First observation of the directed flow of $D^0$ and $\bar{D}^0$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

J. Adam,12 L. Adamczyk,2 J. R. Adams,35 J. K. Adkins,26 G. Agakishiev,24 M. M. Aggarwal,37 Z. Ahammed,57 I. Alekseev,3,31 D. M. Anderson,51 R. Aoyama,34 A. Apresyan,24 D. Arhipkin,5 E. C. Aschenauer,5 M. U. Ashraf,53 F. Atetalla,25 A. Attree,37 G. S. Averichev,24 V. Bairathi,32 K. Barish,9 A. J. Bassill,9 A. Behera,49 R. Bellwied,19 A. Bhati,33 A. K. Bhati,37 J. Biedeck,13 J. Blieckova,34 L. C. Bland,5 I. G. Borduyzhyn,3 J. D. Brandenburg,46,5 A. V. Brandin,31 J. Brysiewicz,9 I. Bunzarov,24 J. Butterworth,42 H. Caines,60 M. Calderón de la Barca Sánchez,7 D. Cebra,7 I. Chakaberia,25,5 P. Chaloupka,13 B. K. Chan,3 F. H. Chang,33 Z. Chang,5 N. Chankova-Bunzarova,24 A. Chatterjee,57 S. Chattopadhyay,57 J. H. Chen,17 X. Chen,45 J. Cheng,53 M. Cherney,12 W. Christie,5 H. J. Crawford,9 M. Csanád,15 S. Das,10 T. G. Dedovich,24 I. M. Deppner,18 A. A. Derevschikov,39 L. Didenko,5 C. Diks,38 X. Dong,27 J. L. Drachenberg,1 J. C. Dunlop,5 T. Edmonds,40 N. Eley,59 J. Engelke,6 G. Eppeley,42 R. Esha,8 S. Esumi,54 O. Evdokimov,11 J. Ewigleben,28 O. Eyser,5 R. Fatemi,26 S. Fazio,5 P. Federici,34 J. Fedorisen,24 Y. Feng,49 P. Filip,24 E. Finch,49 Y. Fisyak,5 L. Fulek,2 C. A. Gagliardi,51 T. Galatyuk,14 F. Geurts,42 A. Gibson,56 D. Grosnick,56 A. Gupta,23 W. Gurya,5 A. I. Hamad,25 A. Hamed,51 J. W. Harris,60 L. He,40 S. Heppelmann,38 N. Herrmann,18 L. Holub,13 Y. Hong,27 S. Horvat,60 B. Huang,11 H. Z. Huang,38 S. L. Huang,49 T. Huang,33 X. Huang,53 T. J. Humnic,35 P. Huo,49 G. Igo,8 W. W. Jacobs,21 A. Jentsch,52 J. Jia,5,49 K. Jiang,15 S. Jowzaee,59 X. Ju,45 E. G. Judd,9 S. Kabana,25 S. Kagamaster,28 D. Kalinkin,21 K. Kang,53 D. Kapukchyan,9 K. Kander,5 H. W. Ke,8 D. Keane,25 A. Kecelis,24 M. Kelsey,27 Y. V. Khzyzhniak,31 D. P. Kikola,58 C. Kim,9 T. A. Kinghorn,7 I. Kisel,16 A. Kisiel,58 M. Kocan,13 L. Kochenda,31 L. K. Kosarzewski,13 L. Kramarik,13 P. Kravtsov,31 K. Krueger,4 N. Kulathunga Mudiyanselage,19 L. Kumar,37 R. Kumarwalkam Elavavalli,59 J. H. Kwasizur,21 R. Lacey,49 J. M. Landgraf,5 J. Lauret,5 A. Lebedev,5 R. Lednicky,24 J. H. Lee,5 C. Li,45 W. Li,57 W. Li,42 X. Li,45 Y. Li,53 Y. Liang,25 R. Licenik,13 T. Liu,51 A. Lipiec,58 M. A. Lisa,35 F. Liu,10 H. Liu,21 P. Liu,49 P. Liu,47 T. Liu,60 X. Liu,35 Y. Liu,31 Z. Liu,45 T. Ljubicic,5 W. J. Llope,59 M. Lomnitz,27 R. S. Longacre,5 S. Luo,11 X. Luo,10 G. L. Ma,47 