CONTEMPORARY REVIEW

Purinergic Dysfunction in Pulmonary Arterial Hypertension

Zongye Cai, MD, PhD; Ly Tu, PhD; Christophe Guignabert, PhD; Daphne Merkus, PhD; Zhichao Zhou, MD, PhD

ABSTRACT: Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide- and nucleoside-activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine-mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP-mediated P2X7R activation and ADP-mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia-induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide-mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.

Key Words: adenosine ■ ATP ■ extracellular nucleotides ■ pulmonary arterial hypertension ■ purinergic receptor

Pulmonary arterial hypertension (PAH) is defined as an elevation of mean pulmonary arterial pressure (PAP) >20 mm Hg, with pulmonary arterial wedge pressure <15 mm Hg and pulmonary vascular resistance (PVR) >3 wood units at rest based on right heart catheterization at sea level. PAH is a progressive disorder characterized by pulmonary endothelial dysfunction, increased pulmonary vascular tone, and pulmonary vascular remodeling, with muscularization, thickening, and occlusion of the pulmonary (micro)vascuclature, leading to an increase in afterload of the right ventricle (RV), and eventually death caused by right heart failure. Pulmonary vascular remodeling involves aberrant proliferation, hyperplasia, and/or hypertrophy of pulmonary artery endothelial cells (PAECs) and/or microvascular endothelial cells (ECs), pulmonary artery smooth muscle cells (PASMCs), and fibroblasts. In addition, perivascular inflammatory foci, consisting of infiltrates with antigen-presenting cells and immune cells, such as macrophages and T and B lymphocytes, have been shown in PAH. Current therapies are principally aimed at reversing the increase in vascular tone and may reduce smooth muscle proliferation and muscularization of the distal vasculature. However, prognosis of PAH is still poor, with a 5-year survival of 59%. Therefore, more investigations are needed to identify novel underlying mechanisms in PAH to develop new therapies.

Recent findings have revealed that there is an alteration of nucleot(s)ide-mediated purinergic signaling in the pulmonary vasculature, which may contribute to the development and progression of PAH. Many cell types, such as ECs, immune cells, and erythrocytes, can produce nucleotides (such as ATP and UTP) and...
nucleotides (such as adenosine), which activate purinergic receptors (PRs) to exert biological functions. Activation of purinergic signaling has been demonstrated to play an essential role in cardiovascular homeostasis, whereas there is increasing evidence to suggest that purinergic signaling may also play an important role in PAH by modulating vascular tone, remodeling, permeability, and inflammation. Therefore, nucleotide-mediated purinergic signaling may serve as a potential target for the treatment of PAH. In the present review, we summarize available information on purinergic dysfunction in both patients with PAH and animal models of pulmonary hypertension (PH).

ACTIVATION AND REGULATION OF PURINERGIC SIGNALING IN PAH

Nucleotides (ATP, ADP, UTP, and UDP), nucleosides (adenosine), and even dinucleotides (eg, Up_A) could be released directly or indirectly via ectonucleotidases from ECs, adventitial nerves, and circulating cells (including platelets, immune cells, and erythrocytes) in response to both physiological and pathological stimuli. The release of ATP from erythrocytes particularly occurs under hypoxic conditions and is increasingly recognized to play a role in regulation of tissue perfusion. Homeostasis between extracellular nucleotides and adenosine is governed by various ectonucleotidases. Ectonucleotidases are divided into 4 major families: (1) nucleoside triphosphate diphosphohydrolase (also known as CD39), (2) ecto-5'-nucleotidase, (3) nucleotide pyrophosphatase/phosphodiesterase, and (4) alkaline phosphatases. For example, once ATP is released extracellularly, ATP is degraded to ADP and AMP through the continuous action of CD39. Ecto-5'-nucleotidase can further phosphohydrolyze AMP to adenosine (Figure 1).

Alterations in ectonucleotidases regulating the purinergic signal have been reported in PAH. CD39, one of the ectonucleotidases hydrolyzing ATP and ADP to AMP, was found to be higher on circulating endothelial microparticles from patients with idiopathic PAH (iPAH). On the contrary, CD39 expression was significantly downregulated in the endothelium of pulmonary small arteries from patients with iPAH. Similarly, both expression and activity of CD39 were decreased in cultured PAECs derived from patients with PAH compared with healthy subjects. The downregulation of CD39 in the pulmonary vasculature may alter the balance between ATP and adenosine, thereby affecting purinergic signaling in PH. Indeed, the plasma adenosine concentration is lower in the pulmonary circulation in patients with PAH compared with the high plasma adenosine levels in healthy subjects (Table). Similarly, in newborn lambs with hypoxia-induced PH, baseline plasma adenosine levels in pulmonary circulation and left atrium were significantly lower than in normoxic controls (Table). Suppression of CD39 in cultured PAECs resulted in a phenotypic switch toward apoptosis-resistant PAECs and may thereby contribute to pulmonary vascular remodeling. Indeed, in addition to the markedly elevated ATP/adenosine ratio, hypoxic CD39 knockout mice demonstrated higher PAP, more pulmonary vascular remodeling, more RV hypertrophy, and a prothrombotic phenotype compared with normoxic controls (Table). Of note, systemic reconstitution of ATPase and ADPase enzymatic activities through continuous administration of apyrase dramatically decreased PAP in hypoxic CD39 knockout mice to levels found in hypoxic wild-type mice (Table). Altogether, these observations indicate that CD39 is an important enzyme regulating pulmonary vascular remodeling and suggest that therapeutic modulation of the balance between adenosine and ATP may directly affect pulmonary vascular remodeling (Figure 1). Interestingly, the activity of CD39 in both cultured PAECs and PAECs isolated from monocrotaline-induced PH rats can be potentiated by apelin (Table), a known regulator of pulmonary vascular homeostasis that is decreased in patients with PAH, suggesting that the therapeutic efficacy of apelin in animal models of PAH may be mediated, at least in part, through modulation of purinergic signaling.

The biological effects of nucleotide(s)ides are usually mediated via the activation of PRs, which consist of 2 subfamilies, purinergic receptor 1 (P1R) and purinergic receptor 2 (P2R). The P1R subfamily (all metabotropic; also known as adenosine receptors) includes...
Purinergic Dysfunction and Pulmonary Hypertension

Cai et al. Purinergic Dysfunction and Pulmonary Hypertension

Figure 1. Nucleotides and adenosine regulation in pulmonary hypertension.
Homeostasis between extracellular nucleotides and adenosine is governed by ectonucleotidases, including nucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), nucleotide pyrophosphatase/phosphodiesterase (NPP), and adenosine deaminase. CD39 phosphohydrolyzes ATP and ADP to AMP, which is dephosphorylated to adenosine by CD73. Adenosine can be further degraded by adenosine deaminase to inosine. In pulmonary hypertension, CD39 is downregulated and adenosine deaminase is upregulated, resulting in low adenosine levels in the pulmonary vasculature (generated by Biorender).

