Title
Oxygen targeting in preterm infants: a physiological interpretation.

Permalink
https://escholarship.org/uc/item/0jk504sn

Journal
Journal of perinatology: official journal of the California Perinatal Association, 35(1)

ISSN
0743-8346

Authors
Lakshminrusimha, S
Manja, V
Mathew, B
et al.

Publication Date
2015

DOI
10.1038/jp.2014.199

Peer reviewed
Oxygen Targeting in Preterm Infants: A Physiologic Interpretation

Satyan Lakshminrusimha, MD¹, Veena Manja, MD², Bobby Mathew, MRCP¹, and Gautham K. Suresh, MD, DM, MS³

¹Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Women and Children’s Hospital of Buffalo and University at Buffalo, Buffalo, NY

²Division of Cardiology, Department of Medicine, Veterans Affairs Medical Center, Buffalo, NY and University at Buffalo, Buffalo, NY

³Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Geisel School of Medicine, Hanover, NH

Oxygen therapy in preterm infants must balance the benefits of tissue oxygenation and growth with the risks of oxygen toxicity¹. Tissue oxygenation and oxygen toxicity depends ultimately on the amount of oxygen delivered to, and the amount extracted by the tissues. Oxygen delivery to the tissues depends on the cardiac output, the oxygen content (which in turn depends on the hemoglobin concentration, the oxygen saturation, and the partial pressure of dissolved oxygen), and on the position of the oxygen dissociation curve². Oxygen extraction is measured as the difference between arterial and venous oxygen content³. Pulse oximetry is now the most commonly used method of monitoring oxygenation. However, the range of optimal saturation by pulse oximetry (SpO₂) in preterm infants receiving supplemental oxygen has remained controversial⁴,⁵. To identify such a range, five large multicenter, masked, randomized control trials – SUPPORT (Surfactant, Positive Pressure and Pulse Oximetry Randomized Trial)⁶, COT (Canadian Oxygen Trial)⁷ and three BOOST II (Benefits of Oxygen Saturation Targeting) studies⁸⁹ were recently conducted that together enrolled nearly 5000 preterm infants less than 28 weeks postmenstrual age (PMA) at birth. These studies followed a predetermined design and compared low target SpO₂ (85–89%) versus high target SpO₃ (91–95%). The conclusions of these trials, especially those of SUPPORT and BOOST II, have been stated in simple terms as “maintaining an oxygen saturation target of 85 – 89% leads to a lower risk of retinopathy of prematurity (ROP) but a higher risk of mortality”. Because of the reported increased mortality with the lower target range, SUPPORT investigators have been thoroughly criticized by public advocacy agencies and subsequently defended by many neonatologists through expert opinions¹⁰,¹¹,¹²,¹³,¹⁴,¹⁵,¹⁶ and a public hearing¹⁷. These trials were very well planned, designed and executed. However, the methods and interventions used in these trials had physiologic, technical, and implementation concerns that raise questions about the
external validity and practical application of the findings. In this review we list these concerns and discuss how they weaken the conclusions of the studies, thereby leaving us with a persistent uncertainty regarding the ideal oxygen saturation target range and the best way to monitor oxygenation in preterm infants. We group our concerns into two categories:

A. Problems with the use of pulse oximetry in these studies.

B. Methodological issues.

A. PROBLEMS WITH THE USE OF PULSE OXIMETRY

Problems with using pulse oximetry to determine oxygenation status can arise from several sources:

- The technology used
- The location of probe placement
- The relationship between SpO\textsubscript{2} and arterial oxygen saturation (SaO\textsubscript{2})
- The relationship between SaO\textsubscript{2} and partial pressure of oxygen (PaO\textsubscript{2})

Pulse oximetry technology

Pulse oximeter reading is a transcutaneous, non-invasive estimate of SaO\textsubscript{2}. It is based on the principle that oxyhemoglobin and deoxyhemoglobin differentially absorb red and near-infrared light. The pulsatile component of red to infrared light modulation ratio is calculated. A microprocessor in pulse oximeters has an algorithm that uses this ratio to determine the percentage of hemoglobin bound to oxygen (SpO\textsubscript{2}) based on a calibration curve generated in healthy volunteers18.

Are pulse oximeters accurate in preterm infants?

Preterm infants have a high concentration (70–90\%) of fetal hemoglobin (HbF) at birth19. Fetal hemoglobin has a fairly similar absorbance pattern compared to that of adult hemoglobin (HbA) leading to similar functional SpO\textsubscript{2} measurements20, 21, 22. In 22 preterm infants, Rajadurai et al did not observe any significant impact of HbF on SpO\textsubscript{2} measurements23. Based on these observations, it appears that the SpO\textsubscript{2} values obtained by pulse oximetry in preterm neonates is similar to that in older children and adults.

How accurate is the Masimo pulse oximeter in neonates?

The product manual for Masimo Radical 7 pulse oximeter24, which uses signal extraction technology (SET)25 states that the algorithm’s accuracy in neonates was established in 79 samples from 16 neonates (NICU patients - 7 to 135 days old and weighing between 0.5 to 4.25kg). Testing was conducted over the SpO\textsubscript{2} range of 70–100\% with a resultant accuracy of 2.9\%. Johnston et al report that this variation equals ± 1SD26. So, if the displayed SpO\textsubscript{2} is 88\%, true SaO\textsubscript{2} may be in the 85–91\% range in 68\% of subjects26 (figure 1) and 82–94\% range in 95\% of the subjects4.
What was the error in the original algorithm in Masimo pulse oximeters?

Manufacturers of the pulse oximeter originally generated an algorithm curve referring to SpO\(_2\) in the high range\(^{26}\). In 2002, as SpO\(_2\) targets in preterm infants were trending lower, the manufacturers added a lower curve (corresponding to SpO\(_2\) in the 70s to 80s range – figure 2B). The lower curve was free of “upward adjustment”\(^{26}\). The effect of this dual curve was that the SpO\(_2\) values in the region of 87–90% (at the junction of the lower and higher algorithm curves, figure 2B) were shifted upwards.

