Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review Article

Clinical, epidemiological, laboratory, and radiological characteristics of novel Coronavirus (2019-nCoV) in retrospective studies: A systemic review and meta-analysis

Ebrahim Kouhsari a,b, Khalil Azizian c, Mohammad Sholeh d, Mohammad Shayeestehpour d,f, Marzieh Hashemian a, Somayeh Karamollahi a, Sajad Yaghoubi g,**, Nourkhoda Sadeghiifard a,*

a Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
b Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
c Department of Lab Science, Sirjan School of Medical Sciences, Sirjan, Iran
d Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
e Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
f Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
g Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran

ARTICLE INFO

Keywords:
2019-nCoV
Clinical
Epidemiological
Laboratory, and radiological characteristics
Meta-analysis

ABSTRACT

Background: In December 2019, a novel pneumonia related to the 2019 coronavirus unexpectedly developed in Wuhan, China. We aimed to review data of the novel Coronavirus (2019-nCoV) by analyzing all the published retrospective studies on the clinical, epidemiological, laboratory, and radiological characteristics of patients with 2019-nCoV.

Methods: We searched in four bibliographic databases PubMed, Scopus, Embase, and Web of Science for studies March 10, 2020 focused on the clinical, epidemiological, laboratory, and radiological characteristics of patients with 2019-nCoV for meta-analysis. The Newcastle-Ottawa Scale was used to quality assessment, and publication bias was analyzed by Egger's test. In the meta-analysis, a random-effects model with Stata/SE software, v.14.1 (StataCorp, College Station, TX) was used to obtain a pooled incidence rate.

Results: Fifty studies were included in this systematic review and meta-analysis with 8815 patients and the mean age was 46 years and 4647 (52.7%) were male. The pooled incidences rate of clinical symptoms were: fever (83%, 95% CI: 0.77, 0.89), cough (59%, 95% CI: 0.48, 0.69), myalgia or fatigue (31%, 95% CI: 0.23, 0.39), sputum production (29%, 95% CI: 0.21, 0.39), and dyspnea (19%, 95% CI: 0.12, 0.26). The pooled incidence rate of acute respiratory distress syndrome (ARDS) was (22%, 95% CI: 0.00, 0.60).

Conclusion: The results of this systemic review and meta-analysis present a quantitative pooled incidence rate of different characters of 2019-nCoV and has great potential to develop diagnosis and patient's stratification in 2019-nCoV. However, this conclusions of this study still requisite to be warranted by more careful design, larger sample size multivariate studies to corroborate the results of this meta-analysis.

1. Introduction

In December 8, 2019 a new coronavirus, which was called 2019 novel coronavirus (2019-nCoV), arise the pneumonia epidemic of the severe respiratory disease from Wuhan (Huanan seafood market) across China which now causes the main public health threats worldwide [1,2]. On January 30, 2020, WHO stated that the epidemic of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) become as a public health emergency of international concern (PHEIC) [3]. Currently, the number of patients with 2019-nCoV is dramatically increasing to other countries around the world [4,5]. According to worldwide statistics, the death rate is ~4.6%. Main symptoms of 2019-nCoV include pneumonia, fever, myalgia or fatigue [4,5]. However, some characterizations and conclusions in the published relevant research were varied, limited and
controversial. At present, there is no successful vaccine or antiviral drugs has been clinically approved for 2019-nCoV. Therefore, to acquire more exact conclusions on the clinical, epidemiological, laboratory, and radiological characteristics and also to propose significant help for current clinical studies of patients with 2019-nCoV, we performed a systematic review and meta-analysis of all these evidence-based medical epidemiological, clinical, laboratory, and radiological characters.

2. Methods

2.1. Search strategy and study selection

Four bibliographic databases, including international databases (PubMed, Scopus, Embase, and Web of Science) for relevant articles were searched (Until 10th/March/2020) by using the following keywords: ("2019 Novel coronavirus" OR "2019-nCoV" OR "Severe Acute Respiratory Syndrome Coronavirus 2" OR “SARS-CoV-2” OR “COVID-19” OR "Wuhan Coronavirus" OR “Wuhan pneumonia”) in the Title/Abstract/Keywords fields. No limitation regarding ethnicity, language, country, gender, patient age was used while searching databases, but inclusion of the study in our full analysis required at least the abstract to be available in English. The records found through database searching were merged and the duplicates were removed using EndNote X7 (Thomson Reuters, New York, NY, USA).

