Energy Cost of Running Related to Running Intensity and Peak Oxygen Uptake

Introduction

Running performance of top class endurance athletes but also of recreational and non-specifically trained physically active individuals depends on the maximum aerobic metabolic rate and the energy cost of a unit of running distance. There is evidence that elite runners have better running economy (RE) than good and less capable athletes but also of recreational and non-specifically trained physically active individuals. However, some other studies reported that RE is essentially the same in sedentary and athletic subjects (9, 11, 31). In contrast, many studies reported that RE is essentially the same in sedentary and athletic subjects (9, 11, 31). In conclusion, RE increases with increasing relative intensity (2).

Summary

The hypotheses that a) a positive correlation between running oxygen uptake (VO\textsubscript{2run}) and peak oxygen uptake (VO\textsubscript{2peak}) is caused by a higher caloric equivalent and/or more reliance on anaerobic metabolic energy in subjects with lower VO\textsubscript{2peak} and that b) the energy cost per meter increases with relative intensity related to VO\textsubscript{2peak} were tested.

Twenty-nine males (mean±SD age: 24.4±2.7yrs; height: 179.0±5.6cm; body mass: 74.5±6.8kg; VO\textsubscript{2peak}: 51.5±5.2ml kg\textsuperscript{-1} min\textsuperscript{-1}) ran at 2.6 and 3.0m s\textsuperscript{-1}, VO\textsubscript{2run}, oxygen uptake per meter distance (C\textsubscript{V\textsuperscript{o2run}}), energy cost per meter distance based on respiratory measures and indirect calorimetry (C\textsubscript{AER}), and net increase in blood lactate concentration (C\textsubscript{L}+) as well as total C (C\textsubscript{TOT}=C\textsubscript{AER}+C\textsubscript{ANAER}) were analyzed. Ad a) VO\textsubscript{2peak} and C\textsubscript{V\textsuperscript{o2peak}} were positively, and C\textsubscript{L}+ negatively interrelated with VO\textsubscript{2peak} (all p<0.05). C\textsubscript{AER} was independent of VO\textsubscript{2peak}. Ad b) VO\textsubscript{2peak} was independent of relative intensity related to VO\textsubscript{2peak}, whilst C\textsubscript{AER} and C\textsubscript{TOT} increased with relative intensity (all p<0.05).

The frequently observed positive interrelationship between VO\textsubscript{2peak} and VO\textsubscript{2run} reflects less aerobic carbohydrate combustion and less reliance on anaerobic glycolysis in fitter subjects with higher VO\textsubscript{2peak}. Additionally, running economy decreases with increasing relative intensity.

KEY WORDS:
Terrestrial Locomotion, Human, Speed, Aerobic, Anaerobic

Zusammenfassung

Die Hypothesen, dass a) eine positive Korrelation zwischen Sauerstoffaufnahme beim Laufen (VO\textsubscript{2}) und der Peak-Sauerstoffaufnahme (VO\textsubscript{2peak}) durch ein höheres kalorisches Äquivalent und/oder eine größere Abhängigkeit von anaerobem metabo- lischer Energie bei Personen mit niedriger VO\textsubscript{2peak} verursacht wird und dass b) der Energieverbrauch pro Meter Laufstrecke mit relativer Intensität bezogen auf die VO\textsubscript{2peak} ansteigt, wurden getestet.

