Erector Spinae Plane Block versus Transversus Abdominis Plane Block for Postoperative Analgesia in Abdominal Surgery: A Systematic Review and Meta-Analysis

Lin Liheng a*, Cai Siyuan b*, Cai Zhen b* and Wu Changxue c,d

aDepartment of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; bDepartment of Plastic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China; cDepartment of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; dDepartment of Cardiothoracic Surgery, People’s Hospital of Deyang city, Deyang, China

ABSTRACT

Background: Regional anesthesia technique has been reported to exert excellent analgesic efficacy for various surgeries. Erector spinae plane block (ESPB) and transversus abdominis plane (TAP) block are good ways to relieve postoperative pain after abdominal surgery. However, the analgesic efficacy between them remains controversial. This meta-analysis evaluated the analgesic effect between these two blocks in abdominal surgery with statistical and clinical interpretation.

Methods: PubMed, Web of Science, the Cochrane Library, ClinicalTrials.gov register, and Embase databases were systematically searched by two independent investigators from the inception to December 2021.

Results: 10 randomized controlled trials (RCTs) comprising 570 patients were included in the final meta-analysis. Meta-analysis revealed that ESPB decreased the opioid consumption and improved the pain scores during the first 24 postoperative hours compared with TAP groups statistically, while the magnitude of this difference did not reach the clinically significant threshold (10 mg of intravenous morphine consumption and 1.3 cm on the VAS scale). In addition, ESPB prolonged blockade duration and decreased the occurrence of postoperative nausea and vomiting (PONV). However, it did not improve the patients’ satisfaction.

Conclusions: Although ESPB does not provide better clinical analgesia than the TAP block, it could be a comparable nerve block technique for abdominal wall analgesia.

Introduction

Owing to the advanced surgical techniques, abdominal surgery has been increasing worldwide [1,2]. However, approximately 80% of patients suffered from mild to severe postoperative pain following open abdominal surgery or laparoscopic surgery [3,4]. With the growing emphasis on perioperative pain control, regional block techniques have been rapidly developed and promoted as well [5]. The erector spinae plane block (ESPB) is a newly introduced interfascial plane block that needs physicians to inject the local anesthetic into the fascial plane underneath the erector spinae muscles over the vertebral transverse process [6]. It is supposed to inhibit somatic and visceral pain probably through transforaminal and epidural spreading [7–9]. ESPB has gained popularity in various surgical procedures such as the abdominal [10], lumbar spine [11], breast [12], and thoracic surgery for its wide analgesia dermatomes (from T1 to L3) [13,14]. The previous meta-analysis has demonstrated the analgesic efficacy between ESPB and non-block care in abdominal surgery, but few systematic and persuasive study has been presented to compare it with other local anesthesia blocks. The transversus abdominis plane (TAP) block has been developed for over two decades and is considered the gold standard analgesic technique for abdominal surgery [9]. Nowadays, TAP block and its derivatives [subcostal TAPB (STAPB) and oblique subcostal TAPB (OSTAPB)] are widely applied by practitioners in abdominal surgery for their favorable analgesic efficacy [5]. Therefore, we aim to synthesize available evidence to identify whether the analgesic efficacy of ESPB is superior to TAP block or not, with statistical conclusions and clinical interpretations.

Methods

This systematic review and meta-analysis was executed based on the criteria of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [15]. The predesigned protocol of this study was registered in advance at the Prospective Register of Systematic Reviews (PROSPERO) database with No.CRD42021292568. This article was conducted on published literature and did not need ethical review and approval.

Search strategy

We searched several databases such as PubMed, Web of Science, the Cochrane Library, Embase, and ClinicalTrials.gov register for existing literature from the inception of the databases to December 2021 without restriction on language. The following search syntax was used: (((erector spinae plane block) OR (ESPB)) OR (ESP)) AND (((transversus abdominis plane block) OR (subcostal transversus abdominis plane block)) OR (oblique subcostal transversus abdominis plane block)) OR (TAP) OR (TAP block)) AND (((abdominal surgery) OR (abdominal)) OR (laparotomy)) OR (open surgery)) OR (laparoscopic surgery)) OR (Laparoscopy)). Considering that TAP block has several derivatives and abdominal surgery includes many operation types, we adopted a detailed search strategy. The gray literature also had been searched by supplementary hand searching.

Study selection criteria

Two investigators carried out the search process independently. If there were any disagreements between investigators, we would discuss them with a senior investigator. Studies that met the following criteria were included: a. were RCTs; b. compared the analgesic efficacy between ESPB and TAP block; c. included patients undergoing abdominal surgery; d. adults aged 18 years or older. Non-RCT studies, ongoing trials, conference reports, case reports, and articles that did not contain relevant outcomes or failed to obtain data from the author were excluded.

Data extraction

The relevant information was extracted as follows: name of the first author, year of publication, the Jadad score, age, number of participants, type of surgery performed, block location, type of TAP block, anesthesia technique, time to perform blocks, patient-controlled intravenous analgesia (PCIA), and the primary outcome. In this meta-analysis, we regarded the 24-hour postoperative opioid usage as the primary outcome [12]. Other measures such as the 24-hour postoperative pain scores during rest or movement, time to the first rescue analgesia, rate of nausea and vomiting, and patients’ satisfaction were considered as the secondary outcomes [16].

