Title
Receptor activated Ca(2+) release is inhibited by boric acid in prostate cancer cells.

Permalink
https://escholarship.org/uc/item/9np3r72j

Journal
PloS one, 4(6)

ISSN
1932-6203

Authors
Henderson, Kimberly
Stella, Salvatore L
Kobylewski, Sarah
et al.

Publication Date
2009-06-23

DOI
10.1371/journal.pone.0006009

Peer reviewed
Receptor Activated Ca2+ Release Is Inhibited by Boric Acid in Prostate Cancer Cells

Kimberly Henderson1, Salvatore L. Stella, Jr.2, Sarah Kobylewski1, Curtis D. Eckhert1,3*

1 Molecular Toxicology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America, 2 Neurobiology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 3 Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

\textbf{Background:} The global disparity in cancer incidence remains a major public health problem. We focused on prostate cancer since microscopic disease in men is common, but the incidence of clinical disease varies more than 100 fold worldwide. Ca2+ signaling is a central regulator of cell proliferation, but has received little attention in cancer prevention. We and others have reported a strong dose-dependent reduction in the incidence of prostate and lung cancer within populations exposed to boron (B) in drinking water and food; and in tumor and cell proliferation in animal and cell culture models.

\textbf{Methods/Principal Findings:} We examined the impact of B on Ca2+ stores using cancer and non-cancer human prostate cell lines, Ca2+ indicators Rhod-2 AM and Indo-1 AM and confocal microscopy. In DU-145 cells, inhibition of Ca2+ release was apparent following treatment with Ringers containing RyR agonists cADPR, 4CmC or caffeine and respective levels of BA (50 \textmu M), (1, 10 \textmu M) or (10, 20, 50,150 \textmu M). Less aggressive LNCaP cancer cells required 20 \textmu M BA and the non-tumor cell line PWR1E required 150 \textmu M BA to significantly inhibit caffeine stimulated Ca2+ release. BA (10 \textmu M) and the RyR antagonist dantrolene (10 \textmu M) were equivalent in their ability to inhibit ER Ca2+ loss. Flow cytometry and confocal microscopy analysis showed exposure of DU-145 cells to 50 \textmu M BA for 1 hr decreased stored [Ca2+] by 32%.

\textbf{Conclusion/Significance:} We show B causes a dose dependent decrease of Ca2+ release from ryanodine receptor sensitive stores. This occurred at BA concentrations present in blood of geographically disparate populations. Our results suggest higher BA blood levels lower the risk of prostate cancer by reducing intracellular Ca2+ signals and storage.

Introduction

One of the ways cells respond to environmental stimuli is by opening channels between sites of stored calcium, such as the endoplasmic reticulum (ER), Golgi, and mitochondria (mt), which contain high free Ca2+ concentrations (500 \textmu M), and the cytoplasm, which contains low free Ca2+ concentrations (100 nM) [1]. A rapid rise in cytoplasmic Ca2+ can be achieved by capacitative calcium entry (CCE) involving release of stored Ca2+ by the ryanodine receptor (RyR) and the IP\textsubscript{3} receptor (IP\textsubscript{3}R) into the cytoplasm followed by an influx of extracellular Ca2+ by the Na2+/Ca2+ exchanger upon release of stored Ca2+ by the ryanodine receptor (RyR) and the IP\textsubscript{3} receptor (IP\textsubscript{3}R) into the cytoplasm. A rapid rise in cytoplasmic Ca2+ can be achieved by capacitative calcium entry (CCE) involving release of stored Ca2+ by the ryanodine receptor (RyR) and the IP\textsubscript{3} receptor (IP\textsubscript{3}R) into the cytoplasm followed by an influx of extracellular Ca2+ by the Na2+/Ca2+ exchanger. CCE activates Ca2+ binding proteins that regulate numerous cell functions including gene transcription, cell proliferation, vesicle secretion, and apoptosis [2,3]. Cytoplasmic Ca2+ concentrations are returned to normal as Ca2+ is removed by transporters such as the Na2+/Ca2+ exchanger in the plasma membrane, the sarcoplasmic endoplasmic ATPase (SERCA) in the ER membrane, Ca2+ uniporter in mitochondria, and by binding to high affinity binding proteins [4,5]. In this report we present evidence that physiological levels of boron (Ba) inhibit stored Ca2+ release from RyR agonist sensitive sites.

