Non-classical phenotypes of autoimmune hepatitis and advances in diagnosis and treatment

Albert J Czaja, Yusuf Bayraktar

Abstract
Non-classical manifestations of autoimmune hepatitis can delay diagnosis and treatment. Our aims were to describe the clinical phenotypes that can confound the diagnosis, detail scoring systems that can ensure their recognition, and outline advances in treatment that can improve their outcome. Prime source and review articles in English were selected through Medline from 1970-2008 and assimilated into personal libraries spanning 32 years. Acute severe or asymptomatic presentations and atypical histological findings, including centrilobular zone 3 necrosis and concurrent bile duct changes, are compatible with the diagnosis. Cholangiographic abnormalities may be present in children and adults with the disease, and autoimmune hepatitis must be considered in patients without autoantibodies or with antimitochondrial antibodies and no other cholestatic features. Asymptomatic patients frequently become symptomatic; mild disease can progress; and there are no confident indices that justify withholding treatment. Two diagnostic scoring systems with complementary virtues have been developed to evaluate patients with confusing features. Normal liver tests and tissue constitute the optimal end point of treatment, and the first relapse is an indication for long-term azathioprine therapy. Cyclosporine, tacrolimus and mycophenolate mofetil are promising salvage therapies, and budesonide with azathioprine may be a superior frontline treatment. We conclude that the non-classical phenotypes of autoimmune hepatitis can be recognized promptly, diagnosed accurately, and treated effectively.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Non-classical phenotypes; Scoring systems; Treatment strategies

INTRODUCTION
Autoimmune hepatitis was initially perceived as a self-perpetuating, inflammatory liver disease in young amenorrheic women with hirsutism, acne and cirrhosis[1-3]. The validity of this classical phenotype was subsequently strengthened by technological advances that excluded a viral cause for the condition[4] and by studies that implicated perturbations of the immune system in its pathogenesis[5-8]. The clinical phenotype expanded as the concept of autoimmunity was applied broadly to liver diseases of unknown cause and as the requirement for 6 mo of disease activity was eliminated from its definition[9,10]. Autoimmune hepatitis still lacks an etiological agent and disease-specific laboratory test, but its designation now applies to patient populations far more diverse and numerous than the original patients with “lupoid hepatitis”[11].

Autoimmune hepatitis must be considered in all individuals with acute and chronic hepatitis of undetermined cause and with graft dysfunction after liver transplantation[11]. Acute[12-15], acute severe[16-19],
and asymptomatic forms have been described; progression to cirrhosis may be indolent and unsuspected, transitions between active and inactive disease may occur spontaneously, concurrent immune diseases may obscure the diagnosis, serological markers may be variably expressed and absent at presentation, histological findings may include centrilobular zone 3 necrosis or concomitant biliary changes, and different ethnic groups may have non-classical clinical phenotypes. The identification of autoimmune hepatitis in diverse clinical situations is critical since prompt institution of corticosteroid therapy can be life-saving.

Corticosteroids alone or a lower dose in combination with azathioprine induce clinical, laboratory and histological improvement in 80% of patients within 5 years. Ten- and twenty-year survivals exceed 80%, and hepatic fibrosis is reduced or prevented. These therapeutic successes are counterbalanced against adverse outcomes that justify the continued pursuit of new drugs and regimens. Nine percent of treated patients deteriorate despite compliance with corticosteroid schedules; treatment failure; 13% develop treatment-related side effects that compel premature withdrawal of medication; and 9% improve but not to a degree to justify discontinuation of the medication (incomplete response). Furthermore, 50%-86% of patients who enter remission relapse after drug withdrawal and require re-treatment.

The diagnostic criteria of autoimmune hepatitis have been codified by an international panel, and scoring systems can establish the diagnosis in difficult cases. The re-definition of treatment goals and the revision of current treatment strategies promise to improve results. The emergence of powerful immunosuppressive agents, mainly from the transplantation arena, promises to strengthen the treatment repertoire, and the clarification of critical pathogenic pathways make site-specific molecular interventions feasible. The clinical spectrum of autoimmune hepatitis has expanded, but the diagnostic instruments and therapeutic options have also improved.

The objectives of this review are to describe the non-classical clinical phenotypes of autoimmune hepatitis, detail the diagnostic instruments that can ensure their recognition, and introduce the evolving treatment strategies. Classical syndromes are the cornerstones of clinical practice, but variations from the classical are its realities. The changing spectrum of autoimmune hepatitis and its treatment underscores the importance of the disease and the vigor of the investigative effort that it has generated.

Non-Classical Clinical Phenotypes

Autoimmune hepatitis is defined as a self-perpetuating inflammation of the liver of unknown cause that is characterized by interface hepatitis on histological examination, hypergammaglobulinemia, and autoantibodies. The diagnosis has great latitude since no features are disease-specific. The phenotypes that satisfy the definition of autoimmune hepatitis but are outside the boundaries of classical disease have acute severe presentations, few or no symptoms, atypical serological features, non-standard autoantibodies, concurrent cholangiographic changes, and male gender, and non-Caucasian backgrounds.

Acute severe presentation
Corticosteroids effective in 36%-100%[89]
Protracted treatment can be complicated by infection[88]
High mortality if no better within 2 wk of therapy[91]
MELD score ≥ 12 identifies 97% of treatment failures[84]

Corticosteroids effective in 36%-100%[89]. An acute or fulminant presentation can reflect de novo inflammation[12-15] or the spontaneous exacerbation of a previously unsuspected chronic disease[81]. An acute or abrupt onset occurs in 40% of patients with autoimmune hepatitis[14,15,82], whereas an acute severe presentation is rare[89] (Table 1).

The acute form can be differentiated from the chronic form by laboratory features [higher serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, total serum bilirubin concentration, and serum γ-glutamyl transpeptidase level] and by histological findings (more frequent centrilobular zone 3 necrosis with plasmacytic infiltration and bile duct injury), but its recognition in individual cases relies mainly on an awareness that acute severe autoimmune hepatitis is possible[84].

Corticosteroid therapy suppresses inflammatory effects that compel premature withdrawal of medication (treatment failure). Furthermore, 50%-86% of patients who enter remission relapse after drug withdrawal and require re-treatment.

Table 1 Non-classical phenotypes of autoimmune hepatitis

Non-classical phenotype	Salient features
Acute severe	Corticosteroids effective in 36%-100%[89]
Male predominance possible	
No diversity of HLA DRB1*04 alleles	
Low frequency of concurrent immune diseases[80,81]	
Male gender 0.2-0.5 cases/100,000 per year[83]	
Low frequency of concurrent immune diseases[80,81]	
No diversity of HLA DRB1*04 alleles[80,81]	
Better survival than women[84]	
Non-Caucasian	Male predominance possible[89]
Socioeconomic factors important[82,83,84,85]	

MELD: Model of End Stage Liver Disease; MRC: Magnetic resonance cholangiography; CUC: Chronic ulcerative colitis; HLA: Human leukocyte antigen.
activity in 36%-100% of patients with acute severe presentations[49,50], whereas delay in treatment can result in a poor outcome[51,52] (Table 1). Immediate survival and the need for urgent transplantation depend on the rapidity and nature of the response to corticosteroids[53,54,55]. Failure to improve at least one laboratory abnormality reflective of liver inflammation or function, especially a pre-treatment hyperbilirubinemia, within 2 wk indicates that liver transplantation should be considered[56]. Relentless pursuit of an unachievable benefit from corticosteroid therapy can be complicated by infection and the lost opportunity for a successful transplantation[57]. The Model of End Stage Liver Disease (MELD) can be used to identify individuals with autoimmune hepatitis who are likely to fail corticosteroid therapy and require liver transplantation[58] (Table 1). MELD scores ≥ 12 points at presentation have a sensitivity of 97% and specificity of 68% for treatment failure, and patients with such scores warrant close scrutiny and preparedness for liver transplantation. A MELD score ≥ 12 points at presentation captures all problematic patients, but it does not preclude their salvage through prompt and vigorous corticosteroid treatment.

\textbf{Asymptomatic mild presentations}

Autoimmune hepatitis is asymptomatic in 25%-34% of patients at presentation[20-22], and retrospective analyses have estimated that 25%-85% of individuals have mild disease[20,22,87,88] (Table 1). These presentations contrast with those described in the classical treatment trials in which selection criteria focused on severe symptomatic and immediately life-threatening disease[51,89,90]. Treatment guidelines have been promulgated for the individuals with severe disease, but they remain arbitrary and inconsistent for those with mild disease[91]. These difficulties reflect in part the lack of a codified definition of mild autoimmune hepatitis and uncertainty about its natural history.

Untreated mild autoimmune hepatitis has a better outcome than severe disease, but it does not have a benign prognosis (Table 1). Cirrhosis develops in 49\% of untreated patients within 15 years[87]; liver failure and hepatocellular carcinoma are possible[22]; asymptomatic patients become symptomatic in 26%-70\% of instances[20,21], and 10-year mortality exceeds 10\%[21,22]. Spontaneous resolution is possible, but untreated patients with mild autoimmune hepatitis improve less commonly (12\% vs 63\%, $P = 0.006$) and more slowly than treated patients, and they have a lower 10-year survival (67\% vs 98\%, $P = 0.01$)[22].\n
A “safe” subset of patients with non-aggressive autoimmune hepatitis who require no therapy cannot be reliably identified, and the clinical threshold for starting corticosteroid therapy cannot be so high that all patients with mild or asymptomatic disease are excluded (Table 1). Mild autoimmune hepatitis can improve spontaneously, and this prospect may dampen therapeutic zeal, especially if measured against the possibility of serious treatment-related complications[22]. A dictum to do no harm, however, that focuses more concern on the treatment than the disease may be incorrect.

