Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff

Ahmad Sheykhi

Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman, Iran
and
Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha, Iran

E-mail: sheykhi@mail.uk.ac.ir

Received 19 September 2009, in final form 29 November 2009
Published 23 December 2009
Online at stacks.iop.org/CQG/27/025007

Abstract

As soon as an interaction between holographic dark energy and dark matter is taken into account, the identification of an IR cutoff with the Hubble radius H^{-1}, in a flat universe, can simultaneously drive accelerated expansion and solve the coincidence problem. Based on this, we demonstrate that in a non-flat universe the natural choice for the IR cutoff could be the apparent horizon radius, $\tilde{r}_A = 1/\sqrt{H^2 + k/a^2}$. We show that any interaction of dark matter with holographic dark energy, whose infrared cutoff is set by the apparent horizon radius, implies an accelerated expansion and a constant ratio of the energy densities of both components thus solving the coincidence problem. We also verify that for a universe filled with dark energy and dark matter, the Friedmann equation can be written in the form of the modified first law of thermodynamics, $dE = T_b dS_b + W dV$, at the apparent horizon. In addition, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon. These results hold regardless of the specific form of dark energy and interaction term. Our study might reveal that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

PACS numbers: 98.80.Cq, 98.80.—k, 11.10.Kk, 11.25.Wx

1. Introduction

The combined analysis of cosmological observations reveals that nearly three quarters of our universe consists of a mysterious energy component usually dubbed ‘dark energy’ which is responsible for the cosmic expansion, and the remaining part consists of pressureless matter [1]. The nature of such previously unforeseen energy still remains a complete mystery, except for the fact that it has negative pressure. In this new conceptual setup, one of the important
questions concerns the thermodynamical behaviour of the accelerated expanding universe driven by dark energy. It is important to ask whether thermodynamics in an accelerating universe can reveal some properties of dark energy. The profound connection between thermodynamics and gravity has been observed in the cosmological situations [2–10]. This connection implies that the thermodynamical properties can help understand the dark energy, which gives strong motivation to study thermodynamics in the accelerating universe. It is also of great interest to investigate the validity of the generalized second law of thermodynamics in the accelerating universe driven by dark energy [11]. The generalized second law of thermodynamics is an important principle in governing the development of the nature.

An interesting attempt for probing the nature of dark energy within the framework of quantum gravity is the so-called holographic dark energy (HDE) proposal. This model which has arisen a lot of enthusiasm recently [12–19] is motivated from the holographic hypothesis [20] and has been tested and constrained by various astronomical observations [21]. It is important to note that in the literature, various scenarios of HDE have been studied via considering different system’s IR cutoff. In the absence of the interaction between dark matter and dark energy in a flat universe, Li [13] discussed three choices for the length scale L which are supposed to provide an IR cutoff. The first choice is the Hubble radius, $L = H^{-1}$ [15], which leads to a wrong equation of state, namely that for dust. The second option is the particle horizon radius. In this case it is impossible to obtain an accelerated expansion. Only the third choice, the identification of L with the radius of the future event horizon gives the desired result, namely a sufficiently negative equation of state to obtain an accelerated universe.

However, as soon as an interaction between dark energy and dark matter is taken into account, the first choice, $L = H^{-1}$, in a flat universe, can simultaneously drive accelerated expansion and solve the coincidence problem [22]. Based on this, we demonstrate that in a non-flat universe the natural choice for IR cutoff could be the apparent horizon radius. We show that any interaction of pressureless dark matter with HDE, whose infrared cutoff is set by the apparent horizon radius, implies a constant ratio of the energy densities of both components thus solving the coincidence problem. Besides, it was argued that for an accelerating universe inside the event horizon the generalized second law does not satisfy, while the accelerating universe enveloped by the Hubble horizon satisfies the generalized second law [23]. This implies that the event horizon in an accelerating universe might not be a physical boundary from the thermodynamical point of view. Thus, we need to define a convenient horizon that satisfies all of our accepted principles in a universe with any spacial curvature. In the next section, we study the interacting HDE with apparent horizon as an IR cutoff. In section 3, we examine the first law of thermodynamics on the apparent horizon in an accelerating universe with spacial curvature. In section 4, we investigate the validity of the generalized second law of thermodynamics in a region enclosed by the apparent horizon. The last section is devoted to conclusions.

