Magnetic order of rare-earth tritelluride CeTe$_3$ at low temperature

To cite this article: K Deguchi et al 2009 J. Phys.: Conf. Ser. 150 042023

View the article online for updates and enhancements.

Related content
- Superconductivity in Pd-intercalated charge-density-wave rare-earth polytellurides RE$_x$Te$_y$
 J B He, P P Wang, H X Yang et al.
- Numerical Study of Fermi Surface on Cuprate Using One-Band Hubbard Model: Role of Charge Density Wave in The Antiferromagnetic Mott-insulator and Pseudogap Region
 M E I Akbar and I Santoso
- Revisiting the Fermi Surface in Density Functional Theory
 Mukunda P Das and Frederick Green

Recent citations
- Incommensurate magnetic order in TbTe$_3$
 F Pfuner et al
Magnetic order of rare-earth tritelluride CeTe$_3$
at low temperature

K Deguchi1, T Okada1, G F Chen1,3, S Ban1, N Aso2 and N K Sato1

1 Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
2 Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, Ibaraki 319-1106, Japan
E-mail: deguchi@edu3.phys.nagoya-u.ac.jp

Abstract. Rare-earth tritelluride CeTe$_3$, which belongs to the family of quasi-two-dimensional compounds RTe$_3$ (where R = Y, La-Sm, Gd-Tm), has highly two-dimensional crystal structure. Fermi surfaces consist of inner and outer square sheets, large regions of which are nested by a single incommensurate wave-vector. Because of the characteristic quasi-two-dimensional nature of square Fermi surfaces, the charge density wave of RTe$_3$ is formed with an extremely large gap and extensively investigated. Despite the extensive studies on the charge density wave in recent years, remarkably little is known about magnetism and low-temperature properties of CeTe$_3$. We have investigated the low-temperature magnetic-ordered-phases of the rare-earth tritelluride CeTe$_3$ with single crystals. We measured specific heat, electrical resistivity and differential magnetic susceptibility using a 3He cryostat down to about 0.45 K and a 3He/4He dilution refrigerator down to 0.1 K. We have found that heavy quasi-particles form spin density wave at low temperatures, reflecting the square Fermi surfaces with the quasi-one-dimensional nature.

1. Introduction
Rare-earth tritelluride CeTe$_3$, which belongs to the family of quasi-two-dimensional compounds RTe$_3$ (where R = Y, La-Sm, Gd-Tm), has highly two-dimensional crystal structure (Fig. 1); RTe-slabs and two square Te-sheets are stacked along the b-axis (space group Cmcm, weakly orthorhombic structure) [1, 2]. RTe-slabs contribute to magnetism [1, 3] and square Te-sheets form two-dimensional conducting bands, which give strongly anisotropic transport properties [2]. First-principles band-structure calculations reveal that the Fermi surface consists of inner and outer square sheets, large regions of which are nested by a single incommensurate wave-vector corresponding to the observed lattice-modulation [4, 5]. Because of the characteristic quasi-two-dimensional nature of the Te sheet, the charge density wave (CDW) is formed with an extremely large gap of the order of 100 meV [6–9]. Despite the extensive studies on the CDW in recent years [10–13], remarkably little is known about magnetic properties of CeTe$_3$ at low temperatures. Here we report the experimental results of electrical resistivity, differential magnetic susceptibility and heat capacity at low temperatures with single crystals of CeTe$_3$.

3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2. Experimental

Single crystals were grown by a self-flux technique. Elements in the molar ratio Ce:Te = 1:40, were put into alumina crucibles and vacuum sealed in quartz tubes. The mixtures were heated to 850 °C and slowly cooled over a period of 4 days to end temperatures in the range of 500 °C. The in-plane electrical resistivity was measured by a conventional four-probe method using gold wires lead and gold paste. The differential susceptibility was measured using a drive field $H_{ac} \sim 1$ Oe and counter-wound pickup coils. For experiments, an excitation frequency of 83 Hz was employed. Temperature was cooled down to 0.1 K using a 3He/4He dilution refrigerator. The specific heat measurements were carried out by an adiabatic heat-pulse method in a 3He cryostat down to about 0.45 K.

3. Results and Discussion

Figure 2(a) shows the temperature dependence of the specific heat divided by temperature. We observe a broad rounded peak at $T_{N1} = 3.1$ K (corresponding to the Neel temperature reported previously [1, 2]) and a sharp specific-heat jump at $T_{N2} = 1.3$ K. The broad feature of the peak at

Figure 1. Schematic diagram showing the crystal structure of CeTe$_3$. Black lines show the unit cell with lattice parameters $a \approx c \sim 4$ Å and $b \sim 26$ Å. Red and blue circles denote the Ce and Te atoms, respectively.

Figure 2. Temperature dependence of the specific heat divided by temperature, the electrical resistivity and the differential magnetic susceptibility of CeTe$_3$. Arrows denote the anomalies associated with two magnetic transitions at $T_{N1} = 3.1$ K and $T_{N2} = 1.3$ K.
Figure 3. The real part of the differential magnetic susceptibility through the magnetic transitions in CeTe$_3$ for $H \parallel c$-axis at several temperatures. Arrows denote the anomalies associated with two magnetic transitions at $H_{c1}(T)$ and $H_{c2}(T)$.

