Riemannian metrics on the moduli space of GHMC anti-de Sitter structures

Andrea Tamburelli

Received: 1 May 2020 / Accepted: 22 October 2020 / Published online: 5 November 2020
© Springer Nature B.V. 2020

Abstract
We first extend the construction of the pressure metric to the deformation space of globally hyperbolic maximal Cauchy-compact anti-de Sitter structures. We show that, in contrast with the case of the Hitchin components, the pressure metric is degenerate and we characterize its degenerate locus. We then introduce a nowhere degenerate Riemannian metric adapting the work of Qiongling Li on the $\text{SL}(3, \mathbb{R})$-Hitchin component to this moduli space. We prove that the Fuchsian locus is a totally geodesic copy of Teichmüller space endowed with a multiple of the Weil–Petersson metric.

Keywords Anti-de Sitter geometry · (higher) Teichmüller theory · Weil–Petersson metric · Pressure metric.

Mathematics Subject Classification 53C50 · 58D27

Contents

Introduction .. 267
1 Pressure metric on $\mathcal{GH}(S)$ 268
2 A non-degenerate Riemannian metric on $\mathcal{GH}(S)$ 273
References ... 281

Introduction

Let S be a closed, connected, oriented surface of negative Euler characteristic. The aim of this short note is to introduce two Riemannian metrics on the deformation space $\mathcal{GH}(S)$ of convex co-compact anti-de Sitter structures on $S \times \mathbb{R}$. These are the geometric structures relevant for the study of pairs of conjugacy classes of representations $\rho_{L,R} : \pi_1(S) \to \mathbb{P}\text{SL}(2, \mathbb{R})$ that are faithful and discrete.

Andrea Tamburelli
andrea_tamburelli@libero.it

1 Department of Mathematics, Rice University, Houston, USA
In recent years, much work has been done in order to understand the geometry of $\mathcal{GH}(S)$ [21,26–30]. It turns out that many of the phenomena described in the aforementioned papers have analogous counterparts in the theory of Hitchin representations in $\text{SL}(3, \mathbb{R})$ [9,14–17,20,31]. Pushing this correspondence even further, we explain in this paper how to construct two Riemannian metrics in $\mathcal{GH}(S)$ following analogous constructions known for the $\text{SL}(3, \mathbb{R})$-Hitchin component.

The first Riemannian metric we define is the pressure metric introduced by Brigedeman et al. [2,3] for the Hitchin components, and inspired by previous work of Bridgeman [6] on quasi-Fuchsian representations and McMullen’s thermodynamic interpretation [18] of the Weil–Petersson metric on Teichmüller space. Although the construction of the pressure metric in $\mathcal{GH}(S)$ can be carried out analogously, we show that, unlike in the Hitchin components, the pressure metric is degenerate and we characterize its degenerate locus:

Theorem A The pressure metric on $\mathcal{GH}(S)$ is degenerate only at the Fuchsian locus along pure bending directions.

Here, the Fuchsian locus in $\mathcal{GH}(S)$ consists of pairs of discrete and faithful representations of $\pi_1(S)$ that coincide up to conjugation, and pure bending directions correspond to deformations of representations away from the Fuchsian locus that are analogs of bending deformations for quasi-Fuchsian representations in $\mathbb{P}\text{SL}(2, \mathbb{C})$ [27].

The second Riemannian metric we define follows instead the construction of Li on the $\text{SL}(3, \mathbb{R})$-Hitchin component [13] and it is based on the introduction of a preferred ρ-equivariant scalar product in \mathbb{R}^4 for a given $\rho \in \mathcal{GH}(S)$. The main result is the following:

Theorem B This Riemannian metric is nowhere degenerate in $\mathcal{GH}(S)$ and restricts to a multiple of the Weil–Petersson metric on the Fuchsian locus, which, moreover, is totally geodesic.

1 Pressure metric on $\mathcal{GH}(S)$

In this section we adapt the construction of the pressure metric on the Hitchin component [2,3] to the deformation space of globally hyperbolic maximal Cauchy-compact anti-de Sitter manifolds. We will show that the pressure metric is degenerate at the Fuchsian locus along “pure bending” directions.

1.1 Background on anti-de Sitter geometry

We briefly recall some notions of anti-de Sitter geometry that will be used in the sequel.

The 3-dimensional anti-de Sitter space AdS$_3$ is the local model of Lorentzian manifolds of constant sectional curvature -1 and can be defined as the set of projective classes of time-like vectors of \mathbb{R}^4 endowed with a bilinear form of signature $(2, 2)$.

We are interested in a special class of spacetimes locally modelled on AdS$_3$, introduced by Mess [19], called Globally Hyperbolic Maximal Cauchy-compact (GHMC). This terminology comes from physics and indicates that these spacetimes contain an embedded space-like surface that intersects any inextensible causal curve in exactly one point. From a modern mathematical point of view [8], we can describe these manifolds as being convex co-compact anti-de Sitter manifolds diffeomorphic to $S \times \mathbb{R}$, where S is a closed surface of genus at least 2. This means that, identifying the fundamental group of S with a discrete
subgroup Γ of $\text{Isom}_0(\text{AdS}_3) \cong \mathbb{PSL}(2, \mathbb{R}) \times \mathbb{PSL}(2, \mathbb{R})$ via the holonomy representation $\text{hol} : \pi_1(S) \to \mathbb{PSL}(2, \mathbb{R}) \times \mathbb{PSL}(2, \mathbb{R})$, the group Γ acts properly discontinuously and co-compactly on a convex domain in AdS_3.

We denote by $\mathcal{GH}(S)$ the deformation space of globally hyperbolic maximal Cauchy-compact anti-de Sitter structures on $S \times \mathbb{R}$. It turns out that the holonomy of a GHMC anti-de Sitter manifold into $\mathbb{PSL}(2, \mathbb{R}) \times \mathbb{PSL}(2, \mathbb{R})$ is faithful and discrete in each factor. Moreover, we have a homeomorphism between $\mathcal{GH}(S)$ and the product $T(S) \times T(S)$ of two copies of the Teichmüller space of S [19]. In particular, each simple closed curve $\gamma \in \pi_1(S)$ is sent by the holonomy representation $\rho = (\rho_L, \rho_R)$ to a pair of hyperbolic isometries of \mathbb{H}^2, which preserves a space-like geodesic in the convex domain of discontinuity of ρ in AdS_3, on which $\rho(\gamma)$ acts by translation by

$$\ell_{\rho}(\gamma) = \frac{1}{2}(\ell_{\rho_L}(\gamma) + \ell_{\rho_R}(\gamma)).$$

We will refer to $\ell_{\rho}(\gamma)$ as the translation length of the isometry $\rho(\gamma)$ (see [27]).

We will say that the holonomy $\rho : \pi_1(S) \to \mathbb{PSL}(2, \mathbb{R}) \times \mathbb{PSL}(2, \mathbb{R})$ of a GHMC anti-de Sitter structure is Fuchsian if, up to conjugation, its left and right projections coincide.

1.2 Background on thermodynamical formalism

Let X be a Riemannian manifold. A smooth flow $\phi = (\phi_t)_{t \in \mathbb{R}}$ is Anosov if there is a flow-invariant splitting $TX = E^s \oplus E_0 \oplus E^u$, where E_0 is the bundle parallel to the flow and, for $t \geq 0$, the differential $d\phi_t$ exponentially contracts E^s and exponentially expands E^u. We say that ϕ is topologically transitive if it has a dense orbit.

