A Comparative Study of the Central Effects of Specific Proopiomelancortin (POMC)-Derived Melanocortin Peptides on Food Intake and Body Weight in Pomc Null Mice

Y. C. Loraine Tung, Sarah J. Piper, Debra Yeung, Stephen O’Rahilly, and Anthony P. Coll

Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge CB2 2XY, United Kingdom

Functional disruption of either MC3R or MC4R results in obesity, implicating both in the control of energy homeostasis. The ligands for these receptors are derived from the prohormone proopiomelanocortin (POMC), which is posttranslationally processed to produce a set of melanocortin peptides with a range of activities at the MC3R and MC4R. The relative importance of each of these peptides α-MSH, γ3-MSH, γ2-MSH, γ1-LPH, lipotropin (γ-LPH) and, in man but not in rodents, β-MSH in the maintenance of energy homeostasis is, as yet, unclear. To investigate this further, equimolar amounts (2 nmol) of each peptide were centrally administered to freely feeding, corticosterone-supplemented, Pomc null (Pomc−/−) mice. After a single dose at the onset of the dark cycle, α-MSH had the most potent anorexigenic effect, reducing food intake to 35% of sham-treated animals. β-MSH, γ-LPH, and γ2- and γ2-MSH all reduced food intake but to a lesser degree. The effects of peptide administration over 3 d were also assessed. Only α-MSH significantly reduced body weight, affecting both fat and lean mass. Other peptides had no significant effect on body weight. Pair-feeding of sham-treated mice to those treated with α-MSH resulted in identical changes in total weight, fat and lean mass indicating that the effects of α-MSH were primarily due to reduced food intake rather than increased energy expenditure. Although other melanocortins can reduce food intake in the short-term, only α-MSH can reduce the excess fat and lean mass found in Pomc−/− mice, mediated largely through an effect on food intake. (Endocrinology 147: 5940–5947, 2006)
affinities to melanocortin receptors (15). Although α-MSH has equal affinity for MC3R and MC4R, β-MSH has the highest affinity for MC4R (16, 17), whereas γ3-MSH preferentially binds to MC3R (18). These differences between the in *vitro* characteristics of the melanocortins are illustrated by a recent study characterizing human MC4R polymorphisms that demonstrated β-MSH remained active at a number of receptors that were not stimulated by other melanocortins (19).

Several *in vivo* studies have compared the response of centrally administered melanocortins on food intake (20–22). α-, β-, and γ-MSH appear to have differential effects upon short-term feeding behavior, both in terms of magnitude and time of onset of effect. However, none of these studies have been carried out in the total absence of endogenous melanocortins, and none have directly compared the ability of the melanocortins to bring about changes in weight.

In this study, we have used a mouse model lacking all endogenous POMC peptides (Pomc−/−) to further investigate the effects of the centrally derived melanocortin peptides upon food intake and body weight. By giving equimolar amounts of peptide intracerebroventricularly (icv) to corticosterone-supplemented Pomc−/− mice, we wished to determine whether α-, β-, and γ-MSH might have differential effects on the hyperphagia and excess fat and lean mass found in this mouse model. In addition, we have also taken into account the species difference in POMC processing and investigated the effects of γ-LPH, the direct precursor of β-MSH, as well as using both γ3-MSH and γ2-MSH.

Materials and Methods

Pomc−/−** mice**

Pomc null mice were generated on a 129/SvEv background, and genotypes were determined by PCR of DNA from ear tissue using a method previously described (11). All mice were maintained under controlled temperature (22°C) and light (12 h light from 0700–1900 h) and had *ad libitum* access to water and standard chow (4.5% fat chow; Special Diet Services, Witham, UK). Twelve-week-old male mice were used in all the studies and were individually caged throughout the duration of the experiment. All protocols were in accordance with the United Kingdom Home Office.

icv studies

On d 0, mice underwent stereotaxic surgery to place an indwelling guide cannula into the lateral ventricle. Mice were anesthetized with a mix of inhaled isoflurane and oxygen and a 26-gauge steel guide cannula (internal diameter 0.24 mm, outer diameter 0.46 mm, length 2 mm; Semat International, Herts, UK) was implanted into the right lateral ventricle using the following coordinates: 1.0 mm lateral from bregma, 0.5 mm posterior to bregma. The guide cannula was secured to the skull using quick-drying cyanoacrylate glue and a dental cement (Associated Dental Products, Wiltshire, UK) and a dummy cannula was inserted. All animals received analgesia (Rimadyl, 5 mg/kg; Pfizer Animal Health, Kent, UK) and antibiotic (Terramycin LA, 60 mg/kg; Pfizer Animal Health) before being returned to their home cage.

