Assessment and change analyses (1987-2002) for tropical wetland ecosystem using earth observation and socioeconomic data

Nidhi Nagabhatla1*, C. Max Finlayson2 and Sonali Seneratna Sellamutu3

1 APEC-AsiaPacific Climate Center (APCC), Haeundae-gu, Busan, 612020, Korea.
2 Institute for Land, Water & Society, Charles Stuart University, PO Box 789, NSW 2640, Albury, Australia.
3 International Water Management Institute (IWMI), P O Box 4199, Vientiane, Laos PDR.
*Corresponding author, e-mail address: nidhi26@gmail.com

Abstract
The two components of the study reflect assessment and change analysis of a tropical wetland in Sri Lanka. The first section explains spatial classification using pixel level-disaggregated image analysis and refined aggregated image analysis and comparison of information extracted by all methods to analyse a better classifier. The second section illustrates change analysis calibrating the land change modeller (LCM) [IDRISI-Andes]. Key observations: a) visual interpretation provides comprehensive blueprint of the wetlandscape compared to supervised and unsupervised classifiers b) change in landscape pattern reflect substantial transition in wetland use. Validation using field coordinates and socioeconomic data showed kappa value (%) of 87.

Keywords: Wetland, tropical, earth observation, change analysis, land change modeller (LCM- IDRISI), socioeconomic.

Introduction
Land use changes in many countries are progressively degrading wetlands with the expansion of agriculture and the development of water resource infrastructure being amongst the major drivers of adverse change globally [Dudgeon et al., 2005; Finlayson et al., 2005]. The actual extent of wetland loss globally is not well known—in some areas more than 50% and sometimes more than 85% of specific wetland types have been lost, but it has not been possible to yet ascertain with any certainty the extent of wetland loss globally [Finlayson et al. 2005]. Management responses to stop and reverse the degradation and loss of wetlands have been proposed, with an increased emphasis on rehabilitation and restoration, but in many instances these responses are not supported by sufficiently integrated information
and data collation and analysis [Finlayson et al., 1999]. It is widely acknowledged that information needs in support of wetland management are multi-scalar—including global, regional and national assessments to guide policy-making [Nagabhatla et al., 2007]. The Ramsar Convention [1971] on Wetlands has long recognised the need to develop techniques that can fill gaps in baseline inventory and has supported the development and application of inventory techniques including the application of multi-scalar remote sensing and GIS [Finlayson et al., 1999; Davidson and Finlayson 2007]. The Convention also emphasizes on prioritization of wetland management guided by local specific information on wetlands including assessment and monitoring. Monitoring wetland change is of paramount importance to understand their ecological structure, hydrological function and environmental flows. Spatial identification of complex coastal system is difficult owing to the highly fluctuating hydrodynamics of the wetlands that result in uncertainty in quantifying the wetland communities. Given these challenges, earth observation resource systems have shown high potential to provide an excellent alternative for such analyses as explained by Fichera et al. [2012].

In response to the increasingly recognised data limitations and the need for further information and analyses Rebelo et al [2010] reported on several initiatives using Earth Observation to provide such information, including an analysis of change in specific wetlands. The latter is extended further in this paper with the specific purpose of testing geospatial approaches at a local scale to measure and understand the dynamics of change in coastal wetlands of Sri Lanka.

The wetland complex is an important component of the coastal ecosystems of western Sri Lanka and is constantly subjected to increasing pressure from land use changes linked with changes in the socio-economic status of the local communities. To address this concern, the geospatial analysis is related with socio-economic data in order to configure the spatial outcome with the wetland dependant livelihoods. The study relates spatial trends with socio-economic profiles of local communities to develop an in-depth understanding of the information and monitoring needs for MMNL [Muthrajawela marsh-Negombo lagoon-MMNL] wetland ecosystem.

The study was of specific interest to the Sri Lankan Central Environmental Authority (CEA) which has in recent years assumed more and more responsibility for wetland management and has supported the production of a national wetland inventory [IUCN Sri Lanka and the Central Environmental Authority, 2006] as a basis for further wetland assessment and monitoring. As a major stakeholder, CEA was involved in the project right from the onset–planning, method identification, field surveys and in consulting the local inhabitants. The project was undertaken with specific consideration of both the technical and social requirements necessary to provide information that could be used to inform decision making.

Two key objectives 1) wetland assessment integrating the biophysical and socio-economic attributes in a geospatial domain and test the suitability of different image classifiers 2) examine methods and models [LCM] for wetland change analyses.

Site Description

MMNL is located along the west coast of Sri Lanka covering an area of approximately 12 000 hectares (IUCN Sri Lanka and Central Environmental Authority, 2006). Muthurajawela
[located at 7°03’N and 79°55’E] is the largest saline coastal juvenile peat bog in Sri Lanka, which together with the Negombo lagoon [with geographic coordinates: 7°06’-7°12’N and 79°49’-79°53’E] forms an integrated coastal wetland ecosystem. The region falls under four administrative divisions (Divisional Secretariat [DS] levels viz. Ja Ela, Katana, Waattla and Negombo) and covers 85 Grama Niladari [GN] Division (GN is the smallest unit of administration in Sri Lanka) (Fig. 1).

