Nonlinear dynamics and primordial curvature perturbations from preheating

Andrei V Frolov

Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada

E-mail: frolov@sfu.ca

Received 19 April 2010, in final form 7 May 2010
Published 27 May 2010
Online at stacks.iop.org/CQG/27/124006

Abstract
In this paper I review the theory and numerical simulations of nonlinear dynamics of preheating, a stage of dynamical instability at the end of inflation during which the homogeneous inflaton explosively decays and deposits its energy into excitation of other matter fields. I focus on preheating in chaotic inflation models, which proceeds via broad parametric resonance. I describe a simple method to evaluate Floquet exponents, calculating stability diagrams of Mathieu and Lame equations describing development of instability in $m^2\phi^2$ and $\lambda\phi^4$ preheating models. I discuss basic numerical methods and issues, and present simulation results highlighting non-equilibrium transitions, topological defect formation, late-time universality, turbulent scaling and approach to thermalization. I explain how preheating can generate large-scale primordial (non-Gaussian) curvature fluctuations manifest in cosmic microwave background anisotropy and large-scale structure, and discuss potentially observable signatures of preheating.

PACS numbers: 98.80.Cq, 05.10.-a

Dedicated to the memory of Lev Kofman, a friend and a mentor, without whom this article would never have been written.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea of inflation (a period of rapid quasi-exponential expansion of the universe) neatly solves several long-standing issues in cosmology [1, 2], and has been spectacularly confirmed by observations of the cosmic microwave background (CMB) anisotropies [3, 4]. While the universe is inflating, its contents are cold. But eventually, inflation has to end and the field driving the inflation must decay, depositing energy into high-energy particles. This process,
known as reheating, ‘boils’ the vacuum and starts the thermal history of the universe with the hot big bang. As the universe continues to cool down, it could undergo more phase transitions, which would happen at symmetry-breaking points of the theory. Very little is known about the fundamental physics at these energy scales, and cosmological observations could be our only source of information for the foreseeable future. No photons reach us directly from this epoch as the universe is filled with hot plasma and is opaque until recombination. Nevertheless, the expansion history of the early universe is imprinted on the sky in the form of primordial curvature fluctuations. With success of WMAP and the data from Planck soon to come, CMB observations are reaching the precision required to disentangle other subdominant effects from Gaussian fluctuations due to simple inflation [5].

The most basic models of reheating involve inflaton decaying into one or more other scalar fields. Among the most interesting are the ones where decay is non-perturbative, for example proceeding through parametric resonance naturally happening in chaotic inflation models [6–12], or tachyonic instability in hybrid inflation models [13–15]. For all their simplicity, these models have surprisingly rich physics involving non-equilibrium phase transitions. While initial stages of preheating are linear and instability development can be understood analytically [11, 12], dynamics could be chaotic [16], and the field evolution quickly becomes inhomogeneous and nonlinear, so non-perturbative decay of the inflaton has to be studied numerically [17–27]. In this paper I briefly review the theory of parametric resonance, go over general results of numerical simulations of nonlinear field evolution during preheating and discuss signatures of preheating that could potentially be observed.

2. Analytical theory of preheating

The basic model of reheating involves inflaton ϕ decaying into another scalar field χ. The action describing two interacting scalar fields minimally coupled to gravity is

$$S = \int \left\{ \frac{R}{16\pi G} - \frac{1}{2} g^{\mu\nu} (\phi_{,\mu}\phi_{,\nu} + \chi_{,\mu}\chi_{,\nu}) - V(\phi, \chi) \right\} \sqrt{-g} \, d^4x,$$

(1)

with the potential $V(\phi, \chi)$ containing the terms responsible for field masses and self-couplings, as well as their interaction. Polynomial field operators up to fourth order are renormalizable, so one usually takes the $\frac{1}{4} m^2 \phi^2$ or $\frac{1}{4} \lambda \phi^4$ inflaton potential for chaotic inflation, and the $\frac{1}{2} g^2 \phi^2 \chi^2$ coupling term [11, 12]. For simplicity, one can keep the decay field χ massless. Couplings like $\frac{1}{2} \sigma \phi \chi^2$ are also allowed and could be present [26], although one would need a χ^4 self-interaction to keep the potential bounded from below. Models with various combinations of these potential bits have been studied in the literature; in this review, I will mainly focus on the one with quartic potential [12]

$$V(\phi, \chi) = \frac{1}{4} \lambda \phi^4 + \frac{1}{2} g^2 \phi^2 \chi^2.$$

(2)

