Adipose-derived stromal cell in regenerative medicine: A review

Reza Tabatabaei Qomi, Mohsen Sheykhhasan

Adipose-derived stromal cell in regenerative medicine is the major issue. Various kinds of stem cells have been used for the tissue engineering and regenerative medicine. Such as, several stromal cells have been employed as treat option for regenerative medicine. For example, human bone marrow-derived stromal cells and adipose-derived stromal cells (ADSCs) are used in cell-based therapy. Data relating to the stem cell therapy and processes associated with ADSC has developed remarkably in the past 10 years. As medical options, both the stromal vascular and ADSC suggests good opportunity as marvelous cell-based therapeutics. The some biological features are the main factors that impact the regenerative activity of ADSCs, including the modulation of the cellular immune system properties and secretion of bioactive proteins such as cytokines, chemokines and growth factors, as well as their intrinsic anti-ulcer and anti-inflammatory potential. A variety of diseases have been treated by ADSCs, and it is not surprising that there has been great interest in the possibility that ADSCs might be used as therapeutic strategy to improve a wider range of diseases. This is especially important when it is remembered that routine therapeutic methods are not completely effective in treat of diseases. Here, it was discuss about applications of ADSC to colitis, liver failure, diabetes mellitus, multiple sclerosis, orthopaedic disorders, hair loss, fertility problems, and salivary gland damage.

Key words: Adipose-derived stromal cell; Colitis disease; Liver failure; Diabetes mellitus; Multiple sclerosis; Orthopedic disorders; Hair loss; Fertility problems; Salivary gland damage

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
since their discovery, ADSCs have transformed our toolkit for treating human disorder and disease. As the field enters its next decade, a new wave of therapeutic applications, such as hepatic regeneration, diabetes mellitus treatment, multiple sclerosis treatment, and orthopaedic disorders regeneration, has converged with ADSCs to yield new insights for their use in stem cell engineering and regenerative medicine.

Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9(8): 107-117 Available from: URL: http://www.wjgnet.com/1948-0210/full/v9/i8/107.htm DOI: http://dx.doi.org/10.4252/wjsc.v9.i8.107

INTRODUCTION

Mesenchymal stromal cells (MSCs) are undifferentiated cells that are able to renew their population and become differentiated to produce all specialized cell types of the tissue from which they are originating[1] (Figure 1). While MSCs are traditionally isolated from bone marrow, over the last few years, they have also been found in many other adult tissues such as liver, cord blood, placenta, dental pulp and adipose tissue[1]. The different stromal cells have some features in common, including morphological and immunophenotypic properties[1]. Although, bone marrow-derived stromal cells (BMSCs) and adipose-derived stromal cells (ADSCs) are better known than others[2-4], ADSCs share biological properties with stromal cells obtained from bone marrow; however, these candidate cells also have some different properties compared to BMSCs[2,3].

Furthermore, Both Adipose-derived stromal cells and bone marrow-derived stromal cells have played a prominent role in regenerating the defective tissue of patients[4]. In the recent years, as one of the most successfully developed stem cells, adipose-derived stromal cell is a better choice than many other adult stem cells such as bone marrow-derived stromal cell because of its characteristics[5].

Such as, ADSCs not only have decreased sampling risk for individual donors compared with BMSCs but also have been needed to an easier method for isolation compared with BMSCs[6]. The adipose tissue, ADSCs’ harvested source, could also provide a higher number of stromal cells compared with bone marrow tissue as BMSCs’ obtained source[4]. Furthermore, ADSCs are superior to BMSCs in some biological features, including the immune feature regulation[7]. In addition, with an emphasis on adult stem cells rather than on embryonic stem cells, regenerative medicine programs are using ADSCs as more applicable adult stem cells to treat different diseases[8]. Today, Adipose-derived stromal cells are known as a rich source of MSCs which are considered a suitable case for repair and regeneration of various tissues because of their rapid proliferation and multilineage potential[2-5]. Several properties making scientists to pay attention to ADSCs include Immunomodulatory effects and secretion of a variety of growth factors and cytokines as well as anti-apoptosis and anti-inflammation potential[9]. In vitro ADSCs are identified by plastic adherence, colony forming capacity, rapid proliferation and lack of major histocompatibility class II (MHC II)[7,8]. ADSCs not only are interesting in basic sciences, but also have been used in a broad range of regenerative medicine application, such as orthopaedic damage, fertility problems, hair loss, Collitis disease, liver failure, diabetes mellitus, multiple sclerosis, etc. In the treatment of many of different diseases, ADSCs have exhibited a great potential for tissue repair and modulation of host immune response in vivo[6]. ADSCs from healthy donors are an attractive cell source for organ regeneration[9]. These cells can be obtained and cultured in vitro in sufficient numbers and subsequently used in damaged tissue regeneration[10]. So far it has been well recognized that these cells possess a broad spectrum of differentiated potentials, from cell types of mesodermal origin to ectoderm (such as hepatocyte) and endoderm (such as beta cells), when induced in vitro[10-13] (Figure 2). ADSC can be expanded effortlessly in culture for long periods of time without losing their differentiation capacity[12]. They are robust cells, which can easily survive freezing temperatures with limited loss in viability, proliferative capacity and differentiate potency[12]. The most attractive aspect of ADSCs is their immunosuppressive properties that allow transplanting them irrespective of a human leukocyte antigen (HLA) match between the host and the donor[14]. These cells are negative for surface marker proteins, such as CD14, CD34, and CD45, in vitro[15]. Although, these candidate cells express CD34 in vivo[16].

