Crohn’s disease in Japanese is associated with a SNP-haplotype of \(\gamma \)-acetyltransferase 2 gene

Haruhisa Machida, Kazuhiro Tsukamoto, Chun-Yang Wen, Sabrou Shikuwa, Hajime Isomoto, Yohei Mizuta, Fuminao Takeshima, Kunihiko Murase, Naomichi Matsumoto, Ikuo Murata, Shigeru Kohno, Chen-Yang Wen

Haruhisa Machida, Hajime Isomoto, Yohei Mizuta, Fuminao Takeshima, Kunihiko Murase, Shigeru Kohno, Second Department of Internal Medicine, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
Kazuhiro Tsukamoto, Ikuo Murata, Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
Chun-Yang Wen, Department of Molecular Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
Chen-Yang Wen, Department of Digestive Disease, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
Sabrou Shikuwa, Department of Gastroenterology, National Hospital Organization Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
Naomichi Matsumoto, Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
Kazuhiro Tsukamoto, Naomichi Matsumoto, CREST, JST, Kawaguchi, Japan

Correspondence to: Kazuhiro Tsukamoto, MD, PhD, Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. ktsuka@net.nagasaki-u.ac.jp

Telephone: +81-95-819-2448 Fax: +81-95-819-2895

Received: 2004-12-20 Accepted: 2004-12-30

Abstract

AIM: To investigate the frequency and distribution of \(\gamma \)-acetyltransferase 2 (\(\gamma \text{AT2} \)) and uridine 5’-diphosphate (UDP)-glucuronosyltransferase 1A7 (\(\text{UGT1A7} \)) genes in patients with ulcerative colitis (UC) and Crohn’s disease (CD).

METHODS: Frequencies and distributions of \(\gamma \text{AT2} \) and \(\text{UGT1A7} \)SNPs as well as their haplotypes were investigated in 95 patients with UC, 60 patients with CD, and 200 gender-matched, unrelated, healthy, control volunteers by PCR-fragment restriction length polymorphism (RFLP), PCR-denaturing high-performance liquid chromatography (DHPLC), and direct DNA sequencing.

RESULTS: Multiple logistic regression analysis revealed that the frequency of haplotype, \(\gamma \text{AT2}^\#B \), significantly increased in CD patients, compared to that in controls (\(P = 0.0130, OR = 2.802, 95\% CI = 1.243-6.316 \)). However, there was no association between \(\gamma \text{AT2} \) haplotypes and UC, or between any \(\text{UGT1A7} \)haplotypes and inflammatory bowel disease (IBD).

CONCLUSION: It is likely that the \(\gamma \text{AT2} \) gene is one of the determinants for CD in Japanese. Alternatively, a new CD determinant may exist in the 8p22 region, where \(\gamma \text{AT2} \) is located.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Crohn’s disease; \(\gamma \)acetyltransferase 2 gene; Polymorphism; Disease-susceptible gene; Association study; Japanese population

Machida H, Tsukamoto K, Wen CY, Shikuwa S, Isomoto H, Mizuta Y, Takeshima F, Murase K, Matsumoto N, Murata I, Kohno S, Wen CY. Crohn’s disease in Japanese is associated with a SNP-haplotype of \(\gamma \)-acetyltransferase 2 gene. World J Gastroenterol 2005; 11(31): 4833-4837

http://www.wjgnet.com/1007-9327/11/4833.asp

INTRODUCTION

Chronic inflammatory bowel disease (IBD) is a multi-factorial disorder characterized by non-specific inflammation of the gastrointestinal tract with an increase in the permeability to xenobiotics in the intestinal mucosa, finally resulting in intestinal malabsorption and immune defense abnormalities\[1-3\]. Ulcerative colitis (UC) and Crohn’s disease (CD) are the major forms of IBD. Although the precise etiology of IBD remains unknown, not only several environmental factors, such as dietary components and microorganisms, but also genetic factors may contribute to the occurrence of this disorder\[3-4\]. Recently, extensive molecular genetic studies have been launched to identify genes underlying the etiology\[5\]. One of them is the caspase activating recruitment domain 15/nucleotide oligomerization domain 2 gene (\(\text{CARD15/NOD2} \)) located at 16q12. Although mutations in \(\text{NOD2} \) are observed frequently in Caucasian patients with CD, but not with UC\[6,7\], they have rarely been found in Japanese CD patients\[8,9\], suggesting that \(\text{NOD2} \) is not a major determinant for CD in Japanese.

