Quantum Melting of a Two-Dimensional Vortex Lattice at Zero Temperature

A. Rozhkov and D. Stroud

Department of Physics, Ohio State University, Columbus, OH 43210

(March 23, 2022)

We consider the quantum melting of a two-dimensional flux lattice at temperature $T = 0$ in the “superclean limit.” In this regime, we find that vortex motion is dominated by the Magnus force. A Lindemann criterion predicts melting when $n_v/n_p \geq \beta$, where n_v and n_p are the areal number densities of vortex pancakes and Cooper pairs, and $\beta \approx 0.1$. A second criterion is derived by using Wigner crystal and Laughlin wave functions for the solid and liquid phases respectively, and setting the two energies equal. This gives a melting value similar to the Lindemann result. We discuss the numerical value of the melting field at $T = 0$ for thin layers of low-T_c superconductor, such as $a – MoGe$, and single layers of high-T_c materials.

I. INTRODUCTION.

Vortices in the layered high-T_c materials have remarkably strong thermal fluctuations, which have been extensively studied [2]. At sufficiently low temperatures, vortex lines are also expected to be subject to quantum fluctuations. Quantum effects should manifest themselves in the zero-point motion of vortex lines. If these are large enough, the flux lattice can melt even at temperature $T = 0$. Indeed, many experiments suggest that vortex lattice melting at $T = 0$. Onogi and Doniach [8] computed the melting field for a 2D superconductor using quantum Monte Carlo (QMC) techniques without dissipative forces from the “viscous” normal electron background, as may be acceptable in the so-called superclean limit [12]. Of the two remaining forces, the Magnus force usually dominates (see below). The melting Lindemann criterion proves independent of the vortex mass. By contrast, in the opposite limit where the intervortex forces dominate, the melting field depends sensitively on the vortex mass [3].

The so-called Magnus force [9] acting on a single two-dimensional (“pancake”) vortex, in its rest frame, is

$$
F_p = q_e h v \times \hat{z} n_p = \frac{2e}{c} v \times \hat{z} B_{eff}.
$$

Here $q_e = \pm 1$ is the effective charge of the pancake vortex, h is Planck’s constant, v is the pancake velocity, n_p is the effective areal number density of Cooper pairs (discussed further below), $B_{eff} = \Phi_0 n_p$ is the fictitious field, $\Phi_0 = hc/2e$ is the flux quantum, and the film is assumed perpendicular to the z-axis.

In this paper, we describe two simple, quasi-analytical models for estimating the conditions for quantum melting of a 2D vortex lattice at $T = 0$, in which the fictitious magnetic field is explicitly included. The same model might also apply to one layer in a 3D stack of uncoupled layers of high-T_c material. The first estimate is a simple Lindemann criterion. The second involves a simple comparison of internal energies in the crystalline and liquid phases.

II. FICTITIOUS MAGNETIC FIELD AND LINDEMMANN MELTING CRITERION.

In our model, the vortex pancakes experience two types of forces: those due to other pancakes, and the Magnus force arising from the density of Cooper pairs. We neglect dissipative forces from the “viscous” normal electron background, as may be acceptable in the so-called superclean limit [12]. Of the two remaining forces, the Magnus force usually dominates (see below). The melting Lindemann melting criterion proves independent of the vortex mass. By contrast, in the opposite limit where the intervortex forces dominate, the melting field depends sensitively on the vortex mass [3].

The direct interaction potential between two pancakes separated by r is

$$
\Pi(r) = 2 \epsilon_0 d K_0 \left(\frac{r}{\lambda_\perp} \right),
$$

where $\lambda_\perp = \lambda^2/d$ is the transverse penetration depth, $\epsilon_0 = \Phi_0^2/(16\pi^2 \lambda^2)$ gives the energy scale of the interaction per unit length, and $K_0(x)$ is the modified Bessel
function of zeroth order. To estimate the effects of the vortex-vortex interaction, we assume that the vortices are ordered into a triangular lattice, and calculate the change in potential energy per vortex, ΔU_{harm}, due to harmonic vibrations about this lattice. After some algebra, this extra energy is found to take the form

$$\Delta U_{\text{harm}} = \sum_l \frac{\chi(l)}{(u_l - u_0)^2}.$$

Here l is a lattice vector of the triangular lattice, u_l is the displacement of the lth vortex from equilibrium, and

$$\chi(l) = \frac{\ell}{\lambda_+} \left(K_0 \left(\frac{\ell}{\lambda_+} \right) + K_0 \left(\frac{\ell}{\lambda_-} \right) \right),$$

where $\ell = |l|$, and the primes denote differentiation.

