BLOBBED TOPOLOGICAL RECURSION OF THE QUARTIC KONTSEVICH MODEL II: GENUS=0
ALEXANDER HOCK AND RAIMAR WULKENHAAR,
WITH AN APPENDIX BY MACIEJ DOŁĘGA

Abstract. We prove that the genus-0 sector of the quartic analogue of the Kontsevich model is completely governed by an involution identity which expresses the meromorphic differential $\omega_{0,n}$ at a reflected point ιz in terms of all $\omega_{0,m}$ with $m \leq n$ at the original point z. We prove that the solution of the involution identity obeys blobbed topological recursion, which confirms a previous conjecture about the quartic Kontsevich model.

1. Introduction and main result

1.1. Overview. This paper completes the solution of the genus-0 sector of the quartic analogue of the Kontsevich model. This is a model for $N \times N$ Hermitian matrices with the same covariance as the Kontsevich model [Kon92] but with quartic instead of cubic potential. The non-linear Dyson-Schwinger equation [GW09] for the planar 2-point function of the quartic Kontsevich model was solved in a special case in [PW20] and then in full generality in [GHW19, SW19]. Building on this foundation we identified in [BHW20a] three families of correlation functions and established interwoven loop equations between them. One family consists of meromorphic differential forms $\omega_{g,n}$ labelled by genus g and number n of marked points of a complex curve. By a lengthy evaluation of residues the solution was found for $\omega_{0,2}, \omega_{0,3}, \omega_{0,4}$ and $\omega_{1,1}$. It strongly suggested that the family $\omega_{g,n}$ obeys blobbed topological recursion [BS17], a systematic extension of topological recursion [EO07] by additional terms holomorphic at ramification points of a covering $x: \hat{C} \to \hat{C}$.

Recall that (blobbed) topological recursion (see e.g. [EO07, BS17] and references therein) starts from a spectral curve $(x: \Sigma \to \hat{C}, \omega_{0,1} = ydx, \omega_{0,2})$. Here $y: \Sigma \to \hat{C}$ is regular at the ramification points of x and $\omega_{0,2}$ is a symmetric bidifferential which extends (or is equal to) the Bergman kernel. We noticed in [BHW20a] that the two coverings x, y in the quartic Kontsevich model are related by $y(z) = -x(-z)$ (already visible in [GHW19, SW19]) and that $\omega_{0,2}(u, z) = -\omega_{0,2}(u, -z)$. We show in this paper that this observation is far more
than a coincidence: the properties of \(x, y, \omega_{0,2} \) under reflection \(z \mapsto iz := -z \) completely characterise the genus-0 sector of the quartic Kontsevich model. There is a single global equation (1.3) which describes the behaviour of the \(\omega_{0,n} \) under reflection. This equation can be solved without connecting it to the matrix model, the solution is identical to the solution of the complicated system of loop equations in [BHW20a], and it obeys blobbed topological recursion [BS17] (restricted to genus \(g = 0 \)). We observe that the reflection formula (1.3) is of similar form to the relations studied in the context of \(x-y \) symmetry in topological recursion (see for instance [EO13, Proposition 3.1]).

It is currently not known to us how to extend these results to genus \(g > 0 \). The loop equations of [BHW20a] bring in another structure which leads to poles of \(\omega_{g>0,n} \) at the fixed point of the involution \(\iota \). Nevertheless we speculate that the global involution \(z \mapsto iz \) characterises the quartic Kontsevich model completely and that it describes a geometric structure of the moduli space of complex curves.

1.2. Statement of the result. Let \(x : \hat{\mathcal{C}} \to \hat{\mathcal{C}} \) be a ramified covering of the Riemann sphere \(\hat{\mathcal{C}} = \mathbb{C} \cup \{ \infty \} \) with simple ramification points \(\beta_1, ..., \beta_r \) (which solve \(dx(\beta_i) = 0 \)). Let \(\iota : \hat{\mathcal{C}} \to \hat{\mathcal{C}} \) be a global involution, \(\iota^2(z) = z \), which does not fix or permute any ramification point(s). Another ramified covering of the Riemann sphere is introduced by

\[
y = -x \circ \iota : \hat{\mathcal{C}} \to \hat{\mathcal{C}}. \tag{1.1}
\]

The data are completed by a unique (up to a global constant factor) bidifferential \(\omega_{0,2} \) on \(\hat{\mathcal{C}} \times \hat{\mathcal{C}} \) which is symmetric, odd under the involution of one variable and has a double pole on the diagonal without residue. These conditions give

\[
\omega_{0,2}(w, z) = \frac{1}{2} \frac{dwdz}{(w - z)^2} + \frac{1}{2} \frac{d(w) d(iz)}{(w - iz)^2} - \frac{1}{2} \frac{d(w) dz}{(w - iz)^2} - \frac{1}{2} \frac{d(iz) dz}{(w - iz)^2} \tag{1.2}
\]

\[
\equiv -d_w \left(\frac{1}{2} \frac{dz}{w - z} + \frac{1}{2} \frac{\iota'(z) dz}{w - iz} - \frac{1}{2} \frac{\iota'(z) dz}{w - iz} - \frac{1}{2} \frac{dz}{w - iz} \right).
\]

From these data we build (see the first paragraph of Section 2.1 for the notation):

Definition 1.1 (involution identity). A family \(\{ \omega_{0,m+1} \}_{m \geq 1} \) of meromorphic differentials on \(\hat{\mathbb{C}}^{m+1} \) is introduced by (1.2) for \(m = 1 \) and for \(m \geq 2 \) by

\[
\omega_{0,|I|+1}(I, q) + \omega_{0,|I|+1}(I, \iota q) \tag{1.3}
\]

\[
= \sum_{s=2}^{|I|} \sum_{I_j | I} \frac{1}{s} \Res_{z \to q} \left(\frac{dy(q)dx(z)}{(y(q) - y(z))^s} \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right),
\]

where \(I = \{ u_1, ..., u_m \} \).

\(^1\)This could be generalised to \(y(z) = c - x(iz) \) for any \(c \in \mathbb{C} \).
We show that, under mild assumptions, the identity (1.3) completely determines \(\omega_{0,|I|+1}(I, q) \), and that the required symmetry of the rhs of (1.3) under \(q \mapsto iq \) is automatic:

Theorem 1.2. For \(\omega_{0,|I|+1}(I, z) \) with \(I = \{u_1, \ldots, u_m\} \) of length \(|I| := m \) the following conventions are given:

(a) \(\omega_{0,2} \) is given by (1.2);

(b) the meromorphic form \(z \mapsto \omega_{0,|I|+1}(I, z) \) has for \(m \geq 2 \) poles at most in points \(z \) where the rhs of (1.3) has poles;

(c) \(z \mapsto \omega_{0,|I|+1}(I, z) \) is for \(m \geq 2 \) holomorphic at any \(z = u_k \);

(d) \(z \mapsto \omega_{0,|I|+1}(I, iz) \) is holomorphic at any ramification point \(\beta_i \) of \(x \).

Then (1.3) is for \(I = \{u_1, \ldots, u_m\} \) with \(m \geq 2 \) uniquely solved by

\[
\omega_{0,|I|+1}(I, z) = \sum_{i=1}^{r} \text{Res}_{q=q_i} K_i(z, q) \sum_{I_1 \sqcup I_2 = I} \omega_{0,|I_1|+1}(I_1, q)\omega_{0,|I_2|+1}(I_2, \sigma_i(q)) - \sum_{k=1}^{m} d_{u_k} \left[\text{Res}_{q=q_{u_k}} \sum_{I_1 \sqcup I_2 = I} \tilde{K}(z, q, u_k)d_{u_k}^{-1}(\omega_{0,|I_1|+1}(I_1, q)\omega_{0,|I_2|+1}(I_2, q)) \right].
\]

Here \(\beta_1, \ldots, \beta_r \) are the ramification points of \(x \) and \(\sigma_i \neq \text{id} \) denotes the local Galois involution in the vicinity of \(\beta_i \), i.e. \(x(\sigma_i(z)) = x(z) \), \(\lim_{z \to \beta_i} \sigma_i(z) = \beta_i \). By \(d_{u_k} \) we denote the exterior differential in \(u_k \), which on 1-forms has a right inverse given by the primitive \(d_u^{-1}\omega(u) = \int_{u'=\infty}^{u} \omega(u') \). The recursion kernels are given by

\[
K_i(z, q) := \frac{1}{2} \left(\frac{d_\tau}{\tau-q} - \frac{d_\tau}{\tau-\sigma_i(q)} \right),
\]

\[
\tilde{K}(z, q, u) := \frac{1}{2} \left(\frac{d(iz)}{iz-q} - \frac{d(iz)}{iz-u} \right).
\]

The solution (1.4)+(1.5) implies symmetry of (1.3) under \(q \mapsto iq \).

The proof is lengthy and will be divided into many steps. We rely on combinatorial identities proved in an appendix by Maciej Dołęga. We start to prove uniqueness: if a consistent solution of (1.3) exists, it must be of the form (1.4)+(1.5). Then we prove that (1.4)+(1.5) implies consistency of (1.3).

In a second part we show that the loop equations \([\text{BHW}20a]\) of the quartic analogue of the Kontsevich model lead for the choice \(iz = -z \) and \(x(z) = R(z) = z - \lambda \sum_{k=1}^{d} \frac{q_k}{\epsilon_k^{d+\varepsilon}} \) found in \([\text{SW19}]\) to exactly the same solution (1.4)+(1.5). Thereby we prove for genus \(0 \) the main conjecture of \([\text{BHW}20a]\) that the quartic Kontsevich model obeys blobbed topological recursion \([\text{BST17}]\).

Acknowledgements. We thank Johannes Branahl for his essential contributions to the conjectures about the loop equations and Gaëtan Borot and Jörg Schürmann for helpful discussions. We are grateful to Maciej Dołęga for providing proofs for combinatorial conjectures left open in the first version. We also
acknowledge assistance by Abdelmalek Abdesselam with the proof of an earlier conjecture that was central in Sec. 3.6. Our work was supported by the Cluster of Excellence Mathematics Münster and the CRC 1442 Geometry: Deformations and Rigidity.

2. Proof of Theorem 1.2

2.1. Tools and conventions. Throughout this paper we denote by \(q, u, u_k, w, z, z_k \in \mathbb{C} \) complex numbers and by \(a, a', i, j, k, l, m, n, n_0, \ldots, n_s, p, r, s, s' \) non-negative integers. By \(I = \{ u_1, \ldots, u_m \} \) we understand a (multi-)set of length \(|I| = m \) of complex numbers, which are allowed to coincide. By \(\sum_{I_1 \sqcup \cdots \sqcup I_s = I} \) we denote the sum over all partitions of the multiset \(I \) into disjoint non-empty subsets \(I_1, \ldots, I_s \) of any order. If we insist on a sum over ordered subsets we write \(\sum_{I_1 \sqcup \cdots \sqcup I_s = I} \) with an additional sum over all permutations of the \(I_i \).

We will often write \(B_k = 5 \) (Bell number \(\text{OEIS A000110} \)) ordered partitions

\[
\{u_1, u_2, u_3\}, \quad \{u_1\} \sqcup \{u_2, u_3\}, \quad \{u_2\} \sqcup \{u_3, u_1\}, \quad \{u_3\} \sqcup \{u_1, u_2\},
\]

\[
\{u_1, u_2\} \sqcup \{u_3\}, \quad \{u_2, u_3\} \sqcup \{u_1\}, \quad \{u_3, u_1\} \sqcup \{u_2\},
\]

\[
\{u_1\} \sqcup \{u_2\} \sqcup \{u_3\}, \quad \{u_2\} \sqcup \{u_1\} \sqcup \{u_3\}, \quad \{u_3\} \sqcup \{u_2\} \sqcup \{u_1\}
\]

and \(B_3 = 5 \) (Bell number \(\text{OEIS A000110} \)) ordered partitions

\[
\{u_1, u_2, u_3\}, \quad \{u_1\} \sqcup \{u_2, u_3\}, \quad \{u_1, u_2\} \sqcup \{u_3\}, \quad \{u_1, u_3\} \sqcup \{u_2\},
\]

\[
\{u_1\} \sqcup \{u_2\} \sqcup \{u_3\}.
\]

We will often need the projection of a meromorphic 1-form \(\omega \) to the principal part \(P^w \omega \) of its Laurent series about \(w \in \mathbb{C} \). This projection is obtained by the residue

\[
P^w \omega(z) = \text{Res}_{z=w} \frac{\omega(q)dz}{z-q}.
\]

In case of \(w = \beta_i \) (a ramification point of \(x \)) we abbreviate \(P^\beta_i \omega(z) := P^\beta \omega(z) \).

An important tool will be the commutation rule of two iterated residues of a 1-form \(\omega(q, z) \) in both complex variables \(q, z \):

\[
\text{Res}_{q\to w} \text{Res}_{z\to q} \omega(q, z) + \text{Res}_{q\to z} \text{Res}_{z\to w} \omega(q, z) = \text{Res}_{z\to w} \text{Res}_{q\to w} \omega(q, z).
\]

\(^2\)Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 427320536 – SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics – Geometry – Structure.
It is an immediate consequence of contour integrations and holds under the assumption that \(q = z, q = w, z = w \) are the only poles in a sufficiently small neighbourhood of \(w \). We will encounter a situation where this assumption does not hold. In the vicinity of a ramification point \(\beta_i \) the contour integral must also enclose the local Galois conjugate \(\sigma_i(q) \):

\[
\operatorname{Res}_{q \to \beta_i} \omega(q, z) + \operatorname{Res}_{z \to \beta_i} \omega(q, z) + \operatorname{Res}_{q \to \sigma_i(q)} \omega(q, z) = \operatorname{Res}_{z \to \beta_i} \omega(q, z). \quad (2.3)
\]

The limit commutes with partial or exterior derivatives:

\[
\lim_{z \to u} \partial_u f(u, z) dz = \partial_u \left(\lim_{z \to u} f(u, z) dz \right), \quad \lim_{z \to u} d_u f(u, z) dz = d_u \left(\lim_{z \to u} f(u, z) dz \right). \quad (2.4)
\]

To see this, let \(\gamma_\epsilon(w) \) be the loop with centre \(w \) and radius \(\epsilon \). Then for \(\epsilon > 2\delta > 0 \)

\[
\frac{1}{2\pi i} \left(\int_{\gamma_\epsilon(w-\delta)} f(u+\delta, z) dz - \int_{\gamma_\epsilon(w)} f(u, z) dz \right) = \frac{1}{2\pi i} \int_{\gamma_\epsilon(w)} \frac{f(u+\delta, z) - f(u, z)}{\delta} dz.
\]

The limit \(\delta \to 0 \) together with independence of all integrals from \(\epsilon \) gives (2.4).

The residue does not change under the local Galois involution, that is

\[
\operatorname{Res}_{q \to \beta_i} \omega(q) = \operatorname{Res}_{q \to \sigma_i(q)} \omega(q). \quad (2.5)
\]

Invariance of the term \(\frac{c-nq}{q-\beta_i} \) of the Laurent expansion follows from \(\sigma_i(q) - \beta_i = -(q - \beta_i) + O((q - \beta_i)^2) \). For poles of order \(n \) the term \(\frac{c-n\sigma_i(q)}{(\sigma_i(q)-\beta_i)^n} \) does not have a residue.

Of particular importance is the following residue:

\[
\nabla^n \omega_{0,|I|+1}(I, q) := \lim_{z \to q} \frac{\omega_{0,|I|+1}(I, z)}{(y(z) - y(q))(x(q) - x(z))^n} = (-1)^n \frac{\partial^n}{\partial(x(z))^n} \left(\frac{x(z) - x(q) \omega_{0,|I|+1}(I, z)}{y(z) - y(q)} \right), \quad (2.6)
\]

which is a function of \(q \) and a 1-form in every variable in \(I \). In particular,

\[
\nabla^0 \omega_{0,|I|+1}(I, q) = \frac{\omega_{0,|I|+1}(I, q)}{dy(q)}. \quad \text{These functions arise in the Taylor expansion}
\]

\[
\frac{x(z) - x(q) \omega_{0,|I|+1}(I, z)}{y(z) - y(q)} = \frac{\sum_{n=0}^\infty (x(q) - x(z))^n \nabla^n \omega_{0,|I|+1}(I, q)}{dx(z)}. \quad (2.7)
\]

Lemma 2.2. The involution identity (1.3) can be expressed as

\[
\omega_{0,|I|+1}(I, q) + \omega_{0,|I|+1}(I, \sigma_i(q))
\]

\[
= -dy(q) \sum_{s=2}^{|I|} \sum_{I_1 \cup \cdots \cup I_s = I} \frac{1}{s} \sum_{n_1 + \cdots + n_s = s-1} \prod_{j=1}^s \nabla^n \omega_{0,|I_j|+1}(I_j, q),
\]

where \(\sum_{n_1 + \cdots + n_s = s-1} \) is the sum over all partitions of \(s-1 \) into integers \(n_i \geq 0 \).
Proof. We evaluate the residue \(\omega_0[I]+1(I, q) + \omega_0[I]_+1(I, \nu q) \)
\[
|I| \sum_{s=2} \sum_{I_1 \cup \ldots \cup I_s = I} (-1)^s \text{Res}_{z \to q} \left(\frac{dy(q)}{(x(z) - x(q))^s} \prod_{j=1}^s \frac{\partial^s \omega_0[I]+1(I_j, z)}{\partial x(z)^s} \right)
= |I| \sum_{s=2} \sum_{I_1 \cup \ldots \cup I_s = I} (-1)^s \frac{dy(q)}{s!} \lim_{z \to q} \partial^s \omega_0[I_0]+1(I_0, q) \prod_{j=1}^s \frac{\partial^s \omega_0[I]+1(I_j, \nu q)}{\partial x(z)^s} .
\]

Leibniz's rule for a higher derivative of a product together with \((2.6) \) give the assertion.

Iterating Lemma 2.2 we obtain a variant of with only a single term \(\nabla \omega \):

Lemma 2.3. The involution identity \((1.3) \) can also be expressed as
\[
\omega_0[I]+1(I, q) + \omega_0[I]_+1(I, \nu q) = -dy(q) \sum_{s=1}^{|I|-1} \sum_{I_0 \cup_I \ldots \cup I_s = I} \nabla^s \omega_0[I_0]+1(I_0, q) \prod_{j=1}^s \frac{\partial^s \omega_0[I]+1(I_j, \nu q)}{\partial x(z)^s}.
\]

Proof. By induction on \(|I|\), starting from the true statement for \(|I| = 1\). For a partition \(I = I_1 \cup \ldots \cup I_s \) of \(I = \{u_1, \ldots, u_m\} \) into \(s \geq 2 \) subsets together with a given partition \(n_1 + \ldots + n_s = s - 1 \) we let \(u_{\mu} = \min(I_{k=1} n_k > 0) \) be the smallest element within those \(I_k \) with \(n_k > 0 \). Moving the subset which contains \(u_{\mu} \) to the first place allows us to get rid of the \(\frac{1}{s} \)-factor in Lemma 2.2:
\[
\omega_0[I]+1(I, q) + \omega_0[I]_+1(I, \nu q) = -dy(q) \sum_{s=1}^{|I|-1} \sum_{n_0 + \ldots + n_s = s} \sum_{I_{\mu} \in I_0} \nabla^s \omega_0[I_0]+1(I_0, q) \prod_{j=1}^s \nabla^s \omega_0[I]+1(I_j, \nu q).
\]

By construction we have \(n_0 > 0 \). Take in the second line of \((2.9) \) a term of the form \(X \nabla^0 \omega_0[I]_+1(I_p, q) \), for any product \(X \) which contains \(I_0 \). Observe that \((2.9) \) then contains for \(|I_p| \geq 2 \) also every term of the sum
\[
X \sum_{k=2} \frac{|I_p|}{I_k \cup \ldots \cup I_k = I_p} \sum_{m_1 + \ldots + m_k = k-1} \prod_{\ell=1}^k \nabla^{m_\ell} \omega_0[I_p]+1(I'_\ell, q).
\]

By induction hypothesis and with \(\nabla^0 \omega_0[I_p]+1(I_p, q) = \frac{\omega_0[I_p]+1(I_p, q)}{dy(q)} \) we have
\[
X \nabla^0 \omega_0[I]_+1(I_p, q) + X \sum_{k=2} \frac{|I_p|}{I_k \cup \ldots \cup I_k = I_p} \sum_{m_1 + \ldots + m_k = k-1} \prod_{\ell=1}^k \nabla^{m_\ell} \omega_0[I_p]+1(I'_\ell, q).
\]
corresponding Laurent series is given by

\[X \omega_0,|I_p|+1(I_p, tq) \]

which is also true in case \(|I_p| = 1\). Repeat this procedure for the next \(X \nabla^0_0 \omega_0,|I_p|+1(I_p, q) \) for which the product \(X \) does not yet contain a factor \(\omega_0,|I_p|+1(I_p, tq) \). At the end of this procedure, the second line of (2.9) is reduced to a sum of terms each containing a factor \(\frac{\omega_0,|I_p|+1(I_p, tq)}{-dy(q)} \).

Now iterate the procedure for every \(X \nabla^0_0 \omega_0,|I_p|+1(I_0, q) \) where the product \(X \) contains \(\nabla^0_0 \omega_0,|I_p|+1(I_0, q) \) and precisely one factor \(\frac{\omega_0,|I_p|+1(I_p, tq)}{-dy(q)} \). At the end of this step we have reduced the second line of (2.9) to terms of the form \(\nabla^1 \omega_0,|I_p|+1(I_0, q) \frac{\omega_0,|I_p|+1(I_p, tq)}{-dy(q)} \) or with a double factor \(\prod_{j=1}^2 \frac{\omega_0,|I_p|+1(I_p, tq)}{-dy(q)} \). Iterate again until all \(\nabla^0 \) in the second line of (2.9) are converted. This is the assertion. Since \(I_0 \) is anyway distinguished we can omit the condition \(u_\mu \in I_0 \).

2.2. Poles of \(\omega_{0,m+1}(u_1, \ldots, u_m, z) \) at \(z = \iota u_k \).

Lemma 2.4. The involution identity (1.3) together with convention (c) in Theorem 1.2 that \(\omega_{0,m+1}(u_1, \ldots, u_m, z) \) is for \(m \geq 2 \) holomorphic at \(z = \iota u_k \) imply that \(z \mapsto \omega_{0,m+1}(u_1, \ldots, u_m, \iota z) \) has a pole at every \(z = \iota u_k \). The principal part of the corresponding Laurent series is given by

\[
\text{Res}_{q \to u_k} \frac{\omega_0,|I|+1(I, tq)dz}{z - q} = -d_{u_k} \left[\sum_{s=1}^{|I|-1} \sum_{I_1 \cup \ldots \cup I_s = I \setminus u_k} \frac{1}{s!} \frac{\partial^s}{\partial(y(u_k))} \frac{\omega_0,|I|+1(I, u_k)}{dx(u_k)} \right] dz.
\]

Equivalently,

\[
\omega_0,|I|+1(I, z) = -d_{u_k} \left[\sum_{s=1}^{|I|-1} \sum_{I_1 \cup \ldots \cup I_s = I \setminus u_k} \frac{d(\iota z)}{s!} \frac{\partial^s}{\partial(y(u_k))} \frac{\omega_0,|I|+1(I, u_k)}{dx(u_k)} \right] + \text{terms which are holomorphic at } z = \iota u_k.
\]

In particular, the poles of \(\omega_0,|I|+1(I, z) \) at \(z = \iota u_k \) do not have a residue.

Proof. We divide the involution identity (1.3) by \(w - q \) and take the residue at \(q = u_k \). By convention (c) in Theorem 1.2 the term \(\omega_{0,|I|+1}(I, q) \) in the first line of (1.3) does not contribute to the residue. In the second line we commute the two residues via (2.2). Since the inner integrand is holomorphic at \(q = u_k \), we have

\[
\text{Res}_{q \to u_k} \frac{\omega_0,|I|+1(I, tq)}{w - q} = -d_{u_k} \left[\sum_{s=1}^{|I|-1} \sum_{I_1 \cup \ldots \cup I_s = I \setminus u_k} \frac{d(\iota z)}{s!} \frac{\partial^s}{\partial(y(u_k))} \frac{\omega_0,|I|+1(I, u_k)}{dx(u_k)} \right]
\]
\[
= - \text{Res}_{q \to u_k} \sum_{I=2}^{l|} \sum_{s=1}^{l|} \frac{1}{s} \text{Res}_{z \to u_k} \left(\frac{dy(q)dz(z)}{(w-q)(y(q)-y(z))} \prod_{j=1}^{s} \frac{\omega_{0,|I|+1}(I_j, z)}{dx(z)} \right)
\]

\[
= - \text{Res}_{q \to u_k} \sum_{I_1 \cup \ldots \cup I_s = I \setminus u_k}^{l|} \sum_{s=1}^{l|} \text{Res}_{z \to u_k} \left(\frac{dy(q)\omega_{0,2}(u_k, z)}{(w-q)(y(q)-y(u_k))^s+1} \prod_{j=1}^{s} \frac{\omega_{0,|I|+1}(I_j, z)}{dx(z)} \right).
\]

We implemented the convention that there is only a pole at \(z = u_k\) if a unique factor \(\omega_{0,2}(u_k, z)\) is present. It can occur at all \(s\) places of the partition of \(I\) into \(s\) subsets, so that \(\frac{1}{s}\) cancels. We shifted \(s-1 \mapsto s\). We write \(\omega_{0,2}(u_k, z)\) according to the second line of (1.2) and commute the differential \(du_k\) according to (2.4) in front of the residues:

\[
\text{Res}_{q \to u_k} \frac{\omega_{0,|I|+1}(I, uq)dw}{w-q} = -du_k \left[\text{Res}_{q \to u_k} \sum_{I_1 \cup \ldots \cup I_s = I \setminus u_k}^{l|} \sum_{s=1}^{l|} \left(\frac{dy(q)\prod_{j=1}^{s} \omega_{0,|I|+1}(I_j, u_k)}{(w-q)(y(q)-y(u_k))^s+1} \right) \right] dw
\]

\[
= -du_k \left[\sum_{s=1}^{l|} \frac{1}{s} \prod_{j=1}^{s} \frac{\omega_{0,|I|+1}(I_j, u_k)}{dx(u_k)} \right] dw.
\]

This is the assertion (when renaming \(w \mapsto z\)).

