Equivariant multiplicities of Coxeter arrangements and invariant bases

Takuro Abe * Hiroaki Terao † Atsushi Wakamiko ‡

December 30, 2010

Abstract

Let \mathcal{A} be an irreducible Coxeter arrangement and W be its Coxeter group. Then W naturally acts on \mathcal{A}. A multiplicity $m : \mathcal{A} \to \mathbb{Z}$ is said to be equivariant when m is constant on each W-orbit of \mathcal{A}. In this article, we prove that the multi-derivation module $D(\mathcal{A}, m)$ is a free module whenever m is equivariant by explicitly constructing a basis, which generalizes the main theorem of [T2002]. The main tool is a primitive derivation and its covariant derivative. Moreover, we show that the W-invariant part $D(\mathcal{A}, m)^W$ for any multiplicity m is a free module over the W-invariant subring.

1 Introduction

Let V be an ℓ-dimensional Euclidean space with an inner product $I : V \times V \to \mathbb{R}$. Let S denote the symmetric algebra of the dual space V^* and F be its quotient field. Let Der_S be the S-module of \mathbb{R}-linear derivations from S to itself. Let Ω^1_S be the S-module of regular 1-forms. Similarly define Der_F and Ω^1_F over F. The dual inner product $I^* : V^* \times V^* \to \mathbb{R}$ naturally induces an F-bilinear form $I^* : \Omega^1_F \times \Omega^1_F \to F$. Then one has an F-linear bijection

$I^* : \Omega^1_F \to \text{Der}_F$

*Supported by JSPS Grants-in-Aid for Young Scientists (B) No. 21740014. Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan. email:abe.takuro.4e@kyoto-u.ac.jp
†Supported by JSPS Grants-in-Aid, Scientific Research (B) No. 21340001. Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan. email:terao@math.sci.hokudai.ac.jp
‡2-8-11 Aihara, Midori-ku, Sagamihara-shi, Kanagawa, 252-0141 Japan. email:atsushi.wakamiko@gmail.com
defined by \([I^*(\omega)](f) := I^*(\omega, df)\) for \(f \in F\).

Let \(\mathcal{A}\) be an irreducible Coxeter arrangement with its Coxeter group \(W\). For each \(H \in \mathcal{A}\), choose \(\alpha_H \in V^*\) with \(H = \ker(\alpha_H)\). Let \(Q = \prod_{H \in \mathcal{A}} \alpha_H \in S\).

Recall the \(S\)-module of logarithmic forms

\[\Omega^1(\mathcal{A}, \infty) = \{\omega \in \Omega^1_F \mid Q^N \omega \text{ and } (Q/\alpha_H)^N \omega \wedge d\alpha_H \text{ are both regular for any } H \in \mathcal{A} \text{ and } N \gg 0\}\]

and the \(S\)-module of logarithmic derivations

\[D(\mathcal{A}, -\infty) = I^*(\Omega^1(\mathcal{A}, \infty))\]

from \([AT2010Z]\). A map \(m : \mathcal{A} \to \mathbb{Z}\) is called a multiplicity. For an arbitrary multiplicity, let

\[D(\mathcal{A}, m) = \{\theta \in D(\mathcal{A}, -\infty) \mid \theta(\alpha_H) \in \alpha_H^{m(H)} S_{(\alpha_H)} \text{ for all } H \in \mathcal{A}\},\]

\[\Omega^1(\mathcal{A}, m) = (I^*)^{-1}D(\mathcal{A}, -m),\]

where \(S_{(\alpha_H)}\) is the localization of \(S\) at the prime ideal \((\alpha_H)\). These two modules were introduced in \([Sa1980]\) (when \(m\) is constantly equal to one), in \([Z1989]\) (when \(\text{im}(m) \subset \mathbb{Z}_{\geq 0}\)), and in \([A2008, AT2010Z, AT2009]\) (when \(m\) is arbitrary). A derivation \(0 \neq \theta \in \text{Der}_F\) is said to be homogeneous of degree \(d\), or \(\deg \theta = d\), if \(\theta(\alpha) \in F\) is homogeneous of degree \(d\) whenever \(\theta(\alpha) \neq 0\) \((\alpha \in V^*)\). A multiarrangement \((\mathcal{A}, m)\) is called to be free with exponents \(\exp(\mathcal{A}, m) = (d_1, \ldots, d_\ell)\) if \(D(\mathcal{A}, m) = \oplus_{i=1}^\ell S \cdot \theta_i\) with a homogeneous basis \(\theta_i\) such that \(\deg(\theta_i) = d_i\) \((i = 1, \ldots, \ell)\). A multiplicity \(m : \mathcal{A} \to \mathbb{Z}\) is said to be equivariant when \(m(H) = m(wH)\) for any \(H \in \mathcal{A}\) and any \(w \in W\), i.e., \(m\) is constant on each orbit. In this article we prove

Theorem 1.1 For any irreducible Coxeter arrangement \(\mathcal{A}\) and any equivariant multiplicity \(m\), the multiarrangement \((\mathcal{A}, m)\) is free.

For a fixed arrangement \(\mathcal{A}\), we say that a multiplicity \(m\) is free if \((\mathcal{A}, m)\) is free. Although we have a limited knowledge about the set of all free multiplicities for a fixed irreducible Coxeter arrangement \(\mathcal{A}\), it is known that there exist infinitely many non-free multiplicities unless \(\mathcal{A}\) is either one- or two-dimensional \([ATY2009]\). Theorem 1.1 claims that any equivariant multiplicity is free for any irreducible Coxeter arrangement.

When the \(W\)-action on \(\mathcal{A}\) is transitive, an equivariant multiplicity is constant and a basis was constructed in \([ST1998, Z2002, AY2007, AT2010Z]\). So we may assume, in order to prove Theorem 1.1 that the \(W\)-action on \(\mathcal{A}\) is not transitive. In other words, we may only study the cases when \(\mathcal{A}\) is of the
type either B_ℓ, F_4, G_2 or $I_2(2n)$ ($n \geq 4$). In these cases, \mathcal{A} has exactly two W-orbits: $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$. The orbit decompositions are explicitly given by: $B_\ell = A_1^\ell \cup D_\ell$, $F_4 = D_4 \cup D_4$, $G_2 = A_2 \cup A_2$ or $I_2(2n) = I_2(n) \cup I_2(n)$ ($n \geq 4$). Note that A_1^ℓ is not irreducible.