2.2. Selection criteria and data extraction

One of the team researchers randomly evaluated the search results and reported that no relevant study was ignored. Three authors (Ebrahim Kouhsari, Mohammad Sholeh and Sajad Yaghoubi) independently done all these steps and reviewed the potentially relevant studies to clarify whether they met the predetermined eligibility criteria. Any discrepancies and inconsistencies with article selection were resolved through discussion, and a fourth author (Nourkhoda Sadeghifard) was available to resolve the disagreement. In the first phase, studies obtained from the literature search were precisely screened by titles and abstracts to exclude irrelevant studies. The full text of relevant studies was reviewed in depth conferring to definite criteria. References lists of all related studies were also reviewed for any other related publication.

Studies were excluded if they met the following conditions: reviews, theses, books, conference papers, repeat articles, letters, editorials, expert opinions, animal, in vitro studies, and overlapping, unusable data sets (Fig. 1). Information extracted from retrospective studies included in qualitative synthesis (n = 50).

Fig. 1. Flow diagram showing the data selection process.
studies on the clinical, epidemiological, laboratory, and radiological characteristics of novel Coronavirus (2019-nCoV) infected patients (supplementary data 1).

2.3. Outcomes

The main outcome of interest was the clinical, epidemiological, laboratory, and radiological characteristics of 2019-nCoV infected patients.

2.4. Quality assessment

Quality evaluation of the included studies was performed using by two authors (Marzieh Hashemian, Somayeh Karamollahi) independently, using an adapted version of the tool proposed by the Newcastle-Ottawa assessment scale [6]. A score ranging from 0 to 9 points was attributed to each study (≥7 points: high quality, 4–6 points: Moderate quality, ≤ 3 points: low quality). Higher score indicates higher study quality. A third reviewer (Ebrahim Kouhsari) adjudicated in any case of disagreement. Need for arbitration and reason was reported in the data collection tool.

2.5. Publication bias

Publication bias was analyzed using Egger’s linear regression test, which measures funnel plot asymmetry.

2.6. Statistical analysis

All statistical analyses were performed using a random-effects model with Stata/SE software, v.14.1 (StataCorp, College Station, TX). A chi-squared test and I² statistic were used to assess the inter-study heterogeneity. Hence, values above 75% are considered heterogeneity [7];

Table 1

Characteristics and Quality assessment of included studies.

