IUCrJ

Volume 2 (2015)

Supporting information for article:

A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

Christer B. Aakeröy, Christine L. Spartz, Sean Dembowski, Savannah Dwyre and John Desper
S1. Electrostatic Potential Calculations for Acceptor Molecules

The theoretical electrostatic potential calculations for all of the acceptor molecules were performed using Density Functional Theory (DFT) at the 6-31++G** basis set. The results for all twenty acceptor molecules are shown in the table below.

Table S1 Electrostatic Potential Calculations for Acceptor Molecules

Acceptor	Structure	Electrostatic Potential (kJ/mol)
1	![Structure 1](image1)	py = -146.0 CN = -172.3
2	![Structure 2](image2)	py = -147.6 CN = -164.0
3	![Structure 3](image3)	py = -217.4
4	![Structure 4](image4)	py = -177.8
5	![Structure 5](image5)	py = -228.4
6	![Structure 6](image6)	py = -148.3
7	![Structure 7](image7)	py = -148.0
8	![Structure 8](image8)	py = -168.1
9	![Structure 9](image9)	py = -172.8
	Structure	py (°)
---	-----------	--------
10	![Structure 10](image1.png)	-206.4
11	![Structure 11](image2.png)	-188.0
12	![Structure 12](image3.png)	-176.8
13	![Structure 13](image4.png)	-163.3
14	![Structure 14](image5.png)	-182.7
15	![Structure 15](image6.png)	N-O = -184.0, py = -174.6
16	![Structure 16](image7.png)	N-O = -164.9, py = -148.1
17	![Structure 17](image8.png)	N-O = -178.4, py = -155.8
18	![Structure 18](image9.png)	im = -214.3, py = -179.6
19	![Structure 19](image10.png)	im = -198.6, py = -177.9
S2. Melting Point Information

Melting point data was recorded on a Gallenkamp melting point apparatus, and results were non-corrected.

Table S2 Melting point (MP) data for co-crystals and their donors and acceptors

D–A	Donor MP (°C)	Acceptor MP (°C)	Co-crystal MP (°C)	Co-crystal MP Between/Outside
IF₄-COOH	151	70	125-129	between
IF₄-COOH	151	64	102-104	between
IF₄-COOH	151	102	dec. 165-170	above
IF₄-COOH	151	77	dec. 138-141	between
IF₄-COOH	151	110	111-115	between
BrF₄-COOH	142	98	137-139	between
I-COOH	215	98	190-192	between
I-COOH	215	102	179-182	between
Br-COOH	234	70	210-221	between
Br-COOH	234	105	151-153	between
Br-COOH	234	38	159-162	between
Br-COOH	234	102	dec. 159-164	between
Br-COOH	234	98	140-142	between
IF₄-OX	174	105	dec. 90-94	below
IF₄-OX	174	98	135-142	between
IF₄-OX	174	77	133-135	between
BrF₄-OX	177	152	141-145	below
Br-OX	96	38	108-112	above
IF₄-OH	44	70	dec. 97-98	above
IF₄-OH	44	110	dec. 102-106	between
BrF₄-OH	40	70	dec. 100-103	above
BrF₄-OH	40	98	125-130	above
BrF₄-OH	40	102	118-119	above
Figure S1 Melting point data shown graphically. It is noticeable that the melting point of most co-crystals falls between its donor and acceptor’s melting points, but the melting point of the phenolic-ligand co-crystal are significantly higher than their components.

Figure S2 Melting point data for phenolic-donor ligand co-crystals.
S3. Crystallographic Information

Samples were analyzed with either a Bruker Kappa APEX II system using CuKα radiation (BrF₄-OX--14, BrF₄-OH--11) or a Bruker APEX II system using MoKα radiation (all others). Data collection was carried out using APEX2 software. Initial cell constants were found by small widely separated “matrix” runs. Data collection strategies were determined using COSMO. Scan speed and scan widths were chosen based on scattering power and peak rocking curves. All datasets were collected at -153°C using an Oxford Cryostream low-temperature device.

Unit cell constants and orientation matrix were improved by least-squares refinement of reflections thresholded from the entire dataset. Integration was performed with SAINT, using this improved unit cell as a starting point. Precise unit cell constants were calculated in SAINT from the final merged dataset. Lorenz and polarization corrections were applied. Multi-scan absorption corrections were performed with TWINABS for the two non-merohedral twins in this set (I-COOH--11 and Br-COOH--12), and SADABS for the remainder.

