Guo, Haoyang
Hodge-Tate decomposition for non-smooth spaces. (English) Zbl 07683518
J. Eur. Math. Soc. (JEMS) 25, No. 4, 1553-1625 (2023)

Summary: In this article, we generalize the Hodge-Tate decomposition of p-adic étale cohomology to non-smooth rigid spaces. Our strategy is to study pro-étale cohomology of rigid spaces introduced by Scholze, using the resolution of singularities and the simplicial method.

MSC:
14G22 Rigid analytic geometry
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14G20 Local ground fields in algebraic geometry
14E15 Global theory and resolution of singularities (algebro-geometric aspects)

Keywords:
p-adic Hodge theory; étale cohomology; rigid analytic spaces; resolution of singularities

Full Text: DOI arXiv

References:
[1] Beilinson, A.: p-adic periods and derived de Rham cohomology. J. Amer. Math. Soc. 25, 715-738 (2012) Zbl 1247.14018 MR 2904571
[2] Bhatt, B., Caraiani, A., Kedlaya, K. S., Weinstein, J., Scholze, P.: Perfectoid Spaces. Math. Surveys Monogr. 242, Amer. Math. Soc., Providence, RI (2019) Zbl 1428.14002 MR 3970252
[3] Bhatt, B., Morrow, M., Scholze, P.: Integral p-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128, 219-397 (2018) Zbl 1446.14011 MR 3905467
[4] Bhatt, B., Scholze, P.; Prismatic cohomology. arXiv:1905.08229 (2019)
[5] Bosch, S., Guntzer, U., Remmert, R.: Non-Archimedean Analysis. Grundlehren Math. Wiss. 261, Springer, Berlin (1984) Zbl 0539.14017 MR 746961
[6] Conrad, B.: Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble) 49, 473-541 (1999) Zbl 0928.32011 MR 1697371
[7] Conrad, B.: Cohomological descent. http://math.stanford.edu/~conrad/papers/hypercover.pdf (2003)
[8] Conrad, B.: Relative ampleness in rigid geometry. Ann. Inst. Fourier (Grenoble) 56, 1049-1126 (2006) Zbl 1125.14009 MR 2266885
[9] Conrad, B., Gabber, O.: Spreading out of rigid-analytic varieties. In preparation
[10] Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5-77 (1974) Zbl 0237.14003 MR 498552
[11] Deligne, P., Illusie, L.: Relèvements modulo p^2 et décomposition du complexe de de Rham. Invent. Math. 89, 247-270 (1987) Zbl 0632.14017 MR 894379
[12] Dao, H., Lan, K.-W., Liu, R., Zhu, X.: Logarithmic Riemann-Hilbert correspondences for rigid varieties. arXiv:1803.05786 (2019)
[13] Du Bois, P.: Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France 109, 41-81 (1981) Zbl 0465.14009 MR 613848
[14] Gabber, O., Ramero, L.: Almost Ring Theory. Lecture Notes in Math. 1800, Springer, Berlin (2003) Zbl 1045.13002 MR 2004652
[15] Geisser, T.: Arithmetic cohomology over finite fields and special values of L-functions. Duke Math. J. 133, 27-57 (2006) Zbl 1140.14011 MR 2219269
[16] Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. France (N.S.) 87 (1985) Zbl 0615.14011 MR 844388
[17] Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 pp. (1967) Zbl 0153.22301 MR 238860
[18] Guo, H.: Crystalline cohomology of rigid analytic spaces. arXiv:2112.14304 (2021)
[19] Hartshorne, R.: Algebraic Geometry. Grad. Texts in Math. 52, Springer, New York (1977) Zbl 0367.14001 MR 0463157
[20] Huber, A., Jørgensen, C.: Differential forms in the h-topology. Algebr. Geom. 1, 449-478 (2014) Zbl 1322.14043 MR 3272910