Given a periodic orbit a for the flow ϕ, we denote by $\ell(a)$ its period. Let $f : X \to \mathbb{R}$ be a positive Hölder function. It is possible [2] to reparametrize the flow ϕ and obtain a new flow ϕ^f with the property that each closed orbit a has period

$$\ell_f(a) := \int_0^{\ell(a)} f(\phi_s(x))ds \quad x \in a.$$

We define

- the topological entropy [4] of f as
 $$h(f) = \limsup_{T \to +\infty} \frac{\log(|R_T(f)|)}{T}$$
 where $R_T = \{ a \text{ closed orbit of } \phi \mid \ell_f(a) \leq T \}$;
- the topological pressure [5] of a Hölder function g (not necessarily positive) as
 $$P(g) = \limsup_{T \to +\infty} \frac{1}{T} \log \left(\sum_{a \in R_T} e^{\ell_f(a)} \right).$$

These two notions are related by the following result:

Lemma 1.1 [25]. Let ϕ be a topologically transitive Anosov flow on X and let $f : X \to \mathbb{R}$ be a positive Hölder function. Then $P(-hf) = 0$ if and only if $h = h(f)$.

Consider then the space

$$\mathcal{P}(X) = \{ f : X \to \mathbb{R} \mid f \text{ Hölder}, \ P(f) = 0 \}$$
and its quotient $\mathcal{H}(X)$ by the equivalence relation that identifies Hölder functions with the same periods. The analytic regularity of the pressure [22,24] allows to define the pressure metric on $T_f \mathcal{P}(X)$ as

$$
\|g\|^2_P = -\frac{d^2}{dt^2} P(f + tg)_{|t=0} - \frac{d}{dt} P(f + tg)_{|t=0}.
$$

Theorem 1.2 [22,24]. Let X be a Riemannian manifold endowed with a topologically transitive Anosov flow. Then the pressure metric on $\mathcal{H}(X)$ is positive definite.

In particular, given a one parameter family of positive Hölder functions $f_t : X \to \mathbb{R}$, the functions $\Phi(t) = -h(f_t)f_t$ describe a path in $\mathcal{P}(X)$ by Lemma 1.1 and $\|\hat{\Phi}\|_P = 0$ if and only if Φ has vanishing periods, hence if and only if $\frac{d}{dt} |_{t=0} h(f_t)\ell_{f_t}(a) = 0$ for every closed orbit a for ϕ.

1.3 Pressure metric on $\mathcal{GH}(S)$

We apply the above theory to the unit tangent bundle $X = T^1 S$ of a hyperbolic surface (S, ρ_0) endowed with its geodesic flow $\phi = \phi^{\rho_0}$. Here, $\rho_0 : \pi_1(S) \to \mathbb{PSL}(2, \mathbb{R})$ is a fixed Fuchsian representation that defines a marked hyperbolic metric on S. We also fix an identification of the universal cover \tilde{S} with \mathbb{H}^2, and, consequently, of the Gromov boundary $\partial_{\infty}\pi_1(S)$ of the fundamental group with S^1. The following facts are well-known from hyperbolic geometry:

Proposition 1.3 [3]. If $\rho, \eta : \pi_1(S) \to \mathbb{PSL}(2, \mathbb{R})$ are two Fuchsian representations, then there is a unique (ρ, η)-equivariant Hölder homeomorphism $\xi_{\rho, \eta} : \partial_{\infty}\mathbb{H}^2 \to \partial_{\infty}\mathbb{H}^2$ that varies analytically in η.

Proposition 1.4 [3]. For every Fuchsian representation η, there is a positive Hölder function $f_\eta : X \to \mathbb{R}$ with period $\ell_{f_\eta}(\gamma)$ coinciding with the hyperbolic length $\ell_\eta(\gamma)$ of the closed geodesic γ for the hyperbolic metric induced by η. Moreover, f_η varies analytically in η.

Corollary 1.5 For every $\rho = (\eta_L, \eta_R) \in \mathcal{GH}(S)$, there exists a positive Hölder function $f_\rho : X \to \mathbb{R}$ such that $\ell_{f_\rho}(\gamma) = \ell_\rho(\gamma)$ for every simple closed curve $\gamma \in \pi_1(S)$.

Proof Recall that $\ell_\rho(\gamma) = \frac{1}{2}(\ell_{\eta_L}(\gamma) + \ell_{\eta_R}(\gamma))$, thus it is sufficient to choose $f_\rho = \frac{1}{2}(f_{\eta_L} + f_{\eta_R})$. Moreover, f_ρ varies analytically in ρ by Proposition 1.4.

We can then introduce the thermodynamic mapping:

$$
\Phi : \mathcal{GH}(S) \to \mathcal{P}(X)
$$

$$
\rho \mapsto -h(f_\rho)f_\rho.
$$

By pulling-back the pressure metric via Φ, we obtain a semi-definite metric on $\mathcal{GH}(S)$, which we still call pressure metric.

Proposition 1.6 The restriction of the pressure metric to the Fuchsian locus in $\mathcal{GH}(S)$ is a constant multiple of the Weil–Petersson metric.

Proof Let $\rho_t = (\eta_t, \eta_t)$ be a path on the Fuchsian locus. Then

$$
\Phi(\rho_t) = -h(f_{\rho_t})f_{\rho_t} = -h(f_{\rho_t})f_{\eta_t} = -f_{\eta_t},
$$

where in the last step we used the fact that the entropy of a Fuchsian representation is 1 [10,29]. Therefore, $d\Phi(\dot{\rho}_0) = -\dot{f}_{\eta_0}$ and the result follows from [18].
Lemma 1.8 The pressure metric on $\mathcal{G}\mathcal{H}(S)$ is degenerate on the Fuchsian locus along pure bending directions.

Proof Let $\rho_t = (\eta_{L,t}, \eta_{R,t})$ be a path in $\mathcal{G}\mathcal{H}(S)$ such that ρ_0 is Fuchsian and $\dot{\rho}_0 = \frac{d}{dt}_{t=0} \rho_t = (v, -v)$ for some $v \in T_{\eta}\mathcal{T}(S)$. By definition of the pressure metric and Theorem 1.2, we have $\|d\Phi(\rho_0)\| = 0$ if and only if $\frac{d}{dt}_{t=0} h(\rho_t) \ell_{\rho_t}(\gamma) = 0$ for every closed geodesic γ on S. By the product rule and the fact that the entropy is maximal and equal to 1 at the Fuchsian locus [7,29], we get

$$\frac{d}{dt}_{t=0} h(\rho_t) \ell_{\rho_t}(\gamma) = \frac{d}{dt}_{t=0} \ell_{\rho_t}(\gamma) = \frac{1}{2} \left(\frac{d}{dt}_{t=0} \ell_{\eta_{L,t}}(\gamma) + \frac{d}{dt}_{t=0} \ell_{\eta_{R,t}}(\gamma) \right) = \frac{1}{2} (d\ell_{\eta_0}(v) + d\ell_{\eta_0}(-v)) = 0.$$

□

Remark 1.9 As remarked in [6], we note that, along a general path $\rho_t \in \mathcal{G}\mathcal{H}(S)$, the condition $\frac{d}{dt}_{t=0} h(\rho_t) \ell_{\rho_t}(\gamma) = 0$ for every closed geodesic γ is equivalent to the existence of a constant $k \in \mathbb{R}$ such that

$$\frac{d}{dt}_{t=0} \ell_{\rho_t}(\gamma) = k \ell_{\rho_0}(\gamma).$$

In fact, $k = -\frac{1}{h(\rho_0)} \frac{d}{dt}_{t=0} h(\rho_t)$.

