Optimization of Thymoquinone-Loaded Self-Nanoemulsion for Management of Indomethacin-Induced Ulcer

Mohamed F. Radwan, Mohamed A. El-Moselhy, Walied M. Alarif, Mohamed Orif, Nabil K. Alruwaili, and Nabil A. Alhakamy

Abstract
To improve the water solubility of thymoquinone (TQ), a major constituent of Nigella sativa seed oil, a TQ-loaded self-nanoemulsifying drug delivery system (SNEDDS) was prepared. The SNEDDS formulation was optimized using almond oil (AO) (Oil; X1), tween 80 (surfactant; X2) and polyethylene glycol 200 (PEG 200) (cosurfactant; X3) compounds as independent variables. The results showed that the globule size ranged from 65 to 320 nm. In addition, a strong agreement was reached between the system estimation and the experimental values of globule size. To evaluate the gastroprotective effect of optimized TQ-loaded SNEDDS against indomethacin (Indo.)-induced gastric ulcers in comparison with non-emulsified TQ, the ulcer index and histopathological changes were estimated. Optimized TQ-loaded SNEDDS showed improved gastroprotective activity against Indo.-induced ulcers relative to the non-emulsified TQ. In addition, the gastroprotective index was improved by 2-fold in TQ-loaded SNEDDS as compared to non-emulsified TQ. This is attributed to the strong antioxidant and the cytoprotective activities of the TQ. These results demonstrate enhancement of the efficacy of TQ through the optimized SNEDDS.

Keywords
almond oil, self-nanoemulsifying drug delivery system, mixture design, peptic ulcer, thymoquinone, drug delivery

Introduction
Peptic ulcer is a common health problem that occurs in both young and old patients all over the world. The incidence of peptic ulcer disease (PUD) increases as a patient gets older with an estimated prevalence of about 10% in the general population. PUD are described as defects or injuries in the gastrointestinal mucosa caused by peptic acid. This ulceration is associated with stomach pain and often leads to gastrointestinal bleeding. PUD usually occurs at the lower part of the esophagus, lower portion of the stomach and upper duodenum. Two factors are considered as the main causes of PUD: Helicobacter pylori (H. pylori) infection and long-term use of non-steroidal anti-inflammatory drugs (NSAIDs).

Drug repurposing make potential applications for licensed or investigational products that fall beyond the original medical indication. This strategy provides numerous advantages over the production of a brand-new medication for a given indication. First, and perhaps most significantly, the probability of failure is lower; since the recurrent drug has already been shown to be sufficiently safe in preclinical models and humans if early-stage trials have been completed, it is less likely to fail, at least from a...
safety point of view, in subsequent efficacy trials. Second, the
timeline for the production of drugs may be shortened.6 The
main bioactive component of Nigella sativa L seed is thymoqui-
none (TQ), which present in many tropical countries. The seeds
are known as black cumin, which is used as condiment and
spices. Traditionally, active seeds are used in the treatment of
influenza, asthma, bronchitis, cough, dizziness, hypertension,
fever, inflammation, headache, and eczema. Preclinical screen-
ing for this black seed has been thoroughly studied for numerous
physical disorders, including diabetes, hypertension, immuno-
modulatory and anti-inflammatory drugs, neuroprotective, and
even cancer.7 Since For hundreds of years, thymoquinone (TQ)
has been commonly used for conditions ranging from a simple
migraine to illnesses such as obesity, asthma, gastrointestinal
problems, menstruation and lactation.8,9 TQ is a member of the
Ranunculaceae family, rising on Mediterranean coastal plants.
Almond oil (AO) is a colloidal liquid containing proteins, min-
erals and vitamins. It was reported that AO affects the concen-
tration of hydrochloric acid significantly which alters the
stomach acidity environment.10

NSAIDs are the most common prescribed medications for
patients suffering from pain and inflammation.5,11,12 NSAIDs
work as anti-inflammatories through the inhibition of Cycloox-
ygenases (COXs) enzymes. However, NSAIDs inhibit both
COX-1 and COX-2 enzymes in a non-selective way.13,14
COX-1 plays an important role in the protection of gastric
mucosa by producing prostaglandins and thromboxane A2 that
control the mucosal barrier in the gastrointestinal tract (GIT).
On the other hand, COX-2 is responsible for prostaglandin-
meditated pain and inflammation. Indo. is one of the most com-
monly prescribed non-selective NSAIDs, mainly used for its
analgesic and anti-inflammatory effects.15 However, ulcerations
and gastric mucosal damage are the most common side
effects associated with using Indo.16 TQ is a bioactive agent
that is poorly water soluble and exhibits low oral bioavailabil-
ity upon oral administration. Due to the low aqueous solubility
and bioavailability of TQ, TQ has been developed and tested
with various self-nanoemulsifying drug delivery systems
(SNEDDS) to improve its hepatoprotective effects and oral
bioavailability. In rat models, hepatoprotective and pharmaco-
kinetic trials of TQ suspension and TQ-SNEDDS have been
performed.17,18 Previous reports showed that oral administra-
tion of an aqueous suspension of TQ prevents gastric mucosal
injuries caused by ethanol and strong alkalies, the most
commonly employed tests in the evaluation of anti-ulcer and
cytoprotective activities. It is suggested that oxygen radicals
may contribute to the formation of ethanol-induced gastric
mucosal lesions, and antioxidants are protective against the
damage caused by these oxidants.7,19

