The Role of TGF-β and Its Receptors in Gastrointestinal Cancers

Jingwen Luo*, Xu-Qiao Chen† and Ping Li*

*Oncology Department, West China Hospital of Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China; †Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA

Abstract
Early detection of gastrointestinal tumors improves patient survival. However, patients with these tumors are typically diagnosed at an advanced stage and have poor prognosis. The incidence and mortality of gastrointestinal cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers, are increasing worldwide. Novel diagnostic and therapeutic agents are required to improve patient survival and quality of life. The tumor microenvironment, which contains nontumor cells, signaling molecules such as growth factors and cytokines, and extracellular matrix proteins, plays a critical role in cancer cell proliferation, invasion, and metastasis. Transforming growth factor beta (TGF-β) signaling has dual roles in gastrointestinal tumor development and progression as both a tumor suppressor and tumor promoter. Here, we review the dynamic roles of TGF-β and its receptors in gastrointestinal tumors and provide evidence that targeting TGF-β signaling may be an effective therapeutic strategy.

Translational Oncology (2019) 12, 475–484

Introduction
Transforming growth factor beta (TGF-β) is a cytokine that participates in both physiological and pathological processes including tumorigenesis [1]. During tumor progression, TGF-β signaling regulates immune/inflammatory response and tumor microenvironment. It also regulates tumor growth, epithelial-mesenchymal transition (EMT), and cancer cell stemness depending on tumor stage and cellular context [2–4]. Malignant gastrointestinal tumors such as esophageal, gastric, liver, colorectal, and pancreatic carcinomas are a major cause of cancer-related deaths worldwide [5]. Ablation TGF-β signaling has been associated with gastrointestinal cancer progression [6]. Several TGF-β-based therapeutics have been developed for the treatment of gastrointestinal cancers and have displayed efficacy in clinical trials [7,8]. Here, we review the roles of TGF-β and its receptors in gastrointestinal tumors and describe the evidence that targeting TGF-β signaling may be an effective therapeutic strategy.

TGF-βs and Their Receptors
The TGF-β superfamily consists of at least 40 structurally and functionally related cytokines that are involved in various biological processes including embryonic development, extracellular matrix formation, immune regulation, inflammation, and cancer [1,9,10]. TGF-β family proteins are classified into several subtypes, including TGF-βs, activins/inhibins, and bone morphogenetic proteins (BMPs)/growth differentiation factors according to structural characteristics (Figure 1) [11].

Six TGF-β isoforms have been identified, which display variable sequence homology. TGF-β1, TGF-β2, and TGF-β3 are highly conserved and expressed in mammals [12]. TGF-β4 and TGF-β5 are predominantly expressed in birds and amphibians [13], while TGF-β6 is only expressed in fish [14]. TGF-β1 is the most abundant and ubiquitously expressed of the isoforms. TGF-β is synthesized in an inactive form (pre-proTGF-β), which contains a signal peptide, a pro region, and the mature coding region. Following removal of the signal peptide, the TGF-β dimer interacts with latency associated peptide, a protein derived from the N-terminal region of the proTGF-β, to form the small latent complex. This complex is secreted into the extracellular matrix upon binding to latent TGF-β-binding
protein to form the large latent complex. TGF-β is then active until it is released from the large latent complex by proteases, integrins, pH, or reactive oxygen species. Active TGF-β consists of two identical peptide chains with a molecular weight of 25 kDa [15].

TGF-β signals through TGF-β receptors (TβRs) I and II to activate downstream signaling pathways [11,16]. The TβRs are single-pass transmembrane proteins with serine/threonine kinase activity. Seven TβRIs and five different TβRIIs have been identified, which confer intracellular signaling specificity to all members of the TGF-β superfamily [1]. In the absence of ligand, TβRI and TβRII exist as monomers, homodimers, or heterodimers on the cell surface. Ligand binding promotes formation of a tetrameric complex between TβRII dimers and two TβRIs [17]. TβRIs and TβRIIs have N-terminal extracellular ligand binding domains, transmembrane segments, and C-terminal cytosolic serine/threonine kinase domains [11]. TGF-β binds specifically to the constitutively active TβRII, which activates TβRI by phosphorylating the glycine/serine-rich domain. Activated TβRI then phosphorylates downstream effectors to induce signal transduction (Figure 2) [17]. TβR activity is regulated by betaglycan, a type III TβR, and endoglin [16].

Canonical TGF-β Signaling

Canonical TGF-β signaling is dependent upon Smad family proteins. Active TGFβRI at the cell surface phosphorylates receptor-activated Smads (R-Smads). There are two sub-classes of R-Smads in which Smad2 and Smad3 mediate the TGFβ/activin pathway. Smad4 acts as a co-factor that binds to activated R-Smads to form a complex that translocates to the nucleus and regulates transcription (Figure 2) [1,18,19]. Interestingly, R-Smads have also been shown to interact with other proteins such as tripartite motif-containing 33 to regulate gene transcription [20].