In addition, on d 0, drinking water was replaced by corticosterone-supplemented drinking water (as described in Corticosterone replacement), which remained in place for the duration of the study. Our previous studies (23) have shown that, without corticosterone supplementation, Pomc−/− mice are affected by a rapid decline in body weight and food intake in the postoperative period. As the aim of the study was to directly compare the anorexigenic potencies of melanocortin peptides, we elected for continuous corticosterone supplementation.

On d 7, food intake and body weight were measured. If either parameter did not match presurgery values, mice were excluded from the study. On d 8, 1 h before the onset of the dark cycle, mice received either 2 nmol peptide (α-MSH, γ-LPH, β-MSH, γ3-MSH, or γ2-MSH) or PBS.
(sham) in a total volume of 2 μl. This was administered using a Hamilton syringe over 2 min. Food intake was measured over at 2, 4, 12, and 24 h.

On d 9 and 10, peptide was administered in an identical way to d 8, with food intake and body weight measured at 0800 h each d. On the morning of d 11, mice underwent a dual-energy x-ray absorptiometry (DEXA) scan to assess body morphology, and were killed to collect blood and tissue. In addition, accurate cannula placement was confirmed by injecting 2 μl of methylene blue dye into the indwelling cannula. Animals failing to show diffusion of the dye throughout the ventricular system were excluded from subsequent analysis.

Corticosterone replacement

Corticosterone replacement was given as supplemented drinking water at a final concentration of 25 μg/ml. Corticosterone was purchased from Sigma-Aldrich (Poole, UK). Corticosterone concentrations achieved in all six treatment groups were identical (sham vs. α-MSH vs. γ-LPH vs. β-MSH vs. γ3-MSH vs. γ2-MSH: 50.9 ± 23.0 vs. 43.3 ± 16.5 vs. 45.4 ± 18.0 vs. 33.4 ± 4.2 vs. 42.4 ± 23.6 vs. 42.4 ± 23.6, all P = n.s. vs. sham).

Peptides

α-MSH (Ac-YSYMEHRWGTK TVN-H2), β-MSH (H-DEGPYRMMEHRWGPSPK-D-2-MSH (H-YVMGHFW DRF-G-OH) and γ2-MSH (H-YVMGHFW DRF-G-OH) were all purchased from Bachem (St Helens, UK).

Statistical significance was determined using Student’s t test, except for the data presented in Fig. 3, where significance was sought using two-way ANOVA. The PRISM software package (GraphPad, San Diego, CA) was used for all analyses. Results were considered statistically significant at P < 0.05.

Results

All centrally derived melanocortin peptides can reduce food intake

To determine the relative anorexigenic potency of each of the centrally derived melanocortins, we administered 2 nmol of each peptide into the lateral ventricle of Pommec–/– mice who were also receiving corticosterone-supplemented drinking water. All peptides were given 1 h before the onset of the dark cycle with food intake over the subsequent 24-h period recorded.

At all time points, α-MSH caused the biggest reduction in food intake, with the amount consumed at 24 h only a third of the amount eaten by sham-treated animals (sham vs. α-MSH, 8.22 ± 0.73 vs. 2.85 ± 0.74 g, P < 0.001) (Fig. 2). γ3-MSH caused the second largest reduction in food intake, able to reduce food intake at all time points measured across the 24-h period. Interestingly, γ-LPH and β-MSH had similar anorexigenic actions, although both were less effective than α- or γ3-MSH in reducing food intake. Finally, γ2-MSH was the least effective, only bringing about a significant reduction in food intake at 4 h (sham vs. γ2-MSH, 2.35 ± 0.10 vs. 1.63 ± 0.24 g, P < 0.05) (Fig. 1).

Only α-MSH can reduce body weight in Pommec–/– mice

Although all the peptides given as a single dose were able to reduce food intake, none caused a significant reduction in body weight. Therefore, we wished to determine if repeated central administration of melanocortin peptides might be able to impact upon the excess fat and lean tissue mass we have previously reported in corticosterone-treated Pommec–/– mice (24), and in particular, if different peptides might have differential effects upon this phenotype. Therefore, we extended the study by administering equimolar amounts of each peptide for another 2 d, again with each dose given just before the onset of the dark cycle.