The SUPPORT trial enrolled infants from February 2005 through February 2009 and used this original algorithm. The COT trial enrolled patients between December 2006 and August 2012. The BOOST-II trial enrolled infants from March 2006 until December 2010. During the BOOST-II trial, investigators in UK audited data from standard, unmodified Masimo SET pulse oximeters\(^{26}\). SpO\(_2\) data gathered from 176 oxygen dependent preterm infants between August 2006 and April 2009 undergoing standard care revealed a lower frequency of SpO\(_2\) readings in the 87–90% range than expected\(^{26}\). The Masimo Corporation after investigation ascribed the finding to the “dual curve” in the calibration algorithm used by the oximeter described above (figure 2B and the difference between the solid black line and hyphenated black line shown by an arrow in figure 3). This lead to an artificial elevation of SpO\(_2\) readings that was maximal at a displayed value of 90% and was around 1.6% higher (2% since only whole numbers are displayed – figure 3). Masimo Corporation supplied new software with a revised algorithm that relied on a calibration curve with a uniform slope (diagrammatically shown in figure 2B). This was installed in all trial oximeters in UK and Australia (New Zealand had completed enrollment) between December 2008 and May 2009 and in the COT trial between February and June 2009. Since pulse oximeters from this manufacturer were used in the SUPPORT trial, it is possible that this discrepancy existed (but was unrecognized). As seen in figure 3, the difference in SpO\(_2\) readings between the original algorithm and revised algorithm is minimal. The change in median SpO\(_2\) in COT and BOOST-II trials was ≤1% following revision of the algorithm (supplementary figure 1).

What was the impact of modification/revision of the pulse oximeter software algorithm?

Meta-analysis of mortality data from infants on pulse oximeters with revised software (death at discharge for BOOST II – UK and Australia and death before 18 months for COT trial) showed a relative risk of 1.41 (1.14–1.74), favoring the high SpO\(_2\) group\(^{27}\). The time spent at <85% SpO\(_2\) among patients on supplemental oxygen with revised algorithm was significantly higher in the low target group (21.5%) compared to the high target group (10.7%). From a physiologic perspective, severe hypoxemia can increase mortality. Therefore, for mortality to increase after revision of the algorithm, one would expect a significant increase in proportion of time spent with severe hypoxemia.

The proportion of time spent with SpO\(_2\)<85% decreased slightly in both BOOST-II (UK/ Australia) and COT trials following revision of the algorithm (supplementary figure 1) and should have had minimal effect on mortality. The revision of pulse oximeter algorithm did not significantly alter mortality at 18 months in the COT trial (from 17.4 to 16.8% in the lower target group and a decrease from 17.9 to 14.1% in the high target group)\(^{7}\). In sharp contrast, mortality before discharge significantly increased in the 85–89% SpO\(_2\) target group.
from 15.6 to 23.1% following revision of the algorithm in BOOST-II trial \(^9\) (supplemental figure 1). A recent editorial \(^5\) pointed out a puzzling reversal in the direction of the observed treatment effect on mortality at discharge in BOOST-II (UK) following installation of the revised algorithm (supplemental figure 2). This increased mortality cannot be explained solely on the basis of shift in displayed SpO\(_2\).

While the etiology of increased mortality in the low SpO\(_2\) target arm in BOOST-II is not clear, we offer the following speculations. It is possible that the pulse oximeter algorithm revision had a minimal effect on oxygenation. Intermittent hypoxemia probably had a bigger role in etiology of higher mortality at discharge \(^28\) in the low target arm \(^29\) (figure 2E). The time spent in <85% SpO\(_2\) in the low target group in BOOST-II trial was nearly twice the time spent in >95% SpO\(_2\) (24.2 vs. 12.5% respectively, supplemental figure 1). The time spent in <85% SpO\(_2\) in the low target group in COT trial was only slightly higher than the time spent >95% SpO\(_2\) (19.3 vs. 16.3% respectively, supplemental figure 1). This may be secondary to lack of a mandated/standardized low alarm setting in some of the BOOST-II protocols and a protocol-defined limit with monthly feedback to centers in COT \(^5\). Secondly, the overall incidence of death before discharge was higher in UK (21.8%) compared to Australia (16.05%) and New Zealand (13.23%) (Supplemental figure 3). There were more infants enrolled in UK after revision of the pulse oximeter algorithm compared to Australia and New Zealand (New Zealand completed its recruitment prior to algorithm revision). However, even within the BOOST-II Australian subjects, revision of the algorithm increased mortality (supplemental figure 2) and is difficult to explain. Finally, the impact of stopping the BOOST-II UK and Australian trials early on the validity of the results needs further evaluation \(^30, 31\).

Location of Probe Placement

Since pre-ductal oxygen content represents oxygen delivery to the brain, oxygen saturation targeting trials should ideally compare preductal oxygen saturations. However, the site of study pulse oximeter probe placement was not specified in these trials. Beyond the first few days of life, the ductus arteriosus is often closed in most patients and if open, oxygenated blood usually shunts from left to right. In these conditions, in theory, there should not be a significant difference between preductal (right upper extremity) and postductal (lower extremity) SpO\(_2\) values. We recently compared concurrent preductal and postductal SpO\(_2\) values in preterm infants, that were obtained using Masimo pulse oximeters, as part of critical congenital heart disease (CCHD) screening \(^32\) in the NICU. Based on their clinical status and on follow-up, none of these infants had critical congenital heart disease or an open ductus arteriosus. Among 96 preterm infants born at < 28 weeks gestation, the SpO\(_2\) recording before discharge (at 95 ± 26 days of postnatal age) was identical in the preductal and postductal extremity in forty two (44%) infants. In 36% of preterm infants, postductal SpO\(_2\) was higher than preductal SpO\(_2\) (range 1–4% higher). In 20% of infants, preductal SpO\(_2\) was higher than postductal SpO\(_2\) (range 1–3%) – (see supplemental figure 4). The difference between preductal and postductal SpO\(_2\) may be ≥3% in 10% of and ≥2% in 28% of preterm infants < 28 weeks PMA at birth even at the time of discharge. Therefore, it is possible that the lack of specification of the site of probe placement in these 5 trials may
have further contributed to variation in preductal PaO\textsubscript{2} at each displayed SpO\textsubscript{2} level (figure 1).

