This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic

Srikkanth Ramachandrana,* and Ulrich Stimminga,b,#

a TUM CREATE Limited, 1 CREATE Way #10-02, Singapore 138602, Singapore.
b School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.

Abstract

Several alternative fuel-vehicle combinations are being considered for replacement of the Internal Combustion Engine (ICE) vehicles to reduce Greenhouse Gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity, hydrogen and biofuels in transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels, viz. electricity, hydrogen and bioethanol in combination with Battery Electric Vehicle (BEV) and Fuel Cell Electric Vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and GHG emissions of a BEV. Hence electricity production mix of Germany (60 \% fossil fuel energy), France (76 \% nuclear energy), Sweden & Austria (60\% & 76 \% renewable energy respectively), the European Union mix (48 \% fossil fuel energy) and the United States of America (68 \% fossil fuel energy) mix are considered for the BEV analysis. In addition to the standard hydrogen based FCEV, CNG and bio-ethanol based FCEVs are analysed. The influence of a Direct Ethanol Fuel Cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane, corn, etc.), sources like wood waste and wheat straw are included in the analysis. Results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicle offer the best solution in terms of GHG emissions, efficiency and fossil fuel dependency. Bioethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by intermediate and novel advancements through reformer based FCEV and DEFC electric vehicles. Although important, this analysis does not include the health effects of the alternative vehicles. Bioethanol used in ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.

Keywords: Well-to-wheel analysis, Bio-ethanol, Direct Ethanol Fuel Cell.

Corresponding author: * Srikkanth.Rama@tumucreate.edu.sg, # Ulrich.Stimming@newcastle.ac.uk

1. Introduction

The International Energy Agency (IEA) has estimated that the transportation sector accounts for 22\% of the global CO\textsubscript{2} emissions which are responsible for the climate change issues1. Presently, the road transportation sector uses in large parts Internal Combustion Engines (ICE) vehicles whose energy needs are supplied largely by oil based fuels2. To encounter issues like climate change and dependence on foreign oil (accompanied by its fluctuating prices) engineers and policy makers are looking into sustainable alternatives that are less emissive and have the ability to use the limited resources at higher efficiencies. Along with policies encouraging a shift towards public transportation from individual mobility, IEA proposes the inclusion of the low carbon alternatives, viz. electricity, hydrogen and biofuels in transportation sector1. These are considered as the preferred alternative because of their potentially low carbon footprint and renewable nature. This paper aims at comparing battery electric vehicles (BEVs, powered by different electricity production mix), hydrogen/Compressed Natural Gas (CNG) based Fuel Cell Electric Vehicles (FCEVs) and bio-ethanol based vehicles based on their energy use and Greenhouse Gas (GHG) emissions. The vehicle segment that shall be addressed in this paper is a C-segment compact car.
Life Cycle Analysis (LCA) addresses the environmental aspects throughout a product’s life cycle, from raw material acquisition, through production, use, end of life treatment and final disposal. Well-to-Wheel (WTW) analysis is an application of LCA which is used to compare drivetrains/vehicles from a global perspective. Such an analysis gives the overall picture of the energy resource utilisation and its emissions involved right from the point of primary energy source extraction (well) to its point of utilisation (wheels). This analysis shows not only the emissions caused by burning of the fuels, but also takes into account the emissions involved in production, transportation and distribution of the fuels.

Several studies have been done based on WTW analysis for comparing various vehicle-fuel combinations. Sheldon S. Williamson and Ali Emandi compare the Hybrid Electric Vehicles (HEVs) and the FCEVs that run on conventional hydrocarbon fuels (petrol and diesel) based on their WTW efficiencies. G.J. Offer et al., compare BEVs, hydrogen based FCEVs and Fuel Cell Hybrid Electric Vehicles based on lifecycle costs. Stefano Campanari et al., compare the BEVs and the FCEVs through WTW analysis based on drive cycle simulations to assess the influence of primary energy supply and range on the emissions and the efficiency. C.E. Thomas compares the alternative vehicles including partially electrified drivetrains such as HEV fuelled by gasoline, ethanol and hydrogen and fully electric vehicles powered by batteries or hydrogen-fuel cell combination through dynamic computer simulations to gauge their societal benefits. U.Eberle et al. compare the WTW GHG emissions of ICE vehicles, HEVs, CNG vehicle, BEVs and FCEVs. They also analyse the technological needs and infrastructural efforts required for the implementation of FCEVs. W.G. Colella et al. examine the potential change in primary emissions and energy use from replacing the U.S. fleet of conventional on-road vehicles with HEVs and hydrogen based FCEVs (powered by different sources for hydrogen viz. steam reforming of natural gas, electrolysis powered by wind turbine and gasification of coal) through a LCA. M. Jacobson compares BEVs, hydrogen based FCEVs and ethanol based flex fuel vehicles (that run on E85) based on multiple externalities impact, which include life cycle CO₂ emissions, mortality, water consumption, etc. The JEC Consortium study carried out jointly by experts from the JRC (European Union (EU) Commission’s Joint Research Centre), EUCAR (the European Council for Automotive research and development) and CONCAWE (the oil companies’ European association for environment, health and safety in refining and distribution) analyses in detail the future of automotive fuels and powertrains in the European context through a WTW analysis to evaluate the WTW energy use and GHG emissions for the wide range of potential future fuel and powertrain options.

In this work, we compare the three low carbon alternatives proposed by IEA through a WTW analysis. In addition to the work done in the above mentioned sources, we analyse the impact of electricity production mix of a country on the emissions and the energy use of a BEV. Though BEVs have zero tailpipe emissions, its WTW emissions depend on the energy mix used for electricity generation. By taking example cases of the following European countries, the impact of electricity production mix (E mix) on BEV is illustrated.

1. Germany (fossil fuel dominated)
2. France (nuclear energy dominated)
3. Sweden (renewable energy dominated with very little fossil fuel energy)
4. Austria (renewable energy dominated with part of power from fossil fuel energy)
5. The EU Mix
6. United States of America (USA, fossil fuel dominated)

The effect of including hydrogen in transport sector shall be analysed with H₂-Polymer Electrolyte Membrane (PEM) FCEVs. Since the major source of hydrogen is natural gas (NG, through steam reforming), the other option of using CNG directly in FCEV with an on board reformer will be evaluated as well. Bio-ethanol has been chosen as the bio-fuel of choice owing to its high energy density, non-toxicity and renewable nature. It is the largest amount of bio-fuel that is being produced globally followed by bio-diesel. The influence of bio-ethanol’s inclusion in transport sector shall be analysed through the WTW analysis of ethanol reformate based FCEVs. These reformate based fuel cells (FCs) could use bio-ethanol at efficiencies higher than a normal ICE since they are not restricted by Carnot efficiencies. The volumetric energy density of ethanol based FC systems are higher than its other counterparts such as methanol and liquid hydrogen. Apart from the standard sources for bio-ethanol like corn, sugarcane, etc., which compete with the food chain the potential for bio-ethanol production from sources such as agricultural waste, wood chips, etc. shall be discussed. In addition to this, the impact of a novel concept, a Direct Ethanol Fuel Cell (DEFC), on the overall energy usage and the global GHG emissions, which has not been dealt with before, shall be discussed in this paper. DEFC
converts the chemical energy in ethanol directly into electrical energy thus avoiding the necessity of a separate intermediate reformation step. Direct alcohol fuel cells are an attractive technology because of the fuel’s high volumetric energy density, which translates into system compactness and simplicity. They have high theoretical energy conversion efficiencies and are promising power sources for automotive and portable applications.

