Management of inflammatory bowel disease with *Clostridium difficile* infection

Julie D'Aoust, Robert Battat, Talat Bessissow

Julie D'Aoust, Division of Internal Medicine, Jewish General Hospital, Montreal QC H3G 1A4, Canada

Robert Battat, Division of Gastroenterology, Jewish General Hospital, Montreal QC H3G 1A4, Canada

Robert Battat, Talat Bessissow, Division of Gastroenterology, McGill University Health Centre, Montreal QC H3G 1A4, Canada

Author contributions: D’Aoust J and Battat R should be as co-first authors and contributed equally to the study; D’Aoust J, Battat R and Bessissow T planning and conducting the study; D’Aoust J, Battat R and Bessissow T collected data, drafting the manuscript.

Conflict-of-interest statement: D’Aoust J and Battat R confirm that there are no conflicts of interest to declare; Bessissow T has received fees as a speaker for Janssen, Shire, Abbvie, Takeda, Ferring, and Pendopharma; Bessissow T has a research grant from Abbvie, Janssen; Bessissow T has consulted for Abbvie, Janssen, Shire.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Talat Bessissow, MD, FRCP, Division of Gastroenterology, McGill University Health Centre, 1650 Avenue Cedar C7-200, Montreal QC H3G 1A4, Canada. talat.bessissow@mcgill.ca

Telephone: +1-514-9341934
Fax: +1-514-9348531

Received: March 24, 2017
Peer-review started: March 29, 2017
First decision: April 26, 2017

Revised: May 16, 2017
Accepted: June 18, 2017
Article in press: June 19, 2017
Published online: July 21, 2017

Abstract

AIM
To address the management of *Clostridium difficile* (C. difficile) infection (CDI) in the setting of suspected inflammatory bowel disease (IBD)-flare.

METHODS
A systematic search of the Ovid MEDLINE and EMBASE databases by independent reviewers identified 70 articles including a total of 932141 IBD patients or IBD-related hospitalizations.

RESULTS
In those with IBD, CDI is associated with increased morbidity, including subsequent escalation in IBD medical therapy, urgent colectomy and increased hospitalization, as well as excess mortality. Vancomycin-containing regimens are effective first-line therapies for CDI in IBD inpatients. No prospective data exists with regards to the safety or efficacy of initiating or maintaining corticosteroid, immunomodulator, or biologic therapy to treat IBD in the setting of CDI. Corticosteroid use is a risk factor for the development of CDI, while immunomodulators and biologics are not.

CONCLUSION
Strong recommendations regarding when to initiate IBD specific therapy in those with CDI are precluded by a lack of evidence. However, based on expert opinion and observational data, initiation or resumption of immunosuppressive therapy after 48-72 h of targeted antibiotic treatment for CDI may be considered.

Key words: Biologic therapy; *Clostridium difficile*;
Inflammatory bowel disease; Ulcerative colitis; Crohn’s disease; Corticosteroids

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: *Clostridium difficile* infection (CDI), common and increasing in inflammatory bowel disease (IBD), is associated with worse outcomes in IBD. Vancomycin-containing regimens are effective first-line therapies for CDI in IBD. Ambiguity exists on the treatment of IBD flare in patients with CDI; however, case reports suggest corticosteroid initiation after appropriate antibiotic therapy may be effective.

D’Aoust J, Battat R, Bessissow T. Management of inflammatory bowel disease with *Clostridium difficile* infection. World J Gastroenterol 2017; 23(27): 4986-5003 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i27/4986.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i27.4986

INTRODUCTION

Inflammatory bowel disease (IBD), comprised of Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, idiopathic inflammatory gastrointestinal disorders. The pathogenesis of IBD, although incompletely understood, is thought to arise from interactions between environmental and host factors. CD and UC are characterized by recurrent episodes of relapsing inflammation of the gastrointestinal tract with variable clinical manifestations and potentially serious complications including bleeding, perforation and abscess formation\[1-2\].

Clostridium difficile (*C. difficile*), a gram-positive spore-forming anaerobe, is highly transmissible through the fecal-oral route and its exotoxins cause a spectrum of disease ranging from mild to moderate diarrhea to fulminant infectious colitis occasionally complicated by toxic megacolon, colonic perforation, sepsis, and death\[3\].

Several diagnostic assays exist to assess for *Clostridium difficile* infection (CDI). DNA-based tests or nucleic acid amplification tests via polymerase chain reaction (PCR) for *C. difficile* toxin genes (tcdA and tcdB) have been found to be more sensitive than toxin A and B enzyme immunoassays (EIA) and are currently recommended as the preferred diagnostic test for CDI\[4\]. Other, less commonly used diagnostic assays for CDI include EIA for glutamate dehydrogenase (GDH, a protein produced by both toxigenic and non-toxigenic strains) with confirmatory testing via EIA for toxin genes. This has fallen out of favor in view of the more sensitive and rapid PCR assay. The advent of DNA-based testing may partially contribute to the observed increased incidence of CDI. Toxigenic culture is considered to be the gold standard diagnostic assay, albeit the slowest, requiring several days to result and therefore possibly delaying initiation of therapy.

While *C. difficile* is often pathogenic and accounts for significant morbidity and mortality in the healthcare and community setting, it has also been found to colonize the stool of healthy children and adults\[5-7\]. CDI is most commonly defined as the presence of *C. difficile* toxin in the context of characteristic clinical manifestations including diarrhea and abdominal pain\[4\]. CDI rates are increasing in the general population. Health care institutions have seen large outbreaks of CDI as well as the emergence of hypervirulent strains\[8-10\]. Surveillance of CDI in the United States has demonstrated a shift in the epidemiology to more community-acquired infections. A nationwide study of CDI in the United States using Emerging Infections Program data from the Centers for Disease Control estimated 453000 incident infections in 2011, of which only 24% were identified during hospitalization, as opposed to the outpatient setting\[11\].

Decreased intestinal microbial diversity along with an inadequate immune response is thought to play a causative role in the development CDI\[12-14\]. Antibiotic exposure, leading to alterations in the gut microbiota, has been identified as a traditional risk factor for CDI. IBD also predisposes to CDI and accounts for considerable excess morbidity and mortality along with increased systemic costs in IBD patients. Reductions in gut microbial diversity as well as an increase in pro-inflammatory species have been identified in IBD patients\[15\]. Although a causative role for this dysbiosis in the development of IBD has not been well established, it is plausible that dysbiosis may play a role in increasing CDI risk in IBD patients. Due to an overlap in symptomatology, CDI also gives rise to a series of diagnostic and therapeutic challenges in the IBD population.

This systematic review aims to summarize the management of patients with CDI and concurrent, suspected IBD flares. The epidemiology, risk factors, and methods of diagnosis for CDI in IBD patients are also summarized.

MATERIALS AND METHODS

Data sources and searches

We performed a systematic search of MEDLINE and Ovid EMBASE databases (Figure 1). Eligibility criteria for included studies were decided a priori. Two authors (D’Aoust J and Battat R) independently judged study eligibility. “Clostridium difficile”, “pseudomembranous colitis”, “inflammatory bowel disease”, “Crohn’s disease”, and “ulcerative colitis” were used as search terms. MESH subheadings were combined using the Boolean operators “AND” and “OR” for full articles published in the English language between 1946 and the third week of January 2017. Additional publications
were retrieved from included studies and relevant review articles. Publications identified as duplicates were excluded. Cases of disagreement were resolved by discussion and joint analysis of articles by two reviewers (D'Aoust J and Battat R).

Study selection

Study titles and abstracts obtained from database searches were reviewed to identify those addressing CDI in IBD. Studies analyzing adult and pediatric patients were included. Case reports and case series were included if the management of IBD and CDI was discussed, due to limited data on this topic. Articles not pertaining to this topic in the title or abstract were excluded. Letters, editorials, and review articles were excluded. Data referring to the incidence, risk factors, diagnosis, management, and outcomes of *C. difficile* infection in patients with IBD were extracted from the articles. Data extraction was performed and agreed on by two authors (D'Aoust J and Battat R).

RESULTS

The search strategy, summarized in Figure 1, revealed 396 full-texts, English-language articles. Sixty-five articles were retained from the database search after applying the exclusion criteria. Two additional articles were retrieved from references. Two case reports discussing the management of CDI with corticosteroids were included. One additional case series on this topic was retrieved from relevant references for inclusion. Articles retained included a total of 932141 IBD patients or IBD-related hospitalizations (526765 UC; 312240 CD; 161 IC; 92 975 not-reported).

DISCUSSION

Epidemiology of CDI in IBD

Both an increasing burden of disease, as well as preponderance for community-acquired infection is reflected in the IBD population. Several studies have documented the changes in CDI epidemiology over time in IBD patients (Table 1). In adult inpatients with IBD, CDI incidence increased two to threefold in the early 2000s and more so in pediatric populations, with the largest rise in incidence among UC patients [16-19]. Several studies demonstrate a disproportionate rise in CDI in the IBD population as compared to the general population [16,17], while others do not [20].

The epidemiological studies of CDI in IBD are heterogeneous with regards to patient population, disease activity, sampling time frame, and diagnostic assay sensitivity. Reported incidences of CDI in pediatric and adult populations reflect this heterogeneity (Table 1). In mixed inpatient and outpatient adult IBD populations, the incidence of CDI ranges between 5.1%-16.7%[21-25].