Relationship between SpO\textsubscript{2} and SaO\textsubscript{2}

The standard manufacturers’ claim of accuracy of detection of SaO\textsubscript{2} using the SpO\textsubscript{2} measured by pulse oximeters is ± 2–3% over the range of 70–100% SpO\textsubscript{2}. In addition, sensor misalignment, light interference, a functional error in the electrical circuitry in the sensor or emission spectra different from the specification may cause an error in estimation of oxygen saturation. Rosychuk et al reported that umbilical arterial SaO\textsubscript{2} was lower than postductal SpO\textsubscript{2} in preterm infants by −1.84 (95% CI −7.6 to 3.9%) in the same study postductal SpO\textsubscript{2} of 85–89% was associated with umbilical arterial SaO\textsubscript{2}<85% in 39% of samples (and <80% in 10% of samples). In our laboratory we have prospectively evaluated preductal SaO\textsubscript{2} values from 520 right carotid arterial and mixed venous blood gas samples (from a main pulmonary arterial catheter) in 58 preterm lambs (127–134 d gestation, term ~147 d) and compared them with concurrently obtained postductal SpO\textsubscript{2}. Preductal SpO\textsubscript{2} of 85–89% was associated with a right carotid arterial SaO\textsubscript{2}<85% in 16% of samples (and <80% in 2%). A significant increase in SaO\textsubscript{2} and mixed venous SvO\textsubscript{2} (both obtained from a Radiometer blood gas analyzer, Radiometer ABL825, Westlake OH) was observed with increasing SpO\textsubscript{2} but there is considerable divergence/discrepancy of these two values in some zones, especially at the extremes of oxygenation (supplementary figure 5 and table 1).

Relationship between Oxygen Saturation and PaO\textsubscript{2}

Oxygen toxicity and oxygen delivery to the tissues are determined by the local concentration of oxygen in the tissue which in turn depends on PaO\textsubscript{2}, hemoglobin concentration, oxygen content of the blood and blood flow (figure 1). While SpO\textsubscript{2} and SaO\textsubscript{2} are reasonable surrogate markers for PaO\textsubscript{2}, the relationship between SaO\textsubscript{2} and PaO\textsubscript{2} is asymptotic and SaO\textsubscript{2} is a poor estimator at high values of PaO\textsubscript{2}. Right carotid arterial and simultaneous mixed venous (pulmonary arterial) PO\textsubscript{2} values from preterm lambs is shown in supplementary figure 6. The arterial values and variability observed in the preterm animal model is similar to that described in preterm neonates. Studies in neonates have shown that monitoring transcutaneous PO\textsubscript{2} results in less time spent with high oxygen tension, low oxygen tension and less variability in oxygen tension compared to SpO\textsubscript{2} monitoring. A given displayed SpO\textsubscript{2} value may be associated with a wide range of PaO\textsubscript{2}, oxygen content, oxygen delivery and extraction (figure 1). In addition, the type of hemoglobin (adult – HbA vs. fetal –HbF) alters the relationship between SaO\textsubscript{2} and PaO\textsubscript{2} (see below). Therefore, even though trials have targeted different ranges of SpO\textsubscript{2} in the two groups, there may have been considerable overlap in the true PaO\textsubscript{2} to which these groups were exposed.

What is the effect of transfusions on PaO\textsubscript{2} – SpO\textsubscript{2} relationship in preterm infants?

Emond et al have demonstrated that extremely preterm infants (26.4 ± 1.4 weeks PMA at birth) have a high concentration of HbF (70–90%) and cord blood has a P50 (partial pressure of oxygen at which blood saturation is 50%) of 18.3 ± 1.9 mmHg. The P90 of cord blood (PO\textsubscript{2} at 90% oxygen saturation) was 40.8 ± 3.6 mmHg. Following transfusion of packed red blood cells (PRBC - mean volume – 26.9 ml/kg), HbF decreased from 92.9 ± 1.1% to 42.6 ± 5.7% during the first week of postnatal life in extremely preterm infants. This decrease was
associated with an increase in P50 from 18.5 ± 0.8 to 21 ± 1 mmHg38. In preterm infants with BPD at 42.2 ± 4.7 weeks PMA, P50 was 25.1 ± 2.7 mmHg (similar to an adult value of 26–27 mmHg)39. Hence transfusions significantly increase the percentage of adult hemoglobin in the blood. A PaO\textsubscript{2} range of 50–75 mmHg is associated with SpO\textsubscript{2} of 96–97% with HbF and only 85–94% with HbA\textsubscript{2}. Presence of HbA markedly increases PaO\textsubscript{2} required to achieve the same SpO\textsubscript{2} and alters the balance between oxygen content/delivery and oxygen toxicity (figure 1 – case D)38. Therefore, in these 5 trials, PRBC transfusions may have altered oxygen tension and content for a specific SpO\textsubscript{2} range and further contributed to the variability in the SpO\textsubscript{2}-PaO\textsubscript{2} relationship.

Why do the mortality curves of the lower SpO\textsubscript{2} target and high target groups separate after the first couple of weeks of postnatal age?

