SMRT sequencing of full-length transcriptome of flea beetle *Agasicles hygrophila* (Selman and Vogt)

Dong Jia¹, Yuanxin Wang¹, Yanhong Liu¹, Jun Hu², Yanqiong Guo¹, Lingling Gao¹,³ & Ruiyan Ma¹

This study was aimed at generating the full-length transcriptome of flea beetle *Agasicles hygrophila* (Selman and Vogt) using single-molecule real-time (SMRT) sequencing. Four developmental stages of *A. hygrophila*, including eggs, larvae, pupae, and adults were harvested for isolating total RNA. The mixed samples were used for SMRT sequencing to generate the full-length transcriptome. Based on the obtained transcriptome data, alternative splicing event, simple sequence repeat (SSR) analysis, coding sequence prediction, transcript functional annotation, and lncRNA prediction were performed. Total 9.45 Gb of clean reads were generated, including 335,045 reads of insert (ROI) and 158,085 full-length non-chimeric (FLNC) reads. Transcript clustering analysis of FLNC reads identified 40,004 consensus isoforms, including 31,015 high-quality ones. After removing redundant reads, 28,982 transcripts were obtained. Total 145 alternative splicing events were predicted. Additionally, 12,753 SSRs and 16,205 coding sequences were identified based on SSR analysis. Furthermore, 24,031 transcripts were annotated in eight functional databases, and 4,198 lncRNAs were predicted. This is the first study to perform SMRT sequencing of the full-length transcriptome of *A. hygrophila*. The obtained transcriptome may facilitate further exploration of the genetic data of *A. hygrophila* and uncover the interactions between this insect and the ecosystem.

Alligator weed *Alternanthera philoxeroides* (Mart.) (Amaranthaceae) that originated from South America¹², was introduced into China in the 1930s. In China, *A. philoxeroides* is an important invasive species and has resulted in ecological and economic damage³. To control *A. philoxeroides* infestations, the flea beetle *Agasicles hygrophila* (Selman and Vogt) (Coleoptera: Chrysomelidae) was introduced as a biological control agent⁴. The use of *A. hygrophila* as a biological control of *A. philoxeroides* is acknowledged to be the world’s first successful example of aquatic weed control⁸.

Study has reported that the physiological adaptations of biological control agents determine where and when they will be successful⁶. Host specificity and potential host shifting are considered as the most important factors for the evaluation of *A. hygrophila* in many countries where it is introduced for biological control of *A. philoxeroides*⁶. Due to the good performances in host selection and ecological adaptation, *A. hygrophila* has become a desirable model insect for the investigation of the relationships between insects and plants, as well as insects and ecosystem. Currently, the genome and transcriptome information of *A. hygrophila* has not been investigated, which hinders the study of the molecular mechanisms underlying the interaction between *A. hygrophila* and host plant and ecosystem.

Transcriptome could reflect the type and number of intracellular genes and reveal the physiological and biochemical processes at a molecular level⁹. Several technologies have been applied for transcriptome sequencing. Among these, short-read transcriptome sequencing has become a powerful tool for the description of gene expression levels⁴⁰,¹¹. However, most of these technologies are incapable of assembling full-length transcripts because of the shortness of sequencing reads, which necessitates efforts for exploring other technologies. Thus,
single-molecule real-time (SMRT) sequencing (Pacific Biosciences of California, Inc., CA, USA) is developed\(^\text{12}\), which overcomes the limitation of short-read sequences by enabling the generation of kilobase-sized sequencing reads\(^\text{13}\). The full-length transcriptome can be used to analyze the alternative splicing events, and the primary-precursor-mature RNAs structures, which help better understanding the RNA processing.

In this study, SMRT sequencing was performed to generate full-length transcriptome of \(A. \text{ hygrophila}\). Based on the obtained transcriptome data, we performed alternative splicing analysis, simple sequence repeat (SSR) analysis, coding sequence prediction, transcript functional annotation, and lncRNA prediction. This study may be a valuable resource for further investigation of \(A. \text{ hygrophila}\).

