The Epidemiology of Adult Tracheostomy in the United States 2002–2017: A Serial Cross-Sectional Study

OBJECTIVES: Describe the longitudinal national epidemiology of tracheostomies performed in acute care hospitals and describe the annual rate of tracheostomy performed for patients with respiratory failure with invasive mechanical ventilation.

DESIGN: Serial cross-sectional study.

SETTING: The 2002–2014 and 2016–2017 Healthcare Utilization Project’s National Inpatient Sample datasets.

PATIENTS: Discharges greater than or equal to 18 years old, excluding those with head and neck cancer or transferred from another hospital. We used diagnostic and procedure codes from the International Classification of Diseases, 9th and 10th revisions to define cases of respiratory failure, invasive mechanical ventilation, and tracheostomy.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: There were an estimated 80,612 tracheostomies performed in 2002, a peak of 89,545 tracheostomies in 2008, and a nadir of 58,840 tracheostomies in 2017. The annual occurrence rate was 37.5 (95% CI, 34.7–40.4) tracheostomies per 100,000 U.S. adults in 2002, with a peak of 39.7 (95% CI, 36.5–42.9) in 2003, and with a nadir of 28.4 (95% CI, 27.2–29.6) in 2017. Specifically, among the subgroup of hospital discharges with respiratory failure with invasive mechanical ventilation, an annual average of 9.6% received tracheostomy in the hospital. This changed over the study period from 10.4% in 2002, with a peak of 10.9% in 2004, and with a nadir of 7.4% in 2017. Among respiratory failure with invasive mechanical ventilation discharges with tracheostomy, the annual proportion of patients 50–59 and 60–69 years old increased, whereas patients from 70 to 79 and greater than or equal to 80 years old decreased. The mean hospital length of stay decreased, and in-hospital mortality decreased, whereas discharge to intermediate care facilities increased.

CONCLUSIONS: Over the study period, there were decreases in the annual total case volume and adult occurrence rate of tracheostomy as well as decreases in the rate of tracheostomy among the subgroup with respiratory failure with invasive mechanical ventilation. There is some evidence of changing patterns of patient selection for in-hospital tracheostomy among those with respiratory failure with invasive mechanical ventilation with decreasing proportions of patients with advanced age.

KEY WORDS: epidemiology; health services research; respiratory failure; tracheostomy

Respiratory failure (RF) with invasive mechanical ventilation (IMV) is one of the most common diagnoses in adults admitted to the ICU, with over 90% of these patients requiring ICU services (1). Patients with RF who require prolonged IMV with an endotracheal tube may be offered tracheostomy to alleviate some of the discomfort and potential complications from prolonged endotracheal tube use such as ventilator-associated pneumonia, decreased
mobility, prolonged sedation, pressure ulcers, direct damage to oropharyngeal structures, delirium, and muscle weakness (2). Tracheostomy has become one of the most common procedures done for ICU patients with prolonged RF and IMV (3). One study done by Mehta et al (4) showed that age-adjusted rates of tracheostomy among all patients with MV increased from 16.7 to 34.3 cases per 100,000 adults from 1993 to 2012.

Given the significant morbidity and mortality of tracheostomy patients as well as their costs to health systems, understanding and ongoing surveillance of the epidemiology is essential for careful patient selection, resource allocation, and healthcare workforce planning. Data on the overall occurrence rate of tracheostomy vary widely depending on patient subgroup (5–8), and our first objective in this article is to describe the annual national case volume and adult occurrence rate of tracheostomy procedures in acute care hospitals in the United States. We then narrow our focus to describe the annual rate of tracheostomies and characteristics of the subgroup of patients hospitalized with a diagnosis of RF and a procedural code for IMV.

MATERIALS AND METHODS

Study Design and Database

This is a serial cross-sectional study using the 2002–2014 and 2016–2017 Healthcare Utilization Project's (HCUP) National Inpatient Sample (NIS). The NIS is a complex, stratified sample of administrative hospital discharge records from nonfederal, short-term hospitals from participating states and is the largest publicly available all-payer inpatient healthcare database in the United States, including more than 7 million hospital stays per year. There have been important changes in the annual sample over our study period: 1) the number of participating states increased from 35 to 48, including the District of Columbia; 2) in 2012, the sample no longer included long-term acute care (LTAC) hospitals; 3) in 2012, the sample design changed from a sample of all discharges from selected hospitals to a selected sample of discharges from all available hospitals; and 4) in 2015, diagnosis and procedure reporting changed from *International Classification of Diseases*, 9th revision, Clinical Modification (ICD-9-CM) coding to the *International Classification of Diseases*, 10th revision, Clinical Modification (ICD-10-CM). To facilitate national estimation in trend analyses across these years, the NIS constructed new sampling weights. Relevant to this study, these new HCUP trend weights set the weight of discharge records from LTACs to zero for the 2002–2011 years of this study. Therefore, although LTAC data are still included in the dataset 2002–2011, the discharges are not counted in our weighted analyses. The 2015 year was not included in this analysis, given that the *International Classification of Diseases* (ICD) coding changed during the year, preventing the use of standard methods for making annual estimates with either coding system for that year.

