Predicting score distribution to improve non-intrusive speech quality estimation

Abu Zaher Md Faridee1*, Hannes Gamper2

1Information Systems, University of Maryland, Baltimore County, MD, USA
2Microsoft Research Labs, Redmond, WA, USA

faridee1@umbc.edu, hagamper@microsoft.com

Abstract

Deep noise suppressors (DNS) have become an attractive solution to remove background noise, reverberation, and distortions from speech and are widely used in telephony/voice applications. They are also occasionally prone to introducing artifacts and lowering the perceptual quality of the speech. Subjective listening tests that use multiple human judges to derive a mean opinion score (MOS) are a popular way to measure these models’ performance. Deep neural network based non-intrusive MOS estimation models have recently emerged as a popular cost-efficient alternative to these tests. These models are trained with only the MOS labels, often discarding the secondary statistics of the opinion scores. In this paper, we investigate several ways to integrate the distribution of opinion scores (e.g. variance, histogram information) to improve the MOS estimation performance. Our model is trained on a corpus of 419K denoised samples by 320 different DNS models and model variations and evaluated on 18K test samples from DNSSMOS. We show that with very minor modification of a single task MOS estimation pipeline, these freely available labels can provide up to a 0.016 RMSE and 1% SRCC improvement.

Index Terms: speech quality assessment, deep neural network, subjective listening tests, mean opinion scores

1. Introduction

As more people are increasingly working from home and using live telephony and communication applications to collaborate with their peers as well as stay connected to friends and family, retaining and improving speech quality has become a topic of immense importance in industry and academia [1, 2, 3, 4].

Real-time speech enhancement (SE) solutions [5, 6] have traditionally been used for decades to improve the perceptual quality of speech. Nowadays they are being replaced by Deep Noise Suppression (DNS) \cite{7, 8, 9} models due to their flexibility in handling a variety of background noises, room reverberations, and distortions. However, due to the possible wide variety in the training datasets and model architecture, each DNS model often performs noticeably better and worse in dealing with certain kinds of noise compared to other models. Moreover, they can also introduce their own set of artifacts – ranging from mistaking actual speech for noise and removing it to introducing distortions during the speech reconstruction phase – all of which can lower the perceptual quality of the speech to the point that an independent listener might prefer the original version of the speech vs the noise suppressed one.

In order to properly provision these DNS models for widespread deployment, their performance needs to be evaluated on a large number of noisy and distorted speech samples. The subjective listening test has been the staple for evaluating the perceived speech signal quality \cite{10} where multiple users provide judgment on a scale ranging from 1 to 5 and usually the average score of all participants over specific condition (commonly referred to as MOS, i.e., mean opinion score) represents the perceived quality after leveling out individual factors \cite{11}. But given the wide number of possible DNS models and noisy sample combinations, they would require huge time and human labor investment and even then cannot achieve real-time feedback \cite{12}, thus making the process unsustainable for conducting large-scale experiments. Several automated objective instrumental quality measures have been proposed and adopted over the years as an alternative (e.g. PESQ \cite{13}, POLQA \cite{14}). However, they were optimized to measure compression artifacts rather than degradation introduced by the noise, reverberation, and speech enhancements. These measures are also limited by their need to have access to the original clean signals, making the bulk of them intrusive and unable to be applied to the speech captured in the wild.