Materials and Methods

Insects and host plants. The flea beetles, \(A. \text{ hygrophila}\), were obtained from South China Agricultural University (Guangdong, China) and were maintained in the insectary of Shanxi Agricultural University (Shanxi, China) under controlled conditions of 25 ± 1°C, with a light: dark photoperiod of 14:10 h and 80 ± 5% relative humidity. The insects were reared for several generations to obtain an experimental population with a consistent genetic background.

The host plant \(A. \text{ philoxeroides}\) was collected from a field greenhouse at Yuhuan County, Zhejiang, China and was planted in the greenhouse of the biosafety and biological control research base at Shanxi Agricultural University.

Sample processing. The eggs laid by \(A. \text{ hygrophila}\) within 24 h, first- to third-instar larvae starved for 24 h, pupae (2–6 days old), and newly emerged adults starved for 24 h were gathered and rinsed three times in pre-cooled normal saline. Finally, 0.3 g of eggs, 0.8 g of larvae, 3.8 g of pupae, and 6.2 g of adults were harvested and frozen in liquid nitrogen for further experiments.

RNA sample preparation. Total RNA samples (at four different developmental stages) were isolated using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA). RNA degradation and contamination were monitored using 1% agarose gels. The purity and concentration of RNA were measured using the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Rockland, DE, USA) with a OD\(\text{260/280}\) reading. The RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). The total RNA samples from four developmental stages were mixed together for the following experiments.

Library preparation and SMRT sequencing. mRNA was purified from 3 μg of mixed total RNA using poly (T) oligo-attached magnetic beads. Fragmentation was conducted using divalent cations under elevated temperatures in the NEBNext First Strand Synthesis Reaction Buffer (5×). The SMART PCR cdNA Synthesis Kit (Clontech, CA, USA) was used for synthesizing full-length cdNA. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of the 3′ ends of the DNA fragments, NEBNext Adaptor with a hairpin loop structure was ligated to prepare for hybridization. BluePippin\(^\text{5}\) (Sage Science, Beverly, MA, USA) was used for size selection of the full-length cdNA and for building libraries of differently sized cdNA. The generated cdNA was then re-amplified using PCR, and the fragment size distribution was quantified using the Qubit fluorometer (Life Technologies, Carlsbad, CA, USA). The quality of the libraries was assessed using the Agilent Bioanalyzer 2100 system. SMRT sequencing was performed using the Pacific Biosciences’ real-time sequencer using C2 sequencing reagents.

Next-generation sequencing. Total RNA (5 μg) was digested by using DNase I (NEB, Frankfurt, Germany). The sample was purified with Agencourt RNA Clean XP Beads and fragmented into 130–170 nt. First-strand cdNA was generated by First Strand Master Mix and Super Script II reverse transcription (Invitrogen). Then second-strand cdDNA was synthesized using Second Strand Master Mix. After end repair, adding A and adaptor ligation, several rounds of PCR amplification with PCR Primer Cocktail and PCR Master Mix were performed to enrich the cdNA fragments. The final library is quantitated by using the Agilent 2100 bioanalyzer instrument, and real-time quantitative PCR. The qualified libraries was sequenced pair end on the Illumina HiSeq. 2000 System.

Preprocessing of SMRT reads. Raw SMRT sequencing reads were processed by removing polymerase reads that were <50 bp and had quality of <0.75, obtaining the clean reads. The obtained clean reads were processed into error-corrected reads of inserts (ROIs) with parameters of full passes of ≥0 and quality of >0.75. The ROI reads with both the 5′ and 3′ primer sequences and a poly(A) tail present were considered to be full-length transcripts. During the processes of library preparation, the chimeric sequences formed by the direct linkages of two cdNA template strands due to the low concentrations of adapter or SMRTbell are called artificial chimeric transcripts. During the processes of library preparation, the chimeric sequences formed by the direct linkages of two cdNA template strands due to the low concentrations of adapter or SMRTbell are called artificial chimeric sequences. The non-chimeric sequences in the full-length sequence are called full-length non-chimeric (FLNC) sequences. The FLNC transcripts were determined by searching for the poly(A) tail signal and the 5′ tail of cdNA primers in ROIs.