TGF-β signaling is regulated through various mechanisms. Inhibitory Smad (Smad7) can inhibit TGF-β signaling by interacting with TβRI and R-Smads [21] (Figure 2). R-Smad stability is also modulated by phosphorylation [22]. Additionally, Smad ubiquitination regulatory factor (Smurf)–mediated TβRII degradation can dynamically regulate TGF-β signaling [23].

Noncanonical TGF-β Signaling

TβRs can also activate non–Smad-dependent signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway mediated by p38, c-Jun amino terminal kinase (JNK), extracellular signal-regulated kinases (ERK), nuclear factor-κB (NF-κB), Rho, and phosphatidylinositol 3-kinase (PI3K)-Akt (Figure 2) [24,25]. These non-Smad pathways might mediate signaling transduction alone or in cooperation with the canonical Smad pathway to modulate TGF-β signaling activity.

TGF-β–induced activation of ERK can phosphorylate transcription factors. Activated TGF-β receptors interact with tumor necrosis factor receptor–associated factor 6 and TGF-β–activated kinase 1 to activate multiple downstream kinases including JNK, p38 and IκB kinase. Activated JNK and p38 can phosphorylate the targeted transcription factors, while IκB kinase phosphorylates NF-κB. Activated Akt can control translation through mammalian target of rapamycin-1. These non–Smad-mediated translational and transcriptional responses cross talk with Smad-mediated transcriptional responses to contribute to either tumorigenesis or tumor suppression. Non-Smad proteins can also directly impact R-Smad activity. ERK can regulate the activity of R-Smads in a phosphorylation-dependent manner, while Akt regulates Smad3 activity by sequestering Smad3 in the cytoplasm. Furthermore, TGF-β also activates RhoA and Rho-associated protein kinase to induce actin polymerization involved in EMT process. Thus, cross talk between the canonical and noncanonical TGF-β signaling pathways contributes to tumor development (Figure 2) [25]. Cross talk has also been demonstrated...
between the TGF-β signaling pathway and the tumor necrosis factor-α and epidermal growth factor receptor pathways [24–26].

Role of TGF-β Signaling in Cancer

Altered TGF-β expression has been observed in several cancers [2,7,8]. Interestingly, TGF-β has dual roles in tumor progression, acting as both a tumor suppressor and tumor promoter in a stage- and context-dependent manner [4,7,8]. During tumor initiation, TGF-β signaling promotes cell cycle arrest and apoptosis, thereby acting as a tumor suppressor. In contrast, TGF-β has been shown to promote tumor cell proliferation, EMT, and stem-like behavior as well as fibrosis, inflammation, and angiogenesis during tumor progression (Figure 2) [4,7,8]. Upregulation of TGF-β expression was correlated with poor prognosis in patients with advanced-stage tumors. The accumulation of mutations in TGF-β signaling pathway components during tumor progression may contribute to the switch in TGF-β function from tumor-suppressive to tumor-promoting.

Role of TGF-β Signal in Gastrointestinal Cancers

TGF-β Signal and Esophageal Cancer

Esophageal cancer is the sixth leading cause of cancer-related death worldwide [27,28]. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma are the most common histological subtypes of esophageal cancer [29]. Risk factors for esophageal cancer include smoking, consumption of hot liquids, poor oral health, and vitamin deficiency [28]. Recent studies have provided insight into the role of TGF-β signaling in esophageal cancer. Interestingly, higher serum TGF-β levels were observed in patients with esophageal cancer compared to healthy controls, and reduced levels were observed following radiotherapy [30]. Upregulation of TGF-β and concomitant overexpression of vascular endothelial growth factor (VEGF) were correlated with tumor size in ESCC [31]. Additionally, overexpression of TGF-β and reduced TβR expression were associated with depth of invasion and pathologic stage in ESCC [32]. Smad4, but not Smad2/3, expression was inversely correlated with invasion in ESCC [33]. Smurf2-induced Smad2 degradation may also contribute to tumor development and poor prognosis in ESCC [34]. Finally, TGF-β signaling plays a role in esophageal cancer progression.

MicroRNAs

MicroRNAs (miRNAs) are diagnostic and prognostic biomarkers in several cancers and have been shown to regulate TGF-β signaling in esophageal cancer [37,38]. MiR-17/20a suppressed ESCC cell migration and invasion via the TGF-β/integrin β subunit pathway by targeting TβR2 and Smad anchor for receptor activation for...
degradation [39]. Additionally, TGF-β was shown to play a role in miR-455-3p–mediated ESCC progression [40]. MiR-655 suppressed ESCC progression by targeting zinc finger E-box binding homeobox 1 and TβRII, which are required for TGF-β signaling, and suppressing EMT [41]. MiR-32 was recently found to promote ESCC metastasis through CXCR5–mediated inhibition of TGF-β signaling [42].

