RESEARCH

Hajj, the annual Muslim pilgrimage to Mecca, Saudi Arabia, is a unique mass gathering event that raises public health concerns in the host country and globally. Although gastroenteritis and diarrhea are common among Hajj pilgrims, the microbial etiologies of these infections are unknown. We collected 544 fecal samples from pilgrims with medically attended diarrheal illness from 40 countries during the 2011–2013 Hajj seasons and screened the samples for 16 pathogens commonly associated with diarrheal infections.

Bacteria were the main agents detected, in 82.9% of the 228 positive samples, followed by viral (6.1%) and parasitic (5.3%) agents.

Salmonella spp., Shigella/enteroinvasive Escherichia coli, and enterotoxigenic E. coli were the main pathogens.

Author affiliations: King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (M. Abd El Ghany, M. Alsomali, E. Padron Regalado, R. Naeem, A. Pain); University of Sydney, Australia (M. Abd El Ghany, G.A. Hill-Cawthorne); Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia (M. Almasri, A. Tukestani, A. Asiri, Z.A. Memish); Hokkaido University, Sapporo, Japan (A. Pain); Alfaaisal University, Riyadh (Z.A. Memish); Emory University, Atlanta, Georgia, USA (Z.A. Memish)

DOI: https://doi.org/10.3201/eid2310.161642

1These first authors contributed equally to this article.
2These senior authors contributed equally to this article.
3These authors were co-principal investigators.
associated with severe symptoms. We identified genes associated with resistance to third-generation cephalosporins ≈40% of *Salmonella*- and *E. coli*-positive samples. Hajj-associated foodborne infections pose a major public health risk through the emergence and transmission of antimicrobial drug–resistant bacteria.

Hajj, the annual pilgrimage by Muslims to Mecca, Saudi Arabia, is a unique mass gathering event in terms of scale (i.e., the number of pilgrims), diversity of the pilgrims, nature of the activities performed, and regularity. Approximately 2 million pilgrims from 185 countries, in addition to hundreds of thousands of residents of Saudi Arabia, travel to holy sites in Mecca each year (1). This immensely diverse population (in terms of ethnic origin, socioeconomic status, sex, age, and health status) comes together to perform the same activities within a relatively short period over a limited area of land (2), which allows for the mixing of infectious agents and susceptible populations (3). Mass gatherings such as Hajj therefore increase the potential for the emergence and dissemination of infections and raises public health concerns in Saudi Arabia and globally (4). Hajj-associated communicable public health hazards mainly involve the transmission of respiratory infections, foodborne diseases, bloodborne diseases, and zoonotic infections (4).

Globally, diarrheal infections remain the leading cause of mortality in children <5 years of age and contribute to ≈10% of child deaths each year (5–7). In addition, travelers’ diarrhea is still the most common illness observed in travelers returning from regions where diarrheal diseases are endemic (8,9). The main etiologic agents detected are consistently bacteria (*Escherichia coli, Salmonella* spp., *Shigella* spp., and *Campylobacter* spp.); viruses (rotavirus, norovirus, and adenovirus); and parasites (*Cryptosporidium* spp., *Giardia lamblia*, and *Entamoeba histolytica*) (10,11).

Despite substantial advances in food and water hygiene in many countries, mass gathering events still represent the perfect environments for the transmission of enteric infections (12,13). Diarrheal infections and foodborne diseases are commonly associated with the Hajj pilgrimage (14). Although diarrheal infections and other enteric infections are some of the most common complaints among pilgrims, little information is available regarding incidence, etiologic agents, and the abundance of antimicrobial drug–resistant strains. Published reports have mainly been based on analyses of hospital admission data that lack full characterization of the nature of the infections (15–17). Moreover, estimates of the incidence of Hajj-associated gastrointestinal disease based on hospital admission data can vary considerably (14). Recently, a few studies have shown an increase in the carriage rates of enteric pathogens that include *Tropheryma whippelii* (18), multidrug-resistant nontyphoidal *Salmonella* (19), and carbapenemase-producing *E. coli* (20) among pilgrims from France returning from Hajj. These findings, coupled with the growing threat of drug-resistant microorganisms (21), increase the risks associated with the Hajj pilgrimage and fuels the emergence and dissemination of drug-resistant enteric pathogens.

We conducted a large-scale study to catalog the circulating enteric pathogen population in Hajj pilgrims with diarrheal symptoms. We report on the use of molecular and antigenic approaches to characterize the etiologic agents associated with enteric infections in pilgrims who sought medical treatment while performing Hajj during the 2011–2013 seasons.

Materials and Methods

Ethics Statement
The samples were originally collected for diagnostic purposes; therefore, collection was not experimental in nature. The Ministry of Health of Saudi Arabia anonymized all identifiable information, and only deidentified records and samples were available to the researchers. The King Fahad Medical City institutional review board approved the study protocol (approval no. 11–157, dated October 4, 2011). The Institutional Biosafety and Ethics Committee of King Abdullah University of Science and Technology also approved the study in 2013.

Study Design
We conducted the study for 3 successive Hajj seasons, starting in 2011. Fecal samples from pilgrims having medically attended diarrhea while performing Hajj were collected. Healthcare facilities distributed along the Hajj sites were enrolled in the study.

We included patients with symptoms who were seeking medical care for diarrhea or who were admitted to hospitals or primary care centers established in the holy sites during the 7–10-day Hajj period. We defined diarrhea as the occurrence of ≥3 unformed stools in a 24-hour period or passing stool more frequently than normal for the patient, accompanied by ≥1 other gastrointestinal symptom (abdominal pain/cramps, vomiting, or bloody or mucoid stools). Patients who had unformed stool with visible blood were defined as having cases of dysentery. Patients with increased body temperature were categorized as having either mild (>37.5°C and <39°C) or severe (>39°C) fever.

