On weak Fano manifolds with small contractions obtained by blow-ups of a product of projective spaces

Toru Tsukioka

October 25, 2016

Abstract

We consider weak Fano manifolds with small contractions obtained by blowing up successively curves and subvarieties of codimension 2 in products of projective spaces. We give a classification result for a special case. In the process of proof, we describe explicitly the structure of nef cones and compute the self intersection numbers of anti-canonical divisors for such weak Fano manifolds.

Mathematics Subject Classification (2000): 14J45, 14E30

1 Introduction

A smooth projective variety is called Fano manifold if its anti-canonical divisor is ample. The classification is known up to dimension 3. However, in dimension greater than or equal to 4, there exist only partial classification results (see [2] for a recent progress).

It is essential to investigate Fano manifolds in terms of the theory of extremal contractions (see [8],[10]). Recall that a small contraction is a birational morphism whose exceptional locus has codimension greater than or equal to 2, and it does not appear as extremal contraction for smooth 3-folds. Hence, in dimension greater than or equal to 4, it is interesting to give examples of Fano manifolds having small contractions.
We can construct a smooth projective variety with a small contraction by means of successive blow-ups (see [5]): Let Y be a smooth projective variety of dimension greater than or equal to 4. Let C be a smooth curve on Y and S a smooth subvariety of Y with $\text{codim}_Y S = 2$. Assume that C and S intersect transversally at points. Let $\pi: X \to Y$ be the blow-up along C and let S' be the strict transform of S by π. Let $\beta: \tilde{X} \to X$ be the blow-up along S'. Then \tilde{X} has a small contraction (see Section 2 for details). We consider the following:

Problem. Classify the triples (Y, C, S) such that \tilde{X} is a Fano manifold.

The purpose of this paper is to give a classification result in a special case for the problem expanded to the case where \tilde{X} is a weak Fano manifold, i.e. a smooth projective variety with nef and big anti-canonical divisor.

Throughout the paper, we work over the field of complex numbers.

Theorem 1. Let $Y = \mathbb{P}^{n-1} \times \mathbb{P}^1$ with $n \geq 3$. Let C be a fiber of the projection $Y \to \mathbb{P}^{n-1}$ and let S be a complete intersection of two divisors of bidegrees (a, b) and $(1, 1)$. Assume that S is smooth and irreducible. Assume also that S and C intersect transversally at one point. Let $\pi: X \to Y$ be the blow-up along C and let $\beta: \tilde{X} \to X$ be the blow-up along the strict transform of S by π. Then \tilde{X} is a weak Fano manifold if and only if $n \geq 3$ and

$$(a, b) = (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1) \text{ or } (3, 2).$$

Moreover, \tilde{X} is a Fano manifold if and only if $n \geq 4$ and

$$(a, b) = (0, 1), (1, 0), (1, 1), (2, 0) \text{ or } (2, 1).$$

Remarks:

(1) The case $Y = \mathbb{P}^n$ seems more complicated (see Section 6).

(2) The assumption on C is not so restrictive. Indeed, if C is not a fiber of the projection $p : Y = \mathbb{P}^{n-1} \times \mathbb{P}^1 \to \mathbb{P}^{n-1}$, there exists a fiber Γ of p such that $C \cap \Gamma \neq \emptyset$. Then we have $-K_X \cdot \tilde{\Gamma} = 4 - n$, $\tilde{\Gamma}$ being the strict transform of Γ by $\pi \circ \beta$. Hence, $-K_X$ is not nef for $n \geq 5$.

(3) Let $q : Y = \mathbb{P}^{n-1} \times \mathbb{P}^1 \to \mathbb{P}^1$ be the projection. Put $y_0 := C \cap S$. Since we assume S to be irreducible, $a = 0$ implies $b = 1$ and S is a hyperplane in the fiber $q^{-1}(q(y_0)) \cong \mathbb{P}^{n-1}$. If $a \geq 1$, then $q|_S : S \to \mathbb{P}^1$ is surjective. The
assumption that S is contained in a divisor of bidegree $(1,1)$ is natural (at least for the case where \tilde{X} is a Fano manifold): Consider the open set

$$T := \{ t \in \mathbb{P}^1 \mid t \neq q(y_0) \text{ and } S \cap q^{-1}(t) \text{ is smooth} \}.$$

If \tilde{X} is a Fano manifold, so is $\tilde{X}_t := (q \circ \pi \circ \beta)^{-1}(t)$ for $t \in T$. Note that $(\pi \circ \beta)|_{\tilde{X}_t} : \tilde{X}_t \to q^{-1}(t) \simeq \mathbb{P}^{n-1}$ is the blow-up whose center consists of the point $C \cap q^{-1}(t)$ and the subvariety $S_t := S \cap q^{-1}(t)$. According to [1], there exist a hypersurface $U_t \subset q^{-1}(t) \simeq \mathbb{P}^{n-1}$ of degree a ($1 \leq a \leq n$) and a hyperplane $V_t \subset q^{-1}(t) \simeq \mathbb{P}^{n-1}$ such that S_t is complete intersection of U_t and V_t. Let V be the closure of the union $\bigcup_{t \in T} V_t$. Then, V contains S and V has bidegree $(1, c)$ for some $c \geq 0$, and our theorem covers the case $c = 1$.

The present paper is organized as follows: In Section 2 we explain how to obtain a small contraction by means of blow-ups. We also fix notations which will be used constantly throughout the paper. Section 3 is devoted to determine the structure of the nef cones of \tilde{X} for $(a, b) = (1, 0)$ and for any (a, b) such that $a \geq 1$ and $b \geq 0$. Recently, the explicit descriptions of nef cones are of great importance in the study of Mori dream spaces (see [9]). Hence, this section is of independent interest. In Section 4 we compute $(-K_{\tilde{X}})^n$ and express it as a rational function depending on (n, a, b). We will give a sufficient condition for $(-K_{\tilde{X}})^n$ to be strictly positive. Since the self intersection number of the anti-canonical divisor is an important invariant for (weak) Fano manifolds, we believe that this section is also of independent interest. In Section 5 we prove Theorem 1 using Propositions shown in Sections 3 and 4. Section 6 is a supplement in which we give several examples for the case $Y \neq \mathbb{P}^{n-1} \times \mathbb{P}^1$.

Notation. Let $(x_0 : x_1 : \cdots : x_{n-1})$ and $(s : t)$ are homogeneous coordinates of \mathbb{P}^{n-1} and \mathbb{P}^1 respectively. Recall that a divisor D on the product $\mathbb{P}^{n-1} \times \mathbb{P}^1$ is said to have bidegree (a, b) if D is defined by a polynomial

$$\sum c_{i_0, i_1, \ldots, i_{n-1}, j, k} x_0^{i_0} x_1^{i_1} \cdots x_{n-1}^{i_{n-1}} s^j t^k \quad (c_{i_0, \ldots, i_{n-1}, j, k} \in \mathbb{C})$$

such that $i_0 + \cdots + i_{n-1} = a$, $j + k = b$. It is equivalent to say that D is a member of the linear system $|\mathcal{O}_{\mathbb{P}^{n-1} \times \mathbb{P}^1}(a, b)|$.

For a projective variety X, we denote by $N^1(X)$ (resp. $N_1(X)$) the set of the numerical classes of divisors (resp. 1-cycles) with real coefficients.
It is known that this is a finite dimensional vector space (see [6]), and its dimension denoted by $\rho(X)$ is called the Picard number of the variety X. The numerical equivalence class of a divisor D (resp. a 1-cycle C) is denoted by $[D]$ (resp. $[C]$). We see that $N^1(X)$ and $N_1(X)$ are dual to each other via the bilinear form $N^1(X) \times N_1(X) \to \mathbb{R}$ defined by the intersection number: $([D],[C]) \mapsto D \cdot C$.

