Myeloid Sarcoma (Chloroma) An Uncommon Entity

Larisa Yarindy Jesús Mejenes*, Mendoza-Revilla Diego Antonio2, Jiménez-Madrigal Víctor Gabriel3, Navarro-Munguía Jazmín2, Margareth Sharon Hall Mondragón4 and Aguilera-López Ana Karina1

1Department of Pediatrics. Regional General Hospital 1. Mexican Institute of Social Security, Querétaro, Mexico
2Department of Clinical Immunology and Allergy. Regional General Hospital 1. Mexican Institute of Social Security, Querétaro, Mexico
3Department of Pediatrics. General Hospital of Zone 11. Mexican Institute of Social Security. Nuevo Laredo, Tamaulipas, Mexico
4Department of Clinical Immunology and Allergy. La Raza National Medical Center. Mexican Institute of Social Security, Mexico City, Mexico

Submission: August 11, 2020; Published: August 19, 2020

*Corresponding author: Jesus-Mejenes LY, Department of Pediatrics. Regional General Hospital 1. Mexican Institute of Social Security, Querétaro, Mexico

Abstract

Granulocytic Sarcoma or Myeloid Sarcoma (MS) is a solid tumor of myeloid origin and extramedullary location. Its incidence is estimated between 2.5 - 9.11% of patients with Acute Myeloid Leukemia, 60% of MS cases occur in children under 15 years of age. The clinical characteristics depend on its location and range from an asymptomatic lesion to organ dysfunction due to infiltration. It appears as a circumscribed or diffuse soft tissue mass infiltrating the bone, skin and/or peritoneum. Definitive diagnosis requires biopsy and immunohistochemical study, the most sensitive markers are CD43 and lysozyme, with expression in up to 100% of cases, myeloperoxidase, is expressed in 66-96% of cases. Treatment includes radiation therapy, surgery, or both, combined with a specific systemic chemotherapy regimen or allogeneic bone marrow transplantation. Recognition of this entity, a timely diagnosis and early treatment is a diagnostic challenge when it occurs in isolation.

Keywords: Granulocytic Sarcoma; Myeloid Sarcoma; Chloroma; Leukemia Mieloid Acute; Tumor

Abbreviations: GS: Granulocytic Sarcoma; MS: Myeloid Sarcoma; LMA: Leukemia Mieloid Acute; MPO: Mieloperoxidase

Introduction

Granulocytic Sarcoma (GS), Myeloid Sarcoma (MS) or also known as Chloroma is a solid tumor of myeloid origin and extramedullary location [1,2]. The term Chloroma (green tumor) is derived from the greenish staining of the lesion attributable to myeloperoxidase in cells of the granulocytic lineage first described by Burns in 1811. In 2002, the World Health Organization abandoned its original name and gave it current nomenclature (Myeloid Sarcoma) [3]. Its estimated incidence is 2.5 - 9.11% of patients with Acute Myeloid Leukemia (AML), especially the M2 subtype, 60% of cases occur in children under 15 years of age. [4-7] Common sites of appearance include but are not limited to the skin, soft tissues, bone, peritoneum, lymph nodes, and digestive tract. Additionally, one can find lesions around the orbit, skull, and epidural spaces [2,7,8]. Its formation is believed to be due to extramedullary hematopoiesis secondary to proliferation of hematopoietic progenitor cells and an increase in the expression of the adhesion molecule CD56 in malignant myeloid cells, associated with the genetic translocation t (8; 21) [9].

Diagnosis

Clinical characteristics

Asymptomatic presentations are reported in up to 50% of patients. The clinical characteristics of MS depend on its location, where the tumor can create a displacing effect or organ dysfunction due to infiltration and tumor burden [10].

Radiographic characteristics

MS usually appears as a diffuse or circumscribed soft tissue mass. Computed Tomography is the initial study of choice; however, Magnetic Resonance Imaging is preferred when central nervous system involvement is suspected [11,12].

Histopathological characteristics

Definitive diagnosis of MS requires biopsy and immunohistochemical studies. Morphologically, infiltration of immature cells of myeloid lineage is observed, receiving their name according to the myeloid cell involved. The diagnosis is
confirmed with an immunohistochemical study by observing surface markers such as CD68-KP1, myeloperoxidase (MPO), CD117, CD99, CD68 / PG-M1, lysozyme, CD34, CD56, CD61, CD30, CD4, CD43, CD45. In 2008, the WHO established the stains required for the diagnostic study for MS and these should include chloroacetate esterase, myeloperoxidase, and non-specific esterase [13-15].

It has been reported that the most sensitive markers for MS are CD43 and lysozyme, with expression in up to 100% of cases, however, they are not specific markers. MPO, which is expressed in 66-96% of MS cases, is used to differentiate MS from lymphoma. CD68 and CD117 are also part of the panel most used for diagnosis [13,16]. Cytogenetic alterations are found in approximately 50% of patients. The most common mutation described in MS is mutated NPM1. The most common translocation is t (8; 21). Inv (16) is also a common abnormality associated with extramedullary disease in AML [17-19].

Treatment

Treatment depends on the time of presentation of the disease, that is, if it is an isolated tumor, concomitant with AML or if it presents as a relapse of AML. Treatment includes radiation therapy, surgery, or both, combined with systemic chemotherapy specific to AML. Allogeneic bone marrow transplantation is also a therapeutic option in achieving remission of the disease or in case of relapse [19-23].