We have particularly focused on genes for \(\gamma \)-acetyltransferase 2 (\(\gamma \text{AT2} \)) and uridine 5’-diphosphate (UDP)-glucuronosyltransferase 1A7 (\(\text{UGT1A7} \)) as candidates susceptible to IBD, because they are expressed in the gastrointestinal tract and play a role in biochemical barriers against internal and external xenobiotics\[10-12\]. Diminution or disturbance of these barriers might result in increased permeability to xenobiotics in the gastrointestinal tract, and subsequently their accumulation in the body, probably leading to the development of IBD. \(\gamma \)-acetyltransferases (\(\gamma \text{ATs} \))
are the enzymes catalyzing N-acetylation (deactivation) of a variety of carbocyclic and heterocyclic arylamines by means of transferring acetyl-CoA to the amino or hydroxyl side chain of arylamines in metabolism of the phase II reaction[10]. NATs are encoded by two genes, NAT1 and NAT2, both are located at 8p22. NAT1 is ubiquitously expressed, while the expression of NAT2 is confined to the gastrointestinal tract and liver[10]. The UDP-glucuronosyltransferase 1 family genes located at 2q37 consist of nine functional genes, UGT1A1, UGT1A3-10, which catalyze the glucuronidation of small lipophilic agents by means of conversion of hydrophobic substrates to inactive hydrophilic UDP-glucurononides, and are expressed in a tissue-specific fashion in the gastrointestinal tract and liver. In particular, UGT1A7 is expressed exclusively in the gastrointestinal tract and lung, but not in the liver[11-13]. The degree of metabolism with regard to both NAT2 and UGT1A7 varies among individuals, suggesting the presence of genetic variations contributing to the metabolic activation capacity. Current studies have shown an association between NAT2 or UGT1A7 polymorphisms and various diseases, i.e., systemic sclerosis and systemic lupus erythematosus[14], drug toxicity[15,18], orolaryngeal cancer[19], esophageal cancer[20], colorectal cancer[21,22], pancreas cancer[23], hepato cellular carcinoma[15,24], or bladder cancer[25].

Here we report the results of studies on association between NAT2 or UGT1A7 and IBD in Japanese using six and three polymorphic haplotypes in the two genes, respectively.

MATERIALS AND METHODS

Subjects

The subjects studied comprised 95 patients with UC, 60 patients with CD, and 200 gender-matched, unrelated, healthy volunteers, and were further characterized as listed in Table 1. All participants were Japanese, who were randomly recruited from eight general health clinics in the Nagasaki area in Japan. The study protocol was approved by the Committee for the Ethical Issue on Human Genome and Gene Analysis in Nagasaki University, and written informed consent was obtained from each participant. Diagnosis of IBD was made according to endoscopic, radiological, histological, and clinical criteria provided by both the Council for International Organizations of Medical Sciences in WHO and the International Organization for the Study of Inflammatory Bowel Disease[26-28]. Patients with indeterminate colitis, multiple sclerosis, systemic lupus erythematosus, or other recognized autoimmune diseases were excluded from the subjects studied.

Table 1 Clinical characteristics of study subjects

Characteristic	Disease	Control	
	UC	CD	
Number of subjects	95	60	200
Age range (yr)	14-83	17-75	20-60
Age (mean±SD)	44.4±16.4	35.0±12.6	32.5±11.1
Male/female (%)	53 (55.8)/42 (44.2)	35 (58.3)/25 (41.7)	125 (62.5)/75 (37.5)

*P<0.01 vs control.

