Reduction of mid-summer rainfall in northern India after the late-1990s induced by the decadal change of the Silk Road pattern

Xi Wang \(^1\), Riyu Lu \(^2\) and Xiaowei Hong \(^3\) \(^*\)
\(^1\) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
\(^2\) College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
\(^3\) Climate Change Research Center and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
\(^*\) Author to whom any correspondence should be addressed.
E-mail: hongxw@mail.iap.ac.cn
Keywords: rainfall, northern India, Silk Road pattern, decadal change
Supplementary material for this article is available online

Abstract
Variation of summer rainfall can pose substantial challenges to water resources and agriculture in northern India, which includes the most fertile land in India, i.e. the Ganges Plain. This study identifies a significant rainfall reduction in northern India during its peak rainy season (July and August) after the late-1990s, based on observational and reanalysis data since 1958. This rainfall reduction is about 0.86 mm d\(^{-1}\), equivalent to 8.3% of the climatological mean. We suggest that the decadal reduction of northern Indian rainfall is induced by the decadal change of the Silk Road pattern (SRP), which is an atmospheric teleconnection pattern along the upper-tropospheric Asian westerly jet. After the late-1990s, corresponding with the decadal phase shift of the SRP, there is a cyclonic anomaly over West Asia, which can reduce rainfall in northern India. Furthermore, this rainfall reduction is unprecedented since the beginning of the 20th century, when observational data are available. Possible roles of the lower-tropospheric circulation changes and the Atlantic Multidecadal Oscillation are discussed.

1. Introduction

Summer rainfall accounts for up to 80% of the annual precipitation in India (Turner and Annamalai 2012). In India, as an agrarian-based economy and with 60% of the population being employed in agriculture (Amrith 2016), the lives and livelihoods are sensitive to the fluctuation in rainfall, particularly during the rainy season, i.e. summer. For example, the Indian economy is estimated to have suffered a loss of billions of dollars due to the 19% reduction of rainfall in summer 2002 (Gadgil et al 2004). Thus, it is of great socioeconomic importance to understand the variations of Indian summer rainfall.

In particular, the northern part of the Indian subcontinent is densely populated and includes the most fertile land in India, i.e. the Ganges Plain. The plain is the world’s most intensely farmed area, with more than 70% of the plain being used for agriculture, and provides about half of the total food production in India (Pal et al 2009). Therefore, a decrease in crop production in northern India, driven mainly by droughts (Lesk et al 2016, Nath et al 2017), could affect the food security of the country. However, the precipitation in northern India has been less documented relative to the all-Indian summer rainfall, which is well known to be influenced by Atlantic Multidecadal Oscillation (AMO; Goswami et al 2006, Lu et al 2006, Li et al 2008, Luo et al 2011, Joshi and Ha 2019), Pacific Decadal Oscillation (Krishnan and Sugi 2003, Krishnamurthy and Krishnamurthy 2014), El-Niño Southern Oscillation (Rasmusson and Carpenter 1983, Krishnamurthy and Goswami 2000, Ashok et al 2019), Indian Ocean dipole (Ashok et al 2001, Gadgil et al 2004, Ummenhofer et al 2011), and Eurasian snow cover (Liu and Yanai 2002, Zhao and Moore 2004).
Extratropical circulations, in addition to tropical monsoonal flows, can significantly affect the summer rainfall in India, particularly in northern India. It has been documented that the upper-tropospheric cyclonic/anticyclonic circulation anomaly over West Asia can suppress/enhance rainfall in northern India (Ramswamy 1962, Krishnan and Sugi 2001, Krishnan et al 2009, Saeed et al 2010, Yadav 2017, Chowdary et al 2021). The cyclonic anomaly over West Asia corresponds to a southward displacement of the Asian jet. Recently, Chowdary et al (2021) identified in both the observation and a model that the southward displacement of the Asian jet reduces the summer precipitation over central and northern India, and suggested that this jet displacement induces the lower-tropospheric anticyclonic anomaly and resultant reduced rainfall. This cyclonic/anticyclonic anomaly over West Asia is a component of the Silk Road pattern (SRP), i.e. a teleconnection pattern that propagates along the upper-tropospheric Asian westerly jet (Lu et al 2002, Enomoto et al 2003, Ding and Wang 2005, 2007, Saeed et al 2010, Yadav 2017, Hong et al 2021). The SRP, which is excited in the North Atlantic and propagates southeastward, can affect the Indian rainfall, which in turn, may favor the downstream components of SRP over East Asia and the North Pacific (e.g. Ding and Wang 2005). The SRP exhibits a clear decadal change after the late-1990s (Hong et al 2017, Wang et al 2017), and this change is suggested to be responsible for regional climate variations over the Eurasian continent (Shi et al 2019, Du et al 2020).

