Persistence probabilities of two-sided (integrated) sums of correlated stationary Gaussian sequences

Frank Aurzada Micha Buck
March 13, 2022

Abstract

We study the persistence probability for some two-sided discrete-time Gaussian sequences that are discrete-time analogs of fractional Brownian motion and integrated fractional Brownian motion, respectively. Our results extend the corresponding ones in continuous-time in [11] and [12] to a wide class of discrete-time processes.

1 Introduction

Persistence concerns the probability that a stochastic process has a long negative excursion. In this paper, we are concerned mainly with two-sided discrete-time processes: If $Z = (Z_n)_{n \in \mathbb{Z}}$ is a stochastic process, we study the rate of decay of the probability

$$\mathbb{P}(Z_n \leq 0 : |n| \leq N), \quad \text{as} \quad N \to \infty.$$

In many cases of interest, the above probability decreases polynomially, i.e., as $N^{-\theta+o(1)}$, and it is the first goal to find the persistence exponent θ. For a recent overview on this subject, we refer to the surveys [9], [7], [5].

The purpose of this paper is to analyse the persistence probability for the discrete-time analogs of two-sided fractional Brownian motion (FBM) and two-sided integrated fractional Brownian motion (IFBM). Our study extends results in [11] and [12], respectively, to a wide class of discrete-time processes.

The study of persistence probabilities of FBM, IFBM and related processes has received considerable attention in theoretical physics and mathematics, recently. For instance, see [13] and [12] where a relation between the Hausdorff dimension of Lagrangian regular points for the inviscid Burgers equation with FBM initial velocity and the persistence probabilities of IFBM is established; the interest for it arises from [18] and [19]. Further, in [14] a physical model involving FBM is studied as an extension to the Sinai model; see also [2]. Here, persistence probabilities are related to scaling
properties of a quantity, called steady-state current. Moreover, persistence of non-Markovian processes that are similar to FBM are studied in \[8\] and \[4\], confirming results in \[16\] and \[10\].

Let us recall that a FBM \((W_H(t))_{t \in \mathbb{R}}\) is a centered Gaussian process with covariance

\[
E[W_H(t)W_H(s)] = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t-s|^{2H}), \quad t, s \in \mathbb{R},
\]

where \(0 < H < 1\) is a constant parameter, called Hurst parameter. For \(H = 1/2\) this is a usual two-sided Brownian motion. For any \(0 < H < 1\), the process has stationary increments, but no independent increments (unless \(H = 1/2\)). Furthermore, it is an \(H\)-self-similar process. An IFBM \((I_H(t))_{t \in \mathbb{R}}\) is defined by

\[
I_H(t) := \int_0^t W_H(s) \, ds
\]

and is a \((H+1)\)-self-similar process.

In order to define the discrete-time analogs, let \((\xi_n)\) be a real valued stationary centered Gaussian sequence such that

\[
\sum_{j=1}^{n} \sum_{k=1}^{n} E[\xi_j \xi_k] \sim n^{2H} \ell(n), \quad n \to \infty,
\]

with \(0 < H < 1\) and \(\ell\) slowly varying at infinity. Here and below, we write \(f(x) \sim g(x) \, (x \to x_0)\) if \(\lim f(x)/g(x) = 1\) as \(x \to x_0\). Then, (1) implies the weak convergence result

\[
\left(\frac{1}{n^{H} \ell(n)^{1/2}} \sum_{k=1}^{\lfloor nt \rfloor} \xi_k \right)_{t \geq 0} \Rightarrow (W_H(t))_{t \geq 0}
\]

with fractional Brownian motion \((W_H(t))\), see e.g. Theorem 4.6.1 in \[20\].

For this reason, it is natural to consider the stationary increments sequence \((S_n)_{n \in \mathbb{Z}}\) given by

\[
S_n - S_{n-1} := \xi_n \text{ for } n \in \mathbb{Z} \quad \text{and} \quad S_0 := 0
\]
as a discrete-time analog of FBM.

Now, we will define the discrete-time analog of IFBM such that symmetry properties like in the continuous-time setting are satisfied. With this in mind, a natural process is given by

\[
I_n - I_{n-1} := (S_n + S_{n-1})/2 \text{ for } n \in \mathbb{Z} \quad \text{and} \quad I_0 := 0.
\]

In Section 2, we discuss relations to the process with increments \((S_n)\) (instead of \((S_n + S_{n-1})/2\)), which may also seem natural but for which our method of proof does not apply directly due to a lack of symmetry.

In \[11\] it is shown that one has \(\mathbb{P}(W_H(t) \leq 1 : |t| \leq T) = T^{-1+o(1)}\).

Our first result, treats the discrete-time analog. The technique we use to prove the theorem is completely different from the one in \[11\].
Theorem 1. Let (ξ_n) be a real valued stationary centered Gaussian sequence such that (1) holds. Then, there is a constant $c > 0$ such that, for every $N \geq 1$,

$$c^{-1} N^{-1} \leq \mathbb{P}(S_n \leq 0 : |n| \leq N) \leq N^{-1}. $$

In order to prove the corresponding result for the process (I_n), we will use a change of measure argument. This argument requires an additional assumption as follows: Let μ denote the spectral measure of the sequence (ξ_n), i.e.,

$$\mathbb{E} \xi_j \xi_k =: \int_{(-\pi,\pi]} e^{i(j-k)u} d\mu(u).$$

The spectral measure μ has a (possibly vanishing) component that is absolutely continuous with respect to the Lebesgue measure. Let us denote by p its density, i.e., $d\mu(u) =: p(u) du + d\mu_s(u)$. We will assume that p satisfies

$$p(u) \sim \ell(1/u)|u|^{1-2H}, \quad u \to 0, \quad (3)$$

where ℓ is a slowly varying function at infinity. It is well-known that (3) implies (1) and thus (2).

The nature of this assumption can be understood by considering the fractional Gaussian noise process, defined by

$$\xi_{\text{fgn}}_n := W_H(n) - W_H(n-1).$$

This stationary centered Gaussian sequence has an absolutely continuous spectral measure with density function p_{fgn} that satisfies (see e.g. [17])

$$p_{\text{fgn}}(u) \sim m_H|u|^{1-2H}, \quad u \to 0,$$

where $m_H = \Gamma(2H + 1)\sin(\pi H)/2\pi$. So, we assume that the density of the absolutely continuous part of the spectral measure of the stationary process (ξ_n) is comparable to the spectral density of fractional Gaussian noise, up to the slowly varying function ℓ.

We are now ready to state our second main result.

Theorem 2. Let (ξ_n) be a real valued stationary centered Gaussian sequence such that (3) holds. Then,

$$\mathbb{P}(I_n \leq 0 : |n| \leq N) = N^{-(1-H)+o(1)}. $$

We recall that [12] considers the continuous-time case. Many arguments from that paper can be adapted to our setup. However, for instance, arguments using self-similarity need to be replaced by new ideas. Furthermore, new results concerning the change of measure are needed and may be of independent interest.