The aggressive potential of mild autoimmune hepatitis at presentation, the inability to predict outcome by clinical parameters, the expected rapidity of the treatment response, and the safety of current treatment regimens favor a proactive management strategy[23]. Until randomized clinical trials are performed comparing treatment against no treatment, the management strategy in patients with mild disease should lean toward conventional therapy. Mild asymptomatic autoimmune hepatitis is a non-classical phenotype, but it should not be regarded or managed as a different disease.

\textbf{Atypical histological features}

The histological hallmark of autoimmune hepatitis is interface hepatitis, but other histological findings are compatible with the disease[9,10] (Table 1). Centrilobular zone 3 necrosis (Figure 1) is probably an early form of autoimmune hepatitis that is detected mainly in patients with an acute onset[58,93-96]. Successive liver tissue examinations have disclosed transition of the centrilobular zone 3 pattern of necrosis to that of typical interface hepatitis during the course of the disease[95]. This non-classical finding may suggest an acute viral or toxic injury, but the diagnosis of autoimmune hepatitis should not be discounted.

Concurrent biliary changes, including isolated destructive cholangitis (Figure 2), may also be found in patients with otherwise classical autoimmune hepatitis[93-95] (Table 1). These patients do not have a cholestatic clinical or laboratory profile, and successive tissue examinations have not disclosed persistence or progression of the biliary injury[96]. The biliary changes probably reflect collateral damage associated with an exuberant inflammatory process rather than a transition state to a cholestatic disease or variant syndrome. The biliary changes should not alter the diagnosis or the treatment strategy.

Fatty changes (Figure 3) may also be present at accession or after corticosteroid therapy[58,93,96] (Table 1). Non-alcoholic fatty liver disease (NAFLD) is a common finding in the general population, and it may be associated with autoantibodies and hypergammaglobulinemia[93-96]. Both conditions can co-exist, and corticosteroid therapy can ameliorate the autoimmune hepatitis and intensify the NAFLD[94,95]. The presence of coincidental fatty change should not discourage the diagnosis or treatment of autoimmune hepatitis, but it compels an accurate diagnosis. Worsening of the laboratory indices during therapy justifies liver tissue examination and reassessment of the treatment strategy[98,99]. Progressive fatty change can be a cause of treatment failure[98].\n
\textbf{Absent or atypical serological markers}

Antinuclear antibodies (ANA), smooth muscle antibodies (SMA), and antibodies to liver kidney microsome type 1 (anti-LKM1) are the classical serological markers of autoimmune hepatitis[98,99]. These antibodies are not pathogenic or disease-specific, and their expression can vary in individual cases and in different geographical
regions and ethnic groups. Thirteen percent of white North American adults with classical features of autoimmune hepatitis lack ANA, SMA, and anti-LKM1 (Table 1).

Seronegative patients with autoimmune hepatitis have a non-classical phenotype, and they constitute an “autoantibody-negative autoimmune hepatitis” (31,32,100). These patients are indistinguishable from those with classical disease, including their HLA profiles, and they also respond to corticosteroid therapy (31,32,100) (Table 1). Twenty percent may express non-standard autoantibodies, such as antibodies to soluble liver antigen (anti-SLA) (101,102) or atypical perinuclear anti-neutrophil cytoplasmic antibodies (atypical pANCA) (103,104), and others may express SMA, ANA or both later in their course (30). Some corticosteroid-responsive patients remain seronegative throughout their disease, and they may await discovery of their signature autoantibody (31,32,100). All such patients must be screened for celiac disease by testing for immunoglobulin A antibodies to tissue transglutaminase or endomysium (105-108).

Antimitochondrial antibodies (AMA) can be present in 8%-35% of patients with otherwise classical autoimmune hepatitis, and they define another non-classical serological phenotype (108-112). These coincidental AMA are not associated with cholestatic features, histological findings of biliary injury, or different response to corticosteroid therapy (113,114). They may persist for as long as 27 years in the absence of primary biliary cirrhosis (PBC); they may disappear spontaneously; or they may appear late in the course of the disease without apparent clinical relevance (112). Severe inflammatory activity may result in modification of the mitochondrial antigens through oxidative stress and facilitate the production of AMA which in turn can disappear when the inflammatory stress subsides (114). AMA in the absence of cholestatic laboratory or histological features should not dissuade the diagnosis of autoimmune hepatitis or compel a different treatment strategy. The “serological overlap” with PBC does not constitute a hybrid disease or pathological process in transition.

Concurrent cholangiographic changes

Concurrent cholangiographic changes have been described in children (115) and adults (116,117) with autoimmune hepatitis, and these findings constitute another non-classical clinical phenotype (Table 1). The
emergence of magnetic resonance cholangiography (MRC) as a safe, effective and non-invasive mechanism by which to assess the biliary system[118] has indicated that cholangiographic changes that resemble primary sclerosing cholangitis (PSC) occur in 8% of adults with autoimmune hepatitis[117]. These changes occur predominately in women who typically lack inflammatory bowel disease, and they are associated with histological features that reflect increased lobular activity rather than biliary injury[117].

The nature and significance of the biliary changes by MRC remain unclear since most adults with these changes respond to corticosteroid therapy[117]. The possibility of a disease process other than typical PSC or an unusual but nonspecific biliary distortion induced by fibrosis cannot be discounted (Table 1). Recent prospective studies have indicated that while adults with autoimmune hepatitis have a high frequency of intrahepatic biliary changes by MRC (24%), the occurrence of PSC is rare (2%)[119]. Furthermore, the frequency of biliary changes by MRC in adults with autoimmune hepatitis is similar to that in patients with cirrhosis of a non-biliary and non-autoimmune nature. Hepatic fibrosis rather than the nature of the liver disease may be the most important parameter independently associated with the biliary changes[119].

Cholangiographic abnormalities by endoscopic or intrahepatic cholangiography are present in 44% of adults with autoimmune hepatitis and inflammatory bowel disease[116,120], and patients with these changes are typically refractory to corticosteroid therapy[127,128] (Table 1). This is the non-classical phenotype that has immediate clinical relevance, and its discovery impacts on the diagnosis, treatment, and outcome. Biliary studies should be performed mainly in adult patients with inflammatory bowel disease or recalcitrance to corticosteroid therapy[127,128]. Not all biliary changes have independent pathological significance or clinical importance[129].

Male gender

Autoimmune hepatitis does occur in white northern European men[127,128], and its development in this gender constitutes another non-classical phenotype (Table 1). Women with autoimmune hepatitis outnumber men with the disease by more than three-fold[129], and estimates of the incidence of autoimmune hepatitis in northern European men ranges from 0.2-0.5 cases per 100,000 persons per year[127,128]. The existence of an important clinical distinction between men and women with autoimmune hepatitis is still unsettled, but clearly the experiences over the decades have not identified a striking difference between the genders.

White North American women with autoimmune hepatitis are distinguished from men with autoimmune hepatitis and the same ethnicity by having higher frequencies of concurrent immune diseases than women without HLA DRB1*04 (52% vs 22%, P < 0.000001) as do men with HLA DRB1*04 compared to men without HLA DRB1*04 (26% vs 4%, P = 0.002)[129,132]. These findings suggest that the clinical phenotype is driven by the genetic predisposition of the host as well as the gender[125,133].

Retrospective surveys have suggested gender-based differences in disease behavior and treatment outcome, but results have been discrepant[134-136]. Differences in age at presentation (39 years vs 49 years, P = 0.06) and the frequency of relapse after drug withdrawal (71% vs 55%, P = 0.06) have not reliably distinguished men from women with autoimmune hepatitis. The higher frequency of HLA A1-B8-DRB1*03 in men who relapse (50% vs 23%, P = 0.003) and greater mortality in women than men (P = 0.02) have been contrasting features in some experiences, and these findings require further examination[135,136] (Table 1).

The principal clinical concern related to gender is that the diagnosis of autoimmune hepatitis might be overlooked in men. Gender may be a surrogate marker that signifies different antigenic exposures, hormonal effects on immune responsiveness, chromosomal imbalances that favor loss of self-tolerance, and genetic predispositions for immunocyte activation[133]. The diagnosis of autoimmune hepatitis in men should trigger the same treatment strategies and monitoring schedules as in women.

Non-Caucasians

Racial background can affect the clinical phenotype of autoimmune hepatitis, and diagnostic criteria developed mainly in white northern European and North American populations may not apply in different ethnic groups and geographical regions (Table 1). Black North American patients have cirrhosis at presentation more commonly than white North American patients (85% vs 38%)[141,143,144] Japanese patients typically have mild, late onset disease[139]. South American patients are younger than white North American counterparts, and they have more severe laboratory abnormalities at presentation[144]. Alaskan natives have a higher frequency of acute icteric disease, asymptomatic illness, and advanced fibrosis at accession than non-native patients[48]. Aboriginal North Americans have disproportionately high frequencies of immune-mediated disorders, cholestatic features, and advanced disease at presentation[144-147]. African, Asian and Arab patients have a higher frequency of biliary changes on histological examination than white northern European patients[140], and patients from Somalia are frequently men with rapidly progressive disease[47] (Table 1).

The variations in clinical phenotype suggest that genetic background and geographical location affect occurrence and behavior of the disease[229,133]. Indigenous etiological agents or population-dependent genetic factors may modulate susceptibility to autoimmune hepatitis, determine targets of the immune response, and affect the vigor of the inflammatory reaction[144,145]. Socioeconomic status, healthcare access, and quality of care are other factors that must be analyzed when assessing discrepancies...
in disease occurrence and outcome among different racial groups.[137,138,146,147] (Table 1).