Therefore, we speculate that summer rainfall in northern India might experience a decadal change after the late-1990s influenced by the decadal change of SRP. We focus on the mid-summer, which is the peak rainy season in northern India and is also the period of significant decadal change of SRP (Hong et al 2018). Testing this hypothesis is the main motivation of the present study.

2. Datasets

The circulation data used in this study include the Japanese 55 year Reanalysis dataset with a horizontal resolution of 1.25° × 1.25° (JRA55; Kobayashi et al 2015), the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset with a horizontal resolution of 2.5° × 2.5° (NCEP1; Kalnay et al 1996), the NCEP-Department of Energy reanalysis dataset with a horizontal resolution of 2.5° × 2.5° (NCEP2; Kanamitsu et al 2002), the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis dataset with a horizontal resolution of 2.5° × 2.5° (ERA5; Hersbach et al 2020), the 20th century reanalysis version 3 dataset with a resolution of 1° × 1° (20CR; Compo et al 2011). The JRA55 and NCEP1 datasets are from 1958 to 2018, the NCEP2 and ERA5 datasets are from 1979 to 2018, and the 20CR dataset is from 1901 to 2015. The results obtained by the JRA55 are shown in the text, and those obtained by other reanalysis data are shown in the supplementary figures (available online at stacks.iop.org/ERL/16/104051/mmedia). The precipitation data applied in this study is from the India Meteorological Department, with a time span of 1901–2018 and a horizontal resolution of 0.25° × 0.25° (Pai et al 2014).

In this study, we focus on July–August (JA), during which the northern India experiences the heaviest rainfall and the SRP shows a clearer decadal variation. The SRP is defined as the first empirical orthogonal function (EOF) mode of the JA-mean 200 hPa meridional wind within the domain (20°–60°N, 0°–150°E), and the corresponding standardized principal component is referred to as SRP index (SRPI), following previous studies (Yasui and Watanabe 2010; and many others). A nine year Gaussian low-pass filter is used to obtain the decadal component of a variable. Considering autocorrelations, the statistical significance is determined according to the effective degrees of freedom (N_{dof}), which is calculated by:

$$N_{\text{dof}} = N(1 - r_1r_2)/(1 + r_1r_2)$$

where N is the size of the sample and r_1 and r_2 are the lag-1 autocorrelations of the two time series, respectively (Bretherton et al 1999).

3. Results

The 200 hPa horizontal wind anomalies regressed onto the SRPI are characterized by a clear wave pattern over North Atlantic and the Eurasian continent (figure 1(a)). The wave starts from the high latitudes over North Atlantic, propagates southeastward into the Asian westerly jet, and then propagates eastward along the jet. In particular, there is an anticyclonic anomaly over West Asia, or to the northwest of the Indian subcontinent. In addition, the SRPI presents an evident decadal change since 1973: from the positive phase during 1973–1998 to the negative phase during 1999–2018 (figure 1(b)). Before 1973, the decadal variation of SRP is much weaker. Actually, analyses using the 20CR dataset from 1901 also indicates that in the extended period, the decadal variation of SRP has been strengthened since the mid-1970s (figure S6(e)) which has also been pointed out in previous studies (Wang et al 2017, Stephan et al 2019). Accordingly, we use these two periods, i.e. 1973–1998 and 1999–2018, to represent the decadal change of the SRP. The decadal variation of the SRPI explains 36% of the total variance during the period of 1973–2018, confirming that the SRP does have a clear variation on the decadal timescale. Very similar results are obtained from other reanalysis data (figure S1).
Figure 1. (a) The July–August (JA)-mean 200 hPa horizontal wind anomalies (vectors, units: m s$^{-1}$) regressed onto the standardized Silk Road pattern index (SRPI). Shading denotes the meridional wind anomalies. The black box delineates the region (20$^\circ$–60$^\circ$ N, 0$^\circ$–150$^\circ$ E) used to define the SRPI. Only anomalies statistically significant at the 0.05 level based on the Student's t test are plotted. (b) Time series of the original (bars) and decadal (black line) components of the standardized SRPI.