Apart from the global GHG emissions there are other factors which are important for choosing a certain vehicle and energy chain. The sustainability of the alternative solutions is studied in terms of the possibilities for inclusion of renewable energy sources in the overall energy chain. This paper shall also discuss the issues involved with the implementation of these alternatives and compare them based on the ease and readiness of their implementation. In order to better understand what each energy chain has to offer, a general comparison of the alternatives considered based on their most prominent features, advantages and disadvantages is made. The emissions and energy use associated with the initial development of infrastructure (power plants, cars, etc.) and end of life disposal is beyond the scope of this paper. One of the major criteria for the selection of a more sustainable alternative is GHG emissions. However, other factors such as health, local emissions, water use, land use, mortality, etc. should not be ignored while making the right choice. A number of studies have been made for evaluation of these issues. However, in this paper, we restrict ourselves only to the GHG emissions of the alternatives.

2. Methods for Evaluation

This WTW analysis shall be further split into Well-to-Tank (WTT) and Tank-to-Wheel (TTW) evaluations. TTW evaluation accounts for the energy expended and the associated emissions of the vehicle-fuel combinations for achieving a range of 200km driven through the New European Drive Cycle. The energy demand in the tank is expressed in terms of ‘litres of gasoline equivalent/100 km (l_gas_eq/100km)’ to make the comparison among different drivetrains more intuitive. The emissions are expressed as ‘grams of CO₂ equivalent/km (g_CO₂_eq/km)’. WTT evaluation accounts for the energy expended and the associated emissions emitted in the steps required to deliver the finished fuel (derived from raw materials) into the on-board tank of the vehicle. Integration of these two evaluations gives the overall WTW energy consumption and emissions.

2.1. Tank-to-Wheel Evaluation:

Good specific energy, lack of memory effect and slow self-discharge rates when not in use make lithium-ion (Li-ion) batteries a suitable choice for BEV. The developments in Li-ion battery technology in the recent years have made them a standard choice of power source in BEV. Hence only Li-ion batteries are considered for evaluation of BEVs in this paper. Since BEVs do not possess a tank, this evaluation should be termed as ‘Plug-to-Wheel’ evaluation. However, the term ‘Tank-to-Wheel’ is maintained for the sake of uniformity. The use of hydrogen as a fuel in road transport sector is evaluated through FCEVs. Of the many FCs available, only PEM FC which has been accepted by the car manufacturers as having the highest potential to be used in vehicle applications is considered in this study. CNG and bio-ethanol as a fuel for a PEM FC with an intermediate reformation step is included in this work as well. In addition to this, DEFC electric vehicle in combination with bio-ethanol is evaluated in this paper. The hybrid electric vehicle (HEV) concept has been gaining popularity recently since it helps combine the advantages of BEV and ICE vehicles. HEVs improve the fuel consumption of ICE vehicles by allowing the engine to operate at higher efficiencies and utilising the braking energy through recuperative braking. HEVs are a combination of a BEV and an ICE vehicle having the all-electric capability of a BEV in urban areas and the extended range capability of ICE vehicles. However, owing to intricacies associated with control strategy, degree of electrification, type of hybridisation, etc., the analysis of HEVs has not been included in this paper.

The amount of energy required to drive the vehicle through a 200 km range is the integral of the power demand at the tank. The power required at the tank is calculated by evaluating the power demand at the wheel and then dividing it by the efficiency of the drivetrain involved. The basic configuration of the drivetrains under consideration is shown in Fig. 1. The efficiency value for the components in the drivetrain could be found in Table 6 in appendix. The power demand at the wheels is calculated using MATLAB simulations based on equations (1)-(5),
\[
\begin{align*}
\dot{P}_{\text{acc}} &= m \cdot v \cdot a \cdot f_{\text{rot}} & (1) \\
\dot{P}_{\text{ad}} &= 0.5 \cdot c_w \cdot A \cdot \rho \cdot v^3 & (2) \\
\dot{P}_{\text{roll}} &= f \cdot m \cdot g \cdot \cos \theta \cdot v & (3) \\
\dot{P}_{\text{inc}} &= m \cdot g \cdot \sin \theta \cdot v & (4) \\
\dot{P}_{\text{total\,wheel}} &= \dot{P}_{\text{acc}} + \dot{P}_{\text{ad}} + \dot{P}_{\text{roll}} + \dot{P}_{\text{inc}} & (5)
\end{align*}
\]

where, ‘\(\dot{P}_{\text{acc}}\)’, ‘\(\dot{P}_{\text{ad}}\)’, ‘\(\dot{P}_{\text{roll}}\)’, ‘\(\dot{P}_{\text{inc}}\)’ and ‘\(\dot{P}_{\text{total\,wheel}}\)’, represent the power required for acceleration, the power required to overcome air drag, the power required to overcome rolling resistance, the power required to climb incline and the total power required at wheels respectively. The total mass of the vehicle is given by ‘\(m\)’ and the slope of the road (‘\(\theta\)’) is assumed to be zero. The acceleration and velocity of the vehicle are represented by ‘\(a\)’ and ‘\(v\)’ respectively. The value of the other variables used in equations (1)-(4) which are defined by the vehicle being simulated could be found in Table 5 in the appendix. The symbols used in the equations (1)-(5) have been explained in the glossary.

From equations (1)-(5), it is evident that the power demand of the vehicle at its wheel is determined by, the drive cycle (time dependant speed and slope values), the vehicle’s form (shape) and it’s mass. While the first 2 factors are the same for both for BEV and FCEV, the vehicle’s mass varies greatly since the source of energy for providing the driving power is different. Batteries have a much lower gravimetric energy density as compared to that of the other fuels considered. Hence BEVs are generally heavier than their counterparts. Therefore, to calculate the energy consumption of both the vehicles fairly, a kerb mass (mass excluding the storage/conversion device i.e. FC, battery, storage tank) of 1 100 kg is assumed. The weight of the storage device required to provide the energy demands of the vehicle is calculated and added to the kerb mass to get the total vehicles mass. The effect of regenerative braking on BEV is easy to calculate due to the bidirectional flow of energy. For a FCEV, the following methodology is adopted to evaluate the effect of regenerative braking on vehicle’s fuel consumption. It is estimated that the fuel consumption of a FCEV decreases by 9% upon inclusion of an additional battery pack with a weight of 15 kg. This technique is commonly adapted to all the kinds of FCEVs under consideration in our evaluation including the DEFC vehicle.

