A NOTE ON AUSLANDER-REITEN QUIVER METHODS FOR ENDO-TRIVIAL MODULES

CAROLINE LASSUEUR

Abstract. The aim of the present note is to use Auslander-Reiten quiver techniques, on the one hand to describe the structure of the group of endo-trivial modules for classes of groups with Klein-four Sylow subgroups, and on the other hand to discard the existence of simple endo-trivial modules for alternating groups, symmetric groups and groups of Lie type in their defining characteristic, providing us with alternative proofs of results obtained in [LMS13].

1. Introduction

In [Bes91, Thm. 2.6] C. Bessenrodt determined the position of endo-trivial modules in the stable Auslander-Reiten quiver $\Gamma_s(kG)$ of a finite group G. However, her result has scarcely been exploited in the classification problem of endo-trivial modules, apart in [Kaw93, CMT11b] to treat groups with semi-dihedral Sylow 2-subgroups, and more recently in [LMS13] where it is used to determine the position of simple endo-trivial modules on the Brauer tree.

The aim of the present note is to describe further applications of Bessenrodt’s result [Bes91, Thm. 2.6]. Firstly, in Section 3, we investigate the structure of the group of endo-trivial modules $T(G)$ for groups G with Klein-four Sylow 2-subgroup. In this case it is clear that the torsion free rank of $T(G)$ is one (see e.g. [Car12]), yet the structure of the torsion subgroup $TT(G)$ of $T(G)$ has not been determined.

Secondly, motivated by a recent result of Robinson [Rob11] asserting that simple endo-trivial modules in p-rank > 1 are either induced from a strongly p-embedded subgroup or are endo-trivial simple for a quasi-simple normal subgroup, in [LMS13] we started a classification of simple endo-trivial modules for quasi-simple groups. The methods used are mainly character-theoretic or use the intrinsic combinatorics of the groups considered, but do not try to use the structure of the group $T(G)$ when it is known. For alternating groups, symmetric groups and groups of Lie type in their defining characteristic, combining Auslander-Reiten quiver methods with known results on the structure of $T(G)$, in Section 4, we obtain a unified criterion to discard the existence of simple endo-trivial modules. This provides us with links between results obtained in [LMS13] and previous work on endo-trivial modules in [CMN06, CMN09, CHM10].

2. Preliminaries

Throughout, unless otherwise specified, we let p denote a prime number, G a finite group such that p divides $|G|$, $k = \overline{k}$ an algebraically closed field of characteristic p. Modules are all finitely generated left kG-modules and $\text{mod}(kG)$ denotes the category of all such modules. If $P \in \text{Syl}_p(G)$, we denote by f the Green correspondence with respect to $(G, N_G(P), P)$.

Date: October 15, 2013.

2010 Mathematics Subject Classification. 20C20.

Key words and phrases. Auslander-Reiten quiver, endo-trivial modules, quasi-simple groups, simple modules, relative projectivity.

The author gratefully acknowledge financial support by ERC Advanced Grant 291512 and SNF Fellowship for Prospective Researchers PBELP2_143516.
Furthermore $\Gamma_s(kG)$ (respectively $\Gamma_s(B)$) denotes the stable Auslander-Reiten quiver of the group algebra kG (of the block B of kG) and $\Gamma_s(M)$ the component of the module $M \in \text{mod}(kG)$. For further results and standard terminology concerning the Auslander-Reiten theory, we refer to [Ben98, Erd90, Web82] and references therein.

2.1. Endo-trivial and V-endo-trivial modules

Let $V \in \text{mod}(kG)$ be a fixed module. As introduced by Okuyama [Oku91], a module $A \in \text{mod}(kG)$ is said to be V-projective if A is a direct summand of $V \otimes_k B$ for some module $B \in \text{mod}(kG)$ (see also [CP96, Las12]). If V is absolutely p-divisible, i.e. $p \mid \dim_k(U)$ for every direct summand U of V, then a module $M \in \text{mod}(kG)$ is called V-endo-trivial (or relatively V-endo-trivial) if there is an isomorphism of kG-modules $\text{End}_k(M) \cong M^* \otimes M \cong k \oplus (V\text{-proj})$, where k denotes the trivial kG-module and $V\text{-proj}$ some V-projective module. Here are some basic properties of V-endo-trivial modules (cf. [Las11]):

Lemma-Definition 2.1. Let G be a finite group.

(a) If $M \in \text{mod}(kG)$ is V-endo-trivial, then $M \cong M_0 \oplus (V\text{-proj})$ where M_0 is indecomposable and V-endo-trivial.

(b) The relation $M \sim_V N \iff M_0 \cong N_0$ is an equivalence relation on the class of V-endo-trivial modules. We let $T_V(G)$ denote the set of resulting equivalence classes.

