NLU++: A Multi-Label, Slot-Rich, Generalisable Dataset for Natural Language Understanding in Task-Oriented Dialogue

Iñigo Casanueva, Ivan Vulić,∗ Georgios P. Spithourakis, and Paweł Budzianowski
PolyAI Limited
London, United Kingdom
{inigo,ivan,georgios,pawel}@poly.ai

Abstract

We present NLU++, a novel dataset for natural language understanding (NLU) in task-oriented dialogue (ToD) systems, with the aim to provide a more challenging evaluation environment for dialogue NLU models, up to date with the current application and industry requirements. NLU++ is divided into two domains (BANKING and HOTELS) and brings several crucial improvements over current commonly used NLU datasets. 1) NLU++ provides fine-grained domain ontologies with a large set of challenging multi-intent sentences, introducing and validating the idea of intent modules that can be combined into complex intents that convey complex user goals, combined with finer-grained and thus more challenging slot sets. 2) The ontology is divided into domain-specific and generic (i.e., domain-universal) intent modules that overlap across domains, promoting cross-domain reusability of annotated examples. 3) The dataset design has been inspired by the problems observed in industrial ToD systems, and 4) it has been collected, filtered and carefully annotated by dialogue NLU experts, yielding high-quality annotated data. Finally, we benchmark a series of current state-of-the-art NLU models on NLU++; the results demonstrate the challenging nature of the dataset, especially in low-data regimes, the validity of ‘intent modularisation’, and call for further research on ToD NLU.

1 Introduction

Research on task-oriented dialogue (ToD) systems (Levin and Pieraccini, 1995; Young et al., 2002) has become a key aspect in industry: e.g., ToD is used to automate telephone customer service tasks ranging from hospitality over healthcare to banking (Raux et al., 2003; Young, 2010; El Asri et al., 2017). Typical ToD systems still rely on a modular design: (i) the natural language understanding (NLU) module maps user utterances into a domain-specific set of intent labels and values (Rastogi et al., 2019; Heck et al., 2020; Dai et al., 2021), followed by (ii) the policy module, which makes decisions based on the information extracted by the NLU (Gašić et al., 2012; Casanueva et al., 2017; Lubis et al., 2020; Wang et al., 2020a).

The NLU module is a critical part of any ToD system, as it must extract the relevant information from the user’s utterances. The information relevance is denoted by the structured dialogue domain ontology, which enables the policy module to make decisions about next system actions. The domain ontology covers the information on 1) intents and 2) slots, see Figure 1. The former is aimed at extracting general conversational ideas (i.e., the user’s intents) and corresponds to the standard NLU task of intent detection (ID); the latter extracts specific slot values and corresponds to the NLU task of slot labeling (SL) (Gupta et al., 2019).

In order to make the policy operational and tractable, NLU should extract only the minimal information required by the policy. Therefore, the ontologies differ for each domain of ToD application and are typically built from scratch for each domain. 1

1Slot labeling is also known under other names such as slot filling or value extraction.

Figure 1: Multi-intent examples from the two domains of the NLU++ dataset: BANKING (top) and HOTELS (middle, bottom), illustrating the two core NLU subtasks of intent detection (ID) and slot labeling (SL) in ToD systems. The extracted information is structured into intents and slots, the latter having associated values.

∗Equal contribution.
Consequently, this makes domain-relevant NLU data extremely expensive to collect and annotate, and prevents its reusability (Budzianowski et al., 2018). Due to this, NLU research in recent years has heavily focused on very data-efficient models that can effectively operate in low-data regimes. Current state-of-the-art (SotA) NLU models leverage large pretrained language models (PLMs) (Devlin et al., 2019; Liu et al., 2019c; Henderson et al., 2020) and fine-tune them with small task-specific datasets (Larson et al., 2019b; Casanueva et al., 2020; Coucke et al., 2018).

At the same time, the progress in creation of NLU datasets has not kept up with the impressive pace of NLU methodology development. However, designing domain ontologies and NLU datasets is also critical for steering further progress in NLU, both from methodology and application perspective. Put simply, current publicly available NLU datasets do not keep up to date with current industry/application requirements for many reasons. 1) They are usually crowdsourced by untrained annotators (thus typically optimised for quantity rather than quality), yielding examples with low lexical diversity and prone to annotation errors. 2) They typically assume one intent per example, and thus enable only much simpler single-label ID experiments; such setups are not realistic in more complex industry settings (see Figure 1 again) and lead to unnecessarily large intent sets. 3) Their ontologies are tied to specific domains, making it difficult to reuse already available annotated data in other domains. 4) The complexity of the defined tasks and ontologies is limited; the undesired artefact is that current NLU datasets might overestimate the NLU models’ abilities, and are not able to separate models any more performance-wise.\(^2\)

\(^2\)For instance, for some standard and commonly used NLU datasets such as ATIS (Hemphill et al., 1990; Xu et al., 2020) and SNIPS (Coucke et al., 2018), the results of SotA models are all in the region of 97-98 F\(_1\), with new models getting statistically insignificant gains which might be due to overfitting to the test set or even some remaining annotation errors.

In order to address all these gaps, we introduce NLU++, a novel NLU dataset which provides high-quality NLU data annotated by dialogue experts. NLU++ provides multi-intent, slot-rich and semantically varied NLU data, and is inspired by a number of NLU challenges which ToD systems typically face in production environments. Unlike previous ID datasets, examples are annotated with multiple labels, named intent modules\(^3\) (see Table 1), with some examples naturally obtaining even up to 6-7 labels. These labels can be seen as sub-intent annotations, where their combinations yield full intents equivalent to "traditional" intents (Table 1). In addition, NLU++ defines a rich set of slots which are combined with the multi-intent sentences. NLU++ is divided into two domains (BANKING and HOTELS) where the two domain ontologies blend a set of domain-specific intents and slots with a set of generic (i.e., domain-universal) intents and slots. This design makes a crucial step towards generalisation and data reusability in NLU.

Finally, we run a series of experiments on NLU++ with current SotA ID and SL models, demonstrating the challenging nature of NLU++ and ample room for future improvement, especially in low-data setups. Our benchmark comparisons also demonstrate strong performance and shed new light on the (ability of) recently emerging QA-based NLU models (Namazifar et al., 2021; Fuisz et al., 2022), and warrant further research on ToD NLU. The NLU++ dataset is available at: github.com/PolyAI-LDN/task-specific-datasets.