Cross talk between cytoskeleton-associated proteins, which are aberrantly expressed in esophageal cancer, and the TGF-β signaling pathway can promote ESCC progression. Reelin, which has a key role in neuronal migration, negatively regulates TGF-β–induced ESCC cell migration. Reelin expression was suppressed by the TGF-β pathway through the transcription factor Snail [43]. Fascin is an actin bundling protein that induces cell membrane protrusions. It regulates ESCC cell proliferation and invasion by modulating the levels of connective tissue growth factor and cysteine-rich protein 61 via the TGF-β pathway [44]. Overexpression of cysteine-rich protein 61 and connective tissue growth factor was associated with poor survival in ESCC [45]. Ezrin, a cytoskeletal cross-linking protein, also promotes ESCC cell proliferation and invasion through the TGF-β and MAPK signaling pathways [46]. Collectively, these data indicate that TGF-β signaling can promote esophageal cancer development and metastasis.

TGF-β Signal and Gastric Cancer

Gastric cancer (GC) is the second leading cause of cancer–related death worldwide. It has a particularly high mortality rate in Asia, which may be linked to both social and environmental factors [47, 48]. Despite early diagnosis and treatment with a combination of surgery, chemotherapy, and/or radiotherapy, the prognosis of GC patients is poor due to recurrence and distant metastasis [49]. Previous studies have demonstrated higher TGF-β levels in serum from GC patients compared to healthy controls. Elevated TGF-β levels were correlated with lymph node metastasis, worse overall survival, and poor prognosis in GC patients [50]. TGF-β was also increased in the gastric mucosa and in precancerous gastric cells [51]. Altered TGF-β signaling has been observed during GC progression. Additionally, mutations in TβRII have been implicated in gastric carcinogenesis [52]. Repression of TβRII transcription through CpG island methylation was also correlated with poor prognosis in GC patients [53]. Various mutations in the promoter regions of TGFβ1 and TGFβ2 were associated with the risk of GC in a Chinese population [54]. In addition, an imbalance in Smad4/7 expression was associated with GC cell differentiation, metastasis, and apoptosis [55]. These data suggest TGF-β plays an important role in GC development.

EMT results in gastric epithelial cells acquiring mesenchymal characteristics and promotes stenosis, invasion, and metastasis [56, 57]. EMT can be induced by pathogens, stress, and hypoxia [58]. EMT is modulated by the microenvironment in gastric and other cancers [58, 59]. TGF-β, Notch, and Wnt signaling can induce EMT in GC cells, thereby promoting tumor progression [58].

Several proteins regulate TGF-β–induced EMT in GC and have opposing effects. For example, ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region-containing protein 2 [60], grainyhead-like 2 [61] and metastasis suppressor protein 1 [62] suppress invasion and TGF-β–induced EMT in GC cells, whereas homeobox protein A13 [63], CC-chemokine receptor 7 [64], and homeoprotein Bapx1 [65] promote TGF-β–induced EMT. MiRNAs also regulate EMT in GC cells. MiR-381 inhibited TGF-β signaling and suppressed EMT in GC cells in part by targeting transmembrane member 16A [66]. In contrast, miR-21 enhanced TGF-β–induced EMT in GC cells by upregulating PTEN expression [67]. MiRNAs may contribute to GC progression by directly targeting components of the TGF-β signaling pathway. MiR-17–5p and miR-155 target TβRII in GC cells and are involved in proliferation and migration, while miR-424–5p, which is upregulated in GC cells, inhibits TGF-β signaling by targeting Smad3 and promotes GC cell proliferation [68–70]. Finally, miR-199a was found to target Smad4 in GC [71].

TGF-β Signal and Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common malignancy worldwide [72, 73]. The primary causes of HCC include toxins (e.g., alcohol and aflatoxin) and chronic hepatitis B virus or hepatitis C infection (account for approximately 80% of cases) [74]. Most patients are diagnosed at an advanced stage due to a lack of symptoms and rapid disease progression. The 5-year overall survival rate is less than 20% [75]. Surgical resection and liver transplantation are the best treatment options for HCC [76]. However, there is a high rate of recurrence and metastasis following curative hepatectomy [77]. A better understanding of the molecular mechanisms underlying HCC progression is required to identify more effective therapeutic targets.

Elevated TGF-β levels have been observed in patients with metastatic HCC compared to those with nonmetastatic disease [78, 79]. Immunostaining demonstrated expression of all three TGF-β isoforms in HCC cells and in the perineoplastic stroma, while little to no expression was detected in normal liver tissue [80]. Serum TGF-β levels were associated with disease progression and poor prognosis [81]. TGF-β may be a feasible marker for the detection of early-stage HCC because it has displayed higher sensitivity than traditional markers such as alpha-fetoprotein in past studies [82]. Loss of TβRII expression was correlated with tumor progression in HCC [83]. Additionally, mutations in Smad2 and Smad4 have been observed in a small minority of HCC patients [84]. TGF-β induces alterations in the cellular composition of the tumor microenvironment, which may also play an important role in HCC progression [85, 86]. A recent study stated that the combination of the expression level of c-Myc, TGF-β1, and embryonic liver fodrin (an adaptor protein of TGF-β signaling cascade) together can be used to accurately predict outcomes of patients with HCC [87].