Moreover, ADSCs express cell surface markers, including CD10, CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166 and CD271 (Figure 3) and different varieties of trophic factors, such as molecular regulation of cell growth and proliferation, fibrosis, angiogenesis, and immune suppression[7,17-24]. Additionally, the Anti-apoptotic, anti-oxidant, anti-inflammatory activities of the ADSCs are among other important characteristics that can affect their regenerative potential[9,25-29]. Furthermore, ADSC treatment is now a widely used therapeutic strategy in the field of medicine because of its intrinsic therapeutic properties, relatively easy approach to harvesting them, and the large number these cells obtained after isolation[29].

In 160 clinical trials, ADSC-based therapy has been also used to treat various diseases such as orthopaedic disorders, hepatic failure, inflammatory diseases, and autoimmune disease[30].

SAFETY ISSUES OF ADSC CELLS

The safety study of ADSCs conducted by the different preclinical and clinical trial has documented that these
candidate cells are safe enough to be used in various treatment methods and can also play an effective role in the treatment of diseases[31-42]. Such as, the current finding has shown that autologous ADSCs could act as a safety agent in muscle defect regeneration, both smooth and skeletal muscle, due to their profibrotic properties as well as trophic factors[43]. Based on the results obtained from a clinical trial study, it was verified that used adipose-derived stromal cell (ADSC) implantation showed an appropriate safety feature with no serious complication in patients with degenerative disc disease[44]. Furthermore, in phase II of the clinical trial study, the ADSC injections into the knee of 18 patients with osteoarthritis (OA) showed that these procedures do not have any severe adverse effects[45].

However, there is little report about severe adverse effects. Such as, some of the adverse effects observed during the study include headache, inflammation, etc. [46]. Furthermore, the safe use of ADSCs in cosmetic reconstructive surgery following a tumor is particularly doubtful because of the potential of these candidate cells to promote the development and progression of cancer[47,48].

These cell candidates could be further assessed for understanding their therapeutic potential and safety issues in them.

In review study, we focused on ADSCs application in treat of inflammatory disease, liver failure, complication related to diabetes mellitus, multiple sclerosis diseases, orthopaedic disorders, hair loss, fertility problems, and salivary gland damage, both in vivo and clinical study. Also, it was provided the significant number of ADSC-based clinical trials (Table 1)[35-41,45,49-55].

COLITIS DISEASE

Colitis, an inflammation of the colon, was treated with using intraperitoneal injection 10^5-10^6 human ADSCs or murine ADSCs in a study[56,57]. This study was associated with reduced weight loss, improved survival and improved clinical in ADSC groups[57]. In another study, intravenous tail vein administration of 10^6 macrophages cultured with either human ADSCs vs mouse ADSC lead to ameliorated disease activity index, alleviated weight loss and mortality in mice treated with ADSCs and ADSC-MF (macrophages cultured with ADSCs)[58]. Also, intraperitoneal infusion 2×10^6 human and mouse ADSCs demonstrated significant attenuate in inflammation scores overall the colon and increase weight[59].

LIVER FAILURE

The liver is a complicated organ that plays a metabolic function in human body. Any damage to this vital organ causes irreparable damage in the body. Due to this fact that adipose-derived stromal cells can differentiate into hepatocyte-like cells, both in vitro and in vivo condition, as well as capabilities such as homing in...
the defect location, and immunomodulatory and anti-apoptotic mechanism, they are used for liver failure treatment[29,60,61]. Furthermore, these cells are including anti-inflammatory factors and secrete various factors involved in tissue regeneration and are considered as a new therapeutic strategy to rebuild of liver damage[62,63].

Previous studies have display that ADSC transplantation demonstrates appropriate therapeutic outcomes for multiple diseases, including liver failure[63-65]. It is cleared that human ADSC transplantation could efficiently improve the liver function of acute liver failure (ALF) rats[66]. Furthermore, ADSCs administration increased the survival rates as well as decreased the ALF conditions in an immunocompetent ALF rat model[41].

DIABETES MELLITUS

Diabetes mellitus, a multifactor disease, is one of the main factors of death around the world. Because of the regenerative capacity and growth factors, cytokines, and chemokines secretion, in addition to angiogenesis and vascularization features, stromal vascular fraction has suitable potential for the therapeutical application in major complication of diabetes mellitus including...
foot ulcer related to diabetic, nephropathy and retinopathy[68]. An experiment on diabetes athymic rat illustrate that ADSCs injection to vascular network of retina dysfunction site can significantly decrease apoptosis and vascular leakage and increase vascular synthesis and attenuate neurodegeneration[69].

MULTIPLE SCLEROSIS

Multiple sclerosis, one of the most devastating auto-immune diseases of the nervous system, can be found throughout the entire world[70]. Several animal studies have been performed on this disease using ADSC and stromal vascular fraction (SVF)[68,71-75]. In other studies the beneficial effects of ADSC and SVF have been evaluated on experimental autoimmune encephalitis (EAE), another disease of the nervous system[76,77]. One such animal study indicated that SVF may also have a therapeutic effect on multiple sclerosis[78]. In another study, the use of both ADSC and SVF resulted in a reduction in the demyelination and pathological features of EAE[79]. Both of these studies demonstrate that SVF, when employed in combination with ADSC, can lead to an amelioration of EAE in a murine model[79].