ID	First Author, Year	Country	Study Design	Selection (4 points)	Comparability (2 points)	Outcome (3 points)	Total (9 points)
1	Guan W, 2020	China	retrospective	3	2	3	8
2	Huang Y, 2020	China	retrospective	3	2	2	7
3	Tang N, 2020	China	retrospective	1	2	2	5
4	Cai s, 2020	China	retrospective	3	2	2	7
5	Chen L, 2020	China	retrospective	3	2	2	7
6	Feng K, 2020	China	retrospective	3	2	2	7
7	Liu W, 2020	China	retrospective	3	2	2	7
8	Chen C, 2020	China	retrospective	2	2	2	6
9	Zhang L, 2020	China	retrospective	2	2	2	6
10	Tian S, 2020	China	retrospective	3	2	2	7
11	Bernheim S, 2020	China	retrospective	3	2	2	7
12	Wu J, 2020	China	retrospective	2	2	2	6
13	Peng YD, 2020	China	retrospective	3	2	2	7
14	Wang D, 2020	China	retrospective	3	2	3	8
15	Xu H-Y, 2020	China	retrospective	3	2	2	7
16	Xia W, 2020	China	retrospective	3	2	2	7
17	Yang W, 2020	China	retrospective	2	2	2	6
18	Xiong Y, 2020	China	retrospective	3	2	2	7
19	Hu Z, 2020	China	retrospective	3	2	2	7
20	Zhang JJ, 2020	China	retrospective	2	2	2	6
21	Wang D, 2020	China	retrospective	3	2	2	7
22	Walker, 2020	Australia	retrospective	1	2	1	3
23	Liu K, 2020	China	retrospective	3	2	2	7
24	Yang X, 2020	China	retrospective	2	2	2	6
25	Wang X, 2020	China	retrospective	3	2	2	7
26	Chung M, 2020	China	retrospective	3	2	2	7
27	Li Q, 2020	China	retrospective	3	2	3	8
28	Ki M, 2020	Korea	retrospective	2	2	3	7
29	Chen N, 2020	China	retrospective	2	2	3	7
30	Fan BE, 2020	China	retrospective	3	2	3	8
31	Chang D, 2020	China	retrospective	3	2	2	7
32	Yao Y, 2020	China	retrospective	2	2	1	5
33	Cheng J, 2020	China	retrospective	2	2	1	5
34	Song F, 2020	China	retrospective	3	2	3	8
35	Zhou S, 2020	China	retrospective	3	2	3	8
36	Yueying P, 2020	China	retrospective	4	1	2	7
37	Liu C, 2020	China	Retrospectively	3	2	2	7
38	Shi H, 2020	China	retrospectively	3	2	2	7
39	Zhao W, 2020	China	retrospectively	3	2	2	7
40	Pan F, 2020	China	retrospectively	3	2	2	7
41	Huang C, 2020	China	retrospectively	3	2	2	7
42	Li YY, 2020	China	retrospectively	3	2	2	7
43	Yang YH, 2020	China	retrospectively	2	2	1	3
44	Zhu ZW, 2020	China	retrospectively	3	2	2	7
45	Ai T, 2020	China	retrospectively	3	2	2	7
46	Ling Y, 2020	China	retrospectively	3	2	2	7
47	Lan L, 2020	China	retrospectively	3	2	2	7
48	Sun, 2020	USA	retrospectively	2	2	1	5
49	Li J, 2020	China	retrospectively	3	2	1	6
50	Xu, 2020	China	retrospectively	3	2	1	6
Characteristic	Value	I^2	P	Positive Number of patients			
--	------------------------	-------	-------	----------------------------			
Total Bilirubin	(0.84, 0.00)						
Albumin (Decrease)	0.54						
Albumin (Increase)	0.03						
Serum Creatinine (Normal)	1.00						
Serum Creatinine (Increase)	0.17						
Serum Creatinine (Decrease)	0.03						
D-Dimer (Normal)	0.94						
D-Dimer (Increase)	0.48						
Procalcitonin (Normal)	0.88						
Procalcitonin (Increase)	0.60						
Blood Urea nitrogen (Normal)	0.98						
Blood Urea nitrogen (Decrease)	0.14						
Blood Urea nitrogen (Increase)	0.08						
Thromboplastin time (Normal)	0.98						
Thromboplastin time (Decrease)	0.05						
Thromboplastin time (Increase)	0.20						
C-reactive protein (Normal)	0.48						
C-reactive protein (Increase)	0.72						
Total Bilirubin (Normal)	0.95						
Total Bilirubin (Increase)	0.05						
Total Bilirubin (Decrease)	0.20						
Prothrombin time (Normal)	0.95						
Prothrombin time (Decrease)	0.10						
Prothrombin time (Increase)	0.44						
Creatinine (Normal)	0.98						
Creatinine (Decrease)	0.53						
Creatinine (Increase)	0.24						
Platelet count (Normal)	0.96						
Platelet count (Decrease)	0.27						
Platelet count (Increase)	0.05						
Aspartate Aminotransferase (Normal)	0.90						
Aspartate Aminotransferase (Increase)	0.29						
Lactate (Normal)	0.95						
Lactate (Decrease)	0.69						
Lactate (Increase)	0.80						

Characteristic	Value	I^2	P	Positive Number of patients
Epidemiology				
Male	0.54			
Female	0.46			
Contact with another person with				
respiratory symptoms	0.27			
History of travel from China				
(Wuhan, and …)	0.58			
Exposure to source of transmission	0.30			
Smoking history	0.17			
Admission to ICU	0.16			
Diabetes	0.11			
Hypertension	0.19			
Malignancy	0.05			
Cardiovascular	0.12			
Other comorbidity	0.16			
COPD	0.03			
Clinical symptoms				
Fever	0.83			
Cough	0.59			
Myalgia or fatigue	0.31			
Sputum production	0.29			
Headache	0.10			
Hemoptysis	0.02			
Diarrhea	0.08			
Dyspnea	0.19			
Acute respiratory distress syndrome	0.22			
(ARDS)				
Vomiting	0.03			
Sore throat	0.12			
Rhinorrhea	0.09			
Chest pain	0.11			
Laboratory				
WBC(Normal)	0.81			
WBC (Decrease)	0.21			
WBC (Increase)	0.14			
Neutrophil (Normal)	0.95			
Neutrophil (Decrease)	0.16			
Neutrophil (Increase)	0.17			
Albumin (Normal)	0.95			
Table 2 (continued)

