Is There an Association Between Multiple Sclerosis Epidemic and Socioeconomic Status in Iran? - A Descriptive-analytical Cross-sectional Study

Hossein Mozhdehipanah
Bou Ali Sina Hospital, Qazvin University of medical sciences

Ali Emami
Qazvin University of Medical Sciences

Shima Mohammadhoseini Targhi
Qazvin University of Medical Sciences

Fatemeh Kazemi
Qazvin University of Medical Sciences

Ali Sarbazi-Golezari
Qazvin University of Medical Sciences

Monirsadat Mirzadeh (monirdokht_mirzadeh@yahoo.com)
Qazvin University Of Medical Sciences

Research Article

Keywords: Multiple sclerosis, Expanded disability status scale, Epidemiology, Disease progression, Diagnosis

Posted Date: January 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1183315/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Multiple sclerosis (MS) is a key neurogenic cause of disability among young populations. Assessing the parameters affecting MS severity is vital to reduce the disease burden. The objective of this study is to determine the relationship between socioeconomic status (SES) and MS severity among Iranian young adults.

Methods: A descriptive-analytical cross-sectional study was conducted by 180 patients (142 females and 38 males) with MS selected by a non-probability and consecutive sampling was conducted during September 2018-2019. The socio-demographic and primary clinical data were collected by a self-developed questionnaire and face-to-face interviews, respectively. The expanded disability status scale (EDSS) was used to assess the physical disability degree and the overall neurological function of patients.

Results: The mean age of patients and MS onset was 27.54 and 35.58 years, respectively. The majority of patients were married (68.3%) while were living in cities (74.4%). The mean values of unemployment, homeownership, and monthly income were determined to be 54.4%, 71.7%, and 11,078,330 IRR, respectively. The mean EDSS was 2.80±1.79 points. A weak positive correlation between EDSS and patients’ age (P = 0.001, r = 0.246) and number of children (P = 0.001, r = 0.250) was found. There was no significant difference between EDSS and SES factors (i.e., disease onset age, treatment cost, and monthly income).

Conclusions: As SES was not related to the MS severity, there is no need to take special treatment measures in patients with poor SES.

Background

Multiple sclerosis (MS) is a chronic disease with specific characteristics such as the refractory inflammation, the axonal damage of neurons, the demyelinating process, and the irreversible pathological changes in the central nervous system (CNS). This autoimmune disease demyelinates neurons, reduces the nerve conduction velocity, and disrupts the CNS function(1). MS has variant symptoms such as paresthesia, spasticity, bladder or sexual dysfunction, tremor, dystrophy and visual impairment (e.g., optic neuritis or internuclear ophthalmoplegia) (2). MS typically starts in the third or fourth decade of life and affects young females three times more than males These decades are the reproductive years for women so its complications may affect the fetus too (3, 4). The MS incidence depends on the geographical area and race is variable and changes from 5.1 to 11.6 cases per 100,000 people in a year(5). This inflammatory demyelinating disease is the most common chronic disorder of the CNS causing disability and loss of functions in young people(6)

The prevalence of this disease in the world has been increasing in recent years, while it is estimated that 2.5 million people worldwide suffer from this disease and 80% of patients experience disability(7).
According to the Kurtzke's prevalence pattern of MS, Iran is classified at a low-risk level (less than 5 cases per 100,000 population) (8). However, some epidemiological studies in central area (e.g., Isfahan city) of Iran have shown that the MS prevalence is about 35-45 per 100,000 population, and accordingly, the risk level for MS prevalence is moderate to high (9). Therefore, there are a number of parameters involved in increasing the prevalence of MS such as genetic (e.g., the HLA class I and II genes) (10, 11), lifestyle (e.g., dietary intake, exercise, drug abuse, smoking, and alcohol consumption) (12–14), and environmental (e.g., sun exposure and actinic damage) (15, 16) risk factors. Nowadays, the incidence of MS is increasing in developed countries so that it is more common in high socioeconomic classes with higher education, income, as well as good occupation (17, 18). However, the role of socioeconomic status (SES) on the prevalence of MS in Iran has been less evaluated.

