Stimulating Lifestyle is associated with Maintenance of White Matter Integrity with Age

Gabriel Ducharme-Laliberté
Centre de recherche de l'Institut universitaire de gériatrie de Montréal;

Samira Mellah
Centre de recherche de l'Institut universitaire de gériatrie de Montréal

Sylvie Belleville (✉️ sylvie.belleville@umontreal.ca)
Centre de recherche de l'Institut universitaire de gériatrie de Montréal https://orcid.org/0000-0002-1046-1818

Research Article

Keywords: Resilience, Brain maintenance, Working memory, Aging, Magnetic resonance imaging (MRI)

DOI: https://doi.org/10.21203/rs.3.rs-310196/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Brain maintenance refers to the fact that some older adults experience few age-related changes in the brain, which helps maintain their cognition.

Objectives. The goals of this study are to assess maintenance of white matter integrity, test whether lifestyle factors affect the maintenance of white matter integrity, and measure whether maintenance of white matter integrity explains inter-individual differences in working memory (WM).

Methods. Forty-one cognitively healthy older adults received a structural magnetic resonance imaging (MRI) examination to measure white matter lesions. They completed an n-back WM task with different loads (1- & 2-back), along with a questionnaire on their lifestyle.

Results. There was a positive association between age and volume of white matter lesions. This association was no longer found in those with higher lifestyle scores. In addition, smaller volumes of white matter lesions were associated with better performance than expected for age in the 1-back WM task.

Discussion. Better WM in older adults is associated with maintenance of white matter integrity, which in turn is linked to a more stimulating lifestyle throughout life.

Introduction

Brain maintenance refers to the preservation of structural, neurochemical or functional integrity and the absence of age-related brain pathology with age (Cabeza et al., 2018; Nyberg, Lovden, Riklund, Lindenberger, & Backman, 2012; Stern et al., 2018). White matter lesions (WML) are among the most frequent neuropathological changes observed in older adults (Brickman et al., 2008; Launer, 2004; Raz, Rodrigue, & Acker, 2003; Sachdev, Wen, Chen, & Brodaty, 2007). WML are more common in the frontal (Grajauskas et al., 2019) and parietal (Kennedy & Raz, 2015) lobes, two regions that are critical for WM.

A large number of studies have shown that the accumulation of WML explains the effects of age on working memory (WM) and executive functions in older adults (Oosterman et al., 2008; Raz, Rodrigue, Kennedy, & Acker, 2007; Vannorsdall, Waldstein, Kraut, Pearlson, & Schretlen, 2009). While WM performance is known to decline with age (Reuter-Lorenz & Park, 2010; Sylvain-Roy, Lungu, & Belleville, 2015), older adults experience a higher level of interindividual WM variability compared to younger people (Sylvain-Roy & Belleville, 2015). This increased interindividual WM variability may be explained by differences in maintenance of white matter integrity.

Differences in lifestyle may also play a role in the observed association between WML and cognition. Some studies have found that cognitively stimulating lifestyles (Lovden et al., 2010; Luk, Bialystok, Craik, & Grady, 2011; Teipel et al., 2009; Wirth, Haase, Villeneuve, Vogel, & Jagust, 2014) are associated with better white matter integrity in older adults, but others reported inconsistent findings (Arenaza-Urquijo et
This may be due to the use of different white matter integrity indicators (e.g., white matter hyperintensities vs. fractional anisotropy, etc.), statistical operationalization (e.g., whole-brain group differences vs. regions of interest) or types of lifestyle proxies used (e.g. bilingualism or education vs. more inclusive variables). Thus, further work is needed to clarify the potential neuroprotective effects of cognitively stimulating lifestyles against age-related WML.