Studies report the incidence of CDI in CD adult inpatients between 1.0 and 7.7%[26-30]. In adult UC inpatients, the incidence of CDI ranges from 2.8%
Table 1 Epidemiology of Clostridium difficile infection in inflammatory bowel disease

Ref.	Patient population	Sampling time frame	Diagnosis method	Disease activity	Conclusions
Keighley et al. (1983)	IBD adult inpatients	1978-1980	Stool culture on selective medium + cytotoxicity assay	Active	CDI incidence (%) IBD: 5.7; UC: 4.7; CD: 6.3
Guri et al. (1983)	IBD adult inpatients and outpatients	1980-1981	Stool culture on selective medium + cytotoxicity assay	Active	CDI incidence (%) IBD: 0
Rolny et al. (1983)	IBD adult inpatients	1980-1981	Stool culture on selective medium + cytotoxicity assay	Active	CDI incidence (%) UC: 5; CD: 7.7
Greenfield et al. (1983)	IBD adult inpatients and outpatients	1980-1981	Stool culture on selective medium + cytotoxicity assay	Mixed	CDI incidence (%) UC: 13.7; CD: 13.2
Burke et al. (1987)	IBD adult outpatients	1984-1986	Stool culture on selective medium + cytotoxicity assay	Active	CDI incidence (%) IBD: 3.2
Gryboski et al. (1991)	IBD pediatric inpatients and outpatients	1986-1990	Stool culture on selective medium + cytotoxicity assay	Active	CDI incidence (%) IBD: 16; UC: 18; CD: 14
Meyer et al. (2004)	IBD adult inpatients and outpatients	2000-2001	Immunoassay for Toxin A until 2001 then ELISA for Toxin A/B	Active	CDI incidence (%) IBD: 16.7; UC: 12.5; CD: 23.8; IC: 11.1
Mylonaki et al. (2004)	IBD adult inpatients and outpatients	1997-2001	ELISA for Toxins A/B	Active	CDI incidence (%) IBD: 5.5; CD: 13.2
Issa et al. (2007)	IBD adult inpatients and outpatients	2005	ELISA for Toxins A/B	Active	CDI incidence (%) UC: 6.1; CD: 4.1
Rodemann et al. (2007)	IBD pediatric and adult inpatients (United States)	1998-2004	Cell cytotoxic culture	Active	CDI incidence (%) UC: 3.9; CD: 1.6
Shen et al. (2008)	UC adult outpatients with IPAA	2005-2006	ELISA for Toxin A/B	Mixed	CDI incidence (%) UC: 18.3
Bossuyt et al. (2009)	IBD and non-IBD CDI adult inpatients	2000-2008	ELISA for Toxin A until 2005, then ELISA for Toxin A/B	Active	All patients: 3.75-fold increase in CDI between 2000-2003 and 2004-2008
Balamurugan et al. (2008)	UC adult outpatients	2004-2005	PCR for C. difficile Toxin A/B ELISA	Mixed	CDI incidence (%) UC: 92
Ananthakrishnan et al. (2008)	IBD and non-IBD CDI adult inpatients	1998-2004	N/R	N/R	CDI incidence increase: UC: 24 to 39/1000 discharge; CD: 8 to 12/1000 discharges
Nguyen et al. (2008)	IBD and non-IBD adult inpatients	1998-2004	N/R	N/R	CDI incidence increase: UC: 26.6 to 51.2/1000 discharges
Pancarella et al. (2009)	IBD pediatric inpatients	2005-2007	Enzyme immunoassay for toxins A/B	Mixed	CDI incidence (%) UC: 21.3; CD: 35
Ricciardi et al. (2009)	IBD adult inpatients	1993-2003	ELISA for Toxin A/B or PCR	Active	CDI incidence (%) UC: 2.8; CD: 1.0
Wultafska et al. (2010)	IBD pediatric outpatients	2005-2007	ELISA for Toxins A/B or PCR	Mixed	CDI incidence (%) IBD: 60; UC: 61; CD: 59
Ananthakrishnan et al. (2011)	IBD adult inpatients	1998, 2004, 2007	ELISA for Toxin A	Active	CDI incidence (%) UC: 36.6; CD: 11.1
Kaneko et al. (2011)	UC pediatric and adult inpatients and outpatients	2006-2009	ELISA for Toxin A	Active	CDI incidence (%) UC outpatient: 41.7
Mezoff et al. (2011)	IBD pediatric patients	2007-2009	ELISA for Toxins A and B	Mixed	CDI incidence (%) UC: 5.8; CD: 7.8
Ott et al. (2011)	IBD adult inpatients	2001-2008	ELISA for Toxins A/B or characteristic histology	Active	CDI incidence (%) IBD: 4.0; CD: 13.2; UC: 4.7
Banaszkiewicz et al. (2012)	IBD pediatric inpatients	2007-2010	ELISA for Toxins A and B	Mixed	CDI incidence (%) IBD: 47
Antonelli et al. (2012)	IBD adult inpatients	2007-2010	N/R	N/R	CDI incidence (%) IBD: 47
Murphy et al. (2012)	UC adult inpatients	2002-2008	PCR for Toxin B +/ ELISA for Toxin A/B	Active	CDI incidence (%) UC: 11.1; CD: 1.7
Lamoué-Smith et al. (2013)	IBD pediatric inpatients and outpatients (United States)	2006-2012	PCR for Toxin B +/- ELISA for Toxin A/B	Mixed	CDI incidence (%) UC: 18.4; CD: 11.6
to 11.1%\cite{26-32}. In adult outpatients with ileal-anal pouch anastomosis (IPAA) for IBD, incidence of CDI is 10.7%-18.3\%\cite{33,34}. The incidence of CDI in IBD among pediatric patients is 7.8%-69\%, similarly with a higher incidence among patients with UC as opposed to CD\cite{35-40}.

Risk factors for CDI in IBD

In patients with CDI and IBD, risk factors are categorized into environmental and host risk factors, including those specific to IBD. Several studies have demonstrated that IBD itself is an independent risk factor for CDI in both adult and pediatric populations\cite{16,35,41}.

In the general population, many host and environmental risk factors have been identified. These include antibiotic exposure, specifically broad-spectrum antibiotics, as well as recent hospitalization, immunosuppression, increased age, and comorbidities\cite{42}.

In IBD populations, risk factors for CDI appear to be partly distinct (Table 2). Evidence is contradictory regarding antibiotic use as a risk factor for CDI in IBD patients. Three retrospective studies identified recent antibiotic use as a risk factor for CDI and recurrent CDI in both CD and UC\cite{21,43,44}.

Study	Population	Time Period	Method	Active vs. N/R
Maslee et al\cite{37,38} (2013)	IBD adult outpatients	2009-2010	PCR for *C. difficile* and Toxin A/B	Active
Mir et al\cite{39,40} (2013)	IBD pediatric patients	2010-2012	EIA or PCR for Toxin A/B	N/R
Pant et al\cite{41,42} (2013)	IBD pediatric inpatients	2000, 2003, 2006, 2009	N/R	N/R
Li et al\cite{43} (2013)	IBD adult outpatients with IPAA	2010-2011	PCR for Toxin B gene	Active
Martinelli et al\cite{44,45} (2014)	IBD pediatric inpatients and outpatients	2010-2011	EIA for Toxin A/B	Mixed
Regnault et al\cite{46} (2014)	IBD adult inpatients	2008-2010	Stool culture on selective medium + cytotoxicity assay +/- toxigenic culture	Active
Negron et al\cite{47} (2014)	UC adult inpatients	2000-2009	EIA for Toxin A/B	N/R
Hourigan et al\cite{48} (2014)	IBD and non-IBD pediatric and adult inpatients	1993-2012	N/R	N/R
Krishnarao et al\cite{49} (2015)	IBD adult inpatients and outpatients	2008-2011	EIA and PCR	Mixed
Sandberg et al\cite{50} (2015)	IBD pediatric inpatients	1997-2011	N/R	N/R
Simian et al\cite{51} (2016)	IBD adult and pediatric inpatients and outpatients	2014-2015	PCR	N/R
Roy et al\cite{52} (2016)	CD adult outpatients on chronic antibiotic therapy \(> 6\) mo.	1992-2015	N/R	N/R

IBD: Inflammatory bowel disease; UC: Ulcerative colitis; CD: Crohn’s Disease; IC: Indeterminate colitis; IBDU: Inflammatory bowel disease unclassified; IPAA: Ileal anal-pouch anastomosis; EIA: Enzyme immunoassay; ELISA: Enzyme linked immunosorbent assay; PCR: Polymerase chain reaction; N/R: Not reported.
Table 2 Risk factors for Clostridium difficile infection in inflammatory bowel disease

Ref.	Sampling time frame	Setting	Diagnosis method	Identified risk factors	HOST	ENVIRONMENT
Razik et al[23] (2016)	2010-2013	Inpatient	PCR	Non-ileal CD		Hospitalisation for CDI;
				recent antibiotic use; biologic therapy; 5-ASA; Steroids		
McCurdy et al[24] (2016)	2005-2011	Inpatient and	PCR	Post-surgery mechanical intestinal complications; low		Steroids
		outpatient		serum immunoglobulin level		N/A
Seril et al[25] (2014)	2010-2013	Inpatient and	PCR for Toxin B	None identified		
		outpatient				
Regnault et al[26] (2014)	2008-2010	Inpatient	Stool culture on selective medium + cytotoxicity assay	None identified		NSAIDs
			+/− toxigenic culture			
Connelly et al[27] (2014)	N/R	N/R	PCR for Toxin A gene	IL-4 gene associated SNP		
Ananthakrishnan et al[28]	1998-2010	Inpatient	N/R	Low vitamin D concentration		Not studied
			ELISA for Toxin A/B	Female sex; pancolitis; IBD-related SNPs		
Ananthakrishnan et al[28]	1998-2010	Inpatient	ELISA for Toxin A/B	None identified		
Monaghan et al[29] (2013)	2009-2012	N/R	Toxigenic culture	Impaired ability to generate: toxin-specific antibody,		
				memory B-cell responses		
Li et al[30] (2013)	2010-2011	Outpatient	PCR for Toxin B	None identified		Recent hospitalization
Masceee et al[23] (2013)	2009-2010	Outpatient	PCR for C. difficile and Toxins A/B	None identified		
Kaneko et al[31] (2011)	2006-2009	Inpatient	ELISA for Toxin A	None identified		
Kariv et al[32] (2011)	2000-2006	Inpatient and	EIA for Toxin A/B	Recent surgery		Recent antibiotic use;
		outpatient				recent hospitalization
Ricciardi et al[33] (2009)	1993-2003	Inpatient	N/R	Colonic involvement		
Schneeweiss et al[33] (2009)	2001-2006	Inpatient and	ELISA for Toxin A/B	Not studied		Corticosteroid initiation
		outpatient				
Nguyen et al[34] (2008)	1998-2004	Inpatient	N/R	Colonic involvement Comorbidity		
Issa et al[35] (2007)	2005	Inpatient	ELISA for Toxin A/B	Colonic involvement		Maintenance immunomodulator
						use
Rodemann et al[36] (2007)	1998-2004	Inpatient	Cell cytotoxic culture	Age		
			2002 onwards C. difficile Toxin A/B immunoassay	Comorbidity		
Mylonaki et al[37] (2004)	1997-2001	Inpatient	ELISA for Toxin A/B	None identified		Recent antibiotic use

CDI: Clostridium difficile infection; rCDI: Recurrent Clostridium difficile infection; IBD: Inflammatory bowel disease; UC: Ulcerative colitis; CD: Crohn’s Disease; IPAA: Ileal anal-pouch anastomosis; CMV: Cytomegalovirus; CF: Cystic fibrosis; EIA: Enzyme immunoassay; ELISA: Enzyme linked immunosorbent assay; NSAID: Non-steroidal anti-inflammatories; PCR: Polymerase chain reaction; N/R: Not reported.

