Diagnostic Value of 18 F-NOTA-FAPI PET/CT in A Rat Model of Radiation-induced Lung Damage

Xueting Qin
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Shijie Wang
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Xiaoli Liu
Shandong Cancer Hospital affiliated to Shandong University
Jinghao Duan
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Kai Cheng
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Zhengshuai Mu
Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
Jing Jia
Shandong Cancer Hospital affiliated to Shandong University
Yuchun Wei
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Shuanghu Yuan (✉️ yuanshuanghu@sina.com)
Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Research Article

Keywords: Radiation-induced lung damage, Fibroblast activation protein, Macrophage, Fibroblasts, Positron emission tomography

Posted Date: January 28th, 2022
Abstract

Background: In this study, we explore the diagnostic value of a novel PET/CT imaging tracer that specifically targets fibroblast activation protein (FAP), 18F-NOTA-FAPI, in a radiation induced lung damage (RILD) rat model.

Methods: High focal radiation (40, 60, or 90 Gy) was administered to a 5-mm diameter area of the right lung in Wistar rats for evaluation of RILD induction. Lung tissues exposed to 90 Gy radiation were scanned with 18F-NOTA-FAPI PET/CT and with 18F-FDG. Dynamic 18F-NOTA-FAPI PET scanning was performed on day 42 post-irradiation. After in vivo scanning, lung cryosections were prepared for autoradiography, hematoxylin and eosin (HE) and immunohistochemical (IHC) staining.

Results: An animal model of RILD was established and validated by histopathological analysis. On 18F-NOTA-FAPI PET, RILD was first observed on days 42, 35 and 7 in the 40, 60 and 90 Gy groups, respectively. After treatment with 90 Gy, 18F-NOTA-FAPI uptake in an area of RILD emerged on day 7 (0.65±0.05 %ID/ml) and reappeared on day 28 (0.81±0.09 %ID/ml), remaining stable for 4–6 weeks. Autoradiography and HE staining IHC staining revealed that 18F-NOTA-FAPI accumulated mainly in the center of the irradiated area. IHC staining confirmed the presence of FAP+ macrophages in the RILD area, while FAP+ fibroblasts were observed in the peripheral area of irradiated lung tissue.

Conclusion: 18F-NOTA-FAPI represents a promising radiotracer for in vivo imaging of RILD in a dose- and time-dependent manner. Noninvasive imaging of FAP may potentially aiding in the clinical management of radiotherapy patients.

Introduction

Radiotherapy is a critical component in the treatment of thoracic malignancies, including esophageal cancer, lung cancer and breast cancer [1]. However, normal lung tissue inside the radiation field is vulnerable to potential injury. Radiation doses greater than 50 Gy can lead to the development of radiation-induced lung damage (RILD) in the form of acute radiation-induced pneumonitis (RIP) or late occurring radiation-induced lung fibrosis (RILF) [2, 3]. High numbers of macrophages are detected within the damaged tissue in clinical and preclinical RILD, as these cells are the first responders to organ injury and are crucial for tissue repair and re-establishment of homeostasis [4]. Once the repair process is stimulated by inflammatory cell infiltration, fibroblasts also populate the site of injury and interactions between activated macrophages and fibroblasts coordinate tissue repair after injury, with miscommunications potentially resulting in pathological healing and fibrosis [5]. Thus, close monitoring of the responses of macrophages and fibroblasts in radiated tissue can inform new strategies for preventing or delaying the progression of lung fibrosis [6].

Fibroblast activation protein (FAP) is a homodimeric membrane-bound serine protease that has intracellular and extracellular soluble truncated forms [7]. Its expression was shown to facilitate the
ability of macrophages to migrate through the collagen networks found in the dermis and in the tumor microenvironment, similar to the mechanism demonstrated for FAP-expressing (FAP+) fibroblasts [8]. FAP+ fibroblasts are selectively induced in areas of ongoing tissue remodeling, including sites of wound healing [9], fibrosis [10-12], the solid tumor microenvironment [13, 14], and rheumatoid arthritis [15]. The basal expression level of FAP in healthy human tissue is considered very low, whereas in mice, detectable levels of FAP expression were shown to be highest in the uterus, pancreas, submaxillary gland, and skin [16]. Radiolabeled FAP inhibitors (FAPIs) have been developed for noninvasive imaging of FAP expression and characterized by many groups, exhibiting rapid distribution at the target site and minimal uptake in normal organs [13, 17]. In relation to fibrosis, however, FAP remains a relatively understudied protein, and its role in the pathogenesis of this condition is unknown. In the present study, we investigated the feasibility of using a novel FAP-based positron emission tomography (PET)/computed tomography (CT) tracer, 18F-NOTA-FAPI, to monitor the injury status of lung tissue following radiation and to define the role of FAP in the development of RILD in vivo.

