Natural epialleles of *Arabidopsis SUPERMAN* display superwoman phenotypes

Ramesh Bondada, Saravanakumar Somasundaram, Mohan Premanand Marimuthu, Mohammed Afsal Badarudeen, Vaishak Kanjirakol Puthiyaveedu & Ravi Maruthachalam

Epimutations are heritable changes in gene function due to loss or gain of DNA cytosine methylation or chromatin modifications without changes in the DNA sequence. Only a few natural epimutations displaying discernible phenotypes are documented in plants. Here, we report natural epimutations in the cadastral gene, SUPERMAN(SUP), showing striking phenotypes despite normal transcription, discovered in a natural tetraploid, and subsequently in eleven diploid Arabidopsis genetic accessions. This natural *lois lane*(lol) epialleles behave as recessive mendelian alleles displaying a spectrum of silent to strong superwoman phenotypes affecting only the carpel whorl, in contrast to semi-dominant superman or supersex features manifested by induced epialleles which affect both stamen and carpel whorls. Despite its unknown origin, natural lol epialleles are subjected to the same epigenetic regulation as induced clk epialleles. The existence of superwoman epialleles in diverse wild populations is interpreted in the light of the evolution of unisexuality in plants.
The Arabidopsis thaliana hermaphrodite (b bisexual) flower consists of four concentric whorls of floral organs: outer (first) whorl composed of four sepals, second whorl with four petals, third, male reproductive whorl with six stamens and the innermost (fourth), female reproductive whorl consisting of two fused carpels forming a single bicarpellary pistil. A cohort of genes with distinct spatiotemporal expression in the floral meristem (FM) ensures an orderly establishment of the floral whorls. The SUPERMAN is one such gene that encodes a C2H2 zinc finger domain containing transcription factor regulating floral homeotic genes during Arabidopsis flower development. The SUP is essential for demarcating the floral boundary between the stamen and carpel whorls, FM termination, carpel-placenta boundary specification, and ovule integument differentiation. SUPERMAN function is regulated both at genetic and epigenetic levels, as demonstrated by the identification and characterization of several genetic mutants and induced epimutants (clark kent (clk) epialleles) with varying phenotypic consequences. Based on the phenotypic variations in sexual boundary distortions in the reproductive whorls and FM indeterminacy, clk (epi)mutants have been classified as (i) supersex (whorl 4 indeterminacy leading to male flowers with supernumerary stamens at the expense of carpels), (ii) superwoman (whorl 4 indeterminacy producing more than two carpels, with unaffected stamen whorl), and (iii) superman (both whorl 3 and whorl 4 indeterminacy producing supernumerary stamens and carpels).

Epialleles arise due to methylation of cytosines in a gene loci without any change in the DNA sequence. In animals, the cytosine methylation is mostly confined to symmetric CG context, with some exceptions. Whereas in plants, it occurs in all sequence contexts: CG, CHG (H = A, T, C), and CHH. Epimutations, natural or induced, add a new layer of heritable variation in addition to natural genetic polymorphisms existing in the germplasm, influencing many plant traits and may have a role in adaptive evolution. However, only a limited number of natural epimutations with phenotypic consequences are reported in the plant kingdom. The resultant phenotypes in those natural epimutants are attributed to cytosine methylation of the regulatory (promoter) regions that negatively affect the transcription of the respective gene loci, resulting in either a total loss or reduced mRNA levels. The clk epialleles of SUP are the first characterized induced epimutations in A. thaliana, whose genetic locus is shown to harbor methylated cytosines in all three sequence contexts. Unlike natural epimutants, epigenetic regulation of SUPERMAN is atypical in that the methylated cytosines are seen predominantly in the transcribed regions of the loci rather than to its regulatory regions. In the well-characterized induced super epiallele clk-3, the superman phenotype is attributed to a reduction in the levels of mRNA, whereas in some induced sup epialleles, no reductions in mRNA are observed despite DNA hypermethylation suggesting complex epigenetic regulation of the SUP gene.

In plants, the de novo methylation of genomic loci is established by siRNA mediated RNA dependent DNA methylation pathway (RdDM), whose molecular machinery consists of a multitude of proteins such as plant-specific RNA polymerases Pol IV and Pol V, DICER-LIKE 2 (DCL2), ARGONAUTE4 (AGO4), DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), DRM2 recruited to the corresponding loci by the RdDM machinery methylates the cytosines. Once established, methyltransferases at CG context is maintained by DNA METHYLTRANSFERASEs (MET1 aka DNMT in humans) while DRM2, CHROMOMETHYLASE 2 (CMT2), and CHROMOMETHYLASE 3 (CMT3) control methylation at CHG and CHH contexts in a partially redundant and locus-specific manner. The DNA methyltransferases CMT2 and CMT3 are recruited to regions enriched for H3K9Me, which is methylated by a histone methyltransferase KRYPTONITE (KYP) in a self-reinforcing feedback loop linking both DNA and histone methylation. In fact, SUP epimutations played a crucial role in discovering CMT3, KYP, and AGO4 genes as being extragenic suppressors of clk epimutations. Unlike CMT3 and KYP, mutations in methyltransferases DRM1, DRM2, MET1, and the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) are not required for maintaining the methylation at SUP locus. The prevailing model for SUP locus methylation deciphered based on the study of induced (clk) epialleles suggest that AGO4 guides KYP to SUP chromatin to methylate H3K9, which creates a binding platform for LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), which in turn recruits CMT3 catalyzing the methylation of cytosines at SUP locus, converting the SUP WT allele to clk epiallele. Thus, the methylation of SUP locus in epimutants is independent of the RdDM pathway where the recruitment of the DRM2 mediates DNA methylation.

Intriguingly, SUP locus is unusual in the preponderance of induced epialleles (n = 12) in comparison to genetic alleles (n = 6) reported for any gene loci in A. thaliana (Supplementary Table 1). Despite these reports, no instance of natural epialleles has been discovered to date. Here, we report the existence of natural SUP epialleles in 12 of the 1028 core germplasm accesses (representing the global genetic diversity in A. thaliana) examined, mostly displaying superwoman phenotypes in contrast to superman phenotypes observed in induced epialleles, further deepening the mystery behind epigenetic regulation of SUP. We interpret the predominance of natural superwoman epialleles of SUPERMAN in the wild populations in the context of the evolution of unisexuality in flowering plants.

Results
Phenotypic characterization of superwoman inflorescences in the natural tetraploid Wa-1 Arabidopsis accession. The species A. thaliana prevails in the wild as diploid; however, rare tetraploid populations do exist. Such tetraploid accession 4x = 2n = 20, x = basic chromosome number 5), Warschau-1 (Wa-1, CS22644) caught our attention because of its striking heterogeneity in the inflorescence phenotypes displaying a mix of normal bilocular siliques, unusual multilocular siliques, and curly siliques. The phenotype is 100% penetrant (n = 1080 plants) but with variable expressivity between individuals. We broadly classified the plants (n = 1080) into three categories based on the inflorescence phenotype: (i) plants with inflorescences predominantly displaying multilocular siliques (56%; Fig. 1a–g), (ii) plants with more curly siliques (9.5%; Fig. 1b), and (iii) plants with a random distribution of all types in varying proportions (34.2%; Fig. 1c). Overall, up to 63% (n = 3402/5400) of the siliques are multilocular than normal (n = 864/5400, 16%), with remaining being curly (n = 1134/5400, 21%). To check whether these inflorescence phenotypes are transmitted true to type, we harvested seeds from each category and scored for the transmissibility of the respective phenotypes in the immediate progeny. Irrespective of the category, we observed all the three types of inflorescence reappearing in random proportions, suggestive of variable expressivity, however, with 100% penetrance (Supplementary Table 2).