In one study, the expression level of interleukin-10 as an immunomodulator factor was high[79]. Additionally, an in vivo study identified that an ADSC-conditioned medium, along with ADSC, has both neuroprotective and immunomodulatory effects, suggesting the use of this conditioned medium as a valuable agent for treatment of EAE[79]. Meanwhile, neither pre-clinical results nor clinical evidence have demonstrated any serious adverse effects of ADSC administration[75-78]. In one clinical study, four patients with multiple sclerosis were treated using ADSC injection[79]. The clinical outcome demonstrated that ADSC administration is an effective treatment strategy for patients with multiple sclerosis[79]. Moreover, the murine EAE model has demonstrated that ADSC may be used to ameliorate motor function and decrease inflammation[79].

Moreover, in a phase I dose-escalation safety trial noted that intrathecal treatment of autologous adipose-derived stromal cells appears safe at the tested doses in amyotrophic lateral sclerosis[30]. Compared to use of fat transplantation, use of ADSCs in systemic sclerosis (SS) patients improved mouth functional disability, demonstrating the importance of ADSCs administration in patients suffering from SS[80].

ORTHOPAEDIC DISORDERS

Orthopaedic disorders have been considered as leading problems in the human community.

Since ADSCs contain therapeutic properties (i.e., differentiation capability into a variety of cell lineage in vitro as well as having immunosuppressive, osteo-inductive and anti-inflammatory features), they might be used for treatment of orthopedic major diseases such as degenerative OA[81,82].

It was reported that ADSCs increased the expression of osteogenic genes [i.e., runt related transcription factor 2 (RUNX2), Alkaline phosphatase, Type I collagen] and chondrogenic genes [i.e., Type II collagen, SRY-box 9 (SOX9) and aggrecan] on biomaterials in a chondrogenic inducing medium[83].

Previous studies showed that administration of both ADSCs and SVF in early OA is a safe and therapeutically efficient approach[82-86].

A study on rabbit model indicated that an eight week ADSCs/hydroxyapatite implantation to critical size tibia defects could remarkably enhance mineral content and bone regeneration[87]. Additionally, two clinical trials on bone healing illustrated that ADSCs in combination with synthetic bone graft and biomaterials may affect the regeneration, augmentation and vascularization of bone fracture[88].

Injection of ADSCs via second-look arthroscopy improved cartilage regeneration and decreased pain in patients with OA[89]. In addition, Jo et al.[90] (2014) reported that the injection of 1 × 106 cell/mL ADSCs improved degenerative OA of 18 patients histologically and clinically after 6 mo of injection.

HAIR LOSS

Hair loss is one of the most crucial cosmetic challenges in both women and men these days. It’s a problem for the young and old alike.

ADSCs have great potential in hair repair and regeneration, so they are an important option for hair loss treatment[51,53,90-93]. The paracrine characteristics of ADSCs may include the specific factors released by them, including VEGF, HGF, IGF, and PDGF, which exert the specified effects on hair loss regeneration[51-53,93-95]. These factors are too therapeutically appropriated to be used for clinical application in patients with hair loss[51-53,93-95]. According to recent studies, it has been found that using ADSCs can stimulate hair growth in animal models[93]. Studies have shown that the conditioned medium (CM) derived from ADSCs also had proliferative effects on hair cells in vitro[95]. It was declared that a conditioned medium of ADSCs could lead to hair regeneration by promoting hypoxia[96]. Furthermore, a clinical trial involving 22 participants with alopecia documented that intradermal administration of a conditioned medium of ADSCs may lead to an ameliorating effect in hair regeneration process[93].

These medium candidates, in combination with LL-37, could also induce hair regeneration in vivo[90]. Furthermore, a study demonstrated that ADSCs-conditioned medium not only has a stimulated alkaline phosphatase activity, but is also related to dermal papillae cells and dermal papillae markers[89].

In addition, a retrospective observational study noted that hair density and thickness could be improved following 12 wk of CM-ADSC administration[90].

Previous evidence has demonstrated that ADSCs and adipocytes could act as a niche for hair follicles,
due to providing an increase in the skin’s thickness and progress in the intradermal adipocyte layer during the anagen phase, as well as creating a decrease in the intradermal adipocyte layer during the catagen and telogen phases[98,99]. In addition, ADSCs and adipocytes regulate the hair cycle via the release of signaling molecules, i.e., WNTs, PDGF, BMPs, and FGFs[98,99]. These signals could lead to activation of the stem cell differentiation in the hair follicle and bulge stem cell activation during the telogen phase[98,99]. Canine ADSCs administration could also be caused by the increase in the vascularization process in the dermal papillae and has a beneficial effect on hair growth and repair in the nude mice model[100]. In addition, an animal study showed that ADSCs in combination with core-shell sphere could help in the formation of hair[97]. ADSCs can also support auditory hair cells, and these cells are capable of regenerating damaged hair[101]

Furthermore, protein secreted by ADSCs may be considered an appropriate tool for hair repair[93]. Such as, an observational pilot experiment performed on twenty seven patients with female pattern hair loss demonstrated that administration of protein extract derived from ADSCs could be caused to enhance in hair density and thickness since 12-wk follow up treatment. Furthermore, no serious complication was observed in patients[93]. Similarly, another pilot experiment verified the beneficial effect of ADSCs protein extract in patients with male pattern hair loss[99]

FERTILITY PROBLEMS

Infertility is one of the most common problems impacting both men and women. This health issue could lead to decreased populations, and treatment strategies are necessary to address it. However, many current therapeutic strategies are not very effective. As a result, more efficient treatments should be developed. One such solution is ADSCs-based therapy, which has been demonstrated to lead to improvements in fertility rates.

