Phytopharmacological Properties of *Tamarindus indica*: An Overview

K. Kiranmai*, A. Narendra Babu, B. Padmavathi, Y. Gayathri, R. Naveen
Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Lam, Guntur-522034, Andhra Pradesh, India.
*Corresponding author’s E-mail: kajakiranmai@gmail.com

Received: 04-01-2021; Revised: 22-02-2021; Accepted: 28-02-2021; Published on: 20-03-2021.

ABSTRACT

Tamarindus is a monotypic genus and belongs to the family Fabaceae. It is commonly known as Tamarind tree. It is indigenous to tropical Africa and exotic to Asia and Central America. Traditionally it is used for Inflammation, tumours, ring worm, diseases of blood, small pox, eye disease, ear ache, snake bite, urinary discharges, bad odour in perspiration, astringent, appetizing, laxative, anthelmintics, heals wounds and fractures, biliousness, bile disorders heals ulcer, liver, Ankylostomiasis (hookworm). Every part of the plant (leaves, stem, seed, root, bark and fruit) is therapeutically effective in treating various human diseases. The aim of the present review is to describe its nutritional values, geographical conditions, collection and cultivation, chemical constituents, pharmacological activities of various plant parts of *Tamarindus indica*.

Keywords: *Tamarindus indica*, Fabaceae, Inflammation, Astringent, Laxative, Ankylostomiasis, Anthelmintics.

INTRODUCTION

Plants are the basic elements of traditional medicine and are used in larger amount. *Tamarindus indica* (*T. indica*) is multi-stemmed, it needs dry climate for its growth, It reaches 24 m height and 7 m girth and it has pale yellow and pink flowers. Every single part of *T. indica* (fruit, leaves, stem, root, body) has its own nutritional value and extensive usage in the area of medicine. In traditional medicine, it is used in wound healing, abdominal pain, diarrhea, dysentery, parasitic infestation, fever, malaria and respiratory problems. It is also frequently used in tropical countries because of its laxative and aphrodisiac properties. The plant lives for 80-100 years produces fruits more than 50 years. The seeds of *T. indica* has an available protein source, mainly in the countries where the protein deficiency as a common problem. Based on the phytochemical analysis, *T. indica* contains the phenolic compounds like catechin, procyanidin B2, epicatechin, tartaric acid, mucilage, pectin, arabinose, xylose, galactose, glucose, uronic acid and triterpen.1 Kernel composed of D-glucose, D-xylose, D-galactose and L-arabinose. The leaves alone contains flavone C-glycosidesorientient, vitexin, isoorientin and isovitexin. The leaves and in combination with fruits contains tartaric acid and malic acid. The fruit pulp yields tamarindienal(bitter) and certain amino acids include serine, beta-alanine, proline, pipercolinic acid, phenylalanine and leucine.2

Table 1: Scientific Classification3

Domain	Eukaryota
Kingdom	Plantae
Phylum	Spermatophyta
Subphylum	Angiospermae
Class	Dicotyledonae
Order	Fabales
Family	Fabaceae
Subfamily	Faboideae
Genus	Tamarindus
Species	T.indica

Binomial Name: *Tamarindus indica*. L

Synonyms4:

Tamarindus umbrosa Salisb.
Tamarindus officinalis Hook.
Tamarindus occidentalis Gaertn.

Figure 1: The nutritional values of *Tamarindus indica* raw fruit1

Nutritional value of Tamarind (T. indica)

- Energy
- Carbohydrates
- Protein
- Total fat

International Journal of Pharmaceutical Sciences Review and Research
Available online at www.globalresearchonline.net
Principle	Nutrient value	Percentage of RDA
Energy	239.00 Kcal	12%
Carbohydrates	62.50 g	40%
Protein	2.80 g	5%
Total tat	0.60 g	3%
Cholesterol	0 mg	0%
Dietary fiber	5.10 g	13%

Table 2: Nutritional value per 100 g of Tamarind (T. indica)
(Source: USDA National Nutrient data base).