Reports trace the origin of the marsh-lagoon complex to about 5000 years BC (CEA/Euroconsult, 1991). The key water source to the marsh is Dandugan Oya (a small river) with a catchment of 727 sq km. The marsh is also crossed by canals (Dutch and Hamilton) constructed during the colonial period. The rainfall is between 2000-2500 mm [Samarakoon and Renken, 1999] (Fig. 2).

The wetland complex listed as one of 12 priority wetlands in Sri Lanka (in 1996) is an ecologically significant and economically strong zone and a popular recreational destination. The northern part of the complex was declared a wetland sanctuary owing to high endemicity in marine and terrestrial components. As of its proximity to a rapidly developing urban area; over past decades, the wetland has observed degradation resulting from inadequate planning and mounting anthropogenic interventions viz., encroachment and infilling of the marsh, heavy industrialisation, canal sedimentation and pollution that has severely affected the water flow and its biodiversity profile [Nagabhatla et al., 2007]. Given this situation, an integrated assessment was undertaken by the local government authority (CEA) to investigate key ecological-socio-economic drivers of change and address information needs of the wetland.
Figure 2-Rainfall variation in MMNL from 1992-2002 (this data was useful in multiple ways, first to selected the cloud free season for ordering spatial data, to capture seasonality by using temporal data sets and secondly to verify the analysis on flooding pattern and increase in marshy area in different time periods).

Method

Component 1: Spatial Analyses of Muthrajawela marsh-Negombo lagoon

The first component of the study addresses the ambiguity in classifying wetland communities demonstrating automated, semi-automated and visual classifiers to delineate coastal wetlands. The scale of classification was 1:50,000 and the projection used is UTM WGS 84, Zone 44. The spatial information combined with spectral knowledge, and further coupled with ground control points (GCP’s) was integrated to derive the wetland cover for 1987, 1992 and 2002 using the multispectral thematic mapper (MSS-TM) and enhanced thematic mapper (ETM+) Landsat images (Tab. 1 and Fig. 1).

An automated supervised classifier [Maximum Likelihood] in ERDAS along with the integration of the ancillary topographic data [stream network, road and toposheet maps number-59 Negombo-Published by Survey Department of Sri Lanka in First Edition-1990] was used to derive a classified output [land cover/use map]. The non-availability of the cloud free seasonal data (January–March) is a limiting factor in spatial classification, to overcome this, Google Earth images were referred as appropriate. The land cover/use thematic layer functioned as the base map for the change analysis process as we intend to capture the transitions (conversions) between wetland and non-wetland categories. The GCP’s collected (47 pre-classification and 53 collected post-classification) using a DGPS, along with the information gathered from the focal group discussions added for the validation and accuracy assessment via Kappa statistics. Wetland classes were defined based on the local understanding and in conjunction with Ramsar and LCCS (Landuse Classification System by FAO) [Gregorio, 2005] nomenclature. This provided a case to comment on the
applicability of global wetland nomenclature for local-level classification. The second section of this component discusses the image processing technique as a precursor to spatial classification. The Landsat TM images were subjected to signature separability/ discriminability analysis to determine how distinct the signature of one land covers class is from the other. The analysis also exhibits how a particular land-cover unit responds to the band length [particularly in context of separation between wetland and non-wetland clusters]. The analysis quantifies the spectral distinction/overlap of signatures based on the defined distance algorithm Euclidean distance [value range 0-120]. Any value above 100 indicates best spectral separability while the value below 30 indicates spectrally similar classes [Chauhan, 2004].

The Euclidean distance (EC) between the “centres” of classes i and j with the mean vectors \((\bar{M}_i,\ldots,\bar{M}_{in})\) and \((\bar{M}_j,\ldots,\bar{M}_{jn})\), is calculated as [Bakonyi and Johnson.1995]:

\[
EC_{ij} = \sqrt{\sum_{x=1}^{n} (M_{ix} - M_{jx})^2}
\]

The analysis provides a group of ‘natural clusters’ to facilitate automated and semi-automated digital classification. Reconnaissance and the data collected during the ground survey (June-October, 2006) was of value in the identification of the ‘image/natural clusters’. These were later used as base points to amass test signatures for the classification process.

Further, the digital image was subjected to visual interpretation (using Arc-View) and unsupervised classification (using ERDAS) to test the response of multiple spatial classifiers. Using on-screen visual interpretation (based on visually deriving spectral information from different band combinations [543, 564, 432 and 563] of the Landsat image) broad vegetative and non-vegetative groups/sub-groups was delineated to derived a vector layer based on the elements of image-interpretation (tone, texture, colour, pattern, association). Visual interpretation is a subjective method and takes account of contextual information and the experience of the individual analyst. In such a case, the repetition of the process is difficult task even if the high accuracy of the result is promised. Considering this limitation, the natural clusters derived from the separability analysis was subjected to the iterative process of unsupervised approach based on Isodata clustering algorithm.