TURKISH PERSPECTIVE

The importance of recognizing the diverse manifestations of autoimmune hepatitis in different regions and ethnic groups is illustrated by the appearance and behavior of the disease in Turkey. Autoimmune hepatitis in this region has a character that aligns with the disease of white northern Europeans and North Americans, but it can be difficult to recognize if only the western phenotype is considered.

Autoimmune hepatitis is a relatively rare disorder in Turkey when compared with chronic viral hepatitis, but it is still the most common autoimmune liver disease.[148,149] Its high prevalence in women is not unusual, but its 9:1 female-to-male ratio[148,149] exceeds the female propensity (3:1 female-to-male ratio) in North America.[128] The age of occurrence in adults (age ranges, 18-59 years; mean age, 42 years) is as broad as elsewhere,[116] but there are many patients with signs of hepatitis who are negative for viral markers and the conventional autoantibodies.[148] These patients are typically designated as having “cryptogenic chronic hepatitis”, but they respond well to treatment with corticosteroids and azathioprine. Other liver diseases must be carefully excluded, especially in men and those who lack the conventional autoantibodies, and the diagnosis must be supported by the demonstration of compatible liver enzyme abnormalities, serum immunoglobulin G (IgG) elevation, and histological findings. The presence of periportal lymphoplasmacytic infiltration in liver tissue is an important clue to the diagnosis, and all patients in whom there is a suspicion of autoimmune hepatitis should undergo liver tissue examination.

As in other regions, the features of autoimmune hepatitis may be intermixed with those typical of other liver diseases, especially the cholestatic disorders (“overlap syndromes”), and the diagnosis must be secured by expert histological interpretation and cholangiographic studies (Figure 4).[148,151,152] In Turkey, as elsewhere, liver tissue examination is the most important tool in directing the diagnosis, and a second examination of the liver tissue after institution of treatment provides a comparison that can support or change the original impression.

Concurrent immune diseases, such as autoimmune thyroiditis,[113] celiac disease,[114] Sjögren syndrome,[115] autoimmune diabetes,[116] and various rheumatic conditions,[117] can accompany the autoimmune hepatitis of Turkey, but unlike the disease in other regions, the liver disease in Turkey can frequently be linked to different triggers, including indigenous infections [prolonged hepatitis A virus (HAV) infection[118] and brucellosis[119]] and medicinal agents (Echinacea[120], doxycycline[121], estrogen[122], cyproterone acetate[123]], and ornidazole[124]. A genetic basis for the liver disease and its immune manifestations has not been well studied in Turkey, but the classical HLA phenotype, A1-B8-DRB1*03, of western countries does not appear to be an important susceptibility factor in this area.[92]

Corticosteroid therapy remains the mainstay of treatment in Turkey, but azathioprine, ursodeoxycholic acid and budesonide have been added to the list of available and effective drugs. Combination therapy is the preferred regimen, and budesonide is gaining favor over prednisolone in combination with azathioprine. An example of tailoring the treatment strategy to the population base is the practice of maintaining individuals in remission on low dose prednisolone (4 mg on alternate days) either alone or in combination with azathioprine long-term. By recognizing the regional variations in the clinical phenotype and tailoring therapy to suit the prevalent disease behavior, autoimmune hepatitis in different regions and ethnic groups can be diagnosed promptly and treated successfully in a cost-effective, low risk manner.

NEW DIAGNOSTIC INSTRUMENTS

New diagnostic instruments have evolved that have the flexibility to accommodate atypical features of autoimmune hepatitis and the sensitivity and specificity to ensure accurate diagnosis of the non-classical phenotypes. A diagnostic scoring system that was promulgated mainly as a research tool in 1993[9] was revised in 1997[10] to exclude cholestatic syndromes. A simplified diagnostic scoring system was added in 2008 to ease clinical application,[46] and both systems can now be exploited to strengthen the diagnosis in difficult cases.[86]

Original revised diagnostic scoring system

The revised original diagnostic scoring system developed by the International Autoimmune Hepatitis Group (IAIHG) evaluates 13 clinical components and renders 27 possible grades[10] (Table 2). It is a comprehensive template that grades each component of the disease, including gender, laboratory manifestations of liver inflammation and cholestasis, the conventional autoantibodies, viral markers, epidemiological risk factors such as drug or alcohol exposures, HLA phenotype, concurrent immune diseases, novel autoantibodies, and individual histological features. It also grades the treatment response, and a score can be rendered before and after treatment.

A pre-treatment score of 10 points or higher or a post-treatment score of 12 points or higher indicates the likelihood of autoimmune hepatitis.[10] No single test or finding defeats or ensures the diagnosis of autoimmune hepatitis if other components are sufficiently strong to outweigh it. The Receiver Operating Characteristic (ROC) curve for the revised original scoring system shows that the minimum pre-treatment score of 10 points has a sensitivity of 100% and a specificity of 73% for autoimmune hepatitis. A pre-treatment score of 15 points or higher has a specificity of greater than 90% for autoimmune hepatitis.[84]

The principal virtues of the revised original scoring
The revised original diagnostic scoring system is most useful in evaluating patients with few or atypical findings of autoimmune hepatitis, including the variant syndromes, because of its comprehensive nature. It quantifies the strength of the diagnosis, and it is a valuable research tool that ensures comparable study populations within clinical trials.

Simplified diagnostic scoring system

The simplified diagnostic scoring system eases clinical application by evaluating only 4 clinical components, and it has been validated in diverse ethnic groups and liver diseases. The ROC curve for the simplified scoring system shows that a minimum score of 6 points has a sensitivity and specificity of 90% for the diagnosis of autoimmune hepatitis (Table 3). Scores of 7 points or higher are nearly 100% specific for the diagnosis of autoimmune hepatitis with only a small decrease in sensitivity. The virtues of the simplified scoring system are the ease of its clinical application, and its combined high sensitivity and specificity for the diagnosis. It is especially useful in excluding autoimmune hepatitis in patients with other distinct conditions who have confusing concurrent immune features. The revised original scoring system has greater sensitivity for the diagnosis, whereas the simplified system has superior specificity and accuracy.

NEW TREATMENT STRATEGIES

New treatment strategies for autoimmune hepatitis are evolving as current regimens are being used more effectively and new drugs are being exploited in selected situations. The non-classical phenotypes of autoimmune hepatitis are managed in the same fashion as the classical phenotypes, and they benefit similarly from these advances.

Table 2 Revised original pre-treatment scoring system

Variable	Result	Points
Gender	Female	+2
AP: AST (or ALT) ratio	> 3	-2
< 1.5	+2	
γ-globulin or IgG level above normal	> 2.0	+3
1.5-2.0	+2	
1.0-1.5	+1	
< 1.0	0	
ANA, SMA, or anti-LKM1 titters	> 1.80	+3
1.80	+2	
1.40	+1	
< 1.40	0	
AMA	Positive	-4
Viral markers	Positive	-3
Negative	+3	
Drugs	Yes	-4
No	+1	
Alcohol	< 25 g/d	+2
> 60 g/d	-2	
Pretreatment aggregate score	Definite diagnosis	> 15
Probable diagnosis	10-15	
Post-treatment aggregate score	Definite diagnosis	> 17
Probable diagnosis	12-17	

Table 3 Simplified scoring system of the International Autoimmune Hepatitis Group

Variable	Result	Points	
Autoantibodies	ANA or SMA	≥ 1:40	+1
ANA or SMA	≥ 1:80	+2	
Antibodies to liver kidney microsome type 1	≥ 1:40	+2	
Antibodies to soluble liver antigen	Positive	+2	
Immunoglobulin level	Immunoglobulin G	> UNL	+1
	> 1.1 UNL	+2	
Histological findings	Morphological features	Compatible	+1
	Typical	+2	
Viral disease	Absence of viral hepatitis	No viral markers	+2
Pretreatment aggregate score	Definite diagnosis	≥ 7	
Probable diagnosis	6		

AP: AST (or ALT) ratio: Ratio of alkaline phosphatase level to aspartate or alanine aminotransferase level; Anti-SLA: Antibodies to soluble liver antigen; Anti-LC1: Antibodies to liver cytosol type 1; pANCA: Perinuclear anti-neutrophil cytoplasmic antibodies; IgG: Immunoglobulin G; ANA: Antinuclear antibodies; SMA: Smooth muscle antibodies; Anti-LKM1: Antibodies to liver/kidney type 1; AMA: Antimitochondrial antibodies; HLA: Human leukocyte antigen.

ULN: Upper limit of normal.
Improvements in current treatment strategies

The ideal end point of initial corticosteroid therapy has now been defined\[67-70\]; the treatment adjustments after relapse and incomplete response have been formalized\[71-73\], and vaccination against hepatitis A (HAV) and hepatitis B (HBV) viruses prior to therapy has been proposed\[74\]. These improvements constitute advances in the current treatment regimens (Table 4).

Corticosteroid therapy should be continued until the clinical, laboratory, and histological features of autoimmune hepatitis have fully resolved (Table 4)\[67-70\]. Relapse after drug withdrawal is the most common management problem in autoimmune hepatitis, and this occurrence can be reduced by continuing treatment until liver tests and tissue are normal\[59,70,163]. Patients who sustain remission after treatment withdrawal have better laboratory indices and liver tissue examinations at the time of drug withdrawal than patients who relapse, and treatment until complete resolution of the inflammatory features is the ideal end point of therapy.

