Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response*

Sara K. Young and Ronald C. Wek

From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126

Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5′-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.

Multiple genome-wide analyses, including those utilizing ribosome and polysome profiling and mass spectrometry approaches, have provided evidence demonstrating that translation is a major regulator of gene expression (1–5). In addition to protein coding sequences (CDSs), another class of ORFs suggested to be translated at high frequency consists of short, upstream ORFs (uORFs) that are located within the 5′-leader of mRNAs (3–6). Over 40% of mammalian mRNAs contain uORFs, illustrating that uORFs are prevalent genome-wide and can serve as major regulators of translation (5, 7, 8). Approximation of uORF prevalence has relied upon the use of an AUG to denote the uORF start codon; however, recent ribosome profiling studies indicate that non-canonical initiation codons (e.g. CUG, UUG, and GUG) can also serve as competent sites of translation initiation (3, 4, 6). These findings suggest that the magnitude of uORF prevalence and the contribution of uORF translation in the regulation of gene expression have likely been underestimated.

Typically, uORFs are considered to be inhibitors of downstream translation initiation at CDSs. The inhibitory effect of uORFs is attributed to the fact that in eukaryotes the 43S pre-initiation complex binds to the 5′-cap structure of the mRNA, then scans processively 5′ to 3′ and initiates translation at the first encountered initiation codon that is in an optimal context (9). The 43S preinitiation complex is composed of multiple factors including eIF3, eIF1, eIF1A, the eIF2-GTP-Met-tRNAMet ternary complex, and the small 40S ribosomal subunit (10). Dissociation of the eIF2 ternary complex and other critical initiation factors during translation of constitutively repressing uORFs is suggested to be the cause of the low levels of subsequent translation reinitiation at downstream coding sequences.

Although uORFs can serve as repressors of CDS translation in a constitutive manner, there are also examples of uORFs that serve as dampeners in a controlled fashion or even promote translation initiation at the CDS in response to environmental stresses (4, 5, 11). Based on these studies, uORFs can have the following core properties that are critical for translational control (Fig. 1). 1) They enhance reinitiation after uORF translation, allowing for degrees of translation initiation at the downstream CDS. For example, translation of short uORFs can allow for retention of critical initiation factors, such as eIF3, which facilitate efficient translation reinitiation (12, 13). 2) They demonstrate direct ribosome elongation stalling during translation of the uORF and, as a consequence, thwart translation at the downstream CDS. Pauses in elongation can be reliant upon RNA secondary structure, codon usage bias, or polypeptide sequences encoded in the uORF, as well as interaction of trans-acting factors (12, 14–17). 3) They promote ribosome dissociation from the mRNA and therefore diminish subsequent CDS translation. Ribosome dissociation from the mRNA post-uORF translation can also be regulated by nucleotide sequences or the polypeptide encoded in the uORF (18–23). 4) They position uORFs out-of-frame with CDSs, resulting in ribosome termination downstream of CDS start codons. Translating ribosomes are suggested to only “back up” in a 3′ to 5′ fashion for a small number of nucleotides, resulting in low translation of the CDS (24–26). 5) They allow for scanning ribosomes to bypass the uORF either in a largely constitutive fashion or upon induction of physiological signals. Ribosome bypass is thought to occur at least in part due to the nucleotide sequences flanking the initiation codon (9, 18, 27, 28). These uORF properties, which can be integrated individually or in combination within mRNAs, help determine the specific mechanism of translational control of a given gene (Fig. 1). This review highlights the mechanisms by which uORFs can modulate translation at CDSs, and the processes by which uORFs with these diverse properties can be integrated individually or in combination into mRNAs to facilitate differential regulation of translation.

Translation Regulation during the Integrated Stress Response

Phosphorylation of eIF2 on its α subunit at serine 51 (eIF2α-P) inhibits the activity of the guanine nucleotide
Ribosome Reinitiation

Ribosome Elongation Stall

Ribosome Dissociation

Ribosome Translation Past the CDS Start Codon

Ribosome Bypass

FIGURE 1. uORFs regulate downstream CDS translation. uORFs can have multiple core properties, including promoting ribosome reinitiation after uORF translation, ribosome elongation stalling while translating the uORF, ribosome dissociation from the mRNA, ribosome translation of uORFs past the CDS start codon, or ribosome bypass of the uORF. CDSs are indicated by the blue bar; positive-acting uORFs are indicated by a green bar; negative-acting uORFs are indicated by a red bar; and uORFs that have no effect on downstream translation are indicated by a yellow bar. Scanning and elongating ribosomes are illustrated by the gray ovals.

