On the signed 2-independence number of graphs

S.M. Hosseini Moghaddama, D.A. Mojdehb, Babak Samadib, Lutz Volkmannc

aQom Azad University, Qom, Iran
bDepartment of Mathematics, University of Mazandaran, Babolsar, Iran
cLehrstuhl II f"{u}r Mathematik, RWTH Aachen University, 52056 Aachen, Germany

sm.hosseini1980@yahoo.com, damojdeh@umz.ac.ir, samadibabak62@gmail.com, volkm@math2.rwth-aachen.de

Abstract

In this paper, we study the signed 2-independence number in graphs and give new sharp upper and lower bounds on the signed 2-independence number of a graph by a simple uniform approach. In this way, we can improve and generalize some known results in this area.

Keywords: domination number, limited packing, tuple domination, signed 2-independence number

Mathematics Subject Classification : 05C69

DOI:10.5614/ejgta.2017.5.1.4

1. Introduction

Throughout this paper, let G be a finite connected graph with vertex set $V = V(G)$ and edge set $E = E(G)$. We use [13] as a reference for terminology and notation which are not defined here. The open neighborhood of a vertex v is denoted by $N(v)$, and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The minimum and maximum degree of G are respectively denoted by $\Delta(G) = \Delta$ and $\delta(G) = \delta$.

Let $S \subseteq V$. For a real-valued function $f : V \to R$ we define $f(S) = \sum_{v \in S} f(v)$. Also, $f(V)$ is the weight of f. A signed 2-independence function, abbreviated S2IF, of G is defined in [14] as a function $f : V \to \{-1, 1\}$ such that $f(N[v]) \leq 1$, for every $v \in V$. The signed 2-independence number, abbreviated S2IN, of G is $\alpha_2^s(G) = \max\{f(V) | f \text{ is a S2IF of } G\}$. This concept was

Received: 9 January 2015, Revised 15 January 2017, Accepted: 26 January 2017.
defined in [14] as a certain dual of the signed domination number of a graph [3] and has been studied by several authors including [8, 10, 11, 12].

A set $S \subseteq V$ is a dominating set if each vertex in $V \setminus S$ has at least one neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set [7]. A subset $B \subseteq V$ is a 2-packing in G if for every pair of vertices $u, v \in B$, $d(u, v) \geq 3$. The 2-packing number (or packing number) $\rho(G)$ is the maximum cardinality of a 2-packing in G.

Gallant et al. [5] introduced the concept of limited packing in graphs. They exhibited some real-world applications of it to network security, NIMBY, market saturation and codes. In this paper we exhibit an application of it to signed 2-independence number in graphs. In fact as it is defined in [5], a set of vertices $B \subseteq V$ is called a k-limited packing in G provided that for all $v \in V$, we have $|N[v] \cap B| \leq k$. The limited packing number, denoted $L_k(G)$, is the largest number of vertices in a k-limited packing set. It is easy to see that $L_1(G) = \rho(G)$. In [6], Harary and Haynes introduced the concept of tuple domination in graphs. A set $D \subseteq V$ is a k-tuple dominating set in G if $|N[v] \cap D| \geq k$, for all $v \in V(G)$. The k-tuple domination number, denoted $\gamma_{\times k}(G)$, is the smallest number of vertices in a k-tuple dominating set. When $k = 2$, D is called a double dominating set and the 2-tuple domination number is called the double domination number and is denoted by $dd(G)$. In fact the authors showed that every graph G with $\delta \geq k - 1$ has a k-tuple dominating set and hence a k-tuple domination number.

By a simple uniform approach, we derive many new sharp bounds on $\alpha^2_s(G)$ in terms of several different graph parameters. Some of our results improve some known bounds on the S2IN of graphs in [8, 11, 12].

The authors noted that most of the existing bounds on $\alpha^2_s(G)$ are lower bounds. In section 2, we prove that $\alpha^2_s(G) \geq 2\left[\frac{\delta + 2\rho(G)}{2}\right] - n$, for a graph G of order n. Also in section 3, by a simple connection between the concepts of limited packing and tuple domination, we obtain the exact value of the signed 2-independence numbers of regular graphs. In particular, we bound the signed 2-independence numbers of cubic graphs from below and above just in terms of order as, $-\frac{n}{3} \leq \alpha^2_s(G) \leq 0$.