A closer inspection of the multilocular siliques revealed that they had more than two fused carpels. The phenotype was more apparent in the transverse sections (Fig. 1e–g), matured siliques (Fig. 1h, i), and in the replum–septum skeleton of dehisced siliques (Fig. 1j). A typical WT siliqua consists of two replums, a contiguous membranous septum joining two replums, two placental arrays of seeds originating on the inner sides of either
replum, and two valves protecting the seeds (Fig. 1h and Supplementary Fig. 1). In contrast, the multilocular siliques contained more than two replums, two or more discontinuous septum’s, three or more placental arrays of seeds, and multiple carpel valves (Fig. 1i, j and Supplementary Fig. 1). Despite these silique patterning defects, the seed set in the multilocular siliques was not only normal but super fertile (hence superwoman) with 69–121 seeds/silique (n = 20) in contrast to its normal (WT) counterpart containing 52–64 seeds/silique (n = 20) (Fig. 1k). The curly siliques are due to abnormal fusion of supernumerary carpels (Fig. 1l, m) and are either sterile or partially fertile with 2–21 seeds/silique (n = 20). In some pistils, we observed organ fusion defects (Fig. 1n), and various homeotic transformations, as shown in Fig. 1o–r and they remained sterile without any seeds.
Fig. 1 Phenotypic characterization of inflorescence from tetraploid Wa-1 plants. **a**–**c** Representative images of inflorescence types observed in the tetraploid (4x) Wa-1 population. **a** An inflorescence with super fertile multilocular siliques. **b** An inflorescence consisting only of curly pistils/siliques. **c** An inflorescence containing a random distribution of both multilocular and curly siliques. **d** Representative images of a Wa-1 normal siliques arising from a bicarpellar WT pistil, a multilocular silique originating from a pistil with supernumerary carpel and a developmentally arrested curly pistil/siliques. **e–g** A transverse section of a bicarpellary (**e**), tricarpellary (**f**), and a tetracarpellary (**g**) siliques from Wa-1 plants. Arrowheads indicate replum. **h** Matured siliques from normal (**i**) and multilocular (**j**) Wa-1 split open to reveal its anatomy. Normal siliques shows two placent arrays of seeds attached to either replum surrounded by two carpel valves (**h**). Multilocular siliques shows four placent arrays of seeds on a multiple replica surrounded by four carpel valves (**i**). **j** Replum-septum skeletons of individual siliques post dehiscence depicting multiple irregular replums and abnormal fusion of septum in multilocular siliques. **k** Box and whisker plot showing seed count/silique from random (**l**). **m** Ovary originating from carpel tissues. **n** WT flower from the diploid Col-0 accession. **o** A superwoman flower from the tetraploid Wa-1 accession. **p** WT flower shown in **q** dissected to reveal six stamens and a bicarpellar pistil(arrowhead). **r** The superwoman flower shown in **s** dissected to reveal six stamens and a tetracarpellary pistil (arrowhead). **t** Wa-1 ploidy series consisting of haploid (x), diploid (2x), triploid (3x), and tetraploid (4x) individuals showing Wa-superwoman phenotypes (red arrowhead—multilocular siliques, blue arrows—curly siliques). Scale bar: **a**–**c** = 1 cm, **d**–**t** = 1 mm.

Taken together, the phenotypes observed in Wa-1 (hereafter Wa-superwoman) are indicative of a floral homeotic transformation, explicitly affecting the fourth(carpel) whorl, with no visible phenotypes on the remaining three whorls of the flower (Fig. 1s–**v**). We also confirmed similar phenotypes in several other Wa-1 germplasm stocks CS28805, CS39006, CS6885, and CS1586 available at Arabidopsis Biological Centre (ABRC). Hence, we conclude that the Wa-superwoman phenotype is characteristic of the Wa-1 genotype with an underlying genetic cause affecting floral organ patterning.

Genetic mapping and complementation identifies SUPERMAN as the causative locus behind Wa-superwoman phenotype. To unequivocally identify the locus, we employed a map-based cloning approach. However, the generation of a mapping population in the Wa-1 tetraploid is challenging due to the complex tetrasomic segregation of alleles. Hence, for mapping and subsequent genetic experiments, we used Wa-1 diploid (2x) derived from the Wa-1 tetraploid using CenH3 based genome elimination system. To this end, we confirmed the penetrance and reproducibility of the Wa-superwoman phenotypes in the derived diploid population of Wa-1 plants (n = 950, 100% penetrance, Supplementary Fig. 2). In addition, we also observed identical inflorescence phenotypes in all haploid (1x) plants (n = 41) and triploid (3x) Wa-1 plants (n = 62), implying that the phenotype is independent of gene or genome dosage (Fig. 1w).

To generate a mapping population, we first crossed the derived diploid Wa-1 to WT Col-0 and Ler accessions. Irrespective of the accessions, all tested F1 progeny (n = 120) showed normal pistil and siliques that were indistinguishable from the WT, indicating the recessive nature of the locus (Supplementary Fig. 3a). Since Col-0 is more polymorphic to Wa-1 than Ler accession, we advanced the Wa-1 × Col-0 F1’s to F2 generation for subsequent mapping. In the F2 population, the phenotype segregated in a 3:1 (394 WT:126 Wa-superwoman) \(\chi^2 = 0.083, 1 \, df, \ p = 0.77 \) Mendelian ratio confirming its monogenic recessive nature. Next, we genotyped the F2 segregants showing the Wa-superwoman phenotype using genome-wide SSR markers (Supplementary Fig. 3b) and identified a marker MSAT3.19 in the third chromosome tightly linked to the phenotype (n = 90/100 plants homozygous for Wa-1 polymorphism). Among the genes located in the mapped region, we chose the SUP locus (~566 kb from MSAT 3.19) as a promising candidate due to the Wa-superwoman’s phenotypic resemblance with floral phenotypes exhibited by superman mutants. At the DNA sequence level, except for a single nucleotide polymorphism (G to A) at 300 bp upstream of the SUP start codon, Wa-1 SUP locus (6.7 kb complementing region) was otherwise indistinguishable from WT Columbia (Col-0) reference sequence (TAIR 10). Hence, we converted this single nucleotide polymorphism (SNP) as a dCAPS marker (derived Cleaved Amplified Polymorphic Sequences) in the F2 segregants showing the Wa-superwoman phenotype and found the SNP to be co-segregating (100%, n = 100) with the phenotype, suggesting that SUP is the causative locus (Supplementary Fig. 3c).

To further validate that the identified gene locus is SUP, we performed two genetic tests: an allele test by crossing a homozygous recessive sup-5 deletion mutant (displaying supersex phenotype) with Wa-1 diploid and showed that all the F1 plants (n = 93) had the otherwise recessive superwoman phenotype (Supplementary Fig. 4a), proving their allelic nature. Similar is the case in the F1 progeny harboring different heteroallelic combinations: Wa-1 allele with clk-3 epilale (n = 24, Supplementary Fig. 4b) and Wa-1 allele with sup-2 truncated allele (n = 15, Supplementary Fig. 4c). Secondly, the genetic complementation test: a 6.7 kb genomic clone containing the SUP locus inserted elsewhere in the sup genetic and epigenetic mutants is shown to complement the sup mutation. Hence, we cloned the corresponding region from Wa-1 harboring the SNP and introduced it into a sup-5 mutant and tetraploid Wa-1 plants, and found that it completely rescues the mutant to WT phenotype in all the T1 plants examined both in sup-5 (n = 8) and Wa-1 tetraploid (n = 7, Supplementary Fig. 4d). We observed similar WT phenotypes when the corresponding Col-0 genomic SUP WT locus was introduced into the tetraploid Wa-1 plants (n = 11, Supplementary Fig. 4d). Altogether, this rules out DNA sequence change (SNP) in the SUP locus as the cause of the Wa-superwoman phenotype.