Vitamins	Names	Nutrient value	Percentage of RDA
Vitamin A	30.00 IU	1.0%	
Vitamin C	3.500 mg	6.0%	
Vitamin E	0.100 mg	0.8%	
Vitamin K	2.800 μg	2.0%	
Vitamin B1	0.428 mg	36.0%	
Vitamin B3	1.938 mg	12.0%	
Vitamin B5	0.143 mg	3.0%	
Vitamin B6	0.066 mg	5.0%	
Vitamin B9	14.00 μg	3.5%	

Vernacular Names

Arabic	Daralsida
Assam	Tamar, Teteli
Bengal	Tetula, Nuli, Tintil, Tinturi

Brazil	Jubay, Tamarindo
Coorg	Pulinje
Dutch	Tamrinden boom
English	Tamarind tree
French	Tamarindien
German	Tamarindenbaum
Gujarati	Amli, Ambli
Hindi	Amli, Imli
Italian	Tamarindo
Kannada	Hunise, imli.
Malayalam	Puli, valampuli, kolpuli.
Marathi	Ambali, Amli
Mysore	Asam, Hunese
Nepal	Titri
Persian	Ambalah
Portugese	Tamarindo
Punjab	Imbli
Sanskrit	Amlika, Chincha, Tinthidi, Chukra
Sind	Amri, Gidamri
Telugu	Amlika, sinja, Tinthrini
Urdu	Imli
Uriya	Tentuli
Description Of Plant Parts

Leaves
The leaves are green, even, oblong, unequal, alternate, pinnate and 8-15 cm long with 10-20 pairs and 5-6 mm wide. The rachis is 7–15 cm long with opposite leaflets. The leaves closes at night and may open during the day time. Leaves having a feathery appearance in combination with open branch structure.

Flowers
Flowers (5-13 cm in length and2.5 cm in diameter) that emerges on the new branches. The buds are pink in colour. The flowers may be bisexual and the development of flower-bud takes about 20 days from the starting period of time.

Fruit: The fruit (7-20 cm in length and 1.5-3.0 cm in width) having irregular curves. The outer part is brown in colour, scaly and small constrictions between the seeds. As the pod ripens it becomes brittle and can be easily broken. The pod loses its water content during drying.

Biology And Ecology

Climate
The tamarind grows best in semi-arid tropical and subtropical conditions tolerating temperature is upto 47°C. The annual temperature range between 29-36°C (maximum), with a minimum of 10-18°C. In many humid conditions, plant provides a dry season that allows for ripening of fruit, and is well-adapted to arid regions. A dry climate is very important to increase the yield of flowers and fruits. The plant requires the annual rainfall of 500-1500 mm for its growth. In areas of wet tropics, tamarind does not produce flowers and also production of fruit is decreased over 4000 mm of rainfall

Soil
Tamarind can grow in all types of soil, such as alluvial, deep, loam, sandy, clay, rocky and silt. The plant production is little or no cultivation in poor and rocky soils, and tolerates saline soils, although yields are not as high. Preferably soils should be slightly acid in nature. It flourishes best in loamy, deep, alluvial soils which benefit the development of a long taproot. It also allows slightly alkaline or saline soils.

Propagation
Plant can be propagated easily from cuttings or by shield-budding, side-veneer grafting, or air-layering.

Season
Most of the studies reveals that the fruits starts to dehydrate after 203 days of fruit-set, losing half of the moisture at the state of full ripeness, about 245 days from the fruit-set. The flowers appear in summer, the green fruits are found in December and January and ripening of fruits takes place from April through June.

Harvesting
Harvesting is done with the help of fruits and are often by pulling the pod from the stalk in which fibers gets attached. In India, harvesting taking place by shaking the branches to cause mature fruits to fall and they leave the remainder to fall naturally when they ripe.

