Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla
Helen C.F. Hopkins, Yohan Pillon

To cite this version:
Helen C.F. Hopkins, Yohan Pillon. Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla. Candollea, Ed. des Conservatoire et Jardin botaniques de la Ville de Genève, 2020, 75 (1), pp.89-98. 10.15553/c2020v751a9 . hal-03128105

HAL Id: hal-03128105
https://hal.inrae.fr/hal-03128105
Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution | 4.0 International License
Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla

Authors: Hopkins, Helen C.F., and Pillon, Yohan

Source: Candollea, 75(1) : 89-98

Published By: The Conservatory and Botanical Garden of the City of Geneva (CJBG)

URL: https://doi.org/10.15553/c2020v751a9
Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla

Helen C.F. Hopkins & Yohan Pillon

Abstract

HOPKINS, H.C.F. & Y. PILLON (2020). Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla. In English, English and French abstracts. Candollea 75: 89–98. DOI: http://dx.doi.org/10.15553/c2020v751a9

Virotia azurea H.C. Hopkins & Pillon (Proteaceae), the seventh species in the endemic genus Virotia L.A.S. Johnson & B.G. Briggs from New Caledonia is described and illustrated. A distribution map and preliminary conservation assessment are provided. This new species occurs principally on non-ultramafic substrates in a restricted area of central Grande Terre. It has relatively long narrow leaves, often with distally undulate-sinuate or bluntly toothed margins and a pointed apex, plus blue flowers and laterally flattened, markedly beaked fruits containing seeds with blue to mauve cotyledons. Its characters are compared with those of other species of Virotia and a key to species is provided. A handful of specimens previously identified as Virotia francii (Guillaumin) P.H. Weston & A.R. Mast are determined mostly as Virotia leptophylla (Guillaumin) L.A.S. Johnson & B.G. Briggs and other species; the former is now confined to ultramafic substrates in southern Grande Terre and the latter is more widespread, principally occurring on non-ultramafic substrates though occasionally found on ultramafic ones in the south of the island as well.

Résumé

HOPKINS, H.C.F. & Y. PILLON (2020). Virotia azurea (Proteaceae: Macadamieae), une nouvelle espèce remarquable, endémique de Nouvelle-Calédonie et notes sur V. francii et V. leptophylla. En anglais, résumés anglais et français. Candollea 75: 89–98. DOI: http://dx.doi.org/10.15553/c2020v751a9

Virotia azurea H.C. Hopkins & Pillon (Proteaceae), la septième espèce du genre endémique de Nouvelle-Calédonie Virotia L.A.S. Johnson & B.G. Briggs, est décrite et illustrée. Une carte de répartition et son statut préliminaire de conservation sont donnés. Cette espèce est essentiellement présente sur les substrats non-ultramafiques du centre de la Grande Terre. Elle se distingue par des feuilles relativement longues et étroites, avec une marge ondulée distalement ou grossièrement dentée, et un apex pointu, des fleurs bleues, des fruits aplatis latéralement avec un bec et des graines à cotylédons bleus à mauves. Ses caractères sont comparés à ceux des espèces déjà décrites dans le genre Virotia et une clé d’identification est fournie. Quelques spécimens précédemment identifiés comme Virotia francii (Guillaumin) P.H. Weston & A.R. Mast sont déterminés essentiellement comme Virotia leptophylla (Guillaumin) L.A.S. Johnson & B.G. Briggs ainsi que divers autres espèces. Virotia francii est limitée aux substrats ultramafiques du sud de la Grande Terre, alors que Virotia leptophylla est plus répandue, surtout sur des substrats non-ultramafiques, mais occasionnellement également sur des substrats ultramafiques dans le sud de l’île.

Keywords

PROTEACEAE – Virotia – New Caledonia – New Species – Taxonomy – Manganese – Serpentine flora
Introduction

Virotia L.A.S. Johnson & B.G. Briggs is a genus of *Proteaceae* endemic to Grande Terre, the main island of New Caledonia (Weston & Barker, 2006; Weston, 2007). Together, *Virotia*, *Athertonia* L.A.S. Johnson & B.G. Briggs (1 sp., NE Queensland, Australia) and *Heliciopsis* Sleumer (14 spp., Burma and South-Eastern China to Western Malaysia) comprise subtribe *Virotiinae* P.H. Weston & N.P. Barker of the tribe *Macadamieae* Venk. Rao (Weston & Barker, 2006).