Lemma 1.10 Let $v \in T_{\rho}\mathcal{G}\mathcal{H}(S)$ be a non-zero vector. If there exists $k \in \mathbb{R}$ such that

$$\frac{d}{dt}_{t=0} \ell_{\rho_t}(\gamma) = k \ell_{\rho_0}(\gamma) \quad (1.1)$$

for every closed geodesic γ, then $k = 0$ or ρ is Fuchsian.

Proof We show that if ρ is not Fuchsian, then k is necessarily 0. The proof follows the line of [6, Lemma 7.4]. Let $v = (v_1, v_2)$ and $\rho_t = (\rho_{1,t}, \rho_{2,t})$. Choose simple closed curves α and β in S. Up to conjugation we can assume that

$$A_i(t) = \rho_{i,t}(\alpha) = \begin{pmatrix} \lambda_i(t) & 0 \\ 0 & \lambda_i(t)^{-1} \end{pmatrix},$$

where we denoted by $\lambda_i(t)$ the largest eigenvalue of the hyperbolic isometry $\rho_{i,t}(\alpha)$. Let

$$B_i(t) = \rho_{i,t}(\beta) = \begin{pmatrix} a_i(t) & b_i(t) \\ c_i(t) & d_i(t) \end{pmatrix}$$

such that $\det(B_i(t)) = 1$ and $\text{tr}(B_i(t)) > 2$. Notice that $b_i(t)c_i(t) \neq 0$ because $B_i(t)$ is hyperbolic and $A_i(t)$ and $B_i(t)$ have different axes. For every $n \geq 0$, we consider the matrices

$$C_{i,n}(t) = A_i^n(t)B_i(t) = \rho_{i,t}(\gamma_n) = \begin{pmatrix} \lambda_i(t)^n a_i(t) & \lambda_i(t)^n b_i(t) \\ \lambda_i(t)^{-n} c_i(t) & \lambda_i(t)^{-n} d_i(t) \end{pmatrix}$$
associated to some closed curves γ_n on S. The eigenvalues $\mu_{i,n}$ of $C_{i,n}(t)$ satisfy
\[
\log(\mu_{i,n}(t)) = n \log(\lambda_i(t)) + \log(a_i(t)) + \lambda_i(t)^{-2n} \left(\frac{a_i(t)d_i(t) - 1}{a_i(t)^2} \right) + O(\lambda_i(t)^{-4n})
\]
as $n \to +\infty$. Applying Eq. (1.1) to the curves γ_n, we obtain
\[
0 = \frac{d}{dt} \bigg|_{t=0} \ell_{\rho_i}(\gamma_n) - k \ell_{\rho_i}(\gamma_n) = n \log(\lambda_1 \lambda_2)' - kn \log(\lambda_1 \lambda_2) + \log(a_1a_2)' - k \log(a_1a_2)
\]
\[
-2n \left[\lambda_1^{-2n-1} \lambda_1' \left(\frac{a_1d_1 - 1}{a_1^2} \right) + \lambda_2^{-2n-1} \lambda_2' \left(\frac{a_2d_2 - 1}{a_2^2} \right) \right] + n \lambda_1^{-2n} \left[\left(\frac{a_1d_1 - 1}{a_1^2} \right)' - k \left(\frac{a_1d_1 - 1}{a_1^2} \right) \right] + n \lambda_2^{-2n} \left[\left(\frac{a_2d_2 - 1}{a_2^2} \right)' - k \left(\frac{a_2d_2 - 1}{a_2^2} \right) \right] + o(\lambda_i^{-2n})
\]
where all derivatives and all functions are intended to be taken and evaluated at $t = 0$. The term $n \log(\lambda_1 \lambda_2)' - kn \log(\lambda_1 \lambda_2)$ vanishes by assumption because
\[
\ell_{\rho_i}(\alpha) = \frac{1}{2} \left(\ell_{\rho_{i,t}}(\alpha) + \ell_{\rho_{2,t}}(\alpha) \right) = \log(\lambda_i(t)\lambda_2(t))
\]
and Eq. (1.1) holds for the curves α. Taking the limit of the above expression as $n \to +\infty$, we deduce that $\log(a_1a_2)' - k \log(a_1a_2) = 0$. Because ρ is not Fuchsian, we can assume to have chosen α and β so that $\lambda_1(0) > \lambda_2(0)$. Then if we multiply the equation above by $\frac{\lambda_1' n}{2}$ and take the limit as $n \to +\infty$, we deduce that $\lambda_1' = 0$. Similarly, multiplying by $\frac{\lambda_2' n}{2}$, we find that $\lambda_2' = 0$. Therefore,
\[
\frac{d}{dt} \bigg|_{t=0} \ell_{\rho_i}(\alpha) = \frac{d}{dt} \bigg|_{t=0} \log(\lambda_i(t)\lambda_2(t)) = 0,
\]
hence $k = 0$.

Theorem 1.11 Let $v = (v_L, v_R) \in T_pG\mathcal{H}(S)$ be a non-zero tangent vector such that $\|d\Phi(v)\| = 0$. Then ρ is Fuchsian and v is a pure bending direction.

Proof Let ρ_t be a path in $G\mathcal{H}(S)$ such that $\rho_0 = \rho$ and ρ_t is tangent to v. If $\rho = (\eta, \eta)$ is Fuchsian, then, combining Remark 1.9 with the fact that the entropy is maximal and equal to 1 at the Fuchsian locus, we get
\[
0 = \frac{d}{dt} \bigg|_{t=0} h(\rho_t)\ell_{\rho}(\gamma) = \frac{d}{dt} \bigg|_{t=0} \ell_{\rho_i}(\gamma)
\]
for every simple closed geodesic γ in S. Therefore,
\[
0 = \frac{d}{dt} \bigg|_{t=0} \ell_{\rho_i}(\gamma) = \frac{1}{2} (d\ell_{\eta}(\gamma)(v_L) + d\ell_{\eta}(\gamma)(v_R))
\]
from which we deduce that $v_R = -v_L$, because $\{d\ell_{\eta}(\gamma)\}_{\gamma}$ generates $T_{\eta}^*\mathcal{T}(S)$. Hence, v is a pure-bending direction.
We are thus left to show that ρ is necessarily Fuchsian. Suppose it is not and denote with $\rho_L \neq \rho_R$ the projections of ρ. By the previous lemma

$$\ell'_\rho(\gamma) = \frac{d}{dt}_{|t=0} \ell_\rho(t) = 0$$

for every simple closed geodesic γ in S. Moreover, we have shown in the proof of Lemma 1.10 that if $\ell_{\rho_L}(\gamma) \neq \ell_{\rho_R}(\gamma)$ then $\ell'_{\rho_L}(\gamma) = \ell'_{\rho_R}(\gamma) = 0$. Otherwise, $\ell'_{\rho_L}(\gamma) = -\ell'_{\rho_R}(\gamma)$.

