Lung cancer deaths (England 2001–2017)—comorbidities: a national population-based analysis

Lesley A. Henson,1,2 Emeka Chukwusa,1 Clarissa Ng Yin Ling,3 Shaheen A. Khan,4 Wei Gao,1

ABSTRACT

Background The presence of comorbidities in people with lung cancer is common. Despite this, large-scale contemporary reports describing patterns and trends in comorbidities are limited.

Design and methods Population-based patterns and trends analysis using Office for National Statistics Mortality Data. Our cohort included all adults who died from lung cancer (ICD-10 codes C33–C34) in England between 2001 and 2017. We describe decedents with 0, 1 or ≥2 comorbidities and explore changes over time for the six most common comorbidities identified: chronic respiratory disease; diabetes; cardiovascular disease; dementia; cerebrovascular disease and chronic kidney disease. To determine future trends, the mean annual percentage change between 2001 and 2017 was calculated and projected forwards, while accounting for anticipated increases in lung cancer mortality.

Results There were 472,259 deaths from lung cancer (56.9% men; mean age 72.9 years, SD: 10.7). Overall, 19.0% of lung cancer decedents had 1 comorbidity at time of death and 8.8% had ≥2. The proportion of patients with comorbidities increased over time—between 2001 and 2017 decedents with 1 comorbidity increased 54.7%, while those with ≥2 increased 294.7%. The most common comorbidities were chronic respiratory disease and cardiovascular disease, contributing to 18.5% (95% CI: 18.0 to 18.9) and 11.4% (11.0 to 11.7) of deaths in 2017. Dementia and chronic kidney disease had the greatest increase in prevalence, increasing 311% and 289% respectively.

Conclusion To deliver high-quality outcomes for the growing proportion of lung cancer patients with comorbidities, oncology teams need to work across traditional boundaries of care. Novel areas for development include integration with dementia and chronic kidney disease services.

BACKGROUND

As our population ages, mortality from lung cancer—the most common cause of cancer-related deaths worldwide—is increasing. Between 2020 and 2040, lung cancer deaths are predicted to increase 37.3% in the UK and 63.8% globally.1 The demographics of lung cancer patients are also changing over time with the average patient becoming older and more likely to be living with one or more long-term health conditions at time of diagnosis.2 3

The negative impact of ageing and multimorbidity (defined as the presence of two or more long-term health conditions)4 on outcomes for lung cancer patients has been widely reported.5 Studies have found older patients are less likely to receive recommended anticancer therapies at diagnosis6 and throughout their illness,7 while the presence of...
comorbidities is associated with greater use of acute hospital services, lower health-related quality-of-life and increased mortality. Present-day healthcare systems, where individual diseases determine models of service delivery, often results in care that is fragmented, unsafe and inefficient for those with comorbidities. For patients and their families, attending the hospital multiple times for different conditions can be burdensome, resulting in polypharmacy and the receipt of contradictory medical advice. For healthcare professionals, caring for multimorbid patients can be overwhelming, including for oncologists who lack sufficient time to provide high-quality holistic care that incorporates broader health maintenance activities alongside anticancer treatment and monitoring.

With the increasing prevalence of multimorbidity, oncology services need to urgently adapt to meet the changing needs of their patient population as well as address current inequities in care. Understanding patterns and trends in comorbidities is important for healthcare planning and policy. Despite this, large-scale contemporary reports describing comorbidities in people with lung cancer are lacking. We therefore conducted the following study, the aim of which was to determine the patterns as well as actual and projected trends in comorbidities for lung cancer decedents in England.

METHODS
Our study is reported according to the RECORD statement.

Approval for the study and access to the data was received from the UK’s Office for National Statistics (ONS). As per ONS procedures, a Data Access Agreement was signed with requisites for data management and protection. In addition, all researchers accessing the data (LAH, WG and EC) were individually assessed and approved by ONS. As all data were fully anonymised, no additional approvals were required to complete the analysis according to the Information Commissioner’s Office guidelines, ONS procedures and those of King’s College London Research Ethics Committee.