This complex neurological disorder due to arising many physical and mental problems and the need for multiple hospitalizations of patients causes high medical costs for them and their families and the overall health care system in the country (19). As a result, identifying and controlling the factors exacerbating this nervous disorder can have a significant effect on reducing the burden of MS (20). Due to the contradictory results of different studies on the relationship between SES and MS and also the lack of a similar study in Iran, the present study was aimed to determine the epidemiology of MS among Iranian people with a specific emphasis on the role of socioeconomic variables on MS severity.

Methods

Study design and participants

A descriptive-analytical cross-sectional study was conducted with participating 180 patients with MS living in Qazvin (Qazvin province, Iran), who were referred to the clinic of Bou-Ali Hospital for receiving general and critical care from September 2018 to September 2019. A non-probability and consecutive sampling was used for this study.

Inclusion and exclusion criteria

The criteria for patients in this study included the following: people with a confirmation letter from neurologists who diagnosed MS based on the described criteria worldwide (21, 22), and people who lived in Qazvin province for at least ten years before the disease onset. On the other hand, the patients with any physical disability and a history of the disease less than 6 months were excluded. Also, the cases with insufficient or missing information were excluded.

Data collection

Socio-demographic data

A self-developed questionnaire was designed to answer a set of demographic and midwifery characteristics including gender, age, marital status, education level, and SES such as income, living place address, housing status in terms of ownership, the number of family members, occupational status,
and the level of family support. The written informed consent for each patient was obtained after presenting enough explanations about the study objectives. A single code number was assigned to each participant to maintain the confidentiality of personal and medical data as well as to prevent the duplication of information.

Clinical data

A face-to-face interview was conducted with each MS patient to record the clinical data, including the onset time of MS, diagnosis, the pattern of refractory and regression periods, and family history of autoimmune diseases confirmed by a neurologist.

Expanded disability status scale (EDSS)

The most common tool to assess the disability of patients with MS is “expanded disability status scale (EDSS)” (23). This tool has 0-10 scores, which changes with 0.5-point steps based on functional systems, including cerebellar, pyramidal, sensory, brainstem, mental, visual and bowel or bladder functions examined by a neurologist. The EDSS scores range from 0 (no disability and normal neurological function) to 10 (MS-related death). In other way, the scores of 1 to 4.5 was awarded to people who had MS with defect criteria in functional systems while could walk without any assistance. The score of 5.0 to 9.5 was determined by gait disturbance (23, 24).

Statistical analysis

The collected data were analyzed using IBM SPSS Statistics software version 20.0 (IBM Corp., Armonk, NY, USA). The Kolmogorov-Smirnov test was used to examine the normality of data distribution. Pearson’s correlation coefficient and Chi-square parametric tests were used according to the distribution of quantitative variables in the population. The significant level was set at 0.05.

Results

Some demographic and SES properties of MS patients at the disease onset are shown in Table 1. This table shows that the majority of patients at the onset of MS were women (78.9%), married (68.3%), unemployed (54.4%), and urban residents (74.4%), with a diploma degree (57.2%) and private housing (71.7%). 26.1% of the patients were the last child in their family. The average number of children and family members was 1 and 4, respectively. The percentage of immigration history and family support was 15.6% and 72.2%, respectively. 3.5% of women had a history of abortion, while one-third of them had a history of pregnancy during MS. Also, there was a family relationship between parents in 15.6% of cases (Table 1). Some socio-demographic properties of MS patients including age, marital status, occupational status, residential location, and housing situation between the disease onset and study time are compared in Fig. 1. Results showed that the percentage of marriage, divorce, unemployment, ruralization, and living in rented houses were increased from the disease onset to the study time (Fig. 1). Fig. 2a depicts that the most frequent clinical signs at the onset of MS among Iranian patients were imbalance (10.6%), diplopia (16.7%), blurred vision (28.9%), paresthesia (43.3%), and paresis (23.9)
disorders, respectively. Also, a family history of rheumatoid arthritis and hypothyroidism were reported to be 8.9 and 27.2%, respectively. However, there was no family history of lupus. (Fig. 2b). The history of autoimmune diseases in the family of patients revealed that there was MS in 9.8 and 68.8% among their family members and 1st-degree relatives, respectively. Besides, the frequency distribution of history of infectious diseases in patients with MS proved that they had 16.7% measles, 5.6% rubella, 30% mumps, 67.8% chickenpox, and 9.3% hepatitis (Fig. 2c).
Table 1
Frequency distribution of demographic and SES characteristics of patients with MS (n = 180) at the disease onset

