Contrast-FEL – a test for differences in selective pressures at individual sites among clades and sets of branches.

Sergei L. Kosakovsky Pond1,∗, Sadie R Wisotsky1, Ananias Escalante1, Brittany Rife Magalis1,2, Steven Weaver1
1 Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
2 Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
∗Corresponding author: E-mail: spond@temple.edu.
Associate Editor: TBD

Abstract

A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences, and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal, and not always applicable. Here, we develop a simple extension of a popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K ≥ 2 sets of branches in a phylogenetic tree have detectably different ω ratios, indicative of different selective regimes. Using extensive simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on different evolutionary questions.

Key words: evolutionary model, codon model, selective differences, mechanisms adaptation

Introduction

When the same gene is subjected to different selective environments, population processes, or exogenous adaptive forces in different sets of species or other taxonomic units (e.g., viral or bacterial isolates or cancer lineages), especially if it leads to functional adaptation or differentiation, we expect to find distinct molecular signatures of selection among these sets. At the nucleotide or protein level, this difference can manifest as variation in evolutionary rates across groups of species, for example in the rbcL gene of monocots where species with shorter generation times showed higher evolutionary rates (Gaut et al., 1992), or both across sites and lineages, leading to heterotachy – a process that is widespread in protein evolution and has been studied extensively (e.g., Lopez, Casane and Philippe (2002); Whelan, Blackburne and Spencer Mol. Biol. Evol. 0(0):1–2 doi:10.1093/molbev/msa012 Advance Access publication MM DD, YYYY 1
At the codon level, a commonly adopted modeling framework is to allow the strength of selection, represented by the ratio of non-synonymous (β) and synonymous (α) substitution rates, \(\omega := \beta/\alpha \), to vary across branches or both branches and sites. The primary focus of methodological development has been to estimate \(\omega \) and compare it to the neutral expectation \(\omega := 1 \) (e.g., see Delport, Scheffer and Seoighe (2008) or Arenas (2015) for a review). Here we focus instead on the methods for comparing \(\omega \) across sets of branches; These methods are relatively few and far-between (cf Table 1). We further assume that the branches are partitioned into groups using additional sources of information, and not inferred as a part of the evolutionary analysis. Yang (1998) developed a likelihood ratio test to compare gene-average selective pressures among different sets of branches in the tree. By design, Yang’s method relies on pooling data across sites and branches, and lacks resolution to identify individual sites subject to selective differentials. A more recent model allowing clade-level effects in a site-mixture framework can infer fractions of sites experiencing a clade-level shift, but not individual sites that differ between branches (Baker et al., 2016). Another approach allows \(\omega \) to vary across sites and branches as a random effect, with the group-level effect to distinguish the sets of branches (Wertheim et al., 2015). This method can answer more refined questions (e.g., Is selection on one set of branches relaxed or intensified relative to the other set?), but it still lacks the site-level resolution. Several approaches have been specifically designed to detect evidence of directional selection towards a preferred subset of residues at specific sites and/or branches in a phylogenetic tree. Parto and Lartillot (2017) developed random effects mutation-selection models that allow selective profiles of amino acids to vary across sites and branches and can be fitted in a Bayesian phylogenetic framework; they can identify specific sites and specific residues subject to directional selection. Tamuri, dos Reis and Goldstein (2012) implemented a conceptually similar model in a fixed effects model and fitted it using maximum likelihood approaches to identify which residues are preferred at specific sites. Murrell et al. (2012) augmented standard codon models to reward/penalize substitutions towards specific residues along predefined sets of branches at specific sites (using fixed effects) and applied it to the evolution of drug resistance in HIV. RifeMagalis et al. (2020) applied a version of Contrast-FEL to determine which HIV-1 envelope sites might be evolving differentially between three anatomical compartments in a single host. Recent work by Jones et al. (2020) develops a model where changes in selective pressures can be correlated with changes in phenotypes along clades or branches, fits a random effects model to determine whether a fraction of sites support such correlated evolution, and use an empirical
Bayes approach to recover individual sites where this may occur. Numerous methods have also been developed to contrast evolutionary patterns among continuous traits, e.g., Beaulieu et al. (2012), but they operate on conceptually different data (continuous characters) and are therefore not properly comparable.

Here we fully develop and validate a fixed effects site-level model (Contrast-FEL) and a likelihood ratio test to formally test the hypothesis of differences in ω ratios between two or more groups of branches using a likelihood ratio test. None of the existing methods, with the possible exception of Parto and Lartillot (2017) (a Bayesian approach designed to answer somewhat broader questions, whereas Contrast-FEL is a frequentist approach), can directly test for differences in ω between groups of branches at a specific site, providing the rationale for a new method in this application domain. The method Jones et al. (2020) has some advantages, e.g. accounting in uncertainty in branch assignments, allowing for multi-nucleotide substitutions, and heterotachy, but lacks a direct test for differences at specific sites, instead relying on an empirical Bayes procedure, and does not account for site-to-site synonymous rate variation (Wisotsky et al., 2020); a direct comparison with this method is not straightforward. We evaluate Contrast-FEL using comprehensive simulations, and, having established reasonable statistical behavior even under a misspecified model simulation scenario, apply it to five disparate empirical datasets previously analyzed for differential selection among branch sets. Contrast-FEL is able to identify many of the same key differences found by previous analyses, while often revealing additional sites and level of inferential detail.

Methods
Statistical models and parameter inference
Our model adapts the Fixed Effects Likelihood (FEL) method (Kosakovsky Pond and Frost, 2005), which has previously been used to find sites that evolve under different selective pressures in different alignments of the same gene (Kosakovsky Pond et al., 2006). Consider an alignment of N coding nucleotide sequences with S codons, and a given tree topology T with $B \geq N$ branches. Branches in the tree are partitioned into disjoint non-empty sets, B_i, $i=1,2,...,K \geq 2$, and this partition is fixed a priori. If $K > 2$, one of the branch groups can be designated as background and not explicitly tested.

Sequence evolution is modeled using the standard class of Muse-Gaut class of codon models (Muse and Gaut, 1994), MG-REV-CF3 x 4. The rate matrix for used to model codon sequence evolution follows the standard codon-substitution
Table 1. Methods for comparing selection among different sets of branches. ML: maximum likelihood, LRT: likelihood ratio test, MCMC: Markov Chain Monte Carlo

Method	Application	Statistical Framework
Yang (1998)	Gene-wide differences in average ω	ML, LRT
Baker et al. (2016)	Gene-wide differences in distributions of ω	Random Effects ML, LRT
Wertheim et al. (2015)	Gene-wide differences in distributions of ω	Random Effects ML, LRT
Tamuri, dos Reis and Goldstein	Site-level amino-acid preferences	Fixed Effects ML
Murrell et al. (2012)	Site-level directional selection	Fixed Effects ML, LRT
Parto and Lartillot (2017)	Site and branch-level amino-acid preferences	Bayesian MCMC Mixture
Jones et al. (2020)	Gene-level phenotype - selection correlation at a fraction of sites	Random Effects ML, ancestral state sampling, LRT, Empirical Bayes
Contrast-FEL	Site-level differences in ω between sets of branches	Fixed Effects ML, LRT

model structure:

$$q_{ij}(\alpha,\beta,\theta,\Pi) = \begin{cases}
\alpha \theta_{ij} \pi_j, & \delta(i,j) = 1, A^i = A^j, \\
\beta_i \theta_{ij} \pi_j, & \delta(i,j) = 1, A^i \neq A^j, \\
0, & \delta(i,j) > 1, \\
-\sum_{i \neq j} q_{il}, & i = j.
\end{cases}$$

Here, $\delta(i,j)$ counts the number of nucleotide differences between codons i and j; A^x is the amino-acid encoded by codon x; θ represents the underlying nucleotide substitution rate parameters (assumed to follow the general time-reversible form); Π are the equilibrium codon frequencies, obtained using the CF3x4 corrected empirical estimator (Kosakovsky Pond et al., 2010) with 9 parameters; developed to correct for biases that arise when nucleotide frequencies are used to estimate codon frequencies without correcting for the absence of stop codons.

The key parameters of the model are: α - the site-specific synonymous substitution rate, and β_i - the site specific non-synonymous substitution rate for branch group i, and all others are nuisance parameters (Table 2). We fit the model to a coding sequence alignment using the following procedure.

Step 1 Obtain initial nuisance parameter estimates:

- infer B branch length parameters t_b
- and 5 nucleotide substitution rates $\theta_{AC}, \theta_{AT}, \theta_{CG}, \theta_{CT}, \theta_{GT}$ using the general time reversible nucleotide model.

Step 2 Infer initial codon tree scaling and group-level ω: fit the MG-REV-CF3x4 model to the entire alignment with each branch group having its own ω parameter, using $C \times$ nucleotide(t_b) for branch lengths (C is the estimated tree scaler; this simple approximation has been used successfully by us (Kosakovsky Pond and Frost, 2005) and others (Yang, 2000) in the past), and θ estimates from the previous step.