(c) $T_V(G)$, endowed with the law $[M] + [N] := [M \otimes_k N]$, is an abelian group called the group of V-endo-trivial modules of G. The zero element is the class $[k]$ and $-[M] = [M^*]$, the class of the dual module.

Setting $V := kG$ yields the ordinary notion of endo-trivial modules and $T_V(G) = T(G)$ is the group of endo-trivial modules of G. Notice that for any $V \in \text{mod}(kG)$ an endo-trivial can also be seen as a V-endo-trivial module and $T(G)$ identifies with a subgroup of $T_V(G)$. For further results and references on endo-trivial modules, we refer the reader to the survey articles [Thé07] and [Car12]. We recall that $T(G)$ is a finitely generated abelian group. In particular its torsion subgroup $TT(G)$ is finite and its torsion free-rank can be described explicitly (see [CMN09]).

An absolutely p-divisible kG-module of particular interest is the module $V(F_G) := \bigoplus_Q kG^Q$, where Q runs over the set of proper p-subgroups of the Sylow p-subgroups of G. The generalised Dade group of G defined in [Las13] is denoted $D(G)$ and identifies with a subgroup of $T_V(F_G(G))$.

If G is a finite group, we denote by $X(G)$ the abelian group of all isomorphism classes of one-dimensional kG-modules, endowed with the tensor product \otimes_k. (Recall that $X(G) \cong (G^{ab})_{p'}$, the p'-part of the abelianisation of G.) Identifying $\chi \in X(G)$ with its class $[\chi] \in T(G)$, we obtain series of embeddings:

$$X(G) \subseteq T(G) \subseteq T_V(G) \quad \text{and} \quad X(G) \subseteq T(G) \subseteq D(G) \subseteq T_V(F_G(G)).$$

If $P \in \text{Syl}_p(G)$ and $N := N_G(P)$, we denote by $f^{-1}(X(N))$ the subgroup of $T_V(F_G(G))$ consisting of the classes of the kG-Green correspondents of the elements of $X(N)$. We have $f^{-1}(X(N)) \cong X(N)$, but we emphasise that $f^{-1}(X(N))$ is not contained in $T(G)$ in general, however $f^{-1}(X(N)) \cap T(G) \subseteq TT(G)$.

The aim of this note is to make use of the following result of C. Bessenrodt concerning the position of endo-trivial modules in $\Gamma_s(kG)$.

Theorem 2.2 ([Bes91], Thm. 2.6). Let G be a finite group and $P \in \text{Syl}_p(G)$. Let M be an indecomposable endo-trivial kG-module. Let Γ be the tree class of $\Gamma_s(M)$. Then:

(a) If P is cyclic, then $\Gamma = A_n$ for some $n \in \mathbb{N}$. The endo-trivial modules in $\Gamma_s(M)$ are exactly the modules forming the two end Ω^2-orbits.
(b) If $P \cong C_2 \times C_2$ and $N_G(P) = C_G(P)$, then $\Gamma = \tilde{A}_{1,2}$. All modules in $\Gamma_s(M)$ are endo-trivial.

(c) If P is a dihedral 2-group and (b) does not hold, then $\Gamma = A_\infty^\infty$. All modules in $\Gamma_s(M)$ are endo-trivial.

(d) If P is a semi-dihedral 2-group, then $\Gamma = D_\infty$. The endo-trivial modules in $\Gamma_s(M)$ are exactly the modules forming the two end Ω^2-orbits.

(e) In all other cases, $\Gamma = A_\infty$, and the endo-trivial modules in $\Gamma_s(M)$ form the unique end Ω^2-orbit.

2.2. Groups with Klein-four Sylow 2-subgroups. Assume G is a finite group with a Klein-four Sylow 2-subgroup P and $\text{char}(k) = 2$. Set $N := N_G(P)$ and $\bar{N} := N/O_2(N)$. Then one of the following holds (see [Gor80, Thm 7.1]):

(i) $|N_G(P) : C_G(P)| = 1$ and involutions fuse. In fact by Burnside transfer theorem and its converse this happens if and only if G is 2-nilpotent, that is $\bar{N} \cong C_2 \times C_2$; or

(ii) $|N_G(P) : C_G(P)| = 3$ and there are three conjugacy classes of involutions. In this case $\bar{N} \cong A_4$.

In case (i), the Auslander-Reiten component containing the trivial module is $\Gamma_s(k) \cong Z\tilde{A}_{1,2}$, and in case (ii), $\Gamma_s(k) \cong Z\tilde{A}_3$ (with tree class A_∞^∞). See Theorem 2.2 and [Ben98, §4.17].

Theorem 2.3 ([Las11] Thm. 6.0.4 and [Las12] Cor. 8.1.3). Let G be a finite group with a Klein-four Sylow 2-subgroup P. Let V be an absolutely 2-divisible kG-module. Then the following holds:

(a) If $P \trianglelefteq G$, then there is a group isomorphism $T_V(G) \rightarrow T(G) : [M] \mapsto [M_0]$ where $M \cong M_0 \oplus (V - \text{proj})$ with M_0 the unique indecomposable and V-endo-trivial summand of M.

