Supplemental Materials

prepared for "An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics"

Chunjiang Fu1, Yasuyuki Suzuki1, Ken Kiyono1, Pietro Morasso2, Taishin Nomura1
1. Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
2. Italian Institute of Technology, Genoa, Italy

A Details of the model

A.1 Equations of motion

The equation of motion (Eqs. 4 and 5 in the main text) is rewritten as follows:

\[J\ddot{q}+B+G+U_{ff}+U_{fb}, \]

Elements of each of \(J, B, K, G, U_{ff} \) and \(U_{fb} \) are detailed here as follows:

\[
J = \begin{pmatrix}
 j_{1,1} & j_{1,2} & \cdots & j_{1,9} \\
 j_{2,1} & j_{2,2} & & j_{2,9} \\
 \vdots & \ddots & \ddots & \vdots \\
 j_{9,1} & j_{9,2} & \cdots & j_{9,9}
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_9
\end{pmatrix},
\]

\[
K = \begin{pmatrix}
k_1 \\
k_2 \\
\vdots \\
k_9
\end{pmatrix},
\]

\[
G = \begin{pmatrix}
g_1 \\
g_2 \\
\vdots \\
g_9
\end{pmatrix},
\]

\[
U_{ff} = (0, 0, 0, u_{ff,a}^l, u_{ff,a}^r, u_{ff,h}^l, u_{ff,h}^r, u_{ff,k}^l, u_{ff,k}^r)^T,
\]

\[
U_{fb} = (0, 0, 0, u_{fb,a}^l, u_{fb,a}^r, u_{fb,h}^l, u_{fb,h}^r, u_{fb,k}^l, u_{fb,k}^r)^T,
\]

\[
j_{1,1} = 2(I_1+m_1l_1^2)+2(I_2+m_1l_2^2+m_2l_2^2)+2(I_3+m_1l_3^2+m_2l_2^2+m_3l_3^2)
\]

\[\quad +\left(4+2(m_1+m_2+m_3)(d_4-L_4)^2\right)
\]

\[\quad +2m_1d_1\left\{L_2\cos(-\theta_a^l)+L_3\cos(-\theta_k^l-\theta_a^l)-(d_4-L_4)\cos(-\theta_h^l-\theta_k^l-\theta_a^l)\right\}
\]

\[\quad +2(m_1L_2+m_2d_2)\left\{L_3\cos(-\theta_k^l)-(d_4-L_4)\cos(-\theta_h^l-\theta_k^l)\right\}
\]

\[\quad -2(m_1L_3+m_2L_2+m_3d_3)(d_4-L_4)\cos(-\theta_h^l)
\]

\[\quad +2m_1d_1\left\{L_2\cos(-\theta_a^r)+L_3\cos(-\theta_k^r-\theta_a^r)-(d_4-L_4)\cos(-\theta_h^r-\theta_k^r-\theta_a^r)\right\}
\]

\[\quad +2(m_1L_2+m_2d_2)\left\{L_3\cos(-\theta_k^r)-(d_4-L_4)\cos(-\theta_h^r-\theta_k^r)\right\}
\]

\[\quad -2(m_1L_3+m_2L_2+m_3d_3)(d_4-L_4)\cos(-\theta_h^r)
\]

\[
j_{1,2} = 2(m_1+m_2+m_3)(d_4-L_4)\sin(\theta)
\]

\[\quad -m_1d_1\sin\left(\theta-\theta_h^l-\theta_k^l-\theta_a^l\right)
\]

\[\quad -(m_1L_2+m_2d_2)\sin\left(\theta-\theta_h^l-\theta_k^l\right),\]
\[-(m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^i)\]
\[-m_1 d_1 \sin(\theta - \theta_h^i - \theta_k^i - \theta_a^i)\]
\[-(m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^i - \theta_k^i)\]
\[-(m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^i)\]
\[j_{1,3} = -2(m_1 + m_2 + m_3)(d_4 - L_4) \cos(\theta)\]
\[+ m_1 d_1 \cos\left(\theta - \theta_h^i - \theta_k^i - \theta_a^i\right)\]
\[+ (m_1 L_2 + m_2 d_2) \cos\left(\theta - \theta_h^i - \theta_k^i\right)\]
\[+ (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos(\theta - \theta_h^i)\]
\[+ m_1 d_1 \cos(\theta - \theta_h^i - \theta_k^i - \theta_a^i)\]
\[+ (m_1 L_2 + m_2 d_2) \cos(\theta - \theta_h^i - \theta_k^i)\]
\[+ (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos(\theta - \theta_h^i)\]
\[j_{1,4} = -(I_1 + m_1 d_1^2)\]
\[-m_1 d_1 L_2 \cos(-\theta_a^i)\]
\[-m_1 d_1 L_3 \cos(-\theta_k^i - \theta_a^i)\]
\[+ m_1 d_1 (d_4 - L_4) \cos(-\theta_h^i - \theta_k^i - \theta_a^i)\]
\[j_{1,5} = -(I_1 + m_1 d_1^2) - (I_2 + m_1 L_2^2 + m_2 d_2^2)\]
\[-2 m_1 d_1 L_2 \cos(-\theta_a^i)\]
\[-m_1 d_1 L_3 \cos(-\theta_k^i - \theta_a^i)\]
\[+ m_1 d_1 (d_4 - L_4) \cos(-\theta_h^i - \theta_k^i - \theta_a^i)\]
\[-(m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^i)\]
\[+ (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_h^i - \theta_k^i)\]
\[j_{1,6} = -(I_1 + m_1 d_1^2) - (I_2 + m_1 L_2^2 + m_2 d_2^2) - (I_3 + m_1 L_3^2 + m_2 L_3^2 + m_3 d_3^2)\]
\[-2 m_1 d_1 L_2 \cos(-\theta_a^i)\]
\[-2 m_1 d_1 L_3 \cos(-\theta_k^i - \theta_a^i)\]
\[+ m_1 d_1 (d_4 - L_4) \cos(-\theta_h^i - \theta_k^i - \theta_a^i)\]
\[-2(m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^i)\]
\[+ (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_h^i - \theta_k^i)\]
\[+ (m_1 L_3 + m_2 L_3 + m_3 d_3)(d_4 - L_4) \cos(-\theta_h^i)\]
\[j_{1,7} = -(I_1 + m_1 d_1^2)\]
\[-m_1 d_1 L_2 \cos(-\theta_a^i)\]
\[-m_1 d_1 L_3 \cos(-\theta_k^i - \theta_a^i)\]
\[j_{1.8} = +m_1 d_1 (d_4 - L_4) \cos(-\theta_h^r - \theta_k^r - \theta_a^r) - (I_1 + m_1 d_1^2) - (I_2 + m_1 L_2^2 + m_2 d_2^2) - 2m_1 d_1 L_2 \cos(-\theta_a^r) - m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) + m_1 d_1 (d_4 - L_4) \cos(-\theta_h^r - \theta_k^r - \theta_a^r) - (m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^r) + (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_h^r - \theta_k^r) \]

