REVIEW

Effects of phospho- and calcitropic hormones on electrolyte transport in the proximal tubule [version 1; referees: 2 approved]

Justin J. Lee1,2, Allein Plain1,2, Megan R. Beggs1,2, Henrik Dimke3, R. Todd Alexander1,2,4

1Department of Physiology, University of Alberta, Edmonton, Canada
2The Women and Children’s Health Research Institute, Edmonton, Canada
3Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
4Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada

Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calcitropic hormones, parathyroid hormone (PTH), active vitamin D3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D3 synthesis in this nephron segment. The integrative effects of both phospho- and calcitropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calcitropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Corresponding author: R. Todd Alexander (todd2@ualberta.ca)

Author roles: Lee JJ: Conceptualization, Funding Acquisition, Writing – Review & Editing; Plain A: Conceptualization, Writing – Original Draft Preparation; Beggs MR: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Dimke H: Conceptualization, Writing – Review & Editing; Alexander RT: Conceptualization, Writing – Review & Editing

Competing interests: The authors declare that they have no competing interests.

How to cite this article: Lee JJ, Plain A, Beggs MR et al. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):1797 (doi: 10.12688/f1000research.12097.1)

Copyright: © 2017 Lee JJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: Work in the Alexander laboratory is funded by grants from the Women and Children’s Health Research Institute, which is supported by the Stollery Children’s Hospital Foundation, the Canadian Institutes of Health Research (MOP 136891), the National Sciences and Engineering Research Council, and the Kidney Foundation of Canada. HD is supported by Fabrikant Vilhelm Pedersen og Hustrus Mindelegat, the Novo Nordisk Foundation, the Carlsberg Foundation, the A.P. Møller Foundation, the Beckett Foundation, the Lundbeck Foundation, and the Danish Medical Research Council. MRB is supported by a Vanier Canada Graduate Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 03 Oct 2017, 6(F1000 Faculty Rev):1797 (doi: 10.12688/f1000research.12097.1)
Introduction
The kidneys play a critical role in maintaining electrolyte balance, including both calcium and phosphate. They accomplish this by adjusting the urinary excretion of these minerals, thereby amending the amount in blood. In particular, the proximal tubule (PT) reabsorbs approximately 70% of filtered calcium and 90% of filtered phosphate ions. Failure to properly regulate PT reabsorption leads to abnormal calcium and phosphate homeostasis, which may manifest as neuromuscular, cardiovascular, or gastrointestinal symptoms. The molecular mechanisms mediating calcium and phosphate reabsorption in the PT, as well as the endocrine regulation of these processes, have been extensively studied. The endocrine factors involved in calcium and phosphate homeostasis are known as calcitropic and phosphotrophic hormones, respectively. These hormones include parathyroid hormone (PTH), 1,25-dihydroxyvitamin D₃ (that is, active vitamin D₃), and fibroblast growth factor 23 (FGF23). Previous review articles have primarily focused on the individual effects of PTH, active vitamin D, and FGF23 on either calcium or phosphate transport in the kidneys, and some have suggested an interconnection between the two pathways. However, emerging work demonstrates that PTH and FGF23 each have distinct effects on both phosphate and calcium homeostasis. They should thus be considered calcitrophic and phosphotrophic hormones, a term we will use for the remainder of this article. Here, we briefly review calcium and phosphate reabsorption and their dependence on sodium transport in the PT and then dissect the role of PTH and FGF23 on these processes.

Proximal tubule
The PT is the initial segment of the nephron wherein transport occurs. It is responsible for reabsorbing the majority of water and solutes that filter into this tubular segment from the glomerulus. Anatomically, the PT is located in the renal cortex and can be divided into (i) the proximal convoluted tubule (PCT) and (ii) the proximal straight tubule (PST). The PT can be further subdivided into segments S1, S2, and S3 on the basis of molecular ultrastructure and expression profiles. The PCT is comprised of S1 and part of S2, whereas the PST contains the remainder of the S2 segment as well as the S3 segment. The majority of sodium, bicarbonate, and phosphate reabsorption from the PT occurs in the PCT, owing to the greater expression of select sodium-coupled cotransporters, larger microvilli surface area, and denser mitochondrial population. In contrast, calcium reabsorption occurs in the distal part of the PT due to a favourable electrochemical gradient there.

Proximal tubular function
The transport of solutes across the PT epithelium occurs via both transcellular and paracellular pathways. The transcellular pathway is generally a unidirectional, active process whereby substrates that are reabsorbed in the PT enter the epithelial cell across the apical membrane and subsequently are extruded across the basolateral membrane. The paracellular pathway in the PT is either a passive or secondarily active bidirectional process permitted by tight-junction proteins called claudins. Transport via the paracellular pathway is determined by the transepithelial electrochemical gradient and the permeability of the tight junction.
Figure 1. Regulation of calcium and phosphate by parathyroid hormone (PTH), 1,25-dihydroxyvitamin D₃ (active vitamin D), and fibroblast growth factor 23 (FGF23). (A) Low plasma calcium stimulates release of PTH from the parathyroid glands. PTH stimulates resorption of bone, releasing calcium and phosphate into the plasma. In the kidney, PTH increases urinary calcium reabsorption and phosphate excretion. (B) PTH-dependent active calcium reabsorption takes place in the distal nephron but, in the proximal tubule (PT), stimulates 1α-hydroxylase to convert 25-hydroxyvitamin D₃ into active vitamin D and reduces the reabsorption of sodium, calcium, and phosphate. Active vitamin D increases calcium absorption from the small intestine and stimulates FGF23 secretion from bone. (C) FGF23 acts as a negative feedback modulator of activated vitamin D activation and increases distal nephron calcium reabsorption while decreasing phosphate reabsorption from PT.

FGF23 is a 251–amino acid peptide hormone synthesized and released from osteocytes and osteoblasts in response to elevations in systemic active vitamin D or phosphate or both. The primary action of FGF23 is to reduce PT phosphate reabsorption via binding to specific FGF receptors (FGFRs), including 1, 3, and 4, which are expressed on the basolateral membrane throughout the PT. Downstream signalling after FGFR activation reduces phosphate transporter expression and apical membrane localization in the PT. This signalling also depends on its cofactor, klotho, to activate the downstream signalling pathways. Though primarily thought of as a phosphotrophic hormone, FGF23 is also a calcitropic hormone. With klotho as its cofactor, FGF23 directly modulates calcium reabsorption from the distal convoluted tubule (DCT). Of note, PTH stimulates FGF23 release in rodents, while in contrast to PTH, FGF23 indirectly suppresses the 1-hydroxylation of 25-dihydroxyvitamin D₃. Thus, like PTH and active vitamin D, FGF23 regulates both calcium and phosphate homeostasis and therefore can be considered a calcio phosphotropic hormone.