Methods

Rats

Male Wistar rats, 6 weeks of age, were obtained from Beijing Vital River Laboratory Animal Technology Co., Ltd. and housed in a specific pathogen-free, temperature and humidity-controlled environment with food and water in their cages. The rats were housed two per cage and allowed to acclimate for 1 week after shipping prior to treatment. All studies involving the use of rats were approved by the Shandong Cancer Hospital and Institute.

Rat Model

To confirm the feasibility of the proposed experiments, 12 male Wistar rats were randomly assigned to one of four radiation treatment groups (3 rats/group): sham, 40 Gy, 60 Gy, and 90 Gy. Rats were anesthetized with 2.5% pentobarbital administered intraperitoneally and secured onto a four-axis robotic positioning table of a small animal radiation research platform (SARRP; Xstrahl®, Surrey, UK). A high-resolution, treatment planning CT scan was performed, and CT images were reconstructed with an isotropic voxel size of 0.15 mm. To maximize the survival quality of rats, a circle with a diameter of 5 mm was delineated as the radiotherapy area in the outer 2/3 area of the right lung. The target area was delineated into 16–18 layers from the lower boundary of the lung according to the cone beam CT image. The isocenter for radiotherapy planning was positioned in the right lung on coronal, axial, and sagittal slices (Supplemental Fig. 1). Other parameters such as the target dose according to the dose function, the precise coordinate point and the beam exit time were calculated using MuriPlan software. An arc radiation field was irradiated by a 5 mm×5 mm square field filtered by 0.15 mm Cu in the beam tube. After treatment, the rats were examined weekly by 18F-NOTA-FAPI PET/CT scanning to confirm the presence of RILD. Almost all rats that received the 90-Gy radiation treatment developed acute RIP and late
occurring RILF based on 18F-NOTA-FAPi PET/CT and pathologic evaluations, consistent with previously published observations[18, 19].

In subsequent experiments, 15 male rats underwent CT-guided treatment simulation and delivery. During irradiation, a single dose of 90 Gy was delivered along with 220 kV X-ray energy with a 13-mA tube current. All experiments were repeated twice, and all findings were similar across all experiments (Fig. 1).

Micro PET/CT Imaging

Micro PET imaging was performed using a small-animal Inveon PET/CT scanner (IRIS PET/CT, Inviscan, Germany). Before 18F-fluorodeoxyglucose (FDG) PET/CT scanning, the rats were fasted for at least 6 h. The rats were anesthetized with 1.5%–2% isoflurane in a 0.4 L/min flow of air. Static PET/CT images (10 min) were acquired 1 h after injection of 18F-NOTA-FAPi (7–9 MBq; days 7, 14, 21, 28, 36, 38, 42 after radiation treatment) or 18F-FDG (8–10 MBq; day 22 after radiation treatment). Dynamic PET scanning was performed with 18F-NOTA-FAPi (day 42 after radiation treatment) for 90 min.

Images were reconstructed by software that uses a 3-dimensional ordered-subsets expectation maximum algorithm with attenuation correction. The acquired data were then Fourier-rebinned in 46-time frames (6 · 5 s, 21 · 10 s, 8 · 120 s, 8 · 300 s, and 3 · 600 s) and reconstructed using the same 3-dimensional ordered-subsets expectation maximum algorithm. The obtained images were reconstructed using 3Dimensional Ordered Subsets Implementations Monte Carlo (3D-OSEM-MC) without attenuation correction and then processed using the OsiriX MD 7.0 (Pixmeo, Switzerland). Regions of interest were drawn over areas of RILD and main organs, and average signal levels in the regions were measured. The analyzed results were corrected with a decay curve, and signal intensities were recorded as percentage injected dose per milliliter of tissue (%ID/ml).

