Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network

Eva M. Berg1 · Maria Bertuzzi1 · Konstantinos Ampatzis1

Received: 6 October 2017 / Accepted: 30 January 2018 / Published online: 8 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.

Keywords Calbindin · Calretinin · Parvalbumin · Spinal cord · Zebrafish

Abbreviations
5-HT 5-hydroxytryptamine (serotonin)
CB Calbindin D-28 k
CBPs Calcium binding proteins
CC Central canal
ChAT Choline-acetyltransferase
CR Calretinin
D Dorsal
DON Descending octaval nucleus
GABA γ-Aminobutyric acid
Glut Glutamate
IMRF Intermediate reticular formation
IRF Inferior reticular formation
MA Mauthner cell axon
Mlf Medial longitudinal fascicle
MN Motoneuron
Nmlf Nucleus of the medial longitudinal fascicle
P Posterior
PV Parvalbumin
RV Rhombencephalic ventricle
SRF Superior reticular formation
TeV Tectal ventricle
V Ventral
Va Valvula cerebellum

Introduction
A plethora of neuronal functions were attributed to calcium binding proteins (CBPs), including neuronal excitability, neurotransmitter release, and excitotoxicity (Baimbridge et al. 1992; Andressen et al. 1993; Schwaller et al. 2002). Calretinin (CR), calbindin D28-k (CB) and parvalbumin
(PV) are three major EF-hand CBPs that play significant roles in the regulation of intracellular Ca\(^{2+}\) homeostasis by buffering and transporting Ca\(^{2+}\) (Blaustein 1988; Heizman and Braun 1992; Andressen et al. 1993; Chard et al. 1993; Berridge et al. 2000). Although the precise physiological function of PV, CB and CR is still not fully understood, each of them individually or in combinations has been demonstrated to be a valuable marker of separate neuron populations in the vertebrate central nervous system (Arai et al. 1991; Baimbridge et al. 1992; Resibois and Rogers 1992; Andressen et al. 1993; Kress et al. 2015) including the spinal cord (Fournet et al. 1986; Antal et al. 1990, 1991; Celio 1990; Ince et al. 1993; Ren et al. 1993; Megías et al. 2003; Anelli and Heckman 2005; Morona et al. 2006a, b). The presence of CBPs in different neuronal populations, such as cholinergic, GABAergic, glutamatergic and nitrinergic (Baimbridge et al. 1992), supports the notion that CBPs are not associated to any neurochemical specificity of neurons. However, in numerous studied areas within the nervous system, they are localized in nearly non-overlapping cell assemblies. This segregated distribution pattern allows the identification of subgroups within nuclei that represent discrete neuronal micro-circuits, which are not cyto-architecturally separated (Andressen et al. 1993), but may perform different functions.

In all vertebrates, locomotion relies on the activation of central pattern-generating networks located within the spinal cord (Grillner 2003, 2006; Goulding 2009; Kiehn 2006; Grillner and Jessell 2009). These defined spinal networks transform descending supraspinal signals to generate movements with diverse speeds and of different modalities (Grillner and Jessell 2009; Esposito et al. 2014; Kiehn 2016), and they are formed by a highly heterogeneous population of neurons. An important step towards understanding the principles that govern the organization and functionality of spinal locomotor circuits is to determine the identity of the different spinal neuron populations. Numerous types of neurons have been already described based on their developmental origin, and morphological and electrophysiological properties in the vertebrate spinal cord (Jankowska 1992; Jessell 2000; Briscoe and Ericson 2001; Lee and Pfaff 2001; Goulding et al. 2002; Sueiro et al. 2004; Grillner 2006; Kiehn 2006; Lewis 2006; Windhorst 2007; McCrea and Rybak 2008; Mahmoud et al. 2009; Berkowitz et al. 2010; Bikoff et al. 2016) including zebrafish (Bernhardt et al. 1990; Hale et al. 2001; Drapeau et al. 2002; McLean and Fetcho 2004; Higashijima et al. 2004a, b, c; Kimura et al. 2008; Satou et al. 2009, 2012; Bradley et al. 2010; Ampatzis et al. 2013; Ferg et al. 2014; Menelaou et al. 2014; Böhm et al. 2016). The continuous adjustment of locomotor speed relies on the precise recruitment of distinct spinal interneurons and motoneurons. While neurons that belong to the same populations in zebrafish spinal cord, as they arise from the same progenitor pool, share similar morphological and electrophysiological properties and release the same neurotransmitter, they are functionally distinct, in terms of their recruitment plan (McLean et al. 2007; Gabriel et al. 2011; Ausborn et al. 2012; Ampatzis et al. 2013; Kishore et al. 2014; Menelaou et al. 2014; Björnfors and El Manira 2016). To this end, studies in adult zebrafish have shown that the generation of locomotion at different speeds relies on sequential activation of functionally distinct subpopulations (slow, intermediate and fast) of interneurons (Ausborn et al. 2012; Ampatzis et al. 2014; Björnfors and El Manira 2016) and motoneurons (Gabriel et al. 2011; Ampatzis et al. 2013). To understand further the nature of this functional complexity of spinal circuitry organization, we characterized the distribution pattern of CBPs, regulators of intracellular calcium that serve as valuable anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. In the present work, we provide a detailed description of the distribution pattern of calretinin (CR), calbindin D28-k (CB) and parvalbumin (PV) containing neurons to determine the relationship between the type of calcium binding proteins present in adult zebrafish spinal cord and brain descending neurons and the accompanying function.