Calcium reabsorption from the proximal tubule

The kidney efficiently reabsorbs 98–99% of filtered calcium ions. More than 60% of this reabsorption occurs in the PT, which is largely driven by diffusion through the paracellular shunt. Micropuncture studies in mammals show a parallel relationship between PT calcium reabsorption and sodium reabsorption, which does not dissociate under a variety of circumstances, including the administration of PTH, acetazolamide, furosemide, or hydrochlorothiazide or with the induction of acute and chronic metabolic acidosis. In addition, an active transcellular pathway is proposed to account for less than 20% of calcium reabsorption from this segment. Consistent with this, microperfusion experiments performed in the absence of a transepithelial potential difference found that not all calcium transport in the distal PT was passive. Moreover, similar studies in the PST (S2 and S3 regions) of rabbit kidney demonstrate significant calcium transport that is independent of sodium transport, implying the presence of a transcellular calcium reabsorption pathway in the later portion of the PT. The molecular constituents of this
pathway remain to be elucidated. Towards this goal, an in vitro study using the L-type calcium channel blocker, nifedipine, abolished calcium flux in a rabbit PT cell model, implying the presence of functional apical L-type calcium channels in the PT\textsuperscript{17}. In addition, cation-permeable transient receptor potential channel 1 (TRPC1) has been localized to the apical membrane of PT cells in vitro and in vivo\textsuperscript{47,48}. These studies support the presence of a transcellular pathway for calcium reabsorption in the PST; however, further study is required to delineate the molecular constituents.

Calcium transport in the proximal tubule is coupled to sodium and water transport

Calcium reabsorption in the PT is highly dependent on sodium transport. The kidneys filter more than 500 g of sodium and 180 L of water daily, while approximately 4 g of filtered sodium and 1–2 L of water is excreted in the urine\textsuperscript{49}. The PT reabsorbs about two thirds of the filtered sodium and water. Sodium reabsorption in the PT is primarily mediated by an active transcellular pathway (Figure 2A)\textsuperscript{50}. Active reabsorption of sodium creates a small, albeit significant, osmotic gradient for water, which is reabsorbed trans- and paracellularly through the water-selective channel aquaporin-1 and tight-junction pore claudin-2, respectively\textsuperscript{51}. The majority of sodium transport across the apical membrane occurs via the sodium proton exchanger isoform 3 (NHE3), encoded by the Slc9a3 gene, which is expressed along the PCT. Animals with a targeted deletion of Slc9a3 have a significant reduction in sodium and water reabsorption from the PT and display hypotension\textsuperscript{13,52–54}. Though contributing minimally to sodium reabsorption from the PT, other apical membrane sodium-coupled cotransporters, including sodium-glucose, sodium-phosphate, and sodium–amino acid cotransporters, are expressed in this segment. These transporters account for less than 5% of total transepithelial sodium reabsorption in the PT; thus, only those involved in phosphate transport will be discussed here.

Sodium is also reabsorbed from the PT through the paracellular pathway. The PT is very leaky, displaying a transepithelial resistance (TER) of 5–7 $\Omega \cdot \text{cm}^2\textsuperscript{51}$. This leakiness is conferred by a tight-junction family of proteins called claudins. Claudin-2, -10a, and -17 are expressed in this nephron segment\textsuperscript{1,55,56}. Claudin-2 forms a cation-selective, water-permeable pore, permitting paracellular diffusion of sodium, calcium, and water down their electrochemical gradients while restricting the diffusion of larger macromolecules\textsuperscript{57}. In the early PCT (S1), the transepithelial potential difference is lumen-negative, generated by the electrogenic sodium-glucose cotransporter (SGLT2)\textsuperscript{18}. Although this electrogenically favours paracellular cation secretion, this is overcome by the large amount of active sodium and consequent water reabsorption described above. The movement of water across the PT, when it occurs through the paracellular pore, can in turn carry other ions, including calcium, even against their respective transepithelial electrochemical gradients.

Figure 2. Proximal tubule (PT) calcium ($Ca^{2+}$) reabsorption. (A) Calcium reabsorption from the PT occurs primarily by a paracellular route, likely mediated by claudin-2 (CLDN2). This is dependent on transepithelial sodium reabsorption, driven by the sodium proton exchanger (NHE3) and sodium potassium ATPases. The reabsorption of sodium generates an osmotic gradient for water reabsorption, which in turn drags other solutes (including calcium) in a process known as solvent drag (top junction). In the late PT, the calcium concentration gradient favours reabsorption (from apical to basolateral) as the majority of sodium and water reabsorption occurs in the early PT (bottom junction). The transepithelial calcium reabsorption pathway, present in late PT, is illustrated as a dashed line. (B) Parathyroid hormone (PTH) in the PT decreases calcium reabsorption by attenuating its driving force. PTH in both the tubular fluid and the blood binds its receptor (PTHR), which is expressed on both apical and basolateral membranes. This activates the downstream messengers protein kinase A (PKA) and protein kinase C (PKC). Note that apical PTHR preferentially activates PKC. Both pathways inhibit NHE3 activity and reduce abundance, but only PKC inhibits Na+/K+ ATPase activity. PTH also reduces tight-junction permeability in the PT and enhances active vitamin D$_3$ synthesis. In contrast, fibroblast growth factor 23 (FGF23) reduces active vitamin D$_3$ levels.
Regulation of sodium and calcium transport in the proximal tubule

PTH increases serum calcium in part by increasing the reabsorption of filtered calcium from the renal tubule, thereby reducing calcium excretion into urine. Paradoxically, micropuncture studies in the dog revealed that PTH reduces sodium, fluid, and calcium reabsorption from the PT, even though it still lowered urinary calcium excretion\(^{13,42}\). This observation is reconciled by findings of enhanced calcium reabsorption in the late segments of the tubule following PTH administration\(^{24,25}\). Micropерfusion of rabbit cortical thick ascending limb (TAL) in the presence of PTH led to an almost fivefold increase in calcium flux across the segment with similar findings in mice\(^{65,66}\). PTH also affects calcium reabsorption through a transcellular calcium transport pathway in the distal convolution, which relies on the calcium-permeable transient receptor potential V5 channel (TRPV5)\(^{67-69}\). Consistent with this, PTH activates TRPV5 by increasing the open probability of the channel, membrane abundance, and total expression\(^{67-69}\). A secondary effect of PTH on the DCT is to increase the amount of TRPV5 indirectly by increasing circulating active vitamin D levels, as this hormone also enhances calcium reclamation in the DCT\(^{70,71}\).