Characteristic	Value (-CL, +CL)	I²	P	Positive Number of patients
Erythrocyte Sedimentation rate (increase)	0.90 (0.77, 0.98)	92.20	0.00	459 500
Alanine Aminotransferase (Normal)	0.01 (0.00, 0.05)	*	*	2 149
Alanine Aminotransferase (Decrease)	0.18 (0.12, 0.25)	54.18	0.00	65 358
Creatinine kinase (Normal)	0.94 (0.81, 1.00)	93.92	0.00	427 467
Lymphocyte (Decrease)	0.12 (0.03, 0.24)	85.74	0.00	32 320
Lymphocyte (Normal)	0.61 (0.46, 0.75)	93.25	0.00	385 701
Lymphocyte (Decrease)	0.58 (0.40, 0.75)	97.86	0.00	826 1431
Lymphocyte (Increased)	0.14 (0.06, 0.24)	0.00	0.00	9 63
Hemoglobin (Normal)	1.00 (0.98, 1.00)	*	*	69 69
Hemoglobin (Decrease)	0.98 (0.95, 1.00)	*	*	162 179
Radiology Multiple mottling and ground-glass opacity	0.60 (0.50, 0.70)	95.37	0.00	1399 2951
Bilateral patchy shadowing	0.50 (0.44, 0.57)	40.60	0.17	592 1257
Crazy paving	0.16 (0.06, 0.29)	85.09	0.00	47 324
Discrete nodules	0.10 (0.00, 0.30)	93.19	0.00	15 305
Peripheral distribution	0.61 (0.45, 0.75)	91.16	0.00	327 517
Unilateral Pneumonia	0.61 (0.45, 0.75)	91.16	0.00	61 249
Local patchy shadowing	0.36 (0.34, 0.39)	*	*	411 1114
Consolidation	0.37 (0.24, 0.51)	94.74	0.00	650 1594
Cavitation	0.00 (0.00, 0.02)			4 141
Lymphadenopathy	0.02 (0.00, 0.05)	59.24	0.02	18 523
Bilateral pneumonia	0.70 (0.59, 0.79)	90.99	0.00	1330 1644
Pneumothorax	0.01 (0.00, 0.02)	*	*	1 99
Intestinal abnormalities	0.13 (0.11, 0.15)	*	*	143 1099
Linear	0.08 (0.04, 0.13)	*	*	12 142
Pleural effusion	0.05 (0.02, 0.09)	69.66	0.00	39 615
Supportive treatment	0.90 (0.74, 0.99)	98.61	0.00	1374 2205
Antiviral therapy	0.68 (0.49, 0.84)	97.80	0.00	1094 1806
Use of corticosteroid	0.32 (0.19, 0.47)	96.97	0.00	498 2028
Immunotherapy	0.39 (0.13, 0.69)	98.92	0.00	428 1674
Oxygen support	0.56 (0.32, 0.78)	98.95	0.00	1003 2141
Non-invasive ventilation or cannula	0.11 (0.05, 0.19)	93.91	0.00	163 1858
high-flow nasal cannula	0.08 (0.01, 0.19)	96.06	0.00	88 1643
Invasive mechanical ventilation	0.02 (0.00, 0.05)	71.69	0.00	15 576
Invasive mechanical ventilation and ECMO	0.55 (0.24, 0.84)	97.00	0.00	218 339
Nasal cannula	0.06 (0.01, 0.13)	79.86	0.00	23 361
Continuous renal replacement therapy				
Clinical outcomes				
Recovered	0.53 (0.46, 0.63)	98.63	0.00	788 2952
Staying in hospital	0.67 (0.59, 0.76)	97.93	0.00	1791 2355
Death	0.05 (0.01, 0.10)	89.08	0.00	151 3054

Thus, DerSimonian and Laird random effects models were used [8]. All statistical interpretations were reported on a 95% confidence interval (CI) basis.