Iterative mass estimation: Size/mass of the storage device (battery/fuel storage tank) is determined by the energy demand of the vehicle. However the storage device’s mass itself affects the mass of the vehicle and hence its energy demand. Therefore there is necessity for iterative solving to achieve the right mass/size of storage system for achieving the required range. This is executed with help of MATLAB scripts. The specifications of the storage devices used are given in the Table 7 in the appendix. The tank to wheel efficiency of the BEV and H2-FCEV considered is 83% and 48% and is comparable to the values from similar studies. The power to weight ratio of the PEMFC stack and the reformer are taken to be 1000 W/kg and 800 W/kg respectively. The DEFC is assumed to have a power density of 500 W/kg due to its compact design. For additional masses greater than 200 kg, a corrective weight equal to 15% of the added weight is included to account for the structural modification required. The importance of iterative mass estimation is better understood when the impact of range on the overall mass of the vehicle is examined. The simulation results show that the total mass of a BEV (the kerb mass plus the mass of the battery system) is 1473 kg for 200 km range but 2364 kg for 500 km range. On the other hand, the mass of a CNG based FCEV (the kerb mass plus the mass of fuel tank, reformer system and the fuel cell) is 1236 kg for 200 km range and 1263 kg for 500 km. The additional weight of the battery added to cover the longer range has a considerable impact on the vehicles power consumption and makes it less efficient. Therefore BEVs that are based on current energy storage technologies are not well suited for long distance applications. This aspect has also been covered in the work of U. Eberle et al. which demonstrates that the weight of a BEV increases by 1.6 times for an increase in range from 200 km to 500 km (for a LA 92 drive cycle). This is comparable to the above value.

Emissions: The TTW emissions for a BEV and H2 based FCEV is zero. The CO2 emissions of bioethanol and CNG based vehicles are calculated based on stoichiometry and are found to be 71.29 g CO2/MJethanol and 51.19 g CO2/MJcng respectively. In our evaluation, we restrict ourselves to only the CO2 emissions. Other emissions such as water vapour and are not being evaluated.
2.2. Well-to-Tank Evaluation:

This section of the paper deals with the evaluation of efficiency and emissions involved in production, transportation and distribution of fuel from its source (well) to the tank. Most of the work/calculations associated with this part are based on the WTT report version 4.a published by the JRC for the JEC (JRC, EUCAR, CONCAWE consortium) well-to-wheel analysis22. The JRC is the European Commission’s in-house science service which employs scientists to carry out research in order to provide independent scientific advice and support to EU policy23. The reports and their corresponding appendices of this study can be found in this web link24.

In this comprehensive study done by the JEC, the process of producing, transporting, manufacturing and distributing a number of fuels suitable for road transport powertrains have been described. It covers all the steps from extracting, capturing and growing the primary energy carrier to refuelling the vehicles with finished fuel22. The primary focus of the study by JEC is to establish the energy and GHG balance for different energy routes. The major steps involved in the WTT evaluation are production and conditioning of primary energy at the source, transformation of primary energy at the source, transportation of the fuel, transformation at the site and conditioning & distribution of the fuel. All energy requirements involved in above steps and efficiencies involved in transformation have been calculated on the basis of 1 MJ of final fuel calculated based on its LHV and expressed as ‘MJ/MJ fuel’. This makes the integration of WTT and TTW easier. The fuels/energy sources which are relevant to us are electricity, hydrogen, CNG and bio-ethanol. Though there are multiple pathways for producing these, we limit it to the more prominent ones. The pathways considered and the corresponding energy and emission factors are calculated from the WTW Appendix 2 – version 4a (summary of energy and GHG balance of individual pathways) of the Well-to-Wheel Report Version 4.a published by JRC25. In this report, each fuel/electricity production pathway is referred to by a pathway code (This pathway code (henceforth referred to as WTT code) is included with each fuel/electricity production pathway studied in this paper. This will act as a reference to the corresponding pathway considered from the report). CO\textsubscript{2} emissions caused by burning of the biomass/biofuel do not count as GHG emissions. The rationale for this assumption is that this carbon in crops was sequestered from the atmosphere during the previous growing season. In order to conserve the correct balance, emissions from combustion of this renewable carbon are credited to the relevant fuels (WTT pathway) before the WTW integration is carried out. The GHG emissions associated with cultivating the crop, processing it into a finished fuel and transporting it are taken into account. Since biofuel production pathways produce ‘co-products’ such as slops, animal feed, etc. along with the main fuel, they need to be accounted for while evaluating the GHG emissions and energy use. The JRC report has accounted for this by crediting the energy and emissions saved by not producing the material that the co-products are most likely to replace to the fuel produced. The nitrous oxides released in the process of bio-fuel production have been accounted for while evaluating the global GHG emissions22.

![Fig. 1: Schematic representation of drivetrains of a (a) BEV, (b) H\textsubscript{2}-FCEV, (c) Ethanol or CNG reformate based FCEV, (d) DEFC electric vehicle](image-url)
The above mentioned study has made a thorough analysis to evaluate the emission and fuel consumption of different fuel – drivetrain combinations powered by a varied range of energy sources through a well-to-wheel analysis. The influence of inclusion of DEFC in vehicle drivetrains has not been covered, but is discussed here. In addition we shall also evaluate the effect that the energy mix of electricity production of a country has on the overall emissions of a BEV.

Electricity: The breakdown of electricity generation by primary energy source for the different countries used in our evaluation has been plotted in Fig. 2 based on the ‘The World Bank – World Development Indicator’ data source. The fuel consumption and emission factor associated with electricity production and transmission in the various European countries considered is calculated based on its energy mix of electricity production and values of the emissions and the primary energy consumption associated with electricity production from each energy source (individually) taken from the JRC report (found as Table 8 in Appendix) and tabulated in Table 1 along with the corresponding WTT codes.

![Energy mix for electricity production of the different countries](image)

Table 1 along with the corresponding WTT codes.

Country	Germany	France	Austria	Sweden	EU Mix	USA			
Energy Source	Geothermal	Hydro	Solar	Wind	Biomass	Nuclear	Natural Gas	Oil	Coal

Hydrogen: The major source of hydrogen is natural gas. Natural gas could either be transported through pipelines and then reformed on site (OS) (WTT code: GPCH1b), or reformed centrally (Centr.) (WTT Code: GPCH2b) into hydrogen and then transported through road/pipelines.

Table 1 shows the energy efficiency and emissions involved in both these processes. The reformation in both central and on site scenarios is done by steam reforming.

CNG: Natural gas is transported through long distances by pipelines. The WTT emissions and fuel consumption for the same are shown in Table 1. (WTT code: GPCG1b).

Bio-Ethanol: In addition to major sources of bio-ethanol such as corn, sugarcane and sugar beet, non-conventional sources like wheat straw and wood waste are considered in this assessment (WTT code (in corresponding order): CRETus, SCET1, SBET1c, STET1, WWET1). The reason behind the choice of corn, sugarcane and sugar beet are,

Corn – Major source of bio-ethanol production in USA which is the largest producer of ethanol.

Sugarcane – Major source of bio-ethanol production in Brazil, the second largest producer of ethanol.
Sugar beet – Sugar beet is considered as a source of bio-ethanol owing to its higher yield per hectare in spite of wheat currently being the major source of bio-ethanol production in the European Union (which is the third largest producer and the third largest market for ethanol).