We categorized the patients into 2 groups according to degree of symptom severity. We defined severe diarrhea as ≥6 unformed stools per day; diarrhea requiring hospitalization; or diarrhea accompanied by fever, dehydration, or bloody or mucoid stools. We classified patients with diarrhea not fulfilling the criteria for severe symptoms as having...
mild cases. We screened all the samples molecularly, antigenically, or both for a panel of 16 infectious agents commonly associated with diarrheal infection.

Antigenic Detection of Viral and Parasitic Pathogens
We used qualitative enzyme immunoassays for the initial detection of viral agents in the fecal samples according to manufacturers’ instructions. We used the IDEIA Norovirus test (Oxoid, Basingstoke, UK) to detect norovirus groups 1 and 2 and ProSpecT tests (Oxoid) to detect group A rotaviruses, adenoviruses, and astroviruses. For parasitic agents, we used the Giardia/Cryptosporidium Quik Chek test (TechLab, Blacksburg VA, USA) for the detection and differentiation of Cryptosporidium oocyst antigen and Giardia cyst antigen.

Isolation of DNA Using QIAsymphony Platform
We used the QIAsymphony SP (QIAGEN, Hilden, Germany), an automated high-throughput platform, for the isolation and purification of total DNA from the collected fecal samples. We used the QIAsymphony DNA 800 complex kit (QIAGEN) to extract DNA from 800 μL of pretreated diluted samples according to the manufacturer’s instructions.

Molecular Characterization of Bacterial Species
We used 3 previously established multiplex PCR assays (M1, 2, and 3) in parallel to detect the bacterial pathogens commonly associated with diarrheal infections (22). The M1 multiplex PCR used primers targeting genes eae and bfpA (enteropathogenic E. coli), aggR (enteroaggregative E. coli), and Vero cytotoxin (enterohemorrhagic E. coli). The M2 multiplex PCR used primers targeting the genes elt and st (enterotoxigenic E. coli [ETEC]), daaE (diffusely adherent E. coli), and virF and ipaH (Shigella spp./enteroinvasive E. coli [EIEC]). The M3 multiplex PCR used primers targeting the hipO gene (Campylobacter jejuni), internal transcribed spacer region (Salmonella spp.), Yersinia stable toxin gene (Yersinia enterocolitica), and rtxA gene (Vibrio cholerae). Primer details and the expected PCR fragment sizes are provided (online Technical Appendix Table 1). We evaluated the differences between the sets of the categorical data by using the Pearson χ² test. We defined statistical significance as p<0.05.

Results
During 3 consecutive Hajj seasons (2011–2013), we collected 544 fecal samples from pilgrims who had diarrhea while performing Hajj and who sought treatment at healthcare facilities (Tables 1, 2). These patients originated from 40 countries on 5 continents (online Technical Appendix Table 4). Most patients (434, 79.8%) originated from 7 countries: Saudi Arabia (24.82%, n = 135), Nigeria (15.07%, n = 82), Egypt (12.87%, n = 70), Bangladesh (8.09%, n = 44), Pakistan (6.43%, n = 35), Yemen (6.25%, n = 34), and India (6.25%, n = 34). Median (+quartile deviation) patient age was 40.17 (±13.17) years. By Hajj season, median age was 40 (±12.25) years in 2011, 40 (±13.25) in 2012, and 40.5 (±14) years in 2013 (Table
1). Most patients were men (72.98%, n = 397); women represented 27.12% of patients in 2011, 28.28% in 2012, and 23.26% in 2013 (Table 1).

We summarized the distribution of the clinical features among the patients during the 3 Hajj seasons (Table 2). Most patients were seen as outpatients (86.95%,

Table 1. Demographic characteristics of persons who acquired enteric infections during their travel for Hajj, 2011–2013
Characteristic

No. patients
No. countries of origin represented
Gender, no. (%)
F
M

*Comparison between Hajj seasons.

Table 2. Clinical characteristics of persons who acquired enteric infections during their travel for Hajj, 2011–2013
Characteristic

Hospitalization, no. (%)
Outpatient
Inpatient
Not defined
Stool consistency, no. (%)
Unformed†
Watery‡
Not defined
Abdominal pain/cramps, no. (%)
Yes
No
Not defined
Bowel movements/d, no. (%)
<3
3–5
>5
Not defined
Duration of diarrhea, d, no. (%)
<2
3–5
>5
Not defined
Presence of mucus, no. (%)
Yes
No
Not defined
Presence of blood, no. (%)
Yes
No
Not defined
Vomiting, no. (%)
Yes
No
Not defined
Fever, no. (%)§
No fever
Moderate
Severe
Not defined
Dehydration, no. (%)¶
Yes
No
Not defined

*Comparison between Hajj seasons.
†Bristol 6.
‡Bristol 7.
§Moderate fever defined as >37.5°C and <39.0°C; severe fever defined as ≥39.0°C.
¶Dehydration defined as ≥2 of the following signs or symptoms: thirst, dry mouth, weakness/lightheadedness, and darkening of the urine/decrease in urination.
The percentages of positive samples detected were 43.22% (n = 228) for 2011, 40.40% (n = 120) for 2012, and 44.19% (n = 120). Less common symptoms were bloody stool (9.38%, n = 125), and moderate fever (22.06%, n = 294). We observed no significant difference between the numbers of positive samples during the 3 seasons (χ² = 8.84; p = 0.18).

Characterization of Bacterial Pathogens

We screened the 544 fecal samples collected from the patients during the 2011–2013 Hajj seasons for 16 infectious agents, including bacteria, viruses, and parasites commonly associated with diarrheal infections. We calculated the number of the samples tested and the number and percentage of the positive samples from each season (Table 3). We detected >1 pathogen in 34.74% (n = 189) of the total samples, followed by viral (2.57%, n = 14) and parasitic (2.21%, n = 12) agents. Thirteen patients (representing 2.39% of the total samples) had samples testing positive for >1 pathogen. We observed no significant difference in the distribution of infectious agents across the 3 seasons (χ² = 8.84; p = 0.18).