In a flat homogeneous isotropic universe with the Friedmann–Robertson–Walker metric

$$ds^2 = -dt^2 + a(t)^2 dx^2,$$

(3)

the field equations of motion are readily obtained from action (1); they are

$$\ddot{\phi} + 3H\dot{\phi} + \left(-\frac{\Delta}{a^2} + \lambda \phi^2 + g^2 \chi^2 \right) \phi = 0,$$

(4)

$$\ddot{\chi} + 3H\dot{\chi} + \left(-\frac{\Delta}{a^2} + g^2 \phi^2 \right) \chi = 0.$$

(5)
The Hubble parameter $H \equiv \dot{a}/a$ plays the role of the friction term in field dynamics. Its value is determined by the (average) total energy density according to the Friedmann equation

$$H^2 = \frac{8\pi G}{3} \langle \rho \rangle ,$$

(6)

where the combined energy density of the two fields is

$$\rho = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} \dot{\chi}^2 + \frac{1}{2} \frac{(\nabla \phi)^2}{a^2} + \frac{1}{2} \frac{(\nabla \chi)^2}{a^2} + V(\phi, \chi).$$

(7)

During chaotic inflation, the potential energy of the inflaton causes Hubble friction to be large, and the motion of the fields is over-damped. The inflaton ϕ slowly rolls down the potential until the damping becomes sub-critical, at which point it starts oscillating near the minimum of the potential with decreasing amplitude, as illustrated in figure 1(a). Evolution of the Hubble horizon size $L \equiv 1/H$ and the physical wavelength of comoving modes $\lambda \equiv 2\pi a/k$ are shown in figure 1(b). During inflation L changes slowly, so that the slow roll parameter $\epsilon \equiv \frac{\dot{a}}{a} \frac{\dot{L}}{a} \ll 1$. When field is oscillating, the Hubble horizon size grows as $L \propto a^3$ according to the average equation of state, which is $1/3$ for the $\lambda \phi^4$ oscillator. Comoving modes stop exiting and begin re-entering the horizon when $\epsilon = 1$; this moment can be taken as the end of inflation.

Other fields coupled to the inflaton feel its oscillations through modulation of parameters in their equations of motion, such as the effective mass term $g^2 \phi^2$ in equation (5). Periodic modulation can lead to parametric resonance and exponential growth of inhomogeneous excitations in the fields coupled to the inflaton. This is a fairly generic feature of chaotic inflation models; let us see how this happens in our model (2).

It is very useful to scale variables so that the inflaton oscillations are periodic and of constant amplitude. This is particularly easy in model (2), which is conformally invariant apart from its coupling to gravity. Switching to conformal time $d\eta \equiv dt/a$ and scaling the field values according to their conformal weight, the equation of motion for the homogeneous
inflaton (4) simply becomes \((a\phi)'' + \lambda (a\phi)^3 - a''\phi = 0\). If one neglects the last term (which is small as \(a \simeq \eta\)), the oscillating inflaton solution is

\[
\phi(\eta) = \frac{\Phi_0}{a(\eta)} f(\tau), \quad \tau \equiv \lambda^{1/2} \Phi_0 (\eta - \eta_0)
\]

(8)

where \(\Phi_0\) is the amplitude of inflaton oscillations, and \(f(\tau)\) is a unit amplitude solution of the canonical anharmonic oscillator equation \(d^2 f/d\tau^2 + f^3 = 0\), which can be written exactly in terms of the Jacobi elliptical cosine function, or its harmonic expansion [29]

\[
f(\tau) \equiv \text{cn}(\tau, 2^{-1}) = 2^{1/2} \frac{4\pi}{T} \sum_{n=1}^{\infty} \frac{\cos\left(\frac{n-1/2}{2}\pi\tau\right)}{\cosh\left(n - \frac{1}{2}\right)\pi}.
\]

(9)

The function \(f(\tau)\) is periodic with period \(T = \pi^{-1/2} \Gamma^{-1/2} (1/4)\), and its harmonic expansion is exponentially converging, so only a few terms are needed to accurately represent its shape. Substituting the background inflaton solution (8) into the equation of motion (5) for the coupled field \(\chi\), and rescaling variables the same way as we did for inflaton, one obtains the evolution equation for the Fourier mode of the decay field \(\chi_k\) with the comoving wavenumber \(k\). In terms of the rescaled parameters \(\kappa \equiv k/(\lambda^{1/2}\Phi_0)\) and \(q \equiv g^2/\lambda\), it is

\[
\frac{d^2 (a\chi_k)}{d\tau^2} + [\kappa^2 + q \text{cn}^2(\tau, 2^{-1/2})](a\chi_k) = 0.
\]

(10)

The exact solution of the oscillating inflaton \(a\phi\) is shown in figure 2, along with the homogeneous solution of the field \(a\chi\) coupled to it, for two slightly different values of the coupling \(g^2/\lambda\). As one can see, depending on the value of the coupling, evolution of the field \(\chi\) can be either exponentially unstable (2a), or merely oscillatory (2b).