Study design and datasets
We conducted a population-based patterns and trends analysis using ONS Mortality Data for England. The ONS is the UK’s largest independent producer of official statistics and is the recognised national statistical institute of the UK. Its Mortality Database holds information on all UK deaths including the ‘underlying cause of death’ and up to 15 ‘contributing’ causes of death. Coding is carried out according to internationally agreed rules and using the WHO’s Tenth Revision of the International Classification of Diseases and Related Health Problems (ICD-10). The ONS Mortality Database also contains basic demographic information such as the decedent’s age at death, gender and marital status.

National government statistics reporting the relative deprivation between neighbourhoods in England were used to derive information on decedents’ socioeconomic status.

The English Indices of Multiple Deprivation (IMD) version 2010 was linked to ONS Mortality data 2001 to 2010 and the IMD version 2015 was linked to data for 2011 to 2017.

Participants and variables
Our cohort included all adults (≥18 years at time of death) who died from lung cancer (underlying cause of death listed as ICD-10 codes C33 or C34) in England between 2001 and 2017. Descriptive variables were categorised as follows: age at death (<55; 55–64; 65–74; 75–84; 85+ years); gender (male; female); marital status (divorced/separated; married; single; widowed; unknown); socioeconomic status (IMD quintiles, 1, most deprived; 5, least deprived).

Analysis/statistical methods
For each lung cancer decedent, we examined all contributing causes of death listed on their death certificate. We excluded the following contributing causes from our analysis: accidents; minor ailments; acute and/or self-limiting conditions such as infections; conditions related to cancer, for example, bone metastases; as these were not considered comorbidities—a comorbidity being defined as a co-occurring chronic condition or disease expected to impair a patient’s long-term survival. All remaining contributing causes of death were conditions recognised as comorbidities—these were counted, and decedents categorised into those with zero, one or two plus comorbidities. Based on the findings of recent studies, we next considered six commonly recorded comorbidities and explored how their prevalence changed over time. These were: chronic respiratory disease (ICD-10 codes J4, J6, J7, J82 and J84); diabetes (E10-E14); cardiovascular disease including hypertension (I1, I20, I25, I7 and I8); dementia (F00, F01, F02, F03, G30-G32 and R54); cerebrovascular disease (I6) and chronic kidney disease (N11, N18 and N19). For future projections, we calculated the mean annual percentage change in comorbidities between 2001 and 2017 and projected this forward to 2040 while accounting for anticipated increases in lung cancer mortality.

All data were analysed using Microsoft Excel for Office 365 and Stata/IC 13 (STATA, College Station, TX).

RESULTS
In England, between 2001 and 2017, there were 472,259 deaths from lung cancer (ICD-10 codes C33 and C34). Mean age at death was 72.9 years (SD: 10.7); 56.9% of deaths were in men. Table 1 presents the demographic characteristics of the study population.
Table 1 Cohort characteristics (n=472 259)

Total	Total sample	2001–2005	2006–2010	2011–2015	2016–2017				
N (%)	N (%)	N (%)	N (%)	N (%)	N (%)				
472 259	100	133 981	100	139 595	100	142 590	100	56 093	100

Age in years at time of death, mean (min;max)

Category	Total sample	2001–2005	2006–2010	2011–2015	2016–2017
<55	25 243	8227	7 520	6 926	2 570
55–64	75 498	22 677	23 775	21 697	7 759
65–74	146 059	41 897	41 512	44 554	18 096
75–84	161 510	47 977	48 221	46 803	18 509
85+	63 949	13 613	18 567	22 610	9 159

Gender

Category	Total sample	2001–2005	2006–2010	2011–2015	2016–2017
Female	203 641	53 766	60 119	64 061	25 695
Male	268 618	80 215	79 476	78 529	30 398

