Rate-dependent Asymmetric Hysteresis Modeling and Robust Adaptive Trajectory Tracking for Piezoelectric Micropositioning Stages

Linlin Nie
Jilin University

Yiling Luo
Jilin University

Wei Gao
Jilin University

Miaolei Zhou (✉️ zml@jlu.edu.cn)
Jilin University https://orcid.org/0000-0003-1664-1024

Research Article

Keywords: Piezoelectric micropositioning stages, Hysteresis modeling, Prandtl-Ishlinskii model, Precision trajectory tracking, Robust adaptive control

Posted Date: September 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-822973/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nonlinear Dynamics on March 5th, 2022. See the published version at https://doi.org/10.1007/s11071-022-07324-7.
Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages

Linlin Nie · Yiling Luo · Wei Gao · Miaolei Zhou ·

Received: date / Accepted: date

Abstract Hysteresis is an inherent characteristic of piezoelectric materials that can be determined by not only the historical input but also the input signal frequency. Hysteresis severely degrades the positioning precision of piezoelectric micropositioning stages. In this study, the hysteresis characteristics and the excitation frequency effects on the hysteresis behaviors of the piezoelectric micropositioning stage are investigated. Accordingly, a rate-dependent asymmetric hysteresis Prandtl-Ishlinskii (RDAPI) model is developed by introducing a dynamic envelope function into the play operators of the Prandtl-Ishlinskii (PI) model. The RDAPI model uses a relatively simple analytical structure with fewer parameters than other modified PI models to characterize the rate-dependent and asymmetric hysteresis behavior in piezoelectric micropositioning stages. Considering practical situations with the uncertainties and external disturbances associated with the piezoelectric micropositioning stages, the system dynamics are described using a second-order differential equation. On this basis, a corresponding adaptive robust control method that does not involve the construction of a complex hysteretic inverse model is developed. The Lyapunov analysis method proves the stability of the entire closed-loop control system. Experiments confirm that the proposed RDAPI model achieves significantly improved accuracy compared with the PI model. Furthermore, compared with the inverse RDAPI model-based feedforward compensation and the inverse RDAPI model-based proportional-integral-derivative control methods, the proposed robust adaptive control strategy exhibits improved tracking performance.

Keywords Piezoelectric micropositioning stages · Hysteresis modeling · Prandtl-Ishlinskii model · Precision trajectory tracking · Robust adaptive control

1 Introduction

Microtechnology and nanotechnology are required in many industries for precision control. The piezoelectric micropositioning stage is one of the most commonly utilized positioning devices and is widely employed in various fields, such as mechanical manufacturing, aerospace technology, and biological engineering [1, 2].

The piezoelectric micropositioning stage primarily comprises three parts: a piezoelectric ceramic actuator (PCA), flexure hinge machinery, and a strain gauge-type sensor [3]. The PCA is the core component of a piezoelectric micropositioning stage and affords micro/nanodisplacement. PCAs have the advantages of a fast response and small volume, and the resolution of a PCA is only restricted by the performance of the controller. When the engineering requires a low frequency and limited motion, PCAs can be reliably controlled using classical control methods. In [4], static linear piezoelectricity dynamics for PCAs were developed. Thus, classical control methods can be applied. However, with increasingly stringent requirements in terms of the driving-frequency and motion ranges in high-precision applications, PCAs exhibit complex nonlinear characteristics, particularly hysteresis, which can no longer be ignored. This strong nonlinearity significantly reduces the positioning accuracy or even re-
Nomenclature

Symbols	Definition
b_s	Damping coefficient
C_A	Sum of the capacitance of the total piezoelectric ceramics
e_1	Tracking error
e_2	Intermediate variable
F	Fitness
F_A	Transduced force from the electrical side
$F_A[u](t)$	Classical PI play operator
$F^R[u](t)$	Proposed RDAPI play operator
H	Hysteresis effect
k_{amp}	Fixed gain of the voltage power amplifier
$k_i, i = 1, 2$	Positive design parameter
k_s	Moving mechanism stiffness
m	Moving mechanism mass
M	Population size
$p_i, i = 1, \ldots, n$	Density parameter
p, q, n	Unknown system parameters
q	Total charge in the PCA
q	Resulting current flowing through the circuit
q_c	Charge stored in the linear capacitance C_A
q_p	Transduced charge from the mechanical side due to the piezoelectric effect
r	Threshold of play operator
R_0	Equivalent internal resistance of driving circuit
T_{em}	Electro-mechanical transducer with transformer ratio
u	Input of the piezoelectric driver
v_A	Transduced voltage
v_h	Generated voltage due to H
w_1 and w_1'	Chromosome
x_1	Output displacement
x_2	Time derivative of x_1
x_d	Reference trajectory

Greek letters	Definition
α, β	RDAPI model parameters
$\lambda, \gamma, and \eta$	Adjusting parameters of adaptive update laws
ρ	Boundary of the disturbance $d(t), d(t) \leq \rho$
ς	Boundary of the nonlinear part $\alpha u^2(t) + \sum_{i=1}^{n} p_i F^h_i [u](t)$
ω	Unknown hysteresis nonlinearity

Abbreviations

Abbreviation	Definition
AME	Absolute mean error
PCA	Piezoelectric ceramic actuator
PI	Prandtl-Ishlinskii model
RDAPI	Rate-dependent asymmetric PI model
RMSE	Root-mean-square error values

Results in system instability [5–7]. The hysteresis of PCAs is caused by the inherent ferroelectric phase-transition characteristics in piezoelectric ceramic materials; because of these characteristics, the output displacement is determined by not only the current input and system states but also the historical input. Additionally, the hysteresis behavior can vary with changes in the input signal frequency [8, 9]. To address this complex hysteresis nonlinearity, it is essential to establish a highly accurate model.

Hysteresis modeling has attracted significant attention, and several modeling approaches have been proposed. These approaches can be divided into two categories: differential-based and operator-based. Differential-based hysteresis models, such as the Bouc-Wen [10–12], Duhem [13, 14], and Dahl models [15], are constructed using differential equations. These models have a straightforward architecture with few parameters. However, the limited number of model parameters reduces the modeling accuracy. Operator-based hysteresis models include the Preisach [16–20], Krasnosel’skii-Pokrovskii [21, 22], and Prandtl-Ishlinskii (PI) models [23–27], which can be regarded as a series cumulation of weighted elemental hysteresis operators. The PI model is the most widely used because of its accurate analytical inverse. However, these models assume that hysteresis behavior is rate-independent. Therefore, efforts have been directed toward the development of a rate-dependent hysteresis model. At
present, the primary method for establishing rate-dependent hysteresis models is to introduce rate-dependent factors into the model [28, 29], e.g., by changing the density weights from static to dynamic [30] and designing rate-dependent operators [31]. These methods usually result in complex mathematical expressions and increase the difficulty of parameter identification. Thus, the rate-dependent hysteresis model requires further investigation.

