Spectrum of neurocognitive dysfunction in Indian population on FDG PET/CT imaging

Rajnish Sharma, Madhavi Tripathi, Maria M D’Souza, Abhinav Jaimini, Raunak Varshney, Puja Panwar, Aruna Kaushik, Sanjeev Saw, Romana Seher, Santosh Pandey, Dinesh Singh, Yachna Solanki, Anil K Mishra, Anupam Mondal, RP Tripathi

Division of PET Imaging, Division of Cyclotron and Radiopharmaceutical Sciences, Molecular Imaging Research Center, INMAS, Delhi, India

ABSTRACT

Background: A variety of neurodegenerative disorders produce significant abnormal brain function which can be detected using fluorodeoxyglucose positron emission tomography (FDG PET) scan even when structural changes are not detected on CT or MRI Scan. A study was undertaken at our institute to evaluate the FDG PET/CT findings in Indian population suffering from mild cognitive impairment (MCI), Alzheimer’s disease (AD), fronto-temporal dementia (FTD), dementia with Lewy body disease (DLBD) and other miscellaneous causes of dementia. Materials and Methods: 117 subjects having neurocognitive deficits and 36 normals were included in our study. All patients underwent a detailed history and clinical examination. This was followed by a mini mental state examination. Subsequently an FDG brain PET scan and an MRI were done. Results: In the patient population included in our study group 36 were normal, 39 had MCI, 40 had AD, 14 had FTD, and 13 had DLBD and 11 dementia due to other miscellaneous causes. MCI patients showed primarily reduced tracer uptake in the mesio-temporal cortex. AD patients showed reduced tracer concentration in temporo-parietal lobes, while patients with advanced diseases showed frontal lobe disease additionally. In subjects of FTD, reduced radiotracer uptake in the fronto-temporal lobes was noted. In addition, FTD patients also showed basal ganglia defects. In contrast the DLBD patients showed globally reduced FDG uptake including severely affecting the occipital cortices. Conclusion: In the current study the F18-FDG PET scans have been shown to be highly useful in the diagnosis of various neurocognitive disorders of the brain. AD was found to be the most common dementia in the Indian population followed by MCI. Diffuse Lewy body disease, FTD and other miscellaneous categories of dementia had a near similar incidence.

Keywords: Dementia, F18-FDG scan, Indian population

INTRODUCTION

One of the most important uses of PET in neurosciences has been in the workup of the patients of various dementing disorders. Criteria for diagnosis of AD were defined by the National institute of neurological and communicative disorders and the Alzheimer’s disease and related disorders. These require evidence of progressive, chronic cognitive deficits in middle aged and elderly patients with no identifiable cause. It is very difficult to differentiate between AD and various other causes of dementia. It has been reported that there is 20-30% decrease in the brain FDG uptake values in patients with various dementias when compared with the normal healthy population. The magnitude and extent of hypometabolism correlates with the severity of dementia symptoms. MCI is used as a diagnostic classification concept for patients with decline in cognitive performance, which is in excess of the expected age related changes but does not completely fit into the diagnosis of dementia. It has been reported that a substantial proportion of MCI patients subsequently may develop dementing disorder of the Alzheimer type (DAT). Hence, it is important to detect patients of MCI as it includes a sizeable number of subjects with pre-dementia of AD. If patients of MCI are diagnosed on the basis of clinical diagnosis only, then there is a very high possibility of including the population suffering from cerebrovascular disease or depression.
FDG PET assessment of cerebral glucose metabolism is a measure of synaptic activity and can identify the presence and localization of a neurodegenerative process in the brain. Different criteria have been laid down for differential diagnosis of dementia.[11,13-18]

AD patients typically show hypometabolism in parieto-temporal cortices and in fronto-limbic in the advanced stage of the disease.[19] While the FTD patients show hypometabolism in the frontal and temporal cortices,[20-22] the DLBD patients show primary hypometabolism in the parieto-occipital cortex.[23,24] The present study was undertaken to evaluate the spectrum of various neurocognitive dysfunction in the Indian population.

MATERIALS AND METHODS

The study comprised of 117 subjects including 39 MCI, 40 AD, 14 FTD, 13 DLBD patients and 11 belonging to miscellaneous group.

The subjects were referred from a tertiary neurological centre after detailed history (corroborated by a close informant), clinical examination and mini mental state examination (MMSE). All patients were subjected to FDG PET scan and MRI of brain. All participants provided written informed consent. Approval of the local ethics committee was taken. None of the patients had any evidence of organic brain pathology or organic illness affecting the brain, significant head injury, systemic illness, psychosis or history of drug or alcohol intake.

Normal population

The control normal population included in our study had no functional impairment based on detailed neurological examination. These subjects had a clinical dementia rating (CDR) = 0 or global deterioration scale (GDS) ≤ 2. They all had a MMSE score of more than 28. The subjects were matched to the cases on the basis of age, sex and educational status.

MCI

The criteria for MCI were based on clinical examination showing impaired cognitive function, ability to perform normal daily activities, no evidence of dementing disease. They had a CDR = 0.5 or GDS = 3 and they all had normal activity of daily living (ADL). The MMSE score of these patients was equal to or more than 24.