(b) The group $T_V(G)$ identifies via restriction with a subgroup of $T(N) \cong T_V(F_G)(G)$. Furthermore $D(G) \cong T_V(F_G)(G) = f^{-1}(X(N)) \oplus \langle \Omega(k) \rangle$, where $f^{-1}(X(N)) \cong X(N)$.

Remark 2.4. (a) Dade showed that $T(C_2 \times C_2) = \langle \Omega(k) \rangle \cong Z$, where Ω denotes the Heller operator. Moreover $T(A_4) = X(A_4) \oplus \langle \Omega(k) \rangle \cong Z/3Z \oplus Z$, where $X(A_4) \cong Z/3Z$ consists of the three one-dimensional kA_4-module, that we denote by k, k_ω, k_ζ. (See [The07, Car12] and references therein.)

(b) In general the restriction map $\text{Res}^G_V : T(G) \rightarrow T(N) : [M] \mapsto [\text{Res}^G_V(M)]$ is an injective group morphism (see [CMN06, Prop. 2.6]) and $T(G) = TT(G) \oplus \langle \Omega(k) \rangle$ where $TT(G) = \ker(\text{Res}^G_V)$ and $\langle \Omega(k) \rangle \cong Z$. Note that $f^{-1}(X(N))$ is the kernel of the restriction map $R^G_V : T_V(F_G)(G) \rightarrow T(P) : [M] \mapsto [\text{Res}^G_V(M)]$, however, a priori $f^{-1}(X(N))$ and $TT(G)$ need not be equal.

3. Endo-trivial modules for groups with Klein-four Sylow subgroups

Throughout this section, we let G be a finite group with a Klein-four Sylow 2-subgroup P, $\text{char}(k) = 2$, and set $N := N_G(P)$ and $\bar{N} := N/O_2(N)$.

In [Las12], we conjectured that the group of endo-trivial modules $T(G)$ should always be isomorphic to the group $T_V(G)$ for any absolutely 2-divisible kG-module V. First we give an example to show that this conjecture is false in general and second we exhibit typical situations where it does hold.
3.1. The 2-nilpotent case. First assume G is a 2-nilpotent group, that is $G = N \rtimes P$ for some $N \trianglelefteq G$ and satisfies (i) of \S 2.2. It was conjectured in [CMT11a] and proved in [NR10] that

$$T(G) \cong X(G) \oplus T(P) \cong X(G) \oplus \mathbb{Z},$$

where the torsion free-part of $T(G)$ is generated by the class of the first syzygy $\Omega(k)$. Under these assumptions, it may happen that $T(G) \ncong T_{V(F_G)}(G)$. Here is an example:

Example 3.1. Let P be a Klein four-group with generators u and v. Let p be an odd prime and X_{p^3} denote the extraspecial group of order p^3 and exponent p, given by the presentation

$$X_{p^3} = \langle a, b, z \mid a^3 = b^3 = z^3 = 1, [a, b] = z, [a, z] = 1 = [b, z] \rangle.$$

Then build $G := X_{p^3} \rtimes P$ to be the semi-direct product where P acts on X_{p^3} as follows: u acts trivially and $u \cdot a := a^{-1}, u \cdot b := b^{-1}, u \cdot z := z$. We have $N_G(P) = C_G(P) = Z \times P$ where $Z := \langle z \rangle \cong C_p$ is the center of X_{p^3}.

By the above, $T(G) \cong X(G) \oplus \mathbb{Z}$ and embeds as a subgroup of $T(N_G(P)) \cong X(N_G(P)) \oplus \mathbb{Z}$ via restriction. Now

$$X(G) = (G^{ab})_{2^r} = \left[\left(\left(X_{p^3}^{ab}\right)_{2^r}\right) \times P^{ab}\right]_{2^r} = (X_{p^3}/Z)_P = \langle \pi, \overline{a}, \overline{b} \rangle_{p=1}$$

whereas $X(N_G(P)) = (N_G(P)^{ab})_{2^r} = Z_P = Z \cong C_p$. (The subscript P denotes taking the coinvariants with respect to the action of P.) It ensues that $T(G) \ncong T(N_G(P)) \cong T_{V(F_G)}(G)$.

3.2. Case 2: Involutions fuse. We now assume that G satisfies (ii) of \S 2.2.

Proposition 3.2. Let G be a finite group with a Klein-four Sylow 2-subgroup P such that $|N_G(P) : C_G(P)| = 3$. Then $T(\mathfrak{A}_4) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}$ embeds as a subgroup of $T(G)$ via inflation from $\bar{N} \cong \mathfrak{A}_4$ and Green correspondence.