We first show that CR and PV containing neurons were co-distributed and occasionally co-localized in motoneurons and interneurons with a diverse neurotransmitter phenotype in the adult zebrafish spinal cord. In contrast, CB immunoreactivity was observed in neuronal progenitor cells that were distributed around the central canal. We then show that the calcium binding protein CR is highly expressed in fast and in few intermediate motoneurons but not in slow motoneurons. Our results suggest that during development the spinal cord neurons utilize CB as an intracellular buffer protein and as they mature and establish a neurotransmitter phenotype they use CR or/and PV. Moreover, our findings propose that motoneurons which are involved in fast modalities of locomotion, such as fast swimming and escape, require an additional regulator for their intracellular calcium, and therefore CR can be potentially used as an anatomical marker for the fast locomotor system. We believe that such comprehensive analysis is necessary and potentially highly valuable as a framework for ongoing and future studies in the spinal neuronal networks controlling generation of locomotion at different speeds and modalities.

Materials and methods

Experimental animals

All animals were raised and kept in the core facility at the Karolinska Institute according to established procedures.
Adult zebrafish (*Danio rerio*; *n* = 190; 10–12 weeks old; length, 16–19 mm; weight, 0.03–0.05 g) wild type (AB/Tübingen) of either sex were used in this study.

Motoneuron and descending neuron labeling

Zebrafish (*n* = 48) of either sex were anesthetized in 0.03% tricaine methane sulfonate (MS-222, Sigma-Aldrich) and placed, lying lateral side up, onto a wet paper tissue inside a petri dish. Retrograde labeling of axial motoneurons was performed by dye injections of tetramethylrhodamine-dextran (3000 MW; ThermoFisher, D3307) into specific muscle fiber types (slow, intermediate or fast), which in the adult zebrafish are arranged in an anatomically segregated manner, as described before in detail (Ampatzis et al. 2013). In addition, retrograde labeling of all motoneurons was performed by applying similar procedures to spinal cord ventral roots. To label the neurons descending from the brain to the spinal cord, dye was injected into the spinal cord at approximately the level of the 8-10th vertebra. Afterwards, animals were kept for at least 24 h to allow for retrograde transport of the tracer.

Immunohistochemistry

All animals were deeply anesthetized with 0.1% MS-222. We then dissected the spinal cords and/or the brains and fixed them in 4% paraformaldehyde (PFA) in phosphate buffer saline (PBS) (0.01M; pH 7.4) at 4 °C for 2–14 h. We performed immunolabeling in both whole mount spinal cords and in cryosections. For cryosections, the tissue was removed carefully and cryoprotected overnight in 30% (w/v) sucrose in PBS at 4 °C, embedded in OCT Cryomount (Histolab), rapidly frozen in dry-ice-cooled isopentane (2-methylbutane; Sigma) at approximately − 35 °C, and stored at − 80 °C until use. Transverse coronal plane cryosections (thickness 25 µm) of the tissue were collected and processed for immunohistochemistry. In all cases, the tissue was washed three times for 5 min in PBS. Nonspecific protein binding sites were blocked with 4% normal donkey serum with 1% bovine serum albumin (BSA; Sigma) and 1% Triton X-100 (Sigma) in PBS for 30 min at room temperature (RT). Primary antibodies (Table 1) were diluted in 1% of blocking solution and applied for 24–90 h at 4 °C. After thorough buffer rinses, the tissue was then incubated with the appropriate secondary antibodies (Table 1) diluted 1:500 in 1% Triton X-100 (Sigma) in PBS overnight at 4 °C. Finally, the tissue was thoroughly rinsed in PBS and cover-slipped with fluorescent hard medium (VectorLabs; H-1400).

The antibodies used in this study have been widely used in zebrafish before and have been described to reliably identify neurotransmitter phenotypes (anti-ChAT: Clemente et al. 2004; Mueller et al. 2004, 2006; Reimer et al. 2008; Moly et al. 2014; Ohnmacht et al. 2016; anti-GABA; Higashijima et al. 2004a; Montgomery et al. 2016; Djenoune et al. 2017; anti-Glycine; anti-Serotonin; Kuscha et al. 2012; McPherson et al. 2016). To further evaluate the antibody specificity, adjacent sections or additional whole mount spinal cords were used in the absence of the first or second antibody. In all cases, no residual immunolabeling was detected. Furthermore, to assess the specificity of antibodies against the selected neurotransmitters (GABA, glutamate, glycine and serotonin), we pre-incubated the neurotransmitter antibodies used in this study with their corresponding antigen for 1 h at RT (100–400 µM) GABA (A2129, Sigma-Aldrich), glutamate (G3291, Sigma-Aldrich), glycine (G6761, Sigma-Aldrich), and serotonin (14927, Sigma-Aldrich) which eliminated any immunoreactivity. In addition, we performed similar experiments in transgenic zebrafish lines (*Gad1b:GFP, Vglut2:GFP, Glyt2:GFP and Tph2:GFP*), in which the majority of the respective neurons express green