We estimate this energy as follows. First, since the vortex-vortex interaction is assumed small, we neglect $(u_l \cdot u_l)$. Secondly, in the weak-screening regime where the nearest neighbor intervortex distance $a_0 \ll \lambda_\perp$, the summation may reasonably be replaced by an integral.

With these approximations, and using several identities for derivatives of Bessel functions, we finally obtain

$$\Delta U_{\text{harm}} \approx (\epsilon_0 d) \times \pi n_v \langle |u_0|^2 \rangle,$$

where $n_v = 2/(\sqrt{3}a_0^3)$ is the areal vortex density.

Similarly, for a pancake of mass m_v, moving in a fictitious field B_{eff}, the zero-point energy per pancake ΔU_{mag} for a pancake in the lowest Landau level is

$$\Delta U_{\text{mag}} = \frac{1}{2} h \omega_{c,\text{eff}}^2,$$

where $\omega_{c,\text{eff}}$ is the cyclotron frequency in a magnetic field B_{eff}.

To show that the zero point motion is usually dominated by B_{eff}, we will demonstrate that $\hbar \omega_c \ll h \omega_{c,\text{eff}}$, where ω_c is the frequency for zero-point motion of the harmonic lattice in the absence of B_{eff}. Now $\omega_c = \sqrt{k/m_v}$, where k is the effective spring constant of the harmonic lattice. It follows from eq. (3) that $k = 2\epsilon_0 d \pi n_v$.

To compare ω_c and $\omega_{c,\text{eff}}$, we use the London estimate for the penetration depth $\lambda^2(T) = (m_p e^2)/(4\pi q^2 n_p^3D) = (m_p e^2 d)/(4\pi q^2 n_p)$, where n_p^3 is the pair density per unit volume, m_p is the pair mass, and q is the pair charge. Then a little algebra reveals that $\omega_c \ll \omega_{c,\text{eff}}$ provided that

$$\frac{m_v}{m_p} \ll \frac{2n_p}{n_v},$$

where m_p is the Cooper pair mass. As will be shown below, $n_v/n_p \approx 0.1$ at the melting point. Then inequality (9) is satisfied so long as $m_v/m_p \ll 20$. Now in BiSr$_2$Ca$_2$Cu$_3$O$_{6+\delta}$, the mass of a single pancake vortex, assuming a thickness $d \approx 10\AA$ (appropriate for a single layer of high-T_c material) has been estimated as one electron mass m_e. Thus, in this regime, the inequality is satisfied and $\Delta U_{\text{harm}} \ll \Delta U_{\text{mag}}$ as required. Hence, in calculating melting behavior for vortices of this mass, we apparently need consider only ΔU_{mag}. Our results based on considering only ΔU_{mag} do indeed give $n_v/n_p \approx 0.1$, thereby confirming the self-consistency of our approach.

We now obtain a simple Lindemann melting criterion, assuming that the dominant contribution to zero-point vortex motion arises from B_{eff}. Although $\omega_{c,\text{eff}}$ clearly depends on m_v, the corresponding zero-point displacement does not. We calculate this displacement assuming the symmetric gauge for the fictitious vector potential, $A_{\text{eff}} = \frac{1}{2} B_{\text{eff}} \times r$. Then in the lowest Landau level, one finds

$$\langle |u_0|^2 \rangle = \frac{\Phi_0}{\pi B_{\text{eff}}} = \frac{1}{\pi n_p},$$

independent of vortex mass.

According to the Lindemann criterion, melting occurs the zero-point amplitude is a certain fraction, say α_L, of a_0. In most conventional materials, $\alpha_L \approx 0.1 - 0.2$. Since $a_0 = (2\Phi_0/\sqrt{3}B)^{1/2}$, the Lindemann criterion becomes

$$\frac{n_v}{n_p} = \frac{2\pi}{\sqrt{3}} \alpha_L \approx 0.07,$$

using the estimate $\alpha_L^2 \approx 0.02$. Thus, the Lindemann picture predicts quantum melting at $T = 0$ at a vortex density of around 7% of the effective density of Cooper pairs per layer.