Study Populations and Main Measurements

From the NIS, we included all discharges with age greater than or equal to 18 years old and excluded those patients with a diagnosis of head and neck cancer or who were transferred from other hospitals. Head and neck cancer was identified using the HCUP’s Clinical Classification Software, one of the tools provided by HCUP that collapses ICD codes into smaller, manageable, clinically meaningful groups (9). In addition to HCUP-NIS, we used the annual U.S. Census Bureau data for our annual adult population denominators to calculate national, annual occurrence rate. Specifically, we used annual population estimates for those greater than or equal to 18 years old (10, 11).

There were three national, annual measurements we sought to estimate: 1) the total number of tracheostomies performed in U.S. acute care hospitals to estimate case volume for practitioners, 2) the occurrence rate of tracheostomies per 100,000 U.S. adults to estimate population burden, and 3) the proportion of those specifically with both RF and IMV (RF-IMV) that received a tracheostomy to estimate practice pattern in this clinical population. We used combinations of ICD diagnosis and procedure codes to capture these measurements. ICD-9-CM codes were used for years 2002–2014 and ICD-10-CM codes for years 2016–2017 (*Tables 1–3*, Supplemental Digital Content 1, http://links.lww.com/CCX/A762 for complete list codes used). First, we used a case definition that specifically captured discharges with just a procedure code for tracheostomy. We used this definition to calculate national, annual weighted case volume of tracheostomies. Second, we identified discharges with both a diagnosis code for RF and a procedure code for IMV. This served as the denominator to calculate the annual percentage of this population who received a tracheostomy. This also served to define the population with both RF-IMV...
and tracheostomy for further descriptive examination of population characteristics and outcomes. We used the combination of diagnosis and procedure code as it conceptually approached our study population of interest, and one published validation study provides evidence that the combination may optimize the balance between sensitivity and specificity over using either diagnosis or procedure codes alone (10).

Outcomes and Other Variables

Among the population with RF-IMV and tracheostomy, we examined the hospital outcomes of length of stay (LOS) and discharge disposition. NIS categorizes discharge disposition into seven categories: “routine,” “transfer to short-term hospital;” “transfer other: includes skilled nursing facility, intermediate care facility (ICF), another type of facility;” “home healthcare;” “against medical advice;” “died;” and “discharged alive, destination unknown,” the names of which we have abbreviated in our Results section (11). Other variables extracted to describe this population included demographic characteristics, hospital characteristics, chronic comorbidities, category of principle diagnosis, and mortality risk subclasses. For identifying chronic comorbidities in discharge records, HCUP provides software using the Elixhauser framework that uses ICD codes to identify 28 common chronic comorbidities (12). For the risk of mortality classification, HCUP provides software using the All Patient Refined Diagnosis Related Groups classification system that uses age, principle diagnosis, secondary diagnoses, and procedures to classify discharges into “minor,” “moderate,” “severe,” and “extreme” risk of mortality groups (13, 14). For describing discharges’ principle diagnosis, we first used HCUP’s Clinical Classifications Software to categorize the principle diagnosis ICD code into a shorter list of clinical categories. Since this still produces many principle diagnosis categories (285 for ICD-9 and 530 for ICD-10), we additionally recategorized these into six categories of principle diagnoses: respiratory, infection, cardiovascular, neurologic, neurotrauma, and trauma (Tables 4 and 5, Supplemental Digital Content 1, http://links.lww.com/CCX/A762 for our recategorization crosswalk).

Statistical Analysis

We used the SAS 9.4 (by SAS Institute, Cary, NC) survey family of procedures to account for the complex, multistage NIS sampling design and produce national estimates. We used the HCUP’s strata and cluster survey design variables along with HCUP’s trend weights that were especially designed to examine trends across multiple years in order to estimate annual counts of cases. We used the U.S. Census Bureau annual population estimates for persons greater than or equal to 18 years to determine tracheostomy rates per 100,000 U.S. adults (15, 16). We calculated weighted annual proportions for all categorical variables and means for continuous variables. We included weighted 95% CIs for all our estimates and defined statistical significance between annual measures as those with non-overlapping 95% CIs.