An animal study illustrated that the administration of ADSC could be considered as a therapeutic strategy in chemotherapy-induced ovarian dysfunction in rat models[102]. For example, the use of ADSCs caused a significant increase in the number of maturing follicles and corpora lutea with definite oocytes inside[103]

In another preclinical experiment, the use of collagen scaffold in combination with ADSCs enhances the short-term maintenance of ADSCs in ovaries[100]. It aims for long-term recovery of ovarian function, in addition to improving the fertility of rats with premature ovarian failure[104]

Similarly, Sun et al[105] (2013) demonstrated that intraperitoneal injection of ADSCs could ameliorate ovarian function in mice with chemotherapy-induced ovary damage.

Furthermore, on considering an *in vitro* study, it was identified that conditioned medium obtained from ADSCs could lead to human oocyte maturation and embryo formation following intracytoplasmic sperm injection through secretion of paracrine factors[106]

It is elucidated that the administration of ADSCs could promote fertility restoration in azoospermia rats, as well as the generation of sperm in them[107]

In addition, a human *in vitro* study reported that supernatant product of ADSCs (SPAS) could be ameliorate sperm motility in male infertile patients that can be due to existence of bioactive molecules and growth factors, which have a positive effect on sperm motility parameter[108]

In several animal studies, it was identified that ADSCs injection or transplantation have a positive impact on the viability of ovarian follicles and could increase the retention of short-term cryopreserved ovarian grafts, as well as improve the graft quality in the rat model[102-105,109]

Several preclinical and *in vivo* experiments have verified that the administration of ADSCs may have a beneficial effect on Peyronie’s disease, which is a problem that could lead to infertility[110-113]

Considering obtaining data from a pilot study, the application of autologous SVF in combination with shock wave may have a therapeutic effect on Peyronie’s disease[36]

In addition, this study on 11 patients documented that the administration of these adult stem cells is a safe process for the treatment of Peyronie’s disease[36]

SALIVARY GLAND DAMAGE

The salivary gland is considered as one of the most exocrine glands that generate saliva, which helps the chewing and swallowing process.

Radiotherapy is one of the most well-known agents that may cause damage to the salivary gland. Due to their capacity to differentiate into salivary gland cells and their potential to secrete bioactive molecules, as well as their capability to induce regeneration following salivary gland failure, ADSCs have been considered promising tools for salivary gland damage regeneration[114-124]

There are a number of researches and clinical studies which have looked into salivary gland damage regeneration through ADSC application, by means of local and systemic use[114-124]

It was demonstrated that systemic use of ADSCs could provide a support against salivary gland damage induced by irradiation[114]. In addition, it was identified that ADSCs may migrate engrafting to an injured location via the blood stream[114,120,121]

Similarly, Maria et al[109] (2011) documented that ADSCs non-permanently supply a salivary gland cell of the endothelial or salivary acinar cell phenotypic trait by transdifferentiation into salivary gland cells.
It was identified that ADSC administration may be decreased in the apoptosis process through secreted growth factor with anti-apoptotic action\cite{114,116,117,120,122}. Furthermore, the fibrosis reaction was diminished after ADSC administration\cite{114,120}. It has been proposed that paracrine mechanisms could be responsible for the improvement of induced damage by radiation through providing growth factors related to neo-vascularization\cite{120}.

Both animal and human experiments have verified that ADSCs could represent a safe treatment strategy for salivary gland damage\cite{40,114,115,117,120,123,114,100,134}.

In addition, secreted bioactive factors from ADSCs could promote epithelial proliferation and a stimulated angiogenesis process\cite{114,100,134}.

One study explored the local administration of ADSCs for improved tissue remodeling effectiveness in impaired salivary glands induced by radiation\cite{117}. This study showed that ADSCs could lead to beneficial results by ameliorating the tissue remodeling of impaired salivary glands induced by radiation\cite{117}.

Furthermore, it was elucidated that ADSC secretome from a hypoxic-conditioned medium may provide a positive outcome on radiation damaged salivary glands, as well as supplying ameliorating and remodeling effects on damaged tissue by paracrine mechanisms\cite{118}.

It was noted that ADSC application could also amend xerostomia induced by radiation, a problem related to salivary dysfunction that it is created following radiotherapy for head and neck cancer, through high expression of a variety of growth factors, including hepatocyte growth factor, and vascular endothelial growth factor\cite{40,120,121}.

CONCLUSION

Cell-based therapy has been used during the recent years to treat a variety of body damages and lesions. A variety of stromal stem cells harvested from several different tissue types have therapeutic characteristics, but BMSCs and ADSCs are widely considered more usable candidates for regenerative medicine among them. The application of ADSCs is greater than that of BMSCs in regenerative medicine because ADSCs have need to more easily technique for isolation compared to BMSCs, as well as they have a much greater rate in number than to BMSCs. because the technique for isolating ADSCs is easier and, consequently, they can be used in greater number than BMSCs.

As a result of their inherent therapeutic properties, ADSCs could also provide a hopeful strategy in the field of regenerative medicine for treatment a wide range of diseases and lesions. This will ensure the availability of ADSCs for research, trial and clinical applications in the future. Due to the promising results obtained from preclinical and clinical trials as well as their unique features in term of regenerative potential, these cells can be useful in the treatment of different diseases. Furthermore, it has been shown that the administration of ADSCs can provide a safe treatment strategy in regenerative medicine approaches. There have been few reported serious side effects resulting from the clinical use of ADSCs, although there have been some reports concerned with adverse effects. Such limited adverse effects observed in some trial studies include headache, inflammation and etc. additionally, considering to previous data, ADSC promote carcinoma progression and for that reason appear to increase the risk of cancer relapse in breast augmentation procedures. Therefore, there are needs for further research on understanding the potential application of ADSC as a safe and effective therapeutic option on diseases treatment in future.

