Frequency of cytomegalovirus in fertile and infertile men, referring to Afzalipour Hospital IVF Research Center, Kerman, IRAN: A case-control study

Majid Mohseni1 M.Sc., Hamid Reza Mollaei1 Ph.D., Seyed Alimohammad Arabzadeh1 Ph.D., Tooraj Reza Mirshekar2 M.D., Peyman Ghorbani1 M.Sc.

Abstract
Background: Cytomegalovirus (CMV) virus can hide in urinary genital tract cells and affect male infertility disorders.

Objective: To evaluate frequency of CMV in the semen samples of men with infertility problems referring to a in vitro fertilization (IVF) center in Kerman, Iran and its association with the parameters of semen.

Materials and Methods: In this case-control study, Real time polymerase chain reaction test was performed for detection of human cytomegalovirus in 100 fertile men compared to 100 infertile men referred to the IVF center of Afzalipour Hospital, Kerman, Iran.

Results: Out of 200 samples, 30 samples (15%) were positive for CMV DNA virus (23/100 men (23%) in case group and 7/100 men (7%) in the control group). Sperm counts and motility in the control group were more than the case group (p˂0.0001). There was a significant relationship between the prevalence of CMV infection and male infertility (p<0.001).

Conclusion: Our finding showed that, prevalence of CMV infection was higher in infertile men compared to fertile men and CMV infection can be considered as an important part of male infertility. So; antiviral treatment of positive cases can be effective in improving sperm quality and successful IVF. The relationship between CMV infection in semen and infertility was obtained in previous studies and was confirmed by our study.

Key words: Infertility, Cytomegalovirus, In vitro fertilization, Real time PCR.

Introduction

Infertility is one of the most modern medical problems. Infertility is defined as a condition of reproductive system that pregnancy is not clinically acquired after 12 months of regular and unprotected sex (1). Approximately 15% of couples of reproductive age are defective in achieving fertility. In total, 40-50% of cases are related to males and in more than 50% of cases, the cause of male infertility remains unknown and is classified as infertility with unknown causes (2).

Male infertility is often associated with genital infections which cause changes in inflammatory compounds of genital secretions (3). The cytomegalovirus (CMV) is a member of the herpes family, also called HHV5. Human cytomegalovirus (HCMV) or HHV5 causes asymptomatic infections in healthy individuals (4). Cytomegalovirus (CMV) can cause genital tract asymptomatic infections in men (5). The HCMV is endemic in some areas of the worldwide. Like all herpes viruses, CMV also has the ability to latent and re-activate and thus be able to cause a long-term infection (6). The mechanisms for regulating the latency of the virus is unknown (7).

Many studies were done recently on CMV infection in people with immune deficiency; for example, in transplant recipients and HIV-positive patients but there is a little information about relationship between CMV and infertility (8). The prevalence of human cytomegalovirus DNA in reproductive organs and semen samples of fertilized and infertile men has been reported in a wide range of 8-65% (9). Given that we did not have accurate information on sexually transmitted infections in the geographical area of this study and there is no study about the frequency and relevance of cytomegalovirus infection and infertility in men, in this study frequency of CMV in semen samples of infertile and fertile men referred to an in vitro fertilization research (IVF) center located in Kerman, Iran.
Materials and methods

Samples

In this case-control study, semen samples of 200 men referred to the IVF Research Center of Afzaliapour Hospital, Kerman, Iran from June 2016 to August 2017 were collected. For all participant’s complete semen analysis tests including sperm count, sperm motility, and morphology was performed. The case group were selected from infertile men referred to IVF center that had sperm motility<40% or sperm count< 15 million/ml, history of five years' infertility, had no children and healthy partners with no identifiable cause of infertility. The men who had normal results of laboratory semen analysis according to the World Health Organization (WHO) standards, and sperm donors were selected for the control group(10).

