Percolated-Induced Ferrimagnetism

H. Manaka, S. Nagata, Y. Watanabe, K. Kikunaga, T. Yamamoto, N. Terada and K. Obara

Department of Nano-Structure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
E-mail: manaka@eee.kagoshima-u.ac.jp

Abstract. A percolated-induced ferromagnetic moment in KNi$_{1-x}$Zn$_x$F$_3$ for $x = 0.57$, which is Heisenberg-type diluted three-dimensional magnet, is studied by electron spin resonance. Below $T_C \simeq 24$ K, ferrimagnetic resonance spectra appeared as expected. On the other hand, in KCo$_{1-x}$Zn$_x$F$_3$ for $0.49 \leq x < 1$, which are Ising-type diluted three-dimensional magnets, a percolated-induced ferromagnetic moment did not appear. This difference may play an important key role in Coulomb repulsion between Zn$^{2+}$ ions because KNi$_{1-x}$Zn$_x$F$_3$ consists of simple cubic lattice, on the other hand tetragonal distortion exists in KCo$_{1-x}$Zn$_x$F$_3$.

1. Introduction

Transparent-bulk ferromagnets are useful for optical isolators in widely optical information networks. Recently numerous investigations\cite{1-3} have been carried out for realizing a higher Curie temperature T_C in diluted-magnetic semiconductors (DMS). The discovery of transparent ferromagnets at room temperature, in Co-doped rutile and anatase TiO$_2$\cite{4,5}, has triggered intensive studies on semiconductors of various oxides doped with magnetic ions. We challenge a method that is different from DMS: magnetic conversion from transparent antiferromagnets to transparent random ferrimagnets, with spontaneous ferromagnetic moment by a diluted percolation method.

In this study, we report on single-crystal transparent random ferrimagnets based on a theoretical prediction by Todate\cite{6}. According to this prediction, a percolation method using non-magnetic ions in simple cubic (SC) antiferromagnets causes an inhomogeneous spin arrangement, because six up/down spins are formed dominantly around non-magnetic ions. Considering Coulomb repulsion, non-magnetic ions are not favor to replacements side by side. As illustrated in Fig. 1, since non-magnetic ions tend to replace every other two magnetic ions at $x = 0.4-0.6$, the numbers of up and down spins are not equal, even if non-magnetic ions are homogenously dispersed in SC antiferromagnets. Since the percolation limit in SC is $x = 0.3117$, a magnetic long-range order may occur. As a result of Coulomb repulsion between non-magnetic ions, ordered spin arrangement forms a random ferrimagnet with spontaneous ferromagnetic moment. If this scenario is true, transparent antiferromagnets convert to transparent random ferrimagnets with spontaneous ferromagnetic moment. This idea is epoch-making and no experimental studies have been conducted.
2. Experimental procedure

We have already reported that perovskite nickel fluorides $\text{KNi}_x\text{Zn}_{1-x}\text{F}_3$, which are $S = 1$ Heisenberg-type diluted three-dimensional antiferromagnets, show random ferrimagnets below $T_C = 24 \pm 2$ K for $x = 0.57$ and 26 ± 2 K for $x = 0.51$, as shown in Fig. 2[7]. In this study, we performed electron spin resonance (ESR) to clarify appearance of the spontaneous ferromagnetic moment below T_C. We further prepared $\hat{s} = 1/2$ Ising-type diluted three-dimensional antiferromagnets, $\text{KCo}_x\text{Zn}_{1-x}\text{F}_3$ ($0.49 \leq x < 1$), at temperature T and external magnetic field H, and performed dependence of magnetization M measurements using a superconducting quantum-interference device (SQUID) magnetometer.