Iterative clustering for error correction (ICE) in SMRT analysis (v2.3.0)\(^\text{12}\) was used to obtain consensus isoforms by approaching clustering, and the full-length consensus sequences from ICE were refined using Quiver. Full-length transcripts with post-correction accuracy of >99% (high-quality isoforms) were generated for further analysis. Any redundancy in high-quality full-length transcripts was removed by CD-HIT\(^\text{14}\).

Alternative splicing detection. RNA alternative splicing, occurring after a pre-mRNA transcript, is formed from template DNA, which results in a single gene coding for multiple proteins. During this process, particular exons of a gene may be included within or excluded from the final, processed mRNA produced from that gene\(^\text{16}\), which results in the proteins translated from alternatively spliced mRNAs containing differences in
their amino acid sequence and biological functions. In this study, based on the obtained redundancy removed transcripts, we predicted the alternative splicing events. Briefly, all sequences were aligned to each other with BLAST16. The alignment results according with the following conditions were considered as alternative splicing events17:

- Both sequences lengths were more than 1000 bp, besides there should be two High-scoring Segment Pairs in the alignment;
- The alternative splicing Gap was greater than 100 bp, with at least 100 bp distance to the 3′/5′ end;
- All alternatively spliced transcripts allowed 5 bp overlap.

Simple sequence repeat (SSR) detection. SSR, also known as microsatellite, is a tract of repetitive DNA in which certain DNA motifs (ranging in length from 2–13 base pairs) are repeated, typically 5–50 times18. Transcripts that were >500 bp were selected for SSR analysis using the MIcroSAtellite identification tool (MISA; http://pgrc.ipk-gatersleben.de/misa/http://pgrc.ipk-gatersleben.de/misa/)19. MISA can identify seven SSR types, namely mononucleotide, dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, hexanucleotide, and compound SSR, by analyzing transcript sequences.

Prediction of coding sequences. The coding sequences and corresponding amino acid sequences within the transcript sequences were predicted using TransDecoder (https://github.com/TransDecoder/TransDecoder/releases). TransDecoder could identify candidate protein-coding regions based on nucleotide composition, open reading frame (ORF) length, log-likelihood score, and (optional) Pfam domain content20.

Functional annotation of transcripts. The obtained non-redundant transcript sequences were mapped to eight databases to obtain the annotation information of the transcript. These databases included NR21, Swiss-Prot22, Gene Ontology (GO; http://www.geneontology.org)23, Clusters of Orthologous Groups of proteins (COG; http://www.ncbi.nlm.nih.gov/COG)24, euKaryotic Ortholog Groups (KOG)25, Pfam (http://pfam.janelia.org/)26, evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG; http://eggnog.embl.de), and Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.ad.jp/kegg/)27.

IncRNA prediction. The most widely used methods for analyzing coding potential are Coding Potential Calculator (CPC)28, Coding-Non-Coding Index (CNCI)29, Coding Potential Assessment Tool (CPAT)30, and Pfam protein structure domain analysis. In this study, IncRNAs were predicted by screening the coding potential of transcripts using these four methods above.

Results

SMRT sequencing data output. Based on the Pacific Biosciences’ SMRT sequencing technology, 456,994 polymerase reads were generated. After preprocessing, 9.45 Gb of clean reads were obtained (Table 1). On the basis of the conditions of full passes of ≥0 and quality of >0.75, 335,045 ROIs were obtained (Table 2). In addition, 158,085 FLNC sequences were identified (Table 3).

