Excellent energy storage performance in NaNbO₃-based relaxor antiferroelectric ceramics under a low electric field

Xuxin Cheng · Xiaoming Chen · Pengyuan Fan

Received: 28 December 2021 / Accepted: 27 March 2022 / Published online: 4 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
NaNbO₃-based antiferroelectric (AFE) ceramics have the prominent advantages of stable performance and low cost. However, its energy storage property is often remarkably limited by the hysteresis of the antiferroelectric to ferroelectric phase transformation. In this work, 0.88Na(Nb₁₋ₓTaₓ)O₃–0.12Bi₀.₂Sr₀.₇TiO₃ (x = 0–0.075) antiferroelectric ceramics were synthesized using a conventional mixed oxide route. Ta⁵⁺ were completely dissolved into the lattice of 0.88NaNbO₃–0.12Bi₀.₂Sr₀.₇TiO₃ to form a pure perovskite structure. With increased Ta content, the AFE orthogonal P phase was replaced by AFE orthogonal R phase progressively. Meanwhile, the dielectric constant curve showed relaxor-like properties. As a result, slender P–E curves with reduced hysteresis loss and decreased residual polarization were achieved. Interestingly, a large recoverable energy storage density (W_rec ~ 2.16 J cm⁻³) and high energy storage efficiency (η ~ 80.7%) were obtained simultaneously under a low driving electric field of 15 kV mm⁻¹ at doping ratio (x) of 0.075. In addition, the 0.88Na(Nb₁₋₀.₉₂₅Ta₀.₀₇₅)O₃–0.12Bi₀.₂Sr₀.₇TiO₃ sample exhibited excellent temperature stability, indicating an ideal candidate in future pulsed power capacitor.

Keywords NaNbO₃ · Energy storage · Relaxor antiferroelectric · Low electric field

1 Introduction

Dielectric energy storage capacitors have fast charging and discharging rates (~ ns) and higher power density (exceed 10⁸ W kg⁻¹) [1–4]. These capacitors are important components of pulse power electronic systems and are widely used in various fields, such as electromagnetic ejection, electromagnetic gun, electric vehicle, medical defibrillator, smart grid, spacecraft, and satellite [5–8]. The materials used in dielectric energy storage capacitors include organic and ceramic materials. Compared with organic and electromechanical materials, ceramic materials have higher dielectric constant (ε_r) and can maintain stable energy storage characteristics at temperatures higher than 200 °C [9–11]. At present, the research on energy storage dielectric ceramics focuses on four categories, i.e., linear dielectric (such as TiO₂ and SrTiO₃) [12, 13], normal ferroelectric (FE; such as K₀.₅Na₀.₅NbO₃, BaTiO₃, and BiFeO₃) [14–16], relaxor ferroelectric (RFE; such as Na₀.₅Bi₀.₅TiO₃-based) [17–25], and antiferroelectric (AFE; such as (Pb,La)(Zr,Sn,Ti)O₃, AgNbO₃, and NaNbO₃) ceramics [26–37]. FE ceramics have low W_rec and η because of high residual polarization (P_r). Linear dielectric ceramics often have low ε_r causing a low W_rec. Because the breakdown field strength (E_b) of RFE ceramics is low, it has a low W_rec. AFE ceramics have high maximum polarization (P_m) due to the existence of AFE–FE phase transition, resulting in high W_rec. However, its inherent AFE–FE phase transition causes large hysteresis loop, resulting in large energy loss. A high W_rec and η are difficult to obtain simultaneously in AFE ceramics, which has become a key problem restricting its energy storage application [29, 33, 38]. The lead-free AFE material in high-power capacitors is attracting a growing body of research because of its...
advantages of high energy and high power density. It has become one of the most popular and promising research directions. Compared with (Pb,La)(Zr,Sn,Ti)O3 and AgNbO3-based AFE ceramics, NaNbO3 (NN)-based AFE ceramics have many advantages, such as nontoxicity, stable performance, and low cost [39–41]. At room temperature (RT), NN exhibits AFE orthorhombic P phase, and it turns into AFE orthorhombic R phase at about 360 °C [42]. However, the AFE P phase in undoped modified NaNbO3-based ceramics is unstable and easily transformed into the orthorhombic FE phase, resulting in an irreversible AFE–FE phase transition and displaying a square P–E loop similar to that of FE materials [40, 41], thus decreasing its η. The two aspects in the current research on the modification of NaNbO3-based AFE ceramics are as follows. 1) A stable AFE P phase can be obtained by doping BaZrO3, CaZrO3, CaSnO3, and other perovskite structural materials [36, 39–42], which can stabilize the AFE P phase under RT, realize reversible AFE–FE phase transition, and obtain typical AFE double-hysteresis loop (beam waist type). This phenomenon can improve the W_{rec} and η of materials, which are only 3.1 cm$^{-3}$ and 74%, respectively. 2) The stable antiferroelectric R phase under RT can be obtained by introducing 12 mol% Bi$_{0.5}$Na$_{0.5}$TiO$_3$ into NaNbO$_3$-based AFE phase. It has a thinner hysteresis loop than the antiferroelectric P phase can be obtained under RT. Thus a high W_{rec} of 12.2 J cm$^{-3}$ and an acceptable η of 69% were achieved [36, 43].

