Progress in water and energy flux studies in Asia: A review focused on eddy covariance measurements

Minseok Kanga,b,* and Sungsik Choa,b,*

a National Center for AgroMeteorology, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
b Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea

Abstract

The eddy covariance (EC) technique-based observation system allows for researchers to determine latent and sensible heat fluxes, which are key components of the surface energy balance. The number of water and energy flux studies in Asia has increased as the number of flux measurement sites and the length of the observation periods have grown. To retrace the footprints of the AsiaFlux network and predict future research directions, we reviewed the progress in water and energy flux studies in Asia from the 1990s to the present day. This included studies on continuous evapotranspiration (ET) and surface energy balance measurements in various ecosystems, from the tropics to the polar regions. We also reviewed comparative experiments between the EC technique and other observation techniques including the use of a lysimeter or scintillometer, data processing techniques, connections between carbon and water fluxes, and multi-site syntheses. This paper discusses three remaining challenges that are hindering the derivation of scientific knowledge for ET and the surface energy balance, namely: the non-closure of the surface energy budget, imperfect compatibility between open- and closed-path gas analyzers, and difficulty in partitioning ET into evaporation and transpiration. If we leverage the advantages of the EC technique (i.e., high sampling rates of \(\geq 10\) Hz and continuous measurement capabilities), standardized methods for correcting and partitioning can be developed in the near future.

Key words: AsiaFlux, Eddy covariance, Energy flux, Evapotranspiration, Synthesis

1. Introduction

Latent and sensible heat fluxes are the main targets of the application of an eddy covariance (EC) technique-based observation system. These fluxes are key components of the surface energy balance. In particular, latent heat flux is critically important, as it can be converted to evapotranspiration (ET), which is also a primary component of the surface water balance. Sensible heat flux is related to convection and determines mass and heat transfer to the free atmosphere through the planetary boundary layer. If an open-path type gas analyzer is used to measure trace gas fluxes (e.g., carbon dioxide, methane), it is imperative to measure both fluxes to enable the application of air density fluctuation corrections (e.g., Webb \textit{et al.}, 1980). For these reasons, both latent and sensible heat flux measurements have been conducted for most of the observing sites around the world, including in Asia.

The number of water and energy flux studies in Asia has increased along with both the number of flux measurement sites and the length of observation periods. The 20th anniversary workshop of AsiaFlux (i.e., the continental network of flux tower measurements in Asia, http://www.asiaflux.net) was held in Takayama, Japan from October 2 to October 5, 2019. Although the history of AsiaFlux is relatively short compared with similar networks in Europe and America, the number of AsiaFlux sites increased to 110 as of January 2020. During this period, the number of publications related to water and energy flux studies in Asia had risen to over 530, largely because more multi-year observation data are now available for synthetic analyses and validations of various models and satellite algorithms (Fig. 1).

To date, several regional networks have been established to monitor carbon and water cycles in terrestrial ecosystems. AsiaFlux is a regional research network in Asia, and it was established in 1999 to study the exchanges of carbon, water, and energy between terrestrial ecosystems and the atmosphere; this network shares data with several national networks such as ChinaFLUX, JapanFlux, and KoFlux. Several papers have provided introductions to such networks. Notably, Mizoguchi \textit{et al.} (2009) reviewed the state of tower flux observation sites in Asia including AsiaFlux. Yu \textit{et al.} (2006) introduced ChinaFLUX which has been led by a government knowledge innovation program to support ecosystem integration and local representation, for innovation, research, and forecasting. Lee \textit{et al.} (2014) established the Lake Taihu Eddy Flux Network, the first lake EC network, and it was launched to monitor the temporal and spatial patterns of lake air fluxes in Lake Taihu, China. These networks are playing increasingly important roles in Earth and environmental sciences. Such network-based studies are providing more opportunities to improve and generalize environmental knowledge through the integration of distributed observations.
To retrace the footprints of the AsiaFlux network and predict future research directions, we reviewed the progress in water and energy flux studies in Asia from the 1990s to the present. In section 2, we classify publications into a number of categories. These publications included observations, technique inter-comparisons, data processing studies, evaluations of the connection between carbon and water fluxes, multi-site syntheses, model-data fusion studies, satellite remote sensing analyses, and finally, other publications that did not fit into any of the previous categories. Among those previous studies, we mainly focused on EC flux measurements in this review. In section 3, we discuss the observations of continuous ET and surface energy balance measurements in various ecosystems (e.g., forest, cropland, grassland, urban) from the tropics to the polar regions. In section 4, we discuss comparative experiments between EC and other observation techniques, such as lysimeters or scintillometers. In section 5, we discuss data processing techniques such as flux calculation or gap-filling. In section 6, we discuss the connections between carbon and water fluxes. In section 7, we discuss multi-site synthesis methods, such as inter-comparison and upscaling. Finally, in section 8, we outline and discuss the remaining challenges that remain in the field of water and energy flux studies in Asia.

2. Literature review

To identify what research has been conducted in which field, we classified publications according to the following subjects.

Observations: A study primarily based on observation, including documentation and analyses of the diurnal/seasonal/inter-annual variations of various land cover types and climates.

Inter-comparison with other techniques: A study primarily based on inter-comparison between EC and other flux observation techniques, such as lysimeter and scintillometer evaluations.

Data processing: A study primarily based on data processing techniques, including gap-filling and partitioning of ET into evaporation and transpiration.

Connections between carbon and water fluxes: A study primarily based on connections between carbon and water fluxes, such as quantifying the efficiency of water use of various land cover types and climates.

Multi-site synthesis: A study primarily based on multi-site observations, such as inter-comparison and upscaling using an observation network.

Model-data fusion: A study primarily based on analytical or numerical modeling of the surface energy balance or hydrology, such as calibration and validation of the land surface-hydrology model.

Satellite remote sensing: A study primarily based on satellite remote sensing, such as ET mapping using satellite imagery.

Other: A study that does not belong to the above categories, such as aerodynamic parameters of boundary layer meteorology.

From 1998 to 2019, the percentage of studies classified as observation (39%) was the largest among the water and energy flux studies in Asia (Fig. 2). Those classified as model-data fusion (19%) made up the second largest portion, followed by satellite remote sensing (13%). The total number of publications has more than doubled since 2012 (Fig. 1), and such increases occurred in the whole field of research, with the exception of inter-comparison with other techniques. Such overall trends support the postulation that the sharp increase since 2012 was caused by more multi-year observation data becoming available for the whole research field. It should be noted that the boundaries between categories have been becoming ambiguous. In such cases, we judged the category subjectively after checking the journal in which the article was published and reading the abstract. Hereafter, we have reviewed each category, with the exception of the model-data fusion category, the satellite remote sensing category, and the Other category, which were reviewed by Ito (in this special issue) and Kobayashi (in this special issue), respectively.

3. Observations

We identified a number of studies that reported long-term (e.g., annual, whole growing season) ET observations from 131 sites across Asia. These applied the EC technique for measuring water and energy fluxes in a wide range of regions from Siberia to Southeast Asia (10°–80°N, 60°–80°E). The EC towers are distributed in tropical, arid, temperate, and boreal climate zones. Figure 3a shows the relationship between the annual mean air temperature and annual precipitation for the 109 sites. The annual mean air temperature ranges from −4°C to 28°C and the annual precipitation ranges from below 30 mm to

Fig. 1. Number of publications related to water and energy flux studies in Asia from 1998 to 2020. (Peer-reviewed international journals only; Source: Scopus database, https://www.scopus.com, last accessed: February 25, 2020, key search words: eddy covariance, energy flux, evapotranspiration, Asia).

Fig. 2. Classification of the publications in Fig. 1. The number in parentheses represents the number of publications for each category.
2,600 mm. Nevertheless, EC flux sites within Asia do not appear to be representative of the climate zone as a whole (e.g., in polar and tropical regions). Some regions, such as East Asia, are more densely instrumented than other regions (e.g., Siberia and South Asia). However, the total number of sites for each biome seems to be fairly representative. The sites span a wide variety of plant functional types (PFTs) including evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), shrublands (SH), grasslands (GRA), permanent wetlands (WET), croplands (CRO), deserts (Barren), and water bodies (WAT). The studies conducted in croplands and forests (i.e., ENF, EBF, DNF, DBF, and MF) are the most dominant types (25% and 24%, respectively).

We used the Budyko hypothesis (Budyko, 1974) to examine the water balance controlled by the supply and demand of water from the atmosphere. The Budyko curve describes the relationship between potential ET and its actual ET, each normalized by precipitation. The slope of the Budyko curve is steep in energy-limited regions (i.e., evaporation index as a function of ET/precipitation < 1), and becomes flat in water-limited regions (i.e., aridity index as a function of potential ET/precipitation > 1). Figure 3b plots the original Budyko curve for the EC observations across Asia. The EC observations showed that the relationship between water and energy is consistent with the original Budyko hypothesis. However, there were regions where the amount of actual ET has exceeded local precipitation such as hyper-arid regions and irrigated crop plantations.

3.1 Forests

Forest ecosystems exert a significant influence on regional and global water cycling (Baldocchi et al., 1988). The ET from forest ecosystems constitutes nearly one half of the total terrestrial ET (Oki and Kanae, 2006). Forests are believed to function as a “green dam” that (1) prevents flooding and soil erosion via buffering actions that reduce the rate of run-off by intercepting and evaporating precipitation, and (2) conserves the moisture contents in the surface soil by controlling the transpiration rate. For this reason, many long-term field experiments have been performed to measure the exchange of water and energy between forest ecosystems and the atmosphere in various areas of woody PFTs and climates.

The annual ET rate ranged from 330 mm year$^{-1}$ to 1,600 mm year$^{-1}$ in 32 forest regions in Asia (Table 1). At the biome level, EBF had the highest mean annual ET rate, followed by ENF, DBF, MF, and DNF (Fig. 4). The annual ET rate gradually decreased from tropical to temperate and boreal zones. The daily ET rate in tropical forests was 2.8–6 mm day$^{-1}$ and showed little seasonal variation (Igarashi et al., 2015; Takanashi et al., 2010), and the annual water loss via ET was > 1,100 mm year$^{-1}$ (Hirano et al., 2015; Kosugi et al., 2012; Kumagai et al., 2005; Kume et al., 2011). For the other climatic zones, the peak daily rate was comparable, but strong seasonal variations resulted in much less water loss via ET (330–1030 mm year$^{-1}$). It should be noted that there has been a lack of observations in the arid regions compared to the other regions even though large-scale
Location (City, Country)	Latitude, Longitude	AsiaFlux site code	Vegetation type	Period (season)	Climate	Köppen climate	LAI_{MAX}	P	T_a	ET	EBR	System type	Reference
Paseo, Malaysia	2°58′N, 102°18′E	MY-PSO	MF	2003–2005 (Whole year)	Tropical	Af	5.76	1733	-	1318	0.78	OPEC	Takanashi et al. (2010)
Kalangpangan, Indonesia	2°20′N, 114°02′E	ID-PDF	EBF	2004.08–2008.07 (Whole year)	Tropical	Af	2446	26.3	-	-	-	OPEC	Hirano et al. (2015)
Miri, Malaysia	4°12′N, 114°56′E	MY-LHP	EBF	2001.07–2002.06 (Whole year)	Tropical	Af	2151	27	1545	0.82	OPEC	Kumagai et al. (2005)	
Lampang, Thailand	18°25′N, 99°43′E	TH-MMP	DBF	2006–2012 (Whole year)	Tropical	Aw	1335	25.4	977	0.68	OPEC	Igarashi et al. (2015)	
Xishuangbanna, China	21°55′N, 101°16′E	CN-BNS	EBF	2003–2006 (Whole year)	Tropical	Cwa	1322	20.1	1029	0.64	OPEC	Li et al. (2010)	
Beijing, China	40°22′N, 115°56′E	-	MF	2012–2015 (Whole year)	Arid	Bsk	325	9.7	329	0.59	OPEC	Ma et al. (2018)	
Heihe, China	41°59′N, 101°07′E	-	DBF	2014 (Whole year)	Arid	BWk	16.4	10.8	653.4	0.72	OPEC	Ma et al. (2017)	
Pu’er, China	24°32′N, 101°01′E	-	EBF	2009–2013 (Whole year)	Temperate	Cwb	1637	11.6	863	0.70	OPEC	Song et al. (2017a)	
Yueyang, China	29°31′N, 112°55′E	-	DBF	2010 (Whole year)	Temperate	Cfa	2184	17.0	1033	-	OPEC	Gao et al. (2017)	
Taihe, China	26°44′N, 115°03′E	CN-QYZ	ENF	2003–2010 (Whole year)	Temperate	Cfa	1381	18.1	787	-	OPEC	Xu et al. (2014)	
Jiyuan, China	35°01′N, 112°28′E	-	DBF	2004 (Whole year)	Temperate	Cfa	1324	17.8	736	-	OPEC	Li et al. (2006a)	
Kiryu, Japan	34°58′N, 136°00′E	JP-KEW	ENF	2001–2003 (Whole year)	Temperate	Cfa	1592	13.2	729	0.9	OPEC and CPEC	Kosugi et al. (2007)	
Jiyuan, China	35°01′N, 112°28′E	-	DBF	2006–2009 (Growing)	Temperate	Cfa	1536	13.3	752	-	OPEC	Tsuruta et al. (2016)	
Beijing, China	39°32′N, 116°16′E	-	DBF	2006–2009 (Growing)	Temperate	Cfa	1592	13.2	729	0.9	OPEC and CPEC	Kosugi et al. (2007)	
Beijing, China	40°06′N, 116°42′E	-	DBF	2014–2015 (Growing)	Temperate	Cfa	1536	13.3	752	-	OPEC	Xu et al. (2018a)	
Hokkaido, Japan	42°44′N, 141°31′E	JP-TMK	DNF	2002–2003 (Whole year)	Temperate	Dfb	1001	6.8	494	0.94	OPEC	Hirano et al. (2017)	
Sichuan, China	33°09′N, 103°52′E	-	MF	2014–2015 (Whole year)	Temperate	Dwb	893	7.3	720	-	OPEC	Yan et al. (2017)	
Anju, China	42°24′N, 128°05′E	-	MF	2003 (Whole year)	Boreal	Dwa	6.9	524	13.4	579	0.71	OPEC	Tong et al. (2017)

