TWO EXTRASOLAR ASTEROIDS WITH LOW VOLATILE-ELEMENT MASS FRACTIONS

M. Jura¹, S. Xu (许儒艺)¹, B. Klein², D. Koester², and B. Zuckerman³

¹ Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562, USA; jura@astro.ucla.edu, sxu@astro.ucla.edu, kleinb@astro.ucla.edu, ben@astro.ucla.edu
² Institut fur Theoretische Physik und Astrophysik, University of Kiel, 24098 Kiel, Germany; koester@astrophysik.uni-kiel.de

ABSTRACT

Using ultraviolet spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope, we extend our previous ground-based optical determinations of the composition of the extrasolar asteroids accreted onto two white dwarfs, GD 40 and G241-6. Combining optical and ultraviolet spectra of these stars with He-dominated atmospheres, 13 and 12 pollutant elements are confidently detected in GD 40 and G241-6, respectively. For the material accreted onto GD 40, the volatile elements C and S are deficient by more than a factor of 10 and N by at least a factor of 5 compared to their mass fractions in primitive CI chondrites and approach what is inferred for bulk Earth. A similar pattern is found for G241-6 except that S is undepleted. We have also newly detected or placed meaningful upper limits for the amount of Cl, Al, P, Ni, and Cu in the accreted matter. Extending results from optical studies, the mass fractions of refractory elements in the accreted parent bodies are similar to what is measured for bulk Earth and chondrites. Thermal processing, perhaps interior to a snow line, appears to be of central importance in determining the elemental compositions of these particular extrasolar asteroids.

Key words: planetary systems – white dwarfs

Online-only material: color figures

1. INTRODUCTION

There is now compelling evidence that most externally polluted white dwarfs derive their heavy elements by accretion from tidally disrupted planetesimals (Debes & Sigurdsson 2002; Jura 2003; Gaensicke et al. 2006; Jura 2008; Farihi et al. 2010; Zuckerman et al. 2010). Here, we report new ultraviolet spectroscopy of two polluted white dwarfs to exploit this uniquely powerful tool to determine the bulk composition of extrasolar asteroids—the building blocks of rocky planets.

The composition of extrasolar planets is of great interest and considerable effort has been devoted to studying main-sequence stars with the goal of identifying spectroscopic signatures of the accretion of planets (Ramirez et al. 2010; Gonzalez Hernandez et al. 2011; Brugamyer et al. 2011; Schuler et al. 2011). However, because a star’s own heavy elements dominate the composition of its photosphere, it is very difficult to determine a planetary contribution to the measured abundances. In contrast, as reviewed by Koester (2009), white dwarfs with effective temperatures less than 25,000 K typically have atmospheres that are nearly pure hydrogen or pure helium and the observed heavy elements usually are the result of external pollution. With the discovery of 17 individual elements within the photosphere of the white dwarf GD 362, it has become clear that we can use these externally polluted stars to make detailed comparisons of the bulk compositions of extrasolar planetesimals with those of the solar system’s terrestrial planets (Zuckerman et al. 2007).

About 94% of the bulk of Earth’s total mass is contained within four dominant elements: O, Mg, Si, and Fe (Allegre et al. 2001). Ground-based optical spectra with some additional results from the Far Ultraviolet Spectroscopic Explorer (FUSE) indicate that these same four species comprise at least 85% of the heavy element mass in six highly polluted white dwarfs (Klein et al. 2010, 2011; Dufour et al. 2010; Vennes et al. 2010; Zuckerman et al. 2010; Farihi et al. 2011; Melis et al. 2011). However, these optical studies incompletely sample important species which only have strong lines in the ultraviolet. We have therefore acquired spectra with the Hubble Space Telescope to measure the abundances of additional elements in GD 40 and G241-6, two of the three most heavily polluted DB white dwarfs within 80 pc of the Sun (Jura & Xu 2012). Our ultraviolet data are a substantial improvement over older, lower-resolution data for GD 40 (Friedrich et al. 1999; Wolff et al. 2002); no previous ultraviolet spectroscopy has been performed on G241-6.

GD 40 shows excess infrared continuum emission from a circumstellar dust disk (Jura et al. 2007) that also displays 10 μm silicate emission (Jura et al. 2009). While G241-6 and GD 40 have nearly the same effective temperatures, gravities, and abundances of heavy-element pollutants (Zuckerman et al. 2010; Klein et al. 2011), G241-6 does not display an infrared excess (Xu & Jura 2012). Either G241-6’s disk is fully gaseous or the parent body has been largely accreted and we are witnessing lingering contamination in the stellar photosphere; heavy elements take longer than 2 × 10⁵ yr to sink below the outer mixing zone (Koester 2009; Klein et al. 2010).

In the standard picture (Wetherill 1990; Armitage 2010), planet-forming disks have well-defined radial temperature zones and rocky planets assemble from material in a relatively narrow annulus. Therefore, a single condensation temperature can usefully describe the bulk abundances. This picture has been adopted in models for the formation of extrasolar rocky planets (Bond et al. 2010); extrasolar planetesimals are expected to be volatile-poor if they form sufficiently close to their host star.

In the solar system, an element’s condensation temperature is key in determining its incorporation into a planetesimal. Typically, for the pressure, temperature, and presumed composition

³ To avoid the specific connotation of “metals” in the context of planetary physics, we use “heavy elements” to mean all elements heavier than helium.

⁴ Exceptions include the DQ white dwarfs where carbon is dredged-up from the interior (Koester et al. 1982; Pelletier et al. 1986), “warm” DQ stars where carbon dominates the composition of the photosphere (Dufour et al. 2007), and high-mass white dwarfs where oxygen is dredged-up (Gaensicke et al. 2010). Also, small amounts of C, Al, and Si can be supported in the atmospheres of some stars by radiative levitation (Dupuis et al. 2010).
of the solar nebula, the molecular constituents are computed and the fractional condensation is determined for each compound. For bulk Earth, refractory elements that are incorporated into solids at temperatures above 1100 K are undepleted relative to solar abundances while volatile elements with a condensation temperature less than 1000 K are deficient by factors of as much as 100 or more compared to a solar composition (Allegre et al. 2001). The most primitive meteorites, the CI chondrites, only display depletions relative to solar values of elements with condensation temperatures below 200 K, while the more evolved CV chondrites have depletions by at least a factor of two of elements with a condensation temperature below ∼700 K (Wasson & Kallemeyn 1988).

