TIME DECAY FOR SCHRÖDINGER EQUATION WITH
ROUGH POTENTIALS

SHIJUN ZHENG

Abstract. We obtain certain time decay and regularity estimates
for 3D Schrödinger equation with a potential in the Kato class by
using Besov spaces associated with Schrödinger operators.

1. Introduction

The Schrödinger equation \(iu_t = -\Delta u \) describes the waves of a free
particle in a non-relativistic setting. It is physically important to con-
sider a perturbed dispersive system in the presence of interaction be-
tween fields.

Let \(H = -\Delta + V \), where \(\Delta \) is the Laplacian and \(V \) is a real-valued
function on \(\mathbb{R}^n \). In this note we are concerned with the time decay of
Schrödinger equation with a potential
\[
 iu_t = Hu,
 \quad u(x, 0) = u_0,
\]
where the solution is given by \(u(x, t) = e^{-itH}u_0 \). For simple exposition
we consider the three dimensional case for \(V \) in the Kato class \([9, 4]\). Recall that \(V \) is said to be in the
\(K_n, n \geq 3 \) provided
\[
 \lim_{\delta \to 0^+} \sup_{x \in \mathbb{R}^n} \int_{|x-y|<\delta} \frac{|V(y)|}{|x-y|^{n-2}} dy = 0.
\]
Throughout this article we assume that \(V = V_+ - V_-, \ V_\pm \geq 0 \) so that
\(V_+ \in K_{n,loc} \) and \(V_- \in K_n \), where \(V \in K_{n,loc} \) if and only if \(V \chi_B \in K_n \)
for any characteristic function \(\chi_B \) of the balls \(B \) centered at 0 in \(\mathbb{R}^n \).

We seek to find minimal smoothness condition on the initial da-
ta \(u_0 = f \) so that \(u(x, t) \) has certain global time decay and regularity
estimates. The idea is to combine the results of Jensen-Nakamura and
Rodnianski-Schlag \([4, 7]\) for short and long time decay by using Besov
space method.

\textit{Date:} September 30, 2007.

\textit{2000 Mathematics Subject Classification.} Primary: 35J10; Secondary: 42B25.

\textit{Key words and phrases.} functional calculus, Schrödinger operator, Littlewood-
Paley theory.
In [1, 4, 3, 6, 13] several authors introduced and studied the Besov spaces and Triebel-Lizorkin spaces associated with H. Let $\{\varphi_j\}_{j=0}^{\infty} \subset C_0^\infty(\mathbb{R})$ be a dyadic system satisfying

(i) $\text{supp} \varphi_0 \subset \{ x : |x| \leq 1 \}$, $\text{supp} \varphi_j \subset \{ x : 2^{j-2} \leq |x| \leq 2^j \}$, $j \geq 1$,

(ii) $|\varphi_j^{(k)}(x)| \leq c_k 2^{-kj}$, $\forall k \geq 0, j \geq 0$,

(iii) $\sum_{j=0}^\infty |\varphi_j(x)| = 1$, $\forall x$.

Let $\alpha \in \mathbb{R}$, $1 \leq p \leq \infty$, $1 \leq q \leq \infty$. The (inhomogeneous) Besov space associated with H, denoted by $B^{\alpha,q}_p(H)$, is defined to be the completion of $S(\mathbb{R}^n)$, the Schwartz class, with respect to the norm

$$\|f\|_{B^{\alpha,q}_p(H)} = \left(\sum_{j=0}^\infty 2^{j\alpha q} \|\varphi_j(H)f\|_{L^p}^q \right)^{1/q}.$$

Similarly, the (inhomogeneous) Triebel-Lizorkin space associated with H, denoted by $F^{\alpha,q}_p(H)$, $\alpha \in \mathbb{R}$, $1 \leq p < \infty$, $1 \leq q \leq \infty$ is defined by the norm

$$\|f\|_{F^{\alpha,q}_p(H)} = \left(\sum_{j=0}^\infty 2^{j\alpha q} |\varphi_j(H)f|^q \right)^{1/q} \|f\|_{L^p}.$$

The main result is the following theorem. Let $\|V\|_K$ denote the Kato norm

$$\|V\|_K := \sup_{x \in \mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|V(y)|}{|x - y|} \, dy.$$

Let $\beta := \beta(p) = n(\frac{1}{p} - \frac{1}{2})$ be the critical exponent.