Sample	cDNA size	Reads of insert	Read bases of insert	Mean read length of insert	Mean read quality of insert	Mean number of passes
T01	0.5–1 K	122,928	156,155,506	1.270	0.93	19
T01	1–2 K	142,751	279,590,957	1.958	0.92	12
T01	2–6 K	69,366	198,654,998	2.863	0.93	9

Table 1. Polymerase reads sequence statistics. cDNA size: insert fragment size of cDNA libraries; SMRT cells: the number of cells used for library construction; Polymerase reads: the number of polymerase reads sequences after sequencing; Post-filter polymerase reads: the number of polymerase reads sequences after filtration; Post-filter total number of subread bases: the number of subreads after filtration; Post-filter number of subread: the number of subreads after filtration; Post-filter subreads N50: subread N50 length after filtration; Post-filter mean subread length: average length of subread after filtration.

Sample	cDNA size	Post-filter polymerase reads	Post-filter total number of subread bases	Post-filter number of subread	Post-filter subreads N50	Post-filter mean subread length
T01	0.5–1 K	300,584	3,021,283,493	3,163,026	938	955
T01	1–2 K	300,584	4,169,421,605	2,534,817	1,648	1,644
T01	2–6 K	150,292	2,263,026,061	801,048	2,835	2,825

Table 2. Reads of insert (ROI) statistics. cDNA size: insert fragment size of cDNA libraries; Reads of insert: the number of ROI sequences; Read bases of insert: the total number of ROI bases; Mean read length of insert: average length of ROI; Mean read quality of insert: Quality value of ROI sequence; Mean number of passes: the mean sequencing depth of sequences in zero-mode wave.
Comparison of results of SMRT sequencing and next-generation sequencing. Most of the assembled contigs (70.41%) from next-generation sequencing were with length between 200–300 bp and only 2.31% were more than 2 kb. A total of 11,994 unigenes (25.99%) had length of 200–300 bp and 1,1981 unigenes (25.96%) had length of 300–500 bp. The comparison results between SMRT sequencing transcript and Illumina sequencing contig and unigene are shown in Table 4. Additionally, a total of 28,982 transcripts with total length of 48,811,662 bp were obtained from SMRT sequencing. For Illumina sequencing, 95,700 contigs and 46,151 unigenes (38,506,958 bp) were obtained (Table 5).

Transcript clustering analysis. In total, 40,004 consensus isoforms were obtained, including 31,015 high-quality isoforms and 8,989 low-quality ones. The ICE clustering results are shown in Table 6. Finally, 28,982 transcripts were obtained after removing redundant sequences from the high-quality transcripts.

Alternative splicing analysis. Total 146 alternative splicing events were identified, as shown in Supplementary Table S1. Additionally, since no reference genome is available for SMRT sequencing of transcriptome in A. hygrophila, we could not determine the types of alternative splicing events.

SSR detection. A total of 27,318 sequences (48,121,807 bp) were subjected to SSR analysis, including 12,753 SSRs and 8,535 SSR-containing sequences. The number of sequences containing more than one SSR was 2,733, and the number of SSRs present in compound formation was 966. In addition, the numbers of mono nucleotides, di nucleotides, tri nucleotides, tetra nucleotides, penta nucleotides, and hexa nucleotides were 10,810, 922, 952, 59, 6, and 4, respectively.

Table 3. Full-length sequences statistics. cDNA size: insert fragment size of cDNA libraries; reads of insert: the number of reads of insert (ROI) sequences; Number of five prime reads: the number of ROI sequences containing 5′ primer; Number of three prime reads: the number of ROI sequences containing 3′ primer; Number of poly-A reads: the number of ROI sequences containing poly-A; Number of filtered short reads: the number of filtered ROI of <300 bp; Number of non-full-length reads: the number of non-full-length ROI; Number of full-length non-chimeric reads: the number of full-length non-chimeric ROI; Average full-length non-chimeric read length: average length of full-length non-chimeric sequence; Full-length percentage (FL%): the percentage of full-length sequence in ROI sequence; Artificial concatemers (%): the percentage of full-length chimeric sequence in full-length sequence.

Table 4. Comparison results between SMRT sequencing transcript and Illumina sequencing contig and unigene.

Table 5. Comparison of assembly indicators between SMRT sequencing transcript and Illumina sequencing contig and unigene.