(OR = 2.56, 95%CI: 1.28-5.12, P = 0.008)\(^{(24)}\). In the general population, corticosteroid use increases the risk of CDI\(^{(48)}\). However, when analyzing CDI risk in IBD patients using corticosteroids, studies were observational and did not control for underlying disease activity. A large retrospective cohort study of 10662 IBD inpatients noted a greater than three times increased risk of CDI within 90 d of corticosteroid initiation (RR = 3.4; 95%CI: 1.9-6.1) but no increased risk with preceding biologic therapy. This risk remained constant after 90 d of corticosteroid therapy and was not dose-dependent\(^{(49)}\). Risk factors for recurrent CDI (rCDI), in addition to recent antibiotic use, included preceding steroid and biologic therapy. However, when further stratified, rCDI was associated with infliximab use but not adalimumab or immunomodulator therapy\(^{(44)}\).

Although there appears to be more community-acquired CDI in the IBD population compared to the general population, recent hospitalization has also been identified as a risk factor for CDI and rCDI\(^{(43,44)}\). Patients who have undergone colectomy are still at risk of CDI. Ten point seven percent of symptomatic IBD patients with ileal anal-pouch anastomosis (IPAA) were found to be positive for C. difficile toxin in a prospective cohort of 196 patients\(^{(34)}\). A retrospective observational study of 284 UC patients who underwent IPAA found that 64 patients developed pouchitis. Three of the four patients in this cohort with antibiotic-refractory pouchitis were discovered to have CDI that responded to oral vancomycin\(^{(50)}\).

Genetic and immunologic risk factors have been identified in IBD patients for the development of CDI\(^{(51)}\). In a retrospective cohort study of 172 IBD patients, an interleukin-4-associated single nucleotide polymorphism (rs2243250) is associated with CDI.
in IBD[52]. Monaghan et al[53] studied the humoral response to \textit{C. difficile} toxins A and B in patients with IBD, cystic fibrosis, and healthy controls, finding that an impaired ability to sustain or generate strong toxin-specific antibody and B-cell responses could play a role in CDI development in IBD patients. Furthermore, low serum immunoglobulins were reported as a risk factor for CDI in IBD patients with IPAA[34]. A retrospective case control study of 306 IBD inpatients and out-patients, found that those with CMV infection were at higher risk of being co-infected with \textit{C. difficile}[54]. As in the general population, patient comorbidities increase the risk of CDI in the IBD population[16,17,55]. While adult IBD patients affected by CDI are younger than those in the general population, increasing age has also been reported as a risk factor for CDI[16]

IBD disease activity is difficult to differentiate from CDI. Therefore, it is not clear that disease activity is an independent risk factor for the development of CDI. Disease location may affect patient risk. CDI is more often identified in those with UC and CD patients with colonic involvement[16,24]. In a retrospective nested case-control analysis of a national hospital discharge database, the prevalence of CDI among IBD patients with only small bowel disease was significantly lower than UC patients or CD patients with ileocolonic disease and only slightly higher than non-IBD patients[17,57]. Extent of disease in UC patients may be a risk factor for CDI. A prospective cohort study of 319 UC patients found pancolitis to be a risk factor for CDI (OR = 2.52, 95\%CI: 1.03-6.17)[56]

\textbf{Impact of CDI in IBD}

CDI negatively impacts short and long-term IBD-related outcomes, including rates of colectomy, escalation in IBD therapy, and mortality. It also results in longer hospitalizations, increased readmission rates, and increased in-hospital expenditures (Table 3).

Increased mortality among IBD patients with CDI has been reported in numerous adult inpatient studies compared to non-IBD patients with CDI[17] and IBD patients without CDI[31,55,57,58]. Furthermore, it appears that this excess mortality is not limited to the index hospitalization. A retrospective cohort study of 2016 adult UC inpatients described increased mortality among patients with CDI compared to those without CDI in the five years post-discharge (HR = 2.41, 95\%CI: 1.37-4.22)[31]

Colectomy rates have been reported to be higher in IBD patients with CDI. A retrospective case control study of 99 adult UC inpatients reported CDI at index admission significantly predicted colectomy within one year[59]. Higher rates of colectomy among IBD patients with CDI have been similarly reported in other large adult inpatient studies compared to non-IBD patients with CDI (6.4\% vs 0.3\%)[58] and IBD patients without CDI (OR = 1.87-10.0)[32,57,59,60] during index admission and up to one year following the initial episode.

IPAA failure also is associated with a history of CDI. A retrospective chart-review study of 417 IBD patients undergoing IPAA found that a history of CDI prior to colectomy in IBD patients was independently associated with IPAA failure (HR = 3.02, 95\%CI: 1.23-7.44)[61]

While CDI alone is associated with significant morbidity and mortality, it is thought that CDI may actually lead to a flare in IBD activity resulting in further morbidity. This is supported by a retrospective cohort study of 146 adult UC inpatients and outpatients reporting increased escalation in therapy among patients with CDI in the year after index admission compared to the year prior[60]. A retrospective nested case control study of 238 pediatric IBD inpatients with and without CDI similarly demonstrated significant escalation in therapy among those with CDI as compared to those without after the infection[62]

\textbf{Diagnosis of CDI in IBD}

The overlap in symptomatology between CDI and isolated IBD flare complicates the diagnosis of CDI in IBD patients. CDI and acute inflammatory colitis are clinically indistinguishable. Therefore, a diagnosis relies primarily on laboratory findings, and to a lesser degree endoscopic or histologic findings.

It is recommended to test all patients with acute flares presenting with diarrhea for CDI[63]. Despite its impact on outcome and management, many patients with newly diagnosed IBD or flaring IBD are not tested for CDI. A retrospective cohort study of adult IBD inpatients report that \textit{C. difficile} testing within 48 h for patients hospitalized for an IBD flare was only performed on 59\% of 813 consecutive hospitalizations.

A diagnosis of UC or CD with colonic involvement was noted to be independent predictors of CDI testing[30]. In a retrospective cohort study of pediatric patients with newly diagnosed IBD, only 42\% of 290 cases had testing for \textit{C. difficile} around the time of diagnosis[39]

Compared to previously discussed diagnostic methods, pseudomembranes on colonoscopy are specific but not sensitive to diagnose CDI in IBD patients. In a multi-center retrospective study of 93 IBD patients hospitalized with CDI who underwent colonoscopy, only 13\% were noted to have pseudomembranes. The presence of pseudomembranes was not found to significantly impact clinical outcomes[64]. A retrospective case-control study of CDI in IBD and non-IBD patients found that none of the IBD-CDI patients had pseudomembranes on endoscopy compared to nearly half of the non-IBD-CDI group[26]. A retrospective study of 37 flaring UC patients assessed histological changes on colonic biopsies with or without CDI. They reported that although those with CDI had significantly more microscopic pseudomembranes than the controls without CDI, less than half of the specimens of CDI patients had this finding[65]

Testing via PCR should only be performed on
Table 3: Outcomes of inflammatory bowel disease patients with *Clostridium difficile* infection

Ref.	Patient population	Sampling time frame	Study design	n	Outcomes
Razik et al[44](2016)	Adult CDI IBD + CDI	2010-2013	Retrospective, single-center, cohort study	503	Incidence of rCDI IBD > non-IBD [2.04/100 person-months (95%CI: 1.55-2.64) vs 1.25 episodes per 100 person-months (95%CI: 1.05-1.48)]
Skowron et al[61](2016)	Adult IBD + IPAA Inpatient (United States)	2000-2010	Retrospective, observational, single-center cohort study	417	CDAI post reconstruction pouch failure (HR = 3.02 95%CI: 1.23-7.44)
McCurdy et al[54](2016)	Adult IBD IBD + CMV	2005-2011	Retrospective, case-control, single-center, study	248	Colectomy-free survival at 1 yr IBD + CDI > IBD + CMV + CDI (71.5% vs 30%)
Negrón et al[32](2014)	Adult UC Inpatient (United States)	2000-2009	Retrospective, case-control, multi-center, database study	481	Emergent surgery CDI + UC > UC alone [OR = 3.39 (95%CI: 1.02-11.23)] Development of new infectious postoperative complication
Horton et al[70](2014)	Adult IBD Inpatient (United States)	2006-2010	Retrospective, observational, single-center study	114	Readmission: UC + CDI > CD + CDI (24% vs 10%, P = 0.04) Colectomy: UC + CDI > CD + CDI, index admission (27.4% vs 0%, P < 0.01)
Pant et al[98](2013)	Pediatric IBD Inpatient (United States)	2000, 2003, 2006, 2009	Retrospective, nested case-control, nationwide database study	12610	LOS: CDI + IBD > IBD (8.0 vs 6.0, aRC = 2.1 d, 95%CI: 1.4-2.8) Hospitalization cost: CDI + IBD > IBD alone ($45126 vs $34703, aRC = $4122, 95%CI: 6192-6829) Parenteral nutrition: CDI + IBD > IBD alone (15.9% vs 12.1%, aOR = 1.5, 95%CI: 1.1-2.0) Blood transfusions: CDI + IBD > IBD alone (17.7% vs 9.8%, aOR = 1.8, 95%CI: 1.4-2.4).
unformed stools to limit false positives. Asymptomatic carriers of toxigenic *C. difficile* exist in both IBD patients and the general population. Asymptomatic carriage rates vary significantly with the patient population under study\(^66\). A rate of 8.2% has been reported in an adult outpatient IBD population with stable disease compared to 1.0% in healthy controls, with higher rates in UC patients compared to those with CD\(^67\). A prospective case-control study of 163 pediatric outpatients reports a significantly higher carriage rate in those with IBD than in healthy controls (17% vs 3%), which was not associated with recent hospitalization\(^68\). There are no studies evaluating treatment of the asymptomatic carriage of *C. difficile*. Evidence is lacking to suggest that treating asymptomatic *C. difficile* carriers has any future