T_{N1} is possibly related to the low-dimensional character of CeTe$_3$. On the contrary, the specific heat jump at T_{N2} indicates a molecular-field like transition. The double phase transitions are also seen in the electrical resistivity for the current flowing along the a-axis in Fig. 2(b). There is a sharp drop in the resistivity associated with the loss of spin-disorder scattering below T_{N1} and a small anomaly like a hump just below T_{N2}. Figure 2(c) shows the temperature dependence of the differential magnetic susceptibility for $H_{ac} \parallel c$-axis and $H_{ac} \parallel b$-axis. The real part of the susceptibility shows a small kink at T_{N1} for both directions, which corresponds to the magnetic transition from paramagnetic phase in previous reports. Since the anomaly is very small, the magnetic transition is supposed to be not a simple antiferromagnetic transition. Below T_{N2} the magnetic susceptibility for $H_{ac} \parallel c$-axis decreases steeply, while little anomaly is found for $H_{ac} \parallel b$-axis. Therefore, the anomaly at T_{N2} indicate the phase transition from the intermediate phase to an additional antiferromagnetic phase with an in-plane easy axis.

Figure 3 shows magnetic field dependence of the real part of the differential susceptibility for $H \parallel c$-axis at several temperatures. The data of $T = 0.2$ K contains a main peak at approximately 1.6 T and a much weaker anomaly at approximately 3.7 T. The main peak shifts to lower field and washes out at T_{N2} as the temperature is increased. The weak anomaly also shifts and merges at T_{N1}. We define the anomalies associated with two magnetic transitions as the critical magnetic fields $H_{c1}(T)$ and $H_{c2}(T)$, which correspond to the two magnetic-ordered-phases for T_{N1} and T_{N2}, respectively. $H - T$ phase diagram of CeTe$_3$ for $H \parallel c$-axis, deduced from the differential susceptibility, is shown in Fig. 4. The anomaly at $H_{c1}(T)$ indicates that the...
magnetization is almost saturated by magnetic field and that the second order phase transition to paramagnetic phase occurs [1]. In contrast to the anomaly of $H_{c1}(T)$, the shape peak at $H_{c2}(T)$, where the magnetic field destroys the ordered phase at lower temperature, develops steeply and might diverge at zero temperature. This behavior implies the phase transition at $H_{c2}(0)$ involves the drastic change of the ground state.

The specific heat measurement shown in Fig. 2(a) indicates the rare-earth tritelluride CeTe$_3$ forms heavy quasi-particles at low temperatures; $\gamma(T) = C(T)/T$ amounts to 0.4 J/mole K2 at 4 K. In the intermediate phase, $\gamma(T) = 0.9$ J/mole K2 at 0.5 K $< T_{N2}$ recovers with entropy balance by application of magnetic field $\mu_0 H = 1.6$ T $> \mu_0 H_{c2}$. Furthermore, the incommensurate magnetic Bragg peak develops below T_{N2} in zero fields [14]. These results confirm that the system condenses into an incommensurate spin density wave (SDW) state of heavy quasi-particles below T_{N2}. Thus we have concluded that the magnetic order of CeTe$_3$ at low temperatures develops from the paramagnetic phase to the SDW phase through the intermediate phase with the formation of heavy quasi-particles with decreasing temperature, though the intermediate phase $T_{N2} < T < T_{N1}$ is still unclear.

4. Summary
We have investigated the low-temperature ordered phases of the rare-earth tritelluride CeTe$_3$ with single crystals. The specific heat, the electrical resistivity and the differential magnetic susceptibility measurements of CeTe$_3$ indicate that the magnetic order of CeTe$_3$ develops from the paramagnetic phase to the SDW phase through the intermediate phase with the formation of heavy quasi-particles. These results suggest that the magnetic order of Ce local moments at low temperatures closely relates with the characteristic quasi-two-dimensional nature of the square Fermi surfaces.

Acknowledgments
This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a Grant-in-Aid from the Japan Society for the Promotion of Science.

References
[1] Iyeiri Y, Okumura T, Michioka C and Suzuki K 2003 Phys. Rev. B 67 144417
[2] Ru N and Fisher I R 2006 Phys. Rev. B 73 033101
[3] Chudo H, Michioka C, Itoh Y and Yoshimura K 2007 Phys. Rev. B 75 045113
[4] Laverock J, Dugdale S B, Major Z, Alam M A, Ru N, Fisher I R, Santi G and Bruno E 2005 Phys. Rev. B 71 085114
[5] Yao H, Robertson J A, Kim E A and Kivelson S A 2006 Phys. Rev. B 74 245126
[6] Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R and Shen Z X 2004 Phys. Rev. Lett. 93 126405
[7] Komoda H, Sato T, Souma S, Takahashi T, Ito Y and Suzuki K 2004 Phys. Rev. B 70 195101
[8] Malliakas C, Billinge S J L, Kim H J and Kanatzidis M G 2005 J. Am. Chem. Soc. 127 6510
[9] Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N and Fisher I R 2008 Phys. Rev. B 77 235104
[10] Kim H J, Malliakas C D, Tomić A T, Tessmer S H, Kanatzidis M G and Billinge S J L 2006 Phys. Rev. Lett. 96 226401
[11] Sacchetti A, Degiorgi L, Giamarchi T, Ru N and Fisher I R 2006 Phys. Rev. B 74 125115
[12] Sacchetti A, Arcangeletti E, Perucchi A, Baldassarre L, Postorino P, Lupi S, Ru N, Fisher I R and Degiorgi L 2007 Phys. Rev. Lett. 98 026401
[13] Ru N, Condron C L, Margulis G Y, Shin K Y, Laverock J, Dugdale S B, Toney M F and Fisher I R 2008 Phys. Rev. B 77 035114
[14] Deguchi K, Aso N and Sato N K unpublished