The main objective of the present study is to assess brain maintenance by measuring whether lifestyle proxies moderate the relationship between age and WML. Critically, we investigated the potential moderating effect of a stimulating lifestyle on the relationship between age and WML, rather than just controlling for its effect as has been done in previous studies. Testing whether the volume of WML moderates the relationship between age and WM performance is important to measure cognitive resilience in older age. Indeed, few prior studies have considered the beneficial effects of WML on age-sensitive cognitive processes such as WM. If lifestyle affects maintenance of the brain, we would expect to find less WML than predicted by age in participants who have engaged in a more stimulating lifestyle. We also expect older adults with lower volumes of WML to have better WM performance than expected given their age. These findings would support the notion that lifestyle preserves cognition by reducing the volume of WML. Finally, intracranial volume (ICV) will be considered as an estimate of premorbid brain volume to determine whether the lifestyle effect is specific to the maintenance of white matter integrity. ICV will also be assessed to determine whether it increases resilience to the effects of age on WM and moderates the relationship between age and WM performance.

Methods

Participants

Forty-one healthy French-speaking older adults were recruited through the participants bank of the Research Center of the *Institut universitaire de gériatrie de Montréal* and advertisements posted in the community. This sample size allows sufficient power (0.80) to test the moderation term (two-tailed) in the regression model, assuming a medium effect size ($f^2 = .2$) and an alpha value of $p = 0.05$. All participants were right-handed and had normal or corrected-to-normal vision and hearing. Participants received a thorough clinical and cognitive assessment, which included dementia screening tests and clinical questionnaires. In order to characterize participants’ level of engagement in a stimulating lifestyle, the following established proxies for cognitive reserve were included (Sole-Padulles et al. (2009): the fourth Wechsler Adult Intelligence Scale *Vocabulary* subtest score as an estimate of accumulated general knowledge, and the Cognitive Reserve Questionnaire (CRQ; Rami et al., 2011), which measures educational attainment, professional occupation and leisure activities during the course of the person’s life.

Exclusion criteria were past or present neurological or cognitive disorders, alcoholism or substance abuse, severe psychiatric disorders, general anesthesia within the last six months, use of any neurotropic...
medication, as well as scores below the education or age/education adjusted cut-off respectively on dementia screening tests.

Exposure To A Stimulating Lifestyle
We determined individual composite scores to reflect lifestyle exposure. Individual composite scores (sum of the weighted values) were created based on principal component analysis (PCA), which were obtained using the cognitive reserve proxies (i.e., scores on the vocabulary subtest and the CRQ subscales). The resulting composite reserve proxy factor accounted for 52.63 % of the common variance.

N-back Working Memory Task
An n-back task was used to assess WM performance (Braver et al., 1997).
In the n-back task, participants were presented lists of sequentially appearing letters and asked to indicate using a yes/no button whether the displayed letter matched the one shown in the 1-back or 2-back position.
In the 0-back control condition, series of letters were displayed in the center of a screen and participants determined whether the letter was an "X". The three conditions (0-, 1- and 2-back conditions) were presented in 15 blocks, each containing 16 letters (five targets) alternating between the three conditions. Letters were presented at a rate of 500 ms per item with a 1500 ms crosshair interstimuli interval. Sensitivity indexes (hit rate minus false alarm rate, H-FA) were calculated for each condition.

Neuroimaging Data

MRI Acquisition Parameters
Magnetic resonance imaging data were collected on a Siemens Magnetom Trio 3T MRI system (Siemens Medical Solutions, Erlangen, Germany), using the Siemens 32-channel receive-only head coil at the Functional Neuroimaging Unit of the Research Center of the Institut universitaire de gériatrie de Montréal.
A structural high-resolution T1-weighted 3D-Multi-Echo MPRAGE sequence (TR: 2530 ms; TE: 1.64 ms; flip angle: 7°; FoV: 256 mm; voxel size: 1.0 x 1.0 x 1.0 mm; 176 continuous slices) was acquired for volumetric analyses. A Flair weighted sequence (Fluid Attenuated Inversion Recovery; TR: 9000 ms; TE: 90 ms; flip angle: 150°; FoV: 240 mm; voxel size: 0.9 x 0.9 x 4.0 mm with 4.0 mm distance gap factor; 44 slices) was also obtained for WML confirmatory analysis.

