Abstract

First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have proven to be highly effective agents for advanced non-small cell lung cancer (NSCLC) in patients harboring an activating EGFR mutation such as the exon 19 deletion mutation and L858R. Although those reversible small molecular targeted agents provide a significant response and survival benefit, all responders eventually acquire resistance. Second-generation epidermal growth factor receptor (EGFR)-targeting agents, such as afatinib and dacomitinib, may improve survival further and be useful for patients who acquired resistance to first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). This review discusses novel therapeutic strategies for EGFR-mutated advanced non-small cell lung cancer using first- and second-generation EGFR-TKIs.

Core tip: Although gefitinib and erlotinib provide a significant response and survival benefit, all responders eventually acquire resistance. Second-generation epidermal growth factor receptor (EGFR)-targeting agents, such as afatinib and dacomitinib, may improve survival further and be useful for patients who acquired resistance to first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). This review discusses novel therapeutic strategies for EGFR-mutated advanced non-small cell lung cancer using first- and second-generation EGFR-TKIs.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Epidermal growth factor receptor mutation; Epidermal growth factor receptor tyrosine kinase inhibitors; Non-small cell lung cancer; Secondary resistance

INTRODUCTION

Epidermal growth factor receptor (EGFR) is the founding member of the ErbB family of 4 structurally related receptor tyrosine kinases, including EGFR (ErbB1), ErbB2, ErbB3 and ErbB4. The receptors of the ErbB family are activated after binding to peptide growth factors of the EGF family. Upon ligand binding, the ErbB receptors form either homo- or heterodimers and, after dimerization, auto- and transphosphorylation on tyrosine residues of the ErbB receptors occurs (1). Non-small cell lung cancer (NSCLC) tumors harboring specific EGFR mutations are dependent on EGFR signaling for uncontrolled proliferation and resistance to apoptosis (2). The 2 most frequent activating EGFR mutations, responsible for approximately 90% of this anomaly in the cell cycle, are the L858R point mutation and the exon

Kazuhiro Asami, Shinji Atagi

Kazuhiro Asami, Shinji Atagi, Department of Clinical Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka 591-8555, Japan

Author contributions: Asami K and Atagi S both contributed to this paper.

Correspondence to: Kazuhiro Asami, MD, Department of Clinical Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho Kita-ku, Sakai City, Osaka 591-8555, Japan. kazu.taizo@nifty.com

Telephone: +81-72-252-3021 Fax: +81-72-251-1372

Received: December 22, 2013 Revised: April 22, 2014

Accepted: May 15, 2014 Published online: October 10, 2014

World J Clin Oncol 2014 October 10; 5(4): 646-659 Available from: URL: http://www.wjgnet.com/2218-4333/full/v5/i4/646.htm DOI: http://dx.doi.org/10.5306/wjco.v5.i4.646
In the last decade, therapeutic agents targeting the EGFR signaling pathway, including 2 reversible EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, have been clinically effective in treating lung cancer patients harboring activating EGFR mutations.[6-12] Despite the great efficacy of first-generation EGFR-TKIs in patients with EGFR-mutated NSCLC, all responders eventually develop resistance to these agents. The treatment strategies for NSCLC patients who developed resistance to first-generation EGFR-TKIs are actively studied. Recently, second-generation EGFR-TKIs, including afatinib (BIBW 2992) and dacomitinib (PF-00299804), became available. These drugs are intended to further prolong survival in patients harboring activating EGFR mutation and may overcome the resistance to first-generation EGFR-TKIs. This article focuses on the EGFR-TKI-based strategy for patients with advanced NSCLC expressing activated mutant EGFR.

STANDARD PLATINUM-BASED CHEMOTHERAPY VS FIRST-GENERATION EGFR-TKIS AS A FIRST-LINE TREATMENT OF EGFR-MUTATED NSCLC

Efficacy and toxicity

Four previous randomized phase III trials assessing first-line treatment demonstrated a significantly higher response rate (RR) and longer progression-free survival (PFS) in patients treated with first-generation EGFR-TKIs, including gefitinib and erlotinib, than in patients treated with standard platinum-based combination chemotherapy (Table 1). Although these trials met their primary endpoint with statistically significant longer PFS, no significant difference was observed in terms of overall survival (OS). No restrictions were imposed on treatment after the end of protocol therapy in these 4 trials and the majority of patients in the control arm received EGFR-
TKI therapy at least once.

In these 4 randomized phase III trials, severe adverse events or treatment-related toxicity leading to discontinuation of the therapy were significantly less prevalent in patients treated with first-generation EGFR-TKIs compared to standard chemotherapy. The most common adverse events in patients treated with first-generation EGFR-TKIs were cutaneous toxicity, including skin rash and dry skin, diarrhea and elevated transaminase levels. Compared to chemotherapy, hematological toxicity, fatigue, alopecia and nausea were less prevalent in the experimental arm of first-generation EGFR-TKIs.[9-12]

Quality of life

Three randomized phase III trials comparing first-generation EGFR-TKIs to standard chemotherapy have shown EGFR-TKI to be superior to chemotherapy in quality of life (QoL) effects. Two randomized phase III trials of first-generation EGFR-TKIs, including the IPASS study[13] and OPTIMAL study[14], assessed QoL as a secondary end-point using Functional Assessment of Cancer Therapy-Lung (FACT-L), Trial Outcome Index (TOI), or Lung Cancer-Specific Subscale (LCS; Table 2). Patients receiving first-line EGFR-TKIs experienced clinically relevant improvements in QoL compared to patients treated with standard platinum doublet chemotherapy in these studies. Among patients harboring activating EGFR mutations in the IPASS study, significant improvement of QoL was found in patients treated with gefitinib compared to patients treated with chemotherapy. Furthermore, rapid improvement of QoL both in terms of FACT-L and LCS was observed in patients with mutated EGFR. In the OPTIMAL study, patients with an improvement in QoL showed improved PFS compared with patients with stable or worsened QoL. Further significant correlations were observed between improved QoL and tumor response with FACT-L, TOI and LCS.

In the NEJ 002 study, QoL was assessed by analyzing time to deterioration from baseline in the physical, mental and life well-being QoL scales. Time to defined deterioration in physical and life well-being significantly favored gefitinib over standard chemotherapy [hazard ratio (HR) of time to deterioration, 0.34; 95% confidence interval (CI), 0.23-0.50; P < 0.0001 and HR, 0.43; 95%CI: 0.28-0.65, P < 0.0001 respectively][14].