Proof. First $\bar{N} \cong \mathfrak{A}_4$ by assumption that $|N_G(P) : C_G(P)| = 3$ (see \S 2.2 and by Remark 2.4(a), $T(\mathfrak{A}_4) = X(\mathfrak{A}_4) \oplus ([\Omega(k)]) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}$. Both the inflation map $\text{Inf}_N^\mathbb{N} : T(\bar{N}) \to T(N) : [M] \mapsto [\text{Inf}_N^\mathbb{N}(M)]$ and $\text{Res}_N^\mathbb{N} : T(G) \to T(N)$ are injective group morphisms. In fact, if M is an indecomposable endo-trivial kG-module, then $\text{Res}_N^\mathbb{N}([M]) = [Gr(M)]$ the class of the kN-Green correspondent of M. Thus in view of Remark 2.4(b) we only need to show that $f^{-1}(\text{Inf}_N^\mathbb{N}(X(\mathfrak{A}_4))) \cong \mathbb{Z}/3\mathbb{Z}$ is a subgroup of $T(G)$.

Now the three one-dimensional $k\mathfrak{A}_4$-modules k, k_a, k_b all belong to the same component $\Theta(k) \cong \mathbb{Z}A_5$ of $\Gamma_s(k\mathfrak{A}_4)$ (see e.g. [Ben98, \S 4.1]). By Webb’s Theorem [Webb82, Thm. D], $\Theta(k) \cong \Gamma_s(kG)$ the component of the trivial module in $\Gamma_s(kG)$ via inflation from $\bar{N} \to N$ followed
by Green correspondence. Moreover by Theorem 2.2(c) all modules in $\Gamma_{s}(k)$ are endo-trivial, so that the kG-modules k, $f^{-1}(\text{Inf}_{N}^{G}(k_{w}))$ and $f^{-1}(\text{Inf}_{N}^{G}(k_{w}))$ are endo-trivial, as required. \qed

Corollary 3.3. Assume G is a finite group with a self-centralising Klein-four Sylow 2-subgroup P such that $|N_{G}(P) : C_{G}(P)| = 3$, then $T_{V}(G) \cong T(G) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}$ for any absolutely p-divisible module $V \in \text{mod}(kG)$.

Proof. Let $V \in \text{mod}(kG)$ be absolutely p-divisible. By Theorem 2.3,

$$T(G) \leq T_{V}(G) \leq T_{V}(\mathcal{F}_{G})(G) \cong X(N_{G}(P)) \oplus \mathbb{Z}. $$

Since P is self-centralising and $|N_{G}(P) : C_{G}(P)| = 3$, we have $N_{G}(P) \cong A_{4}$, so that $X(N_{G}(P)) \cong ((\mathfrak{A}_{4})^{ab})^{2} \cong \mathbb{Z}/3\mathbb{Z}$. Thus the claim follows from Proposition 3.2. \qed

Note that a finite group satisfying the assumptions of 3.3 is such that $G/O_{2'}(G) \cong L_{2}(q)$, $q \equiv \pm 3 \pmod{8}$. The groups $L_{2}(q)$ with $q \equiv \pm 3 \pmod{8}$ and $q > 3$ are in fact the only simple groups with Klein-four Sylow 2-subgroups. (See e.g. [Gor80, §15, Thm. 2.1].)

Corollary 3.4. Let $G := L_{2}(q) \times A$ with $q \equiv \pm 3 \pmod{8}$ and A an arbitrary $2'$-group. Then $T_{V}(G) \cong T_{V}(\mathcal{F}_{G})(G)$ for any absolutely p-divisible $V \in \text{mod}(kG)$. In particular $T(G) \cong f^{-1}(X(N_{G}(P))) \oplus \mathbb{Z}$.

In other words, in the above situation the kG-Green correspondents of the one-dimensional $kN_{G}(P)$-modules are all endo-trivial.

Proof. By Proposition 2.3(b) and Remark 2.4, it suffices to show that $TT(G) = f^{-1}(X(N))$. Let $P \in \text{Syl}_{2}(G)$. Then $N \cong \mathfrak{A}_{4} \times A$ so that $X(N) \cong (N^{ab})^{2} \cong (\mathfrak{A}_{4})^{ab} \times A^{ab}$. By Proposition 3.2 and its proof, $f^{-1}((\mathfrak{A}_{4})^{ab})$ is a subgroup of $TT(G)$, while $f^{-1}(A^{ab}) = X(G)$ is certainly also a subgroup of $TT(G)$. Indeed $X(G) \cong (G^{ab})^{2} = A^{ab}$. The claim follows. \qed