DNA methylation analysis identifies lois lane (lol) natural epiallele of SUPERMAN in Wa-1. Given, there are no genetic alterations in the Wa-1 SUP genomic region, and the locus is known to be hypermethylated in induced epialleles, we examined its methylation status in the diploid Wa-1 plants by bisulfite sequencing. We found that a stretch of the Wa-1 SUP transcribed region (~282 to +776) was hypermethylated (Fig. 2a, b and Supplementary Fig. 5), similar to that of induced clk epialleles of SUP. This was further validated by Chop PCR, an assay integrating the use of methylation-sensitive restriction enzymes (MSRE) with PCR to detect the methylation state of any genomic
We chose a densely methylated region (patch-2) in the SUP locus (Fig. 2a, c) in a way that it contains at least one cleavage site for two complementary MSREs: 1. McrBC (cleaves within the patch if any methylcytosine is preceded by a purine (A/G) on one or both the strands when two such sites are separated by a distance of 40–3000 bp) and 2. Dde1 (protects the patch from cleavage when cytosine is methylated in its recognition sequence 5’CTNAG3’). As expected, McrBC completely cleaved the region resulting in no PCR amplification with the primers flanking patch-2 region, whereas Dde1 protected the same part from cleavage resulting in PCR amplification in comparison to unmethylated Col-0 control consistent with the presence of methylated cytosines at Wa-1 SUP locus (Fig. 2d and Supplementary Fig. 13a). The faint PCR signal observed in the Dde1
Fig. 2 Methylation profiles of cytosines in the top (−) and the bottom (+) strands of SUP gene locus. a A cartoon representation of the hypermethylated SUP transcribed region. The numbers depict the nucleotide sequence’s relative position with reference to adenine nucleotide in ATG start codon of SUP gene as +1. b Methylation status of all cytosines present in the SUP transcribed region read from the bottom (5′ UTR) to top (3′ UTR). Individual cytosine methylation profiles for 17 genotypes are shown in the order as in c: Col-0 as unmethylated control, clk-1, clk-3, AMT (antisense methyltransferase) induced sup epialleles as methylated controls (data for the figure is extracted from Fig. 3b), 2x Wa-tour (four high throughput sequencing data, two biological replicates), 12 natural accessions including Wa-1 (2n = 4x) are from the 1001 epigenomes project25. The cytosine methylation data for these 12 accessions are extracted from the 1001 epigenomes database. (+) for the sense strand and (−) for the antisense strand. Methylated and unmethylated cytosines are color-coded, as shown in the legend. White boxes indicate cytosines which didn’t have enough coverage to call it methylated or not. The symbols at the beginning of each column indicate the sup natural epiallele’s phenotypic strength displayed by the respective accession, as shown in the legend. An expanded view of figure panel b, is shown in Supplementary Fig. 5 for better clarity. C Cartoon representation of SUP locus depicting the patch-1 and patch-2 region and corresponding flanking primers(forward and reverse arrows) used for dCAPS assay and Chop PCR. d Chop PCR assay for patch-2 in unmethylated Col-0 control and Wa-1 (2x) using complementary MSRE: McrBC and Dde1. e A bar graph showing the % of cytosines methylated in different sequence contexts for the 17 genotypes represented in b. The individual accessions are shown on the x-axis, and the y-axis represents the % of methylated cytosines. Each genotype is represented by four vertical bars. The first bar represents the % of overall cytosines methylated at SUP transcribed region spanning −282 to +869 (1151 bp), consisting of 445 cytosines in total from both + and − strands. Overall there are 366 cytosines in CHH context, 55 in CHG context, and 24 in CG context in the transcribed region. The remaining three bars represent % of cytosines methylated, respectively, at CG, CHG, and CHH (where H = C, A, T) context. The phenotypic strength of natural epialleles (strong, moderate, and weak Wa-superwoman phenotypes) is roughly proportional to the % of cytosines methylated as indicated.

digest may be suggestive of heterogeneous methylation of that cytosine residue in the cells of the inflorescence tissue. Taken together, we have discovered a natural epiallele of SUP, which we named as lolis lane (lol-1), after the fictional superwoman comic character (in coherence with the naming convention of artificially induced clk epialleles of SUPERMAN after Clark Kent character). Although the gene body of SUP locus is hypermethylated, its methylation pattern is distinct from the gene body methylated (gbm) loci. Unlike canonical gbm loci enriched for CG methylation21, SUP epialleles are biased to high CHG and CHH methylation with negligible CG methylation in its gene body (Fig. 2e). Such methylation patterns are characteristic of transposon element methylation (teM) loci22. However, we didn’t find any unique transposable elements specific to Wa-1 SUP locus in its vicinity, at least ~50 kb in either direction, as the DNA sequence is identical to the unmethylated Col-0 genome except for a few SNPs. A majority of the methylated cytosines are common to clk and lol-1 epialleles (~80%, Supplementary Table 3) except for a few, especially in the patch-2 region and others being scattered throughout the locus (Fig. 2b and Supplementary Fig. 5). Other than this, we didn’t find any characteristic methylation patterns unique to lol-1 epiallele in comparison to clk induced epialleles to explain the differences in the phenotype. Even between the induced clk epialleles that show a spectrum of superman to supersex phenotypes, epiallele specific methylation patterns cannot be ascertained21. It is attributed to mosaic methylation patterns that may vary among the cells of a tissue41. In conformity with this study, we do find heterogeneity in the methylation patterns in lol-1 locus ascertained from our high throughput whole-genome bisulfite genome sequencing data and Chop PCR assay (Fig. 2d). Intriguingly, the induced (clk) epialleles show semi-dominance in F1 and revert to WT at a low frequency23 whereas lol-1 natural epiallele behaves as a typical mendelian recessive allele, and no revertants were observed among the plants (n = ~1200) tested. The lol-1 epiallele affects only the carpel whorl with normal stamen whorl in contrast to induced clk epialleles, affecting both stamen and carpel whorls to varying degrees40.

Identification and characterization lol epialleles displaying silent to strong superwoman phenotypes in geographically distinct natural diploid accessions. To examine whether hypermethylation of the SUP locus is unique to tetraploid Wa-1 accession, we analyzed the methylation landscape of the same locus in 1028 global collections of A. thaliana natural accessions sequenced in 1001 epigenome project21. Here, we identified 11 additional diploid accessions showing varying degrees of DNA methylation in SUP locus (Fig. 2b, e and Supplementary Fig. 5). Among them, the Geg-14 accession (lol-2) displayed phenotypes reminiscent of superwoman, supersex, and superman, all in one inflorescence (100% penetrance; Table 1, Supplementary Fig. 6), with the former two phenotypes being predominant (Fig. 3a–i); in nine accessions, (lol-3 to lol-11, Table 1), though a first glimpse gave an impression of WT phenotypes, a closer silique by silique inspection revealed mild lol phenotypes (Fig. 3g–k and Supplementary Fig. 6). However, the phenotype is restricted only to few silicones in the inflorescence of some, but not all the plants suggesting low penetrance and expressivity (Table 1). In one accession (Basta-2), consistent with mild methylation, we failed to detect any visible inflorescence phenotypes (Fig. 3i) and thus designated it as a silent SUP epiallele (lol-12). The hypermethylation state of the SUP locus in the natural accessions identified from the 1001 epigenomes project was further corroborated by Chop PCR assay. In five accessions (Wa-1, Geg-14, IP-Trs-0, LIN S-5, and Got-22), there was no PCR amplification of the MrcBC digested DNA template in patch-2 consistent with MrcBC cleaving these hypermethylated regions. However, in the remaining seven accessions, we observed fainter PCR amplification in the digested DNA template compared to the corresponding undigested controls and digested unmethylated Col-0 control (Fig. 3m and Supplementary Fig. 13b). It suggests that at least this region of SUP locus may be heterogeneously methylated in these accessions, consistent with the manifestation of moderate to silent lol phenotypes. Similar and complementary results were obtained for the other MSRE, Dde1 (Fig. 3n and Supplementary Fig. 13c). Overall, we find that the more the number of methylated cytosines, the higher the penetrance and vice versa (Fig. 2e and Table 1).