Several deep-learning based non-intrusive speech quality assessment models have been proposed recently that aim to tackle this challenge \cite{15, 16, 17}. Most of these models are trained in a supervised way with the aim of minimizing the error between the ground truth MOS scores and the predicted MOS scores. Recently, attempts have been made to incorporate additional information during model training. To include the effect of individual judges’ bias on the MOS labels, MBNET \cite{18} is trained using a multi-task loss with an additional bias term, i.e., the difference between the MOS score and the individual judge score. However, it is not clear how this approach might generalize to datasets generated via crowd-sourcing based subjective listening tests \cite{16} that may include hundreds of judges, who may each provide anywhere from one to hundreds of scores. MetricNet \cite{19} jointly models MOS estimation with a reconstruction objective of the clean speech signal, to estimate Perceptual Evaluation of Speech Quality (PESQ). The model uses the Wasserstein distance between the ground truth PESQ distribution and the model output as a training objective, where the ground truth distribution is either a simple one-hot vector or a soft target around the true PESQ value. It should be noted that PESQ has been shown to correlate poorly with human rating when used for evaluating speech enhancement models \cite{16}. Here, we study incorporating the distribution of scores underlying each MOS label for training a speech quality estimation model geared towards evaluating speech enhancement methods. We hypothesize that in addition to the first moment (mean) of the subjective listening scores, providing extra supervision concerning the distribution of the scores (e.g. second-moment/variance or histogram information) may improve model performance and robustness. To test our hypothesis, we develop a number of models that incorporate the (a) variance/standard deviation, (b) median and (c) histogram bins of the opinion scores (1 – 5 scale) into the primary regression loss calculation logic of MOS estimation by either (a) direct prediction of these statistics, (b) weighting the MOS estimations by these statistics (c) directly predicting the opinion scores themselves. We develop a convolutional...
LSTM model as the primary backbone and run experiments with different loss functions to align the distributions. During our experiments, we found that predicting 5 opinion scores and then aligning the primary and secondary moments (mean and standard deviation) with the ground truth opinion scores provides the best improvement over vanilla MOS estimation.

2. Dataset and score distribution

The dataset used in our experiment is derived from the Interspeech 2020 Deep Noise Suppression Challenge dataset [3], obtained using ITU-T P.808 [3, 20]. P.808 is an online crowdsourcing based highly reproducible subjective testing framework. It has been shown to stack rank noise suppression models with high accuracy when each model is tested as an average over a statistically significant number of clips. In our dataset, 121679 unique files comprising both noisy and clean speech are first processed through 320 unique noise suppression models and model variations. We only take the files that are between 4 and 20 seconds in length and consist of only single-channel 16 kHz samples. The process generates a total of 419836 files in the training set. To allow comparisons with external baselines, we used the test set from DNSMOS [16] (18K files) for all evaluations.

The statistics of the training dataset are shown in Figure 1. The ratings of the speech qualities vary between very poor (MOS = 1) and excellent (MOS = 5) and as shown in Figures 1(a) and (b), the majority of the MOS ratings are between 2.5 and 4. From Figure 1(c), we can also see that a sizable number of the samples have opinion scores with a standard deviation, $\sigma > 1$ indicating a high amount of subjectivity in the opinion scores. The Skewness (Fisher-Pearson) of the opinion scores distribution ranges between -1.75 and 1.75 as shown in Figure 1(d). Such high skewness indicates that the median of the opinion scores is often different from the MOS scores. Interestingly in Figure 1(e), we also notice that majority of the samples are platykurtic – most of the samples are free from extreme outlier opinion scores. Figure 1(f) demonstrates the number of opinion scores per sample and the majority (75%) of the samples has 5 opinion scores.

3. Proposed model architecture

3.1. Backbone Model

The 16 kHz monaural samples are first pre-processed by STFT transform with 512 samples per frame (i.e., 32 ms) and a 160 sample (i.e., 10 ms) overlap and thereafter 26 Mel-frequency bins per frame are extracted. We perform power-to-decibel conversion on the resulting Mel-frequency bins to better align the features with human perception of sound levels. This results in a $26 \times N$ shaped feature matrix per file where N can be of varying length due to

![Figure 1: Histogram of (a) MOS, (b) Median, (c) Standard deviation, (d) Skewness, (e) Kurtosis of the scores and (f) Number of opinion scores per clip. The last 3 subfigures are in log-scale for better visibility.](image)

![Figure 2: Backbone model (single task MOS estimation)](image)
3.3.1. Single Task MOS Estimation with Variance Weighted Loss

We train the backbone model with mini-batch gradient descent and loss is calculated for each sample in the batch before taking a mean across the batch to derive the final loss. However, in this setup, we use the standard deviation ground truth to assign weight to each sample and calculate a weighted loss – by assigning a higher weight to samples with lower variance. This can be achieved in two primary ways:

Inverse Variance Weighting: This approach is inspired by [22], where the weight of each sample is calculated as \(1/(\sigma_i + \delta)\), where \(\sigma_i\) is the standard deviation of the sample and \(\delta\) is a small constant (e.g., \(10^{-3}\)) to avoid division by zero.

