Preatmospheric Detection of a Meter-sized Earth Impactor

David L. Clark1,2, Paul A. Wiegert2,3, Peter G. Brown2,3, Denis Vida2,3, Aren Heinze4, and Larry Denneau4

1Department of Earth Sciences, The University of Western Ontario, London, ON, N6A 3K7, Canada
2Institute for Earth and Space Exploration, The University of Western Ontario, London, ON, N6A 3K7, Canada
3Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada
4Institute for Astronomy Honolulu, HI 96822-1839, USA

Received 2022 September 9; revised 2023 March 30; accepted 2023 March 31; published 2023 June 8

Abstract

On 2020 September 18 U.S. Government (USG) sensors detected a bolide with peak bolometric magnitude of -19 over the Western Pacific. The impact was also detected by the Geostationary Lightning Mapper instrument on the GOES-17 satellite and infrasound sensors in Hawaii. The USG measurements reported a steep entry angle of 67° from horizontal from a radiant 13° east of north and an impact speed of 11.7 km s^{-1}. Interpretation of all energy yields produces a preferred energy estimate of 0.4 kt TNT, corresponding to a $23,000 \text{ kg, 3 m diameter meteoroid}$. A postimpact search of telescopic images found that the Asteroid Terrestrial-impact Last Alert System survey captured the object just 10 minutes prior to impact at an Earth-centered distance of nearly $11,900 \text{ km}$ with apparent magnitude $m = 12.5$. The object appears as a 0.44° streak originating on the eastern edge of the image, extending one-third of the USG state-vector-based prediction of 1.26° over the 30 s exposure. The streak shows brightness variability consistent with small asteroid rotation. The position of Earth’s shadow, the object’s size, and its consistency with the reported USG state vector confirm the object is likely natural. This is the eighth preatmospheric detection of a near-Earth asteroid (NEA) impactor and the closest initial telescopic detection prior to impact. The high altitude of peak fireball brightness suggests it was a weak object comparable in many respects with 2008 TC3 (the Almahata Sitta meteorite), with an absolute magnitude $H = 32.5$ and likely low albedo. Therefore, we suggest the NEA was a C-complex asteroid.

1. Introduction

The understanding of the near-Earth asteroid (NEA) population brings with it understanding of the risks of catastrophic or locally destructive Earth-impacting events and insight into the mitigation of that risk. Fireballs are messengers of that understanding, either acting as proxies to their larger asteroidal cousins or as fragments of past asteroidal mixing. A rare and important opportunity arises when a meteoroid is observed in more than one of these regimes: in space as a meteoroid, interacting with the atmosphere as a fireball, and on the ground as meteors. The Fireball Retrieval on Telescopic Survey Images (FROSTI) project seeks to locate serendipitous images of precontact meteoroids on sky-survey images collected for other scientific purposes (Clark 2010). We continuously collect image borehole data from a large set of sky surveys and imaging space missions; our current catalog comprises approximately 13.5 million images. As newly reported and historical fireball events become available, out of atmosphere approach trajectories for fireballs are calculated and the image catalog searched for image–trajectory intersections using a survey-independent representation of the catalog images (Clark 2014). One such source of fireball events is the Center for Near Earth Object Studies (CNEOS) Fireball web page5 reporting on U.S. Government (USG) sensor data. In parallel and referred to by CNEOS is the Bolide Detections from Geostationary Lightning Mapper (GLM) system (Jenniskens et al. 2018), reporting on data collected by instruments (GLM-17 and GLM-18) on board two Geostationary Operational Environment Satellite (GOES) satellites (GOES-17 and GOES-18).

Here, we report on the first successful identification by FROSTI of a preatmospheric meteoroid. The system identified that the meteoroid responsible for the USG 2020 September 18 fireball, which occurred at 08:05:25 UT over the Pacific, had potentially been imaged by the ATLAS Haleakalā Telescope (Tonry et al. 2018). The bolide was also recorded by GLM-17. Summaries of the USG and GLM bolide data can be found in Tables 1 and 2, respectively. A simulated telescopic image using the USG-reported 2020 September 18 state vector to produce an estimated trailed object, as created by FROSTI, can be seen in Figure 1. The actual Asteroid Terrestrial-impact Last Alert System (ATLAS) image, with an inset containing the trailed object linked to USG 2020 September 18, is shown in Figure 2. The capture was unusual in that the image was taken at 07:55:47 UT through 07:56:17 UT, only 10 minutes prior to the fireball. This chance timing was both fortuitous and problematic. The absolute magnitude $H = 32.5$ meteoroid was quite bright at apparent magnitude $m = 12.5$, both due to its proximity and favorable illumination just prior to entering Earth’s shadow. However, the object appears as an elongated streak originating off-image, the observed length representing only about one-third of the modeled motion of the object during the 30 s exposure. Not having the complete object path on-image reduces the amount of information available for confirmation of the object’s orbit, for light-curve extraction to study the object’s rotation and shape, and for predicting other sky-survey images which may contain the object.

\footnote{\url{https://cneos.jpl.nasa.gov/bolides/}}

5 Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Table 1
USG Event Description

Value Description	USG Value	Best-fit Value Δ	Δ Values for Parameter Fit Clones
Peak brightness (UT)	2020 Sep 18		
Date	08:05:27		
Time	−19		
Peak magnitude (bolometric)	2.4 N	−0.1509	−0.0791 ± 0.0774
Latitude (deg)	168.7 W	0.2845	0.187 8 ± 0.0666
Longitude (deg)	46.0	0.3104	2.157 7 ± 7.2171
Altitude (km)	11.7		
Velocity (km s⁻¹)	10.2	0.3855	0.272 4 ± 0.2617
Greek rho velocity (v_r)	2.9	0.6807	0.689 1 ± 0.0230
Delta magnitude (bolometric)	−4.9	−0.2369	−0.2102 ± 0.0362
Radiated energy from the GLM light curve (J)	5e10	Calculated total impact energy (kt)	0.16
Calculated total impact energy (kt)	5.6e10	Calculated total impact energy (kt)	0.18
Adjusted for fireball luminous efficiency (J)	1.4e11	Calculated total impact energy (kt)	0.4

Note. First two columns: the CNEOS web page entry for the 2020 September 18 USG fireball event (https://cneos.jpl.nasa.gov/fireballs/). Latitude and longitude are geodetic. Right-handed velocity components: v_x is directed along the Earth’s rotational axis toward the North Pole, v_y and v_z lie on the equatorial plane, with v_z directed toward the prime meridian. The kilotons of TNT impact energy values are derived from the total radiated energy by the USG values using an empirical expression from Brown et al. (2002). The altitude here corresponds to the height of peak brightness, as does the velocity. Energy values resulting from further analysis are listed for comparison (see text). Last two columns: the change to the reported USG state vector required to best fit the candidate image streak and the USG observations. The first of these columns gives the absolute changes in values required to best fit the streak. The latter column gives the aggregate 1σ uncertainty ranges of parameter-fit clones generated from MultiNest (Feroz et al. 2011; Buchner 2016) parameter-fit covariance matrices output in the 10 runs performed, expressed as Deltas from the USG values.

Table 2
GLM Bolide Event Description

Value Description	Value
Bolide	2020 Sep 18 08:05:25
Date/time (UT)	2.3
Latitude (deg)	−169.9
Longitude (deg)	
Detected by	GLM-17
How found?	Algorithm
Other detecting sources	USG
Confidence rating	High
Signal	2020 Sep 18 08:05:25
Start time (UT)	25.675
End time (UT)	27.019
Duration (s)	1.344
Latitude (deg)	2.5
Longitude (deg)	−169.9
Total radiated energy (J)	5e10

Note. The GLM web page entry for the 2020 September 18 event (https://neobolide.mdc.nasa.gov/).

Figures 1 and 2 show that the predicted location of the object based on the reported USG state vector and the observed streak are on opposite sides of the 5.5° image field. This difference in position, though not unexpected for reported USG state-vector data, which is known to be of varying accuracy (Devillepoix et al. 2019), along with the truncated streak, requires that we justify the claim that the image is of the same object as the USG 2020 September 18 fireball. As we will show in Section 6, the apparent velocity of the object, its large mass (for an artificial object) together with the fact that if a preatmospheric object it is outside the Earth’s shadow lead us to conclude with high confidence that the streak is the meteoroid associated with the USG fireball.