Virotia species are trees and shrubs that are sparsely branched or sometimes unbranched (Corner’s model; Bruy, 2018) and characterised by entire, or in one species lobed, adult leaves and a lateral (or rarely terminal) conflorencence (raceme of flower-pairs). The flowers are actinomorphic and bisexual, and the four tepals curl up helically after anthesis, leaving the long, straight, narrow style projecting outwards. The hygynous disc is annular to 4-lobed or sometimes sinuous on its upper rim and it forms a cup or collar around the base of the ovary, which contains two orthotropous ovules. The fruit is drupaceous and reported to have distinctive sculpturing on the inner mesocarp that is also seen in *Athertonia* and *Heliciopsis* (Johnson & Briggs, 1975; Weston & Barker, 2006; Weston, 2007).

Each flower-pair has a Y-shaped axis, subtended at the base by a small bract (Fig. 1D). The arms of this axis, immediately below the flowers, are free pedicels. Virot (1968) regarded the stem of the Y as a peduncle (called a common peduncle by Weston & Barker, 2006) and the scales as floral bracts. However, there is no articulation at the junction between the free and “fused” parts and rarely the pedicels are free almost to the base or “fused” for their entire length.

Robert Virot (1915–2002), for whom the genus is named, was a pioneer of ecological work on the New Caledonian flora (see Virot, 1956). He made numerous botanical collections in New Caledonia (Morat, 2010) and contributed two family treatments to the *Flora de la Nouvelle-Caledonie et Dépendances: Proteaceae* (Virot, 1968) and *Epacridaeae* (Virot, 1975). In his treatment of *Proteaceae*, he recognized six species in *Macadamia* F. Muell. endemic to New Caledonia. Subsequently Johnson & Briggs (1975) removed several groups from within a rather broadly defined *Macadamia* and established the genus *Virotia* for these New Caledonian taxa, although they made only a single combination at the time, *V. leptophylla* (Guillaumin) L.A.S. Johnson & B.G. Briggs; combinations for the remaining species were made subsequently by Weston & Mast (in Mast et al., 2008). Most species of *Virotia* were originally described in either *Kermadecia* Brongn. & Gris or *Roupala* Aubl., with one in *Macadamia*. As currently circumscribed, *Macadamia* comprises four species from eastern Australia (Mast et al., 2008). The Australian *M. integrifolia* Maiden & Betch, “Macadamia Nut” or “Noix de Queensland”, is not native to New Caledonia but has been cultivated near Païta (e.g. MacKee [leg. Benoit] 15109, P; MacKee [leg. Boisseau] 15178, P) (both cited as *M. ternifolia* F. Muell. by Virot, 1968), Dumbéa (MacKee 8244, P) and Nouméa (Suprin 2201, P). Although Johnson & Briggs (1975: 102, 176) also tentatively assigned *M. beyana* (F.M. Bailey) Sleumer from north-eastern Queensland to *Virotia* without formally making the combination, this species is now *Catalepidia beyana* (F.M. Bailey) P.H. Weston (see Weston, 1995).

We describe here a seventh species of *Virotia* from New Caledonia, *V. azurea* H.C. Hopkins & Pillon. Three collections of this new species at P (MacKee 15159, 18031, 28793) bear determination slips on which Virot indicated the name *Macadamia francii* (Guillaumin) Sleumer (= *Virotia francii* (Guillaumin) P.H. Weston & A.R. Mast) and a few additional specimens have been equated with *V. francii* by other botanists. However, only MacKee 15159 was cited in Virot (1968) and thus contributed to the concept of *V. francii* in that revision, nearly all the remaining collections of *V. azurea* having been made after Virot’s work was published. Besides excluding specimens now identified as *V. azurea* from *V. francii*, we are altering Virot’s concept of the latter slightly by removing a handful of other collections which we re-determine as either *V. leptophylla* or *V. vieillardii* (Brongn. & Gris) P.H. Weston & A.R. Mast.