1*Abbreviations of vegetation type as follows: EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, DNF: deciduous needleleaf forest, MF: mixed forest. Abbreviations of Köppen climate are as follows: Af: tropical rainforest climate, Aw: tropical savanna climate with dry-winter characteristics, Bsk: cold semi-arid climate, BWk: cold desert climate, Cfa: humid subtropical climate, Cwa: monsoon-influenced humid subtropical climate, Cwb: subtropical highland climate, Dfb: warm-summer humid continental climate, Dwa: monsoon-influenced hot-summer humid continental climate, and Dwb: monsoon-influenced warm-summer humid continental climate based on the Beck et al. (2018) 1-km resolution map.*
afforestation/reforestation areas in vulnerable arid/semi-arid regions has resulted in a higher demand for ET measurements (Cao et al., 2016, 2009; Chen et al., 2010; Cho et al., 2019).

3.2 Cropland

Agricultural intensification over the past 50 years, along with green revolution trends, have resulted in an approximate doubling in agricultural productivity. A single plant pumps 200–500 g of water from soil to leaves to photosynthesize one gram of sugar. This means that water scarcity due to the doubling of crop productivity and the subsequent increase in water consumption remains problematic. In Asia, more than 70% of freshwater resources are used to irrigate agricultural lands (Dubois, 2011), particularly rice paddies. Moreover, crop irrigation is expected to continue increasing in response to the expansion of irrigated areas (Siebert et al., 2015) and future global warming (Wada et al., 2014). In this context, information on ET for agricultural ecosystems is critical, as such data can allow for better water management, e.g., through adjustments to the timings, amounts, and types of irrigation.

The ET rate ranged from 210 mm to 1,370 mm over the growing season in the 34 cropland sites in Asia (Table 2). Among the types of crops, cacao had the highest mean growing season ET rate, followed by rice, cotton, maize, vineyards, and wheat (Fig. 5). The highest daily ET rate occurred in the cotton fields and maize fields (7.8 mm day\(^{-1}\), Jiang et al., 2014; Yang et al., 2016), followed by the rice paddies (6.57 mm day\(^{-1}\), Hossen et al., 2011), wheat fields (4.7 mm day\(^{-1}\), Yang et al., 2014), and vineyards (3.3 mm day\(^{-1}\), Gao et al., 2019). The growing season mean ET rate of the croplands was highest in the tropical zone (1,215 mm) and was within a comparable range in the other climatic zones (400–650 mm).

The crop coefficient (\(K_c\)) method is an approach that has been widely used for the estimation of water consumption by crops, because of its simplicity and robustness. The \(K_c\) is the ratio of the crop evapotranspiration (\(ET_c\), mm day\(^{-1}\)) to the reference crop evapotranspiration (\(ET_o\), mm day\(^{-1}\)), and it represents the ET of plants under growing conditions (Allen et al., 1998).
Table 2. Locations and brief descriptions of the eddy covariance-based evapotranspiration (ET, mm) in the cropland sites reviewed in this study. LAI_{max} is the maximum leaf area index (m² m⁻²), P is the mean annual/growing season precipitation (mm), T_r is the mean annual/growing season temperature in (°C), K_r is the measured crop coefficients of whole season growing, and EBR is the mean energy balance ratio (unitless). System types are shown as an open-path eddy covariance (OPEC) or a closed-path eddy covariance (CPEC).

Location (City, Country)	Latitude, Longitude	Asia/Flux site code	Crop	Period (season)	Climate	Köppen climate	LAI_{max}	P (irrigation)	T_r	ET	K_r	EBR	System type	Reference
Nogu Rahmat, Indonesia	1°08′S, 102°50′E	-	Cacao	2002 (Whole year)	Tropical	Cfa	7.2	1970	24.5	1058	-	-	OPEC	Falk et al. (2005)
Los Banaos, Philippines	14°14′N, 120°26′E	PH-IRI	Paddy rice/ Upland rice	2008–2009 (Growing)	Tropical	Aw	6.9	2396	27.2	1371	1.02	0.99	OPEC	Alberto et al. (2011)
Deir Ala, Jordan	32°18′N, 35°52′E	-	Tomato	2001–2002 (Growing)	Arid	BSh	-	10	23	-	0.69	-	OPEC	Amayreh and Al-Abed (2005)
Gansu, China	37°51′N, 102°53′E	-	Vineyard	2017–2018 (Growing)	Arid	BWk	1.4	164 (407)	19.6	355	-	0.85	OPEC	Gao et al. (2019)
Wuwei, China	37°52′N, 102°50′E	-	Maize	2013–2014 (Growing)	Arid	BWk	-	123 (118)	218	-	0.78	-	OPEC	Li et al. (2008a)
Weishan, China	36°39′N, 116°03′E	-	Wheat	2005–2007 (Growing)	Arid	BSk	4.6	131 (211)	11.1	374	-	0.75	OPEC	Lei and Yang (2010)
Wuwei, China	37°52′N, 102°50′E	-	Maize	2014–2015 (Growing)	Arid	BWk	4.9	140 (407)	18.4	498	-	-	OPEC	Qin et al. (2016)
Loess Plateau, China	38°44′N, 113°12′E	-	Maize	2012–2013 (Growing)	Arid	Dwa	4.5	466 (811)	18.1	371	0.83	-	OPEC	Feng et al. (2016)
Shouyang, China	37°45′N, 113°12′E	-	Maize	2011–2013 (Growing)	Arid	Dwa	4.5	481 (734)	7.4	363	0.84	-	OPEC	Gong et al. (2017a)
Daxing, China	39°37′N, 116°26′E	-	Wheat	2008–2009 (Growing)	Arid	Dwa	-	540 (660)	12.1	56	0.79	-	OPEC	Zhang et al. (2013a)
Zhangye, China	38°38′N, 100°41′E	-	Maize	2008 (Growing)	Arid	BWk	4.9	116 (660)	4.7	658	0.71	0.81	OPEC	Gu et al. (2017)
DC, China	40°37′N, 81°11′E	-	Cotton	2013–2014 (Growing)	Arid	BWk	4.9	105 (875)	18.8	472	0.36	-	OPEC	Ji et al. (2017)
Aler, China	41°53′N, 86°12′E	-	Cotton	2012–2013 (Growing)	Arid	BWk	4.9	51.5 (430)	20.9	-	0.54	-	OPEC	Az et al. (2018)
Kofu, China	41°53′N, 86°12′E	-	Cotton	2012–2013 (Growing)	Arid	BWk	4.9	60 (566)	11.5	543	0.53	-	OPEC	Tian et al. (2016)
Shihzei, China	41°17′N, 85°49′E	-	Cotton	2008–2009 (Growing)	Arid	BWk	7.3	216 (490)	8.4	337	0.5	-	OPEC	Zhou et al. (2012)
Nanchang, China	28°26′N, 116°00′E	-	Milk vetch Paddy early rice	2016–2017 (Growing)	Temperate	Cfa	6.4	1748 (389)	18.1	349	-	0.77	OPEC	Liu et al. (2019a)
Mymensingh, Bangladesh	24°37′N, 90°42′E	BD-MYM	Paddy rice	2007 (Whole year)	Temperate	Cwa	5.9	2763 (674)	24	997	-	-	OPEC	Hossen et al. (2011)
Tsukuba, Japan	36°03′N, 140°01′E	JP-MSE	Paddy rice	2002–2014 (Growing)	Temperate	Cfa	3	543.3 (1103)	22.0	419	0.79	-	CPEC	Ikawa et al. (2017)
Dingxi, China	35°33′N, 104°35′E	-	Wheat	2010 (Growing)	Boreal	Dwb	-	286	-	252	0.46	-	OPEC	Yang et al. (2014a)
Duanl Innere Mongolia, China	42°02′N, 116°16′E	CN-D02	Wheat	2006–2007 (Growing)	Boreal	Dwb	2.4	542	3.3	241	-	-	OPEC	Miao et al. (2009)
Loess Plateau, China	35°33′N, 104°35′E	-	Wheat, Potato, Maize	2009–2011 (Growing)	Boreal	Dwb	3.0	303	7.3	280	-	-	OPEC	Yang et al. (2019a)
Jinhou, China	41°09′N, 121°12′E	-	Maize	2005–2014 (Growing)	Boreal	Dwa	3.1	575	10.3	397	-	-	OPEC	Zhou et al. (2019)
Panjin, China	40°56′N, 121°58′E	CN-PRW	Paddy rice	2013–2014 (Growing)	Boreal	Dwb	12.7	252	3.3	241	-	-	OPEC	Wang et al. (2017)

Abbreviations of Köppen climate are as follows: Af: tropical rainforest climate, Aw: tropical savanna climate with dry-winter characteristics, BSk: cold semi-arid climate, BWk: warm-summer humid continental climate, Dwb: warm-summer humid continental climate, and Dwc: warm-summer humid continental climate based on the Beck et al. (2018) 1-km resolution map.

The crop coefficients (K_r) in FAO-56 (Allen et al., 1998) as follows for cotton (0.71), tomato (0.85), maize (0.71), wheat (0.65), and vineyards (0.51).
\[K_c = \frac{ET}{ET_{g}} \] (1)

The Food and Agricultural Organization (FAO) of the United Nations recommended calculation of the ET (FAO56) by multiplying the ET value by \(K_c \) as a relatively simple method for assessments (Allen et al., 1998). However, the FAO56 approach can overestimate ET by more than 20% as a result of various factors such as crop variety differences, planting density, and quality of the input dataset (Allen, 2000). In addition, the \(K_c \) values can vary significantly depending on crop characteristics (e.g., leaf area, height, growth stages, and leaf physiological properties) and field management strategies (e.g., irrigation control, mulching), or environmental conditions, and so data need to be adjusted to reflect the actual conditions (Gharsallah et al., 2013; Hunsaker et al., 2003; Katerji and Rana, 2006).

Table 2 also shows the seasonally averaged \(K_c \) values for various crops. As expected, there was a difference in the \(K_c \) values between the measured values, and values reported by the FAO (Allen et al., 1998). For example, the \(K_c \) of cotton and tomato under mulch and drip irrigation was substantially decreased compared to open field conditions. Similarly, in the case of maize, plastic mulch was shown to have a beneficial effect on improving water use (Gong et al., 2017a; Li et al., 2008c). Therefore, to accurately estimate \(K_c \), it is still prudent to measure the amount of ET directly and continuously as a reference for calibrating and updating the value of \(K_c \).

3.3 Grassland

Grassland ecosystems are the most dominant ecosystem type throughout the Northern Hemisphere, and these account for approximately 32% of natural global vegetation (Parton et al., 1995). Grasslands not only provide livestock products and plant resources (O’Mara, 2012), but also a wide variety of critical ecosystem services, such as soil erosion reductions, carbon storage, and wildlife habitat (FAO, 2010; Fu et al., 2011). Despite their importance, grasslands are an endangered biome, that is being threatened by land conversion practices, agricultural intensification, fire suppression activities, and abandonment. In addition, grasslands are declining in response to warming from climate change, changed patterns of precipitation, and other trends (Guo et al., 2017).

The annual ET rate ranged from 160 to 630 mm year\(^{-1}\) in 26 grassland areas across Asia (Table 3). The mean annual ET rate for meadows was 200 mm higher than that for steppes (Fig. 6). The annual ET rate for the different climate regions was lowest in the arid region, followed by the boreal, and polar regions. The daily ET value during the growing season was 1–1.5 mm day\(^{-1}\), and it was less than 0.5 mm day\(^{-1}\) during the non-growing season in the arid area. In the boreal zone, the daily ET rate varied from 1.4 to 2.9 mm day\(^{-1}\) during the growing season and was lower than 0.5 mm day\(^{-1}\) during the non-growing season. The daily ET rate in the polar area was 0.9–1.3 mm day\(^{-1}\) throughout the whole year. The grasslands have short growing seasons and intense rainfall in the summer regardless of climate region, and the available water during the intensive rainy period is used for vegetation growth.