Table 1: Well-to-tank factors for fuel consumption and emission of different fuel types

Source / Pathway	Fuel Ref. Code	WTT Factor	Fuel Consumption (MJ/MJ fuel)	GHG Emission (g CO₂ eq/MJ fuel)
Electricity				
Germany E mix	EGE	1.79		156.92
Austria E mix	EAU	0.80		49.37
Sweden E mix	ESW	1.52		8.77
France E mix	EFR	2.54		21.87
EU Mix E mix	EEU	1.80		113.48
USA E mix	EUS	1.71		153.58
Hydrogen				
NG 4000 km OS reforming	HNO	1.05		117.7
NG 4000 km Centr. reforming	HNC	0.81		104.4
Natural Gas				
Pipeline 4000 Km	NGP	0.21		16.10
Bio-ethanol				
Sugar beet	BSB	0.92		-53.49
Corn	BCO	1.65		-2.39
Sugarcane	BSC	2.09		-46.49
Wheat Straw	BWS	1.32		-62.09
Wood Waste	BWW	1.95		-51.79
3. Results and Analysis

Table 2: Well-to-wheel and Tank-to-wheel emission and fuel consumptions for the different fuel vehicle combinations

Fuel-Vehicle Combination	Fuel Consumption	Emissions		
	(l gas eq/100km)	(g CO$_2$ eq/km)		
	WTW	TTW	WTW	TTW
Battery Electric vehicles				
EGE-BEV	3.85	1.38	69.73	0.00
EAU-BEV	2.48	1.38	21.94	0.00
ESW-BEV	3.48	1.38	3.48	0.00
EFR-BEV	4.88	1.38	9.72	0.00
EEU-BEV	3.87	1.38	50.43	0.00
EUS-BEV	3.74	1.38	68.24	0.00
Hydrogen				
HNO-FCEV	4.53	2.21	83.66	0.00
HNC-FCEV	4.00	2.21	74.21	0.00
Compressed Natural Gas				
NGP-FCEV	4.94	4.09	88.52	67.34
Ethanol- Reformate based FCEV (PEMFC)				
BSB-FCEV	5.89	3.08	17.63	70.68
BCO-FCEV	8.15	3.08	68.23	70.68
BSC-FCEV	9.51	3.08	24.56	70.68
BWS-FCEV	7.15	3.08	9.11	70.68
BWW-FCEV	9.07	3.08	19.31	70.68
Ethanol – DEFC				
BSB-DEFC	4.70	2.45	14.07	56.34
BCO- DEFC	6.50	2.45	54.45	56.34
BSC- DEFC	7.59	2.45	19.60	56.34
BWS- DEFC	5.70	2.45	7.27	56.34
BWW- DEFC	7.24	2.45	15.41	56.34
Conventional vehicles				
Petrol-ICE vehicle	6.00	5.10	144.00	121.00
Diesel-ICE vehicle	4.70	3.90	113.00	93.00

Note: Values for petrol and diesel ICE vehicle are taken directly from the appendix of the JRC report11,31 and normalised to the vehicle under our consideration.

3.1. Battery Electric Vehicles

The results of this analysis suggest that the emissions of BEV are in general lower than that of the existing ICE vehicles even for countries with a large amount of electricity production based on coal. However, the global GHG emissions vary largely by a factor of 20 and lie in the range of 3.5 - 70 g CO$_2$ eq/km. This suggests that the emissions caused by a BEV largely depend on the energy mix used for electricity production. It could be seen from the results that with higher dependence on fossil fuel for electricity production as in the case of Germany (60% fossil fuels), the emissions caused are as high as 61% of the existing diesel based ICE vehicle. This is further substantiated in the case of the USA electricity mix and the EU electricity mix which is also largely dependent on fossil fuels (68.5% and 48% fossil fuels respectively). The GHG emissions of a BEV driven by the EU mix electricity is approximately 45% of the existing diesel based ICE vehicle which is comparable to the results shown in the work of U. Eberle, et al.8 With 67% of the present global energy mix for electricity production coming from fossil fuels, the carbon footprint of BEV may deteriorate further from the value of 69 g CO$_2$ eq/km of that of Germany (depending on the type of fossil fuel).

On the contrary, a BEV driven by a nuclear dominated electricity mix, like that of France has a very low carbon footprint of 9.7 g CO$_2$ eq/km. This is because the emission associated with nuclear electricity arises only from fossil fuels energy used in mining, transport and enrichment of the nuclear fuel and the maintenance of power plants.22 Although nuclear electricity is mostly carbon free, it is not a
renewable source of energy with other issues like safety and radioactive waste disposal associated to it. Due to these factors, the total amount of nuclear electricity produced globally has reduced to 2300 TWh in 2012, which is 12 % lower than its peak value of 2600 TWh in 2006. Countries like Germany and Switzerland has already initiated phasing out of Nuclear energy. Considerable increase in installation costs of nuclear power plants contested by a decrease in costs for renewable electricity contributes further to this development. The IEA has forecasted that by 2035, only 12-13 % of the global electricity demand will be supplied by nuclear power.

The results shown in Table 2 suggests that if BEV is driven by carbon free renewable energy source like in the case of Austria and Sweden, the emissions would be as low as 21.9 g_CO₂_eq/km and 3.5 g_CO₂_eq/km, respectively. Austria which has close to 76% renewable electricity has higher emission values as compared to Sweden with lower renewable electricity fraction (60%) since Austria has 24% dependence on fossil fuels whereas Sweden is nearly fossil fuel free (less than 3 %). It has to be noted that the major portion of the renewable energy comes from hydro power (which is more stable and predictable) for both countries. Yet, the immediate integration of other renewable energy sources such as wind and solar into the grid on a large scale is problematic due to factors such as variability of renewable energy source, frequency response, system balancing, solar and wind forecasting, etc. The practical difficulties involved in inclusion of wind power on a large scale were seen in the case of Germany. When wind power production exceeds the demand, rather than switching off or curbing output at coal and nuclear plant (which take hours to return to full output), certain producers keep generating excess power, but sell it at negative prices which is undesirable.

The absolute amount of renewable electricity generated in the year 2012 was 4587 TWh which is 1.6 times as much as the total renewable electricity produced in the year 2000. However, the share of renewable electricity in total electricity produces has increased by a meagre 2 % owing to the fact that the total electricity demand has grown 1.5 times in the same time period. With the contribution from nuclear electricity reducing to 11 % (from 17 %), fossil fuel based electricity increasing to 67 % (from 63%) to compensate the lost nuclear capacity and the contribution from renewable energy remaining stagnant between the range of 20-22 %, the carbon foot print of electricity produced has increased.

Assuming that the entire fleet of passenger cars in Sweden and France are replaced by electric vehicles, there shall be an increase in electrical energy demand of 5.1 %α and 9.8 %β of the total power produced in Sweden and France, respectively. If busses and trucks are included, this shall increase further which calls for an increase in power production capacity. Other factors which work against the BEV are its limited range and extended charging time. Non-residential fast charging stations are required for the proper implementation of BEV which involves high capital cost of investment.

α Calculated based on the fact that Sweden has 5.3 million passenger cars, 12,200 km of average annual driving distance and 92.96% average grid efficiency. The energy consumption values of BEV are taken from Table 2.