REFERENCES

1. Marquez-Curtis LA, Janowska-Wiezorek A, McGann LE, Elliott JA. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology 2015; 71: 181-197 [PMID: 26186998 DOI: 10.1016/j.cryobiol.2015.07.003]
2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang Ji, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-4295 [PMID: 12475952 DOI: 10.1091/mbc.E02-02-0105]
3. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211-228 [PMID: 11304456 DOI: 10.1089/10763270130002859]
4. Sheykhhasan M, Qomi RT, Ghiasi M. Fibrin Scaffolds Designing in order to Human Adipose-derived Mesenchymal Stem Cells Differentiation to Chondrocytes in the Presence of TGF-β3. Int J Stem Cells 2015; 8: 219-227 [PMID: 26634070 DOI: 10.15283/ijsce.2015.8.2.219]
5. Sheykhhasan M, Qomi RT, Kalhor N, Mehdizadeh M, Ghiasi M. Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian J Orthop 2015; 49: 561-568 [PMID: 26538764 DOI: 10.4103/0019-5413.164043]
6. Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy 2016; 2: 3-20 [DOI: 10.1016/j.jctic.2014.12.001]
7. Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 2015; 7: 470-476 [PMID: 25815130 DOI: 10.4252/wjsc.v7.i2.470]
8. Stringa M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724-2752 [PMID: 22468918 DOI: 10.1089/scd.2011.0722]
9. Frese L, Dijkman PE, Hoerstrup SP. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother 2016; 43: 268-274 [PMID: 27721702 DOI: 10.1119/000448180]
10. Zack-Williams SD, Butler PE, Kalsaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 2015; 7: 51-64 [PMID: 25621105 DOI: 10.4252/wjsc.v7.i1.51]
11. Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012; 2012: 812693 [PMID: 22357397 DOI: 10.1155/2012/812693]
12. Fathi E, Farahzadi R. Isolation, Culturing, Characterization and Aging of Adipose Tissue-Derived Mesenchymal Stem Cells: A Brief Overview. Braz Arch Biol Technol 2016, 59: 1-9 [DOI: 10.1590/1678-4324-2016150383]
Ghiasi M, Tabatabaei Qomi M, Kalhor N, Qomi RT, Sheykhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. *Frontiers in Life Science* 2016; 19(2). DOI: 10.1007/s12653-015-07477-7

Mundra V, Gerling IC, Mihato RJ. Mesenchymal stem-cell based therapy. *Mol Pharm* 2013; 10: 77-89. PMID: 23215004 DOI: 10.1021/mp3005148

Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogegenic rejection. *J Immunol* (Lond) 2005; 2: 8. PMID: 16045800 DOI: 10.1186/1476-9255-2-8

Lin CS, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? *Cytotherapy* 2012; 14: 1159-1163. PMID: 23066784 DOI: 10.1038/ct.2014.3.377; sctm.2012-6298

Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. *Stem Cells* 2005; 23: 412-423. PMID: 15749936 DOI: 10.1634/stemcells.2004-00211

Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Jensen DH, Glovinski PV, Jensen SB, Bardow A, Mc pulmonary gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. *Tissue Eng Part A* 2010; 16: 2821-2829. PMID: 20184435 DOI: 10.1089/ten.TEA.2009.0621

Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gronthos S, Grontos S. Multipotent human adipose-derived stromal cells exhibit a perivascular phenotype in vitro and in vivo. *J Cell Physiol* 2008; 214: 413-421. PMID: 17654479 DOI: 10.1002/jcp.21210

Lindroos B, Boucher S, Chase L, Kuokkanen H, Ratty S, Huhtala H, Lemponen R, Yli-Harja O, Sauronen R, Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. *J Cell Physiol* 2008; 214: 169-179. PMID: 17917877 DOI: 10.1002/jcp.21210

Lindroos B, Aho KI, Kuokkanen H, Ratty S, Huhtala H, Lemponen R, Yli-Harja O, Sauronen R, Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. *Tissue Eng Part A* 2010; 16: 2291-2294. PMID: 20819748 DOI: 10.1089/ten.TEA.2009.0621

Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gronthos S, Gronthos S. Multipotent human adipose-derived stromal cells exhibit a perivascular phenotype in vitro and in vivo. *J Cell Physiol* 2008; 214: 413-421. PMID: 17654479 DOI: 10.1002/jcp.21210

Lindroos B, Boucher S, Chase L, Kuokkanen H, Huhtala H, Haataja R, Vemuri M, Sauronen R, Miettinen S. Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. *Cytotherapy* 2009; 11: 958-972. PMID: 19903107 DOI: 10.3109/14653240903230381

Parker A, Shang H, Khurgel M, Katz A. Low serum and serum-free culture of multipotential human adipose stem cells. *Cytotechnology* 2007; 6: 637-646. PMID: 17877877 DOI: 10.1007/s10611-006-9085-2

Mira vett V, Solves P, Miñana MD, Encabo A, Carbonell-Uberos J, Sanz-Baro R, García-Olmo D. First-in-Human Case Study: Injections for Pain Management of Osteoarthritis in the Human Knee Joint. *Aesthet Surg J* 2016; 36: 229-236. PMID: 26238455 DOI: 10.1093/asjsurg/sjv135

