Room temperature texturing of austenite/ferrite steel by electropulsing

How to cite:

Rahnama, Alireza and Qin, Rongshan (2017). Room temperature texturing of austenite/ferrite steel by electropulsing. Scientific Reports(7), article no. 42732.

© 2017 The Authors

https://creativecommons.org/licenses/by/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1038/srep42732

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Room temperature texturing of austenite/ferrite steel by electropulsing

Alireza Rahnama1 & Rongshan Qin2

The work reports an experimental observation on crystal rotation in a duplex (austenite + ferrite) steel induced by the electropulsing treatment at ambient temperature, while the temperature rising due to ohmic heating in the treatment was negligible. The results demonstrate that electric current pulses are able to dissolve the initial material’s texture that has been formed in prior thermomechanical processing and to produce an alternative texture. The results were explained in terms of the instability of an interface under perturbation during pulsed electromigration.

Electropulsing treatments, an instantaneous high energy input, has characteristics such as fast heating, electromagnetic force, high speed impact and reduced thermodynamic potentials1–4. In an elegant study, it was shown that current pulses promote structural evolution towards a state with lower electrical resistance5. When electric current pulses are imposed on a material, atoms can be rearranged to a structure with minimum electrical resistance6–8. The application of electropulsing has been extensively studied in recent years. These studies showed that the electropulsing treatment can have a marvellous application in the field of metallurgy and material science.6–8

The present work reports the crystal rotation in a duplex (austenite (FCC) + ferrite (BCC)) steel. The treatment was performed at room temperature, and it was discovered that the initial texture due to the prior thermomechanical processing was wiped away and a new texture was formed by application of electric current pulses to the material. The temperature rising due to Ohmic heating was negligible (< 5 °C). This research indicates a potential to use electropulse as an add-on process to texturize the materials. The results are explained in terms of the instability of the interface as a result of electric current flow.

Experiment Materials and electropulsing. The material was prepared via the conventional ingot-making metallurgical routine and the chemical compositions in weight percentage were confirmed to be 0.15 C, 1.6 Si, 2 Mn, 3 Al, 0.1 Cr. The ingot was rolled at 800 °C to a sheet with 2.64 mm thickness and then chilled. The sheet was cut into 30 mm × 3.42 mm × 2.64 mm samples and grouped randomly for subsequent electropulsing treatment.

The electropulse was generated by an Avtech AV-108F-B-P pulse generator which converted the direct current into pulses. The direct current power source has an output power of 80 watts and output electric potential of 20 volts. The pulse width, peak current intensity, pulse frequency and pulse trigger mode are programmable. The testing steel sample was connected to two copper electrodes from both ends to form a current circuit. No internal stress might occur if there was a current-induced temperature rising because both sample and electrodes were held freely rather than fixed to certain positions. An oscilloscope was connected to the circuit to monitor the temperature rise.
All the pulses applied in this work were chosen to have 20 μs pulse width and 1.018×10^7 A/m² peak current density. The multiple pulses are applied at a frequency of 1 pulse per second. Throughout the experiments, the temperature of the samples were measured by an attached thermocouple. 50, 100 and 1000 electric pulses were applied to the material.

Microstructural characterisation. The microstructural characterisations were performed by LEO Gemini 1525 high resolution field emission gun scanning electron microscopy (FEG-SEM) and electron backscatter diffraction microscopy (EBSD). The samples for scanning electron microscopy observations were prepared by the conventional method using diamond pastes and etched in 2% nital etching solution. A specific rectangular region in the middle of samples were indented after polishing through a microhardness tester in order to obtain EBSD maps and inverse pole figures (IPF) for both FCC and BCC structure from the exactly same region after each electropulsing treatment. In this way, we were able to study the orientation distribution of the grains in a semi-in-situ way.

