Evaluation of the shrinkage and creep of medium strength self compacting concrete

C J De La Cruz¹, G Ramos² and W A Hurtado¹

¹Universidad Nacional de Colombia, Facultad de Minas - Medellín, Colombia
²Universitat Politècnica de Catalunya, Barcelona, España

E-mail: cjcruz@unal.edu.co, gonzalo.ramos@upc.es and wahurtad@unal.edu.co

Abstract. The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politècnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

1. Introduction

Self Compacting Concrete (SCC) is characterized by its high workability and resistance to segregation. In its basic composition it has the same materials as conventional concrete (CC), but their characteristics are different fresh. The SCC containing a larger amount of fine and maximum aggregate size is less than a CC; also for mixing water-reducing high range they are used.

It is important to note that concrete with high volumes of pasta and low volumes aggregate exhibit higher shrinkage strains (Neville, 1996), (R. Loser et al, 2009). Under the same environmental conditions, the retraction curve - Time of a SCC is very similar to that of a CC (Xiao-jie Liu et al, 2008), (De La Cruz, 2006); when resistance also remains constant, the properties (when hardened) of SCC are similar to a CC (De La Cruz, 2006), (Persson, 2001), (Bravo, 2004).

For the performance of medium strength self-compacting concrete (SCC-MS) in the cured state, it was initially decided to make the shrinkage and creep tests up to 180 days (DEMEC and gauges embedded points) (De La Cruz, 2006). Finally results were obtained up to 629 days to start the test; with the idea of meeting the deferred behavior for this type of concrete. With the completion of these trials (shrinkage and creep), they wanted to know the degree of dimensional stability over time, two (2) types of SCC-MS specifically SCC-MS with cements CEM II 32.5 R and CEM I 42.5R; for water / cement (W / C) 0.45 and 0.42; since both SCC-MS had the best features of self-compactability and compression resistance than expected, at lower cost, as De La Cruz (2006). All tests were performed at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politècnica de Catalunya (UPC).
2. Experimental details
Two (2) batches were done for each type of SCC-MS (with CEM II 32.5 R CEM I 42.5 R and 120 liters each), in the forced action mixer LTE capacity of 250 liters.

Each SCC-MS were performed two (2) of characterization tests in fresh, as are trials Slump and Extension Bars with ring (De La Cruz, 2006), (Bravo, 2004), to verify self-compactability of concrete; because they are the two (2) that define processes quickly and reliably the behavior in fresh SCC. Three (3) specimens of each type of control SCC-MS were also developed for evaluating the compressive strength after curing in a humid chamber to specification UNE 83-301 (Gettu et al, 2000), at a temperature of 23 °C and humidity on 90%, tested at 28 days according to the UNE 83-304 (Gettu et al, 2000). Dosages and results of characterization tests are shown in Table 1. In the same batches 14 cylindrical samples, 150 x 300 mm were prepared; corresponding three (3) of each type of concrete for testing shrinkage and four (4) of each type of concrete for fluence.

Table 1. Dosages (Kg/m³) and fresh characterization and compression resistance in specimens SCC-MS [MPa]

Concrete	SCC-MS	SCC-MS
Type of Cement	II 32.5 R	42.5 R
W/C	0.45	0.42
Cement	392	340
Water	196	163
Additives	4.11	8.84
Sand 0-2	651	680
Sand 0-5	434	453
Gravel 5-12	723	756

Characterization Tests
Slump
T50 [s] D_t
[mm]
2
2
680
690
J. Ring
D_t
C.B
650
640
0.8
0.8
Real U.W
[Kg/m³]
2420
2420
Strength and C.V [MPa]
y [%]
30
2.9
42
2.2

These concretes were compared with a conventional concrete (CC) of the same strength. To evaluate deformations, the molds were provided with strain gauges (120 Q) of length 10 cm, arranged in the center of the vertical axis as shown in Figure 1. This is to capture the axial strain in the central third of the specimen.

Figure 1. Molds for specimens duly provided with strain gauges (De La Cruz, 2006)
Processed specimens for the tests were demolded at 24 hours of being emptied, they are polished and immersed in water in a tank located in the climate chamber with relative humidity (RH) of 50% at a temperature of 19 ° C, for 28 days.