Example	Traditional Intent	Intent Modules
I need to change my restaurant reservation	change_restaurant_booking	change, restaurant, booking
When is my booking for the spa?	when_spap_booking	when, spa, booking
TV is not showing any image	tv_not_working	tv, not_working
Why can't I cancel this standing order?	why_cancel_standing_order_not_working	why, cancel, standing_order, not_working

\(^3\)Henceforth, whenever intents are mentioned in the context of NLU++, we will be referring to intent modules.

Table 1: Comparison of "traditional" intent annotations vs intent module-based multi-label annotations.
Table 2: Key statistics of the NLU++ dataset.

Domain	Number of examples	INTENTS								
		Total	Generic	Avg. per example	Total	Generic	Avg. per example	Total	Generic	Avg. per example
BANKING	2,071	48	26	2.25	13	10	0.46	17	10	0.65
HOTELS	1,009	40	26	1.52	14	10	1.03			
ALL	3,080	62	26	2.01				17	10	0.65

The lack of ToD NLU resources ended in 2013, with the beginning of the ‘dialogue state tracking (DST) era’ (Williams et al., 2013; Henderson et al., 2014; Kim et al., 2016). Instead of just classifying each turn of the user, DST deals with keeping track of the user’s goal over the entire dialogue history, i.e., all the previous user and system turns. Several datasets where released during the DST challenges, all of them comprising simple intent sets (usually tagged as dialogue acts).

In order to adapt to the increasing data requirements of deep learning models, increasingly larger dialogue datasets have been released in recent years (Budzianowski et al., 2018; Wei et al., 2018; Rastogi et al., 2019; Peskov et al., 2019). However, the design of ToD datasets comes with some profound differences to datasets for e.g. machine translation or speech recognition, which affect current ToD datasets. 1) The domain-specific nature of ToD datasets made the data tied to its ontologies, not allowing data reusability across different domains. 2) The domain-specific ontologies required a lot of expertise for annotation, therefore many annotation mistakes were made (Eric et al., 2019; Zang et al., 2020). 3) Collecting datasets of that size is unfeasible for development cycles in production, where new domains and models for them need to be very quickly developed and deployed.

Current NLU Trends, inspired by such production requirements, thus deviate from previous DST-oriented NLU research in two main aspects. First, the models went back to focusing on single-turn utterances, which 1) simplifies the NLU design and 2) renders the NLU tasks more tractable. The requirement of fast development cycles also instigated more research on NLU (i.e., ID and SL tasks) in low-data scenarios. This way, systems can be developed and maintained faster by reducing the data collection and annotation effort. In addition, the NLU focus shifted from ontologies with only a handful of simple intents and slots (Coucke et al., 2018) to complex ontologies with much larger intent sets (Larson et al., 2019b; Liu et al., 2019b; Casanueva et al., 2020, inter alia).

Inspired by these NLU datasets and empowered by transfer learning with PLMs and sentence encoders (Devlin et al., 2019; Liu et al., 2019a; Henderson et al., 2020), there have been great improvements in single-turn NLU systems recently, especially in low-data scenarios (Coope et al., 2020; Mehri and Eric, 2021; Wu et al., 2020b, a; Krone et al., 2020; Henderson and Vulić, 2021; Namazi-far et al., 2021; Dopierre et al., 2021; Zhang et al., 2021a, b).

Current Gaps in NLU Datasets. However, existing NLU datasets are still not up to the current industry requirements. 1) They use crowdworkers for data collection and annotation, often through simple rephrasings; they thus suffer from low lexical diversity and annotation errors (Larson et al., 2019a). 2) ID datasets always assume a single intent per sentence, which does not support modern production requirements. 3) The ontologies of these datasets are very domain-specific (i.e., they thus do not allow data reusability) and narrow (i.e., they tend to overestimate abilities of the current SotA NLU models). 4) Current NLU datasets do not combine a large set of fine-grained intents (again, with multi-intent examples) and a large set of fine-grained slots, which prevents proper and more insightful evaluations of joint NLU models (Chen et al., 2019; Gangadharaih and Narayanaswamy, 2019).

Historically, ATIS (Agirre et al., 2012) was the seed of modern ID datasets, but were not initially built for that purpose.\footnote{Remarkably, ATIS is still considered at present as one of the main go-to datasets in NLU research. This is also reflected in the fact that the recent most popular dataset for multilingual dialogue NLU was obtained by simply translating English ATIS to 8 more languages (Xu et al., 2020, MultiATIS++).}

We note that some Question Classification (Hovy et al., 2001), Paraphrasing (Dolan and Brockett, 2005) and Semantic Text Similarity (Agirre et al., 2012) datasets could be seen as the seed of modern ID datasets, but were not initially built for that purpose.\footnote{We note that some Question Classification (Hovy et al., 2001), Paraphrasing (Dolan and Brockett, 2005) and Semantic Text Similarity (Agirre et al., 2012) datasets could be seen as the seed of modern ID datasets, but were not initially built for that purpose.}

\footnote{While DST is theoretically more accurate, it requires amounts of data that grow exponentially with the number of turns; moreover, rule-based trackers have proven to be on par with the learned/statistical ones and require no data (Wang and Lemon, 2013).}
Table 3: NLU++ examples showing the combinatorial expressiveness of intent modules in the multi-intent setting.

Example	Intents	Domain
I want to change my room reservation	change, booking, room	HOTELS
I want to cancel a booking	cancel, booking	HOTELS
Why can’t I amend my restaurant booking?	why, change, restaurant, booking, not_working	HOTELS
I am trying to make a transfer but it doesn’t let me?	make, transfer_payment, not_working	HOTELS
I need to increase my overdraft	change, overdraft, higher	HOTELS
Please close my savings account	cancel, account, higher	HOTELS
The savings one	savings	HOTELS
Make it higher	change, higher	GENERAL
Cancel it	cancel	GENERAL
Don’t cancel it	deny, cancel	GENERAL

We note that there has been some work on multi-label ID on ATIS, MultiWOZ and DSTC4 as multi-intent datasets; however, their multi-label examples remain very limited, simple, and span a small number of intents (Gangadharaiah and Narayanaswamy, 2019). Further, synthetic multi-intent datasets have been created by concatenating single-intent sentences, but such datasets also do not capture the complexity of true and natural multi-intent sentences (Qin et al., 2020).