Exploiting the isomorphism $\mathbb{P}SL(2, \mathbb{R}) \times \mathbb{P}SL(2, \mathbb{R}) \cong SO_0(2, 2)$, we find that the matrix $\rho_t(\gamma)$ is conjugated to

$$\exp\left(\frac{1}{2} \text{diag}(\ell_{\rho_L}, \ell_{\rho_R}, \ell_{\rho_L}, -\ell_{\rho_R}, -\ell_{\rho_L}, -\ell_{\rho_R})\right),$$

thus

$$d\text{tr}(\rho(\gamma))(v) = \frac{d}{dt}_{|t=0} \text{tr}(\rho_t(\gamma)) = 0$$

for every simple closed geodesic γ. Because ρ is generic in the sense of [2, Proposition 10.3], i.e. there exists an element $\gamma_0 \in \pi_1(S)$ such that $\rho(\gamma_0)$ is diagonalizable with different eigenvalues, the differentials of traces $\{d\text{tr}(\rho(\gamma))\}_\gamma$ generate $T^*_\rho \mathcal{H}(S)$ and we must have $v = 0$.

2 A non-degenerate Riemannian metric on $\mathcal{H}(S)$

In this section we define a non-degenerate Riemannian metric on $\mathcal{H}(S)$ following Li’s construction [13] for the $SL(3, \mathbb{R})$-Hitchin component.

2.1 Preliminaries

In this section we identify $\mathcal{H}(S)$ with a connected component of the space of representations $\text{Hom}(\pi_1(S), SO_0(2, 2))/SO_0(2, 2)$ via the holonomy map. Recall that by Mess’ parametrization [19], this component is smooth and diffeomorphic to $T(S) \times T(S)$. This allows to identify the tangent space $T_\rho \mathcal{H}(S)$ at $\rho \in \mathcal{H}(S)$ with the cohomology group $H^1(S, \mathfrak{s}_0(2, 2)_{\text{Ad}_\rho})$, where $\mathfrak{s}_0(2, 2)_{\text{Ad}_\rho}$ denotes the flat $\mathfrak{s}_0(2, 2)$ bundle over S with holonomy Ad_ρ. Explicitly,

$$\mathfrak{s}_0(2, 2)_{\text{Ad}_\rho} = (\tilde{\mathfrak{s}} \times \mathfrak{s}_0(2, 2))/\sim$$

where $(\tilde{x}, v) \sim (\gamma \tilde{x}, \text{Ad}_\rho(\gamma)(v))$ for any $\gamma \in \pi_1(S)$, $x \in \tilde{\mathfrak{s}}$ and $v \in \mathfrak{s}_0(2, 2)$.

In order to define a Riemannian metric on $\mathcal{H}(S)$ it is thus sufficient to introduce a non-degenerate scalar product on $H^1(S, \mathfrak{s}_0(2, 2)_{\text{Ad}_\rho})$. Let us assume for the moment that we have chosen an inner product ι on the bundle $\mathfrak{s}_0(2, 2)_{\text{Ad}_\rho}$ and a Riemannian metric h on S. A Riemannian metric in cohomology follows then by standard Hodge theory that we recall briefly here. The Riemannian metric h and the orientation on S induce a scalar product $\langle \cdot, \cdot \rangle$ on the space $\mathcal{A}^p(S)$ of p-forms on S, which allows to define a Hodge star operator

$$\star : \mathcal{A}^p(S) \to \mathcal{A}^{2-p}(S)$$

by setting

$$\alpha \wedge (\star \beta) = \langle \alpha, \beta \rangle_h dA_h.$$
This data gives a bi-linear pairing \tilde{g} in the space of $so_0(2,2)_{Ad_\rho}$-valued 1-forms as follows:

$$\tilde{g}(\sigma \otimes \phi, \sigma' \otimes \phi') = \int_S \iota(\phi, \phi')_{\sigma} \wedge (\ast \sigma'),$$

where $\sigma, \sigma' \in \mathcal{A}^1(S)$ and ϕ, ϕ' are sections of $so_0(2,2)_{Ad_\rho}$.

Given $\rho \in \mathcal{G}\mathcal{H}(S)$, we denote by ρ^* the contragradient representation (still into $SO_0(2,2)$) defined by $(\rho^*(\gamma)L)(v) = L(\rho^{-1}(\gamma)v)$ for every $v \in \mathbb{R}^4$ and $L \in \mathbb{R}^{4*} = \text{Hom}(\mathbb{R}^4, \mathbb{R})$. The flat bundle $so_0(2,2)_{Ad_\rho^*}$ is dual to $so_0(2,2)_{Ad_\rho}$ and the inner product ι induces an isomorphism [23]

$$\#: so_0(2,2)_{Ad_\rho} \rightarrow so_0(2,2)_{Ad_\rho^*}$$

defined by setting

$$(#A)(B) = \iota(A, B)$$

for $A, B \in so_0(2,2)$. This extends naturally to an isomorphism

$$\#: \mathcal{A}^P(S, so_0(2,2)_{Ad_\rho}) \rightarrow \mathcal{A}^P(S, so_0(2,2)_{Ad_\rho^*}).$$

Consequently, we can introduce a coboundary map

$$\delta : \mathcal{A}^P(S, so_0(2,2)_{Ad_\rho}) \rightarrow \mathcal{A}^{P-1}(S, so_0(2,2)_{Ad_\rho})$$

by setting $\delta = -(#)^{-1} \ast^{-1} d \ast #$, and then a Laplacian operator

$$\Delta : \mathcal{A}^P(S, so_0(2,2)_{Ad_\rho}) \rightarrow \mathcal{A}^P(S, so_0(2,2)_{Ad_\rho})$$

given by $\Delta = d\delta + \delta d$. A 1-form ξ is said to be harmonic if $\Delta \xi = 0$, or, equivalently, if $d\xi = \delta \xi = 0$. We have an orthogonal decomposition

$$\mathcal{A}^1(S, so_0(2,2)_{Ad_\rho}) = \text{Ker}(\Delta) \oplus \text{Im}(d) \oplus \text{Im}(\delta)$$

and by the non-abelian Hodge theory [23] every cohomology class contains a unique harmonic representative. Therefore, the bi-linear pairing \tilde{g} induces a scalar product in cohomology by setting

$$g : H^1(S, so_0(2,2)_{Ad_\rho}) \times H^1(S, so_0(2,2)_{Ad_\rho}) \rightarrow \mathbb{R}$$

$$([\alpha], [\beta]) \mapsto \tilde{g}(\alpha_{\text{harm}}, \beta_{\text{harm}}),$$

where α_{harm} and β_{harm} are the harmonic representatives of α and β.

2.2 Definition of the metric

As explained before, in order to define a Riemannian metric on $\mathcal{G}\mathcal{H}(S)$ it is sufficient to define a Riemannian metric h on S and a scalar product ι on $so_0(2,2)_{Ad_\rho}$.

Let us begin with the metric h on S. Given $\rho \in \mathcal{G}\mathcal{H}(S)$, we denote by M_ρ the unique GHMC anti-de Sitter manifold with holonomy ρ, up to isotopy. It is well-known that M_ρ contains a unique embedded maximal (i.e. with vanishing mean curvature) surface Σ_ρ [1]. A natural choice for h is thus the induced metric on Σ_ρ.

