GEOLOGY

Two billion years of magmatism recorded from a single Mars meteorite ejection site

Thomas J. Lapen,1* Minako Righter,1 Rasmus Andresen,1,2 Anthony J. Irving,3 Aaron M. Satkoski,4,5 Brian L. Beard,4,5 Kunihiko Nishiizumi,6 A. J. Timothy Jull,7 Marc W. Caffee8,9

The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2,403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element–depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old “depleted” shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site.

INTRODUCTION

Insights into the duration of igneous activity and the nature of magma sources in Mars are made from analyses of shergottite meteorites—mafic to ultramafic igneous rocks from Mars’ crust composed mainly of pyroxene, plagioclase (commonly maskelynite), and, in many cases, olivine [for example, McSween and Treiman (1)]. Shergottites are also characterized by their trace element concentrations and the radiogenic isotope compositions of their mantle sources [for example, Borg and Draper (2)], which are distinct from those that produced the other Martian igneous rocks classified as nakhlites and chassignites (3). The shergottites were launched from Mars’ crust by large bolide impacts (4, 5); however, the unknown spatial associations of these meteorites before launch and a relatively narrow range of crystallization ages from 150 to 574 million years (My) (6–8) have limited our understanding of long-term igneous processes.

Geochemical data obtained from Northwest Africa (NWA) 7635, a 195.8-g partly fusion-crusted olivine-plagioclase-phryic rock that was found in Algeria in 2012, both extend the recognized period of shergottite magmatism and provide constraints on the prelaunch spatial association of a suite of geochemically related shergottite specimens. This specimen is porphyritic with phenocrysts (up to 200 µm) of plagioclase completely converted to maskelynite, Fe-rich olivine, augite, and low-Ti magnetite in a finer-grained matrix composed mainly of igneously-zoned, Fe-rich augite (see Fig. 1 and the Supplementary Materials). Accessory pyrrhotite and rare ilmenite are present in this study. Isotope analyses of Sm-Nd, Lu-Hf, and Rb-Sr that constrain the age and mantle source compositions were conducted on a 2.2-g portion from the interior of NWA 7635 (table S1). Cosmogenic nuclide concentrations of 10Be (half-life, 1.36 My) and 26Al (half-life, 0.705 My) were measured to constrain the cosmic-ray exposure age, and 14C (half-life, 5730 years) was measured to constrain the terrestrial age; the sum of exposure and terrestrial ages is the time since the launch from the surface of Mars (ejection age).

RESULTS

A 147Sm-143Nd isochron age of 2403 ± 140 million years ago (Ma) (2e) was determined from seven mineral and leachate measurements (see Fig. 2, table S2, and the Supplementary Materials for details). This early Amazonian age is about 1.8 billion years older than that of any other recognized shergottite, whose ages fall into the middle- to late Amazonian epoch in Mars’ geologic history. The mantle source isotopic compositions for NWA 7635 were calculated from initial Nd, Hf, and Sr isotopic compositions of samples F1 and F5-R (table S3). The calculated initial ε143Nd(CHUR), ε176Hf(CHUR), and ε87Sr/86Sr are +29.3 ± 3.1, +39.5 ± 7.8, and 0.699901 ± 0.000025, respectively (all ages from 150 to 574 million years (Ma) (2e) was determined from seven mineral and leachate measurements (see Fig. 2, table S2, and the Supplementary Materials for details). This early Amazonian age is about 1.8 billion years older than that of any other recognized shergottite, whose ages fall into the middle- to late Amazonian epoch in Mars’ geologic history. The mantle source isotopic compositions for NWA 7635 were calculated from initial Nd, Hf, and Sr isotopic compositions of samples F1 and F5-R (table S3). The calculated initial ε143Nd(CHUR), ε176Hf(CHUR), and ε87Sr/86Sr are +29.3 ± 3.1, +39.5 ± 7.8, and 0.699901 ± 0.000025, respectively (all

![Fig. 1. False-color x-ray compositional map showing the mineralogy and mineral textures of NWA 7635. Mineral labels: O, olivine; P, plagioclase (maskelynite); C, clinopyroxene (augite). Chemical compositions: Fe (purple), Mg (green), Ca (blue), Ti (magenta), and S (yellow). Purple colors in the mesostasis represent Fe-rich augite.](image-url)

*Corresponding author. Email: tlapen@uh.edu

1Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204–5007, USA. 2Department of Geoscience, Aarhus University, Aarhus, Denmark. 3Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195–1310, USA. 4Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706–1692, USA. 5NASA Astrobiology Institute, University of Wisconsin–Madison, Madison, WI 53706, USA. 6Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, USA. 7Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. 8Department of Physics, Purdue University, West Lafayette, IN 47907–2036, USA. 9Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907–2051, USA.

