Homoclinic Bifurcation of a Quadratic Family of Real Functions with Two Parameters

Salma M. Farris, Karam N. Abdul-Kareem

Department of Mathematics, College of Computer and Mathematical Sciences, University of Mosul, Mosul, Iraq
Email: Salmaalfaris925@gmail.com, Karmck13s4@gmail.com

Abstract

In this work the homoclinic bifurcation of the family

\[H = \{ h_{a,b}(x) = ax^2 + b : a \in \mathbb{R}/\{0\}, b \in \mathbb{R} \} \]

is studied. We proved that this family has a homoclinic tangency associated to \(x = 0 \) of \(P_1 \) for \(b = \frac{-2}{a} \). Also we proved that \(W^u(P_1) \) does not intersect the backward orbit of \(P_1 \) for \(b > \frac{-2}{a} \), but has intersection for \(b < \frac{-2}{a} \) with \(a > 0 \). So \(H \) has this type of the bifurcation.

Subject Areas

Dynamical System

Keywords

Local Unstable Set, Unstable Set, Homoclinic Point, Homoclinic Orbit, Non-Degenerate, Homoclinic Tangency, Homoclinic Bifurcation

1. Introduction

There are various definitions for the homoclinic bifurcation. In the sense of Devaney, the homoclinic bifurcation is a global type of bifurcations, that is, this type of bifurcation is a collection of local and simple types of bifurcations [1] (like, period-doubling and saddle-node of bifurcation [2]).

According to [3] [4] [5] we have another definition of the homoclinic bifurcation via the notions of the unstable sets of a repelling periodic point (fixed point) and the intersection of this set with the backward orbits of this point.

The purpose of this work is to prove the family

\[H = \{ h_{a,b}(x) = ax^2 + b : a \in \mathbb{R}/\{0\}, b \in \mathbb{R} \} \]

has homoclinic bifurcation at \(b = \frac{-2}{a} \).
following the second definition.

2. Definitions and Basic Concepts

2.1. Definition 1: [6]
A fixed point \(P \) is said to be **expanding** for a map \(f \), if there exists a neighborhood \(U(P) \) such that \(|f'(x)| > 1 \) for any \(x \in U(P) \).

The neighborhood in the previous definition is exactly the **local unstable set**.

2.2. Definition 2: [7]
Let \(P \) be a repelling fixed point for a function \(f: I \rightarrow I \) on a compact interval \(I \subset \mathbb{R} \), then there is an open interval about \(P \) on which \(f \) is one-to-one and satisfies the **expansion** property. \(|f(x) - f(P)| > |x - P|, \forall x \in I \) where \(x \neq P \).

The interval in the previous definition is exactly the **unstable set of** \(P \).

2.3. Definition 3: [8]
Let \(P \) is fixed point and \(f'(P) > 1 \) for a map \(f: \mathbb{R} \rightarrow \mathbb{R} \). A point \(q \) is called **homoclinic point** to \(P \) if \(q \in w^{u}_{loc} (P) \) and there exists \(n > 0 \) such that \(f^n(q) = P \).

2.4. Definition 4: [9]
The union of the forward orbit of \(q \) with a suitable sequence of preimage of \(q \) is called the **homoclinic orbit of** \(P \). That is \(O(q) = \{ P, \ldots, q_{-2}, q_{-1}, q, q_1, q_2, \ldots, q_m = P \} \) where \(q_{i+1} = f(q_i) \) for \(i \leq m-1 \), \(q_m = P \) and \(\lim_{i \to \infty} q_i = P \).

2.5. Definition 5: [10]
The critical \(x \) point is **non-degenerate** if \(f''(x) \neq 0 \). The critical point \(x \) is **degenerate** if \(f''(x) = 0 \).

2.6. Definition 6: [11]
Let \(f \) be a smooth map on \(I \subset \mathbb{R} \), and let \(p \) be a hyperbolic fixed point for the map \(f \). If \(W^u(p) \) intersects the backward orbit of \(p \) at a nondegenerate critical point \(x_{cr} \) of \(f \), then \(x_{cr} \) is called a **point of homoclinic tangency associated to** \(p \).

