INTRODUCTION

Insulinoma is a rare pancreatic neuroendocrine tumor characterized by fasting hyperinsulinemic hypoglycemia. We report the case of a 34-year-old woman with insulinoma whose hypoglycemic symptoms were masked during pregnancy, because of increased insulin resistance; they manifested in the postpartum period.

Although insulinoma is a rare neuroendocrine tumor of the pancreas (annual incidence of four cases per million persons per year), it is the most common cause of endogenous hyperinsulinemic hypoglycemia in adults and is slightly more common in women. In general, its occurrence in women during pregnancy or after delivery is considered exceptional. However, previous reports in the English literature have shown that insulinoma can occur during pregnancy or the postpartum period, especially immediately after delivery. In these cases, hypoglycemic symptoms were masked during pregnancy and manifested in the postpartum period. It was postulated that increased insulin resistance masked the hypoglycemic symptoms during pregnancy, and postpartum elimination resulted in their appearance. We here report a case of a 34-year-old woman with insulinoma whose hypoglycemic symptoms were apparent immediately after delivery.

CASE REPORT

A case of insulinoma diagnosed postpartum with hypoglycemic symptoms that were masked during pregnancy

Tomoe Abe | Yasutaka Takeda | Takao Takiyama | Ayaka Sasaki | Ryoichi Bessho | Mao Sato | Hiroya Kitsunai | Hidemitsu Sakagami | Atsuko Abiko | Koji Imai | Sayaka Yuzawa | Mishie Tanino | Yumi Takiyama

1Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
2Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
3Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Japan

Abstract

The diagnosis of insulinoma in perinatal women can be difficult, as hypoglycemic symptoms may be masked by pregnancy-associated insulin resistance. In addition, when multiple insulinomas are observed, it is necessary to consider the possibility not only of MEN1, but also of insulinomatosis.

KEYWORDS

hypoglycemia, insulin resistance, insulinoma, insulinomatosis, pregnancy
the symptoms improved during the gestational period, a 50 g oral glucose tolerance test for gestational diabetes, conducted in the second trimester, revealed a plasma glucose level of 45 mg/dL after glucose loading. However, parameters such as the immunoreactive insulin (IRI) level were not tested for. No further investigation was conducted. In the 38th week of gestation, the patient successfully delivered a healthy female infant, although she had gained 17 kg in weight (from 51 to 68 kg) during the pregnancy. Two weeks after delivery, she presented with recurrent cold sweats and confusion during fasting, and was transferred to the emergency department of the admitting hospital with impaired consciousness. The patient was found to be in a state of acute hypoglycemia (plasma glucose level, 36 mg/dL; normal range: 70-109 mg/dL) with nonsuppressed insulinemia (IRI, 6.8 µU/mL; normal range: 5.0-10.0 µU/mL, C-peptide immunoreactivity (CPR), 0.79 ng/mL; normal range: 1.40-4.40 ng/mL). Magnetic resonance imaging (MRI) of the pituitary was performed to rule out the possibility of Sheehan’s syndrome or lymphocytic hypophysitis, because of impaired consciousness in woman at postpartum. However, no suspicious findings such as empty sella or swollen pituitary gland, nor any obvious pituitary adenoma was observed. Abdominal dynamic computed tomography (CT) showed enhanced nodules with diameters of 13 and 6 mm in the tail of the pancreas during the early phase (Figure 1); the patient was referred to our hospital for further evaluation.

There was no family history of multiple endocrine neoplasia (MEN) or previous usage of glucose-lowering agents. The patient was 160.0 cm tall, with a body weight of 66.0 kg; her BMI was 25.8 kg/m². Other than mild obesity, there were no abnormal findings on physical examination. Laboratory findings on admission are shown in Table 1. Her serum cortisol level was within the normal range, and the insulin autoantibody test was negative (Table 1). Meanwhile, she showed an elevated intact parathyroid hormone (PTH) level, with both normocalcemia (adjusted serum calcium level, 8.9 mg/dL; normal range: 8.5-10.2 mg/dL) and normophosphatemia (Table 1), indicating early-stage primary hyperparathyroidism (pHPT). However, Tc-99m sestamibi/single-photon emission computed tomography (SPECT) scanning was not conducted because she was breastfeeding. A prolonged (5-h) period of supervised fasting confirmed hypoglycemia (plasma glucose level, 43 mg/dL) accompanied by insulinemia (IRI, 3.83 µU/mL; CPR, 1.01 ng/mL; proinsulin immunoreactivity, 41.0 pmol/L) and impaired ketogenesis (β-hydroxybutyrate level, 17.2 µmol/L) (Table 2). Furthermore, 1 mg intravenous glucagon increased her blood glucose level from 43 to 96 mg/dL at the end of the fast. Thus, we clinically diagnosed the patient with insulinoma.