Autoradiography

To assess the specificity of 18F-NOTA-FAPi accumulation and to confirm that uptake of 18F-NOTA-FAPi in the area of RILD was due to saturable binding to FAP, a group of treated rats (n=3, day 42 after radiation treatment) were injected with 18F-NOTA-FAPi and killed 1 h later. Serial short-axis cryosections 50-µm thick were prepared from the harvested lungs, and consecutive sections were used for autoradiography.

Histological Analysis

Hematoxylin and eosin (HE) staining (days 7, 14, 21, 28, 42 after radiation treatment) was used to determine the location and extent of areas of RILD, while Masson's trichrome staining was used to assess overall collagen deposition. The expression levels of FAP, as a marker of activated macrophages and fibroblasts, and glucose transporter1 (GLUT1), as a glucose metabolism marker, were evaluated by immunohistochemical (IHC) staining[20]. For IHC analysis, paraffin-embedded sections of lung tissue were deparaffinized, and goat serum (Boster Biological Technology, Pleasanton, CA) was used to block nonspecific binding sites. The sections were incubated with primary antibodies targeting FAP-alpha.
(1:100 dilution, ab53066; Abcam) and GLUT1 (1:200 dilution, ba128033; Abcam). Full-specimen images were captured using Axio Scan.Z1 (Zeiss).

Statistical Analyses

Statistical comparisons were performed using the two-tailed Mann-Whitney U test (GraphPad Software, Inc., San Diego, CA). Differences for which the P value was 0.05 or less were considered to be significant.

Results

Responses of Rat Normal Lung to Different Doses of Irradiation

To obtain an initial estimated dose–response curve for lung injury produced by radiation of different doses, areas of normal rat lung were irradiated with three different doses using a 5-mm collimator. In this feasibility study, no RIP was observed in the 40 Gy and 60 Gy groups. However, the rats in the 40 Gy and 60 Gy groups did show RILF on micro-PET/CT as well as 18F-NOTA-FAP1 uptake in week 6 ($0.76 \pm 0.02 \% \text{ID/ml}$) and week 5 ($0.92 \pm 0.06 \% \text{ID/ml}$) after radiation treatment (Fig. 2a). In rats of the 90 Gy group, 18F-NOTA-FAP1 uptake in areas of RIP emerged on day 7 ($0.65 \pm 0.05 \% \text{ID/ml}$) and reappeared in week 4 after radiation treatment ($0.81 \pm 0.09 \% \text{ID/ml}$). Additionally, in these rats, obvious RILD lesions were observed on micro-PET/CT, and histologic evaluation confirmed the presence of pathological changes associated with RILF in the irradiated lung tissue (Fig. 2b).

Rapid Biodistribution and Accumulation of 18F-NOTA-FAP1 in RILD

A series of dynamic images (axial and coronal sections) collected from 5–90 min after injection of 18F-FAP1 in the irradiated lung are presented in Fig. 3a (day 42 after radiation treatment with 90 Gy). Dynamic measurements over the course of the 90-min post-injection period revealed fast biodistribution and specific tracer uptake in the site of lung injury in vivo (Fig. 3b), and FAPI demonstrated the highest uptake level in the injured lung tissue at 60 min after injection ($0.93 \pm 0.09 \% \text{ID/ml}$), followed by a marker decrease within 90 min ($0.53 \pm 0.01 \% \text{ID/ml}$).

