on the rate analysis of inexact augmented Lagrangian schemes for convex optimization problems with misspecified constraints

H. Ahmadi  N. S. Aybat  U. V. Shanbhag

Abstract—We consider a misspecified optimization problem that requires minimizing of a convex function \( f(x; \theta^*) \) in \( x \) over a constraint set represented by \( h(x; \theta^*) \leq 0 \) where \( \theta^* \) is an unknown (or misspecified) vector of parameters. Suppose \( \theta^* \) is learnt by a distinct process that generates a sequence of estimators \( \theta_k \), each of which is an increasingly accurate approximation of \( \theta^* \). We develop a first-order augmented Lagrangian scheme for computing an optimal solution \( x^* \) while simultaneously learning \( \theta^* \).

I. INTRODUCTION

Consider an optimization problem in \( n \)-dimensional space defined as follows:
\[
\mathcal{X}^\star(\theta^*):=\arg\min_{x\in\mathcal{X}\cap\mathcal{H}(\theta^*)} f(x; \theta^*), \quad (\mathcal{C}(\theta^*))
\]
where \( \theta^* \in \mathbb{R}^d \) denotes the parametrization of the objective and constraints. While traditionally, optimization research has considered settings where \( \theta^* \) is available a priori, two related problems of interest have considered regimes where either the parameter is unavailable (robust optimization) or when it is uncertain (stochastic optimization).

Robust approaches [1]. For instance, when \( \theta^* \) is unavailable, but one has access to an associated uncertainty set \( \mathcal{F} \), then in robust optimization, the worst-case value of the objective is minimized:
\[
\min_{x\in\mathcal{X}} \max_{\theta\in\mathcal{F}} f(x; \theta). \quad \text{(Robust Optimization)}
\]

Stochastic approaches [2]. An alternative approach considers an uncertain regime where \( \theta: \Omega \rightarrow \mathbb{R}^d \) is an \( d \)-dimensional random vector defined on a suitable probability space. The resulting stochastic optimization schemes consider the minimization of an expectation:
\[
\min_{x\in\mathcal{X}} \mathbb{E}[f(x; \theta)]. \quad \text{(Stochastic Optimization)}
\]

In this paper, we consider a different approach in which the parameter vector \( \theta \) has a nominal or true value \( \theta^* \) obtainable by solving a suitably defined learning problem:
\[
\min_{\theta\in\Theta} \mathcal{L}(\theta). \quad (\mathcal{E})
\]
Instances of such problems routinely arise when \( \theta^* \) is idiosyncratic to the problem and may be learnt by the aggregation of data; examples include the following: the learning of covariance matrices associated with a collection of stocks, efficiency parameters associated with machines on a supply line, and demand parameters associated with a supply chain.

A natural approach in this case is to first estimate \( \theta^* \) with high accuracy and then to solve the parametrized problem. Yet, in many instances, this sequential approach cannot be adopted for several reasons: (i) observations unavailable a priori and appear in a streaming fashion; (ii) the learning problem can be large, precluding a highly accurate a priori resolution; (iii) unless the learning problem can be solved exactly in finite time, any sequential scheme may provide approximate solutions, at best.

Accordingly, we consider the development of schemes that generate sequences \( \{x_k\}, \{\theta_k\} \) such that
\[
\|\theta_k - \theta^*\| \rightarrow 0, \quad d_{\mathcal{H}}(\theta^*(x_k), 0) \quad \text{as} \quad k \rightarrow \infty,
\]
where \( \theta^* \) is the unique solution of (\( \mathcal{E} \)) and for a given closed convex set \( \mathcal{X} \), \( d_{\mathcal{H}}(x) \equiv \min_{s\in\mathcal{H}} \|x-s\| \) denotes the distance function to \( \mathcal{H} \). This framework originates from prior work on stochastic optimization/variational inequality problems [3] and stochastic Nash games [4]. In recent work, the rate statements derived in [3] are refined to the deterministic regime [5]. In [6], misspecification in the constraints is addressed in a convex regime via variational inequality approaches; in sharp contrast, in this paper, we develop a misspecified analog of the augmented Lagrangian scheme for misspecified convex problems in which both the objective and the constraints are misspecified. Augmented Lagrangian schemes are rooted in the seminal papers by Hestenes [7] and Powell [8], and their relation to proximal-point methods was established by Rockafellar [9], [10]. Recently, there has been a renewed examination of such techniques in convex regimes, with an emphasis on deriving convergence rates [11]–[13].

In this paper, we develop an analog of the traditional augmented Lagrangian scheme in which the subproblems are solved with increasing exactness. Our contributions include rate statements for the dual suboptimality, the primal infeasibility, and the primal suboptimality in this misspecified regime. Throughout, our focus will be on the problem \( (\mathcal{C}(\theta^*)) \) when \( \mathcal{H}(\theta^*) \equiv \{x: h(x; \theta^*) \leq 0\} \), i.e.,
\[
\min_{x, \lambda} \{ f(x; \theta) \}
\]
subject to \( h(x; \theta) \leq 0, \ x \in \mathcal{X} \),
where \( f: \mathbb{R}^n \times \Theta \rightarrow \mathbb{R} \cup \{+\infty\}, \ h: \mathbb{R}^n \times \Theta \rightarrow \mathbb{R}^m \) and \( \theta \in \Theta \subseteq \mathbb{R}^d \) denotes an estimate for the misspecified parameter \( \theta^* \). Throughout, we assume that \( \mathcal{C}(\theta^*) \) has a finite optimal value, given by \( f^* \), the corresponding Lagrangian dual problem has a solution, denoted by \( \lambda^* \), and there is no
duality gap. The remainder of the paper comprises of three sections. We provide preliminaries in Section III, the main rate statements in Section IV, and conclude in Section V.