L. Ma,17 R. Ma,5 Y. G. Ma,47 N. Magdy,11 R. Majka,60 D. Mallick,32 M. Margetis,25 C. Markert,52 H. S. Matis,27 O. Matonoha,13 J. A. Mazer,43 K. Meehan,7 J. C. Mei,46 N. G. Minea,39 S. Mioduszewski,51 D. Mishra,32 B. Mohanty,32 M. M. Mondal,22 I. Mooney,59 Z. Moravcová,13 D. A. Morozov,39 Md. Nasim,8 K. Nayak,10 J. M. Nelson,6 D. B. Nenes,60 M. Nie,46 G. Nigmatulov,31 T. Niida,59 L. V. Nogach,39 T. Nonaka,10 G. Odyneiec,27 A. Ogawa,5 K. Oh,41 S. Oh,60 V. A. Okorekov,31 B. S. Page,5 R. Pak,5 Y. Panebratetz,24 B. Pawlik,36 D. Pawlowska,58 H. Pei,10 C. Perkins,6 R. L. Pintér,15 J. Pluta,58 J. Porter,27 M. Posik,50 N. K. Pruthi,37 M. Przybylcien,2 J. Putschke,59 A. Quintero,50 S. K. Radhakrishnan,27 S. Ramachandran,26 R. L. Ray,52 R. Reed,28 H. G. Ritter,27 J. B. Roberts,42 O. V. Rogachevskiy,24 L. J. Romero,7 L. Ruan,5 J. Rusnak,34 O. Rusnakova,13 N. R. Sahoo,51 P. K. Sahu,22 S. Salur,43 J. Sandweiss,60 J. Schambach,52 W. B. Schmidtke,5 N. Schnitz,29 B. R. Schweid,49 F. Seck,14 J. Seger,12 M. Sergeeva,8 R. Seto,9 P. Seyboth,29 N. Shah,47 E. Shahaliev,24 P. V. Shammuganathan,28 M. Shao,45 F. Shen,46 W. Q. Shen,47 S. S. Shi,10 Q. Y. Shou,47 E. P. Sichtermann,27 S. Siejka,58 R. Sikora,2 M. Simko,34 J. Singh,37 S. Singha,29 D. Smirnov,5 N. Smirnov,60 W. Solyst,21 P. Sorensen,5 H. M. Spinka,4 B. Srivastava,44 T. D. S. Stanislaus,56 M. Stefaniak,58 D. J. Stewart,60 M. Strikhanov,31 B. Stringfeld,40 A. A. P. Suade,44 T. Sugiuara,54 M. Sumbera,34 B. Summa,38 X. M. Sun,30 Y. Sun,45 Y. Sun,20 B. Surrow,50 D. N. Svirda,3 P. Szymanski,5 A. H. Tang,5 Z. Tang,45 A. Taranenko,31 T. Tarnowsky,30 J. H. Thomas,27 A. R. Timmins,19 D. Tlusty,52 T. Todori,24 M. Tokarev,24 A. C. Tomkiewicz,28 S. Trentalange,8 R. E. Tribble,51 P. Trivedy,5 S. K. Tripathy,22 O. D. Tsai,8 B. Tu,10 T. Ullrich,5 D. G. Underwood,4 I. Upsal,46 G. Van Buren,5 J. Vanek,34 A. N. Vassiliev,39 I. Vassiliev,16 F. Videbeek,5 S. Vokal,24 S. A. Voloshin,59 F. Wang,40 G. Wang,8 P. Wang,15 Y. Wang,10 Y. Wang,53 J. C. Webb,5 L. Wen,8 G. D. Westfall,30 H. Wiemann,27 S. W. Wissink,21 R. Witt,55 Y. Wu,25 Z. G. Xiao,53 G. Xie,11 W. Xie,40 H. Xu,20 N. Xu,27 Q. H. Xu,46 Y. F. Xu,47 Z. Xu,5 C. Yang,46 Q. Yang,46 S. Yang,5 Y. Yang,33 Z. Ye,42 Z. Ye,11 L. Yi,46 K. Yip,5 I. K. Yoo,41 H. Zbroszczyk,58 W. Zhu,46 D. Zhang,10 L. Zhang,10 S. Zhang,45 S. Zhang,45 X. P. Zhang,53 Y. Zhang,45 Z. Zhang,47 J. Zhao,40 C. Zhong,57 C. Zhou,47 X. Zhu,53 Z. Zhu,46 M. Zurek,27 and M. Zyzyk16

