Association between malnutrition and stages of sarcopenia in geriatric rehabilitation inpatients: RESORT

L.M.G. Verstraeten a,1, J.P. van Wijngaarden b, J. Pacifico c,2, E.M. Reijnierse c, d,2, C.G.M. Meskers d, A.B. Maier a, c, e, f, 1, 2, *,

a Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
b Danone Nutricia Research, Uppsalaan 12, 3584 CT, Utrecht, the Netherlands
c Department of Medicine and Aged Care, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
d Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
e Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
f Centre for Healthy Longevity, National University Health System, Singapore

1. Introduction

Geriatric rehabilitation following an acute event aims at functional recovery through multidisciplinary interventions [1]. One-third of geriatric rehabilitation patients are diagnosed with malnutrition [2], which is a modifiable risk factor of sarcopenia [3], the age-related low muscle strength and muscle mass [4], being present in 56% of geriatric rehabilitation patients [5]. Malnutrition and sarcopenia are independently associated with functional decline [6,7], lower quality of life [8,9] and higher mortality [10,11] in older adults and can negatively impact functional recovery during geriatric rehabilitation [12,13]. Both conditions may coexist in geriatric rehabilitation patients [14,15] but they remain largely undiagnosed and untreated in routine clinical care [16–18] despite available interventions, such as resistance exercise training in combination with nutritional interventions [19,20].
For early detection and treatment of malnutrition, the Global Leadership Initiative on Malnutrition (GLIM) introduced the GLIM criteria, a three-step approach for the diagnosis of malnutrition [21]. Likewise, the revised definition of the European Working Group on Sarcopenia in Older People (EWGSOP2) proposed a four-step algorithm for the diagnosis of sarcopenia with sarcopenia stages: no sarcopenia, probable sarcopenia, confirmed sarcopenia and severe sarcopenia [4]. Malnutrition and sarcopenia coexist and are associated in one-fourth of hospitalized older adults [22] but this has, up until now, only been shown in one study in geriatric rehabilitation patients [14]. This knowledge is crucial to guide interventions and ultimately improve geriatric rehabilitation patients’ functional recovery.

The aim was to assess the prevalence, the coexistence of, and the association between malnutrition according to GLIM and sarcopenia stages according to EWGSOP2 in geriatric rehabilitation inpatients.

2. Material and methods

2.1. Study design and population

RESORing health of acutely unwell adults (RESORT) is an observational, longitudinal cohort of geriatric rehabilitation inpatients admitted to the Royal Melbourne Hospital (Melbourne, Victoria, Australia). All admitted patients were assessed using a Comprehensive Geriatric Assessment (CGA) [23] within 48 h of admission by physicians, nurses, physiotherapists, occupational therapists and dietitians. The study was approved by the Melbourne Health Human Research Ethics Committee (HREC/17/MH/103).

Patients admitted from 16 October 2017 and discharged by 31 August 2018 (wave 1) were included in the present analysis. Patients were excluded if they were receiving palliative care at admission or if they were incapable of providing informed consent and had no nominated proxy to consent on their behalf. Of the 995 patients admitted, 152 patients were excluded and 150 refused to consent; wave 1 of RESORT therefore included 693 patients, of which 506 were included in the present analysis based on data availability of malnutrition and sarcopenia diagnosis according to the GLIM criteria and EWGSOP2 definition (Fig. 1).