We calculated the distribution of patients by age group and the enteric pathogens identified (Figure, panels A, B). The highest proportion of patients having diarrhea of known etiology, compared with unknown, was the <20-year-old age group (odds ratio [OR] 2.50; p = 0.0002). Conversely, the highest proportion of patients having diarrhea of unknown etiology compared with known was the 40–60 years age group (OR 0.52; p = 0.0004). For most of the age groups, bacteria were the main cause of diarrhea in patients, with no significant difference detected across the 3 Hajj seasons (χ² = 8.59; p = 0.2).

We also calculated the distribution of the bacterial agents associated with the diarrheal patients during 2011–2013 Hajj seasons by age group (Figure, panel C). E. coli was the most frequent species present, detected in 43.39% (n = 82) of the bacteria-positive samples. Of the serovars tested, ETEC was the most common, detected in 25.4% (n = 48) of the positive samples, followed by enteropathogenic E. coli (8.47%,

Table 3. Characteristics of etiologic agents associated with enteric infections among persons infected during their travel for Hajj, 2011–2013*

Characteristic	Year			Total
	2011	2012	2013	
No. screened samples	118	297	129	544
Samples positive for agent, no. (%)	51 (43.22)	120 (40.40)	57 (44.19)	228 (41.91)
Salmonella	41 (37.5)	96 (32.32)	52 (40.31)	189 (34.74)
Shigella/EIEC	13 (11.02)	25 (8.42)	24 (18.6)	62 (11.4)
ETEC	5 (4.24)	28 (9.43)	8 (6.2)	41 (7.54)
EPEC	12 (10.17)	29 (9.76)	7 (5.43)	48 (8.82)
EHEC	3 (2.54)	5 (1.68)	8 (6.2)	16 (2.94)
DAEC	2 (1.69)	2 (0.67)	0	4 (0.74)
EAEC	3 (2.54)	2 (0.67)	2 (1.55)	7 (1.29)
Yersinia enterocolitica	0	4 (1.35)	0	4 (0.74)
Viral agents, no. (%)	6 (5.68)	7 (2.36)	1 (0.78)	14 (2.57)
Astrovirus	0	2 (0.67)	1 (0.78)	3 (0.55)
Norovirus	2 (1.69)	2 (0.67)	0	4 (0.74)
Rotavirus	4 (3.39)	2 (0.67)	0	6 (1.1)
Adenovirus	0	1 (0.34)	0	1 (0.18)
Parasitic agents, no. (%)	3 (2.54)	8 (2.69)	1 (0.78)	12 (2.21)
Giardia	3 (2.54)	6 (2.02)	1 (0.78)	10 (1.84)
Cryptosporidum	0	2 (0.67)	0	2 (0.37)
Mixed infectious agents, no. (%)	1 (0.85)	9 (3.03)	3 (2.33)	13 (2.39)
Bacteria and virus	0	5 (1.68)	1 (0.78)	6 (1.1)
Bacteria and parasite	1 (0.85)‡	4 (1.35)¶	1 (0.78)§	6 (1.1)
Bacteria, virus, and parasite	0	1 (0.78)**	0	1 (0.18)

*EAEI, enterotoxigenic Escherichia coli; EHEC, enterohemorrhagic E. coli; EIEC, enteroinvasive E. coli; EPEC, enteropathogenic E. coli; ETEC, enterotoxigenic E. coli; DAEC, diffusely adherent E. coli.
†Salmonella and rotavirus G1P[8], Shigella/EIEC and astrovirus HAstV2, ETEC and astrovirus HAstV2, Salmonella and adenovirus, and EPEC and rotavirus G1P[8].
‡EPEC and adenovirus.
§Salmonella and Giardia.
¶EPEC and Giardia, EAEC and Giardia, ETEC and Giardia, and Salmonella and Giardia.
#EPEC and Cryptosporidium.
**EPEC, adenovirus, and Giardia.
n = 16), enteroaggregative E. coli (3.7%, n = 7), diffusely adherent E. coli (3.7%, n = 7), and enterohemorrhagic E. coli (2.12%, n = 4). We detected Salmonella spp. in 32.80% (n = 62) and Shigella/EIEC in 21.69% (n = 41) of the bacteria-positive samples. We observed significant differences in the distribution of bacterial pathogens across the 3 Hajj seasons ($\chi^2 = 12.89; p = 0.01$) and among the different age groups ($\chi^2 = 21.62; p = 0.01$).

Characterization of Viral and Parasitic Pathogens
We calculated the distribution of the viral and parasitic agents associated with diarrheal infections of pilgrims during the 2011–2013 Hajj seasons (Table 3). Screening for adenoviruses, astroviruses, noroviruses, and rotaviruses showed rotaviruses were most common, detected in 42.86% (n = 6) of the samples positive for the screened viruses. Astroviruses were detected in 21.43% (n = 3), noroviruses in 28.57% (n = 4), and adenoviruses in 7.14% (n = 1) of the virus-positive samples. We used reverse transcription PCR and Sanger sequencing to determine the genotypes of the astroviruses, noroviruses, and rotaviruses detected (online Technical Appendix Table 5). All norovirus genotypes identified were recovered from pilgrims from inside Saudi Arabia. Also, 80% of the identified astrovirus genotypes were recovered only from pilgrims from inside Saudi Arabia (astrovirus 2 or 5), whereas the single astrovirus 1 genotype was recovered from a pilgrim from Morocco (online Technical Appendix Table 5).

Giardia spp. were the most common parasitic agent, identified in 83.33% (n = 10) of the parasite-positive samples, followed by Cryptosporidium spp. in 16.66% (n = 2) of the samples. We isolated Giardia spp. from patients originating from 10 countries: 4 from Pakistan, 3 from Nigeria, 2 from Bangladesh, and 1 each from Ethiopia, Somalia, Egypt, Jordan, Niger, India, and Afghanistan. We identified Cryptosporidium spp. in 2 children (<5 years of age) from Saudi Arabia and 1 older pilgrim (65 years of age) from Chad (online Technical Appendix Table 6).