Subsequent to the image discovery, a deeper analysis of the USG and GLM data, in particular the relatively high altitude of fragmentation and the FROSTI-derived Apollo orbit of the object, have revealed some similarities of this object and the Almahata Sitta (2008 TC3) event. At the time of publication there have been seven cases where Earth-impacting objects have been imaged in space (2008 TC3, 2014 AA, 2018 LA, 2019 MO, 2022 EB5, 2022 WJ1, and 2023 CX1). Four of these events precede the USG 20200918 fireball event. In all cases, the objects were first identified by ground-based telescopic imaging. The USG 2020 September 18 fireball event is the first case where the determination of an object’s trajectory and properties have been driven by the impact event, with subsequent identification of precoversy images.

2. Object Detection and Image Search

The FROSTI project (Clark 2010) searches for preatmospheric observations of meteoroids through the backwards numerical integration of the measured state vectors of fireball events and compares look angles to an ever-growing collection of sky-survey images. FROSTI’s current database contains over 13.5 million image boreholes from both ground-based telescopes and spacecraft. Each fireball state vector is integrated back in time using the RADAU integrator (Everhart 1985). A 1000-clone uncertainty cloud is generated for each event based on state-vector uncertainties. In cases where multiple trajectory or physical models lead to differing state vectors, each model is treated as a separate event. Results from...
all such fireball scenarios and images yield a list of potential precovery images that are then prioritized for manual visual inspection based on a predicted object’s apparent magnitude, the portion of the uncertainty cloud on a given image, and the limiting magnitude of the image in question. From over a decade of FROSTI monitoring the 94% probability of an 11.5 mag USG fireball of 2020 September 18 appearing on ATLAS 1 image 02a59110o0264c, taken 10 minutes prior to the fireball event, was exceptional (see Figure 1 for the simulated image capture). Based on the nominal USG contact state vector, the preimpact meteoroid should have been seen as a 4519" long streak on the east (right) side of the image. Later measurement of the actual streak resulted in a visual magnitude of 12.5, very similar to FROSTI’s prediction.

Tables 1 and 2 summarize the bolide as reported by USG and GLM. Slight differences in the impact locations between USG and GLM are due to GLM’s assumed (and fixed) height of 16 km near the equator (Jenniskens et al. 2018). The GLM light curve produced excellent agreement in total radiated energy with the USG value, being only 10% less than that recorded by the USG.

In general, FROSTI determines object visibility on an image from a calculated object size expressed by diameter or absolute magnitude. The estimated visibility of a USG-reported object is arrived at by calculating kinetic energy from impact energy using the formula documented on the CNEOS Fireballs Introduction web page,6 converting to a mass and diameter assuming a bulk density of 3000 kg m$^{-3}$, and using the standard absolute magnitude methodology of Bowell et al. (1989). For the initial search, this produced an initial estimate of mass $M = 8600$ kg, diameter $d = 1.8$ m, and absolute magnitude $H = 31.5$. Measurement of the image streak and

6. https://cneos.jpl.nasa.gov/fireballs/intro.html
interpretation of the GLM and USG light curves applying more physical luminous efficiency values at low entry speeds (described in Section 3.2) produced a final best estimate of the object as having $H = 32.5$. This refined and fainter absolute magnitude actually corresponds to higher diameter and mass based on an assumed lower bulk density (similar to 2008 TC3), resulting in a correspondingly lower albedo than usually assumed by FROSTI.

Back-integration of the contact state vector and uncertainties for a period of 2 months yields the pre-Earth encounter orbit given in Table 5 and shown in Figure 3. The meteoroid was in an Apollo orbit with Earth impact occurring on the inward leg of the object’s orbit, making its approach a nighttime one favorable for telescopic observation. The near-Earth–like orbit resulted in a low Earth-relative velocity at encounter.

The FROSTI image-search system generates simulations of object–image intersections, an example of which can be seen in Figure 1, and a large amount of nominal object and uncertainty clone motion information, highlights of which can be found in Table 4. The expected scenario in developing the search system was that that there would be a set of similarly pointed images, all or most of which would contain an object at varying positions. The nominal object and uncertainty clone motion analysis would be performed across the set of images, with manual image blinking or automated object searching then being performed, much as typical near-Earth object (NEO) detection proceeds. However, in the case of this object, where the epoch of the capturing image is just 10 minutes prior to object impact, the on-image motion of the object is immense ($4519''$ or 1.25° in 30 s). The image was part of a quartet, but with such extreme motion the meteoroid was outside the fields of the other quartet images. The initial image search was performed with the standard 1000-clone uncertainty cloud, with the search result indicating that the object had a 99.9% probability of being on the image at the beginning of the exposure and a 93% probability at the end. The object was predicted to appear as a streak on the east (right) side of the image extending in a south-southwest direction.

The USG reports do not include uncertainties in position and velocity, so as a default we use standard deviations of one reported decimal place on each state element (0.1°, 0.1 km, and 0.1 km s$^{-1}$) and a standard deviation of 1.0 s on the reported contact time to determine on-image probability. Using the standard calculation for apparent magnitude m as documented

Figure 2. ATLAS image 02a59110o0264c, with cutouts showing the location of the USG 20200918 object streak (right) and the Kosmos 2319 SL-12 rocket body, both at the eastern (left) edge of the image.
consistent with a much lower bulk density. A very low albedo is required in estimates were one magnitude too bright. High-altitude fragmentation is presumed object streak 2008 TC3, yields a best-estimate threefold greater mass. Analysis of the albedo of 0.15 were used. Post analysis, including the GLM and infrasound uncertainties in velocity loss, estimated to be on the order of nine magnitudes.

Slopes parameter Assumed 0.15 Assumed Same
Albedo Assumed 0.15 Derived 0.02
Mass (kg) Derived 8600 Derived 23,000
Velocity (km s⁻¹) Observed 11.7 Observed Same
Absolute magnitude (H) Derived 31.5 Derived 32.5
Density (kg m⁻³) Assumed 3000 Derived 1660
Diameter (m) Derived 1.8 Derived 3
Albedo Assumed 0.15 Derived 0.02
Slope parameter Assumed 0.15 Assumed Same

Table 3
Assumed and Derived Meteoroid Properties

Property Description	Original	Refined
Total radiated energy (J)	Observed 4.1E10	Observed 1.4E11
Impact energy (kt)	Derived 0.14	Derived 0.4
Velocity (km s⁻¹)	Observed 11.7	Observed Same
Mass (kg)	Derived 8600	Derived 23,000
Absolute magnitude (H)	Derived 31.5	Derived 32.5
Density (kg m⁻³)	Assumed 3000	Derived 1660
Diameter (m)	Derived 1.8	Derived 3
Albedo	Assumed 0.15	Derived 0.02
Slope parameter	Assumed 0.15	Assumed Same

Note. Summary of the derived versus directly observed object attributes. These were used both for calculating on-image object appearance and in determining if the object was natural or man-made. The original USG total radiated energy was used for estimating the object mass and therefore diameter in the original FROSTI image search. The standard FROSTI bulk density of 3000 kg m⁻³ and albedo of 0.15 were used. Post analysis, including the GLM and infrasound observations together with revised luminous efficiency and similarity to 2008 TC3, yields a best-estimate threefold greater mass. Analysis of the presumed object streak’s light curve revealed that initial FROSTI magnitude estimates were one magnitude too bright. High-altitude fragmentation is consistent with a much lower bulk density. A very low albedo is required in order to enforce consistency of the derived diameter and the apparent magnitude.

in Bowell et al. (1989) and an assumed phase-angle slope parameter (G) of 0.15, we calculate m = 12.4, representing an unusually bright candidate for detection. However, the extreme on-image motion was expected to introduce substantial trailing loss, estimated to be on the order of nine magnitudes.

USG fireball reports have been found to have large uncertainties in velocity (Brown et al. 2015; Devillepoix et al. 2019). To address the possibility that the chosen uncertainties of the USG-reported values may be too small and may have disqualified other images potentially containing the object, we performed an additional image search with the standard deviation expanded threefold to identify any images competitive with the proposed capture image. The proposed capture image–object intersection probability was reduced to 78%, not unexpectedly, but the new uncertainty cloud did now incorporate the candidate streak. Only one additional image was found with an object intersection probability greater than 5% at a time when the object would have been brighter than an image’s limiting magnitude and no streak was visible on that image.