For example, as a byproduct of the change of measure techniques, we can improve Theorem 11 in [4], where the persistence problem of the one-sided discrete-time analog of FBM is considered. There it is shown that for
every real valued stationary centered Gaussian sequence \((\xi_n)_{n \in \mathbb{N}}\) such that (1) holds and every \(a > 0\), there is some constant \(c > 0\) such that

\[
e^{-N^{-1-H}} \frac{\sqrt{\ell(N)}}{\log(N)} \leq \mathbb{P}(S_n < 0 : 1 \leq n \leq N) \quad \text{and} \quad \mathbb{P}(S_n < -a : 1 \leq n \leq N) \leq cN^{-(1-H)} \sqrt{\ell(N)}.
\]

Thus, one has a lower bound for the probability \(\mathbb{P}(S_n < b : 1 \leq n \leq N)\), if \(b\) is non-negative, and an upper bound, if \(b\) is negative. In order to get both, a lower estimate and an upper estimate, for some arbitrary \(b \in \mathbb{R}\), [4] uses a change of measure argument. To get this argument to work, a strong assumption on the covariance function of \((S_n)\) is made; namely \(\inf_{n \geq 1} \mathbb{E}S_1S_n > 0\) (see also our Remark 9 below). We are able to prove upper and lower bounds whenever (3) is satisfied. We state this result as Corollary 8 below.

The outline of this paper is as follows. In Section 2, we collect some basic properties of the processes \((S_n)\) and \((I_n)\). Moreover, we present some results concerning the reproducing kernel Hilbert spaces of the considered processes that may be of independent interest. In Section 3, we give a proof of Theorem 1. Finally, in Section 4, we prove our main result, Theorem 2.

2 Preliminaries

Let \((W_H(t))\) be a FBM with Hurst parameter \(0 < H < 1\) and \((I_H(t))\) an IFBM. Then, unlike \((W_H(t))\), the process \((I_H(t))\) does not have stationary increments. Instead, the process satisfies for all \(t_0 \in \mathbb{R}\)

\[(I_H(t + t_0) - I_H(t_0) - tW_H(t_0))_{t \in \mathbb{R}} \overset{d}{=} (I_H(t))_{t \in \mathbb{R}}.
\]

In the discrete-time setup, we have analogous properties. From the definition of the process \((S_n)\), we straightforwardly obtain stationary increments

\[
(S_{n_0 + n} - S_{n_0})_{n \in \mathbb{Z}} \overset{d}{=} (S_n)_{n \in \mathbb{Z}} \quad \text{for all} \quad n_0 \in \mathbb{Z}.
\]

Also, it is easy to verify that we have

\[
(I_{n_0 + n} - I_{n_0} - n\tilde{S}_{n_0})_{n \in \mathbb{Z}} \overset{d}{=} (I_n)_{n \in \mathbb{Z}} \quad \text{for all} \quad n_0 \in \mathbb{Z},
\]

where \((\tilde{S}_n)_{n \in \mathbb{Z}}\) denotes the sequence given by \(\tilde{S}_n := \frac{S_n + S_{n-1}}{2}\).

Let us now recall the definition of the reproducing kernel Hilbert space (RKHS) of a centered Gaussian process \((X_t)_{t \in \mathbb{T}}\). For this purpose, let \(\mathbb{H}\) denote the \(L^2\)-closure of the set \(\text{span}\{X_t : t \in \mathbb{T}\}\). Then the RKHS \(\mathcal{H}\) of \((X_t)\) is the Hilbert space of functions

\[\mathbb{T} \ni t \mapsto \mathbb{E}[X_t h], \quad h \in \mathbb{H},\]

4
with inner product $\langle \mathbb{E}[Xh_1], \mathbb{E}[Xh_2]\rangle_{\mathcal{H}} = \mathbb{E}[h_1h_2]$.

The following result, Proposition 1.6 in [3], will be an important tool throughout this work.

Proposition 3. Let X be some centered Gaussian process with RKHS \mathcal{H}. Denote by $\| \cdot \|$ the norm in \mathcal{H}. Then, for each $f \in \mathcal{H}$ and each measurable S such that $\mathbb{P}(X \in S) \in (0, 1)$, we have

$$e^{-\sqrt{2\|f\|^2 \log(1/\mathbb{P}(X \in S))} - \|f\|^2/2} \mathbb{P}(X \in S) \leq \mathbb{P}(X + f \in S).$$

(6)

If $\|f\|^2 < 2\log(1/\mathbb{P}(X \in S))$, we have in addition

$$\mathbb{P}(X + f \in S) \leq e^{\sqrt{2\|f\|^2 \log(1/\mathbb{P}(X \in S))} - \|f\|^2/2} \mathbb{P}(X \in S).$$

(7)

Remark 4. We want to mention that the proof of Proposition 1.6 in [3] fails if $\|f\|^2 \geq 2\log(1/\mathbb{P}(X \in S))$. Thus, unlike in [3], we have excluded this case here. In the applications of this proposition that we know of, the function $f \in \mathcal{H}$ is fixed and one is interested in the asymptotic behavior of the probabilities $\mathbb{P}(X \in S^{(N)})$ for $N \to \infty$, where $(S^{(N)})$ is a sequence of measurable sets such that $\lim_{N \to \infty} \mathbb{P}(X \in S^{(N)}) = 0$. In this case the condition is satisfied for N large enough. Hence, Proposition 1.6 in [3] can be applied in the same way as before.

First, we show the existence of a function in the RKHS of $(\xi_n)_{n \in \mathbb{Z}}$ with certain asymptotic behavior.

Proposition 5. Let $H \in (0, 1)$, $\rho \in (-1, H - 1)$ and let $\mathcal{H}_H(\xi)$ denote the RKHS of the process $(\xi_n)_{n \in \mathbb{Z}}$. Then, if (3) is satisfied, there is an even function $h \in \mathcal{H}_H(\xi)$ such that $h > 0$ and $h(n) \sim n^\rho$.

Proof. Recall that $h \in \mathcal{H}_H(\xi)$ if and only if there is a function $\varphi \in L^2(\mu)$ with $h(n) = \int_{(-\pi, \pi]} \varphi(u)e^{-inu}d\mu(u)$, see e.g. Comment 2.2.2 (c) in [1]. In order to prove the Proposition, we will first consider a function $\varphi_1 \in L^2(\mu)$ such that the corresponding function $h_1 \in \mathcal{H}_H(\xi)$ has the correct asymptotic behavior. This function can attain non-positive values at finitely many times. To fix this, we will construct afterwards another function $\varphi_2 \in L^2(\mu)$ such that the corresponding function $h_2 \in \mathcal{H}_H(\xi)$ is non-negative, takes positive values when h_1 takes non-positive values and decays faster than h_1. Then, for suitable constants $c_1, c_2 > 0$, the function $h = c_1h_1 + c_2h_2$ has the required properties.