We will derive an alternative formula:

Proposition 2.5. The poles of \(z \mapsto \omega_{0,|I|+1}(I, uz)\) at \(z = u_k\) can also be evaluated by

\[
\text{Res}_{q \to u_k} \frac{\omega_{0,|I|+1}(I, uq)dz}{z-q} = -du_k \left[\sum_{I_0, I_1 \cup \ldots \cup I_s = I} \frac{1}{2} \left(\frac{dz}{z-q} - \frac{dz}{z-u_k} \right) \frac{1}{dx(uz)(y(uz)-y(u_k))} \frac{d^{-1}(\omega_{0,|I_0|+1}(I_0, uz)\omega_{0,|I_1|+1}(I_1, uz))}{dx(u_k)} \right].
\]

Equivalently,

\[
\omega_{0,|I|+1}(I, z) = -du_k \left[\sum_{I_0, I_1 \cup \ldots \cup I_s = I} \frac{1}{2} \left(\frac{dz}{iz-uz} - \frac{dz}{iz-u_k} \right) \frac{d^{-1}(\omega_{0,|I_0|+1}(I_0, q)\omega_{0,|I_1|+1}(I_1, q))}{dx(u_k)} \right] + \text{terms which are holomorphic at } z = u_k.
\]

Proof. We shift \(s \mapsto s-1\) in (2.10) and represent the term with \(j = 0\) via Lemma 2.3 for \(q \mapsto u_k\):

\[
\text{Res}_{q \to u_k} \frac{\omega_{0,|I|+1}(I, uq)dw}{w-q}
\]
We have included the term \(\omega_{|I_0|+1}(I_0, u_{I_k}) \) as \(n = 0 \). Implementing (1.1), i.e. \(-dy(u_{I_k}) = dx(u_k)\) suggests to change summation variables to \(s+n \mapsto s \in [0..|I|-2]\). Then we express the derivative with respect to \(y(q) \) as a residue:

\[
\begin{align*}
\text{Res}_{q \mapsto u_{I_k}} & \frac{\omega_{|I|+1}(I, u_{I_k})dw}{w-q} \\
= -d_{u_{I_k}} \left[\sum_{s=0}^{|I|-2} \sum_{n=0}^s \sum_{I_0 \cup I_1 \cup \ldots \cup I_s = I \setminus u_{I_k}} \frac{1}{(s+1)! \cdot \partial(y(q))^{s+1}} \right] \\
& \times \nabla^{n} \omega_{|I_0|+1}(I', u_{I_k}) \prod_{j=1}^{s} \frac{\omega_{|I_j|+1}(I_j, u_{I_k})}{dx(u_k)} dw
\end{align*}
\]

The term \(\frac{dy(q)}{w-u_{I_k}} \) added in the last step has vanishing residue (obvious before setting \(y(q) = -x(\iota q) \)). It is added in order to extend the \(n \)-summation to any \(n \geq 0 \), giving with (2.7) for \(q \mapsto u_{I_k}, z \mapsto \iota q \) and again (1.1)

\[
\begin{align*}
\text{Res}_{q \mapsto u_{I_k}} & \frac{\omega_{|I|+1}(I, u_{I_k})dw}{w-q} \\
= -d_{u_{I_k}} \left[\sum_{s=0}^{|I|-2} \sum_{n=0}^s \frac{dy(q)}{w-q} - \frac{dy(q)}{w-u_{I_k}} \left(\frac{1}{y(q)} - \frac{dy(q)}{w-u_{I_k}} \right)^{s+1} \right] \\
& \times \prod_{j=1}^{s} \frac{\omega_{|I_j|+1}(I_j, u_{I_k})}{dx(u_k)} \sum_{n=0}^s \left(x(\iota q) - x(u_k) \right)^{n} \nabla^{n} \omega_{|I_0|+1}(I_0, u_{I_k}) dw.
\end{align*}
\]
The first two lines of (2.11) tell us that
\[
\sum_{s=1}^{|I'|} \frac{dy(q)}{\prod_{i=1}^{s} \omega_{0,|I_i|+1}(I_i, u_k)} \prod_{s=1}^{|I'|} \frac{dy(q)}{(y(q) - y(u_k))^{s+1}} dx(u_k) = -d^{-1}_u(\omega_1)_{|I'|+2} \big(I', u_k, u(q)\big) + \text{terms which are regular at } q = u_k.
\] (2.13)

Here the inverse \(d^{-1}_u\) of the exterior differential of a 1-form \(\omega\) is its primitive, \(d^{-1}_u \omega(u) = \int_{u=0}^{u=\infty} \omega(u')\). Inserted into (2.12) we confirm with \(I' \cup u_k = I_1\) and symmetrisation in \(I_1, I_0\) the assertion. \(\square\)

2.3. **Symmetry of the involution identity I:** \(q \to \nu u_k\) and \(q \to u_k\). We consider the \(\nu\)-reflection of (1.3),
\[
\omega_{0,|I|+1}(I, q) + \omega_{0,|I|+1}(I, \nu q) = \sum_{s=2}^{|I|} \frac{1}{s} \text{Res}_{z \to q} \left(\frac{dx(q)dy(z)}{(x(q) - x(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, tz) \right),
\] (2.14)

where (1.1) is used. We show that the rhs has the same pole at \(q = u_k\) as the original equation (1.3), i.e. that the solution in Proposition 2.5 satisfies
\[
\text{Res}_{q \to u_k} \frac{\omega_{0,|I|+1}(I, \nu q)dw}{w - q} = \text{Res}_{q \to u_k} \frac{dx(q) dw}{w - q} \sum_{s=2}^{|I|} \frac{1}{s} \text{Res}_{z \to q} \left(\frac{dy(z)}{(x(q) - x(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, tz) \right).
\] (2.15)

This is the same as
\[
0 = -\text{Res}_{q \to u_k} \frac{dx(q) dw}{w - q} \sum_{s=1}^{|I|} \frac{1}{s} \text{Res}_{z \to q} \left(\frac{dy(z)}{(x(q) - x(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, tz) \right) = \text{Res}_{q \to u_k} \frac{dx(q) dw}{w - q} \sum_{s=1}^{|I|} \frac{1}{s} \text{Res}_{z \to u_k} \left(\frac{dy(z)}{(x(q) - x(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, tz) \right),
\] where (2.2) has been used. Fixing \(u_k \in I_1\) gives a factor \(s\). We write \(\omega_{0,|I_i|+1}(I_1, tz) = d_{u_k} (d^{-1}_u \omega_{0,|I_i|+1}(I_1, tz))\), move \(d_{u_k}\) in front of the residues and ignore it below. Then we expand the denominator about \(x(z) = x(u_k)\):
\[
0 = \sum_{p=1}^{\infty} \text{Res}_{q \to u_k} \frac{dx(q) dw}{(w - q)(x(q) - x(u_k))^p}
\]
\[
\times \text{Res}_{z \to u_k} \left(\sum_{s=1}^{\min(|I|, p)} \frac{p!}{p!} \prod_{I_{s, \nu \in I} u_k = I_1} \frac{dy(z)(x(z) - x(u_k))^{p-s} d^{-1}_u \omega_{0,|I_1|+1}(I_1, tz)}{dy(z)} \right).
\] (2.16)
We will show that already the second line vanishes for every \(p \geq 1 \). For \(p = 1 \) the equation to prove reduces to \(\text{Res}_{z \to u_k} d_{u_k}^{-1} \omega_0 |_{I+1} (I, tz) = 0 \), which is true by Lemma 2.3 (only higher order poles at \(z = u_k \)). Next for \(p = 2 \) we need to show

\[
0 = \text{Res}_{z \to u_k} (x(z) - x(u_k)) \left\{ d_{u_k}^{-1} \omega_0 |_{I+1} (I, tz) + \sum_{I_1 \oplus I_2 = I, u_k \in I_1} d_{u_k}^{-1} \omega_0 |_{I+2} (I_1, tz) \omega_0 |_{I+1} (I_2, tz) \right\}.
\]

(2.17)

Indeed by Proposition 2.5 the term in braces \(\{ \} \) has at most a first-order pole at \(z = u_k \), which is removed by a prefactor \((x(z) - x(u_k))^n \) for any \(n \geq 1 \). Hence (2.17) is true. Next for \(p = 3 \) we have to show

\[
0 = \text{Res}_{z \to u_k} \left((x(z) - x(u_k))^2 d_{u_k}^{-1} \omega_0 |_{I+1} (I, tz) \right)
+ 2 \sum_{I_1 \oplus I_2 = I, u_1 \in I_1} (x(z) - x(u_k)) \frac{d_{u_k}^{-1} \omega_0 |_{I+1} (I_1, tz) \omega_0 |_{I+1} (I_2, tz)}{dx(tz)}
+ \sum_{I_1 \oplus I_2 \oplus I_3 = I, u_1 \in I_1} \frac{d_{u_k}^{-1} \omega_0 |_{I+1} (I_1, tz) \omega_0 |_{I+1} (I_2, tz) \omega_0 |_{I+1} (I_3, tz)}{(dx(tz))^2}.
\]

By the argument employed to prove (2.17) this reduces to

\[
0 = \text{Res}_{z \to u_k} (x(z) - x(u_k)) \left(\sum_{I'_1 \oplus I'_2 = I, u_1 \in I'_1} d_{u_k}^{-1} \omega_0 |_{I'_1+1} (I'_1, tz) \omega_0 |_{I'_2+1} (I'_2, tz) \right)
+ \sum_{I_1 \oplus I_2 \oplus I_3 = I, u_1 \in I_1} \frac{d_{u_k}^{-1} \omega_0 |_{I+1} (I_1, tz) \omega_0 |_{I+1} (I_2, tz) \omega_0 |_{I+1} (I_3, tz)}{dx(tz)(y(tz) - y(u_k))}.
\]

(2.18)

The sum in the first line will include the cases \(I'_2 = I_3 \) and \(I'_2 = I_2 \). Using again the argument based on Proposition 2.5 in the first case \(d_{u_k}^{-1} \omega_0 |_{I'_1+1} (I'_1, tz) + \sum_{I_1 \oplus I_2 = I'_1, u_k \in I_1} \frac{d_{u_k}^{-1} \omega_0 |_{I+1} (I_1, tz) \omega_0 |_{I+1} (I_2, tz)}{dx(tz)(y(tz) - y(u_k))} \) has at most a first-order pole at \(z = u_k \). Multiplying this sum by \((x(z) - x(u_k)) \frac{\omega_0 |_{I+1} (I_1, tz)}{dx(tz)} \) gives a regular term without residue. The same is true for \(I_2 \leftrightarrow I_3 \). This proves (2.18). The same argument together with Pascal’s triangle structure eventually shows that the second line of (2.16) vanishes identically for any \(p \geq 1 \). In conclusion, (2.13) is proved, which means that the rhs of (1.3), minus its reflection \(q \mapsto q \), is holomorphic at every \(q = u_k \) (and then also at \(q = u_k \)).

2.4. Linear loop equation. Let \(\sigma_i \) be the local Galois involution defined in a neighbourhood of the ramification point \(\beta_i \). It satisfies \(x(z) = x(\sigma_i(z)) \), \(\sigma_i(z) \neq z \) for \(z \neq \beta_i \) and \(\lim_{z \to \beta_i} \sigma_i(z) = \beta_i \).

Proposition 2.6. The meromorphic differentials \(\omega_0 |_{m+1} \) satisfy the linear loop equation [BEOT15], i.e. \(q \mapsto \omega_0 |_{I+1} (I, q) + \omega_0 |_{I+1} (I, \sigma_i(q)) \) is holomorphic at \(q = \beta_i \).

Proof. We start from the involution identity (2.14), which arises by $q \mapsto \iota q$ from the original equation (1.3), and consider

$$\text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) dw}{w - q}$$

$$= \sum_{s=1}^{|I|} \frac{dw}{s} \sum_{I_0 \cdots I_s = I} \text{Res}_{q \to \beta_i} \frac{dx(q) dy(z)}{w - q (x(q) - x(z))^s} \prod_{j=1}^s \frac{\omega_{|I|+1}(I_j, \iota z)}{dy(z)},$$

where $\omega_{|I|+1}(I, \iota q)$ is included as $s = 1$ on the rhs. Condition (d) in Theorem 1.2 i.e. holomorphicity of $\omega_{|I|+1}(I, \iota q)$ at $q = \beta_i$, implies that the integrand is regular at $z = \beta_i$, but has a pole at $z = \sigma_i(q)$. We thus have with commutation rule (2.3)

$$\text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) dw}{w - q}$$

$$= - \sum_{s=1}^{|I|} \frac{dw}{s} \sum_{I_0 \cdots I_s = I} \text{Res}_{q \to \beta_i} \frac{dx(q) dy(z)}{w - q (x(q) - x(z))^s} \prod_{j=1}^s \frac{\omega_{|I|+1}(I_j, \iota z)}{dy(z)}.$$

With $x(q) = x(\sigma_i(q))$ and $dx(q) = dx(\sigma_i(q))$ the inner integral evaluates to

$$\omega_{|I|+1}(I, \sigma_i(q)),$$

and we end up in

$$\text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))}{w - q} dw = 0.$$ \hfill \Box

Remark 2.7. From (2.5) and the expansion $\sigma_i(q) - \beta_i = -(\beta_i - q) + O((q - \beta_i)^2)$ we conclude

$$\text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))}{q - \beta_i} = \text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))}{\sigma_i(q) - \beta_i}$$

$$= - \text{Res}_{q \to \beta_i} \frac{\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))}{q - \beta_i}.$$

Hence, $\frac{\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))}{q - \beta_i}$ is regular at $q = \beta_i$, which means that $\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \sigma_i(q))$ has at least a first-order zero at $q = \beta_i$.

2.5. The recursion kernel. We start from Lemma 2.3 for $q \mapsto \iota q$ where (1.1) is taken into account:

$$\omega_{|I|+1}(I, q) + \omega_{|I|+1}(I, \iota q)$$

$$= dx(q) \sum_{s=1}^{|I|-1} \sum_{I_0 \cdots I_s = I} \nabla^s \omega_{|I|+1}(I_0, \iota q) \prod_{j=1}^s \frac{\omega_{|I|+1}(I_j, \iota q)}{dx(q)}$$

$$= dx(q) \sum_{s=1}^{|I|-1} \sum_{I_0 \cdots I_s = I} \text{Res}_{z \to q} \frac{\omega_{|I|+1}(I_0, \iota z)}{(x(q) - x(z))(y(z) - y(q))^s} \prod_{j=1}^s \frac{\omega_{|I|+1}(I_j, q)}{dx(q)}.
We introduce

\[\mathfrak{W}_{a,s,s'}(I; q) := \sum_{I_0 \uplus I_1 \uplus \ldots \uplus I_s \uplus I'_0 \uplus \ldots \uplus I'_{s'}} (\delta_{a,0} + (1 - \delta_{a,0}) \nabla^a \omega_{0|I_0 + 1}(I_0; \iota q)) \times \prod_{k=1}^s \frac{\omega_{0|I_k + 1}(I_k, q)}{dx(q)} \prod_{j=1}^{s'} \frac{\omega_{0|I'_j + 1}(I'_j, \sigma_i(q))}{dx(\sigma_i(q))}, \]

\[\mathfrak{B}_{a,a',s,s'}(I; q, z) := \sum_{I_0 \uplus I_1 \uplus \ldots \uplus I_s \uplus I'_0 \uplus \ldots \uplus I'_{s'} = I} \frac{\omega_{0|I_0 + 1}(I_0, \iota z)}{(x(q) - x(z))} \times \prod_{k=1}^s \frac{\omega_{0|I_k + 1}(I_k, q)}{dx(q)} \prod_{j=1}^{s'} \frac{\omega_{0|I'_j + 1}(I'_j, \sigma_i(q))}{dx(\sigma_i(q))} \frac{(dx(q))^{s'}(dx(\sigma_i(q)))^{s''}(y(z) - y(q))a(y(z) - y(\sigma_i(q)))^{a'}}{a}. \]

These are functions of \(q \) and 1-forms in every variable in \(I \), and \(\mathfrak{B}_{a,a',s,s'}(I; q, z) \) is also a 1-form in \(z \). A lengthy calculation gives the following important tool:

Lemma 2.8. Residues of \(\mathfrak{W}_{a,s,s'} \) satisfy for \(0 < a \leq s \)

\[\text{Res}_{q \rightarrow \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \mathfrak{W}_{a,s,s'}(I; q) = \text{Res}_{z \rightarrow \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \left(\mathfrak{B}_{a,0,s,s'}(I; q, z) + \sum_{a' = 1}^{\vert I \vert - s - s' - 1} \mathfrak{B}_{a,a',s,s'+a'}(I; q, z) \right) \]

\[+ \text{Res}_{q \rightarrow \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \left(- \frac{\mathfrak{W}_{0,s,s'+1}(I; q)}{y(\sigma_i(q)) - y(q)^a} - \sum_{a' = 1}^{\vert I \vert - s - s' - 1} \frac{(-1)^a \mathfrak{W}_{a,s'+1,s'+a'}(I; q)}{y(\sigma_i(q)) - y(q)^{a + a'}} \right) \]

for any function \(f_{a,s,s'} \) meromorphic in a neighbourhood of \(\beta_i \).

Proof. We consider for a fixed partition \(I_0 \uplus I_1 \uplus \ldots \uplus I_s \uplus I'_0 \uplus \ldots \uplus I'_{s'} = I \) and some \(0 < a \leq s \) the residue

\[\text{Res}_{q \rightarrow \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \nabla^a \omega_{0|I_0 + 1}(I_0, \iota q) \prod_{k=1}^s \frac{\omega_{0|I_k + 1}(I_k, q)}{dx(q)} \prod_{j=1}^{s'} \frac{\omega_{0|I'_j + 1}(I'_j, \sigma_i(q))}{dx(\sigma_i(q))} \]
Alexander Hock and Raimar Wulkenhaar

but now an additional residue at

\[\Res_{q \to \sigma_i(q)} \frac{\omega_0,|I_0|+1(I_0, \zeta) \prod_{k=1}^s \omega_0,|I_k|+1(I_k, q) \prod_{j=1}^{s'} \omega_0,|I_j'|+1(I_j', \sigma_i(q))}{(x(q) - x(z))(y(z) - y(q))^a(dx(q))^s(dx(\sigma_i(q)))^{s'}}. \]

We have used (2.6) and (2.3) and the fact that the integrand is regular at \(z = \beta_i \). The residue at \(z = \sigma_i(q) \) in the last line can be evaluated immediately and gives rise to the function \(-\frac{\omega_0,|I_0|+1(I_0, \sigma_i(q))}{dx(\sigma_i(q))} \) for which we insert (2.19) at \(q \mapsto \sigma_i(q) \):

\[\Res_{q \to \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \frac{\omega_0,|I_0|+1(I_0, \tau q) \prod_{k=1}^s \omega_0,|I_k|+1(I_k, q) \prod_{j=1}^{s'} \omega_0,|I_j'|+1(I_j', \sigma_i(q))}{dx(\sigma_i(q))} \]

\[= \Res_{z \to \beta_i} \Res_{q \to \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \frac{(x(q) - x(z))(y(z) - y(q))^a(dx(q))^s(dx(\sigma_i(q)))^{s'}}{dx(\sigma_i(q))} \]

\[- \Res_{q \to \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \frac{\omega_0,|I_0|+1(I_0, \sigma_i(q)) \prod_{k=1}^s \omega_0,|I_k|+1(I_k, q) \prod_{j=1}^{s'} \omega_0,|I_j'|+1(I_j', \sigma_i(q))}{dx(\sigma_i(q))} \]

\[+ \sum_{a'=1}^{s-1} \sum_{I_0''|I_0|+1I_0''|I_0''|+1I''_0} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \Res_{z \to \sigma_i(q)} \frac{\omega_0,|I_0''|+1(I_0'', \zeta)}{(x(\sigma_i(q)) - x(z))} \]

\[\prod_{k=1}^s \omega_0,|I_k|+1(I_k, q) \prod_{j=1}^{s'} \omega_0,|I_j'|+1(I_j', \sigma_i(q)) \prod_{j=1}^{a'} \omega_0,|I_j''|+1(I_j'', \sigma_i(q)) \]

\[\frac{(y(\sigma_i(q)) - y(q))^a(dx(q))^s(dx(\sigma_i(q)))^{s'}(y(z) - y(\sigma_i(q)))^{a'}}{dx(\sigma_i(q))} \].

We process the last two lines (*) in the same manner, i.e. commute the two residues according to (2.3). There is again no contribution of a residue at \(z = \beta_i \), but now an additional residue at \(z = q \) arises. The resulting term \(\frac{\omega_0,|I_0|+1(I_0'', q)}{dx(q)} \) is expressed via (2.19):

\[(*) = \sum_{a'=1}^{s-1} \sum_{I_0''|I_0|+1I_0''|I_0''|+1I''_0} \Res_{z \to \beta_i} \Res_{q \to \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \frac{\omega_0,|I_0''|+1(I_0'', \zeta)}{(x(\sigma_i(q)) - x(z))} \]

\[\prod_{k=1}^s \omega_0,|I_k|+1(I_k, q) \prod_{j=1}^{s'} \omega_0,|I_j'|+1(I_j', \sigma_i(q)) \prod_{j=1}^{a'} \omega_0,|I_j''|+1(I_j'', \sigma_i(q)) \]

\[\frac{(y(\sigma_i(q)) - y(q))^a(dx(q))^s(dx(\sigma_i(q)))^{s'}(y(z) - y(\sigma_i(q)))^{a'}}{dx(\sigma_i(q))}. \]
\[
- \sum_{a'=1}^{|I_0|-1} \sum_{I'_0 \cup I'_1 \uplus \cdots \uplus I'_s = I_0} \mathcal{R}_{q \to \beta_i} \frac{f_{a,s,s'}(q)dx(q)}{w - q} \frac{\left(\frac{\omega_0,|I_0|+1(I'_0, q)}{dx(q)} \right)}{w - q} \\
\times \left(-1 \right)^a \prod_{k=1}^s \left(\frac{\omega_0,|I_k|+1(I'_k, q)}{w - q} \right) \prod_{j=1}^{a'} \left(\frac{\omega_0,|I_j'|+1(I'_j, \sigma_i(q))}{w - q} \right) \\
\times \left(\frac{y(\sigma_i(q)) - y(q))^{a+a'}(dx(q))^s(dx(\sigma_i(q)))^{s'}}{(dx(q))^s(dx(\sigma_i(q)))^{s'}} \right)
\]

This is inserted back into the equation we started with. We sum over all partitions \(I_0 \uplus I_1 \uplus \cdots \uplus I_s = I \) for fixed \(s, a, a' \) and express the result in terms of \(\mathfrak{W}, \mathfrak{B} \) introduced in (2.20). The result is (2.21).

Lemma 2.8 is our main tool to evaluate the polar part of (2.19) at \(q = \beta_i \).