Previous support for volatile depletion within extrasolar planetesimals is given by the evidence that carbon is usually deficient (Jura 2006; Farhi et al. 2009). Furthermore, Jura & Xu (2012) found that, in aggregate, planetesimals accreted onto DB white dwarfs have a factor of 10 less H2O by mass than do CI chondrites, consistent with a scenario where these particular extrasolar rocky bodies were assembled interior to a snow line which, depending upon the gas pressure, is located where the temperature is between 145 K and 170 K (Lecar et al. 2006). By measuring volatile compositions of individual extrasolar asteroids, we can more exactly assess the degree to which they are thermally processed.

The most important volatile elements that might be detected in polluted white dwarf spectra are C, N, and S with 50% condensation temperatures of 40 K, 123 K, and 664 K, respectively (Lodders 2003) because they are expected to be largely contained within CH4, NH3, and FeS. Another abundant volatile is oxygen, but this element is special because much of it is incorporated into oxides of refractory elements such as Si and Mg. Typically, there is “leftover” oxygen which does not condense into solids until the system attains a much lower temperature at which point H2O ice forms.

In Section 2, we report our data acquisition and reduction. In Section 3, we report atmospheric abundances while in Section 4 we infer compositions of the accreted parent bodies. In Section 5, we discuss our results in the context of models for the growth of planetesimals and in Section 6 we present our conclusions.

2. DATA ACQUISITION AND REDUCTION

For both GD 40 and G241-6, we obtained spectra with the G130M grating of the Cosmic Origins Spectrograph (COS) during Cycle 18 of the Hubble Space Telescope under GO Program 12290. Observations were obtained in the TIME-TAG mode using the 2.5′ diameter primary science aperture with a central wavelength of 1300 Å. Data were acquired during three spacecraft orbits for each star with a total integration time of 7740 s for GD 40 and 8835 s for G241-6. In each orbit, the FP-POS value was set to a different value to minimize the fixed pattern noise in the detector. The spectra extend from 1140 Å to 1440 Å, except for a slight gap of ∼12 Å near 1300 Å; the spectral resolution was ∼20,000.

The raw COS data were processed with the CALCOS pipeline 2.15.4 and then smoothed with a boxcar of five pixels. At most wavelengths, the signal-to-noise ratio for each star is >25. The final spectra presented here are flux calibrated and in vacuum wavelengths. Because of strong terrestrial day airglow emission from O I between 1300 Å and 1308 Å and from H I near Lyα (Feldman et al. 2001), we use the timefilter module to extract the night-time portion of the data and rerun CALCOS to obtain the calibrated spectra for these two spectral intervals. The airglow emission is completely removed at the oxygen lines; however, residual emission remains at Lyα (Figure 1). Near the edge of the spectrum at 1300 Å, the pipeline reduction becomes somewhat noisy and unreliable (Dixon et al. 2011). The COS-measured flux of both stars near 1400 Å is 1.4 × 10−14 erg cm−2 s−1 Å−1, the same as measured with the GALEX satellite in a broad band centered at 1528 Å.

Similar to the data reduction procedures described in Klein et al. (2010, 2011) and Zuckereman et al. (2010), with IRAF, each absorption line was fitted with a Voigt profile and the equivalent width (EW) was derived. For each line, we performed three different measurements and the final EW uncertainty was obtained by adding three factors in quadrature: the standard deviation of the three fits, the average uncertainty of an individual fit to the assumed profile, and the uncertainty of the continuum. For marginally blended lines, we used “splot” in IRAF to perform deblending and measure the individual EW. We list in Table 1 the lines with values of the EW greater than 50 mA in at least one of our two target stars.

For elements without positive detections, we place upper limits to the EW by measuring the signal-to-noise ratio at the region of its expected strongest line. We calculate the σ uncertainty by dividing the Full Width Zero Intensity by the signal-to-noise ratio. We quote 3σ values for the upper limits to the EWs. In the best case, this procedure translates to an EW of 24 mA, but, for some lines, the upper limit to the EW is 30 mA or even 35 mA. We validated this procedure by inserting artificial lines into the data.

As expected from ground-based optical spectra, the ultraviolet spectra of GD 40 and G241-6 each exhibit hundreds of photospheric absorption lines, many more than can be found in the older ultraviolet data of GD 40 which had only 1 Å resolution (Friedrich et al. 1999) and a lower signal-to-noise ratio. The EW’s of almost all the photospheric lines are less than 200 mA and therefore would have been difficult to detect in the older data.

The average heliocentric velocity of the photospheric lines from the COS spectra is 19 km s−1 and −23 km s−1 for GD 40.
Table 1
Measured Equivalent Widths

