Tunable exchange bias in dilute magnetic alloys – chiral spin glasses

Matthias Hudl¹, Roland Mathieu² & Per Nordblad²

A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. This anisotropy is found to have very specific characteristics: It is essentially temperature independent and acts on a temperature dependent excess magnetization, \(\Delta M \). The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of \(\Delta M \) at larger fields, thus appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

The unidirectional anisotropy (\(E_{ud} \)) causing exchange biased hysteresis loops in dilute magnetic alloys appears in field cooled samples at temperatures well below the cusp temperature of the zero field cooled magnetization curve. This anisotropy is found to have very specific characteristics: It is essentially temperature independent and acts on a temperature dependent excess magnetization (\(\Delta M \)). The direction of the anisotropy field is set by the direction of the applied cooling field. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of \(\Delta M \) at larger fields, thus appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. In this report, this two faced nature of the anisotropy is empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

Exchange bias was first observed some 60 years ago in a field cooled system of cobalt particles with a shell of cobaltous oxide. A new type of magnetic anisotropy has been discovered which is best described as an exchange anisotropy. Similar to anisotropy, causing shifted hysteresis loops, occurs in certain dilute magnetic alloys, and has been extensively investigated in Cu(Mn) alloys of different manganese concentration. Atomic short range order and induced inhomogeneity may affect the hysteresis behavior of Cu(Mn) alloys as demonstrated by Monod et al. in Figure 8 of Ref. [10] by measurements on a cold worked sample. Such defects are revealed by severe broadening of the low field maximum of the zero field cooled (ZFC) magnetization curves. Exchange bias also occurs in bilayers of a ferromagnetic and an antiferromagnetic material and such structures have contributed to the continuously increased storage capacity in magnetic hard discs; being used as key components of both the read head and the storage medium. However, the physical mechanisms behind exchange bias are yet of unsettled origin and remain a scientific controversy. Of special interest in the context of the current investigation is the exchange bias effect reported on a bilayer of spin glass, Cu(Mn 6 at%), and cobalt layers. The unidirectional anisotropy (\(E_{ud} \)) causing exchange biased hysteresis loops in dilute magnetic alloys appears in field cooled samples at temperatures well below the cusp temperature of the zero field cooled magnetization curve. This anisotropy is found to have very specific characteristics: It is essentially temperature independent and acts on a temperature dependent excess magnetization (\(\Delta M \)). The direction of the anisotropy field is set by the direction of the applied cooling field. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of \(\Delta M \) at larger fields, thus appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. In this report, this two faced nature of the anisotropy is empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

Exchange bias was first observed some 60 years ago in a field cooled system of cobalt particles with a shell of cobaltous oxide. A new type of magnetic anisotropy has been discovered which is best described as an exchange anisotropy. Similar to anisotropy, causing shifted hysteresis loops, occurs in certain dilute magnetic alloys, and has been extensively investigated in Cu(Mn) alloys of different manganese concentration. Atomic short range order and induced inhomogeneity may affect the hysteresis behavior of Cu(Mn) alloys as demonstrated by Monod et al. in Figure 8 of Ref. [10] by measurements on a cold worked sample. Such defects are revealed by severe broadening of the low field maximum of the zero field cooled (ZFC) magnetization curves. Exchange bias also occurs in bilayers of a ferromagnetic and an antiferromagnetic material and such structures have contributed to the continuously increased storage capacity in magnetic hard discs; being used as key components of both the read head and the storage medium. However, the physical mechanisms behind exchange bias are yet of unsettled origin and remain a scientific controversy. Of special interest in the context of the current investigation is the exchange bias effect reported on a bilayer of spin glass, Cu(Mn 6 at%), and cobalt layers. The unidirectional anisotropy (\(E_{ud} \)) causing exchange biased hysteresis loops in dilute magnetic alloys appears in field cooled samples at temperatures well below the cusp temperature of the zero field cooled magnetization curve. This anisotropy is found to have very specific characteristics: It is essentially temperature independent and acts on a temperature dependent excess magnetization (\(\Delta M \)). The direction of the anisotropy field is set by the direction of the applied cooling field. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of \(\Delta M \) at larger fields, thus appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. In this report, this two faced nature of the anisotropy is empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