Theorem 1.1. Let $1 \leq p \leq 2$. Suppose $V \in K_n$, $n = 3$ so that $\|V\|_K < 4\pi$ and

$$\int_{\mathbb{R}^6} \frac{|V(x)||V(y)|}{|x - y|^2} \, dx \, dy < (4\pi)^2.$$

The following statements hold. a) If $0 < t \leq 1$, then

$$\|e^{-itH}f\|_{p'} \lesssim \|f\|_{p'} + t^\beta \|f\|_{B^{2\beta,1}_p(H)}.$$

b) If in addition, $|\partial_x^\alpha V(x)| \leq c_\alpha$, $|\alpha| \leq 2n$, $n = 3$, then for all $t > 0$

$$\|e^{-itH}f\|_{L^{p'}} \lesssim \langle t \rangle^{-\frac{n}{2} - \frac{1}{2}} \|f\|_{B^{2\beta,1}_p(H)}.$$

where $p' = p/(p - 1)$ is the conjugate of p and $\langle t \rangle = (1 + t^2)^{1/2}$.

Remark 1.2. The short time estimate in [4] is an improvement upon [4] since we only demand smoothness order being β rather than 2β.
It is well known that if \(V \) satisfies (1), then \(\sigma(H) = \sigma(H_{ac}) = [0, \infty) \). Note that by Hardy-Littlewood-Sobolev inequality, \(V \in L^{3/2} \) implies the finiteness of the L.H.S of (1). Moreover, \(V \in L^{3/2+} \cap L^{3/2-} \) implies \(\|V\|_{K} < \infty \) [3 Lemma 4.3]. In particular, if \(\|V\|_{L^{3/2+} \cap L^{3/2-}} \) is sufficiently small, then the conditions of Theorem 1.1 (a) are satisfied.

The proof of the main theorem is a careful modification of that of the one dimensional result for a special potential in [6]. For short time we obtain (2) by modifying the proof of [4, Theorem 4.6]. The long time estimates simply follows from the \(L^{p} \to L^{p'} \) estimates for \(e^{-itH} \), \(1 \leq p \leq 2 \), a result of [7, Theorem 2.6], and the embedding \(B^{\alpha, q}_{p}(H) \hookrightarrow L^{p}, \epsilon > 0, 1 \leq p, q \leq \infty \).

Note that from the definitions of \(B(H) \) and \(F(H) \) spaces we have

\[
B^{\alpha, \min(p,q)}_{p}(H) \hookrightarrow F^{\alpha, q}_{p}(H) \hookrightarrow B^{\alpha, \max(p,q)}_{p}(H)
\]
for \(1 \leq p < \infty, 1 \leq q \leq \infty \), where \(\hookrightarrow \) means continuous embedding.

2. Proof of Theorem 1.1

The following lemma is proved in [4, Theorem 3, Remark 2.2].

Lemma 2.1. ([4]) Let \(1 \leq p \leq \infty \). Suppose \(V \in K_{n}, n = 3 \) and \(\phi \in C_{0}^{\infty}(\mathbb{R}) \). Then there exists a constant \(c > 0 \) independent of \(\theta \in (0, 1] \) so that

\[
\|\phi(\theta H)e^{-itH}f\|_{p} \leq c(t)^{\beta}\|f\|_{p}.
\]

Remark 2.2. We can also give a simple proof of this lemma based on the fact that the heat kernel of \(H \) satisfies an upper Gaussian bound in short time. The interested reader is referred to [13] and [4, 9].

The long time decay has been studied quite extensively under a variety of conditions on \(V \) [5, 7, 8, 11, 12]. The following \(L^{p} \to L^{p'} \) estimates follow via interpolation between the \(L^{2} \) conservation and the \(L^{1} \to L^{\infty} \) estimate for \(e^{-itH} \) that was proved in [7, Theorem 2.6].

