The Double Chooz experiment

Christian Buck, MPIK Heidelberg on behalf of the Double Chooz Collaboration

NOW 2016, Otranto
September, 5th 2016
Reactor antineutrinos

3 MeV reactor antineutrino flux worldwide

Antineutrino Global Map 2015, Sci.Rep.5 (2015) 13945

Reactors: Strong and pure source of MeV e-antineutrinos

05-Sept-16
Christian Buck, MPIK Heidelberg
Neutrino mixing at reactors

Short baseline experiments "Reactor anomaly"

θ_{13} exp.: Double Chooz Daya Bay RENO

KamLAND: "Solar" Parameters

$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27 \frac{\Delta m^2 (eV^2) L(m)}{E_\nu (MeV)}\right)$
Double Chooz site

Near detector (ND):
Data taking 01/2015

Far detector (FD):
Data taking 04/2011

2 x 4.25 GW\textsubscript{th} ≈ 10^{21} \text{ neutrinos/s}

Neutrino oscillations

Christian Buck, MPIK Heidelberg
Double Chooz Collaboration

Brazil
- CBPF
- UNICAMP
- UFABC

France
- APC
- CEA/DSM/IRFU:
 - SPP, SPbN
 - SEDI, SIS
- SENAC
- CNRS/IN2P3:
 - Subatech
 - IPHC

Germany
- EKU
- Tübingen
- MPIK
- Heidelberg
- RWTH
- Aachen
- TU München

Japan
- Tohoku U.
- Tokyo Inst. Tech.
- Tokyo Metro. U.
- Kitasato U.
- Kobe U.
- Tohoku Gakuin U.
- Hiroshima Inst. Tech.

Russia
- INR RAS
- IPC RAS
- RRC
- Kurchatov

Spain
- CIEMAT-
- Madrid

USA
- U. Alabama
- ANL, U. Chicago
- Columbia U.
- UC Davis
- Drexel U.
- IIT, KSU, MIT,
- U. Notre Dame
- U. Tennessee
- Virginia Tech
Neutrino production / detection

\[N_{\nu}^{\text{exp}}(t) = \frac{\varepsilon N_p}{4\pi L^2} \times \frac{P_{th}(t)}{\langle E_f \rangle} \times \langle \sigma_f \rangle \]

Mean cross section per fission (Bugey anchor point for FD only)

\[E_{\text{vis}} = E_{\nu} - 0.8 \text{MeV} \]

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

Prompt: > 1MeV

Delayed: n on Gd (H)
30 (200) µs
8 (2.2) MeV

05-Sept-16
Christian Buck, MPIK Heidelberg
Detector Design

Inner detector:

Target (r = 1.2 m):
- Acrylic vessel (8 mm)
- 8.3 tons Gd-scintillator (1 g/l Gd, o-PXE based)

Gamma Catcher (0.55 m):
- Acrylic vessel (12 mm)
- 18 tons liquid scintillator (o-PXE based)

Buffer (1.05 m):
- Steel (3 mm)
- 80 tons “oil”
- 390 PMTs (10”)

Outer Veto:
- Plastic scintillator

Inner Veto:
- Steel (8 mm)
- 70 tons LS (LAB based)
- 78 PMTs (8”)
Calibration systems:
- LED light injection (multi wavelengths)
- Vertical z-axis (radioactive sources, laser ball)
- GC guide tube (radioactive sources)
- Natural sources (spallation neutrons)
Energy scale

- Response uniformity
- Non-linearity effects
- Time variation
Detector stability

- Time variation detector response: < 1%/year
- Gd fraction (center) stable since > 5 years on 0.2% level
Double Chooz milestones

Year	Event Description	Reference
2011	Start data taking (far only) and first results	
2012	First analysis with n captures on H	
2013	RRM (rate) analysis and near lab delivery	
2014	Spectral distortion (reactor flux correlation)	

Accelerator Experiments
- Normal Hierarchy
- Inverted Hierarchy

Reactor Experiments
- Rate only
- Rate+Spectral
- n-Gd
- n-H

Global Fit
- PDG 2013

Best Fit + 68% C.L.

\[
\sin^2 2\theta_{13}
\]
2016: First DC two detector result

Double Chooz
JHEP 1410, 086 (2014)