Antigen	Host	Source	Code	Dilution
PV	Mouse	Swant	235	1:3000
PV	Rabbit	Swant	PV27	1:3000
CR	Rabbit	Swant	CR7697	1:500
CR	Mouse	Swant	B3	1:1000
CB D-28	Mouse	Swant	300	1:2000
CB D-28	Rabbit	Millipore	AB1778	1:200
ChAT	Goat	Chemicon	AB144P	1:150
Islet1	Mouse	DSHB	40.2D6	1:100
GABA	Rabbit	Sigma	A2052	1:2000
Glycine	Rat	ImmunoSolutions	IG1002	1:1000
Glutamate	Rabbit	Sigma	G6642	1:4000
Serotonin	Rabbit	Sigma	S5545	1:4000
Sox-2	Goat	R&D Systems	AF2018	1:500
Elav3+4	Rabbit	GeneTex	GTX128365	1:500

CB calbindin D-28 k, CR calretinin, PV parvalbumin, ChAT choline-acetyltransferase, GABA γ-Aminobutyric acid
fluorescent protein (GFP). In all cases, most of the GFP+ neurons were also immunolabeled with antibodies (data not shown) suggesting the specificity of our immunodetection.

Analysis

Imaging was carried out in a laser scanning confocal microscope (LSM 510 Meta, Zeiss). Cell counting was performed in segment 15 of the adult zebrafish spinal cord (in whole mount preparations), or in non-overlapping fields of spinal cord sections, between 14 and 16 spinal cord segments. The relative position of the somata of neurons within the spinal cord was calculated in whole mount preparations, using the lateral, dorsal, and ventral edges of the spinal cord as well as the central canal as landmarks. The relative position was calculated using ImageJ. Examination of the descending neurons was performed from a series of coronal brain sections, throughout the brain. Cells of each analyzed brain area were counted in a section that sampled the area well. The nomenclature used for the brain areas of descending neurons was based on the topological zebrafish brain atlas (Wullimann et al. 1996). All figures and graphs were prepared with Adobe Photoshop and Adobe Illustrator (Adobe Systems Inc., San Jose, CA, USA). Digital modifications of the images (changes in brightness and contrast) were minimal to not affect the biological information. All images from double-labeling immunofluorescence experiments were post hoc converted to magenta-green to make this work more accessible to red-green color-blind readers.

Statistics

The significance of differences between the means in experimental animal groups for the detection of CBPs was analyzed using One-way ANOVA followed by post hoc Tukey, using Prism (GraphPad Software Inc.). Differences were considered to be significant if $p < 0.05$. Data presented here are given as mean ± SEM.

Results

Distribution pattern of calcium binding proteins in the adult zebrafish spinal cord

To determine the expression pattern of the three major CBPs (CR, CB and PV), we analyzed their immunoreactivity in the whole hemisegment that corresponds to segment 15 of the adult zebrafish spinal cord. The detailed distribution analysis revealed that CR+ and PV+ neurons are co-distributed throughout the motor column, from the most ventrolateral to middle part (Fig. 1a, c, d, f). In addition to the neuronal somata staining observed, profuse fiber labeling was also present in the neuropil (Fig. 1a, c) where the spinal motoneuron and interneuron dendrites are extending. Immunoreactivity for both CR and PV was observed in various body sized neurons (CR+: 61.57 ± 4.85 µm², $n = 3$ zebrafish; PV+: 72.87 ± 5.68 µm², $n = 3$ zebrafish; Fig. 1h,i). Analysis of the complete number of CB+ neurons in zebrafish spinal cord hemisegment revealed a neuronal population significantly larger (136.2 ± 3.19 neurons/hemisegment, $n = 7$ zebrafish, Fig. 1g) than that observed for CR and PV (CR+: 56.57 ± 2.94 neurons/hemisegment, $n = 6$ zebrafish; PV+: 43.5 ± 0.99 neurons/hemisegment, $n = 6$ zebrafish, Fig. 1g). Numerous small sized CB+ neurons (22.51 ± 0.39 µm², $n = 3$ zebrafish, Fig. 1i) were primarily present in the middle part of the spinal cord, in close apposition to the central canal. Dorsal spinal regions practically lacked the selected CBP+ cells. Overall, these observations were extremely consistent from animal to animal.

The wide co-distribution of CR+ and PV+ neurons in the same area of the adult zebrafish spinal cord and their expression in almost similar sized neurons (Figs. 1i, 2a) strongly suggested the possibility of co-localization of both CBPs in the same population of neurons. Thus, to test and estimate the proportion of co-localization of the different CBPs in neurons, double-labeling experiments were performed. There was no co-expression of CB with either of the other calcium buffering proteins (CR or PV, $n = 6$ zebrafish, Fig. 2a–c). In contrast, the majority of PV+ neurons were found to express also CR (CR+PV+: 51%, $n = 8$ zebrafish, Fig. 2d, e). In addition, a population of CR+PV− neurons (41%) and a small population of CR−PV+ neurons (8%) were also detected (Fig. 2e). Overall, these data clearly show distinct cytoarchitectural distribution patterns of CR+, CB+ and PV+ neurons in adult zebrafish spinal cord.