Single-crystals of $\text{KNi}_x\text{Zn}_{1-x}\text{F}_3$ and $\text{KCo}_x\text{Zn}_{1-x}\text{F}_3$ were grown by the Bridgman method. Transparent yellow-green for $\text{KNi}_x\text{Zn}_{1-x}\text{F}_3$ and light-purple for $\text{KCo}_x\text{Zn}_{1-x}\text{F}_3$ single crystals were obtained. The values of x were determined by energy dispersive X-ray fluorescence spectrometer (EDX, 20 kV acceleration voltage), which is attached to environmental scanning electron microscope (E-SEM, Philips E-SEM 30). Almost all samples were found to be homogeneous, and the scattered values of x were less than $\pm 1-2$ %.

3. Experimental results and discussion

3.1. Heisenberg-type diluted three-dimensional magnets

Figure 3 shows ESR spectra at 24 GHz of $\text{KNi}_x\text{Zn}_{1-x}\text{F}_3$ for $x = 0.57$. Since the symmetrical ESR spectra appear above T_C, we found no contaminations of magnetic impurities. Below T_C, on the other hand, the antisymmetrical ESR spectra appear and the ESR intensities rapidly increase with decreasing T, similar to the $M(T)$ curves shown in Fig. 2. These tendencies indicate ferrimagnetic resonance rather than ferromagnetic resonance because line width in ferromagnetic resonance is generally sharp at low T. When we assume typical ferrimagnetic resonance, a resonance condition of the lower field mode is expressed as $\omega_1 = |\gamma_{\text{eff}}|(H + H_{\text{effA}})$, where γ_{eff} and H_{effA} are effective gyromagnetic ratio and magnetic anisotropy ($H_{\text{effA}} \geq 0$). Thus ferrimagnetic resonance field shifts toward lower field side owing to magnetic anisotropic field. As can be seen in Fig. 3, its tendency is very small because KNiF_3 is a typical Heisenberg SC antiferromagnet[8]. Further from the small shifts of resonance field, demagnetization field can be ignored.

3.2. Ising-type diluted three-dimensional magnets

Figure 4 shows the $M(T)/H$ curves of $\text{KCo}_x\text{Zn}_{1-x}\text{F}_3$ for various values of x at $H = 100$ Oe. The $M(T)/H$ curve for $x = 1$ and the antiferromagnetic transition temperature, $T_N = 114$ K, are consistent with previous reports[9,10]. In $\text{KCo}_x\text{Zn}_{1-x}\text{F}_3$ for $0.49 \leq x \leq 1$, the orbital...
Figure 2. The $M(T)/H$ curve for $x = 0.57$. The FC (field cooled) data and the ZFC (zero-field cooled) data were collected after applying $H = 5$ Oe at 50 K and 5 K, respectively. $T_C = 24 \pm 2$ K was obtained.

Figure 3. ESR spectra for various temperatures for $x = 0.57$. The resonance field of DPPH is necessary to determine g values.

Figure 4. Temperature dependence of $M(T)/H$ in KCoxZn1−xF3 for 0.49 $\leq x \leq 1$ at $H = 100$ Oe. Each diamagnetic moment is NOT subtracted from M.

Figure 5. Transition temperatures normalize at $T_N(x = 1) = 114$ K for various values of x. The solid line is the fitting line, and then the percolation limit is obtained to be $x = 0.33 \pm 0.02$.

angular momentum of the Co$^{2+}$ ion is not quenched by the octahedral coordinated crystal field. Thus, large diamagnetic moments appear: KCoF$_3$ was reported to be 5×10^{-3} emu/mol\[11\]. Although diamagnetic contribution is NOT subtracted from the experimental values of M in Fig. 4, ferromagnetic-like $M(T)$ behavior did not appear. There were no difference between the field cooled (FC) data and the zero-field cooled (ZFC) data which were collected after applying $H = 100$ Oe at 150 K and 5 K, respectively. Furthermore, the $M(H)$ curves for $x = 0.59$ and...
0.49 did not show a hysteresis loop. We determined the value of T_N by the points of inflection of the $M(T)$ curvature. As a result, x dependence of T_N is shown in Fig. 5, and then the percolation limit is obtained to be $x = 0.33 \pm 0.02$, experimentally. This value agrees well with the theoretical prediction limit ($x = 0.3117$). As a result, Co$^{2+}$ ions are well-substituted for Zn$^{2+}$ ions, homogeneously but a percolated-induced ferromagnetic moment did not appear in KCo$_x$Zn$_{1-x}$F$_3$.