This work was performed with publicly available, deidentified data and therefore is not considered human subjects research or requires Institutional Review Board review.

RESULTS

Annual Case Volumes and Occurrence Rate of Tracheostomy

From 2002 to 2014 and 2016 to 2017, there was an estimated weighted total of 554,346,148 hospital discharges. After excluding those less than 18 years old \((n = 90,734,549)\) or with a diagnosis of head and neck cancer \((n = 1,859,049)\), there were a total estimated 1,241,428 tracheostomies over the study period with an average of 84,762 tracheostomies per year. Over the study period, there were 80,612 tracheostomies performed in 2002, a peak of 89,545 tracheostomies in 2008, and a nadir of 58,840 tracheostomies in 2017 (Fig. 1) (Table 6, Supplemental Digital Content 1, http://links.lww.com/CCX/A762). National estimates of the annual occurrence rate were 37.5 (95% CI, 34.7–40.4) tracheostomies per 100,000 U.S. adults in 2002, with a peak of 39.7 (95% CI, 36.5–42.9) per 100,000 U.S. adults in 2003, and with a nadir of 28.4 (95% CI, 27.2–29.6) per 100,000 U.S. adults in 2017 (Fig. 2).

Tracheostomy in RF-IMV

After our exclusions mentioned above, we identified an estimated 10,096,755 hospital discharges coded for RF-IMV. Of those with RF-IMV, an estimated 958,856 (9.4%) had an ICD code for tracheostomy with an annual average of 9.6%. This changed over the study period from 10.4% in 2002, with a peak of 10.9% in 2004,
and with a nadir of 7.4% in 2017 (Fig. 3) (Table 6, Supplemental Digital Content 1, http://links.lww.com/CCX/A762).

For readability, in this section, we compare select patient characteristics of discharges with both RF-IMV and tracheostomy between the 2 years 2002 and 2017 (Table 1). See Tables 7–10 (Supplemental Digital Content 1, http://links.lww.com/CCX/A762) for complete data on each study year. From 2002 to 2017, the proportion of female patients decreased, and there was a high proportion of patients with missing race/ethnicity (some years over 20%) that precludes informative reporting. Over the study period, the mean age of patients decreased, with an examination of age as a categorical variable revealing more specifically that the proportions of patients in the 18–29- and 50–69-year-old groups increased, the proportions in the 30–49-year-old groups remained stable, and the proportions in the greater than or equal to 70 age groups decreased. Throughout the study period, the most common expected primary payer was Medicare followed by private insurance and Medicaid. From 2002 to 2017, the proportion of patients with expected payer as Medicare decreased, the proportion of patients with Medicaid increased, and the proportions of patients with private insurance, on self-pay, no charge, and other payer remained unchanged.

The most common principle diagnosis category for discharges with RF-IMV and tracheostomy changed over the study period (Table 11, Supplemental Digital Content 1, http://links.lww.com/CCX/A762). In 2002, the most common principle diagnosis category was respiratory (26%), followed by infection (12%), cardiovascular (10%), neurologic (8%), neurotrauma (8%), and trauma (6%). In 2017, the most common principle diagnosis category was infection (25%), followed by respiratory (15%), neurologic (10%), neurotrauma (9%), trauma (9%), and cardiovascular (8%). Additionally, there were changes in patterns of comorbidities among RF-IMV patients who underwent tracheostomy between 2002 and 2017 (Table 2). The comorbidities that demonstrated a relative doubling of proportion among the annual RF-IMV with tracheostomy study populations were deficiency anemias, coagulopathy, depression, diabetes mellitus with complications, drug abuse, hypertension, hypothyroidism, liver disease, obesity, paralysis, peripheral vascular disease, and renal failure. The comorbidities that showed smaller relative increases in proportion were alcohol abuse, rheumatoid arthritis, fluid and electrolyte disorders, other neurologic disorders, psychoses, pulmonary circulation disorders, peptic ulcer disease, and weight loss. The
comorbidities that demonstrated no change include AIDS/HIV, congestive heart failure, pulmonary disease, lymphoma, metastatic cancer, and valvular disorder. The comorbidities that demonstrated a decrease in proportion among the annual study groups were blood loss anemia, diabetes mellitus without complications, and solid tumor without metastases. For mortality risk subclasses, the majority of RF-IMV patients with tracheostomy had a predicted “extreme likelihood of dying,” followed by “major likelihood of dying.” From 2002 to 2017, the proportion with “extreme likelihood of dying” increased, whereas the proportion with a “major,” “moderate,” and “minor” likelihood of dying decreased. In terms of outcomes, from 2002 to 2017, the mean LOS per patient decreased, hospital mortality decreased by half, and mean hospital charges more than doubled. Further examining discharge disposition, the proportion of patients with routine discharge home or transfer to short-term care decreased, and the proportion discharged to intermediate care facilities increased.

to 2017. The proportion of patients from small hospitals increased, whereas those from large hospitals decreased (Table 9, Supplemental Digital Content 1, http://links.lww.com/CCX/A762).