Dementia

All subjects fulfilled the diagnostic and statistical manual of mental disorders (DSM-IV),[25] criteria for dementia. They all had significant ADL defects, and had a CDR ≥ 1 or GDS ≥ 4. Standard clinical criteria were used to characterize the type of dementia. Consensus criteria were used for the diagnosis of DLB[26] and FTD.[27]

F18-FDG PET

All patients were fasting for at least 4 hours before the study and advised adequate hydration for rapid tracer excretion. The studies were done in a resting state with eyes closed. Ear plugs were used to prevent any auditory stimulus. The PET/CT study was performed on a Discovery STE 16 (GE) camera. F18-FDG was injected intravenously in a dose of 370 MBq and a brain scan was obtained after an interval of 60 minutes with patient in supine position and head immobilized in a head rest. An initial scan of the head with localizer positioning was followed by a low dose CT acquisition at 110mA and 120 KV for attenuation correction. This was followed by a static 20 minute single bed position 3 dimensional emission scan. Data was reconstructed using 3-dimensional VUE algorithms (GE) and images were viewed for interpretation on a Xeleris workstation using volumetric protocol (GE). Visual image interpretation was independently performed by 3 PET physicians (Dr. MT, Dr. RS and Dr. AJ) for FDG PET brain scans using fused PET/CT images. Any tracer activity which was noted as abnormal by all the 3 physicians was reported as abnormal.

MRI

MRI studies were undertaken for all patients to rule out morphological abnormalities, vascular insults and intracranial space occupying lesions. This was undertaken on a 1.5 T-Magnetom Vision (Seimens) scanner with a standardized protocol consisting of axial T1 weighted images (TR 655ms, TE 24 ms, NEX 2) axial and sagittal, T2 weighted images (TR - 3800 ms, TE 90 ms, NEX 2) and axial and coronal FLAIR images (TR - 9000 ms, TE 110ms, NEX 2).

RESULTS

Details of the subjects included in the study have been depicted in Tables 1 to 5 for the MCI, AD, FTD, DLBD and Miscellaneous Dementia Category respectively. Among MCI patients 17 out of 39 (43.5%) showed cortical hypometabolism indicative of neurodegenerative disease. Mesio-temporal hypometabolism was the most common defect noted in patients of MCI [Figure 1]. The remaining 22 subjects did not show significant cortical hypometabolism. Out of 17 patients found to have abnormal FDG Brain scan 11 were labeled as MCI, 4 AD and 2 had FTD pattern. 2 (18.8%) MCI patients showed bilateral F18-FDG uptake reductions. 6 (54.5%) showed predominantly left and 3 (27.2%) showed a predominant right reductions. The AD group included 17 patients with mild and 23 patients with moderate to severe dementia. Among the AD patients 17/40 (42.5%) showed prominent parieto-temporal hypometabolism [Figure 2]. Symmetric F18-FDG uptake reductions were found in 26/40 (65%) AD, 8/40 (20%) showed severe hypometabolism in left hemisphere and 6/40 (15%) showed more severe hypometabolism in right hemisphere. 23/40 (57.5%) AD patients showed additional frontal cortex hypometabolism. No extension into occipital cortex was noted in AD patients in our series of patients.

The DLBD group included 13 patients, out of which 4 were with mild dementia and 9 patients had moderate to severe dementia. Among the DLBD patients, all patients showed hypometabolism in the occipital cortex of the brain besides affecting temporal,
Table 1: Clinical and diagnostic characteristics of MCI subjects