SNEDDS are effective nanocarriers in the drug delivery
system.20 The trial-and-error assessment of the optimum ratios
of SNEDDS components is carried out based on the conven-
tional 1-factor-by-time method. Nevertheless, this approach is
time-consuming, labor-intensive and unreliable. In addition,
this approach often provides insufficient data to evaluate the
effect of each factor and its effect on the responses.

Experimental statistical modeling designs have been developed
to forecast the results of mix-related factors and the interaction
of multi-component independent variables. In addition, a
numerical optimization technique based on surface reaction
methodology and innovative designs such as central composite,
Box-Behnken, factorial and mixture designs have been devel-
oped.21,22 Extreme vertex design is used for the cases where
there are constraints on 1 or more components. Mixture design,
as one of the experimental statistical designs, deals with com-
ponents that are variables as proportions of the total system
(mixture). Mixture designs can be utilized in the optimization
of a SNEDDS formula as the system components’ percent adds
up to 100%. The aim of this work was to improve the solubility
of TQ by a SNEDDS-loaded formula and optimize the prepared
formulations for globule size using experimental designs. A
mixture design with the composition of AO (oil; X1), tween
80 (surfactant; X2), and Polyethylene glycol 200 (PEG 200)
(cosurfactant; X3) as independent variables was utilized in this
study. The optimized formula was investigated for gastropro-
ective effect in a rat model.

Materials

**TQ, AO, Polyethylene glycol (PEG, MW 200) and twee-
80 were purchased from Sigma-Aldrich, USA. Indo was kindly
gifted by Jamjoom Pharmaceuticals, Jeddah, Saudi Arabia.**

Methods

Formulation of TQ-Loaded SNEDDS

Based on the preliminary studies, multiple vehicles were
screened, and the compositions of AO, tween 80, and PEG
200 were selected. For any oil, surfactant and co-surfactant,
the total combination was always 100%. TQ was loaded in a
SNEDDS formula (10 mg/1 g) as previously described.23
Briefly, the SNEDDS formula was prepared by mixing AO,
Tween 20 (surfactant), and PEG 200 (co-surfactant). The pre-
pared SNEDDS were stored at ambient temperature and used
for the experiments within 4 weeks.24

Optimization of TQ-Loaded SNEDDS

Optimization of the TQ-loaded SNEDDS were performed by a
mixture design using the Statgraphics plus, version 4 (Stat-
graphics Centurion XV version 15.2.05 software) (Manugistic
Inc., PA, USA). The test was planned to use the 3 elements,
including the concentrations of AO (oil; X1), tween 80
(surfactant; X2) and PEG 200 (cosurfactant; X3), that were set
at 0.1%–0.3%, 0.2%–0.4% and 0.4%–0.6%, respectively. For any
study, the concentrations of X1, X2 and X3 were added up to
100%. Globule size (nm) was selected as the design response.

Globule Size Determination

Globule size was analyzed by s particle size analyzer (Nano-
ZS, Marlvern Instrument, Worcestershire, UK) using a
dynamic light-scattering technique. For this purpose, 100 μL of each TQ-loaded SNEDDDS were diluted with 10 mL of 0.1 N HCl (to simulate a gastric environment), vortexed for 2 minutes and then the size was measured.\(^{25}\)

Prediction and Preparation of Optimized TQ-Loaded SNEDDDS Formulation

According to the optimization design, the results obtained from the total of 22 formulations were statistically analyzed obtained from the total of using Statgraphics software with ANOVA and multiple-response optimization analysis. The optimum formulation was prepared, evaluated and compared with the optimal formulation that was actually proposed by the software.

In Vivo Study

25 Sprague-Dawley male rats were (weighing 220-250 g) divided into 5 groups (gps; n = 5/gp) randomly. The analysis was performed using a slight modification of the specified procedure.\(^ {26}\) Before the experiment, the animals were fasted for 24 hours, but were given free access to water. All 5 groups of rats were orally gavaged, including untreated group (control, gp1), Indo (gp2), plain formula (AO, tween 80 and PEG200) SNEDDDS (gp3), TQ suspended in water with dose 1.5 mg/kg (gp4), and the last group received a dose equal to 1.5 mg/kg TQ of TQ-SNEDDDS (gp5). After 1 h, all rats in groups 2, 3, 4 and 5 received Indo (20 mg / kg, ip) to cause gastric ulcers.\(^ {27,28}\) The rats were sacrificed after 4 h by an overdose of diethyl ether. The adopted guidelines were in accordance with “Principles of Laboratory Animals Care” (NIH publication no. 85-23, revised 1985). The protocol for the animal studies were conducted in accordance with the ethical rules of the ethics committee at the Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia, that approved our experiments with application no. PH-45-1440.