II. PRELIMINARIES

The problem \( \mathcal{C}(\theta) \) is equivalent to

\[
\min \{ f(x;\theta) : h(x;\theta) + z = 0, \ x \in X, \ z \in \mathbb{R}_+^m \}. \tag{1}
\]

Let \( \lambda \in \mathbb{R}^m \) denote the vector dual variables corresponding to the equality constraints in (1). For any given \( \rho > 0 \), define the augmented Lagrangian function for (1), \( \mathcal{L}_\rho(x, \lambda; \theta) \), such that

\[
\mathcal{L}_\rho(x, \lambda; \theta) = \min_{z \in \mathbb{R}^m} \left\{ f(x;\theta) + \frac{\rho}{2} \| h(x;\theta) + z \|_2^2 - \frac{\| \lambda \|_2^2}{2\rho} \right\}
\]

Through a rearrangement of terms, it can be shown that

\[
\mathcal{L}_\rho(x, \lambda; \theta) = f(x;\theta) + \frac{\rho}{2} \min_{z \in \mathbb{R}^m} \| h(x;\theta) + z \|_2^2 - \frac{\| \lambda \|_2^2}{2\rho}, \tag{2}
\]

where \( d_x(\lambda) \triangleq \min_{z \in X} \| x - z \|_2 \), and \( d_{\theta}^2(x) \triangleq (d_x(\lambda))^2 \). For \( \rho = 0 \), let \( \mathcal{L}_0(x, \lambda; \theta) \) denote the Lagrangian function:

\[
\mathcal{L}_0(x, \lambda; \theta) \triangleq \begin{cases} f(x;\theta) + \lambda^\top h(x;\theta), & \text{if } \lambda \in \mathbb{R}_+^m \\ -\infty, & \text{otherwise.} \end{cases}
\]

When \( \rho \geq 0 \), the dual problem of \( \mathcal{C}(\theta) \) is defined as

\[
\max_{\lambda \in \mathbb{R}^m} \left\{ g_\rho(\lambda;\theta) \triangleq \inf_{x \in X} \mathcal{L}_\rho(x, \lambda; \theta) \right\}. \tag{D_\rho}
\]

Throughout, we assume the following:

**Assumption 1:**

(i) The functions \( f(x;\theta) \) and \( h_i(x;\theta) \) are convex in \( x \in X \) for all \( \theta \in \Theta \) for \( i = 1, \ldots, m \) and \( X \subseteq \mathbb{R}^d \) and \( \Theta \) are convex compact sets.

(ii) The function \( f(x;\theta) \) is Lipschitz continuous in \( \theta \) over \( \Theta \) for all \( x \in X \) with constant \( L_f \); i.e., for all \( x \in X \), \( \| f(x;\theta_1) - f(x;\theta_2) \| \leq L_f \| \theta_1 - \theta_2 \| \) for all \( \theta_1, \theta_2 \in \Theta \).

(iii) \( h(x;\theta) \) is an affine map in \( x \) for \( \theta \in \Theta \), i.e., \( h(x;\theta) = A(\theta) x + b(\theta) \) for some \( A(\theta) \in \mathbb{R}^{m \times n} \) and \( b(\theta) \in \mathbb{R}^m \). Suppose \( A(\theta) \) and \( b(\theta) \) are Lipschitz continuous in \( \theta \). Hence, \( h(x;\theta) \) is Lipschitz continuous in \( \theta \) with constant \( L_h \) uniformly for all \( x \in X \). Clearly, \( h(B(0,1);\theta) \subseteq B(b(\theta), \sigma_{max}(A(\theta))) \) for all \( \theta \in \Theta \), where \( B(y;r) := \{ y : \| y - y \| \leq r \} \). Hence, there is a constant \( \sigma_0 \) s.t. \( h(B(0,1);\theta) \subseteq \sigma_0 B(0,1) \) for all \( \theta \in \Theta \), since \( \sigma_{max}(A(\theta)) \) is continuous in \( \theta \) and \( \Theta \) is compact.

(iv) \( X^*(\lambda;\theta) \) is pseudo-Lipschitz in \( \theta \) uniformly in \( \lambda \) with constant \( \kappa \), where \( X^*(\lambda;\theta) = \arg \min_{z \in X} \mathcal{L}_0(z, \lambda; \theta) \), i.e., for any \( \theta_1, \theta_2 \in \Theta \), \( X^*(\lambda;\theta_1) \subseteq X^*(\lambda;\theta_2) + \kappa B(0,1) \) for all \( \lambda \geq 0 \).

Rather than focusing on the nature of the algorithm employed for resolving the learning problem, instead we impose a requirement that the adopted scheme produces a sequence that converges to the optimal solution an non-asymptotic linear rate.