If continuous data such as opioid consumption, pain score, and time of first rescue analgesia were described as medians and interquartile range (IQR), they would be converted into means and corresponding standard deviation approximations according to the methods presented in the Cochrane Handbook for Systematic Reviews of Interventions [17,18]. When standard deviations were not reported and could not be converted from available values, we would send emails to the author for the raw data. In the absence of data from the author, we would estimate the SD with the pooled SD of other studies included in this systematic review using the formula below [19]:

\[
SD = \sqrt{\frac{\text{summation}}{N-1} \cdot \text{SD}^2}
\]

Web Plot Digitizer was used to extract numerical data from figures [20]. We converted all opioid doses into intravenous morphine equivalents for data synthesis and evaluation according to a standard conversion table [21,22]. Two methods that assessed the pain, namely VAS and NRS, were converted to a 0–10 cm scale for comparison [23].

Quality and risk assessment

The Cochrane's Risk-of-Bias Assessment Tool [24], the modified Jadad Score [25], and the Grading of Recommendations Assessment Development and Evaluation (GRADE) methodology [26] (the GRADEprofiler software, version3.6.1) were conducted by two independent and blinded researchers to evaluate the quality of included studies and the certainty of evidence. Any disagreements would be negotiated with a senior researcher. The Cochrane's Risk-of-Bias Assessment Tool assessed the quality according to the randomization process, allocation concealment, blinding of patients, researchers, outcome assessor, incomplete data, reporting bias, and other biases. Each item was rated at three levels (low risk, unclear risk, and high risk). The modified Jadad Score scale (total 1–7 points) was based on four criteria: randomization generation (0–2 points), allocation concealment, double-blinding (0–2 points), and statements of possible withdrawals (0–1 point). Studies scoring more than 3 points were deemed as high quality; otherwise, they would be regarded as low quality. Finally, evidence was classified by the GRADE methodology into five categories: high risk of bias, inconsistent results, indirect evidence, imprecision, and publication bias.

Statistical analysis

We utilized the Review Manager Version5.3 (RevMan, The Cochrane Collaboration, Copenhagen, Denmark, 2014) to perform this meta-analysis. The mean difference (MD) with the corresponding 95% confidence intervals (CI) was calculated for continuous data; risk ratio (RR) with the corresponding 95% CI was used for dichotomous data with the Mantel-Haenszel method. Heterogeneity was examined by I² statistics. When I²>50%, which indicated the heterogeneity was significant [27], a random effects model was chosen; otherwise, a fixed effects model was selected. Besides, sensitivity analysis and subgroup analysis (long duration surgery group vs. short duration surgery group) was undertaken to explore the source of huge heterogeneity. Funnel plot and Egger's linear and trim-and-fill analysis were performed to
assess the publication bias by STATA (version 16.0, StataCorp, College Station, TX). P value <0.05 with 95% CI was considered statistically significant.

Results

Literature search results

According to our search strategy, 152 relevant studies were initially included from the databases. After removing 40 duplications and 89 studies with irrelevant titles and abstracts, 23 articles were left. 10 RCTs [28–37] were finally included in the current meta-analysis after reading the full text. The detailed literature selection process is presented in the PRISMA statement flowchart (Figure 1). The pooled risk of bias summary and risk of bias graph of included ten articles are shown in Figure 2.

Study characteristics

Articles incorporated in the current study were published between 2019 and 2021, and the sample sizes were small (including 570 patients in total and 285 patients in each group). The studies varied in several aspects like the types of surgery and local analgesics injected, anesthesia method, and background analgesia administration. The type of surgery includes hysterectomy, sleeve gastrectomy, cesarean section, colorectal surgery, and laparoscopic cholecystectomy. Four studies [28,30,31,35] addressed open surgery, and six studies [29,32–34,36,37] involved laparoscopic surgery. Seven [28–30,32–35] studies chose bupivacaine as the local anesthetic, while the remaining three [31,36,37] used ropivacaine. Eight studies [28,29,32–37] were performed using general anesthesia, and the other two [30,31] used spinal anesthetic. Four studies [30,32,34,37] used postoperative controlled analgesia to relieve postoperative pain. Three articles [29,33,35] compared ESPB with TAP as well as no-block treatment (opioid analgesia, trocar-site infiltration, or placebo, respectively). All blocks were guided by ultrasound and injected bilaterally. Every study was registered at the clinicaltrials.gov prospectively. Hassan’s [35] study was a completed clinical trial but has not been published yet. The quality and characteristics of the enrolled ten studies are summarized in Table 1.

Outcomes

Primary outcomes

24-Hour postoperative opioid consumption

Across all studies, nine studies recorded total opioid doses in the first 24 hours after surgery. This meta-analysis demonstrated that the consumption of morphine was significantly decreased in ESPB groups compared with the TAP groups (−7.78 mg; 95% CI: −11.67 to −3.89; p < 0.001; $I^2 = 99\%$) (Figure 3). For the high heterogeneity, we divided the studies into two groups for subgroup analysis: long duration surgery group and short duration surgery group (we regarded LC and the cesarean section as short time surgeries and the remaining operations as long time surgeries). In the former group, four studies with 216 participants were analyzed (−5.22 mg; 95% CI: −9.02 to −1.43; $p = 0.007; I^2 = 93\%$); in the latter group, five studies with 294 patients were examined (−9.83 mg; 95% CI: −18.02 to −1.65; $p = 0.02; I^2 = 95\%$).
99%) (Table 2). Notably, more reduction in opioid consumption has been seen with ESPB in the short duration surgery group.