Boron (B) is the 9th most abundant element in seawater (425 \textmu M B) and until recently dismissed as biologically irrelevant [6]. B is bound to oxygen in nature and in physiological fluids 98.4% is present in the form of B(OH)\textsubscript{3} boronic acid and 1.6% as B(OH)\textsubscript{4}- borate. Biology has used this element in the structure of several molecules including: antibiotics in fungi [7]; quorum sensing auto inducer 2 in bacteria [8]; and the rhamnogalacturonan-II dimer in plants [9]. In plants, B is required for cell elongation, flowering and seed formation and is an integral component of food crops. Non-charged BA crosses the plasma membrane of root epidermal cells into the cytosol by passive diffusion and this is facilitated by NIP5; 1 transporters [10]. BA is partially converted to borate in the cytosol (pKa 9.6) and transported into the xylem using the export transporter BOR1 [11,12]. A human homolog of BOR1 named NaBC1 has been reported to be present in mammalian cell lines and to enhance cell proliferation at low BA concentrations [13], but this has yet to be confirmed by another laboratory. The effect of BA on growth and cell proliferation in trout, zebrafish and the mammalian HEK and HeLa cells follows an inverted U-shape with higher concentrations causing cell growth inhibition [13–15].
Concentrations of 60 to 100 μM BA inhibit cell proliferation in prostate cancer cells whereas high concentrations of 500 to 1000 μM BA are required to inhibit the proliferation of non-tumor prostate epithelial cells over the same time frame [16].

Human blood levels of BA reflect the local geology, water quality, and plants in the diet with a world-wide range from 2 to 120 μM (21 to 1292 ng B/g wet blood) in free living healthy men and women [17,18]. Several human studies have observed a decrease in the risk of prostate and lung cancer, and abnormal cervical cytopathology in proportion to the amount of B ingested from food and water [19–22]. One study did not observe a protective effect, but differed from other studies in using a different B food database and estimated B content of some foods [23,24].

The biological plausibility for the chemopreventative effect of BA is supported by several lines of investigation. In immunocompromised mice, BA supplementation reduced the growth of transplanted human prostate tumors, decreased IGF-1 tissue concentrations, and lowered serum prostate specific antigen levels [25]. In cell culture, BA reduced the proliferation of human cancer prostate cell lines in a dose dependent manner and inhibited cell migration and invasion [16,26,27]. We discovered the relationship between BA’s ability to inhibit prostate cancer cell proliferation and calcium signaling after mass spectrometry studies showed the affinity of BA for NAD+ was reduced by phosphorylation and therefore potentially subject to biological regulation [28,29]. BA was also shown to be a non-competitive inhibitor of ADP-ribosyl cyclase [30]. This led us to study its impact on the NAD+/cADPR Ca2+ release pathway. We showed that pharmacological levels of BA (250 and 1000 μM), but not methylboronic acid, decreased NAD+ stimulated release of Ca2+ without affecting calcium release when applied on its own [27]. It was not clear from these studies if BA was inhibiting Ca2+ release by interfering with NAD+ conversion to cADPR, blocking release of Ca2+ stores, or interfering with CCE. It also raised the possibility that BA concentrations in the normal blood range might be able to inhibit Ca2+ release from ryanodine receptor (RyR) sensitive stores. Here we demonstrate that physiological levels of BA inhibit Ca2+ release from RyR responsive stores in human prostate epithelial cells and lower luminal Ca2+ levels.