© The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
uncertainties are at the 95% confidence level; see the Supplementary Materials). On the basis of these values, as well as (i) a two-stage mantle evolution model (2), (ii) a source formation age of 4504 Ma (11), (iii) a chondritic bulk Mars, and (iv) a Mars formation age of 4567 Ma, the $^{143}\text{Sm}/^{144}\text{Nd}$, $^{176}\text{Lu}/^{176}\text{Hf}$, and $^{87}\text{Rb}/^{86}\text{Sr}$ ratios of the hybridized source are 0.3035 ± 0.0052, 0.0629 ± 0.0035, -0.0005 ± 0.0006, and 0.0217 ± 0.0039, respectively (Fig. 3). These ratios indicate that NWA 7635 is derived from the most incompatible trace element (ITE)–depleted source yet measured for any Martian rock.

DISCUSSION

Source Sm/Nd and Lu/Hf ratios for shergottites (Fig. 3A) [and, for orthopyroxenite Allan Hills 84001 (ALH 84001), see Lapen et al. (12)] show an array that can be interpreted as a three-component mixing relationship between ITE-depleted deep mantle, ITE-depleted shallow mantle, and ITE-enriched shallow upper mantle end-member compositions calculated by Debaille et al. (13). The source compositional range for shergottites can be explained by mixing these three distinct end-members that are hypothesized to have formed during differentiation of a Mars magma ocean (2, 13). A plot of source Rb/Sr versus Sm/Nd ratios of shergottites (inset of Fig. 3A) does not show the three-component mixing relationships because the Rb/Sr and Sm/Nd ratios of the two ITE-depleted end-members are nearly identical. The distribution of shergottite data on the mixing diagrams indicates that there are three distinct clusters of shergottites: those that are ITE-enriched, ITE-depleted, and occupy a discrete intermediate position. Shergottites are thus classified into these three distinct isotopic groups designated enriched, depleted, and intermediate, based on these isotope systematics and source compositions (Fig. 3A), as well as trace element abundances (6, 14, 15). The source compositions of NWA 7635 suggest that it is derived from source mixtures that are similar to those that produced the other known depleted shergottites.

The mantle source connections between other shergottites and NWA 7635 are further evaluated with the short-lived ^{146}Sm-^{142}Nd isotope system, a monitor of mantle source reservoirs in Mars that formed in the first 100 to 200 My after planet formation (3). An average of measured $^{142}\text{Nd}/^{144}\text{Nd}$ ratios from each aliquot measured (see the Supplementary Materials) yields $\varepsilon^{142}\text{Nd} = 0.918 \pm 0.077$. When compared to other shergottites on a $\varepsilon^{142}\text{Nd}$ versus present-day source $\varepsilon^{142}\text{Nd}$ diagram (Fig. 3B), NWA 7635 is indistinguishable in its isotope characteristics from the linear source mixing trend defined by the other shergottite data. The slope of the data array defines an apparent ^{142}Nd-^{143}Nd age of 4504 ± 6 Ma, identical to that reported in the study by Borg et al. (11). Although the nakhlites and chassignites are evidently derived from mantle sources distinct from those of shergottites (16), the isotope data presented here do not indicate that NWA 7635 is derived from mantle sources that are different from those that produced the other depleted shergottites. NWA 7635 is derived from Mars mantle source mixtures that are the most ITE-depleted, yet it shares mantle source characteristics with other shergottites.