4 subtypes: A1R, A2AR, A2BR, and A3R. The P2R subfamily has 2 subgroups, P2XRs and P2YRs. The ionotropic P2XRs include 7 P2XRs (P2X1R-P2X7R), and the metabotropic P2YRs contain 8 P2YRs (ie, P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R, and P2Y14R). P1Rs can be activated by adenosine, whereas P2Rs are capable of mediating responses to several nucleotides and have overlapping ligand preferences. P2X1R-P2X7R and P2Y11R are mainly activated by ATP; P2Y1R, P2Y12R, and P2Y13R are activated by ADP, whereas P2Y1R is sensitive to both ATP and ADP. Moreover, P2Y2R and P2Y4R are preferably activated by UTP, whereas P2Y6R preferably responds to UDP (Figure 2). On stimulation by different extracellular nucleotides, PR-mediated signaling is initiated, which results in various responses, including platelet aggregation, cell proliferation, angiogenesis, immune responses, and vascular tone regulation. Although some heterogeneity of the PR expression and distribution was found between species, all 4 adenosine receptors were found in the lungs of mice and humans, and P2Rs are located in the pulmonary arteries of various species. Thus, P2X1R, P2X2R, P2X3R, P2X4R, P2X5R, P2X7R, P2Y1R, P2Y2R, P2Y4R, and P2Y11R are expressed in isolated PAECs, whereas P2X1R, P2X3R, P2X4R, P2X5R, P2Y1R, P2Y2R, P2Y4R, and P2Y11R have been found in the intact pulmonary vasculature (Figure 2).

Purinergic Dysfunction in Pulmonary Vascular Tone and Remodeling

Alterations in P1R Signaling in PAH
 Plasma adenosine concentrations are lower in patients with PAH than in healthy subjects, and the response of pulmonary vasculature to adenosine and P1R agonists is altered in PAH, indicating a potential deficiency in adenosine-mediated purinergic signaling in PAH. The pulmonary vasodilator effect of adenosine in patients with PH appears to be dependent on cause of the disease. Thus, in patients with PH after cardiac surgery, central venous infusion of adenosine not only induced pulmonary vasodilation with significant decreased PAP and PVR, but also induced an increase in cardiac output with mean arterial pressure being unaffected. Intravenous infusion of a high dose of adenosine decreased PAP, PVR, and systemic arterial pressure in around 50% of patients with severe PAH secondary to a congenital heart defect. Intravenous adenosine infusion decreased PAP in 6 of 9 neonates with persistent PH who received inhaled NO (Table). Conversely, when adenosine was administered in patients with iPAH, only ≈10% of patients exhibited significant decreases in mean PAP and PVR. In children with iPAH, 3 of 15 cases did respond to adenosine with a reduction in PAP.

When testing a potential pulmonary vasodilator effect of adenosine, one should carefully consider dose and route of administration as adenosine has a short half-life of 5 to 10 seconds. Hence, infusion into the pulmonary circulation is preferred as adenosine then likely has a (more) selective effect on pulmonary vasculature, because of its higher concentrations in the pulmonary circulation compared with the systemic circulation. Indeed, adenosine infusion via the right atrium (0.01–2.5 µmol/kg per minute) in hypoxic lambs has a pulmonary vasodilator effect, evidenced by a decrease in PAP and PVR at all doses tested. A similar effect was present in normoxic lambs, but required higher doses of 0.15 to 2.5 µmol/kg per minute, than in the hypoxic lambs, suggesting that hypoxia sensitizes the response of...
Table. Purinergic Dysfunction in Patients With PH and Various Animal Models

PH/PAH Models	Species/Genotype	Lung	RV	Pulmonary Circulation	Systemic Circulation	Test/Treatment	Effects	References
PAH	Human			Adenosine ↓	CD39↑	Adenosine	Pulmonary vasoreactivity test	19–21, 25–30
				ADA activity↑		Regadenoson	Stress test	
						ATP-MgCl₂	mPAP↓, PVR↓	
PH attributable to lung diseases or hypoxia	Human	A₂BR↑	CD39↓	ATP release from RBCs↓	PGI₂/PDE5i	Vascular remodeling↑	ATP release↑	28, 31–33
Monocrotaline	Rat	CD39↓	P₂X₇R↑		LASSBio-1386	Vascular remodeling↓		15, 19, 34–36
					LASSBio-1359			
					A-740003			
					Brilliant Blue G			
Hypoxia	Rat	P₂X₄R↑		Adenosine↑		Adenosine	mPAP↓, endothelin-1↓, NO↑, vascular remodeling↓	37, 38
				NECA		NECA	mPAP↓, endothelin-1↓, NO↑, vascular remodeling↓	
				N6-cyclopentyladenosine		N6-cyclopentyladenosine	mPAP↓, endothelin-1↓, NO↑, vascular remodeling↓	
Hypoxia	A₂BR knockout mouse			Spontaneous PH under normoxia		Spontaneous PH under normoxia	mPAP↓, endothelin-1↓, NO↑, vascular remodeling↓	39, 40
						Prothrombotic phenotype↑, PAP↑, vascular remodeling↑		
						RV hypertrophy↑		
						mPAP↓		
Hypoxia	A₂AR knockout mouse (RBCs)		Oxygen release↓	ATP/adenosine↑	ADPase	Prothrombotic phenotype↑, PAP↑, vascular remodeling↑	13	
						ATP-MgCl₂	RV hypertrophy↑	
						ADPase		
Hypoxia	CD39 knockout mouse			ADP		ATP-MgCl₂	Vasodilation at low dose, vasoconstriction at high dose	30, 43
				ATP		ATP-MgCl₂	mPAP↓, PVR↓	
				ATP		MRS2500	mPAP↓, PVR↓	
				ATP		Gangrelor	mPAP↓, PVR↓	
Hypoxia	Swine			Adenosine↓		Adenosine	mPAP↓, PVR↓	22, 44–46
						ATP	at low dose	Pulmonary vasodilation at low dose
Hypoxia	Lamb			Adenosine↓		Adenosine	mPAP↓, PVR↓	47, 48
						ATP	at low dose	Pulmonary vasodilation at low dose
U46619	Young lamb			ATP		ATP	mPAP↓, PVR↓	
	Newborn lamb			Adenosine↓		Adenosine	mPAP↓, PVR↓	
						ATP	at low dose	PAP↓
Hemolysis associated	Rat			ADA from RBCs↑		ADA from RBCs↑	PH phenotype	49

(Continues)
pulmonary vasculature to adenosine. The systemic effects of adenosine (decrease in aortic pressure and systemic vascular resistance, increase in heart rate and cardiac output) were observed in both normoxic and hypoxic lambs with doses ≥0.3 µmol/kg per minute (Table).22,45 These results suggest that lower doses of adenosine directly reduce the PAP by reducing PVR, whereas at higher doses the decrease in PAP is limited by the increase in cardiac output. This pulmonary vasodilator effect of adenosine in hypoxic lambs was attenuated by prior treatment of nonselective P1R antagonist aminophylline,22 indicating that the pulmonary vasodilator effect is mediated via P1R.