Sanz-Baro R, García-Arranz M, Guadalajara H, de la Quintana P, Herreros MD, García-Olmo D. First-in-Human Case Study: Pregnancy in Women With Crohn’s Perianal Fistula Treated With Adipose-Derived Stem Cells: A Safety Study. *Stem Cells Transl Med* 2015; 4: 598-602. PMID: 25925383 DOI: 10.5966/sctm.2014-0255

Groncho J, Jensen DH, Glovinski PV, Jensen SB, Bardow A, Oliveri RS, Specht L, Thomsen C, Darkner S, Kiss K, Fischer-Nielsen A, von Buchwald C. First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESISRX): study protocol for a randomized controlled trial. *Trials* 2017; 18: 108. PMID: 28720226 DOI: 10.1186/s13063-017-1856-0

Le PTB, Pham PV, Dang LTT, Phan NK. Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus. *Biomed Res Ther* 2016, 3: 1034-1044. DOI: 10.15419/bmrn.v3i12.141

Vu NB, Trinh NV, Phi LT, Vo TLH, Dao TTT, Phan TN, Van Ta T, Pham P. An evaluation of the safety of adipose-derived stem cells. *Biomed Res Ther* 2015; 2: 359-365. DOI: 10.7603/s40680-015-0022-0

Boenelycke M, Gras S, Lose G. Tissue engineering as a potential alternative or adjunct to surgical reconstruction in treating pelvic organ prolapse. *Int Urogynecol J* 2013; 24: 741-747. PMID: 22940843 DOI: 10.1007/s00192-012-1927-4

Comella K, Silbert R, Parolo M. Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease. *J Transl Med* 2017; 15: 12. PMID: 28086781 DOI: 10.1186/s12967-016-1109-0
in participating in treating liver diseases. J Cell Mol Med 2015; 19: 511-520 [PMID: 25354251 DOI: 10.1111/jcmm.12482]
61 de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D’Amico G, Fagioltti F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Possina A, Torre ML, Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ‘cells as drugs’ paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013; 19: 2459-2473 [PMID: 23278600]
62 Zuk P. Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells 2013; 1: 1-35 [DOI: 10.1155/2013/713959]
63 Cantz T, Sharma AD, Ott M. Concise review: cell therapies for hereditary metabolic liver diseases-concepts, clinical results, and future developments. Stem Cells 2015; 33: 1055-1062 [PMID: 25524146 DOI: 10.1002/stem.20190]
64 Miki T, Grubbs B. Therapeutic potential of placenta-derived stem cells for liver diseases: current status and perspectives. J Obstet Gynaecol Res 2014; 40: 360-368 [PMID: 24245961 DOI: 10.1111/jog.12213]
65 Sun K, Xie X, Xie L, Iiao S, Chen X, Zhao X, Wang X, Wei L. Cell-based therapy for acute and chronic liver failures: distinct diseases, different choices. Sci Rep 2014; 4: 6494 [PMID: 25263068 DOI: 10.1038/srep06494]
66 Chen G, Jin Y, Shi X, Qiu Y, Zhang Y, Cheng M, Wang X, Chen C, Wu Y, Jiang F, Li L, Zhou H, Fu Q, Liu X. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther 2015; 6: 40 [PMID: 25890008 DOI: 10.1186/s13287-015-0040-2]
67 Hu C, Li L. In vitro and in vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extramembrane Stem Cells for Treating End Stage Liver Diseases. Stem Cells Int 2015; 2015: 871972 [PMID: 26347063 DOI: 10.1155/2015/871972]
68 Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg 2016; 69: 170-179 [PMID: 26565755 DOI: 10.1016/j.bjps.2015.01.015]
69 Rajasekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, Maturi R, Harris A, Kern TS, March KL. Regenerative therapeutic potential of adipose stem cells in early stage diabetic retinopathy. PLoS One 2014; 9: e84671 [PMID: 24416262 DOI: 10.1371/journal.pone.0084671]
70 Pacheco R, Conterras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol 2014; 5: 117 [PMID: 24711809 DOI: 10.3389/fimmu.2014.00117]
71 Wannkade UD, Shen M, Kolbe R, Fulzele S. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells Int 2016; 2016: 3206807 [PMID: 26981130 DOI: 10.1155/2016/3206807]
72 Feist V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning 2015; 8: 149-162 [PMID: 26386955 DOI: 10.2147/SCCAA.S64373]
73 Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minex B. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7: 29 [PMID: 19393041 DOI: 10.1186/1476-577X-7-29]
74 Bowles AC, Strong AL, Wise RM, Thomas RC, Gerstein BY, Duttreil MF, Hunter RS, Gimble JM, Bunnell BA. Adipose Stromal Vascular Fraction-Mediated Improvements at Late-Stage Disease in a Murine Model of Multiple Sclerosis. Stem Cells 2017; 35: 532-544 [PMID: 27733015 DOI: 10.1002/stem.2516]
75 Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, Siennicka F, Frankowska E, Kidzinski R, Chalimoniuk M, Pojda Z. Clinical Application of Autologous Adipose Stem Cells in Patients with Multiple Sclerosis: Preliminary Results. Mediators Inflamm 2016; 2016: 5302120 [PMID: 27761060 DOI: 10.1155/2016/5302120]
76 Hayatpour A, Ragerdi I, Pasbakhsh P, Kafami L, Atlasi
N, Pirhajati Mahabadi V, Ghasemi S, Reza M. Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. *Cell J* 2013; 15: 142-151 [PMID: 23521692 DOI: 10.4103/0974-2101.99872]