2.7. Definition 7: [3]
Let \(f_\varphi \) be a smooth map on \(I \subset \mathbb{R} \), and let \(p \) be a hyperbolic fixed point for a map \(f_\varphi \). We say that \(f_\varphi \) has **homoclinic bifurcation associated to** \(p \) at \(\varphi = \hat{\varphi} \) if:

1) For \(\varphi < \hat{\varphi} \ (\varphi > \hat{\varphi}) \), \(W^u(p) \) and the backward orbit of \(p \) has no intersect.
2) For \(\varphi = \hat{\varphi} \), \(f_\varphi \) has a point of homoclinic tangency \(x_{cr} \) associated to \(p \).
3) For \(\varphi > \hat{\varphi} \ (\varphi < \hat{\varphi}) \), the intersection of \(W^u(p) \) with the backward orbit of \(p \) is nonempty.
3. Homoclinic Bifurcation of the Family

\[H = \left\{ h_{a,b}(x) = ax^2 + b : a \in \mathbb{R}/\{0\}, b \in \mathbb{R} \right\} \]

In this section, we show that the family \(H \) has a point of homoclinic tangency associated to \(P_1 \) at \(b = \frac{-2}{a} \), and \(H \) has a homoclinic bifurcation.

We need the following results proved in [12].

At the first, the fixed points of \(h_{a,b}(x) \) are

\[P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}, \quad P_2 = \frac{1 - \sqrt{1 - 4ab}}{2a}. \]

a) Proposition:

For \(h_{a,b}(x) \in H \) with \(a > 0 \) the local unstable set of the fixed point \(P_1 \) is

\[w^u(P_1) = \left\{ \frac{1}{2|a|}, \infty \right\}. \]

b) Lemma:

For \(h_{a,b}(x) \in H \), \(h_{a,b}^{-1}(P_1) = \pm \sqrt{\frac{P_1 - b}{a}} = \mp P_1 \) where \(P_1 > b \) for \(a > 0 \).

c) Theorem:

For \(h_{a,b}(x) \in H \) with \(a > 0 \), the unstable set of the fixed point \(P_1 \) is

\[w^u(P_1) = \left\{ \frac{1}{|a|}, -P_1, \infty \right\}. \]

d) Remark: [13]

The local unstable set of the fixed point \(P_2 \) is \(w^u(P_2) = \left\{ -\infty, -\frac{1}{2|a|} \right\} \), and the unstable set of the fixed point \(P_2 \) is \(w^u(P_2) = \left\{ -\infty, -\frac{1}{|a|}, -P_2 \right\} \). In this work we will omit the result about \(P_2 \) because \(h_{a,b}'(P_2) < -1 \), when \(b < \frac{-3}{4a} \) for \(a > 0 \), \(b > \frac{-3}{4a} \) for \(a < 0 \). Thus we will not care for the fixed point \(P_2 \). (See definition (2.3)).

e) Remark:

For \(h_{a,b}(x) \in H \), \(h_{a,b}^{-2}(P_1) = \mp \sqrt{\frac{-P_1 - b}{a}}. \)

f) Proposition:

For \(h_{a,b} \in H \), if \(b < \frac{-(5 + 2\sqrt{5})}{4a} \) with \(a > 0 \), then the second preimage of the fixed point \(P_1 \) belongs to the local unstable set of \(P_1 \).

g) Proposition:

For \(h_{a,b} \in H \), if \(\frac{-(5 + 2\sqrt{5})}{4a} \leq b \leq \frac{-2}{a} \) with \(a > 0 \), then the third preimage
of the fixed point \(P_1 \) belongs to the local unstable set of \(P_1 \).

h) Theorem:

For the family \(H = \{ h_{a,b}(x) = ax^2 + b : a > 0 \} \), there exist homoclinic points to the fixed point \(P_1 \) whenever \(b \leq \frac{-2}{a} \). Moreover \(h_{a,b}^3(P_1) = q_{1,1}, h_{a,b}^3(P_1) = q_{2,1} \) are the first homoclinic points for \(b < \frac{(5 + 2\sqrt{5})}{4a}, \frac{-(5 + 2\sqrt{5})}{4a} \leq b \leq \frac{-2}{a} \) respectively.

i) Example:

For \(h_{a,b}(x) = x^2 - 6 \), a homoclinic orbit of a homoclinic point \(\sqrt{5} \) is: \(O(\sqrt{5}) = \{3, -3, \sqrt{5}, \ldots, 3\} \).