Age	Sex	Clinical diagnosis	MMSE Score	Symptoms	MRI	PET	Final diagnosis
55 M	MCI	26	Memory loss	Normal	Normal	Normal	MCI
82 M	MCI	26	Memory loss	Cerebral atrophy	reduced tracer uptake in left mesial temporal cortex	MCI	
66 M	MCI	28	Forgetfulness	Cerebral atrophy	Normal	Normal	MCI
81 M	MCI	28	Forgetfulness	Normal	Normal	Normal	MCI
50 F	MCI	24	Forgetfulness	Gyiotic Scar left Parietal Lobe	Normal	Normal	MCI
50 M	MCI	28	Forgetfulness	Normal	Normal	Normal	MCI
80 M	MCI	27	Memory loss	Diffuse cerebral atrophy	Normal	Normal	MCI
67 M	MCI	26	Forgetfulness	Diffuse cerebral atrophy	Left temporo mesial hypometabolism	MCI	
49 M	MCI	25	Forgetfulness	Diffuse cerebral atrophy	B/L Fronto-Tempo Hypo Metab	FTD	
65 F	MCI / AD	27	Memory loss	Diffuse cerebral atrophy	Right Mesial temp Hypo metb	MCI	
62 M	MCI	27	Forgetfulness	Normal	Normal	Normal	MCI
55 M	MCI	28	Memory loss	Normal	Normal	Normal	MCI
72 M	MCI	28	Change in Speech	Normal	Normal	Normal	MCI
63 M	MCI	29	Forgetfulness	Normal	Normal	Normal	MCI
74 M	AD / MCI	25	Forgetfulness	Diffuse cerebral atrophy	B/L temp-ro-parial frontalhypometab	AD	
71 M	MCI	24	Forgetfulness	Diffuse cerebral atrophy	Reduced Tracer uptake in B/L mesio-temporal lobes	MCI	
80 F	MCI	28	Forgetfulness	Normal	Normal	Normal	MCI
74 M	MCI	26	Memory loss	Normal	Right Mesial temp Hypo metb	MCI	
37 M	FTD / MCI	25	Forgetfulness	Diffuse cerebral atrophy	B/L frontal hypometab	FTD	
58 F	MCI	24	Forgetfulness	Diffuse cerebral atrophy left Parito-temporal Hypo metab	AD		
61 F	MCI	28	Forgetfulness	Normal	Normal	Normal	AD
65 M	MCI	28	Forgetfulness	Normal	Normal	Normal	AD
81 M	MCI	25	Forgetfulness	Normal	Reduced tracer uptake in mesio-temporal and Left parietal cortex	AD	
56 F	MCI	26	Memory loss	Normal	Right Mesial temp Hypo metb	MCI	
81 M	MCI	27	Forgetfulness, attention defect	Diffuse cerebral atrophy	Normal	Normal	AD
50 M	MCI	28	Forgetfulness	Normal	Normal	Normal	AD
75 M	MCI	28	Forgetfulness, naming difficulty	Diffuse cerebral atrophy reduced tracer uptake in temporal and parietal cortex	AD		
65 M	MCI	28	Forgetfulness	Normal	Normal	Normal	AD
64 M	MCI	29	Forgetfulness	Normal	Normal	Normal	AD
82 M	MCI / AD	26	Memory loss	Normal	left mesial temporal hypometabolism	MCI	
78 F	MCI	29	Memory loss	Normal	Normal	Normal	AD
64 F	FTD / MCI	27	Memory loss	Normal	left mesial temporal hypometabolism	MCI	
71 M	MCI	30	Forgetfulness	Normal	Normal	Normal	AD
79 M	MCI	29	Memory loss	Normal	Normal	Normal	AD
55 M	MCI	29	Forgetfulness	Normal	Normal	Normal	AD
69 F	MCI	26	Forgetfulness	Normal	left mesial temporal hypometabolism	MCI	
45 F	MCI	28	Forgetfulness	Normal	Normal	Normal	AD
62 M	MCI	30	Forgetfulness	Normal	Normal	Normal	AD
72 M	MCI / AD / VCI	24	Forgetfulness	Diffuse cerebral atrophy	Reduced Tracer uptake in B/L mesio-temporal lobes	MCI	

Average of MMSE Index 27.02564
SD of MMSE Index 1.693442

MCI- Mild Cognitive Impairment AD- Alzheimer’s Disease
FTD- Fronto-temporal Dementia

Table 2: Clinical and diagnostic characteristics of AD subjects

Age	Sex	Provisional Diagnosis	MMSE Score	Symptoms	MRI	PET	Diagnosis
68 M	AD / AADC / MCI	26	Forgetfulness, thought disorder	Diffuse cerebral atrophy Right parietal-temporal hypometabolism	AD		
78 M	AD	24	Forgetfulness, behaviour disturbance	Diffuse cerebral atrophy Reduced tracer uptake in Left Fronto- parieto- temporal uptake	AD		
80 M	PSP with dementia	19	Thought disorder, disorientation	Diffuse cerebral atrophy B/L Mesiotemporal and parietal hypometabolism	AD		
63 F	AD	24	Forgetfulness, thought disorder	Diffuse cerebral atrophy B/L Fronto-parietal hypometabolism	AD		

Contd.....
Table 2: (Contd....)