Results and Discussion

Figure 1 shows the orientation of the grains relative to the surface normal direction (ND) for the same zone (a) before and (b) after imposing 50 electric current pulses with a frequency of 1 Hz. As can be seen in this figure, the colour codes of a few grains changed (marked by dashed ellipsoid) after the treatment indicating that those grains rotated and obtained new orientations. Figure 2a shows the IPF of the sample before electropulsing. The map shows a specific texture because of prior thermomechanical processes. After applying 100 pulses, the poles in x_0 faded away while a strong pole formed in $\langle 101 \rangle$ direction in y_0 and one in $\langle 111 \rangle$ direction in z_0, as can be seen in Fig. 2b. By applying more electric current pulses (1000 pulses), new poles formed in x_0 along the $\langle 111 \rangle$ direction.
while the pole in y_0 rotated towards $\langle 001 \rangle$ direction compared to that after 100 pulses. The poles in z_0 also disappeared although it still showed some texture close to $\langle 001 \rangle$ direction, as can be seen in Fig. 2c.

Figure 3a shows the IPF for the FCC structure before the electropulsing treatment. Again, it shows a texture because of the prior thermomechanical processing. By applying 100 current pulses, the x_0 poles almost disappeared while a strong pole formed in y_0 along the $\langle 101 \rangle$ direction. z_0 poles also dissolved after imposing 100 pulses, as shown in Fig. 3b. Increasing the number of electric pulses to 1000 (Fig. 3c), a new pole close to $\langle 101 \rangle$ direction formed in x_0, a strong pole was generated in y_0 near $\langle 001 \rangle$ and a pole appeared in z_0 close to $\langle 101 \rangle$ direction in z_0. These observations, both in BCC and FCC structure, confirmed a crystal rotation towards certain directions which are believed to possess lower resistance to electric current flow, for example electrical resistance of $\langle 001 \rangle$ in FCC structure is lower than of $\langle 111 \rangle$ direction.

Here, we employ the electric-current-induced interface instability theory which was developed by Srolovitz et. al.33 to explain our experimental observations. According to the theory, the diffusion flux along the interface is affected by three causes: firstly chemical potentials change due to electric field (ϕ), secondly the associated internal tensile or compressive stresses which are created due to the accumulation or depletion of matter at the interface (σ) and finally the curvature of the interface (k). These three causes can be summarized in the following mathematical formula:

$$J_\nu = -L_\nu (\pm \gamma \nabla_i k + q_v \nabla_i \phi + \nabla_i \sigma)$$

where γ refers to interface tension, L_ν is the mobility and q_v is the volume charge of ν-th component. If the interface is planar ($y = 0$), the migration and thus the rotation of grains is impossible as the flux is perpendicular to the interface. Thus, the interface is stable. But if we assume that there is perturbations at the interface ($y = h(x)$), as
shown in Fig. 4, the flux \(J \) has components along the interface. These components promote the movement of the interface and thus make the crystal rotation possible even at room temperature. This divergence of diffusion flux will lead to the shift of the interface as follows:

\[
\frac{\partial h}{\partial t} = - \frac{\partial}{\partial x} \left(\zeta J_A - (1 - \zeta) J_B \right)
\]

(2)

\(\zeta \) depends on the elastic modulus of the phases. There are two reasons for the instability of the interface during the electropulsing: first the difference in atomic charges of constituent elements and secondly the difference in the mobilities of atoms in difference phase and grains. Because the constituent elements of the current materials have different charges and mobilities in austenite from those in ferrite, the interfaces became unstable during the treatment and made the crystal rotation and the shift of grain boundaries possible at room temperature. This theory, thus, explains the observed phenomenon and shows that crystal rotation is possible at room temperature without any increase in the temperature of the material.

However, there should be a critical electric current density to drive the crystals to start the rotation. The crystal rotation requires overcoming a resistive force. Only when the electric current density is larger than the critical value, the electr pulse is able to overcome the resistive force and to create the instability. This is similar to that of the critical electric current to initiate the electroplasticity.

In summary, we have observed crystal rotation during the electropulsing treatment in a duplex (austenite + ferrite) steel at room temperature. The grains were rotated towards certain directions which are believed to possess lower electrical resistance. The treatment was not accompanied with considerable temperature rise in the material. Numerical calculation shows that the maximum temperature rising due to ohmic heating is 0.217 K/s.

