High-frequency feedback robust control for flocking of multi-agent system with unknown parameters

Qing Zhang, Jie Wang, Zhengquan Yang & Zengqiang Chen

To cite this article: Qing Zhang, Jie Wang, Zhengquan Yang & Zengqiang Chen (2019) High-frequency feedback robust control for flocking of multi-agent system with unknown parameters, Automatika, 60:1, 28-35, DOI: 10.1080/00051144.2019.1570630

To link to this article: https://doi.org/10.1080/00051144.2019.1570630

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 27 Jan 2019.

Submit your article to this journal

Article views: 355

View related articles

View Crossmark data
High-frequency feedback robust control for flocking of multi-agent system with unknown parameters

Qing Zhang a, Jie Wang a, Zhengquan Yang a and Zengqiang Chen b

a College of Science, Civil Aviation University of China, Tianjin, People's Republic of China; b Department of Automation, Nankai University, Tianjin, People's Republic of China

ABSTRACT
In this paper, a kind of high-frequency feedback robust control for flocking of a multi-agent system with unknown parameters is put forward in detail. Firstly, a high-frequency feedback robust control scheme is proposed for the flocking problem of a multi-agent system with unknown parameters. Secondly, through the employment of Lyapunov stability theory, it’s proved that velocity error is gradually stabilized and collisions between agents are also avoided. In addition, the high-frequency feedback robust control for flocking of a multi-agent system with unknown parameters is further proved. Finally, it is verified with the help of numerical simulation.

1. Introduction
It is widely acknowledged that multi-agent systems are widely employed in the process of formation, flocking, and information fusion. Moreover, the study conducted on the multi-agent flocking system [1] has attracted widespread attention from scholars. For instance, Su et al. [2] once carried out a study on the flocking of multi-agents with a virtual leader. Yu et al. [3] conducted a relevant study on the distributed leader–follower flocking control for multi-agent dynamical systems with time-varying velocities. In addition, Atrianfar and Haeri [4] implemented a relevant study on the adaptive flocking control of nonlinear multi-agent systems with directed switching topologies and saturation constraints. Moreover, Li et al. [5] launched a related study on the distributed robust control of linear multi-agent systems with parameter uncertainties.

As for the actual system, the model is mainly established on the basis of the observations over the data, which leads to incomplete models. In the process of actual operation, the parameters of the system will vary according to the external conditions. For instance, the sound speed of a single chip varies along with the change of temperature consequently. In addition, the motor parameters will also experience certain changes during different phases in the process of use, which as a result will have an impact on the normal operation of the motor control system. Furthermore, all these will bring uncertainty to the system. Therefore, it is of great significance to study on the control problem of a multi-agent system with unknown parameters.

The fixed controller is named as the robust controller when the robustness of the closed loop system is set up as the design target. When the robust controller has a high-frequency response around zero point, it is called a high-frequency feedback robust controller. Besides, when the control system is subject to external disturbances and modelling errors in the actual control system, it is quite difficult to obtain the precise model of the actual control system. Therefore, a controller with high-frequency feedback robust control is tailored accordingly, which enables the uncertain objects to satisfy the control properties. In other words, the performance of the control system can be maintained to a certain extent when either the external environment or the parameters of the control system change.

It is known that robustness [6,7] play an important role in the research topic within control theory. The study conducted on robustness focuses mainly on the linear time-invariant control systems [8], including stability [9,10], being free from static error [11], adaptive control [12–15] and so on. Qian et al. [16,17] conducted a relevant study on a robust control method for formation manoeuvres of a multi-agent system and carried out an investigation on the problems related to formation control of multiple agents.

The innovative points reflected in this paper is shown as follows: a high-frequency feedback robust control scheme is designed for the flocking problem of a multi-agent system with unknown parameters, and then both the stability and flocking behaviour are strictly proved by employing the Lyapunov method. Moreover, the results obtained from theory are further verified by employing numerical simulations.

Through the comparison made between this paper and [18–20], the following advantages can be obtained.