Figure 2 gives the actual ATLAS 1 image 02a5911000264c. The image is centered on R.A. 20°6′30″ and decl. 8°10′41″. The image field is approximately 5.5° per side, with celestial north up and celestial east to the right. Visual inspection of the image revealed an illuminated 1590° (0.44°) streak, one end located at the west (left) edge of the image, the other end on-image (see Figure 2, inset); it appears almost exactly 4° east of the predicted position and 0.9° to the south. The streak’s slope is only 2.1° steeper than predicted. The overall length of the streak and its direction of travel (south-southwest or north-northeast) cannot be determined from the image alone. A comparison of the predicted position of the streak from FROSTI as compared to the observed is provided in Table 6.

The 4° offset between the predicted object position and the imaged position highlights that it was fortuitous the manual image identification was made. A small offset in USG contact state or in the actual orbit of the object could have resulted in the position difference being more than one field of view, substantially lessening the chance the image would have been identified and the event investigated. The position difference also highlights that the physical object could possibly appear on other as-yet-unidentified images which did not contain the FROSTI-predicted object.

3. Fireball Properties

As the impact occurred over open ocean, all data available for the associated fireball are from three sources: USG sensors, the GLM on board the GOES-17 satellite stationed over the Pacific, and an infrasound array located in Hawaii.

3.1. Energy

Infrasound (low-frequency sound) from the bolide was detected at the IS59US array in Hawaii at a range of 2400 km beginning just after 10:20:00 UT, as shown in Figure 4. Using the approach in Ens et al. (2012), all four array elements were stacked from the apparent direction of the air-wave arrival to find a period at maximum amplitude from zero crossings (see Revelli 1997) of 4.1 ± 0.3 s. Using the progressive multi-channel correlator approach of Cansi (1995), we derive a period of 3.7 ± 0.6 s, in agreement within uncertainty. The beamformed max pressure signal amplitude is 0.05 Pa using a bandpass from 0.1 to 2 Hz.

Taking this period at maximum amplitude and the single station empirical yield–period relationship for bolides from Ens et al. (2012), we estimate a nominal source yield of 0.6 kt TNT equivalent, but with an uncertainty range of [0.2, 0.7] kt. Using the bolide–amplitude yield relations in Ens et al. (2012) and a computed stratospheric wind index of 6.7 m s⁻¹ from the ECMWF atmosphere model from source to IS59US, we derive a wind-corrected yield of 0.35 kt.

Taken together, the available infrasound records suggest an energy in the 0.3–0.6 kt range as most probable.

The published USG data (see Table 5) include the event time, location, velocity, height of peak brightness, and total radiated energy together with a light curve of radiant intensity as a function of time. The latter can be used to estimate the total impact energy based on cross calibrations for events simultaneously detected by other techniques (infrasound, meteorite recoveries, ground-based optical measurements; Brown et al. 2002; Edwards et al. 2006). Among these USG sensor-measured metrics, the radiant direction and to a lesser extent speed have been shown to be the least accurate quantities through comparison with high-precision, ground-based trajectory measurements, while the height of peak brightness has tended to be more accurate, with typical errors being 3 km (Borovička et al. 2015; Brown et al. 2015; Devillepoix et al. 2019). The fireball location and energy are typically most secure, the former being more limited by the published precision.

For the USG energy, we can compare to the GLM-derived energy. Here, we follow the procedure outlined in Jenniskens et al. (2018), where the total energy in the GLM bolide light curve is summed, range-corrected, and a 6000 K blackbody spectrum assumed. Under these assumptions, a total optical energy of 5×10^{10} J is found from the GLM light curve, in

7 https://cneos.jpl.nasa.gov/fireballs/
good agreement with the 5.6×10^{10} J we derive from integration of the original light curve from USG sensors. From the light-curve maximum radiant intensity, the peak bolometric magnitude of the fireball was \(-19\).

The resulting total radiated energy can then be converted to a total energy using an estimate for the luminous efficiency (η). The standard approach is to use the averaged relation from Brown et al. (2002), which yields an energy of 0.18 kt and $\eta = 0.07$. This is 2–3 times lower than the infrasound yield estimates using either amplitude or period. As the generic relation derived by Brown et al. (2002) was based on a collection of bolides having an average speed near 18 km s$^{-1}$, substantially above the 12 km s$^{-1}$ for the current case, it is probable the real luminous efficiency is lower than the average value given in Brown et al. (2002).

Borovička et al. (2020) has proposed the most robust fireball luminous efficiency relation to date, using the velocity dependence proposed by ReVelle & Ceplecha (2001) and validated through modeling of meteorite-producing fireballs where material is recovered on the ground. Using that formalism, we expect a factor of ≈ 2 higher value for fireball luminous efficiency at 18 km s$^{-1}$ compared to 12 km s$^{-1}$.

Adopting this change for η produces an energy estimate of 0.36 kt TNT and agreement between both optical estimates and the infrasound energy estimates within uncertainty. We suggest that the most likely energy for the event was close to 0.4 kt TNT on this basis.

3.2. Physical Characteristics

From these data alone, we can place this event in some physical context. Figure 6 shows the height at peak brightness for all meter-sized Earth impactors published to date. The majority of these are from the CNEOS-JPL site, but half a dozen (black squares) are the height of peak brightness from fireballs which produced meteorites (Brown et al. 2015; Borovička et al. 2021; Jenniskens et al. 2021).
In general, a fireball’s peak brightness is reached well after the first fragmentation episode, implying that the dynamic pressure at the height of peak brightness is an upper limit to the global strength of the object. Most meteorite-producing fireballs have global compressive strengths of order 1 MPa (Popova et al. 2011; Brown et al. 2015), but reach the point of peak brightness when dynamic pressure is several times this value.

Figure 4. Infrasound detected at the four-element ISS9 array in Hawaii from the USG 20200918 bolide. The bolide signal is centered around 10:30:00 UTC. Shown is the bandpassed waveform between 0.1 and 2 Hz (bottom plot) in units of pascals for element 4 of the array. Here, we have used 60 s windows with 50% overlap and found the best beam correlation (top plot), array trace velocity (second from top), and apparent back azimuth (third plot from top). The main air-wave arrival is highlighted by the vertical green bar. From ISS9 the great circle back azimuth to the USG fireball location is 218°, while the average observed back azimuth of the signal across all frequencies centered at 10:30:00 UT is 219.5 ± 2.9°.
As every fireball fragments differently depending on its collisional history, entry models can at best capture only a rough correspondence of expected height of peak brightness as a function of global compressive strength, under the assumption of some standard fragmentation model. Here, we use the triggered progressive fragmentation model (TPFM) described by ReVelle (2006). Cepelka & McCrosky (1976) showed that fireballs can be approximately divided into four groups (I, II, IIIa, IIIb) progressing from strongest to weakest. These have been tentatively associated with stronger (ordinary chondrite) meteorites, carbonaceous chondrites, and weak (and weaker) cometary-like material, respectively (Cepelka et al. 1998). Using this categorization, ReVelle (2002) adopted compressive strengths within the TPFM framework at which these various classes on average first fragment in the atmosphere, progressing from 0.7 MPa for Type I fireballs, to 0.2 MPa for Type II, 0.01 MPa for Type IIIa, and 0.001 MPa for Type IIIb.

Using these values for strength and a representative energy of 0.4 kt for a typical impactor from the CNEOS-IPL data set (Brown et al. 2015), the TPFM estimates for the expected height of peak brightness by fireball type as a function of entry speed are shown in Figure 6 (blue lines).

Notably, most of the fireball-producing meteorites fall in either the Type I or Type II category, as expected. Among the best comparator event for USG 20200918 is the Almahata Sitta meteorite fall (Jenniskens et al. 2009). This meteorite was produced from the impact of 2008 TC3, which entered at a very similar speed as USG 20200918. It was the first preatmospheric asteroid impact imaged telescopically. It entered at a much shallower entry angle than USG 20200918 and was several times more massive (Borovička & Charvát 2009), and produced an extended series of flares near 40 km. The 2008 TC3 fireball fragmented under just a few tenths of megapascals pressure, providing clear evidence of the very weak nature of the Almahata Sitta meteoroid, which subsequent analyses using multiple techniques established as a probable rubble-pile assemblage with roughly 50% porosity (Borovička & Charvát 2009; Welten et al. 2010; Kohout et al. 2011) and an estimated bulk density of 1660 kg m⁻³ (Welten et al. 2010).