When \mathcal{A} is irreducible, the primitive derivations play the central role to define the Hodge filtration introduced by K. Saito. (See [Sa2003] for example.) For $R := S^W$, let D be an element of the lowest degree in Der_R, which is called a primitive derivation corresponding to \mathcal{A}. Then D is unique up to a nonzero constant multiple. A theory of primitive derivations in the case of non-irreducible Coxeter arrangements was introduced in [AT2009]. Thus we may consider a primitive derivation D_i corresponding with the orbit \mathcal{A}_i ($1 \leq i \leq 2$). We only use D_1 because of symmetricity. Note that D_1 is not unique up to a nonzero multiple when $\mathcal{A}_1 = A_1^\ell$ (non-irreducible). Denote the reflection groups of \mathcal{A}_i by W_i ($i = 1, 2$). The Coxeter arrangements B_ℓ, F_4, G_2 and $I_2(2n)$ ($n \geq 4$) are classified into two cases, that is, (1) the primitive derivation D_1 can be chosen to be W-invariant for B_ℓ and F_4 (the first case) while (2) D_1 is W_2-antiinvariant for G_2 and $I_2(2n)$ ($n \geq 4$) (the second case) as we will see in Section 4. Since the second cases are two-dimensional, Theorem 1.1 holds true. Thus the first case is the only remaining case to prove Theorem 1.1.

Let

$$\nabla : \text{Der}_F \times \text{Der}_F \to \text{Der}_F$$

$$(\theta, \delta) \mapsto \nabla_\theta \delta$$

be the Levi-Civita connection with respect to the inner product I on V. We need the following theorem for our proof of Theorem 1.1.

Theorem 1.2 ([AT2010Z, AT2009]) Let $D(\mathcal{A}, -\infty)^W$ be the W-invariant part of $D(\mathcal{A}, -\infty)$. Then

$$\nabla_D : D(\mathcal{A}, -\infty)^W \overset{\sim}{\longrightarrow} D(\mathcal{A}, -\infty)^W$$

is a T-linear automorphism where $T := \{f \in R \mid Df = 0\}$. When $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ is the orbit decomposition,

$$\nabla_{D_1} : D(\mathcal{A}_1, -\infty)^{W_1} \overset{\sim}{\longrightarrow} D(\mathcal{A}_1, -\infty)^{W_1}$$

is a T_1-linear automorphism where

$$R_1 := S^{W_1}, \quad T_1 := \{f \in R_1 \mid D_1f = 0\}.$$
Let E be the Euler derivation characterized by the equality $E(\alpha) = \alpha$ for every $\alpha \in V^*$. Suppose that $A = A_1 \cup A_2$ is the orbit decomposition and that the primitive derivation D_1 is W-invariant. Define

$$E^{(p,q)} := \nabla_D^{-q} \nabla_{D_1}^{-p} E$$

for $p, q \in \mathbb{Z}$. Here, thanks to Theorem 1.2, we may interpret \(\nabla_D^m = (\nabla_D^{-1})^{-m}\) and $\nabla_{D_1}^m = (\nabla_{D_1}^{-1})^{-m}$ when m is negative. Denote the equivariant multiplicity m by (m_1, m_2) when $m(H) = m_1$ ($H \in A_1$) and $m(H) = m_2$ ($H \in A_2$).

Let x_1, \ldots, x_ℓ be a basis for V^* and P_1, \ldots, P_ℓ be a set of basic invariants with respect to W: $R = \mathbb{R}[P_1, \ldots, P_\ell]$. Let $P_1^{(i)}(\ldots, P_\ell^{(i)})$ be a set of basic invariants with respect to W_i: $R_i = \mathbb{R}[P_1^{(i)}, \ldots, P_\ell^{(i)}]$ ($i = 1, 2$). Define

$$d_j := \deg P_j, \ d_j^{(i)} := \deg P_j^{(i)} (i = 1, 2, 1 \leq j \leq \ell).$$

We assume

$$d_1 \leq d_2 \leq \cdots \leq d_\ell, \ d_1^{(i)} \leq d_2^{(i)} \leq \cdots \leq d_\ell^{(i)} (i = 1, 2).$$

Then $h := d_\ell$ is called the Coxeter number of W. We call $h_i := \deg P_i^{(i)}$ the Coxeter number of W_i ($i = 1, 2$). We use the notation

$$\partial_{x_j} := \partial/\partial x_j, \ \partial_{P_j} := \partial/\partial P_j, \ \partial_{P_j^{(i)}} := \partial/\partial P_j^{(i)} (1 \leq j \leq \ell, 1 \leq i \leq 2).$$

The following theorem gives an explicit construction of a basis:

Theorem 1.3 Let A be an irreducible Coxeter arrangement. Suppose that $A = A_1 \cup A_2$ is the orbit decomposition and that the primitive derivation D_1 is W-invariant. Then

1. the S-module $D(A, (2p - 1, 2q - 1))$ is free with W-invariant basis

$$\nabla_{\partial_{P_1}} E^{(p,q)}, \ldots, \nabla_{\partial_{P_\ell}} E^{(p,q)}$$

with $\deg \nabla_{\partial_{P_i}} E^{(p,q)} = ph_1 + qh_2 - d_i + 1$ for $i = 1, \ldots, \ell$,

2. the S-module $D(A, (2p - 1, 2q))$ is free with basis

$$\nabla_{\partial_{P_1^{(i)}}} E^{(p,q)}, \ldots, \nabla_{\partial_{P_\ell^{(i)}}} E^{(p,q)}$$

with $\deg \nabla_{\partial_{P_i^{(i)}}} E^{(p,q)} = ph_1 + qh_2 - d_i^{(1)} + 1$ for $i = 1, \ldots, \ell$.