2.2. Patient characteristics

Age, sex, primary reason for hospital admission and length of stay in geriatric rehabilitation were retrieved from medical records. Disease burden was documented by physicians using the 37-point Charlson Comorbidity Index (CCI) [24] and 56-point Cumulative Illness Rating Scale (CIRS) [25], in which higher points indicated higher morbidity. Frailty was measured using the Clinical Frailty Scale and was assessed by a physician on a scale from 1 (very fit) to 9 (terminally ill) [26]. Cognitive impairment was evaluated by the presence of dementia or by a cognitive score below cut-off values of one of following tests: standardized Mini-Mental State Examination (sMMSE) < 24 points [27], Montreal Cognitive Assessment (MoCA) < 26 points [28] or Rowland Universal Dementia Assessment Scale (RUDAS) < 23 points [29]. Anthropometric measurements were performed by nurses. Weight, up to the nearest 0.1 kg, was measured on a calibrated weighing scale, weighing chair or weighing chair without footwear. If the patient was able to stand, standing height up to the nearest 0.1 cm, was measured without footwear. If the patient was unable to stand, knee height was measured by a sliding caliper between knee and ankle joints positioned at 90°; the estimated height was then calculated using the LASA equation [30]. The body mass index (BMI) was calculated by body weight divided by height squared (kg/m²). Risk of malnutrition was assessed by nurses with the Malnutrition Screening Tool (MST) on a scale from 0 to 5 with higher scores indicating a higher risk of malnutrition [31]. Functional performance was assessed by occupational therapists using the Katz index for Activities of Daily Living (ADL) [32] and the Lawton and Brody scale for Instrumental Activities of Daily Living (IADL) [33]. Scores of ADLs and IADLs ranged between 0-6 and 0–8 respectively, with higher scores indicating higher levels of independence.

2.3. Malnutrition diagnosis

Malnutrition was diagnosed according to the GLIM criteria [21,34] as previously described [34]. The phenotypic assessment included: low BMI (<20 kg/m² if <70 years or <22 kg/m² if >70 years) and/or non-volitional weight loss (1 to >15 kg in the past six months recorded on the MST) and/or reduced muscle mass expressed as skeletal muscle mass index (SMI <10.75 kg/m² and <6.75 kg/m² for males and females respectively [35]). The etiologic assessment included three domains: 1) any chronic gastrointestinal condition adversely impacting food assimilation or absorption, identified with the CIRS in patients with ≥1 condition in either lower and/or upper gastrointestinal symptoms; and/or 2) disease burden and/or an inflammatory condition (acute disease/injury or chronic disease, or moderate to severe inflammation), identified with the CIRS in patients with a score of ≥3 in one or more CIRS categories, aligning with severe, significant disability or chronic health problems [36]; and/or 3) reduced food intake for >2 weeks, identified by answering “yes” to the MST question “Have you been eating poorly because of a decreased appetite?”. Based on these assessments, the patient was indicated as ‘malnourished’ or ‘non-malnourished’. Although the GLIM criteria recommend using a screening tool for malnutrition as a first step in the algorithm, these criteria were applied to all patients independent of the MST as this score has been shown to have low accuracy in geriatric rehabilitation inpatients [34].

2.4. Sarcopenia diagnosis

Muscle strength and physical function were measured by physiotherapists. Handgrip strength was measured with a handheld dynamometer (JAMAR, Sammons Preston, Inc, 119 Bolingbrook, IL, USA). Patients were measured in a sitting position with elbows flexed at 90°, shoulders adducted and forearms in a neutral position without support. Patients were instructed to squeeze the dynamometer as hard as possible, three times for each hand, alternating between the right and the left-hand side [37]. The maximal value was reported in kilograms. The Short Physical Performance Battery (SPPB) was used to assess physical function on a scale ranging from 0 to 12 points with a higher score indicating better physical function [38]. The SPPB consists of three tests: standing balance test, the timed chair stand test and the four-meter walk test (gait speed). For the chair stand test, patients were instructed to raise five times from their chair and the time was recorded in seconds. The gait speed test was repeated two times and the fastest time in seconds was used for analysis and expressed in gait speed per second (m/s).

Muscle mass was measured by direct-segmental multi-frequency bio-electrical impedance analysis (DSM-BIA, InBody 510, Biospace Co., Ltd, Seoul, South Korea) by nurses. DSM-BIA has been validated for assessing segmental and whole-body composition against dual-energy X-ray absorptiometry (DEXA) [39]. DSM-BIA was not performed in patients with 1) electronic internal medical devices or implants such as cardiac pacemakers; 2) plasters or bandages interfering with the placement of the electrodes; 3) amputation or;
4) admission under contact isolation/precautions. Patients were measured in a supine position. Muscle mass was expressed as skeletal muscle mass (SMM, kg) and appendicular lean mass (ALM, kg) \[39\]. Skeletal muscle index (SMI, kg/m²) was calculated by dividing SMM (kg) by height squared (m²) \[39\]. ALM index (ALMI) (kg/m²) was calculated by dividing ALM by height squared (m²) \[40\].