Given the higher height of peak brightness for USG 20200918 and even lower speed than Almahata Sitta, it is probable that it was similarly weak. Presuming its earliest fragmentation occurred 10–20 km above its height of peak brightness, as suggested by the TPFM modeling—for comparison, Almahata Sitta showed evidence for fragmentation as high as 53 km (Borovička & Charvát 2009), some 16 km above its point of peak brightness—suggests a global strength ≤0.1 MPa. This would place the meteoroid in the C or possibly D low-strength meteoroid categories of Borovička et al. (2020) and be consistent with either a rubble-pile assemblage, collisionally reassembled material, or its having very high microporosity.

The other three meteorite-producing fireballs from meter-sized or larger objects that show a height of peak brightness at comparable dynamic pressures to USG 20200918 near the 1 MPa line are Kosice (H5 ordinary chondrite; Borovička et al. 2013), Flensberg (C1-ungrouped; Borovička et al. 2021), and Sutter’s Mill (CM2; Jenniskens et al. 2012). The weakness of the two carbonaceous chondrites is as expected given their material properties. Kosice was shown to be an unusually weak meteoroid for an H5 chondrite fall, fragmenting initially under a dynamic pressure of only 0.1 MPa (Borovička et al. 2013).

To model the fireball in more detail, we attempt to match the GLM and USG light curves using the semiempirical fireball ablation model of Borovička et al. (2013, 2020). We fix the initial mass at 23,000 kg (corresponding to our preferred energy of 0.4 kt) and an initial speed of 12.7 km s⁻¹ (see next section). We assume \(\Gamma A = 1.21 \), an ablation coefficient of 0.08 s⁻¹ km⁻², and then generate a synthetic light curve using the luminous efficiency model of Borovička et al. (2020). Note that the resulting fit is not unique but representative of a family of possible fragmentation solutions. This is particularly the case as we have no detailed dynamics to simultaneously fit.

Our resulting fit is shown in Figure 5. The main feature of the light curve is the two prominent maxima separated by almost 10 km in height. We find that the first maximum can be reproduced assuming release of half a dozen fragments each of order a tonne in mass which erode (release grains) rapidly in the early flare. These initial boulders are released under an extremely low dynamical pressure of 0.1 MPa.

The second flare can be matched assuming release at dynamical pressures of 0.3 MPa of another four multi-tonne masses which erode even faster than the first set.

Table 5

Element	Element Description	USG	Best Fit
\(a \)	Semimajor axis (au)	1.077 ± 0.013	1.117 ± 0.034
\(1/a \)	Semimajor axis reciprocal (au⁻¹)	0.930 ± 0.011	0.896 ± 0.027
\(q \)	Perihelion (au)	0.965 ± 0.002	0.948 ± 0.003
\(Q \)	Aphelion (au)	1.189 ± 0.028	1.285 ± 0.071
\(e \)	Eccentricity	0.103 ± 0.012	0.150 ± 0.028
\(i \)	Inclination (deg)	4.968 ± 0.463	6.530 ± 0.787
\(\Omega \)	Longitude of ascending node (deg)	176.15 ± 0.16	175.843 ± 0.197
\(\omega \)	Argument of perihelion (deg)	234.52 ± 3.23	236.145 ± 4.026
\(f \)	True anomaly (deg)	−110.18 ± 2.62	−110.108 ± 4.618
\(M \)	Mean anomaly (deg)	261.23 ± 4.05	266.663 ± 8.073
\(T_p \)	Time at perihelion (TD)	2020 Nov 9 06:39:16	2020 Nov 8 16:46:49
\(T_j \)	Tisserand's parameter	±2.612	±4.586
Epoch (TD)	2020 Jul 20 08:06:36	2020 Jul 20 08:06:36	

Note. USG: orbital elements of the object determined by back-integrating the reported USG contact state in Table 1 for 2 months, using an uncertainty cloud of one significant digit in the state-vector components as standard deviation (0.1°, 0.1 km, and 0.1 km s⁻¹). Best Fit: orbital elements determined by back-integrating the 20,000 clones produced by 10 parameter fitting runs finding the best self-consistent match of the on-image streak and USG observations as described in Section 5.
These fragmentation episodes are most consistent with the weaker strength classes defined by Borovička et al. (2020), namely class C (or the very weak end of class B) objects. In the Borovička classification, class C objects are interpreted as being loosely bound material which has reassembled following catastrophic collisions. These could resemble weak macroscopic fragments loosely bound in a rubble-pile formation but lacking significant interstitial dust.

Thus, the overall picture which emerges for USG 20200918 is of a weakly bound object of 3 m diameter on an Earth-like orbit. We note that, among the USG-reported meter-sized objects, there is a peculiar population of four other very weak objects that impact Earth at low speed (and have Earth-like orbits), which occur just above USG 20200918 in Figure 6. Why these do not occur at higher speeds is unclear. We do note that in order to reconcile the 3 m diameter with the magnitude $H = 32.5$ determined from the light curve in Section 4 that an extremely low albedo of approximately 0.02 must be used. We discuss this further below. A summary of proposed object properties is provided in Table 3.

4. Telescopic Light Curve of the ATLAS Detection

The light curve seen by ATLAS is shown in Figure 7. It is extracted from the difference image computed by subtracting from the original image a low-noise stack of prior images convolved to the point-spread function of the original image (Heinze et al. 2018). With this method of image subtraction the original image’s photometric calibration and noise properties are preserved. Though stars are largely removed by the differencing process, some artifacts remain. As a result, all portions of the trail which are less than 8 pixels from the centroid of a star are masked out. The remaining portion of the trail (which is 1582″ long, corresponding to 10.7 s of time, assuming our calculated average rate of motion of 148″ per second) is sampled with 352 overlapping square apertures 6 pixels on a side, using astropy’s photutils package (Price-Whelan et al. 2018).

The light curve demonstrates the smoothly varying bright-dim-bright pattern, which is visible to the eye in Figure 2. The time from peak to peak is 8 s, yielding a rotation period of roughly 16 s, assuming a simple double-peaked light curve. The amplitude is about one magnitude, implying an axis ratio
of $\sqrt{2.5} \approx 1.6$. The object was seen at an apparent magnitude that is one to two magnitudes fainter than the predicted value of 11.5. No accompanying streaks indicative of a companion object were seen during visual inspection.

Could the object be a meteor? First, the variation in light curve across the image and abrupt end are not consistent with a meteor trail (Beech & Hargrove 2004). The abrupt end, in particular, would mean the exposure had to stop during the luminous flight, which is highly unlikely given that typical meteor durations at such magnitudes are of order a few tenths of a second (Fleming et al. 1993). Second, if the object were an actual meteor it would have to be much closer (range of order 100 km), and so it would be out of focus (Jenniskens et al. 2004).

To examine whether there is any sign of the trail being out of focus relative to the stars, the cross-sectional profiles of the trail and of nearby stars was extracted as shown in Figure 8. The average profile for the stars is constructed from 1498 stars near the trail and sliced along the same direction as cross sections of the trails. The stars have a FWHM of 2.30 pixels under a 1D Gaussian fit. This is consistent with the ATLAS image’s overall stellar FWHM of 2.42 pixels, computed automatically by their software. The profile for the trail is constructed from cross sections taken at the locations of the apertures used to extract the light curve of Figure 7. The trail displays a slight (approximately 1 pixel) curvature from one end to the other, probably due to optical effects. As a result, stacking all 352 cross sections and then fitting a Gaussian profile slightly overestimates the trail’s width, coming in at a 2.58 pixels FWHM. To better estimate the true width of the trail, we split it into 20 segments, each consisting of 17 to 18 adjacent cross sections, chosen empirically to provide reasonable time resolution and sufficient signal-to-noise. The mean FWHM of the trail obtained in this manner is 2.37 ± 0.31 pixels, effectively the same as that of the stars. We conclude that there is no evidence that the trail is close enough to the telescope to undergo defocusing, and hence cannot be a meteor or any in-atmosphere object.

5. Combining the USG and ATLAS Astrometric Data

The USG fireball detection and the ATLAS image streak provide two independent constraints on the location of the object in question. In this section we ask: Are they dynamically consistent with each other? We will see that the answer is yes, solidifying the linkage of these two objects as well as providing some refinement of the USG velocity measurement. To investigate this question, dynamical simulations of the USG bolide were performed to determine whether or not its motion could bring it to the correct location on the ATLAS image. The simulations used the RADAU (Everhart 1985) integrator to model the object along with the Earth, Moon, Sun, and other planets (as derived from the DE405 ephemeris; Standish 1998) backwards to the time of the ATLAS image.