Figure 3. Pole figures of the FCC phase for (a) without electropulsing treatment, (b) after 100 pulses and (c) after 1000 pulses.
This is unlikely to raise samples' temperature due to heat dissipation into the environments. However, it needs to be noted that current density as well as frequency are determining factors that can be the subject of future studies in order to come to a general conclusion regarding the effect of electric current pulses on the texture evolution of materials at ambient temperature with no increase in the temperature of materials or in the operation temperature. The presented study reveals a potential of using electropulsing treatment for the texturizing of materials.

References
1. Qin, R. S., Rahnama, A., Lu, W. J., Zhang, X. F. & Elliott-Bowman, B. Electropulsed steels. Mater. Sci. Tech. 30, 1040–1044 (2014).
2. Rahnama, A. & Qin, R. S. Electropulsed induced microstructural evolution in a ferritic-pearlitic 0.14%C steel. Scr. Mater. 96, 17–20 (2015).
3. Rahnama, A. & Qin, R. S. The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng A 627, 145–152 (2015).
4. Rahnama, A. & Qin, R. S. Effect of electric current pulses on the microstructure and niobium carbide precipitates in a ferritic-pearlitic steel at an elevated temperature. J. Mater. Res. 30, 3049–3055 (2015).
5. Dolinsky, Y. & Elperin, T. Thermodynamics of nucleation in current-carrying conductors. Phys. Rev. B 50, 52–58 (1994).
6. Ziman, J. M. The physics of metals 1. Electrons (Cambridge University Press 1969).
7. Barnak, J. P., Sprecher, A. F. & Conrad, H. Colony (grain) szierduction in eutectic Pb-Sn castings by electropulsing. Scr. Metall. Mater. 32, 879–884 (1995).
8. Takemoto, R. & Mizubayashi, H. Effects of passing electriccurrent on structural relaxation, crystalization and elastic property in amorphous Cu50Ti50. Acta Metall. Mater. 43, 1495–1504 (1995).
9. Zhu, R. F., Liu, J. N., Tang, G. Y., Shi, S. Q., Fu, M. W. & TSE, Zion Tsz Ho. The improved superelasticity of NiTi alloy via electropulsing treatment for minutes. J. Alloys Comp. 584, 225–231 (2014).
10. Wang, H., Chen, L., Liu, D., Song, G. & Tang, G. Study on electropulsing assisted turning process for AISI 304 stainless steel. Mater. Sci. Technol. 31 1564–1571 (2015).
11. Gromov, V. E., Ivanov, Y. F., Stolboushkin, O. A. & Konovalov, S. V. Dislocation substructure evolution on Al creep under the action of the weak electric potential. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 527, 858–861 (2010).
12. Jin, w. et al. Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment. J. Alloys Comp. 615, 849–853 (2014).
13. Jiang, Y., Guan, L. & Tang, G. Recrystallization and texture evolution of cold-rolled AZ31 Mg alloy treated by rapid thermal annealing. J. Alloys Comp. 656, 272–277 (2016).
14. Jiang, Y. B., Tang, G. Y., Shék, C. H., Xie, J. X., Xu, Z. F. & Zhang, Z. H. Mechanism of electropulsing induced recrystallization in a cold-rolled Mg-9Al-1Zn alloy. J. Alloys Comp. 536, 94–105 (2012).
15. Yu, W. P., Qin, R. S. & Wu, K. M. Effect of electropulsing on grain refinement of a medium carbon low alloy steel (eds. Jiao, S., Jiang, Z. Y., Bu, J. L.) 1849–1854 (Stafa-Zurich 2011).
16. Zheng, Y. S., Tang, G. Y., Kuang, J. & Zheng, X. P. Effect of electropulse on solid solution treatment of 6061 aluminum alloy. J. Alloys Comp. 615, 849–853 (2014).
17. Yanbin, J., Lei, G., Guoyi, T. & Zhihao, Z. Improved mechanical properties of Mg-9Al-1Zn alloy by the combination of aging, cold-rolling and electropulsing treatment. J. Alloys Comp. 626, 297–303 (2015).