CONTACT Qing Zhang qz120168@hotmail.com College of Science, Civil Aviation University of China, Tianjin, People’s Republic of China

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In contrast, high-frequency feedback robust control for flocking of multi-agent with unknown parameters can not only be used to identify unknown parameters, but also has perfect robustness. In comparison with the flocking of a multi-agent system in [18–20], it can be observed that high-frequency feedback robust control for flocking of multi-agent with unknown parameters has better performance in both convergence and stability.

In terms of practical application, Unmanned Aerial Vehicle (UAV) in flight, it can be obtained that the speeds of the UAV are gradually uniform, the direction of the speed is the same, and no collision occurs between the UAVs under the action of the distributed controller. Eventually, the flocking of the UAV system can be formed for further investigation or attack.

Section 2 gives the dynamic equation of the multi-agent and some preliminaries. Section 3 designs a controller that has a high-frequency feedback robust control with unknown parameters. In Section 4, it is proved that under the controller, the velocity of the multi-agent is gradually stabilized, and no collision occurs between agents. In Section 5, simulation results are given to verify the proposed control scheme.

2. Preliminaries

A set of N ($N \geq 1$) agents moving in an n-dimensional Euclidean space are considered. In the system, the dynamics model of the agent i is described by

\begin{equation}
\begin{aligned}
\dot{x}_i(t) &= v_i(t), \\
\dot{v}_i(t) &= f_i(x_i, t) + u_i(t), \quad i = 1, 2, \ldots, N,
\end{aligned}
\end{equation}

$x_i(t) \in \mathbb{R}^n$ is the position vector of the agent i, $v_i(t) \in \mathbb{R}^n$ is the velocity vector of the agent i, and $u_i(t) \in \mathbb{R}^n$ is the control input of the agent i. The nonlinear function $f_i(x_i, t) \in \mathbb{R}^n$, which describes the agent i, satisfies Assumptions 2.1 and 2.2.

Assumption 2.1: The nonlinear function $f_i(x_i, t) \in \mathbb{R}^n$ can be linearly parameterized:

\begin{equation}
\dot{x}_i(t) = g(x_i, t) + \phi_i^T(x_i, t)\theta_i,
\end{equation}

$g(x_i, t)$ is the known nonlinear function, $\phi_i(x_i, t) \in \mathbb{R}^{n \times n}$ is a known basis vector function, and $\theta_i \in \mathbb{R}^n$ is unknown constant parameter.

Assumption 2.2: For the nonlinear function $f_i(x_i, t) \in \mathbb{R}^n$, there exists an upper bound function $\rho(x)$ which satisfies $\|f_i(x_i, t)\| \leq \rho(x)$.

The directed graph G describes the topology between agents. The directed graph G is composed of a vertex set V and edge set E, $V = \{1, 2, \ldots, N\}$, $E = \{(i, j) | i, j \in V\}$. If agent i can receive the information of agent j, then $(j, i) \in E$, otherwise $(j, i) \notin E$.

The adjacency matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ of graph G, where a_{ij} satisfies

\begin{equation}
a_{ij} = \begin{cases}
1, & \text{follower } i \text{ can receive information from follower } j, \\
0, & \text{follower } i \text{ does not receive information from follower } j.
\end{cases}
\end{equation}

The Laplace matrix of graph G is defined as $L = [l_{ij}] \in \mathbb{R}^{n \times n}$. The element in L satisfies $l_{ii} = \sum_{j=1}^{N} a_{ij}$, $l_{ij} = -a_{ij}, i \neq j$.

Definition 2.3 ([21] Global Reach): For G, if there is a path in G from every node i in G to node 0, we say that node 0 is globally reachable in G, which is much weaker than strongly connectedness.

Definition 2.4 ([22] Flocking): A group of mobile agents is said to be (asymptotically) flocking, when all agents have the same velocity vector, and collision among each agent is always avoided.