Neunundzwanzig Männer (Mittelwerts±SD Alter: 24.4±2.7Jahre; Größe: 179.0±5.6cm; Körpermasse: 74.5±6.8kg; VO\textsubscript{2peak}: 51.5±5.2ml kg\textsuperscript{-1} min\textsuperscript{-1}) liefen mit Geschwindigkeiten von 2.6 und 3.0m s\textsuperscript{-1}. VO\textsubscript{2run}, der Sauerstoffverbrauch pro Meter (C\textsubscript{V\textsuperscript{o2run}}), der Energieverbrauch pro Meter basierend auf respiratorischen Messgrößen und indirekter Kalorimetrie (C\textsubscript{AER}), der Nettoanstieg der Blutlaktatkonzentration (C\textsubscript{L}+) sowie der Gesamtenergieverbrauch (C\textsubscript{TOT}=C\textsubscript{AER}+C\textsubscript{ANAER}) wurden analysiert. Zu Hypothese a) VO\textsubscript{2peak} und C\textsubscript{V\textsuperscript{o2peak}} hingen positiv und C\textsubscript{L}+ negativ mit der VO\textsubscript{2peak} zusammen (alle p<0.05). C\textsubscript{AER} war unabhängig von der VO\textsubscript{2peak}. Zu Hypothese b) VO\textsubscript{2peak} war unabhängig von der relativen Intensität bezogen auf die VO\textsubscript{2peak} wohingegen C\textsubscript{AER} und C\textsubscript{TOT} mit relativer Intensität zunahmen (alle p<0.05).

Der häufig beobachtete positive Zusammenhang zwischen VO\textsubscript{2peak} und VO\textsubscript{2run} spiegelt eine geringere aerobe Kohlenhydratverwertung und eine geringere Abhängigkeit von anaeroben Glukolysen bei fitteren Personen mit höherer VO\textsubscript{2peak} wider. Zusätzlich nimmt die Laufökonomie mit zunehmender relativer Intensität ab.
Peak oxygen uptake (VO_{peak}) and oxygen uptake at given running velocities (VO_{run}) are generally accepted measures of maximum aerobic metabolic rate and economy of exercise. Frequent reports that VO_{run} is positively correlated with VO_{peak} (13, 15, 19, 23, 25, 30) are at odds with the supposedly logical conclusion that the combination of high maximum aerobic metabolic rate and high RE is the best concept for best endurance running performance (2, 3, 11, 26, 28, 31, 33). Suggestions that among athletes with similar race performances a negative correlation between VO_{run} and RE always reflects compensation of lower aerobic power by lower energy cost of a given task, is not fully convincing. Being the best athlete more likely combines high economy with high VO_{peak}. Attempts to explain the positive interrelationship between VO_{run} and VO_{peak} based on muscle fiber type and mitochondrial factors remained inconclusive (15, 25).

In previous studies analyzing the VO_{run} to VO_{peak} relationship in subjects with highly different VO_{peak}, the applied velocities in walking and running tests reflected substantially different relative intensities in the magnitude of between approximately 20 and above 90% of VO_{peak} (13, 25, 30). A consistent pattern of the VO_{run} to VO_{peak} interrelationship is that the correlation and regression coefficients become higher at velocities which reflect higher relative intensities (13, 30). Partly this may mirror differences in the respiratory exchange ratio (RER) between subjects with different VO_{peak}, which may vary the caloric equivalent and thus the metabolic energy per ml O_2 in favor of the less fit subjects (13). Additionally, the relative intensity at which anaerobic energy is required to perform, as indicated by an increase in the blood lactate concentration (BLC), is highly variable between subjects and independent of the absolute metabolic rate. Consequently, the higher correlation and regression coefficients of the VO_{run} to VO_{peak} relationship at the higher velocities may indicate that the less fit subjects had to rely on a higher fraction of carbohydrate combustion than the fitter subjects. Additionally, less fit subjects may rely to some extent on anaerobic energy shifting the metabolic demand from aerobic to partly anaerobic metabolism. These factors may result in utilizing less oxygen at a given metabolic cost of locomotion in less fit subjects.

Therefore, we tested the hypotheses that a) the positive correlation between VO_{run} and VO_{peak} is caused by a higher reliance on carbohydrate utilization and/or anaerobic metabolic energy in subjects with lower VO_{peak} and b) that RE in terms of the energy cost of a unit of running distance decreases with relative intensity if intensity related effects on carbohydrate and fat combustion, and anaerobic energy are considered.

**Methods**

Twenty-nine male subjects (mean±SD age: 24.4±2.7yrs; height: 179.0±5.6cm; body mass: 74.5±6.8kg; VO_{peak}: 51.5±5.2ml kg\(^{-1}\) min\(^{-1}\)) signed informed consent conforming to internationally accepted policy statements on the use of human subjects as approved by the local ethics committee. All participants were healthy and physically active but not specifically trained.