Calcium binding proteins are localized in distinct neurochemical populations

Neuronal control of movements is organized by a heterogeneous population of spinal neurons (interneurons and motoneurons) characterized by specific neurotransmitter phenotypes (Grillner 2003; Kiehn 2006; Goulding 2009). To explore the relationship between CBP expression and neurotransmitter typology of different spinal neuronal populations, we sought to establish a detailed map of CR, CB or PV immunoreactivity in GABAergic, glycineric, glutamatergic, cholinergic and serotonergic neurons in the adult zebrafish spinal cord.
In the vertebrate nervous system, the presence of calcium binding proteins is often associated with specific neurotransmitter phenotypes (Katsumaru et al. 1988; Celio 1990; Andressen et al. 1993). However, the reason why some cell types express CR, CB, or PV and correlate to neurons with a specific neurotransmitter phenotype is not clear yet. Double immunofluorescence experiments revealed that fractions of CR containing neurons were GABAergic (26.27 ± 2.36%, n = 6 zebrafish), glycinergic (20.54 ± 2.75%, n = 4 zebrafish), glutamatergic (50.51 ± 2.47%, n = 7 zebrafish), cholinergic (42.04 ± 1.32%, n = 5 zebrafish) and serotonergic (5.44 ± 0.45%, n = 6 zebrafish) (Fig. 3a, d). None of the PV+ neurons were found to be GABAergic (n = 5 zebrafish) or serotonergic (n = 5 zebrafish). However, similar to CR immunoreactivity, 7.52 ± 0.59% (n = 5 zebrafish) and 5.48 ± 0.58% (n = 8 zebrafish) and 45.51 ± 2.45% (n = 6 zebrafish) of PV+ neurons were glycineergic, glutamatergic and cholinergic neurons, respectively (Fig. 3c, f). Despite the high degree of co-distribution between CB+ and GABA+ neurons, no double-labeled cells were observed in the middle part of the spinal cord close to central canal (Fig. 3b, e). In addition, none of the CB+ neurons were found to express glutamate (n = 6 zebrafish) or ChAT (n = 4 zebrafish), and only few CB+Glycine+ (2.85 ± 0.29%, n = 5 zebrafish) and CB+Serotonin+ (0.49 ± 0.15%, n = 7 zebrafish) neurons were observed (Fig. 3b, e). Collectively, these data reveal that CR+ and PV+ neurons localized in a phenotypically heterogeneous population of inhibitory and excitatory interneurons and in motoneurons within the adult zebrafish spinal cord. Moreover, CB immunoreactivity was not specifically related to any particular major neurotransmitter phenotype neuronal population.

Calretinin classifies the fast motoneuron module

Numerous CR and PV containing neurons had a cholinergic neurochemical phenotype (Fig. 3a, c, d, f), which labels the motoneurons and the cholinergic interneurons in the adult zebrafish spinal cord. To test whether either of these CBPs co-localized with motoneurons, retrograde tracer was injected into ventral roots to label the motoneurons. Indeed, several motoneurons expressed CR (53.25 ± 2.74%, n = 5 zebrafish, Fig. 4a, b) and the vast majority of labeled motoneurons was found to express PV (80.14 ± 3.16%, n = 5 zebrafish, Fig. 4a, b).

To further determine the expression pattern of CR and PV in functionally different motoneuron pools (slow, intermediate, fast), retrograde tracer was injected into the respective different muscle fiber types by taking advantage of the accessible neuromuscular configuration of the adult zebrafish (Ampatzis et al. 2013). Overall, 90.32% (28 out of 31 neurons), 89.65% (26 out of 29 neurons), 82.85%
(29 out of 35 neurons) and 100% (15 out of 15 neurons) of slow, intermediate, fast and primary motoneurons, respectively, were immunoreactive for PV (Fig. 4c, d). In contrast, CR immunoreactivity was more confined to motoneurons responsible for the contraction of fast muscles. All primary motoneurons were CR+ (100%; 14 out of 14 neurons) as well as the vast majority of fast motoneurons (84.37%; 4 out of 23 neurons) (Fig. 4c, d). In contrast, a small fraction of intermediate motoneurons was found to express CR (17.39%; 27 out of 32 neurons) and none of the slow motoneurons contained CR (0%; 0 out of 27 neurons) (Fig. 4c, d). Our results thus suggest that CR+ expression can be a potential marker of the fast module of the locomotor network (Ampatzis et al. 2014).

Calcium binding protein expression in brain neurons that descend to the spinal cord and initiate locomotion

Previous studies showed that the spinal locomotor circuitry of adult zebrafish is organized in three separate microcircuit modules named the slow, the intermediate and the fast (Ampatzis et al. 2014). Although spinal networks are capable and sufficient to produce all locomotion related movements (Grillner 2003, 2006; Grillner and Jessell 2009), the initiation of any motor event arises from descending signals from supraspinal areas (Grillner and Jessell 2009; Esposito et al. 2014; Kiehn 2016). To evaluate the distribution of CBPs in supraspinal neurons that innervate the spinal cord, and their potential to reveal and discriminate the possible existence of functionally segregated descending populations, a series of experiments combining tracing techniques and immunohistochemistry were conducted (Fig. 5a). The double-labeling experiments showed a wide distribution of CR+ or PV+ brain descending neurons in several brain areas (Fig. 5b, c). Retrogradely labeled brain neurons that showed CR and PV expression were observed in the nucleus of the medial longitudinal fascicle (Nmlf; PV: 87.35 ± 7.68%, CR: 60.19 ± 5.3%, Fig. 5f), superior reticular formation (SRF; PV: 88.51 ± 4.76%, CR: 77.92 ± 6.46, Fig. 5f), intermediate reticular formation (IMRF; PV: 90.94 ± 4.6%, CR: 74.31 ± 3.29%, Fig. 5f), inferior reticular formation (IRF; PV: 91.79 ± 4%, CR: 59.26 ± 3.15%, Fig. 5f), and in the descending octaval nucleus (DON; PV: 92.14 ± 2.29%, CR: 53.06 ± 2.67%, Fig. 5f). Our analysis showed that the vast majority of descending supraspinal neurons contained PV (92.08 ± 2.85%, n = 6 zebrafish), however, no more than 64.89 ± 0.79% (n = 7 zebrafish) of these neurons were found to contain CR (Fig. 5e). Additionally, our analysis showed that none of the retrogradely labeled brain neurons expressed CB (Fig. 5d). Collectively, our data suggest that CR can be a valuable marker to define potentially functionally distinct subpopulations of brain to spinal cord descending neurons.