We performed a selective arterial calcium injection (SACI) test to localize the insulinoma. Sampling from the hepatic vein following selective arterial calcium loading was performed in the order of the superior mesenteric artery, gastroduodenal artery, proper hepatic artery, and splenic artery. An at least twofold increase in the IRI level 30-60 seconds after injecting the calcium was considered significant. Consequently, calcium-induced insulin secretion was observed with stimulation in the superior mesenteric artery and splenic artery (Table 3). The IRI level was high both before and after injecting calcium into the proper hepatic artery; the level was not significantly increased after the injection and decreased gradually. There was a decrease in the IRI over time after calcium loading in the gastroduodenal artery. These results indicated that insulinomas were localized to both the head and the tail of the pancreas. To detect the lesions in the pancreatic head suggested by the SACI test, we performed endoscopic ultrasonography (EUS), which has high sensitivity for detecting insulinomas, including microadenomas in the head and body of the pancreas. EUS revealed 13.0-, 9.5-, and 9.2-mm round hypoechoic nodules in the tail of the pancreas, compatible with pancreatic neuroendocrine tumors (NETs). However, no nodules suspected as NETs were found in the head or body of the pancreas. In addition, we observed no intense uptake on somatostatin receptor scintigraphy, in pancreatic or metastatic lesions. From these results, we concluded that insulinomas targeted for surgery were present only in the pancreatic tail.

One month after the diagnosis, the patient underwent laparoscopic distal pancreatectomy. Interestingly, histopathological examination identified more than 20 tumors, including macroadenomas (≥5 mm), microadenomas (<5 mm), and small insulin-expressing monohormonal endocrine cell clusters (IMECCs) (<1 mm), as also reported by Anlauf.
and colleagues,26 in the tail of the resected pancreas; these findings indicated insulinomatosis (Figure 2). The largest tumor found in the pancreatic tail was 15 mm in diameter. All tumors were positive for CD56, synaptophysin, and insulin (Figure 3). The histopathological diagnosis was of NET G2 (Ki67 index, 4.6%), and pathological TNM stage was T1N0M0, Stage IA (UICC). Immediately after surgery, plasma glucose levels were normalized and hypoglycemic symptoms disappeared. Although MEN1 was suspected, the patient demonstrated early-stage pHPT in addition to insulinomas, sequencing of the MEN1 gene revealed no mutations. No hypoglycemia has been observed 1 year after surgery. However, the elevated PTH level associated with normocalcemia persisted, so Tc-99m SPECT scanning after breastfeeding is now being considered.

3 | DISCUSSION

Insulinoma is a rare pancreatic NET that is the most common cause of endogenous hyperinsulinemic hypoglycemia in adults.1 Although its occurrence in women during pregnancy
or after delivery is considered exceptional, in the English literature, 25 cases of insulinoma during the perinatal period have been reported to date. 2-23 (Tables 4 and 5). To the best of our knowledge, this is the first report of a Japanese case of insulinoma with hypoglycemic symptoms in the postpartum period and diagnosed with insulinoma. The patient initially showed hypoglycemic symptoms during early pregnancy. However, the symptoms abated during the gestational period and finally disappeared. Intriguingly, symptoms reappeared immediately after delivery. This was thought to be due to increased insulin resistance during pregnancy, which elevated the blood glucose level and masked the hypoglycemic symptoms associated with insulinoma, as in previous cases. 2,14,15,17-20,22