They performed an incremental running test on an electronically driven treadmill (Ergo XELG2, Woodway, Germany) in an air-conditioned room (21°C, 60% humidity). The test started with a 3min resting reference phase. The initial running velocity was set 2.2m s\(^{-1}\). The speed was increased stepwise by 0.4m s\(^{-1}\) every 3min until exhaustion occurred. After each stage the running was interrupted for 30s for capillary blood sampling.

Respiratory gas exchange measures were taken continuously during the entire protocol (Oxycon Gamma, Mijnhard, Netherlands). The metabolic cart was calibrated using gases of known concentration and a syringe prior to each test. The breath-by-breath oxygen uptake data were reduced to stationary averages of the final 30s of each stage. Immediately before the start of a test, during each 30s break and after test-termination 20µl capillary blood was drawn from the hyperemic earlobe (Finalgon®, Thomae, Boehringer, Ingelheim, Germany) for the analysis of the BLC (Ebio plus, Eppendorf, Hamburg, Germany). The net lactate concentration (ΔBLC) was calculated as the difference between pre- and post-run at each running velocity.

RE at 2.6 and 3.0m s\(^{-1}\) were analyzed in terms of: VO_{run}\(^{\Delta \text{rest}}\), C_{bio}\(^{\Delta \text{rest}}\), total energy cost above rest (C_{rest}) calculated via C_{bio}\(^{\Delta \text{rest}}\), plus anaerobic glycolytic energy per meter running distance (C_{anaer}). Resting VO_{\text{run}} can hardly be measured correctly pre-testing which never fulfills conditions of true rest. These are defined as measurements in the morning, fasting and at indifferent temperature. Pre-testing conditions always include pre-test activities and excitement. Therefore, resting was defined as standing still and set as a VO_{\text{run}} of 4.5ml kg\(^{-1}\) min\(^{-1}\), which reflects standing still in males (4).
CAER, CANAER and CTOT were calculated by Eq.1, 2 and 3:

Eq.1: \( CAER \space[J \space kg^{-1} \space m^{-1}] = (V\hat{O}_2\space \text{run} - \text{resting } V\hat{O}_2) \space [ml \space s^{-1}] \space \text{caloric equivalent } [J \space ml^{-1}] \space \text{body mass}^{-1} \space [kg^{-1}] \space \text{speed}^{-1}[s \space m^{-1}], \)

where the caloric equivalent was adjusted to the RER (32). A RER above 1.0, which clearly indicate respiratory compensation of a metabolic acidosis, was set 1.0 (2).

Eq.2: \( CANAER \space [J \space kg^{-1} \space m^{-1}] = \Delta \text{BLC} \space [mmol \space l^{-1}] \space \text{O}_2 - \text{lactate equivalent } [ml \space mmol^{-1} \space l \space kg^{-1}] \times 21.131 \space [J \space ml^{-1}] \space \text{running time}^{-1} \space [s^{-1}] \space \text{speed}^{-1} [s \space m^{-1}], \)

where an \( \text{O}_2 \)-lactate equivalent of 3.0ml mmol^{-1} l kg^{-1} was used, which is compatible to a distribution space of lactate of approximately 45\% of the body mass (2, 10); the factor 21.131 reflects the caloric equivalent of carbohydrate oxidation (2).

Eq.3: \( CTOT \space [J \space kg^{-1} \space m^{-1}] = CAER \space [J \space kg^{-1} \space m^{-1}] + CANAER \space [J \space kg^{-1} \space m^{-1}]. \)

All results are described as mean±SD. Differences between running velocities were tested via repeated measure ANOVA and Bonferroni post hoc test and effect sizes, in the form of partial eta squared (\( \eta^2 \)), were calculated. Linear and non-linear regression models were used to identify significant interrelationships between measures of running economy at given running velocities and \( V\hat{O}_2\space \text{peak} \), or relative intensity. The goodness of fits of different regression models were compared using the F-test (24). For all statistics the significance was set at \( P<0.05. \)