Emerging evidence suggests TGF-β signaling has a dual or biphasic role in HCC development and progression [88, 89]. TGF-β acts as a tumor suppressor in early carcinogenesis but promotes tumor progression during later stages. Consistent with these observations, reduced TβRII correlated with increased tumor size and intrahepatic metastasis in HCC patients [83], and with the risk of HCC in a mouse model [90]. Additionally, reduced TβRII staining has been observed in approximately 25% of malignant compared to adjacent nonmalignant hepatocytes [91]. TGF-β was also found to suppress HCC proliferation through activating Hippo signaling [92]. NADPH oxidase 4 may mediate the antiproliferative and proapoptotic effects of TGF-β in HCC cells [93]. On the other hand, TGF-β contributes to HCC invasion and metastasis by promoting fibroblast growth factor receptor 4 expression via the noncanonical ERK pathway [94]. AG01, the main component of RNA-induced silencing complexes, may promote HCC metastasis in a TGF-β–dependent manner [95]. Finally, miRNAs may regulate EMT in HCC cells by targeting TGF-β signaling. The miR-200 family of miRNAs was shown to suppress metastasis in human HCC cells [96], and miR-125b was found to suppress EMT by targeting Smad4 and Smad7 [97].
The mechanisms underlying the dual roles of TGF-β signaling have not been elucidated. Previous studies have suggested that HCC cells may become resistant to the antiproliferative effects of TGF-β but maintain sensitivity to the tumor-promoting effects [98]. Importantly, upregulation of growth factor–mediated survival signals, such as MAPK/ERKs, PI3K/Akt, and NF-κB, suppressed the antiproliferative effects of TGF-β in HCC cells [99]. TGF-β promotes the production of growth factors and cytokines such as PDGF and EGF, which contribute to tumor cell proliferation and invasion [99]. PDGF links TGF-β signaling to nuclear β-catenin accumulation during HCC progression [100]. EGF promotes HCC cell survival by protecting the cells from TGF-β-induced cell death [101]. A recent study demonstrated that abrogation of the posttranscriptional regulation of c-Myc in an epigenetic modification-dependent manner promoted HCC cell resistance to antiproliferative TGF-β signaling [102].

A temporal TGF-β-specific gene expression signature was established in mouse hepatocytes that could distinguish between HCC subtypes. Tumors expressing early TGF-β–responsive genes displayed the physiological growth inhibitory effects of TGF-β, whereas tumors expressing late TGF-β–responsive genes displayed aberrant upregulation of TGF-β signaling and the antiapoptotic and invasive effects of TGF-β. The TGF-β–specific gene expression signature could predict HCC invasion and liver metastasis [103].

TGF-β Signal and Colorectal Cancer

Colorectal cancer (CRC) is one of the three most common cancers worldwide [104,105]. The incidence of CRC is higher in developed countries than in less developed countries, and nutrition is thought to be a major contributing factor [104]. The 5-year survival rate is less than 20% in patients with metastatic disease compared to 70%-90% in patients with nonmetastatic disease [104]. Approximately one third of all CRC cases are inherited [106]. Highly penetrant tumor susceptibility genes account for only 3%-6% of all CRC cases. The remaining fraction of the unexplained risk can likely be attributed to a combination of low to moderately penetrant genes and polygenic mechanisms [107].

Previous studies have demonstrated increased TGFBR1 expression in CRC compared to benign adenoma and noncancerous tissue [108]. Elevated TGF-β levels were observed in primary tumor tissue and in plasma from CRC patients and were correlated with metastasis and poor prognosis [109,110]. TGF-β was predominantly detected in the central regions of CRC liver metastases [111]. TGF-β induced growth arrest in moderately differentiated colon carcinomas but promoted proliferation in more aggressive tumors [112]. Reduced phosphorylation of the C-terminal region of Smad3 and activation of c-Jun NH(2)-terminal kinase–mediated phosphorylation of the linker region of Smad2/3 were observed in the human colorectal adenoma to carcinoma sequence, from which the majority of CRCs arise [113,114]. Notably, inhibition of TGF-β can prevent CRC metastasis by unleashing a cytotoxic T-cell response against cancer cells, implying that TGF-β signaling suppresses cancer recognition by the immune system [115].

Mutational inactivation of the TGF-β signaling pathway is a key cause of CRC progression [107,116]. Alterations in TGF-β signaling have been observed in nearly 50% of CRCs [107,116]. For example, mutations in TGFB2 that abolish TGF-β signaling have been frequently detected in CRCs [107,117]. More than 80% of CRCs that display microsatellite instability harbor mutations in TGFB2 (particularly frameshift mutations in exon 3) [116,118]. The exact mechanisms by which TGFB2 mutations lead to CRC have not been elucidated. However, a previous study demonstrated that inactivation of TβRII induced VEGF-A expression, which enhanced the metastatic potential of CRC cells [119]. TGF-β signaling was still active in some CRCs that displayed a high level of microsatellite instability despite frameshift mutations in TGFB2 [120]. Mutations in TGFB2 have also been detected in CRC [121]. For example, loss of three alanine residues within a stretch of nine alanine residues in the N-terminal region of TβRI (TGFB1*6A) was associated with an increased risk of CRC [122], though these results have not been confirmed [123]. However, a recent study pointed out an oncogenic property of TGFB1*6A which may promote the migration and invasion of colorectal cancer cells [124].