Another challenge is eliminating the hysteresis nonlinearity of the piezoelectric micropositioning stage to achieve high-precision tracking control is another challenging topic. The feedforward compensation control method based on the hysteresis inverse model is the most widely used approach. In this method, the hysteresis nonlinearity is compensated for by constructing a corresponding inverse hysteresis model of the established hysteresis model [32–35]. In [36], a feedforward compensation controller was designed using the inverse Bouc-Wen model for a piezoelectric micropositioning stage with multiple degrees of freedom. The compensator combines the inverse multiplication structure with the Bouc-Wen model, thereby avoiding additional calculation of parameters. This type of feedforward compensation controller has a simple structure. However, its performance depends entirely on the accuracy of the established inverse model, and it is difficult to obtain a corresponding inverse model for some hysteresis models. Additionally, the controller cannot cope with environmental perturbations (i.e., temperature changes or external disturbances). For inverse model feedback control, the hysteresis nonlinearity is compensated for by the inverse model compensator, and the feedback loop is then used for ensuring the stability of the system in the presence of disturbances [37–40]. In [41], an inverse Preisach model was used as a feedforward compensation controller. Furthermore, a proportional-integral-derivative (PID) feedback controller was designed to improve the control accuracy, and it enabled effective control. Nonetheless, the control precision of the inverse model feedback method relies on the accuracy of the inverse model. The non-inverse model feedback control method directly incorporates the system hysteresis model into the generated control signal. A nonlinear controller is designed to drive the controlled object and adjusts the control parameters online based on the tracking error to improve the control accuracy [42–46]. This method omits the cumbersome inverse-model establishment process; thus, its performance is unaffected by the inverse-model accuracy [47]. Another advantage is that numerous excellent nonlinear control theories can be applied to nonlinear hysteretic system control. In [48], a dynamic backlash-like hysteresis model was defined without the need to construct an inverse hysteresis model to alleviate the influence of the hysteresis. Moreover, a robust adaptive controller that uses the properties of the hysteresis model was proposed, and this controller achieves a high tracking precision. In [49], an inversion-free predictive controller based on a dynamic linearized multilayer feedforward neural network model was proposed, which can obtain an explicit-form control law without an inverse model. However, it is uncertain whether these schemes can handle external disturbances. Moreover, for piezoelectric micropositioning stages, the classical hysteresis model cannot describe the rate-dependent and asymmetric hysteresis characteristics.

Thus, the effects of the excitation frequency on the hysteresis behaviors of the piezoelectric micropositioning stage were investigated in the present study. A novel rate-dependent asymmetric hysteresis Prandtl-Ishlinskii (RDAPI) model is proposed to describe the asymmetric and rate-dependent hysteresis behaviors that the conventional PI model cannot describe. First, a dynamic envelope function is introduced into the play operators, while the density weights remain static. In this manner, the RDAPI model can describe the hysteresis loops that are affected by not only the historical input but also the input voltage frequency. Second, the proportional input function is replaced with a polynomial input function to describe the asymmetry. On this basis, a robust adaptive control method is presented for the piezoelectric micropositioning stages. Unknown parameters and external disturbances are considered in the dynamic nonlinear system. In contrast to the commonly used approach of constructing a complex hysteretic inverse model, the proposed control method directly uses the established RDAPI model to describe the hysteresis behavior, and the adaptive control laws are designed to eliminate hysteresis nonlinearity and uncertainties online. The main contributions of this study are as follows:

- A hysteresis model that can describe rate-dependent and asymmetric hysteresis behaviors is presented for piezoelectric micropositioning stages.
- The proposed RDAPI model has few parameters and a simple analytical structure, which makes parameter identification relatively straightforward.
- The proposed control method directly uses the established RDAPI model to describe the hysteresis behavior without constructing a complex hysteretic inverse model, and the robust adaptive method enhances the control accuracy and robustness.

The remainder of this paper is organized as follows. Section 2 describes an experiment that was performed to evaluate the hysteresis nonlinearity characteristics of the piezoelectric micropositioning stage. Section 3 presents the electromechanical model of the piezoelectric micropositioning stage and the proposed RDAPI hysteresis model. In Section 4, details regarding the robust adaptive controller design process and stability analysis are provided. Experimental studies and comparisons are presented in Section 5. Finally, Section 6 concludes the paper.
2 Characterization of piezoelectric micropositioning stage

2.1 Experimental setup of piezoelectric micropositioning stage

The experimental environment and device structure are shown in Figs. 1 and 2, respectively. The experimental device consists of a piezoelectric micropositioning stage, an integrated positioning controller, a data-acquisition card, and a host computer.

- **MPT-2MRL102A**—the piezoelectric micropositioning stage is produced by Suzhou Boshi Robot Co., Ltd. It is equipped with a strain-gauge displacement sensor to measure the output displacement in real time. It can convert the measured displacement signal (0–60 µm) into an analog voltage signal (0–10 V), with a repeated positioning accuracy of up to 12 nm. The sampling frequency is 0.0001 Hz.
- **PCI-1716** is a peripheral component interconnect (PCI) bus multifunction data-acquisition card produced by Advantech. It is used for digital-to-analog and analog-to-digital conversion.
- An integrated positioning controller, which contains the drive-power module of the piezoelectric micropositioning stage, is used to generate the real-time control signal via the Real-Time Workshop (RTW) in MATLAB/Simulink and output the control signal to the piezoelectric micropositioning stage.
- The host computer displays the input and output signals online.

The entire control process of the piezoelectric micropositioning stage experimental system is as follows. First, the control block is set up in MATLAB/Simulink, and the control signal is generated through the RTW real-time working environment. The control signal is then translated into an analog voltage signal via a data-acquisition card and drives the piezoelectric micropositioning stage such that the stage produces a small displacement. Subsequently, the acquisition card transmits the collected displacement signals back to the host computer to complete the closed loop of the experimental system.

2.2 Characterization of hysteresis nonlinearities

Because of energy dissipation, hysteresis occurs between the input voltage and the output displacement in piezoelectric micropositioning stages. The hysteresis characteristics of the piezoelectric micropositioning stage are characterized by applying different input signals. First, the input voltage signal is selected as a sinusoidal signal. Fig. 3 presents the voltage-to-displacement hysteresis nonlinearity. It can be observed that the hysteresis causes that the same system input \((u_1, u_2)\) to correspond to different system outputs \((y_1, y_2)\) when the system is in an increasing state \(\dot{u}(t) > 0\) or a decreasing state \(\dot{u}(t) < 0\). It is thus characterized as “multi-valued”. Therefore, the system output is related to not only the current system input but also the historical output, that is, the memory properties. Fig. 3 also shows the increasing and decreasing edges of the hysteresis loop are not centrally symmetric. Obviously, the hysteresis nonlinearity has
an asymmetric characteristic. Second, the input voltage signal is selected as a sinusoidal signal with decreasing amplitude. The major hysteresis loops of the piezoelectric micropositioning stage are presented in Fig. 4. When the amplitude of the input voltage changes, the hysteresis loops change accordingly. As the input amplitude increases, the hysteresis loop widens. Additionally, the same input voltage \(u \) corresponds to five output displacements \((y_1, y_2, y_3, y_4, y_5) \).

Finally, a sinusoidal signal with different frequencies is selected as input voltage. As shown in Fig. 5, when the frequency of the input signal increases, the hysteresis loop widens, and the maximum output displacement decreases. Thus, the hysteresis behaviors of the piezoelectric micropositioning stage are also affected by the frequency of the input voltage. A satisfactory hysteresis model must describe all the aforementioned characteristics simultaneously.

3 Description of piezoelectric micropositioning stage

3.1 Model of the piezoelectric micropositioning stage

Fig. 6 shows the general model of the piezoelectric micropositioning stage, which includes (a) the electrical part and (b) the mechanical part [3, 50]. The notation for the piezoelectric micropositioning stage is presented in the Nomenclature section.