As for the scalar product ι, we first introduce a scalar product in \mathbb{R}^4 that is closely related to the maximal surface and its induced metric. Lifting the surface Σ_ρ to the universal cover, we can find a ρ-equivariant maximal embedding $\tilde{\sigma} : \tilde{S} \rightarrow \tilde{\text{AdS}}_3 \subset \mathbb{R}^4$, where $\tilde{\text{AdS}}_3$ denotes the double cover of AdS_3 consisting of unit time-like vectors in \mathbb{R}^4 endowed with a bi-linear
form of vectors $u_1(\tilde{x})$ and $u_2(\tilde{x})$ to the surface at $\tilde{\sigma}(\tilde{x})$, the time-like unit normal vector $N(\tilde{x})$ at $\tilde{\sigma}(\tilde{x})$ and the position vector $\tilde{\sigma}(x)$. We can define a scalar product $\iota_{\tilde{x}}$ on \mathbb{R}^4 depending on the point $\tilde{x} \in \hat{S}$ by declaring the frame $\{u_1(\tilde{x}), u_2(\tilde{x}), \tilde{\sigma}(x), N(\tilde{x})\}$ to be orthonormal for $\iota_{\tilde{x}}$.

Because $so_0(2, 2) \subset gl(4, \mathbb{R}) \cong \mathbb{R}^4 \times \mathbb{R}^4$, the inner product $\iota_{\tilde{x}}$ induces an inner product on $so_0(2, 2)$ and, consequently, on the trivial bundle $\hat{S} \times so_0(2, 2)$ over \hat{S}. This descends to a metric ι on $so_0(2, 2)_{Ad\rho}$ by setting

$$\iota_p(\phi, \phi') := \iota_{\tilde{x}}(\tilde{\phi} \tilde{x}, \tilde{\phi}' \tilde{x})$$

where $p \in \bar{S}$, $\pi : \hat{S} \rightarrow S$ is the natural projection and $\tilde{\phi}, \tilde{\phi}'$ are lifts of ϕ, ϕ' to the trivial bundle $\hat{S} \times so_0(2, 2)$ evaluated at \tilde{x}. Because $\iota_{\tilde{x}}$ is ρ-equivariant, it is easy to check (see [13]) that ι_p does not depend on the choice of $\tilde{x} \in \pi^{-1}(p)$ and thus ι is a well-defined metric on the flat bundle $so_0(2, 2)_{Ad\rho}$.

The following lemma is useful for computations with this metric:

Lemma 2.1 [13]. Assume that we have a matrix representation H of the inner product $\iota_{\tilde{x}}$ at a point $\tilde{x} \in \pi^{-1}(p)$ with respect to the canonical basis of \mathbb{R}^4. Then

$$\iota_p(A, B) = \text{tr}(A^t H^{-1} B H) \quad \text{for } A, B \in so_0(2, 2).$$

2.3 Restriction to the Fuchsian locus

In order to compute the restriction of the metric g to the Fuchsian locus, we need to understand the induced metric on the equivariant maximal surface and find a matrix representation of the inner product ι.

If $\rho \in \mathcal{H}(S)$ is Fuchsian, the representation preserves a totally geodesic space-like plane in AdS_3. Realizing explicitly (the double cover of) anti-de Sitter space as

$$\widehat{AdS}_3 = \{ x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 - x_3^2 - x_4^2 = -1 \},$$

we can assume, up to post-composition by an isometry, that ρ preserves the hyperboloid

$$\mathcal{H} = \{ x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 - x_3^2 = 1, x_4 = 0 \},$$

which is isometric to the hyperbolic plane $\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \}$: an explicit isometry [13] being

$$f : \mathbb{H}^2 \rightarrow \mathcal{H} \subset \mathbb{R}^4 \quad \quad (x, y) \mapsto \left(\frac{x}{y} \cdot \frac{x^2 + y^2 - 1}{2y}, \frac{x^2 + y^2}{2y}, 0 \right).$$

The representation $\rho : \pi_1(S) \rightarrow \text{SO}_0(2, 2)$ factors then through the standard copy of $\text{SO}_0(2, 1)$ inside $\text{SO}_0(2, 2)$, which is isomorphic to $\mathbb{P}SL(2, \mathbb{R})$ via the map [12]

$$\Phi : \mathbb{P}SL(2, \mathbb{R}) \rightarrow \text{SO}_0(2, 1) \subset \text{SO}_0(2, 2) \quad \quad (a \ b) \mapsto \left(\begin{array}{ccc} ad + bc & ac - bd & 0 \\ ad - cd & a^2 - b^2 - c^2 + d^2 & a^2 + b^2 - c^2 - d^2 \\ ab + cd & a^2 - b^2 + c^2 - d^2 & a^2 + b^2 + c^2 + d^2 \end{array} \right).$$
The map Φ induces a Lie algebra homomorphism, still denoted by Φ, given by
\[
\Phi : \mathfrak{sl}(2, \mathbb{R}) \rightarrow \mathfrak{so}_0(2, 2)
\]
by declaring the frame
\[
\begin{pmatrix}
a & b \\ c & -a
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & c - b & c + b & 0 \\ b - c & 0 & 2a & 0 \\ b + c & 2a & 0 & 0 \\ 0 & 0 & 0 & 0
\end{pmatrix}
\]
(2.5)

It follows that if $\rho(\pi_1(S)) = \Gamma < SO_0(2, 2)$, then the maximal surface Σ_ρ is realized by \mathcal{H}/Γ and is isometric to the hyperbolic surface $\mathbb{H}^2/\Phi^{-1}(\Gamma)$.

Let us now turn our attention to the scalar product ι on $\mathfrak{so}_0(2, 2)_{\text{Ad} \rho}$. Recall that ι is determined by a family of inner products ι_Σ on \mathbb{R}^4 depending on $\Sigma \in \hat{S}$, which is obtained by declaring the frame $\{u_1(\Sigma), u_2(\Sigma), v(\Sigma), N(\Sigma)\}$ orthonormal. If we identify the universal cover of \hat{S} with \mathbb{H}^2, the map f gives an explicit ρ-equivariant maximal embedding of \hat{S} into Ad_S^3. Therefore, the coordinates of the vectors tangent and normal to the embedding with respect to the canonical basis of \mathbb{R}^4 can be explicitly computed and the following matrix representation H of ι_Σ can be obtained for any $z \in \mathbb{H}^2$ [13, Corollary 6.5]:
\[
H = \begin{pmatrix}
\frac{2x^2}{y^2} + 1 & \frac{x(x^2+y^2-1)}{y^2} & \frac{-x(x^2+y^2+1)}{y^2} & 0 \\
-x(x^2+y^2-1)(x^2+y^2+1) & \frac{2x^2}{y^2} + 1 & \frac{x^2+y^2-1)(x^2+y^2+1)}{2y^2} & 0 \\
-x^2 & \frac{2x^2}{y^2} & \frac{x^2+y^2-1)(x^2+y^2+1)}{2y^2} & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

with
\[
H^{-1} = \begin{pmatrix}
\frac{2x^2}{y^2} + 1 & \frac{x(x^2+y^2-1)}{y^2} & \frac{x(x^2+y^2+1)}{y^2} & 0 \\
-x(x^2+y^2-1)(x^2+y^2+1) & \frac{2x^2}{y^2} + 1 & \frac{x^2+y^2-1)(x^2+y^2+1)}{2y^2} & 0 \\
-x^2 & \frac{2x^2}{y^2} & \frac{x^2+y^2-1)(x^2+y^2+1)}{2y^2} & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Together with Lemma 2.1 we obtain the following:

Corollary 2.2 [13]. For any $z \in \mathbb{H}^2$, after extending the definition of Lemma 2.1 to $A, B \in \mathfrak{so}(4, \mathbb{C})$ by $\iota_\Sigma(A, B) = \text{tr}(A^t H^{-1} B H)$, we have
\[
\iota_\Sigma \left(\Phi \begin{pmatrix} -z \\ -1 \\ z^2 \\ z \end{pmatrix} , \Phi \begin{pmatrix} -z \\ -1 \\ z^2 \\ z \end{pmatrix} \right) = 16y^2 .
\]

The last ingredient we need in order to describe the restriction of g to the Fuchsian locus is an explicit realization of the tangent space to the Fuchsian locus inside $T \mathcal{G} \mathcal{H}(S)$.