3.4 Others

Measurements of ET also have been conducted for the other types of land cover. The annual ET rate from the other ecosystems ranged from 70 to 3,030 mm year\(^{-1}\) over Asia (Table 4). Depending on the land cover type, the daily ET rate showed large differences, which ranged from less than 0.2 mm day\(^{-1}\) in the desert (Kimura et al., 2016) to 8.3 mm day\(^{-1}\) in natural mangrove reserves (Liang et al., 2019). The annual ET rate was also reported for the desert (117 ± 70 mm year\(^{-1}\)), lake (1,150 ± 253 mm year\(^{-1}\)), shrubland (400 ± 218 mm year\(^{-1}\)), and wetland (1,000 ± 829 mm year\(^{-1}\)) ecosystems (Fig. 7). In the desert, as expected, the ET rate was extremely low compared to that at the other sites because of the scarcity of water. However, the wetland ecosystem contained open water and much vegetation, and thus, it showed higher ET rates and large variations.

![Figure 6](image-url)

Fig. 6. Annual ET (mm) of each (a) grass type and (b) climatic zone for the 26 grassland sites in Asia. Each box represents the quartile below (Q1) and above (Q3) the median value, and dots indicate outliers, which are defined as observations more than 1.5 times the inter-quartile range away from the top or bottom of the box.
3.5 Relationship between ET and precipitation

We identified a trend in which the observed annual ET generally increased with annual precipitation over various ecosystems and climates in Asia (Fig. 8). It is well-known that ET dynamics are complex because ET depends on various controlling factors such as the radiation, temperature, vapor pressure deficit, soil water content, and leaf area index. From the synthetic analysis using the data in this review (Tables 1–5), it was difficult to find general relationships between the ET and controlling factors, except for precipitation, which could explain (with statistical significance) the annual ET trends over various ecosystems and climates in Asia. The likely reasons are as follows: (1) primary limiting factors for ET are site-specific, and (2) the Asian monsoon with intensive rainy spells (e.g., “Meiyu” in China, “Baiu” in Japan, “Changma” in Korea) changes the controlling factors overall. In the same context, the observed annual ET (except in wetlands) generally followed the Budyko curve (Fig. 3b).

4. Inter-comparison with other techniques

The EC technique is a micrometeorological measurement method used to monitor the vertical turbulent transport of

Table 3. Locations and brief descriptions of the eddy covariance-based evapotranspiration (ET, mm) in the grassland sites reviewed in this study. \(\text{LAI}_{\text{max}} \) is the maximum leaf area index (m \(^2\)/m \(^2\)), \(\bar{P} \) is the mean annual/growing season precipitation (mm), \(T_e \) is the mean annual/growing season temperature in \(^\circ\)C, and EBR is the mean energy balance ratio (unitless). System types are shown as an open-path eddy covariance (OPEC) or a closed-path eddy covariance (CPEC).

Location (City, Country)	Latitude, Longitude	AsiaFlux site code	Vegetation type	Period (season)	Climate	Köppen climate	\(\text{LAI}_{\text{max}} \)	\(\bar{P} \)	\(T_e \)	EBR	System type	Reference	
Loess Plateau, China	35°57′N, 104°08′E	-	Steppe	2007–2012	Arid	BSk	372	7.3	386	0.77	OPEC	Yue et al. (2019)	
Inner Mongolia, China	44°95′N, 113°34′E	CN-DSX	Steppe	2008–2009	Arid	BSk	-	162	5.9	207	0.77	OPEC	Zhang et al. (2012a)
Loess Plateau, China	37°57′N, 104°08′E	-	Steppe	2007–2012	Arid	BSk	-	372	7.3	359	0.77	OPEC	Ping et al. (2018)
Kherlenbayan-Ulaan, Mongolia	47°12′N, 108°44′E	MN-KBU	Steppe	2003.03–2004.03	Arid	BSk	0.54	260	-0.2	166	0.77	OPEC	Li et al. (2006b)
Inner Mongolia, China	41°47′N, 111°53′E	-	Steppe (ungrazed)	2010.05–2012.05	Boreal	Dwc	0.7	217	2.9	312	0.98	OPEC	Shao et al. (2017)
Doulun Inner Mongolia, China	42°02′N, 116°16′E	CN-D01	Steppe	2006–2007	Boreal	Dwb	0.97	541	3.3	274	0.77	OPEC	Miao et al. (2009)
Xilinhot Inner Mongolia, China	43°33′N, 116°40′E	-	Steppe	2006–2007	Boreal	Dwb	0.52	632	0.6	220	0.77	OPEC	Shang et al. (2015)
Inner Mongolia Plateau, China	43°32′N, 116°40′E	-	Steppe	2004–2005	Boreal	Dwb	1.5	235	-0.4	268	0.77	OPEC	Hsiao et al. (2008)
Inner Mongolia, China	44°95′N, 113°34′E	CN-DSX	Steppe	2008	Boreal	BSk	0.29	136	3.2	190	0.87	OPEC	Yang and Zhou (2010)
Lijiang, China	27°10′N, 100°14′E	-	Meadow	2012–2013	Boreal	Dwb	-	1128	5.9	434	0.88	OPEC	Wang et al. (2016a)
Gannan Tibetan Autonomous, China	33°89′N, 102°14′E	-	Meadow	2010	Boreal	Dwc	2.4	562	3.3	580	0.77	OPEC	Shang et al. (2015)
Qinghai-Tibetan Plateau, China	37°36′N, 101°18′E	-	Meadow	2002–2005	Boreal	Dwc	3.8	637	-390	0.77	OPEC	Li et al. (2013)	
Qinghai-Tibetan Plateau, China	37°37′N, 101°19′E	-	Meadow	2002–2004	Boreal	Dwc	3	642	-1.2	397	0.77	OPEC	Gu et al. (2008)
Haibei, China	37°37′N, 101°19′E	-	Meadow	2014–2015	Boreal	Dwc	3.7	473	0.2	598	0.77	OPEC	Li et al. (2018)
Inner Mongolia, China	43°17′N, 122°16′E	-	Meadow	2008–2013	Boreal	Dwa	6.6	342	6.8	631	0.79	OPEC	Li et al. (2016a)
Changling, China	44°32′N, 123°30′E	-	Meadow	2007–2010	Boreal	Dwa	3.1	288	7.2	398	0.95	OPEC	Chen et al. (2019)
Qilian, China	38°09′N, 100°46′E	-	Meadow	2015–2016	Boreal	Dwc	6.5	464	0.6	505	-	OPEC	Sun et al. (2019)
Qilian, China	38°84′N, 98°54′E	-	Meadow	2015–2016	Boreal	BWk	1.1	389	-3.4	484	0.77	OPEC	Sun et al. (2019)
Naqu, China	31°64′N, 92°01′E	-	Meadow (ungrazed)	2014, 2017	Polar	ET	0.9	480	-4.2	386	-	OPEC	Zhang et al. (2019)
Qinghai, China	34°04′N, 91°56′E	-	Meadow	2005	Polar	ET	-	478	-1.9	417	0.77	OPEC	Yao et al. (2008)
mass and energy between the surface and atmosphere, and it requires data from both a fast response (≥ 10 Hz) sonic anemometer-thermometer (SAT) and an infrared gas analyzer (IRGA) placed on an observation tower. Based on a mass conservation equation, the value of ET can be expressed as follows (e.g., Baldocchi et al., 1988; Hong et al., 2008):

Table 4. Locations and brief descriptions of the eddy covariance-based evapotranspiration (ET, mm) in the other land cover sites reviewed in this study. LAI_{max} is the maximum leaf area index (m² m⁻²), P is the mean annual/growing season precipitation (mm), T_a is the mean annual/growing season temperature in (°C), and EBR is the mean energy balance ratio (unitless). System types are shown as an open-path eddy covariance (OPEC) or a closed-path eddy covariance (CPEC).

Location (City, Country)	Latitude, Longitude	AsiaFlux site code	Vegetation type	Period (season)	Climate	Köppen climate	LAI_{max}	P	T_a	ET	EBR	System type	Reference
Hainan Tibetan, China	23°15′N, 107°53′E	-	Lake	2013.06-2015.06 (Whole year)	Arid	BWk	-	367	3.51	828	-	OPEC	Li et al. (2016c)
Inner Mongolia, China	39°50′N, 102°27′E	-	Lake	2012.04-2013.03 (Whole year)	Arid	BWk	-	145	-	1445	-	OPEC	Sun et al. (2018)
Ningxia, China	37°42′N, 107°13′E	-	Shrubland	2012 (Growing)	Arid	BWk	-	296	-	238	0.67	OPEC	Guo et al. (2016)
Chongqing, China	30°42′N, 107°14′E	-	Shrubland	2014-2016	Arid	BWk	1.2	330	8.1	311	-	OPEC	Jia et al. (2016a)
Loess Plateau, China	38°26′N, 109°28′E	-	Shrubland	2011.07-2014.07 (Whole year)	Arid	BWk	-	357	20.0	256	0.87	OPEC	Gong et al. (2017b)
Xinjiang, China	40°27′N, 87°54′E	-	Shrubland	2012-2013.11 (Whole year)	Arid	BWk	1.2	105	5.10	-	0.46	OPEC	Yuan et al. (2014)
Ejin, China	40°02′N, 101°03′E	-	Shrubland	2011.05-2012 (Growing)	Arid	BWk	1.7	28	-	684	0.75	OPEC	Yu et al. (2017)
Zhongwei, China	37°32′N, 105°02′E	-	Desert	2009-2012 (Growing)	Arid	BWk	-	164	9.6	167	0.79	OPEC	Guo et al. (2016)
Ningxia, China	39°47′N, 102°26′E	-	Desert	2012.04-2012.10 (Whole year)	Arid	BWk	-	145	-	150	-	OPEC	Hu et al. (2015)
Tsegt-Ovoo, Mongolia	44°22′N, 105°17′E	-	Desert	2011.05-2011.10 (Growing)	Arid	BWk	-	62.5	3.8	68	0.8	OPEC	Kimura et al. (2016)
Zhangye, China	38°58′N, 100°12′E	-	Wetland	2012.07-2014.06 (Whole year)	Arid	BWk	2.1	105	6	1300	0.69	OPEC	Zhang et al. (2016)
Dali, China	25°46′N, 106°10′E	-	Lake	2012 (Whole year)	Temperate Cwb	-	818	15.1	1165	-	OPEC	Liu et al. (2015)	
Anji, China	30°28′N, 119°40′E	-	Shrubland	2011 (Whole year)	Temperate Cfb	-	1543	16.6	745	-	OPEC	Liu et al. (2014)	
Guangdong, China	20°56′N, 110°09′E	-	Shrubland	2012-2013 (Growing)	Temperate Cfa	-	1668	16.6	701	-	OPEC	Sha et al. (2016)	
Guangdong, China	21°35′N, 109°45′E	-	Wetland	2010-2016 (Whole year)	Temperate Cwa	2.8	1480	23	2336	0.7	OPEC	Liang et al. (2019)	
Boyang, China	28°30′N, 115°70′E	-	Wetland	2013-2016 (Whole year)	Temperate Cfb	-	1748	18.2	951	0.8	OPEC	Zhao and Liu (2018)	
Wuxi, China	31°25′N, 120°13′E	-	Wetland	2011.09-2012.08	Temperate Cfb	-	1124	16.6	1061	-	OPEC	Wang et al. (2014)	
Yixing, China	31°15′N, 119°55′E	-	Wetland	2011.09-2012.08	Temperate Cfb	-	1124	16.6	1090	-	OPEC	Sun and Song (2008)	
Snajiang, China	47°35′N, 133°31′E	-	Wetland	2005 (Growing)	Temperate Cwa	2.9	1560	22	219	0.63	OPEC	Li et al. (2019)	
Haisbei, China	37°37′N, 101°19′E	-	Shrubland	2002 (Growing)	Temperate Dwc	4.6	461	7.7	278	1	OPEC	Zhao et al. (2010)	
Panjin, China	41°08′N, 121°54′E	CN-NRW	Wetland	2004 (Whole year)	Temperate Dwa	3.0	529	8.6	577	1	OPEC	Li et al. (2016b)	
Sanjiang, China	47°35′N, 133°31′E	-	Wetland	2005-2006 (Growing)	Temperate Dwa	3.0	464	1.9	340	0.83	OPEC	Zhao et al. (2008)	

Notes: abbreviations of Köppen climate are as follows: BSk: cold semi-arid climate, BWk: cold desert climate, Cfa: humid subtropical climate, Cwa: monsoon-influenced humid subtropical climate, Cwb: subtropical highland climate, Dwa: monsoon-influenced hot-summer humid continental climate, Dwb: monsoon-influenced warm-summer humid continental climate, and Dwc: monsoon-influenced subarctic climate based on the Beck et al. (2018) 1-km resolution map.