Secondary outcomes

Time of first rescue analgesia

It was defined as the time of patients’ first requirement for rescue analgesia. Seven studies included 380 patients compared this indicator between patients receiving ESPB and TAP treatment. Synthesized results revealed that patients who received ESPB had a longer blockage duration after abdominal surgery compared to those in the TAP group (9.54 h; 95% CI: 4.93 to 14.14; \(p < 0.0001; F^2 = 100\% \)) (Figure 4).

24-Hours postoperative pain scores during rest and movement

The meta-analysis assessed the pain scores at 2h, 4h, 6h, 8h, 12h and 24h after surgery during rest and movement (Figure 5 ABC). Pain scores were slightly lower in ESPB group during rest at several time points postoperatively (4h: -0.60 cm; 95% CI: -0.98 to -0.22; \(p = 0.002; F^2 = 91\% \); 6h: -0.81 cm; 95% CI: -1.28 to -0.34; \(p = 0.0007; F^2 = 86\% \)); 8h: -0.97 cm; 95% CI: -1.70 to -0.25; \(p = 0.008; F^2 = 93\% \); 12h: -1.08 cm; 95% CI: -1.78 to -0.38; \(p = 0.002; F^2 = 97\% \); 24h: -0.40 cm; 95% CI: -0.70 to -0.10; \(p = 0.008; F^2 = 88\% \)). There was no difference at 2h between the two groups (2h: -0.42 cm; 95% CI: -1.05 to -0.22; \(p = 0.20; F^2 = 95\% \)). The ESPB improved pain scores at movement as well, compared with the TAP group (2h: -0.42 cm; 95% CI: -0.79 to -0.05; \(p = 0.03; F^2 = 68\% \); 4h: -0.62 cm; 95% CI: -1.12 to -0.11; \(p = 0.02; F^2 = 88\% \); 6h: -1.04 cm; 95% CI: -2.05 to -0.03; \(p = 0.04; F^2 = 94\% \); 12h: -0.87 cm; 95% CI: -1.73 to -0.02; \(p = 0.04; F^2 = 96\% \); 24h: -0.50 cm; 95% CI: -0.86 to -0.14; \(p = 0.007; F^2 = 88\% \)), except at 8h (8h: -1.27 cm; 95% CI: -2.72 to 0.18; \(p = 0.09; F^2 = 95\% \)).

Side effects and patients’ satisfaction

Five articles included 282 patients reported data about postoperative nausea, and four included 222 patients recorded data on the occurrence rate of postoperative vomiting. Since the heterogeneity between the included articles was small, we used the fixed effects model to analyze the
Table 1. The characteristics of included studies: ESPB vs TAP.

Reference	Jadad score	Age (years)	Type of surgery	Anesthesia technique	Time to perform blocks	No. of patient	Location	Local anesthetic dose	No. of patient	type	Postoperative analgesic	Primary outcome
Alshaimaa 2020	6	40 ~ 60	Open total abdominal hysterectomy	GA	After surgery	24	T9	20 mL 0.375% bupivacaine	24	TAP	IV morphine + pethidine	Pain score at 24 postoperative hours; The time of the first request for analgesia; Opioid consumption at 24 postoperative hours
Bassant 2020	7	18 ~ 59	Laparoscopic sleeve gastrectomy	GA	Before surgery	22	T9	15 mL 0.25% bupivacaine	22	STAP	IV paracetamol + pethidine	Pain score at 24 postoperative hours
Maged 2020	6	18 ~ 40	Cesarean section	SA	After surgery	30	T9	20 mL 0.25% bupivacaine	30	TAP	Tramadol PCA + IV paracetamol 1gm 8th hourly and IV ketorolac 30mg 12th hourly	Pain score at 24 postoperative hours; The time of the first request for analgesia
Aman 2020	6	pregnant woman	Cesarean section	SA	After surgery	30	T9	0.2ml/kg 0.2% ropivacaine	30	TAP	IV diclofenac	The time of the first request for analgesia
Başak 2019	6	18 ~ 70	LC	GA	Before surgery	34	T7	20 mL 0.375% bupivacaine	34	OSTAT	Tramadol PCA + IV morphine	Opioid consumption at 24 postoperative hours
Mohamed 2020	7	20 ~ 60	LC	GA	Before surgery	21	T8	20 mL 0.25% bupivacaine	21	OSTAT	IV fentanyl or morphine or pethidine	Opioid consumption at 24 postoperative hours
Halime 2021	4	18 ~ 64	LC	GA	Before surgery	32	T7	10 mL 0.25% bupivacaine and 10 mL 2% prilocaine	32	STAP	Tramadol PCA + IV paracetamol 15mg/kg 6th hourly	Pain score at 24 postoperative hours
Hassan 2020	5	18 ~ 70	Laparotomy	GA	Before surgery	31	T7	20 mL 0.25% bupivacaine	31	TAP	IV fentanyl + IV paracetamol 1 gm 6th hourly	Opioid consumption at 24 postoperative hours; The time of the first request for analgesia
Lingaraj 2021	6	18 ~ 70	LC	GA	Before surgery	30	T7	20 mL 0.2% ropivacaine and 4mg dexamethasone solution	30	OSTAT	IV paracetamol 1 gm 6th hourly + IV tramadol or diclofenac	Opioid consumption at 24 postoperative hours; Pain score at 24 postoperative hours
Shen 2021	6	>65	Laparoscopic Colorectal surgery	GA	Before surgery	31	T9	20 mL 0.25% ropivacaine	31	OSTAT	Sufentanil PCA	Pain score at 24 postoperative hours

