Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer

Bing-Tao Zhai1, Huan Tian2, Jing Sun1, Jun-Bo Zou1, Xiao-Fei Zhang1, Jiang-Xue Cheng1, Ya-Jun Shi1, Yu Fan1 and Dong-Yan Guo1*

Abstract

Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.

Keywords: Urokinase-type plasminogen activator receptor (uPAR), Nanoparticles (NPs), Photodynamic therapy (PDT)/photothermal therapy (PTT), Oncolytic virotherapy, Gene therapy technologies, Monoclonal antibody therapy, Tumour immunotherapy

Background

Urokinase-type plasminogen activator receptor (uPAR), also known as CD87, is encoded by the PLAUR gene and belongs to the lymphatic antigen-6 superfamily [1, 2]. uPAR was first identified as the cell surface receptor for urokinase plasminogen activator (uPA) in 1985 [3, 4]. The mature uPAR molecule is a single-chain membrane glycoprotein receptor composed of 313 amino acid residues and is anchored to the cell membrane by a glycosylphosphatidylinositol (GPI) linkage; it contains 3 homologous domains, D1, D2 and D3, with a total molecular weight of 55–60 kDa [5, 6]. uPAR mediates a variety of biological processes, such as plasminogen activation, proteolysis, cellular signal transduction and adhesion [7–9]. Under normal physiological conditions, uPAR is usually expressed at a low level. In the processes of tissue remodelling, wound healing, inflammation and embryogenesis, uPAR is transiently expressed at high levels and participates in the processes of extracellular matrix (ECM) degradation, thrombolysis, cell invasion and migration [10–14].

Classically, the function of uPAR is to act as a receptor for the zymogen form of uPA (pro-uPA) and trigger a cascade of proteolytic events that leads to the degradation of ECM [15, 16]. Once pro-uPA is activated to uPA, it converts plasminogen to its active form, plasmin, which activates downstream proteases such as pro-matrix metalloproteinase (MMP)-3 and MMP-3,
In recent years, many studies have shown that uPAR is closely related to the invasion and metastasis of malignant tumours. uPAR plays important roles in the degradation of ECM, tumour angiogenesis, cell proliferation and apoptosis, is related to the multidrug resistance (MDR) of tumour cells, and has important guiding significance for the judgement of tumour malignancy and prognosis. In this review, we summarize the new application of uPAR as a target of nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy to promote the translation of these therapeutic agents to clinical applications.

uPAR in cancer progression

uPAR has multiple functional roles associated with tumour progression, including tumour proliferation and apoptosis, metastasis, angiogenesis, MDR and prognosis. An analysis of tumour samples has shown high uPAR expression in most solid tumour tissues, such as breast [42], lung [43], bladder [44], ovarian [45], prostate [46], liver [47], colon [48], pancreatic [49] and gastric cancer [50] as well as gliomas [51] and several haematologic malignancies [52, 53]. Moreover, uPAR is expressed at high levels on stromal cells in the tumour microenvironment, such as vascular endothelial cells, tumour-related fibroblasts and tumour-related macrophages, and its expression level is closely related to tumour aggressiveness and the survival of patients with tumours [54–57]. Therefore, treatments targeting uPAR expressed on tumour-associated stromal cells may be as important as treatments targeting uPAR expressed on tumour cells and may lead to enhanced antitumour activity.

uPAR interacts with a variety of surface transmembrane proteins, such as integrins and EGFR, thereby activating intracellular FAK, extracellular regulatory protein kinase (ERK) and MAPK signalling to inhibit cell apoptosis and promote cell proliferation. For example, the interaction between uPAR and a5β1 integrin activates EGFR through a FAK-dependent pathway, which subsequently activates the ERK signalling pathway and promotes cell proliferation [58]. Inhibition of uPAR expression destroy the uPAR/integrin interaction and inhibits the MAPK pathway to arrest Hep3 cells in G0/G1 phase [59]. The suppression of uPAR expression in vitro by transfection inhibits the proliferation of meningioma cells by downregulating transforming growth factor-β (TGF-β) 1 expression [60], arrests glioma SNB19 cells in G2 phase and increases caspase-dependent cell apoptosis [61]. Moreover, inhibiting the expression of uPAR in vitro by transfection promotes the apoptosis of human melanoma cells by increasing the expression of the p53 protein and activating the apoptosis pathway mediated by retinoic acid inducible gene 1 (RIG-1) [62].

Inhibition of uPAR expression prevents tumour invasion and migration. For example, inhibiting the expression of uPA/uPAR blocks the invasion of glioma SNB19 cells by reducing Ras mediated phosphorylation of FAK, p38MAPK, c-Jun N-terminal kinase (JNK) and ERK1/2 and MAPK kinase (MEK) activation of the PI3K/AKT/mammalian target of rapamycin (mTOR) signalling pathway [63]. Inhibition of uPA/uPAR expression also prevents the invasion of glioma cells by inhibiting Notch-1 receptor cleavage, signal transduction and endosomal transport [64]. Treatments targeting uPAR in human pancreatic cancer cells inhibit the migration and invasion of mouse tumour cells mediated by c-met and insulin like
growth factor 1 receptor (IGF1R) [65]. Inhibition of uPAR expression along with the expression of uPA, human epidermal growth factor receptor-2 (HER-2), or IGF1R or in combination with trastuzumab further inhibits the invasion and migration of different breast cancer cell lines [66–68].

Angiogenesis is the process of forming new blood vessels from existing blood vessels. It plays a vital role in tumour growth, invasion and metastasis. uPAR also promotes tumour angiogenesis. For example, uPAR promotes angiogenesis by inhibiting the expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) [69]. In endothelial cells and glioblastoma cells, silencing the expression of uPA/uPAR inhibits tumour angiogenesis by increasing the expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and increasing the secretion of soluble vascular endothelial growth factor (VEGF) receptor (VEGFR) 1 (SVEGFR1) [70]. Herkenne et al. also found that knockout of uPAR in human umbilical vein endothelial cells (HUVeCs) blocks VEGFR2 signalling, thereby preventing VEGF-induced angiogenesis [71].

High levels of uPAR expression have been detected in a variety of cancer cells but very low levels are present in normal cells, indicating that the level of uPAR in tumour tissue is closely related to the tumour malignancy and prognosis of patients with cancer [72]. Elevated levels of uPAR are observed in prostate cancer, correlating with increased aggressiveness, postoperative progression and metastasis [73, 74]. In another study, Memarzadeh et al. found that the expression of uPAR in surgically removed endometrial tissue was positively correlated with the
malignancy of endometrial cancer [75]. A study using 45 fresh tumour tissues observed the presence of uPAR in 1/3 of melanomas [76]. Yang et al. suggested that uPAR is useful as an independent prognostic factor for the survival and metastasis of patients with colorectal cancer [77]; Halamkova et al. also reported a correlation between uPAR expression and the grade of colorectal cancer [78]. Many studies have shown increased levels of uPAR and their related to liver metastasis and a poor prognosis for patients with hepatocellular carcinoma (HCC) [79–81]. According to Chen et al., the levels of uPAR in patients with lung cancer are significantly increased [82]. A study has shown an association between an increased level of the uPAR D1 domain and shorter overall survival of patient with small cell lung cancer [83]. uPAR expression in tumour tissues is also significantly increased in non-small cell lung cancer (NSCLC) [84]. In gastric cancer, increased uPAR expression and decreased uPAR expression are related to a poor prognosis and prolonged patient survival, respectively [85, 86]. In oral squamous cell carcinoma (OSCC), the levels of uPAR are elevated, and a strong correlation between the expression of uPAR and the aggressiveness of the tumour has been identified [87]. Increased uPAR levels are closely related to a poor prognosis for patients with bladder cancer [88, 89]. High levels of uPAR are present in 94% of muscle-invasive bladder cancer and 54–71% of nonmuscle-invasive bladder cancer, but the protein is almost undetectable in healthy bladder tissue [90]. The expression of uPAR is significantly increased in laryngeal squamous cell carcinoma, which may help increase invasion and metastasis [91]. In acute myeloid leukaemia (AML), the high expression of uPAR is also associated with the aggressiveness of the disease [92]. Therefore, the expression level of uPAR may be an important marker for judging the degree of malignancy and the survival of patients.

An association between uPAR expression and the MDR of tumour cells has also been identified. Drug resistance is an important cause of the failure of tumour treatment. A study has shown that inhibition of uPAR in vitro promotes the apoptosis of melanoma cells resistant to B-RAF inhibitors and MEK inhibitors by increasing the level of Noxa [62]. High uPAR expression may allow head and neck squamous cell carcinoma, small cell lung cancer, and malignant pleural mesothelioma to develop resistance to chemotherapy [93–95]. uPAR enhances the resistance of breast cancer to tamoxifen by activating ERK1/2 [96], and renders NSCLC resistant to gefitinib by activating the EGFR/pAKT/survivin signalling pathway [97]. Inhibition of uPAR expression reduces the resistance of mouse brain neroma cells to 5-fluorouracil (5-FU), cisplatin (Cis), docetaxel (DTX) and doxorubicin (Dox) [98]. Laurencenza et al. showed that BRAF-mutated melanoma cells with different uPAR expression levels have different sensitivities to verafenil; high levels of uPAR decrease the sensitivity of BRAF-mutated melanoma cells to verafenil, while a reduction in uPAR expression restores the sensitivity of drug-resistant cells to verafenil [99]. As shown in the study by LeBeau et al., MCF-7 cells resistant to tamoxifen and MDA-MB-231 cells resistant to Doc and paclitaxel (PTX) exhibit markedly higher expression of uPAR than parental MCF-7 and MDA-MB-231 cells, respectively [100].

In summary, the dysregulation of uPAR plays a key role in tumour progression. Given the broad expression of uPAR by a variety of different tumour types and the selective expression of uPAR by tumour cells and tumour-related stromal cells in the tumour microenvironment compared to normal cells, uPAR is an attractive target for the treatment of tumours.