Construction of h_1: Due to (3), there is a function $\tilde{\ell}$ and a constant $u_0 > 0$ such that $p_u(u) = \tilde{\ell}(u)|u|^{1-2H}$ for $u \in [-u_0, u_0]$ and $\tilde{\ell}$ is slowly varying at zero. By Potter’s theorem, see Theorem 1.5.6 in [6], u_0 can be chosen such that $\tilde{\ell}(u_0)/\tilde{\ell}(u) \leq A \left(\frac{|u|}{u_0}\right)^{-\delta}$ for $|u| < u_0$, fixed $A > 1$ and fixed
\[0 < \delta < 2(H - 1 - \rho). \] We set
\[
\varphi_1(u) := \begin{cases}
|u|^{2H-2-\rho}/\ell(u), & u \in [-u_0, u_0] \cap \text{supp}(\mu_*)^C, \\
0, & \text{otherwise}.
\end{cases}
\]

Then, \(\varphi_1 \in L^2(\mu) \) because
\[
\int_{(-\pi, \pi]} |\varphi_1(u)|^2 \, d\mu(u) = \int_{-u_0}^{u_0} \frac{|u|^{2H-3-2\rho}}{\ell(u)} \, du \\
\leq \frac{A}{\ell(u_0)} \int_{-u_0}^{u_0} |u|^{2H-3-2\rho} \left(\frac{|u|}{u_0} \right)^{-\delta} \, du < \infty.
\]
Here we used that \(2H - 3 - 2\rho - \delta > -1 \). Moreover,
\[
\int_{(-\pi, \pi]} \cos(nu) \varphi_1(u) \, d\mu(u) = \int_{-u_0}^{u_0} \cos(nu)|u|^{-\rho-1} \, du \\
= n^{\rho} \int_{-nu_0}^{nu_0} \cos(v)|v|^{-\rho-1} \, dv \\
= 2n^{\rho} \int_{0}^{nu_0} \cos(v)|v|^{-\rho-1} \, dv.
\]
Since \(-\rho - 1 < 0\), it is easy to show, using the Leibniz criterion and the concavity of \((-\cdot)^{-\rho-1}\), that the latter integral converges to a constant \(c/2 > 0 \). Thus,
\[
h_1(n) = \int_{(-\pi, \pi]} \varphi_1(u)e^{-inu} \, d\mu(u) \sim cn^\rho.
\]

Construction of \(h_2 \): Choose \(n_0 \) such that \(h_1 \) attains only positive values for \(|n| > n_0\). Let \(g \in C^1 \) be an even real-valued function with support contained in \([-u_0/2, u_0/2]\) such that the Fourier coefficients for \(|n| \leq n_0\) do not vanish, e.g. take any smooth even function \(g \) with \(g(u) > 0 \) for \(|u| < \min(u_0/2, \pi/(2n_0)) \) and \(g(u) = 0 \) otherwise. Then, the function \(f \) given by \(f(u) := \frac{1}{2\pi} \int_{-\pi}^{\pi} g(v)g(u-v) \, dv \) has Fourier coefficients \(\hat{f}_n = |\hat{g}_n|^2 \). In particular \(\hat{f}_n > 0 \) for \(|n| \leq n_0 \). Moreover, \(f \in C^2 \) because \(f \) is a convolution of two differentiable functions. Thus, we have
\[
0 \leq \hat{f}_n = \frac{1}{(in)^2} \hat{(f''u)}_n \leq \sup_{x \in (-\pi, \pi]} |f''(x)| \frac{1}{|n|^2} \quad \text{for} \quad n \in \mathbb{Z} \setminus \{0\}.
\]

Now, we consider the function
\[
\varphi_2(u) := \begin{cases}
\frac{f(u)}{|u|^{2H} \ell(u)}, & u \in [-u_0, u_0] \cap \text{supp}(\mu_*)^C, \\
0, & \text{otherwise}.
\end{cases}
\]
Let M denote the maximum of f, then
\[
\int_{(-\pi, \pi]} |\varphi_2(u)|^2 \, d\mu(u) \leq \int_{-u_0}^{u_0} \frac{M^2}{|u|^{1-2H} \ell(u)} \, du \\
\leq \frac{A}{\ell(u_0)} \int_{-u_0}^{u_0} \frac{M^2}{|u|^{1-2H}} \left(\frac{|u|}{u_0} \right)^{-\delta} \, du < \infty,
\]

since $2H - 1 - \delta > -1$. Furthermore, we have by construction of φ_2
\[
b_2(n) = \int_{(-\pi, \pi]} \varphi_2(u)e^{-iu} \, d\mu(u) = \int_{-\pi}^{\pi} f(u)e^{-iu} \, du = \tilde{f}_n.
\]

As a corollary of Proposition 5 we show the existence of functions with certain asymptotic behavior in the RKHSs of $(S_n)_{n \in \mathbb{Z}}$ and $(I_n)_{n \in \mathbb{Z}}$, respectively.

Corollary 6. Let $H \in (0, 1)$, $\rho \in (-1, H - 1)$ and let $\mathcal{H}_H(S)$ and $\mathcal{H}_H(I)$ denote the RKHS of the processes $(S_n)_{n \in \mathbb{Z}}$ and $(I_n)_{n \in \mathbb{Z}}$, respectively. Then, if (3) is satisfied, there are functions $f \in \mathcal{H}_H(S)$, $g \in \mathcal{H}_H(I)$ such that f is odd with $f(n) > 0$ for $n > 0$ and $f(n) \sim n^{\rho+1}$ as $n \to \infty$ whereas g is even and positive on $\mathbb{Z} \setminus \{0\}$ with $g(n) \sim n^{\rho+2}$ as $n \to \infty$.

Proof. Let $h \in \mathcal{H}_H(\xi)$ be the positive and even function in Proposition 5 with $h(n) \sim n^\rho$. Then, by the definition of the RKHS, there is a random variable X in the L^2-closure of the set $\text{span}\{\xi_n : n \in \mathbb{Z}\}$ with $h(n) = \mathbb{E}[\xi_nX]$. Now, let the functions f, g be given by $f(n) = (\rho + 1)\mathbb{E}[S_nX]$ and $g(n) = (\rho + 1)(\rho + 2)\mathbb{E}[I_nX]$, respectively. Since the sets $\text{span}\{\xi_n : n \in \mathbb{Z}\}$, $\text{span}\{S_n : n \in \mathbb{Z}\}$ and $\text{span}\{I_n : n \in \mathbb{Z}\}$ coincide, we have $f \in \mathcal{H}_H(S)$ and $g \in \mathcal{H}_H(I)$. By $h(n) \sim n^\rho$ and the symmetry of h, we have $-f(-n) = f(n) = (\rho + 1)\sum_{k=1}^{n} h(k) \sim n^{\rho+1}$ as $n \to \infty$. Thus, we have further $g(-n) = g(n) = (\rho + 1)(\rho + 2)\sum_{k=1}^{n-1} \mathbb{E}[S_kX] + \mathbb{E}[S_nX]/2 \sim n^{\rho+2}$ as $n \to \infty$.