The main result:

3.1. Lemma 1

For \(h_{a,b}(x) = ax^2 + b \) with \(a \in \mathbb{R}/\{0\} \), the critical point of \(h_{a,b}(x) \) is 0, and it is a non-degenerate critical point.

Proof:

Clearly that the critical point of \(h_{a,b}(x) \) is zero.

Since \(a \neq 0 \), then

\[
h^*_a(x) = 2a \neq 0.
\]

So \(h_{a,b}(x) \) has a non-degenerate critical point at \(x = 0 \). ■

3.2. Lemma 2

If \(b = 0 \) of \(h_{a,b}(x) \in H \) with \(a \in \mathbb{R}/\{0\} \), then the backward orbit of the repelling fixed point \(P_1 \) is undefined in \(\mathbb{R} \).

Proof:

\(h_{a,0}(x) = ax^2 \), clearly \(P_1 = \frac{1}{a} \).

Now the first preimage of \(h_{a,0}(x) \) is

\[
h^{-1}_{a,0}(x) = \pm \sqrt[3]{x a}, \text{ where } x > 0 \text{ for } a > 0.
\]

By Lemma (3-b), we have

\[
h^{-1}_{a,0} \left(\frac{1}{a} \right) = \mp \sqrt[3]{\frac{1}{a^2}} = \mp \frac{1}{a} = \mp P_1.
\]

But \(P_1 \) is a fixed point, and \(-P_1 = \left(-\frac{1}{a} \right) w_{\text{loc}}(P_1) = \left(\frac{1}{2a}, \infty \right) \), see Proposition (3-a).

By Remark (3-e) we have

\[
h_{a,0}^2(P_1) = \mp \sqrt[3]{\frac{-P_1}{a}} = \mp \sqrt[3]{\frac{-1}{a^2}} \notin \mathbb{R},
\]
Therefore $h_{ab}^n(P_1)$ are undefined in \mathbb{R} with $n \geq 2$.
Thus the backward orbit of the repelling fixed point P_1 is undefined in \mathbb{R}.

3.3. Theorem 1

For the family $h_{ab}(x) = ax^2 + b$, 0 belong to the backward orbit of P_1 whenever $b = \frac{-2}{a}$ with $a \in \mathbb{R}/\{0\}$, and the backward orbit of P_1 is:

$$h_{a,b}^{-n}(P_1) = \left\{ \frac{2}{a} - \frac{2}{a}, 0, \frac{\sqrt{4a^2 - 4ab}}{a}, \ldots \right\}.$$

Proof:

We test the values of n which makes $h_{a,b}^{-n}(P_1) = 0$.

By Lemma (3-b), $h_{a,b}^{-1}(P_1) = \pm P_1$.

So $h_{a,b}^{-1}(P_1) \neq 0$.

Now suppose that $h_{a,b}^{-2}(P_1) = 0$, by Remark (3-e) then $h_{a,b}^{-2}(P_1) = \mp \sqrt{\frac{-P_1 - b}{a}} = 0$, thus

$$-\frac{P_1 - b}{a} = 0 \quad \Rightarrow \quad -P_1 - b = 0 \quad \Rightarrow \quad P_1 = b.$$

Since the fixed point $P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}$, therefore

$$\frac{1 + \sqrt{1 - 4ab}}{2a} = -b,$$

then

$$1 + \sqrt{1 - 4ab} = -2ab \quad \Rightarrow \quad \sqrt{1 - 4ab} = -2ab - 1 \quad \Rightarrow \quad 1 - 4ab = 4a^2b^2 + 4ab + 1$$

$$4a^2b^2 + 8ab + 1 = 0,$$

which implies

$$4ab(ab + 2) = 0,$$

then either $b = 0$, but by the above Lemma (3.2) the backward orbit of P_1 is undefined, so we omit this case.

Or $ab + 2 = 0$, thus

$$b = \frac{-2}{a}.$$

Now, $P_1 = \frac{2}{a}$ and to find the backward orbit of P_1, we consider

$$h_{a,b}^{-1,2}(x) = \pm \frac{\sqrt{ax + 2}}{a}.$$
By Lemma (3-b) \(h_{\frac{-1}{2}}^{-1}(P) = \pm P \), then

\[
h_{\frac{-1}{2}}^{-1}\left(\frac{2}{a}\right) = \pm \frac{2}{a},
\]

But \(\pm \frac{2}{a} \) is a fixed point, therefore

\[
h_{\frac{-1}{2}}^{-1}\left(\frac{2}{a}\right) = -\frac{2}{a}.
\]

So

\[
h_{\frac{-2}{a}}^{-2}\left(\frac{2}{a}\right) = \frac{\sqrt{a(0) + 2}}{a} = \frac{\sqrt{2}}{a},
\]

and so on.

