Resummed QCD Power Corrections to Nuclear Shadowing

Jianwei Qiu and Ivan Vitev
Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our results for the Bjorken x, Q² and A-dependence of nuclear shadowing in F_L²(x, Q²) and the nuclear modifications to F_T²(x, Q²), obtained in terms of the QCD factorization approach, are consistent with the existing data. We demonstrate that the low-Q² behavior of these data and the measured large longitudinal structure function point to a critical role for the power corrections when compared to other theoretical approaches.

PACS numbers: 12.38.Cy; 12.39.St; 24.85.+p; 25.30.-c

In order to understand the overwhelming data from the Relativistic Heavy Ion Collider (RHIC) and make predictions for the future Electron Ion Collider (EIC) and Large Hadron Collider (LHC) in terms of the successful perturbative QCD factorization approach, we need precise information of the nuclear parton distribution functions (nPDFs) φ_f₂(x, μ²) of flavor f, atomic weight A, momentum fraction x and factorization scale μ. Although the μ-dependence of leading twist nPDFs can be calculated in terms of pQCD evolution equations, the x- and A-dependent boundary condition at a scale μ₀ must be fixed from existing measurements, mostly of the structure function F_L²(x, μ²) in lepton-nucleus deeply inelastic scattering (DIS). It was pointed out recently that the available fixed-target data contain significant higher twist effects hindering the extraction of the nuclear parton distributions.

On the other hand, it has been argued that for physical processes where the effective x is very small and the typical momentum exchange of the collision Q ∝ μ is not large the number of soft partons in a nucleus may saturate. Qualitatively, the unknown boundary of this novel regime in (x, Q) is where the conventional perturbative QCD factorization approach should fail.

In this Letter we present a pQCD calculation of the resummed power corrections to the DIS nuclear structure functions and demonstrate their importance in extracting nPDFs. From our results we quantitatively identify the characteristic scale of these power corrections ξ² ∝ m_N², with nucleon mass m_N = 0.94 GeV. We conclude that for Q² ≥ m_N² inclusive lepton-nucleus DIS is above the saturation boundary and can be treated systematically in the framework of the pQCD factorization approach with resummed high twist contributions.

Under the approximation of one-photon exchange, the lepton-hadron DIS cross section dσ_{th}/dx dq² ∝ L_{μν} W_{μν}(x, Q²), with Bjorken variable x = Q²/(2p ∙ q) and virtual photon’s invariant mass q² = −Q². The leptonic tensor L_{μν} and hadronic tensor W_{μν} are defined in [1]. The hadronic tensor can be expressed in terms of structure functions based on the polarization states of the exchange virtual photon: W_{μν}(x, Q²) = ε_{μν}² F_T(x, Q²) + ε_{μν} L(x, Q²), where ε_{μν}², ε_{μν} are given in [2]. The transverse and longitudinal structure functions are related to the standard DIS structure functions F₁, F₂ as follows: F_T(x, Q²) = F₁(x, Q²), F_L(x, Q²) = F₂(x, Q²)/(2x) − F₁(x, Q²) if 4x²m_N² ≪ Q² [2]. In DIS the exchange photon γ∗ of virtuality Q² and energy ν = Q²/(2x m_N) probes an effective volume of transverse area 1/Q² and longitudinal extent Δz_N × x_N/x, where Δz_N is the nucleon size, x_N = 1/(2r_0 m_N) ∼ 0.1 and r_0 ∼ 1.2 fm [3]. When Bjorken x ≪ x_N the lepton-nucleus DIS covers several nucleons in longitudinal direction while it is localized in the transverse plane. Although a hard interaction involving more than one nucleon is suppressed by powers of 1/Q², it is amplified by the nuclear size if x ≪ x_N. In the collinear factorization approach we evaluate the nuclear enhanced power corrections to the structure functions to any power in the quantity (ξ²/Q²)(A_1/3 − 1) and keep ξ² to the leading order in α_s.

In terms of collinear QCD factorization, the structure functions at the lowest order in α_s are given by [1]

\begin{align}
F_T^{(LT)}(x, Q²) &= \frac{1}{2} \sum_f Q_f^2 φ_f(x, Q²) + O(α_s), \\
F_L^{(LT)}(x, Q²) &= O(α_s),
\end{align}

where (LT) indicates the leading twist contribution, ∑_f runs over the (anti)quark flavors, Q_f is their fractional charge and φ_f is the leading twist quark distribution:

φ_f(x, μ²) = \int \frac{dλ_0}{2π} e^{-ixλ_0} \langle p|ψ_f(0) γ^+ ψ_f(λ_0)|p⟩

(3)

In the lightcone A⁺ = nμ Aμ = 0 gauge for hadron momentum pμ = p⁺ nμ, where nμ = [1, 0, 0, 1] and nμ = [0, 1, 0, 1] specify the “+” and “−” lightcone directions, respectively. In Eq. 3 parameter λ_0 = p⁺ y_0.