(STAR Collaboration)

1 Abilene Christian University, Abilene, Texas 79699
We report the first measurement of rapidity-odd directed flow \( (v_1) \) for \( D^0 \) and \( \bar{D}^0 \) mesons at mid-rapidity \((|y|<0.8)\) in Au+Au collisions at \( \sqrt{s_{NN}} = 200 \text{ GeV} \) using the STAR detector at the Relativistic Heavy Ion Collider. In 10–80% Au+Au collisions, the slope of the \( v_1 \) rapidity dependence \((dv_1/dy)\), averaged over \( D^0 \) and \( \bar{D}^0 \) mesons, is \(-0.080 \pm 0.017 \text{ (stat.)} \pm 0.016 \text{ (syst.)} \) for transverse
momentum $p_T$ above 1.5 GeV/c. The absolute value of $D^0$-meson $dv_1/dy$ is about 25 times larger than that for charged kaons, with 3.4$\sigma$ significance. These data give a unique insight into the initial tilt of the produced matter, and offer constraints on the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.

PACS numbers: 25.75.Ld, 25.75.Dw

An important goal of relativistic heavy-ion collisions is to understand the production and dynamics of strongly interacting matter produced at high energy densities. The collective motion of particles emitted in such collisions is of special interest because of their sensitivity to the initial stages of the collision, when production of a deconfined Quark-Gluon Plasma (QGP) phase is expected. The directed flow ($v_1$) of particles is characterized by the first harmonic Fourier coefficient in the azimuthal distribution relative to the reaction plane. A hydrodynamic calculation with a tilted initial QGP source can explain the observed negative $v_1$ slope or “anti-flow” near midrapidity, for charged hadrons measured at RHIC energies. However, additional contributions to the directed flow could result from a dipole-like density asymmetry, nuclear shadowing, or a difference in density gradients in different directions within the transverse plane. The study of heavy quarks in heavy-ion collisions is especially important due to their early creation. Owing to their large masses, heavy quarks are predominantly produced in initial hard scatterings and their relaxation time in the QGP medium is comparable to the lifetime of the QGP. Consequently, heavy quarks are an excellent probe to study QGP dynamics.

The transverse momentum ($p_T$) spectra and elliptic flow ($v_2$) of $D^0$ mesons at midrapidity have been measured at RHIC and LHC energies. The magnitude of $v_2$ for the charm hadrons is found to follow the number-of-constituent-quark (NCQ) scaling pattern observed for light hadron species in non-central heavy-ion collisions. Furthermore, charm hadron yields are observed to be significantly suppressed at high $p_T$, similar to light hadron species in central heavy-ion collisions. Simultaneous descriptions of $v_2$ and nuclear modification factors ($R_{AA}$) have been used to constrain the QGP transport parameters for heavy quarks, such as its drag and diffusion coefficients.

A recent model calculation utilizing Langevin dynamics coupled to a hydrodynamic medium with a tilted initial source, predicted a significantly larger $v_1$ for $D$-mesons compared to light flavor hadrons. A notable feature is the strong sensitivity of $D$-meson $v_1$ to the initial tilt of the QGP source compared to that of light hadrons. The magnitude of the observed heavy quark $v_1$ is also sensitive to QGP transport parameters in the hydrodynamic calculation.

It is further predicted that the transient magnetic field generated in heavy-ion collisions can induce a larger directed flow for heavy quarks than for light quarks due to the Lorentz force. The $v_1$ induced by this initial electromagnetic (EM) field is expected to have the same magnitude, but opposite charge sign for charm ($c$) and anti-charm ($\bar{c}$) quarks. This suggests that the $v_1$ measurements of heavy quarks could offer crucial insight into the properties of the initial EM field. A hydrodynamic model calculation which includes both the initially tilted source and the EM field predicts that the $D$-mesons will have a significant $v_1$ as a function of rapidity ($y$) and a splitting is to be expected between $D$-mesons and $\bar{D}$-mesons due to the initial magnetic field.