The mantle source similarities between NWA 7635 and other depleted shergottites permit the inference that all of them may be derived from the same magmatic center on Mars. Our ejection age of NWA 7635 is identical to that determined for at least 10 other ITE-depleted shergottites (17–19); the mean of these 11 ejection ages is 1.1 ± 0.2 My (Fig. 4). Cosmogenic nuclide studies indicate three separate ejection events for depleted shergottites overall: one around 1 My [the event accounting for most of the depleted shergottites (n = 11)], one around 3 My (an event that launched depleted shergottites NWA 5990, NWA 7032, and QUE 94201), and one distinctly old launch event around 18 My for Dhofar 019 (17, 18, 20, 21). The meteorites having a 1.1-My ejection age consist of 11 depleted shergottites, including NWA 7635, but have no intermediate or enriched shergottites. The identical ejection ages and similar mantle source compositions for the group of 11 depleted shergottites strongly suggest that they were all launched from Mars by a single impact.

The igneous crystallization ages of depleted shergottites that have 1-My ejection ages range between 348 Ma and 2.4 billion years ago (Ga) (6, 7, 22–27), which spans close to half of Mars’ history. This long span of crystallization ages for these depleted shergottites suggests that there was at least 2 billion years of magmatic activity near the proposed ejection site on Mars. A crater-counting chronology, based on recently acquired high-resolution images, indicates that calderas on major volcanoes from the Elysium and Tharsis regions on Mars have undergone repeated activation and resurfacing (28–30). Both the Elysium and Tharsis volcanoes evidently formed before 3.6 Ga, followed by episodes of subsequent volcanic eruptions (lava flows). Crater-counting ages of some of those volcanoes indicate activity spanning more than 3 billion years (that is, Alba Mons, Biblis Tholus, Jovis Tholus, Uranius Mons, and Hecates Tholus), suggesting a long history of active volcanism from spatially restricted sites on Mars (30, 31). The long activity of Martian volcanic centers from sample and crater chronologies confirms the very long-lived Martian plume dynamics in Mars (32, 33). Shergottites and ALH 84001 (12) share mantle radiogenic isotopic characteristics, implying that they are part of the same overall mantle-melting environment, in contrast to that producing the nakhlites and chassignites (16, 34). Mantle convection that evidently drove this long-lasting Martian magmatism was ineffective in mixing early formed and distinct mantle reservoirs, largely because of a lack of toroidal flow and relatively stable convection cell boundaries in the mantle (32).

Fig. 2. Seven-point Sm-Nd isochron for NWA 7635 using an Isoplot model 1 solution (40). A weighted average of four separate dilute leaches is calculated as one phosphorus-dominated leachate measurement, and a re-integration of three hydrogen fluoride (HF)–based sequential dissolution fractions is calculated as one measurement of whole-rock residue (see the Supplementary Materials for details). MSWD, mean square weighted deviation. The inset shows the analytical uncertainty and scatter in epsilon units of individual points that define the isochron.
MATERIALS AND METHODS

A total of 2.2 g of interior material was used for isotope analyses. Petrographic analyses and major and trace element concentration measurements of constituent phases were made from a representative polished thick section of the type material. Before disaggregation for mineral picking, the rock fragments were washed in an ultrasonic bath with ultrapure H₂O for 5 min to remove any surficial contamination. The fractions analyzed for Lu-Hf, Sm-Nd, and Rb-Sr isotopes were spiked with 176Lu-177Hf, 149Sm-150Nd, and 87Rb-86Sr isotope tracers before column chemistry following procedures outlined in the studies of Nyquist et al. (8) and Debaille et al. (13).
Cosmogenic nuclide concentrations of 10Be and 26Al were measured by accelerator mass spectrometry at Purdue University (37), and concentration of 14C was measured at the University of Arizona (38). The measured activities were 9.7±0.1 dpm 10Be/kg, 70±5 dpm 26Al/kg, and 46±1 dpm 14C/kg. The cosmic-ray exposure age of 1.0±0.1 My was based on 10Be and 26Al concentrations, the chemical composition of the measured sample, and model production rates (39). This age agreed with the noble gas exposure age of 1.4±0.4 My (17). The terrestrial age was 2.3±1.3 ky based on 14C concentration, assuming a saturated activity of 61 dpm/kg for shergottites. The Mars ejection age for NWA 7635 was 1.0±0.1 My. Full details of the analytical procedures are reported in the Supplementary Materials.