Semen analysis

Samples were collected in a private room in the laboratory inside a sterilized container. Immediately the sample container was placed inside the incubator. The sample volume was measured and the macroscopic examination was performed 45 min after the sample collection. Samples were examined by microscopic examination with a wet glass slide after gentle shaking (10). In all cases, cellular elements, sperm motility (progressive, non-progressive, no movement), and sperm count were determined based on the 5th edition of the WHO (10).

DNA extraction from semen samples

DNA isolation of human cytomegalovirus from 200 µl of the sample was performed using a Viral DNA extraction kit according to the manual instructions (Roche, Germany). In the end, DNA was eluted in 50 µl elution buffer and was subjected to Nanodrop (Thermo Fisher, Germany) for quantification of DNA at 260 nm.

Real-time polymerase chain reaction (PCR)

All samples were tested for the presence of HCMV DNA by Real-time PCR method (Rotor Gene Q, Qiagen). Primers were synthesized against the highly conserved UL55 gene of HCMV to detect CMV viruses, and their sequences were as follows: 5’- TGG GCG AGG ACA ACG AA -3’ (sense); 5’- TGA GGC TGG GAA GCT GAC AT -3’ (antisense) and specific probe was FAM- TGG GCA ACC ACC GCA CTG AGG -BHQ1; which were designed using Primer3 plus online tools (www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). For Real-time PCR test, 10 µL DNA was added to 10 µL reaction mixture preparing from TaqMan Probe Master Mix (Ampliqon, Denmark).

Reaction mix containing Taq polymerase enzyme, gelatin, 0.6 µmol/L of each primer, 0.2 µmol/L probe, deoxynucleotid triphosphate mix, and reaction buffer (KCl, L Tris-HCL, MgCl2 pH=8.3). PCR was done at 50°C, 2 min for activation of UNG and at 95°C for 15 min for activation of Taq Polymerase and first denaturation, followed by 45 cycles of 95°C for 15 secs, 60°C for 40 secs and in the 60°C fluorescence was detected in green channel (FAM) for specific product and yellow channel (HEX) for Internal control. DNA extracted from standard positive sample KSG1 (10^1 copies/ml) and KGS2 (10^2 copies/ml) (Interlabservice, Russia) were included in the run as positive controls, while a mixture without DNA template was used for negative controls.

Ethical consideration

This study was approved by the Ethics Committee of Kerman University of Medical Sciences, Kerman, Iran (IR.KMU.REC1395.97). Written informed consents were obtained from all participants before enrollment.

Statistical analysis

All statistical analyses were performed using SPSS statistical software (Statistical Package for the Social Sciences, version 18.0, SPSS Inc., Chicago, IL, USA). Comparison of the mean sperm count, motility, and morphology between CMV positive samples and negative samples was performed with the independent Student’s t-test, independent sample T test, Kolmogorov-Smirnov and Mann–Whitney test used to assess differences. A P. Value less than 0.05 was considered as statistically significant.

Results

200 semen samples were analyzed from men referred to the IVF Research Center of Afzaliapour Hospital, Kerman, Iran. The Mean±SD of participant’s age was 34.5±4.86 yr old (34.84±5.03 yr in the case group and 34.24±4.69 yr in the controls). Demographic and sperm analysis variables are shown in table I.
In this study, the prevalence of CMV DNA and its association with male infertility was investigated. Infertility in men is mostly without a known cause. The present study was designed to investigate the prevalence of HCMV DNA in fertile and infertile men’s semen samples by using a real time PCR method. Finally, the relationship between viral presence and semen parameters was investigated. The results of this study showed a high prevalence of HCMV DNA in semen samples, in total (15%) in men referred to the IVF center, 23% in infertile men, and 7% in fertile men.

In a study by Baghdadi and colleagues at Arak, located in West Iran, the prevalence of CMV DNA in 50 samples was analyzed. In 3 samples (6%) from infertile men and 2 samples (4%) of fertile men the virus was detected (11). Habibi and colleagues examined the prevalence of CMV virus in 154 infertile and 46 fertile of men; virus was detected in 20 samples (13%) of infertile men and 5 samples (10.86%) of the fertile men (12). In these two studies, which was done by conventional PCR method, due to insufficient number of samples, there was no significant correlation between infertility and CMV virus. However, there was a significant relationship between CMV prevalence and sperm count.