Sixty percent of patients who achieve an ideal treatment end point still relapse after drug withdrawal, and 40% of treated patients are unable to achieve full resolution of their disease\[70\]. The relentless pursuit of an ideal but unachievable treatment end point in these individuals can result in drug-related side effects\[59,62\]. Patients with relapse after drug withdrawal, incomplete response to conventional treatment, and drug intolerances must be managed differently\[129\].

Repeated relapse and re-treatment is associated with a progressive increase in the cumulative frequencies of cirrhosis, requirement for liver transplantation, and death from hepatic failure\[64\]. The preferred management strategy after the first relapse is to institute treatment with long-term fixed dose azathioprine (Table 4)\[71,73\]. Prednisone and azathioprine are re-started until clinical and laboratory resolution is achieved. The dose of azathioprine is then increased to 2 mg/kg daily as the dose of prednisone is withdrawn. Azathioprine is then continued indefinitely as a chronic maintenance therapy. Eighty percent of patients are able to sustain remission in this fashion over a 10 year period of observation. Patients who improve during treatment but not to a degree to satisfy remission criteria (incomplete response) can also be managed by this regimen\[129\].

Vaccination against HAV and HBV is an important adjunct to conventional treatment (Table 4). Susceptibility to infections with HAV (51%) and HBV (86%) is high in patients with autoimmune liver disease, and the incidence of these infections is 1.3-1.4 per 1000 person-years\[74\]. Vaccination frequencies are only 11% for HBV and 13% for HAV in these patients, and the response to the HBV vaccine is poor or absent in most individuals vaccinated during immunosuppressive therapy\[74\]. These observations suggest that pre-treatment vaccination for HAV and HBV is under-utilized in autoimmune liver disease and that outcomes can be improved by early vaccination to prevent viral super-infection and mortality.

Advances in pharmacological options

Treatment options have increased in autoimmune hepatitis as new drugs with targeted immunosuppressive actions have been used empirically\[76,164\] and a third generation corticosteroid has been evaluated by randomized clinical trial\[59\]. None of these treatments has been incorporated into standard management algorithms, but they constitute an evolving armamentarium that promises to improve outcomes by either interrupting critical pathogenic pathways or eliminating intolerances to the current medications.

The calcineurin inhibitors (cyclosporine\[165-169\] and tacrolimus\[170-173\]) have been used as frontline and salvage therapies in children\[174-177\] and adults\[165-172\] with autoimmune hepatitis, and these multiple small clinical experiences have supported their efficacy and tolerance (Table 4). Additional clinical trials are necessary to determine their target population, dosing schedule, and safety profile.

The purine antagonists (6-mercaptopurine\[174\] and mycophenolate mofetil\[177,181\]) have also been effective in some patients refractory to conventional corticosteroid regimens (Table 4). 6-mercaptopurine has reduced disease activity in patients unresponsive to azathioprine, and should be considered as a salvage therapy\[176\]. Intolerances to azathioprine based on thiopurine methyltransferase deficiency contraindicate its use, and the drug should not be administered to patients with

Table 4 Therapeutic advances in autoimmune hepatitis

Advance	Nature	Attribute
Improved current therapy	Initial therapy until resolution of liver tests and tissue	Prevention of relapse after drug withdrawal\[76\]
	Long-term azathioprine therapy after relapse or incomplete response	Prevention of disease progression\[71,73,129\]
	Pretreatment vaccination for viruses	Prevention of morbidity of concurrent viral infection\[71\]
New drugs	Calcineurin inhibitors (cyclosporine, tacrolimus)	Salvage therapy\[170-173\]
	Purine antagonists (6-mercaptopurine, mycophenolate)	Salvage therapy\[165-172\]
	Budesonide (combined with azathioprine)	Effective and safe front line therapy\[79\]
Potential molecular interventions	Synthetic blocking peptides	Block autoantigen presentation\[166-168\]
	Cytokine manipulations	Promote anti-inflammatory effects\[179\]
	T cell vaccination	Reduce immune response (low dose) or induce energy (high dose)\[166-168\]
	Oral tolerance (high or low dose regimen)	Replace damaged hepatocytes\[179\]
	Mesenchymal stem cells (human bone marrow-derived)	
azathioprine-related side effects[182].

Mycophenolate mofetil is independent of the thiopurine methyltransferase metabolic pathway, and several small experiences have indicated that it can be effective in problematic patients[177-181] (Table 4). Improvement occurs in 39%-84% of patients who tolerate the drug, but the intention to treat is thwarted in 34%-78% of patients because of drug intolerances (nausea, vomiting, pancreatitis, rash, alopecia, deep venous thrombosis, diarrhea and failure to normalize liver tests)[180,183,184]. Mycophenolate mofetil is another promising alternative drug in the treatment of autoimmune hepatitis, but only a minority of problematic patients may reap its benefits[183-185].

Budesonide is a third generation corticosteroid that has been used empirically as frontline[106-108] and salvage[109] therapy in autoimmune hepatitis (Table 4). Its high first-pass clearance by the liver and its breakdown to inactive metabolites promised to improve efficacy and safety compared to conventional corticosteroid regimens[109]. Its advantage, however, was never fully realized until it was evaluated by randomized clinical trial in 203 treatment-naive patients with autoimmune hepatitis[7]. Budesonide in combination with azathioprine has been found to be superior to prednisolone and azathioprine in normalizing the serum ALT level (47% vs 18%, P < 0.00001) and reducing the frequency of steroid-related side effects (28% vs 53%, P = 0.00001) after 6 mo of treatment[50]. The frequency of histological improvement and the durability of the results are unknown, but the findings suggest that budesonide may be an alternative, more effective, and safer frontline regimen than a prednisone-based schedule. Budesonide has not been effective as a salvage therapy in patients with severe disease on long-standing corticosteroid treatment[109], and corticosteroid-induced side effects are still possible, especially in patients who have been treated previously with prednisone[109] or who have cirrhosis[109,110].

Various other drugs (cyclophosphamide[192], methotrexate[193], raspamycin[194], rituximab[195], intravenous immunoglobulin[196], deflazacort[197], and ursodeoxycholic acid[198]) have been proposed for use in autoimmune hepatitis, and their number reflects the need for better salvage therapies in the treatment of autoimmune hepatitis (Table 4). Prospective and scientifically rigorous collaborative studies are needed to expand the therapeutic repertoire and comprehensive analyses are required to demonstrate that these incremental improvements in outcome are cost-effective[109,200].

Site-specific molecular inventions, including antigen-blocking synthetic peptides[201,202], cytokine manipulations[203], T cell vaccination[204], and oral tolerance regimens[205], become feasible when the critical pathogenic mechanisms of the disease are clarified[206-209], and confident animal models of the human disease are developed[209,210] (Table 4). Mesenchymal stem cells from human bone marrow that can differentiate into functional hepatocytes have the potential to rescue individuals from liver failure, reduce reliance on whole organ transplantation, and obviate the complications of whole organ rejection and drug toxicity[210] (Table 4). The treatment options for autoimmune hepatitis are already plentiful and effective, but the drive for further improvement must be continuous and vigorous.

CONCLUSION

Autoimmune hepatitis can have acute severe or asymptomatic presentations, centrilobular zone 3 necrosis, concurrent bile duct damage or non-alcoholic fatty changes on histological examination, absent or atypical serological markers, cholangiographic abnormalities, and variable clinical phenotypes related to gender or ethnicity. These non-classical manifestations do not alter the management strategy, but they require prompt recognition and confident diagnosis. The revised original diagnostic scoring system of the IAIHG is useful in evaluating patients with few or atypical findings of autoimmune hepatitis because of its comprehensive nature. The simplified diagnostic scoring system is useful in excluding autoimmune hepatitis in patients with other distinct conditions who have confusing concurrent immune features because of its high specificity. Current treatment regimens have been improved by pursuing resolution of liver tests and liver tissue prior to drug withdrawal, instituting long-term azathioprine therapy after the first relapse, and vaccinating against HAV and HBV prior to treatment. Cyclosporine, tacrolimus, 6-mercaptopurine, and mycophenolate mofetil are promising salvage therapies, whereas budesonide in combination with azathioprine may be a superior frontline therapy to prednisone and azathioprine.

