A Combination of Serum Biomarkers in Elderly Patients with Sarcopenia: A Cross-sectional Observational Study.

Lin Ying
Zhejiang University

Qin Zhang
Zhejiang University

Jian-ying Zhou
Zhejiang University

Yun-mei Yang (✉ 1194070@zju.edu.cn)
Zhejiang University

Research Article

Keywords: sarcopenia, inflammation, interleukin

DOI: https://doi.org/10.21203/rs.3.rs-200316/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The pathogenesis of sarcopenia in the elderly has not yet been fully understood. This study aimed to explore the relationship between sarcopenia and several serum biomarkers in elderly population.

Methods: It was an observational cross-sectional study of data collected from 70 patients (>60 years old, 61.4% men). According to the criteria of the Asian Working Group for Sarcopenia (AWGS), subjects were divided into a sarcopenia group and a non-sarcopenic group. We compared age, body mass index (BMI), biochemical indexes, skeletal muscle mass, handgrip strength (HS), gait speed (GS), skin-fold thickness, muscle thickness, bone mineral density (BMD) and IL-6, IL-10, IL-17A, TNF-α levels between these groups.

Results: Of the 70 subjects, 35 patients were diagnosed with sarcopenia according to the AWGS criteria. The number of men was higher than that of women in both groups. The patients with sarcopenia were older and had lower BMI and muscle thickness, but higher SARC-F questionnaire scores. However, the difference in BMD and skin-fold thickness between these two groups was not statistically significant. Higher IL-6, IL-17A, and TNF-α levels were observed in participants with sarcopenia (P < 0.05). Patients with sarcopenia seemed to have a lower IL-10 level. Positive associations were present between the severity of sarcopenia and IL-6, IL-17, and TNF-α levels, while there was an inverse correlation between the presence of sarcopenia and the IL-10 level.

Conclusions: Our research found that in sarcopenic elderly subjects, the serum levels of several biomarkers, such as IL-6, IL-17A, and TNF-α, were higher than those in non-sarcopenic elderly persons. In summary, chronic inflammation plays an important role in the development of sarcopenia. Further studies are needed to explore the possible molecular mechanisms and discover new therapeutic targets.

Background

The rapid increase in the elderly population represents a global health problem[1], together with the increased incidence of age-related diseases, such as osteoporosis and sarcopenia[2]. It has been reported that 0.5-1.0% of skeletal muscle mass is lost per year beyond the age of 30 years[3]. Sarcopenia, defined as the progressive loss of skeletal muscle mass, is associated with a reduction in the number and size of muscle fibers, leading to a decrease in muscular strength and endurance[4]. It may increase the risk of adverse outcomes, such as falls, disability, fractures, hospitalization, and mortality[5,6].

Nowadays, as more highly attention paid on sarcopenia in the last 10 years, significant progress has been made in basic and clinical research. However, the mechanisms underlying the etiology and progression of sarcopenia still remain poorly understood. Studies suggest that multiple mechanisms underlie the development of sarcopenia[7,8], including impaired insulin signaling, imbalanced anabolic and catabolic energy metabolism, immune dysfunction, systemic chronic inflammation, and increased oxidative stress[9].
Inflammation is considered to serve as a biomarker for accelerated aging and one of the hallmarks of aging biology[10]. It is recognized that with age the mechanisms regulating inflammation become impaired in a manner that might contribute to the susceptibility of elderly persons to infection and age-related chronic diseases, such as sarcopenia[11]. This dysregulation has been inferred in part from an observation of increased circulating pro-inflammatory cytokines, such as IL-6 and TNF-α, in elderly persons even in the absence of infection, suggesting a low-level chronic inflammation specific to aging known as “inflammaging”[12-14]. Furthermore, fatty tissue increase with aging. Several studies have revealed that the adipose tissue is a main source of inflammatory molecules, such as IL-6 and MCP1[15]. Another study showed that cytokines that are produced by adipocytes may have a direct effect on physical function by accelerating the changes in body composition that are typical of the aging process, namely fat gain and loss of muscle mass[16].

So far, studies have reported that serum levels of pro-inflammatory cytokines, such as TNF-α and IL-6, were increased in elderly sarcopenia cases[17,18]. It is known that IL-6 enhances the differentiation of Th17 cells[19-21], which are a subset of T helper cells and can secrete several potent proinflammatory cytokines, including IL-17A and IL-17 F, in many inflammatory and autoimmune diseases[22,23]. However, the role of Th17 cells and IL-17 in elderly sarcopenia patients is unknown. To investigate this, we measured serum concentrations of the inflammatory cytokines IL-6, TNF-α, and IL-17A and estimated the association between IL-6 and IL-17A levels in elderly individuals with sarcopenia.