Dynamic Uptake of 18F-NOTA-FAP1 in RILD

Based on our initial results showing the feasibility of observing differences in RILD severity by 18F-FAP1-PET/CT imaging in the rat model, we next investigated the potential value of 18F-FAP1-PET scanning for identifying severe cases of RILD. In vivo longitudinal PET/CT images (cross-sections) of a representative rat subjected to damaging lung irradiation are shown in Fig.4a. Differential 18F-NOTA-FAP1 uptake in the area of RILD compared with the normal lung emerged on day 7 ($0.26 \pm 0.01 \% \text{ID/ml}$), and the uptake was significantly elevated in the irradiated area ($0.65 \pm 0.05 \% \text{ID/ml}$, $P<0.01$), suggesting an early inflammatory response in the lung. Interestingly, the uptake decreased to the background level at 2–3 weeks after irradiation (2 weeks: $0.35 \pm 0.09 \% \text{ID/ml}$, 3 weeks: $0.27 \pm 0.06 \% \text{ID/ml}$) before a second increase was observed at 4 week and a stable period from 4–6 weeks (4 weeks: $0.81 \pm 0.09 \% \text{ID/ml}$, 5 weeks: 0.90 ± 0.07
%ID/ml, 6 weeks: 0.93±0.09 %ID/ml; Fig. 4c), suggesting the development of RILF. The exact location of 18F-NOTA-FAPI uptake within the area of RILD was further verified by autoradiography. In autoradiographic images, increased 18F-NOTA-FAPI uptake was observed predominantly in the injured lung area, while no significant tracer uptake was observed in contralateral normal lung tissue (P<0.05; Fig. 5). Intense 18F-NOTA-FAPI uptake observed in the same irradiated area that was identified on 18F-FDG PET/CT scans (1.93±0.17 %ID/ml; day 22 after radiation treatment; Fig. 4b).

Involvement of FAP in the Pathogenesis of RILD

On HE-stained sections of the irradiated lung tissue, the radiation damage was confined to a small circular area (Fig. 6). On day 7 after irradiation, significant cell injury was observed in the irradiated area of the rat lungs, with foamy macrophages present both within and around the scarred area. Many foamy macrophages and fibroblasts were present by day 28 and remained until day 42. IHC staining showed abundant FAP expression in activated macrophages in the injured lung area. Masson's trichrome staining revealed slight collagen deposition in the injured lung area on day 7 with the amount of collagen deposition gradually increasing thereafter.

On day 42 after radiation, we observed a very interesting “delamination” phenomenon in the injured rat lung tissue. At the center of the irradiated area, we observed a large number of infiltrating FAP+ macrophages and collagen deposition. However, at the border of the irradiated area, we observed thickening of the alveolar walls and a decrease in alveolar air space, leading to the disappearance of the alveolar structure. At the remote area distant from the irradiated area, a large number of FAP+ fibroblasts had gathered and a small amount of collagen had been deposited.