Our study was based primarily on herbarium material at P, NOU and K. Images for specimens at P are available on the website of the Muséum national d’Histoire naturelle (P) (Sonnerat, 2020). Most latitudes and longitudes for the paratypes have been copied from their label data although in a few cases they have been taken from the Sonnerat database and are therefore cited in square brackets. The preliminary conservation assessment for *V. azurea* is based on the IUCN Red List Categories and Criteria (IUCN, 2012, 2017), using Geocat (2020; Bachman & Moat, 2012) to calculate the Area of Occupancy (AOO) and Extent of Occurrence (EOO). In the key and in Table 1, UM = ultramafic and NUM = non-ultramafic, and some regions of Grande Terre are indicated by letters representing points of the compass.

Key to the species of *Virotia*

1. Leaves associated with flowers and fruits usually 3–5-lobed (NUM, central) .. *V. roussellii*

 1a. Leaves associated with flowers and fruits simple 2

 2. Higher order venation comprising well developed, regularly shaped areoles; leaf blades in adult plants ellipitic or obovate ... 3

 2a. Higher order venation forming areoles less regular in shape and arrangement; leaf blades in adult plants oblancoate, narrowly ovate-elliptic, or sometimes elliptic 4
Fig. 1. – Virotia azurea H.C. Hopkins & Pillon. **A.** Leaf; **B.** Apex of a shoot showing the arrangement of leaf bases and the base of an inflorescence axis (*); **C.** Inflorescence (conflorescence), the flowers post-anthesis; **D.** A flower-pair immediately prior to anthesis, their peduncle subtended by a minute bract and a small bract present at the base of each pedicel; **E.** A flower post anthesis, the tepals all helically curled; **F.** Base of a flower, two tepals removed to show the ovary and the cup-like disc around it; **G.** Apex of the style, slightly swollen and ridged, forming the pollen presenter; **H.** Distal part of a tepal, inner surface, with the anther attached; **I.** Immature fruit, note prominent beak.

[A, C, E-H: Gâteblé et al. 87, P; B: Munzinger et al. 1462, P; D: MacKee 15159, P; I: MacKee 46274, P] [Drawing: Andrew Brown]
3. Leaf blades in adult plants obovate or elliptic, 5–11 × 2.2–5.5 cm, narrowly cuneate at the base, drying mid brown and noticeably paler than the petiole; secondary veins relatively few (7–15 on either side of midrib fide Virot, 1968), at a narrow angle to the midrib (30–40°); inflorescence axis, pedicels and outer surface of tepals glabrous (UM, S) V. neurophylla

3a. Leaf blades in adult plants elliptic, 12–20.5 × 4–5.5 cm, rounded or broadly cuneate at the base, drying dark green-brown and not noticeably paler than the petiole; secondary veins more numerous (18–35 on either side of midrib fide Virot, 1968), at a wider angle to the midrib (c. 60°); inflorescence axis, pedicels and outer surface of tepals with small, adpressed, reddish hairs (NUM, NE) V. vieillardii

4. Secondary veins anastomosing close to the leaf margins, forming an intramarginal vein along the entire length of the leaf (UM, S) V. francii

4a. Secondary veins not anastomosing close to the leaf margins in distal part of leaf, intramarginal vein either absent or present towards the base of the blade only 5

5. Leaves long-attenuate at the base and sessile or almost so; inflorescence usually short (6–17.5 cm long); tepals bright pink (UM, NW only, Tiébaghi and environs) .. V. angustifolia

5a. Leaves cuneate or narrowly cuneate at the base and petiolate, though sometimes shortly so (petiole > 1 cm); inflorescences often longer (9–33 cm); tepals white, pale yellow, blue, pale pink or purplish white (mostly NUM, not NW)

6. Leaf blades 30–56 cm long, the margins often bluntly toothed distally, and the apex usually pointed or sometimes obtuse; fruits crescent-shaped to ± elliptic in outline with a marked, sometimes sharply pointed beak (NUM or rarely UM, central) V. azurea

6a. Leaf blades 7.5–22.5 cm long, the margins entire or sometimes minutely irregular, and the apex obtuse; fruits almost circular in outline, apex unbeaked or umbonate at most (NUM, central or UM, S) V. leptophylla