Methods

Research subjects

A total of 70 elderly subjects (>60 years old, 43 men and 27 women) were enrolled in this cross-sectional study. They underwent general medical examinations between January 2020 and September 2020 in the Geriatrics Department. Among these subjects, 35 patients were diagnosed with sarcopenia according to the criteria of the Asian Working Group for Sarcopenia (AWGS)[24]. This study was approved by the Ethics Committee of The First Affiliated Hospital, School of Medicine, Zhejiang University, in accordance with the Helsinki Declaration. Written informed consent was obtained from all subjects.

Inclusion criteria

All participants were over 60 years old and could walk by themselves. According to the AWGS criteria for sarcopenia in older persons[24], diagnosis is based on the presentation of criterion 1 [low muscle mass, < 7.0 kg/m2 for men and 5.7 kg/m2 for women based on bioelectrical impedance analysis (BIA)], plus either criterion 2 (low muscle strength, handgrip strength (HS) < 28 kg for men and < 18 kg for women) or criterion 3 (poor physical performance) with recommended cutoff values for muscle mass measurements. The criteria for low physical performance were a 6-m walk <1.0 m/s, a short physical
performance battery score ≤ 9, or a 5-time chair stand test ≥ 12 s. In this study, all patients were able to walk on their own, so we mainly evaluated the physical performance based on the walking speed.

Exclusion criteria

The exclusion criteria were: (1) subjects with tumors or severe weakness; (2) subjects who were admitted to the hospital due to acute infection; (3) subjects with endocrine or metabolic diseases that failed to be well-controlled; (4) subjects with diseases that seriously affect their health, such as heart failure, uremia, or septic shock; and (5) autoimmune diseases.

Demographic variables

Height and weight were measured routinely. Body mass index (BMI) was calculated by dividing body weight by height squared (kg/m^2). HS was measured using a hand-muscle developer, with patients using their dominant hand (WCS-II, Beijing). Physical performance was determined by gait speed over a course of 6-m.

All participants completed the SARC-F questionnaire, which assesses 5 components, namely strength, assistance in walking, rising from a chair, climbing stairs, and falls. The score ranged from 0 to 10. Skinfold thickness (biceps brachii, quadriceps femoris) was also measured twice at each site and the mean was used for analysis. Besides, the bone mineral density (BMD) was measured for both the lumbar spine and femoral neck using dual-energy X-ray absorptiometry (DXA) (Hologic 010-1549, Bedfordshire, USA).

Sarcopenia assessment

BIA

We used a dynamometer (EH101; Camry, Zhongshan, China) to measure body composition. During the test, subjects stood upright, gripped the handle, and kept their feet naturally separated (shoulder-width apart) and their arms naturally drooped. Intermittent gripping, swinging of the arms, or squats were not allowed. Tests were performed twice, and the larger value was recorded. According to AWGS recommendations, height-adjusted skeletal muscle mass (ASMI), defined as appendicular skeletal muscle mass (ASM)/height (m) was used to evaluate the muscle mass.

Ultrasound (US) measurements

Skeletal muscle measurements were performed for the biceps brachii and quadriceps femoris muscles. The participants lay down in bed, relaxed, and received examination by one doctor with 12 years of
experience who was blinded to this study. The examiner held the US probe (2–10 MHz, Aixplorer; Aix-en-Provence, France) close to the skin, with the beam perpendicular to the surface, then probed the medial cross-section of the muscle and found the largest cross-sectional area, designated as the muscle thickness, measured with (an accuracy of 0.01 cm).

Cytokine quantification

Blood samples were obtained from the antecubital vein after admission. Biochemical indicators were tested immediately, and the remaining plasma samples were stored at -80 °C for later testing. The IL-6, IL-10, IL-17A, and TNF-α levels were determined quantitatively using a platinum enzyme-linked immunosorbent assay (eBioscience, San Diego, CA). The minimum detectable doses of IL-6, IL-10, IL-17A, and TNF-α were 1.56, 0.39, 0.23, and 0.5 pg/ml, respectively. Sensitivity levels were 0.92 pg/ml (IL-6), 0.05 pg/ml (IL-10), 0.01 pg/ml (IL-17A), and 0.09 pg/ml (TNF-α).