Results

The \( V\hat{O}_2\space \text{run} \) at 2.6 and 3.0m s^{-1} running reflected 71±8\% and 80±8\% of the \( V\hat{O}_2\space \text{peak} \), respectively. There were significant main effects and medium to large effect sizes for running velocity in \( V\hat{O}_2\space \text{run}, \text{BLC}, \text{RER}, \text{CV}_2, \text{CAER}, \text{CANAER} \) and \( \text{CTOT}. \) Significant pair differences were confirmed in \( V\hat{O}_2\space \text{run}, \text{BLC}, \text{RER} \) and \( \text{CANAER} \) in terms of increases from 2.6 to 3.0m s^{-1}. Furthermore, \( V\hat{O}_2\space \text{run}, \text{BLC}, \text{RER} \) and \( \text{CANAER} \) were lower at 2.6 and 3.0m s^{-1} than at peak velocity whilst \( \text{CV}_2 \) was lower at peak velocity than at 2.6 and 3.0m s^{-1} (\( p<0.05; \text{Tab.1} \)).

At 3.0m s^{-1}, \( V\hat{O}_2\space \text{run} \) (\( r=0.41, \space p<0.05, \gamma=0.21x+30.0 \)) as well as \( \text{CTOT} \) were positively interrelated with \( V\hat{O}_2\space \text{peak} \) (Fig. 1). Irrespective of running speed, \( \text{CAER} \) was independent of \( V\hat{O}_2\space \text{peak} \) (Fig. 2). \( \text{CANAER} \) was negatively interrelated with \( V\hat{O}_2\space \text{peak} \) at both given velocities (Fig. 3). \( \text{CTOT} \) was independent of \( V\hat{O}_2\space \text{peak} \) (Fig. 4).

\( \text{CV}_2 \) was independent of relative intensity related to \( V\hat{O}_2\space \text{peak} \) (Fig. 5). A quadratic function best described (\( p<0.01 \)) the positive interrelationship between \( \text{CAER} \) and \( \text{CANAER} \), and relative intensity which flattens in \( \text{CAER} \) and increases progressively in \( \text{CANAER} \) (Fig. 6 and 7). The latter results in an interrelationship between \( \text{CTOT} \) and relative intensity which was best described by a linear fit (Fig. 8).

Discussion

The main findings of the present study were a) that below peak running velocity, \( \text{CTOT} \) is independent of \( V\hat{O}_2\space \text{peak} \), and b) that \( \text{CTOT} \) increases with relative intensity related to \( V\hat{O}_2\space \text{peak}. \) Consequently the results support the hypothesis a) that the positive correlation between \( V\hat{O}_2\space \text{run} \) and \( V\hat{O}_2\space \text{peak} \) at given speeds is caused by the higher reliance on carbohydrate oxidation plus anaerobic me-
Energy Cost of Running

They also support the hypothesis b) that RE decreases with increasing relative intensity. The present results clearly support but also extent recent suggestions that measuring RE in terms of CAER or CTOT is more appropriate than expressing RE as VO2run or CVO2 (13). They also indicate that previous reports that VO2peak was positively correlated with VO2peak, which becomes more obvious at higher running velocities and/or mechanical power and thus relative intensity (13, 15, 23, 25, 30), do not contradict the conclusion that a combination of high maximum aerobic metabolic rate and high RE is the best concept for a most successful endurance running performance (2, 3, 11, 26, 28, 31). However, they challenge suggestions that among athletes with similar race performances a positive correlation between VO2peak and VO2run always reflects compensation of lower aerobic power by less energy cost of a given task. The previously reported higher VO2run in athletes with higher VO2peak does not necessarily reflect lower RE. Alternatively it may indicate lower reliance on carbohydrate utilization and/or anaerobic energy. The positive interrelationship between VO2peak and VO2peak does not require specific muscle fiber compositions or mitochondrial factors (15, 25). However, differences in the metabolic profile of slow- and fast-twitch muscle fibers may strongly contribute to a higher VO2peak in athletes with extremely high fractions of slow-twitch fibers. This allows less reliance on carbohydrate combustion and anaerobic energy including a reduced maximum glycolytic rate. These factors increase VO2run and CVO2 (Fig. 1). No corresponding interrelation between CAER and VO2peak may reflect that higher VO2run and VO2peak indicate either a higher lipid oxidation rate at a given CAER (identical RE) or even lower CAER (higher RE) and/or an increased CAER (lower RE). Irrespective of RE the combination of higher VO2peak and reduced maximum glycolytic rate results in a lower CVO2 (Fig. 3). On aggregate, CVO2, the combination of all above effects, is independent of VO2peak and highly variable between individual subjects (Fig. 4).

