Synchronization in coupled map lattices as an interface depinning

Adam Lipowski1, 2 and Michel Droz1

1Department of Physics, University of Geneva, CH 1211 Geneva 4, Switzerland
2Faculty of Physics, A. Mickiewicz University, 61-614 Poznań, Poland

We study an SOS model whose dynamics is inspired by recent studies of the synchronization transition in coupled map lattices (CML). The synchronization of CML is thus related with a depinning of interface from a binding wall. Critical behaviour of our SOS model depends on a specific form of binding (i.e., transition rates of the dynamics). For an exponentially decaying binding the depinning belongs to the directed percolation universality class. Other types of depinning, including the one with a line of critical points, are observed for a power-law binding.

Recently synchronization of chaotic systems attracted a lot of interest1. To a large extent, this interest is motivated by numerous experimental realizations of this phenomena including lasers, electronic circuits, or chemical reactions2. Synchronization acquires additional features in spatially extended systems, where it can be regarded as a certain nonequilibrium phase transition. There are increasing efforts to understand the properties of this transition. Relatively well understood is the synchronization transition (ST) in certain cellular automata. Since a synchronized state can be regarded as an absorbing state, for cellular automata, which are discrete systems, the phase transition, as expected, belongs to the Directed Percolation (DP) universality class3. However, continuous systems, as e.g., coupled map lattices (CML)4, need infinite time to reach a synchronized state and the relation with DP does not seem to hold. Indeed, Pikovsky and Kurths argued5 that for continuous systems this transition should belong to the so-called bounded Kardar-Parisi-Zhang (BKPZ) universality class6. Recently, precise numerical calculations confirmed their predictions but only for CML with some continuous maps6. Surprisingly, the ST for discontinuous7, 8, or continuous but sufficiently steep9 maps was found to belong to the DP universality class. It would be desirable to understand the critical behaviour of the ST in CML and the present paper might be a step in this direction.

Let us briefly describe the setup which is used to study synchronization in CML4. In the simplest, one-dimensional case, one takes a single-chain CML of size L that is composed of L diffusively coupled local maps $f(u_i)$4. The maps are chaotic and act on continuous site variables u_i ($i = 1, \ldots, L$), that are typically bounded ($0 < u_i < 1$). Then, one couples such a spatio-temporally chaotic system with its identical copy, which initially has a different set of site variables. It turns out that the evolution of such a coupled system depends on the coupling strength. For weak coupling the two CML’s are desynchronized and essentially independent. However, for sufficiently strong coupling the system gets synchronized and approaches a state where corresponding pairs of site variables in both copies take the same values. To quantify synchronization one can introduce the synchronization error $w(i, t) = |u_1(i, t) - u_2(i, t)|$ where a lower index denotes a copy of CML, and its spatial average $w(t) = \frac{1}{L} \sum_{i=1}^{L} w(i, t)$. To relate this problem with BKPZ one argues that in the continuous limit and close to the synchronized state, the evolution equation for $w(i, t)$ is given as a Langevin equation with multiplicative Gaussian noise which then, using the Hopf-Cole transformation $h = -\ln(w)$, is transformed into BKPZ.

In the above representation the desynchronized phase in CML ($w(t) > 0$) corresponds to the interface pinned relatively close to the wall ($\langle h_i \rangle < \infty$). In the synchronized phase ($w(t) \to 0$) the interface depins and drifts away ($\langle h_i \rangle \to \infty$). Perfectly synchronized state ($\langle w(t) \rangle = 0$) is reached only after infinitely long time. The above analysis requires the differentiability of the local map and thus is not applicable to discontinuous maps. However, numerical results show that the relation with BKPZ breaks down also for continuous but sufficiently steep maps9. From a theoretical point of view it would be desirable to understand why such properties of the local map affect the nature of the ST and move into the DP universality class. Let us notice, that if the coupled CML system enters the synchronized state, it will remain in this state forever. Such a state can be thus considered as an absorbing state of the dynamics, although it cannot be reached in any finite time. Well-developed techniques are available to study phase transitions in models with absorbing states11.