Yield
Afully developed tree may annually produce (150-220 kg) of fruits, of which the pulp may constitute 30-55%, the shells and fiber 11-30 %, and the seeds, 33-40%.

Plant part	Uses
Leaves	Reduce Inflammation, tumours, ring worm, diseases of blood, small pox, and other eye disease, ear ache, snake bite
Flower	Appetizing, urinary discharges, bad odour in perspiration
Fruit pulp (unripe)	Astringent, to the bowel and cure “vata”
Fruit pulp (ripe)	Appetizing, laxative, anthelmintics, heals wounds and fractures, biliousness and bile disorders
Bark	Astringent, heals ulcer, liver complaints
Root	Treat Ankylostomiasis (hookworm)

Table 5: Traditional uses of Tamarindus indica
Medicinal Uses of *Tamarindus indica*:

Leaves

Leaves are grounded in the form of a paste in order to prevent the inflammation. A decoction of leaves act as foaming agent on abscesses and reduces pain. The leaves can be used as purgative, diaphoretic, emollient and also for treating stomach disorders. The powdered form can be used in treatment of wounds.

Bark

The bark is used as an astringent for treating diarrhoea and the decoction is used as a lotion to wash ulcers and wounds.

Seed

The seed testa is mixed with lime juice or vinegar, helps in reducing the formation of pimples. The powdered form of seed is used for treating dysentery. The oil extracted from the seed is used for hair.

Fruit pulp

The fruit pulp is for laxative, fever, as a liniment for rheumatism, in treating inflammation, as an astringent and also used in treating scurvy which is having a common ingredient in blood sugar-reducing and also in cardiac medicines. The ripe fruit is used as a refrigerant, digestive, carminative and laxative.

Flowers

The flowers are used internally for treating jaundice and applied on eyes externally for reducing conjunctivitis.

Therapeutic Uses

- Antioxidant
- Anti-diabetic
- Anti-microbial
- Anthelmintic
- Anti-inflammatory
- Analgesic
- Antivenom
- Hyopolipidemic and weight reducing
- Immunomodulatory
- Anti diarrhoeal and Anti dysentery
- Wound healing
- Anti-emetic
- Hepatoprotective
- Antihistaminic
- Anti-pyretic
- Anti-malarial
- Cytotoxic
- Laxative
- Acarical

Uses of Various Parts of *Tamarindus indica*

Fruit pulp

The pulp has a wide range of domestic and industrial purposes. The acidic pulp is used as an important ingredient for culinary preparations, such as curries, chutneys, sauces, ice cream, and sherbet. Tamarind pulp is used as a raw material for manufacturing of industrial products, such as Tamarind Juice Concentrate, Tamarind Pulp Powder, tartaric acid, pectin, tartarates, and alcohol.

Seed

The seed comprises of seed coat or testa (20-30%) and the kernel or endosperm (70-75%). It is commercially available as a food additive for improving the viscosity and texture. Thename “jellose” used for the seed polysaccharide as it describes both its jell forming properties and the carbohydrate character. The jell form is used as a stabilizing agent in ice-cream, mayonnaise, and cheese, the seed oil is used for making varnish to paint idols, light lamps.

Flowers and leaves

The leaves and flowers are also useful as a mordant in dyeing. Used to make curries, salads, stews, soups, and in times of scarcity. These are used in Thai recipes because of their sourness and aroma. Mature leaves are used as a bleaching agent A yellow dye can be obtained from the leaves.

Wood

The wood is used for making furniture, wheels, mallets, rice pounders, mortars, pestles, ploughs, well construction, tent pegs, canoes, side planks for boats, cart shafts and axles, and naves of wheels, toys, oil presses, sugar presses, printing blocks, tools and tool handles, turnery, and soon. Used for making gunpowder. The ash is used for removing of hair from the animal hides and it can also be mixed with fruit pulp for cleansing and brightening brass and copper vessels.