Whilst considering for effects of aerobic substrate utilization, a potential contribution of anaerobic energy remains undetected when calculating CAER based on respiratory data only. The present findings clearly demonstrate that within the given range of the RER the aerobic fitness related effect on relative reliance of carbohydrate does not fully compensate for the underestimation of the energy cost of running based on VO2run and CVO2 related to VO2peak in less fit subjects (Fig. 1). The effect of changes of the caloric equivalent on CTOT was less than half the magnitude of that of CVO2. No interrelationship between CVO2 and relative intensity (Fig. 5) was highly confirmatory of previous findings (11, 14, 18, 20, 21, 22, 27). However, in conjunction with growing evidence of an interrelationship between both CAER and CTOT and relative intensity (2, 9, 13; Fig. 6, 7 and 8) the independence between CVO2 and relative intensity also indicates that purely VO2peak-based estimations of the energy cost of running may substantially underestimate the real metabolic cost at higher exercise intensities (Fig. 8).

This underestimation gets even more evident at peak velocity where CVO2 suggests a slight but significant increase in RE in the magnitude of 2 to 3% which at RER <1.0 is similar to that in CAER. The latter clearly indicates that analyses of RE do not only require consideration of changes in the caloric equivalent.
but also the potential use of anaerobic energy to prevent potentially substantial overestimations of RE at running velocities causing an increase in the BLC. In the present study at peak velocity the increase of \( C_{ANAER} \) is approximately 2 and 2.5 times as high as the above mentioned decreases in \( C_{\dot{V}O_2} \) and \( C_{\dot{R}} \) compared to 2.6 and 3.0 m s\(^{-1}\), respectively. The latter furthermore stresses that estimations of the anaerobic fraction of energy required for a given performance based on estimations of the accumulated oxygen deficit (17) is likely to result in substantial underestimations of \( C_{ANAER} \).

In conclusion, \( C_{TOT} \) including \( C_{\dot{V}O_2} \) plus \( C_{ANAER} \) is independent of \( \dot{V}O_2 \)peak. The consistently observed positive interrelationships between \( \dot{V}O_2 \)peak and \( \dot{V}O_2 \)run as well as \( C_{\dot{V}O_2} \) and \( \dot{V}O_2 \)peak reflect less reliance on aerobic carbohydrate combustion and anaerobic glycolysis in fitter subjects with a higher \( \dot{V}O_2 \)peak. Frequent observations of no interrelationship between \( C_{\dot{V}O_2} \) and relative intensity do not support independence of RE and running velocity. The non-linear increases of \( C_{\dot{V}O_2} \) and \( C_{ANAER} \) with the relative intensity are degressive (Fig. 6) and progressive (Fig. 7), respectively. In combination, these nonlinear increases resulted in a linear intensity related increase of \( C_{TOT} \) (Fig. 8).

### Conflict of Interest

The authors have no conflict of interest.