FIRST-GENERATION EGFR-TKIS FOR ELDERLY PATIENTS AND/OR PATIENTS WITH POOR PS (3-4)

In the WJOG 3405 study and the NEJ 002 study, patients of older age (≥ 75) and poor performance status (PS 2-4) were excluded. An earlier phase II trial demonstrated efficacy of gefitinib as a first-line treatment in elderly patients with activated mutant EGFR and/or patients with poor PS (3-4; Table 3)[15-17]. Although each trial had a small sample size and was a single-arm phase II trial, high RR (59%-74%) and long PFSs were observed. Inoue et al.[16] reported utility of first-line gefitinib for extremely poor PS patients and approximately 80% of the patients enrolled this trial improved PS after initiation of gefitinib. Among them, some patients with PS = 4 experienced a dramatic improvement in systemic advanced disease shortly after initiation of gefitinib. No prospective clinical trials of gefitinib except for this study in advanced NSCLC patients with poor PS (3-4) have been conducted and there have been no randomized trials comparing EGFR-TKIs to chemotherapy as a first-line treatment of EGFR-mutated advanced NSCLC.

Although no randomized controlled trials of erlotinib in elderly patients harboring an activating EGFR

Table 1 Randomized phase III trials comparing first-generation epidermal growth factor receptor-tyrosine kinase inhibitors to platinum-based combination chemotherapy as a first-line treatment in patients with epidermal growth factor receptor-mutated non-small cell lung cancer

Ref.	Treatment	Number of patients	Age	Response rate	Median PFS (mo)	Median OS (mo)
WJOG 3405[9]	gefitinib	86	< 75	62%	9.2	35.5
	CDDP + TXT	86	< 75	32%	6.3	38.8
	HR, 0.48; P < 0.001	HR, 1.64; P = 0.211				
	gefitinib	114	< 75	74%	10.8	30.5
	CBDCA + PTX	114	< 75	31%	5.4	23.6
	HR, 0.30; P < 0.001	HR, 0.89; NS				
OPTIMAL[11]	erlotinib	82	> 18	83%	13.1	22.7
	CBDCA + GEM	72	< 75	36%	4.6	28.9
	HR, 0.16; P < 0.001	HR, 1.04; NS				
EURTAC[14]	erlotinib	86	> 18	58%	9.7	19.3
	Platinum + TXT/GEM	87	> 18	15%	5.2	19.5
	HR, 0.37; P < 0.001	HR, 1.04; NS				

EGFR: Epidermal growth factor receptor; NSCLC: Non-small cell lung cancer; PFS: Progression-free survival; OS: Overall survival; CDDP: Cisplatin; TXT: Docetaxel; PTX: Paclitaxel; GEM: Gemcitabine; CBDCA: Carboplatin; NR: Not reached; HR: Hazard ratio; NS: Not significant.
mutation have been conducted yet, 18 years old or older patients were enrolled in the OPTIMAL study and the EUROTAC study. No negative effects of erlotinib, such as severe toxicity, lower response and shorter survival, were documented in elderly patients in these studies. Another phase II trial showed that erlotinib is effective and relatively well tolerated in chemotherapy-naïve elderly patients (≥ 70) with advanced NSCLC.

EGFR mutations were detected in 9 of 43 patients tested and all patients had an erlotinib-related adverse event (AE) and 20 patients (4%) developed severe toxicity [grade ≥ 3; vs 173 patients (3%) in the overall TRUST population]. Twenty-seven percent of elderly patients needed a dose reduction of erlotinib (vs 17% in the overall TRUST population). No molecular information, including EGFR mutation status, was examined in this study. Considering the results of these studies, investigators concluded that first-line erlotinib may be well tolerated and be considered for elderly patients with advanced NSCLC the same as non-elderly patients.

WHICH **L**INE OF TREATMENT IS BETTER FOR FIRST-GENERATION EGFR-TKIS IN PATIENTS WITH MUTANT EGFR?

Several investigators have assessed first-generation EGFR-TKIs as a second/third-line treatment in patients with NSCLC carrying activated mutant EGFR based on their small prospective or retrospective studies and subset analysis of phase III trials (Table 4). As for response rate and time to progression, these results were similar to the results of a previous large phase III trial of first-generation EGFR-TKIs as a first-line treatment. Rosell et al reported that no significant difference was observed between chemotherapy-naïve and chemorefractory patients in terms of RR (73.5% vs 67.4%), PFS (14 mo vs 13 mo) and OS (28 mo vs 27 mo) with erlotinib in patients with activated mutant EGFR.

In contrast, lower RR with gefitinib was documented in the OPTIMAL study and the EUROTAC study. No negative effects of erlotinib, such as severe toxicity, lower response and shorter survival, were documented in elderly patients in these studies. Another phase II trial showed that erlotinib is effective and relatively well tolerated in chemotherapy-naïve elderly patients (≥ 70) with advanced NSCLC.

EGFR mutations were detected in 9 of 43 patients tested and all patients had an erlotinib-related adverse event (AE) and 20 patients (4%) developed severe toxicity [grade ≥ 3; vs 173 patients (3%) in the overall TRUST population]. Twenty-seven percent of elderly patients needed a dose reduction of erlotinib (vs 17% in the overall TRUST population). No molecular information, including EGFR mutation status, was examined in this study. Considering the results of these studies, investigators concluded that first-line erlotinib may be well tolerated and be considered for elderly patients with advanced NSCLC the same as non-elderly patients.

WHICH **L**INE OF TREATMENT IS BETTER FOR FIRST-GENERATION EGFR-TKIS IN PATIENTS WITH MUTANT EGFR?

Several investigators have assessed first-generation EGFR-TKIs as a second/third-line treatment in patients with NSCLC carrying activated mutant EGFR based on their small prospective or retrospective studies and subset analysis of phase III trials (Table 4). As for response rate and time to progression, these results were similar to the results of a previous large phase III trial of first-generation EGFR-TKIs as a first-line treatment. Rosell et al reported that no significant difference was observed between chemotherapy-naïve and chemorefractory patients in terms of RR (73.5% vs 67.4%), PFS (14 mo vs 13 mo) and OS (28 mo vs 27 mo) with erlotinib in patients with activated mutant EGFR.

In contrast, lower RR with gefitinib was documented in the OPTIMAL study and the EUROTAC study. No negative effects of erlotinib, such as severe toxicity, lower response and shorter survival, were documented in elderly patients in these studies. Another phase II trial showed that erlotinib is effective and relatively well tolerated in chemotherapy-naïve elderly patients (≥ 70) with advanced NSCLC. EGFR mutations were detected in 9 of 43 patients tested and all patients had an erlotinib-related adverse event (AE) and 20 patients (4%) developed severe toxicity [grade ≥ 3; vs 173 patients (3%) in the overall TRUST population]. Twenty-seven percent of elderly patients needed a dose reduction of erlotinib (vs 17% in the overall TRUST population). No molecular information, including EGFR mutation status, was examined in this study. Considering the results of these studies, investigators concluded that first-line erlotinib may be well tolerated and be considered for elderly patients with advanced NSCLC the same as non-elderly patients.