Mutations in downstream components of the TGF-β signaling pathway may also contribute to sporadic CRC development [107]. Smad4 is the most commonly disrupted Smad family protein in various cancers. It is mutated or lost in up to one third of all CRCs. Smad4 mutation or loss of expression has been frequently observed in late-stage tumors [125–128]. Loss of Smad4 could alter BMP signaling to promote CRC metastasis through activation of Rho and Rho-associated protein kinase [129]. Mutations in Smad2 have been detected in approximately 3%-6% of CRC tumors [128,130]. Mutations were more frequently observed in early-stage tumors. Both the Smad2 and Smad4 genes are located on chromosome 18q. This region is commonly deleted in CRC owing to a loss of the long arm of chromosome 18 (loss of heterozygosity) [131]. Smad7 is also located in this region [131].

Interestingly, a low-frequency coding variant, rs3764482 (c. 83C>T; p. S28F) in Smad7, was associated with the risk of CRC in a Chinese population [132]. A large-scale meta-analysis demonstrated that several single nucleotide polymorphisms in Smad7 were associated with CRC [133]. Mutations in Smad3 were also identified and had similar frequencies to those of the Smad2 mutations in sporadic CRCs [128]. In addition to the somatic mutations described above, germline mutations in Smads including Smad4 have been observed in several patients with juvenile polyposis syndrome [134], which can develop into CRC [135]. Thus, altered TGF-β signaling plays various stage-specific roles in CRC progression with mutations in TGFB2 and Smad as the major contributor.

TGF-β Signal and Pancreatic Cancer

Pancreatic cancer is a leading cause of cancer-related death worldwide [136]. Risk factors for pancreatic cancer include tobacco use, obesity, and exposure to certain chemicals. In addition to genetic factors, age and gender are also correlated with risk of pancreatic cancer [136,137]. Pancreatic ductal adenocarcinoma (PDAC) is the major histological subtype of pancreatic cancer (90% of cases). The median survival of PDAC patients is 6 months, and the 5-year survival rate is approximately 6% [138,139].

Previous studies have demonstrated that increased TGF-β expression promotes disease progression in PDAC [140,141]. Low circulating levels of TGF-β have been associated with prolonged survival in pancreatic cancer patients [142]. Increased TβRI and TßR2 expression has been observed in the majority of pancreatic cancer subtypes [143]. Activation of TGF-β receptor signaling in PDAC cells resulted in increased Smad3 phosphorylation and nuclear translocation, leading to inhibition of cell growth. However, it also can result in activation of Smad7, which antagonizes Smad3, leading to activation of VEGF-A, vascularization, and metastasis [144].
TGF-β appears to have dual roles in PDAC progression [139]. Overexpression of TGF-β in early-stage PDACs was associated with reduced tumor cell proliferation and improved survival [145]. Mutations in TGF-β pathway proteins may explain the stage-dependent functions of TGF-β in PDACs. Mutations in Smad4 have been observed in approximately 50% of PDACs [146,147]. Mutations in TβRII have been identified in 4%-7% of pancreatic cancers [146,148].

KRAS is mutated in nearly all PDACs and is a major driver of carcinogenesis [149]. However, mutation of KRAS alone is not sufficient for malignant transformation [150,151]. One recent study demonstrated that mutant KRAS dosage along with other oncogenic gains like Myc drives the early progression of PDAC [152]. Additional mutations in tumor suppressors such as Smad4 and CDKN2A are required for PDAC initiation [151]. Smad4 loss of function may promote KRAS-driven malignant transformation of pancreatic ductal cells [150]. In addition, inactivation of retinoblastoma 1 converts TGF-β from a tumor suppressor to a protumorigenic factor that enhances PDAC cell proliferation [153]. Rac1 may also induce a switch in TGF-β signaling by antagonizing Smad2 and Smad3 activation in PDAC cells [154]. TGF-β also regulates the interaction between tumor cells and the surrounding stroma, which can promote PDAC initiation and metastasis [2,155].

TGF-β-Based Therapies for Gastrointestinal Cancers

Elevated TGF-β expression in serum and tumor tissue was correlated with tumor stage and prognosis in gastrointestinal cancers [6]. Among different gastrointestinal cancers, dysfunction of TβRI or TβRII or the Smads [156]. Indeed, small molecule therapeutics, antibodies, and inhibitors against these targets are currently in clinical trials [7,156], such as antisense oligonucleotides against TGF-β or TβRII or to lower their expression, TGF-β-neutralizing monoclonal antibodies and anti-TβRII monoclonal antibodies to interrupt ligand-receptor interaction, and small molecule inhibitor of TβRII to prevent signaling transduction. Galunisertib, a TβRII kinase inhibitor, displayed considerable tumor suppression effects in PDAC and HCC and has entered the clinical phase II trial. Trabedersen, a TGF-β suppression antibody, showed certain effects in clinical trials in PDAC and CRC patients [7]. Although few drugs targeting TGF-β display efficacy in clinical trials, the future of TGF-β pathway-based strategies against gastrointestinal cancers is promising from these encouraging clinical trials [6].