Suppression of DNA methylation by 5-Azacytidine is not sufficient to restore WT phenotypes in Wa-1. Genome-wide DNA methylation can be altered by treating A. thaliana with the drug 5-Azacytidine45,46. To examine whether Wa-1 plants exposed to 5-Azacytidine can restore WT inflorescence phenotypes by inducing loss of methylation at SUP locus, we germinated Wa-1 seeds in 5-Azacytidine medium (50, 75 μm) and continued the treatment by fertigation in the soil-grown plants. The treated seeds showed delayed germination, and the plants displayed altered flowering times, plant height, and less biomass compared to control Wa-1 plants concurring with the phenotypes.
of 5-Azacytidine exposed A. thaliana plants. Upon flowering, we failed to detect any differences in the floral phenotypes between the 5-Azacytidine treated (n = 42) and control Wa-1 plants (n = 32)(Fig. 4a, b), further validated by Chop PCR (Fig. 4c and Supplementary Fig. 13d) suggesting that suppression of methylation by 5-Azacytidine is not sufficient to restore WT phenotype. This can be explained by the fact that 5-Azacytidine exerts its demethylating effect by interfering with the function of DNA methyltransferase MET1. It is known that MET1 is not required for maintenance of methylation at SUP locus, in line with our observation that 5-Azacytidine has no effect on methylation at SUP locus.

Genetic mutations in CMT3 and KYP suppress Wa-superwoman phenotypes.

Mutations in the DNA and histone methyltransferases, CMT3 and KYP respectively, are known to suppress clk phenotype by causing loss of CHG methylation at SUP locus in clk epialleles. To check whether lol phenotypes are suppressed in a similar manner, we generated homozygous double mutants of lol-1;cmmt3-7 (n = 4) and lol-1;kyp-2 (n = 6) combinations. All the double mutants displayed WT phenotypes (Fig. 4d, e), indicating that natural lol epiallele is subjected to the same epigenetic regulation as induced clk epialleles.

Natural genetic variation in known genes involved in SUP locus DNA methylation is not associated with superwoman (lol) phenotypes.

To ascertain whether any natural genetic variation common to these 12 accessions correlates with methylation of SUP, we first screened the 1001 genome database for genetic polymorphisms in known candidate genes CMT3, KYP, and AGO4, that are directly involved in the methylation of SUP. Our analysis revealed no significant association linking SUP methylation with natural allele variations existing in these three genes (Supplementary Figs. 7, 8). Notably, the G to A SNP seen in the Wa-1 SUP locus is not linked with lol phenotypes. Despite showing lol phenotypes, the rest of the accessions (lol-2 to lol-12) lack this variant as inferred from the 1001 genome project and validated by dCAPS assay (Supplementary Fig. 9).

Next, we examined the possible link of CMT2, whose involvement is unknown in SUP locus methylation. CMT2-dependent pathway mediates the bulk of DNA methylation in CHH context, especially in the transposon-rich pericentromeric regions. Genetic variation at CMT2 gene locus in natural accessions, especially the truncated CMT2STOP alleles, is shown to be significantly associated with decreased (~1%) genome-wide CHH methylation levels identical to CMT2 knockout mutants. As the penetrance of different lol allele phenotypes is proportional to the number of cytosines methylated, and a notable number of cytosines in the SUP locus are in CHH context (Fig. 2b, e), we analyzed for the possible association of the natural variation at CMT2 locus in all of the 12 accessions harboring lol epialleles (Supplementary Fig. 10a, b). Three of the twelve accessions (Geg-14, Sorbo, and Basta-2) contain the CMT2STOP allele (Supplementary Fig. 10a), which may be invoked to explain the reduced DNA methylation and weak penetrance of lol phenotypes observed in Sorbo (lol-7) and Basta-2 (lol-12) accessions. However, Geg-14 (lol-2) accession, which also harbors the truncated null allele, shows strong lol phenotypes with 100% penetrance. Hence, like other methyltransferase MET1, CMT2 is also not required for maintenance of SUP methylation. Besides, other lol accessions (for, e.g., Got-22, Ip-Mos-1, and Ppa-0) with WT CMT2 allele also show a weak phenotype. Further, for reasons unknown, all CMT2STOP alleles (depending on the natural accessions) do not behave as null alleles, suggesting natural variation at CMT2 locus in lol accessions is unlikely to be a major player in determining the strength of the lol epiallele. Finally, phylogenetic analysis using whole-genome SNP polymorphisms revealed that most of the SUP hypermethylated accessions are genetically distant and dispersed, suggestive of probable, multiple independent origins of hypermethylated SUP locus in diverse niches (Supplementary Fig. 11).

Stable meiotic transmission and absence of trans-chromosomal spread of DNA methylation between lol epialleles and WT alleles.

In an F1 hybrid, a methylated allele can trigger trans spreading of the methylated state to an unmethylated allele by trans-chromosomal methylation. Using a combination of dCAPS and Chop PCR in the Col-0 x Wa-1 F1 and F2 progeny, we show that the hypermethylated Wa-1 (lol-1) epiallele and unmethylated Col-0 SUP allele remain unaffected without any reciprocal transmethylation/demethylation effects. Retention of stable epigenetic states in F1 plants is consistent with the recessive behavior of lol-1 epiallele displaying a loss of lol-1 phenotypes in those hybrids (Supplementary Fig. 3a). The respective methylation states of the parental alleles were transmitted intact in the F2 progeny (Fig. 4g and Supplementary Fig. 13f), co-segregating with the mendelian phenotypic ratio of 3:1. We also observed similar results in another F2 population derived from a heteroallelic F1 hybrid carrying a strong (lol-1) and weak (lol-7) epialleles, respectively (Fig. 4h, i and Supplementary Figs. 12, 13g, h). Further, we also show that transgenic Col-0 SUP genomic locus that complements the lol phenotype in tetraploid Wa-1 plants also remain unmethylated (Fig. 4f and Supplementary Fig. 13e). These results, collectively, rule out trans-chromosomal spread of methylation between endogenous SUP alleles and ectopic transgenic locus.

Table 1: Phenotypic analysis of natural SUP epialleles (lol) from diploid natural A. thaliana accessions.

S. no	Accession name (ABRC Seed)	Country of Origin	Number of plants analyzed	No. of plants showing phenotype (% penetrance)	No. of superwoman siliques/Total siliques	Phenotypic strength	Allele designation
1	Geg-14 (CS76876)	Armenia	25	25 (100)	44/1710	Strong	lol-2
2	IP-Trs-0 (CS77387)	Spain	28	20 (71.4)	49/879	Moderate	lol-3
3	Me-0 (CS76549)	Germany	20	9 (45.0)	28/687	Moderate	lol-4
4	Cnt-1 (CS78782)	UK	16	5 (31.3)	9/785	Weak	lol-5
5	LIN S-5 (CS77040)	USA	27	8 (29.6)	15/986	Weak	lol-6
6	Sorbo (CS78917)	Tajikistan	22	4 (18.2)	14/1140	Weak	lol-7
7	Tscha-1 (CS76616)	Austria	26	4 (15.4)	22/1167	Weak	lol-8
8	Ppa-0 (CS76573)	Spain	19	1 (5.3)	16/1121	Weak	lol-9
9	IP-Mos-1 (CS77708)	Portugal	25	1 (4.0)	65/1168	Weak	lol-10
10	Got-22 (CS76884)	Germany	26	2 (8.0)	9/729	Weak	lol-11
11	Basta-2 (CS76692)	Russia	25	0 (0)	0/720	Silent	lol-12