4
(3) the S-module $D(\mathcal{A}, (2p, 2q - 1))$ is free with basis
\[\nabla_{\partial^{(2)}_{p_i}} E^{(p,q)}, \ldots, \nabla_{\partial^{(2)}_{\ell}} E^{(p,q)} \]
with $\deg \nabla_{\partial^{(2)}_{p_i}} E^{(p,q)} = ph_1 + qh_2 - d_i^{(2)} + 1$ for $i = 1, \ldots, \ell$.

(4) the S-module $D(\mathcal{A}, (2p, 2q))$ is free with basis
\[\nabla_{\partial x_1} E^{(p,q)}, \ldots, \nabla_{\partial x_\ell} E^{(p,q)} \]
with $\deg \nabla_{\partial x_i} E^{(p,q)} = ph_1 + qh_2$ for $i = 1, \ldots, \ell$.

The existence of the primitive decomposition of $D(\mathcal{A}, (2p-1, 2q-1))^W$ is proved by the following theorem:

Theorem 1.4 Under the same assumption of Theorem 1.3 define
\[\theta_i^{(p,q)} := \nabla_{\partial x_i} \nabla_{\partial x_i} \nabla_{\partial x_i}^{-p} E \quad (1 \leq i \leq \ell) \]
for $p, q \in \mathbb{Z}$. Then the set
\[\{ \theta_i^{(p+k,q+k)} \mid k \geq 0, 1 \leq i \leq \ell \} \]
is a T-basis for $D(\mathcal{A}, (2p - 1, 2q - 1))^W$. Put
\[\mathcal{G}^{(p,q)} := \bigoplus_{i=1}^\ell T : \theta_i^{(p,q)}. \]
Then we have a T-module decomposition (called the primitive decomposition)
\[D(\mathcal{A}, (2p - 1, 2q - 1))^W = \bigoplus_{k \geq 0} \mathcal{G}^{(p+k,q+k)}. \]

We will also prove

Theorem 1.5 For any irreducible Coxeter arrangement \mathcal{A} and any multiplicity m, the R-module $D(\mathcal{A}, m)^W$ is free.

Theorems 1.1 and 1.3 are used to prove the freeness of Shi-Catalan arrangements associated with any Weyl arrangements in [AT2010].

The organization of this article is as follows. In Section 2 we prove Theorem 1.3 when $q \geq 0$. In Section 3 we prove Theorem 1.4 to have the primitive decomposition, which is a key to complete the proof of Theorem 1.3 at the end of Section 3. In Section 4 we verify that the primitive derivation D_1 can be chosen to be W-invariant when \mathcal{A} is a Coxeter arrangement of either the type B_ℓ or F_4. We also review the cases of G_2 and $I_2(2n)$ ($n \geq 4$) and find that the primitive derivation D_1 is W_2-antiinvariant. In Section 5, combining Theorem 1.3 with earlier results in [T2002, AT2010Z, W2010], we finally prove Theorems 1.1 and 1.5.
2 Proof of Theorem 1.3 when \(q \geq 0\)

In this section we prove Theorem 1.3 when \(q \geq 0\).

Recall \(R = S^W = \mathbb{R}[P_1, \ldots, P_\ell]\) is the invariant ring with basic invariants \(P_1, \ldots, P_\ell\) such that \(2 = \deg P_1 < \deg P_2 \leq \cdots \leq \deg P_{\ell-1} < \deg P_\ell = h\), where \(h\) is the Coxeter number of \(W\). Put \(D = \partial P_\ell \in \text{Der} R\) which is a primitive derivation. Recall \(T = \ker(D : R \to R) = \mathbb{R}[P_1, \ldots, P_{\ell-1}]\). Then the covariant derivative \(\nabla_D\) is \(T\)-linear. For \(P := [P_1, \ldots, P_\ell]\), the Jacobian matrix \(J(P)\) is defined as the matrix whose \((i, j)\)-entry is \(\frac{\partial P_j}{\partial x_i}\). Define \(A := [I^*(dx_i, dx_j)]_{1 \leq i, j \leq \ell}\) and \(G := [I^*(dP_i, dP_j)]_{1 \leq i, j \leq \ell} = J(P)^T AJ(P)\).

Definition 2.1 ([Y2002, W2010]) Let \(m : A \to Z\) and \(\zeta \in D(A, -\infty)^W\). We say that \(\zeta\) is \(m\)-universal when \(\zeta\) is homogeneous and the \(S\)-linear map

\[
\Psi_\zeta : \text{Der}_S \longrightarrow D(A, 2m)
\]

\[
\theta \longmapsto \nabla_\theta \zeta
\]

is bijective.

Example 2.2 The Euler derivation \(E\) is \(0\)-universal because \(\Psi_E(\delta) = \nabla_\delta E = \delta\) and \(D(A, 0) = \text{Der}_S\).

Recall the \(T\)-automorphisms

\[
\nabla^k_D : D(A, -\infty)^W \cong D(A, -\infty)^W (k \in \mathbb{Z})
\]

from Theorem 1.2. Recall the following two results concerning the \(m\)-universality:

Theorem 2.3 ([W2010, Theorem 2.8]) If \(\zeta\) is \(m\)-universal, then \(\nabla^{-1}_D \zeta\) is \((m + 1)\)-universal.

Proposition 2.4 ([W2010, Proposition 2.7]) Suppose that \(\zeta\) is \(m\)-universal. Let \(k : A \to \{+1, 0, -1\}\). Then an \(S\)-homomorphism

\[
\Phi_\zeta : D(A, k) \to D(A, k + 2m)
\]

defined by

\[
\Phi_\zeta(\theta) := \nabla_\theta \zeta
\]

gives an \(S\)-module isomorphism.
We require that assumption of Theorem 1.3 is satisfied in the rest of this section: Suppose that \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \) is the orbit decomposition and that \(D_1 \), a primitive derivation with respect to \(\mathcal{A}_1 \) in the sense of [AT2009, Definition 2.4], is \(W \)-invariant. Let \(W_i, R_i, P_i, T_i, D_i \) \((i = 1, 2)\) are defined as in Section 1. Even when \(\mathcal{A}_1 \) is not irreducible, we may consider a \(T_1 \)-isomorphism

\[
\nabla_{D_1}^k: D(\mathcal{A}_1, -\infty)^{W_1} \xrightarrow{\sim} D(\mathcal{A}_1, -\infty)^{W_1} (k \in \mathbb{Z})
\]

from Theorem 1.2.