Abbreviations: LC, laparoscopic cholecystectomy; GA, general anesthesia; SA, spinal anesthetic; T, thoracic vertebra; ESPB, erector spinae plane block; TAP, transversus abdominis plane block; STAP, subcostal transversus abdominis plane block; OSTAT, oblique subcostal transversus abdominis plane block; PCA, patient-controlled analgesia; IV, intravenous injection.
pooled results. The forest plot shown that ESPB reduced the rate of postoperative nausea (RR 0.65; 95%CI 0.43 to 0.98; \(p = 0.04; I^2 = 38\% \) (Figure 6A) and postoperative vomiting (OR 0.35; 95%CI 0.13 to 0.91; \(p = 0.03; I^2 = 0\% \)) (Figure 6B). Two articles included 108 patients assessed the patients’ satisfaction; however, there were statistically insignificant between the ESPB and TAP groups (RR 1.16; 95%CI 1.00 to 1.34; \(p = 0.05; I^2 = 0\% \)) (Figure S1). Additionally, a study by Lingaraj [36] reported that patients that received ESPB treatment were more satisfied with the improvement of pain, whereas patients that received TAP treatment were more satisfied with the process of performance. Only one study [34] assessed the lengths of PACU and hospital stay [mean ± SD: 25.2 ± 2.5 min vs.13.9 ± 2.2 min and 27.3 ± 3.2h vs.24.2 ± 0.5h, respectively, \(p < 0.0001 \)], and time to achieve unassisted walking [mean ± SD: 168.4 ± 11.8 min vs.126.3 ± 13.9 min, respectively, \(p < 0.0001 \)]. All results were significantly shorter in the ESPB group. No ESPB-related and TAP-related complications such as bleeding or infection of puncture point, local anesthetic intoxication, and bowel perforation were described in the included studies.

Figure 3. Forest plot for the comparison of intravenous morphine equivalents (mg) in the first 24h after surgery.

Table 2. Results of the subgroup analysis.

Outcomes	Subgroup (the duration of surgery)	Participants (studies)	Effect SD (95%CI)	P	\(\nu \)
24-hour postoperative	Long	216 (4)	−5.22 (9.02,−1.43)	0.007	93%
opioid consumption	Short	294 (5)	−9.83 (−18.02,−1.65)	0.02	99%
Time of first rescue	Long	154 (3)	10.19 (2.24,18.13)	0.01	98%
analgesia	Short	226 (4)	9.05 (3.20,14.90)	0.002	100%
Pain scores at rest at 2h	Long	154 (3)	−0.36 (−1.77,1.05)	0.62	98%
	Short	226 (4)	−0.46 (−0.89,−0.02)	0.04	75%
Pain scores at rest at 4h	Long	154 (3)	−0.33 (−0.65,−0.01)	0.04	68%
	Short	286 (5)	−0.77 (−1.32,−0.22)	0.006	92%
Pain scores at rest at 6h	Long	92 (2)	−0.50 (−0.89,−0.11)	0.01	0%
	Short	226 (4)	−0.94 (−1.54,−0.33)	0.002	90%
Pain scores at rest at 8h	Long	154 (3)	−0.40 (−0.63,−0.18)	0.0004	0%
	Short	120 (2)	−1.76 (−2.28,−1.25)	<0.00001	64%
Pain scores at rest at 12h	Long	154 (3)	−0.85 (−1.16,−0.55)	<0.00001	43%
	Short	286 (5)	−1.21 (−2.29,−0.13)	0.03	98%
Pain scores at rest at 24h	Long	154 (3)	−0.43 (−0.74,0.11)	0.007	66%
	Short	286 (5)	−0.40 (−0.86,0.07)	0.09	92%

Figure 4. Forest plot for the comparison of the time of first rescue analgesia.
Publication bias
Since the heterogeneity was distinct in this analysis, we further conducted a sensitivity analysis by systematically removing articles to explore the source of heterogeneity. However, no significant changes have been seen in pooled effect, which indicates the pooled results were stable (Figure S2). Taking into consideration that the duration of the surgery is a potential factor influencing the analgesic efficacies of nerve blocks, we performed a subgroup analysis based on it to explore the heterogeneity. The results showed that the heterogeneity of postoperative pain scores at rest was significantly reduced (Table 2).

The funnel plot (Figure S3) showed some asymmetry through visual inspection, implicating the existence of publication bias, which was constructed with 24-hour postoperative opioid consumption for the ESPB versus TAP. Egger’s regression also showed a publication bias for a small-study effect ($P=0.001$) (Figure S4). We utilized the trim-and-fill analysis to handle the asymmetry of the funnel plot, and it predicted three theoretical missing studies (Figure S5). After being trimmed and filled, the overall effect measure did not change significantly. The level of certainty of the evidence is presented in Table 3.

Discussion
Postoperative pain is still a challenge today. Pain after abdominal surgery usually derives from incisional pain, visceral pain, tissue trauma, shoulder pain from CO$_2$ insufflation, and phrenic nerve irritation [38]. This means that
patients are experiencing both visceral and somatic pain. Adequate analgesia can increase patient satisfaction, hasten rehabilitation and functional recovery, shorten the length of hospital stay and decrease the chance of venous thrombosis [39]. Previous studies have proved that both ESPB and TAP can improve the postoperative pain of abdominal surgery. However, in theory, the ESPB has a great advantage of providing somatic and visceral analgesia compared to the TAP block, which only addresses the somatic pain [5]. As far as we know, this was the first meta-analysis conducted on RCTs to compare the analgesic efficacy of ESPB with that of TAP in patients following abdominal surgery so far. The most valuable finding of the current investigation was that ESPB could provide positive clinical analgesic efficacy, which is equivalent to the TAP block. Statistically, it reduced the opioid consumption in the first 24 hours postoperatively, improved pain scores and prolonged the blockage time, and reduced the occurrence of PONV compared to TAP.