Number of comorbidities

Category	Total sample	2001–2005	2006–2010	2011–2015	2016–2017
0	340 764	1,07 229	1,03 653	94 904	34 978
1	89 894	20 577	25 576	30 947	12 794
2+	41 601	6 175	10 366	16 739	8 321

Marital status

Category	Total sample	2001–2005	2006–2010	2011–2015	2016–2017
Divorced/separated	59 262	13 109	16 809	20 598	8746
Married	239 150	70 544	71 209	70 327	270 70
Single	33 150	8 896	9 357	10 473	4424
Widowed	137 802	40 585	41 362	40 384	15 471
Unknown	289 5	847	858	808	382

Socioeconomic status (IMD quintile)

Category	Total sample	2001–2005	2006–2010	2011–2015	2016–2017
1 (most deprived)	125 190	36 968	37 061	36 931	14 230
2	103 205	29 706	30 591	30 760	12 148
3	92 998	26 088	27 638	28 120	11 152
4	82 061	22 740	24 511	25 013	9 797
5 (least deprived)	68 805	18 479	19 794	21 766	8 766

IMD, Index of Multiple Deprivation.
Among all lung cancer decedents, 39.5\% (n=186,696) had at least one other illness/condition listed on their death certificate as contributing to the cause of death. This reduced to 27.8\% (n=131,495), once conditions and illnesses not considered to be comorbidities (accidents; minor ailments; acute and/or self-limiting illnesses; those related to cancer) were excluded. 19.0\% (n=89,894) of all lung cancer decedents had one comorbidity at time of death and 8.8\% (n=41,601) had two or more (table 1).

The proportion of decedents with comorbidities increased with age. For those <55 years, 2.7\% (95\% CI: 2.5 to 2.9) had two or more comorbidities at time of death compared with 13.1\% (95\% CI: 12.9 to 13.4) of those aged ≥85 years. The proportion of lung cancer decedents with comorbidities was also higher in more deprived areas of England (table 2).

The number of lung cancer decedents with comorbidities increased over time (figure 1). Between 2001 and 2017, the proportion of decedents with one comorbidity increased 54.7\% (from 14.8\% in 2001 to 22.9\% in 2017), while those with two or more comorbidities increased 294.7\% (from 3.8\% to 15.0\%). If current trends continue, by 2032, more than a quarter of all lung cancer patients will be living with multiple comorbidities at the end of life.

The most common comorbidities identified were chronic respiratory disease and cardiovascular disease including hypertension. In 2017, chronic respiratory disease contributed to 18.5\% (95\% CI: 18.0 to 18.9) of deaths from lung cancer and cardiovascular disease including hypertension to 11.4\% (11.0 to 11.7). Diabetes contributed to 4.9\% (95\% CI: 4.7 to 5.2), cerebrovascular disease to 2.6\% (95\% CI: 2.4 to 2.8), chronic kidney disease 2.3\% (95\% CI: 2.1 to 2.5) and dementia 4.2\% (95\% CI: 4.0 to 4.5). The prevalence of all six comorbidities increased significantly during the study period but was greatest for dementia (311\%) and chronic kidney disease (289\%) (figure 2). Based on our future projections, by 2045, 10\% of all lung cancer patients will be living with dementia at the end of life, 11\% with diabetes and 6\% with chronic kidney disease.

DISCUSSION

Using population-level data over a 17-year period (2001–2017) this study determined actual and predicted patterns and trends in comorbidities for lung cancer decedents in England, UK. Our findings provide valuable information for healthcare professionals, managers and policymakers when planning and delivering future cancer services.