Calbindin defines the spinal neuronal progenitors

CB immunoreactivity was not specifically related with any particular major neurochemical phenotype (Fig. 3e). In addition, CB+ cells were detected mainly around the central canal (Fig. 6a), the proliferation niche of the spinal cord (Grandel et al. 2006; Kaslin et al. 2008; Hui et al. 2015). This raises the possibility that CB might label undifferentiated new born cells. To test this hypothesis, we performed a series of experiments to identify the nature of the CB+ cells. We observed that none of the newly differentiated and migrated neurons (marked with mef-2+) were CB+ (Fig. 6b).
Fig. 3 CR, CB and PV expression in neurons with identified neurotransmitter type. a–c Double immunostaining experiments for CR, CB and PV (magenta) with markers that label the GABAergic, glycinergetic, glutamatergic, cholinergic and serotonergic spinal neurons (green) in whole mount adult zebrafish spinal preparations. Enlarged and single channel views are given for areas indicated by framed boxes. Arrowheads indicate double-labeled cells. d–f Quantification of the percentage of CR, CB and PV positive neurons that localized in neurons with a specific neurotransmitter phenotype.
Moreover, only a small fraction of CB+ cells were found to express HuC/D (2.32 ± 0.561%, n = 5; Fig. 6c, e, f) a marker for postmitotic neurons. Finally, we observed that the vast majority (78.13 ± 1.541%, n = 35; Fig. 6d, e, f) of CB+ cells co-expressed Sox-2, a marker for neuronal progenitor cells and stem cells (Ferri et al. 2004; Episkopou 2005; Wegner and Stolt 2005; Takahashi and Yamanaka 2006). Taken together, these findings demonstrate that CB can serve as a valuable anatomical marker to identify the mitotically active cells that are able to generate neurons in the spinal cord.

Discussion

The initiation and generation of locomotion depend on dedicated neurons located in the spinal cord and supraspinal areas (Grillner 2003, 2006; Grillner and Jessell 2009; Esposito et al. 2014; Kiehn 2016; Goulding 2009). However, the identity of the neurons that form the locomotor networks that are sufficient to initiate and generate any locomotor activity, at different speeds and modalities, still remains unclear. Here, we utilize CBP expression in spinal and in supraspinal areas as a potential tool to characterize the locomotor network neuronal infrastructure. The present study is the first to directly classify the spinal cord neurons’ and the brain descending neurons’ diversity, distribution and morphology with respect to the calcium binding proteins CR, CB and PV in adult zebrafish. We show here that CBPs mark a highly heterogeneous population of neurons in the adult zebrafish spinal cord and in the reticulospinal areas. We also demonstrate that while most zebrafish axial motoneurons were labeled with PV, only motoneurons that generate the high speeds of swimming or participate in the escape response were in addition CR immunoreactive (Fig. 7a). In extrapolation, our data suggest that CR can be a potential valuable marker for the fast locomotor microcircuit module, possibly marking also the interneuron population which is part of this module. Finally, we show that CB immunoreactivity was mainly confined to a large population of cells surrounding the central canal, and we revealed that the vast majority of these cells were progenitor cells/stem cells (Fig. 7b). Hence, we suggest that new born neurons utilize CB as a regulator of their intracellular calcium and when they mature and start expressing a neurotransmitter phenotype the vast majority uses other calcium regulator proteins such as CR and PV (Fig. 7b).

In the vertebrate nervous system, the presence of calcium binding proteins is often associated with specific neurotransmitter phenotypes (Katsumaru et al. 1988; Celio 1990; Andressen et al. 1993). For instance, PV has been usually observed in GABAergic neurons located in the hippocampus, cerebellum and cortex (Katsumaru et al. 1988; Celio 1990; Andressen et al. 1993), whereas CR and CB can be associated with both excitatory and inhibitory neurons (Celio 1986; Aoki et al. 1990; Reynolds and Beasley 2001). Our analysis clearly indicates that there is no obvious correlation between the CBPs studied here and a given neurotransmitter in the adult zebrafish spinal cord.