Targeting uPAR for antitumour therapy

Compared with normal tissues, high uPAR expression in tumours has been shown, and thus researchers have proposed uPAR as a therapeutic target and a targeting agent for the treatment of cancer [101]. Over the past 30 years, a variety of therapeutic agents that target uPAR have been developed to treat cancer. For example, peptides AE105 (D-Cha-F-s-r-Y-L-W-S) [102], AE120 ([D-Cha-F-s-r-Y-L-W-S]-2-BA-K) [102], Å6 (Ac-KPSSP-PEE-Am) [103], ATF [104], and U11 (VSNKYSNIHW) [105], and the cyclic peptides cyclo19,31uPA19–31 [106], cyclo19,31[D-Cys19]-uPA19–31 [107], WX-360 (cyclo21,29[D-Cys21]-uPA21–30[S21C;H29C]) and WX-360-Nle (cyclo21,29[D-Cys21]-uPA21–30[S21C;K23Nle;H29C]) [108] block the uPA/uPAR interaction. Peptides M25 (PRYHQHGLVAMFRQNTG) [109], a325 (PRHRHMGAVFLLSQEAQ) [110], p25 (AESTYHHLGMYTLN-NH2) [111], m.P243-251 (TASWCQGSH) [112], D2A-Ala (IQEGAAGRPKDDR) [113] and polyethylene glycol (PEG)yalted D2A-Ala peptide (PEG-D2A-Ala) [114] inhibit the uPAR/integrin or uPAR/Vn interaction. Peptides pyro glutamatic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2 (pERERY-NH2) [115], RERF (Ac-Arg-Glu-Arg-Phe-NH2) [116], UPARANT (Ac-L-Arg-Aib-L-Arg-D-Ca(Me)Phe-NH2) [117], cyclic SRSRY peptide ([SRSRY]) [118], and RI-3 [Ac-(D)-Tyr-(D)-Arg-Aib-(D)-Arg-NH2] [119] block the interaction of SRSRY and N-formyl-Met-Leu-Phe (fMLF) with the FPR family of GPCRs. Human and mouse uPA1-48 (huPA1-48 and muPA1-48), human and murine uPA1-48 fusion proteins (huPA1-48lg and muPA1-48lg) [120], and human and mouse pegylated uPA1-48 (PEGh1-48 and PEGhm1-48) [121] also inhibit tumour growth by inhibiting tumour stromal cell uPAR-dependent plasminogen activation. The small-molecule inhibitors IPR-456 [122], IPR-803 [123], IPR-3011 [124],
on the sequence of uPA lack potency and have poor pharmacological properties and stability due to susceptibility to exoprotease degradation in the plasma [153]; screening for small-molecule inhibitors is inefficient due to a lack of detailed structural information on the interaction of uPAR with its binding partners such as integrins [154–156]. Some uPAR-targeted small-molecule inhibitors are hydrophobic and have limited bioavailability [123, 125, 157]; and due to the large surface area at the protein–protein interface, the development of small molecules specifically targeting this flexible hydrophobic cavity in uPAR also represent a challenging task [129, 158]. Similarly, ligand-targeted toxins must overcome many barriers before they reach human clinical trials, including determining the appropriate dosing strategy and sequence of administration, increasing the potency and reducing the immunogenicity of the toxin [159, 160].

In recent years, with the interdisciplinary integration of cell biology and materials science, many innovative tumour-targeted therapeutic technologies targeting uPAR have emerged, providing new development directions for precise and efficient tumour therapy. uPAR-targeted nanoplatforms carrying therapeutic agents have great potential in enhancing active tumour targeting, improving delivery efficiency, reducing drug toxicity, increasing the hydrophilicity of hydrophobic drugs, achieving tumour diagnosis and treatment integration, and in multimodal synergistic antitumor applications. uPAR-targeted PDT/PTT platforms may be regarded as promising cancer therapeutic strategies due to their unique advantages such as minor trauma, improved selectivity and reduced side effects. uPAR-targeting oncolytic measles virus (MV-uPA) is an innovative biological strategy associated with potent antitumour effects. uPAR-targeted clustered regularly interspaced short palindromic (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) gene-editing technology may provide new therapeutic treatments for aggressive cancers. uPAR-targeted monoclonal antibody therapy may provide new breakthroughs for the development of anticancer therapy. uPAR-targeted chimeric antigen receptor (CAR) T-cell immunotherapy and antibody-recruiting molecules (ARMs) have the ability to target uPAR-expressing cancers for immune-mediated cell death. Therefore, this review focuses on some new applications of uPAR in the six fields described above (Fig. 2).

uPAR-targeted nanoplatforms carrying therapeutic agents

More recently, several groups have not only utilized various uPAR-targeted nanoplatforms as drug delivery systems to enhance the antitumor effect but also used uPAR-targeted nanoparticles (NPs) as targeted therapeutic imaging probes. Dong et al. successfully loaded BRCA1 small interfering RNA (siRNA), which block DNA repair, and the DNA-damaging agent Pro-Pt into a shell-core pH-sensitive platform (uPA-SP@CaP NPs) to increase the sensitivity of triple-negative breast cancer (TNBC) to chemotherapy. The NPs achieved dual tumour targeting through the passive enhanced permeability and retention (EPR) effect and active uPA peptide [161] (Fig. 3). Yang et al. engineered uPAR-targeted magnetic iron oxide nanoparticle (IONP)-encapsulated Dox conjugated with the ATF of uPA that delivered higher Dox loads and exerted a stronger inhibitory effect on breast cancer cell growth than nontargeted NPs. Moreover, these NPs have been used as targeted therapeutic imaging probes for monitoring drug delivery using magnetic resonance imaging (MRI) [162]. Miller-Kleinhenz et al. prepared Wnt/LRP5/6- and uPAR-targeted ultrasmall magnetic IONPs carrying Dox (iWnt-ATF23–IONP-Dox) that showed a stronger inhibitory effect than non-single-targeted IONPs on a human breast cancer patient-derived xenograft model and markedly inhibited Wnt/β-catenin signalling and the cancer stem-like phenotype by decreasing the levels of the Wnt ligand, CD44 and uPAR...
Table 1 The uPAR-targeted peptides, small-molecule inhibitors and ligand-targeted toxins

Peptides/small-molecule inhibitors/ligand-targeted toxins	Sequence/structure/composition	Action site/target	References
AE105	D-Cha-F-s-r-Y-L-W-S	uPA/uPAR	[102]
AE120	[D-Cha-F-s-r-Y-L-W-S]2-βA-K	uPA/uPAR	[102]
Å6	Ac-KPSSPPEE-Am	uPA/uPAR	[103]
ATF	An amino-terminal fragment of urokinase with EGF-like domain and kringle domain	uPA/uPAR	[104]
U11	VSNKYGFSNIIHW	uPA/uPAR	[105]
A stable disulfide-bridged cyclic form of the linear peptide uPA_{19-31}	cyclo{19,31}uPA_{19-31}	uPA/uPAR	[106]
A peptide variant of cyclo{19,31}uPA_{19-31}	cyclo{19,31}[D-Cys{19}]uPA_{19-31}	uPA/uPAR	[107]
WX-360	cyclo{19,29}[D-Cys21]uPA_{21-30}[S21C;H29C]	uPA/uPAR	[108]
WX-360-Nle	cyclo{19,29}[D-Cys21]uPA_{21-30}[S21C;K23Nle;H29C]	uPA/uPAR	[108]
M25	PRYQHIHLVAMFQNTG	uPAR/β1-integrins	[109]
a25	PRHRHMGAVFLLQEAG	uPAR/Vn	[110]
p25	AESTYHHLGMYTLN-NH$_2$	uPAR-integrin	[111]
m.P243-251	TAWSCQGSH	uPAR/α5β1 integrin	[112]
D2A-Ala	IQECAAGRPGKDDOR	uPAR/αvβ3/αvβ1	[113]
PEGylated D2A-Ala	PEG-D2A-Ala	uPAR/αvβ3/αvβ1	[114]
pERERY-NH$_2$	Pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH$_2$	fMLF/FPR	[115]
RERF	Ac-Arg-Glu-Arg-Phe-NH$_2$	SRSRY/FPR	[116]
UPARANT	Ac-L-Arg-Alb-L-Arg-D-Ca(Me)Phe-NH$_2$	fMLF/FPR	[117]
cyclic SRSRY peptide ([SRSRY])	(Ser-Arg-Ser-Arg-Tyr)$_3$	SRSY/FPR1 fMLF/FPR1	[118]
RI-3	Ac-(D)-Tyr-(D)-Arg-Alb-(D)-Arg-NH$_2$	fMLF/FPR1	[119]
huPA1-48 and muPA1-48	The growth factor domains of human and murine urokinase	Tumour stromal cell uPAR dependent plasminogen activation	[120]
huPA1-48lg and muPA1-48lg	Modify huPA1-48 and muPA1-48 with the constant region of human IgG$_2$	Tumour stromal cell uPAR dependent plasminogen activation	[120]
PEGh1-48 and PEGhm1-48	Human and mouse pegylated uPA1-48	Tumour stromal cell uPAR dependent plasminogen activation	[121]
IPR-456			
IPR-803			[123]
Table 1 (continued)

Peptides/small-molecule inhibitors/ligand-targeted toxins	Sequence/structure/composition	Action site/target	References
IPR-3011	![IPR-3011 structure](image)	uPA/uPAR	[124]
IPR-3577	![IPR-3577 structure](image)	uPA/uPAR	[125]
7	![7 structure](image)	uPAR/uPA_{ATF}	
 | | uPAR/Vn | [126] | |
| LLL-1fsi | ![LLL-1fsi structure](image) | uPA/uPAR | [127] |
| MS#479 [2-(Pyridin-2-ylamino)-quinolin-8-ol] | ![MS#479 structure](image) | uPAR/integrin | [128] |
| MS#305 [2,2′-(methylimino)di (8-quinolinol)] | ![MS#305 structure](image) | uPAR/integrin | [128] |
| Compounds 6 | ![Compounds 6 structure](image) | uPAR/Vn | [129] |
| Compounds 37 | ![Compounds 37 structure](image) | uPAR/FPR | [129] |
| Docosahexaenoic acid (DHA) | ![Docosahexaenoic acid structure](image) | suppress uPAR expression | [130] |
| DTAT | DT and ATF | uPAR | [131, 132] |
| DTAT-EGF | ATF, EGF and DT | uPAR, EGFR | [133] |
| DTAT13 | ATF, IL-13 and DT | uPAR, IL-13 receptors | [134, 135] |
| eBAT (EGFATFKDEL 7mut) | ATF, EGF, truncated PE38 with a terminal lysyl-glutamyl-leucine (KDEL) sequence and eight amino acids representing the seven major epitopes on PE38 were mutated | uPAR, EGFR | [136–141] |
Table 1 (continued)

Peptides/small-molecule inhibitors/ligand-targeted toxins	Sequence/structure/composition	Action site/target	References
ATF-SAP	ATF and SAP	uPAR	[142, 143]
PAI-2-N-AIE	PAI-2 and N-AIE	uPAR	[144]
DTU2GMCSF	DT, GM-CSF and uPA	uPAR, GM-CSF receptor	[145]
ATF-PE38	ATF and PE38	uPAR	[146]
ATF-PE38KDEL	ATF and PE38 with a terminal KDEL sequence	uPAR	[146]

uPA: urokinase plasminogen activator; uPAR: urokinase-type plasminogen activator receptor; Vn: vitronectin; PEG: polyethylene glycol; fMLF: N-formyl-Met-Leu-Phe; FPR: formyl peptide receptor; DT: diphtheria toxin; IL-13: interleukin-13; PE38: Pseudomonas exotoxin A; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; SAP: Saporin; PAI-2: plasminogen activator inhibitor type 2; N-AIE: 5,7-dibromo-N-(p-hydroxymethylbenzyl)isatin was conjugated to PAI-2 via an esterase-labile succinate linker; GM-CSF: granulocyte-macrophage colony-stimulating factor