Data were reduced with SHELXTL. The structures were solved in all cases by direct methods without incident. Except as noted below, hydrogen atoms were located in idealized positions and were treated with a riding model. All non-hydrogen atoms were assigned anisotropic thermal parameters. Refinements continued to convergence, using the recommended weighting schemes.

IF₄-OX--3 The asymmetric unit contains two oxime / amine pairs, which were grouped into two RESIdues.

Br-OX--5 The asymmetric unit contains a single oxime / amine pair. The pyrrolidine moiety was disordered at the ethylene bridge, with the population of the two PARTs being set by a free variable. Thermal parameters of the disordered fragment were pairwise constrained with EADP commands. Coordinates of the oxime hydrogen H17 were allowed to refine.

Br-COOH--5 The asymmetric unit contains two carboxylic acids and a single amine. The pyrrolidine moiety was disordered at the ethylene bridge, with the population of the two PARTs being set by a free variable. DFIX commands were used to idealize the geometry of the disordered ethylene bridge, and thermal parameters of the disordered fragment were pairwise constrained with EADP commands. Proton transfer from a carboxylic acid to the amine was clearly observed. Coordinates for the remaining carboxylic acid proton and the ammonium proton were allowed to refine.

Br-COOH--3 The asymmetric unit contains a single carboxylic acid / amine pair. Proton transfer from carboxylic acid to amine was clearly observed. Coordinates of the ammonium proton were allowed to refine.

IF₄-COOH--4 The asymmetric unit contains a single carboxylic acid and two amines. The iodo acid was disordered in a head-to-tail fashion, with the population of the two PARTs being set by a free variable. A
SAME command was used to restrain the geometries of the two independent iodo acids. The structure is nearly centrosymmetric, with the amines and the two acid PARTs nearly related by inversion centers. However, the ratio of iodo acids was significantly different from 50:50, with the final refined FVAR = 0.464(1). Only the iodo atoms could be refined anisotropically. Attempts to assign anisotropic thermal variables to the remaining atoms were unsuccessful: the refinement became unstable and the fit did not improve. The data were handled as a eacemic twin.

I-COOH--12 The asymmetric unit contains a single carboxylic acid / amine pair. The iodo acid and diamine were both disordered in a head-to-tail fashion. A SAME command was used to restrain the geometries of the two halves of the diamine. Thermal parameters for the two halves of the disordered diamine were pairwise constrained with EADP commands. The ratio of both species was eventually constrained to 50:50 since neither refined to a value significantly different from this ratio.

I-COOH--11 The crystal was a non-merohedral twin, and the data were processed with TWINABS. The asymmetric unit contains a single iodo acid / diamine pair. The iodo acid was disordered in a head-to-tail fashion, with the population of the two PARTs being set by a free variable. A SAME command was used to restrain the geometries of the two independent iodo acids. The structure is nearly centrosymmetric, with the diamine and the two diacid PARTs nearly related by inversion centers. However, the ratio of iodo acids was significantly different from 50:50, with the final refined FVAR = 0.623(4). Thermal parameters for both the diamine and iodo acid were pairwise constrained with EADP commands.

BrF$_4$-OH--13 The asymmetric unit contains a single phenol / amine pair. Coordinates for the phenol hydrogen were allowed to refine.

BrF$_4$-COOH--11 The asymmetric unit contains a single bromo acid / diamine pair. The bromo acid was disordered in a head-to-tail fashion, with the population of the two PARTs being set by a free variable. A SAME command was used to restrain the geometries of the two independent bromo acids. Both the diamine and the bromo acid pair sit on pseudo inversion centers at (1 1/4 1/4) and (-1/2 1/4 3/4) respectively. However, the ratio of bromo acids was substantially different from 50:50, and significantly different from 100:0, with the final refined FVAR = 0.9464(7). Thermal parameters of the disordered bromo acid were constrained pairwise with EADP commands between atoms in close proximity. Proton transfer from carboxylic acid to amine was clearly observed. Coordinates for the ammonium proton were allowed to refine.

IF$_4$-OX--13 The asymmetric unit contains a single iodo oxime / diamine pair. Coordinates for the oxime hydrogen were allowed to refine.