Step 3 Refine nuisance parameters and group-level ω: remove constraints from branch lengths and θ then perform a maximum likelihood fit under the MG-REV-CF3x4 model.
Step 4 For each site (independently), infer parameters of interest. Fix nuisance parameters at estimates from the previous step. Estimate α as tree-wide, site-specific branch-length scaler, and estimate β_i for each group class. The site-model fitted here becomes the universal alternative hypothesis (most general model) for all site-level tests. The empirical validity of such estimation procedures has been discussed in Scheffler, Murrell and Kosakovsky Pond (2014). As a computational shortcut, invariant sites are skipped, because maximum likelihood parameter estimates are 0 at such sites.

Hypothesis testing

Depending on the value of K and whether or not the background set is present, different testing procedures will be carried out at each site. All tests are likelihood ratio tests, using the assumed asymptotic distribution of χ^2 to test significance. The degrees of freedom parameter, d, varies from test to test.

1. $K=2$. The single null hypothesis, $\beta_1 = \beta_2$, is tested against the universal alternative with $d=1$.

2. $K>2$, no background. An omnibus test using the null $\beta_1 = \beta_2 = \ldots = \beta_K$, vs the universal alternative, with $d=K-1$. In addition, all pairs of groups are tested for equality of rates using the null $\beta_i = \beta_j$ for $1 \leq i < j \leq K$ with $d=1$, resulting in $K(K-1)/2$ tests.

3. $K>2$, with background. Without loss of generality, assume that the background is designated as group K. An omnibus test compares the null $\beta_1 = \beta_2 = \ldots = \beta_{K-1}$, against the universal alternative, with $d=K-2$. In addition, if $K>3$, all pairs of groups are tested for equality of rates using the null $\beta_i = \beta_j$ for $1 \leq i < j \leq K-1$ with $d=1$, resulting in $(K-1)(K-2)/2$ tests.

When multiple hypotheses are tested at each site, the corresponding p-values are corrected to maintain nominal family-wise error rates using the Holm-Bonferroni (Holm, 1979) procedure.

Permutation tests

As an option, it is possible to perform branch set permutation tests at each site where some of the LRT tests from the previous section are significant at a given level (e.g., $p \leq 0.05$) to assess whether or not the differences detected across groups are due to “outlier” effects. To do so, we randomly shuffle branch assignments to sets (maintaining the number and size of the sets), and perform the complete LRT procedure described above for each permuted branch set, up to 20 times. If we find the LRT as high or higher as observed on the original partition for any of the tests, at iteration j, we report permutation p-value of $1/j$ (and stop the process),
Table 2. Parameters relevant to Contrast-FEL. Parameter type is based on whether it is a key estimated parameter, a nuisance estimated parameter, a user-defined parameter, or a property of the input dataset.

Parameter	Definition	Type
α	Site specific synonymous substitution rate	key
β	Site specific nonsynonymous substitution rate for branch group i	key
ω	Ratio of nonsynonymous substitution rate to the synonymous substitution rate	key
B	Number of branches in the tree	given
t_b	Branch length parameters, number estimated = B	nuisance
θ	Nucleotide substitution rates	nuisance
K	Number of branch sets	user defined
C	Estimated tree scaling constant	nuisance
N	Number of coding nucleotide sequences	given
S	Number of codons within a sequence	given

otherwise we report a permutation p-value of 0.05.

Final reports

For each site that is not invariable, Contrast-FEL outputs Holm-Bonferroni corrected p-values for each of the conducted tests, (if selected) the overall permutation p-value, and q-values (false discovery rates) computed from the omnibus test p-values using the Benjamini and Hochberg (1995) procedure.

Simulated data

To evaluate Contrast-FEL statistical and predictive performance, we simulated 3706 datasets with varying numbers of sequences, gene-size variable lengths and other settings designed to cover a range of relevant parameter values. In total, there were 1594400 codon sites across all alignments.

- **Tree topologies.** Two tree topology schemes were used for the simulated. First, we simulated data along a single, empirical tree topology with reported branch lengths from Yokoyama et al. (2008) containing $N = 31$ taxa, chosen to represent a somewhat typical use case for these types of studies. Second, we also simulated data from multiple random, balanced (maximally symmetric) and ladder-like (maximally asymmetric) topologies with N from 8 to 256 sequences (drawn uniformly using Latin hypercube sampling [LHC], see below). This was used in simulation analyses illustrated in Fig. 2.D where the number of branches in the test/reference set needed to be variable.

- **Branch lengths.** For each parametrically generated topology, we drew the mean branch length uniformly from 0.001 to 0.25 using LHC, and then generated branch lengths from the exponential distribution with this mean.

- **Alignment length.** Integer alignment length was drawn (uniformly) from the 100 to 800 range using LHC.

- **Branch sets.** We used several simulations where the branches from the Yokoyama et al. (2008) tree were partitioned into two groups by hand. For parametrically simulated topologies, we selected the fraction of branches to belong to
the “test” set from 0.01 to 0.8 using LHC, and the rest of the branches were in the “reference” set. We also simulated 458 datasets where branches were partitioned into 4 groups.

- **Fraction of sites with different selective regimes.** The proportion of sites in an alignment evolving under the null hypothesis \((\beta_1=\beta_2=\ldots=\beta_N)\) was drawn for each dataset from the beta distribution with parameters \(p=7\), \(q=1\). There were also 300 strict null simulations, i.e., simulations where all sites were evolving under the null hypothesis.

- **Site to site rate variation.** Synonymous rates were either constant across sites or varied according to the gamma distribution with parameters \(\alpha=\beta\sim\max(0.1,\theta)\), where \(\theta\) was a draw from the normal distribution \(N(1,0.5)\). Non-synonymous rates were drawn from the gamma distribution with parameters \(\alpha=\max(0.1,N(0.5,0.25)),\beta=1\).

Latin hypercube sampling was performed over the set of four parameters: number of leaves, mean branch length, alignment length, and fraction of branches in the “test” set. To generate \(S\) LHC samples of parameter values, each parameter range is divided into \(S\) equiprobable intervals, and a joint sample of multiple parameters is chosen to ensure that every single interval for any parameter is sampled exactly once. LHC allows one to sample a broad range of parameter values with a relatively small number of samples.

Implementation

The maximum likelihood estimation procedure consists of the following steps and is implemented in HyPhy v2.5.2 or later (Kosakovsky Pond et al., 2019). Steps 1-3 benefit from multi-core processors via likelihood function parallelization, and step 4 can be distributed to multiple worker nodes via MPI, improving performance. Documentation on how to use and interpret the analyses and prepare data and trees for submission to Contrast-FEL is available and at hyphy.org. A version of Contrast-FEL will be maintained on the Datamonkey web service (datamonkey.org, Weaver et al. (2018)).

Sequence alignments

Empirical alignments and phylogenetic trees used for analysis here can be downloaded from data.hyphy.org/web/contrast-FEL/ in NEXUS format. Simulated datasets and simulation parameters can be downloaded from the same URL. Additional information is included in the README.md file.

Computational performance

Following the initial model fits, site-level tests are embarrassingly parallel, and can take full advantage of distributed computing resources (MPI clusters), and scale linearly in the number of unique site patterns. For example, on a MacBookPro 2019, 2.3 GHz Core i9 (i9-9880H), running OS X 10.15, with HyPhy version 2.5.15.
and MPI with 12 processes (one per virtual core), the run times for the empirical datasets rounded up to the nearest minute were: 8 min. for the epidermal leaf trichomes (58 sequences, 318 codons), 29 min. for Rubisco (C3 vs C4, 179 sequences, 447 codons), 66 min. for HIV-1 envelope (131 sequences, 806 codons), and 72 min. for HIV-1 reverse transcriptase (476 sequences, 335 codons).

Results
Establishing method performance
False positives

The rejection rate on null data with two branch sets, i.e., on all sites where the evolutionary rates among branch sets were equal, in aggregate, was slightly lower than nominal rates (diagonal line, the test statistic performs exactly as expected under the null model Fig. 1.A). We restricted the calculations only to variable sites because Contrast-FEL returns null results on invariant sites by definition (all MLEs for rate parameters are 0 at such sites) and because including invariant sites would only lower observed rejection rates. Contrast-FEL may become anti-conservative (rejection rates above nominal) for very high divergence rates (Fig. 1.A,E, see below). The rate of false positives on null sites was largely independent of the values of synonymous and non-synonymous rates, the levels of mean sequence divergence (within reason) in branch sets, and dataset size (Fig. 1.B-D). The test is more conservative for low rates and smaller sets of branches, as expected. Permutation p-values and FDR q-values delivered, more conservative detection rates than standard LRT p-values, but mirrored the trends of the latter (Fig. 1.C-D). This is expected because permutation p-values are only computed conditioned on the significant LRT test, so they can only be more conservative, and q-values incorporate a multiple testing correction. When a site is very saturated, i.e. the product of the maximal rate estimate (α or β) and the alignment-wide tree length in expected substitutions per site exceeds 100, the test becomes anti-conservative; the q-q plot for the sites with log_{10} divergence rate between 2.5 and 3.5 is shown in Fig. 1A as those are the saturated sites with a detection rate permutation p ≥ 0.05 as per 1E. Our implementation reports the total branch length for each tested site, and saturated sites can be screened out using this metric. Such sites are rare in simulated data, and should be even more rare in empirical alignments, (we did not detect any in the empirical data).