Comparison of results of SMRT sequencing and next-generation sequencing. Most of the assembled contigs (70.41%) from next-generation sequencing were with length between 200–300 bp and only 2.31% were more than 2 kb. A total of 11,994 unigenes (25.99%) had length of 200–300 bp and 1,1981 unigenes (25.96%) had length of 300–500 bp. The comparison results between SMRT sequencing transcript and Illumina sequencing contig and unigene are shown in Table 4. Additionally, a total of 28,982 transcripts with total length of 48,811,662 bp were obtained from SMRT sequencing. For Illumina sequencing, 95,700 contigs and 46,151 unigenes (38,506,958 bp) were obtained (Table 5).

Transcript clustering analysis. In total, 40,004 consensus isoforms were obtained, including 31,015 high-quality isoforms and 8,989 low-quality ones. The ICE clustering results are shown in Table 6. Finally, 28,982 transcripts were obtained after removing redundant sequences from the high-quality transcripts.

Alternative splicing analysis. Total 146 alternative splicing events were identified, as shown in Supplementary Table S1. Additionally, since no reference genome is available for SMRT sequencing of transcriptome in A. hygrophila, we could not determine the types of alternative splicing events.

SSR detection. A total of 27,318 sequences (48,121,807 bp) were subjected to SSR analysis, including 12,753 SSRs and 8,535 SSR-containing sequences. The number of sequences containing more than one SSR was 2,733, and the number of SSRs present in compound formation was 966. In addition, the numbers of mono nucleotides, di nucleotides, tri nucleotides, tetra nucleotides, penta nucleotides, and hexa nucleotides were 10,810, 922, 952, 59, 6, and 4, respectively.
Prediction of coding sequences. Using TransDecoder, 24,040 ORFs were identified, which included 16,205 complete ORFs. The distribution of the coding sequence lengths of complete ORFs is shown in Fig. 1.

Functional annotation of transcripts. In total, 8,292 transcripts were annotated in the COG database; 13,197 were annotated in GO; 12,955 in KEGG; 10,940 in Pfam; 15,025 in Swiss-Prot; 22,887 in eggNOG; and 23,793 in NR. Moreover, 24,031 transcripts were annotated in all of the eight databases.

NR annotation. NR is a non-redundant protein database in NCBI, which contains protein data from the Swiss-Prot, Protein Information Resource, Protein Research Foundation, Protein Data Bank, GenBank, and RefSeq databases. The homologous species of *Agasicles hygrophila* were predicted by sequence alignment on the basis of the NR database. Approximately 56.21% of sequences were aligned to *Tribolium castaneum*, followed by *Dendroctonus ponderosae* (22.3%) (Fig. 2).

GO annotation. The GO database is produced by the Gene Ontology Consortium and features a structured, precisely defined, common, controlled vocabulary for describing the roles of genes and gene products in any...
organism. GO annotation system is a directed acyclic graph, including three categories: biological process (BP), molecular function (MF), and cellular component (CC). In this study, GO analysis revealed that the transcripts were enriched in several BP, MF, and CC associated terms (Fig. 3).

COG annotation. The COG database is an attempt at phylogenetically classifying proteins encoded in 21 complete genomes of bacteria, archaea, and eukaryotes. The database can be used for the functional and phylogenetic annotation of newly sequenced genomes. This study also found that the number of transcripts that were enriched in function R was the most, followed by function J and function O (Fig. 4).

lncRNA prediction. The number of lncRNA transcripts, as predicted by CPC, CNCI, pfam protein structure domain analysis, and CPAT is shown in Fig. 5. In total, 4,198 lncRNA transcripts were predicted by all four methods.