Peptic Ulcer Lesions Evaluation

The stomachs were rinsed with deionized water. Stomachs were cleaned, pinned on board and pictures were taken for the stomach samples then were scored for the degree of mucosal damage using Image J software. Areas of mucosal damage were expressed as a percentage of the total surface area of the examined stomach. The ulcer index (UI) is the mean ulcer score of each animal. The ulcer score was determined by measuring the length of each lesion along its greatest diameter. The ulcer index was used to calculate the preventive index of the drug which is the percentage inhibition of gastric mucosal damage produced by such drug.

\[
\text{Ulcer inhibition (\%)} = \left(\frac{U. I. \text{ in indomethacin} - U. I. \text{ in treated rats}}{U. I. \text{ in indomethacin}} \right) \times 100 \quad \text{(equation 1)}
\]

\[\text{Ulcer inhibition (}\%\text{)} = \left(\frac{U.I. \text{ in indomethacin} - U.I. \text{ in treated rats}}{U.I. \text{ in indomethacin}} \right) \times 100 \quad \text{(equation 1)}\]

Histopathological Analysis

Stomach samples were fixed overnight in a formalin solution buffered by 10 percent alcohol and xylene. The tissue was then wrapped under the Embedding Station (Microm EC 350, Thermo Fisher Scientific, Germany) in paraffin wax (Paraplast, Leica, Singapore). The Rotary Microtome was appended to fabric frames (3-5 m) (Accu-Cut SRM 200, Netherlands). Finally, hematoxylin and eosin (H&E) staining was performed. Briefly, a 1 cm segment of each histological section was evaluated for loss of epithelial cell (score: 0-3), mucosal edema (score: 0-3), hemorrhagic damage (score: 0-3), the presence of inflammatory cells (score: 0-3), and the total lesion (score 0-3).\(^ {29}\)

Statistical Analysis

The findings were represented as mean ± standard deviation (SD) and evaluated using 1-way variance analysis (ANOVA) followed by multiple comparison Dunnett tests to compare therapies with the ulcer control group. Significant levels were evaluated at \(P < 0.05\).

Results

Statistical Analysis Using Extreme Vertices Mixture Design

To achieve TQ-loaded SNEDDDS with minimum globule size, AO, tween 80 and PEG 200 were the design independent variables (X1, X2, and X3, respectively; Table 1 previous manuscript referred to TQ solubility in various oils, surfactant and...
co-surfactants. SNEDDS droplet size (nm) was the selected response. Response and contour plots showing the effects of components on SNEDDS' properties were assigned to deduce the mixture region as shown in Figure 1. The results revealed that globule size ranged from 65 to 320 nm, as shown in Table 2. The results of globule size showed a positive relation with X1. As the concentration of X1 increased, globule size increased. This is indicated in F2 (30% X1), F15 (20% X1) and F4 (10% X1) where globule sizes were 320 nm, 172 nm and 65 nm, respectively (Table 2). A cubic model equation for the effects of the investigated factors (X1-X3) on the SNEDDS globule size was calculated (equation 2).

\[
\text{Globule size} = 294.99X_1 + 19.26X_2 + 145.95X_3 + 273.12X_1X_2 + 154.04X_1X_3 - 19.86X_2X_3 - 576.0X_1X_2X_3 + 63.28X_1X_2(X_1 - X_2) + 555.92X_1X_3(X_1 - X_3) + 104.68X_2X_3(X_2 - X_3) \quad \text{(equation 2)}
\]

Validation of the Optimized TQ-Loaded SNEDDS Formulation

Extreme vertices mixture experimental design deduced the optimum TQ-loaded SNEDDS formulation that was prepared and evaluated for particle size in the lab (Table 2). The obtained results indicated that a combination of independent factors for the optimized TQ-loaded SNEDDS formulation exhibited the actual particle size of 67.7 nm that was comparable to the predicted size by the design of 64.8 nm with residual 2.9 (Table 3).

Figure 1. Estimated response surface 3D (A) and contour (B) plots for the effects of independent variables on SNEDDS globule size (nm).

Table 2. Experimental Runs and the Observed Response (Actual, Predicted, and Residual Values).