Fig. 2 uPAR was used as a target in nanoplatforms carrying therapeutic agents, PDT/PTT platforms, oncolytic virotherapy, gene therapy techniques, monoclonal antibody therapy and tumour immunotherapy to enhance antitumor effects. (1) uPAR-targeted nanoplatforms carrying therapeutic agents have great potential for the development of targeted therapeutic and imaging approaches that are capable of enhancing the therapeutic effect of nanoparticle drugs on various cancers. (2) uPAR-targeted PDT/PTT platforms may be regarded as promising cancer therapeutic strategies due to their unique advantages such as minor trauma, improved selectivity and reduced side effects. (3) uPAR-targeting oncolytic measles virus (MV-uPA) is an innovative biological strategy associated with potent antitumour effects. (4) uPAR-targeted gene therapy techniques using adenovirus-mediated antisense uPAR therapy, RNA interference (RNAi) technology and novel CRISPR/Cas9 gene editing technology may represent useful tools and provide new therapeutic options for aggressive cancers. (5) uPAR-targeted monoclonal antibody therapy may provide new breakthroughs in the development of anticancer therapy. (6) uPAR-targeted CAR T-cell immunotherapy and ARMs have the ability to target uPAR-expressing cancers for immune-mediated cell death. PDT/PTT photodynamic therapy/photothermal therapy, MV-uPA uPAR-targeting oncolytic measles virus, RNAi: RNA interference, CRISPR/Cas9 RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system, CAR: chimeric antigen receptor, ARMs: antibody-recruiting molecules.
Lee et al. engineered ATF-mediated IONPs carrying gemcitabine (Gem) (ATF-IONP-Gem) to target uPAR-expressing tumour and stromal cells and overcome the tumour–stromal, which not only provided contrast enhancement in MRI of tumours, but also significantly inhibited the growth of orthotopic pancreatic cancer [164]. Gao et al. prepared uPAR-targeted PEGylated theranostic NPs (ATF-PEG-IONPs), and detected threefold higher intratumour accumulation (i.p. injection) than i.v. delivery; the IONPs were detected with NIR-830 labeling using noninvasive optical and MRI in an orthotopic pancreatic cancer model. Moreover, these IONPs carrying Cis or Dox (ATF-PEG-IONP-Cis or ATF-PEG-IONP-Dox) markedly inhibited tumour angiogenesis and tumour growth and reduced the production of malignant ascites [165].

Ahmed et al. developed multifunctional double-receptor-targeting IONPs [luteinizing hormone-releasing hormone (LHRH) peptide- and AE105 peptide-targeted IONPs, LHRH-AE105-IONPs] that simultaneously targeted the LHRH receptor (LHRH-R) and uPAR and exhibited a significant MRI contrast in PCa cells.
Importantly, the IONPs carrying PTX (LHRH-AE105-IONPs-PTX) showed two times higher cell cytotoxicity than IONPs targeting a single molecule [166]. Park et al. prepared AE147 peptide-conjugated liposomes encapsulating DTX (DTX/AE Lipo) to actively target uPAR-overexpressing metastatic tumours. In MDA-MB-231 cells, DTX/AE-Lipo (IC_{50} 4.61 µg/mL) achieved better anticancer activity than free DTX (IC_{50} 7.18 µg/mL) or DTX/Lipo (IC_{50} 8.59 µg/mL). Additionally, AE147-conjugated liposomes showed improved tumour-targeting ability [167]. Belfiore et al. prepared anti-mitotic N-alkylisatin (N-Al)-loaded liposomes modified with plasminogen activator inhibitor type 2 (PAI-2/SerpinB2) to target uPA/uPAR. The liposomes showed a higher uptake in MDA-MB-231 cells than in MCF-7 cells and higher accumulation at the tumour site than the non-targeted liposomes [168]. Wang et al. prepared synthetic self-assembled NPs modified with the U11 peptide-lipid amphiphile, which showed an essentially tenfold higher transfection efficiency than scrambled peptide-targeted NPs in uPAR-positive DU145 cells [105]. Hong et al. employed a U11 peptide-decorated, pH-sensitive NP system by coencapsulating the U11 peptide-conjugated, pH-sensitive Dox prodrug (U11-Dox) and curcumin (Cur) (U11-Dox/Cur NPs), and this formulation displayed a higher cellular uptake and tumour accumulation than nontargeting NPs and inhibited tumour growth by 85% in vivo [169].

Our research group also developed β-elemene-loaded liposomes modified with ATF_{24} peptide (ATF_{24}-PEG-Lipo-β-E); these liposomes showed better targeting efficiency and higher cytotoxicity than non-decorated liposomes and exerted a synergistic effect on inhibiting the growth of KU-19-19 bladder cancer with Cis [170]. Devulapally et al. successfully developed a uPA peptide (VSNKYFSNHIWGC)-conjugated, antisenesermiR-21 and antisense-miR-10b coloaded PLGA-β-PEG-NPs (called uPA-Anti-miR-21-Anti-miR-10b-NPs) that simultaneously antagonized miR-21-induced inhibition of apoptosis and miR-10b-induced metastasis to achieve TNBC therapy [171]. Therefore, uPAR-targeted therapeutic NPs have tremendous potential for future imaging and targeted therapeutic applications because they are capable of enhancing the therapeutic effect of NP drugs on various types of cancers. The uPAR-targeted nano-platforms carrying therapeutic agents are summarized in Table 2.

uPAR-targeted PDT/PTT platforms

Among anticancer treatments, PDT and PTT are widely regarded as promising cancer therapeutic strategies due to their unique advantages such as minor trauma, improved selectivity, remarkable spatial/temporal resolution and reduced side effects [172]. PDT depends on photosensitizers (PSs) that produce reactive oxygen species (ROS) upon light activation, and subsequently induce cell apoptosis [173]. PTT is a type of phototherapy that converts absorbed light to local heat in tumours using various nanomaterials such as gold nanorods, carbon nanohorns and graphene oxide, and thus induces cell death [174]. Recently, a variety of uPAR-targeted PDT/PTT strategies have been developed to enhance the therapeutic effect on malignant tumours and reduce systemic side effects.

Li et al. engineered a U11 peptide modified gold nanocluster platform carrying the cathepsin E (CT)-sensitive PDT prodrug/imaging agent CRQAGFSL-5-aminolevulinic acid (5-ALA)/cyanine 5.5 (Cy5.5) (AuS-U11), which showed excellent efficacy with endomicroscopy-guided PTT/PDT through the combination of active tumour targeting and enzyme-triggered release of 5-ALA and Cy5.5 in a PANC1-CST orthotopic tumour model [172] (Fig. 4). Li et al. prepared a human ATF-decorated human serum albumin (HSA) carrying the photosensitizer monosubstituted β-carboxy phthalocyanine zinc (CPZ) (hATF-HSA:CPZ), and detected a greater tumour accumulation than HSA:CPZ using fluorescent molecular tomography (FMT) by targeting uPAR on the tumour cell surface to subsequently achieve highly efficient photodynamic killing of tumours in an H22 tumour model [175]. Zhou et al. also generated a CPZ loaded mouse ATF-HSA (mATF-HSA:CPZ) that achieved an enhanced murine tumour targeting ability and an enhanced PDT efficacy compared with hATF-HSA:CPZ [176]. Based on this information, the author further developed CPZ-loaded uPAR-targeted receptor-responsive NPs (ATF-HSA:CPZ@RRNP) with a diameter of ~ 40 nm. Interestingly, ATF-HSA:CPZ@RRNP, but not the nontargeting NPs, disintegrated into 7.5 nm fragments and released its cargo in the presence of uPAR. These NPs also exhibited higher cytotoxicity toward H1299 cells and greater tumour accumulation and antitumor effects on the H22 tumour model than HSA:CPZ@RRNP [177]. Chen et al. designed an active targeting phototherapeutic agent by conjugating zinc phthalocyanine (ZnPc) with ATF (ATF-ZnPc), which not only exhibited a high binding affinity and potent PDT activities to uPAR-positive U937 and H1299 cells, but also was used as a biomarker for the noninvasive imaging of tumours [178]. In addition, Yu et al. developed uPAR-targeted polyetherimide-AE105 peptide (P-AE105) conjugated gold nanostars (GNS) carrying an iridium (Ir) complex that exerted enhanced anti-TNBC effects through the ROS-induced p53 apoptotic pathway, and showed excellent PT/photoacoustic (PA)/X-ray computed tomography (CT) imaging properties [179]. Hu et al. constructed an
Table 2 The uPAR-targeted nanoplatforms carrying therapeutic agents

Nano platform	Target	Drug	Imaging	Effect	References, year
uPA-SP@CaP NPs	uPA peptide, amino acid sequence: VSNKYFSNIHWGC (uPAR)	BRCA1 siRNA, Pro-Pt	Fluorescence imaging (Dir)	Improve anticancer efficacy of the TNBC (pH-responsive sequential release ability, lysosomal escape property, dual tumour targeting, and irreversible DNA damage behavior)	[161], 2019
ATF-IO-Dox	ATF (uPAR)	Dox	MRI	A marked inhibition of tumour cell growth in 4T1 and MDA-MB-231 cells	[162], 2008
iWnt-ATF₂₄-IONP-Dox	iWnt, amino acid sequence: NSNAI-KNKKHHH(Wnt/LRP5/6), ATF₂₄, amino acid sequence: CHHHCLNGGTCVS-NKYFSNIHWCNCPKK (uPAR)	Dox	NIR-830 dye for optical imaging	Strong tumour growth inhibition in a human chemo-resistant cancer patient-derived xenograft model (inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumour cells; marked reduction of Wnt ligand, CD44 and uPAR)	[163], 2018
ATF-IONP-Gem	ATF (uPAR)	Gem	MRI	Inhibit the growth of orthotropic human pancreatic cancer xenografts in nude mice (overcoming the tumour stromal barrier)	[164], 2013
ATF-PEG-IONP-Cis or ATF-PEG-IONP-Dox	ATF (uPAR)	Cis or Dox	NIR optical imaging and MRI	Inhibit the growth of pancreatic tumours (p), decrease proliferating tumour cells and tumour vessels; reduce the amount of ascites production	[165], 2017
LHRH-AE105-IONPs-PTX	LHRH (LHRH-R), AE105 (uPAR)	PTX	MRI	10 times reduction in the concentration of PTX required to achieve similar cytotoxic effect produced by the free drug (LHRH-R- and uPAR-overexpressing PC-3 cells)	[166], 2017
DTX/AE Lipo	AE147 (uPAR)	DTX	Fluorescence imaging	DTX/AE-Lipo (IC₅₀ 46.1 µg/mL) achieves better anticancer activity than free DTX (IC₅₀ 7.18 µg/mL) or DTX/Lipo (IC₅₀ 85.9 µg/mL)	[167], 2021
PAI-2 N-Al liposomes	PAI-2 (uPAR)	N-alkylisatin	NA	An increased accumulation at the primary tumour site in an orthotopic MDA-MB-231 BALB/c-Fox1 nu/Ausb xenograft mouse model	[168], 2020
U11 peptide targeted NPs	U11 peptide (uPAR)	Plasmid DNA	Fluorescence imaging (Rhodamine)	Transfection of uPAR positive DU145 cells is essentially tenfold higher compared to transfection achieved by NPs having a scrambled peptide sequence on their surface	[105], 2009
U11-Dox/Cur NPs	U11 peptide (uPAR)	Dox/Cur	Fluorescence imaging (Coumarin 6)	Inhibit the tumour growth to a level of 85%	[169], 2019
Table 2 (continued)