3. Design of controller based on high-frequency feedback robust control with unknown parameters

We define the set of control laws,

\begin{equation}
u_i(t) = K_1 \sum_{j=1}^{N} a_{ij}(v_j - v_i) - 2 \sum_{k=1}^{N} w_{ik} \sum_{j=1}^{N} a_{kj} \nabla x_i V_{kj} - \rho^2(\chi)e_i - \rho(\chi)\|e\| + \omega - \phi_i^T\theta, \quad i, j = 1, 2, \ldots, N,
\end{equation}

\begin{equation}
\dot{\theta}_i = \frac{K_2}{K_1} \phi_i e_i, \quad i, j = 1, 2, \ldots, N,
\end{equation}

where control parameters $K_1 > 0$, $K_2 > 0$, ω is the error band width, w_{ik} is the element of the matrix L^{-1}, and $\dot{\theta}_i$ is the estimated value of agent i on θ_i, $e_i = \sum_{j=1}^{N} a_{ij}(v_j - v_i)$ is a local consistency error vector.

$\nabla x_i V_{ij}$ is a direction vector of the negative gradient of an artificial potential function defined by the following equation:

\begin{equation}
V_{ij}(x_i) = \frac{1}{M^2 - \|x_{ij}\|^2} + \frac{1}{\|x_{ij}\|^2}, \quad \|x_{ij}\| \in (0, M),
\end{equation}

with $x_{ij} = x_i - x_j$, which allows both collision avoidance and maintaining links in the network. M represents the maximum distance within which multi-agents are able to obtain information from other agents.

Based on the definition of V_{ij},

\begin{equation}
\nabla x_i V_{ij} = \nabla_{x_i} V_{ij} = -\nabla x_j V_{ij}, \quad i, j = 1, 2, \ldots, N,
\end{equation}
For convenience,
\[
x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}, \quad v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}, \\
e = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_N \end{pmatrix}, \quad \hat{\Theta} = \begin{pmatrix} \hat{\Theta}_1 \\ \hat{\Theta}_2 \\ \vdots \\ \hat{\Theta}_N \end{pmatrix},
\]
\[f(x, t) = \begin{pmatrix} f_1(x_1, t) \\ f_2(x_2, t) \\ \vdots \\ f_N(x_N, t) \end{pmatrix}, \quad F = \begin{pmatrix} \sum_{j=1}^{N} a_{1j} \nabla x_1 V_{ij} \\ \sum_{j=1}^{N} a_{2j} \nabla x_2 V_{ij} \\ \vdots \\ \sum_{j=1}^{N} a_{Nj} \nabla x_N V_{ij} \end{pmatrix},
\]
\[\Phi = \text{diag} \{ \phi_1, \phi_2, \ldots, \phi_N \}.
\]
System (1) can be written in a vector form
\[
\dot{x} = v,
\]
\[
\dot{v} = f(x, t) - K_1 e - 2L^{-1} F - \frac{\rho^2(x)e}{\rho(x)\|e\| + \omega} - \Phi^T \hat{\Theta}.
\]

By the definition of \(e_i\), we have \(e = Lv\).

4. The main theory results

Theorem 4.1: In terms of multi-agents system (1), the final velocity error variable satisfies \(\|e\| \leq \sqrt{\omega/K_1}\), the velocity of multi-agent is gradually stabilized, and no collision occurs between agents under control laws (4).

Proof: Construct Lyapunov function \(V_G(t)\)
\[
V_G(t) = \frac{1}{2K_1} v^T L^{-1} e + \frac{1}{2K_2} \sum_{i=1}^{N} \hat{\Theta}_i^T \hat{\Theta}_i + \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} V_{ij}.
\]