β Calculated based on the fact that France has 31.6 million passenger cars, 12,700 km of average annual driving distance and 94.78% average grid efficiency. The energy consumption values of BEV are taken from Table 2.
3.2. Fuel Cell Electric Vehicle

3.2.1. Hydrogen as Fuel: As seen from the results, the WTW emissions of a FCEV powered by pure hydrogen lies in a range which is better than the conventional vehicles but higher than a BEV (even if it is operated with electricity produced by a fossil fuel dominated energy mix). Because hydrogen production is majorly dependent on natural gas, hydrogen production itself has a high carbon footprint (104.4-117.7 g CO$_2$ eq/MJ fuel). However these vehicles do not produce any local emissions. The lower emission value of 74.2 g CO$_2$ eq/km for hydrogen production by central reforming as compared to an emission value of 83.7 g CO$_2$ eq/km for on-site reforming suggests that central reforming is more efficient for hydrogen production. The GHG emissions of these vehicles are about 47-66 % higher than that of a BEV driven by the EU electricity mix which follows the result of the work of U. Eberle, et al.8. Table 3 shows the comparison of a BEV and a FCEV that obtains its energy completely from the same source – natural gas. The results show that using natural gas to produce electricity in a combined cycle gas turbine power plant and subsequently using it in a BEV is more efficient and less emissive than using the same natural gas to produce hydrogen and subsequently using it in H$_2$-FCEV.

Table 3: Comparison of a BEV and hydrogen based FCEV that has NG as its primary energy source

Fuel vehicle combination	Fuel Consumption (l gas eq/100 km)	Emissions (g CO$_2$ eq/km)
NG-Electricity-Li-Ion battery-BEV	3.02 1.38	58.83 0.00
NG-Centr. Reforming-Pipeline-H$_2$ FCEV	4.00 2.21	74.21 0.00

The alternative drivetrain needs to offer a sustainable solution and using renewable electricity to produce hydrogen from electrolysis which powers a FCEV offers a promising solution. However, the result shown in Table 4 implies that the energy use of such an alternative is notably higher as compared to the direct use of renewable electricity in BEV. For a given amount of solar/wind energy, the achievable range of a BEV shall be almost thrice as much as a FCEV. This is attributed to the low efficiency of the electrolysis process and the fuel cell (in comparison to the batteries). However, the intermittent nature of renewable energy sources like solar/wind power call for integration of storage mechanism with the grid to ensure grid stability, especially for the excess power production periods. Storing this excess electricity as hydrogen and subsequently using it to power FCEVs could provide a solution. Nonetheless, the quantity of hydrogen that could be produced from excess electricity may not be large enough to make a substantial contribution to the overall amount of hydrogen needed.

Table 4: Comparison of a BEV and hydrogen based FCEV that has solar, wind energy as its primary energy source

Fuel vehicle combination	Fuel Consumption (l gas eq/100 km)	Emissions (g CO$_2$ eq/km)
Solar/wind power-Electricity-Li-Ion battery-BEV	1.54 1.38	0.00 0.00
NG-Centr. Reforming-Pipeline-H$_2$ FCEV	4.44 2.21	2.99 0.00

The technical advantages that the hydrogen based FCEV offers over a BEV are extended range per recharge, reduced refuelling/recharge time and availability of waste heat for cabin heating for winter conditions (possibly also cooling). The higher energy densities of hydrogen storage as compared to batteries give H$_2$-FCEVs an advantage over BEVs while addressing larger vehicle segments. Hydrogen fuel cell based alternatives require the installation of new infrastructures such as refuelling station, hydrogen transportation system, reformer stations (for on-site CNG reformation), hydrogen storage, etc.41. This hinders the immediate implementation of hydrogen based FCEV as an alternative solution.

3.2.2. CNG as fuel: Since natural gas is the major source of hydrogen, we could store the CNG in the vehicle, reform it on board and utilise the reformate to power the FC stack. The result for this configuration as shown in Table 2 suggests a WTW fuel consumption of 4.94 l gas eq/100km and 88.5 g CO$_2$ eq/km. The use of CNG directly in the FCEV through a reformer is less efficient and produces somewhat more GHG emissions as compared to on the on-site reformation of the CNG to produce hydrogen for a H$_2$-FCEV. However, the existence of established NG grids and ease in storage of CNG implies that CNG reformate FCEV could be considered as an intermediate alternative. Nevertheless on board reforming is a much more complex process.
3.3. Bio-ethanol as fuel

3.3.1. Ethanol reformer fuel cell: The results shown in Table 2 suggest that the global GHG emissions of the bio-ethanol reformate based FCEV are lower than the conventional vehicles. But the GHG emissions and the overall fuel consumption of the vehicles vary largely based on the source of bio-ethanol. FCEV driven by bio-ethanol from corn and wheat straw has the highest carbon footprint (68.23 g CO₂ eq/km) and the lowest carbon footprint (9.11 g CO₂ eq/km) respectively. The lowest value of fuel consumption for FCEV driven by bio-ethanol from derived from sugar beet (5.89 l gas eq/km) as compared to other bio-ethanol sources proposes that it is the most efficient bio-ethanol production process. Though these ethanol reformate based vehicles produce some tailpipe emissions unlike the other alternatives considered so far (except NGP-FCEV), all CO₂ released during the energy conversion of bio-ethanol in vehicle is originally absorbed from the atmosphere by the plants that are used to produce bio-ethanol. This is indicated by the negative value of WTT emissions for bio-ethanol as shown in

Table 1. The CO₂ that is associated with bio-ethanol in the WTW analysis arises from energy used for transportation and production of bio-ethanol which uses fossil fuels as its energy source. The global GHG emissions of these vehicles lies in the range of 16 – 43 % (excluding bio-ethanol from corn) of the emissions of a BEV operated by the fossil fuel dominated energy mix of Germany. Nevertheless, the emissions are higher than a BEV operated by renewable and nuclear dominated electricity mixes of Sweden and France. Hence ethanol reformate based FCEV proves to be less emissive for countries which uses fossil fuel based energy mix for its electricity production.

A major drawback of bio fuels in general and bio-ethanol in specific is the land usage. It competes with food crops for agricultural land. This however can be countered by producing bio-ethanol from wheat straw (agricultural waste) or wood wastes. The global GHG emissions of this vehicle fuel combination are as low as 19.3 g CO₂ eq/km and 9.1 g CO₂ eq/km for bio-ethanol from wood waste and wheat straw, respectively. Though the overall chain efficiency may be low, one has to keep in mind that these resources are of renewable nature and would be wasted if they aren’t utilised. In addition, if these organic wastes enter landfills, they produce additional GHG emissions in form of CO₂ and methane (please refer to section 3.3.3 for further information).

3.3.2. Direct Ethanol Fuel Cell Electric Vehicle: The results for DEFC EV powered by bio-ethanol suggests that global GHG emissions would lie in the range of 10.7-22 % (barring ethanol from corn) of that of a BEV powered by fossil fuel dominated energy mix of Germany. Emission rates of 7.3 g CO₂ eq/km for DEFC powered by bio-ethanol from wheat straw is even lower than the 9.7 g CO₂ eq/km GHG emissions of a BEV operated by the nuclear dominated energy mix of France. The only fuel vehicle combination that is better than (BWS-DEFC) is the (ESW-BEV). DEFC could have power densities and efficiencies higher than the ethanol reformate based FC systems. The higher efficiencies of DEFC combined with the low carbon footprint of bio-ethanol makes it a good solution. DEFC are simpler in construction and have reduced number of components. Bio-ethanol offers a number of advantages apart from low global GHG emissions such as good energy density (66% v/v of gasoline) and renewable nature. It also has the advantage of immediately implementation as it could be used as a combination with gasoline as gasohol (95 % gasoline and 5 % ethanol) without any modification in engine or at even higher ratios of ethanol with small modification to the engine (as in the case of Brazil). They do not require development of new infrastructure such as charging stations, special storage tanks, etc. for transportation and distribution of ethanol.