Nano platform	Target	Drug	Imaging	Effect	References, year
ATF24-PEG-Lipo-β-E	ATF24 (uPAR)	β-E	Fluorescence imaging (Did)	Combined with Cis, exert a synergistic effect on cellular apoptosis and cell arrest at the G2/M phase (dependent on the caspase-dependent pathway and Cdc25C/Cdc2/cyclin B1 pathways)	[170], 2020
uPA-Anti-miR-21-Anti-miR-10b-NPs	uPA peptide (VSNKYSNIHWGC)	Antisense-miR-21, antisense-miR-10b	Optical bioluminescence imaging (MDA-MB-231-Fluc-eGFP cells)	40% reduction in tumour growth compared to scrambled peptide conjugated NPs treated mice (0.15 mg/kg)	[171], 2015

siRNA small interfering RNA, TNBC triple-negative breast cancer, NR near infrared, MRI magnetic resonance imaging, Gem gemcitabine, Cis cisplatin, Dox doxorubicin, DTX docetaxel, Cur curcumin, PTX paclitaxel, β-E β-elemene, Cdc25C cell division cyclin 25C, Cdc2 cell division cycle protein 2, Dir 1,1'-dioctadecyl-3,3',3'-tetramethylindocarbocyanine iodide, Did 1,1'-dioctadecyl-3,3',3'-tetramethylindodicarbocyanine perchlorate, NPs nanoparticles
AE105 peptide conjugated gold nanorod mesoporous silica heterostructure loaded with Cis and Avastin (Cis-AuNRs@SiO$_2$-Avastin@PEI/AE105), and observed a prominent photodynamic killing effect and anti-angiogenic activity by targeting uPAR and smart light-controlled drug release in a HeLa tumour model [180]. Zuo et al. designed and constructed AE105-decorated dendritic mesoporous silica NPs (DMSN) encapsulating photonic active ultrasmall Cu$_{2-}$xS NPs and the sonosensitizer Rose Bengal (RB) (Cu$_{2-}$xS-RB@DMSN-AE105, abbreviated as CRDA) for OSCC-targeting and synergetic PTT/sonodynamic therapy (SDT) [181]. Hu et al. also developed anti-uPAR antibody and indocyanine green (ICG)-modified gold nanoshells (uLGNs), and achieved a 25% higher median survival rate and complete tumour ablation than clinical iodine-125 (125I) interstitial brachy-therapy (IBT-125-I). Furthermore, uLGNs prevented pancreatic tumour metastasis, as evidenced by real-time monitoring of metastatic tumours (less than 2 mm) using CT and NIR imaging [182]. The uPAR-targeted PDT/PTT platforms are summarized in Table 3.

uPAR-targeted oncolytic virotherapy

Oncolytic virotherapy is an emerging platform that represents a novel frontier for cancer treatment. Redirecting viral tropism to specific tumour targets is a promising strategy in the field of oncolytic viruses, which may increase safety and inhibit distant metastases of tumours [183]. Recently, some retargeted oncolytic measles viruses (MV) against uPAR have been developed. MV-h-uPA or MV-m-uPA, an Edmonston vaccine strain of oncolytic MVs constructed by the ATF of human or murine uPA and mutant MV-H glycoprotein, was able to replicate, and induce cytotoxicity in a species-specific manner. In vivo, MV-h-uPA successfully inhibited tumour growth (inhibition rate of 76% at Day 39), prolonged survival (70% survival rate at Day 80) and reduced metastatic progression in an MDA-MB-231 tumour model [184]. In addition, MV-m-uPA increased the death of murine mammary (4T1) and colon (MC-38 and CT-26) tumour cells overexpressing uPAR. MV-m-uPA also significantly enhanced the anticancer effects and prolonged survival in CT-26 and 4T1 tumour models [185], and delayed 4T1 lung metastasis progression. In
Table 3 The uPAR-targeted PDT/PTT platforms

uPAR-targeted PDT/PTT platform	Target	Photosensitizer and drug	Imaging	Effect	References, year
AuS-U11 for confocal laser endomicroscopy-guided PTT/ PDT	U11 peptide (uPAR)	PTT-carrier gold nanocluster, CRQAGFSL-5-ALA, CRQAGFSL-Cy5.5	Fluorescence images (enzyme-triggered release of NIR fluorescent dye Cy5.5)	Better synergistic therapeutic effects as well as the reduced side effects in normal pancreas tissue (human pancreatic tumour cell line PANC-1-CSTE and its orthotopic tumour model)	[172], 2017
hATF-HSA:CPZ	hATF (uPAR)	CPZ	FMT imaging (CPZ, 0.08 μmol/kg or 0.05 mg/kg)	A significant reduced tumour growth rate (H22 tumour-bearing Kunming mice model)	[175], 2014
mATF-HSA:CPZ	mATF (uPAR)	CPZ	FMT imaging (CPZ, 0.05 mg/kg)	A higher tumour killing efficacy than hATF-HSA-CPZ (H22 tumour-bearing mouse model)	[176], 2015
ATF-HSA:CPZ@RRNP	ATF (uPAR)	CPZ-loaded receptor-responsive nanoparticles	FMT imaging (CPZ, 0.05 mg/kg)	Higher uptake and cytotoxicity (H1299 lung cancer cells), higher tumour accumulation and better anti-tumour effect (H22 tumour-bearing mice), lower CPZ concentration (liver, kidney, spleen, lung, and heart)	[177], 2019
ATF-ZnPc	ATF (uPAR)	ZnPc	FMT imaging (ATF-ZnPc, 0.4 μmol/kg)	Potent PDT activities and enhanced anti-tumour activity (U937 and H1299 cells and H22 tumour-bearing mice)	[178], 2014
GNS@Ir@P-AE105	AE105 (uPAR)	GNS, Ir complex	PT/PA/X-ray CT trimodal imaging	Combinational photothermal-chemotherapeutic efficiency against TNBC via a ROS-induced p53 apoptotic pathway	[179], 2020
Cisplatin-AuNRs@SiO2-Avastin@PEI/AE105	AE105 (uPAR)	Gold nanorod mesoporous silica heterostructure, cisplatin, Avastin	Photothermal imaging (3 mg/kg)	Photodynamic activity via induction of ROS overproduction-mediated cell apoptosis, suppresses HeLa tumour growth and angiogenesis	[180], 2019
Cu2−xS-RB@DMSN-AE105	AE105 (uPAR)	Cu2−xS NPs, Rose Bengal	Infrared thermal imaging	Synergistic PTT/SDT nanotherapeutics against the OSCC both in vitro and in vivo, a prominent tumour inhibition rate of 103.4%	[181], 2020
uIGNs	Anti-uPAR antibody	ICG modified gold nanoshells	CT and optical imaging (bioluminescence imaging and fluorescence imaging)	25% higher median survival rate of IPTT and complete tumour ablation by one-time intervention, inhibit pancreatic tumour metastasis	[182], 2017

PDT photodynamic therapy, *PTT* photothermal therapy, *5-ALA* 5-aminolevulinic acid, *Cy5.5* cyanine 5.5, *HSA* human serum albumin, *CPZ* mono-substituted β-carboxy phthalocyanine zinc, *FMT* fluorescent molecular tomography, *ZnPc* zinc phthalocyanine, *SDT* sonodynamic therapy, *OSCC* oral squamous cell carcinoma, *CT* computed tomography, *PT* photothermal, *PA* photoacoustic, *GNS* gold nanostars, *Ir* iridium, *ICG* indocyanine green, *ROS* reactive oxygen species, *IPTT* interventional PTT
conclusion, MV-uPA is a novel oncolytic MV associated with potent and specific antitumour and antimetastatic effects [186].

Tumour stroma-selective targeting by uPAR retro-targeted MVs is also associated with enhanced antitumour effects. For example, MV-m-uPA inhibits breast cancer cell proliferation by selectively targeting fibroblasts, and delays tumour progression and prolongs survival in mice bearing a human MDA-MB-231 tumour model [187]. MV-CD46-muPA, a dual-targeted oncolytic MV that simultaneously targets murine stromal (via uPAR) and human cancer cells (via CD46), markedly enhances antitumour effects on the HT-29 tumour model compared to CD46-targeted MV alone. The improved effect was associated with the modulation of viral deposition, cell cycle and metabolic pathways, increased apoptosis and decreased murine stromal [188].

uPAR-targeted gene therapy technologies

The development of efficient and reliable methods to generate precise, targeted changes in the genome of living cells is a long-standing goal for biomedical researchers. In uPAR-targeted gene therapy technologies, adenovirus-mediated antisense uPAR therapy first emerged as an effective tool for cancer treatment. For example, an adenoviral vector containing the uPAR antisense sequence (Ad-uPAR), an adenovirus containing uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16), an adenovirus expressing antisense uPAR and uPA sequences (Ad-uPAR-uPA), an adenovirus vector containing antisense uPAR and cathepsin B sequences (Ad-uPAR-Cath B), and an adenovirus expressing antisense uPAR and MMP-9 sequences (Ad-uPAR-MMP-9) were all successfully constructed and inhibited tumour growth and metastasis in gliomas and lung cancer models [189–193].