Line	γ (eV)	GD 40 W_1 (mÅ)	G241-6 W_1 (mÅ)	u Vira W_1 (mÅ)	ξ Ophb	Comment
H i 1215.67	0.000	5700(570)	4000(400)	<2130	16700	
C n 1334.53	0.000	201 (10)	214 (11)	112.1	189	
C n 1335.71	0.008	212 (11)	127 (10)	62.6	140	
N i 1199.55	0.000	113 (13)	69.8	146		
N i 1200.22	0.000	134 (12)	67.1	131		
N i 1200.71	0.000	147 (12)	56.2	133		
O i 1152.15	1.967	540 (19)	448 (18)	blend		
O i 1217.65	4.190	51 (25)	76 (22)	<60		
O i 1302.17	0.000	1130 (166)	966 (63)	89	201	edge
O i 1304.86	0.020	761 (169)	508 (56)	<0.7	<3.9	blend
O i 1306.03	0.028	578 (49)	423 (46)	<0.7	<4.0	blend
Mg ii 1239.93	0.000	151 (11)	146 (12)	1.0	18.7	
Mg ii 1240.94	0.000	112 (10)	94 (10)	0.2	13.2	
Al i 1191.81	4.659	68 (9)	<60			
Si ii 1190.42	0.000	1322 (28)	846 (29)	66.1	132	
Si ii 1193.29	0.000	1182 (99)	1127 (158)	147		
Si ii 1194.50	0.036	2587 (88)	1744 (104)	1.0	14.3	
Si ii 1197.39	0.036	1180 (37)	610 (18)	4.8		
Si ii 1223.90	5.323	132 (17)	u			
Si ii 1224.25	5.323	132 (18)	131 (13)	u, blend		
Si ii 1224.97	5.323	53 (21)	52 (15)	u		
Si ii 1226.80	0.098	199 (61)	189 (31)	u, blend		
Si ii 1226.98	0.098	178 (40)	192 (34)	u, blend		
Si ii 1227.60	5.345	292 (21)	245 (14)	u		
Si ii 1228.74	5.323	422 (29)	499 (24)	u, blend		
Si ii 1229.38	5.345	425 (26)	380 (18)	u		
Si ii 1246.74	5.310	141 (18)	115 (12)			
Si ii 1248.43	5.323	193 (13)	166 (10)			
Si ii 1250.09	6.858	125 (21)	134 (26)	u, blend		
Si ii 1250.44	6.859	226 (18)	296 (63)	u		
Si ii 1251.16	5.345	244 (15)	176 (15)	u		
Si ii 1260.42	0.000	2765 (85)	2178 (96)	88.5	170	
Si ii 1264.74	0.036	5542 (270)	4676 (77)	0.3	15.4	
Si ii 1304.37	0.000	614 (49)	500 (46)	59.9	132	blend
Si ii 1309.28	0.036	1039 (45)	813 (35)	<4		
Si ii 1346.88	5.323	157 (15)	121 (15)			
Si ii 1348.54	5.310	173 (13)	133 (14)			
Si ii 1350.07	5.345	284 (25)	265 (14)			
Si ii 1352.64	5.323	186 (22)	144 (13)			
Si ii 1353.72	5.345	162 (20)	134 (13)			
Si ii 1260.50	0.000	1163 (35)	994 (33)	58.7	123	u
P i i 1154.00	0.058	82 (21)	59 (14)			
P i i 1159.99	0.058	17 (7)	<30			
P i i 1249.83	1.101	86 (18)	41 (9)			
S i i 1425.03	0.000	<37	78 (21)			
S i i 1429.28d	1.845	36 (11)	98 (13)			
S i i 1250.58	0.000	blend	84 (18)	20.1	100	
S i i 1253.81	0.000	37 (10)	159 (12)	30.4	106	
S i i 1259.52	0.000	<38	93 (20)	49.2	112	blend
Ca ii 1432.50	1.692	130 (32)	<38			
Ca ii 1433.75	1.700	90 (14)	54 (9)			
Cr i i 1434.98	1.483	57 (12)				
Cr i i 1435.20	1.506	<36				
Fe i i 1143.23	0.000	279 (37)	97 (21)	<2	38	edge
Fe i i 1144.94	0.000	240 (23)	209 (24)			
Fe i i 1146.83	0.107	<50	<50	blend		
Fe i i 1146.95	0.048	79 (26)	<50	blend		
Fe i i 1147.41	0.083	275 (50)	150 (34)	blend		
Fe i i 1148.08	0.107	182 (35)	271 (90)	blend		
Fe i i 1148.28	0.048	173 (44)	288 (27)	blend		
Fe i i 1149.59	0.121	82 (22)	60 (21)	blend		
Fe i i 1150.47	0.083	51 (16)	<50	blend		
Fe i i 1150.69	0.121	89 (18)	88 (21)	blend		
Fe i i 1151.15	0.083	67 (14)	<38	blend		
Fe i i 1152.00	0.083	127 (20)	87 (14)			

*(GD 40 and G241-6 given in parentheses; others given in mÅ)
Table 1 (Continued)

Line	\(\chi \) (eV)	GD 40 \(W_{\lambda} \) (mÅ)	G241-6 \(W_{\lambda} \) (mÅ)	\(\alpha \) Vir \(a \)	\(\zeta \) Oph \(b \)	Comment
Fe ii 1154.40	0.121	125 (34)	48 (13)	blend		
Fe ii 1159.34	0.986	57 (17)	48 (13)	blend		
Fe ii 1168.49	2.807	69 (18)	49 (14)	blend		
Fe ii 1169.19	0.986	63 (17)	<30	blend		
Fe ii 1175.68	0.232	99 (22)	<30	blend		
Fe ii 1183.83	0.986	68 (14)	44 (11)	blend		
Fe ii 1187.42	0.986	62 (12)	42 (11)	blend		
Fe ii 1192.03	1.040	68 (25)	50 (14)	blend		
Fe ii 1198.93	2.635	65 (13)	41 (12)	blend		
Fe ii 1204.27	0.232	50 (11)	<40	blend		
Fe ii 1204.32	3.245	44 (16)	<40	blend		
Fe ii 1204.38	1.671	77 (12)	64 (9)	blend		
Fe ii 1267.42	0.048	124 (18)	54 (14)	blend		
Fe ii 1271.98	0.083	104 (16)	54 (13)	blend		
Fe ii 1272.61	0.083	86 (13)	44 (13)	blend		
Fe ii 1275.14	0.107	58 (9)	32 (7)	blend		
Fe ii 1275.78	0.107	94 (10)	80 (10)	blend		
Fe ii 1277.64	0.121	136 (12)	93 (12)	blend		
Fe ii 1278.78	4.076	50 (11)	<40	blend		
Fe ii 1311.06	1.671	77 (12)	64 (9)	blend		
Fe ii 1361.37	3.267	128 (11)	38 (10)	blend		
Fe ii 1364.58	1.695	50 (10)	40 (12)	blend		
Fe ii 1371.02	2.692	91 (11)	68 (12)	blend		
Fe ii 1372.29	2.692	70 (7)	46 (10)	blend		
Fe ii 1373.72	2.692	55 (11)	30 (10)	blend		
Fe ii 1375.17	2.657	80 (6)	65 (12)	blend		
Fe ii 1377.99	3.814	46 (11)	<28	blend		
Fe ii 1379.47	2.676	56 (12)	64 (10)	blend		
Fe ii 1392.82	2.676	56 (12)	64 (10)	blend		
Fe ii 1405.61	1.724	44 (14)	25 (9)	blend		
Fe ii 1408.48	2.692	70 (7)	46 (10)	blend		
Fe ii 1420.91	2.692	70 (7)	46 (10)	blend		
Fe ii 1424.72	2.692	70 (7)	46 (10)	blend		
Fe ii 1424.72	2.692	70 (7)	46 (10)	blend		
Fe ii 1435.00	0.301	79 (13)	55 (16)	blend		
Fe ii 1435.00	0.301	79 (13)	55 (16)	blend		
Fe ii 1442.22	0.301	126 (11)	88 (10)	blend		
Ni ii 1317.22	0.301	126 (11)	88 (10)	blend		
Ni ii 1335.20	0.301	126 (11)	88 (10)	blend		
Ni ii 1370.13	0.000	110 (17)	85 (15)	<6	19.7	
Ni ii 1381.29	0.000	110 (17)	85 (15)	<6	19.7	
Ni ii 1405.61	0.000	110 (17)	85 (15)	<6	19.7	
Ni ii 1435.00	0.000	110 (17)	85 (15)	<6	19.7	

Notes. \(\chi \) is the lower energy of the observed transition, “u” means that the atomic parameters are particularly uncertain while “edge” means that the line lies very near the edge of the array. The measurements for \(\alpha \) Vir and \(\zeta \) Oph are for interstellar lines and are provided for comparison with our COS-measured values given for GD 40 and G241-6.

