Long-distance effects in Rare and radiative K decays

Christopher Smith
• Outline

Introduction

I - \(K \rightarrow \pi \nu \bar{\nu} \)

II - \(K_L \rightarrow \pi^0 \ell^+ \ell^- \)

III - \(K_L \rightarrow \ell^+ \ell^- \)

Conclusion
New round of experiments aiming at very rare K decays

Prime targets because of - the *cleanness of their SM predictions*,
- their *sensitivity to New Physics*.

But, *long-distance effects are nevertheless present*.

How to deal with these effects?

As usual in ChPT, by relating them to other, well measured observables.

These inputs come essentially from *radiative K decays*.

Needed to learn about the *QCD – EW interplay at low-energy*.
A. Electroweak anatomy of rare & radiative K decays

CPV: top dominates	CPC: top & charm (+ small correction from up)
u, c, t	$V \rightarrow Z$
V	W^\pm
\bar{s}	d

$$K_2 \rightarrow \pi^0 \nu \bar{\nu}$$
$$K_1 \rightarrow \ell^+ \ell^-, K_2 \rightarrow \pi^0 \ell^+ \ell^-$$

CPV: only top & charm (Im $V_{ud} V_{us}^\dagger = 0$)
CPC: up dominates
u, c, t
V
\bar{s}

$$K_1 \rightarrow \pi^0 \ell^+ \ell^-$$
$$K \rightarrow \pi \pi \gamma$$
$$K_2 \rightarrow \pi^0 \ell^+ \ell^-$$

CPV: only top & charm (suppressed $\sim 1/m_{c,t}$)
CPC: up dominates
u, c, t
V
\bar{s}

$$K_{1,2} \rightarrow \gamma \gamma, K_{1,2} \rightarrow \pi^0 \gamma \gamma$$
$$K_{1,2} \rightarrow \pi^0 \ell^+ \ell^-$$
$$K_{1,2} \rightarrow \ell^+ \ell^-$$

Mass states are combinations of CP states: $K_L \sim K_2 + \varepsilon K_1, K_S \sim K_1 + \varepsilon K_2$

→ neutral modes have two contributions: direct and (ε-suppressed) indirect.
A. Electroweak anatomy of rare & radiative K decays

Decay	CPV: top dominates	CPC: top & charm (+ small correction from up)
$K_2 \rightarrow \pi^0 \nu \bar{\nu}$	$K_1 \rightarrow \ell^+ \ell^-$, $K_2 \rightarrow \pi^0 \ell^+ \ell^-$	
$K_1 \rightarrow \pi^0 \nu \bar{\nu}$	$K_2 \rightarrow \ell^+ \ell^-$, $K_1 \rightarrow \pi^0 \ell^+ \ell^-$	
$K \rightarrow \pi \nu \nu$	$K \rightarrow \pi \pi \gamma$	
$K_2 \rightarrow \pi^0 \ell^+ \ell^-$	$K_2 \rightarrow \pi^0 \ell^+ \ell^-$	

Decays of the K^+ proceed through both the “CPC” and “CPV” contributions. Except for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, there is always a dominant up-quark contribution.
A. Electroweak anatomy of rare & radiative K decays

CPV: top dominates	CPC: top & charm (+ small correction from up)
$K_1 \rightarrow \ell^+\ell^-$, $K_2 \rightarrow \pi^0\ell^+\ell^-$	$K_1 \rightarrow \pi^0\ell^+\ell^-$, $K_2 \rightarrow \ell^+\ell^-$

CPV: only top & charm (Im $V_{ud}V_{us}^\dagger = 0$)
$K \rightarrow \pi\pi\gamma$
$K_2 \rightarrow \pi^0\ell^+\ell^-$

When there are direct LD contributions, they usually dominate. **New Physics** can be significant when SD is significant (exception: *asymmetries!*).
B. Probing EW structures with rare K decays

EW Penguin	SM and/or example of SUSY diagram	Contributes to
Z	u^i_L Z V d_L W^\pm \bar{s}_L d_L	$K \to \pi\nu\bar{\nu}$ $K_L \to \pi^0\ell^+\ell^-$ $K_L \to \ell^+\ell^-$
γ	u^i_L γ V d_L W^\pm \bar{s}_L d_L	$K_L \to \pi^0\ell^+\ell^-$ $K \to \pi\pi\gamma$
H^0	h^0, H^0, A^0 H^0_{μ} \tilde{u}_R \tilde{u}_L $h_L^0\tilde{u}_R$ d_L A^U d_R^i χ^\pm $\bar{s}_{L,R}$ $d_{R,L}$	$K_L \to \pi^0\mu^+\mu^-$ $K_L \to \mu^+\mu^-$ (helicity-suppressed)

New Physics to be identified by looking at patterns of deviations!
\[K \rightarrow \pi \nu \bar{\nu} \]
A. Where are the long-distance effects?