3 NLU++ Dataset

The NLU++ dataset has been designed with the aim of addressing some of the major shortcomings of the current NLU datasets. In what follows, we describe the main improvements and new evaluation opportunities offered by NLU++.

3.1 Ontology

NLU++ comprises two domains: BANKING and HOTELS. The former represents a banking services task (e.g., making transfers, depositing cheques, reporting lost cards, requesting mortgage information) and the latter is a hotel ‘bell desk’ reception task (e.g., booking rooms, asking about pools or gyms, requesting room service). Both domains combine a large set of intents with a rich set of slots, with the ontologies inspired by requirements in production. A large number of intents and slots is shared between the two domains, in an attempt to increase data reusability/transferability. Table 2 provides the main statistics of the NLU++ dataset, while the full ontology is presented in Appendix A.

3.2 Multi-Intent Examples

One of the main contributions of this work is the novel design of the intent space, defined in a highly modular manner that natively supports intent re-combinations and multi-intent annotations\(^7\). For instance, Table 3 shows several multi-intent examples based on the intent sets (termed intent modules) from Table 9 in Appendix A.

This design brings several benefits. 1) The modular nature of the ontology allows for expressing a much more complex set of ideas through different combinations of intent modules (see Table 3), while reducing the overall size of the intent set compared to previous ID datasets\(^8\) (see Table 1 and Table 5). 2) It allows for the definition of partial intents (e.g., “The savings one”). This is crucial in multi-turn interactions, where the user often has to answer disambiguation questions (e.g., “Which account would you like to close?”). 3) The modular approach allows the models to generalise to unseen combinations of intent modules. For instance, if (i) examples with the intents change and booking, and (ii) examples with the intents cancel and account exist in the training data, (iii) an unseen example with the intents cancel and booking could be properly predicted, as all the single intents/modules have already been seen by the ID model\(^9\). 4) The design also allows us to distinguish between domain-specific versus generic intent modules. For example, the module overdraft is clearly related to BANKING, but the module change is much more generic, likely to occur in several different domains.

Finally, the modular design also allows us to

\(^7\)Zhang et al. (2020) proposed a similar way of annotating existing intent detection datasets, showing performance improvements. However, this approach forced categorising the sub-intents in four predefined factors.

\(^8\)Similar to how sub-word tokenization reduced the size of language model vocabularies while covering a larger set of words (Vaswani et al., 2018).

\(^9\)Note that in single-label ID setups, all possible intent module combinations (i.e. “traditional” intents) must be covered (Bi and Kwok, 2013; Hou et al., 2021), which leads to unnecessarily large intent sets and larger data requirements.
study semantic variation of intent modules. Some intents (e.g., especially the domain-specific ones) can only be expressed in a few ways (e.g. overdraft, direct_debit, swimming_pool), while others can have much more varied surface semantic realisations, (e.g. make, not_working). Table 9 in Appendix A provides an estimation of the semantic variability of each intent (module).

3.3 Slots

NLU++ further includes a rich set of 17 slots, defined in Table 10 in Appendix A. Table 4 displays several NLU++ examples where complex combinations of intents and slots occur, showcasing how NLU++ might provide a much more challenging environment for the evaluation of joint ID and SL models in future research.

Following the design of previous standard SL datasets (Hemphill et al., 1990; Coucke et al., 2018; Coope et al., 2020), we provide span annotations for slots. On top of this, to also support training and evaluation of SL models which are not span-based, we also provide value annotations (or canonical values as named by Rastogi et al. (2019)) for times, dates, and numeric values.

Similarly to intent modules, slots can also be divided into the generic ones (e.g. time, date) and the domain-specific ones (e.g. company_name, rooms, kids), see Table 10. Again, this distinction allows for the cross-domain reusability of annotated data.

3.4 Data Collection and Annotation

Previous NLU datasets have usually relied on crowdworkers, aiming to collect a large number of examples, and typically optimising for quantity over quality. However, even with much simpler ontologies, workers are prone to make annotation mistakes, leading to very noisy datasets (Eric et al., 2019). In addition, when workers are asked to rephrase a sentence, they often change its semantic meaning or tend to provide rephrasings with extremely low lexical variability (Kang et al., 2018).

NLU++ reflects true production requirements and focuses on data quality. Instead of relying on crowdworkers, 4 highly skilled annotators with dialogue and NLP expertise, also familiar with production environments, collected, annotated, and corrected the data. The process started by defining the ontology for BANKING and HOTELS. Then, real user examples were fully anonymised and re-annotated following the defined ontology. Finally, new examples were created in order to cover less frequent intents and slots, aiming at creating realistic and semantically varied sentences with new combinations of intents and slots.

3.5 Comparison with Other NLU Datasets

Aiming to reflect the differences between NLU++ and the most popular ToD NLU datasets, Table 5 compares their general statistics. Since the focus of NLU++ is on curated high-quality data, NLU++ covers a fewer number of examples than the other datasets, but it is evident that NLU++ is the only real multi-intent dataset: it averages 2.01 intents per example with a high standard deviation. In addition, NLU++ is the only dataset that combines a large set of intents with a large set of slots.

In order to assess the quality and diversity of the NLU data, we include two additional metrics: 1) Type-Token Ratio (TTR) (Jurafsky and Martin, 2000) which measures lexical diversity) and semantic diversity. Both metrics are computed for the set of examples sharing an intent, weighted by the frequency of that intent and finally averaged over intents. The semantic diversity per intent is computed as follows: (i) sentence encodings, obtained by the ConveRT sentence encoder (Henderson et al., 2020), are computed for the set of sentences sharing the same intent; (ii) the centroid of these encodings is then computed; (iii) finally, the average cosine distance from each encoding to the centroid is computed. The overall scores clearly indicate that NLU++ offers a much higher lexical and semantic diversity than previous datasets, which should also render it more challenging for current SotA NLU models.