Relationship between Severity of Diarrheal Disease and Etiologic Agent
We calculated the distribution of the etiologic agents by severity of disease (Table 4). The percentage of samples with identified etiologic agents was significantly higher in patients with severe cases compared with those with mild cases (OR 1.69; p = 0.01). Similarly, the percentage of bacterial agents was significantly higher in patients with severe cases compared with those with mild cases (OR 1.58; p = 0.04). The main bacterial contributors to the severe disease of Hajj-associated diarrheal illness were Salmonella, Shigella/EIEC, and ETEC.

Antimicrobial Drug Resistance
We calculated the distribution of β-lactamase genes among the identified bacterial samples (Table 5). blaCTX.M-15 and blaNDM were the most common antimicrobial resistance genes, associated predominantly with Salmonella (n = 25/62) and ETEC (n = 16/48). This finding suggests that 40.32% of Salmonella infections and 33.33% of ETEC infections associated with the Hajj might be resistant to at least some third-generation cephalosporins, and this number might be growing with successive seasons.
Discussion

Enteric infections are commonly associated with mass gathering events, including the annual Hajj pilgrimage to Mecca, Saudi Arabia. The host country and the country of origin of many of the pilgrims are endemic for enteric pathogens and increasingly high levels of antimicrobial resistance. In addition, the lack of effective vaccines against major bacterial infections is challenging (30). These circumstances raise serious public health challenges for Saudi Arabia, with potential intercontinental and global implications. A key challenge is the paucity of information available on the structure of the circulating enteric pathogens during Hajj. However, these studies have only focused on colonization by antimicrobial-resistant bacteria in a particular host population.

In this study, we used integrated antigenic and molecular approaches to screen 544 fecal samples from pilgrims with medically attended diarrheal illness for 16 pathogens to identify the etiologic agents responsible for patients seeking care at healthcare facilities during 3 consecutive Hajj seasons. Bacterial pathogens were the most common causes of Hajj-associated diarrheal disease, followed by viruses and parasites, and this pattern was maintained during all 3 seasons.

Our data demonstrate that Hajj-associated diarrheal disease is usually caused by 1 bacterial agent, with ETEC, *Salmonella* spp., and *Shigella/EIEC* being the most common. This association is distinct to the pattern of travelers’ diarrhea observed in travelers from Finland, where multiple bacterial pathogens have been identified in 53% of patients with ongoing diarrhea and 25% of those without symptoms (31). However, this observation is not surprising; Hajj-associated diarrheal disease is likely to be different from travelers’ diarrhea because of the different populations involved. Most of Hajj pilgrims originate from intermediate- and high-risk regions for enteric pathogens. In contrast, many travelers’ diarrhea patients are nonimmune persons from developed countries who are naive to many of the enteric pathogens encountered and thus are more highly susceptible to infection when traveling overseas (32).

Viruses ranked second and parasites third as the most commonly detected pathogens in patients with Hajj-associated diarrhea. Of note, all of the identified noroviruses and most astroviruses and rotaviruses were recovered from pilgrims from inside Saudi Arabia. The emergent norovirus genotype GII.4 that was first identified in Sydney, Australia, in 2012 and subsequently resulted in global outbreaks (33).

Table 4. Relationship between severity of diarrheal disease and identified etiologic agents among persons who acquired enteric infections during their travel for Hajj, 2011–2013*

Category	Severity of diarrheal disease	Statistical analyses		
	Severe	Mild	\(\chi^2 \)	p value
Total no. cases	412	132		
Positive for etiologic agent, no. (%)	185 (44.9)	43 (32.58)	6.24†	0.01
Bacterial agents, no. (%)				
Salmonella	153 (37.14)	36 (27.27)	4.29‡	0.04
Shigella/EIEC	45 (10.92)	17 (12.88)	4.19§	0.04
ETEC	35 (8.5)	6 (4.55)		
EPEC	43 (10.44)	5 (3.79)	5.49¶	0.019
EHEC	13 (3.16)	3 (2.27)		
DAEC	3 (0.73)	1 (0.76)		
EAEC	7 (1.7)			
Yersinia enterocolitica	5 (1.21)	2 (1.52)		
Viral agents, no. (%)				
Astrovirus	2 (0.49)	1 (0.76)		
Norovirus	4 (0.97)	0		
Rotavirus	6 (1.46)	0		
Adenovirus	1 (0.24)			
Parasitic agents, no. (%)				
Giardia	10 (2.43)	2 (1.52)	0.39	0.53
Cryptosporidium	2 (0.49)	0		
Mixed infectious agents, no. (%)	9 (2.18)	4 (3.03)	0.31	0.58
Bacteria and virus	4 (0.97)	2 (1.52)		
Bacteria and parasite	5 (1.21)	1 (0.76)		
Bacteria, virus, and parasite	0	1 (0.76)		

*AEEC, enteroaggregative *Escherichia coli*; EHEC, enteroheemorrhagic *E. coli*; EIEC, enteroinvasive *E. coli*; EPEC, enteropathogenic *E. coli*; ETEC, enterotoxigenic *E. coli*; DAEC, diffusely adherent *E. coli*; OR, odds ratio.