DISCUSSION

In this study, we report modern annual case volume and occurrence rate of adult tracheostomies performed in acute care hospitals from 2002 to 2017. Over the study period, the overall case volume and occurrence rate for tracheostomies in adults without head and neck cancer appear to increase from 2002 till around 2008 and then maintain an annual decrease from 2010 onward. In addition to examining total adult tracheostomy procedures, we additionally examined the rate of tracheostomies specifically in patient group with RF-IMV, demonstrating that the tracheostomy rate appears stable from 2002 to 2008 with annual decreases from 2008 onward. Given that tracheostomy and the subsequent ventilator weaning for these patients are highly
specialized and resource-intensive services, continued
descriptive knowledge of the epidemiology for tracheostomy for RF-IMV patients is critical for workforce
and healthcare resource planning.

The findings from this study must be interpreted
within the context of its strengths and limitations. Our
study has several strengths. We used the largest all-
payer hospitalization database available, which in turn
uses a complex national sampling design in order to
generate nationally representative estimates of tracheostomy occurrence rate and outcomes over a 15-year
period across two ICD classification systems. We used
the HCUP’s trend analysis design weights and appro-
priate statistical procedures to produce generalizable
national estimates available from this data. We used
an exhaustive list of ICD-9 and ICD-10 diagnosis and
procedure codes to capture an important patient pop-
ulation that we believe is relevant from clinical and
healthcare resource utilization perspectives.

As with any study, there are important limitations
to the data. These are administrative hospital data
and therefore subject to any potential inaccuracies
or biases in the utilization of ICD coding to identify
diagnoses and conditions. Furthermore, it does not
account for procedures performed in the outpa-
tient setting. Notably, for tracheostomies performed
in the ambulatory setting, providers use Common
Procedural Terminology coding which may lead
to an underestimation of the national tracheosto-
mies from this dataset. Additionally, there were
changes in the NIS over the study period described
in our Methods section that could influence results.
In 2012, the NIS sample no longer included LTAC
hospitals. However, our

Within the context of these strengths and limitations,
we believe that these data represent an important piece
of the puzzle of the epidemiology of tracheostomy in

![Figure 3. Annual rate of tracheostomy among U.S. adults hospitalized with respiratory failure
with invasive mechanical ventilation. Figure includes annual point estimates with shaded area
representing 95% CIs of the estimates. We excluded patients with head and neck cancer. Over the
study period: 1) the number of participating states in sample increased from 35 to 48, including the
District of Columbia; 2) in 2012, there was a change in sample design; and 3) in 2015, diagnosis
and procedure reporting changed from International Classification of Diseases (ICD), 9th revision,
Clinical Modification coding to the ICD, 10th revision, Clinical Modification (8). The 2015 year was
not included, given that the ICD coding changed during the year, preventing the use of standard
methods for making annual estimates with either coding system for that year. Annual U.S. Census
Bureau annual population estimates for those greater than or equal to 18 yr old comprise the
denominators in the calculation of annual occurrence rates (10, 11).](image-url)
Characteristic	2002 Estimate (95% CI)	2006 Estimate (95% CI)	2010 Estimate (95% CI)	2014 Estimate (95% CI)	2017 Estimate (95% CI)
Age, yr					
Mean	63.8 (63.0–64.6)	62.2 (61.5–63.0)	60.1 (59.5–60.8)	60.3 (59.8–60.7)	59.6 (59.2–60.1)
Categories					
18–29	4.5 (3.8–5.2)	5.3 (4.7–6.1)	6.5 (5.8–7.3)	6.4 (5.9–7.0)	6.8 (6.2–7.3)
30–39	6.0 (5.3–6.7)	5.0 (4.4–5.5)	6.5 (6.0–7.0)	6.0 (5.6–6.5)	6.9 (6.4–7.4)
40–49	10.2 (9.5–10.8)	11.5 (10.7–12.3)	11.9 (11.2–12.7)	10.3 (9.8–10.9)	10.1 (9.6–10.7)
50–59	14.8 (14.0–15.6)	18.1 (17.3–18.9)	20.1 (19.4–20.8)	20.8 (20.1–21.5)	21.0 (20.2–21.7)
60–69	20.0 (19.1–20.9)	21.5 (20.8–22.3)	22.3 (21.5–23.0)	24.9 (24.1–25.8)	24.8 (24.0–25.6)
70–79	26.8 (25.5–28.1)	23.2 (22.2–24.2)	20.2 (19.2–21.1)	20.0 (19.2–20.8)	20.8 (19.92–1.6)
≥ 80	17.8 (16.6–19.0)	15.4 (14.2–16.6)	12.6 (11.7–13.4)	11.4 (10.7–12.1)	9.6 (9.01–0.3)
Female, %	46.7 (45.4–48.0)	45.5 (44.3–46.7)	43.5 (42.3–44.6)	43.4 (42.4–44.3)	41.3 (40.4–42.3)
Payer					
Medicare	57.5 (55.4–59.7)	54.8 (52.7–56.8)	48.9 (46.9–50.8)	51.4 (50.2–52.6)	49.8 (48.6–51.0)
Medicaid	12.3 (11.2–13.4)	14.3 (13.0–15.7)	17.9 (16.3–19.4)	18.5 (17.6–19.4)	20.4 (19.4–21.3)
Private including HMO	23.9 (22.3–25.5)	22.9 (21.4–24.3)	24.1 (22.7–25.5)	22.5 (21.6–23.4)	22.6 (21.7–23.6)
Self-pay	2.9 (2.2–3.6)	3.8 (3.1–4.4)	4.8 (3.6–5.9)	3.9 (3.4–4.4)	3.6 (3.1–4.1)
No charge	0.3 (0.1–0.6)	0.5 (0.2–0.7)	0.5 (0.2–0.9)	0.3 (0.2–0.5)	0.2 (0.1–0.4)
Other	2.8 (2.2–3.4)	3.8 (3.0–4.5)	3.6 (2.9–4.4)	3.3 (2.9–3.7)	3.2 (2.8–3.6)