**Assumption 2:** There exists a learning scheme that generates a sequence \( \{ \theta_k \} \) such that \( \theta_k \rightarrow \theta^* \) at a linear rate as \( k \rightarrow \infty \), i.e., there exists a constant \( q_0 \in (0,1) \) such that for all \( k \geq 0 \) and \( \theta_0 \in \Theta \), one has \( \| \theta_k - \theta^* \| \leq q_k \| \theta_0 - \theta^* \| \). In addition, at iteration \( k \) of the optimization problem \( \mathcal{C} \), only \( \theta_1, \ldots, \theta_k \) are revealed. Then Lemma I pertaining to various properties of the gradient of the dual function \( \nabla_{\lambda} g_\rho \), will be used in our analysis. The proof of Lemma I can be found in [10] and is omitted here.

**Lemma 1:** Suppose Assumption I holds.

(i) For any \( \rho > 0 \) and \( \theta \in \Theta \), the dual function \( g_\rho(\lambda;\theta) \) is everywhere finite, continuously differentiable concave function over \( \mathbb{R}_+^m \); more precisely, \( g_\rho(\lambda;\theta) = \max_{w \in \mathbb{R}_+} \{ g_0(w;\theta) - \frac{1}{2\rho} \| w - \lambda \|_2^2 \} \), i.e., \( g_\rho(\cdot, \theta) \) is the Moreau regularization of \( g_0(\cdot) \) for all \( \theta \in \Theta \). Therefore, \( \nabla_{\lambda} g_\rho(\lambda;\theta) \) is Lipschitz continuous in \( \lambda \) with constant \( \frac{\rho}{2} \).

(ii) For any given \( \lambda \in \mathbb{R}_+^m \) and \( \theta \in \Theta \), \( \nabla_{\lambda} g_\rho \) can be computed as \( \nabla_{\lambda} g_\rho(\lambda;\theta) = \nabla_{\lambda} \mathcal{L}_\rho(\lambda;\theta) \), where \( x^*(\lambda) \triangleq \arg \min_{x \in X} \mathcal{L}_\rho(x, \lambda; \theta) \).

(iii) Given \( \lambda \in \mathbb{R}_+^m \) and \( \theta \in \Theta \), suppose \( \hat{x}(\lambda) \) is an inexact solution to \( \mathcal{L}_\rho(x, \lambda; \theta) \) with accuracy \( \alpha \), i.e., \( \hat{x}(\lambda) \in X \) satisfies \( \mathcal{L}_\rho(\hat{x}(\lambda), \lambda; \theta) \leq g_\rho(\lambda;\theta) + \alpha \), then \( \| \nabla_{\lambda} \mathcal{L}_\rho(\hat{x}(\lambda), \lambda; \theta) - \nabla_{\lambda} g_\rho(\lambda;\theta) \| \leq 2\alpha / \rho \).

Next, we examine the continuity of \( \nabla_{\lambda} g_\rho(\lambda;\theta) \) in \( \theta \in \Theta \).

**Lemma 2 (Lipschitz continuity of \( \nabla_{\lambda} g_\rho \) in \( \theta \in \Theta \):**

Suppose Assumption I holds. Then, we have that \( \nabla_{\lambda} g_\rho(\lambda;\theta) \) is Lipschitz continuous in \( \theta \) uniformly in \( \lambda \in \mathbb{R}_+^m \) with constant \( \kappa \) and \( \kappa \sigma_\theta \).

**Proof:** Due to limited space, we omit the proof. For details, see Proposition 2.4 in the extended version this paper [14].
compactness assumption on $\Theta$, this “local” Lipschitzian result can be globalized. 2) Parametrized convex programming: More generally, suppose $f(x; \theta)$ is a nonlinear convex function and $B(H; \varepsilon; S)$ denotes an $\varepsilon$-neighborhood of $H$ containing all continuous functions $G$ that are within $\varepsilon$ distance to $H$ when restricted to the set $S$, i.e.,

$$\|G - H\|_S \triangleq \sup_{y \in S} \|G(y) - H(y)\| < \varepsilon.$$  

Then we define the associated VI($X, \nabla_x \mathcal{L}(.; \lambda; \theta)$) as semistable if there exist two positive scalars $c$ and $\varepsilon$ such that for every $\nabla_x \mathcal{L}(x, \lambda; \theta) \in B(\nabla_x \mathcal{L}(x, \lambda; \theta); \varepsilon, X)$, we have that

$$X^*(\lambda; \theta) \subseteq X^*\left(\lambda; \theta\right) + c \sup_{x \in X} \|\nabla_x \mathcal{L}(x, \lambda; \theta) - \nabla_x \mathcal{L}(x, \lambda; \theta)\| B(0, 1).$$

In fact, a necessary and sufficient condition for semistability of $\text{VI}(X, F)$ is the following [16, Prop. 5.5.5]: There exists two positive scalars $c$ and $\varepsilon$, such that for all $q \in \mathbb{R}^n$,

$$\|q\| < \varepsilon \implies \text{SOL}(X, q + F) \subseteq \text{SOL}(X, F) + B(0, c\|q\|).$$

We conclude this section by presenting the misspecified variant of the inexact augmented Lagrangian scheme with constant penalty $\rho > 0$. Notably, if $\theta_k = \theta^*$ for all $k \geq 0$, this reduces to the traditional version considered in [10].