With increasing postnatal age, the cumulative total volume of transfused PRBC to preterm infants increases resulting in a high percentage of HbA in the blood2, 38. An interesting observation in all the trials is that the difference in mortality between low target SpO\textsubscript{2} group and high target group appears after a few weeks of postnatal age6, 7, 9. This phenomenon can be explained by a unique, paradoxical relationship between oxygen delivery, arterial PO\textsubscript{2} and fetal hemoglobin41. It is often assumed that oxygen delivery is decreased in the presence of HbF because of its increased affinity to oxygen. It is true that when PaO\textsubscript{2} is maintained at a high value, better oxygen delivery would exist if the oxygen dissociation curve is shifted to the right with adult hemoglobin. However, a leftward shift in the hemoglobin-oxygen dissociation curve resulting from high levels of HbF may better maintain oxygen delivery during episodes of severe hypoxemia41. Wimberley et al calculated that during hypoxemia, the infant would achieve better oxygen delivery with fetal oxygen dissociation curve than with an adult curve42. In a subgroup of SUPPORT patients, such episodes of intermittent hypoxemia (SpO\textsubscript{2} ≤ 80%) increased in both groups over the first 3 weeks of life followed by a decrease in the high target group compared with a plateau in the low target group28. In addition, as pointed out by Vento, it may take some time before the consequences of intermittent hypoxemia are translated into clinical vulnerability1. The reduced frequency of intermittent hypoxemic episodes and relatively better oxygen delivery due to high fetal hemoglobin levels and lag in manifesting clinical consequences of hypoxemia may explain lack of difference in mortality between the two groups during early postnatal period.

Is there a significant difference in oxygenation between 85–89% and 91–95% SpO\textsubscript{2} target range?

Table 1 shows the difference in various parameters of oxygenation in preterm lambs at ≤84%, 85–89%, 91–95% and ≥96% SpO\textsubscript{2}. There is a statistically significant increase in PaO\textsubscript{2} and mixed venous PO\textsubscript{2} with increasing SpO\textsubscript{2}. There was no significant difference in arterial oxygen content or oxygen extraction ratio (OER = arterial oxygen content – venous oxygen content as a percentage of arterial oxygen content) between 85–89% and 91–95% SpO\textsubscript{2} groups. However, arterial oxygen content significantly decreased and oxygen extraction significantly increased when SpO\textsubscript{2} decreased below 85% (table 1). Pulmonary vascular resistance (PVR) is similar between 91–95% and 96–100% SpO\textsubscript{2} range. There is a significant increase in PVR in the ≤84% and 85–89% groups (table 1 and supplementary figure 7). These results indicate a significant difference in oxygen delivery, extraction and
PVR especially during episodes of desaturation below 85%. Such intermittent hypoxemic episodes were observed more frequently in the low SpO\textsubscript{2} target group in the SUPPORT trial28 and time spent <85% was significantly higher in the low SpO\textsubscript{2} target group in the COT and BOOST-II trials (supplementary figure 1). We speculate that during periods of SpO\textsubscript{2} below 85%, preterm infants may have suboptimal oxygen delivery to the tissues increasing the risk of pulmonary hypertension and necrotizing enterocolitis (NEC). This may explain some of the findings of the trials and the metanalysis27.

B. METHODOLOGICAL ISSUES

How were pulse oximeters altered to mask the target SpO\textsubscript{2} range?

To maintain masking, electronically altered pulse oximeters were used that showed saturation levels of 88 to 92% for both targets of oxygen saturation with a maximum variation of 3%. For example, a displayed reading of 90% corresponded to true level of 87% in the group assigned to lower oxygen saturation (85–89%) and 93% in the group assigned to the higher saturation (90–95%). The oxygen saturation reading changed and reverted to actual values when it was less than 84% or higher than 96% in both groups (figure 3). Similar masking was successful in the first BOOST trial43.

What was the impact of masking algorithm on titration of oxygen therapy?

Schmidt et al reported an interesting observation related to rapidity of change in displayed SpO\textsubscript{2} values secondary to masking44 and is shown in figure 3 (modified from figure 1 in reference44 and BOOST-II UK protocol). The masking algorithm achieved a 3% increase (in the low SpO\textsubscript{2} target arm) and a 3% decrease (in the high SpO\textsubscript{2} target arm) in displayed values. The displayed values returned to true values atSpO\textsubscript{2} ≤84% and ≥96% (figure 3). Above 84%, the displayed values began to deviate from true values. Oximeters designed for the lower SpO\textsubscript{2} target rapidly established a +3% display offset as the true SpO\textsubscript{2} increased from 84 to 85%, then maintained this offset until a true SpO\textsubscript{2} of 93%, equivalent to a displayed SpO\textsubscript{2} of 96%. The displayed SpO\textsubscript{2} remained constant at 96% between true SpO\textsubscript{2} values of 93% and 96% as the +3% offset was reversed. When the true saturation decreased from 85% to 84% (1% drop), the displayed SpO\textsubscript{2} decreased from 88% to 84% triggering the lower limit alarm in the process (figure 3 – zone of instability). Caregivers had a tendency to maintain saturations above this zone of instability by potentially increasing inspired oxygen. The opposite phenomenon occurred in oximeters designed for the higher target group. When true saturations increased from 95 to 96%, displayed SpO\textsubscript{2} jumped from 92 to 96% triggering the higher limit alarm in the higher target group (zone of instability). This may have led to a tendency to decrease inspired oxygen in the higher target group44. This differential management reduced the separation between the median true SpO\textsubscript{2} between the two groups (figures 3 and 2). A similar phenomenon has possibly occurred in BOOST-II and SUPPORT trials as well. The net effect is a reduced separation and SpO\textsubscript{2} overlap between the two arms (figure 2).
What is the impact of true separation in SpO\textsubscript{2} obtained between the two groups and morbidity and mortality?

As mentioned previously, the meta-analysis of these trials demonstrated increased mortality at discharge, decreased severe ROP and increased necrotizing enterocolitis (NEC) in the low target SpO\textsubscript{2} (85–89\%) group compared to the high SpO\textsubscript{2} group (91–95\%)27. Although a 6\% separation in SpO\textsubscript{2} (85–89 vs. 91–95\%) was intended between the restricted and liberal oxygen groups while on supplemental oxygen, only 1.54 to 2.67\% separation in median SpO\textsubscript{2} was achieved between the groups in these studies44. It is interesting and concerning that in spite of poor separation between the two groups, the metaanalysis showed differences in mortality, ROP and NEC. If better separation were achieved between the groups, would the mortality and incidence of NEC be higher in the 85–89\% target SpO\textsubscript{2} group?