2. Interacting HDE with the apparent horizon as an IR cutoff

We consider a homogenous and isotropic Friedmann–Robertson–Walker (FRW) universe which is described by the line element

$$\text{d}s^2 = h_{\mu\nu} \text{d}x^\mu \text{d}x^\nu + \tilde{r}^2 (\text{d}\theta^2 + \sin^2 \theta \text{d}\phi^2),$$

where $\tilde{r} = a(t)r$, $x^0 = t$, $x^1 = r$, the two-dimensional metric $h_{\mu\nu} = \text{diag}(-1, a^2/(1-kr^2))$. Here k denotes the curvature of space with $k = 0, 1, -1$ corresponding to open, flat and closed universes, respectively. A closed universe with a small positive curvature ($\Omega_k \simeq 0.01$) is compatible with observations [24]. Then, the dynamical apparent horizon, a marginally
trapped surface with vanishing expansion, is determined by the relation \(h^{\mu \nu} \partial_\mu \tilde{r} \partial_\nu \tilde{r} = 0 \), which implies that the vector \(\nabla \tilde{r} \) is null on the apparent horizon surface. The apparent horizon was argued as a causal horizon for a dynamical spacetime and is associated with gravitational entropy and surface gravity [25, 26]. A simple calculation gives the apparent horizon radius for the FRW universe:

\[
\tilde{r}_A = \frac{1}{\sqrt{H^2 + k/a^2}}.
\]

The corresponding Friedmann equation takes the form

\[
H^2 + \frac{k}{a^2} = \frac{8 \pi G}{3} (\rho_m + \rho_D),
\]

where \(\rho_m \) and \(\rho_D \) are the energy densities of dark matter and dark energy inside apparent horizon, respectively. Since we consider the interaction between dark matter and dark energy, \(\rho_m \) and \(\rho_D \) do not conserve separately; they must rather enter the energy balances [27]:

\[
\dot{\rho}_m + 3H \rho_m = Q,
\]

\[
\dot{\rho}_D + 3H \rho_D (1 + w_D) = -Q,
\]

where \(w_D = p_D/\rho_D \) is the equation of state parameter of HDE and \(Q \) stands for the interaction term. We also ignore the baryonic matter (\(\Omega_{1BM} \approx 0.04 \)) in comparison with dark matter and dark energy (\(\Omega_{1DM} + \Omega_{1DE} \approx 0.96 \)). We shall assume the ansatz \(Q = \Gamma \rho_D \) with \(\Gamma > 0 \), which means that there is an energy transfer from the dark energy to dark matter. It is important to note that the continuity equations imply that the interaction term should be a function of a quantity with units of inverse of time (a first and natural choice can be the Hubble factor \(H \)) multiplied with the energy density. Therefore, the interaction term could be in any of the following forms: (i) \(Q \propto H \rho_D \), (ii) \(Q \propto H \rho_m \) or (iii) \(Q \propto H (\rho_m + \rho_D) \). However, we can present the above three forms in one expression as \(Q = \Gamma \rho_D \), where

\[
\Gamma = 3b^2 H \quad \text{for} \quad \rho_m \propto \rho_D,
\]

\[
\Gamma = 3b^2 Hu \quad \text{for} \quad \rho_m \propto H \rho_D,
\]

\[
\Gamma = 3b^2 H(1 + u) \quad \text{for} \quad \rho_m \propto (\rho_m + \rho_D),
\]