Linear Variance Weighting: The numerical range of the opinion scores is \(1 \sim 5\), and the range of the standard deviation is \(0 \sim 2\). Inverse variance weighting can assign a high weight to samples with very low variance and as an alternative, we also explore the linear variance weighting strategy. Here samples with the highest \(\sigma = 2\) are assigned a weight of 0.1 and samples with the lowest \(\sigma = 0\) are assigned a weight of 1. And the weight of the remaining samples is linearly interpolated between the two extremes.

3.3.2. Multi-Task Learning

We experimented with several ideas on how-to incorporate extra supervision on the distribution of the opinion scores in a multi-task learning setup. They can be categorized as: (i) directly using the variance or median ground truth as the auxiliary label, (ii) calculating a 5 bin histogram of the opinion scores and using that as ground truth, and (iii) predicting opinion scores directly.

MOS + Standard Deviation/Median Prediction: In this setup, an extra regression head is added to the final layer of the backbone model that predicts the standard deviation or median of the opinion scores and is trained with the associated ground truth.

Histogram Prediction: The final layer of the backbone model predicts a 5 bin histogram of the opinion scores and is trained with the associated ground truth calculated from the individual opinion scores from the dataset. As the number of opinion scores per sample varies between 2 to 30 in our dataset, by creating a 5 bin histogram (to account for the 5 distinct values) we have a consistent way of representing the opinion distribution of all the samples. We experimented with 3 different loss functions to match the histogram distribution with the ground truth: (a) cross-entropy loss (b) Wasserstein loss [23] (c) chi-square [24, 25] loss. The MOS predictions can be derived by taking the weighted average of the bin values.

Direct Opinion Score Prediction: In this setup (shown in Figure 3), we designate 5 neurons (since 75% of the samples have 5 individual opinion scores) in the final layer of the backbone model as a representation of 5 judges and let them predict individual opinion scores. Since we have a variable number of opinion scores per sample and the real judges between the samples are not consistent (due to crowd-sourcing), it is not possible to directly compare the predicted and ground truth opinion scores to calculate the loss. Instead, we calculate MOS, standard deviation, median, etc. from the predicted opinion scores and calculate the losses against their respective ground truth from the samples. We experimented with two activation functions: (a) ReLU, (b) Modified Sigmoid (i.e. \(1 + 4 \times \text{Sigmoid}(x)\)) to predict values always between \(1 \sim 5\) range.

4. Evaluation Criteria

We use (i) Pearson’s correlation coefficient (PCC), (ii) Spearman’s rank correlation coefficient (SRCC) (iii) mean absolute error (MAE) and (iv) root mean square error (RMSE) between the predicted MOS scores and the ground truth human ratings to evaluate the performance of our models. Since we are interested in evaluating the performance of a number of DNS models in enhancing the speech quality of the given samples, in addition to calculating the four evaluation metrics on a per-file basis, we also group the clips together by the DNS model being used to generate them and calculate the evaluation metrics. This way of generating the evaluation metrics is referred to as *stack-ranked* evaluation [16].

5. Results

Baseline Sanity Check: The results of our ablation study are shown in Table 1. Our Convolutional LSTM based backbone (Model II), achieved similar stack ranked SRCC to DNSMOS (Model I) but shows 0.16 MAE and 0.13 RMSE improvement. We perform a further inspection of the distribution of the predicted MOS labels generated by these two baselines against the ground truth, which is shown in Figure 4. The predictions of DNSMOS are heavily compressed between the 2-4.25 range (note Figure 2(d) of [16]) while model II baseline predicts between a broader 1.4-7 range. The differences in model architecture (DNSMOS being more sophisticated) and training set size (model II using 3.5x samples) are the likely cause of such discrepancies, but it would require an in-depth investigation to find the concrete reasons.