REFERENCES AND NOTES

1. H. Y. McSween Jr., A. H. Treiman, in *Planetary Materials*, vol. 36 of *Reviews in Mineralogy and Geochemistry*, J. J. Papke, Ed. (Mineragraphical Society of America, 1998), chap. 6.

2. L. E. Borg, D. S. Draper, A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. *Meteorit. Planet. Sci.* **38**, 1713–1731 (2003).

3. V. Debaille, A. D. Brandon, Q. Z. Yin, B. Jacobsen, Coupled 142Nd/144Nd evidence for a protracted magma ocean in Mars. *Nature* **450**, 525–528 (2007).

4. H. J. Melosh, Impact ejection, spallation, and the origin of meteorites. *Icarus* **59**, 234–260 (1984).

5. J. N. Head, H. J. Melosh, Launch velocity distribution of the martian clan meteorites. *Lunar Planet. Sci. Conf.* **XXXI**, A1937 (2000).

6. L. E. Borg, L. E. Nyquist, L. A. Taylor, H. Wiesmann, C.-Y. Shih, Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. *Geochim. Cosmochim. Acta* **61**, 4915–4931 (1997).

7. G. A. Brennecka, L. E. Borg, M. Wadhwa, Insights into the Martian mantle: The age and isotopes of the meteorite fall Tissint. *Meteorit. Planet. Sci.* **49**, 412–418 (2014).

8. L. E. Nyquist, D. B. Bogard, C.-Y. Shih, A. Greshake, D. Stöffler, O. Eugster, Ages and geologic histories of Martian meteorites, in *Chronology and Evolution of Mars*, R. Kallenbach, J. Geiss, W. K. Hartmann, Eds. (Springer, 2001), vol. 96, pp. 105–164.

9. C. A. Goodrich, Olivine-phyric martian basalts: A new type of shergottite. *Meteorit. Planet. Sci.* **37**, 831–834 (2002).

10. H. Y. McSween Jr., E. M. Stolper, L. A. Taylor, R. A. Muntean, G. D. O’Kelley, J. S. Eldridge, S. Biswas, H. T. Ngo, M. E. Lipschutz, Petrogenetic relationship between Allan Hills 77005 and other achondrites. *Earth Planet. Sci. Lett.* **45**, 275–284 (1979).

11. L. E. Borg, G. A. Brennecka, S. J. K. Symes, Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. *Geochim. Cosmochim. Acta* **175**, 150–167 (2016).

12. T. J. Lapen, M. Righter, A. D. Brandon, V. Debaille, B. L. Beard, J. T. Shafer, A. H. Peslier, A younger age for ALH84001 and its geochronological link to shergottite sources in Mars. *Science* **338**, 347–351 (2010).

13. V. Debaille, Q.-Z. Yin, A. D. Brandon, B. Jacobsen, Martian mantle mineralogy investigated by the 146Sm–142Nd and 156Sm–144Nd systematics of shergottites. *Earth Planet. Sci. Lett.* **269**, 186–199 (2008).

14. E. Jagoutz, Chronology of SNC meteorites. *Space Sci. Rev.* **56**, 13–22 (1991).

15. L. E. Borg, L. E. Nyquist, H. Wiesmann, Y. Reese, Constraints on the petrogenesis of Martian meteorites from 143Nd/144Nd isotopic systematics of the Ishihara shergottites ALH77005 and LEW88616. *Geochim. Cosmochim. Acta* **66**, 2037–2053 (2002).

16. V. Debaille, A. D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. *Nat. Geosci.* **2**, 548–552 (2009).

17. R. Wieler, L. Huber, H. Busemann, S. Seiler, I. Leya, C. Maden, J. Masarik, M. M. Meier, K. Nagao, R. Trappitsch, A. J. Irving, Noble gases in 18 Martian meteorites and angrite meteorite, with an emphasis on solar cosmic ray-produced neon in shergottites and other achondrites. *Meteorit. Planet. Sci.* **51**, 407–428 (2016).

18. K. Nishiizumi, K. Nagao, M. W. Caffee, A. J. T. Jull, A. J. Irving, Cosmic-ray exposure chronologies of depleted olivine-phyric shergottites. *Lunar Planet. Sci. Conf.* **42**, 4371 (2011).