\[j_{1.9} = - (I_1 + m_1 d_1^2) - (I_2 + m_1 L_2^2 + m_2 d_2^2) - (I_3 + m_1 L_3^2 + m_2 L_3 + m_3 d_3^2) - 2m_1 d_1 L_2 \cos(-\theta_a^r) - 2m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) + m_1 d_1 (d_4 - L_4) \cos(-\theta_h^r - \theta_k^r - \theta_a^r) - 2(m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^r) + (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_h^r - \theta_k^r) + (m_1 L_3 + m_2 L_3 + m_3 d_3)(d_4 - L_4) \cos(-\theta_k^r) \]

\[j_{2.1} = 2(m_1 + m_2 + m_3)(d_4 - L_4) \sin(\theta) - m_1 d_1 \sin(\theta - \theta_h^l - \theta_k^l - \theta_a^l) - (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^l - \theta_k^l) - (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^l) - m_1 d_1 \sin(\theta - \theta_h^r - \theta_k^r - \theta_a^r) - (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^r - \theta_k^r) - (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^r) \]

\[j_{2.2} = 2(m_1 + m_2 + m_3) m_4 \]

\[j_{2.3} = 0 \]

\[j_{2.4} = m_1 d_1 \sin(\theta - \theta_h^l - \theta_k^l - \theta_a^l) \]

\[j_{2.5} = m_1 d_1 \sin(\theta - \theta_h^l - \theta_k^l - \theta_a^l) + (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^l - \theta_k^l) \]

\[j_{2.6} = m_1 d_1 \sin(\theta - \theta_h^l - \theta_k^l - \theta_a^l) + (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^l - \theta_k^l) + (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^l) \]

\[j_{2.7} = m_1 d_1 \sin(\theta - \theta_h^r - \theta_k^r - \theta_a^r) \]

\[j_{2.8} = m_1 d_1 \sin(\theta - \theta_h^r - \theta_k^r - \theta_a^r) + (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^r - \theta_k^r) \]

\[j_{2.9} = m_1 d_1 \sin(\theta - \theta_h^r - \theta_k^r - \theta_a^r) + (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_h^r - \theta_k^r) + (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_h^r) \]
\[j_{3,1} = -2(m_1 + m_2 + m_3)(d_4 - L_4) \cos(\theta) \\
+ m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^l_k - \theta^l_a \right) \\
+ (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^l_k \right) \\
+ (m_1 L_2 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \\
+ m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^r_k - \theta^r_a \right) \\
+ (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^r_k \right) \\
+ (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \]

\[j_{3,2} = 0 \]

\[j_{3,3} = 2(m_1 + m_2 + m_3) + m_4 \]

\[j_{3,4} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^l_k - \theta^l_a \right) \]

\[j_{3,5} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^l_k - \theta^l_a \right) \\
- (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^l_k \right) \\
- (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \]

\[j_{3,6} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^l_k - \theta^l_a \right) \\
- (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^l_k \right) \\
- (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \]

\[j_{3,7} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^r_k - \theta^r_a \right) \]

\[j_{3,8} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^r_k - \theta^r_a \right) \\
- (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^r_k \right) \\
- (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \]

\[j_{3,9} = -m_1 d_1 \cos \left(\theta - \theta^r_h - \theta^r_k - \theta^r_a \right) \\
- (m_1 L_2 + m_2 d_2) \cos \left(\theta - \theta^r_h - \theta^r_k \right) \\
- (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos \left(\theta - \theta^r_h \right) \]

\[j_{4,1} = - (I_1 + m_1 d_1^2) \cos \left(\theta_a \right) \\
+ m_1 d_1 L_2 \cos \left(\theta^l_a \right) \\
+ m_1 d_1 L_3 \cos \left(\theta^l_k - \theta^l_a \right) \\
+ m_1 d_1 (d_4 - L_4) \cos \left(\theta^l_h - \theta^l_k - \theta^l_a \right) \]

\[j_{4,2} = m_1 d_1 \sin \left(\theta - \theta^l_h - \theta^l_k - \theta^l_a \right) \]

\[j_{4,3} = -m_1 d_1 \cos \left(\theta - \theta^l_h - \theta^l_k - \theta^l_a \right) \]

\[j_{4,4} = I_1 + m_1 d_1^2 \]

\[j_{4,5} = (I_1 + m_1 d_1^2) \]

\[+ m_1 d_1 L_2 \cos \left(\theta^l_a \right) \]

\[j_{4,6} = (I_1 + m_1 d_1^2) \]