Only 1 in 100 simulated datasets showed false positive rates of 8% or greater (10% or greater for 1 in 1000), implying that one rarely encounters a simulated dataset where the false positive rate is notably above the typical level.

Precision and Recall

The ability of Contrast-FEL to identify sites that experience differential selective pressures is influenced by the effective sample size, which
Comparing selective pressures · doi:10.1093/molbev/mst012

depends in turn on the number of branches in the
group and the extent of sequence divergence, and
the effect size, i.e., the magnitude of differences
in non-synonymous substitution rates, β. For
simulations with two sets of branches, restricted
to detectable sites (i.e., sites that were not
invariable), power to detect differences aggregated
over simulation scenarios is summarized in
Table 3. Over all detectable sites, the power using
using the false discovery rate of 20% is 0.319.
Restricted to the sites where the differences in
β rates between groups was at least 1 (“Large
effect”), the power rises to 0.603, and further
restricting to only those sites where both the
test and the background branch sets had at
least 3 expected substitutions per site (“Large
sample size”), increases the power to 0.860 see
3. Similar trends occur for testing using LRT p-
values, or permutation-based p-values. Perfectly
ladder-like trees, on average yield somewhat
higher power than either perfectly balanced or
random/biological trees.

The power of the Contrast-FEL adheres to the
expected patterns; it increases with the sample
size and the effect size. For example, greater
levels of divergence at a site (up to a point)
corresponded to notable gains in the power of
the test (Figure 2A), as did greater numbers of
substitutions occurring in the test set of branches,
with power rising from $\sim 26.4\%$ ($p \leq 0.05$) for
2 substitutions to 50.7% for 8 substitutions
(Figure 2B). Best power is achieved when the
difference between substitutions rates on the two
sets of branches is large (Figure 2C), exceeding
80% for sufficiently disparate rates, and dropping
to $<10\%$ for rates that are very similar. Power
numbers are high when the size of either of the
sets is not too small (Figure 2D).

Next, we focus on the data simulated with
the relatively small (31 sequences) biological
tree of vertebrate rhodopsins from Yokoyama
et al. (2008) and three different test branch sets:
small clade, large clade, and branches grouped
by phenotype (absorption wavelength), shown in
Figure 3. For sufficiently stringent FDR (q-values)
cutoffs, high (90\%) precision (positive predictive
value) can be achieved for all three cases, although
the cutoffs need to be more stringent for the small
clade scenario. High precision is achieved at the
cost of fairly low recall (20–25\%), and the small
clade scenario has the worst performance among
the three scenarios considered.

Four branch classes
Contrast-FEL remained conservative on null data
when we applied it to alignments simulated with
4 branch classes (Figure 4A), for all types of
tests: FWER (family-wise error rates) corrected
pairwise differences, omnibus test (any rates
are different), and when considering simulations
where only some (but not all) of the groups had
equal rates. As was the case with simpler 2-class
simulations, Type I error for severely saturated
sites was somewhat elevated. Power to detect
differences among any pair of branch groups, either via the pairwise or the omnibus test was strongly influenced by the effect size, ranging from near 0 for rates that were close in magnitude, to over 80% for sites where the largest substitution rate was sufficiently high (>1), and sufficiently different (e.g. 5×) larger than the smallest rate (Figure 4B). Power of the method is strongly influenced by the effect size, i.e., the magnitude of differences between β rates (Figure 4C), and the information content or saturation of the site, measured as a function of expected substitutions per site (Figure 4D). Introducing multiple branch classes increases the number of tests performed at each site, and because of the site-level multiple test correction, dilutes the power compared to the 2-class case (Table 3). Calling a site differentially evolving if any of the tests return a significant corrected p-value realizes a 5-6% power boost compared to relying only on the omnibus test.

If a differentially evolving site was identified as such by the omnibus test at p ≤ 0.05 (FWER corrected), in 99.6% of cases it was also identified by one or more of the individual pairwise tests, implying that in most cases (at least for our simulation), it is possible to pinpoint specific pairs of branch sets that are responsible. For the remaining 0.4% of sites, the omnibus test was significant, but none of the individual tests were. Alternatively, among the sites that were identified by at least one of the pairwise tests, 85.2% of them are also identified by the omnibus test; for the remainder of the sites, the omnibus test is not significant. Among those sites, 89.6% had a single pairwise significant test (median omnibus corrected p=0.103, IQR, [0.072–0.159]), 9.5% had two pairwise significant tests (0.066[0.056–0.081]), and 0.9% – three pairwise significant tests (0.058[0.053–0.071]).

To boost power in low information settings (small branch sets or low divergence), it may be advisable to run only the omnibus test, i.e. forego pairwise tests and the attendant FWER correction.

Comparison with post-hoc tests.

A reasonable heuristic approach for identifying sites that evolve differently between branch sets, B_1 and B_2 is to run an existing test which can determine whether the site evolved non-neutrally along either sets, and call the site differentially selected if there’s evidence of positive selection on one group but not another. Approaches like this have been commonly used in literature, e.g., Kapralov, Smith and Filatov (2012). One can also call a site differentially evolving if non-neutrality tests of B_1 and B_2 return discordant results. For example, B_1 is negatively selected, but B_2 is neutral, or B_2 is positively selected and B_1 is negatively selected. Contrast-FEL is, of course, a direct test of rate differences, so it could additionally identify, for instance, sites where B_1 and B_2 are both negatively/positively selected, but not at the same level. To illustrate the benefit of Contrast-FEL compared to the
Comparing selective pressures · doi:10.1093/molbev/mst012

MBE

post hoc approach (which also requires at least two separate computational analyses, one for each branch set, so may be less computationally efficient), we performed post-hoc analyses based on independent FEL tests (one for each branch set) on a subset of 185070 sites from 425 alignments.

Using the LRT p-value cutoff of 5%, over all variable sites, Contrast-FEL achieves false positive rate (FPR) of 3.4%, power of 37.2%, positive predictive value (PPV) of 62.0% and negative predictive value (NPV) of 91.1%. The "discordant results" post-hoc FEL approach, by comparison has FPR of 53.0%, power of 63.6%, PPV of 15.2% and NPV of 89.6%; the dramatic increase in the rate of false positives for the post hoc method is mostly (93.7%) due to cases, where a site that was simulated under the null is misclassified because one of the branch sets is determined to be non-neutral by FEL and the other – neutral. All of the sites that were identified by Contrast-FEL, but not by the post hoc heuristic were those where FEL (correctly) determined that both branch sets were conserved, but the degrees of conservation, measured by the $\beta_i/\alpha<1$ ratio were different. Empirical datasets analyzed in the following section provide concrete examples of such sites which are labeled CC meaning they are conserved on the treatment set and conserved on the naive set (for more information see Table 4 or 5).

The heuristic in which sites are called differentially evolving where only one of the sets was under positive selection (the method commonly used in literature), has FPR of 3.3%, much reduced power of 17.1%, NPV of 94.6% and PPV of 25.9%.

Exploring the effect of model misspecification. To see if the performance of Contrast-FEL suffers when data are generated under models that make different parametric distributions, we fitted Contrast-FEL to data generated under a branch-site model Wisotsky et al. (2020), where ω rates vary from site to site and branch to branch, but using a random effect, i.e. set of branches fixed a priori are not expected to show detectably different patterns of site-level ω. This model allows independent unrestricted rate variation between branches and sites, and is computationally faster and less parameter-rich than covarion-type models that allow complex correlation structures between rates (see discussion in Murrell et al. (2015)). Using the simulation scenario (CV3o6, see http://data.hyphy.org/web/busted/) and the branch partition shown in Fig. S1, we obtained a slightly elevated rate of 0.07 false positives with LRT at nominal $p=0.05$, suggesting that the LRT test is misattributing some "random" rate variation to fixed branch partitions. However, the permutation p-value test, which we designed as a non-parametric guard to correct for some model-misspecification, maintains a nominal rate of 0.045 for $p=0.05$ (see Fig. S2). Similarly, no
elevated false positives are seen with multiple-
test corrected q-values. Because of the limited
scope of these simulations, we cannot draw
general conclusions about robustness to model
misspecification.