Ribosome Elongation Stall

Ribosome Dissociation

Ribosome Translation Past the CDS Start Codon

Ribosome Bypass

FIGURE 2. The integrated stress response features a global reduction in translation initiation concomitant with the preferential translation of stress remediation transcripts. A, depiction of polysome profiles as measured by sucrose gradient analyses of lysates prepared from mouse embryonic fibroblast cells that were left untreated (black line) or subjected to the ER stress inducer thapsigargin (red line). Basal polysome profiles feature distinctive peaks for the 40S and 60S ribosomal subunits and the 80S monosome, with large peaks observed for heavy polysomes, indicative of high levels of global translation. Polysome profiles from cells subjected to ER stress feature decreased heavy polysomes and an elevated 80S monosome peak that is indicative of inhibition of global translation initiation during eIF2α-P. Those mRNAs that are preferentially translated during cellular stress are largely associated with heavy polysomes, whereas those mRNAs that are repressed during cellular stress are largely associated with 80S monosomes and light polysomes. The mRNAs that are translated constitutively are associated with polysomes independent of stress. B, depiction of the preferentially translated mRNAs and their function in stress remediation. Multiple preferentially translated mRNAs encode transcription factors that promote stress alleviation (ATF4, C/EBPa, and C/EBPβ). If the cellular stress is too great to overcome, a subset of transcription factors promotes a pro-apoptotic signaling cascade (CHOP and ATF5). Feedback dephosphorylation occurs through the activity of the preferentially translated GADD34. Priming of the cell for resumption of global translation occurs through the activity of the preferentially translated nutrient transporters SLC35A4 and CAT1, as well as the glutamyl-prolyl tRNA synthetase EPRS. Cell fate regulator IBTKα is also preferentially translated through an uORF-mediated mechanism.

Ribosome Reinitiation in the ISR

The capacity for the ribosome to reinitiate translation downstream has been attributed largely to the ability of the scanning ribosome to retain or reacquire critical initiation factors following uORF translation (42). Extended distance between the
uORF stop codon and CDS initiation codon allows more time for the scanning 40S to reacquire a new eIF2-GTP-Met-tRNA$_{\text{Met}}$ complex, a significant feature of the delayed translation reinitiation model that was originally identified in the yeast Saccharomyces cerevisiae for the transcriptional activator GCN4 (19, 21, 43) and subsequently suggested for the related mammalian ATF4 (24, 33, 34).

Delayed Translation Reinitiation

Both yeast GCN4 and mammalian ATF4 encode transcription factors that increase expression of genes involved in nutrient import, metabolism, and alleviation of oxidative stress (32, 33, 44–48). The 5′-leader of ATF4 contains two uORFs: the 5′-proximal uORF1 that is three codons in length and a 59-codon-long uORF2 that overlaps out-of-frame with the ATF4 coding region (Fig. 3A) (24, 34). The GCN4 5′-leader contains four uORFs, each encoding polypeptides two to three residues in length (19, 21). In the delayed translation reinitiation model, the 5′-proximal uORF1 in the ATF4 and GCN4 5′-leaders acts as a positive element that promotes downstream translation reinitiation (19, 20, 24). During nonstressed conditions, the 40S ribosome resumes scanning after translation of uORF1 and reacquires a new eIF2-GTP-Met-tRNA$_{\text{Met}}$ complex in sufficient time to reinitiate translation at the next uORF initiation codon. In the case of ATF4, translation initiation at the overlapping out-of-frame uORF2 results in translation termination and ribosome dissociation 3′ of the ATF4 CDS, thereby reducing synthesis of ATF4 protein (Fig. 3A) (24). Translation of the downstream GCN4 uORFs 3 or 4 also thwarts expression of the GCN4 coding region during nonstressed conditions (see Fig. 4C) (21, 49). The inhibitory property of uORF4 relies upon a 10-nucleotide sequence 3′ of the uORF4 stop codon that is suggested to interact with the 40S ribosomal subunit to promote ribosome dissociation (49).

During cellular stress, eIF2α-P results in lowered levels of eIF2-GTP required for delivery of Met-tRNA$_{\text{Met}}$ for reinitiating ribosomes. As a consequence, after translation of uORF1, the scanning 40S ribosomal subunit takes a longer amount of time to reacquire a new eIF2 ternary complex that is required for recognition of the next translation initiation codon in the 5′-leaders of the ATF4 and GCN4 mRNAs. The delay in the acquisition of eIF2 ternary complex allows the 40S ribosomal subunit to scan through the inhibitory uORFs in the two mRNAs and instead promote translation initiation at the ATF4 or GCN4 CDS, promoting production of ATF4 and GCN4 proteins that serve to transcriptionally enhance genes important for remediation of the stress damage (Fig. 3A). Lack of appropriate GCN4 and ATF4 expression renders cells susceptible to nutrient deficiencies and oxidative damage (32, 46, 50).

Translation Reinitiation and Differential CDS Translation

Levels of eIF2α-P and the ensuing reduction of eIF2-GTP levels also play a role in start codon selection that regulates the abundance of protein isoforms encoded in the same mRNA. For example, C/EBPβ mRNA has four AUG initiation codons that encode three different protein isoforms and one uORF (37). The protein isoforms encoded in C/EBPβ are transcription factors that regulate adipogenesis, immunity, and functions of bone and liver tissues (51, 52). All three protein isoforms contain the basic leucine zipper domain, but the two larger isoforms, liver-enriched activating proteins (LAP* and LAP), also contain an N-terminal domain that activates transcription of target genes, which is missing in the smaller isoform, liver-enriched inhibitory protein (LIP) (37, 53). As a consequence, the LAP* and LAP isoforms can dimerize and serve as activators of transcription, whereas production of LIP serves as a transcriptional repressor (52).