Determination of NAT2 polymorphisms

Genomic DNA was extracted from peripheral whole blood of each individual using the DNA Extractor WB-rapid Kit (Wako, Osaka, Japan) according to the manufacturer’s protocol. Single nucleotide polymorphisms (SNPs) of NAT2 deposited in SNP-database[29] were determined with the PCR-restriction fragment length polymorphism (RFLP) method using primer pairs and protocol described by Leff et al.[30]. The PCR-RFLP method was modified in order to distinguish among all known NAT2 SNPs[29]. In brief, polymorphic region in NAT2 was amplified by PCR with a GeneAmp PCR system 9700 thermal cycler (Applied Biosystems, Foster City, CA, USA) using 250 ng of genomic DNA in a 50-µL reaction containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.2 mmol/L of each dNTP, 500 ng of forward primer: 5'-GGCTATAAGAACCTCTAGGAAC-3', 500 ng of reverse primer: 5'-AAGGTTATTATTTTGTCCCTATTCTAAAT-3', and 2.0 U Taq DNA polymerase. The amplification protocol comprised initial denaturation at 94 °C for 5 min; 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s; and a final extension at 72 °C for 5 min. PCR product of 896 bp was digested for 30 s, and extension at 72 °C for 5 min. The former nested PCR product of 115 bp was digested for 30 s, and extension at 72 °C for 5 min. The latter products were digested with restriction enzymes (TaKaRa Biomedical, Shiga, Japan). Three SNPs, C190T, G191A, and A434C, were detected by digestion with MspI. Likewise, C282T, C481T, or G857A were detected by digestion with FokI, KpnI, or BamHI, respectively. T111C, G590A, and C759T were detected by digestion with TaqI. These fragments were subjected to electrophoresis on 2% agarose or 5% polyacrylamide gel, and visualized with UV transilluminator (Alpha Innotech, CA, USA) after ethidium bromide staining. Moreover, T341C, A803G, and A845C were detected by further nested PCR. Amplified NAT2 product (1 µL) was used as a template in a 25-µL reaction containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.2 mmol/L of each dNTP, 250 ng of forward primer: 5'-CACCTTCTTGAGCTACAGG-3', and reverse primer: 5'-TGATCAAGCAGAATGCAAGGC-3' and reverse primer: 5'-TGATCAAGCAGAATGCAAGGC-3'. The amplification protocol comprised initial denaturation at 94 °C for 5 min; 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s; and a final extension at 72 °C for 5 min. The former nested PCR products were digested with AsI and DdeI (New England BioLabs Inc., MA, USA) to detect T341C and A803G, or 250 ng of forward primer: 5'-TGAGGAA-GAGGTTAAGAATGCT-3' and reverse primer: 5'-AAGGTTATATTTTGTCCCTATTCTAAAT-3' for A845C, and 0.5 U Taq DNA polymerase. The amplification protocol comprised initial denaturation at 94 °C for 5 min; 35 cycles of denaturation at 94 °C for 30 s, annealing at 62 °C for 30 s, and extension at 72 °C for 30 s; and a final extension at 72 °C for 5 min. The former nested PCR products were digested with AsI and DdeI (New England BioLabs Inc., MA, USA) to detect T341C and A803G, respectively. The latter products were digested with DraIII (New England BioLabs Inc.) to detect A845C. All these products were subjected to electrophoresis on 6% polyacrylamide gel, and visualized as described above.

Determination of UGT1A7 polymorphisms

Four SNPs have been known within UGT1A7-exon 1[31]. A SNP at codon 11 is a silent mutation. SNPs at codons 129 and 131 lying in a linkage disequilibrium (LD) block were detected by PCR-denaturing high-performance liquid chromatography (DHPLC) with an automated HPLC
Statistical analysis

Gender and age value among the subjects were evaluated by χ^2 test and unpaired Student’s t test, respectively. Allele frequencies were estimated by the gene-counting method, and χ^2 test was used to identify significant departures from the Hardy-Weinberg equilibrium. Subsequently, the odds ratio (OR) with 95% confidence interval (95%CI) was calculated by multiple logistic regression analysis using the JMP program package (version 5, SAS Institute, Cary, NC, USA) and the StatView program package (version 5, SAS Institute). Haplotype and genotype frequencies were compared between individuals with and without haplotype or genotype, using χ^2 test. A P value of 0.05 or less was considered statistically significant.