where \(b^2 \) is a coupling constant and \(u = \rho_m/\rho_D \) is the ratio of energy densities. The freedom of choosing the specific form of the interaction term \(Q \) stems from our incognizance of the origin and nature of dark energy as well as dark matter. Moreover, a microphysical model describing the interaction between the dark components of the universe is not available nowadays. If we introduce, as usual, the fractional energy densities such as

\[
\Omega_m = \frac{8 \pi G \rho_m}{3 H^2}, \quad \Omega_D = \frac{8 \pi G \rho_D}{3 H^2}, \quad \Omega_k = \frac{k}{H^2 a^2},
\]

then the Friedmann equation can be written as \(\Omega_m + \Omega_D = 1 + \Omega_k \). In terms of the apparent horizon radius, we can rewrite the Friedmann equation as

\[
\frac{1}{\tilde{r}_A^2} = \frac{8 \pi G}{3} (\rho_m + \rho_D).
\]

For completeness, we give the deceleration parameter

\[
q = -\frac{\ddot{a}}{a H^2} = -1 - \frac{\dot{H}}{H^2},
\]

which combined with the Hubble parameter and the dimensionless density parameters forms a set of useful parameters for the description of the astrophysical observations. It is a matter of calculation to show that

\[
q = -(1 + \Omega_k) + \frac{1}{2} \Omega_D (1 + u + w_D).
\]
The evolution of u is governed by

$$\dot{u} = 3Hu \left[w_D + \frac{1 + u}{u} \frac{\Gamma}{3H} \right]. \quad (11)$$

We assume that the HDE density has the form

$$\rho_D = \frac{3c^2}{8\pi G\tilde{r}_A^2}, \quad (12)$$

where c^2 is a constant, the coefficient 3 is for convenience, and we have set the apparent horizon radius $L = \tilde{r}_A$ as the system’s IR cutoff in the holographic model of dark energy. Inserting equation (12) into equation (8) immediately yields

$$\rho_m = \frac{3(1 - c^2)}{8\pi G\tilde{r}_A^2}. \quad (13)$$

Thus we reach

$$u = \frac{\rho_m}{\rho_D} = \frac{1 - c^2}{c^2}. \quad (14)$$

This implies that the ratio of the energy densities is a constant; thus the coincidence problem can be solved. Taking the derivative of equation (12) we get

$$\dot{\rho}_D = -2\rho_D \frac{\dot{\tilde{r}}}{\tilde{r}_A} = -3c^2H\rho_D(1 + u + w_D), \quad (15)$$

where we have employed equations (4), (5) and (8). Combining this equation with (5) we obtain

$$w_D = -\left(1 + \frac{1}{u} \right) \frac{\Gamma}{3H}. \quad (16)$$

Substituting w_D into (10), we find

$$q = -(1 + \Omega_k) - \frac{3}{2} \Omega_D(1 + u) \left(\frac{\Gamma}{3Hu} - 1 \right). \quad (17)$$

The interaction parameter $\frac{\Gamma}{3H}$ together with the energy density ratio u determines the equation of state parameter. In the absence of interaction, we encounter dust with $w_D = 0$. For the choice $L = \tilde{r}_A$ an interaction is the only way to have an equation of state different from that for dust. Any decay of the dark energy component into pressureless matter is necessarily accompanied by an equation of state $w_D < 0$. The existence of an interaction has another interesting consequence. Inserting expression w_D into (11) leads to $\dot{u} = 0$, i.e. $u = \text{const}$. Thus, any interaction of dark matter with HDE, whose infrared cutoff is set by the apparent horizon radius, implies an accelerated expansion and a constant ratio of the energy densities, irrespective of the specific structure of the interaction. It is important to note that although choosing $L = H^{-1}$, in a spatially flat universe, can drive accelerated expansion and solve the coincidence problem [22], but taking into account the spatial curvature term gives rise to an additional dynamics which implies a small (compared with the Hubble rate) change of the energy density ratio; thus the coincidence problem cannot be solved exactly (see [28] for details). This implies that in an accelerating universe with spatial curvature the Hubble radius H^{-1} is not a convenient choice.