The EWGSOP2 definition and cut-offs was used for sarcopenia diagnosis \[4\]. Low muscle strength was defined as handgrip strength < 27 kg and < 16 kg for males and females respectively. If handgrip strength was unavailable, the chair stand test was used instead, with low muscle strength defined as failing the pre-test (not able to rise from the chair without using the arms) or a time of > 15 s. Low muscle mass was defined as ALMI < 7.0 kg/m² for males and < 5.5 kg/m² for females. Low physical performance was defined as gait speed < 0.8 m/s or inability to walk. Following the EWGSOP2 algorithm, patients with normal muscle strength were classified with no sarcopenia, patients with low muscle strength but normal muscle mass were classified as probable sarcopenia, patients with low muscle strength and low muscle mass, but normal physical performance were classified as confirmed sarcopenia (non-severe), and patients with low muscle strength, low muscle mass and low physical performance were classified as severe sarcopenia \[4\]. Although included in the EWGSOP2 algorithm, we did not apply the SARC-F as this screening tool has been shown to have poor specificity and poor accuracy in identifying geriatric rehabilitation inpatients at risk of sarcopenia \[41\].

2.5. Statistical analysis

Descriptive statistics were used to present the patient characteristics. Variables being normally distributed were reported as mean with standard deviation (SD), variables being skewed as median with interquartile range (IQR) and categorical variables as frequency (n) with percentage (%). Multinomial logistic regression analyses of the association between malnutrition and sarcopenia stages included three models: unadjusted, adjusted for age and sex and adjusted for age, sex, CCI and cognitive impairment and were expressed as odds ratios (OR) and 95% confidence intervals (CI). The interaction effect in the association was tested for sex. P-values < 0.05 were considered statistically significant. All statistical analyses were performed using the Statistical Package for the Social Sciences (IBM SPSS Advanced Statistics 25.0, Armonk, NY: IBM Corp.).

3. Results

Table 1 shows the characteristics of geriatric rehabilitation inpatients at admission. The median age was 83.4 years [IQR: 77.5–87.9], 58% were female, 65% had cognitive impairment and the median frailty score was 6 [IQR: 5–6]. The median length of stay in geriatric rehabilitation was 19 days [IQR: 13–29].

According to the GLIM criteria and EWGSOP2 definition, 51% (n = 257) of the patients were malnourished, 49% (n = 250) were diagnosed with probable sarcopenia, 0.4% with confirmed sarcopenia (non-severe) (n = 2) and 19% (n = 94) with severe sarcopenia (Fig. 2). Of the malnourished patients (n = 257), 46% had probable sarcopenia, 0.4% had confirmed sarcopenia (non-severe) and 26% had severe sarcopenia. Of the non-malnourished patients (n = 249), probable sarcopenia, confirmed sarcopenia (non-severe) and severe sarcopenia were present in 53%, 0.4% and 11% respectively. Out of the 506 patients, 23% had both malnutrition and probable sarcopenia, 0.2% had both malnutrition and confirmed...
Malnutrition was found to be associated with sarcopenia in several populations, including hospitalized patients [22] and nursing home residents [42], using different diagnostic criteria. A longitudinal study criteria showed that malnutrition (GLIM) was associated with a threefold higher risk to develop sarcopenia/severe sarcopenia (EWGSOP2) during a four-year follow up period in community-dwelling older adults [3]. The present study shows that malnutrition is associated with severe sarcopenia in geriatric rehabilitation inpatients. This is in line with a previous study in post-acute geriatric inpatients (n = 88), using the European Society of Clinical Nutrition and Metabolism (ESPEN) and first EWGSOP definition [14]. The association between malnutrition and severe sarcopenia could be explained by a lower intake of key nutrients such as protein, vitamin D and calcium, amongst other factors, which affects preservation of muscle mass and subsequently muscle strength and physical performance [43]. However, longitudinal data on nutritional status and dietary intake are required to assess the causal bi-directional relationship between malnutrition and sarcopenia in geriatric rehabilitation. Additionally, one third of the patients diagnosed with severe sarcopenia were non-malnourished, suggesting that malnutrition is not the only risk factor for severe sarcopenia in geriatric rehabilitation patients. Therefore, physical inactivity and other potential causes of sarcopenia should be evaluated to provide targeted interventions [4,44].