In this Letter, we report the first measurement of rapidity-odd directed flow for $D^0$ and $\bar{D}^0$ mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the STAR experiment. We utilize the Heavy Flavor Tracker (HFT), a high-resolution silicon detector consisting of four cylindrical layers. Beginning at the largest radius, there is one layer of Silicon Strip Detector (SSD), one layer of Intermediate Silicon Tracker (IST), and two layers of Pixel Detectors (PXL). The reconstruction of heavy-flavor hadrons is greatly enhanced due to the excellent track pointing resolution and secondary vertex resolution offered by the HFT. STAR collected minimum-bias (MB) triggered events with the HFT during the years 2014 and 2016. The MB events were selected by a coincidence between the east and west Vertex Position Detectors (VPD) located at pseudorapidity $|\eta| < 4.9$. To ensure good HFT acceptance, the reconstructed primary vertex along the $z$-direction is required to be within 6 cm of the center of the detector. Approximately 2.2 billion MB triggered good quality events are used in this analysis.

The $D^0$ and $\bar{D}^0$ mesons are reconstructed via their hadronic decay channel: $D^0(\bar{D}^0) \rightarrow K^−\pi^+(K^+\pi^-)$ (branching fraction 3.89%, $c\tau \sim 123$ μm). Hereafter, $D^0$ refers to the combined $D^0$ and $\bar{D}^0$ samples, unless explicitly stated otherwise. The charged particle tracks are reconstructed using the Time Projection Chamber (TPC) together with the HFT in a uniform 0.5 T magnetic field. The collision centrality is determined from the number of charged particles within $|\eta| < 0.5$ and corrected for trigger inefficiency using a Monte Carlo Glauber simulation. Good quality tracks are ensured by requiring a minimum of 20 TPC hits (out of a possible 45), hits in both layers of PXL, at least one hit in the IST or SSD layer. Further, the tracks are required to
have transverse momentum $p_T > 0.6$ GeV/c and pseudorapidity $|y| < 1$. The $D^0$ decay daughters are identified via specific ionization energy loss $(dE/dx)$ inside the TPC and from $1/\beta$ measurements by the Time of Flight (TOF) detector. To identify particle species, the $dE/dx$ is required to be within three and two standard deviations from the expected values for $\pi$ and $K$, respectively. When tracks are associated with the hits in the TOF detector, the $1/\beta$ is required to be within three standard deviations from the expected values for both $\pi$ and $K$.

The $D^0$ decay vertex is reconstructed as the mid-point of the distance of closest approach between the two decay daughter tracks. Background arises due to random combinations of tracks passing close to the collision point. The decay topological cuts are tuned to reduce the background and enhance the signal-to-background ratio. The topological cut variables are optimized using the Toolkit for Multivariate Data Analysis (TMVA) package and are discussed in Refs. [21, 31].

The $D^0$ event plane (Ψ$_1$) is measured by using the east and west Zero Degree Calorimeter Shower Maximum Detectors (ZDC-SMD) [14–16, 44, 45], which are located at $|y| > 6.3$. Since the $v_1$ signal is strong at forward rapidity, the ZDC-SMD provides better first-order event plane resolution than detectors closer to midrapidity. Moreover, the five units of $y$ gap between the ZDC-SMDs and the TPC and HFT significantly reduce possible systematic error in $v_1$ arising from non-flow effects [10, 11]. Such effects could result from resonances, jets, quantum statistics, and final-state interactions like Coulomb effects. Systematic uncertainties arising from event-plane estimation are at the level of less than 2% and are discussed in Ref. [46].

The $D^0$ $v_1$ is calculated using the event plane method [9–11]. Figures 1(a) and 1(b) show the $D^0$ and $\overline{D^0}$ invariant mass spectra for 0.0 < $y$ < 0.4 and $p_T > 1.5$ GeV/c in 10–80% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The choice of 10–80% centrality is driven by the fact that the first-order event plane resolution from ZDC-SMD drops considerably in the 0-10% central collisions. The $D^0$ acceptance, in rapidity and azimuthal angle, under such kinematic selection cuts is uniform across the measured rapidity region. The invariant mass distributions were fitted with a Gaussian plus a first-order linear polynomial function. The linear function provides a good estimate of the random combinatorial background. The yield is obtained by integrating the distribution in the range 1.82–1.91 GeV/c$^2$ and subtracting the background beneath the signal. The $D^0(\overline{D^0})$ yield is obtained in each $\phi$–Ψ$_1$ bin in four rapidity windows. Figures 1(c) and 1(d) present $D^0$ and $\overline{D^0}$ yields as a function of $\phi$–Ψ$_1$ for 0.0 < $y$ < 0.4. The value of $v_1$ is calculated by fitting the data with a functional form $p_0 [1 + 2v_1^{obs} \cos (\phi - \Psi_1)]$, indicated by the solid lines in the figure. The ZDC-SMD event plane resolution correction factors are obtained in seven centrality bins. For a wide centrality bin (10–80%), it is determined from the $D^0$-yield-weighted mean of the individual centrality bins’ resolutions using a procedure detailed in Ref. [14]. The final $v_1$ is corrected by scaling $v_1^{obs}$ with the event plane resolution (0.363).