It is clear that the problem of synchronization in extended systems is related with a number of very interesting problems in nonequilibrium statistical mechanics such as the KPZ model, nonequilibrium wetting12 or directed percolation. Recently, some arguments were given that a notoriously difficult particle system, the so-called PCPD model, might be also related with these models13. Deeper understanding of these problems and their mutual relations would be certainly desirable.

In the present paper we introduce an interfacial, discrete (SOS) model which is inspired by the dynamics of CML with discontinuous maps. The synchronization of CML is thus related with a depinning of interface from a...
binding wall. Numerical calculations show that the universality class of the depinning transition in our model depends on the choice of binding, which enters the dynamics through certain transition rates. For an exponentially decaying binding, the depinning belongs to the DP universality class. In this case the overall behaviour of the model is very similar to Sneppen’s model of interface propagation in a random environment that is driven by a certain extremal dynamics \[14\,12\]. For a power-law decaying binding the depinning transition is characterized by a different set of critical exponents. In the case of a rapid decay these exponents are very close to those obtained for the bosonic version of PCPD model \[10\]. In the case of a slow decay, in the entire unbound phase the interface remains critical, that in itself is an interesting property of a nonequilibrium system.

In our model discrete site variables \(h_i = 1, 2, \ldots\) are defined on a one-dimensional lattice of size \(L \ (i = 1, \ldots, L)\) with periodic boundary conditions \((h_{L+1} = h_1)\). In an elementary update we select randomly a site \(i\) and change the variable \(h_i\), and possibly neighbouring ones, according to the following rule: (i) with probability \(p(h_i)\) one sets \(h_i = h_{i+1} = h_{i-1} = 1\); (ii) with probability \(1 - p(h_i)\) the site variable \(h_i\) increases by unity \((h_i \rightarrow h_i + 1)\). During a unit of time \(L\) elementary updates are performed. To complete the definition we have to specify the function \(p(h)\). To allow a drift toward \(h = \infty\) the function \(p(h)\) must decay to zero for \(h \rightarrow \infty\). Numerical results that we present below are obtained for two cases: \(p(h) = e^{-\gamma h}\) (model I) and \(p(h) = a(h + 1)^{-\gamma}\) (model II), where \(\gamma > 0\) and \(a > 0\) are control parameters of the model.

To make a link with synchronization in CML’s the following remarks are in order. Numerical calculations for CML’s with discontinuous maps show that the Lyapunov exponent that governs the evolution of the synchronization error \(w(i, t)\) is negative in the vicinity of the transition \[10\].

Approximately, the evolution of \(w(i, t)\) is thus made of consecutive contractions \((w(i, t) \rightarrow cw(i, t)\) and \(c < 1\) that, due to discontinuity of the map, are from time to time interrupted by discontinuous changes that might substantially increase the value of \(w(i, t)\). To notice a link between the dynamics of synchronization error in CML and our model we introduce new variables \(w_i = e^{-h_i}\) (let us notice a similarity to the inverse Hopf-Cole transformation). Indeed, the increase of \(h_i\) by unity according to the rule (ii) decreases \(w_i\) by a factor \(e^{-\eta}\) that corresponds to the contraction of \(w(i, t)\). The first rule mimics the discontinuous jumps of \(w(i, t)\). Since local maps in CML’s are coupled, a jump at a site \(i\) also affects its neighbours.

Monte Carlo simulations of our model are similar to those of other models with absorbing states \[10\]. For some details related to the fact that the model needs an infinite time to reach an absorbing state see e.g. \[10\]. We observed that for sufficiently large \(\gamma\) the interface depins from the \(h = 1\) wall and drifts away. For smaller \(\gamma\) the model remains in the active phase with the interface relatively close to the wall. To examine the nature of the phase transition we introduced \(w(t) = \langle \frac{1}{L} \sum_{i=1}^{L} w(i, t) \rangle\) that in the steady state is denoted as \(w\) (in the following we refer to this quantity as activity). Of course in the absorbing phase \(w = 0\) and in the active phase \(w > 0\).

