Data Article

Dataset on effect of decolourisation on metabolomic profile of *Moringa oleifera* leaf powder

Adewumi Toyin Oyeyinka\(^a,{}^*\), Oluwafemi Ayodeji Adebo\(^b\), Muthulisi Siwela\(^a\), Kirthee Pillay\(^a\)

\(^a\) Discipline of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa

\(^b\) Biotechnology and Food Technology, University of Johannesburg, South Africa

ABSTRACT

Moringa leaf has been widely used in the enrichment of staple foods due to its high nutritional value and hypoglycaemic, immune boosting, antiviral, antioxidant and antimicrobial activities. However, the acceptability of these products is generally low due to the green colour imparted by the colour of Moringa leaf. Decolourisation of the leaves may improve the acceptability of the food products. The decolorisation process may not only change the chlorophyll concentration of the Moringa leaves but also its other chemical components. The data set describes the effect of decolourisation on the metabolites present in Moringa leaf powder. The raw and decolourised samples were extracted with methanol/water (80:20 v/v) and analysed using a gas chromatography-high resolution time of flight-mass spectrometer (GC-HRTOF-MS). The metabolites identified were classified based on their functional group into acids, alcohols, aldehydes, amides hydrocarbons, phenols, phytosterols, vitamins and others. The data presented can be useful in identifying functional compounds available in Moringa-based foods and understanding the effect of decolourisation on the metabolite profile.

A R T I C L E I N F O

Article history:
Received 17 February 2022
Revised 20 July 2022
Accepted 29 July 2022
Available online 4 August 2022

Dataset link: Supplementary data for manuscript 'Dataset on effect of decolourisation on metabolomic profile of Moringa oleifera leaf powder' (Original data)

Keywords:
Metabolites
GC-HRTOF-MS
Moringa decolourisation
Fortification

* Corresponding author.
 E-mail address: oyeyinkaa@ukzn.ac.za (A.T. Oyeyinka).

https://doi.org/10.1016/j.dib.2022.108508
2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Food Science: Food Chemistry
Specific subject area	Processing; Pigment extraction; Metabolomics
Type of data	Table; Figure; Spectra data
How the data were acquired	*Moringa oleifera* leaf powder (MOLP) was decolourised by homogenising the leaf powder with ethanol (95%) at a powder to solvent ratio of 1:20, placed on an orbital shaker at 150 rpm for 30 min. The samples were later centrifuged, supernatant discarded, and the slurry dried at 40 °C. Metabolites in the raw and decolourised powder were extracted with methanol/water at 80:20 v/v. The extracts were analysed using the LECO Pegasus GC-HRTOF-MS system (LECO Corporation, St Joseph, USA) fitted with resolution of 50,000 FWMH (full peak with at one half maximum), with mass accuracies/errors of < 1 ppm and acquisition rates of up to 200 spectra/s. The system is equipped with an Agilent 7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE, USA), Gerstel MPS multipurpose autosampler (Gerstel Inc., Mülheim an der Ruhr, Germany) and a Rxi ®-5ms column (30 m x 0.25 mm ID x 0.25 μm) (Restek, Bellefonte, USA).
Data format	Raw and analysed data
Description of data collection	A single biological *Moringa* leaf powder sample was used in the experiment. The sample was extracted in duplicate, and the duplicate extracts injected in triplicate. Raw and decolourised leaf powder (1 g) was extracted with 10 ml extraction solvent (methanol/water 80:20 v/v). The extract was concentrated, reconstituted in 1 ml methanol (99.9% pure chromatography grade) and filtered into dark vials using 0.22 μm syringe filters. Afterwards, 1 μl of sample was auto-injected to the GC-HRTOF-MS machine and metabolite identities were determined using NIST, Mainlib and Feihlin metabolomics databases.
Data source location	MOLP was sourced from the Agricultural Research Council (ARC), Pretoria, Gauteng, South Africa (S 25° 44’ 55. 8” E 28° 14’ 14. 0”) and analyses were done at the University of Johannesburg (Doornfontein Campus), Johannesburg, South Africa (S 26° 11’ 32. 6” E 28° 03’ 28. 9”).
Data accessibility	Raw and processed dataset have been deposited in Mendeley repository and is accessible using the link: DOI: 10.17632/7mrhxrt9kr.1; https://data.mendeley.com/datasets/7mrhxrt9kr/1 [1]

Value of the Data

- The data present the effect of decolourisation on the metabolite profile of *Moringa* leaf powder samples and give an insight to metabolite modifications after decolourisation.
- The data reported would be useful to food processors for supplementing staple foods with decolourised *moringa* leaf powder for improved nutrition.
- The data could be useful for comparative analysis of metabolite composition of *moringa* leaf powder grown in different locations and may be useful for selecting *moringa* leaf species for various food and non-food applications.