Insulinoma is generally difficult to diagnose, even during early pregnancy, when there is no apparent increase in insulin resistance; there are several possible reasons for this. First, blood glucose levels in women during the first trimester tend to be low, because elevated estrogen levels increase both insulin secretion and insulin sensitivity. 21 Second, the various symptoms associated with hypoglycemia, such as cold sweats, dizziness, weakness, and poor concentration, are similar to those of hyperemesis gravidarum in pregnant women. 27

As pregnancy progresses, maternal insulin resistance increases. This is due to the increased secretion of hormones such as human placental lactogen (hPL) and tumor necrosis factor (TNF)-α from the placenta, to maintain glucose supply to the fetus by increasing maternal circulating glucose levels. 28,29 Consequently, hypoglycemic symptoms may be attenuated during pregnancy in patients with insulinoma.

Interestingly, previous reports noted insulin resistance in patients with insulinoma, 30-33 despite the manifestation of hypoglycemic symptoms. Furthermore, Bar and colleagues also observed reduced insulin activity at its receptor in a case of insulinoma. 34 Intriguingly, insulin resistance in insulinoma cases has been reversed after surgical resection. 32,33 Although it is presumed that insulin resistance in cases of insulinoma functions primarily to maintain normal blood glucose levels, its pathophysiological significance remains unclear.

Based on the above findings, it is not unreasonable to suggest that, when women with insulinoma become pregnant, hypoglycemic symptoms may easily be masked by the conspicuous insulin resistance associated with pregnancy. Moreover, the present patient exhibited significant weight gain during pregnancy. This was presumably associated with the insulinoma, which also contributed to the increase in insulin resistance and masking of hypoglycemic symptoms during pregnancy.

What should the course of action be if a pregnant woman, unlike the present case, has symptomatic hypoglycemia with insulinemia, suspected to be insulinoma? In such a setting, current diagnostic and therapeutic approaches raise several concerns. First, the prolonged supervised fasting test, which is the most important endocrinological examination for diagnosis of insulinoma, is invasive for both the mother and the fetus. Second, imaging studies such as CT, MRI with contrast agents, and EUS, which are essential for localization and staging of insulinoma, are also invasive. Surgery is the only curative treatment for insulinoma and is recommended in all cases. 35 However, surgery during pregnancy should be
avoided whenever possible, as it increases risks to the mother and fetus. Although there have been several previous reports of successful surgery in pregnant women with insulinoma (Table 4), the surgery should usually be scheduled after birth, or as late as possible after the fetus has reached a suitable age (ie, after 28 weeks), unless hypoglycemic symptoms are progressive or the tumor is suspected to be malignant.

Insulinoma usually occurs as a solitary mass, but multiple insulinomas are seen in about 10% of cases, most often in association with MEN1. There have been three previous reports of pregnant women presenting with multiple tumors. The sequencing of the MEN1 gene was validated in one of the three cases, but no mutations were observed (Table 4). Similarly, our case had multiple insulinomas and early pHPT, suggesting MEN1; however, no mutations were observed in the MEN1 gene. Anlauf and colleagues proposed a multicentric type of insulinoma disease called “insulinomatosis,” which exhibits early recurrent hyperinsulinemic hypoglycemia, mainly affects relatively young women, and is histopathologically characterized by IMECCs in the pancreas. They also stated that insulinomatosis differs from solitary sporadic and MEN1-associated insulinomas. In the present case, histopathological examination confirmed not only the large insulinomas observed on CT and EUS, but also various other tumors, including macroadenoma, microadenoma, and IMECCs in the resected pancreas. These findings are consistent with the term “insulinomatosis” proposed by Anlauf and colleagues. However, our case showed early pHPT, indicating possible MEN1. Although this is inconsistent with previous reports, few studies on insulinomatosis have been conducted to date, so further clinical and histopathological validation of insulinomatosis is needed.

Iacovazzo and colleagues reported a disease-causing mutation in the β-cell–enriched V-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) transcription factor. They identified a p. Ser64Phe MAFA gene missense mutation in 25 individuals from two unrelated families who presented with diabetes mellitus or insulinomatosis. None of the family members of our patient had diabetes or hypoglycemia, and the cause of insulinomatosis remains unclear.