The nef cone $\text{Nef}(X)$ and the cone of curves $\text{NE}(X)$ are defined by

$$\text{Nef}(X) := \{[D] \in N^1(X) \mid D \text{ is a nef divisor}\},$$

$$\text{NE}(X) := \{ \sum a_i[C_i] \in N_1(X) \mid C_i \text{ is an irreducible curve on } X, a_i \geq 0\}.$$

The closure of $\text{NE}(X)$ in $N_1(X)$ is denoted by $\overline{\text{NE}}(X)$. The important fact is that the two cones $\text{Nef}(X)$ and $\overline{\text{NE}}(X)$ are dual to each other (see [7] Proposition 1.4.28).

Let Γ be a 1-cycle on a projective variety Y and let V be a subvariety of Y. For a divisor D on V, we denote by $(D \cdot \Gamma)_V$ the intersection number taken in V. Given a birational morphism $\alpha : X \to Y$, the strict transform of a subvariety $M \subset Y$ will be denoted by $\alpha^{-1}_* M$.

2 Construction of a small contraction

We follow Example (2.6) in [5]. Let Y be a smooth projective variety of dimension $n \geq 3$. Let $C \subset Y$ be a smooth curve and let $S \subset Y$ be a smooth subvariety of codimension 2. Assume that C and S intersect transversally at one point. Put $y_0 := S \cap C$. Let $\pi : X \to Y$ be the blow-up along C with the exceptional divisor E. Note that $\pi|_E : E \to C$ is a \mathbb{P}^{n-2}-bundle. Put $E_0 := \pi^{-1}(y_0)$. Let $\beta : \tilde{X} \to X$ be the blow-up along $S' := \pi^{-1}_* S$ with the exceptional divisor F. Let f be a fiber of the \mathbb{P}^1-bundle $\beta|_F : F \to S'$. We put $\tilde{E} := \beta^{-1}(E)$ and $\tilde{E}_0 := \beta^{-1}_* E_0$. Note that \tilde{E}_0 is isomorphic to \mathbb{P}^{n-2}.

Lemma 1. There exists a birational morphism $\varphi : \tilde{X} \to X_0$, X_0 being a projective variety, such that $\varphi(\tilde{E}_0)$ is a point for $n \geq 4$. The same holds for $n = 3$, if we assume $-K_{\tilde{X}}$ is nef and big.

Proof. (See also [3] Chapter 6.) Let \tilde{e}_0 be a line in $\tilde{E}_0 \simeq \mathbb{P}^{n-2}$. We show that $\mathbb{R}^+[\tilde{e}_0]$ is extremal in the cone $\overline{\text{NE}}(\tilde{X})$. Assume that there exist irreducible curves $A, B \subset \tilde{X}$ such that $\tilde{e}_0 \equiv A + B$. Let D be an ample divisor
on Y and put $\tilde{D} := (\pi \circ \beta)^* D$. Since $\tilde{D} \cdot \tilde{c}_0 = 0$, we have $\tilde{D} \cdot A = \tilde{D} \cdot B = 0$, which implies that A and B are contracted by $\pi \circ \beta$. Assume $A \not\subset \tilde{E}$. Then there exists $s \in S \setminus \{y_0\}$ such that $A = (\pi \circ \beta)^{-1}(s)$. Since $(\pi \circ \beta)(B)$ is a point, B is one of the following types:

1. $B = (\pi \circ \beta)^{-1}(t)$ ($t \in S \setminus \{y_0\}$)
2. $B \subset (\pi \circ \beta)^{-1}(c)$ ($c \in C \setminus \{y_0\}$)
3. $B \subset (\pi \circ \beta)^{-1}(y_0)$

In case 1, we have $\tilde{c}_0 \equiv A + B \equiv f + f = 2f$, a contradiction. In case 2, we have $F \cdot A + F \cdot B = -1 + 0 = -1$, while $F \cdot (A + B) = F \cdot \tilde{c}_0 = 1$, a contradiction. In case 3, if we put $G := F \cap \tilde{E}$ then we have $(\pi \circ \beta)^{-1}(y_0) = \tilde{E}_0 \cup G$. Assume $B \subset G$. Put $G_0 := F \cap \tilde{E}_0$. Note that $N_{G_0/G} \simeq \mathcal{O}_{\mathbb{P}^n}_{-2}(-1)$. Since $F \cdot f = -1$ and $F \cdot \tilde{c}_0 = 1$, we have $F|_G \sim -G_0$. Hence,

$$F \cdot B = F|_G \cdot B = (-G_0 \cdot B)_G.$$

On the other hand, we have

$$F \cdot B = F \cdot \tilde{c}_0 - F \cdot A = 1 - (-1) = 2.$$

Hence, $(G_0 \cdot B)_G = -2 < 0$ which implies that $B \subset G_0 \subset \tilde{E}_0$. Thus, $[B] \in \mathbb{R}^+[\tilde{c}_0]$, a contradiction because $\tilde{c}_0 \equiv A + B \equiv f + B$. We conclude that all the cases 1, 2, 3 do not happen. Therefore $A \subset \tilde{E}$. By a similar argument, we also have $B \subset \tilde{E}$. Now, we take intersection numbers in \tilde{E}:

$$-1 = (\tilde{E}_0 \cdot \tilde{c}_0)_{\tilde{E}} = (\tilde{E}_0 \cdot A)_{\tilde{E}} + (\tilde{E}_0 \cdot B)_{\tilde{E}}$$

which implies $\tilde{E}_0 \cdot A < 0$ or $\tilde{E}_0 \cdot B < 0$. Hence, $A \subset \tilde{E}_0$ or $B \subset \tilde{E}_0$. In both cases we have $[A] \in \mathbb{R}^+[\tilde{c}_0]$ and $[B] \in \mathbb{R}^+[\tilde{c}_0]$. It follows that $\mathbb{R}^+[\tilde{c}_0]$ is an extremal ray in $N_\text{E}(\tilde{X})$.

If $n \geq 4$, we have $K_{\tilde{X}} \cdot \tilde{c}_0 = 3 - n < 0$. Hence, $\mathbb{R}^+[\tilde{c}_0]$ is a $K_{\tilde{X}}$-negative extremal ray, and we are done by Contraction Theorem.

In case $n = 3$, since we assume $-K_{\tilde{X}}$ is nef and big, the linear system $|-mK_{\tilde{X}}|$ defines a morphism for a sufficiently large $m \in \mathbb{N}$ by Base Point Free Theorem. The Stein factorization gives a desired contraction because we have $-K_{\tilde{X}} \cdot \tilde{c}_0 = 0$ (note that $\tilde{E}_0 = \tilde{c}_0$ for $n = 3$).
From now on, we fix the following:

Notation ()**
Assume \(n \geq 3 \) and put \(Y := \mathbb{P}^{n-1} \times \mathbb{P}^1 \). Let \(p : Y \to \mathbb{P}^{n-1} \) and \(q : Y \to \mathbb{P}^1 \) be the projections. Let \(C \) be a fiber of \(p \). Put \(H := p^* \mathcal{O}_{\mathbb{P}^{n-1}}(1) \) and \(L := q^* \mathcal{O}_{\mathbb{P}^1}(1) \).

Consider \(V \in |H + L| \) and \(U \in |aH + bL| \) where \(a \) and \(b \) are non-negative integers. Let \(S \) be the complete intersection of \(U \) and \(V \). We assume also that \(S \) is smooth and irreducible. We assume also that \(C \) and \(S \) intersect transversally at one point and put \(y_0 := C \cap S \).