According to the aforementioned general model of the piezoelectric micropositioning stage, assuming that \(R_0 = 0 \), the complete electrical model can be expressed as follows:

\[
q(t) - T_{em} x(t) = C_A k_{amp} \left[u(t) - \frac{H(q)}{k_{amp}} \right] \tag{1}
\]

where \(x(t) \) represents the output displacement of the mechanical part, and \(u(t) \) represents the control input of the
piezoelectric driver. According to its physical characteristics, the mechanical dynamics of the piezoelectric micropositioning platform can be represented by a second-order motion model:

$$m\ddot{x}(t) + b_s\dot{x}(t) + \bar{k}_s x(t) = \frac{T_{em}}{C_A} q(t)$$ \hspace{1cm} (2)

where $\bar{k}_s = k_s + \frac{T_{em}^2}{C_A}$. Equations (1) and (2) represent an analytical model of the piezoelectric micropositioning stage. By substituting (1) into (2), the overall model of the piezoelectric micropositioning stage can be obtained:

$$\ddot{x} + a_0 \dot{x} + a_1 x = K \omega(t) + d(t)$$ \hspace{1cm} (3)

where $a_0 = b_s/m$, $a_1 = \bar{k}_s/m - \frac{T_{em}^2}{mC_A}$, $K = \frac{k_{amp}T_{em}}{m}$, and $d(t)$ represents the unknown external disturbances, and $\omega \in R$ represents the unknown hysteresis nonlinearities of the piezoelectric micropositioning stage, which satisfy

$$\omega(t) = H [u] (t)$$ \hspace{1cm} (4)

where u represents the input voltage of the piezoelectric micropositioning stage, and $H [u] (t)$ represents the hysteresis behavior, which is introduced below.

The control objectives are to design a robust adaptive controller for piezoelectric micropositioning stages with uncertain parameters and external disturbances; to eliminate the effects of hysteresis behavior, such that the output displacement $x(t)$ can accurately track the reference displacement signal $x_d(t)$; and to ensure the stability of the closed-loop system. The following assumptions are made.

Assumption 1: The external disturbance $d(t)$ satisfies $|d(t)| \leq \rho$, where ρ is a positive constant that denotes the upper $d(t)$ boundary.

Assumption 2: The uncertainty parameters in (3) satisfy $a_{i\min} \leq a_i \leq a_{i\max}$, $i = 0, 1$ and $K_{\min} \leq K \leq K_{\max}$, where $a_{i\min}, a_{i\max}, K_{\min}$, and K_{\max} are known constants.

Assumption 3: The reference displacement signal x_d is a smooth and bounded function. The first and second derivatives exist and satisfy $\dot{x}_d^2 + \ddot{x}_d^2 + \chi^2 \leq \chi$ for a positive real number χ.

Remark 1: Assumptions 1 and 3 are commonly used in controller design. The range of the system parameters is specified by Assumption 2, which is reasonable according to prior knowledge regarding piezoelectric micropositioning stages. Assumption 2 is often used in nonlinear controller design.

3.2 Hysteresis model for the piezoelectric micropositioning stage

In this study, the PI model was used to describe the hysteresis behavior of the piezoelectric micropositioning stage [21]. The classical PI model is expressed as

$$H [u] (t) = p_0 u(t) + \int_0^R p(r) F_r [u] (t) \, dr$$ \hspace{1cm} (5)

where R represents the upper integration limit, $F_r [u] (t)$ represents the classical play operator, r represents the threshold of play operator, $p(r)$ represents the density function satisfying $p(r) > 0$, and p_0 is a constant determined by the density function $p(r)$. The play operator is a continuous rate-independent hysteresis operator that satisfies

$$\left\{ \begin{array}{ll}
F_r [u] (0) = f_r (u(0), 0) \\
F_r [u] (t) = f_r (u(t), F_r [u] (t))
\end{array} \right.$$ \hspace{1cm} (6)
where \(t_i < t_{i+1} \) (\(0 \leq i \leq N - 1 \)), and \(0 = t_0 < t_1 < ... < t_i < ... < t_N \) is a partition of \([0, t_N]\) (the interval is \(T \)), the input voltage signal \(u \) is a monotonic function on each subinterval \((t_i, t_{i+1})\), and \(f_r : R \to R \) is defined as follows:

\[
f_r(u, \omega) = \max\left(u - r, \min\left(u + r, \omega\right)\right)
\]

(7)

The classical play operator has rate-independent characteristics. Assume that \(\eta(t) \) is a continuous function of \(t \) on \([0, t_N]\); then, \(\eta(t) \) and the play operator have the following relationship:

\[
F_r[u \cdot \eta] = F_r[u] \cdot \eta
\]

(8)

Hence, the classical play operator cannot cope with the rate-dependent hysteresis characteristics of piezoelectric micropositioning stages. In this study, a dynamic envelope function was introduced into the classical play operator to explain the influence of frequency.

The rate-dependent play operator is expressed as

\[
\begin{aligned}
F_r^h[u](0) &= f_r^h(u(0), y(0)) \\
F_r^h[u](t) &= f_r^h(u(t), F_r^h[u](t))
\end{aligned}
\]

(9)

\[
f_r^h(u, \omega) = \max(h_t(u, \dot{u}) - r, \min(h_t(u, \dot{u}), \omega))
\]

(10)

where the dynamic envelope functions \(h_t(u, \dot{u}) \) and \(h_r(u, \dot{u}) \) can be selected as follows:

\[
\begin{aligned}
h_t(u(t), \dot{u}(t)) &= a \dot{u}(t) + bu(t) \\
h_r(u(t), \dot{u}(t)) &= c \dot{u}(t) + du(t)
\end{aligned}
\]

(11)

Here, \(a, b, c, \) and \(d \) are constants to be identified, which satisfy \(a \neq c, b \neq d \).

According to the hysteresis behavior, the hysteresis loop contains two parts: the rising edge and the falling edge. Therefore, two different dynamic input functions, \(h_t(u, \dot{u}) \) and \(h_r(u, \dot{u}) \), are selected to express the rate-dependent play operator. To express the asymmetric hysteresis, a polynomial input function \(a\dot{u}^2(t) + \beta u(t) \) is introduced to replace \(p_0 u(t) \). Therefore, an improved RDAPI model can be obtained:

\[
H[u](t) = a\dot{u}^2(t) + \beta u(t) + \int_0^t p(r) F_r^h[u](r) dr
\]

(12)

where \(\alpha \) and \(\beta \) are constants to be identified, \(u(t) \) represents the system input voltage, \(p(r) \) represents the density function of the rate-dependent PI model, and \(F_r^h[u](t) \) represents the rate-dependent play operator.

The integral form of (12) is not easy to realize in practical applications. Therefore, (12) is transformed into a superposition of the \(n \) play operators. Subsequently, a discrete RDAPI model expression is obtained via the discrete superposition principle:

\[
H[u](t) = a\dot{u}^2(t) + \beta u(t) + \sum_{i=1}^{n} p_i F_r^h[u](t)
\]

(13)

Compared with previously reported models [28–30], the proposed RDAPI model has a simpler analytical format with fewer identification parameters to describe the rate-dependent and asymmetric hysteresis behaviors of piezoelectric micropositioning stages, as explained in Section 2.3. According to the system model of the piezoelectric micropositioning stage (3) and the RDAPI model (13), the dynamic equation can be written as follows:

\[
\ddot{x} + a_0 \dot{x} + a_1 x = K \left(a\dot{u}^2(t) + \beta u(t) + \sum_{i=1}^{n} p_i F_r^h[u](t) \right) + d(t)
\]

(14)

Based on (14), the RDAPI model contains two parts: a linear part \(\beta u(t) \) and a nonlinear part \(a\dot{u}^2(t) + \sum_{i=1}^{n} p_i F_r^h[u](t) \). For the nonlinear part, the input voltage of the piezoelectric micropositioning stage \(u \) is limited, and \(\dot{u} \) exists; therefore, the nonlinear part is bounded. Accordingly, \(\xi > 0 \) exists, and it satisfies

\[
\left| a\dot{u}^2(t) + \sum_{i=1}^{n} p_i F_r^h[u](t) \right| \leq \xi
\]

(15)

Now, let \(x = x_1, \dot{x}_1 = x_2 \); then, (14) can be written as

\[
\begin{aligned}
\dot{x}_1 &= x_2 \\
p\dot{x}_2 &= \beta u(t) + a\dot{u}^2(t) + \sum_{i=1}^{n} p_i F_r^h[u](t)
\end{aligned}
\]

(16)

\[
y = x_1
\]

where \(p = \frac{1}{K}, q = \frac{a_0}{K} \), and \(n = \frac{a_1}{K} \).