A number of studies on animals demonstrate that the major effect of PTH on the PT is to inhibit sodium reabsorption, resulting in a natriuresis (Figure 2B)\(^{12,13,62,73}\). Various in vitro expression studies using opossum kidney (OK) cells found that acute and chronic incubation with PTH downregulates Solutecarrier 9a3 (Slc9a3) at the transcriptional level, which is abolished by PKA inhibition (a downstream effector of PTH binding its receptor PTHR)\(^{74-79}\). These studies also revealed that PTH decreases NHE3 membrane abundance\(^{75,77}\). These cell culture studies are supported by in vivo work on PTH-infused rats that display significantly reduced renal NHE3 expression\(^{35,40}\). Furthermore, microperfusion of rat PT after chronic PTH exposure found reduced transepithelial sodium transport along with increased sodium and water excretion\(^{35,40}\). Thus, PTH directly inhibits NHE3-dependent transport. The actions of PTH on NHE3 are mediated by the phosphorylation of NHE3 at residue Ser605 by PKA\(^{72}\). Although PKC activation results in NHE3 inhibition, this effect is mediated through an unknown mechanism that does not appear to require direct NHE3 phosphorylation\(^{11}\). Both PKA and PKC are thought to interact with NHE3 through its PDZ domain–containing linker protein, the sodium-hydrogen exchanger regulatory factor 1 (NHERF-1); however, the precise mode of interaction is incompletely understood\(^{83,84}\). Furthermore, the molecular details of PTH-mediated transcriptional regulation have not been fully elucidated\(^{58}\).

PTH also inhibits sodium/potassium ATPase activity in the PT, which would secondarily inhibit the apical sodium-dependent cotransporter fundamental to transepithelial sodium reabsorption (Figure 2B). This occurs through the activation of PKC via a G\(_{q/11}\) protein–coupled pathway after PTHR binding\(^{85-87}\). Activated PKC translocates to the basolateral membrane and phosphorylates the alpha subunit of the sodium/potassium ATPase, inhibiting its activity\(^{88,89}\). Given the abovementioned role of NHE3 and the sodium/potassium ATPase in paracellular calcium reabsorption, their inhibition by PTH would inhibit sodium reabsorption from the PT, which would decrease paracellular calcium reabsorption. This seems in direct contrast to the primary role of PTH to increase serum calcium levels. The reasons for this remain unclear. A previous attempt to reconcile this observation suggested that NHE3 inhibition alkalinizes the tubular fluid via reduced hydrogen secretion, thereby reducing reabsorption of bicarbonate\(^{68,69}\). This hypothesis is supported by a micropuncture study, where acute administration of PTH increased distal delivery of bicarbonate, leading to an alkaline urine\(^{66}\). Since TRPV5, which is expressed in the distal nephron, is activated by alkaline pH, this could increase distal transepithelial calcium reabsorption through TRPV5\(^{85,87,91}\). Micropuncture data further demonstrate the uncoupling of sodium and calcium transport in the distal nephron\(^{85,87,91}\). However, direct in vivo measurements of tubular pH after PTH administration and the consequent effect on calcium reabsorption in the distal tubule have not been made.

Alternatively, PTH-mediated inhibition of PT sodium reabsorption might affect urinary calcium excretion by altering the glomerular filtration rate (GFR). Multiple in vivo studies found that exogenous PTH administration decreases GFR\(^{92-94}\). Consistent with this, patients with primary hyperparathyroidism show significantly reduced GFR\(^{95}\). An explanation for this observation is that PTH stimulates tubuloglomerular feedback by increasing the distal delivery of chloride. The majority of chloride reclamation from the PT occurs through the paracellular pathway, driven by the transepithelial electrochemical gradient\(^{96}\). PTH-mediated inhibition of sodium reabsorption in the early PT would result in a more positive lumen, which in turn would favour retention of chloride and result in increased distal delivery of chloride. This would stimulate tubuloglomerular feedback, thereby decreasing GFR\(^{97}\). The PTH effect on GFR would not directly affect PT calcium transport. However, it would reduce the filtered calcium load and the amount of calcium in the ultrafiltrate. This would decrease the amount of calcium needed to be reabsorbed by active calcium transport in the distal nephron, thereby maximizing calcium reabsorption. Further studies are required to confirm this hypothesis.

The effect of calciophosphotropic hormones on ion transport in the cortical TAL\(^{98-100}\) and the distal convolution\(^{101-103,105}\) have been studied. However, there is a paucity of recent studies looking
at the PT. In particular, the potential regulation of tight-junction permeability by calciphrorotropic hormones, including PTH, has received little attention. Functional data suggest a relationship between PTH signalling and altered paracellular transport in the PT\textsuperscript{102}. PTH administration to rats acutely decreased paracellular solute reabsorption from the PT\textsuperscript{105}. This is further supported by a microperfusion study that showed reduced water-driven paracellular solute transport (that is, reduced solvent drag) across rabbit PCTs after infusion of cyclic AMP (a downstream second messenger of PTH-PTHr activation)\textsuperscript{103}. Consistent with the abovementioned studies, inhibition of NHE3 in an intestinal cell culture model resulted in increased TER consistent with reduced tight-junction permeability\textsuperscript{104} as TER across a leaky epithelium is predominantly a reflection of paracellular ion permeability. Together, these studies suggest that PTH inhibits paracellular transport in the PT by decreasing tight-junction permeability, which likely also affects the permeation of calcium, although this has not been specifically tested. We are unaware of attempts to delineate the molecular components involved in regulation of paracellular permeability following PTH application. Further research is required to do so and to assess the effect of PTH on the transcellular calcium absorption pathway in the late PT.

FGF23 also affects PT solute transport by acting on sodium-phosphate cotransporters. However, given the relatively small amount of sodium reabsorbed via this pathway, this primarily decreases phosphate rather than sodium transport and therefore is discussed below. Currently, we are unaware of data demonstrating an effect of FGF23 on transcellular sodium transport or tight-junction permeability in the PT. It should be kept in mind, however, that FGF23 participates in calcium homeostasis through the enhancement of active vitamin D inactivation as well as by enhancing distal tubular calcium reabsorption through TRPV5\textsuperscript{105}.

There is evidence of calcium sensing by the PT. The CaSR detects elevated serum calcium. It signals through a G\textsubscript{q}\textsubscript{11} protein–coupled pathway inhibiting PTH release from the parathyroid gland and decreases calcium reabsorption from the TAL\textsuperscript{105,106}. Several studies have reported CaSR expression in the brush border membrane of PT epithelial cells\textsuperscript{107,108}, but another study contradicts this observation\textsuperscript{109}. A recent study using both monoclonal and polyclonal antibodies against the CaSR found a low level of expression in PT\textsuperscript{109}. Regardless, a functional study using conditionally immortalized PT epithelial cells isolated from the urine of healthy subjects revealed activation of the G\textsubscript{q}\textsubscript{11} pathway with exposure to increased extracellular calcium as well as its allosteric agonist NPS-R568\textsuperscript{10}. The physiological role of a CaSR in the PT appears to be to antagonize the inhibitory effects of PTH in PT transport processes. In micropерфused late PT (S3 region) and OK cells, the addition of the CaSR agonists gadolinium and NPS R467 abolishes the phosphaturic effects of PTH\textsuperscript{108}. Further microperfusion and micropuncture experiments on rat PT demonstrate a link between CaSR activation and NHE3. Increased fluid absorption and intracellular pH were seen in response to high luminal calcium or NPS-R568, an effect that was absent in CaSR knockout animals\textsuperscript{111}. Together, these studies support the presence of a functional calcium-sensing mechanism in the PT, which antagonizes PTHr activation.