3.3.3. Non-conventional sources for bio-ethanol: As discussed before, production of bio-ethanol from conventional crops like corn, sugarcane etc. results in the ‘food vs fuel’ debate due to agricultural land use issues. However, bio-ethanol can be produced from non-conventional waste sources like food waste, agricultural waste and wood waste. The Food and Agricultural Organisation has estimated that one third of the edible part of the food is wasted globally which amounts to 1.3 billion tons/year. A total amount of 106.2 billion litres/year of bio-ethanol could be produced from it. It is estimated that 491 billion litres/year of bio-ethanol can be produced from agricultural residues which are rich in lignocellulose. The ‘Global woodchip trade for energy’ suggests that 108 Million tonnes of woodchip and wood residues is available every year. This corresponds to 32.5 billion litres/year of bio-ethanol.
It is calculated based on the assumption that 19%\(^{46}\) of the food waste is total solid (TS) waste and a conversion rate of 0.43 g EtOH/g TS\(^{46}\).

\(^{6}\) Is calculated based on the WTT fuel consumption for bio-ethanol from wood values in \(^{4}\) Calculated based on TTW fuel consumption values for ethanol reformate based FCEV, DEF electric vehicle and Petrol-ICE vehicle found in Table 2 and a global gasoline consumption value of 22065.6 thousand barrels/day\(^{53}\).

Hence a total of 630 billion litres/year of bio-ethanol could be produced from waste. This bio-ethanol can replace close to 54 %\(^{6}\) of the current gasoline consumption if used in the ethanol reformate based FCEV and almost 68 %\(^{6}\) of current gasoline consumption if used in the DEF vehicle. Another way to avoid the competition of energy crops with food crops for cultivable lands is to cultivate energy crops in contaminated agricultural lands which have lost their ability to produce food crops (see China).

Production of bio-ethanol from waste could be viewed as a novel waste disposal method. Landfilling is currently the most popular waste disposal method. Though release of CO\(_2\) from organic sources is considered to have no Global Warming Potential (GWP), the anaerobic decay of the organic matter in landfills produces methane whose GWP is 25 times as potent as CO\(_2\). Hence there is a net positive GHG emission from landfills\(^{48}\). Heinz Stithnothe and Adisa Azapagic have done a life cycle estimation of the GHG saving potential (compared to the existing waste disposal scenario) of bio-ethanol from municipal solid waste (MSW) in UK\(^{49}\). They have calculated that compared to the current waste disposal methods, production of bio-ethanol from MSW could reduce the GHG emission by 69-81%, considering just the production of bio-ethanol (and not its use). If bio-ethanol generated is credited for displacing petrol (by use in ICE), the author suggests that the total GHG savings would range between 177-196 kg CO\(_2\)-eq per tonne of MSW (compared to baseline scenario). With the low global GHG emission, DEF EV powered by bio-ethanol from waste sources seems to offer a solution for a future of high sustainability.

4. Conclusions

BEVs offer solutions which are less emissive than the conventional vehicles. They produce zero local emissions but the global GHG emissions vary largely based on the electricity production mix. The global GHG emissions are directly dependent upon the amount of fossil fuels used for electricity production. Of all the alternatives considered, BEVs powered by the renewable and nuclear energy dominated electricity production mix of Sweden produces the least GHG emission. However, global electricity generation is 67% dependant on fossil fuels. On a global scale, the reduction in the nuclear energy capacity has not been compensated with the increase in renewable energy capacity (Refer to Fig. 3).

Since the global demand for electricity is increasing, the dependence on fossil fuels for electricity production is going to increase which shall increase the carbon footprint of electricity production further. BEVs in their current configuration offer a good potential for addressing the global climate change concern but still suffer from aspects like limited range, setting up new infrastructure and being highly dependent on the decarbonising of the electricity production.

The global GHG emissions of hydrogen (from NG) based FCEVs are lower than conventional vehicles but higher than BEVs. However, FCEVs offer zero local emissions and extended ranges coupled with shorter recharge times; in addition, for larger vehicle segments the higher energy storage densities of hydrogen as compared to batteries is advantageous. On the other hand, as seen from Table 4, hydrogen based FCEVs do not offer the best solution for including renewable sources of electricity (like wind and solar) because of their much lower efficiency as compared to BEVs.

Bio-ethanol as a fuel seems to offer a sustainable solution due to its renewable nature, its ability to be produced from existing waste streams and its low GHG emissions. GHG emissions can even become negative if one considers the rotting of bio waste on landfills when not used for energy purposes. A potential drawback is that they produce tailpipe emissions unlike hydrogen-FCEVs and BEVs. One important advantage, however, is that bio-ethanol does not require the development of new infrastructures for transportation, distribution and refuelling of bio-ethanol. As compared to the other alternatives, bio-ethanol offers additional advantages in terms of its ability to be readily implemented through existing ICE vehicles. The important discussion which evaluates the health effects of ethanol by
comparing E85 and gasoline (used in ICE vehicles) indicate increased health risks for ethanol16,50. While this is certainly of concern, recent studies show that in Sweden, an E85 vs gasoline scenario leads to 1.6 less preterm deaths per year for the E85 scenario51. The socio-economic costs from acetaldehyde emission caused due to the use of E85 (in ICE vehicles) for the Oslo area (Norway) was evaluated in economic terms, by taking into account the health and environmental effect52. While the use of E85 increased the cancer rate (as compared to gasoline), the overall socio-economic costs are reduced due to lower CO\textsubscript{2} and NO\textsubscript{x} emissions52. The use of bio-ethanol in ICE vehicle just as a transition scenario would not only result in lower GHG emissions but may also reduce health hazards51,52. The health effects of bio-ethanol when used in fuel cell based applications needs to be further explored; it can be anticipated from the fuel cell process however, that all the contaminants present with ICE vehicles would be lower by orders of magnitude in bio-ethanol based FCEV. The ultimate goal of using bio-ethanol (based on organic waste) in a fuel cell would result in considerably lower GHG emissions as compared to H\textsubscript{2} (from NG) based fuel cells for many decades to come.