Age	Sex	Provisional Diagnosis	MMSE Score	Symptoms	MRI	PET	Diagnosis
70	M	AD/VD	22	Forgetfulness, confusion	B/L Frontal and parietal hypometabolism	Left fronto-parieto-temporal lobe	AD
58	M	AD	22	Forgetfulness, thought disorder, uncooperative	Diffuse cerebral atrophy	B/L Mesio-frontal and parietal hypometabolism	AD
68	F	AD/FTD	21	Memory loss, disorientation	Diffuse cerebral atrophy	Left fronto-parieto-temporal hypometabolism	AD
74	M	AD/MCI	20	Forgetfulness, confusion thought disorder	Diffuse cerebral atrophy	B/L tempo-parietal frontal hypometabolism	AD
45	F	AD	26	Forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in Left temporo-parietal lobe	AD
65	F	AD	25	memory loss, thought disorder	Diffuse cerebral atrophy	Reduced tracer uptake in Right temporo-parietal lobe	AD
48	M	AD	26	Memory loss, social withdrawal	Diffuse cerebral atrophy	Reduced tracer uptake in Right temporo-parietal cortex	AD
62	M	AD	25	Forgetfulness, thought disorder	Diffuse cerebral atrophy	Reduced tracer uptake in Left parieto-temporal cortex	AD
26	M	FTD	23	Cognitive decline, confusion, disorientation, memory loss	Hippocampus normal, S/o neuro degenerative disorder	B/L Fronto-parieto-temporal lobes	AD
67	F	AD	22	Forgetfulness	Diffuse cerebral atrophy	B/L Parieto-temporal hypometabolism	AD
60	M	AD	26	Forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in Right parieto-temporal cortex	AD
50	F	AD	25	Memory loss, thought disorder	Cerebellar atrophy	Reduced tracer uptake in Right parieto-temporal cortex	AD
58	F	MCI	26	Forgetfulness	Diffuse cerebral atrophy	B/L Fronto-parieto-temporal hypometabolism	AD
65	F	AD	20	Forgetfulness, disorientation	Diffuse cerebral atrophy	Reduced tracer uptake in B/L temporo-parietal and frontal cortex	AD
73	M	AD	20	Memory loss, confusion	Diffuse cerebral atrophy	Reduced tracer uptake in B/L parietal and temporal lobes	AD
80	M	AD	26	Memory loss	Diffuse cerebral atrophy	Reduced tracer uptake in B/L parietal and temporal lobes	AD
55	M	AD	26	Forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in B/L parietal and temporal lobes	AD
78	F	AD	19	Memory loss, confusion, uncooperative	Diffuse cerebral atrophy	B/L frontal-parietal and temporal hypometabolism	AD
78	M	AD	20	Memory loss, confusion	Diffuse cerebral atrophy	B/L frontal-parietal and temporal hypometabolism	AD
81	M	MCI	20	Memory loss, confusion disorientation	Diffuse cerebral atrophy	B/L frontal-parietal and temporal hypometabolism	AD
55	M	FTD	26	Forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in right parieto-temporal cortex	AD
45	M	AD	22	Forgetfulness, disorientation	Diffuse cerebral atrophy	Reduced tracer uptake in B/L frontal-parietal and temporal cortex	AD
61	F	AD	26	Forgetfulness	Non specific ischaemia	Reduced tracer uptake in Left parietal lobes	AD
30	F	AD	20	Forgetfulness, confusion	Diffuse cerebral atrophy	B/L reduced perfusion in frontal parietal and temporal and basal ganglia	AD
60	M	AD	19	Forgetfulness, confusion, uncooperative	Diffuse cerebral atrophy	B/L reduced perfusion in frontal parietal and temporal and thalamus	AD
50	F	AD	22	Forgetfulness, confusion	Diffuse cerebral atrophy	Reduced tracer uptake in B/L parietal and temporal lobes	AD
75	M	AD	26	slurring of speech	Diffuse cerebral atrophy	Reduced tracer uptake in Right parieto-temporal lobes	AD
45	M	AD	20	Forgetfulness, behaviour change, irritability	Diffuse cerebral atrophy	B/L Parieto-temporal-frontal hypometabolism	AD
71	F	AD	20	Forgetfulness, difficulty in speech, naming difficulty	Diffuse cerebral atrophy	Parietal-temporal- frontal cortex	AD
75	M	MCI	28	Forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in B/L frontal-temporal cortex	AD
65	M	FTD	22	Abnormal Behaviour, walking difficulty loss of memory, behaviour change	Diffuse cerebral atrophy	Reduced tracer uptake in B/L frontal-parietal - temporal lobes	AD
71	M	AD	25	Abnormal Behaviour, walking difficulty	Diffuse cerebral atrophy	Reduced tracer uptake in B/L frontal-parietal - temporal lobes	AD
56	F	AD/FTD	23	Forgetfulness, does not recognize relatives	Diffuse cerebral atrophy	Reduced tracer uptake in B/L frontal-parietal-temporal hypometabolism	AD
55	F	FTD/AD	19	Abnormal Behaviour, forgetfulness	Diffuse cerebral atrophy	Reduced tracer uptake in B/L Parietal-temporal frontal cortex	AD
60	F	FTD	22	Memory loss, confusion	Diffuse cerebral atrophy	Markedly tracer uptake in B/L frontal-parietal temporal cortices	AD

Average of MMSE Index: 22.84615
SD of MMSE Index: 2.716403
Table 3: Clinical and diagnostic characteristics of FTD subjects

Age	Sex	Provisional Diagnosis	MMSE Score	Symptoms	MRI	PET	Diagnosis
69	F	FTD	25	Abnormal behaviour, speech disorder	Lacunar Infarct	Mild Right fronto-temporal hypometabolism	FTD
55	F	DLBD	26	Abnormal behaviour, forgetfulness	Normal	Left Fronto-temporal Hypometabolism	FTD
49	M	MCI	24	Forgetfulness, abnormal behaviour	Diffuse cerebral atrophy	Left Fronto-Tempo Hypo Metab	FTD
77	M	AD	28	Forgetfulness	Normal	reduced right frontal tracer uptake	FTD
63	F	FTD	27	Mild social withdrawal	Diffuse cerebral atrophy	Reduced tracer uptake in left frontal lobe	FTD
37	M	FTD/MCI	24	Abnormal behaviour, speech disorder	Diffuse cerebral atrophy	Right frontal hypometab	FTD
63	M	FTD	14	Hallucination and Delusion	Frontal temporal atrophy	B/L Reduced tracer uptake in fronto-parieto-temporal lobes	FTD
65	F	FTD	27	Forgetfulness	Diffuse cerebral atrophy	Left frontal and temporal hypometab	FTD
60	M	AD	25	Memory loss, anormal behaviour	Generalised cerebral atrophy	Right frontal and temporal hypometab	FTD
68	F	AD	26	Forgetfulness, social withdrawal	Diffuse cerebral atrophy	Reduced tracer uptake in right frontal and temporal lobes	FTD
60	F	FTD	16	Forgetfulness, Abnormal Behaviour, delusions	Diffuse cerebral atrophy	Reduced tracer uptake in Left fronto-parietal and temporal lobes, both basal ganglia	FTD
26	M	FTD	16	Abnormal behaviour, forgetfulness	Normal	reduced tracer uptake in Right fronto-parietal temporal and both caudate nuclei	FTD
61	M	FTD	24	Forgetfulness, disoriented	Diffuse cerebral atrophy	Reduced tracer uptake in left frontal temporal lobes	FTD
60	F	FTD	14	Abnormal behaviour, irrelevant talking, forgetfulness	Diffuse cerebral atrophy	Right Fronto patieto temporal hypometabolism	FTD