3.3 Identification of model parameters

The parameters to be identified in the RDAPI model include \(a, b, c, d, \) and \(\alpha \) in the dynamic input function (11), \(\alpha \) and \(\beta \) in the polynomial input function, and the weight parameters \(p_i (i = 1, 2, ..., n) \) of the play operators. We denote \(Z = \{a, b, c, d, p_1, p_2, p_3, ..., p_n, \alpha, \beta\} \) as the parameter vector to be identified in the RDAPI model.

The RDAPI model threshold is defined as follows:

\[
r_i = \frac{i}{n - 1} \|u(t)\|_{\infty}
\]

(17)

where \(i = 1, 2, ..., n \), with \(n \) being the number of play operators. The choice of \(n \) determines the computational burden and the accuracy of the RDAPI model. A larger \(n \) generally corresponds to a more accurate hysteresis model. However, the computational burden of parameter identification increases with \(n \). In this study, \(n \) was selected as 8 through repeated numerical simulations. Table 1 presents the numbers of identification parameters for different rate-dependent PI models [28–30] with \(n = 8 \), thereby highlighting the advantage of the proposed RDAPI model.
where

\[w \]

The offspring resulting from a two-point arithmetic crossover are

\[\text{selected.} \]

\[\text{The two chromosome expressions are} \]

\[\text{An improved genetic algorithm [51] was used to identify} \]

\[\text{First, the cumulative probability} \]

\[\text{In the identification process, the objective function is} \]

\[\text{where} \]

\[J \]

\[\text{An improved genetic algorithm [51] was used to identify} \]

\[\text{The actual input and output data of the piezoelectric} \]

\[\text{Step 1: Select the fitness function:} \]

\[\text{Step 2: Generate the initial population. Randomly generate} \]

\[\text{Step 3: According to (27), calculate the fitness value} \]

\[\text{Step 4: Perform the roulette selection according to (19).} \]

\[\text{Step 5: Perform the crossover operation in accordance} \]

\[\text{Step 6: According to (25), apply the mutation operator} \]

\[\text{Step 7: Check whether the identification is complete. If} \]

\[\text{In this study, we selected the piezoelectric micro-positioning} \]

\[\text{The experimental results for the identified RDAPI} \]

\[\text{Note: To facilitate identification, in the process of identifying} \]

\[\text{where} \]

\[r_1 \in [0, 1]\] and \[r_2 \in [0, 1]\] are random numbers. If the variation in \[w_k' \] exceeds the value range,

\[\begin{align*}
 & \text{if } w_k' < U_{\min}^k, \text{ then } w_k' = U_{\min}^k \\
 & \text{if } w_k' > U_{\max}^k, \text{ then } w_k' = U_{\max}^k
\end{align*} \]

\[(26) \]

\[\text{The actual input and output data of the piezoelectric} \]

\[\text{Table 2 RDAPI model parameter identification} \]

\[a \quad -2.065e^{-4} \quad q_1 \quad 0.1899 \quad q_5 \quad 0.0340 \quad \alpha \quad -0.0902 \\
 b \quad 1.0203 \quad q_2 \quad 0.1377 \quad q_6 \quad 0.0726 \quad \beta \quad 0.6715 \\
 c \quad 2.996e^{-4} \quad q_3 \quad 0.0865 \quad q_7 \quad 0.0183 \\
 d \quad 1.0001 \quad q_4 \quad 0.0400 \quad q_8 \quad 0.2264 \]

\[\text{where} \]

\[r_1 \in [0, 1] \text{ and } r_2 \in [0, 1] \text{ are random numbers. If the variation in } w_k' \text{ exceeds the value range,} \]

\[\begin{align*}
 & \text{if } w_k' < U_{\min}^k, \text{ then } w_k' = U_{\min}^k \\
 & \text{if } w_k' > U_{\max}^k, \text{ then } w_k' = U_{\max}^k
\end{align*} \]

\[(26) \]

\[\text{The actual input and output data of the piezoelectric} \]

\[\text{Table 2 RDAPI model parameter identification} \]

\[a \quad -2.065e^{-4} \quad q_1 \quad 0.1899 \quad q_5 \quad 0.0340 \quad \alpha \quad -0.0902 \\
 b \quad 1.0203 \quad q_2 \quad 0.1377 \quad q_6 \quad 0.0726 \quad \beta \quad 0.6715 \\
 c \quad 2.996e^{-4} \quad q_3 \quad 0.0865 \quad q_7 \quad 0.0183 \\
 d \quad 1.0001 \quad q_4 \quad 0.0400 \quad q_8 \quad 0.2264 \]

\[\text{where} \]

\[r_1 \in [0, 1] \text{ and } r_2 \in [0, 1] \text{ are random numbers. If the variation in } w_k' \text{ exceeds the value range,} \]

\[\begin{align*}
 & \text{if } w_k' < U_{\min}^k, \text{ then } w_k' = U_{\min}^k \\
 & \text{if } w_k' > U_{\max}^k, \text{ then } w_k' = U_{\max}^k
\end{align*} \]

\[(26) \]

\[\text{The actual input and output data of the piezoelectric} \]

\[\text{Table 2 RDAPI model parameter identification} \]

\[a \quad -2.065e^{-4} \quad q_1 \quad 0.1899 \quad q_5 \quad 0.0340 \quad \alpha \quad -0.0902 \\
 b \quad 1.0203 \quad q_2 \quad 0.1377 \quad q_6 \quad 0.0726 \quad \beta \quad 0.6715 \\
 c \quad 2.996e^{-4} \quad q_3 \quad 0.0865 \quad q_7 \quad 0.0183 \\
 d \quad 1.0001 \quad q_4 \quad 0.0400 \quad q_8 \quad 0.2264 \]

\[\text{where} \]

\[r_1 \in [0, 1] \text{ and } r_2 \in [0, 1] \text{ are random numbers. If the variation in } w_k' \text{ exceeds the value range,} \]

\[\begin{align*}
 & \text{if } w_k' < U_{\min}^k, \text{ then } w_k' = U_{\min}^k \\
 & \text{if } w_k' > U_{\max}^k, \text{ then } w_k' = U_{\max}^k
\end{align*} \]

\[(26) \]

\[\text{The actual input and output data of the piezoelectric} \]

\[\text{Table 2 RDAPI model parameter identification} \]

\[a \quad -2.065e^{-4} \quad q_1 \quad 0.1899 \quad q_5 \quad 0.0340 \quad \alpha \quad -0.0902 \\
 b \quad 1.0203 \quad q_2 \quad 0.1377 \quad q_6 \quad 0.0726 \quad \beta \quad 0.6715 \\
 c \quad 2.996e^{-4} \quad q_3 \quad 0.0865 \quad q_7 \quad 0.0183 \\
 d \quad 1.0001 \quad q_4 \quad 0.0400 \quad q_8 \quad 0.2264 \]

\[\text{where} \]

\[r_1 \in [0, 1] \text{ and } r_2 \in [0, 1] \text{ are random numbers. If the variation in } w_k' \text{ exceeds the value range,} \]

\[\begin{align*}
 & \text{if } w_k' < U_{\min}^k, \text{ then } w_k' = U_{\min}^k \\
 & \text{if } w_k' > U_{\max}^k, \text{ then } w_k' = U_{\max}^k
\end{align*} \]

\[(26) \]
4 Robust adaptive controller design

In this section, a robust adaptive controller without constructing a complex hysteretic inverse model is proposed for the piezoelectric micropositioning stages. The proposed control method directly uses the established RDPI model to describe the hysteresis behavior and design adaptive control laws to eliminate hysteresis nonlinearity and uncertainties online. The robust adaptive control structure diagram is presented in Fig. 7.