Seed testa & bark

The seed testa and bark contains tannin, used for making leathers, heavy soles, suitcases and also used in the preparation of ink. The seed husk has been found to be effective on fish poison.

Tamarind kernel powder

Tamarind Kernel Powder (TKP) obtained from the seeds used as a source of carbohydrates, the binding agent in paper and textile sizing, weaving and in making jute products, as well as textile printing.
Lac

The tree is an anchor for the lac insect named Kerria lacca, that deposits a resin on the twigs, it can be harvested and is sold as stick-lac which is used for the production of lacquers.

Twigs and barks

Tamarind twigs are usually called as "chewsticks", bark (6-7% tannin) is used in dyeing, and is burned to make an ink. A low-quality fiber is obtained from young bark used for twine and string. Galls present on the young branches are used in tanning.11

S. No	Plant part used	Pharmacological activity
1.	Leaves	Analgesic Activity⁹
		Anti-inflammatory Activity¹¹
		Anti-bacterial Activity¹²
		Astringent Activity⁹
		Anthelmintic Activity⁷
		Anti-microbial Activity¹³
		Antidiabetic Activity¹⁴
		Antiasthmatic Activity¹⁵
		Laxative Activity¹⁶
		Adaptogenic Activity¹⁵
		Hepato-protective activity⁷
		Wound healing Activity¹⁷
		Anti malarial Activity¹⁸
		Hypolipidemic Activity¹⁹
		Spasmyloytic Activity²⁰
		Antidiabetic Activity²¹
		Laxative Activity⁸
		Wound healing Activity⁷
		Antibacterial Activity²²
		Antioxidant Activity²³
		Constipation Activity²⁴
		Antihypertensive Activity²⁵
2.	Fruit	Antidiabetic Activity²⁶
		Neurotoxicity Activity²⁷
		Hyperglycemia Activity²⁶
		Hyper-lipidemia Activity²⁶
		Antiulcer Activity²⁸
		Anti-carcinogenic Activity²⁹
		Anti-inflammatory Activity³⁰
		Antioxidant Activity³¹
		Ameliorative effect on metabolic syndrome³²
3.	Seed	Wound healing Activity³³
		Nerve regeneration Activity¹
		Anti-venom Activity³⁴
		Insecticidal Activity³⁵
		Fish Poison³⁶
		Protease inhibitor Activity³⁷
		Antibacterial Activity³⁸
		Goitrogenic effect³⁹
4.	Bark	PurgativeActivity⁴⁰
		Wound healing Activity⁴¹
		AntimicrobialActivity⁴²
		Analgesic Activity⁴³
		Neuramidase Activity⁴⁴
		Antiasthmatic Activity⁴⁵
		Anthelmintic Activity⁴⁶
		Amenorrhoea Activity⁴⁵
		Antidiabetic Activity⁴⁷
5.	Root	Antimicrobial activity⁴⁸
		Anti dysentery Activity⁷
		Anti-inflammatory Activity⁴⁸
		Analgesic Activity⁴⁹
6.	Stem	Anti-inflammatory Activity⁴⁹
		Conjunctivities⁵
		Antiseptic⁵⁰
		Hepatoprotective Activity⁵⁰

Table 6: Research work done on Tamarindus indica

CONCLUSION

Tamarindus indica has a rich nutritional value containing vitamins, minerals, electrolytes. It is well known with its usage in traditional medicine purpose having various therapeutic and pharmacological activities

REFERENCES

1. Pinar Kuru, “Tamarindus indica” and its health-related effects, Asian Pacific Journal of Tropical Biomedicine, 2014; 4(9): Page numbers : 676-681; DOI: 10.12980/ATPITB.4.2014;

2. Mohd Tariq, Shahid Shah Chaudhary, Khaleequar Rahman, Hamiduddin, Roohi Zaman, Shaikhmitya, “Tamarindus indica: An Overview”, 2013; 1(2): Page numbers : 128-131; DOI: 10.7897/2321-6328.01220