Slender, single- or multi-stemmed shrub or small tree 3–6 m high, following Corner’s model of architecture, sometimes with many iterations (D. Bruy, pers. comm.). Leaf-bearing stems circular in cross-section, 9–10.5 mm diam., with some minute hairs. Older stems with ± circular or kidney-shaped leaf-scars, the bark rough with numerous pale lenticels. Leaves in juvenile plants (seedlings, later stages of juvenile growth and regrowth shoots) not known. Leaves in adult plants spirally arranged, the distal ones clustered around the shoot apex, simple, shortly petiolate, erect to spreading; petioles 1.5–3(–7) cm long, fairly stout (3 mm diam.), terete; blades oblanceolate, 30–56 × 5.3–11.5 cm; base narrowly cuneate or sometimes decurrent, symmetric; apex acute, pointed with a rounded tip, or bluntly pointed to ± rounded; margins usually somewhat undulate and sinuate to bluntly toothed, occasionally ± flat and entire; both surfaces entirely glabrous or almost so (a few minute hairs at most on midrib and on lower surface, at × 40), dark shiny green above and lighter beneath; midrib on upper surface slightly indented to slightly raised towards the base, prominent, rounded and longitudinally ridged beneath; secondary and higher order venation minutely prominent on both surfaces in dry material; towards the base of the blade, secondary veins at a wide angle (c. 60–70°) to the midrib, parallel to one another and linked by an intramarginal vein close to the margins; in the middle and distal part of the leaf, secondary veins gradually at a narrower angle to the midrib (c. 40–60° near the apex), either parallel or arcuate, branching and anastomosing further from the margins. Inflorescences: axes either inserted either singly in a leaf axil or 1–2 apparently arising from the axil of a leaf scar proximal to the current leaves (or rarely terminal, in Munzinger et al. 1462), erect or spreading; each a raceme of flower-pairs of total length 14–26 cm, including a common peduncle 7–9 cm long and bearing a few widely spaced bracts each to 3 mm long; flowering part cylindrical, 5.5–8 cm diam., its central axis slender, 1–2 mm diam., slightly ridged longitudinally, quite densely hairy when young, later sparsely to moderately hairy (at × 40), the hairs short, red-brown, adpressed. Flowers: in pairs, the axis of each pair arising in the axil of a small, minutely hairy bract 0.5 mm long. Peduncle of each flower-pair 1.5–5 mm long, bearing 2 pedicels each (0–)1–4 mm long, peduncle and pedicels together 3–9 mm long, slender, minutely hairy, slightly ridged longitudinally; bracts inserted close to the base of the pedicels (or sometimes below, on the peduncle), minute, triangular, 0.5 × 0.2 mm, hairy; hairs on peduncles, pedicels and bracts 0.1 mm, reddish, adpressed. Bud just prior to anthesis a straight slender tube (20–)25–32 mm long, very narrow for most of its length, expanded into an ovoid at the tip, also slightly expanded at the base, blue; outer surface sparsely to moderately hairy (hairs minute, reddish, adpressed). Tépals post-anthesis splitting to or almost to the base (remaining united at the base for up to 3 mm), tips of

Taxonomic treatment

Virotia azurea H.C. Hopkins & Pillon, sp. nov. (Fig. 1–3).

Holotypus: New Caledonia. Prov. Nord: Poindimié-Amoa, Wabuli, 20°57′26″S 165°14′24″E, 23 m, 6.II.2013, fl., Gätelé et al. 87 (P [P01067947]; iso-: NOU!).

Virotia azurea H.C. Hopkins & Pillon is similar to *V. leptophylla* (Guillaumin) L.A.S. Johnson & B.G. Briggs but differs by its longer, oblanceolate leaves that often have a rather long, pointed apex and margins that are often bluntly toothed distally (beyond the widest point), and by the fruits that in lateral view are crescent-shape or elliptic and strongly beaked.
Fig. 2. – Virotia azurea H.C. Hopkins & Pillon. A. Inflorescence arising from a leaf axil; B. A flower-pair at anthesis plus flower buds; C. Pair of flowers (note helically curled tepals and nectar); D. Very young floral buds; E. Two purple ovaries (note disc at base) and white styles; F. Inflorescence; G. Under surface of foliage.
[Photos: A, F–G: G. Gâteblé; B–E: C. Laudereau]
lobes ovate, thickened, 2.5 × 1.5 mm, tepal lobes below the tip long and narrow, curling helically, blue to white (including light blue, mid-blue and white-violet), their inner surface glabrous. **Stamens:** free part of the filament very short, each one inserted towards the base of the ovate tip of a tepal; anthers 2 × 1 mm, the connective shortly prolonged at the apex. **Disc** an erect, hypogynous cup or collar, thin, glabrous, slightly undulate along the top margin to shallowly 4-lobed or the lobes sometimes splitting to the base, maximum height 0.4 mm. **Gynoecium:** ovary cylindrical-conical, 1.5–2.5 × 0.8 mm, glabrous or with a few minute hairs, blue or violet; style cylindrical, long and slender, 21–30 × 0.5 mm, glabrous, ± white, the distal 2.5 mm forming a slightly swollen pollen presenter, this glabrous and shiny black with longitudinal ridges when dry; stigma a short terminal slit. **Fruit** few per infructescence, each borne on a thickened pedicel/peduncle c. 8 mm long, somewhat laterally compressed, crescent shaped or ventral part ± elliptic in outline with a marked beak at the end of the dorsal margin, c. 7.3 cm long (including the beak 1.5 cm long) × 3.5 cm deep (between the mid-points of the ventral and dorsal margins); epicarp bright or dark shiny green, glabrous; seed (based on Gâteblé et al. 449) 1 per fruit, almond-shaped, c. 4 cm long × 1.7 cm wide, cotyledons pale blue to mauve or pale violet.