The robust adaptive control scheme was designed as follows. First, let e_1 be the tracking error of the controlled systems, which is defined as

$$e_1 = x_1 - x_d$$

Define an intermediate variable e_2 as,

$$e_2 = x_2 + k_1 e_1 - \dot{x}_d$$

where k_1 is a positive design parameter. The time derivative of e_1 is

$$\dot{e}_1 = \dot{x}_2 - \dot{x}_d$$

Considering (28), $e_2 = \dot{e}_1 + k_1 e_1$. Then,

$$\dot{e}_1 = e_2 - k_1 e_1$$

The time derivative of e_2 is

$$\dot{e}_2 = \frac{1}{p} \left(\beta u(t) + \alpha u(t) + \sum_{i=1}^{n} p_i F_h^i[u](t) + PD(t) - q x_2 - nx_1 \right) + k_1 e_2 - k_1^2 e_1 - \dot{x}_d$$

Then, we obtain

$$p \dot{e}_2 = \beta u(t) + \alpha u(t) + \sum_{i=1}^{n} p_i F_h^i[u](t) + PD(t) - q x_2 - nx_1 + p \left(k_1 e_2 - k_1^2 e_1 - \dot{x}_d \right)$$

The control law is defined as

$$u = \frac{1}{p} \left[-k_2 e_2 - e_1 + \dot{q} x_2 + \dot{n} x_1 + \dot{p} u_{eq} - \zeta \text{sign}(e_2) \right]$$

$$u_{eq} = -k_1 e_2 + k_1^2 e_1 + \dot{x}_d - \rho \text{sign}(e_2)$$

(34)

where k_2 is a positive design parameter; $\dot{p}, \dot{q},$ and \dot{n} represent the estimates of $p, q,$ and $n,$ respectively; the estimation errors are defined as $\ddot{p} = \ddot{p} - p, \ddot{q} = \ddot{q} - q,$ and $\ddot{n} = \ddot{n} - n,$ respectively; ρ represents the bound of the disturbance $d(t);$ and ζ represents the bound of the nonlinear part $\alpha u(t) + \sum_{i=1}^{n} p_i F_h^i[u](t)$. The symbolic function $\text{sign}(e_2)$ can be expressed as,

$$\text{sign}(e_2) = \begin{cases} 1 & \text{if } e_2 > 0 \\ 0 & \text{if } e_2 = 0 \\ -1 & \text{if } e_2 < 0 \end{cases}$$

(35)

The adaptive update laws are designed as follows:

$$\dot{\hat{p}} = -\lambda u_{eq} e_2$$

(36)

$$\dot{\hat{n}} = -\gamma x_1 e_2$$

(37)

$$\dot{\hat{\eta}} = -\eta x_2 e_2$$

(38)

where $\lambda, \gamma,$ and η are the adjusting parameters of the adaptive update laws.

The key conclusion from the foregoing statement is presented in Theorem 1.

Theorem 1: Consider the entire control system, which is composed of the piezoelectric positioning stage system (14), the updated laws (37, 38), the actual controller (34), and the Lyapunov function (39). If Assumptions 1–3 are satisfied, all the signals in the closed-loop systems are uniformly ultimately bounded, and the tracking error e_1 exhibits asymptotic convergence under properly selected design parameters $k_1, k_2, \lambda, \gamma,$ and η. Additionally, the output displacement $x(t)$ can accurately track the reference displacement signal $x_d(t)$ for all $t \geq 0$.

Fig. 7 Robust adaptive control structure diagram.
Proof of Theorem 1: Define the following Lyapunov function:
\[V = \frac{1}{2} \dot{e}_1^2 + \frac{1}{2} \dot{e}_2^2 + \frac{1}{2} \sum_{i=1}^{n} p_i F_i^h [u] (t) + \frac{\hat{\rho} \dot{\hat{\rho}}}{\lambda} + \frac{\hat{q} \dot{\hat{q}}}{\eta} + \frac{\hat{h} \dot{\hat{h}}}{\gamma} \] (39)

The time derivative of \(V \) is
\[\dot{V} = e_1 \dot{e}_1 + p e_2 \dot{e}_2 + \frac{\hat{\rho} \dot{\hat{\rho}}}{\lambda} + \frac{\hat{q} \dot{\hat{q}}}{\eta} + \frac{\hat{h} \dot{\hat{h}}}{\gamma} \] (40)
Substituting (31) and (33) into (40) yields
\[\dot{V} = -k_1 \dot{e}_1^2 + \dot{e}_2 \left(e_1 + \beta u(t) + \alpha u^2(t) + \sum_{i=1}^{n} p_i F_i^h [u] (t) \right) + \rho d(t) - q x_2 - n_1 \right) - p \dot{x}_d + p k_1 e_2 - p k_2 \dot{e}_1 \] (41)

By substituting the updated laws (37) and (38) into (41), we obtain:
\[\dot{V} = -k_1 \dot{e}_1^2 + \dot{e}_2 \left(e_1 + \beta u(t) + \alpha u^2(t) + \sum_{i=1}^{n} p_i F_i^h [u] (t) \right) + \rho d(t) - q x_2 - n_1 \right) - p \dot{x}_d + p k_1 e_2 - p k_2 \dot{e}_1 \] (42)
Substituting the control law (34) into (42) yields
\[\dot{V} = -k_1 \dot{e}_1^2 + \dot{e}_2 \left[-k_2 \dot{e}_2 + p (-\rho \text{sign}(e_2) + d(t)) \right] \] (43)

Considering \(|e_2| = e_2 \times \text{sign}(e_2) \) and \(|d(t)| \leq \rho \), it follows that,
\[\dot{V} \leq -k_1 \dot{e}_1^2 - k_2 \dot{e}_2^2 + \alpha u^2(t) + \sum_{i=1}^{n} p_i F_i^h [u] (t) - q e_2 \] (44)

The nonlinear part of the RDAPI model satisfies \(|\alpha u^2(t) + \sum_{i=1}^{n} p_i F_i^h [u] (t)| \leq \zeta \); therefore,
\[\dot{V} \leq -k_1 \dot{e}_1^2 - k_2 \dot{e}_2^2 \] (45)

where \(k_1 \) and \(k_2 \) are positive design parameters. Thus, \(\dot{V} \leq 0 \) for all \(t > 0 \). Considering that \(\dot{V} \geq 0 \) and \(\dot{V} \leq 0 \), it can be concluded that the system is stable. Thus, the closed-loop stability of the designed robust adaptive controller is verified.