Subsequently, RNA interference (RNAi) technologies, including siRNAs and short hairpin RNAs (shRNAs) targeting uPAR (siRNAs against uPAR, siRNAs against uPAR and cathepsin B, siRNAs against uPA and uPAR, shRNAs against uPAR, and shRNAs against uPA and uPAR), were developed to prevent tumour progression. Compared with siRNAs/shRNAs targeting uPAR, siRNAs targeting uPAR and uPA or siRNAs targeting uPAR and cathepsin B exerted a better antitumour effect by inhibiting tumour cell proliferation, migration and invasion and angiogenesis and promoting tumour cell apoptosis [70, 194–198].

Recently, a new tool based on bacterial Cas9 from Streptococcus pyogenes has generated a considerable level of excitement. The RNA-guided CRISPR/Cas9 system is a powerful RNA-guided genome editing tool that utilizes a guide RNA (gRNA) to cleave the desired sequence in the genome and remove existing genes or add new genes. Due to the advantages of being fast, precise, and highly efficient, targeting uPAR with CRISPR/Cas9 technology has been successfully applied in a variety of malignant tumours to enhance the treatment effect [98]. Targeting uPAR in Neuro 2A cells using CRISPR/Cas9 decreases cell proliferation (~60%) and the number of Ki-67-positive cells by activating caspase-3, cleaving poly(ADP-ribose) polymerase-1 (PARP-1), and inhibiting tropomyosin receptor kinase C (TrkC) activity and AKT phosphorylation [199]. Wang et al. also targeted uPAR using CRISPR/Cas9 technology to suppress the proliferation, migration and invasion of HCT8/T and KBv200 cells. Furthermore, uPAR knockout inhibited MDR to 5-FU, Cis, DTX, and Dox [98]. Biagioni et al. also knocked out uPAR using the CRISPR/Cas9 system in human melanoma A375p and A375M6 cells and colon cancer HCT116 cells, inducing extensive glycolytic and oxidative phosphorylation reprogramming by blocking the glycolytic pathway while enhancing the mitochondrial spare respiratory capacity [200]. They also reported that uPAR deficiency mediated by CRISPR/Cas9 induced a stem-like phenotype, but uPAR knockout completely eliminated tumorigenesis [201].

uPAR-targeted monoclonal antibody therapy

A variety of monoclonal antibodies targeting uPAR have been developed, and exert antitumour effects by blocking the uPA/uPAR interaction or inhibiting the interactions between uPAR and integrin, EGFR, FPR, and Vn. The 2G10 antibody binds tightly to uPAR (Fab $K_d = 10^{-9}$; IgG $K_d = 2 \times 10^{-12}$) by forming a stable complex with uPAR and disrupting the uPA/uPAR interaction. LeBau et al. found that 30 mg/kg 2G10 IgG prevents the growth of TNBC, and 177Lu-labelled 2G10 completely eliminates tumours in orthotopic breast cancer models [202]. Harel et al. further prepared the antibody–drug conjugate 2G10-RED-244-MMAE to treat TNBC, and the tumour volume was significantly reduced [203]. Duriseti et al. identified a series of monoclonal antibodies that bind uPAR, including 2G10, 2E9 and 3C6. The 2G10 and 2E9 antibodies inhibited the uPA/uPAR interaction, whereas 3C6 inhibited the uPAR/β1 integrin interaction. Additionally, 3C6 abrogated uPAR/β1 integrin-mediated adhesion to Vn and fibronectin and exerted a synergistic effect with 2G10 on inhibiting invasion in H1299 cells [204].

ATN-658 is a humanized monoclonal antibody that binds to the D2D3 region of uPAR with high affinity ($K_d \approx 1$ nmol/L), and the binding of ATN-658 to uPAR is not affected by the binding of uPA to uPAR. ATN-658 mainly inhibits the activation of downstream signalling pathways by inhibiting the uPAR/integrin interaction.
ATN-658 inhibits the growth and liver metastasis of pancreatic cancer in situ and completely inhibits retroperitoneal infiltration; the antitumour effect is more obvious when this antibody is combined with Gem [65]. ATN-658 also significantly inhibits the growth of human colorectal cancer in the liver, and prevents the growth, migration, invasion and bone metastasis of prostate cancer [205, 206]. In addition, ATN-658 inhibits the metastasis of ovarian cancer and reduces the uPAR/a5-integrin interaction, and the tumour suppression rate is higher when it is combined with PTX [207]. ATN-658 significantly reduces the growth of MDA-MB-231 breast tumours, and when combined with Zometa, it significantly reduces the number of bone lesions caused by breast cancer by inhibiting the activity of osteoclasts [208]. Li et al. also prepared the monoclonal antibody ATN-615 that binds uPAR with high affinity ($ K_d \approx 1$ nmol/L) and does not block the uPA/uPAR interaction [209]. ATN-292, isotype IgG1κ, decreases the migration of human pancreatic carcinoma L3.6pl cells (70% ± 8%) by inhibiting the binding of uPA to uPAR [65].

Two antibodies, mAb R3 and mAb R5, are competitive and noncompetitive inhibitors of the uPA/uPAR interaction, respectively. mAb R5 binds the preformed complex and promotes the dissociation of the uPA/PAR complex, while mAb R3 does not promote the dissociation of the preformed complex [210]. Pass et al. developed an anti-muPAR murine mAb (mR1) that interferes with the muPA/muPAR interaction on P388D.1 cells with an IC$_{50}$ of 0.67 nM [211]. A monoclonal antibody against human uPAR, mAb 3936, also inhibits hepatocyte growth factor (HGF)-mediated HepG2 and Hep3B cell invasion in a dose-dependent manner [212]. The mAb 8B12, a specific inhibitor that blocks the uPAR/Vn interaction, significantly decreases tumour growth by increasing cell apoptosis and reducing cell proliferation in a prostate cancer model. A crystal structure of the uPAR-8B12 complex showed that the structural epitope for 8B12 is located at the D2–D3 domain interface on the surface of uPAR [213].

uPAR-targeted tumour immunotherapy

As an innovative treatment method, tumour immunotherapy has shown potential to fight cancer by modulating the immune system, such as checkpoint inhibitors and adoptive cellular therapy using CAR T-cell [214]. Based on the high expression of uPAR on the surface of tumour cells, some researchers have explored the combination of CAR T-cell immunotherapy and uPAR targeting to treat uPAR-expressing malignancies or the use of uPAR as a target to induce immune-mediated clearance of uPAR-positive tumour cells by constructing ARMs.

uPAR-targeted CAR T-cell immunotherapy

CARs are synthetic receptors that contain an extracellular single-chain variable fragment (scFv), a hinge region that provides flexibility to the scFv, a transmembrane domain, and intracellular signalling/activation domain(s) [215, 216]. CAR T-cell immunotherapy, extracts the patient’s own key immune T-cells and embeds them with a CAR, that recognizes tumour cell surface antigens while activating T-cells to kill tumour cells. CAR T-cell immunotherapy has achieved remarkable success in treating refractory B-cell malignancies [217]. In recent years, some researchers have combined ATF and CAR T-cells to treat solid tumours with high uPAR expression. Wang et al. designed anti-uPAR CAR (ATF-CAR) T-cells constructed by combining an antigen recognition domain with ATF to transduce T-cells, and this treatment exhibited strong cytotoxicity toward uPAR-expressing ovarian cancer cells and released higher levels of Th1 cytokines [interferon-γ (IFN-γ), tumour necrosis factor (TNF) and interleukin-2 (IL-2)] and granzyme B than control T-cells [218]. Pathologically, cellular senescence may lead to a variety of diseases including cancer. Given the contribution of senescence to tumorigenesis, Amor et al. also developed an anti-uPAR CAR T-cells (m.uPAR-h.28z CAR T cells) by linking an anti-murine uPAR single chain variable fragment and human CD28 costimulatory chain variable fragment and human CD28 costimulatory h.28z CAR T cells) by linking an anti-murine uPAR single chain variable fragment and human CD28 costimulatory domain, and intracellular signalling/activation domain(s)

uPAR-targeted ARMs

ARMs are antibody-binding molecules that exert anti-tumour effects by delivering endogenous antibodies to tumour tissues and destroying tumour cells via the activated immune system [220]. Jakobsche et al. designed and synthesized an antibody-recruiting complex ARM-U1 by attaching chloromethyl ketone 2 and 2,4-dinitrophenyl (DNP) to the active site of uPA that mediated both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against uPAR-expressing cancer cells [221]. The authors further designed a second-generation ARM-U2 by replacing the uPA protein with a molecule of IPR-803. ARM-U2 also induced both ADCP and ADCC, and achieved a tumour
growth inhibition of approximately 90% compared to PBS treatment in the B16-uPAR mouse allograft model. They also reported a cocrystal structure of the ARM-U2/uPAR complex for the first time. In conclusion, uPAR-specific CAR T cells and ARMs are promising immunotherapies that not only block the uPA/uPAR interaction, but also achieve immune-mediated cell death by targeting uPAR-expressing tumour cells [222]. In addition, Hu et al. developed an antibody-like molecule, ATF-Fc, formed by linking ATF and the human IgG1 Fc fragment. ATF-Fc inhibits the growth and metastasis of MCF-7 breast cancer and BGC-823 gastric cancer cells by destroying the interaction of uPA/uPAR and inhibiting tumour angiogenesis [223]. Zhou et al. further showed that the combination of ATF-Fc and trastuzumab better inhibits the growth and metastasis of HER-2-positive breast cancer cells by interfering with the uPA/uPAR and HER-2 pathways [224].

Concluding remarks

uPAR is an attractive target for the treatment of cancer because it appears to be expressed at high levels in tumours but low levels in normal tissue. uPAR also plays a comprehensive role in the development of tumours and is closely related to tumour proliferation and apoptosis, invasion and metastasis, prognosis, and tumour MDR, providing a basis for the development of multiple therapeutics agents targeting this protein. This review has summarized multiple new applications of uPAR as a target in nanoplatforms carrying therapeutic agents, PTT/PDT platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy in recent years. The development of therapeutic strategies that target tumours via uPAR recognition has proven its potential in animal models, but no uPAR-targeted therapeutic agents have been developed or evaluated in cancer clinical trials to date. Recently, ATN-658 has been humanized (huATN-658) and is awaiting clinical translation; and phase I clinical trials with 64Cu-DOTA-AE105 are being conducted to diagnose aggressive cancers and determine cancer aggressiveness. These two agents are expected to be administered to patients in the future.