Ta has been displayed to be a high-quality dopant in AgNbO$_3$ for improving the AFE phase stability [31–33]. For example, 15 mol.% Ta doping in AgNbO$_3$ can enhance E_0 by nearly 23 kV mm$^{-1}$, thus obtaining a large recoverable energy storage density of 4.2 J cm$^{-3}$ and increased η of 69%. Results show that the antiferroelectricity can be enhanced by replacing Nb with Ta due to decreased polarizability of B-site cations in distorted AFE configuration. In addition, the addition of Ta can increase the bulk density and reduce the grain size of AgNbO$_3$ ceramics, thus remarkably improving the E_0 of materials [31]. However, research on Ta doping in NN-based system with stable AFE P phase is lacking. This finding is a good example to show that NN is different from other AFE perovskite systems in nature.

In this paper, 12 mol% Sr$_{1/2}$Bi$_{0.25}$TiO$_3$ was firstly chosen to form solid solutions with Na$_x$Nb$_{3-x}$O$_y$ to enhance the antiferroelectricity by reducing the tolerance factor [25, 41, 46]. Although the characteristics of double hysteresis loop are obtained, the hysteresis loss and residual polarization P_r are still very large, resulting in low W_{rec} and η. Therefore, Ta was chosen to replace the B-site in 0.88Na$_2$O–0.12Sr$_{1/2}$Bi$_{0.25}$TiO$_3$, in an attempt to further enhance the energy storage performance. A new type of lead-free 0.88Na$_{2-x}$Ti$_x$O$_3$–0.12Sr$_{1/2}$Bi$_{0.25}$TiO$_3$ solid solution is fabricated using a traditional solid-state reaction technique. The relationships of structure with ferroelectric, dielectric and energy storage performance are systematically investigated. The phase transition from the AFE P phase to AFE R phase caused by Ta doping contributes to enhanced energy storage performance. As a result, a large W_{rec} of 2.16 J cm$^{-3}$ and a high η of 80.7% under 15 kV mm$^{-1}$ are obtained in the 0.88Na$_{2-x}$Ta$_x$O$_3$–0.12Bi$_{0.25}$Sr$_{0.7}$TiO$_3$ (NN–BST–0.075Ta) sample. Notably, few reports on lead-free dielectrics can obtain a high η (> 80%) and large W_{rec} (> 2 J cm$^{-3}$) simultaneously under 20 kV mm$^{-1}$. The NN–BST–0.075Ta sample has a remarkable promise in energy storage dielectric capacitors.