Methods

Cell Cultures

Experiments used prostate cancer cell lines DU-145 and LNCaP and the non-tumor cell line PWR1E. Cells were grown and maintained in cell culture plates at 37°C in 95% air and 5% CO2 humidified incubator. For confocal experiments, cells were cultured on glass cover slips for 24 hours prior to performing assays and studied at a confluency of less than 80%. DU-145 and PWR1E cells were acquired from American Type Culture Collection (ATCC, Manassas, VA) and LNCaP was a gift from Dr Allen Pantuck of the Department of Urology, Geffen School of Medicine at the University of California, Los Angeles. RPMI cell culture media was supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/ml), streptomycin (100 μg/ml), and L-glutamine (200 mM). RPMI non-tumor cells were maintained in Keratinocyte media containing streptomycin (100 μg/ml), L-glutamine (200 mM), 2.5 μg human recombinant EGF, and 25 μg of bovine pituitary extract (Gibco, Carlsbad, CA). Boron depleted media was prepared using the boron specific ionic exchange resin, Amberlite IRE-743 (Sigma) as previously described [16] and modified as follows. Nine grams of autoclaved IRA-743 ion exchange resin were added to 500 ml media and mixed on an Orbit rotator at 75 to 100 rpm for 15 to 20 hrs at 9°C.

Measurement of Ca2+ Transients

Storage Ca2+ changes were monitored using the calcium sensitive dye Rhod-2, AM ester (Biotium, Hayward, CA) which accumulates in organelles. Rhod-2, AM ester has a Kd of 1 mM and has been shown to compartmentalize, particularly in the mitochondria, but as we show, in other organelles as well (Fig. 1). We also used ER Tracker green and Mito Tracker green (Molecular Probes, Carlsbad, CA) in conjunction with Rhod-2, Am ester. They are highly specific fluorescent labels for the endoplasmic reticulum and mitochondria, respectively. We analyzed Ca2+ changes in response to BA and various agonists by selecting regions of interest in cells that overlapped the red fluorescent intracellular calcium fluorophore, Rhod-2, and green fluorescent endoplasmic reticulum label, ER tracker. Yellow indicates overlap of Ca2+ and ER and the circle is the region of interest (ROI) analyzed in these experiments. Arrows indicate organelles: nucl (nucleolus), nuc (nucleus), ER (endoplasmic reticulum) B. Two DU-145 cells labeled with red fluorescent intracellular calcium fluorophore, Rhod-2, and green fluorescent endoplasmic reticulum label, ER tracker. Yellow indicates overlap of calcium and mitochondria. Arrows indicate organelles: nucl (nucleolus), nuc (nucleus), mt (mitochondria).

doi:10.1371/journal.pone.0006009.g001
Rhod-2 Ca2+ label with the green ER tracker (Fig. 1A) [31–33]. Rhod-2, AM ester was prepared as a 1 mM stock solution in DMSO and diluted in either complete RPMI media or complete Keratinocyte media to 3 μM. Cells were incubated with Rhod-2 AM ester (5 μM) and ER or Mt Tracker (0.5 μM, 250 nM respectively) in RPMI or Keratinocyte media for 30 minutes at 37°C. Ca2+ release was stimulated using agonists in combination with different concentrations of BA in Ringers solution. Images were collected with a Zeiss 510 LSM 5 Pascal mounted to an upright microscope (Zeiss Axioplan 2) equipped with an Axoplan X63 (NA 0.95) water immersion objective. A HeNe laser was used to excite Rhod-2 at 543 nm. 488 nm from a laser diode was used to excite ER or Mt Tracker. The emission was collected on a photomultiplier tube through a 560 nm LP filter for Rhod-2 and a 505 LP filter for ER and Mito trackers. Additional magnification, time series, and background subtraction were controlled using Zeiss LSM acquisition software. All images were acquired as 12 bit.

