ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL STREAMING DATA

Shixiang Zhu, Henry Shaowu Yuchi, Yao Xie

Georgia Institute of Technology
H. Milton Stewart School of Industrial and Systems Engineering
Atlanta, GA, USA

ABSTRACT

Spatio-temporal event data are becoming increasingly available in a wide variety of applications, such as electronic transaction records, social network data, and crime data. How to efficiently detect anomalies in these dynamic systems using these streaming event data? We propose a novel anomaly detection framework for such event data combining the Long short-term memory (LSTM) and marked spatio-temporal point processes. The detection procedure can be computed in an online and distributed fashion via feeding the streaming data through an LSTM and a neural network-based discriminator. We study the false-alarm-rate and detection delay using theory and simulation and show that it can achieve weak signal detection by aggregating local statistics over time and networks. Finally, we demonstrate the good performance using real-world datasets.

Index Terms— Anomaly detection, adversarial learning, long short-term memory, marked spatio-temporal point processes.

1. INTRODUCTION

Data recording spatio-temporal events exist ubiquitously in our daily life. These spatio-temporal data range from electronic transaction records at large chain department stores, earthquake records, to criminal history records by the police. In many cases when an abnormal incident takes place, it will result in anomalies in the recorded sequence (Figure 1). Such sequential anomaly data usually have a distinctive pattern compared to normal data, and they are difficult to obtain. Therefore, it has been a challenge to capture the anomalous pattern and detect such anomalies in the dynamic systems efficiently and accurately, especially using only insufficient one-class anomaly data.

In this work we propose a novel anomaly detection framework for streaming event data leveraging the power of adversarial learning [1, 2, 3]. The anomaly events are modeled using marked spatio-temporal point processes, where the historical information is specified as the last hidden state of the Long Short-Term Memory (LSTM). The neural network-based discriminator in the adversarial framework can be naturally used as an anomaly detector. The detection procedure can be carried out in an online and distributed fashion via feeding the streaming data through the LSTM and the discriminator.

The major contribution of this work is two-fold: (1) The work has obtained a robust anomaly detector based on a limited amount of training real data. It is proposed to generate “realistic” fake samples using an adversarial framework to improve the discriminator; (2) The work has proposed modeling the event sequence data by integrating the versatile point process framework with LSTM. This gives the model better interpretability and flexibility in capturing the true underlying pattern.

We focus on the prediction accuracy and detection delay from application data and simulations. Our study shows the proposed approach is capable to achieve weak signal sequential anomaly detection by aggregating local statistics over time and networks over time, location, and mark space. Finally, we demonstrate the satisfactory performance using data from real-world applications.

Fig. 1: An example of anomaly detection for marked spatio-temporal streaming data.

Related work. There have been a number of attempts in integrating the idea of General Adversarial Network (GAN) and anomaly detection. Several existing methods are analyzed in [4]. These methods discussed stem directly from the structure of GAN without modeling of the streaming data. In the work
of [5], Long Short Term-Reccurrent Neural Network (LSTM-RNN) is applied in GAN to capture the distribution of multivariate time series of streaming data for cyber-physical systems. The work of [6] uses a GAN-based approach to carry out anomaly detection for medical image scans, taking advantage of discriminator feature information. Similarly looking into image anomaly detection, it attempts to obtain the latent space representation from the generator of GAN to identify anomalies in [7].

Typical adversarial problems draw attention to obtaining a high-quality fake data generator using the adversarial network. This aims to detect anomalies when normal data pattern is available and can be exploited for a traditional two-class change detection. However, in the setting of this work, only anomaly data are available, which calls for a one-class classification problem, but it is limited to images only. A few pieces of more recent research are closely related to this work in the effort of exploiting the LSTM structure or adversarial learning setting. In [8, 9], Hawkes process is adapted from the neural Hawkes model in [8, 9, 12, 13]. The model represents the historical information of a sequence \(x \) using the final hidden state \(h_{N+1} \) after feeding the data sequentially into the LSTM.

We characterize the anomaly behavior of events in a sequence using a conditional intensity function \(\lambda(t, s, m|H_t) \), which is the probability of observing an event in the marked spatio-temporal space \([0, T] \times S \times \Omega^* \) given the history of past events \(H_t: \lambda(t, s, m|H_t) dt ds dm = P\{x_{i+1} \in [t, t + dt] \times [B(s, \Delta s)] \times [B(m, \Delta m)]|H_t \} \), where \(B(\nu, \Delta \nu) \) are the Lebesgue measure of the ball \(B(\nu, \Delta \nu) \) with radius \(\Delta \nu \).