Contrary to our expectations, malnutrition was not associated with probable sarcopenia; i.e. the occurrence of low muscle strength in the absence of low muscle mass. While other studies also found an association between a high risk of malnutrition and lower muscle mass but not with lower muscle strength [45–47]; others did show an association between malnutrition and muscle strength [47–50]. According to the EWGSOP2, muscle strength can be determined by handgrip strength or by the chair stand test but poor agreement has been shown between upper- and lower measures of muscle strength in older adults [51,52], also resulting in different prevalence rates of sarcopenia [53]. Future research should assess the adequacy and agreement between measures of muscle strength to diagnose sarcopenia in geriatric rehabilitation.

Low physical performance is inherently present in geriatric rehabilitation inpatients [1] and resulted in the absence of the confirmed sarcopenia (non-severe) stage in this study as all patients with low muscle strength and low muscle mass but not with lower muscle strength [45–47]; others did show an association between malnutrition and muscle strength [47–50]. According to the EWGSOP2, muscle strength can be determined by handgrip strength or by the chair stand test but poor agreement has been shown between upper- and lower measures of muscle strength in older adults [51,52], also resulting in different prevalence rates of sarcopenia [53]. Future research should assess the adequacy and agreement between measures of muscle strength to diagnose sarcopenia in geriatric rehabilitation.

4.2. Association between malnutrition and sarcopenia stages

Sarcopenia (non-severe) and 13% had both malnutrition and severe sarcopenia.

Figure 3 shows the association between malnutrition and sarcopenia stages. There was no effect modification for sex. Patients with malnutrition had higher odds of having severe sarcopenia (OR = 2.07, 95% CI = 1.13–3.81, p = 0.019) compared to patients without malnutrition. No association was observed between malnutrition and probable sarcopenia (OR = 0.91, 95% CI = 0.58–1.42, p = 0.674). The association between malnutrition and confirmed sarcopenia (non-severe) was not assessed given the insufficient number of inpatients in this sarcopenia stage.

4. Discussion

The prevalence and coexistence of malnutrition according to GLIM and sarcopenia stages according to EWGSOP2 was high among geriatric rehabilitation inpatients. Malnutrition was associated with severe sarcopenia, but not with probable sarcopenia.

4.1. Prevalence and coexistence of malnutrition and sarcopenia

The high prevalence and coexistence of malnutrition and sarcopenia observed in this cohort highlights the importance of diagnosis at admission to geriatric rehabilitation. Despite the coexistence, both malnutrition and sarcopenia diagnostic tools have to be applied due to the likelihood of prevalence of one and not both diagnoses. However, previous research shows diagnosis is currently not implemented in routine clinical care due to a lack of knowledge and diagnostic equipment [17,18]. A study in post-acute care geriatric inpatients reported the coexistence of malnutrition and sarcopenia in 15% of the patients [14], which is comparable to our findings. In a recent systematic review, the coexistence of malnutrition and sarcopenia was present in 23% of hospitalized older adults [22], which is in line with the findings of the present study in geriatric rehabilitation inpatients.

There are different strategies to counteract malnutrition in older adults including nutritional counselling, food fortification and oral nutritional supplements [55]. Besides nutrition, the introduction of physical exercise, especially resistance exercise, is essential to increase muscle mass and strength in older adults [19,20,56]. ESPEN
guidelines on clinical nutrition and hydration in geriatrics, as well as the GLIM criteria, recommend nutritional interventions to be part of a multimodal approach including physio- and occupational therapy as well as pharmacological agents [21,57]. Likewise, the EWGSOP2 definition recommends a combination of nutrition and exercise interventions to treat sarcopenia [4]. The prevalence of malnutrition in half of the geriatric rehabilitation inpatients indicates that most patients are likely to require nutritional support with adequate amounts of protein and energy intake. This is supported by a recent study in geriatric rehabilitation patients showing that protein intake was <0.8 in 46% and <1.2 g/(kg/day) in 92% of the patients [15], whereas the recommended protein intake for older people with acute or chronic disease is between 1.2 and 1.5 g/(kg/day) [58]. While the efficacy of nutritional and exercise interventions on clinical outcomes in geriatric rehabilitation inpatients needs to be further established, protein supplementation can increase protein intake [59] and muscle mass in older adults [20,60].