Differential equations with periodic coefficients are studied in Floquet theory, and are often encountered in other branches of physics as well (for example, Bloch waves in condensed matter). Equation (10), in particular, is known as the Lame equation, while its counterpart for harmonic inflaton oscillations in the \(m^2\phi^2\) potential is the Mathieu equation [30]. According to Floquet’s theorem, equation (10) admits the solution of the form \(e^{i\mu \tau} P(\tau)\), where \(\mu\) is a
complex number, and the function $P(\tau)$ is periodic. The Floquet exponent μ depends on the parameters κ^2 and q, and can be calculated by explicitly constructing such a periodic function from the principal fundamental matrix solution

$$W(\tau) = \begin{bmatrix} \chi_1(\tau) & \chi_2(\tau) \\ \chi'_1(\tau) & \chi'_2(\tau) \end{bmatrix},$$

made up of two independent solutions χ_1 and χ_2 with initial conditions $W(0) = I$. Integrating the principal fundamental solution over a single period (which can be done efficiently and precisely using numerical integration), and fixing coefficients in a linear combination $c_1 \chi_1(\tau) + c_2 \chi_2(\tau) = e^{\mu \tau} P(\tau)$ to satisfy $P(T) = P(0)$ and $P'(T) = P'(0)$, one finds that the value of the Floquet exponent μ is given by

$$e^{\mu T} = Q(T) + \sqrt{Q^2(T) - W(T)},$$

where Q and W are two invariants of the matrix W under a similarity transformation

$$Q = \frac{1}{2} \text{tr} W, \quad W = \det W \equiv 1.$$

(13)

The second invariant (Wronskian W) is conserved, so expression (12) simplifies to

$$\cosh \mu T = Q(T).$$

(14)

Stability diagrams of Mathieu and Lame equations showing contour plots of $\text{Re}\mu$ calculated in this fashion are presented in figure 3. Wide bands in parameter space are unstable, with values of the Floquet exponent μ reaching as high as 0.237 for the Lame equation. If the value of coupling lands you into one of these bands, the inflaton will decay very efficiently into...
Figure 4. Evolution of distributions of inflaton (left) and decay product (right) in a full nonlinear simulation with coupling at the maximal resonance $g^2/\lambda = 1.875$.

χ_A particles for a wide range of wavenumbers k. This regime is known as a broad parametric resonance.

Although not usually emphasized, the instability band structure of Lame and Mathieu equations is quite similar, as elliptic cosine (9) differs from $\cos \tau$ by 4.3% total harmonic distortion and 18% larger period. The real difference between $m^2 \phi^2$ and $\lambda \phi^4$ models is how parameters scale with expansion of the universe. While their values stay constant for the $\lambda \phi^4$ model (which is nearly conformally invariant), for the $m^2 \phi^2$ model expansion drags the values of parameters toward the stable point $\kappa^2 = q = 0$, eventually shutting off the resonance. Thus for preheating to be efficient in the $m^2 \phi^2$ model, one needs a much larger initial value of q.

3. Tackling nonlinear evolution: numerical methods and issues

Broad parametric resonance amplifies quantum fluctuations of the fields, creating real particles in a state far from thermal equilibrium. Instability is exponentially rapid, and develops within a few dozen of inflaton oscillation (as illustrated in figure 4), which is very fast on cosmological time scales. Once the energy density of created particles becomes comparable to that of the homogeneous inflaton, one can no longer treat the evolution perturbatively, and nonlinearity of the coupling and back reaction of the created particles on the inflaton evolution has to be taken into account. The most straightforward way to do it is to solve field evolution equations numerically [17, 18].