Discussion

Lung tissue is highly sensitive to radiation, and accordingly, the lung is classified as a major dose-limiting organ in radiotherapy. Both acute and delayed radiation-induced pulmonary toxicity have been demonstrated at the pathophysiological and cellular levels [21]. Recent studies have shown that FAP expression on activated fibroblasts defines a distinct subset of fibroblasts associated with matrix remodeling in the context of tissue (lung, liver, cardiac, skin, etc.) fibrosis [22]. Both human and murine RILD is associated with a high level of macrophage infiltration, and pulmonary macrophages are able to trigger the onset and maintenance of RILD [4, 23]. Previous studies have shown that FAP may facilitate the macrophage's ability to migrate through the collagen networks found in the dermis and in the tumor microenvironment, similar to the role of FAP demonstrated in fibroblast migration [8, 24]. FAP expression is one of several candidate biologic processes that have been targeted for molecular imaging [25, 26]. As a small-molecule enzyme inhibitor with high affinity to FAP [27], FAPI has shown promising pharmacokinetic properties regarding target accumulation and retention time [28]. Different from previous studies of FAPI-based tracers using 68Ga, we label FAPI with 18F, which has been shown to be more effective [29]. In this comprehensive evaluation of 18F-NOTA-FAPI PET for assessing RILD, micro-PET scans showed increases in FAPI uptake in irradiated lung tissue, and the specificity of the PET signal
was confirmed by autoradiography and IHC staining, corroborating the high expression of FAP by activated macrophages and fibroblasts. The present study is the first to explore the role of 18F-NOTA-FAPI PET/CT in the evaluation and diagnosis of RILD, with pathological examinations used as the gold standard and excluding confounding factors in an animal model. The pathogenesis of RILD in patients remains incompletely understood, and greater insight is needed into the events that govern the conversion of what begins as a normal healing process after lung injury into an uncontrolled fibroproliferative response resulting in irreversible scarring, tissue distortion, and progressive decline in lung function. The experiments in this study showed the feasibility of imaging the time course of macrophage and fibroblast activation in irradiated tissue. Previous studies have confirmed that irradiated lung fibroblasts themselves can contribute to macrophage activation through the secretion of cytokines. Thus, the signals seem to be bidirectional with functional crosstalk occurring between fibroblast and macrophages in RILD, as described during prostate carcinoma progression [30]. Our findings identified a novel fibrogenic process that involves and sustains macrophage and fibroblast activation. Tracer uptake increased at day 7 after radiation and then decreased to the background level by 2–3 weeks before increasing again by 4 weeks and remaining stable thereafter. In clinical settings, RILD can be classified as early (<6 months, i.e., acute RIP) and late (>6 months, i.e., RILF) [31]. Therefore, we evaluated the histopathologic changes that occurred at several time points to provide a better understanding of the progression of RILD and its consequences. Interestingly, histopathologic analysis revealed steps in the inflammatory process associated with the acute phase in people receiving radiotherapy [32]. In our rat model, these steps were seen within 1 week after irradiation. The fibrosis process in humans began at a very early time point, and we observed fibroblast hyperplasia on day 7 post-irradiation that resulted in collagen deposition in parenchymal tissue at the same time point. Therefore, FAPI PET/CT in the rat model appears to be a good translational model for clinical RILD, allowing for dynamic monitoring of fibroblast activation. This model may be useful for identifying a time window during which fibrosis can still be prevented and the disease course altered. FAP has been identified in a wide range of cancer types and shows minimal expression in normal tissues [13, 17]. Accordingly, several groups have successfully provided proof-of-concept that alpha therapy targeting FAP in the cancer stroma is effective [33, 34]. In light of our present findings, however, somewhat heightened caution is needed for such endeavors. For treatment with FAPIs, side effects associated with tracer accumulation in normal tissues or benign lesions may present a major issue, as benign lesions including pulmonary fibrosis, which showed increased FAPI uptake, are common [35, 36]. Additionally, many patients with primary lung cancers or other intrathoracic malignancies undergo adjuvant radiation therapy. If future treatment regimens include a pharmacologic FAPI, we need to ensure that patients will not be at increased risk of developing RILD, and a better understanding of the role of FAP in human fibrosing conditions is required. In this study, 18F-FDG PET/CT also contributed to the confirmation of RILD diagnosis. Several groups have investigated FDG-PET imaging as a method for assessing RIP. Guo et al. concluded that 18F-FDG imaging may not be able to diagnose aseptic radiation pneumonia in a murine model [37], whereas Abdulla et al. proposed that global lung parenchymal glycolysis and the mean standard uptake value in lung parenchyma may serve as useful biomarkers to quantify lung inflammation on FDG PET/CT following thoracic radiation therapy [38]. The imaging targets for the 18F-FDG and 18F-NOTA-FAPI tracers are different, with 18F-FDG
revealing glucose metabolism imaging and 18F-NOTA-FAPI showing FAP expression. Because 18F-NOTA-FAPI provides protease imaging, this method can help guide research into the related mechanisms of RILD that involve FAP. Although we were able to demonstrate that the process of RILD can be accurately assessed by FAPI PET, this study has several limitations. First, we investigated RILD induced by a single high dose of radiation in order to ensure the consistency of the target area. It is possible that RILD caused by radiation delivered in multiple fractions might differ from that produced by a single dose. Although fractionation was not applied in our study, we still assume that our findings provide a valuable reference for understanding ablative dose focal radiation-induced damage to the normal lung. In clinical settings, local control rates of 85–90% are now expected with SBRT when biologically equivalent doses of >100Gy are delivered in several fractionations [39]. In addition, based on our study of the time–dose response relationship in radiosensitive rats and previous studies on RILD, we chose 90Gy as a time-effective and well-tolerated ablative dose. A strength of our study was that we used radiotherapy simulation, planning, and delivery to induce targeted RILD, which resembles the clinical situation, and damage was observed in and limited to a local area of the right lung, which represents better accuracy than the previous use of ordinary X-ray irradiation to simulate radiotherapy [40]. Moreover, we obtained pathologic confirmation that all irradiated rat lung tissue developed RILD, and the dynamic changes that we observed clearly showed that macrophages and fibroblasts play important roles in the resulting lung fibrosis. More research should be carried out to elucidate the cellular and molecular mechanisms involved.