WHICH **L**INE OF TREATMENT IS BETTER FOR FIRST-GENERATION EGFR-TKIS IN PATIENTS WITH MUTANT EGFR?

Several investigators have assessed first-generation EGFR-TKIs as a second/third-line treatment in patients with NSCLC carrying activated mutant EGFR based on their small prospective or retrospective studies and subset analysis of phase III trials (Table 4). As for response rate and time to progression, these results were similar to the results of a previous large phase III trial of first-generation EGFR-TKIs as a first-line treatment.

Rosell et al reported that no significant difference was observed between chemotherapy-naïve and chemorefractory patients in terms of RR (73.5% vs 67.4%), PFS (14 mo vs 13 mo) and OS (28 mo vs 27 mo) with erlotinib in patients with activated mutant EGFR.

In contrast, lower RR with gefitinib was documented in the OPTIMAL study and the EUROTAC study. No negative effects of erlotinib, such as severe toxicity, lower response and shorter survival, were documented in elderly patients in these studies. Another phase II trial showed that erlotinib is effective and relatively well tolerated in chemotherapy-naïve elderly patients (≥ 70) with advanced NSCLC. EGFR mutations were detected in 9 of 43 patients tested and all patients had an erlotinib-related adverse event (AE) and 20 patients (4%) developed severe toxicity [grade ≥ 3; vs 173 patients (3%) in the overall TRUST population]. Twenty-seven percent of elderly patients needed a dose reduction of erlotinib (vs 17% in the overall TRUST population). No molecular information, including EGFR mutation status, was examined in this study. Considering the results of these studies, investigators concluded that first-line erlotinib may be well tolerated and be considered for elderly patients with advanced NSCLC the same as non-elderly patients.

WHICH **L**INE OF TREATMENT IS BETTER FOR FIRST-GENERATION EGFR-TKIS IN PATIENTS WITH MUTANT EGFR?

Several investigators have assessed first-generation EGFR-TKIs as a second/third-line treatment in patients with NSCLC carrying activated mutant EGFR based on their small prospective or retrospective studies and subset analysis of phase III trials (Table 4). As for response rate and time to progression, these results were similar to the results of a previous large phase III trial of first-generation EGFR-TKIs as a first-line treatment. Rosell et al reported that no significant difference was observed between chemotherapy-naïve and chemorefractory patients in terms of RR (73.5% vs 67.4%), PFS (14 mo vs 13 mo) and OS (28 mo vs 27 mo) with erlotinib in patients with activated mutant EGFR.

In contrast, lower RR with gefitinib was documented in the OPTIMAL study and the EUROTAC study. No negative effects of erlotinib, such as severe toxicity, lower response and shorter survival, were documented in elderly patients in these studies. Another phase II trial showed that erlotinib is effective and relatively well tolerated in chemotherapy-naïve elderly patients (≥ 70) with advanced NSCLC. EGFR mutations were detected in 9 of 43 patients tested and all patients had an erlotinib-related adverse event (AE) and 20 patients (4%) developed severe toxicity [grade ≥ 3; vs 173 patients (3%) in the overall TRUST population]. Twenty-seven percent of elderly patients needed a dose reduction of erlotinib (vs 17% in the overall TRUST population). No molecular information, including EGFR mutation status, was examined in this study. Considering the results of these studies, investigators concluded that first-line erlotinib may be well tolerated and be considered for elderly patients with advanced NSCLC the same as non-elderly patients.
in the NEJ 002 study in patients who failed first-line chemotherapy compared to patients treated with gefitinib as a first-line treatment (56% vs 74%). Several studies documented that heterogeneity in EGFR gene expression and mutations was observed in patients with NSCLC. Bai et al. reported that chemotherapy may reduce EGFR mutation frequency in patients with NSCLC. In their study, samples were derived from 3 cohorts and 409 patients were reviewed. The decrease in EGFR mutation rate was statistically significant and patients whose EGFR mutations switched from positive to negative after chemotherapy had a better RR than patients with a reverse change among the patients who received first-line chemotherapy with matched pre- and post-chemotherapy blood samples. A similar decrease in EGFR mutation rate was observed in tissues after neoadjuvant chemotherapy in the second cohort (34.9% vs 19.0%, P = 0.013). In the third cohort, 38.0% of the tumors showed intratumor heterogeneity of EGFR mutations, whereas 62.0% were homogeneous, either with an EGFR mutation or no mutation. The authors concluded that chemotherapy may reduce EGFR mutation frequency in patients with NSCLC.

Lee et al. reviewed 23 randomized controlled trials comparing EGFR-TKIs or EGFR-TKIs plus chemotherapy to chemotherapy or placebo, including 13 studies as a first-line treatment, 7 as a second-line treatment, and 3 as maintenance therapy (n = 14570). Data on PFS were available from 21 trials of EGFR-TKIs, including gefitinib (10 trials), erlotinib (10 trials) and afatinib (1 trial), compared to control treatment. EGFR-TKIs prolonged PFS in patients with mutated EGFR and an EGFR mutation was predictive of PFS in all settings. In EGFR mutation-positive patients, EGFR-TKI treatment was associated with a lower risk of disease progression in first-line settings (HR, 0.43; 95%CI: 0.38 to 0.49, P < 0.001) and in second-line or later settings (HR, 0.34; 95%CI: 0.20 to 0.60, P < 0.001). This study demonstrates that the magnitude of effect on PFS in patients with mutated EGFR is similar to that in patients receiving EGFR-TKIs as either a first- or second-line treatment (HR, 0.43 and 0.34 respectively). EGFR-TKI treatment, however, had no impact on OS in patients with mutated EGFR.

A recent systematic review of chemotherapy trials for NSCLC indicated that PFS advantage is unlikely to be associated with an OS advantage due to the increasing impact of survival post-progression on OS. Salvage therapy after disease progression may have a great influence on the prolongation of survival. In randomized phase III trials, including the IPASS study, the WJTOG 3405 study and the OPTIMAL study, a considerable percentage of enrolled patients was not treated with EGFR-TKIs as a salvage therapy because of a patient’s refusal and deterioration of the general condition: IPASS (36%), WJTOG3405 (41%) and OPTIMAL (30%). Although a considerable number of patients did not receive EGFR-TKI therapy after failure of standard chemotherapy, no statistically significant difference was noted in terms of overall survival in each trial.