4 Experiments and Results

In hope to establish NLU++ as a more challenging production-oriented testbed for dialogue NLU, especially in low-data scenarios, we evaluate a series of current cutting-edge models for both NLU tasks: intent detection (§4.1) and slot labeling (§4.2). Our aim is to assess and analyse their performance across different setups, and provide solid baseline reference points for future evaluations on NLU++.

Data Setups. Unless noted otherwise, for both tasks we adopt the standard K-fold cross-validation

10Note that ATIS has some intents with a single example: for these intents the TTR score would be 1. Weighting by the intent frequency avoids these intents dominating the metric.
11See Appendix B for a short description of ConveRT.
12SNIPS also shows high semantic diversity, but this is mostly due to the high frequency of named entities.
as done e.g. by Liu et al. (2019b). Through such folding evaluation, (i) we avoid overfitting to any particular test set and (ii) we ensure more stable results with smaller training and test data (i.e., when simulating low-data regimes typically met in production) through averaging over different folds.13

The experiments are run with $K = 20$ (20-Fold) and $K = 10$ (10-Fold), where we train on 1 fold and evaluate on the remaining $K - 1$ folds. These setups simulate different degrees of data scarcity: e.g., the average training fold comprises ≈ 100 examples for BANKING and ≈ 50 for HOTELS for 20-Fold experiments, and twice as much for 10-Fold experiments. Besides these low-data training setups, we also run experiments in a Large-data setup, where we train the models on merged 9 folds, and evaluate on the single held-out fold.14 The key questions we aim to answer with these data setups are: Which NLU models are better adapted to low-data scenarios? How much does NLU performance improve with the increase of annotated NLU data? How challenging is NLU++ in low-data versus large-data scenarios?

Domain Setups. Further, experiments are run in the following domain setups: (i) single-domain experiments where we only use the BANKING or the HOTELS portion of the entire dataset; (ii) both-domain experiments (termed ALL) where we use the entire dataset and combine the two domain ontologies (see Table 2); (iii) cross-domain experiments where we train on the examples associated with one domain and test on the examples from the other domain, keeping only shared intents and slots for evaluation. The key questions we aim to answer are: Are there major performance differences between the two domains and can they be merged into a single (and more complex) domain? Is it possible to use examples labeled with generic intents from one domain to boost another domain, effectively increasing reusability of data annotations and reducing data scarcity?

F_1 (micro) is the main evaluation measure in all ID and SL experiments.

4.1 Intent Detection: Experimental Setup

We evaluate two groups of SotA intent detection models: (i) **MLP-Based**, and (ii) **QA-Based** ones.

MLP-Based ID Baselines. Casanueva et al. (2020) and Gerz et al. (2021) have recently shown that, for the ID task, full and expensive fine-tuning of large pretrained models such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019a) is not needed to reach strong ID performance. As an alternative, they propose a much more efficient **MLP-based** approach to intent detection which works on par or

13Due to folding, variations in results with different random seeds were negligible, even in lowest-data setups.

14Effectively, Large-data experiments can be seen as 10-Fold experiments with swapped training and test data.
even outperforms full fine-tuning on the ID task.15
In a nutshell, the idea is to use fixed/frozen “off-the-shelf”
universal sentence encoders such as Con-
veRT \cite{henderson-etal-2020-conve} or Sentence-BERT
\cite{reimers-gurevych-2019-sentence} models to encode
input sentences. A standard multi-layer perceptron
(MLP) classifier is then learnt on top of the sentence encodings.

Two core differences to the previous work stem
from the fact that we now deal with the multi-label
ID task: 1) to this end, we replace the output soft-
max layer with the sigmoid layer; and 2) we define
a threshold θ which determines the final classifica-
tion: only intents with probability scores $\geq \theta$ are
taken as positives. This way, the hyper-parameter θ
effectively controls the trade-off between precision
and recall of the multi-label classifier.

We comparatively evaluate several widely used
state-of-the-art (SotA) sentence encoders, but re-
mind the reader that this decoupling of the MLP
classification layers from the fixed encoder allows
for a much wider empirical comparison of sentence
encoders in future work. The evaluated sentence en-
coders are: 1) ConveRT \cite{henderson-etal-2020-conve},
which produces 1,024-dimensional sentence encod-
ings; 2) LABSE \cite{feng-etal-2020-language} (768-dim); 3) ROBL-1B (1,024-dim) and 4) LM12-1B (384-
dim) \cite{reimers-gurevych-2019-sentence, thakur-etal-2021-sentence}.
For completeness, we provide brief descriptions
of each encoder in our evaluation, along with
their public URLs, in Appendix B, and refer the
reader to the original work for more details about
each sentence encoder.

\textbf{QA-Based ID Baselines.} Another group of SotA
ID baselines reformulates the ID task into the (ex-
tractive) question-answering (QA) problem \cite{namazifar-etal-2021-ID, fuisz-etal-2022-ID}. This QA-
oriented reformatting then allows for additional specialised QA-tuning of large PLMs. In a nutshell, the idea is to (i)
fine-tune the original PLM such as BERT/ RoBERTa on readily available large general-purpose QA data such as SQuAD \cite{rajpurkar-etal-2018-SQuAD}, and then (ii) further fine-tune this general QA model with in-domain ID data. In a nutshell, the idea is to the PLM such as BERT/ RoBERTa on readable available large general-purpose QA data such as SQuAD \cite{rajpurkar-etal-2018-SQuAD}, and then (ii) further fine-tune this general QA model with in-domain ID data. This strategy has recently shown very strong performance
on single-label ATIS data \cite{namazifar-etal-2021-ID}.

The main “trick” is to reformat the input ID ex-
amples into the following format: “yes. no. \[SEN-
TENCE\]” and pose a question such as: “is the
intent to ask about \[INTENT\]?” \cite[see Appendix A for the actual questions associated with each intent, also shared with the dataset]. Here, \[SENTENCE\] is the placeholder for the actual input sentence, and \[INTENT\] is the placeholder for a short manually
defined text (akin to language modeling prompts
\cite{liu-etal-2021-MLP}, see again Appendix A) which
briefly describes the intent. The QA formulation
lends itself naturally to the multi-label ID setup as
each ‘intent-related’ question is posed separately.
In other words, for each input example and for each
of the L intents in the ontology the QA model must
extract yes or no as the answer, where correct in-
tent labels are the ones for which the answer is
yes.16 We note that our work is the first to apply
and evaluate the QA approach on multi-label ID.

