SUPPLEMENTARY MATERIAL

UHPLC-HRMS/MS on untargeted metabolomics: a case study with Copaifera (Fabaceae)

Ananda da Silva Antonio, Davi Santos Oliveira, Gustavo Ramalho Cardoso dos Santos, Henrique Marcelo Gualberto Pereira, Larissa Silveira Moreira Wiedemann and Valdir F. Veiga-Junior

Chemistry Department, Institute of Exact Sciences, Federal University of Amazonas, Avenida Rodrigo Octávio, 6200, Coroado, CEP: 69.077-000, Manaus/AM-Brazil

Federal University of Rio de Janeiro, Chemistry Institute, Brazilian Doping Control Laboratory (LBCD – LADETEC / IQ – UFRJ), Avenida Horácio Macedo, 1281 - Pólo de Química - Cidade Universitária, Ilha do Fundão, CEP: 21941-598, Rio de Janeiro/RJ-Brazil.

Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP: 22.290-270, Rio de Janeiro/RJ-Brazil. *Email: valdir.veiga@gmail.com

Abstract

Untargeted metabolomics is a powerful tool on chemical fingerprinting. It can be applied in phytochemistry to aid species identification, systematic studies and quality control of bioproducts. This approach aims to produce as much chemical information as possible, without focusing in any specific chemical class, thus, requiring extensive chemometric effort. This study aimed to evaluate the feasibility of a untargeted metabolomic method on phytochemistry by a study case of the Copaifera genus (Fabaceae). This genus contains notorious medicinal species used worldwide. Copaifera exploitation issues includes lack of chemical data, ambiguously species identification methods and absence of quality control for its bioproducts. Different organs of five Copaifera species were analysed by UHPLC-HRMS/MS, GNPS platform and chemometric tools. Untargeted metabolomic enabled the identification of 19 chemical markers and 29 metabolites, distinguishing each sample by species, plant organs, and biome type. Chemical markers were classified as flavonoids, terpenoids and condensed tannins. The applied method provided reliable information about species chemodiversity using fast workflow with little sampling size. Untargeted approach by UHPLC-HRMS/MS proved to be a promising tool for species identification, pharmacological prospecting and in the future for the quality control of extracts used in the manufacture of bioproducts.

Keywords: Copaiba; chemophenetic; Flavonoids; Condensed tannins; GNPS
Table S1. Chromatographic operational features applied on the analysis and peak integration of UHPLC-HRMS method.

Feature	Value
Dionex Ultimate 3000 (Thermo Scientific, Bremen, Germany)	
Oven Temperature (°C)	40
Injection system temperature (°C)	40
Flow rate (mL min\(^{-1}\))	0.400
Injection volume (µL)	8.0

Table S2. Instrumental features used on the high resolution mass spectrometer

Feature	Value
Liquid chromatograph	Dionex Ultimate 3000 (Thermo Scientific, Bremen, Germany)
Mass spectrometer	Q-Exactive (Thermofisher Scientific, Bremen, Germany)
Detector	Hybrid quadrupole-orbitrap mass
Ionization source	ESI
Acquisition mode	MS\(^1\) and MS\(^2\) Data Dependent analysis (DDA) with “TopN” algorithm set to 5 precursors for MS\(^2\) experiments
m/z range (Da)	100 – 900
Ionization modes	Positive and negative
Spray voltage (kV)	2.9 (negative mode) 3.9 (positive mode)
Sheath gas flow (arb)	60
Sweep gas flow (arb)	0.0
Auxiliary gas flow (arb)	20
Capillary Temperature (°C)	380
Source temperature (°C)	250
Collision energy (eV)	30
Resolution (FHWM)	70,000
Mass error (ppm)	5.0
Isolation window	4.0
Mass spectrometer calibration	Xcalibur v3.0.63 Lock mass as “best” for polydimethylcuclosiloxane

Table S3. Chromatographic operational features applied on the analysis and peak integration of UHPLC-HRMS method.

Baseline correction

Feature	Value
Chromatogram type	TIC
MS level	1
M/z bin width	1
Correction method	Asymmetric baseline corrector
Smoothing	1.00E+05
Asymmetry	0.05

Mass detection

Feature	Value
Mass detector	Exact mass
MS level	1
Noise level	1.00E+07
MS level	2
Noise level	8.00E+03

ADAP chromatogram builder

Feature	Value
Min group size of scan	5
Group intensity threshold	3.00E+07
Min highest intensity	7.00E+06
M/z tolerance (ppm)
- 10

Chromatogram deconvolution

Algorithm	Baseline cut-off
Min. Peak height	7.00E+06
Peak duration (min)	0 to 3
Baseline level	8.00E+05
M/z range for MS2 scan pairing (Da)	0.01
M/z range for MS2 scan pairing (min)	0.2
M/z center calculation	Average

Deisotope

M/z tolerance (ppm)	10
Retention time tolerance (%)	0.1
Maximum charge	3
Representative isotope	Most intense

Join aligner

M/z tolerance (ppm)	10
Weight for m/z	75
Retention time tolerance min.	0.1
Weight for RT	25

Filtering

Min. Peak in a row	2
Min. Peak in na isotope pattern	2
Keep only with MS2 scan (GNPS)	Yes

GNPS-FNMB

| Precursor ion mass tolerante (Da) | 2 |
| Fragment ion mass tolerante (Da) | 0.5 |