Analysis of Ca2+ release using confocal microscopy

BA treatments were applied in Ca2+ free Ringer’s solution prepared using ultrapure water to remove B [16,34]. Ca2+ release from the RyR was activated by the addition of either 25 μM cADPR to 10 μM digoxin permeabilized cells, or 20 mM caffeine or 100 μM 4-chloro-m-cresol (4cmc) in intact cells [35,36]. Inhibition of Ca2+ release was achieved using 10 μM dantrolene or varying concentrations of BA in the presence of an agonist [37]. SERCA was inhibited using 10 μM cyclopiazonic acid (CPA) [2]. All drug applications were for a 30 second duration in calcium free Ringer’s solution (143 mM NaCl, 5 mM KCl, 1 mM MgCl\textsubscript{2}, 10 mM glucose, 10 mM HEPES, 1 mM EGTA-2H\textsubscript{2}O, 1 mM EGTA) in order to view Ca2+ release from the stores without input of external Ca2+. Drug application was followed by a three minute wash in Ringer’s solution containing calcium (140 mM NaCl, 5 mM KCl, 2 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, 10 mM glucose, 10 mM HEPES). Solutions were delivered to the perfusion chamber at a rate of 1 ml/min by using a single-pass, gravity-feed perfusion system. Confocal images were taken every 8 minutes. Labeled cells were then washed and resuspended in 1 mL of normal media. Fluorescence was analyzed using a Beckton Dickinson BD-LSR I analytic flow cytometer. Rhod-2 excitation was achieved with a 514 nm argon laser and analyzed in the (581 nm) FL-2 channel. Indo-1 was excited with a UV laser (351 nm) and analyzed on 400 nm (FL5) and 510 nm (FL4) band-pass filters. Results for Indo-1 labeled cells are given as ratios of fluorescence (FL5/FL4). Forward and side scatter were used to gate out cellular fragments [30]. Raw flow cytometry data was analyzed using FLOWJO software (Treestar Software, San Carlos, CA, USA). Results are presented as % Ca2+ levels compared to untreated cells. Storage Ca2+ levels were also analyzed in BA treated and non-treated cells by comparing Ca2+ storage emptying in response to 100 μM thapsigargin using confocal microscopy [39].

Statistical analysis of the data

Data are presented as mean±SD and were analyzed using Student’s paired or unpaired t-test or one-way ANOVA for multiple comparisons with Dunnett’s multiple comparison post-hoc test using Graphpad Prism 4.0. A p value<0.05 was considered to be statistically significant. The equation for non-linear one site binding (hyperbola) \(Y = \frac{B_{max} \times X}{K_d + X} \) was used to calculate \(K_d \) and Bmax values using Graphpad software.

Chemicals and supplies

B was removed from water and media using methods previously described [13]. Caffeine, 4-CmC, ATP, CPA, dantrolene, thapsigargin, cADPR, digoxin and boric acid were obtained from Sigma (St. Louis, MO) diluted in calcium free Ringer’s Solution to ensure that if DMSO was present levels were no greater than 0.1%. All solutions were prepared fresh prior to perfusion. Superfusion with 0.1% DMSO in calcium free Ringer’s solution did not affect ER Ca2+ levels or imaging responses.

Results

The objective of the study was to determine if physiological concentrations of BA inhibit the release of Ca2+ from the RyR sensitive stores in human prostate cancer and non-tumor epithelial cells. DU-145 cells were loaded with Rhod-2 and ER Tracker or Mito tracker to determine if Rhod-2 compartmentalized in one or both compartments. It was not possible to delineate Ca2+ signaling from the ER versus mitochondria in live cells using confocal microscopy. Rhod-2 labeled Ca2+ in mitochondria, ER, nucleus, and other areas in the cell (Fig. 1A–B). In our experiments, a combination of ER Tracker and Rhod-2 were used to define our regions of interest on sites of stored Ca2+ (Fig. 1A). This area included Ca2+ stores located in the ER and mitochondria (Fig. 1A–B). Application of BA from 0.1–1000 μM alone did not demonstrate an immediate measurable effect on storage Ca2+ using confocal microscopy (data not shown).

Boric acid inhibits Ca2+ release in response to ryanodine receptor agonists

To determine if BA inhibited Ca2+ release from the RyR, we treated DU145 cells with three different RyR agonists in combination with BA. Competitive ligand binding analysis showed BA was a single site reversible competitive inhibitor of cADPR, an endogenous agonist of RyR (Fig. 2A-C). The equilibrium dissociation constant, (\(K_d \)) for cADPR was 15.10, but in the presence of BA increased to 49.39. Inhibition by BA was reversed by increasing the concentration of cADPR and the presence of BA
did not change the maximum number of binding sites (Bmax) (Table 1).