Empirical data
Drug resistance in HIV-1 reverse transcriptase
(RT)
We applied Contrast-FEL to an alignment of 476
HIV-1 RT sequences with 335 codons isolated
from 288 HIV-1 infected individuals, previously
analyzed in (Murrell et al., 2012). There were two
sequences sampled from each individual: one prior
to treatment with reverse transcriptase inhibitors,
and one following treatment. We partitioned
the branches in the tree into three groups:
pre-treatment terminal branches (naive), post-
treatment terminal branches (treated), and the
rest of the branches (nuisance group, Fig S1
HIV-1 RT). Because we expect the primary
difference between the selective regimes on naive
vs treated branches is due to the action of the
antiretroviral drugs, most of the sites that
have detectable differences in selective pressures
should be implicated in conferring drug resistance.
Using nominal p-value cutoff of 0.05, Contrast-
FEL identifies 15 sites that evolve differentially,
between which 12 are known drug resistance
(DR) sites, achieving positive predictive value
(PPV) of 0.8. Of the three non-DR sites that
are found, codons 44 and 302 are actually more
conserved in (lower β) in the treated group, which
is a different mode of selective pressure than
positive selection exerted by antiretroviral drugs.
They are also not supported by the permutation
test, which could indicate that these sites are
picked up due to sampling variation. Among
the 12 DR sites identified by LRT p-values, 10
are also supported by the permutation test –
an indicator of robustness to branch sampling
artifacts. The most conservative approach, based
on FDR corrected q-values of 0.20 or lower,
identifies 4 codons: 103, 181, 184 and 190, all
of which are on the list of canonical escape
mutations with very strong phenotypic effects
(Rhee et al., 2003). All of these sites have many
inferred mutations in the treated group, and large
differences between inferred β rates, which places
them in the large effect/large sample size category.
As a comparison with one common practice to
screen for differential selection today, we also used
fixed effects likelihood (FEL, Kosakovsky Pond
and Frost (2005)) to test each branch set for
evidence of deviations from neutrality (either
positive or negative selection). For site 190,
suffer to differential selection with a large
effect size, FEL reveals that the treated branches
experience positive selection (FEL $p\leq 0.05$), and
naive branches – negative selection. However no
other sites show such a clean pattern. For sites
103, 151, 184, 215, test branches are subject
to positive selection (FEL $p\leq 0.05$), while naive
branches evolve neutrally. For sites 67, 181,
228, naive branches are subject to negative
Comparing selective pressures · doi:10.1093/molbev/mst012

selection (FEL $p \leq 0.05$), while test branches evolve neutrally. For the remainder of the sites, neither branch class evolves in a way that is detectably different from neutrality according to FEL. This comparison highlights that comparing the results of two independent tests applied to subsets of the data to detect evolutionary differences is statistically suboptimal.

The performance of Contrast-FEL (a generalist method) in identifying sites of phenotypic relevance, compares favorably to the performance of a purpose-built MEDS method (Murrell et al., 2012), designed to find directional evolution along selected branches. MEDS identified 17 sites of which 10 were known DR sites (PPV of 58.9%, see Table 2 in Murrell et al. (2012), and both methods agreed on 9 sites. Of course, unlike MEDS, Contrast-FEL is not able to identify specific residues that may be the targets of selection at specific sites.

Selection on HIV-1 envelope conditioned on the route of transmission

We re-analyzed an alignment of 131 partial HIV-1 envelope (no variable loops) sequences with 806 codons from (Tully et al., 2016); these sequences were isolated from acute/early infections and represent “founder” viruses. These sequences were labeled by whether or not the infected individual was infected via a heterosexual (HSX) exposure, or men who have sex with men (MSM) exposure; interior branches were labeled as HSX or MSM if all of their descendants had the same label, and were left unlabeled (nuisance set) otherwise. Tully et al. (2016) found gene-wide differences in selection among branch groups (a larger proportion of sites, but subject to weaker positive selection, on HSX branches compared to MSM branches), using the RELAX test (Wertheim et al., 2015), but lacked the framework to pinpoint specific residues that evolved differentially. Contrast-FEL identified 32 differentially selected sites (p-value) of which 3 passed the FDR correction (Table 5). One of these sites, 626 is conserved in both branch sets, but at a stronger level (lower β) in the MSM set, while another (786), is positively selected in both, but at a stronger level on HSX branches.

Cell shape in epidermal leaf trichomes

Mazie and Baum (2016) investigated which codons in a developmentally important gene (BRT) in Brassicaceae (58 sequences, 318 codons) may be associated with the evolution of a different trichome cell shape in the genus Physaria. Using gene-level mean differences in ω between subsets of branches, they identified that the average strength of selection is different in Physaria compared to the rest of the taxa. They then used a revised restricted branch-site (Zhang, Nielsen and Yang, 2005) method to detect 10 codons that were subject to positive selection in the Physaria clade and 4 codons were “distinctive” (majority amino-acid was different in Physaria), but not positively selected. Contrast-FEL identified 29
differentially selected codons at $p \leq 0.05$ (18 at $q \leq 0.20$), including all 10 positive codons from Mazie and Baum (2016) and one out of four “distinctive” codons (Table 6). Given the general conservative nature of Contrast-FEL, it is reasonable to assume that it is more powerful (rather than prone to making more Type I errors) than the original test which was limited to a 50% subset of branches and used much more stringent parametric assumptions on rate distributions, including shared negative selection regimes on background branches, and a single ω to account for the positive selection rate class.

\textit{Evolution of Rubisco in C3 vs C4 photosynthetic pathway plants}

Several studies comparing evolutionary selective pressures on the \textit{rbcL} gene in C3 and C4 plants have identified several sites that appear to be under positive selection in either C3 or C4 plants (Kapralov and Filatov, 2007; Kapralov, Smith and Filatov, 2012), as well as several others that have different targets for directional evolution based on the pathway (Parto and Lartillot, 2018). In this alignment of 179 sequences and 447 codons, Contrast-FEL identified 15 sites that evolve differentially between C3 and C4 plants (LRT $p \leq 0.05$), of which 6 had been previously identified as being subject to differential directional selection by a mutation-selection model, and 5 additional sites were identified by this model (cf Table 7). An interesting example in this dataset is site 309 which was found as positively selected previously, but is classified as conserved in both C3 and C4 plants by FEL; this appears to be a result of the high synonymous rate inferred at the site, which is a hallmark false positive for standard selection analyses that ignore site-to-site synonymous rate variation (Kosakovsky Pond and Muse, 2005; Wisotsky et al., 2020). However, a weaker extent of conservation in C4 plants is inferred by Contrast-FEL at this site.

\textit{Selection on cytochrome B of Haemosporidians infecting different hosts}

Pacheco et al. (2018) performed an in-depth evolutionary analysis of three mitochondrial genes from 102 Haemosporidian parasite species partitioned into four groups based on the hosts. The analysis concluded that the genes were subject to mostly purifying selection, with different gene-level strengths of selection established using RELAX. For example, in the cytochrome B gene (376 codons) which we re-analyze here, selection in the plasmodium infecting avian hosts clade was intensified relative to the plasmodium infecting primate/rodent hosts. Because this analysis contained more than two branch groups, Contrast-FEL conducted seven tests per site – the omnibus test and six pairwise group comparison (Table 8). Overall, 28 sites showed evidence of differential selection with at least one test (FWER corrected), and 5 tests passed FDR correction for the omnibus test. For clarity, we did not consider FEL analyses on individual branch sets and only focused on
Contrast-FEL inference. Twenty-two of 28 sites were detected by the omnibus and between one and three pairwise tests, while six sites were reported only by one of the pairwise tests, highlighting the additional resolution offered by these more focused tests. Patterns of differences at individual sites varied widely, with every possible pair being significantly different at least once. The simplest case (e.g., 160 and 179) is a significant discordance between two groups of branches. Another repeated pattern is when one group of branches stands apart from all others (e.g., 89 and 102).

Discussion
To narrow down the genetic basis of adaptation, many studies contrast evolution between different subsets of branches in a phylogenetic tree, selected to represent different phenotypes, environments, or fitness regimes. As we sequence more organisms and obtain better annotations of function and phenotypic differences, such contrast analyses are likely to become more common. However, with a few exceptions, methods that researchers have adopted to find differentially evolving sites were not designed to explicitly test for such differences. The Contrast-FEL approach, presented here, addressed this methodological shortcoming, and establishes a formal statistical framework for testing for differences in evolutionary rates among two or more sets of branches at individual sites. Unlike approaches which infer something about each branch set separately (e.g., is branch set X under positive selection at site S?), and compare these inferences in a post hoc fashion (site S is selected on branch set X but not on set Y), Contrast-FEL enables direct rigorous testing for differences in non-synonymous evolutionary rates at individual alignment sites in predefined non-overlapping sets of branches and is computationally feasible for all but the largest comparative analyses. Contrast-FEL has good operating characteristics on data simulated under a broad range of scenarios, and finds large numbers of differentially evolving sites in empirical datasets. When prior results are available, we find that in addition to recovering many sites with known effect on phenotype (e.g., HIV-1 drug resistance), or sites found with alternative methods (rbcL, BRT), Contrast-FEL reports subtler differences, such as sites that are subject to differing degrees of conservation, or not subject to detectable positive or negative selection in either subset. Therefore, Contrast-FEL may enable more precise and powerful comparative analyses, and it is also the first method of this class that is able to compare selective pressures among more than two groups of branches. The general framework of site-level rate comparison using likelihood ratio tests presented here can be readily extended to compare other types of evolutionary parameters, e.g., rates that are informed by amino-acid properties (Delport et al., 2010), rates of instantaneous substitutions.
that involve multiple nucleotides (Venkat, Hahn and Thornton, 2018), or rates that influence positional synonymous substitutions (Rubinstein et al., 2011).