The largest protein isoform, LAP*, is translated beginning at the most 5′-proximal AUG (37). The next AUG that follows the LAP* initiation site encodes an out-of-frame uORF. Importantly, the uORF termination codon is located 5′ of the initiation sites for both LAP and LIP and plays a central role in the regulation of translational expression of the LAP and LIP isoforms.
forms (37). After translation of the uORF, a number of 40S ribosomes are suggested to scan past the initiation codon of the LAP isoform before reacquiring a new elf2-GTP-Met-tRNA_{Met} complex and begin translation at the initiation codon of LIP. LIP expression is also elevated after UV irradiation, suggesting that decreased elf2 ternary complex levels during cellular stress exacerbate this phenomenon (54). The related gene C/EBPα and its encoded protein isoforms are also translationally regulated by a 5′-proximal uORF (28, 37, 55).

Ribosome Bypass in the ISR

Selection of the translation start site relies largely on the nucleotide context surrounding the start codon. The optimal sequence, termed the Kozak consensus sequence, is GCC(A/G)CCAUGG of which the most important residues are the purines in the −3 and +4 positions, and the initiation codon is underlined (9, 56). These two residues have been shown to interact with the elf2α subunit and the 18S rRNA contained within the small ribosomal subunit and are proposed to promote recognition of the initiation codon (57). Additionally, poor uORF start codon context has been associated with those mRNAs that are preferentially translated, whereas mRNAs that are repressed during elf2α-P typically contain an uORF in a strong Kozak consensus sequence (5). These findings suggest that start codon context plays a significant role in uORF-mediated translation regulation.

Ribosome Bypass Is Dependent on Start Codon Context

An important example in the ISR of ribosome bypass of an uORF is that of GADD34 (18, 38). GADD34 functions in feedback control of the ISR (39–41). The GADD34 mRNA contains two uORFs (Fig. 3B). The uORF1 is considered to be a constitutive, modest damper of downstream GADD34 expression (18, 38). uORF1 is in a poor Kozak consensus sequence and is largely bypassed both basally and during stress conditions. Translation of uORF2, however, results in a significant decrease in translation initiation at the CDS, indicating that uORF2 is largely inhibitory to downstream translation (Fig. 3B) (18, 38). The inhibitory nature of GADD34 uORF2 relies in part upon a Pro-Pro-Gly sequence juxtaposed to the stop codon (18). Translation of the Pro-Pro-Gly sequence in uORF2 is suggested to result in an inefficient termination that increases ribosome release from the mRNA, promoting low levels of GADD34 expression during basal conditions (Fig. 3B). This was an interesting finding, because polyproline and Pro-Pro-Gly sequences have been shown to require the activity of an additional factor, elf5α, for efficient translation (58).

Preferential translation of GADD34 in response to elf2α-P and cellular stress occurs by scanning ribosome bypass of uORF2 by a process involving, at least in part, the poor start codon context of this inhibitory uORF (Fig. 3B) (18). Appropriate inhibition of GADD34 translation by uORF2 and its regulated bypass is critical for the magnitude and duration of translational control during the progression of a stress response. For example, deletion of the inhibitory GADD34 uORF2 results in an inappropriate increase in GADD34 expression even in the absence of stress that serves to sharply diminish levels of elf2α-P even upon induction of the ISR (18). As a consequence, there are continued high levels of protein synthesis and increased cell sensitivity to cellular stress.

Ribosomal bypass of an uORF is also central for preferential translation of CHOP in the ISR (27, 35). Prolonged expression of CHOP during times of chronic stress and continued elf2α-P can induce apoptosis (59–62). Analogous to GADD34, bypass of the inhibitory CHOP uORF during elf2α-P is also suggested to rely at least in part upon poor start codon context of the uORF (14, 27). The inhibitory nature of the CHOP uORF during basal conditions is centered upon an elongation stall at an encoded polypeptide segment (14). Emphasizing the importance of the uORF for appropriate CHOP expression in the ISR, mutations rendering the uORF nonfunctional lead to overexpression of CHOP and its downstream pro-apoptotic target genes, enhancing cell death during stress (14).

We do not yet understand the mechanisms by which selection of translation start sites can be affected by elf2α-P. It was suggested that elf2α-P disrupts the stability of the interaction between the scanning ribosomal subunit and the mRNA at the −3 position of the start codon (63). Another possibility is that elf2α-P may modify the nature of the interaction between elf2 and the Met-tRNA_{Met} that regulates start site selection (63). Alternatively, the effects of elf2α-P on start codon selection may be indirect. For example, elf2α-P may alter the expression and stoichiometry of other initiation factors, such as elf1, which play a role in translation start site selection (64). The recently characterized small molecule ISRIB (integrated stress response inhibitor), which renders elf2B largely insensitive to elf2α-P (65–67), may provide an important tool for discerning genome-wide changes in initiation codon selection afforded by elf2α-P.