Etymology. – The epithet, azurea, describes the colour of the flowers. According to Stearn (1992: 241), azureus means sky-blue, a light, pure, lively blue. Fresh seeds have cotyledons that are also bluish, tinged with pale violet.

Distribution, habitat and phenology. – *Virotia azurea* is found in a restricted area of central Grande Terre that extends from Mt Aoupinié in the south to Povila in the north (Fig. 4), growing in humid forest at altitudes between 20 and 600 m. Most collections are from non-ultramafic substrates; the type, Gâteblé et al. 87, is an exception as the field notes indicate the substrate as ultramafic. This reflects the geology of the area which is largely non-ultramafic but with pockets of ultramafic, especially serpentinite. One explanation for these small pockets or “filons” of ultramafic rock in otherwise non-ultramafic regions is that they may be due to diapirism (solid injection) along fault planes, in contrast to the large regions of ultramafics in the south and along the west coast of Grande Terre, in which over-thrust has been significant (Lillie & Brothers, 1970).
umbonate at most) (Table 1). Although the leaf margins in
strongly beaked (vs fruit ± circular in lateral view and slightly
widest point) (vs apex usually obtuse or rounded and retuse,
and margins that are often bluntly toothed distally (beyond the
leaf blade of
V. angustifolia
are long-attenuate at the base,
and they have an intramarginal vein that extends along the
entire length of the leaf (see below). Both
V. leptophylla
and
V. angustifolia
usually have cream-white to pale yellow flowers, although rarely both have been reported to have some pink, lilac, violet or blue on the tepals (e.g. MacKee 12654 (P),
V. leptophylla).

Fig. 3B shows two bluish-mauve, naked cotyledons from a
seed of
V. azurea.
Cotyledons pigmented with anthocyanin are also
known to occur in
V. neurophylla
(Guillaumin) P.H. Weston
& A.R. Mast (cotyledons of recently germinated seedlings
depth purple–maroon on both inner and outer surfaces) and
V. francii (cotyledons deep purple on the abaxial surface and plain
green on the adaxial one) (P. Weston, pers. comm.).

The species that is most commonly sympatric with
V. azurea, also occurring in the region from Povila and Haute
Tchamba–Haute Amoa southwards to Mt Aoupinié, is
V. rousselii
(Vieill.) P.H. Weston & A.R. Mast. This is usually
readily distinguished by the large, robust 3–5-lobed leaves that
accompany the flowers and fruits. In rare instances where the
leaves associated with reproductive structures are simple or
only partially lobed, as in
MacKee 13139 (P, K) the blades are
broadly ob lanceolate and broadly rounded at the apex, and
the inflorescence is longer, broader and more robust than in
V. azurea.

The long, ob lanceolate leaves of
V. azurea
are rather similar
to those of
V. angustifolia
(Virot) P.H. Weston & A.R. Mast, which is restricted to ultramafic substrates on and around the
Massif de Tiébaghi in north-western Grande Terre. However,
the leaf blades of
V. angustifolia
are long-attenuate at the base,
typically lacking a petiole, and the margins are entire though
they can be undulate. In addition,
V. angustifolia
commonly
has rather short inflorescences, 6–17.5 cm long, and the flowers are
bright pink, not blue or bluish.