Average of MMSE Index 22.571
SD of MMSE Index 5.1398

Table 4: Clinical and diagnostic characteristics of DLBD subjects

Age	Sex	Provisional diagnosis	MMSE Score	Symptoms	MRI	PET	Final diagnosis
75	M	MSA	19	Cognitive decline, hallucinations	Diffuse cerebral atrophy	Reduced B/L Frontal Parietal and Occipital Cortex Hypometabolism	DLBD
73	M	PD with dementia	21	Cognitive decline, delusions	Diffuse cerebral atrophy	reduced tracer uptake in B/L fronto-parieto-temporo-occipital lobes	DLBD
23	M	EPS with frontal lobe symptoms Deg Dementia	18	hallucinations, syncope	Frontal, caudate and cerebella atrophy	B/L Fronto-parieto-temporal occipital and both caudate hypometabolism	DLBD
59	F	FTD	23	Forgetfulness, Cognitive decline	Diffuse cerebral atrophy	Reduced tracer uptake in Left parieto-temporal and occipital cortex	DLBD
75	F	FTD	18	Forgetfulness, hallucinations, falls	Diffuse cerebral atrophy	B/L fronto-parieto-temporo occipital hypometabol	DLBD
70	F	DLBD	28	Memory loss, cognitive decline, delusions	Diffuse cerebral atrophy	Reduced tracer uptake in Right parieto-temporal and occipital cortex	DLBD
75	M	DLBD	20	Memory loss, cognitive decline, delusions	Diffuse cerebral atrophy	Globally reduced tracer uptake in B/L cortex and basal ganglia, thalamus, cerebellum	DLBD
60	F	DLBD	26	Abnormal Behaviour, walking difficulty, tremors, visual hallucination	Diffuse cerebral atrophy	reduced tracer uptake in Right fronto-parietal-temporal and occipital	DLBD
60	F	DLBD	19	Abnormal behaviour, forgetfulness, syncope	Diffuse cerebral atrophy	reduced tracer uptake in B/L fronto parietal temporal and occipital cortices	DLBD
84	M	AD	24	Forgetfulness, cognitive decline	Diffuse cerebral atrophy	reduced tracer uptake in Right fronto parietal temporal and occipital cortices	DLBD
76	M	DLBD	21	Abnormal behaviour, forgetfulness, loss of consciousness	Diffuse cerebral atrophy	B/L Fronto patieto temporal occipital and basal ganglia hypometabolism	DLBD
75	M	DLBD	18	Abnormal behaviour, forgetfulness, hallucination, delusions	Diffuse cerebral atrophy	reduced tracer uptake in B/L fronto parietal temporal and occipital cortices	DLBD
65	F	DLBD	19	Abnormal Behaviour, forgetfulness, hallucination	Diffuse cerebral atrophy	B/L reduced tracer uptake in fronto parietal temporal and occipital cortices	DLBD

Average of MMSE Index 21.07692
SD of MMSE Index 3.252218
Table 5: Clinical and diagnostic characteristics of miscellaneous subjects

Reg. No.	Age	Sex	Provisional diagnosis	MMSE Score	Symptoms	MRI	PET	Diagnosis	
193/10	60	F	FTD/VD	21	Cognitive dysfunction, hemiparesis, bradykinesia, ataxia Forgetfulness, inability to walk, syncope	Gliosis and encephalomalacia	Right Fronto-temp and Rt. Thalamus Hypo metb	VD	
298/10	50	M	PSP/MCI	23	Forgetfulness, frequent falls and walk slowly, tremors	Mild diffuse cerebral atrophy	FDG- reduced tracer uptake in B/L medial-frontal cortex and parietal cortex FDOPA- reduced tracer uptake in B/L globus pallidus and putamen	PD	
695/10	76	M	MCI/AD/VCI	22	Forgetfulness, frequent falls and walk slowly, tremors	Chronic ischemic changes with cerebral atrophy	FDG- reduced tracer uptake in B/L frontal-parietal - occipital and caudate FDOPA- reduced tracer uptake in B/L basal ganglia	PD	
562/10	56	F	CJD	24	Memory loss, Personality Changes, Hallucinations	Increased signal in the parietal and occipital lobes.	Reduced tracer uptake in fronto-parietal - temporal lobes and B/L basal ganglia and thalamus	CJD	
231/10	60	F	PSP/PD	22	Forgetfulness, Gait difficulty, tremors	Non specific Ischemic foci in B/L cerebral hemispheres Ischemic demyelination of brain	FDG- reduced tracer uptake in mesio-frontal cortex and Ant. Cerebral cortex FDOPA- reduced tracer uptake in B/L Putamens and globus pallidus	PD	
46/10	75	F	PSP	23	Abnormal behaviour, tremors, falls, slow gait	Diffuse Cerebral and cerebellar Atrophy	FDG- reduced tracer uptake in the frontal cortex, midbrain and pons FDOPA- reduced tracer uptake in B/L basal ganglia	PD	
295/10	76	M	PSP	23	Forgetfulness, abnormal behaviour, tremors, rigidity	Diffuse cerebral atrophy	FDG- reduced tracer uptake in B/L frontal and parietal cortex FDOPA- reduced tracer uptake in B/L basal ganglia	PD	
221/11	77	M	PD	22	Forgetfulness, tremors, ataxia, rigidity	Diffuse cerebral atrophy	FDG- reduced tracer uptake in B/L temporal cortex FDOPA- reduced tracer uptake in B/L basal ganglia	PD	
336/11	81	M	AD	22	Abnormal behaviour, Ataxia, slow gait	Diffuse cerebral atrophy	Reduced tracer uptake in temporal and occipital lobe markedly tracer uptake in B/L frontal-parietal basal ganglia and thalamus	VD	
378/10	61	F	CJD	24	Behavioral changes, involuntary body movements, inability to recognize people	Normal	Diffuse Cerebral Atrophy	FDG- reduced tracer uptake in the mesio-temporal cortex FDOPA- reduced tracer uptake in B/L Caudate nucleus	CJD: Creutzfeldt-Jakob disease
932/09	62	M	Parkinsons Dementia	22	Memory Loss, Bradykinesia, tremors	Diffuse Cerebral Atrophy	PD: Parkinson’s Dementia		