1. Data Description

The metabolite data obtained from raw and decolourised MOLP are presented. Table 1 represents the metabolites obtained from MOLP. The data in the table includes the following: retention time, observed mass, metabolite name, molecular formula and average peak area for each metabolite identified in the different samples. These were obtained from the peaks generated
Table 1
Metabolites Identified in Raw and Decolourised Moringa Leaf Powder.

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured

Acids

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
9:33	150.0675	Hydrocinnamic acid	C₉H₁₀O₂	267444 ± 1677	ND	ND
15:90	207.1833	Tetradecanoic acid	C₁₄H₂₈O₂	870892 ± 1728	112615 ± 1544	ND
15:85	171.1378	n-Decanoic acid	C₁₀H₂₀O₂	ND	136420 ± 955	ND
18:31	256.2399	n-Hexadecanoic acid	C₁₆H₃₂O₂	20230631 ± 3875	4957168 ± 1078	ND
20:20	178.1343	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	C₁₈H₃₀O₂	ND	385144 ± 848	ND

Alcohol

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
3:50	87.0439	2-Chloroethanol	C₂H₅ClO	ND	6540954 ± 381	ND
3:10	98.0361	2-Furanmethanol	C₅H₆O₂	2332645 ± 2154	ND	ND
4:24	110.036	(3-Fluorophenyl) methanol, n-butyl ether	C₁₁H₁₅FO	2215455 ± 1928	ND	ND

Aldehyde

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
4:23	110.036	2-Furancarboxaldehyde, 5-methyl-	C₆H₆O₂	4329276 ± 1750	ND	ND
5:29	120.0568	Benzeneacetaldehyde	C₆H₆O	5491177 ± 2096	ND	ND
7:56	120.0569	Benzaldehyde, 3-methyl-	C₆H₆O	ND	310003 ± 0	ND
7:66	120.0570	Benzaldehyde, 2-methyl-	C₆H₆O	709831 ± 691	ND	ND
20:00	264.2451	9,12,15-Octadecatrienal	C₁₈H₃₀O₂	ND	3090025 ± 600	ND

Amide

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
11:23	174.0667	Furmecyclox	C₁₄H₂₁NO₃	90492 ± 156	ND	ND
12:23	193.1693	Benzamide, 2,6-difluoro-N-heptyl-	C₁₄H₁₅F₂NO	548309 ± 1639	ND	ND
14:65	197.1204	Formamide, N-(1,1′-biphenyl)-2-yl-	C₁₃H₁₁NO	49904 ± 461	ND	ND
19:65	193.0890	1-Anthracenamine	C₁₄H₁₁N	63892 ± 187	ND	ND
19:93	154.1226	Dodecanamide, N-(2-hydroxyethyl)-	C₁₄H₂₀NO₂	ND	82268 ± 779	ND
25:16	172.1561	9-Octadecenamide, (Z)-	C₁₈H₃₅NO	297218 ± 1354	212162 ± 1040	ND

Amines

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
12:99	143.0730	2-Naphthalenamine	C₁₀H₈N	ND	27586 ± 1359	ND
20:07	243.2511	Ethanol, 2,2′-(dodecylimino)bis-	C₁₆H₃₅NO₂	ND	74343 ± 575	ND

Diterpenes

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	Raw	Decoloured
17:30	207.7144	Neophytadiene	C₂₀H₃₈	383948 ± 846	115003 ± 564	ND
19:70	279.3006	Phytol	C₂₀H₄₀O	2504053 ± 1783	ND	ND