The generalized time derivative of \(V_G(t)\) is
\[
\dot{V}_G(t) = \frac{1}{K_1} v^T L^{-1} \dot{e} + \frac{1}{K_2} \hat{\Theta}_i^T \dot{\Theta}_i + \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \dot{V}_{ij}.
\]
The first part of (10) can be written as
\[
\frac{1}{K_1} v^T L^{-1} e = \frac{1}{K_1} v^T L^{-1} \dot{L} v = \frac{1}{K_1} e^T \dot{L} v
\]
\[
= \frac{1}{K_1} e^T [f(x, t) - K_1 e - 2L^{-1} F - \frac{\rho^2(x)e}{\rho(x)\|e\| + \omega} - \Phi^T \hat{\Theta}]
\]
\[
= \frac{1}{K_1} [e^T f(x, t) - K_1 e - 2v^T F - \frac{\rho^2(x)e}{\rho(x)\|e\| + \omega} - (\Phi e)^T \hat{\Theta}].
\]
By Assumption 2.2 and taking the norm of the first term,
\[
e^T f(x, t) - \frac{\rho^2(x)e}{\rho(x)\|e\| + \omega} \leq \omega.
\]
By (11) and (12), we have
\[
\frac{1}{K_1} e^T L^{-1} \dot{e} \leq \frac{1}{K_1} [\omega - K_1 e^T e - 2v^T F - (\Phi e)^T \hat{\Theta}].
\]

For the second item of (10), we have
\[
\frac{1}{K_2} \hat{\Theta}_i^T \dot{\Theta}_i = \frac{1}{K_2} \sum_{i=1}^{N} \left(\frac{K_2}{K_1} \phi_i e_i \right)^T \hat{\Theta}_i
\]
\[
= \frac{1}{K_1} \sum_{i=1}^{N} (\phi_i e_i)^T \hat{\Theta}_i
\]
\[
= \frac{1}{K_1} (\Phi e)^T \hat{\Theta}.
\]

By (7), the last item of (10) can be written as
\[
\frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} a_{ij} V_{ij} = \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} (\dot{x}_i^T - \dot{x}_j^T) \nabla x_i V_{ij}
\]
\[
= \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} (\dot{x}_i^T - \dot{x}_j^T) \nabla x_i V_{ij}. \]
\[
\begin{align*}
&= \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} v_i^T \nabla x_i V_{ij} \\
&+ \frac{1}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} v_j^T \nabla x_j V_{ij} \\
&= \frac{2}{K_1} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} v_i^T \nabla x_i V_{ij} \\
&= \frac{2}{K_1} v^T F.
\end{align*}
\]

Above all, we have
\[
\dot{V}_C(t) \leq \frac{w}{K_1} - e^T e - \frac{2}{K_1} v^T F - \frac{1}{K_1} (\Phi e)^T \hat{\Theta} \\
+ \frac{1}{K_1} (\Phi e)^T \hat{\Theta} + \frac{2}{K_1} v^T F \\
\leq - \left(e^T e - \frac{w}{K_1} \right).
\]

When \(e^T e > w/K_1 \), we have \(\dot{V}_C(t) < 0 \), then \(V_C(t) \) monotonously decreases, contradicting with \(e^T e > w/K_1 \). When \(e^T e \leq w/K_1 \), \(e^T e \) bounded, we can obtain \(\| e \| \leq \sqrt{w/K_1} \).

Hence, the theorem is proved. \(\blacksquare \)

5. Simulation results

In this section, an example was further displayed to show the effectiveness of the algorithm proposed by us for the system described by (1).

The unknown nonlinear function \(f_i(x_i, t) \) is assumed as
\[
f_i(x_i, t) = g(x_i, t) + \phi_i^T \theta_i = \begin{pmatrix} 10(v_y - v_x) \\ -v_x v_y - v_y + 28v_x \\ v_x v_y + \frac{8}{3} v_z \end{pmatrix},
\]

where
\[
g(x_i, t) = \begin{pmatrix} 0 \\ -v_x v_z - v_y + 28v_x \\ v_x v_y + \frac{8}{3} v_z \end{pmatrix}, \quad \phi_i = \begin{pmatrix} v_y - v_x \\ 0 \\ 0 \end{pmatrix},
\]
\(\theta_i = 10 \), and function \(f_i(x_i, t) \) satisfies the condition of the assumption.