19. H. Y. McSween, Petrology on Mars. *Am. Mineral.* **100**, 2380–2395 (2015).

20. A. A. Shukolyukov, M. A. Nazarov, L. Schultz, Dhofar 019: A shergottite with an approximate 20-million-year exposure age. *Meteorit. Planet. Sci.* **35**, A147 (2000).

21. O. Eugster, H. Busemann, S. Lorentzetti, D. Terribilini, Ejection ages from krypton-81–krypton-83 dating and pre-atmospheric sizes of martian meteorites. *Meteorit. Planet. Sci.* **37**, 1345–1360 (2002).

22. L. E. Borg, L. E. Nyquist, Y. Reese, H. Wiesmann, C.-Y. Shih, L. A. Taylor, M. Ivanova, The age of Dhofar 019 and its relationship to the other martian meteorites. *Lunar Planet. Sci. Conf.* **XXXIII**, A1144 (2001).

23. L. E. Borg, L. E. Nyquist, H. Wiesmann, C.-Y. Shih, Y. Reese, The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics. *Geochim. Cosmochim. Acta* **67**, 3519–3536 (2003).

24. S. J. K. Symes, L. E. Borg, C. K. Shearer, A. J. Irving, The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. *Geochim. Cosmochim. Acta* **72**, 1696–1710 (2008).

25. C.-Y. Shih, L. E. Nyquist, H. Wiesmann, Y. Reese, K. Misawa, Rb-Sr and Sm-Nd dating of olivine-phyric shergottite Y090459: Petrogenesis of depleted shergottites. *Antarct. Meteor. Res.* **18**, 46–65 (2005).

26. C.-Y. Shih, L. E. Nyquist, Y. Reese, Rb-Sr and Sm-Nd isotopic studies of martian depleted shergottites S1094/005. *Lunar Planet. Sci. Conf.* **XXXVIII**, A1745 (2007).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/2/e1600922/DC1.

Materials and Methods

fig. S1. Images of the outer and inner portions of NWA 7635.

fig. S2. Plots of chondrite-normalized trace element compositions of shergottites and NWA 7635.

fig. S3. Measured 146Nd values for fractions of NWA 7635, Himalayan garnet schist 1, and Himalayan garnet schist 2 versus 142Ce interference on 144Nd, 143Sm interference on 144Nd, and the spike-to-sample ratio.

table S1. List of samples and data sources for source composition calculations.

table S2. 143Nd/144Nd isotopic analyses of NWA 7635.

table S3. Descriptions and weights of NWA 7635 samples analyzed for radiogenic and cosmogenic isotopes.

table S4. Laser ablation ICP-MS compositions of primary mineral phases in NWA 7635.

table S5. 146Sm–144Nd isotopic analyses of NWA 7635.
27. T. E. Grosshans, T. J. Lapen, R. Andreassen, A. J. Irving, Lu-Hf and Sm-Nd ages and source compositions for depleted shergottite Tissint. Lunar Planet. Sci. Conf. XLIV, A2872 (2013).

28. G. Neukum, R. Jaumann, H. Hofmann, E. Hauber, J. W. Head, A. T. Basilevsky, B. A. Ivanov, S. C. Werner, S. van Gasselt, J. B. Murray, T. McCord; HRSC Co-Investigator Team, Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. *Nature* **432**, 971–979 (2004).

29. S. C. Werner, The global martian volcanic evolutionary history. *Icarus* **201**, 48–68 (2009).

30. S. J. Robbins, G. Di Achille, B. M. Hynek, The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. *Icarus* **211**, 1179–1203 (2011).

31. M. A. Ivanov, J. W. Head, A. Patera, Mars: Topography, structure, and evolution of a unique late Hesperian–early Amazonian shield volcano. *J. Geophys. Res.* **111**, 101029 (2006).

32. W. S. Kiefer, Melt in the martian mantle: Shergottite formation and implications for present-day mantle convection on Mars. *Meteor. Planet. Sci.* **38**, 1815–1832 (2003).

33. P. van Thienen, A. Rivoldini, T. van Hoolst, Ph. Lognonné, A top-down origin for martian crust. *Geochem. Geophys. Geosyst.* **173** (2016).

34. F. Rickey, P. Simms, S. Vogt. PRIME lab AMS performance, upgrades and research applications. *Nucl. Instrum. Methods Phys. Res. Sect. B** **172**, 112–123 (2000).