Conclusion

RIP and RILF remain dose-limiting forms of radiation-induced lung toxicity with relevant impacts on the success of thoracic radiotherapy. In this study, 18F-FAPI PET/CT imaging specifically detected inflamed lung tissue containing macrophages expressing FAP in a rat model of RILD, and the findings obtained using this novel tracer can increase our understanding of the dynamic sequential events that occur after radiation of normal lung tissues. Moreover, imaging of FAP expression will be helpful in future attempts to mediate these reactions to reduce the side effects of radiation therapy.

Abbreviations

RILD: Radiation-induced Lung Damage; RILF: Radiation-induced Lung Fibrosis; FAP: Fibroblast Activation Protein; FAPIs: FAP Inhibitors; HE: Hematoxylin and Eosin; GLUT1: Glucose Transporter1; IHC: Immunohistochemical.

Declarations

Ethics approval and consent to participate

Approval from the Shandong Cancer Hospital and Institute animal care committee was obtained.

Consent for publication
Not applicable

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

There is no conflict of interests to declare.

Funding

This study was partially funded by the Natural Science Foundation of China (NSFC81872475, NSFC82073345), the Jinan Clinical Medicine Science and Technology Innovation Plan (202019060), and the Natural Science Foundation of Shandong Province (ZR202102270219).

Authors’ contributions

SHY and YCW conceived of the study and participated in its designed; XTQ participated in the experiments and drafted the manuscript; SJW is responsible for the preparation of 18F-NOTA-FAPI-04 and 18F-FDG; XLL carried out the radiation in rats. JHD and are responsible for collecting PET/CT images; KC evaluated PET/CT images; ZSM carried out the pathology; JJ carried out the nuclear medicine. All authors have read and approved the final manuscript.

Acknowledgements

The authors thank Laney Weber for English language editing services.

References

1. Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, Hanna TP, Knaul FM, Lievens Y, Lui TY, et al: Expanding global access to radiotherapy. Lancet Oncol 2015; 16:1153-1186.

2. Rodrigues G, Lock M, D'Souza D, Yu E, Van Dyk J: Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer—a systematic review. Radiother Oncol 2004; 71:127-138.

3. Kasmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruyscher D, Lauber K, Belka C: Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214.

4. Meziani L, Mondini M, Petit B, Boissonnas A, Thomas de Montpreville V, Mercier O, Vozenin MC, Deutsch E: CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J 2018; 51.
5. Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, Shenoy VB, McCulloch CA, Hinz B: Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850.

6. Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, Kiebalo M, Kaarteenaho R, Glogauer M, Kapoor M, et al: Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta. Sci Signal 2019; 12.

7. Kelly T, Huang Y, Simms A, Mazur A: Fibroblast activation protein-α: a key modulator of the microenvironment in multiple pathologies. International review of cell and molecular biology 2012; 297:83-116.

8. Muliaaditan T, Caron J, Okesola M, Opzoomer JW, Kosti P, Geourgui M, Gordon P, Lall S, Kuzeva DM, Pedro L, et al: Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun 2018; 9:2951.

9. Mathew S, Scanlan MJ, Mohan Raj BK, Murty VV, Garin-Chesa P, Old LJ, Rettig WJ, Chaganti RS: The gene for fibroblast activation protein alpha (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics 1995; 25:335-337.

10. Acharya PS, Zukas A, Chandan V, Katzenstein AL, Pure E: Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 2006; 37:352-360.

11. Wang XM, Yao TW, Nadvi NA, Osborne B, McCaughan GW, Gorrell MD: Fibroblast activation protein and chronic liver disease. Front Biosci 2008; 13:3168-3180.

12. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, Topping G, Sun T, Nekolla SG, Richter A, et al: Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a (68)Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. J Nucl Med 2019; 60:1743-1749.

13. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Rohrich M, Winter H, et al: (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 2019; 60:801-805.