Several codes are available for this purpose, most notably LATTICEEASY by Gary Felder and Igor Tkachev [31, 32] which is widely used and modified, my own DEFROST [33] which offers improved performance and visualization capabilities and a new GPU-accelerated CUDA EASY by Jani Sainio [34]. A pseudo-spectral code PSpectRE has just been released as well [35]. Most of the implementations (with the exception of PSpectRE) opt for a finite difference method to solve nonlinear partial differential equations (4) and (5). The fields are discretized on a cubic spatial grid of spacing $d{x}$, and the spatial differential operators are approximated by finite differences

$$\Delta X = \frac{D[X]}{(d{x})^2}, \quad (\nabla X)^2 = \frac{G[X]}{(d{x})^2}.$$
Discretization of the Laplacian operator involving only 26 nearest neighbors of a point

\[D[X] = \sum_{x-1}^{x+1} \sum_{y-1}^{y+1} \sum_{z-1}^{z+1} c_{d(\alpha)} X_\alpha \]
(16)

is going to be second-order accurate, but truncation error can be made isotropic to fourth order [36] by taking coefficients \(c_\alpha \) as summarized in figure 5. A critical issue for accuracy of long-term cosmological simulations is discretization of gradient terms in energy density (7). Discretized energy is not necessarily conserved by discretized equations of motion, and gradient energy leaking off the grid affects the equation of state and leads to large cumulative errors in expansion history of the universe [47, 49]. The best way to avoid this pitfall is to discretize Lagrangian (1) directly. One can show that the proper discretization of gradient square, variation of which leads to Laplacian discretization (16) in equations of motion, is

\[G[X] = \frac{1}{2} \sum_{x-1}^{x+1} \sum_{y-1}^{y+1} \sum_{z-1}^{z+1} c_{d(\alpha)} (X_\alpha - X_0)^2. \]
(17)

Once the spatial operators are discretized, the time evolution problem becomes a system of coupled ordinary differential equations, which can be integrated using any of the usual methods. DEFROST uses the leapfrog scheme, which is simple, fast, and second-order accurate in time. A higher order scheme could be used if needed. Symplectic integrator developed in [49] is capable of reaching machine precision levels, or hybrid integrator of Huang et al [28] could be used if time operator splitting is not possible.

4. Non-linear dynamics, thermalization and universality within horizon

Nonlinear dynamics that soon takes over the evolution of scalar fields can be rather non-trivial. Preheating is essentially a non-equilibrium phase transition, and a lot of interesting things can happen. Over the years, detailed numerical studies have been carried out for many parametric resonance [17, 18, 20, 25–27] and tachyonic [21–24] preheating models. In this section, I
highlight some features of nonlinear dynamics in preheating on horizon scales. This is local physics as far as cosmology is concerned, as the Hubble horizon size at the end of chaotic inflation is tiny (roughly 1 m redshifted to the present day).

Quantum fluctuations that fall into unstable bands of figure 3 are amplified and become classical with large occupation numbers. Once linear instability develops, the field configuration becomes very inhomogeneous and particle description gets complicated by nonlinear coupling. A useful tracer of field dynamics is the evolution of the total energy.
density (7), which is an adiabatic invariant for rapidly oscillating fields. Evolution of the energy density ρ in the preheating model (2) with $g^2/\lambda = 1.875$ is shown in figure 6. For that value of the coupling, long wavelength fluctuations grow fastest, leading to formation of large blobs as shown in figure 6(a). Once density contrast increases to about 1, nonlinear interaction kicks in and the density fragments to much smaller scales as shown in figure 6(b). In particle description, this could be viewed as upscattering of modes to higher momenta by the nonlinear interaction term.

Just as it happens in phase transitions, one can also produce topological defects during preheating, if the theory allows them. For example, in the preheating model with the $O(2)$-symmetric potential with a small field vacuum expectation value v,

$$V(\phi, \chi) = \frac{1}{4} \lambda (\phi^2 + \chi^2 - v^2)^2,$$

(18)
global cosmic strings can form [19, 20]. Initial instability in this model develops similar to (2) with $g^2/\lambda = 2$, but once the energy density dilutes enough to fill the ring at the bottom of potential, cosmic strings are produced. String cores ($\phi^2 + \chi^2 < v^2/40$) soon after formation are shown in figure 7(a). String loops within horizon are transient, and eventually will collapse and annihilate. After a while, energy density configuration once again reaches a highly fragmented state shown in figure 7(b).

An important open question is exactly how and when thermalization after preheating happens. Characteristic momentum of particles produced during the linear stage of preheating is determined by the instability band structure. Typically, it is significantly less than that of the thermal equilibrium value, so particles need to upscatter through nonlinear interactions, and thermalization can be delayed by a long time [11]. This is supported by numerical simulations, which show a slow scaling regime in evolution of field occupation numbers in the $\lambda \phi^4$ model [37, 38].