3. “Tamarindus indica” (Indian tamarind), CABI Invasive Species Compendium Detailed coverage of invasive species threatening livelihoods and the environment worldwide Invasive species compendium, Available at https://www.cabi.org/scic/datasheet/54073

4. Retrieved from India biodiversity portal, https://indiabiodiversity.org/species/show/31829.

5. Resny A R, Induekha VC, Binitha Raj RV, A Critical Ayurvedic Literary review of the Plant Amleeka (Tamarindus indica L), International Ayurvedic Medical Journal, 2018; 2(3): 1063,Available at http://www.iamj.in/prposts/2018/images/upload/1060_1067.pdf (ISSN: 2320 5091)
6. Indiaaeronet.com for clean, smart and profitable farming, horticulture, “Tamarind” https://www.indiaaeronet.com/horticulture/CONTENTS/tamarind.htm

7. Zohrameena S, Mujahid M, Bagga P, Khalid M, Noorul H, Nesar A, Saba P, “Medicinal uses & pharmacological activity of Tamarindus indica”, World Journal of Pharmaceutical Sciences, 2017; 5(2): Page numbers:121-133, Available at https://www.academia.edu/31647826/Medicinal Uses_and_Pharmacological_activity_of_Tamarindus_indica

8. Bibekananda Meher, Deepak Kumar Dash, Anupama Roy, “A review on: phytochemistry, pharmacology and traditional uses of Tamarindus indica L”, World Journal of Pharmacy and Pharmaceutical Sciences, 2014; 3(10): Page numbers: 229-240, Available at https://www.researchgate.net/publication/29115888 A review on Phytochemistry pharmacology and traditional uses of Tamarindus indica L

9. Santosh Singh Bhadoriya, Aditya Ganeshpurkar, Jitendra Narwaria, Gopal Rai, Alok Pal Jain, “Tamarindus indica : Extent of explored potential Review Article”, Pharmacognosy review, 2011; 5(9): Page numbers: 73-81, DOI: 10.4103/0973-7847.79102; PMID: 22096321.

10. Morton J, “Tamarind”, In: Fruits of warm climates, 1987; 115–121, Available at https://hort.purdue.edu/newcrop/morton/tamarind.html

11. Pimple B, Kadam P, Badgujar N, Bafna A, Patil M, “Protective effect of Tamarindus indica L against paracetamol- induced hepatotoxicity in rats”, Indian Journal of Pharmaceutical sciences, 2007; 69: Page numbers: 827-831, DOI: 10.4103/0250-474X.39445.

12. M.G. Abukakar, A.N. Ukwuani and R.A. Shehu, “Phytochemical Screening and Antibacterial Activity of Tamarindus Indica Pulp Extract”, Asian Journal of Biochemistry, 2008; 3(2): Page numbers: 134-138, DOI: 10.21159/ajbc.2019.v3i2.29694.

13. Julio César Escalona-Arranz, Renato Pérez-Roses, Imilci Urdaneta-Roses, Imilci Urdaneta-Laffita, Miladis Isabel Camacho-Pozo, 1 Jesús Rodríguez-Amado, and Irina Licea-Jiménez, “Antimicrobial activity of extracts from Tamarindus indica L leaves”, Pharmacognosy Magazine, 2010; 6(23): Page numbers: 242–247, Available at http://www.phcog.com/text.asp?2010/6/23/242/66944

14. Ramachander T, Rajkumar D, Srovanprasad M, Goli V, Dhanalakshmi CH, Arjun, “Antidiabetic activity of aqueous methanolic extracts of leaf of Tamarindus indica”, International Journal of Pharmacognosy and Phytochemical Research, 2012; 4: Page numbers:5-7,Available at http://impactfactor.org/PDF/IJPPR/4/IJPPR.Vol4.Issue1.Article2.pdf