†Compared with total number of cases, OR 1.69, p=0.01.‡Compared with total number of positive bacteria, OR 0.47, p=0.04.§Compared with total number of positive bacteria, OR 1.58, p=0.04.¶Compared with total number of cases, OR 2.96, p=0.02.
Arabia in late October and early November of the 2012 Hajj season. Major causes of diarrhea among children living in Saudi Arabia include rotaviruses (accounting for 6.0% incidence), noroviruses (3.5%), astroviruses (1.9%), and adenoviruses (1.4%) (33). Recently, travelers’ diarrhea has been shown to be an independent risk factor for contracting ESBL-producing Enterobacteriaceae (ESBL-PE) but not carbapenemase-producing Enterobacteriaceae (CPE), with the rate of acquisition varying by destination (34). Of particular concern were the presence of extended-spectrum β-lactamase (ESBL) (primarily bla_{CTX-M-15}) and carbapenemase (e.g., bla_{NDM}) genes in approximately 40% of Salmonella spp. and E. coli–positive samples collected.

Collectively, these results suggest that further epidemiologic investigations need to be carried out during pilgrimages to identify potential food sources of pilgrim infections. In addition, antimicrobial drug susceptibility testing is needed to inform treatment.

This study used a retrospective approach and 1 anonymized specimen from each patient enrolled in the study. One advantage of this approach is that the study population is more representative of the highly diverse Hajj population, with samples collected from patients originating from 40 different countries. However, a prospective approach with pre- and post-Hajj samples collected from each patient would have provided information on the role of the pilgrimage in contracting the pathogens identified.

In addition, even though integrated molecular and antigenic approaches were used, >50% of the tested samples had no identifiable etiologic agent. These samples require further examination using more comprehensive high-throughput sequencing and metagenomic approaches. High-throughput shotgun sequencing has been used successfully to study population structures and define the epidemiologic links of many enteric pathogens (38–42). Moreover, metagenomic approaches have been used successfully to identify viral (43,44) and bacterial (45) agents associated with enteric infections. This approach could enable estimation of the ratio of pathogenic to commensal bacteria in pilgrims’ guts, thereby characterizing the acquisition of potential pathogens and their dynamics before and during infections.

Finally, in this study, the assessment of antimicrobial drug susceptibility was only performed by detecting resistance-related genes. The presence of such genes does not necessarily mean the pathogen identified is carrying them.

Year/bacteria	bla_{CTX-M-15}	bla_{NDM}	bla_{PER}	bla_{IMP}	bla_{PAE-48}	bla_{VIM}
2011						
Salmonella	3+2†	2†	0	0	0	0
Shigella/EIEC	1+1†	1†	0	0	0	0
ETEC	3+4†	4†	0	0	0	0
EAEC	3	0	0	0	0	0
EHEC	2	0	0	0	0	0
DAEC	0	1	0	0	0	0
2012						
Salmonella	6	3	0	0	0	0
Shigella/EIEC	4	0	0	0	0	0
ETEC	5+1†	1†	0	0	0	0
EPEC	1	0	0	0	0	0
EHEC	2	0	0	0	0	0
Yersinia enterocolitica	2+1†	1†	0	0	0	0
2013						
Salmonella	10+1†	1†	0	0	0	0
Shigella/EIEC	3	0	0	0	0	0
ETEC	2+1†	1†	0	0	0	0
EPEC	6+1†	1†	0	0	0	0
EAEC	1	0	0	0	0	0

†Multidrug-resistant; both bla_{CTX-M-15} and bla_{NDM} were detected.
and these genes might be associated with other commensal carriage. We focused on those resistance genes that are posing the most risk to global health and can be easily shared among the Enterobacteriaceae, rather than the genes that can confer resistance to the antibiotics widely used for treating enteric infections.

The data we have collected are alarming and highlight the need for further studies to explore the impact of Hajj on public health in Saudi Arabia and globally. Longitudinal studies are required to monitor the changes in colonization patterns of pilgrims during the Hajji, identify the key factors that control these changes, detect the emergence of novel variants (particularly those associated with drug resistance), and understand the dynamics of disease transmission. In addition, active surveillance for enteric diseases is needed to define the potential impact of Hajj on the baseline status of enteric infections in residents of Saudi Arabia and to investigate foodborne outbreaks of disease in a timely manner.

Acknowledgments

We thank Elizabeth Barnes, Mahmoud Diaf, and Moustafa El Badry for their advice regarding the statistical analysis.

This work was supported by the Saudi Ministry of Health (Z.M.) and King Abdullah University of Science and Technology (faculty baseline funding [BAS/1/1020-01-01] to A.P.), and Marie Bashir Institute and Sydney Medical School Foundation (M.A. and G.H.).

Dr. Abd El Ghany is a senior researcher at the Westmeal Institute for Medical Research and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia. His primary research interests are the use of molecular and different Omics approaches (i.e., whole genome, whole transcriptome, functional genomic, and whole genome sequence–based metagenomic technologies) to address the emergence and transmission of infectious diseases, with particular focus on antimicrobial resistance, food security, and mass gathering medicine.