Lemma 2.3. Let \(1 \leq p \leq 2 \). Suppose \(\|V\|_{K} < 4\pi \) and

\[
\int_{\mathbb{R}^{n}} \frac{|V(x)||V(y)|}{|x-y|^{2}}dxdy < (4\pi)^{2}.
\]

Then \(\|e^{-itH}f\|_{L^{p'}} \lesssim |t|^{-n(\frac{1}{p}-\frac{1}{2})}\|f\|_{L^{p}} \).

2.4. Proof of Theorem 1.1 (a) Let \(0 < t \leq 1 \). Let \(\{\varphi_{j}\}_{j=0}^{\infty} \) be a smooth dyadic system as given in Section 1. For \(f \in S \) we write

\[
e^{-itH}f = \sum_{2jt \leq 1} \varphi_{j}(H)e^{-itH}f + \sum_{2jt > 1} \varphi_{j}(H)e^{-itH}f.
\]
According to Lemma 2.1 if \(j \geq j_i := \lceil -\log_2 t \rceil + 1 \),
\[
\| \varphi_j(H)e^{-itH}f \|_{p'} \leq c(t2^j)^\beta \| \varphi_j(H)f \|_{p'}
\]
where we noted that \(\varphi_j(H) = \psi_j(H) \varphi_j(H) \), \(\psi_j = \psi(2^{-j}x) \) if taking \(\psi \in C_0^\infty \) so that \(\psi(x) \equiv 1 \) on \([-1, -\frac{1}{4}] \cup [\frac{1}{4}, 1] \). It follows that
\[
\sum_{2^j > 1} \| \varphi_j(H)e^{-itH}f \|_{p'} \leq c(t2^j)^\beta \sum_{2^j > 1} 2^{j\beta} \| \varphi_j(H)f \|_{p'}.
\]
For the first term in the R.H.S. of (5), similarly we have by applying Lemma 2.1 again,
\[
\| \sum_{2^j \leq 1} \varphi_j(H)e^{-itH}f \|_{p'} \leq c(t2^j)^\beta \| \eta(2^{-j}H)f \|_{p'} \leq c\|f\|_{p'}
\]
where we take \(\eta \in C_0^\infty \) with \(\eta(x) \equiv 1 \) on \([-1, 1] \) so that \(\eta(2^{-j}H) \sum_{2^j \leq 1} \varphi_j(H) = \sum_{2^j \leq 1} \varphi_j(H) \). Therefore we obtain that if \(0 < t \leq 1 \),
\[
\| e^{-itH}f \|_{p'} \lesssim \| f \|_{p'} + t^\beta \| f \|_{B_\nu^{\beta,1}(H)},
\]
which proves part (a).

(b) Inequality (3) holds for \(t > 1 \) in virtue of Lemma 2.3 and the remarks below Theorem 1.1. For \(0 < t \leq 1 \), (3) follows from the Besov embedding \(B_\nu^{2\beta,1}(H) \hookrightarrow B_\nu^{\beta,1}(H) \), which is valid because of the condition \(|\partial_x V(x)| \leq c_\alpha, |\alpha| \leq 2n \); cf. e.g. [10, 13].

Remark 2.5. It seems from the proof that the smoothness order \(2\beta \) in (3) is optimal for the initial data \(f \).

Remark 2.6. If working a little harder, we can show that
\[
\| e^{-itH}f \|_{L^{p'}} \lesssim \langle t \rangle^{-n \frac{1}{p'} - \frac{1}{2}} \| f \|_{B_\nu^{\beta,2}(H)},
\]
if assuming the upper Gaussian bound for the gradient of heat kernel of \(H \) in short time, in addition to the conditions in Theorem 1.1 (a). The proof of (4) is based on the embedding \(B_\nu^{0,2}(H) \hookrightarrow B_\nu^{0,2}(H) = L^{p'}, \ p' \geq 2 \) which follows from a deeper result by applying the gradient estimates for \(e^{-itH} \); see [13] and [2].