2 Experimental procedure

A novel 0.88Na$_x$(Nb$_{1-x}$Ta$_x$)O$_3$–0.12Bi$_{0.25}$Sr$_{0.7}$TiO$_3$ (NN–BST–xTa, $x = 0$, 0.025, 0.050, and 0.075) ceramics were fabricated by a conventional solid phase method by using Nb$_2$O$_5$ (> 99.5%), Na$_2$CO$_3$ (> 99.5%), Ta$_2$O$_5$ (> 99.9%), SrCO$_3$ (> 99.5%), Bi$_2$O$_3$ (> 99.5%), and TiO$_2$ (> 99.5%) powders. Dry raw powders were weighed using the stoichiometric ratio of NN–BST–xTa and subjected to wet-milling for 36 h in a teflon jar with isopropanol. Dry mixed powders were calcined at 950 °C for 2 h and remixed for 10 h to obtain NN–BST–xTa as-calcined powders. The refined powder was uniaxially pressed into disk-shaped samples with a thickness of about 1 mm and a diameter of 10 mm. The disk-shaped samples were sintered at 1160 °C for 3 h in an air atmosphere to obtain high density. Discs were bedded in the same composition of as-calcined powders to resist the volatilization loss of sodium and bismuth. Sintered disk-shaped samples were ground and polished to obtain a thickness of 0.1 mm and measure the electrical performance. The silver electrode with diameter of 0.5 mm was coated in the middle of the polished disc surface by using the screen-printing method and heated at 550 °C.

Field-emission scanning electron microscope (SEM) was used to examine the surface morphology of samples. The crystal structures of NN–BST–xTa ceramic samples were performed through X-ray diffraction (XRD). The dielectric constant ε_r – temperature (T) and dielectric loss (tan δ)–temperature (T) curves were tested by an LCR meter at a heating speed of 120 °C h$^{-1}$. Polarization (P)–electric field (E) curves were characterized using an ferroelectric tester under 10 Hz at various temperatures. All specimens were submerged in silicone oil to prevent surface flash over.

3 Results and discussion

The XRD analysis of unpoled NN–BST–xTa ceramics were presented Fig. 1(a). All the ceramics reveal perfect perovskite structure. No other impurities are contained.
It was suggesting that Ta\(^{5+}\) are dissolved in the NN–BST ceramic lattice and form a uniform perovskite solid solution. The enlarged XRD diffraction patterns in the range of 31.5°–46.8° (Fig. 1(b)) further present variations in (110) and (200) reflection peaks. The (110) and (200) diffraction peaks are not obvious split, which indicates that NN–BST–Ta ceramics basically belong to the pseudo-cubic phase. As \(x\) increases from 0 to 0.075, the positions of (110) and (200) diffraction peaks remain unchanged, indicating that the lattice volume has not changed. This phenomenon occurs because the radii of Ta\(^{5+}\) (0.64 Å, CN = 6) and Nb\(^{5+}\) (0.64 Å, CN = 6) [31, 44].

The SEM images of NN–BST–Ta ceramics were exhibited in Fig. 2(a)–(d). As can be seen from the figures, NN–BST–Ta ceramics are sintered compactly. We used a linear interception method by Nano Measurer software to calculate the average grain size of NN–BST–Ta. Results are displayed in Fig. 2(e)–(h). The average grain sizes of NN–BST–Ta are 1.95, 1.72, 1.63, and 1.34 μm at \(x = 0\), 0.025, 0.050, and 0.075, respectively. The average grain size decreases with the increase of Ta content, which is caused by the low ion mobility of Ta [31, 44]. NN–BST–0.075Ta ceramics have a dense microstructure and small grains that may be responsible for increasing \(W_{\text{rec}}\) and \(E_{\text{b}}\).