4.3. Strengths and limitations

This is the first study investigating the association between malnutrition and sarcopenia in geriatric rehabilitation inpatients using the most recent definitions. All measurements were conducted by a multidisciplinary team as part of a CGA, which promotes the standardization of assessments and utilizes adequate methodology for older patients. There are also some limitations. Firstly, the use of the MST as a proxy to identify reduced food intake and weight loss for the GLIM criteria could have introduced bias as the MST questions do not address a specific time frame of reduced food intake and weight loss and rely on self-reported information. Secondly, muscle mass was measured with BIA, which could not be performed in patients with pacemakers and other electronic...
implants and amputations. BLA measurements can also be influenced by hydration status [61].

5. Conclusion

In geriatric rehabilitation inpatients, the prevalence of malnutrition and sarcopenia was high, and both conditions coexisted frequently. Malnutrition was associated with severe sarcopenia according to EWGSOP2, but not with probable sarcopenia. The present findings warrant the implementation of diagnosis of both conditions at admission to geriatric rehabilitation. Also, further research is needed to evaluate feasible and efficient interventions to counteract both conditions in geriatric rehabilitation inpatients to improve rehabilitation outcomes.

Funding statement

This research was funded by an unrestricted grant of the University of Melbourne received by Prof. Andrea B. Maier and the Medical Research Future Fund (MRFF) provided by the Melbourne Academic Centre for Health (MACH). This study was supported by research grants from Health Holland and Agri Food received by Prof. Andrea B. Maier.

Author contributions

EMR and ABM were responsible for the conceptualization. JP, EMR and ABM were responsible for the data curation. LGMV was responsible for the formal analysis, visualization and wrote the original draft. JPvW, CGMM and ABM were responsible for supervision and JP, EMR, JPvW, CGMM and ABM were responsible for reviewing the manuscript.

Conflict of interest

A.B. Maier reports grants from Danone Nutricia Research, outside the submitted work; J.P. van Wijngaarden reports that she is an employee of Danone Nutricia Research. The other authors declare that they have no conflicts of interest.

Acknowledgements

The authors thank the multidisciplinary team members of the Royal Melbourne Hospital, Royal Park Campus, involved in the RESORT cohort for their clinical work and the @AgeMelbourne team. The @AgeMelbourne team for their clinical work and the @AgeMelbourne team.