Run	X1	X2	X3	Actual size	Predicted size	Residual size
F1	0.3	0.3	0.4	270.0	268.5	1.5
F2	0.3	0.2	0.5	320.0	320.7	0.7
F3	0.2	0.4	0.4	164.0	167.2	3.2
F4	0.1	0.4	0.5	65.0	64.8	0.2
F5	0.2	0.2	0.6	183.0	188.7	5.7
F6	0.1	0.3	0.6	89.0	91.5	2.5
F7	0.25	0.3	0.45	241.0	237.7	3.3
F8	0.25	0.25	0.5	256.0	246.9	9.1
F9	0.2	0.35	0.45	184.0	175.0	9.0
F10	0.15	0.35	0.5	118.0	115.5	2.5
F11	0.2	0.25	0.55	179.0	179.9	0.9
F12	0.15	0.3	0.55	125.0	118.3	6.7
F13	0.3	0.25	0.45	290.0	294.8	4.8
F14	0.25	0.35	0.4	225.0	225.4	0.4
F15	0.2	0.3	0.5	172.0	177.3	5.3
F16	0.2	0.3	0.5	171.0	177.3	6.3
F17	0.25	0.2	0.55	263.0	259.0	6.0
F18	0.15	0.4	0.45	111.0	110.8	0.2
F19	0.2	0.3	0.5	169.0	177.3	8.3
F20	0.1	0.35	0.55	76.0	77.6	1.6
F21	0.15	0.25	0.6	131.0	124.8	6.2
F22	0.2	0.3	0.5	174.0	177.3	3.3

N.B.: AO (oil; X1), tween 80 (surfactant; X2) and PEG 200 (cosurfactant; X3).

Table 3. Optimum Levels for TQ-Loaded SNEDDS Factors and the Predicted and Actual Response Values.

Factor	Optimum level	Low level	High level
X1	0.1	0.1	0.3
X2	0.2	0.2	0.4
X3	0.4	0.4	0.6

Response	Predicted	Actual	Residual
Globule size	64.8 nm	67.7 nm	2.9

Abbreviations: TQ, thymoquinone; SNEDDS, self-nanoemulsifying drug delivery system.

N.B.: AO (oil; X1), tween 80 (surfactant; X2) and PEG 200 (cosurfactant; X3).

Gross and Histopathological Evaluation of Gastric Lesions

Gross examination of the stomachs obtained from control animals showed normal gastric tissues with no apparent epithelial loss, erosions or inflammation (Figure 2A). Whole stomachs collected from Indo and plain SNEDDS-treated animals showed severe congestion, inflammations and erosions (Figure 2B and C). TQ-R showed partial protection with mild to moderate edema inflammations with scattered erosions (Figure 2D). TQ-SNEDDS afforded obvious protection as evidenced by the almost normal appearance of the stomachs with scattered edema and mild-to-almost-nil inflammation (Figure 2E). Histological examination of H&E-stained stomach sections obtained from the control group revealed normal histological architecture of the glandular gastric mucosa and submucosa.
Figure 2. Gross evaluation of gastric lesions. Untreated gp (control, gp1, A), dose 20 mg/kg Indo (gp2, B), plain formula (AO, tween 80 and PEG200) SNEDDS (gp3, C), TQ suspended in water with dose 1.5 mg/kg (gp4, D), and dose equal to 1.5 mg/kg TQ of TQ-SNEDDS (gp5, E). Groups are treated with the oral gavage. After 1 h, all rats in groups 3, 4 and 5 received Indo (20 mg/kg) orally for causing gastric ulcers.

Figure 3. Histological examination of untreated gp (control, gp1, A), dose 20 mg/kg Indo (gp2, B), plain formula (AO, tween 80 and PEG200) SNEDDS (gp3, C), TQ suspended in water with dose 1.5 mg/kg (gp4, D), and dose equal to 1.5 mg/kg TQ of TQ-SNEDDS (gp5, E). Groups are treated with the oral gavage. After 1 h, all rats in groups 3, 4 and 5 received Indo (20 mg/kg) orally for causing gastric ulcers.
Meanwhile, a severe gastric alteration was detected in the Indo-alone treated group. The mucosa showed severe destruction of the epithelial covering and the underneath gastric acini accompanied by abundant inflammatory edema (Figure 3B). Almost similar gastric damage was observed in the plain SNEDDS group with multifocal hemorrhagic areas and golden yellow-to-brown hemosiderin pigment as well as necrosis of the surrounding tissue. Additionally, some examined sections showed aggregations of mononuclear inflammatory cells in the affected mucosa (Figure 3C). Sections obtained from animals treated with TQ-R prior to the Indo challenge exhibited moderate gastric improvement that exhibited apparently normal mucosa in some examined sections; however, mild cystic dilation of glandular acini was noticed. A few sections showed moderate expansion in the submucosa with edema, inflammatory cell infiltration and congested blood vessels (Figure 3D). Examination of the glandular stomach sections of animals in the TQ-SNEDDS group indicated the highest protection against Indo-induced injury. This was evidenced by the absence of abnormal histopathological alterations in most examined sections except for a few scattered foci of inflammatory cell aggregations (Figure 3E). Semi-quantitative evaluations of histopathological alterations are presented in Table 4. Control animals showed almost no epithelial loss, edema or inflammatory infiltrations. However, animals in both the Indo and Plain SNEDDS groups showed severe epithelial loss, edema, hemorrhage and inflammation. TQ-R treated animals showed partial protection with less edema and inflammation. TQ-SNEDDS exhibited the highest protection with mild edema and almost no hemorrhage.