Equation (45) is solved for any \(t \geq 0 \):
\[\int_{0}^{t} \dot{V}(\tau) d\tau + \int_{0}^{t} k_2 \dot{e}_2^2(\tau) d\tau \leq V(0) - V(t) \] (46)

According to \(V \leq 0 \), \(\dot{V}(t) \leq V(0) \). Then, (46) can be written as follows:
\[\int_{0}^{t} k_1 \dot{e}_1^2(\tau) d\tau + \int_{0}^{t} k_2 \dot{e}_2^2(\tau) d\tau \leq V(0) \]

Clearly, \(e_1 \) and \(e_2 \) are bounded. We define the following non-negative continuous function:
\[V_1(t) = V(t) - \int_{0}^{t} \dot{V}(\tau) d\tau + k_1 \dot{e}_2^2(\tau) + k_2 \dot{e}_2^2(\tau) d\tau \] (47)

The derivative of (47) can be obtained as follows:
\[\dot{V}_1 = -k_1 \dot{e}_1^2(t) - k_2 \dot{e}_2^2(t) \] (48)

Since \(e_1 \) and \(e_2 \) are bounded, \(\dot{e}_1 \) and \(\dot{e}_2 \) exist. Thus \(V_1 \) is uniformly continuous on \([0, t]\). According to Barbalat’s lemma, \(V_1 \to 0 \) when \(t \to \infty \); thus, when \(t \to \infty \), the tracking error \(e_1 \) is asymptotically convergent. This completes the proof.

Remark 2: From (46), \(e_1 \) and \(e_2 \) are bounded. Because the range of output displacement for this piezoelectric micropositioning stage is 0–60 μm, the desired output displacement \(x_d \) is bounded. Additionally, from \(e_1 = x_1 - x_d \), \(x_1 \) is bounded. According to (29), \(e_1 \), \(e_2 \) and \(\dot{x}_d \) are bounded; hence, \(x_2 \) is bounded. Thus, the control law \(u \) is bounded.

5 Experimental results

The proposed RDAPI model and the robust adaptive control strategy were tested on piezoelectric micropositioning stages to evaluate their efficiency.

5.1 Experimental results for RDAPI model

The conventional PI model was selected for comparison to validate the proposed RDAPI model. The input voltage signal was selected as a sinusoidal signal with different frequencies. Fig. 8 presents the modeling performance of the proposed RDAPI model and the classical PI model with input voltage signals having frequencies of 1, 10, 20, and 50 Hz, respectively. When the input signal frequency was 1 Hz, the modeling error of the RDAPI model was close to the that of the classical PI model. When the input voltage signal frequency was 50 Hz, the root-mean-square error (RMSE) was reduced by 47.02%. The maximum errors were 1.2195 and 0.4965 μm for the RDAPI model and the classical PI model, respectively. The results indicate that at a high frequency, the modeling error of the classical PI model increases more than that of the RDAPIM model does. In this section, the conventional PI model is selected for comparison to verify the validity of the proposed RDAPI model. The input voltage signal was selected as a sinusoidal signal with different frequencies.

Table 3 presents the RMSE and the absolute mean error (AME) values of the actual output and the model output with different input voltage signal frequencies. The RMSE
Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages

Fig. 8 Hysteresis loops of the proposed RDAPI and classical PI models with different input frequencies.

![Graphs showing hysteresis loops for different input frequencies](image)

Table 3 Modeling errors of the RDAPI and classic PI models with diverse input frequencies.

Input frequency	PI model (RMSE (µm) / AME (µm))	RDAPI model (RMSE (µm) / AME (µm))
1 Hz	0.3716/0.2996	0.3194/0.2594
10 Hz	0.4621/0.3787	0.2327/0.1832
20 Hz	0.3293/0.2583	0.2907/0.2309
50 Hz	0.5515/0.4671	0.3751/0.3395

5.2 Experimental results for robust adaptive control

To validate the proposed robust adaptive control strategy, a series of experiments was conducted. The inverse RDAPI model-based feedforward compensation control (IRDAPI-based IFC) and inverse RDAPI model-based PID control (IRDAPI-based PID) methods were used for comparison. In the experiments, different trajectory forms were selected as reference signals, with frequencies ranging from 1 to 50 Hz. The parameters of the controller were selected via a trial-and-error approach. First, the adaptive adjustment parameters λ, η, and γ should be determined. A trade off exists between the tracking error and oscillation. The parameters can be set to small values initially and then gradually increased until a suitable value is reached and selected. Fig. 10 presents the tracking performance with different values of λ, η, and γ. As shown, when the selected adaptive adjustment parameters are $\lambda = 1e^{-10}$, $\eta = 1e^{-7}$, and $\gamma = 0.005$, the tracking error is small and does not introduce sharp oscillation into the system. Then, by weighing the convergence speed and oscillation, the control gain parameters k_1 and k_2...
can be tuned (gradually increased) to a suitable value. The control gain parameters are selected as \(k_1 = 1000\) and \(k_2 = 0.005\). According to the RDAPI model parameters identified in Section 3.3, \(\hat{\beta} = 0.6714\). Calculations indicate that the boundary of the nonlinear part \(\varsigma = \alpha u^2(t) + \sum_{i=1}^{n} p_i F_{hi}^2[u](t)\) does not exceed 0.45. Therefore, \(\varsigma = 0.45\). According to the performance of the experimental stage and environment, the disturbance (environmental disturbance, temperature and humidity changes, etc.) does not exceed 1 \(\mu m\); therefore, the limit of the disturbance was set as \(\rho = 1\).

5.2.1 Displacement tracking control under sinusoidal reference signals

The desired trajectory is selected as \(x_d(t) = 20\sin(2\pi f t + 3/2\pi) + 20\), where \(f\) represents one of the input voltage signal frequencies (1, 10, 20, or 50 Hz). The tracking performance is shown in Figs. 11-14. The tracking results indicate that the proposed robust adaptive control approach can achieve a high tracking accuracy even when the frequency
reaches 50 Hz. Compared with the IRDAPI-based IFC and IRDAPI-based PID controllers, the proposed robust adaptive controller can significantly reduce the average tracking error. Regarding the maximum error of motion, the proposed approach is relatively ineffective. The RMSE and AME (Table 4) were used to quantify the performance of the different control approaches. For an intuitive comparison, the RMSE and AME were also plotted as bar graphs, as shown in Fig. 15. The RMSE of the proposed robust adaptive controller remained within 0.4039 µm, and the AME remained within 0.2383 µm. The RMSEs of the IRDAPI-based IFC and IRDAPI-based PID controllers reached 0.6010 and 0.7139 µm, respectively, at 50 Hz. Additionally, the AMEs reached 0.5102 and 0.6440 µm, respectively. Figs. 11(c), 12(c), 13(c), and 14(c) show the input–output relationship of the closed-loop system with different controllers, indicating that the proposed robust adaptive controller can restrain the hysteresis nonlinearity better than IRDAPI-based IFC and IRDAPI-based PID controllers can.
5.2.2 Displacement tracking control under triangular reference signals

A triangular-wave signal with an amplitude of 40 µm was selected as the desired trajectory, and the input voltage signal frequencies of 1, 10, 20, and 50 Hz were selected.

The tracking performance is shown in Figs. 16–19. The experimental results indicate that the proposed control strategy can eliminate the effects of hysteresis behavior at different frequencies more effectively than the IRDAPI-based IFC and IRDAPI-based PID controllers can. The RMSE and AME values are presented in Table 5. The bar graphs are shown in Fig. 20. The RMSE of the proposed method was maintained within 0.3124 µm, whereas those of the IRDAPI-based IFC and IRDAPI-based PID methods were 0.8225 and 0.6097 µm, respectively. The AME of the proposed method was within 0.1811 µm, whereas those of the IRDAPI-based IFC and IRDAPI-based PID methods were 0.6976 and 0.4862 µm, respectively. As indicated by the results, compared with the IRDAPI-based PID and IRDAPI-based IFC controllers, the proposed control method does not reduce the maximum tracking error; however, its RMSE and AME were significantly smaller. For trajectory-tracking problems, the most important aspect of the tracking performance is the average error. Thus, the proposed control strategy achieved better tracking performance than the other methods did.