We experiment with two pretrained language
models, both fine-tuned on the SQuAD2.0 dataset
\cite{rajpurkar-etal-2018-SQuAD} before additional QA-
tuning on NLU++ examples converted to the afore-
mentioned QA format: ROBB-QA uses RoBERTa-
Base as the underlying LM, while ALB-QA relies
on the more compact ALBERT \cite{lan-etal-2020-ALBERT}.

\textbf{ID: Training and Evaluation.} All MLP-based
baselines rely on the same training protocol and
hyper-parameters in all data and domain setups.
The MLP classifier consists of 1 hidden layer of
size 512, and is trained via binary cross-entropy
loss for 500 epochs with the batch size of 32 and the
dropout rate is 0.6. We use the standard AdamW
optimizer \cite{loshchilov-hutter-2018-AdamW} with the
learning rate of 0.003 and linear decay; weight
decay is 0.02. The threshold θ is set to 0.4.17

For QA models, we largely follow \cite{namazifar-etal-2021-ID} and fine-tune all models for 5 epochs,
using AdamW; the learning rate of 2e$-$5 with linear
decay; weight decay is 0; batch size is 32.

15Our preliminary results on the NLU++ dataset corrobo-
rated these findings from prior work; due to a large number of
experiments, we thus opt for this more efficient yet also very
effective approach to ID.

16For instance, for the input sentence “I need to increase
my overdraft” from the BANKING domain, we would pose
all 48 questions associated with each of the $L = 48$ intents
in BANKING, where the QA model should extract yes as the
answer for intents change, overdraft and more higher_after,
and extract no for the remaining 45 intents in BANKING.

17These hyper-parameters were selected based on prelimi-
nary experiments with a single (most efficient) sentence en-
coder LM12-1B and training only on Fold 0 of the 10-Fold
BANKING setup; they were then propagated without change to
all other MLP-based experiments with other encoders and in
other setups. We repeated the similar hyper-parameter search
procedure for QA-based models, using ALB-QA..
This page discusses the evaluation of different sentence encoders and models for intent detection and slot labeling tasks in NLU++ datasets. It highlights the superiority of QA-based models over MLP-based baselines, especially in low-resource dialogue NLU tasks. The page also introduces two experimental setups for slot labeling, one focusing on intent detection and the other on slot labeling. The text mentions the use of larger underlying LMs and the benefits of QA-based models in cross-domain settings. The results and discussion section provides an overview of the findings and their implications for future research.
Given these very promising ID and SL results on NLU++, our work also calls for further and more intensive future research on QA-based models for dialogue NLU. However, we note that QA-based ID and SL methods do come with efficiency detriments, especially with larger intent and slot sets: the model must copy the input utterance and run a separate answer extraction for each intent/slot from the set, which is by several order of magnitudes more costly at both training and inference than MLP-based models. A promising future research avenue is thus to investigate combined approaches that could combine and trade off the performance benefits of QA-based models and the efficiency advantages of, e.g., MLP-based ID.

Low-Data vs. Large-Data. We also note that scores on both tasks, as reported in Tables 6-7, leave ample room for improvement in NLU methodology in future work, especially on SL (even in large-data setups), and in low-data setups.

Cross-Domain Experiments. We also verify potential reusability of annotated data across domains with a simple ID experiment, where we train ID models on BANKING and evaluate on HOTELS, and vice versa. The results are summarised in Table 8. Besides (again) indicating that QA-based models outscore MLP-based ID, the results also suggest that for some generic intents it is possible to meet high ID performance without any in-domain annotations. For instance, we observe particularly high scores for highly generic and reusable intent modules such as change, how, how_much, thank, when, and affirm, all with per-intent F_1 scores of ≥ 90. We hope that these preliminary results might inspire similar ontology (re)designs in future work.

5 Conclusion

We have presented NLU++, a novel dataset for task-oriented dialogue (ToD) NLU that overcomes the shortcomings of previous NLU evaluation sets. NLU++ presents a multi-intent and slot-rich ontology, defines generic and domain-specific intents and slots to promote data reusability, and it focuses on the creation of high-quality complex examples and annotations collected by dialogue experts. Experimental results show that NLU++ raises the bar with respect to current NLU benchmarks, helping better discriminate and compare the performance of current state-of-the-art NLU models, particularly in low-data setups. We hope that NLU++ will be valuable in guiding future modeling efforts for ToD NLU, both in academia and in industry.

Limitations and Future Work. This work has shown that a better design of the intent set can improve data reusability. However, the current ontology does not cover generic sets of intents exhaustively, and we acknowledge a (sometimes) fine line between truly generic intents versus intents ‘anecdotally’ shared by two domains (e.g., refund). Further, the boundaries of some generic intents can sometimes be unclear and difficult to annotate, even for expert annotators. Future work should try to ground the set of generic intents.

Further, we believe that span-based annotation might be sub-optimal for canonical values such as times and dates, where small differences in the span would lead to evaluation errors but would not suppose a problem for the value to be parsed. In addition, separating time and date intervals in different slots increases the difficulty of the annotations and models need to learn a more conflicting set of slots. Further, NLU++ currently provides fine-grained slots such as date_from, date_to and date to enable more complex scenarios, but such a design might slow down annotation process and make it cumbersome. Future work includes rethinking the SL task for these slots.

Finally, while single-turn NLU is more data-efficient and easier to model, some user utterances only make sense in the presence of context from the previous system utterance. While some previous datasets (Coope et al., 2020) deal with this issue with the help of extra annotations indicating if a slot has been requested, in this work we opt for using non-contextualised slots such as number and time and let the policy handle the contextualisation. However, future work should start looking into NLU datasets composed by system + user turns.

Acknowledgements

We are grateful to our colleagues in PolyAI for many fruitful discussions and suggestions. We also thank the anonymous reviewers for their helpful feedback and comments on the presentation.

Ethical Considerations

PolyAI Limited is ISO27k-certified and fully GDPR-compliant.

18For example, boundaries for intents like greet, why and change are clear, while others such as make or not_working are more prone to ambiguity and different interpretation.
Before data collection: all the data has been collected by workers of PolyAI Limited and all the annotators are also employees of PolyAI Limited.