Nevertheless, there was no significant clinical difference in two results. Reductions equivalent to 30 mg oral morphine [16] in the first 24 hours postoperatively, improved pain scores and prolonged the blockage time, and reduced the occurrence of PONV compared to TAP. Nevertheless, there was no significant clinical difference in two results. Reductions equivalent to 30 mg oral morphine [16] in the first 24 hours after surgery and 1.3 cm [40, 41] on the VAS scale were regarded as the minimum clinically important difference. As mentioned before, 30 mg of oral morphine is approximately equal to 10 mg of intravenous morphine. In this system review, ESPB reduced the 24-hour morphine consumption; however, the importance of the statistical benefits disappeared when putting the difference of 7.78 mg into the clinical background.

In terms of the pain severity, the most significant pain score reduction on the VAS scale was 1.08 cm, which failed to reach the clinically meaningful threshold. Therefore, these two outcomes were statistically significant but clinically unimportant. This may explain why no significant change was observed in patient satisfaction between these two technologies.

What is worth mentioning is that the ESPB prolonged the time to the first analgesic need significantly compared to the TAP block. The difference of 9.54 h was not only statistically significant but also clinically meaningful [34].

As described before, ESPB was considered to act on the ventral and dorsal rami ventral of spinal nerves to provide adequate somatic and visceral analgesia, which was an advantage over the TAP block. However, how the local anesthetic (LA) acts and spreads remains unclear. A vivo MRI study suggested that LA spreads anteriorly and laterally, entering the transforaminal, circumferential epidural, and intercostal space so as to extend the dermatomal coverage [10, 42].

The subgroup analysis based on the duration of surgery decreased the I² of postoperative pain scores at rest. However,
the sources of high heterogeneity of two other outcomes (24-hour postoperative opioid consumption and the time of first rescue analgesia) have not been detected by the sensitivity analysis and subgroup analysis. Many variables caused the existence of heterogeneity. For instance, the supplementary analgesics (paracetamol or diclofenac); intraoperative opioid administration (fentanyl, sufentanil, or remifentanil); the application of different procedures (OSTAP, STAP, and TAP); the type of surgery (open surgery or Laparoscopic surgery); the blocking locations (T7 or T9); the types of local anesthetics (ropivacaine or bupivacaine) and the adjunct (adrenaline or dexamethasone). Indeed, it has been proved that the analgesic efficacy of OSTAP is superior to other derivatives [43]. Besides, conducting nerve block preoperatively can provide better analgesia than the same block performed postoperatively during the early postoperative period [44]. The nature of surgical procedures (types of surgery, pathologies, surgical approaches, and extent of procedure) can also add extra heterogeneity. Moreover, heterogeneity prevailed since we used the transformed means and standard deviations and converted data.

Several complications related to ESPB have been described in previous studies. Hamilton [45] reported one case of pneumothorax following ESPB; Elkoundi [46] described a priapism; O Selvi [47] reported an unexpected case of motor weakness; Karaca [48] described a LAST (local anesthetic systemic toxicity) following high dose lumbar erector spinae plane block. A retrospective review [49] revealed that 4 of the 182 patients experienced side effects. In these four complications, one case was perhaps related to the spread of...
the LA to the lumbar plexus, and three cases were considered to be associated with the LA toxicity possibly. Although no major LAST complications such as seizures have been observed, the rate of the LA toxicity was a little high. There is, therefore, a significant need to determine the effective and safe volume and concentration of the local anesthetic.

In this meta-analysis, no complications like local anesthetic toxicity, bleeding or infection of puncture point, or nerve injury were reported among the 285 patients in the ESPB group. Because of the injection location of ESPB (which is away from the vital structures) as well as the prevalence of ultrasound, procedure-related complications like pneumothorax and nerve injury are remarkably decreased [50]. Another advantage of the ESPB is that the block is considered easy to be learned due to the simplicity of its landmarks on ultrasound [51].

Generally speaking, ESPB is a relatively safe technique. It would be a proper choice for the abdominal operation, given its analgesic efficacy, lower associated risk, and strong operability. It is worth noting that performing ESPB requires

Table 3. Results of the main outcomes and quality of evidence (GRADE).