III. LAUGHLIN LIQUID VERSUS WIGNER CRYSTAL.

Next, we describe an alternative way of estimating the melting temperature in a 2D lattice. We treat the pancake vortices as bosons, moving in the effective magnetic field B_{eff}. To describe the bosons, we use a Wigner crystal (WC) wave function in the solid phase, and a properly symmetrized Laughlin wave function in the liquid state. The melting point is determined by the condition that the energies E_{WC} and E_{LL} of the solid and liquid states should be equal. A related approach has been used to discuss melting of the 2D electron lattice in a magnetic field B_{eff}.

The WC wave function may be written

$$\Psi_{\text{WC}} = A \cdot S \left(\prod_i \psi(r_i - 1) \right).$$

Here $\psi(r)$ denotes the zero-momentum single-particle wave-function of the lowest Landau level, S is the symmetrization operator, and A is a normalization constant. We wish to calculate the averaged vortex-vortex interaction energy in this state, i.e. $E_{\text{WC}}/(2\epsilon_0 d S) = \langle \Psi | \sum_i \sum_{j \neq i} K_0 \left(\frac{r_i - r_j}{\lambda_\perp} \right) | \Psi \rangle / 2S$, where S is the sample surface area.

We simplify the calculation by several approximations. First, since $a_0^2 \gg \langle |u_0|^2 \rangle$, the wave function symmetrization is quantitatively unimportant for calculating E_{WC}. Indeed, for large argument, the single-particle wave function $\psi(r)$ decays exponentially, and the overlap integral between $\psi(r - 1)$ and $\psi(r - 1)$ is almost zero,
Laughlin form [13]:

The wave function an (unnormalized) wave function of the Laughlin theory of the fractional quantum Hall effect, where\(\tilde{\nu} \) is the filling fraction of the first Landau level.

\[E_{\text{WC}} = \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) - 0.500 \ln \left(\nu_\perp^2 n_v \right) - 1.437. \]

Collecting all these results, we finally obtain

\[E_{\text{WC}} = \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) - 0.25 n_v \ln \left(\nu_\perp^2 n_v \right) - \frac{0.719}{n_v} + \frac{n_v^2}{2n_p}. \]

For the liquid phase, the wave function symmetry matters since the pancakes are delocalized. We use as a trial wave function an (unnormalized) wave function of the Laughlin form [13]:

\[\Psi_{LL,m} = \prod_{j<k} (z_j - z_k)^m \exp \left(-\frac{1}{4} \sum |z_k|^2 \right). \]

Here \(z_j = x_j + iy_j \) is the position coordinate of the \(j \)th pancake, and all lengths are expressed in units of the “magnetic length” \(\ell_0 \equiv (\Phi_0/(2\pi B_{\text{eff}}))^{1/2} \). Since the vortex pancakes are bosons, \(m \) must be an even integer.

In the Laughlin theory of the fractional quantum Hall effect, \(1/n \) is the filling fraction of the first Landau level.

Laughlin’s prescription for obtaining the minimizing value of \(m \) is readily translated to the present problem, in which the role of charges and magnetic field are reversed. The generalized prescription is that the minimizing \(m \) occurs when the number density \(n_p \) of vortices of the fictitious magnetic field equals \(m \) times the number density \(n_v \) of fictitious charges, i. e. \(m = n_p/n_v \).

We next calculate the internal energy of the Laughlin liquid at various values of \(m \). With a change of scale, the vortex-vortex interaction energy of the liquid becomes

\[E_{\text{LL}} = \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) g(x), \]

where \(g(x) \) is the dimensionless density-density correlation function for the Laughlin liquid (normalized to unity at large \(x \)), and \(x \) is a dimensionless coordinate defined by \(x = r/\sqrt{\nu_\perp} \). Since \(g(x) \) differs significantly from unity mainly in the region \(x < 1 \), it is convenient to decompose the interaction energy as follows:

\[n_v \frac{2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) \left(g(x) - 1 \right) \approx \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) - n_v \int_0^\infty dx \left(\frac{x}{2\lambda_\perp} + \gamma \right) \left(g(x) - 1 \right), \]

where \(\gamma \approx 0.577... \) is Euler’s constant and we have used the small-\(x \) approximation for \(K_0(x) \).