Preliminary (Moriond)

Daya Bay
PRL 115, 111802 (2015)

RENO
Preprint (arXiv:1511.05849)

T2K
PRD 91, 072010 (2015)

\[\Delta m^2_{32} > 0 \]

\[\Delta m^2_{32} < 0 \]

\[\sin^2(2\theta_{13}) = 0.111 \pm 0.018 \]

Preliminary result shown at Moriond conference (9 months data)

Limited by statistics
Signal and backgrounds

FD-I (460.93days)

FD-II (212.21days)

ND (150.76days)

Events/day FD	Events/day ND	
IBD candidates	40.29	293.4
Cosmogenic BG	0.75±0.14	4.89±0.78
Fast n+stop-μ BG	0.535±0.035	3.53±0.16
Accidental BG	0.106±0.002	0.344±0.002

S/B > 25!
Fit results (Moriond)

Data-MC comparison for each configuration

Best-fit: \(\sin^2 2\theta_{13} = 0.111 \pm 0.018 \) (stat.+syst.) \((\chi^2/\text{dof} = 128.8/120) \)
Dominant uncertainty:
Background DC-I ➔ Reactor flux (SD) ➔ Statistics (Moriond) ➔ Detection systematics?
DC statistics

Moriond analysis limited by statistical power

IBD(Gd) IBD(Gd+H)

10 m³ → 30 m³

Systematics!

Improve statistics by almost factor 3!
(about 200 000 ν in ND and 80 000 ν in FD)
IBD candidates vs time

IBD (Gd + H): 140 per day (S/B > 10)

IBD (Gd + H): 900 per day (S/B > 20)
Accidental Background

Rate (d⁻¹) comparison

	Before ANN	After ANN
Gd	0.07	3.1
H-2013	73	4.3
H-2016	4	4
Gd+H (FD)	4	3.1
Gd+H (ND)	4	3.1

With ANN

- Accidental reduction using Artificial Neural Network (ANN)
- Rate estimation using off-time window method
Cosmogenic isotopes

- Long-lived β-n emitters (9Li and 8He) produced by spallation interactions of muons
- Li sample using distance to muon track and n multiplicity
- Contribution of 8He compatible with 0
- Dominant background in previous Gd analyses (FD only)
- Rates: ND \approx 11/day, FD \approx 2.6/day
Fast neutrons and stopping muons

- More critical in near detector (Some LS in Buffer)
- Fast neutrons reduced using Inner Veto coincidences
- Measure up to 100 MeV
- Rates: ND ≈ 20/day, FD ≈ 2.5/day
Background reduction

Delayed energy spectrum before and after event rejection with different cuts and vetos

Entry / 0.1 MeV

Visible Energy (MeV)
Both reactors off data

- Unique for Double Chooz!
- Two periods: 7.24 days total (FD only phase)
- Constrains background in θ_{13} fit

05-Sept-16
Christian Buck, MPIK Heidelberg
Excess events in 4 – 6 MeV region (Gd and H)
Also seen in Daya Bay and RENO
Dependence on fission isotopes?
Physics beyond θ_{13}

- Muon capture
 (DC, PRC 93, 054608, 2016)
- Ortho-positronium
 (DC, JHEP 10 (2014) 032)
- Background studies
 (DC, PRD 87 (2013) 011102(R))
- Lorentz violation
 (DC, PRD 86, 112009, 2012)
- Sensitivity to Δm_{13}^2
- Neutrino directionality
- Sterile neutrino studies
Double Chooz taking data with 2 detectors since start of 2015

- Preliminary result: $\sin^2(2\theta_{13}) = 0.111 \pm 0.018$
- Improved statistics with Gd+H analysis (factor 5)
- Good background control ($S/B > 10$)
- New result with improved sensitivity soon!
- Further shape studies with high statistics in ND
Backup
Sensitivity projection

![Graph showing sensitivity projection over time]

- **DC-IV Moriond Projection**
- Uncertainty on $\sin^2\theta_{13}$:
 - 0.030 (expected by Moriond)
 - 0.018 (<1 year)
 - 0.010 (~5x years)
- Dominated by statistics for ~10 years