35. A. T. Jull, S. Cloudt, D. J. Donahue, J. M. Sisterson, R. C. Reddy, J. Masarik, 14C depth profiles in Apollo 15 and 17 cores and lunar rock 68815. *Geochim. Cosmochim. Acta* **62**, 3025–3036 (1998).

36. J. Masarik, R. C. Reddy, Efficts of bulk composition on nuclide production processes in meteorites. *Geochim. Cosmochim. Acta* **58**, S307–S317 (1994).

37. K. R. Ludwig, Isoplot 3.75 (Berkeley Geochronology Center Special Publication No. 5, 2012).

38. A. Bouvier, J. Blichert-Toft, J. D. Vervoort, P. Gillet, F. Albareid, The Lu-Hf isotope geochemistry of young and old: Zagami and ALH84001. *Lunar Planet. Sci. Conf.* **XXVI**, 1065–1066 (1995).

39. L. E. Nyquist, B. L. Taylor, T. J. Lapen, N. Mahnen, C. M. Johnson, Hafnium and neodymium isotopic constraints on shergottite formation. *Lunar Planet. Sci. Conf.* **XXXIII**, A1933 (2002).

40. L. E. Nyquist, Y. Ikeda, C.–Y. Shih, Y. D. Reese, N. Nakamura, T. A. Kameda, Sm-Nd age and Sr isotopic evidence for the petrogenesis of Dhofar 378, in 30th Symposium on Antarctic Meteorites, Tokyo, Japan, 6 to 8 June 2006.

41. L. E. Nyquist, Y. D. Reese, H. Wiesmann, C.–Y. Shih, Age of EET 79001 and implications for shergottite origins. *Lunar Planet. Sci. Conf.* **XXXII**, A1407 (2001).

42. L. E. Nyquist, Y. D. Reese, H. Wiesmann, C.–Y. Shih, Schwantz, Rubidium-strontium age of the Los Angeles shergottite. *Meteorit. Planet. Sci.* **35**, A121–A122 (2000).

43. A. Bouvier, J. Blichert-Toft, J. D. Vervoort, P. Gillet, F. Albareid, The case for old basaltic shergottites. *Earth Planet. Sci. Lett.* **266**, 105–124 (2008).

44. L. E. Nyquist, C.–Y. Shih, Y. Reese, A. J. Irving, Concordant Rubidium and Sm-Nd ages for NWA1460: A 340 Ma old basaltic shergottite related to Iherzolitic shergottites. *Lunar Planet. Sci. Conf.* **XXXVII**, A1723 (2006).

45. L. E. Nyquist, D. B. Dobson, C.–Y. Shih, Y. D. Reese, A. J. Irving, Concordant Rubidium-Sr-Md-Nd ages for Northwest Africa 1460: A 340 Ma old basaltic shergottite related to “Iherzolitic” shergottites. *Geochem. Cosmochim. Acta* **73**, 4288–4309 (2009).

46. A. D. Brandon, L. E. Nyquist, C.–Y. Shih, H. Wiesmann, Rubidium-Sr-Md-Nd isotopic systematics of shergottite NWA 856: Crystallization age and implications for alteration of hot desert SNC meteorites. *Lunar Planet. Sci. Conf.* **XXXVI**, A1931 (2004).

47. C.–Y. Shih, L. E. Nyquist, H. Wiesmann, J. A. Barrat, Age and petrogenesis of picritic shergottite NWA 1068: Sm-Nd and Sr isotopic studies. *Lunar Planet. Sci. Conf.* **XXXIV**, A1439 (2003).

48. T. J. Lapen, M. Righter, A. D. Brandon, B. L. Beard, J. Shafer, A. J. Irving, Lu-Hf isotopic systematics of NWA4468 and NWA4920: Implications for the sources of shergottites. *Lunar Planet. Sci. Conf.* **XLIII**, A2376 (2009).

49. C.–Y. Shih, L. E. Nyquist, Y. Reese, A. J. Irving, Concordant Rubidium-Sr-Md-Nd ages for NWA1460: A 340 Ma old basaltic shergottite related to Iherzolitic shergottites. *Lunar Planet. Sci. Conf.* **XXXVIII**, A1723 (2006).