Therefore the backward orbit of \(P_1 = \frac{2}{a} \) is:

\[
h_{\frac{-n}{a}}^{-n}\left(P_1 = \frac{2}{a}\right) = \left\{2, -2, 0, \frac{\sqrt{2}}{a}, \cdots \right\}.
\]

3.4. Example

For \(h_{-2}(x) = x^2 - 2 \), 0 belongs to the backward orbit of \(P_1 = 2 \) (Figure 1), and the backward orbit of \(P_1 \) is \(h_{-2}^{-n}(2) = \left\{2, -2, 0, \sqrt{2}, \cdots, 2\right\} \).

Figure 1. For \(h_{-2}(x) = x^2 - 2 \), the backward orbit of \(P_1 = 2 \).
3.5. Theorem 2

If \(b > \frac{-2}{a} \) for \(h_{a,b}(x) \in H \) with \(a > 0 \), then there is no intersection of the backward orbit with the unstable set of \(P_1 \).

Proof:

The backward orbit of \(P_1 \)

By Lemma (3-b) \(h_{a,b}^{-1}(P_1) = \pm P_1 \), since \(+P_1 \) is a fixed point, then we consider \(h_{a,b}^{-1}(P_1) = -P_1 \).

By Remark (3-e), \(h_{a,b}^{-2}(P_1) = \mp \sqrt{-\frac{P_1 - b}{a}} \).

If \(-P_1 > b \), then by Theorem (3-h),
\[b \leq \frac{-2}{a} \]
which is a contradiction with \(b > \frac{-2}{a} \). Therefore
\[-P_1 < b \], which implies
\[h_{a,b}^{-2}(P_1) \notin \mathbb{R} \].

So \(h_{a,b}^{-2}(P_1) \) are undefined in \(\mathbb{R} \) with \(n \geq 2 \).

Thus the backward orbit of \(P_1 \) is undefined.

So the intersection of \(W^u(P_1) \) with the backward orbit of \(P_1 \) is also undefined.

\[\Box \]

3.6. Theorem 3

If \(b = \frac{-2}{a} \) for \(h_{a,b}(x) \in H \) with \(a > 0 \), then \(h_{a,b}^{-2}(P_1) \) has a point of homoclinic tangency at 0 associated to \(P_1 \).

Proof:

By Theorem (3.3), \(h_{a,b}^{-2}(P_1) = \left\{ \frac{2}{a}, \frac{2}{a}, \ldots \right\} \).

By Theorem (3-c), \(W^u(P_1) = \left\{ \frac{1}{a} - P_1, \infty \right\} \), then
\[W^u\left(P_1 = \frac{2}{a} \right) = \left\{ \frac{1}{a} - \frac{2}{a}, \infty \right\} \], i.e.
\[W^u\left(P_1 = \frac{2}{a} \right) = \left\{ -1, \infty \right\} \].

Now
\[h_{a,b}^{-2}(P_1 = \frac{2}{a}) \] intersects \(W^u\left(P_1 = \frac{2}{a} \right) \) at 0.

By Lemma (3.1) 0 is a non-degenerate critical point. So \(h_{a,b}^{-2}(P_1 = \frac{2}{a}) \) has a point of homoclinic tangency at 0 associated to \(P_1 \).

\[\Box \]