Once again, α-MSH had the most potent effect on food intake, with cumulative food intake reduced to less than half that seen in sham animals (sham vs. α-MSH, 31.50 ± 2.38 vs. 13.99 ± 2.20 g, P < 0.001) (Fig. 3A). The other administered peptides also reduced cumulative food intake, but their effects were all of a similar magnitude (γ-LPH vs. β-MSH vs. γ3-MSH vs. γ2-MSH, 23.63 ± 1.72 vs. 24.72 ± 3.00 vs. 24.72 ± 3.00 vs. 24.92 ± 2.00 g, respectively, all P < 0.05 vs. sham) (Fig. 3, B–E).

α-MSH was also the only administered peptide that brought about a significant reduction in weight. Thus, three doses of α-MSH were enough to cause a 6-g weight loss in total body weight (Fig. 4A), representing a reduction of 13% from baseline weight (Fig. 4B). Analysis of body composition...
by DEXA on the day after the third injection demonstrated this loss to be a combination of reduced fat and lean mass (sham vs. α-MSH; fat mass, 15.26 ± 1.15 vs. 12.82 ± 0.63 g, P < 0.05; lean mass, 26.08 ± 0.86 vs. 22.83 ± 0.43 g, P < 0.05) (Fig. 5A). Analysis of anatomical depots showed the fat loss to be from mesenteric (sham vs. α-MSH, 745 ± 46 vs. 582 ± 31 mg, P < 0.01), retroperitoneal (534 ± 90 vs. 344 ± 27 mg, P < 0.05), and sc depots (809 ± 78 vs. 603 ± 34, P < 0.05) without any effect upon the gonadal fat pad (Fig. 5B). Whole liver mass was also significantly reduced after α-MSH treatment (2115 ± 68 vs. 1285 ± 150, P < 0.01) (Fig. 5B).

Fat mass in γ3-MSH-treated mice was reduced to 86% of that seen in sham-treated animals, but in absolute terms, this failed to reach statistical significance (sham vs. γ3-MSH, P < 0.05).
respectively, sham, although again the magnitude of these effects was less
when given centrally to a mouse model lacking all endogenously
derived POMC products. α-MSH had the most potent an-
orexigenic effect, causing the biggest reduction in food in-
take. Furthermore, α-MSH was the only melanocortin able to
reduce the excess fat and lean mass found in Pome−/− mice
when given repeatedly over 3 d. On the basis of a pair-
feeding experiment, these effects were mediated largely
through a reduction in food intake. Equimolar amounts of
γ-LPH, β-MSH, γ-3-MSH, and γ-2-MSH were all able to reduce
food intake, but to a lesser degree than that seen with α-MSH
and none caused a significant reduction in body weight.

Much of our current understanding of the importance of the
melanocortinergic system in energy homeostasis is from
data derived using rodent models. Many previous studies
have demonstrated that central administration of melano-
cortin agonists can significantly reduce food intake (25–28)
even in agouti mice, another obese mouse model with dis-
rupted melanocortinergic signaling (29). However, the ma-
jority of these studies have used potent pharmacological
agents such as melanotan II (30) rather than the endog-
enously produced peptides.

There are far fewer studies that have directly compared the
central effects of specific POMC-derived melanocortin pep-
tides on food intake, with each using different treatment and
dosing regimens. Thus, Kask et al. (20) compared the effects
of central α-MSH, β-MSH, and γ1-MSH on food intake in ad
libitum-fed and 24 h fasted rats. In both fed and fasted states,
α-MSH and β-MSH were equally effective in reducing food
intake over 4 h, whereas γ1-MSH had no such effect. How-
ever, in contrast to our study, the larger precursor peptides
of γ-1-MSH and β-MSH (γ-3-MSH and γ-LPH, respectively)
were not used, and equal microgram, not equimolar, doses
were given. The peptides were also administered in the early
part of the light phase, a time when, in the ad libitum-fed rats
in particular, food intake is at its physiological nadir and no
data about the impact upon body weight was presented.

Abbott et al. (21) centrally administered equimolar amounts of
α-, β-, and γ2-MSH to rats fasted for 24 h, with peptides
given at the onset of the light cycle. α- and β-MSH both
dose-dependently decreased food intake over 2 h with γ2-
MSH unable to reduce food intake at any point measured.

