (2003) High-pressure structure of Li2CO3. Journal of Solid State Chemistry, 173, 13–19.
Hwang, S.L., Chu, H.T., Yui, T.F., Shen, P., Schertl, H.P., Liou, J.G. and Sobolev, N.V. (2006) Nanometer-size P.K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: Diversified characteristics of the formation media of metamorphic micro-diamond in UHP rocks due to host-rock buffering. Earth and Planetary Science Letters, 243, 94–106.
Inoue, T. and Sawamoto, H. (1992) High pressure melting of pyroxene. Geochimica et Cosmochimica Acta, 71, 723–734.
Irving, A.J. and Wyllie, P. (1975) Subsolidus and melting relations. In High-Pressure Researh: Application to Earth and Planetary Sciences (Syrno, Y. and Manghnani, M.H. Eds.). Geophysical Monograph Series, 67, American Geophysical Union, Washington, D.C., 322–331.
Irving, A.J. and Wylie, P. (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb. Geochimica et Cosmochimica Acta, 39, 35–53.
Janz, G.L., Neuenschwander, E. and Kelly, F.J. (1963) High-temperature heat content and related properties for Li2CO3, Na2CO3, K2CO3, and the ternary eutectic mixture. Transactions of the Faraday Society, 59, 841–845.
Katayama, Y., Mizutani, T., Usumi, W., Shimomura, O., Yama-kata, M. and Funakoshi, K.I. (2000) A first-order liquid–liquid phase transition in phosphorus. Nature, 403, 170–173.
Keller, J., Klaudiou, J., Kervyn, M., Ernst, G.G.J. and Mattsson, H.B. (2010) Fundamental changes in the activity of the carbonate magma Oloidyino Lengai, Tanzania. Bulletin of Volcanology, 72, 893–912.
Kincaid, C. and Sacks, I.S. (1997) Thermal and dynamical evolution of Juvenile mantle in subduction zones. Journal of Geophysical Research: Solid Earth, 102, 12295-12315.
Kiseeva, E.A., Litasov, K.D., Yaxley, G.M., Ohtani, E. and Kame-netskya, V.S. (2013) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali rich melts in the deep mantle. Journal of Petrology, 54, 1555–1583.
Klein-BenDavid, O., Izraeli, E.S., Hauri, E. and Navon, O. (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochimica et Cosmochimica Acta, 71, 723–744.
Klement, W. and Cohen, L.H. (1975) Solid-solid and solid-liquid transitions in K2CO3, Na2CO3, and Li2CO3: investigations to > 5 kbar by differential thermal analysis; thermodynamics and structural correlations. Berichte der Bunengesellschaft für physikalische Chemie, 79, 327–334.
Koishi, T., Kawase, S., Tamaki, S. and Ebisuzaki, T. (2000) Computer simulation of molten Li2CO3–K2CO3 mixtures. Journal of the Physical Society of Japan, 69, 3291–3296.
Konzett, J. and Fei, Y. (2000) Transport and storage of potassium in the Earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions. Journal of Petrology, 41, 583–603.
Koura, N., Kohara, S., Takeuchi, K., Takahashi, S., Curtiss, L.A., Grimsditch, M. and Sabounqi, M.L. (1996) Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. Journal of Molecular Structure, 382, 163–169.
Lange, R.A. (2003) The fusion curve of albite revisited and the compressibility of NaAlSi3O8 liquid with pressure. American Mineralogist, 88, 109–120.
Lange, R.A. (2007) The density and compressibility of KAlSi3O8 liquid to 6.5 GPa. American Mineralogist, 92, 14–123.
Le Bas, M.J. (2008) Fenites associated with carbonatites. The Canadian Mineralogist, 46, 915–932.
Litasov, K.D. and Ohtani, E. (2010) The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonate liquid in the deep mantle. Earth and Planetary Science Letters, 295, 115–126.
Litasov, K.D., Shatskiiy, A., Ohtani, E. and Yaxley, G.M. (2013) The solidus of alkaline carbonate in the deep mantle. Geology, 41, 79–82.
Liu, Q. and Lange, R.A. (2003) New density measurements on carbonate liquids and the partial liquids and the partial molar volume of the CaCO3 component. Contributions to Mineralogy and Petrology, 146, 370–381.
Liu, Q., Tenner, T.J. and Lange, R.A. (2007) Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa. Contributions to Mineralogy and Petrology, 153, 55–66.
Navon, O. (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature, 353, 746–748.
Pal’yanov, Y.N., Sokol, A.G., Borzovd, Y.M., Khokhryakov, A.F., Shatsky, A.F. and Sobolev, N.V. (1999) The diamond growth from Li2CO3, Na2CO3, K2CO3, and Cs2CO3 solvent-catalysts at P = 7 GPa and T = 1700–1750 °C. Diamond and Related Materials, 8, 1118–1124.
Pal’yanov, Y.N., Sokol, A.G., Borzovd, Y.M., Khokhryakov, A.F. and Sobolev, N.V. (2002) Diamond formation through carbonate-silicate interaction. American Mineralogist, 87, 1009–1013.
Pal’yanov, Y.N., Shatsky, V.S., Sobolev, N.V. and Sokol, A.G. (2007) The role of mantle ultrapotassic fluids in diamond formation. Proceedings of the National Academy of Sciences, 104, 9122–9127.