Acknowledgement

This work was financially supported by the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and Newcastle University.
Appendix

Table 5: Basic configuration of the vehicle which is simulated

Variable	Symbol	Units	Value
Air drag coefficient	c_w	(-)	0.31
Coefficient of rolling resistance	f	(-)	0.011
Frontal area	A	m2	2.2
Rotational inertia coefficient	I_{rot}	(-)	1.1
Mass of kerb vehicle	m	kg	1100
Slope	θ	deg	0
Density of air	ρ	kg/m3	1.225
Acceleration due to gravity	g	m/s2	9.81

Table 6: Efficiency of the drivetrain components

Component	Efficiency
Battery- Lithium ion	0.95
Inverter	0.97
Motor	0.95
Transmission	0.95
H_2 PEM FC System	0.55
CNG reformer- H_2 PEM FC system	0.31
Ethanol reformer- H_2 PEM FC system	0.41
DEFC	0.5

*estimated values

Table 7: Specification of the storage devices

Component	Specific energy (MJ/kg)	Storage tank mass ratio (kg tank/kg fuel)
Li-ion battery	0.432	
Compressed H_2	120	17.4
CNG	48	1.75
Ethanol	26.8	0.10

Table 8: Well-to-tank factors for electricity production from different primary energy sources

Source	Type of Power plant	WTT Code	WTT Factors (MJ/MJ elec.)	(g CO$_2$ eq/MJ elec.)
Coal	Conventional coal power plant	KOEL1	1.81	292.40
Oil	Heavy fuel oil in conventional power plant	FOEL1	1.94	237.80
Natural Gas	Combined cycle Gas Turbine power plant, 4000 km NG pipeline	GPEL1b	1.19	132.40
Nuclear	Fission reactor	NUEL	3.08	5.00
Biomass and Waste	Biogas ex municipal waste, local	OWEL1a	3.40	13.60
Wind	Wind Turbines	WDEL	0.12	0.00
Solar	Solar PV	Same as wind	0.12	0.00
Hydro	Hydro power plants	Same as wind	0.12	0.00

Note: In general, the WTT factor is expressed as MJ/MJ$_{fuel}$. This represents the total primary energy expended, regardless of its origin, to produce one MJ of finished fuel. These figures exclude the heat content of the fuel itself (i.e. 1MJ/MJ$_{fuel}$ means that as much energy is required to produce the fuel as is available to the final user). MJ/MJ$_{elec}$ refers to the total amount of energy expended (accounting for the inefficiency in transformation, transportation and distribution, etc.) per MJ of electricity production. For fossil fuel based power plants, primary energy input is calculated from thermal energy content of fuel. For renewable energy sources energy conversion efficiency is taken to be 100% (since the resource is considered to be unlimited). The inefficiency indicated accounts for transmission and distribution losses.

Glossary

List of abbreviations used

ICE Internal Combustion Engine
GHG Greenhouse Gas
BEV Battery Electric Vehicle
FCEV Fuel Cell Electric Vehicle
DEFC Direct Ethanol Fuel Cell
IEA International Energy Agency
CNG Compressed Natural Gas
LCA Life Cycle Analysis
WTW Well to Wheel
HEV Hybrid Electric Vehicle
JEC JRC, EUCAR and CONCAWE
JRC Joint Research Centre
EUCAR European Council for Automotive Research and Development
CONCAWE The oil companies’ European association for environment, health and safety in refining and distribution
E mix Electricity production mix
EU European Union
PEM Polymer Electrolyte Membrane
NG Natural Gas
FC Fuel Cell
WTT Well to Tank
TTW Tank to Wheel
Li-ion Lithium-Ion
OS On Site
centr. Central
MSW Municipal Solid Waste
EGE Electricity mix of Germany
EAU Electricity mix of Austria
ESW Electricity mix of Sweden
EFR Electricity mix of France
EEU Electricity mix of European Union Mix
EUS Electricity mix of United States of America
HNO Natural Gas – On Site reforming
HNC Natural Gas – Central reforming
NGP Natural Gas – Pipeline
BSB Bioethanol from Sugar Beet
BCO Bioethanol from Corn
BSC Bioethanol from Sugar Cane
BWS Bioethanol from Wheat Straw
BWW Bioethanol from Waste Wood
GWP Global warming potential
elec. Electricity

Nomenclature of symbols used

\(P \) Power (W)
\(m \) Mass of vehicle (kg)
\(v \) Velocity (m/s)
\(a \) Acceleration (m/s²)
\(f_{rot} \) Rotational inertia coefficient (–)
\(c_w \) Air drag coefficient (–)
\(A \) Frontal area (m²)
\(\rho \) Density of air (kg/m³)
\(f \) Coefficient of rolling resistance (–)
\(g \) Acceleration due to gravity (m/s²)
\(\theta \) Slope of the road (–)

Nomenclature of subscripts used

\(accln \) Acceleration
\(ad \) Air drag
\(roll \) Rolling resistance
\(inc \) Incline
\(total_wheel \) Total demand at wheels
References

1. International Energy Agency, CO2 Emissions From Fuel Combustion Highlights, IEA Statistics, France, 2013.

2. S. K. Ribeiro, S. Kobayashi, M. Beuthe, J. Gasca, D. Greene, D. S. Lee, Y. Muromachi, P. J. Newton, S. Plotkin, D. Sperling, R. Wir and F. J. Zhou, Transport and its infrastructure. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

3. M. Finkbeiner, A. Inaba, R. B. H. Tan, K. Christiansen and H.-J. Klüppel, Int. J. Life Cycle Assess., 2006, 11, 80–85.

4. S. S. Williamson and A. Emadi, IEEE Trans. Veh. Technol., 2005, 54, 856–862.

5. G. J. Offer, D. Howey, M. Contestabile, R. Clague and N. P. Brandon, Energy Policy, 2010, 38, 24–29.

6. S. Campanari, G. Manzolini and F. Garcia de la Iglesia, J. Power Sources, 2009, 186, 464–477.

7. C. E. Thomas, Int. J. Hydrogen Energy, 2009, 34, 6005–6020.

8. U. Eberle, B. Müller and R. von Helmolt, Energy Environ. Sci., 2012, 5, 8780–8798.

9. W. G. Colella, M. Z. Jacobson and D. M. Golden, J. Power Sources, 2005, 150, 150–181.

10. M. Z. Jacobson, Energy Environ. Sci., 2009, 2, 148–173.

11. R. Edwards, H. Hass, J.-F. Larivé, L. Lonza, H. Mass and D. Rickeard, Well-to-Wheel Analysis of Future Automotive Fuels and Powertrains in the European Context. Well-to-Wheel Report Version 4a, JEC Well-to-Wheels Analysis, JEC Technical Reports, 2014, DOI: 10.2790/95533, Available online at: http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu/about-jej/files/documents/wtw_report_v4a_march_2014_final.pdf (accessed Jul 2015).

12. T. Abbasi and S. A. Abbasi, Renew. Sustain. Energy Rev., 2011, 15, 3034–3040.

13. G. Sorda, M. Banse and C. Kernfert, Energy Policy, 2010, 38, 6977–6988.

14. J. Friedl and U. Stimming, Electrochim. Acta, 2013, 101, 41–58.

15. M. Z. Jacobson, W. G. Colella and D. M. Golden, Science, 2005, 308, 1901–1905.

16. M. Z. Jacobson, Environ. Sci. Technol., 2007, 41 (11), 4150–4157.

17. N. Omar, M. Daowd, O. Hegaz, G. Mulder, J. M. Timmermans, T. Coosmans, P. Van den Bossche and J. Van Mierlo, Energies, 2012, 5, 138–156.

18. R. Adany, D. Aurbach and S. Kraus, J. Power Sources, 2013, 231, 50–59.

19. S. G. Wirasingha and A. Emadi, IEEE Trans. Veh. Technol., 2011, 60, 111–122.

20. Robert Bosch GmbH, Automotive Handbook, Wiley, 2011. ISBN: 1119975565, 9781119975564.

21. S. Eaves and J. Eaves, J. Power Sources, 2004, 130, 208–212.

22. R. Edwards, J.-F. Larivé, D. Rickeard and W. Weindorf, Well-to-Wheel Analysis of Future Automotive Fuels and Powertrains in the European Context. Well-to-Tank Report Version 4a, JEC Well-to-Wheels Analysis, JEC Technical Reports, 2014, DOI: 10.2790/95629, Available online at: http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu/about-jej/files/documents/report_2014/wtt_report_v4a.pdf (accessed Jul 2015).