1 Abbreviations of Köppen climate are as follows: BSk: cold semi-arid climate, BWk: cold desert climate, Cfa: humid subtropical climate, Cwa: monsoon-influenced humid subtropical climate, Cwb: subtropical highland climate, Dwa: monsoon-influenced hot-summer humid continental climate, Dwb: monsoon-influenced warm-summer humid continental climate, and Dwc: monsoon-influenced subarctic climate based on the Beck et al. (2018) 1-km resolution map.

Journal of Agricultural Meteorology 77 (1), 2021
where \(h \) is the measurement height; an overbar denotes Reynolds averaging; a prime (e.g., \(w' \)) denotes the deviation from the mean; and \(r \) is time. Term I (i.e., eddy flux) represents the flux via vertical turbulence, term II (i.e., storage flux) is the flux stored below the measurement height, term III (i.e., vertical advective flux) is the flux advected by the mean vertical flow in the presence of a vertical \(H_2O \) gradient, and term IV (i.e., horizontal advective flux) represents the fluxes transported by the horizontal mean flow and turbulence in the presence of a horizontal \(H_2O \) gradient beneath the height of the measurement. Assuming that the site is flat and homogeneous, and under well-developed turbulent conditions (III \(\approx IV \approx 0 \)), ET can be quantified as the sum of terms I and II. The ET measured by the EC technique typically represents the sum of the eddy flux and the storage flux, or the eddy flux only, in cases where the storage flux can be considered negligible on timescales longer than the daily timescale (e.g., Moon et al., 2015). In the same context, the EC technique can also provide the sensible heat flux if the air temperature is measured by using a SAT instead of with the \(H_2O \) concentration.

Often, the EC technique is used to quantify latent and sensible heat fluxes in conjunction with other methods because it has both advantages and disadvantages. The EC technique can provide both fluxes over a relatively large area (< 1 km\(^2\)) continuously without artificial disturbance, but the experimental field must be large enough; additionally, the EC technique only can provide a spatially averaged value. In this section, we have reviewed studies that were primarily based on the inter-comparison between the EC technique and other flux observation techniques such as those employing a lysimeter and scintillometer. We review the differences in ET fluxes between a closed-path EC system and an open-path EC system in section 8.2.

Lysimeter and pan evaporation techniques are traditional methods that measure the evaporative water loss in the soil or from an evaporation pan. Liu et al. (2009) found that the ET from a winter wheat and summer maize rotation agricultural system in the northwestern Shandong Plain, China, as determined by the EC technique was systematically underestimated by approximately 20% in comparison to that measured by the weighing lysimeter method. Ding et al. (2010) also reported that the ET of a maize field in Northwest China as measured by the EC technique was underestimated by 21.8% during the daytime and by 30.2% during the nighttime in comparison to values measured by a large-scale weighing lysimeter. After adjustments of the daytime ET data by using the Bowen ratio forced energy balance closure method, and adjustments of the nighttime ET data by using the filtering/interpolation method, the differences between the EC technique and the lysimeter method decreased to 4.8% during the daytime and 10.3% during the nighttime. The remaining discrepancy after the adjustments further decreased to 3.2% after discarding overestimated ET data measured by the lysimeter during periods of irrigation and heavy rainfall events. Zuo et al. (2016) showed that the actual evaporation measured by the EC technique and the pan evaporation technique in the arid region of Northwest China presented a clear asymmetrical complementary relationship due to the significant non-uniformity of heat and moisture between the pan water surface and the

\[
y = 0.388x + 377.818 \\
\rho^2 = 0.70, \ p < 0.001
\]
surrounding land surface.

Latent and sensible heat fluxes can be measured by other micrometeorological methods. The Bowen ratio-energy balance (BREB) method is based on the surface energy conservation equation and the gradient diffusion equation (e.g., Zhu et al., 2003). It estimates latent (LE) and sensible heat (H) fluxes by measuring the vertical gradients of temperature (∆T) and water vapor pressure (∆e) to determine the Bowen ratio (= H/LE ≈ γ∆T/∆e, where γ is the psychometric constant) and the other surface energy components (i.e., net radiation and ground heat flux) that allow for the quantification of available energy (= net radiation – ground heat flux = LE + H). Inter-comparison experiments between the BREB and EC methods have been conducted in various ecosystems such as heterogeneous grasslands (Zhu et al., 2003), forests (Shi et al., 2008; Wu et al., 2005), and oases (Zhang et al., 2011a) in China. The discrepancies between the EC and BREB methods depended on water vapor gradient (Wu et al., 2005), vapor pressure deficit (Shi et al., 2008), resolution of slow-response sensors, and atmospheric stability (Zhang et al., 2011a). There were a few studies that compared the EC technique with other micrometeorological techniques such as the variational method (Yang et al., 2006) and the flux variance, and surface renewal methods (Zhao et al., 2010).

Large aperture scintillometers (LAS) also can be used to measure turbulent characteristics, including H, at regional scales. An LAS transmits near-infrared light over the optical path (from the transmitter to the receiver) and measures fluctuations of the beam irradiance, which can be used to estimate the refractive index of air caused by turbulent eddies (Asanuma and Iemoto, 2007). With an LAS, one can adjust the field of view of the measurement by up to several kilometers by locating the transmitter and the receiver, whereas the footprint of ECs (~1 km²) depends on the wind direction and atmospheric stability, which cannot be controlled. Most inter-comparison experiments between an LAS and the EC method were conducted in large areas displaying landscape heterogeneity (e.g., Li et al., 2017; Liu et al., 2011; 2013). The discrepancies between the results of the two methods were mainly caused by surface energy imbalances (Liu et al., 2011) and different fields of view over heterogeneous surfaces (Li et al., 2017; Liu et al., 2011; 2013), whereas the measurements agreed well over homogeneous surfaces (Xu et al., 2013).

The ET measurements from ECs were also validated by comparing measurements from the other methods in terms of various spatial and temporal scales. The daily ET rate measured by ECs in the oasis was in good agreement with that estimated by the water balance (WB) method based on soil moisture measurements (Nad et al., 2006). Kosugi and Katsuyama (2007) compared daily ET rates measured by ECs in a Japanese cypress forest, while using a correction for the surface energy balance closure to those estimated by the WB method based on precipitation and runoff measurements (catchment ET = precipitation – runoff) for the inter-validation of both measurements. Li et al. (2008b) reported that the EC, WB, and BREB methods provided similar estimates of total ET from a vineyard in the arid desert region of Northwest China. Multi-scale ET measurements using multiple techniques, such as leaf chambers (at the leaf scale), sap flow meters (at the plant scale), ECs (at the field scale), and the WB (at the catchment scale), were also conducted in a cotton field (Zhang et al., 2014), a planted coniferous forest (Shimizu et al., 2015), and a sub-humid mountainous forest (Tie et al., 2018).

5. Data processing

Data processing consists of the following three main steps: flux calculation, quality assurance and quality control (QA/QC), and gap-filling and partitioning. Among the previous studies on flux calculations, Asanuma et al. (2005) introduced the advanced band-pass covariance technique for frequency extrapolation with LE measurements collected by using a relatively slow-response hygrometer. Multiple methods were tested on sites with various topographic and vegetation conditions (Wang and Wang, 2016; Zheng et al., 2015; Zhu et al., 2005), including double rotation (rotating the coordinate to set v = w = 0, Wesely et al., 1970), triple rotation (rotating the coordinate to set v = w = Vw = 0, McMillen, 1988), and planar fit rotation (rotating based on the measured mean wind vector during the entire experimental period as well as a fitted plane obtained by using multiple-linear regression for constructing a stable coordinate frame, Wilczak et al., 2001) methods. It should be noted that most studies found that there was better surface energy balance closure (or greater LE) after applying the suitable coordination rotation method for the specific site. Yuan et al. (2007 and 2011) introduced a sector-wise planar fit rotation (i.e., applying planar fit rotation with each sector of the wind direction) to consider the effect of the rolling topography around the flux tower.

The QA/QC and gap-filling steps are essential for constructing high-quality time series data and quantifying diurnal, seasonal, and annual budgets for comparisons with modeling or remote-sensing results. Mano et al. (2007) tested several QC methods for open-path EC flux data, including steady state tests and integral turbulent characteristic tests, and results showed that a higher quality of flux data led to better surface energy balance closure. Many traditional gap-filling techniques, such as mean diurnal variation, nonlinear regression, and marginal distribution sampling (MDS, one of the standard gap-filling methods in the global flux network, FLUXNET, Reichstein et al., 2005) were evaluated for sites with various climate conditions and land cover types (Du et al., 2014; Park et al., 2015). In particular, Kang et al. (2012) showed that the gap-filled ET data, derived by using MDS under wet canopy conditions, were underestimated because the data used in the gap-filling methods were mostly collected during dry or partially wet canopy conditions; MDS also failed in regard to the consideration of the aerodynamic coupling, advection of sensible heat, and heat storage. Because MDS performed poorly for long-period flux data gaps (i.e., gaps longer than a month) because of the absence of marginally distributed data around gaps, Kang et al. (2019a) suggested that researchers apply a data-driven approach using machine learning and remote-sensing data to apply gap-filling for the long gaps.

In addition to the above research, there have been a considerable number of studies aimed at improving the data quality and usability. He et al. (2010) reported on the random...
sampling errors for the flux data from six EC sites in ChinaFLUX. Instrument heating corrections for an open-path gas analyzer (Burba et al., 2008) where shown to have an insignificant effect on the ET and surface energy balance closure, contrary to the findings for the carbon dioxide (CO2) flux (Zhu et al., 2012). Ono and Maruyama (2015) developed an onsite computation scheme for EC fluxes in real-time assessments. Liu et al. (2016b) introduced flux calculations and QA/QC procedures for an EC system installed on a 325 m meteorology tower in an urban area. The studies associated with correcting the surface energy balance closure and partitioning ET into evaporation and transpiration are discussed in sections 8.1 and 8.3.

6. Connections between carbon and water fluxes

Carbon and water fluxes are key aspects of the functioning of an ecosystem. The ratio of carbon gain to water loss, known as water use efficiency (WUE), is an important physiological parameter linking carbon and water cycles. The WUE has been defined in various ways because the spatiotemporal scales and measurement methods used are research-specific. Considering the original definition of the WUE (i.e., the ratio of CO2 flux to H2O flux) and the spatiotemporal scale of EC measurements, the ecosystem-level WUE and canopy-level WUE can be defined as the ratio of net ecosystem production (NEP) to ET (NEP/ET), and the ratio of net primary production (NPP) to transpiration, respectively (Kang et al., 2018). Because of the difficulties associated with the partitioning of the ET into evaporation and transpiration, and in estimating NPP from ECs, most studies based on ECs have reported the ratio of gross primary production (GPP) to ET (GPP/ET) for the canopy-level WUE, with the exception of a few studies (e.g., Huang et al., 2010; Kang et al., 2018).

The assessments of the WUE using NEP/ET were conducted mainly in arid regions suffering from water scarcity. For the croplands in arid regions, NEP/ET during the growing season ranged from 0.54 to 1.68 g [C] kg⁻¹ [H2O] (i.e., values corresponding to pear orchards in the arid region and maize in arid cropland), where the unit “g [C] kg⁻¹ [H2O]” refers to grams of carbon per kilogram of water (Table 5). The measured value of 0.24 g [C] kg⁻¹ [H2O] for NEP/ET in desert shrubland (Liu et al., 2012b) was smaller than that measured for croplands in arid regions. Meanwhile, the evaluations of the WUE using GPP/ET were performed mainly in forest ecosystems with a high photosynthesis rate. For the forests, GPP/ET ranged from 1.71 to 2.57 g [C] kg⁻¹ [H2O] with a mean of 2.2 ± 0.4 g [C] kg⁻¹ [H2O] (Table 5). The measured value of 1.36 g [C] kg⁻¹ [H2O] for GPP/ET in rice paddies with high water consumption was considerably smaller than the values from the forests (Wang et al., 2017).

Such WUE values are largely regulated by environmental conditions such as the amount of radiation and water. Tong et al. (2014), based on a 5-year experimental dataset, showed that the GPP/ET was approximately 30% higher under cloudy skies as result of the increase in the proportion of diffuse radiation. Ma et al. (2019) found that drought reduced the GPP/ET in a young plantation, whereas Liu et al. (2017) found that drought enhanced the GPP/ET in an old-growth sub-tropical forest. These findings suggest that the resilience of ecosystem functions to drought might be system-specific.

7. Multi-site synthesis

In the early stages of multi-site synthesis, the main objective of most studies was to simply compare the water and energy fluxes among sites with different or similar land cover to obtain a better understanding of the surface energy partitioning process. For example, Kang et al. (2009) quantified the ET from deciduous forest and farmland under a monsoon climate and documented its temporal variations and control mechanisms by using multi-year observations. There have been other studies that have shown differences in water and heat exchanges due to the distinctiveness in surface properties, or meteorological conditions, for two different PFTs (e.g., an alpine meadow and banana plantation, Ding et al., 2017; or maize farmland and reed wetland, Li et al., 2009). Zhang et al. (2018b) compared the water budget of two typical agricultural ecosystems (i.e., winter wheat–summer maize and pear orchard) to compute the sustainable usage of groundwater in the North China Plain. In these previous studies, the point was raised that the spatiotemporal variability for water and energy fluxes may depend on climate, PFT, and ecophysiology.