2. Main results

At this point we are going to present some sharp upper bounds on $\alpha^2_s(G)$. First, let us introduce some notation. Let $f : V \rightarrow \{-1, 1\}$ be a maximum S2IF of G. We define $V_+ = \{v \in V | f(v) = 1\}$, $V_- = \{v \in V | f(v) = -1\}$, $G_+ = G[V_+]$ and $G_- = G[V_-]$ where G_+ and G_- are the subgraphs of G induced by V_+ and V_-, respectively. For convenience, let $[V_+, V_-]$ be the set of edges having one end point in V_+ and the other in V_-. Finally, $deg_{G_+}(v) = |N(v) \cap V_+|$ and $deg_{G_-}(v) = |N(v) \cap V_-|$. Obviously, $|V_+| = \frac{n + \alpha^2_s(G)}{2}$ and $|V_-| = \frac{n - \alpha^2_s(G)}{2}$.

Theorem 2.1. Let G be a graph of order n. Then

$$\alpha^2_s(G) \leq \left(\left\lfloor\frac{\Delta}{2}\right\rfloor - \left\lceil\frac{\delta}{2}\right\rceil + 1\right)n$$

and this bound is sharp.
Theorem 2.5. Let \(f \) be a maximum S2IF of \(G \). Let \(v \in V_+ \). Since \(f(N[v]) \leq 1 \), the vertex \(v \) has at least \(\lceil \frac{\deg(v)}{2} \rceil \geq \lceil \frac{\delta}{2} \rceil \) neighbors in \(V_- \). Therefore \(|[V_+, V_-]| \geq \lceil \frac{\delta}{2} \rceil |V_+| \). Now let \(v \in V_- \). Since \(f \) is a S2IF, the vertex \(v \) has at most \(\lceil \frac{\deg(v)}{2} \rceil + 1 \leq \lceil \frac{\delta}{2} \rceil + 1 \) neighbors in \(V_+ \). Therefore \(|[V_+, V_-]| \leq (\lceil \frac{\Delta}{2} \rceil + 1)|V_-| \).

In fact

\[
\left\lfloor \frac{\delta}{2} \right\rfloor |V_+| \leq |[V_+, V_-]| \leq (\lceil \frac{\Delta}{2} \rceil + 1)|V_-|.
\]

Using \(|V_+| = \frac{n + \alpha^2_s(G)}{2} \) and \(|V_-| = \frac{n - \alpha^2_s(G)}{2} \), we obtain the desired upper bound. For sharpness it is sufficient to consider the complete graph \(K_n \).

In [8] the author established a relationship between the signed 2-independence number and the domination number of a graph as follows.

Theorem 2.2. ([8]) If \(G \) is a connected graph of order \(n \geq 2 \), then \(\alpha^2_s(G) + 2\gamma(G) \leq n \), and this bound is sharp.

Now we are going to improve Theorem 2.2. We shall need the following result, which can be found implicit in [4] and explicit in [2] as Corollary 81.

Theorem 2.3. ([2],[4]) If \(G \) is a graph with \(\delta \geq k - 1 \), then \(\gamma \times k(G) \geq \gamma(G) + k - 1 \).

Theorem 2.4. If \(G \) is a connected graph of order \(n \), then \(\alpha^2_s(G) + 2\gamma(G) \leq n - 2\lceil \frac{\delta}{2} \rceil + 2 \), and this bound is sharp.

Proof. Let \(f \) be a maximum S2IF of \(G \). We have shown that \(|N[v] \cap V_-| \geq \lceil \frac{\delta}{2} \rceil \) for all \(v \in V_+ \). On the other hand, if \(v \in V_- \), then \(\deg_{G_-}(v) \geq \lceil \frac{\deg(v)}{2} \rceil - 1 \geq \lceil \frac{\delta}{2} \rceil - 1 \). Therefore \(|N[v] \cap V_-| \geq \lceil \frac{\delta}{2} \rceil \). This shows that \(V_- \) is a \(\lceil \frac{\delta}{2} \rceil \)-tuple dominating set in \(G \). This implies, \(|V_-| \geq \gamma \times \lceil \frac{\delta}{2} \rceil(G) \) and hence \(\alpha^2_s(G) \leq n - 2\gamma \times \lceil \frac{\delta}{2} \rceil(G) \). Now by Theorem 2.3, we have \(\alpha^2_s(G) \leq n - 2(\gamma(G) + \lceil \frac{\delta}{2} \rceil) - 1 \). Therefore \(\alpha^2_s(G) + 2\gamma(G) \leq n - 2\lceil \frac{\delta}{2} \rceil + 2 \). For sharpness it is sufficient to consider the complete graph \(K_n \).

