TIME-DEPENDENT COSMIC RAY MODULATION IN THE OUTER HELIOSPHERE

R. Manuel, S. E. S. Ferreira and M. S. Potgieter

Unit for Space Physics
North-West University
Potchefstroom 2520, South Africa

March 25, 2010
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{\text{source}}
\]
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = - \mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = - \mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{\text{source}}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

$$\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r, \theta, P, t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source} \]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.
- and the last term is the possible sources of cosmic rays inside the heliosphere, which is zero for this study.
The diffusion tensor \(K \) as introduced in Parker’s Transport equation is given by,

\[
K = \begin{bmatrix}
K_{\parallel} & 0 & 0 \\
0 & K_{\perp\theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
\]
The diffusion tensor \mathbf{K} as introduced in Parker’s Transport equation is given by,

$$
\mathbf{K} = \begin{bmatrix}
K_\parallel & 0 & 0 \\
0 & K_{\perp\theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
$$

- Where, K_\parallel is the diffusion coefficient parallel to the mean HMF,
The diffusion tensor \mathbf{K} as introduced in Parker’s Transport equation is given by,

$$
\mathbf{K} = \begin{bmatrix}
K_{||} & 0 & 0 \\
0 & K_{\perp\theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
$$

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp\theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and
The diffusion tensor K as introduced in Parker’s Transport equation is given by,

$$
K = \begin{bmatrix}
K_{||} & 0 & 0 \\
0 & K_{\perp \theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
$$

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp \theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and
- the anti-symmetric element K_A describes particle drifts which include gradient, curvature and heliospheric current sheet drift in the large scale HMF
• Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
COMPOUND APPROACH

- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

Results from this model are compared with Ulysses and Voyager observations.

The diffusion and drift coefficients are scaled time-dependently via a function $f(t)$, where $f(t) = \left(\frac{B_0}{B(t)}\right)^{\alpha(t)}\alpha_0$.

This function is now dependent on the measured HMF magnitude and tilt angle.
- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

- Results from this model are compared with Ulysses and Voyager observations.

- The diffusion and drift coefficients are scaled time-dependently via a function \(f_2(t) \), where
• Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

• This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

• Results from this model are compared with Ulysses and Voyager observations.

• The diffusion and drift coefficients are scaled time-dependently via a function $f_2(t)$, where

$$
f_2(t) = \left(\frac{B_0}{B(t)} \right)^{\frac{\alpha(t)}{\alpha_0}}
$$

This function is now dependent on the measured HMF magnitude and tilt angle.
RECENT THEORY: Parallel Mean Free Path

From Teufel and Schlickeiser, 2003 follows:

\[
\lambda_{||} = \frac{3s}{\sqrt{\pi (s - 1)}} \frac{R^2}{b k_{\text{min}}} \left(\frac{B_0}{\delta B_{\text{slab},x}} \right)^2 K
\]
From Teufel and Schlickeiser, 2003 follows:

\[
\lambda_{||} = \frac{3s}{\sqrt{\pi(s-1)}} \frac{R^2}{b k_{min}} \left(\frac{B_0}{\delta B_{slab,x}} \right)^2 K
\]

where, \(\delta B^2_{slab,x} = 0.5\delta B^2_{slab} = 0.1\delta B^2\),

\[R = k_{min} R_L\quad R_L = \frac{P}{B_0}\quad \text{and} \quad s = 5/3\]
From Teufel and Schlickeiser, 2003 follows:

\[\lambda_\parallel = \frac{3s}{\sqrt{\pi(s-1)}} \frac{R^2}{b k_{\text{min}}} \left(\frac{B_0}{\delta B_{\text{slab},x}} \right)^2 K \]

where, \(\delta B_{\text{slab},x}^2 = 0.5 \delta B_{\text{slab}}^2 = 0.1 \delta B^2 \),

\[R = k_{\text{min}} R_L \quad , \quad R_L = \frac{P}{B_0} \quad \text{and} \quad s = 5/3 \]

At 2.5 GV we approximate \(K \) to be a constant resulting in a time dependence for \(\lambda_\parallel \) as,

\[\lambda_\parallel \propto \left(\frac{1}{\delta B} \right)^2 \]
From Shalchi et al., 2004 follows:

\[\lambda_\perp \approx \left[\frac{2v - 1}{4v} F_2(v) \, l_{slab} \, a^2 \, \frac{\delta B^2}{B_0^2} \, \frac{2\sqrt{3}}{25} \right]^{\frac{2}{3}} \lambda_\parallel^{\frac{1}{3}} \]
RECENT THEORY: Perpendicular Mean Free Path

From Shalchi et al., 2004 follows:

\[\lambda_\perp \approx \left[\frac{2v - 1}{4v} F_2(v) l_{slab} a^2 \frac{\delta B^2}{B_0^2} \frac{2\sqrt{3}}{25} \right]^{\frac{2}{3}} \lambda_{\parallel}^{\frac{1}{3}} \]

At 2.5 GV we approximate the time dependence for \(\lambda_\perp \) as,

\[\lambda_\perp \propto \left(\frac{\delta B}{B_0} \right)^{\frac{4}{3}} \left(\frac{1}{\delta B} \right)^{\frac{2}{3}} \]
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.

We use a similar dependence, in compound approach but instead of K_A depending on δB it depends on α the tilt angle.

$$f_3(t) = (75.0 - \alpha(t)) 0.013$$

Ndiitwani et al., 2005
Time dependence in drift coefficient

Minnie et al., 2007

Ndiitwani et al., 2005
Along Voyager 1 trajectory

Cosmic ray intensities from 1984 to 2009

Differential Intensity (m2 s sr MeV)$^{-1}$

- Voyager 1 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons
- Compound Approach
- Recent Theory

Time (years)

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Observing signatures of Heliospheric asymmetry?

Opher, 2008
Heliospheric boundary at 124 AU

Cosmic ray intensities from 1984 to 2009

- Voyager 1 > 70 MeV Protons
- Voyager 2 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons

Differential Intensity (m².s.sr.MeV⁻¹)

Time (years)
Heliospheric boundary at 118 AU

Cosmic ray intensities from 1984 to 2009

- Voyager 1 > 70 MeV Protons
- Voyager 2 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons

Voyager 1 and Voyager 2

Differential Intensity (m².s.sr.MeV⁻¹)

Time (years)
Optimal Model Result

Differential Intensity (m^2.s.sr.MeV)^{-1}

Time (years)

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Cosmic ray intensities from 1984 to 2009

A > 0

A < 0

2.5 GV

Voyager 1 (74 MeV)
Voyager 2 (118 AU)
Imp 8 (70 MeV Protons)
Voyager 1 (250 MeV Protons)
Voyager 2 (124 AU)
1983, Solar max

1987, Solar min (A < 0)

1990, Solar max

1997, Solar min (A > 0)
2002, Solar max

2009, Solar min (A < 0)
Predicting intensities up to heliopause along Voyager 1 and 2 trajectory
Tilt Angle

Voyager Trajectory

HMF and Variance
A possible Heliospheric boundary position along Voyager 1 and Voyager 2 trajectory
Conclusion

This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
- We predict a steady increase in Voyager 1 cosmic ray intensity observations up to heliopause. But for Voyager 2 there is still a large modulation volume left, leading to solar cycle related changes in intensities up to heliopause.
Thank You!