Climate has a significant impact on the seasonal and inter-annual variations of ET via various environmental factors. In Southeast Asia peatland, Hirano et al. (2015) found that drainage and fires caused by low groundwater levels in El Niño years decreased the ET and increased the annual discharge. The rubber trees, a major economic tree crop in tropical areas, exhibited limited water use as a result of their strict regulation of stomatal conductance under seasonal water stress due to the monsoon changes and El Niño–Southern Oscillation (ENSO) changes (Giambelluca et al., 2016; Kumagai et al., 2015). Li et al. (2015) showed that the surface energy partitioning of four sites in the Tibetan Plateau was clearly influenced by the Asian summer monsoon (i.e., H was dominant in the pre-monsoon period, whereas LE was greater during the monsoon season). Xiao et al. (2013) synthesized EC fluxes and micrometeorological data from 22 flux sites across China to investigate the variations in water and carbon fluxes, including the WUE, and they found that these processes were being controlled by the annual temperature, precipitation, and growing season length with increasing latitude.

In dry grasslands under water-limited conditions, the available energy, precipitation, and soil water content were found to be the primary factors driving the inter-annual variability of water and energy fluxes during the growing season (Liu et al., 2010; Wang et al., 2018; Wilske et al., 2010; Yang et al., 2018b). Therefore, many studies have been conducted to improve our understanding of the interactions and coupling mechanisms among the energy, soil, water, and vegetation. Wang et al. (2018) showed that the main factors controlling the daily LE were net radiation in normal years and soil water content in the dry season. Yang et al. (2019b) argued that leaf area index (LAI) is not suitable for estimating the ET of semi-arid natural vegetation, even though it is useful for identifying the physiological constraints on ET. Wilske et al. (2010) found that, among the inputs of
Table 5. Locations and brief descriptions of the water use efficiency (WUE, g [C] kg⁻¹ [H₂O]) based on the eddy covariance measurements in Asia. LAI_MAX is the maximum leaf area index (m² m⁻²), P is the mean annual/growing season precipitation (mm), Tₑ is the mean annual/growing season temperature in (°C), ET is the mean annual/growing season evapotranspiration (mm). NEP is the mean annual/growing season net ecosystem production (g C m⁻²), GPP is the mean annual/growing season gross primary production (g C m⁻²), and EBR is the mean energy balance ratio (unitless). System types are shown as an open-path eddy covariance (OPEC) or a closed-path eddy covariance (CPEC). WUE is defined as the NEP/ET or GPP/ET. Vegetation type is defined based on the International Geosphere Biosphere Program (IGBP) definitions as described in Fig. 3.

Location (City, Country)	Latitude, Longitude	AsiaFlux site code	Spp.	Vegetation type	Climate	LAI_MAX	P	Tₑ	ET	WUE	NEP or GPP	EBR	System type	Reference
Dzungarian, China	44°17N, 87°56E	-	SH	T. ramosissima, S. nitaria	Arid	--	3.5	173	6.6	205	0.24	49	OPEC	Liu et al. (2012a)
Xinjiang, China	44°17N, 85°49E	-	CRO	G. hirsutum L.	2009-2010 (Growing)	8.8	144	19	501	1	479	0.53 OPEC	Bai et al. (2015)	
Shijiazhuang, China	37°52N, 114°40E	-	CRO	T. aestivum L.	2008-2011 (Growing)	6	114	12.8	410	0.96	392	0.95 OPEC	Shen et al. (2013)	
Liaocheng, China	36°39N, 116°03E	-	CRO	Z. mays L.	2008-2012 (Growing)	5	341	12.8	275	1.33	365	0.95 OPEC		
Shijiazhuang, China	37°47N, 114°55E	-	CRO	P. betuloides	2011-10 (Whole year)	3	507	12.9	759	0.54	408	0.88 OPEC	Zhang et al. (2013b)	
Simpang Pertang, Malaysia	2°58N, 102°18E	MV-PSO	EBF	S. rupicaulis	2003-2009 (Whole year)	185	-	1287	2.46	3164	0.7 OPEC			
Guangdong, China	23°10N, 112°31E	-	EBF	C. chinensis, C. trachilepis	2003-2009 (Whole year)	5.6	-	20.2	407	1.6	2.03	799	0.53 OPEC	Liu et al. (2017)
Pu`er, China	24°32N, 101°91E	-	EBF	L. hancei, M. bombycina	2009-2013 (Whole year)	1681	-	863	2.48	2139	0.7 OPEC	Song et al. (2017b)		
Dingshusan, China	23°10N, 112°34E	-	EBF	S. superboides, P. maximowicziana	2003-2005 (Whole year)	1287	-	1.88	1287	0.8 OPEC				
Taibe, China	26°44N, 115°33E	-	EBF	P. massoniana, P. elliottii, C. lanceolata	2003-2005 (Whole year)	3.5	1485	17.9	633	2.53	1555	0.8 OPEC	Yu et al. (2008)	
Erdzaoehle, China	42°24N, 128°05E	-	MF	Q. variabilis, R. pseudoacacia, P. orientalis	2003-2005 (Whole year)	6.1	695	3.6	481	2.57	1233	0.8 OPEC		
Juyuan, China	35°01N, 112°28E	-	MF	Q. variabilis, R. pseudoacacia, P. orientalis	2006-2010 (Whole year)	6.3	528	14.8	579	1.9	1196	OPEC		
Beijing, China	40°37N, 115°94E	-	MF	P. tabuliformis, A. trucatula	2012-2013 (Whole year)	359	9.4	336	1.71	580	0.7 OPEC			
Panjin, China	40°56N, 121°58E	-	CRO	P. tatarica	2012-2013 (Growing)	6.65	631	8.6	608	1.36	603	0.76 OPEC	Wang et al. (2017)	

Because the number of EC flux towers is relatively limited in terms of the spatial coverage because of cost constraints and operational difficulties, it is critical to assess and correct the spatial representation of the EC network before synthetic analyses. An optimized flux network distribution will more accurately represent major ecosystems and promote the integration of fluxes to improve the accuracy of upscaling water and energy fluxes from local tower observations to regional scales. Wang et al. (2013) assessed the spatial distribution of the existing 85 EC flux sites in China by using a multivariate geographic clustering approach and recommended the addition of EC observations numbering up to 100–150 in total to represent the entire ecoregions of China. In addition, Zheng et al. (2016) constructed the variation of actual ET in China by synthesizing the ecosystem-level EC observation data from 61 sites and argued that additional observation sites are needed for parameterization or validation of global ET products.

Combining observational EC data with satellite remote sensing data is an effective approach for overcoming the limitations posed by a lack of spatial EC observations. Satellite remote sensing is useful for estimating key surface biophysical variables, such as the fraction of photosynthetically active radiation (FPAR), LAI, and land surface temperature for an unobserved area. The scaling-up of the observed ET by using remotely sensed data has facilitated ET estimations at the regional and continental level. Wu et al. (2012) estimated ET for water use reduction management in the Hai Basin (320,000 km²) of North China, within an area that has experienced serious over-exploitation of ground water, and this was accomplished by using new algorithms for ET calculations with remotely sensed data (ETWatch); the results were validated by in situ...
measurements (i.e., lysimeter, EC system, LAS, and water balance calculations). Liu et al. (2016a) analyzed the differences between upsampling methods and proposed a combined method for the acquisition of ground-truth ET data at the satellite pixel scale. Similarly, Xu et al. (2018b) evaluated the upsampling performance of several machine learning methods (e.g., artificial neural network, cubist, deep belief network, random forest, and support vector machine), which were the most popular ones for upsampling from tower-based ET observations to large scales.

As noted, the difficulty in matching the entire EC tower sampling area (footprint) with the satellite pixel scale/model grid scale over a heterogeneous land surface is largely caused by the inherent variability of the EC tower footprint. Xu et al. (2017a) proposed a flux aggregation method for determining the area-averaged EC flux with a high-resolution land-cover map to improve the representativeness of EC towers. In spite of some limitations, the current flux integration scheme is expected to provide a richer understanding of the mechanisms controlling water and energy fluxes on a large scale.

8. Identification of remaining challenges

After navigating a number of publications related to water and energy flux studies in Asia, we noted that there still remain challenges that are hindering the derivation of scientific knowledge on the surface energy balance, namely, (1) the non-closure of the surface energy budget, (2) the imperfection of compatibility between open- and closed-path gas analyzers, and (3) difficulty in partitioning ET into evaporation and transpiration. To identify fruitful directions for future research, we retrace the footprints and summarize the three remaining challenges below.

8.1 Non-closure of the surface energy budget

A discrepancy between the terms of available energy estimated by slow-response sensors and an EC system is unavoidable at most flux sites in Asia. Generally, the energy balance has been examined by using the energy balance ratio (EBR) defined as follows (Wilson et al., 2002):

\[
EBR = \frac{\sum (LE + H)}{\sum (R_{net} - G - S)}
\]

where \(R_{net}\) is the net radiation, \(G\) is the ground heat flux, and \(S\) is the energy storage. Even though EBR should be 1.0 based on the conservation of energy principle (the first law of thermodynamics), an actual EBR of less than or greater than 1.0 often is obtained. The extent of non-closure of the surface energy balance with EC measurements and how to handle this phenomenon is still an open question. This is a well-known issue that has plagued the EC flux community for decades. For a comprehensive analysis and evaluation of the surface energy balance closure, field experiments over homogeneous and/or heterogeneous land surfaces have been conducted in Asia (Kim et al., 2014; Li et al., 2005; Xin et al., 2018; Xu et al., 2017b).

The non-closure of the surface energy budget can result from factors such as a failure to satisfy the fundamental assumptions of the EC technique, a mismatch of the flux footprint, sampling error, instrument biases, incorrect accounting for storage terms, influence of longwave eddies, and advection effects (e.g., Foken, 2008; Leuning et al., 2012; Wilson et al., 2002). Considering that much of the landscape in Asia is not well suited for the ideal application of the EC technique (i.e., the land is not flat and homogeneous), we can expect to encounter such surface energy imbalance problems in the Asian region. The EBR from the studies in this review ranged from 0.5 to 0.99 (Tables 1-5) with a median of 0.79. As expected, the median EBRs for the forest sites (0.77) and other sites (e.g., wetland, 0.76) were less than those for the cropland sites (0.80) and grassland sites (0.84), which were typically located on flat and/or homogeneous surfaces (Fig. 9).

A correction for the surface energy balance closure was often applied to some sites in Asia. Most corrections assume that the measured \(R_{net} - G - S\) is the true value (e.g., Allen, 2008; Pan et al., 2017). Among the correction methods, the Bowen ratio forced energy balance closure method, while assuming that the measured Bowen ratio by the EC technique is preserved, has been widely used in Asia (e.g., Ding et al., 2010; Kosugi and Katsuyama, 2007; Kumagai et al., 2005; Tsuruta et al., 2016). It is also based on the fact that water vapor and heat are transferred by eddies simultaneously, and thus, there are similarities that allow these processes to be compared. It should be noted that the discrepancies between EC and other methods, such as the BREB and WB methods, decreased after applying a correction for the surface energy balance closure (e.g., Ding et al., 2010; Kosugi and Katsuyama, 2007).

Application of a correction for the surface energy balance closure as a standardized procedure is still under debate. Such correction was not applied to most of the flux sites in Asia so far. Leuning et al. (2012) strongly criticized the implicit application of a correction for the surface energy balance closure. They investigated the possible sources of a lack of energy balance closure and found that these were related to (1) too short of an averaging time to capture the low-frequency contributions, (2)
a high frequency contribution loss due to the instrument path length, sensor separation, and tube attenuation, (3) the error of radiation measurements over sloping terrain, and (4) the error of the storage term in soil, air, and biomass. They showed that most of the lack of energy could be taken into account in this way. Whether or not to apply this to the CO\(_2\) flux is another issue since CO\(_2\) also shows similarities with water vapor and heat. We expect that international collaborative efforts, such as the Energy Balance Residual Correction initiative (Mauder et al., 2020), will offer a solid argument on this subject in the near future.

8.2 Imperfections in the compatibility between open- and closed-path gas analyzers

There are two types of gas analyzers, namely, closed-path and open-path gas analyzers. A closed-path analyzer has an internal sample cell (optical path for analyzing the gas concentration) that is flushed by sampled air; in open-path sensors, the sample cell is in the open air (Munger et al., 2012). For a closed-path system, the fluctuation of gas concentrations in the high frequency domain is attenuated while the air is drawn in through a tube. Such attenuation depends on measurement conditions such as the flow rate, tube diameter, wind speed, and atmospheric stability. For recovering the loss of fluctuation, a frequency response correction should be applied (Aubinet et al., 1999; Moncrieff et al., 1997).