Outcome	Patients (studies)	Effect SD (95%CI)	P value	Heterogeneity	Quality of evidence (GRADE)
24-hour postoperative opioid consumption	502 (9)	−7.78 mg (−11.67 to −3.89)	<0.0001	<0.00001 (99%)	⊕⊕⊕⊝ moderate^b
Pain scores at rest					
2 h	380 (7)	−0.42 cm (−1.05 to 0.22)	0.20	<0.00001 (95%)	⊕⊕⊕⊕low^a,b
4 h	440 (8)	−0.60 cm (−0.98 to −0.22)	0.002	<0.00001 (91%)	⊕⊕⊕⊕low^a,b
6 h	318 (6)	−0.81 cm (−1.28 to −0.34)	0.0007	<0.00001 (86%)	⊕⊕⊕⊕low^a,b
8 h	274 (5)	−0.97 cm (−1.70 to −0.23)	0.008	<0.00001 (93%)	⊕⊕⊕⊕low^a,b
12 h	440 (8)	−1.08 cm (−1.78 to −0.38)	0.002	<0.00001 (97%)	⊕⊕⊕⊕low^a,b
24 h	440 (8)	−0.40 cm (−0.70 to −0.10)	0.008	<0.00001 (88%)	⊕⊕⊕⊕low^a,b
Pain scores at movement					
2 h	296 (5)	−0.42 cm (−0.79 to −0.05)	0.03	0.02 (68%)	⊕⊕⊕⊕low^a,b
4 h	268 (5)	−0.62 cm (−1.12 to −0.11)	0.02	<0.00001 (88%)	⊕⊕⊕⊕low^a,b
6 h	166 (3)	−1.04 cm (−2.05 to −0.03)	0.04	<0.00001 (94%)	⊕⊕⊕⊕low^a,b
8 h	122 (2)	−1.27 cm (−2.72 to 0.18)	0.09	<0.00001 (85%)	⊕⊕⊕⊕low^a,b
12 h	356 (6)	−0.87 cm (−1.73 to −0.02)	0.04	<0.00001 (96%)	⊕⊕⊕⊕low^a,b
24 h	356 (6)	−0.50 cm (−0.86 to −0.14)	0.007	<0.00001 (88%)	⊕⊕⊕⊕low^a,b
Time for requirement of first rescue analgesia	380 (7)	9.54 h (4.93 to 14.14)	<0.0001	<0.00001 (100%)	⊕⊕⊕⊕low^a,b
Nausea	282 (5)	0.65 (0.43 to 0.98)	0.04	0.17 (38%)	⊕⊕⊕⊕⊕ high
Vomiting	222 (4)	0.35 (0.13 to 0.91)	0.03	0.39 (0%)	⊕⊕⊕⊕⊕ high
Satisfaction of analgesia	108 (2)	1.16 (1.00 to 1.34)	0.05	0.68 (0%)	⊕⊕⊕⊕⊕ high

^aQuality was rated down for using estimation formulas.
^bQuality was rated down for very high statistical heterogeneity.
the lateral, prone, or sitting position, which is a little bit restricted compared to the TAP block, which only requires the supine position.

Although the results of this systematic review were desirable, some limitations should be noted. Firstly, due to the relatively small sample size of the studies included (the largest experimental group consisted of 34 patients), the treatment effect could be overestimated. Secondly, we did not perform a quantitative analysis comparing ESPB with TAP because of the limited number of RCTs. Thirdly, because we only chose articles conducted on abdominal surgery, selection bias may exist. Fourthly, even though we conducted a comprehensive and exhaustive literature search on plenty of databases, there is still a possibility of missing relevant articles or gray literature that meet our criteria. Fifthly, significant heterogeneity was observed in most analyses, and the potential sources were discussed earlier. Lastly, age is an important factor impacting pain sensation or expression. The elderly are relatively insensitive to pain. However, only two articles included assessed the pain in elderly patients, which makes it impossible for us to carry out an analysis on age. Thus, further studies with age-stratified analysis are essential.

Overall, figuring out the mechanism of action of ESPB could help physicians apply this block better. This is an area that requires further exploration in the future, and more robust evidence is required to guide clinical practice.

Conclusion

Compared with TAP block, ESPB has exhibited statistically better and clinically equivalent analgesic efficacy in this systematic review. Besides, ESPB showed a longer blockade duration, a lower incidence of PONV, and equal patient satisfaction. Overall, these results provided novel evidence to support incorporating the ESPB into the multimodal analgesic management, which suggests that ESPB could be a suitable alternative to the abdominal analgesia. However, the moderate-to-low quality of evidence impacted the findings. Therefore, further high-quality RCTs related to the ESPB are still needed to evaluate the safety and analgesic efficacy.

Disclosure statement

The authors report no conflicts of interest.