18. Xu, X., Zhao, Y., Ma, B. & Zhang, M. Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment. J. Alloys Comp. 610, 506–510 (2014).
19. Samuel, E. I., Bhowmik, A. & Qin, R. S. Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel. J. Mater. Res. 25, 1020–1024 (2010).
20. Sosnin, O. V., Gromova, A. V., Suchkova, E. Yu. & Gromov, V. E. The structural-phase state changes under the pulse current influence on the fatigue loaded steel. Int. J. Fatigue 27, 1221–1226 (2005).
21. Zhu, R. F., Tang, G. Y., Shi, S. Q. & Fu, M. W. Microstructure evolution of copper strips with gradient temperature in electropulsing treatment. J. Alloys Comp. 581 160–165 (2013).
22. Rahnama, A. & Qin, R. S. Electropulse-induced microstructural evolution in a 0.14% ferritic-pearlitic steel. Scripta Mater. 96 17–20 (2015).
23. Zhang, X. F., Lu, W. J. & Qin, R. S. Removal of MnS inclusions in molten steel using electropulsing. Scr. Mater. 69, 453–456 (2013).
24. Qin, R. S. & Su, S. X. Thermodynamics of crack healing under electropulsing. J. Mater. Res. 17, 2048–2052 (2002).
25. Li, X., Li, X., Zhu, J., Ye, X. & Tang, G. Microstructure and texture evolution of cold-rolled Mg-3Al-1Zn alloy by electropulse treatment stimulating recrystallization. Scr. Mater. 112, 23–27 (2016).
26. Li, X., Wang, F., Li, X., Tang, G. & Zhu, J. Improvement of formability of Mg-3Al-1Zn alloy strip by electroplastic-differential speed rolling. *Mater. Sci. Eng. A* **618**, 500–504 (2014).
27. Li, X., Tang, G., Kuang, J., Li, X. & Zhu, J. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling. *Mater. Sci. Eng. A* **612**, 406–413 (2014).
28. Liu, J., Liu, W., Tang, G. & Zhu, R. Influence of electropulsing treatment on the recrystallization and texture of Ni9W alloy strip. *J. Mater. Res.* **29**, 596–603 (2014).
29. Dai, W., Wang, X., Zhao, H. & Zhao, X. Effect of Electric Current on Microstructural Evolution in a Cold-Rolled 3% Si Steel. *Mater. Trans.* **53**, 229–233 (2012).
30. Wang, X., Zhao, H., Da, W. & Zhao, X. Effect of Electric Current Direction on Texture Evolution in a Cold Rolled Fe-3%Si Steel under Electric Current Pulses Treatment. *Mater. Sci. Forum* **706–709**, 2366–2371 (2011).
31. Wang, X., Zhao, H., Dai, W. & Zhao, X. Texture and Microstructural Evolution under Electric Current Pulses in a Fe-3%Si Steel. *Advanced Mater. Res.* **197–198**, 1104–1108 (2011).
32. Wang, X., Liu, M., Dai, W., Wu, N. & Zhao, X. Effect of electric current direction on the microstructural evolution and mechanical properties of a cold-rolled CuZn alloy during the phase transformation induced by electric current pulses. *J. Mater. Res.* **30**, 2500–2507 (2015).
33. Klinger, L., Levin, L. & Srolovitz, D. Interface Diffusion under an Electric Field. Interface Evolution. *Mater. Sci. Forum* **207**, 109–112 (1996).

Acknowledgements
The work was financially supported by EPSRC (EP/J011460/2 and EP/L00030X/1) and the Royal Society Newton Advanced Fellowship (NA150320). The authors are grateful to Professor Adrian P. Sutton at Imperial College London for fruitful discussions.

Author Contributions
A. Rahnama and R.S. Qin designed the study; A. Rahnama performed the research; Both authors analysed the data, wrote the paper, discussed the results and commented on the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Rahnama, A. and Qin, R. Room temperature texturing of austenite/ferrite steel by electropulsing. *Sci. Rep.* 7, 42732; doi: 10.1038/srep42732 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017