Variable	Sub-variable	MS onset	
	Frequency (n)	Percentage (%)	
Age (years)		27.54±8.27 (min = 9, max = 52)	
Monthly income (IRR)		11,078,330.3±2,018,190.2 (min = 0, max = 20,000,000)	
Monthly treatment cost (IRR)		993,500.0±17,904.4 (min = 0, max = 15,000,000)	
Children number (n)		1.11±0.99 (min = 0, max = 4)	
Family members number (n)		4.08±1.84 (min = 1, max = 12)	
Gender	Men	38	
	Women	142	
Education level	Illiterate	1	
	Primary	23	
	Under diploma	28	
	Diploma	75	
	Academic	53	
Marital status	Single	55	
	Married	123	
	divorced	0	
	Widow	2	
Occupational status	Student	28	
	Unemployed	98	
	Employed	54	
	Retired	0	
Residential location	Metropolis and city	134	
	The suburbs	31	
	Village	15	
Variable	Sub-variable	Frequency (n)	Percentage (%)
-------------------------------	--------------	---------------	----------------
Housing situation	Own personal	129	71.7
	Rental	51	28.3
Birth rank (in the family)	1st	34	18.9
	2nd	44	24.4
	3rd	34	18.9
	4th	21	11.7
	5th or more	47	26.1
Disease control	Yes	152	84.4
	No	28	15.6
Disease follow-up place	Qazvin	166	92.2
	Tehran	8	4.4
	Others	6	3.3
Immigration history	Yes	28	15.6
	No	152	54.4
Family support	Good	130	72.2
	Medium	31	17.2
	Week	19	10.6
Parents' relative marriage	Yes	28	15.6
	No	152	84.4
Pregnancy history (during MS)	Yes	59	32.7
	No	121	67.3
Abortion history (during MS)	Yes	6	3.3
	No	174	96.7

The average monthly treatment cost and income of patients were 993,500 and 11,078,330 IRR, respectively. The mean ages of patients and MS onset were 27.54 (±8.27) and 35.58 (±8.95) years, respectively. There was no significant difference in the mean age of MS onset between women (27.39
±8.10 years) and men (28.08±8.80 years) (Fig. 3a). But, there was a significant relationship between patients' current age and gender (P = 0.005). The majority of patients with the same diversity of marital status were in the age range of 30 to 39 years (Fig. 3). The mean EDSS of patients was 2.80±1.79. Table 2 shows the relationship between EDSS and gender according to the current age of MS patients. No significant difference in the EDSS amount among different age groups in both genders was found. As well, there were no significant differences between the EDSS and socioeconomic variables such as marital status, monthly income, pregnancy and abortion history, residential location, and occupational status (Table 2). The correlation test demonstrated that the EDSS had no significant association with the monthly income of men and women. Moreover, no considerable relationship between the EDSS and the age of the disease onset, the treatment cost, as well as the patient's income. Nonetheless, there was a weak, positive correlation between EDSS and patients' age (P = 0.001, r = 0.246) and number of children (P = 0.001, r = 0.250) (Table 3).
Table 2
The relationship between EDSS and demographic and SES characteristics of MS patients

Parameter	EDSS value	p-value		
	Men	Women	Total population	
Current age (yrs)				
< 20	3.25±3.18	1.75±1.06	-	0.59
20-29	2.10±1.68	2.05±1.35	-	0.85
30-39	3.30±1.51	2.61±1.78	-	0.15
≥ 40	3.54±2.00	3.47±1.86	-	0.91
Occupational status			0.45	
Student	-	-	2.60±1.80	
Unemployed	-	-	2.90±1.80	
Employed	-	-	2.60±1.70	
Retired	-	-	2.30±1.90	
Residential location			0.91	
Metropolis and city	-	-	2.8±1.80	
The suburbs	-	-	2.9±1.90	
Village	-	-	2.6±1.70	
Marital status				
Single	2.50±1.60	2.60±1.70	-	0.86
Married	3.30±1.90	2.70±1.80	-	0.12
Divorced	-	-	3.70±1.90	-
Widow	-	2.00±0.70	-	-
Pregnancy history			0.42	
Yes	-	2.81±1.82	-	-
No	-	2.78±1.70	-	-
Abortion history			0.74	
Yes	-	2.78±1.78	-	-
No	-	3.80±2.07	-	-
Table 3
The significance and correlation coefficients between some SES parameters and SDSS of MS patients