ORCID

Lin Liheng http://orcid.org/0000-0001-8383-7874

References

1. Fernandes HDS, Azevedo AS, Ferreira TC, Santos SA, Rocha-Filho JA, Vieira JE. Ultrasound-guided peripheral abdominal wall blocks. *Clinics (Sao Paulo)*. 2021;76:e2170. doi:10.6061/clinica/2021/e2170.
2. Du L, Zhao Y, Yin C, Liu S, Cui Z, Zhang M. Application of intra-abdominal pressure monitoring in early enteral nutrition after abdominal surgery. *Am J Transl Res*. 2021;13:7140–7147.
3. Rathmell JP, Wu CL, Sinatra RS, et al. Acute post-surgical pain management: a critical appraisal of current practice, December 2–4, 2005. *Reg Anesth Pain Med*. 2006;31(4 Suppl 1):1–42. doi:10.1016/j.rapm.2006.05.002.
4. Apfelbaum JL, Chen C, Mehta SS, Gan TJ. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. *Anesth Analg*. 2003;97(2):534–540. doi:10.1213/01.ANE.0000086822.10113.9e.
5. Macias AA, Finneran JJ. Regional anesthesia techniques for pain management for laparoscopic surgery: a review of the current literature. *Curr Pain Headache Rep*. 2022;26(1):33–42. doi:10.1007/s11916-022-01000-6.
6. Chin KJ, Malhas L, Perlas A. The erector spinae plane block provides visceral abdominal analgesia in bariatric surgery: a report of 3 cases. *Reg Anesth Pain Med*. 2017;42(3):372–376. doi:10.1097/aap.0000000000000581.
7. Imani F, Rahimzadeh P. Gabapentinoids: gabapentin and pregabalin for postoperative pain management. *Anesth Pain Med*. 2012;2(2):52–53. doi:10.5812/apam.7743.
8. Abdelsalam K, Mohamid OW. Ultrasound-guided rectus sheath and transversus abdominis plane blocks for perioperative analgesia in upper abdominal surgery: a randomized controlled study. *Saudi J Anaesth*. 2016;10(1):25–28. doi:10.4103/1658-354x.169470.
9. Rafi AN. Abdominal field block: a new approach via the lumbar triangle. *Anaesthesia*. 2001;56(10):1024–1026. doi:10.1097/j.1463-1064.2001.00279-40.x.
10. Schwartzmann A, Peng P, Maciel MA, Forero M. Mechanism of the erector spinae plane block: insights from a magnetic resonance imaging study. *Can J Anaesth*. 2018;65(10):1165–1166. doi:10.1007/s12630-018-1187-y.
11. Koo CH, Hwang JY, Shin HJ, Ryu JH. The Effects of Erector Spinae Plane Block in Terms of Postoperative Analgesia in Patients Undergoing Laparoscopic Cholecystectomy: A Meta-Analysis of Randomized Controlled Trials. *JCM*. 2020;9(9):2928. doi:10.3390/jcm9092928.
12. Huang W, Wang W, Xie W, Chen Z, Liu Y. Erector spinae plane block for postoperative analgesia in breast and thoracic surgery: A systematic review and meta-analysis. *J Clin Anesth*. 2020;66:109900. doi:10.1016/j.jclinane.2020.109900.
13. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: a novel analgesic technique in thoracic neurogenic pain. *Reg Anesth Pain Med*. 2016;41(5):621–627. doi:10.1097/aap.0000000000000451.
14. Adhikary SD, Pruett A, Forero M, Thiruvanekkaratavan V. Erector spinae plane block as an alternative to epidural analgesia for post-operative analgesia following video-assisted thoracoscopic surgery: A case study and a literature review on the spread of local anaesthetic in the erector spinae plane. *Indian J Anaesth*. 2019;63(1):75–78. doi:10.4103/ija.IJA_693_17.
15. Shamsheer L, Moher D, Clarke M, PRISMA-P Group, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ*. 2015;350:g7647. doi:10.1136/bmj.g7647.
16. Oh SK, Lim BG, Won YJ, Lee DK, Kim SS. Analgesic efficacy of erector spinae plane block in lumbar spine surgery: a systematic review and meta-analysis. *J Clin Anesth*. 2022;78:110647. doi:10.1016/j.jclinane.2022.110647.
17. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol*. 2005;5(1):13. doi:10.1186/1471-2288-5-13.
18. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. *Stat Methods Med Res*. 2018;27(6):1785–1805. doi:10.1177/0962280216669183.
19. Furukawa TA, Barbui C, Cipriani A, Brambilla P, Watanabe N. Imputing missing standard deviations in meta-analyses can provide accurate results. *J Clin Epidemiol*. 2006;59(1):7–10. doi:10.1016/j.jclinepi.2005.06.006.
20. Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of webplotdigitizer in extracting graphed data. *Behav Modif*. 2017;41(2):323–339. doi:10.1177/014544516673998.
21. Svendsen K, Borchgrevink P, Fredheim O, Hamunen K, Melbye A, Dale O. Choosing the unit of measurement counts: the use of oral morphine equivalents in studies of opioid consumption is a useful addition to defined daily doses. * Palliat Med. 2015;25(7):725–726. doi:10.1177/0269216313483000.

22. Jin Z, Liu J, Li R, Gan TJ, He Y, Lin J. Single injection Quadratus Lumborum block for postoperative analgesia in adult surgical population: A systematic review and meta-analysis. * J Clin Anesth. 2020;62:109715. doi:10.1016/j.jclinane.2020.109715.

23. Kollltveit J, Osland M, Reimers M, Berle M. A comparison of pain registration by visual analog scale and numeric rating scale: a cross-sectional study of primary triage registration. * medRxiv. 2020. doi:10.1101/2020.11.03.20225367.

24. Higgins JP, Altman DG, Gøtzsche PC, Cochrane Statistical Methods Group, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. * BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928.

25. McCormick F, Cvetanovich GL, Kim JM, et al. An assessment of the quality of rotator cuff randomized controlled trials: utilizing the Jadad score and CONSORT criteria. * J Shoulder Elbow Surg. 2013;22(9):1180–1185. doi:10.1016/j.jse.2013.01.017.

26. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. * J Clin Epidemiol. 2011;64(4):383–394. doi:10.1016/j.jclinepi.2010.04.026.

27. Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, display- ing and accounting for heterogeneity in the meta-analysis of oral morphine equivalents in studies of opioid consumption. * J Clin Epidemiol. 2011;64(4):383–394. doi:10.1016/j.jclinepi.2010.04.026.

28. Higgins JP, Altman DG, Gøtzsche PC, Cochrane Statistical Methods Group, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. * BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928.

29. Abdelhamid BM, Khaled D, Mansour MA, Hassan MM. Comparison between the ultrasound-guided erector spinae block and transversus abdominis plane block after elective Cesarean section: a prospective randomized controlled study. * Minerva Anestesiol. 2018;86(8):816–826. doi:10.23736/S0375-9393.20140641.

30. Boules ML, Goda AS, Abdelhady MA, Abu El-Nour Abd El-Azeem SA, Hamed MA. Comparison of analgesic effect between erector spinae plane block and transversus abdominis plane block after elective Cesarean section: a prospective randomized single-blind controlled study. * JPR. 2020;13:1073–1080. doi:10.2147/JPR.S253343.