- \(a \) From York & Kinahan (1979).
- \(b \) From Morton (1975).
- \(c \) Derived from the model fit shown in Figure 1 rather than measured directly from the data.
- \(d \) Blend of S ii 1204.27 Å and S ii 1204.32 Å; atomic parameters from Tayal & Zatsarinny (2010).

and G241-6, respectively. As with the optical data, the dispersion is near 5 km s\(^{-1}\) for each star (Klein et al. 2010, 2011). These values are different from the optically measured values; Klein et al. (2010) and Zuckerman et al. (2010) reported velocities of 10 km s\(^{-1}\) and −28 km s\(^{-1}\) for GD 40 and G241-6, respectively. The difference between the optical and ultraviolet results can be attributed to the well-known difficulty of measuring absolute velocities with COS to better than 15 km s\(^{-1}\) (COS Instrument Handbook). In Figures 1–10, some of the observed spectra are additionally shifted beyond the nominal correction for the heliocentric velocity by as much as ±4 km s\(^{-1}\) to match more exactly the model spectra.

3. ABUNDANCE DETERMINATIONS

Our abundance determinations from the ultraviolet data closely follow the procedures described previously for our optical observations (Klein et al. 2010, 2011; Zuckerman...
Figure 2. Similar to Figure 1, except for C I and C II. For G241-6, the C II line at 1334.53 Å is shifted by +19 km s⁻¹ with respect to the photospheric velocity; likely it is largely interstellar. We regard the C I lines to be undetected in both stars.

(A color version of this figure is available in the online journal.)

Figure 3. Similar to Figure 1, except for the spectral region near prominent N I lines. For G241-6, the N I lines at 1199.55 Å, 1220.22 Å, and 1200.71 Å are shifted by +26 km s⁻¹, +21 km s⁻¹, and +26 km s⁻¹, respectively, relative to the photospheric velocity. These N I lines likely are interstellar. For GD 40, the lines from Fe II at 1199.67 Å, 1200.24 Å, and 1200.75 Å dominate in the model spectrum, and there is no evidence for any photospheric nitrogen.

(A color version of this figure is available in the online journal.)

Figure 4. Similar to Figure 1, except for the O I line at 1152.15 Å as well as lines of P, Fe, and Ni.

(A color version of this figure is available in the online journal.)

Figure 5. Similar to Figure 1, except for the O I lines at 1302.17 Å, 1304.86 Å, and 1306.83 Å as well as lines of Fe and Si. These are “night-time” data and therefore we have less exposure time on-source and a lower signal-to-noise ratio in the data.

(A color version of this figure is available in the online journal.)

Figure 6. Similar to Figure 1, except for the spectral region near the Al II line at 1191.8 Å. In GD 40, the aluminum line is stronger than the adjacent iron line; in G241-6, the aluminum line, if real, is weaker than the adjacent iron line. Because iron is more abundant in GD 40 than in G241-6, these spectra directly demonstrate that aluminum is substantially more abundant in GD 40.

(A color version of this figure is available in the online journal.)

Table 2

Property	GD 40	G241-6	Reference
T_\ast (K)	15,300	15,300	(1), (2)
log g (cm² s⁻¹)	8.0	8.0	(1), (2)
D (pc)	64	65	(3)

References. (1) Klein et al. 2010; (2) Zuckerman et al. 2010; (3) Bergeron et al. 2011.

et al. 2010). Unless otherwise specified, we use atomic data taken from either VALD⁵ or NIST⁶ and the model atmosphere parameters listed in Table 2. For GD 40, Bergeron et al. (2011) derive an effective temperature of 14,780 K and log $g = 8.13$ (cgs units). Following the arguments in Klein et al. (2010), we adopt a temperature of 15,300 K which, however, may be in error by ~500 K. Regardless, as shown in Klein et al. (2010, 2010).

⁵ http://vald.astro.univie.ac.at/~vald/php/vald.php?docpage=usage.html
⁶ http://physics.nist.gov/PhysRefData/ASD/Html/verhist.shtml
(A color version of this figure is available in the online journal.)

Figure 8. Similar to Figure 1, except for the spectral region near the Si ii lines near 1260 Å. (A color version of this figure is available in the online journal.)

Figure 9. Similar to Figure 1, except for the spectral region near the undetected CI i line at 1347.24 Å. (A color version of this figure is available in the online journal.)

Figure 10. Similar to Figure 1, except for the spectral region near the undetected Cu ii line at 1358.77 Å. (A color version of this figure is available in the online journal.)

2011), variations of the effective temperature of 500 K and log g of 0.3 typically lead to changes in the abundances of heavy elements relative to each other by less than 0.1 dex, although the abundances relative to He, the dominant gas in the photosphere, can vary by as much as 0.4 dex. Therefore, the uncertainties in our adopted effective temperature and gravity do not lead to any qualitative change in our results. For G241-6, our value for the effective temperature of 15,300 K is nearly equal to the 15,230 K temperature independently derived by Bergeron et al. (2011). For this same star, our value of the gravity of log g = 8.0 is slightly smaller than the value for log g of Bergeron et al. (2011).

To derive abundances, we compare COS data with a model atmosphere to find the best fit to each line profile and EW. For all detailed comparisons displayed below, we convolve the model predictions with the COS line spread function (Kriss 2011). From the measured EW of each individual line, we compute an abundance estimate. For each element, we then average, weighted by the quality of the data and atomic parameters, over each individual value to derive the ultraviolet-determined abundance that best fits all of an element’s spectral lines.

The error determinations arise from scatter in the measurement of the EWs and uncertainties in the models and atomic parameters. As demonstrated in Klein et al. (2010), the abundance uncertainties propagated from EW determination are much less than the standard deviation of the abundance determined from different lines. As a result, the final abundance uncertainty for each element is derived from the internal dispersion of all its lines. Because of modeling uncertainties, we assume a minimum error of 0.10 dex in all of our “final” abundances—including those with only optical determinations.

Our final abundance for each element is determined by combining our previous optical studies (Klein et al. 2010; Zuckerman et al. 2010) with our current COS analysis; these results are provided in Tables 3 and 4. Below, we discuss each element in detail. Representative data are shown in Figures 1–10 where we also display the predictions from models employing the final set of abundances.