Lemma 2.3 Let $\rho \in \mathcal{G} \mathcal{H}(S)$ be a Fuchsian representation.

(i) The tangent space at ρ to the Fuchsian locus is spanned by the cohomology class of $\phi(z) dz \otimes \Phi \begin{pmatrix} -z \\ -1 \\ z^2 \\ z \end{pmatrix}$, where $\phi(z) dz^2$ is a holomorphic quadratic differential on Σ_ρ.

(ii) the $\mathfrak{so}_0(2, 2)_{\text{Ad} \rho}$-valued 1-forms $\phi(z) dz \otimes \Phi \begin{pmatrix} -z \\ -1 \\ z^2 \\ z \end{pmatrix}$ are harmonic representatives in their own cohomology class.
Proof (i) Let $\rho' = \Phi^{-1}(\rho)$ be the corresponding Fuchsian representation in $\mathbb{P}SL(2, \mathbb{R})$.

The claim follows from the fact [11] that the tangent space to Teichmüller space is generated by the $\mathfrak{sl}(2, \mathbb{R})_{Ad\rho'}$-valued 1-forms $\phi(z)dz \otimes \begin{pmatrix} -z & z^2 \\ -1 & z \end{pmatrix}$ and thus the tangent space to the Fuchsian locus is generated by the inclusion of $H^1(S, \mathfrak{sl}(2, \mathbb{R})_{Ad\rho})$ induced by the map Φ.

(ii) We need to show that $\phi(z)dz \otimes \Phi \begin{pmatrix} -z & z^2 \\ -1 & z \end{pmatrix}$ is d-closed and δ-closed. The first fact has been proved in [13, Lemma 6.6]. As for δ-closedness, we will follow the lines of the aforementioned lemma. From the definition of δ, it is enough to show that $d \ast (#(\phi(z)dz \otimes \Phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix})) = 0$. By linearity

$$
#(\phi(z)dz \otimes \Phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) = z^2 \phi(z)dz \otimes \Phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \phi(z)dz \otimes \Phi \begin{pmatrix} 0 & 0 \\ 1/2 & -1/2 \end{pmatrix} - 2z\phi(z)dz \otimes \Phi \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}.
$$

We then want to calculate $#\Phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $#\Phi \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $#\Phi \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$.

We choose a basis for $\mathfrak{so}(2, 2)$ given by

$$
E_1 = \Phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
E_2 = \Phi \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
E_3 = \Phi \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
E_4 = \Phi \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix},
E_5 = \Phi \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix},
E_6 = \Phi \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}.
$$

The map $# : \mathfrak{so}(2, 2)_{Ad\rho} \to \mathfrak{so}(2, 2)_{Ad\rho^*}$ is defined by setting

$$
(#A)(B) = \iota(A, B)
$$

thus

$$
#A = \sum_{i=1}^{6} \iota(A, E_i) E_i^*,
$$

where E_i^* satisfies

$$
E_i^*(E_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}.
$$

Applying Lemma 2.1 to compute $\iota(E_i, E_j)$, we obtain the following

$$
#E_1 = \frac{4}{y^2} (E_1^* - x^2 E_3^* + x E_2^*)
$$
Theorem 2.4 The metric g on $\tilde{\mathcal{M}}$ where here we are extending $\tilde{\mathcal{M}}$ to an isometry of (\mathcal{N}, g).

Proof By Lemma 2.3, it is sufficient to show that $\phi(z)dz \otimes \Phi \left(\begin{matrix} -z \\ z^2 \\ -1 \\ z \end{matrix} \right)$ is d-closed and δ-closed, hence it is harmonic.

We can finally prove one of the main results of the section:

Theorem 2.4 The metric g on $\mathcal{G}\mathcal{H}(S)$ restricts on the Fuchsian locus to a constant multiple of the Weil–Petersson metric on Teichmüller space.

Proof By Lemma 2.3, it is sufficient to show that

$$\tilde{g} \left(\phi(z)dz \otimes \Phi \left(\begin{matrix} -z \\ z^2 \\ -1 \\ z \end{matrix} \right), \psi(z)dz \otimes \Phi \left(\begin{matrix} -z \\ z^2 \\ -1 \\ z \end{matrix} \right) \right) = \langle \phi, \psi \rangle_{WP},$$

where here we are extending \tilde{g} to an hermitian metric on the space of $so(4, \mathbb{C})_{Ad,\rho}$-valued 1-forms. From the definition of \tilde{g} and Corollary 2.2 we have

$$\tilde{g} \left(\phi(z)dz \otimes \Phi \left(\begin{matrix} -z \\ z^2 \\ -1 \\ z \end{matrix} \right), \psi(z)dz \otimes \Phi \left(\begin{matrix} -z \\ z^2 \\ -1 \\ z \end{matrix} \right) \right) = \Re \left(\int_S \phi(z)dz \wedge \psi(z)dz \right),$$

$$= \Re \left(\int_S 16i \phi(z)\psi(z) y^2 dz \wedge d\tilde{z} \right),$$

$$= 32 \langle \phi, \psi \rangle_{WP}.$$
of $G\mathcal{H}(S)$ as $T(S) \times T(S)$, there is a natural involution that swaps left and right representations, thus fixing pointwise the Fuchsian locus. Identifying $\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R})$ with $\text{SO}_0(2, 2)$, this corresponds to conjugation by $Q = \text{diag}(-1, -1, 1, -1) \in O(2, 2)$. Therefore, we introduce the map

$$q : G\mathcal{H}(S) \to G\mathcal{H}(S)$$

$$\rho \mapsto Q\rho Q^{-1}$$

and show that this is an isometry for the metric g.