The Bayesian fitting package MultiNest (Feroz et al. 2011) was used (through its Python interface PyMultiNest; Buchner 2016) to determine what values of the fireball position and velocity components produce a best match to the streak seen on the ATLAS image.

The best fit was determined by minimizing a χ^2 function to four observables, namely, the R.A. and decl. of the end of the streak on the ATLAS image (304.0814° and $+7.1452^\circ$, respectively, each ± 1 pixel = $1''86 \approx 5 \times 10^{-4}$ deg), the on-image angle of the streak ($122.25 \pm 0.3^\circ$ clockwise from the lower edge of the image), and the apparent magnitude (12.5 ± 0.2).
Seven parameters were fit, six with Gaussian priors centered on the nominal USG position/velocity values listed in Table 1. Since the USG reports do not provide uncertainties, our priors assumed $\pm 1 \text{ km s}^{-1}$ for each of the velocity components, $\pm 0.25^\circ$ for the latitude and longitude, and $\pm 10 \text{ km}$ for the altitude of the bolide. The seventh fitted parameter, the absolute magnitude, is not reported, so we adopted a uniform prior for H running from 31 to 34.

The fitting process was repeated 10 times to ensure consistency. There were no statistically significant differences between the fits, so the result of a typical run are presented here. The marginal probability distributions of the fitting are displayed in Figure 9. All the fits are consistent with the USG values, with the exception of a fraction of a degree shift in latitude/longitude and a preference for a slightly higher velocity. The overall best-fit (lowest χ^2) values are shown in Table 1 and will be adopted here as our best estimate of the object’s true contact state. This gives a refined velocity vector with a total speed of 12.7 km s$^{-1}$ versus the nominal USG value of 11.7 km s$^{-1}$. The overall parameter fit matches the termination end of the streak within an arcminute, the slope angle to within 0.168 of a degree, and the magnitude to within 0.14 magnitudes. Back-integrating an uncertainty cloud generated from the best-fit values results in the orbit elements listed in Table 5 and the modified orbit shown in Figure 3.

From this result, we can confidently conclude that the USG and ATLAS objects are completely consistent with each other, offset by a small velocity difference that is well within previously reported USG speed uncertainties (Devillepoix et al. 2019). In fact, the best-fit values effectively tell us what the inclusion of the ATLAS image as a constraint does to the orbital solution. By folding that information in, we can see that the object’s arrival velocity was actually slightly higher than that derived by consideration of the USG data alone. This provides additional confidence that the object was not in a geocentric orbit, pushing it clearly to an arrival from heliocentric orbit.

The absolute magnitude of the object is only loosely constrained, but the best-fit value of $H = 32.5$ corresponds to a 0.8, 1.8, and 3.0 m diameter for albedos of 0.25, 0.05, and 0.02, respectively. This makes it one of the smallest asteroids ever observed in space, as will be discussed in the next section.

6. On-image Object Origin

The USG fireball and the ATLAS object could either be the same object or two different ones. Since Occam’s razor suggests they are the same object, we will discuss this possibility first, and then return to the less likely case. If the USG and ATLAS detections are the same object, then it is almost certainly natural.

First, the USG entry orbit is not bound to Earth. Though there is man-made material in heliocentric orbit, the bulk of it is in geocentric orbit and the coincidental reentry of a substantial man-made object from heliocentric orbit is extremely unlikely. Moreover, the high inclination of the USG orbit is not consistent with a space-age launch into a heliocentric orbit as it far exceeds typical escape speeds for interplanetary missions.

The impact speed of 11.7 km s$^{-1}$ puts it just above the unbound-from-Earth threshold at 11 km s$^{-1}$. Could measurement uncertainty be masking what was actually a bound orbit? To obtain a rough estimate of the possible velocity error (the USG reports no uncertainties), we note that ATLAS was taking 30 s exposures, and that 30 s earlier or later and the object would have been off the frame. ATLAS images are about 5° wide, which at 6000 km corresponds to a distance of 6000 km $\sin 5^\circ = 500$ km. Assuming the worst case of
USG detection requires a velocity error of about 1 km s$^{-1}$. As such, we cannot strictly exclude a velocity of 10.7 km s$^{-1}$, that is, on a bound—but only just—orbit from the USG data. Any normal component to the object velocity would mean an even higher speed, further increasing the likeliness of the object having an unbound orbit.

If the object was artificial, it must have been large. The initial estimated mass of 8600 kg derived from the USG energy of 0.14 kt is inconsistent with a small, highly reflective rocket body or satellite. For comparison, the total mass of the Soyuz MS spacecraft is 7080 kg; its descent module, 2950 kg.\(^8\) The unexpected arrival of such a large man-made object is extremely unlikely.

The radiant azimuth of the USG detection at 13° from north would put it on a hypothetical geocentric orbit near 103° inclination to Earth’s equator if its speed were low enough to be bound. This is within the range of inclinations typical of Sun-synchronous orbits: 103° corresponds to a Sun-synchronous orbit with a 2 hr period, orbiting at an altitude of 1681 km.\(^9\) However, all such large satellites are cataloged and no predicted reentries occurred near the impact time. Moreover, any satellite decaying from low Earth orbit (LEO) would have a much lower reentry speed, nearer 8 km s$^{-1}$, and outside our bounding range. Thus, if the ATLAS and USG detections are the same object, they are very difficult to reconcile with an artificial object.

If the USG and ATLAS detections were separate objects, could the ATLAS telescopic image be a coincidentally located artificial object? If that were the case, the USG velocity must have been off by >1 km s$^{-1}$ (for the meteoroid to be off the ATLAS frame), and a different object traveling (i) in the right direction at (ii) the right brightness at (iii) the right time and at least approximately (iv) at the right speed must have been in frame. Fortunately, all objects >10 cm are known, tracked, and cataloged in LEO (National Research Council 2011) with catalogs publicly available at Space-Track.org.\(^{10}\)

The speed is less well constrained because the trail starts (or ends) outside the image. But the object in the ATLAS image must travel at least 1579″ (the length of the trail on-image) in 30 s, or at least 53″ per second. An object in LEO (which might be traveling 200″ s$^{-1}$ or more) could make a comparable streak length, and at an apparent magnitude of 11.4, a satellite at 3000 km would be of order 1 m2 cross-sectional area. The inclination is reasonable for a man-made object, as well: if we assume the motion seen in the image is a circular orbit in LEO, then its orbital inclination is roughly the angle of the trail with the x-axis, that is, 58° (or 180° − 58° = 122°, depending on which direction it is moving). The former value is near the heavily populated region of LEO containing nonpolar inclined orbits.

\(^8\) https://en.wikipedia.org/wiki/Soyuz_(spacecraft) (retrieved: 2021 May 20).

\(^9\) https://en.wikipedia.org/wiki/Sun-synchronous_orbit (retrieved: 2021 May 20).

\(^{10}\) https://www.space-track.org/
peaking near 53°; see Figure 11), so there are certainly satellites in this region.

Fortunately, the geometry allows us to exclude objects in LEO because they would be in the Earth’s shadow. The Sun had set at the ATLAS site at the time in question, and sunlight was still illuminating objects only at altitudes greater than 3400 km above sea level. So all of LEO would have been in shadow while the meteoroid—at an altitude of 6000 km—would have been in full sunlight at the same time. Figure 10 illustrates the geometry during the ATLAS observation. If the object were a satellite, it would have to be in the much more sparsely populated region above 3400 km. Though the possibility of an artificial object cannot be positively excluded to this point in our analysis, we can conclude that the ATLAS and USG detections have a very high probability of being the same natural object.

To fully eliminate the possibility of the ATLAS detection being that of a man-made object, we downloaded the full catalog of element sets for all tracked orbiting objects from Space-Track.org.¹¹ We use the TLE (three-line element) formatted file,¹² although we have used the older NORAD TLE (two-line element) terminology to refer to the cataloged objects. The 21,944 cataloged TLEs were used to plot the object trajectories with respect to the ATLAS image. Three objects were found to intersect the image (see Figures 1 and 11): object 44525 passed through the field of view, while object 21253’s and object 26583’s paths begin in the image and terminate outside. As can be seen in Figure 11, object 44525 and object 21253 are in LEO and therefore in the Earth’s shadow. They could not be (and are not) visible in the image.

Object 26583 is well outside the Earth’s shadow and is visible in the ATLAS image at the correct location, distinctly different from the candidate image streak.

This exercise highlights the challenge of discriminating a telescopic preimpact detection of a meter-sized fireball—most of which have coarse state-vector accuracy from in-atmosphere measurements—from satellites. The proliferation of LEO satellites will make future associations harder.