\[+ m_1 d_1 L_2 \cos \left(\theta^l_a \right) \]
\[\begin{align*}
\mathbf{j}_{4,7} &= 0 \\
\mathbf{j}_{4,8} &= 0 \\
\mathbf{j}_{4,9} &= 0 \\
\mathbf{j}_{5,1} &= -(I_1 + m_1d_1^2) - (I_2 + m_1L_2^2 + m_2d_2^2) \\
&\quad - 2m_1d_1L_2\cos(-\theta^l_a) \\
&\quad - m_1d_1L_3\cos(-\theta^l_k - \theta^l_a) \\
&\quad + m_1d_1(d_4 - L_4)\cos(-\theta^l_h - \theta^l_k - \theta^l_a) \\
&\quad - (m_1L_2 + m_2d_2)L_3\cos(-\theta^l_k) \\
&\quad + (m_1L_2 + m_2d_2)(d_4 - L_4)\cos(-\theta^l_h - \theta^l_k) \\
\mathbf{j}_{5,2} &= (m_1L_2 + m_2d_2)\sin(\theta - \theta^l_h - \theta^l_k) \\
&\quad - m_1d_1\sin(\theta - \theta^l_h - \theta^l_k - \theta^l_a) \\
\mathbf{j}_{5,3} &= -(m_1L_2 + m_2d_2)\sin(\theta - \theta^l_h - \theta^l_k) \\
&\quad - m_1d_1\cos(\theta - \theta^l_h - \theta^l_k - \theta^l_a) \\
\mathbf{j}_{5,4} &= (I_1 + m_1d_1^2) \\
&\quad + m_1d_1L_2\cos(-\theta^l_a) \\
\mathbf{j}_{5,5} &= (I_1 + m_1d_1^2) \\
&\quad + 2m_1d_1L_2\cos(-\theta^l_a) \\
&\quad + (I_2 + m_1L_2^2 + m_2d_2^2) \\
\mathbf{j}_{5,6} &= (I_1 + m_1d_1^2) + (I_2 + m_1L_2^2 + m_2d_2^2) \\
&\quad + 2m_1d_1L_2\cos(-\theta^l_a) \\
&\quad + m_1d_1L_3\cos(-\theta^l_k - \theta^l_a) \\
&\quad + (m_1L_2 + m_2d_2)L_3\cos(-\theta^l_k) \\
\mathbf{j}_{5,7} &= 0 \\
\mathbf{j}_{5,8} &= 0 \\
\mathbf{j}_{5,9} &= 0 \\
\mathbf{j}_{6,1} &= -(I_1 + m_1d_1^2) - (I_2 + m_1L_2^2 + m_2d_2^2) - (I_3 + m_1L_3^2 + m_2L_3^2 + m_3d_3^2) \\
&\quad - 2m_1d_1L_2\cos(-\theta^l_a) \\
&\quad - 2m_1d_1L_3\cos(-\theta^l_k - \theta^l_a) \\
&\quad + m_1d_1(d_4 - L_4)\cos(-\theta^l_h - \theta^l_k - \theta^l_a) \\
&\quad - 2(m_1L_2 + m_2d_2)L_3\cos(-\theta^l_k) \\
\end{align*}\]
\(+ (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta^t_h - \theta^r_h) \) \\
\(+ (m_1 L_3 + m_2 L_3 + m_3 d_3)(d_4 - L_4) \cos(-\theta^t_h) \) \\
\(j_{6,2} = m_1 d_1 \sin(\theta - \theta^t_h - \theta^t_k - \theta^l_a) \) \\
\(+ (m_1 L_2 + m_2 d_2) \sin(\theta - \theta^t_h - \theta^t_k) \) \\
\(+ (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta^t_h) \) \\
\(j_{6,3} = -m_1 d_1 \cos(\theta - \theta^t_h - \theta^t_k - \theta^l_a) \) \\
\(- (m_1 L_2 + m_2 d_2) \cos(\theta - \theta^t_h - \theta^t_k) \) \\
\(- (m_1 L_3 + m_2 L_3 + m_3 d_3) \cos(\theta - \theta^t_h) \) \\
\(j_{6,4} = (I_1 + m_1 d_1^2) \) \\
\(+ m_1 d_1 L_2 \cos(-\theta^l_a) \) \\
\(+ m_1 d_1 L_3 \cos(-\theta^l_k - \theta^l_a) \) \\
\(j_{6,5} = (I_1 + m_1 d_1^2) + (I_2 + m_1 L_2^2 + m_2 d_2^2) \) \\
\(+ 2m_1 d_1 L_2 \cos(-\theta^l_a) \) \\
\(+ m_1 d_1 L_3 \cos(-\theta^l_k - \theta^l_a) \) \\
\(+ (m_1 L_2 + m_2 d_2) L_3 \cos(-\theta^l_k) \) \\
\(j_{6,6} = m_1 d_1 L_3 \cos(-\theta^l_k - \theta^l_a) + (m_1 L_2 L_3 + m_2 d_2 L_3) \cos(-\theta^l_k) \) \\
\(+ (I_3 + m_1 L_2^3 + m_2 L_2^3 + m_3 d_3^2) + (I_1 + m_1 d_1^2) + m_1 d_1 L_2 \cos(-\theta^l_a) \) \\
\(+ m_1 d_1 L_3 \cos(-\theta^l_k - \theta^l_a) + m_1 d_1 L_2 \cos(-\theta^l_a) + (I_2 + m_1 L_2^2 + m_2 d_2^2) \) \\
\(+ (m_1 L_2 + m_2 d_2) L_3 \cos(-\theta^l_k) \) \\
\(j_{6,7} = 0 \) \\
\(j_{6,8} = 0 \) \\
\(j_{6,9} = 0 \) \\
\(j_{7,1} = -(I_1 + m_1 d_1^2) \) \\
\(- m_1 d_1 L_2 \cos(-\theta^r_a) \) \\
\(- m_1 d_1 L_3 \cos(-\theta^r_k - \theta^r_a) \) \\
\(+ m_1 d_1 (d_4 - L_4) \cos(-\theta^r_h - \theta^r_k - \theta^r_a) \) \\
\(j_{7,2} = m_1 d_1 \sin(\theta - \theta^r_h - \theta^r_k - \theta^r_a) \) \\
\(j_{7,3} = -m_1 d_1 \cos(\theta - \theta^r_h - \theta^r_k - \theta^r_a) \) \\
\(j_{7,4} = 0 \) \\
\(j_{7,5} = 0 \) \\
\(j_{7,6} = 0 \) \\
\(j_{7,7} = I_1 + m_1 d_1^2 \)
\begin{align*}
j_{7,8} &= (I_1 + m_1 d_1^2) + m_1 d_1 L_2 \cos(-\theta_a^r) \\
j_{7,9} &= (I_1 + m_1 d_1^2) + m_1 d_1 L_2 \cos(-\theta_a^r) + m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) \\
j_{8,1} &= (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_k^r - \theta_a^r) - m_1 d_1 L_2 \cos(-\theta_a^r) - (I_2 + m_1 L_2^2 + m_2 d_2^2) - (m_1 L_2 L_3 + m_2 d_2 L_2) \cos(-\theta_k) + m_1 d_1 (d_4 - L_4) \cos(-\theta_k^r - \theta_a^r) - (I_1 + m_1 d_1^2) - m_1 d_1 L_2 \cos(-\theta_a^r) - m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) \\
j_{8,2} &= (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_k^r - \theta_a^r) + m_1 d_1 \sin(\theta - \theta_k^r - \theta_a^r - \theta_a^r) \\
j_{8,3} &= -(m_1 L_2 + m_2 d_2) \cos(\theta - \theta_k^r - \theta_a^r) - m_1 d_1 \cos(\theta - \theta_k^r - \theta_a^r - \theta_a^r) \\
j_{8,4} &= 0 \\
j_{8,5} &= 0 \\
j_{8,6} &= 0 \\
j_{8,7} &= (I_1 + m_1 d_1^2) + m_1 d_1 L_2 \cos(-\theta_a^r) \\
j_{8,8} &= (I_1 + m_1 d_1^2) + (I_2 + m_1 L_2^2 + m_2 d_2^2) + 2 m_1 d_1 L_2 \cos(-\theta_a^r) \\
j_{8,9} &= (I_1 + m_1 d_1^2) + (I_2 + m_1 L_2^2 + m_2 d_2^2) + 2 m_1 d_1 L_2 \cos(-\theta_a^r) + m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) + (m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^r) \\
j_{9,1} &= -(I_1 + m_1 d_1^2) - (I_2 + m_1 L_2^2 + m_2 d_2^2) - (I_3 + m_1 L_3^2 + m_2 L_3^2 + m_3 d_3^2) - 2 m_1 d_1 L_2 \cos(-\theta_a^r) - 2 m_1 d_1 L_3 \cos(-\theta_k^r - \theta_a^r) + m_1 d_1 (d_4 - L_4) \cos(-\theta_k^r - \theta_a^r) - 2 (m_1 L_2 + m_2 d_2) L_3 \cos(-\theta_k^r) + (m_1 L_2 + m_2 d_2)(d_4 - L_4) \cos(-\theta_k^r - \theta_a^r) + (m_1 L_3 + m_2 L_3 + m_3 d_3)(d_4 - L_4) \cos(-\theta_k^r) \\
j_{9,2} &= (m_1 L_3 + m_2 L_3 + m_3 d_3) \sin(\theta - \theta_k^r) + (m_1 L_2 + m_2 d_2) \sin(\theta - \theta_k^r - \theta_k^r) + m_1 d_1 \sin(\theta - \theta_k^r - \theta_k^r - \theta_a^r) \\
j_{9,3} &= -(m_1 L_3 + m_2 L_3 + m_3 d_3) \cos(\theta - \theta_k^r)
\[-(m_1L_2+m_2d_2)\cos(\theta-\dot{\theta}_h^r-\dot{\theta}_k^r)\]
\[-m_1d_1\cos(\theta-\dot{\theta}_h^r-\dot{\theta}_k^r-\dot{\theta}_a^r)\]