15. Tayade PM, Ghasas MM, Jagtap SA, Dongre SH, “Anti-asthmatic activity of Methanolic extract of leaves of Tamarindus indica Linn”, Journal of Pharmaceutical Research, 2009; 2: Page numbers:944–947,Available at https://www.cabdirect.org/cabdirect/abstract/20103127085

16. Bhat RB, Eterjoe EO, Oladio PT, “Ethnobotanical studies from Central Nigeria”, Economic Botany, 1990; 44: Page numbers: 382-390, DOI https://doi.org/10.1007/BF03189232 Available at https://link.springer.com/article/10.1007/BF03189232

17. Tignokpa M, Laurens A, Mboup S, Sylla O, “Popular medicinal plants of the markets of Dakar (Senegal)”, International Journal of Crude Drug Research, 1986; 24: Page numbers :75-80.

18. Asase A, Oteng-Yeboah AA, Odantem GT, Simmonds MSI, “Ethnobotanical study of some Ghanaian anti-malarial plants”, Journal of Ethnopharmacology, 2005; 99: Page numbers: 273–279, DOI: 10.1016/j.jep.2005.02.020; PMID: 15894138

19. E M Sutrisna, Devi Udjsana, Rizky Maidina Taqwun, Ahmad Roni Rosyidi, “Hypolipidemic effect of Tamarindus indica L fruit on Triton X-100-induced hyperlipidemia in Wistar rats”, National Journal of physiology pharmacy and pharmacology, 2015; 5(4): 285-290. DOI:10.5455/njppp.2015.5.0903021537, https://docplayer.net/82569542-Hypolipidemic-effect-of-Tamarindus-indica-L-fruit-on-triton-x-100-induced-hyperlipidemia-in-wistar-rats.html

20. Ali N, Shah SWA, “Spasmolytic activity of fruits of Tamarindus indica L”, Journal of YoungPharmacists,2010; 2 (3): Page numbers : 261-264, doi: 10.4103/0975-1483.66805, PMID: 21042482

21. Koyagura N, Kumar VH, Jamadar MG, Huligol SV, Nayak N, Yendigeri SM, Shamsuddin M, “Antidiabetic and hepatoprotective activities of Tamarindus indica fruit pulp in alloxan induced diabetic rats”, International Journal of Pharmaceutical and Clinical Sciences, 2013; 2(2): Page numbers: 33-40. https://www.ijphs.org/article/2013/2/2

22. Warda S, Gadir A, Mohamed F, Bakheit AO, “Antibacterial activity of Tamarindus indica fruit and Piper nigrum seed”, Research Journal of Microbiology, Research gate, 2007; 2: Page numbers: 824-830. DOI: 10.3923/jmr.2007.824.830

23. Martinenlo F, Soaresh SM, Franco JJ, Santos AC, Sugohara A, Garcia SB, “Hypolipemic and antioxidant activities from Tamarindus indica pulp fruit extract in hypercholesterolemic hamsters”, Food and Chemical Toxicology, 2006; 44: Page numbers: 810-818, DOI: 10.1016/j.fct.2005.10.011 Available at https://doi.org/10.1016/j.fct.2005.10.011

24. Lockett, CT, Grivetti LE, “Food-related behaviors during drought: a study of rural Fulani, northeastern Nigeria”, International Journal of Food Science and Nutrition, 2000; 51: Page numbers :91-107, DOI: 10.1080/096940301007976

25. Iftekhar AS, Rayhan I, Quadur MA, Aktheruzzaman SF, Hasnat, “A Effect of Tamarindus indica Fruits on blood Pressure and Lipid-profile in Human Model An in-vivo Approach”, Pakistan Journal Pharmaceutical Science, 2006; 19: Page numbers: 125-129. PMID: 16751124

26. Maiti R, Jana D, Das UK, Ghosh D, “Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats”, Journal of Ethnopharmacology, 2004; 9(1): Page numbers: 85-91, DOI: 10.1016/j.jep.2004.02.002 PMID: 15099853