We found the proportion of lung cancer decedents with two or more comorbidities increased 294.7\% between 2001 and 2017. Comorbid conditions are known to affect older patients disproportionately and our study suggests that if current trends continue, by 2032 more than 25\% of lung cancer patients will be living with multiple comorbidities at the end of life. While this increase is not unexpected given the broader context of population growth and ageing, our findings highlight the scale of these changes and emphasise the urgency with which oncology services need to adapt. Understanding the association between age, comorbidity type and severity is important as this has the potential to impact cancer patients’ treatment and prognosis.25–26 Furthermore, the prevalence of some comorbidities, such as HIV/AIDS and obesity,
decrease with age. By understanding current and future patterns and trends, policymakers can plan future services that are able to meet the needs and preferences of their patients and reduce inequities in care.

Currently in England, most oncology services remain single-disease focused in their approach to care—a model that fails most multimorbid cancer patients. Greater integration between specialities has the potential to improve outcomes for cancer patients and their caregivers, while also reducing strain on National Health Service resources. Research exploring the impact of integrated care models for individuals with non-cancer conditions have shown mostly positive outcomes, however, these studies have focused primarily on older and/or frail populations, and few have been extended beyond the demonstration phase. Evidence for the effectiveness of integrated care models beyond the experimental phase is much more limited, and when present, the impact has often taken years to be realised. Hebert and colleagues evaluated the impact of a coordination-type integrated care model on health, satisfaction, empowerment and the service utilisation of people aged ≥75 years at risk of functional decline in Quebec, Canada. Key components of the intervention included a case manager, single entry point, single assessment instrument coupled with a case-mix management system and coordination between decision makers and managers at regional and local levels. The quasi experimental study found greater satisfaction and patient empowerment in the intervention group along with a lower number of emergency department visits and hospitalisations. However, there was no significant difference in functional decline and unmet need between groups until year 4 of the study when the intervention group showed fewer cases of functional decline (p<0.001) and less unmet need (p<0.001).

Clarity regarding the components that challenge and support integrated models of care in oncology is still needed. A systematic review of interventions to improve coordination between primary care and oncology found insufficient evidence for the effectiveness of nurse navigators, treatment care plans and the creation of multidisciplinary teams. However, these results should be interpreted with caution as the impact from integrated care initiatives may only be seen years later—beyond the follow-up period of most research studies. While simple measures, such as coordinating clinic times, can minimise the need for repeated investigations and reduce burden on hospital transport services, in-depth evaluation of complex integrated service delivery models is still needed to determine their effectiveness.

There is more conclusive evidence for the benefits of integrating oncology with palliative care. In their landmark study, Temel and colleagues showed that patients newly diagnosed with non-small cell lung cancer who received palliative care soon after diagnosis had better outcomes, including greater improvements in quality of life and mood, compared with controls. The intervention arm of the randomised controlled trial involved patients receiving standard palliative care under ‘clinical practice guidelines for palliative care’

Figure 2 Actual (2001–2017) and projected (2018–2040) number and type of comorbidities for lung cancer decedents in England.
which include the management of comorbid conditions. This attention to patient’s comorbidities is likely to be one of the active ingredients that led to patients being more stable and having better outcomes.36

Understanding patterns and trends over time for different comorbidities provides healthcare professionals, managers and policymakers with opportunities to also consider novel approaches to service development. Our study found that the most common comorbidities for patients with lung cancer were chronic respiratory disease and cardiovascular disease including hypertension. However, the greatest increase in comorbidity prevalence was found for dementia and chronic kidney disease. When developing future cancer services, policymakers should consider models of care that involve collaboration and/or integration with healthcare professionals from dementia and renal support services. Not only do these comorbidities show the greatest increase in prevalence, they are also disciplines that oncologists are less likely to be familiar with and up-to-date with the latest investigative and management options.

Strengths and limitations
Strengths of our study include the use of ONS mortality data, allowing us to assess comorbidity patterns and trends at a population-level over time. The ONS Mortality Database uses information obtained from a patient’s death certificate, which unfortunately also presents limitations, mostly relating to a degree of inaccurate recordings.37 More recent evidence suggests that the overall accuracy of death certificate information has improved38 and cause of death information is reported to be more sensitive and specific for cancer than other diseases.39 However despite this, it is likely that our cohort included some patients whose cause of death and/or comorbidity data were inaccurately recorded. Furthermore, the increasing prevalence of comorbidities identified by our study may represent greater reporting over time rather than any actual increase in disease prevalence. Our data did not include information about the severity of any comorbidities listed or the amount and type of healthcare services accessed by patients prior to death. We were therefore unable to evaluate the impact of these factors. Finally, our future projections are simple and limited by assumptions that included a linear change over time.