\[j_{9,4} = 0\]
\[j_{9,5} = 0\]
\[j_{9,6} = 0\]
\[j_{9,7} = (I_1+m_1d_1^2)\]
\[+m_1d_1L_2\cos(-\theta_a^r)\]
\[+m_1d_1L_3\cos(-\theta_k^r-\theta_a^r)\]

\[j_{9,8} = (I_1+m_1d_1^2)+(I_2+m_1L_2^2+m_2d_2^2)\]
\[+2m_1d_1L_2\cos(-\theta_a^r)\]
\[+m_1d_1L_3\cos(-\theta_k^r-\theta_a^r)\]
\[+(m_1L_2+m_2d_2)L_3\cos(-\theta_k^r)\]

\[j_{9,9} = (I_1+m_1d_1^2)+(I_2+m_1L_2^2+m_2d_2^2)+(I_3+m_1L_3^2+m_2L_3^2+m_3d_3^2)\]
\[+2m_1d_1L_2\cos(-\theta_a^r)\]
\[+2m_1d_1L_3\cos(-\theta_k^r-\theta_a^r)\]
\[+2(m_1L_2+m_2d_2)L_3\cos(-\theta_k^r)\]

\[b_1 = -m_1d_1(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r-\dot{\theta}_a^r\right)^2\right\}\sin(-\theta_h^r-\theta_k^r-\theta_a^r)\]
\[-m_1d_1(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r-\dot{\theta}_a^r\right)^2\right\}\sin(-\theta_h^r-\theta_k^r-\theta_a^r)\]
\[-(m_1L_2+m_2d_2)(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_h^r-\theta_k^r)\]
\[-(m_1L_2+m_2d_2)(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_h^r-\theta_k^r)\]
\[-(m_1L_3+m_2L_3+m_3d_3)(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r\right)^2\right\}\sin(-\theta_h^r)\]
\[-(m_1L_3+m_2L_3+m_3d_3)(d_4-L_4)\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r\right)^2\right\}\sin(-\theta_h^r)\]
\[-m_1d_1L_3\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_h^r-\theta_a^r)\]
\[-m_1d_1L_2\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_a^r)\]
\[-m_1d_1L_3\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_h^r)\]
\[-(m_1L_2+m_2d_2)L_3\left\{\ddot{\theta}^2-\left(\dot{\theta}-\dot{\theta}_h^r-\dot{\theta}_k^r\right)^2\right\}\sin(-\theta_h^r)\]
\[b_2 = -m_1 d_1 \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad - \left(m_1 L_2 + m_2 d_2 \right) \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad - \left(m_1 L_3 + m_2 L_3 + m_3 d_3 \right) \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \cos \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad + 2 (m_1 + m_2 + m_3) (d_4 - L_4) \dot{\theta}_a^2 \cos (\theta) \]

\[b_3 = -m_1 d_1 \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad - \left(m_1 L_2 + m_2 d_2 \right) \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad - \left(m_1 L_3 + m_2 L_3 + m_3 d_3 \right) \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) + \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \sin \left(\theta - \theta'_h - \theta'_k - \theta'_a \right) \right\} \\
\quad + 2 (m_1 + m_2 + m_3) (d_4 - L_4) \dot{\theta}_a^2 \sin (\theta) \]

\[b_4 = -m_1 d_1 L_2 \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 \sin \left(-\theta'_a \right) \\
\quad -m_1 d_1 L_3 \left(\dot{\theta}_k - \dot{\theta}_h \right)^2 \sin \left(-\theta'_k - \theta'_a \right) \\
\quad + m_1 d_1 (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_k - \theta'_a \right) \]

\[b_5 = -m_1 d_1 L_2 \left\{ \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a \right)^2 - \left(\dot{\theta}_k - \dot{\theta}_h - \dot{\theta}_a - \dot{\theta}_h \right)^2 \right\} \sin \left(-\theta'_a \right) \\
\quad - \left(m_2 d_2 + m_1 L_2 \right) L_3 \left(\dot{\theta}_k - \dot{\theta}_h \right)^2 \sin \left(-\theta'_k \right) \\
\quad + \left(m_2 d_2 + m_1 L_2 \right) (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_a \right) \\
\quad -m_1 d_1 L_3 \left(\dot{\theta}_k - \dot{\theta}_h \right)^2 \sin \left(-\theta'_k - \theta'_a \right) \\
\quad + m_1 d_1 (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_k - \theta'_a \right) \]

\[b_6 = -m_1 d_1 L_3 \left\{ \left(\dot{\theta}_h - \dot{\theta}_a \right)^2 - \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \right\} \sin \left(-\theta'_k - \theta'_a \right) \\
\quad - \left(m_1 L_2 + m_2 d_2 \right) L_3 \left\{ \left(\dot{\theta}_h - \dot{\theta}_a \right)^2 - \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \right\} \sin \left(-\theta'_k \right) \\
\quad + \left(m_1 L_3 + m_2 L_3 + m_3 d_3 \right) (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h \right) \\
\quad -m_1 d_1 L_2 \left\{ \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 - \left(\dot{\theta}_h - \dot{\theta}_a \right)^2 \right\} \sin \left(-\theta'_a \right) \\
\quad + \left(m_2 d_2 + m_1 L_2 \right) (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_a \right) \\
\quad + m_1 d_1 (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_k - \theta'_a \right) \]