Effect of Auxiliary Supervision: Almost in every case, providing additional supervision leads to a better performance over our model II baseline. Among our single task experiments, where we employ the variance of the opinion scores to scale per sample loss term, linear variance weighting strategy (IV) improves stack ranked SRCC by 0.4% over model II, but inverse variance weighting (III) incurs a 3.83% drop in the same metric.

Among the three histogram prediction models, the cross-
Table 1: Comparison of Model Performance. Best metric per column marked in bold.

ID	Model	Task Ground Truth	Loss	Per file	Stack Ranked							
		Labels		PCC	SRC CC	MAE	RMSE	PCC	SRC CC	MAE	RMSE	
I	DNSMOS	Single MOS	MSE	0.7527	0.7473	0.4097	0.5247	0.9519	0.9514	0.2402	0.253	
II	ConvLSTM	Single MOS	MSE	0.7654	0.7645	0.3735	0.5378	0.977	0.952	0.08507	0.1205	
III	ConvLSTM + Inverse Variance Weighting	Single MOS, σ	MSE	0.7045	0.711	0.4325	0.5253	0.964	0.9153	0.0816	0.1058	
IV	ConvLSTM + Linear Variance Weighting	Single MOS, σ	MSE	0.7656	0.7627	0.3803	0.4854	0.9788	0.956	0.09266	0.122	
V	ConvLSTM + Variance of Opinion Scores	Multi MOS, σ	MSE	0.7669	0.762	0.3749	0.478	0.9783	0.9597	0.07875	0.1131	
VI	ConvLSTM + Median of Opinion Scores	Multi MOS, Median MSE	MSE	0.7718	0.7701	0.3652	0.4665	0.9777	0.9532	0.0775	0.1095	
VII	ConvLSTM + Histogram Prediction	Multi Histogram	Cross Entropy	MSE	0.766	0.7624	0.3712	0.4731	0.9725	0.9548	0.07369	0.1044
VIII	ConvLSTM + Histogram Prediction	Multi Histogram	Wasserstein	MSE	0.7633	0.7647	0.3775	0.4826	0.9749	0.9528	0.08688	0.1265
IX	ConvLSTM + Histogram Prediction	Multi Histogram	Chi Square	MSE	0.7576	0.7597	0.4025	0.5183	0.9739	0.9548	0.1457	0.1801
X	ConvLSTM + Opinion Score (ReLU)	Multi MOS, σ	MSE	0.7747	0.7742	0.3631	0.4635	0.9797	0.9529	0.07167	0.1043	
XI	ConvLSTM + Opinion Score (Sigmoid)	Multi MOS, σ	MSE	0.771	0.7689	0.3685	0.4709	0.9712	0.9456	0.08709	0.1169	

Table 2: Stack-ranked SRCC per bin for the three histogram prediction models.

ID	Histogram Loss	Bins 1 2 3 4 5
VII	Cross Entropy	0.9371 0.9351 0.5544 0.9646 0.9431
VIII	Wasserstein	0.9565 0.9548 0.631 0.9435 0.9149
IX	Chi Square	0.9355 0.9343 0.6758 0.948 0.9343

Figure 5: Violin plot [26] per histogram-bin for ground truth and model VII predictions.

According to the stack ranked PCC and SRC CC metric, predicting MOS and variance score together (model V) results in the top performance improvement (0.66% and 0.77% respectively) compared to the model II baseline. In the rest of the 6 metrics, however, opinion score prediction with ReLU activation (model X) and MOS with median score prediction (Model VI) are the top two performing models. Opinion score prediction with ReLU activation (model X) achieved the highest improvement in RMSE (0.015 per-file, 0.016 stack-ranked) and SRC CC (1.02% per-file, 0.77% stack-ranked). To further investigate how model X generates the top results, we plot the distributions of the activations from the final 5 neurons of model X in Figure 6. We can notice that the first 3 neurons tend to produce higher scores than the last 2. The last two neurons also produce scores with relatively high variance.