In most herbarium specimens of
Viro tia azurea,
the leaves are either detached from the stem or attached to only a short
section of it, and the inflorescences appear either to arise in the
axil of a fully developed leaf or, when described in field notes
as borne on the stems or branches, presumably they arise in the
axil of a leaf scar. However, in
Munzinger et al. 1462, we have the
apex of a stem with the leaves clustered around it (Fig. 1B)
Table 1. – Comparison of species of Virotia L.A.S. Johnson & B.G. Briggs.

V. angustifolia	V. azurea	V. francii	V. leptophylla	V. neurophylla	V. rousselii	V. vieillardii	
substrate	UM	NUM (+ UM)	UM in centre + UM in S	UM	NUM	NUM	
distribution	NW (Tiébaghi & Koumac)	central	central & UM	S (nr Thio and far S)	central	NE	
petiole	v. short to absent	1.5–3 cm	(1–)1.5–6 cm	1–4.5 cm	1.5–3 cm, drying darker than blades	absent or to 4 cm	often long (to 10 cm)
leaf blades in fertile material	oblanceolate; base long, attenuate; margins entire, sometimes undulate	oblanceolate; base narrowly cuneate; margins often sinuous-undulate or bluntly toothed	narrowly oblanceolate-elliptic, elliptic or ovate, sometimes oblanceolate; base cuneate; margins entire, sometimes undulate	oblanceolate-elliptic, elliptic or ovate, sometimes oblanceolate; base cuneate or narrowly so; margins +/- entire	oblave or elliptic, drying medium brown, paler than petioles; base narrowly cuneate; margins entire, minutely recurved	oblanceolate or ovate-elliptic; base rounded to cuneate; margins entire	
distinctive characters of venation	IMV in proximal part of blade only	IMV in proximal part of blade only	IMV extending from base to tip	secondary veins arcuate towards margin and anastomosing quite far from margins	IMV extending from base, rather few secondary veins	IMV in proximal part of blade, less obvious or absent in lobes	markedly areolate, secondary veins many, anastomosing nr margins but IMV not distinct
inflorescence axis¹	slender, almost glabrous, often short, +/- densely flowered	slender, medium hairy, glabrescent or not	slender, initially hairy, glabrescent	slender, glabrous	long (35–70 cm), +/- robust, with short yellow hairs	slender, +/- densely hairy	
flower colour²	bright pink (pale silvery pink inside flower)	blue (pale blue, white-violet)	greyish white to pale yellow, sometimes tinged lilac or violet-grey	white or pale yellow, sometimes tinged light blue, pink or purplish esp. at base	cream-white, yellow or yellow-orange	off-white or yellow, sometimes tinged violet at base	white, pale yellow or mauve, often violet or blue at base
disc³	+/- 4-lobed, truncated or weakly indented on rim	scarcely 4-lobed	scarcely 4-lobed	not lobed; rim undulating or toothed	4-lobed, lobes shallow (1/4–1/3 of height of disc), +/- triangular	deeply 4-lobed	4-lobed with hairs in each sinus
fruit shape (lateral view)	ellipsoid-beaked	ellipsoid-beaked or crescent-shaped	ellipsoid-beaked	+/- circular, sometimes with a small umbo	+/- ellipsoid, not or scarcely beaked	+/- ellipsoid, scarcely beaked	asymmetrically obovoid, blunt at tip

¹Hairs short, reddish and adpressed unless indicated otherwise; ²Colours refer principally to the tepals; ³Taken from Virot (1968) except for V. azurea.

Abbreviations: IMV = intramarginal vein; NUM = non ultramafic; UM = ultramafic.
and the peduncle of a young inflorescence arising at the tip of this stem. The leaves could be loosely described as forming a “terminal cluster” but they do not terminate the growth of the stem and so are not truly terminal, whereas the inflorescence does appear to terminate the shoot. The peduncle has a series of small, triangular, adpressed bracts around the base and at intervals along its length.