In summary, in a universe with spatial curvature, the identification of the IR cutoff with the apparent horizon radius \tilde{r}_A is not only the most obvious but also the simplest choice which can simultaneously drive accelerated expansion and solve the coincidence problem. It is important to note that the interaction is essential to simultaneously solve the coincidence problem and have late acceleration. There is no non-interacting limit, since in the absence of interaction, i.e. $\Gamma = 0$, there is no acceleration.
3. First law of thermodynamics

In this section we examine the first law of thermodynamics. In particular, we show that for a closed universe filled with HDE and dark matter the Friedmann equation can be written directly in the form of the modified first law of thermodynamics at the apparent horizon regardless of the specific form of the dark energy. The associated temperature with the apparent horizon can be defined as

\[T = \frac{\kappa}{2\pi}, \]

where \(\kappa = \frac{1}{2\pi} \partial_{\mu}(\sqrt{-\tilde{h}}h^{\mu\nu}\partial_{\nu}\tilde{r}). \) Then one can easily show that the surface gravity at the apparent horizon of the FRW universe can be written as

\[\kappa = -\frac{1}{\tilde{r}_A}(1 - \frac{\dot{\tilde{r}}_A}{2H\tilde{r}_A}). \] (18)

When \(\dot{\tilde{r}}_A \leq 2H\tilde{r}_A, \) the surface gravity \(\kappa \leq 0, \) which leads the temperature \(T \leq 0 \) if one defines the temperature of the apparent horizon as \(T = |\kappa|/2\pi. \) Physically it is not easy to accept the negative temperature; the temperature on the apparent horizon should be defined as \(T = |\kappa|/2\pi. \)

Taking differential form of equation (8) and using equations (4) and (5), we can get the differential form of the Friedmann equation:

\[\frac{1}{4\pi G} \frac{d\tilde{r}_A}{\tilde{r}_A^3} = H\rho_D(1 + u + w_D) \, dt. \] (19)

Multiplying both sides of equation (19) by a factor \(4\pi\tilde{r}_A^3(1 - \frac{\dot{\tilde{r}}_A}{2H\tilde{r}_A}), \) and using expression (18) for the surface gravity, one can rewrite this equation in the form

\[-\frac{\kappa}{2\pi} \frac{2\pi\tilde{r}_A d\tilde{r}_A}{G} = 4\pi\tilde{r}_A^3 H\rho_D(1 + u + w_D) \, dt - 2\pi\tilde{r}_A^3 \rho_D(1 + u + w_D) \, d\tilde{r}_A. \] (20)

\[E = (\rho_m + \rho_D) V \] is the total energy content of the universe inside a 3-sphere of radius \(\tilde{r}_A, \) where \(V = \frac{4}{3}\pi\tilde{r}_A^3 \) is the volume enveloped by a three-dimensional sphere with the area of apparent horizon \(A = 4\pi\tilde{r}_A^2. \) Taking differential form of the relation \(E = (\rho_m + \rho_D) \frac{4}{3}\pi\tilde{r}_A^3 \) for the total matter and energy inside the apparent horizon, we get

\[dE = 4\pi\tilde{r}_A^3(\rho_m + \rho_D) \, d\tilde{r}_A + \frac{4\pi}{3}\tilde{r}_A(\dot{\rho}_m + \dot{\rho}_D) \, dt. \] (21)

Using equations (4) and (5), we obtain

\[dE = 4\pi\tilde{r}_A^3 \rho_D(1 + u) \, d\tilde{r}_A - 4\pi\tilde{r}_A^3 H\rho_D(1 + u + w_D) \, dt. \] (22)