No. of siliques	Total siliques	Phenotypic strength	Allele designation
44/1710		Strong	lol-2
49/879		Moderate	lol-3
28/687		Moderate	lol-4
9/785		Weak	lol-5
15/986		Weak	lol-6
14/1140		Weak	lol-7
22/1167		Weak	lol-8
16/1121		Weak	lol-9
65/1168		Weak	lol-10
9/729		Weak	lol-11
0/720		Silent	lol-12
SUP mRNA expression is unaltered in the lol natural epimutants showing superwoman phenotypes. To test whether hypermethylation of SUP locus causes a reduction in SUP mRNA levels as reported for *clk-3* epiallele\(^2\), we carried out real-time qRT-PCR on the Wa-1 (*lol-1*) and Geg-14 (*lol-2*) accessions that showed strong Wa-sup*erwoman* phenotypes. Surprisingly, we didn’t find any changes in mRNA levels both in diploid Wa-1 and Geg-14 compared to unmethylated Col-0 control (Fig. 4j). Our results are in corroboration with an earlier study reporting no reduction in the mRNA levels in some of the induced epimutants\(^6\). We also failed to detect novel splice variants unique to lol accessions other than the one previously reported common to both WT and induced epimutants\(^6\) (Fig. 4k and Supplementary Fig. 13i, j). In the absence of no difference in total SUP mRNA levels between WT and lol epimutants, and SUP mRNA being expressed only in a narrow window of time, restricted to third and fourth whorls of the floral meristem\(^3\)\(^–\)\(^8\), it would be challenging to detect spatio-temporal quantitative fluctuations of mRNA, if any, by RNA in situ hybridization. This one of our limitations to account for the phenotypes in lol accessions despite similar WT mRNA levels. Besides, heterogeneous methylation of SUP locus among the cells also is a confounding factor that may or may not affect mRNA levels. Another post-transcriptional possibility to account for the phenotypes is the quantitative fluctuations in SUP protein levels despite normal levels of mRNA\(^6\) or SUP locus is partially transcribed, resulting in a truncated mRNA/protein. However, attempts to raise quality antibodies against SUP for immunolocalization studies remain unsuccessful\(^6\), making it challenging to address this hypothesis.

Fig. 3 The spectrum of phenotypes seen in SUP hypermethylated diploid natural accessions. a A representative Geg-14 accession inflorescence depicting a spectrum of sup phenotypes: superwoman (blue arrowhead), superman (red arrow), and curly siliques (red asterisk). b A flower from Geg-14 inflorescence with supersex phenotype. c Dissected third and fourth whorls of the flower b respectively showing nine anthers and three carpels. d A flower from Geg-14 inflorescence with superman phenotype e dissected third and fourth whorls of the flower shown in d, respectively, showing seven anthers and a pistillode (sterile pistil) as indicated by arrowheads. f Replum-septum skeletons of dehisced silique from Geg-14 showing multiple replums (red arrows) and abnormal fusion of septum (blue arrowheads). g A partial tricarpellary silique from IP-Trs-1 plant. h The silique shown in g is split open to reveal its anatomy. The silique is bicarpellary and normal (red arrow) at the start, however in the midway, one of the repla bifurcates (blue arrowhead) to produce a partial tricarpellary silique (three carpel valves are shown). i–k The spectrum of replum-septum skeleton phenotypes from various accessions (as indicated) that show weak superwoman phenotypes. l Replum-septum skeleton from the SUP silent Basta-2 accession showing WT phenotypes. m Chop PCR assay in the natural accessions with hypermethylated SUP locus using the McrBC enzyme. The strong lol epialleles from Wa-1, Geg-14, and the moderate lol epialleles from IP-Trs-0 and the weak lol epiallele from Got-22 are fully methylated at cytosines at McrBC recognition sites, as they are PCR negative for the primers flanking patch-2. The remaining accessions show a faint PCR signal compared to their respective undigested controls suggestive of heterogeneous methylation of cytosines at this site. n Chop PCR assay in the natural accessions using the Dde1 enzyme. The strong lol epialleles from Wa-1, Geg-14, and the weak lol epiallele from Got-22 and Sorbo contain either fully or partially methylated cytosines at Dde1 recognition sites, as they are PCR positive for the primers flanking patch-2. The remaining accessions are PCR negative suggestive of the absence of cytosine methylation at this site. DNA markers used in the gels is 50 bp NEB ladder. Scale bars: a = 1 cm, b–l = 1 mm.
In this study, we have identified an array of wild SUP epialleles (lol-1 to lol-12) with a spectrum of inflorescence phenotypes from 12 natural accessions spread across three different continents. These natural lol epialleles constitute a multiple SUP (epi)allelic series, along with known induced clk epialleles and mutant genetic alleles. As is the case with multiple alleles, we do observe a dominance hierarchy in the epiallelic series. The hierarchy is as follows: WT SUP (dominant) > weak lol epialleles > strong lol epialleles > strong clk alleles. In different cross combinations involving any two epialleles, the dominant epiallele expresses its phenotype in F1 and segregates in a mendelian fashion in the F2 generation (Supplementary Figs. 3, 4, 12). These lol epialleles behave as loss of function genetic alleles with stable meiotic transmission, at least for three generations studied. However, the lol epialleles show variable expressivity in the floral phenotypes in the absence of genetic heterogeneity within an accession. This can be attributed to stochastic, labile epigenetic states leading to mosaicism between the cells or between different individuals causing variable phenotypic expression as observed in mammalian epialleles.

Discussion

In this study, we have identified an array of wild SUP epialleles (lol-1 to lol-12) with a spectrum of inflorescence phenotypes from 12 natural accessions spread across three different continents. These natural lol epialleles constitute a multiple SUP (epi)allelic series, along with known induced clk epialleles and mutant genetic alleles. As is the case with multiple alleles, we do observe a dominance hierarchy in the epiallelic series. The hierarchy is as follows: WT SUP (dominant) > weak lol epialleles > strong lol epialleles > strong clk alleles. In different cross combinations involving any two epialleles, the dominant epiallele expresses its phenotype in F1 and segregates in a mendelian fashion in the F2 generation (Supplementary Figs. 3, 4, 12). These lol epialleles behave as loss of function genetic alleles with stable meiotic transmission, at least for three generations studied. However, the lol epialleles show variable expressivity in the floral phenotypes in the absence of genetic heterogeneity within an accession. This can be attributed to stochastic, labile epigenetic states leading to mosaicism between the cells or between different individuals causing variable phenotypic expression as observed in mammalian epialleles.
It is not known what triggered the origin of these natural lol epialleles in certain wild accessions, but its stable maintenance and transmission require the action of known molecular players of SUP methylation such as KTP and CMT3 methyltransferases. The establishment of de novo DNA methylation is effected by siRNA mediated RNA dependent DNA methylation pathway. However, siRNAs from SUP locus have not been detected either in WT or clk epimutants. Further, if DNA methylation is established through the siRNA mediated RdDM pathway, then there should be trans spreading of methylation from the hypermethylated epiallele to the unmethylated allele in F1 hybrids and the F2 segregants, as well as in transgenic lines with the ectopic insertion of SUP locus. However, our results do not conform with this proposition, ruling out the involvement of SUP siRNAs in the DNA methylation of SUP locus. We failed to find any significant association of natural variation for known genes involved in differential methylation of SUP locus, implying likely involvement of hitherto unknown factors controlling methylation of SUP locus in these accessions. Hence, the genomes of these natural lol epimutants and accessions may hold a key towards unraveling the missing links in the epigenetic regulation of "SUP".

An independent origin and prevalence of such natural epialleles of SUPERMAN in a dozen wild diploid and tetraploid populations cannot be ignored as stochastic events, but assumes significance when viewed in terms of the evolution of sex determination systems in plants. Based on the imperfect unisexuality (superman vs. superwoman) manifested by allelic/epiallelic series of SUP, it is posited that alteration of the SUP or SUP-like genes is likely to be involved in the origin of flower bisexuality. Orthologs of SUP/SUP-like genes from both diecious Silene latifolia and monecious Cucumis sativus are expressed only in female flowers, implying its involvement in sex determination by differential gene expression. A flexible mechanism to achieve tissue-specific differential gene expression without altering the DNA sequence is by epigenetic alteration. Such a mechanism underlying sex differentiation in flowering plants has been postulated, and subsequently proven in persimmons and melons. Unisexuality has evolved independently and several times in flowering plants, with wide variation between species implying different genetic basis and mechanisms. Hence, we speculate that the origin of epialleles in the floral boundary gene, such as SUP, may be an early event in the evolutionary path towards unisexuality in specific flowering plant lineages. Notably, the SUP locus seems to be a vulnerable hotspot for epigenetic modification by hypermethylation, as revealed by the predominance of both artificially induced and natural epialleles (from this study) isolated for any gene loci in A. thaliana.