|                  | 2.6 M s\(^{-1}\) (MEAN±SD) | 3.0 M s\(^{-1}\) (MEAN±SD) | PEAK (MEAN±SD) | SIG. | \( \eta^2 \) |
|------------------|-----------------------------|-----------------------------|----------------|------|--------------|
| \( \dot{V}O_2 \) (ml kg\(^{-1}\) min\(^{-1}\)) | 36.3±2.7 | 40.7±2.6a | 51.5±5.2ab | <0.001 | 0.885 |
| BLC (mmol l\(^{-1}\)) | 2.4±0.9 | 3.5±1.4a | 9.8±2.3ab | <0.001 | 0.891 |
| RER              | 0.94±0.05 | 0.99±0.06a | 1.11±0.04ab | <0.001 | 0.856 |
| \( C_{\dot{V}O_2} \) (ml kg\(^{-1}\) m\(^{-1}\)) | 0.207±0.017 | 0.204±0.014 | 0.198±0.014ab | <0.01 | 0.251 |
| \( \dot{C}_{\dot{V}O_2} \) (J kg\(^{-1}\) m\(^{-1}\)) | 4.306±0.364 | 4.287±0.301 | 4.189±0.292 | <0.05 | 0.132 |
| \( C_{ANAER} \) (J kg\(^{-1}\) m\(^{-1}\)) | 0.071±0.066 | 0.127±0.080a | 0.319±0.082ab | <0.001 | 0.821 |
| \( \dot{C}_{ANAER} \) (J kg\(^{-1}\) m\(^{-1}\)) | 4.377±0.387 | 4.414±0.327 | 4.507±0.283 | <0.05 | 0.116 |
Energy Cost of Running

References

(1) ABE D, YANAGAWA K, YAMANODE T, TAMURA K. Assessment of middle distance running performance in sub-elite young runners using energy cost of running. Eur J Appl Physiol Occup Physiol. 1998; 77: 320-325. doi:10.1007/s004210050340

(2) BENEKE R, HÜTNER M. The effect of training on running economy and performance in recreational athletes. Med Sci Sports Exerc. 2005; 37: 1794-1799. doi:10.1249/01.mss.0000176399.67121.02

(3) BILLAT V, LEPRETRé PM, NEUGAS AM, LAURENCHE MH, SALIM D, HUNTER GR, BARTOLLI WP. Training and bioenergetic characteristics of elite male and female Kenyan runners. Med Sci Sports Exerc. 2003; 35: 297-304. doi:10.1249/01.MSS.0000053556.59992.A9

(4) GEIGY C. Wissenschaftliche Tabellen Geigy Teillband Körperflüssigkeiten. (Scientific Tables Geigy, Volume Body Fluids.) Ciba Geigy, Basel; 1985: 225-28.

(5) COETZER P, NOAKES TD, SANDERS B, LAMBERT MI, BOSCH AN, WIGGINS T, BILLAT V, LEPRETRé PM, HEUGAS AM, LAURENCHE MH, SALIM D, DENNIS SC. Superior fatigue resistance of elite South African distance runners. J Appl Physiol, 1993; 75: 1822-1827.

(6) CONLEY DL, KRAHENBUHL GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980; 12: 357-360. doi:10.1249/00005768-198025000-00010

(7) COSTILL DL, WINROW E. Maximal oxygen intake among marathon runners. Arch Phys Med Rehabil. 1970; 51: 317-320.

(8) DANIELS JT, DANIELS N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992; 24: 483-489. doi:10.1249/00005768-199204000-00015

(9) DILL DB. Oxygen used in horizontal and grade walking and running on the treadmill. J Appl Physiol. 1965; 20: 19-22.

(10) DI PRAMPERO PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol. 1981; 89: 143-222. doi:10.1007/BF00352668

(11) DI PRAMPERO PE. The energy cost of human locomotion on land and in water. Int J Sports Med. 1980; 07: 55-72. doi:10.1055/s-0008-1025736

(12) DI PRAMPERO PE, CAPELLI C, PAGLIARO P, ANTONUTTO G, GIRARDIS M, DI PRAMPERO PE. Superior fatigue resistance of elite South African distance runners. J Appl Physiol, 1993; 75: 1822-1827.

(13) FLETCHER JR, ESAU SP, MACINTOSH BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009; 107: 1918-22. First published October 15, 2009

(14) HAGBERG JM, COYLE EF. Physiological comparison of competitive race walking and running. Int J Sports Med. 1984; 05: 74-77. doi:10.1055/s-0008-1025883

(15) HUNTER GR, SAMMAN MM, LARSON-MEYER DE, JOANISSE DR, MCCARTHY JP, BLAUBEUR TE, NEWCOMER BR. Inverse relationship between exercise economy and oxidative capacity in muscle. Eur J Appl Physiol. 2005; 94: 558-568. doi:10.1007/s00421-005-1370-z