During data collection: we did not include any personal information (e.g. personal names or addresses) and all the examples that included any had been fully anonymised or removed from the dataset. All the names in the dataset are created by randomly concatenating names and surnames from the list of the top 10K names from the US registry. Upon collection, the dataset has undergone an additional check by the internal Ethics committee of the company. NLU++ is licensed under CC-BY-4.0.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A pilot on semantic textual similarity. In Proceedings of *SEM, pages 385–393.

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2016. Conversational contextual cues: The case of personalization and history for response ranking. CoRR, abs/1606.00372.

Wei Bi and James Tin-Yau Kwok. 2013. Efficient multi-label classification with many labels. In Proceedings of ICML 2013, pages 405–413.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ramadan, and Milica Gašić. 2018. MultiWOZ - A large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In Proceedings of EMNLP 2018, pages 5016–5026.

Iñigo Casanueva, Pawel Budzianowski, Pei-Hao Su, Nikola Mrkšić, Tsung-Hsien Wen, Stefan Ultes, Lina Rojas-Barahona, Steve Young, and Milica Gašić. 2017. A benchmarking environment for reinforcement learning based task oriented dialogue management. CoRR, abs/1711.11023.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. 2020. Efficient intent detection with dual sentence encoders. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 38–45.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT for joint intent classification and slot filling. CoRR, abs/1902.10909.

Sam Coope, Tyler Farghly, Daniela Gerz, Ivan Vulić, and Matthew Henderson. 2020. Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations. In Proceedings of ACL 2020, pages 107–121.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Cataligione, Thibaut Lavril, et al. 2018. Snips Voice Platform: An embedded spoken language understanding system for private-by-design voice interfaces. CoRR, abs/1805.10190:12–16.

Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei Huang, Luo Si, and Xiaodan Zhu. 2021. Preview, attend and review: Schema-aware curriculum learning for multi-domain dialogue state tracking. In Proceedings of ACL-IJCNLP 2021, pages 879–885.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 2019, pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

Thomas Dopierre, Christophe Gravier, and Wilfried Logerais. 2021. ProtAugment: Intent detection meta-learning through unsupervised diverse paraphrasing. In Proceedings of ACL-IJCNLP 2021, pages 2454–2466.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman. 2017. Frames: A corpus for adding memory to goal-oriented dialogue systems. In Proceedings of SIGDIAL 2017, pages 207–219.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang Gao, and Dilek Hakkani-Tür. 2019. MultiWOZ 2.1: Multi-domain dialogue state corrections and state tracking baselines. CoRR, abs/1907.01669.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ariyazhagan, and Wei Wang. 2020. Language-agnostic BERT sentence embedding. CoRR, abs/2007.01852.

Gabor Fuisz, Ivan Vulić, Samuel Gibbons, Iñigo Casanueva, and Pawel Budzianowski. 2022. Improved and efficient conversational slot labeling through question answering. CoRR, abs/2204.02123.

Rashmi Gangadharahiai and Balakrishnan Narayanawamy. 2019. Joint multiple intent detection and slot labeling for goal-oriented dialog. In Proceedings of NAACL-HLT 2019, pages 564–569.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making pre-trained language models better few-shot learners. In Proceedings of ACL-IJCNLP 2021, pages 3816–3830.

Milica Gašić, Matthew Henderson, Blaise Thomson, Pirros Tsiakoulis, and Steve J. Young. 2012. Policy optimisation of POMDP-based dialogue systems.
without state space compression. In Proceedings of SLT 2021, pages 31–36.

Daniela Gerz, Pei-Hao Su, Razvan Kusztos, Avishek Mondal, Michal Lis, Eshan Singhal, Nikola Mrkšić, Tsung-Hsien Wen, and Ivan Vulić. 2021. Multilingual and cross-lingual intent detection from spoken data. In Proceedings of EMNLP 2021.

Arshit Gupta, John Hewitt, and Katrin Kirchhoff. 2019. Simple, fast, accurate intent classification and slot labeling for goal-oriented dialogue systems. In Proceedings of SIGDIAL 2019, pages 46–55.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris- tian Geishauser, Hsien-Chin Lin, Marco Moresi, and Milica Gašić. 2020. TripPy: A triple copy strategy for value independent neural dialog state tracking. In Proceedings of SIGDIAL 2020, pages 34–44.

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. 1990. The ATIS Spoken Language Systems Pilot Corpus. In Proceedings of the Workshop on Speech and Natural Language, HLT ’90, pages 96–101.

Matthew Henderson, Pawel Budzianowski, Iñigo Casanueva, Sam Coope, Daniela Gerz, Girish Kumar, Nikola Mrkšić, Georgios Spithourakis, Pei-Hao Su, Ivan Vulić, and Tsung-Hsien Wen. 2019a. A repository of conversational datasets. In Proceedings of the 1st Workshop on Natural Language Processing for Conversational AI, pages 1–10.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić, Pei-Hao Su, Tsung-Hsien Wen, and Ivan Vulić. 2020. ConveRT: Efficient and accurate conversational representations from transformers. In Findings of EMNLP 2020, pages 2161–2174.

Matthew Henderson, Blaise Thomson, and Jason D. Williams. 2014. The Second Dialog State Tracking Challenge. In Proceedings of SIGDIAL 2014, pages 263–272.

Matthew Henderson and Ivan Vulić. 2021. ConVEx: Data-efficient and few-shot slot labeling. In Proceedings of NAACL-HLT 2021, pages 3375–3389.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo Casanueva, Pawel Budzianowski, Sam Coope, Georgios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić, and Pei-Hao Su. 2019b. Training neural response selection for task-oriented dialogue systems. In Proceedings of ACL 2019, pages 5392–5404.

Yutai Hou, Yongkui Lai, Yushan Wu, Wanxiang Che, and Ting Liu. 2021. Few-shot learning for multi-label intent detection. In Proceedings of AAAI 2021, pages 13036–13044.

Eduard Hovy, Ulf Hermjakob, Chin-Yew Lin, et al. 2001. The use of external knowledge in factoid QA. In Proceedings of TREC 2001, pages 644–652.

Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 1st edition. Prentice Hall PTR, USA.

Yiping Kang, Yunqi Zhang, Jonathan K. Kummerfeld, Lingjia Tang, and Jason Mars. 2018. Data collection for dialogue system: A startup perspective. In Proceedings of NAACL-HLT 2018: Industry Papers, pages 33–40.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E. Banchs, Jason Williams, and Matthew Henderson. 2016. The fourth dialog state tracking challenge. In Proceedings of IWSIDS 2016.

Jason Krone, Yi Zhang, and Mona Diab. 2020. Learning to classify intents and slot labels given a handful of examples. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 96–108.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenneth Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for self-supervised learning of language representations. In Proceedings of ICLR 2020.

Stefan Larson, Anish Mahendran, Andrew Lee, Jonathan K. Kummerfeld, Parker Hill, Michael A. Laurenzano, Johann Hauswald, Lingjia Tang, and Jason Mars. 2019a. Outlier detection for improved data quality and diversity in dialog systems. In Proceedings of NAACL-HLT 2019, pages 517–527.

Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars. 2019b. An evaluation dataset for intent classification and out-of-scope prediction. In Proceedings of EMNLP-IJCNLP 2019, pages 1311–1316.

Esther Levin and Roberto Pieraccini. 1995. Chronus, the next generation. In Proceedings of the ARPA Workshop on Spoken Language Technology.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021. PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them. Transactions of the Association for Computational Linguistics, 9:1098–1115.
State-of-the-art natural language processing. In Proceedings of EMNLP 2020: System Demonstrations, pages 38–45.

Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, and Caiming Xiong. 2020a. TOD-BERT: Pre-trained natural language understanding for task-oriented dialogue. In Proceedings of EMNLP 2020, pages 917–929.

Chien-Sheng Wu and Caiming Xiong. 2020. Probing task-oriented dialogue representation from language models. In Proceedings of EMNLP 2020, pages 5036–5051.

Di Wu, Liang Ding, Fan Lu, and Jian Xie. 2020b. SlotRefine: A fast non-autoregressive model for joint intent detection and slot filling. In Proceedings of EMNLP 2020, pages 1932–1937.

Weijia Xu, Batool Haider, and Saab Mansour. 2020. End-to-end slot alignment and recognition for cross-lingual NLU. In Proceedings of EMNLP 2020, pages 5052–5063.

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, Mandy Guo, Qinlan Shen, Daniel Cer, Yun-hsuan Sung, Brian Strope, and Ray Kurzweil. 2019. Improving multilingual sentence embedding using bi-directional dual encoder with additive margin softmax. In Proceedings of IJCAI 2019, pages 5370–5378.

Steve Young. 2010. Cognitive user interfaces. IEEE Signal Processing Magazine.

Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil Woodland. 2002. The HTK book. Cambridge University Engineering Department.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong Chen. 2020. MultiWOZ 2.2: A dialogue dataset with additional annotation corrections and state tracking baselines. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 109–117.

Haode Zhang, Yuwei Zhang, Li-Ming Zhan, Jiaxin Chen, Guangyuan Shi, Xiao-Ming Wu, and Albert Y.S. Lam. 2021a. Effectiveness of pre-training for few-shot intent classification. In Findings of EMNLP 2021, pages 1114–1120.

Jianguo Zhang, Trung Bui, Seunghyun Yoon, Xiang Chen, Zhiwei Liu, Congying Xia, Quan Hung Tran, Walter Chang, and Philip Yu. 2021b. Few-shot intent detection via contrastive pre-training and fine-tuning. In Proceedings of EMNLP 2021, pages 1906–1912.

Jinghan Zhang, Yuxiao Ye, Yue Zhang, Likun Qiu, Bin Fu, Yang Li, Zhenglu Yang, and Jian Sun. 2020. Multi-point semantic representation for intent classification. In Proceedings of AAAI 2020, pages 9531–9538.
A Appendix: Ontology

The complete ontology of NLU++ is provided in Table 9 and Table 10.

B Appendix: Sentence Encoders in Intent Detection Experiments

CONVE RT (Henderson et al., 2020) is trained with the conversational response selection objective (Henderson et al., 2019b) on large Reddit data (Al-Rfou et al., 2016; Henderson et al., 2019a), spanning more than 700M (context, response) sentence pairs. Thanks to its naturally conversational pretraining objective, it has been shown to be especially well-suited for conversational tasks such as intent detection (Casanueva et al., 2020) and slot labelling (Coope et al., 2020). It outputs 1,024-dim sentence encodings.

- github.com/davidalami/ConveRT

LABSE. Language-agnostic BERT Sentence Embedding (LaBSE) (Feng et al., 2020) adapts pretrained multilingual BERT (mBERT) (Devlin et al., 2019) using a dual-encoder framework (Yang et al., 2019) with larger embedding capacity (i.e., a shared multilingual vocabulary of 500k subwords). While LaBSE is the current state-of-the-art multilingual encoder, it also displays very strong monolingual English performance (Feng et al., 2020). It produces 768-dim sentence encodings.

- huggingface.co/sentence-transformers/

ROBL-1B and LM12-1B (Reimers and Gurevych, 2019; Thakur et al., 2021) are sentence encoders which fine-tune the pretrained Roberta-Large (ROBL) language model (Liu et al., 2019a) and the 12-layer MiniLM (Wang et al., 2020b), respectively, again using a contrastive dual-encoder framework (Reimers and Gurevych, 2019). The models are fine-tuned on a set of more than 1B sentence pairs: this set comprises various data such as Reddit 2015-2018 comments (Henderson et al., 2019a), Natural Questions (Kwiatkowski et al., 2019), PAQ (question, answer) pairs (Lewis et al., 2021), to name only a few.19 ROBL-1B outputs 1,024-dim encodings, while LM12-1B produces 384-dim encodings.

We opted for those two models in particular as one represents a class of large sentence encoders (ROBL-1B), and the other is lightweight (LM12-1B), while both display very strong performance in a myriad of sentence similarity and semantic search tasks, see www.sbert.net/docs/pretrained_models.html.