REFERENCES

1. Bongiovanni AM, Eisenmenger WJ. Adrenal cortical metabolism in chronic liver disease. J Clin Endocrinol Metab 1951; 11: 152-172
2. Bear A, Kunkel HG, Slater RJ. The problem of chronic liver disease in young women. Am J Med 1956; 21: 3-15
3. Cowling DC, Mackay IR, Tait LI. Lupoid hepatitis. Lancet 1956; 271: 1323-1326
4. Czaja AJ, Carpenter HA, Santrach PJ, Moore SB, Taswell HF, Homburger HA. Evidence against hepatitis viruses as important causes of severe autoimmune hepatitis in the United States. J Hepatol 1993; 18: 342-352
5. Tait LI, Mackay IR, Cowling DC. Autoclasis: a perpetuating mechanism in hepatitis. Gastroenterology 1960; 38: 563-566
6. Cochrane AM, Moussouros A, Thomson AD, Eddleston AL, Williams R. Antibody-dependent cell-mediated (K cell) cytotoxicity against isolated hepatocytes in chronic active hepatitis. J Clin Pathol 1976; 1: 441-444
7. Hodgson HJ, Wands JR, Isselbacher KJ. Alteration in suppressor cell activity in chronic active hepatitis. Proc Natl Acad Sci USA 1978; 75: 1549-1553
8. Frazer IH, Mackay IR. T lymphocyte subpopulations defined by two sets of monoclonal antibodies in chronic active hepatitis and systemic lupus erythematosus. Clin Exp Immunol 1982; 50: 107-114
9. Johnson PJ, McFarlane IG. Meeting report: International Autoimmune Hepatitis Group. Hepatology 1993; 18: 998-1005
10. Alvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Cancado EL, Chapman RW, Cooksley WG, Czaja AJ, Desmet VJ, Donaldson PT, Eddleston AL, Fainboim L,
Diverse manifestations and evolving treatments of autoimmune hepatitis. J Hepatol 1999; 31: 929-938

Czaja AJ. Diverse manifestations and evolving treatments of autoimmune hepatitis. Minerva Gastroenterol Dietol 2005; 51: 313-333

Crapper RM, Bhatnal PS, Mackay IR, Frazer IH. ‘Acute’ autoimmune hepatitis. Digestion 1986; 34: 216-225

Amontree JS, Stuart TD, Bredfield JE. Autoimmune chronic active hepatitis masquerading as acute hepatitis. J Clin Gastroenterol 1989; 11: 303-307

Nikias GA, Batts KP, Czaja AJ. The nature and prognostic implications of autoimmune hepatitis with an acute presentation. J Hepatol 1994; 21: 866-871

Kanda T, Yokosuka O, Hirasawa Y, Imazeki F, Nagao K, Suzuki Y, Saisio H. Acute-onset autoimmune hepatitis resembling acute hepatitis: a case report and review of reported cases. Hepatogastroenterology 2005; 52: 1233-1235

Maggiore G, Porta G, Bernard O, Hadchouel M, Alvarez F, Homberg JC, Alagille D. Autoimmune hepatitis with initial presentation as acute hepatitis failure in young children. J Pediatr 1990; 116: 280-282

Herzog D, Rasquin-Weber AM, Debray D, Alvarez F. Subfulminant hepatic failure in autoimmune hepatitis type 1: an unusual form of presentation. J Hepatol 1997; 27: 578-582

Kessler WR, Cummings OW, Eckert G, Chalasani N, Lumeng L, Kwo PY. Fullminant hepatic failure as the initial presentation of acute autoimmune hepatitis. Clin Gastroenterol Hepatol 2004; 2: 625-631

Miyake Y, Iwasaki Y, Terada R, Onishi T, Okamoto R, Sakai N, Sakaguchi K, Shiratori Y. Clinical characteristics of fulminant-type autoimmune hepatitis: an analysis of eleven cases. Aliment Pharmacol Ther 2006; 23: 1347-1353

Kogan J, Safadi R, Ashur Y, Shouval D, Ilan Y. Prognosis of asymptomatic versus asymptomatic autoimmune hepatitis: a study of 68 patients. J Clin Gastroenterol 2002; 35: 75-81

Feld JJ, Dinh H, Arenovich T, Marcus VA, Wanless IR, Heathcote EJ. Autoimmune hepatitis: effect of symptoms and cirrhosis on natural history and outcome. Hepatology 2005; 42: 53-62

Czaja AJ. Features and consequences of untreated type 1 autoimmune hepatitis. Liver Int 2008; Epub ahead of print

Davis GM, Czaja AJ, Ludwig J. Development and prognosis of histologic cirrhosis in corticosteroid-treated hepatitis B surface antigen-negative chronic active hepatitis. Gastroenterology 1984; 87: 1222-1227

Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology 1996; 110: 848-857

Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology 2004; 39: 1631-1638

Schalm SW, Korman MG, Summerskill WH, Czaja AJ, Baggenstoss AH. Severe chronic active liver disease. Prognostic significance of initial morphologic patterns. Am J Dig Dis 1977; 22: 973-980

Czaja AJ, Ludwig J, Baggenstoss AH, Wolf A. Corticosteroid-treated chronic active hepatitis in remission: uncertain prognosis of chronic persistent hepatitis. N Engl J Med 1981; 304: 5-9

Bittencourt PL, Farias AQ, Porto G, Cançado EL, Miura L, Pugliese R, Kallil J, Goldberg AC, Carrilho FJ. Frequency of concurrent autoimmune disorders in patients with autoimmune hepatitis: effect of age, gender, and genetic background. J Clin Gastroenterol 2008; 42: 300-305

Czaja AJ. Clinical features, differential diagnosis and treatment of autoimmune hepatitis in the elderly. Drugs Aging 2008; 25: 219-239

Czaja AJ. Behavior and significance of autoantibodies in type 1 autoimmune hepatitis. J Hepatol 1999; 30: 394-401

Czaja AJ, Carpenter HA, Santrach PJ, Moore SB, Homburger HA. The nature and prognosis of severe cryptogenic chronic active hepatitis. Gastroenterology 1993; 104: 1755-1761

Gassert DJ, Garcia H, Tapaka K, Reim JF. Corticosteroid-responsive chronic cryptogenic chronic hepatitis: evidence for seronegative autoimmune hepatitis. Dig Dis Sci 2007; 52: 2433-2437

Pratt DS, Fawaz KA, Rabson A, Delellis R, Kaplan MM. A novel histological lesion in glucocorticoid-responsive chronic hepatitis. Gastroenterology 1997; 113: 664-668

Singh R, Nair S, Farr G, Mason A, Perrillo R. Autoimmune hepatitis: presentation with centrilobular liver disease: case report and review of the literature. Am J Gastroenterol 2002; 97: 2670-2673

Okano N, Yamamoto K, Sakaguchi K, Miyake Y, Shimada N, Hakoda T, Terada R, Baba S, Suzuki T, Tetsu T. Clinicopathological features of acute-onset autoimmune hepatitis. Hepatol Res 2003; 25: 263-270

Hofer H, Oesterreicher C, Wrb a F, Ferenci P, Penner E. Centrilobular necrosis in autoimmune hepatitis: a histological feature associated with acute clinical presentation. J Clin Pathol 2006; 59: 246-249

Zen Y, Notsumata K, Tanaka N, Nakanuma Y. Hepatic centrilobular zonal necrosis with positive antinuclear antibody: a unique subtype or early disease of autoimmune hepatitis? Hum Pathol 2007; 38: 1669-1675

Ludwig J, Czaja AJ, Dickson ER, LaRussio NF, Wiesner RH. Manifestations of nonsuppurative cholangitis in chronic hepatitis b: clinical and morphologic spectrum, clinical correlations and terminology. Liver 1984; 4: 105-116

Ben-Ari Z, Dhillon AP, Sherlock S. Autoimmune cholangiopathy: part of the spectrum of autoimmune chronic active hepatitis. Hepatology 1993; 18: 10-15

Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Autoimmune cholangitis within the spectrum of autoimmune liver disease. Hepatology 2000; 31: 1231-1258

Czaja AJ, Carpenter HA. Autoimmune hepatitis with incidental histologic features of bile duct injury. Hepatology 2001; 34: 659-665

Czaja AJ, Muratori P, Muratori L, Carpenter HA, Bianchi FB. Diagnostic and therapeutic implications of bile duct injury in autoimmune hepatitis. Liver Int 2004; 24: 322-329

Lim KN, Casanova RL, Boyer TD, Bruno CJ. Autoimmune hepatitis in African Americans: presenting features and response to therapy. Arch Intern Med 2001; 161: 3390-3394

Hurlburt KJ, McMahan BJ, Deubner H, Hsu-Trawinski B, Williams JL, Kowdley KV. Prevalence of autoimmune liver disease in Alaska Natives. Am J Gastroenterol 2002; 97: 2402-2407

Zolfino T, Heneghan MA, Norris S, Harrison PM, Portmann BC, McFarlane IG. Characteristics of autoimmune hepatitis in patients who are not of European Caucasianoid ethnic origin. Gut 2002; 50: 713-717

Gohe r D, Kasai J, Bhaduri A, Deshpande R, Balkrishna C, Chawla M, Rodrigues C, Joshi VR. Autoimmune hepatitis: a study of 50 patients. Indian J Gastroenterol 2003; 22: 140-142

D’Souza R, Sinnott P, Glynn MJ, Sabin CA, Foster GR. An unusual form of autoimmune hepatitis in young Somali men. Liver Int 2005; 25: 325-330

Viruet ET, Torres EA. Steroid therapy in fulminant hepatic failure secondary to autoimmune hepatitis. J Hepatol 2007; 46: 175-184

Zolt B, Ben-Ari Z, Keren C, Blumberg B, Neeman M. Autoimmune hepatitis with an acute presentation. Am J Med 2004; 116: 837-842

Ichai P, Harkavy I, Ben-Ari Z, Blumberg B, Meier RP. Autoimmune hepatitis with an acute presentation: case report and review of the literature. J Clin Gastroenterol 2007; 41: 442-444

D’Souza R, Sinnott P, Glynn MJ, Sabin CA, Foster GR. An unusual form of autoimmune hepatitis in young Somali men. Liver Int 2005; 25: 325-330

Viruet ET, Torres EA. Steroid therapy in fulminant hepatic failure secondary to autoimmune hepatitis. P R Health Sci J 1998; 17: 297-300

Ichai P, Duclos-Vallee JC, Gauthier C, Hamida SB, Antonini D. Acute-onset autoimmune hepatitis. J Gastroenterol Hepatol 2004; 19: 2293-2299

Zolt B, Ben-Ari Z, Keren C, Blumberg B, Neeman M. Autoimmune hepatitis with an acute presentation. Am J Med 2004; 116: 837-842

Ichai P, Duclos-Vallee JC, Gauthier C, Hamida SB, Antonini D. Acute-onset autoimmune hepatitis. J Gastroenterol Hepatol 2004; 19: 2293-2299

Zolt B, Ben-Ari Z, Keren C, Blumberg B, Neeman M. Autoimmune hepatitis with an acute presentation. Am J Med 2004; 116: 837-842
51 Soloway RD, Summerskill WH, Baggenstoss AH, Geall MG, Gitnick GL, Elveback LR, Schoenfield LJ. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology 1972; 63: 820-833.