**Human diseases with altered proximal tubular calcium transport**

Global PT dysfunction results in glycosuria, aminoaciduria, low-molecular-weight proteinuria and renal tubular acidosis. This constellation of symptoms is called the Fanconi syndrome. Perhaps not surprisingly, the Fanconi syndrome often includes alteration in vitamin D metabolism\textsuperscript{112}. Dent’s disease and the oculo-renal syndrome of Lowe’s disease are typically accompanied by hypercalcuria and nephrocalcinosis\textsuperscript{113,114}. These diseases are the result of mutations in CLCN5 or OCRL\textsuperscript{115,116}. The former gene encodes a transmembrane proton-chloride exchanger (also present intracellularly), and the latter a lipid phosphatase involved in the shuttling of lipid between endomembrane compartments\textsuperscript{117,118}. Why these gene defects result in a PT calcium phenotype is unknown and is an area of research that requires exploring. Given the possible involvement of CLCN5 in luminal chloride and proton balance, it is possible that loss-of-function mutation in the CLCN5 gene alters the transepithelial electrical gradient in the PT, thus perturbing various solute transport processes\textsuperscript{117}. However, further studies employing cell and animal models of CLCN5 and OCRL mutations will help delineate the pathophysiological mechanism of these syndromes.

**Phosphate transport in proximal tubule**

**Phosphate reabsorption in the proximal tubule**

Phosphate is vital to bone mineralization, maintaining cellular energy stores, and to cell signalling. The kidneys are essential to maintaining systemic phosphate levels, as the majority of ingested phosphate is absorbed from the intestine. Less than 1% of the body’s phosphorus exists in a solubilized form as either dihydrogen phosphate (H\textsubscript{2}PO\textsubscript{4}\textsuperscript{−}) or mono-hydrogen phosphate (HPO\textsubscript{2}\textsuperscript{−}), and the pH determines the fraction of each. The remaining fractions are stored either as part of hydroxyapatite in bone (−85%) or intracellularly (−15%)\textsuperscript{119}. In adults, the kidneys filter approximately 200 mmoles of phosphate daily, and about 90% of it is reabsorbed back into the bloodstream. Of this filtered fraction, 90% is reabsorbed from the PT.

In the PT, phosphate reabsorption occurs primarily via a transcellular pathway (Figure 3). Paracellular phosphate reabsorption from this tubule segment has been described as insignificant in comparison with transcellular reabsorption\textsuperscript{5,120,121}. Sodium-coupled phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 mediate the cellular entry of filtered phosphate ions from the lumen. Apical phosphate entry is facilitated by secondary active transport of sodium, the electrochemical gradient of which is maintained by the basolateral sodium/potassium ATPase. The transport capacity of the PT for phosphate is determined primarily by the abundance of sodium-coupled phosphate transporters, which is due to the steep electrical gradient across the apical membrane (about −70 mV) and a low cytosolic sodium concentration. Expression studies in rodent PT reveal that NaPi-IIa expression is high in the early PT and decreases along the length of this nephron segment, but the fact that NaPi-IIc and PiT-2 are expressed throughout the PT highlights the importance of the early PT to phosphate reabsorption\textsuperscript{122,123}. The NaPi-II transporter family shows preference for divalent phosphate (HPO\textsubscript{2}\textsuperscript{−}). NaPi-IIa is electrogenic (couples 3 Na\textsuperscript{+} to 1 phosphate), and
Proximal tubule (PT) phosphate reabsorption.

1. SLC34A3 (Xpr1) - confer enhanced PTH-induced cAMP generation and regulation of phosphate transport, suggesting that NHERF-1 is a key component in PTH-mediated phosphaturic effects.

2. PTH and FGF23 both attenuate phosphate reabsorption in the PT by inhibiting NaPi-II cotransporters. PTH inactivates basolateral NaPi-IIa cotransporters by stimulating endocytosis and degradation in response to PTH, resulting in phosphorylation of PDZ domain–containing proteins—leading to internalization and degradation of NaPi-IIa. FGF23 in the blood binds to its receptor complex (which includes the cofactor, klotho). This leads to the activation of the mitogen-activated protein kinase (MAPK) pathway, resulting in phosphorylation of NHERF1. This signal cascade also decreases NaPi-IIa abundance. How PTH and FGF affect NaPi-Iic is currently unknown.

3. NaPi-IIc is electroneutral (couples 2 Na\(^{+}\) to 1 phosphate)\(^{124–126}\). In contrast, PT-2 has greater affinity for monovalent phosphate ions (HPO\(_4\)^{2−}) and is electrogenic\(^{127,128}\). Genetic knockout studies in mice demonstrate that NaPi-IIa constitutes about 70% of phosphate reabsorption in the PT in this species\(^{129–131}\). Loss-of-function mutations in the NaPi-IIa cotransporter (SLC34A1) in humans, in contrast to rodents, causes renal calcification and generalized proximal-tubular dysfunction (that is, the Fanconi syndrome) rather than specific phosphate disturbances\(^{132,133}\). Moreover, NaPi-Iic in the human kidney likely contributes substantially to phosphate reabsorption, as patients with hereditary hypophosphatemic rickets (HPR) show renal wasting of phosphate due to impaired NaPi-Iic function\(^{134,135}\). After apical entry, subsequent intracellular diffusion and basolateral extrusion of phosphate complete reabsorption across PT epithelia\(^{132}\). Although little is known about the basolateral extrusion mechanism, a recent nephron-specific knockout of the xenotropic and polytropic retroviral receptor gene (Xpr1) in mice resulted in hypophosphatemia and hyperphosphaturia, suggesting a role for this transporter in renal tubular phosphate reabsorption\(^{136}\). The protein product of Xpr1 also shares a sequence homology similar to that of a phosphate extrusion transporter in plants (PHO1). Additional experiments need to be carried out to confirm its role in transcellular phosphate reabsorption.