Preprocessing and First-Level Analyses
Participants’ structural T1-weighted scans were analyzed through FreeSurfer 5.3 automated software (https://surfer.nmr.mgh.harvard.edu/). The procedure included automated geometric topology correction, inter-subject alignment and whole-brain volumetric segmentation – including white matter hypointensities and estimated intracranial volumes, which were of interest for the present study (Fischl, 2012). The process was reviewed slice-by-slice at each step, and tissue misclassification was manually adjusted when necessary.
WML obtained through the analysis with FreeSurfer were validated through a semi-automated technique developed by DeCarli, Fletcher, Ramey, Harvey, and Jagust (2005) using FLAIR images (only available for 37 participants). After manual removal of non-brain tissues from the images and the automated removal of image artifacts, brain matter and cerebrospinal fluid were modeled in a semi-automated fashion. Voxels exceeding the default threshold were then characterized as white matter lesions. Scans were inspected slice by slice to ensure that segmentation only included WML and excluded any noise, and the threshold was manually adjusted when necessary. After obtaining a satisfactory mask of hyperintense voxels, WML volume was automatically calculated for each participant. A Pearson’s correlation was then performed with the two measures of WML (based on T1 and based on FLAIR). There was a very high degree of consistency between both measures ($r(35) = 0.96, p < 0.001$) (Wirth et al., 2014). Because there were some missing data for the FLAIR images, FreeSurfer values were used in subsequent analyses to increase power, after being proportioned according to the participant’s estimated intracranial volume (ICV). This last manipulation was done in order to account for variations in head size (Malone et al., 2015).

Statistical Analyses

All statistical analyses were computed with the IBM Statistical Package for Social Science 25 (SPSS) and results were interpreted if they reached a threshold of $p < 0.05$. Pearson’s, Spearman's or point biserial correlations were computed between the composite lifestyle score and potential confounding variables.

Brain Maintenance

Moderation analyses were computed to assess if the composite score reflecting a stimulating lifestyle moderated the effect of age on WML volume, and if WML volume moderated the negative effect of age on cognition. The terms of the interactions were respectively created by multiplying age with the composite score and WML volume (all variables were centered). A hierarchical multiple regression was conducted using the “age by composite” interaction term to predict WML volume. Two other hierarchical multiple regressions were also conducted using the “age by WML volume” interaction term to predict WM performance separately in the 1-back and 2-back conditions. When significant, the moderation effects were visualized and probed through the PROCESS macro for SPSS (www.processmacro.org) following the procedure described in Hayes and Rockwood (2017). In sum, based on the regression equation, the macro automatically estimates a number of predicted values from different combinations (16th, 50th and 84th percentile) of the predictor and moderator variables, which can afterwards be plotted in a diagram. The macro further generates a simple slope analysis, which provides the conditional effects of the predictor on the predicted variable and significance level for different values of the moderator (16th, 50th and 84th percentile).

Effect of Estimated Premorbid Brain Volume

Moderation analyses assessed the interaction between ICV and the effect of age to predict WM performance. Two separate hierarchical multiple regressions were conducted using the interaction term
between age and ICV (both variables were centered) to predict WM performance in the 1-back and 2-back conditions. Significant moderating effects were then visualized and probed as mentioned above.

Results

Two participants among the forty-one initially recruited withdrew consent before the experimental session, one for health reasons and the second did not wish to have an MRI examination. The characteristics of the 39 remaining participants (24 women) are shown in Table 1. No correlation was found between the composite lifestyle score and age, sex, or cognitive and clinical measures. These variables were therefore not examined further in relation to composite lifestyle score.

Table 1	Demographic, Clinical and Behavioural Characteristics of Participants	
	M (SD)	Range
Age	73.10 (5.64)	65.00–88.00
MoCA (/30)	28.51 (1.43)	24.00–30.00
MMSE (/30)	28.72 (1.17)	25.00–30.00
Stroop (plate 3; time)	26.87 (7.81)	15.30–47.81
RL/RI (total delayed recall; /16)	15.74 (0.55)	14.00–16.00
GDS (/15)	1.44 (1.67)	0.00–6.00
Charlson's (/37)	0.49 (0.79)	0.00–2.00
Hachinski's (/18)	0.54 (0.68)	0.00–3.00
ADL (/45)	0.76 (1.32)	0.00–5.00
N-back sensitivity indexes (H-FA)		
1-back	0.85 (0.18)	0.33–1.00
2-back	0.70 (0.12)	0.30–0.92

Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005); Mini-Mental State Examination (MMSE; Folstein, Folstein, & McHugh, 1975); Stroop-Victoria (Regard, 1981); Free and Cued Recall Test (RL/RI; Van der Linden et al., 2004); Geriatric Depression Scale (GDS; Yesavage et al., 1982); Charlson's Comorbidity Index (Charlson, Pompei, Ales, & MacKenzie, 1987); Hachinski's Ischemic Score (Hachinski et al., 1975); Activities of Daily Living Inventory (ADL; Galasko et al., 1997).