3. Results

3.1. Search results

We evaluated 5 electronic databases and categorized 2095 articles published until 10 March 2020 (Fig. 1). Of these, after initial screening of the title and abstract, 1795 articles were excluded due to their irrelevance and duplication and the full text of remaining 300 articles were reviewed (Fig. 1). Among the 250 articles, were excluded again for specific reasons: case reports, conference papers, repeat articles, letters, editorials, expert opinions, animal, in vitro studies, and unusable data sets. Finally, 50 studies were included in this systematic review and meta-analysis. Supplementary data 1 depicts the main characteristics of 50 included studies.

3.2. Characteristics of studies

A total of 50 articles were included in this meta-analysis [2,4,5,9–20], [21–30, 31–55] including data from 8815 patients. Study size ranged from 4 to 1719 subjects. The methodological quality of the included studies was high for observational studies (Table 1). The highest quality of the literature was 8 stars and the lowest 3 stars.

3.3. Publication bias detection

The results of the Egger test are displayed in Table 3. There was a publication bias in the meta-analysis of the bilateral pneumonia group (P = 0.004).

3.4. Epidemiological characteristics

A total of 50 studies including 8815 patients were included in this study, the mean age was 46 years and 4647 (0.54%) were male. Among studies been reported that data on the epidemiological characteristics, evidence of heterogeneity was present in the history contact with another person with respiratory symptoms (I² = 95.94, P = 0.00), history of travel from China (Wuhan) (I² = 99.02, P = 0.00), exposure to source of transmission (COVID-19 infected patients, wildlife) within 14 days (I² = 98.51, P = 0.00), smoking history (current or past) (I² = 99.18, P = 0.00) (Table 2). Among eligible literatures, 26 studies reported that hypertension, diabetes, and cardiovascular illness were more prevalent in patients. Detailed results of Meta-analysis are shown in Table 2.
3.5. Clinical characteristics

There were 13 symptoms of 2019-ncov in infected patients which were reported. Among studies been reported that data on the clinical symptoms, evidence of heterogeneity was present in the symptoms of fever ($I^2 = 95.15$, $P = 0.00$), cough ($I^2 = 97.33$, $P = 0.00$), myalgia or fatigue ($I^2 = 94.28$, $P = 0.00$), sputum production ($I^2 = 84.96$, $P = 0.00$), headache or hemoptysis ($I^2 = 70.94$, $P = 0.00$), and diarrhea ($I^2 = 80.05$, $P = 0.00$) (Table 2). Among been reported clinical symptoms, the pooled incidence rate was calculated for four symptoms: acute respiratory distress syndrome (ARDS) (22%, 95% CI: 0.00, 0.60), dyspnea (19%, 95% CI: 0.12, 0.26), sore throat (12%, 95% CI: 0.07, 0.18), chest pain (11%, 95% CI: 0.04, 0.21), tinnitus (9%, 95% CI: 0.03, 0.17), vomiting (3%, 95% CI: 0.02, 0.05) (Table 2).

Table 3
Results of Egger test.

Group	Fever	Cough	Myalgia or fatigue	Acute respiratory distress syndrome	Death	COPD	Multiple mottling and ground-glass opacity	Bilateral patchy shadowing	Bilateral pneumonia
P	0.103	0.054	0.592	0.868	0.197	0.127	0.155	0.238	0.004

3.6. Laboratory characteristics

Among been reported laboratory characteristics, white blood cells were decreased in 180 patients (the pooled incidence rate was 21%, $I^2 = 70.65$, $P = 0.00$) and increased in 109 patients (the pooled incidence rate was 14%, $I^2 = 84.85$, $P = 0.00$) (Table 3). Lymphocyte were decreased in 826 patients (the pooled incidence rate was 58%, $I^2 = 97.86$, $P = 0.00$) and increased in 9 patients (the pooled incidence rate was 14%, $I^2 = 0.00$, $P = 0.00$) (Table 2). The increased neutrophils observed in 67 patients, evidence of heterogeneity was present in it ($I^2 = 92.34$, $P = 0.00$). Albumin were decreased in 121 patients (the pooled incidence rate was 54%, $I^2 = 99.38$, $P = 0.00$). The D-Dimer and thromboplastin time were increased in 254 and 72 patients (the pooled incidence rates were 48%; 20%, $I^2 = 99.24$; 94.02, $P = 0.00$). Procalcitonin, C-reactive protein, alanine amino-transferase, aspartate aminotransferase, Lactate Dehydrogenase and creatine kinase were increased in 276, 865, 65, 135, 300 and 32 patients (the pooled incidence rates were 60%, 72%, 18%, 29%, 69% and 12%, $P = 0.00$) (Table 3). Prothrombin time were decreased in 35 patients (the pooled incidence rate was 10%, $I^2 = 95.30$, $P = 0.00$) and increased in 177 patients (the pooled incidence rate was 44%, $I^2 = 99.44$, $P = 0.00$) (Table 2).