**Regulation of phosphate transport in the proximal tubules**

PTH and FGF23 regulate phosphate reabsorption in the PT, which in turn regulates plasma phosphate levels. Active vitamin D increases serum phosphate via enhanced intestinal absorption and potentially via increased PT reabsorption\(^{137,138}\). However, limited direct evidence of the effect on the PT and confounding effects of PTH and FGF23 complicates this interpretation\(^{1}\). PTH attenuates renal phosphate reabsorption by reducing the membrane abundance of NaPi-IIa, NaPi-Iic, and PT-2 cotransporters (Figure 3)\(^{139–141}\). PTH acutely decreases the abundance of apical NaPi-IIa cotransporters by stimulating endocytosis and ultimately their degradation\(^{142,143}\). PTH induces NaPi-IIa endocytosis through a complex intracellular pathway, which has been reviewed previously\(^{144,145}\). In short, the PTH-PTH1R interaction results in phosphorylation of PDZ domain–containing proteins—including NHERF-1—via activation of PKA and PKC, the signaling pathways that inhibit NHE3. NHERF-1 anchors NaPi-IIa to the cytoskeleton and its phosphorylation releases the transporter, permitting endocytosis and degradation in response to PTH \(^{144–147}\). Patients with mutations in NHERF-1 (SLC9A3R1) display phosphaturia and nephrolithiasis but have otherwise normal PT function\(^{148,149}\). Interestingly, the mutations are not in the PDZ domain. Instead, these NHERF-1 mutants when expressed in vitro confer enhanced PTH-induced cAMP generation and inhibit phosphate transport, suggesting that NHERF-1 is a key component in PTH-mediated phosphaturic effects\(^{149}\). PTH is also implicated in the internalization of NaPi-Iic; however, it is not subsequently degraded\(^{146,144}\). The molecular pathway...
whereby NaPi-IIc is downregulated is currently unknown. Nevertheless, like its effect on calcium handling, PTH decreases phosphate reabsorption in the PT. However, unlike calcium, where the distal tubule compensates for calcium loss in PT, the distal nephron has limited ability to reabsorb phosphate. Consequently, elevated PTH induces hyperphosphaturia and hypophosphatemia—symptoms commonly observed in patients with primary hyperparathyroidism10.

Osteocytes and osteoblasts produce FGF23 in response to an increase in plasma phosphate levels and in response to active vitamin D (Figure 1). FGF23 decreases serum phosphate levels, primarily by reducing phosphate reabsorption from the PT and by reducing intestinal phosphate reabsorption through the inactivation of active vitamin D. In the kidney, FGF23 stimulates the internalization and subsequent degradation of NaPi-IIa and NaPi-IIc cotransporters by phosphorylation of NHERF-1 in a process similar to PTH (Figure 3B)33,151,152. This occurs through mitogen-activated protein kinase (MAPK) and serum/glucocorticoid-regulated kinase-1 (SGK-1) signalling pathways that are activated by FGFR 1, 3, and 4153–157. Unlike PTH, the FGF23-FGFR signalling pathway also downregulates transcription and translation of NaPi-IIa and NaPi-IIc transporters, contributing to a decrease in abundance of proteins in the PT158,159,160. Moreover, PTH-induced endocytosis of NaPi-IIa is abolished by inhibition of the MAPK pathway, suggesting a functional crosstalk mechanism between PTH and FGF23 signalling pathways in the PT160. Thus, the physiological actions of PTH on phosphate excretion and consequent reductions in serum phosphate level are complemented by the action of FGF23.

Direct phosphate sensing is another mechanism by which phosphate transport may be regulated in the PT. A phosphate-sensing mechanism has been observed in cell culture where increased extracellular phosphate activates the MAPK pathway161. This has also been observed in other cell lines, including human embryonic kidney 293 cells162 where increased extracellular phosphate activates the MAPK pathway that FGF23 stimulates, without altering expression of FGF, FGFR, or klotho163. This finding is not surprising when we consider the functional role of FGF23. As a phosphaturic hormone, FGF23 is released in response to high serum phosphate levels. Consequently, FGF23 signals the PT to attenuate the reabsorption of phosphate through NaPi-II cotransporters, inducing phosphate excretion. Therefore, it is likely that increased extracellular phosphate stimulates the same signalling pathway activated by FGF23. However, work remains to confirm this, including exploring the effects of high extracellular phosphate on MAPK signalling in vivo, as well as whether phosphate directly regulates gene expression, trafficking, or activity (or a combination of these) of known phosphate transporters in PT.

**Integration of parathyroid hormone and fibroblast growth factor 23 signalling in the proximal tubule**

It is evident that PTH and FGF23 have distinct effects in the PT. Both PTH and FGF23 decrease phosphate reabsorption. The mechanism by which PTH and FGF23 attenuate phosphate reabsorption is similar. Both lead to phosphorylation of NHERF-1, resulting in internalization and degradation of NaPi-IIa164. This raises the possibility that there is molecular crosstalk between the PTH and FGF23 signalling pathways165. Although PKA and PKC seem to be the predominant signalling mechanisms for PTH, they also activate the MAPK pathway, which is activated by FGF23 binding the FGFR166. Interestingly, the downstream effects of PTH (that is, internalization of NaPi-IIa) were only partially abolished by PKA and PKC inhibition, but inhibition of MAPK completely abolished NaPi-IIa internalization162. This observation suggests a molecular connection between the PTH and FGF23 pathway, whereby the effect of PTH is dependent on MAPK activation. A recent *in vivo* study by Andrukhova et al167, revealed that, in mice without FGF23 and klotho, chronic PTH effects are blunted in the PT, an effect restored by recombinant FGF23 administration, further supporting the idea that the actions of PTH are dependent on FGF23168. This led to the speculation that FGF23 signalling results in the phosphorylation of specific sites on NHERF-1, which are not phosphorylated by PKA or PKC (that is, the downstream mediators of PTH-PTHrP). At a systemic level, a similar relationship was observed. FGF23 knockout mice have normal serum PTH but display hyperphosphatemia, consistent with the phosphaturic effect of PTH being dependent on the presence of FGF23169. Conversely, parathyroidectomized rats, when exposed to active vitamin D which stimulates FGF23 release, do not significantly increase their fractional excretion of phosphate compared with controls, consistent with the FGF23 effect being dependent on PTH170. Similar effects are observed in hypoparathyroid patients who have high serum FGF23 and phosphate levels171. Together, these studies suggest that there is molecular crosstalk between PTHR signalling and FGFR signalling, whereby the phosphaturic effect of PTH and FGF23 is dependent on the other hormone. Overall, PTH and FGF regulation of phosphate balance is a complex process, and much remains to be answered: for example, the molecular mechanism of interaction between second messengers, and the presence of possible reciprocal regulatory mechanisms; that is, does FGF23 signalling activate PKA and PKC?