Brain Maintenance

The regression model predicting WML volume \(F(3, 35) = 6.70, p = 0.001\) revealed a significant effect of age \((\beta = 0.51, p = 0.001; sr^2 = 0.24)\) and a marginally significant effect of the composite score \((\beta = -0.26, p\)
These two variables interacted ($\beta = -0.33, p = 0.023; r^2 = 0.10$) to predict WML volume. Figure 1 shows that the positive relationship between age and WML volume is not found in those with higher composite scores. Furthermore, the conditional effects of age on WML are only significant for the low ($T = 3.71, p < 0.001$) and middle ($T = 3.43, p = 0.002$) ranges of the composite score, and were non-significant for the higher range ($T = 0.66, p = 0.511$).

The regression model predicting WM performance for the 1-back condition ($F(3, 35) = 6.69, p = 0.001$) revealed a significant effect of age ($\beta = -0.49, p = 0.003; r^2 = 0.18$) but no significant effect of WML alone ($\beta = 0.20, p = 0.366$). Importantly, age and WML volume interacted ($\beta = -0.50, p = 0.014; r^2 = 0.12$) to predict performance. Figure 2 shows a negative relationship between age and WM performance on the 1-back condition, which is weaker with lower WML volume. Conditional effects of age on WM performance were only significant for the high ($T = 3.56, p = 0.001$) and middle ($T = 2.19, p = 0.035$) range of WML volume, and non-significant for the lower ($T = 0.85, p = 0.403$) range. The regression model predicting WM performance in the 2-back condition was not significant ($F(3, 35) = 2.08, p = 0.121$) and thus not examined further.

Effect Of Estimated Premorbid Brain Volume

The regression models predicting WM performance based on premorbid brain volume were not significant for the 1-back ($F(3, 35) = 2.43, p = 0.067$) nor 2-back condition ($F(3, 35) = 1.48, p = 0.230$).

Discussion

The goal of this study was to investigate whether older adults, who engage in a more stimulating lifestyle, better maintain white matter integrity and WM capacities with age. Our focus was on WML as these represent a prominent alteration found in the normal aging brain associated with WM decline, a cognitive function that is crucial to numerous complex cognitive tasks. Results indicate that a more stimulating lifestyle is associated with a smaller volume of WML than predicted by age, suggesting better maintenance of white matter integrity. So, while older age is associated with higher volumes of WML, this is not the case for people who have engaged in a more stimulating lifestyle.

The finding that a cognitively stimulating lifestyle has a protective impact on WML is consistent with a few prior studies (Luk et al., 2011; Teipel et al., 2009; Wirth et al., 2014). White matter microstructure properties have also been shown to be modifiable through cognitive training, even in older age (Lovden et al., 2010). However, other inconsistent studies have shown that cognitively stimulating lifestyles have a negative impact on white matter integrity in healthy older adults (Arenaza-Urquijo et al., 2011; Gold et al., 2013; Vaque-Alcazar et al., 2017). This counterintuitive finding was interpreted as reflecting a better tolerance: stimulating lifestyles may help older adults remain cognitively intact despite the presence of WML. Inconsistent results may also be due to the way proxies were measured across studies or to differences in the vascular health of the target population. Notably, there was no correlation between lifestyle and vascular risk factors measured with the Hachinski’s Ischemic Score in the present study. This suggests that the positive effect of lifestyle on WML was not mediated by vascular risk factors.
Our results also show that the smaller volumes of WML associated with lifestyle were also linked to better WM performance than expected for age. This finding supports the contention that lifestyle-related maintenance of white matter integrity contributes to the preservation of WM function despite greater age. The observation that intracranial volume did not moderate the relationship between age and WM indicates that having a larger initial brain volume (as estimated through intracranial volume) does not moderate the effects of age on WM performance, contrary to WML.