Figure 8. Universality of lognormal density distribution in various two-field preheating models with the inflaton decaying via broad parametric resonance.
While dynamics of the non-equilibrium phase transition can be rather varied, late stages of preheating appear to have a certain universality to them. After initial transient, the field evolution leads to a highly inhomogeneous state similar to that shown in figures 6(b) and 7(b) which persists on long time scales, with slow fragmentation going on. A striking feature of this regime is that a one-point probability distribution function of the energy density contrast \(\delta \equiv \rho / \bar{\rho} \) appears to be statistically stationary, and universal across a class of preheating models [33]. Figure 8 shows late-time energy density PDFs (with dilution due to expansion scaled out) for four different preheating models ending via broad parametric resonance. All of them fit lognormal distribution

\[
P(\rho) \, d\rho = \frac{1}{\sqrt{2\pi \sigma}} \exp \left[-\frac{(\ln \rho - \mu)^2}{2\sigma^2} \right] \frac{d\rho}{\rho}
\]

(19)

It is very tempting to attribute scaling and universality of the late stages of preheating to scalar field turbulence [37, 38], especially since lognormal density distributions are known to arise in relativistic fluid turbulence [39], but the subject needs further investigation.

5. Large-scale primordial fluctuations from preheating

As interesting as non-equilibrium field evolution could be, thermalization wipes out most of the details in the final state after the phase transition. However, dynamics of the transition could affect the expansion history of the universe, and leave an imprint in the observable large-scale curvature fluctuations produced during preheating [47, 49].

Inflation transforms sub-horizon quantum vacuum fluctuations in all the light fields into super-horizon classical fluctuations. These fluctuations are statistically homogeneous and isotropic Gaussian random fields, and are completely described by their spectra with the amplitude \(P(k) \sim H^2/4\pi^2 \) evaluated at the horizon crossing \(H = k/a \). Causally disconnected patches on super-horizon scales evolve essentially independently, and large-scale curvature fluctuations \(\Phi \) are the difference \(\delta N \) in amount of expansion \(N \equiv \ln a \) different patches experience from the constant curvature hypersurface at the end of inflation to the constant density (and temperature) hypersurface once thermalization occurred [40–42]. Fluctuations of the inflaton \(\delta \phi \) are usually the main source of metric curvature fluctuations \(\Phi \), with their amplitude enhanced by the slow-roll parameter \(P_\phi(k) = P_\phi(k)/(2m_{\text{pl}}^2\epsilon) \). It is also entirely possible to convert isocurvature modes from subdominant light fields into observable curvature perturbations, for example as it happens in curvaton-type scenarios [43, 44] and modulated reheating [45, 46]. Resonant preheating dynamics can create and significantly amplify curvature fluctuations from isocurvature modes of light fields, as suggested by [47, 48] and calculated in [49, 50].

For a simple preheating model (2) with small values of coupling \(g^2/\lambda \), the second field \(\chi \) is light during inflation, and acquires the fluctuation spectrum with power on super-horizon scales comparable to inflaton, as shown in figure 9. Super-horizon fluctuations of \(\chi \) are converted to curvature fluctuations through preheating dynamics. The basic mechanism is that the flat \(\chi \)-direction of potential (2) is suddenly lifted due to the expectation value of inhomogeneous terms like \(\langle \delta \phi^2 \rangle \) when parametric resonance instability develops [49]. This will modulate the equation of state based on the value of homogeneous mode in field \(\chi \) at the time inhomogeneity develops, and create curvature fluctuations dependent on the initial value of \(\chi \) on super-horizon scales.

Calculating curvature fluctuations generated by preheating involves tracing minute differences in expansion history, from the end of inflation to thermalization, in nonlinear three-dimensional simulations of regions of the universe corresponding to different initial
values of χ on super-horizon scales. This is a very demanding numerical problem, not only in terms of computing power, but precision required. The first attempt encountered numerical difficulties [47, 48], and it required development of new numerical integration techniques to obtain the answer [49]. Skipping a lot of technical details which will be discussed elsewhere [50], the total curvature fluctuation Φ produced in the inflation model (2) is

$$\Phi(x) = \Phi_G(x) + \tilde{F}_{\text{NL}}(x\Phi(x)),$$ \hspace{1cm} (20)
where Φ_G is the usual nearly Gaussian contribution from inflaton fluctuations $\delta \phi$, and the second uncorrelated term is generated by preheating from the super-horizon mode of the field χ. The exact distribution of the field χ sampled on the observable part of the sky depends on inflation history in the extreme version of cosmic variance. The transfer function F_{NL} shown in figure 10 is quite nonlinear and could lead to non-Gaussian fluctuations of the form very different from the usual weak non-Gaussianity parametrization

$$\Phi(x) = \Phi_G(x) + f_{NL}\Phi_G^2(x).$$

The amplitude of curvature fluctuations produced by preheating in model (2) is 10^{-5}, which is comparable to the curvature fluctuations from the inflaton, so the two could potentially be disentangled by searching for the non-Gaussian component in the observed CMB temperature anisotropy.