Among uPAR-targeted therapeutic strategies, uPAR-targeted nanoplatforms also have great potential to achieve translation from laboratory findings to the clinic. Based on the high expression of uPAR on the surface of a variety of tumour cells, uPA/ATF/AE105/AE147/PAI-2/U11 modified nanoplatforms provide the possibility of reducing or overcoming the therapeutic limitations of conventional chemotherapy or PTT/PDT through targeted delivery to tumour cells without obvious toxicity to healthy tissue. Moreover, recent studies have a key role for the tumour microenvironment in promoting tumour proliferation, invasion and metastasis [225]. uPAR expression is not confined to tumour cells and is found on tumour-associated cell types, including macrophages, endothelial cells and fibroblasts. The development of uPAR-targeted stroma-breaking or stroma-penetrating NPs may allow therapeutic agents to overcome stromal barriers and reach tumour cells, which is highly likely to improve the therapeutic effect of current treatment agents and may provide better therapeutic options for patients to reduce tumour-associated metastasis.

Abbreviations

uPAR: Urokinase-type plasminogen activator receptor; ECM: Extracellular matrix; MDR: Multidrug resistance; PTT: Photodynamic therapy; PTT: Photothermal therapy; uPA: Urokinase plasminogen activator; MMP: Matrix metalloproteinase; Vn: Vitronectin; EGFR: Epidermal growth factor receptor; GPCRs: G-protein coupled receptors; FAK: Focal adhesion kinase; MAPK: Mitogen-activated protein kinase; AKT: Protein kinase B; FPR: Formyl peptide receptor; HER-2: Human epidermal growth factor receptor-2; PAI: Plasminogen activator inhibitor; ERK: Extracellular regulatory protein kinase; cis: Cisplatin; DTx: Dectaxele; DTX: Docetaxel; DOX: Dxorubicin; PEG: Polyethylene glycol; DT: Diphtheria toxin; TNBC: Triple-negative breast cancer; NPs: Nanoparticles; IONP: Iron oxide nanoparticle; MR: Magnetic resonance imaging; N-Ac-IV-Alkylasatin; HSA: Human serum albumin; CPRZ: Mono-substituted β-carboxy phthalocyanine zinc; MVS: Oncolytic measles viruses; siRNA: Small interfering RNA; shRNA: Short hairpin RNA; CRISPR: Clustered regularly interspaced short palindromic; Cas9: CRISPR-associated protein-9 nuclease; CAR: Chimeric antigen receptor; ARMs: Antibody-recruiting molecules.

Acknowledgements

Not applicable.

Authors’ contributions

HT and JS contributed to the collection of relevant literature. JBZ and XFZ contributed to literature analysis and manuscript preparation. BTZ sorted out the literature and wrote the manuscript. JXC and YJS provided a lot of help in the revision of the manuscript. YF and DYG were responsible for design of the review and provided data acquisition, analysis, and interpretation. All authors contributed to the article. All authors read and approved the final manuscript.

Funding

This research was supported by grants from National Natural Science Foundation of China (Grant No. 81703925), the disciplinary innovation team construction project of Shaanxi University of Traditional Chinese Medicine (Grant No. 2019-YL11), Key scientific research project of Shaanxi Provincial Department of Education (Grant No. 21JS009), Scientific Research Project of Xi’an Administration of Traditional Chinese Medicine (Grant No. SZY202103).

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have reviewed the final version of the manuscript and approved it for publication.

Competing interests

The authors declare no competing interests.
Author details
1 State Key Laboratory of Research & Development of Characteristic Qin Medicinal Resources (Cultivation), and Shaaxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, China.
2 Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, China.

Received: 11 December 2021 Accepted: 3 March 2022

Published online: 18 March 2022

References
1. Palfree RG. The urokinase-type plasminogen activator receptor is a member of the Ly-6 superfamily. Immunol Today. 1991;12(3):170.
2. Williams AF. Emergence of the Ly-6 superfamily of GPI-anchored molecules. Cell Biol Int Rep. 1991;15(9):769–77.
3. Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assisio RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA. 1985;82(15):4593–43.
4. Vassalli JD, Baccino D, Bellin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985;100(3):661–62.
5. Nielsen LS, Kellerman GM, Behrendt N, Picone R, Danø K, Blasi F. A S5500–6000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem. 1988;263(5):2358–63.
6. Flougr M, Ranne E, Behrendt N, Jensen AL, Blasi F, Dana K. Cellular receptor for urokinase plasminogen activator. Carboxy-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266(3):1926–33.
7. Ellis V, Scullly MF, Kakkar V. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem. 1989;264(4):2185–8.
8. Ellis V, Behrendt N, Dana K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991;266(19):12752–8.
9. Behrendt N, Ranne E, Dana K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe-Seyler. 1995;376(5):269–76.
10. Behrendt N. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP and Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem. 2004;385(2):103–36.
11. Cooper F, Overmiller AM, Loder A, Brennan-Crispi DM, McGuinn KP, Marous MR, Freemantle AM, Roibo-Del Galdo NA, Siracusa LD, Wahl JR 3rd, et al. Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion. J Invest Dermatol. 2018;138(11):2470–9.
12. Gennia M, D’ Alessio S, Bibella J, Gandelli A, Sala E, Corneale C, Spinelli A, Arena V, Malesci A, Rutella S, et al. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015;64(4):589–600.
13. Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP, et al. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine. 2022;75:103758.
14. Multhaupt HA, Mazar A, Cines DB, Warhol MJ, McCaie KR. Expression of urokinase receptors by human trophoblast. A biochemical and ultrastructural analysis. Lab Invest. 1994;71(3):392–400.
15. Stephens RW, Pollanen J, Tapiovaara H, Leung KC, Sim PS, Salonen EM, Ranne E, Behrendt N, Dana K, Vaheri A. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic system with surface-bound reagents. J Cell Biol. 1989;108(5):1987–95.
16. Plow EF, Miles LA. Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev. 1990;32(3):293–8.
17. Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci. 1999;878:372–87.
18. Legrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Montea M, Birerbaut P. uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res. 2001;264(2):326–36.
19. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999;274(19):15066–76.
20. Pedrozo HA, Schwartz Z, Robinson M, Gomes R, Dean DO, Bownewal LF, Boyan BD. Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-beta1 from the extracellular matrix of growth plate chondrocytes. Endocrinology. 1999;140(12):5806–16.
21. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subperitinal extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993;4(12):1317–26.
22. Wei Y, Walsza DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994;269(51):32380–8.
23. Kugler MC, Wei Y, Chapman HA. Urokinase receptor and integrin interactions. Curr Pharm Des. 2003;9(19):1565–74.
24. Wei Y, Elbe JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell. 2001;12(10):2975–86.
25. Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, Xiong JP, Humphries MJ, Chapman HA. Regulation of alpha3beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol. 2005;168(3):501–17.
26. Tarui T, Mazar AP, Cines DB, Takada Y. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem. 2001;276(6):3983–90.
27. Carriero MV, Del Vecchio S, Capozzoli M, Franco P, Fontana L, Zannetti A, Botti G, D’Aauto G, Salvatore M, Stoppelli MP. Urokinase receptor interacts with alphabeta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res. 1999;59(20):5307–14.
28. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGF-R is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell. 2002;1(5):445–57.
29. Aguirre Ghiso JA. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene. 2002;21(16):2513–24.
30. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.
31. Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM, Gonias SL. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol. 2002;159(6):1061–70.
32. Kiyan J, Kiyan R, Haller H, Dumler I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGF-beta. EMBO J. 2005;24(10):1787–97.
33. Liu K, Fan J, Wu J. Sushi repeat-containing protein X-linked 2 promotes angiogenesis through the urokinase-type plasminogen activator receptor-dependent integrin avb3/focal adhesion kinase pathways. Drug Discov Ther. 2017;11(4):212–7.
34. Resnati M, Pallavinci I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LX4AR. Proc Natl Acad Sci USA. 2002;99(3):1359–64.
35. Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem. 2002;277(50):48379–85.
36. Koshelnicik Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR. Urokinase receptor is associated with the components of the Jak1/Stat1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem. 1997;272(45):28563–7.
37. Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V, Lista L, Arra C, Stoppenlé MP, Carriero MV. The soluble form of urokinase receptor promotes angiogenesis through its Ser916-Arg-Ser-Arg-Tyr35 chemotactic sequence. J Thromb Haemost. 2010;8(12):2789–99

38. Rossi FW, Prevette N, Rivellese F, Napolitano F, Montuori N, Postiglione L, Selleiri C, de Paulis A. The urokinase/urokinase receptor system in mast cells: effects of its functional interaction with MBL receptors. Transf Med Unit3a. 2015;15:34–41

39. Olson D, Pollanen J, Hayer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danti B, Fissl. Internalization of the urokinase-urokinase activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 1992;267(3):9129–33

40. Nykaer A, Conese M, Christensen E, Olson D, Cremona O, Gliemmur J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. Embo J. 1997;16(10):2610–20.

41. Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell. 2001;12(5):1467–79.

42. Fisher JL, Field CI, Zhou H, Harris TL, Henderson MA, Choong PF.

43. He C, He P, Liu LP, Zhu YS. Analysis of expressions of components in the uPA:serpin complexes. Embo J. 1997;16(10):2610–20.

44. Dohn LH, Pappot H, Iversen BR, Illerum M, Håayer-Hansen G, Christensen LI, Thord Salling L, von der Maase H, Laerm OD. uPAR expression pattern in patients with uterine carcinoma of the bladder—possible clinical implications. PLoS ONE. 2015;10(8): e0135824.

45. Mabrouk RA, Ali-Labib R. Detection of urokinase plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor, and its inhibitor in gastric adenocarcinoma tissues. J Korean Med Sci. 1996;11(1):33–7.

46. Kimura S, D'Andrea D, Iwata T, Foerster B, Janisch F, Parizi MK, Moschini M, Briganti A, Babjuk M, Chlosta P, et al. Expression of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res. 1994;54(18):5016–20.

47. Morita Y, Hayashi Y, Wang Y, Kanamaru T, Suzuki S, Kawasaki K, Ohta K, Pyke C, Ralfkiaer E, Rønne E, Håayer-Hansen G, Kirkeby L, Danø K. Immunohistochemical detection of the urokinase receptor in prostate cancer: an overview of its prognostic and predictive role. Thromb Haemost. 2005;94(1):77–81.

48. Gommes-Gacioa E, Miyake M, Goodison S, Rossier CJ. Targeting urokinase plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human xenograft model. Mol Cancer Ther. 2013;12(12):2697–708.

49. Gogineni VR, Gupta R, Nalla AK, Velpula KK, Rao JS. uPAR and cathepsin B mRNA expression in human breast carcinoma and its bone metastases—a comparison of normal breast tissue, non-invasive and invasive metastatic breast cancer cells. J Cancer Res Clin Oncol. 2001;127(1):1–12.