52 Summerskill WH, Korman MG, Ammon HV, Baggenstoss AH. Prednisone for chronic active liver disease: dose titration, standard dose, and combination with azathioprine compared. Gut 1975; 16: 876-883.

53 Dufour JF, DelLelis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981-985.

54 Cotler SJ, Jakate S, Jensen DM. Resolution of cirrhosis in autoimmune hepatitis with corticosteroid therapy. J Clin Gastroenterol 2001; 32: 428-430.

55 Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol 2004; 40: 646-652.

56 Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, Hagh-Azali S, Rahkshani N, Tavangar SM, Sedaghat M, Alimohamadi SM. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci 2005; 50: 547-551.

57 Schalm AW, Ammon HV, Summerskill WH. Failure of customary treatment in chronic active liver disease: causes and management. Ann Clin Res 1976; 8: 221-227.

58 Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology 2007; 46: 1138-1145.

59 Czaja AJ, Davis GL, Ludwig J, Taswell HF. Complete resolution of inflammatory activity following corticosteroid treatment of HBsAg-negative chronic active hepatitis. Hepatology 1984; 4: 622-627.

60 Czaja AJ, Ammon HV, Summerskill WH. Clinical features and prognosis of severe chronic active liver disease (CALD) after corticosteroid-induced remission. Gastroenterology 1980; 78: 518-523.

61 Hegarty JE, Nouri Aria KT, Portmann B, Eddleston AL, Williams R. Relapse following treatment withdrawal in patients with autoimmune chronic active hepatitis. Hepatology 1983; 3: 685-689.

62 Czaja AJ, Beaver SJ, Shielis MT. Sustained remission after corticosteroid therapy of severe hepatitis B surface antigen-negative chronic hepatitis. Gastroenterology 1987; 92: 190-195.

63 Czaja AJ, Menon KV, Carpenter HA. Sustained remission after corticosteroid therapy for type 1 autoimmune hepatitis: a retrospective analysis. Hepatology 2002; 35: 890-897.

64 Montano-Loza AJ, Carpenter HA, Czaja AJ. Consequences of treatment withdrawal in type 1 autoimmune hepatitis. Liver Int 2007; 27: 507-515.

65 Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL, Bittencourt PL, Porta G, Boberg KM, Hofer H, Bianchi FB, Shibata M, Schramm C, Eisenmann de Torres B, Galle PR, McFarlane I, Dienes HP, Lohse AW. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008; 48: 169-176.

66 Czaja AJ. Performance parameters of the diagnostic scoring systems for autoimmune hepatitis. Hepatology 2008; 48: 1540-1548.

67 Kanzler S, Gerken G, Löhr H, Galle PR, Meyer zum Buschenfelde KH, Lohse AW. Duration of immunosuppressive therapy in autoimmune hepatitis. J Hepatol 2001; 34: 354-355.

68 Verma S, Gunawan B, Mendlter M, Govindrajan S, Redeker A. Factors predicting relapse and poor outcome in type 1 autoimmune hepatitis: role of cirrhosis development, patterns of transaminases during remission and plasma cell activity in the liver biopsy. Am J Gastroenterol 2004; 99: 1510-1516.

69 Miyake Y, Iwasaki Y, Terada R, Takagi S, Okamaoto R, Ikeda H, Sakai N, Makino Y, Kobashi H, Takaguchi K, Sakaguchi K, Shiratori Y. Persistent normalization of serum alanine aminotransferase levels improves the prognosis of type 1 autoimmune hepatitis. J Hepatol 2005; 43: 951-957.

70 Montano-Loza AJ, Carpenter HA, Czaja AJ. Improving the end point of corticosteroid therapy in type 1 autoimmune hepatitis to reduce the frequency of relapse. Am J Gastroenterol 2007; 102: 1005-1012.

71 Stellon AJ, Keating JJ, Johnson PJ, McFarlane IG, Williams R. Maintenance of remission in autoimmune chronic active hepatitis with azathioprine after corticosteroid withdrawal. Hepatology 1988; 8: 781-784.

72 Czaja AJ. Low-dose corticosteroid therapy after multiple relapses of severe HBsAg-negative chronic active hepatitis. Hepatology 1990; 11: 1044-1049.

73 Johnson PJ, McFarlane IG, Williams R. Azathioprine for long-term maintenance of remission in autoimmune hepatitis. N Engl J Med 1995; 333: 958-963.

74 Wörns MA, Teufel A, Kanzler S, Vöhrer A, Otto G, Lohse AW, Galle PR, Höher T. Incidence ofHAV and HBV infections and vaccination rates in patients with autoimmune liver diseases. Am J Gastroenterol 2008; 103: 138-146.

75 Manns MP, Baur MJ, Woynarowski M, Kreisel W, Oren R, Günther R, Hultcrantz R, Proels M, Rust C, Spengler U, Szalay F, Budesonide mg TID is superior to prednisolone in combination with azathioprine in the treatment of autoimmune hepatitis (abstract). J Hepatol 2008; 48 suppl 2: S369-S370.

76 Vierling JM, Flores PA. Evolving new therapies of autoimmune hepatitis. Clin Liver Dis 2002; 6: 825-850, ix.

77 Montano Loza AJ, Czaja AJ. Current therapy for autoimmune hepatitis. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 202-214.

78 Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol 2007; 1: 113-128.

79 Czaja AJ. Evolving concepts in the diagnosis, pathogenesis and treatment of autoimmune hepatitis. Minerva Gastroenterol Dietol 2007; 53: 43-78.

80 Czaja AJ, Freese DK. Diagnosis and treatment of autoimmune hepatitis. Hepatology 2002; 35: 497-497.

81 Burgart LJ, Batts KP, Ludwig J, Nikias GA, Czaja AJ. Recent-onset autoimmune hepatitis. Biopsy findings and clinical correlations. Am J Surg Pathol 1995; 19: 699-708.

82 Czaja AJ, Davis GL, Ludwig J, Baggenstoss AH, Taswell HF. Autoimmune features as determinants of prognosis in steroid-treated chronic active hepatitis of uncertain etiology. Gastroenterology 1983; 85: 713-717.

83 Davis GL, Czaja AJ, Baggenstoss AH, Taswell HF. Prognostic and therapeutic implications of extreme serum aminotransferase elevation in chronic active hepatitis. Mayo Clin Proc 1982; 57: 303-309.

84 Iwai M, Jo M, Ishii M, Mori T, Harada Y. Comparison of clinical features and liver histology in acute and chronic autoimmune hepatitis. Hepatol Res 2008; 38: 784-789.

85 Czaja AJ, Rakela J, Ludwig J. Features reflective of early progression in corticosteroid-treated severe autoimmune chronic active hepatitis. Gastroenterology 1988; 95: 448-453.

86 Tan P, Marotta P, Ghent C, Adams P. Early treatment response predicts the need for liver transplantation in autoimmune hepatitis. Liver Int 2005; 25: 728-733.

87 De Groot JF, Feyer J, Lepoutre L. Long-term follow-up of chronic active hepatitis of moderate severity. Gut 1978; 19: 510-513.

88 Koretz RL, Lewin KJ, Higgins J, Fagen ND, Gitnick GL. Chronic active hepatitis. Who meets treatment criteria? Dig Dis Sci 1980; 25: 695-699.

89 Hodges JR, Millward-Sadler GH, Wright R. Chronic active hepatitis: the spectrum of disease. Lancet 1982; 1: 550-552.

90 Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med 1971; 40: 159-185.

91 Murray-Lyon IM, Stern RB, Williams R. Controlled trial of corticosteroid therapy in active chronic hepatitis. Q J Med 1971; 40: 159-185.
of prednisone and azathioprine in active chronic hepatitis. \textit{Lancet} 1973; 1: 735-737

92 Misraji J, Thim M, Graeme-Cook FM. Autoimmune hepatitis with centrilobular necrosis. \textit{Am J Surg Pathol} 2004; 28: 471-478

93 Czaja AJ, Carpenter HA. Sensitivity, specificity, and predictability of biopsy interpretations in chronic hepatitis. \textit{Gastroenterology} 1993; 105: 1824-1832

94 Adams LA, Lindor KD, Angulo P. The prevalence of autoantibodies and autoimmune hepatitis in patients with nonalcoholic fatty liver disease. \textit{Am J Gastroenterol} 2004; 99: 1316-1320

95 Taji K, Takenawa H, Yamaoka K, Yamane M, Marumo F, Sato C. Nonalcoholic steatohepatitis masquerading as autoimmune hepatitis. \textit{J Clin Gastroenterol} 1997; 25: 538-540

96 Loria P, Lonardo A, Leonardi F, Fontana C, Carulli L, Verrone AM, Borsatti A, Bertolotti M, Cassani F, Bagni A, Muratori P, Ganzani D, Bianchi FB, Carulli N. Non-organ-specific autoantibodies in nonalcoholic fatty liver disease: prevalence and correlates. \textit{Dig Dis Sci} 2003; 48: 2173-2181