Two sets of multi-agents were selected by us for comparison. It was obtained that 10 agents are available in one group and 20 agents are available in the other group. Then, the comparison was made between the two groups of multi-agents in different initial states. The initial velocity of the multi-agent is randomly selected, and error band width \(\omega = 3600 \), upper bound function \(\rho(\cdot) = 60 \), control parameter \(K_1 = K_2 = 1 \), unknown parameter \(\theta_i = 10 \) can finally be identified.

Figure 1 shows the initial state of 10 agents. Figure 2 indicates the initial state of 20 agents. The direction

The adjacency matrix composed of 10 agents refers to
\[
A = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.
\]

The adjacency matrix composed of 20 agents refers to
\[
A = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.
\]
the arrow denotes the movement direction of the agents. It can be obtained from Figure 1 that 10 agents are evenly distributed on a straight line, and the initial movement direction of the agents is inconsistent. Moreover, it can be observed from Figure 2 that 20 agents are evenly distributed on a circle with a radius of 1, and the initial movement direction of the agents is inconsistent as well.

Figure 3 displays the final state of 10 agents when the system is acted by the controller of high-frequency feedback robust control with unknown parameters. It is observed that the velocity directions of the 10 agents are consistent and no collision occurs between the agents. Thus, it is able to form high-frequency feedback robust control for flocking of a multi-agent with unknown parameters. Figure 4 shows the final state of 20 agents when the system is acted by the controller of high-frequency feedback robust control with unknown parameters. It is obtained that the velocity directions of the 20 agents conform to each other and no collision occurs between agents. Therefore, it can also form high-frequency feedback robust control for flocking of a multi-agent with unknown parameters. By comparing Figure 3 with Figure 4, it is easy for us to come to the conclusion that flocking of a multi-agent system can be formed with different numbers of multi-agents under the action of high-frequency feedback robust control. In addition, we can also obtain the result that the flocking of a multi-agent system is able to be formed in different initial states under the action of high-frequency feedback robust control.

Figure 5 represents the identification of unknown parameters of 10 agents with an initial value of 0, and the unknown parameters of \(\theta_i = 10 \) can be identified. Figure 6 indicates the identification of unknown parameters of 20 agents with an initial value of 0, and the unknown parameters of \(\theta_i = 10 \) can be identified. Figure 7 shows the identification of unknown parameters of 10 agents with an initial value of 0, and the unknown parameters of \(\theta_i = 10 \) can be identified in the process. Figure 8 displays the identification of unknown parameters of 20 agents with an initial value of 2, and the unknown parameters of \(\theta_i = 10 \) can be identified. From the comparison between Figures 5 and 7, as well as between Figures 6 and 8, it can be obtained that the parameters with different initial values can arrive at 10 when the number of agents is the same. Moreover, the convergence speed and stability obtained from them are also the same when the quantity of agents
Figure 5. Identification of unknown parameters of 10 agents with an initial value of 0.

Figure 6. Identification of unknown parameters of 20 agents with an initial value of 0.

is the same. From the comparison between Figures 5 and 6, as well as between Figures 7 and 8, it can also be obtained that the unknown parameters can reach 10 in multi-agents with different numbers and different initial states. In addition, unknown parameters in different numbers of multi-agents and different initial states of multi-agents with the same convergence speed can also be obtained by us. It is also concluded that unknown parameters can reach 10 in different numbers of multi-agents and different initial states of multi-agents with the same stability.

Figure 7. Identification of unknown parameters of 10 agents with an initial value of 2.

Figure 8. Identification of unknown parameters of 20 agents with an initial value of 2.

Figure 9. Velocity error of flocking with 10 agents.

Figure 10. Velocity error of flocking with 20 agents.

it can be observed that the speed error of a multi-agent with different numbers and different initial states is bounded, and the error width of different numbers of multi-agent and multi-agent with different states is the same under the action of high-frequency feedback robust control. By comparing Figure 11 with Figure 12,
Results obtained from simulation helps verify the high-frequency feedback robust control for flocking of a multi-agent with unknown parameters. Then the state diagram, the velocity error diagram and the parameter change diagram of the high-frequency feedback robust control for flocking of a multi-agent with unknown parameters are obtained. Under the action of high-frequency feedback robust control, the number of multi-agents and the initial state of multi-agents will not impose any effect on the formation of the flocking of a multi-agent system. Changes in the initial values of unknown parameters also do not have any effect on the identification of parameters in the system.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was supported by the National Natural Science Foundation of China [Grant number 61573199] and the Basic Research Projects of High Education under [Grant number 3122015C025].