Table 4. Semi-Quantitative Evaluation of Histopathological Alterations.

	Epithelial loss	Edema	Hemorrhage	Inflammation	Total lesion
Control	-	-	-	-	-
Indo	+++	+++	+++	+++	+++
Indo + Plain SNEDDS	+++	+++	+	+++	+++
Indo + TQ-R	++	+	+	++	++
Indo + TQ-SNEDDS	+	+	+/−	+/−	+/−

Abbreviations: Indo, indomethacin; SNEDDS, self-nanoemulsifying drug delivery system; TQ, thymoquinone; R, raw. (−) = no, (+) = mild, (+++) = moderate, (++++) = severe.

Figure 4. The effect of indo, raw TQ, plain formula and optimized TQ-SNEDDS formula on U.I. (A), and (B) the effect of indo, raw TQ, plain formula and optimized TQ-SNEDDS formula on gastric secretion volume (left section) and gastric secretion pH (right section). Data are presented as mean ± SE. *Significantly different from corresponding control at P < 0.05; # significantly different from indo gp. at P < 0.05; $ significantly different from plain-SNEDDS at P < 0.05, & significantly different from TQ-R at P < 0.05.

Effect of Raw TQ and Optimized TQ-SNEDDS on Gastric Secretion Volume and pH

Gastric secretion volume and pH are represented in Figure 4. The TQ-SNEDDS formulation provided a 78.95% reduction in Indo-induced ulcers with only some red color in some sections (Figure 4A). The results revealed a significant difference (P < 0.05) between the Indo group and the control group for both gastric secretion volume and pH. Additionally, the data revealed that there is a significant difference between the TQ-SNEDDS and the Indo groups (P < 0.05) for both volume and pH. The plain formula and raw TQ showed no significant difference in gastric secretion pH in comparison with the Indo group. On the other hand, the results revealed that both the plain formula and raw TQ showed a significant difference (P < 0.05) in gastric secretion volume.

Discussion

The present study was intended to optimize the factors effecting SNEDDS formulation to improve the protective effects of TQ-loaded SNEDDS on the development of ulceration mediated by Indo in rats. The use of SNEDDS is one of the
intestinal tract, thereby reducing inflammation. SNEDDS has a wide distribution of the medication throughout the oil droplets are quickly expelled from the abdomen and facilitate paracellular absorption. The size of emulsion droplets affects the distribution of the drug, thus improving the penetration of TQ into the gastric membrane.36 The software showed that the P value was significant ($P < 0.05$) for the linear and cubic models when compared with the quadratic and special cubic models. The cubic model was selected on the basis of the most complicated model with a P value < 0.05. The cubic model adds other third-order terms. In addition, the statistics results showed that the cubic model maximizes the adjusted R-square value (adj. R^2) when compared with other models. R^2 reflects the variance of the response factor attributed to all the independent variables in the specified template (Table 5). The design deduced the optimized formulation that was prepared and compared with predicted values. After that, the formula was investigated for in vivo activity.

Indo is known to cause ulcers due to local or indirect action.37,38 Local impact relates to the immediate local contact between the mucosa and the medication, contributing to inflammation, tissue cytotoxicity and mucosal injury. The indirect effect of Indo which causes ulcers is the inhibition of prostaglandin synthesis by a cyclooxygenase (COX) pathway.39 Gross analysis of the ulcer control group revealed a few large, dark hemorrhagic streaks (Figure 2B). Among the pre-treatment groups, the TQ group showed a significant ($P < 0.05$) reduction in the ulcer region, accompanied by a plain SNEDDS group, which showed negligible defense against Indo-mediated ulcers. The macroscopic analysis of TQ and TQ-SNEDDS revealed some red color spots erosion. As one of the benefits of SNEDDS is that it does not harm healthy human or animal cells, SNEDDS are ideal for human or animal use. In contrast, oil droplets are quickly expelled from the abdomen and facilitate a wide distribution of the medication throughout the intestinal tract, thereby reducing inflammation. SNEDDS has a positive effect on TQ distribution.40,41 SNEDDS improves medication-remaining time in the target, enhances bioavailability, and decreases TQ degradation. The excessive hepatic first-pass effect and the release of formulations from the aqueous media of the intestinal contents are significant barriers to the absorption of poorly water-soluble lipid products because of poor aqueous solubility. SNEDDS is considered a possible vehicle for improving the oral bioavailability of medications that are poorly soluble in water. Different mechanisms for the absorption of SNEDDS from the intestine have been reported. SNEDDS provides a range of advantages, including high productivity, no organic solvents, thermodynamic stability and increased bioavailability of the oral drug. The motility of the gastrointestinal tract allows the stirring of the SNEDDS. TQ controls a wide variety of functions of the body and is a precursor to various molecules’ inflammatory process. The goal of the study was to formulate TQ as a SNEDDS, to increase the gastric ulcer defense efficacy of TQ. Direct absorption through the GI tract, which is due to small particle size and lipid content, is one of these mechanisms. The particle size of the SNEDDS formulations was almost less than 100 nm, and this decrease in particle size affects the SNEDDS surface area. Particularly in the lymphatic region of the tissue, this small size allows better absorption in the intestine, thus avoiding hepatic first pass metabolism. In the small intestine, the lipids could induce bile secretion, and SNEDDS were associated with bile salt to form mixed micelles that helped the intact SNEDDS get into the lymphatic vessels and first-pass metabolism of the liver. Significant factors in the encouraged absorption are the uptake and lymphatic transport of intact SNEDDS. Rising permeability by surfactants is another mechanism that promotes the absorption of SNEDDS. By disrupting the cell membrane and reversibly opening the tight junction of intestinal epithelial cells, surfactants can increase intestinal epithelial permeability and thus facilitate paracellular absorption.17,42-45