Authors	Population	Years	Study Design	No.	UC-related ER visits:
Navaneethan et al\(^60\) (2012)	Adult UC	2002-2007	Retrospective, single-center, cohort study	146	CDI + UC vs UC alone, 1 yr post index infection (57.8% vs 4%, \(P < 0.001\)) Colectomy: CDI + UC vs UC alone, 1 yr post index infection (35.6% vs 9.9%, \(P < 0.001\)) CDI associated with colectomy within 1 yr (OR = 10, 95%CI: 2.7-36.3) Escalation in therapy: CDI + UC year after CDI admission vs year prior (55.8% vs 12.9%, \(P < 0.001\))
Jen et al\(^65\) (2011)	Adult IBD	2002-2008	Retrospective, nested case-control, nationwide database study	241478	IBD + CDI (defined as hospital-acquired > IBD alone (aOR = 6.32, 95%CI: 5.67-7.04) LOS: IBD + CDI > IBD alone (27.9 d longer) GI surgery: IBD + CDI > IBD alone (aOR = 1.87, 95%CI: 0.60-5.85)
Kariv et al\(^65\) (2011)	Adult UC	2000-2006	Single-center	78	No UC or CDI associated mortality identified
Ananthakrishnan et al\(^66\) (2011)	Adult IBD	1998, 2004, 2007	Retrospective, nested case-control, nationwide database study	-	IBD + CDI > IBD alone, from 1998 to 2007 (OR = 2.38, 95%CI: 1.52-3.72 to OR = 3.38, 95%CI: 2.66-4.29).
Kelsen et al\(^62\) (2011)	Pediatric IBD	1997-2007	Retrospective, nested case-control, single-center study	315	CDI + IBD > CDI-alone (34% vs 7.5%, \(P < 0.001\)) Escalation in therapy: IBD + CDI > CDI alone (67% vs 30%, \(P < 0.001\))
Jodorkoisky et al\(^60\) (2010)	Adult UC	2004-2005	Retrospective, single-center, case-control study	99	UC-related hospitalizations: CDI + IBD > IBD alone, over 1 yr Colectomy: CDI at index admission predictor for colectomy within 1 yr (OR = 2.38, 95%CI: 1.01-5.6) CDI status not a significant predictor for requirement for emergent colectomy at index admission LOS: CDI + IBD > IBD alone
Ben-Horin et al\(^60\) (2010)	Adult IBD + CDI	2000-2008	Retrospective, multi-center, cohort study	93	Morbidity and mortality: IBD + CDI patients + pseudomembranes on endoscopy = IBD + CDI without pseudomembranes
Nguyen et al\(^63\) (2008)	IBD and non-IBD controls	1998-2004	Retrospective, nested case-control, nationwide database study	116842	Morbidity: UC + CDI > CDI alone (OR = 3.79, 95%CI: 2.84-5.06) LOS: CD + CDI > CDI alone Hospitalization cost: UC + CDI > CDI alone

CDI: Clostridium difficile infection; rCDI: Recurrent clostridium difficile infection; IBD: Inflammatory bowel disease; UC: Ulcerative colitis; CD: Crohn’s disease; IPAA: Ileal anal-pouch anastomosis; CMV: Cytomegalovirus; OR: Odds ratio; aOR Adjusted odds ratio; aRC: Adjusted regression coefficient; LOS: Length of stay.
impact on IBD disease activity or the development of symptomatic CDI. However, in the general population, carriage of _C. difficile_ in the absence of symptoms carries a protective effect against future symptomatic CDI[7]. This protective effect has not been studied in the IBD population.

It has been demonstrated that the asymptomatic shedding of _C. difficile_ spores can continue for weeks following the resolution of symptoms[60]. Therefore, test of cure is not recommended. However, in patients with IBD and CDI where symptom overlap creates both diagnostic and therapeutic challenges, repeat testing in patients with ongoing diarrhea may guide management, despite the risk of false-positive results.

Treatment of CDI in IBD patients

In patients with confirmed CDI, distinguishing between symptoms resulting from infection, as opposed to a flare of underlying IBD, creates a management dilemma. There are no randomized controlled trials (RCT) of therapy in IBD patients with CDI to help guide practice. Guidelines outlining the approach to eradication of _C. difficile via_ antibiotic therapy or fecal microbiota transplant (FMT) in the setting of recurrent CDI also include recommendations for the IBD population[3]. IBD outpatients with non-severe CDI can be initially treated with metronidazole, however IBD inpatients regardless of disease severity should receive a vancomycin-containing regimen as first-line therapy (Table 4)[70]. In addition to medical therapy, specific infection control measures should also be put in place, including hand-washing to minimize fecal-oral transmission of _C. difficile_ spores, as well as isolation of patients with CDI under contact-precautions.

Management of IBD flares in patients with CDI

While the treatment of isolated CDI is well studied, the initiation, maintenance or escalation of corticosteroid, immunomodulator or biologic therapy in IBD patient with CDI is not delineated and relies heavily on expert opinion.

Corticosteroids

In the setting of suspected IBD flare in a patient with known CDI, concurrent corticosteroid therapy is reasonable and supported by expert opinion[3,71]. Nevertheless, significant uncertainty exists among practitioners with regards to the initiation of corticosteroid therapy and its safety in the context of an ongoing CDI-mediated colitis. A survey of 169 North American gastroenterologists demonstrated divergence among clinicians with regards to initiating therapy in hospitalized UC patients with CDI; 54% opted for antibiotic monotherapy compared to 46% opting for a combination of antibiotics with either azathioprine or corticosteroids[71]. This concern originates from findings of several observational studies, detailed above, demonstrating increased risk of CDI, rCDI, and worse outcomes among IBD patients receiving corticosteroids[44,49,70]. However, these patients were receiving corticosteroids prior to CDI, and no analysis has been performed for initiation of corticosteroids in IBD patients with CDI on appropriate antimicrobial therapy.

Literature on initiating corticosteroids for IBD flares in patients with concomitant CDI is limited to case reports yielding promising results with patients experiencing remission of symptoms after starting corticosteroid therapy when appropriate antibiotics had failed to do so (Table 5). Similarly, data regarding the initiation of corticosteroids in patients with CDI in the general population is scarce. Corticosteroids have been successfully used as adjunctive therapy to antibiotics in infectious processes such as meningitis, pneumonia, and sepsis[72-74]. While the benefit of corticosteroids seen in these infections may not predict an effect in CDI, it does confer biologic plausibility.

Conversely, a European retrospective, non-randomized, multi-center study of 155 IBD patients hospitalized with CDI evaluated the effects of antibiotics and immunomodulators compared to antibiotics alone. Immunomodulators were defined as any of the following: corticosteroids at a dose equal to or above 20 mg of prednisone daily, thiopurines at any dose, methotrexate, cyclosporine, tacrolimus, or biologics of any kind. Furthermore, there was no indication of whether therapy was for induction or maintenance of IBD. Conclusions are thus limited by the heterogeneity in the definition of immunomodulator use and antibiotic regimens. Nonetheless, combination of antibiotic and immunomodulator therapy was associated with higher morbidity and mortality compared to antibiotic monotherapy[75]. Most recent AGA practice guidelines suggest postponing escalation of steroids in the setting of acute CDI until 72 to 96 h after the initiation of appropriate antibiotic therapy. However, they refrain from providing further guidance on when to withhold, continue, or escalate corticosteroid therapy given the current absence of prospective data[76].

Immunomodulators and biologic therapy

Recent CDI guidelines suggest, in IBD patients with CDI, maintaining, but not escalating, existing immunosuppressive therapy, including immunomodulators such as azathioprine and methotrexate, as well as biologic agents[31]. Guidelines for the management of opportunistic infections in IBD make no explicit recommendations regarding these therapies in this setting, citing the lack of data available[77]. As described above, conflicting evidence exists regarding immunomodulator and biologic therapies as risk factors for the development of CDI or rCDI. No published data exists regarding when initiation of immunomodulating therapy or biologic therapy is
safe in patients with both IBD and CDI. In a study of 14 pediatric patients with predominantly CD being treated with methotrexate and anti-TNF therapy, four patients developed CDI. They were treated with antibiotics with successful clearance of *C. difficile* but ultimately failed combination therapy. It is difficult to draw conclusions regarding the safety of biologic and immunomodulator therapy from this due to the sample size. Figure 2 summarizes our approach to the patient with IBD who presents with an acute flare in symptoms for which a *C. difficile* assay is sent, based on existing literature.