Figure 3 shows the \(e_r–T\) and tan \(δ–T\) curves of unpoled NN–BST–Ta ceramics at 1, 10, 100, and 1000 kHz frequencies. The dielectric peaks of \(x = 0\) and 0.025 components are evident at 160 °C, corresponding to the antiferroelectric P to R phase transition temperature \(T_{\text{P–R}}\). In addition, at \(x = 0–0.05\), \(e_r\) at RT increases significantly and decreases with further increase in \(x\). It can be noted that the P–R phase transition peak for \(x = 0.05\) sample. However, the \(e_r\) at RT is higher than that for samples with \(x = 0\) and 0.025, which shows that the \(e_r\) of \(x = 0.05\) sample is affected by the antiferroelectric R phase. In addition, due to the thermal hysteresis of antiferroelectric P–R phase transition during heating, antiferroelectric P phases are few. When \(x = 0.075\), the large \(e_r\) at RT and disappearing dielectric peak \(T_{\text{P–R}}\) at RT indicate that the sample should consist of the antiferroelectric R phase. The similar result has been found in other NN-based relaxor AFEs [30, 34, 45–47].

Figure 4(a) shows the dielectric performance of undoped NN–BST–xTa ceramics at the temperature range of −170 °C to 100 °C. NN–BST–0.075Ta has evident dielectric dispersion and small frequency shift at high temperature. Thus, NN–BST–0.075Ta ceramics has class relaxor characteristics. This relaxor behavior is associated with the different polarizability of perovskite B-site ions. The polarizability of Nb\(^{5+}\) (3.10 Å\(^3\)) is higher than that of Ta\(^{5+}\) (2.82 Å\(^3\)). This phenomenon leads to disordered B-site and random electric field. Therefore, the long-distance driving dipoles are weakened [30, 34]. The \(\epsilon_r\) and \(\tan \delta\) as functions of frequency are shown in Fig. 4(b). The \(\epsilon_r\) and \(\tan \delta\) almost remain at the same level at testing frequencies. The dielectric performance shows outstanding frequency stability and is beneficial to the practical application of pulse power transistor. These results are related to the large \(P\) and high \(E_{\text{b}}\) [34, 48–51].

The unipolar curves of \(P–E\) tested under different electric fields under 10 Hz for NN–BST–xTa ceramics are displayed in Fig. 5. Figure 5(a) and (b) present that \(x = 0\) and 0.025 samples have stable antiferroelectricity. \(P_m\) increases when the \(E\) is more than 12 kV mm\(^{-1}\), indicating that evident AFE–FE phase transition occurs. For 0.025 < \(x\) ≤ 0.075 samples, increasing Ta content gradually results in slender \(P\) curve. \(P\) properties show stable relaxor characteristics, resulting in increased \(E_{\text{b}}\) (Fig. 5(c)–(d)). This result is because the polarizability of Ta\(^{5+}\) is lower than that of Nb\(^{5+}\), which leads to decreased sensitivity of B-site cations to the \(E\) [27]. Generally, the substitution of Ta\(^{5+}\) for Nb\(^{5+}\) will not lead to reduced tolerance factor due to the same radii. In addition to the tolerance factor, the different polarizability between Nb\(^{5+}\) and Ta\(^{3+}\) reduces the average off-centering of the B-site ion in the octahedra and modifies the cell parameter [31]. Therefore, the addition of Ta in NN-12SBT ceramics leads to the phase transition from antiferroelectric to relaxor antiferroelectric, and the \(E_{\text{AF}}\) of the AFE–FE phase transition is getting blurry. Above results are consistent with the dielectric performance.