Ribosome Bypass and Non-canonical Start Codons

Recent ribosome profiling studies have illustrated that previously uncharacterized uORFs with non-canonical initiation codons are more commonly translated than previously thought (3, 4, 6). This observation has been followed by the characterization of multiple mechanisms involving bypass of uORFs due to their non-canonical initiation codons that regulate gene-specific translation during cellular stress conditions (4, 26, 68).

One such example is the translation mechanism for glutamyl-prolyl tRNA synthetase, EPRS. Although EPRS expression is required for normal protein homeostasis, preferential translation of EPRS is suggested to increase the appropriately charged tRNA pool and prime the cell for resumption of protein synthesis once the cellular stress is remediated (26, 69). Of the five non-canonical initiation codons in the 5′-leader of EPRS only the 5′-proximal UUG and the subsequent CUG are considered to be the main regulators of EPRS preferential translation (26). The uORF containing the CUG initiation codon overlaps out-of-frame with the EPRS CDS and was shown to be inhibitory to EPRS expression, presumably by ribosome dissociation from the mRNA past the initiation codon for the CDS (26). The uORF encoded by the UUG, on the other hand, terminates 51 nucleotides 5′ of the CDS start codon, and was suggested to allow for a portion of the translating ribosomes to reinitiate at the downstream EPRS CDS (26). Importantly, both inhibitory uORFs are bypassed due to their non-canonical ini-
tiation codons to a moderate extent during basal conditions and experience increased bypass efficiency during eIF2α-P and stress (26).

Another gene recently identified as containing a functional uORF with a non-canonical initiation codon is that of GADD45G, which regulates cell growth and apoptosis (4). The GADD45G mRNA contains an overlapping out-of-frame uORF with a CUG initiation codon. The uORF serves as a barrier to downstream translation during nonstressed conditions and is bypassed due to its noncanonical initiation codon during stress (26).

bypassed due to its noncanonical initiation codon during stress (26). The uORF serves as a barrier to downstream translation during nonstressed conditions and is bypassed due to its noncanonical initiation codon during stress (26).

The observation that the 5′-leader of BiP mRNA contains both uORFs and an IRES that coordinate expression of BiP emphasizes that other mRNA structural features also contribute to translation regulation involving uORFs. The mRNA encoding the cationic amino acid transporter CAT1 contains both an uORF and an IRES that are required for induced expression of the CAT1 CDS during cellular stress (73, 74). The 5′-leader of CAT1 forms a stable secondary structure that prevents translation during nonstressed conditions. However, translation of the uORF during eIF2α-P is suggested to unfold the RNA structure, yielding an IRES that serves to increase translation of the CAT1 CDS (75).

The mRNA encoding the HER2 proto-oncogene contains an uORF that represses translation initiation at the primary HER2 initiation codon due to insufficient time for the scanning 40S ribosomal subunit to reacquire a new eIF2 ternary complex (76, 77). Instead translation reinitiation occurs at alternative downstream initiation codons that lead to the synthesis of N-terminally truncated HER2 protein isoforms (77). However, full-length HER2 expression is enhanced in in both breast and ovarian cancers (76). This regulatory scheme is suggested to occur via interactions between RNA secondary structures in the 3′-UTR of the HER2 mRNA and the terminating ribosome at the uORF stop codon. This interaction is thought to retain the terminating ribosome and associated initiation factors on the HER2 mRNA until a new eIF2 ternary complex is acquired, thereby facilitating translation at the most immediate 5′-proximal AUG that leads to full-length HER2 protein synthesis (76).

The three major regulators of mRNA abundance, transcription, mRNA processing, and mRNA degradation, also play major roles in uORF-mediated regulation of ISR-induced preferential translation (54, 78 – 80). For example, ATF4 expression is potently induced during endoplasmic reticulum stress, but there are only low levels of ATF4 expression during UV irradiation (54, 81). Both conditions induce robust eIF2α-P, and preferential translation of ATF4 mRNA occurs with either stress (81). However, increased LIP expression and binding to the ATF4 promoter during UV irradiation repress ATF4 transcription (54). Lowered levels of ATF4 mRNA available for translation during UV stress thus result in negligible ATF4 protein and transcriptional activity. These findings illustrate that ATF4 mRNAs with identical 5′-leaders and uORF configurations have sharply different induction capabilities in response to different stress conditions despite having comparable levels of eIF2α-P.