Remark 3.5. In general if G is non-nilpotent with Klein-four Sylow 2-subgroups one can say the following. First, as endo-trivial $k[C_{2} \times C_{2}]$-modules are non-periodic, so are endo-trivial kG-modules. Now a block of kG containing an endo-trivial module must be of full defect and thus Morita equivalent to either $k\mathfrak{A}_{4}$ or the $B_{0}(k\mathfrak{A}_{5})$. These blocks have exactly one non-periodic AR-component isomorphic to $\mathbb{Z}\mathfrak{A}_{5}$ with tree class $A_{\infty}^{\mathfrak{A}_{5}}$ (see [Erd90, §V.4]). Moreover by Theorem 2.2, if such a block contains an indecomposable endo-trivial module M, then all modules in $\Gamma_{s}(M) \cong \mathbb{Z}\mathfrak{A}_{5}$ are endo-trivial and $\Gamma_{s}(M)$ contains exactly three elements of $TT(G)$. Therefore $|TT(G)|$ is bounded above by three times the number of blocks of full defect of G.

3.3. Endo-trivial modules for $L_{2}(q)$, $q \equiv 3 \pmod{8}$ via character theory

Throughout this subsection let $G := L_{2}(q)$ with $q \equiv 3 \pmod{8}$ and as before $N := N_{G}(P) \cong \mathfrak{A}_{4}$. It is known from Erdmann’s work [Erd77] that the kG-Green correspondents of the three one-dimensional kN-modules are simple. Thus in this case we have an explicit description of $TT(G) \cong \mathbb{Z}/3\mathbb{Z}$ (see Corollary 3.3). We show with the following proposition that character theory provides us with a simpler method to prove that the latter simple modules are torsion endo-trivial.

We let S_{+}, S_{-} denote the two dual simple kG-modules with dimension $(q-1)/2$. They belong to the principal block and are liftable to simple CG-modules affording the Deligne-Lusztig induced characters $R_{+}(\theta_{0})$ and $R_{-}(\theta_{0})$, respectively, say. Here we use, and refer the reader to, Bonnafé’s notation for the ordinary characters of $\text{SL}_{2}(q)$, see [Bon11, Part II and Chap. 9].

Proposition 3.6. Let $G := L_{2}(q)$ with $q \equiv 3 \pmod{8}$, then the two simple kG-modules S_{+}, S_{-} of dimension $(q-1)/2$ are endo-trivial and their classes in $T(G)$ lie in $TT(G)$.
Proof. One easily computes from the character table of $L_2(q)$ that
\[R'_+(\theta_0) \otimes R'_-(\theta_0) = 1_G + \sum R(\alpha), \]
where α runs over $\{\alpha \in \text{Irr}(T) \setminus \{1_T\} \mid \alpha(-1) = 1\}$ (T is the split torus of $\text{SL}_2(q)$, consisting of diagonal matrices, and is isomorphic to the group μ_{q-1} of $q-1$-th roots of unity). As each $R(\alpha)$ is a defect zero character, reduction modulo p yields $(S_-)^* \otimes_k S_- \cong S_+ \otimes_k S_- \cong k \oplus (\text{proj})$. Hence both S_+ and S_- are endo-trivial. Moreover
\[R'_+ (\theta_0) \otimes R'_-(\theta_0) = R'_-(\theta_0) + \sum R'(\theta), \]
where θ runs over $\{\theta \in \text{Irr}(T') \setminus \{1_{T'}, \theta_0\} \mid \theta(-1) = 1, R'(\theta) \text{ belongs to a block of defect } 1\}$ (here $T' \cong \mu_{q+1}$ is a non-split torus of $\text{SL}_2(q)$). Therefore reduction modulo p yields $(S_+)^{\otimes 2} \cong S_+ \oplus F$, where F is a module whose indecomposable summands lie in blocks of defect one. Since S_+ is endo-trivial, F is in fact projective and $2[S_+] = [(S_+)^{\otimes 2}] = [S_-] \in T(G)$. Finally, as $(S_+)^* \cong S_-$, it follows that $[S_+],[S_-] \in TT'(G)$.

Remark 3.7. Similar computations show that the two simple modules of dimension $(q-1)/2$ for $L_2(q)$, $q \equiv 7 \pmod{8}$ are endo-trivial, although they are not torsion elements of $T(G)$ in this case. This completes a left-open case in the character-theoretic study of endo-trivial modules for some quasi-simple groups. However we emphasise that the character-theoretic approach of [LMS13] seems more straightforward and powerful than the more involved module theoretic methods presented below.

4. SIMPLE ENDO-TRIVIAL MODULES VIA THE AUFLANDER-REITEN QUIVER

Combining results on the position of simple modules in the stable Auslander-Reiten quiver [KMU00, KMU01] and results on the structure of the group of endo-trivial modules described in [CMN06, CMN09, CHM10], one obtains the following criteria to discard the existence of simple endo-trivial modules for some quasi-simple groups. However we emphasise that the character-theoretic approach of [LMS13] seems more straightforward and powerful than the more involved module theoretic methods presented below.