We model the nonlinear dependency of current event from past events using the LSTM. As shown in Figure 2, for the \(i \)th event occurring at the time \(t_i \), the data tuple \((t_i, s_i, m_i)\) is fed as input into the LSTM unfolded up to the \(i + 1 \)th event. The embedding \(h_i \in \mathbb{R}^p \) represents the memory effect, which is the influence from the past events. The LSTM updates \(h_{i-1} \) to \(h_i \) by taking into account the impact of the current event \(x_i \). Finally, we use \(h_t \) to represent the influence of the history up to time \(t \), \(\forall t : t_i < t < t_{i+1} \).

Given the \(i \)th input \(x_i \) and the last hidden state \(h_{i-1} \), we can obtain the hidden state \(h_i \) of LSTM \((p \) is the dimension of the hidden state\), which is defined as

\[
 h_i = o_i(c_i(x_i)) \sigma_h(h_{i-1}(x_i)),
\]

where \(o_i \) is the hyperbolic tangent function, \(c_i \) is the current output gate’s activation state, and \(c_i \) is the current cell state. Both of \(o_i \) and \(c_i \) depend on the last hidden state \(h_{i-1} \), and take \(x_i \) as the current input. It differs from the conventional LSTM structure because the external input of hidden state is the LSTM’s output at the last moment. For more details of the LSTM structure, please refer to Appendix A.

Since we have assumed the mark is conditionally independent of location and time of events, the conditional intensity function is defined as

\[
 \lambda(t, s, m|H_t) \approx \lambda(t, s, m|h_t) = \lambda_g(t, s|h_t) \cdot p(m|h_t),
\]

where \(\lambda_g \) is the conditional intensity parameterized with \(h_t \), and \(p(m|h_t) \) is the probability of mark \(m \) given the hidden state \(h_t \).
where \(\lambda_g(t, s|h_i) \) is the spatio-temporal conditional intensity and \(f(m|h_i) \) is the conditional probability density of marks.

Spatio-temporal representation. The spatio-temporal conditional intensity function \(\lambda_g(t, s|h_i) \) can be specified as:

\[
\lambda_g(t, s|h_i) = f(W_h^i h_i(t, s) + b_h),
\]

where \(f(\cdot) \) is the softplus function. \(h_i(t, s) \) is the hidden state with partial input \(t, s \) (see Appendix A). Weights \(W_h \) and bias \(b_h \) are the trainable parameters. To attain more expressiveness for the conditional intensity function, it can also be extended to multi-layers structure without too much efforts.

For simplicity of notation, we denote the conditional intensity \(\lambda(\cdot|h_i), \lambda_g(\cdot|h_i) \) as \(\lambda(\cdot), \lambda_g(\cdot) \). Let \(f^*(t, s) \) be the corresponding conditional spatio-temporal probability density. Note the conditional spatio-temporal intensity \(\lambda_g^*(t, s) \).

The conditional probability density \(f_g^*(t, s) \) is defined as:

\[
f_g^*(t, s) = \lambda_g^*(t, s) \cdot \exp \left(- \int_{t_{n-1}}^{t} \int_{S} \lambda_g^*(\tau, \nu) d\tau d\nu \right).
\]

Then we can estimate the time and location for the next event using the expectation:

\[
[t_{i+1}, s_{i+1}] = \left[\int_{t_i}^{\infty} \int_{S} f_g^*(\tau, \nu) d\tau d\nu, \int_{t_i}^{\infty} \int_{S} f_g^*(\tau, \nu) d\tau d\nu \right].
\]

In general, the integration above cannot be obtained analytically. Therefore, numerical integration techniques which are commonly utilized are applied here to compute the expectation.

Mark representation. Given the hidden representation \(h_i \) up to the \(i \)th event, we consider each type of the marks conditional independent of each other, i.e., \(p(m|h_i) = \prod_{\ell=0}^{d} p(m[\ell]|h_i) \). For the categorical mark \(m[0] \in \{1, \ldots, K\} \), we model the conditional probability of mark \(m[0] \) as a multinomial distribution defined as:

\[
p(m[0] = k|h_i) = \frac{\exp(V_k h_i + b_k)}{\sum_{k=1}^{K} \exp(V_k h_i + b_k)}.
\]

where weights \(V = \{V_k\} \) and bias \(b_k \) are the trained parameters.