Figure 4 is redrawn superimposing the saturation distributions in the intervention and control groups from SUPPORT, COT and BOOST-II trials to illustrate the true difference in saturations. It is difficult to demonstrate a “dose effect” on mortality, NEC or severe ROP based on SpO\textsubscript{2} achieved while on supplemental oxygen. COT trial achieved better separation between the 2 groups and even here, the majority of infants in the low saturation target group had a median oxygen saturation ~ 90\% both in the first 3 days of life and thereafter. The BOOST II separation graphs with the original and the revised algorithm reveal improved separation with the revised algorithm. Tighter compliance, mandated lower displayed SpO\textsubscript{2} alarm limits and wider separation likely reduced exposure to extreme SpO\textsubscript{2} levels more effectively in COT (supplementary figure 1).

The investigators of COT performed a post hoc subgroup analysis on the effects of targeting higher versus lower SpO\textsubscript{2}, looking at the difference between centers with more or less separation between median SpO\textsubscript{2} and outcomes(presented as an abstract at Pediatric Academic Societies 2014 - abstract # 1400.5 on http://www.pas-meeting.org/abstracts/default.asp). They found that the overall separation was 2.5\% and that paradoxically, the centers with greater separation observed lower rather than higher rates of death and disability at 18 months in the 85–89\% group (50\% with more separation and 54\% with less separation) than the 91–95\% group (55\% with more separation and 44\% with less separation), consistent with their previous finding of no significant harm with the lower SpO\textsubscript{2} target. There was no significant difference in death before 18 months with more separation in SpO\textsubscript{2} between the two arms (17\% with more separation and 16\% with less separation in 85–89\% arm and 18\% with more separation and 12\% with less separation in 91–95\% arm). Therefore, better separation between the lower and higher target groups may not increase the difference in mortality between the two groups.

What is the impact of intermittent hypoxemia or hyperoxemia?

Di Fiore et al analyzed data derived from the SUPPORT trial and demonstrated that the lower SpO\textsubscript{2} target range was associated with increased incidence of intermittent hypoxemia28. This may be another factor that may alter the risk of poor outcomes in the low oxygenation group if saturation targets were not strictly applied which may represent the reality in many busy neonatal units. Similarly, in the COT trial there was a significant difference in time spent <85\% and >95\% in both groups 7 (supplementary figure 1).
Decrease in SpO₂ below 85% increases PVR (supplementary figure 7) and reduces oxygen delivery to tissues and increases oxygen extraction (table 1). Obtaining data on time spent <85% and >95% in individual patients and linking that to outcome may enhance our understanding of differences in outcomes between the two groups.

Conclusion

Although these trials had a similar design, there is variation between the trials in the separation of oxygen saturation achieved between the 2 arms, and the variable influence of the software algorithm modification in the trials. It is difficult to explain the findings of these five studies using physiological principles of gas exchange and oxygen transport. Multiple factors outlined in this article influence the results of these studies. As pointed out by Bateman and Polin, it is not clear to what extent individuals who experienced death or ROP actually received the intended intervention. It is possible that individual patients who suffered severe ROP or NEC/death spent more time with SpO₂ above or below the intended range or had multiple episodes of brief hyperoxemia or hypoxemia. Better methods of assessing oxygenation, such as simultaneous SpO₂ and tissue oxygen saturation by near-infra red spectroscopy (NIRS) or transcutaneous oxygen tension monitoring may be necessary but are not practical for continuous monitoring. Automated closed-loop control of inspired oxygen based on SpO₂ may enable clinicians to effectively maintain oxygen saturations in the target range. Sola et al, in a recent elegant review have suggested using a wider intermediate target sch as 88 to 94% to avoid extremes of hypoxemia and hyperoxemia. The BOOST II trial (UK and Australia) follow-up results and the planned individual patient-data level metaanalysis of these studies will hopefully shed light on these associations and help us provide the best care for our tiny and most vulnerable patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding: 5 R01 HD072929 – Optimal oxygenation in neonatal lung injury (SL)

References

1. Vento M. Oxygen supplementation in the neonatal period: changing the paradigm. Neonatology. 2014; 105(4):323–331. [PubMed: 24931324]
2. De Halleux V, Truttmann A, Gagnon C, Bard H. The effect of blood transfusion on the hemoglobin oxygen dissociation curve of very early preterm infants during the first week of life. Seminars in perinatology. 2002; 26(6):411–415. [PubMed: 12537312]
3. Weindling M, Paize F. Peripheral haemodynamics in newborns: best practice guidelines. Early Hum Dev. 2011; 86(3):159–165. [PubMed: 20219297]
4. Sola A, Golombek S, Bueno MT, Lemas-Varela L, Zuluaga C, Dominguez F, et al. Safe oxygen saturation targeting and monitoring in preterm infants. Can we avoid hypoxia and hyperoxia? Acta paediatrica. 2014
5. Schmidt B, Whyte RK, Roberts RS. Trade-Off between Lower or Higher Oxygen Saturations for Extremely Preterm Infants: The First Benefits of Oxygen Saturation Targeting (BOOST) II Trial Reports Its Primary Outcome. The Journal of pediatrics. 2014; 165(1):6–8. [PubMed: 24726542]
6. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, et al. Target ranges of oxygen saturation in extremely preterm infants. The New England journal of medicine. 2010; 362(21):1959–1969. [PubMed: 20472937]

7. Schmidt B, Whyte RK, Asztalos EV, Muddemann D, Poets C, Rabi Y, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA : the journal of the American Medical Association. 2013; 309(20):2111–2120. [PubMed: 23649955]

8. Darlow BA, Marschner SL, Donoghoe M, Batten MR, Broadbent RS, Elder MJ, et al. Randomized Controlled Trial of Oxygen Saturation Targets in Very Preterm Infants: Two Year Outcomes. The Journal of pediatrics. 2014

9. Stenson BJ, Tarnow-Mordi WO, Darlow BA, et al. Group BIUKC, Group BIAC, Group BINZC. Oxygen saturation and outcomes in preterm infants. The New England journal of medicine. 2013; 368(22):2094–2104. [PubMed: 23642047]