Taking condition (d) of Theorem 1.2 into account, we need to evaluate

\[
\mathcal{R}_{q \to \beta_i} \frac{\omega_0,|I|+1(I, q)dx(q)}{w - q} = \sum_{s=1}^{|I|-1} \mathcal{R}_{q \to \beta_i} \frac{\mathfrak{W}_{s,s,0}(I; q)dx(q)dw}{w - q}.
\]

In a first (also very lengthy) step we show:

Lemma 2.9.

\[
0 = \sum_{s=1}^{|I|-1} \mathfrak{W}_{s,s,0}(I; q) + \sum_{s=1}^{|I|-1} \mathfrak{W}_{0,1,1}(I; q) \left(y(\sigma_i(q)) - y(q) \right) = \sum_{s=1}^{|I|-1} \mathfrak{W}_{s,s,0}(I; q) + \sum_{s=1}^{|I|-1} \mathfrak{W}_{s,s',s,s'}(I; q, z).
\]

Proof. We express \(\sum_{s=1}^{|I|-1} \mathcal{R}_{q \to \beta_i} \frac{dx(q)dw}{w - q} \mathfrak{W}_{s,s,0}(I; q) \) via (2.21) at \(s' = 0, a = a \) and \(f_{a,s,s'} \equiv 1 \). In the third line of (2.21), the case \(a' = 1 \) of the second term cancels, when summing over \(s \), every first term except for the single term with \(s = 1 \) and \(s' = 0 \). This surviving term with \(s = a = 1 \) is the last term in the first line of (2.22). When subtracting the second line of (2.22), the term with \(s' = 0 \) in (2.22) cancels directly, and then the term with \(s = 1 \) (and any \(s' \geq 1 \)) cancels.
after reordering partial fractions. After renaming the parameters we arrive at

$$\text{(2.22)}_{\text{rhs}} = \left\{ \begin{array}{ll}
\text{Res}_{q \to \beta_i} & \int \frac{dx(q) dw}{w-q} \left(\sum_{s=2}^{[|I|]-s} \sum_{s'=2}^{[|I|]-s} (-1)^{s'} \frac{\mathcal{M}_{0,s,s'}(I; q)}{(y(\sigma_i(q)) - y(q))^{s+s'-1}} \\
+ \sum_{s=2}^{[|I|]-s-1} \sum_{s'=1}^{s-1} \sum_{a=1}^{s-1} (-1)^{s'} \frac{\mathcal{M}_{a,s,s'}(I; q)}{(y(\sigma_i(q)) - y(q))^{s+s'-a}} \right) \right. \\
+ \left. \text{Res}_{z \to \beta_i, q \to \beta_i} \int \frac{dx(q) dw}{w-q} \sum_{s=2}^{[|I|]-s-1} \sum_{s'=1}^{s-1} \left(\frac{\mathcal{B}_{0,s',s',s'}(I; q, z, q)}{(y(\sigma_i(q)) - y(q))^{s+s'-1}} - \frac{\mathcal{B}_{2-s',s',s'}(I; q, z)}{y(\sigma_i(q)) - y(q)} \right) \right\}.
\end{array} \right. $$

(2.23)

In the second term of the last line we apply repeatedly the identity

$$\frac{\mathcal{B}_{s-1,s',s',s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s+s'-a-a'}} = \frac{\mathcal{B}_{a,a',s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s+s'-a-a'+1}}$$

to express $\frac{\mathcal{B}_{s-1,s',s',s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))}$ as linear combination of $\mathcal{B}_{a,a',s,s'}(I; q, z)$ and $\mathcal{B}_{0,a',s,s'}(I; q, z)$. The coefficient of $\mathcal{B}_{a,a',s,s'}(I; q, z)$ in this expansion is the number of paths made of steps up or right from $(a, 0)$ to $(s-1, s')$ with a first step right. This is the same as the number $(s'+s'-a')$ of words of $s' - 1$ letters R and $s - 1$ letters U. Similarly, the coefficient of $\mathcal{B}_{0,a',s,s'}(I; q, z)$ in this expansion is the number of up-right paths from $(0, a')$ to $(s - 1, s')$ with a first step up. This is the same as the number $(s+s'-a'-2)$ of words of $s - 2$ letters U and $s' - a'$ letters R. A right step comes with a factor (-1). We thus get

$$\frac{\mathcal{B}_{s-1,s',s',s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))} = \sum_{a=1}^{s-1} \left(s + s' - a - 2 \right) \frac{(-1)^{s'} \mathcal{B}_{0,0,s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s+s'-a}}$$

$$+ \sum_{a'=1}^{s'} \left(s + s' - a' - 2 \right) \frac{(-1)^{s'-a'} \mathcal{B}_{0,a',s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s+s'-a'}}. $$

The term with $a' = s'$ cancels the first term of the last line of (2.23) so that we end up in the following equation in which $k \equiv 0$:

$$\text{(2.22)_{rhs}} = \left\{ \begin{array}{ll}
\text{Res}_{q \to \beta_i} & \int \frac{dx(q) dw}{w-q} \left(\sum_{s=2}^{[|I|]-s} \sum_{s'=2}^{[|I|]-k} \left(\begin{array}{c}
3-2k
\end{array} \right) \left(\begin{array}{c}
s-2
k
\end{array} \right) \left(s'-2 \right) \frac{(-1)^{s'} \mathcal{M}_{0,s,s'}(I; q)}{(y(\sigma_i(q)) - y(q))^{s+s'-1}} \right) \\
+ \sum_{s=2}^{[|I|]-k} \sum_{s'=1}^{s-1} \sum_{a=1}^{s-1} \left(\begin{array}{c}
s-a-1
k
\end{array} \right) \left(s'-1 \right) \frac{(-1)^{s'} \mathcal{M}_{a,s,s'}(I; q)}{(y(\sigma_i(q)) - y(q))^{s+s'-a}} \right) \right. \\
+ \text{Res}_{z \to \beta_i, q \to \beta_i} \int \frac{dx(q) dw}{w-q} \sum_{s=2}^{[|I|]-s-1} \sum_{s'=1}^{s-1} \left(\begin{array}{c}
s+s' - a - 2
s'-1
\end{array} \right) \frac{(-1)^{s'} \mathcal{B}_{0,0,s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s+s'-a}}
\end{array} \right\}. $$

(\dagger)
+ \sum_{a'=1}^{s'-1} \left(s' + a' - 2 \right) \frac{(-1)^{s'-a'} \mathcal{M}_{0,a',a,s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'-a'}} \right) dw. \quad (2.24)

Next we process the line (†) of (2.24) via (2.21). With the exception of one term the ‘hockey-stick identity’ \(\sum_{a=1}^{s-k} \binom{s-k}{a} \) and \(\binom{s-1}{k+1} \) occurs:

\[
\begin{align*}
(2.24)_† &= \text{Res}_{q \rightarrow \beta_i} \text{Res}_{w \rightarrow q} \frac{dx(q)dw}{w - q} \sum_{s=2+k}^{\lfloor I-2-k \rfloor} \sum_{a'=1}^{s-1} \left\{ - \binom{s-a}{k} \binom{s'-a}{k} \frac{(-1)^{s'+a'} \mathcal{M}_{0,a',a,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'-a'}} \right. \\
&\quad - \binom{s-a}{k+1} \binom{s'-a}{k} \frac{(-1)^{s'+a'} \mathcal{M}_{0,a',a+1,s'+a'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'+a}} + \left. \right. \\
&\quad + \binom{s-a}{k+1} \binom{s'-a}{k} \frac{(-1)^{s'+a} \mathcal{M}_{0,a'+1,s'+a+1}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'+a+1}} \right\}. \\
&\quad + \text{Res}_{z \rightarrow \beta_i} \text{Res}_{q \rightarrow \beta_i} \frac{dx(q)dw}{w - q} \sum_{s=2+k}^{\lfloor I-2-k \rfloor} \sum_{a'=1}^{s-1} \left\{ \\
&\quad \sum_{a=1}^{s-k} \binom{s-a-1}{k} \binom{s'-a}{k} \frac{(-1)^{s'+a} \mathcal{M}_{0,a,s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'-a}} \\
&\quad + \binom{s-a}{k+1} \binom{s'-a}{k} \frac{(-1)^{s'+a} \mathcal{M}_{0,a',a,s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'+a}} \right\}. \\
&\quad + \text{Res}_{z \rightarrow \beta_i} \text{Res}_{q \rightarrow \beta_i} \frac{dx(q)dw}{w - q} \sum_{s=2+k}^{\lfloor I-2-k \rfloor} \sum_{a'=1}^{s-1} \left\{ \\
&\quad \sum_{a=1}^{s-k} \binom{s-a}{k} \binom{s'-a}{k} \frac{(-1)^{s'+a} \mathcal{M}_{0,a,a',s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'+a}} \\
&\quad + \binom{s-a}{k+1} \binom{s'-a}{k} \frac{(-1)^{s'+a} \mathcal{M}_{0,a+a',a',s,s'}(I; q, z)}{(y(\sigma_i(q)) - y(q))^{s'+s'+a}} \right\}. \quad (2.25)
\end{align*}
\]

The following steps are performed:

- In the first line we shift \(s' + 1 \mapsto s' \in [2+k..\lfloor I-1 \rfloor] \).
- In the second line we shift \(s + 1 \mapsto s \in [3+k..\lfloor I-1 \rfloor] \) and sum over \(a' \in [1..s'-k-1] \). Recall \(\sum_{a'=1}^{s'-k-1} \binom{s'-a'-1}{k} = \binom{s-1}{k+1} \). The new ranges restrict \(s \in [3+k..\lfloor I-1 \rfloor] \).
- In the third line we rename \(s'+a' \mapsto s' \in [2+k..\lfloor I-1 \rfloor] \) and sum over \(a' \in [1..s'-k-1] \). This gives \(\sum_{a'=1}^{s'-k-1} \binom{s'-a'-1}{k} = \binom{s-1}{k+1} \). We also rename \(s+a' \mapsto s \in [3+k..\lfloor I-1 \rfloor] \) and keep the sum over \(a'' \mapsto a \in [1..s-2-k] \).
- In the final line we rename \(s'+a' \mapsto s' \in [2+k..\lfloor I-1 \rfloor - 1] \) and sum over \(a' \in [1..s'-k-1] \).

With the Pascal triangle identity \(\binom{s-1}{k+1} - \binom{s-2}{k+1} = \binom{s-2}{k} \) and the corresponding adjustments of the ranges for \(s, s' \) we find that the first two lines (†, †) of (2.24), where \(k = 0 \), equal the same two lines (2.24)† with \(k = 1 \), plus the iterated residue in the last three lines of (2.25), first for \(k = 0 \). Iterating this procedure until \(s \geq 2 + k \) and \(s' \geq 1 + k \) becomes incompatible with the size \(|I| \) gives for
the first two lines of \((2.24)\) the identity

\[
(2.24)_{\ast,\ast} = \text{Res}_{z \to \beta_{i}} \text{Res}_{q \to \beta_{i}} \sum_{k=0}^{\lfloor |I|/2 \rfloor - 2 |I| - 2 - k |I| - s - 1} \sum_{s=2+k}^{s-1-k} \sum_{s' = 1 + k}^{s} \left\{ \begin{array}{c}
\sum_{a=1}^{s-1-k} \left(\frac{s-a-1}{k} \right) \left(\frac{s'-1}{k} \right) (-1)^{s'} \frac{\mathfrak{B}_{0,s,s'}(I; q, z)}{(y(\sigma_{i}(q)) - y(q))^{s+s'-a}} \\
+ \sum_{a'=1}^{s'-1-k} \left(\frac{s'-a'-1}{k+1} \right) (-1)^{s'-a'} \frac{\mathfrak{B}_{0,a',s',s'}(I; q, z)}{(y(\sigma_{i}(q)) - y(q))^{s+s'-a'}}
\end{array} \right\}. \tag{2.24}
\]

Now we change the summation order and sum first over \(k\). With

\[
\sum_{k=0}^{\min(n,s-1)} \binom{n}{k} \binom{s-1}{k} = \binom{n+s-1}{s-1}, \quad \sum_{k=0}^{\min(n-1,s-1)} \binom{n}{k+1} \binom{s-1}{k} = \binom{n+s-1}{n-1}
\]

(e.g. [Gou10] Vol. 4, eq. (6.69)+(6.70)) we conclude

\[
(2.24)_{\ast,\ast} = \text{Res}_{z \to \beta_{i}} \text{Res}_{q \to \beta_{i}} \sum_{s=2}^{\lfloor |I|/2 \rfloor - 2 |I| - s - 1} \sum_{s' = 1}^{s} \left\{ \sum_{a=1}^{s-s'-a-2} \left(\frac{s+s'-a-2}{s'-1} \right) (-1)^{s'} \frac{\mathfrak{B}_{0,s,s'}(I; q, z)}{(y(\sigma_{i}(q)) - y(q))^{s+s'-a}} \\
+ \sum_{a'=1}^{s'-2} \left(\frac{s'-a'-2}{s-2} \right) (-1)^{s'-a'} \frac{\mathfrak{B}_{0,a',s',s'}(I; q, z)}{(y(\sigma_{i}(q)) - y(q))^{s+s'-a'}}
\end{array} \right\}. \tag{2.24}
\]

Therefore, \((2.24)\) and hence the rhs of \((2.22)\) are identically zero. \(\square\)

We will prove by induction that the second line of \((2.22)\) vanishes identically. This requires a rearrangement of the forms \(\mathfrak{B}\). To simplify notation we introduce the split operator

\[
S_{\omega_{0,|I|+1}}(I, q) := \sum_{I_{1} \cup I_{2} = I} \omega_{0,|I_{1}|+1}(I_{1}, q) \omega_{0,|I_{2}|+1}(I_{2}, \sigma_{i}(q)) \frac{dx(\sigma_{i}(q))}{(y(\sigma_{i}(q)) - y(q))^{s+s'-a}}
\]

with \(S_{\omega_{0,2}}(u, q) = 0\). Then \((2.22)\) can be written with \((2.19)\) as

\[
0 = \text{Res}_{q \to \beta_{i}} \frac{\omega_{0,|I|+1}(I, q)}{w - q} \text{Res}_{q \to \beta_{i}} \sum_{I_{0} \cup I_{1} = I} \omega_{0,|I_{0}|+1}(I_{0}, \tau z) \frac{dx(q) - x(z)}{(w - q)(y(z) - y(q))}
\]

\[
- \sum_{I_{0} \cup I_{1} = I} \text{Res}_{z \to \beta_{i}} \text{Res}_{q \to \beta_{i}} \omega_{0,|I_{0}|+1}(I_{0}, \tau z) \left(\frac{\omega_{0,|I_{1}|+1}(I_{1}, q) + S\omega_{0,|I_{1}|+1}(I_{1}, q)}{w - q} \right) (y(z) - y(q))
\]

\[
\times \mathfrak{B}(I'_{n}; q, z) \right\} dw
\]
where \(\mathfrak{B}(0; q, z) = 1 \) and for \(I'' \neq \emptyset \)
\[
\mathfrak{B}(I''; q, z) = \sum_{s=1}^{||I''||} \sum_{\tilde{s} = 0}^{s} \sum_{I_1 | I_2 | \ldots | I_s = I''} \prod_{j=1}^{s_0} \frac{\omega_{0, |I_j|+1}(I_j, q)}{dx(q)(y(z) - y(q))} \prod_{j=s_0+1}^{s} \frac{\omega_{0, |I_j|+1}(I_j, \sigma_i(q))}{dx(\sigma_i(q))(y(z) - y(\sigma_i(q)))}.
\]

We claim that this expression can be reordered into
\[
\mathfrak{B}(I''; q, z) = \sum_{p=1}^{||I''||} \sum_{I_{1'} | \ldots | I_{p'} = I''} \prod_{j=1}^{p} \left\{ \frac{\omega_{0, |I_j|+1}(I_j, q) + \omega_{0, |I_j|+1}(I_j, \sigma_i(q))}{dx(\sigma_i(q))(y(z) - y(\sigma_i(q)))} \right\}.
\]

Indeed, the term in braces expands with \(dx(\sigma_i(q)) = dx(q) \) into
\[
\left\{ \right\} = \frac{\omega_{0, |I_j|+1}(I_j, q)}{dx(q)(y(z) - y(q))} + \frac{\omega_{0, |I_j|+1}(I_j, \sigma_i(q))}{dx(\sigma_i(q))(y(z) - y(\sigma_i(q)))} - \sum_{I_{1'} | I_{p'} = I_j} \frac{\omega_{0, |I_{j'}|+1}(I_{j'}, q)}{dx(q)(y(z) - y(q))} dx(\sigma_i(q))(y(z) - y(\sigma_i(q))).
\]

A \(p \)-fold product is then of the form
\[
\sum_{I_{1'} | \ldots | I_{p'} = I''} \prod_{j=1}^{p} \left\{ \right\} = \sum_{n+n_2+\tilde{n} = p} \frac{(-1)^n (n + n_2 + \tilde{n})!}{n!n_2!\tilde{n}!} \sum_{I_{1'} | \ldots | I_{n_2}\tilde{n}+n_2 = I''} \times \prod_{j=1}^{n+n_2} \frac{\omega_{0, |I_j|+1}(I_j, q)}{dx(q)(y(z) - y(q))} \prod_{k=1}^{\tilde{n}+n_2} \frac{\omega_{0, |I_{k'}|+1}(I_{k'}, \sigma_i(q))}{dx(\sigma_i(q))(y(z) - y(\sigma_i(q)))}.
\]

We change the summation variables to \(n + n_2 = s_0, \tilde{n} + n_2 = s - s_0 \) and first sum over \(n_2 \in \{0, \min(s_0, s - s_0)\} \) and then over \(s, s_0 \). Because of
\[
\sum_{n_2=0}^{\min(s_0, s - s_0)} \frac{(-1)^n (s - n_2)!}{(s_0 - n_2)!n_2!(s - s_0 - n_2)!} = \sum_{n_2=0}^{\min(s_0, s - s_0)} (-1)^{n_2} \binom{s - n_2}{s} \binom{s_0}{n_2} = 1
\]
(see e.g. [Gou10 Vol. 4, eq. (10.13)]) we obtain the same expression as (2.28), which proves (2.29).

With these preparations we complete the final step:

Proposition 2.10. For all \(|I| \geq 2 \) one has
\[
\text{Res}_{q \to \gamma} \frac{\omega_{0, |I|+1}(I, q) + \mathcal{S}_{\omega_{0, |I|+1}}(I, q)}{w - q} dw = 0.
\]
Equivalently, the meromorphic differentials \(\omega_{0, m+1} \) satisfy the topological recursion
\[
\mathcal{P}_{\gamma}^I \omega_{0, |I|+1}(I, z) = \omega_{0, |I|+1}(I, z).
\]
\begin{align*}
&= \text{Res}_{q \rightarrow \beta_i} \frac{1}{2} \left(\frac{dz}{z-q} - \frac{dz}{z-\sigma_i(q)} \right) \sum_{I_1 \cup I_2 = I} \omega_{0,|I_1|+1}(I_1, q) \omega_{0,|I_2|+1}(I_2, \sigma_i(q)) \cdot \\
\text{Proof.} &\text{By induction on } |I| \geq 2 \text{ using } (2.27) \text{ together with } (2.29). \text{ For } |I| = 2 \text{ we necessarily have } |I_0| = |I'| = 1 \text{ and } I'' = \emptyset. \text{ This implies } \mathcal{B}(I'', q, z) = 1 \text{ and } S \omega_{0,2}(I_1, q) = 0. \text{ Since } \omega_{0,2}(I_1, q) \text{ is regular at } q = \beta_i, \text{ the integrand of the rhs of } (2.27) \text{ has vanishing residue. Assume the proposition is true for } |I| \leq \ell. \text{ Because of } |I_0| \geq 1, \text{ any } I', I'', I_1, \ldots, I_p \text{ on the rhs of } (2.27) \text{ and in } (2.29) \text{ is of length strictly } < \ell. \text{ Then by induction hypothesis, the linear loop equation Proposition 2.6 and the regularity of } \psi(y(q)) \text{ at } q \rightarrow \beta_i, \text{ the whole integrand on the rhs of } (2.27) \text{ is regular at } q = \beta_i, \text{ i.e. its residue equals } 0. \\
\text{This shows } P_{\omega_0,|I|+1}(I, z) &= -\text{Res}_{q \rightarrow \beta_i} \frac{S \omega_{0,|I|+1}(I, q)}{z-q} dz. \text{ With Remark 2.7 we have } \\
\text{have } &\text{Res}_{q \rightarrow \beta_i} \frac{S \omega_{0,|I|+1}(I, q)}{z-q} dz = \text{Res}_{q \rightarrow \beta_i} \left(\frac{1}{2} S \omega_{0,|I|+1}(I, q) \right) + \frac{1}{2} \text{Res}_{z \rightarrow \sigma_i(q)} \left(\frac{S \omega_{0,|I|+1}(I, q)}{z-\sigma_i(q)} \right) dz. \text{ Now } (2.30) \text{ follows from } S \omega_{0,|I|+1}(I, \sigma_i(q)) = -S \omega_{0,|I|+1}(I, q). \mathbb{QED}
\end{align*}

2.6. Symmetry of the involution identity II: \(q \rightarrow \beta_i \) and \(q \rightarrow \iota \beta_i \). Recall that the investigation of \(\omega_{0,|I|+1}(I, q) \) for \(q \) near a ramification point \(\beta_i \) of \(x \) in Sections 2.4 and 2.5 started from the \(\iota \)-reflection (2.14) of the involution identity (1.3). It thus remains to prove that the obtained solution is consistent with the original equation (1.3). This means we have to show

\begin{equation}
\text{Res}_{q \rightarrow \beta_i} \frac{\omega_{0,|I|+1}(I, q) dw}{w-q} = 0
\end{equation}

This is the same as

\begin{align*}
0 &= -\text{Res}_{q \rightarrow \beta_i} \frac{dy(q) dw}{w-q} \left| I \right| \sum_{s=2}^{\left| I \right|} \sum_{I_1 \cup \ldots \cup I_s = I} \frac{1}{s} \text{Res}_{z \rightarrow q} \left(\frac{dx(z)}{(y(q) - y(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, z) \right) \\
&= \text{Res}_{q \rightarrow \beta_i} \frac{dy(q) dw}{w-q} \left| I \right| \sum_{s=1}^{\left| I \right|} \sum_{I_1 \cup \ldots \cup I_s = I} \frac{1}{s} \text{Res}_{z \rightarrow q} \left(\frac{dx(z)}{(y(q) - y(z))^s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, z) \right),
\end{align*}

where (2.2) has been used. We expand \(\frac{1}{(y(q) - y(z))^s} \) about \(y(z) = y(\beta_i) \) and then order into powers of \(y(\beta_i) \). Hence (2.31) holds iff

\begin{align*}
0 &= \text{Res}_{q \rightarrow \beta_i} \frac{dy(q) dw}{w-q} \sum_{p=1}^{\infty} \frac{1}{p(y(q) - y(\beta_i))^p} \\
&\times \sum_{s=1}^{\min(|I|, p)} \sum_{I_1 \cup \ldots \cup I_s = I} \binom{p}{s} \text{Res}_{z \rightarrow \beta_i} \left(\frac{dx(z)(y(z) - y(\beta_i))^{p-s} \prod_{j=1}^{s} \omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right)
\end{align*}
gives
loop equations are equivalent to Proposition 2.10.

We prove that the last line vanishes identically for any \(n = p - k \):

Proposition 2.11. For any family \(\omega_{0,|I|+1}(I, z) \) of 1-forms in \(z \) which satisfy the linear and quadratic loop equations (and forms in \(\bar{y}, \bar{w}, w, \bar{w} \) in Lemma B.1 together with \(\text{Lemma B.1} \)) one has, for any \(n \geq 1 \),

\[
\sum_{s=1}^{|I|} \sum_{I_1 \cup \cdots \cup I_s = I} \text{Res}_{z \to \beta_i} \left(\frac{y(z)^{n-s} dx(z) \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} }{n} \right) = 0 .
\] (2.32)

In particular, (2.31) holds under these assumptions.

Proof. In Remark 2.12 below we indicate that the assertion would be an immediate consequence of existence of a loop insertion operator. Because we did not prove that such an operator exists in our case we give a direct combinatorial proof based on a technical Lemma B.1.

We associate to the complex numbers \(y, \bar{y}, w, \bar{w} \) in Lemma B.1 the functions (and forms in \(u_k \)) \(y \to y(z) \), \(\bar{y} \to y(\sigma_i(z)) \), \(w \to \sum_{\emptyset \neq I \subset I} t_I^{\omega_{0,|I|+1}(I, \sigma(z))} \), \(\bar{w} \to \sum_{\emptyset \neq I \subset I} t_I^{\omega_{0,|I|+1}(I, \sigma(z))} \). We keep only those terms which give rise to an admissible partition of \(I \) (restrict to admissible products of \(I_k \), then set \(I_k \to 1 \)).

Lemma B.1 together with \(e_2 := y\bar{w} + \bar{y}w + w\bar{w} = y(w + \bar{w}) + (\bar{y} + y)(w + \frac{w\bar{w}}{y - \bar{y}}) \) gives

\[
\sum_{k=0}^{n-1} \sum_{I_1 \cup \cdots \cup I_{n-k} = I} \binom{n}{k} \left[y(z)^k \prod_{j=1}^{n-k} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right] \] (2.33)

\[
= \sum_{(n_1, n_2, n_3, n_4) \in \mathcal{D}_n} (-1)^{n_4} \frac{n_3+n_4-1!(n_1+k)(n_2+k)}{n_3!n_4!(n_3+n_4-1)!} y(z)^{n_1+y(\sigma_i(z))^{n_2}} dx(z)
\]

\[
\times \sum_{I_1 \cup I_2 \cup \cdots \cup I_{n_3+n_4} = I} \prod_{j=1}^{n_3} \frac{\omega_{0,|I_j|+1}(I_j, z) + \omega_{0,|I_j|+1}(I_j, \sigma_i(z))}{dx(z)}
\]

\[
\times \prod_{j=n_3+1}^{n_3+n_4} \frac{y(z)^{\omega_{0,|I_j|+1}(I_j, \sigma_i(z)) + \omega_{0,|I_j|+1}(I_j, z)}}{dx(z)}
\]

In our situation, the linear loop equations are proved in Proposition 2.6 and the quadratic loop equations are equivalent to Proposition 2.10.
The linear loop equation Proposition 2.6 and Remark 2.7 imply that
\[S_22 \] so that
\[\text{line at } 1 \]
We have used that the sum coming from the second line get a symmetry factor \(\frac{1}{s+1} \) so that \(\binom{n}{s} \frac{1}{s+1} = \binom{n}{s+1} \).

Remark 2.12. For topological recursion, the existence of a loop insertion operator \(D_w \) is proved [EO07]. It is unclear whether the same holds for blobbed topological recursion in general as well. However, assuming that a loop insertion operator \(D_w \) exists\(^5\) for any blobbed topological recursion, we could prove (2.32) by induction in \(|I| \mapsto |I| + 1 \) with the following consideration:

\[
0 = D_w \sum_{s=1}^{[|I|]} \sum_{I_1 \cup \cdots \cup I_s = I} \text{Res}_{z \to \beta_i} \left[\binom{n}{s} y(z)^{n-s} dx(z) \prod_{j=1}^s \frac{\omega_0 |I_j|+1(I_j, z)}{dx(z)} \right] dx(w) \\
= \sum_{s=1}^{[|I|]} \sum_{I_1 \cup \cdots \cup I_s = I} \text{Res}_{z \to \beta_i} \left[\binom{n}{s} (n-s) y(z)^{n-s-1} dx(z) \frac{\omega_0,2(w, z)}{dx(z)} \prod_{j=1}^s \frac{\omega_0 |I_j|+1(I_j, z)}{dx(z)} \right] \\
+ \sum_{s=1}^{[|I|]} \sum_{I_1 \cup \cdots \cup I_s = I} \text{Res}_{z \to \beta_i} \left[\binom{n}{s} y(z)^{n-s} dx(z) \right] \\
\times \sum_{\ell=1}^s \omega_0 |I_{\ell}|+2(I_{\ell}, w, z) \prod_{j=1, j \neq \ell}^s \frac{\omega_0 |I_j|+1(I_j, z)}{dx(z)} \\
= \sum_{s=1}^{[|I|]+1} \sum_{I_1 \cup \cdots \cup I_s = I \cup w} \text{Res}_{z \to \beta_i} \left[\binom{n}{s} y(z)^{n-s} dx(z) \prod_{j=1}^s \frac{\omega_0 |I_j|+1(I_j, z)}{dx(z)} \right].
\]

We have used that the sum \(\sum_{I_1 \cup \cdots \cup I_s = I \cup w} \) should be symmetric such that all terms with the form \(\omega_0,2(w, z) \) coming from the second line get a symmetry factor \(\frac{1}{s+1} \) so that \(\binom{n}{s} \frac{1}{s+1} = \binom{n}{s+1} \).