As with any statistical inference method, it is important to appreciate when it will work well and when it will not. Since Contrast-FEL tests for significant differences in ω rates, a positive result means that the sites are subject to different selection intensities, e.g. purifying vs neutral or positive diversifying, and not that they evolve towards different target residues (directional selection). It will work best on sufficiently large alignments with multiple substitutions in each of the branch sets, while, on small or genetically similar datasets, power will be low for all but the most dramatic differences. Our simulations provide guidelines for performance, and, if desired, power simulations for a specific dataset can be used to determine what effect size can be realistically detected. Since it is reasonable to assume that in most alignments most sites do not evolve differentially (or at least not dramatically so) along subsets of branches, care must be taken to control for false discovery. Our empirical data analyses on alignments with prior site-level results do not indicate a dramatically inflated rate of false positives (the lists of sites overlap substantially with those identified previously). On the other hand, being too conservative will lead to loss of power, since for site-level inference it does not grow with the length of the alignment (Scheffler, Murrell and Kosakovsky Pond, 2014).

Our simulations can be used as guideline for what power can be expected from a specific dataset based on its size (number of branches, size of partitions), and information content (number of substitutions, divergence). For smaller datasets, only sites with strong effects (large differences in rates) are likely to be found (Fig 3). It is worth noting that by default Contrast-FEL will always perform the omnibus and report FWER corrected p-values, permutation p-values, and FDR corrected q-values. The main choice a user faces in terms of what tests are performed is if permutation p-values are computed. Depending on the desired tradeoffs between precision and recall, the user may choose to use site-level p-values (highest power, lowest precision), permutation p-values (intermediate power and precision, some degree of robustness to model misspecification), or q-values (lowest recall, highest precision).

Statistical models of evolution, including those presented here, are gross approximations of highly complex biological reality. Thus, they are likely to be misspecified for biological data. A positive/negative Contrast-FEL result should not be interpreted as dispositive evidence of the effect of branch partition (phenotypes, environments, etc) affects selective regimes. It should instead be viewed as a hypothesis generation tool: detected sites may present an
Comparing selective pressures · doi:10.1093/molbev/mst012

attractive target for subsequent characterization using experiments or other approaches that do not solely rely on comparative data analysis (MacCallum and Hill, 2006). Our simulations are extensive, but they only establish that the tests perform as expected when the data are generated under the assumed models in a broad range of settings (a necessary step). There are numerous violations which might negatively influence the test: background heterotachy (Jones et al., 2020), multinucleotide substitutions (Venkat, Hahn and Thornton, 2018), or the general tendency of some models to “absorb” unmodeled variation into estimable parameters (Jones et al., 2018). How branches are partitioned into groups will differ based on the nature of the question being asked: sometimes it could be obvious (treated/untreated terminal branches) and sometimes highly ambiguous (discrete or discretized phenotype whose values of not observed for ancestral lineages). Misspecification of branch sets could lead to degraded test performance, although one approach offered by Contrast-FEL is to assign branches with uncertain labeling to the “ignore” group. Sensitivity to model violations is a general statistical inference issue, and establishing some degree of robustness in complex settings like phylogenetic codon models where analytical results are not available is usually accomplished by simulations, which are often limited in scope due to the computational expense and the imagination of the individuals designing model violations. We considered one possible misspecification due to heterotachy, and found that while the LRT based test was slightly anti-conservative, but the permutation p-value test restored nominal behavior, suggesting that permutation p-values may be less sensitive to some model violations, although they do incur a noticeable additional computational expense.

Acknowledgments

This work was supported in part by grants R01 GM093939 (NIH/NIGMS) and AI134384 (NIH/NIAID).

References

Arenas, M. 2015. Trends in substitution models of molecular evolution. Front Genet 6:319.
Baker, J. L., K. A. Dunn, J. Mingrone, B. A. Wood, B. A. Karpinski, C. C. Sherwood, D. E. Wildman, T. M. Maynard, and J. P. Bielawski. 2016. Functional Divergence of the Nuclear Receptor NR2C1 as a Modulator of Pluripotentiality During Hominid Evolution. Genetics 203(2):905–22.
Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O’Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66(8):2369–83.
Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1):289–300.
Delport, W., K. Scheffler, G. Botha, M. B. Gravenor, S. V. Muse, and S. L. Kosarovsky Pond. 2010. CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences. PLoS Computational Biology 6(8):e1000885.
Delport, W., K. Scheffler, and C. Seoighe. 2008.
Models of coding sequence evolution. Briefings in Bioinformatics 10(1):97–109.

Gaut, B. S., S. V. Muse, W. D. Clark, and M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcl locus of monocotyledonous plants. J Mol Evol 35(4):292–303.

Holm, S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6(2):65–70.

Jones, C. T., N. Youssef, E. Susko, and J. P. Bielawski. 2018. Phenomenological Load on Model Parameters Can Lead to False Biological Conclusions. Mol Biol Evol 35(6):1473–1488.

Jones, C. T., N. Youssef, E. Susko, and J. P. Bielawski. 2020. A Phenotype-Genotype Codon Model for Detecting Adaptive Evolution. Syst Biol 69(4):722–738.

Kapralov, M. V., and D. A. Filatov. 2007. Widespread positive selection in the photosynthetic Rubisco enzyme. BMC Evol Biol 7:73.

Kapralov, M. V., J. A. C. Smith, and D. A. Filatov. 2012. Rubisco evolution in C4 eudicots: an analysis of Amaranthaceae sensu lato. PLoS One 7(12):e52974.

Kosakovsky Pond, S. L., W. Delport, S. V. Muse, and K. Scheffler. 2010. Correcting the Bias of Empirical Frequency Parameter Estimators in Codon Models. PLoS ONE 5(7):e11230.

Kosakovsky Pond, S. L., and S. V. Muse. 2005. Site-to-site variation of synonymous substitution rates. Molecular Biology and Evolution 22(5):1208–1222.

Kosakovsky Pond, S. L., S. V. Muse, Z. Grossman, M. B. Gravenor, D. D. Richman, and A. J. Leigh Brown. 2006. Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Computational Biology 2(6):e530–e538.

Kosakovsky Pond, S. L., and S. V. Muse. 2005. Site-to-site variation of synonymous substitution rates. Molecular Biology and Evolution 22(12):2375–2385.

Kosakovsky Pond, S. L., A. F. Y. Poon, R. Velazquez, S. Weaver, N. L. Hepler, B. Murrell, S. D. Shank, B. R. Magalis, D. Bouvier, A. Nekrutenko, S. Wisotsky, S. J. Spihlman, S. D. W. Frost, and S. V. Muse. 2019. HyPhy 2.5 - a customizable platform for evolutionary hypothesis testing using phylogenies. Mol Biol Evol .

Lopez, P., D. Casane, and H. Philippe. 2002. Heterotachy, an important process of protein evolution. Mol Biol Evol 19(1):1–7.

MacCallum, C., and E. Hill. 2006. Being positive about selection. PLoS Biol 4(3):e87.

Mazie, A. R., and D. A. Baum. 2016. Clade-specific positive selection on a developmental gene: BRANCHLESS TRICHOME and the evolution of stellate trichomes in Physaria (Brassicaceae). Mol Phylogenet Evol 100:31–40.

Murrell, B., T. de Oliveira, C. Seibergts, S. L. Kosakovsky Pond, K. Scheffler, and Southern African Treatment and Resistance Network-SATuRN Consortium. 2012. Modeling HIV-1 drug resistance as episodic directional selection. PLoS Comput Biol 8(5):e1002507.

Murrell, B., S. Weaver, M. D. Smith, J. O. Wertheim, S. Murrell, A. Aylward, K. Eben, T. Pollner, D. P. Martin, D. M. Smith, K. Scheffler, and S. L. Kosakovsky Pond. 2015. Gene-wide identification of episodic selection. Mol Biol Evol 32(5):1365–71.

Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11(5):715–724.

Pacheco, M. A., N. E. Matta, G. Valkunas, P. G. Parker, B. Mello, C. E. Stanley, Jr, M. Lentino, M. A. Garcia-Amado, M. Cranfield, S. L. Kosakovsky Pond, and A. A. Escalante. 2018. Mode and Rate of Evolution of Haemosporidian
Comparing selective pressures

Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Mol Biol Evol 35(2):383–403.

Parto, S., and N. Lartillot. 2017. Detecting consistent patterns of directional adaptation using differential selection codon models. BMC Evol Biol 17(1):147.