In interpreting the trends in our data, in general, the hypothetical reason for any changes in estimates over time may be due to changes in ICD coding utilization, changes in location of tracheostomy procedures outside of the hospital setting, changes in the underlying sample frame of the data, changes in the occurrence rates of acute conditions that precede tracheostomy, changes in the utilization of tracheostomy, or some combination of these factors. We offer our speculations on each of these components but encourage future research to
TABLE 2.
Clinical Characteristics of Patients With Respiratory Failure With Invasive Mechanical Ventilation and Tracheostomy

Characteristic	2002 Estimate (95% CI)	2006 Estimate (95% CI)	2010 Estimate (95% CI)	2014 Estimate (95% CI)	2017 Estimate (95% CI)
Elixhauser comorbidity					
HIV/AIDS	0.4 (0.2–0.5)	0.6 (0.4–0.7)	0.6 (0.3–0.9)	0.4 (0.3–0.5)	0.6 (0.5–0.8)
Alcohol abuse	6.3 (5.6–7)	7.8 (7.1–8.5)	8.5 (7.7–9.3)	9.7 (9.1–10.2)	9.1 (8.6–9.7)
Deficiency anemias	13.7 (11.9–15.5)	18.1 (16–20.1)	26.2 (24.1–28.4)	29.1	28.1
Rheumatoid arthritis	1.4 (1.1–1.6)	1.7 (1.5–2)	2.3 (2–2.6)	2.5 (2.2–2.8)	2.6 (2.3–2.8)
Blood loss anemia	2.9 (2.4–3.4)	3.1 (2.5–3.6)	1.8 (1.4–2.1)	1.5 (1.3–1.7)	1.3 (1.1–1.5)
Congestive heart failure	28.7 (26.8–30.7)	31.4	24	27.8	30.6
Pulmonary disease	32.2 (30.2–34.2)	32.8	25.7	28.3	29.5
Coagulopathy	11 (9.9–12)	14.7	17.8	20.9	22.5
Depression	2.9 (2.5–3.3)	4.5 (3.9–5.2)	6.5 (5.8–7.1)	8.7 (8.1–9.3)	9.8
Diabetes without complications	13.4 (12.2–14.7)	16.7 (15.4–18)	19.5	22.6	9.2 (8.6–9.7)
Diabetes with complications	4 (3.5–4.6)	4.6 (4–5.2)	4.9	6.4	20.8
Drug abuse	2.3 (1.9–2.7)	3.7 (3.3–4.2)	3.8 (3.3–4.3)	5.6 (5.1–6)	5.8 (5.3–6.2)
Hypertension	20.3 (18.4–22.2)	38.1	44.8	55.4	58.8
Hypothyroidism	3.8 (3.3–4.4)	5.3 (4.7–6)	7.3 (6.6–8)	9.4 (8.8–9.9)	8.8 (8.2–9.3)
Liver disease	2.7 (2.3–3)	3.5 (3.2–3.8)	4.3 (3.7–4.8)	5.1 (4.7–5.5)	6.1 (5.7–6.6)
Lymphoma	0.8 (0.6–1)	0.9 (0.7–1)	1.1 (0.9–1.2)	1 (0.9–1.2)	1 (0.8–1.2)
Fluid and electrolyte disorders	43.1 (40.4–45.9)	52.1	62.4	73.7	74.8
Metastatic cancer	3 (2.6–3.4)	3 (2.7–3.4)	3.2 (2.7–3.7)	2.7 (2.4–3)	2.9 (2.6–3.2)
Other neurologic disorders	20.9 (19.4–22.4)	16.8	18.2	21.8	25
Obesity	4.5 (3.9–5.1)	7 (6.2–7.8)	12.5	20.7	21.5
Paralysis	6.7 (5.9–7.5)	7.5 (6.8–8.2)	13.6 (12.7–14.5)	15.3	20.3
Peripheral vascular disease	3.3 (2.7–3.8)	4 (3.5–4.5)	6.7 (6.1–7.3)	8.7 (8.2–9.3)	8.6 (8.1–9.1)
Psychoses	2.7 (2.3–3.1)	3.5 (3.1–4)	5 (4.6–5.4)	6.4 (6–6.8)	4.7 (4.3–5.1)
Pulmonary circulation disorders	3.3 (2.7–4)	3.5 (2.9–4)	9.3 (8.5–10)	10.9 (10.4–11.5)	5.2 (4.8–5.6)
Renal failure	9.8 (8.8–10.8)	17.5	16.6	20.1	21.2