CONCLUSIONS
The number of lung cancer decedents with multiple comorbidities is increasing over time. To deliver high-quality outcomes and positive experiences for this growing population, oncology services need to work across traditional boundaries of care. The most common comorbidities found in patients with lung cancer were chronic respiratory disease and cardiovascular disease including hypertension, however the greatest increase in prevalence was found for dementia and chronic kidney disease. Novel areas for development of integrated service delivery models, therefore, include collaboration with dementia and chronic kidney disease specialists.

Contributors Conception and design: LAH, EC and WG. Checking and cleaning of data: LAH and EC supervised by WG. Data analysis and interpretation: all authors. Manuscript writing: LAH with critical revisions from all authors. Final approval of manuscript: all authors.

Funding Dr LAH, King’s College London, received funding via a clinical lectureship from the National Institute for Health Research (NIHR). This study was also supported by the NIHR Applied Research Collaboration South London (NIHR ARC South London) at King’s College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Disclaimer The funders had no role in the study design, data analysis, decision to publish or preparation of the manuscript.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available. Data supplied by the Office for National Statistics.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Lesley A. Henson http://orcid.org/0000-0003-4799-7365
Clarissa Ng Yin Ling http://orcid.org/0000-0003-0873-5741
Wei Gao http://orcid.org/0000-0001-8298-3415