\(^4\)Note that (2.5) only states equality of the residue. The integrand of (2.32) has, in general, higher order poles, but no residue.

\(^5\)\(D_w \) acts as a derivation and satisfies \(D_w(dx) = 0, D_w(y(z)dx(z))dx(w) = \omega_0,2(w, z) \) and

\(D_w(\omega_0 |I|+1(I, z))dx(w) = \omega_0 |I|+2(I, w, z) \).
2.7. Finishing the proof of Theorem 1.2. We can now assemble the pieces into a proof of Theorem 1.2. In a first step we assume that the rhs of (1.3) and of (2.14) are the same. By induction these rhs have poles in the points $q \in \{ \beta_i, \iota \beta_i, u_k, \iota u_k \}$. Then conditions (b),(c),(d) imply that $\omega_{0,m+1}(I, q)$ is meromorphic on $\hat{\mathbb{C}}$ with poles only in $q \in \{ \beta_i, u_k \}$. Therefore,

$$
\omega_{0,m+1}(u_1, ..., u_m, z) - \sum_{i=1}^r \text{Res}_{q \rightarrow \beta_i} \frac{\omega_{0,m+1}(u_1, ..., u_m, q)dz}{z - q} - \sum_{k=1}^m \text{Res}_{q \rightarrow u_k} \frac{\omega_{0,m+1}(u_1, ..., u_m, q)dz}{z - q}
$$

is a holomorphic 1-form on the Riemann sphere $\hat{\mathbb{C}} \ni z$, hence identically zero. Inserting the residues from Proposition 2.5 and Proposition 2.10 represents $\omega_{0,m+1}(I, z)$ as (1.4)+(1.5).

It remains to prove that the difference between the rhs of (1.3) and (2.14) is a holomorphic form on $\hat{\mathbb{C}} \ni q$, hence zero. By induction it can have poles at most in $q \in \{ \beta_i, \iota \beta_i, u_k, \iota u_k \}$. In Section 2.3 we have shown that the difference is holomorphic at every $q = u_k$ and $q = \iota u_k$, and in Section 2.6 it is shown that the difference is holomorphic at every $q = \beta_i$ and $q = \iota \beta_i$. This completes the proof of Theorem 1.2. □

2.8. The sum over all preimages. Let $\omega_{g,n+1}^{TR}$ be the differential forms generated by topological recursion only [EO07]. It is well-known that for any $\omega_{g,n+1}^{TR}$, except $(g, n) = (0, 0)$, the following identity holds:

Theorem 2.13 ([EO07]). Let $I = \{ u_1, ..., u_n \}$ and $\omega_{g,n+1}^{TR}$ be the differential forms generated by topological recursion, where $\omega_{0,2}^{TR}$ is the Bergman kernel and $\omega_{0,1}^{TR} = y dx$. Let further be z^k, $k = 1, ..., d$ the preimages with $x(z) = x(z^k)$ such that $z \neq z^k$ and $\hat{z} \equiv z$. Then, the sum of $\omega_{g,n+1}^{TR}$ over all preimages vanishes, except for the Bergman kernel,

$$
\sum_{k=0}^d \omega^{TR}_{g,n+1}(I, z^k) dx(z^k) = \frac{\delta_{g,0} \delta_{n,1} dx(u_1)}{(x(z) - x(u_1))^2}.
$$

For $\omega_{0,2}^{TR}$ the Theorem can be proved directly, and for any other $\omega_{g,n+1}^{TR}$ it follows from the structure of the recursive kernel

$$
K_i(z, q) = \frac{1}{2} \frac{dz}{z-q} - \frac{dz}{z-\sigma_i(q)}
$$

since

$$
\sum_{k=0}^d \frac{1}{z^k - q} - \frac{1}{z^k - \sigma_i(q)} = \frac{1}{x(z) - x(q)} - \frac{1}{x(z) - x(\sigma_i(q))} = 0.
$$
Consequently, it is natural to ask whether a similar identity holds for the preimage sum of $\omega_{0,n+1}$ defined by (1.3) together with (1.2). Applying Theorem 1.2, we get:

Proposition 2.14. Let $I = \{u_1, \ldots, u_n\}$. For $n > 0$ the sum over all preimages is

$$
\sum_{k=0}^{d} \frac{\omega_{0,n+1}(I, \hat{z}^k)}{dx(\hat{z}^k)} = \frac{\delta_{n,1} \delta_{n,1} dx(u_1)}{(x(z) - x(u_1))^2} + \frac{\delta_{n,1} dy(u_1)}{(x(z) + y(u_1))^2}
$$

$$
+ \sum_{j=1}^{n} d_{u_j} \left[\sum_{s=1}^{\lfloor |I| \rfloor - 1} (-1)^{s+1} \sum_{I_1 \cup \ldots \cup I_s = \partial I \setminus u_j} \prod_{i=1}^{s} \frac{\omega_{0,|I|+1}(I_i, u_j)}{x(z) + y(u_j)} \right],
$$

where $\hat{z}^0 \equiv z$.

Proof. First, look at $\omega_{0,2}$ from the second line of (1.2). Dividing it by $dx(\hat{z}^k)$ and summing over k yields

$$
\sum_{k=0}^{d} \omega_{0,2}(u, \hat{z}^k) = -d_u \sum_{k=0}^{d} \left(\frac{1}{2} x^\prime(\hat{z}^k)(u - \hat{z}^k) + \frac{1}{2} x^\prime(\hat{z}^k)(u - \hat{z}^k) \right) - \frac{1}{2} x^\prime(\hat{z}^k)(u - \hat{z}^k) - \frac{1}{2} x^\prime(\hat{z}^k)(u - \hat{z}^k).
$$

(2.35)

Now, use the fact that $\chi_k = \iota \hat{z}^k$ are preimages of $\chi = \iota z$ under the map y, i.e. $y(\chi) = y(\chi_k)$. Furthermore, if a point z does not coincide with one of its preimages \hat{z}^k, it will generically also not coincide under the global involution, $\chi \neq \chi_k$. Together with $\frac{\iota^\prime(z)}{x^\prime(z)} = -\frac{1}{y^\prime(\iota z)}$, (2.35) breaks down to

$$
\sum_{k=0}^{d} \frac{\omega_{0,2}(u, \hat{z}^k)}{dx(\hat{z}^k)} = \frac{1}{2} d_u \left(\frac{1}{x(z) - x(u)} - \frac{1}{y(\iota z) - y(\iota z)} + \frac{1}{y(\iota z) - y(u)} - \frac{1}{x(z) - x(\iota u)} \right).
$$

$$
= d_u \left(\frac{1}{x(z) - x(u)} - \frac{1}{x(z) + y(u)} \right).
$$

For $\omega_{0,n}$ with $n > 2$, Theorem 1.2 proves by the same consideration as for topological recursion in Theorem 2.13 that the poles at the ramification points β_i do not contribute. For the remaining part, we use the equivalence given by Proposition 2.5 to Lemma 2.4. Interchanging the integral and the sum over all preimages in Lemma 2.4 gives

$$
\sum_{k=0}^{d} \frac{\omega_{0,|I|+1}(I, \hat{z}^k)}{dx(\hat{z}^k)}
$$

$$
= - \sum_{u_j \in I} d_{u_j} \left[\sum_{s=1}^{\lfloor |I| \rfloor} \sum_{I_1 \cup \ldots \cup I_s = \partial I \setminus u_j} \sum_{k=0}^{d} \frac{1}{s!} \frac{\partial^s \left(x^\prime(\hat{z}^k)(\iota z^n - u_j) \right)}{\partial(y(u_j))^s} \prod_{i=1}^{s} \frac{\omega_{0,|I|+1}(I_i, u_j)}{dx(u_j)} \right].
$$
Carrying out the derivative with respect to \(y(u_j) \) yields the assertion. \(\square \)

2.9. A particular symmetry under the involution \(\iota \). In the second part we prove that the planar sector (genus 0) of the quartic Kontsevich model is completely governed by the involution identity (1.3). In a decisive step of the proof we will need an intriguing symmetry resulting from (1.3) alone:

\[
0 = \text{Res}_{z \rightarrow q} \left[\sum_{s=1}^{[l]} \frac{1}{s} \sum_{I_{1} \cup \cdots \cup I_{s} = I} \left(\frac{dx(z) \prod_{j=1}^{s} \omega_{0,|I_{j}|+1}(I_{j}, z)}{(x(z) - x(q))(y(q) - y(z))^s} \right) \right]
+ \text{Res}_{z \rightarrow q} \left[\sum_{s=1}^{[l]} \frac{1}{s} \sum_{I_{1} \cup \cdots \cup I_{s} = I} \left(\frac{dx(iz) \prod_{j=1}^{s} \omega_{0,|I_{j}|+1}(I_{j}, iz)}{(x(iz) - x(uq))(y(uq) - y(iz))^s} \right) \right].
\]

(2.36)

The residues in (2.36) can be expressed as limits of partial derivatives of \(\left(\frac{x(z) - x(q)}{y(z) - y(q)} \right)^s \prod_{j=1}^{s} \frac{\omega_{0,|I_{j}|+1}(I_{j}, z)}{d\zeta(z)} \) and \(\left(\frac{x(z) - x(uq)}{y(z) - y(uq)} \right)^s \prod_{j=1}^{s} \frac{\omega_{0,|I_{j}|+1}(I_{j}, z)}{d\zeta(z)} \) with respect to \(x(z) \) and \(x(iz) \). Using (2.6) we thus bring (2.36) into an equation that we need:

\[
0 = \sum_{s=1}^{[l]} \frac{1}{s} \sum_{I_{1} \cup \cdots \cup I_{s} = I} \sum_{n_1 + \ldots + n_s = s} \left(\prod_{j=1}^{s} \nabla^{n_j} \omega_{0,|I_{j}|+1}(I_{j}, q) + \prod_{j=1}^{s} \nabla^{n_j} \omega_{0,|I_{j}|+1}(I_{j}, uq) \right).
\]

(2.37)

The main combinatorial tool to verify (2.36) is Corollary A.8. Using Corollary A.8 we prove that the integrand in (2.36) is an exact 1-form in \(z \):

Proposition 2.15.

\[
\sum_{s=1}^{[l]} \frac{1}{s} \sum_{I_{1} \cup \cdots \cup I_{s} = I} \left\{ \frac{dx(z) \prod_{j=1}^{s} \omega_{0,|I_{j}|+1}(I_{j}, z)}{(x(z) - x(q))(y(q) - y(z))^s} - \frac{dy(z) \prod_{j=1}^{s} \omega_{0,|I_{j}|+1}(I_{j}, z)}{(y(q) - y(z))(x(z) - x(q))^s} \right\}
= \sum_{s=2}^{[l]} \frac{1}{s!} \sum_{I_{1} \cup \cdots \cup I_{s} = I} d_{z}^{s-2} \left[\frac{1}{dy(z)} \left(\frac{1}{y(q) - y(z)} \right) \right]
\times \left(-\frac{1}{dy(z)} \right)^{r} \left[\frac{dx(z)}{(x(z) - x(q)) \prod_{j=1}^{s} \omega_{0,|I_{j}|+1}(I_{j}, z)} \right].
\]

(2.38)

In particular, the residue (2.36) at \(z = q \) is zero.
Proof. In the first line of (2.38), restricted to \(s \geq 2 \), we write \(\frac{1}{(y(q)-y(z))^s} \) as a multiple differential and integrate by parts:

\[
\sum_{s=2}^{|I|} \frac{1}{s!} \frac{dx(z)}{dx(z)} \frac{d_x(z)}{d_x(z)} \left(\prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
= \sum_{s=2}^{|I|} \frac{1}{s!} \frac{dy(z)}{dy(z)} \left(\prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dy(z)} \right) \\
\times \left(\frac{1}{(x(z) - x(q))} \frac{dx(z)}{dy(z)} \prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
\times \left(\prod_{r=1}^{s} \frac{(r-1)!}{(x(z) - x(q))^r} \right) \\
\times \left(-\frac{1}{dy(z)} \frac{d_x(z)}{d_x(z)} \prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
= \sum_{s=2}^{|I|} \frac{1}{s!} \frac{dy(z)}{dy(z)} \left(\prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dy(z)} \right) \\
\times \left(\frac{1}{(x(z) - x(q))} \frac{dx(z)}{dy(z)} \prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
\times \left(\prod_{r=1}^{s} \frac{(r-1)!}{(x(z) - x(q))^r} \right) \\
\times \left(-\frac{1}{dy(z)} \frac{d_x(z)}{d_x(z)} \prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
\times \frac{1}{dy(z)} \frac{d_x(z)}{d_x(z)} \left(\prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right) \\
\times \left(\prod_{r=1}^{s} \frac{(r-1)!}{(x(z) - x(q))^r} \right) \\
\times \left(-\frac{1}{dy(z)} \frac{d_x(z)}{d_x(z)} \prod_{j=1}^{s} \frac{\omega_{0,[I_j+1]}(I_j, z)}{dx(z)} \right)
\]
The derivatives in the last line are expressed as a residue:

\[
\left(-\frac{1}{dy(z)} \right) \left[\frac{dx(z)}{dy(z)} \prod_{j \in J_k} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right] = -(|J_k| - 1)! \text{Res}_{w \to z} \left(\frac{dx(w)}{(y(z) - y(w))^{|J_k|}} \prod_{j \in J_k} \frac{\omega_{0,|I_j|+1}(I_j, w)}{dx(w)} \right).
\]

The case \(r = 1 \) combines to the involution identity \((1.3)\) and is thus identified as the negative of the first line of \((2.30)\). In the remainder we order the partitions of \(I_i \):

\[
f(I; z, q) = \sum_{s=2}^{\left| I_i \right|} \sum_{I_1 < \ldots < I_s} \left\{ -\frac{(s - 1)!dy(z)}{(x(z) - x(q))^s(-dy(z))^s} \right\} \left(-\frac{1}{dy(z)} \right) \left[\frac{dx(z)}{dy(z)} \prod_{j \in J_k} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right] (2.40)
\]

\[
+ dy(z) \sum_{s=1}^{r} \left(-1 \right)^s (r - 1)! \prod_{k=1}^{r} \text{Res}_{w \to z} \left(\frac{(I_k - 1)!dy(z)dx(w)}{(y(z) - y(w))^{|I_k|}} \prod_{j \in J_k} \frac{\omega_{0,|I_j|+1}(I_j, w)}{dx(w)} \right).
\]

We change the order of the summations. The outer summation is a sum over ordered partitions \(I_1' \cup \ldots \cup I'_{s} \) given by \(I'_k = \cup_{j \in J_k} I_j \), which is combined with an inner summation over ordered partitions of the individual \(I'_k \). Renaming in the first line of \((2.40)\) \(s \mapsto r \) and \(I_j \mapsto I'_j \), we arrive at

\[
f(I; z, q) = \sum_{r=2}^{\left| I_i \right|} \sum_{I'_1 < \ldots < I'_s} \left\{ -\frac{(r - 1)!dy(z)}{(x(z) - x(q))^r(-dy(z))^r} \right\} \left(-\frac{1}{dy(z)} \right) \left[\frac{dx(z)}{dy(z)} \prod_{j \in J_k} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right]
\]

\[
+ \prod_{k=1}^{r} \text{Res}_{w \to z} \left(\sum_{s=1}^{\left| I'_{k} \right|} \sum_{I_{k_{1}} < \ldots < I_{k_s}} \left(-\frac{1}{dy(z)} \right) \left[\frac{(s - 1)!dy(z)dx(w)}{(y(z) - y(w))^{s}} \prod_{j=1}^{r} \frac{\omega_{0,|I_k|+1}(I_k, w)}{dx(w)} \right] \right).
\]

The outcome is zero thanks to \((1.3)\). \qed

3. The quartic Kontsevich model

3.1. Summary of previous results.

Let \(H_N \) be the real vector space of self-adjoint \(N \times N \)-matrices, \(H'_N \) be its dual and \((e_{kl}) \) be the standard matrix basis in the complexification of \(H_N \). We define a measure \(d\mu_{E,\lambda} \) on \(H'_N \) by

\[
d\mu_{E,\lambda}(\Phi) = \frac{1}{Z} \exp \left(-\frac{\lambda N}{4} \text{Tr}(\Phi^4) \right) d\mu_{E,0}(\Phi),
\]

\[
Z := \int_{H'_N} \exp \left(-\frac{\lambda N}{4} \text{Tr}(\Phi^4) \right) d\mu_{E,0}(\Phi),
\]
where $d\mu_{E,0}(\Phi)$ is a Gaussian measure with covariance
\[
\left[\int_{H^N} d\mu_{E,0}(\Phi) \, \Phi(\varepsilon_{jk})\Phi(\varepsilon_{lm}) \right]_{c} = \frac{\delta_{jm}\delta_{kl}}{N(E_j + E_l)}
\]
for some $0 < E_1 < \ldots < E_N$. The trace is understood as $\text{Tr}(\Phi^4) = \sum_{k,l,m,n=1}^{N} \Phi(\varepsilon_{kl})\Phi(\varepsilon_{lm})\Phi(\varepsilon_{mn})\Phi(\varepsilon_{nk})$. Moments or cumulants of $d\mu_{E,\lambda}$ are viewed as general or connected correlation functions in a finite-dimensional approximation of a Euclidean quantum field theory.

We call the objects resulting from \(3.1\)+\(3.2\) the **Quartic Kontsevich Model** because of its formal analogy with the Kontsevich model \([\text{Kon}92]\) in which $\text{Tr}(\Phi^4)$ in \(3.1\) is replaced by $\text{Tr}(\Phi^3)$. The Gaussian measure $d\mu_{E,0}(\Phi)$ is the same \(3.2\). Kontsevich proved in \([\text{Kon}92]\) that \(3.1\) with $\text{Tr}(\Phi^3)$-term, viewed as function of the E_k, is the generating function for intersection numbers of tautological characteristic classes on the moduli space $\overline{M}_{g,n}$ of stable complex curves.

Derivatives of the Fourier transform $Z(M) := \int_{H^N} d\mu_{E,\lambda}(\Phi) \, e^{i\Phi(M)}$ with respect to matrix entries M_{kl} and parameters E_k of the free theory give rise to **Dyson-Schwinger equations** between the cumulants
\[
\langle \varepsilon_{k_1l_1} \ldots \varepsilon_{k_nl_n} \rangle_c = \frac{1}{i^n} \frac{\partial^n \log Z(M)}{\partial M_{k_1l_1} \ldots \partial M_{k_nl_n}} \bigg|_{M=0}.
\]
After $1/N$-expansion one obtains a closed non-linear equation \([\text{GW}09]\) for the $1/N$-leading part $G^{(0)}_{|kl|}$ of the 2-point function $N(\varepsilon_{kl}\varepsilon_{lk})_c = \sum_{g=0}^{\infty} N^{-2g} G^{(g)}_{|kl|}$ and a hierarchy of affine equations \([\text{GW}14]\), \([\text{Hoc}20]\) for all other functions. The non-linear equation for $G^{(0)}_{|kl|}$ was solved in a special case in \([\text{PW}20]\) and then in \([\text{GHW}19]\) in full generality. The solution introduces a ramified covering $R : \hat{C} \to \hat{C}$ of the Riemann sphere $\hat{C} = \mathbb{C} \cup \{\infty\}$ given by \(\text{see} \ [\text{Swi}19]\)
\[
R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\theta_k}{\varepsilon_k + z}.
\]
Here $(\varepsilon_k, \theta_k)$ are implicitly defined as solution of the system $R(\varepsilon_i) = \varepsilon_i, \theta_i R'(\varepsilon_i) = r_1$ when assuming that (E_1, \ldots, E_N) consists of d pairwise different values $\varepsilon_1, \ldots, \varepsilon_d$ which arise with multiplicities r_1, \ldots, r_d. The planar 2-point function is then given by $G^{(0)}_{|kl|} = \mathcal{G}^{(0)}(\varepsilon_k, \varepsilon_l)$ where $\mathcal{G}^{(0)}$ is the rational function
\[
\mathcal{G}^{(0)}(z, w) = \frac{1 - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{r_k}{\varepsilon_k z + 1}}{R(w) - R(-z)}
\]
with poles located at $z + w = 0$ and $z, w \in \{\hat{\varepsilon}_k^j\}$ for $k, j \in \{1, \ldots, d\}$. Here $v \in \{z, \hat{z}^1, \ldots, \hat{z}^d\}$ is the set of solutions of $R(v) = R(z)$. One has $\mathcal{G}^{(0)}(z, w) = \mathcal{G}^{(0)}(w, z)$.
In [BHW20a] we identified an algorithm which constructs recursively, starting from (3.5), any cumulant (3.3) of the measure (3.1)+(3.2). Its core is a coupled system of loop equations [BHW20a, Prop. 5.3, Prop. 5.6, Cor. 5.9] for three families of functions $\Omega^g_m(u_1, \ldots, u_m)$, $T^g(u_1, \ldots, u_m; z, w)$ and $\mathcal{T}^g(0, \ldots, u_m; z|w)$ with $\mathcal{T}^0(0|z, w) = \mathcal{G}^0(z, w)$ and $\mathcal{T}^0(0|z|w)$ determined in [SW19]. Of particular importance are the functions $\Omega^g_m(u_1, \ldots, u_m)$ which arise from complexification of derivatives $\Omega^g_a(u_1, \ldots, u_m)$ of the partially summed two-point function:

$$
\sum_{g=0}^{\infty} N^{1-2g-n} \Omega^g_{a_1, \ldots, a_n} := \frac{\delta_{n,2}}{N(E_{a_3} - E_{a_2})^2} + \frac{\partial^{n-1}}{\partial E_{a_2} \cdots \partial E_{a_n}} \sum_{k=1}^{N} \langle e_{a_1 k e_{k a_1}} \rangle , \quad (3.6)
$$

In [BHW20a] it is shown that the $\Omega^g_{a_1, \ldots, a_n}$ are distinguished polynomials of the cumulants (3.3).

The system of equations established in [BHW20a] permits to determine $\Omega^g_m(u_1, \ldots, u_m)$ without prior knowledge of $\langle e_{a_1 k e_{k a_1}} \rangle$. The solution of this system for Ω^g_1, Ω^g_2, Ω^g_3 and Ω^g_4 in [BHW20a] gave strong support for the conjecture that the meromorphic forms $\omega_{g,n}(z_1, \ldots, z_n) := \Omega^g_n(z_1, \ldots, z_n) dR(z_1) \cdots dR(z_n)$ obey blobbed topological recursion [BS17] for the spectral curve $(x : \mathbb{C} \to \hat{\mathbb{C}}, \omega_{0,1} = y dx, \omega_{0,2})$ with

$$
x(z) = R(z) , \quad y(z) = -R(-z) , \quad \omega_{0,2}(u, z) = \frac{du}{(u-z)^2} + \frac{dz}{(u+z)^2} . \quad (3.7)
$$

In the remainder of this paper we prove this conjecture for $\omega_{0,n}$. More precisely, we prove that the solution of the system of equations given in [BHW20a] is identical to the solution of the involution identity (1.3) given in Theorem 1.2 for $\iota z = -z$ and $x = R$ as in (3.4). In particular, the part of $\omega_{0,n}$ with poles at ramification points of $x = R$ obeys exactly the universal formula of topological recursion [EO07], and the other part with poles along opposite diagonals $z_i + z_j = 0$ is described by a residue formula of very similar type.

3.2. Loop equations.

The loop equations derived in [BHW20a] imply that $\omega_{0,m+1}(u_1, \ldots, u_m, z)$ is an exact 1-form in every variable u_1, \ldots, u_k. We set

$$
\omega_{0,m+1}(u_1, \ldots, u_m, z) = d_{u_1} \cdots d_{u_m} \omega_{0,m+1}(u_1, \ldots, u_m; z) . \quad (3.8)
$$

The $\omega_{0,m+1}(u_1, \ldots, u_m; z)$ are 1-forms in z, they relate via $\omega_{0,m+1}(u_1, \ldots, u_m; z) = \lambda^{1-m} W_{m+1}(u_1, \ldots, u_m; z) dR(z)$ to functions introduced in [BHW20a]. The loop equations derived in [BHW20a] Appendix E] translate as follows into equations between $\omega_{0,m+1}$ and two classes of auxiliary functions:

Proposition 3.1. The loop equations of the quartic Kontsevich model have in lowest degree the solution $\omega_{0,2}(u; z) = \frac{dz}{(u-z)} - \frac{dz}{(u+z)}$ and can be turned for I =
\{u_1, ..., u_m\} with \(m \geq 2\) into [BHW20a, Prop. E.1, eqs. (E.4)+(E.5)]

\[
\varpi_{0,|I|+1}(I; z) = \frac{\text{Res}_{q\to \tilde{q}_{1,2d}} \frac{dz}{z-q} \left[\sum_{I_1\cup I_2 = I} \varpi_{0,|I|+1}(I_1; q) v_{0,|I_2|}(I_2||q) \right] + \sum_{k=1}^{m} v_{0,|I|}(I\setminus u_k||u_k)dz}{z + u_k},
\]

where

\[
v_{0,|I|}(I||q) = \sum_{I_1\cup I_2 = I} \sum_{j=1}^{d} \frac{\varpi_{0,|I|+1}(I_1; -\hat{q}^j) \hat{v}_{0,|I_2|}(I_2||-\hat{q}^j, q)}{dR(\hat{q}^j)(R(-q) - R(-\hat{q}^j))} - \sum_{k=1}^{m} \frac{\hat{t}_{0,|I|-1}(I\setminus u_k||u_k, q)}{(R(u_k) - R(-q))(R(-u_k) - R(q))},
\]

and \(\hat{t}_{0,0}(0||z, q) = 1\) and for \(|I| \geq 1\)

\[
\hat{t}_{0,|I|}(I||z, q) = - \sum_{I_1\cup I_2 = I} \sum_{j=1}^{d} \frac{\varpi_{0,|I|+1}(I_1; -\hat{q}^j) \hat{v}_{0,|I_2|}(I_2||-\hat{q}^j, q)}{dR(\hat{q}^j)(R(z) - R(-\hat{q}^j))} + \sum_{k=1}^{m} \frac{\hat{t}_{0,|I|-1}(I\setminus u_k||u_k, q)}{(R(z) - R(u_k))(R(q) - R(-u_k))} - \sum_{I_1\cup I_2 = I} \frac{\varpi_{0,|I|+1}(I_1; z) \hat{v}_{0,|I_2|}(I_2||z, q)}{dR(z)(R(q) - R(z))}.
\]

In (3.9), \(\beta_1, ..., \beta_{2d}\) are the ramification points of the ramified cover \(R\) given in (3.4). By \(\hat{q}^1, ..., \hat{q}^d\) we denote the other preimages of \(q\) under \(R\), i.e. \(R(\hat{q}^j) = R(q)\). Generically they are pairwise different and different from \(q\).