CPV:	CPC:	\(K \rightarrow \pi\nu\bar{\nu} \)
top dominates	top & charm (+ small correction from up)	\(K_2 \rightarrow \pi^0\nu\bar{\nu} \) \(K_1 \rightarrow \ell^+\ell^-, K_2 \rightarrow \pi^0\ell^+\ell^- \)
top dominates	only top & charm (\(\text{Im} V_{ud} V_{us}^\dagger = 0 \))	\(K_1 \rightarrow \pi^0\ell^+\ell^- \)
top dominates	only top & charm (suppressed \(\sim 1/m_{c,t} \))	\(K_{1,2} \rightarrow \gamma\gamma, K_{1,2} \rightarrow \pi^0\gamma\gamma \) \(K_{1,2} \rightarrow \pi^0\ell^+\ell^- \) \(K_{1,2} \rightarrow \ell^+\ell^- \)

These modes probe exclusively the Z penguin (and W box). Dominated by short-distance physics, but…
A. Where are the long-distance effects?

1. LD effects for the top/charm “pure” SD contribution = matrix elements

\[Q_{\text{eff}} = (\bar{s}d)_V \otimes (\bar{\nu}\nu)_{V-A} \rightarrow \langle \pi | (\bar{s}d)_V | K \rangle \]

2. The up-quark pure LD contribution (\textit{CP-conserving})
B. Matrix elements of the dimension-six operator

The “mesonic dressings” of Q_{eff} is very similar to those for the Fermi operator:

The vector and scalar form-factors are needed (values at zero and slopes).

Isospin-breaking effects, $\varepsilon^{(2)} \sim m_d - m_u \sim 1\%$, must be included!

For that, two very clean ratios can be used:

$$r(q^2) = \frac{f_+^{K^+\pi^0}(q^2)f_+^{K^0\pi^0}(q^2)}{f_+^{K^+\pi^+}(q^2)f_+^{K^0\pi^+}(q^2)} = 1 + \mathcal{O}(\left(\varepsilon^{(2)}\right)^2) = 1.0000(2)$$

$$r_K = \frac{f_+^{K^+\pi^+}(0)}{f_+^{K^0\pi^+}(0)} = 1.00027(8) + \varepsilon^{(2)}0.12(7) = 1.0015(7)$$

($\text{NLO + partial NNLO}$)
For the slopes: \[
\frac{\lambda_+^{FCNC}}{\lambda_+^{CC}} = \frac{M^2(K^{*+})}{M^2(K^{*0})} = 0.990 \ (\pm 0.005)
\]

The Flavianet fit to \(K_\ell 3 \) form-factors & slopes (2008) leads to

\[
\kappa_v \sim \int d\Phi_3 \left| \langle \pi \nu \bar{\nu} | Q_{eff} | K \rangle \right|^2
\]

\(\kappa_v^+ \)	\(\tau_+ \)	\(f(0) \)	slopes	\(r_K \)	\(r \)	Future?	
\(\kappa_v^+ \)	0.5168(25)	19\%	43\%	21\%	17\%	-	\(\pm 0.0023 \)
\(\kappa_v^0 \)	2.190(18)	-	77\%	12\%	9\%	2\%	\(\pm 0.013 \)

\[
\frac{\kappa_v^+}{\kappa_v^0} = 0.2359(17) \quad (\text{Future?} \pm 0.0008)
\]

Still room for improvement on the experimental side.
C. Long-distance up-quark contribution

Naïve inclusion of the Z through the covariant derivative in ChPT produces

\[K^+ \rightarrow \pi^+ \]

\[K^+ \rightarrow K \pi \]

\[K^+ \rightarrow \pi^+ \]

\[K^+ \rightarrow K, \pi \]

How to \textit{disentangle the genuine up-quark contribution}?

Remove from the Z coupling any Q_{eff} structure.

Ask that the Z coupling does not induce a local $K_L \rightarrow Z$ coupling.