Leaf manganese content was measured non-destructively on *Virotia azurea*'s herbarium specimens with a handheld X-Ray Fluorescence (XRF) spectrometer (Jaffré et al., 2013; Van der Ent et al., 2019). We found significant variations with a high value of 4178 μg g⁻¹ for Gätelblé et al. 87, and lower values for other specimens: 819 μg g⁻¹ (MacKee 4651), 825 (MacKee 18031), 981 (Munzingar et al. 1462), and a value below the detection threshold for Veillon 4651. The accumulation of manganese is a typical characteristic of New Caledonian Proteaceae growing on ultramafic substrates (Jaffre, 1979), and these measurements are consistent with the dual ecology of this species, occurring on both serpentinite and other metamorphic substrates.

Veillon 3060 (“Wagap, in sylvis montium”, 1861–1867, st., K, P [2 sheets]) is a mixed collection consisting of flowers of *Oxera Labill.* (*Lamiaceae*) and leaves of *Virotia* (G. Gâteblé, pers. comm.). The flowers represent the type material of *Oxera merytifolia* Guillaumia (G. Gâteblé, pers. comm.; de Kok & Mabberley, 1999). Based on their shape and venation, the leaves appear to belong to *V. azurea* although the petiole is (1–)1.5–6 cm long and the peduncle 13–43 × 2.8–7.8 cm, with the base cuneate or narrowly cuneate (to decurrent) and sometimes unequal, and the apex is ± acute and mucronulate, broadly acute, obtuse or occasionally rounded-reteuse; leaves in juvenile plants and regrowth shoots can be slightly larger. As mentioned above, *V. francii* is most easily distinguished by the intramarginal vein that extends from the base of the leaf to the tip. Its immature fruits are beaked, as in *V. azurea*, whereas those of *V. leptophylla* are ± circular in outline and unbeaked, although sometimes they have a small umbo that develops from the base of the style.

Virotia leptophylla is rather unusual in that it occurs on non-ultramafic substrates in central Grande Terre and ultramafic ones in parts of the south, in the Thy valley (several collections; substrate ultramafic or a mosaic including ultramafic), Nord de la Conception (*Balansa* 2294, type; *P*; substrate probably ultramafic), and Haute Rivière des Pirogues, Forêt Faux Bon Secours (*MacKee* 38034, *P*; substrate ultramafic). As mentioned above, the adult leaves are usually narrowly obovate-elliptic, elliptic, ovate, or sometimes oblanceolate; leaves in juvenile plants and regrowth shoots can be smaller. As mentioned above, the adult leaves are usually narrowly obovate-elliptic, elliptic, ovate, or sometimes oblanceolate (petioles 1–4.5 cm long; blades 7.5–22.5 × 2.5–8.5 cm), with the base cuneate or narrowly cuneate and the apex obtuse to rounded and often retuse. Leaves from juveniles and small plants that flower in the understory at c. 4 m high are usually narrowly elliptic-ovate (to 27 × 7 cm) with an acute–mucronulate apex and longer petioles (to 7.5 cm). Some specimens from the region of La Foà and Canala (*McPherson* 6387, *P*; *McPherson* 6119, *P*; *MacKee* 12654, *P*) have somewhat atypical long lanceolate leaves with secondary veins branching nearer the margin, tertiary veins more apparent, and more coriaceous leaf blades. Typical forms and intermediates occur in the same area, so these variants probably do not warrant recognition as a distinct entity.

The collection *Tronchet et al. 462* (*P*) from Mt Gôrô Até is left unplaced for now. Its pink flowers and relatively short,
densely flowered inflorescences are reminiscent of *V. angustifolia* (Virot) P.H. Weston & A.R. Mast but it differs from the latter by its leaf blades, which are less coriaceous and have a rounded, not pointed, apex, and distinct petioles that are 2 cm long (petioles absent or very short in *V. angustifolia*). The Mn content of this specimen is modest (1047 ppm), suggesting that the plant was not growing on ultramafic substrate, whereas *V. angustifolia* is a strong Mn hyperaccumulator restricted to the ultramafic substrates of Tiébaghi. *Tronchet et al. 462* appears to have a similar ecology to *V. azurea* and was collected within the distribution of *V. azurea* (and possibly *V. leptophylla*), but its pink flowers and rounded leaf apices distinguish it from *V. azurea*, while its long leaf blades (34 cm) with thicker petioles (2 mm wide) distinguish it from *V. leptophylla*.