97 Czaja AJ, Carpenter HA. Optimizing diagnosis from the medical liver biopsy. \textit{Clin Gastroenterol Hepatol} 2007; 5: 898-907

98 Czaja AJ. Autoantibodies in autoimmune liver disease. \textit{Adv Clin Chem} 2005; 40: 127-164

99 Czaja AJ. Autoimmune hepatitis. Part B: diagnosis. \textit{Expert Rev Gastroenterol Hepatol} 2007; 1: 129-143

100 Czaja AJ, Hay JE, Rakela J. Clinical features and prognostic implications of severe corticosteroid-treated cryptogenic chronic active hepatitis. \textit{Mayo Clin Proc} 1995; 65: 25-30

101 Baeres M, Herkel J, Czaja AJ, Wies I, Kanzler S, Cancado EL, Porta G, Nishioka M, Simon T, Daehnrich C, Schlumberger W, Galie PR, Lohse AW. Establishment of standardised SLA/LP immunoassays: specificity for autoimmune hepatitis, worldwide occurrence, and clinical characteristics. \textit{Gut} 2002; 51: 259-264

102 Czaja AJ, Serras J, Norman GL. Frequency and significance of antibodies to soluble liver antigen/liver pancreas in variant autoimmune hepatitis. \textit{Autoimmunity} 2002; 35: 475-483

103 Targan SR, Landers C, Vidrich A, Czaja AJ. High-titer antineutrophil cytoplasmic antibodies in type-1 autoimmune hepatitis. \textit{Gastroenterology} 1995; 109: 1159-1166

104 Zauli D, Ghetti S, Grassi A, Descovich C, Cassani F, Ballardi G, Muratori L, Bianchi FB. Anti-neutrophil cytoplasmic antibodies in type 1 and 2 autoimmune hepatitis. \textit{Hepatology} 1997; 25: 1105-1107

105 Volta U, De Franceschi L, Molinaro N, Cassani F, Muratori L, Lenzi M, Bianchi FB, Czaja AJ. Frequency and significance of anti-gliadin and anti-endomyosal antibodies in autoimmune hepatitis. \textit{Dig Dis Sci} 1998; 43: 2190-2195

106 Kaukinen K, Halme L, Collin P, Fäkkila M, Mäki M, Vehmanen P, Partanen J, Hockerstedt K. Celiac disease in patients with severe liver disease: gluten-free diet may reverse hepatic failure. \textit{Gastroenterology} 2002; 122: 881-888

107 Abdo A, Meddings J, Swain M. Liver abnormalities in celiac disease. \textit{Clin Gastroenterol Hepatol} 2004; 2: 107-112

108 Kenny RP, Czaja AJ, Ludwig J, Dickson ER. Frequency and significance of antimitochondrial antibodies in severe chronic active hepatitis. \textit{Dig Dis Sci} 1986; 31: 705-711

109 Muratori P, Muratori L, Gershwin ME, Czaja AJ, Pappas G, Maccarilio S, Granito A, Cassani F, Lenz M, Bianchi FB. True antimitochondrial antibody-negative primary biliary cirrhosis, low sensitivity of the routine assays, or both? \textit{Clin Exp Immunol} 2004; 135: 154-158

110 Nezu S, Tanaka A, Yasui H, Imamura M, Nakajima H, Ishida H, Takahashi S. Presence of antimitochondrial autoantibodies in patients with autoimmune hepatitis. \textit{J Gastroenterol Hepatol} 2006; 21: 1448-1454

111 O’Brien C, Joshi S, Feld JJJ, Guindi M, Diens HP, Heathcote EJ. Long-term follow-up of antimitochondrial antibody-positive autoimmune hepatitis. \textit{Hepatology} 2008; 48: 550-556

112 Montano-Loza AJ, Carpenter HA, Czaja AJ. Frequency, behavior, and prognostic implications of antimitochondrial antibodies in type 1 autoimmune hepatitis. \textit{J Clin Gastroenterol} 2002; 39: 1047-1053

113 Mishima S, Omagari K, Ohba K, Kadokawa Y, Masuda J, Mishima R, Kinoshita H, Hayashida K, Isomoto H, Shikuwa S, Mizuta Y, Kohno S. Clinical implications of antimitochondrial antibodies in type 1 autoimmune hepatitis: a longitudinal study. \textit{Hepatogastroenterology} 2008; 55: 221-227

114 Leung PS, Rossaro L, Davis PA, Park O, Tanaka A, Kikuchi K, Miyakawa H, Norman GL, Lee W, Gershwin ME. Antimitochondrial antibodies in acute liver failure: implications for primary biliary cirrhosis. \textit{Hepatology} 2007; 46: 1436-1442

115 Gregorio GV, Portmann B, Karani J, Harrison P, Donaldson PT, Vergani D, Mieli-Vergani G. Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. \textit{Hepatology} 2001; 33: 544-553

116 Perdigoto R, Carpenter HA, Czaja AJ. Frequency and significance of chronic ulcerative colitis in severe corticosteroid-treated autoimmune hepatitis. \textit{J Hepatol} 1992; 14: 325-331

117 Abdalian R, Dhar P, Jhaveri K, Haider M, Guindi M, Heathcote EJ. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: evaluating the role of routine magnetic resonance imaging. \textit{Hepatology} 2008; 47: 949-957

118 Sahni VA, Mortele KJ. Magnetic resonance cholangiopancreatography: current use and future applications. \textit{Clin Gastroenterol Hepatol} 2008; 6: 967-977

119 Lewin M, Vilgrain V, Ozemne V, Lemoine M, Wendum D, Paradis V, Ziol M, Beaufrag M, Poupon R, Valla D, Chazouilleres O, Corpechet C. MRI abnormalities of bile ducts in adults with autoimmune hepatitis: myth or reality? Results of a controlled prospective study (abstract). \textit{Hepatology} (Suppl) 2008; 48: 421A

120 Gohike F, Lohse AW, Diens HP, Löhr H, Märker-Hermann E, Gerken G, Meyer zum Büschenfelde KH. Evidence for an overlap syndrome of autoimmune hepatitis and primary sclerosing cholangitis. \textit{J Hepatol} 1996; 24: 699-705

121 Czaja AJ. Frequency and nature of the variant syndromes of autoimmune liver disease. \textit{Hepatology} 1998; 28: 360-365

122 McNair AN, Moloney M, Portmann BC, Williams R, McFarlane IG. Autoimmune hepatitis overlapping with primary sclerosing cholangitis in five cases. \textit{Am J Gastroenterol} 1998; 93: 1047-1050

123 Floreani A, Rizzotto ER, Ferrara F, Carderi I, Caroli D, Blasone L, Baldo V. Clinical course and outcome of autoimmune hepatitis/primary sclerosing cholangitis overlap syndrome. \textit{Am J Gastroenterol} 2005; 100: 1516-1522

124 Al-Chalabi T, Portmann BC, Bernal W, McFarlane IG, Heneghan MA. Autoimmune hepatitis overlap syndromes: an evaluation of treatment response, long-term outcome and survival. \textit{Aliment Pharmacol Ther} 2008; 28: 209-220

125 Czaja AJ. Treatment strategies in autoimmune hepatitis. \textit{Clin Liver Dis} 2002; 6: 799-824

126 Carpenter HA, Czaja AJ. The role of histologic evaluation in the diagnosis and management of autoimmune hepatitis and its variants. \textit{Clin Liver Dis} 2002; 6: 685-705

127 Boberg KM, Aadland E, Jahnson J, Raknerud N, Stiris M, Bell H. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. \textit{Scand J Gastroenterol} 1998; 33: 99-103

128 Werner M, Prytz H, Ohlsoss B, Almer S, Bjornsson E, Bergquist A, Wallerstedt S, Sandberg-Gertzen H, Hultcrantz R, Sanglept J, Weiland O, Danielsson A. Epidemiology and the initial presentation of autoimmune hepatitis in Sweden: a nationwide study. \textit{Scand J Gastroenterol} 2008; 43: 1232-1240

129 Czaja AJ, dos Santos RM, Porto A, Santrach PJ, Moore SB. Immune phenotype of chronic liver disease. \textit{Dig Dis Sci} 1998; 43: 2149-2155
H, Kamalian N, Sotoodeh M. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. *Dig Dis Sci* 2001; 46: 1321-1327

170 Van Thiell DH, Kirby J, Wright H, Carroll P, Abu-Elmagd K, Rodriguez-Rijo M, McMichael J, Irish W, Starzl TE. Tacrolimus: a potential new treatment for autoimmune chronic active hepatitis: results of an open-label preliminary trial. *Am J Gastroenterol* 1995; 90: 771-776

171 Aqel BA, Machicau V, Rosser B, Satyanarayana R, Harnois DM, Dickson RC. Efficacy of tacrolimus in the treatment of steroid refractory autoimmune hepatitis. *J Clin Gastroenterol* 2004; 38: 805-809

172 Larsen E, Vainer B, Eeensen M, Bjerring PN, Adel Hansen B. Low-dose tacrolimus ameliorates liver inflammation and fibrosis in steroid refractory autoimmune hepatitis. *World J Gastroenterol* 2007; 13: 3232-3236

173 Alvarez F, Ciocca M, Cañero-Velasco C, Ramonet M, de Davila MT, Cuarterolo M, Gonzalez T, Jara-Vega P, Camarena C, Brochu P, Drut R, Alvarez E. Short-term cyclosporin induces a remission of autoimmune hepatitis in children. *J Hepatol* 1999; 30: 222-227