Intriguingly, this study also reported adverse locomotor ac-
tivity with γ3-MSH and γ1-MSH, a finding that precluded

Discussion

The current study is the first to have directly compared the
Effects upon food intake and body weight of melanocortins
given centrally to a mouse model lacking all endogenously
derived POMC products. α-MSH had the most potent an-
orexigenic effect, causing the biggest reduction in food in-
take. Furthermore, α-MSH was the only melanocortin able to
reduce the excess fat and lean mass found in Pome−/− mice
when given repeatedly over 3 d. On the basis of a pair-
feeding experiment, these effects were mediated largely
through a reduction in food intake. Equimolar amounts of
γ-LPH, β-MSH, γ-3-MSH, and γ-2-MSH were all able to reduce
food intake, but to a lesser degree than that seen with α-MSH
and none caused a significant reduction in body weight.

Much of our current understanding of the importance of the
melanocortinergic system in energy homeostasis is from
data derived using rodent models. Many previous studies
have demonstrated that central administration of melano-
cortin agonists can significantly reduce food intake (25–28)
even in agouti mice, another obese mouse model with dis-
rupted melanocortinergic signaling (29). However, the ma-
jority of these studies have used potent pharmacological
agents such as melanotan II (30) rather than the endog-
enously produced peptides.

There are far fewer studies that have directly compared the
central effects of specific POMC-derived melanocortin pep-
tides on food intake, with each using different treatment and
dosing regimens. Thus, Kask et al. (20) compared the effects
of central α-MSH, β-MSH, and γ1-MSH on food intake in ad
libitum-fed and 24 h fasted rats. In both fed and fasted states,
α-MSH and β-MSH were equally effective in reducing food
intake over 4 h, whereas γ1-MSH had no such effect. How-
ever, in contrast to our study, the larger precursor peptides
of γ-1-MSH and β-MSH (γ-3-MSH and γ-LPH, respectively)
were not used, and equal microgram, not equimolar, doses
were given. The peptides were also administered in the early
part of the light phase, a time when, in the ad libitum-fed rats
in particular, food intake is at its physiological nadir and no
data about the impact upon body weight was presented.

Abbott et al. (21) centrally administered equimolar amounts of
α-, β-, and γ2-MSH to rats fasted for 24 h, with peptides
given at the onset of the light cycle. α- and β-MSH both
dose-dependently decreased food intake over 2 h with γ2-
MSH unable to reduce food intake at any point measured.

Intriguingly, this study also reported adverse locomotor ac-
tivity with γ3-MSH and γ1-MSH, a finding that precluded

Discussion

The current study is the first to have directly compared the
Effects upon food intake and body weight of melanocortins
given centrally to a mouse model lacking all endogenously
derived POMC products. α-MSH had the most potent an-
orexigenic effect, causing the biggest reduction in food in-
take. Furthermore, α-MSH was the only melanocortin able to
reduce the excess fat and lean mass found in Pome−/− mice
when given repeatedly over 3 d. On the basis of a pair-
feeding experiment, these effects were mediated largely
through a reduction in food intake. Equimolar amounts of
γ-LPH, β-MSH, γ-3-MSH, and γ-2-MSH were all able to reduce
food intake, but to a lesser degree than that seen with α-MSH
and none caused a significant reduction in body weight.

Much of our current understanding of the importance of the
melanocortinergic system in energy homeostasis is from
data derived using rodent models. Many previous studies
have demonstrated that central administration of melano-
cortin agonists can significantly reduce food intake (25–28)
even in agouti mice, another obese mouse model with dis-
rupted melanocortinergic signaling (29). However, the ma-
jority of these studies have used potent pharmacological
agents such as melanotan II (30) rather than the endog-
enously produced peptides.

There are far fewer studies that have directly compared the
central effects of specific POMC-derived melanocortin pep-
tides on food intake, with each using different treatment and
dosing regimens. Thus, Kask et al. (20) compared the effects
of central α-MSH, β-MSH, and γ1-MSH on food intake in ad
libitum-fed and 24 h fasted rats. In both fed and fasted states,
α-MSH and β-MSH were equally effective in reducing food
intake over 4 h, whereas γ1-MSH had no such effect. How-
ever, in contrast to our study, the larger precursor peptides
of γ-1-MSH and β-MSH (γ-3-MSH and γ-LPH, respectively)
were not used, and equal microgram, not equimolar, doses
were given. The peptides were also administered in the early
part of the light phase, a time when, in the ad libitum-fed rats
in particular, food intake is at its physiological nadir and no
data about the impact upon body weight was presented.