50. Morita Y, Hayashi Y, Wang Y, Kanamaru T, Suzuki S, Kawasaki K, Ohta K, Pyke C, Ralfkiaer E, Rønne E, Håayer-Hansen G, Kirkeby L, Danø K. Immunohistochemical detection of the urokinase receptor in prostate cancer: an overview of its prognostic and predictive role. Thromb Haemost. 2005;94(1):77–81.

51. Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Grilli R, Berking C. A bifunctional approach of immunostimulation and uPAR inhibition shows potent antitumor activity in melanoma. J Invest Dermatol. 2016;136(12):2475–84.

52. Dong S, Kandhukuri N, Dinh DH, Gujrati M, Rao JS. Down-regulation of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of scaffolding and trafficking of notch-1 receptor. Mol Cancer. 2011;10:130.

53. Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ, Buccina CD, Callahan J, Parry GC, Evans DB, et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I-receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res. 2005;65(17):7775–81.

54. Subramanian R, Gondi CS, Lakka SS, Jutla A, Rao JS. siRNA-mediated simultaneous downregulation of uPA and its receptor inhibits angiogenesis and invasiveness triggering apoptosis in breast cancer cells. Int J Oncol. 2006;28(4):831–9.

55. Li C, Gao S, Liu Z, Ye X, Chen L, Meng S. RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells. Int J Oncol. 2010;127(7):1507–16.

56. Huber MC, Mall R, Braselmann H, Feuchtinger A, Molatore S, Lindner K, Walch A, Gross E, Schmitt M, Falkenberg N, et al. uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer. 2016;16:615.

57. Unseld M, Chilla A, Pausz G, Mawas R, Breuss J, Zeliginski C, Schaabauer G, Prager GW. PTEN expression in endothelial cells is down-regulated by uPAR to promote angiogenesis. Thromb Haemost. 2015;114(2):379–89.

58. Huber MC, Mall R, Braselmann H, Feuchtinger A, Molatore S, Lindner K, Walch A, Gross E, Schmitt M, Falkenberg N, et al. uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer. 2016;16:615.

59. Maduncil I. The urokinase plasminogen activator system in human cancers: an overview of its prognostic and predictive role. Thromb Haemost. 2018;118(2):2020–36.

60. Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, Slawin KM. Association of the circulating levels of the urokinase system
of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007;25(4):349–55.

74. Kurman M, Miyake H, Muramaki M, Furukawa J, Takenaka A, Fujisawa M. Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol. 2009;27(2):180–6.

75. Memarzadeh S, Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST, De Vries TJ, Mooy CM, Van Balken MR, Luyten GP, Quax PH, Verspaget H, Yang JL, Seetoo DQ, Wang Y, Ranson M, Berney CR, Ham JM, Russell PJ, Dubuisson L, Monvoisin A, Nielsen BS, Le Bail B, Bioulac‑Sage P, Zheng Q, Tang Z, Wu Z, Shi D, Song H. Inhibitor of plasminogen activation with the presence of prostate cancer and acute leukaemic cells. Br J Haematol. 1998;103(1):110–23.

76. Gutserova M, Najbauer J, Geyvorogyan A, Metz MZ, Weng Y, Shih CC, Abboody KS. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE. 2007;2(2):e243.

77. Cortes-Denckis L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol. 2010;37(2):437–44.

78. Huang Z, Wang L, Wang Y, Zhuo Y, Liu H, Chen J, Chen W. Overexpression of CD147 contributes to the chemoresistance of head and neck squamous cell carcinoma cells. J Oral Pathol Med. 2013;42(7):541–6.

79. Eastman BM, Jo M, Webb DL, Takimoto S, Gonsia LS. A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal. 2012;24(9):1847–55.

80. Zhou J, Kwak K, Wu Z, Yang D, Li J, Chang M, Song Y, Zeng H, Lee L, Hu J, et al. PLAIR confers resistance to gefitinib through EGFR/p‑AKT/survivin signaling pathway. Cell Physiol Biochem. 2018;47(5):1909–24.

81. Wang K, Xing ZH, Jiang QW, Yang Y, Huang JR, Yuan ML, Wei MN, Li Y, Wang S, Liu K, et al. Targeting uPAR by CRISPR/Cas9 system attenuates cancer malignancy and multidrug resistance. Front Oncol. 2019;9:80.

82. Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini L, Peppicelli S, Andreucci E, Calorini L, Serrafi S, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. ElifeMedicine. 2019;8:194–206.

83. LeBeau AM, Sevillano S, King ML, Duriseti S, Murphy ST, Crank CS, Murphy LL, VanBrocklin HF. Imaging the urokinase plasminogen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics. 2014;4(3):267–79.

84. Mazar AP, Ahn RW, O’Halloran TV. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Des. 2011;17(19):1970–8.

85. Ploug M, Østergaard S, Gárdsvoll H, Kovalski K, Holst‑Hansen C, Holm A, Össowski L, Danaz K. Peptide‑derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell invasion. Biochemistry. 2001;40(40):12157–68.

86. Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP, Rabbani S. A peptide derived from the non‑receptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. Faseb J. 2000;14(10):1400–10.

87. Lin Y, Peng N, Li Z, Zhuang H, Hua ZC. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminral fragment of urokinase. Mol Cancer. 2013;12:54.

88. Wang M, Libwik DW, Miller AD, Thanou M. Targeting the urokinase plasminogen activator receptor with synthetic self assembly nanoparticles. Bioconjug Chem. 2009;20(1):32–40.

89. Burgle M, Koppitz M, Reimer C, Kessler H, König W, Weiler UH, Kellermann J, Lottspeich F, Graef H, Schmitt M, et al. Inhibition of the interaction of urokinase-type plasminogen activator receptor (uPAR) with its receptor (uPAR) by synthetic peptides. Biol Chem. 1997;378(3):421–7.

90. Magdolen V, Burgle M, de Prada NA, Schmiedeburg N, Reimer C, Schroeck F, Kellermann J, Dietz K, Wilhelm GO, Schmitt M, et al. Cyclo 19,31[D‑Cys19‑iPAk19‑31 is a potent competitive antagonist of the interaction of urokinase-type plasminogen activator receptor with its receptor (CD87). Biol Chem. 2001;382(8):1197–205.

91. Bajic S, Kopyt C, Schmalix WA, Muehlenweg B, Kessler H, Schmitt M, Krüger A, Magdolen V. High‑affinity urokinase‑derived cyclic peptides inhibiting urokinase–urokinase receptor interaction: effects on tumor growth and spread. Febs Lett. 2002;528(1–3):212–6.

92. Simon DJ, Wei Y, Zhang L, Rao NK, Xu H, Chen Z, Liu Q, Rosenberg S, Chapman HA. Identification of a urokinase receptor integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem. 2000;275(14):10226–34.

93. Ghihost S, Johnson JJ, Sen R, Mukhopadhyay DS, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS. Functional relevance of urinary-type plasminogen activator-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem. 2006;281(19):13021–9.
111. van der Pluijm G, Sjimons B, Vloedgraven H, van der Bent C, Drif‑hout JW, Verheijen J, Quax PA, Karpenien M, Papapoulos S, Lowik C. Urkinoase‑receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo. Am J Pathol. 2001;159(3):871–82.

112. Alexander RA, Prager GW, Mihaly‑Bison J, Uhin P, Sunzenauer S, Binder BR, Schultz GJ, Freismuth M, Breus JMS. VEGF‑induced endothelial cell migration requires urkinoase receptor (uPAR)‑dependent integrin redistribution. Cardiovasc Res. 2012;94(1):125–35.

113. Degryse B, Resnati M, Czekay RP, Loskowski DJ, Blasi F. Domain 2 of the urkinoase receptor contains an integrin‑interacting epitope with intrinsic signaling activity‑generation of a new integrin inhibitor. J Biol Chem. 2005;280(26):24792–803.

114. Furlan F, Eden G, Archinto M, Arnaudova R, Andreotti G, Citro V, Cubelli MV, Motta A, Degryse B. D2A‑Ala peptide derived from the urkinoase receptor exerts anti‑tumoral effects in vitro and in vivo. Peptides. 2018;101:17–24.

115. Bifulco K, Longanesi‑Cattani I, Gargiulo L, Maglio O, Cataldi M, Carriero MV, Longanesi‑Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, Minopoli M, Botti G, Gigantino V, Ragone C, Sarno S, Motti ML, Tressler RJ, Pitot PA, Stratton JR, Forrest LD, Zhuo S, Drummond RJ, Fong Xu D, Bum‑Erdene K, Si Y, Zhou D, Ghozayel MK, Meroueh SO. Mimick‑ing intermolecular interactions of tight protein–protein complexes: ladder‑rungs. Angew Chem Int Ed Engl. 2014;53(22):6052–6060.

116. Schütz GJ, Freissmuth M, Breuss JM, BR, Schütz GJ, Freissmuth M, Breuss JM. VEGF‑induced endothelial cell migration requires urkinoase receptor (uPAR)‑dependent integrin redistribution. Cardiovasc Res. 2012;94(1):125–35.

117. Lin CM, Arancillo M, Whisenant J, Burgess K. Unconventional sec‑ondary structure mimics: ladder‑rungs. Angew Chem Int Ed Engl. 2018;57(24):9398–402.

118. Chaurasia P, Mezei M, Zhou MM, Ossowski L. Computer aided iden‑tification of small molecules disrupting uPAR/alpha5beta1–integrin interaction: a new paradigm for metastasis prevention. PLoS ONE. 2009;4(2):e4617.

119. Rea VE, Lavecchia A, Di Giovanni C, Rossi FW, Gorris A, Pesapane A, de Paulis A, Ragno P, Montuori N. Discovery of new small molecules target‑ing the vitronectin‑binding site of the urkinoase receptor that block cancer cell invasion. Mol Cancer Ther. 2013;12(8):1402–16.

120. Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of urkinoase‑type plasminogen activator receptor by docosahexaenoic acid mediated by heme oxygenase‑1 in 12‑O‑tetradecaenylphorbol‑13‑acetate‑induced human endothelial cells. Front Pharmacol. 2020;11:577302.

121. Vallera DA, Li C, Jin N, Panicakatiss‑Mortari A, Hall WA. Targeting urkinoase‑type plasminogen activator receptor on human glioblas‑toma tumors with diphtheria toxin fusion protein DTAT. J Nat Cancer Inst. 2002;94(8):597–606.

122. Ramage JG, Vallera DA, Black JH, Aplan PD, Kees UR, Frankel AE. The diphtheria toxin/urokinoase fusion protein (DTAT) is selectively toxic to CD167 expressing leukemic cells. Leuk Res. 2003;27(1):75–84.

123. Huang J, Yuan D, Liu D, Li J, Li Y, Hall WA, Li B. Efficacy of antiangiogenic targeted immunotoxin DTAT and DTATEGF against glioblastoma multi‑forme. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39(1):1–5.