14. Huber MA, Kraut N, Park JE, Schubert RD, Rettig WJ, Peter RU, Garin-Chesa P: Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J Invest Dermatol 2003; 120:182-188.

15. Bauer S, Jendro M, Wadle A, Kleber S, Stenner F, Dinser R, Reich A, Faccin E, Gödde S, Dinges H, et al: Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis research & therapy 2006; 8:R171.

16. Keane F, Yao T, Seelk S, Gall M, Chowdhury S, Poplawski S, Lai J, Li Y, Wu W, Farrell P, et al: Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS open bio 2013; 4:43-54.

17. Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, Debus J, Jager D, Flechsig P, Altmann A, et al: (68)Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2
DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med 2019; 60:386-392.

18. Jin H, Kang GY, Jeon S, Kim JM, Park YN, Cho J, Lee YS: Identification of molecular signatures involved in radiation-induced lung fibrosis. J Mol Med (Berl) 2019; 97:37-47.

19. Cho J, Kodym R, Seliounine S, Richardson JA, Solberg TD, Story MD: High dose-per-fraction irradiation of limited lung volumes using an image-guided, highly focused irradiator: simulating stereotactic body radiotherapy regimens in a small-animal model. Int J Radiat Oncol Biol Phys 2010; 77:895-902.

20. Tillmanns J, Hoffmann D, Habbaba Y, Schmitto JD, Sedding D, Fraccarollo D, Galuppo P, Bauersachs J: Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 2015; 87:194-203.

21. Rubin P, Casarett GW: Clinical radiation pathology as applied to curative radiotherapy. Cancer 1968; 22:767-778.

22. Li B, Wang JH: Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 2011; 20:108-120.

23. Travis EL: The sequence of histological changes in mouse lungs after single doses of x-rays. Int J Radiat Oncol Biol Phys 1980; 6:345-347.

24. Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS, Chen WT: Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 2002; 277:29231-29241.

25. Saleem A, Helo Y, Win Z, Dale R, Cook J, Searle G, Wells P: Integrin αvβ6 Positron Emission Tomography Imaging in Lung Cancer Patients Treated With Pulmonary Radiation Therapy. International journal of radiation oncology, biology, physics 2020; 107:370-376.

26. Xiong Y, Nie D, Liu S, Ma H, Su S, Sun A, Zhao J, Zhang Z, Xiang X, Tang G: Apoptotic PET Imaging of Rat Pulmonary Fibrosis with Small-Molecule Radiotracer. Molecular imaging and biology 2019; 21:491-499.

27. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, Jäger D, Mier W, Haberkorn U: Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2018; 59:1415-1422.

28. Aver D, Govindaraju P, Jacob M, Todd L, Monslow J, Pure E: Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol 2018; 67:90-106.

29. Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S, Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 2014; 33:2423-2431.
31. Linda A, Trovo M, Bradley JD: Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: a timeline and pattern of CT changes. Eur J Radiol 2011; 79:147-154.
32. Fajardo LF, Berthrong M: Radiation injury in surgical pathology. Part I. Am J Surg Pathol 1978; 2:159-199.
33. Watabe T, Liu Y, Kaneda-Nakashima K, Shirakami Y, Lindner T, Ooe K, Toyoshima A, Nagata K, Shimosegawa E, Haberkorn U, et al: Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: (64)Cu- and (225)Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. J Nucl Med 2020; 61:563-569.
34. Ballal S, Yadav MP, Kramer V, Moon ES, Roesch F, Tripathi M, Mallick S, ArunRaj ST, Bal C: A theranostic approach of [(68)Ga]Ga-DOTA.SA.FAPI PET/CT-guided [(177)Lu]Lu-DOTA.SA.FAPI radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48:942-944.
35. Guo W, Pang Y, Yao L, Zhao L, Fan C, Ke J, Guo P, Hao B, Fu H, Xie C, et al: Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [(68)Ga]Ga-FAPI-04 PET/CT versus MRI and [(18)F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:1604-1617.
36. Gungor S, Selcuk NA: Benign Bone Cyst Mimicking Bone Metastasis Demonstrated on 68Ga-FAPI. Clin Nucl Med 2021.
37. Guo M, Qi L, Zhang Y, Shang D, Yu J, Yue J: (18)F-Fluorodeoxyglucose positron emission tomography may not visualize radiation pneumonitis. EJNMMI Res 2019; 9:112.
38. Abdulla S, Salavati A, Saboury B, Basu S, Torigian D, Alavi A: Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. European journal of nuclear medicine and molecular imaging 2014; 41:350-356.
39. Senthi S, Haasbeek CJ, Slotman BJ, Senan S: Outcomes of stereotactic ablative radiotherapy for central lung tumours: a systematic review. Radiother Oncol 2013; 106:276-282.
40. Zhang Q, Hu Q, Chu Y, Xu B, Song Q: The Influence of Radiotherapy on AIM2 Inflammasome in Radiation Pneumonitis. Inflammation 2016; 39:1827-1834.