Continued
better understand the patterns documented here. First, we note that, unfortunately, the dataset is not able to assess the accuracy of or changes in coding practices, and this remains an important unknown factor in our results. In regard to changes in the underlying occurrence rate of RF-IMV, our previously published work in these data has demonstrated the annual occurrence rates of RF-IMV over the same study period (17). Briefly, among U.S. adults from 2002 to 2017, the occurrence rate of discharges with RF diagnoses increased nearly two-fold, occurrence rate of discharges with procedural codes for IMV remained stable, and discharges with RF and any mechanical ventilation (including non-IMV) increased 83% (17). Although that work did not specifically describe the RF-IMV population of this study, it seems reasonable to infer that the underlying patient RF-IMV population for potential tracheostomy is stable to growing. Although speculative, such growth could potentially drive the reduced proportions of RF-IMV patients receiving tracheostomy that we observe in this study if there is not proportional growth in the procedural workforce or LTAC capacity for these patients.

TABLE 2. (Continued).
Clinical Characteristics of Patients With Respiratory Failure With Invasive Mechanical Ventilation and Tracheostomy

Characteristic	2002 Estimate (95% CI)	2006 Estimate (95% CI)	2010 Estimate (95% CI)	2014 Estimate (95% CI)	2017 Estimate (95% CI)
Solid tumor without metastasis	4.3 (3.8–4.8)	2.1 (1.7–2.2)	2.3 (2–2.5)	2.1 (1.8–2.3)	2.7 (2.4–3)
Peptic ulcer disease	1.2 (0.9–1.5)	0.1 (0.1–0.2)	0.1 (0–0.1)	0.1 (0–0.1)	3.1 (2.8–3.5)
Valvular disease	6.9 (6–7.7)	7.7 (6.8–8.6)	5 (4.4–5.6)	6.8 (6.2–7.3)	6.3 (5.8–6.8)
Weight loss	19.3 (16.7–21.9)	21.3 (19.2–23.4)	35.5 (32.2–38.7)	37.7 (36.3–39.2)	33.3 (31.9–34.7)
Elixhauser mortality score, mean	13.7 (13–14.4)	14.4 (13.8–15)	16.4 (15.7–17.1)	18.3 (17.9–18.6)	18.2 (17.9–18.6)
Risk of mortality, %					
Minor	3.3 (2.8–3.8)	2.8 (2.3–3.2)	1.5 (1.3–1.8)	1.2 (1–1.5)	0.8 (0.7–1)
Moderate	12.1 (11.1–13)	10.8 (9.8–11.8)	7 (6.3–7.7)	4.6 (4.1–5)	3.9 (3.5–4.3)
Major	37.3 (35.6–39)	34.7 (33.6–35.8)	28.5 (27.4–29.6)	275 (26.5–28.4)	24.3 (23.4–25.2)
Extreme	42.2 (39.8–44.6)	51.7 (49.8–53.6)	63 (61.3–64.6)	66.7 (65.6–67.9)	71 (69.9–72)
Discharge location					
Routine	8.2 (6.9–9.5)	7.5 (5.9–9)	8.2 (6.2–10.2)	6.3 (5.7–6.8)	6.1 (5.5–6.7)
Transfer to short-term	7 (6–8)	5.8 (4.8–6.9)	6.3 (5.1–7.6)	6 (5.3–6.8)	4.9 (4.4–5.4)
Transfer to intermediate	52.6 (50.7–54.6)	59.1 (56.8–61.2)	62.7 (60–65.4)	67.4 (66.3–68.5)	70.2 (69.1–71.3)
Home healthcare	5 (4.3–5.8)	5.4 (4.8–5.9)	5.9 (5–6.8)	5.5 (5–5.9)	5.7 (5.2–6.2)
Against medical advice	0.1 (0.1–0.2)	0.1 (0.1–0.2)	0.1 (0.1–0.2)	0.2 (0.1–0.3)	0.3 (0.2–0.4)
Died in hospital	25.7 (24.4–27)	21.9 (20.7–23.1)	16 (15–17)	14.4 (13.8–15.1)	12.7 (12–13.4)
Length of stay, mean days	39.4 (38–40.7)	36.7 (35.5–37.9)	34.9 (33.2–36.6)	33 (32.3–33.8)	32.8 (32.1–33.5)
Total charges, mean dollars	233,949	275,808	360,747	470,727	566,857
	(221,692.3–246,204.9)	(262,928.3–288,688.5)	(337,423.2–384,070.9)	(454,006.2–487,447.3)	(543,750.2–589,964.8)