Let \(h \) be a fiber of \(p \) such that \(h \neq C \) and \(h \cap S = \emptyset \) and let \(l \) be a line in \(q \) such that \(l \cap C = \emptyset \) and \(l \cap S = \emptyset \).

Let \(\pi : X \to Y \) be the blow-up along \(C \). Put \(E := \text{Exc}(\pi) \) and \(E_0 := \pi^{-1}(y_0) \). Let \(e_0 \) be a line in \(E_0 \simeq \mathbb{P}^{n-2} \) and let \(e \) be a line in a fiber different from \(E_0 \) of the \(\mathbb{P}^{n-2} \)-bundle \(\pi|_E : E \to C \). Let \(H' \) and \(L' \) be the pull backs of \(H \) and \(L \) by \(\pi \). Let \(h' \) and \(l' \) be the strict transforms of \(h \) and \(l \) by \(\pi \). Put \(S' := \pi^{-1}_* S \).

Let \(\beta : \tilde{X} \to X \) be the blow-up along \(S' \). Put \(F := \text{Exc}(\beta) \) and \(\tilde{E} := \beta^{-1}_*(E) \). Let \(\tilde{H} \) and \(\tilde{L} \) be the pull backs by \(\beta \) of \(H' \) and \(L' \). Let \(f \) be a fiber of the \(\mathbb{P}^1 \)-bundle \(\beta|_F : F \to S' \). Let \(\tilde{e}_0, \tilde{e}, \tilde{h} \) and \(\tilde{l} \) be the strict transforms by \(\beta \) of \(e_0, e, h' \) and \(l' \). Put \(V' := \pi^{-1}_* V \) and \(\tilde{V} := \beta^{-1}_* V' \).

3 Structure of nef cones

The following is useful to determine the structure of simplicial cones:

Lemma 2. Let \((D, C) \mapsto D \cdot C \) be a bilinear form of \(\mathbb{R}^m \times (\mathbb{R}^m)^* \). Let \(V \) be a cone in \(\mathbb{R}^m \) and let \(V^* \) be its dual cone. Assume that there exist \(D_1, D_2, \ldots, D_m \in V \) and \(C_1, C_2, \ldots, C_m \in V^* \) such that \(D_i \cdot C_j = \delta_{ij} \) (Kronecker delta). Then, we have

\[
V = \mathbb{R}^+ D_1 + \mathbb{R}^+ D_2 + \cdots + \mathbb{R}^+ D_m,
\]
\[
V^* = \mathbb{R}^+ C_1 + \mathbb{R}^+ C_2 + \cdots + \mathbb{R}^+ C_m.
\]

Proof. Since \(D_1, \ldots, D_m \) are linearly independent, for any \(D \in V \) there exist real numbers \(a_1, \ldots, a_m \) such that \(D = a_1 D_1 + \cdots + a_m D_m \). We have

\[
a_i = (a_1 D_1 + \cdots + a_m D_m) \cdot C_i = D \cdot C_i \geq 0
\]

6
Lemma 3. Let X be a smooth projective variety, V a prime divisor on X and D a divisor on X. If the divisors $D-V$ and $D|_V$ are nef, then D is nef.

Proof. Let Γ be a curve on X. If $\Gamma \not\subset V$, we have $D \cdot \Gamma = (D-V) \cdot \Gamma \geq 0$. If $\Gamma \subset V$, then we have $D \cdot \Gamma = D|_V \cdot \Gamma \geq 0$.

Now, we return to our situation (Notation (*) in Section 2).

Proposition 1. We have

$$\text{Nef}(\tilde{X}) = \mathbb{R}^+[\tilde{H}] + \mathbb{R}^+[\tilde{L}] + \mathbb{R}^+[\tilde{H} - \tilde{E}] + \mathbb{R}^+[D(a,b)],$$

where

$$D(a,b) := \begin{cases} \tilde{H} + \tilde{L} - \tilde{E} - F & \text{for } a = 0 \text{ and } b = 1, \\ 2\tilde{H} + \tilde{L} - \tilde{E} - F & \text{for } a = 1 \text{ and } b = 0, \\ 2\tilde{H} + b\tilde{L} - \tilde{E} - F & \text{for } a = 1 \text{ and } b \geq 1, \\ a\tilde{H} + \tilde{L} - \tilde{E} - F & \text{for } a \geq 2 \text{ and } b = 0, \\ a\tilde{H} + b\tilde{L} - \tilde{E} - F & \text{for } a \geq 2 \text{ and } b \geq 1. \end{cases}$$

Proof. We define 1-cycles $l(a)$ and $h(b)$ on \tilde{X} by:

$$l(a) := \begin{cases} \tilde{l} - \tilde{e}_0 - f & (a = 0) \\ \tilde{l} - \tilde{e}_0 - 2f & (a = 1) \\ \tilde{l} - \tilde{e}_0 - af & (a \geq 2) \end{cases}, \quad h(b) := \begin{cases} \tilde{h} - f & (b = 0) \\ \tilde{h} - bf & (b \geq 1). \end{cases}$$

Claim. For any $a \geq 0$, we have $[l(a)] \in \text{NE}(\tilde{X})$.

Proof. Let $t_0 := q(y_0)$ and $t \in \mathbb{P}^1 \setminus \{y_0\}$. Put $y_t := C \cap q^{-1}(t)$. Put also $Y_0 := q^{-1}(t_0)$ and $Y_t := q^{-1}(t)$. We define the curve Γ as follows: If $a = 0$, let Γ be a line in $Y_t \simeq \mathbb{P}^{n-1}$. If $a = 1$, let Γ be a line in Y_t such that $y_t \in \Gamma$ and $S \cap \Gamma \neq \emptyset$. If $a \geq 2$, let Γ be a line in $Y_0 \simeq \mathbb{P}^{n-1}$ such that $y_0 \in \Gamma$ and $\Gamma \subset V$. For any $a \geq 0$, $\Gamma \equiv l$ in Y. Put $\Gamma' := \pi_*^{-1}\Gamma$ and $\tilde{\Gamma} := \beta_*^{-1}\Gamma'$. For $a = 0$ and $a = 1$, we have $\Gamma' + e \equiv l'$. This yields $\tilde{\Gamma} + \tilde{e} \equiv \tilde{l}$ for $a = 0$ (because $\Gamma' \cap S' = \emptyset$) and $\tilde{\Gamma} + \tilde{e} + f \equiv \tilde{l}$ for $a = 1$ (because Γ' and S' intersect transversally at one point). In case $a \geq 2$, we have $\Gamma' + e_0 \equiv l'$ which yields

$$(\tilde{\Gamma} + (a-1)f) + (e_0 + f) \equiv \tilde{l}$$
because \((S' \cdot \Gamma)_{V'} = a - 1\) and \((S' \cdot e_0)_{V'} = 1\). Thus, for any \(a \geq 0\), we have
\[l(a) = [\Gamma] \in \text{NE}(\widetilde{X}).\]

Claim. For any \(b \geq 0\), we have \([h(b)] \in \text{NE}(\widetilde{X})\).