Proposition 2.5 Suppose \(q \geq 0 \). The derivation \(E^{(p,q)} := \nabla_D^{-q} \nabla_{D_1}^{-p} E \) is \((p,q)\)-universal.

Proof. When \(\mathcal{A}_1 \) is irreducible, [AY2007] and [AT2010Z] imply that \(\nabla_{D_1}^{-p} E \) is \((p - q, 0)\)-universal. When \(\mathcal{A}_1 \) is not irreducible, \(\nabla_{D_1}^{-p} E \) is \((p - q, 0)\)-universal because of [AT2009]. Thus \(E^{(p,q)} = \nabla_D^{-q} \nabla_{D_1}^{-p} E \) is \((p,q)\)-universal by Theorem 2.3. \(\square \)

Since \(E^{(p,q)} \) is \((p,q)\)-universal, Proposition 2.4 yields the following:

Proposition 2.6 Let \(q \geq 0 \) and \(m: \mathcal{A} \to \{+1, 0, -1\} \). Then an \(S \)-homomorphism

\[
\Phi_{p,q}: D(\mathcal{A}, m) \to D(\mathcal{A}, (2p, 2q) + m)
\]

defined by

\[
\Phi_{p,q}(\theta) := \nabla_\theta E^{(p,q)}
\]

gives an \(S \)-module isomorphism.

Proof of Theorem 1.3 \((q \geq 0)\). We may apply Proposition 2.6 because

1. \(\partial P_1, \ldots, \partial P_\ell \) form a basis for \(D(\mathcal{A}, (-1, -1)) \),
2. \(\partial_{P_1(1)}, \ldots, \partial_{P_\ell(1)} \) form a basis for \(D(\mathcal{A}, (-1, 0)) \),
3. \(\partial_{P_1(2)}, \ldots, \partial_{P_\ell(2)} \) form a basis for \(D(\mathcal{A}, (0, -1)) \), and
4. \(\partial_{x_1}, \ldots, \partial_{x_\ell} \) form a basis for \(D(\mathcal{A}, (0, 0)) \). \(\square \)

3 Primitive decompositions

In this section we first prove Theorem 1.4 to define the primitive decomposition of \(D(\mathcal{A}, (2p - 1, 2q - 1))^W \). Next we prove Theorem 1.3.
Proposition 3.1 Let ζ be m-universal. Then

1. The set \(\{ \nabla_{\partial_{P_j}} \nabla_D^{-k} \zeta \mid 1 \leq j \leq \ell, k \geq 0 \} \) is linearly independent over \(T \).

2. Define \(G^{(k)} \) to be the free \(T \)-module with basis \(\{ \nabla_{\partial_{P_j}} \nabla_D^{-k} \zeta \mid 1 \leq j \leq \ell \} \) for \(k \geq 0 \). Then the Poincaré series \(\text{Poin}(\bigoplus_{k \geq 0} G^{(k)}, t) \) satisfies:

\[
Poin(\bigoplus_{k \geq 0} G^{(k)}, t) = \left(\prod_{i=1}^{\ell} \frac{1}{1 - t^{d_i}} \right) \left(\sum_{j=1}^{\ell} t^{p-d_j} \right),
\]

where \(p = \deg \zeta \) and \(d_j = \deg P_j \) (1 \(\leq j \leq \ell \)).

3. \(D(\mathcal{A}, 2m - 1)W = \bigoplus_{k \geq 0} G^{(k)}. \)

Proof. Let \(k \in \mathbb{Z}_{\geq 0} \). By Theorem 2.3, \(\zeta^{(k)} := \nabla_D^{-k} \zeta \) is \((m + k) \)-universal, where the “\(k \)” in the \((m + k) \) stands for the constant multiplicity \(k \) by abuse of notation. Thus by Proposition 2.4 we have the following two bases:

\[\nabla_{\partial_{P_1}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_\ell}} \zeta^{(k)}, \]

for the \(S \)-module \(D(\mathcal{A}, 2m + 2k - 1) \) and

\[\nabla_{\partial_{I^*(dP_1)}} \zeta^{(k)}, \ldots, \nabla_{\partial_{I^*(dP_\ell)}} \zeta^{(k)}, \]

for the \(S \)-module \(D(\mathcal{A}, 2m + 2k + 1) \). Note that the two bases are also \(R \)-bases for \(D(\mathcal{A}, 2m + 2k - 1)^W \) and \(D(\mathcal{A}, 2m + 2k + 1)^W \) respectively. Since the \(T \)-automorphism

\[\nabla_D : D(\mathcal{A}, -\infty)^W \xrightarrow{\sim} D(\mathcal{A}, -\infty)^W \]

in Theorem 1.2 induces a \(T \)-linear bijection

\[\nabla_D : D(\mathcal{A}, 2m + 2k + 1)^W \xrightarrow{\sim} D(\mathcal{A}, 2m + 2k - 1)^W \]

as in [AT2009, Theorem 4.4], we may find an \(\ell \times \ell \)-matrix \(B^{(k)} \) with entries in \(R \) such that

\[
\nabla_D \left(\begin{bmatrix} \nabla_{\partial_{P_1}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_\ell}} \zeta^{(k)} \end{bmatrix} \right) G = \nabla_D \left[\nabla_{\partial_{I^*(dP_1)}} \zeta^{(k)}, \ldots, \nabla_{\partial_{I^*(dP_\ell)}} \zeta^{(k)} \right] = \begin{bmatrix} \nabla_{\partial_{P_1}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_\ell}} \zeta^{(k)} \end{bmatrix} B^{(k)},
\]