References

[1] Bachmann S, Finger C, Huss A, Egger M, Stuck AE, Clough-Gorry KM. Inpatient rehabilitation specifically designed for geriatric patients: systematic review and meta-analysis of randomised controlled trials. BMJ 2010;340:c1718.
[2] Wojzischke J, van Wijngaarden J, van den Berg C, Cetinyurek-Yavuz A, Diekmann R, Lukwig Y, et al. Nutritional status and functionality in geriatric rehabilitation patients: a systematic review and meta-analysis. Eur Geriatr Med 2020;11(2):195–207.
[3] Beaudet C, Sanchez-Rodriguez D, Loquet M, Reginster JY, Lengelé I, Bruyère O. Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients 2019;11(12).
[4] Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48(4):401–13.
[5] Churilov L, Churilov L, Maclsaac RJ, Elkin EI. Systematic review and meta-analysis of prevalence of sarcopenia in post acute inpatient rehabilitation. Osteoporos Int 2018;29(4):803–12.
[6] Goisser S, Schrader E, Singler K, Bertsch T, Gefeller O, Biber R, et al. Malnutrition according to Mini nutritional assessment is associated with severe functional impairment in geriatric patients before and up to 6 Months after hip fracture. J Am Med Dir Assoc 2015;16(8):661–7.
[7] Wang DXM, Yao J, Zirek Y, Reijnierse EM, Maier AB. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis. J Am Geriatr Soc 2018;66(1):1–25.
[8] Verlaan S, Aspray TJ, Bauer JM, Cederholm T, Hemsworth J, Hill TR, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr 2017;36(1):267–74.
[9] Hernández-Galito A, Goti I. Quality of life and risk of malnutrition in a home-dwelling population over 75 years old. Nutrition 2017;35:81–6.
[10] Agarwal E, Ferguson M, Banks M, Batterham M, Bauer J, Capra S, et al. Malnutrition with poor food intake are associocated with prolonged hospital stay, frequent readmissions, and greater in-hospital mortality: results from the Nutrition Care Day Survey 2010. Clin Nutr 2013;32(5):737–45.
[11] Zhang X, Wang C, Dou Q, Zhang W, Yang Y, Xie X. Sarcopenia as a predictor of all-cause mortality among older nursing home residents: a systematic review and meta-analysis. BMJ Open 2018;8(11):e021252.
[12] Landi F, Calvani R, Ortolani E, Salini S, Martone AM, Santoro L, et al. The association between sarcopenia and functional outcomes among older patients with hip fracture undergoing in-hospital rehabilitation. Osteoporos Int 2017;28(5):1569–76.
[13] Mendelson G, Katz Y, Shahar DR, Bar O, Lehman Y, Spiegel D, et al. Nutritional status and osteoporotic fracture rehabilitation outcomes in older adults. J Nutr Gerontol Geriatr 2018;37(3–4):231–40.
[14] Sánchez-Rodriguez D, Marco E, Ronquillo-Moreno N, Miralles R, Vázquez-Ibar O, Escalada F, et al. Prevalence of malnutrition and sarcopenia in a post-acute care geriatric facility: applying the new ESPEN definition and EWGSOP criteria. Clin Nutr 2017;36(3):513–44.
[15] Groenendijk J, Kramer CS, den Boeij LM, Hobbeln DSM, van der Putten GJ, de Groot LCP. Hip fracture patients in geriatric rehabilitation show poor nutritional status, dietary intake and muscle health. Nutrients 2020;12(9).
[16] Sánchez-Rodriguez D, Marco E, Metza-Valderrama D, Dávalos-Yerovi V, Duarte E, et al. A step toward implementation of Global Leadership Initiative on Malnutrition (GLIM) criteria in geriatric rehabilitation. Eur Geriatr Med 2020;11(3):349–52.
[17] Reijnierse EM, de van der Schueren MAE, Trappenburg MC, Doves M, Meskers CGM, Maier AB. Lack of knowledge and availability of diagnostic equipment could hinder the diagnosis of sarcopenia and its management. PLoS One 2017;12(10):e0185837.
[18] Yeung SYY, Reijnierse EM, Trappenburg MC, Meskers CGM, Maier AB. Current knowledge and practice of Australian and New Zealand health-care professionals in sarcopenia diagnosis and treatment: time to move forward! Australas J Ageing 2019;39(2):e185–93.
[19] Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, et al. Nutritional and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017;28(6):1817–33.
[20] Gielen E, Beckwée D, Delaere A, De Breucker S, Vandewoude M, Baursens I. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr Rev 2020;78(9):121–47.
[21] Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - a consensus report from the global clinical nutrition community. Clin Nutr 2019;38(1):1–9.
[22] Ligthart-Melis GC, Luking YC, Kalourou A, Cederholm T, Maier AB, de van der Schueren MAE. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: a systematic review and meta-analysis. J Am Med Dir Assoc 2020;21(9):1216–28.
[23] Ellis G, Gardner M, Tsachristas A, Langhorne P, Burke O, Harwood RH, et al. Comprehensive geriatric assessment for older adults admitted to hospital. Clinical Practice Database Syst Rev 2017;9(9):Cd006211.
[24] Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40(5):373–83.
[25] Miller MD, Paradis CR, Houck PR, Mazumdar S, Stack JA, Rифал AH, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatr Res 1992;41(1):237–48.
[26] Rockwood K, Song X, Hogan DB, McClelland I, et al. A global clinical measure of frailty syndrome: definition and clinical applications. J Am Geriatr Soc 2005;53(4):698–704.
[27] Storey JE, Rowland JT, Basic D, Conforti DA, Dickson HG. The Rowland uniform dementia assessment scale (RUDAS): a multicultural assessment scale. Int Psychogeriatr 2004;16(1):13–31.
[28] Chumlea WC, Roche AF, Steinauhab MB. Estimating stature from knee height for persons 60 to 90 years of age. J Am Geriatr Soc 1985;33(2):116–20.
[29] Ferguson M, Capra S, Bauer J, Banks M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition 1999;15(6):486–94.