23. Joint Research Centre (Online), https://ec.europa.eu/jrc/en/about, (accessed Jul 2015).

24. Joint Research Centre (Online), http://iet.jrc.ec.europa.eu/about-jec/downloads, (accessed Jul 2015).
R. Edwards, J.-F. Larivé, D. Rickeard and W. Weindorf, *Well-to-Wheel Analysis of future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Appendix 2 - Version 4a, Summary of energy and GHG balance of individual pathways*, JEC Technical Reports, 2014, DOI:10.2790/95629, Available online at: http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu/about-jec/files/documents/report_2014/wtt_appendix_2_v4a.pdf (accessed Jul 2015).

The Shift Project Data portal (Online), http://www.tsp-data-portal.org/Breakdown-of-Electricity-Generation-by-Energy-Source#tspQvChart, (accessed Dec 2014).

M. Balat and H. Balat, *Appl. Energy*, 2009, 86, 2273–2282.

European Biofuel Technology Platform (Online), http://www.biofuelstp.eu/bioethanol.html, (accessed December 2014).

Renewable Fuel Association (Online), http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production, (accessed December 2014).

Sugarcane.org (Online), http://sugarcane.org/global-policies/policies-in-the-european-union/policy-overview-ethanol-in-europe, (accessed December 2014).

R. Edwards, H. Haas, J.-F. Larivé, L. Lonza, H. Mass and D. Rickeard, *Well-to-Wheel Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheel Report Appendix 1 - version 4.a, Summary of WTW Energy and GHG balances*, JEC Technical Reports, 2014, DOI: 10.2790/95533, Available online at: http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu/about-jec/files/documents/wtw_app_1_v4a_march_2014_final.pdf (accessed Jul 2015).

Reuters (Online), http://uk.reuters.com/article/2011/05/30/idINIndia57371820110530, (accessed December 2014).

The New York Times (Online), http://www.nytimes.com/2011/05/26/business/global/26nuclear.html?_r=0, (accessed December 2014).

World Nuclear News (Online), http://www.world-nuclear-news.org/EE-IEA_cuts_nuclear_power_growth_forecast-1211124.html, (accessed December 2014).

National Renewable Energy Laboratory (Online), http://www.nrel.gov/electricity/transmission/issues.html, (accessed December 2014).

Bloomberg (Online), http://www.bloomberg.com/news/2014-06-05/europe-faces-green-power-curbs-after-fivefold-expansion-energy.html, (accessed December 2014).

L. Zhang, T. Brown and S. Samuelsen, *J. Power Sources*, 2013, 240, 515–524.

Transport Analysis (Online), http://www.trafa.se/en/Statistics/Road-traffic/Distances-driven/Distances-driven-based-on-odometer-readings/, (accessed February 2015).

The World Bank (Online), http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS, (accessed February 2015).

National Institute of Statistics and Economic Studies, (Online) http://www.insee.fr/fr/themes/tableau.asp?reg_id=0&ref_id=NATTEF13629, (accessed February 2015).

P. Agnolucci, *Int. J. Hydrogen Energy*, 2007, 32, 3526–3544.

P. B. Thompson, *Agriculture*, 2012, 2, 339–358.

J. Gustavsson, C. Cederberg, U. Sonensson, R. van Otterdijk and A. Meybeck, *Global food losses and food waste - Extent, Causes and Prevention*, Food and Agricultural Organisation, Study conducted for the International Congress: Save Food!, Düsseldorf, Germany, 2011.

N. Sarkar, S. K. Ghosh, S. Bannerjee and K. Aikat, *Renew. Energy*, 2012, 37, 19–27.

P. Lamers, M. Junginger, D. Marchal, P. P. Schouwenber and M. Cocchi, *Global Wood Chip Trade for Energy*, IEA Bioenergy, Task 40: Sustainable International Bioenergy Trade, 2012.

J. H. Kim, J. C. Lee and D. Pak, *Waste Manag.*, 2011, 31, 2121–2125.

Biomass Energy Centre (Online), http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,20041&_dad=portal&_schema=PORTAL, (accessed December 2014).
48 M. Chester and E. Martin, *Environ. Sci. Technol.*, 2009, **43**, 5183–5189.

49 H. Stichnothe and A. Azapagic, *Resour. Conserv. Recycl.*, 2009, **53**, 624–630.

50 H. Zhai, H. C. Frey, N. M. Roushail, G. a Gonçalves and T. L. Farias, *J. Air Waste Manag. Assoc.*, 2009, **59**, 912–924.

51 E. Fridell, M. Haeger-Eugensson, J. Moldanova, B. Forsberg and K. Sjöberg, *Atmos. Environ.*, 2014, **82**, 1–8.

52 K. Sundseth, S. Lopez-Aparicio and I. Sundvor, *J. Clean. Prod.*, 2015, **95**.

53 Indexmundi (Online), http://www.indexmundi.com/energy.aspx/?product=gasoline&graph=consumption, (accessed December 2014).

54 S. Ramachandran, Master Thesis, *Development of Automotive Application Relevant Dynamic Ragone Charts*, Technical University of Munich, 2013.

55 Dow Kokam, in 60 Ah High Power Superior Lithium Polymer Cell - Datasheet.

56 BRUSA Elektronik AG, in DMC5 - High power inverter - Datasheet.

57 BRUSA Elektronik AG, in IPM1 - Internal Permanently Excited Synchronous Motor 30 kW Generator for range extender applications - Datasheet.

58 BRUSA Elektronik AG, in Transaxle-Brussa GSX1-102-240-A01- Datasheet.

59 V. Jaggi and S. Jayanti, *Appl. Energy*, 2013, **110**, 295–303.
Novelty of the work: A FCEV based on bio-ethanol derived from organic waste can be a more sustainable alternative to BEVs and H2-FCEVs.
GHG emissions of battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are compared with respect to conventional internal combustion engines (ICE) based vehicles. BEVs show clear advantages regarding GHG emissions, especially for countries with low fossil fuel based electricity. Their major drawback, the limited range, can be overcome by FCEVs based on hydrogen. In the well-to-wheel analysis the output of GHG emissions is, however, considerable since hydrogen is largely made from natural gas. While hydrogen may be available from renewable peak power, the amount remains small to serve a broader application. Hydrogen from renewable electricity is an unlikely pathway for the intermediate future since for many decades to come electricity from solar and wind is needed to offset fossil fuel based electricity production in order to reduce global GHG emissions. In addition, the pathway electricity-to-hydrogen-to-electricity suffers from a low efficiency of approx. 30%. An alternative scenario to using hydrogen in a FCEV is bio-ethanol which is derived from organic waste. This would allow for a grossly simplified fuel infrastructure which can also serve ICE based vehicles. Using a Direct Ethanol Fuel Cell (DEFC) at intermediate temperatures can result in complete oxidation of ethanol and in high efficiencies.