For continuous marks \(m[\ell] \in \mathbb{R} \), we model their conditional probability density \(m[\ell] \) as a Gaussian distribution defined by:

\[
m[\ell]|h_i \sim N(U_{\ell} h_i + b_{\ell}, \sigma),
\]

where weights \(U = \{U_{\ell}\} \) and bias \(b_{\ell} \) are the trained parameters.

3. ADVERSARIAL ANOMALY DETECTION

The anomaly data is assumed to be generated by a real data distribution denoted by \(\rho_d \). The fake data is generated by a fake data distribution denoted by \(\rho_f \). Denote \(G(z) \) the LSTM generator and \(D(x) \) the discriminator. The generator \(G \) implicitly defines a probability distribution \(z \sim \rho_f \) as the distribution of fake trajectories obtained by \(G(z) \) when \(z \) is a random initialization of the LSTM state. The discriminator \(D \) is a fully connected multi-layer neural network where the input layer of \(D \) is the last LSTM hidden state with external input \(x \), and the output layer is a softmax which yields the probability that the sequence is an anomaly trajectory.

To learn the discriminator while improving the generator, we follow [2, 3] to play an adversarial game by minimax the following objective function as shown in Figure 3.

\[
\min_{G} \max_{D} \mathbb{E}_{x \sim \rho_d(x)} [\log D(x)] + \mathbb{E}_{z \sim \rho_f(z)} [\log (1 - D(G(z)))]
\]

Performing the anomaly detection, we feed the data points of an unknown sequence \(x \) into our well-trained LSTM one at a time. Denote the first \(i \) events in \(x \) as \(x_i \). The alarm would be raised at step \(i \) once \(D(x_i) \) is larger than a preset threshold \(b \). A general threshold of \(b = 0.5 \) can be adopted here.
4. NUMERICAL EXAMPLES

To evaluate the performance of the proposed anomaly detection approach, we apply it to two real applications as below:

Earthquake event data. The Northern California Earthquake Data Center (NCEDC) provides data [14] which comes from broadband, short period, strong motion seismic sensors, GPS, and other geophysical sensors. This dataset contains 16,401 major earthquake records with magnitudes larger than 3 from 1978 to 2018 in the Northern California area.

Credit card fraud transaction data. The records of identified fraudulent credit card transactions contain date and location of transaction, transaction amount, and loss type. Each case is associated with a sequence of frauds on a specific card. There are in total 534 different locations, 641,071 fraud transactions observed, and 30,078 credit cards involved.

Comparing the proposed approach (AdvLSTM) with three other baseline methods, its efficacy can be understood. These baselines are briefly introduced as follow: (1) **PCA.** Principle component analysis is carried out and the principle feature components are obtained. Then the event sequences of various lengths are compared with the features. If a specific testing sequence corresponds to an outlier from the principle features, then it is determined that such sequence should not be considered as an anomaly. PCA does not take the order of events in the sequence into account; (2) **PCA + CUSUM.** PCA-based detection with CUSUM has a similar structure to the standard PCA method. The major difference is the introduction of CUSUM statistics to the method as the trigger for detection. This takes the sequence of events into consideration. (3) **MLE–LSTM.** Using the LSTM framework only to find representations of events by Maximum Likelihood Estimation as shown in Appendix B. Detection is declared if the event is sufficiently dissimilar to these representations.

All approaches are applied to both the credit card fraudulent transactions and NCDEC earthquake event data. The desired performance is that anomalies can be correctly detected as quickly as possible at a considerable level of accuracy. On the other hand, if random noise data is fed towards the detection metric, ideally they should not be picked up by the detector as anomalies.

Following the experiments, the performance of these methods can be obtained in terms of the accuracy of detecting anomaly and erroneously identify noise data as anomalies. It is observed in Fig.4 that for the method proposed in our work, the detection probability of correctly detecting the anomaly data in both cases is high. For the credit card fraud, the probability of detection reaches 80% within the first 5 events of a sequence, whilst for the earthquake case, the same level of detection is reached within the first 40 events. Simultaneously the probabilities of identifying random noise as anomalies in both cases are significantly lower. This indicates the proposed method is able to detect the anomalies while being resistant to random noise, indicating the power of adversarial learning.

On the contrary, the baselines are not performing as well. They have generally failed to differentiate between the noise data and genuine anomaly data. Therefore they are not as accurate in anomaly detection as the devised method in this work.

5. CONCLUSIONS

This paper has proposed a novel anomaly detection approach leveraging the power of adversarial learning. The anomaly data is modeled using marked spatio-temporal point processes framework where historical information is specified as the final hidden embedding of an LSTM. Using real credit card frauds and earthquake records, it is shown that this approach outperforms other baseline methods in terms of prediction accuracy.
6. REFERENCES

[1] Chris Dyer, “Notes on noise contrastive estimation and negative sampling,” 2014.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 2672–2680. Curran Associates, Inc., 2014.