RESULTS

Haplotype frequencies of NAT2

We identified six haplotypes composed of six SNPs among the subjects examined (Table 2). The haplotype “NAT2*4” comprising 69.5% of controls was wild-type, while five other haplotypes were variants. Distributions of the haplotypes in our study population were well corresponded to the Hardy-Weinberg equilibrium (Table 2). The results implied that the population we studied had a homogeneous genetic background, being consistent with the previous observations\cite{31-33}. However, since the frequencies of three haplotypes, NAT2*5B, NAT2*11, and NAT2*13, were very low, they were not considered for subsequent multiple logistic regression analysis.

The frequency of haplotype “NAT2*7B” composed of two SNPs (C282T and G857A) significantly increased in patients with CD, compared to that in controls ($P = 0.0130$, OR = 2.802, 95%CI: 1.243-6.316, Table 3). In contrast, there was no difference in frequency of NAT2*7B between patients with UC and controls ($P = 0.3338$, OR = 1.436, 95%CI: 0.689-2.992). Of the 60 CD patients, 17 (28.3%) had NAT2*7B, the incidence being significantly higher than that (32/200, 16.0%) in controls ($P = 0.032$, OR = 2.076, Table 4). These results indicated that the haplotype NAT2*7B was associated with the susceptibility to CD, but not to UC.

Cascorbi et al\cite{34}, and Gross et al\cite{35}, have shown a relationship between genotypes of NAT2 polymorphism and phenotypes. The haplotypes NAT2*4, NAT2*11, and NAT2*13, code for the rapid acetylator phenotype, while NAT2*5B, NAT2*6A, and NAT2*7B, code for the slow acetylators. According to their reports, we divided the subjects in to two groups: the rapid acetylators comprised homozygous and heterozygous carriers of the haplotypes NAT2*4, NAT2*11, or NAT2*13 and the slow acetylators comprised all homozygous carriers of the other haplotypes. The frequency and distribution were compared between these groups, but there were no significant differences in frequencies of these estimated phenotypes among patients with UC, CD, and controls (data not shown).

Haplotype	SNP	UC (allele = 190)	CD (allele = 120)	Control (allele = 400)
NAT2*4	None	122 (64.2)	77 (64.2)	278 (69.5)
NAT2*5B	T341C, C481T, A803G	3 (1.6)	1 (0.8)	2 (0.5)
NAT2*6A	C282T, G590A	43 (22.6)	21 (17.5)	79 (19.75)
NAT2*7B	C282T, G857A	20 (10.5)	18 (15.0)	35 (8.75)
NAT2*11	C481T	0 (0)	1 (0.8)	1 (0.25)
NAT2*13	C282T	2 (1.1)	2 (1.7)	5 (1.25)

Haplotype	P	Odds ratio	95% confidence interval
UC patients vs controls			
NAT2*4	0.6823	0.809	0.293–2.232
NAT2*6A	0.5621	1.183	0.671–2.084
NAT2*7B	0.3338	1.436	0.689–2.992
CD patients vs controls			
NAT2*4	0.2616	2.162	0.563–8.304
NAT2*6A	0.3898	1.349	0.682–2.670
NAT2*7B	0.0130	2.802	1.243–6.316

NAT2*7B	UC (n = 95, %)	CD (n = 60, %)	Control (n = 200, %)
Presence	19 (20.0)	17 (28.3)	32 (16.0)
Absence	76 (80.0)	43 (71.7)	168 (84.0)

Haplotype frequencies of UGT1A7

We detected two SNPs at codons 129 and 131 of UGT1A7 by DHPLC with 100% accuracy, as confirmed by direct
DNA sequencing. Subsequently, on the basis of the results by PCR-DHPLC and PCR-RFLP, three haplotypes, UGT1A7*1, UGT1A7*2, and UGT1A7*3, were determined in the Japanese population studied (Table 5). The UGT1A7*1 haplotype was wild-type, UGT1A7*2 and UGT1A7*3 were identified as variants, while another haplotype, UGT1A4*, was not observed, indicating that it was very rare in Japanese. There were no significant differences in frequencies of haplotypes and genotypes among patients UC, CD, and controls (data not shown).