Figure 6(a)–(c) compare the curves of \(P–E, P_r, P_m\), and energy storage properties of NN–BST–xTa ceramic samples at a low \(E\) (15 kV mm\(^{-1}\)). NN–BST–0.025Ta and NN–BST have relatively stable antiferroelectric properties and large \(P_r\) (25.2 and 19.9 μC cm\(^{-2}\), respectively) and \(P_m\) (53.4 and 44.1 μC cm\(^{-2}\), respectively). With increasing Ta content, \(P_m\) decreases gradually, and \(P_r\) decreases rapidly. Zhang
Fig. 2 SEM images and average grain sizes of NN–BST–xTa ceramics: (a) and (e) $x=0$, (b) and (f) $x=0.025$, (c) and (g) $x=0.050$, (d) and (h) $x=0.075$
et al. [42] studied the NN–xBi1/2Na1/2TiO3 (NN–xBNT) system and observed similar results. BNT (24 mol.%) is dissolved in NN, and a kind of antiferroelectric material with relaxor characteristics is obtained. In addition, larger nanodomains (30–50 nm) than polar nanoregions (PNAs) are observed in the material. As mentioned previously, the dopant of the perovskite B-site by Ta results in a local random field, weakening the long-range driving dipole and enhancing the dielectric relaxation. Despite the decreases in \(P_m \), \(W_{rec} \) increases when \(0.025 \leq x \leq 0.075 \) due to the \(P–E \) curve becomes slender and long, thereby broadening the integral area and increasing \(W_{rec} \). Such changes in \(P–E \) curves caused by the transition from the antiferroelectric \(P \) phase to antiferroelectric R phase are helpful to improve the energy storage performance [52–55]. Subsequently, the \(W_{rec} \) and \(\eta \) of NN–BST–xTa ceramics are compared with several representative lead-free ceramics for energy storage reported recently at low \(E \) (Fig. 6(d)) [15, 16, 31, 36, 45–47].

Fig. 3 The dielectric constant \(\varepsilon_r \)-temperature (\(T \)) and loss (tan \(\delta \))-temperature (\(T \)) curves of NN–BST–xTa ceramics at the temperature range of 25 °C to 450 °C.: (a) \(x = 0 \), (b) \(x = 0.025 \), (c) \(x = 0.050 \), and (d) \(x = 0.075 \). (e)-(f) room-temperature \(\varepsilon_r \) of NN–BST–xTa ceramics with various Ta contents measured at 10 Hz.
Interestingly, NN–BST–0.075Ta ceramics show a large W_{rec} of 2.16 J cm$^{-3}$ and high η of 80.7% at 15 kV mm$^{-1}$, which are larger than those of other lead-free ceramics at a relatively low electric field.

Considering its practical application, temperature dependence is one of the important indices in the design of dielectric capacitor. Figure 7 displays the (a) unipolar P–E curves, (b) W_{rec}, and η of NN–BST–0.075Ta ceramics as a function of temperature under 15 kV mm$^{-1}$. The unipolar P–E curve displays an excellent temperature stability, which may be due to the stable R phase coexisting in NN–BST–0.075Ta over a wide range of temperature, as displayed in Fig. 7(a). The W_{rec} and η vary from 1.98 J cm$^{-3}$ and 80.7%, respectively, to 2.2 J cm$^{-3}$.

Fig. 4 (a) The dielectric constant (ε_r)-temperature (T) and loss (tan δ)-temperature (T) curves of NN–BST–0.075Ta ceramics at the temperature range of -170 °C to 100 °C. (b) ε_r and tan δ of NN–BST–0.075Ta ceramics as a function of frequency.

Fig. 5 Unipolar P–E curves under different electric fields of NN–BST–xTa samples: (a) $x=0$, (b) $x=0.025$, (c) $x=0.050$, and (d) $x=0.075$.
and 85.8%, respectively, at 25 °C–125 °C (Fig. 7(b)). The variations in W_{rec} and η are less than 11.1% and 6.3%, respectively. The good temperature stability of NN–BST–0.075Ta indicates its potential as lead-free relaxor AFE material for use in temperature-stable pulse capacitor.