6. Conclusion

In this paper, we demonstrated that deep neural network based mean opinion score (MOS) estimation of speech signals processed by DNS models can be improved by adding auxiliary supervision on the original distribution of the scores. We demonstrated several ways these extra supervisions can be incorporated, either by integrating the uncertainty (variance of the scores) into a single task loss weighting strategy or directly incorporating the variance or histogram information into a multi-task learning setting. While some of the approaches appear to be more effective than others, it is clear that providing auxiliary supervision will result in better performance than doing single task MOS estimation. This benefit is practically free since during the data curation process (e.g., ITU-P.808 [20]) these statistics are typically available but discarded during model training. We also note that direct opinion score prediction seems to consistently generate the best results among all the proposed models.

Our results were obtained with limited hyper-parameter search; our multi-task learning setups do not employ any loss balancing techniques [27, 28, 29] – often crucial for achieving the best performance. We also opted for a simple convolutional LSTM model as our backbone for the simplicity of exposition; combining auxiliary supervision into more sophisticated architectures (e.g. teacher-student model from DNSMOS) has the potential to bring substantial performance benefits. Further investigation is also warranted for a combination between the presented approaches. It would be interesting to see whether the integration of higher-order moments (skewness, kurtosis) into the multi-task learning setup can induce further improvements. We would also like to investigate the compatibility of our proposed approaches in more recent speech quality assessment challenges [1] and datasets [30] where background noise quality labels are also being provided. In the same vein, we wish to also investigate the effect of providing supervision in the form of soft labels regarding the reverberation of the speech signals (e.g. energy ratio C50 [31], reverberation time T60 [32]) in improving the quality of MOS estimation.

7. Acknowledgments

We would like to thank Sebastian Braun and the rest of the members of the Audio and Acoustics Research Group at Microsoft Research for their valuable feedback; Hari Dubey and Ross Cutler from the IC3-AI team for providing the dataset for the experiments.
8. References

[1] H. Dubey, V. Gopal, R. Cutler, A. Aazami, S. Matusevych, S. Braun, S. E. Eskimez, M. Thakker, T. Yoshioka, H. Gamper et al., “Tashev, “Blind reverberation time estimation using a convolutional neural network,” in IWAENC. IEEE, 2018, pp. 136–140.

[2] C. K. Reddy, H. Dubey, V. Gopal, R. Cutler, S. Braun, H. Gamper, R. Aichner, and S. Srinivasan, “Icassp 2021 deep noise suppression challenge,” in ICASSP. IEEE, 2021, pp. 6623–6627.

[3] C. K. Reddy, V. Gopal, R. Cutler, E. Beyrami, R. Cheng, H. Dubey, S. Matusevych, R. Aazami, S. Braun et al., “The inter-speech 2020 deep noise suppression challenge: Datasets, subjective testing framework, and challenge results,” arXiv:2005.13981, 2020.

[4] C. K. Reddy, H. Dubey, K. Koishida, A. Nair, V. Gopal, R. Cutler, S. Braun, H. Gamper, R. Aichner, and S. Srinivasan, “Interspeech 2021 deep noise suppression challenge,” arXiv:2101.01902, 2021.

[5] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator,” IEEE Transactions on acoustics, speech, and signal processing, vol. 32, no. 6, pp. 1109–1121, 1984.

[6] C. K. A. Reddy, N. Shankar, G. S. Bhat, R. Charan, and I. Panahi, “An individualized super-gaussian single microphone speech enhancement for hearing aid users with smartphone as an assistive device,” IEEE signal processing letters, vol. 24, no. 11, pp. 1601–1605, 2017.

[7] S.-W. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based speech enhancement by fully convolutional networks,” in APSIPA ASC. IEEE, 2017, pp. 006–012.

[8] H.-S. Choi, H. Heo, J. H. Lee, and K. Lee, “Phase-aware single-stage speech denoising and dereverberation with u-net,” arXiv:2006.00687, 2020.

[9] Y. Koyama, T. Vuong, S. Uhlich, and B. Raj, “Exploring the best loss function for dnn-based low-latency speech enhancement with temporal convolutional networks,” arXiv:2005.11611, 2020.