3.7. Radiological characteristics

The radiological characteristics of 2019-ncov infected patients were described differently. By reviewing the literature, there are different common manifestations as follows: multiple mottling and ground-glass opacity, bilateral pneumonia, consolidation, and bilateral or local patchy shadowing. Among been reported radiological characteristics, evidence of heterogeneity were reported in the multiple mottling and ground-glass opacity (60%, $I^2 = 95.37$, $P = 0.00$), bilateral pneumonia (70%, $I^2 = 90.99$, $P = 0.00$), consolidation (37%, $I^2 = 94.74$, $P = 0.00$), and bilateral patchy shadowing (50%, $I^2 = 40.60$, $P = 0.17$). Additionally, pneumothorax happened in one patient [13].

3.8. Treatment

Among been reported treatment, 1374, 1094 patients were treated with antiviral and antimicrobial agents (the pooled incidence rates and heterogeneities were 90% 68%, $I^2 = 98.61$; 97.80). The pooled incidence rates were 32% and 39% in use of corticosteroids and immunotherapy. Totally, 1510 patients used oxygen therapy. Among these studies, there were 218 patients who used nasal cannula, the pooled incidence was 55% (95% CI: 0.24, 0.84) for five studies. 11% (95% CI: 0.32, 0.78) patients used non-invasive ventilation or high-flow nasal cannula. Additionally, 88 and 15 patients were treated with invasive mechanical ventilation and invasive mechanical ventilation or extra-corporeal membrane oxygenation (ECMO), the pooled incidence were 8% and 2% (Table 2). Three articles had no detailed data on oxygen therapy [12, 55]. There were 23 patients who used continuous renal replacement therapy, the pooled incidence was 6% (95% CI: 0.01, 0.13) for five studies.

3.9. Clinical outcomes

Among been reported clinical outcomes, unfortunately, 151 died cases were reported, the pooled incidence of mortality was 53% with significant heterogeneity ($I^2 = 89.08%$, $P = 0.00$). Subsequently the course of treatment of patients is about several weeks until some articles published, some patients still staying in the hospital, the statistics on mortality may be inaccurate. Incidence rate correlation is shown in Table 4. In addition, 1791 and 788 cases were reported as staying in hospital and recovered with significant heterogeneity ($I^2 = 97.93%$; 98.63, $P = 0.00$) (Table 2).

Pooled incidence rate for characters is shown in Fig. 2.

4. Discussion

2019-ncov is one type of coronaviruses are enveloped non-segmented positive-sense RNA viruses belonging to the β-coronavirus cluster like SARS and Middle East respiratory syndrome (MERS) and now it had diseased more than half millions of people worldwide [12, 13, 55, 56]. It is assumed that 2019-ncov to be a recombinant virus between bat coronavirus and coronavirus of another unknown origin [57]. Up to now, unfortunately, there is no detailed and precise treatments presented for 2019-ncov. Symptomatic and supportive treatment is the basis of therapy for patients infected by 2019-ncov. Our meta-analysis was based on data from 50 retrospective studies in 8815 patients of 2019-ncov. The Most of the cases were from hospitals in China. Several clinical predictors of mortality were found including increased age, male sex and underlying illness, including hypertension, diabetes, renal disease, heart disease and respiratory disease. In our meta-analysis, the frequency of males more than females (52.7% vs 47.3%). The similar disease. In our meta-analysis, the frequency of males more than females (52.7% vs 47.3%).
Table 4

Variable	Death vs. Death	Death vs. History of travel	Death vs. Fever	Death vs. thromboplastin	Death vs. Diarrhea	Death vs. Age	Death vs. History of travel (from China)	Death vs. History of travel (from Wuhan and ...)
Pearson r	0.5376	-0.5368	0.5784	0.7801	0.5158	0.3752	0.09434 to 0.7643	0.307 to 0.7643
R squared	0.289	0.2882	0.3784	0.465	0.281	0.1496	0.605	0.605
P value	0.0013	**0.002**	0.0013	0.003	0.003	0.003	**0.002**	**0.002**
P value summary	**0.002**	**0.002**	**0.002**	**0.002**	**0.002**	**0.002**	**0.002**	**0.002**
Number of XY Pairs	30	30	35	30	20	19	7	8