Moreover, we should discuss another important point in considering whether this case is MEN1 or not. As mentioned above, the patient showed an elevated PTH level with normocalcemia. In this setting, we need to consider the possibility not only of normocalcemic pHPT, but also of secondary hyperparathyroidism, especially induced by vitamin D deficiency. However, in our case, we did not evaluate serum 25-hydroxyvitamin D, which is crucial for the diagnosis of vitamin D deficiency, because pHPT is also known to exhibit decreased serum 25-hydroxyvitamin D levels due to increased conversion of 25-hydroxyvitamin D to 1,25-hydroxyvitamin D by increased circulating PTH levels. On the other hand, vitamin D deficiency has been reported to be prevalent in postpartum Japanese women. We therefore consider that we should have confirmed whether the elevated PTH level in this case was normalized by short-term vitamin D supplementation, that is, whether it was vitamin D deficiency. Considering the convincing evidence of insulinoma in the current case, we consider that the patient is possible MEN1, and the elevated PTH level could be normocalcemic pHPT associated with MEN1 rather than secondary hyperparathyroidism by vitamin D deficiency.

In conclusion, this is the first report of a Japanese case of insulinoma where hypoglycemic symptoms were masked.
Cases/Ref.	Age (years)	Manifestation of symptoms	pHPT	Extrapancreatic NET	Family history	MEN1 mutation	Number of the tumor	Treatment	Gestational age at delivery	Fetal outcome	Birth weight (g)	Maternal outcome
1/(2)	25	12 W	N/A	N/A	N/A	N/A	N/A	CHD, laparotomy (Po)	Term	LB	N/A	NRS
2/(3)	37	8 W	N/A	N/A	N/A	N/A	N/A	IVG, laparotomy (12 W of G)	Term	LB	3,500	NRS
3/(4)	21	1st Tr	N/A	N/A	N/A	N/A	Single	Anticonvulsants, IVG, corticosteroids, diazoxide, laparotomy (12 W of G)	Term	LB	2,400	Aphasia, mental slowness
4/(5)	33	7 W	N/A	N/A	N/A	N/A	Single	CHD, IVG, laparotomy (17 W of G)	Term	LB	3,880	NRS
5/(6)	19	1st Tr	N/A	N/A	N/A	N/A	Single	CHD, IVG, laparotomy (1st Tr)	Terminated (1st Tr)	N/A	NRS	
6/(7)	24	10 W	N/A	N/A	N/A	N/A	Single	CHD, laparotomy (Po)	Term	LB	4,000	NRS
7/(8)	24	6 W	N/A	N/A	N/A	N/A	Single	IVG, diazoxide, laparotomy (Po)	Term	LB	3,500	Hemiparesis, affective disorder
8/(9)	37	33 W	N/A	Hepatic nodules	N/A	N/A	Multiple	IVG, liver exploration during CS	35 W (CS)	LB	2,050	Died after CS due to hepatic failure
9/(10)	41	1st Tr	N/A	N/A	N/A	N/A	Single	CHD, laparotomy (Po)	36 W	LB	2,780	NRS
10/(11)	26	16 W	N/A	Hypercalcemia	N/A	N/A	Single	CHD, IVG, laparotomy (Po)	Term	LB	3,033	NRS
11/(12)	30	16 W	N/A	N/A	N/A	N/A	N/A	Anticonvulsants, CHD, IVG	Fetal death (22 W)	Fetal death	N/A	Died after delivery from severe sepsis
12/(13)	26	6 W	N/A	N/A	N/A	N/A	Multiple	CHD, IVG, laparotomy (Po)	Term	LB	3,602	NRS
13/(14)	22	2 M	N/A	N/A	N/A	N/A	Negative	CHD, laparoscopy (Po)	Term	LB	2,600	NRS
14/(15)	29	35 W	None	None	N/A	N/A	Negative	IVG, diazoxide, laparotomy (Po)	Term	LB	2,800	NRS
15/(16)	36	2nd Tr	N/A	N/A	N/A	N/A	Single	CHD, laparotomy (21 W of G)	Term	LB	3,570	NRS

Abbreviations: CHD, carbohydrate diet; CS, cesarean section; G, gestation; IVG, intravenous glucose infusion; LB, live born; M, months; MEN1, multiple endocrine neoplasia 1; N/A, not available; NET, neuroendocrine tumor; NRS, no residual symptoms; pHPT, primary hyperparathyroidism; Po, postpartum; Tr, trimester; W, weeks.
during pregnancy by increased insulin resistance. In the differential diagnosis of hyperinsulinemic hypoglycemia in women, it should be noted that pregnancy can mask hypoglycemic symptoms in this manner. Hypoglycemia recurrence and the appearance of other endocrine tumors should be checked for in the current case.