We first need to compute the induced map in cohomology

$$q_* : H^1(S, \mathfrak{so}_0(2, 2)_{Ad\rho}) \to H^1(S, \mathfrak{so}_0(2, 2)_{Adq(\rho)})$$

It is well-known (see e.g. [11]) that a tangent vector to a path of representations ρ_t is a 1-cocycle, that is a map $u : \pi_1(S) \to \mathfrak{so}_0(2, 2)$ satisfying

$$u(\gamma \gamma') - u(\gamma') = \text{Ad}(\rho(\gamma))u(\gamma')\,.$$

It is then clear that, if u is a 1-cocycle tangent to ρ, then QuQ^{-1} is a 1-cocycle tangent to $q(\rho)$. A 1-cocycle represents a cohomology class in $H^1(\pi_1(S), \mathfrak{so}_0(2, 2))$ which is isomorphic to $H^1(S, \mathfrak{so}_0(2, 2)_{Ad\rho})$ via

$$H^1(S, \mathfrak{so}_0(2, 2)_{Ad\rho}) \to H^1(\pi_1(S), \mathfrak{so}_0(2, 2))$$

$$[\sigma \otimes \phi] \mapsto u_{\sigma \otimes \phi} : \gamma \mapsto \int_\gamma \sigma \otimes \phi.$$

Lemma 2.5 For any $\sigma \in A^1(S)$ and for any section ϕ of $\mathfrak{so}_0(2, 2)_{Ad\rho}$, we have

$$q_*[\sigma \otimes \phi] = [\sigma \otimes Q\phi Q^{-1}]$$

Proof It is sufficient to show that $u_{\sigma \otimes Q\phi Q^{-1}} = Qu_{\sigma \otimes \phi} Q^{-1}$. This follows because, for any $\gamma \in \pi_1(S)$

$$\int_\gamma \sigma \otimes Q\phi Q^{-1} = Q \left(\int_\gamma \sigma \otimes \phi \right) Q^{-1}.$$

By an abuse of notation, we will still denote by q_* the map induced by q at the level of $\mathfrak{so}_0(2, 2)_{Ad\rho}$-valued 1-forms. Our next step is to show that q_* preserves the metric \tilde{g}.

Lemma 2.6 For any $\sigma, \sigma' \in A^1(S)$ and for any sections ϕ and ϕ' of $\mathfrak{so}_0(2, 2)_{Ad\rho}$, we have

$$\tilde{g}(q_*(\sigma \otimes \phi), q_*(\sigma' \otimes \phi')) = \tilde{g}(\sigma \otimes \phi, \sigma \otimes \phi').$$

Proof Given $\rho \in G\mathcal{H}(S)$, we denote by M_ρ the GHMC anti-de Sitter manifold with holonomy ρ. Because M_ρ and $M_{Q\rho Q^{-1}}$ are isometric via the map induced in the quotients by $Q : \text{Ad}\hat{S}_3 \to \text{Ad}\hat{S}_3$, the minimal surfaces Σ_ρ and $\Sigma_{Q\rho Q^{-1}}$ are isometric as well. In particular, their induced metrics h and h^Q coincide on every $\tilde{x} \in \tilde{S}$. Moreover, if $\tilde{\sigma} : \tilde{S} \to \text{Ad}\hat{S}_3$ is the ρ-equivariant maximal embedding, then $Q\tilde{\sigma}$ is $Q\rho Q^{-1}$-equivariant and still maximal. We deduce that if H is a matrix representation of the ρ-equivariant inner product $\iota_\tilde{x}$ on $\tilde{S} \times \mathfrak{so}_0(2, 2)$, then $H^Q = Q^t HQ$ is the matrix representation of the $Q\rho Q^{-1}$-equivariant
inner product $\iota^q_{\tilde{\chi}}$. Therefore, noting that $Q = Q' = Q^{-1}$, for any ϕ and ϕ' sections of $\mathfrak{s}0_0(2, 2)_{\text{Ad}_p}$ and for any $p \in S$, we have

$$
\iota_p(\phi, \phi') = \iota(\phi, \phi') = \text{tr}(A^i H^{-1} B H) \quad \text{by Lemma 2.1}
$$

$$
= \text{tr}(Q'(Q')^{-1} A^i Q Q^{-1} H_1^{-1} Q'(Q')^{-1} Q B Q^{-1} Q(Q')^{-1} Q' H Q Q^{-1})
$$

$$
= \text{tr}((q_*(A))^t (H^q)^{-1} q_*(B) H^q Q^{-1})
$$

$$
= \text{tr}((q_*(A))^t (H^q)^{-1} q_*(B) H^q Q^{-1})
$$

$$
= \iota^q_{\tilde{\chi}}(q_*(A), q_*(B)) = \iota^q_0(q_*(\phi), q_*(\phi')) \quad \text{by Lemma 2.5.}
$$

We can now compute

$$
\tilde{g}((\sigma \otimes \phi, \sigma' \otimes \phi')) = \int_S \iota(\phi, \phi') \sigma \wedge (*\sigma')
$$

$$
= \int_S \iota(\phi, \phi')(\sigma, \sigma')_h dA_h
$$

$$
= \int_S \iota^q(q_*(\phi), q_*(\phi'))(\sigma, \sigma')_h dA_h
$$

$$
= \tilde{g}(q_*(\sigma \otimes \phi), q_*(\sigma' \otimes \phi'))
$$

which shows that q_* is an isometry for the Riemannian metrics on the bundles $A^1(S, \mathfrak{s}0_0(2, 2)_{\text{Ad}_p})$ and $A^1(S, \mathfrak{s}0_0(2, 2)_{\text{Ad}_{q(\rho)}})$.

In order to conclude that $q : \mathcal{G}(\mathbb{H}(S)) \rightarrow \mathcal{G}(\mathbb{H}(S))$ is an isometry for g, it is sufficient now to show that the map q_* preserves harmonicity of forms.

Lemma 2.7 The map $q_* : H^1(S, \mathfrak{s}0_0(2, 2)_{\text{Ad}_p}) \rightarrow H^1(S, \mathfrak{s}0_0(2, 2)_{\text{Ad}_{q(\rho)}})$ sends harmonic forms to harmonic forms.

Proof Let $\sum_i \sigma_i \otimes \phi_i$ be the harmonic representative in its cohomology class. This is equivalent to saying that $d(\sum_i \sigma_i \otimes \phi_i) = 0$ and $\delta(\sum_i \sigma_i \otimes \phi_i) = 0$. We need to show that these imply $d(\sum_i \sigma_i \otimes Q\phi_i Q^{-1}) = 0$ and $\delta(\sum_i \sigma_i \otimes Q\phi_i Q^{-1}) = 0$, as well.

The condition $d(\sum_i \sigma_i \otimes Q\phi_i Q^{-1}) = 0$ easily follows by linearity of d.

As for δ-closedness, by definition of δ, we have $\delta(\sum_i \sigma_i \otimes \phi_i) = 0$ if and only if $d * \#(\sum_i \sigma_i \otimes \phi_i) = d * (\sum_i \sigma_i \otimes \#\phi_i) = 0$. Let us denote by $\#^q$ the analogous operator defined on $\mathfrak{s}0_0(2, 2)_{\text{Ad}_{q(\rho)}}$-valued 1-forms. Let $\{E_j\}_{j=1}^6$ be the basis of $\mathfrak{s}0_0(2, 2)$ introduced in the proof of Lemma 2.3 and denote by $\{E_j^*\}_{j=1}^6$ its dual. By definition of $\#$ and $\#^q$ we have

$$
\# A = \sum_{j=1}^6 \iota(A, E_j) E_j^* \quad \text{and} \quad \#^q A = \sum_{j=1}^6 \iota^q(A, E_j) E_j^*,
$$

where, as in Lemma 2.6, we denoted by ι^q the inner product on $\mathfrak{s}0_0(2, 2)_{\text{Ad}_{q(\rho)}}$. Hence, $d * (\sum_i \sigma_i \otimes \#\phi_i) = 0$ if and only if

$$
d * \left(\sum_i \sigma_i \otimes \sum_{j=1}^6 \iota(\phi_i, E_j) E_j^*\right) = 0,
$$

\[\square\]
which implies that
\[d^{*} \left(\sum_{i} \sigma_{i} \iota(\phi_{i}, E_{j}) \right) = 0 \quad \text{for every } j = 1, \ldots, 6. \quad (2.7) \]