- huggingface.co/sentence-transformers/all-roberta-large-v1
- huggingface.co/sentence-transformers/all-MiniLM-L12-v1

C Appendix: QA-Pretrained Models

We rely on the same SQuAD-tuned language models as Namazifar et al. (2021). ROBB-QA can be found online at: https://huggingface.co/deepset/roberta-base-squad2; ALB-QA is available at: https://huggingface.co/twmkn9/albert-base-v2-squad2

D Appendix: Slot Labeling Baselines

CONVEX (Henderson and Vuli´c, 2021) demonstrates strong SL performance, especially in few-shot settings. It is pretrained on a pairwise cloze task extracted from the Reddit examples (Henderson et al., 2019a), and the majority of the pretrained model’s parameters in ConVEX are kept frozen during fine-tuning, making it an extremely efficient model. We adopt the suggested hyper-parameters from Henderson and Vuli´c (2021).

QA-Based: Namazifar et al. (2021) train an extractive QA-based model to extract the spans of the slots from the input user utterance as answers to manually defined natural language questions (one per slot). It follows the same idea as QA-based ID models. We also provide such questions for each slot along with NLU++ for model training and inference: see the questions in Table 10.
INTENT	DESCRIPTION-QUESTION	DOMAIN	LEXICAL DIVERSITY	CATEGORY
affirm	is the intent to affirm something?	general	medium	General dialogue
deny	is the intent to deny something?	general	medium	acts
dont_know	is the intent to say I don’t know?	general	medium	General dialogue
acknowledge	is the intent to acknowledge what was said?	general	medium	
greet	is the intent to greet someone?	general	high	
end_call	is the intent to end call or say goodbye?	general	high	
handoff	is the intent to speak to a human or hand off?	general	high	
thank	is the intent to thank someone?	general	medium	
repeat	is the intent asking to repeat the previous sentence?	general	medium	
cancel_close_leave	is the intent asking about canceling or closing something?	general	high	Actions
make	is the intent to make, open, apply, set up or activate something?	general	high	
request_info	is the intent to ask or request some information?	general	high	Questions
how	is the intent asking how to do something?	general	medium	
why	is the intent to ask why something happened or needs to be done?	general	medium	
when	is the intent to ask about when or what time something happens?	general	medium	
how_much	is the intent asking about some quantity or how much?	general	medium	
how_long	is the intent asking about how long something takes?	general	medium	
not_working	is the intent asking about something wrong, missing or not working?	general	high	General adjectives
lost_stolen	is the intent asking about something being lost or stolen?	general	medium	
less_lower_before	is the intent to indicate something less, lower, before or decreasing?	general	medium	
new	is the intent asking about something new?	general	medium	
existing	is the intent asking about something that already exists?	general	medium	
limits	is the intent asking about some sort of limit?	general	medium	
savings	is the intent asking about the savings account?	banking	low	Domain specific
current	is the intent asking about the current account?	banking	low	adjectives
business	is the intent to ask something about the business account?	banking	low	
credit	is the intent asking about something related to credit?	banking	low	
debit	is the intent asking about something related to debit?	banking	low	
contactless	is the intent to ask about contactless?	banking	low	
international	is the intent to ask about something related to international issues?	banking	medium	
account	is the intent asking about some account?	banking	low	
transfer_payment	is the intent to ask about something related to a transfer, payment or deposit?	banking	low	nouns/entities
appointment	is the intent to ask about something about an appointment?	banking	medium	
arrival	is the intent to ask about the arrival of something?	banking	medium	
balance	is the intent to ask about balance?	banking	medium	
card	is the intent to ask about something related to a card or cards?	banking	low	
cheque	is the intent to ask about cheque?	banking	low	
direct_debit	is the intent to ask about direct debit?	banking	low	
standing_order	is the intent asking about a standing order?	banking	low	
fees_interests	is the intent to ask about fees or interests?	banking	medium	
loan	is the intent to ask about loans?	banking	low	
mortgage	is the intent asking about mortgage?	banking	low	
overdraft	is the intent to ask about overdraft?	banking	low	
withdrawal	is the intent to ask about withdrawals?	banking	low	
pin	is the intent to ask something about the pin number?	banking	low	
refund	is the intent to ask about some refund?	banking, hotels	low	
check_in	is the intent to ask about check in?	hotels	medium	
check_out	is the intent to ask about check out?	hotels	medium	
restaurant	is the intent to ask something related to restaurant?	hotels	medium	
swimming_pool	is the intent to ask something related to the swimming pool?	hotels	low	
parking	is the intent to ask something related to parking?	hotels	low	
pets	is the intent to ask something related to pets?	hotels	medium	
accessibility	is the intent to ask something related to accessibility?	hotels	medium	
booking	is the intent to talk about some booking?	hotels	medium	
wifi	is the intent to ask something related to wifi or wireless?	hotels	low	
gym	is the intent to ask something related to gym?	hotels	low	
spa	is the intent to ask something related to spa or beauty services?	hotels	high	
room_ammenities	is the intent to ask something related to some room amenities?	hotels	high	
housekeeping issues	is the intent to talk about housekeeping issues?	hotels	medium	
room_service	is the intent to talk about room service?	hotels	medium	

Table 9: Intents ontology
SLOT	DESCRIPTION-QUESTION	DOMAIN
date	What is the specific date mentioned in this sentence?	general
date_period	What is the time period in days, months or years mentioned in this sentence?	general
date_from	What is the start date of some period mentioned in this sentence?	general
date_to	What is the end date of some period mentioned in this sentence?	general
time	What is the specific time in the day mentioned in this sentence?	general
time_from	What is the start time of some time period mentioned in this sentence?	general
time_to	What is the end time of some time period mentioned in this sentence?	general
time_period	What is the time period in hours or minutes mentioned in this sentence?	general
person_name	What is the name of a person mentioned in this sentence?	general
number	What is the number without context mentioned in this sentence?	general
amount_of_money	What is the specific amount of money mentioned in this sentence?	banking
company_name	What is the name of some sort of company mentioned in this sentence?	banking
shopping_category	What is the category of some expense mentioned in this sentence?	hotels
kids	What is the number of kids mentioned in this sentence?	hotels
adults	What is the number of adults mentioned in this sentence?	hotels
people	What is the number of people mentioned in this sentence?	hotels
rooms	What is the number of rooms mentioned in this sentence?	hotels

Table 10: Slots ontology