[3] Ian J. Goodfellow, “On distinguishability criteria for estimating generative models,” 2014.

[4] Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghezzi, “A survey on gans for anomaly detection,” 2019.

[5] Dan Li, Dacheng Chen, Jonathan Goh, and See kiong Ng, “Anomaly detection with generative adversarial networks for multivariate time series,” 2018.

[6] Thomas Schlegl, Philipp Seebeck, Sebastian M. Walderstein, Georg Langs, and Ursula Schmidt-Erfurth, “fanogan: Fast unsupervised anomaly detection with generative adversarial networks,” Medical Image Analysis, vol. 54, pp. 30 – 44, 2019.

[7] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Kloft, “Image anomaly detection with generative adversarial networks,” in Machine Learning and Knowledge Discovery in Databases, Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, and Georgiana Ifrim, Eds., Cham, 2019, pp. 3–17, Springer International Publishing.

[8] Hongyuan Mei and Jason Eisner, “The neural hawkes process: A neurally self-modulating multivariate point process,” in Proceedings of the Thirty-First International Conference on Neural Information Processing Systems, USA, 2017, NIPS’17, pp. 6757–6767, Curran Associates Inc.

[9] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song, “Recurrent marked temporal point processes: Embedding event history to vector,” in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2016, KDD ’16, pp. 1555–1564, ACM.

[10] Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha, “Improving maximum likelihood estimation of temporal point process via discriminative and adversarial learning,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. 7 2018, pp. 2948–2954, International Joint Conferences on Artificial Intelligence Organization.

[11] Quan Kong, Bin Tong, Martin Klinkigt, Yuki Watanabe, Naoto Akira, and Tomokazu Murakami, “Active generative adversarial network for image classification,” 2019.

[12] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[13] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385 of Studies in Computational Intelligence, Springer, 2012.

[14] Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory, “NCEDC,” 2014.

[15] D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure, Probability and Its Applications. Springer New York, 2007.
A. LSTM CELL STRUCTURE

The equations defined in the following makes an one-step update to the LSTM hidden state h_i:

$$f_i = \sigma(W_f x_i + U_f c_{i-1} + b_f)$$

$$u_i = \sigma(W_u x_i + U_u c_{i-1} + b_u)$$

$$o_i = \sigma(W_o x_i + U_o c_{i-1} + b_o)$$

$$c_i = f_i \odot c_{i-1} + u_i \odot \sigma(h(W_c x_i + b_c))$$

$$h_i = o_i \odot \sigma(h(c_i))$$

(4)

where $\{W_f, W_u, W_o, W_c, U_f, U_u, U_o\}$ is the set of weights, $\{b_f, b_u, b_o, b_c\}$ is the set of bias. σ_h is the hyperbolic tangent function and σ is the sigmoid function. The vector $x_i \in [0, T) \times S \times \Omega^*$ is the ith input, which consists of time t_i, location s_i, and marks m_i.

To represent the spatio-temporal conditional intensity $\lambda_g(t, s|h_i)$ defined in (2), we also need to evaluate the past influence on given time t and location s without marks, i.e., $h_i(t,s)$. As shown in Figure 5, any one of the weight matrices (denoted as $W_* \in \mathbb{R}^{p \times (3+d)}$) in the LSTM cell can be decomposed into two separate parts $W^{t,3}_{*} \in \mathbb{R}^{p \times 3}$ and $W^{m}_{*} \in \mathbb{R}^{p \times d}$. To obtain $h_i(t,s)$, we only utilize one part of the weight matrix and substitute $W_{*} \cdot x_i$ with $W^{t,3}_{*} \cdot [t,s]$ in (4).

![Fig. 5: The difference between $h_i(x_{i+1})$ and $h_i(t,s)$, where W_* represents weight matrices W_f, W_u, W_o, W_c in the LSTM cell.](image)

B. MAXIMUM LIKELIHOOD ESTIMATION

As the conditional intensity of the marked spatio-temporal point process is defined as in (1), the log-likelihood is written in terms of the ground process, and has an extra mark term [15]:

$$\ell_g(x) = \sum_{i=1}^{N_T} \log (\lambda^*_i(t_i, s_i)) + \sum_{i=1}^{n} \log (p^*(m_i))$$

$$- \int_0^T \int_S \lambda^*_g(t,s)dsdt.$$

(5)