Proposition 4.1. Let G be a finite group and B_0 be the principal block of kG. Assume B_0 has wild representation type and G satisfies the following conditions:

(i) each AR-component of type ZA_∞ of $\Gamma_\mathfrak{s}(B_0)$ contains at most one simple module;

(ii) $T(G) \cong \mathbb{Z}$.

Then G does not have non-trivial simple endo-trivial modules.

Proof. The condition $T(G) \cong \mathbb{Z}$ implies that an indecomposable endo-trivial kG-module is isomorphic to a syzygy module $\Omega^s(k)$ for some $n \in \mathbb{Z}$, and thus lies in B_0. Moreover $\Gamma_\mathfrak{s}(B_0)$ has only two connected components containing endo-trivial modules: $\Gamma_\mathfrak{s}(k)$ and $\Gamma_\mathfrak{s}(\Omega(k))$, both isomorphic to ZA_∞ as B_0 is a wild block by 2.2). By assumption (i), the trivial module k is the unique simple module in $\Gamma_\mathfrak{s}(k)$. If $\Gamma_\mathfrak{s}(\Omega(k))$ contains a simple endo-trivial module S, then $S = \Omega^{2n+1}(k)$ for some $n \in \mathbb{Z}$. Therefore $S^* = \Omega^{-2n-1}(k)$ is also simple and lies in $\Gamma_\mathfrak{s}(\Omega(k))$, which contradicts assumption (i). The claim follows. □
Theorem 4.2. Let G be a finite group of one of the following types:

(a) G is a perfect group of Lie type defined over a field of characteristic p and G is not of type $A_1(p)$ ($p > 2$), $^2A_2(p)$, $A_2(p)$, $B_2(p)$ ($p \geq 5$), $G_2(p)$ ($p \geq 7$), $^2B_2(2^{3+4}t^2)$ ($a \geq 0$) or $^2G_2(3^{3+4}t^2)$ ($a \geq 0$);

(b) $p = 2$ and $G = S_n$ is a symmetric group such that $n \geq 6$;

(c) $G = A_n$ is an alternating group such that $n \geq 8$ if $p = 2$, or such that $3p \leq n < p^2$ or $p^2 + p \leq n$ if $p \geq 3$.

Then G does not have non-trivial simple endo-trivial modules.

Proof. The claim is a direct consequence of Proposition 4.1. Indeed, by [CMN06] and [CMN09, CHM10] any group of type (a), (b) or (c) is such that $T(G) \cong \mathbb{Z}$. Moreover by [KMU00, KU01] and [Uno00, Thm. 6] these groups also satisfy condition (i) of Proposition 4.1. □

4.1. Bounds for the number of simple endo-trivial modules. For the remainder of the section, assume G is a finite group such that kG has wild representation type. Let $P \in \text{Syl}_p(G)$, and $N := N_G(P)$. We write $se(G)$ for the number of isomorphism classes of simple endo-trivial kG-modules. In this situation, by Theorem 2.2, endo-trivial module lie at the end of ZA_∞ components of $\Gamma_s(kG)$.

Lemma 4.3. Let T be a self-dual indecomposable kG-module lying on an AR-component of $\Gamma_s(kG)$ of type ZA_∞ and assume that both $\Gamma_s(T)$ and $\Gamma_s(\Omega(T))$ contain at most one simple module. If the module $\Omega^n(T)$ is simple, then $n = 0$.

Proof. Assume $S := \Omega^n(T)$ is simple. Then $S^* \cong \Omega^{-n}(T^*) \cong \Omega^{-n}(S) \cong \Omega^{-2n}(S)$, so that S and S^* belong to the same AR-component. As ZA_∞ components contain at most one simple module, this forces S to be self-dual, which in turn forces $S \cong T$, i.e. $n = 0$. Indeed if $M \in \text{mod}(kG)$, then there is at most one self-dual module in the set $\{\Omega^n(M) \mid n \in \mathbb{N}\}$. □

The next property is essentially due to [KMU00], though it is not written in the same terms.

Lemma 4.4. Assume kG has wild representation type. Then the indecomposable representatives of the classes in $f^{-1}(X(N_G(P)))$ lie in pairwise distinct AR-components of $\Gamma_s(kG)$.

Proof. Applying [KMU00, Lem. 1.6] to P and $N_G(P)$, we have that one-dimensional $kN_G(P)$-module all lie in pairwise distinct AR-component of $\Gamma_s(kN_G(P))$ (at the end as they are endo-trivial). Then, as the Green correspondence f gives a graph monomorphism (see [KMU00, Lem. 1.1(iv)]), the kG-Green correspondents of the modules in $X(N_G(P))$ also lie in pairwise distinct AR-components of $\Gamma_s(kG)$. □

Remark 4.5. Since kG has wild representation type, $T(P)$ is torsion-free and $TT(G)$ identifies via restriction with a subgroup of $X(N)$ (see [The07, Car12]).