Abbott et al. (21) centrally administered equimolar amounts of
α-, β-, and γ2-MSH to rats fasted for 24 h, with peptides
given at the onset of the light cycle. α- and β-MSH both
dose-dependently decreased food intake over 2 h with γ2-
MSH unable to reduce food intake at any point measured.

Intriguingly, this study also reported adverse locomotor ac-
tivity with γ3-MSH and γ1-MSH, a finding that precluded

Discussion

The current study is the first to have directly compared the
Effects upon food intake and body weight of melanocortins
given centrally to a mouse model lacking all endogenously
derived POMC products. α-MSH had the most potent an-
orexigenic effect, causing the biggest reduction in food in-
take. Furthermore, α-MSH was the only melanocortin able to
reduce the excess fat and lean mass found in Pome−/− mice
when given repeatedly over 3 d. On the basis of a pair-
feeding experiment, these effects were mediated largely
through a reduction in food intake. Equimolar amounts of
γ-LPH, β-MSH, γ-3-MSH, and γ-2-MSH were all able to reduce
food intake, but to a lesser degree than that seen with α-MSH
and none caused a significant reduction in body weight.

Much of our current understanding of the importance of the
melanocortinergic system in energy homeostasis is from
data derived using rodent models. Many previous studies
have demonstrated that central administration of melano-
cortin agonists can significantly reduce food intake (25–28)
even in agouti mice, another obese mouse model with dis-
rupted melanocortinergic signaling (29). However, the ma-
jority of these studies have used potent pharmacological
agents such as melanotan II (30) rather than the endog-
enously produced peptides.

There are far fewer studies that have directly compared the
central effects of specific POMC-derived melanocortin pep-
tides on food intake, with each using different treatment and
dosing regimens. Thus, Kask et al. (20) compared the effects
of central α-MSH, β-MSH, and γ1-MSH on food intake in ad
libitum-fed and 24 h fasted rats. In both fed and fasted states,
α-MSH and β-MSH were equally effective in reducing food
intake over 4 h, whereas γ1-MSH had no such effect. How-
ever, in contrast to our study, the larger precursor peptides
of γ-1-MSH and β-MSH (γ-3-MSH and γ-LPH, respectively)
were not used, and equal microgram, not equimolar, doses
were given. The peptides were also administered in the early
part of the light phase, a time when, in the ad libitum-fed rats
in particular, food intake is at its physiological nadir and no
data about the impact upon body weight was presented.

Abbott et al. (21) centrally administered equimolar amounts of
α-, β-, and γ2-MSH to rats fasted for 24 h, with peptides
given at the onset of the light cycle. α- and β-MSH both
dose-dependently decreased food intake over 2 h with γ2-
MSH unable to reduce food intake at any point measured.
these particular peptides being studied further. Finally, Millington et al. (22) compared the effects of centrally administered α-MSH, β-MSH, and γ2-MSH on hypothalamic neuronal activation and on food intake in rats fasted for 48 h. In contrast to the study by Abbott et al., this study demonstrated that α- and γ2-MSH, but not β-MSH, suppressed food intake. Furthermore, the two peptides shown to be biologically active brought about their effects over different time courses with α-MSH acting more rapidly than γ2-MSH. Each of the melanocortins used in this study also caused distinct anatomical patterns of activation within the hypothalamus, suggesting the individual peptides may have distinct biological roles (22).

Despite these studies, there remains contention about the physiological hierarchy of the melanocortin peptides. The results of the current study show α-MSH to be the most potent anorexigen, significantly reducing food intake over 24 h after a single dose. Repeated administration of α-reduced both fat and lean mass, but to an identical degree to that seen in pair-fed mice. We have previously reported that the phenotype of Pomc^{−/−} mice results from increased food intake and a reduction in resting basal metabolic rate (11). The finding that α-MSH-treated mice did not lose more weight than pair-fed mice indicates that, at least in the paradigm used in this study, administration of α-MSH did not significantly increase energy expenditure but simply ameliorated the hyperphagia.