Proof. We define the curve \(\Delta\) as follows: If \(b = 0\), let \(\Delta\) be a fiber of \(p|_U\) different from \(C\). Note that \(U\) is isomorphic to \(p(U) \times \mathbb{P}^1\) because \(U \sim aH\). If \(b \geq 1\), let \(\Delta\) be a fiber of \(p\) such that \(\Delta \subset V\) and \(\Delta \not\subset S\) \((\Delta\) is a fiber of the exceptional divisor of the blow-up \(p|_V : V \to \mathbb{P}^{n-1}\)). Since \(\Delta \equiv h\) for any \(b \geq 0\), we have

\[
(S \cdot \Delta)_U = V|_U \cdot \Delta = V \cdot h = 1 \quad \text{for } b = 0,
\]

\[
(S \cdot \Delta)_V = U|_V \cdot \Delta = U \cdot h = b \quad \text{for } b \geq 1.
\]

Put \(\tilde{\Delta} := (\pi \circ \beta)^{-1}_*\Delta\). Then, if \(b = 0\), we have \(\tilde{\Delta} + f \equiv \tilde{h}\) and if \(b \geq 1\), \(\tilde{\Delta} + bf \equiv \tilde{h}\). Thus, for any \(b \geq 0\), we get \([h(b)] = [\tilde{\Delta}] \in \text{NE}(\widetilde{X})\).\[\Box\]

Claim. The divisors \(\widetilde{H}, \widetilde{L}, \widetilde{H} - \widetilde{E}\) and \(D(a, b)\) are all nef.

Proof. We see that \(H = p^*\mathcal{O}_{\mathbb{P}^{n-1}}(1)\) and \(L = q^*\mathcal{O}_{\mathbb{P}^1}(1)\) are nef. Hence, so are \(\widetilde{H} = (\pi \circ \beta)^*H\) and \(\widetilde{L} = (\pi \circ \beta)^*L\). Note that \(X\) is isomorphic to \(Bl_z(\mathbb{P}^{n-1}) \times \mathbb{P}^1\) where \(z\) is the point \(p(C) \in \mathbb{P}^{n-1}\). For the blow-up \(\varepsilon : Bl_z(\mathbb{P}^{n-1}) \to \mathbb{P}^{n-1}\) the divisor \(\varepsilon^*\mathcal{O}_{\mathbb{P}^{n-1}}(1) - \text{Exc}(\varepsilon)\) is nef. Hence, so is its pull back by the projection \(X \to Bl_z(\mathbb{P}^{n-1})\), which is linearly equivalent to \(H' - E\). Therefore, \(\widetilde{H} - \widetilde{E} = \beta^*(H' - E)\) is also nef.

We show that \(D(a, b)\) is nef for \((a, b) = (0, 1)\) and for any \((a, b)\) such that \(a \geq 1\) and \(b \geq 0\).

First, we consider the case \((a, b) = (0, 1)\). Put \(H_0 := p^{-1}(p(S))\), \(H'_0 := \pi^{-1}_*H_0\) and \(\widetilde{H}_0 := \beta^{-1}_*H'_0\). Note that we have \(S = q^{-1}(q(y_0)) \cap H_0\). Note also that \(\pi|_{H'_0} : H'_0 \to H_0 \simeq \mathbb{P}^{n-2} \times \mathbb{P}^1\) is the blow-up along \(C\) and \(\beta|_{\widetilde{H}_0} : \widetilde{H}_0 \to H'_0\) is an isomorphism. Let \(L_t\) be a fiber of \(q\) such that \(y_0 \not\in L_t\). Put \(\widetilde{L}_t := (\pi \circ \beta)^{-1}_*L_t\). We see that \(\widetilde{L}_t \cap \widetilde{H}_0\) and \(F \cap \widetilde{H}_0\) are both fibers of the projection

\[
(q \circ \pi \circ \beta)|_{\widetilde{H}_0} : \widetilde{H}_0 \to \mathbb{P}^1.
\]

Hence, we have \(\widetilde{L}|_{\widetilde{H}_0} \sim \widetilde{L}_t|_{\widetilde{H}_0} \sim F|_{\widetilde{H}_0}\). Therefore,

\[
(\widetilde{H} + \widetilde{L} - \widetilde{E} - F)|_{\widetilde{H}_0} \sim (\widetilde{H} - \widetilde{E})|_{\widetilde{H}_0},
\]

8
which is nef. Since $\tilde{H}_0 \sim \tilde{H} - \tilde{E} - F$, we have

$$(\tilde{H} + \tilde{L} - \tilde{E} - F) - \tilde{H}_0 \sim \tilde{L},$$

which is also nef. By Lemma 3 we conclude that $D(0, 1) = \tilde{H} + \tilde{L} - \tilde{E} - F$ is nef on \tilde{X}.

Now, we show that $D(a, b)$ is nef for $a \geq 1$ and $b \geq 0$. Since $F|_V \in \text{Pic}(\tilde{V})$ corresponds to $S' \in \text{Pic}(V')$ via the isomorphism $\beta|_V : \tilde{V} \to V'$, the divisor $D(a, b)|_V$ is identified with the following:

$$(2H' + L' - E)|_{V'} - S' \quad (a = 1, b = 0)
(2H' + bL' - E)|_{V'} - S' \quad (a = 1, b \geq 1)
(aH' + L' - E)|_{V'} - S' \quad (a \geq 2, b = 0)
(aH' + bL' - E)|_{V'} - S' \quad (a \geq 2, b \geq 1).$$

Note that $\pi|_{V'} : V' \to V$ is the blow-up at the point $y_0 = S \cap C$ and the exceptional divisor is $E \cap V'$. Hence, we have

$$S' \sim (\pi|_{V'})^*S - E|_{V'} \sim (\pi|_{V'})^*(U|_V) - E|_{V'} \sim (aH' + bL')|_{V'} - E|_{V'}$$

$$= \begin{cases} (H' - E)|_{V'} & (a = 1, b = 0) \\
(H' + bL' - E)|_{V'} & (a = 1, b \geq 1) \\
(aH' - E)|_{V'} & (a \geq 2, b = 0) \\
(aH' + bL' - E)|_{V'} & (a \geq 2, b \geq 1). \end{cases}$$

Therefore, $D(a, b)|_V$ corresponds to:

$$(H' + L')|_{V'} \quad (a = 1, b = 0)
H'||_{V'} \quad (a = 1, b \geq 1)
L'|_{V'} \quad (a \geq 2, b = 0)
0 \quad (a \geq 2, b \geq 1),$$

which is nef in any case.

On the other hand, since $\tilde{V} \sim \tilde{H} + \tilde{L} - F$, we have

$$D(a, b) - \tilde{V} \sim \begin{cases} \tilde{H} - \tilde{E} & (a = 1, b = 0) \\
\tilde{H} + (b - 1)\tilde{L} - \tilde{E} & (a = 1, b \geq 1) \\
(a - 2)\tilde{H} + (\tilde{H} - \tilde{E}) & (a \geq 2, b = 0) \\
(a - 2)\tilde{H} + (b - 1)\tilde{L} + (\tilde{H} - \tilde{E}) & (a \geq 2, b \geq 1). \end{cases}$$
Recall that \tilde{H}, \tilde{L} and $\tilde{H} - \tilde{E}$ are nef. Hence, so is $D(a, b) - \tilde{V}$. By Lemma 3, we conclude that $D(a, b)$ is nef.

We have the following table of intersection numbers.

	\tilde{H}	\tilde{L}	\tilde{E}	F
l	1	0	0	0
\tilde{h}	0	1	0	0
\tilde{e}_0	0	0	1	0
f	0	0	0	1

By definition of $l(a), h(b)$ and $D(a, b)$, for $(a, b) = (0, 1)$ and for any (a, b) such that $a \geq 1$ and $b \geq 0$, we have:

	\tilde{H}	\tilde{L}	$\tilde{H} - \tilde{E}$	$D(a, b)$
$l(a)$	1	0	0	0
$h(b)$	0	1	0	0
\tilde{e}_0	0	0	1	0
f	0	0	0	1

Now, the proposition follows from Lemma 2 because we have $\rho(\tilde{X}) = 4$.