27. Sitty Manohar Babu, Suryakanta Swain and Pooja Boyapat, “Neuroprotective activity of ethanolic extract of Tamarindus indica seeds against aluminium induced neurotoxicity”, Asian Journal of Pharmaceutical and Health sciences, 2016; 6(2): Page numbers: 1445-1452, Available at http://ajphs.com/article/2016/6/2/1445-1452

28. P Kaira, S Sharma, Suman, S Kumar, “Antilucer effect of the methanolic extract of Tamarindus indica seeds in different experimental models”, Journal of Pharmacy and Bioalliced sciences, 2011; 3(2): Page numbers :236-241, DOI: 10.4103/0975-7406.80778, PMID: 21687352

29. CV Vargas-Olvera, DJ Sanchez-Gonzalez, JD Solano, FA Aguilar-Alonso, F Montalvo-Munoz, CM Martinez-Martinez, “Characterization of N-diethyltoluamide-initiated ferric nitrolotriacetate-promoted renal cell carcinoma experimental model and effect of a tamarind seed extract against acute neuropotoxicity and carcinogenesis”. Molecular and Cellular Biochemistry, 2012; 369(1–2); Page numbers: 105-117, DOI: 10.1007/s11010-012-1373-0 PMID: 22761015

30. SS Sole, BP Srivinasan, AS Akarte, “Anti-inflammatory action of tamarind seeds reduces hyperglycemic excursion by repressing pancreatic beta-cell damage and normalizing SREBP-1c concentration”, Pharmaceutical Biology, 2013; 51(3): Page numbers :350-360, DOI: 10.1177/138809812013729067

31. P Siddharaju, “Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat LWT”, Journal of Food Science and Technology, 2007; 40 (6): Page numbers : 982-990, DOI: 10.1016/j.lwt.2006.07.010
32. MR Shahraki, M Harati, AR Shahraki, “Prevention of high fructose-induced metabolic syndrome in male wistar rats by aqueous extract of Tamarindus indica seed”, Acta Medica Iranica, 2011; 49(5): Page numbers: 277-283, PMID: 2173374.

33. G Ucchello-Barretta, F Balzano, L Vanni, M Sansó, “Mucoadhesive properties of tamarind- seed polysaccharide/hyaluronic acid mixtures: a nuclear magnetic resonance spectroscopy investigation”, Carbohydrates Polymers, 2013; 91(2): Page numbers: 568-572, DOI: 10.1016/j.carbpol.2012.07.085, PMID: 23211946.

34. Ushanandini S, Nagaraju S, Harish KK, Vedavathi M, Machiah DK, Kemparaju K, “The anti- snake venom properties of Tamarindus indica (Leguminosae) seed extract”, Phytotherapy Research, 2006; 20(10): Page numbers :851-858, DOI: 10.1002/ptr.1951, PMID: 16847999.

35. Araujo CL, Bezerra IW, Oliveira AS, “In vivo bioinsecticidal activity of insect pests of a trypsin inhibitor purified from Tamarind tree seeds”, Journal of Agricultural and Food Chemistry, 2005; 53:4381-4387, DOI: https://dx.doi.org/10.1021/jf0502505.

36. Roy RN, Maity SS, Mondal CR, “Tamarind seed husk as an effective poison”, Environment and Ecology, 1987; 5:467-471, PMID: 21815420.

37. Fook JM1, Macedo L1, Moura GE, Teixeira FM, Oliveira AS, Queiroz AF, Sales MP,” A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase”, 2005; 76(25): 2881-2891, PubMed ID 15820500.

38. Gherardie, tavantia, davinpi, celandronf, salvetiis, parisoe, boldrinie, senesis and campam, “A mucoadhesive polymer extracted from tamarind seed improves the intraocular penetration and efficacy of rufloxacin in topical treatment of experimental bacterial keratitis, Antimicrobial Agents and Chemotherapy”, 2004; 48(9): 3396-3401, DOI: 10.1128/AAC.48.9.3396-3401.2004.