The ET measured by a closed-path system can still be underestimated after applying a frequency response correction for tube attenuation. Kosugi et al. (2007) reported that the ET measured by a closed-path system with attenuation correction frequently underestimated the ET measured by an open-path system under wet canopy conditions with high relative humidity (RH). The RH does not affect the CO\(_2\) flux but does affect the H\(_2\)O flux significantly (e.g., Fratini et al., 2012; Ibrom et al., 2007). The attenuation effect is similar to low-pass filtering, such that the attenuation domain expands with the increasing RH from high frequency to medium frequency. It is worth noting that the ET measured by a closed-path system, after applying the attenuation correction that considers RH, still can be considerably underestimated compared to that measured by an open-path system (Fratini et al., 2012; Kang et al., 2019b). Such imperfection in the compatibility between open- and closed-path gas analyzers requires care during synthesizing multi-site measurements and in applying the Bowen ratio forced energy balance closure method to fluxes measured by a closed-path system.

8.3 Difficulty in partitioning the ET into evaporation and transpiration

Partitioning of ET into evaporation and transpiration is essential for an improved understanding of ET dynamics. The EC technique measures net fluxes, i.e., the net ecosystem exchange of CO\(_2\), which consists of ecosystem respiration and GPP, and ET, which consists of plant transpiration (T), soil evaporation (E\(_S\)), and wet canopy evaporation (E\(_{WC}\), intercepted rainfall). The partitioning of ET into \(T, E_S\), and E\(_{WC}\) is required to understand how ET is affected by environmental changes and how the water cycle is connected to the carbon cycle in an ecosystem, since each component is controlled by different mechanisms and processes (e.g, Kang et al., 2018). In particular, Savenije (2004) argued that ET is an outdated terminology that hinders our separate consideration of different evaporative processes in terms of the time scale, time of occurrence, physical characteristics, climatic feedbacks, and isotope compositions.

Practical difficulties still remain for the widespread adoption of ET partitioning. Because of the importance of this subject, there have been a considerable number of previous studies in Asia that partitioned ET by using other supplementary measurements, such as oxygen stable isotopes (Liu et al., 2018; Wei et al., 2015; Xu et al., 2016; Zhang et al., 2011c), sap flow (Liu and Man, 2017; Zhao et al., 2015; 2018), lysimeter data (Gong et al., 2017a; Liu et al., 2018; Yang et al., 2018; Zhao et al., 2015; 2018), and supplementary EC system data inside the canopy (Kang et al., 2018). However, such approaches based on other supplementary measurements are costly and difficult to apply to previous data. Therefore, many studies based on a modeling approach using two-source models (e.g., Shuttleworth-Wallace model) have also been conducted in Asia (Hu et al., 2009; Tian et al., 2016; Wang and Yamanaka, 2014; Xu et al., 2016; Yang et al., 2018; Zhao et al., 2015). However, the modeling approach also requires supplementary measurements to validate the results of ET partitioning. For partitioning the net ecosystem exchange of CO\(_2\) into ecosystem respiration and GPP, most methods are stand-alone and do not require additional data, except for the data from flux towers (e.g., Reichstein et al., 2005; Saigusa et al., 2013). This approach has been applied almost everywhere in the world as a standardized procedure.

Similarly, to activate the partitioning of ET as is done with the CO\(_2\) flux, it will be necessary to develop a stand-alone method for ET partitioning, which can minimize additional but necessary information for application and validation purposes. It should be noted that Wang et al. (2016b) reported on the partitioning results of ET from steppe ecosystems in Inner Mongolia following use of the partitioning method based on the flux-variance similarity developed by Scanlon and Kustas (2010). Their partitioning method is reliant upon the fact that the measured high-frequency time series of CO\(_2\) and H\(_2\)O concentrations are a result of stomatal processes (photosynthesis and transpiration, in which CO\(_2\) and H\(_2\)O concentrations are negatively correlated) and non-stomatal processes (respiration and direct evaporation, in which CO\(_2\) and H\(_2\)O concentrations are positively correlated) and thus requires one parameter only, the leaf-level water use efficiency. Most of the ET partitioning studies have focused on the partitioning of ET into \(E_S\) (or direct evaporation) and \(T\). In this context, it is noteworthy that Kang et al. (2018) developed the gap-filling and partitioning method for forest ecosystems based on a simplified rainfall interception model, which can estimate \(E_{WC}\) using the inputs and parameters from a flux tower measurement and be optimized using available ET data from an EC system under wet canopy conditions. If we continue to capitalize on the advantages and possibilities of the EC technique being capable of a high sampling rate of \(\geq 10\) Hz and continuous observations, a standardized ET partitioning method will be feasible in the near future.
Acknowledgments

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014892022020)” of the Rural Development Administration, Republic of Korea and the Development Program on See-At Technology for Meteorology and Earthquake of the Korea Meteorological Administration under Grant KM2018-05810. We thank the two anonymous reviewers and the editor for their constructive comments and suggestions.

References

Ai ZP, Yang YH, Wang QX et al., 2018: Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic-mulched condition in arid environment. *Journal of Agricultural Meteorology*, 74, 1–8.

Alberto MCR, Wassmann R, Hirano T et al., 2011: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. *Agricultural Water Management*, 98, 1417–1430.

Allen R, 2008: Quality assessment of weather data and micrometeorological flux-impacts on evapotranspiration calculation. *Journal of Agricultural Meteorology*, 64, 191–204.

Allen R, Pereira L, Raes D et al., 1998: FAO irrigation and drainage paper No. 56. *Rome: Food and Agriculture Organization of the United Nations*, 56, e156.

Allen RG, 2000: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. *Journal of Hydrology*, 229, 27–41.

Amayreh J, Al-Abed N, 2005: Developing crop coefficients for field-grown tomato (*Lycopersicon esculentum Mill.*) under drip irrigation with black plastic mulch. *Agricultural Water Management*, 73, 247–254.

Asanuma J, Iemoto K, 2007: Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer. *Journal of Hydrology*, 333, 58–67.

Asanuma J, Ishikawa H, Tamagawa I et al., 2007: Application of the band-pass covariance technique to portable flux measurements over the Tibetan Plateau. *Water Resources Research*, 41, 1–10.

Aubinet M, Grelle A, Ibrom A et al., 1999: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Advances in ecological research. Elsevier, pp. 113–175.

Bai J, Wang J, Chen X et al., 2015: Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of northwest China. *Journal of Arid Land*, 7, 272–284.

Baldocchi DD, Hicks BB, Meyers TP, 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. *Ecology*, 69, 1331–1340.

Beck HE, Zimmermann NE, McVicar TR et al., 2018: Present and future Koppen-Geiger climate classification maps at 1-km resolution. *Science*, 5, 180214.

Budyko M, 1974: *Climate and life*. Academic Press, New York.

Burba GG, McDermitt DK, Grelle A et al., 2008: Addressing the influence of instrument surface heat exchange on the measurements of CO₂ flux from open-path gas analyzers. *Global Change Biology*, 14, 1854–1876.

Cao S, Zhang J, Chen L et al., 2016: Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. *Journal of Environmental Management*, 183, 843–849.

Cao SX, Chen L, Yu XX, 2009: Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. *Journal of Applied Ecology*, 46, 536–543.

Chen JY, Shao CL, Jiang SC et al., 2019: Effects of changes in precipitation on energy and water balance in a Eurasian meadow steppe. *Ecological Processes*, 8.

Chen LD, Wang JP, Wei W et al., 2010: Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China. *Forest Ecology and Management*, 259, 1291–1298.

Choi S, Ser-Odambaa B, Batkhuu NO et al., 2019: Comparison of water use efficiency and biomass production in 10-year-old *Populus sibirica* and *Ulmus pumila* plantations in Lun soum, Mongolia. *Forest Science and Technology*, 15, 147–158.

Ding RS, Kang SZ, Li FS et al., 2010: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. *Agricultural Water Management*, 98, 87–95.

Ding RS, Kang SZ, Vargas R et al., 2013: Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region. *Agricultural Water Management*, 130, 79–89.

Ding RS, Tong L, Li FS et al., 2015: Variations of crop coefficient and its influencing factors in an arid advective cropland of northwest China. *Hydrological Processes*, 29, 239–249.

Ding ZW, Ma YM, Wen ZP et al., 2017: A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation. *Theoretical and Applied Climatology*, 129, 59–76.

Du Q, Liu HZ, Feng JW et al., 2014: Effects of different gap filling methods and land surface energy balance closure on annual net ecosystem exchange in a semiarid area of China. *Science China-Earth Sciences*, 57, 1340–1351.

Du Q, Liu HZ, Liu Y et al., 2018: Factors controlling evaporation and the CO₂ flux over an open water lake in southwest of China on multiple temporal scales. *International Journal of Climatology*, 38, 4723–4739.

Dubois O, 2011: *The state of the world's land and water resources for food and agriculture: Managing systems at risk*. Earthscan, London, xxiii + 285 pp.

Falk U, Ibbom A, Oltechev A et al., 2005: Energy and water fluxes above a cacao agroforestry system in Central Sulawesi, Indonesia, indicate effects of land-use change on local climate. *Meteorologische Zeitschrift*, 14, 219–225.

FAO, 2010: *Challenges and opportunities for carbon sequestration in grassland systems: A technical report on grassland management and climate mitigation. Integrated crop management (rome, Italy)*; v. 9, 2010. 1020–4555. Food and Agriculture Organization of the United Nations, Rome.

Feng Y, Cui N, Gong D et al., 2016: Estimating refined spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index. *Transactions of the Chinese Society of Agricultural Engineering*, 32, 90–98.

Foken T, 2008: The energy balance closure problem: An overview. *Ecological Applications*, 18, 1351–1367.
Fratini G, Ibram A, Arriga N et al., 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. *Agricultural and Forest Meteorology*, 165, 53–63.

Fu BJ, Liu Y, Lu YH et al., 2011: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. *Ecological Complexity*, 8, 284–293.

Gao L, Zhao P, Kang SZ et al., 2019: Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard. *Agricultural Water Management*, 226.

Gao SH, Tang YX, Tang J et al., 2017: Variations of evapotranspiration and water yield in a post-clearcutting riparian poplar plantation. *Forest Research*, 30, 486–493.

Gao YH, Liu LC, Jia RL et al., 2016: Evapotranspiration over artificially planted shrub communities in the shifting sand dune area of the Tengger Desert, north central China. *Ecohydrology*, 9, 290–299.

Gharsallah O, Facchi A, Gandolfi C, 2013: Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. *Agricultural Water Management*, 130, 119–130.

Giambelluca TW, Mudd RG, Liu W et al., 2016: Evapotranspiration of rubber (*Hevea brasiliensis*) cultivated at two plantation sites in Southeast Asia. *Water Resources Research*, 52, 660–679.

Gong DZ, Mei XR, Hao WP et al., 2017a: Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields. *Agricultural Water Management*, 181, 23–34.

Gong TF, Lei HM, Yang DW et al., 2017b: Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland. *Hydrology and Earth System Sciences*, 21, 863–877.

Gu LL, Hu ZY, Yao JM et al., 2017: Actual and reference evapotranspiration in a cornfield in the Zhangye oasis, northwestern China. *Water (Switzerland)*, 9.

Gu S, Tang Y, Cui X et al., 2008: Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. *Journal of Geophysical Research Atmospheres*, 113.

Gu L, Cheng JM, Luedeling E et al., 2017: Critical climate periods for grassland productivity on China’s Loess Plateau. *Agricultural and Forest Meteorology*, 233, 101–109.

Gu XN, Zha TS, Jia X et al., 2016: Dynamics of dew in a cold desert-shrub ecosystem and its abiotic controls. *Atmosphere*, 7.

Hao Y, Wang Y, Mei X et al., 2008: CO₂, H₂O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. *Acta Oecologica*, 33, 133–143.

Harris I, Osborn TJ, Jones P et al., 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. *Sci Data*, 7, 109.

He HL, Liu M, Sun XM et al., 2010: Uncertainty analysis of eddy flux measurements in typical ecosystems of ChinaFLUX. *Ecological Informatics*, 5, 492–502.

Hirano T, Kusin K, Limin S et al., 2015: Evapotranspiration of tropical peat swamp forests. *Global Change Biology*, 21, 1914–1927.

Hirano T, Suzuki K, Hirata R, 2017: Energy balance and evapotranspiration changes in a larch forest caused by severe disturbance during an early secondary succession. *Agricultural and Forest Meteorology*, 232, 457–468.

Hong J, Kim J, Lee D et al., 2008: Estimation of the storage and advection effects on H₂O and CO₂ exchanges in a hilly KoFlux forest catchment. *Water Resources Research*, 44.

Hossen MS, Mano M, Miyata A et al., 2011: Seasonality of ecosystem respiration in a double-cropping paddy field in Bangladesh. *Biogeosciences Discussions*, 8, 8603–8721.

Hu WF, Wang NA, Zhao LQ et al., 2015: Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China. *Journal of Arid Land*, 7, 579–589.

Hu ZM, Yu GR, Zhou YL et al., 2009: Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. *Agricultural and Forest Meteorology*, 149, 1410–1420.

Huang H, Meng P, Zhang JS et al., 2014: Stomatal and environmental control on evapotranspiration in a plantation in the lower mountain areas of North China. *Acta Ecologica Sinica*, 34, 667–673.