[10] ITU-T, “Methods for subjective determination of transmission quality,” ITU-T Recommendation P.800, 1996.

[11] S. Möller, W.-Y. Chan, N. Côté, T. H. Falk, A. Raake, and M. Wältermann, “Speech quality estimation: Models and trends,” IEEE Signal Processing Magazine, vol. 28, no. 6, pp. 18–28, 2011.

[12] A. Avila, B. Cauchi, S. Goetze, S. Doclo, and T. Falk, “Performance comparison of intrusive and non-intrusive instrumental quality measures for enhanced speech,” in IEEE IWAENC. IEEE, 2016, pp. 1–5.

[13] “Recommendation p.862: Perceptual evaluation of speech quality (pesq), an objective method for end- to-end speech quality assessment of narrowband tele- phone networks and speech codecs,” ITU-T Recommendation P.862, 2001.

[14] “Recommendation p.863: Perceptual objec-tive listening quality assessment: An advanced objective perceptual method for end-to-end listening speech qual- ity evaluation of fixed, mobile, and ip-based networks and speech codecs covering narrowband, wideband, and super-wideband signals,” ITU-T Recommendation P.863, 2011.

[15] A. R. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and J. Gehrke, “Non-intrusive speech quality assessment using neural networks,” in IEEE ICASSP. IEEE, 2019, pp. 631–635.

[16] C. K. Reddy, V. Gopal, and R. Cutler, “DNSMOS: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors,” in ICASSP. IEEE, 2021, pp. 6493–6497.

[17] G. Mittag, B. Naderi, A. Chehadi, and S. Möller, “NISQA: A Deep CNN-Self-Attention Model for Multidimensional Speech Quality Prediction with Crowdsourced Datasets,” in Proc. Interspeech 2021, 2021, pp. 2127–2131.

[18] Y. Leng, X. Tan, S. Zhao, F. Soong, X.-Y. Li, and T. Qin, “Mmnet: Mos prediction for synthesized speech with mean-bias network,” in ICASSP. IEEE, 2021, pp. 391–395.

[19] M. Yu, C. Zhang, Y. Xu, S.-X. Zhang, and D. Yu, “MetricNet: Towards Improved Modeling For Non-Intrusive Speech Quality Assessment,” in Proc. Interspeech 2021, 2021, pp. 2142–2146.

[20] B. Naderi and R. Cutler, “An open source implementation of itu-t recommendation p. 808 with validation,” arXiv:2005.08138, 2020.

[21] G. J. Pariis, R. Kemker, J. L., Part, C. Kanam, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019.

[22] B. K. Sinha, J. Hartung, and G. Knapp, Statistical meta-analysis with applications. John Wiley & Sons, 2011.

[23] L. Hou, C.-P. Yu, and D. Samaras, “Squared earth movers distance loss for training deep neural networks on ordered-classes,” in NIPS Workshop, 2017.

[24] O. Pele and M. Werman, “The quadratic-chi histogram distance family,” in ECCV. Springer, 2010, pp. 749–762.

[25] Z. Wang and M. Wang, “Chi-square loss for softmax: an echo of neural network structure,” arXiv:2108.13822, 2021.

[26] J. L. Hintze and R. D. Nelson, “Violin plots: a box plot-density trace synergism,” The American Statistician, vol. 52, no. 2, pp. 181–184, 1998.

[27] S. Liu, Y. Liang, and A. Gitter, “Loss-balanced task weighting to reduce negative transfer in multi-task learning,” in AAAI, vol. 33, no. 01, 2019, pp. 9977–9978.

[28] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” in CVPR, 2018, pp. 7482–7491.

[29] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv:1409.7495, 2014.

[30] C. K. Reddy, V. Gopal, and R. Cutler, “Dnsmos p. 835: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors,” arXiv:2110.01763, 2021.

[31] H. Gamper, “Blind c50 estimation from single-channel speech using a convolutional neural network,” in MMSP. IEEE, 2020, pp. 1–6.

[32] H. Gamper and I. J. Tashev, “Blind reverberation time estimation using a convolutional neural network,” in IWAENC. IEEE, 2018, pp. 136–140.