Conclusion

MS is a rare soft tissue tumor that should be considered in a patient with AML for timely diagnosis and early treatment; it is a diagnostic challenge when it occurs in isolation.

Conflict of interest

The authors declare that there is no conflict of interest to disclose.

References

1. Shields J, Stopyra G, Marr B, Shields C, Pan W et.al. (2003) Bilateral Orbital Myeloid Sarcoma as Initial Sign of Acute Myeloid Leukemia Case Report and Review of the Literature. Arch Opthalmol 121(1): 138-142.
2. Noh BW, Park SW, Chun JE, Kim JH, Kim HJ et.al. (2009) Granulocytic Sarcoma in the Head and Neck: CT and MR Imaging Findings. Clin Exp Otorhinolaryngol 2(2): 66-71.
3. Antic D, Elezovic I, Milic N, Suvađič N, Vidovic A et.al. (2013) Is there a gold standard treatment for patients with isolated myeloid sarcoma? Biomed Pharmacother 67(1): 72-77.
4. Guernazzi A, Feger C, Rousselet P, Merad M, Benchia N et.al. (2002) Granulocytic sarcoma (chloroma): imaging findings in adults and children. AJR Am J Roentgenol 178(2): 319-325.
5. Lengerle C, Wirths S, Kanz L, Hebart H, Kasinger E et.al. (2005) Unusual leukemia presentations. J Clin Oncol 23 (24): 5837-5839.
6. Fritz J, Vogel W, Bares R, Horger M (2007) Radiologic spectrum of extramedullary relapse of myelogenous leukemia in adults AJR. Am J Roentgenol 189 (1): 209-218.
7. Yilmaz AF, Saydam G, Sahin E, Baran Y (2013) Granulocytic sarcoma: a systematic review. Am J Blood Res 3(4): 265-70.
8. Kawamoto K, Miyoshi H, Yoshida N, Takizawa J, Sone H et.al. (2016) Clinicopathological, cytogenetic, and prognostic analysis of 131 myeloid sarcoma patients. Am J Surg Pathol 40(11): 1473-1483.
9. Chang H, Brandwein J, Yi QL, Chun K, Patterson B et.al. (2004) Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res 28(10): 1007-1011.
10. Campidelli C, Agostinelli C, Stitson R, Pileri SA (2009) Myeloid sarcoma: extramedullary manifestation of myeloid disorders. Am J Clin Pathol 132(3): 426-437.
11. Stölzel F, Röllig C, Radle J, Mohr B, Platz- becker U et.al. (2011) 18F-FDG-PET/ CT for detection of extramedullary acute myeloid leukemia. Haematologica 96(10): 1552-1556.
12. Bakst R, Wolden S, Yahalom J (2012) Radiation therapy for chloroma (granulocytic sarcoma). Int J Radiat Oncol Biol Phys 82(5): 1816-1822.
13. Aggarwal E, Mulay K, Honavar SG. (2014) Orbital extra-medullary granulocytic sarcoma: clinicopathologic correlation with immunohistochemical features. Surv Ophthalmol 59(2): 232-235.
14. Vermi W, Facchetti F, Rosati S, Vergoni E, Rossi E et.al. (2004) Nodal and extranodal tumor-forming accumulation of plasmacytoid monocytes/ interferon-producing cells associated with myeloid disorder. Am J Surg Pathol 28(5): 585-595.
15. Pileri SA, Ascani S, Cox MC, Campidelli C, Bacci E et.al. (2007) Myeloid sarcoma: clinic-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21(2): 340-350.
16. Mourad W, Kfoury H, Al Hussein H (2001) The value of CD34, myeloperoxidase and chloroacetate esterase (Leder) stain in the diagnosis of granulocytic sarcoma. Ann Saudi Med 21(5-6): 287-291.
17. Alvarez P, Navascués CA, Ordieres C, Pipa M, Vega IF et.al. (2011) Granulocytic sarcoma of the small bowel, greater omentum and peritoneum associated with a CBFβ/ MYH11 fusion and inv(16) (p13q22): a case report. Int Arch Med 4(1): 3-5.
18. Zhang XH, Zhang R, Li Y (2010) Granulocytic sarcoma of abdomen in acute myeloid leukemia patient with inv(16) and t (6;17) abnormal chromosome: case report and review of literature. Leuk Res 34(7): 958-961.
19. Bakst RL, Tallman MS, Douer D, Yahalom J (2011) How I treat extramedullary acute myeloid leukemia. Blood 118(14): 3785-3793.
20. Avni B, Koren-Michowitz M (2011) Myeloid sarcoma: current approach and therapeutic options. Ther Adv Hematol 2(5): 309-316.
21. He J, Zhu L, Ye X, Li L, Zhu J, et.al. (2014) Clinical characteristics and prognosis of non- leukemic myeloid sarcoma. Am J Med Sci 347(6): 434-438.
22. Chevallier P, Mothy M, Lioure B, Michel G, Contentin N, et.al. (2008) Allogeneic hematopoietic stem-cell transplantation for myeloid sarcoma: a retrospective study from the SFDM-TC. J Clin Oncol 26(30): 4940-4943.
23. Magdy M, Abdel Karim N, Eldessouki I, Gaber O, Rahoma M et.al. (2019) Myeloid Sarcoma. Oncol Res Treat 42(4): 224-229.