As a first application of Corollary 6 we compare the persistence probabilities of (I_n) to a closely related process. Let $(\tilde{I}_n)_{n \in \mathbb{Z}}$ be the sequence given by $\tilde{I}_n - I_{n-1} := S_n$ for $n \in \mathbb{Z}$ and $\tilde{I}_0 := 0$. This process is related to the process (I_n) by the identity $\tilde{I}_n = I_n + S_n/2$. Both processes are defined as integrals of stationary increments sequences that have FBM as scaling limit. In the context of this paper, the major difference between these processes is that (I_n) vanishes only at 0 and satisfies $(I_n) \overset{d}{=} (I_{-n})$ whereas $\tilde{I}_n - I_0 = 0$ and \tilde{I}_1 does not vanish. The symmetry property of (I_n) resembles the continuous-time case and is needed in the proof of Theorem 2. In the following corollary, we relate the persistence probabilities of both processes.
Corollary 7. Let (ξ_n) be a real valued stationary centered Gaussian sequence such that (3) holds. Then,

$$\mathbb{P}(\bar{I}_n \leq 0 : -N-1 \leq n \leq N) \leq \mathbb{P}(I_n \leq 0 : |n| \leq N).$$

If in addition $\mathbb{E}[\bar{I}_n I_m] \geq 0$ for all $n, m \in \mathbb{Z}$, then one has

$$\mathbb{P}(I_n \leq 0 : |n| \leq N) \leq \mathbb{P}(\bar{I}_n \leq 0 : |n| \leq N) \ell_0(N),$$

where ℓ_0 denotes a slowly varying function at infinity.

Proof. The first inequality follows directly from the definitions of the processes, since one has $I_n = (\bar{I}_n + \bar{I}_{n-1})/2$ for all $n \in \mathbb{Z}$. Using Slepian’s Lemma and the additional assumption about the correlations of (\bar{I}_n), we obtain

$$\mathbb{P}(\bar{I}_n \leq 0 : |n| \leq N) \geq \mathbb{P}(\bar{I}_n \leq 0 : |n| \leq \log(N)) \cdot \mathbb{P}(\bar{I}_n \leq 0 : \log(N) < |n| \leq N). \quad (8)$$

By the same argument and Theorem 1, we have

$$\mathbb{P}(\bar{I}_n \leq 0 : |n| \leq \log(N)) \geq \mathbb{P}(\bar{I}_n \leq 0 : 0 \leq n \leq \log(N)) \cdot \mathbb{P}(\bar{I}_n \leq 0 : -\log(N) \leq n < 0) \geq \mathbb{P}(S_n \leq 0 : 0 \leq n \leq \log(N)) \cdot \mathbb{P}(S_n \geq 0 : -\log(N) \leq n < 0) \geq c^{-2} \log(N)^{-2}.$$

Thus, the first factor on the right hand side in (8) can be estimated by a slowly varying function at infinity. It remains to relate the second factor on the right hand side in (8) to the probability $\mathbb{P}(I_n \leq 0 : |n| \leq N)$.

By Corollary 6 for $\varepsilon \in (0, 1/4)$, there is a symmetric function $f \in \mathcal{H}_H(I)$ such that $f(n) \geq |n|^{1+H-\varepsilon}$ for all $n \in \mathbb{Z}$. Obviously, we have

$$\mathbb{P}(I_n \leq -n^{1+H-\varepsilon} : \log(N) < |n| \leq N) \leq \mathbb{P}(\bar{I}_n \leq 0 : \log(N) < |n| \leq N) + \mathbb{P}(\exists n : \bar{I}_n - I_n > n^{1+H-\varepsilon}, \log(N) < |n| \leq N). \quad (9)$$

We will see that the second term on the right hand side is of lower order, while the term on the left hand side can be related to $\mathbb{P}(I_n \leq 0 : |n| \leq N)$. For this purpose, let X denote a standard normal random variable. Then, by using $\bar{I}_n - I_n = S_n/2$ in the first step and (1) in the second step, we have
for N large enough
\[
\mathbb{P} \left(\exists n : \bar{I}_n - I_n > n^{1+H-\varepsilon}, \log(N) < |n| \leq N \right) \\
\leq 2 \sum_{n=\lceil \log(N) \rceil}^{N} \mathbb{P}\left(S_n/2 > n^{1+H-\varepsilon} \right) \\
\leq 2 \sum_{n=\lceil \log(N) \rceil}^{N} \mathbb{P}\left(n^{H+\varepsilon} X > n^{1+H-\varepsilon} \right) \\
\leq 2N \mathbb{P}\left(X \geq \log(N)^{1-2\varepsilon} \right) \\
\leq 2Ne^{-\log(N)^2/2} \\
\leq 2N^{-2}. \tag{10}
\]

In the fourth step above, we used the standard estimate $\mathbb{P}(X > x) \leq e^{-x^2/2}$ for $x \geq 1$. Finally, using Proposition 3, we obtain for N large enough
\[
\mathbb{P}(I_n \leq 0 : |n| \leq N) \leq \mathbb{P}(I_n \leq 0 : \log(N) < |n| \leq N) \\
\leq \mathbb{P}(I_n \leq -f(n) : \log(N) < |n| \leq N) \\
\cdot e^{\sqrt{2\|f\|^2 \log(1/\mathbb{P}(I_n \leq 0 : |n| \leq N))}-\|f\|^2/2} \\
\leq \mathbb{P}(I_n \leq -n^{1+H-\varepsilon} : \log(N) < |n| \leq N) \\
\cdot e^{\sqrt{2\|f\|^2 \log(1/\mathbb{P}(I_n \leq 0 : |n| \leq N))}-\|f\|^2/2}.
\]

This, together with (9), (10) and Theorem 2 finishes the proof. \qed

As another application of Corollary 6, we can give an improvement of Theorem 11 in [4]:

Corollary 8. Let (ξ_n) be a real valued stationary centered Gaussian sequence such that (3) holds. Then, for every $b \in \mathbb{R}$ there is some constant $c > 0$ such that
\[
N^{-(1-H)} \sqrt{\ell(N)} e^{-c\sqrt{\log(N)}} \leq \mathbb{P}\left(\max_{1 \leq n \leq N} S_n \leq b \right) \\
\leq N^{-(1-H)} \sqrt{\ell(N)} e^{c\sqrt{\log(N)}} \forall N \in \mathbb{N}.
\]

Proof. Let $a > 0$. By Corollary 6 there is a function $f \in \mathcal{H}_H(S)$ with $f(n) \geq 2a$ for all $n \geq 1$. Further, using the lower estimate in [4], we have for N large enough
\[
N^{-1} \leq \mathbb{P}(S_n \leq a : 1 \leq n \leq N).
\]

9
This together with Proposition 3 yields for N large enough

$$
\mathbb{P}(S_n \leq -a : 1 \leq n \leq N) = \mathbb{P}(S_n + f(n) \leq -a + f(n) : 1 \leq n \leq N) \\
\geq \mathbb{P}(S_n + f(n) \leq a : 1 \leq n \leq N) \\
\geq \mathbb{P}(S_n \leq a : 1 \leq n \leq N) e^{-\sqrt{2\|f\|^2\log(N)} - \|f\|^2/2}.
$$

Combining this with (4) finishes the proof.