Table I. Distribution of parameters in two study groups

Groups	N	Age	Volume	Count	Motility	Morphology	Round cell
Case group							
Oligo spermia	39	35.5±4.39	3.38±2.12	6.64±4.52	28.03±21.21	6.82±3.26	4.74±6.58
Azoo spermia	19	34.10±5.9	2.35±1.6	0	0	1.2±2.87	
Motile less than 40%	42	35.54±5.16	3.02±1.7	75.7±42.7	26.3a±17.14	8.71±3.27	4.02±3.69
Control group	100	34.24±4.69	3.32±1.68	90.98±31.45	65.7±4.54	8.9±3.26	3.59±4.60
Total samples	200	34.5±4.86	3.18±1.7	62.6±47.9	26.5±4.2	7.6±4.03	3.68±4.82

Data presented as Mean±SD. We describe the data by mean and standard deviation tests, Median test and ratio test

Groups	Number (%)	CMV DNA
Case group		
Oligo spermia	39 (39)	7 (17.9)
Azoo spermia	19 (19)	1 (5.3)
Motility less than 40%	42 (42)	15 (35.7)
Control group	100	7 (7)
Total	200	30 (15)

Data presented as n (%); Sperm counts and motility in the control group were more than the case group (p<0.0001)

CMV: Cytomegalovirus

Table III. Distribution of CMV DNA in different age groups

Age group (yr)	CMV positive	CMV negative
<25	9 (30%)	32 (18.8%)
25-35	9 (30%)	59 (34.7%)
35-45	10 (33.3%)	60 (35.3%)
>45	2 (6.7%)	19 (11.2%)
Total	30 (15%)	170 (85%)

Data presented as n(%); Chi-square test: p-value= 0.524

CMV: Cytomegalovirus

Discussion

In this study, the prevalence of CMV DNA and its association with male infertility was investigated. Infertility in men is mostly without a known cause. The present study was designed to investigate the prevalence of HCMV DNA in fertile and infertile men's semen samples by using a real time PCR method. Finally, the relationship between viral presence and semen parameters was investigated. The results of this study showed a high prevalence of HCMV DNA in semen samples, in total (15%) in men referred to the IVF center, 23% in infertile men, and 7% in fertile men.

In a study by Baghdadi and colleagues at Arak, located in West Iran, the prevalence of CMV DNA in 50 samples was analyzed. In 3 samples (6%) from infertile men and 2 samples (4%) of fertile men the virus was detected (11). Habibi and colleagues examined the prevalence of CMV virus in 154 infertile and 46 fertile of men; virus was detected in 20 samples (13%) of infertile men and 5 samples (10.86%) of the fertile men (12). In these two studies, which was done by conventional PCR method, due to insufficient number of samples, there was no significant correlation between infertility and CMV virus. However, there was a significant relationship between CMV prevalence and sperm count.
and motility parameters in semen sample. In a study by Wits Craig and colleagues at a university in Texas, which was performed by PCR, 18/72 samples (25%) was positive for CMV DNA (13).

Also, in another study by Yang and colleagues in Taiwan, from 248 individuals referred to the laboratory for fertilization, 83 samples (33.5%) were positive for CMV DNA by Dot-blot-DNA hybridization (14). In these two studies, the high prevalence of CMV virus has been reported, due to more number of samples and the use of more sensitive methods for detecting viral nucleic acid, as well as the prevalence of endemic viruses and the inappropriateness of sexual cares and high-risk behaviors in the region (15). In present study, there was a significant relationship between infertility in men and the prevalence of the CMV infection in the semen of infertile men in Kerman. Other studies that show high prevalence of CMV infection in fertile men’s semen sample, that have confirmed this relationship in our study (5, 16, 17).