ACKNOWLEDGMENTS
The authors are grateful to the patient described in this report, from whom written informed consent was obtained. Published with written consent of the patient.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
TA and Y. Takeda: contributed to diagnosis and treatment of the patient and draft of the manuscript. MT: contributed to pathological diagnosis and draft of the manuscript. TT, AS, RB, MS, HK, HS, AA, and Y. Takiyama: contributed to diagnosis and treatment of the patient. KI: contributed to surgical treatment. SY: contributed to pathological diagnosis. All authors: read and approved the final version of the manuscript.

ETHICS STATEMENT
Written informed consent for publication was obtained from the patient.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Yasutaka Takeda https://orcid.org/0000-0002-2129-8657

REFERENCES
1. Cryer PE, Axelrod L, Grossman AB, et al. Evaluation and management of adult hypoglycemic disorders: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2009;94:709-728.
2. Campbell WR, Graham RR, Robinson WL. Islet cell tumors of the pancreas. Am J Med Sci. 1939;198:445-454.
3. Serrano-Rios M, Cifuentes I, Preto JC, et al. Insulinoma in a pregnant woman. Obstet Gynecol. 1976;47:64-65.
4. Rubens R, Carlier A, Thiery M, et al. Pregnancy complicated by insulinoma. Br J Obstet Gynaecol. 1977;84:543-547.
5. Wilson JD, Hugh TB. Pregnancy complicated by an insulinoma. Obstet Gynaecol. 1983;23:176-179.
6. Osei K, Kramer DS, Malarkey WB, et al. Pregnancy complicated by insulinoma. Am J Med Sci. 1984;288:133-135.
7. Shaw DL, Bernese JL, Williams JW, et al. Insulinoma in pregnancy. Ariz Med. 1985;42:406-408.
8. Galun E, Ben-Yehuda A, Berlatzki J, et al. Insulinoma complicating pregnancy: case report and review of the literature. Am J Obstet Gynecol. 1986;155:64-65.
9. Friedman E, Moses B, Engelberg S, et al. Malignant insulinoma with hepatic failure complicating pregnancy. South Med J. 1988;81:86-88.

10. Hale PJ, Hale JF, Nattrass M. Insulinoma and pregnancy. Case report. Br J Obstet Gynaecol. 1988;95:514-517.

11. Smythe AR 2nd, MacFarland KF, Yousufuddin M, et al. Multiple endocrine adenomatosis type 1 in pregnancy. Am J Obstet Gynecol. 1990;163:1037-1039.

12. Akanji AO, George AO, Olasode BJ, et al. Insulinoma in pregnancy presenting as a seizure disorder: a case report. East Afr Med J. 1992;69:117-119.

13. Takacs CA, Krivak TC, Napolitano PG. Insulinoma in pregnancy: a case report and review of the literature. Obstet Gynecol Surv. 2002;57:229-235.

14. Diaz AG, Herrera J, Lopez M, et al. Insulinoma associated with pregnancy. Fertil Steril. 2008;90(199):e1-4.

15. Christiansen E, Vestergaard H. Insulinoma in a third-trimester pregnant woman combined with pre-eclampsia: a case report and review of the diagnostic strategies. Gynecol Endocrinol. 2008;24:417-422.

16. Tomazic M, Janez A, Oblak MR. Hypoglycemia identified by a continuous glucose monitoring system in a second trimester pregnant woman with insulinoma: a case report. J Med Case Rep. 2017;11:117.