Another consideration is the possibility of the image streak being that of an in-atmosphere natural or man-made object such as a meteor, reentry debris, or airplane. Section 4 describes a detailed analysis of the light curve of the ATLAS detection. There is no evidence of defocusing expected for such a near-field object, so that possibility can be discounted.

Having argued the image streak is not due to an artificial or in-atmosphere object, we now address the possibility that the image streak was caused by another natural out-of-atmosphere object distinct from that reported by USG. To do this, we will compute the number of objects expected to appear in the image at the correct magnitude and on-sky speed, and show that it is very low, making the coincidental appearance of another object very unlikely.

Brown et al. (2002) provides a power law relating the diameter of an impacting object with the cumulative number of objects of that diameter or greater impacting the Earth in a year. The number of impacts can be directly mapped to a near-Earth number density of these objects by using a cylindrical volume of space determined from the cross-sectional area of the Earth and the average speed of impactors (we use 20 km s⁻¹). The sizes of objects to be considered are bound by two factors: the closest possible distance of the object based on the object being outside the Earth’s shadow, and the furthest possible distance of a solar system object that could result in a streak as long as that observed on the image. Using standard

¹¹ https://www.space-track.org/
¹² https://www.space-track.org/basicspacedata/query/class/gp/EPOCH/%3Enow-30/orderby/NORAD_CAT_ID,EPOCH/format/3le
relationships of absolute and visual magnitude, together with the object’s phase angle, and relationships of asteroid diameter and absolute magnitude, we can estimate the diameter of both nearest and furthest possible objects that could result in the brightest \((m = 12.1)\) visual magnitude captured (Figure 7). For these calculations, we assume representative object albedos and slope parameters of 0.15.

Extending the line of sight of the object streak outside the Earth’s shadow results in a nearest object distance of approximately 3000 km with an object diameter of 0.73 m. Assuming the worst case of an object moving at the geocentric solar escape velocity of 72 km s\(^{-1}\), the furthest an object could be from Earth to produce the on-image streak subtending 0.442° (Table 6) would be approximately 280,000 km with an object diameter of 71 m. A high estimate of the total number of observable \(m = 12.1\) objects at any point in time is arrived at by summing the numbers of objects at incremental distances and magnitudes between the two limits, and dividing by the portion of the sky covered by the ATLAS image \((5.5° \times 5.5° / 41,000°²)\). At the near limit, we arrive at \(8 \times 10^{-8}\) objects expected on the image and \(3 \times 10^{-7}\) at the furthest limit. These numbers slowly increase with distance and required size, with the volume to distance of exponent of 3 being strongly offset by the 2.7 index of the Brown et al. (2002) power law and the \(\log_{10}\) relationship of magnitude and distance. Summing across regular intervals of distance, we arrive at an approximate number of \(m = 12.1\) or larger objects on any such ATLAS image of \(3.5 \times 10^{-6}\) objects. This strongly suggests that the image streak is the same object as detected in the USG fireball observation and not an unassociated natural object.

Figure 10. An illustration of the Earth’s shadow’s alignment at the time of image capture. The umbral shadow is shown in dark gray. The penumbral shadow is imperceptibly larger than the umbral at such close proximity to the Earth. The gray circle is the upper “limit” of LEO orbits at \(H_{\text{LEO}} = 2000\) km. The red wedge is the volume of space covered by the image. The irregular green area is the predicted uncertainty of the object. The numbered blue lines in both the main image and inset represent the motions of all tracked artificial objects in the field of view of the image, with their NORAD TLE numbers. Within the field of the image, any object inside the LEO limit, and substantially further, is in the Earth’s shadow and would not be visible in the image. Only three tracked objects are within the image field, and only one of them (26583) is outside the Earth’s shadow and is visible. This object is evident in the ATLAS image reproduced in Figure 2.

The Planetary Science Journal, 4:103 (19pp), 2023 June Clark et al.
Subsequent Image Search

Subsequent to work performed to determine an object trajectory which best fit both the on-image streak and the USG observations (see Section 5), new image searches were performed based on this new trajectory. These searches suggested two additional surveys may potentially have captured the object. The first is an image quartet taken by the Catalina Sky Survey using the Mount Lemmon telescope. The images G96_20200918_2B_N27128_01_0001, _0002, _0003, and _0004 were taken 2.5 to 2.0 hr prior to contact where the object would have been at an approximate visual magnitude of 18. Using 20,000 clones generated in the best-fit process, we calculate a 10% probability of the object being on the first image of the quartet, increasing to 20% on the fourth image. We estimate a trailing loss of 4.5–5 mag, resulting in an effective visual magnitude of 22.5–23. With Mount Lemmon’s limiting magnitude of 21.5, the object would likely not be visible in the images. Visual blinking of the image quartet using an automated blink and pan using the DS9 software (Joye & Mandel 2003) did not yield any detection of a moving object. Our software permits us to highlight the locations of known objects in DS9. Objects significantly brighter were visible in the images, but objects of similar magnitude to our target meteoroid were not, consistent with the nondetection. We also performed a visual scan of median-subtracted images; again, no object was found. Finally, we performed a shift and stack process shifting the images by aligning the projected position of the object on each image and stacking the results. Stacking four images yields only a Δmag increase. Adjusting Mount Lemmon’s limiting magnitude of 21.5 to 22.5 due to stacking places the object at the limit of visibility. Again, no object was detected in either the stacked original images or stacked median-subtracted images.

Second, a recent implementation of a Zwicky Transient Facility (ZTF) image catalog import into our image database yielded an additional potential image capture. ZTF image ID 135630722, taken 43 minutes before impact, has an approximately 80% probability of containing the object. If visible, the object would appear as a 10′ (566″) streak. However, the object’s visual magnitude of approximately 16.0 at this time combined with a trailing loss of nearly 7 magnitudes render the object much dimmer than ZTF’s limiting magnitude of 20.5. Still, a visual scan was performed but no object was found.

FROSTI image searches were performed against an ever increasing set of current and historical image catalogs in an attempt to locate additional possible imagery: ATLAS Haleakalā and Mauna Loa (and recently Atlas Sutherland Observing Station and El Sauce), the Canada–France–Hawaii

7. Subsequent Image Search

Subsequent to work performed to determine an object trajectory which best fit both the on-image streak and the USG observations (see Section 5), new image searches were performed based on this new trajectory. These searches suggested two additional surveys may potentially have captured the object. The first is an image quartet taken by the Catalina Sky Survey using the Mount Lemmon telescope. The images G96_20200918_2B_N27128_01_0001, _0002, _0003, and _0004 were taken 2.5 to 2.0 hr prior to contact where the object would have been at an approximate visual magnitude of 18. Using 20,000 clones generated in the best-fit process, we calculate a 10% probability of the object being on the first image of the quartet, increasing to 20% on the fourth image. We estimate a trailing loss of 4.5–5 mag, resulting in an effective visual magnitude of 22.5–23. With Mount Lemmon’s limiting magnitude of 21.5, the object would likely not be visible in the images. Visual blinking of the image quartet using an automated blink and pan using the DS9 software (Joye & Mandel 2003) did not yield any detection of a moving object. Our software permits us to highlight the locations of known objects in DS9. Objects significantly brighter were visible in the images, but objects of similar magnitude to our target meteoroid were not, consistent with the nondetection. We also performed a visual scan of median-subtracted images; again, no object was found. Finally, we performed a shift and stack process shifting the images by aligning the projected position of the object on each image and stacking the results. Stacking four images yields only a Δmag increase. Adjusting Mount Lemmon’s limiting magnitude of 21.5 to 22.5 due to stacking places the object at the limit of visibility. Again, no object was detected in either the stacked original images or stacked median-subtracted images.

Second, a recent implementation of a Zwicky Transient Facility (ZTF) image catalog import into our image database yielded an additional potential image capture. ZTF image ID 135630722, taken 43 minutes before impact, has an approximately 80% probability of containing the object. If visible, the object would appear as a 10′ (566″) streak. However, the object’s visual magnitude of approximately 16.0 at this time combined with a trailing loss of nearly 7 magnitudes render the object much dimmer than ZTF’s limiting magnitude of 20.5. Still, a visual scan was performed but no object was found.