3.1. Potential Interstellar Lines

Ultraviolet spectra of nearby stars display many interstellar absorption lines from species in the ground electronic state (Spitzer & Jenkins 1975). Using FUSE to perform a survey of white dwarfs within 200 pc of the Sun, Lehner et al. (2003) found, as expected, that interstellar absorption lines are pervasive. Therefore, although both GD 40 and G241-6 lie within the local interstellar bubble where the density is relatively low, their ultraviolet spectra must possess interstellar absorption
lines. Extensive optical surveys of the local interstellar gas show that it is patchy (Welsh et al. 2010), and we cannot predict its amount. We therefore emphasize the importance of interstellar lines by considering a likely range of absorption line strengths. A convenient tabulation of the equivalent widths of interstellar absorption lines has been presented for α Vir (York & Kinahan 1979), a star whose distance of 77 pc suggests that it should experience roughly comparable amounts of interstellar absorption as GD 40 and G241-6. The interstellar lines in our target white dwarfs almost certainly are weaker than those measured in η Oph (Morton 1975), a star with famously strong interstellar lines whose distance of 112 pc puts it outside the local bubble. In Table 1, in addition to listing the strengths of the photospheric lines of GD 40 and G241-6 from COS data, we list the measurements from the Copernicus satellite of EWs in the spectra of α Vir and η Oph whose narrow lines must be interstellar because the stars are rapidly rotating.

Another way to independently determine whether a line is interstellar or photospheric is to measure its radial velocity, since these two types of lines usually have different velocities. Unfortunately, for GD 40 these two velocities are almost the same so this method fails to discern interstellar lines. The radial velocity offset between interstellar and photospheric lines for G241-6 is about 20 km s\(^{-1}\) and can be used to identify interstellar features. The offsets for C and N are provided in the captions to Figures 2 and 3.

3.2. Hydrogen

Even though, as shown in Figure 1, there is substantial residual airglow emission, we have used the COS “night-time” observations to derive upper limits to the column density of atomic hydrogen, \(N(H)\), from the Ly\(\alpha\) line, H\(\alpha\) 1216 Å. Unfortunately, we cannot easily determine how much of the line is interstellar and how much is photospheric. For GD 40, the star with the stronger Ly\(\alpha\) line, if the hydrogen is entirely photospheric, then in the usual notation where [X]/[He] denotes \(\log n(X)/n(\text{He})\), we derive [H]/[He] = −5.1, approximately a factor of 10 greater than found from H\(\alpha\) (Klein et al. 2010). If [H]/[He] = −6.14 as determined from the optical data, then following Bohlin (1975), we find \(N(H) = 1.0 \times 10^{19} \text{ cm}^{-2}\), approximately a factor of 10 greater than values of \(N(H)\) for stars 70 pc from the Sun (Lehner et al. 2003). Therefore, it is likely that the Ly\(\alpha\) line is primarily photospheric. It is possible that the broad, weak H\(\alpha\) line was not well measured in the Keck HIERES echelle spectrum which is difficult to flatten (Klein et al. 2010). However, Voss et al. (2007) also report a very weak H\(\alpha\) absorption line and derived [H]/[He] = −6.02. Bergeron et al. (2011) report [H]/[He] = −6.1, but with an uncertainty of 1.0 dex because the line is weak and difficult to measure. Our final estimate of the abundance reported in Table 3 has a large uncertainty.

We hope to reconcile the discrepancy between the optical and ultraviolet results for photospheric hydrogen in GD 40 in future studies; for now it is mystery. Fortunately, this factor of 10 uncertainty in the hydrogen abundance does not materially affect the overall structure of the model atmosphere, so the abundance determinations for other elements are unaffected.

For G241-6, from the lack of H\(\alpha\) absorption, Zuckerman et al. (2010) report [H]/[He] < −6.1 while Bergeron et al. (2011) report an upper limit to [H]/[He] of −5.43. If the Ly\(\alpha\) line is entirely photospheric in origin, then [H]/[He] = −5.6, in disagreement with the upper limit from Zuckerman et al. (2010). If, however, [H]/[He] = −6.1 in the photosphere, then, as illustrated in Figure 1, \(N(H) = 3 \times 10^{19} \text{ cm}^{-2}\). Given that interstellar nitrogen lines detected toward this star are stronger than those measured for α Vir, it is plausible that the interstellar hydrogen column density could approach this value of \(3 \times 10^{19} \text{ cm}^{-2}\). If so, then there is no disagreement between the measurement of [H]/[He] derived from the ultraviolet and the upper bound derived from the optical.

3.3. Carbon

The ultraviolet lines of C\(^{1}\) and C\(^{11}\) that are accessible in our COS data are subject to interstellar contamination because...
they arise either from the ground state or a very low lying energy level. In Figure 2, we display the comparison between our data and models for GD 40 and G241-6 for the spectral interval 1327 Å to 1338 Å. In both stars, we see C II absorption at 1334.53 Å and 1335.71 Å. However, neither interstellar nor photospheric absorption from C I is detected.

In Table 1, the C II lines toward GD 40 are somewhat stronger than even in τ Oph. Furthermore, the line at 1335.71 Å arises from an excited fine structure level (see Column 2 in Table 1) which is fully populated according to its statistical weight in a stellar photosphere but not so in the interstellar medium where the density is vastly lower. Consequently, an interstellar line at 1335.71 Å is almost always weaker than the line at 1334.53 Å. In view of this consideration, it is likely that the C II lines toward GD 40 are largely photospheric with an abundance of [C]/[He] = −7.8. Our upper bounds to the C I lines near 1277 Å and 1328 Å are consistent with this result.

For G241-6, it appears that the C II line at 1334.53 Å is largely interstellar because it is offset from the photospheric velocity and because it is substantially stronger than the C II 1335.71 Å line. If C II 1335.71 Å is entirely photospheric, then [C]/[He] = −8.5. Because the line is likely at least partly interstellar, we conclude that this value of the abundance is only an upper limit. Our upper bounds to the C I lines near 1277 Å and 1328 Å are consistent with this result.