**Conclusions**

PTH and FGF23 are important physiological regulators of calcium and phosphate balance. Calcium reabsorption in the PT occurs primarily by the paracellular pathway, whereas phosphate reabsorption occurs through a transcellular pathway. Reabsorption of both minerals is coupled to sodium. Emerging work has implicated PTH in the direct inhibition of transcellular sodium transport and modulation of the paracellular pathway through which calcium is reabsorbed. Consequently, PTH inhibits calcium reabsorption from the PT, increasing distal delivery, but overall decreases urinary calcium excretion by increasing calcium reclamation from the distal nephron. PTH and FGF23 directly inhibit transcellular phosphate transport in the PT, resulting in increased phosphate excretion. Significant further experimental work is required to fully elucidate the complex PTH-active vitamin D–FGF23 axes in regulating calcium and phosphate transport across the nephron. Of concern, many experimental models are limited by the confounding effects of individual hormones
and crosstalk between them. Consistent with this, it seems an unlikely coincidence that both PTH and FGF23 regulate active vitamin D levels via their effect on the PT. Furthermore, whether PTH, active vitamin D, or FGF23 has an effect on PT transcellular calcium transport is not known. Thus, further delineating the molecular pathways mediating calcium and phosphate transport across the PT in the presence and absence of these hormones will contribute to our understanding of renal regulation of calcium and phosphate in both health and disease.

Competing interests
The authors declare that they have no competing interests.

References

1. Blaine J, Chonchol M, Levi M: Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015; 10(7): 1257–72. PubMed Abstract | Publisher Full Text | Free Full Text

2. Moe SM: Disorders involving calcium, phosphorus, and magnesium. Prim Care. 2008; 35(2): 215–37. PubMed Abstract | Publisher Full Text | Free Full Text

3.Androukhova O, Streicher C, Zeitz U, et al.: FGF23 and parathyroid hormone signaling interact in kidney and bone. Mol Cell Endocrinol. 2016; 436: 224–39. PubMed Abstract | Publisher Full Text | F1000 Recommendation

4. Biber J, Hernando N, Forster I, et al.: Regulation of phosphate transport in proximal tubules. Pflugers Arch. 2009; 458(1): 39–52. PubMed Abstract | Publisher Full Text

5. Biber J, Hernando N, Forster I: Phosphate transporters and their function. Annu Rev Physiol. 2013; 75: 535–60. PubMed Abstract | Publisher Full Text

6. Erben RG, Andrukhova O: FGF23 regulation of renal tubular solute transport. Curr Opin Nephrol Hypertens. 2015; 24(5): 450–6. PubMed Abstract | Publisher Full Text

7. Evans AP, Gattone VH 2nd, Connors BA: Ultrastructural features of the rabbit proximal tubules. Arch Histol Cytol. 1992; 55 Suppl: 139–45. PubMed Abstract | Publisher Full Text

8. Evans AP Jr, Hay DA, Dallas W: SEM of the proximal tubule of the adult rabbit kidney. Anat Rec. 1978; 191(4): 397–413. PubMed Abstract | Publisher Full Text

9. Taub M: Primary kidney cells. Methods Mol Biol. 1997; 75: 153–61. PubMed Abstract | Publisher Full Text

10. Kriz W, Bankir L: A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS), Kidney Int. 1988; 33(1): 1–7. PubMed Abstract | Publisher Full Text

11. Yu AS: Claudinins and the kidney. J Am Soc Nephrol. 2010; 21(1): 11–9. PubMed Abstract | Publisher Full Text | Free Full Text

12. Frömter E, Rumrich G, Ullrich KJ: Phenomenologic description of Na, Cl- and HCO3- absorption from proximal tubules of rat kidney. Pflugers Arch. 1973; 343(5): 189–220. PubMed Abstract | Publisher Full Text

13. Hebert SC, Brown EM, Harris HW: Calcium-regulated Na-pump: 3H-influx in the rat kidney. J Physiol. 1984; 344: 834–42. PubMed Abstract | Publisher Full Text | Free Full Text

14. Hig RC, Roux D, Suki WN: Calcium transport in the rabbit superficial proximal convoluted tubule. J Clin Invest. 1984; 74(3): 834–42. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

15. Bank N, Aynedjian HS, Weinstein SI: A microperfusion study of phosphate reabsorption by the rat proximal renal tubule. Effect of parathyroid hormone. J Clin Invest. 1975; 56(4): 1040–8. PubMed Abstract | Publisher Full Text | Free Full Text

16. Blau JE, Collins MT: The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015; 16(2): 165–74. PubMed Abstract | Publisher Full Text | Free Full Text

17. Fleet JC: The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol. 2017; 453: 36–45. PubMed Abstract | Publisher Full Text | Free Full Text

18. Khundmiri SJ, Murray RD, Lederer E: PTH and vitamin D. Compr Physiol. 2016; 6(2): 561–601. PubMed Abstract | Publisher Full Text | Free Full Text

19. Martin A, David V, Quarles LD: Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012; 92(1): 131–65. PubMed Abstract | Publisher Full Text | Free Full Text

20. Collin J: The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem. 1952; 205: 395–438. Reference Source

21. Migicovsky BB, Jamieson JW: Calcium absorption and vitamin D. Can J Biochem Physiol. 1995; 33(2): 202–8. PubMed Abstract

22. Scharntum S, Nichols G Jr: Calcium metabolism of bone in vitro. Influence of bone cellular metabolism and parathyroid hormone. J Clin Invest. 1961; 40(11): 2083–91. PubMed Abstract | Publisher Full Text | Free Full Text

23. Carone FA, Epstein FH, Beck D, et al.: The effects upon the kidney of transient hypercalcemia induced by parathyroid extract. Am J Pathol. 1960; 36: 77–103. PubMed Abstract | Publisher Full Text | Free Full Text

24. Harrison HE, Harrison HC: The renal excretion of inorganic phosphate in relation to the action of vitamin D and parathyroid hormone. J Clin Invest. 1941; 20(1): 47–55. PubMed Abstract | Publisher Full Text | Free Full Text

25. Traebert M, Völkl H, Biber J, et al.: FGF23 promotes renal proximal tubule Na/H transport. Pflugers Arch. 2013; 465(2): 215–37, v–vi. PubMed Abstract | Publisher Full Text

26. Hebert SC, Brown EM, Harris HW: Calcium absorption and vitamin D. Physiol Rev. 1984; 64(2): 345–82. PubMed Abstract | Publisher Full Text | Free Full Text

27. Hewison M, Zehnder D, Bland R, et al.: The effects upon the kidney of 1-alpha-hydroxylase and the action of vitamin D. J Mol Endocrinol. 2000; 25(2): 141–6. PubMed Abstract | Publisher Full Text | Free Full Text

28. Hebert SC, Brown EM, Harris HW: Role of the Ca2+-sensing receptor in divalent mineral ion homeostasis. J Exp Biol. 1997; 200(Pt 2): 295–302. PubMed Abstract | Publisher Full Text | Free Full Text

29. Liu S, Tang W, Zhou J, et al.: Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006; 17(5): 1305–15. PubMed Abstract | Publisher Full Text | Free Full Text

30. Erben RG, Andrukhova O: FGF23-Klotho signaling axis in the kidney. Bone. 2017; 100: 62–8. PubMed Abstract | Publisher Full Text | Free Full Text

31. Andrukhova O, Zeitl U, Goetz R, et al.: FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012; 51(3): 621–8. PubMed Abstract | Publisher Full Text | Free Full Text