Exchange bias was first observed some 60 years ago in a field cooled system of cobalt particles with a shell of cobaltous oxide. A new type of magnetic anisotropy has been discovered which is best described as an exchange anisotropy. Similar to anisotropy, causing shifted hysteresis loops, occurs in certain dilute magnetic alloys, and has been extensively investigated in Cu(Mn) alloys of different manganese concentration. Atomic short range order and induced inhomogeneity may affect the hysteresis behavior of Cu(Mn) alloys as demonstrated by Monod et al. in Figure 8 of Ref. [10] by measurements on a cold worked sample. Such defects are revealed by severe broadening of the low field maximum of the zero field cooled (ZFC) magnetization curves. Exchange bias also occurs in bilayers of a ferromagnetic and an antiferromagnetic material and such structures have contributed to the continuously increased storage capacity in magnetic hard discs; being used as key components of both the read head and the storage medium. However, the physical mechanisms behind exchange bias are yet of unsettled origin and remain a scientific controversy. Of special interest in the context of the current investigation is the exchange bias effect reported on a bilayer of spin glass, Cu(Mn 6 at%), and cobalt layers.
As is seen in Fig. 1(a), ΔM and Hsw1 are both essentially independent of the cooling field strength in the considered field range (1 to 9 T). Hsw2, on the other hand, starts out from a value rather close to Hsw1 and continuously increases with increasing HFC to asymptotically approach the value $-Hsw1$ at very high fields. The three parameters are weakly dependent on repeated hysteresis measurements (training) as long as the maximum field of the loops does not exceed the initial cooling field. However, if the maximum field, Hmax of the hysteresis measurement is increased, Hsw2 shifts to the same value as observed after field cooling in Hmax, whereas ΔM and Hsw1 remain essentially unaffected by the field increase. Using the product of ΔM and Hsw1 one can derive a measure of the anisotropy energy related to the switching of the excess magnetization ΔM. This anisotropy, $E_{udT} \propto \Delta M Hsw1$, is independent of the magnitude of the cooling field. Looking at the field dependence of Hsw2, one observes that at low cooling fields, the anisotropy of the sample is near unidirectional ($Hsw1 \sim Hsw2$), and that with increasing cooling field it attains the mentioned mixed unidirectional/uniaxial character and finally striving towards only a uniaxial character at very high fields. Figure 1(c) shows hysteresis loops after field cooling in $+5\, T$ and $-5\, T$, and Fig. 1(d) shows hysteresis loops measured after zero field cooling (ZFC) and first applying the field up to 5 T in subsequently the positive and the negative direction. Remarkably, both the FC and the ZFC protocols reveal similarly exchanged biased ($H_{eb} = (Hsw1 + Hsw2)/2$) hysteresis loops.

Figure 1. Magnetic hysteresis and tunable exchange bias. (a) The central part of M vs. H loops after cooling the sample in HFC to 5 K, and measure the hysteresis loop on decreasing the field to $-H_{bc}$ and back to $+H_{bc}$. The insets show the field dependence of the parameter Hsw1, Hsw2 (right) and ΔM (left) in the HFC range 1 to 9 T. (b) Full hysteresis loops measured at 5 K from 0 to 14, 14 to -14 and then back $+14$ T. The inset shows the central part of the loop and the fields Hsw1 and Hsw2 are marked. The jump and definition of the excess magnetization, ΔM, is indicated in the main frame. (c,d) The central part of the hysteresis loops measured after field cooling (c) and zero field cooling (d) in fields up to 5 T at 5 K. The arrows indicate the initial field sweep direction. (Red loops- positive initial fields, blue loops - negative initial fields).
the direction of the cooling field and \(E_{udM} \) the part of the anisotropy that is locked to the direction of the excess moment. The two parts are then be derived from the experimental parameters through:

\[
E_{udT} = \mu_0 \Delta M H_{sw1}
\]

\[
E_{udS} = E_{udM} = \mu_0 \Delta M H_{sw2}
\]

Figure 2(a) shows the hysteresis behavior after field cooling in fields varying from 0 to 5 T and measuring hysteresis loops in fields from \(+H_{FC} \) to \(-H_{FC} \). From these curves the detailed behavior of the field dependence of the characterizing parameters, including the low field region between 0 and 1 T where \(\Delta M \) remains unsaturated, is derived. In Fig. 2(b), \(H_{sw1} \) and \(H_{sw2} \) are plotted versus the cooling field strength and in Fig. 2(c) the corresponding dependence of \(\Delta M \) is shown. From these data, the related energy measures can be derived and these are plotted in Fig. 2(d,e) showing \(\mu_0 \Delta M H_{sw1} \) and \(\mu_0 \Delta M H_{sw2} \) versus cooling field in Fig. 2(d) and the unidirectional energies \(E_{udS} \) and \(E_{udM} \) in Fig. 2(e). It is worth noting that the magnitude of the unidirectional anisotropy appears independent of cooling field strength, confirming that already an infinitesimally small cooling field is capable of aligning the polarity of the chirality in the field direction.