To compute the nuclear enhanced power corrections we choose the A⁺ = 0 gauge and a frame in which the nucleus is moving in the “+” direction, p⁺ ≡ P_A/A = p⁺ nμ, and the exchange virtual photon momentum is qμ = −xp⁺ nμ + Q²/(2xp⁺) nμ. In this frame the struck quark propagates along the “−” direction and interacts with the “remnants” of the nucleus. The leading tree level
Since the effective γ^* coupling is made of short-distance contact terms of quark propagators, the integrals of λ_0 and $\tilde{\lambda}_n$ in Eq. (5) should be localized.

To derive the gauge invariant and nuclear enhanced power corrections at the tree level, we add gluon interactions to the struck quark and convert the gluon field operators in the hadronic matrix element of $W^{\mu\nu}$ to the corresponding field strength F^μ_ν. We note that there must be an even number of interactions between the γ^* coupling and the final-state cut because the quark propagator of momentum $x_ip + q$ has only two types of terms, $i(\gamma^+/2p^+/x_i-x_\pm i\epsilon)$ (pole term \rightarrow) and $i(xp^+/Q^2)\gamma^-$ (contact term \rightarrow), and the gluons are transversely polarized. Consequently, the summation of the coherent multiple scattering can be achieved by sequential insertion of a basic unit consisting of a pair of gluon interactions, left-side of Fig. 1(d), connected by a quark contact term, and a quark pole term to the left (L) or right (R) if the unit is to the left or right of the final-state cut. Integrating over the loop momentum fraction \tilde{x}_i, we can replace this unit by an effective scalar interaction, right-side of Fig. 1(d), with a rule,

\[
\left(\frac{4\pi^2\alpha_s}{3Q^2} \right) \int \frac{d\lambda_i}{2\pi} \frac{e^{i(x_i-x_{i-1})\lambda_i}}{x_i-x_{i-1}-i\epsilon} \left\{ \frac{\gamma^+\gamma^- - iF_{\nu}(\lambda_i)}{2x_i-x+i\epsilon} \right\}_L \left\{ \frac{\gamma^+\gamma^- - iF_{\nu}(\lambda_i)}{2x_i-x-i\epsilon} \right\}_R.
\]

In Eq. (6) the boost-invariant operator $\hat{F}_2^2(\lambda_i)$ is different from \hat{F}_2^2 in Eq. (5) and is defined as

\[
\hat{F}_2^2(\lambda_i) = \int \frac{d\lambda_\alpha d\lambda_\beta F^{+\alpha}(\lambda_\alpha) F^{+\beta}(\lambda_\beta)}{(p^+)^2} \theta(\tilde{\lambda}_n - \lambda_\alpha) \theta(\lambda_0 - \lambda_\beta).
\]

Its expectation value can be related to the small-x limit of the gluon distribution, $\langle q|\hat{F}_2^2(\lambda_i)|p\rangle \approx \lim_{x\rightarrow 0} \frac{1}{x} G(x, Q^2)$, and is independent of λ_i. It is the $d\lambda_i$ in Eq. (6) that gives the $A^{1/2}$-type nuclear enhancement \hat{A}. Assuming that the interaction leaves the nucleons in a color singlet state, taking all possible final state cuts in (10) and performing the integrals over the incoming partons’ momentum fractions we obtain the twist 2 contribution to the structure functions:

\[
\delta F_2^{(n)}(x) \approx \frac{1}{2} \sum_f Q^2_f \left[\frac{4\pi^2\alpha_s}{3Q^2} \right]^n \int \frac{d\lambda_n}{2\pi} e^{i\lambda_n x} \frac{(i\lambda_n)^n}{n!} \left\{ \langle P_A|\bar{\psi}_f(0)\gamma^+(\lambda_0)P_A \rangle \prod_{i=1}^n \left[\int d\lambda_i \theta(\lambda_i) \hat{F}_2^2(\lambda_i) \right] |P_A\rangle \right\},
\]

\[
\delta F_L^{(n)} \approx \frac{1}{2} \sum_f Q^2_f \left[\frac{4\pi^2\alpha_s}{3Q^2} \right]^n \int \frac{d\lambda_n}{2\pi} e^{i\lambda_n x} \frac{(i\lambda_n)^{n-1}}{(n-1)!} \left\{ \langle P_A|\bar{\psi}_f(0)\gamma^+(\lambda_0)P_A \rangle \prod_{i=1}^{n-1} \left[\int d\lambda_i \theta(\lambda_i) \hat{F}_2^2(\lambda_i) \right] |P_A\rangle \right\},
\]

with corrections down by powers of the nuclear size.