Conclusions

Existing research allows for the conclusion that dysregulation of TGF-β signaling pathway is tightly associated with the development and progression of various gastrointestinal cancers. However, there is still much to learn about the biology of TGF-β signaling under normal conditions and how its dysfunction contributes to the different types of gastrointestinal cancers. TGF-β has critical roles at different stages during gastrointestinal cancers’ initiation and metastasis. Definitely, context is important to define the biological meaning of dynamic regulation of TGF-β signaling in the progression of these cancers. A better understanding of the molecular mechanisms underlying the roles of TGF-β, TβRs, and their downstream signaling pathways as well as the complicated cross talk among them during gastrointestinal cancer progression is important in order to develop more effective therapeutics for these diseases. We are still at the early stage in understanding what role TGF-β signaling plays in the development of gastrointestinal cancers. This stage is set to explore the therapeutics that target TGF-β signaling in gastrointestinal cancers, possibly in concert with other effective agents to maximize the therapeutic benefits and improve the outcome of these lethal cancers.

Consent for Publication

We have obtained consents to publish this paper from all the participants of this study.

Competing Interests

The authors declare that they have no competing interests.

CRediT authorship contribution statement

Jingwen Luo: Writing - original draft. Xu-Qiao Chen: Writing - review & editing. Ping Li: Writing - review & editing.

References

[1] Massague J (2012). TGFbeta signalling in context. Nat Rev Mol Cell Biol 13 (10), 616–630.
[2] Massague J (2008). TGFβ in cancer. Cell 134(2), 215–230.
[3] Fabregat I, Fernando J, Mainez J, and Sancho P (2014). TGF-β signaling in cancer treatment. Curr Pharm Des 20(17), 2934–2947.
[4] David CJ and Massague J (2018). Contextual determinants of TGFβeta action in development, immunity and cancer. Nat Rev Mol Cell Biol 19(7), 419–435.
[5] Toomey PG, Vohra NA, Ghansah T, Sarnaik AA, and Pilon-Thomas SA (2013). Immunotherapy for gastrointestinal malignancies. Cancer Control 20(1), 32–42.
[6] Katz LH, Likhit M, Jognunoo W, Belkin M, Ohshiro K, and Mishra L (2016). TGFβ-signaling in liver and gastrointestinal cancers. Cancer Lett 379(2), 166–172.
[7] Neuillet C, Tijeras-Raballand A, Cohen R, Cros J, Faire S, Raymond E, and de Grammont A (2015). Targeting the TGFβeta pathway for cancer therapy. Pharmacol Ther 147, 22–31.
[8] Colak S and Ten Dijke P (2017). Targeting TGF-β signaling in cancer. Trends Cancer 3(1), 56–71.
[9] Mohan VS, Dutta MK, and Misra NK (2018). Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci U S A 105(20), 7125–7130.
[10] Massague J and Chen YG (2000). Controlling TGF-beta signaling. Genes Dev 14(6), 627–644.
[11] Hinck AP (2012). Structural studies of the TGF-betas and their receptors — insights into evolution of the TGF-beta superfamily. FEBS Lett 586(14), 1860–1870.
[12] Santibanez JF, Quintanilla M, and Bernabeu C (2011). TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci 121(6), 233–251.
[13] Kajdaniuk D, Marek B, Borgiel-Marek H, and Kos-Kudla B (2013). Transforming growth factor beta(TGF-beta1) in physiology and pathology. Endokrynol Pol 64(5), 384–396.
[14] Funkenstein B, Olekk E, and Jakowlew SB (2010). Identification of a novel transforming growth factor-beta (TGF-beta6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Mol Biol 11, 37.
He YX, Song XH, Zhao ZY, and Zhao H (2017). HOXA13 upregulation in gastric cancer is associated with enhanced cancer cell invasion and epithelial-mesenchymal transition. *Eur Rev Med Pharmacol Sci* 21(2), 258–265.

Ma H, Gao L, Li S, Qin J, Chen L, Liu X, Pu P, Wang F, Xiao H, and Zhou S, et al (2015). CCR7 enhances TGF-beta-induced epithelial-mesenchymal transition and is associated with lymph node metastasis and poor overall survival in gastric cancer. *OncoTarget* 6(27), 24348–24360.

Ouyang S, Zhu G, Ou Yang L, Luo Y, Zhang R, Pan C, Bin J, Liao Y, and Liao W (2017). Bapx1 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition and promotes a malignancy phenotype of gastric cancer cells. *Biochem Biophys Res Commun* 486(2), 285–292.

Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, and Wang L (2017). MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. *J Exp Clin Cancer Res* 36(1), 29.