Remark. In the proof, we have also shown that $\overline{\text{NE}(\tilde{X})} = \mathbb{R}^+[l(a)] + \mathbb{R}^+[h(b)] + \mathbb{R}^+[\tilde{e}_0] + \mathbb{R}^+[f]$.

4 Self intersection numbers of anti-canonical divisors

The purpose of this section is to prove the following:

Proposition 2. If $a = 1$, we have

$$(-K\tilde{X})^n = \frac{(7 - b)n}{2}(n - 1)^{n-1} - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n.$$

If $a \neq 1$, we have

$$(-K\tilde{X})^n = (n - a)^{n-1} \left(-3a + 2 + ab \right) n + a^2 - ab \left(\frac{a^2 - b}{a - 1} \right) + (n - 1)^{n-1} \left(\frac{a^2 - b}{a - 1} \right) - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n.$$

10
We prepare some lemmas.

Lemma 4. Let D be a divisor on a smooth projective variety Y of dimension $n \geq 3$ and let S be a smooth subvariety in Y of codimension $r \geq 2$. Let $\mu : Z \to Y$ be the blow-up along S. Let F be the exceptional divisor of μ. Then, for $k = 1, 2, \cdots, n$, we have

$$(\mu^*D)^{n-k}F^k = (-1)^{r-1}(D|_S)^{n-k}s_{k-r}(N^*_S/Y)$$

where $s_{k-r}(N^*_S/Y)$ denotes the Segre classes of the conormal bundle N^*_S/Y.

Proof. We follow the notation in [4] Chapter 3 and Appendix B, i.e. for a vector space V, the projectivization $\mathbb{P}(V)$ denotes the set of lines in V. Consider the \mathbb{P}^{r-1}-bundle $\mu|_F : F = \mathbb{P}(N_S/Y) \to S$. Let $\mathcal{O}(1)$ be the dual bundle of the tautological line bundle $\mathcal{O}(-1)$ associated to N_S/Y. By a definition of Segre classes, we have

$$(\mu|_F)^*(D|_S)^{n-k}O(1)^{k-1} = ((\mu|_F)^*(D|_S))^{n-k}O(1)^{(r-1)+(k-r)} = (D|_S)^{n-k}s_{k-r}(N_S/Y).$$

This yields

$$(\mu^*D)^{n-k}F^k = (\mu^*D|_F)^{n-k}(F|_F)^{k-1}
= ((\mu|_F)^*(D|_S))^{n-k}O(1)^{k-1}
= (-1)^{k-1}(D|_S)^{n-k}s_{k-r}(N_S/Y)
= (-1)^{k-1}(D|_S)^{n-k}(-1)^{k-r}s_{k-r}(N^*_S/Y)
= (-1)^{r-1}(D|_S)^{n-k}s_{k-r}(N^*_S/Y).$$

Now, we return to our situation (Notations (*) in Section 2). However, in what follows, we put $h := H|_S$ and $l := L|_S$.

Lemma 5. We have

$$h^{n-2} = a + b, \ h^{n-3}l = a, \ l^2 \equiv 0.$$
Proof. Note that $S = UV \equiv (aH+bL)(H+L)$. Since $H^n = 0$, $H^{n-1}L = 1$ and $L^2 \equiv 0$, we obtain

\[
\begin{align*}
h^{n-2} &= H^{n-2}S = aH^n + (a+b)H^{n-1}L = a + b, \\
h^{n-3}l &= H^{n-3}LS = aH^{n-1}L + (a+b)H^{n-2}L^2 = a, \\
l^2 &= L^2S \equiv 0.
\end{align*}
\]

\[\square\]

For $a \geq 1$, we put $P(m) := \sum_{i=0}^{m} a^i$ and $Q(m) := \sum_{i=0}^{m} (ia^{i-1}b+(m-i)a^i)$.

Lemma 6. For $m = 1, 2, \cdots, n-2$, the m-th Segre classe is given by

\[s_m(N^*_{S/Y}) = P(m)h^m + Q(m)h^{m-1}l.\]

Proof. Put $u := U|_S$ and $v := V|_S$. Since $S = U \cap V$ is a complete intersection, we have

\[N_{S/Y} = N_{U/Y}|_S \oplus N_{V/Y}|_S = U|_S \oplus Y|_S = u \oplus v.\]

Hence, $N^*_{S/Y} = (-u) \oplus (-v)$. By Whitney formula, we obtain

\[c(N^*_{S/Y}) = (1-u)(1-v).\]

By the equality $c \cdot s = 1$ between the total Chern classe and the total Segre classe, we get

\[s(N^*_{S/Y}) = \frac{1}{1-u} \cdot \frac{1}{1-v} = (1+u+u^2+\cdots) \cdot (1+v+v^2+\cdots),\]

whose homogeneous part of degree m equals $\sum_{i+j=m} u^i v^j$. Since $l^2 \equiv 0$, we have

\[u^i v^j = (ah+bl)^i(h+l)^j = a^i h^{i+j} + (ia^{i-1}b + ja^i)h^{i+j-1}l.\]

Therefore,

\[s_m(N^*_{S/Y}) = \sum_{i+j=m} u^i v^j = \sum_{i+j=m} (a^i h^{i+j} + (ia^{i-1}b + ja^i)h^{i+j-1}l) = \left(\sum_{i+j=m} a^i \right)h^m + \left(\sum_{i+j=m} (ia^{i-1}b + ja^i) \right)h^{m-1}l.\]
Put

\[I_n := \sum_{k=2}^{n} \binom{n}{k} (-1)^k P(k-2)n^{n-k}, \]

\[I'_n := \sum_{k=2}^{n} \binom{n}{k} (-1)^k kP(k-2)n^{n-k}, \]

\[J_n := \sum_{k=2}^{n} \binom{n}{k} (-1)^k Q(k-2)n^{n-k}. \]

Lemma 7. If \(a = 1 \), we have

\[I_n = n^n - (2n-1)(n-1)^{n-1}, \]

\[I'_n = n(n-1)^{n-1}, \]

\[J_n = \frac{b+1}{2}((5n-2)(n-1)^{n-1} - 2n^n). \]

If \(a \geq 2 \), we have

\[I_n = \frac{(n-a)^n + (a-1)n^n - a(n-1)^n - a(n-1)^n}{a(a-1)}, \]

\[I'_n = \frac{n}{a-1}((n-1)^{n-1} - (n-a)^{n-1}), \]

\[J_n = \frac{(a+b-2ab)(n-a) - ab(a-1)n}{a^2(a-1)^2}(n-a)^{n-1} \]

\[+ \frac{(a-1)n + (a+b-2)(n-1)}{(a-1)^2}(n-1)^{n-1} - \frac{a+b}{a^2}n^n. \]

Proof. For \(a = 1 \), we have

\[P(k-2) = k-1, \quad Q(k-2) = \frac{b+1}{2}(k^2 - 3k + 2). \]

If \(a \geq 2 \), we put \(\theta := 1/(a^2 - a) \). Then, we have

\[P(k-2) = \theta(a^k - a), \]

\[Q(k-2) = \theta^2((a+b-2ab)a^k + b(a-1)ka^k - a^2(a-1)k + a^2(a+b-2)). \]
The statement is verified by direct computations using the following equalities for \(x = a \) and \(x = 1 \):

\[
\sum_{k=2}^{n} \binom{n}{k} (-x)^k n^{n-k} = (n-x)^n + (x-1)n^n,
\]

\[
\sum_{k=2}^{n} \binom{n}{k} k(-x)^k n^{n-k} = xn^n - xn(n-x)^{n-1},
\]

\[
\sum_{k=2}^{n} \binom{n}{k} k^2(-x)^k n^{n-k} = x(x-1)n^2(n-x)^{n-2} + xn^n.
\]

\[\square\]