Parto, S., and N. Lartillot. 2018. Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models. PLoS One 13(2):e0192697.

Rhee, S.-Y., M. J. Gonzales, R. Kantor, B. J. Betts, J. Ravela, and R. W. Shafer. 2003. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31(1):298–303.

RifeMagalis, B., S. L. Strickland, S. D. Shank, P. Autissier, A. Schuetz, P. Sithinamsuwan, S. Lerdlum, J. L. K. Fletcher, M. de Souza, J. Ananswaranich, V. Valcour, Search007 Study Group, K. C. Williams, S. L. Kosakovsky Pond, S. RattoKim, and M. Salemi. 2020. Phyloanatomic characterization of the distinct T cell and monocyte contributions to the peripheral blood HIV population within the host. Virus Evol 6(1):veaa005.

Rubenstein, N. D., A. Doron-Faigenboim, I. Mayrose, and T. Pupko. 2011. Evolutionary models accounting for layers of selection in protein-coding genes and their impact on the inference of positive selection. Mol Biol Evol 28(12):3297–308.

Scheffler, K., B. Murrell, and S. L. Kosakovsky Pond. 2014. On the validity of evolutionary models with site-specific parameters. PLoS One 9(4):e94534.

Tamuri, A. U., M. dos Reis, and R. A. Goldstein. 2012. Estimating the distribution of selection coefficients from phylogenetic data using sitewise mutation-selection models. Genetics 190(3):1101–15.

Tully, D. C., C. B. Gohlie, R. E. Batorsky, D. J. Bean, K. A. Power, M. Gebremichael, H. E. Bedard, A. D. Gladden, A. M. Sieve, M. A. Amero, K. Lane, G. McGrath, S. B. Bapsner, J. Tinsley, N. J. Lennon, M. R. Henn, Z. L. Brumme, P. J. Norris, E. S. Rosenberg, K. H. Mayer, H. Jessen, S. L. Kosakovsky Pond, B. D. Walker, M. Altfeld, J. M. Carlson, and T. M. Allen. 2016. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathog 12(5):e1005619.

Venkat, A., M. W. Hahn, and J. W. Thornton. 2018. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat Ecol Evol 2(8):1280–1288.

Weaver, S., S. D. Shank, S. J. Spielman, M. Li, S. V. Muse, and S. L. Kosakovsky Pond. 2018. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol Biol Evol 35(3):773–777.

Wertheim, J. O., B. Murrell, M. D. Smith, S. L. Kosakovsky Pond, and K. Scheffler. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32(3):820–32.

Whelan, S., B. P. Blackburne, and M. Spencer. 2011. Phylogenetic substitution models for detecting heterotachy during plastid evolution. Mol Biol Evol 28(1):449–58.

Wisotsky, S. R., S. L. Kosakovsky Pond, S. D. Shank, and S. V. Muse. 2020. Synonymous site-to-site substitution rate variation dramatically inflates false positive rates of selection analyses: ignore at your own peril. Mol Biol Evol .

Yang, Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568–73.

Yang, Z. 2000. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol 51(5):423–32.

Yokoyama, S., T. Tada, H. Zhang, and L. Britt. 2008. Elucidation of phenotypic adaptations: Molecular
analyses of dim-light vision proteins in vertebrates.

Proceedings of the National Academy of Sciences

105(36):13480–13485.

Zhang, J., R. Nielsen, and Z. Yang. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular biology and evolution 22(12):2472–9.
Comparing selective pressures · doi:10.1093/molbev/msst012

Tables

Table 3. Power of Contrast-FEL for detecting differences in selection. \(N \) - total number of differentially selected sites in the set. Large effect is defined as having the absolute difference in simulated β rates of at least 1. Large sample size is defined as having at least 3 substitutions occurring along both test and reference branch sets.

Simulation	\(N \)	\(P \leq 0.05 \)	\(q \leq 0.2 \)	Permutation \(P \leq 0.05 \)
Overall	139753	0.418	0.319	0.361
Large effect	30923	0.727	0.603	0.665
Large effect / sample size	14265	0.902	0.860	0.867
Perfectly balanced trees	39671	0.411	0.316	0.354
Perfectly ladder-like trees	27439	0.479	0.378	0.417
Random/biological trees	72643	0.399	0.298	0.343
4-class simulations				
Overall (omnibus)	18141	0.355	0.276	0.379
Overall (any test)	18141	0.415	N/A	N/A
Large effect (omnibus)	8684	0.516	0.411	0.542
Large effect (any test)	8684	0.587	N/A	N/A
Table 4. Sites evolving differentially between the Treated and the Naive sets in the HIV-1 RT dataset, at $p \leq 0.05$. α – maximum likelihood estimate (MLE) of the site-specific synonymous rate; β – non-synonymous rate; * – permutation p-value is ≤ 0.05; substitutions are counted along branches in the corresponding set using joint maximum likelihood inference of ancestral states under the site-level alternative model, codons in bold are known to be involved in drug resistance (Rhee et al., 2003); † – codon identified as directionally evolving in Table 2 of (Murrell et al., 2012). FEL p-values are computed by separately testing for non-neutral evolution on the corresponding set of branches, with the + or - sign indicating the nature of selection (positive or negative). FEL pattern encodes the inferred pattern of evolution for treated/naive branches: P - positively selected (at $p \leq 0.05$), C – conserved, N – neutral; for example PC means “positively selected” on the treated set, and “conserved” on the naive set.

Codon	α (substitutions)	β (substitutions)	p-value	q-value	Standard FEL p-value	FEL pattern		
	Treated	Naive	Treated	Naive	Treated	Naive		
44	1.31	0.00 (9)	1.13 (8)	0.0286	0.799	0.003(-)	0.885(-)	CN
65	1.16	2.12 (11)	0.00 (3)	0.0156*	0.655	0.226(+)	0.075(-)	NN
67	1.24	1.39 (20)	0.00 (3)	0.0207*	0.694	0.792(+)	0.024(-)	NC
70	1.31	1.56 (17)	0.00 (5)	0.0374*	0.963	0.737(+)	0.051(-)	NN
75	0.86	1.80 (15)	0.00 (4)	0.0161*	0.660	0.130(+)	0.087(-)	NN
100	1.56	3.26 (29)	0.00 (13)	0.0150	0.836	0.094(+)	0.075(-)	NN
103	1.47	36.51 (104)	0.00 (7)	0.0000*	0.000	0.000(+)	0.073(-)	PN
151	0.93	2.67 (10)	0.00 (8)	0.0150*	0.719	0.023(+)	0.124(-)	PN
181	3.32	4.41 (21)	0.00 (7)	0.0010*	0.083	0.442(+)	0.004(-)	NC
184	0.00	8.29 (58)	0.34 (1)	0.0000*	0.000	0.023(+)	0.110(-)	PN
188	0.18	2.99 (14)	0.00 (0)	0.0061	0.411	0.000(+)	0.491(-)	PN
190	1.52	3.41 (33)	0.00 (10)	0.0004*	0.041	0.031(+)	0.011(-)	PC
215	0.44	1.50 (12)	0.00 (13)	0.0255*	0.775	0.021(+)	0.199(-)	PN
228	1.53	1.30 (21)	0.00 (9)	0.0436	0.974	0.753(-)	0.019(-)	NC
302	0.62	0.00 (1)	8.05 (3)	0.0420*	1.000	0.458(-)	0.054(+)	NN
Comparing selective pressures · doi:10.1093/molbev/mst012

Table 5. Sites evolving differentially between the HSX and the MSM sets in the HIV-1 env dataset from Tully et al. (2016). Other notation the same as in Table 4.