Remark 9. In Theorem 11 in [4], the authors assume $\inf_{n \geq 1} \mathbb{E}S_nS_1 > 0$ to get the change of measure argument to work. For instance, the fractional Gaussian noise process (ξ_{FGN}) satisfies this assumption. This can be easily verified by using that $\mathbb{E}S_n^2 = n^{2H}$. In general, this does not remain true if one only has (1). For example, consider the case where $\ell(x) = 1 + \cos(\pi x)/\log(x)$ in (1). Then, one has $\sum_{j=1}^{n} \sum_{k=1}^{n} \mathbb{E}\xi_j\xi_k \sim n^{2H}$ but the function $\mathbb{E}S_nS_1$ attains infinitely often positive and negative values.

Remark 10. Consider the function $f : \mathbb{N} \to \mathbb{R}$ with $f(n) = 1_{n=1}$. Clearly, f is in the RKHS of the process $(\xi_n)_{n \geq 1}$ if and only if $\xi_1 \notin H_2$, where H_2 denotes the L^2-closure of the set $\text{span}\{\xi_n : n \geq 2\}$. It is well known that this condition is equivalent to the Kolmogorov condition

$$
\int_{-\pi}^{\pi} \log(p(u)) \, du > -\infty,
$$

where p denotes the density of the component of the spectral measure of (ξ_n) that is absolutely continuous with respect to the Lebesgue measure, see e.g. Theorem 2.5.4 in [1]. In this case, all constant functions are in the RKHS of the process $(S_n)_{n \geq 1}$. Hence, the proof of Corollary 3 still works if we replace condition (3) by (1) and (11).

3 Proof of Theorem 1

Upper bound

Let T_N denote the time where the process $(S_n)_{n \in \mathbb{Z}}$ attains its maximum on $\{0, 1, \ldots, N\}$. Since $(S_n)_{n \in \mathbb{Z}}$ has stationary increments and $\mathbb{P}(S_j = S_k) = 0$
for \(j \neq k \), the upper bound follows from

\[
N \cdot \mathbb{P}(S_n \leq 0 : -N \leq n \leq N) \leq \sum_{k=1}^{N} \mathbb{P}(S_n \leq 0 : -k \leq n \leq N - k)
\]
\[
= \sum_{k=1}^{N} \mathbb{P}(S_n \leq S_k : 0 \leq n \leq N)
\]
\[
= \sum_{k=1}^{N} \mathbb{P}(T_N = k)
\]
\[
\leq 1.
\]

Lower bound

Using again the stationary increments of \((S_n)_{n \in \mathbb{Z}}\), we obtain

\[
(N + 1) \cdot \mathbb{P}(S_n \leq 0 : -N \leq n \leq N)
\]
\[
\geq \sum_{k=0}^{N} \mathbb{P}(S_n \leq 0 : -N - k \leq n \leq 2N - k)
\]
\[
= \sum_{k=0}^{N} \mathbb{P}(S_n \leq S_{N+k} : 0 \leq n \leq 3N) \quad (12)
\]
\[
= \sum_{k=0}^{N} \mathbb{P}(T_{3N} = N + k)
\]
\[
= \mathbb{P}(T_{3N} \in [N, 2N]).
\]

Now, we consider the continuous functional \(F: (D([0, 1]), \| \cdot \|_{\infty}) \to (\mathbb{R}, | \cdot |) \) given by

\[
F(g) = \left(\sup_{x \in \left(\frac{1}{3}, \frac{2}{3}\right)} g(x) - \sup_{x \in \left(0, \frac{1}{3}\right) \cup \left(\frac{2}{3}, 1\right)} g(x) \right) \wedge 1,
\]
where \((x)_{+} := \max(x, 0)\) for \(x \in \mathbb{R} \) and \(D([0, 1]) \) denotes the set of all càdlàg functions on \([0, 1]\). We set

\[
Y_N(t) = \frac{1}{N^{\frac{1}{2}}} \sum_{k=1}^{[N t]} \xi_k.
\]

Due to (12), it follows that

\[
\mathbb{P}(T_{3N} \in [N, 2N]) = \mathbb{E} \left[\mathbb{I}_{T_{3N} \in [N, 2N]} \right] \geq \mathbb{E} F(Y_N) \to c_0 > 0, \quad \text{as } N \to \infty.
\]

This and (12) show the lower bound.
4 Proof of Theorem 2

The proof is structured as follows: We first consider the functional

$$ F_N := \sum_{k=1}^{N-1} \left(\gamma_{k,k}^--\gamma_{k,N-k}^+ \right)_+ , $$

where for $k \in \mathbb{Z}$ and $m \in \mathbb{N}$

$$ \gamma_{k,m}^- := \min_{1 \leq n \leq m} \frac{I_k - I_{k-n}}{n} \quad \text{and} \quad \gamma_{k,m}^+ := \max_{1 \leq n \leq m} \frac{I_{k+n} - I_k}{n} , $$

and determine the polynomial order of $\mathbb{E}F_N$ as $N \to \infty$. Then, we relate the quantity $\mathbb{E}F_N$ to the probability

$$ \tilde{p}_N := \mathbb{P}(I_n + |n| \leq 0, |n| \leq N) . \quad (13) $$

Finally, we obtain the asymptotic order of

$$ p_N := \mathbb{P}(I_n \leq 0 : |n| \leq N) \quad (14) $$

from (13) by using a change of measure argument (Proposition 3 and Corollary 6).

Upper bound for $\mathbb{E}F_N$

In the following, we fix N and write $\gamma_k^- = \gamma_{k,k}$ and $\gamma_k^+ = \gamma_{k,N-k}$ to ease notation. Let $C_N: [0, N] \to \mathbb{R}$ denote the concave majorant of I_n on $[0, N]$, i.e., C_N is the smallest concave function with $I_n \leq C_N(n)$. Obviously, C_N is a piecewise linear function and we denote by $\{k_1, k_2, \ldots \}$ (depending on N) its nodal points. At these points the slope on the left is γ_{k_i} and the slope on the right is $\gamma_{k_i}^+$. Further, we note that $\gamma_k^- - \gamma_k^+ \geq 0$ if and only if k is a nodal point of C_N. In that case one has $\gamma_k^+ = \gamma_{k+1}^-$. Thus,

$$ F_N = \sum_{k=1}^{N-1} (\gamma_k^- - \gamma_k^+) = \sum_{i} (\gamma_{k_i}^- - \gamma_{k_{i+1}}^-) = \gamma_0^+ - \gamma_N^- . $$