Proof of Proposition 2 First, we consider the case \((a, b) = (0, 1)\). Put \(L_0 := q^{-1}(q(y_0))\) and \(H_0 := p^{-1}(p(S))\). Note that \(S\) is a hyperplane in \(L_0 \cong \mathbb{P}^{n-1}\). Let \(L'_0\) and \(H'_0\) be the strict transforms by \(\pi\) of \(L_0\) and \(H_0\). Then \(S'\) is the complete intersection of \(L'_0\) and \(H'_0\). Since \(H'_0 \sim H' - E, L'_0 \sim L'\) and \(L'|_{S'} \sim 0\), we have \(N^*_{S'/X} \cong O_{S'}(H' - E) \oplus O_{S'}\). As in the proof of Lemma 6 this yields

\[
s_m(N^*_{S'/X}) = (H'|_{S'} - E|_{S'})^m \quad \text{for} \quad m = 1, 2, \cdots, n - 2.
\]

On the other hand, we have

\[-K_X|_{S'} \sim (nH' + 2L' - (n - 2)E)|_{S'} \sim nH'|_{S'} - (n - 2)E|_{S'}.
\]

We observe that \(\pi|_{S'} : S' \to S \cong \mathbb{P}^{n-2}\) is the blow-up at \(y_0\). We have \(H'|_{S'} \sim (\pi|_{S'})^* O_{\mathbb{P}^{n-2}}(1)\) and \(\text{Exc}(\pi|_{S'}) = E|_{S'}\). Note that

\[
(H'|_{S'})(E|_{S'}) \equiv 0, \quad (H'|_{S'})^{n-2} = 1 \quad \text{and} \quad (E|_{S'})^{n-2} = (-1)^{n-3}.
\]

By Lemma 4 for \(r = 2\), we obtain \(\beta^*(-K_X)^{n-1}F = 0\) and for \(k = 2, \cdots, n\),

\[
\beta^*(-K_X)^{n-k}F^k = -(nH'|_{S'} - (n - 2)E|_{S'})^{n-k}(H'|_{S'} - E|_{S'})^{k-2} = (n - 2)^{n-k} - n^{n-k}.
\]

Since \(X\) is isomorphic to \(\mathbb{P}^1 \times Bl_z(\mathbb{P}^{n-1})\) where \(z\) is a point in \(\mathbb{P}^{n-1}\), we have

\[
(-K_X)^n = 2n(n^{n-1} - (n - 2)^{n-1}).
\]
It follows that
\[
(-K_X)^n = (\beta^*(-K_X) - F)^n
\]
\[
= (-K_X)^n + \sum_{k=2}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) (-1)^k \beta^*(-K_X)^{n-k} F^k
\]
\[
= 2n(n^{n-1} - (n-2)^{n-1}) + \sum_{k=2}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) (-1)^k ((n-2)^{n-k} - n^{n-k})
\]
\[
= 2n^n - (n-1)^n - 2(n-1)(n-2)^{n-1} + (n-3)^n.
\]

In case \((a, b) \neq (0, 1)\), since we cannot necessarily describe \(S' \subset X\) as a complete intersection (remark that \(U' \cap V' = S' \cup E_0\) where \(U'\) and \(V'\) are the strict transforms by \(\pi\) of \(U\) and \(V\)), it seems hard to compute \((-K_X)^n\) directly from \((-K_X)^n\). We avoid this difficulty by considering a flip of \(\tilde{X}\):

Step 1. Let \(\mu : Z \to Y = \mathbb{P}^{n-1} \times \mathbb{P}^1\) be the blow-up along \(S = U \cap V\). Let \(F_Z\) be the exceptional divisor of \(\mu\). We have
\[
\mu^*(-K_Y)^n = (-K_Y)^n = (nH + 2L)^n = 2n^n.
\]
By Lemma 4 for \(r = 2\), we have \(\mu^*(-K_Y)^{n-1}F_Z = 0\) and
\[
\mu^*(-K_Y)^{n-k}F_Z^k = -(-K_Y|_S)^{n-k}s_{k-2}(N_{S/Y}^*) \text{ for } k = 2, \ldots, n.
\]
Therefore,
\[
(-K_Z)^n = (\mu^*(-K_Y) - F_Z)^n
\]
\[
= \mu^*(-K_Y)^n + \sum_{k=1}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) \mu^*(-K_Y)^{n-k}(-F_Z)^k
\]
\[
= 2n^n - \sum_{k=2}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) (-1)^k (-K_Y|_S)^{n-k}s_{k-2}(N_{S/Y}^*).
\]

Here, we have \(-K_Y|_S \sim (nH + 2L)|_S = nh + 2l\). By Lemma 5 and 6
\((-K_Y|_S)^{n-k}s_{k-2}(N_{S/Y}^*)\) is equal to
\[
(3a + b)P(k - 2)n^{n-k} - 2aP(k - 2)kn^{n-k-1} + aQ(k - 2)n^{n-k}.
\]
Thus,
\[
(-K_Z)^n = 2n^n - (3a + b)I_n + \frac{2a}{n}I'_n - aJ_n.
\]
Therefore, we conclude that if \(a = 1 \), we have
\[
(-K_Z)^n = \frac{(7 - b) n}{2} (n - 1)^{n-1},
\]
if \(a \geq 2 \), we have
\[
(-K_Z)^n = (n - a)^{n-1} \frac{(-3a + 2 + ab)n + a^2 - ab}{(a - 1)^2} + (n - 1)^{n-1} \frac{(a^2 - b)n - a + b}{(a - 1)^2}.
\]

Step 2. Let \(\alpha : \widetilde{Z} \to Z \) be the blow-up along the curve \(C' := \mu_*^{-1}C \) with the exceptional divisor \(G \). Note that \(N_{C'/Z} = \mathcal{O}_{P^1} \oplus \mathcal{O}_{P^1}(-1) \). Hence, we have \(-K_Z \cdot C' = 1 \) and \(\deg(N_{C'/Z}) = 1 \). Using Lemma 4 for \(r = n - 1 \), we have the following:
\[
\begin{align*}
\alpha^*(-K_Z)^{n-k}G^k & = 0 \quad \text{for } k = 1, 2, \cdots, n - 2, \\
\alpha^*(-K_Z)G^{n-1} & = (-1)^n(-K_Z \cdot C') = (-1)^n, \\
G^n & = (-1)^n s_1(N_{C'/Z}) = (-1)^{n+1}.
\end{align*}
\]
Therefore,
\[
(-K_{\widetilde{Z}})^n = (\alpha^*(-K_Z) - (n - 2)G)^n \\
= (\alpha^*(-K_Z))^n + (-1)^{n-1} n(n - 2)^{n-1} \alpha^*(-K_Z)G^{n-1} + (-1)^n(n - 2)^n G^n \\
= (-K_Z)^n - n(n - 2)^{n-1} - (n - 2)^n \\
= (-K_Z)^n - 2(n - 1)(n - 2)^{n-1}.
\]

Step 3. We observe that \(\widetilde{X} \) and \(\widetilde{Z} \) are connected by a flip. We have
\[
(-K_{\widetilde{X}})^n = (-K_{\widetilde{Z}})^n + (n - 3)^n.
\]
To see this, put \(\Gamma_0 := \mu^{-1}(y_0) \) and \(\widetilde{\Gamma}_0 := \alpha_*^{-1}\Gamma_0 \). Let \(\gamma : W \to \widetilde{Z} \) be the blow-up along the curve \(\widetilde{\Gamma}_0 \) and let \(M \) be the exceptional divisor of \(\gamma \). Note that \(M \simeq \mathbb{P}^{n-2} \times \mathbb{P}^1 \) and \(N_{M/W} \simeq \mathcal{O}_{\mathbb{P}^{n-2} \times \mathbb{P}^1}(-1, -1) \). The contraction map sending \(M \) to \(\mathbb{P}^{n-2} \) is nothing but the blow-up \(\delta : W \to \widetilde{X} \) along \(\widetilde{E}_0 \simeq \mathbb{P}^{n-2} \).