5.2.3 Displacement tracking control under other reference signals

To further verify the effectiveness of the proposed control method, additional types of reference signals were selected as the desired signals. First, a triangular wave with a de-
Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages

Fig. 19 Comparison results for the tracking performance under triangular signals with a frequency of 50 Hz. (a) reference and control output displacements; (b) tracking error; (c) hysteresis reduction for different controllers.

Fig. 20 Comparison of tracking errors for different controllers under the triangular signals.

Table 6 Comparison of tracking errors among the proposed, IRDAPI-based PID, and IRDAPI-based IFC methods under different trajectories based on the RDADI model.

Reference signals	Proposed	IRDAPID-PID	IRDAPID-IFC
Variable amplitude	0.1662/0.0626	0.5248/0.5813	0.4227/0.0399
Stairstep	0.1667/0.0158	0.2241/0.3109	0.5123/0.6408
Complex harmonic	0.0229/0.0195	0.7033/0.5725	0.4685/0.3728

Increasing amplitude was selected as the reference displacement. The results of the displacement tracking experiment are shown in Fig. 21. When tracking the first triangular waveform, the proposed controller exhibited a large tracking error. After the robust adaptive controller was adjusted online, the system became stable at the second triangular waveform. Then, a stairstep signal was selected as the reference trajectory. The experimental results are presented in Fig. 22. When the desired displacement changed sharp, the IRDAPID-based PID controller exhibited a large amount of chatter, and the IRDAPID-based IFC controller required a long settling time. In contrast, the proposed controller achieved satisfactory control performance within a shorter settling time. Although the proposed controller exhibited an overshoot, however, compared with that of the IRDAPID-based PID controller, the overshoot was smaller, and compared with that of the IRDAPID-based IFC controller, the convergence was faster. Additionally, the proposed method had the smallest tracking error.

A complex sine-wave signal with different frequencies and amplitudes was selected as the reference trajectory. The experimental results are presented in Fig. 23. The tracking errors for the three types of reference signals are presented in Table 6.
Fig. 22 Comparison results for different controllers; (a) reference and control output displacements; (b) tracking error.

Fig. 23 Comparison results for different controllers; (a) reference and control output displacements; (b) tracking error; (c) hysteresis reduction for different controllers.

In the foregoing experiments, the proposed robust adaptive controller outperformed both the IRDAPI-based IFC and IRDAPI-based PID control methods with regard to the RMSE. In particular, when the reference trajectory was complex, e.g., harmonics and triangular waves compounded by multiple frequencies, the proposed control method offered significant advantages over the other methods. The experimental results indicate that the online parameter adjustment of the robust adaptive controller plays an important role in ensuring strong robustness and high control accuracy. The results also indicate that the proposed robust adaptive controller is more effective than previously reported controllers in terms of suppressing hysteresis behavior in piezoelectric micropositioning stages under different types of reference displacements.

6 Conclusion

An RDAPM model was proposed herein for describing the rate-dependent asymmetric hysteresis behaviors of piezoelectric micropositioning stages. The model introduces dynamic envelope functions into play operators to describe hysteresis behavior and replaces the proportional input function with the polynomial input function to describe asymmetry. The model uses few parameters and a simple analytical structure to describe the hysteresis. On this basis, a robust adaptive controller was designed to improve the tracking performance. The proposed control method uses the RDAPM model to directly represent the hysteresis behaviors of piezoelectric micropositioning stages and thereby avoids the construction of a complex hysteretic inverse model. Experimental results indicated that compared with that of the classical PI model, the RMSE of the proposed RDAPM model can be reduced by 47.02% at 50 Hz. This suggests that the RDAPM model can describe the actual hysteresis loop at high frequencies more accurately. Sinusoidal, triangular, stairstep, and complex harmonic reference signals were utilized to evaluate the robust adaptive controller. The experimental results indicated that the robust adaptive controller can achieve satisfactory performance for piezoelectric micropositioning stages.

Acknowledgements This work was supported in part by the National Natural Science Foundation of China under Grant 51675228 and the Program of Science and Technology Development Plan of Jilin Province of China under Grants 20180101052JC, 201903030208F.

Declarations

Data statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Qingsong Xu. Design and development of a compact flexure-based xy precision positioning system with centimeter range. IEEE Transactions on Industrial Electronics, 61(2):893–903, 2014.
2. Peter J. Hoffman, Eric S. Hopewell, and Brian Janes. *Precision Machining Technology*, 2011.

3. Guoying Gu, Limin Zhu, Chunyi Su, and Han Ding. Motion control of piezoelectric positioning stages: Modeling, controller design, and experimental evaluation. *IEEE/ASME Transactions on Mechatronics*, 18(5):1459–1471, 2013.

4. Marc Kamalah and Charalampos Tsakmakis. Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. *International Journal of Solids and Structures*, 36:669–695, 02 1999.

5. Gang Tao and P. V. Kokotovic. Adaptive control of plants with unknown hystereses. *IEEE Transactions on Automatic Control*, 40(2):200–212, 1995.

6. Ping Ge and Musa Jouaneh. Tracking control of a piezoceramic actuator. *IEEE Transactions on Control Systems and Technology*, 4(3):209–216, 1996.

7. Sabarianand D V, Karthikeyan Palanisamy, and T. Muthuramalingam. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. *Mechanical Systems and Signal Processing*, 140:106634, 2020.

8. Alex Esbrook, Xiaobo Tan, and Hassan K. Khalil. An indirect adaptive servocompensator for signals of unknown frequencies with application to nanopositioning. *Automatica*, 49(7):2006–2016, 2013.

9. Xiuyu Zhang, Xinkai Chen, Guoqiang Zhu, and Chun Yi Su. Output feedback adaptive motion control and its experimental verification for time-delay nonlinear systems with asymmetric hysteresis. *IEEE Transactions on Industrial Electronics*, 67(8):6824–6834, 2020.

10. Wei Zhu and Daihua Wang. Non-symmetrical bouc-wen model for piezoelectric ceramic actuators. *Sensors & Actuators A Physical*, 181:51–60, 2012.

11. Wei Zhu and Xiaoting Rui. Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized bouc-wen model. *Precision Engineering*, 43:299–307, 2016.

12. Mohammad Asif Zaman and Urmita Sikder. Bouc-wen hysteresis model identification using modified firefly algorithm. *Journal of Magnetism and Magnetic Materials*, 395:229–233, 2015.

13. Geng Wang and Guoqiang Chen. Identification of piezoelectric hysteresis by a novel duhem model based neural network. *Sensors & Actuators A Physical*, 264:282–288, 2017.

14. Ruili Dong, Yonghong Tan, and Yangqiu Xie. Identification of micropositioning stage with piezoelectric actuators. *Mechanical Systems and Signal Processing*, 75:618–630, 2016.

15. Nicolas Peyret, Marco Rosatello, GaeL Chevallier, and Jean Luc Dion. A mindlin derived dahl friction model. *Mechanism & Machine Theory*, 117:48–55, 2017.

16. Miroslav Novak, Jakub Eichler, and Miloslav Kosek. Difficulty in identification of preisach hysteresis model weighting function using first order reversal curves method in soft magnetic materials. *Applied Mathematics and Computation*, 319:469–485, 2018.