By $\mathbb{E}\tilde{S}_N = 0$, (5) and $(I_n) \overset{d}{=} (I_{-n})$, we have

$$ \mathbb{E}[-\gamma_N^+] = \mathbb{E} \left[- \min_{1 \leq n \leq N} \frac{I_N - I_{N-n}}{n} \right] \\
= \mathbb{E} \left[\max_{1 \leq n \leq N} \frac{I_{N-n} - I_N - (-n)\tilde{S}_N}{n} \right] \\
= \mathbb{E} \left[\max_{1 \leq n \leq N} \frac{I_{-n}}{n} \right] = \mathbb{E} \left[\max_{1 \leq n \leq N} \frac{I_n}{n} \right] = \mathbb{E}\gamma_0^+ . $$

12
Therefore,
\[EF_N = 2E\gamma_0^+. \]
(15)

Due to (15), one obtains the upper estimate

\[
EF_N = 2E \left[\max_{1 \leq n \leq N} \frac{\sum_{k=1}^n \tilde{S}_k}{n} \right]
\leq 2E \left[\max_{1 \leq n \leq N} \frac{\sum_{k=1}^n \max_{1 \leq j \leq N} \tilde{S}_j}{n} \right] = 2E \left[\max_{1 \leq j \leq N} \tilde{S}_j \right].
\]

It can be obtained from (2) that

\[
\frac{1}{N^{H/\ell}(N)^{1/2}} E \left[\max_{1 \leq n \leq N} \tilde{S}_n \right] \to E \left[\sup_{t \in [0,1]} W_H(t) \right] \in (0, \infty),
\]

where \((W_H(t))\) is a fractional Brownian motion, see e.g. proof of Theorem 11 in [4]. Thus, there is a constant \(c\) such that for all \(N\)

\[
EF_N \leq c \ell(N)^{1/2} N^H.
\]

(16)

In the following, \(c\) will denote a varying positive constant independent of \(N\) for ease of notation.

Lower bound for \(EF_N\)

Since \((\xi_n)\) is a stationary process, we have

\[
E S_j S_k = \frac{1}{2} \left(ES_j^2 + ES_k^2 - ES_{|j-k|}^2 \right).
\]

Consequently,

\[
E \left(I_N + \frac{S_N}{2} \right)^2 = \sum_{j=1}^N \sum_{k=1}^N ES_j S_k = \frac{1}{2} \sum_{j=1}^N \sum_{k=1}^N \left(ES_j^2 + ES_k^2 - ES_{|j-k|}^2 \right).
\]

Counting how often \(ES_k^2\) is added, yields

\[
E \left(I_N + \frac{S_N}{2} \right)^2 = \frac{1}{2} \sum_{k=1}^N N\mathbb{E}S_k^2 + \frac{1}{2} \sum_{k=1}^N N\mathbb{E}S_k^2 - \sum_{k=1}^N (N-k)\mathbb{E}S_k^2
\]

\[
= \sum_{k=1}^N k\mathbb{E}S_k^2.
\]

Since \(ES_n^2 \sim n^{2H} \ell(n)\), we can apply Proposition 1.5.8 in [6] to obtain

\[
E \left(I_N + \frac{S_N}{2} \right)^2 \sim N^{2H+2} \ell(N)/(2H+2).
\]

(17)
Now, using the Cauchy-Schwarz Inequality, we have $|\mathbb{E} S_N I_N| \leq \sqrt{\mathbb{E} S_N^2} \mathbb{E} I_N^2$ and we can thus conclude from (17) that

$$\mathbb{E} I_N^2 \sim N^{2H+2} \ell(N)/(2H + 2). \quad (18)$$

In the following, we let $\| \cdot \|_2$ denote the norm $\| X \|_2 = \mathbb{E} [|X|^2]^{1/2}$. Moreover, we recall the identity $\mathbb{E} X_+ = (2\pi)^{-1/2} \| X \|_2$ for a centered normal random variable X. Now, we can give a lower bound for $\mathbb{E} F_N$. By (15) and $\mathbb{E} I_1 = 0$, we have

$$\mathbb{E} F_N = 2\mathbb{E} \left[\max_{1 \leq n \leq N} I_n \right] = 2\mathbb{E} \left[\max_{1 \leq n \leq N} \frac{I_n}{n} - I_1 \right]$$

$$= 2\mathbb{E} \left(\max_{1 \leq n \leq N} \frac{I_n}{n} - I_1 \right) \geq 2\mathbb{E} \left(\frac{I_N}{N} - I_1 \right) + \frac{\sqrt{2/\pi}}{\| I_N/N - I_1 \|_2}.$$

Thus, by (18), we have

$$\mathbb{E} F_N \geq c^{-1} \ell(N)^{1/2} N^H. \quad (19)$$

Upper bound for \tilde{p}_N

In order to get an upper bound for the probability in (13), it is convenient to consider the random variable

$$\vartheta_N := \left(\gamma_{-0,N} - \gamma_{0,N}^+ \right).$$

We have

$$\mathbb{E} (\gamma_k^+ - \gamma_k^-)_+ \geq \mathbb{E} \vartheta_N. \quad (20)$$

To see this, note that by using (4), we obtain

$$\gamma_{k,N}^- - \gamma_{k,N}^+ = \min_{1 \leq n \leq N} \frac{I_k - n \tilde{S}_k}{n} - \min_{1 \leq n \leq N} \frac{I_k - n \tilde{S}_k}{n} = \gamma_{0,N}^+ - \gamma_{0,N}^-.$$
Using (16), (20), and (21), we thus obtain
\[c \ell(N)^{1/2} N^H \geq \mathbb{E} F_N = \sum_{k=1}^{N-1} \mathbb{E} \left(\gamma_k^- - \gamma_k^+ \right)_+ \]
\[\geq (N-1) \mathbb{E} \vartheta_N \geq 2(N-1) \mathbb{P}(\vartheta_N \geq 2) \]
\[\geq 2(N-1) \mathbb{P} \left(\gamma_{0,N}^- \geq 1, \gamma_{0,N}^+ \leq -1 \right) \]
\[= 2(N-1) \mathbb{P} (I_n + |n| \leq 0 : |n| \leq N). \]

Hence, we have for any \(N \)
\[\mathbb{P}(I_n + |n| \leq 0 : |n| \leq N) \leq c \ell(N)^{1/2} N^{-(1-H)}. \] (23)

Lower bound for \(\tilde{p}_N \)

Along the lines of the proof of (20), one gets an analogous estimate when replacing \(N \) by \(\tilde{k} := \min(k, N - k) \); namely
\[\mathbb{E} \left(\gamma_k^- - \gamma_k^+ \right)_+ \leq \mathbb{E} \vartheta_k. \] (24)

Now, let \(1 - H < \alpha < 1 \). Then, we have by the monotonicity of \(\vartheta_N \) for \(N^\alpha \leq k \leq N - N^\alpha \)
\[\mathbb{E} \vartheta_k \leq \mathbb{E} \vartheta_{[N^\alpha]} \]. (25)