Expression of the ISR transcriptional regulator ATF5 features two different mRNA isoforms (79). The more abundant transcript, ATF5α, contains two uORFs that serve to promote preferential translation by delayed translation reinitiation (36, 80). ATF5β encodes the same ATF5 CDS, but contains an alternative 5′-leader that does not contain any conserved uORFs and is not translationally regulated in a stress-dependent manner (80). Thus, expression of ATF5 can also be modulated through the differential production of mRNA isoforms (79). Recent genome-wide evidence has suggested that regulation of translation through mRNA splicing also plays a significant role in the presence of different 5′-leaders in mRNAs that can affect translational expression (78).

uORF translation can also result in activation of the mRNA decay pathways, thus adding another layer to the mechanisms in which uORFs can negatively regulate downstream translation (82). For example, CHOP was identified as a target of the nonsense-mediated mRNA decay pathway that recognizes the presence of a premature termination codon (83). Depletion of the nonsense-mediated mRNA decay machinery from cells results in the stabilization of CHOP mRNA levels (84). CHOP mRNA half-life was also increased more than 2-fold in cells in which the two initiating codons of the CHOP uORF were mutated (14). Combined, these studies suggest that the presence of an uORF can also serve to repress expression of the CDS through mechanisms involving mRNA decay.

Other Complexities of Gene Expression Regulated by uORFs

The observation that the 5′-leader of BiP mRNA contains both uORFs and an IRES that coordinate expression of BiP emphasizes that other mRNA structural features also contribute to translation regulation involving uORFs. The mRNA encoding the cationic amino acid transporter CAT1 contains both an uORF and an IRES that are required for induced expression of the CAT1 CDS during cellular stress (73, 74). The 5′-leader of CAT1 forms a stable secondary structure that prevents translation during nonstressed conditions. However, translation of the uORF during eIF2α-P is suggested to unfold the RNA structure, yielding an IRES that serves to increase translation of the CAT1 CDS (75).

The mRNA encoding the HER2 proto-oncogene contains an uORF that represses translation initiation at the primary HER2 initiation codon due to insufficient time for the scanning 40S ribosomal subunit to reacquire a new eIF2 ternary complex (76, 77). Instead translation reinitiation occurs at alternative downstream initiation codons that lead to the synthesis of N-terminally truncated HER2 protein isoforms (77). However, full-length HER2 expression is enhanced in in both breast and ovarian cancers (76). This regulatory scheme is suggested to occur via interactions between RNA secondary structures in the 3′-UTR of the HER2 mRNA and the terminating ribosome at the uORF stop codon. This interaction is thought to retain the terminating ribosome and associated initiation factors on the HER2 mRNA until a new eIF2 ternary complex is acquired, thereby facilitating translation at the most immediate 5′-proximal AUG that leads to full-length HER2 protein synthesis (76).

The three major regulators of mRNA abundance, transcription, mRNA processing, and mRNA degradation, also play major roles in uORF-mediated regulation of ISR-induced preferential translation (54, 78 – 80). For example, ATF4 expression is potently induced during endoplasmic reticulum stress, but there are only low levels of ATF4 expression during UV irradiation (54, 81). Both conditions induce robust eIF2α-P, and preferential translation of ATF4 mRNA occurs with either stress (81). However, increased LIP expression and binding to the ATF4 promoter during UV irradiation repress ATF4 transcription (54). Lowered levels of ATF4 mRNA available for translation during UV stress thus result in negligible ATF4 protein and transcriptional activity. These findings illustrate that ATF4 mRNAs with identical 5′-leaders and uORF configurations have sharply different induction capabilities in response to different stress conditions despite having comparable levels of eIF2α-P.

Expression of the ISR transcriptional regulator ATF5 features two different mRNA isoforms (79). The more abundant transcript, ATF5α, contains two uORFs that serve to promote preferential translation by delayed translation reinitiation (36, 80). ATF5β encodes the same ATF5 CDS, but contains an alternative 5′-leader that does not contain any conserved uORFs and is not translationally regulated in a stress-dependent manner (80). Thus, expression of ATF5 can also be modulated through the differential production of mRNA isoforms (79). Recent genome-wide evidence has suggested that regulation of translation through mRNA splicing also plays a significant role in the presence of different 5′-leaders in mRNAs that can affect translational expression (78).

uORF translation can also result in activation of the mRNA decay pathways, thus adding another layer to the mechanisms in which uORFs can negatively regulate downstream translation (82). For example, CHOP was identified as a target of the nonsense-mediated mRNA decay pathway that recognizes the presence of a premature termination codon (83). Depletion of the nonsense-mediated mRNA decay machinery from cells results in the stabilization of CHOP mRNA levels (84). CHOP mRNA half-life was also increased more than 2-fold in cells in which the two initiating codons of the CHOP uORF were mutated (14). Combined, these studies suggest that the presence of an uORF can also serve to repress expression of the CDS through mechanisms involving mRNA decay.