Interestingly, almost all natural lol epialleles (11/12) portray superwoman phenotypes. In striking contrast, most of the induced epialleles (10/12), are predominantly superman or supersex, except for carper and ep13A1. This suggests that natural epialleles have evolved towards altering later rather than early functions (before vs. after carpel meristem specification respectively) of SUP, thus confining the phenotype only to the carpel whorl giving rise to superwoman features. This observation calls into question why the preponderance of superwoman phenotypes in natural populations? We interpret this in terms of the enhanced reproductive fitness of superwoman over superman for its existence in the wild. A model for evolutionary transition from hermaphroditism to unisexuality predicts a two-step pathway. The first step is to create females with a reproductive advantage over hermaphrodites, a system known as gynodioecy. In the second step, the males evolve by supplanting the hermaphrodites leading to dioecy. In this aspect, being a superwoman (super fertile) has a selective advantage over superman (which is sterile), at least in the early stages, to maintain the transmittance of altered epigenetic states until stable gynodioecy evolves in the lineage.

The epialleles from diploid accessions show mild hypermethylation and less penetrance than the densely hypermethylated tetraploid Wa-1 accession. The evolution of unisexuality is often associated with stable polyploidy in several plant genera. The process of polyploidization, as a consequence, leads to a series of genetic, epigenetic changes, and chromosomal rearrangements. Hence, we hypothesize that polyploidization event might trigger the transition of mild epigenetic states prevailing in the diploids to dense hypermethylated states causing stronger phenotypes in polyploids. The existence of such a metastable superwoman phenotype in one of the rarely existing natural tetraploid A. thaliana accession (Wa-1) supports this line of thought. It may be noted that our interpretation linking the existence of natural lol epialleles of SUP in wild populations with the evolution of unisexuality in plants is speculative, inferred based on existing literature, and thus requires further evolutionary studies to validate our conclusions.

In conclusion, we propose that the natural sup epialleles (lol series) captured here are likely to be evolutionary vestiges or transition intermediates in the early evolutionary path leading to unisexuality, at least, in the Arabidopsis lineage. In the family Brassicaceae, Lepidium symsimbriotes is the only known diecious polyploid sister genus to A.thaliana. L. symsimbriotes have diverged relatively recently from A. thaliana lineage, and unisexuality (dioecy) has evolved as a result of selective abortion of reproductive whorls at the same floral developmental stage from a bisexual flower. A possible role of SUP in the diminution of reproductive whorls of Lepidium has been contemplated. Hence, it will be interesting to see epigenetic regulation of SUP, if any, in the evolution of dioecy in L. symsimbriotes.

Materials and methods

Plant materials and growth conditions. Plants were grown in pots under fluorescent lights (7000 lux at 20 cm) at 20 °C with a 16-h light/8-h dark cycle at 70% RH in a controlled growth cabinet (Percival Inc.) or in walk-in growth rooms (Conviron). All the diploid natural accessions (CS 78917(Sorbo), CS78782(Cnt-1), CS77387(IP-Tra-0),CS77108(IP-Mos-1),CS77040(LN 5-5), CS76884(Got-22), CS76876(Geg-14), CS66161(Tscha-1), CS67573(Pla-0), CS67549(Me-0), tetraploid Wa-1 accessions (CS26644, CS28805, CS39096, CS6885, CS1586) and superman mutants: sup-5(CS3882), fl/o1-10/2C(CS6225), clk-3(CS69095), cmt-3-7 (CS3665), kyp-2(CS6367) used in the study was obtained from the Arabidopsis Biological Resource Center (ABRC, Ohio State University, Columbus, OH). Col-0 and Ler stocks used in this study were a gift from Late Dr. Simon Chan, University of California, Davis. The Wa-1 ploidy series consisting of triploid (3n = 3x = 15), diploid (2n = 2x = 10) and haploid (2n = x = 5) plants were generated by Cenh3-mediated genome elimination method as described.

Microscopy and imaging. The silique and flower phenotypes were examined either using Carl Zeiss Stemi 2000-C stereo zoom trinocular microscope or Leica M205 FA stereomicroscope. Images were captured using Zeiss Axioacam 105 or Leica DFC30 FX cameras attached to its respective microscopes. The inflorescence and whole plant images are captured using Canon 70D SLR camera. The images are edited either in Adobe Photoshop CS6 and Affinity Designer.

Phenotypic analysis of Wa-1 accessions. Several Wa-1 germination stocks (CS28405, CS39098, CS6885, CS1586) deposited by several independent research groups exist at ABRC, OSU. Hence, to ascertain whether the Wa-superwoman(lol-1) phenotype is limited to CS22644 stock, we grew ~50 plants each from all the accessions (Table S3). For segregation analysis of Wa-1 stocks and whole plant images are captured using Canon 70D SLR camera. The images are edited either in Adobe Photoshop CS6 and Affinity Designer.

Genetic mapping of SUP locus. Using the TAIR polymorphism/allele search tool (www.Arabidopsis.org), a set of 54 genome-wide, evenly distributed polymorphic markers (SSR and indel) that can distinguish Wa-1 from Col-0 and Ler accessions were shortlisted. Upon experimental validation by PCR genotyping, 47 markers polymorphic between Col-0 and Wa-1 (Supplementary Fig. 3b, c), 33 markers between Ler and Wa-1 (Table S3). For segregation analysis of Wa-superwoman phenotypes, Wa-1 derived diploid was crossed to both Col-0 and Ler accessions. The resultant F1 hybrids were further genotyped using a subset of validated polymorphic markers. For genetic mapping, seeds from self-pollinated Wa-1 × Col-0 F1 plants were pooled and advanced to raise an F2 segregating...
population. Out of 520 F2 progeny, 126 plants were found to show lol-1 phenotype. DNA was extracted individually from all the 126 plants for mapping the causative locus. We employed both the independent sample t-test21 and identified a marker MASAT3.19 (physical coordinate 8808176) the q arm of the third chromosome that is tightly linked with the phenotype. Next, the MASAT 3.19 marker was genotyped individually in 100/126 F2 plants and found 89 plants homozygous for the Wa-1 allele, and the remaining 10 were heterozygous, confirming its proximity to the candidate locus. We chose SUP as the candidate locus for the reasons mentioned in the “Results” section.

For fine mapping, the SNP (G to A) in Wa-1 SUP locus is exploited to derive a PCR based dCAPS (derived Cleaved Amplified Polymorphic Sequences) marker for distinguishing Wa-1 allele from Col-0/L allele. A set of primers (MR862 Forward: 5′TTCCCAAGAGATTTTACATCTCATAT 3′; MR693 Reverse: 5′AAGAGCTGAGAAATGCTAGACCTAGC3′) were designed to amplify a 223 bp fragment encompassing patch-1 of SUP locus (Fig. 2a, c) in a way that the forward primer generates a Ndel restriction site in combination with the Col-0 SUP SNP but not with Wa-1 SNP. Hence, upon Ndel restriction digest of 223 bp amplified product, the Wa-1 allele remains intact in contrast, the WT allele gets cut into 190 bp and 33 bp fragments, which can readily be distinguished by agarose (2.5%) gel electrophoresis.

Plasmid construction, plant transformation, and complementation analysis.