(a) If a self-dual (simple) kG-module S is endo-trivial, then obviously $[S]$ is an element of order 1 or 2 in $T(G)$. Hence $se(G)$ is bounded above by the number of elements of order at most 2 in $TT(G)$. Therefore a larger bound, but easier to compute, is given by $|X(N)| = |N : [N, N]|_{p'}$.

(b) As a consequence, in characteristic 2, there is no self-dual (simple) endo-trivial module.

Now we let l_s denote the number of elements of order 1 or 2 of $TT(G)$ and $l_r := |TT(G)| - l_s$.

Corollary 4.6. Assume kG has wild representation type and G satisfies the following conditions:

(i) each AR-component of type ZA_∞ of $\Gamma_s(kG)$ contains at most one simple module;

(ii) the torsion-free rank of $T(G)$ is one.

Then $se(G) \leq l_s + 2l_r$.
Proof. As kG has wild representation type, under assumption (ii), $T(G) = TT(G) \oplus \mathbb{Z}$ where $\mathbb{Z} = \langle \Omega(k) \rangle$ and $TT(G) \leq f^{-1}(X(N)),$ (see [Car12]). Therefore any endo-trivial kG-module has the form $\Omega^n(T)$ with $[T] \in TT(G), \ n \in \mathbb{Z}$.

As noticed above the number of self-dual simple endo-trivial modules is bounded above by the number l_s. By Theorem 2.2 and Lemma 4.3, if S is a self-dual endo-trivial, then there is no other simple module in $\Gamma_s(S) \cup \Gamma_s(\Omega(S))$. Let T be a non self-dual indecomposable such that $[T] \in TT(G)$. Then by assumption (ii) there is at most one simple endo-trivial module in $\Gamma_s(T)$ and one in $\Gamma_s(\Omega(T))$. The claim follows.

\[\square \]

Remark 4.7. Similarly to Remark 4.5(a), a larger bound than that of Corollary 4.6, but easier to compute, is obtained by replacing $TT(G)$ with $X(N)$.

Example 4.8. (a) If G is one of the groups of Lie type $^2A_2(p)$ ($p+1 \not\equiv 0 \pmod{3}$), $^2B_2(2^{a+ \frac{1}{2}})$ ($a \geq 0$) or $^2G_2(3^{a+ \frac{1}{2}})$ ($a \geq 0$) in their defining characteristic, then we have $\text{se}(G) \leq l_s + l_r$. Indeed in these cases $T(G) \cong X(N) \oplus \mathbb{Z}$ by [CMN06]. Then using the fact that if S is a simple kG-module, then $\Omega^n(S), \ n \in \mathbb{Z}$ is not simple unless $n = 0$ by [KMU00, Cor. 3.2], the bound obtained in the proof of Corollary 4.6 is in fact $l_s + l_r$.

(b) In order to complete partially the results on $\text{se}(G)$ obtained in Theorem 4.2(c) for alternating groups via quiver methods, let k be a field of characteristic $p \geq 3$ and let $G := \mathfrak{A}_n$ be an alternating group. Then it follows from Corollary 4.6 and [Uno00, Thm. 6(b)] that:

$$\text{se}(G) \leq \begin{cases} 6 & \text{if } p = 3, \ n \in \{6, 7\}, \\ 4 & \text{if } p > 3, \ n \in \{2p, 2p + 1\}, \\ 2 & \text{if } 2p + 2 \leq n < 3p. \end{cases}$$

Moreover, in the 2nd and the 3rd case, the simple endo-trivial modules have to be self-dual by Lemma 4.3. Indeed by [CMN09, Thm. B], we have $T(G) \cong \mathbb{Z} \oplus TT(G)$ with $TT(G) \cong \mathbb{Z}/4\mathbb{Z}$, $TT(G) \cong (\mathbb{Z}/2\mathbb{Z})^2$ and $TT(G) \cong \mathbb{Z}/2\mathbb{Z}$, respectively to the three cases above.

In both cases we refer the reader to [LMS13] for the explicit determination of the simple endo-trivial kG-modules.

In conclusion, it would be interesting to have an answer to the following question:

Question 4.9. If kG has wild representation type and S is a simple endo-trivial kG-module (hence non-periodic), is $\Omega^n(S)$ simple if and only if $n = 0$? In particular, is $\Omega^n(k)$ simple if and only if $n = 0$?

Acknowledgments. Part of this work was realised during the author’s Ph.D. thesis preparation at the EPF Lausanne under the supervision of Prof. Dr. Jacques Thévenaz, although it did not appear in the final manuscript [Las12]. The author is grateful to Jon F. Carlson and Nadia Mazza for several enlightening discussions on endo-trivial modules during that period of time.