We then analyzed the effect of BA on other RyR agonists in intact cells. We first used caffeine [20 mM] an agonist that potentiates RyR sensitivity to its native ligand, Ca$^{2+}$. In response to two consecutive applications of caffeine, the second release was slightly greater than the first (Fig. 3A). This sequence was then repeated with BA added in combination with caffeine in the second application. The results of these experiments show that BA reduced Ca$^{2+}$ release in a dose dependent manner from 10 to 150 μM BA (Fig. 3B–F). We then examined the effect of BA on 4CmC, a direct agonist of the RyR. Consecutive applications of 50 μM 4CmC resulted in equivalent Ca$^{2+}$ release (Fig. 4A). As observed with caffeine, BA decreased 4CmC stimulated Ca$^{2+}$ release in a dose dependent manner (Fig. 4B–E). However, inhibition began at 1 μM BA and reached a maximum at 10 μM BA.

Previous studies have shown that the inhibitory effect of BA on cell proliferation at the IC$_{50}$ for DU-145 cells was approximately 10% less effective on the less aggressive LNCaP prostate cancer cell line. In addition, BA was not able to achieve a 50% reduction in proliferation in non-tumor PWR1E prostate epithelial cells in experiments using up to 4 times the IC$_{50}$ for DU145 [16]. We examined these cell lines to determine if BA was also less effective in inhibiting caffeine sensitive Ca$^{2+}$ release. Inhibition of Ca$^{2+}$ release in response to caffeine in LNCaP prostate tumor cells occurred over 20 μM-150 μM BA (Fig. 5A–D). Thus, LNCaP cells were non-responsive to 4CmC treatment (not shown). The PWR1E non-tumor, hyperplasia prostate cell line required 150 μM BA to inhibit caffeine stimulated Ca$^{2+}$ release (Fig. 6A–D). PWR1E cells were non-responsive to 4CmC treatment (not shown).

Boric acid inhibits cyclopiazonic acid induced Ca$^{2+}$ release from the ER

The release of ER Ca$^{2+}$ stores in some non-excitable cells can be stimulated using cyclopiazonic acid (CPA) which inhibits SERCA in a manner similar to thapsigargin, but can be washed out [40]. BA (0.1–1000 μM) by itself did not alter storage calcium levels during the time course of the experiment (not shown). Responses to consecutive applications of CPA [10 μM] did not decay (Fig. 7A). Simultaneous application of CPA and 1 μM BA caused a significant decrease in release and 10 μM BA caused near

Table 1. Competitive Ligand Binding Study of cADPR and Boric Acid on Ryanodine Receptor Ca$^{2+}$ Release.

Parameter	cADPR	cADPR+BA
Bmax	116.4±3.5a	144.8±11.9
K_d	15.1±1.6	49.4±9.1

95% Confidence

Parameter	cADPR	cADPR+BA
Bmax	109.3 to 123.4	120.8 to 168.8
K_d	11.9 to 18.3	31.0 to 67.8

Goodness of Fit

Degrees of Freedom	41	40
R^2	0.9155	0.8606
Absolute Sum of Squares	2522	6745

aStandard error of mean.

doi:10.1371/journal.pone.0006009.t001
We then tested the effect of dantrolene, a known inhibitor of the RyR on Ca2+ release by CPA. We found that 10 μM dantrolene inhibited CPA stimulated Ca2+ release at a level equivalent to 10 μM BA (Fig. 8A–B).

Boric acid treatment lowers storage [Ca2+] with no effect on cytoplasmic [Ca2+]. Our results showing BA inhibited Ca2+ release lead us to analyze relative [Ca2+]st levels using Rhod-2 stained cells and relative [Ca2+]cyt levels using Indo-1 stained cells and flow cytometry. Exposure of DU-145 cells to BA [10–50 μM] for 24 hours did not affect [Ca2+]cyt (Fig. 9A). However, reductions [Ca2+]st (22%) occurred with 10 μM BA resulted in a 32% reduction in [Ca2+]st by 50 μM BA at 1 hour (Fig. 9B). Neither higher BA concentrations nor treatment with 10 μM BA up to 72 hours resulted in further reduction in [Ca2+]st (Fig. 9BC). We then conducted confocal measurements of thapsigargin stimulated Ca2+ release after DU-145 cells were pretreated with BA (50 μM) for 24 hrs and observed a 35% decrease in Ca2+ release (Fig. 9D).