6. Discussion: going after observable signatures of preheating

Very little is known about how inflation actually ended, and what was the high-energy physics like at those energy scales (or even what is the inflaton itself). Traces of reheating are hidden from us by the opaque plasma in nearly thermal state, and are unobservable directly. One must seek signatures of preheating that survive thermalization and could be detected. These could include stable relics like topological defects [19, 20, 53] or primordial black holes [54–56], stochastic gravitational wave background produced by inhomogeneities during reheating [57–62], or anomalies in the expansion history of the universe imprinted in the primordial curvature fluctuations [45–52]. Of these, the last effect appears to be the most promising observationally, as stable relic formation is difficult without spoiling cosmology, and stochastic gravitational waves are very hard to detect.

Curiously enough, the simple model of preheating (2) could generate non-Gaussian curvature fluctuations of observable amplitude which are intermittent, producing primordial ‘cold spots’ [49]. Although arguable [4], the CMB temperature map appears to have slight statistical anomalies in the form of a cold spot in the southern hemisphere [63], and slight discrepancy in north–south temperature anisotropy spectra [64]. An exciting possibility is that a primordial ‘cold spot’, whether from preheating or some other early universe source, could potentially explain both. A tell-tale signature of the primordial non-Gaussian cold spot is the associated E-mode polarization pattern around it, which might be possible to test with Planck data [65]. Primordial potential ‘dips’ would also manifest in the formation of a large-scale structure.

References

[1] Linde A D 1990 Particle physics and inflationary cosmology *Contemp. Concepts Phys.* **5** 1–362 (arXiv:hep-th/0503203)

[2] Linde A 2004 Inflation and string cosmology eConf C **040802** L024

[3] Komatsu E *et al* 2010 Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation arXiv:1001.4538 [astro-ph.CO]

[4] Bennett C L *et al* 2010 Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies? arXiv:1001.4758 [astro-ph.CO]

[5] Komatsu E *et al* 2009 Non-Gaussianity as a probe of the physics of the primordial universe and the astrophysics of the low redshift universe arXiv:0902.4759 [astro-ph.CO]

[6] Dolgov A D and Kirilova D P 1990 Production of particles by a variable scalar field *Sov. J. Nucl. Phys.* **51** 172

Dolgov A D and Kirilova D P 1990 * Yad. Fiz. **51** 273
[7] Traschen J H and Brandenberger R H 1990 Particle production during out-of-equilibrium phase transitions *Phys. Rev. D* **42** 2491 (arXiv:hep-th/9004018)

[8] Kofman L, Linde A D and Starobinsky A A 1994 Reheating after inflation *Phys. Rev. Lett.* **73** 3195 (arXiv:hep-ph/9402047)

[9] Shtanov Y, Traschen J H and Brandenberger R H 1995 Universe reheating after inflation *Phys. Rev. D* **51** 5438 (arXiv:hep-ph/9407247)

[10] Kofman L, Linde A D and Starobinsky A A 1996 Non-thermal phase transitions after inflation *Phys. Rev. Lett.* **76** 1011 (arXiv:hep-th/9510119)

[11] Kofman L, Linde A D and Starobinsky A A 1997 Towards the theory of reheating after inflation *Phys. Rev. D* **56** 3258 (arXiv:hep-ph/9704452)

[12] Greene P B, Kofman L, Linde A D and Starobinsky A A 1997 Structure of resonance in preheating after inflation *Phys. Rev. D* **56** 6175 (arXiv:hep-ph/9705347)

[13] Linde A D 1994 Hybrid inflation *Phys. Rev. D* **49** 748 (arXiv:astro-ph/9307002)

[14] Garcia-Bellido J and Linde A D 1998 Preheating in hybrid inflation *Phys. Rev. D* **57** 6075 (arXiv:hep-ph/9712449)

[15] Felder G N, Kofman L and Linde A D 1999 Instant preheating *Phys. Rev. D* **59** 123523 (arXiv:hep-ph/9912289)

[16] Podolsky D I and Starobinsky A A 2002 Chaotic reheating *Grav. Cosmol. Suppl.* **8** N1 13 (arXiv:astro-ph/0204327)

[17] Khlebnikov S Y and Tkachev I I 1996 Classical decay of inflaton *Phys. Rev. Lett.* **77** 219 (arXiv:hep-ph/9603378)