(continued on next page)
RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
5:97	134.0835	1,2-Ethanediol, dipropionate	C₆H₁₄O₄	ND	1085862 ± 1179
6:01	112.0394	dl-Alanine ethyl ester	C₆H₁₁NO₂	5911350 ± 2645	ND
6:55	168.9881	Glycine, N-methyl-N-methoxycarbonyl-, undecyl ester	C₁₀H₁₃NO₄	ND	435634 ± 690
7:41	149.1073	Terephthalic acid, 4-fluorophenethyl octyl ester	C₂₄H₂₁NO₄	104029 ± 1101	ND
11:23	133.1011	4-Fluorobenzoic acid, tridec-2-ynyl ester	C₂₀H₁₂NO₂	87384 ± 368	ND
11:55	176.0829	3-Butenoic acid, 4-phenyl-, methyl ester	C₁₁H₁₂O₂	245772 ± 1255	91379 ± 433
11:69	166.0624	Benzeneacetic acid, 4-hydroxy-, methyl ester	C₈H₁₀O₃	ND	183725 ± 496
12:23	161.5899	2,4-Difluorobenzoic acid, 2-formyl-4,6-dichlorophenyl ester	C₁₄H₈F₂O₃	442533 ± 587	106667 ± 943
12:41	178.0623	4-Fluorobenzoic acid, tridec-2-ynyl ester	C₂₀H₁₂O₂	64013 ± 325	ND
13:32	168.0414	Fumaric acid, ethyl 3,4,5-trichlorophenyl ester	C₁₂H₇Cl₃O₄	ND	74561 ± 613
13:39	139.0377	Fumaric acid, ethyl 2,3,5-trichlorophenyl ester	C₁₂H₇Cl₃O₄	220060 ± 963	ND
17:19	150.0264	Phthalic acid, monoamide, N-ethyl-N-(3-methylphenyl),-isobutyl ester	C₂₇H₂₅NO₃	ND	49831 ± 575
17:21	224.1004	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	C₁₈H₂₁O₄	209387 ± 1458	ND
18:22	223.0960	Dibutyl phthalate	C₁₆H₂₂O₄	237942 ± 909	ND
21:23	157.0838	Carbonic acid, 2-dimethylaminoethyl isobutyl ester	C₁₈H₂₂NO₃	225107 ± 1068	ND
21:24	179.0012	Octanoic acid, 2-dimethylaminoethyl ester	C₁₂H₂₅NO₂	173798 ± 867	ND
22:74	88.0757	Cyclobutanecarboxylic acid, 2-dimethylaminoethyl ester	C₁₂H₁₇NO₂	345374 ± 1472	ND
23:11	300.2600	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₁₉H₃₈O₄	1227632 ± 1574	ND
24:67	285.2783	Pentadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₁₈H₃₆O₄	306505 ± 799	ND
24:67	285.2781	Glycerol 1-palmitate	C₁₉H₃₈O₄	414699 ± 1891	ND
24:67	285.2778	Pentadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₁₈H₃₆O₄	393653 ± 1489	ND
27:15	210.0300	2-Amino-3-cyano-4-methyl-4,6-bis-(5-nitrobenzofuran-2-yl)-cyclohexa-1,5-dien-1,3-dicarboxylic acid, diethyl ester	C₁₀H₂₄N₄O₁₀	39484 ± 128	ND
27:16	204.1105	4′-Cyano-4-biphenyl-p-heptylbenzoate	C₂₇H₂₇NO₂	121833 ± 985	ND
27:16	414.3457	2-Amino-3-cyano-4-methyl-4,6-bis-(5-nitrobenzofuran-2-yl)-cyclohexa-1,5-dien-1,3-dicarboxylic acid, diethyl ester	C₁₀H₂₄N₄O₁₀	137111 ± 568	ND

Fatty Acid Ethyl Esters

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
18:46	241.2156	Pentadecanoic acid, ethyl ester	C₁₇H₃₄O₂	ND	142849 ± 872
23:12	300.2615	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₁₉H₃₈O₄	652035 ± 1645	ND

(continued on next page)
Table 1 (continued)

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area
		Fatty Acid Methyl Esters		

Fatty Acid Methyl Esters

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
17:75	270.2551	Pentadecanoic acid, 14-methyl-, methyl ester	C_{17}H_{34}O_{2}	ND	452607 ± 1184
17:76	228.2046	Tridecanoic acid, methyl ester	C_{16}H_{32}O_{2}	577213 ± 1215	ND
17:76	213.1850	Dodecanic acid, methyl ester	C_{15}H_{30}O_{2}	60741 ± 783	ND
19:57	236.1769	9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-	C_{19}H_{32}O_{2}	523501 ± 964	ND
19:77	255.2315	Tridecanoic acid, methyl ester	C_{18}H_{36}O_{2}	ND	118000 ± 674