Therefore, using that \(\iota^{q} (QAQ^{-1}, QBQ^{-1}) = \iota(A, B) \) for every \(A, B \in \mathfrak{so}(2, 2) \), we have
\[
\begin{align*}
 d^{*} \left(\sum_{i} \sigma_{i} \otimes \#^{q} Q \phi_{i} Q^{-1} \right) &= d^{*} \left(\sum_{i} \sigma_{i} \otimes \sum_{j=1}^{6} \iota^{q}(Q \phi_{i} Q^{-1}, E_{j} E_{j}^{*}) \right) \\
 &= d^{*} \left(\sum_{i} \sigma_{i} \otimes \sum_{j=1}^{6} \iota^{q}(Q \phi_{i} Q^{-1}, Q Q^{-1} E_{j} Q Q^{-1}) E_{j}^{*} \right) \\
 &= d^{*} \left(\sum_{i} \sigma_{i} \otimes \sum_{j=1}^{6} \iota(\phi_{i}, Q^{-1} E_{j} Q) E_{j}^{*} \right).
\end{align*}
\]

A straightforward computation shows that
\[
Q^{-1} E_{1} Q = -E_{3} \quad Q^{-1} E_{2} Q = -E_{2} \quad Q^{-1} E_{3} Q = -E_{1} \\
Q^{-1} E_{4} Q = E_{4} \quad Q^{-1} E_{5} Q = E_{5} \quad Q^{-1} E_{6} Q = -E_{6}
\]
thus \(d^{*} (\sum_{i} \sigma_{i} \otimes \sum_{j=1}^{6} \iota(\phi_{i}, Q^{-1} E_{j} Q) E_{j}^{*}) = 0 \), because, up to a sign, the coefficients of \(E_{j}^{*} \) coincide with those in Eq. \((2.7)\) for \(j \neq 1, 3 \) and the coefficient of \(E_{1}^{*} \) is swapped with that of \(E_{3}^{*} \) in Eq. \((2.7)\). Hence, \(d^{*} \#(\sum_{i} \sigma_{i} \otimes Q \phi_{i} Q^{-1}) = 0 \), and then \(\delta(\sum_{i} \sigma_{i} \otimes Q \phi_{i} Q^{-1}) = 0 \), as required. \(\square \)

Combining the above result with Lemma 2.6, by definition of the metric \(g \) on \(\mathcal{GH}(S) \) we obtain the following:

Theorem 2.8 The map \(g : \mathcal{GH}(S) \to \mathcal{GH}(S) \) is an isometry for \(g \). In particular, the Fuchsian locus, which is pointwise fixed by \(g \), is totally geodesic.

Acknowledgements The author acknowledges support from the National Science Foundation through grant DMS-2005501.

References

1. Barbot, T., Béguin, F., Zeghib, A.: Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on \(\text{AdS}_3 \). Geom. Dedicata. **126**, 71–129 (2007)
2. Bridgeman, M., Canary, R., Labourie, F., Sambarino, A.: The pressure metric for Anosov representations. Geom. Funct. Anal. **25**(4), 1089–1179 (2015)
3. Bridgeman, M., Canary, R., Sambarino, A.: An introduction to pressure metrics for higher Teichmüller spaces. Ergod. Theory Dyn. Syst. **38**(6), 2001–2035 (2018)
4. Bowen, R.: Periodic orbits for hyperbolic flows. Am. J. Math. **94**, 1–30 (1972)
5. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. **29**(3), 181–202 (1975)
6. Bridgeman, M.: Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space. Geom. Topol. **14**(2), 799–831 (2010)
7. Collier, B., Tholozan, N., Toulisse, J.: The geometry of maximal representations of surface groups into \(\text{SO}_0(2, n) \). Duke Math. J. **168**(15), 2873–2949 (2019)
8. Danciger, J., Guérin, F., Kassel, F.: Convex cocompactness in pseudo-Riemannian hyperbolic spaces. Geom. Dedicata **192**, 87–126 (2018)

\(\odot \) Springer
9. Dumas, D., Wolf, M.: Polynomial cubic differentials and convex polygons in the projective plane. Geom. Funct. Anal. 25(6), 1734–1798 (2015)
10. Glorieux, O., Monclair, D.: Critical exponent and Hausdorff dimension for quasi-fuchsian AdS manifolds (2016). arXiv:1606.05512
11. Goldman, W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200–225 (1984)
12. Kim, I., Zhang, G.: Kähler metric on the space of convex real projective structures on surface. J. Differ. Geom. 106(1), 127–137 (2017)
13. Li, Q.: Teichmüller space is totally geodesic in Goldman space. Asian J. Math. 20(1), 21–46 (2016)
14. Loftin, J.C.: The compactification of the moduli space of convex \(\mathbb{RP}^2 \) surfaces. I. J. Differ. Geom. 68(2), 223–276 (2004)
15. Loftin, J.: Flat metrics, cubic differentials and limits of projective holonomies. Geom. Dedicata 128, 97–106 (2007)
16. Loftin, J.: Convex \(\mathbb{RP}^2 \) structures and cubic differentials under neck separation. J. Differ. Geom. 113(2), 315–383 (2019)
17. Loftin, J., Zhang, T.: Coordinates on the augmented moduli space of convex \(\mathbb{RP}^2 \) structures (2018). arXiv:1812.11389
18. McMullen, C.T.: Thermodynamics, dimension and the Weil–Petersson metric. Invent. Math. 173(2), 365–425 (2008)
19. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)
20. Ouyang, C., Tamburelli, A.: Limits of Blaschke metrics. Duke Math. J. (2019). arXiv:1911.02119 (to appear)
21. Ouyang, C.: High energy harmonic maps and degeneration of minimal surfaces (2019). arXiv:1910.06999
22. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187(188), 268 (1990)
23. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, New York (1972). (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68)
24. Ruelle, D.: Thermodynamic Formalism, Volume 5 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley Publishing Co., Reading (1978). (The mathematical structures of classical equilibrium statistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo Rota)
25. Sambarino, A.: Quantitative properties of convex representations. Comment. Math. Helv. 89(2), 443–488 (2014)
26. Tamburelli, A.: Degeneration of globally hyperbolic maximal anti-de Sitter structures along pinching sequences. Differ. Geom. Appl. 64, 125–135 (2019)
27. Tamburelli, A.: Fenchel–Nielsen coordinates on the augmented moduli space of anti-de Sitter structures. Math. Z. (2019). arXiv:1906.03715 (to appear)
28. Tamburelli, A.: Polynomial quadratic differentials on the complex plane and light-like polygons in the Einstein universe. Adv. Math. 352, 483–515 (2019)
29. Tamburelli, A.: Degeneration of globally hyperbolic maximal anti-de Sitter structures along rays. Commun. Anal. Geom. (2020) (to appear)
30. Tamburelli, A.: Regular globally hyperbolic maximal anti-de Sitter structures. J. Topol. 13, 416–439 (2020)
31. Tamburelli, A., Wolf, M.: Planar minimal surfaces with polynomial growth in the \(\text{Sp}(4,\mathbb{R}) \)-symmetric space (2020). arXiv:2002.07295

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.