Many unknown counterterms, part of them occurring in $K^+ \rightarrow \pi^+ \gamma^* \rightarrow \pi^+ \ell^+ \ell^-.$

Overall, these contributions are small, about 10% of the charm contribution.

(expected from the behavior of the Z penguin $\sim m_q^2$).
$K_L \rightarrow \pi^0 \ell^+ \ell^-$
A. Where are the long-distance effects?

CPV: top dominates	CPC: top & charm (+ small correction from up)
\(Z \)	\(W^\pm \)
\(u, c, t \)	\(V \)
\(\bar{s} \)	\(d \)

\(K \to \pi \ell \ell \)

CPV: top dominates	CPC: up dominates
\(Z \)	\(W^\pm \)
\(u, c, t \)	\(V \)
\(\bar{s} \)	\(d \)

CPV: only top & charm (suppressed \(\sim 1/m_{c,t} \))	CPC: up dominates
\(Z \)	\(W^\pm \)
\(u, c, t \)	\(V \)
\(\bar{s} \)	\(d \)

Direct CPV (Short-distance)

Indirect CPV (Long-distance)

CPC (Long-distance)
B. Direct CPV: Matrix elements of the dimension-six operators

LD effects for the top/charm “pure” SD contribution = matrix elements

\[Q_{\text{eff}}^V = (\bar{s}d)_V \otimes (\bar{\ell}\ell)_V, \quad Q_{\text{eff}}^A = (\bar{s}d)_V \otimes (\bar{\ell}\ell)_A \]

As for \(K \to \pi\nu\bar{\nu} \), those are extracted from \(K_{\ell3} \) decays:

\(\kappa_{e,A}^V \)	\(\kappa_{\mu}^V \)	\(\kappa_{\mu}^A \)				
\(\tau_+ \)	\(f(0) \)	slopes	\(r_K \)	\(r \)	Future?	
0.7691(64)	-	77%	12%	9%	2%	±0.0046
0.1805(16)	-	73%	16%	8%	2%	±0.0011
0.4132(51)	-	54%	38%	6%	2%	±0.0031

\[\kappa_{\ell}^{V,A} \sim \int d\Phi_3 \left| \langle \pi^0 \ell\ell | Q_{\text{eff}}^{V,A} | K_L \rangle \right|^2 \]

Already very precise compared the other contributions.
C. Indirect CPV: Long-distance photon penguin

Indirect CP-violation is $K_L \rightarrow \varepsilon K_1 \rightarrow \pi^0 \ell^+ \ell^-$, related to $K_S \rightarrow K_1 \rightarrow \pi^0 \ell^+ \ell^-$:

Loops are rather small, a single counterterm a_s dominates.

It is fixed from $K_S \rightarrow \pi^0 \ell^+ \ell^-$ (up to its sign) measured by NA48:

$$Br(K_S \rightarrow \pi^0 e^+ e^-)_{m_{ee} > 165 \text{MeV}} = (3.0^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}\left\{\begin{array}{l}
Br(K_S \rightarrow \pi^0 \mu^+ \mu^-) = (2.9^{+1.4}_{-1.2} \pm 0.2) \times 10^{-9}
\end{array}\right\} \rightarrow |a_s| = 1.2 \pm 0.2$$
C. Indirect CPV: Long-distance photon penguin

This CT is the main source of error for

\[K \rightarrow \pi^0 \ell^+ \ell^- \]

Besides \(K_S \rightarrow \pi^0 \ell^+ \ell^- \), the paths to constrain or measure \(a_S \) are:

- The decay \(K^+ \rightarrow \pi^+ \ell^+ \ell^- \) is similar, dominated by \(a_+ \), theory can approximately relate the two \((a_S \approx 2N_{14} + N_{15}, \ a_+ \approx N_{14} - N_{15}) \).

 \text{e.g. Buchalla,D’Ambrosio,Isidori ’03, Greynat,Friot,de Rafael ’04; see also Bruno,Prades ’03}

- \(K_L \rightarrow \pi^0 \pi^0 \ell^+ \ell^- \) depends on the same \(a_S \) and is sensitive to its sign. However, its branching is \(\leq 10^{-9} \) for \(\ell = e \) (KTeV limit: < 6.6 \times 10^{-9}).

 \text{Funck,Kambor ’93}

- FB asymmetries for \(K_L \rightarrow \pi^0 \mu^+ \mu^- \) could fix the sign.