Figure 2 (a) shows the difference in rainfall between the two periods. There are significant negative anomalies over the majority region of northern India. We define a northern Indian rainfall index (NIRI) as the precipitation anomalies averaged within the domain (20$^\circ$–30$^\circ$ N, 75$^\circ$–95$^\circ$ E) to quantitatively estimate the decadal variation of rainfall. The decadal component of NIRI turns from a positive phase to a negative phase in the late 1990s (figure 2(b)), and explains 29% of the total variance during the period of 1973–2018. Note that figure 2(b) starts from 1973, rather than 1958 in figure 1(b), to highlight the dominant period of decadal variation. The correlation coefficient between the decadal components of NIRI and SRPI is 0.81, significant at the 95% level considering the effective degrees of freedom. The shift point is 1999, same as that for the SRPI. The rainfall in northern India was mostly above normal during the former period (19 out of 26 years) and below normal during the latter period (17 out of 20 years), emphasizing the role of the decadal component in dominating the rainfall variation. The rainfall reduction averaged within this area is 0.86 mm d$^{-1}$, statistically significant at the 99% confidence level, and is equivalent to 8.3% of the climatological mean (10.45 mm d$^{-1}$).

We quantify the upper-tropospheric cyclonic/anticyclonic circulation anomaly over West Asia, which directly affects the northern Indian rainfall, by defining a West Asia anticyclonic index (WAACI) as the vorticity anomalies averaged within the domain (35$^\circ$–45$^\circ$ N, 50$^\circ$–75$^\circ$ E) (figure 3(a)). This index is multiplied by minus one so that positive values indicate anticyclonic anomaly that enhances the northern Indian rainfall (Krishnan and Sugi 2001, Krishnan et al 2009, Saeed et al 2010, Yadav 2017). As mentioned previously, this anticyclonic anomaly is a component of the SRP, and this can be confirmed by the high correlation coefficients between WAACI and SRPI, which is 0.90, 0.96 and 0.86 for the original time series, interannual and decadal components, respectively. The shift point for WAACI is identified to be 1998, in good agreement with the NIRI and SRPI (1999). The decadal component of WAACI explains 32% of the total variance during the period of 1973–2018, similar to the ratios for the NIRI and SRPI (36% and 29%).

The purpose of defining WAACI is that as a component of SRP, the anticyclonic anomaly over West Asia can directly affect rainfall in northern India. In addition, WAACI can be used to depict conveniently daily and subseasonal variations, while the EOF-based SRPI cannot.

Figure 4 shows the variations of NIRI and WAACI, with the x-axis showing years and y-axis showing days in summer. We applied an 11-point running mean to NIRI and WAACI for both the x and y directions to filter out the interannual and synoptic components. From July to August, both the NIRI and WAACI are generally positive before the late-1990s and turn to be negative afterwards, despite some fluctuations, particularly for the NIRI. During June, the NIRI tends to be positive before 2005 and negative afterwards, but this change does not match with the WAACI (see also figure S4(a)). On the other hand,
Figure 2. (a) Difference of the JA-mean precipitation between 1999–2018 and 1973–1998 (units: mm d$^{-1}$). The black box indicates the northern Indian region (20$^\circ$–30$^\circ$N, 75$^\circ$–95$^\circ$E) used to define the northern India rainfall index (NIRI). Marked areas indicate anomalies statistically significant at the 0.05 level. (b) Time series of the original (bars) and decadal (solid line) components of the NIRI (units: mm d$^{-1}$). The decadal component of SRPI (dashed line) is also shown to facilitate comparison.