Table 5 Distributions of three UGT1A7 haplotypes among study subjects

Haplotype	Number (%) of subjects with haplotype		
	UC (allele = 190)	CD (allele = 120)	Control (allele = 400)
UGT1A7*1	120 (63.2)	69 (57.5)	242 (60.5)
UGT1A7*2	29 (15.3)	24 (20.0)	103 (25.7)
UGT1A7*3	41 (21.6)	27 (22.5)	0 (0)
UGT1A7*4	0 (0)	0 (0)	0 (0)

DISCUSSION

We have shown that a NAT2 haplotype, NAT2*B7, is associated with CD, and thus, NAT2 could be one of the genetic factors for the predisposition to the onset and/or development of CD, although its contribution to this disease appears relatively small. In contrast, we could not find any association between UGT1A7 polymorphism and IBD, suggesting that UGT1A7 never confers to these diseases. Although there are previous reports demonstrating an association between certain NAT2 variants and diseases, they deal with phenotypical variations, such as rapid, intermediate, and slow acetylators in different conditions such as systemic sclerosis, systemic lupus erythematosus, and drug-induced agranulocytosis. Therefore, the present study is the first report documenting an association between NAT2 genetic variation and CD.

Three NAT2 haplotypes, NAT2*B5, NAT2*B6A, and NAT2*B7B, are estimated to show slow acetylator phenotypes. The present study showed that slow acetylator carrying these haplotypes was not associated with CD (data not shown). Although a role of the NAT2*B7B haplotype in the susceptibility to CD is unknown, Freeland et al., demonstrated, that this haplotype is functionally related to low activity of N-acetylation. It is likely, that low activity of N-acetylation due to NAT2*B7B might fail to metabolite xenobiotics in the state of increased permeability in the gastrointestinal tract and subsequently accumulates them in the body since NAT2 functions as a biochemical barrier against xenobiotics including dietary intake, intestinal bacteria, and toxins. Our hypothesis may be partly supported by clinical evidence that total parenteral nutrition and elemental diet placing the gastrointestinal tract “at rest” can successfully improve CD, and refeeding by oral conventional diet aggravates the activity of CD.

Recent genome-wide linkage analyses and candidate gene-based association studies have shown possible IBD susceptibility regions at 16q12 (IBD1), 12p13 (IBD2), 6p21 (IBD3), 14q11 (IBD4), 19p13 (IBD5), 5q31-q33 (IBD6), 1p36 (IBD7), and at 16p (IBD8). Our results indicate the existence of a new CD determinant at an LD region of 8p22, even if it is not NAT2 it-self. It remains to be confirmed whether the association is reproducible in larger Japanese samples as well as in other populations.

ACKNOWLEDGMENTS

We are grateful to physicians, patients, and volunteers for participating in this study. We thank Miss Naoko Sakemi, Dr. Hiroshi Soda, and Professor Norio Niikawa for their support.