Huang X, Hao Y, Wang Y et al., 2010: Partitioning of evapotranspiration and its relation to carbon dioxide fluxes in Inner Mongolia steppe. *Journal of Arid Environments*, 74, 1616–1623.

Hunsaker DJ, Pinter PJ, Barnes EM et al., 2003: Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. *Irrigation Science*, 22, 95–104.

Ibram A, Dellwik E, Flyvbjerg H et al., 2007: Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. *Agricultural and Forest Meteorology*, 147, 140–156.

Igarashi Y, Kumagai T, Yoshifujii N et al., 2015: Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand. *Agricultural and Forest Meteorology*, 202, 1–10.

Ikawa H, Ono K, Mano M et al., 2017: Evapotranspiration in a rice paddy field over 13 crop years. *Journal of Agricultural Meteorology*, 73, 109–118.

Ji XB, Chen JM, Zhao WZ et al., 2017: Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions. *Agricultural Water Management*, 192, 1–11.

Jia X, Zha TS, Gong JN et al., 2016a: Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. *Agricultural and Forest Meteorology*, 228, 120–129.

Jia X, Zha TS, Gong JN et al., 2016b: Energy partitioning over a semi-arid shrubland in northern China. *Hydrological Processes*, 30, 972–985.

Jiang XL, Kang SZ, Tong L et al., 2014: Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. *Agricultural Water Management*, 142, 135–143.

Jnad I, Brunel JP, Droubi A, 2006: Comparing eddy covariance and soil water balance methods for evapo-transpiration measurement in Palmyra Oasis in Syria. *Arab Gulf Journal of Scientific Research*, 24, 131–137.

Kang M, Ichii K, Kim J et al., 2019a: New gap-filling strategies for long-period flux data gaps using a data-driven approach. *Atmosphere*, 10.

Kang M, Kim J, Thakuri BM et al., 2018: New gap-filling and partitioning technique for H₂O eddy fluxes measured over forests. *Biogeosciences*, 15, 631–647.

Kang M, Kim J, Yang H et al., 2019b: On securing continuity of
long-term observational eddy flux data: Field intercomparison between open-and enclosed-path gas analyzers. *Korean Journal of Agricultural and Forest Meteorology*, 21, 135–145.

Kang M, Kwon H, Cheon JH et al., 2012: On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. *Journal of Hydrometeorology*, 13, 950–965.

Kang M, Park S, Kwon H et al., 2009: Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. *Asia-Pacific Journal of Atmospheric Sciences*, 45, 175–191.

Kang MC, Cai YM, Wang XP et al., 2016: Control of evapotranspiration by surface resistance and environmental factors in poplar (*Populus × euramericana*) plantations. *Acta Ecologica Sinica*, 36, 5508–5518.

Katerji N, Rana G, 2006: Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. *Agricultural and Forest Meteorology*, 138, 142–155.

Kim S, Lee YH, Kim KR et al., 2014: Analysis of surface energy balance closure over heterogeneous surfaces. *Asia-Pacific Journal of Atmospheric Sciences*, 50, 1–13.

Kimura T, Mudd RG, Giambelluca TW et al., 2005: Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. *Ecohydrology*, 8, 121–138.

Kosugi Y, Katsuyama M, 2007: Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods. *Journal of Hydrology*, 334, 305–311.

Kosugi Y, Takanashi S, Tanaka H et al., 2007: Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. *Journal of Hydrology*, 337, 269–283.

Kosugi Y, Takanashi S, Tani M et al., 2012: Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. *Journal of Forest Research*, 17, 227–240.

Kumagai T, Saitoh TM, Sato Y et al., 2005: Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. *Agricultural and Forest Meteorology*, 128, 81–92.

Kumagai T, Mudd RG, Giambelluca TW et al., 2015: How do rubber (*Hevea brasiliensis*) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? *Agricultural and Forest Meteorology*, 213, 10–22.

Kume T, Tanaka N, Kuraji K et al., 2011: Ten-year evapotranspiration estimates in a Bornean tropical rainforest. *Agricultural and Forest Meteorology*, 151, 1183–1192.

Lee X, Liu SD, Xiao W et al., 2014: The Taihu eddy flux network An observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. *Bulletin of the American Meteorological Society*, 95, 1538–1594.

Lei HM, Yang DW, 2010: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. *Agricultural and Forest Meteorology*, 150, 581–589.

Leuning R, van Gorsel E, Massman WJ et al., 2012: Reflections on the surface energy imbalance problem. *Agricultural and Forest Meteorology*, 156, 65–74.

Li H, Zhang F, Wang W et al., 2018: The strongest El Niño event stimulated ecosystem respiration, not evapotranspiration, over a humid alpine meadow on the Qinghai-Tibetan Plateau. *Ecological Indicators*, 91, 562–569.

Li HD, Wang AZ, Yuan FH et al., 2016a: Evapotranspiration dynamics over a temperate meadow ecosystem in eastern Inner Mongolia, China. *Environmental Earth Sciences*, 75, 12396–1401.

Li J, Jiang S, Wang B et al., 2013: Evapotranspiration and its energy exchange in alpine meadow ecosystem on the Qinghai-Tibetan Plateau. *Journal of Integrative Agriculture*, 12, 937–948.

Li J, Liu Y, Yang X et al., 2006a: Studies on water-vapor flux characteristic and the relationship with environmental factors over a planted coniferous forest in Qianyanzhou Station. *Acta Ecologica Sinica*, 26, 2449–2456.

Li MS, Babel W, Chen XL et al., 2015: A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements. *Theoretical and Applied Climatology*, 122, 457–469.

Li S, Kang S, Li F et al., 2008a: Vineyard evaporative fraction based on eddy covariance in an arid desert region of Northwest China. *Agricultural Water Management*, 95, 937–948.

Li S, Kang S, Zhang L et al., 2008b: A comparison of three methods for determining vineyard evapotranspiration in the arid desert regions of northwest China. *Hydrological Processes*, 22, 4554–4564.

Li S, Kang SH, Li FS et al., 2008c: Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. *Agricultural Water Management*, 95, 1214–1222.

Li SG, Asanuma J, Kotani A et al., 2007: Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. *Journal of Hydrology*, 333, 133–143.

Li SG, Eugster W, Asanuma J et al., 2006b: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. *Agricultural and Forest Meteorology*, 137, 89–106.

Li X, Gao ZQ, Li YB et al., 2017: Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in east China. *Atmosphere*, 8, 57–75.

Li XL, Jia QY, Liu JM, 2016b: Seasonal variations in heat and carbon dioxide fluxes observed over a reed wetland in northeast China. *Agricultural Water Management*, 127, 6–13.

Li XY, Ma YJ, Huang YM et al., 2016c: Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibetan Plateau. *Journal of Geophysical Research-Atmospheres*, 121, 10470–10485.

Li YJ, Zhou L, Xu ZZ et al., 2009: Comparison of water vapour, heat and energy exchanges over agricultural and wetland ecosystems. *Hydrological Processes*, 23, 2069–2080.

Li ZH, Zhang YP, Wang SS et al., 2010: Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. *Hydrological Processes*, 24, 2405–2416.

Li QZ, Yu GR, Wen XF et al., 2005: Energy balance closure at ChinaFLUX sites. Science in *China Series D-Earth Sciences*, 48, 51–62.

Liang J, Wei ZW, Lee XH et al., 2019: Evapotranspiration characteristics distinct to mangrove ecosystems are revealed by multiple-site observations and a modified two-source model. *Water Resources Research*, 55, 11250–11273.

Liu B, Cui YL, Luo YF et al., 2019a: Energy partitioning and
evapotranspiration over a rotated paddy field in Southern China. *Agricultural and Forest Meteorology*, **276**.

Liu EM, Zhang DQ, Liu WZ et al., 2009: Water consumption of the crops in the northwestern shandong plain and comparisons of lysimeter and eddy covariance technique. *Advances in Water Science*, **20**, 190–196.

Liu HZ, Feng JW, Sun JH et al., 2015: Eddy covariance measurements of water vapor and CO₂ fluxes above the Erhai Lake. *Science China-Earth Sciences*, **58**, 317–328.

Liu J, Man XL, 2017: Characteristics of transpiration and evapo-transpiration from natural Larix gmelinii forests on rainy and non-rainy days. *Acta Ecologica Sinica*, **37**, 5059–5069.

Liu P, Zha TS, Jia X et al., 2019b: Different effects of spring and summer droughts on ecosystem carbon and water exchanges in a semiarid shrubland ecosystem in northwest China. *Ecosystems*, **22**, 1869–1885.

Liu R, Li Y, Wang QX, 2012a: Variations in water and CO₂ fluxes over a saline desert in western China. *Hydrological Processes*, **26**, 513–522.

Liu R, Pan LP, Jenerette GD et al., 2012b: High efficiency in water use and carbon gain in a wet year for a desert halophyte community. *Agricultural and Forest Meteorology*, **162**, 127–135.

Liu R, Wang YG, Li CJ et al., 2018: Partitioning water source and sinking process of a groundwater-dependent desert plant community. *Plant and Soil*, **430**, 73–85.

Liu S, Li S, Yu G et al., 2010: Surface energy exchanges in grassland ecosystems along a precipitation gradient. *Acta Ecologica Sinica*, **30**, 557–567.

Liu SM, Xu ZW, Song LS et al., 2016a: Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. *Agricultural and Forest Meteorology*, **230**, 97–113.

Liu SM, Xu ZW, Wang WZ et al., 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. *Hydrology and Earth System Sciences*, **15**, 1291–1306.

Liu SM, Xu ZW, Zhu ZL et al., 2013: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. *Journal of Hydrology*, **407**, 24–38.

Liu X, Chen X, Li R et al., 2017: Water-use efficiency of an old-growth forest in lower subtropical China. *Scientific Reports*, **7**, 42761.

Liu Y, Hu F, Cheng X et al., 2016b: Data processing and quality assessment of the eddy covariance system of the 325-m meteorology tower in Beijing. *Chinese Journal of Atmospheric Sciences*, **40**, 390–400.

Liu Y, Jiang H, Zhou GM et al., 2014: Water vapor flux variation characteristic and the relationship with its environment factors in phyllostachys edulis forest in Anji. *Acta Ecologica Sinica*, **34**, 4900–4909.

Ma JY, Jia X, Zha TS et al., 2019: Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. *Agricultural and Forest Meteorology*, **275**, 1–10.

Ma JY, Zha TS, Jia X et al., 2018: Energy and water vapor exchange over a young plantation in northern China. *Agricultural and Forest Meteorology*, **263**, 334–345.

Ma KH, Feng Q, Su YH et al., 2017: Forest evapotranspiration and energy flux partitioning based on eddy covariance methods in an arid desert region of northwest China. *Advances in Meteorology*, 2017.

Mano M, Miyata A, Yasuda Y et al., 2007: Quality control for the open-path eddy covariance data. *Journal of Agricultural Meteorology*, **63**, 125–138.

Mauser M, Johnson D, Fratini G, 2020: Evaluation of energy balance closure correction methods for multiple eddy-covariance sites in different biomes, EGU General Assembly 2020, Online.

McMillen RT, 1988: An eddy correlation technique with extended applicability to non-simple terrain. *Boundary-Layer Meteorology*, **43**, 231–245.

Miao HX, Chen SP, Chen JQ et al., 2009: Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. *Agricultural and Forest Meteorology*, **149**, 1810–1819.

Mizoguchi Y, Miyata A, Ohtani Y et al., 2009: A review of tower flux observation sites in Asia. *Journal of Forest Research*, **14**, 1–9.

Moncrieff JB, Massheder JM, deBruin H et al., 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. *Journal of Hydrology*, **188**, 589–611.

Moon M, Kang M, Thakuri BM et al., 2015: Errors in net ecosystem exchanges of CO₂, water vapor, and heat caused by storage fluxes calculated by single-level scalar measurements over a rice paddy. *Korean Journal of Agricultural and Forest Meteorology*, **17**, 227–235.

Mu QZ, Zhao MS, Running SW, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. *Remote Sensing of Environment*, **115**, 1781–1800.

Munger JW, Loescher HW, Luo H, 2012: Measurement, tower, and site design considerations. In: *Eddy covariance: A practical guide to measurement and data analysis* (ed. by Aubinet M, Vesala T and Papale D). Springer Netherlands, Dordrecht, pp. 21–58.

O’Mara FP, 2012: The role of grasslands in food security and climate change. *Annals of Botany*, **110**, 1263–1270.

Oki T, Kanae S, 2006: Global hydrological cycles and world water resources. *Science*, **313**, 1068–1072.

Ono K, Maruyama A, 2015: Development of an onsite computation scheme of eddy-covariance fluxes. *Journal of Agricultural Meteorology*, **71**, 318–329.

Pan X, Liu YB, Fan XW et al., 2017: Two energy balance closure approaches: Applications and comparisons over an oasis-desert ecotone. *Journal of Arid Land*, **9**, 51–64.

Park J, Byun K, Choi M et al., 2015: Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types. *Stochastic Environmental Research and Risk Assessment*, **29**, 2021–2035.

Partron WJ, Scurluck JMO, Ojima DS et al., 1995: Impact of climate-change on grassland production and soil carbon worldwide. *Global Change Biology*, **1**, 13–22.