Note that conditions (a),(c),(d) of Theorem 1.2 are automatically satisfied by (3.9). Compared with [BHW20a] we have set \(t_{0,|I|}(I||z, w) = \frac{\varpi^{(0)}(I||z, w)}{\lambda(z)\varpi^{(0)}(z, w)}\) and \(v_{0,|I|}(I||z) = -\lambda^{-1-|I|} \varpi^{(0)}(I||z)\).

The function \(\hat{t}_{0,|I|}(I||z, q)\) is regular at every \(z = -\hat{q}^j\). To see this we write in the last line of (3.11) the denominator as \(R(q) - R(-q) = R(-(-\hat{q}^j)) - R(-z)\) and insert the Taylor expansion (2.7) (for \(\varpi\)) and the usual Taylor expansion of \(\hat{t}_{0,|I|}(I_2||z, q)\):

\[
\frac{\varpi_{0,|I|+1}(I_1; z) \hat{v}_{0,|I_2|}(I_2||z, q)}{dR(z)(R(q) - R(-z))} = \sum_{n,p=0}^{\infty} \frac{(-1)^n}{p!} (R(z) - R(-\hat{q}^j))^n + p^{-1} \nabla^n \varpi_{0,|I|+1}(I_1; -\hat{q}^j) \frac{\partial^p \hat{v}_{0,|I_2|}(I_2||z, q)}{\partial(R(z))^p} |_{z = -\hat{q}^j}.
\]
Inserted back into (3.11), the case $p = n = 0$ cancels the term $l = j$ of the first line of (3.11) when taking $\nabla^0_\varpi w_{0, I_{1}|+1}(I_1; -\hat{q}^i) = \frac{w_{0, I_{1}|+1}(I_1; -\hat{q}^i)}{dR(q^i)}$ into account. Hence, all partial derivatives of $\tilde{t}_{0, I}(I\|z, q)$ are regular at $z = -\hat{q}^i$:

$$\left.\left(\frac{-1}{n!}\frac{\partial^n \tilde{t}_{0, I}(I\|z, q)}{\partial (R(z))^n}\right)\right|_{z = -\hat{q}^i} = -\sum_{l_1, l_2 = l, \text{possibly } l_2 = 0}^d \frac{\tilde{t}_{0, I_l|+1}(I_1; -\hat{q}^i)\tilde{t}_{0, I_2}(I_2\| -\hat{q}^i, q)}{dR(q^i)(R(-\hat{q}^i) - R(-\hat{q}^i))^{n+1}}$$

$$+ \sum_{k=1}^m \frac{\tilde{t}_{0, I_l|l-1}(I\|u_k\|u_k, q)}{(R(-\hat{q}^i) - R(u_k))^{n+1}(R(q) - R(-\hat{q}^i))}$$

$$+ \sum_{l_1, l_2 = l, \text{possibly } l_2 = 0}^{n+1} \nabla^{p+1} \tilde{t}_{0, I_{l_1}|+1}(I_1; -\hat{q}^i) \frac{(-1)^p \partial^p \tilde{t}_{0, I_2}(I_2\|z, q)}{p! \partial (R(z))^p} \right|_{z = -\hat{q}^i}.$$

Formulae (3.11) for $z \mapsto u_k$ and (3.12) provide a system of equations whose resolution provides $t_{0, I}(I\| -\hat{q}^i, q)$ and $t_{0, I-1}(I\|u_k\|u_k, q)$ as polynomials in $\nabla \varpi$ with coefficients in rational functions of R. Inserted into (3.9) we recursively express $\tilde{w}_{0, I_l|+1}(I; z)$ in terms of $\nabla^n \tilde{w}_{0, I_{l'}|1}(I'; z)$ for $|I'| < |I|$. We find it convenient to develop a graphical description for this resolution. With these tools we can establish:

Theorem 3.2. Starting from $\varpi_{0,2}(u; z) = -\frac{dz}{(u-z)} - \frac{dz}{(u+z)}$, the system of equations (3.9), (3.10), (3.11) for $z \mapsto u_k$ and (3.12) has the solution

$$\varpi_{0, I_{l+1}}(I; z) = \sum_{i=1}^r \text{Res} K_i(z, q) \sum_{I_{1} \cup I_{2} = l} \varpi_{0, I_{l+1}}(I_{1}; q) \varpi_{0, I_{l+1}}(I_{2}; \sigma_i(q))$$

$$- \sum_{k=1}^m \text{Res} K_i(z, q, u_k) \sum_{I_{1} \cup I_{2} = l} \tilde{K}(z, q, u_k) \varpi_{0, I_{l+1}}(I_{1}; q) \varpi_{0, I_{l+1}}(I_{2}; q),$$

(3.13)

where $K_i(z, q) := \frac{1}{2} \left(\frac{dz}{z-q} - \frac{dz}{z-\sigma_i(q)} \right) \left(R(\sigma_i(q)) - R(-\sigma_i(q)) \right)$,

$$\tilde{K}(z, q, u) := \frac{1}{2} \left(\frac{dz}{z-q} - \frac{dz}{z+u} \right) \left(R(u) - R(-u) \right).$$

Hence, $\varpi_{0,m+1}(u_1, ..., u_m, z) = d_{u_1} \cdots d_{u_m} \varpi_{0, m+1}(u_1, ..., u_m; z)$ coincides with the solution of equation (1.3) for $x(z) = R(z)$ and $i(z) = -z$ given in Theorem 1.2.
3.3. **Graphical description.** We introduce in Table 1 weighted functions, vertices and edges. These are connected to chains which provide a graphical description for the terms \(\frac{(-1)^{p\cdot q_1}}{\partial^p \partial^{q_1}} \tilde{t}_{0,|I|}(I\|z, q)|_{z=\tilde{y}}\) and \(\tilde{t}_{0,|I|}(I\|u_k, q)\) and its constituents. We agree that arrow tips with label \(p = 0\) are not shown. Also the surrounding circle segment indicating the \(n\)-th derivative with respect to \(R(z)\) is not shown for \(n = 0\).

Equation (3.12) has for \(|I| \geq 1\) the following graphical description (we keep the order of the last three lines of (3.12)):

\[
\begin{align*}
\tilde{t} & \quad \square \quad \bigcirc_{n} = \sum_{I \cup I_2 = I}^{d} \sum_{l \neq j}^{I_1 \cup I_2 = I} \bigcirc_{l} \bigcirc_{n} I_1 \bigcirc_{I_2} \\
& + \sum_{k=1}^{[I]} \bigcirc_{u} \bigcap_{j} \bigcirc_{u_k} \bigcap_{I \setminus u_k} \\
& + \sum_{I \cup I_2 = I}^{d} \sum_{s=0}^{I_1 \cup I_2 = I} \bigcirc_{j} \bigcirc_{s} \bigcirc_{I_1} \bigcap_{I_2}^{n+1-s} .
\end{align*}
\]
\[(3.14)\]

Similarly, equation (3.11) is for \(|I| \geq 1\) represented as (we keep the order of lines)

\[
\begin{align*}
\tilde{t} & \quad \square \quad \bigcap_{I} = \sum_{I \cup I_2 = I}^{d} \sum_{j=1}^{I_1 \cup I_2 = I} \bigcirc_{j} \bigcap_{I_1} \bigcirc_{I_2} \\
& + \sum_{k=1}^{[I]} \bigcirc_{u} \bigcap_{u_k} \bigcap_{I \setminus u_k} \\
& + \sum_{I \cup I_2 = I}^{d} \sum_{s=0}^{I_1 \cup I_2 = I} \bigcirc_{u} \bigcap_{I_1} \bigcap_{I_2} .
\end{align*}
\]
\[(3.15)\]

The integrand of the first line of (3.9) is now iteratively obtained by distinguishing in \(\tilde{t}_{0,|I|}(I\|z, q)\) the cases \(I = \emptyset\) from \(I \neq \emptyset\). We describe this iteration graphically. The integrand of the first line of (3.9) is the sum of weights of chains made of initial vertex \(v_0\), subsequent vertices \(v_1, v_2, v_3\) and edges in between. A vertex \(v_3\) can follow \(v_2\) or another \(v_3\), whereas \(v_1,v_2\) can be placed anywhere. The edge to choose is governed by the type of vertices at both ends. One multiplies the weights given in Table 1 and sums for each order of vertices over partitions of \(I\) into subsets \(I_1, ..., I_s, u_{k_1}, ..., u_{k_r}\) at the vertices, over the \(v_1\)-labels \(j, l, ...\) (from 1 to \(d\), but excluding the preceding label) and over the possible exponents \(n, p, q\) of the edges \(e_1^p, e_3^p\) and \(e_6^p\). These exponents are not arbitrary; we discuss later their pattern.
Table 1. Graphical rules for building blocks of chains

#	vertex	weight	remark		
v0	0	$-\varpi_0	I	+1(I; q)$	initial vertex
v1	j	$\varpi_0	I	+1(I; -\hat{q}^j)$	follows edges e1, e2, e6
v2	\square	$\frac{1}{R(q) - R(-u)}$	follows edges e3, e4		
v3	$\wedge\hat{u}$	$\frac{\varpi_0	I	+1(I; u)}{dR(u)(R(-u) - R(q))}$	follows edges e5

#	edge	weight	remark
e1	j	$\frac{1}{(R(-\hat{q}^j) - R(-\hat{q}^l))^{p+1}(-dR(\hat{q}^l))}$	follows vertices v0, v1 requires $l \neq j$ $\hat{q}^0 = q$, no tip for $p = 0$
e2	u	$\frac{1}{(R(u) - R(-\hat{q}^j))(-dR(\hat{q}^j))}$	follows vertices v2, v3
e3	$\wedge\hat{u}$	$\frac{1}{(R(-\hat{q}^j) - R(u))^{p+1}}$	follows vertices v0, v1 no tip for $p = 0$
e4	u	$\frac{1}{R(v) - R(u)}$	follows vertices v2, v3 requires $u \neq v$
e5	$\wedge\hat{u}$	1	follows vertices v2, v3
e6	$\wedge\hat{u}$	∇^n	follows vertices v1 applies to next vertex
3.4. Examples. We write the first iteration in full details:

\[
\sum_{I_1 \cup I_2 = I} \omega_{0, |I_1|+1}(I_1; q) \nu_{0, |I_2|}(I_2\|q)
\]

(3.16)

\[
= \sum_{I_1 \cup I_2 = I} \sum_{j=1}^{d} \sum_{I_1}^0 j \sum_{I_2}^1 0 + \sum_{k=1}^{|I|} \sum_{I_1 \cup u_k = I}^0 0 \sum_{I_2}^1 u_k \\
+ \sum_{I_1 \cup I_2 \cup I_3 = I} \sum_{j=1}^{d} \sum_{I_1}^0 j \sum_{I_2}^1 \sum_{I_3}^1 0 \sum_{I_1 \cup u_k \cup I_3 = I}^0 \sum_{I_2}^1 u_k \sum_{I_3}^1 .
\]

The necessary sum over partitions of \(I \) and over ranges of labels \(j \) are obvious from the vertex labels. We therefore employ from now on a simplified notation were these summations are omitted. This means that instead of (3.16) we simply write

\[
\sum_{I_1 \cup I_2 = I} \omega_{0, |I_1|+1}(I_1; q) \nu_{0, |I_2|}(I_2\|q)
\]

\[
= 0 \sum_{I_1}^0 j + 0 \sum_{I_2}^1 \sum_{I_1}^0 u_k + 0 \sum_{I_3}^1 0 \sum_{I_1}^0 \sum_{I_2}^1 I_3 + 0 \sum_{I_1}^0 \sum_{I_2}^1 I_3 .
\]

For \(|I| = 2 \) only the first two chains contribute. The next iteration reads in simplified notation

\[
\sum_{I_1 \cup I_2 = I} \omega_{0, |I_1|+1}(I_1; q) \nu_{0, |I_2|}(I_2\|q)
\]

\[
= 0 \sum_{I_1}^0 j + 0 \sum_{I_2}^1 \sum_{I_1}^0 u_k + 0 \sum_{I_3}^1 0 \sum_{I_1}^0 \sum_{I_2}^1 I_3 + 0 \sum_{I_1}^0 \sum_{I_2}^1 I_3 .
\]

For \(|I| = 3 \) only the first three lines of the rhs are relevant. We give another iteration, but stop it at \(|I| = 4 \):

\[
\sum_{I_1 \cup I_2 = I} \omega_{0, |I_1|+1}(I_1; q) \nu_{0, |I_2|}(I_2\|q)
\]
3.5. Cancellations between chains. The following tuples will occur in the subsequent combinatorial description:

Definition 3.3. A Catalan tuple \(\tilde{n} = (n_0, \ldots, n_k) \) of length \(k \in \mathbb{N} \) is a tuple of integers \(n_j \geq 0 \) for \(j = 0, \ldots, k \), such that

\[
\sum_{j=0}^{k} n_j = k \quad \text{and} \quad \sum_{j=0}^{l} n_j > l \quad \text{for} \quad l = 0, \ldots, k - 1.
\]

The set of Catalan tuples of length \(|\tilde{n}| := k \) is denoted by \(C_k \).

The cardinality of \(C_k \) is the \(k^{th} \) Catalan number OEIS A000108.

Now, it will be convenient to collect subchains of consecutive vertices \(v_1 \) with the same upper label \(j \):

Definition 3.4. A \(v_1 \)-block is a subchain

\[
\begin{align*}
 \begin{array}{c}
 j, (n_1, n_2, \ldots, n_s) = j \quad n_1 \quad j \quad n_2 \quad j \quad \cdots \quad j \\
 (I_0, I_1, \ldots, I_s)
 \end{array}
\end{align*}
\]
of vertices \(v1 \) of the same label \(j \), connected by edges \(e6^n \). We call \(j \) the label, \(n = (n_1, ..., n_s) \) the degree and \(\mathcal{I} = (I_0, I_1, ..., I_s) \) the partition distribution of the block. Moreover, we let \(s = s(n) \) be the size, \(|n| = n_1 + \ldots + n_s \) be the length and \(s(n) - |n| \) be the deficit of the v1-block. We also regard vertices v1 as v1-blocks of size or length 0.

A v1-block can terminate a chain iff the deficit is 0. A v1-block can be followed by an edge e1\(p \) or e3\(p \); the label \(p \) of such an edge is then given by the deficit \(p = s(n) - |n| \) of the v1-block before it. Since a v1-block is formed by repeatedly attaching a function \(f2^p \) labelled \(p \geq 0 \), the condition on the deficit must hold at all intermediate steps. This amounts to a condition \(\sum_{i=1}^r n_i \leq r \) on any partial sum. For blocks of total deficit 0 (those which terminate a chain or are followed by edges e10 or e30, this is equivalent to the opposite condition \(\sum_{i=0}^s n_{s-i} > r \) for \(0 \leq r \leq s - 1 \) and \(\sum_{i=0}^s n_{s-i} = s \) when prepending \(n_0 = 0 \). This means that the reversely ordered tuple \(\tilde{n} := (n_s, n_{s-1}, ..., n_1, 0) \) is a Catalan tuple. We consider the subset of chains which differ only in the degrees \(n \) of a v1-block of size \(s \), but otherwise have identically labelled vertices. In this subset any degree \(n \) of the v1-block compatible with the deficit condition is produced, and precisely once.

Definition 3.5. A v2-block is a subchain

\[
\begin{array}{c}
(I_1, ..., I_s); u = u \quad u \quad u \quad u \quad \ldots \quad u \quad u
\end{array}
\]

starting with a vertex v2 of lower label u and several consecutive vertices v3 with the same inner label u, connected by edges e5. We let u be the label, s be the size and \((I_1, ..., I_s)\) be the partition distribution of a v2-block. A v2-block of size 0 is identified with a vertex v2 with lower label u.

If several v2-blocks arise in a chain then its labels \(u_k, u_l, \ldots \) are necessarily different.

We will prove that, after taking cancellations into account, also the labels \(j_1, j_2, \ldots \) of v1-blocks in the surviving chains are pairwise different. These cancellations start with chains of 4 vertices:

\[
\begin{align*}
0 & \quad j_1 \quad j_2 \quad j_1 & + & 0 \quad j_1 \quad j_1 \quad 1 \quad j_2 = 0, \\
I_1 & \quad I_2 & \quad I_3 & \quad I_4 & \quad I_1 & \quad I_2 & \quad I_3 & \quad I_4 \\
0 & \quad j & \quad j & + & 0 \quad j & \quad j \quad \ldots \quad u_k & \quad u_k
\end{align*}
\]

which follows from the weights in Table I and with \(\nabla^0 \mathcal{w}_{0,|I_1|+1}(I_3; -q^j) = \frac{\mathcal{w}_{0,|I_1|+1}(I_3; -q^j)}{(-dR(q^j))} \). These identities reduce the set of graphs to a much simpler subset:

Lemma 3.6. Let \(M \) be the set of chains generated by the loop equations for \(\sum_{I_1 \leq I_2} \mathcal{w}_{0,|I_1|+1}(I_1; q) \mathcal{v}_{0,|I_2|}(I_2 || q) \). Then cancellations between weights remove all chains with edges e1\(p \) and e3\(p \) having a tip labelled \(p \geq 1 \) and all chains with two or more identically labelled v1-blocks. The subset of surviving graphs is given
by the set of chains made of v2-blocks and of v1-blocks which have deficit 0 and pairwise different labels, connected by appropriate edges without tip.

Proof. Consider a v1-block of label \(j \), partition distribution \(I \) and degree \(n = (n_1, n_2, ..., n_s) \) with deficit \(p = s - n_1 - ... - n_s \geq 1 \). Its reverse degree \((n_s, n_{s-1}, ..., n_1, 0) \) cannot be a Catalan tuple for \(p \geq 1 \). This means that either \(n_s = 0 \), or there is a unique \(2 \leq t \leq s \) such that \((n_s, n_{s-1}, ..., n_t, 0) \) is a Catalan tuple but \((n_s, n_{s-1}, ..., n_t, n_{t-1}, 0) \) is not. This necessarily means \(n_{t-1} = 0 \). We define a unique splitting into two v1-blocks of degrees \(n^- \) and \(n^+ \):

\[
\begin{align*}
n_s &= 0: \text{ Set } n^- = (n_1, ..., n_{s-1}), I^- = (I_0, ..., I_{s-1}), n^+ = \emptyset, I^+ = (I_s). \\
n_s &\neq 0: \text{ Set } n^- = (n_1, ..., n_{t-2}), I^- = (I_0, ..., I_{t-2}), \\
&\quad n^+ = (n_t, ..., n_s), I^+ = (I_{t-1}, I_t, ..., I_s).
\end{align*}
\]

By construction, \(n^- \) has deficit 0 so that it can terminate a chain or is followed by edges \(e_1^0 \) or \(e_3^0 \). The other label \(n^+ \) has deficit \(p - 1 \) and is followed by edges \(e_1^{p-1} \) or \(e_3^{p-1} \). Conversely, two degrees \(n^- \) of deficit \(p - 1 \geq 0 \) and \(n^+ \) of deficit 0 can be joined to a unique degree \(n \) of deficit \(p \).

The weights given in Table 1 together with \(\nabla^{n_{t-1}} \overline{\varpi}_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j) = \frac{\varpi_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j)}{(-dR(\tilde{q}^j))} \) confirm the following identity:

\[
0 = \sum_{j, n} \sum_{I, L_1} \sum_{I_1, L_2} \sum_{I_2} \cdot \cdot \cdot \sum_{I_r} \sum_{L_{r+1}} \sum_{L_{r+2}} \cdot \cdot \cdot \sum_{L_s} \sum_{L_{s+1}} \sum_{L_{s+2}} \cdot \cdot \cdot \sum_{L_{s+t}} \sum_{L_{s+t+1}} \sum_{L_{s+t+2}} \cdot \cdot \cdot \sum_{L_{s+t+s}} \frac{1}{(-dR(\tilde{q}^j))} \varpi_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j) \frac{1}{(-dR(\tilde{q}^j))} \varpi_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j)
\]

where the shaded circle stands for any identical subchain in both chains. The same cancellation arises if the v1-block labelled \(j_1 \) is replaced by a v2-block and \(e_1^p \) by \(e_3^p \).

Next for chains which extend by further blocks to the right, all with labels \(\neq j \), we have

\[
0 = \sum_{j, n} \sum_{I, L_1} \sum_{I_1, L_2} \sum_{I_2} \cdot \cdot \cdot \sum_{I_r} \sum_{L_{r+1}} \sum_{L_{r+2}} \cdot \cdot \cdot \sum_{L_s} \sum_{L_{s+1}} \sum_{L_{s+2}} \cdot \cdot \cdot \sum_{L_{s+t}} \sum_{L_{s+t+1}} \sum_{L_{s+t+2}} \cdot \cdot \cdot \sum_{L_{s+t+s}} \frac{1}{(-dR(\tilde{q}^j))} \varpi_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j) \frac{1}{(-dR(\tilde{q}^j))} \varpi_0 |I_{t-1}|+1 (I_{t-1}; -\tilde{q}^j)
\]

Again the shaded circle stands for any identical subchain. The same cancellation arises if any subset of v1-blocks (other than the one labelled \(j \)) is replaced by corresponding v2-blocks.

After these preparations we prove that \((3.17) \) and \((3.18) \) provide the claimed reduction in the set of chains describing \(\sum_{I_1 \oplus I_2 = I} \overline{\varpi}_0 |I_1|+1 (I_1; \tilde{q}) \varpi_0 |I_2| (I_2; \tilde{q}) \).

(1) We start with the type of chains indicated by the left graph in \((3.17) \), with \(p \geq 1 \). Since the splitting of \(n \) into \(n^-, n^+ \) is unique, it cancels against a unique chain indicated on the right of \((3.17) \). Conversely, for any chain \(K \) terminating in a triple consisting of two v1-blocks of the same label \(j \) and

\[
\sum_{I_1 \oplus I_2 = I} \overline{\varpi}_0 |I_1|+1 (I_1; \tilde{q}) \varpi_0 |I_2| (I_2; \tilde{q}) \]

any other block in between, there is a unique chain indicated on the left of (3.17) against which K cancels. As result we remove all chains with a single block after the last e_1^p or e_3^p edge (with $p \geq 1$) and all those chains which terminate in a triple of blocks in which two v_1-blocks are equally labelled.

(2) We pass to (3.18) for $r = 2$. The chain in the first line is only present for $j_2 \neq j$ because the case $j_2 = j$ was removed in step (1). According to (3.18) the chain K indicated in the first line cancels against two uniquely determined chains terminating in a quadruple of blocks two of which are labelled j, and conversely. After all we remove all chains with two blocks after the last e_1^p or e_3^p edge (with $p \geq 1$) and all those chains terminating in a v_1-block labelled j which is followed by three more blocks one of them also labelled j.

(r) Continuing in this manner removes all chains with an e_1^p or e_3^p edge with $p \geq 1$ and all chains with two or more identically labelled v_1-blocks.

We are left with chains in which all blocks have different labels and are connected by edges e_1^0, e_3^0, i.e. without tip.

All surviving v_1-blocks have degrees of deficit 0, i.e. are reversals of Catalan tuples. In the next step we collect all v_1-blocks which have the same union of their partition distribution (and deficit 0) to a v_1-group:

$$
\bigcup_{s=0}^{\lfloor |I|/2 \rfloor} \sum \sum j, (n_1, n_2, \ldots, n_s) \in \mathcal{C}_s \bigcup_{s=0}^{\lfloor |I|/2 \rfloor} \sum \sum \bigcup_{s=0}^{\lfloor |I|/2 \rfloor} \sum \prod_{i=0}^{n_i} \nabla_i^{n_i} \varpi_{0, |I|+1} (I_i; -\hat{q}^j).$$

We have used that the leftmost vertex of every v_1-block has weight $\varpi_{0, |I|+1} (I_0; -\hat{q}^j) = (-dR(\hat{q}^j)) \varpi_{0, |I|+1} (I_0; -\hat{q}^j)$.

Similarly we collect v_2-blocks with the same union of their partition distribution to a v_2-group:

$$
\bigcup_{I, u} := \bigcup_{I}^{\delta|I|, 0} + \sum_{s=1}^{\lfloor |I|/2 \rfloor} \sum \sum \bigcup_{s=0}^{\lfloor |I|/2 \rfloor} \sum \prod_{i=0}^{n_i} \nabla_i^{n_i} \varpi_{|I|+1} (I_i; u),$$

$$
\text{weight} \left(\bigcup_{I, u} \right) = -\sum_{s=0}^{\lfloor |I|/2 \rfloor} \sum_{s=0}^{\lfloor |I|/2 \rfloor} \frac{1}{(R(-u) - R(q))^{s+1}} \prod_{i=1}^{s} \varpi_{|I|+1} (I_i; u).$$

The summation $\sum_{s=0}^{\lfloor |I|/2 \rfloor} \sum_{s=0}^{\lfloor |I|/2 \rfloor}$ is left out for $|I| = \emptyset$. For $I \neq \emptyset$ there is no contribution from $s = 0$. We summarise the previous simplifications and collections:

Corollary 3.7. The integrand $\sum_{I_1 \cup I_2 = I} \varpi_{0, |I_1|+1} (I_1; q) v_{0, |I_2|} (I_2; q)$ in the first line of (3.9) is the sum of weights of all different chains which meet the criteria:
• The leftmost vertex is v_0 with weight $-\omega_{0,|I|+1}(I; q)$.
• Any other vertex is a v_1-group with weight (3.19) or a v_2-group with weight (3.20). The labels j_i of the v_1-groups are pairwise different.
• The union of all subsets I_i at the initial vertex, the v_1-groups and the v_2-groups, together with the labels u_k of the v_2-groups, is $I = \{u_1, \ldots, u_m\}$.
• The edges between the groups (and initial vertex) are given by e^0, e^2, e^3, e^4 depending on the groups they connect. Their weights are given in Table 7.