Class separation was started using 100 clusters, aggregated to 25 and finally to 8. In view of the restriction of automated approach to separate closely related vegetation communities, the image was further analysed using supervised classification approach.

The unsupervised approach provides base information to customise the supervised algorithm for wetland classification. The multi-spectral data was classified in ERDAS 9.2 [using maximum likelihood algorithm] to derive a disaggregated land cover/use having 25 classes. At this point, the ancillary information viz., road layer stream network, river and drainage, GPS track points and trace lines, field photographs and the population data was refereed for refinement (Tab. 1). Noted was an ambiguity in discriminating closely related wetland and non-wetland communities, Google Earth images were refereed for the refinement process and to resolve discrepancies. At a final point a reclassification process resulted in an aggregated semi-supervised output with eight land cover/use units.
Post classification ground survey along with support from the primary and secondary socioeconomic information (focal group discussions (FGD), natural resource consumption statistics, and industrial zone pattern) added to improve the classification accuracy. The process was repeated to generate temporal profiles for 1987, 1992 and 2002 images (land cover/use, wetland cover and settlement/built up area).

Table 1 - Spatial and ancillary data sets used in wetland mapping and change analysis process.

Sensor	Resolution	Bands	Purpose
Landsat TM (1987, 1992, 2002)	30 m	7	to derive temporal layer of land cover (use) and wetland and built up areas
Landsat Geo-Cover	30m	4	to refine ambiguities during the classification process
Google Earth Images	-	-	Verification and refinement of fuzzy areas in the classification process

Data set	Scale	Data Characteristics	Purpose
Topographic survey maps	1: 50,000	National and Provincial level	To delineate boundaries
Drainage map	1: 50,000	National and Provincial level	To analyze water flow, input for change analysis
Road and Rail network	1: 50,000	National Provincial and DS level Primary and Secondary network	To calculate proximity analysis in the change analysis model
Stream Flow	1: 50,000	At divisional scale	Input for change analysis
Population density map	1: 50,000	At divisional scale	Input for change analysis and to interpret stress indicators
Rainfall and humidity data	-	monthly mean	To identify rainfall pattern (wet and dry) for spatial data selection and also validation of the flooding zones in spatial analysis

Component 2: Change Detection Analyses for Muthrajawela marsh-Negombo lagoon

The change analysis module explains the application of LCM (land change modeller in IDRISI-Andes version) to understand the wetland dynamics of the coastal systems. The land cover/use base map produced during the first component of the analyses was subjected to change module (algorithms) in ERDAS viz. NDVI differencing, image subtraction and differencing and the product subtraction method. The result from these change detection models was evaluated for its ability to classify temporal states in the wetland ecosystem. The ‘image difference’ algorithm depicts the difference in the temporal images based on the spatial-contextual information incorporated in the neighbourhood of each pixel and provides a detailed picture of gradient of change based on whole image subtraction. The ‘unsupervised classifier’ algorithm on the other hand is an automatic technique that discriminates changed and unchanged pixels based on the mechanical selection of the decision threshold. This process minimizes the overall change detection, underneath the postulation that pixels in the difference image are independent of one
another and calculated the change in the landscape in terms of ‘increase’, ‘decrease’ and ‘no change’. The complexity in spatial analysis based changed detection of resource systems has been highlighted by many researchers, who suggested both data and techniques based approaches [Erener and Düzgün, 2009; Galante, 2009].

Eventually LCM (land change modeler-based on the Markov Random Fields (MRFs)- Ferreira and Oliveira, 2007) in IDRISI-Andes version is used to capture the wetland dynamics. LCM is a built-in extensive vertical application specific for natural resource management that utilises the inter-pixel class dependency concept. An integrated algorithm LCM, uses dynamic, nonlinear simulation trend analysis to calculate the total and net change; along with the in-depth analysis of interchange between different communities. The change analysis algorithm in LCM defines a set of tools for the rapid assessment of change, evaluation of gains and losses, estimation of net change both in the image and graphical form. The application was used to address the problem of accelerated land conversion and its link to change in wetland use in the coastal landscape of Sri Lanka. Various in-built modules in LCM viz ‘change analysis’ that provides a rapid quantitative assessment of change by graphing gains and losses of the individual land cover category; ‘net change’ that reflect the result by adding the gains and then subtracting the losses and the ‘contributions to change’ module was tested.