By the concept of limited packing we can present a sharp lower bound on \(\alpha^2_s(G) \) that involves the packing number.

Theorem 2.5. Let \(G \) be a connected graph of order \(n \). Then

\[
\alpha^2_s(G) \geq 2\left\lfloor \frac{\delta + 2\rho(G)}{2} \right\rfloor - n
\]

and this bound is sharp.

Proof. Let \(B \) be a \(\lceil \frac{\delta}{2} \rceil \)-limited packing set in \(G \). Obviously, \(L_{\lfloor \frac{\delta}{2} \rfloor}(G) \leq L_{\lfloor \frac{\delta}{2} + 1 \rfloor}(G) \). We claim that \(B \neq V \). If \(B = V \) and \(v \in V \) such that \(\deg(v) = \Delta \), then \(\Delta + 1 = |N[v] \cap B| \leq \lceil \frac{\delta}{2} \rceil \leq \Delta \), a contradiction. Now let \(u \in V - B \). It is easy to check that \(|N[v] \cap (B \cup \{u\})| \leq \lceil \frac{\delta}{2} \rceil + 1 \), for all \(v \in V(G) \). Therefore \(B \cup \{u\} \) is a \(\lceil \frac{\delta}{2} \rceil + 1 \)-limited packing set in \(G \). Hence

\[
L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) \geq |B \cup \{u\}| = |B| + 1 = L_{\lfloor \frac{\delta}{2} \rfloor}(G) + 1.
\]
Repeating these inequalities, we have

\[L_{\lfloor \delta/2 \rfloor + 1}(G) \geq L_{\lfloor \delta/2 \rfloor}(G) + 1 \geq \ldots \geq L_1(G) + \left\lfloor \frac{\delta}{2} \right\rfloor = \rho(G) + \left\lfloor \frac{\delta}{2} \right\rfloor. \]

(1)

Now let \(B \) be a maximum \(\left\lfloor \frac{\delta}{2} \right\rfloor + 1 \)-limited packing set in \(G \). We define \(f : V \to \{-1, 1\} \) by

\[f(v) = \begin{cases}
1 & \text{if } v \in B \\
-1 & \text{if } v \in V - B.
\end{cases} \]

We deduce that

\[f(N[v]) = |N[v] \cap B| - |N[v] \cap (V - B)| = 2|N[v] \cap B| - |N[v]| \leq 2\left\lfloor \frac{\delta}{2} \right\rfloor - \delta + 1 \leq 1, \]

for all \(v \in V \). Therefore, \(f \) is a S2IF of \(G \). This implies

\[\alpha_s^2(G) \geq f(V) = |B| - |V - B| = 2|B| - n = 2L_{\lfloor \delta/2 \rfloor + 1}(G) - n. \]

Now (1) implies

\[\alpha_s^2(G) \geq 2L_{\lfloor \delta/2 \rfloor + 1}(G) - n \geq 2(\rho(G) + \left\lfloor \frac{\delta}{2} \right\rfloor) - n, \]

as desired. Considering the graph \(K_n \) we can see that this bound is sharp.

Volkmann in [11] proved that if \(G \) is a graph of order \(n \), then \(2 - n \leq \alpha_s^2(G) \). Moreover if \(n \geq 3 \), then \(4 - n \leq \alpha_s^2(G) \). Obviously, the lower bound in Theorem 2.5 is an improvement of the first inequality and when \(\delta \geq 2 \) this improves the second, as well.

At the end of this section we exhibit a short comment about signed 2-independence number of bipartite graphs. The following upper bound on \(\alpha_s^2(G) \) of a bipartite graph was obtained by Wang [12].

Theorem 2.6. ([12]) If \(G \) is a bipartite graph of order \(n \geq 2 \), then

\[\alpha_s^2(G) \leq n + 6 - 2\sqrt{2n} + 9. \]

Furthermore, the bound is sharp.

We now improve the bound in the previous theorem.