Discussion

This study reports the unexpected finding that stored Ca2+ release and luminal levels can be modulated by physiologically relevant levels of BA in DU-145 prostate cancer epithelial cells. This is relevant to our understanding of cancer risk since blood levels of BA are determined by the consumption of B in drinking water and plant derived foods [17]. It is likely to be the first cellular response to B exposure and thus a starting point for understanding how the risk of prostate and lung cancer is reduced by B in a dose dependent manner [16,21,22]. BA exhibited the attributes of a classic antagonist in that it did not have an immediate effect on Ca2+ release when applied by itself and its effects were agonist dependent. BA dose dependently inhibited Ca2+ release in response to cADPR, an endogenous agonist of the RyR, and agonists caffeine and 4-CmC (Fig. 2–5). In our competitive ligand binding analysis, BA displayed the characteristic of a single site antagonist in that it was reversible at higher concentrations of cADPR (fig. 2B). BA increased Kd, from 15.1 to 49.4, but did not affect BMax (Table 1). BA has been shown to bind to cADPR at high concentrations, however, BA’s ability to inhibit cADPR, caffeine and 4CmC induced Ca2+ release indicates that at physiological concentrations BA may bind to the cADPR binding site on the RyR stabilizing the Ca2+ channel in its inactive state [30].

Proliferation of LNCaP cells have been reported to be about 10% less sensitive and PWR1E non-tumor cells are more than 4 fold less sensitive to BA than DU-145 cells [16]. We also observed this pattern of sensitivity in BA’s ability to inhibit caffeine stimulated Ca2+ release. The lowest effective concentration for DU-145 was 10 μM BA, LNCaP was 20 μM BA, and PWR1E was 150 μM BA (Fig. 3F, 5D & 6D). In addition to the decreased responsiveness to BA, both LNCaP and PWR1E were non-
Figure 4. Boric acid inhibits Ca\(^{2+}\) release in response to ryanodine receptor agonist 4-CmC (50 μM) in DU-145 cells. A. Consecutive applications of 4-CmC did not alter the calcium release response (n = 6, NS). B. 0.1 μM BA did not inhibit Ca\(^{2+}\) release. C. 1.0 μM BA inhibited Ca\(^{2+}\) release (n = 6, *p = 0.05). D. 10 μM BA inhibited Ca\(^{2+}\) release (n = 6, ***p = 0.0005). E. Combined data analysis showing a dose dependent Ca\(^{2+}\) release response (n = 6 per concentration (**p < 0.01). doi:10.1371/journal.pone.0006009.g004

Figure 5. Boric acid inhibition of caffeine (20 mM) stimulated Ca\(^{2+}\) release in LNCaP cells. A. 20 μM BA inhibition of calcium release (n = 6, *p = 0.0226). B. 50 μM BA inhibition of Ca\(^{2+}\) release (n = 6, **p = 0.0019). C. 150 μM BA inhibition of caffeine induced Ca\(^{2+}\) release (n = 6, ***p = 0.0001). D. Combined data showing concentration dependent inhibition of caffeine stimulated release (n = 6, **p < 0.01). doi:10.1371/journal.pone.0006009.g005
responsive to 4CmC treatment. RyR isoforms 1 and 2, but not 3 are known to be activated by 4CmC in some cell lines [41]. It is possible that cell line differences were due to differences in RyR isoforms or their expression. LNCaP cell lines have been shown to express RyR 1 and 2, but not 3 [42]. We were unable to locate studies in the literature that identified RyR isoforms in DU-145 or PWR1E cells in any prostate cell line.

Renal function tests have shown BA is reabsorbed by the kidney in non-pregnant and pregnant women [43]. The discovery of an electrogenic, voltage-regulated bicarbonate sodium-coupled bo- rate co-transporter (NaBC1) in rat kidney tubules may explain this observation, but it has not yet been confirmed by another laboratory. NaBC1 expression induced proliferation in HEK and Hela cells by activation of the MAPK pathway 16 hours post-treatment [13]. It is unknown at this time whether NaBC1 is expressed in prostate tumor and non-tumor cell lines, but

Figure 6. Boric acid inhibition of caffeine (20 mM) stimulated \(Ca^{2+}\) release in PWR1E non-tumor cells. A. Consecutive caffeine applications in PWR1E prostate cell. (n = 6, NS). B. 50 \(\mu\)M BA and caffeine induced \(Ca^{2+}\) release shows no inhibition (n = 6, NS). C. 150 \(\mu\)M BA inhibited caffeine induced \(Ca^{2+}\) release (n = 6, **p = 0.0029). D. Combined data showing no dose response and inhibition only at 150 \(\mu\)M (n = 6, *p < 0.05).