These results are intriguing in the light of recent data clearly demonstrating functional divergence of the melanocortin pathway. Balthasar et al. (31) engineered a lox P-modified, null Mc4r allele, which can be reactivated by Cre recombinase. Using Sim1 cre transgenic mice, Mc4r expression was restored in the paraventricular hypothalamus and a subpopulation of the amygdala neurons. Sixty percent of the obesity seen in total Mc4r null mice was prevented. This was entirely due to a normalization in food intake with the reduced energy intake typical of Mc4r^{−/−} mice unaffected by this targeted reexpression. Thus MC4R in the paraventricular hypothalamic nucleus and/or amygdala control food intake but MC4R elsewhere control energy expenditure. Given that we administered peptide into the lateral ventricle, it is likely that a higher concentration of peptide would have reached the MC4R in the PVN compared with more neuroanatomically distinct sites like the brainstem. This may, in part, explain why the predominant effect of α-MSH was on food intake.

Compared with α-MSH, the physiological roles of β-MSH and its direct precursor, γ-LPH, remain less well characterized. This may be understandable as rodents lack the N-terminal cleavage site necessary for the generation of β-MSH. Therefore, conclusions drawn from rodent data may have resulted in an important role for β-MSH being overlooked. In fact, it has required human genetic studies to bring novel insights into the function of this peptide. Two recent reports have demonstrated that β-MSH is likely to be a physiologically relevant endogenous ligand at the MC4R (32, 33), thereby challenging the canonical view that α-MSH is the primary melanocortin ligand controlling energy homeostasis in humans. Like the previous rodent studies reviewed above, our data also suggest that β-MSH can reduce food intake but
also show that POMC-derived peptide γ-LPH, which is more physiologically relevant to mice, can also significantly reduce food intake to a similar degree. Thus γ-LPH may have a function in modulating appetite and food intake in rodents.

Much of the data derived from rodent studies suggest that the primary role of the γ-MSH species may be in the regulation of the cardiovascular system and in particular integrating the response to dietary sodium excess (34). A high-sodium diet increases the pituitary content of γ-MSH and results in a doubling of plasma γ-MSH concentration. Renal MC3Rs are also up-regulated by a high-salt diet and acting via these receptors, γ-MSH is thought to be able to bring about a marked natriuresis. However, there is as yet no mouse model that solely lacks γ-MSH, with some of the key conclusions regarding the role of this melanocortin drawn from a mouse model functionally lacking γ-MSH because of a lack of the prohormone converting enzyme, PC2 (35). This enzyme is involved in processing a range of other peptides, with the knock-on effect of these unprocessed hormones and the lack of smaller downstream peptides likely to impact upon the key physiological functions within the mouse. The data in the current study show both γ3-MSH and γ2-MSH can both reduce food intake. Although this is in accordance with many of the previous published studies (20–22), a recent report by Marks et al. (36) demonstrated that an analog of γ-MSH (d-Trp⁶-γ-MSH) with high affinity for MC3R can increase food intake. The explanation of this orexigenic action invoked a central mechanism in which the ligand bound to MC3R on arcuate POMC neurons. Acting as an inhibitory autoreceptor, increased activity at MC3R, therefore, could bring about a reduction in melanocortinergic tone and decrease food intake. The data presented in the current study are not able to directly address this putative mechanism of action of γ-MSH, as even if centrally administered peptide were acting upon MC3R on POMC neurons, the very nature of the Pomp⁻/⁻ mouse means melanocortinergic tone is non-existent before any peptide is given. However, it is noteworthy that the peptide analog studied by Marks et al. (36) was given peripherally, not centrally, and as MC3R are found in many other tissues, including adipose tissue and the stomach, it is possible that the effects of d-Trp⁶-γ-MSH seen were from a site of action outside of the hypothalamus.

The current study also demonstrated that γ3-MSH significantly reduced liver mass and showed a trend to reducing total fat mass, indicating that this ligand may have a potential role in controlling fat deposition. This may be via stimulation of the sympathetic system (37, 38) although the nature of the receptor involved cannot be determined by the present study.