SES Parameter	EDSS value	r-value	p-value
Age (yrs)		0.246	0.001
MS onset age (yrs)		0.009	0.910
Treatment cost (IRR)		-0.020	0.791
Monthly income (IRR)		-0.048	0.519
Children number (n)		0.250	0.001

Discussion

Finding a notable relationship between demographic characteristics or SES and MS severity in Iran allows policymakers to present appropriate planning for improving the living conditions of patients. As the proinflammatory phenotype is directly related to the adverse SES in childhood and adulthood, MS as a complicated neuroinflammatory autoimmune disorder may be reduced by improving the SES variables (25). However, the etiological role of this issue requires longitudinal studies such as case-control research and could not be examined in the present cross-sectional study. Our findings showed that there was no statistically significant relationship between EDSS and SES factors. Goulden et al. (26) by assessing the association between SES and MS in a case-control study with 2144 cases and 3859 controls from Norway, Italy, and Canada found that there was no consistent relationship between parental SES and MS risk. In a systematic review, Goulden et al. (27) evaluated the role of SES as a risk factor for MS and concluded that only three studies reported MS had an association with low SES, while the other thirteen surveys showed no significant relationship between MS and SES. Overall, there was inconsistent evidence for the correlation between high SES and increased MS risk. However, a more powerful effect in some countries with higher inequality could be found (27). Nielsen et al. (28) found that although there was not a robust association between the social class difference in childhood and MS risk, a slightly lower risk of developing MS was observed in children from families with higher education, especially educated mothers.

The common reason for high MS rate at low SES may be more vulnerability and exposure to pathogens in early life. Also, MS risk may be remarkably increased by a number of stressors (28, 29). These psychological risk factors by enhancing the expression of inflammatory cytokines and the secretion of stress hormones (e.g., cortisol) intensify viral infections in patients’ body at later ages (30). In our study, 76% of patients had a history of infectious diseases, including chickenpox, mumps, and measles, in childhood. Besides, the higher unemployment rate of patients (68.3%) compared to the country
unemployment rate (10.4 and 18.9% for women and men, respectively) can considerably increase mental disorders (e.g., stress, dispersion, anxiety, etc.) in the studied population. This fact may be due to factors such as the inability of patients, the unwillingness of centers and companies to hire these patients and also the inability to attend work because of the need for regular use of drugs. As a result, this evidence suggests that there was a link between viral infection or chronic stress and MS. Rezaali et al. (31) earlier investigated the epidemiology of MS in Qom city (north-central of Iran) and reported that the MS prevalence in married people was three times higher than single people, although divorced people had a lower risk than single ones. These findings were in line with the results of our study. In addition, there was a similarity in two studies on the viewpoint of the ratio of females to males (3.4 vs. 3.0) and lower MS onset age in women than men (31).

The positive association between patients’ age and EDSS was previously reported by Koch et al. (32), who explained the MS progression is an age-dependent process. The long-term duration and high disability severity at higher ages may be due to the severity of cognitive impairment (33). Moreover, the functional disability in elder MS patients can be affected by chronic neurodegenerative processes and focal recurrent inflammation (34). Nakamura et al. (35) stated that disability in MS patients is related to the cervical and thoracic cross-sectional spinal cord area (CS-SCA). However, degenerative processes in higher ages might be more influential for cervical CS-SCA than thoracic CS-SCA. Achiron et al. (36) also proved that there was a significant relationship between greater disability and higher number of children prior to MS onset. Overall, the MS population have fewer children compared to the general one (37). Alwan et al. (38) pointed out that 72.5-75.2% of Canadian and American persons with MS did not prefer to have any/more children after the MS diagnosis. The risk of having additional children under this condition may be increased by the lack of a stable partner and declined SES (38).