In terms of the supporting socioeconomic phase of the study the secondary data was collected at Grama Niladari [GN] level to complement the biophysical geospatial analysis. A survey form [based on the sustainable livelihoods (SL) framework] that include the relevant socioeconomic parameters for the geospatial model was designed for data collection, with a special focus on the five livelihood assets or capitals– natural, human, social, physical and financial capital (DFID, 2001). Additionally, detailed data (particularly to validate the result of the change analysis phase) was collected using socio-economic assessments methods that involves a combination of participatory methods (such as community mapping of village, wealth ranking exercises and focus group discussions) and a more conventional household survey covering livelihoods and environmental issues.

Results

Wetland mapping and classification

The separability analyses reflect that all water-related classes for example canal, lagoon, and inundated marsh have closely identical spectral signature. The performance of band 5, 4, 3 of Landsat image is summarized in Table 2.

The most recognizable difference (high value of spectral seperability) is between the marshland and the built up area. The DN values in Band 4 (infra red) of Landsat image show lagoon, marshland and paddy fields as clear clusters. The values in band 4 and 7 (thermal) reflect the function of vegetation and moisture in differentiating the wetland communities. The digital signatures of the wetland classes (marshland, littoral zone, deep water lagoon, shallow water body and others) differ from those of the non-wetland (built up areas, coconut grove, open fallow land) significantly. The built up area was particularly separable (with the Euclidean value of 77.7 with littoral, and 117.7 with lagoon) from vegetation. The shallow lagoon and small water bodies reflect the separability value as 1.2 (indicating poor seperability). The abandoned paddy field had high seperability value compared to open/fallow areas, but medium value compared with ‘other vegetation’ (open patches with shrub/grass). However, the seperability of abandoned paddy fields with shallow water body was not very distinct; clarified
by moisture retention of the paddy fields and their subsequent conversion into marshy area. The exercise provided an abbreviated view of distribution of wetland and non-wetland clusters in the coastal landscape. TM bands-543 showed the marshy areas in the image as dirty reddish green and these were classified using on-screen visual interpretation. The lagoon was delineated using image enhancement ratio and different band combinations [(561, 563), band ratio (4/3)]; the approach was subjective and not a complete win to capture the landscape complexity of coastal wetland, especially the sedimentation in the lagoon [possibly due to intermixing of spectral signatures]. The mangrove/littoral delineation was encouraging using the band combination of 563, 562 and 561 (Fig. 3b). In addition the built up area and the coconut groove reflected intermixing in signatures as was the case of paddy fields and open grasslands.

Table 2 - Separability analysis based on the Euclidean distances algorithm for 1987- Landsat TM (band combination 5 43) (highlighted separability distances are explained in the text).

Land cover (use)	Settlements/built up	Coconut groves with home garden	Marshland	Water body deep-lagoon	Small water bodies with vegetation	Canals	Shallow water body	Open areas	Other vegetation	Agriculture zone	Littoral zone-mangroves	Shrub land	Abandoned fields
Settlements/built up	0.00	58.63	72.63	117.65	75.59	75.78	74.67	26.00	64.15	30.86	77.72	58.01	55.83
Coconut groves with home garden	58.63	0.00	17.81	85.16	36.55	40.15	36.58	79.30	12.27	36.46	19.10	9.83	33.65
Marshland	72.63	17.81	0.00	70.23	24.05	28.43	24.58	94.34	8.55	52.57	13.08	15.23	31.73
Water body deep-lagoon	117.65	85.16	70.23	0.00	49.15	46.58	49.40	73.33	111.65	80.46	78.17	64.20	
Small water bodies with vegetation	75.59	36.55	24.05	49.15	0.00	4.68	1.24	99.06	24.74	63.76	36.67	29.06	21.38
Canals	75.78	40.15	28.43	46.58	4.68	0.00	3.97	99.22	28.50	65.42	41.19	32.18	20.52
Shallow water body	74.67	36.58	24.58	49.40	1.24	3.97	0.00	98.15	24.86	63.18	37.31	28.93	20.26
Open areas	26.00	79.30	94.34	141.46	99.06	99.22	98.15	0.00	85.93	44.68	98.11	79.22	78.92
Other vegetation	64.15	12.27	8.55	73.33	24.74	28.50	24.86	85.93	0.00	44.80	18.15	7.04	26.08
Agriculture zone	30.86	36.46	52.57	111.65	63.76	65.42	63.18	44.68	44.80	0.00	54.42	37.98	48.21
Littoral zone-mangroves	77.72	19.10	13.08	80.46	36.67	41.19	37.31	98.11	18.15	54.42	0.00	22.54	43.92
Shrub land	58.01	9.83	15.23	78.17	29.06	32.18	28.93	79.22	7.04	37.98	22.54	0.00	24.94
Abandoned fields	55.83	33.65	31.73	64.20	21.38	20.52	20.26	78.92	26.08	48.21	43.92	24.94	0.00