- **Significance:**
 - *: p < 0.05
 - **:* p < 0.01
 - ***: p < 0.001

In our meta-analysis, the pooled incidence rate of patients with 2019-nCoV infection was 5% which is lower than to SARS and MERS. Several reports propose that pulmonary fibrosis will become one of the severe problems in cases with 2019-nCoV infection. How to stop and decrease the incidence of pulmonary fibrosis in cases with 2019-nCoV infection are crucial complications in the treatment of 2019-nCoV.

Additionally, we observed that hemoptysis, vomiting, diarrhea, rhinorrhea, headache, chest pain, and sore throat are less than occurred in patients with 2019-nCoV. Air-space opacities (unilateral focal and both unilateral multifocal or bilateral involvement) are the key radiological characters in SARS cases. Although, ground–glass opacities and consolidation were the most frequent radiological characters in MERS patients. Guan W and colleagues observed that the frequent radiographic features were ground–glass opacity (50%) and bilateral patchy shadowing (46%) in 1099 cases with 2019-nCoV infection. Huang C and colleagues reported that the normal radiographic feature of severe patients with 2019-nCoV were bilateral multiple lobular and subsegmental areas of consolidation. The pooled incidences of the bilateral pneumonia multiple mottling and ground–glass opacity bilateral patchy shadowing and consolidation were 70%, 60%, 50%, and 37%. Based on the laboratory characters, the pooled incidence rate of lymphocytes decrease and increase were 58% and 14%. Otherwise, the pooled incidence rate of increasing and decreasing Neutrophils was 17% and 16%. These defects are comparable to those previously detected in cases with MERS and SARS infection. These outcomes more endorse that lymphocytes decrease along with increasing neutrophils was a characteristic of SARS, and 2019-nCoV might primarily effect on lymphocytes, especially T lymphocytes. Additionally, the administration of glucocorticosteroids cause immunosuppression, decreasing the function and/or numbers of lymphocytes, and deregulated lymphocyte responses. Therefore, treatment with glucocorticoids difficult the concern about Lymphopenia. On the other hand, immune insufficiency may be also a risk factor for poor outcome in patients with 2019-nCoV. Currently, outcomes on the death of 2019-nCoV are varying. The recent four reports include 138, 41, 507 and 41 cases, the mortality was 4.3%, 15%, 7.9% and 14.6% respectively. However, the mortality rates of SARS (10%) and MERS (34%) are higher than to 2019-nCoV. In our meta-analysis, the pooled incidence death was 5% respectively. Although, this result higher than the death reported by the previous reports. The cause for this occurrence may be related with the absence of identifying information on data, and also deficient data on diagnosis approaches and treatment practices about 2019-nCoV. However, there were also some limitations of our meta-analysis: (1) all reports included had retrospective designed with high statistic heterogeneity (large variation in the sample size among studies; (2) often cases in...
Fig. 2. Pooled incidence rate for characters in the study.
Fig. 2. (continued).
this meta-analysis are Chinese; (3) large variation in lengths of follow-up led to some cases may be still stating in hospital in the included studies. In conclusion, the outcomes of our systemic review and meta-analysis provide a quantitative pooled incidence rate of clinical, epidemiological, laboratory, and radiological features of 2019-nCoV and has great potential to develop diagnosis and patient's stratification in 2019-nCoV. However, this conclusions of this study still requisite to be warranted by more careful design, larger sample size multivariate studies to corroborate the results of this meta-analysis.

Source(s) of support

None.
Declaration of competing interest

The authors declare that there are no conflicts of interest.

Acknowledgements

We thank the health workers, nurses, clinical staff and all the people who fight with 2019-nCoV.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijjmm.2020.10.004.