We evaluate the multi-field matrix elements in Eqs. (8), (9), in a model of a nucleus of constant lab frame density $\rho(r) = 3/(4\pi r^3)$ and approximate the expectation value.
of the product of operators to be a product of expectation values of the basic operator units in a nucleon state of momentum \(p = P_A/A \):

\[
\langle P_A | \hat{O}_0 \prod_{i=1}^{n} \hat{O}_i | P_A \rangle = A \langle p | \hat{O}_0 | p \rangle \prod_{i=1}^{n} \left[N_p \langle p | \hat{O}_i | p \rangle \right],
\]

with the normalization \(N_p = 3/(8\pi r_0^3 m_N) \). The integrals \(\int d\lambda \theta(\lambda) = (3r_0m_N/4)(A^{1/3} - 1) \) are taken such that the nuclear effect vanishes for \(A = 1 \). Resumming the \(A^{1/3} \)-enhanced power corrections Eqs. (10), (11) we find:

\[
F_T^A(x, Q^2) \approx \sum_{n=0}^{N} \frac{A}{n!} \left[\frac{\xi^2(A^{1/3} - 1)}{Q^2} \right]^n x^n \frac{d^n F_T^{(LT)}(x, Q^2)}{d^nx},
\]

\[
\approx A F_T^{(LT)} \left(x + \frac{x \xi^2(A^{1/3} - 1)}{Q^2}, Q^2 \right), \quad (10)
\]

\[
\xi^2 = \frac{3\pi\alpha_s(Q^2)}{8 r_0^3} \langle p | \hat{F}^2(\lambda_i) | p \rangle.
\]

In deriving Eqs. (10), (11) we have taken \(\langle p | \hat{F}_2^A | p \rangle \approx \langle 3r_0m_N/4(p | \hat{F}^2(\lambda_i) | p) \rangle \) and \(N \approx \infty \) because the effective value of \(\xi^2 \) is relatively small, as shown below.

Eqs. (10), (11) are the main result of this Letter. Important applications to other QCD processes and observables that naturally follow from this new approach are given in [11]. The overall factor \(A \) takes into account the leading dependence on the atomic weight and the isospin average over the protons and neutrons in the nucleus is implicit. We emphasize the simplicity of the end result, which amounts to a shift of the Bjorken \(x \) by \(\Delta x = x \xi^2(A^{1/3} - 1)/Q^2 \) with only one parameter \(\xi^2 \propto \lim_{x \to 0} x \xi^2(x, Q^2) \) in the following numerical evaluation we use the lowest order CTEQ6 PDFs.

Fig. 2 shows a point by point in \((x, Q^2)\) calculation of the process dependent modification to \(F_2(A)/F_2(D) \) (per nucleon) in the shadowing \(x < 0.1 \) region compared to NA37 and E665 data and FNAL-E665 data. We find that a value of \(\xi^2 = 0.09 - 0.12 \) GeV\(^2\), which is compatible with the range from previous analysis of Drell-Yan transverse momentum broadening \(\xi^2 \sim 0.04 \) GeV\(^2\) and momentum imbalance in dijet photoproduction \(\xi^2 \sim 0.2 \) GeV\(^2\), makes our calculations consistent with the both \(x \)- and \(A \)-dependence of the data. Our calculations might have overestimated the shift in the region \(x \) close to \(x_N \) where the \(N \approx \infty \) should fail. In Fig. 4 we impose \(Q^2 = m_N^2 \) for virtualities smaller than the nucleon mass, below which high order corrections in \(\alpha_s(Q) \) need to be included and the conventional factorization approach might not be valid. Our result is comparable to the EKS98 scale-dependent parametrization of existing data on the nuclear modification to \(F_2(x, Q^2) \), as seen in the \(\Delta_{D-T} = \text{Data} - \text{Theory} \) panels of Fig. 2. We emphasize, however, that the physical interpretation is different: in the effect is attributed to the modification of the input parton distributions at \(\mu_0 = 1.5 \) GeV in a nucleus and its subsequent leading twist scale dependence. In contrast, our resummed QCD power corrections to the structure functions systematically cover higher twist for all values of \(Q \geq \mu_0 \).