4 Conclusion

A novel Ta-doped NN–BST dielectric ceramics with a pure perovskite phase is successfully synthesized by a traditional solid state reaction route. The effect of Ta$^{5+}$ in the perovskite B-site increases the relaxation of the material,
thus improving E_r and decreasing P_r. Dielectric and ferroelectric performances reveal that the NN–BST–0.075Ta ceramics belong to relaxor AFEs. Therefore, a large recoverable W_{rec} of 2.16 J cm$^{-3}$ and η of 80.7% at a low electric field of 15 kV mm$^{-1}$ are achieved in NN–BST–0.075Ta ceramics due to improved relaxation property. NN–BST–0.075Ta ceramics also exhibit excellent energy storage temperature stability. These excellent properties in NN–BST–0.075Ta relaxor AFE ceramics indicate its potential as a candidate in future dielectric capacitors.

Acknowledgements The authors acknowledge the supports of the National Natural Science Foundation of China (Grant No. 51902111), the State Key Laboratory of Advanced Materials and Electronic Components (No. FHR-JS-202011007), the Key Research Platform and Program in Universities of Department of Education of Guangdong Province (No. 2020GCZX003). P. F. also thanks to the projects supported by Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment (2020B1212060014), Dong-Guan Innovative Research Team Program (2020607101007), and Guangdong Basic and Applied Basic Research Foundation (2021A1515010025).

Funding This work was supported by National Natural Science Foundation of China (Grant No. 51902111).

Data availability All data generated or analysed during this study are included in this published article.

Code availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflicts of interest There is no conflicts of interest.

References

1. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. lagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Flexible high temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

2. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielect. 3, 1330001 (2013)

3. P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang, C.-W. Nan, Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. Adv. Funct. Mater. 24, 3172–3178 (2014)

4. H. Zhang, M.A. Marwat, B. Xie, M. Ashlar, Y. Zhu, K. Liu, L. Zhang, P. Fan, C. Samart, Z.-G Ye, Polymer matrix nanocomposites with 1D inorganic nanofillers for energy storage capacitors. ACS Appl. Mater. Int. 12, 1–37 (2020)

5. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 29, 1601727 (2017)

6. H. Palmeedi, M. Peddigrar, G.-T. Hwang, D.-Y. Jeong, J. Ryu, High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 28, 1803665 (2018)

7. Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density. Adv. Mater. 30, 1705662 (2018)

8. Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, High-Temperature Dielectric Materials for Electrical Energy Storage. Annu. Rev. Mater. Res. 48, 3.1–3.25(2018)

9. F. Li, J. Zhai, B. Shen, H. Zeng, Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J. Adv. Dielect. 8, 1830005 (2018)

10. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J-F. Li, S. Zhang, Perovskite lead-free dielectric ceramics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

11. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

12. M. Chao, J. Liu, M. Zeng, D. Wang, H. Yu, Y. Yuan, S. Zhang, High discharge efficiency of (Sr,Pb,Bi)TiO$_3$ relaxor ceramics for energy-storage application. Appl. Phys. Lett. 112, 203903 (2018)

13. H. Yang, F. Yan, Y. Lin, T. Wang, Enhanced recoverable energy storage density and high efficiency of SrTiO$_3$–based lead-free ceramics. Appl. Phys. Lett. 111, 253903 (2017)

14. T. Shao, H. Du, H. Ma, S. Su, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5, 554 (2017)

15. W.-B. Li, D. Zhou, L.-X. Pang, Enhanced energy density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO$_3$-based ceramics. Appl. Phys. Lett. 110, 132902 (2017)

16. G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, D. Wang, I.M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electric homogeneity. Energy Environ. Sci. 12, 582–588 (2019)

17. P. Fan, S.-T. Zhang, J. Xu, J. Zhang, C. Samart, T. Zhang, H. Tang, D. Salamon, H. Zhang, G. Liu, Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. J. Mater. Chem. C 8, 5681–5691 (2020)

18. H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi$_6$(Na$_3$)$_3$)$_2$Ti$_7$O$_{22}$-NaNbO$_3$ with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971 (2019)

19. J. Yin, Y. Zhang, X. Lv, J. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6, 9823 (2018)

20. J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou, M.n Wang, L. Wang, Q. Kou, Y. Liu, Q. Li, Z. Xu, Y. Chang, S. Zhang, F. Li, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nature Mater. 19, 999–1005 (2020)