IF$_4$-OX--11 The asymmetric unit contains a single oxime / diamine pair. Coordinates for the oxime hydrogen were allowed to refine.
IF$_4$COOH--13 The asymmetric unit contains a single iodo acid / diamine pair.
IF$_4$COOH--12 The asymmetric unit contains a single iodo acid / diamine pair. Proton transfer from carboxylic acid to amine was clearly observed. Coordinates for the ammonium hydrogen were allowed to refine.
Br-COOH--14 The asymmetric unit contains a single bromo acid and a half-diamine. The diamine straddles an inversion center. Coordinates for the carboxylic acid hydrogen were allowed to refine.
Br-COOH--12 The crystal was a non-merohedral twin, and the data were processed with TWINABS. The asymmetric unit contains three bromo acid / half-diamine pairs, which were grouped into three RESIdues. One of the three unique half-diamines is related to a symmetry equivalent by an inversion center; the other diamine sits on a general position.
Br$_2$OX--14 The asymmetric unit contains two oxime / half-diamine pairs. Both unique diamines straddle crystallographic inversion centers. Coordinates for the two oxime hydrogens were allowed to refine.
Br$_2$OH--12 The asymmetric unit contains a single phenol / half-diamine pair. The diamine straddles a crystallographic inversion center. Coordinates for the phenol hydrogen were allowed to refine.
Br$_2$OH--11 The asymmetric unit contains a single phenol / half-diamine pair. The diamine straddles a crystallographic inversion center. Coordinates for the phenol hydrogen were allowed to refine.
IF$_4$OH--16 The asymmetric unit contains a single phenol / amine pair. Coordinates for the phenol hydrogen were allowed to refine.
IF$_4$OH--2 The asymmetric unit contains a single phenol / amine pair. Coordinates for the phenol hydrogen were allowed to refine.
IF$_4$COOH--16 The asymmetric unit contains a single iodo acid / amine pair. The iodo acid was disordered in a head-to-tail fashion, with the population of the two PARTs being set by a free variable. A SAME command was used to restrain the geometries of the two independent iodo acids. Thermal parameters of the disordered iodo acid were constrained pairwise with EADP commands between atoms in close proximity.
IF$_4$COOH--2 The asymmetric unit contains two iodo acid / amine pairs. Both unique iodo acids were disordered in a head-to-tail fashion, with the population of the two PARTs being set by free variables. A SAME command was used to restrain the geometries of the four independent iodo acids. Thermal parameters of both disordered iodo acids were constrained pairwise with EADP commands between atoms in close proximity.
Br-COOH--2 The asymmetric unit contains a single bromo acid / amine pair. Coordinates for the carboxylic acid hydrogen were allowed to refine.
Br$_2$OH--2 The asymmetric unit contains a single phenol / amine pair.
Table S3 Crystallographic data