References

1. Memish ZA, Venkatesh S, Ahmed QA. Travel epidemiology: the Saudi perspective. Int J Antimicrob Agents. 2003;21:96–101. http://dx.doi.org/10.1016/S0924-8579(02)00364-3
2. Memish ZA, Stephens GM, Steffen R, Ahmed QA. Emergence of medicine for mass gatherings: lessons from the Hajj. Lancet Infect Dis. 2012;12:56–65. http://dx.doi.org/10.1016/S1473-3099(11)70337-1
3. Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, et al. Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis. 2012;12:66–74. http://dx.doi.org/10.1016/S1473-3099(11)70246-8
4. Ahmed QA, Arabi YM, Memish ZA. Health risks at the Hajj. Lancet. 2006;367:1008–15. http://dx.doi.org/10.1016/S0140-6736(06)68429-8
5. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71. http://dx.doi.org/10.1016/S0140-6736(14)61682-2
6. Liu L, Johnson HL, Couzens S, Perin J, Scott S, Lawn JE, et al.; Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61. http://dx.doi.org/10.1016/S0140-6736(12)60590-1
7. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:209–22. http://dx.doi.org/10.1016/S0140-6736(13)60844-2
8. Steffen R. Epidemiology of travellers’ diarrhea. J Travel Med. 2017;24(Suppl 1):S2–5. http://dx.doi.org/10.1093/itmdev/taw072
9. Steffen R, Hill DR, DuPont HL. Traveler’s diarrhea: a clinical review. JAMA. 2013;513:71–80. http://dx.doi.org/10.1001/jama.2014.17006
10. Diemert DJ. Prevention and self-treatment of traveler’s diarrhea. Clin Microbiol Rev. 2006;19:583–94. http://dx.doi.org/10.1128/CMR.00052-05
11. Barrett J, Brown M. Travellers’ diarrhoea. BMJ. 2016;353:i1937. http://dx.doi.org/10.1136/bmj.i1937
12. Botelho-Nevers E, Gautret P. Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012. Euro Surveill. 2013;18:20426.
13. Gautret P, Steffen R. Communicable diseases as health risks at mass gatherings other than Hajj: what is the evidence? Int J Infect Dis. 2016;47:46–52. http://dx.doi.org/10.1016/j.ijid.2016.03.007
14. Gautret P, Benkouiten S, Sridhar S, Al-Tawfiq JA, Memish ZA. Diarrhea at the Hajj and Umrah. Travel Med Infect Dis. 2015;13:159–66. http://dx.doi.org/10.1016/j.tmaid.2015.02.005
15. Al-Ghamdi SM, Akbar HO, Qari YA, Fathaldin OA, Al-Rashed RS. Pattern of admission to hospitals during Muslim pilgrimage (Hajj). Saudi Med J. 2003;24:1073–6.
16. Bakhsh AR, Sindy AI, Baljoon MJ, Dhafar KO, Gazzaz ZJ, Baig M, et al. Disease pattern among patients attending Holy Mosque (Haram) Medical Centers during Hajj 1434 (2013). Saudi Med J. 2015;36:962–6. http://dx.doi.org/10.15537/smj.2015.8.12120
17. Khan NA, Ishaq AM, Ahmad MS, El-Sayed FM, Bachal ZA, Abbas TG. Pattern of medical diseases and determinants of prognosis of hospitalization during 2005 Muslim pilgrimage Hajj in a tertiary care hospital. A prospective cohort study. Saudi Med J. 2006;27:1373–80.
18. Gautret P, Benkouiten S, Parola P, Brouqui P, Memish Z, Raoult D. Occurrence of Tropheryma whipplei during diarehia in Hajj pilgrims: a PCR analysis of paired rectal swabs. Travel Med Infect Dis. 2014;12:481–4. http://dx.doi.org/10.1016/j.tmmd.2014.04.003
19. Olaitan AO, Dia NM, Gautret P, Benkouiten S, Belhoucact K, Drai T, et al. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj. Int J Antimicrob Agents. 2015;45:660–4. http://dx.doi.org/10.1016/j.ijantimicag.2015.01.010
20. Leangapichart T, Gautret P, Griffiths K, Belhouchat K, Memish Z, Raoult D, et al. Acquisition of a high diversity of bacteria during the Hajj pilgrimage, including Acinetobacter baumannii with blaoxa-51 and Escherichia coli with blaoxa-37 carbapenemase genes. Antimicrob Agents Chemother. 2016;60:5942–8. http://dx.doi.org/10.1128/AAC.00669-16
21. World Health Organization. Antimicrobial resistance: global report on surveillance 2014 [cited 2016 Oct 1]. http://www.who.int/drugresistance/documents/surveillancereport
22. Gómez-Duarte OG, Bai J, Newell E. Detection of Escherichia coli, Salmonella spp., Shigella spp., Yersinia enterocolitica, Vibrio cholerae, and Campylobacter spp. enteropathogens by 3-reaction multiplex polymerase chain reaction. Diagn Microbiol Infect Dis. 2009;63:1–9. http://dx.doi.org/10.1016/j.diagmicrobio.2008.09.006

23. Tamura T, Nishikawa M, Aghi DD, Suzuki H. Molecular epidemiological study of rotavirus and norovirus infections among children with acute gastroenteritis in Nha Trang, Vietnam, December 2005–June 2006. Jpn J Infect Dis. 2010;63:405–11.

24. Mattison K, Grudeski E, Auk B, Charest H, Drees SJ, Fritzinger A, et al. Multicenter comparison of two norovirus ORF2-based genotyping protocols. J Clin Microbiol. 2009;47:3927–32. http://dx.doi.org/10.1128/JCM.00497-09

25. Noel JS, Lee TW, Kurtz JB, Glass RI, Monroe SS. Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J Clin Microbiol. 1995;33:797–801.

26. Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol. 2009;9:238. http://dx.doi.org/10.1186/1471-2180-9-238

27. Kroneman A, Vennema H, Deforce K, v d Avoort H, Peñaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011;51:121–5. http://dx.doi.org/10.1016/j.jcv.2011.03.006

28. Guix S, Caballero S, Villena C, Bartolomé R, Latorre C, Rabella N, et al. Molecular epidemiology ofastrovirus infection in Barcelona, Spain. J Clin Microbiol. 2002;40:133–9.http://dx.doi.org/10.1128/JCM.40.1.133-139.2002

29. Zowawi HM, Sartor AL, Balkhy HH, Walsh TR, Al Johani SM, ALJindan RY, et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother. 2014;58:3085–90. http://dx.doi.org/10.1128/AAC.02500-13

30. Abd El Ghany M, Sharaf H, Hill-Cawthorne GA. Hajj vaccinations—facts, challenges, and hope. Int J Infect Dis. 2016;47:29–37. http://dx.doi.org/10.1016/j.ijid.2016.05.024

31. Lääveri T, Antikainen J, Pakkanen SH, Kirveskari J, Kantele A. Prospective study of pathogens in asymptomatic travellers and those with diarrhoea: aetiological agents revisited. Clin Microbiol Infect. 2016;22:535–40. http://dx.doi.org/10.1016/j.cmi.2016.02.011