Figure 3c show the classified output from the unsupervised classification. The process started by defining 50 class disaggregated layer that was aggregated into 8 classes as shown in Table 3; with clear delineation of the lagoon and water bodies. Signature mixing caused difficulty in accurately classifying the littoral vegetation and the dense coconut grove (home-garden). Differentiating marshland from the moist shrubby areas and small water body from the shallow canal was somewhat uncertain. The supervised classification spanned three disaggregated phases
(thematic layers with 25, 18 and 15 classes), to an aggregated classified image (Google image supported refinement) with nine land cover/use units (Fig. 3f). The kappa value of disaggregated image (25 classes) is noted as 76 % and of final classified image (9 land cover units) as 87%. Noted was indecision in separating marshland with shrubs from open moist area with shrubs (Tab. 3). Comparing the accuracy of different clarification approaches, a high degree of spectral confusion was noted while classifying the coastal wetland; predominant in automated classifiers and relatively less in the visual method.

Table 3 - Accuracy of different classification methods for 1987 and 1992 data. The accuracy was calculated using self-generated random points, topographic maps, and socioeconomic data. The total number of GCP (ground control points) used is 57.

Classification approach	Software Used	land cover (use) units	Wetland cover	Accuracy (%)
Unsupervised classification	ERDAS 9.0 (GLT)	23	6	70.62
Supervised classification	ERDAS 9.0 (GLT)	17	7	78.23
Visual Interpretation	Arc View (3.2)	11	7	83-56
Knowledge Classifier/Hybrid classification (Semi-supervised)	ERDAS 9.0 (GLT), refinement in IDRISI- Andes	9	9	86.5

Figure 3 - Spatial data analysis for wetland cover delineation illustrating different classification approaches.

Wetland Change Analyses

The disaggregated product from ‘image difference’ algorithm shows interchange and transition in communities at pixel scale making it difficult to infer at landscape level (Fig. 4a) also explained by Long and Yang, [1990] and Chang et al., [2005]. Whilst, the ‘unsupervised
classifier’ algorithm based analysis depicted broad ‘increase’ or ‘decrease’ zones that could not explain the interchange between different wetland units.

Overall both methods are subjective and reliant on on threshold definition by the user (Fig. 4b). Figure 4c displays the simulation outcome of the LCM (attained by defining different thresholds) algorithm. Significant changes in wetland cover/use pattern between 1987 and 2002
are noted: a) The conversion of the lagoon into shallow sediment laden water body b) the change of marshland into built up area/ settlements are the most prominent (Fig. 5).

Table 4 - Land cover (use) and wetland areas delineated using refined semi-supervised classification and surveyed transition.

Land cover/ (use)	Type of System	Wetland	Area (Ha)	Change	Transition/ Change	
Sandy Beach (tourism)	Natural	yes	354.7	374.9	469	Increase in natural system over tidal effects and tsunami after effect
Shrubland (grazing)	Semi-natural	no	862.85	809.3	698.3	Decrease in scrublands around the settlement zones partially due to encroachments
Lagoon (fishing)	Semi-natural	yes	2557.7	2328.4	1954.3	Increase in sedimentation has resulted in shallow water system
Littoral vegetation (fuel and fodder)	Semi-natural	yes	522.8	708.9	761.4	Naturalised to semi-naturalised vegetation
Coconuts (home gardens)	Modified	no	1580.5	1425	1753.4	Increase in modified systems
Grassland (abandoned paddy)	Semi-natural	yes	1417.1	1640.3	732.6	Modified into semi-naturalised (abandoned paddy to marsh)
Grasslands (paddy with other crops)	Modified	yes	1301.3	747.6	369.7	Decrease in modified system
Marshland (grazing)	Semi-natural	yes	933.3	1181.7	971.3	Modified into semi-naturalised (abandoned paddy to marsh)
Shallow water (domestic use)	Semi-natural	yes	1081.6	708.4	1074.3	Fluctuation in the system over canal blockage and increase in sedimentation in the Lagoon
Built-up (settlements and industrial)	Modified	no	1002.3	1684.6	2815	Increase in modified system
The change in the areal extent of agricultural land was significant from 1987-1992 [as the result of conversion of agriculture land to abandoned fields, driven by increased salinity [Nagabhatla et al., 2007] (Tab. 4). Another key change in the wetland landscape was observed between 1992 and 2002, as of growing industrial/free trade zone; that had originally developed along the peripheral zone of marshland and later began to expand exponentially (Fig. 5).

In Table 5 it is made clear how a particular land cover (wetland) type contributes to net change. Detailed statistics of change from one land cover (use) to another over the past decade was also analysed with selected examples shown in Table 6 and an aggregated map in Figure 5. Significant changes (1987-2002) include (i) decrease in deep water lagoon area (4.5%) (ii) shrinking of littoral forest (1.8 %) and marsh (1.3%) and (iii) expansion in built up area. Overall, LCM provides important observations in terms of area transitions, net change and the contribution to change by each land cover unit (Fig. 6). The study endorses the role of multi-scalar and temporal earth observation data and geospatial techniques for wetland characterisation.
Table 6 - Fraction of the total analysis of recorded change of one land cover/use to another (for 1992-2002) analysed using net change module in IDRISI (LCM).