4. Discussion

We also examined the lower-tropospheric wind anomalies in association with the decadal variations of northern Indian rainfall and SRP. Figure S7(a) shows the 850 hPa wind difference between 1999–2018 and 1973–1998 using the JRA55 reanalysis data. There are some significant wind anomalies in Indian
Ocean and the Bay of Bengal. Among these circulation anomalies, the northerly anomalies extending from the Bay of Bengal to northern India might play a role in the northern Indian rainfall reduction. However, they are absent in all the other reanalysis datasets (figures S7(b)–(d)). Therefore, we conclude that the huge discrepancies between the current reanalysis datasets prevent us from well understanding the possible role of lower-tropospheric circulations in affecting the rainfall reduction in northern India.

Previous studies suggested that the AMO can modulate the decadal variation of the SRP (Hong et al 2017, Wang et al 2017, Sun et al 2019). When AMO is in a warm phase, the SRP tends to present a cyclonic circulation anomaly over West Asia, implying that rainfall would decrease in northern India according to the present results. However, the correlation coefficient between the AMO index and NIRI is only -0.063 during 1901–2015, much lower than that between the SRPI and NIRI (0.40) or that between NIRI and WAACI.
the WAACI and NIRI (0.48). Here the AMO index is calculated by averaging the annual mean sea surface temperature anomalies over the North Atlantic Ocean (0°–60°N, 75°–7.5°W) with linear trend removed, following Enfield et al (2001), and all the indexes are for the decadal components. These results suggest that the JA northern Indian rainfall is more closely related to the decadal variation of SRP than to the AMO, and imply that the decadal variation of SRP might be influenced by other factors besides the AMO.

Various previous studies showed that the Indian summer precipitation experienced a decreasing trend since the early 1950s (e.g. Naidu et al 2015, Roxy et al 2015, Agrawal et al 2019, Kumar et al 2020, Seetha et al 2020, Ayantika et al 2021), while some studies suggested the revival of summer monsoon precipitation in northern India in the recent two decades (Jin and Wang 2017, Huang et al 2020). These changes in precipitation have been attributed to the monsoonal circulations, land–ocean temperature gradient, global warming, anthropogenic aerosol emissions, and land use and land cover. All these studies focused on the entire monsoon season, i.e. JJAS, which, in addition to the differences in concerned regions and datasets, makes it difficult for direct comparisons with the present study. Though Patil et al (2019) dealt with the peak summer monsoon months of July–August, they focused on the influences of sea surface temperature and anthropogenic aerosol, obscuring the temporal variation of precipitation. This study indicates that the rainfall decreases after the late-1990s in northern India, and the decrease occurs mainly during the peak rainy season (July–August), and suggested that the decadal change of upper-tropospheric circulation, i.e. the SRP, attributes to the rainfall reduction.

Finally, although the SRPI and NIRI show similar decadal variations since 1973, they exhibit distinct variations before 1973. For instance, the most remarkable positive phase of NIRI appears over 1925–1945, which apparently cannot be explained by the SRP, if assuming the reliability of 20CR data is high.

Figure 5. (a) Same as figure 2(a), but for 1999–2018 minus 1901–1998. (b) Same as figure 2(b), but for an extended period of 1901–2018.
The decadal variation of JA rainfall in northern India may be attributed to some other factors before 1973.

5. Conclusions

In this study, we identify that the rainfall decreases significantly after the late-1990s in northern India, including the Ganges Plain, during the peak rainy season (July and August). This rainfall reduction from the former period (1973–1998) to the latter period (1999–2018) is equivalent to 8.3% of the climatological mean, and can be explained by the decadal change in the SRP, i.e. shifting from the positive phase in the former period to the negative phase in the latter period. This decadal shift of SRP corresponds to the cyclonic anomaly over West Asia, which induces the rainfall decrease in northern India. This rainfall reduction in northern India is found to be unprecedented, at least from the beginning of the 20th century when the instrumental data are available.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://rda.ucar.edu/datasets/ds628.1/.

Acknowledgments

The authors highly appreciate the reviewer and editor for their constructive and detailed comments, which greatly improve the presentation. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41705044 and 41721004).