Average of MMSE Index 22.55
SD of MMSE Index 0.934

Figure 1: 71-year-old male presented with the complaints of forgetfulness. His MMSE score was 24. Arrows in F18-FDG PET images show bilateral Mesio-temporal hypometabolism diagnostic of MCI, in this patient
The miscellaneous group comprised of 7 patients of Parkinson’s dementia (PD) [Figure 5], 2 of vascular dementia [Figure 6] and 2 of Creutzfeldt-Jakob disease [Figure 7].

DISCUSSION

The importance of PET imaging in the management of the dementia patient is to help in the early diagnosis of the dementia disease process. Early detection of patients of MCI is essential as one third of MCI patients proceed to manifest DAT while more than half do not show progression to dementia. These results confirm that MCI patients even when selected carefully...
after clear cut inclusion criteria, represent a very heterogeneous patient population with regard to prognosis. Our study group comprised of 39 patients referred to our institute after being diagnosed to have MCI on clinical and MMSE test examination. Out of these MCI patients 13 were found to be normal. This itself highlights the importance of PET examination in patients having a neurocognitive disorder. Mosconi et al., reported that out of 37 patients screened for MCI, 12 were found to be normal on PET study.[28] Our study findings also show that F18-FDG PET can differentiate MCI from normal patients quite efficiently making it an effective tool to distinguish between these two groups which cause a lot of diagnostic issues as clinically it is quite difficult to distinguish age related cognitive deterioration from MCI which is a diagnostic dilemma for the clinician. Various F18-FDG PET profiles have been reported in the MCI group of patients which is due to the spectrum of cognitive deficits reported in this patient group.[29] In the present PET study AD PET pattern was found in 4 subjects and FTD pattern was noted in 2 patients. In previously reported PET studies 22-41% of the MCI patients with an AD PET pattern eventually converted to AD within a time period of 1-3 years.[29-34]

F18-FDG PET scan has played an important role in the diagnosis of AD. Patients of AD present with parieto-temporal defects in the cortices when compared to their age equivalent healthy subjects.[35] It has already been highlighted that patients of MCI are at high risk of developing AD in future.[36] Diagnosis can be made in patients of AD when clinical symptoms are not being fully expressed by the patient, in very early stage of AD. There is definitive evidence to show that generalized atrophy of brain is present in elderly patients, years before they actually develop AD.[37-41]

In our study, 42.5% of the patients had a mild AD while the rest had a severe form of the disease. The patient with the milder form of the disease had temporo-parietal defects while those with severe form the disease also had defects in the frontal region. In contrast, the western literature has reported that 99% of the patients had mild form of disease while 1 had severe AD pattern.[42] Thus the Indian population in contrast appears to be affected from a more severe form of the disease. On further analysis it was found that 65% population had bilaterally symmetrical defects, while 15% had right dominant pattern and 20% had a left dominant hypometabolism. None of the AD patients were found to have occipital lesions on FDG PET scans.

FTD is one of the most common forms of cortical dementia, accounting for about 20% of presenile dementia. Diagnosis of FTD is difficult as these groups of patients have a variegated clinical and pathological picture.[43,44] Patients suffering from this form of dementia have been reported to suffer from forgetfulness and a variety of behavioral disorders and hence are difficult to separate out from patients of AD, vascular dementia and psychiatric illnesses. It has been reported earlier that FTD results in finding of cerebral atrophy on CT and MR studies and hypo-perfusion in PET studies in frontal and temporal regions of the brain.[45,46] We found additional hypometabolism in the basal ganglia region which are known to be involved...
Thus in the majority of AD patients temporo-parietal defects were noted, in FTD patients more prominent hypometabolism in frontal and temporal cortex was noted and in DLBD patients though a global hypo-perfusion in the cortex was noted, the hypometabolism was most profound in the occipital cortex, which corresponds to the results of earlier workers. This characteristic pattern of cortical hypometabolism including the occipital areas could be a result of diaschisis due to disruption of intracortical connections. Diaschisis is defined as depression of regional neuronal metabolism and cerebral blood flow caused by dysfunction in anatomically separate but functionally related neuronal regions. Typically, sparing of primary sensorimotor cortex was noted. All the patients from this group showed prominent hypometabolism in the occipital region as reported in previous reports. Thus, it is concluded that the most common cause of dementia in Indian population is AD followed by MCI. FTD and DLBD had almost same incidence patterns.