\[b_7 = -m_1 d_1 L_2 \left(\dot{\theta}_h - \dot{\theta}_k - \dot{\theta}_a \right)^2 \sin \left(-\theta'_a \right) \\
\quad -m_1 d_1 L_3 \left(\dot{\theta}_h - \dot{\theta}_k \right)^2 \sin \left(-\theta'_k - \theta'_a \right) \\
\quad + m_1 d_1 (d_4 - L_4) \dot{\theta}_a^2 \sin \left(-\theta'_h - \theta'_k - \theta'_a \right) \]
\[b_8 = -m_1 d_1 L_2 \left\{ \left(\dot{\theta} - \dot{\theta}_h^r - \dot{\theta}_k^r \right)^2 - \left(\ddot{\theta} - \ddot{\theta}_h^r - \ddot{\theta}_k^r \right) \right\} \sin(-\theta_a^r) \]
\[- (m_2 d_2 + m_1 L_2) L_3 \left(\dot{\theta} - \dot{\theta}_h^r \right)^2 \sin(-\theta_k^r) \]
\[+ (m_2 d_2 + m_1 L_2) (d_4 - L_4) \dot{\theta}_k^r \sin(-\theta_h^r - \theta_k^r) \]
\[- m_1 d_1 L_3 \left(\dot{\theta} - \dot{\theta}_h^r \right)^2 \sin(-\theta_k^r - \theta_a^r) \]
\[+ m_1 d_1 (d_4 - L_4) \dot{\theta}_k^r \sin(-\theta_h^r - \theta_k^r - \theta_a^r) \]
\[b_9 = -m_1 d_1 L_3 \left\{ \left(\dot{\theta} - \dot{\theta}_h^r \right)^2 - \left(\ddot{\theta} - \ddot{\theta}_h^r - \ddot{\theta}_k^r \right) \right\} \sin(-\theta_u^r) \]
\[- (m_1 L_2 + m_2 d_2) L_3 \left\{ \left(\dot{\theta} - \dot{\theta}_h^r \right)^2 - \left(\ddot{\theta} - \ddot{\theta}_h^r - \ddot{\theta}_k^r \right) \right\} \sin(-\theta_k^r) \]
\[+ (m_1 L_3 + m_2 L_3 + m_3 d_3) (d_4 - L_4) \dot{\theta}_h^r \sin(-\theta_h^r) \]
\[- m_1 d_1 L_2 \left\{ \left(\dot{\theta} - \dot{\theta}_h^r - \dot{\theta}_k^r \right)^2 - \left(\ddot{\theta} - \ddot{\theta}_h^r - \ddot{\theta}_k^r - \ddot{\theta}_a^r \right) \right\} \sin(-\theta_a^r) \]
\[+ (m_2 d_2 + m_1 L_2)(d_4 - L_4) \dot{\theta}_h^r \sin(-\theta_h^r - \theta_a^r) \]
\[+ m_1 d_1 (d_4 - L_4) \dot{\theta}_h^r \sin(-\theta_h^r - \theta_k^r - \theta_a^r) \]
\[k_1 = -2 (m_1 + m_2 + m_3)(d_4 - L_4) g \cos(\theta) \]
\[+ (m_3 d_3 + m_1 L_3 + m_2 L_3) g \left\{ \cos(\theta - \theta_h^l) + \cos(\theta - \theta_u^l) \right\} \]
\[+ (m_2 d_2 + m_1 L_2) g \left\{ \cos(\theta - \theta_h^l - \theta_k^l) + \cos(\theta - \theta_h^l - \theta_a^l) \right\} \]
\[+ m_1 d_1 g \left\{ \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) + \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) \right\} \]
\[k_2 = 0 \]
\[k_3 = (2 (m_1 + m_2 + m_3) + m_4) g \]
\[k_4 = -m_1 g d_1 \cos(\theta - \theta_h^l - \theta_a^l) \]
\[k_5 = -(m_2 d_2 + m_1 L_2) g \cos(\theta - \theta_h^l - \theta_k^l) \]
\[- m_1 g d_1 \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) \]
\[k_6 = -(m_3 d_3 + m_1 L_3 + m_2 L_3) g \cos(\theta - \theta_h^l) \]
\[- (m_2 d_2 + m_1 L_2) g \cos(\theta - \theta_h^l - \theta_k^l) \]
\[- m_1 g d_1 \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) \]
\[k_7 = -m_1 d_1 g \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) \]
\[k_8 = -(m_2 d_2 + m_1 L_2) g \cos(\theta - \theta_k^l) \]
\[- m_1 d_1 g \cos(\theta - \theta_k^l - \theta_a^l) \]
\[k_9 = -(m_3 d_3 + m_1 L_3 + m_2 L_3) g \cos(\theta - \theta_k^l) \]
\[- (m_2 d_2 + m_1 L_2) g \cos(\theta - \theta_k^l - \theta_a^l) \]
\[- m_1 d_1 g \cos(\theta - \theta_k^l - \theta_a^l) \]
\[g_1 = -F_{gr} \left\{ L_1 \cos(\theta - \theta_h^l - \theta_k^l - \theta_a^l) + L_2 \cos(\theta - \theta_h^l - \theta_k^l) \right\} \]
\[+ L_3 \cos \left(\theta - \theta_h^l \right) - \left(d_4 - L_4 \right) \cos (\theta) \]

\[- F_{yrt} \left\{ L_0 \cos \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) + L_2 \cos \left(\theta - \theta_h^l - \theta_k^l \right) \right. \]

\[+ L_3 \cos \left(\theta - \theta_h^l \right) - \left(d_4 - L_4 \right) \cos (\theta) \} \]

\[- F_{yth} \{ L_1 \cos (\theta - \theta_h^l - \theta_k^l - \theta_a^l) + L_2 \cos (\theta - \theta_h^l - \theta_k^l) \} \]

\[+ L_3 \cos (\theta - \theta_h^l) - \left(d_4 - L_4 \right) \cos (\theta) \} \]

\[- F_{yrt} \{ L_1 \cos (\theta - \theta_h^l - \theta_k^l - \theta_a^l - \phi) + L_2 \cos (\theta - \theta_h^l - \theta_k^l) \} \]

\[+ L_3 \cos (\theta - \theta_h^l) - \left(d_4 - L_4 \right) \cos (\theta) \} \]