Upon approaching the critical point \(w\) typically exhibits a power-law decay \(w \sim (\gamma - \gamma_c)^{-\beta}\), with a characteristic exponent \(\beta\) and for the critical point located at \(\gamma = \gamma_c\). Moreover, we studied the time dependence of \(w(t)\). One expects that at criticality this quantity has a power law decay \(w(t) \sim t^{-\Theta}\), where \(\Theta\) is another characteristic exponent. We also used the so-called spreading technique \[17\]. First, we set \(h_i = \infty\) for every but one site \((i_0)\) that was set to unity. Then we monitored the subsequent evolution of the model (actually, of interest are only sites with positive \(w(i, t)\) i.e., with finite \(h_i\)) measuring the average activity of the system \(w(t)\), the survival probability \(P(t)\), and the averaged spread square \(R^2(t) = \frac{1}{w(t)} \sum_i w(i, t)(i - i_0)^2\). One expects that at criticality: \(w(t) \sim t^\eta, P(t) \sim t^{-\delta},\) and \(R^2(t) \sim t^z\), that at the same time defines the critical exponents \(\eta, \delta,\) and \(z\).

First, let us describe the results obtained for model I \((p(h) = e^{-\gamma h})\). From the steady state measurements of \(w\) (Fig. 1) we estimate \(\gamma_c = 0.791(1)\), and \(\beta = 0.28(1)\). Such a location of the critical point is confirmed from time-dependent simulations (Fig. 2a) and the spreading method (Fig. 2b). From these data we estimate \(\Theta = 0.160(2), \eta = 0.317(5), \delta = 0.16(1),\) and \(z = 1.26(1)\). The results for \(P(t)\) and \(R^2(t)\) are not presented. Obtained values of critical exponents clearly show that model I belongs to the DP universality class for which \[11\]: \(\beta = 0.2765, \eta = 0.3137, \Theta = 0.1595\) and \(z = 1.265\).

To have a more complete insight into the critical behaviour of our model we calculate the average interfacial width \(W(t) = \langle (\sum_{i=1}^{L} (h(i, t) - (h(i, t)))^2 \rangle^{1/2}\). At criticality this quantity typically behaves as \(W(t) \sim t^{\beta}\) where

![FIG. 1: The steady state activity \(w\) as a function of \(\gamma\) for model I. The inset shows the logarithmic scaling of \(w\) at criticality. The slope of the dotted line corresponds to the DP value \(\beta = 0.2765\).](image-url)
The time-dependent activity $w(t)$ calculated using the spreading method for (from top) $\gamma = 0.787, 0.790, 0.791$ (critical point), 0.792, and 0.794 (Model I). The results are averaged over 100 independent runs and simulations were done for $L = 5 \cdot 10^4$.

The time-dependent activity $w(t)$ as a function of time t calculated using the spreading method for (from top) $\gamma = 0.787, 0.789, 0.791$ (critical point), 0.793, and 0.795 (Model I). The results are averaged over 10^5 independent runs. The slope of the dotted line corresponds to the DP value $\eta = 0.3137$.

β' is the growth exponent. For Model I simulations show almost linear increase of $W(t)$ with time (inset in Fig. 3) and we estimate $\beta' = 1.0(1)$. Such a value of the growth exponent indicates very strong fluctuations, which is confirmed through a visual inspection of the interface profile (Fig. 3). In principle, from direct calculations for CML’s we can obtain an interface profile as a logarithm of the interface width $W(t)$ grows linearly in time.

Using the same procedure we studied the model II ($P(h) = a(h + 1)^{-\gamma}$). First we kept $a = 1$ fixed and varied only the parameter γ. Some of our numerical results are shown in Fig. 4, Fig. 5. Using these data we estimate: $\gamma_c = 1.74(5), \beta = 0.36(1), \Theta = 0.185(3), \eta = -0.03(1), \delta = 0.445(5)$, and $z = 1.19(1)$. All exponents considerably differ from DP exponents. To support these estimations, let us notice that the hyperscaling relation $\gamma + \Theta + \delta + 2\gamma = \Theta + \delta + \eta$ is satisfied by the above values. It is rather surprising for us to observe that our values of exponents β, Θ and z are in a very good agreement with recent estimation for the so-called bosonic version of a Pair Contact Process with Diffusion (PCPD) [10]. It would be interesting to examine whether this is only a numerical coincidence or there is a deeper relation between these two problems.