Systematic Name	IF$_4$OX\cdots	Br-OX\cdots	Br-COOH\cdots	Br-COOH\cdots	IF$_4$-COOH\cdots			
Formula area	(C$_6$H$_4$NO)	(C$_6$H$_4$BrNO)	(C$_6$H$_4$NO)	(C$_6$H$_4$NO)	(C$_6$H$_4$NO)			
Empirical formula	C$_6$H$_4$BrNO	C$_6$H$_4$BrNO	C$_6$H$_4$BrNO	C$_6$H$_4$BrNO	C$_6$H$_4$BrNO			
Molecular weight	341.17	348.24	556.24	523.19	665.38			
Color, Habit	colourless plate	colourless prism	colourless prism	colourless prism	colourless prism			
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic			
Space group	P 21/c, 3	P 21/c, 3	P 21/c, 3	P 21/c, 3	P 21/c, 3			
a, Å	8.2193(6)	8.2050(11)	8.2178(6)	8.2190(12)	8.2190(12)			
b, Å	17.4191(11)	17.4135(14)	17.4497(13)	17.4106(17)	17.4106(17)			
c, Å	9.6166(6)	9.6156(14)	9.6407(8)	9.6407(16)	9.6407(16)			
\(\beta \)	90	90	90	90	90			
\(V \), Å3	103.489(2)	103.325(5)	103.325(5)	103.325(5)	103.325(5)			
\(Z \)	90	90	90	90	90			
Density, g/cm3	1.833	1.838	1.690	1.638	1.638			
Temperature, K	120(2)	120(2)	120(2)	120(2)	120(2)			
Crystal size, mm x mm x mm	0.100 x 0.220 x 0.380							
X-ray wavelength, Å	1.0703	1.0707	1.0707	1.0707	1.0707			
\(\mu \), mm$^{-1}$	2.074	2.079	2.063	2.021	2.021			
Space group	I > 2o(l)	I > 2o(l)	I > 2o(l)	I > 2o(l)	I > 2o(l)			
\(R \) (%)	0.0411	0.0417	0.0417	0.0417	0.0417			
Goodness of fit	1.001	1.001	1.001	1.001	1.001			
As max / min	1.700 / 0.743	0.526 / 0.329	1.865 / 2.734	0.548 / 0.331	0.548 / 0.331			
29 limit2	10000	100000	100000	100000	100000			
Completeness to 29 limit2	0.983	0.986	0.986	0.987	0.987			
	I-COOH -12	I-COOH -11	BrF₅-OH -13	BrF₅-COOH - 11	IF₇-OX -13	IF₇-OX -11	IF₇-COOH -13	IF₇-COOH -12
------------------	------------	------------	-------------	----------------	-----------	-----------	-------------	-------------
Systematic name	4-chlorobenzoic acid, 4,4'-bipyridyl	4-chlorobenzoic acid, 1,2-bis(4-pyridyl)ethane	4-BrF₅-PH₂COOH, 2.1,5,6-Me₃-pyrazine	4-BrF₅-PH₂COOH, 1,2-bis(4-pyridyl)ethane	4-IF₇-PH₂COOH	1,2-bis(4-pyridyl)ethane	4-IF₇-PH₂COOH	4-IF₇-PH₂COOH
Formula	(C₆H₅CO₂H)							
Empirical	C₂H₇BrF₅N₂O₂							
Molecular	404.19	392.24	381.17	457.22	455.19	503.23	456.17	476.16
Weight	colourless plate	colourless plate	colourless rod					
Crystal	triclinic	monoclinic	triclinic	monoclinic	monocalinic	orthorhombic	monoclinic	monoclinic
Space group, Z	P 1, 1							
	6,383(5)	10,763(5)	4,175(4)	4,877(4)	4,157(2)	6,280(9)	17,561(10)	12,169(5)
a, Å	7,407(6)	7,361(6)	12,387(15)	10,761(7)	14,587(8)	11,228(13)	14,867(9)	11,193(8)
b, Å	11,490(6)	11,490(6)	13,472(4)	15,938(10)	16,384(13)	15,968(13)	16,384(13)	15,968(13)
c, Å	8,777(6)	8,777(6)	8,870(2)	8,870(2)	8,870(2)	8,870(2)	8,870(2)	8,870(2)
β, °	90	90	90	90	90	90	90	90
γ, °	83,781(2)	83,781(2)	90	87,807(4)	83,646(2)	90	90	90
Volume, Å³	372,20(5)	372,20(5)	730,96(15)	661,66(9)	661,66(9)	661,66(9)	661,66(9)	661,66(9)
Dens. of crystal, g/cm³	1.035	1.069	1.732	1.765	1.775	1.904	1.979	
Temperature, K	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)
Crystal size, mm	0.060 x 0.220	0.160 x 0.220	0.040 x 0.050	0.240	0.160 x 0.160 x 0.280	0.050 x 0.140 x 0.360	0.101 x 0.201 x 0.380	0.030 x 0.140 x 0.240