31. Malawat A, Verma K, Jethava D, Jethava DD. Erector spinae plane block and transversus abdominis plane block for postop- erative analgesia in cesarean section: A prospective randomized comparative study; * J Anaesthesiol Clin Pharmacol. 2020;36(2):201–206. doi:10.4103/jacp.JACP_116_19.

32. Altparmak B, Korkmaz Toker M, Uysal AI, Kuscu Y, Gumus Selvi O, Tulgar S. Ultrasound guided erector spinae plane block as an Intervention for Pain Management after Laparoscopic Cholecystectomy: A Randomized Control Study. * Anesth Essays Res. 2018;12(1):16–23. doi:10.4103/aeer.AER_157_17.

33. Ibrahim M. Erector spinae plane block in laparoscopic cholecys- tomy: is there a difference? A randomized controlled trial. * Anesth Essays Res. 2020;14(1):119–126. doi:10.4103/aeer.AER_144_19.

34. Ozdemir H, Arac C, Karaca O, Turk E. Comparison of ultrasound-guided erector spinae plane block and subcostal trans- versus abdominis plane block for postoperative analgesia after laparoscopic cholecystectomy: a randomized, controlled trial. * J Invest Surg. 2022;35(4):870–877. doi:10.1080/08941939.2021.1931574.

35. Abeer AH. Ultrasound guided transversus abdominis plane block versus erector spinae plane block in patients undergoing emer- gency laparotomies. 2020. ClinicalTrials. gov Identifier: NCT03989570.

36. Sahu L, Behera SK, Satapathy GC, Saxena S, Priyadarshini S, Sahoo RK. Comparison of analgesic efficacy of erector spinae and oblique subcostal transverse abdominis plane block in laparoscopic cholecystectomy. * JCDR. 2021;15:UC09–UC13. doi:10.7860/JCDR/2021/50795.15380.

37. Qi-Hong S, Xu-Yan Z, Xu S, Yan-Jun C, Ke L, Rong W. Comparison of ultrasound-guided erector spinae plane block and oblique subcostal transverse abdominis plane block for postoperative analgesia in elderly patients after laparoscopic colorectal surgery: a prospective randomized study. * Pain Ther. 2021;10(2):1709–1718. doi:10.1016/j.sip2021.0201-00329-x.

38. Ekstein P, Szold A, Sagie B, Werbin N, Klausner JM, Weinbroum AA. Laparoscopic surgery may be associated with severe pain and high analgesia requirements in the immediate postoperative period. * Ann Surg. 2006;243:41–46. doi:10.1097/01.sla.0000193806.81428.6f.

39. Tan M, Law LS, Gan TJ. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. * Can J Anaesth. 2015;62(2):203–218. doi:10.1016/j.cja.2014.08.031.

40. Cepeda MS, Africano JM, Polo R, Alcala R, Carr DB. What decline in pain intensity is meaningful to patients with acute pain? * Pain. 2003;105(1-2):151–157. doi:10.1016/s0304-3959(03)00176-3.

41. Todd KH, Funk KG, Funk JP, Bonacci R. Clinical significance of reported changes in pain severity. * Ann Emerg Med. 1996;27(4):485–489. doi:10.1016/s0196-0644(96)70238-x.

42. Kot P, Rodriguez P, Granell M, et al. The erector spinae plane block: a narrative review. * Korean J Anesthesiol. 2019;72(3):209–220. doi:10.4097/kja.d.2019.00012.

43. Ramkiran S, Jacob M, Honwad M, Vivekanand D, Krishnakumar M, Patrikar S. Ultrasound-guided Combined Fascial Plane Blocks as an Intervention for Pain Management after Laparoscopic Cholecystectomy: A Randomized Control Study. * Anesth Essays Res. 2018;12(1):16–23. doi:10.4103/aeer.AER_157_17.

44. Naja ZM, El-Rajab M, Ziade F, Al-Tannir M, Itani T. Preoperative vs. postoperative bilateral paravertebral blocks for laparoscopic cholecystectomy: a prospective randomized clinical trial. * Pain Pract. 2011;11(6):509–515. doi:10.1111/j.1533-2500.2011.00447.x.

45. Hamilton DL. Pneumothorax following erector spinae plane block. * J Clin Anesth. 2019;52:17. doi:10.1016/j.jclinane.2018.08.026.

46. Elkoundi A, Eloukkal Z, Benghir M, Belyamani L. Priapism following erector spinae plane block for the treatment of a complex regional pain syndrome. * Am J Emerg Med. 2019;37:796. e793–e796.e794. doi:10.1016/j.ajem.2019.01.012.

47. Selvi O, Tulgar S. Ultrasound guided erector spinae plane block as a cause of unintended motor block. * Rev Esp Anestesiol Reanim (Engl Ed). 2018;65(10):589–592. doi:10.1016/j.redar.2018.05.009.

48. Karaca O, Pinar HU. Is high dose lumbar erector spinae plane block safe? * J Clin Anesth. 2020;62:109721. doi:10.1016/j.jclinane.2020.109721.

49. Tulgar S, Selvi O, Senturk O, Serifsoy TE, Thomas DT. Ultrasound-guided erector spinae plane block: indications, complications, and effects on acute and chronic pain based on a single-center experience. * Cureus. 2019;11(1):e3815. doi:10.7759/cureus.3815.

50. De Cassai A, Bonvicini D, Correale C, Sandei L, Tulgar S, Tonetti T. Erector spinae plane block: a systematic qualitative review. * Minerva Anestesiol. 2019;85(3):308–319. doi:10.23736/s0375-9393.18.13341-4.