References

[Ben98] D. J. Benson. Representations and cohomology. I, volume 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998.

[Bes91] C. Bessenrodt. Endotrivial modules and the Auslander-Reiten quiver. In Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), volume 95 of Progr. Math., pages 317–326. Birkhäuser, Basel, 1991.

[Bon11] C. Bonnafé. Representations of $\text{SL}_2(\mathbb{F}_q)$. Algebra and Application 13. London: Springer. xxii, 186 p. EUR 85.55 , 2011.
Auslander-Reiten quiver methods for endo-trivial modules

[Car12] J. F. Carlson. Endotrivial modules. In Recent developments in Lie algebras, groups and representation theory, volume 86 of Proc. Sympos. Pure Math., pages 99–111. Amer. Math. Soc., Providence, RI, 2012.

[CHM10] J. F. Carlson, D. J. Hemmer, and N. Mazza. The group of endotrivial modules for the symmetric and alternating groups. Proc. Edinb. Math. Soc. (2), 53(1):83–95, 2010.

[CMN06] J. F. Carlson, N. Mazza, and D. K. Nakano. Endotrivial modules for finite groups of Lie type. J. Reine Angew. Math., 595:93–119, 2006.

[CMN09] J. F. Carlson, N. Mazza, and D. K. Nakano. Endotrivial modules for the symmetric and alternating groups. Proc. Edinb. Math. Soc. (2), 52(1):45–66, 2009.

[CMT11a] J. F. Carlson, N. Mazza, and J. Thévenaz. Endotrivial modules for p-solvable groups. Transactions of the American Mathematical Society, 363:4979–4996, 2011.

[CMT11b] J. F. Carlson, N. Mazza, and J. Thévenaz. Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup. Journal of the European Mathematical Society, to appear, 2011.

[CP96] J. F. Carlson and C. Peng. Relative projectivity and ideals in cohomology rings. J. Algebra, 183(3):929–948, 1996.

[Erd77] K. Erdmann. Principal blocks of groups with dihedral Sylow 2-subgroups. Comm. Algebra, 5:665694, 1977.

[Erd90] K. Erdmann. Blocks of tame representation type and related algebras. Lecture Notes in Mathematics, 1428. Berlin etc.: Springer-Verlag, xv, 312 p. DM 53.00, 1990.

[Gor80] D. Gorenstein. Finite Groups. Chelsea Publishing Co., New York, second edition, 1980.

[Kaw93] S. Kawata. On Auslander-Reiten components for certain group modules. Osaka J. Math., 30(2):137–157, 1993.

[KMU00] S. Kawata, G. O. Michler, and K. Uno. On simple modules in the Auslander-Reiten components of finite groups. Math. Z., 234(2):375–398, 2000.

[KMU01] S. Kawata, G. O. Michler, and K. Uno. On Auslander-Reiten components and simple modules for finite groups of Lie type. Osaka J. Math., 38(1):21–26, 2001.

[Las11] C. Lassueur. Relative projectivity and relative endotrivial modules. J. Algebra, 337:285–317, 2011.

[Las12] C. Lassueur. Relative Projectivity and Relative Endotrivial Modules. PhD thesis, EPFL, Lausanne, 2012.

[Las13] C. Lassueur. The Dade group of a finite group. J. Pure Appl. Algebra, 217(1):97–113, 2013.

[LMS13] C. Lassueur, G. Malle, and E. Schulte. Simple endo-trivial modules for quasi-simple groups. To appear in J. Reine Angew. Math., pages 1–31, 2013. http://arxiv.org/pdf/1305.3466.pdf.

[NR10] G. Navarro and G. R. Robinson. On endo-trivial modules for p-solvable groups. Mathematische Zeitschrift, pages 1–5, 2010.

[Oko91] T. Okuyama. A generalization of projective covers of modules over group algebras. 1991. Unpublished manuscript.

[Rob11] G. R. Robinson. On simple endotrivial modules. Bull. Lond. Math. Soc., 43(4):712–716, 2011.

[Sch12] E. Schulte. Simple endotrivial modules for simple groups. Diplomarbeit, TU Kaiserslautern, 2012.

[Thé07] J. Thévenaz. Endo-permutation modules, a guided tour. In Group representation theory, pages 115–147. EPFL Press, Lausanne, 2007.

[Uno00] K. Uno. Simple modules in the Auslander-Reiten quivers of finite group algebras. Sûrikaisekikenkyûsho Kôkyûroku, (1149):83–97, 2000. Representation theory of finite groups and related topics (Japanese) (Kyoto, 1998).

[Web82] P. J. Webb. The Auslander-Reiten quiver of a finite group. Math. Z., 179(1):97–121, 1982.

FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany.
E-mail address: lassueur@mathematik.uni-kl.de