Land cover/use	From	To	Change in area (Ha)	Change (%)
Home garden with Coconut	Marshy area with shrubs	Open Areas/Fallow	68	0.7
Littoral Vegetation	Marshland	Marshy mudflats	97	1.0
Marshland	Grassland (abandoned paddy)	Open Areas/Fallow	72	0.7
Shallow Water with Sediments	Littoral Vegetation	Home garden with coconut	56	0.6
Littoral Vegetation	Home garden with Coconut	Built-up/ Settlements	122	1.3
Marshland	Agriculture with other Vegetation	Home garden with coconut	229	2.5
Grassland (abandoned paddy)	Marshland	Home garden with coconut	574	6.2
Agriculture with other Vegetation	Marshland	Home garden with coconut	250	2.7
Littoral Vegetation	Marshland	Shrub land	157	1.7
Marshland	Marshland	Littoral Vegetation	346	3.7
Grassland (abandoned paddy)	Shallow Water with Sediments	Scrubland	287	3.1
Home garden with Coconut	Littoral Vegetation (Mangrove, Shrubs...)	Built-up/ Settlements	161	1.7
Marshland	Agriculture with other Vegetation	Built-up/ Settlements	561	6.1
Agriculture with other Vegetation	Marshland	Shrub land	127	1.4
Home garden with Coconut	Littoral Vegetation	Marshland	129	1.4
Littoral Vegetation	Marshland	Marshland	1385	15.0
Built-up/ Settlements	Grassland (abandoned paddy)	Marshland	236	2.6
Grassland (abandoned paddy)	Built-up/ Settlements	Marshland	213	2.3
Paddy with Other Vegetation	Grassland (abandoned paddy)	Marshland	134	1.4
Grassland (abandoned paddy)	Water Body Deep Lagoon	Marshland	149	1.6
Shallow Water with Sediments	Marshland	Water Body Deep Lagoon	168	1.8

Socioeconomics integrated with geospatial analysis

A vital element of the study is coupling the geospatial observations with the socio-economic data. The primary socio-economic data collected at the village and household level supports the problems highlighted by the spatial analysis and helps to validate the spatial statistics (Tab. 7). This integration offers a method to map, monitor and assess (fine tune the change detection process) the dynamics of wetland system in a holistic way. For example: temporal analysis depicts
shrinking of marshland and the socioeconomic information verified this spatial observation. Further it could provide factors to explain the change; as members of the local community pointed out that increased anthropogenic pressure, process of infilling of marsh and growing encroachments are among the most important factors that resulted in the shrinking of the marsh. It was interesting to observe how the social communities in the wetland complex could confirm and support the observation made using spatial analysis. Respondents verified the major change in the landscape (from 1992-2002) reported from temporal analysis; the reasons for which could be traced to disturbance from waves and storms (micro-climatic variation, impact of tsunami), fall in agricultural activity (adverse impact on agriculture practice by salinity issues) and the anthropogenic transitions (especially due to expansion in settlement and industrial area).

The increase in the built up area was supported by secondary sources of socio-economic data (specifically the demographic data), key informant interviews and the focus group discussions held with local community members. There have also been natural transitions taking place in the wetland for example the abandoned paddy fields have naturalised over time into moist grasslands contributing a habitat for floral and faunal diversity. These environmental changes taking place within the wetland have also been observed and experienced by local communities as described in Table 7 and Figure 7. Overall, the above observations meant that the wetland landscape is a fragmented unit both ecologically and for the local communities accessing wetland services for their livelihoods. For example, sedimentation in the canal/lagoon have resulted in clogging the flushing mechanism and adversely impacted the water retention and salinity balance of the lagoon-marsh hydrological system, that further led to adversative impact on the fish productivity and in return on the income levels of fishers.

Figure 6 - Transitions in land cover (use) – different scenarios; (a) Change in marshland area, increase and decrease from 1987-1992; (b) Change in the built area (settlement and industrial belt), contribution by the other communities; (c) Change analysis loss and gain by category (% area from 1992 -2002.)
Table 7 - Validation of change analysis process using primary/secondary socioeconomic data.