10. Drazen JM, Solomon CG, Greene MF. Informed consent and SUPPORT. The New England journal of medicine. 2013; 368(20):1929–1931. [PubMed: 23593944]

11. Fanaroff JM. Ethical support for surfactant, positive pressure, and oxygenation randomized trial (SUPPORT). The Journal of pediatrics. 2013; 163(5):1498–1499. [PubMed: 23885636]

12. Lantos JD. SUPPORTing premature infants. Pediatrics. 2013; 132(6):e1661–1663. [PubMed: 24218459]

13. Wright CJ, Saugstad OD. OHRP and SUPPORT: lessons in balancing safety and improving the way we care for patients. The Journal of pediatrics. 2013; 163(5):1495–1497. [PubMed: 24050739]

14. Pharoah PD. The US Office for Human Research Protections’ judgment of the SUPPORT trial seems entirely reasonable. Bmj. 2013; 347:f4637. [PubMed: 23881993]

15. Thornton H. The US Office for Human Research Protections’ intervention in the SUPPORT trial was indeed ill conceived. Bmj. 2013; 347:f4639. [PubMed: 23881994]

16. Modi N. Ethical pitfalls in neonatal comparative effectiveness trials. Neonatology. 2014; 105(4):350–351. [PubMed: 24931328]

17. Public meeting HHS. gov: Matters related to protection of human subjects and research considering standard of care interventions; Wednesday, August 28, 2013; 2013. [cited 2014 July 30]Available from: http://www.hhs.gov/ohrp/newsroom/rfc/Public%20Meeting%20August%2028,%202013/supportmeetingtranscriptfinal.html

18. Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respiratory medicine. 2013; 107(6):789–799. [PubMed: 23490227]

19. Emond D, Lachance C, Gagnon J, Bard H. Arterial partial pressure of oxygen required to achieve 90% saturation of hemoglobin in very low birth weight newborns. Pediatrics. 1993; 91(3):602–604. [PubMed: 8441566]

20. Harris AP, Sendak MJ, Donham RT, Thomas M, Duncan D. Absorption characteristics of human fetal hemoglobin at wavelengths used in pulse oximetry. Journal of clinical monitoring. 1988; 4 (3):175–177. [PubMed: 2463343]

21. Pologe JA, Raley DM. Effects of fetal hemoglobin on pulse oximetry. Journal of perinatology : official journal of the California Perinatal Association. 1987; 7(4):324–326. [PubMed: 2463347]

22. Arikan GM, Haeusler MC, Haas J, Scholz H. Does the hemoglobin concentration in fetal blood interfere with the accuracy of fetal reflection pulse oximetry? Fetal diagnosis and therapy. 1998; 13 (4):236–240. [PubMed: 9784645]

23. Rajadurai VS, Walker AM, Yu VY, Oates A. Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants. Journal of paediatrics and child health. 1992; 28(1):43–46. [PubMed: 1372809]

24. Masimo. Radical 7 Signal Extraction Pulse CO-OXimeter with rainbow technology - Operator’s manual. 2010.

25. Hay WW Jr, Rodden DJ, Collins SM, Melara DL, Hale KA, Fashaw LM. Reliability of conventional and new pulse oximetry in neonatal patients. Journal of perinatology : official journal of the California Perinatal Association. 2002; 22(5):360–366. [PubMed: 12082469]
26. Johnston ED, Boyle B, Juszczak E, King A, Brocklehurst P, Stenson BJ. Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter. Archives of disease in childhood Fetal and neonatal edition. 2011; 96(6):F429–433. [PubMed: 21378398]

27. Saugstad OD, Aune D. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology. 2014; 105(1):55–63. [PubMed: 24247112]

28. Di Fiore JM, Walsh M, Wrage L, Rich W, Finer N, Carlo WA, et al. Low oxygen saturation target range is associated with increased incidence of intermittent hypoxemia. The Journal of pediatrics. 2012; 161(6):1047–1052. [PubMed: 22738947]

29. Bateman D, Polin RA. A lower oxygen-saturation target decreases retinopathy of prematurity but increases mortality in premature infants. The Journal of pediatrics. 2013; 163(5):1528–1529. [PubMed: 24160661]

30. Guyatt GH, Briel M, Glasziou P, Bassler D, Montori VM. Problems of stopping trials early. Bmj. 2012; 344:e3863. [PubMed: 22705814]

31. Bassler D, Briel M, Montori VM, Lane M, Glasziou P, Zhou Q, et al. Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis. JAMA : the journal of the American Medical Association. 2010; 303(12):1180–1187. [PubMed: 20332404]

32. Manja V, Mathew B, Carrion V, Lakshminrusimha S. Critical congenital heart disease screening by pulse oximetry in a neonatal intensive care unit. Journal of perinatology : official journal of the California Perinatal Association. 2014

33. Milner QJ, Mathews GR. An assessment of the accuracy of pulse oximeters. Anaesthesia. 2012; 67(4):396–401. [PubMed: 22324874]

34. O’Reilly M. Masimo signal extraction technology pulse oximetry. Concerning the article by R. J. Rosychuk et al : Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants [Neonatology 2012;101:14–19]. Neonatology. 2012; 101(4):239–240. author reply 240. [PubMed: 22156712]

35. Rosychuk RJ, Hudson-Mason A, Eklund D, Lacaze-Masmonteil T. Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants. Neonatology. 2012; 101(1):14–19. [PubMed: 21791935]

36. Quine D, Stenson BJ. Arterial oxygen tension (Pao2) values in infants <29 weeks of gestation at currently targeted saturations. Archives of disease in childhood Fetal and neonatal edition. 2009; 94 (1):F51–53. [PubMed: 18285372]

37. Quine D, Stenson BJ. Does the monitoring method influence stability of oxygenation in preterm infants? A randomised crossover study of saturation versus transcutaneous monitoring. Archives of disease in childhood Fetal and neonatal edition. 2008; 93(5):F347–350. [PubMed: 18285374]

38. De Halleux V, Gagnon C, Bard H. Decreasing oxygen saturation in very early preterm newborn infants after transfusion. Archives of disease in childhood Fetal and neonatal edition. 2003; 88(2):F163. [PubMed: 12598516]

39. Furfaro S, Prosmannie J, Bard H. Hemoglobin oxygen dissociation (P50) in bronchopulmonary dysplasia. Biology of the neonate. 1990; 57(2):72–76. [PubMed: 1690029]

40. Shiao SY. Effects of fetal hemoglobin on accurate measurements of oxygen saturation in neonates. The Journal of perinatal & neonatal nursing. 2005; 19(4):348–361. [PubMed: 16292136]

41. Polin, RA.; Fox, WW.; Abman, SH. Fetal and Neonatal Physiology: Expert Consult - Online and Print. 4. Vol. 2. Elsevier Limited; Oxford: 2011.