Limitation
Our research limitations are the small number of samples.

Conclusion
In conclusion, the findings of this study indicate that infection with HCMV can effect on the some of essential and important factors in semen that possibly infertility in the infected men. Quick detection and on time of this viral infection by real time PCR technique will permit the suitable antiviral therapy to increase the possibility of fertility. However, this study showed a significant relationship between prevalence of CMV virus and male infertility that could be helpful considering HCMV positive cases in male infertility, as well as, removing positive cases that referring for sperm donation.

Acknowledgments
This project has been approved and funded by the Kerman University of Medical Sciences, Faculty of Medicine, Kerman, Iran. The authors of this project are grateful to IVF Research Center staff for collecting samples.

Conflict of interest
There is no conflict of interest.

References
1. Moretti E, Figura N, Campagna MS, Iacoponi F, Gonnelli S, Colloled G. Infectious Burden and Semen Parameters. Urology 2017; 100: 90-96.
2. Ford WC. Comments on the release of the 5th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl 2010; 12: 59-63.
3. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update 2010;16: 231-245.
4. Greil AL, Slaison-Blevins K, McQuillan J. The experience of infertility: a review of recent literature. Sociol Health Illn 2010; 32: 140-162.
5. Garolla A, Pizzol D, Bertoldo A, Menegazzo M, Barzon L, Foresta C. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J Reprod Immunol 2013; 100: 20-29.
6. Eggert-Kruse W, Reuland M, Johanssen W, Strowitzki T, Schlehofer JR. Cytomegalovirus (CMV) infection-related to male and/or female infertility factors? Fertil Steril 2009; 91: 67-82.
7. King C, Kabellitz D. HCMV seroprevalence in couples under infertility treatment. Arch Gynecol Obstet 2015; 292: 439-443.
8. Monavari SH, Vaziri MS, Khallili M, Shamsi-Shahrabadi M, Keyvani H, Mollaei H, et al. Asymptomatic seminal infection of herpes simplex virus: impact on male infertility. J Biomed Res 2013; 27: 56-61.
9. Neolytou E, Sourvinos G, Asmarianaki M, Spandidos DA, Makrigiannakis A. Prevalence of human herpes virus types 1-7 in the semen of men attending an infertility clinic and correlation with semen parameters. Fertil Steril 2009; 91: 2487-2494.
10. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th Ed. WHO Press; Switzerland, 2010.
11. Baghdadi Kh, Tafvizi F, Hayati Roodbari N. Molecular detection of HCMV and investigation of its relationship with quality of sperm parameters in male infertility. Electronic J Biol 2016; 10: 312-320.
12. Habibi M, Bahrami A, Morteza A, Sadighi Gilani MA, Hassanzadeh G, Ghadami M, et al. Study of cytomegalovirus infection in idiopathic infertility men referred to Shariati hospital, Tehran, Iran. Iran J Reprod Med 2014; 12: 151-154.
13. Witz CA, Duan Y, Burns WN, Atherton SS, Schenken RS. Is there a risk of cytomegalovirus transmission during in vitro fertilization with donated oocytes? Fertil Steril 1999; 71: 302-307.
14. Yang YS, Ho HN, Chen HF, Chen SU, Shen CY, Chang SF, et al. Cytomegalovirus infection and viral shedding in the genital tract of infertile couples. J Med Virol 1995; 45: 179-182.
15. Ozbek SM, Ozbek A, Yavuz MS. Detection of human cytomegalovirus and Epstein-Barr Virus in symptomatic and asymptomatic apical periodontitis lesions by real-time PCR. Med Oral Patol Oral Cir Bucal 2013; 18: 811-816.
16. Dejucq N, Jegou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 2001; 65: 208-231.
17. Naumenko VA, Tyulenev YA, Yakovenko SA, Kurilo LF, Shilyeyko LV, Segal AS, et al. Detection of human cytomegalovirus in motile spermatozoa and spermatogenic cells in testis organotypic culture. Herpesviridae 2011; 2: 7-14.