The 6.7 kb SUPERMAN genomic region (corresponding to physical coordinates 8237177 to 8248354, TAIR 10), which complements the sup phenotype as well as epigenetic patches, was amplified by PCR amplification and subcloned into pCambia1300 as a Saci and Pol fragment using the following primer combinations; Forward: 5′gaagaggccgagcgcacctacattataagtatacg3′ and reverse: 5′gtacgGCCAGGCGCCGCGGCGG3′. The resultant binary vector was then transformed into Agrobacterium tumefaciens strain A5E by electroporation. The binary construct was transformed into Col-0 wild type mutant and Wa-1 tetraploid by floral dip method. The seeds obtained from the transformed plants were plated onto a selection medium (1% KNO3 agar) and incubated at 25 °C for 4 days. The putative transformants were scored in the inorecence of F1 plants.

Whole-genome sequencing and bisulfite sequencing analysis.

The genomic DNA from Wa-1 derived diploid plants was isolated using DNA extraction plant kit (ORIGIN) from the tissues pooled from leaves and inorecence of two independent plants (biological replicates). The genomic DNA was fragmented, end-repaired, and adapters were ligated to the DNA fragments, PCR amplified and sequenced by Illumina’s paired-end chemistry using Nextseq 500 at FASTERIS SA. The raw BS-seq data were paired-end reads using dCAPS markers for homozygosity of the Wa-1 allele to give a 325 bp fragment on PCR analysis to use both complementing MSREs for the assay. The digested and adapter-ligated DNA fragments were bisulfite converted using EpiTect Bisulfite Kit (Qiagen), as pollen parent. The segregating F2 progeny were genotyped for the allele SUP by using primer pair SUP-Lol1 and SUP-Lol2, if the penetrance is between 40–70% weak, if the penetrance is 1–10% and silent if it is less than 1%.

Scoring for superman phenotypic series.

A flower is classified as superwoman if it has typical stamen whorl with six anthers and supernumerary fourth whorl with greater than two carpels; superman, if the flower has supernumerary stamens at least greater than seven with sterile, dysfunctional/reduced carpel; supersex, if the flower harbors more than six anthers and more than three carpels. The phenotypes exhibited by natural epialleles are classified as strong if the phenotype shows at least 70% penetrance; moderate, if the penetrance is between 40–70% weak; if the penetrance is 1–10% and silent if it is less than 1%.

Double mutant analysis.

Wa-1 diploid plants were crossed with homozygous cm3t-7 and kyp-2 as pollen parents. The segregating F2 progeny were genotyped using dCAPS markers for homozygosity of the Wa-1 SUP locus. The cm3t-7 and kyp-2 mutants were genotyped using the CAPS and dCAPS assay, respectively, using the primers as described21,22. The sequencers of the primers are given in Table S4.

5-Azacytidine treatment.

Surface sterilized diploid WA-1 seeds were placed in petri dishes containing filter papers soaked in 50 μm, 75 μm concentrations of 5-Azacytidine (Himedia Laboratories LLC), and water (control), cold stratified for 3 days at 4 °C. After cold treatment, the plates were transferred to the growth chamber for germination. Subsequently, the seeds were exposed to the respective concentrations of 5-Azacytidine for every alternate day till transfer to the soil medium. The surviving seedlings were then transferred to the soil medium imibled with 0.5x MS solution containing the respective concentrations of 5-Azacytidine. After bolting, the inorecesses were sprayed once a week, thrice with respective concentrations of 5-Azacytidine.

Statistics and reproducibility.

All the statistical analysis described in the study: the chi-square test for goodness of fit for genetic crosses, Kruskal–Wallis (KW) test for seed set data, two-tailed unpaired t-test for SUP mRNA quantitation was performed using GraphPad PRISM (v 8.4.2) statistical software. We employed the non-parametric KW statistical test, the parametric equivalent to one way ANOVA, for analyzing the seed numbers counted from different types of silique in Wa-1 inorecence. The non-parametric KW test that is ideal for comparing medians of three or more groups was used here because seed numbers counted from multilocular siliques didn’t fit Gaussian distribution as determined by Shapiro–Wilk test (x = 0.05), an essential prerequisite for applying parametric statistical tests. Hence, we choose to summarize the data using the median rather than the mean. Dunn’s multiple comparisons test was performed as a posthoc test to analyze statistical significance between different groups of siliques.

SUP mRNA expression analysis.

Inorecesses heads, a week to 10 days after bolting, were harvested and flash-frozen in liquid nitrogen. Total RNA was isolated.
analyzed using normalized Ct (melting curve analysis). At least four independent biological samples were analyzed used for the normalization of all the reactions. PCR specific primers (MR372 Forward: 5′CTGGGTTTCTTTGGTGATAC3′; MR614 Reverse: 5'GATATATCAGGTTTTTCAACAGG3′; MR614 Forward: 5'TTCTCCTCTCCATCTCAG3'; MR614 Reverse: 5'TCTGTTGAGGTTCTGGACC3') for ACT-2 control. The reactions were carried out using TAKARA TB green Premix Ex Taq 2 and incubated at 95 °C for 2 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s. ACT-2 were used for the normalization of all the reactions. PCR specificity was checked by melting curve analysis. At least four independent biological samples were analyzed for each accession as indicated, and PCR reactions were set up using three technical replicates from each biological replica. SUP mRNA abundance was analyzed using normalized Ct (ΔΔt) values with ACT-2 as a reference gene. For semi-quantitative RT-PCR and for checking the splice variants in SUP transcripts we used the forward primer MR666 (5'GTCTTACAGGTTTTTCAACAGG3′) located at the start of 5'UTR of SUP gene in combination with reverse primer MR 862 (5'GATATATCAGGTTTTTCAACAGG3′) flanking the patch-2 of SUP locus with same PCR cycling conditions as described for Real-time PCR but only for 27 cycles. ACT-2 was used as an internal control. The resulting PCR products were resolved in a 2% agarose gel.

Phylogenetic analysis. The phylogenetic tree was constructed using 50 natural accessions: 12 with hypermethylated SUP locus identified in this study and the remaining 38 non-methylated accessions randomly selected from each geographic cluster as classified by 1001 genomes project. The SNP data for all the accessions were downloaded from the 1001 genomes website (https://1001genomes.org/data/GMI-MPI/releases/), and they were merged into a single VCF file using BEAGLE. Using SNAPhylo 32, SNPs were filtered using default values except for the LD threshold which was set to 0.4. The filtered SNPs were collated as a sequence and used MEGA X72 for phylogenetic tree construction using Maximum likelihood and general time-reversible model (GTR + G) with 100 bootstraps.