50. L. E. Nyquist, D. B. Dobson, C.–Y. Shih, J. Park, Y. D. Reese, A. J. Irving, Concordant Rubidium-Sr-Md-Nd ages for Northwest Africa 1460: A 340 Ma old basaltic shergottite related to “Iherzolitic” shergottites. *Geochem. Cosmochim. Acta* **73**, 4288–4309 (2009).

51. A. D. Brandon, L. E. Nyquist, C.–Y. Shih, H. Wiesmann, Rubidium-Sr-Md-Nd isotopic systematics of shergottite NWA856: Crystallization age and implications for alteration of hot desert SNC meteorites. *Lunar Planet. Sci. Conf.* **XXXVI**, A1931 (2004).

52. C.–Y. Shih, L. E. Nyquist, H. Wiesmann, J. A. Barrat, Age and petrogenesis of picritic shergottite NWA 1068: Sm-Nd and Sr isotopic studies. *Lunar Planet. Sci. Conf.* **XXXIV**, A1439 (2003).

53. T. J. Lapen, M. Righter, A. D. Brandon, B. L. Beard, J. Shafer, A. J. Irving, Lu-Hf isotopic systematics of NWA4468 and NWA4920: Implications for the sources of shergottites. *Lunar Planet. Sci. Conf.* **XLIII**, A2376 (2009).

54. L. E. Nyquist, J. Wooden, B. Bansal, H. Wiesmann, G. A. McKay, D. B. Dobson, Rubidium-Sr-Md-Nd ages for the Shergotty achondrite and implications for the metamorphic resedimentation of isochron ages. *Geochem. Cosmochim. Acta* **43**, 1057–1074 (1979).

55. K. Misawa, K. Yamada, N. Nakamura, N. Monika, K. Yamashita, W. R. Premo, Sm-Nd isotopic systematics of the Iherzolitic shergottite Yamato-793605. *Antarct. Meteorite Res.* **19**, 45–57 (2006).

56. N. Monika, K. Misawa, G. Kondorosi, W. R. Premo, M. Tatsuomo, N. Nakamura, Sr-Nd isotopic systematics of Iherzolitic shergottite Yamato-793605. *Antarct. Meteorite Res.* **14**, 47–57 (2008).

57. C.–Y. Shih, L. E. Nyquist, H. Wiesmann, Y. Reese, K. Misawa, Rubidium-Sr-Md-Nd dating of olivine-phryic shergottite Yamato 980459: Petrogenesis of depleted shergottites. *Antarct. Meteorite Res.* **18**, 46–65 (2005).
Acknowledgments: We are grateful to S. Kuehner for mineral analyses, E. L. Berger of NASA–Johnson Space Center for x-ray element maps, R. Conrey for x-ray fluorescence analyses, G. Chen for trace element analyses, and K. Ziegler for oxygen isotope analyses. We thank three anonymous reviewers for their detailed comments that improved the manuscript and editor K. Hodges. Funding: This work was supported by NASA Mars Fundamental Research (NNX11AF52G to T.J.L.), NASA Cosmochemistry (NNX12AX96G and NNX09AC06G to T.J.L. and NNX14AK62G to K.N.), and NASA Astrobiology (NNA13AA94A to B.L.B.). Author contributions: T.J.L., M.R., and R.A. measured the Sm-Nd and Lu-Hf isotopic compositions, interpreted the data, and drafted the manuscript. A.J.I. provided the sample material, measured the major element compositions, conducted the petrographic analyses, interpreted the data, and edited the manuscript. B.L.B. and A.M.S. measured the Rb-Sr isotopic compositions, interpreted the data, and edited the manuscript. K.N., A.J.T.J., and M.W.C. measured the cosmogenic nuclide concentrations, interpreted the data, and edited the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 28 April 2016
Accepted 22 December 2016
Published 1 February 2017
10.1126/sciadv.1600922

Citation: T. J. Lapen, M. Righter, R. Andreasen, A. J. Irving, A. M. Satkoski, B. L. Beard, K. Nishiizumi, A. J. T. Jull, M. W. Caffee, Two billion years of magmatism recorded from a single Mars meteorite ejection site. Sci. Adv., e1600922 (2017).