Substituting this relation into (20), and using the relation between temperature and the surface gravity, we get the modified first law of thermodynamics on the apparent horizon:

\[dE = T_s \, dS_h + W \, dV, \] (23)

where \(S_h = A/4G \) is the entropy associated with the apparent horizon and

\[W = \frac{1}{2}(\rho_m + \rho_D - p_D) = \frac{1}{2}\rho_D(1 + u - w_D) \] (24)

is the matter work density [25]. The work density term is regarded as the work done by the change of the apparent horizon, which is used to replace the negative pressure if compared with the standard first law of thermodynamics, \(dE = T \, dS - p \, dV. \) For a pure de Sitter space, \(\rho_m + \rho_D = -p_D, \) then our work term reduces to the standard \(-p_D dV \) and we obtain exactly the first law of thermodynamics.
4. Generalized second law of thermodynamics

In this section we turn to investigate the validity of the generalized second law of thermodynamics in a region enclosed by the apparent horizon. Differentiating equation (8) with respect to the cosmic time and using equations (4) and (5) we get

$$\dot{r}_A = 4\pi G \hat{r}_A^2 \rho_D (1 + u + w_D).$$

(25)

One can see from the above equation that $\dot{r}_A > 0$ provided the condition $w_D > -1 - u$ holds. Let us now turn to find out $T_h S_h$:

$$T_h S_h = \frac{1}{2\pi \hat{r}_A} \left(1 - \frac{\dot{r}_A}{2H\hat{r}_A} \right) \frac{d}{dt} \left(\frac{\pi \hat{r}_A^2}{G} \right).$$

(26)

After some simplification and using equation (25) we get

$$T_h S_h = 4\pi H^2 \hat{r}_A^2 \rho_D (1 + u + w_D) \left(1 - \frac{\dot{r}_A}{2H\hat{r}_A} \right).$$

(27)

As we argued above, the term $\left(1 - \frac{\dot{r}_A}{2H\hat{r}_A} \right)$ is positive to ensure that $T_h > 0$; however, in an accelerating universe, the equation of state parameter of dark energy may cross the phantom divide, i.e. $w_D < -1 - u$. This indicates that the second law of thermodynamics, $S_h \geq 0$, does not hold on the apparent horizon. Then the question arises: ‘will the generalized second law of thermodynamics, $S_h + S_m + S_D \geq 0$, be satisfied in a region enclosed by the apparent horizon?’ The entropy of dark energy plus dark matter inside the apparent horizon, $S = S_m + S_D$, can be related to the total energy $E = (\rho_m + \rho_D)V$ and pressure p_D in the horizon by the Gibbs equation [30]

$$T dS = d[(\rho_m + \rho_D)V] + p_D dV = V(d\rho_m + d\rho_D) + \rho_D(1 + u + w_D) dV,$$

(28)

where $T = T_m = T_D$ and $S = S_m + S_D$ are the temperature and the total entropy of the energy and matter content inside the horizon, respectively. Here we assumed that the temperatures of both dark components are equal, due to their mutual interaction. We also limit ourselves to the assumption that the thermal system bounded by the apparent horizon remains in equilibrium so that the temperature of the system must be uniform and the same as the temperature of its boundary. This requires that the temperature T of the energy content inside the apparent horizon should be in equilibrium with the temperature T_h associated with the apparent horizon, so we have $T = T_h$ [30]. This expression holds in the local equilibrium hypothesis. If the temperature of the fluid differs much from that of the horizon, there will be spontaneous heat flow between the horizon and the fluid and the local equilibrium hypothesis will no longer hold. This is also at variance with the FRW geometry. In general, when we consider the thermal equilibrium state of the universe, the temperature of the universe is associated with the apparent horizon. Therefore from the Gibbs equation (28) we can obtain

$$T_h (S_m + S_D) = 4\pi \hat{r}_A^2 \rho_D (1 + u + w_D) \hat{r}_A - 4\pi H \hat{r}_A^2 \rho_D (1 + u + w_D).$$

(29)