One limitation of a pharmacological study is that it can never wholly replicate a complex physiological scenario, with any results undoubtedly an underestimate of the true elegance and subtlety at work within the system. POMC is highly posttranslationally modified and there is still much to understand with respect to the regulation of these processes. Indeed, some intriguing recent data have suggested that leptin can critically alter an important step in melanocortin processing (39). By analysis of the protein content and enzymatic activity within the hypothalamus of wild-type and leptin-deficient ob/ob mice, Guo et al. (39) demonstrated that leptin specifically and rapidly stimulated the generation of acetylated α-MSH. Their data suggested that this is the result of a leptin-dependent increase in the activity of an N-acetyltransferase in hypothalamic POMC neurons. The effects of leptin on energy balance via the central melanocortin pathway now appear to have an additional level of complexity by regulating acetylation of α-MSH. In addition, the fact that there are multiple POMC-derived peptides, but only two centrally expressed melanocortin receptor subtypes through which they can act, brings a further layer of complexity to the system. It will take carefully targeted genetic models to tease apart the system further and ascribe true physiological function to each peptide.

Although all the peptides were administered in equimolar amounts, in keeping with what is known about POMC processing in vivo (14), we have no data pertaining to the pharmacokinetics of peptides after administration. Such data would be valuable in further interpreting the results presented, as it is conceivable that the ability of α-MSH to bring about the biggest change in food intake and body weight result, in part, from an increased resistance to degradation and clearance.

Finally, there are compelling data demonstrating that an intact central melanocortin system is required for normal glucose homeostasis, independent of its role in controlling food intake and body weight (40) and we have previously shown that 10 d of glucocorticoid treatment rendered Pomp⁻/⁻ mice markedly insulin resistant (24). The current study was not designed to compare the ability of centrally administered melanocortin peptides to potentially ameliorate this insulin-resistant state. Such future studies may be informative in resolving unanswered issues surrounding the true physiological roles of the melanocortin peptides.

In summary, although other centrally administered melanocortins can reduce food intake in the short-term, only α-MSH is also able to reduce the excess fat and lean mass found in Pomp⁻/⁻ mice, mediated largely mediated through its effects on food intake.

Acknowledgments

Received June 27, 2006. Accepted August 28, 2006.

Address all correspondence and requests for reprints to: Stephen O’Rahilly, University Departments of Medicine and Clinical Biochemistry, Box 232, Addenbrooke’s Hospital, Cambridge CB2 2QR, United Kingdom. E-mail: so104@medschl.cam.ac.uk.

Disclosure summary: The authors have nothing to disclose.