 \text{Mescia,Trine,C.S. ’06}
D. CPC: Long-distance double photon penguin

LO (p^4) is finite, produces $\ell^+ \ell^-$ in a scalar state only (helicity-suppressed),

Higher order estimated using the $K_L \rightarrow \pi^0 \gamma \gamma$ rate and spectrum:

- Production of $(\mu^+ \mu^-)_{0^{++}}$ under control within 30%.

- No signal of $(\gamma \gamma)_{2^{++}}$ implies $(e^+ e^-)_{2^{++}}$ is negligible.

($K_S \rightarrow \gamma \gamma$ is also useful to constrain the p^6 CT structure)
E. Indirect accesses to the photon penguin

1. Direct CP-asymmetry $A_{CP} = \frac{\Gamma(K^+ \rightarrow \pi^+ \ell^+ \ell^-) - \Gamma(K^- \rightarrow \pi^- \ell^+ \ell^-)}{\Gamma(K^+ \rightarrow \pi^+ \ell^+ \ell^-) + \Gamma(K^- \rightarrow \pi^- \ell^+ \ell^-)}$

Sensitive to the interference between the up γ penguin and charm, top contributions. Expected to be in the 10^{-5} range in the SM.

\textit{e.g. D'Ambrosio et al. '98}

2. Direct CP-asymmetry $A_{CP} = \frac{\Gamma(K^+ \rightarrow \pi^+ \pi^0 \gamma) - \Gamma(K^- \rightarrow \pi^- \pi^0 \gamma)}{\Gamma(K^+ \rightarrow \pi^+ \pi^0 \gamma) + \Gamma(K^- \rightarrow \pi^- \pi^0 \gamma)}$

Sensitive to EM operator, again expected to be small in the SM (10^{-5}).

\textit{e.g. D'Ambrosio,Isidori. '95}

3. Phase-space asymmetries for $K_L \rightarrow \pi^+ \pi^- \gamma^*$

Large, but dominated by indirect CPV effects ($K_L \rightarrow \varepsilon K_1 \rightarrow \pi^+ \pi^-$)

\textit{e.g. D'Ambrosio,Isidori. '95}

4. BUT: $K_L \rightarrow \pi^0 \ell^+ \ell^-$ is richer since it probes also the Higgs penguins.

\textit{Mescia,Trine,C.S. '06}
$K_L \rightarrow \ell^+ \ell^-$
A. Where are the long-distance effects?

Diagram
CPC: top dominates
$K_2 \rightarrow \pi^0 \nu \bar{\nu}$
$K_1 \rightarrow \ell^+ \ell^-$, $K_2 \rightarrow \pi^0 \ell^+ \ell^-$
CPV: only top & charm
(+ small correction from up)
$K_1 \rightarrow \pi^0 \nu \bar{\nu}$
$K_2 \rightarrow \ell^+ \ell^-$, $K_1 \rightarrow \pi^0 \ell^+ \ell^-$

Diagram
CPC: top & charm
(Im $V_{ud} V_{us}^\dagger = 0$)
$K \rightarrow \pi \pi \gamma$
$K_2 \rightarrow \pi^0 \ell^+ \ell^-$

Diagram
CPC: up dominates
$K_{1,2} \rightarrow \gamma \gamma$, $K_{1,2} \rightarrow \pi^0 \gamma \gamma$
$K_{1,2} \rightarrow \pi^0 \ell^+ \ell^-$
CPV: only top & charm
(suppressed $\sim 1/m_{c,t}$)
$K_{1,2} \rightarrow \ell^+ \ell^-$

- **Direct CPC** (Short-distance)
- **Indirect CPV** (Negligible)
- **CPC** (Long-distance)
B. Detailed structure of the $K_L \to \ell^+ \ell^-$ process

Matrix element from $K_{\ell 2}$:

$Br(K_L \to \mu^+ \mu^-) \approx ((-0.95 \pm ???)^2 + 6.7) \cdot 10^{-9}$

- Nearly saturated by $Abs(\gamma\gamma)$ since $B^{\exp} = 6.87(11) \cdot 10^{-9}$ (smaller exp. error ?)
- Short-distance is CPC, and interfere with the $\gamma\gamma$ contribution (sign?)
- The dispersive part $Disp(\gamma\gamma)$ diverges (how to estimate it reliably?)
C. The two-photon decay $K_L \to \gamma\gamma$

The $SU(3)$ pole amplitude vanishes:

\[
\begin{array}{c}
\text{SU(3) pole amplitude}
\end{array}
\]

The decay is driven by $Q_1^\mu = (\bar{s}d) \otimes (\bar{u}u)$, but there is no linear combinations such that $\alpha \pi^0 + \beta \eta_8 = \bar{u}u$!