The temperature dependence of the hysteresis loops measured after field cooling in 1 T are shown in Fig. 3(a) and the derived parameters in Fig. 3(b,c). It is remarkable that the derived magnitude of the anisotropy energy \(E_{udT} \) also appears temperature independent. Noteworthy is also that a larger and larger part of the anisotropy becomes locked to the excess magnetization with increasing temperature. At higher temperatures than 25 K, the collective excess moment \(\Delta M \) has already relaxed to zero on the time scale of these hysteresis experiments.

Our results imply that a rigid spin structure defining the anisotropy is imprinted in the spin glass on cooling to low temperatures and that only a weak field is required to establish the full strength of the unidirectional anisotropy (\(E_{udT} \)) along the direction of the applied field. The only way to alter this structure and the associated anisotropy at constant temperature is to apply a larger field (\(H_{max} \)) than the original cooling field. The effect of \(H_{max} \) is then to imprint a compensating unidirectional anisotropy that switches direction with \(\Delta M \) and yields an anisotropy field that is controlled by \(H_{max} \). It is in this context important that in a zero field cooled sample a large field is required to establish any anisotropy and excess magnetization and that the full strength of the anisotropy is only achieved at field larger than the field where the thermoremnant magnetization (TRM) and isothermal remnant magnetization (IRM) coalesce.22 In this connection it is worth noting that the existence of exchange bias after zero field cooling in Heisenberg spin glasses is uncharacteristic to most other exchange bias systems, however, large exchange bias has been observed by A. K. Nayak et al.23 after zero field cooling of a MnPtGa Heusler alloy. This exchange bias is assigned to induced exchange coupling between ferromagnetic clusters dispersed in a
ferrimagnetic matrix when the sample is first magnetized at low temperature. Thus, a very different mechanism from the one discussed here for Heisenberg spin glasses.

The possibility to imprint a rigid spin structure in spin glasses that withstands significant perturbations is also manifested in low-field experiments on ageing-related phenomena showing memory of an aged spin structure at a specific temperature in spite of an apparent rejuvenation on temperature perturbations24–26. Two recent reviews of J. A. Mydosh27 and H. Kawamura and T. Taniguchi28 comprehensively recall the remarkable physical properties of spin glass systems including discussions on the importance of the chirality in Heisenberg systems.

Methods

The sample is a polycrystalline cylinder of Cu(13.5 at% Mn) of height 5 mm and diameter 2 mm with a spin glass temperature of 57 K18. The material is prepared by the drop synthesis method29. The global homogeneity and composition have been ascertained by EDS (Energy Dispersive Spectroscopy) measurements on different spots of the surface area of the sample and by the sharpness of the spin glass transition at low applied magnetic fields. Fig. S1 (in the supplementary information) shows the temperature dependence of the ZFC and FC susceptibility (M/H) of the sample at different applied fields. The experiments are performed in a Quantum Design MPMS XL SQUID magnetometer (5T) and two different PPMS VSM systems (9 T and 14 T). All hysteresis measurements are performed after cooling the sample from a reference temperature, TREF = 70 K.