The degree of \((i, j)\)-th entry of \(B^{(k)} \) is \(m_i + m_j - h \leq h - 2 < h \). In particular, the degree of \(B_{i,i+1-i}^{(k)} \) is 0 and \(B_{i,j}^{(k)} = 0 \) if \(i + j < \ell + 1 \). Hence each entry
of $B^{(k)}$ lies in T and $\det B^{(k)} \in \mathbb{R}$. Since D is a derivation of the minimum degree in Der_R, one gets $[D, \partial_{P_i}] = 0$. Thus $\nabla_D \nabla_{\partial_{P_i}} = \nabla_{\partial_{P_i}} \nabla_D$. Operate ∇^{-1}_D on both sides of the equality above, and get

$$\left[\nabla_{\partial_{P_i}} \zeta^{(k)} + \cdots, \nabla_{\partial_{P_k}} \zeta^{(k)}\right] G = \left[\nabla_{\partial_{P_i}} \zeta^{(k+1)} + \cdots, \nabla_{\partial_{P_k}} \zeta^{(k+1)}\right] B^{(k)}.$$

This implies that $\det B^{(k)} \in \mathbb{R}^\times$ because $\nabla_{\partial_{P_i}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_k}} \zeta^{(k)}$ are linearly independent over S. Inductively we have

$$\left[\nabla_{\partial_{P_i}} \zeta^{(k+1)} + \cdots, \nabla_{\partial_{P_k}} \zeta^{(k+1)}\right] = \left[\nabla_{\partial_{P_i}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_k}} \zeta^{(k)}\right] G(B^{(k)})^{-1}
= \left[\nabla_{\partial_{P_i}} \zeta, \ldots, \nabla_{\partial_{P_k}} \zeta\right] G(B^{(0)})^{-1} G(B^{(1)})^{-1} \cdots G(B^{(k)})^{-1}
= \left[\nabla_{\partial_{P_i}} \zeta, \ldots, \nabla_{\partial_{P_k}} \zeta\right] G_{k+1},$$

where $G_i = G(B^{(0)})^{-1} G(B^{(1)})^{-1} \cdots G(B^{(i-1)})^{-1}$ ($i \geq 0$). Note that G appears i times in the definition of G_i. For $M = (m_{ij}) \in M_{\ell}(F)$, define $D[M] = (D(m_{ij})) \in M_\ell(F)$. Then $D^j[G_i] = 0$ when $j > i$ and $\det D^j[G_i] \neq 0$ because $\det D[G] \neq 0$ and $D^2[G] = O$ (e.g., see [Sa1993, AT2009]).

1) Suppose that $\left\{\nabla_{\partial_{P_j}} \zeta^{(k)} \mid 1 \leq j \leq \ell, k \geq 0\right\}$ is linearly dependent over T. Then there exist ℓ-dimensional column vectors $g_0, g_1, \ldots, g_{q} \in T^{\ell}(q \geq 0)$ with $g_0 \neq 0$ such that

$$0 = \sum_{i=0}^{q} \left[\nabla_{\partial_{P_i}} \zeta^{(i)}, \ldots, \nabla_{\partial_{P_k}} \zeta^{(i)}\right] g_i = \left[\nabla_{\partial_{P_i}} \zeta, \ldots, \nabla_{\partial_{P_k}} \zeta\right] \left(\sum_{i=0}^{q} G_i g_i\right).$$

Since $\nabla_{\partial_{P_i}} \zeta, \ldots, \nabla_{\partial_{P_k}} \zeta$ are linearly independent over R, one has

$$0 = \sum_{i=0}^{q} G_i g_i.$$

Applying the operator D on both sides q times, we get $D^q[G_q]g_q = 0$. Thus $g_q = 0$ which is a contradiction. This proves (1).

2) Compute

$$\text{Poin}(\bigoplus_{k \geq 0} G^{(k)}, t) = \sum_{k \geq 0} \left(\prod_{i=1}^{\ell-1} \frac{1}{1-t^{d_i}}\right) \left(\sum_{j=1}^{\ell} t^{p-d_j + kd_i}\right) = \left(\prod_{i=1}^{\ell-1} \frac{1}{1-t^{d_i}}\right) \left(\sum_{k \geq 0} t^{kd_i}\right) \left(\sum_{j=1}^{\ell} t^{p-d_j}\right) = \left(\prod_{i=1}^{\ell-1} \frac{1}{1-t^{d_i}}\right) \left(\sum_{j=1}^{\ell} t^{d_j}\right).$$
We have
\[D(A, 2m - 1)^W \supseteq \bigoplus_{k \geq 0} G^{(k)} \]
by (1). So it suffices to prove
\[\text{Poin}(D(A, 2m - 1)^W, t) = \text{Poin}(\bigoplus_{k \geq 0} G^{(k)}, t). \]
Since \(D(A, 2m - 1)^W \) is a free \(R \)-module with a basis
\[\nabla_{\partial P_1} \zeta, \ldots, \nabla_{\partial P_\ell} \zeta, \]
we obtain
\[\text{Poin}(D(A, 2m - 1)^W, t) = \left(\prod_{i=1}^\ell \frac{1}{1 - t^p_i d_i} \right) \left(\sum_{i=1}^\ell t^{p_i - d_i} \right) = \text{Poin}(\bigoplus_{k \geq 0} G^{(k)}, t), \]
which completes the proof. \(\square \)

We require that the assumption of Theorem 1.3 is satisfied in the rest of this section.