Further evidence for alterations of P1R in the adenosine-mediated regulation of vascular function in pulmonary vasculature has been shown in endothelium-denuded pulmonary arteries isolated from guinea pigs, in which the nonselective adenosine receptor agonist 5’-(N-ethylcarboxamido) adenosine (NECA) produced concentration-dependent contraction.50 The vasoconstrictor response to NECA was converted to relaxation in the presence of cyclooxygenase inhibition.50 Interestingly, although exposure of these vessels to hypoxia did not alter the contractile response to NECA under baseline conditions, a biphasic response, contraction followed by relaxation, was observed in response to NECA in the presence of cyclooxygenase inhibition. This initial vasoconstrictor effect was prevented by A1R blockade (Table).50 This study indicates that, in addition to the cyclooxygenase-dependent pulmonary vasoconstrictor effect of adenosine, exposure to hypoxia alters adenosine signaling and induces an A1R-mediated vasoconstrictor effect.

Long-term subcutaneous infusion of adenosine, the nonselective P1R agonist NECA, or the selective A1R agonist N6-cyclopentyladenosine into rats with chronic hypoxia-induced PH significantly reduced PAP, plasma renin activity, and angiotensin II levels, as well as endothelin-1 levels, and increased NO levels, thereby counteracting the effects of chronic hypoxia.37 Of note, adenosine and NECA but not N6-cyclopentyladenosine also significantly attenuated the pulmonary vascular remodeling induced by chronic hypoxia (Table).37 These data, showing that A1R agonism only partially mimicked the beneficial effects of P1R agonism, are consistent with a low A1R expression in the (healthy) human pulmonary vasculature,66 and suggest that other P1Rs than the A1R are also involved.

The involvement of A2AR in the development of PH has been characterized in A2AR knockout mice. The A2AR knockout mice already show hemodynamic and histological characteristics of PAH, as evidenced by increased pulmonary vascular remodeling with pulmonary vasculature to adenosine. The systemic effects of adenosine (decrease in aortic pressure and systemic vascular resistance, increase in heart rate and cardiac output) were observed in both normoxic and hypoxic lambs with doses ≥0.3 µmol/kg per minute (Table).22,45 These results suggest that lower doses of adenosine directly reduce the PAP by reducing PVR, whereas at higher doses the decrease in PAP is limited by the increase in cardiac output. This pulmonary vasodilator effect of adenosine in hypoxic lambs was attenuated by prior treatment of nonselective P1R antagonist aminophylline,22 indicating that the pulmonary vasodilator effect is mediated via P1R.

Further evidence for alterations of P1R in the adenosine-mediated regulation of vascular function in pulmonary vasculature has been shown in endothelium-denuded pulmonary arteries isolated from guinea pigs, in which the nonselective adenosine receptor agonist 5’-(N-ethylcarboxamido) adenosine (NECA) produced concentration-dependent contraction.50 The vasoconstrictor response to NECA was converted to relaxation in the presence of cyclooxygenase inhibition.50 Interestingly, although exposure of these vessels to hypoxia did not alter the contractile response to NECA under baseline conditions, a biphasic response, contraction followed by relaxation, was observed in response to NECA in the presence of cyclooxygenase inhibition. This initial vasoconstrictor effect was prevented by A1R blockade (Table).50 This study indicates that, in addition to the cyclooxygenase-dependent pulmonary vasoconstrictor effect of adenosine, exposure to hypoxia alters adenosine signaling and induces an A1R-mediated vasoconstrictor effect.

Long-term subcutaneous infusion of adenosine, the nonselective P1R agonist NECA, or the selective A1R agonist N6-cyclopentyladenosine into rats with chronic hypoxia-induced PH significantly reduced PAP, plasma renin activity, and angiotensin II levels, as well as endothelin-1 levels, and increased NO levels, thereby counteracting the effects of chronic hypoxia.37 Of note, adenosine and NECA but not N6-cyclopentyladenosine also significantly attenuated the pulmonary vascular remodeling induced by chronic hypoxia (Table).37 These data, showing that A1R agonism only partially mimicked the beneficial effects of P1R agonism, are consistent with a low A1R expression in the (healthy) human pulmonary vasculature,66 and suggest that other P1Rs than the A1R are also involved.

The involvement of A2AR in the development of PH has been characterized in A2AR knockout mice. The A2AR knockout mice already show hemodynamic and histological characteristics of PAH, as evidenced by increased pulmonary vascular remodeling with
Cai et al Purinergic Dysfunction and Pulmonary Hypertension

excessive vascular cell (PAEC and PASMC) proliferation and hypertrophy in pulmonary resistance vessels, as well as increased collagen deposition and an increased RV pressure even in the absence of other triggers of PAH. Exposure of these mice to chronic hypoxia exacerbates hypertrophy and increased cell proliferation in pulmonary resistance vessels in the A2AR knockout mice, resulting in further elevations in RV pressure and RV hypertrophy (Table). Pulmonary vascular remodeling in A2AR knockout mice was accompanied by increased mRNA and protein expression for Ras homolog gene family member A and Rho kinase (ROCK) 1, with localization of ROCK1 protein in PAECs and PASMCs, bronchial, and alveolar epithelial cells. Activation of the Ras homolog gene family member A/ROCK pathway has been proposed to play a key role in regulation of smooth muscle contraction and proliferation in PH. Once activated, these pathways not only activate Ca2+/calmodulin-dependent myosin light chain kinase (contraction) but also inactivate Ca2+-independent myosin light chain phosphatase (relaxation). As these 2 components balance each other in the healthy vasculature to maintain a low level of pulmonary vascular tone, an imbalance induces vasoconstriction. In PH, activation of Rho kinase induces Ca2+ signaling, which further activates Ras homolog gene family member A/Rho kinase, leading to a vicious circle of vascular contraction and remodeling. Taken together, these observations suggest that the loss of adenosine in PAH and consequent reduction in A2AR activation may trigger the Rho/ROCK signaling pathway. Considering a potential role of A2AR in suppressing P(A)H, 2 new A2AR agonists have been developed and tested in animal models of PH. The A2AR agonist LASSBio-1386, administered 2 weeks after monocrotaline treatment, significantly reduced the proliferative changes in the pulmonary arterioles in a rat model of monocrotaline-induced PH. Similarly, another A2AR agonist, LASSBio-1359, abolished the increased RV overload and reduced vessel wall hypertrophy, demonstrating satisfactory efficacy through long-term oral administration in monocrotaline-induced PH, with no adverse effect on the systemic vasculature. Of note, the impaired pulmonary endothelial function reflected by the reduced acetylcholine-induced NO-dependent relaxation in isolated pulmonary arteries was markedly attenuated in rats with PH treated with LASSBio-1386 or LASSBio-1359 (Table). More recently, the same group showed that combination therapy with a 5 times lower dosage of LASSBio-1359 than previously used and the phosphodiesterase 5 inhibitor sildenafil, but not the monotherapy with either of them, ameliorated all the PH-associated abnormalities, as observed in their previous studies. Therefore, activation of A2AR is a promising additional tool for the treatment of PAH.