This may clarify the protective effect of TQ SNEDDS on the abdomen.46 Nano globules exclusively adhere to inflamed tissue in gastric ulcers and duodenal ulcers. Inflammation leads to increased development of mucus in the infected area. Differences in ulcerated tissues in a normal population have therefore become less noticeable than in colitis, where variations in the volume of mucosa and bacterial clearance have a greater impact on particle compliance. The size-dependent deposition of nano globules therefore represents an important step in the development of a new drug supply strategy.39,47 There was increased adhesion of nano globules in thicker, inflamed tissue layers, while reliance on size was found in ulcerated regions. This theory could be related to the results of studies in which TQ could stay in the stomach for hours and cause delayed absorption.

Conclusion

The formulations of TQ-loaded SNEDDS were successfully optimized using a mixture model. The prepared TQ-loaded formulation of SNEDDS, consisting of almond oil (oil; X_1),

Table 5. Cubic Model ANOVA for SNEDDS Globule Size.
Sum of squares

104628
R^2
99.517

Abbreviations: Df, degree of freedom; MAE, mean absolute error.
between 80 (surfactant; X2) and PEG 200 (cosurfactant; X3), demonstrated a decrease in globular size. Clear agreement was reached between the template estimation and the experimental values of the globule size used as a response variable. TQ-loaded SNEDDS improved antiulcer protection in the Indo-induced ulcer system, which is due to the existence of various phytochemicals in TQ. TQ-loaded SNEDDS have been shown to increase efficacy as an anti-ulcer agent. Overall results have shown that this combination of TQ-loaded SNEDDS could be a viable method for enhancing the protective properties of TQ, which has shown great potential for use in nutraceutical fields.

Authors’ Note
The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G-431-166-1440). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