**Algorithm 1** Misspecified inexact aug. Lag. scheme

Given $\lambda_0 = 0 \in \mathbb{R}^m$, and $\rho > 0$, let $\{a_i\}, \theta_0$ be given sequences. Then for all $k \geq 0$,

1. find $x_k$ such that $\mathcal{L}_\rho(x_k, \lambda_k; \theta_k) \leq g_\rho(\lambda_k; \theta_k) + a_k$;
2. $\lambda_{k+1} = \lambda_k + \rho \nabla \mathcal{L}_\rho(x_k, \lambda_k; \theta_k)$;
3. $k := k + 1$.

**Assumption 3:** $\{a_k\}$ is chosen such that $\sum_{k=0}^{\infty} \sqrt{a_k} < \infty$.

Under this assumption, we show (i) $f^* - g_\rho(\lambda_k) \leq O(1/k)$ for $\lambda_k = \frac{1}{k} \sum_{i=1}^{k} \lambda_i$, (ii) $d_{\text{reg}}(h(x_k; \theta^*)) \leq O(1/\sqrt{k})$, and (iii) $-O(1/\sqrt{k}) \leq f(y_k; \theta^*) - f^* \leq O(1/k)$ for $y_k = \frac{1}{k} \sum_{i=1}^{k} x_i$. After proving these bounds independently, we became aware of related recent work [13], where Algorithm 1 is considered with $a_k = \alpha k > 0$ for all $k \geq 0$, assuming perfect information, i.e., $\theta_k = \theta^*$ for all $k \geq 0$. In [13], it is shown that (i) $f^* - g_\rho(\lambda_k) \leq O(1/k) + \alpha k$, (ii) $d_{\text{reg}}(h(x_k; \theta^*)) \leq O(1/\sqrt{k})$, and (iii) $-O(1/\sqrt{k}) \leq f(y_k; \theta^*) - f^* \leq O(1/k) + \alpha$. Therefore, according to [13], $\alpha$ should be fixed as a small constant in accordance with the desired accuracy. Since $\alpha$ is fixed in [13], such avenues can, at best, provide approximate solutions. In contrast, our method may start with large $a_0$ and gradually decrease it, ensuring both numerical stability and asymptotic convergence to optimality.

**III. RATE OF CONVERGENCE ANALYSIS**

We begin by showing that dual variables stay bounded by using a supporting Lemma whose proof follows from Lemma 1 and the properties of proximal maps (cf. [17]).

**Lemma 3:** Let $\pi_\rho(\lambda; \theta) := \arg\max_{w \in \mathbb{R}^m} g_\rho(0; w; \theta) - \frac{1}{2p} \|w - \lambda\|^2$ for $\theta \in \Theta$, i.e., the proximal map of $g_\rho(0; \cdot, \theta)$. Then $\pi_\rho(\lambda; \theta) = \lambda + \rho \nabla \mathcal{L}_\rho(\lambda; \theta)$, and $\pi_\rho$ is nonexpansive in $\lambda$ for all $\theta \in \Theta$.

**Theorem 1 (Boundedness of $\{\lambda_k\}$):** Let Assumptions 1 - 3 hold, and $\lambda^*$ be an arbitrary solution to the Lagrangian dual of $\psi(\theta^*)$, i.e., $\lambda^* = \arg\max_{\lambda} g_0(\lambda; \theta^*)$. Then for all $k \geq 1$,

$$\|\lambda_{k+1} - \lambda^*\| \leq C_\lambda,$$

where $C_\lambda$ is defined as follows:

$$C_\lambda \triangleq \sqrt{2p \sum_{k=0}^{\infty} \sqrt{a_k} + M_\lambda \|\theta_0 - \theta^*\|^2} + \|\lambda^*\|.$$  

**Proof:** We begin by deriving a bound on $\|\lambda_{k+1} - \pi_\rho(\lambda_k; \theta_k)\|$ by utilizing the definition of $\lambda_{k+1}$ from Step 2 in Algorithm 1

$$\|\lambda_{k+1} - \pi_\rho(\lambda_k; \theta_k)\| \leq \|\lambda_k + \rho \nabla \mathcal{L}_\rho(x_k, \lambda_k; \theta_k) - \pi_\rho(\lambda_k; \theta_k)\|$$

$$\leq \|\nabla \mathcal{L}_\rho(x_k, \lambda_k; \theta_k) - \pi_\rho(\lambda_k; \theta_k)\| \leq \sqrt{2p \sqrt{a_k}}.$$

(4)

where the last inequality follows from Lemma 1(iii). Since $g_\rho(0; \theta^*)$ is the Moreau regularization of $g_0(\cdot; \theta^*)$, it is true that $\lambda^* \in \arg\max_\lambda g_\rho(\lambda; \theta^*)$ for all $\rho > 0$. Hence, $\nabla \mathcal{L}_\rho(\lambda^*; \theta^*) = 0$ and $\lambda^* = \pi_\rho(\lambda^*, \theta^*)$. From this observation, we obtain the bound below:

$$\|\pi_\rho(\lambda_k, \theta_k) - \lambda^*\| \leq \|\pi_\rho(\lambda_k, \theta_k) - \pi_\rho(\lambda^*, \theta^*)\| + \|\pi_\rho(\lambda^*, \theta^*) - \lambda^*\|$$

$$\leq \rho \|\nabla \mathcal{L}_\rho(\lambda_k, \theta_k) - \nabla \mathcal{L}_\rho(\lambda^*, \theta^*)\|$$

$$+ \|\pi_\rho(\lambda^*, \theta^*) - \lambda^*\|$$

$$\leq \rho M_\lambda \|\theta_k - \theta^*\| + \|\lambda_k - \lambda^*\|.$$  

(5)