Discussion
The methodological strengths of SMRT sequencing have been comprehensively investigated in human13, which is superior to methods of short read sequencing due to the advantage of obtaining full-length transcripts. Besides, it could be used for the analysis of alternative splicing events, and the primary-precursor-mature RNAs structures to help better understand the RNA processing. In this study, 9.45 Gb of clean data were generated after SMRT sequencing, including 335,045 ROI and 158,085 FLNC reads. Total 40,004 consensus isoforms were identified through transcript clustering analysis of FLNC reads, which included 31,015 high-quality isoforms. After removing redundant sequences, 28,982 transcripts were obtained, and 145 alternative splicing events were predicted. SSR analysis revealed that 12,753 SSRs and 16,205 coding sequences were identified. Furthermore, 24,031 transcripts were annotated in eight functional databases. A total of 4,198 lncRNAs were predicted.

Based on 28,982 high-quality transcripts, a series of annotation analyses were performed. NR annotation revealed that 56.21% sequences were aligned to T. castaneum, followed by D. ponderosae (22.3%). T. castaneum is a member of the most species-rich eukaryotic order, an important model organism for studying generalized insect development30. Both T. castaneum and D. ponderosae belong to Coleoptera.

Genomic sequencing clearly revealed that the great majority of genes specifying the core biological functions are shared by all eukaryotes31. The rational classification of proteins encoded in sequenced genomes is critical for maximizing the use of genome sequences for functional and evolutionary studies24. In this study, these transcripts were enriched in various subcategories such as metabolic process, cellular process, cell, cell part, binding, and catalytic activity in the three main categories BP, MF, and CC according to the GO annotation analysis. The results of COG annotation showed that the largest number of transcripts were enriched in the function of general function prediction only. The results suggested that the transcripts of A. hygrophila were associated with the abovementioned functions.

Figure 3. Gene Ontology (GO) functional annotation of *Agasicles hygrophila* transcripts. Green represents biological process; blue represents molecular function; and red represents cellular component. The x-axis represents GO categories; the y-axis (right) represents the number of transcripts; and the y-axis (left) represents the percentage of transcripts.
LncRNAs, a novel class of nonprotein coding transcripts longer than 200 nt, are key regulatory molecules that can regulate gene expression at many different levels. Recently, increasing number of research has focused on the functions of lncRNAs in entomology, such as in *Drosophila melanogaster*, *Plutella xylostella*, and *Nilaparvata lugens*32, which provides a foundation for exploring the functions of lncRNA in insect development. This study identified 4,198 lncRNA transcripts with four analytical methods. However, their functions in *A. hygrophila* require further investigations.

In conclusion, our study, for the first time, completes SMRT sequencing of the full-length transcriptome of *A. hygrophila*. The obtained transcriptome may facilitate further studies on the genetic data of *A. hygrophila* and may help clarify the interactions between *A. hygrophila* and the ecosystem.

References

1. Maddox, D. Bionomics of an Alligatorweed Flea Beetle, *Agasicles* sp. 1 in Argentina. *Annals of the Entomological Society of America* 61, 1299–1305 (1968).
2. Vogt, G. B., McGuire, J. U. & Cushman, A. Probable evolution and morphological variation in South American Disonychine flea beetles (*Coleoptera: Chrysomelidae*) and their Amaranthaceous hosts. (Department of Agriculture, Science and Education Administration, 1979).
3. Wang, R., Wang, Y., Zhang, G. & Li, J. Host specificity tests for Agasicles hygrophila (Coleoptera: Chrysomelidae) a biological control agent of alligatorweed. *Chinese Journal of Biological Control* **4**, 14–17 (1998).

4. Liu, J. J. et al. Performance of the biological control agent flea beetle Agasicles hygrophila (Coleoptera: Chrysomelidae), on two plant species Alternanthera philoxeroides (alligatorweed) and *A. sessilis* (joyweed). *Biological Control* **54**, 9–13 (2010).

5. Buckingham, G. R. Biological control of alligatorweed, *Alternanthera philoxeroides*, the world's first aquatic weed success story. *Casta\naea* **232–243** (1996).

6. Zhao, L. et al. Cold hardiness of the biological control agent, Agasicles hygrophila, and implications for its potential distribution. *Biological Control* **87**, 1–5 (2015).