As noted by Laughlin, the correlation function \(g(r) \) for the Laughlin liquid state is just that of the 2D one-component classical plasma (OCP), in which the particles interact logarithmically. The last term on the right is, to within a factor, just the internal energy of the OCP. We can therefore use standard numerical results for the OCP, as obtained by Monte Carlo methods by Caillol et al [16]. Using the analytical fit of these authors to their own numerical results for the integral \(\int_0^\infty xdx \ln x(g(x) - 1) \), we find

\[- \int_0^\infty xdx \left(\ln \left(\frac{x}{2\lambda_\perp} \right) + \gamma \right) (g(x) - 1) \approx \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) - \frac{1}{4} \ln \left(4\pi^2 n_v \right) + \gamma \approx -0.3755 + 0.440 \left(\frac{n_v}{2n_p} \right)^{0.74} - \frac{1}{4} \ln \left(\nu_\perp^2 n_v \right) - \frac{1}{4} \ln (4\pi) + \gamma \approx 0.720 n_v + 0.4400 n_v \left(\frac{n_v}{2n_p} \right)^{0.74}. \]

Hence, the energy of the Laughlin liquid can be written as

\[E_{\text{LL}} = \frac{n_v^2}{2} \int d^2r K_0 \left(\frac{r}{\lambda_\perp} \right) - \frac{1}{4} \ln \left(\nu_\perp^2 n_v \right) - \frac{1}{4} \ln (4\pi) + \gamma \approx \frac{n_v}{2n_p} \approx 0.09. \]

Finally, the zero-temperature melting transition is defined by the equation \(E_{\text{WC}} = E_{\text{LL}} \), or \(\frac{n_v}{2n_p} \approx 0.440 \left(\frac{n_v}{2n_p} \right)^{0.74} \), or equivalently

\[\frac{n_v}{n_p} \approx 0.09. \]

We see that this result agrees remarkably well with the Lindemann criterion.
IV. DISCUSSION.

We now evaluate these predictions for two materials of interest, using a simplified approximation for \(n_p \). As noted by Ao and Thouless, \(n_p \) is not simply the areal density of Cooper pairs per unit area, but that of superconducting Cooper pairs—that is, those not pinned by lattice disorder. Since it is not obvious how to evaluate this quantity, we simply use the London equation to estimate \(n_p \) at zero field. To get \(n_p(B) \), we use the Ginzburg-Landau approximation \(\lambda(B, 0) = \lambda(0, 0) / [1 - B / B_{c2}]^{1/2} \), where \(B_{c2} \) is the \(T = 0 \) upper critical field, and \(\lambda(B, T) \) is the magnetic field and temperature dependent penetration depth. The melting condition, from either the Lindemann criterion or from equating solid and liquid energies, is \(n_c / n_p = \beta \), where \(\beta \approx 0.1 \). Substituting the above expressions into this melting condition, we obtain

\[
\frac{B_m}{B_{c2}} = \frac{B_0}{B_0 + B_{c2}}, \tag{15}
\]

where \(B_0 = \beta m_p^2 d \Phi_0 / [4 \pi^2 (0, 0) q^2] \).

First, we apply this result to an amorphous MoGe film, an extensively studied 2D extreme Type-II superconductor. An amorphous MoGe\(_{0.43}\)Ge\(_{0.57}\) film of thickness 30\(\AA\) has \(\lambda(0, 0) \approx 8000\,\text{A} \) and \(B_{c2} \approx 10^4 \,\text{G} \). Taking \(B \approx H \) (a good approximation in the extreme Type-II limit), and using \(\beta = 0.1 \), we find \(B_0 \approx 7 \times 10^4 \,\text{G} \), and therefore \(B_m / B_{c2} \approx 0.8 - 0.9 \). This is consistent with the observations of Ephron et al \cite{18}, who find a superconducting-insulating transition at around 10\(\,\text{kG} \), quite close to the estimated \(B_{c2} \). The transition in \(\text{MoGe} \) is undoubtedly not uncomplicated quantum melting, since it occurs in highly disordered samples. Indeed, it is undoubtedly better described as a continuous phase transition from a vortex glass to a Cooper pair glass \cite{18}. Nonetheless, it is gratifying that our predicted field, estimated for a clean sample, falls rather close to the observed transition.