Theorem 2.7. Let \(G \) be a bipartite graph of order \(n \). Then

\[\alpha_s^2(G) \leq n + 2(2 + \left\lceil \frac{\delta}{2} \right\rceil) - 2\sqrt{(2 + \left\lceil \frac{\delta}{2} \right\rceil)^2 + 2\left\lceil \frac{\delta}{2} \right\rceil n} \]

and this bound is sharp.
Proof. Let f be a maximum $S2IF$ of G. Let X and Y be the partite sets of G. For convenience we define $X_+ = X \cap V_+$, $X_- = X \cap V_-$ and let Y_+ and Y_- be defined, analogously. Obviously, $V_+ = X_+ \cup Y_+$ and $V_- = X_- \cup Y_-$. Since every vertex in X_+ has at least $\lceil \frac{\delta}{2} \rceil$ neighbors in Y_-, by the pigeonhole principle, there exists a vertex v in Y_- that is joined to at least $\lceil \frac{\delta}{2} \rceil |X_+|$ vertices in X_+. This implies

$$\frac{\lceil \frac{\delta}{2} \rceil |X_+|}{|Y_-|} - |X_-| - 1 \leq |N[v] \cap X_+| - |N[v] \cap X_-| - 1 = f(N[v]) \leq 1,$$

and hence

$$\frac{\delta}{2} |X_+| \leq |Y_-|(|X_-| + 2). \quad (2)$$

A similar argument shows that

$$\frac{\delta}{2} |Y_+| \leq |X_-|(|Y_-| + 2). \quad (3)$$

Using inequalities (2) and (3) we have

$$\frac{\delta}{2} |V_+| \leq 2|X_-||Y_-| + 2|V_-| \leq \frac{1}{2}(|X_-| + |Y_-|)^2 + 2|V_-| = \frac{1}{2}|V_-|^2 + 2|V_-|.$$

Using $|V_+| = n - |V_-|$, we obtain

$$|V_-|^2 + (4 + 2\lceil \frac{\delta}{2} \rceil)|V_-| - 2|V_-|n \geq 0.$$ This yields to $|V_-| \geq \frac{-4 - 2\lceil \frac{\delta}{2} \rceil + \sqrt{(4 + 2\lceil \frac{\delta}{2} \rceil)^2 + 8\lceil \frac{\delta}{2} \rceil n}}{2}$. Now, by using the value of $|V_-|$ we derive the desired bound. \hfill \Box

Using calculus we can see that $g(x) = n + 2(x + 2) - 2\sqrt{(x + 2)^2 + 2nx}$ is a decreasing function for $x \geq 0$. So, for $\delta \geq 1$, $\lceil \frac{\delta}{2} \rceil \geq 1$ implies that

$$n + 2(2 + \lceil \frac{\delta}{2} \rceil) - 2\sqrt{(2 + \lceil \frac{\delta}{2} \rceil)^2 + 2\lceil \frac{\delta}{2} \rceil n} \leq n + 6 - 2\sqrt{2n + 9}$$

and therefore Theorem 2.7 is an improvement of Theorem 2.6.

3. Remarks on signed 2-independence in regular graphs

Zelinka [14] obtained the following sharp upper bound on $\alpha_s^2(G)$ for regular graphs G.

Theorem 3.1. ([14]) If G is an r-regular graph of order n, then $\alpha_s^2(G) \leq \frac{n}{r+1}$ when r is even and $\alpha_s^2(G) \leq 0$ when r is odd.

We note that the bound in Theorem 2.1 implies the previous result. The authors in [9] proved the following result.
Lemma 3.1. ([9]) Let G be a graph. Then the following statements hold.

(i) Let $\delta \geq k - 1$. If $B \subseteq V$ is a k-limited packing set, then $V - B$ is a $(\delta - k + 1)$-tuple dominating set in G.

(ii) Let $\delta \geq k$. If $D \subseteq V$ is a k-tuple dominating set, then $V - D$ is a $(\Delta - k + 1)$-limited packing set in G.

Now, by the above lemma we are able to obtain the exact value of the signed 2-independence number of regular graphs, first in terms of order and limited packing number, second in terms of order and tuple domination number. At the end we bound $\alpha_s^2(G)$ of a cubic graph G from above and below, just in terms of the order. First we need the following lemma.

Lemma 3.2. Let G be a graph of order n, then

(i) $2L_{\lceil s \rceil + 1}(G) - n \leq \alpha_s^2(G) \leq 2L_{\lfloor \frac{s}{2} \rfloor + 1}(G) - n$,

(ii) $n - 2\gamma_{\lfloor \frac{s}{2} \rfloor}(G) \leq \alpha_s^2(G) \leq n - 2\gamma_{\lfloor \frac{s}{2} \rfloor}(G)$.

Proof. (i) In the proof of Theorem 2.5 we have seen that $2L_{\lfloor \frac{s}{2} \rfloor + 1}(G) - n \leq \alpha_s^2(G)$.