ORCID iD
Mohamed F. Radwan https://orcid.org/0000-0002-9917-0856

References
1. Stack WA, Atherton JC, Hawkey GM, Logan RFA, Hawkey CJ. Interactions between helicobacter pylori and other risk factors for peptic ulcer bleeding. Aliment Pharmacol Ther. 2002;16(3): 497-506. doi:10.1046/j.1365-2036.2002.01197.x
2. Talley NJ, Locke GR, Moayyedi P, West J, Ford AC, Saito YA. GI Epidemiology: Diseases and Clinical Methodology: Second Edition. Wiley Blackwell; 2014. doi:10.1002/9781118727072
3. Liu N, Lv J, Liu J, Zhang Y. The PU-PROM: a patient-reported outcome measure for peptic ulcer disease. Health Expect. 2017;20(6):1350-1366. doi:10.1111/hex.12575
4. Dumic I, Nordin T,ecmenica M, Lalosevic MS, Milovanjvic T. Gastrointestinal tract disorders in older age. Can J Gastroenterol Hepatol. 2019. doi:10.1155/2019/6757524
5. Fu Y, Wu HQ, Cui HL, Li Y, Li C. Gastric oxidative and anti-ulcer effects of olumiraxine against several gastric ulcer models in rats: possible roles of anti-oxidant, anti-inflammatory, and pro-survival mechanisms. Phytother Res. 2018;32(10):2047-2058. doi:10.1002/ptr.6148
6. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;17(1):41-58. doi:10.1038/nrd.2018.168
7. Fahmy UA, Alaoof A, Awan ZA, Alqarni HM, Alhakamy NA. Optimization of thymoquinone–loaded coconut oil nanostructured lipids for the management of ethanol-induced ulcer. AAPS PharmSciTech. 2020;21(5):1-10. doi:10.1208/s12249-020-01693-1
8. Ballout F, Habli Z, Rahal ON, Fatfat M, Gali-Muhtasib H. Thymoquinone-based nanotechnology for cancer therapy: promises and challenges. Drug Discov Today. 2018;23(5):1089-1098. Accessed November 9, 2019. https://www.sciencedirect.com/science/article/pii/S135964617303513
9. Alhakamy NA, Badr-Eldin SM, Fahmy UA, et al. Thymoquinone-loaded soy–phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics. 2020;12(8):761. doi:10.3390/pharmaceutics12080761
10. Farzaei MH, Shams-Ardekan MR, Abbasabadi Z, Rahimi R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol. 2013;2013:12. doi:10.1155/2013/136932
11. Garcia Rodriguez LA, Lanas A, Soriano-Gabarrit M, Cea Soriano L. Low-dose aspirin and risk of upper/lower gastrointestinal bleeding by bleed severity: a cohort study with nested case-control analysis using primary care electronic health records from the United Kingdom. Ann Med. 2019;51(2):182-192. doi:10.1080/07853890.2019.1591635
12. Cheong AM, Tan ZW, Patrick NO, Tan CP, Lim YM, Nyam KL. Improvement of gastroprotective and anti-ulcer effect of kaen seed oil-in-water nanoemulsions in rats. Food Sci Biotechnol. 2018;27(4):1175-1184. doi:10.1002/fsb2.0342-0
13. Vaxman I, Dispenzieri A, Muchtar E, Gertz M. New developments in diagnosis, risk assessment and management in systemic amyloidosis. Blood Rev. 2020;40:100636. doi:10.1016/j.blre.2019.100636
14. Goenka MK, Majumder S, Sethy PK, Chakraborty M. Helicobacter pylori negative, non-steroidal anti-inflammatory drug-negative peptic ulcers in India. Indian J Gastroenterol. 2011;30(1):33-37. doi:10.1007/s12664-011-0085-9
15. Ng EKW, Chung SCS, Sung JYY, et al. High prevalence of Helicobacter pylori infection in duodenal ulcer perforations not caused by non-steroidal anti-inflammatory drugs. Br J Surg. 1996;83(12):1779-1781. doi:10.1002/bjs.1800831237
16. Voutilainen M, Mäntynen T, Fär M, Hulola M, Sipponen P. Impact of non-steroidal anti-inflammatory drug and aspirin use on the prevalence of dyspepsia and uncomplicated peptic ulcer disease. Scand J Gastroenterol. 2001;36(8):817-821. doi:10.1080/00365520120419
17. El-Far AH, Al Jaouni SK, Li W, Moussa SA. Protective roles of thymoquinone nanoformulations: potential nanonutraceuticals in human diseases. Nutrients. 2018;10(10):1369. doi:10.3390/nu10101369
18. Kalam MA, Raish M, Ahmed A, et al. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. Mater Sci Eng C Mater Biol Appl. 2017;76:319-329. doi:10.1016/j.msec.2017.03.088
19. Alhakamy NA, Badr-Eldin SM, Fahmy UA, et al. Thymoquinone-loaded soy–phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics. 2020;12(8):761. doi:10.3390/pharmaceutics12080761
20. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471-476.

21. Hosny KM, Ahmed OAA, Fahmy UA, Alkalhali HM. Nanovesicular systems loaded with a recently approved second generation type-5 phosphodiesterase inhibitor (avanafil): I. Plackett-Burman screening and characterization. J Drug Deliv Sci Technol. 2018;43:154-159. doi:10.1016/j.jddst.2017.10.009

22. Aldawarsi HM, Elfaky MA, Fahmy UA, Aljaeid BM, Alshareef OA, El-Say KM. Development of a fluvastatin-loaded self-nanoemulsifying system to maximize therapeutic efficacy in human colorectal carcinoma cells. J Drug Deliv Sci Technol. 2018;46:7-13. doi:10.1016/j.jddst.2018.04.015

23. Alhakamy NA, Fahmy UA, Ahmed OA, Alkhalidi HM. Nanovesicular systems of myricetin: formulation development, characterization, and in vitro and in vivo evaluation. Langmuir. 2018;34(12):5922-5930. doi:10.1021/acs.langmuir.8b02590

24. Fahmy UA, Ahmed OAA, Hosny KM. Development and evaluation of avanafil self-nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech. 2015;16(1):53-58. doi:10.1208/s12249-014-0199-3

25. El-Say KM, Almoez TA, Ahmed OAA, Hosny KM, Abd-Allah Fi. Self-nanoemulsifying lyophilized tablets for flash oral transmucosal delivery of vitamin K: development and clinical evaluation. J Pharm Sci. 2017;106(9):2447-2456. doi:10.1016/j.xphs.2017.01.001

26. Fahmy UA, El-Sisi AE, El-Ghamry HA, Zidan AS. Effect of concomitant administration of amoxicillin on the pharmacokinetics and bioavailability of metformin. Lat Am J Pharm. 2013;32(7):1047-1081.