[18] Prokopec T and Roos T G 1997 Lattice study of classical inflaton decay *Phys. Rev. D* **55** 3768 (arXiv:hep-ph/9610400)

[19] Kasuya S and Kawasaki M 1998 Topological defects formation after inflation on lattice simulation *Phys. Rev. D* **58** 083516 (arXiv:hep-ph/9804429)

[20] Tkachev I, Khlebnikov S, Kofman L and Linde A D 1998 Cosmic strings from preheating *Phys. Lett. B* **440** 262 (arXiv:hep-ph/9805209)

[21] Felder G N, Garcia-Bellido J, Greene P B, Kofman L, Linde A D and Tkachev I 2001 Dynamics of symmetry breaking and tachyonic preheating *Phys. Rev. Lett.* **87** 011601 (arXiv:hep-ph/0012142)

[22] Felder G N, Kofman L and Linde A D 2001 Tachyonic instability and dynamics of spontaneous symmetry breaking *Phys. Rev. D* **64** 123517 (arXiv:hep-th/0106179)

[23] Copeland E J, Pascoli S and Rajantie A 2002 Dynamics of tachyonic preheating after hybrid inflation *Phys. Rev. D* **65** 103517 (arXiv:hep-th/0202031)

[24] Garcia-Bellido J, Perez M Garcia and Gonzalez-Arroyo A 2003 Symmetry breaking and false vacuum decay after hybrid inflation *Phys. Rev. D* **67** 103501 (arXiv:hep-ph/0208228)

[25] Podolsky D I, Felder G N, Kofman L and Peloso M 2006 Equation of state and beginning of thermalization after preheating *Phys. Rev. D* **73** 023501 (arXiv:hep-ph/0507096)

[26] Dufaux J F, Felder G N, Kofman L, Peloso M and Podolsky D 2006 Preheating with trilinear interactions: tachyonic resonance *J. Cosmol. Astropart. Phys.* **JCAP07** (2006) arXiv:hep-ph/0602144

[27] Felder G N and Kofman L 2007 Nonlinear inflaton fragmentation after preheating *Phys. Rev. D* **75** 043518 (arXiv:hep-ph/0609256)

[28] Barnaby N, Bond J R, Huang Z and Kofman L 2009 Preheating after modular inflation *J. Cosmol. Astropart. Phys.* **JCAP11** (2009) 021 (arXiv:0909.0503 [hep-th])

[29] Kiper A 1984 Fourier series coefficients for powers of the Jacobian elliptic functions *Math. Comput.* **43** 247–59

[30] Bateman H 1955 *Higher Transcendental Functions* vol 3 (New York: McGraw-Hill)

[31] Felder G N and Tkachev I 2000 LATTICEEASY: a program for lattice simulations of scalar fields in an expanding universe arXiv:hep-ph/0011159

[32] Felder G N 2007 CLUSTEREASY: a program for simulating scalar field evolution on parallel computers arXiv:0712.0813 [hep-ph]

[33] Frolov A V 2008 DEFROST: a new code for simulating preheating after inflation *J. Cosmol. Astropart. Phys.* **JCAP11** (2008) 020 (arXiv:0809.0503 [hep-th])

[34] Sainio J 2009 CUDAESA — a GPU accelerated cosmological lattice program arXiv:0911.5692 [astro-ph.IM]

[35] Easther R, Finkel H and Roth N 2010 PSpectRE — a pseudo-spectral code for (p) reheating arXiv:1005.1921 [astro-ph.co]

[36] Patra M and Karttunen M 2005 Stencils with isotropic discretization error for differential operators *Numer. Methods PDEs* **22** 936

[37] Micha R and Tkachev I 2003 Relativistic turbulence: a long way from preheating to equilibrium *Phys. Rev. Lett.* **90** 121301 (arXiv:hep-ph/0210202)