Figures
Figure 1

Experimental timeline. R = radiation, 18F-FAPI-PET/CT = 18F-fibroblast activation protein inhibitor-emission tomography (PET)/computed tomography (CT), 18F-FDG = 18F-fluorodeoxyglucose.
Figure 2

18F-NOTA-FAPI PET/CT and pathologic evaluations of rat lung tissues with different radiation doses. **a** Micro-CT imaging of FAPI uptake in irradiated rat lung tissue. Rats in the 40 Gy and 60 Gy groups showed no RIP and began to show RILF on days 42 and 35 after radiation, respectively. In contrast, rats in 90 Gy group showed 18F-NOTA-FAPI uptake in areas of RIP on day 7, with reappearance of tracer uptake in the irradiated area on day 28 after radiation. **b** Representative micrographs of HE-stained lung sections from the 40 Gy, 60 Gy, and 90 Gy groups at days 42, 35, and 28, respectively, showed that the radiation damage was confined to a small area.
Figure 3

In vivo dynamic imaging of 18F-FAPI uptake in irradiated rat lung tissue. a Serial PET/CT images (axial and coronal sections) from 90 min of dynamic scanning. White arrows indicate area of pulmonary fibrosis. b Corresponding time–activity curves for fibrosis in lung tissue (average and SD, n=3). p.i. = post-injection.
Figure 4

In vivo imaging of 18F-FAPI uptake in longitudinal study. a Static PET/CT matched axial slices from the same rat subjected to radiation and scanned 1 h after injection of 18F-FAPI on days 7, 15, 21, 28, 36, 38 and 42 after radiation treatment. Dashed lines separate tracer uptake in lung from uptake in heart, and white circles show representative regions of interest (2-dimensional) drawn over area of RILD. b Static PET/CT matched axial slices in the same rat scanned 1 h after injection of 18F-FDG on day 22 after radiation treatment. c Corresponding time–activity curves for RILD from day 7 to day 42 after radiation (average and SD, n=3).

Figure 5

Binding specificity test. a Serial coronal sections of PET/CT image from 60-min static scan on day 42 after radiation treatment (white arrow). b Autoradiographs of irradiated lungs show increased 18F-FAPI
uptake in area of RIP at day 42 after radiation treatment (red arrow). c HE-stained parallel section showed acute RIP (black arrow). d Comparison of average intensities on autoradiographic imaging between areas of RILF and normal lung (n=3).

Figure 6

Correlation between 18F-NOTA-FAPI uptake and FAP expression. On day 7 after irradiation, foamy macrophages appeared in the damaged lung area, and large numbers of foamy macrophages and
fibroblasts reappeared at day 28, remaining until day 42. IHC staining showed abundant FAP expression in the activated macrophages. Slight collagen deposition was detected on day 7, and the amount of collagen gradually increased thereafter based on Masson's trichrome staining. On day 42 after radiation, infiltration of a large number of FAP+ macrophages were observed (black arrows) along with collagen deposition at the center of the irradiated area. At the border of the irradiated area, thickening of the alveolar walls and a decrease in alveolar air space was observed, leading to disappearance of the alveolar structure (white arrows). At the remote area distant from the irradiated lung tissue, a large number of FAP+ fibroblasts gathered. From the center of the irradiated area to the remote area distant from the irradiated lung tissue, the number of collagens gradually decreased (yellow arrows).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SUPPLEMENTALFIGURES1.pdf](#)