- **Dates:**
 - 05-Sept-16
 - Christian Buck, MPIK Heidelberg
Response non-linearity

\[
\frac{\sigma}{E_{\text{vis}}} = \sqrt{\frac{a^2}{E_{\text{vis}}} + b^2 + \frac{c^2}{E_{\text{vis}}}}
\]

- \(a\): statistical
- \(b\): constant term
- \(c\): electric noise

	FD-I	FD-II	ND
\(a\)	7.84 ± 0.10 %	7.92 ± 0.17 %	8.46 ± 0.09 %
\(b\)	1.87 ± 0.06 %	1.66 ± 0.11 %	1.58 ± 0.10 %
\(c\)	2.49 ± 0.29 %	2.13 ± 0.35 %	2.32 ± 0.21 %
IBD selection

Energy

Distance

Time

Good data: MC agreement!
Signal and backgrounds

	IBD(Gd)	IBD(Gd+H)				
	FD-I	FD-II	ND	FD-I	FD-II	ND
Accidentals (/day)	0.069 ± 0.002	0.118 ± 0.006	0.303 ± 0.007	3.994 ± 0.004	4.284 ± 0.009	3.104 ± 0.004
Fast Neutrons (/day)	0.47 ± 0.03	4.00 ± 0.15		2.54 ±0.07	20.77 ± 0.43	
Cosmogenics (/day)	0.87 ± 0.42	4.67 ± 1.42		2.59 ± 0.61	11.11 ± 2.96	
Reactor OFF (/day)	0.76 ± 0.38			8.90 ± 1.20		
exp. ΣBG (/day)	1.43±0.42	8.97±1.43		9.13±0.61	9.42±0.61	34.98±2.99
IBD cand. - ΣBG (/day)	35.82	40.54	303.52	96.64	108.11	780.96
Signal/ΣBG	25.00	28.40	33.80	10.60	11.50	22.30
Signal/σ(BG)	85.29	96.52	212.25	158.43	177.23	261.19
Background Vetoes (Gd)

- **FV veto** ⇒ chimney stop-μ
- **μ veto** ⇒ 1ms veto after μ
- **Multiplicity** ⇒ unicity condition
- **FV veto** ⇒ vertex likelihood
- **IV veto** ⇒ IV activity
- **OV veto** ⇒ OV activity
- **Li veto** ⇒ Li-likelihood
- **LN cut** ⇒ PMT hit pattern & time
- **LI veto** ⇒ cosmogenic 9Li
- **(CPS veto)** ⇒ chimney likelihood
- **(Qratio)** ⇒ Max Q/Tot. Q
- **Li veto** ⇒ cosmogenic 9Li
- **μ veto** ⇒ μ, cosmogenic
- **Multiplicity** ⇒ multiple-n
- **FV veto** ⇒ chimney stop-μ
- **IV veto** ⇒ fast n, stop-μ, γ scattering
- **OV veto** ⇒ fast n, stop-μ
- **Li veto** ⇒ cosmogenic
- **LN cut** ⇒ light emission from PMT
- **LI veto** ⇒ stop-μ
- **(CPS veto)** ⇒ stop-μ
- **(Qratio)** ⇒ ND buffer stop-μ

(only applied in multi-detector analysis)
Reactor flux uncertainty

	FD-I (%)	FD-II (%)	ND (%)
Bugey4	1.40	1.40	1.40
Energy per fission	0.16	0.16	0.16
Spectrum⊕σ_{IBD}	0.20	0.20	0.20
Baselines	< 0.01	< 0.01	0.01
Fission fraction (α_k)	0.82	0.74	0.73
Thermal power (P_{th})	0.44	0.44	0.44
Total	**1.70**	**1.66**	**1.66**

- **Correlated** across FD-I, FD-II and ND
- **Uncorrelated** ⇒ suppressed with two detectors (in parallel operation)

\[\rho(\text{FD-I:FD-II}) = 0.72 \ (0.90\% \ relative) \]
\[\rho(\text{FD-II:ND}) = >0.99 \ (0.07\% \ relative) \]

Inter-reactor correlation for α_k and P_{th}: ρ_{B1/B2} = 0.78 (most conservative assumption with current data set)