X-ray wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
μ, mm⁻¹	2.160	1.887	2.538	2.446	2.026	1.754	2.066	2.042
Transmittance	0.722 / 0.881	0.566 / 0.752	0.704 / 0.894	0.635 / 0.696	0.750 / 0.888	0.703 / 0.791	0.580 / 0.630	0.787 / 0.824
θmax, °	25.33	22.60	2.072	2.122	2.737	1.968	1.799	1.729
Reflections	33,117	33,117	31,663	32,810	33,142	32,029	32,541	32,565
independent	2379	2379	4086	6066	5424	6405	4502	5816
observed	2260	2260	3240	5288	3934	5231	2222	
Threshold	1 > 2θ(F)							
EL (observed)	0.0231	0.0577	0.0594	0.0532	0.6265	0.0237	0.0297	0.0231
wR2 (all)	0.0563	0.1428	0.1379	0.0820	0.0999	0.0787	0.1359	0.0587
Goodness of fit (all)	1.040	1.120	1.052	1.042	1.227	1.026	1.066	1.056
Δα max/min	0.464 / -0.275	0.589 / -1.177	1.089 / -1.721	0.676 / -0.676	0.997 / -0.920	0.769 / -0.564	1.360 / -2.338	0.692 / -0.518
20 limit	27.500	25.342	27.500	25.342	25.000	25.000	25.000	25.000
Completeness to 20 limit	0.977	0.998	0.983	0.986	0.983	0.995	1.000	1.000
Systematic name	Br-COOH-11	Br-COOH-12	BrF₃OX-14	BrF₅OH-12	BrF₅OH-11			
-----------------	------------	------------	-----------	-----------	-----------			
Formula molecry	(C₃H₅N₂)(4-	(C₅H₆BrO₂)	(4-Br-F₃-	(4-Br-F₅-	(4-Br-F₅-			
	pyridyl)ethane,)	PhCH=NOH)	H, Pyridyl	PhOH)_2,			
	(4-Br-PyCOOH)_2)			4-Br-F₄-			
)			PhOH,			
)			1,2-			
)			bis(4-			
)			pyridyl)			
Empirical formula	C₂₀H₂₇Br₂N₂O₆	C₂₀H₂₇Br₂N₂O₆	C₂₀H₂₇Br₂F₅NO₂	C₂₀H₂₇Br₂F₅N₂O₂	C₂₀H₂₇Br₂F₅N₂O₂			
Molecular weight	586.27	586.22	726.23	646.14	674.19			
Color, Habit	colourless plate	colourless needle	colourless plate	colourless prism	colourless prism			
Crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic			
Space group, Z	P 1, 1	P 2₁/c, 6	P 1, 2	P 2₁/c, 6	C 2/c, 4			
a, Å	7.110(4)	11.046(7)	5.837(6)	13.634(15)	25.912(9)			
b, Å	7.462(4)	28.0638(18)	12.846(5)	13.833(6)	4.692(5)			
c, Å	11.2799(6)	10.795(7)	18.114(8)	15.311(14)	20.090(12)			
α, °	93.42(2)	90	103.53(2)	90	90			
β, °	94.02(2)	110.60(2)	98.96(1)	90.944(7)	103.46(4)			
γ, °	103.37(2)	90	93.05(2)	90	90			
Volume, Å³	576.53(5)	3233.4(3)	1300.46(10)	1038.51(19)	2375.8(3)			
Density, g/cm³	1.989	1.720	1.846	2.027	1.885			
Temperature, K	120(2)	120(2)	200(2)	120(2)	120(2)			
Crystal size, mm	0.000 x 0.220 x 0.340	0.040 x 0.080 x 0.340	0.060 x 0.240 x 0.280	0.060 x 0.140 x 0.296	0.200 x 0.240 x 0.300			
X-ray wavelength, Å	0.71073	0.71073	1.54178	0.71073	0.71073			
μ, mm⁻¹	3.553	3.796	4.781	3.925	3.502			
Trans. min / max	0.376 / 0.815	0.587 / 0.863	0.535 / 0.762	0.644 / 0.799	0.429 / 0.541			
α, °	1.823	1.969	2.532	2.989	2.085			
β, °	33.165	31.530	68.191	31.506	32.568			
Reflections	13250	17575	15525	11348	11454			
collected	4144	17575	4377	3352	4304			
independent	3415	9657	3916	2301	3043			
observed	1 > 2a(1)	1 > 2a(1)	1 > 2a(1)	1 > 2a(1)	1 > 2a(1)			
Threshold	1.038	1.038	1.038	1.038	1.038			
extinction	0.0000	0.0000	0.0000	0.0000	0.0000			
R1 (observed)	0.0388	0.0388	0.0388	0.0388	0.0388			
wR2 (all)	0.1085	0.1085	0.1085	0.1085	0.1085			
Goodness of fit	1.021	0.999	0.862	1.057	1.052			