ORCID iD

Xiaowei Hong @ https://orcid.org/0000-0001-7548-8141

References

Agrawal S, Chakraborty A, Karmakar N, Moulds S, Mijic A and Buytaert W 2019 Effects of winter and summer-time irrigation over Gangetic Plain on the mean and intra-seasonal variability of Indian summer monsoon Clim. Dyn. 53 3147–66
Amthrih S S 2016 Risk and the South Asian monsoon Clim. Change 151 17–28
Ashok K, Feba F and Tejavath C T 2019 The Indian summer monsoon rainfall and ENSO Matsuoka 70 443–52
Ashok K, Guan Z Y and Yamagata T 2001 Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO Geophys. Res. Lett. 28 4499–502
Ayantika D C, Krishnan R, Singh M, Swapna P, Sandeep N, Praeesh A G and Vellore R 2021 Understanding the combined effects of global warming and anthropogenic aerosol forcing on the South Asian monsoon Clim. Dyn. 56 1643–62
Bretherton C S, Widmann M, Dymnikov V P, Wallace J M and Blade I 1999 The effective number of spatial degrees of freedom of a time-varying field J. Clim. 12 1990–2009
Chowdary J S, Vibhute A S, Darshana P, Parekh A, Ganaseelan C and Attada R 2021 Meridional displacement of the Asian jet and its impact on Indian summer monsoon rainfall in observations and CFSv2 hindcast Clim. Dyn. accepted (https://doi.org/10.1007/s00382-021-05933-i)
Compo G P et al 2011 The twentieth century reanalysis project Q. J. R. Meteorol. Soc. 137 1–28
Ding Q H and Wang B 2005 Circumglobal teleconnection in the Northern Hemisphere summer J. Clim. 18 3483–505
Ding Q H and Wang B 2007 Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon J. Clim. 20 3751–67
Du Y B, Zhang J, Zhao S W and Chen H S 2020 Impact of the eastward shift in the negative-phase NAO on extreme drought over northern China in summer J. Geophys. Res. 125 e2019JD033209
Enfield D B, Mestas-Nunez A M and Trimble P J 2001 The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US Geophys. Res. Lett. 28 2077–80
Enomoto T, Hoskins B J and Matsuda Y 2003 The formation mechanism of the Bonin high in August Q. J. R. Meteorol. Soc. 129 157–78
Gadgil S, Vinayachandran P N, Francis P A and Gadgil S 2004 Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation Geophys. Res. Lett. 31 L12213
Goswami B N, Madhusoodanan M S, Neema C P and Sengupta D 2006 A physical mechanism for North Atlantic SST influence on the Indian summer monsoon Geophys. Res. Lett. 33 L10206
Hersbach H et al 2020 The ERA5 global reanalysis Q. J. R. Meteorol. Soc. 146 1999–2049
Hong X W, Lu R Y and Li S L 2017 Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s Environ. Res. Lett. 12 094007
Hong X W, Lu R Y and Li S L 2018 Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers J. Clim. 31 9283–92
Hong X W, Lu R Y and Li S L 2021 Interannual relationship between the West Asian and East Asian jet meridional displacements in summer J. Clim. 34 621–33
Huang X et al 2020 The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability J. Clim. 33 5035–60
Jin Q and Wang C 2017 A revival of Indian summer monsoon rainfall since 2002 Nat. Clim. Change 7 587–94
Joshi M K and Ha K J 2021 Meridional displacement of the Asian jet and its relationship to the North Atlantic Oscillation between early and late summers J. Clim. 34 1857–70
Kalnay E et al 1996 The NCEP/NCAR 40-year reanalysis project Bull. Am. Meteorol. Soc. 77 437–71
Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M and Potter G L 2002 NCEP–DOE AMIP-II reanalysis (R-2) Bull. Am. Meteorol. Soc. 83 1631–44
Kobayashi S et al 2015 The JRA-55 reanalysis: general specifications and basic characteristics J. Meteorol. Soc. Japan 93 5–48
Krishnamurthy L and Krishnamurthy V 2014 Influence of PDO on Indian summer monsoon and monsoon–ENSO relation Clim. Dyn. 42 2397–410
Krishnamurthy V and Goswami B N 2000 Indian monsoon–ENSO relationship on interdecadal timescale J. Clim. 13 579–95
Krishnan R, Kumar V, Sugil M and Yoshimura J 2009 Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon J. Atmos. Sci. 66 553–78
Krishnan R and Sugil M 2001 Baiu rainfall variability and associated monsoon teleconnections J. Meteorol. Soc. Japan 79 851–60