3. **Shrinkage tests**

Drying shrinkage is determined for three (3) specimens of each type of SCC-MS. Once the samples were immersed in water they were connected to data acquisition equipment. This, with the idea of tracking the processes of deformation of the SCC-MS during curing. In Figure 2, the process sequence once the specimens manufactured for trials presented. After 28 days of curing in water, each specimen was adhered external measurement points (DEMEC) located each on its side surface 120° as shown in Figure 3.

![Figure 2. Procedure shrinkage and creep test on specimens of SCC-MS (De La Cruz, 2006)](image)

Other readings were completed 24 hours and continued to cure at 48 and 72 hours to 42 days. To have a better understanding and control of volumetric changes that could have the SCC-MS; in Figures 4 and 5, the behavior of specimens (ε values) occurs from the time the curing has ended and be kept in a climatic chamber for 42 days (RH 50% and temperature 19°C). Deformation monitoring with electronic readings during the curing time, for both concrete showed an expansion (deformation negative values), which was expected given the curing conditions to which the specimens were undergoing.

So, given the performance of the test conditions (curing in water), endogenous contribution is negligible and, therefore, the measured strains are mainly to drying shrinkage. As shown in the graphs below, the securities electronic gauges in the early hours of drying, have a rapid growth of the strain, which tends to increase more gradually to 24 hours after the two SCC-MSs. Hence, the behavior is very similar during retraction measured for both SCCs-MS.
In Table 2, the results of deformation are summarized shrinkage both methods (points DEMEC and average of electronic values embedded gauge), which shows that the specific values (old) are approximately equal from 19 days.

The trend and behavior of each individual specimen and their average age (three (3) specimens for concrete) compared to the average electronic readings from the two (2) days of curing be removed. The differences in average readings deformation of the two (2) methods. For each type of SCC-MS at 28 and 42 days it is approximately 18% with CEM II 32.5 R and 25% with CEM I 42.5 R (De La Cruz, 2006).

It seems that at the age of 19 days of trial, the concrete specimens manage both internal and external balance. So the data obtained with both methods are becoming very similar, if not the same after this age. The differences are not comparatively high if one considers that the strain readings with DEMEC points, were performed manually with higher possibility of error (attached implement points- and strain measurements- sample), and electronic values are taken directly from the data acquisition equipment (embedded gauges). So, given the performance of the test conditions (curing in water), endogenous contribution is negligible and, therefore, the measured strains are mainly to drying shrinkage.

In Table 3, the shrinkage of SCC-MSs at ages 28 and 42 days and the results are presented as further research to conventional concrete (CCs), as is the Gettu et al. (2000) and Structural Concrete, EHE (2003).
Table 2. Values of drying shrinkage measured in single specimen. (De La Cruz, 2006)

Drying time (days)	SCC-MS CEM II 32.5 R (microdeformations)	SCC-RM CEM I 42.5 R (microdeformations)										
	DEMEC	GAUGES	Average	C.V [%]	Average	DEMEC	GAUGES	Average	C.V [%]			
2	14	10	10	12	17	21	10	21	25	19	39	23
3	21	18	26	22	20	31	52	35	49	45	20	34
4	49	42	42	44	9	40	66	53	88	69	26	44
7	59	49	53	54	10	59	77	67	84	76	12	65
8	73	77	89	80	10	65	94	91	91	92	2	71

Table 3. Results of retraction points DEMEC and gauges in SCC-MS specimens (microdeformations) (Davies, 2006) (De La Cruz, 2006)

METHODOLOGY USED
Type of concrete
Days

If the results established by shrinkage compared Gettu et al. (2000) (EHE), the EHE (Article 39, Section 39.7) for a CC at 42 days, it is observed that for SCC-MS with CEM I 42.5 R is higher by 27%, and for the SCC-MS with CEM II 32.5 R is increased by 30%. These percentage differences are relative, as in studies for CC by Gettu et al. (2000) (EHE), increased shrinkage is obtained at 15% that of the SCC-MSs and 38% higher than that proposed by the Article 39 of the EHE (Gettu et al, 2000). As described, the values obtained with DEMEC points and gauges, are intermediates to research and the article being compared, on the premise that these proposals are given for CC.