Statistical methods

Age, BMI, HS, skin-fold thickness, muscle thickness, BMD, and ASMI were independent variables. The variables were investigated using the Kolmogorov–Smirnov test to determine normal or non-normal distributions. The data that did not coincide with normal distribution were indicated with medians (interquartile range) and the Mann-Whitney U test were used. Data accorded with normal distribution and homogeneity of variance were expressed as mean ± standard deviation (SD) and compared by t-test. The Chi-square test was used to study the relationship between genders. Pearson analysis and spearman rank correlation analysis were conducted to test correlation between variables. Statistical analyses were performed using the SPSS software version 21 (SPSS, Chicago, IL). A P value of <0.05 was considered statistically significant.

Results

A total of 70 elderly subjects were enrolled in this study, and 35 patients were diagnosed with sarcopenia according to the AWGS criteria. The baseline characteristics of the 70 participants are listed in Table 1. The number of men was higher than that of women in both groups, namely 21 men (60%) in the sarcopenia group and 22 men (62.9%) in the non-sarcopenic group. Intuitively, the patients without sarcopenia were younger, as the average age was 70.8, while the average age of 35 sarcopenia subjects was 75.1.

Compared to those without sarcopenia, participants with sarcopenia had lower BMI, albumin, BMD, and muscle thickness, as per ultrasonic imaging results, but higher SARC-F questionnaire scores. However, the difference in BMD and skin-fold thickness between these two groups was not statistically significant.
Comparisons of IL-6, IL-10, IL-17A, and TNF-α levels between sarcopenia and non-sarcopenia patients are summarized in Table 2. Higher IL-6, IL-17A, and TNF-α levels were observed in participants with sarcopenia (P < 0.05). Patients with sarcopenia seemed to have a lower IL-10 level. We then performed multivariate analyses to assess the relationship between sarcopenia and serum cytokines (Table 3). Positive associations were present between the severity of sarcopenia and IL-6, IL-17A levels, while there was an inverse correlation between the presence of sarcopenia and the IL-10 level. Besides, our statistical analyses also revealed that the older age and lower serum albumin were correlated with sarcopenia.
Variable	Sarcopenia	Non-sarcoepnia	P-value
Number	35	35	-
Gender,M:F % men	21:14 60.0	22:13 62.9	0.806
Age, year	75.1±5.16	70.8±5.50	0.001
BMI (kg/m²)	22.73±2.21	23.81±1.82	0.028
ASMI			
Mean	5.64±0.81	6.71±0.73	0.001
Men	6.11±0.53	7.25±0.20	0.001
Women	4.95±0.65	5.80±0.88	0.001
Handgrip strength (kg)			
Mean	21.04±3.88	23.51±5.23	0.028
Men	22.92±3.25	24.83±5.47	0.172
Women	18.21±2.97	21.29±4.08	0.033
Gait speed (m/s)	0.96±0.13	1.15±0.17	0.001
SARC-F	6(5-7)	2(1-2)	0.001
Skinfold thickness (mm)			
Biceps	12 5-20	14 6-28	0.107
Subscapular	11 5-22	14 5-26	0.090
muscle thickness (cm)			
Biceps	1.75±0.17	1.91±0.35	0.019
Quadriceps	2.09±0.29	2.30±0.31	0.004
albumin (g/L)	38.3±2.79	39.5±1.76	0.034
BMD (g/cm²)			
Femoral neck	0.81±0.12	0.87±0.11	0.060
Total L spine (L1-L4)	0.83±0.10	0.87±0.14	0.112

BMI: body mass index; ASMI: appendicular skeletal muscle index; BMD: bone mineral density
Table 2
Comparison of levels of inflammatory cytokines

Variable	Sarcopenia	Non-sarcopenia	P-value
IL-6 pg/ml	14.56±6.62	10.46±4.30	0.003
IL-17A pg/ml	6.48±2.83	4.97±2.70	0.025
IL-10 pg/ml	2.95±1.36	3.86±1.97	0.027
TNF-α pg/ml	8.01±4.86	5.50±3.72	0.018

IL-6: interleukin-6; IL-17A: interleukin-17A; IL-10: interleukin-10; TNF-α: tumor necrosis factor-α
Table 3
Correlation analysis between follow indexes and sarcopenia