Li C, Song L, Zhang Z, Bai XX, Cui MF, and Ma LJ (2016). MicroRNA-21 promotes TGF-beta1-induced epithelial-mesenchymal transition in gastric cancer through up-regulating PTEN expression. *Oncoarget* 7(41), 66989–67003.

Qu Y, Zhang H, Duan J, Liu R, Deng T, Bai M, Huang D, Li H, Ning T, and Zhang L, et al (2016). MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-beta receptor 2 in gastric cancer. *Oncoarget* 7(22), 323296.

Wei S, Li Q, Li Z, Wang L, Zhang L, and Xu Z (2016). MiR-424-5p promotes proliferation of gastric cancer by targeting Sma3 through TGF-beta2 signaling pathway. *Oncogarget* 7(46), 75185–75196.

Qu Y, Zhang H, Sun W, Han Y, Li S, Qu Y, Ying G, and Ba Y (2018). MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-beta receptor 2. *Cancer Sci* 109(3), 618–628.

Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL, Zhao ZH, Zheng XF, and Yang X (2012). Functional screening for miRNAs targeting Sma4 identified miR-199a as a negative regulator of TGF-beta-signalling pathway. *Nucleic Acids Res* 40(18), 9286–9297.

McGlynn KA and London WT (2011). The global epidemiology of hepatocellular carcinoma: present and future. *Clin Liver Dis* 15(2), 223–243 viii–viii.

Wild CP and Hall AJ (2000). Primary prevention of hepatocellular carcinoma in developing countries. *Mutat Res* 462(2–3), 381–393.

Davis GL, Dempster J, Meier JD, Orr DW, Walberg MW, Brown B, Berger BD, O’Connor JK, and Goldstein RM (2008). Hepatocellular carcinoma: management of an increasingly common problem. *Proceedings* 21(3), 266–280.

Tinkle CL and Haas-Kogan D (2012). Hepatocellular carcinoma: natural history, current management, and emerging tools. *Biologics* 6, 207–219.

Lin S, Hoffmann K, and Schemmer P (2012). Treatment of hepatocellular carcinoma: a systematic review. *Liver Cancer* 1(3–4), 144–158.

Yang LY, Chang RM, Lau WY, Ou DP, Wu W, and Zeng ZJ (2014). Mesophatatectomy for centrally located large hepatocellular carcinoma: Indications, techniques, and outcomes. *Surgery* 156(5), 1177–1187.

Giannelli G, Fransvaux E, Marinossi F, Bergamini C, Colucci S, Schiraldi O, and Antonaci S (2002). Transforming growth factor-beta 1 in liver carcinogenesis: messenger RNA expression and growth inhibition in developing countries. *Oncol Rep* 9(3), 1111–1115.

Braun L, Gruppuso P, Mikumo R, and Fausto N (1990). Transforming growth factor beta 1 in liver carcinogenesis: messenger RNA expression and growth effectors. *Cell Growth Differ* 1(3), 103–111.

Fabiaguet I, Moreno-Caceres J, Sanchez A, Dooley S, Dziewulska I, and Benito M (2016). TGF-beta signaling and liver disease. *Hepatitis* 62(3), 801–815.

Braun L, Gruppuso P, Mikumo R, and Fausto N (1990). Transforming growth factor beta 1 in liver carcinogenesis: messenger RNA expression and growth effects. *Cell Growth Differ* 1(3), 103–111.

Fabiaguet I, Moreno-Caceres J, Sanchez A, Dooley S, Dziewulska I, and Benito M (2016). TGF-beta signaling and liver disease. *Hepatitis* 62(3), 801–815.

Braun L, Gruppuso P, Mikumo R, and Fausto N (1990). Transforming growth factor beta 1 in liver carcinogenesis: messenger RNA expression and growth effects. *Cell Growth Differ* 1(3), 103–111.

Fabiaguet I, Moreno-Caceres J, Sanchez A, Dooley S, Dziewulska I, and Benito M (2016). TGF-beta signaling and liver disease. *Hepatitis* 62(3), 801–815.
Burt R (2007). Inheritance of colorectal cancer. Drug Discov Today Dis Mech 4 (4), 293–300.

Xu Y and Pasche B (2007). TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet 16(1), R14–20.

Buckhaults P, Rago C, Croix B St, Romans KE, Saha S, Zhang L, Vogelstein B, and Kinzler KW (2001). Secreted and cell surface genes expressed in benign and malignant colorectal tumors. Cancer Res 61(19), 6996–7001.

Friedman E, Gold LL, Klimstra DZ, Winawer S, and Cohen A (1995). High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 4(5), 549–554.

Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, and Matsuda Y, et al (1996). High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110(2), 375–382.

Turtogi A, Blomme A, Debois D, Somja J, Delvaux D, Patsos G, Di Valentin E, Schroy P, Rifkin J, Coffey RJ, Winawer S, and Friedman E (1990). Role of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during colorectal cancer. Cancer Res 50(2), 261–265.

Yamagata H, Matsuzaki K, Mori S, Yoshida K, Tahashi Y, Furukawa F, Sekimoto G, Watanabe T, Uemura Y, and Sakaida N, et al (2005). Acceleration of progression in human colon cancer. Hepatology 42(2), 385–394.

Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, and Matsuda Y, et al (1996). High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110(2), 375–382.

Jung B, Staudacher JJ, and Beauchamp D (2017). Transforming growth factor beta 1 receptor locus and colorectal cancer predisposition. Cancer Res 73(2), 725–735.

Vosmeřová PV, Kocdah L, Jacobs RJ, Liv N, Zonnevyle AC, Hoogenboom JP, Biemond I, Verspagter HW, Hommes DW, and de Rooij K, et al (2014). Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147(1), 196–208.e13.

Eppert K, Scherer SW, Oxelh Q, Pirone P, Kim H, Tsui LC, Bapat B, Gallinger S, and Andrulis IL, et al (1996). MMR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86(4), 543–552.

Grady WM and Pritchard CC (2014). Molecular alterations and biomarkers in colorectal cancer. Toxicol Pathol 42(1), 124–139.

Li J, Zou L, Zhou Y, Li L, Zhu Y, Yang G, Yong Y, Lou J, Ke J, and Zhang Y, et al (2017). A low-frequency variant in SMAD7 modulates TGF-beta signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinog 56(7), 1978–1980.

Huang Y, Wu W, Nie M, Li C, and Wang L (2016). SMAD7 polymorphisms and colorectal cancer risk: a meta-analysis of case-control studies. Oncotarget 7(46), 75561–75570.

Houlston R, Bevan S, Williams A, Young J, Dunlop M, Rezen P, Eng C, Markie D, Woodford-Richens K, and Rodriguez-Bigas MA, et al (1998). Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet 7(12), 1907–1912.

Jaspersen KW, Tsuchiy BW, Neklason DW, and Burt RW (2010). Heredity and familial colon cancer. Gastroenterology 138(6), 2044–2058.

Ilic M and Ilic I (2016). Epidemiology of pancreatic cancer. World J Gastroenterol 22(44), 9694–9705.

Hidalgo M (2010). Pancreatic cancer. N Engl J Med 362(17), 1605–1617.

Zhang H, Liu C, Kong Y, Huang H, Wang C, and Zhang H (2015). TGFbeta signaling pathway and prognosis of pancreatic cancer. PLoS One 9(1), e85942.

Friess H, Yamamura Y, Buchler M, Ebert M, Beger HG, Gold LI, and Kon M (1993). Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105(6), 1846–1856.

Zhang H, Liang Y, Yin Q, Liu S, Wang Q, Yang T, and Cao J (2016). Clinical and prognostic significance of serum transforming growth factor-beta1 levels in patients with pancreatic ductal adenocarcinoma. Br J Med Biol Res 49(8), 55–61.

Zhang H, Liu C, Kong Y, Huang H, Wang C, and Zhang H (2015). TGFbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol 36(3), 1613–1618.

Glazer ES, Welsh E, Pimienta JM, Teer JK, and Malafa MP (2017). TGFbeta1 overexpression is associated with improved survival and low colorectal cell proliferation in patients with early-stage pancreatic ductal adenocarcinoma. Oncotarget 8(1), 999–1006.

Lin X and Feng XH (2005). Abrogation of transforming growth factor-beta signaling in pancreatic cancer. World J Surg 29(3), 312–316.

Yang G and Yang X (2010). SMAD4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci 6(1), 1–8.

Goggins M, Sleijfer M, Turnaucioglu K, Yeo CJ, Hruban RH, and Kern SE (1998). Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58(23), 5329–5332.

Zeitouni D, Palyave-Gupta Y, Der CQ, and Bryant KL (2016). KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers 8(4).

Leung L, Radulovich N, Zhu CQ, Wang D, To C, Ibrahimim E, and Tsoa M (2013). Loss of canonical SMAD4 signaling promotes KRAS-driven malignant transformation of human pancreatic duct epithelial cells and metastasis. PLoS One 8(12),e84366.
[151] Eser S, Schnieke A, Schneider G, and Saur D (2014). Oncogenic KRAS signalling in pancreatic cancer. *Br J Cancer* **111**(5), 817–822.

[152] Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, Konukiewitz B, Ollinger R, Zwiebel M, and Strong A, et al (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. *Nature* **554**(7690), 62–68.

[153] Gore AJ, Deitz SL, Palam LR, Craven KE, and Korc M (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. *J Clin Invest* **124**(1), 338–352.

[154] Ungefroren H, Groth S, Sebens S, Lehnert H, Gieseler F, and Fandrich F (2011). Differential roles of Smad2 and Smad3 in the regulation of TGF-beta1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. *Mol Cancer* **10**, 67.

[155] Pickup M, Novitskiy S, and Moses HL (2013). The roles of TGFbeta in the tumour microenvironment. *Nat Rev Cancer* **13**(11), 788–799.

[156] Katz LH, Li Y, Chen JS, Munoz NM, Majumdar A, Chen J, and Mishra L (2013). Targeting TGF-beta signaling in cancer. *Expert Opin Ther Targets* **17**(7), 743–760.