We have \(K_W \sim \delta^*K_{\widetilde{X}} + M \) and \(K_W \sim \gamma^*K_{\widetilde{Z}} + (n - 2)M \). Hence,
\[
\delta^*(-K_{\widetilde{X}}) \sim \gamma^*(-K_{\widetilde{Z}}) - (n - 3)M.
\]
Note that \(N_{\widetilde{E}_0/\widetilde{Z}} \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(-1)^{\oplus(n-1)} \). Hence, we have \(-K_{\widetilde{Z}} \cdot \widetilde{\Gamma}_0 = 3 - n \) and \(\deg(N_{\widetilde{E}_0/\widetilde{Z}}) = n - 1 \). As in Step 2, we obtain \(\gamma^*(-K_{\widetilde{Z}})M^{n-1} = (-1)^{n+1}(n-3) \), \(M^n = (-1)^{n+1}(n - 1) \) and \(\gamma^*(-K_{\widetilde{Z}})^{n-k}M^k = 0 \) for \(k = 1, \cdots, n - 2 \).
Thus,
\[(−K_\tilde{X})^n = (δ^*(-K_\tilde{X}))^n \]
\[= (γ^*(-K_\tilde{Z}) - (n - 3)M)^n \]
\[= (γ^*(-K_\tilde{Z}))^n + (-1)^{n-1}n(n-3)^{n-1}γ^*(-K_\tilde{Z})M^{n-1} + (-1)^n(n-3)^nM^n \]
\[= (-K_\tilde{Z})^n + (n-3)^n. \]

By Step 2 and Step 3, we obtain
\[(−K_\tilde{X}) = (−K_\tilde{Z})^n - 2(n-1)(n-2)^{n-1} + (n-3)^n. \]

Substituting the result of Step 1, we complete the proof of Proposition 2.

Proposition 3. For \((a, b) = (0, 1)\) and for \((a, b)\) such that \(1 ≤ a ≤ 3\) and \(0 ≤ b ≤ 3\), we have \((−K_\tilde{X})^n > 0\) for any \(n ≥ 3\).

Proof. For each case, we compute \((−K_\tilde{X})^n\) using Proposition 2. Note that we have \((n - 1)^n - 2(n-1)(n-2)^{n-1} > 0\) for any \(n ≥ 3\).

If \((a, b) = (0, 1)\), then
\[(−K_\tilde{X})^n = 2n^n - (n - 1)^n - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[≥ 2(n - 1)^n - (n - 1)^n - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[≥ (n - 1)^n - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[> 0. \]

Assume \(b ≤ 3\). If \(a = 1\),
\[(−K_\tilde{X})^n = 7 - \frac{b}{2}n(n - 1)^{n-1} - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[≥ 2n(n - 1)^{n-1} - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[> (n - 1)^n - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \]
\[> 0. \]
If \(a = 2 \),

\[
(-K_{\tilde{X}})^n = (4n - 2)(n - 1)^{n-1} - 6(n - 1)(n - 2)^{n-1} - b(n - 1)^n - 2(n - 1)(n - 2)^{n-1} + (n - 3)^n \\
\geq (4n - 2)(n - 1)^{n-1} - 6(n - 1)(n - 2)^{n-1} - 3((n - 1)^n - 2(n - 1)(n - 2)^{n-1}) + (n - 3)^n \\
= (n - 1)^n + (n - 3)^n \\
> 0.
\]

If \(a = 3 \),

\[
4(-K_{\tilde{X}})^n = -3(n - 1)(n - 3)^{n-1} - 8(n - 1)(n - 2)^{n-1} + (9n - 3)(n - 1)^{n-1} \\
- b((n - 1)^n - 3(n - 1)(n - 3)^{n-1}) \\
\geq -3(n + 1)(n - 3)^{n-1} - 8(n - 1)(n - 2)^{n-1} + (9n - 3)(n - 1)^{n-1} \\
- 3((n - 1)^n - 3(n - 1)(n - 3)^{n-1}) \\
= (6n - 12)(n - 3)^{n-1} + 6n(n - 1)^{n-1} - 8(n - 1)(n - 2)^{n-1} \\
> 6n(n - 1)^{n-1} - 8(n - 1)(n - 2)^{n-1} \\
> 4((n - 1)^n - 2(n - 1)(n - 2)^{n-1}) \\
> 0.
\]

\(\Box \)

Remark. More precise estimations show that we have \((-K_{\tilde{X}})^n > 0\) for any \(n \geq 3 \) in the cases: \(a = 1 \) and \(b \leq 5 \); \(a = 2 \) and \(b \leq 6 \); \(a = 3 \) and \(b \leq 8 \). In case \(a \geq 4 \), the positivity of \((-K_{\tilde{X}})^n\) is independent of the value \(b \). For example, if \(a = 15 \) we have \((-K_{\tilde{X}})^4 = -306b - 285 < 0\) and \((-K_{\tilde{X}})^5 = 3056b + 1344 > 0\) for any \(b \in \mathbb{N} \).

5 Proof of Theorem

By the canonical bundle formula for the blow-ups \(\pi \) and \(\beta \), we have

\[
K_{\tilde{X}} \sim \beta^*K_X + F \sim \beta^*(\pi^*K_Y) + (n - 2)\tilde{E} + F.
\]

Combining with \(-K_Y \sim nH + 2L\), we get

\[
-K_{\tilde{X}} \sim n\tilde{H} + 2\tilde{L} - (n - 2)\tilde{E} - F.
\]
First, we consider the case $a \geq 2$ and $b \geq 1$. We rewrite $-K_{\tilde{X}}$ by means of the generators of $Nef(\tilde{X})$:

$$
-K_{\tilde{X}} = (3 - a)\tilde{H} + (2 - b)\tilde{L} + (n - 3)(\tilde{H} - \tilde{E}) + (a\tilde{H} + b\tilde{L} - \tilde{E} - F).
$$

By Proposition 1, we see that $-K_{\tilde{X}}$ is nef if and only if $3 - a \geq 0$, $2 - b \geq 0$ and $n - 3 \geq 0$. Since the numerical equivalence classes of ample divisors are interior points of the nef cone ([7] Theorem 1.4.23), it follows that $-K_{\tilde{X}}$ is ample if and only if $3 - a > 0$, $2 - b > 0$ and $n - 3 > 0$.