Ping Y, Qiang Z, Yang Y et al., 2018: Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau. *Agricultural and Forest Meteorology*, **252**, 99–108.

Qin S, Li S, Kang S et al., 2016: Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? *Agricultural Water Management*, **177**, 128–137.
Reichstein M, Falge E, Baldocchi D et al., 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424–1439.

Saigusa N, Li SG, Kwon H et al., 2013: Dataset of CarboEastAsia and uncertainties in the CO₂ budget evaluation caused by different data processing. Journal of Forest Research, 18, 41–48.

Savenije HHG, 2004: The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18, 1507–1511.

Scanlon TM, Kustas WP, 2010: Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology, 150, 89–99.

Shang LY, Zhang Y, Lu SH et al., 2015: Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau. Science Bulletin, 60, 435–446.

Shao C, Chen J, Li L et al., 2017: Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau. Ecological Applications, 27, 485–502.

Shen YJ, Zhang YC, Scanlon BR et al., 2013: Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agricultural and Forest Meteorology, 181, 133–142.

Shi TT, Guan DX, Wu JB et al., 2008: Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. Journal of Geophysical Research-Atmospheres, 113.

Shimizu T, Kumagai T, Kobayashi M et al., 2015: Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. Journal of Hydrology, 522, 250–264.

Shu HY, Jiang H, Chen XE et al., 2016: Variation characteristics of water vapor flux in Anji Phyllostachys edulis forest ecosystem. Chinese Journal of Ecology, 35, 1154–1161.

Siebert S, Kumm M, Porkka M et al., 2015: A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19, 1521–1545.

Song QH, Braeckeveld E, Zhang YP et al., 2017a: Evapotranspiration from a primary subtropical evergreen forest in Southwest China. Ecological Indicators, 10.

Song QH, Fei XH, Zhang YP et al., 2017b: Water use efficiency in a primary subtropical evergreen forest in Southwest China. Scientific Reports, 7, 43031.

Sun J, Hu WF, Wang NA et al., 2018: Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert, China. Journal of Arid Land, 10, 517–533.

Sun L, Song CC, 2008: Evapotranspiration from a freshwater marsh in the Sanjiang Plain, Northeast China. Journal of Hydrology, 352, 202–210.

Sun S, Che T, Li H et al., 2019: Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agricultural and Forest Meteorology, 275, 283–295.

Takanashi S, Kosugi Y, Ohkubo S et al., 2010: Water and heat fluxes above a lowland dipterocarp forest in Peninsular Malaysia. Hydrological Processes, 24, 472–480.

Tan ZH, Zhang YP, Song QH et al., 2011: Rubber plantations act as water pumps in tropical China. Geophysical Research Letters, 38.

Tian FQ, Yang PJ, Hu HC et al., 2016: Partitioning of cotton field evapotranspiration under mulched drip irrigation based on a dual crop coefficient model. Water (Switzerland), 8.

Tong X, Zhang J, Meng P et al., 2017: Environmental controls of evapotranspiration in a mixed plantation in North China. International Journal of Biometeorology, 61, 227–238.

Tong XJ, Zhang JS, Meng P et al., 2014: Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. Journal of Hydrology, 512, 221–228.

Tsurtu K, Kosugi Y, Takanashi S et al., 2016: Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest. Hydrological Processes, 30, 5012–5026.

Ueyama M, Hirata R, Mano M et al., 2012: Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus Series B-Chemical and Physical Meteorology, 64, 19048.

Wada Y, Wisser D, Bierkens MFP, 2014: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 5, 15–40.

Wang L, Liu H, Sun J et al., 2016a: Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. International Journal of Biometeorology, 60, 195–205.

Wang L, Liu HZ, Bernhofer C, 2016b: Grazing intensity effects on the partitioning of evapotranspiration in the semiarid typical steppe ecosystems in Inner Mongolia. International Journal of Climatology, 36, 4130–4140.

Wang L, Liu HZ, Shao YP et al., 2018: Water and CO₂ fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau. Theoretical and Applied Climatology, 131, 547–556.

Wang P, Yamanaka T, 2014: Application of a two- source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan. Ecosystem, 7, 345–353.

Wang SQ, Chen DC, Zhou L et al., 2013: Assessing the spatial representativeness of eddy covariance flux observation stations of terrestrial ecosystems in China. Acta Ecologica Sinica, 33, 7715–7728.

Wang W, Xiao W, Cao C et al., 2014: Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. Journal of Hydrology, 511, 811–824.

Wang XC, Wang CK, 2016: Effects of coordinate rotations on eddy fluxes over a forest on a mountainous terrain in Northeast China. Chinese Journal of Applied Ecology, 27, 2779–2788.

Wang Y, Zou L, Jia QY et al., 2017: Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China. Agricultural Water Management, 187, 222–231.

Webb EK, Pearman Gl, Leuning R, 1980: Correction of flux measurements for density effects due to heat and water-vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85–100.

Wei ZW, Yoshimura K, Okazaki A et al., 2015: Partitioning of evapotranspiration using high-frequency water vapor isotopic
measurement over a rice paddy field. *Water Resources Research*, 51, 3716–3729.

Wesely ML, Thurtell GW, Tanner CB, 1970: Eddy correlation measurements of sensible heat flux near the earth's surface. *Journal of Applied Meteorology*, 9, 45–50.

Wilczak JM, Oncley SP, Stage SA, 2001: Sonic anemometer tilt correction algorithms. *Boundary-Layer Meteorology*, 99, 127–150.

Wilske B, Kwon H, Wei L et al., 2010: Evapotranspiration (ET) and regulating mechanisms in two semiarid *Artemisia*-dominated shrub steppes at opposite sides of the globe. *Journal of Arid Environments*, 74, 1461–1470.

Wilson K, Goldstein A, Falge E et al., 2002: Energy balance closure at FLUXNET sites. *Agricultural and Forest Meteorology*, 113, 223–243.

Wu BF, Yan NN, Xiong J et al., 2012: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. *Journal of Hydrology*, 436, 67–80.

Wu J, Guan D, Zhang M et al., 2005: Comparison of eddy covariance and BREB methods in determining forest evapotranspiration - case study on broad-leaved Korean pine forest in Changbai mountain. *Chinese Journal of Ecology*, 24, 1245–1249.

Wu JB, Guan DX, Han SJ et al., 2007: Energy budget above a temperate mixed forest in northeastern China. *Hydrological Processes*, 21, 2425–2434.

Wu JB, Jing YL, Guan DX et al., 2013: Controls of evapotranspiration during the short dry season in a temperate mixed forest in Northeast China. *Ecohydrology*, 6, 775–782.

Xiao JF, Sun G, Chen JQ et al., 2013: Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. *Agricultural and Forest Meteorology*, 182, 76–90.

Xin YF, Chen F, Zhao P et al., 2018: Surface energy balance closure at ten sites over the Tibetan plateau. *Agricultural and Forest Meteorology*, 259, 317–328.

Xu FN, Wang WZ, Wang JM et al., 2017a: Area-averaged evapotranspiration over a heterogeneous land surface: Aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis. *Hydrology and Earth System Sciences*, 21, 4037–4051.

Xu H, Zhang ZQ, Chen JQ et al., 2018a: Regulations of cloudiness on energy partitioning and water use strategy in a riparian poplar plantation. *Agricultural and Forest Meteorology*, 262, 135–146.

Xu M, Wen X, Wang H et al., 2014: Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China. *PLoS ONE*, 9, e85593.

Xu T, Bateni SM, Margulis SA et al., 2016: Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system. *Journal of Hydrometeorology*, 17, 2353–2370.

Xu T, Guo Z, Liu S et al., 2018b: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. *Journal of Geophysical Research: Atmospheres*, 123, 8674–8690.

Xu ZW, Liu SM, Li X et al., 2013: Intercomparison of surface energy flux measurement systems used during the HIWATER-MUSOEXE. *Journal of Geophysical Research-Atmospheres*, 118, 13140–13157.

Xu ZW, Ma YF, Liu SM et al., 2017b: Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. *Journal of Applied Meteorology and Climatology*, 56, 127–140.

Yan CH, Zhao WL, Wang Y et al., 2017: Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China. *Agricultural and Forest Meteorology*, 246, 207–217.

Yang B, Wang PY, You DB et al., 2018: Coupling evapotranspiration partitioning with root water uptake to identify the water consumption characteristics of winter wheat: A case study in the North China Plain. *Agricultural and Forest Meteorology*, 259, 295–304.

Yang F, Zhang Q, Hunt JE et al., 2019a: Biophysical regulation of evapotranspiration in semiarid croplands. *Journal of Soil and Water Conservation*, 74, 309–318.

Yang F, Zhang Q, Wang R et al., 2014a: Evapotranspiration measurement and crop coefficient estimation over a spring wheat farmland ecosystem in the Loess Plateau. *PLoS ONE*, 9, e100031.

Yang F, Zhou G, 2010: Characteristics and driving factors of energy budget over a temperate desert steppe in Inner Mongolia. *Acta Ecologica Sinica*, 30, 5769–5780.

Yang FL, Zhang Q, Wang WY et al., 2014b: Evapotranspiration and factors influencing evapotranspiration in the spring wheat farmland of China's Loess Plateau. *Acta Ecologica Sinica*, 34, 2323–2328.

Yang J, Zhou G, Wang Y et al., 2006: Estimation of sensible and latent heat fluxes of typical steppe in Inner Mongolia based on variational method. *Chinese Journal of Applied Ecology*, 17, 2046–2051.

Yang PJ, Hu HC, Tian FQ et al., 2016: Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China. *Agricultural Water Management*, 171, 21–30.

Yang ZS, Zhang Q, Hao XC, 2019b: Environmental and biological controls on monthly and annual evapotranspiration in China's Loess Plateau. *Theoretical and Applied Climatology*, 137, 1675–1692.

Yao JM, Zhao L, Ding YJ et al., 2008: The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. *Cold Regions Science and Technology*, 52, 326–340.

Yu G, Song X, Wang Q et al., 2008: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. *New Phytologist*, 177, 927–937.

Yu GR, Wen XF, Sun XM et al., 2006: Overview of ChinaFLUX and evaluation of its eddy covariance measurement. *Agricultural and Forest Meteorology*, 137, 125–137.

Yu TF, Qi F, Si JH et al., 2017: *Tamarix ramosissima* stand evapotranspiration and its association with hydroclimatic factors in an arid region in northwest China. *Journal of Arid Environments*, 138, 18–26.

Yuan GF, Zhang P, Shao MA et al., 2014: Energy and water exchanges over a riparian *Tamarix* spp. stand in the lower Tarim River basin under a hyper-arid climate. *Agricultural and Forest Meteorology*, 194, 144–154.

Yuan RM, Kang M, Park SB et al., 2011: Expansion of the planar-fit method to estimate flux over complex terrain. *Meteorology and Atmospheric Physics*, 110, 123–133.

Yuan RM, Kang M, Park SB et al., 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment. *Korean Journal of Agricultural
Zhao P, Kang SZ, Li S et al., 2018: Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agricultural Water Management, 197, 19–33.

Zhao P, Li S, Li FS et al., 2015: Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agricultural Water Management, 160, 41–56.

Zhao XS, Huang Y, Jia ZJ et al., 2008: Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China. Journal of Hydrology, 355, 181–191.

Zhao XS, Liu YB, 2018: Variability of surface heat fluxes and its driving forces at different time scales over a large ephemeral lake in China. Journal of Geophysical Research-Atmospheres, 123, 4939–4957.

Zhao XS, Liu YB, Tanaka H et al., 2010: A comparison of flux variance and surface renewal methods with eddy covariance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 345–350.

Zheng H, Yu GR, Wang QF et al., 2016: Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements. Journal of Geographical Sciences, 26, 1391–1411.

Zheng N, Zhang JS, Meng P et al., 2015: Effects of coordinate rotation on precision of heat and latent fluxes estimating in farmland shelterbelts. Forest Research, 28, 479–487.

Zhou L, Wang Y, Jia Q et al., 2019: Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area? Agricultural Water Management, 221, 538–546.

Zhou L, Zhou GS, Liu SH et al., 2010: Seasonal contribution and interannual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrological Processes, 24, 1039–1047.

Zhou SQ, Wang J, Liu JX et al., 2012: Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China. Hydrological Processes, 26, 1169–1178.

Zhu Xj, Yu Gr, Wang Qf et al., 2012: Instrument heating correction effect on estimation of ecosystem carbon and water fluxes. Chinese Journal of Ecology, 31, 487–493.

Zhu XL, Sun XM, Zhang RH, 2003: Statistical analysis and comparative study of energy balance components estimated using micrometeorological techniques during HUBEX/IOP 1998/99. Advances in Atmospheric Sciences, 20, 285–291.

Zhu XL, Sun XM, Zhou YL et al., 2005: Correcting method of eddy covariance fluxes over non-flat surfaces and its application in ChinaFLUX. Science in China Series D-Earth Sciences, 48, 42–50.

Zuo HC, Chen BL, Wang SX et al., 2016: Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type. Agricultural and Forest Meteorology, 222, 1–9.