Although activation of A2AR may be beneficial in PAH, activation of the A2B receptor may result in pulmonary vascular remodeling in P(A)H in both human and animal studies. An upregulation of the A2B receptor in human lungs was found in patients with various forms of PH, including PAH, secondary to idiopathic pulmonary fibrosis compared with those without PH.
PH secondary to chronic obstructive pulmonary disease.70 A$\textsubscript{2B}$R expression was increased specifically in PASMCs from patients with iPAH compared with controls (Figure 3).28 A functional role for the A$\textsubscript{2B}$R was shown by pharmacological inhibition of A$\textsubscript{2B}$R using the antagonist GS-6201 as well as genetic deletion of A$\textsubscript{2B}$R, which attenuated the fibroproliferative and vascular remodeling processes that contribute to PH in the lung of mice with bleomycin-induced PH and lung fibrosis.51 The detrimental role of A$\textsubscript{2B}$R activation was narrowed down to the smooth muscle cell (SMC) by specific depletion of the A$\textsubscript{2B}$R in SMCs in mice, which protected these mice from the development of PH and pulmonary vascular remodeling in response to exposure to bleomycin or SUGEN with hypoxia.28 Specific A$\textsubscript{2B}$R depletion in SMCs also inhibited the production of several remodeling mediators in these PH models, including interleukin-6, hyaluronan synthase 2, and transglutaminase 2.28 Elevation of interleukin-6 and endothelin-1, which are implicated as important mediators in pulmonary vascular remodeling in PH, was also attenuated by pharmacological inhibition and genetic deletion of A$\textsubscript{2B}$R.51 A direct role for A$\textsubscript{2B}$R activation in these processes was confirmed by experiments showing that adenosine receptor stimulation promoted interleukin-6 and endothelin-1 release from both PAECs and PASMCs, which could be inhibited by a selective A$\textsubscript{2B}$R antagonist.51 Furthermore, the culture medium from A$\textsubscript{2B}$R-activated PAECs was able to promote proliferation of PASMCs.51 Taken together, these findings suggest a crucial role of A$\textsubscript{2B}$R in pulmonary vascular remodeling in PAH (Table). Targeting A$\textsubscript{2B}$R may serve as potential therapeutic strategy for the abnormal remodeling of the pulmonary vasculature associated with PAH.

Altogether, these findings support the potential of targeting P1R signaling to ameliorate PAH. To our knowledge, P1R subtype distribution in the pulmonary vasculature in patients with PAH is unclear. To date, most research has focused on A2R, whereas the role of A1R and A3R in pulmonary vascular remodeling is not fully understood. As the receptor expression and distribution may change in pathological conditions, further characterization of the P1R subtypes in the pulmonary vasculature from patients with PAH is required. Cross talk among PRs has been reported in other vascular beds. For instance, there is an upregulation of A$\textsubscript{2B}$R in coronary arteries of A$\textsubscript{2AR}$ knockout mice.71 However, in these global knockout mice, the adenosine receptor expression and function were not examined in pulmonary tissue. It could be speculated that the pulmonary pathological features observed in A$\textsubscript{2AR}$ knockout mice may partially be attributed to the upregulation of A$\textsubscript{2B}$R.59

Figure 3. Purinergic receptor as the potential therapeutic target for the treatment of pulmonary hypertension.

In pulmonary hypertension, A$\textsubscript{2A}$, P2X$\textsubscript{7}$, P2Y$\textsubscript{1}$, P2Y$\textsubscript{11}$, and P2Y$\textsubscript{12}$ receptors are upregulated (red) and A$\textsubscript{2A}$ receptors are downregulated (white) in the pulmonary vasculature. The potential receptors (A$\textsubscript{2A}$, A$\textsubscript{2B}$, and P2X$\textsubscript{7}$) as therapeutic targets are highlighted with the capsule symbols, whereas the A$\textsubscript{2AR}$ may be involved in initiation of the disease (generated by Biorender).
basis of experimental animal studies, A2AR activation and A2BR inhibition both seem to be promising strategies for reversing pulmonary vasoconstriction in the treatment of PAH.12 Selective A2AR agonism has been used in clinical studies mainly for the evaluation of cardiac function and detection of coronary artery disease.72,73 Stress tests have also been performed in patients with PAH using the A2AR agonist regadenoson and showed no major adverse effects (Table), suggesting that such intervention is safe.29 However, clinical trials are needed in the future to further characterize the therapeutic role of A2AR activation in the treatment of patients with PAH.

Alterations in P2R Signaling in PAH
The role of P2R activation in the pulmonary vasculature has been addressed in different P(A)H models. Depending on the agonist and, most likely, the P2R involved, P2R activation can cause either pulmonary vasoconstriction or vasodilation. In swine with acute hypoxia-induced PH, blockade of P2Y1R with the selective antagonist MRS2500 decreased PAP and PVR, whereas cardiac output was unchanged, while target-selective antagonist MRS2500 decreased PAP and PVR, indicating P2Y1R involvement in pulmonary vasculature in PH.43 In contrast to the vasoconstriction induced by ADP, ATP induced pulmonary vasodilation, as evidenced by significant decreases in PAP and PVR in newborn lambs. The pulmonary vasodilator effect was not affected by the nonselective P1R antagonist theophylline, suggesting involvement of P2Rs.46 Furthermore, the sensitivity of pulmonary vasculature from hypoxic newborn lambs to ATP infusion (0.01–0.3 μmol/kg per minute via right atrium) was greater than that from normoxic newborn lambs as vasodilation occurred at a lower dose of ATP. In both normoxic and hypoxic lambs, the systemic effect of ATP only occurred at dosages >0.3 μmol/kg per minute.45,46 ATP infused into the pulmonary artery also significantly reduced mean PAP and PVR in young lambs, with PH induced by the thromboxane analogue U46619 without affecting mean arterial pressure.74 In swine with meconium aspiration-induced PH, ATP infusion at low dose (0.02–0.08 μmol/kg per minute) selectively decreased PAP and PVR; a reduction in systemic resistance was only observed with higher ATP dosage (0.32–0.8 μmol/kg per minute).47 Similarly, ATP-MgCl2 infusion (at the optimal dose of 0.1 mg/kg per minute) reduced mean PAP and PVR without affecting mean arterial pressure in piglets with hypoxia-induced PH.30 ATP-MgCl2 was also shown to be a safe and effective vasodilator in children with PAH associated with congenital heart disease, as evidenced by a reduction in PAP and PVR without major systemic adverse effects (Table).75

Interestingly, in isolated intrapulmonary arteries, neither ATP-induced relaxation nor UTP-induced vasoconstriction was different between healthy swine and PH swine exposed to hypoxia for 3 days.77 Surprisingly, ATP induced vasoconstriction in both pulmonary arteries from broiler chicken with PH induced by excess tryptophan and control.78 The dinucleotide Up2A, which contains both a purine and a pyrimidine, induced constriction in healthy rat pulmonary arteries via P2YR7,79,80 but the effect of Up2A on pulmonary vasculature in PH has not been investigated to date.