Evolutionary Conservation of uORF-mediated Translation Mechanisms

Many uORF-mediated translation control schemes that rely on eIF2α-P are conserved in eukaryotes. For example, the uORF-mediated translational control mechanism for IBTKα is suggested to be largely conserved among mammals (Fig. 4A) (5). Interestingly, the Homo sapiens IBTKα mRNA has four uORFs, but only the two key uORFs that confer IBTKα translational control are consistently conserved among mammals (Fig. 4A) (5). This finding indicates that those uORFs that are retained throughout species likely maintain functional significance. This idea is emphasized in genome-wide analyses of uORF conservation in which the presence of an uORF and the regulatory nature of uORF(s) is suggested to be conserved throughout species (6, 7, 85 – 87).

An example in which the regulatory function of an uORF is retained, but the underlying mechanisms vary among species is the inhibitory uORF located in the 5′-leader of GADD34 mRNA (18, 38, 88). The 5′-leaders of the Drosophila melanogaster and Mus musculus GADD34 transcripts each contain two uORFs, with the first uORF considered to be largely dispensable for GADD34 translation control (Fig. 4B) (18, 38, 88). uORF2 in D. melanogaster overlaps out-of-frame with the GADD34 CDS and is considered to be inhibitory by promoting
MINIREVIEW: uORF-mediated Translation Control

uORF translation termination 3’ of the start codon for the GADD34 CDS (88). By comparison, *M. musculus* uORF2, which terminates 23 nucleotides upstream of the GADD34 CDS, prohibits reinitiating downstream due to the inefficient translation termination (Fig. 4B) (18). Both inhibitory uORFs have been suggested to require ribosome bypass during cellular stress for preferential translation of GADD34 (18, 88).

Assessment of the GCN4 mRNAs in 12 fungal species revealed that uORFs range from three to six in number and are not positionally conserved (25, 89). Furthermore, the mechanism of GCN4 translation control for *Candida albicans* is reliant upon bypass of a single inhibitory uORF whereas GCN4 in *S. cerevisiae* relies on a mechanism involving delayed translation reinitiation that features multiple uORFs (Fig. 4C) (19, 25). These findings suggest that even among gene orthologs in different species, different uORF configurations and mechanisms can be implemented to achieve preferential translation in response to eIF2α-P.

These examples of the evolutionary conservation of uORF-mediated translation control emphasize that there are multiple features of uORFs that can be combined in specific ways to generate uORFs of similar functions in regulation of translation. Furthermore, the proper composition and position of uORFs and their features are critical for uORF-mediated translation control mechanisms that direct regulated gene expression for optimal adaptation to environmental stress.

A future challenge is the application of key tenets from uORF-mediated translation mechanisms described herein to genome-wide assessments of translation. The ubiquitous placement of uORFs throughout the genome indicates that the specific properties of uORFs themselves determine whether uORFs regulate gene expression in a positive or negative fashion. How can the specific features of uORFs be used to predict patterns of translation control? Furthermore, although uORFs regulate mRNA translation in a cis manner, can some uORF peptides function in trans to facilitate cellular homeostasis? Finally, base modifications in RNA, such as N6-methyladenosine, can occur differentially in the 5’-leaders of mRNAs in response to cellular stress (90, 91). Additionally, N6-methyladenosine can promote translation of select mRNAs by binding to eIF3 and recruiting ribosomes independent of the 5’-cap. Can RNA base modifications in specific mRNAs alter ribosome scanning and uORF utilization affecting translational control in the ISR?

References

1. Schwahnhausser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009) Global analysis of cellular protein translation by pulsed SILAC. *Proteomics* 9, 205–209

2. Aviner, R., Geiger, T., and Elroy-Stein, O. (2013) Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. *Genes Dev.* 27, 1834–1844

3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation in non-stressed mammalian cells using ribosome profiling. *Science* 324, 218–223

4. Gao, X., Tian, J., Liu, B., Ma, M., Shen, B., and Qian, S. B. (2015) Quantitative profiling of initiating ribosomes in vivo. *Nat. Methods* 12, 147–153

5. Baird, T. D., Palam, L. R., Fusakio, M. E., Willy, J. A., Davis, C. M., McLintock, J. N., Anthony, T. G., and Wek, R. C. (2014) Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKa. *Mol. Biol. Cell* 25, 1686–1697

6. Fritsch, C., Herrmann, A., Nothegel, M., Szafarski, K., Huse, K., Schumann, F., Schreiber, S., Platzner, M., Krawczak, M., Hampe, J., and Brosch, M. (2012) Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. *Genome Res.* 22, 2208–2218

7. Iacono, M., Mignone, F., and Pesole, G. (2005) uAUG and uORFs in human and rodent 5’-untranslated mRNAs. *Gene* 349, 97–105
8. Calvo, S. E., Pagliarini, D. J., and Mootha, V. K. (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. U.S.A. 106, 7507–7512

9. Kozak, M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229–241

10. Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127

11. Andreew, D. E., O’Connor, P. B., Fahey, C., Kenny, E. M., Terenin, I. M., Dmitriev, S. E., Cormican, P., Morris, D. W., Shatsky, I. N., and Baranov, P. V. (2015) Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. Elife 4, e03971

12. Kozak, M. (2001) Constraints on reinitiation of translation in mammals. Nucleic Acids Res. 29, 5226–5232

13. Szamecz, B., Rutkai, E., Cuchalová, L., Munzarová, V., Herrmannová, A., Young, S. K., Palam, L. R., Wu, C., Sachs, M. S., and Wek, R. C. (2016)

14. Young, S. K., Willy, J. A., Wu, C., Sachs, M. S., and Wek, R. C. (2015)

15. Hinnebusch, A. G. (2005) Translational regulation of mammalian mRNA translation.

16. Grant, C. M., and Hinnebusch, A. G. (1994) Effect of sequence context at the amino acid-starved cells forms the basis of integrated stress response.