GEFITINIB OR ERLOTINIB AS A FIRST-LINE TREATMENT OF NSCLC POSITIVE FOR AN ACTIVATING EGFR MUTATION

No trials comparing erlotinib directly with gefitinib as a first-line treatment in patients with activated mutant EGFR have been conducted. A retrospective study showed that PFS showed no difference with either agent in patients harboring an EGFR mutation. Among 224 patients, including 124 treated with gefitinib and 100 treated with erlotinib who were reviewed, 75 patients received EGFR-TKIs as first-line therapy and 146 patients tested positive for an activating EGFR mutation. In patients harboring an EGFR mutation, median RR and PFS with gefitinib and erlotinib was 51%, 10.5 mo (n = 94) and 58%, 10.4 mo (n = 52) respectively. No statistically significant difference was observed in terms of RR and PFS between patients treated with gefitinib and those treated with erlotinib. HRs for PFSs were 0.32-0.54 in previous randomized phase III trials of gefitinib as a first-line treatment compared to standard chemotherapy, including the IPASS study, First-Signal study, WJTOG 3405 study and the NEJ 002 study.

On the other hand, HRs for PFSs were 0.16-0.37 in a phase III trial of first-line erlotinib, including the OPTIMAL study and EUROTAG study. Schwander et al. reported that chemotherapy may reduce EGFR have been conducted. A retrospective study showed that PFS showed no difference with either agent in patients harboring an EGFR mutation. Numerous studies and phase III trials/retrospective analyses in a literature search and checked for duplication and reported the results at the 2012 Annual Meeting of the European Society for Medical Oncology. Data were included from 20 chemotherapy studies (n = 984), 27 erlotinib studies (n = 735) and 56 gefitinib studies (n = 1843). Longer PFS was seen with both EGFR-TKIs compared with chemothera- py across treatment lines. Pooled median PFS of all lines seen with both EGFR-TKIs compared with chemotherapy, erlotinib or gefitinib (phase II/III trials/retrospective analyses) in a literature search and checked for duplication and reported the results at the 2012 Annual Meeting of the European Society for Medical Oncology (ESMO). Data were included from 20 chemotherapy studies (n = 984), 27 erlotinib studies (n = 735) and 56 gefitinib studies (n = 1843). Longer PFS was seen with both EGFR-TKIs compared with chemotherapy across treatment lines. Pooled median PFS of all lines of therapy for erlotinib and gefitinib was 12.4 mo (95%CI: 11.6-13.4 mo; n = 735) and 9.3 mo (95%CI: 8.9-9.8 mo; n = 1843) respectively. Furthermore, in the studies where 90% or more of patients received EGFR-TKIs in first-line settings (predominantly first-line), pooled median PFS for erlotinib and gefitinib was 12.0 mo (95%CI: 0.34 respectively). EGFR-TKI treatment, however, had no impact in tissues after neoadjuvant chemotherapy in the second cohort (34.9% vs 19.0%, P = 0.013). In the third cohort, 38.0% of the tumors showed intratumor heterogeneity of EGFR mutations, whereas 62.0% were homogeneous, either with an EGFR mutation or no mutation. The authors concluded that chemotherapy may reduce EGFR mutation frequency in patients with NSCLC.
10.8-13.3 mo; \(n = 354 \) and 9.7 mo (95%CI: 9.0-10.5 mo; \(n = 716 \)) respectively. In contrast, pooled PFS of all lines of therapy and predominantly first-line for chemotherapy was 5.6 mo (95%CI: 5.3-6.0 mo; \(n = 984 \)) and 5.8 mo (95%CI: 5.5-6.2 mo; \(n = 868 \)) respectively. The investigators concluded that patients with activated mutant EGFR derived a greater benefit from EGFR-TKIs than from conventional chemotherapy, especially when administered as a first-line treatment.

Retrospective analysis of AEs comparing gefitinib with erlotinib showed that erlotinib appeared to have higher toxicity than gefitinib at each approved dose\[^{[36]}\]. Among 142 patients with NSCLC, including 107 treated with gefitinib and 35 treated with erlotinib who were retrospectively reviewed, 70 patients had an activating EGFR mutation. In the study, a significantly higher rate of AEs, including rash, stomatitis, constipation and anorexia, was observed in the erlotinib group. This group also had a tendency to require a dose reduction due to AEs. Further comparison of the frequency of grade 2 AEs showed that rash was the main reason for a dose reduction in a significantly higher percentage of patients in the erlotinib group.

CHEMOTHERAPY PLUS FIRST-GENERATION EGFR-TKIS IN PATIENTS WITH MUTATED EGFR

An earlier large randomized phase III trial of chemotherapy plus first-generation EGFR-TKI in unselected chemotherapy-naïve patients with advanced NSCLC, including the INTACT-1 study (chemotherapy plus gefitinib)\[^{[37]}\], the INTACT-2 study (chemotherapy plus gefitinib)\[^{[38]}\], the TRIBUTE study (chemotherapy plus erlotinib)\[^{[39]}\] and the TALENT study (chemotherapy plus erlotinib)\[^{[40]}\], failed to show superiority to standard platinum doublet chemotherapy in terms of RR, PFS and OS (Table 5).

In the CALGB 30406 study, a randomized phase II trial comparing erlotinib plus chemotherapy (carboplatin plus paclitaxel) to erlotinib monotherapy in chemotherapy- and EGFR-TKI-naïve patients with advanced NSCLC, activating EGFR mutations were detected in 40% (66 of 164) of the enrolled patients\[^{[36,41]}\]. The response rate, PFS and OS of erlotinib and erlotinib plus chemotherapy were: 70%, 14.1 mo and 31.3 mo; and 73%, 17.2 mo and 38.1 mo, respectively. Although statistical comparison between erlotinib monotherapy and erlotinib plus chemotherapy was not carried out in patients with mutated EGFR in this study, longer survival, including PFS and OS, was found in patients with mutated EGFR treated with erlotinib plus chemotherapy. The FASTACT-2 study, a randomized double-blind trial comparing chemotherapy to intercalated combination of chemotherapy (gemcitabine plus cisplatin or carboplatin) and erlotinib in untreated patients with advanced NSCLC, met its primary endpoint of PFS (median PFS 7.6 mo vs 6.0 mo, HR, 0.57; \(P < 0.0001 \))\[^{[42]}\]. Among patients with mutated EGFR, median PFS and median OS were significantly longer in patients treated with chemotherapy plus erlotinib (PFS: 6.8 mo vs 6.9 mo, HR, 0.25; 95%CI: 0.16-0.39, \(P < 0.0001 \); OS: 31.4 mo vs 20.6 mo, HR, 0.48; 95%CI: 0.27-0.84, \(P = 0.0092 \)). In contrast, no significant difference in PFS and OS between patients treated with chemotherapy plus erlotinib and patients treated with chemotherapy plus placebo was noted in patients with wild-type EGFR. Serious AEs were observed in 34% of patients in the chemotherapy plus placebo group and 31% of patients in the chemotherapy plus erlotinib group. The number of adverse events that led to discontinuation of the therapy was not significantly different between the 2 groups.