Since Co$^{2+}$ ion at high spin state is Kramers doublet, spin-lattice coupling is very large compared with Ni$^{2+}$ ion. According to the X-ray experimental results in KCo$_x$Mg$_{1-x}$F$_3$ for $x = 0.88$ and 0.75[12], a structural-phase transition from cubic to tetragonal crystal structure occurs below temperatures which exhibit three-dimensional long-range order. In KNiF$_3$, on the other hand, no magnetostrictions or structural-phase transitions occur[8-10]. As a result of comparing KNi$_x$Zn$_{1-x}$F$_3$ with KCo$_x$Zn$_{1-x}$F$_3$, we found that appearance of a percolated-induced ferromagnetic moment plays an important key role in keeping the balance of the Coulomb repulsion between non-magnetic ions in SC lattice.

In conclusion, spontaneous ferromagnetic moment appeared in KNi$_x$Zn$_{1-x}$F$_3$ for $x = 0.57$ from ESR measurements, and magnetic conversion from transparent antiferromagnet KNiF$_3$ to transparent random ferrimagnets, with spontaneous ferromagnetic moment by the diluted percolation method, was carried out. On the other hand, in KCo$_x$Zn$_{1-x}$F$_3$ for $0.49 \leq x < 1$, a percolated-induced ferromagnetic moment did not appear because the tetragonal distortion exists. As a result, percolated-induced ferrimagnetism was found to be valid for SC lattice.

Acknowledgments

One of the authors (H. M.) would like to thank Professor Y. Todate for the kindly permitting me to quote his results in advance of publication. With regarded to the E-SEM measurements, we received valuable support from Frontier Science Research Center. This work was partly supported by the Nippon Sheet Glass Foundation, JGC-S Scholarship Foundation and Foundation for Promotion of Material Science and Technology of Japan. This research was supported in part by the Grant-in-Aid for Young Scientists (B) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT). This work partially supported by joint research between Kagoshima University and National Institute of Advanced Industrial Science and Technology (AIST).

[1] Ohno H, Minnekata H, Penney T, Molnar S von and Chang L L 1992 Phys. Rev. Lett. 68 2664.
[2] Dietl T, Ohno H, Matsukura F, Cibert J, and Ferrand D 2000 Science 287 1019.
[3] Macdonald A H, Schiffer P, and Samarth N 2005 Nature Mater. 4 195.
[4] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, and Koinuma H 2001 Science 291 854.
[5] Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X, Hasegawa T, Fukumura T, Kawasaki M, Koshihara S, and Koinuma H 2001 Jpn. J. Appl. Phys. 40 L1204.
[6] Todate Y Private communications.
[7] Manaka H, Watanabe Y, Kikunaga K, Yamamoto T, Terada N, and Obara K 2008 Appl. Phys. Lett. 92 042501; 089901.
[8] Yamaguchi H, Katsumata K, Hagiwara M, Tokunaga M, Liu H L, Zibold A, Tanner D B, and Wang Y J 1999 Phys. Rev. B 59 6021.
[9] de Jongh L J, and Miedema A R 1974 Experiments on Simple Magnetic Model Systems (London: Taylor and Francis).
[10] de Jongh L J 1990 Magnetic Properties of Layered Transition Metal Compounds (London: Kluwer Academic Publishers, Dordrecht, Boston).
[11] Suzuki N, Isu T and Motizuki K 1977 Solid State Commun. 23 319.
[12] Skrzypek D and Heimann J 1995 J. Mag. Magn. Mater. 139 162.