Currently in the spinal cord the only cell type that has been strongly associated with different CBPs are Renshaw cells (Arvidsson et al. 1992; Carr et al. 1998; Sapir et al. 2004; Alvarez et al. 2005). Renshaw cells are inhibitory...
neurons deriving from the V1 population (Sapir et al. 2004; Alvarez et al. 2005) that release GABA or glycine to mediate recurrent inhibition to motoneurons (Cullheim and Kellerth 1981; Schneider and Fyffe 1992) and is well documented to contain CB and in a smaller degree also PV and CR (Sapir et al. 2004). Our findings demonstrate that a small population of neurons co-expresses CB and glycine in the adult zebrafish spinal cord. Although Renshaw cells have not been reported in the zebrafish spinal circuits, a previous study revealed that Engrailed-1 (a marker for V1 interneurons) is expressed in a small population of inhibitory glycinergic interneurons that possibly act in an analogous way to Renshaw cells in the mammalian spinal cord (Higashijima et al. 2004c). It is thus possible that these previously described
Renshaw-like neurons in zebrafish contain also CB and constitute an evolutionary conserved population of neurons that later in the mammalian spinal cord forms the Renshaw cells, a question that should be addressed in further studies.

Several previous studies analyzed CBP expression in the vertebrate spinal cord (Fournet et al. 1986; Antal et al. 1990; Celio 1990; Ince et al. 1993; Ren et al. 1993; Sapir et al. 2004; Alvarez et al. 2005; Anelli and Heckman 2005; Morona et al. 2006a,b; Morona and González 2013) including fish (Maler et al. 1984; Denizot et al. 1988; Díaz-Regueira and Anadón 2000; Megías et al. 2003; Castro et al. 2005; Graña et al. 2013), however, many contradictory findings have been described about the presence of these proteins in spinal neuronal populations including motoneurons. In the adult zebrafish, the axial motoneurons form distinct pools related to the type of muscle fibers (slow, intermediate, fast) they innervate (Gabriel et al. 2011; Ampatzis et al. 2013). During swimming, different secondary motoneuron pools are sequentially recruited from slow, to intermediate, and finally to fast to cover the full range of locomotor speeds (Ampatzis et al. 2013). Moreover, the first developed primary motoneurons contribute only to the escape response (Ampatzis et al. 2013) and innervate fast muscle fibers. These findings suggest a differential contribution of axial motoneurons to the generation of locomotion at different speeds and modalities. In this study, we observed that both primary and secondary motoneurons strongly express PV, however, only the primary and some of the secondary fast
motoneurons were found to contain CR, suggesting the functional significance of the presence of different CBPs in motoneurons to buffer intracellular calcium. In accordance with our results, vertebrate spinal cord motoneurons have been shown to contain CR (xenopus, Morona et al. 2006a, b, rats; lizard; Laslo et al. 2000; primates; Fahandejaadi et al. 2004) including fish (grey mullet, Díaz-Regueira and Anadón 2000; zebrafish; Castro et al. 2005; lamprey; Megías et al. 2003; lungfish; Morona et al. 2010), however, mammalian spinal motoneurons have been shown to lack PV. This observation is in agreement with observations in other teleosts, in which CR was not present in the Mauthner cell body (Crespo et al. 1998; Díaz-Regueira and Anadón 2000; Castro et al. 2005), whereas PV positive Mauthner cell bodies where identified before in tench (Tinca tinca; Crespo et al. 1998). Interestingly, the Mauthner cell axon in the spinal cord was found to lack PV. This is similar to results of previous studies that suggest the complementary expression of CB in different cellular elements of the Mauthner cell, revealing the existence of a prominent complexity in the calcium buffering system (Crespo et al. 1998).

All three studied CBPs are known to participate in the regulation of intracellular calcium homeostasis, neurotransmitter release and synaptic alterations (Blaustein 1988; Miller 1991; Heizman and Braun 1992; Lledo et al. 1992; Andressen et al. 1993; Chard et al. 1993; Berridge et al. 2000). As such, Ca²⁺ regulators possess the ability to prevent or attenuate damage to cells due to toxicity that can be caused by the excessive entry of Ca²⁺ after prolonged neuronal activity (Scharfman and Schwartzkroin 1989). Such protection has been thought to underlie the selective survival, and conversely, selective vulnerability of neurons containing or lacking different CBPs (Morrison et al. 1998). Indeed, the differential expression or deficiency in CBPs in neurons has been suggested to be the key reason for the neuronal vulnerability to the progress of pathophysiological conditions associated with motoneuron degenerative diseases such as amyotrophic lateral sclerosis (ALS) (Ince et al. 1993; Alexianu et al. 1994; Elliott and Snider 1995; Reiner et al. 1995). It has been shown that already at presymptomatic stages of ALS, intracellular calcium levels in spinal motoneurons are increased (Siklos et al. 1998) and CBPs are practically absent (Alexianu et al. 1994; Elliot and Snider 1995; Ince et al. 1993; Reiner et al. 1995) indicating a neuroprotective role for CBPs (Mattson et al. 1991).

If the presence of CBPs could be indeed related to functional neuronal properties, then the anatomical distribution of these proteins holds a potentially exceptional tool for the study of the functional and anatomical organization of the spinal cord networks. More specifically, in mammals PV is often associated with fast spiking neurons in the hippocampus, in forebrain areas (Celio 1986; Kawaguchi 1993; Kawaguchi and Kubota 1993; Sik et al. 1995) and in the spinal cord (Solbach and Celio 1991). On the other hand, neurons related to sensory processing were shown to contain CR (Ren and Ruda 1994). Recent studies in the cerebellum of mice that lack CR or CB revealed altered firing patterns of granule cells (Gall et al. 2003; Cheron et al. 2011).
et al. 2004): CR-deficient granule cells exhibit faster action potentials and generate repetitive spike discharge. These results suggest that calcium binding proteins modulate neuronal excitability and activity of cerebellar circuits.