Peacock, S.M. (2003) Thermal structure and metamorphic evolution of subducting slab. In: Inside the subduction factory (Ei-le, J. Ed.). pp. 311, Geophysical Monograph Series 138, American Geophysical Union, Washington, DC., 7–22.
Relin, M. and Recapet, J.M. (1964) Contribution a letude des proprietes thermodynamiques des carbonates alkalins. III. Courbes denthalpie en fonction de la temperature et chaleurs de fusion de Na2CO3, Li2CO3, K2CO3 et de leumelange eutectique ternaire. Bulletin de la Societe Chimique de France, 10, 2504-2510.
Schmidt, M.W. (1996) Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272, 1927–1930.
Schneider, S.J. and Levin, E.M. (1973) Polymorphism of K2CO3. Journal of the American Ceramic Society, 56, 218–219.
Shatskiy, A., Sharygine, I.S., Gavryushkin, P.N., Litasov, K.D., Borzovd, Y.M., Shcherbakova, A.V., Higo, Y. and Funakoshi, K. (2013a) The system K2CO3–MgCO3 at 6 GPa and 900–1450 °C. American Mineralogist, 98, 1593–1603.
Shatskiy, A., Sharygine, I.S., Litasov, K.D., Borzovd, Y.M., Palyanov, Y.N. and Ohtani, E. (2013b) New experimental data on phase relations for the system Na2CO3–CaCO3 at 6 GPa and 900–1400 °C. American Mineralogist, 98, 2164–2171.
Shatskiy, A., Borzovd, Y.M., Litasov, K.D., Sharygine, I.S., Palyanov, Y.N. and Ohtani, E. (2015) Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450 °C. American
The melting of K_2CO_3 at pressures up to 12 GPa

Mineralogist, 100, 223-232.
Sifre, D. and Gaillard, F. (2012) Electrical conductivity measurements on hydrous carbonate melts at mantle pressure. European Mineralogical Conference, 1, EMC2012-502.
Sifre, D., Hashim, L. and Gaillard, F. (2015) Effects of temperature, pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity. Chemical Geology, 418, 189-197.
Sobolev, N.V., Yefimova, E.S., Channer, D.D., Anderson, P.F.N. and Barron, K.M. (1998) Unusual upper mantle beneath Guaniamo, Guyana Shield, Venezuela: Evidence from diamond inclusions. Geology, 26, 971-974.
Sokol, A.G., Tomilenko, A.A., Palyanov, Yu. N., Borzdov, Yu. M., Palyanova, G.A. and Khokhryakov, A.F. (2000) Fluid regime of diamond crystallization in carbonate-carbon systems. European Journal of Mineralogy, 12, 367-375.
Spandler, C., Yaxley, G., Green, D.H. and Rosenthal, A. (2008) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. Journal of Petrology, 49, 771-795.
Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakuri, N., Kobayashi, M., Onodera, A., Shimomura, O. and Kikegawa, T. (2001) Phase relations of CaCO$_3$ at high pressure and high temperature. American Mineralogist, 86, 997-1002.
Tao, R.B., Fei, Y.W. and Zhang, L.F. (2013) Experimental determination of siderite stability at high pressure. American Mineralogist, 98, 1565-1572.
Tissen, J.T.W.M. and Janssen, G.J.M. (1990) Molecular-dynamics simulation of molten alkali carbonates. Molecular Physics: An International Journal at the Interface between Chemistry and Physics, 71, 413-426.
Tomlinson, E.L., Jones, A.P. and Harris, J.W. (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth and Planetary Science Letters, 250, 581-595.
van Keken, P.E., Kiefer, B. and Peacock, S.M. (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry, Geophysics, Geosystems, 3, 1056, doi: 10.1029/2001GC000256.
Vuilleumier, R., Seisotnien, A., Sator, N. and Guilhot, B. (2014) Structure, equation of state and transport properties of molten calcium carbonate (CaCO$_3$) by atomistic simulations. Geochemistry et Cosmochimica Acta, 141, 547-566.
Woolley, A.R. and Kjarsgaard, B.A. (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. The Canadian Mineralogist, 46, 741-752.
Yaxley, G.M., Green, D.H. and Kamenetsky, V. (1998) Carbonatite metasomatism in the southern Australian lithosphere. Journal of Petrology, 39, 1917-1930.
Yaxley, G.M. and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology, 146, 606-619.
Zaitsev, A.N. and Keller, J. (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos, 91, 191-207.
Zedgenizov, D.A., Kagi, H., Shatsky, V.S. and Sobolev, N.V. (2004) Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yuktia): evidence from vibrational spectroscopy. Mineralogical Magazine, 68, 61-73.
Zhang, J., Liebermann, R.C., Gasparik, T., Herzberg, C.T. and Fei, Y. (1993) Melting and subsolidus relations of SiO$_2$ at 9-14 GPa. Journal of Geophysical Research: Solid Earth, 98, 19785-19793.
Zhu, H., Saito, T., Sato, Y., Yamamura, T., Shimakage, K. and Ejima, T. (1991) Ultrasonic velocity and absorption coefficient in molten alkali metal nitrates and carbonates. Journal of the Japan Institute of Metals, 55, 937-944.

Manuscript received April 17, 2015
Manuscript accepted January 4, 2016
Published online June 25, 2016
Manuscript handled by Eiji Ohtani