CONCLUSION

The present study illustrates the utility of F18-FDG PET in the diagnosis and characterization of neurocognitive dysfunction. AD has been found to be the most prevalent form of dementia in the Indian subcontinent, which is in conformity with the global trend. A significantly higher proportion of frontal lobe involvement was noted in the Indian population, as compared to that documented in the world-wide literature. These new findings, and epidemiological and genetic studies, are in conformity with the previous reports. F18 FDG PET scans provide an objective and sensitive support to the diagnosis of early dementia.

REFERENCES

1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS–ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984;34:939-44.
2. Tierney MC, Fisher RH, Lewis AJ, Zorrillo ML, Snow WG, Reil DW, et al. The NINCDS-ADRDA Workgroup Criteria for the clinical diagnosis of probable Alzheimer’s disease: A clinical pathological study of 57 cases. Neurology 1988;38:359-64.
3. Joachim CL, Morris BH, Selkow DJ. Clinical diagnosed Alzheimer’s disease: Autopsy results in 150 cases. Am Neurol 1988;24:50-6.
4. Alavi A, Rieisch M, Ferris S, Christman D, Fowler J, MacGregor R, et al. Regional cerebral glucose metabolism in aging and senile dementia as determined by F18-deoxyglucose and positron emission tomography. In: Hoyer S, editor. The aging brain: Physiological and pathophysiological aspects. Berlin Springer-Verlag; 1982. p. 87-195.
5. Newberg A, Cotter A, Udesi M, Alavi A, Clark C. Metabolic imaging severity rating scale (MIRS) for the assessment of patients with cognitive impairment. Clin Nucl Med 2003;28:565-70.
6. Catter NR, Hashy J, Duara R, Grady CI, Kay AD, Kessler RM, et al. Clinical history brain metabolism, and neurophysiological function in Alzheimer’s disease. Ann Neurol 1988;16:129-40.
7. Friedland RP, Jagust WJ, Haxby J, Haxby JR, Haasman M, Koss E, Knitel B, Mathis CA, et al. Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 1995;45:1127-34.
8. Peter RC. Mild cognitive impairment, and early Alzheimer’s disease. Neuroscientist 1995;13:326-44.
9. Brusco M, Lovestone S. Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr 2004;16:129-40.
10. Small GW, Rabins PV, Barry PP, Buckholz NS, DeKosky ST, Ferris SH, et al. Diagnosis and treatment of Alzheimer disease and related disorders:
Consensus statement of the American Association for Geriatric Psychiatry, The Alzheimer's Association, and the American Geriatrics Society. JAMA 1997;278:1363-71.
11. Small GW. Differential diagnosis ad early detection of dementia. Am J Geriatr Psychiatry 1998;6:52-33.
12. Friedrich MJ. Mild cognitive impairment raises Alzheimer disease risk. JAMA 1999;282:2613-2.
13. Salmon E, Sadowitz B, Maquet P, Deguelde L, Lemaire C, Rigo P, et al. Differential diagnosis of Alzheimer disease with PET. J Nucl Med 1994;35:391-8.
14. Mazzotta JC, Frackowiak RS, Phelps ME. The use of positron emission tomography for the clinical assessment of dementia. Semin Nucl Med 1992;22:233-46.
15. Herholz K. FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Discord 1995;9:9-16.
16. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE.
 Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997;42:85-94.
17. Nordberg A. Application of PET in dementia disorders. Acta Neurol Scand Suppl 1996;168:71-6.
18. Small GW, Leiter F. Neuroimaging for diagnosis of dementia. J Clin Psychiatry 1998;59(suppl):4-7.
19. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease: FDG-PET studies in MCI and AD. Eur J Nucl Med Imaging 2005;32:486-510.
20. Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 1998;39:1875-8.
21. Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al.
 Alzheimer's disease versus dementia with Lewy bodies: Cerebral metabolic differential diagnosis of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004;62:591-600.
22. Moseco I, De Santi S, Li, Tsui WH, Li Y, Boppana M, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. NeuroImage 2008;39:676-92.
23. Mosconi I, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized F18-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 2008;49:390-8.
24. Lund And Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 1994;57:416-8.
25. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998;51:1546-54.
26. Miller Bl, Cumming J, Villanueva-Meyer J, Boone K, Mehringer CM, Lesser DM, et al. Frontal lobe degeneration: Clinical, neuropsychological, and SPECT characteristics, Neurology 1991;41:1374-82.
27. Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 1998;39:1875-87.
28. Cereda C, Ghika J, Maeder P, Bougosslandsky J. Strokes restricted to the insular cortex. Neurology 2002;59:1950-5.
29. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. FDG PET scan in neurocognitive dysfunction. JNucl Med Clin 2001;18:979-92.
30. Miller Bl, Chang I, Mena I, Noone JK, Lesser DM, Stuss DT.