27. Playford RJ, Vesey DA, Haldane S, Alison MR, Calam J. Dose-dependent effects of fentanyl on indomethacin-induced gastric damage. Digestion. 1991;49(4):198-203. doi:10.1159/000200722

28. Rats IG, Morjan S, Laham SAl, Atieh R. Gastroprotective effects of eulaliain loaded pumpkin seed oil-based self nanoemulsion: in vitro and in vivo evaluation. Pharmaceutics. 2019. doi:10.3390/pharmaceutics11120640

29. Simoes S, Lopes R, Campos MCD, Marruz MJ, da Cruz MEM, Vieira JAV. Development and evaluation of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443-448. doi:10.1016/j.jcis.2008.10.077

30. Palle S, Kanakalatha A, Kavitha CN. Gastroprotective and antiulcer effects of celastrus paniculatus seed oil against several gastric ulcer models in rats. J Diet Suppl. 2018;15(4):373-385. doi:10.1080/19390211.2017.1349231

31. Kumar GP. Potential oral protective effects of SNEDDS of diclofenac sodium on experimental gastric ulcers in rats. Biochem Pharmacol Open Access. 2018;7(3). doi:10.4172/2167-0501.1000254

32. He H, Li X, Yu H, et al. Gastroprotective effect of araloside A on ethanol- and aspirin-induced gastric ulcer in mice: involvement of H+/K+-ATPase and mitochondrial-mediated signaling pathway. J Nat Med. 2019;73(2):339-352. doi:10.1007/s11418-018-1256-0

33. Khan SA, Khan AM, Karim S, Kamal MA, Damanhour GA, Mirza Z. Panacea seed “Nigella”: a review focusing on regenerative effects for gastric ailments. Saudi J Biol Sci. 2016;23(4):542-553. doi:10.1016/j.sjbs.2014.10.001

34. Son HY, Chae BR, Choi JY, et al. Optimization of self-microemulsifying drug delivery system for phospholipid complex of telmisartan using D-optimal mixture design. PLoS One. 2018;13(12):1-17. doi:10.1371/journal.pone.0208339

35. Yoo JH, Lee JS, Lee YS, Ku SK, Lee HJ. Protective effect of bovine milk against HCl and ethanol-induced gastric ulcer in mice. J Dairy Sci. 2018;101(5):3758-3770. doi:10.3168/jds.2017-13872

36. Ahmed OA, Fahmy UA, Bakhaidar R, et al. Omega-3 self-nanoemulsion role in gastroprotection against indomethacin-induced gastric injury in rats. Pharmaceutics. 2020;12(2):140. Accessed August 8, 2020. https://www.mdpi.com/1999-4923/12/2/140/htm

37. Nagai K, Ueno Y, Tanaka S, Hayashi R, Shinagawa K, Chayama K. Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages. Cell Immunol. 2017;20:20-28. Accessed November 9, 2019. https://www.sciencedirect.com/science/article/pii/S0008874917301211

38. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2015;12(7):1121-1133. doi:10.1517/17425247.2015.999038

39. Ahmad A, Mishra RK, Vyawahare A, et al. Thymoquinone (2-Isoaryl-5-methyl-1, 4-benz oquinone) as a chemopreventive/anticancer agent: chemistry and biological effects. Biochem Phamacol. 2012.719870. Accessed November 9, 2019. https://www.sciencedirect.com/science/article/pii/S0008874917301211

40. Hsu CH, Kuo SW, Chen JK, Ko FH, Liao CS, Chang FC. Self-assembly behavior of A-B diblock and C-D random copolymer mixtures in the solution state through mediated hydrogen bonding. Langmuir. 2008;24(15):7727-7734. doi:10.1021/la703960g

41. Cherniakov I, Domb AJ, Hoffmann A. Self-nanoemulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12(7):1121-1133. doi:10.1517/17425247.2015.999038

42. Ahmed A, Mishra RK, Vyawahare A, et al. Thymoquinone (2-Isoaryl-5-methyl-1, 4-benz oquinone) as a chemopreventive/anticancer agent: chemistry and biological effects. Biochem Phamacol. 2012.719870. Accessed November 9, 2019. https://www.sciencedirect.com/science/article/pii/S0008874917301211

43. Mohammed A, Islam MS. Spice-derived bioactive ingredients: potential agents or food adjuvant in the management of diabetes mellitus. Front Pharmacol. 2018;9(AUG):893. doi:10.3389/fphar.2018.00893

44. Cherniakov I, Domb AJ, Hoffmann A. Self-nanoemulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12(7):1121-1133. doi:10.1517/17425247.2015.999038

45. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2012;9(10):1305-1317. doi:10.1517/17425247.2012.719870

46. Liu C, Lv L, Guo W, et al. Self-nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: physicochemical characterization and pharmacokinetic study. Biomed Res Int. 2018;2018:6763057. doi:10.1155/2018/6763057

47. Qian J, Meng H, Xin L, et al. Self-nanoemulsifying drug delivery systems of myricetin: formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surfaces B BioInterfaces. 2017;160:101-109. doi:10.1016/j.colsurfb.2017.09.020