Shaalgay SM, Sabaan NA, Saber T, Abdel Hamid RA. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. *JUBMB Life* 2016; 68: 106-115 [PMID: 26757144 DOI: 10.1002/jubi.1469]

Strong AL, Bowles AC, Wise RM, Morand JP, Dutreil MF, Bowles AC, Wise RM, Morand JP, Dutreil MF, Mayhew J, Bowles AC, Wise RM, Morand JP, Dutreil MF. Hair regeneration using adipose-derived stem cells. *Histol Histopathol* 2016; 31: 249-256 [PMID: 26536569 DOI: 10.14670/HH-11-686]

Jia SE, Sung JH. Hair regeneration using adipose-derived stem cells. *Histol Histopathol* 2016; 31: 249-256 [PMID: 26536569 DOI: 10.14670/HH-11-686]

Park BS, Kim WS. Adipose-Derived Stem Cells and Their Secretory Factors for Skin Aging and Hair Loss. In: Farage MA, Kenneth WM, Howard IM, Editors. Textbook of Aging Skin. Berlin Heidelberg: Springer Press, 2017: 205-224 [PMID: 10.1007/78-3-662-47398-6_20]

Fukao A, Sung JH, Narita K, Watanabe R, Shintani S. The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells. *Am J Cosmet Surg* 2012; 29: 273-282 [DOI: 10.5992/AJCSD-D-12-00015.1]

Moon KM, Park YH, Lee JS, Chae YB, Kim MM, Kim DS, Kim BW, Nam SW, Lee JH. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. *Int J Mol Sci* 2012; 13: 1239-1257 [PMID: 22312315 DOI: 10.3390/ijms13011239]

Park BS, Kim WS, Choi JS, Kim HK, Won JH, Ohkubo F, Fukamai A, Ohtani H, Takeda T. Hair growth stimulation by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. *Biomed Res* 2010; 31: 27-34 [PMID: 20020341 DOI: 10.2220/biomedres.31.27]

Huang CF, Chang YJ, Hsuue YH, Huang CW, Wang DH, Huang TC, Wu YT, Su FC, Hughes M, Chuong CM, Wu CC. Assembling Composite Dermal Papilla Spheres with Adipose-Derived Stem Cells to Enhance Hair Follicle Induction. *Sci Rep* 2016; 6: 26436 [PMID: 27210831 DOI: 10.1038/srep26436]

Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. *Cell* 2011; 146: 761-771 [PMID: 21884937 DOI: 10.1016/j.cell.2011.07.019]

Gaur M, Dobke M, Lunavat VK. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. *Int J Mol Sci* 2017; 18: 208 [PMID: 28117680 DOI: 10.3390/ijms18010208]

Lee A, Bae S, Lee SH, Kweon OK, Kim WH. Hair growth promoting effect of dermal papilla like tissues from canine adipose-derived mesenchymal stem cells through vascular endothelial growth factor. *J Vet Med Sci* 2017; 78: 1811-1818 [PMID: 27647656 DOI: 10.1292/jvms.16-0122]

Yoshida A, Kitajiri S, Nakagawa T, Hashido K, Inaoka T, Ito J. Adipose-tissue-derived stromal cells protect hair cells from aminglycidoside. *Laryngoscope* 2011; 121: 1281-1286 [PMID: 21557227 DOI: 10.1002/lary.21551]

Fouda H, Sabry D, Elsetohy K, Fathy N. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure. *J Adv Res* 2016; 7: 233-241 [PMID: 26966564 DOI: 10.1016/j.jare.2015.05.002]

Omar FR, Amin NMA, Elsherif HA, Mohamed DH. Role of Adipose-Derived Stem Cells in Restoring Ovarian Structure of Adult Albino Rats with Chemotherapy-Induced Ovarian Failure: A Histological and Immunohistochemical Study. *J Caring Res* 2016; 7: 254 [DOI: 10.4172/2157-2518.1000254]

Su J, Ding L, Cheng J, Yang J, Li X, Yan G, Sun H, Dai J, Hu Y. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. *Hum Reprod* 2016; 31: 1075-1086 [PMID: 26965432 DOI: 10.1093/humrep/dew041]

Sun M, Wang S, Li Y, Lu L, Gu F, Wang C, Yao Y. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. *Stem Cell Res Ther* 2013; 4: 80 [PMID: 23838374 DOI: 10.1186/s13287-013-0031-4]

Ghiasi M, Tabatabaei Qomi R, Assaie E, Sheykhasanas M. In vitro Maturation of Human Oocytes using Conditioned Medium of Mesenchymal Stem Cells and Formation of Embryo by Use of ICSI. *SMU Medical Journal* 2014; 1: 89-98

Cakici C, Buyukcu B, Durukcu G, Haliloglu AH, Aksoy A, Tabatabaei Qomi R et al. ADSC/regenerative medicine

Abstract:

The document discusses the role of adipose-derived stem cells (ADSCs) in the treatment of various conditions, including hair regeneration, wound healing, and regeneration of other tissues. It highlights the potential of ADSCs in promoting hair growth, wound repair, and the treatment of skin aging. The text also covers the use of ADSCs in the repair of critical bone defects and their role in the promotion of hair growth in experimental models. The document emphasizes the importance of ADSCs in regenerative medicine, particularly in the context of aging skin and hair loss. The use of ADSCs in the treatment of conditions such as chemotherapy-induced ovarian failure and the promotion of hair growth is discussed, along with the potential for ADSCs in the repair of bone defects and the promotion of skin regeneration.