42. Wimberley PD. Fetal hemoglobin, 2, 3-diphosphoglycerate and oxygen transport in the newborn premature infant. Scandinavian journal of clinical and laboratory investigation Supplementum. 1982; 160:1–149. [PubMed: 6182604]

43. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. The New England journal of medicine. 2003; 349(10):959–967. [PubMed: 12954744]

44. Schmidt B, Roberts RS, Whyte RK, Asztalos EV, Poets C, Rabi Y, et al. Impact of Study Oximeter Masking Algorithm on Titration of Oxygen Therapy in the Canadian Oxygen Trial. The Journal of pediatrics. 2014
45. Alderliesten T, Lemmers PM, Smarius JJ, van de Vosse RE, Baerts W, van Bel F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop periventricular hemorrhage. The Journal of Pediatrics. 2013; 162(4):698–704. e692. [PubMed: 23140883]

46. Claure N, Bancalari E. Automated closed loop control of inspired oxygen concentration. Respiratory care. 2013; 58(1):151–161. [PubMed: 23271825]
Key messages

1. Randomized controlled trials evaluating low target oxygen saturation (SpO₂: 85–89%) versus high target SpO₂ (91–95%) have shown variable results regarding mortality and morbidity in extremely preterm infants.

2. Because of the variation inherent to the accuracy of pulse oximeters, the unspecified location of probe placement, the intrinsic relationship between SpO₂ and SaO₂ and between SaO₂ and PaO₂ (differences in oxygen dissociation curves for fetal and adult hemoglobin), the two comparison groups could have been more similar than dissimilar.

3. The SpO₂ values were in the target range for a shorter period of time than intended due to practical and methodological constraints. So the studies did not truly compare “target SpO₂ ranges”.

4. In spite of this overlap, some of the studies did find significant differences in mortality prior to discharge, necrotizing enterocolitis and severe retinopathy of prematurity. These differences could potentially be secondary to time spent beyond the target range (SpO₂<85% or >95%) and could be avoided with an intermediate but wider target SpO₂ range (87–93%).

5. In conclusion, significant uncertainty persists about the desired target range of SpO₂ in extremely preterm infants. Further studies should focus on studying newer methods of assessing oxygenation and strategies to limit hypoxemia (<85% SpO₂) and hyperoxemia (>95% SpO₂).
Figure 1. Variables that influence oxygen delivery (based on arterial oxygen content) and oxygen toxicity (based on PaO₂)

This figure illustrates the variation in the arterial oxygen content based on variation in the factors that contribute to it. Each row represents an infant with a specific combination of variables. The oxygen content can vary two fold with a 5% difference in displayed SpO₂ on the pulse oximeter, and an infant with a lower SpO₂ (88%) can actually have a higher oxygen content than one with a higher SpO₂ (93%).

Infant A has a preductal SpO₂ of 88% which can correspond to a SaO₂ range of 85 to 91% in approximately two-thirds of subjects (± 3% variation with pulse oximeters). If the corresponding preductal SaO₂ is assumed to be 92%, and she has never received a transfusion, her hemoglobin F (HbF) concentration is > 90%², 38. The corresponding preductal PaO₂ is 36 mmHg. If this infant has a hemoglobin (Hb) concentration of 8g/dL, her arterial oxygen content will be approximately 9.5 mL/dL.

Infant B has a postductal SpO₂ of 88% which can correspond to a SaO₂ range of 85 to 91% in approximately two-thirds of subjects. If postductal SaO₂ is assumed to be 90%, the corresponding preductal SaO₂ may be 92%. If this baby had received two transfusions, her hemoglobin F (HbF) concentration is approximately 50%², 38 and the corresponding preductal PaO₂ is 52 mmHg. If this infant has a Hb concentration of 13g/dL, her arterial oxygen content will be approximately 16.4 mL/dL.

Displayed SpO₂	Site of the probe (pre- vs. postductal)	Corresponding SaO₂ (+/- 3%)	Corresponding preductal SaO₂ (+/- 2 cl. postductal)	Transfusion status (% HbF and P50)	Preductal PaO₂ (mmHg)	Hemoglobin (g/dL)	Arterial oxygen content (mL/dL)
88%		86%		Never transfused HbF - 90% P50 - 18mmHg	36	8	9.5
88%		90%	Transfused (HbF - 50% P50 - 22mmHg)	52	13	16.4	
93%		91%	Never transfused (HbF - 90% P50 - 18mmHg)	43	9	11.3	
93%		95%	Multiple transfusions (HbF - 10% P50 - 27mmHg)	95	14	18.8	
Infant C, who has never been transfused with blood and with a preductal pulse oximeter probe with a displayed SpO\(_2\) of 93\% and a PaO\(_2\) of 43 mmHg and at significantly reduced risk of oxygen toxicity compared to infant B in spite of a higher displayed SpO\(_2\).