doi:10.1371/journal.pone.0006009.g006

Figure 7. Boric acid inhibits CPA (10 \(\mu\)M) induced \(Ca^{2+}\) release from the ER in DU-145 cells. Cells were tested with CPA+BA followed by CPA. A. Consecutive applications of CPA did not alter \(Ca^{2+}\) release (n = 6, NS). B. 0.1 \(\mu\)M BA did not inhibit CPA stimulated \(Ca^{2+}\) release (n = 6, NS). C. 1.0 \(\mu\)M BA inhibited CPA stimulated \(Ca^{2+}\) release (n = 6, **p = 0.0037). D. 10 \(\mu\)M BA inhibited CPA stimulated \(Ca^{2+}\) release (n = 6, ***p < 0.0001).

doi:10.1371/journal.pone.0006009.g007
differences in its expression has been raised as a possible explanation for the variation in cellular sensitivity to BA between prostate tumor and non-tumor cells [10].

To further explore BA’s ability to inhibit stored Ca\(^{2+}\) release we tested its effects in the presence of CPA (Fig. 7–8). CPA inhibits the SERCA channel resulting in emptying of Ca\(^{2+}\) stores [44]. Our study showed that BA dose dependently blocked CPA mediated Ca\(^{2+}\) release in DU-145 cells. We also observed a reduction of storage Ca\(^{2+}\) levels by 22% to 32% in 10 to 50 \(\mu\)M BA treated DU-145 cells compared to untreated cells. STIM proteins are involved in triggering Ca\(^{2+}\) influx into the ER [45–48]. If BA reduces Ca\(^{2+}\) leakage through RyR channels the major loss by leakage may occur through presenilins and other non-channel proteins that do not stimulate STIM proteins. This would result in decreased stored Ca\(^{2+}\) levels that are unable to signal refilling.

The importance of Ca\(^{2+}\) in cell cycle control and proliferation is a well established area of cancer research, but it has not been studied as a mode of action in cancer prevention [49–51]. BA’s ability to modulate cell proliferation has been linked to changes in the expression of cyclins and the MAPK pathway in DU-145, HEK293 and HeLa cells [13,16,26]. However, it is possible these effects occur in response to reductions in Ca\(^{2+}\) release or storage. In the prostate cancer LNCaP cell line, Humez observed that IGF (5 ng/ml), which increases cell growth, increased ER [Ca\(^{2+}\)]\(_{\text{ER}}\), whereas TNF alpha (1 ng/ml), which reduces cell proliferation, reduced [Ca\(^{2+}\)]\(_{\text{ER}}\) [52].

In conclusion, BA has previously been reported to reduce the risk of prostate cancer in humans and reduce tumor growth and prostate cancer cell proliferation, migration, and invasion. Our results demonstrate that physiological levels of BA inhibit agonist

Figure 8. Dantrolene inhibits CPA induced Ca\(^{2+}\) release in DU-145 cells. A. Cells were tested with CPA (10 \(\mu\)M)+dantrolene (10 \(\mu\)M) followed by CPA (n=6, ***p<0.0001). B. BA inhibited CPA stimulated Ca\(^{2+}\) release in a concentration dependent manner. The inhibitory effect of dantrolene and BA were equivalent at 10 \(\mu\)M, CPA (n=6, **p<0.01). doi:10.1371/journal.pone.0006009.g008

Figure 9. Boric acid treatment lowers luminal storage [Ca\(^{2+}\)]\(_{\text{st}}\), but has no effect on cytoplasmic [Ca\(^{2+}\)]\(_{\text{cyt}}\) in DU-145 cells. A. Relative [Ca\(^{2+}\)]\(_{\text{cyt}}\) following exposure to 0, 10 and 50 \(\mu\)M BA for 24 hrs (n=5, NS). B. [Ca\(^{2+}\)]\(_{\text{st}}\) as percent of 0 treatment in DU-145 cells treated with 0–250 \(\mu\)M BA for 24 hrs. Boric acid (10–50 \(\mu\)M) reduced ER calcium
levels by more than 22%–32% compared to untreated cells (n = 5; p<0.05, **p<0.01, ***p<0.001). C. Reduction of [Ca2+]i in DU145 cells treated with 50 μM BA from 1–72 hours (n = 5, ***p<0.01). D. Confocal measurement showed pretreatment of cells with BA for 24 hrs lowered thapsigargin stimulated Ca2+ release compared to untreated cells (n = 6, ***p<0.0001).