7
Krishnan R and Sugi M 2003 Pacific decadal oscillation and variability of the Indian summer monsoon rainfall Clim. Dyn. 21 233–42
Kumar P V, Naidu C V and Prasanna K 2020 Recent unprecedented weakening of Indian summer monsoon in warming environment Theor. Appl. Climatol. 140 467–86
Lesk C, Rowhani P and Ramankutty N 2016 Influence of extreme weather disasters on global crop production Nature 529 84–87
Li S L, Perlwitz J, Quan X W and Hoerling M P 2008 Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall Geophys. Res. Lett. 35 L05804
Liu X D and Yanai M 2002 Influence of Eurasian spring snow cover on Asian summer rainfall Int. J. Climatol. 22 1075–89
Lu R Y, Dong B W and Ding H 2006 Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon Geophys. Res. Lett. 33 L24701
Lu R Y, Oh J H and Kim B J 2002 A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer Tellus 54 44–55
Luo F F, Li S L and Furevik T 2011 The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in Bergen climate model version 2.0 J. Geophys. Res. 116 D19117
Naidu C V, Raju A D, Satyanarayana G C, Kumar P V, Chiranjeevi G and Suchitra P 2015 An observational evidence of decrease in Indian summer monsoon rainfall in the recent three decades of global warming era Glob. Planet. Change 127 91–102
Nath R, Nath D, Li Q, Chen W and Cui X F 2017 Impact of drought on agriculture in the Indo-Gangetic Plain, India Adv. Atmos. Sci. 34 335–46
Pai D S, Sridhar L, Rajeevan M, Sreejith O P, Sarthai N S and Mukhopadhyay B 2014 Development of a new high spatial resolution (0.25 degrees × 0.25 degrees) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region Mausam 65 1–18
Patil N, Venkataraman C, Muduchuru K, Ghosh S and Mondal A 2019 Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall Clim. Dyn. 52 2287–302
Ramaseswamy C 1962 Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams Tellus 14 337–49
Rasmussen E M and Carpenter T H 1983 The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka Mon. Weather Rev. 111 517–28
Roxy M K, Ritika K, Terray P, Murtugudde R, Ashok K and Goswami B N 2015 Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient Nat. Commun. 6 7423
Saeed S, Müller W A, Hagemann S and Jacob D 2010 Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: the explicit role of the surface heat low Clim. Dyn. 37 1045–60
Seetha C J, Varikoden H, Babu C A and Kuttipurath J 2020 Significant changes in the ENSO-summer monsoon relationship and associated circulation features on multidecadal timescale Clim. Dyn. 54 1491–506
Shi N, Wang Y C, Wang X Q and Tian P Y 2019 Interdecadal variations in the frequency of persistent hot events in boreal summer over midlatitude Eurasia J. Clim. 32 5161–77
Stephan C C, Klingaman N P and Turner A G 2019 A mechanism for the recently increased interdecadal variability of the Silk Road pattern J. Clim. 32 717–36
Sun X Q, Li S L, Hong X W and Lu R Y 2019 Simulated influence of the Atlantic multidecadal oscillation on summer Eurasian nonuniform warming since the mid-1990s Adv. Atmos. Sci. 36 811–22
Turner A G and Annamalai H 2012 Climate change and the South Asian summer monsoon Nat. Clim. Change 2 587–95
Ummenhofer C C, Sen Gupta A, Li Y, Taschetto A S and England M H 2011 Multi-decadal modulation of the El Niño–Indian monsoon relationship by Indian Ocean variability Environ. Res. Lett. 6 034006
Wang L, Xu P Q, Chen W and Liu Y 2017 Interdecadal variations of the Silk Road pattern J. Clim. 30 9915–32
Yadav R K 2017 Midlatitude Rossby wave modulation of the Indian summer monsoon Q. J. R. Meteorol. Soc. 143 2260–71
Yasui S and Watanabe M 2010 Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM J. Clim. 23 2093–114
Zhao H X and Moore G W K 2004 On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon Geophys. Res. Lett. 31 L14204