Variable	r	P-value
Age	-0.287	0.016
BMI	0.146	0.226
Hand strength	0.391	0.001
Gait speed	0.439	0.001

Skinfold thickness

Location	r	P-value
Biceps	-0.13	0.282
Subscapular	-0.147	0.225

BMD

Bone Location	r	P-value
Femoral neck	0.234	0.051
Total L spine (L1-L4)	0.128	0.290

Muscle thickness

Muscle	r	P-value
Biceps	0.253	0.034
Quadriceps	0.358	0.002
Albumin	0.261	0.029
IL-6	-0.265	0.027
IL-17	-0.308	0.009
IL-10	0.301	0.011
TNF-α	-0.171	0.156

BMI: body mass index; BMD: bone mineral density; IL-6: interleukin-6; IL-17A: interleukin-17A; IL-10: interleukin-10; TNF-α: tumor necrosis factor-α; r: correlation coefficient

Discussion

Our study performed a cross-sectional analysis of serum concentrations of IL-6, IL-10, IL-17A, and TNF-α in the context of sarcopenia in elderly individuals. We found that the levels of inflammatory cytokines IL-6, IL-17A, and TNF-α, were increased in sarcopenia patients, while the IL-10 level declined. Furthermore, there were positive associations between the severity of sarcopenia and inflammatory cytokine levels. DXA and BIA are known as the gold standard for measuring muscle mass. However, it is difficult to use these techniques in community settings. In order to select an easier and more suitable method for
evaluating muscle mass in a community setting, our colleagues conducted a study. They analyzed the correlation between skeletal muscle mass measured by DXA and US and found that muscle thickness measured by US was an important predictor of low skeletal muscle mass[25]. In our study, the muscle thickness of patients with sarcopenia was lower than that of patients in the control group. Both studies showed that US measurements may be used as a screening technique for muscle mass in the diagnosis of sarcopenia.

China has entered an aging society in which the problem of age has become a public concern. It is expected that in 2037 China's elderly population will reach 400 million. Sarcopenia is one of the main causes of disability and quality of life reduction in the elderly. Although scholars have studied this extensively in recent years, the etiology and pathogenesis are still unclear[26,27].

We are interested in the role of inflammation in the development of sarcopenia and have read abundant literature on the subject. Up to this time, studies on humans and animal models have suggested that several cytokines exert proinflammatory activity and play a crucial role in sarcopenia. Many studies have indicated that serum levels of inflammatory factors were increased in elderly subjects with sarcopenia and closely related to the reduction of skeletal muscle mass and strength. Bian et al. found that the IL-6 and TNF-α serum levels in patients with sarcopenia were higher than those of patients in the control group[28]. They also showed that BMI and visceral fat area were independent risk factors for IL-6 by multiple regression analysis. Moreover, increased IL-6 levels are reported to be positively associated with disability rate and mortality[29]. Similar results were also observed in animal studies. Christian R. Gomez et al. evaluated proinflammatory cytokine production by splenic macrophages obtained from young and aged mice. They then found that splenic stromal cells from aged mice produce higher levels of IL-6 compared to young mice[30]. Except for the difference in proinflammatory cytokine secretion levels, aged IL-6 knockout mice had improved survival when compared to aged wild-type mice following the inflammatory challenge[31]. Taken together, these observations suggest inflammatory reaction has an essential role in the systemic innate immune responses of the aging process.

IL-6 is an essential cytokine to initiate the transcriptional program of TH17 cells. In the presence of TGF-β, IL-6 up-regulates the expression of the critical Th17 transcription factor RORC (RORγt in mice) through the Jak/STAT3 pathway[32,33]. In consideration of this role of IL-6, we hypothesized that IL-17 level may be elevated in patients with sarcopenia, and our results confirmed this hypothesis.

Except for chronic inflammation, oxidative stress has been proposed to play a role in the development of sarcopenia. Reactive oxygen species (ROS) are radical and non-radical byproducts of cellular respiration. Skeletal muscle, an excitable tissue with a high energetic demand, is widely described as a significant generator of ROS. According to Harmanis and his coworkers’ research, the aging process is directly related to systemic oxidative stress[34]. There are two main reasons resulting in the oxidative stress situation of elderly persons, namely an accumulation of products derived from the oxidation of biological structures and a decrease in the availability of nutritional molecular antioxidants[35,36].
In fact, increased oxidative stress and chronic inflammation have been demonstrated to occur concomitantly in the process of sarcopenia[37]. Oxidative stress can induce chronic low-grade inflammation, which has been shown to be harmful to the skeletal muscle in humans[35], as well as in animal models[38]. ROS and TNF-α also activate NF-κB. Direct muscle injections of either cytokines (TNF-α, INF-γ) or cancer cells, as well as denervation of the sciatic nerve to induce muscle wasting in mice, researchers have shown that NF-κB levels are strongly up-regulated[39-41].