[38] Micha R and Tkachev I 2004 Turbulent thermalization *Phys. Rev. D* **70** 043538 (arXiv:hep-ph/0403101)
[39] Nordlud A and Padovan P 1998 Density PDFs of super-sonic turbulence arXiv:astro-ph/9810074.
[40] Starobinsky A A 1982 Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations Phys. Lett. B 117 175
[41] Salopek D S and Bond J R 1990 Nonlinear evolution of long wavelength metric fluctuations in inflationary models Phys. Rev. D 42 3936
[42] Sasaki M and Stewart E D 1996 A general analytic formula for the spectral index of the density perturbations produced during inflation Prog. Theor. Phys. 95 71 (arXiv:astro-ph/9507001)
[43] Linde A D and Mukhanov V F 1997 Non-Gaussian isocurvature perturbations from inflation Phys. Rev. D 56 535 (arXiv:astro-ph/9610219)
[44] Lyth D H and Wands D 2002 Generating the curvature perturbation without an inflaton Phys. Lett. B 524 5 (arXiv:hep-ph/0110002)
[45] Dvali G, Gruzinov A and Zaldarriaga M 2004 A new mechanism for generating density perturbations from inflation Phys. Rev. D 69 023505 (arXiv:astro-ph/0303591)
[46] Kofman L 2003 Probing string theory with modulated cosmological fluctuations arXiv:astro-ph/0303614.
[47] Chambers A and Rajantie A 2008 Lattice calculation of non-Gaussianity from preheating Phys. Rev. Lett. 100 041302 (arXiv:0710.4133 [astro-ph])
Chambers A and Rajantie A 2008 Phys. Rev. Lett. 101 149903 (erratum)
[48] Chambers A and Rajantie A 2008 Non-Gaussianity from massless preheating J. Cosmol. Astropart. Phys. JCAP08(2008)002 (arXiv:0805.4795 [astro-ph])
[49] Bond J R, Frolov A V, Huang Z and Kofman L 2009 Non-Gaussian spikes from chaotic billiards in inflation preheating Phys. Rev. Lett. 103 071301 (arXiv:0903.3407 [astro-ph.CO])
[50] Bond J R, Frolov A V, Huang Z and Kofman L in preparation
[51] Kohri K, Lyth D H and Valenzuela Toledo C A 2010 On the generation of a non-Gaussian curvature perturbation during preheating J. Cosmol. Astropart. Phys. JCAP02(2010)023 (arXiv:0904.0793 [hep-ph])
[52] Chambers A, Nurmi S and Rajantie A 2010 Non-Gaussianity from resonant curvaton decay J. Cosmol. Astropart. Phys. JCAP01(2010)012 (arXiv:0909.4535 [astro-ph.CO])
[53] Battye R A and Weller J 2000 Cosmic structure formation in hybrid inflation models Phys. Rev. D 61 043501 (arXiv:astro-ph/9810203)
[54] Rubin S G, Khlopov M Y and Sahharov A S 2000 Primordial black holes from non-equilibrium second order phase transition Grav. Cosmol. S 6 51 (arXiv:hep-ph/0005271)
[55] Suyama T, Tanaka T, Bassett B and Kudoh H 2005 Are black holes over-produced during preheating? Phys. Rev. D 71 063507 (arXiv:hep-ph/0410247)
[56] Suyama T, Tanaka T, Bassett B and Kudoh H 2006 Black hole production in tachyonic preheating J. Cosmol. Astropart. Phys. JCAP04(2006)001 (arXiv:hep-ph/0601108)
[57] Easther R and Lim E A 2006 Stochastic gravitational wave production after inflation J. Cosmol. Astropart. Phys. JCAP04(2006)010 (arXiv:astro-ph/0601617)
[58] Easther R, Giblin J T and Lim E A 2007 Gravitational wave production at the end of inflation Phys. Rev. Lett. 99 221301 (arXiv:070106212994)
[59] Garcia-Bellido J and Figueroa D G 2007 A stochastic background of gravitational waves from hybrid preheating Phys. Rev. Lett. 98 061302 (arXiv:astro-ph/0701014)
[60] Garcia-Bellido J, Figueroa D G and Sastre A 2008 A gravitational wave background from reheating after hybrid inflation Phys. Rev. D 77 043517 (arXiv:0707.0839 [hep-ph])
[61] Dufaux J F, Bergman A, Felder G N, Kofman L and Uzan J P 2007 Theory and numerics of gravitational waves from preheating after inflation Phys. Rev. D 76 123517 (arXiv:0707.0875 [astro-ph])
[62] Caprini C, Durrer R and Servant G 2007 Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach arXiv:0711.2593 [astro-ph].
[63] Cruz M, Martinez-Gonzalez E and Vielva P 2009 The WMAP cold spot arXiv:0901.1986 [astro-ph].
[64] Eriksen H K, Banday A J, Gorski K M, Hansen F K and Lilje P B 2007 Hemispherical power asymmetry in the three-year Wilkinson microwave anisotropy probe sky maps Astrophys. J. 660 L81 (arXiv:astro-ph/0701089)
[65] Vielva P, Martinez-Gonzalez E, Cruz M, Barreiro R B and Tucci M 2010 CMB polarization as a probe of the anomalous nature of the cold spot arXiv:1002.4029 [astro-ph.CO].