No prospective studies of EGFR-TKI plus chemotherapy as a first-line treatment in patients with EGFR-mutated advanced NSCLC have been conducted. Indirect comparison of data available from the INTACT 1 and 2 studies, the TRIBUTE study and the TALENT study indicates that EGFR-TKIs plus chemotherapy were effective in reducing the risk of disease progression in patients harboring an activating EGFR mutation compared to chemotherapy alone (HR, 0.54; 95%CI: 0.30-0.95, \(P = 0.049 \))\[^{[43]}\]. In contrast, EGFR-TKIs plus chemotherapy were not more effective than EGFR-TKIs in reducing the risk of disease progression (HR, 1.42; 95%CI: 0.049).

Table 5 First-generation epidermal growth factor receptor tyrosine kinase inhibitor plus chemotherapy for unselected patients with non-small cell lung cancer

Ref. Treatment	Number of patients	Response rate	Median PFS (mo)	Median OS (mo)
INTACT-1\[^{[37]}\]	363	47%	6	10.9
CDDP + GEM + placebo	365	51%	5.8	9.9
CDDP + GEM + gefitinib\[^{b}\]	365	50%	5.5	9.9
CDDP + PTX + placebo	345	29%	5.0	9.9
CDDP + PTX + gefitinib\[^{b}\]	345	30%	5.3	9.8
TALENT\[^{[40]}\]	347	30%	4.6	8.7
CDDP + PTX + gefitinib\[^{b}\]	347	19%	4.9	10.5
TRIBUTE\[^{[39]}\]	353	32%	5.1	10.6
CDDP + GEM + erlotinib	359	30%	5.6	10.1
CDDP + PTX + placebo	340	19%	4.9	10.5
CDDP + PTX + erlotinib	340	30%	4.6	8.7

\[^{b}\]Dose of gefitinib is 500 mg. \[^{b}\]Dose of gefitinib is 500 mg. EGFR-TKIs: Epidermal growth factor receptor tyrosine kinase inhibitors; NSCLC: Non-small cell lung cancer; PFS: Progression-free survival; OS: Overall survival; CDDP: Cisplatin; GEM: Gemcitabine; PTX: Paclitaxel.
SECOND-GENERATION EGFR-TKIS

The second-generation EGFR-TKIs, including afatinib and dacomitinib, are intended to improve efficacy of treatment in patients with activated mutant EGFR and to improve the outcome in patients who acquired resistance to first-generation EGFR-TKIs. Table 6 shows previous studies of second-generation EGFR-TKIs, including afatinib and dacomitinib, for patients with advanced NSCLC carrying activated mutant EGFR.

Afatinib is an irreversible pan-HER-TKI and binds to EGFR receptors carrying the T790M substitution, which is the mutation conferring resistance to first-generation EGFR-TKIs. The LUX-Lung 2 study was a multicenter phase II trial evaluating the efficacy of afatinib 40-50 mg daily as a first- or second-line treatment in patients with EGFR-mutated advanced NSCLC. Among 129 patients enrolled in the study, 23 patients tested positive for uncommon EGFR mutations and the other cases were positive for activating EGFR mutations, including the exon 19 deletion mutation and L858R. The response rate, median PFS and median OS in patients harboring an activating EGFR mutation. Compared to chemotherapy, afatinib significantly delayed deterioration of cancer-related symptoms, including cough and dyspnea (cough, HR=0.60; P=0.007; dyspnea, HR=0.68; P=0.015). The prevalence of AEs leading to discontinuation of the therapy was similar in both groups. The most frequent AEs were diarrhea (95%), rash or acne (89%), stomatitis or mucositis (72%), paronychia (57%) and dry skin (29%) in patients treated with afatinib. Afatinib controlled cough and dyspnea better than chemotherapy, whereas diarrhea, dysphagia and sore mouth were worse with afatinib. Global health status/QoL was also improved over time with afatinib compared to chemotherapy.

At the 2013 Annual Meeting of the American Society of Clinical Oncology (ASCO), Wu et al. reported the results of LUX-Lung 6, a randomized phase III trial comparing afatinib to standard platinum doublet chemotherapy as a first-line treatment in Asian patients with advanced EGFR-mutated lung adenocarcinoma. There were 364 chemotherapy-naïve patients (242 treated with afatinib, 122 treated with cisplatin plus gemcitabine). Afatinib was administered daily at 40 mg. This study met its primary endpoint with significant longer median PFS compared to chemotherapy (13.7 mo vs 5.6 mo, HR, 0.26; P<0.0001). The response rate was significantly higher in patients treated with afatinib (66.9% vs 23.0%, P<0.0001). Severe AEs (grade 3-5) were noted in 36% of patients treated with afatinib. The most common AEs were rash/ acne (14.6%), diarrhea (5.4%) and stomatitis/mucositis (5.4%) in patients treated with afatinib. AEs leading to discontinuation of treatment were reported in 5.9% of patients treated with afatinib and 39.8% of patients treated with chemotherapy. Patient-reported outcomes showed significantly better control of cancer-related dyspnea, cough and pain with afatinib.

Dacomitinib is an irreversible pan-HER inhibitor and binds irreversibly to the adenosine triphosphate domain of 3 kinase-active members of the HER family, including EGFR, HER2 and HER4. In preclinical studies, dacomitinib showed greater antitumor activity in first-
generation EGFR-TKI-resistant cell lines (including gefitinib and erlotinib) and in xenograft NSCLC models. In a randomized open-label trial comparing dacomitinib to erlotinib in previously treated patients with advanced NSCLC, 188 patients were randomly assigned to the 2 treatment groups. Although median PFS was significantly longer in patients treated with dacomitinib (2.9 mo vs 1.9 mo, HR, 0.66; 95%CI: 0.47-0.91, \(P = 0.012 \)), no significant difference was noted in terms of median OS (9.5 mo vs 7.4 mo, HR, 0.80; 95%CI: 0.56-1.13, \(P = 0.205 \)). Among all patients enrolled in the study, an activating EGFR mutation was detected in 30 patients (19 in the dacomitinib group, 11 in the erlotinib group). In patients with mutated EGFR, median PFS was 7.4 mo with either dacomitinib or erlotinib (HR, 0.46; 95%CI: 0.18-1.18, \(P = 0.098 \)). AEs leading to treatment withdrawal were uncommon in both treatment arms. Common treatment-related adverse events were dermatological and gastrointestinal, predominantly grade 1 to 2, and more frequent with dacomitinib.