Besides measurements taken manually, can have more precision errors (sticking points and readings)
with the embedded gauges, the results have not large percentage differences, suggesting verify the effectiveness of the measurements with both methods, being either I them suitable for determining shrinkage SCC-MSs.

One of the conclusions of De La Cruz (2006), regarding the shrinkage behavior of the SCC-MSs with different types of cement; for the same strength, they are similar. And also it notes that trends in the evolution of the shrinkage after 28 days of curing (considering zero (0) to read just after curing) for the two SCC-MSs are very similar during the 42 days of drying. In Figure 6, the evolution of the shrinkage occurring up to 530 days, the specimens SCC-MS with CEM II 32.5 R Reaching a maximum strain of 331 microstrain.

![Image](image1)

Figure 6. Evolution of drying shrinkage of SCC-MS with CEM II 32.5 R

Is fundamentally important to note that mentioned comparisons between concrete is based on mechanical and environmental properties are similar, regardless of the component materials.

4. Creep test

For the creep tests (ASTM C 512-87), they were prepared four (4) samples of each type of SCC-MS. The specimens were embedded strain gauges as shown in Figure 7, once demolded spot faced and were immersed in water for 28 days. As for the shrinkage test, once the SCC-MS (120 liters for each SCC-MS) obtained the procedure shown in Figures 1 and 2. After the curing is followed, a voltage was applied uniaxial compression equivalent to 40% of its compressive strength at the age of 28 days; that is for SCC-MS with CEM I 42.5 R of 17 MPa and with the SCC-MS CEM II 32.5 R of 12 MPa; oleopneumatic using racks of charge as shown in Figure 7.

In Table 4, results are summarized creep test deformation with both methods (DEMEC points and average values of the embedded electronic gauges).

![Image](image2)

Figure 7. Creep test in the LTE (De La Cruz, 2006)
Table 4. Values of creep measured in single specimen. (De La Cruz, 2006)

DAYS	SCC-MS CEM II 32.5 R (microdeformations)	SCC-RM CEM I 42.5 R (microdeformations)
	1 2 3 4 AV. C.V [%] GAUGES	1 2 3 4 AV. C.V [%] GAUGES
2	214 175 186 196 190 2 530 305 25 228 186 186 17 650	
3	249 227 301 284 260 7 590 343 409 340 238 330 9 700	
4	420 325 322 399 370 6 620 466 480 357 322 400 9 730	
7	406 392 403 427 410 3 690 504 550 413 381 460 9 800	
8	476 462 525 539 500 5 670 595 578 574 448 550 7 830	
14	637 633 642 630 640 1 830 742 648 644 606 660 6 940	
19	700 805 766 756 760 5 840 886 731 749 690 760 8 950	
21	721 822 781 798 780 5 840 900 742 819 728 790 7 960	
28	819 910 942 896 890 5 890 1001 928 872 826 910 6 1020	
42	956 1001 1117 1005 1020 6 1010 1120 1047 1001 917 1040 5 1080	

If the deformations are compared with two (2) methods for each type of concrete, you can see that they are showing the same values at 28 days with CEM II 32.5 R and with a difference of 11% with CEM I 42.5 R. A 42 days differences in the value of creep deformation between 4% and 6%. Electronic Observing the readings 28 and 42 days, the percentage difference between the two (2) SCC-MSs is 12%. It is older also the CEM I 42.5 R. That is consistent according to Mari’s comments and Cladera (2003).

In this paper partial data and the evolution of creep deformation (under constant pressure) of the SCC-MSs occur during the 629 days of being subjected to load in the racks (I report given by the LTE (records sent to Colombia by the LTE (UPC) / 2008)). This evolution occurs both with electronic readings of gauges, as with DEMEC points.