In the other cases, we argue similarly in the following forms:

- For $a = 0$ and $b = 1$,
 $$
 -K_{\tilde{X}} \sim 2\tilde{H} + \tilde{L} + (n - 3)(\tilde{H} - \tilde{E}) + (\tilde{H} + \tilde{L} - \tilde{E} - F).
 $$

- For $a = 1$ and $b = 0$,
 $$
 -K_{\tilde{X}} \sim \tilde{H} + \tilde{L} + (n - 3)(\tilde{H} - \tilde{E}) + (2\tilde{H} + \tilde{L} - \tilde{E} - F).
 $$

- For $a = 1$ and $b \geq 1$,
 $$
 -K_{\tilde{X}} \sim \tilde{H} + (2 - b)\tilde{L} + (n - 3)(\tilde{H} - \tilde{E}) + (2\tilde{H} + b\tilde{L} - \tilde{E} - F).
 $$

- For $a \geq 2$ and $b = 0$,
 $$
 -K_{\tilde{X}} \sim (3 - a)\tilde{H} + \tilde{L} + (n - 3)(\tilde{H} - \tilde{E}) + (a\tilde{H} + \tilde{L} - \tilde{E} - F).
 $$

Finally, we conclude that $-K_{\tilde{X}}$ is nef if and only if $n \geq 3$ and

$$(a, b) = (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1) \text{ or } (3, 2).$$

Moreover, $-K_{\tilde{X}}$ is ample if and only if $n \geq 4$ and

$$(a, b) = (0, 1), (1, 0), (1, 1), (2, 0) \text{ or } (2, 1).$$

In general, a nef divisor D is big if and only if $D^n > 0$ ([7] Theorem 2.2.16). Thus, the proof of Theorem is completed by Proposition 3. \square

6 Other examples

Details in this section can be verified by the methods in Sections 3 and 4. We keep all the notations (*) in Section 2 except that the divisors H and L are replaced by appropriate ones.

In the following examples 1, 2 and 3, we put $Y = \mathbb{P}^n$ with $n \geq 4$.

Example 1. Let C be a line and S an $(n - 2)$-plane. Assume $C \cap S \neq \emptyset$. We consider $H := \mathcal{O}_{\mathbb{P}^n}(1)$ and $\bar{H} := (\pi \circ \beta)^*H$. Then, we have

$$
\text{Nef}(\bar{X}) = \mathbb{R}^+[\bar{H}] + \mathbb{R}^+[\bar{H} - \bar{E}] + \mathbb{R}^+[2\bar{H} - \bar{E} - F],
$$

$$-K_{\bar{X}} \sim (n + 1)\bar{H} - (n - 2)\bar{E} - F = 2\bar{H} + (n - 3)(\bar{H} - \bar{E}) + (2\bar{H} - \bar{E} - F).$$

Hence, \bar{X} is a Fano manifold for any $n \geq 4$.

Example 2. Let C be a line. Let S be the complete intersection of a hyperplane and a hyperquadric. Assume that C and S intersect transversally at one point. Then \bar{X} is a Fano manifold for any $n \geq 4$. Indeed, the structure of nef cone and the description of the anti-canonical divisor for \bar{X} are completely same as in Example 1. Even if the intersection $C \cap S$ consists of two points, \bar{X} remains Fano, while the exceptional locus of the small contraction has two irreducible components.

Example 3. Let $P \subset Y = \mathbb{P}^n$ be a 2-plane and C a smooth conic on $P \cong \mathbb{P}^2$. Let S be an $(n - 2)$-plane such that $\sharp(C \cap S) = 2$. Then, we have

$$
\text{Nef}(\bar{X}) = \mathbb{R}^+[\bar{H}] + \mathbb{R}^+[2\bar{H} - \bar{E}] + \mathbb{R}^+[3\bar{H} - \bar{E} - F],
$$

$$-K_{\bar{X}} \sim (n + 1)\bar{H} - (n - 2)\bar{E} - F = (4 - n)\bar{H} + (n - 3)(2\bar{H} - \bar{E}) + (3\bar{H} - \bar{E} - F).$$

We see that $-K_{\bar{X}}$ is nef only for $n = 4$. Moreover, we have $(-K_{\bar{X}})^4 = 353 > 0$. Hence \bar{X} is a weak Fano manifold for $n = 4$.

Example 4. Let $Y := \mathbb{P}^2 \times \mathbb{P}^2$. Let C be a line in a fiber of a projection $Y \to \mathbb{P}^2$ and S a fiber of the other projection such that $C \cap S \neq \emptyset$. Then \bar{X} is a Fano 4-fold. Indeed, we are able to show:

Proposition 4. Let $Y := \mathbb{P}^{n-2} \times \mathbb{P}^2$ with $n \geq 3$. Let C be a smooth plane curve of degree d in a fiber of the projection $p : Y \to \mathbb{P}^{n-2}$. Let S be a fiber of the projection $q : Y \to \mathbb{P}^2$ such that $C \cap S \neq \emptyset$. Then \bar{X} is a weak Fano manifold if and only if

$$(n, d) = (3, 1), (3, 2), (3, 3), (4, 1) \text{ or } (5, 1).$$

Moreover, \bar{X} is a Fano manifold if and only if $(n, d) = (4, 1)$.

20
Proof. Put $H := p^*\mathcal{O}_{\mathbb{P}^m}(1)$ and $L := q^*\mathcal{O}_{\mathbb{P}^2}(1)$. Then we have

$$\text{Nef}(\tilde{X}) = R^+[\tilde{H}] + R^+[[\tilde{L} + \tilde{E} + \tilde{E} - F]].$$

Since $K_{\tilde{X}} \sim (\pi \circ \beta)^*K_Y + (n-2)\tilde{E} + F$ and $-K_Y \sim (n-1)H + 3L$, we have

$$-K_{\tilde{X}} \sim (n-1)\tilde{H} + 3\tilde{L} - (n-2)\tilde{E} - F$$
$$= \tilde{H} + (3 - d(n-2))\tilde{L} + (n-3)(\tilde{H} + d\tilde{L} - \tilde{E}) + (\tilde{H} + d\tilde{L} - \tilde{E} - F).$$

Hence, $-K_{\tilde{X}}$ is nef (resp. ample) if and only if $3 - d(n-2)$ and $n-3$ are positive (resp. strictly positive). On the other hand, we obtain

$$(-K_{\tilde{X}})^n = 4n(n-1)^{n-1} + (n-2)^{n-1}(d(d-3)n-2d^2+2) + (n-3)^n,$$

which is strictly positive for $(n, d) = (3, 1), (3, 2), (3, 3), (4, 1)$ and $(5, 1)$. □

Acknowledgements. The author would like to thank Kento Fujita and Kazunori Yasutake for helpful comments.

References

[1] L. Bonavero, F. Campana, J. A. Wiśniewski, Variétés complexes dont l’éclatée en un point est de Fano. C. R. Math. Acad. Sci. Paris Ser. I 334, 463–468 (2002)

[2] C. Casagrande, On the birational geometry of Fano 4-folds, Math. Ann. 355, 585–628 (2013)

[3] O. Debarre, Higher-dimensional algebraic geometry. Universitext. Springer (2001)

[4] W. Fulton, Intersection Theory, Second Edition, Springer (1998)

[5] Y. Kawamata, Small contractions of four dimensional algebraic manifolds. Math. Ann. 284, 595–600 (1989)

[6] S. Kleiman, Toward a Numerical Theory of Ampleness, Ann. of Math. 84, 293–344 (1966)

[7] R. Lazarsfeld, Positivity in Algebraic Geometry I, Ergebnisse der Mathematik, Vol. 48, Springer (2004)
[8] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_2 \geq 2$, Manuscripta Math. 36, 147–162 (1981/82) Erratum: Manuscripta Math. 110, 407 (2003)

[9] J. C. Ottem, Birational geometry of hypersurfaces in products of projective spaces. Math. Z. 280, 135–148 (2015)

[10] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math. 417, 141–157 (1991)

Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292 Japan
E-mail address: tsukioka@tokai-u.jp