References

1. Cannella, V. & Mydosh, J. A. Magnetic ordering in gold-iron alloys. Phys. Rev. B 6, 4220–4237 (1972).
2. Levy, P. M., Morgan-Pond, C. & Fert, A. Origin of anisotropy in transition metal spin glass alloys. J. Appl. Phys. 53, 2168–2173 (1982).
3. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241–255 (1958).
4. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).
5. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).
6. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957).
7. Kouvel, J. S. Exchange anisotropy in Cu-Mn and Ag-Mn alloys. J. Appl. Phys. 31, 142S–147S (1960).
8. Knitter, R. W., Kouvel, J. S. & Claus, H. Magnetic irreversibility and metastability in Cu-Mn. J. Magn. Magn. Mater. 5, 356–359 (1977).
9. Beck, P. A. Properties of micromagnets (spin glasses). Progr. Mater. Sci. 23, 1–49 (1978).
10. Monod, P., Préjean, J. J. & Tissier, B. Magnetic hysteresis of CuMn in the spin glass state. J. Appl. Phys. 50, 7324–7329 (1979).
11. Préjean, J. J., Joliclerc, M. J. & Monod, P. Hysteresis in CuMn: The effect of spin orbit scattering on the anisotropy in the spin glass state. J. Physique 41, 427–435 (1980).
12. Pelten, C. & Schwink, C. Magnetic anisotropy of CuMn spin glasses. J. Magn. Magn. Mater. 54–57, 218–220 (1986).
13. Barnsley, L. C., MacA Gray, E. & Webb, C. J. Asymmetric reversal in aged high concentration CuMn alloy. J. Phys.: Condens. Matter 25, 086003 (2013).
14. Schönfeld, B., Paris, O., Kostorz, G. & Skov Pedersen, J. Magnetic small-angle scattering from Cu-17 At.% Mn. J. Phys.: Condens. Matter 10, 8395–8400 (1998).
15. Chamberlin, R. V., Hardiman, M. & Orbach, R. Reversibility and time dependence of the magnetization in Ag:Mn and Cu:Mn spin glasses. J. Appl. Phys. 52, 1771–1772 (1981).
16. Nogues, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).
17. Ali, A. et al. Exchange bias using a spin glass. *Nature Mater.* **6**, 70–75 (2007).
18. Mathieu, R., Hudl, M. & Nordblad, P. Memory and rejuvenation in a spin glass. *EPL* **90**, 67003 (2010).
19. Kawamura, H. Chiral ordering in Heisenberg spin glasses in two and three dimensions. *Phys. Rev. Lett.* **68**, 3785–3788 (1992).
20. Staunton, J. B., Gyorffy, B. L., Poulter, J. & Strange P. A relativistic RKKY interaction between two magnetic impurities – the origin of a magnetic anisotropy effect. *J. Phys. C: Solid State Phys.* **21**, 1595–1611 (1988).
21. Staunton, J. B., Gyorffy, B. L., Poulter, J. & Strange P. The relativistic RKKY interaction, uniaxial and unidirectional magnetic anisotropies and spin glasses. *J. Phys.: Condens. Matter* **1**, 5157–5163 (1989).
22. Bouchiat, H. & Monod, P. Remanent magnetization properties of the spin glass phase. *J. Magn. Magn. Mater.* **30**, 175–191 (1982).
23. Nayak, A. K. et al. Large zero-field-cooled exchange-bias in bulk MnPtGa. *Phys. Rev. Lett.* **110**, 127204 (2013).
24. Nordblad, P. & Svedlindh, P. In *Series on Directions in Condensed Matter Physics: Vol. 12 Spin Glasses and Random Fields* (ed. Young, A. P.) Ch. 1, 1–27 (World Scientific, 1997).
25. Jonason, K. Vincent, E., Hammann, J., Rouchaud, J.-P. & Nordblad, P. Memory and chaos effects in spin glasses. *Phys. Rev. Lett.* **81**, 3243–3246 (1998).
26. Mathieu, R., Jonsson, P., Nam, D. N. H. & Nordblad, P. Memory and superposition in a spin glass. *Phys. Rev. B* **63**, 092401 (2001).
27. Mydosh, J. A. Spin glasses: redux: an updated experimental/materials survey. *Rep. Progr. Phys.* **78**, 052501 (2015).
28. Kawamura, H. & Taniguchi, T. In *Handbook of Magnetic Materials 24* (ed. Buschow K. H. J.) Ch. 1, 1–137 (Elsevier, 2015).
29. Carlsson, B., Gölin, M. & Rundqvist, S. Determination of the homogeneity range and refinement of the crystal structure of FeP. *J. Sol. State Chem.* **8**, 57–67 (1973).

Acknowledgements
Financial support from the Swedish Research Council and the Göran Gustafsson Foundation is acknowledged. We thank Y. Taguchi and Y. Tokura for letting us use their 14 T PPMS system and S.A. Ivanov for EDS analyses.

Author Contributions
M.H. planned and performed the experiments and jointly wrote the final manuscript. R.M. planned and performed the experiments and jointly wrote the final manuscript. P.N. took part in planning the experiments, drafted the first version of the manuscript and jointly wrote the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hudl, M. et al. Tunable exchange bias in dilute magnetic alloys – chiral spin glasses. *Sci. Rep.* **6**, 19964; doi: 10.1038/srep19964 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/