Regarding changing patient selection over time, it is difficult to unpack this scenario in the present analysis. Although decreasing annual proportions of advanced age groups and changing proportions of various comorbidities among RF-IMV tracheostomy discharges seem to suggest evolving selection, in the context of our prior analysis, these changes actually seem to reflect changes in the underlying RF-IMV population in general (17). Finally, another potential factor playing a role in the decreases in tracheostomies among RF-IMV discharges is greater collaboration with palliative care physicians and earlier initiation of goals of care discussion that preclude decisions to perform tracheostomy in this population (18, 19).

In regard to the reported outcomes of RF-IMV patients with tracheostomy, it is not possible in this dataset to elucidate the reasons for the declining mean LOS and hospital mortality demonstrated in the data. In general, some potential reasons for such a finding include changes in selection of RF patients for IMV, changes in selection of RF-IMV patients for tracheostomy, improvements in general critical care management, changes of the underlying discharge sample, changes in where patients eventually expire outside of hospital encounter, or some combination of any of these factors. Of note, average LOS from LTACs is greater than 30 days, and discharges to these long-term facilities have likely shortened the LOS of our population in acute care hospitals (20). Although lower LOS could be due to better implementation of multidisciplinary teams that facilitate efficient discharge out of the hospital (21, 22), it is worth mentioning that despite decreasing hospital LOS, these patients may possibly be staying longer in other facilities. The decreased in-hospital mortality among RF-IMV patients with tracheostomy follows the same rationale—either we are truly improving patient outcomes given the improving care in RF-IMV patients (23–25) or there is increased selection of patients appropriate for IMV and tracheostomy and those who receive these therapies may be increasingly dying outside of the hospital. Of note, the NIS discharge disposition category of “transfer to ICF” includes LTACs and Hospice. Within this context, it is worth observing that although hospital mortality for this study decreased from 25.7% to 12.7% (absolute difference of 13.0%), the proportion of patients discharged to an “ICF” rose from 52.6% to 70.2% (absolute difference of 17.6%).

CONCLUSIONS

Although there are challenges to the study of the epidemiology of tracheostomy, given that this is a highly specialized procedure and these patients subsequently have very specialized healthcare resource needs in LTACs, it is paramount to continue to strive toward a comprehensive understanding of the annual case volumes and patient characteristics of this population. Better understanding of outcomes of these patients after discharge can help us identify what their resource needs are in the community, recognize if any subgroup requires specialized needs, and promote better collaboration between inpatient and outpatient healthcare teams to allow smoother transition of tracheostomy patient care after hospital discharge.