Codon	α (substitutions)	β (substitutions)	p-value	q-value	Standard FEL p-value	FEL pattern
			HSX	MSM		
49	0.56	0.12 (2)	0.0365	0.151(+)	0.742(+)	NN
50	0.30	0.61 (6)	0.0009*	0.177	0.331(+)	NC
51	0.88	0.00 (2)	0.0391	1.000	0.002(-)	CN
142	4.13	5.09 (34)	0.0497	1.000	0.373(+), 0.338(-)	NN
158	0.62	2.24 (9)	0.0168	0.005(+)	0.582(+), 0.287(-)	NN
197	1.18	2.93 (20)	0.0053*	0.616	0.361(+), 0.287(-)	NN
233	0.20	0.25 (3)	0.00 (1)	0.0377*	1.000, 0.083(+), 0.046(-)	NC
264	0.33	1.91 (11)	0.0107	0.859	0.005(+), 0.427(+), 0.046(-)	NN
275	2.45	4.16 (28)	0.0031	0.498	0.128(+), 0.344(-)	NN
303	1.63	6.98 (34)	0.0085*	0.837	0.000(+), 0.082(+), 0.046(-)	NN
336	3.80	1.09 (11)	0.0254	1.000	0.009(-), 0.297(-)	CN
344	0.40	1.25 (8)	0.0074*	0.742	0.042(+), 0.692(-)	PN
408	0.52	0.70 (4)	0.0436	1.000	0.063(+), 0.007(+), 0.007(+)	NP
442	0.00	0.31 (1)	0.0392*	1.000	0.031(+), 1.000(-)	PN
530	0.69	0.29 (2)	0.0359*	1.000	0.305(-), 0.002(-)	NC
572	1.55	4.01 (29)	0.0469	1.000	0.046(+), 0.456(+), 0.007(+)	NP
574	1.10	0.52 (6)	0.0389	1.000	0.230(-), 0.002(-)	NC
598	0.59	1.13 (9)	0.0410	1.000	0.235(+), 0.255(-), 0.007(+)	NN
626	12.77	4.14 (37)	0.0003*	0.120	0.001(-), 0.000(-)	NC
672	2.46	3.15 (25)	0.0139*	0.799	0.433(+), 0.079(-)	NN
683	1.88	2.05 (15)	0.0404*	1.000	0.786(+), 0.039(-)	NC
685	0.00	1.16 (9)	0.0088*	0.213	0.001(+), 0.259(+), 0.007(+)	PN
690	1.24	0.28 (5)	0.0176*	0.837	0.056(-), 0.983(+), 0.007(+)	CN
702	0.00	1.13 (8)	0.0174*	0.877	0.002(+), 0.101(+), 0.007(+)	PN
703	1.31	1.27 (7)	0.0119*	0.739	0.958(-), 0.003(-), 0.003(+)	NC
720	0.49	1.47 (11)	0.0107	0.785	0.026(+), 0.860(-), 0.007(+)	PN
722	0.00	0.13 (1)	0.0325	1.000	0.288(+), 0.007(-), 0.007(+)	NP
734	0.50	2.23 (14)	0.0111	0.749	0.005(+), 0.536(+), 0.007(+)	PN
773	0.25	0.00 (0)	0.0406	1.000	0.009(+), 0.007(+)	NC
781	0.51	0.50 (5)	0.0031*	0.416	0.797(-), 0.005(-)	NC
786	1.40	6.67 (24)	0.0274	1.000	0.000(+), 0.009(+), 0.007(+)	PP
804	0.25	0.00 (0)	0.0000*	0.031	0.119(-), 0.002(+), 0.007(+)	NP
Table 6. Sites evolving differentially between *Physaria* and other taxa in the BLT gene from Mazie and Baum (2016). † – codon identified as positively selected in *Physaria* (Table 3 of Mazie and Baum (2016)), ‡ – codon identified as "distinctive" in *Physaria* (Table 4 of Mazie and Baum (2016)). Other notation the same as in Table 4.

Codon	α (substitutions)	β (substitutions)	p-value	q-value	Standard FEL p-value	FEL pattern		
	Physaria	Other	*Physaria*	Other				
4	0.00	80.00 (2)	0.76	0.0320	0.018 (+)	0.0220 (+)	PN	
43	0.09	4.27 (1)	0.00	0.0110*	0.194	0.251 (+)	0.043 (-)	NC
60	0.00	57.88 (1)	0.82	0.0265	0.421	0.020 (+)	0.140 (+)	PN
107	0.93	1.70 (3)	0.16	0.0123*	0.206	0.511 (+)	0.108 (-)	NN
122	0.21	0.00 (0)	1.40	0.0308*	0.426	0.476 (-)	0.094 (+)	NN
126	1.62	0.89 (2)	0.08	0.0467	0.550	0.363 (-)	0.017 (-)	NC
153†	0.24	4.17 (6)	0.23	0.0001*	0.006	0.001 (+)	0.960 (-)	PN
156†	0.66	2.91 (7)	0.67	0.0283*	0.409	0.051 (+)	0.986 (-)	NN
163	0.35	1.31 (2)	0.12	0.0473	0.538	0.276 (+)	0.476 (-)	NN
164	0.32	2.04 (3)	0.25	0.0267	0.404	0.088 (+)	0.847 (-)	NN
167†	0.37	6.54 (10)	0.70	0.0000*	0.003	0.001 (+)	0.549 (+)	PN
169	5.04	0.74 (4)	0.07	0.0476	0.522	0.016 (-)	0.000 (-)	NC
171†	2.03	4.00 (4)	0.00	0.0000*	0.003	0.320 (+)	0.000 (-)	NC
173†	0.47	4.12 (6)	0.36	0.0011*	0.044	0.026 (+)	0.820 (-)	PN
174†	0.00	11.60 (8)	0.31	0.0000*	0.000	0.000 (+)	0.346 (+)	PN
175†	0.85	3.67 (7)	0.00	0.0000*	0.002	0.046 (+)	0.006 (-)	PC
176	0.56	1.22 (1)	0.00	0.0057*	0.130	0.450 (+)	0.025 (-)	NC
178	1.29	1.93 (4)	0.12	0.0085	0.160	0.636 (+)	0.026 (-)	NC
179†	0.77	1.85 (2)	0.00	0.0000*	0.038	0.306 (+)	0.008 (-)	NC
180†	0.17	2.22 (3)	0.00	0.0001*	0.006	0.008 (+)	0.161 (-)	PN
187	0.46	0.91 (2)	0.00	0.0066*	0.141	0.503 (+)	0.023 (-)	NC
188	1.31	1.03 (3)	0.00	0.0075*	0.149	0.790 (-)	0.001 (-)	NC
190†	0.00	1.47 (4)	0.07	0.0015*	0.053	0.020 (+)	0.562 (-)	PN
191†	0.45	2.49 (4)	0.13	0.0025*	0.080	0.046 (+)	0.302 (-)	PN
198	0.66	2.17 (2)	0.00	0.0026*	0.076	0.210 (+)	0.023 (-)	NC
255†	2.06	1.47 (3)	0.07	0.0047*	0.124	0.636 (-)	0.000 (-)	NC
262	1.43	1.27 (3)	0.17	0.0320*	0.407	0.872 (-)	0.009 (-)	NC
270	2.32	0.87 (3)	0.00	0.0047*	0.115	0.248 (-)	0.000 (-)	NC
278†	1.64	0.86 (1)	0.00	0.0320*	0.424	0.567 (-)	0.001 (-)	NC
Table 7. Sites evolving differentially between C3 and other taxa in the \textit{rbcL} gene. † – codon identified as positively selected in C3 plants (‡ – C4) plants previously (Table 1 of Parto and Lartillot (2018)). * codon reported as differentially evolving by mutation-selection directional DS3 model in Parto and Lartillot (2018). Other notation the same as in Table 4.

Codon	α (substitutions)	β (substitutions)	p-value	q-value	Standard FEL p-value	FEL pattern		
C3	C4							
23	0.00	0.87 (4)	0.00 (0)	0.0494	1.000	0.083(+)	1.000(-)	NN
86*	1.02	1.22 (7)	0.00 (1)	0.0164*	1.000	0.794(+)	0.039(-)	NC
249	0.98	0.99 (6)	0.00 (0)	0.0375*	1.000	0.995(+)	0.062(-)	NN
251	0.00	0.95 (5)	0.00 (0)	0.0169	1.000	0.342(+)	1.000(-)	NN
262†	0.48	4.15 (15)	1.15 (3)	0.0292*	1.000	0.005(+)	0.460(+)	PN
281‡	0.00	0.44 (2)	3.90 (10)	0.0008*	0.372	0.216(+)	0.001(+5)	NP
295	2.46	0.62 (4)	0.0482*	1.000	0.000(-)	0.084(-)	CN	
309*	76.21	0.00 (0)	0.95 (5)	0.0047*	0.700	0.000(-)	0.013(-)	CC
315	1.43	0.72 (3)	0.0470*	1.000	0.000(-)	0.452(-)	CN	
332	0.00	0.85 (2)	0.0472*	1.000	1.000(+)	0.101(+5)	NN	
354*	0.49	1.32 (6)	0.00 (1)	0.0160*	1.000	0.309(+5)	0.187(-)	NN
367	0.96	1.21 (6)	0.00 (1)	0.0285	1.000	0.780(+5)	0.074(-)	NN
439*	1.04	2.26 (10)	0.31 (4)	0.0143*	1.000	0.136(+5)	0.216(-)	NN
444*	0.00	2.29 (9)	0.00 (0)	0.0018*	0.412	0.005(+5)	1.000(-)	PN
456	3.15	0.72 (8)	0.0481*	1.000	0.000(-)	0.051(-)	CN	
Table 8. Sites evolving differentially among the 4 branch groups in the Cytochrome B mitochondrial gene of Haemosporidians from Pacheco et al. (2018), according to the omnibus test or at least one pairwise test at LRT corrected p-value of ≤ 0.05. Individual pair tests in the last column and codes as follows. HA: Haemoproteidae vs Avian Hosts (one site), HM: Haemoproteidae vs Mammalian Hosts (two sites), HL: Haemoproteidae vs Leucocytozoon (six sites) AM: Avian Hosts vs Mammalian Hosts (four sites), AL: Avian Hosts vs Leucocytozoon (eighteen sites), ML: Mammalian Hosts vs Leucocytozoon (twenty sites). Other notation the same as in Table 4.