Thus, by using (24) and (25), we obtain
\[\mathbb{E} F_N = \sum_{k=1}^{N-1} \mathbb{E} \left(\gamma_k^- - \gamma_k^+ \right)_+ \]
\[\leq (N - 2 \lfloor N^\alpha \rfloor) \mathbb{E} \vartheta_{\lfloor N^\alpha \rfloor} + 2 \sum_{k=1}^{\lfloor N^\alpha \rfloor} \mathbb{E} \vartheta_k. \]

Moreover, we know from (22), that we have for all \(k \)
\[\mathbb{E} \vartheta_k \leq c \ell(k)^{1/2} k^{H-1}. \] (26)

Hence, by (26) and Proposition 1.5.8 in [6], we obtain
\[\sum_{k=1}^{\lfloor N^\alpha \rfloor} \mathbb{E} \vartheta_k \leq c \ell(\lfloor N^\alpha \rfloor)^{1/2} N^\alpha H. \]

Thus, we have
\[c^{-1} \ell(N)^{1/2} N^H \leq \mathbb{E} F_N \leq N \mathbb{E} \vartheta_{\lfloor N^\alpha \rfloor} + c \ell(\lfloor N^\alpha \rfloor)^{1/2} N^\alpha H. \]
Since $\alpha H < 1$, we obtain
\[e^{-1}\ell(N)^{1/2} N^{H-1} \leq \mathbb{E} \vartheta_{\lfloor N^\alpha \rfloor}. \]
Replacing N by $\lceil N^{1/\alpha} \rceil$ yields
\[\ell_1(N) N^{-(1-H)/\alpha} \leq \mathbb{E} \vartheta_N, \]
where ℓ_1 is a slowly varying function at infinity.

Fix $q > 1$ to be chosen later and let $\| \cdot \|_q$ denote the norm $\mathbb{E} \| X \|^q / q$ for some random variable X. Then, using $\vartheta_N \leq \vartheta_1$ and Hölder’s Inequality, we have
\[\mathbb{E} \vartheta_N = \mathbb{E} \vartheta_N \mathbb{1}_{\vartheta_N > 0} \leq \| \vartheta_1 \|_q \mathbb{P} (\vartheta_N > 0)^{1-1/q}. \]
Further,
\[\| \vartheta_1 \|_q \leq \| I_{-1} - I_1 \|_q \leq c \sqrt{q}, \]
using that $I_{-1} - I_1$ is a Gaussian random variable. So, we have
\[\frac{\ell_1(N)}{c \sqrt{q}} N^{-(1-H)/\alpha} \leq \mathbb{P} (\vartheta_N > 0)^{1-1/q}. \]
Now, setting $q := \log(N) + 1$ yields
\[\ell_2(N) N^{-(1-H)/\alpha} \leq \mathbb{P} (\vartheta_N > 0), \tag{27} \]
where ℓ_2 is a slowly varying function at infinity.

In the following, we will relate the probability $\mathbb{P} (\vartheta_N > 0)$ to the probability in (13). This is divided into four steps.

Step 1: We start with a change of measure argument. By Corollary 6, we can find a function $f \in \mathcal{H}_H(I)$ such that $f(n) \geq \frac{3}{2} |n|$ for all $n \in \mathbb{Z}$. Then, using (5), we obtain
\[
-\sqrt{2} \| f \|^2 \log(1/\mathbb{P}(\vartheta_N > 0)) - \| f \|^2/2 \mathbb{P} (\vartheta_N > 0)
\]
\[
\leq \mathbb{P} \left(\min_{-N \leq n \leq -1} \frac{I_n + f(n)}{n} - \max_{1 \leq n \leq N} \frac{I_n + f(n)}{n} > 0 \right)
\]
\[
\leq \mathbb{P} \left(\min_{-N \leq n \leq -1} \frac{I_n + \frac{3}{2} |n|}{n} - \max_{1 \leq n \leq N} \frac{I_n + \frac{3}{2} |n|}{n} > 0 \right)
\]
\[
= \mathbb{P} \left(\min_{-N \leq n \leq -1} \frac{I_n}{n} - \max_{1 \leq n \leq N} \frac{I_n}{n} > 3 \right)
\]
\[
= \mathbb{P} (\vartheta_N > 3). \tag{28}
\]
So, by (27), $\mathbb{P} (\vartheta_N > 0)$ and $\mathbb{P} (\vartheta_N > 3)$ differ by less than a slowly varying function at infinity.

Step 2: Let
\[A_0^{(N)} := \{(x_{-N}, \ldots, x_{-1}, x_1, \ldots, x_N) \in \mathbb{R}^{2N} : x_n \leq -|n|, 1 \leq |n| \leq N\}, \]
In inequality. It is well known that for any convex subsets we make use of an argument that is commonly used to prove Anderson’s. Here, we used that one has

\[\text{is a centered Gaussian random variable, we can choose a constant } \lambda \]

get. Altogether we thus obtain

\[\text{where } \mu \]

In the following, we write \(I \in A_m^{(N)} \) instead of \((I_{-N}, \ldots, I_{-1}, I_1, \ldots, I_N) \in A_m^{(N)} \) for ease of notation. We will show that \(\{ \vartheta_N > 3 \} \subseteq \cup_{m \in \mathbb{Z}} \{ I \in A_m^{(N)} \}. \) For this purpose, let \(m^{(N)} \) be an integer-valued random variable such that \(\min_{-N \leq n \leq -1} \frac{I_n}{n} \in [m^{(N)} + 1, m^{(N)} + 2) \). Then, we obviously have \(I_n \leq (m^{(N)} + 1)n \) for \(-N \leq n \leq -1 \). Furthermore, assuming \(\vartheta_N > 3 \), we can conclude that

\[\max_{1 \leq n \leq N} \frac{I_n}{n} - \min_{-N \leq n \leq -1} \frac{I_n}{n} - 3 < m^{(N)} - 1. \]

Step 3: We show that \(P(I \in A_0^{(N)}) \geq P(I \in A_m^{(N)}) \). For this purpose, we make use of an argument that is commonly used to prove Anderson’s Inequality. It is well known that for any convex subsets \(A, B \subseteq \mathbb{R}^{2N} \) and \(0 < \lambda < 1 \), one has

\[\mu (\lambda A + (1 - \lambda)B) \geq \mu (A)^{\lambda} \mu (B)^{1-\lambda}, \]

where \(\mu \) is a centered Gaussian measure on \(\mathbb{R}^{2N} \), see e.g. Theorem 2 in [15]. Since \((I_{-N}, \ldots, I_{-1}, I_1, \ldots, I_N) \) is a centered Gaussian random variable, by setting \(\lambda = \frac{1}{2} \), we obtain

\[P(I \in A_0^{(N)}) = P(I \in \frac{1}{2} A_{-m}^{(N)} + \frac{1}{2} A_m^{(N)}) \geq P(I \in A_{-m}^{(N)})^{1/2} P(I \in A_m^{(N)})^{1/2} = P(I \in A_m^{(N)}). \]

Here, we used that one has \(A_0^{(N)} = \frac{1}{2} A_{-m}^{(N)} + \frac{1}{2} A_m^{(N)} \) and, by symmetry of the process \((I_n)\), \(P(I \in A_{-m}^{(N)}) = P(I \in A_{m}^{(N)}) \).