\[+ F_{xrt} \left\{ L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) + L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) \right. \]

\[+ L_3 \sin \left(\theta - \theta_h^l \right) - \left(d_4 - L_4 \right) \sin (\theta) \} \]

\[+ F_{xrh} \left\{ L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right. + L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) \right. \]

\[+ L_3 \sin \left(\theta - \theta_h^l \right) - \left(d_4 - L_4 \right) \sin (\theta) \} \]

\[+ F_{xlt} \{ L_1 \sin (\theta - \theta_h^l - \theta_k^l - \theta_a^l) + L_2 \sin (\theta - \theta_h^l - \theta_k^l) \} \]

\[+ L_3 \sin (\theta - \theta_h^l) - \left(d_4 - L_4 \right) \sin (\theta) \} \]

\[+ F_{xth} \{ L_1 \sin ((\theta - \theta_h^l - \theta_k^l) - \theta_a^l) + L_2 \sin (\theta - \theta_h^l - \theta_k^l) \} \]

\[+ L_3 \sin (\theta - \theta_h^l) - \left(d_4 - L_4 \right) \sin (\theta) \} \]

\begin{align*}
g_2 & = - F_{xrt} - F_{xrh} - F_{xlt} - F_{xth} \\
g_3 & = - F_{yrt} - F_{yrh} - F_{ytt} - F_{yth} \\
g_4 & = F_{yrt} L_1 \cos \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \\
 & - F_{xrt} L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \\
 & + F_{yrt} L_1 \cos \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) \\
 & - F_{xrt} L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \} \\
 g_5 & = F_{yrt} \left\{ L_2 \cos \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \cos \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \right. \} \\
 & + F_{yrt} \left\{ L_2 \cos \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \cos \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) \right. \} \\
 & - F_{xrt} \left\{ L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \right. \} \\
 & - F_{xrt} \left\{ L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \sin \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) \right. \} \\
 g_6 & = F_{yrt} \left\{ L_3 \cos \left(\theta - \theta_h^l \right) + L_2 \cos \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \cos \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \right. \} \\
 & + F_{yrt} \left\{ L_3 \cos \left(\theta - \theta_h^l \right) + L_2 \cos \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \cos \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) \right. \} \\
 & - F_{xrt} \left\{ L_3 \sin \left(\theta - \theta_h^l \right) + L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \right. \} \\
 & - F_{xrt} \left\{ L_3 \sin \left(\theta - \theta_h^l \right) + L_2 \sin \left(\theta - \theta_h^l - \theta_k^l \right) + L_1 \sin \left(\left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) - \phi \right) \right. \} \\
 g_7 & = F_{ytl} L_1 \cos \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \\
 & - F_{xhl} L_1 \sin \left(\theta - \theta_h^l - \theta_k^l - \theta_a^l \right) \]
A.2 The model of ground reaction forces

The ground reaction force is modeled using nonlinear dampers and springs. By defining the sagittal positions of left-toe, left-heel, right-toe and right-heel, respectively, as \((X_l,t;Y_l,t)\), \((X_l,h;Y_l,h)\), \((X_r,t;Y_r,t)\), \((X_r,h;Y_r,h)\), the vertical ground reaction forces acting at these four points in this order are defined as follows.

\[
F_{ylt} = \begin{cases}
-\kappa Y^{l,t} - \lambda_v \dot{Y}^{l,t}, & \text{if } Y^{l,t} < 0 \text{ and } -\kappa Y^{l,t} - \lambda_v \dot{Y}^{r,t} > 0 \\
0, & \text{otherwise}
\end{cases}
\]

\[
F_{ylh} = \begin{cases}
-\kappa Y^{l,h} - \lambda_v \dot{Y}^{l,h}, & \text{if } Y^{l,h} < 0 \text{ and } -\kappa Y^{l,h} - \lambda_v \dot{Y}^{r,h} > 0 \\
0, & \text{otherwise}
\end{cases}
\]

\[
F_{yrt} = \begin{cases}
-\kappa Y^{r,t} - \lambda_v \dot{Y}^{r,t}, & \text{if } Y^{r,t} < 0 \text{ and } -\kappa Y^{r,t} - \lambda_v \dot{Y}^{r,t} > 0 \\
0, & \text{otherwise}
\end{cases}
\]

\[
F_{yrh} = \begin{cases}
-\kappa Y^{r,h} - \lambda_v \dot{Y}^{r,h}, & \text{if } Y^{r,h} < 0 \text{ and } -\kappa Y^{r,h} - \lambda_v \dot{Y}^{r,h} > 0 \\
0, & \text{otherwise}
\end{cases}
\]

The horizontal ground reaction forces acting at the four points in the order of listed above are defined as follows.

\[
F_{xlt} = -\frac{2\nu F_{ylt}}{\pi} \tan^{-1} \left(\frac{\lambda_h \pi \dot{X}^{l,t}}{2\nu F_{ylt}} \right)
\]

\[
F_{xlh} = -\frac{2\nu F_{ylh}}{\pi} \tan^{-1} \left(\frac{\lambda_h \pi \dot{X}^{l,h}}{2\nu F_{ylh}} \right)
\]

\[
F_{xrt} = -\frac{2\nu F_{yrt}}{\pi} \tan^{-1} \left(\frac{\lambda_h \pi \dot{X}^{r,t}}{2\nu F_{yrt}} \right)
\]

\[
F_{xrh} = -\frac{2\nu F_{yrh}}{\pi} \tan^{-1} \left(\frac{\lambda_h \pi \dot{X}^{r,h}}{2\nu F_{yrh}} \right)
\]

The parameters used in the model of ground reaction forces are summarized in the following Table.

B Numerical evaluation of Jacobian matrix and Floquet multipliers

The state space representation of the biped model as a non-autonomous dynamical system with the vector field \(f(x,t)\) is defined by Eq. 10 in the main text, and its the Jacobian \(D_{\phi_0}(t)\) for its linearized equation
Table 1: Parameter values used in the model of ground reaction forces

Symbol	Description	Value
\(\kappa \)	Ground reaction force parameter	20000
\(\lambda_v \)	Ground reaction force parameter	300
\(\lambda_h \)	Ground reaction force parameter	2000
\(\nu \)	Ground reaction force parameter	0.3

is defined by Eq. 14. The numerical evaluation of \(D_{\phi_0}(t) \) was performed by numerical partial derivative of \(f(x,t) \) using the double side finite difference method. That is, the \(i\)-\(j \) element of \(D_{\phi_0}(t) \) was obtained as

\[
\frac{\partial f_i}{\partial x_j}(x_r(t)) \approx \frac{f_i(x_r(t)+\Delta x_j,t)-f_i(x_r(t)-\Delta x_j,t)}{2\Delta x_j}
\]

where \(i=1,\ldots,19 \) and \(\Delta x_j \) is the difference of the \(i \)-th element of the state vector \(x \). Throughout this study, we decided to use \(\Delta x_j=10^{-3} \). The size of \(\Delta x_j \) should be determined with a care, because it should balance with the time step \(\Delta t \), which was \(10^{-5} \) in this study. Our choice of \(\Delta x_j \) was based on the fact that changes in \(x_r(t) \) for the short duration of time \(\Delta t \) along the one gait cycle is about between \(10^{-3} \) and \(10^{-6} \). Hence the value of \(\Delta x_j \) was the lower band of this variation.