REFERENCES

1. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182-205
2. Farrell RJ, Peppercorn MA. Ulcerative colitis. Lancet 2002; 359: 331-340
3. Yang H, Taylor KD, Rotter JI. Inflammatory bowel disease. I. Genetic epidemiology. Mol Genet Metab 2001; 74: 1-21
4. Watts DA, Satsangi J. The genetic jigsaw of inflammatory bowel disease. Gut 2002; 50(Suppl 3): s31-36
5. Taylor KD, Yang H, Rotter JI. Inflammatory bowel disease. II. Gene mapping. Mol Genet Metab 2001; 74: 22-44
6. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortal A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599-603
7. Ogura Y, Bonen DK, Inohara M, Ncolae DL, Chen FF, Ramos R, Britton H, Moran T, Karuliskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603-606
8. Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takahashi S, Ogura Y, Inohara N, Nunez G, Kishi Y, Koike Y, Shimosegawa T, Shimoyama T, Hibi T. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 2002; 123: 86-91
9. Yamazaki K, Takazoe M, Tanaka T, Kazumori T, Nakamura U. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 2002; 47: 469-472
10. Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltansferases. Carcinogenesis 1993; 14: 1633-1638
11. Turesky RJ, Land NP, Butler MA, Teitel CH, Kadlubar FF. Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis 1991; 12: 1839-1845
12. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40: 581-616
13. Strassburg CP, Kneip S, Topp J, Obermayer-Straub P, Barut A, Tukey RH, Manns MP. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J Biol Chem 2000; 275: 36164-36171
14. Tukey RH, Strassburg CP. Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract. Mol Pharmacol 2001; 59: 405-414
15. Vogel A, Kneip S, Barut A, Ehrer U, Tukey RH, Manns MP, Strassburg CP. Genetic link of hepatocellular carcinoma with polymorphisms of the UDP-glucuronosyltransferase
UGT1A7 gene. *Gastroenterology* 2001; **121**:1136-1144

16 *von Schmiedeberg* S, Fritsche E, Rönnau AC, Specker C, Golka K, Richter-Hintz D, Schuppe HC, Lehmann P, Ruzicka T, Esser C, Abel J, Gleichmann E. Polymorphisms of the xenobiotic-metabolizing enzymes CYP1A1 and NAT-2 in systemic sclerosis and lupus erythematosus. *Adv Exp Med Biol* 1999; **455**:147-152

17 *Wadelius* M, Stjernberg E, Wilholm BE, Rane A. Polymorphisms of *NAT2* in relation to sulphasalazine-induced agranulocytosis. *Pharmacogenetics* 2000; 10: 35-41

18 Huang YS, Chem HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD. Polymorphism of the *N*-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. *Hepatology* 2002; 35: 883-889

19 Zheng Z, Park YJ, Guillemette C, Schantz SP, Lazarus P. Tobacco carcinogen-detoxifying enzyme UGT1A7 and its association with orolaryngeal cancer risk. *J Natl Cancer Inst* 2001; 93: 1411-1418

20 Strassburg CP, Strassburg A, Nguyen N, Li Q, Manns MP, Tukey RH. Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus. *Biochim Biophys Acta* 1999; **1389**: 489-498

21 Brockton N, Little J, Sharp L, Cotton SC. *N*-acetyltransferase polymorphisms and colorectal cancer: a HuGE review. *Am J Epidemiol* 2000; 151: 846-861

22 *Strassburg* CP, Vogel A, Kneip S, Tukey RH, Manns MP. Polymorphisms of the human UDP-glucuronosyltransferase (UGT) genes in colorectal cancer. *Cancer* 2002; 50: 851-856

23 Ockenga J, Vogel A, Teich N, Keim V, Manns MP, Strassburg CP. UDP-glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer. *Gastroenterology* 2003; 124: 1802-1808

24 Huang YS, Chem HD, Wu JC, Chao Y, Huang YH, Chang FY, Lee SD. Polymorphism of the *N*-acetyltransferase 2 gene, red meat intake, and the susceptibility of hepatocellular carcinoma. *Am J Gastroenterol* 2003; 98: 1417-1422

25 Risch A, Wallace DM, Bathers S, Sim E. Slow *N*-acetylation genotype is a susceptibility factor in occupational and smoking-related bladder cancer. *Hum Mol Genet* 1995; 4: 231-236

26 Podolsky DK. Inflammatory bowel disease (1). *N Eng J Med* 1991; **325**:928-937

27 Podolsky DK. Inflammatory bowel disease (2). *N Eng J Med* 1991; **325**:1008-1016

28 Lennard-Jones JE. Classification of inflammatory bowel disease. *Scand J Gastroenterol* 1989; **170**:2-6

29 http://www.louisville.edu/medschool/pharmacology/