Proof of Theorem 1.4. Suppose \(q \geq 0 \) to begin with. Then, by Proposition 3.4, \(E^{(p,q)} \) is \((p,q)\)-universal. Apply Proposition 3.1 for \(\zeta = E^{(p,q)} \) and \(m = (p,q) \), and we have Theorem 1.4:
\[D(A, (2p - 1, 2q - 1))^W = \bigoplus_{k \geq 0} G^{(p+k,q+k)} \]
when \(q \geq 0 \). Send the both handsides by \(\nabla_D \), and we get
\[D(A, (2p - 3, 2q - 3))^W = \bigoplus_{k \geq 0} G^{(p+k-1,q+k-1)} \]
because \(\nabla_D \left(D(A, (2p - 1, 2q - 1))^W \right) = D(A, (2p-3, 2q-3))^W \) as in [AT2009, Theorem 4.4] and \(\nabla_D(\theta_i^{(p,q)}) = \theta_i^{(p-1,q-1)} \). Apply \(\nabla_D \) repeatedly to complete the proof for all \(q \in \mathbb{Z} \). \(\square \)

Note that we do not assume \(p \geq 0 \) in the following proposition:

Proposition 3.2 For \(p, q \in \mathbb{Z} \), the \(S \)-module \(D(A, (2p - 1, 2q - 1)) \) has a \(W \)-invariant basis.
Proof. Recall that
\[\nabla_{\partial P_1} E^{(p,q)}, \nabla_{\partial P_2} E^{(p,q)}, \ldots, \nabla_{\partial P_\ell} E^{(p,q)}, \]
which are W-invariant, form an S-basis for $D(A, (2p-1, 2q-1))$ when $q \geq 0$ by Theorem 1.3 (1). It is then easy to see that they are also an R-basis for $D(A, (2p-1, 2q-1))^W$ for $q \geq 0$. By [A2008] [AT2010Z], there exists a W-equivariant nondegenerate S-bilinear pairing
\[(\ , \) : D(A, (2p-1, 2q-1)) \times D(A, (-2p+1, -2q+1)) \rightarrow S, \]
characterized by
\[(I^*(\omega), \theta) = \langle \omega, \theta \rangle \]
where $\omega \in \Omega^1(A, (-2p+1, -2q+1))$ and $\theta \in D(A, (-2p+1, -2q+1))$. Let $\theta_1, \ldots, \theta_\ell$ denote the dual basis for $D(A, (-2p+1, -2q+1))$ satisfying
\[\left(\nabla_{\partial P_i} E^{(p,q)}, \theta_j \right) = \delta_{ij} \]
for $1 \leq i, j \leq \ell$. Then $\theta_1, \ldots, \theta_\ell$ are W-invariant because the pairing $(\ , \)$ is W-equivariant. \[\square \]

Although the following lemma is standard and easy, we give a proof for completeness.

Lemma 3.3 Let M be an S-submodule of Der_F. The following two conditions are equivalent:

1. M has a W-invariant basis Θ over S.
2. The W-invariant part M^W is a free R-module with a basis Θ and there exists a natural S-linear isomorphism
\[M^W \otimes_R S \simeq M. \]

Proof. It suffices to prove that (1) implies (2) because the other implication is obvious. Suppose that $\Theta = \{\theta_\lambda\}_{\lambda \in \Lambda}$ is a W-invariant basis for M over S. Since it is linearly independent over S, so is over R. Let $\theta \in M^W$. Express
\[\theta = \sum_{i=1}^n f_i \theta_i, \]
with $f_i \in S$ and $\theta_i \in \Theta$ ($i = 1, \ldots, n$). Let $w \in W$ act on the both handsides. Then we get
\[\theta = \sum_{i=1}^n w(f_i) \theta_i. \]
This implies \(f_i = w(f_i) \) for every \(w \in W \). Hence \(f_i \in R \) for each \(i \). Therefore \(\Theta \) is a basis for \(M^W \) over \(R \). This is (2).

Proposition 3.4 For any \(p, q \in \mathbb{Z} \), \(E^{(p,q)} \) is \((p, q)\)-universal.

Proof. By Theorem 1.4 we have the decomposition:

\[
D(A, (2p - 1, 2q - 1))^W = \bigoplus_{k \geq 0} G^{(p+k,q+k)}
\]

for \(p, q \in \mathbb{Z} \). As we saw in Proposition 3.1 (2), we have

\[(3.1) \quad \text{Poin}(D(A, (2p - 1, 2q - 1))^W, t) = \text{Poin}(\bigoplus_{k \geq 0} G^{(p+k,q+k)}, t) = \left(\prod_{i=1}^\ell \frac{1}{1-t^{d_i}}\right) \left(\sum_{i=1}^\ell t^{m-d_j}\right),\]

where \(m := \deg E^{(p,q)} \). Recall that the \(S \)-module \(D(A, (2p - 1, 2q - 1)) \) has a \(W \)-invariant basis \(\theta_1, \ldots, \theta_\ell \) by Proposition 3.2. By Lemma 3.3 we know that \(\theta_1, \ldots, \theta_\ell \) form a basis for the \(R \)-module \(D(A, (2p - 1, 2q - 1))^W \). Thanks to (3.1) we may assume that \(\deg \theta_j = m - d_j = \deg \partial_{\partial x_j} E^{(p,q)} \). Therefore there exists \(M \in M_\ell(R) \) such that

\[
[\theta_1, \ldots, \theta_\ell]M = [\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)}]
\]

with \(\det M \in \mathbb{R} \). Since

\[
\max_{1 \leq i, j \leq \ell} |\deg \theta_i - \deg \partial_{\partial x_j} E^{(p,q)}| = d_\ell - d_1 < \deg P_\ell,
\]

we get \(M \in M_\ell(T) \). Since \(\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)} \) are linearly independent over \(T \) by Proposition 3.1 (1), we have \(\det M \in \mathbb{R}^\times \). Thus

\[
\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)}
\]

form an \(S \)-basis for \(D(A, (2p - 1, 2q - 1)) \). Since

\[
\left[\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)}\right] J(P)^T = \left[\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)}\right],
\]

we may apply the multi-arrangement version of Saito’s criterion [Sa1980, Z1989, A2008] to prove that \(\partial_{\partial x_1} E^{(p,q)}, \ldots, \partial_{\partial x_\ell} E^{(p,q)} \) form an \(S \)-basis for \(D(A, (2p, 2q)) \) for any \(p, q \in \mathbb{Z} \). This shows that \(E^{(p,q)} \) is \((p, q)\)-universal for any \(p, q \in \mathbb{Z} \). □

Proof of Theorem 1.3 \((q \in \mathbb{Z}) \). Theorem 2.3 and Proposition 3.4 complete the proof by the same argument as that in Section 2 for \(q \geq 0 \). □
4 The cases of B_ℓ, F_4, G_2 and $I_2(2n)$