174 Debray D, Maggiore G, Girardet JP, Mallet E, Bernard O. Efficacy of cyclosporin A in children with type 2 autoimmune hepatitis. *J Pediatr* 1999; 135: 111-114

175 Cuarterolo M, Ciocca M, Velasco CC, Ramonet M, Gonzalez T, Lopez S, Garsd A, Alvarez F. Follow-up of children with autoimmune hepatitis treated with cyclosporine. *J Pediatr Gastroenterol Nutr* 2006; 43: 635-639

176 Pratt DS, Flavin DP, Kaplan MM. The successful treatment of autoimmune hepatitis with 6-mercaptopurine after failure with azathioprine. *Gastroenterology* 1996; 110: 271-274

177 Richardson PD, James PD, Ryder SD. Mycophenolate mofetil for maintenance of remission in autoimmune hepatitis. *J Hepatol* 2000; 33: 371-375

178 Devlin SM, Swain MG, Urbanski SJ, Burak KW. Mycophenolate mofetil for the treatment of autoimmune hepatitis in patients refractory to or intolerant of azathioprine. *J Hepatol* 2004; 40: 321-326

179 Chatur N, Ramji A, Bain VG, Ma MM, Marotta PJ, Ghent CN, Lilly LB, Heathcote EJ, Deschenes M, Lee SS, Steinbrecher UP, Yoshida EM. Transplant immunosuppressive agents in non-transplant chronic autoimmune hepatitis: the Canadian association for the study of liver (CASL) experience with mycophenolate mofetil and tacrolimus. *Liver Int* 2005; 25: 630-638

180 Czaja AJ, Carpenter HA. Empiric therapy of autoimmune hepatitis with mycophenolate mofetil: comparison with conventional treatment for refractory disease. *J Clin Gastroenterol* 2005; 39: 819-825

181 Inductivo-Yu I, Adams A, Gish RG, Wakil A, Bzowey NH, Frederick RT, Bonacini M. Mycophenolate mofetil in autoimmune hepatitis patients not responsive or intolerant to standard immunosuppressive therapy. *Clin Gastroenterol Hepatol* 2007; 5: 799-802

182 Czaja AJ. Safety issues in the management of autoimmune hepatitis. *Expert Opin Drug Saf* 2008; 7: 319-333

183 Hlivojk JT, Shiffman ML, Stravitz RT, Luketic VA, Sanyal AJ, Fuchs M, Sterling RK. A single center review of the use of mycophenolate mofetil in the treatment of autoimmune hepatitis. *Clin Gastroenterol Hepatol* 2008; 6: 1036-1040

184 Henzen EM, Oo YH, Schramm C, Denzer U, Buggisch P, Wiegard C, Kanzler S, Schuchmann M, Boecher W, Galle PR, Adams DH, Lohse AW. Mycophenolate mofetil as second line therapy in autoimmune hepatitis? *Am J Gastroenterol* 2008; 103: 3063-3070

185 Oo YH, Neuberger J. Use of mycophenolate in the treatment of autoimmune hepatitis. *Liver Int* 2005; 25: 887-891

186 Danielsson A, Prytz H. Oral budesonide for treatment of autoimmune chronic active hepatitis. *Aliment Pharmocol Ther* 1994; 8: 585-590

187 Wiegand J, Schuler A, Kanzler S, Lohse A, Beuers U, Kreisel W, Spengler U, Koletzko S, Jansen PL, Hochhaus G, Moellmann HW, Prots M, Manns MP. Budesonide in previously untreated autoimmune hepatitis. *Liver Int* 2005; 29: 927-934

188 Zandieh I, Krygier D, Wong V, Howard J, Worobetz L, Minuk G, Witt-Sullivan H, Yoshida EM. The use of budesonide in the treatment of autoimmune hepatitis in Canada. *Can J Gastroenterol* 2008; 22: 388-392

189 Czaja AJ, Lindor KD. Failure of budesonide in a pilot study of treatment-dependent autoimmune hepatitis. *Gastroenterology* 2000; 119: 1312-1316

190 Clissold SP, Heel RC. Budesonide. A preliminary review of its pharmacodynamic properties and therapeutic efficacy in asthma and rhinitis. *Drugs* 1984; 28: 485-518

191 Geier A, Gurtung C, Dietrich CG, Wasmuth HE, Reinartz P, Matern S. Side effects of budesonide in liver cirrhosis due to chronic autoimmune hepatitis: influence of hepatic metabolism versus portosystemic shunts on a patient complicated with HCC. *World J Gastroenterol* 2003; 9: 2681-2685

192 Kanjler S, Gerken G, Dienes HP, Meyer zum Büschenfelde KH, Lohse AW. Cyclophosphamide as alternative immunosuppressive therapy for autoimmune hepatitis--report of three cases. *Z Gastroenterol* 1997; 35: 571-578

193 Burak KW, Urbanski SJ, Swain MG. Successful treatment of refractory type 1 autoimmune hepatitis with methotrexate. *J Hepatol* 1998; 29: 990-993

194 Kerkar N, Dugan C, Rumbo C, Morotti RA, Gondolesi G, Shneider BL, Ensrude S. Ramosycin successfully treats post-transplant autoimmune hepatitis. *Am J Transplant* 2005; 5: 1085-1089

195 Santos ES, Arosemena LR, Raez LE, O’Brien C, Regev P. Successful treatment of autoimmune hepatitis and idiopathic thrombocytopenic purpura with the monoclonal antibody, rituximab: case report and review of literature. *Liver Int* 2006; 26: 625-629

196 Carmassi F, Morale M, Puccetti R, Pistelli F, Palla R, Bevilacqua G, Víacava P, Antonelli A, Mariani G. Efficacy of intravenous immunoglobulin therapy in a case of autoimmune-mediated chronic active hepatitis. *Clin Exp Rheumatol* 1992; 10: 13-17

197 Rebollo Bernárdez J, Cifuentes Mimoso C, Piñar Moreno A, Caunedo Alvarez A, Salas Herrera E, Jiménez-Sáenz M, Herreras Gutiérrez J. Deflazacor for long-term maintenance of remission in type I autoimmune hepatitis. *Rev Esp Enferm Dig* 2008; 100: 723-727

198 Czaja AJ, Carpenter HA, Lindor KD. Ursodeoxycholic acid as adjunctive therapy for problematic type 1 autoimmune hepatitis: a randomized placebo-controlled treatment trial. *Hepatology* 1999; 30: 1381-1386

199 Czaja AJ, Bianchi FB, Carpenter HA, Krawitt EL, Lohse AW, Manns MP, McFarlane IG, Mieli-Vergani G, Toda G, Vergani D, Vierling J, Zeniya M. Treatment challenges and investigational opportunities in autoimmune hepatitis. *Hepatology* 2005; 41: 207-215

200 Heneghan MA, Al-Chalabi T, McFarlane IG. Cost-effectiveness of pharmacotherapy for autoimmune hepatitis. *Expert Opin Pharmacother* 2006; 7: 145-156

201 Fridkis-Harelí M, Rosloniec EF, Fugger L, Strominger JL. Synthetic amino acid copolymers that bind to HLA-DR proteins and inhibit type II collagen-reactive T cell clones. *Proc Natl Acad Sci* USA 1998; 95: 12528-12531

202 Fridkis-Harelí M, Rosloniec EF, Fugger L, Strominger JL. Synthetic peptides that inhibit binding of the collagen type II 261-273 epitope to rheumatoid arthritis-associated HLA-DR1 and -DR4 molecules and collagen-specific T-cell responses. *Hum Immunol* 2000; 61: 640-650

203 Boetticher NC, Peine CJ, Kwo P, Abrams GA, Patel T, Aqel B, Boardman L, Gores CJ, Harmsen WS, McClain CJ, Kamath PS, Shah VH. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. *Gastroenterology* 2008; 135: 1953-1960

www.wjgnet.com
Lohse AW, Dienes HP, Meyer zum Büschenfelde KH. Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. *Hepatology* 1998; 27: 1536-1543

Wardrop RM 3rd, Whitacre CC. Oral tolerance in the treatment of inflammatory autoimmune diseases. *Inflamm Res* 1999; 48: 106-119

Nagler A, Pines M, Abadi U, Pappo O, Zeira M, Rabbani E, Engelhardt D, Ohana M, Chowdhury NR, Chowdhury JR, Ilan Y. Oral tolerization ameliorates liver disorders associated with chronic graft versus host disease in mice. *Hepatology* 2000; 31: 641-648

Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy. *Am J Gastroenterol* 2001; 96: 1224-1231

Lapierre P, Béland K, Alvarez F. Pathogenesis of autoimmune hepatitis: from break of tolerance to immune-mediated hepatocyte apoptosis. *Transl Res* 2007; 149: 107-113

Jaeckel E. Animal models of autoimmune hepatitis. *Semin Liver Dis* 2002; 22: 325-338

Christen U, Holdener M, Hintermann E. Animal models for autoimmune hepatitis. *Autoimmun Rev* 2007; 6: 306-311

Bowen DG. Of mice and molecular mimicry: modeling autoimmune hepatitis. *Hepatology* 2008; 48: 1013-1015

Lapierre P, Djiilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: Xenoinmunization with human antigens. *Hepatology* 2004; 39: 1066-1074

Holdener M, Hintermann E, Bayer M, Rhode A, Rodrigo E, Hintereder G, Johnson EF, Gonzalez FJ, Pfeilschifter J, Manns MP, Herrath MG, Christen U. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. *J Exp Med* 2008; 205: 1409-1422

Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, Yang VW, Lee OK. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. *Gastroenterology* 2008; 134: 2111-2121, 2121.e1-2121.e3