Change Indicators (spatial analysis in IDRISI)	Conversion (from and to)	Socioeconomic assessment	Comment	
Sedimentation	Deep water body to shallow sediment areas	Data from Household survey and FGDs describing perceived environmental changes and impacts on livelihoods	Household level survey data; FGDs	The fishers were of the opinion that the decrease in depth of the lagoon had impacted the overall fisheries productivity.
Marshy Infilling	Marshy and swamp areas to settlement and encroached lands	Data from household survey on describing perceived environmental changes and impacts on livelihoods	Household level survey	A majority of survey respondents perceived the clearing of the marsh and the initiation of development activities in the area, as a change for the better as it had uplifted their living conditions.
Abandoned agriculture	Paddy fields to abandoned grasslands	Secondary sources of data and qualitative information from residents	Literature review and key informant interviews	Productive rice cultivation areas were established in the country, the irrigation department paid little attention to Muthurajawela and the rice cultivation was abandoned.
Siltation and blockage of canals	Fresh water irrigation canals to stagnant shallow water patches	Data from household survey and FGDs on describing perceived environmental changes and impacts on livelihoods	Household level survey data; FGDs	Have adversely effected the flush mechanism and the salinity control mechanism of the lagoon
Encroached and degraded littoral zones	Primary mangrove and coastal vegetation to mangrove associations and encroached areas	Data from household survey on problems linked to accessing natural resources	Household survey data	The mangrove areas had been degraded as some residents cut down the mangroves to use for fire wood
Increased built up areas	Conversion of wetland communities to industrial and settlement zone	Population statistics at different management scale --village level, district and GN level	Literature review to collect secondary sources of data using a field form	Expanding population and increase industrialization and development in the area due to close proximity to the industrial zone and the international airport.
Shrinking agriculture activities	Natural degradation of agricultural lands to marshy swamp areas	Secondary sources of data viz., number of families dependent on natural resource usage	Literature review	Rice cultivation areas were established in the country, the irrigation department paid little attention to Muthurajawela and subsequently rice cultivation was abandoned.
Figure 7 - The primary socioeconomic analysis (dependence on natural resource/natural resource consumption pattern at DS level) validates lagoon pollution and sedimentation activity supported by reduction in fishing as a livelihood activity (in inset). Focal group discussions confirmed and validated major analysis results viz, loss of depth / lagoon sedimentation, mangrove forest fragmentation.

Conclusion
The study adds to the understanding that wetland delineation and mapping in coastal regions is an arduous task, particularly to differentiate and classify closely related vegetation communities for example seasonally inundated open areas from marshlands with sparse or no vegetation. The first section of the study tests a range of spatial classifiers and evaluates their accuracy in classifying coastal wetlands. Separability analysis results in pixel clustering complementing the spatial classification. It was observed that visual interpretation approach provides a comprehensive overview of the wetland cover, yet it offers less opportunity to understand the in-depth stratification in coastal wetland use. Unsupervised classification approach was not considerably successful in differentiating closely related vegetation communities (viz., marsh areas with shrubs and open wet areas with grass and shrub patches). Supervised classification reflect comparatively better result to separate spectrally similar communities such as marsh area with grass patches and the grass interspersed seasonally inundated open area with more confidence (as classifying the image using test signature improved the certainty). Eventually, wetland cover was geospatially analysed using the supervised classifier with an accuracy of 87%. The study reflects an approach for practical application of pro-supervised learning and pattern recognition for the multi-spectral earth observation data. This ergonomic approach can be interactively manipulated, modified and refined for wetlands of similar type.

The second component describes wetland dynamics including the accelerated land conversion in the wetland complex using LCM. The spatial pattern of change coupled with the socio-economic information explains that the landscape was suitably intact till 1987 as the irrigation channels governed the water flushing and salinity of the lagoon. In 1992,
the marsh area was declared as a wetland sanctuary. At the same time, the region experienced increased incidence of climatic extreme events primarily rainfall (trends in rainfall during the time is reflected in Figure 2) and change in soil properties (due to influx of saline water from irrigation canals) that adversely impacted the surrounding agriculture (cultivated paddy). The paddy fields were abandoned and progressively converted into a marshland interspersed with grass/shrubby species such as *Typha augustifolia* and *Phragmites karka* [refer 2000 image analysis]. Subsequently, the increase in economic expansion activities towards the southern end of the lagoon led to enlarging the built-up (industrial/ settlements) area contributing towards the sediment load draining in canals and the lagoon. The process over years resulted in canal blockage, disturbed fresh water flow and reduced retention capacity of the lagoon, hence adversely affecting fish productivity and the livelihood dependence of local communities.

In principal, the study underlines an approach to simulate land use change using an integrated geospatial approach. The application of socioeconomic data to derive useful information on structure and dynamics of coastal wetland systems supplemented and validated the spatially derived wetland assessment. We contend that a) socioeconomic information considerably improved the accuracy of mapping over parametric classification and b) IDRISI [LCM] module provides a good platform to understand the resource dynamics. Both observations are crucial towards a sustainable management planning of wetland systems.

Acknowledgement

Authors are grateful to Central Environmental Authority, Sri Lanka for their support in field work and data analysis and express sincere thanks to all government agencies in Sri Lanka for their valuable time and information provided. The usual disclaimer applies.

References

Bakonyi M., Johnson C.R. (1995) - *The Euclidean distance matrix completion problem*. SIAM J. Matrix Anal. Appl., 16:646–654. doi: http://dx.doi.org/10.1137/S0895479893249757.