(16) JONES AM, CARTER R. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000; 29: 373-386. doi:10.2165/00007256-200029060-00001

(17) KEIR DA, ZORT R, BOUDEAUD-LARIVIERE C, SERRESSE D. Running exercise: Effect of anaerobic-energy contribution at various speeds. Int J Sports Physiol Perform. 2012; 7: 382-389. doi:10.1123/ijsp.7.4.382

(18) KNUTTGEN HG. Oxygen uptake and pulse rate while running with undetermined and determined stride lengths at different speeds. Acta Physiol Scand. 1961; 52: 366-371. doi:10.1111/j.1748-1716.1961.tb02323.x

(19) LUCIA A, ESTEVE-LANAO J, OLIVAN J, GOMEZ-GALLEGO F, SANT RANJU AF, SANTIAGO C, PEREZ M, CHAMORRO-VINA C, FOSTER C. Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Physiol Nutr Metab. 2006; 31: 530-540. doi:10.1139/h06-029

(20) MARGARIA R, CERRETELLI P, AGHEMO P, SASSI G. Energy cost of running. J Appl Physiol. 1963; 18: 367-370.

(21) MCMlKEN DF, DANIELS JT. Aerobic requirements and maximum aerobic power in treadmill and track running. Med Sci Sports Med. 1976; 8: 14-17.

(22) MENIER DR, PUGH LG. The relation of oxygen intake and velocity of walking and running in competition walkers. J Physiol. 1968; 197: 717-721. doi:10.1113/jphysiol.1968.sp008584

(23) MORGAN DW, DANIELS JT. Relationship between VO2max and the aerobic demand of running in elite distance runners. Int J Sports Med. 1994; 15: 426-429. doi:10.1055/s-2007-1021082

(24) MOTULSKY HJ, RANSKA LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987; 1: 365-374.

(25) PATE RR, MACERA CA, BAILEY SP, BARTOLI WP, POWELL KE. Physiological, anthropometric, and training correlates of running economy. Med Sci Sports Exerc. 1992; 24: 1128-1133. doi:10.1249/00005768-199210000-00010

(26) POLLLOCK ML. Submaximal and maximal working capacity of elite distance runners. I. Cardiorespiratory aspects. Ann N Y Acad Sci. 1977; 301: 310-322. doi:10.1111/j.1749-6632.1977.tb9209.7

(27) PUGH LG. Oxygen intake in track and treadmill running with observations on the effects of air resistance. J Physiol. 1970; 207: 823-835. doi:10.1113/jphysiol.1970.sp009997

(28) SALTN B, LARSEN H, TERRADO N, BANGSO BR, BAKT, KIM CK, SVEDENHAG J, ROLF CJ. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995; 5: 209-221. doi:10.1111/j.1600-0838.1995.tb00357.x

(29) SAUNDERS PU, PYNE DB, TELFORD RD, HAWLEY JA. Factors affecting running economy in trained distance runners. Sports Med. 2004; 34: 465-485. doi:10.2165/00007256-200407000-00005

(30) SAWYER BJ, BLESSINGER JR, IRVING BA, WELTMAN A, PATRIE JT, MARGARIA R, CERRETELLI P, AGHEMO P, SASSI G. Walking and running economy: inverse association with peak oxygen uptake. Med Sci Sports Exerc. 2010; 42: 2122-2127.

(31) SŁAWINSKI JS, BILLAT VL. Difference in mechanical and energy cost between highly, well and non-trained runners. Med Sci Sports Exerc. 2004; 36: 1440-1446. doi:10.1249/01.MSS.0000135785.68760.96

(32) STEGMANN J. Leistungspysiologie: physiologische Grundlagen der Arbeit und des Sports. 4. überarb. Aufl. Stuttgart, New York, Thieme; 1991: pp. 65-60

(33) WESTON AR, MBAMBO Z, MYBURGH KH. Running economy of African and Caucasian distance runners. Med Sci Sports Exerc. 2000; 32: 1130-1134. doi:10.1249/01.mss.000005768-200006000-00015

DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN • 68. Jahrgang • 9/2017

201