At the 2012 Annual Meeting of ASCO, Kris et al. reported the results of dacomitinib in chemotherapy-naive patients with EGFR-mutated NSCLC. A total of 92 patients were enrolled in the study and 46 cases were positive for activating EGFR mutations. Among patients with mutated EGFR, RR was 74% (34 of 46 patients) and PFS at 4 mo after initiation of dacomitinib and PFS were 95.5% (95%CI: 83.2-98.9%) and 18.2 mo (95%CI: 12.8-23.8 mo) respectively. For all 92 patients, common side effects (grade 3-4) were skin related toxicity (17%) and diarrhea (14%). Three patients (6.5%) with activated mutant EGFR discontinued the therapy because of drug-related toxicity.

TREATMENT AFTER A FAILURE OF FIRST-GENERATION EGFR-TKIS AGAINST EGFR-MUTATED NSCLC

Despite a good response and PFS benefits with first-generation EGFR-TKIs, the majority of responders ultimately develop resistance to the therapy after 9-14 mo. Secondary epidermal growth factor receptor (EGFR) T790M mutation prevents binding of first-generation EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib to EGFR, resulting in cancer cell survival (A). Afatinib inhibits the ATP-binding site of the tyrosine kinase associated with EGFR T790M, leading to apoptosis of cancer cell. MET amplification has been shown to confer resistance to EGFR-TKIs by activating phosphorylation of ErbB3 with activating of the PI3K/AKT pathway, resulting in cancer cell survival (B).
that erlotinib (150 mg/d) has a higher biological dose compared to gefitinib (250 mg per day) due to afatinib-related AEs. Furthermore, it is unclear which EGFR-TKIs should be administered early in the course of treatment. Physicians should select either chemotherapy or an EGFR-TKI according to the patient's clinical condition, including PS, age, organ function and complications in non-elderly patients harboring an activating EGFR mutation, RR and PFS were 3%-10% and 2-3 mo respectively.[61,63] The investigators suggested that subsequent erlotinib may elicit a response and a survival benefit in patients with mutated EGFR, with good performance status, good response and shorter duration of gefitinib administration (less than 12 mo).

DISCUSSION

Our recommended first- and second-line therapeutic regimens, mainly based on the results of phase III studies, are shown in Figure 3. First- and second-generation EGFR-TKIs, including gefitinib, erlotinib and afatinib, and cytotoxic chemotherapy are optimal first-line therapies in patients harboring activating EGFR mutations. Chemotherapy is recommended as a second-line treatment after failure of first-line EGFR-TKIs, including gefitinib, erlotinib and afatinib, and second-line therapy using these EGFR-TKIs is recommended in patients who failed chemotherapy. Subsequent erlotinib therapy may be a reasonable treatment in specific patients who failed first-line gefitinib therapy.

Although the data from several trials are insufficient to definitively determine the optimal treatment for EGFR-TKIs in patients with EGFR mutations, EGFR-TKIs play a key role in the treatment of patients harboring EGFR mutations and non-administration of these agents could adversely affect survival. Therefore, EGFR-TKIs should be administered early in the course of treatment, as a first- or second-line therapy, so that a chance to administer these agents is not missed due to clinical deterioration or severe toxicity after cytotoxic chemotherapy. Physicians should select either chemotherapy or an EGFR-TKI according to the patient's clinical condition, including PS, age, organ function and complications in non-elderly patients harboring an activating EGFR mutation. For elderly patients (75 years or older) who should not receive chemotherapy and/or patients with poor performance status (PS 3-4), first-line treatment with gefitinib may be considered.

No QoL assessment is currently available comparing second-line EGFR-TKIs after failure of chemotherapy to second-line chemotherapy after failure of EGFR-TKIs in patients harboring an activating EGFR mutation, which is problematic. Furthermore, it is unclear which EGFR-TKI(s) are most desirable as an initial therapy and whether second-generation EGFR-TKIs can overcome acquired secondary resistance to first-generation EGFR-TKIs in NSCLC. Additionally, the appropriate timing for discontinuation of EGFR-TKIs after confirmation of tumor progression is not clear. Some retrospective studies suggest that continuation of EGFR-TKIs beyond disease progression may prolong overall survival of patients with mutated EGFR, with a good therapeutic response.[64,65] Investigators concluded that EGFR-TKI responders should continue the therapy until the clinical condition and/or imaging findings are reversed to the condition at therapy initiation. Treatment assessment based on
In summary, the data reported suggest that activating EGFR mutations may play a key role in the efficacy of EGFR-TKIs. Administration of first- and second-generation EGFR-TKIs as first- or second-line therapy is an optimal strategy in patients with EGFR-mutated advanced NSCLC. Second-generation EGFR-TKIs may be superior to first-generation EGFR-TKIs because of their stronger biological activity. Ongoing trials of EGFR-TKIs may identify an EGFR-TKI that is most applicable as an initial EGFR-TKI treatment. Furthermore, the results of these trials may establish new treatment guidelines for activating EGFR-mutated NSCLC and for NSCLC with acquired secondary resistance.

REFERENCES

1. Bulbuli EM, Yarden Y. The EGFR receptor family: spearheading a merger of signaling and therapeutics. *Curr Opin Cell Biol* 2007; 19: 124-134 [PMID: 17314037 DOI: 10.1016/j.cceb.2007.02.008]

2. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, Pinto A, Normanno N. The role of the EGFR signaling in tumor microenvironment. *J Cell Physiol* 2008; 214: 559-567 [PMID: 17894407 DOI: 10.1002/jcp.21260]
Asami K et al. EGFR-TKIs for EGFR-mutated NSCLC

3 McCulloch RK, Walker CE, Chakera A, Jazayeri J, Leedman PJ. Regulation of EGFR-receptor expression by EGF and TGF alpha in epithioid cancer cells is cell type-specific. Int J Biochem Cell Biol 1998; 30: 1265-1278 [PMID: 9839451 DOI: 10.1016/S1357-2725(08)00156-9]

4 Amann J, Kalynkrishna S, Massion PP, Ohne JM, Girard L, Shigematsu H, Peyton M, Jurosek D, Huang Y, Sturt Sammon J, Kim YH, Pollack JR, Yamagawaa K, Gazarz A, Minna JD, Kuiru JM, Carbone DP. Aberrant epithelium growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 2005; 65: 225-236 [PMID: 15656298]

5 Sharma SV, Bell DW, Settman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169-181 [PMID: 17318210 DOI: 10.1038/nrc2088]

6 Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Hasrat SM, Supko JG, Haluska FG, Louis DN, Christian DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129-2139 [PMID: 15118873 DOI: 10.1056/NEJMoa040938]

7 Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpawerawong P, Han B, Margonin B, Ichinose Y, Nishi- waki Y, Ohe Y, Yang J, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-957 [PMID: 19692680 DOI: 10.1056/NEJ Moa090699]