17. Andreev, D. E., O’Connor, P. B., Fahey, C., Kenny, E. M., Terenin, I. M., Nielsen, K. H., Burela, L., Hinnebusch, A. G., and Valásek, L. (2008) eIF3a cooperating with sequences 5′ of uORF to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA.

18. Palam, L. R., Baird, T. D., and Wek, R. C. (2011) Phosphorylation of eIF2-α-adenosylmethionine decarboxylase.

19. Young, S. K., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Callon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J. M., and Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633

20. Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108

21. Lu, P. D., Harding, H. P., and Ron, D. (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33

22. Jousse, C., Bruhat, A., Carraro, V., Uranos, F., Ferrara, M., Ron, D., and Fafournoux, P. (2001) Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Res. 29, 4341–4351

23. Zhou, D., Palam, L. R., Jiang, L., Narasimhan, I., Staschke, K. A., and Wek, R. C. (2008) Phosphorylation of eIF2α directs ATF5 translational control in response to diverse stress conditions. J. Biol. Chem. 283, 7064–7073

24. Calkhoven, C. F., Müller, C., and Leutz, A. (2000) Translational control of C/EBPα and C/EBPβ isofrom expression. Genes Dev. 14, 1920–1932

25. Lee, Y. Y., Cevallos, R. C., and Jan, E. (2009) An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2α phosphorylation. J. Biol. Chem. 284, 6661–6673

26. Harding, H. P., Zhang, Y., Scheuner, D., Chen, J. J., Kaufman, R. J., and Ron, D. (2009) Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 α (eIF2α) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. U.S.A. 106, 1832–1837

27. Novoa, I., Zeng, H., Harding, H. P., and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022

28. Connor, J. H., Weiser, D. C., Li, S., Hallenbeck, J. M., and Shenolikar, S. (2001) Growth arrest and DNA damage-inducible protein GADD43 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell Biol. 21, 6841–6850

29. Kozak, M. (1987) Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7, 3438–3445

30. Mueller, P. P., and Hinnebusch, A. G. (1986) Multiple upstream AUG codons mediate translational control of GCN4. Cell 45, 201–207

31. Jiang, H. Y., Wek, S. A., McGrath, B. C., Lu, D., Hai, T., Harding, H. P., Wang, X., Ron, D., Cavener, D. R., and Wek, R. C. (2004) Activating transcription factor 3 (ATF3) is integral to the eIF2 kinase stress response. Mol. Cell. Biol. 24, 1365–1377

32. Mascarenhas, C., Edwards-Ingram, L. C., Zeef, L., Shenton, D., Ashe, M. P., and Grant, C. M. (2008) Gcn4p is required for the response to peroxozone stress in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 19, 2995–3007

33. Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., and Marton, M. J. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347–4368

34. Hinnebusch, A. G., and Natarajan, K. (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1, 22–32

35. Staschke, K. A., Dey, S., Zaborske, J. M., Palam, L. R., McClintick, J. N., Pan, T., Edenberg, H. J., and Wek, R. C. (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J. Biol. Chem. 285, 16893–16911
MINIREVIEW: uORF-mediated Translation Control

49. Miller, P. F., and Hinnebusch, A. G. (1989) Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. *Genes Dev.* 3, 1217–1225

50. Fusakio, M. E., Willy, J. A., Wang, Y., Mirek, E. T., Al Baghdadi, R. I., Adams, C. M., Anthony, T. G., and Wek, R. C. (2016) Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. *Mol. Biol. Cell* 27, 1536–1551

51. Tsukada, J., Yoshida, Y., Kominato, Y., and Auron, P. E. (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. *Cytokine* 54, 6–19

52. Nerlov, C. (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. *Trends Cell Biol.* 17, 318–324

53. Wethmar, K., Bégay, V., Sminke, J. J., Zaragoza, K., Wiesenthal, V., Dürken, B., Calkhoven, C. F., and Leutz, A. (2010) C/EBPβmed and β mice: a genetic model for uORF-mediated translational control in mammals. *Genes Dev.* 24, 15–20

54. Dey, S., Savant, S., Teske, B. F., Hatzoglou, M., Calkhoven, C. F., and Wek, R. C. (2012) Transcriptional repression of ATF4 gene by CCAAT/enhancer-binding protein β (C/EBPβ) differentially regulates integrated stress response. *J. Biol. Chem.* 287, 21936–21949