The MS risk assessment in young women, especially women of childbearing age, is very important because pregnancy rates in different populations of women with MS have been substantially increasing. In this study, one-third of women with MS mentioned a pregnancy history during the course of the disease. Similarly, Houtchens et al. (39) reported that one-third to one-fifth of American women with MS had a successful history of pregnancy after the disease onset. In addition, Lai et al. (40) concluded that pregnancy can effectively protect females from MS relapse. Thus, the reduced severity of MS during pregnancy probably is due to the secretion of female sex hormones like estrogens and progesterone, as well as prolactin. These hormones gradually increase until the third trimester and subsequently decrease remarkably to relapse MS after the delivery (40, 41). This fact was also proved in some animal studies so that the secretion of sex-related hormones could improve relapses and regulate the immune system signaling in many animals with experimental autoimmune encephalomyelitis (42, 43). The MS reactivation after delivery may be owing to the breakdown of immunotolerance towards the fetus and the immunocompetence recovery (44). In the present study, only 3.5% of patients pointed out a history of abortion during this demyelinating disease. In contrast, a higher abortion rate for American (20.9%) and French (21.2%) women with MS was earlier reported (39, 45). This discrepancy may be contributed to the difference in lifestyle patterns, environmental risks, and the type and dose of MS drugs (e.g., fingolimod, azathioprine, and rituximab) taken during the disease course. The high abortion rate in some MS
communities, particularly in early pregnancy, can be thanks to the considerable secretion of pro-inflammatory cytokines (e.g., IL-6, IL-8, MCP-1, etc.) enhancing decidualization and implantation of the embryos (46, 47). Besides, a profound imbalance between pro-inflammatory and anti-inflammatory cytokines probably causes a recurrent miscarriage (44, 48).

Conclusions

The present study showed that the SES did not have any significant effect on the MS severity among Iranian young adults. Accordingly, it would not be necessary to plan key managerial actions to be undertaken for improving health status in patients with MS. However, it is recommended to perform more studies with a higher sample size in a wider geographical area for the assessment of other affecting variables on the MS severity. Even though EDSS provides a practical, risk-dependent stratification in daily clinical practice to recognize patients with different disabilities, integrating EDSS with the results of inflammation markers and neurological symptoms might be more efficient for evaluating an improved endpoint to identify the physical disability degree and also required actions for stopping the conversion process to secondary progressive MS type.

Abbreviations

CNS: central nervous system, CS-SCA: cervical and thoracic cross-sectional spinal cord area, EDSS: expanded disability status scale, MS: multiple sclerosis, SES: socioeconomic status

Declarations

Ethical Approval and consent to participate

Before the patient s were enrolled in this study, informed consents were obtained by participant. The research's procedure entirely was consistent with the Human Ethics Committee of the Qazvin University of Medical Sciences with an ethical code of IR.QUMS.REC.1396.458. The protocols used in all stages of the study were based on principle recommendations in the last version of the Helsinki Convention for Ethics.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request. The datasets generated during and analyzed during the current study are not publicly available due to policy of our hospital which do not permit us to share the raw data but they are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding

This study was extracted from a research thesis approved by the Qazvin Faculty of Medical Sciences, Qazvin. We had no funding.

Authors' contributions

Conceptualization: H.M & M.S; Writing and data analysis: S.M & F.K; Editing, supervision and project administration: M.S; Initial draft preparation by: A.S & A.E

Acknowledgments

The authors would like to thank the Clinical Research Development Unit of bou-Ali Sina Hospital and the student research committee of Qazvin University of Medical Sciences.

Conflict of interest

The authors declare no conflicts of interest.

References

1. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. The Lancet. 2017;389(10076):1336-46.
2. Van Munster CE, Jonkman LE, Weinstein HC, Uitdehaag BM, Geurts JJ. Gray matter damage in multiple sclerosis: impact on clinical symptoms. Neuroscience. 2015;303:446-61.
3. Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Multiple Sclerosis Journal. 2014;20(5):520-6.
4. Niedziela N, Adamczyk-Sowa M, Pierzchała K. Epidemiology and clinical record of multiple sclerosis in selected countries: a systematic review. International Journal of Neuroscience. 2014;124(5):322-30.
5. Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Revue neurologique. 2016;172(1):3-13.
6. Bezzini D, Battaglia MA. Multiple sclerosis epidemiology in Europe. Multiple Sclerosis: Bench to Bedside: Springer; 2017. p. 141-59.
7. Shohani M, Kazemi F, Rahmati S, Azami M. The effect of yoga on the quality of life and fatigue in patients with multiple sclerosis: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Clinical Practice. 2020;39:101087.
8. Kurtzke JF. Epidemiology and etiology of multiple sclerosis. Physical Medicine and Rehabilitation Clinics. 2005;16(2):327-49.
9. Etemadifar M, Janghori M, Shaygannejad V, Ashtari F. Prevalence of multiple sclerosis in Isfahan, Iran. Neuroepidemiology. 2006;27(1):39-44.

10. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature Reviews Neurology. 2017;13(1):25.

11. Link J, Kockum I, Lorentzen Å, Lie BA, Celius EG, Westerlind H, et al. Importance of human leukocyte antigen (HLA) class I and II alleles on the risk of multiple sclerosis. PloS one. 2012;7(5):e36779.

12. Hedström AK, Hillert J, Olsson T, Alfredsson L. Alcohol as a modifiable lifestyle factor affecting multiple sclerosis risk. JAMA neurology. 2014;71(3):300-5.

13. Jakimovski D, Weinstock-Guttman B, Gandhi S, Guan Y, Hagemeier J, Ramasamy DP, et al. Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. Journal of neurology. 2019;266(4):866-75.

14. Abdollahpour I, Nedjat S, Mansournia MA, Sahraian MA, van der Mei I. Lifestyle factors and multiple sclerosis: A population-based incident case-control study. Multiple sclerosis and related disorders. 2018;22:128-33.

15. Ascherio A. Environmental factors in multiple sclerosis. Expert review of neurotherapeutics. 2013;13(sup2):3-9.

16. Belbasis L, Bellou V, Evangelou E, Tzoulaki I. Environmental factors and risk of multiple sclerosis: Findings from meta-analyses and Mendelian randomization studies. Multiple Sclerosis Journal. 2020;26(4):397-404.

17. Conway DS. What is the impact of socioeconomic status on multiple sclerosis? About multiple sclerosis. Neurology. 2019;92(13):e1536-e9.

18. Reyes S, Allen-Philbey K, Suarez S, Yildiz Ö, Turner B, Gnanapavan S, et al. 192 Does socioeconomic status impact on the prescription of disease-modifying treatments in people with multiple sclerosis? Journal of Neurology, Neurosurgery and Psychiatry. 2019;90(12):e49.

19. Ernstsson O, Gyllensten H, Alexanderson K, Tinghög P, Friberg E, Norlund A. Cost of illness of multiple sclerosis-a systematic review. PloS one. 2016;11(7):e0159129.

20. Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993;116(1):117-34.

21. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1983;13(3):227-31.

22. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2001;50(1):121-7.

23. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-.
24. Zurawski J, Glanz BI, Chua A, Lokhande H, Rotstein D, Weiner H, et al. Time between expanded disability status scale (EDSS) scores. Multiple sclerosis and related disorders. 2019;30:98-103.

25. Briggs FB, Acuña BS, Shen L, Bellessis KH, Ramsay PP, Quach H, et al. Adverse socioeconomic position during the life course is associated with multiple sclerosis. J Epidemiol Community Health. 2014;68(7):622-9.

26. Goulden R, Riise T, Myhr KM, Pugliatti M, Wolfson C. Does low socioeconomic status in early life protect against multiple sclerosis? A multinational, case–control study. European journal of neurology. 2016;23(1):168-74.

27. Goulden R, Ibrahim T, Wolfson C. Is high socioeconomic status a risk factor for multiple sclerosis? A systematic review. European journal of neurology. 2015;22(6):899-911.

28. Nielsen NM, Jørgensen KT, Bager P, Stenager E, Pedersen BV, Hjalgrim H, et al. Socioeconomic factors in childhood and the risk of multiple sclerosis. American journal of epidemiology. 2013;177(11):1289-95.

29. Kurtzke JF, Page WF. Epidemiology of multiple sclerosis in US veterans: VII. Risk factors for MS. Neurology. 1997;48(1):204-13.

30. Lupien SJ, King S, Meaney MJ, McEwen BS. Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological psychiatry. 2000;48(10):976-80.