32. Steffen R. Epidemiology of traveler’s diarrhoea. Clin Infect Dis. 2005;41(Suppl 1):S536–40. http://dx.doi.org/10.1086/432948

33. Tayeh HT, Dela Cruz DM, Al-Qahtani A, Al-Ahdal MN, Carter MJ. Enteric viruses in pediatric diarrhea in Saudi Arabia. J Med Virol. 2008;80:1919–29. http://dx.doi.org/10.1002/jmv.21291

34. Kantele A, Lääveri T, Meri S, Vilkan M, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60:837–46. http://dx.doi.org/10.1093/cid/ciu957

35. Balkhy HH, Assiri AM, Mousa HA, Al-Abri SS, Al-Katheeri H, Alansari H, et al. The strategic plan for combating antimicrobial resistance in Gulf Cooperation Council States. J Infect Public Health. 2016;9:375–85. http://dx.doi.org/10.1016/j.jiph.2016.03.003

36. Zowawi HM. Antimicrobial resistance in Saudi Arabia. An urgent call for an immediate action. Saudi Med J. 2016;37:935–40. http://dx.doi.org/10.15537/smj.2016.9.16139

37. Leangapiarch T, Tissot-Dupont H, Raoult D, Memish ZA, Rolain JM, Gautret P. Risk factors for acquisition of CTX-M genes in pilgrims during Hajj 2013 and 2014. J Antimicrob Chemotherapy. 2017 May 26 [Epub ahead of print]. http://dx.doi.org/10.1093/jac/dcx155

38. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. Evidence for several waves of global transmission in the seventh cholaera pandemic. Nature. 2011;477:462–5. http://dx.doi.org/10.1038/nature10392

39. Abd El Ghany M, Chander J, Mutreja A, Rashid M, Hill-Cawthorne GA, Ali S, et al. The population structure of Vibrio cholerae from the Chandigarh Region of Northern India. PLoS Negl Trop Dis. 2014;8:e2981. http://dx.doi.org/10.1371/journal.pntd.0002981

40. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, et al. Phylogeographic analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet. 2015;47:632–9. http://dx.doi.org/10.1038/ng.3281

41. Holt KE, Baker S, Weil FX, Holmes EC, Kitchen A, Yu J, et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet. 2012;44:1056–9. http://dx.doi.org/10.1038/ng.2369

42. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A, Thomson NR, et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet. 2014;46:1321–6. http://dx.doi.org/10.1038/ng.3145

43. Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhoea: viral detection and discovery. PLoS Pathog. 2008;4:e1000011. http://dx.doi.org/10.1371/journal.ppat.1000011

44. Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, et al. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One. 2009;4:e4219. http://dx.doi.org/10.1371/journal.pone.0004219

45. Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, et al. Metagenomic diagnosis of bacterial infections. Emerg Infect Dis. 2008;14:1784–6. http://dx.doi.org/10.3201/eid1411.080589

Address for correspondence: Moataz Abd El Ghany, Westmead Institute for Medical Research and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW 2145, Australia; email: moataz.mohamed@sydney.edu.au; Arnab Pain; email: arnab.pain@kaust.edu.sa; Ziad A. Memish; email: zmemish@yahoo.com
Enteric Infections Circulating during Hajj Seasons, 2011–2013

Technical Appendix

Technical Appendix Table 1. Details of the primers used in the bacterial characterization

Primer sequence (5′→3′)	Target	PCR amplicon size, bp	Bacterial species
1. GACGCAAATAATTTATATGTG	VT	518	EHEC
2. TGATGATGCGCAATTGATAT	eae	917	EPEC
3. CTGAAACGCGATTACGCGAA	bfpA	326	
4. CGAGCACGATCGATCCAG	aggR	254	EAEC
5. AATGGTGCTCGGCTTGGTCG	ST	147	
6. GCCGCTTTATCAACCTGGTA	daaE	542	DAEC
7. GTATACACAAAAAGAAGGAAG			
8. ACAGAATCTGCACTACGAC	virF	618	Shigella spp./EIEC
9. GCACACGGGAGCTCCTCAGTC	IPS	312	Salmonella spp.
10. TCCTTCATCTTTGAATGGCTTT			
11. GCCAACCAGTAGAG(C)CTTTCAAAA			
12. CCGGTACAG(A)GCAAGATTACAA			
13. GAACCTTGGTTAATGTCGGGTAA			
14. TATTCACCCGGTGCTGTTACGT			
15. AGCTCAGGAATGAACACTTTGAC			
16. TGGGCTTGATATTCGCGATTGCTC			
17. CTCGCGACGGTTTAAATGCTGG			
18. GTGGAAGCTGAAGTTTTCCTGCG			
19. TATGCCCCATCGTGATGTCAGAAC			
20. TGGCGGCTGGATCACCTCCCTT			
21. GTTATAGCTGTCTTTATTTTGAGGC			
22. GACATCCAATACCTACTGACTTC			
23. AGCAAAGACATTGTGTTTCTCACC			
24. ACTTCCCTGCTACCGCATTTAGAC			
25. GACCTTCGTCGAGATATGATCTGCTT			
26. GCTATAACTATCCGAAAGGACCATCA			

Technical Appendix Table 2. Details of the primers used in the viral genotyping

Primer sequence (5′→3′)	Target	PCR amplicon size, bp
1. TCAGATGCATTGTCATTGTC	Astrovirus	449
2. CAACTCAGGAACAGGACGGT	Rotavirus G typing	1062
3. GCGTTTAAAAGAGAGATATTCGCTGG	Rotavirus P typing	876
4. GTGCACATGACACTTAACTCAAG	Norovirus GI	330
5. TGCCCTGCGCATTTATAGACA	Norovirus GII	344
6. ATTCGCGACATTACGACC	Norovirus GII	344
7. CCAACCCRCCCTTTACA	Norovirus GI	330
8. CTGCGCGAAATTYGTAATGCA	Norovirus GII	344
9. CCRNCNGCATRHCCRTRTACAT	Norovirus GII	344
10. CNTGGGAGGGCGATCGCAA	Norovirus GII	344
Technical Appendix Table 3. Primer sequences for Enterobacteriaceae resistance testing