3.4. Nitrogen

The accessible photospheric lines of N I at 1199.55 Å, 1200.22 Å, and 1200.71 Å all arise from the ground state and are strong in the interstellar medium. A further difficulty is that these lines can be blended with photospheric Fe II 1199.67 Å, 1200.24 Å, and 1200.75 Å. As shown in Figure 3, the Fe lines dominate this spectral region, and there is no evidence for any nitrogen lines in the spectrum of GD 40; we derive [N]/[He] < −8.8. For G241-6, the observed lines probably arise from interstellar absorption because their wavelengths are offset from what is expected in the stellar rest frame and, instead, agree with the offset of the likely interstellar line at C II 1334.53 Å. There is no evidence for photospheric nitrogen; we derive an upper limit of [N]/[He] < −8.9.

3.5. Oxygen

We detect O I 1152.15 Å and 1217.65 Å in both stars; the data are shown in Figures 4 and 1. These lines must be photospheric because they arise from excited electronic states. Using nighttime data only to avoid day glow emission, we also detect O I 1302.17 Å, 1304.86 Å, and 1306.03 Å; these lines are shown in Figure 5. Because the O I 1302.17 Å line lies near the edge of the array, the data are especially noisy and uncertain in its blue wing (Dixon et al. 2011). The two longer wavelength O I lines are blended with lines of Si II. Because of these problems, we do not employ any of the three lines near 1302 Å in our abundance determination.

3.6. Aluminum

The only line that we have used for the abundance determination for this element is Al II 1191.80 Å which cannot be interstellar because it arises from an excited energy level. The fits to the data are shown in Figure 6. As shown in Figure 1, we have apparently detected Al II 1211.90 Å in GD 40, but this line is blended with a feature from Fe II, and so we do not attempt to use these data to infer the aluminum abundance.

3.7. Silicon

We have detected numerous ultraviolet lines of Si II and one line of Si III in both GD 40 and G241-6; results are shown in Figures 5–8. For GD 40, the Si II data cannot be consistently fitted. The model with our final abundance still underpredicts the strengths of the lines near 1260 Å and 1350 Å, but as reported in Klein et al. (2010) would overpredict the optical EWs. The lines near 1194 Å are well fitted with the compromise “final” value of [Si]/[He] given in Table 3 which is larger than previously reported by Klein et al. (2010) by 0.32 dex. In contrast, we find a more self-consistent fit of all the Si lines for G241-6 with only a 0.16 dex increase in [Si]/[He]. Independently, in GD 61, a comparably externally polluted DB white dwarf, the optical and ultraviolet determinations agree to within 0.15 dex (Farihi et al. 2011; Desharnais et al. 2008). Bautista et al. (2009) have re-examined the oscillator strengths of Si II, and while their values for the ultraviolet lines are close to those employed in this paper, their recommended values for the optical lines are about 0.3 dex weaker than we previously used and thus account for much of the discrepancy between the optical and ultraviolet abundance determinations for GD 40. The abundance difference between Si and Mg discussed in detail by Klein et al. (2010) for GD 40 is still present within our current analysis but is significantly less pronounced than previously reported.

3.8. Phosphorus

Unequivocal detections of three P II lines for both stars are shown in Figure 4. The stellar abundance determinations in Tables 3 and 4 are secure.

3.9. Sulfur

As shown in Figure 7, we have certainly detected the S II doublet of 1204.27 Å and 1204.32 Å for G241-6 and perhaps for GD 40. These lines must be photospheric. For G241-6, we also detected the lines at 1253.81 Å and 1259.52 Å (Figure 8); for GD 40, detections of these two lines are marginal. We also have detected S I 1433.28 toward G241-6, which is unlikely to be interstellar. The photospheric abundance determination of sulfur in G241-6 is secure; it is tentative in GD 40.

3.10. Chlorine

As shown in Figure 9, we only report upper limits to Cl I 1347.24 Å.

3.11. Magnesium, Calcium, Titanium, Chromium, Manganese, Iron

We detected lines of Mg, Ca, Ti, Cr, Mn, and Fe in the COS spectra. Our measurements for Ti are not presented in Table 1 because they are all weaker than 50 mÅ. For all of these elements, our final abundance determination is largely based upon our previous results. Except for Ca, the abundance determinations agree within the errors with those determined from the optical (Klein et al. 2010; Zuckerman et al. 2010). Examples of the model fits for Fe and Mn are shown in Figures 2–4, 6–8, and 10. For Ca, the only lines in the ultraviolet have poorly determined atomic parameters; they imply a significantly lower Ca abundance than derived from optical data. Given the excellent fit to numerous optical lines, we do not reassess the abundance of this element.
We display detections of photospheric Ni in Figures 2 and 4. The potentially interstellar Ni lines reported in Table 1 are so much stronger than observed in ζ Oph that we assume that they originate in the photosphere, and as such they are included in our abundance determination.

3.13. Copper, Germanium, Gallium

We display the spectra near the Cu II 1358.77 Å line in Figure 10. The line appears at the 3σ level in the spectrum of GD 40 and is at most marginally detected; we can only place an upper bound on the line in G241-6. We have searched for lines at 1404.12 Å and 1237.07 Å for Ge and Ga, respectively. They are undetected and not displayed here; the upper limits to the abundances are reported in Tables 3 and 4.

4. PARENT BODY COMPOSITIONS

Having determined the atmospheric abundances, we now proceed to estimate the composition of the accreted parent bodies. Because different elements gravitationally settle through the white dwarf’s outer mixing zone at different rates, the relative abundances in the photosphere may not be the same as the relative abundances in the asteroidal parent body. Koester (2009) described three phases of an accretion event. The first phase is a build-up of pollution after the initial creation of a circumstellar disk derived from the tidal disruption of an asteroid. During this phase, which has a duration of approximately one settling time, the photospheric abundances are the same as those in the parent body. For both GD 40 and G241-6, this phase has a duration of 2×10^5 yr. During the second phase, there is an approximate steady state where the rate of accretion from the disk is balanced by the loss at the bottom of the outer mixing zone. During this phase the concentration of each individual element in the photosphere is determined by a balance between its accretion rate and its settling time; derivation of parent body abundances must take this effect into account. The duration of this phase depends upon the mass of the parent body. The estimated steady state accretion rates for GD 40 and G241-6 are 2×10^9 and 3×10^9 g s$^{-1}$ (Klein et al. 2010; Zuckerman et al. 2010). Ceres, the most massive asteroid in the solar system, has a mass of 9.1×10^{23} g (Baer et al. 2011), and it is therefore imaginable that this phase could have a duration of as much as 10^5 yr, but this is extremely uncertain. As listed in Table 5, the inferred minimum mass of the asteroid accreted onto GD 40 is 3.8×10^{22} g, slightly revised from the value of 3.6×10^{22} g in Klein et al. (2010), is much less than the mass of Ceres. If the accretion from the disk varies with time (Rafikov 2011), then it may be better described to be in a quasi-steady state instead of an exact steady state. In this case, the estimated mass fractions may be uncertain by as much as a factor of two (Jura & Xu 2012). After the disk is fully accreted, there is a final decay phase where the light elements should dominate the photospheric composition since the heavy elements sink more quickly. The duration of this final phase is on the order of a few settling times, or, for GD 40 and G241-6, $\sim 5 \times 10^5$ yr.