References

[1] Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV pandemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020;91:64–6.
[2] Chang D, Lin M, Wei L, Xie L, Zhu G, Cruz SD, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. Jama 2020;323(11):1092–3.
[3] Balassiano IT, Dos Santos-Filho J, Vital-Brazil JM, Noua SR, Souza CR, Brazier JS, et al. Detection of cross-infection associated to a Brazilian PCR-ribotype in a university hospital in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek 2019;99(2):249–55.
[4] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.
[5] Zhao S, Lin Q, Ran J, Mao SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214–7.
[6] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25(9):805–7.
[7] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003;327(7445):557–60.
[8] DerSimonian R, Laird N. Meta-analysis in clinical trials. Clin Trials 1986;3(3):177–88.
[9] Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in a report of 1014 cases. Radiology 2020:200642.
[10] Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT imaging features of 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020:200674.
[11] Peng Y, Meng K, Guan H, Lenz R, Zhu W, et al. Clinical and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xinxiuanguang Zazhi 2020;48:E8004.
[12] Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20(4):425–34.
[13] Song F, Shi N, Shan F, Zhang Z, Shen J, Liu H, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020;200724.
[14] Zhou F, Li D, Wang X, Sun Z. Abnormal Correlation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020 Mar;18(4):844–7.
[15] Team eNHS. 2019-nCoV acute respiratory disease, Australia: epidemiology report 1 (reporting week 26 December 2019–2 January 2020). Communicable diseases intelligence; 2018: 2020; 44.
[16] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama 2020 Mar 24;323(12):1061–9.
[17] Wang D, Ju X, Xie F, Li Y, Li F, Huang H, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China. Zhonghua er ke za zhi – Chin J Pediatr 2020;58(4). E011-E011.
[18] Wang L, Gao Y, Zhao GJ. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China. Eur Respir J 2020;55(4):200398.
[19] Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, et al. Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Invest Radiol https://doi.org/10.1097/RLI2020; 670.
[20] Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol 2020;55(5):1169–74.
[21] Xiong Y, Sun D, Liu Y, Fan Y, Zhao L, Li X, et al. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Invest Radiol 2020.
[22] Xu Y-H, Dong J-H, An W-M, Lv X-Y, Yin X-P, Zhang J-Z, et al. Clinical and computed tomographic imaging features of Novel Coronavirus Pneumonia caused by SARS-CoV-2. J Infect 2020;80(4):394–400.
[23] Yang H, Xu J, Li Y, Liang X, Jyn Y, Chen S, et al. The preliminary analysis on the characteristics of the cluster for the Corona Virus Disease. Zhonghua liu xing bing xue za zhi – Zhonghua liuxingbingxue zazhi 2020;41:612–3.
[24] Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19) in China: a multi-center study in Weihui City. Zhonghua gan zang bing za zhi – Chin J Hepatol 2020;28(2):148.
[25] Yang X, Yu Y, Xu J, Zhu H, Liu W, Yu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Resp Med 2020;8(5):475–81.
[26] Yao Y, Tian Y, Zhou J, Ma X, Yang M, Wang S. Epidemiological characteristics of 2019-nCoV infections in Shaanxi, China by February 8, 2020. Eur Resp J 2020;55(4). 2000310.
[27] Zhang J, Dong X, Cao YY, Yuan Y, Yang Y, Yuan Y, et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy 2020;75(7):1730–41.
[28] Zhang L, Jiang Y, Wei M, Cheng B, Zhou X, Li J, et al. Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province. Zhonghua Fu Lun Shi Za Zhi 2020;55;269-77.
[29] Zhao W, Zhong Z, Xie Y, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. Am J Roentgenol 2020;215:1–6.
[30] Zhu Z, Tang J, Chai X, Fang Z, Liu Q, Hu X, et al. Comparison of heart failure and 2019 novel coronavirus pneumonia in chest CT features and clinical characteristics. Zhonghua Xinxiuanguang Zazhi 2020;48:E007.
[31] Cheng Li-E, Chan LP, Tan BH, Chen RC, Tay KH, Ling ML, et al. Deja Vu or Jamais Vu? How the severe acute respiratory syndrome experience in Singapore and Singapore radiology Department's response to the coronavirus disease (COVID-19) epidemic. J Am Roentgenol 2020;1–5.
[32] Peng K, Yuan Y, Wang X, Yang G, Zheng Y, Lin C, et al. Analysis of CT features of 15 Children with 2019 novel coronavirus infection. Zhonghua er ke za zhi – Chin J Pediatr 2020;58:E007.
[33] Li J, Li S, Cai Y, Liu Q, Li X, Zeng Z, et al. Epidemiological and Clinical Characteristics of 174 Infected Patients with 2019 Novel Coronavirus Infections Outside Wuhan, China. medRxiv. 2020. 02.11.20022053.