This follows from the Lipschitz continuity of $\nabla \mathcal{L}_\rho$ and the nonexpansivity of $\pi_\rho$ in $\lambda$ (Lemma 2). Hence, from (4) and (5), we obtain for all $i \geq 0$ that

$$\|\lambda_{i+1} - \lambda^*\| \leq \sqrt{2p \sqrt{a_i} + M_\lambda \|\theta_i - \theta^*\|} + \|\lambda_i - \lambda^*\|.$$  

For $k \geq 0$, by summing the above inequality over $i = 0, \ldots, k$, and using the fact that $\lambda_0 = 0$, we get

$$\|\lambda_{k+1} - \lambda^*\| \leq \sum_{i=0}^{k} \left( \sqrt{2p \sqrt{a_i} + M_\lambda \|\theta_i - \theta^*\|} + \|\lambda_i - \lambda^*\| \right)$$

$$\leq \sqrt{2p \sum_{i=0}^{\infty} \sqrt{a_k} + M_\lambda \|\theta_0 - \theta^*\|^2} + \|\lambda^*\|.$$  

**Remark:** It is worth emphasizing that the bound $C_\lambda$ can be tightened when $\theta^*$ is known, i.e., since $\theta_0 = \theta^*$, the second term disappears.

Next, we prove that the augmented Lagrangian scheme generates a sequence $\{\lambda_k\}$ such that $\lambda_k \rightarrow \lambda^*$ as $k \rightarrow \infty$ by deriving a rate statement on the ergodic average sequence.

**Theorem 2 (Bound on dual suboptimality):** Let Assumptions 1 - 3 hold and let $\{\lambda_k\}_{k=1}^{\infty}$ denote the sequence generated by Algorithm 1. In addition, let $\bar{\lambda}_k = \frac{1}{k} \sum_{i=1}^{k} \lambda_i$. Then it follows that for all $k \geq 1$:

$$f^* - g_\rho(\bar{\lambda}_k; \theta^*) = \sup_{\lambda} g_\rho(\lambda; \theta^*) - g_\rho(\bar{\lambda}_k; \theta^*) \leq \frac{B_\rho}{k},$$  

where $\lambda^* = \arg\max_{\lambda} g_0(\lambda, \theta^*), C_\lambda$ is defined in Theorem 1 and $B_\rho$ is defined as follows:

$$B_\rho \triangleq \frac{1}{2p} \|\lambda^*\|^2 + C_\lambda \left( \sqrt{\frac{2p}{\rho} \sum_{k=0}^{\infty} \sqrt{a_k} + M_\lambda \|\theta_0 - \theta^*\|^2} \right).$$  


Proof: Note that from Lemma 1 and using the fact that the duality gap for \( \mathcal{C}(\theta^*) \) is 0, it follows that \( f^* = \max_{\lambda} g_\rho(\lambda; \theta^*) \) for all \( \rho > 0 \). Using the Lipschitz continuity of \( \nabla_{\lambda} g_\rho(\lambda; \theta^*) \) in \( \lambda \) with constant \( 1/\rho \), for \( i \geq 0 \), we get

\[
- g_\rho(\lambda_{i+1}; \theta^*) \leq - g_\rho(\lambda_i; \theta^*) - \nabla_{\lambda} g_\rho(\lambda_i; \theta^*)^T (\lambda_{i+1} - \lambda_i) + \frac{1}{2\rho} \| \lambda_{i+1} - \lambda_i \|^2. \tag{7}
\]

Under the concavity of \( g_\rho(\lambda; \theta^*) \) in \( \lambda \), we have that

\[
- g_\rho(\lambda^*; \theta^*) \geq - g_\rho(\lambda_i; \theta^*) - \nabla_{\lambda} g_\rho(\lambda_i; \theta^*)^T (\lambda^* - \lambda_i).
\]

By combining the above inequality and (7), we get

\[
- g_\rho(\lambda_{i+1}; \theta^*) \leq - g_\rho(\lambda^*; \theta^*) - \nabla_{\lambda} g_\rho(\lambda^*; \theta^*)^T (\lambda_{i+1} - \lambda^*) + \frac{1}{2\rho} \| \lambda_{i+1} - \lambda^* \|^2,
\]

Furthermore, substituting \( \sum_{i=0}^\infty \| \theta_i - \theta^* \| = \| \theta_0 - \theta^* \|/(1 - q) \) into (11) gives the desired bound and completes the proof.

Next, we derive a bound on the primal infeasibility, where the primal iterate sequence is computed such that Step 1 in Algorithm 1 is satisfied. Prior to proving our main result, we provide some supporting technical lemmas.

Lemma 4: Assume that \( \phi(\lambda): \mathbb{R}^m \to \mathbb{R} \) is a concave function whose supremum is finite and is attained at \( \lambda_0^* \). In addition, assume that \( \nabla \phi \) is Lipschitz continuous with constant \( L_\phi \). Then, for all \( \lambda \in \mathbb{R}^m \), we have that \( \| \nabla \phi(\lambda) \| \leq \sqrt{2L_\phi(\phi(\lambda_0^*) - \phi(\lambda))} \).

This is an immediate result of Theorem 2.15 in [18]. Next, we derive a bound on \( d_\mathbb{W}(y, y') \) for any \( y, y' \geq 0 \).