Primer sequence (5′→3′)	Target	PCR amplicon size, bp
1. CACACGGGAATTTAGGGACT	blaCTX-M-15	996
2. GCCGTCCTAAAGGCATAAAC	blaIMP	591
3. CTACCCGCAAGCAGTCTTTGC		
4. GAACACAGGTTTTGCCTTACC		
5. ATCTGACAACAGCATGACG	blaKPC	452
6. GACGGCCCAACCAATAGGTC		
7. GCAGGTTGATCTCCTGCTTG	blaNDM	203
8. ACCTGTGGCAGTCTGAGCTG		
9. GCCGTGTTAAGGATGAAACAC	blaOXA-48	438
10. GCAGGTTGATCTCCTGCTTG		
11. GATGTTTGGTGTCGCATA	blaVIM	390
12. CGAATGCGCAGCACCAG		

Technical Appendix Table 4. The distribution of cases according to the country of origin

Country	2011	2012	2013	Total (%)
Afghanistan	1	16	1	18 (3.31)
Algeria	0	2	0	2 (0.37)
Australia	0	1	0	1 (0.18)
Azerbaijan	0	1	0	1 (0.18)
Bangladesh	5	25	14	44 (8.09)
Benin	0	1	0	1 (0.18)
Burma	0	1	1	2 (0.37)
Canada	0	3	0	3 (0.55)
Chad	0	0	1	1 (0.18)
China	0	1	1	2 (0.37)
Egypt	21	34	15	70 (12.87)
Ethiopia	4	0	0	4 (0.74)
Ghana	0	2	2	4 (0.74)
Guinea	0	1	0	1 (0.18)
India	8	24	2	34 (6.25)
Indonesia	3	2	0	5 (0.92)
Iraq	1	0	0	1 (0.18)
Jordan	3	0	0	3 (0.55)
Kazakhstan	0	1	0	1 (0.18)
Mali	1	1	2	4 (0.74)
Malaysia	1	0	0	1 (0.18)
Morocco	0	5	4	9 (1.65)
Mauritania	0	1	2	3 (0.55)
Nepal	0	0	1	1 (0.18)
Niger	0	1	1	2 (0.37)
Nigeria	1	43	38	82 (15.07)
Oman	1	0	0	1 (0.18)
Pakistan	11	18	6	35 (6.43)
Palestine authority	0	1	0	1 (0.18)
Philippines	0	0	1	1 (0.18)
Saudi Arabia	31	78	26	135 (24.82)
Somalia	1	0	0	1 (0.18)
Sudan	5	1	0	6 (1.1)
Syria	3	2	0	5 (0.92)
Tunisia	0	0	2	2 (0.37)
Turkey	2	2	0	4 (0.74)
United Kingdom	0	3	2	5 (0.92)
Union des Comores	0	1	0	1 (0.18)
United States of America	1	1	0	2 (0.37)
Yemen	11	17	6	34 (6.25)
Country not identified	3	1	1	11 (2.02)
Total samples	118	297	129	544
No. countries	20	30	20	40
Technical Appendix Table 5. Viral genotypes and associated data

Virus	Genotype	Year	Age, y	Sex	Country
Astrovirus	HAstV2	2012	32	Male	Saudi Arabia
	HAstV2	2012	9	Female	Saudi Arabia
	HAstV2	2012	36	Female	Saudi Arabia
	HAstV5	2012	2	Male	Saudi Arabia
	HAstV1	2013	56	Male	Morocco
Norovirus	GII.3	2011	1	Female	Saudi Arabia
	GI.6	2011	12	Female	Saudi Arabia
	GII.1	2012	33	Female	Saudi Arabia
	GII.4 Sydney	2012	79	Female	Saudi Arabia
Rotavirus	G1P[8]	2011	24	Female	Yemen
	G3P[8]	2011	1	Female	Saudi Arabia
	G4P[8]	2011	37	Male	Pakistan
	GxP[8]	2011	30	Male	Saudi Arabia
	G1P[8]	2012	53	Male	USA
	G3P[8]	2012	5	Male	NN
	G1P[8]	2012	1	Male	Saudi Arabia
	GxP[8]	2012	NN	Male	Egypt
Adenovirus	ND	2012	39	Male	Egypt
	ND	2012	58	Male	Bangladesh
	ND	2013	3	Male	Pakistan
	ND	2013	0.5	Male	Saudi Arabia

Technical Appendix Table 6. Parasitic agents and associated data*

Parasite	Year	Age, y	Sex	Country
Giardia	2011	30	M	Ethiopia
Giardia	2011	11	F	Somalia
Giardia	2011	31	M	Egypt
Giardia	2011	40	M	Jordan
Giardia	2012	33	M	India
Giardia	2012	68	M	Pakistan
Giardia	2012	10	F	Afghanistan
Giardia	2012	32	M	Nigeria
Giardia	2012	ND	M	Nigeria
Giardia	2012	60	M	Bangladesh
Giardia	2012	35	F	Niger
Giardia	2012	65	M	Pakistan
Giardia	2012	58	M	Bangladesh
Giardia	2012	32	M	Pakistan
Giardia	2013	32	F	Nigeria
Giardia	2013	3	M	Pakistan
Cryptosporidium	2012	3	M	Saudi Arabia
Cryptosporidium	2012	2	F	Saudi Arabia
Cryptosporidium	2013	65	M	Chad

*ND, not determined.
Technical Appendix Figure. Number of persons who had diarrheal symptoms associated with their travel during Hajj seasons, 2011–2013, by age group. NI, age not identified.