Few studies actually investigated the functional role of different P2R subtypes in pulmonary vascular remodeling in PH. It has been reported that ATP or the P2Y11R agonist β-NAD induced a survival response and increased cell viability in healthy ECs, whereas the ATP-induced effect on survival and viability was not present in ECs when P2Y11R was knocked down.19 Furthermore, knockdown of P2Y11R in itself also decreased the survival capacity of healthy ECs and increased vulnerability to serum starvation-induced apoptosis.19 More important, knockdown of P2Y11R in ECs derived from patients with PAH also sensitized the cells to apoptosis and decreased the cell viability.19

In a rat model of monocrotaline-induced PH, P2X7R expression in the pulmonary arterial smooth muscle layer was markedly increased (Figure 3).15 Long-term treatment with the selective P2X7R antagonist A-740003 reversed pulmonary vascular remodeling in this PH model (Table).15 Although the mechanisms were not investigated in this study, impaired vasomotor function was restored in a model of subfailure overstretch injury in rat aorta by treatment with P2X7R antagonists or P2X7R/pannexin complex antagonists. In this study, P2X7R antagonism reduced stretch-induced ATP release, decreased p38 mitogen-activated protein kinase phosphorylation, increased phosphorylation of the antiapoptotic protein Akt in aorta, and reduced tumor necrosis factor-α–stimulated caspase 3/7 activity in cultured rat vascular SMCs.81

Taken together, both vasodilator (to ATP) and vasoconstrictor (to ADP and UTP) responses to nucleotide-induced P2R activation have been observed in the pulmonary vasculature of healthy subjects as well as subjects with PH. On the basis of the existing data on the involvement of P2Rs in pulmonary vasculature (Figure 2), ADP-mediated vasoconstriction is likely through activation of P2Y2R and P2Y12R, whereas UTP-induced vascular contraction is via P2Y1R. The P2R subtypes activated by ATP, as well as whether their expression patterns change in PH, remain to be determined, although the presence of PH seems to sensitize to pulmonary vasculature to the vasoactive effects of ATP.
Changes in P2R in PH are not limited to the pulmonary vasculature. In a rat model of hypobaric hypoxia-induced PH, P2X7R mRNA levels were exclusively increased in RV of the heart compared with other tissues, including left ventricles of the heart, lung, liver, kidney, and brain. The increased mRNA levels of P2X7R were followed by increases in P2X7R protein in the RV and were larger after more prolonged exposure of animals to hypobaric hypoxia. These changes in P2X7R in the RV occurred simultaneously with the increase in PAP and the development of the RV hypertrophy (Table). However, the functional implications of the increase in P2X7R in the RV require further investigations. A recent study investigating the therapeutic effect of P2X7R antagonism for PH showed that the novel P2X7R antagonist PKT100 attenuated RV hypertrophy and improved RV contractility and survival in a mouse model of PH induced by bleomycin independently of effects on the pulmonary vasculature (Table). This new finding may add new information on the current treatment option, in which the significant improvement in pulmonary pressure does not affect mortality caused by RV failure.

Possible Purinergic Dysfunction in Pulmonary Venous Remodeling?

Patients with PH, including PAH with scleroderma, chronic thromboembolic PH, and pulmonary venous occlusive disease, often display pulmonary venous and venular remodeling. The walls of septal veins and preseptal venules also show SMC hyperplasia with abnormal contraction, which may contribute to the elevated PVR. Contrary to the vasodilator effect of ATP in the pulmonary arteries, ATP induces a concentration-dependent contraction in pulmonary veins, which is inhibited by the nonselective P2R antagonist suramin and the P2Y1R antagonist AR-C118925 but not by the P2Y2R antagonist MRS2179. The functional evidence is in accordance with the exclusive expression of P2Y1R in SMCs within pulmonary veins. Activation of phospholipase C-β and generation of intracellular Ca2+ oscillations may serve as post-PR mechanisms for ATP-induced contraction in pulmonary veins. Therefore, it is of interest to study whether P2YR signaling in pulmonary veins plays a significant role in the development of PH.

PURINERGIC DYSFUNCTION IN INFLAMMATION AND IMMUNITY

Inflammation and maladapted immune responses have been reported to be involved in the pathogenesis of PAH, as evidenced by histological studies of the lung, the presence of circulating autoantibodies, and high plasma levels of cytokines. Proinflammatory cytokines, such as interleukin-6, interleukin-13, tumor necrosis factor-α, and interleukin-1β, are independently associated with survival rate in patients with PAH, indicating that therapeutic drugs targeting inflammation would be beneficial to patients with PAH.

The expression and function of PRs on inflammatory and immune cells have been extensively characterized. Activation of many PRs, including A1R, P2X7R, P2Y1R, and P2Y6R, generally results in proinflammatory responses. In a rat model of monocrotaline-induced PH, long-term treatment with P2X7R antagonist Brilliant Blue G effectively attenuated inflammation by reducing the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α through the p38/mitogen-activated protein kinase pathway, thereby reducing cell infiltration in the alveolar space. In another study using the same model, the selective P2X7R antagonist A-74003 reduced macrophage numbers and proinflammatory cytokine levels in bronchoalveolar lavage fluid through suppression of the upregulation of NLRP3 inflammasome (Table). Recent findings demonstrated that conditional deletion of A2BR in myeloid cells altered the phenotype of macrophages and attenuated the development of fibrosis and inflammation (decreased interleukin-6 concentrations in bronchoalveolar lavage fluid) in a mouse model of lung injury-induced PH. Taken together, purinergic signaling might contribute to the proinflammatory phenotype in PAH, and inhibition of these effects might contribute to therapeutic efficacy (Table).