39. Rajan A, Sreekumaran T, Abraham J and Vijayakumar, “An assessment of the goitrogenic effect of tamarind seed meal Tamarindus indica”, Journal of Veterinary Sciences, 1989; 20(1): 40-43, DOI: 10.1002/fvs.63311.

40. Fadohan AB, Assogbadjo AE, GileleKakai RT, Sinsin B, Vandomme P, “Impact of habitat type on the conservation status of tamarind (Tamarindus indica L) populations in the World National Park of Benin”, Research gate, 2010; 65(01): 11-19, DOI: https://doi.org/10.1051/fruits/2009037.

41. Inngjerdingen K, Nergard CS, Diallo D, Mounkoro PP, Paulsen BSJ, “An ethnopharmacological survey of plants used for wound healing in Dogonland”, Mali, West Africa, 2004; 92(2-3): 233-244, DOI: https://dx.doi.org/10.1016/j.jep.2004.02.021.

42. Abdul KapurM. and Ahmed Johns,” Antimicrobial Activity of Ethanolic Bark Extract of Tamarindus indica against some Pathogenic Microorganisms,"Tropical Journal of Pharmaceutical Research", 2014; 3(3): 589-593, DOI: 10.4314/tjpr.v3i2.14637.

43. Digh N, Pattan1 SR, Nirmal SA, Kalkotwar RS, Gaware VM, Hole MB, "Anaergic activity of Tamarindus indica, Research Journal of Pharmacognosy and Phytochemistry", 2009; 1: 69-71, DOI: 10.1016/j.imr.2019.07.002, PMID: 31453087.

44. Useh MN, Nok AJ, Ambali SF, Eseivo KA. “The inhibition of Clostridium chauvoei(jarakstrain) neuramidase activity by methanolic extracts of the stem barks of Tamarindus indica and Combretum fragrans, Journal of Enzyme Inhibition Medical Chemistry", 2004; 19: 339-342, DOI: 10.1080/14756360409162447.

45. Parle Milind, Dhamija isha, Iml“ (Tamarind)”, International Research Journal of Pharmacy, 2012; 3(8): 110-115, Available via license: CC BY-NC-ND 4.0.

46. Y. Saideswara Rao, K. Mary Mathew “Tamarind” Woodhead Publishing Limited, 2012: Page numbers: 512-533, DOI: 10.1533/9780857095688.512.

47. A. Agnihotri, V. Singh,” Effect of Tamarindus indica Linn and Cassia fistula Linn, Stem bark extracts on oxidative stress and diabetic conditions”, Acta Poloniae Pharmaceutica, 2013; 70(6): page numbers:1011-1019, PMID: 24383324.

48. Sangeeta Gupta, Amit Singh, “Antimicrobial, Analgesic and Anti-Inflammatory Activity Reported on Tamarindus indica Linn Root Extract”, Pharmacognosy Journal, 2017; 9(3) page numbers: 410-416, DOI: 10.5530/pj.2017.3.70.

49. Emmy De Caluwé, Kateřina Halamová, Patrick Van Damme, Tamarindus indica L, “A review of traditional uses, phytochemistry and pharmacology”, Academia education, 2010; 23: Page numbers: 53-83, DOI: 10.1021/bk-2009-0210.ch005.

50. Shaikh Zohra Meena, Md. Azizur Rahman, Paramdeep Bagga and Md. Mujahid. “Hepatoprotective activity of Tamarindus indica Linn stem bark ethanolic extract against hepatic damage induced by co-administration of antibacterial drugs isoniazid and rifampicin in Sprague Dawley rats”, Basic clin physiol pharmacol 2019; 30(1): page numbers: 131-137, DOI: https://dx.doi.org/10.1515/bcpp-2017-0173.

Source of Support: None declared.

Conflict of Interest: None declared.

For any question relates to this article, please reach us at: editor@globalresearchonline.net

New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com