Systematic uncertainties are assessed by comparing the $v_1$ obtained from various methods. These comparisons include (i) the fit vs. side-band methods for the background estimation and (ii) various invariant mass fitting ranges and residual background functions (first-order vs. second-order polynomials) for signal extractions, (iii) histogram bin counting vs. functional integration for yield extraction, (iv) varying topological cuts so that the efficiency changes by ± 50% with respect to the nominal value, (v) varying event and track level quality cuts (vi) varying particle identification cuts. The above comparisons are varied independently to form multiple combinations. For the final systematic uncertainty on the $v_1(y)$ and $dv_1/dy$, the difference between the default settings and alternative measurements from these sources are added in quadrature. Further, the systematic uncertainty in each rapidity bin is symmetrized by considering the maximum uncertainty between $D^0$ and $\overline{D^0}$.
In Fig. 2, the filled circle and star markers present the rapidity dependence of $v_1$ for the $D^0$ and $\bar{D}^0$ mesons with $p_T > 1.5$ GeV/c in 10–80% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. It is a common practice to present the strength of $v_1$ via its slope at midrapidity. The $D^0$ ($\bar{D}^0$) $v_1$-slope ($dv_1/dy$) is calculated by fitting $v_1(y)$ with a linear function constrained to pass through the origin, as shown by the solid (dot-dashed) line in Fig. 2. The $dv_1/dy$ for $D^0$ and $\bar{D}^0$ is $-0.086 \pm 0.025$ (stat.) $\pm 0.018$ (syst.) and $-0.075 \pm 0.024$ (stat.) $\pm 0.020$ (syst.), respectively. Figure 3(a) presents $v_1(y)$ averaged over $D^0$ and $\bar{D}^0$ (denoted $(v_1)$) for $p_T > 1.5$ GeV/c. The $dv_1/dy$ for the averaged $D^0$ mesons using a linear fit is $-0.080 \pm 0.017$ (stat.) $\pm 0.016$ (syst.). The $p$-value and $\chi^2$/NDF for the linear fit passing through the origin are 0.41 and 2.93/3 respectively. To perform a statistical significance test for a null hypothesis for the $v_1$ of the averaged $D^0$ and $\bar{D}^0$, we calculate the $\chi^2$ of the measured $(v_1)$ values set to a constant at zero. The resulting $\chi^2$/NDF and $p$-value are 14.9/4 and 0.005 respectively, indicating that the data prefer a linear fit with a non-zero slope. The $D^0$ $v_1(y)$ results are compared to charged kaons, shown by open square markers in Fig. 3(a). The kaon $v_1(y)$ is measured for $p_T > 0.2$ GeV/c. Note that the $\langle p_T \rangle$ for kaons is 0.63 $\pm$ 0.04 GeV/c while that for $D^0$ mesons is 2.24 $\pm$ 0.02 GeV/c in our measured $p_T$ acceptance for 10–80% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The $dv_1/dy$ of charged kaons, fit using a similar linear function, is $-0.0030 \pm 0.0001$ (stat.) $\pm 0.0002$ (syst.). The inset in Fig. 3(a) presents the ratio of the $v_1$ of the $D^0$ and charged kaons. The absolute value of the $D^0$-mesons $dv_1/dy$ is observed to be about 25 times larger than that of the kaons with a 3.4$r$ significance. Moreover, among the measurements by the STAR collaboration of $v_1(y)$ for eleven particle species in Au+Au collisions at 200 GeV [43], the nominal value of the $D^0$ $dv_1/dy$ is the largest.