• The case of B_ℓ

The roots of the type B_ℓ are:

$$\pm x_i, \pm x_i \pm x_j \quad (1 \leq i < j \leq \ell)$$

in terms of an orthonormal basis x_1, \ldots, x_ℓ for V^*. Altogether there are $2\ell^2$ of them. Define

$$Q_1 := \prod_{i=1}^{\ell} x_i, \quad Q_2 := \prod_{1 \leq i < j \leq \ell} (x_i \pm x_j), \quad Q = Q_1 Q_2.$$

Then the arrangement A_1 defined by Q_1 is of the type $A_1 \times \cdots \times A_1 = A_1^{\ell}$. The arrangement A_2 defined by Q_2 is of the type D_ℓ. The arrangement A defined by Q is of the type B_ℓ and $A = A_1 \cup A_2$ is the orbit decomposition. Note that A_1^{ℓ} is not irreducible. Define

$$D_1 := \sum_{i=1}^{\ell} \frac{1}{x_i} \partial x_i$$

which is a primitive derivation in the sense of [AT2009]. Obviously D_1 is W-invariant. Let $P_j = \sum_{i=1}^{\ell} x_i^{2j}$ ($j \geq 1$). Then P_1, \ldots, P_ℓ form a set of basic invariants under W while $Q_1, P_1, \ldots, P_{\ell-1}$ form a set of basic invariants under W_2. Define a primitive derivation D_2 with respect to A_2 so that

$$D_2(Q_1) = D_2(P_j) = 0 \quad (j = 1, \ldots, \ell - 2), \quad D_2(P_{\ell-1}) = 1.$$

Thus

$$(wD_2)(P_{\ell-1}) = D_2(w^{-1} P_{\ell-1}) = D_2(P_{\ell-1}) = 1 \quad (w \in W).$$

This implies that D_2 is W-invariant.

• The case of F_4

The roots of the type F_4 are:

$$\pm x_i, \ (\pm x_1 \pm x_2 \pm x_3 \pm x_4)/2, \ \pm x_i \pm x_j \quad (1 \leq i < j \leq 4)$$

in terms of an orthonormal basis x_1, x_2, x_3, x_4 for V^*. Altogether there are 48 of them. Define

$$Q_1 := \prod_{1 \leq i < j \leq 4} (x_i \pm x_j), \quad Q_2 := \prod_{i=1}^{4} x_i \prod_{1 \leq i < j \leq 4} (x_1 \pm x_2 \pm x_3 \pm x_4), \quad Q = Q_1 Q_2.$$
The arrangement \mathcal{A}_i defined by Q_i is of the type D_4 ($i = 1, 2$). Then the arrangement \mathcal{A} defined by Q is of the type F_4 and $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ is the orbit decomposition. Define

$$P_1^{(1)} = \sum_{i=1}^{4} x_i^2, \quad P_2^{(1)} = \sum_{i=1}^{4} x_i^4, \quad P_3^{(1)} = x_1 x_2 x_3 x_4, \quad P_4^{(1)} = \sum_{i=1}^{4} x_i^6 + 5 \sum_{i \neq j} x_i x_j^4.$$

Compute

$$P_4^{(1)} = -4 \sum_{i=1}^{4} x_i^6 + 5 P_1^{(1)} P_2^{(1)}.$$

Thus $P_1^{(1)}, P_2^{(1)}, P_3^{(1)}, P_4^{(1)}$ are a set of basic invariants under W_1. The reflection τ with respect to $x_1 + x_2 + x_3 + x_4 = 0$ is given by

$$\tau(x_i) = \frac{2x_i - \sum_{j=1}^{4} x_j}{2} \quad (i = 1, 2, 3, 4).$$

A calculation shows that $P_4^{(1)}$ is τ-invariant. Let s_i denote the reflection with respect to $x_i = 0$ ($1 \leq i \leq 4$). Since the Coxeter group W_2 is generated by τ and s_i ($1 \leq i \leq 4$), we know that $P_4^{(1)}$ is W_2-invariant thus W-invariant. Define a primitive derivation D_1 with respect to \mathcal{A}_1 so that

$$D_1(P_j^{(1)}) = 0 \quad (j = 1, 2, 3), \quad D_1(P_4^{(1)}) = 1.$$

Thus

$$(wD_1)(P_4^{(1)}) = D_1(w^{-1}P_4^{(1)}) = D_1(P_4^{(1)}) = 1 \quad (w \in W).$$

This implies that D_1 is W-invariant. We conclude that D_2 is also W-invariant because an orthonormal coordinate change

$$x_1 = \frac{y_1 - y_2}{\sqrt{2}}, \quad x_2 = \frac{y_1 + y_2}{\sqrt{2}}, \quad x_3 = \frac{y_3 - y_4}{\sqrt{2}}, \quad x_4 = \frac{y_3 + y_4}{\sqrt{2}}$$

switches \mathcal{A}_1 and \mathcal{A}_2.

- **The cases of G_2 and $I_2(2n)$ ($n \geq 4$)**

The arrangement \mathcal{A} of the type G_2 has exactly two orbits \mathcal{A}_1 and \mathcal{A}_2, each of which is of the type A_2. Let $n \geq 4$. Then the arrangement \mathcal{A} of the type $I_2(2n)$ has exactly two orbits \mathcal{A}_1 and \mathcal{A}_2, each of which is of the type $I_2(n)$. In both cases, by [W2010], one may choose

$$D_1 = Q_2 D, \quad D_2 = Q_1 D.$$

Since Q_2 is W_2-antiinvariant and D is W-invariant, D_1 is W_2-antiinvariant. Similarly D_2 is W_1-antiinvariant.
5 Proofs of Theorems 1.1 and 1.5

Assume that A is an irreducible Coxeter arrangement in the rest of the article.

Proof of Theorem 1.1 If A has the single orbit, then the result in [T2002, AY2007, AT2010Z] completes the proof. If not, then A has exactly two orbits. If A is of the type either G_2 or $I_2(2n)$ with $n \geq 4$, then $D(A, m)$ is a free S-module because A lies in a two-dimensional vector space. For the remaining cases of the type B_l and F_4, Section 4 allows us to apply Theorem 1.3 to complete the proof.