Because we are largely focused upon the upper limit to the abundances of the volatile elements and because carbon and nitrogen have particularly long settling times, it is most conservative to assume that the systems are in the “build-up” phase because this is when we would infer the highest fractional abundances for the volatiles. If, instead, the system is in a steady state or declining phase, then we overestimate the fraction of mass carried in the lighter elements and underestimate the fraction of mass carried in the heavier elements. According to Klein et al. (2010), the difference between derived mass fractions between the build-up phase and the steady state phase is at most a factor of 1.6, not enough to qualitatively change our conclusions. If a system is in the declining phase, then the correction to the derived mass fraction of a heavy element such as Ni for gravitational settling can, in principle, be larger than a factor of 10 (Koester 2009).

We display in Figures 11–13 the relative abundances listed in Table 5. Because we have a comprehensive suite of abundances in the atmospheres of GD 40 and G241-6, we follow standard analysis of solar system objects and display the fraction of the total mass of the parent body carried by each element.

We see in Figure 11 that the two elements with 50% condensation temperatures less than 150 K, well inside the snow line (Lecar et al. 2006), are significantly depleted in the parent bodies accreted onto GD 40 and G241-6 relative to the “adjusted Sun” and CI chondrites. In contrast, we see in Figures 12 and 13 that the elements with condensation temperatures greater than 1000 K have mass fractions roughly similar to bulk Earth and CI and CV chondrites. Sulfur, with an intermediate 50% condensation temperature of 664 K, is heavily depleted in GD 40 but undepleted in G241-6.

5. DISCUSSION

In the usual models for their formation in a disk orbiting a central star, rocky planets grow within a radial annulus. The temperature within this annulus controls the material which is incorporated into solids and therefore, ultimately, the chemical composition of a planet (Armitage 2010). In this picture, there
Figure 11. Display of results tabulated in Table 4: mass fractions of elements with 50% condensation temperatures less than 1000 K in the parent bodies accreted onto GD 40 and G241-6 and, for comparison, both CI and CV chondrites (Wasson & Kallemeyn 1988), bulk Earth (Allegre et al. 2001), and an “adjusted Sun” which is all elements except hydrogen, helium, and the noble gases given by Lodders (2003). The temperature at which 50% of the element condenses in the calculations of Lodders (2003) is shown beneath its symbol on the plot. The relationship between the mass fractions of pollutants in the stellar atmosphere and the bulk composition of the accreted parent body are discussed in Section 4. To make a conservative estimate of the mass fraction of the important volatiles—carbon, nitrogen and oxygen—we assume the system is in the build-up phase. If the system is in a steady state or declining phase, then the results plotted here overestimate the mass fractions of the lighter elements and underestimate the mass fractions of the heavier elements in the parent bodies.

Figure 12. Similar to Figure 11 for elements with condensation temperatures greater than 1000 K and less than 1335 K. We do not display the “adjusted Sun” because it has the same pattern as the “CI chondrites.”

Figure 13. Similar to Figure 11, for elements with condensation temperatures greater than 1335 K. We do not display the “adjusted Sun” because it has the same pattern as the “CI chondrites.”

Figure 13. Similar to Figure 11, for elements with condensation temperatures greater than 1335 K. We do not display the “adjusted Sun” because it has the same pattern as the “CI chondrites.”

(A color version of this figure is available in the online journal.)
possession of a dust disk and the absence of any circumstellar dust orbiting G241-6. Therefore, our “conservative” approach in assuming that G241-6 is in the “build-up” phase may overestimate the mass fractions of the relatively light volatiles, but it correspondingly may underestimate the mass fractions of the relatively heavy refractories. Sulfur and silicon have nearly the same atomic weight and gravitationally settle at nearly the same speed. As illustrated in the modeling of Jura & Xu (2012), the imputed mass fraction carried by silicon—intermediate in mass between oxygen and iron—is approximately constant during an episode where the accretion rate varies by more than a factor of 10. Consequently, the inferred sulfur mass fraction is insensitive to whether the system is a build-up or steady-state phase. Even if G241-6 is in a final, declining phase, the likely corrections to the relative abundances of the heavy elements are approximately a factor of two; such adjustments would not lead to a qualitative change in our analysis.

We now briefly assess whether during either star’s high-luminosity asymptotic giant branch evolution prior to becoming a white dwarf, the composition of the asteroids was dramatically altered by sublimation and the consequent loss of volatile elements. According to idealized calculations (Jura & Xu 2010), less than half of any initial internal H2O is likely to be lost during an episode where the accretion rate varies by more than a factor of 10. In contrast, elements with condensation temperatures greater than 1000 K have mass fractions similar to those measured in bulk Earth and chondrites. This contrast between volatiles and refractories is consistent with scenarios where the composition of a planetesimal is strongly dependent upon the radial location in the disk where it was formed.

This work has been partly supported both by NASA (for the HST telescope time) and by NSF and NASA grants to UCLA to study polluted white dwarfs.

6. CONCLUSIONS

We have found in the white dwarfs GD 40 and G241-6 that two highly volatile elements—carbon and nitrogen—comprise only a small fraction of the mass in the accreted parent bodies. The deficiency of these two volatiles parallels what is measured for bulk Earth and previous studies showing that in aggregate there was relatively little water-ice embedded in the ensemble of planetesimals accreted onto nearby externally polluted white dwarfs with helium-dominated atmospheres. Sulfur is significantly depleted in GD 40 but not G241-6. In contrast, elements with condensation temperatures greater than 1000 K have mass fractions similar to those measured in bulk Earth and chondrites. This contrast between volatiles and refractories is consistent with scenarios where the composition of a planetesimal is strongly dependent upon the radial location in the disk where it was formed.