all	0.773 / -1.014	1.013 / -1.031	0.254 / -0.539	0.555 / -1.123	0.946 / -0.965			
2θ limit	32.500	30.000	60.000	80.000	27.500			
Completeness to 2θ limit	0.909	0.992	0.947	0.982	0.986			
Systematic name	IF₂OH⁻	IF₂OH⁻²	IF₂COOH⁻	IF₂COOH⁻²	Br⁻COOH⁻	Br⁻COOH⁻²		
----------------	---------	---------	-----------	-----------	----------	----------		
IF₂OH⁻	pyrazine-1-oxide, IF₂-IF₄-PhOH	4-IF₄-PhOH, isocontohumate	pyrazine-1-oxide	4-IF₄-PhCOOH, isocontohumate	4-Br⁻-PhCOOH, isocontohumate	4-Br⁻-PhOH, isocontohumate		
Formula	(C₂H₄N₂)[IF₂O]	(C₂H₄N₂)[IF₂O]	(C₂H₄N₂)[IF₂O]	(C₂H₄N₂)[IF₂O]	(C₂H₄N₂)[IF₂O]	(C₂H₄N₂)[IF₂O]		
Empirical formula	C₉H₁₂F₂N₂O₂	C₉H₁₂F₂N₂O₂	C₉H₁₂F₂N₂O₂	C₉H₁₂F₂N₂O₂	C₉H₁₂F₂N₂O₂	C₉H₁₂F₂N₂O₂		
Molecular weight	388.06	396.08	416.07	424.09	305.13	349.09		
Color, Habit	bronze plate	gold rod	colourless prism	colourless plate	colourless plate	colourless plate		
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic		
Space group	P2₁/n, 4	P2₁/n, 4	P1, 2	P2₁/c, 8	P1, 2	P2₁/n, 4		
a, Å	31.701(9)	12.725(15)	4.248(5)	7.4234(5)	7.3650(12)	12.2768(19)		
b, Å	6.61(2)	5.992(6)	11.029(4)	35.8831(16)	7.4800(12)	5.003(8)		
c, Å	21.594(4)	20.78(3)	13.8288(10)	9.0949(5)	12.4462(2)	20.668(5)		
β, °	90	90	110.256(2)	90	90	90		
ε	103.916(1)	106.074(3)	95.9706(10)	101.028(2)	84.893(7)	106.425(4)		
γ, °	90	90	98.5310(10)	90	62.018(5)	90		
Volume, Å³	1132.7(4)	1250.0(3)	624.68(8)	2639.3(2)	597.1(17)	1217.7(2)		
Density, g cm⁻³	2.275	2.204	2.212	2.134	1.897	1.904		
Temperature, K	129(2)	129(2)	129(2)	129(2)	129(2)	129(2)		
Crystal size, min x max x	0.080 x 0.260 x 0.360	0.600 x 0.120 x 0.320	0.200 x 0.250 x 0.320	0.060 x 0.240 x 0.280	0.060 x 0.240 x 0.440	0.080 x 0.140 x 0.340		
X-ray wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073		
μ, mm⁻¹	2.881	2.607	2.626	2.483	3.436	3.423		
Trans max / min	0.669 / 0.802	0.645 / 0.829	0.544 / 0.622	0.719 / 0.865	0.532 / 0.820	0.566 / 0.771		
ϕmax, °	180.85	7.045	1.984	2.122	1.658	3.079		
ωmax, °	33.718	32.027	33.138	32.575	32.575	35.560		
Reflections	collected	8224	15319	18348	22625	12085		
independent	3706	4206	4156	8978	3871	3721		
observed	2321	2624	2422	6065	2201	2044		
Threshold expression	1.0 ≤ 2σ(I)							
R1 (observed)	0.0238	0.0317	0.0181	0.0471	0.0499	0.0423		
wR2 (all)	0.0675	0.0870	0.0472	0.1218	0.1351	0.1149		
Goodness of fit (all)	1.089	1.068	1.045	1.044	1.050	1.058		
Ap max / min	0.710 / -0.825	1.195 / -1.998	0.623 / -0.654	1.501 / -1.031	1.551 / -1.673	1.486 / -1.422		
F20 limit	30.000	25.242	30.000	30.000	30.000	30.000		
Completeness to F20 limit	0.970	0.990	0.994	0.975	0.996	0.958		

ι APEX2 v2013.10.0, © 2013, Bruker Analytical X-ray Systems, Madison, WI.
ii COSMO v1.61, © 1999 - 2009, Bruker Analytical X-ray Systems, Madison, WI.
iii SAINT v8.34a, © 1997 - 2013, Bruker Analytical X-ray Systems, Madison, WI.
iv TWINABS v2012/1, © 2012, Bruker Analytical X-ray Systems, Madison, WI.
v SADABS v2012/1, © 2012, Bruker Analytical X-ray Systems, Madison, WI.
vi SHELXTL v2013/4, © 2013, Bruker Analytical X-ray Systems, Madison, WI.