Fecal microbiota transplant and recurrent CDI
Existing therapeutic options for rCDI in the general population include vancomycin pulsed and tapered regimens, fidaxomicin, as well as fecal microbiota transplant (FMT). FMT is appealing given the potential to treat both CDI and IBD simultaneously. The risk of rCDI increases with each episode and is higher in IBD patients, as demonstrated in a large retrospective cohort study (32% vs 24%, *P* < 0.01). FMT has been demonstrated to be a safe and effective therapy for rCDI in the general population on the basis of several large RCTs. Several studies have analyzed treatment of rCDI in IBD patients. A retrospective study of immunosuppressed patients with CDI undergoing FMT included 36 IBD patients, of which 86% were cured of CDI after one transplant and 14% worsened in disease activity. Another retrospective multicenter study of 67 IBD patients (35 CD; 31 UC; 1 IBDU), of which 64% were receiving immunosuppressive therapy at the time of FMT, found that 79% had either resolution of their diarrhea and/or negative CDI testing at week 12 and 46% had improved disease activity at 3 mo. Disease activity at 3 mo remained the same or worsened in 36%, and 18% of patients, respectively. Adverse events occurred in 12% of patients at 3 mo. One patient received a colectomy and two had IBD related hospitalizations. In

Table 4: Treatment of Clostridium difficile infection in inflammatory bowel disease

Severity	Criteria	Treatment
First episode	Stop all non-CDI related antibiotic therapy if possible	In hospitalized patients with UC and nonsevere CDI, treatment with a vancomycin-containing regimen is recommended.
Mild to moderate disease	Diarrhea and symptoms not meeting criteria for severe disease	Metronidazole 500 mg by mouth 3 times per day for 10 to 14 d or Vancomycin 125 mg by mouth 4 times per day for 10 to 14 d
Severe disease	Serum albumin < 3 g/dL AND one of the following:	Vancomycin 125 mg by mouth 4 times per day for 10 to 14 d
	WBC ≥ 15000 cells/mm³	
	Abdominal tenderness	
	Creatinine ≥ 133 μmol/L	
Severe, complicated disease	Admission to intensive care unit	Vancomycin 500 mg by mouth or nasogastric tube 4 times per day and Metronidazole 500 mg IV every 8 h and, if ileus, Vancomycin 500 mg in 500 mL saline as enema 4 times per day Consider early surgical consultation
	Hypotension ± vasopressor requirement	
	Fever ≥ 38.5 °C	
	Ileus	
	Mental status changes	
	WBC ≥ 35000 cells/mm³ or ≤ 2000 cells/mm³	
	Serum lactate ≥ 2.2 mmol/L	
Recurrent CDI	First recurrence	Metronidazole 500 mg by mouth 3 times per day for 10 to 14 d or Vancomycin 125 mg by mouth 4 times per day for 10 to 14 d or Fidaxomicin 200 mg by mouth 2 times per day for 10 d
	Second recurrence	-Tapered and pulsed vancomycin or Fidaxomicin 200 mg by mouth 2 times per day for 10 d -Fecal microbiota transplant
	Subsequent recurrence	

LOS: Length of stay; CDI: Clostridium difficile infection; UC: Ulcerative colitis.
A prospective study of 35 IBD patients (13 CD; 22 UC) undergoing FMT for rCDI, 54% of patients required escalation of IBD therapy, despite disappearance of *C. difficile* toxin from the stool\(^{(8)}\). Another retrospective study of 272 IBD and non-IBD patients undergoing one FMT for rCDI demonstrated IBD patients had lower CDI clearance rates than non-IBD patients (74% vs 92% \(P = 0.0018\), independent of immunosuppressive therapy.

Table 5 Case reports of corticosteroid initiation in *Clostridium difficile* infection

Reference (year of publication)	Patient data	Treatment regimen	Outcome
Cavagnaro \ et al\,(2003)	5M Bloody diarrhea (> 10 loose stools/d), tenesmus, abdominal tenderness, fever	Oral vancomycin (40 mg/kg per day divided in 6-hourly doses) and IV metronidazole (20 mg/kg per day divided in 8-hourly doses) \(\times 14\) d	Resolution of diarrhea within 24 h of steroid initiation
	WBC 19000 cells/mm\(^3\); albumin 21 g/L; Positive *C. difficile* toxin	IV methylprednisolone (2 mg/kg per day in two divided doses) \(\times 14\) d	Resolution of endoscopic changes at 6 wk
	Pseudomembranous colitis on flexible sigmoidoscopy on day 14	Prednisone 2 mg/kg per day tapered over one month	
Sykes \ et al\,(2012)	54F Moderate CDI that resolved with 10-d course antibiotics	Oral metronidazole \(\times 10\) d with resolution of symptoms (doses not specified)	Decreased stool frequency, normalization of vital signs, reduction in CRP to 132 within 48 h of steroid initiation
	Recurrent diarrhea and abdominal pain 10 d after completion of antibiotics with left colonic thickening on CT and positive *C. difficile* toxin	Oral vancomycin and metronidazole upon admission (doses not specified) \(\times 4\) d	Resolution of diarrhea, further reduction in CRP to 15 after 9 d of steroid therapy
	Fever, tachycardia on day 4 with pseudomembranous colitis on flexible sigmoidoscopy CRP increased from 149 on admission to 236 on day 4	Oral vancomycin 125 mg every 6 h \(\times 9\) d IV hydrocortisone 100 mg every 6 h \(\times 9\) d Prednisolone 30 mg daily with tapering regimen	Resolution of endoscopic changes at 1 mo
	73F Moderate-severe CDI that resolved with 10-d course antibiotics	Metronidazole 400 mg every 8 h \(\times 10\) d with resolution of symptoms	Sustained clinical response at 5 mo
	Recurrent moderate CDI 1 wk after completion of antibiotics that resolved with another 10-d course of antibiotics	Oral vancomycin 125 mg every 6 h \(\times 10\) d with resolution of symptoms	
	Recurrent CDI 10 d after completion of antibiotics with fever, tachycardia, increased CRP 87	Slow response to antibiotics with flexible sigmoidoscopy on day 8 with pseudomembranous colitis	
	CRP 11	Oral vancomycin 125 mg every 6 h \(\times 8\) d with tapering regimen over 14 d Prednisolone 30 mg daily \(\times 7\) d followed by tapering regimen	Resolution of diarrhea, normalization of vital signs, reduction in CRP to 7 within 48 h of steroid initiation Complete clinical response at 14 d with no further relapses
	91F Moderate CDI with persistent diarrhea despite courses of metronidazole and vancomycin CRP 11	Oral metronidazole 400 mg every 8 h \(\times 10\) d without resolution of symptoms	Resolution of diarrhea and normalization of CRP within 72 h of steroid initiation No further relapses
	Flexible sigmoidoscopy with pseudomembranous colitis	Oral vancomycin 125 mg every 6 h for prolonged course without resolution of symptoms Prednisolone 30 mg daily \(\times 14\) d with continued vancomycin tapering regimen over 4 wk	

CDI: Clostridium difficile infection; CRP: C-reactive protein.
therapy\(^8\). In follow-up, despite \textit{C. difficile} toxin clearance, 50% of UC patients worsened in disease activity requiring escalation of therapy\(^8\).

FMT appears to effectively treat rCDI in IBD patients, albeit less-so than in the general population. However, subsequent worsening of disease activity is consistent throughout the literature. Furthermore, the effects of FMT on IBD activity are unclear. Outcomes are heterogeneous regarding FMT as treatment for IBD alone\(^8\). Although several meta-analysis exists\(^8\), only 2 RCTs with conflicting results regarding UC patients are included. While one RCT of 70 patients showed FMT induced clinical remission compared to placebo\(^8\), the other did not achieve a stringent composite primary end point of clinical remission and a > 1 point decrease in the endoscopic mayo score in 37 UC patients\(^8\). More recently, an RCT of intensive multidonor FMT (colonoscopic infusion followed by 5 enemas weekly for 8 wk) in 85 UC patients achieved a primary endpoint of steroid free clinical remission with endoscopic remission or response at week 8\(^8\). These results, combined with the efficacy of FMT in the treatment of rCDI in IBD patients, necessitates future RCTs analyzing intensive multidonor FMT for rCDI in IBD patients.

In conclusion, CDI commonly complicates the course of IBD but the lack of data precludes formal strong recommendations on the management of IBD in patients with CDI. Initiation of corticosteroids in IBD flares in the context of acute CDI is understudied but seems to be safe. Initiation or resumption of immunosuppressive therapy within 48 to 72 h of targeted antibiotic therapy may be appropriate. To better understand the treatment of IBD flares in the context of acute CDI, further studies are needed to determine the optimal timing and dosing of IBD-specific therapies.

COMMENTS

Background

\textit{Clostridium difficile} (\textit{C. difficile}) has been identified as an important nosocomial infection whose traditional risk factors include recent antibiotic use and exposure to a health care institution. Inflammatory bowel disease (IBD) is another important risk factor for \textit{Clostridium difficile} infection (CDI), likely related to the decreased intestinal microbial diversity and disordered immune response seen in this population. Many observational studies have explored the epidemiology, risk factors, and outcomes of CDI in those with IBD and have reported its negative impact. CDI in IBD patients has been linked to excess morbidty, including longer hospitalization, higher risk of colectomy, and escalation in IBD therapy, as well increased mortality. IBD and CDI-related symptoms are often difficult to distinguish and beyond \textit{C. difficile} eradication,
the appropriate IBD therapy is unclear. This review explored the existing evidence regarding the management of IBD in patients with CDI.

Research frontiers
Prospective studies evaluating the initiation and maintenance of IBD therapeutics in patients with CDI are lacking and are needed to help guide practice.

Innovations and breakthroughs
While the negative impact of developing CDI in those with IBD has been well established, the appropriate management of CDI in the IBD population is less well-defined. Risk factors for the development of CDI in IBD patients identified in this review include recent antibiotic exposure, hospitalization, and colonic involvement. Contradictory evidence exists as to whether maintenance immunosuppressive therapy is a risk factor for the development of CDI. On the basis of data presented in this study, vancomycin should be used as a first-line regimen for CDI. Case reports suggest that corticosteroid initiation, after appropriate antibiotic coverage, may be safe in those with CDI and IBD flare.