Same mechanism at play in $K_L \to \pi^+\pi^-\gamma$ & ΔM_K:

To consistently account for NLO corrections (unknown CTs), go first to $U(3)$.

Leading N_c $SU(3)$-$O(p^6)$ CTs all collapse to a single parameter G_8^s.

Using the experimental value $B(K_L \to \gamma\gamma)^{exp} \Rightarrow G_8^s / G_8 \approx \pm \frac{1}{3}$.
D. The SD-LD interference sign in $K_L \rightarrow \ell^+ \ell^-$

Requires the sign of the $K_L \rightarrow \gamma\gamma$ amplitude \Leftrightarrow Sign of G_8^s.

1- Theoretical clues:

\[
H_{\text{eff}} (\mu > 1 \text{GeV}) = z_1 Q_1^u + z_2 Q_2^u + z_6 Q_6^u + ...
\]

\[
H_{\text{eff}} (\mu_{\text{hadr.}}) = -(G_8^s + \frac{2}{3} G_{27}) \tilde{Q}_1 + (G_8^s - G_{27}) \tilde{Q}_2 - (G_8 + G_8^s - \frac{1}{3} G_{27}) \tilde{Q}_6 + ...
\]

If the non-perturbative evolution of Q_1^u & Q_2^u is \~smooth (no sign change):

\[
(z_1 + z_2)^2 (z_2 - z_1) = 1.0 \pm 0.3 \Rightarrow G_8^s / G_8 = -0.38(12)
\]

One can then resolve the current-current vs. penguin fraction in $K \rightarrow \pi\pi$:

\[
\tilde{Q}_{1,2} : 35\% \Leftrightarrow \tilde{Q}_6 : 65\%
\]

Penguins account for \~2/3 of the $\Delta I = \frac{1}{2}$ rule (at the hadronic scale, not at m_c!).
2- Experimentally, G_8^s could be fixed from $K_S \rightarrow \pi^0 \gamma \gamma$:

$$B(K_S \rightarrow \pi^0 \gamma \gamma)_{z>0.2}^{\text{exp}} = (4.9 \pm 1.8) \cdot 10^{-8}$$

or from pole contributions to $K^+ \rightarrow \pi^+ \gamma \gamma$

(even more constraining at the low-energy end of the γ spectrum)
E. The dispersive two-photon contribution to $K_L \rightarrow \ell^+ \ell^-$

The $\gamma\gamma$ loop diverges (requires *unknown CTs*) for a constant vertex:

$$f(q_1^2, q_2^2) = \sum_i \left(1 + \alpha_i \left(\frac{q_1^2}{q_1^2 - m_i^2} + \frac{q_2^2}{q_2^2 - m_i^2} \right) + \beta_i \frac{q_1^2 q_2^2}{(q_1^2 - m_i^2)(q_2^2 - m_i^2)} \right)$$

With two resonances: $\rho +$ one around J/ψ.

Low-energy contraints from the $K_L \rightarrow \gamma e^+ e^-, \gamma \mu^+ \mu^-, e^+ e^- \mu^+ \mu^-$ linear slope.

(We would need also the quadratic slope, and other modes like $\mu^+ \mu^- \mu^+ \mu^-$!)

High-energy constraints from the perturbative up & charm-quark $\gamma\gamma$ penguin.
F. $K_L \rightarrow \mu^+\mu^-$ summary --- Preliminary ---

- $G_8^s / G_8 < 0 \Rightarrow$ constructive interference between SD and LD.

- Updating the analysis, we find $\text{Disp}(\gamma\gamma) = -0 \pm 1.5$,

 Compared to $\text{Disp}(\gamma\gamma) = \pm 0.7 \pm 1.15$

Compared to Isidori & Unterdorfer ‘03

\begin{align*}
K_L & \rightarrow \pi^0 \nu \bar{\nu} : \\
\bar{\eta} & < 17 \\
K_L & \rightarrow \pi^0 e^+ e^- : \\
\bar{\eta} & < 3.3 \\
K_L & \rightarrow \pi^0 \mu^+ \mu^- : \\
\bar{\eta} & < 5.4
\end{align*}
Conclusion