To determine the creep deformation, it must be subtracted from the total deformation (ε_{total}) (Eq. (1)) the initial deformation and shrinkage strain. The voltage- dependent deformation, at time t, for a constant voltage applied at t_0, can be estimated according to the Article 39 of the EHE (2003) (Gettu et al, 2000), the following criteria:

$$
\varepsilon_{total} = \sigma(t_0) \cdot \frac{1}{E_0,t_0} + \varphi(0-t_0) \cdot \frac{E_{0,28}}{E_0,t_0}
$$

Where:

- $\sigma(t_0)$: It is the constant applied tension in to
- E_{0,t_0}: Initial modulus of elasticity of concrete at the time of application to the load (defined in section 39.6 of the EHE (2003) (EHE)).
- $E_{0,28}$: Initial modulus of elasticity of concrete at 28 days of age (defined in section 39.6 of the EHE (2003)).
- $\varphi(t-t_0)$: Creep coefficient whose expression involves φ_0 basic creep coefficient.

Then the evolution of creep for SCC-MSs occurs after 530 days of experiment. In Figures 8 and 9, the evolution of creep deformation occurs in SCC-MSs with cements CEM I 42.5 R and CEM II 32.5 R (Barcelona-Spain).
To calculate the evolution of the flow coefficient (ϕ) two (2) SCC-MSs with electronic reading values (gauge), the following Eq. (2) is applied according to Article 39 of EHE (2003):

$$\phi = \frac{\varepsilon_{fluencia}}{\varepsilon_p} - 1$$ \hspace{1cm} (2)

With recent records deformation (microstrain) of the specimens prepared for determining shrinkage, creep coefficient (ϕ) and creep of the SCC-MSs, it is shown in Figure 10. Next, the evolution of creep coefficients (ϕ) for both concretes.

ϕ value, for SCC-MS with CEM II 32.5 R 629 days to prepare specimens, is 1.67, as shown in Figure 11. Similarly, the ϕ results are presented for SCC-MSs concretes with CEM I 42.5 R, up to 629 days:

As shown in the previous figure, ϕ values are lower for concrete with CEM I 42.5 R 50% at 28 days and 61% at 42 days, compared to the other concrete CEM II 32.5 R.

According to the results of De La Cruz (2006), which are presented in Table 5, in the same specimens and 169 days, ϕ it had a value of 1.15 for SCC-MS with CEM I 42.5 R. Establishing compared to Cc and SCC (Roncero et al, 2001) ϕ has a value of 0.80 and 0.81 respectively; which according to the experimental data to 629 days, it is 1.24 (see Figure 11).
Figure 10. Evolution of creep coefficient (ϕ) for SCC-MSs with CEM II 32.5 R and CEM I 42.5 R

Figure 11. Evolution of creep coefficient (ϕ) for SCC-MSs with CEM II 32.5 R and CEM I 42.5 R

Table 5. Comparison of creep coefficients up to 169 days. (De La Cruz, 2006)

TYPE OF CONCRETE (y)	169 DAYS
SCC CEM I 42.5 R	0.81
SCC-MS CEM I 42.5 R	1.15
CC (Roncero et al. (2001))	0.80
In Table 6 below, the values of ϕ for concrete with the same mechanical properties similar environmental conditions while testing are presented, as proposed calculation Article 39 (EHE (2003) (Gettu et al, 2000)), Roncero et al. (2001) and Mari and Cladera, 2003 ("RH = 60"); and it is observed that the value of ϕ with CEM I 42.5 R is less than for concrete with CEM II 32.5 R, by 75% and 62% respectively.

Table 6. Coefficients of creep ($) with points DEMEC and gauges in SCC-MS specimens (microdeformations) (Davies, 2006) (De La Cruz, 2006)

METHODOLOGY USED	TYPE OF CONCRETE	DEMEC	GAUGES	BY EHE	Roncero et al (2001)	Man y Cladera (2003)
	SCC-MS CEM I 42.5 R	0,10	0,23	42	180	0,60
	SCC-MS CEM II	0,40	0,61			1,0

For purposes of analysis, comparing the electronic results (more data) with the calculations for CC 42 days of trial, as proposed by Article 39 the difference is 61% for SCC-MS - CEM I 42.5 R and to the other of only 14%. But if we make the same comparison with the research $ Roncero et al. (2001), the percentage difference is 55% for SCC-MS with CEM I 42.5 R and zero (0) for SCC-MS with CEM II 32.5 R. Finally, if we consider the proposal $ according to Mari and Cladera (2003), the SCC-MS with CEM I 42.5 R presents a percentage difference of 73% and 40% with the SCC-MS with CEM II 32.5 R, considering that this proposal is the most remote research (See Table 5.).