We validated the use of \(\Delta x_j=10^{-3} \) by examining that the numerical evaluation of \(D_{\phi_0}(t) \) using \(\Delta x_j=10^{-3} \) and loci of FMs as the function of the PD-gains, as in Fig.4 of the main text, for various values of \(\Delta x_j \) ranging from \(10^{-1} \) to \(10^{-6} \). The result of this examination showed that was the loci of FMs were qualitatively and quantitatively the same quite robust for a wide range of \(\Delta x_j \) between \(10^{-2} \) and \(5\times10^{-6} \), and \(\Delta x_j=10^{-3} \) is the middle of this valid range.

C Impedance and dynamic impedance

Here we summarize several definitions of dynamic impedance (stiffness and viscosity). Remind the biped motion equation as

\[
J(q)\ddot{q}+B(q,\dot{q})+K(q)+G(q,\omega)=U_{\text{ff}}(q(t),\dot{q}(t),\ddot{q}(t))+U_{\text{fb}}(q,\omega,\dot{q}(t),\ddot{q}(t))
\]

where

\[
U_{\text{fb}}=P(q(t)-q)+D(\dot{q}(t)-\omega)
\]

with

\[
P=\text{diag}\{0,0,0,P_a,P_k,P_a,P_k,P_h\}
\]

\[
D=\text{diag}\{0,0,0,D_a,D_k,D_a,D_k,D_h\},
\]

and denote the total joint torque as \(U=U_{\text{ff}}+U_{\text{fb}} \). The joint stiffness \(K_d \) and viscosity \(B_d \) are usually defined, respectively, by the derivatives of the total joint torque with respect to the position and the velocity, which are equal to \(P \) and \(D \) in our biped model. That is,

\[
K_d \equiv \frac{\partial U}{\partial q} = P,
\]

\[
B_d \equiv -\frac{\partial U}{\partial \omega} = D.
\]
Thus, we considered simply the PD-gains of the feedback controller as the joint impedance in this study. It is also worthwhile to consider a different type of joint impedance, we call it total impedance, which is more directly related to stability of the steady state solution \ddot{q}, \dot{q} as the limit cycle. Considering a perturbed solution as $q=\ddot{q}+\dot{q}$, $\omega=\dot{q}+\ddot{q}$, $\ddot{q}=\ddot{q}+\dot{q}$, we have

$$J(\ddot{q}+\dot{q})(\ddot{q}+\dot{q})+B(\ddot{q}+\dot{q}+\ddot{q})+K(\ddot{q}+\dot{q})+G(\ddot{q}+\dot{q}+\ddot{q})=U(\ddot{q}, \dot{q}, +\ddot{q}, \dot{q}).$$

Using first order Taylor expansion,

$$\begin{align*}
[J(\ddot{q}) &+ \{ \frac{\partial J}{\partial q}(\ddot{q}, \dot{q}) \}] (\ddot{q}+\dot{q}) + B(\ddot{q}+\dot{q}+\ddot{q}) + K(\ddot{q}+\dot{q}) + G(\ddot{q}+\dot{q}+\ddot{q}) \\
&= U(\ddot{q}, \dot{q}+\ddot{q}, \dot{q}+\ddot{q}, \dot{q}+\ddot{q})
\end{align*}$$

where

$$\begin{align*}
\left\{ \frac{\partial J}{\partial q}(\ddot{q}, \dot{q}, \Delta q) \right\} = \sum_{i=1}^{9} \frac{\partial J}{\partial q_i}(\ddot{q}, \dot{q}) \Delta q_i.
\end{align*}$$

By neglecting the second and higher order terms, with the consideration of Eq.1, this can be simplified as

$$\begin{align*}
J(\ddot{q}) \ddot{q} &+ \{ \frac{\partial J}{\partial q}(\ddot{q}, \dot{q}) \} \ddot{q} + \frac{\partial B}{\partial q}(\ddot{q}, \dot{q}) \dot{q} + \frac{\partial B}{\partial \omega}(\ddot{q}, \dot{q}) \ddot{q} \\
&+ \frac{\partial K}{\partial q}(\ddot{q}) \ddot{q} + \frac{\partial G}{\partial q}(\ddot{q}, \dot{q}) \dot{q} + \frac{\partial G}{\partial \omega}(\ddot{q}, \dot{q}) \ddot{q} \\
&= \frac{\partial U}{\partial q}(\ddot{q}, \dot{q}) \ddot{q} + \frac{\partial U}{\partial \omega}(\ddot{q}, \dot{q}) \ddot{q}.
\end{align*}$$

where the second term of the left-hand side is defined as

$$\begin{align*}
\left\{ \frac{\partial J}{\partial q}(\ddot{q}, \dot{q}) \right\} \ddot{q} & = \left(\frac{\partial J}{\partial q_1}(\ddot{q}) \ddot{q_1} + \frac{\partial J}{\partial q_2}(\ddot{q}) \ddot{q_2} + \frac{\partial J}{\partial q_3}(\ddot{q}) \ddot{q_3} + \ldots + \frac{\partial J}{\partial q_9}(\ddot{q}) \ddot{q_9} \right) \ddot{q} \\
&= \frac{\partial J}{\partial q_1}(\ddot{q}) \ddot{q_1} \ddot{q} + \frac{\partial J}{\partial q_2}(\ddot{q}) \ddot{q_2} \ddot{q} + \frac{\partial J}{\partial q_3}(\ddot{q}) \ddot{q_3} \ddot{q} + \ldots + \frac{\partial J}{\partial q_9}(\ddot{q}) \ddot{q_9} \ddot{q} \\
&= \frac{\partial J}{\partial q_1}(\ddot{q}) \ddot{q} \ddot{q_1} + \frac{\partial J}{\partial q_2}(\ddot{q}) \ddot{q} \ddot{q_2} + \frac{\partial J}{\partial q_3}(\ddot{q}) \ddot{q} \ddot{q_3} + \ldots + \frac{\partial J}{\partial q_9}(\ddot{q}) \ddot{q} \ddot{q_9} \\
&= \left[\frac{\partial J}{\partial q_1}(\ddot{q}) \ddot{q_1} \frac{\partial J}{\partial q_2}(\ddot{q}) \ddot{q_2} \frac{\partial J}{\partial q_3}(\ddot{q}) \ddot{q_3} \ldots \frac{\partial J}{\partial q_9}(\ddot{q}) \ddot{q_9} \right] \ddot{q} \\
&= \frac{\partial J}{\partial q} \ddot{q} \ddot{q}.
\end{align*}$$