We also studied model II for fixed γ and varying the amplitude a. Monte Carlo simulations show that for $\gamma = 2$ the critical behaviour of the model seems to be
Inset shows the logarithmic scaling of the steady-state activity γ and 0.04 (Model II, $a = 1$). The results are averaged over 100 independent runs and simulations were done for $L = 5 \cdot 10^5$. (b) The time-dependent activity $w(t)$ as a function of time t calculated using the spreading method for (from top) $\gamma = 1.748, 1.749, 1.7492, 1.74925$ (critical point), 1.7493, 1.7494, 1.7496 and 1.75 (Model II, $a = 1$). The results are averaged over 10^5 independent runs.

One of the future problems would be to check whether there are some other types of critical behaviour for this kind of SOS models. Clearly, an important ingredient that determines the critical behaviour is the form of the function $p(h)$. It would be interesting to explore some other functions (e.g., $e^{-\gamma h^2}$ or $[\ln(h)]^{-\gamma}$) for a possibly new behaviour. Although we were not able to recover the BKPZ universality class within our approach, there is still a possibility that for a certain choice of $p(h)$ such a behaviour might appear. It would be also interesting to check whether a new critical behaviour found in model II has a counterpart in a synchronization transition in CML.

This work was partially supported by the Swiss National Science Foundation and the project OFES 00-0578 "COSYC OF SENS".

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, it Synchronization - A universal concept in nonlinear sciences (Cambridge University Press 2001), H. Fujisaka and T. Yamada, Progr. Theor. Phys. 69, 32 (1983).

[2] A. S. Pikovsky, Z. Phys. B 55, 149 (1984).

[3] S. Boccaletti, J. Kurths, G. Osipov, D.I. Vallades, and C.S. Zhou, Phys. Rep. 366 1 (2002).

[4] P. Grassberger, Phys. Rev. E 59, R2520 (1999).

[5] Theory and Applications of Coupled Map Lattices, edited by K. Kaneko (John Wiley & Sons, Chichester, 1993)

[6] A. S. Pikovsky and J. Kurths, Phys. Rev. E 49, 898 (1994).

[7] Y. Tu, G. Grinstein, and M. A. Muñoz, Phys. Rev. Lett. 78, 274 (1997). M. A. Muñoz and T. Hwa, Europhys. Lett. 41, 147 (1998).

[8] V. Ahlers and A. S. Pikovsky, Phys. Rev. Lett. 88, 254101 (2002).

[9] L. Baroni, R. Livi and A. Torcini, Phys. Rev. E 63, 036226 (2001).

[10] M. Droz and A. Lipowski, Phys. Rev. E 67, 056204 (2003).

[11] P. Marcq, H. Chaté, and P. Manneville, Phys. Rev. Lett. 77, 4003 (1996). D. A. Egolf, Science 287, 101 (2000).

[12] H. Hinrichsen, Adv. Phys. 49, 815 (2000). J. Marro and R. Dickman, Nonequilibrium phase transitions in lat-

FIG. 6: The time-dependent activity $w(t)$ as a function of time t for (from top) $a = 0.11, 0.09, 0.07$ (critical point), 0.05, and 0.04 (Model II, $\gamma = 1$). The results are averaged over 200 independent runs and simulations were done for $L = 5 \cdot 10^5$. Inset shows the logarithmic scaling of the steady-state activity w as a function of $a - a_c$, with $a_c = 0.07$ calculated for $L = 2 \cdot 10^5 (+)$ and $L = 5 \cdot 10^5 (\times)$ (Model II, $\gamma = 1$).
[12] M. A. Muñoz and R. Pastor-Satorras, Phys. Rev. Lett. 90, 204101 (2003).
[13] H. Hinrichsen, e-print: cond-mat/0302381.
[14] K. Sneppen, Phys. Rev. Lett. 69, 3539 (1992).
[15] Z. Olami, I. Procaccia, and R. Zeitak, Phys. Rev. E 49, 1232 (1994).

[16] H. Chaté and J. Kockelkoren, Phys. Rev. Lett. 90, 125701 (2003).
[17] P. Grassberger and A. de la Torre, Ann. Phys. (N. Y.) 122, 373 (1979).
[18] U. Alon, M. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. Lett. 76, 2746 (1996).