Applications
The symptoms of an IBD flare and CDI are often indistinguishable. As such, stool testing for C. difficile should be sent in every flaring IBD patient. Once CDI is diagnosed, a vancomycin-containing antibiotic regimen should be initiated. In the setting of ongoing symptoms, not warranting surgical intervention, it remains unclear when IBD-specific therapy can be initiated. However, case reports and expert opinion may allow for corticosteroid initiation after 3 d of appropriate CDI therapy.

Peer-review
It’s a well done and well written review on the epidemiology and therapy of CDI in IBD patients.

REFERENCES

1. Danese S, Fiocchi C. Ulcerative colitis. *N Engl J Med* 2011; 365: 1713-1725 [PMID: 22047562 DOI: 10.1056/NEJMra1102942]
2. Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, Gendre JP. Long-term evolution of disease behavior of Crohn’s disease. *Inflamm Bowel Dis* 2002; 8: 244-250 [PMID: 12131607]
3. Surawicz CM, Brandt LJ, Binson DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. *Am J Gastroenterol* 2013; 108: 478-498; quiz 499 [PMID: 23439232 DOI: 10.1038/ajg.2013.4]
4. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH; Society for Healthcare Epidemiology of America; Infectious Diseases Society of America. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). *Infect Control Hosp Epidemiol* 2010; 31: 431-455 [PMID: 20307191 DOI: 10.1086/651706]
5. Viscidi R, Laughon BE, Yolken R, Bo-Linn P, Moench T, Ryder RW, Bartlett JG. Serum antibody response to toxins A and B of *Clostridium difficile*. *J Infect Dis* 1989; 159: 99-100 [PMID: 16322603 DOI: 10.1093/infdis/159.1.99]
6. Jiang S, Lamont JT. Asymptomatic colonization by *Clostridium difficile* in infants: implications for disease in later life. *J Pediatr Gastroenterol Nutr* 2010; 51: 2-7 [PMID: 20512057 DOI: 10.1097/MPG.0b013e3181d29767]
7. Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. *Lancet* 1998; 351: 633-636 [PMID: 9500319 DOI: 10.1016/S0140-6736(97)60802-8]
8. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, René P, Monczak Y, Dascal A. A predominantly clonal multi-institutional outbreak of *Clostridium difficile*-associated diarrhea with high morbidity and mortality. *N Engl J Med* 2005; 353: 2442-2449 [PMID: 16322602 DOI: 10.1056/NEJMoa051539]
9. McDonald LC, Killigore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN. An epidemic, toxin gene-variant strain of *Clostridium difficile*. *N Engl J Med* 2005; 353: 2433-2441 [PMID: 16322603 DOI: 10.1056/NEJMoa051590]
10. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, Kuiper EJ, Wilcox MH. The changing epidemiology of *Clostridium difficile* infections. *Clin Microbiol Rev* 2010; 23: 529-549 [PMID: 20610822 DOI: 10.1128/CMR.00082-09]
11. Lessa FC, Winston LG, McDonald LC; Emerging Infections Program C. difficile Surveillance Team. Burden of *Clostridium difficile* infection in the United States. *N Engl J Med* 2015; 372: 2369-2370 [PMID: 26061850 DOI: 10.1056/NEJMct1505190]
12. Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of *Clostridium difficile* and serum levels of IgG antibody against toxin A. *N Engl J Med* 2000; 342: 390-397 [PMID: 10666429 DOI: 10.1056/NEJM200002133420606]
13. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent *Clostridium difficile* diarrhea. *Lancet* 2001; 357: 189-193 [PMID: 11213096 DOI: 10.1016/S0140-6736(00)3592-3]
14. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal *Clostridium* in recurrent *Clostridium difficile*-associated diarrhea. *J Infect Dis* 2008; 197: 435-438 [PMID: 18199029 DOI: 10.1086/525047]
15. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. *Gastroenterology* 2014; 146: 1489-1499 [PMID: 24560869 DOI: 10.1053/j.gastro.2014.02.009]
16. Rodemann JF, Dubberke ER, Reske KA, Seo DH, Stone CD. Incidence of *Clostridium difficile* infection in inflammatory bowel disease. *Clin Gastroenterol Hepatol* 2007; 5: 339-344 [PMID: 17368233 DOI: 10.1016/j.cgh.2006.12.027]
17. Nguyen GC, Kaplan GG, Harris ML, Brant SR. A national survey of the prevalence and impact of *Clostridium difficile* infection among hospitalized inflammatory bowel disease patients. *Am J Gastroenterol* 2008; 103: 1443-1450 [PMID: 18513271 DOI: 10.1111/j.1572-0241.2007.0170x.x]
18. Ananthakrishnan AN, McGinley EL, Binson DG. Excess hospitalisation burden associated with *Clostridium difficile* in patients with inflammatory bowel disease. *Gut* 2008; 57: 205-210 [PMID: 17905821]
19. Sandberg KC, Davis MM, Gebreemariam A, Adler J. Disproportionate rise in *Clostridium difficile*-associated hospitalizations among US youth with inflammatory bowel disease, 1997-2011. *J Pediatr Gastroenterol Nutr* 2015; 60: 486-492 [PMID: 25419679 DOI: 10.1097/MPG.0000000000000636]
20. Bossuyt P, Verhaegen J, Van Assche G, Rutgeerts P, Vermeire S. Increasing incidence of *Clostridium difficile*-associated diarrhoea in inflammatory bowel disease. *J Crohns Colitis* 2009; 3: 4-7 [PMID: 21172241 DOI: 10.1016/j.crohns.2008.09.003]
21. Greenfield C, Aguilar Ramirez JR, Pounder RE, Williams T, Danvers M, Marper SR, Noone P. *Clostridium difficile* and inflammatory bowel disease. *Gut* 1983; 24: 713-717 [PMID: 6135648]
22. Meyer AM, Ramzan NN, Loftus EV Jr, Heij RJ, Leighton JA. The diagnostic yield of stool pathogen studies during relapses of inflammatory bowel disease. *J Clin Gastroenterol* 2004; 38: 772-775 [PMID: 15365403 DOI: 10.1097/MCG.0000139057.05297.d6]
23. Mylonakis E, Langmead L, Pantes A, Johnson F, Rampton DS. Enteric infection in relapse of inflammatory bowel disease: importance of microbiological examination of stool. *Eur J Clin Microbiol Infect Dis* 2005; 24: 73-76 [PMID: 15664249 DOI: 10.1007/s10095-004-1494-x]

D’Aoust J et al. Management of IBD in CDI
D’Aoust J et al. Management of IBD in CDI

Gastroenterol Hepatol 2004; 16: 775-778 [PMID: 15256979]

24 Issa M, Vijayapal A, Graham MB, Beaulieu DB, Otterson MF, Lundeen S, Skaros S, Weber LR, Komorowski RA, Knox JF, Emmons J, Bajaj JS, Binion DG. Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 2007; 5: 345-351 [PMID: 17368234 DOI: 10.1016/j.cgh.2006.12.028]

25 Krishnarao A, de Leon L, Bright R, Moniz H, Law M, Leleiko N, Sands BE, Merrick M, Shapiro J, Wallenstein S, Giacalone J, Shah SA. Testing for Clostridium difficile in patients newly diagnosed with inflammatory bowel disease in a community setting. Inflamm Bowel Dis 2015; 21: 564-569 [PMID: 25581825 DOI: 10.1097/ MIB.0000000000000309]

26 Rolyn P, Jämerot G, Möllby R. Occurrence of Clostridium difficile toxinn in inflammatory bowel disease. Scand J Gastroenterol 1983; 18: 61-64 [PMID: 6144171]

27 Ricciardi R, Ogilvie JW Jr, Roberts PL, Marcello PW, Concannon TW, Baxter NN. Epidemiology of Clostridium difficile colitis in hospitalized patients with inflammatory bowel diseases. Dis Colon Rectum 2009; 52: 40-45 [PMID: 19273954 DOI: 10.1007/ DCR.0b013e318197336d]

28 Ott C, Girlich C, Klebl F, Plentz A, Iesalnieks I, Schölmerich J, Obermeier F. Low risk of Clostridium difficile infections in hospitalized patients with inflammatory bowel disease in a German tertiary referral center. Digestion 2011; 84: 187-192 [PMID: 21646782 DOI: 10.1159/000324617]

29 Antonelli E, Baldoni M, Giovenali P, Villanacci V, Essatari M, Bassotti G. Intestinal superinfections in patients with inflammatory bowel diseases. J Crohns Colitis 2012; 6: 154-159 [PMID: 22325169 DOI: 10.1016/j.crohns.2011.07.012]

30 Regnaut H, Bourrier A, Lalande V, Nion-Larmurier I, Sokol H, Seksi P, Barbut F, Cosnes J, Beaugerie L. Prevalence and risk factors of Clostridium difficile infection in patients hospitalized for flare of inflammatory bowel disease: a retrospective assessment. Dig Liver Dis 2014; 46: 1086-1092 [PMID: 25294795]

31 Murthy SK, Steinhardt AH, Timmough J, Austin PC, Dananer M, Nguyen GC. Impact of Clostridium difficile colitis on 5-year health outcomes in patients with ulcerative colitis. Aliment Pharmacol Ther 2012; 36: 1032-1039 [PMID: 23061526 DOI: 10.1111/ apt.12073]

32 Negrón ME, Barkema HW, Rioux K, De Buck J, Checkley S, Proulx MC, Frolikis A, Beck PL, Dieleman LA, Panaccone R, Ghosh S, Kaplan GG. Clostridium difficile infection worsens the progression of ulcerative colitis. Can J Gastroenterol 2014; 28: 373-380 [PMID: 25157528]