Lemma 5: For all \( y, y' \in \mathbb{R}^m \), \( d_\mathbb{W}(y, y') \leq d_\mathbb{W}(y) + \| y' \| \).

Proof: The result immediately follows from the definition \( d_\mathbb{W}(y) \) and the non-expansivity of \( \Pi_{\mathbb{W}}(x) \triangleq x - \Pi_{\mathbb{W}}(x) \).

We now derive the bound on the primal infeasibility.

Theorem 3 (Bound on primal infeasibility): Let Assumptions 1–3 hold and let \( \{ \lambda_k \}_{k \geq 0} \) and \( \{ x_k \}_{k \geq 0} \) denote the sequences generated by Algorithm 1. Furthermore, let \( \bar{x}_k = \frac{1}{k+1} \sum_{i=0}^k x_i \). Then, it follows that

\[
d_\mathbb{W}(h(\bar{x}_k, \theta^*)) \leq \mathcal{Y}(k) \leq \frac{C_1}{\sqrt{k + 1}} + \frac{C_2}{k + 1} \tag{12}
\]

where \( C_1 := \sqrt{2\frac{L_{\phi}}{\rho}} + \frac{C_2}{\rho} \) and \( C_2 := \sqrt{\frac{2}{\rho} \sum_{i=0}^\infty \sqrt{c_i}} + \frac{\lambda_0^*}{k+1} \leq \sum_{i=0}^\infty \| \theta_i - \theta^* \| \).

Proof: Let \( u_i := \nabla_{\lambda} \mathcal{L}_\rho(x_i; \lambda_i; \theta) \) for all \( i \geq 0 \). Note that computing \( \nabla_{\lambda} \mathcal{L}_\rho \) using (2), we get \( u_i = h(x_i; \theta_i) + \Pi_{\mathbb{W}} \left( -\frac{1}{\rho} - h(x_i; \theta_i) \right) \); hence, it trivially follows that

\[
h_j(x_i; \theta_i) \leq |u_j|, \text{ for } j = 1, \ldots, m. \tag{13}
\]

Under Assumption 1(iv), we have that

\[
|h_j(x_i, \theta_i) - h_j(x_i, \theta^*)| \leq L_{\theta_i}^j \| \theta_i - \theta^* \|.
\]

Combining this with (13), we obtain

\[
h_j(x_i, \theta^*) - \frac{1}{k+1} \sum_{i=0}^k h_j(x_i, \theta^*) \leq L_{\theta_i}^j \| \theta_i - \theta^* \|. \tag{14}
\]

By summing (14) from \( i = 0 \) to \( i = k \), it follows that

\[
\sum_{i=0}^k h_j(x_i, \theta^*) \leq \sum_{i=0}^k |u_j| + \frac{1}{k+1} \sum_{i=0}^k \| \theta_i - \theta^* \| \tag{15}
\]

On the other hand, convexity of \( h_j(x, \theta^*) \) in \( x \) implies that

\[
h_j(x_i, \theta^*) \leq \frac{1}{k+1} \sum_{i=0}^k h_j(x_i, \theta^*)
\]

hence, for all \( j = 1, \ldots, m \), we have from (15),

\[
h_j(x_i, \theta^*) \leq \frac{1}{k+1} \left( \sum_{i=0}^k |u_j| + \sum_{i=0}^k L_{\theta_i}^j \| \theta_i - \theta^* \| \right). \tag{16}
\]
Hence, $L_h \triangleq \max\{L_h^j : j = 1, \ldots, m\}$, and (10) imply that

$$d_{\infty}\left(h(\bar{x}_k, \theta^*)\right) \leq \frac{1}{k + 1} \left(\sum_{i=0}^{k} \|u_i\| + L_h \sum_{i=0}^{k} \|\theta_i - \theta^*\|\right).$$

Note that

therefore, we obtain that $\|u_i\| = \|\nabla_h L_{\rho}(x, \lambda_i; \theta)\| \leq \|\nabla_h g_{\rho}(\lambda_i; \theta)\| + \sqrt{2\alpha_i/\rho}$. In addition, since $\|\nabla_h g_{\rho}(\lambda_i; \theta^*)\| \leq \|\nabla_h g_{\rho}(\lambda_i; \theta)\| + M_h \|\theta_i - \theta^*\|$, we get the following bound:

$$\left\|\nabla_h g_{\rho}(\lambda_i; \theta^*)\right\| \leq \sqrt{\frac{2}{\rho}} (f^* - g_{\rho}(\lambda_i; \theta^*)).$$

Combining this with the previous inequality leads to

$$\|u_i\| \leq \sqrt{\frac{2}{\rho}} \left( f^* - g_{\rho}(\lambda_i; \theta^*) \right) + \sqrt{\frac{2\alpha_i}{\rho} + M_h \|\theta_i - \theta^*\|}.$$ 

By substituting this bound into (17), we get that

$$d_{\infty}\left(h(\bar{x}_k, \theta^*)\right) \leq \frac{1}{k + 1} \left(\sum_{i=0}^{k} \left\|\nabla_h L_{\rho}(x, \lambda_i; \theta)\right\| + \sqrt{\frac{2\alpha_i}{\rho}} + M_h \|\theta_i - \theta^*\|\right).$$

The result follows by incorporating these bounds into (18).