The present study has limitations. It relies on a relatively small sample size. As this is a transversal design, the directionality of the association could be reversed as having fewer WML could have enabled individuals to maintain a stimulating lifestyle. Although possible, reversed causality is unlikely because WML generally occurs late in life, whereas composite scores were based on lifelong behavior. Finally, the use of a global lifestyle score has the advantage of providing a comprehensive indicator of exposure but prevent establishing which sub-components forming the composite score contributed to the observed effect.

Conclusions

This study provides evidence for preserved white matter integrity in older adults, who have had a stimulating lifestyle throughout their lives, and this results in a smaller effect of age on WM. This indicates that a stimulating lifestyle helps the brain better resist the accumulation of pathological markers associated with age. This result is consistent with prior findings showing lower amyloid-beta deposition in older people, who have engaged in a more stimulating lifestyle over the course of their lives (Arenaza-Urquijo et al., 2017; Landau et al., 2012). Our study indicates that this protective effect extends to white-matter changes, a phenomenon very common in older adults. Although longitudinal studies with larger sample sizes are needed, the results suggest that differences in lifestyle can have a measurable effect on age-related brain pathology. This study provides support for preventive interventions that are focused on cognitively stimulating lifestyles for older adults.

Declarations

Acknowledgments

The authors would like to thank the participants for their involvement in this study, as well as Emilie Lepage and Christel Cornelis for their help in testing participants, Renée-Pier Filiou for assistance in manuscript preparation and Annie Webb for English revision. Data and study materials available upon request to the corresponding author.

Ethical Approval

This study was approved by the *Comité mixte d’éthique de la recherche du Regroupement Neuroimagerie Québec*.
Consent to Participate

Informed written consent was obtained from all participants at the beginning of the study.

Consent to Publish

Not applicable.

Author Contributions

The contribution included conception and study design, interpretation, revision of the first draft (all authors), data acquisition and analysis (GDL & SM), software (SM), writing the first draft (GDL), writing the final draft, funding and administration (SB).

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2016-06132] and a Canada Research Chair in Cognitive Neuroscience of Aging and Brain Plasticity [950-232074] to S.B.

Competing Interests

Sylvie Belleville is a consultant for Lucilab/Sojecci. Samira Mellah and Gabriel Ducharme-Laliberté have no conflicts of interest to report.

Availability of data and materials

Request for data and material can be done by contacting the senior author, Sylvie Belleville.

References

Arenaza-Urquijo, E. M., Bejanin, A., Gonneaud, J., Wirth, M., La Joie, R., Mutlu, J., . . . Chetelat, G. (2017). Association between educational attainment and amyloid deposition across the spectrum from normal cognition to dementia: neuroimaging evidence for protection and compensation. *Neurobiol Aging, 59*, 72-79. doi:10.1016/j.neurobiolaging.2017.06.016

Arenaza-Urquijo, E. M., Bosch, B., Sala-Llonch, R., Sole-Padulles, C., Junque, C., Fernandez-Espejo, D., . . . Bartres-Faz, D. (2011). Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders. *Am J Geriatr Psychiatry, 19*(1), 33-42. doi:10.1097/JGP.0b013e3181e448e1

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. *Neuroimage, 5*(1), 49-62. doi:10.1006/nimg.1996.0247
Brickman, A. M., Schupf, N., Manly, J. J., Luchsinger, J. A., Andrews, H., Tang, M. X., . . . Brown, T. R. (2008). Brain morphology in older African Americans, Caribbean Hispanics, and whites from northern Manhattan. *Arch Neurol, 65*(8), 1053-1061. doi:10.1001/archneur.65.8.1053

Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., . . . Rajah, M. N. (2018). Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. *Nat Rev Neurosci, 19*(11), 701-710. doi:10.1038/s41583-018-0068-2

Charlson, M. E., Pompei, P, Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis, 40*(5), 373-383. doi:10.1016/0021-9681(87)90171-8