POTENTIAL ROLE OF ERYTHROCYTE-MEDIATED PURINERGIC SIGNALING IN PAH

In addition to immune cells, emerging data suggest that erythrocytes not only act as regulators of normal physiological function to maintain cardiovascular homeostasis and integrity but also act as important triggers for the development of various cardiovascular diseases. It is well known that erythrocytes deliver oxygen to body tissues, and interestingly, erythrocytes also serve as ATP pool. The 2 functions are interdependent as ATP release from erythrocytes has been observed particularly under hypoxia, to precisely regulate tissue perfusion and vascular tone in both experimental animals and humans. This regulation of vascular function by erythrocyte-derived ATP has been proposed to be mediated via activation of vasodilator P2Y1R on the vasculature. In the pulmonary vasculature, oxygen acts as an important vasodilator, which is likely to be mediated via ATP and subsequent
activation of PRs, as both P1R and P2YR contribute to the oxygen-induced decrease in PAP in newborn lambs with PH. Further evidence for an interaction between oxygen and release of purines is that young healthy humans exposed to high altitude exhibited increased circulating adenosine levels and ecto-5'-nucleotidase activity, suggesting that ATP is increased at high altitude and ATP breakdown to adenosine is subsequently enhanced via ecto-5'-nucleotidase. The increase in adenosine was associated with increased erythrocyte 2,3-bisphosphoglycerate and oxygen releasing capacity. Mechanistic studies using A2BR knockout mice demonstrated that increased adenosine activates the erythrocyte A2BR-AMP kinase axis, resulting in increased 2,3-bisphosphoglycerate production and a shift in the relation between oxygen tension and oxygen saturation, thereby enhancing oxygen release to reduce the hypoxic burden. This subsequently reduced inflammation and lung injury, reflected by decreased cell counts, albumin, and interleukin-6 concentrations in bronchoalveolar lavage fluid. The same group further found that adenosine-A2BR-protein kinase A–induced proteasome-mediated degradation of the equilibrative nucleoside transporter 1 on erythrocytes is an important cellular purinergic signaling regulatory component to counteract hypoxic pulmonary vascular leakage and inflammation, and that erythrocytes with reduced equilibrative nucleoside transporter 1 retain a “hypoxic purinergic memory” for quicker adaptation to subsequent hypoxia (Table). ATP release from erythrocytes was significantly reduced in patients with PAH compared with healthy subjects when erythrocytes were challenged with either mechanical (passing erythrocytes through filters) or pharmacological stimulation (incubation with cAMP analogue to increase cAMP level, a required process for ATP release from erythrocytes). Of interest, a prostacyclin analogue increases cAMP and ATP to a greater extent in erythrocytes of patients with PAH than in healthy subjects. Additional phosphodiesterase-5 inhibition further increased ATP release from erythrocytes, indicating that common PAH therapeutic strategies synergistically induce release of this potent vasodilator from erythrocytes. The impaired release of ATP from erythrocytes of PAH may alter vascular PR signaling and result in vascular dysfunction. It is also worth mentioning that oxygen concentrations are likely to be higher in pulmonary veins than in arteries. Thus, ATP released from erythrocytes may be lower in the vein. This potential difference may also have impact on pulmonary venous function.

In addition to the reduced ATP release from erythrocytes, higher adenosine deaminase activity in pulmonary circulation of patients with PAH may account for the lower levels of adenosine in pulmonary compared with systemic circulation (Figure 1). Of interest, erythrocytes from a rat model of hemoxygen-associative PH released more adenosine deaminase into the pulmonary circulation to hydrolyze extracellular adenosine, suggesting that erythrocytes may be a source of adenosine deaminase (Table). Altogether, these findings suggest that erythrocytes are important intermediaries to initiate/activate purinergic signaling.

POTENTIAL INTERACTION WITH AIRWAY DISEASE

PRs are not only present in the vasculature but also on the airways, where their activation can induce bronchoconstriction and exert a proinflammatory effect. Hence, P2X7R activation not only exerts a proinflammatory effect on the vasculature but also on the airways as its activation results in upregulation of ROCK1 in bronchial and alveolar epithelial cells. Antagonists of this receptor may therefore have a dual beneficial effect on both airways and vasculature in PAH. Conversely, there is evidence to suggest that activation of P1R and P2R by adenosine and ATP plays a detrimental role in airway diseases, including asthma, allergy, and chronic obstructive pulmonary disease. Particularly, activation of the A2aR has been shown to induce bronchoconstriction in patients with asthma and chronic lung diseases. Furthermore, activation of this receptor may worsen the inflammation in patients with asthma. Hence, when evaluating therapeutic effects of adenosine and A2aR agonism in PH, potential detrimental effects on the airways should be carefully monitored, particularly in patients with chronic lung diseases, such as asthma and chronic obstructive pulmonary disease.

CONCLUSIONS AND PERSPECTIVES

Emerging observations have suggested a role of nucleotide-mediated purinergic signaling in the development and progression of PAH. The ectonucleotidase CD39 is an important enzyme regulating purine and pyrimidine degradation, thereby modulating P2R signaling. CD39 is downregulated on the pulmonary endothelium of patients with PAH, which may promote pulmonary vascular remodeling. Furthermore, erythrocyte dysfunction in these patients decreases ATP release and consequent dysregulation of the hypoxia-induced adenosine response may further contribute to the development of PAH and lung injury. A2aR and A2BR, both members of the P1R family, play a role in regulation of pulmonary vascular tone, vascular remodeling, inflammation, and immunity, and have shown potential as therapeutic targets in experimental models (Figure 3). A2aR knockout mice
exhibited a PH phenotype, suggesting loss of function in this receptor may initiate the disease. New A2aR agonists have been developed and tested in an animal model of PH with promising outcome. Although the A2aR agonist regadenoson has been applied in patients with PAH for a cardiac stress test, future clinical trials are needed to investigate a potential therapeutic role of A2aR activation in the treatment of patients with PAH. These trials need to be carefully monitored as A2aR activation may result in a proinflammatory effect and may induce dyspnea with bronchoconstriction.

From the P2R subtypes, P2X7R, P2Y1R, P2Y11R, and P2Y12R have been shown to play a role in pulmonary vascular remodeling, inflammation, and/or vascular tone regulation in PAH (Figure 3). Given the multitude of receptor subtypes expressed in different cells of the pulmonary arteries and lung, it remains to be investigated which receptors play a key role in the development of PAH, and whether single receptor or multiple receptors need to be targeted at the same time for the most effective therapy. This far, P2X7R inhibition has been shown to exert anti-inflammatory and antiremodeling effects on both the vasculature and the airways and to reduce RV hypertrophy, suggesting that the P2X7R may serve as a therapeutic target (Figure 3). Another important limitation to date is that there is limited knowledge about the molecular mechanisms involved in the P2R signaling. Future studies in specific P2R knockout mice can be useful to elucidate these molecular mechanisms.

Altogether, existing evidence suggests that a role of altered purinergic signaling in the development and progression of P(A)H is plausible. Targeting nucleod(s) ide(s) and their regulated purinergic signaling may provide valuable possibilities for the treatment of PAH.