Codon	α (substitutions)	Haemoproteidae	Avian Hosts	Mammalian Hosts	Leucocytozoon	Other	p-value	q-value	Significant Pairwise Tests
56	3.81	0.00 (2)	0.00 (3)	0.75 (4)	0.00	0.005*	0.795		AL,ML
89	0.94	0.00 (1)	0.00 (4)	1.33 (5)	0.00	0.0001*	0.017		HL,AL,ML
102	1.06	0.00 (2)	0.23 (5)	1.83 (6)	0.42	0.0014*	0.103		HL,AL,ML
150	0.79	0.00 (1)	1.27 (9)	0.00 (2)	0.56	0.0075*	0.403		AM,ML
158	0.42	0.00 (0)	0.00 (2)	1.30 (5)	0.00	0.0207*	0.518		AL,ML
160	1.25	0.94 (6)	0.08 (8)	0.43 (2)	0.75	0.0422	0.755		HA
179	0.89	0.48 (2)	0.25 (6)	1.46 (6)	1.10	0.0171*	0.495		AL
182	1.43	0.00 (0)	0.00 (0)	2.23 (9)	0.42	0.0001*	0.013		HL,AL,ML
183	1.80	0.00 (0)	0.08 (2)	1.20 (4)	0.54	0.0058*	0.361		HL,AL,ML
186	0.00	0.22 (1)	0.17 (2)	0.65 (3)	0.16	0.3127*	1.000		AL
193	1.53	0.00 (0)	0.00 (1)	1.07 (5)	0.00	0.0147*	0.462		AL,ML
194	1.05	0.00 (0)	0.00 (1)	0.49 (4)	0.19	0.1347*	1.000		ML
222	0.64	0.00 (0)	0.00 (0)	0.70 (4)	0.00	0.0246*	0.514		AL,ML
223	1.45	0.48 (3)	0.00 (0)	0.70 (6)	0.00	0.0209*	0.538		AL,ML
248	0.48	0.00 (0)	0.10 (1)	0.22 (1)	0.64	0.0573*	0.937		AM
253	1.67	0.00 (4)	0.00 (6)	0.95 (4)	0.40	0.0132*	0.452		AL,ML
256	1.92	0.00 (0)	0.73 (8)	0.00 (0)	0.64	0.0386*	0.725		AM
283	0.38	0.00 (1)	0.16 (1)	1.36 (6)	0.64	0.0241*	0.534		ML
285	1.17	0.22 (1)	0.39 (5)	1.44 (6)	1.01	0.0852*	1.000		AL
289	3.28	0.00 (0)	0.00 (0)	1.31 (3)	0.00	0.0002*	0.110		HL,AL,ML
309	1.95	0.83 (2)	0.36 (6)	1.11 (9)	4.24 (8)	0.61	0.0822*	1.000	AL
310	1.96	0.22 (1)	0.00 (0)	0.83 (4)	0.00	0.0119*	0.499		AL,ML
331	0.15	0.00 (0)	0.00 (0)	7.31 (9)	0.00	0.0000*	0.012		AL,ML
338	0.00	0.00 (0)	0.00 (0)	0.98 (3)	0.00	0.0115	0.541		AL,ML
341	0.43	0.49 (3)	0.28 (2)	0.83 (6)	0.45	0.1118*	1.000		ML
343	0.25	0.97 (3)	0.14 (1)	1.23 (4)	1.05	0.0224*	0.527		HM,ML
351	1.75	0.00 (2)	0.00 (3)	0.88 (4)	0.25	0.0367*	0.727		AM
366	0.52	1.43 (5)	0.20 (3)	0.61 (6)	0.67	0.0123*	0.463		ML,ML
Comparing selective pressures

Figures

A. Q-Q plots of LRT p-values for all sites (blue line) and for 3684 saturated sites (log base 10 of the divergence level between 2.5 and 3.5, orange line).

B. Detection rate as a function simulated synonymous and non-synonymous substitution rates (log base 10 scale).

C. Detection rate as a function of the number of branches in the test set (binned in increments of 5). Blue line: proportion of sites with LRT p < 0.05, red line: proportion of sites with permutation p < 0.05, grey line: proportion of sites with q < 0.20. Blue area plot shows for the proportion of sites with LRT p < 0.01 (lower) and LRT p < 0.1 (upper). Orange circles reflect the number of sites contributing to each bin.

D. Detection rate as a function of the total branch length of the test set of branches (binned in increments of 0.5); same notation as in (C) otherwise.

E. Detection rate as a function of the log base 10 of the divergence level at the site (binned in increments of 0.25); same notation as in (C) otherwise.

FIG. 1. Contrast-FEL performance on null data (error control). The plots are based on 1090929 variable sites simulated with equal non-synonymous rates on two branch sets (see text for simulation details). A. Q-Q plots of LRT p-values for all sites (blue line) and for 3684 saturated sites (log base 10 of the divergence level between 2.5 and 3.5, orange line). B. Detection rate as a function simulated synonymous and non-synonymous substitution rates (log base 10 scale). C. Detection rate as a function of the number of branches in the test set (binned in increments of 5). Blue line: proportion of sites with LRT p < 0.05, red line: proportion of sites with permutation p < 0.05, grey line: proportion of sites with q < 0.20. Blue area plot shows for the proportion of sites with LRT p < 0.01 (lower) and LRT p < 0.1 (upper). Orange circles reflect the number of sites contributing to each bin. D. Detection rate as a function of the total branch length of the test set of branches (binned in increments of 0.5); same notation as in (C) otherwise. E. Detection rate as a function of the log base 10 of the divergence level at the site (binned in increments of 0.25); same notation as in (C) otherwise.
FIG. 2. Contrast-FEL performance data with rate differences (power). The plots are based on 139753 variable sites simulated with unequal non-synonymous rates on two branch sets (see text for simulation details). A. Detection rate as a function of the log_{10} of the divergence level at the site. Blue line: proportion of sites with LRT \(p < 0.05 \), red line: proportion of sites with \(p < 0.01 \), grey line: proportion of sites with \(p < 0.20 \). Blue area plot shows for the proportion of sites with LRT \(p < 0.01 \) (lower) and LRT \(p < 0.1 \) (upper). Orange circles reflect the number of sites contributing to each bin. B. Detection rate as a function of the number of inferred substitutions in the test set; same notation as in (A) otherwise. C. Detection rate as a function of the simulated non-synonymous rates in test and background branch sets and, D. the numbers of branches in the test and reference set.
FIG. 3. Contrast-FEL performance on vertebrate rhodopsin simulations. Precision-recall curves for the three sets of simulations, all based on the vertebrate rhodopsin tree from Yokoyama et al. (2008), with different choices for the “test” branch set (precision = true positives / all test positives, recall = true positives / positive training cases). Dotted lines show corresponding base rates for “no-skill” classifiers in each case (i.e., classify all sites as differentially selected). Circles on the individual curves show (left-to-right) precision recall values for \(q=0.1, q=0.2, q=0.5\). There were a total of 37565 variable sites for the “small” case, 15010 sites for the “large” case, and 37401 sites for the “blue” case.

FIG. 4. Contrast-FEL performance data with rate differences using four branch sets. A. Q-Q plots of either omnibus test p-values (blue) or family-wise error rates (FWER, orange), which are based on rejections of any of the true nulls among 151838 sites simulated where all branches had the same non-synonymous rate. Green line shows the Q-Q plot of the FWER rates on 1944 saturated sites (log10 of the divergence level above 2.5). Red line shows the FWER rate for the 3702 datasets where some, but not of the nulls were true (i.e., some branch sets shared rates, while others did not). B. Detection rate as a function of the log10 of the lowest and highest non-synonymous rates (rates lower than 0.01 are shown as 0.01) computed on 18141 sites where at least two rates were different. C. Detection rate as a function of the effect size, measured as the maximum difference between non-synonymous rates among branch classes. Blue line: proportion of sites with LRT \(p<0.05\) (the omnibus test), red line: proportion of sites with permutation \(p<0.05\), grey line: proportion of sites with \(q<0.20\). Blue area plot shows for the proportion of sites with LRT \(p<0.01\) (lower) and LRT \(p<0.1\) (upper). Orange circles reflect the number of sites contributing to each bin. D. Detection rate as a function of the log10 of the divergence level at the site.
FIG. S1. Trees and branch partitions for the empirical datasets. Branches shown in gray are in the nuisance (background) class. Alignments and trees can be downloaded from data.hyphy.org/web/contrast-FEL/.
FIG. S2. False positive rate on data simulated using BUSTED[S] (Wisotsky et al., 2020). Distribution of per-dataset false positive rates using nominal $p=0.05$ with the LRT and permutation tests. Mean false positive rates are shown in thick vertical lines.