DeCarli, C., Fletcher, E., Ramey, V., Harvey, D., & Jagust, W. J. (2005). Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. *Stroke, 36*(1), 50-55. doi:10.1161/01.STR.0000150668.58689.f2

Fischl, B. (2012). FreeSurfer. *Neuroimage, 62*(2), 774-781. doi:10.1016/j.neuroimage.2012.01.021

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res, 12*(3), 189-198. doi:10.1016/0022-3956(75)90026-6

Galasko, D., Bennett, D., Sano, M., Ernesto, C., Thomas, R., Grundman, M., & Ferris, S. (1997). An inventory to assess activities of daily living for clinical trials in Alzheimer's disease. The Alzheimer's Disease Cooperative Study. *Alzheimer Dis Assoc Disord, 11 Suppl 2*, S33-39. doi:10.1097/00002093-199700112-00005

Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. *Neuropsychologia, 51*(13), 2841-2846. doi:10.1016/j.neuropsychologia.2013.09.037

Grajauskas, L. A., Siu, W., Medvedev, G., Guo, H., D'Arcy, R. C. N., & Song, X. (2019). MRI-based evaluation of structural degeneration in the ageing brain: Pathophysiology and assessment. *Ageing Res Rev, 49*, 67-82. doi:10.1016/j.arr.2018.11.004

Hachinski, V. C., Iliff, L. D., Zilhka, E., Du Boulay, G. H., McAllister, V. L., Marshall, J., . . . Symon, L. (1975). Cerebral blood flow in dementia. *Arch Neurol, 32*(9), 632-637. doi:10.1001/archneur.1975.00490510088009

Hayes, A. F., & Rockwood, N. J. (2017). Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation. *Behav Res Ther, 98*, 39-57. doi:10.1016/j.brat.2016.11.001
Kennedy, K., & Raz, N. (2015). Normal Aging of the Brain. In A. W. Toga (Ed.), *Brain Mapping: An Encyclopedic Reference* (Vol. 3, pp. 603-617): Academic Press: Elsevier.

Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O'Neil, J. P., . . . Jagust, W. J. (2012). Association of lifetime cognitive engagement and low beta-amyloid deposition. *Arch Neurol, 69*(5), 623-629. doi:10.1001/archneurol.2011.2748

Launer, L. J. (2004). Epidemiology of white matter lesions. *Top Magn Reson Imaging, 15*(6), 365-367. doi:10.1097/01.rmr.0000168216.98338.8d

Lovden, M., Bodammer, N. C., Kuhn, S., Kaufmann, J., Schutze, H., Tempelmann, C., . . . Lindenberger, U. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. *Neuropsychologia, 48*(13), 3878-3883. doi:10.1016/j.neuropsychologia.2010.08.026

Luk, G., Bialystok, E., Craik, F. I., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. *J Neurosci, 31*(46), 16808-16813. doi:10.1523/JNEUROSCI.4563-11.2011

Malone, I. B., Leung, K. K., Clegg, S., Barnes, J., Whitwell, J. L., Ashburner, J., . . . Ridgway, G. R. (2015). Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. *Neuroimage, 104*, 366-372. doi:10.1016/j.neuroimage.2014.09.034

Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., . . . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. *J Am Geriatr Soc, 53*(4), 695-699. doi:10.1111/j.1532-5415.2005.53221.x

Nyberg, L., Lovden, M., Riklund, K., Lindenberger, U., & Backman, L. (2012). Memory aging and brain maintenance. *Trends Cogn Sci, 16*(5), 292-305. doi:10.1016/j.tics.2012.04.005

Oosterman, J. M., Van Harten, B., Weinstein, H. C., Scheltens, P., Sergeant, J. A., & Scherder, E. J. (2008). White matter hyperintensities and working memory: an explorative study. *Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 15*(3), 384-399. doi:10.1080/13825580701879998

Rami, L., Valls-Pedret, C., Bartres-Faz, D., Caprile, C., Sole-Padulles, C., Castellvi, M., . . . Molinuevo, J. L. (2011). [Cognitive reserve questionnaire. Scores obtained in a healthy elderly population and in one with Alzheimer's disease]. *Rev Neurol, 52*(4), 195-201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21312165

Raz, N., Rodrigue, K. M., & Acker, J. D. (2003). Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. *Behav Neurosci, 117*(6), 1169-1180. doi:10.1037/0735-7044.117.6.1169

Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. *Neuropsychology, 21*(2), 149-157. doi:10.1037/0894-4105.21.2.149
Regard, M. (1981). *Cognitive rigidity and flexibility: A neuropsychological study.* (Ph.D. dissertation). University of Victoria, Canada.