Note that, in the last line of this equation, we used the following notation:

$$\frac{\partial J}{\partial q} \ddot{q} = \left[\frac{\partial J}{\partial q_1}(\ddot{q}) \ddot{q} \frac{\partial J}{\partial q_2}(\ddot{q}) \ddot{q} \frac{\partial J}{\partial q_3}(\ddot{q}) \ddot{q} \ldots \frac{\partial J}{\partial q_9}(\ddot{q}) \ddot{q} \right].$$

Collecting the terms with respect to \ddot{q} and its derivatives, we have the following linearized equation, which describes the dynamic evolution of perturbation, in another phrase, error dynamics around the limit cycle.

$$J(q) \dddot{q} + B_{\text{total}} \dddot{q} + K_{\text{total}} \dddot{q} = 0$$

(6)
where
\[
K_{\text{total}} = -\frac{\partial U(q, \dot{q})}{\partial q} + \frac{\partial B(q, \dot{q})}{\partial q} + \frac{\partial K(q)}{\partial q} + \frac{\partial G(q, \dot{q})}{\partial q} + \frac{\partial J(q)}{\partial q},
\] (7)
and
\[
B_{\text{total}} = -\frac{\partial U(q, \dot{q})}{\partial \omega} + \frac{\partial B(q, \dot{q})}{\partial \omega} + \frac{\partial G(q, \dot{q})}{\partial \omega}.
\] (8)

We call \(K_{\text{total}}\) and \(B_{\text{total}}\) total stiffness and total dynamic viscosity, respectively. This can also be interpreted as the dynamic balance on each timing on the limit cycle.

\[
J(q) \dot{q} = -B_{\text{total}} \omega - K_{\text{total}} \dot{q}
\] (9)

In Eq.9, if the perturbation intends to cause the deviation away from the limit cycle, \(K_{\text{total}}\) and \(B_{\text{total}}\) will counteract the diverging torque and drive the trajectory back to the limit cycle. So it is also natural to define \(K_{\text{total}}\) and \(B_{\text{total}}\) as joint stiffness and viscosity.

Furthermore, \(K_{\text{total}}\) and \(B_{\text{total}}\) can be conveniently related to the Jacobian matrix around limit cycle solution. This is because of the following derivation. The state space representation is also rewritten here.

\[
\frac{d}{dt}(\begin{bmatrix} q \\ \omega \end{bmatrix}) = \begin{bmatrix} J^{-1}(q)(U(q, \omega, \dot{q}) - B(q, \omega) - K(q) - G(q, \omega)) \end{bmatrix} = \begin{bmatrix} F_1(\omega) \\ F_2(q, \omega, U) \end{bmatrix}. \] (10)

Jacobian matrix could be obtained by differentiating the vector field of Eq.10 as follows:

\[
\frac{\partial F_1}{\partial q} = O
\]
\[
\frac{\partial F_1}{\partial \omega} = I
\]
\[
\frac{\partial F_2}{\partial q} = \frac{\partial J^{-1}}{\partial q} (U - B - K - G) + J^{-1} \left(\frac{\partial U}{\partial q} - \frac{\partial B}{\partial q} - \frac{\partial K}{\partial q} - \frac{\partial G}{\partial q} \right)
\]
\[
= -J^{-1} \frac{\partial J}{\partial q} J^{-1} (U - B - K - G) + J^{-1} \left(\frac{\partial U}{\partial q} - \frac{\partial B}{\partial q} - \frac{\partial K}{\partial q} - \frac{\partial G}{\partial q} \right)
\]
\[
= -J^{-1} \frac{\partial J}{\partial q} \dot{q} + J^{-1} \left(\frac{\partial U}{\partial q} - \frac{\partial B}{\partial q} - \frac{\partial K}{\partial q} - \frac{\partial G}{\partial q} \right)
\]
\[
= J^{-1} \left(\frac{\partial U}{\partial q} - \frac{\partial B}{\partial q} - \frac{\partial K}{\partial q} - \frac{\partial G}{\partial q} \right)
\]
\[
\frac{\partial F_2}{\partial \omega} = J^{-1} \left(\frac{\partial U}{\partial \omega} - \frac{\partial B}{\partial \omega} - \frac{\partial G}{\partial \omega} \right)
\]

For the Jacobian matrix evaluated around the limit cycle, which is denoted by \(D_{\phi_0}\) in the main text, from the comparison, we can easily see that

\[
\frac{\partial F_2}{\partial q} = -J^{-1} K_{\text{total}}
\]
\[
\frac{\partial F_2}{\partial \omega} = -J^{-1} B_{\text{total}}
\]

Thus \(D_{\phi_0}\) can be written as

\[
D_{\phi_0}(t) = \begin{pmatrix}
\frac{\partial F_1}{\partial q} & \frac{\partial F_1}{\partial \omega} \\
\frac{\partial F_2}{\partial q} & \frac{\partial F_2}{\partial \omega}
\end{pmatrix} = \begin{pmatrix}
0 & I \\
-J^{-1} K_{\text{total}} & -J^{-1} B_{\text{total}}
\end{pmatrix}
\] (12)
In the calculation of Floquet matrix, the $D_{\phi_0}(t)$ has already been calculated numerically. So it is very prompt to obtain the dynamic stiffness and dynamic viscosity by multiply $-J$ to $\partial F_2/\partial q$ and $\partial F_2/\partial \omega$ block of D_{ϕ_0}. If we only care about the leg joints and are not interested in the correlated influence between the joints, we select only the diagonals of K_{total} and B_{total}, and consider them as dynamic stiffness and dynamic viscosity of leg joint. The non-diagonal element could be interpreted as inter-joint dynamic impedance. Dynamic stiffness and dynamic viscosity of leg joint during steady-state gait with the feedback PD gains of 1500 and 10 are illustrated in Fig.1 and Fig.2. It is noted that the peaks are due to the foot impact.

Figure 1: Dynamic total stiffness and viscosity during one gait cycle
Figure 2: Dynamic total viscosity during one gait cycle