In hydrodynamic models, the “antiflow” nature of rapidity-odd directed flow is reproduced by an initial tilted source [12] where the tilt parameter is obtained from a fit to $v_1(y)$ for charged hadrons. A recent model calculation [32], where Langevin dynamics for heavy quarks are combined with a hydrodynamic medium and
a tilted initial source, predicted a larger $v_1$ slope for $D$ mesons compared to light hadrons. It has been argued that the large $d v_1 / d y$ for $D$ mesons is driven by the drag from the tilted initial bulk medium. A noteworthy feature in Ref. [32] is the sensitivity of $d v_1 / d y$ for $D$ mesons to the tilt parameter. Ref. [32] predicts that the $d v_1 / d y$ for $D$ mesons can be 5–20 times larger than for charged hadrons, in qualitative agreement with our data, depending on the choice of tilt and drag parameters.

An initial transient EM field can induce an opposite $v_1$ for charm and anti-charm quarks. The magnitude of such an induced $v_1$ is predicted to be several orders of magnitude larger than that for light hadron species due to the early formation of charm quarks [33, 34]. Recently, the authors of Ref. [32] updated their model calculations, and predicted that the $D$-meson $v_1$ contribution from the tilted initial source dominates over the contribution from the initial EM-field [35]. The measured $D^0 \langle v_1(y) \rangle$ is compared to such model calculations (solid line) in Fig. 3(a). The model comparison for $D^0$ plus $\bar{D}^0$ indicates that the model gives the correct sign of $d v_1 / d y$ but the $v_1$ magnitude is underestimated when using the model parameters of Ref. [35]. The current measurements could help to constrain the model parameters such as the tilt and charm drag coefficients.

In Fig. 3(a), the $\langle v_1 \rangle$ measurements are also compared to a calculation using A-Multi-Phase-Transport (AMPT) model [47] shown by the dashed line. In this calculation, although the initial rapidity-odd eccentricity (in spatial coordinates) for heavy quarks is smaller than for light quarks, the magnitude of $v_1$ for heavy flavor hadrons is approximately seven times larger than that for light hadrons at large rapidity. The AMPT calculation also suggests that, as a result of being heavy and produced early, the charm hadrons have an enhanced sensitivity to the initial dynamics, over that for light hadrons. This calculation underpredicts the data.

Figure 3(b) shows the difference between $D^0$ and $\bar{D}^0 \langle v_1(y) \rangle$ (denoted $\Delta v_1$) measured in 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The $\Delta v_1$ slope is fitted with a linear function through the origin to give $-0.011 \pm 0.034$ (stat.) $\pm 0.020$ (syst.). The dashed and solid lines in Fig. 3(b) presents the $\Delta v_1$ expectation from two models. The solid line (labeled "Hydro+EM") is the expectation from the model with effects from both an initially tilted source and an initial EM field [32], while the dotted line is the expectation from the initial EM field only [32]. From these models, the predicted $\Delta v_1$ slope for the charm hadrons lie within the range -0.008 to -0.004. However, different values of medium conductivity and time evolution of the EM fields, as well as the description of charm quark dynamics in the QGP can cause large variations in the charge dependent $v_1$ splitting. The present predictions of $\Delta v_1$ are smaller than the current precision of the measurement. Nonetheless, the measurement could provide constraints on the possible variations of the parameters characterizing the EM field and charm quark evolution in the QGP.

In summary, we report the first observation of rapidity-odd directed flow ($v_1(y)$) for $D^0$ and $\bar{D}^0$ mesons separately, and for their average, in 10–80% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using the STAR detector at RHIC. The $v_1$ slope ($d v_1 / d y$) of $D^0$ mesons are observed to be about a factor of 25 times larger than that for charged kaons with a 3.4 $\sigma$ significance. The observation of a relatively larger and negative $v_1$ slope for charmed hadrons with respect to the light flavor hadrons can be qualitatively explained by a hydrodynamic model with an initially tilted QGP source [32] and by an AMPT model calculation. These data not only give unique insight into the initial tilt of the produced matter, they are expected to provide improved constraints for the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office (FK-123824), New National Excellency Programme of the Hungarian Ministry of Human Capacities (UNKP-18-4), Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF) and the Helmholtz Association.