17. Zhi Li, Xiuyu Zhang, Chunyi Su, and Tianyou Chai. Nonlinear control of systems preceded by preisach hysteresis description: A prescribed adaptive control approach. *IEEE Transactions on Control Systems and Technology*, 24(2):451–460, 2016.

18. Jon Age Stakvik, Michael Remo Palmén Ragazzon, Arnfinn Aas Eielsen, and Jan Tommy Gravdahl. On implementation of the preisach model identification and inversion for hysteresis compensation. *Modeling, Identification and Control (MIC)*, 36(3):133–142, 2015.

19. Joey Z. Ge, Longlong Chang, and Néstor O. Pérez-Arancibia. Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress. *Mechatronics*, 73:102452, 2021.

20. A. Bermúdez, D. Gómez, and P. Venegas. Mathematical analysis and numerical solution of models with dynamic preisach hysteresis. *Journal of Computational and Applied Mathematics*, 367:112452, 2020.

21. Mark Krasnosel’skii and Aleksei Pokrovskii. *Systems With Hysteresis*. 1989.

22. Zhi Li, Jinjun Shan, and Ulrich Gabbert. Inverse compensation of hysteresis using krasnoselskii-pokrovskii model. *IEEE/ASME Transactions on Mechatronics*, 23:966–971, 2018.

23. Mohammad Al Janaideh and Omar Aljanaideh. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the prandtl-ishlinskii model. *Mechanical Systems and Signal Processing*, 104:835–850, 2018.

24. Hamid Basaeri, Mohamadreza Zakerzadeh, Aghil Yousefkoma, Nafise Faridi Rad, and Mohammad Mahdavian. Hysteresis modeling, identification and fuzzy pid control of sma wire actuators using generalized prandtl-ishlinskii model with experimental validation. *Applied and Computational Mechanics*, 50(2):263–274, 2019.

25. Xiaobo Tan and John S. Baras. Modeling and control of hysteresis in magnetostrictive actuators. *Automatica*, 40(9):1469–1480, 2004.

26. Mohammad Al Janaideh and Pavel Krejčí. Prandtl-ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. *Physica B: Condensed Matter*, 407(9):1365–1367, 2012.

27. Hassan Sayyaadi and Mohammad Reza Zakerzadeh. Position control of shape memory alloy actuator based on the generalized prandtl-ishlinskii inverse model. *Mechatronics*, 22(7):945–957, 2012.
28. Meiju Yang, Chunxia Li, Guoying Gu, and Limin Zhu. A modified prandtl-ischlinskii model for rate-dependent hysteresis nonlinearity using mth-power velocity damping mechanism. *International Journal of Advanced Robotic Systems*, 11(10):163, 2014.

29. Mohammad Al Janaideh, Subhash Rakheja, and Chun Yi Su. A generalized prandtl–ischlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. *Smart Materials & Structures*, 18(4):045001, 2009.

30. Shenglong Xie, Haitao Liu, Jiaping Mei, and Guoying Gu. Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized prandtl-ischlinskii model. *Mechatronics*, 52:49–57, 2018.

31. Shunli Xiao and Yangmin Li. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model. *IEEE Transactions on Control Systems Technology*, 21(5):1549–1557, 2012.

32. Arnfinn Aas Eielsen, Jan Tommy Gravdahl, and Kristin Y Pettersen. Adaptive feed-forward hysteresis compensation for piezoelectric actuators. *The Review of scientific instruments*, 83(8):085001, 2012.

33. Miaolei Zhou, Yifan Wang, Yannan Zhang, and Wei Gao. Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. *Smart Materials & Structures*, 30(1):015019, 2021.

34. Xiuyu Zhang, Yufan Wang, Yannan Zhang, and Wei Gao. Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. *Smart Materials & Structures*, 30(1):015019, 2021.

35. Chen Zhang, Yawei Yu, Zhiwu Han, and Miaolei Zhou. Narmax model-based hysteresis modeling of magnetic shape memory alloy actuators. *IEEE Transactions on Nanotechnology*, 19:1–4, 2020.

36. Didace Habineza, Micky Rakotondrabe, and Yann Le Gros. Bouc-wen modeling and feedforward hysteresis compensation for piezoelectric actuators. *The Review of scientific instruments*, 83(8):085001, 2012.

37. Miaolei Zhou, Yifan Wang, Yannan Zhang, and Wei Gao. Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. *Smart Materials & Structures*, 30(1):015019, 2021.

38. Saeid Shakiba, Mouloud Ourak, Emmanuel Vander Poorten, Moosa Ayati, and Aghil Yousefi-Koma. Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. *Mechanical Systems and Signal Processing*, 154:107532, 2021.

40. Niranjan Saikumar, Rahul Kumar Sinha, and S. Hassan HosseinNia. Resetting disturbance observers with application in compensation of bounded nonlinearities like hysteresis in piezo-actuators. *Control Engineering Practice*, 82:36–49, 2019.

41. G. Song, Jinqiang Zhao, Xiaojing Zhou, and J. A. De Abreu-Garcia. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model. *IEEE/ASME Transactions on Mechatronics*, 10(2):198–209, 2005.

42. Yawei Yu, Chen Zhang, and Miaolei Zhou. Narmax model-based hysteresis modeling of magnetic shape memory alloy actuators. *IEEE Transactions on Nanotechnology*, 19:1–4, 2020.

43. Chen Zhang, Yawei Yu, Yifan Wang, and Miaolei Zhou. Takagi-sugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm. *International Journal of Fuzzy Systems*, 22(4):1314–1329, 2020.

44. Xiuyu Zhang, Bin Li, Xinkai Chen, Zhi Li, Yaxuan Peng, and Chun-Yi Su. Adaptive implicit inverse control for a class of discrete-time hysteretic nonlinear systems and its application. *IEEE/ASME Transactions on Mechatronics*, 25(4):2112–2122, 2020.

45. Chen Zhang, Yawei Yu, Zhiwu Han, and Miaolei Zhou. Chaotic neural network-based hysteresis modeling with dynamic operator for magnetic shape memory alloy actuator. *IEEE Transactions on Magnetics*, 2021. doi:10.1109/TMAG.2021.3065721.

46. Jie Ling, Zhao Feng, Doudong Zheng, Jun Yang, Haoyong Yu, and Xiaohui Xiao. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. *Mechanical Systems and Signal Processing*, 150:107235, 2020.

47. Xiuyu Zhang, Bin Li, Zhi Li, Chenguang Yang, Xinkai Chen, and Chunyi Su. Adaptive neural digital control of hysteretic systems with implicit inverse compensator and its application on magnetostrictive actuator. *IEEE Transactions on Neural Networks and Learning Systems*, pp.1–14, 2020.

48. Chunyi Su, Yury Stepanenko, Jaroslav Svoboda, and T. P. Leung. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. *IEEE Transactions on Automatic Control*, 45(12):2427–2432, 2000.
49. Weichuan Liu, Long Cheng, Zeng-Guan Hou, Junzhi Yu, and Min Tan. An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. *IEEE/ASME Transactions on Mechatronics*, 21(1):214–226, 2016.

50. Zhiyong Chen, Jinchuan Zheng, Haitao Zhang, and Han Ding. Tracking of piezoelectric actuators with hysteresis: A nonlinear robust output regulation approach. *International Journal of Robust & Nonlinear Control*, 27(5):2610–2626, 2017.

51. Thomas R. Schneider. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. *Acta Crystallographica D Biological Crystallography*, 58(2):195–208, 2002.