Heterocyclic organic compounds

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
7:91	126.0311	5-Hydroxymethylfurural\(^\text{a}\)	C_{6}H_{6}O_{3}	12643146 ± 4287	4540831 ± 651

Hydrocarbons

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
5:59	95.0332	Dipivefrine, N.O-bis(pentafluoropropionyl)-	C_{13}H_{17}F_{10}NO_{7}	488776 ± 1892	ND
5:82	120.0566	1,3,5,7-Tetraoxane	C_{11}H_{14}O_{6}	28996026 ± 3624	ND
10:30	126.0467	2,2-Dichloroethyl methyl ether	C_{8}H_{8}Cl_{2}O	3102554 ± 1560	ND
10:61	172.1245	(E)-1-(2,3,6-trimethylphenyl)buta-1,3-diene (TPB, 1)	C_{13}H_{16}	57373 ± 657	ND
11:03	133.0918	5-Trimethylsilylpent-2-ene-4-yne\(^\text{a}\)	C_{8}H_{14}Si	51869 ± 235	30748 ± 464

(continued on next page)
RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
12:03	326.9667	3-Butoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane	C₁₉H₅₄O₇Si₇	ND	60326 ± 837
14:64	401.9880	Cyclooctasiloxane, hexadecamethyl-	C₁₆H₄₈O₈Si₈	ND	107780 ± 553
20:20	173.1325	9,12,15-Octadecatrien-1-ol, (2,2,2)-	C₁₈H₃₂O	ND	285352 ± 848

Indole

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
8:73	117.0571	Indole	C₈H₇N	187094 ± 961	81834 ± 818
19:62	193.0884	3-Phenylindole	C₁₄H₁₁N	26717 ± 561	ND
19:68	278.2972	Phytol	C₂₀H₄₀O	1042771 ± 964	ND

Ketones

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
3:38	96.0205	4-Cyclopentene-1,3-dione	C₅H₈O₂	472244 ± 425	ND
4:39	144.0415	2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-oneᵃ	C₆H₈O₄	5669648 ± 3879	722966 ± 1181
5:54	128.0468	Furaneol	C₆H₈O₃	1472259 ± 6465	ND
6:81	144.0418	4H-Pyran-4-one, 2,3-dihydro-5-dihydroxy-6-methyl-ᵃ	C₆H₈O₄	40779689497	ND
7:58	120.0569	Benzo furan, 2,3-dihydro-	C₆H₈O	ND	11673960 ± 3650
7:32	142.0261	4H-Pyran-4-one, 3,5-dihydroxy-2-methyl-ᵃ	C₆H₈O₄	718472 ± 869	207912 ± 1452
8:98	150.0675	Ethanone, 1-(2-hydroxy-5-methylphenyl)-	C₆H₁₀O₂	219210 ± 963	ND
10:43	206.1299	1-(3,6,8-Trimethyl-1,6,7,7a-tetrahydrocyclopenta[c]pyran-1-yl)ethene n	C₁₃H₁₈O₂	25292 ± 563	ND
10:79	120.0679	7-Chloro-1,3,4,10-tetrahydro-10-hydroxy-1-[2-[1-pyrrolidiny]ethyl]imino]-3-[3-(trifluoromethyl)phenyl]-9(2H)-acridine	C₂₆H₂₅ClF₃N₃O₂	5330994 ± 3056	ND
11:95	190.1355	4-(2,6,8-Trimethylcyclohexa-1,3-dienyl)butoxy-2,4-enedione	C₁₃H₁₈O	1027624 ± 2786	ND
12:60	162.0674	5-Hydroxy-3-methyl-1-indanone	C₁₀H₁₀O₂	144778 ± 845	ND
13:65	194.0576	Butyrovanillone	C₁₁H₁₄O₂	240775 ± 982	ND
14:27	190.1353	Megastigmatene	C₁₁H₁₈O	121488 ± 569	ND
15:13	193.1226	Methanone, 1-hydroxycyclohexyl]phenyl-	C₁₁H₁₈O₂	118337 ± 678	ND
14:02	174.0991	4-Phenyl-3-penten-2-one p-toluenesulfonylhydrazone	C₁₈H₂₀N₂O₄S	61326 ± 323	ND
15:12	175.1116	Methanone, 1-hydroxycyclohexyl]phenyl-	C₁₁H₁₈O₂	85928 ± 476	ND
29:19	379.3343	Allopregnane-3β,7a,11a-triol-20-one	C₂₁H₂₄O₄	1216244 ± 1985	ND