3.6. Weight of a v_1-group. Next we prove a simpler formula for the weight (3.19) of a v_1-group. Its main step is Corollary A.3, a variant of Corollary A.2 given in the appendix. In the second line of (3.19) we write the sum over all partitions as sum over ordered partitions (introduced in the beginning of Subsection 2.1) together with a sum over permutations ζ. Inserting the definition (2.6) of $\nabla \omega$ we thus have

$$\text{weight}\left(\frac{j}{I}\right) = (-dR(\hat{\omega})) \sum_{s=0}^{[I]-1} \sum_{I_0 < I_1 < \ldots < I_s} \left\{ \prod_{i=0}^{s} (-1)^{n_i} \frac{\partial}{\partial R(z)} \left(R(z) - R(\hat{\omega}) \omega_{0,|I|+1}(I; 0) \right) \right\}.$$

With Corollary A.3 and the bijection between rooted plane trees and Catalan tuples we can replace $\sum_{s} \sum_{I_0 < I_1 < \ldots < I_s} \prod_{i=0}^{s} (-1)^{n_i} \frac{\partial}{\partial R(z)} \left(R(z) - R(\hat{\omega}) \omega_{0,|I|+1}(I; 0) \right)$ by $s! \sum_{n_0 + \ldots + n_s = s}$. We reexpress the result in terms of $\nabla \omega$ and admit again any order of partitions of I into $s + 1$ subsets:

$$\text{weight}\left(\frac{j}{I}\right) = (-dR(\hat{\omega})) \sum_{s=0}^{[I]-1} \sum_{I_0 < I_1 < \ldots < I_s} \frac{1}{s+1} \prod_{i=0}^{s} \nabla \omega_{0,|I|+1}(I; -\hat{\omega}). \quad (3.21)$$

Our aim is to prove Theorem 3.2, namely that the solution $\omega_{0,|I|+1}(I; q)$ of the system (3.9), (3.10), (3.11) (for $z \mapsto u_k$) and (3.12) is, after applying the exterior differentials d_{u_k} to pass from $\omega_{0,|I|+1}$ to $\omega_{0,|I|+1}$, the same as the solution of (3.3) for $\kappa(z) = R(z)$ and $\iota(z) = -z$. We prove this theorem by induction. The v_1-group is always a genuine subchain because at least the initial vertex v_0 is excluded. Therefore Theorem 3.2 is the induction hypothesis for the v_1-group, which gives:

Proposition 3.8. The v_1-group has weight $\left(\frac{j}{I}\right) = -\omega_{0,|I|+1}(I; \hat{\omega})$.

Proof. This follows from Lemma 2.2 for $q \mapsto -\hat{\omega}$ when moving the first term $\omega_{0,|I|+1}(I, -\hat{\omega}) = dy(\hat{\omega}) \nabla \omega_{0,|I|+1}(I, -\hat{\omega})$ to the rhs. Then $d_{u_1} \cdots d_{u_m}$ applied
3.7. Poles of $\omega_{0,|I|+1}(I; z)$ at $z = \beta_i$. We let $P^i_z\omega(z) = \text{Res}_{q \to \beta_i} \frac{\omega(q)dz}{z-q}$ be the projection of a 1-form ω to its poles at $z = \beta_i$. Proposition 3.1 gives

$$P^i_z\omega_{0,|I|+1}(I; z) = P^i_z\left(\sum_{I_1 \cup I_2 = I} \omega_{0,|I_1|+1}(I_1; z)\nu_{0,|I_2|}(I_2\|z) \right).$$

Proposition 3.9. Let $q^i = \sigma_i(q)$ be the preimage of q which corresponds to the local Galois involution near β_i. Then for all $I = \{u_1, \ldots, u_m\}$ with $m \geq 2$ one has

$$P^i_z\omega_{0,|I|+1}(I; z) = -P^i_z\left(\sum_{I_1 \cup I_2 = I} \frac{\omega_{0,|I_1|+1}(I_1; z)\omega_{0,|I_2|+1}(I_2; \hat{z})}{dR(\hat{z})}(R(-z) - R(-\hat{z})) \right).$$

The application of $d_{u_1} \cdots d_{u_m}$ agrees with the restriction of (1.4) to poles at $z = \beta_i$.

Proof. In the graphical representation of Corollary 3.7, the assertion amounts to

$$P^i_q\left(-\frac{0}{I} \right) = P^i_q\left(\frac{j_i}{I_1 I_2} \right).$$

(3.22)

The rhs is one of the chains contributing to the residue at $q = \beta_i$ in the first line of (3.9). We have to prove that all other chains described in Corollary 3.7 sum up to expressions regular at $q = \beta_i$.

We prove this regularity by induction on the length of chains (with v_1/v_2-groups as vertices). By \hat{j} we denote a label different from j_i. There are two remaining chains of length 2, namely \hat{j} (in the first chain summation over $\hat{j} \neq j_i$ and over partitions $I_1 \cup I_2 = I$, in the second chain summation over partitions $I_1 \cup u \cup I_2 = I$. Edges, v_1-groups with label \hat{j} and v_2-groups are regular at $q = \beta_i$. The initial vertex v_0 is regular for $|I_1| = 1$ so that these chains only contribute to P^i_q for $|I_1| \geq 2$. In that case we can, up to terms holomorphic at β_i, replace the initial vertex by (3.22) for $I \mapsto I_1$, which is true by induction hypothesis. We thus have

$$P^i_q\left(\frac{\hat{j}}{I_1 I_2} \right) + P^i_q\left(\frac{\hat{j}}{I_1 I_2; u} \right) = -P^i_q\left(\frac{j_i}{I_1 I_2; u} \right) + P^i_q\left(\frac{j_i}{I_1; u} \right) + P^i_q\left(\frac{j_i}{I_2; u} \right).$$

(3.23)

This identity removes all chains of length 3 with a v_1-group labelled j_i at any position. There remain only the chains of length 3 without v_1-group labelled j_i. For $|I_1| = 1$ these are holomorphic at $q = \beta_i$ and can be discarded in the projection to (3.21) equals $-\omega_{0,|I|+1}(I, \hat{q})$ when taking Theorem 3.2 as induction hypothesis, for $I = \{u_1, \ldots, u_m\}$. Inverting the differentials d_{u_k} gives the assertion. \hfill \Box
\(P^i_q \). The only poles come from initial v0-vertices with \(|I_1| \geq 2\) multiplied by regular expressions. We can thus use (3.22) for \(I \mapsto I_1 \) again and express by the same mechanism as (3.23) the survived length-3 chains as \(-P^i_q\) of all length-4 chains which have a v1-group labelled \(j_i \) at any position. These cancel in the graphical representation. Since the v1-group labelled \(j_i \) can occur only once by Lemma 3.6, only the length-4 chains without any v1-group labelled \(j_i \) survive the cancellation.

We repeat this procedure up to chains of length \(|I|\). The surviving ones have an initial v0-vertex and otherwise v1/v2-groups with other labels than \(j_i \). Now because the initial v0-vertex necessarily has \(|I_1| = 1\), it is also regular at \(q = \beta_i \). Therefore, all chains survived up to this point project with \(P^i_q \) to 0. □

3.8. Poles of \(\omega_{0,|I|+1}(I; z) \) at \(z = -u_k \). We prove in Section 4

Assumption 3.10. Let \(I = \{u_1, ..., u_m\} \) with \(m \geq 2 \). Then for every \(k = 1, ..., m \) one has

\[
\text{Res}_{q \rightarrow -u_k} \omega_{0,|I|+1}(I; q) = 0.
\]

We can thus focus on poles of second or higher order captured by the projection

\[
\mathcal{H}^{k}_q \omega(u_k, z) := \text{Res}_{q \rightarrow -u_k} \left[\left(\frac{dz}{z - q} - \frac{dz}{z + u_k} \right) \omega(u_k, q) \right]
\]

for some 1-form \(\omega(u_k, z) \) in \(z \) (which may depend on further variables). We prove:

Proposition 3.11. Let \(I = \{u_1, ..., u_m\} \) with \(m \geq 2 \). The projection \(\mathcal{H}^{k}_q \) of \(\omega_{0,|I|+1}(I; q) \) is recursively given by

\[
\mathcal{H}^{k}_q \left(\begin{array}{c} 0 \\ \circ \\ I \end{array} \right) = \mathcal{H}^{k}_q \left(\begin{array}{c} 0 \\ \circ \\ I \end{array} \right)_{I_1; u_k}
\]

in the graphical description or explicitly by

\[
\mathcal{H}^{k}_q \omega_{0,|I|+1}(I; q) = \sum_{s=0}^{|I|-2} \sum_{I_0 \ldots I_s \ldots I_k = I \setminus u_k} \mathcal{H}^{k}_q \left(\frac{\omega_{0,|I_0|+1}(I_0; q)}{(R(-q) - R(u_k))(R(-u_k) - R(q))^{s+1}} \prod_{i=1}^s \omega_{0,|I_i|+1}(I_i; u_k) \right).
\]

Remark. Under the Assumption 3.10 the expression (3.26) is equal to \(\text{Res}_{q \rightarrow -u_k} \frac{dz}{z-q} \omega_{0,|I|+1}(I; q) \). Application of \(d_{u_1} \cdots d_{u_m} \) thus coincides with (2.12) at \(q \rightarrow iq = -q \) and \(w \mapsto -z \). This was shown to be equivalent to (2.10) and to (2.8), both for \(z \mapsto iz = -z \) and \(q \mapsto iz = -q \). Together with Proposition 3.9 it follows that \(\omega_{0,m+1}(u_1, ..., u_m, z) := d_{u_1} \cdots d_{u_m} \omega_{0,m+1}(u_1, ..., u_m; z) \) agrees with (1.4) + (1.5). Hence Theorem 3.2 is true if Assumption 3.10 holds.
Proof. Since the second line of (3.9) only has a first-order pole at \(z = -u_k \), the projection of (3.9) to poles of higher order reads

\[
H^k_q \omega_{|I|+1}(I; q) = H^k_q \left[\sum_{I_1 \cup I_2 = I} \omega_{|I|+1}(I_1; q) v_{0,|I_2|}(I_2\|q) \right].
\]

The rhs of (3.25) is one of the chains contributing to the rhs of (3.27). We prove by induction on the chain length (with v1/v2-groups as vertices) that all other chains sum to expressions which at \(q = -u_k \) are holomorphic or have at most a first-order pole. By \(\bar{u} \) we denote any \(u_l \neq u_k \).

At length 2 we have in addition to the rhs of (3.25) the chains

\[
0 \bigcirc \, j \bigcirc + 0 \bigcirc \, I_1 \bigcirc \, I_2 \bigcirc \, I_3 \bigcirc \, \bar{u}.
\]

In the case \(u_k \in I_2 \) these chains are holomorphic at \(q = -u_k \) and can be discarded under \(H^k_q \). Remains \(u_k \in I_1 \). If \(I_1 = \{ u_k \} \), then the initial vertex \(v_0 \) has weight \(-\omega_{0,2}(u_k; q) = dq_{u_k-q} + dq_{u_k+q} \) and only a first-order pole at \(q = -u_k \) which does not contribute to \(H^k_q \). The only contributions are thus from \(u_k \in I_1 \) with \(|I_1| \geq 2 \). Here we can use the induction hypothesis (3.25) for \(I \mapsto I_1 \mapsto I_2 \mapsto I_3 \) so that

\[
H^k_q \left(\omega_{I_1} + \omega_{I_2} + \omega_{I_3} \right) = -H^k_q \left(\omega_{I_1; u_k} + \omega_{I_2; u_k} + \omega_{I_3; u_k} \right).
\]

This identity removes all chains of length 3 with a v2-group labelled \(u_k \) at any position. The remaining length-3 chains have edges and v1/v2-groups which are holomorphic at \(= -u_k \). Poles arise only if \(u_k \in I_1 \) in the initial vertex, and poles of second and higher order require \(|I_1| \geq 2 \). Here the induction hypothesis is available, so that the same mechanism removes all chains of length 4 with a v2-group labelled \(u_k \). We repeat this construction until the initial vertex necessarily has \(|I_1| = 1 \) and also projects to 0 under \(H^k_q \). This finishes the proof of (3.26). \(\square \)

As discussed in the remark directly after Proposition 3.11, the proof of Theorem 3.2 is complete provided that Assumption 3.10 holds.

4. Proof of Assumption 3.10

4.1. The residue. The recursion formula (3.9) generates, a priori, also a first-order pole at \(z = -u_k \) with residue

\[
\text{Res}_{q \to -u_k} \omega_{|I|+1}(I; q) = \text{Res}_{q \to -u_k} \left[\sum_{I_1 \cup I_2 = I} \omega_{|I|+1}(I_1; q) v_{0,|I_2|}(I_2\|q) \right] + v_{0,|I|-1}(I \setminus u_k\|u_k).
\]
Hence, the rhs of the above equation is the restriction of \(\mathcal{R}_t \) i.e. that the residue \((4.1)\) vanishes for \(|I| \geq 2 \). Of particular importance will be the functions

\[
\Delta \omega_{0,|I|+1}(I, z) = \sum_{s=0}^{I-1} \sum_{I_0 \cup I_1 \cup \ldots \cup I_s = I} \nabla^{s+1} \omega_{0,|I_0|+1}(I_0, z) \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, t; z)}{-dy(t)},
\]

\[
\Delta \varpi_{0,|I|+1}(I; z) = \sum_{s=0}^{I-1} \sum_{I_0 \cup I_1 \cup \ldots \cup I_s = I} \nabla^{s+1} \varpi_{0,|I_0|+1}(I_0; z) \prod_{j=1}^{s} \frac{\varpi_{0,|I_j|+1}(I_j; z)}{dR(-z)} .
\]

These arise as follows:

Lemma 4.1. Let \(I = \{u_1, \ldots, u_m\} \) for \(m \geq 2 \). Suppose Assumption 3.10 holds for \(\varpi_{0,|I'|+1} \) with \(u_k \in I' \) and \(2 \leq |I'| < |I| \) (there is no condition for \(m = 2 \)). Then

\[
\text{Res}_{z \rightarrow -u_k} \varpi_{0,|I'|+1}(I; z) = \varpi_{0,|I|}(I \setminus u_k || u_k) - \varpi_{0,|I|}(I \setminus u_k || -u_k) - \Delta \varpi_{0,|I|}(I \setminus u_k; -u_k)
\]

\[
+ \sum_{I_1 \cup I_2 = I \setminus u_k} \varpi_{0,|I|}(I \setminus u_k) \Delta \varpi_{0,|I_2|+1}(I_2; -u_k) .
\]

Proof. We evaluate the residue on the rhs of \((4.1)\). In the graphical representation we have a contribution from the chain (in which \(I' = \emptyset \) is allowed; the weight of the v2-group is given in \((3.20)\))

\[
\text{Res}_{q \rightarrow -u_k} \left(\begin{array}{c} 0 \\ \circ \bowtie \circ \end{array} \right)_{I_0 \cup I' = I \setminus u_k}
\]

\[
|I| - 2 \sum_{s=0}^{I-1} \sum_{I_0 \cup I_1 \cup \ldots \cup I_s = I \setminus u_k} \frac{\varpi_{0,|I_0|+1}(I_0; q)}{(R(q)-R(-u_k))(R(-u_k)-R(q))^{s+1}} \prod_{i=1}^{s} \frac{\varpi_{0,|I_i|+1}(I_i; u_k)}{dR(u_k)}
\]

\[
= - \sum_{s=0}^{I-1} \sum_{I_0 \cup I_1 \cup \ldots \cup I_s = I \setminus u_k} \nabla^{s+1} \varpi_{0,|I_0|+1}(I_0; -u_k) \prod_{i=1}^{s} \frac{\varpi_{0,|I_i|+1}(I_i; u_k)}{dR(u_k)}
\]

\[
= - \Delta \varpi_{0,|I|}(I \setminus u_k; -u_k),
\]

where the definition \((2.6)\) for \(\omega = \varpi \) at \(q \rightarrow -u_k \) and \(z \rightarrow q \) has been used. This provides the third term on the rhs of \((4.3)\). The first term is copied from \((4.1)\).

We investigate the residues at \(q = -u_k \) of all other chains. The remaining chains of length 2 (with v1/v2-groups as vertices) with residue at \(q = -u_k \) are the same as in the first line of \((3.28)\) with \(u_k \in I_1 \). Two cases are to distinguish. For \(I_1 = u_k \) we have a purely first-order pole and

\[
\text{Res}_{q \rightarrow -u_k} \left(\begin{array}{c} 0 \\ \circ \bowtie \circ \end{array} \right)_{I \setminus u_k} + \left(\begin{array}{c} 0 \\ \circ \bowtie \circ \end{array} \right)_{I \setminus u_k} = \left(\begin{array}{c} 0 \\ \circ \bowtie \circ \end{array} \right)_{I \setminus u_k} + \left(\begin{array}{c} 0 \\ \circ \bowtie \circ \end{array} \right)_{I \setminus u_k}
\]

Amputation of the initial v0-vertex gives the chains contributing to \(-\varpi_{0,|I'|}(I'|q) \). Hence, the rhs of the above equation is the restriction of \(-\varpi_{0,|I|-1}(I \setminus u_k || -u_k) \) to
chains of length 1. The other case is \(u_k \in I_1 \) but \(|I_1| \geq 2 \). Since \(|I_1| < |I| \), Assumption \[3.10\] holds for the initial vertex \(-\varpi_{|I_1|+1}(I_1; q)\) whose poles at \(q = -u_k \) are thus of purely higher order. They are thus given by \(-\mathcal{H}_q \varpi_{|I_1|+1}(I_1; q)\), which can be expressed by \(3.25\):

\[
\text{Res}_{q \to -u_k} \left(\frac{0}{I_1} \begin{array}{c} j \\ I_1 \\ I_2 \end{array} + \frac{0}{I_1} \begin{array}{c} 0 \\ I_1 \\ I_2; u_l \end{array} \right) u_k \in I_1 |_{|I_1|\geq 2}
\]

\[
= - \text{Res}_{q \to -u_k} \left\{ \mathcal{H}_q^k \left(\frac{0}{I_0} \begin{array}{c} j \\ I_1; u_k \end{array} \right) \cdot \left(\frac{0}{I_2} \begin{array}{c} j \\ I_2 \end{array} + \frac{0}{I_2; u_l} \right) \right\}
\]

\[
= - \text{Res}_{q \to -u_k} \left\{ \left(\frac{0}{I_0} \begin{array}{c} j \\ I_1; u_k \end{array} \right) - \frac{dq}{u_k} + q \text{ Res}_{q \to -u_k} \left(\frac{0}{I_0} \begin{array}{c} j \\ I_1; u_k \end{array} \right) \right\}
\]

\[
= \text{Res}_{q \to -u_k} \left(\frac{0}{I_0} \begin{array}{c} j \\ I_1; u_k \end{array} \right) \cdot \left(\frac{0}{I_2} \begin{array}{c} j \\ I_2 \end{array} + \frac{0}{I_2; u_l} \right) \quad q \to -u_k
\]

In the step from the second to the third line we have used that only the whole projection \(\mathcal{H}_q^k + \frac{dq}{q+u_k} \text{ Res}_{q \to -u_k} \) to the principal part of a Laurent series, but not \(\mathcal{H}_q^k \) alone, is the identity operator under the residue. According to \(4.4\), the second line from below equals \(-\Delta \varpi_{0,|I_1|+|I_1|+1}(I_0 \cup I_1; -u_k) \) times the restriction of \(-\varpi_{0,|I_1|}|_{u_k} \) to chains of length 1, here with \(I_0 \cup I_1 \supset I_1 = I \setminus u_k \). The last line removes from the residue all chains of length 3 with a \(v_2 \)-group labelled \(u_k \).

Thus only those length-3 chains for which \(u_k \in I_1 \) is located at the initial vertex \(v_0 \) contribute to the remaining residue. Again the case \(I_1 = u_k \) produces the restriction of \(-\varpi_{0,|I_1|} I_1 \| -u_k \) to chains of length 2. For \(|I_1| \geq 2 \) we use Assumption \[3.10\] that \(-\varpi_{0,|I_1|+1}(I_1; q)\) has at \(q = -u_k \) a pole of second or higher order given by \(3.25\). The same argument as before produces on one hand \(4.4\) times the restriction of \(-\varpi_{0,|I_1|}|_{I_1 \setminus u_k} \) to chains of length 2, on the other hand removes from the residue all chains of length 4 with a \(v_2 \)-group labelled \(u_k \). Continuing this strategy until \(I_1 = u_k \) is the only choice shows that the residue of all chains other than \(4.4\) evaluates to \(-\varpi_{0,|I_1|} I_1 \| -u_k \) plus \(4.4\) times \(-\varpi_{0,|I_1|} I_1 \| -u_k \), summed over partitions of \(I_1 \setminus u_k \).

Assumption \[3.10\] for \(\varpi_{0,|I_1|+1} \), that the rhs of \(4.3\) evaluates to 0, is thus a condition on \(\varpi_{0,|I_1|+1} \) or \(\omega_{0,|I_1|+1} \) for \(|I'| < I \). Here Theorem \[3.2\] is the induction hypothesis. Its proof is complete (following the previous considerations) if Theorem \[3.2\] implies

\[
0 = \varpi_{0,|I|} |_{I \setminus q} - \varpi_{0,|I|} |_{I \setminus q} - \Delta \varpi_{0,|I_1|+1}(I_1; q) + \sum_{I_1 \supset I_2 = I} \varpi_{0,|I_1|} |_{I_1 \setminus q} \Delta \varpi_{0,|I_2|+1}(I_2; q)
\]

\[
(4.5)
\]
We are going to prove that the rhs of (4.5) is an entire holomorphic function on \(\hat{\mathbb{C}} \), i.e. a constant, equal to its value 0 for \(q \to \infty \). This implies (4.5).

We start to discuss absence of poles at \(q = \pm \beta_i \). Recall that (4.5) equals \(\text{Res}_{z \to q} \mathfrak{w}_{0,|I|+2}(I, -q; z) \). The projection of (4.5) to poles at \(q = \beta_i \) is thus given by

\[
\text{Res}_{q \to \beta_i} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q} = - \text{Res}_{q \to \beta_i} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q} + \text{Res}_{z \to \beta_i} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q}
\]

when taking (2.2) into account. The final term gives zero because non of the chains contributing to \(\mathfrak{w}_{0,|I|+2}(I, -q; z) \) has a pole at \(-q = -\beta_i \). The other term is also zero because \(\mathfrak{w}_{0,|I|+2}(I, -q; z) \) has due to the kernel \(K_q(z, q) \) in Theorem 3.2 at \(z = \beta_i \) poles of purely higher order, without residue. We have established this fact in Proposition 3.9 without relying on Assumption 3.10. In summary, (4.5) is regular at \(q = \beta_i \). We will show in Subsection 4.2 that (4.5) is antisymmetric under \(q \mapsto -q \). This means that (4.5) is also regular at \(q = -\beta_i \).

The same simple argument cannot be used to prove that (4.5) is regular at \(q = \pm u_k \), because this would need Assumption 3.10. We therefore give in Subsection 4.3 a direct proof which uses the antisymmetry of (4.5).

In principle, the functions \(\mathfrak{w}_{0,|I|}(I \parallel \pm q) \) may (and do) have poles at the other preimages \(q = v \) where \(v \in \{ \pm \hat{u}_k^j, \pm (-u_k)^j \} \). Recalling that (4.5) equals \(\text{Res}_{z \to q} \mathfrak{w}_{0,|I|+2}(I, -q; z) \), the projection of (4.5) to a pole at such \(q = v \) is

\[
\text{Res}_{q \to v} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q} = - \text{Res}_{q \to v} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q} + \text{Res}_{z \to v} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q}.
\]

The first term in the last line is trivially zero, but the second term can indeed have a pole at \(-q = \hat{u}_k^j \) coming from the edge e4 in Table 1. An edge with these labels can only occur once in a chain so that it is a first-order pole. Its residue \(\text{Res}_{q \to v} \frac{\mathfrak{w}_{0,|I|+2}(I, -q; z) dq}{w - q} \) is a 1-form in \(z \) from which we take the residue at the same \(z = -\hat{u}_k^j \). But there are no such poles so that (4.5) is regular at any \(q \in \{ \pm \hat{u}_k^j, \pm (-u_k)^j \} \).