31. Rezaali S, Khalilnezhad A, Moghadasi AN, Chaibakhsh S, Sahraian MA. Epidemiology of multiple sclerosis in Qom: Demographic study in Iran. Iranian journal of neurology. 2013;12(4):136.

32. Koch M, Mostert J, Heersema D, De Keyser J. Progression in multiple sclerosis: further evidence of an age dependent process. Journal of the neurological sciences. 2007;255(1-2):35-41.

33. Giedraitienė N, Kizlaitienė R, Kaubrys G. The BICAMS battery for assessment of lithuanian-speaking multiple sclerosis patients: relationship with age, education, disease disability, and duration. Medical science monitor: international medical journal of experimental and clinical research. 2015;21:3853.

34. Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 2006;129(3):595-605.

35. Nakamura Y, Liu Z, Fukumoto S, Shinoda K, Sakoda A, Matsushita T, et al. Spinal cord involvement by atrophy and associations with disability are different between multiple sclerosis and neuromyelitis optica spectrum disorder. European journal of neurology. 2020;27(1):92-9.

36. Achiron A, Ben-David A, Gurevich M, Magalashvili D, Menascu S, Dolev M, et al. Parity and disability progression in relapsing–remitting multiple sclerosis. Journal of Neurology. 2020;1-10.

37. Moberg JY, Laursen B, Thygesen LC, Magyari M. Reproductive history of the Danish multiple sclerosis population: A register-based study. Multiple Sclerosis Journal. 2020;26(8):902-11.

38. Alwan S, Dybalski M, Yee IM, Greenwood TM, Roger E, Nadeau N, et al. Multiple sclerosis and pregnancy: a comparison study. Canadian journal of neurological sciences. 2013;40(4):590-6.

39. Houtchens MK, Edwards NC, Schneider G, Stern K, Phillips AL. Pregnancy rates and outcomes in women with and without MS in the United States. Neurology. 2018;91(17):e1559-e69.
40. Lai W, Kinoshita M, Peng A, Li W, Qiu X, Zhu X, et al. Does pregnancy affect women with multiple sclerosis? A prospective study in Western China. Journal of neuroimmunology. 2018;321:24-8.

41. Patas K, Engler JB, Friese MA, Gold SM. Pregnancy and multiple sclerosis: feto-maternal immune cross talk and its implications for disease activity. Journal of reproductive immunology. 2013;97(1):140-6.

42. Yates M, Li Y, Chlebeck P, Proctor T, Vandenbark A, Offner H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. Journal of neuroimmunology. 2010;220(1-2):136-9.

43. Milosevic A, Janjic MM, Lavrnja I, Savic D, Bozic ID, Tesovic K, et al. The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity. 2020.

44. Landi D, Ragonese P, Prosperini L, Nociti V, Haggiag S, Cortese A, et al. Abortion induces reactivation of inflammation in relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(12):1272-8.

45. Vukusic S, Coyle PK, Jurgensen S, Truffinet P, Benamor M, Afsar S, et al. Pregnancy outcomes in patients with multiple sclerosis treated with teriflunomide: clinical study data and 5 years of post-marketing experience. Multiple Sclerosis Journal. 2020;26(7):829-36.

46. Chavan AR, Griffith OW, Wagner GP. The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Current opinion in genetics & development. 2017;47:24-32.

47. Kalagiri RR, Carder T, Choudhury S, Vora N, Ballard AR, Govande V, et al. Inflammation in complicated pregnancy and its outcome. American journal of perinatology. 2016;33(14):1337-56.

48. Mekinian A, Cohen J, Alijotas-Reig J, Carbillon L, Nicaise-Roland P, Kayem G, et al. Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation? American Journal of Reproductive Immunology. 2016;76(1):8-28.

Figures
Figure 1

A comparative illustration on some socio-demographic properties of MS patients between the disease onset (DO) and study time (ST) [a, age; b, marital status; c, occupational status; d, residential location; e, housing situation].
Figure 2
The frequency of clinical symptoms (a), infectious disease history (b), and autoimmune disease history (c) among the studied MS population.
Figure 3

A comparison of patients' current age with gender (a) and marital status (b) in the studied MS population.