We now proceed to derive and upper bounds on $f(\bar{x}_k, \theta^*) - f^*$. In contrast with standard unconstrained convex optimization, $f(\bar{x}_k, \theta^*)$ could be less than $f^*$, as a consequence of infeasibility of $\bar{x}_k$.

**Theorem 4 (bound on primal suboptimality):** Let Assumption [3] hold and let $\{\lambda_k\}$ be the sequences generated by Algorithm [1]. In addition, let $\bar{x}_k = \frac{1}{k+1} \sum_{i=0}^{k} x_i$. Then the following holds:

$$f(\bar{x}_k; \theta^*) - f^* \geq -\frac{\rho}{2} \mathcal{Y}^2(k) - \|\lambda^*\| \mathcal{Y}(k)$$

where the first equality is a consequence of (2) while the second inequality follows from Lemma [3]. By expanding the second term above inequality, we obtain

$$f^* \leq f(\bar{x}_k; \theta^*) + \frac{\rho}{2} d_{\infty}^2\left(h(\bar{x}_k; \theta^*) + \|\lambda^*\|\right) - \|\lambda^*\|^2 - \frac{2}{2\rho} \mathcal{Y}^2(k) + \|\lambda^*\| \mathcal{Y}(k),$$

where the last inequality follows from Theorem [3].

**Proof of the upper bound.** Let $x^*$ be an optimal solution to $\mathcal{E}(\theta^*)$. Step 1 of Algorithm [1] implies that for all $i \geq 0$

$$\mathcal{L}_{\rho}(x_i, \lambda_i; \theta) \leq \mathcal{L}_{\rho}(x^*, \lambda^*; \theta) + \alpha_i.$$ 

Hence, by the definition of $\mathcal{L}_{\rho}$, it follows that

$$f(x_i; \theta) + \frac{\rho}{2} d_{\infty}^2\left(h(x_i; \theta) + \frac{\lambda_i}{\rho}\right) - \|\lambda_i\|^2 \leq f(x^*; \theta) + \frac{\rho}{2} d_{\infty}^2\left(h(x^*; \theta) + \frac{\lambda^*}{\rho}\right) - \|\lambda^*\|^2 + \alpha_i,$$

which leads to

$$f(x_i; \theta) - f(x^*; \theta) \leq \frac{\rho}{2} d_{\infty}^2\left(h(x_i; \theta) + \frac{\lambda_i}{\rho}\right) - \frac{\rho}{2} d_{\infty}^2\left(h(x^*; \theta) + \frac{\lambda^*}{\rho}\right) + \alpha_i.$$ 

Step 2 of Algorithm [1] implies that

$$d_{\infty}\left(h(x_i; \theta) + \frac{\lambda_i}{\rho}\right) = \frac{\|\lambda_{i+1}\|}{\rho}.$$
In addition, by using Lemma [5] it follows that
\[
d_{\infty}(h(x^*; \theta) + \frac{\lambda_i}{\rho}) \leq d_{\infty}(h(x^*; \theta)) + \frac{\|\lambda_i\|}{\rho}.
\] (25)
Substituting (24) and (25) in (23), we obtain for all \(i \geq 0\)
\[
f(x_i; \theta_i) - f(x^*; \theta^*) \leq \frac{\rho}{2} \left( d_{\infty}(h(x^*; \theta)) + \frac{\|\lambda_i\|}{\rho} \right)^2
\]
\[- \frac{1}{2\rho} \|\lambda_{i+1}\|^2 + \alpha_i = \frac{\rho}{2} d_{\infty}(h(x^*; \theta)) + d_{\infty}(h(x^*; \theta)) \|\lambda_i\|
\]
\[+ \frac{1}{2\rho} \|\lambda_i\|^2 - \|\lambda_{i+1}\|^2 + \alpha_i.
\] (26)
From Lipschitz continuity of \(h_j\) in \(\theta\) for \(j = 1, \ldots, m\),
\[
h_j(x^*; \theta) \leq h_j(x^*; \theta^*) + L_h \|\theta - \theta^*\|;
\]
\[\Rightarrow d_{\infty}(h(x^*; \theta)) \leq d_{\infty}(h(x^*; \theta^*)) + L_h \|\theta - \theta^*\|.
\] (27)
Since \(h_j(x^*; \theta^*) \leq 0\) for \(j = 1, \ldots, m\), it follows that
\[d_{\infty}(h(x^*; \theta^*)) = 0, \text{ and inequality (27) becomes}
\]
\[d_{\infty}(h(x^*; \theta)) \leq L_h \|\theta - \theta^*\|.
\] By substituting (27) into (26), we get for all \(i \geq 0\)
\[
f(x_i; \theta_i) - f(x^*; \theta^*) \leq \frac{\rho}{2} L_h \|\theta - \theta^*\|^2 + CL_h \|\theta - \theta^*\|
\]
\[+ \frac{1}{2\rho} \|\lambda_i\|^2 - \|\lambda_{i+1}\|^2 + \alpha_i,
\]
where the last inequality follows from \(\|\lambda_i - \lambda^*\| \leq C_i\) (Theorem [4]), i.e., \(\|\lambda_i\| \leq C := C_0 + \|\lambda^*\|\) for all \(i \geq 0\). Next, from the Lipschitz continuity of \(f\) in \(\theta\) it follows that
\[f(x_i; \theta_i) - f(x^*; \theta^*) \geq f(x_i; \theta^*) - f(x^*; \theta^*) - 2L_f \|\theta - \theta^*\|.
\] Combining two above inequalities results in the following:
\[
f(x_i; \theta^*) - f^* \leq \frac{\rho}{2} L_h \|\theta_i - \theta^*\|^2 + \left(CL_h + 2L_f\right) \|\theta_i - \theta^*\|
\]
\[+ \frac{1}{2\rho} \|\lambda_i\|^2 - \|\lambda_{i+1}\|^2 + \alpha_i.
\] Summing the above inequality for \(i = 0\) to \(k\), we get
\[
\sum_{i=0}^{k} \left(f(x_i; \theta^*) - f^* \right) \leq \frac{\rho}{2} L_h \sum_{i=0}^{k} \|\theta_i - \theta^*\|^2 + \sum_{i=1}^{k} \alpha_i
\]
\[+ \left(CL_h + 2L_f\right) \sum_{i=0}^{k} \|\theta_i - \theta^*\| + \frac{1}{2\rho} \sum_{i=0}^{k} \left(\|\lambda_i\|^2 - \|\lambda_{i+1}\|^2\right)
\]
\[\leq \frac{\rho}{2} L_h \frac{\|\theta_i - \theta^*\|^2}{1 - q^2} + \left(CL_h + 2L_f\right) \frac{\|\theta_i - \theta^*\|}{1 - q} + \sum_{i=0}^{k} \alpha_i.
\] Since \(f(x; \theta)\) is convex in \(x\), dividing both sides of the above inequality by \(k\) gives the desired result.