3.7. Theorem 4

If \(b < \frac{-2}{a} \) for \(h_{a,b}(x) \in H \) with \(a > 0 \), then the backward orbit of \(P_1 \) crosses the unstable set \(W^u(P_1) \).
Proof:
First consider the backward orbit of P_1.
By Lemma (3-b) $h_1^{-1}(P_1) = \pm P_1$.
But $+ P_1$ is a fixed point, therefore we consider
$$h_1^{-1}(P_1) = -P_1.$$
By Remark (3-e), $h_{a,b}^{-2}(P_1) = \pm \sqrt{\frac{-P_1 - b}{a}}$.
Since $b < -\frac{2}{a}$, then by Theorem (3-h)
$$h_{a,b}^{-2}(P_1) \in \mathbb{R}.$$
Let $h_{a,b}^{-2}(P_1) = q_{1,1}$, $h_{a,b}^{-3}(P_1) = q_{2,1}$.
By Proposition (3-f), if $\frac{-5 + 2\sqrt{5}}{4a} < b < -\frac{2}{a}$, then $q_1,1 \in W_{loc}^u(P_1)$.
By Proposition (3-g), if $-\frac{5 + 2\sqrt{5}}{4a} \leq b < -\frac{2}{a}$, then $q_{2,1} \in W_{loc}^u(P_1)$.

Now since the local unstable set of the repelling fixed point contained in the unstable set of the repelling fixed point. Therefore
$$h_{a,b}^{-2}(P_1) \cap W^u(P_1) \neq \emptyset.$$

Following examples explain the cases for $b > -\frac{2}{a}$, $b = -\frac{2}{a}$ and $b < -\frac{2}{a}$ (with $a > 0$) respectively.

3.8. Example 1

For $h_{-1}(x) = x^2 - 1$, we have no intersection of the backward orbit of P_1 with the unstable set of P_1.

Solution:
Consider the fixed point of $h_{-1}(x)$ is $P_1 = \frac{1 + \sqrt{5}}{2}$, and
$$h_{-1}^{-1}(x) = \pm \sqrt{x + 1}.$$
The backward orbit of $P_1 = \frac{1 + \sqrt{5}}{2}$
$$h_{-1}^{-1}\left(\frac{1 + \sqrt{5}}{2}\right) = \pm \frac{1 + \sqrt{5}}{2},$$ where $+ \frac{1 + \sqrt{5}}{2}$ is a fixed point, therefore we consider
$$h_{-1}^{-1}\left(\frac{1 + \sqrt{5}}{2}\right) = -\frac{1 + \sqrt{5}}{2}. Now$$
$$h_{-1}^{-2}\left(\frac{1 + \sqrt{5}}{2}\right) = \mp \sqrt{\frac{1 + \sqrt{5}}{2}} + 1 \not\in \mathbb{R}. $$
So $h_{-1}^{-2}\left(\frac{1 + \sqrt{5}}{2}\right)$ are undefined in \mathbb{R} with $n \geq 2$.

DOI: 10.4236/oalib.1107300 8 Open Access Library Journal
Thus the backward orbit of P_1 is undefined.

So the intersection of $W^u\left(\frac{1+\sqrt{5}}{2}\right)$ with the backward orbit of P_1 is also undefined. ■

3.9. Example 2

For $h_{_{-2}}(x) = x^2 - 2$, then $h_{_{-2}}$ has a point of tangency at 0 associated to P_1.

Solution:

Consider the fixed point of $h_{_{-2}}(x)$ is $P_1 = 2$.

By Example (3.4), The backward orbit of $P_1 = 2$ is

$h_{_{-2}}^u(2) = \{2, -2, 0, \sqrt{2}, ..., 2\}$.

On the other hand, the unstable set of $P_1 = 2$ is $\mathcal{W}^u(2) = (-1, \infty)$, (see Theorem (3-c)). Now $h_{_{-2}}^u(2)$ intersects $\mathcal{W}^u(2)$ at 0.

By Lemma (3.1), 0 is a non-degenerate critical point. So $h_{_{-2}}$ has a point of tangency at 0 associated to P_1. ■

3.10. Example 3

For $h_{_{-6}}(x) = x^2 - 6$, the backward orbit of P_1 crosses the unstable set $\mathcal{W}^u(P_1)$.

Solution:

First consider the fixed point $P_1 = 3$.

The backward orbit of 3 is:

$h_{_{-6}}^u(3) = \{3, -3, \sqrt{3}, ..., 3\}$ (see Example (3-i)), with $h_{_{-6}}^u(3) = h_{_{-2}}^u(\sqrt{3})$, and $h_{_{-6}}^u(3) = \sqrt{3}$.

Since $\sqrt{3}$ is a homoclinic point of $P_1 = 3$, then

$\sqrt{3} \in \mathcal{W}^u_{_{loc}}(3)$.