FROSTI image searches were performed against an ever increasing set of current and historical image catalogs in an attempt to locate additional possible imagery: ATLAS Haleakalā and Mauna Loa (and recently Atlas Sutherland Observing Station and El Sauce), the Canada–France–Hawaii

Table 6

Object Streak	Predicted	On-image	Difference
North-northeast end-point R.A. (deg)	300.807	304.319	3.512
North-northeast end-point decl. (deg)	7.359	7.516	0.157
South-southwest end-point R.A. (deg)	300.168	304.080	3.912
South-southwest end-point decl. (deg)	6.276	7.142	0.866
Angular difference at south-southwest point (deg)	3.981		
Streak ΔR.A. (deg)	-0.369	-0.239	0.130
Streak Δdecl. (deg)	-1.083	-0.373	0.710
Streak length (deg)	1.255	0.442	-0.813

Notes. Comparison of predicted nominal object streak based on USG observation and observed north-northeast truncated streak on the actual image. * Value impacted by edge truncation.

13 https://catalina.lpl.arizona.edu/about/facilities

14 https://www.ztf.caltech.edu/

15 https://irsa.ipac.caltech.edu/frontpage/
The rotation period inferred for the object studied here is short but not unprecedented. Hatch & Wiegert (2015) examined the published data for the 88 smallest known NEAs (all with diameters less than 60 m) and found that the average rotation period of the sample is 40 minutes, with smaller asteroids rotating faster. Three asteroids in their sample were found to have rotation periods (retrieved from the Asteroid Light Curve Photometry Database, ALCDEF;17 Warner et al. 2009) below 60 s: 2010 WA (a 3 m diameter S type) with a period of 31 s; 2010 JL88 (a 13 m diameter S type) with a period of 25 s; and 2014 RC (a 13 m diameter S type) with a rotation period of 15.8 s. The first two of these asteroids have a quality rating in ALCDEF of \(U = 3 \), which is the highest rating, while the third has no rating. We conclude that the rotation period of 16 s inferred here is in line with those of other known small asteroids.

Hatch & Wiegert (2015) also collected data on the 92 smallest NEAs with known axis ratios; this sample includes diameters up to 300 m. They found that the mean and median axis ratios are 1.43 and 1.29, respectively, though axis ratios above 2 were not uncommon. We conclude that the axis ratio of 1.6 for this event as determined from the ATLAS light curve (Figure 7) is consistent with those of other small NEAs.

Assuming a rotation period of 16 s and a diameter of 3 m, we can also work out the minimum binding strength of the meteoroid. Using the formula for the limiting tensile strength at the center of a rotating sphere able to just provide sufficient centripetal acceleration to keep the sphere intact from Kaidish et al. (2005) for a 3 m diameter sphere with bulk density of 1600 kg m\(^{-3}\), we find a limiting strength of \(<1\) kPa. This is well below the earliest fragmentation pressure and therefore physically plausible.

The 3 m diameter determination from Section 3 and the best-fit absolute magnitude \(H = 32.5 \) from Section 5 necessitate a very low albedo of 0.02 under the standard assumptions of asteroid photometry. Is this reasonable? Only 10% of NEAs observed by the NEOWISE have an albedo less than 0.03%, 5% less than 0.02 (Wright et al. 2016). However, fully 25% of NEOWISE-observed NEAs belong to an albedo population peaking at an albedo of 0.03. Factors which could lead to higher visual magnitudes and therefore higher absolute magnitudes and lower albedo estimates include shape profiles and self-shadowing. Assuming an oblate spheroid, the above estimated 1.6 axis ratio could easily result in a smaller face of the object reflecting sunlight to the observer than would be assumed for a spherical object. This is, of course, an argument of possibility, in that an object could equally have a larger face reflecting. If the object is more irregular in shape, as would be reasonable for a low-mass rubble pile, then self-shadowing would begin to take effect, lowering the overall brightness of the object for an equivalent albedo. Self-shadowing is more influential at higher phase angles. With the USG object at a phase angle at nearly 56° self-shadowing could very well be a factor in the larger magnitude estimation.

Given that the object arrived on the orbit listed in Table 5, we might ask about its likely escape region from the main belt. The orbit is certainly consistent with an evolved asteroidal orbit rather than a cometary one. The NEO model of Granvik et al. (2018) provides source region probabilities as a function of \(a, e, i, \) and absolute magnitude \(H \). The \(H \) of our object, at about 33, is well below the range of 17 < \(H < 25 \) considered by Granvik et al. (2018), but if we examine the source region probabilities of their smallest model bin (central \(H = 24.785 \)) we find the probability is 70% for the main belt \(v_6 \) resonance, 19% from the Hungarias, and 11% from the 3:1 and other source regions negligible.

The low albedo and structural weakness of the object would be consistent with a C-complex NEA. Given the high probability of escape from the \(v_6 \) resonance, it is interesting to note that Marsset et al. (2022) have found that the debiased fraction of C/D/P NEAs is almost 40% of the total with present orbits associated with that source region. They also report a higher abundance of D-type NEOs than previously found from all escape regions, including the \(v_6 \). In this context, that the USG 20200918 fireball appears consistent with a C-complex meteoroid is not surprising.

Though the USG object was telescopically detected when unusually close and small, the event does refuse superlative labeling, though barely. At the time of impact, the object was only the fifth Earth-impacting object to be detected in space. Subsequent to 2020 September 18, two additional impacting objects, 2022 EB518 and 2022 WJ1,1819 were observed in space prior to impact on 2022 March 11 and 2022 November 19, respectively. At the time of the USG event, the ATLAS observation was the closest observation of a natural preatmospheric object. This proximity analysis was performed using the Python astroquery.mpc20 package to download all observation times of the six Earth-impacting object observations as well as the 47 near-Earth fly-bys whose minimal geocentric distance was less than that of the USG object (see Table 7). Then, using the JPL Horizons Telnet ephemeris system,21 we acquired the nominal geocentric distance for each object observation. Two objects having a telescopic observation distance of less than the USG object’s 11,920 km geocentric distance are 2022 EB5, at a calculated 11,854 km, and 2023 CX1, at 11,125 km. Prior to 2020 September 18, the closest object observation was that of 2018 LA, at approximately 22,000 km. A superlative that does hold for the ATLAS image of the USG event is that it is the closest initial observation of a preatmospheric object, far exceeding 2022 EB5, at 115,000 km, and 2021 UA1, at 147,000 km.

By no means is the USG object the smallest object observed in space. The MPCORB,22 NEOs23,24 and JPL-SSD Small Body25 asteroid and NEA databases all list 2008 TS26 at an

18 http://www.cbat.eps.harvard.edu/iau/cbet/005100/CBET005108.txt
19 https://www.jpl.nasa.gov/news/nasa-program-predicted-impact-of-small-asteroid-over-ontario-canada
20 https://astroquery.readthedocs.io/en/latest/mpc/mpc.html#
21 Telnet: horizons.jpl.nasa.gov 6775.
22 https://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT
23 https://newton.spacedys.com/~neody2/neodyscat
24 https://newton.spacedys.com/~neody2/neodystc
25 https://ssd.jpl.nasa.gov/dat/ELEMENTS.UNNUM
Table 7