ARTICLE INFORMATION

Affiliations
From the Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands (Z.C., D.M.); INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., C.G.); School of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., C.G.); Walter Brendel Center of Experimental Medicine, LMU Munich, Munich, Germany (D.M.); German Center for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany (D.M.); and Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (Z.Z.).

Sources of Funding
This work was supported by the Swedish Heart and Lung Foundation (20190341 to Zhou), The Loo and Hans Ostermans Foundation (2018–01213 and 2020–01209 to Zhou), the Lars Hiertas Minne Foundation (FO2018–0156 to Zhou), the Sigurt and Elsa Goljes Memorial Foundation (to Zhou), the Karolinska Institutet grant (2016 and 2018 to Zhou), the China Scholarship Council (201666203029 to Cai), the German Center for Cardiovascular Research (81Z0600207 to Merkus), and the Netherlands CardioVascular Research Initiative: an initiative with support of the Dutch Heart Foundation (CVON2014-11 [RECONNECT] to Merkus).

Disclosures
The authors declare that there is no conflict of interest.

REFERENCES
1. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzioulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913.
2. Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, Kawut SM, Langleben D, Lumenis J, Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.
3. Humbert M, Guignabert C, Bonnet S, Dorfmueller P, Klinge JR, Nicolls MR, Olszewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2018;53:1801887.
4. Gale N, Humbert M, Vachiery JL, Gibbs S, Langi, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint Task Force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS); endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT), Eur Heart J. 2016;37:67–119.
5. Boucly A, Weatherald J, Savale L, Jais X, Cottin V, Prevot G, Picard F, de Groote P, Jevnikar M, Bergot E, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017;50:1700889.
6. Ralevic V, Burnstock G. Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect. 2003;16:133–140.
7. Ralevic V, Dunn WR. Purinergic transmission in blood vessels. Auton Neurosci. 2015;191:48–66.
8. Burnstock G. Control of vascular tone by purines and pyrimidines. Br J Pharmacol. 2010;161:527–529.
9. Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D. Uridine adenosine tetraphosphate and puriner-gic signaling in cardiovascular system: an update. Pharmacol Res. 2018;141:32–45.
10. Burnstock G. Purinergic signaling in the cardiovascular system. Circ Res. 2017;120:207–228.
11. Zhou R, Dang X, Sprague RS, Mustafa SJ, Zhou Z. Alteration of purinergic signaling in diabetes: focus on vascular function. J Mol Cell Cardiol. 2020;141:1–9.
12. Alencar AK, Montes GC, Barreiro EJ, Sudo RT, Zapata-Sudo G. Adenosine receptors as drug targets for treatment of pulmonary arte- rial hypertension. Front Pharmacol. 2017;8:858.
13. Visovatti SH, Hyman MC, Goonawardenna SN, Anyanwu AC, Kanthi Y, Robichaud P, Wang J, Petrovic-Djordjovic D, Rattan R, Burant CF, et al. Purinergic dysregulation in pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2016;311:H286–H298.
14. Hennings JK, Luneburg N, Stage A, Schmitz M, Korbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Boger RH, et al. The P2-receptor-mediated Ca(2+) signalosome of the human pulmonary endothelium—implications for pulmonary arterial hypertension. Purinergic Signal. 2019;15:299–311.
15. Yin J, You Š, Liu H, Chen L, Zhang C, Hu H, Xue M, Cheng W, Wang Y, Li X, et al. Role of P2X7R in the development and progression of pulmonary hypertension. Respir Res. 2017;18:127.
16. Sprague RS, Ellsworth ML. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation. 2012;19:430–439.
17. Gonzalez-Alonso J. ATP as a mediator of erythrocyte-dependent reg- ulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590:5001–5013.
18. Visovatti SH, Hyman MC, Bous D, Neubig R, McLaughlin VV, Pinskey DJ. Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS One. 2012;7:e40829.
19. Helenius MH, Vattulainen S, Orcholski M, Aho J, Komulainen A, Taimen P, Wang L, de Jesus Perez VA, Koskenvuo JW, Alastalo TP.
Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. *Am J Physiol Lung Cell Mol Physiol*. 2015;308:L1046–L1057.

20. Saadaj AJ, Paganeli F, Gaubert ML, Levy S, Guieu RP. Adenosine plasma concentration in pulmonary hypertension. *Cardiovasc Res*. 1999;43:228–236.

21. Saadaj AJ, Paganeli F, Juin MA, Devaux C, Levy S, Guieu RP. Plasma beta-endorphin and adenosine concentration in pulmonary hypertension. *Am J Cardiol*. 2000;85:858–863.

22. Konduri GG, Woodard LL, Mukhopadhyay A, Deshmukh DR. Adenosine is a pulmonary vasodilator in newborn lambs. *Am Rev Respir Dis*. 1992;146:670–676.

23. Andersen CJ, Hilberg O, Mellekjaer S, Nielsen-Kudsk JE, Simonsen LS, Gaubert ML, Levy S, Guieu RP. Pulmonary artery pressure and pulmonary hypertension. Pulm Circ. 2011;1:334–348.

24. Brash L, Barnes GD, Brewis MJ, Church AC, Gibbs SJ, Howard L, Jayasekera G, Johnson MK, McGlinchey ON, Norotaro J, et al. Short-term hemodynamic effects of apelin in patients with pulmonary arterial hypertension. *JACC Basic Trans Sci*. 2018;3:176–186.

25. Fullerton DA, Jones SD, Grover FL, McIntyre RC Jr. Adenosine effectivly controls pulmonary hypertension after cardiac operations. *Ann Thorac Surg*. 1996;61:1118–1124; discussion 1123–1124.

26. Zhang DZ, Zhu YY, Meng J, Xue HM, Zhang P. Acute hemodynamic responses to adenosine and iloprost in patients with congenital heart defects and severe pulmonary arterial hypertension. *Int J Cardiol*. 2011;147:433–437.

27. Ng C, Franklin O, Vaidya M, Pierce C, Petros A. Adenosine infusion for inhibition ofrostinal smooth muscle cells halts the development of pulmonary hypertension. *Front Physiol*. 2018;9:555.

28. Moles VM, Cascino T, Saleh A, Mikhova K, Lazarus JJ, Ghanam M, Yun HJ, Konerman M, Weinberg RL, Ferris TP, et al. Safety of radiogon stress testing in patients with pulmonary hypertension. *J Nucl Cardiol*. 2018;25:820–827.

29. Paidas CN, Dudgeon DL, Haller JA Jr, Clemens MG. Adenosine triphosphate: a potential therapy for hypoxic pulmonary hypertension. *J Pediatr Surg*. 1986;23:1154–1160.

30. Alencar AK, Carvalho FI, Silva AM, Martins ST, Calasans-Maia JA, Fraga CM, Barreiro EJ, Zapata-Sudo G, Sudto RD. Synergic interaction between a PDE5 inhibitor (sildenafil) and a new adenosine A2A receptor agonist (LASSBio-1359) improves pulmonary hypertension in rats. *PLoS One*. 2018;13:e0195047.