Now since the local unstable set of the repelling fixed point $P_1 = 3$ contained in the unstable set of the repelling fixed point $P_1 = 3$. Therefore

$h_{_{-6}}^u(3) \cap \mathcal{W}^u(3) \neq \emptyset$. ■

Note, the main theorem in the work:

3.11. Theorem 5

$h_{_{\alpha, \beta}}(x) = ax^2 + b, a > 0$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{_{\alpha, \beta}}$, $P_1 = \frac{1+\sqrt{4ab}}{2a}$, at $b = \frac{-2}{a}$.

Proof:

1) For $b > \frac{-2}{a}$, by Theorem (3.5) the intersection of the backward orbit of P_1 and the unstable set of P_1 is undefined.

2) For $b = \frac{-2}{a}$, by Theorem (3.6) $h_{_{\alpha, \beta}}$ has a point of homoclinic tangency
associated to P_1 at $x = 0$.

3) For $b < \frac{-2}{a}$, by Theorem (3.7) the backward orbit of P_1 crosses the unstable set of P_1, $W^u(P_1)$.

Therefore $h_{a,b}$ has a homoclinic bifurcation associated to P_1 at $b = \frac{-2}{a}$. □

3.12. Example

$h_{a,b}(x) = x^2 - 2$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{a,b}$, $P_1 = 2$, at $b = -2$.

$h_{a,b}(x)$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{a,b}$, $P_1 = 2$, at $b = -2$. See examples (3.8), (3.9), (3.10).

3.13. Remark

For $a < 0$, we have same results which proved above for $a > 0$. In fact, we can prove in similar ways, that: $h_{a,b}(x) = ax^2 + b, a < 0$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{a,b}$, $P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}$, at $b = \frac{-2}{a}$.

4. Conclusion

We conclude that the family $H = \{h_{a,b}(x) = ax^2 + b : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R} \}$ has homoclinic tangency associated to P_1 at the critical point $x = 0$. Also for $b > \frac{-2}{a}$ we have no intersection between the backward orbit of P_1 and the unstable set of P_1, and the backward orbit of P_1 crosses the unstable set of P_1 for $b < \frac{-2}{a}$. So we have homoclinic bifurcation at $b = \frac{-2}{a}$.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Zhusubaliyev, Z.T. and Mosekilde, E. (2003) Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore. https://doi.org/10.1142/5313
[2] Ghrist, R.W., Holmes, P.J. and Sullivan, M.C. (2006) Knots and Links in Three-Dimensional Flows. Springer, Berlin Heidelberg.
[3] Onozaki, T. (2018) Nonlinearity, Bounded Rationality, and Heterogeneity. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-4-431-54971-0
[4] Guo, S. and Wu, J. (2013) Bifurcation Theory of Functional Differential Equations, Vol. 10. Springer, New York. https://doi.org/10.1007/978-1-4614-6992-6
[5] Puu, T. and Sushko, I. (2006) Business Cycle Dynamics. Springer, New York. https://doi.org/10.1007/3-540-32168-3
[6] Block, L.S. and Coppel, W.A. (2006) Dynamics in One Dimension. Springer, New York.

[7] Devaney, R. (2018) An Introduction to Chaotic Dynamical Systems. CRC Press, Boca Raton, FL. https://doi.org/10.4324/9780429502309

[8] Gulick, D. (2012) Encounters with Chaos and Fractals. CRC Press, Boca Raton, FL. https://doi.org/10.1201/b11855

[9] Laura, G., Viktor, A., Iryna, S. and Fabio, T. (2019) Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures, Vol. 95. World Scientific, Singapore.

[10] Perko, L. (2013) Differential Equations and Dynamical Systems, Vol. 7. Springer Science & Business Media, Berlin Heidelberg.

[11] Bonatti, C., Díaz, L.J. and Viana, M. (2006) Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Vol. 102. Springer Science & Business Media, Berlin Heidelberg.

[12] Abdul-Kareem, K.N. and Farris, S.M. (2020) Homoclinic Points and Homoclinic Orbits for the Quadratic Family of Real Functions with Two Parameters. Open Access Library Journal, 7, 1-18. https://doi.org/10.4236/oalib.1106170

[13] Abdul-Kareem, K.N. and Farris, S.M. (2020) Homoclinic Points and Bifurcation for a Quadratic Family with Two Parameters. MSc Thesis, Department of Mathematics, College of Computer and Mathematical Sciences, University of Mosul, Mosul, Iraq, 1-98.