References

1. Krizek, B. A. & Fletcher, J. C. Molecular mechanisms of flower development: an armchair guide. *Nat. Rev. Genet.* 6, 688–698 (2005).
2. Bowman, J. L. et al. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. *Development* 114, 599–615 (1992).
3. Schultz, E. A., Pickett, F. B. & Haughn, G. W. The FLO10 gene product regulates the expression domain of homeotic genes AP1 and PI in Arabidopsis flowers. *Plant Cell* 3, 1221–1237 (1991).
4. Sakai, H., Medrano, L. J. & Meyerowitz, E. M. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. *Nature* 378, 199–203 (1995).
5. Gaiser, J. C., Robinson-Beers, K. & Gasser, C. S. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. *Plant Cell* 7, 333–345 (1995).
6. Breuil-Broyer, S., Trehin, C., Molex, P. & Boltz, V. Analysis of the Arabidopsis superman allelic series and the interactions with other genes demonstrates developmental robustness and joint specification of male–female boundary, flower meristem termination and carpel compartmentalization. *Ann. Bot.* 117, 905–923 (2016).
7. Prunet, N., Yang, W., Das, P., Meyerowitz, E. M. & Jack, T. P. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis flowers. *Proc. Natl Acad. Sci. USA* 114, 7166–7171 (2017).
8. Hiratsu, K., Ohta, M., Matsu, K. & Ohme-Takagi, M. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. *FEBS Lett.* 514, 351–354 (2002).
9. Oey, H. & Whitelaw, E. On the meaning of the word ‘epimutation’. *Trends Genet.* 30, 519–520 (2014).
10. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. *Nature* 462, 315–322 (2009).
11. Ramsahoye, R. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. *Proc. Natl Acad. Sci. USA* 97, 5237–5242 (2000).
12. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nat. Rev. Genet.* 11, 204–220 (2010).
13. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. *Nature* 401, 157–161 (1999).
14. Martin, A. et al. A transposon-induced epigenetic change leads to sex determination in melon. *Nature* 461, 1135–1138 (2009).
15. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBR-box transcription factor inhibits tomato fruit ripening. *Nature* 38, 948–952 (2006).
16. Silva, A. B. et al. Extended natural epigenetic variation at a de novo originated gene. *PloS Genet.* 9, e1003437 (2013).
17. Quadra, L. et al. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. *Nat. Commun.* 5, 3027 (2014).
18. Miura, K. et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. *Proc. Natl Acad. Sci. USA* 106, 11218–11223 (2009).
19. He, L. et al. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. *Nat. Commun.* 9, 460 (2018).
20. Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. *Nat. Rev. Genet.* 18, 563–575 (2017).
21. Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis accessions. *Cell* 166, 492–505 (2016).
22. Weigel, D. & Colot, V. Epialleles in plant evolution. *Genome Biol.* 13, 249 (2012).
23. Johannes, F. & Schmitz, R. J. Spontaneous epimutations in plants. *New Phytol.* 221, 1253–1259 (2019).
24. Kalisz, S. & Purugganan, M. D. Epialleles via DNA methylation: consequences for plant evolution. *Trends Ecol. Evol.* 19, 309–314 (2004).
25. Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. *Science* 277, 1100–1103 (1997).
26. Matzke, M. A. & Mosher, R. A. DNA-directed DNA methylation: an epigenetic pathway of increasing complexity. *Nat. Rev. Genet.* 15, 394–408 (2014).
27. Malouf, M. M. RNA-directed DNA methylation: mechanisms and functions. *Plant Signal. Behav.* 5, 806–816 (2010).
28. Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis results in abnormal plant development. *Proc. Natl Acad. Sci. USA* 93, 8449–8454 (1996).
29. Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. *Science* 273, 654–657 (1996).
30. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. *Nat. Struct. Mol. Biol.* 21, 64–72 (2014).
31. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpGpG methylation. *Science* 292, 2077–2080 (2001).
32. Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cm13 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. *Genes Dev.* 15, 1753–1758 (2001).
33. Cao, X. & Jacobsen, S. E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. *Proc. Natl Acad. Sci. USA* 99, 16491–16498 (2002).
34. Johnson, L. M. et al. The SRA methyl–cytosine-binding domain links DNA and histone methylation. *Curr. Biol.* 17, 379–384 (2007).
35. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. *Nature* 416, 558–560 (2002).
36. Zilberman, D., Cao, X. & Jacobsen, S. E. ARCOUA4 control of locus-specific siRNA accumulation and DNA and histone methylation. *Science* 299, 716–719 (2003).
37. Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. *Curr. Biol.* 12, 1138–1144 (2002).
38. Zilberman, S. E., Sakai, H., Finnegan, E. J., Cao, X. & Meyerowitz, E. M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. *Curr. Biol.* 10, 179–186 (2000).
39. Schmuths, H., Meister, A., Horres, R. & Bachmann, K. Genome size variation among accessions of Arabidopsis. *Ann. Bot.* **93**, 317–321 (2004).
40. Ravi, M. et al. A haploid genetics toolbox for Arabidopsis. *Nat. Commun.* **5**, 5334 (2014).
41. Rohde, A. et al. Carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status. *Plant Cell Physiol.* **40**, 961–972 (1999).
42. Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis genetics. *Plant J.* **14**, 387–392 (1998).
43. Zhang, H. et al. Protocol: a beginner’s guide to the analysis of RNA-directed DNA methylation in plants. *Plant Methods* **10**, 18 (2014).
44. Dagaut, P. & Chaudhuri, S. Analysis of DNA methylation profile in plants by Chop-PCR. Methods Mol. Biol. **799–800**, 2019 (1991).
45. Burn, J. E., Bagnall, D. J., Metzger, J. D., Dennis, E. S. & Peacock, W. J. DNA methylation, vernalization, and the initiation of flowering. *Proc. Natl Acad. Sci. USA* **90**, 287–291 (1993).
46. Bender, J. & Fink, G. R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. *Cell* **83**, 725–734 (1995).
47. Bossdorf, O., Arcuri, D., Richards, C. L. & Pigliucci, M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis. *Evol. Ecol.* **24**, 541–553 (2010).
48. Raj, K. & Mufti, G. J. Azacytidine (Vidaza(R)) in the treatment of myelodysplastic syndromes. *Ther. Clin. Risk Manag.* **2**, 377–388 (2006).
49. Zemach, A. et al. The Arabidopsis nuclease remodeler DDM1 allows DNA methylation in plants. *Methods Mol. Biol.* by Chop-PCR. *Trends Genet.* **23**, 348–350 (2007).
50. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. *Nat. Genet.* **23**, 314–318 (1999).
51. Shen, X. et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. *PloS Genet.* **10**, e1004842 (2014).
52. Dubin, J. M. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. *Elife* **4**, e05225 (2015).
53. Greaves, I., Groszmann, M., Dennis, E. S. & Peacock, W. J. Trans-chromosomal methylation. *Epigenetics* **7**, 800–805 (2012).
54. Ravan, M. & Bondada, R. Genome elimination by tailswap CenH3: in vivo identification of markers in specific genomic regions by using segregating populations. *Proc. Natl Acad. Sci. USA* **88**, 9828–9832 (1991).
55. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–1549 (2018).
56. Krueger, F. & Andrees, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. *Bioinformatics* **27**, 1571–1572 (2011).
57. Chen, S. et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. *BMC Bioinform.* **18**, 80 (2017).
58. Lee, T.-H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPphyte: a pipeline to construct a phylogenetic tree from huge SNP data. *BMC Genom.* **15**, 162 (2014).

Acknowledgements

R.B. acknowledges Junior and Senior Research Fellowship for Ph.D. awarded by University Grants Commission, Govt. of India. M.A.B. is the recipient of the INSPIRE Scholarship for Higher Education awarded by Department of Science and Technology (Govt. of India). V.K.P. is a recipient of the Council of Scientific and Industrial Research (CSIR)–Shyama Prasad Mukherjee Ph.D. fellowship. R.M. thanks financial support from Ramalingamvawami re-entry fellowship awarded by the Department of Biotechnology (Govt. of India), and Dupont Young Professor grant, Dupont USA. We thank, Indian Institute of Science Education and Research (IISER)–Thiruvananthapuram, for intramural financial and infrastructural support. We thank Puneet Prabhakar Singh for help with the initial characterization of Wa-1 accession, Dilte Singh Kulara, for help with Wa-1 × Sorbo crosses, Dr. Ullasa Kodandaramiah for discussion on phylogenetic analysis, and Dr. Kalika Prasad for sharing the cmii-7 and kyp-2 seed stocks. We thank Prof. Luca Comai, UC Davis, for providing the facility for growing *A. thaliana* natural accessions and microscopy.

Author contributions

R.B. conceptualized, designed, and supervised the study. R.B. contributed to certain aspects of the study design and carried out most of the experiments. M.P.M. contributed to the phenotypic analysis of accesses along with R.B. S.S. did the bioinformatics analysis of bisulite sequencing data along with R.B. M.A.B. performed the cloning experiments along with R.B. and partially contributed to the phenotypic screening. V.K.P. contributed to RT-PCR experiments. R.M. wrote the paper with inputs from R.B. M.P.M. helped with editing the draft. All the authors read and approve the draft.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-01525-9.

Correspondence and requests for materials should be addressed to R.M.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020