IV. CONCLUSION

In this paper, we consider the setting of an optimization problem complicated by misspecification both in the function and in the constraints. The parameter misspecification may be resolved through a learning problem. Suppose we have access to a learning data set, collected a priori. One avenue for contending with such a problem is through an inherently sequential approach that solves the learning problem and utilizes this solution in subsequently solving the computational problem. Unfortunately, unless accurate solutions of the learning problem are available in a finite number of iterations, sequential approaches can only provide approximate solutions. Instead, we focus on a simultaneous approach that combines learning and computation by adopting inexact augmented Lagrangian (AL) scheme with constant penalty parameter. In this regard, we made the following contributions: (i) Derivation of the convergence rate for dual optimality, primal infeasibility and primal suboptimality; (ii) Quantification of the effect of learning on the rate.

Our future work lies in deriving the overall iteration complexity analysis, which incorporates the number of iterations required to solve the subproblems arising in the AL scheme and quantify the resulting impact of learning.

REFERENCES

[1] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, ser. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.
[2] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming, ser. MPS/SIAM Series on Optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2009, vol. 9, modeling and theory.
[3] H. Jiang and U. V. Shanbhag, “On the solution of stochastic optimization problems in imperfect information regimes,” in Winter Simulations Conference: Simulation Making Decisions in a Complex World,WSC, 2013, pp. 821–832.
[4] H. Jiang, U. V. Shanbhag, and S. P. Meyn, “Distributed computation of equilibria in misspecified convex stochastic Nash games,” Conditionally accepted in IEEE Transactions on Automatic Control, 2016.
[5] H. Ahmadi and U. V. Shanbhag, “Data-driven first-order methods for misspecified convex optimization problems: Global convergence and rate estimates,” in 53rd IEEE Conference on Decision and Control, CDC, 2014, pp. 4228–4233.
[6] ———, “On the resolution of misspecified convex optimization and monotone variational inequality problems,” http://arxiv.org/abs/1408.5532.
[7] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimization theory and applications, vol. 4, no. 5, pp. 303–320, 1969.
[8] M. Powell, Optimization. Academic Press, London/New York, 1969, ch. A method for nonlinear constraints in minimization problems, p. 283298.
[9] R. Rockafellar, “The multiplier method of Hestenes and Powell applied to convex programming,” Journal of Optimization Theory and Applications, vol. 12, no. 6, pp. 555–562, 1973.
[10] R. T. Rockafellar, “A dual approach to solving nonlinear programming problems by unconstrained optimization,” Mathematical Programming, vol. 5, no. 1, pp. 354–373, 1973.
[11] N. S. Aybat and G. Iyengar, “An augmented Lagrangian method for conic convex programming,” arXiv preprint arXiv:1302.6322, 2013.
[12] G. Lan and R. Monteiro, “Iteration-complexity of first-order augmented Lagrangian methods for convex programming,” Mathematical Programming, pp. 1–37, 2015.
[13] I. Necoara, A. Patrascu, and F. Glineur, “Complexity certifications of first order inexact lagrangian and penalty methods for conic convex programming,” http://arxiv.org/abs/1306.0532.
[14] H. Ahmadi, N. S. Aybat, and U. V. Shanbhag, “On the analysis of inexact augmented lagrangian schemes for misspecified conic convex programs,” http://arxiv.org/abs/1608.01879.
[15] G. Lee, H. Ahmadi, and N. Yen, Quadratic Programming and Affine Variational Inequalities: A Qualitative Study, ser. Nonconvex Optimization and Its Applications. Springer US, 2010.
[16] F. Facchinei and J. -S. Pang, Finite-dimensional variational inequalities and complementarity problems. Vol. 1, ser. Springer Series in Operations Research. New York: Springer-Verlag, 2003.
[17] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Springer-Verlag, New York, 2001.
[18] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer Science & Business Media, 2013, vol. 87.