[1] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).
[2] S. A. Chin, Phys. Lett. B78, 552 (1978).
[3] J. I. Kapusta, Nucl. Phys. B148, 461 (1979).
[4] R. Anishetty, P. Koehler, and L. D. McLerran, Phys. Rev. D 22, 2793 (1980).
[5] I. Arsene et al. (BRAHMS), Nucl. Phys. A757, 1 (2005).
[6] B. B. Back et al. (PHOBOS), Nucl. Phys. A757, 28 (2005).
[7] J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005).
[8] K. Adcox et al. (PHENIX), Nucl. Phys. A757, 184 (2005).
[9] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[10] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[11] A. Bilandzic, R. Snellings, and S. Voloshin, Phys. Rev. C 83, 044913 (2011).
[12] P. Bozek and I. Wyskiel, Phys. Rev. C 81, 054902 (2010).
[13] J. Brachmann, S. Sof, A. Dumitru, H. Stoecker, J. A. Maruhn, W. Greiner, L. V. Bravina, and D. H. Rischke, Phys. Rev. C 61, 024909 (2000).
[14] J. Adams et al. (STAR), Phys. Rev. C 73, 034903 (2006).
[15] B. I. Abelev et al. (STAR), Phys. Rev. Lett. 101, 252301 (2008).
[16] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 108, 202301 (2012).
[17] R. J. M. Snellings, H. Sorge, S. A. Voloshin, F. Q. Wang, and N. Xu, Phys. Rev. Lett. 84, 2803 (2000).
[18] U. W. Heinz and P. F. Kolb, J. Phys. G30, S1229 (2004).
[19] L. Adamczyk et al. (STAR), Phys. Rev. C 98, 014915 (2018).
[20] A. Andronic et al., Eur. Phys. J. C76, 107 (2016).
[21] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 118, 212301 (2017).
[22] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 113, 142301 (2014), Phys. Rev. Lett. 121, 229901 (E) (2018).
[23] B. Abelev et al. (ALICE), Phys. Rev. Lett. 111, 102301 (2013).
[24] B. B. Abelev et al. (ALICE), Phys. Rev. C 90, 034904 (2014).
[25] B. Abelev et al. (ALICE), JHEP 09, 112 (2012).
[26] J. Adams et al. (STAR), Phys. Rev. Lett. 92, 052302 (2004).
[27] B. I. Abelev et al. (STAR), Phys. Rev. C 75, 054906 (2007).
[28] S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 91, 182301 (2003).
[29] J. Adams et al. (STAR), Phys. Rev. Lett. 91, 172302 (2003).
[30] S. S. Adler et al. (PHENIX), Phys. Rev. C 69, 034910 (2004).
[31] J. Adam et al. (STAR), Phys. Rev. C 99, 034908 (2019).
[32] S. Chatterjee and P. Bozek, Phys. Rev. Lett. 120, 192301 (2018).
[33] S. K. Das, S. Phumari, S. Chatterjee, J. Alam, F. Scardina, and V. Greco, Phys. Lett. B768, 260 (2017).
[34] U. Gursoy, D. Kharzeev, and K. Rajagopal, Phys. Rev. C 89, 054905 (2014).
[35] S. Chatterjee and P. Bozek (2018), arXiv:1804.04893.
[36] K. H. Ackermann et al. (STAR), Nucl. Instrum. Meth. A499, 624 (2003).
[37] D. Beavis et al. (STAR Note SN0600) (2011).
[38] G. Contin et al., Nucl. Instrum. Meth. A907, 60 (2018).
[39] W. J. Llope et al., Nucl. Instrum. Meth. A522, 252 (2004).
[40] M. Anderson et al., Nucl. Instrum. Meth. A499, 659 (2003).
[41] B. I. Abelev et al. (STAR), Phys. Rev. C 79, 034909 (2009).
[42] B. Bonner, H. Chen, G. Eppley, F. Geurts, J. Lamas Valverde, C. Li, W. J. Llope, T. Nussbaum, E. Platner, and J. Roberts, Nucl. Instrum. Meth. A508, 181 (2003).
[43] H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt, PoS ACAT, 040 (2007).
[44] G. Wang (PhD thesis, Kent State University) (2005).
[45] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 112, 162301 (2014).
[46] H. Masui, A. Schmah, and A. M. Poskanzer, Nucl. Instrum. Meth. A833, 181 (2016).
[47] M. Nasim and S. Singha, Phys. Rev. C 97, 064917 (2018).