32. Andrukhova O, Smorodchenko A, Egbecher M, et al.: FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014; 33(3): 229–46. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

33. Alexander RT, Woudenberg-Vrenken TE, Buurman J, et al.: Klotho prevents renal

Grant information

Work in the Alexander laboratory is funded by grants from the Women and Children’s Health Research Institute, which is supported by the Stollery Children’s Hospital Foundation, the Canadian Institutes of Health Research (MOP 136891), the National Sciences and Engineering Research Council, and the Kidney Foundation of Canada. HD is supported by Fabrikant Vilhelm Pedersen og Hustrus Mindelegat, the Novo Nordisk Foundation, the Carlsberg Foundation, the A.P. Möller Foundation, the Beckett Foundation, the Lundbeck Foundation, and the Danish Medical Research Council. MB is supported by a Vanier Canada Graduate Scholarship.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Page 10 of 14
kinase phosphorylation-dependent and independent mechanisms. J Biol Chem. 1997; 272(45): 28672–28679. PubMed Abstract | Publisher Full Text

82. Yip JW, Ko WH, Viberi G, et al.: Regulation of the epithelial brush border Na/H+ exchanger isoform 3 stably expressed in fibroblasts by fibroblast growth factor and phorbol esters is not through changes in phosphorylation of the exchanger. J Biol Chem. 1997; 272(29): 18473–80. PubMed Abstract | Publisher Full Text

83. Weinman EJ, Stemple D, Wang Y, et al.: Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na(+)/H+ exchanger. J Clin Invest. 1995; 95(5): 2143–9. PubMed Abstract | Publisher Full Text

84. Yun CH, Oh S, Zizak M, et al.: AMP-mediated inhibition of the epithelial brush border Na/H+ exchanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci U S A. 1997; 94(7): 3010–5. PubMed Abstract | Publisher Full Text | Free Full Text

85. Derrickson BH, Mandel LJ.: Parathyroid hormone inhibits Na(+)-K(+) +ATPase through Gq/G11 and the calcium-independent phospholipase A2. Am J Physiol. 1997; 272(6 Pt 2): F781–8. PubMed Abstract

86. Satoh T, Cohen HT, Katz AI.: Different mechanisms of renal Na-K-ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol. 1993; 265(3 Pt 2): F399–405. PubMed Abstract

87. Ominato M, Satoh T, Katz AI.: Regulation of Na-K-ATPase activity in the proximal tubule: role of the protein kinase C pathway and of eicosanoids. J Membr Biol. 1996; 152(2): 233–43. PubMed Abstract | Publisher Full Text

88. Khudmiri SJ, Ameen M, Delamere NA, et al.: Conditional immortalization human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor. Am J Physiol Renal Physiol. 2003; 285(6): F1233–43. PubMed Abstract | Publisher Full Text | Full Text | F1000 Recommendation

89. Graca JAZ, Schepelman M, Brennan SC, et al.: Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. Am J Physiol Renal Physiol. 2016; 310(6): F518–33. PubMed Abstract | Publisher Full Text | Full Text | F1000 Recommendation

90. Ba J, Brown D, Friedman PA.: Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol. 2000; 278(5): F1223–34. PubMed Abstract | Publisher Full Text | Full Text | F1000 Recommendation

91. Capasso G, Geibel PJ, Damianio S, et al.: The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int. 2013; 84(2): 277–84. PubMed Abstract | Publisher Full Text | F1000 Recommendation

92. Banan DT, Marcy TW.: Evidence for a defect in vitamin D metabolism in a patient with incomplete Fanconi syndrome. J Endocrinol Metab. 1984; 59(9): 998–1001. PubMed Abstract | Publisher Full Text

93. Szczepanska M, Zariane M, Recker F, et al.: Dent disease in children: diagnostic and therapeutic considerations. Clin Nephrol. 2015; 84(4): 222–30. PubMed Abstract | Publisher Full Text | Full Text

94. Meier W, Blumberg A, Imahom W, et al.: Idiopathic hypercalciuria with bilateral macrocoloboma: a new variant of oculo renal syndrome. Hev Paediatr Acta. 1979; 34(3): 257–69. PubMed Abstract

95. Pook MA, Wrong O, Wooding C, et al.: Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mutat. Genet. 1993; 2(12): 2129–34. PubMed Abstract | Publisher Full Text

96. Hippari R, Hone D, Recker F, et al.: Dent disease with mutations in OCRL1. Am J Hum Genet. 2005; 76(2): 260–7. PubMed Abstract | Publisher Full Text | Full Text

97. Picillo A, Pusch M.: Choline/proton antiporter activity of mammalian CLC proteins CLC-4 and CLC-5. Nat. Rev. 2004; 348(12): 420–3. PubMed Abstract | Publisher Full Text | Full Text

98. Lowe M.: Structure and function of the Lowe syndrome protein OCRL1. Traffic. 2005; 6(9): 711–9. PubMed Abstract | Publisher Full Text

99. Fauz M, Bushinsky D, Lemann J.: Regulation of calcium, magnesium, and phosphate metabolism. In: Primer On The Metabolic Bone Diseases and Disorders of Mineral Metabolism. 6th. Am Harbor: American Society for Bone and Mineral Research; 2006: 76–83. Reference Source

100. Sabbagh Y, Giral R, Ward J, et al.: Dietary phosphate and parathyroid hormone alter the expression of the calcium-sensing receptor (CaR) and the Na-dependent Pi transporter (NaPi-2) in the rat proximal tubule. Pflugers Arch. 2000; 441(2–3): 379–87. PubMed Abstract | Publisher Full Text

101. Tassone F, Gianotti L, Emmolo I, et al.: Calcium-sensing receptor regulation by protein kinases in proximal and distal nephron. Am J Physiol Renal Physiol. 1997; 273(5 Pt 1): F1220–6. PubMed Abstract | Publisher Full Text | Full Text | F1000 Recommendation

102. Forster IC, Loo DD, Eskandari S.: Stoichiometry and Na+ binding cooperativity.
of rat and flounder renal type II NaPi cotransporters. Am J Physiol. 1999; 276(4 Pt 2): F644–9. Published Abstract

Segawa H, Kano T, Nakashima A, et al.: Growth-related renal type II NaPi cotransporter. J Biol Chem. 2002; 277(22): 19665–72. Published Abstract | Publisher Full Text

Bai L, Collins JF, Ghosh PK: Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol Cell Physiol. 2000; 278(4): C1135–43. Published Abstract

Bartter P, Hede SE, Grunnet M, et al.: Characterization of transport mechanisms and determination of critical for Na-dependent transport of the P.T paralogs human PHT1 and PHT2. Am J Physiol Cell Physiol. 2006; 291(6): C1377–87. Published Abstract

Segawa H, Onitsuka A, Furutani J, et al.: Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol. 2009; 297(3): F671–8. Published Abstract | Publisher Full Text