Chang C.C., Chia T.L., Yang C.K. (2005) - *Modified temporal difference method for change detection*. Optical Engineering, Volume 44 (2): 1-10. doi: 10.1117/1.1839893.

Chauhan N. (2004) - *Mapping, monitoring and modelling of landscape for biodiversity characterization in Baratang Forest Division, Andaman and Nicobar Islands*. Thesis, University of Pune and Indian Institute of Remote Sensing, India.

Central Environmental Authority/Arcadis Euro Consult (2004) - *Lessons learned from 12 years of wetland work in Sri Lanka. Strategic Zoning. Integrated Resources Management Programme (IRMP)*. Central Environmental Authority and Ministry of Environment and Natural Resources. Sri Lanka.

Department for International Development [DFID] (2001) - *Sustainable Livelihood Guidance Sheets*. http://livelihoods.org/info/info_guidancesheets/.

Davidson N.C., Finlayson C.M. (2007) - *Earth Observation for wetland inventory, assessment and monitoring*. Aquatic Conservation Marine and Freshwater Ecosystems, 17 (3): 219. doi: http://dx.doi.org/10.1002/aqc.846.

Dudgeon D., Arthington A.A., Gessner M.O., Kawabata Z., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L.J., Sullivan C.A. (2005) - *Freshwater biodiversity: importance, threats, status and conservation challenges*. Biological Reviews, 81: 163-182. doi: http://dx.doi.org/10.1017/S1464793105006950.
Di Gregorio A. (2005) - UN Land Cover Classification System (LCCS) - classification concepts and user manual (Software version 2). Available online at:www.glcn-lccs.org.

Erener A., Düzgün H.S. (2009) - A methodology for land use change detection of high resolution pan images based on texture analysis. Italian Journal of Remote Sensing, 41: 47-59. doi: 10.5721/ItJRS20094124.

Euroconsult (1991) - Master plan of Muthurajawela and Negombo Lagoon. Greater Colombo Economic Commission and Euro consult Colombo-Sri Lanka.

Fichera C.R., Modica G., Pollino M. (2012) - Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing, 45: 1-18. doi: 10.5721/EuJRS20124501.

Finlayson C.M., Spiers A.G. (eds) (1999) - Global review of wetland resources and priorities for wetland inventory. Supervising Scientist Report 144, Supervising Scientist Group, Environment Australia, Canberra.

Finlayson C.M., Bellio M.G., Lowry J.B. (2005) - A conceptual basis for the wise use of wetlands in northern Australia – linking information needs, integrated analyzes, drivers of change and human well-being. Marine & Freshwater Research, 56: 269-277. doi: http://dx.doi.org/10.1071/MF04077.

Ferreira M.A.R., De Oliveira V. (2007) - Bayesian analysis for a class of Gaussian Markov Random Fields. Journal of Multivariate Analysis, 98:789-812. doi: http://dx.doi.org/10.1016/j.jmva.2006.07.005.

Galante G., Mandrone S., Funaro M., Cotroneo R., Panetta S. (2009) - Spatial and temporal changes in Aniene river basin (Latium, Italy) using landscape metrics and moving window technique. Italian Journal of Remote Sensing, 41: 157-172. doi: 10.5721/ItJRS2009412.

IUCN Sri Lanka, Central Environmental Authority (2006) - National Wetland Directory of Sri Lanka. Colombo, Sri Lanka.

Long W., Yang Y.H. (1990) - Stationary background generation: An alternative to the difference of two images. Pattern Recognition, 23:1351-1359. doi: http://dx.doi.org/10.1016/0031-3203(90)90081-U.

Nagabhatla N., Finlayson C.M., Sellamuttu S.S., Wickramasuriya R., Pattnaik C., Prasad S.N., Gunawardena A. (2007) - Using Geospatial Tools to Overcoming Sustainability Concerns for Wetland Ecosystem In Proceedings of the 28th Asian Conference on Remote Sensing (ACRS-2007). ISBN 978-983-43550-0-5;(Publisher) Malaysian Centre for Remote Sensing (MACRES) and Ministry of Science, Technology and Innovation (MOSTI), Malaysia

Ramsar Wetland Convention (1971) - Key Documents of the Ramsar Convention on Wetlands. http://www.ramsar.org/index_key_docs.htm.

Rebelo L., Finlayson C.M., Nagabhatla N. (2009) - Multiple scale wetland inventory, mapping and change analysis. Journal of Environmental Management, 90 (7): 2144-2153. doi: http://dx.doi.org/10.1016/j.jenvman.2007.06.027.

Samarkoon J., Renken H. (eds) (1999) - Wetland Atlas of Sri Lanka. Central Environmental Authority/Arcadis Euroconsult.

Received 17/08/2011, accepted 02/01/2012

© 2012 by the authors; licensee Italian Society of Remote Sensing (AIT). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).