Reuter-Lorenz, P. A., & Park, D. C. (2010). Human neuroscience and the aging mind: a new look at old problems. *J Gerontol B Psychol Sci Soc Sci, 65*(4), 405-415. doi:10.1093/geronb/gbq035

Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2007). Progression of white matter hyperintensities in elderly individuals over 3 years. *Neurology, 68*(3), 214-222. doi:10.1212/01.wnl.0000251302.55202.73

Sole-Padulles, C., Bartres-Faz, D., Junque, C., Vendrell, P., Rami, L., Clemente, I. C., . . . Molinuevo, J. L. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. *Neurobiol Aging, 30*(7), 1114-1124. doi:10.1016/j.neurobiolaging.2007.10.008

Stern, Y., Arenaza-Urquijo, E. M., Bartres-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., . . . Conceptual Frameworks, W. (2018). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. *Alzheimers Dement.* doi:10.1016/j.jalz.2018.07.219

Sylvain-Roy, S., & Belleville, S. (2015). Interindividual differences in attentional control profiles among younger and older adults. *Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 22*(3), 259-279. doi:10.1080/13825585.2014.926305

Sylvain-Roy, S., Lungu, O., & Belleville, S. (2015). Normal Aging of the Attentional Control Functions That Underlie Working Memory. *J Gerontol B Psychol Sci Soc Sci, 70*(5), 698-708. doi:10.1093/geronb/gbt166

Teipel, S. J., Meindl, T., Wagner, M., Kohl, T., Burger, K., Reiser, M. F., . . . Hampel, H. (2009). White matter microstructure in relation to education in aging and Alzheimer's disease. *J Alzheimer Dis, 17*(3), 571-583. doi:10.3233/JAD-2009-1077

Van der Linden, M., Adam, S., Agniel, A., Baisset-Mouly, C., Bardet, F., Coyette, F., . . . Thomas-Antérion, C. (2004). *L'évaluation de troubles de la mémoire: présentation de quatre tests de mémoire épisodique (avec étalonnage).* Marseille: Solal.

Vannorsdall, T. D., Waldstein, S. R., Kraut, M., Pearson, G. D., & Schretlen, D. J. (2009). White matter abnormalities and cognition in a community sample. *Arch Clin Neuropsychol, 24*(3), 209-217. doi:10.1093/arclin/acp037

Vaque-Alcazar, L., Sala-Llonch, R., Valls-Pedret, C., Vidal-Pineiro, D., Fernandez-Cabello, S., Bargallo, N., . . . Bartres-Faz, D. (2017). Differential age-related gray and white matter impact mediates educational influence on elders' cognition. *Brain Imaging Behav, 11*(2), 318-332. doi:10.1007/s11682-016-9584-8

Wirth, M., Haase, C. M., Villeneuve, S., Vogel, J., & Jagust, W. J. (2014). Neuroprotective pathways: lifestyle activity, brain pathology, and cognition in cognitively normal older adults. *Neurobiol Aging, 35*(8), 1873-1882. doi:10.1016/j.neurobiolaging.2014.02.015
Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. *J Psychiatr Res, 17*(1), 37-49. doi:10.1016/0022-3956(82)90033-4

Figures

Figure 1

Diagram displaying regression slopes based on the predicted values (16th, 50th and 84th percentile) that resulted from the moderation analysis equation investigating the relationship between age and WML volume as a function of the level of engagement in a stimulating lifestyle.
Figure 2

Diagram displaying regression slopes based on the predicted values (16th, 50th and 84th percentile) that resulted from the moderation analysis equation investigating the relationship between age and 1-back performance (Hits-False Alarms) as a function of the WML volume.