REFERENCES

Allegre, C., Manhes, G., & Lewin, E. 2001, Earth Planet. Sci. Lett., 185, 49
Armitage, P. 2010, Astrophysics of Planet Formation (Cambridge: Cambridge Univ. Press)
Baer, J., Chesley, S. R., & Matson, R. D. 2011, AJ, 141, 143
Bautista, M. A., Quinet, P., Palmeri, P., et al. 2009, A&A, 508, 1527
Bergeron, P., Wesemael, F., Dufour, P., et al. 2011, ApJ, 737, 28
Bohlin, R. C. 1975, ApJ, 200, 402
Bond, J. C., O’Brien, D. P., & Lauretta, D. S. 2010, ApJ, 715, 1050
Bonsor, A., Mustill, A. J., & Wyatt, M. C. 2011, MRNAS, 414, 930
Brugamyer, E., Dodson-Robinson, S. E., Cochran, W. D., & Sneden, C. 2011, ApJ, 738, 97
Debes, J. H., & Sigurdsson, S. 2002, ApJ, 572, 556
Debes, J. H., Walsh, K. J., & Stark, C. 2012, ApJ, 747, 148
Desharnais, S., Wesemael, F., Chayer, P., Kruk, J. W., & Saffer, R. A. 2008, ApJ, 672, 540
Dixon, W. V., et al. 2011, Cosmic Origins Spectrograph Instrument Handbook, Version 4.0 (Baltimore: STSci), www.stsci.edu/hst/cos/documents/handbooks/current/cos_cover.html
Dufour, P., Liebert, J., Fontaine, G., & Behara, N. 2007, Nature, 450, 522
Dufour, P., Kilic, M., Fontaine, G., et al. 2010, ApJ, 719, 803
Dupuis, J., Chayer, P., & Renault-Grunet, V. 2010, in AIP Conf. Proc. 1273, 17th European White Dwarf Workshop, ed. K. Werner & T. Rauch (Melville, NY: AIP), 412
Farihi, J., Barstow, M. A., Redfield, S., Dufour, P., & Hambly, N. C. 2010, MRNAS, 404, 2123
Farihi, J., Brinkworth, C. S., Gaensicke, B. T., et al. 2011, ApJ, 728, L8
Farihi, J., Jura, M., & Zuckerman, B. 2009, ApJ, 694, 805
Feldman, P. D., Sahnow, D. J., Kruk, J. W., Murphy, E. W., & Moos, H. W. 2001, J. Geophys. Res., 106, 8119
Friedrich, S., Koester, D., Heber, U., Jeffery, C. S., & Reimers, D. 1999, A&A, 350, 865
Gaensicke, B. T., Koester, D., Girven, J., Marsh, T. R., & Steeghs, D. 2010, Science, 327, 188
Gaensicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006, Science, 314, 1908
Gaensicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006, Science, 314, 1908
Gaensicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006, Science, 314, 1908
Ghosh, A., & McSween, H. Y. 1998, Icarus, 134, 187

Jura et al.
Gonzalez Hernandez, J. I., Israeli, G., Santos, N. C., et al. 2011, in IAU Symp. 276, The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution, ed. A. Sozetti, M. G. Lattanzi, & A. P. Boss (Cambridge: Cambridge Univ. Press), 422
Jewitt, D., Chizmadia, L., Grimm, R., & Prialnik, D. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 863
Jura, M. 2003, ApJ, 584, L91
Jura, M. 2006, ApJ, 653, 613
Jura, M. 2008, AJ, 135, 1785
Jura, M., Farihi, J., & Zuckerman, B. 2007, ApJ, 663, 1285
Jura, M., Farihi, J., & Zuckerman, B. 2009, AJ, 137, 3191
Jura, M., & Xu, S. 2010, AJ, 140, 1129
Jura, M., & Xu, S. 2012, AJ, 143, 6
Klein, B., Jura, M., Koester, D., & Zuckerman, B. 2011, ApJ, 741, 64
Klein, B., Jura, M., Koester, D., Zuckerman, B., & Melis, C. 2010, ApJ, 709, 650
Koester, D. 2009, A&A, 498, 517
Koester, D., Girven, J., Gaensicke, B. T., & Dufour, P. 2011, A&A, 530, 114
Koester, D., Weidemann, V., & Zeidler, E.-M. 1982, A&A, 116, 147
Kris, G. A. 2011, Improved Medium Resolution Line Spread Function for COS FUV Spectra, COS Instrument Science Report
Lecar, M., Podolak, M., Sasselle, D., & Chiang, E. 2006, ApJ, 640, 1115
Lee, J.-E., Bergin, E. A., & Nomura, H. 2010, ApJ, 710, L21
Lehner, N., Jenkins, E. B., Gry, C., et al. 2003, ApJ, 595, 858
Lodders, K. 2003, ApJ, 591, 1220
Melis, C., Farihi, J., Dufour, P., et al. 2011, ApJ, 732, 90
Morton, D. C. 1975, ApJ, 197, 85
Pelletier, C., Fontaine, G., Wesemael, F., Michaud, G., & Wegner, G. 1986, ApJ, 307, 242
Rafikov, R. 2011, MNRAS, 416, L55
Ramirez, I., Asplund, M., Baumann, P., Melendez, J., & Bensby, T. 2010, A&A, 521, 33
Schuler, S. C., Plaute, D., Cunha, K., et al. 2011, ApJ, 732, 55
Spitzer, L., & Jenkins, E. B. 1975, ARA&A, 13, 133
Tatischeff, V., Duprat, J., & de Sereville, N. 2010, ApJ, 714, L26
Tayal, S. S., & Zatsarinny, O. 2010, ApJS, 188, 32
Vennes, S., Kawka, A., & Nemeth, P. 2010, MNRAS, 404, L40
Voss, B., Koester, D., Napierwotzki, R., Christlieb, N., & Reimers, D. 2007, A&A, 470, 1079
Wasson, J. D., & Kallenneyn, G. W. 1988, Phil. Trans. R. Soc. A., 325, 535
Welsh, B. Y., Lallement, R., Vergely, J.-L., & Raimond, S. 2010, A&A, 510, 54
Wetherill, G. 1990, Ann. Rev. Earth Planet. Sci., 18, 205
Wolff, B., Koester, D., & Liebert, J. 2002, A&A, 385, 995
Xu, S., & Jura, M. 2012, ApJ, 745, 88
York, D. G., & Kinahan, B. 1979, ApJ, 228, 127
Young, E. D., Zhang, K. K., & Schubert, G. 2003, Earth Planet. Sci. Lett., 213, 249
Zuckerman, B., Koester, D., Dufour, P., et al. 2011, ApJ, 739, 101
Zuckerman, B., Koester, D., Melis, C., Hansen, B., & Jura, M. 2007, ApJ, 671, 872
Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M. 2010, ApJ, 722, 725