8 Rosell R, Morán T, Queralt C, Porta R, Cardenal F, Camps J, Majem M, Lopez-Vivanco G, Isla D, Provencio M, Insa C, Provencio M, Insa A, Rosell R. EGFR-TKIs for EGFR-mutated NSCLC. Lancet Oncol 2011; 12: 1191-1202 [PMID: 20022809 DOI: 10.1016/S1470-2045(09)70364-X]

9 Miutsomoi T, Morita S, Yabeko T, Negoro S, Okamoto I, Tsurumui T, Seto T, Satouchi M, Tada H, Hiroshima T, Asami K, Katakami N, Takada M, Yoshioka H, Shibata K, Kudo S, Shimizu E, Saito H, Tsyoyoza S, Nakagawa K, Fuku- oka M. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (W1858F2450) in the randomized phase 3 trial. Lancet Oncol 2010; 11: 121-129 [PMID: 20022809 DOI: 10.1016/S1470-2045(09)70364-X]

10 Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isohe K, Sato H, Kusada M, Ito H, Higashi T, Takayama T, Kato Y, Kunitoh H, Hasegawa K, Hagiwara K. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol 2009; 27: 1394-1400 [PMID: 19224850 DOI: 10.1200/JCO.2008.18.0426]

11 Asami K, Koizumi N, Hirai K, Amano S, Morozumi N, Morikawa A, Atagi S, Kawaihara N. Gefitinib as first-line treatment in elderly epidermal growth factor receptor-mutated patients with advanced lung adenocarcinoma: results of a Nagano Lung Cancer Research Group study. Clin Lung Cancer 2011; 12: 387-392 [PMID: 21729650 DOI: 10.1016/j.jlcc.2011.02.004]

12 Maemondo M, Minegishi Y, Inoue A, Kobayashi K, Harada M, Okinaga S, Sadosi Y, Nishi Y, Oizumi S, Tanaka T, Isohe K, Kudoh S, Hayawara K, Saito Y, Morita S, Hagiwara K. First-line gefitinib for patients aged 75 or older with advanced non-small cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Thorac Oncol 2012; 7: 1417-1422 [PMID: 22895139 DOI: 10.1097/JTO.0b013e31826de8bb]

13 Jackman DM, Yeap BY, Lindeman NI, Fidias P, Rabin MS, Temel J, Skarin AT, Meyerson M, Holmes AJ, Borras AM. Advanced NSCLC. N Engl J Med 2012; 366: 727-739 [PMID: 22360224 DOI: 10.1056/NEJ Moa1201814]

14 Merkiesi O, Cheng CK, Au JS, von Pawel J, Reck M. Efficacy and safety of first-line erlotinib in elderly patients with advanced non-small cell lung cancer. Oncoi 2012; 28: 721-727 [PMID: 22649192 DOI: 10.3892/or.2012.1824]

15 Sutani A, Nagai Y, Udagawa K, Uchida Y, Koyama N, Munayama Y, Tanaka T, Miyazawa H, Nagata M, Kanazawa M,
Ichihara E, Tabata M, Tanimoto M. Role of survival post-EGFR inhibitor in non-small cell lung cancer on progression of EGFR mutation status among patients with non-small-cell lung cancer. *J Clin Oncol* 2005; 23: 2493-2501 [PMID: 15710947 DOI: 10.1200/JCO.2005.05.018]

Cortes-Funes H, Gomez C, Rosell R, Valero P, Garcia-Giron C, Velasco A, Izquierdo A, Diz P, Camps C, Castellanos D, Alberola V, Cardenal F, Gonzalez-Larriba JL, Vielite JM, Maetzu I, Sanchez JJ, Queralt C, Mayo C, Mendez P, Morant T, Taron M. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. *Ann Oncol* 2005; 16: 1081-1086 [PMID: 15851406 DOI: 10.1093/annonc/mdi221]

Kim ST, Uhm JE, Lee J, Sun JM, Sohn I, Kim SW, Jung SH, Park YH, Ahn JS, Park K, Ahn MJ. Randomized phase II study of gefitinib versus erlotinib in patients with advanced non-small cell lung cancer who failed previous chemotherapy. *Lung Cancer* 2012; 75: 82-88 [PMID: 21684626 DOI: 10.1016/j.lungcan.2011.05.022]

Ahn MJ, Park BB, Ahn JS, Kim SW, Kim HT, Lee JS, Kang JH, Cho JY, Song HS, Park SH, Sohn CH, Shin SW, Choi JH, Ki CS, Park CK, Holmes AJ, Janaszka T, Park K. Are there any ethnic differences in molecular predictors of erlotinib efficacy in advanced non-small cell lung cancer? *Clin Cancer Res* 2008; 14: 3860-3866 [PMID: 18559606 DOI: 10.1158/1078-0432.CCR-07-4608]

Italiano A, Vandenbos FB, Otto J, Mouroux J, Fontaine D, Marcy PY, Cardot N, Thyss A, Pedeutour F. Comparison of the epidermal growth factor receptor gene and protein in primary non-small-cell lung cancer and metastatic sites: implications for treatment with EGFR-inhibitors. *Ann Oncol* 2006; 17: 981-985 [PMID: 16524970 DOI:10.1093/annonc/mdl038]

Bozzetti C, Tiseo M, Lagrasta C, Nizzoli R, Guazzi A, Leonardi F, Gasparro D, Spiritelli E, Ruisi M, Delprete F, Rindi G, Ardizzoni A. Comparison between epidermal growth factor receptor (EGFR) gene expression in primary non-small cell lung cancer (NSCLC) and in fine-needle aspirates from distant metastatic sites. *J Thorac Oncol* 2008; 3: 18-22 [PMID: 18166836 DOI: 10.1097/JTO.0b013e318158e6a2]

Gow CH, Chang YL, Huo YC, Tsai MF, Wu CT, Yu CJ, Yang CH, Lee YC, Yang PC, Shih JY. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. *Ann Oncol* 2009; 20: 696-702 [PMID: 19088172 DOI: 10.1093/annonc/mdn579]

Rai H, Wang Z, Chen K, Zhao J, Lee JY, Wang S, Zhou Q, Zhuo M, Mao L, An T, Duan J, Yang L, Wu M, Liang Z, Wang Y, Kang X, Wang J. Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. *J Clin Oncol* 2012; 30: 3077-3083 [PMID: 22826274 DOI: 10.1200/JCO.2011.39.3744]

Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, Chu da T, Zaatar A, Osorio Sanchez JA, Vu VV, Au JS, Inoue A, Lee SM, Gekshi V, Yang JC. Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. *J Natl Cancer Inst* 2013; 105: 595-605 [PMID: 23594426 DOI: 10.1093/jnci/djt072]

Hotta K, Kiura K, Fujiyama W, Takigawa N, Hisamoto A, Ichihara E, Tabata M, Tanimoto M. Role of survival post-progression in phase III trials of systemic chemotherapy in advanced non-small-cell lung cancer: a systematic review. *PloS One* 2011; 6: e26646 [PMID: 22114662 DOI: 10.1371/journal.pone.0026646]
Asami K et al. EGFR-TKIs for EGFR-mutated NSCLC

Kratske R, Vokes EE, Miller VA. Randomized phase II trial of erlotinib (E) alone or in combination with carboplatin/paclitaxel (CP) in never or light former smokers with advanced lung adenocarcinoma. CALGB 30406. J Clin Oncol 2010; 28: 15; Suppl 3; abstr 7903.