doi:10.1371/journal.pone.0006009.g009

Stimulated release of stored Ca2+ in a dose dependent manner and lower stored Ca2+ storage levels. This suggests that BA's ability to dampen Ca2+ signaling in cancer cells underlies its ability to reduce clinical cancer risk.

References

1. Berridge, M, Bootman M, Roderick H (2003) Calcium signaling: dynamics, homeostasis and remodeling. Mol Cell Bio 4: 517–529.

2. Golovina V, Mordecai B (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275: 1643–1648.

3. Golovina VA (1999) Cell proliferation is associated with enhanced capacitative Ca2+ entry in human arterial myocytes. Am J Physiol Cell Physiol 277: C343–349.

4. Watson W, Facchinia S, Grimaldi M, Verma A (2003) Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors identify a novel calcium pool in the central nervous system. J Neurochem 87: 30–43.

5. Chen X, Schauder S, Potier N, Dorselaers A, Pelzer I, et al. (2002) Structural identification of a bacterial quorum sensing signal containing boron. Nature 415: 543–549.

6. O'Neill MA, W D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (2004) STIM1, an Orai-1 homolog, couples store-depletion-triggered Ca2+ release in murine macrophages. J Biol Chem 279: 17395–17402.

7. Woods W (1994) An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect 102: 5–11.

8. Cui Y, Winton M, Zhang Z-F, Rainey C, Marshall J, et al. (2004) Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am J Epidemiol 160: 1070–1080.

9. Mahabir S, Spitza M, Barrera S, Dong Y, Eastham C, et al. (2008) Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am J Epidemiol 167: 1070–1080.

10. Fessenden J, Feng W, Pasdani A, Allen P (2006) Amino acid residue Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-nitrobenzylpyridinium. J Bio Chem 281: 6478–6486.

11. Matsumoto H, Takeuchi R, Arai T, Sato N, Akimoto Y, et al. (2003) Calcium signaling in human arterial myocytes: KH SK. Analyzed the data: KH CDE. Contributed reagents/materials/analysis tools: SLSJ. Wrote the paper. KH CDE.

Acknowledgments

We thank Mike Kovochich for his help with flow cytometry experiments.

Author Contributions

Conceived and designed the experiments: KH CDE. Performed the experiments: KH SK. Analyzed the data: KH CDE. Contributed reagents/materials/analysis tools: SLSJ. Wrote the paper: KH CDE.
47. López J, Jardín I, Bobe R, Pariente J, Enouf J, et al. (2008) STIM1 regulates acidic Ca\(^{2+}\) store refilling by interaction with SERCA3 in human platelets. Biochem Pharm 75: 2157–2164.

48. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee S-F, et al. (2006) Presenilins form ER Ca\(^{2+}\) leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126: 981–993.

49. Whitfield J (1995) Calcium in Cell Cycles and Cancer. Boca Raton: CRC Press. pp 1–214.

50. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL (1993) Intracellular Ca\(^{2+}\) pool content is linked to control of cell growth. Proc Natl Acad Sci U S A 90: 4906–4909.

51. Legrand G, Humez S, Slomianny C, Descailly E, Abeele FV, et al. (2001) Ca\(^{2+}\) Pools and Cell Growth. Evidence for sarcoplasmic Ca\(^{2+}\)-ATPases 2B involvement in human prostate cancer cell growth control. J Biol Chem 276: 47608–47614.

52. Humez S, Legrand G, Vander-Abeele F, Monet M, Marchetti P, et al. (2004) Role of endoplasmic reticulum calcium content in prostate cancer cell growth regulation by IGF and TNFalpha. Journal of Cellular Physiology 201: 201–213.