To check the generalized second law of thermodynamics, we have to examine the evolution of the total entropy $S_h + S_m + S_D$. Adding equations (27) and (29), we get

$$T_h (S_h + S_m + S_D) = 2\pi \hat{r}_A^2 \rho_D (1 + u + w_D) \hat{r}_A = \frac{A}{2} \rho_D (1 + u + w_D) \hat{r}_A,$$

(30)

where $A > 0$ is the area of apparent horizon. Substituting \dot{r}_A from equation (25) into (30) we get

$$T_h (S_h + S_m + S_D) = 2\pi GA H \hat{r}_A^2 \rho_D^2 (1 + u + w_D)^2.$$

(31)

The right-hand side of the above equation cannot be negative throughout the history of the universe, which means that $\dot{S}_h + \dot{S}_m + \dot{S}_D \geq 0$ always holds. This indicates that for a universe
with spacial curvature filled with interacting dark components, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.

5. Conclusions

It is worthy to note that in the literature, various scenarios of HDE have been studied via considering different system’s IR cutoff. In the absence of interaction the convenient choices for the IR cutoff are the radial size of the horizon \(R_h\) and the radius of the event horizon measured on the sphere of the horizon \(L = ar(t)\) in a spatially flat and curved universe, respectively. Although in these cases the HDE gives the observation value of dark energy in the universe and can drive the universe to an accelerated expansion phase, an obvious drawback concerning causality appears. Event horizon is a global concept of spacetime; existence of the event horizon of the universe depends on future evolution of the universe; and event horizon exists only for the universe with forever accelerated expansion. However, as soon as an interaction between dark energy and dark matter is taken into account, the identification of \(L\) with \(H^{-1}\) in a flat universe can simultaneously drive accelerated expansion and solve the coincidence problem [22]. The Hubble radius is not only the most obvious but also the simplest choice in a flat universe.

In this paper, we demonstrated that in a universe with spacial curvature the natural choice for IR cutoff could be the apparent horizon radius, \(\tilde{r}_A = 1/\sqrt{H^2 + k/a^2}\). We showed that any interaction of pressureless dark matter with HDE, whose infrared cutoff is set by the apparent horizon radius, implies a constant ratio of the energy densities of both dark components thus solving the coincidence problem. In addition, we examined the validity of the first and the generalized second law of thermodynamics for a universe filled with mutual interacting dark components in a region enclosed by the apparent horizon. These results hold regardless of the specific form of dark energy and interaction term \(Q\). Our study further supports that in a universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

Acknowledgments

I thank the anonymous referee for constructive comments. I am also grateful to Professor B Wang for helpful discussions and reading the manuscript. This work has been supported by Research Institute for Astronomy and Astrophysics of Maragha.

References

[1] Riess A G et al 1998 Astron. J. 116 1009
Perlmutter S et al 1999 Astrophys. J. 517 565
Perlmutter S et al 2003 Astrophys. J. 598 102
[2] Akbar M and Cai R G 2007 Phys. Rev. D 75 084003
[3] Cai R G and Cao L M 2007 Phys. Rev. D 75 064008
[4] Cai R G and Kim S P 2005 J. High Energy Phys. JHEP02(2005)050
[5] Frolov A V and Kobzerman L 2003 J. Cosmol. Astropart. Phys. JCAP03(2003)009
Danielsson U K 2005 Phys. Rev. D 71 023516
Bousso R 2005 Phys. Rev. D 71 064024
Calcagni G 2005 J. High Energy Phys. JHEP09(2005)060
[6] Wang B, Abdalla E and Su R K 2001 Phys. Lett. B 503 394
Wang B, Abdalla E and Su R K 2002 Mod. Phys. Lett. A 17 23
Cai R G and Myung Y S 2003 Phys. Rev. D 67 124021
[7] Cai R G and Cao L M 2007 Nucl. Phys. B 785 135
[8] Sheykhi A, Wang B and Cai R G 2007 Nucl. Phys. B 779 1
[9] Sheykhi A, Wang B and Cai R G 2007 Phys. Rev. D 76 023515
[10] Sheykhi A and Wang B 2009 Phys. Lett. B 678 434
[11] Wang B, Gong Y and Abdalla E 2006 Phys. Rev. D 74 083520
[12] Cohen A, Kaplan D and Nelson A 1999 Phys. Rev. Lett. 82 4971
[13] Li M 2004 Phys. Lett. B 603 1
[14] Huang Q G and Li M 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)013
[15] Hsu S D H 2004 Phys. Lett. B 636 13
[16] Elizalde E, Nojiri S, Odintsov S D and Wang P 2005 Phys. Rev. D 71 103504