31. Sprague RS, Stephenson AH, Ellsworth ML, Kellor C, Lonigro AJ. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. *Exp Biol Med (Maywood)*. 2001;226:434–439.

32. Bowles EA, Moody GN, Veragunta Y, Stephenson AH, Ellsworth ML, Sprague RS. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension. *Exp Biol Med (Maywood)*. 2015;240:121–127.

33. Alencar AK, Pereira SL, da Silva FE, Mendes LV, Cunha Vd M, Lima LM, Montagnoli TL, Caruso-Neves C, Ferraz EB, Tesch R, et al. N-acetylated derivative ameliorates monocrotaline-induced pulmonary hypertension through the modulation of adenosine A2R activity. *Int J Cardiol*. 2014;173:154–162.

34. Alencar AK, Pereira SL, Montagnoli TL, Maia RC, Kummerle AE, Bowles EA, Moody GN, Yeragunta Y, Stephenson AH, Ellsworth RS, et al. Beneficial role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia. *Circulation*. 2016;134:405–421.

35. Song A, Zhang Y, Han L, Yegutkin GG, Liu H, Sun K, D’Alessandro A Jr, Karmouty-Quintana H, Iyama T, et al. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. *Nat Commun*. 2017;8:14108.

36. Kylhammar D, Bote LT, Radegran G. P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig. *Eur J Appl Physiol*. 2014;114:1995–2006.

37. Barth K, Volonte C. Membrane compartments and purinergic signaling. *FEBS J*. 2009;276:317.

38. Konduri GG. Systemic and myocardial effects of ATP and adenosine during hypoxic pulmonary hypertension in lambs. *Pediatr Res*. 1994;36:41–48.

39. Konduri GG, Woodard LL. Selective pulmonary vasodilation by low-dose infusion of adenosine triphosphate in newborn lambs. *J Pediatr*. 1994;119:94–102.

40. Kaapa P, Jahnukainen T, Gronlund J, Rautanen M, Halkola L, Valimaki I. Adenosine triphosphate treatment for meconium aspiration-induced pulmonary hypertension in pigs. *Acta Physiol Scand*. 1997;160:283–289.

41. Crowley MR. Oxygen-induced pulmonary vasodilation is mediated by adenosine triphosphate in newborn lambs. *J Cardiovasc Pharmacol*. 1997;30:102–109.

42. Tofovic SP, Jackson EK, Rafikova O. Adenosine deaminase-adenosine pathway in hemolysis-associated pulmonary hypertension. *Med Hypotheses*. 2009;72:713–719.

43. Broadley KD, Maddock HL. P1-purinoceptor-mediated vasoconstriction and vasoconstriction in hypoxia. *J Auton Pharmacol*. 1996;16:363–368.

44. Karmouty-Quintana H, Zhong H, Acero L, Wang XT, Mendiola E, Proctor TA, Ren AE, Bao SZ, Li Z, et al. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. *FASEB J*. 2012;26:2546–2557.

45. Hansen T, Karimi Galougahi K, Benesni M, Genetzkis E, Tsvang M, Finemore M, O’Brien-Brown D, Di Bartolo BA, Kassiou M, Bubb KJ, et al. The novel P2X7 receptor antagonist PKT100 improves cardiac function and survival in pulmonary hypertension by direct targeting of the right ventricle. *Am J Physiol Heart Circ Physiol*. 2020;319:H183–H191.

46. Karmouty-Quintana H, Philip K, Acero LF, Chen NY, Wang XT, Hennes AE, Grenz A, Eitlich SG, Blackwell TS, et al. The A2b adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. *FASEB J*. 2015;29:50–60.

47. Dalziel HH, Westfall DP. Receptors for adenine nucleotides and nucleosides: subclassification, distribution, and molecular characterization. *Pharmacol Rev*. 1994;46:449–466.

48. Burnstock G. Purine and pyrimidine receptors. *Cell Mol Life Sci*. 2007;64:1471–1483.

49. Abdurachidov MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. *Pharmacol Rev*. 2006;58:281–341.

50. Burnstock G. Introduction: P2 receptors. *Curr Top Med Chem*. 2004;4:793–803.

51. Erlinge D, Burnstock G. Receptors in cardiovascular regulation and disease. *Purinergic Signal*. 2008;4:1–20.

52. Heedrick JP, Ashton KJ, Rose’meyer RB, Peart JN. Cardiovascular adenosine receptors: expression, actions and interactions. *Pharmacol Ther*. 2013;140:92–111.

53. Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. *Handb Exp Pharmacol*. 2009;193:161–188.
McMillan MR, Burnstock G, Haworth SG. Vasodilatation of intrapulmonary arterial hypertension as a screening agent for identifying long-term responders to calcium channel blockers. Am J Cardiol. 2012;109:1801–1806.

Fu LJ, Zhou AQ, Guo Y, Zhao PJ, Huang MF, Li F. Adenosine for pulmonary vasodilation in children with idiopathic pulmonary arterial hypertension [in Chinese]. Zhonghua Er Ke Za Zhi. 2011;49:886–889.

Galile N, Hooper MM, Humbert M, Torbicki A, Vachery JL, Barbera JA, Beggotti M, Corris P, Gaine S, Gibbs JS, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–2527.

Varani K, Caramori G, Vincenzi F, Adcock I, Casolari P, Leung E, Maclennan S, Gessi S, Morello S, Barnes PJ, et al. Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;173:398–406.

Antoniu SA. Targeting RhoA/ROCK pathway in pulmonary arterial hypertension. Expert Opin Ther Targets. 2012;16:365–383.

Oka M, Fagan KA, Jones PL, McMurtry IF. Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary arterial hypertension. Br J Pharmacol. 2008;155:444–454.

Garcia-Morales LJ, Chen NY, Weng T, Luo F, Davies J, Philip K, Volck KA, Melcicco E, Amione-Guerra J, Bunge RR, et al. Altered hypoxic-adenosine axis and metabolism in group III pulmonary hypertension. Am J Respir Cell Mol Biol. 2016;54:574–583.

Karmouty-Quintana H, Weng T, Garcia-Morales LJ, Chen NY, Pedroza M, Zhong MJ, Bunge R, Buckner BA, Xia Y, et al. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49:1038–1047.

Teng B, Ledent C, Mustafa SJ. Up-regulation of A2B adenosine receptor in A2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol. 2008;44:905–914.

Squadrito F, Bitto A, Irala N, Pizzino G, Pallio G, Minutoli L, Altavilla D. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension as a role for pulmonary veins and systemic vasculature. Eur Respir J. 2014;44:1275–1288.

Gui Y, Wu JI, Jankowski V, Jankowski J, Zheng XL. Up4A stimulates endothelium-independent contraction of isolated rat pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 2008;294:L733–L738.

Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from doca-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;301:H409–H417.