Nearest Preatmospheric Observations of Natural Objects

Object	d_{min}(au)	Initial Observation	Last Observation	Closest Observation
	Date/Time	103 km	Date/Time	103 km
			Date/Time	103 km
Earth Impactors				
2008 TC3	2008 Oct 6.277 67	493	2008 Oct 7.073 10	34
2014 AA	2014 Jan 1.262 57	417	2014 Jan 1.310 81	396
2018 LA	2018 Jan 2.343 295 16	390	2018 Jun 2.500 959	220
2019 MO	2019 Jun 22.329 285 15	576	2019 Jun 22.424 624	480
2022 EB5	2022 Mar 11.808 476 10	115	2022 Mar 11.886 840	12
2022 W1	2022 Nov 19.203 482 01	128	2022 Nov 19.327 456	27
2023 CX1	2023 Feb 12.845 917 07	233	2023 Feb 13.119 527	11
Fly-bys				
2008 EK6	2008 Mar 5.440 60	1622	2008 Mar 5.480 66	1650
2011 AE3	2011 Jan 4.238 29	936	2011 Jan 4.281 06	946
2016 QY4	2016 Aug 29.283 86	2206	2016 Aug 29.408 78	2241
2011 CH2	2011 Feb 7.526 27	1737	2011 Feb 7.544 97	1743
2017 UL5	2017 Oct 21.300 85	1627	2017 Oct 21.474 99	1659
2010 XC	2010 Dec 1.306 59	2731	2010 Dec 1.364 95	2710
2012 HA3	2012 Apr 30.379 29	2402	2012 Apr 30.981 31	1875
2009 JE1	2009 May 4.365 74	4118	2009 May 4.434 11	4079
2008 JD3	2008 May 15.286 89	5061	2008 May 15.398 72	5088
2010 SV5	2010 Sep 30.780 58	8429	2010 Sep 30.783 66	8492
2012 TC4	2012 Oct 4.467 661 23	4420	2012 Dec 14.300 667	10355
2017 VL2	2017 Nov 10.475 21	787	2017 Nov 26.345 80	12206
2021 VD8	2021 Nov 10.277 732 02	719	2021 Nov 12.556 600	3022
2012 GX2	2012 Apr 2.316 494 11	2350	2012 Apr 3.178 171	3062
2011 KX1	2011 Dec 2.342 781 05	4959	2012 Jan 9.357 304	10011
2021 AY5	2021 Jan 12.503 857 10	9245	2021 Feb 18.285 49	23557
2020 AP1	2020 Jan 4.371 33	879	2020 Jan 5.441 63	1359
2014 WE6	2014 Nov 17.194 35	1358	2014 Nov 21.466 686	3001
2007 XO	2007 Dec 4.271 09	7549	2007 Dec 4.452 58	7242
2002 EM7	2002 Mar 12.306 75	3805	2002 Apr 6.268 06	27112
2004 FU162	2004 Mar 31.277 44	357	2004 Mar 31.307 99	329
2022 BN2	2022 Jan 27.382 231 10	1271	2022 Jan 28.421 569	1105

Note. The seven telescopically detected Earth impactors and 47 Earth fly-bys with minimal geocentric distances less than 0.00008 au as provided by NEO Earth Close Approaches web site (https://cneos.jpl.nasa.gov/ca/) with observation times provided by the astroquery.mpc (https://astroquery.readthedocs.io/en/latest/mpc/mpc.html#) Python package. The epoch and geocentric distance in kilometers for the initial observation, the last observation, and the closest observation are arrived at by interpolating ephemerides for the provided objects acquired from the JPL Horizons Telnet ephemeris service (telnet: horizons.jpl.nasa.gov 6775).
absolute magnitude 33.1 ± 33.2 and 2021 BO at 32.9. They both exceed the estimated $H = 32.5$ of the USG event, even without regard to the disproportionately high H due to an exceedingly low albedo.

From the point of view of the FROSTI project and the hope to identify preatmospheric images of objects having produced fireballs, the more 4° discrepancy in object location on the image plane is a matter of concern. We were indeed fortunate that the predicted location of the object and the actual observation of the object were both on the same image, aided by the wide 5.5° field of ATLAS. Our underestimate of the real uncertainties of USG events could result in images with fireballs going unflagged by FROSTI, particularly for sky-survey images with small fields. In like scenarios to this event, using standard deviations equal to the USG most significant reported digit appears to underestimate uncertainties. However, a wholesale increase of uncertainty cloud size for all USG events within FROSTI will also generate many false-positive results; granted that the 2020 September 18 detection was somewhat unique given the proximity of the object, thus minimizing the extent of in-sky positional uncertainty. However, experience with visualizing uncertainty cloud behavior as one moves backward in time prior to an impact shows that the decreasing angular size of the cloud due to increased distance and the divergence due to increasing clone spread tend to cancel each other out. Although CNEOS provides data on bolides that would go otherwise optically unobserved, this case study further supports the general result found by Devillepoix et al. (2019), namely, that the USG-derived trajectories are much less precise than those derived from ground-based fireball observations.

9. Summary

The USG 20200918 fireball was the first successful identification from archival imagery of a serendipitous preatmospheric image of an observed fireball. We have shown that the ATLAS detection of a streak just 10 minutes prior to impact is broadly consistent with the CNEOS-listed USG state vector within its large expected uncertainties (Devillepoix et al. 2019), while ruling out confusion from known satellites or an unassociated natural object. Given the large USG uncertainties, the detection via the FROSTI survey was very fortuitous: imaging so near to impact, the large uncertainty was still smaller than the wide ATLAS field of view.

Our analysis of the fireball produces a preferred estimate of 0.4 kt TNT total energy. This is based on a synthesis of the CNEOS and GLM light-curve and infrasound source energies. This energy, together with a preatmospheric speed of 12.7 km s$^{-1}$ measured by combining the USG state vector, suggest a mass of order 23 t. Through comparison with 2008 TC3, which entered at a similar speed and behaved similarly in atmosphere based on the recorded fireball light curve, we suggest the most likely bulk density is also around 1600 kg m$^{-3}$ and associated diameter 3 m. The telescopic light-curve amplitude suggests an axis ratio of 1.6, while the light-curve periodicity is consistent with a rotation period of about 16 s.

The resulting best-fit orbit results in a high probability of escape from the $1/6$ secular resonance. The apparent magnitude and size are most consistent with a very-low-albedo, C-complex object. Whether the apparent structural weakness is due to a rubble-pile structure or microporosity is unclear.

The event has demonstrated that the the FROSTI project can add to the collection of in-space imaged Earth impactors, collection of which was previously dependent on precontact object detection. The ATLAS image is the closest ever initial observation of a preatmospheric object, and rivals the observations of 2022 EB5 and 2023 CX1 as one of the closest observations of any such object.

Taken on its own, the absence of reported uncertainties for the USG-calculated object trajectory makes its interpretation more difficult, but was sufficiently accurate in this case to allow us to identify a historical ATLAS image of the object.

This work was supported in part by the NASA Meteoroid Environment Office under cooperative agreement No. 80NSSC21M0073 and by the Natural Sciences and Engineering Research Council of Canada (grant No. RGPIN-2018-05659), and by the Canada Research Chairs Program.

This work has made use of data from the Asteroid Terrestrial-impact Last Alert System (ATLAS) project. ATLAS is primarily funded to search for near-Earth asteroids through NASA grant Nos. 80NSSC21K0265, 80NSSC18K0284, and 80NSSC18K1575; byproducts of the NEO search include images and catalogs from the survey area. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen’s University Belfast, the Space Telescope Science Institute, the South African Astronomical Observatory (SAAO), and the Millennium Institute of Astrophysics (MAS), Chile.

We thank the many contributors to the FROSTI image database used for image searching, including ATLAS, Catalina, CNEOST, DeCAM, LONEOS, Pan-STARRS, WISE and NEOWISE, ZTF, the Minor Planet Center and its contributing observatories, and the Canadian Astronomy Data Centre for CFHT and HST data.

We thank J. Borovička for helpful discussions.

We also thank the reviewers for their suggestions, leading to several notable improvements to the article.

ORCID iDs

David L. Clark https://orcid.org/0000-0002-1203-764X
Paul A. Wiegert https://orcid.org/0000-0002-1914-5352
Peter G. Brown https://orcid.org/0000-0001-6130-7039
Denis Vida https://orcid.org/0000-0003-4166-8704
Aren Heinze https://orcid.org/0000-0003-3133-4921
Larry Denneau https://orcid.org/0000-0002-7034-148X

References

Beech, M., & Hargrove, M. 2004, EM&P, 95, 389
Borovička, J., Bettonvil, F., Baumgarten, G., et al. 2021, M&PS, 56, 425
Borovička, J., & Charvát, Z. 2009, A&A, 507, 1015
Borovička, J., Spurný, P., & Brown, P. 2015, in Asteroids IV, ed. P. Michel, F. E. DeMeo, & W. F. Bottke (4th ed.; Tucson, AZ: Univ. Arizona Press), 257
Borovička, J., Spurný, P., & Shrbený, L. 2020, AJ, 160, 42
Borovička, J., Tóth, J., Igaz, A., et al. 2013, M&PS, 48, 1757
Bowell, E., Hapke, B., Domíngue, D., et al. 1989, in Asteroids II, ed. Bowell, E., Hapke, B., Domingue, D., et al. (Tucson, AZ: Univ. Arizona Press), 524
Brown, P., Spalding, R. E., ReVelle, D. O., Tagliaferri, E., & Worden, S. P. 2002, Natur, 420, 294
Brown, P. G., Wiegert, P., Clark, D., & Tagliaferri, E. 2015, Icar, 266, 96
Buchner, J. 2016, PyMultiNest: Python interface for MultiNest, Astrophysics Source Code Library, ascl:1606.005
Cansi, Y. 1995, GeoRL, 22, 1021