21. P. Fan, Y. Zhang, X. Zhu, W. Ma, K. Liu, X. He, M.A. Marwat, B. Xie, M. Li, H. Zhang, Large strain under low driving field in lead-free relaxor/ferroelectric composite ceramics. J. Am. Ceram. Soc. 102, 4113–4126 (2019)

22. P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M. A. Marwat, W. Ma, K. Liu, J. Xiao, H. Zhang, Large strain with low hysteresis in Bi$_4$(Ti$_3$O$_{12}$ modified Bi$_{20}$(Na$_{10}$K$_{10}$)$_{30}$TiO$_{90}$ lead-free piezoceramics. J. Euro. Ceram. Soc. 38, 4404–4413(2018)

23. P. Fan, Y. Zhang, B. Xie, Y. Zhu, W. Ma, C. Wang, B. Yang, J. Xu, J. Xiao, H. Zhang, Large electric field-induced strain in B-site
complex-ion (Fe0.75Nb0.75+) doped Bi12(2Na0.92K0.08)TiO3 piezoelectric ceramics. Ceram. Int. **44**, 3211–3217 (2018)

24. P. Fan, Y.G. Zhang, J. Huang, W. Hu, D. Huang, Z. Liu, B. Xie, X. Li, J. Xiao, H. Zhang. Constrained sintering and electrical properties of BNT-BKT lead-free piezoceramic thick films. Ceram. Int. **42**, 2534–2541 (2016)

25. J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi. Dielectric Stability and Energy-Storage Performance of BNT-Based Relaxor Ferroelectrics through Nb4+ and Its Excess Modification. ACS Appl. Electron. Mater. **4**, 735–743 (2022)

26. M. Chen, X. Yao, L. Zhang, Lead lanthanum zirconate titanate based antiferroelectric to ferroelectric phase switching multilayer ceramic actuators. Ferroelectrics **263**, 119424 (2001)

27. Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu. Antiferroelectric for Energy Storage Applications: a Review. Adv. Mater. Technol. **3**, 180011 (2018)

28. L. Chen, N. Sun, Y. Li, Q. Zhang, L. Zhang, X. Hao. Multifunctional antiferroelectric MLCC with high-energy storage properties and large field-induced strain. J. Am. Ceram. Soc. **101**, 2313–2320 (2018)

29. P. Liu, B. Fan, G. Wang, W. Li, H. Zhang, S. Jiang, High energy density at high temperature in PLZT antiferroelectric ceramics. J. Mater. Chem. C **7**, 4587–4594 (2019)

30. F. Zhuo, Q. Li, Y. Zhou, Y. Ji, Q. Yan, Y. Zhang, X. Xi, X. Chu, W. Cao. Large field-induced strain, giant strain memory effect, and high thermal stability energy storage in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal. Acta Mater. **148**, 28–37 (2018)

31. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li. Lead-Free Antiferroelectric Silver Niobate Tantulate with High Energy Storage Performance. Adv. Mater. **1701824** (2017)

32. Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A.K. Klepeis, D. Wang, S.-Y. Liu, I. M. Reaney. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy **79**, 105423 (2021)

33. K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, Ultra-high energy-storage density in A-/B-site codoped AgNbO3 lead-free antiferroelectric ceramics. Nano Energy **79**, 105423 (2021)

34. F. Pang, X. Chen, C. Sun, J. Shi, X. Li, H. Chen, X. Dong, H. Zhou. Ultrahigh Energy Storage Characteristics of Sodium Niobate-Based Ceramics by Introducing a Local Random Field. ACS Sustainable Chem. Eng. **8**, 14985–14995 (2020)

35. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, Allovalent A-site engineered AgNbO3, lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A **7**, 26293 (2019)

36. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains. Adv. Funct. Mater. **29**, 1903877 (2019)