Even though the prevalence of sarcopenia is high, there are no specific drugs for treatment, and the muscle remains an under-medicated organ[42]. A previous study reviewed 10 pharmacological interventions, namely vitamin D, combined estrogen-progesterone, dehydroepiandrosterone, growth hormone, growth hormone-releasing hormone, combined testosterone-growth hormone, insulin-like growth factor-1, pioglitazone, testosterone, and angiotensin-converting enzyme inhibitors[43]. Recently, new targets and approaches have been identified, and many of them are currently being tested in clinical trials. For example, whether blocking the downstream signaling of IL-6 by the JAK1/2 inhibitor ruxolitinib ameliorates muscle wasting is being investigated in an ongoing study (NCT02072057). Our study has demonstrated that IL-6 and IL-17A were elevated in patients with sarcopenia. Further animal experiments have been proposed to explore the mechanism and investigate the efficacy of monoclonal antibodies in sarcopenia.

However, there are several limitations to our study. First, it was a single-center retrospective study with a small sample size. Larger prospective studies are necessary to learn more about the association between serum cytokine levels and sarcopenia. Second, the make-up of the sample comprised a greater proportion of men than women. Therefore, there is a risk of selection bias influencing the results and conclusions. The associations demonstrated in our study may be different in a more representative population with an equal proportion of men and women. Third, most aged patients are always present various chronic diseases. We could not exclude the possibility that these diseases also cause high inflammatory cytokine levels. Whether aging is the direct cause of and increased level of inflammatory cytokines remains unknown, and the molecular mechanism requires further research.

Conclusions

In conclusion, aging is accompanied by a chronic pro-inflammatory state. Our research found that in sarcopenic elderly subjects, the serum levels of several biomarkers, such as IL-6, IL-17A, and TNF-α, were higher than those in non-sarcopenic elderly persons. Further studies are needed to explore the possible molecular mechanisms and discover new therapeutic targets.

Abbreviations

AWGS: Asian Working Group for Sarcopenia; ASM: appendicular skeletal muscle mass; ASMI: Appendicular skeletal muscle mass index; BIA: Bioelectrical impedance analysis; BMD: Bone mineral density; BMI: Body mass index; DXA: Dual-energy X-ray absorptiometry; HS: Handgrip
strength;IL: Interleukin; INF: Interferon; Jak: Janus kinase; MCP: Monocyte chemotactic protein; NF: Nuclear factor; ROR: Retinoic acid-related orphan receptor; ROS: Reactive oxygen species; SD: Standard deviation; STAT: Signal Transducer and Activator of Transcription; TGF- β: transforming growth factor- β; TNF: Tumor necrosis factor; US: Ultrasound.

Declarations

Acknowledgments

Not applicable.

Author contributions

Yun-mei Yang designed this study. Lin Ying collected and analysed data. Qin Zhang wrote the main manuscript. Jian-ying Zhou revised the paper. All authors reviewed the manuscript.

Funding

This research was supported by National Key R&D Program of China (2018YFC2000301).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The research ethics committee of the First Affiliated Hospital, School of Medicine, Zhejiang University, approved the study. The reference number was 2020–709. Written informed consent was obtained from all participants.

Consent for publication

Not Applicable.