ORCID

Qing Zhang http://orcid.org/0000-0003-3941-4764
Zhengquan Yang http://orcid.org/0000-0003-0846-9674
Zengqiang Chen http://orcid.org/0000-0002-1415-4073

References

[1] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Contr. 2006;51(3):401–420.
[2] Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader. IEEE Trans Automat Contr. 2009;54(2):293–307.
[3] Yu W, Chen G, Cao M. Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities. Syst Control Lett. 2010;59(9):543–552.
[4] Atrianfar H, Haeri M. Adaptive flocking control of nonlinear multi-agent systems with directed switching topologies and saturation constraints. J Franklin Inst. 2013;350(6):1545–1561.
[5] Li Z, Duan Z, Xie L. Distributed robust control of linear multi-agent systems with parameter uncertainties. Int J Control. 2012;85(8):1039–1050.
[6] Qian D, Tong S, Xu C. Robust multi-robot formations via sliding mode controller and fuzzy compensator. Automatika. 2016;57(4):1007–1019.
[7] Barhaghtalab M, Bayani H, Nabaei A. On the design of the robust neuro-adaptive controller for cable-driven parallel robots. Automatika. 2016;57(3):724–735.
[8] Chen BS, Tseng CS, Uang HJ. Robustness design of nonlinear dynamic systems via fuzzy linear control. IEEE Trans Fuzzy Syst. 1999;7(5):571–585.
[9] Zhou K, Khargonekar P. Stability robustness bounds for linear state-space models with structured uncertainty. IEEE Trans Automat Contr. 1987;32(7):621–623.
[10] Sarıyıldız E, Ohnishi K. Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans Industr Electron. 2015;62(1):414–422.
[11] Khadra A, Liu XZ, Shen X. Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans Automat Contr. 2009;54(4):923–928.

[12] Rohrs C, Valavani L, Athans M. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans Automat Contr. 1985;30(9):881–889.

[13] Ioannou P, Kokotovic P. Instability analysis and improvement of robustness of adaptive control. Automatica. 1984;20(5):583–594.

[14] Liu YL, Tong S. Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica. 2017;76:143–152.

[15] Li Y, Tong S, Liu Y. Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Trans Fuzzy Syst. 2014;22(1):164–176.

[16] Qian D, Li C, Lee S. Robust formation maneuvers through sliding mode for multi-agent systems with uncertainties. IEEE/CAA J Autom Sinica. 2018;5(1):342–351.

[17] Qian D, Tong S, Li C. Observer-based leader-following formation control of uncertain multiple agents by integral sliding mode. Bull Pol Acad Sci Tech Sci. 2017;65(1):35–44.

[18] Zhang Q, Li P, Yang Z. Adaptive flocking of non-linear multi-agents systems with uncertain parameters. IET Control Theory Appl. 2015;9:351–357.

[19] Yang Z, Zhang Q, Chen Z. A novel adaptive flocking algorithm for multi-agents system with time delay and nonlinear dynamics. In: Control Conference; 2013; Xi’an, China.

[20] Zhang Q, Li P, Yang Z. Adaptive flocking of multi-agents with nonlinear inner-coupling function. ICIC Express Lett B Appl Int J Res Surv. 2014;5:1445–1452.

[21] Yang Z, Liu Z, Chen Z. Tracking control for multi-agent consensus with an active leader and directed topology. In: 2008 7th World Congress on Intelligent Control and Automation; 2008; Chongqing, China.

[22] Zavlanos MM, Jadabaia A, Pappas GJ. Flocking while preserving network connectivity. In: 2007 46th IEEE Conference on Decision and Control; 2007; New Orleans, LA, USA.