33 Shen BO, Jiang ZD, Fazio VW, Remzi FH, Rodriguez L, Bennett AE, Lopez R, Queener E, Dupont HL. Clostridium difficile infection in patients with ileal pouch-anal anastomosis. Clin Gastroenterol Hepatol 2008; 6: 782-788 [PMID: 18467184 DOI: 10.1016/j.cgd.2008.02.021]

34 Li Y, Qian J, Queener E, Shen B. Risk factors and outcome of PCR-detected Clostridium difficile infection in ileal pouch patients. Inflamm Bowel Dis 2013; 19: 397-403 [PMID: 23328770 DOI: 10.1097/IBD.0b013e3182e552b0]

35 Pascarella F, Martinelli M, Miele E, Del Pezzo M, Roscetto E, Staiano A. Impact of Clostridium difficile infection on pediatric inflammatory bowel disease. J Pediatr 2009; 154: 854-858 [PMID: 19293096 DOI: 10.1016/j.peds.2008.12.039]

36 Wultanska D, Banaszewicz A, Radzikowski A, Obuch-Woszczyńska P, Mynarczyk G, Brazier JS, Pütch H, van Belkum AM, Aloi M, Martin-de-Carp J, Levine A, Turner D, Del Pezzo M, Stianno A, Miele E; Porto IBD Working Group of European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Clostridium difficile and pediatric inflammatory bowel disease: a prospective, comparative, multicenter, ESPGHAN study. Inflamm Bowel Dis 2014; 20: 2219-2225 [PMID: 25268634 DOI: 10.1097/MIB.0000000000000219]

37 Kunz JL, Chrischilles EA, Pendergrass JF, Herwaldt LA, Polgreen PM. Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study. BMC Infect Dis 2011; 11: 194 [PMID: 21762504 DOI: 10.1186/1471-2415-11-34-11-194]

38 Leffler DA. Lamine CT. Clostridium difficile infection. N Engl J Med 2015; 372: 1539-1548 [PMID: 25875259 DOI: 10.1056/ NEJMra1403772]

39 Kariv R, Navaneethan U, Venkatesh PG, Lopez R, Shen B. Impact of Clostridium difficile infection in patients with ulcerative colitis. J Crohns Colitis 2011; 5: 34-40 [PMID: 21272802 DOI: 10.1016/j.crohns.2010.09.007]

40 Razik R, Rumman A, Bahreini Z, McGeer A, Nguyen GC. Recurrence of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease: The RECIDIVISM Study. Am J Gastroenterol 2016; 111: 1141-1146 [PMID: 27215924 DOI: 10.1038/ajg.2016.187]

41 Seril DN, Ashburn JR, Lian L, Shen B. Risk factors and management of refractory or recurrent clostridium difficile infection in ileal pouch patients. Inflamm Bowel Dis 2014; 20: 2226-2233 [PMID: 25222656 DOI: 10.1097/MIB.0000000000000205]

42 Kaneko T, Matsuda R, Taguri M, Inamori M, Ogura A, Miyajima E, Tanaka K, Maeda S, Kimura H, Kunisaki R. Clostridium difficile infection in patients with ulcerative colitis: investigations of risk factors and efficacy of antibiotics for steroid refractory patients. Clin Res Hepatol Gastroenterol 2011; 35: 315-320 [PMID: 21435967 DOI: 10.1016/j.clinre.2011.02.004]

43 Maslee GM, Penders J, Jonkers DA, Wolfs PF, Pierik MJ. Is clostridium difficile associated with relapse of inflammatory bowel disease? results from a retrospective and prospective cohort study in the Netherlands. Inflamm Bowel Dis 2013; 19: 2125-2131 [PMID: 23867869]

44 Furuya-Kanamori L, Stone JC, Clark J, McKenzie SJ, Yakob L, Paterson DL, Riley TV, Doi SA, Clements AC. Comorbidities, Exposure to Medications, and the Risk of Community-Acquired Clostridium difficile Infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2015; 36: 132-141 [PMID: 25632995 DOI: 10.1017/ice.2014.39]

45 Schneeveis S, Korzenik J, Solomon DH, Canning C, Lee J, Bressler B. Infliximab and other immunomodulating drugs in patients with inflammatory bowel disease and the risk of serious bacterial infections. Aliment Pharmacol Ther 2009; 30: 253-264 [PMID: 19438424 DOI: 10.1111/j.1365-2036.2009.04037.x]

46 Suzuki H, Ogawa H, Shibata C, Hanae S, Watanabe K, Takahashi K, Furumaya Y, Sasaki I. The long-term clinical course of pouchitis after total proctocolectomy and IPAA for ulcerative colitis. Dis Colon Rectum 2012; 55: 330-336 [PMID: 22469801 DOI: 10.1097/DCR.0b013e3182173585]

47 Hughes M, Qazi T, Berg A, Weinberg J, Chen X, Kelly CP, Farraye FA. Host Immune Response to Clostridium difficile
Infection in Inflammatory Bowel Disease Patients. *Inflamm Bowel Dis* 2016; 22: 853-861 [PMID: 26954708 DOI: 10.1097/MIB.0000000000000969]

Connolly TM, Kolun WA, Sangster W, Berg AS, Hegarty JP, Harris L 3rd, Deiling S, Stewart DB. An interleukin-4 polymorphism is associated with susceptibility to Clostridium difficile infection in patients with inflammatory bowel disease: results of a retrospective cohort study. *Surgery* 2014; 156: 769-774 [PMID: 25239315 DOI: 10.1016/j.surg.2014.06.067]

Monaghan TM, Robins A, Knox A, Sewell HF, Mahida YR. Circulating antibody and memory B-Cell responses to C. difficile toxins A and B in patients with C. difficile-associated diarrhoea, inflammatory bowel disease and cystic fibrosis. *PLoS One* 2013; 8: e74452 [PMID: 24058568 DOI: 10.1371/journal.pone.0074452]

McCurdy JD, Enders FT, Khanna S, Bruining DH, Jones A, Killian JM, Tariq R, Smyrk TC, Loftus EV Jr. Increased Rates of Clostridium difficile Infection and Poor Outcomes in Patients with IBD with Cytomegalovirus. *Inflamm Bowel Dis* 2016; 22: 2688-2693 [PMID: 27755270 DOI: 10.1097/MIB.0000000000000939]

Ananthakrishnan AN, McGinley EL. Infection-related hospitalizations are associated with increased mortality in patients with inflammatory bowel diseases. *J Crohns Colitis* 2013; 7: 107-112 [PMID: 22408911 DOI: 10.1097/MCC.0b013e31826d70e1]

Ananthakrishnan AN, Oxford EC, Nguyen DD, Sauk J, Vajkic V, Xavier RJ. Genetic risk factors for Clostridium difficile infection in ulcerative colitis. *Aliment Pharmacol Ther* 2013; 38: 522-530 [PMID: 23848254 DOI: 10.1111/app.12425]

Jen MH, Saxena S, Bottle A, Aylin P, Pollok RC. Increased health burden associated with Clostridium difficile diarrhoea in patients with inflammatory bowel disease. *Aliment Pharmacol Ther* 2011; 33: 1322-1331 [PMID: 2151920]

Ananthakrishnan AN, McGinley EL, Saekin K, Binion DG. Temporal trends in disease outcomes related to Clostridium difficile infection in patients with inflammatory bowel disease. *Inflamm Bowel Dis* 2011; 17: 976-983 [PMID: 20824818 DOI: 10.1002/ibd.21457]

Jodorovsky D, Young Y, Abreu MT. Clinical outcomes of patients with ulcerative colitis and co-existing Clostridium difficile infection. *Dig Dis Sci* 2010; 55: 415-420 [PMID: 19255850 DOI: 10.1007/s10620-009-0749-9]

Navaneethan U, Mukwah S, Venkatesh PG, Lopez R, Shen B. Clostridium difficile infection is associated with worse long term outcome in patients with ulcerative colitis. *J Crohns Colitis* 2012; 6: 330-336 [PMID: 22405170 DOI: 10.1097/MCC.0b013e31822f1957]

Skowron KB, Lapin B, Rubin M, Hurst RD, Rubin DT, Hyman NH, Umnanskiy K. Clostridium difficile Infection in Ulcerative Colitis: Can Alteration of the Gut-associated Microbiome Contribute to Pouch Failure? *Inflamm Bowel Dis* 2016; 22: 902-911 [PMID: 26981259 DOI: 10.1097/MIB.0000000000000701]

Kelsen JR, Kim J, Latta D, Smathers S, McGowan KL, Zanotis T, Mamula P, Baldassano RN. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. *Infect Control Hosp Epidemiol* 2010; 31: 21-27 [PMID: 19929371 DOI: 10.1086/649016]

Horton HA, Dezfoll S, Berel D, Hirsch J, Ippoliti A, McGovern D, Kaur M, Shih D, Dubinsky M, Targan SR, Fleshner P, Vasiliaskas EA, Grein J, Murthy R, Melmed Y. Antibiotics for Treatment of Clostridium difficile Infection in Inhospitalized Patients with Inflammatory Bowel Disease. *Antimicrob Agents Chemother* 2014; 58: 5054-5059 [PMID: 24913174 DOI: 10.1128/AAC.02606-13]

Yannai H, Nguyen GC, Yun L, Lebwohl O, Navaneethan U, Stone CD, Ghazi L, Moayyedi P, Brooks J, Bernstein CN, Ben-Horin S. Practice of gastroenterologists in treating flaring inflammatory bowel disease patients with clostridium difficile: antibiotics alone or combined antibiotics/immunomodulators? *Inflamm Bowel Dis* 2011; 17: 1540-1546 [PMID: 21674710 DOI: 10.1002/ibd.21514]

Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. *Cochrane Database Syst Rev* 2015; (9): CD004405 [PMID: 26362566 DOI: 10.1002/14651858.CD004405.pub5].