Of at least equal interest is possible quantum melting in high-\(T_c\) superconductors. Since our model is strictly 2D, we consider only a single layer of a high-\(T_c\) material. The result may conceivably be extrapolated to the most anisotropic CuO\(_2\)-based high-\(T_c\) materials, such as BiSr\(_2\)Cu\(_2\)O\(_{8+x}\). Assuming \(d = 10\,\text{A} \) and \(\lambda(0, 0) = 1400\,\text{A} \), we obtain \(B_0 \approx 1.5 \times 10^6 \,\text{G} \). Estimating \(B_{c2} = 3 \times 10^6 \,\text{G} \), we find \(B_m \approx 10^6 \,\text{G} \). Since \(T_c \) is smaller and \(\lambda(0, 0) \) is larger in an underdoped sample, however, we may expect \(B_m \) also to decrease in such materials.

Finally, we comment on the connection between our results and the calculations of \cite{5, 6, 7, 8}. While these authors find FQHE-like commensuration effects in the flux liquid state, their observed melting scales with \(m_v \) as if there were no influence of \(B_{c2} \) on \(B_m \). Our simplified analytical calculations suggest that \(B_{c2} \) may dominate the melting behavior for sufficiently light pancake masses (\(m_v \ll 40m_c \)). Presumably, this influence of \(B_{c2} \) would show up in QMC studies at sufficiently low values of \(m_v \).

To conclude, we have calculated the quantum melting criterion for a 2D vortex lattice at \(T = 0 \), by comparing the internal energies of the vortex solid and vortex fluid states in a hypothetical superclean limit. We find that, at sufficiently low vortex masses, melting behavior seems to be dominated by a fictitious magnetic field acting on the vortices and produced by the Cooper pair density. The calculated melting field is close to the superconducting-insulating transition observed in certain thin films of amorphous MoGe, and may be within reach of pulsed magnetic fields in some underdoped CuO\(_2\)-based high-\(T_c\) materials.

V. ACKNOWLEDGMENTS.

One of us (DS) gratefully acknowledges many valuable conversations with Professor S. Doniach, as well as the warm hospitality of the Department of Applied Physics at Stanford University, where this calculation was initiated. This work was supported by NSF Grant DMR94-02131 and by the Department of Energy through the Midwest Superconductivity Consortium at Purdue University, through Grant DE-FG90-02ER-45427.

[1] G. Blatter et al, Rev. Mod. Phys. 66, 1125 (1994) and references therein.
[2] R. de Andrade and O. F. de Lima, Phys. Rev. 51, 9383 (1995).
[3] A. Schilling et al, Physica B194/196, 1555 (1994).
[4] P. Y. Fukuzumi et al, Phys. Rev. Lett. 76, 684 (1996).
[5] C. Attanasio et al, Phys. Rev. B53, 1087 (1996).
[6] G. Blatter and B. Ivlev, Phys. Rev. Lett. 70, 2621 (1993).
[7] E. M. Chudnovsky, Phys. Rev. B51, 15351 (1995).
[8] H. Onogi and S. Doniach, Sol. State Commun. 98, 1 (1996).
[9] P. Ao and D. J. Thouless, Phys. Rev. Lett. 70, 2158 (1993).
[10] M. Y. Choi, Phys. Rev. B50, 10088 (1994).
[11] A. Stern, Phys. Rev. B50, 10092 (1994).
[12] See Ref. 1, p. 1153.
[13] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[14] K. Maki and X. Zotos, Phys. Rev. B28, 4349 (1983).
[15] P. K. Lam and S. M. Girvin, Phys. Rev. B30, 473 (1984).
[16] J. M. Caillol et al, J. Stat. Phys. 28, 325 (1982).
[17] D. Ephron et al, Phys. Rev. Lett. 76, 1529 (1996).
[18] M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).