References

1. Cone RD 1999 The central melanocortin system and energy homeostasis. Trends Endocrinol Metab 10:211–216
2. Coll AP, Farooqi IS, Challis BG, Yeo GS, O’Rahilly S 2004 Proopiomelanocortin and energy balance: insights from human and murine genetics. J Clin Endocrinol Metab 89:2557–2562
3. Hsuzar D, Lynch CA, Faihild-Huntress V, Dunmore JH, Fang Q, Berke- meier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F 1997 Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141
4. Farooqi IS, Kengh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S 2003 Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095
5. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymonter MA, Dekoning J, Baetscher M, Cone RD 2000 A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141: 3518–3521
17. Millington GW, Tung YC, Hewson AK, O’Rahilly S, Dickson SL
22. Abbott CR, Rossi M, Kim M, AlAhmed SH, Taylor GM, Ghatei MA, Smith
18. Schioth HB, Muceniece R, Wikberg JE
20. Hadley ME, Hruby VJ, Jiang J, Sharma SD, Fink JL, Haskell-Luevano C,
12. Coll AP, Fassnacht M, Klammer S, Hahner S, Schulte DM, Piper S, Tung YC,
20. Kask A, Rago L, Wikberg JE 1996 Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol Toxicol 79:161–165
19. Hadley ME, Hruby VJ, Jiang J, Sharma SD, Fink JL, Haskell-Luevano C, Bentley DL, al-Obeidi F, Sawyer TK 1996 Melanocortin receptors: identification and characterization by melanotropic peptide agonists and antagonists. Pigment Cell Res 9:213–234
14. Schioth HB, Muceniece R, Wikberg JE 1996 Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol Toxicol 79:161–165
16. Campbell RJ, Piperno LD, Finkelstein J, Hearon EM, Grinberg J, Liberzon I, 2002 Pro-opiomelanocortin processing
25. Dunbar JC, Lu H 1999 Leptin-induced increase in sympathetic nervous and cardiovascular tone is mediated by proopiomelanocortin (POMC) products. Brain Res Bull 50:215–221
26. Gualdo-Tapia D, Fernandez-Duque E, Redbird K, Aponte FF 2003 Unabated anorexic and enhanced thermogenic responses to melanotan II in diet-induced obese rats despite reduced melanocortin 3 and 4 receptor expression. J Endocrinol 182:123–132
20. Balthasar N, Daegska LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB 2005 Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123:493–505
23. Chiu, X., Parnell, J., Newgreen, D., and Rogers, E. 2005 The melanocortin receptor system regulates food intake in the fasted rat. Proc Natl Acad Sci USA 101:11978–11982
24. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ 2005 Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R417–R430
27. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ 2005 Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R417–R430
28. Dunbar JC, Lu H 1999 Leptin-induced increase in sympathetic nervous and cardiovascular tone is mediated by proopiomelanocortin (POMC) products. Brain Res Bull 50:215–221
22. Millington GW, Tung YC, Hewson AK, O’Rahilly S, Dickson SL 2001 Differential effects of α-, β- and γ-melanocyte-stimulating hormones on hypothalamic neuronal activation and feeding in the fasted rat. Neuroscience 108: 437–445
23. Coll AP, Fassnacht M, Klammer S, Hahner S, Schulte DM, Piper S, Tung YC, Challiis BG, Weinstein Y, Allolio B, O’Rahilly S, Beuschlein F 2006 Peripheral administration of the N-terminal pro-opiomelanocortin fragment 1–28 to POMC−/− mice reduces food intake and weight but does not affect adrenal growth or corticosterone production. J Endocrinol 190:515–525
24. Coll AP, Challiis BG, Lopez M, Fiper S, Yes GS, O’Rahilly S 2005 Proopiomelanocortin-deficient mice are hypersensitive to the adverse metabolic effects of glucocorticoids. Diabetes 54:2269–2276
25. Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM 1998 Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 18:10128–10135
26. Hwa JJ, Gibaudi L, Gao J, Parker EM 2001 Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am J Physiol Regul Integr Comp Physiol 281:R444–R451
27. Fussell FR, Leng G, Zhang Y, Wilsey JT, Scarpace PJ 2004 Unabated anorexic and enhanced thermogenic responses to melanotan II in diet-induced obese rats despite reduced melanocortin 3 and 4 receptor expression. J Endocrinol 182:123–132
28. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD 1997 Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168
29. Hadley ME, Hruby VJ, Blanchard J, Dorr RT, Levine N, Dawson BV, al-Obeidi F, Sawyer TK 1998 Discovery and development of novel melanocortic drugs. Melanotan-I and -II. Pharm Biotechnol 12:575–595
30. Balthasar N, Daegska LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB 2005 Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123:493–505
31. Lee YS, Challiis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME, Wright V, Sims M, Vatin V, Meyre D, Shield J, Burren C, Ibrahim Z, Cheetham T, Swift P, Blackwood A, Hung CC, Wareham NJ, Froogel P, Millhauser GL, O’Rahilly S, Farooqi IS 2006 A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab 3:135–140
32. Biebertmann H, Castaneda TR, van Landeghem F, de Velmilting A, Adler-Wailes DC, Sebring NG, Pritchard LE, Turnbull AV, White A
33. Feng N, Young SF, Aguilera G, Puricelli E, Adler-Wailes DC, Sebring NG, Yanovski JA 2005 Co-occurrence of two partially inactivating polymorphisms of MC3R is associated with pediatric-onset obesity. Diabetes 54:2663–2667
34. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD 1997 Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168
35.lıklar HJ, Ginsberg AB, Seeley RJ, Kaplan JM 1998 Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 18:10128–10135
36. Hwa JJ, Gibaudi L, Gao J, Parker EM 2001 Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am J Physiol Regul Integr Comp Physiol 281:R444–R451
37. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ 2005 Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R417–R430
38. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ 2005 Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R417–R430
39. Guo L, Munzberg H, Stuart RC, Nillni EA, Bjorbaek C 2003 Genetic disruption of γ-melanocyte-stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. J Clin Invest 111:1251–1258
40. Marks DJ, Hruby V, Brookhart G, Cone RD 2006 The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides 27:259–264
41. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ 2005 Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R417–R430
42. Guo L, Munzberg H, Stuart RA, Nilini EA, Bjorbaek C 2004 N-acetylation of hypotalamic α-melanocyte-stimulating hormone and regulation by leptin. Proc Natl Acad Sci USA 101:11977–11982
43. Obici S, Rossetti L 2003 Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144:5172–5178

Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.