 Neuropsychological patterns in right versus left frontotemporal dementia. J Int Neuropsychol Soc 1999;5:616-22.
31. Rosen HJ, Lennfgaether J, Miller Bl. Frontotemporal dementia. Neuro Clin 2006;24:719-92.
32. Miller Bl, Chang I, Mena I, Noone JK, Lesser DM, Stuss DT.
 Progressive right frontotemporal deterioration: Clinical, neuropsychological and SPECT characteristics. Dementia 1993;4:204-13.
33. Byrne EJ, Lennox G. Godwin-Amastin R. Diffuse Lewy body disease: Clinical features in 15 cases. J Neurol Neurosurgery Psychiatry 1989;52:709-17.
34. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, De Teresa R, et al. The Lewy body variant of Alzheimer's disease: A pathological and clinical entity. Neurology 1990;40:1-8.
35. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Neurology 1996;47:1113-24.
36. McvKee IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Neurology 1996;47:1113-24.
37. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of individual outcome in MCI by means of genetic assessment and F18-FDG PET. J Nucl Med 2005;46:1625-32.
38. Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, et al. Impairment of necortical metabolism predicts progression in Alzheimer's disease. Dement Geriatr Cogn Disord 1999;10:494-504.
39. Silverman DH, Small G, Chang CY, Lu CS, Kung De-Aruto MA, Chen YF, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 2001;286:2120-7.
40. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985-92.
41. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 2003;228:691-6.
42. Jack CR, Shintu MM, Guntier JL, O'Brien PC, Weigand SD, Knopman D, et al. Correlation of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004;62:591-600.
43. Cereda C, Ghika J, Maeder P, Bogosslandsky J. Strokes restricted to the insular cortex. Neurology 2002;59:1950-5.
44. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: A consensus on diagnostic criteria. Neurology 1998;51:1546-54.
45. Miller Bl, Cumming J, Villanueva-Meyer J, Boone K, Mehringer CM, Lesser DM, et al. Frontal lobe degeneration: Clinical, neuropsychological, and SPECT characteristics, Neurology 1991;41:1374-82.
46. Cereda C, Ghika J, Maeder P, Bogosslandsky J. Strokes restricted to the insular cortex. Neurology 2002;59:1950-5.
47. Santos P, De Bleecker J, Goethals P, Strijkmans K, Lernmuis I, Siegmsen G, et al. Differential regional cerebral uptake of F18-fluoro-2-deoxy-D-glucose in Alzheimer's disease and frontotemporal dementia: Multicenter standardized study. JNucl Med 2001;45:19-27.
48. Boone KB, Miller Bl, Lee A, Berman N, Sherman D, Stuss DT.
 Neuropsychological patterns in right versus left frontotemporal dementia. J Int Neuropsychol Soc 1999;5:616-22.
49. Rosen HJ, Lennfgaether J, Miller Bl. Frontotemporal dementia. Neuro Clin 2006;24:719-92.
50. Miller Bl, Chang I, Mena I, Noone JK, Lesser DM, Stuss DT.
 Progressive right frontotemporal deterioration: Clinical, neuropsychological and SPECT characteristics. Dementia 1993;4:204-13.
51. Byrne EJ, Lennox G. Godwin-Amastin R. Diffuse Lewy body disease: Clinical features in 15 cases. J Neurol Neurosurgery Psychiatry 1989;52:709-17.
52. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, De Teresa R, et al. The Lewy body variant of Alzheimer's disease: A pathological and clinical entity. Neurology 1990;40:1-8.
53. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International workshop. Neurology 1996;47:1113-24.
54. Hansen L, Noone JK, lesser DM, Stuss DT.
 Progressive right frontotemporal deterioration: Clinical, neuropsychological and SPECT characteristics. Dementia 1993;4:204-13.
55. Byrne EJ, Lennox G. Godwin-Amastin R. Diffuse Lewy body disease: Clinical features in 15 cases. J Neurol Neurosurgery Psychiatry 1989;52:709-17.
of varying degree - a new disease? Clin Neuropthol 1984;3:185-92.
58. Ransmayr G, Wenning GK, Seppi K, Jellinger K, Poewe W. Dementia with Lewy bodies. Neuroradiat 2000;1:929-35.
59. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984;34:939-44.
60. Soininen H, Lauluma V, Helkala EL, Hartikainen P, Rickkinen P. Extrapyramidal signs in Alzheimer's disease: A 3-year follow-up study. J Neural Transm Park Dis Dement Sect 1992;4:107-19.
61. Forrestl H, Burns A, Luther P, Cairns N, Levy R. The Lewy body variant of Alzheimer's disease: Clinical and pathological findings. Br J Psychiatry 1993;162:385-92.
62. Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer's disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001;50:358-65.
63. Brunberg JA, Frey KA, Horton JA, Kuhl DE. Crossed cerebellar diaschisis: Occurrence and resolution demonstrated with PET during carotid temporary balloon occlusion. AJNR Am J Neuroradiol 1992;13:58-61.

How to cite this article: Sharma R, Tripathi M, D'Souza MM, Jaimini A, Varshney R, Panwar P, et al. Spectrum of neurocognitive dysfunction in Indian population on FDG PET/CT imaging. Indian J Nucl Med 2011;26:67-77.

Source of Support: DRDO Project No. (ST-P1-2008/INM-311).
Conflict of Interest: None declared.