17. Pompen AW, Jansen CAL, Dhot J. Adenoma of the islets of Langerhans and pregnancy. Acta Med Scand. 1946;124:334-347.

18. Garner PR, Tsang R. Insulinoma complicating pregnancy presenting with hypoglycemia coma after delivery: A rare case report and review of the literature. Obstet Gynecol. 1989;73:847-849.

19. Lowy AJ, Chisholm DJ. Insulinoma masked by pregnancy. Intern Med J. 2001;31:128-129.

20. Fredericks B, Echtsch G, Lepre F, et al. Pregnancy ameliorates symptoms of insulinoma–a case report. Aust NZ J Obstet Gynaecol. 2002;42:564-565.

21. Queiroz AJR, Nazareno LS, Miranda JE, et al. Insulinoma diagnosed in the postpartum: clinical and immunohistochemical features. Gynecol Endocrinol. 2012;28:633-636.

22. Holstein A, Morgenstern T, Dienst H, et al. Insulinoma as rare cause of severe post-partum hypoglycemia. J Obstet Gynecol Res. 2015;41:1848-1850.

23. Orabona R, Zanardini C, Lojacono A, et al. Insulinoma identified in puerperium: association with pregnancy and literature review. Eur J Case Rep Intern Med. 2020;7:001556.

24. Imamura M. Recent standardization of treatment strategy for pancreatic neuroendocrine tumors. World J Gastroenterol. 2010;16:4519-4525.

25. Mclean AM, Fairclough PD. Endoscopic ultrasound in the localisation of pancreatic islet cell tumours. Best Pract Res Clin Endocrinol Metab. 2005;19:177-193.

26. Anlauf M, Bauersfeld J, Raffel A, et al. Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am J Surg Pathol. 2009;33:339-346.

27. Besemer B, Missig K. Insulinoma and pregnancy. Exp Clin Endocrinol Diabetes. 2010;118:9-18.

28. Baeyens L, Hindi S, Sorenson RL, et al. Beta-cell adaptation in pregnancy. Diabetes Obes Metab. 2016;18(suppl 1):63-70.

29. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207-2213.

30. Nankervis A, Proietto J, Aitken P, et al. Hyperinsulinaemia and insulin insensitivity: studies in subjects with insulinoma. Diabetologia. 1985;28:427-431.

31. Del Prato S, Riccio A, Vigili de Kreutzenberg S, et al. Mechanisms of fasting hypoglycemia and concomitant insulin resistance in insulinoma patients. Metabolism. 1993;42:24-29.

32. Furnica RM, Istasse L, Maiter D. A severe but reversible reduction in insulin sensitivity is observed in patients with insulinoma. Ann Endocrinol (Paris). 2018;79:30-36.

33. Skrha J, Hâlgertová J, Justová V. Insulin action in patients with insulinoma influenced by pharmacological and surgical therapy. Exp Clin Endocrinol. 1993;101:360-364.

34. Bar RS, Gorden P, Roth J, et al. Insulin receptors in patients with insulinomas: changes in receptor affinity and concentration. J Clin Endocrinol Metab. 1977;44:1210-1213.

35. Thakker RV, Newey PJ, Walls GV, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97:2990-3011.

36. Predescu D. Pancreatic Neuroendocrine Tumour in Pregnancy - Diagnosis and Treatment Management. Chirurgia (Bucur). 2019;114:550-563.

37. Anlauf M, Schlinger R, Perren A, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol. 2006;30:560-574.

38. Iacovazzo D, Flanagan SE, Walker E, et al. MAFa missense mutation causes familial insulinomas and diabetes mellitus. Proc Natl Acad Sci U S A. 2018;115:1027-1032.

39. Goltzman D, Mannstadt M, Marcocci C. Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res. 2018;50:1-13.

40. Yoshikata H, Tsugawa N, Watanabe Y, et al. 25-Hydroxyvitamin D profiles and maternal bone mass during pregnancy and lactation in Japanese women. J Bone Miner Metab. 2020;38:99-108.

41. Souberbielle JC, Cavalier E, Cormier C. How to manage an isolated elevated PTH? Ann Endocrinol (Paris). 2015;76:134-141.

42. Bilezikian JP. Primary hyperparathyroidism. J Clin Endocrinol Metab. 2018;103:3993-4004.