55. Wang, C., Chen, X., Wang, Y., Gong, J., and Hu, G. (2007) C/EBPα30 plays translational regulatory roles distinct from C/EBPα42. *Cell Res.* 17, 374–383

56. Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eukaryotic ribosomes. *Cell* 44, 283–292

57. Pisarev, A. V., Kolupaeva, V. G., Pisareva, V. P., Merrick, W. C., Hellen, C. U., and Pestova, T. V. (2006) Specific functional interactions of nucleotides at key 3 and 4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. *Genes Dev.* 20, 624–636

58. Gutierrez, E., Shin, B. S., Woolstenhouwer, C. J., Kim, J. R., Saini, P., Buskirk, A. R., and Dever, T. E. (2013) eIF5A promotes translation of proline-rich mRNAs. *Mol. Cell* 51, 35–45

59. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. *Genes Dev.* 12, 982–995

60. Rutkowski, D. T., Arnold, S. M., Miller, C. N., Wu, J., Li, J., Gunnison, K. M., Mori, K., Sadighi Akha, A. A., Raden, D., and Kaufman, R. J. (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. *PLoS Biol.* 4, e374

61. Marciñak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H. P., and Ron, D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. *Genes Dev.* 18, 3066–3077

62. Teske, B. F., Fusakio, M. E., Zhou, D., Shan, J., McClintick, J. N., Kilberg, M. S., and Wek, R. C. (2013) C/EBPα induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. *Mol. Biol. Cell* 24, 2477–2490

63. Hussain, T., Lácer, J. L., Fernández, I. S., Munoz, A., Martin-Marcos, P., Floor, S. N., and Doudna, J. A. (2016) Tunable protein synthesis by translation isoforms in human cells. *Elife* 5, e10921

64. Marciniai, M. S., and Wek, R. C. (2004) The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. *Cell* 113, 519–531

65. Mehta, A., Trotta, C. R., and Peltz, S. W. (2006) Derepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells. *Genes Dev.* 20, 939–953

66. Spevak, C. C., Park, E. H., Geballe, A. P., Pelletier, J., and Sachs, M. S. (2006) Her-2 upstream open reading frame effects on the use of downstream initiation codons. *Biochem. Biophys. Res. Commun.* 350, 834–841

67. Floor, S. N., and Doudna, J. A. (2016) Tunable protein synthesis by transcript isoforms in human cells. *Elife* 5, e10921

68. Hansen, M. B., Mitchelmore, C., Kjaerulf, K. M., Rasmussen, T. E., Pedersen, K. M., and Jensen, N. A. (2002) Mouse ATF5: molecular cloning of two novel mRNAs, genomic organization, and odorant sensory neuron localization. *Genomics* 80, 344–350

69. Watatani, Y., Ichikawa, K., Nakashima, N., Fujimoto, M., Takeda, H., Kimura, N., Hirose, H., Takahashi, S., and Takahashi, Y. (2008) Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. *J. Biol. Chem.* 283, 2543–2553

70. Dey, S., Baird, T. D., Zhou, D., Palam, L. R., Spandau, D. F., and Wek, R. C. (2010) Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. *J. Biol. Chem.* 285, 33165–33174

71. Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M., and Walter, P. (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. *Cold Spring Harb. Perspect. Biol.* 5, a013169

72. Mendell, J. T., Sharrir, N. A., Meyers, J. L., Martinez-Murillo, F., and Dietz, H. C. (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. *Nat. Genet.* 36, 1073–1078

73. Gardner, L. B. (2008) Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. *Mol. Cell. Biol.* 28, 3729–3741

74. Neavey, D. E., and Galagan, J. E. (2007) Dual modes of natural selection on upstream open reading frames. *Mol. Biol. Evol.* 24, 1744–1751

75. Bazzini, A. A., Johnstone, T. G., Christiano, R., Mackowiak, S. D., Obermayer, B., Fleming, E. S., Vejar, C. E., Lee, M. T., Rajewsky, N., Walther, T. C., and Giraldez, A. J. (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. *EMBO J.* 33, 981–993
87. Johnstone, T. G., Bazzini, A. A., and Giraldez, A. J. (2016) Upstream ORFs are prevalent translational repressors in vertebrates. *EMBO J.* **35**, 706–723

88. Malzer, E., Szajewska-Skuta, M., Dalton, L. E., Thomas, S. E., Hu, N., Skaer, H., Lomas, D. A., Crowther, D. C., and Marciniak, S. J. (2013) Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during *Drosophila* development. *J. Cell Sci.* **126**, 1406–1415

89. Cvijović, M., Dalevi, D., Bilsland, E., Kemp, G. J., and Sunnerhagen, P. (2007) Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. *BMC Bioinformatics* **8**, 295

90. Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., Pestova, T. V., Qian, S. B., and Jaffrey, S. R. (2015) 5′UTR m6A promotes cap-independent translation. *Cell* **163**, 999–1010

91. Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., and Qian, S. B. (2015) Dynamic m6A mRNA methylation directs translational control of heat shock response. *Nature* **526**, 591–594