Siemieniuk RA, Meade MO, Alonso-Coello P, Briel M, Evaniew N, Prasad M, Alexander PE, Fei V, Vandik PO, Loeb M, Guyatt GH. Corticosteroid Therapy for Patients Hospitalized With Community-Acquired Pneumonia: A Systematic Review and Meta-analysis. *Ann Intern Med* 2015; 163: 519-528 [PMID: 26258555 DOI: 10.7326/M15-0715]

Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. *Ann Intensive Care* 2011; 1: 7 [PMID: 21906332 DOI: 10.1186/2110-5820-1-7]

Ben-Horin S, Margalit M, Bossuyt P, Mauj J, Shapira Y, Bojic D, Cheresh L, Al-Rifai A, Schoepfer A, Bosani M, Allez M, Lakatos PL, Bossa F, Eser A, Stefanelli T, Carbonell F, Katsanos K, Checchin D, de Miera IS, Reinisch W, Chowers Y, Moran GW; European Crohn’s and Colitis Organization (ECCO). Efficacy and clinical impact of endoscopic pseudomembranes in patients with inflammatory bowel disease and Clostridium difficile infection. *J Crohns Colitis* 2010; 4: 194-198 [PMID: 21122505 DOI: 10.1016/j.crohns.2009.11.001]

Wang T, Matukas L, Streukler JJ. Histologic findings and clinical characteristics in acute and chronic ulcerative colitis patients with superimposed Clostridium difficile infection. *Am J Clin Pathol* 2013; 140: 831-837 [PMID: 24225751 DOI: 10.1309/AJCP2LBRTTJBF3KD]

Viscidi R, Willey S, Bartlett JG. Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. *Gastroenterology* 1981; 81: 5-9 [PMID: 7239125]

Clayton EM, Rea MC, Shanahan F, Quigley EM, Kiely B, Hill C, Ross RP. The vexeled relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. *Am J Gastroenterol* 2009; 104: 1162-1169 [PMID: 19319128 DOI: 10.1088/ajg.2009.4.4]

Hourigan SK, Chirumamilla SR, Ross T, Golub JE, Rabizadeh S, Sadeed SA, Elson CO, Kelly CP, Carroll KC, Oliva-Hemker M, Sears C. Clostridium difficile carriage and serum antitoxin responses in children with inflammatory bowel disease. *Inflamm Bowel Dis* 2013; 19: 2744-2752 [PMID: 24149527 DOI: 10.1097/MIB.0b013e31826d70e1]

Sethi AK, Al-Nassit WN, Nanezic MM, Bobulsky GS, Donseky CJ. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. *Infect Control Hosp Epidemiol* 2012; 33: 853-861 [PMID: 22688-2693 DOI: 10.1097/MIB.0b013e31826d70e1]

D'Aoust J et al. Management of IBD in CDI
Giliad M, Kaser A, Léman M, Morelts T, Moschen A, Pollok R, Reinsch W, Schunter M, Stange EF, Tilg H, Van Asche G, Vignet N, Vucelic B, Walsh A, Weiss G, Yazdanpanah Y, Zabana Y, Travis SP, Colonbel JF, European Crohn’s and Colitis Organisation (ECCO). European evidence-based Consensus on the prevention, diagnosis, and management of opportunistic infections in inflammatory bowel disease. *J Crohns Colitis* 2009; 3: 47-91 [PMID: 21172250 DOI: 10.1016/j.crohns.2009.02.010]

87 Absh M, Faubion WA Jr. Concomitant therapy with metronidazole and anti-TNF-α in pediatric patients with refractory crohn’s colitis: a case series. *Inflamm Bowel Dis* 2012; 18: 1488-1492 [PMID: 21882301 DOI: 10.1002/ibd.21885]

89 Cammarota G, Masucci L, Janiero G, Bibbò S, Dinoi G, Costamagna G, Sanguineti M, Gasbarrini A. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. *Aliment Pharmacol Ther* 2015; 41: 835-843 [PMID: 25728808 DOI: 10.1111/apt.13144]

88 Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nemattallah A, Weese JS, Collins S, Moayyedi P, Crowther M, Ropeleski MJ, Phelps E, Sipe B, Xu H, Allegretti JR. Fecal Microbiota Transplantation is Safe and Efficacious for Recurrent or Refractory *Clostridium difficile* Infection in Patients with Inflammatory Bowel Disease: A Single-Center Experience. *Clin Gastroenterol Hepatol* 2016; 14: 1433-1438 [PMID: 26905904 DOI: 10.1016/j.cgh.2016.02.018]

89 Newman KM, Rank KM, Vaquote BP, Khoruts A. Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. *Gut Microbes* 2017; 8: 303-309 [PMID: 28102756 DOI: 10.1080/19490976.2017.1279377]

90 Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou AL, Linsen M, van den Brok GR, Mathes-Vliegen EM, de Vos WM, Zoetendal EG, D’Haens GR, Ponsioen CY. Findings of a Randomized Controlled Trial of Fecal Transplantation for Patients with Ulcerative Colitis. *Gastroenterology* 2015; 149: 110-118.e4 [PMID: 25836986 DOI: 10.1053/j.gastro.2015.03.045]

91 Moayedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onishi C, Armstrong D, Marshall J, Kassam Z, Reinsch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. *Gastroenterology* 2015; 149: 102-109.e6 [PMID: 25857665 DOI: 10.1053/j.gastro.2015.04.001]

92 Wu D, Li W, Li S, Cen Y, Xu Q, Li Y, Sun Y, Qi Y, Lin Y, Yang T, Xu P, Lu Q. Fecal Microbiota Transplantation as a Novel Therapy for Ulcerative Colitis: A Systematic Review and Meta-Analysis. *Medicine* (Baltimore) 2016; 95: e3765 [PMID: 27281075 DOI: 10.1097/MD.0000000000003765]

93 Shi Y, Dong Y, Huang W, Zhu D, Mao H, Su P. Fecal Microbiota Transplantation for Ulcerative Colitis: A Systematic Review and Meta-Analysis. *PLoS One* 2016; 11: e0157259 [PMID: 27295210 DOI: 10.1371/journal.pone.0157259]

94 Paramsothy S, Kamrn MA, Kaukkoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Paramsothy R, Xuan W, Lin E, Mitchell HM, Borody TJ. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. *Lancet* 2017; 389: 1218-1228 [PMID: 28214091 DOI: 10.1016/S0140-6736(17)30182-4]

95 Keighley MR. Clostridium difficile and inflammatory bowel disease. *J Antimicrob Chemother* 1983; 11: 493-494 [PMID: 6885673]

96 Gurian L, Klein K, Ward TT. Role of Clostridium difficile and Campylobacter jejuni in relapses of inflammatory bowel disease. *World J Med 2013; 138: 359-360 [PMID: 26858121]

97 Burke DA, Axon AT. Clostridium difficile, sulphasalazine, and ulcerative colitis. *Postgrad Med J 1987; 63: 955-957 [PMID: 2897683]

98 Grybowski JD. Clostridium difficile in inflammatory bowel disease relapse. *J Pediatr Gastroenterol Nutr 1991; 13: 39-41 [PMID: 1919950]

99 Balamurugan R, Balaji V, Ramakrishna BS. Estimation of faecal carriage of Clostridium difficile in patients with ulcerative colitis using real time polymerase chain reaction. *Indian J Med Res 2008; 127: 472-477 [PMID: 18653911]

100 Lamonst-Smith ES, Weber S, Rossi RF, Neinstedt LJ, Mosammaparast N, Sandora T, McAdam AJ, Bousvaros A. Polymerase chain reaction test for Clostridium difficile toxin B gene reveals similar prevalence rates in children with and without inflammatory bowel disease. *J Pediatr Gastroenterol Nutr 2013; 57: 293-297 [PMID: 23698022 DOI: 10.1097/MPG.0b013e3182999990]

101 Pant C, Anderson MP, Deshpande A, Altaf MA, Granow JE, Areja A, Sferia TT. Health care burden of Clostridium difficile infection in hospitalized children with inflammatory bowel disease. *Inflamm Bowel Dis 2013; 19: 1080-1085 [PMID: 23478808 DOI: 10.1097/MIB.0b013e3182807563]

102 Hourigan SK, Oliva-Hemker M, Hutteness L. The prevalence of Clostridium difficile infection in pediatric and adult patients with inflammatory bowel disease. *Dig Dis Sci 2014; 59: 2222-2227 [PMID: 24788321]

103 Simian D, Fluxá D, Flores L, Labascher J, Ibáñez P, Figueroa C, Kronberg U, Acuña R, Xuan W, Lin E, Allegretti JR. Fecal microbiota transplantation for active ulcerative colitis: a systematic review. *Gastroenterology* 2015; 149: 5267-5275 [PMID: 27298570 DOI: 10.1053/j.gastro.2015.07.004]

104 Roy A, Lichtiger S. Clostridium difficile Infection: A Rarity in Patients Receiving Chronic Antibiotic Treatment for Crohn’s disease. *Indian J Med Res 2015; 142: 105-114 [PMID: 26186390 DOI: 10.1053/j.ijmr.2015.07.004]
management of active ulcerative colitis complicated by Clostridium difficile infection. *J Gastrointest Surg* 2013; 17: 392-396 [PMID: 23135837 DOI: 10.1007/s11605-012-2031-2]

104 Cavagnaro C, Berezin S, Medow MS. Corticosteroid treatment of severe, non-responsive Clostridium difficile induced colitis. *Arch Dis Child* 2003; 88: 342-344 [PMID: 12651766]

105 Sykes E, McDonald P, Flanagan PK. Corticosteroids in the Treatment of Pseudomembranous Colitis: A Report of 3 Cases. *Gastroenterology Res* 2012; 5: 211-214 [PMID: 22785209 DOI: 10.4021/gr469w]

P- Reviewer: Begun J, Matowicka-Karna J, Tambuwala M, Zhulina Y
S- Editor: Qi Y
L- Editor: A
E- Editor: Zhang FF