REFERENCES

1. Barrett ML, Smith MW, Elixhauser A, et al: Utilization of intensive care services, 2011: Statistical brief #185. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville, MD, Agency for Healthcare Research and Quality (US); 2014
2. Loss SH, de Oliveira RP, Maccari JG, et al: The reality of patients requiring prolonged mechanical ventilation: A multicenter study. Rev Bras Ter Intensiva 2015; 27:26–35
3. Cheung NH, Napolitano LM: Tracheostomy: Epidemiology, indications, timing, technique, and outcomes. Respir Care 2014; 59:895–915
4. Mehta AB, Syeda SN, Bajpayee L, et al: Trends in tracheostomy for mechanically ventilated patients in the United States, 1993-2012. Am J Respir Crit Care Med 2015; 192:446–454
5. Chatterjee A, Chen M, Gialdini G, et al: Trends in tracheostomy after stroke: Analysis of the 1994 to 2013 National Inpatient Sample. Neurohospitalist 2018; 8:171–176
6. Leiser Y, Barak M, Ghantous Y, et al: Indications for elective tracheostomy in reconstructive surgery in patients with oral cancer. *J Craniofac Surg* 2017; 28:e18–e22

7. Mehta AB, Syeda SN, Wiener RS, et al: Epidemiological trends in invasive mechanical ventilation in the United States: A population-based study. *J Crit Care* 2015; 30:1217–1221

8. Nathens AB, Rivara FP, Mack CD, et al: Variations in rates of tracheostomy in the critically ill trauma patient. *Crit Care Med* 2006; 34:2919–2924

9. Elixhauser A, Steiner C, Palmer L: Clinical Classifications Software (CCS). 2015. Available: http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp. Accessed October 29, 2019

10. Kerlin MP, Weissman GE, Wonneberger KA, et al: Validation of administrative definitions of invasive mechanical ventilation across 30 intensive care units. *Am J Respir Crit Care Med* 2016; 194:1548–1552

11. Healthcare Cost and Utilization Project (HCUP): HCUP NIS Description of Data Elements. 2020. Available at: https://www.hcup-us.ahrq.gov/db/vars/dispuniform/nisnote.jsp. Accessed March 12, 2021

12. Elixhauser A, Steiner C, Harris DR, et al: Comorbidity measures for use with administrative data. *Med Care* 1998; 36:8–27

13. Healthcare Cost and Utilization Project: Overview of Disease Severity Measures Disseminated With the Nationwide Inpatient Sample (NIS) and Kids’ Inpatient Database (KID). 2005. Available at: https://www.hcup-us.ahrq.gov/db/nation/nis/OverviewofSeveritySystems.pdf. Accessed January 16, 2020

14. De Marco MF, Lorenzoni L, Addari P, et al: [Evaluation of the capacity of the APR-DRG classification system to predict hospital mortality]. *Epidemiol Prev* 2002; 26:183–190

15. US Census Bureau: Intercensal Estimates of the Resident Population by Sex and Age for the United States: April 1, 2000 to July 1, 2010. 2016. Available at: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed January 7, 2020

16. US Census Bureau: Annual Estimates of the Resident Population for Selected Age Groups by Sex for the United States, States, Counties, and Puerto Rico Commonwealth and Municipal: April 1, 2010 to July 1, 2014. 2016. Available at: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed January 7, 2020

17. Kempe JA, Abril MK, Chen Y, et al: The epidemiology of respiratory failure in the United States 2002-2017: A serial cross-sectional study. *Crit Care Explor* 2020; 2:e0128

18. Bhulani N, Gupta A, Gao A, et al: Palliative care and end-of-life health care utilization in elderly patients with pancreatic cancer. *J Gastrointest Oncol* 2018; 9:495–502

19. Hwang J, Shen J, Kim SJ, et al: Ten-year trends of utilization of palliative care services and life-sustaining treatments and hospital costs associated with patients with terminal lung cancer in the United States from 2005 to 2014. *Am J Hosp Palliat Care* 2019; 36:1105–1113

20. Votto JJ, Scalise PJ, Barton RW, et al: An analysis of clinical outcomes and costs of a long term acute care hospital. *J Med Econ* 2011; 14:141–146

21. Bonvento B, Wallace S, Lynch J, et al: Role of the multidisciplinary team in the care of the tracheostomy patient. *J Multidiscip Healthc* 2017; 10:391–398

22. de Mestral C, Iqbal S, Fong N, et al: Impact of a specialized multidisciplinary tracheostomy team on tracheostomy care in critically ill patients. *Can J Surg* 2011; 54:167–172

23. Brower RG, Matthay MA, Morris A, et al: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. *N Engl J Med* 2000; 342:1301–1308

24. Papazian L, Forel JM, Gacouin A, et al: ACURASYS Study Investigators: Neuromuscular blockers in early acute respiratory distress syndrome. *N Engl J Med* 2010; 363:1107–1116

25. Trikha A, Singh PM: The PROSEVA trial: Is it time to flip over the ARDS patient? *Natl Med J India* 2013; 26:284–285