Tenenhouse HS, Martel J, Gautier C, et al.: Differential effects of Npt2a gene ablation and x-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003; 285(4): F1277–8. Published Abstract | Publisher Full Text

Beck L, Karaplis AC, Azumzuka N, et al.: Targeted inactivation of Npt2d in mice leads to severe renal phosphate wasting, hypercalcemia, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1999; 96: 5372–7. Published Abstract | Publisher Full Text | Free Full Text

Dinour D, Davidovits M, Gannon L, et al.: Loss of function of NpHaCaI causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016; 31(12): 2289–97. Published Abstract | Publisher Full Text

Magen D, Berger L, Coady MJ, et al.: A loss-of-function mutation in NpHaCaI and renal Fanconi’s syndrome. N Engl J Med. 2010; 362(6): 1102–9. Published Abstract | Publisher Full Text

Lorenz-Deperieux B, Benet-Pages A, Eckstein G, et al.: Hereditary hypophosphatemic rickets with hypercalcemia is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006; 78(2): 193–201. Published Abstract | Publisher Full Text | Free Full Text

Bergwitz C, Roslin NM, Tieder M, et al.: SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalcemia predict a key role for the sodium-phosphate cotransporter NaPiIIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006; 78(2): 179–92. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Ansermet C, Moor MB, Centeno G, et al.: Matrix extracellular phosphoglycoprotein as a causative factor of tumor-induced osteomalacia. J Biol Chem. 2006; 281(27): 27935–42. Published Abstract | Publisher Full Text | Free Full Text

Picard N, Capuauro P, Stange G, et al.: Acute parathyroid hormone differentially regulates renal brush border membrane phosphate transporters. Pflugers Arch. 2010; 460(3): 677–87. Published Abstract | Publisher Full Text

Segawa H, Yamazaki M, Orzco O, et al.: Cloning and characterization of the novel type IIa NaPi cotransporter gene Npt2a. J Biol Chem. 2000; 275(5): 3045–9. Published Abstract | Publisher Full Text

Bacic D, Lehml B, Biber J, et al.: The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 2006; 69(3): 495–503. Published Abstract | Publisher Full Text

Kempson SA, Lüthmer M, Kaisling B, et al.: Parathyroid hormone action on phosphate transporter mRNA and protein in rat proximal tubules. Am J Physiol. 1995; 269(4 Pt 2): F784–91. Published Abstract

Gisler SM, Pribanic S, Bacic D, et al.: PDZK1: I. a major scaffold in brush borders of proximal tubular cells. Kidney Int. 2003; 64(6): 1733–45. Published Abstract | Publisher Full Text

Gisler SM, Staub CM, Trautb M, et al.: Interaction of the type IIa NaPi cotransporter with PDZ proteins. J Biol Chem. 2001; 276(12): 9006–13. Published Abstract | Publisher Full Text

Dobbe H, Urwin RJ, Farin NJR, et al.: Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrol Dial Transplant. 2008; 23(2): 730–3. Published Abstract | Publisher Full Text

Weinman EJ, Steplock D, Cha B, et al.: PTH transiently increases the percent mobile fraction of Npt2a in OK cells as determined by FRAP. Am J Physiol Renal Physiol. 2009; 297(6): F1560–5. Published Abstract | Publisher Full Text | Free Full Text

Courbebauc M, Lercy C, Bakhou N, et al.: A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PLoS ONE. 2012; 7(4): e34474. Published Abstract | Publisher Full Text | Free Full Text

Kamir Z, Gérard B, Bakhou N, et al.: NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008; 359(11): 1128–35. Published Abstract | Publisher Full Text | Free Full Text

Larsson T, Marsell R, Schipani E, et al.: Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha(1c) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2000; 145(7): 3078–94. Published Abstract | Publisher Full Text

Yam X, Yokote H, Jing X, et al.: Fibroblast growth factor 23 reduces expression of type IIa NaPi co-transporter by activating through a receptor functionally distinct from the known FGFRs in opossum kidney cells. Genes Cells. 2005; 10(5): 489–502. Published Abstract | Publisher Full Text

Yamazaki M, Orzco O, Okada T, et al.: Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem. 2010; 111(5): 1210–21. Published Abstract | Publisher Full Text | Free Full Text

Gattinini J, Bates C, Twomey K, et al.: FGF23 decreases renal NaPi-IIa and NaPi-IIc expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009; 297(2): F298–91. Published Abstract | Publisher Full Text | Free Full Text

Gattinini J, Alphonse P, Zhang Q, et al.: Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014; 306(3): F351–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Shimada T, Kimura S, Matsumoto Y, et al.: Targeted ablation of Flg23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004; 113(4): 561–8. Published Abstract | Publisher Full Text | Free Full Text

Shimada T, Mizutani S, Muto T, et al.: Cloning and characterization of Flg23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98(11): 6500–5. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Bacic D, Schulz N, Biber J, et al.: Implication of the MAPK kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na/Pi cotransporter in mouse kidney. Pflugers Arch. 2003; 446(1): 52–60. Published Abstract | Publisher Full Text | Free Full Text

Nair D, Misra RP, Salis JD, et al.: Phosphochlorite inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem. 1997; 272(30): 18920–5. Published Abstract | Publisher Full Text

Julien M, Magne D, Masson M, et al.: Phosphate stimulates matrix Glu protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology. 2007; 148(2): 530–7. Published Abstract | Publisher Full Text | Free Full Text

Chong WH, Molindo AA, Chen CC, et al.: Tumor-induced osteomalacia. Endocr Relat Cancer. 2011; 18(3): R53–77. Published Abstract | Publisher Full Text | Free Full Text

Yang W, Wang S: Disruption of β-catatin binding to parathyroid hormone (PTH) receptor inhibits PTH-induced ERK1/2 activation. Biochem Biophys Res Commun. 2015; 464(1): 27–32. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Satoh N, Nakamura M, Suzuki M, et al.: Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport. Biochem Biophys Res Commun. 2015; 463(1): 971–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Rubinger D, Walil H, Popovtzer MM: 25-Hydroxycholecalciferol and 1,25-dihydroxycholecalciferol enhances phosphaturia in rats with reduced renal mass: evidence for a PTH-dependent mechanism. Miner Electrolyte Metab. 1990; 16(3): 348–54. Published Abstract

Gupta A, Winer K, Ezcur MJ, et al.: FGF-23 is elevated by chronic hypophosphatemia. J Clin Endocrinol Metab. 2008; 89(9): 4489–92. Published Abstract | Publisher Full Text

Page 13 of 14
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. Olivier Bonny ¹,² ¹ Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
   ² Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
   **Competing Interests:** No competing interests were disclosed.

2. Orson Moe ¹,² ¹ Department of Physiology, University of Texas Southwestern Medical Center, Dallas, USA
   ² Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, USA
   **Competing Interests:** No competing interests were disclosed.