In the present study, we observed that cells surrounding the central canal express CB. We further saw that the vast majority of these cells (~ 80%) are neuronal progenitors/stem cells since they expressed the pluripotency marker Sox-2. From the remaining CB+ population, only a small fraction (~ 5%) expressed a neurotransmitter phenotype (Fig. 3b,e). It has been demonstrated that the expression of Sox-2 protein is not uniform (undetectable low-level protein expression) across the entire neural progenitor populations and that can explain the presence of CB+/Sox-2− cells (Hutton and Pevny 2011; Hagye and Muhr 2014).

In the adult zebrafish, as in all vertebrates, the proliferation niche of the spinal cord is situated around the central canal (Grandel et al. 2006; Kaslin et al. 2008; Hui et al. 2015). The main cell population in this area is the ependymal cells in both fish and mammals (Alfaro-Cervello et al. 2012; Hui et al. 2015). It is known that spinal neuronal precursors/stem cells exist within the population of central canal ependymal cells (Meletis et al. 2008). Under physiological conditions, ependymal cells self-renew and produce small numbers of glial progenitors that produce astrocytes and oligodendrocytes (Horner et al. 2000).

However, in response to traumatic injury, ependymal cells increase their proliferative activity (Yamada et al. 1997) and act as neural stem cells to generate neuroblasts that proliferate and differentiate into neurons (Anderson et al. 1994; Meletis et al. 2008). In addition, mammalian spinal cord ependymal cells were found to contain CB (Ren and Ruda 1994; Zhang et al. 2016). Therefore, the results of the present study primarily indicate that in adult zebrafish the new born neurons that arise from the central canal ependymal cells use CB to buffer the intracellular calcium. However, once they mature and establish a neurotransmitter typology then the vast majority of these neurons uses CR and/or PV to mediate the calcium homeostasis.

Acknowledgements This work was supported by a grant from the Swedish Research Council (2015-03359 to K.A.), StratNeuro (to K.A.), Swedish Brain Foundation (FO2016-0007 to K.A.), Erik and Edith Fernström Foundation (FS-2017-0005 to K.A.), Längmanska kulturfonden (BA17-0390 to K.A.) and Deutsche Forschungsgemeinschaft (BE 6245/1-1 to E.M.B.).

Compliance with ethical standards

Ethical statement All experimental protocols were approved by the local Animal Research Ethical Committee (Jordbruksverket; Ethical permit no. 9248-2017), Stockholm, and were performed in accordance with EU guidelines for the care and use of laboratory animals (86/609/CEE). All efforts were made to utilize only the minimum number of animals necessary to produce reliable scientific data.

Conflict of interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36:846–858

Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z et al (2012) Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comparative Neurol 520:3528–3552. https://doi.org/10.1002/cne.23104

Alvarez FJ, Jonas PC, Sapir T et al (2005) Postsynaptic phenotype and localization of spinal cord V1 derived interneurons. J Comp Neurol 493:177–192. https://doi.org/10.1002/cne.20711

Ampatzis K, Song J, Ausborn J, El Manira A (2013) Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish. J Neurosci 33:10875–10886. https://doi.org/10.1523/JNEUROSCI.0896-13.2013

Ampatzis K, Song J, Ausborn J, El Manira A (2014) Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion. Neuron 83:934–943. https://doi.org/10.1016/j.neuron.2014.07.018

Anderson MJ, Rossetto DL, Lorenz LA (1994) Neuronal differentiation in vitro from precursor cells of regenerating spinal cord of the adult teleosts Apterorobetex albifrons. Cell Tissue Res 278:243–248

Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208

Anelli R, Heckman CJ (2005) The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. J Neurocytol 34:369–385. https://doi.org/10.1007/s108820040724-2

Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28 k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 295:467–484. https://doi.org/10.1002/cne.902950310

Antal M, Polgár E, Chalmers J et al (1991) Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 314:114–124. https://doi.org/10.1002/cne.903140111

Aoki E, Sembia R, Seto-Oshihama A, Heizmann CW, Kashiwama TAS (1990) Coexistence of parvalbumin and glycine in the rat brainstem. Brain Res 525:140–143

Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310:21–44. https://doi.org/10.1002/cne.903100105

Arvidsson U, Ulhake B, Cullheim S, Ramirez V, Shupliakov O, Hökfelt T (1992) Distribution of calbindin-D28k-like activity (LI) in the monkey ventral horn: do Renshaw cells contain calbindin-D28k-LI? J Neurosci 12:718–728