Guberina B, Horvat R and Stefancic H 2005 J. Cosmol. Astropart. Phys. JCAP05(2005)001
Guberina B, Horvat R and Nikolic H 2006 Phys. Lett. B 636 80
Li H, Guo Z K and Zhang Y Z 2006 Int. J. Mod. Phys. D 15 869
Huang Q G and Gong Y 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)006
Almeida J P B and Pereira J G 2006 Phys. Lett. B 636 75

Gong Y 2004 Phys. Rev. D 70 064029
Wang B, Abdalla E and Su R K 2005 Phys. Lett. B 611 21

Setare M R and Shafei S 2006 J. Cosmol. Astropart. Phys. JCAP09(2006)011
Setare M R 2007 Phys. Lett. B 644 99
Setare M R 2007 J. Cosmol. Astropart. Phys. JCAP01(2007)023
Setare M R 2006 Phys. Lett. B 642 421

Wang B, Gong Y and Abdalla E 2005 Phys. Lett. B 624 141
Wang B, Lin C Y, Pavon D and Abdalla E 2008 Phys. Lett. B 662 1
Sheykhi A 2009 Phys. Lett. B 681 205

Wang B, Lin C Y and Abdalla E 2005 Phys. Lett. B 637 357
Setare M R 2006 Phys. Lett. B 642 1

’t Hooft G 1993 arXiv:gr-qc/9310026
Susskind L 1995 J. Math. Phys. 36 6377

Zhang X and Wu F Q 2005 Phys. Rev. D 72 043524
Zhang X and Wu F Q 2007 Phys. Rev. D 76 023502
Huang Q G and Gong Y G 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)006
Enqvist K, Hannestad S and Sloth M S 2005 J. Cosmol. Astropart. Phys. JCAP02(2005)004
Shen J Y, Wang B, Abdalla E and Su R K 2005 Phys. Lett. B 609 200

Pavon D and Zimdahl W 2005 Phys. Lett. B 628 206
Zhou J, Wang B, Gong Y and Abdalla E 2007 Phys. Lett. B 652 86

Spergel D N 2003 Astrophys. J. Suppl. 148 175
Bennett C L et al 2003 Astrophys. J. Suppl. 148 1
Seljak U, Slosar A and McDonald P 2006 J. Cosmol. Astropart. Phys. JCAP10(2006)014
Spergel D N et al 2007 Astrophys. J. Suppl. 170 577

Hayward S A, Mukohyana S and Ashworth M C 1999 Phys. Lett. A 256 347

Hayward S A 1998 Class. Quantum Grav. 15 3147

Bak D and Rey S J 2000 Class. Quantum Grav. 17 L83

Amendola L, Campos G Camargo and Rosenfeld R 2007 Phys. Rev. D 75 083506
Guo Z K, Ohta N and Tsujikawa S 2007 Phys. Rev. D 76 023508

Zimdahl W and Pavon D 2007 Class. Quantum. Grav. 24 5461

Cai R G, Cao L M and Hu Y P 2009 Class. Quantum Grav. 26 155018
Li R, Ren J R and Shi D F 2009 Phys. Lett. B 670 446

Izquierdo G and Pavon D 2006 Phys. Lett. B 633 420