Miscellaneous compounds

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Raw	Decolourised
7:62	154.0625	4-tert-Butoxystyrene	C₁₂H₁₆O	753299 ± 869	ND
9:16	137.0468	N-(2-Propynyl)-2-methylpiperidine	C₁₇H₁₅N	33347 ± 155	ND

(continued on next page)
Table 1 (continued)

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
				Raw	Decolourised
9:68	172.1245	Naphthalene, 1,2-dihydro-1,1,6-trimethyl-	C_{13}H_{16}	106374 ± 563	ND
10:21	119.0851	N-Ethyl-2-carbethoxyacetidine	C_{5}H_{15}NO_{2}	ND	3080824 ± 1883
10:32	172.1245	1, 1, 5-Trimethyl-1, 2-dihydronaphthalene	C_{13}H_{16}	22190 ± 209	ND
11:35	173.0961	Acetyl eugenol	C_{12}H_{14}O_{3}	66559 ± 865	ND
11:60	172.1245	Naphthalene, 1,2-dihydro-1,4,6-trimethyl-	C_{13}H_{16}	43628 ± 101	ND
11:64	155.0730	Pyridine, 3-phenyl-	C_{11}H_{8}N	106819 ± 1796	39467 ± 567
12:13	133.0522	Benzeneacetonitrile, 4-hydroxy-	C_{8}H_{6}NO	5692313 ± 2058	6655507 ± 2504
12:46	169.0881	Pyridine, 2-(4-methylphenyl)-	C_{12}H_{13}N	33241 ± 456	ND
12:49	142.0777	Piperidine, 1-butyl-	C_{13}H_{14}N	157108 ± 985	ND
14:04	183.1193	1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene\(^a\)	C_{14}H_{10}O	333883 ± 1798	56509 ± 306
16:46	166.0625	3-Methyl-5-nonylpyrrolizidine	C_{17}H_{33}N	136101 ± 826	ND
17:86	194.0771	Phosphine, cyclohexyl[2-(2-pyridyl)ethyl]-	C_{13}H_{20}NP	105122 ± 1419	ND
21:88	189.0758	4,8,12,16-Tetramethylheptadecan-4-olide	C_{21}H_{40}O_{2}	108316 ± 746	ND

Phenols

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
8:76	138.0674	Phenol, 4-(methoxymethyl)-	C_{6}H_{10}O_{2}	149528 ± 1432	ND
15:80	180.0782	(E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol\(^a\)	C_{10}H_{12}O_{3}	148123 ± 979	59968 ± 566
12:35	206.1664	2,4-Di-tert-butylphenol\(^b\)	C_{14}H_{22}O	111246 ± 1189	91836 ± 684
12:35	206.1657	Phenol, 2,5-bis(1,1-dimethylethyl)-	C_{14}H_{22}O	125015 ± 1275	ND

Phytosterol

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
29:05	415.3873	Cholesterol 3-O-[(2-acetoxy)ethyl]-	C_{31}H_{32}O_{3}	ND	436680 ± 1045
29:17	315.2636	Cholesta-8,24-dien-3-ol, 4-methyl-, (38,4a)-	C_{28}H_{46}O	ND	213935 ± 1115
29:40	341.8057	ß-Amyrin\(^a\)	C_{30}H_{50}O	487813 ± 1542	78184 ± 465
29:07	416.3920	ß-Sitosterol acetate	C_{31}H_{52}O_{2}	ND	ND

Vitamins

RT (Min)	Observed Ion m/z	Name	Molecular Formula	Average Peak Area	
25:75	420.3556	a-Tocopherol B	C_{29}H_{50}O_{4}	40453 ± 1006	ND
25:75	420.3552	a-Tocopherol A	C_{29}H_{50}O_{4}	37780 ± 77	ND
26:38	402.3502	d-Tocopherol	C_{27}H_{46}O_{2}	150789 ± 1745	ND
27:71	430.3811	dl-a-Tocopherol\(^a\)	C_{28}H_{50}O_{2}	8263817 ± 3581	804002 ± 1368
29:71	430.3813	Vitamin E	C_{28}H_{50}O_{2}	ND	213437 ± 945

Values are reported as mean ± ± SD;
\(^a\) Samples differ significantly \((p < 0.5)\);
\(^b\) No significant difference \((p ≥ 0.5)\); RT - retention time; ND - not detected
Fig. 1. Pie chart indicating the percentage distribution of the compounds in the raw Moringa leaf powder.