Ausborn J, Mahmood R, El Manira A (2012) Decoding the rules of recruitment of excitatory interneurons in the adult zebrafish.
Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308
Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. 4:36. https://doi.org/10.3389/fnbeh.2010.00036
Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302:603–616. https://doi.org/10.1002/cne.903020315
Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. https://doi.org/10.1038/35036035
Bikoff JB, Gabitto MI, Rivard AF et al (2016) Spinal Inhibitory interneuron diversity delineates variant motor microcircuits. Cell 1–36. https://doi.org/10.1016/j.cell.2016.01.027
Björnfors ER, El Manira A (2016) Functional diversity of excitatory commissural interneurons in adult zebrafish. eLife 5:e18579. https://doi.org/10.7554/eLife.18579
Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11:438–443
Böhm UL, Prendergast A, Djenoune L et al (2016) CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat Commun 7:10866. https://doi.org/10.1038/ncomms10866
Bouvier J, Caggiano V, Leiras R et al (2015) Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 163:1191–1203. https://doi.org/10.1016/j.cell.2015.10.074
Bradley S, Tossell K, Lockley R, McDearmid JR (2010) Nitric oxide synthase regulates morphogenesis of zebrafish spinal cord motor neurons. J Neurosci 30:16818–16831. https://doi.org/10.1523/JNEURSCI.4456-10.2010
Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49
Carr PA, Alvarez J, Lemau EA, Fyffe REW (1998) Calbindin-D28k expression in immunohistochemically identified Renshaw cells. Neuroreport 9:2657–2661
Castro A, Becerra M, Manso MJ, Anadón R (2005) Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord. J Comp Neurol 494:792–814. https://doi.org/10.1002/cne.20843
Celio MR (1986) Parvalbumin in a new direction. Nat Rev Neurosci 10:507–518. https://doi.org/10.1038/nrn2704
Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997
Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475
Chard PS, Bleakman D, Christakos S et al (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurons. J Physiol (Lond) 472:341–357. https://doi.org/10.1113/jphysiol.1993.sp019950
Cheron G, Gall D, Servais L, Dan B, Maex R, Schiffmann SN (2004) Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J Neurosci 24:434–441
Clemente D, Porteros Á, Weruga E et al (2004) Cholinergic elements in the zebrafish central nervous system: Histochemo and immunohistochemical analysis. J Comp Neurol 474:75–107. https://doi.org/10.1002/cne.20111
Crespo C, Arévalo R, Briñón JG et al (1998) Co-localization of calretinin and parvalbumin with nicotinamide adenine dinucleotide phosphate-diaphorase in tench Mauthner cells. Neurosci Lett 250:107–110
Cullheim S, Kellerth J-O (1981) Two kinds of recurrent inhibition of cat spinal a-motoneurons as differentiated pharmacologically. J Physiol 312:209–224
Denizot JP, Bratton BO, Bréhier A, Thomasset M (1988) Immunohistochemical demonstration of calbindin-D 28K (CABP28K) in the spinal cord motoneurons of teleost fish. Cell Tissue Res 254:629–634
Diaz-Regueira S, Anadón R (2000) Calretinin expression in specific neuronal systems in the brain of an advanced teleost, the grey mullet (Chelon labrosus). J Comp Neurol 426:81–105
Djenoune L, Deslan, Gomez J et al (2017) The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 7:719. https://doi.org/10.1038/s41598-017-00350-1
Drapeau P, Saint-Amant L, Buss RR et al (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111
Elliott JL, Snider WD (1995) Parvalbumin is a marker of ALS-resistant motor neurons. Neuroreport 6:449–452
Episkopou V (2005) SOX2 functions in adult neural stem cells. Trends Neurosci 28:219–221
Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature. https://doi.org/10.1038/nature13023
Fahandejaadi A, Leung E, Rahaii R, Bu J, Geula C (2004) Calbindin-D28K, parvalbumin and calretinin in primate lower motor neurons. Neuroreport 15:443–448
Ferg M, Armant O, Yang L et al (2014) Gene transcription in the zebrafish embryo: regulators and networks. Briefings Funct Genomics 13:131–143. https://doi.org/10.1093/bfgp/el044
Ferr L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolli PP, Sala M, DeBiaggio S, Nicolas SK (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–3819
Fournet N, Garcia-Segura LM, Norman AW, Orci L (1986) Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord. Brain Res 399:310–316
Gabriel JP, Ausborn J, Ampatzis K et al (2011) Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci 14:93–99. https://doi.org/10.1038/nn.2704
Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurrams S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23:9320 – 9327
Goodchel AK, Llewellyn-Smith JJ, Sun QJ, Chalmers J, Cunningham AM, Pilowsky PM (2000) Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: catecholamine content and spinal projections. J Comp Neurol 424:547–562
Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518. https://doi.org/10.1038/nrn2608
Goulding M, Lanuzza G, Sapis T, Narayan S (2002) The formation of sensorimotor circuits. Curr Opin Neurobiol 12:508–515
Graña P, Huesa G, Anadón R, Yáñez J (2012) Immunohistochemical study of the distribution of calcium binding proteins in the brain of a cladistian (Acipenser baeri). J Comp Neurol 520:2086–2122. https://doi.org/10.1002/cne.23030
Graña P, Folgueira M, Huesa G et al (2013) Immunohistochemical study of calretinin and calbindin (D-28 k) in the brain of the cladistian Polypterus senegalus. J Comp Neurol 521:2454–2485. https://doi.org/10.1002/cne.23293
Grandel H, Kaslin J, Ganz J et al (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277. https://doi.org/10.1016/j.ydbio.2006.03.040
Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73:155–202. https://doi.org/10.1016/j.brainresbull.2007.03.010

Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhaeuser Verlag, Basel

Yamada H, Miyake T, Kitamura T (1997) Proliferation and differentiation of ependymal cells after transection of the carp spinal cord. Zool Sci 14:331–338

Zhang M-D, Barde S, Szodorai E et al (2016) Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Struct Funct 221:3803–3823. https://doi.org/10.1007/s00429-016-1191-3

Zottoli SJ (1977) Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J Exp Biol 66:243–254