Now let f be a maximum S2IF of G. In the proof of Theorem 2.1 we have shown that $|N[v] \cap V_+| \leq \lfloor \frac{n}{2} \rfloor + 1$, for all $v \in V_-$. On the other hand, if $v \in V_+$, then $\deg_{G_+}(v) \leq \lfloor \frac{\deg(v)}{2} \rfloor \leq \lfloor \frac{n}{2} \rfloor$. Therefore V_+ is a $(\lfloor \frac{n}{2} \rfloor + 1)$-limited packing set in G. This implies $|V_+| \leq L_{\lceil \frac{s}{2} \rceil + 1}(G)$ and hence $\alpha_s^2(G) \leq 2L_{\lfloor \frac{s}{2} \rfloor + 1}(G) - n$.

(ii) According to the proof of Theorem 2.4, we have $\alpha_s^2(G) \leq n - 2\gamma_{\lfloor \frac{s}{2} \rfloor}(G)$.

Now let D be a minimum $\lfloor \frac{s}{2} \rfloor$-tuple dominating set in G. We define $f : V \rightarrow \{-1, 1\}$ by

$$f(v) = \begin{cases}
-1 & \text{if } v \in D \\
1 & \text{if } v \in V - D.
\end{cases}$$

By the previous lemma, we conclude that $f(N[v]) = |N[v] \cap (V - D)| - |N[v] \cap D| \leq \Delta - \lfloor \frac{n}{2} \rfloor + 1 - \lfloor \frac{n}{2} \rfloor \leq 1$. Therefore f is a S2IF of G. This implies $\alpha_s^2(G) \geq f(V) = |V - D| - |D| = n - 2|D| = n - 2\gamma_{\lfloor \frac{s}{2} \rfloor}(G)$.

Considering regular graphs, by the previous lemma, we have the following corollary.

Corollary 3.1. Let G be an r-regular graph of order n. Then

(i) $\alpha_s^2(G) = 2L_{\lceil \frac{s}{2} \rceil + 1}(G) - n$.

(ii) $\alpha_s^2(G) = n - 2\gamma_{\lfloor \frac{s}{2} \rfloor}(G)$.

As an immediate result of the previous corollary we obtain the following.

Corollary 3.2. If G is a cubic graph of order n, then

(i) $\alpha_s^2(G) = 2L_2(G) - n$.

(ii) $\alpha_s^2(G) = n - 2dd(G)$.

In [1], the authors showed that if G is a cubic graph of order n, then $\frac{n}{3} \leq L_2(G)$. Moreover, the upper bound $L_2(G) \leq \frac{n}{2}$ was presented in [5] for a cubic graph G. Therefore Corollary 3.2 leads to
On the signed 2-independence number of graphs | S.M. Hosseini Moghaddam et al.

\[-\frac{n}{3} \leq \alpha_2^s(G) \leq 0\]

for cubic graphs.

Acknowledgement

The authors are grateful to the referee for his/her valuable suggestions.

References

[1] P.N. Balister, B. Bollobas and K. Gunderson, Limited packings of closed neighbourhoods in graphs, arXiv: 1501.01833v1 [math.CO] 8 Jan 2015.

[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-Domination and k-independence in graphs, *Graphs Combin.* 28 (2012) 1–55.

[3] W. Chen and E. Song, Lower bounds on several versions of signed domination number, *Discrete Math.* 308 (2008) 1837–1846.

[4] O. Favaron, M.A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, *Discrete Math.* 231 (2001) 143–151.

[5] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, *Discrete Appl. Math.* 158 (2010) 1357–1364.

[6] F. Harary and T.W. Haynes, Double domination in graphs, *Ars Combin.* 55 (2000) 201–213.

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of Domination in Graphs*, New York, Marcel Dekker, 1998.

[8] M.A. Henning, Signed 2-independence in graphs, *Discrete Math.* 250 (2002) 93–107.

[9] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Limited packing vs tuple domination in graphs, *Ars Combin.*, to appear.

[10] E.F. Shan, M.Y. Sohn and L.Y. Kang, Upper bounds on signed 2-independence numbers of graphs, *Ars Combin.* 69 (2003) 229–239.

[11] L. Volkmann, Bounds on the signed 2-independence number in graphs, *Discuss. Math. Graph Theory* 33 (2013) 709–715.

[12] C. Wang, The modified negative decision number in graphs, *Internat. J. Math. Math. Sci.* Volume 2011 (2011), Article ID 135481, 9 pages.

[13] D.B. West, *Introduction to Graph Theory* (Second Edition), Prentice Hall, USA, 2001.

[14] B. Zelinka, On signed 2-independence number of graphs, manuscript.