37. D. Yang, J. Gao, L. Shu, Y.-X. Liu, J. Yu, Y. Zhang, X. Wang, B.-P. Zhang, J.-F. Li. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A **8**, 23724 (2020)

38. H. Guo, H. Shimizu, Y. Mizuno, C.A. Randall, Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO3-based ceramics. J. Appl. Phys. **118**, 054102 (2015)

39. R. Zuo, J. Fu, H. Qi. Stable antiferroelectricity with incompletely reversible phase transition and low-volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics. Acta Mater. **161**, 352–359 (2018)

40. X. Tan, Z. Xu, X. Liu, Z. Fan, Double hysteresis loops at room temperature in NaNbO3-based lead-free antiferroelectric ceramics. Mater. Res. Lett. **6**, 159–164 (2018)

41. J. Ye, G. Wang, X. Chen, F. Cao, X. Dong. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x) NaNbO3-xCaSnO3 ceramics. Appl. Phys. Lett. **114**, 122901 (2019)

42. H. Qi, R. Zuo, A. Xie, J. Fu, D. Zhang. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Euro. Ceram. Soc. **39**, 3703–3709 (2019)

43. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang. S. Zhang. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.0k01264

44. J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou. Realizing ultrahigh recoverable energy density and superior charge-discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy. J. Mater. Chem. C **8**, 3784 (2020)

45. A. Xie, H. Qi, R. Zuo. Achieving Remarkable Amplification of Energy-Storage Density in Two-Step Sintered NaNbO3-SrTiO3 Antiferroelectric Capacitors through Dual Adjustment of Local Heterogeneity and Grain Scale. ACS Appl. Mater. Inter. **12**, 19467–19475 (2020)

46. T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon, B. Nan, H. Zhang. Novel NaNbO3-Sr1-xBi2O3Ti1-xO4 lead-free dielectric ceramics with excellent energy storage properties. Ceram. Int. **47**, 3713–3719 (2021)

47. A. Tian, R. Zuo, H. Qi, M. Shi. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J. Mater. Chem. A **8**, 8352–8359 (2020)

48. R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J. Alloy. Compd. **815**, 152356 (2020)

49. J. Chen, H. Qi, R. Zuo. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na0.75La0.25)Nb3Ti1-xO3 Lead-Free Ceramics through A/B-Site Complex Substitution. ACS Appl. Mater. Inter. **12**, 32871–32879 (2020)

50. H. Chen, X. Chen, J. Shi, C. Sun, X. Dong, F. Pang, H. Zhou. Achieving ultrahigh energy storage density in NaNbO3-Bi(Nb0.65Zr0.35)O3 solid solution by enhancing the breakdown electric field. Ceram. Int. **46**, 28407–28413 (2020)

51. M.-H. Zhang, N. Hadaeghi, S. Egert, H. Ding, H. Zhang, P.B. Groszewicz, G. Bunkowsky, A. Klein, J. Koruza, Design of Lead-Free Antiferroelectric (1-x)NaNbO3-xSrSnO3 Compositions Guided by First-Principles Calculations. Chem. Mater. **33**, 266–274 (2021)

52. J. Ye, G. Wang, X. Chen, X. Dong. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J. Materiomics **7**, 339–346 (2021)

53. C. Sun, X. Chen, J. Shi, F. Pang, X. Dong, H. Chen, K. Wang, X. Zhou, H. Zhou. Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Euro. Ceram. Soc. **41**, 1891–1903 (2021)

54. L. Yang, X. Kong, Z. Cheng, S. Zhang. Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors. J. Mater. Res. (2021). https://doi.org/10.1557/jmr.2020.00885-2

55. H. Chen, J. Shi, X. Chen, C. Sun, F. Pang, X. Dong, H. Zhang, H. Zhou. Excellent energy storage properties and stability of NaNbO3-Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)3Sr2Nb3Ti3O12. J. Mater. Chem. A **9**, 4789 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.