Infant D has the same displayed SpO\(_2\) as infant C (93\%). However, his pulse oximeter is located on his left foot (postductal) and he has received blood transfusions. His PaO\(_2\) is considerably higher (95mmHg) compared to infant C (43mmHg) putting him at risk for oxygen toxicity. A higher hemoglobin concentration results in higher arterial oxygen content.
Figure 2.
Infographic showing an overview of reasons for decreased separation between the low and high target SpO\textsubscript{2} arms in SUPPORT, BOOST-II and COT trials. The intended separation between the two groups during periods of oxygen supplementation was 6% (A). The original Masimo algorithm had a steeper slope in the infrared to red light modulation ratio curve corresponding to 87–90% SpO\textsubscript{2} resulting in a maximal increase in 2% point increase in displayed SpO\textsubscript{2} around this range (B). The effect of location of the probe (pредустватель vs. postducltal and gradual increase in hemoglobin A with transfusions might have altered the relationship between SpO\textsubscript{2} and PaO\textsubscript{2} in the retinal (and intestinal) circulation (C). Instability secondary to masking possibly led to a tendency to increase FiO\textsubscript{2} in the low target group and decrease FiO\textsubscript{2} in the low target group when displayed SpO\textsubscript{2} was in the unstable zone (D – see figure 3). The end result was a lower than intended separation between the two SpO\textsubscript{2} target zones (E).
Figure 3. Effect of pulse oximeter algorithm and masking on SpO\textsubscript{2} target range

This graph shows SpO\textsubscript{2} based on the revised algorithm on the X-axis ("true" saturation) and displayed SpO\textsubscript{2} values on the Y-axis. The dark black line with closed diamonds approximately correlates to increased SpO\textsubscript{2} values in the 87–90% range in the original algorithm (i.e., SpO\textsubscript{2} of 90% would be advanced by 1.6% to read as 91.6 or rounded to 92%). The yellow horizontal bar represents the SpO\textsubscript{2} range recommended by the protocol for bedside providers during the study period. The blue open circles represent the display from pulse oximeter units modified to the low SpO\textsubscript{2} arm (85–89%) using the original algorithm. The blue vertical lines show that the "true" target in these infants was approximately 85 to 88% based on the revised algorithm. The red open triangles represent the display from the pulse oximeter units modified to the high SpO\textsubscript{2} arm (91–95%) using the original algorithm. The red vertical lines shows that the "true" target in these infants was approximately 89 to 94% on the revised algorithm reducing the separation between the low and high SpO\textsubscript{2} arms. The purple and crimson crosses represent the display from pulse oximeter units modified to low and high SpO\textsubscript{2} arms respectively based on the revised algorithm. The display of 88–92% to the bedside providers using the revised algorithm corresponded to 85–89% in the low arm and 91–95% in the high arm (blue and pink bars along the X-axis). The instability in displayed SpO\textsubscript{2} between 84–88% on the Y-axis in the low SpO\textsubscript{2} target group possibly led to a tendency to increase FiO\textsubscript{2}. Similarly, the instability of displayed SpO\textsubscript{2} between 92 and 96% in the high SpO\textsubscript{2} target group might have led to a tendency to decrease FiO\textsubscript{2}. The net effect of the algorithm change and the effect of masking was decreased separation between the two groups (see text for details; modified from BOOST II protocol and reference 44).
Figure 4.
Distribution of actual median oxygen saturation in the low SpO$_2$ (85–89%) and high SpO$_2$ (91–95%) arms in SUPPORT (green), COT (dotted red) and BOOST-II (revised algorithm – solid blue and original algorithm – hyphenated blue) studies: Mortality numbers currently available are shown as % (note that 18–22 month mortality numbers are currently not available for BOOST-II UK and Australia trials and reflect mortality at discharge). Currently available numbers for the incidence of severe ROP and NEC are shown. Since SUPPORT and original algorithm BOOST-II data are reported using the original algorithm, corresponding SpO$_2$ numbers on the revised algorithm are shown in grey color. A saturation of 90% in the original algorithm corresponds to a saturation of 88% on the revised algorithm.
Table 1

Values of variables related to oxygenation status at different ranges of oxygen saturation in preterm lambs

SpO₂ range (%)	60–84	85–89	91–95	96–99
N (samples)	96	89	117	218
Hemoglobin (g/dL)				
	12.7 ± 1.3	12.4 ± 1.4	12.7± 0.9	12.5 ± 1
PₐO₂ (mmHg)	49 ± 56†*	50 ± 10†*	85 ± 76¶*	123 ± 105¶†
Preductal SpO₂ (%)	74 ± 8¶†*	87 ± 1¶*	92 ± 2¶*	98 ± 1.5¶†
SaO₂ (%)	75 ± 19¶†*	87 ± 6¶*	92 ± 4¶	94 ± 4¶
Pulmonary Art SO₂ (%)	64 ± 17¶†*	79 ± 8¶*	83 ± 6¶	85 ± 6¶
PVR	1 ± 0.6¶†*	0.8 ± 0.4¶*	0.5 ± 0.2¶	0.5 ± 0.2¶
Qp (ml/kg/min)	63 ± 31¶†*	67 ± 39*	78 ± 22	82 ± 22¶
PpaO₂ (mmHg)	25 ± 2	28 ± 3	33 ± 5	36 ± 7
CaO₂ (mL/dL)	12.9 ± 3.3¶†*	14.8 ± 2.2*	15 ± 2.6*	16.3 ± 2.1¶†
OER (%)	12.8 ± 10.7¶†*	11.5 ± 7.1	9.6 ± 7	8.8 ± 5.4

Data are shown as mean ± SD; derived from 520 simultaneous right carotid arterial and mixed venous (pulmonary arterial) blood gases.

PaO₂ – partial pressure of oxygen in the arterial blood

PVR – pulmonary vascular resistance

Qp – Left pulmonary arterial blood flow per kg body weight

PpaO₂ – Mixed venous/main pulmonary arterial partial pressure of oxygen

CaO₂ – arterial oxygen content in mL/dL

OER – oxygen extraction ratio = (arterial oxygen content – venous oxygen content) × 100/arterial oxygen content

* p < 0.01 compared to 96–100%

† p < 0.01 compared to 91–95%

¶ p < 0.01 compared to 85–89%

J Perinatol. Author manuscript; available in PMC 2015 July 01.