Competing Interests

There are no conflicts of interest to declare.
References

1. World Health Organization. World Report on Ageing and Health. World Health Organization 2015.
2. Cruz-Jentoft AJ, Landi F, Topinková E, et al. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 2010;13:1-7.
3. Nair KS. Aging muscle. Am J Clin Nutr 2005;81:953-963.
4. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011;12:249-256.
5. Landi F, Cruz-Jentoft AJ, Liperoti R, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from iSIRENTE study. Age Ageing 2013; 42:203-209.
6. Yalcin A, Aras S, Atmis V, et al. Sarcopenia and mortality in older people living in a nursing home in Turkey. Geriatr Gerontol Int 2017;17:1118-1124.
7. Rolland Y, Czerwinski S, Kan G, et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 2008; 12: 433-450.
8. Lang T, Streeper P, Cawthon P, et al. Sarcopenia: etiology, consequences intervention, and assessment. Osteopros Int 2010; 21:543-559.
9. A Sayer A, Stewart C, Patel H, et al. The developmental origins of sarcopenia: from epidemiological evidence to underlying mechanisms. J Dev Orig Health Dis 2010;1:150-157.
10. Campisi J, Kapahi P, Lithgow GJ, et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019;571:183-192.
11. Graham Pawelec , David Goldeck, Evelyna Derhovanessian. Inflammation, ageing and chronic disease. Curr Opin Immunol 2014;29:23-28.
12. Sendama W. The effect of ageing on the resolution of inflammation. Ageing Res Rev 2020;57:101000.
13. Visser M, Pahor M, Taaffe DR, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC study. J Gerontol A Biol Sci Med Sci 2002;57:326-332.
14. Pedersen M, Bruunsgaard H, Weis N, et al. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev 2003;124:495-502.
15. Carmine Zoccali , Francesca Mallamaci, Giovanni Tripepi. Adipose tissue as a source of inflammatory cytokines in health and disease: focus on end-stage renal disease. Kidney Int Suppl 2003;84:65-68.
16. Ferrucci L, Harris TB, Guralnik JM, et al. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 1999;47: 639-646.
17. Shim JW, Yang S, Jung JY, et al. Serum Tumor Necrosis Factor-α Is Inversely Associated With the Psoas Muscle Index in Both Male and Female Patients Scheduled for Living Donor Liver Transplantation. Transplant Proc 2019;51:1874-1879.

18. Yu-Dong Rong, Ai-Lin Bian, Hui-Ying Hu, et al. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr 2018;18:308.

19. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231-234.

20. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179-189.

21. Ming O Li, Yisong Y Wan, Richard A Flavell. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007;26:579-591.

22. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009; 361:888-898.

23. Maddur MS, Miossec P, Kaveri SV, et al. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 2012;181:8-18.

24. Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 2020;21:300-307.

25. Wang J, Hu Y, Tian G. Ultrasound measurements of gastrocnemius muscle thickness in older people with sarcopenia. Clin Interv Aging 2018;13:2193-2199.

26. Michaud M, Balardy L, Mouli G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 2013;14:877-882.

27. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016;65: 1232-1244.

28. Bian AL, Hu HY, Rong YD, Wang J, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-alpha. Eur J Med Res 2017;22(1):25.

29. Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J App Physiol 2007;102:919-925.

30. Gomez CR, Karavitis J, Palmer JL, et al. Interleukin-6 contributes to age-related alteration of cytokine production by macrophages. Mediators Inflamm 2010;2010:475139.

31. Christian R Gomez, Joanna Goral, Luis Ramirez, et al. Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 2006;25:581-585.

32. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007;19:281-286.

33. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res 2010;20:4-12.

34. K B Beckman, B N Ames. The free radical theory of aging matures. Physiol Rev 1998; 78:547-581.

35. Howard C, Ferrucci L, Sun K, et al. Oxidative protein damage is associated with poor grip strength among older women living in the community. J Appl Physiol 2007;103:17-20.
36. Semba RD, Ferrucci L, Sun K, et al. Oxidative stress and severe walking disability among older women. Am J Med 2007;120:1084-1089.

37. Si-Jin Meng, Long-Jiang Yu. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 2010;11:1509-1526.

38. Parco M Siu, Emidio E Pistilli, Stephen E Alway. Age-dependent increase in oxidative stress in gastrocnemius muscle with unloading. J Appl Physiol 2008;105:1695-1705.

39. Mourkioti F, Kratsios P, Luedde T, et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 2006; 116:2945-2954.

40. Hunter RB, Kandarian SC. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 2004; 114:1504-1511.

41. Urso ML, Chen YW, Scrimgeour AG, et al. Alterations in mRNA expression and protein products following spinal cord injury in humans. J Physiol 2007; 579: 877-892.

42. Regula Furrer, Christoph Handschin. Muscle Wasting Diseases: Novel Targets and Treatments. Annu Rev Pharmacol Toxicol 2019;59:315-339.

43. Alfonso J Cruz-Jentoft, Avan A Sayer. Sarcopenia. Lancet 2019;393:2636-2646.