Keywords: Adipose-derived stem cells, hair regeneration, wound healing, regenerative medicine, aging skin.
Isýk A, Uludag O, Ustun H, Subaşý C, Karaoz E. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal cells: the spermatogenesis. *Biomed Res Int* 2013; 2013: 529859 [PMID: 23509736 DOI: 10.1155/2013/529859]

Fazaeli H, Faezi D, Naser K, Maryam S, Mohammad M, Mahdieh G, TQ Reza. Introducing of a New Experimental Method in Semen Preparation: Supernatant Product of Adipose Tissue: Derived Mesenchymal Stem Cells (SPAS). The Patient’s perspective. *JFI/ Reprod Med Genet* 2016; 4: 1-7 [DOI: 10.4172/2375-4508.1000178]

Terraciano P, Garecz T, Ayres L, Durlt I, Baggio M, Kuhl CP, Laurino C, Passos E, Paz AH, Cirne-Lima E. Cell therapy for chemically induced ovarian failure in mice. *Stem Cells Int* 2014; 2014: 720753 [PMID: 25548574 DOI: 10.1155/2014/720753]

Gökçe A, Abd Elmageed ZY, Lasker GF, Boujihbad M, Kim H, Troy LW, Kadowitz PJ, Abdel-Mageed AB, Sikka SC, Hellstrom WJ. Adipose tissue-derived stem cell therapy for prevention and treatment of erectile dysfunction in a rat model of Peyronie’s disease. *Andrology* 2014; 2: 244-251 [PMID: 24574995 DOI: 10.1111/j.2047-2927.2013.00181.x]

Castiglione F, Hedlund P, Van der Aa F, Bivalacqua TJ, Rigatti P, Van Poppel H, Montorsi F, De Ridder D, Albersen M. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. *Eur Urol* 2013; 63: 551-560 [PMID: 23040209 DOI: 10.1016/j.eururo.2012.09.034]

Piao S, Ryu JK, Shin HY, Zhang L, Song SU, Han JY, Park SH, Kim JM, Kim IH, Kim SJ, Suh JK. Repeated intratunical injection of adenovirus expressing transforming growth factor-beta1 in a rat induces penile curvature with tunical fibrotic plaque: a useful model for the study of Peyronie’s disease. *Int J Androl* 2008; 31: 346-353 [PMID: 17651407 DOI: 10.1111/j.1365-2605.2007.00780.x]

Sangkum P. Research highlights on stem cell therapy for the treatment of Peyronie’s disease. *Transl Androl Urol* 2016; 5: 363-365 [PMID: 27298783 DOI: 10.21037/tau.2016.03.14]

Lim JY, Ra JC, Shin IS, Jang YH, An HY, Choi JS, Kim WC, Kim YM. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. *PloS One* 2013; 8: e71167 [PMID: 23951100 DOI: 10.1371/journal.pone.0071167]

Li Z, Wang Y, Xing H, Wang Z, Hu H, An R, Xu H, Liu Y, Liu B. Protective efficacy of intravenous transplantation of adipose-derived stem cells for the prevention of radiation-induced salivary gland damage. *Arch Oral Biol* 2015; 60: 1488-1496 [PMID: 26265357 DOI: 10.1016/j.archoralbio.2015.07.016]

Kojima T, Kanemaru S, Hirano S, Tatemura I, Ohno S, Nakamura T, Ito J. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. *Laryngoscope* 2011; 121: 1864-1869 [PMID: 21748735 DOI: 10.1002/lary.22080]

An HY, Shin HS, Choi JS, Kim HJ, Lim JY, Kim YM. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage. *PLoS One* 2015; 10: e0141862 [PMID: 26529411 DOI: 10.1371/journal.pone.0141862]

Choi JS, An HY, Shin HS, Kim YM, Lim JY. Enhanced tissue remodelling efficacy of adipose-derived mesenchymal stem cells using injectable matrices in radiation-damaged salivary gland model. *J Tissue Eng Regen Med* 2016; Epub ahead of print [PMID: 27860388 DOI: 10.1002/term.2252]

Maria OM, Tran SD. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype. *Stem Cells Dev* 2011; 20: 959-967 [PMID: 21187001 DOI: 10.1089/scd.2010.0214]

Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoïds. *Stem Cells* 2017; 35: 97-105 [PMID: 27406006 DOI: 10.1002/stem.2455]

Yoo C, Vines JB, Alexander G, Murdoch K, Hwang P, Jun HW. Adult stem cells and tissue engineering strategies for salivary gland regeneration: a review. *Biomater Res* 2014; 18: 9 [PMID: 26331060 DOI: 10.1186/2055-7124-18-9]

Xiong X, Shi X, Chen F. Human adipose tissue-derived stem cells alleviate radiation-induced xerostomia. *Int J Mol Med* 2014; 34: 749-755 [PMID: 25017690 DOI: 10.3892/ijmm.2014.1837]

Kawakami M, Ishikawa H, Tanaka A, Mataga I. Induction and differentiation of adipose-derived stem cells from human buccal cuff pads into salivary gland cells. *Hum Cell* 2016; 29: 101-110 [PMID: 26842556 DOI: 10.1007/s13577-016-0132-z]

Lee J, Park S, Roh S. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system. *Exp Cell Res* 2015; 334: 160-172 [PMID: 25801455 DOI: 10.1016/j.yexcr.2015.03.006]