Step 4: Now, we relate the quantities \(P(\vartheta_N > 3) \) and \(\tilde{p}_N \). Since \(I_{-1} \) is a centered Gaussian random variable, we can choose a constant \(c_0 \) such that \(P(I_{-1} \leq -(a_N + 1)) \in o(N^{-1}) \) for \(a_N = \sqrt{c_0 \log(N)} \). Further, by \(P(\cup_{m \geq a_N} A_m) \leq P(I_{-1} \leq -(a_N + 1)) \) and symmetry of the process \((I_n)\), we get

\[P(\cup_{|m| \geq a_N} A_m) \in o(N^{-1}). \]

Altogether we thus obtain

\[P(\vartheta_N > 3) \leq P(\cup_{m \in \mathbb{Z}} A_m) \leq \sum_{|m| < a_N} P(A_m) + P(\cup_{|m| \geq a_N} A_m) \leq 2a_N P(A_0) + 2P(I_{-1} \leq -(a_N + 1)) = 2a_N P(I_n + |n| \leq 0 : |n| \leq N) + o(N^{-1}). \]
Putting this together with (27) and (28), we get
\[\ell_3(N)N^{-(1-H)/\alpha} \leq \mathbb{P}(I_n + |n| \leq 0 : |n| \leq N), \]
where \(\ell_3 \) denotes a slowly varying function at infinity.

Polynomial rate of \(p_N \)

Clearly, we have from (29)
\[\ell_3(N)N^{-(1-H)/\alpha} \leq \mathbb{P}(I_n \leq 0 : |n| \leq N) \leq \mathbb{P}(I_n \leq 0 : |n| \leq N) = p_N. \]

In particular, \(p_N \geq c^{-1}N^{-1} \) for some suitable constant \(c \). This estimate will be used in the following change of measure argument. Due to Corollary 6, we can choose a function \(f \in \mathcal{H}_H(I) \) with \(f(n) \geq |n| \) for all \(n \in \mathbb{Z} \). Then, by (29) and Proposition 4, we obtain
\[c \ell(N)^{1/2}N^{-(1-H)} \geq \mathbb{P}(I_n + |n| \leq 0 : |n| \leq N) \geq \mathbb{P}(I_n + f(n) \leq 0 : |n| \leq N) \geq \mathbb{P}(I_n \leq 0 : |n| \leq N) e^{-\sqrt{2\|f\|^2 \log(1/p_N)} - \|f\|^2/2} \]
\[\geq \mathbb{P}(I_n \leq 0 : |n| \leq N) e^{-\sqrt{2\|f\|^2 \log(cN)} - \|f\|^2/2}. \]

Finally, we take \(\log \) in (30), (31) and divide by \(\log(N) \). Then, taking \(\limsup_N \) and \(\liminf_N \), respectively, and letting \(\alpha \nearrow 1 \) yields
\[\lim_{N \to \infty} \frac{\log(\mathbb{P}(I_n \leq 0 : |n| \leq N))}{\log(N)} = H - 1. \]

References

[1] Ash, R. B., and Gardner, M. F. *Topics in Stochastic Processes*, vol. 27 of *Probability and Mathematical Statistics*. Academic Press, New York, 1975.

[2] Aurzada, F., and Baumgarten, C. Persistence of fractional Brownian motion with moving boundaries and applications. *Journal of Physics A: Mathematical and Theoretical* 46, 12 (2013).

[3] Aurzada, F., and Dereich, S. Universality of the asymptotics of the one-sided exit problem for integrated processes. *Annales de l’Institut Henri Poincaré Probabilités et Statistiques* 49, 1 (2013), 236–251.

[4] Aurzada, F., Guillotin-Plantard, N., and Pălne, F. Persistence probabilities for stationary increment processes. *Stochastic Processes and their Applications*, to appear, preprint available at arXiv:1606.00236.
[5] AURZADA, F., AND SIMON, T. Persistence Probabilities and Exponents. In Lévy Matters V, vol. 2149 of Lecture Notes in Mathematics. Springer, Cham, 2015, pp. 183–224.

[6] BINGHAM, N. H., GOLDIE, C. M., AND TEUGELS, J. L. Regular Variation. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1987.

[7] BRAY, A. J., MAJUMDAR, S. N., AND SCHEHR, G. Persistence and First-Passage Properties in Nonequilibrium Systems. Advances in Physics 62, 3 (2013), 225–361.

[8] CASTELL, F., GUILLOTIN-PLANTARD, N., PÈNE, F., AND SCHAPIRA, B. On the one-sided exit problem for stable processes in random scenery. Electronic Communications in Probability 18 (2013).

[9] MAJUMDAR, S. N. Persistence in nonequilibrium systems. Current Science 77, 3 (1999), 370–375.

[10] MAJUMDAR, S. N. Persistence of a particle in the Matheron–de Marsily velocity field. Physical Review E 68 (2003).

[11] MOLCHAN, G. Maximum of a fractional Brownian motion: probabilities of small values. Communications in Mathematical Physics 205, 1 (1999), 97–111.

[12] MOLCHAN, G. The Inviscid Burgers Equation with Fractional Brownian Initial Data: The Dimension of Regular Lagrangian Points. Journal of Statistical Physics 167, 6 (2017), 1546–1554.

[13] MOLCHAN, G., AND KHOKHLOV, A. Small Values of the Maximum for the Integral of Fractional Brownian Motion. Journal of Statistical Physics 114, 3-4 (2004), 923–946.

[14] OSHANIN, G., ROSSO, A., AND SCHEHR, G. Anomalous Fluctuations of Currents in Sinai-Type Random Chains with Strongly Correlated Disorder. Physical Review Letters 110 (2013).

[15] PRÉKOPA, A. Logarithmic concave measures with application to stochastic programming. Acta Scientiarum Mathematicarum 32 (1971), 301–316.

[16] REDNER, S. Survival probability in a random velocity field. Physical Review E 56 (1997), 4967–4972.

[17] SAMORODNITSKY, G. Long Range Dependence. Foundations and Trends® in Stochastic Systems 1, 3 (2006), 163–257.
[18] She, Z.-S., Aurell, E., and Frisch, U. The Inviscid Burgers Equation with Initial Data of Brownian Type. Communications in Mathematical Physics 148, 3 (1992), 623–641.

[19] Sinai, Y. G. Statistics of Shocks in Solutions of Inviscid Burgers Equation. Communications in Mathematical Physics 148, 3 (1992), 601–621.

[20] Whitt, W. Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2002.