Wu YL, Lee JS, Thongprasert S, Yu CJ, Zhang L, Ladrera G, Srinununimit V, Sriurapong, V, Sanovodial-Tan J, Zhu Y, Liao M, Zhou C, Pan H, Lee V, Chen YM, Sun Y, Margono B, Fuerte F, Chang GC, Seetalarom K, Wang J, Cheng A, Syahruddin E, Qian X, Ho J, Kurnianda J, Liu HE, Jin K, Truman M, Bara I, Mok T. Intercremental combination of chemotherapy and erlotinib for patients with advanced stage non-small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. Lancet Oncol 2013; 14: 777-786 [PMID: 23782814 DOI: 10.1016/S1470-2153(13)70254-7]

Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelblass F, Rettig WJ, Meyerion M, Solca F, Greulich H, Wong KK. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008; 27: 4702-4711 [PMID: 18408761 DOI: 10.1038/onc.2008.109]

Engelman JA, Zejnullahu K, Gale CM, Lüsöhöf E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Altheus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerion M, Wong KK, Jänne PA. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 2007; 67: 11924-11932 [PMID: 18089823 DOI: 10.1158/0008-5472.CAN-07-2232]

Yang JC, Shih JY, Su WC, Hsia CT, Tsaí CM, Ou SH, Yu CJ, Chang GC, Ho CL, Sequist LV, Dudek AZ, Shahidi M, Cong XJ, Lorence RM, Yang PC, Miller VA. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 2012; 13: 539-548 [PMID: 22452895 DOI: 10.1016/S1470-2153(12)70086-4]

Yang JC, Hirsh V, Schuler M, Yamamoto N, O’Byrne KJ, Mok TS, Zazulina V, Shahidi M, Lungershausen J, Massey D, Shi Y, Chen JJ, Zazulina V, Massey D, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Yeap BY, Halmos B, Kim JH, Jänne PA, Huberman MS, Wang YY, Burtness B. Cetuximab: an epidermal growth factor receptor chimeric human-murine monoclonal antibody. Drugs Today (Barc) 2005; 41: 107-127 [PMID: 15821783 DOI: 10.1358/dot.2005.41.2.882662]

Neal JW, Heist RS, Fidias P, Temel JS, Huberman M, Marcoux JP, Muzikansky A, Lynch TJ, Sequist LV. Cetuximab monotherapy in patients with advanced non-small cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 2012; 13: 528-538 [PMID: 22452896 DOI: 10.1016/S1470-2045(12)70087-4]

Harding J, Burtness B. Cetuximab: an epidermal growth factor receptor chimeric human-murine monoclonal antibody. Drugs Today (Barc) 2005; 41: 107-127 [PMID: 15821783 DOI: 10.1358/dot.2005.41.2.882662]

Katakami N, Atagi S, Goto K, Hida T, Horai T, Inoue A, Ichinose Y, Kobayashi K, Takeda K, Kiura K, Nishio K, Seki Y, Ebisawa R, Shahidi M, Yamamoto N. Lung-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 2013; 31: 3335-3341 [PMID: 23816963 DOI: 10.1200/JCO.2012.45.0981]

Costa DB, Schumer ST, Tenen DG, Kobayashi S. Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol 2008; 26: 1182-1184; author reply 1182-1184 [PMID: 18309959 DOI: 10.1200/JCO.2007.14.0309]

Costa DB, Nguyen KS, Cho BC, Sequist LV, Jackman DM, Riely GJ, Yeap BY, Halmos B, Kim JH, Jänne PA, Huberman MS, Pao W, Tenen DG, Kobayashi S. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res 2008; 14: 7060-7067 [PMID: 18981003 DOI: 10.1158/1078-0432.CCR-08-1455]

Asami K, Kawahara M, Atagi S, Kawaguchi T, Okishio K. Duration of prior gefitinib treatment predicts survival potential in patients with lung adenocarcinoma receiving subsequent erlotinib. Lung Cancer 2011; 73: 211-216 [PMID: 21272953 DOI: 10.1016/j.lungcan.2010.12.014]

Hata A, Katakami N, Yoshioha H, Fujita S, Kunimasa K,
Asami K et al. EGFR-TKIs for EGFR-mutated NSCLC

Nanjo S, Otsuka K, Kaji R, Tomii K, Iwasaku M, Nishiyama A, Hayashi H, Morita S, Ishida T. Erlotinib after gefitinib failure in relapsed non-small cell lung cancer: clinical benefit with optimal patient selection. Lung Cancer 2011; 74: 268-273 [PMID: 21529987 DOI: 10.1016/j.lungcan.2011.03.010]

Asami K, Okuma T, Hirashima T, Kawahara M, Atagi S, Kawaguchi T, Okishio K, Omachi N, Takeuchi N. Continued treatment with gefitinib beyond progressive disease benefits patients with activating EGFR mutations. Lung Cancer 2013; 79: 276-282 [PMID: 23261231 DOI: 10.1016/j.lungcan.2012.11.022]

Nishie K, Kawaguchi T, Tamiya A, Mimori T, Takeuchi N, Matsuda Y, Omachi N, Asami K, Okishio K, Atagi S, Okuma T, Kubo A, Maruyama Y, Kudoh S, Takada M. Epidermal growth factor receptor tyrosine kinase inhibitors beyond progressive disease: a retrospective analysis for Japanese patients with activating EGFR mutations. J Thorac Oncol 2012; 7: 1722-1727 [PMID: 23059777 DOI: 10.1097/JTO.0b013e31826913f7]

Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Jänne PA, Lynch T, Johnson BE, Miller VA. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010; 28: 357-360 [PMID: 19949011 DOI: 10.1200/JCO.2009.24.7049]

P- Reviewer: Camacho J, Rosell R, Vlachostergios P], Mandic R
S- Editor: Ji FF L- Editor: Roemmele A E- Editor: Lu Y]