4.2. A necessary condition. Adding (4.5) and its copy for \(q \to -q \) shows that necessary for (4.5) to be true is the identity (we apply \(d_{u_1} \cdots d_{u_m} \) to pass to \(\omega \))

\[
0 = \Delta \mathfrak{w}_{0,|I|+1}(I, q) + \Delta \mathfrak{w}_{0,|I|+1}(I, -q) - \sum_{I_1 \cup I_2 = I} \Delta \mathfrak{w}_{0,|I_1|+1}(I_1, q) \Delta \mathfrak{w}_{0,|I_2|+1}(I_2, -q).
\]

(4.6)
This is true for \(I = \{ u \} \). Equations of such type can be disentangled by repeated insertion into itself, which is the same operation as a treatment of formal power series (which here are in fact polynomials). This shows that (4.6) is equivalent to

\[
- \left[\log \left(1 - \Delta \omega_{0,|I|+1}(\cdot, q) \right) \right] (I) - \left[\log \left(1 - \Delta \omega_{0,|I|+1}(\cdot, -q) \right) \right] (I) = 0 \quad (4.7)
\]

where

\[
- \left[\log \left(1 - \Delta \omega_{0,|I|+1}(\cdot, q) \right) \right] (I) \equiv \sum_{s=1}^{I} \frac{1}{s} \sum_{I_1 < \ldots < I_s=I} \sum_{j=1}^{r} \Delta \omega_{0,[I_j]+1}(I_j, q) .
\]

This logarithm can also be represented as follows:

Proposition 4.2.

\[
\sum_{r=1}^{[l]} \frac{1}{r} \sum_{I_1 < \ldots < I_r=I} \prod_{j=1}^{r} \Delta \omega_{0,[I_j]+1}(I_j, q) = \sum_{s=1}^{[l]} \frac{1}{s} \sum_{I_1 < \ldots < I_s=I} \sum_{n_1 + \ldots + n_s = s} \prod_{j=1}^{s} \nabla^{n_j} \omega_{0,[I_j]+1}(I_j, q) . \quad (4.8)
\]

Proof. We write Lemma 2.2 as

\[
\frac{\omega_{0,[I]+1}(I, tq)}{-dy(q)} = \sum_{s=1}^{[l]} \frac{1}{s!} \sum_{I_1 < \ldots < I_s=I} (s - 1)! \sum_{n_1 + \ldots + n_s = s-1} \prod_{j=1}^{s} \nabla^{n_j} \omega_{0,[I_j]+1}(I, q) \quad (4.9)
\]

and insert it into the product in (4.2). This shows that products of \(\Delta \omega_{0,[I_j]+1}(I_j, q) \) expand into products of \(\nabla^{n_j} \omega_{0,[I_j]+1}(I_j, q) \) with the given condition on the sum of \(n_j \). That the prefactor reduces to \(\frac{1}{s} \) is, however, by no means obvious. The first step of the proof is Lemma 4.3 below, which relies on Corollary A.5 in the Appendix. Then a discussion given after the proof of Lemma 4.3 completes the proof. It relies on the same Corollary A.5.

Lemma 4.3.

\[
\Delta \omega_{0,[I]+1}(I, q) = \nabla^{1} \omega_{0,[I]+1}(I, q) + \sum_{s=2}^{[l]} \sum_{I_1 < \ldots < I_s=I} \sum_{n_1 + \ldots + n_s = s} \binom{n_j = 0}{s(s - 1)} \sum_{j=1}^{s} \nabla^{n_j} \omega_{0,[I_j]+1}(I_j, q) .
\]

Proof. As discussed before we have a representation

\[
\Delta \omega_{0,[I]+1}(I, q) = \sum_{s=1}^{[l]} \sum_{I_1 < \ldots < I_s=I} \sum_{n_1 + \ldots + n_s = s} C_{n_1 \ldots n_s}^{1} \prod_{j=1}^{s} \nabla^{n_j} \omega_{0,[I_j]+1}(I_j, q) \quad (4.10)
\]

in which \(C_{n_1 \ldots n_s}^{1} \) is symmetric in all its arguments. To determine \(C_{n_1 \ldots n_s}^{1} \) we can consider a subsector of the \(n_j \)-summations where \(n_1, \ldots, n_p > 0 \) for some \(p \).
and \(n_{p+1} = \ldots = n_s = 0 \). Other sectors are then obtained by symmetry. We will count the contributions from (4.2) which contribute to \(C_{n_1, \ldots, n_p, 0, \ldots, 0}^1 \) for given positive integers \(n_1, \ldots, n_p \) (which are followed by \(n_1 + \ldots + n_p - p \) zeros). In a first step we show that the number of these contributions is \(C_{s, 0, \ldots, 0}^1 = (s - 1)! \) (which is clear) and for \(p \geq 2 \) given by

\[
C_{n_1, \ldots, n_p, 0, \ldots, 0}^1 = \sum_{\ell=1}^{p-1} \sum_{j=1}^{p} (n_j - 1)! \sum_{J_1 \cup \ldots \cup J_\ell = \{1, \ldots, p\} \setminus \{j\}} \frac{(n_1 + \ldots + n_p - p)!}{(n_j - \ell - 1)!} \prod_{i=1}^{\ell} \frac{(|n|_{J_i})!}{(|n|_{J_i} - |J_i| + 1)!}.
\]

The number \(C_{n_1, \ldots, n_p, 0, \ldots, 0}^1 \) is the sum over all \(j \) with \(n_j \geq 2 \) of specially ordered contributions from

\[
\sum_{\tilde{I}_1, \ldots, \tilde{I}_n, \tilde{l}_j = 1} \nabla^{n_j} \omega_{0, |J_j|+1}(I_j, q)(n_j - 1)! \prod_{i \neq j} \omega_{0, |\tilde{I}_i|+1}(\tilde{I}_i, q) - dy(q).
\]

The factors \(\omega_{0, |\tilde{I}_i|+1}(\tilde{I}_i, q) \) are expressed via (4.9), but only contributions compatible with \(n_{p+1} = \ldots = n_s = 0 \) are retained. The positive \(n_1, \ldots, n_p \), excluding \(n_j \), arise from the part of (4.9) in which all factors \(\nabla^0 \omega \) have a larger order than any \(\nabla^r \omega \) with \(r > 0 \). In particular, contributions \(\nabla^r \omega \) with \(r > 0 \) only arise from every of the first \(\ell \) factors \(\omega_{0, |\tilde{I}_i|+1}(\tilde{I}_i, q) \) in (4.12), for some \(\ell \) with \(1 \leq \ell < p - 1 \) to sum over. From the last \(n_j - 1 \) \(- \ell \) factors in (4.12) we only take the special term \(\nabla^0 \omega_{0, |\tilde{I}_i|+1}(\tilde{I}_i, q) \).

An expansion (4.9) used for the first \(\ell \) factors (4.12) contributes to the specially ordered \(C_{n_1, \ldots, n_p, 0, \ldots, 0}^1 \) whenever \(\{1, \ldots, p\} \setminus \{j\} \) is partitioned into \(J_1 \cup \ldots \cup J_\ell \) with \(\min J_k < \min J_\ell \) for every pair \(k < \ell \), where \(\min J_k \) is the smallest integer in the set \(J_k \). Then the subset \(\tilde{I}_i \) in (4.9)

- contains \(\bigcup_{k \in J_i} I_k \) if \(i < j \);
- contains \(\bigcup_{k \in J_{i-1}} I_k \) if \(j < i \leq p \).

We let \(|n|_{J_i} = \sum_{k \in J_i} n_k \). To be an admissible contribution to (4.9) the factors \(\nabla^{|n|_{J_i}} \omega \) in the \(i \)-th block must be supplemented by \(|n|_{J_i} - |J_i| + 1 \) factors \(\nabla^0 \omega \).

Hence, the number \(C_{n_1, \ldots, n_p, 0, \ldots, 0}^1 \) is given by the sum over \(j \) and \(\ell \) of

- a sum over ordered partitions \(\{1, \ldots, p\} \setminus \{j\} = J_1 \cup \ldots \cup J_\ell \)
- of a factor \((n_j - 1)! \) from (4.12)
- times a factor \((|n|_{J_i})! \) for every \(1 \leq i \leq \ell \) which is the factor \((s - 1)! \) in (4.9)
- times the number of distributions of the \(n_1 + \ldots + n_p - p \) factors \(\nabla^0 \omega \) into \(\ell + 1 \) blocks, namely
(a) a block of \((n_j - 1 - \ell)\) factors where from \(\frac{\omega_0,i_{j+1}(\tilde{I}_i,q)}{-dy(q)}\) only the special term \(\nabla^0_0 i_{j+1}(\tilde{I}_i,q)\) is retained;
(b) \(\ell\) blocks of \(|n| - |J_i| + 1\) factors which supplement the \(\prod_{k \in J_i} \nabla^{n_k} \omega\) in a non-trivially expanded \(\frac{\omega_0,i_{j+1}(\tilde{I}_i,q)}{-dy(q)}\).

There are \(\frac{(n_1 + \ldots + n_p - p)!}{(n_j - 1 - \ell)! \prod_{i=1}^\ell (|I_i| - |J_i| + 1)!}\) such distributions, which is a valid multinomial coefficient due to \(\sum_{i=1}^\ell |I_i| = n_1 + \ldots + n_p - n_j\) and \(\sum_{i=1}^\ell |J_i| = p - 1\).

This number is (4.11). We remark that the restriction to \(n_j \geq 2\) is automatic because \(\frac{1}{(n_j - 1 - \ell)}\) gives zero for \(n_j = 1\).

We write (4.11) in terms of falling factorials (see Corollary A.6), insert (A.7) and shift \(\ell - 1 \mapsto r\):

\[
C_{n_1 \ldots n_p 0 \ldots 0}^1 = (n_1 + \ldots + n_p - p)! \sum_{\ell=1}^{p-1} \sum_{j=1}^p (n_j - 1)(n_j - 2)^{\ell-1} \prod_{j_1 < \ldots < j_\ell} (|I_{j_1}| - |J_{j_1}| - 1)
= (n_1 + \ldots + n_p - p)! \sum_{r=0}^{p-2} \sum_{j=1}^p (n_j - 1)(n_j - 2)^{r(\ell - 2 - r)} (n_1 + \ldots + n_p - n_j)^{p - 2 - r}
= (n_1 + \ldots + n_p - p)! \sum_{j=1}^p (n_j - 1)(n_1 + \ldots + n_p - 2)^{p - 2}
= (n_1 + \ldots + n_p - 2)! (n_1 + \ldots + n_p - p) \equiv (s - 2)!(s - p) .
\]

In the fourth line we have used the binomial theorem for the falling factorial. The final line is obvious.

For a general order of the \(n_i\) we thus have \(C_{n_1 \ldots n_s}^1 = (s - 2)! \#(n_j = 0),\) where \(\#(n_j = 0)\) is the number of \(n_j\) which equal zero. Relaxing the condition that the \(I_j\) are ordered amounts to an additional factor \(\frac{1}{s!}.\) This is the assertion. \(\square\)

Lemma 4.3 is the starting point to evaluate the sum over \(r\) in the first line of (4.8). It is clear that this sum has a similar expansion as (4.10):

\[
- \left[\log(1 - \Delta \omega_{0,i_{j+1}}(\cdot, q)) \right](I) - \sum_{s=1}^{|I|} \sum_{I_1 < \ldots < I_s} \sum_{I_{n_1} + \ldots + n_s = s} \prod_{j=1}^s \nabla^{n_j} \omega_{0,i_{j+1}}(I_i, q)
\]

where \(C_{n_1 \ldots n_s}^*\) is symmetric. We first show that for an order \(n_1, \ldots, n_p \geq 1\) and \(n_{p+1} = \ldots = n_s = 0\) it is given by

\[
C_{n_1 \ldots n_p 0 \ldots 0}^1
\]

\(\square\)
The factor \((r - 1)!\) combines the step from any partitions \(I_1 \cup \ldots \cup I_r = I\) into \(r!\) ordered ones with the prefactor \(\frac{1}{r}\) in \((4.8)\). The subset \(J_i\) corresponds to \(\Delta \omega_0, |I_i|+1(\tilde{I}_i, q)\) with \(\tilde{I}_i = \bigcup_{j \in J_i} I_j \cup \bigcup_{k=1}^{\sum_{j<i} |J_j|} I'_k\) where the \(I'_k\) are taken from \(I_{p+1}, \ldots, I_{n_1+\ldots+p}\). There are \(\prod_{r=1}^{\ell} (n_1+\ldots+p-r)!\) different distributions of these \(I'_k\), which explains the corresponding factor above. The numerator \((|n|_{I_i} - 2)! (|n|_{I_i} - |J_i|)!\) is the weight of \(C_{1|2|, 0|0|, 0|0|}^1\) found in Lemma 4.3.

We write \((4.14)\) in terms of rising factorials and insert \((A.6)\), where \(x_j \mapsto n_j - 1\) and \(\ell \mapsto r\):

\[
C_{n_1, \ldots, n_p|0, 0|, 0|0|} = \sum_{r=1}^{\ell} \frac{(n_1 + \ldots + n_p - p)!}{r! (n_1 + \ldots + n_p - p)!} \prod_{j=1}^{\ell} \sum_{J_j \subseteq \ldots \subseteq J_r} \left(\frac{1}{r} - \frac{1}{r}\right)_{J_j} \left|J_j\right| - 1 \\
= (n_1 + \ldots + n_p - p)! (n_1 + \ldots + n_p - p + 1) \prod_{r=1}^{\ell} \sum_{J_j \subseteq \ldots \subseteq J_r} \left(\frac{1}{r} - \frac{1}{r}\right)_{J_j} \left|J_j\right| - 1
\]

We have used \((r - 1)! = \frac{1}{r-1}\) and then applied the binomial theorem.

By symmetry we thus have \(C_{n_1, \ldots, n_s} = (s - 1)!\) for any partition \(n_1 + \ldots + n_s = s\). Relaxing the condition that the \(I_j\) are ordered has to be corrected with an additional factor \(\frac{1}{r}\). This completes the proof of Proposition 4.2.

Proposition 4.2 together with \((4.7)\) give as necessary condition for \((4.5)\) to be true the equality \((2.37)\) which we have proved in Section 2.9.

4.3. Absence of poles of \((4.5)\) at \(q = -u_k\). The function \(v_{0, |I|}(I||q)\) is holomorphic at \(u_k = q\) and has poles at \(u_k = -q\) which exclusively come from v2-groups with label \(u_k\). There are two possibilities. Either this v2-group is the single vertex of a length-1 chain \(-\left(\begin{array}{c} 0 \\ \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \end{array}\right)_{I': u_k}\), or it is part of a chain of larger length. In the second case it can be collectively taken out of all other chains, the remnant is just another copy of \(-v_{0, |I'|}(I'||q)\) of smaller length with \(I' \not\in u_k\):

\[
v_{0, |I|}(I || q) + O((q + u_k)^0) = \sum_{s=0}^{\ell} \sum_{|I| \cup I_j = \ldots \cup I_s = u_k} \frac{1}{(|I| \cup I_j \not= \emptyset)} \prod_{j=1}^{s} \frac{\omega_{0, |I_j|+1} (I'_j; u_k)}{dR(u_k)} (R(-q) - R(u_k)) (R(-u_k) - R(q))^{s+1}
\]

where \(\omega_{0, |I|+1} (I; u_k)\) is the weight of the v2-group with label \(u_k\), and \(R(q)\) is the generating function of the Kontsevich model. The absence of poles of \((4.5)\) at \(q = -u_k\) is then guaranteed by Proposition 4.2 for all \(u_k\) except for the single chain \(-\left(\begin{array}{c} 0 \\ \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \end{array}\right)_{I': u_k}\).
We recall that $\sum_{I'}$ indicates that for $|I'| = 0$ the sum is omitted, whereas for $|I'| > 0$ the case $s = 0$ is left out. The following lemma (which we formulate for $q \mapsto -q$) characterises the polar part of the second line at $q = -u_k$:

Lemma 4.4.

\[
\sum_{s=1}^{\lfloor |I|/2 \rfloor} \frac{1}{s} \sum_{I_1\ldots I_s \subseteq I} \prod_{j=1}^{s} \nabla^{n_j} \omega_0[I_j+1(I_j, q)](x(q) - x(u_k))(y(q) - y(u_k))^{s+1} = \sum_{s=0}^{\lfloor |I|/2 \rfloor} \sum_{I_1\ldots I_s \subseteq I} \prod_{j=1}^{s} \nabla^{n_j} \omega_0[I_j+1(I_j, q)](x(q) - x(u_k))(y(q) - y(u_k))^{s+1} + o((q - u_k)^0).
\]

Proof. The lhs of (4.16) can be rewritten with (2.6) as

\[
(4.16)_{\text{lhs}} = \sum_{s=1}^{\lfloor |I|/2 \rfloor} \frac{1}{s} \sum_{I_1\ldots I_s \subseteq I} (-1)^s \lim_{z \to q} \frac{\partial^s}{\partial (x(z))} \left(\left(\frac{x(z) - x(q)}{y(z) - y(q)} \right)^s \prod_{j=1}^{s} \omega_0[I_j+1(I_j, z)] \right) \frac{dx(z)}{x(z) - x(q)}(y(q) - y(z))^{s+1}.
\]

Up to $O((q - u_k)^0)$-contributions it coincides with its projection to the polar part in which we change with (2.2) the order of residues:

\[
(4.16)_{\text{rhs}} = \sum_{s=1}^{\lfloor |I|/2 \rfloor} \frac{1}{s} \sum_{I_1\ldots I_s \subseteq I} \left(\prod_{j=1}^{s} \frac{\omega_0[I_j+1(I_j, z)]}{dx(z)} \right) \frac{dx(z)}{x(z) - x(q)}(y(q) - y(z))^{s+1}.
\]

We have used that only ω_0 has a pole at $z = u_k$ which is given by (1.2). \qed

With these preparations we control the polar part of (4.5) at $q = \pm u_k$:
Proposition 4.5. Holomorphicity of (4.5) at \(q = -u_k \) is a consequence of (2.37) proved in Proposition 2.14.

Proof. The first term \(\nu_{0,|I|}(I|-q) \) in (4.5) is holomorphic at \(q = -u_k \). In the sum over \(I_1 \uplus I_2 = I \) we distinguish \(u_k \in I_1 \) from \(u_k \in I_2 \). The function \(\nu_{0,|I|}(I|q) \) is for \(u_k \in I \) written as (4.15) with Lemma 4.4 used for the rhs. We thus find

\[
(4.5) = -A(I; q) + \sum_{I_1 \uplus I_2 = I, u_k \in I_1} A(I_1; q) \nu_{0,|I_2|}(I_2|q) + O((q + u_k)^0)
\]

where

\[
A(I; q) := \Delta \nu_{0,|I|+1}(I; q) + \sum_{s=1}^{|I|} \sum_{I_1 \uplus \ldots \uplus I_s = I} \frac{1}{s} \prod_{j=1}^s \nu^{n_j} \nu_{0,|I_j|+1}(I_j; -q)
\]

\[
- \sum_{I' \uplus I'' = I, u_k \in I'} A(I'; q) \nu_{0,|I''|+1}(I''; q) \sum_{s=1}^{|I'|} \sum_{I_1 \uplus \ldots \uplus I_s = I'} \frac{1}{s} \prod_{j=1}^s \nu^{n_j} \nu_{0,|I_j|+1}(I_j; -q) .
\]

Consider the equation

\[
0 = \Delta \nu_{0,|I|+1}(I; q) + B(I; q) - \sum_{I' \uplus I'' = I, u_k \in I'} \Delta \nu_{0,|I'|+1}(I'; q) B(I''; q) .
\]

Its iterative solution is

\[
B(I; q) = -\Delta \nu_{0,|I|+1}(I; q) - \sum_{s=2}^{|I|} \sum_{I_1 \uplus \ldots \uplus I_s = I} \Delta \nu_{0,|I_1|+1}(I_1; q) \prod_{j=2}^s \Delta \nu_{0,|I_j|+1}(I_j; q)
\]

\[
- \sum_{s=1}^{|I|} \frac{1}{s} \sum_{I_1 \uplus \ldots \uplus I_s = I} \prod_{j=1}^s \Delta \nu_{0,|I_j|+1}(I_j; q) .
\]

The factor \(\frac{1}{s} \) arises by symmetrisation when dropping the condition \(u_k \in I_1 \). The consistency condition (2.37) of (4.5) together with Proposition 4.2 thus imply \(A(I; q) = 0 \), which gives the assertion. \(\square \)

As result we have proved that (4.5) does not have any poles on \(\hat{C} \), it is thus a constant equal to its value 0 at \(q = \infty \). This means that Assumption 3.10 is true and the proof of Theorem 3.2 complete.

5. Conclusion and Outlook

We have proved for genus \(g = 0 \) the main conjecture of [BHW20a] that meromorphic forms \(\omega_{g,n} \) which naturally appear in the quartic analogue of the Kontsevich model follow blobbed topological recursion [BS17]. This makes the quartic Kontsevich model part of the growing family of structures in mathematics and physics governed by topological recursion [EO07, Eyn16]. Other examples include the combinatorics of the Kontsevich model [Kon92], the one- and two matrix models [CEO06], Hurwitz theory [BMn08], Gromov-Witten theory [BKMnP09],
Weil-Petersson volumes of moduli spaces of hyperbolic Riemann surfaces [Mir06] and many more.

We consider as most important result of this paper the discovery that the quartic Kontsevich model is completely characterised by the behaviour of its objects \(\omega_{g,n} \) under the global involution \(\iota z = -z \). We showed how a single equation

\[
\omega_{0,|I|+1}(I, q) + \omega_{0,|I|+1}(I, \iota q)
= \sum_{s=2}^{|I|} \sum_{I_1 \cup \ldots \cup I_s = I} \frac{1}{s} \text{Res}_{q \to \iota q} \left(\frac{dy(q)dx(z)}{(y(q) - y(z))^s} \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, z)}{dx(z)} \right)
\]

governs the genus-0 case. This equation admits a naïve solution

\[
\omega_{0,|I|+1}(I, z)
= \sum_{r=1}^{\lfloor |I|/2 \rfloor} \sum_{s=2}^{\lfloor |I|/2 \rfloor} \sum_{I_1 \cup \ldots \cup I_s = I} \frac{1}{s} \text{Res}_{q \to \beta, z - q \to \iota q} \left(\frac{dy(q)dx(w)}{(y(q) - y(w))^s} \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, w)}{dx(w)} \right)
+ \sum_{k=1}^{\lfloor |I|/2 \rfloor} \sum_{s=2}^{\lfloor |I|/2 \rfloor} \sum_{I_1 \cup \ldots \cup I_s = I} \frac{1}{s} \text{Res}_{q \to \iota u, z - q \to \iota v} \left(\frac{dy(q)dx(w)}{(y(q) - y(w))^s} \prod_{j=1}^{s} \frac{\omega_{0,|I_j|+1}(I_j, w)}{dx(w)} \right),
\]

which however leaves each of the following points obscure:

(a) Is [1.3] meaningful, i.e. is its rhs symmetric under \(q \to \iota q \)?
(b) Has [1.3] anything to do with topological recursion?
(c) Is there any connection between [1.3] and the quartic Kontsevich model?

To answer the first two of these critical questions we had to prove that the naïve solution is equivalent to the solution \([1.4] + [1.5]\) given in Theorem 1.2. The generated material also allowed to affirm question (c), where a difficulty was to show that all poles are of purely higher order. This property is a consequence of a hidden symmetry \([2.36]\) resulting from [1.3] alone. As result we have established for genus \(g = 0 \) a precise connection between (b) and (c), which was conjectured in [BHW20a].

But the statement is more general: in [BHW20a] it is shown that the poles of \(\omega_{g \geq 1, n}(z_1, ..., z_n) \) are located, besides ramification points of \(x \) and diagonals \(z_k = \iota z_l \), at the fixed points \(z_k = \iota z_k \) of the involution.

The next step in our programme will be to extend [1.3] to higher genus. This should help to answer the exciting question whether the intersection numbers [BS17] encoded in the quartic Kontsevich model capture geometric information about a moduli space of curves equipped with an involution. It would also be interesting to investigate whether these structures relate to other extensions of topological recursion. We mention a recent work [BCEGF21] (which contains a beautiful introduction to topological recursion and its ramifications) on \(r \)-spin intersection numbers to which the quartic Kontsevich model could be related.
APPENDIX A. COMBINATORIAL IDENTITIES INVOLVING LABELED TREES (BY MACIEJ DOLEGA)

A set partition of S is a (non-ordered) family of non-empty disjoint subsets of S (called parts of the partition), whose union is S. In the following, we always assume that S is finite. Denote by $\mathcal{P}(S)$ the set of set partitions of S and for any $\pi \in \mathcal{P}(S)$ and for any $B \in \pi$ denote by $|\pi|$ the number of parts of π and by $|B|$ the number of elements in the part B.

A graph $G = (V, E)$ is a forest if it has no cycles. If a forest is additionally connected it is called a tree. Denote by T^*_V the set of plane trees, that is trees embedded in a plane, with the set of vertices V. Denote by T_V the set of labeled trees with the set of vertices V, that is the set of trees, whose vertices are labeled by distinct numbers $\{1, \ldots, |V|\}$ (or, by isomorphism, any linearly ordered set of the cardinality $|V|$). Finally, a tree is rooted if it has a distinguished vertex $v_\bullet \in V$ called the root and we denote by T^*_V and T_V the set of plane rooted trees and of labeled rooted trees, respectively, with the vertex set V. The degree of a vertex v in a tree T is the number of adjacent vertices to v.

The following classical theorem is a multivariate version of the celebrated Cayley’s formula for the number of labeled trees.

Theorem A.1. For any positive integer n and family of indeterminates $x_1, \ldots, x_n, x_{n+1}$ the following formulas hold true:

$$ (x_1 + \cdots + x_{n+1})^{n-1} = \sum_{T \in T^*_{[n+1]}} \prod_{v \in V} x_v^{\deg(v)-1}, \quad (A.1) $$

and

$$ (x_1 + \cdots + x_{n+1})^n = \sum_{T \in T^*_{[n+1]}} x_{v_\bullet}^{\deg(v_\bullet)} \prod_{v \in V \setminus \{v_\bullet\}} x_v^{\deg(v)-1}, \quad (A.2) $$

Cayley proved his formula by computing a certain determinant [Cay09], and the first bijective proof was given by Prüfer [Prü18]. Since then many different proofs were proposed and we would like to mention a relatively general method for counting trees by the use of the matrix-tree theorem, see for instance [Abd04] for generalisations and applications.