A multiplicity $m : A \to \mathbb{Z}$ is said to be odd if its image lies in $1 + 2\mathbb{Z}$.

Proposition 5.1 If m is equivariant and odd, then $D(A, m)$ has a W-invariant basis over S.

Proof. When A has the single orbit, m is constant. In this case Proposition was proved in [T2002, AY2007, AT2010Z]. If A is of the type either G_2 or $I_2(2n)$ ($n \geq 4$), then Proposition was verified in [W2010]. For the remaining cases of B_l and F_4, Proposition 3.2 completes the proof.

Recall the W-action on A:

$$W \times A \to A$$

by sending (w, H) to wH ($w \in W$, $H \in A$). For any multiplicity $m : A \to \mathbb{Z}$, define a new multiplicity m^* by

$$m^*(H) := \max_{w \in W} \left(2 \cdot \left\lfloor m(wH)/2 \right\rfloor + 1\right),$$

where $\lfloor a \rfloor$ stands for the greatest integer not exceeding a. Then m^* is obviously equivariant and odd.

Proposition 5.2 For any irreducible Coxeter arrangement A and any multiplicity m,

$$D(A, m)^W = D(A, m^*)^W.$$

Proof. Since $m(H) \leq m^*(H)$ for any $H \in A$, we have

$$D(A, m)^W \supseteq D(A, m^*)^W.$$

We will show the other inclusion. Let $H \in A$ and $\theta \in D(A, m)^W$. It suffices to verify the following two statements:

(A) $\theta(\alpha_H) \in \alpha_H^{m(wH)} S_{\alpha_H}$ for any $w \in W$,
(B) \(\theta(\alpha_H) \in \alpha_{2m}^H S(\alpha_H) \) implies \(\theta(\alpha_H) \in \alpha_{2m+1}^H S(\alpha_H) \) for any \(m \in \mathbb{Z} \).

For \(w \in W \) let \(w^{-1} \) act on the both sides of

\[\theta(\alpha_{wH}) \in \alpha_{m(wH)}^H S(\alpha_{wH}) \]

to get

\[\theta(\alpha_H) \in \alpha_{m(wH)}^H S(\alpha_H). \]

This verifies (A).

Fix \(H \in A \). Let \(s \) be the orthogonal reflection through \(H \). Then \(s(\alpha_H) = -\alpha_H \). Suppose that \(\theta(\alpha_H) = \alpha_H^{2m} p \) with \(p \in S(\alpha_H) \). Let \(s \) act on the both handsides and we have \(\theta(-\alpha_H) = (-\alpha_H)^{2m} s(p) \). This implies \(-p = s(p) \). Since \(s(p) = p \) on \(H \), one has \(p = 0 \) on \(H \), which implies \(p \in \alpha_H S(\alpha_H) \). This verifies (B). \(\square \)

Proof of Theorem 1.5. Thanks to Proposition 5.2 we may assume that \(m \) is equivariant and odd. Apply Proposition 5.1 and Lemma 3.3. \(\square \)

Corollary 5.3

\[D(A, m)^W \otimes_R S \simeq D(A, m^*). \]

Proof. Apply Proposition 5.1 and Lemma 3.3 to get

\[D(A, m^*)^W \otimes_R S \simeq D(A, m^*). \]

Then Proposition 5.2 completes the proof. \(\square \)

The following corollary shows that the converse of Proposition 5.1 is true.

Corollary 5.4 The \(S \)-module \(D(A, m) \) has a \(W \)-invariant basis if and only if \(m \) is odd and equivariant.

Proof. Assume that \(D(A, m) \) has a \(W \)-invariant basis over \(S \). Then, by Lemma 3.3 we get

\[D(A, m)^W \otimes_R S \simeq D(A, m). \]

Compare this with Corollary 5.3 and we know that there exists a common \(S \)-basis for both \(D(A, m) \) and \(D(A, m^*) \). By the multi-arrangement version of Saito’s criterion \([Sa1980, Z1989, A2008] \), we have \(m = m^* \). \(\square \)
References

[A2008] T. Abe, A generalized logarithmic module and duality of Coxeter multiarrangements. arXiv.0807.2552v1.

[AT2010Z] T. Abe and H. Terao, A primitive derivation and logarithmic differential forms of Coxeter arrangements. Math. Z. 264 (2010), 813–828.

[AT2009] T. Abe and H. Terao, Primitive filtrations of the modules of invariant logarithmic forms of Coxeter arrangements. arXiv:0910.2506v1, to appear in J. Algebra.

[AT2010] T. Abe and H. Terao, The freeness of Shi-Catalan arrangements. In preparation.

[ATY2009] T. Abe, H. Terao and M. Yoshinaga, Totally free arrangements of hyperplanes. Proc. AMS 137 (2009), 1405–1410.

[AY2007] T. Abe and M. Yoshinaga, Coxeter multiarrangements with quasi-constant multiplicities. J. Algebra 322 (2009), 2839–2847.

[OT1992] P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992.

[Sa1980] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.

[Sa1993] K. Saito, On a linear structure of the quotient variety by a finite reflection group. Publ. RIMS, Kyoto Univ. 29 (1993), 535–579.

[Sa2003] K. Saito, Uniformization of the orbifold of a finite reflection group. RIMS preprint 1414 (2003).

[SoT1998] L. Solomon and H. Terao, The double Coxeter arrangements. Comment. Math. Helv. 73 (1998), 237–258.

[T2002] H. Terao, Multiderivations of Coxeter arrangements. Invent. Math. 148 (2002), 659–674.

[W2010] A. Wakamiko, Bases for the derivation modules of two-dimensional multi-Coxeter arrangements and universal derivations. arXiv.1010.5266v1, to appear in Hokkaido Math. J.
[Y2002] M. Yoshinaga, The primitive derivation and freeness of multi-Coxeter arrangements. Proc. Japan Acad. Ser. A 78 (2002), no. 7, 116–119.

[Z1989] G. Ziegler, Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), 345–359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.