7. Lu, X. et al. Climate warming increases biological control agent impact on a non-target species. *Ecology Letters* **18**, 48–56 (2015).

8. Li, N. et al. Manipulating two olfactory cues causes a biological control beetle to shift to non-target plant species. *Journal of Ecology* **105**, 1534–1546 (2017).

9. Yang, F., Huang, L. & Zhang, A. High-throughput transcriptome sequencing technology and its applications in Lepidoptera. *Acta Entomologica Sinica* **57**, 991–1000 (2014).

10. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. *Science* **320**, 1344–1349 (2008).

11. Dybá, S. et al. Landscape of transcription in human cells. *Nature* **489**, 101 (2012).

12. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. *science* **323**, 133–138 (2009).

13. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. *Nature Biotechnology* **31**, 1009–1014 (2013).

14. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

15. Buckingham, G. R. Biological control of alligatorweed, *Alternanthera philoxeroides*, the world's first aquatic weed success story. *Casta\naea* **232–243** (1996).

16. Finn, R. D. et al. BLAST: a Basic Local Alignment Search Tool. *Nucleic Acids Research* **32**, 136–141 (2004).

17. Zhang, L. et al. Gene Ontology: tool for the unification of biology. *Nature Genet\ics* **32**, 45–46 (2003).

18. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. *Nature Genet\ics* **25**, 3389–3402 (1997).

19. Ashburner, M. The genome of the model beetle and pest Tribolium castaneum. *Nature* **452**, 949–955 (2008).

20. Botstein, D. et al. Gene Ontology: tool for the unification of biology. *Nature Genet\ics* **25**, 25–29 (2000).

21. Liu, X., Mei, W., Soltis, P. S., Soltis, D. E. & Barbazuk, W. B. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. *Molecular Ecology Resources* **17**, 1243–1256 (2017).

22. Wang, R., Wang, Y., Zhang, G. & Li, J. Host specificity tests for Agasicles hygrophila (Coleoptera: Chrysomelidae) a biological control agent of alligatorweed. *Chinese Journal of Biological Control* **4**, 14–17 (1998).

23. Thiel, T. MISA—Microsatellite identification tool (2003) Available at: http://pgrc.ipk-gatersleben.de/misa/ (accessed 17 June 2016).

24. Haas, B. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. *Nature Protocols* **8** (2013).

25. Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. *Genome Biology* **5**, R7 (2004).

26. Finn, R. D. et al. Pfam: the protein families database. *Nucleic Acids Research* **42**, D222–D230 (2013).

27. Finley, T. M. et al. The interface between genes and behavior. *Cold Spring Harbor Protocols* **25–26** (2007).

28. Finn, R. D. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* **25**, 3389–3402 (1997).

29. Richards, S. et al. The genome of the model beetle and pest Tribolium castaneum. *Nature* **452**, 949–955 (2008).

30. Botstein, D. et al. Gene Ontology: tool for the unification of biology. *Nature Genet\ics* **25**, 25–29 (2000).

31. Liu, C. et al. Host specificity tests for Agasicles hygrophila (Coleoptera: Chrysomelidae) a biological control agent of alligatorweed. *Chinese Journal of Biological Control* **4**, 14–17 (1998).

32. Zhu, B., Liang, P. & Gao, X. Long noncoding RNAs (IncRNAs) and their research advances in entomology. *Acta Entomologica Sinica* **59**, 1272–1281 (2016).

Acknowledgements
This work was supported by National Natural Science Foundation of China (Nos 31500304 and 31570436), Applied Basic Research Program of Shanxi Province (No. 201601D010196) and Doctor of Shanxi agricultural university introduced talent support program (No. 2015ZZ12).

Author Contributions
Conception and design of the research: Dong Jia; Acquisition of data: Yuanxin Wang and Yanhong Liu; Analysis and interpretation of data: Jun Hu, Yanqiong Guo and Lingling Gao; Drafting the manuscript: Dong Jia; Revision of manuscript for important intellectual content: Ruiyan Ma.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-20181-y.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018