Corollary 2.7. Let \(1 \leq p \leq 2 \), \(\alpha \in \mathbb{R} \) and \(\beta = \beta(p) \). Suppose \(V \) satisfies the same conditions as in Theorem 1.1 (b). The following estimates hold.
(a) If \(1 \leq q \leq \infty \), then
\[
\| e^{-itH}f \|_{B_\nu^{\beta,q}(H)} \lesssim \langle t \rangle^{-n \frac{1}{p'} - \frac{1}{2}} \| f \|_{B_\nu^{\beta+2\beta,q}(H)},
\]
where we noted that \(\varphi_j(H) = \psi_j(H) \varphi_j(H) \), \(\psi_j = \psi(2^{-j}x) \) if taking \(\psi \in C_0^\infty \) so that \(\psi(x) \equiv 1 \) on \([-1, -\frac{1}{4}] \cup [\frac{1}{4}, 1] \).
b) If $1 \leq q \leq p$, then

\begin{equation}
\|e^{-itH}f\|_{F^{\alpha,q}_{p}(H)} \lesssim \langle t \rangle^{-n(\frac{1}{p} - \frac{1}{2})}\|f\|_{B^{\alpha,2\beta,q}_{p}(H)}.
\end{equation}

Proof. Substituting $\varphi_{j}(H)f$ for f in (3) we obtain

\begin{align*}
\|\varphi_{j}(H)e^{-itH}f\|_{L^{p'}} & \lesssim \langle t \rangle^{-n(\frac{1}{p} - \frac{1}{2})}\|\varphi_{j}(H)f\|_{B^{2\beta,1}_{p}(H)} \\
& \approx \langle t \rangle^{-n(\frac{1}{p} - \frac{1}{2})}2^{2\beta j}\|\varphi_{j}(H)f\|_{L^{p}}
\end{align*}

where we used $\|\varphi_{j}(H)g\|_{p} \leq c\|g\|_{p}$ by applying Lemma 2.1 with $\theta = 2^{-j}$ and $t = 0$. Now multiplying $2^{\alpha j}$ and taking ℓ^{q} norms in the above inequality gives (7). The estimate in (8) follows from the embedding $B^{\alpha,q}_{p}(H) \hookrightarrow F^{\alpha,q}_{p}(H)$ if $q \leq p$, according to (4). \qed

References

[1] M. Beals, W. Strauss, L^{p} estimates for the wave equation with a potential. Comm. P.D.E. 18 (1993), no. 7-8, 1365–1397.
[2] T. Coulhon, A. Sikora, Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem. http://xxx.lanl.gov/abs/math/0609429 (2006).
[3] P. D’Ancona, V. Pierfelice, On the wave equation with a large rough potential. J. Funct. Anal. 227 (2005), no. 1, 30–77.
[4] A. Jensen, S. Nakamura, Mapping properties of functions of Schrödinger operators between L^{p} spaces and Besov spaces, in Spectral and Scattering Theory and Applications, Advanced Studies in Pure Math. 23 (1994), 187–209.
[5] J.-L. Journé, A. Soffer, C. Sogge, Decay estimates for Schrödinger operators. Comm. Pure Appl. Math., vol. XLIV (1991), 573–604.
[6] G. Ölafsson, S. Zheng, Function spaces associated with Schrödinger operators: the Pöschl-Teller potential. J. Fourier Anal. Appl. 12 (2006), no.6, 653–674.
[7] I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155 (2004), no.3, 451–513.
[8] W. Schlag, Dispersive estimates for Schrödinger operators: A survey. http://lanl.arXiv.org/math.AP/0501037 (2005).
[9] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), no.3, 447–526.
[10] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, 1983.
[11] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation in dimensions $n \geq 4$. Asymptot. Anal. 49 (2006), no. 1-2, 61–86.
[12] K. Yajima, The $W^{k,p}$-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47 (1995), 551–581.
[13] S. Zheng, Littlewood-Paley theorem for Schrödinger operators. Anal. Theory. Appl. 22 (2006), no.4, 353–361.
[14] ____, Spectral calculus, function spaces and dispersive equation with a critical potential. In preparation.
Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, USA

E-mail address: szheng@georgiasouthern.edu

URL: http://math.georgiasouthern.edu/~szheng