Corollary A.2. For any positive integer n and family of indeterminates $x_1, \ldots, x_n, x_{n+1}$ the following formula holds true:

$$ (x_1 + \cdots + x_{n+1})^n = \sum_{T \in T^*_{[n+1]}} \sum_{\varsigma \in S_{n+1}} x_{\varsigma(v_\bullet)}^{\deg(v_\bullet)} \Pi_{v \in V \setminus \{v_\bullet\}} x_v^{\deg(v)-1} \frac{\Pi_{v \in V \setminus \{v_\bullet\}} (\deg(v) - 1)!}{\varsigma(v)!.} \quad (A.3) $$

Proof. Note that the symmetric group S_{n+1} acts on the set $T^*_{[n+1]}$ of labeled rooted trees by permuting the labels. Moreover, each labeled rooted tree is uniquely constructed by choosing a plane tree $T \in T^*_{[n+1]}$, a label for its root, and for each
for any \((n+1)-\text{tuple} f_0, \ldots, f_n\) of differentiable functions one has

\[
\frac{n!}{\prod_{k_0 + \cdots + k_n = n} \prod_{i=0}^n \frac{f_i^{(k_i)}(x)}{k_i!}} = \left(f_0 f_1 \cdots f_n \right)^{(n)}(x)
\]

\[
= \sum_{T \in \mathcal{T}_{[n+1]}} \sum_{B \in S_{n+1}} \prod_{v \in V_T \setminus \{v_0\}} x_v^{\deg(v)} \prod_{v \in V_T \setminus \{v_0\}} x_v^{\deg(v) - 1}
\]

Proof. Set \(x_i \mapsto \partial x_i\) in (A.3), apply it to \(f_0(x_0) f_1(x_1) \cdots f_n(x_n)\) and substitute \(x_0 = x_1 = \cdots = x_n = x\).

Here is a corollary from Theorem A.1 which gives an identity expressed in terms of set-partitions.

Corollary A.4. For any positive integer \(n\) and family of indeterminates \(x_1, \ldots, x_n\) the following formula holds true:

\[
(1 + \sum_{i=1}^n x_i)^{n-1} = \sum_{\pi \in \mathcal{P}([n])} \prod_{B \in \pi} (\sum_{b \in B} x_b)^{|B| - 1}.
\]

(A.4)

Proof. For any \(T \in \mathcal{T}_{[n+1]}\) removing the vertex \(n + 1\) from it yields the decomposition into a collection of disjoint rooted labeled trees on the set \([n]\). This decomposition establishes a bijection between rooted, labeled forests \(F\) on the vertex set \([n]\) and labeled trees \(T\) on \(n + 1\) vertices. Moreover, the degrees of the non-root vertices of \(F\) coincides with their degrees in \(T\), and the degrees of the root vertices of \(F\) are equal to their degrees in \(T\) minus one. This decomposition gives the following identity by plugging \(x_{n+1} = 1\) in (A.1):

\[
(x_1 + \cdots + x_n + 1)^{n-1} = \prod_{F \in \mathcal{V}_T} x_v^{\deg(v)} \prod_{v \in V_T \setminus \mathcal{V}_T} x_v^{\deg(v) - 1}.
\]

Note that for any set-partition \(\pi \in \mathcal{P}([n])\) and for any collection of rooted, labeled trees \(\{T_B \in \mathcal{T}_B : B \in \pi\}\) there exists a rooted, labeled forest \(F\) on \([n]\), which is
the disjoint union of \(\{ T_B \in \mathcal{T}_B^\ast : B \in \pi \} \) and every rooted, labeled forest \(F \) on \([n]\) is obtained in this way. Therefore

\[
(x_1 + \cdots + x_n + 1)^{n-1} = \sum_{\pi \in \mathcal{P}([n])} \prod_{B \in \pi} \left(\sum_{T_B \in \mathcal{T}_B^\ast} x_{\iota_\ast(T_B)} \prod_{v \in V(T_B) \setminus \iota_\ast(T_B)} x_v^{\deg(v)-1} \right)
\]

\[
= \sum_{\pi \in \mathcal{P}([n])} \prod_{B \in \pi} (\sum x_b)^{|B|-1}
\]

by \([A.2]\), which finishes the proof.

Corollary A.5. For any positive integers \(\ell < n \) and family of indeterminates \(x_1, \ldots, x_n \) the following formula holds true:

\[
\binom{n-1}{\ell-1} (x_1 + \cdots + x_n)^{n-\ell} = \sum_{\pi \in \mathcal{P}([n]): B \in \pi} \prod_{|\pi| = |B|}(\sum x_b)^{|B|-1}.
\]

Proof. It is enough to apply the binomial formula for the left hand side of \([A.4]\) and compare the homogenous parts of degree \(n - \ell \).

Let \(x^\pi := \prod_{i=0}^{n-1} (x + i) \) and \(x^n := \prod_{i=0}^{n-1} (x - i) \) denote the raising and the falling factorials.

Corollary A.6. The following identities hold true:

\[
\sum_{\pi \in \mathcal{P}([n])} \prod_{B \in \pi} \left(\sum_{b \in B} x_b \right)^{|B|-1} = \binom{n-1}{\ell-1} (x_1 + \cdots + x_n)^{n-\ell}, \tag{A.6}
\]

\[
\sum_{\pi \in \mathcal{P}([n])} \prod_{B \in \pi} \left(\sum_{b \in B} x_b \right)^{|B|-1} = \binom{n-1}{\ell-1} (x_1 + \cdots + x_n)^{n-\ell}, \tag{A.7}
\]

Proof. It is enough to realise that

\[
\left(\sum_{b \in B} x_b \right)^{\ell} = \left(-\sum_{b \in B} \partial_b \right)^k \prod_{j=1}^{n} t_j^{-x_j} \big|_{t_j=1}, \quad \left(\sum_{b \in B} x_b \right)^k = \left(\sum_{b \in B} \partial_b \right)^k \prod_{j=1}^{n} t_j^{x_j} \big|_{t_j=1}.
\]

Substitute \(x_j \to \mp \partial_j \) in \([A.5]\), apply it to \(\prod_{j \in J} t_j^{\mp x_j} \) and set all \(t_j \equiv 1 \).

Let \(a(x), b(y), c_1(y), \ldots, c_n(y) \in C^\infty(\mathbb{R}) \) be smooth functions (in fact they might be formal elements of a ring equipped with the formal derivations \(\partial_x, \partial_y \), see \([Doll74]\)). In the following we are going to prove an explicit combinatorial formula for the expression

\[
(b(y)\partial_x + \partial_y)^{n-1}(a(x) \cdot b(y) \cdot c_1(y) \cdots c_n(y))
\]

in terms of special labeled trees, where we allow repetitions.

Consider the set of rooted, labeled trees \(T \) such that
Theorem A.7. For any \((n+2)\)-tuple of functions \(a(x), b(y), c_1(y), \ldots, c_n(y)\) the following identity holds true:

\[
(b(y) \partial_x + \partial_y)^{n-1} (a(x) \cdot b(y) \cdot c_1(y) \cdots c_n(y)) = \sum_{T \in T_{[n]}^*} a(x)^{(\deg(v_\bullet(T)) - 1)} \prod_{v \in V_0(T)} b(y)^{(\deg(v) - 2)} \prod_{v \in V_{[n]}(T)} c_{\text{label}(v)}(y)^{(\deg(v) - 1)}, \tag{A.8}
\]

where \(f^{(n)}(z) = \partial_z^n f(z)\) with the convention \(f^{(0)}(z) = f(z)\).

Proof. We can decompose a tree \(T \in T_{[n]}^*\) as follows. Suppose that the degree of the root of \(T\) is equal to \(r\). Let \(T' \in T_{[n+1]}^*\) be a tree obtained from \(T\) by identifying all the vertices labeled by 0 with the root vertex \(v_\bullet\). Note that the degree of the root of \(T'\) is equal to \(r \leq \deg(v_\bullet(T')) \leq n\). In particular \(T\) is uniquely determined by \(T'\) and by a set-partition \(\pi \in \mathcal{P}(N(v_\bullet(T'))), \) where \(N(v_\bullet(T'))\) is the set of vertices in \(T'\) adjacent to the root \(v_\bullet(T')\). Each block of \(B \in \pi\) corresponds to a vertex of \(T\) labeled by 0. This decomposition gives us the following equality:

\[
\sum_{T \in T_{[n]}^*} a(x)^{(\deg(v_\bullet(T)) - 1)} \prod_{v \in V_0(T)} b(y)^{(\deg(v) - 2)} \prod_{v \in V_{[n]}(T)} c_{\text{label}(v)}(y)^{(\deg(v) - 1)} = \sum_{r=1}^{n} \sum_{T \in T_{[n+1]}^*, \deg(v_\bullet(T)) = r} \prod_{v \in V \setminus \{v_\bullet\}} c_{\text{label}(v)}(y)^{(\deg(v) - 1)} \sum_{\pi \in \mathcal{P}(|r|)} a(x)^{|\pi| - 1} \prod_{B \in \pi} b(y)^{|B| - 1}.
\]

Define a transformation \(f : \mathbb{C}[y, x_1, \ldots, x_n] \rightarrow \mathbb{C}(y)\) by declaring its action on monomials

\[
f(y^k \cdot x_1^{\alpha_1} \cdots x_n^{\alpha_n}) := b^{(k)}(y) \prod_{i=1}^{n} c_i^{(\alpha_i)}(y). \tag{A.9}
\]

Using Leibnitz rule we can compute

\[
\partial_y^{|B|-k} \left(\prod_{b \in B} c_b(y) \right) = f \left(\left(\sum_{b \in B} x_b \right)^{|B|-k} \right),
\]

and using the proof of Corollary A.4 we rewrite the right hand side of (A.8) as

\[
\sum_{r=1}^{n} \binom{n-1}{r-1} \left(\prod_{i=1}^{n} c_i(y) \right)^{(n-r)} \sum_{\pi \in \mathcal{P}(|r|)} a(x)^{(r-1)} \prod_{B \in \pi} b(y)^{|B| - 1}.
\]
It is enough to notice that
\[\sum_{\pi \in \mathcal{P}([r])} a(x)^{|\pi|-1} \prod_{B \in \pi} b(y)^{|B|-1} = (b(y)\partial_x + \partial_y)^{r-1} a(x)b(y), \]
which is easy to prove by induction on \(r \) (every set-partition \(\pi \in \mathcal{P}([r+1]) \) is either constructed from a set partition \(\pi' \in \mathcal{P}([r+1]) \) by adding a new block \(\{r+1\} \), which corresponds to the action of \(\partial_x b(y) \) on \((b(y)\partial_x + \partial_y)^{r-1} a(x)b(y) \) or it is constructed from \(\pi' \in \mathcal{P}([r+1]) \) by adding \(r+1 \) to one of its blocks, which corresponds to the action of \(\partial_y \) on \((b(y)\partial_x + \partial_y)^{r-1} a(x)b(y) \)). Summing up, we have that
\[
\sum_{r=1}^{n} \binom{n-1}{r-1} \left(\prod_{i=1}^{n} c_i(y) \right)^{(n-r)} \sum_{\pi \in \mathcal{P}([r])} a(x)^{|\pi|-1} \prod_{B \in \pi} b(y)^{|B|-1}
\]
\[= \sum_{r=1}^{n} \binom{n-1}{r-1} \left(\prod_{i=1}^{n} c_i(y) \right)^{(n-r)} (b(y)\partial_x + \partial_y)^{n-1} a(x)b(y)
\]
\[= (b(y)\partial_x + \partial_y)^{n-1} a(x)b(y) \prod_{i=1}^{n} c_i(y), \]
which finishes the proof of (A.8).

Corollary A.8. For any \((n+2)\)-tuple of functions \(a(x), b(y), c_1(y), \ldots, c_n(y)\) the following identity holds true:
\[
(b(y)\partial_x + \partial_y)^{n-1} (a(x) \cdot b(y) \cdot c_1(y) \cdots c_n(y))
\]
\[= \sum_{\pi \in \mathcal{P}([n])} \partial_x^{|\pi|-1} a(x) \prod_{B \in \pi} \left(\partial_y^{|B|-1} (b(y) \prod_{b \in B} c_b(y)) \right). \tag{A.10} \]

Proof. Note that any \(T \in \mathcal{T}_{[n]}^{\bullet} \) is uniquely determined by the following data: pick a set-partition \(\pi \in \mathcal{P}([n]) \). For each part \(B \in \pi \) pick a labeled tree \(T_B \in \mathcal{T}_{B;\{0\}} \). Take the disjoint union of \((T_B)_{B \in \pi}\) and connect all the vertices labeled by \(0 \) to a new vertex labeled by \(-1\). In this way we obtain a tree \(T \in \mathcal{T}_{[n]}^{\bullet} \) and conversely, every \(T \in \mathcal{T}_{[n]}^{\bullet} \) decomposes into a collection of labeled trees \((T_B)_{B \in \pi}\).

This decomposition yields the following identity:
\[
\sum_{T \in \mathcal{T}_{[n]}^{\bullet}} a(x)^{\deg(v_\bullet(T))-1} \prod_{v \in V_0(T)} b(y)^{\deg(v)-2} \prod_{v \in V_{[n]}(T)} c_{\text{label}(v)}(y)^{\deg(v)-1}
\]
\[= \sum_{\pi \in \mathcal{P}([n])} a^{(|\pi|-1)}(x) \prod_{B \in \pi} \sum_{T_B \in \mathcal{T}_{B;\{0\}}} (b(y)^{\deg(v_0(T_B))-1} \prod_{b \in B} c_b^{\deg(v_{b_0}(T_B))-1}(y)). \tag{A.11} \]
Similarly as before we can compute
\[
\partial_y^{[B]-1} \left(b(y) \prod_{b \in B} c_b(y) \right) = f \left((y + \sum b \in B x_b)^{[B]-1} \right),
\]
where \(f \) is a transformation given by (A.9). Using (A.1) and the definition of \(f \) we can further transform it into
\[
\partial_y^{[B]-1} \left(b(y) \prod_{b \in B} c_b(y) \right) = \sum_{T_B \in T_{B+[0]}} \left(b(y)^{\deg(v_0(T_B)) - 1} \prod_{b \in B} c_b^{\deg(v_b(T_B)) - 1}(y) \right).
\]
Plugging it into the right hand side of (A.11) and using (A.8) we end up precisely with (A.10), which finishes the proof. □

APPENDIX B. AN IDENTITY USED IN SECTION 2.6

We recall two well-known identities [Gou10, Vol. 4, eq. (10.18) & Vol. 5, eq. (1.18)]:
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{x+k}{r+k} = (-1)^n \binom{x}{r+n}, \tag{B.1}
\]
\[
\sum_{i=0}^{k} (-1)^i \binom{k}{i} \binom{x-i}{k} \frac{1}{y+i} = \frac{(x+y)}{y} b_k \binom{k+y}{k}, \tag{B.2}
\]
which hold for \(r \in \mathbb{N} \) and \(x, y \in \mathbb{C} \).

Let \(D_n \) be the set of tuples \((n_1, n_2, n_3, n_4) \) of non-negative integers with \(n_1 + n_2 + n_3 + 2n_4 = n \) and \(n_3 + n_4 \neq 0 \), that is
\[
D_n := \{ (n_1, n_2, n_3, n_4) \in \mathbb{N}^4 \mid n_3 + n_4 \neq 0, n_1 + n_2 + n_3 + 2n_4 = n \}. \tag{B.3}
\]
Then the following decomposition is holds:

Lemma B.1. Let \(y, \bar{y}, w, \bar{w} \in \mathbb{C} \) and \(e_1 := w + \bar{w} \) and \(e_2 := y\bar{w} + \bar{y}w \). Then, we have for any \(n \)
\[
\sum_{k=0}^{n-1} \frac{n}{k} (y^k w^{n-k} + \bar{y}^k \bar{w}^{n-k}) = \sum_{(n_1, n_2, n_3, n_4) \in D_n} (-1)^{n_4} n! \frac{1}{n_3! n_4!} \left(n_1 + k \right) \left(n_2 + k \right) \left(n_3 - 1 \right) \left(n_4 - 1 \right) y^{n_1} \bar{y}^{n_2} e_1^{n_3} e_2^{n_4}. \tag{B.4}
\]

Proof. We expand \(y^{n_1} \bar{y}^{n_2} e_1^{n_3} e_2^{n_4} \) into a linear combination of \(y^k \bar{y}^l w^t \bar{w}^f \). For given \(n_1, n_2, n_3, n_4, k, t, l, f \) at most one term of the multinomial expansion of \(e_1, e_2 \) contributes. The coefficient of \(y^k \bar{y}^l w^t \bar{w}^f \) in such a contribution is
\[
\frac{\left(n_1 + k \right) \left(n_2 + k \right) \left(n_3 - 1 \right) \left(n_4 - 1 \right)}{(k-n_1)!(k-n_2)!(n_4+n_1+n_2-k-k)!(t+k-n_4-n_1)!(t+k-n_4-n_2)!}.
\]
where \(k + \bar{k} + t + \bar{t} = n = n_1 + n_2 + n_3 + 2n_4\). It is only non-zero if \(n_1 \in [k - \bar{t}, k]\), \(n_2 \in [\bar{k} - t, \bar{k}]\) and \(n_3 \in [k + \bar{k} - n_1 - n_2, \min(k - n_1 + t, \bar{k} - n_3 + \bar{t})]\).

We thus need to evaluate the sum

\[
[y^k \bar{y}^k w^t \bar{w}^t][\text{B.4}] = \sum_{n_1=\max(0,k-t)}^k \sum_{n_2=\max(0,\bar{k}-t)}^\bar{k} \sum_{n_4=k+k-a-b}^{\min(k-n_1-t, \bar{k}-n_2+\bar{t})} T_{n_1,n_2,n_4} \tag{B.5}
\]

where

\[
T_{n_1,n_2,n_4} = n(-1)^{n_4} (n_1 + n_3 + n_4 - 1)!(n_2 + n_3 + n_4 - 1)!
\]

\[
\frac{\bar{n}_1!\bar{n}_2!\bar{n}_3!\bar{n}_4!(n_3 + n_4 - 1)!}{n_1!n_2!n_3!n_4!} [y^k \bar{y}^k w^t \bar{w}^t](y^{n_1} \bar{y}^{n_2} e_1^{n_3} e_2^{n_4})
\]

with \(n_3 = n - n_1 - n_2 - 2n_4\). The aim is to prove that \(\text{B.5}) + \text{B.6}\) breaks down to

\[
\binom{n}{k} \delta_{t,n-k} \delta_{\bar{t},0} \delta_{\bar{t},0} + \binom{n}{k} \delta_{k,0} \delta_{\bar{t},0} \delta_{\bar{t},n-k}.
\]

Shifting summation indices to \(n_1 = a+k-\bar{t}, n_2 = b+k-t, n_4 = c+k+\bar{k} - n_1 - n_2 = c+t+\bar{t} - a - b\) leads to

\[
[y^k \bar{y}^k w^t \bar{w}^t][\text{B.4}] = \sum_{a=0}^{\bar{t}} \sum_{b=0}^t \sum_{c=0}^{\min(a,b)} (t + k + a - c - 1)(\bar{t} + \bar{k} + b - c - 1)!
\]

\[
\frac{(a + k - t)!(b + k - t)!(t + \bar{t} - c - 1)!}{(a + k - \bar{t})!(b + k - \bar{t})!(t + \bar{t} - c - 1)!}
\]

\[
\times \frac{n(-1)^{c+a+\bar{t}+b+t}}{(t - a)!(t - b)!(\bar{t} - b)!(c - a)!}.
\]

Next, change the order of the sums by

\[
\sum_{a=0}^{\bar{t}} \sum_{b=0}^\bar{t} \sum_{c=0}^{\min(a,b)} f_{a,b,c} = \sum_{c=0}^\bar{t} \sum_{a=\max(c,b)}^{\min(c+b+c,a)} \sum_{b=0}^\bar{t} f_{a,b,c} = \sum_{c=0}^\bar{t} \sum_{a=0}^{c+b+c} \sum_{b=0}^\bar{t} f_{a+c,b+c,c}
\]

to derive

\[
[y^k \bar{y}^k w^t \bar{w}^t][\text{B.4}] = \sum_{c=0}^{\min(t, \bar{t})} \sum_{a=0}^{\bar{t} - c} \sum_{b=0}^{\bar{t} - c} n(-1)^{c+a+\bar{t}+b+t}(t + k + a - 1)(\bar{t} + \bar{k} + b - 1)!
\]

\[
\frac{(a + c + \bar{k} - t)!(b + c + k - \bar{t})!(t + \bar{t} - c - 1)!(t - c - a)!(t - c - b)!c!b!a!}{(t - c)!(t - \bar{t} - 1 - c)!}
\]

\[
\times \sum_{a=0}^{\bar{t} - c} (-1)^a \binom{\bar{t} - c}{a} \binom{t + k - 1 + a}{c + \bar{k} - a + a} \sum_{b=0}^{t - c} (-1)^b \binom{t - c}{b} \binom{\bar{t} + \bar{k} - 1 + b}{c + \bar{k} - t + b}.
\]
The sums over \(a, b\) can be evaluated separately with the identity (B.1). Consequently, one concludes with identity (B.2)

\[
[y^k \bar{y}^{ar{k}} w^t \bar{w}^t]^{(B.4)} = n \left(\frac{t + k - 1}{k} \right) \left(\frac{\bar{t} + \bar{k} - 1}{\bar{k}} \right) \sum_{c=0}^{\min(t, \bar{t})} \frac{(-1)^c (t + \bar{t} - 1 - c)!}{(t - c)! (\bar{t} - c)! c!} \\
= n \left(\frac{t + k - 1}{k} \right) \left(\frac{\bar{t} + \bar{k} - 1}{\bar{k}} \right) \frac{\delta_{1,0}}{t} + \frac{\delta_{\bar{t},0}}{\bar{t}} \\
= n \left(\delta_{t,0} \delta_{\bar{k},0} \left(\frac{n - 1}{k} \right) \frac{1}{n - k} + \delta_{\bar{t},0} \delta_{k,0} \left(\frac{n - 1}{k} \right) \frac{1}{n - k} \right) \\
= \delta_{t,0} \delta_{\bar{k},0} \left(\frac{n}{k} \right) + \delta_{\bar{t},0} \delta_{k,0} \left(\frac{n}{k} \right).
\]

\[\square\]

REFERENCES

[Abd04] A. Abdesselam. The Grassmann-Berezin calculus and theorems of the matrix-tree type. Adv. Appl. Math., 33(1):51–70, 2004. doi:10.1016/j.aam.2003.07.002

[BCEGF21] R. Belliard, S. Charbonnier, B. Eynard, and E. Garcia-Faillde. Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers. 2021, 2105.08035.

[BEO15] G. Borot, B. Eynard, and N. Orantin. Abstract loop equations, topological recursion and new applications. Commun. Num. Theor. Phys., 09:51–187, 2015, 1303.5808. doi:10.4310/CNTP.2015.v9.n1.a2

[BHW20a] J. Branahl, A. Hock, and R. Wulkenhaar. Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures. 2020, 2008.12201

[BHW20b] J. Branahl, A. Hock, and R. Wulkenhaar. Perturbative and geometric analysis of the quartic Kontsevich model. 2020, 2012.02622

[BK MnP09] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti. Remodeling the B-model. Commun. Math. Phys., 287:117–178, 2009, 0709.1453. doi:10.1007/s00220-008-0620-4

[BMn08] V. Bouchard and M. Mariño. Hurwitz numbers, matrix models and enumerative geometry. In From Hodge theory to integrability and TQFT: tt*-geometry, volume 78 of Proc. Symp. Pure Math., pages 263–283. Amer. Math. Soc., Providence, RI, 2008, 0709.1458. doi:10.1090/pspum/078/2483754

[BS17] G. Borot and S. Shadrin. Blobbed topological recursion: properties and applications. Math. Proc. Cambridge Phil. Soc., 162(1):39–87, 2017, 1502.00981. doi:10.1017/S0305004116000323

[Cay09] A. Cayley. The collected mathematical papers. Volume 13. Cambridge Library Collection. Cambridge University Press, Cambridge, 2009. doi:10.1017/CBO9780511703713.085 Reprint of the 1897 original.

[CEO06] L. Chekhov, B. Eynard, and N. Orantin. Free energy topological expansion for the 2-matrix model. JHEP, 12:053, 2006, math-ph/0603003. doi:10.1088/1126-6708/2006/12/053
[dJHW19] J. de Jong, A. Hock, and R. Wulkenhaar. Catalan tables and a recursion relation in noncommutative quantum field theory. 2019, [1904.11231]

[Doł17] M. Dołęga. Strong factorization property of Macdonald polynomials and higher-order Macdonald’s positivity conjecture. J. Algebraic Combin., 46(1):135–163, 2017. doi:10.1007/s10801-017-0750-x

[EO07] B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys., 1:347–452, 2007, math-ph/0702045 doi:10.4310/CNTP.2007.v1.n2.a4

[EO13] B. Eynard and N. Orantin. About the x-y symmetry of the F_g algebraic invariants. 11 2013, [1311.4993]

[Eyn16] B. Eynard. Counting Surfaces, volume 70 of Progress in Mathematical Physics. Springer, 2016, doi:10.1007/978-3-7643-8797-6

[GHW19] H. Grosse, A. Hock, and R. Wulkenhaar. Solution of all quartic matrix models. 2019, [1906.04600].

[Gou10] H. W. Gould. Tables of Combinatorial Identities. edited by Jocelyn Quaintance, 2010. URL https://web.archive.org/web/20190629193344/http://www.math.wvu.edu/~gould/.

[GW09] H. Grosse and R. Wulkenhaar. Progress in solving a noncommutative quantum field theory in four dimensions. 2009, [0909.1389].

[GW14] H. Grosse and R. Wulkenhaar. Self-dual noncommutative ϕ^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys., 329:1069–1130, 2014, 1205.0465 doi:10.1007/s00220-014-1906-3.

[Hoc20] A. Hock. Matrix Field Theory. PhD thesis, WWU Münster, 2020, [2005.07525].

[Kou92] M. Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys., 147:1–23, 1992. doi:10.1007/BF02099526

[Mir06] M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167(1):179–222, 2006. doi:10.1007/s00222-006-0013-2

[Prü18] H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv der Math. u. Physik, 27(3):142–144, 1918.

[PW20] E. Panzer and R. Wulkenhaar. Lambert-W solves the noncommutative Φ^4-model. Commun. Math. Phys., 374:1935–1961, 2020, 1807.02945 doi:10.1007/s00220-019-03592-4.

[SW19] J. Schürmann and R. Wulkenhaar. An algebraic approach to a quartic analogue of the Kontsevich model. 2019, [1912.03979].

Mathematisches Institut der WWU, Einsteinstr. 62, 48149 Münster, Germany, E-mail addresses: a_hock03@uni-muenster.de, raimar@math.uni-muenster.de

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland

Email address: mdolega@impan.pl