Acknowledgments

We thank NOU (especially David Bruy) and MO for providing images of herbarium material, the Muséum national d’Histoire naturelle (P) for the loan of material and Florian Jabbour for his assistance at P; Gildas Gâteblé and Christian Laudereau for kindly allowing us to use their photographs and Gildas for hospitality while visiting P. We also thank Peter Weston for photographs of other *Virotia* species of Dominique Fleurot and Peter Weston for photographs of *Oxera merytifolia* providing information about architecture; Jérôme Munzinger, David Bruy for information on architecture; Jérôme Munzinger, Dominique Fleurot and Peter Weston for photographs of other species of *Virotia*, used to score characters in Table 1; and Andrew Virotia for the beautiful drawing. HCFH thanks Odile Poncy for the loan of material and Florian Jabbour for images of herbarium material, the Muséum national d’Histoire naturelle (P) for the loan of material and Florian Jabbour for kindly allowing us to use their photographs and Gildas for hospitality while visiting P. We also thank Peter Weston for his helpful comments on the original version of the manuscript.

References

Bachman, S. & J. Moat (2012). GeoCAT – an open source tool for rapid Red List assessments. *Bot. Gard. Conservation Int.* J. 9.

Bruy, D. (2018). *Diversité, écologie et évolution des plantes monocotylédones de Nouvelle-Calédonie*. Doctoral dissertation, Université de Montpellier, Montpellier.

de Kok, R.P.J. & D.J. Mabberley (1999). A synopsis of *Oxera* Labill. (Labiatae). *Kew Bull.* 54: 265–300.

GeoCAT (2020). Geospatial Conservation Assessment Tool. [http://geocat.kew.org]

IUCN (2012). *IUCN Red List Categories and Criteria: Version 3.1* Ed. 2. IUCN Species Survival Commission, Gland & Cambridge.

IUCN (2017). *Guidelines for Using the IUCN Red List Categories and Criteria: Version 13*. Prepared by the IUCN Standards and Petitions Subcommittee. IUCN Species Survival Commission, Gland & Cambridge.

Jaffre, T. (1979). Accumulation du manganèse par les Protéacées de Nouvelle-Calédonie. *Compt. Rend. Acad. Sci. Paris, sér. D, Sci. Nat.* 289: 425–428.

Jaffré, T., Y. Pillon, S. Thomine & S. Merlot (2013). The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. *Front. Plant Sci.* 4: 279.

Johnson, L.A.S. & B.G. Briggs (1975). On the Proteaceae – the evolution and classification of a southern family. *Bot. J. Linn. Soc.* 70: 83–182.

Lillie, A.R. & R.N. Brothers (1970). The geology of New Caledonia. *N. Z. J. Geol. Geophys.* 13: 145–183.

Mast, A.R., C.L. Willis, E.H. Jones, K.M. Downs & P.H. Weston (2008). A smaller Macadamia from a more vague tribe: inference of phylogenetic relationships, divergence times, and dispersal evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). *Amer. J. Bot.* 95: 843–870.

Morat, P. (2010). Les botanistes récolteurs en Nouvelle-Calédonie de 1774 à 2005. *Adansonia* ser. 3, 32: 159–216. DOI: https://doi.org/10.5252/a2010n2a1

Sonnerat (2020). Base de données des collections du Muséum national d’Histoire naturelle. Paris. [http://science.mnhn.fr/institution/mnhn/collection/p/item/search/form]

Stearn, W.T. (1992). *Botanical Latin*. Ed. 4. David & Charles, Newton Abbot.

Van der Ent, A., G. Echevarria, A.J. Pollard & P.D. Erskine (2019). X-Ray fluorescence ionomics of herbarium collections. *Sci. Rep.* 9: 4746.

Virot, R. (1956). *La végétation canaque*. Faculté des Sciences de l’Université de Paris, Paris.

Virot, R. (1968). *Protéacées*. *Fl. Nouvelle-Calédonie et Dépendances* 2.

Virot, R. (1975). *Epacridacées*. *Fl. Nouvelle-Calédonie et Dépendances* 6.

Weston, P.H. (1995). *Catalepidia*. In: McCarthy, P. (ed.), *Fl. Australia* 16: 415–416.

Weston, P.H. (2007). *Proteaceae*. In: Kubitzki, K. (ed.), *The families and genera of vascular plants*, vol. 9: 364–404. Springer, Berlin.

Weston, P.H. & N.P. Barker (2006). A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. *Telopea* 11: 314–344.