With \(\xi^2 \) fixed, Fig. 3 shows the predicted \(Q^2 \) dependence of \(F_2(Sn)/F_2(C) \). The \(Q^2 \) behavior of our result,
show comparison to the EKS98 parameterization. The QCD power corrections at small and moderate Q^2 to the leading twist structure functions can also be tested via the ratio of the cross sections for longitudinally and transversely polarized virtual photons

$$R(x, Q^2; A) = \frac{\sigma_L(x, Q^2)}{\sigma_T(x, Q^2)} = \frac{F_L(x, Q^2)}{F_T(x, Q^2)}.$$ (12)

Comparison to E143 data for 12C is given in the bottom right panel of Fig. The dashed curve includes only the bremsstrahlung and gluon splitting $F_L^{(LT)}$ from and is insensitive to modifications of the nuclear parton distributions. The gray band represents a calculation of R from Eqs. (10), (11).

In conclusion, for $Q^2 = 0.09 - 0.12$ GeV2 our calculated and resummed power corrections are consistent with the x, Q^2- and A-dependence of existing data on the small-x nuclear structure functions without any leading twist shadowing. Our results, therefore, give an upper limit for the characteristic scale ξ^2 of these power corrections in DIS on cold nuclear matter. Furthermore, the enhancement of the longitudinal structure function $F_L^{(LT)}(x, Q^2)$ strongly favors a critical role for the higher twist in the presently accessible (small $x < 0.1$, $Q^2 \sim$ few GeV2) kinematic regime. Less leading twist shadowing and correspondingly less antishadowing than currently anticipated will have an important impact on the interpretation of the $d + A$ and $Au + Au$ data from RHIC. The predictions of this systematic approach to the process-dependent low Q^2 nuclear modification in QCD processes will also be soon confronted by copious new data from RHIC, EIC and the LHC.

This work is supported in part by the US Department of Energy under Grant No. DE-FG02-87ER40371.

[1] J.C. Collins, D.E. Soper, G. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988); J.W. Qiu, G. Sterman, Nucl. Phys. B 353, 137 (1991).
[2] K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999); M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D 64, 034003 (2001); A. Accardi et al., references therein.
[3] L. Frankfurt, V. Guzey and M. Strikman, hep-ph/030322.
[4] A.H. Mueller, Nucl. Phys. B 558, 285 (1999); E. Iancu, R. Venugopalan, hep-ph/0303204; L. McLerran, hep-ph/0311029, references therein.
[5] J.W. Qiu, G. Sterman, Int. J. Mod. Phys. E 12, 149 (2003); J.W. Qiu, Nucl. Phys. A 715, 309 (2003).
[6] R. Brock et al., Rev. Mod. Phys. 67, 157 (1995).
[7] X.F. Guo, J.W. Qiu, W. Zhu, Phys. Lett. B 523, 88 (2001).
[8] G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978); M. Glück, E. Reya, Nucl. Phys. 145, 24 (1978).
[9] J.W. Qiu, Phys. Rev. D 42, 30 (1990).
[10] J.W. Qiu, I. Vitev, Phys. Lett. B 570, 161 (2003); M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 (2001); Phys. Rev. Lett. 85, 5535 (2000).
[11] J. Qiu and I. Vitev, hep-ph/0401062.
[12] J. Pumplin et al., JHEP 0207, 012 (2002).
[13] M.R. Adams et al., Z. Phys. C 67, 403 (1995); Phys. Rev. Lett. 68, 3266 (1992).
[14] M. Arneodo et al., Nucl. Phys. B 441, 12 (1995); P. Amaudruz et al., Nucl. Phys. B 441, 3 (1995).
[15] X.F. Guo, Phys. Rev. D 58, 114033 (1998); M. Luo, J.W. Qiu, G. Sterman, Phys. Rev. D 49, 4493 (1994); Phys. Rev. D 50, 1951 (1994).
[16] N. Armesto et al., hep-ph/0304119, references therein.
[17] M. Arneodo et al., Nucl. Phys. B 481, 23 (1996).
[18] K. Abc et al., Phys. Lett. B 452, 194 (1999).
[19] I. Vitev, Phys. Lett. B 562, 36 (2003); I. Vitev, M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002).