Fig. 2. Pie chart indicating the percentage distribution of the compounds in the decolourised Moringa leaf powder.

from GC-HRTOF-MS analysis and comparison of spectra obtained with NIST, Mainlib and Feihn metabolite databases. The raw and analysed data together with the spectra obtained are available as supplementary documents (https://data.mendeley.com/datasets/7mrhxrt9kr/1) [1]. Figs. 1 and 2 summarises the percentage distribution of the compound groups in the raw and decolourised samples, respectively.
2. Experimental Design, Materials and Methods

2.1. Sample Preparation

MOLP was obtained from the ARC, Pretoria, South Africa. The MOLP was decolourised by homogenising the leaf powder with ethanol (95%) at a powder to solvent ratio of 1:20, placed on an orbital shaker (Stuart SSL1, Keison Products, Essex, UK) at 150 rpm for 30 min. The samples were later centrifuged, supernatant discarded, and the slurry dried at 40 °C. Further analysis was conducted on both the raw and the decolourised samples.

2.2. Extraction of Metabolites and GC-HRTOF-MS Analysis

Metabolites were extracted as previously described by Oyediji, Chinma, Green and Adebo [2]. Ten millilitres of the extraction solvent (methanol/water at 80:20 v/v) together with 1 g each of MOLP samples were thoroughly agitated and sonicated in an ultrasonic bath (Scientech 704, Labotech, South Africa) for 1 h at 4 °C. The mixture was then centrifuged at 3500 rpm at 4 °C for 5 min (Eppendorf 5702R, Merck, South Africa). Supernatant obtained after centrifuging was concentrated in a vacuum concentrator (Eppendorf Plus, Merck, South Africa) and made into solution with 1 ml of chromatographic grade methanol (Merck, South Africa). The solution was vortexed and filtered through 0.22 μm microfilters into an amber vial and solvent blanks were also prepared. The extracts were analysed using a GC-HRTOF-MS (LECO Corporation, St Joseph, MI, USA) with a multipurpose sample (Gerstel Inc., Mülheim an der Ruhr Germany) and Rxi®-5 ms column (30 m × 0.25 mm iD × 0.25 μm) (Restek, Bellefonte, USA). Injection of 1 μl extract was done a splitless mode at a flowrate of 1 ml/min and helium used as the carrier gas. The ion source temperature was at 250 °C while the transfer line and inlet temperatures were set at 225 and 250 °C, respectively. The oven temperature cycle used was initial temperature of 70 °C for 0.5 min; then an increase of 10 °C/min to 150 °C held for 2 min; then ramped at 10 °C/min to 330 °C and held for 3 min for the column to ‘bake-out’. Data obtained were processed using DataPrep Solutions and metabolites were identified by matching the spectra with NIST, Mainlib and Feihn reference library databases, and their identities determined. Table 1 represents the mean of values obtained from triplicate runs of samples after prior processing of raw data.

Ethics Statements

None.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Supplementary data for manuscript ‘Dataset on effect of decolourisation on metabolomic profile of Moringa oleifera leaf powder’ (Original data) (Mendeley Data)

CRediT Author Statement

Adewumi Toyin Oyeyinka: Conceptualization, Methodology, Writing – original draft; Oluwafemi Ayodeji Adebo: Data curation, Software, Writing – review & editing; Muthulisi Si-
wela: Funding acquisition, Supervision, Writing – review & editing; **Kirthee Pillay**: Funding acquisition, Supervision, Writing – review & editing.

Acknowledgements

The authors wish to thank the School of Agricultural, Earth and Environmental Sciences, within the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa for the postdoctoral research fellowship offered to Dr Adewumi Oyeyinka.

References

[1] A. Oyeyinka, Dataset on effect of decolourisation on metabolomic profile of *Moringa oleifera* leaf powder, Mendeley Data, V1, 2022. doi: [10.17632/7mrhxrt9kr.1](https://doi.org/10.17632/7mrhxrt9kr.1).

[2] A.B. Oyedeji, C.E. Chinma, E. Green, O.A. Adebo, Metabolite data of germinated Bambara groundnut flour and starch extracted with two different solvents, Data Br. 38 (2021) 107288.