124. Hall WA, Vallera DA. Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus. 2006;20(4):E23.

125. Waldron NN, Oh S, Vallera DA. A novel bispecific ligand‑directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovascularization. J Neurooncol. 2011;103(2):255–66.

126. Schampa JT, Frantz AM, Gorden BH, Dickerson EB, Vallera DA, Modiano JP. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urkinoase receptors. Int J Cancer. 2013;133(8):1936–44.

127. Oh F, Todhunter D, Taras E, Vallera DA, Borgatti T. Targeting EGFR and uPAR on human rhabdomyosarcoma, osteosarcoma, and ovarian adenocarcinoma with a bispecific ligand‑directed toxin. Clin Pharma‑col. 2018;10(13):113–21.

128. Pilbeam K, Wang H, Taras E, Bergerson RJ, Ettestad B, DeFor T, Borgatti T, Vallera DA, Venners MS. Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urkinoase epidermal growth factor receptors. Oncotarget. 2017;9(15):19398–47.

129. Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henricksen JC, Schmelch S, Forster CL, et al. Safe and effective sarcoma therapy through bispecific targeting of EGFR and uPAR. Mol Cancer Ther. 2017;16(5):956–65.

130. Enrico Provenzano A, Posteri R, Gianiasi F, Angelucci F, Flavel SJ, Flavel DJ, Fabbrini MS, Porro D, Ippoliti R, Ceriotti A, et al. Optimization of construct design and fermentation strategy for the production of bioactive ATF‑SAP, a saporin based anti‑tumoral uPAR‑targeted chimera. Microb Cell Fact. 2016;15(1):194.

131. Zupponne S, Assalini C, Cinici C, Bertiagno P, Branduardi P, Degano M, Fabbrini MS, Montorsi F, Salonia A, Vago R. The anti‑tumoral poten‑tial of the saporin‑based uPAR‑targeting chimera ATF‑SAP. Sci Rep. 2020;10(1):2521.

132. Vine KL, Indira Chandran V, Locke JM, Matesic L, Lee J, Skropeta D, Bremner JB, Ranson M. Targeting urkinoase and the transferrin receptor with novel, anti‑mitotic N‑alkylisatin cytotoxins conjugated to human macrophage colony‑stimulating factor receptor is selectively cytotoxic to A549 human acute myeloid leukemia blasts. Blood. 2004;104(7):2143–8.

133. Rajagopal V, Kreitman RJ. Recombinant toxins that bind to the urkinoase receptor are cytotoxic without requiring binding to the alpha2‑macroglobulin receptor. J Biol Chem. 2000;275(11):5756–63.
147. Mertens HD, Kjaergaard M, Mysling S, Gårdsvoll H, Jørgensen TJ, Svergun DJ, Ploug M. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR). J Biol Chem. 2012;287(41):34304–15.

149. Metrangolo V, Ploug M, Engelholm LH. The urokinase receptor (uPAR) as a “Trojan horse” in targeted cancer therapy: challenges and opportunities. Cancers. 2021;13(12):3376.

156. Li D, Liu S, Shan H, Conti P, Li Z. Urokinase plasminogen activator receptor (uPAR): development of antagonists and non-invasive imaging system. Curr Drug Targets. 2011;12(12):1729–43.

158. Yuan C, Guo Z, Yu S, Jiang L, Huang M. Structural basis for therapeutic intervention of uPA/uPAR receptor (uPAR)-targeted nuclear imaging and radionuclide therapy. Theranostics. 2013;3(7):507–15.

160. Chen Z, Lin L, Huai Q, Huang M. Challenges for drug discovery—a case study of urokinase receptor inhibition. Comb Chem High Throughput Screen. 2009;12(10):961–7.

164. Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2015;9(4):4257–68.

167. Park JY, Shin Y, Won WR, Lim C, Kim JC, Kang K, Husni P, Lee ES, Youn YS, Oh KT. Development of AE147 peptide-conjugated nanoparticles for targeting uPAR-overexpressing cancer cells. Int J Nanomed. 2021;16:5437–49.

169. Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination-targeted produg based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614.

171. Devulapally R, Sekar NM, Sekar TV, Foggel K, Massoud TF, Willmann JK, Paulmurugan R. Polymer nanoparticles mediated delivery of antiR10b and antiR11 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9(3):2290–302.

175. Li H, Wang P, Deng Y, Zeng M, Tang Y, Zhu WH, Cheng Y. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials. 2017;139:30–8.

176. Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, Hu Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PPTT agent for cancer therapy. Sci Rep. 2016;6:27421.

178. Liu S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics. 2019;9(3):884–99.
187. Jing Y, Bejarano MT, Ziai J, Merchant JR. In vivo anti-metastatic effects of uPAR-retargeted mesenchymal cells in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat. 2015;149(1):99–108.

188. Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X, Merchant JR. Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 2017;15(10):1410–20.

189. Jing Y, Chavez V, Khatwani N, Ban Y, Espejo AP, Chen X, Merchan JR. In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Ther. 2020;27(12):910–22.

190. Lakka SS, Rajagopal R, Rajan MK, Mohan PM, Adachi Y, Dinh DH, Olivero WC, Gajari M, Ali-Osman F, Roth JA, et al. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines. Clin Cancer Res. 2001;7(4):1087–93.

191. Nalabothula N, Lakka SS, Dinh DH, Gujrati M, Olivero WC, Rao JS. Sense p16 and antisense uPAR bicistronic construct inhibits angiogenesis and induces glioma cell death. Int J Oncol. 2007;30(3):669–78.

192. Gondi CS, Lakka SS, Yamanna N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene. 2003;22(18):5967–75.

193. Gondi CS, Craik S, Yamanna N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res. 2004;64(12):4069–77.

194. Rao JS, Gondi C, Chetty C, Chittivelu S, Joseph PA, Lakka SS. Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther. 2005;4(9):1399–408.

195. Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Hashiba Y, Kawashiri S, Tanaka A, Nakagawa K, Matsuoka Y, Kogo M, et al. Inhibition of invasion and metastasis in oral cancer by targeting urokinase-type plasminogen activator receptor. Oral Oncol. 2005;41(10):971–7.

196. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23(52):8486–96.

197. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPAR) receptor and uPAR retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res. 2007;13(14):4051–60.

198. Kondraganti S, Gondi CS, McCutcheon I, Dinh DH, Gujrati M, Rao JS, Olivero WC. RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol. 2006;28(6):1353–60.

199. Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of uPAR retargeted measles virus in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat. 2015;149(1):99–108.

200. Biagioni A, Laurenzana A, Chillà A, Del Rosso M, Andreucci E, Poteti M, LeBeau AM, Duriseti S, Goetz DH, Hosterter DR, LeBeau AM, Wei Y, Craik CS. Targeting uPAR with antagonistic short hairpin RNA antisense uPAR antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem. 2010;285(35):26878–88.

201. Van Buren II G, Gray MJ, Dallas NA, Xia L, Lim SJ, Fan F, Mazar AP, Ellis LM. Targeting the urokinase plasminogen activator receptor with a monoclonal antibody improves the growth of human colorectal cancer in the liver. Cancer. 2009;115(4):3360–8.

202. Rabbani SA, Ateeq B, Arakelian A, Valentino ML, Shaw DE, Dauffenbach LM, Kerfoot CA, Mazar AP. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vivo and in vivo. Neoplasia. 2010;12(10):778–88.

203. Kenny HA, Leonhardt F, Ladanyi A, Yamada SD, Montag A, Im HK, Jagadeeswaran S, Shaw DE, Mazar AP, Lengyel E. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res. 2011;17(3):459–71.

204. Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer cell growth and skeletal lesions in a murine model of osteolytic skeletal metastasis. J Orthop Res. 2015;33(4):713–21.

205. Li Y, Parry G, Chen L, Callahan JA, Shaw DE, Meehan EJ, Mazar AP, Huong M. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope. J Mol Biol. 2007;365(4):1117–29.

206. List K, Bayer-Hansen G, Renné E, Dahaert F, Behrendt N. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology. J Immunol Methods. 1999;221(1–2):125–33.

207. Pass J, Jögi A, Lund IK, Rana B, Rasch MG, Gårdsvoll H, Lund LR, Ploug M, Ramej J, Dána K, et al. Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo. Thromb Haemost. 2007;97(6):1013–22.

208. Lee KH, Choi EY, Hyun MS, Jang BI, Kim TN, Lee HJ, Eun JY, Kim HG, Yoon SS, Lee DS, et al. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis. 2008;25(11):869–96.

209. Wu D, Chen W, Li X, van der Geest CJ, Geerts C, Geerts J, van den Brink GL, van der Loos CM, van den Heuvel-Van Gelder EE, Li Y. Gârdsvoll H, de Lorenzo V, Siedinius N, Huang M, Ploug M. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation. J Mol Biol. 2015;427(6 Pt B):1389–403.

210. Wahid B, Ali A, Rafique S, Waqar M, Masim W, Wahid K, Idrrees M. An overview of cancer immunotherapeutic strategies. Immunotherapy. 2018;10(11):999–1010.

211. Morgan MA, Schambach A. Engineering CAR-T cells for improved function against solid tumors. Front Immunol. 2018;9:2493.

212. Newick K, O'Brien S, Moon E, Albeida SM. CART cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.

213. Hong M, Clubb JD, Chen YI. Engineering CAR-T cells for next-generations cancer therapy. Cancer Cell. 2020;38(4):473–88.

214. Wang L, Yang B, Zhao L, Zhang X, Xu T, Cui M. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers anti-tumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother. 2019;117:10173.

215. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Vinueda N, Huang M, Rømer J, Danø K, et al. Reprogramming immune killing. ChemBioChem. 2020;21(21):316–21.

216. Rullo AF, Fitzgerald KJ, Muthusamy V, Liu M, Yuan C, Huang M, Kim M, Cho AE, Spiegel DA. Re-engineering the immune response to
metastatic cancer: antibody-recruiting small molecules targeting the urokinase receptor. Angew Chem Int Ed Engl. 2016;55(1):3642–6.

223. Hu XW, Duan HF, Gao LH, Pan SY, Li YM, Xi Y, Zhao SR, Yin L, Li JF, Chen HP, et al. Inhibition of tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor. Cancer Biol Ther. 2008;7(5):651–9.

224. Zhou H, Wang H, Yu G, Wang Z, Zheng X, Duan H, Sun J. Synergistic inhibitory effects of an engineered antibody-like molecule ATF-Fc and trastuzumab on tumor growth and invasion in a human breast cancer xenograft mouse model. Oncol Lett. 2017;14(5):5189–96.

225. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.