REFERENCES
1. Ferlay J, Ervik M, Lam F. Global cancer Observatory: cancer tomorrow. Lyon, France: international agency for research on cancer, 2018. Available: https://gco.iarc.fr/tomorrow [Accessed 12 Aug 2019].
2. Aarts MJ, Aerts JG, van den Borne BE, et al. Comorbidity in patients with small-cell lung cancer: trends and prognostic impact. Clin Lung Cancer 2015;16:282–91.
3. Jørgensen TL, Hallas J, Friis S, et al. Comorbidity in elderly cancer patients in relation to overall and cancer-specific mortality. Br J Cancer 2012;106:1333–60.
4. NICE. Multimorbidity: clinical assessment and management. National Institute for health and care excellence, 2016. Available: https://www.nice.org.uk/guidance/ng56
5. Sarfati D, Koczwara B, Jackson C. The impact of comorbidity on cancer and its treatment. CA Cancer J Clin 2016;66:337–50.
6. Potosky AL, Saxman S, Wallace RB, et al. Population variations in the initial treatment of non-small-cell lung cancer. J Clin Oncol 2004;22:3261–8.
7. Earle CC, Venditti LN, Neumann PJ, et al. Who gets chemotherapy for metastatic lung cancer? Chest 2000;117:1239–46.
8. Henson LA, Higginson IJ, Gao W, et al. What factors influence emergency department visits by patients with cancer at the...
end of life? analysis of a 124,030 patient cohort. Palliat Med 2018;32:426–38.
9 Grønberg BH, Sundstrom S, Kaasa S, et al. Influence of comorbidity on survival, toxicity and health-related quality of life in patients with advanced non-small-cell lung cancer receiving platinum-doublet chemotherapy. Eur J Cancer 2010;46:2225–34.
10 Janssen-Heijnen MLG, Houterman S, Lemmens VEPP, et al. Prognostic impact of increasing age and co-morbidity in cancer patients: a population-based approach. Crit Rev Oncol Hematol 2005;55:231–40.
11 Asmis TR, Ding K, Seymour L, et al. BMJ Supportive & Palliative Care 2024;14:e1025–e1031. doi:10.1136/bmjspcare-2021-003107
12 Staffor M, Steventon A, Thorby B. Briefing: understanding the health care needs of people with multiple health conditions. The Health Foundation, 2018.
13 Rosbach M, Andersen JS. Patient-experienced burden of treatment in patients with multimorbidity - a systematic review of qualitative data. PLoS One 2017;12:e0179916.
14 Ritchie CS, Kvale E, Fisch MJ. Multimorbidity: an issue of growing importance for oncologists. J Oncol Pract 2011;7:371–4.
15 Benchimol EI, Smeeth L, Guttmann A, et al. The reporting of studies conducted using observational Routinely-collected health data (record) statement. PLoS Med 2015;12:ARTN e1001885.
16 World Health Organisation. ICD-10: International Statistical Classification of Diseases and Related Health Problems: 10th revision, 2016. Available: https://icd.who.int/browse10/en [Accessed 18 Apr 2019].
17 Ministry of Housing, Communities & Local Government - English indices of deprivation. GOV.UK, 2012. Available: https://www.gov.uk/government/collections/english-indices-of-deprivation [Accessed 12 Apr 2019].
18 Abel GA, Barclay ME, Payne RA. Adjusted indices of multiple deprivation to enable comparisons within and between constituent countries of the UK including an illustration using mortality rates. BMJ Open 2016;6:e012750.
19 Valderas JM, Starfield B, Sibbald B, et al. Defining comorbidity: implications for understanding health and health services. Ann Fam Med 2009;7:357–63.
20 Obi J, Mehari A, Gillum R. Mortality related to chronic obstructive pulmonary disease and co-morbidities in the United States, a multiple causes of death analysis. COPD 2018;15:200–5.
21 Salive ME. Multimorbidity in older adults. Epidemiol Rev 2013;35:75–83.
22 Yancik R, Ganz PA, Varrichio CG, et al. Perspectives on comorbidity and cancer in older patients: approaches to expand the knowledge base. J Clin Oncol 2001;19:1147–51.
23 Geraci JM, Escalante CF, Freeman JL, et al. Comorbid disease and cancer: the need for more relevant conceptual models in health services research. J Clin Oncol 2005;23:7399–404.
24 Piccirillo JF, Vlahiotis A, Barnett LB, et al. The changing prevalence of comorbidity across the age spectrum. Crit Rev Oncol Hematol 2008;67:124–32.
25 Daveos BA, Harding R, Shipman C, et al. The real-world problem of care coordination: a longitudinal qualitative study with patients living with advanced progressive illness and their unpaid caregivers. PLoS One 2014;9:e95523.
26 Johri M, Beland F, Bergman H. International experiments in integrated care for the elderly: a synthesis of the evidence. Int J Geriatr Psychiatry 2003;18:222–33.
27 Hébert R, Raîche M, Dubois M-F, et al. Impact of PRISMA, a coordination-type integrated service delivery system for frail older people in Quebec (Canada): a quasi-experimental study. J Gerontol B Psychol Sci Soc Sci 2010;65B:107–18.
28 Tomasoni JR, Brouwers MC, Vukmirovic M, et al. Interventions to improve care coordination between primary healthcare and oncology care providers: a systematic review. ESRO Open 2016;1:e000077.
29 Boberski S, Smith J, Car J. Evaluation of the first year of the inner North West London integrated care pilot. research report. Nuffield Trust and Imperial College London, 2015.
30 Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ 2008;337:a1655.
31 Roberts H, Aitken N, Higginson IJ, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ 2008;337:a1655.
32 Henson LA, Gao W, Higginson IJ, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ 2008;337:a1655.
33 Henson LA, et al. BMJ Supportive & Palliative Care 2024;14:e1025–e1031. doi:10.1136/bmjspcare-2021-003107
34 Henson LA, Gao W, Higginson IJ, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ 2008;337:a1655.
35 Henson LA, Gao W, Higginson IJ, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ 2008;337:a1655.