Another conclusion of De La Cruz (2006), regarding the creep coefficient ($) of the SCC-MSs with different types of cement, and according to estimates suggesting CCs Article 39 is applicable to SCC-MSs.

5. Conclusions

- As the percentage comparisons with the SCC-MS CEM II 32.5 R, it has a deformation similar to a CC yield the same mechanical properties. This situation differs in a high percentage to the other concrete CEM I 42.5 R. This does not preclude in any way that the latter has a strain similar to that of a CC creep, as it has been compared to concrete characteristic strength of 35 MPa, and its compressive strength at 28 days is 43 MPa.
- If the methodologies and approaches used only with SCC-MS with CEM II 32.5 compared, one can say that the results have not large percentage differences, suggesting verify the effectiveness of the measurements with both methods, whichever one it appropriate to determine the deformation creep of the SCC-MSs.
- It seems that the calculations suggesting the Article 39 to determine the evolution of the creep coefficient is applicable to SCC-MSs.
- The strain values obtained to 629 days, the specimens for shrinkage and creep tests show the same trend until 169 days (De La Cruz, 2006), but are increasing. Higher for SCC-MS with CEM II 32.5 R, which for SCC-MS with CEM I 42.5 R.
- As in the case of determining the retraction of this type of concrete, it is not excluded in any way, do a more thorough study of creep deformation and evolution of $ for SCC-MSs, continuing with measurements and calculations to help identify reliably, the deferred behavior of this type of SCCs.
References
[1] ASTM Designation: C 512 - 87 "Standard Test Method for Creep of Concrete in Compression" (Reapproved 1994).
[2] Bravo, M. (2004) "Caracterización y Utilización del Hormigón Autocompactable". Projecte o Tesina d'Especialitat. Enginyerie de la Construcció. Escola Tècnica Superior d'Enginyers de Camins, Canals I Ports de Barcelona.
[3] De La Cruz, C. (2006), "Medium Strength self-compacting concrete for structural applications", Doctoral Thesis.
[4] Gettu, R., Aguado, A., Martín, M.A., y Roncero, J. (2000), El uso de aditivos reductores de retracción en el hormigón y sus implicaciones. El hormigón en las infraestructuras de transporte. CEMENTO- HORMIGÓN. Nº 813, pp 755-769.
[5] Mari, A. y Cladera, A. (2003), "Bases de cálculo para el hormigón de alta resistencia". Revista - Hormigón y Acero- núm. 228-229, 2° y 3er trimestre 2003, pp. 18-23.
[6] Neville, A. M. (1996), "Properties of Concrete", Person Education Limited, Harlow, UK, 4th Edition, 434 pp.
[7] Persson B. (2001), "A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete", J Cement and Concrete Research., 31, 193-198.
[8] R. Loser, A. Leemann. (2009), "Shrinkage and restrained shrinkage cracking of self compacting concrete compared to conventionally vibrated concrete", Materials and Structures, 42, 71-82.
[9] Roncero, J., Gettu, R. y Martín, M. (2001), "Influencia de un Aditivo Reductor de Retracción en el Comportamiento Diferido de Hormigones Estructurales". II CONGRESO DE ACHIE PUENTES Y ESTRUCTURAS Investigaciones y estudios. Materiales. Dept. Ingeniería de la construcción, Universitat Politècnica de Catalunya.
[10] Structural Concrete Instruction (EHE), European Standard.
[11] Xiao-jie Liu, Zhi-wu Yu and Lizhong Jiang (2008), "Long term behavior of self compacting reinforced concrete beams", J. Cent. South Univ. Technol., 15, 423-428.