Comment on "Conductance fluctuations in mesoscopic normal-metal/superconductor samples"

Recently, Hecker et al. [1] experimentally studied magnetoconductance fluctuations in a mesoscopic Au wire connected to a superconducting Nb contact. They compared the rms magnitude of these conductance fluctuations in the superconducting state (rms(G_{NS})) to that in the normal state (rms(G_N)) by increasing the magnetic field above the critical field of 2.5 T. It was reported that rms(G_{NS}) was about 2.8±0.4 times larger than rms(G_N), which should confirm the theoretical predicted enhancement factor of $2\sqrt{2} \approx 2.8$.

In this Comment, we show that their claim is not justified. Although not explicitly mentioned in Ref. [1], we have to assume that the rms(G) was calculated according to: $\text{rms}(G) = \text{rms}(R)/R^2$, where $\text{rms}(R)$ denotes the rms magnitude of the measured resistance fluctuations and R the total measured resistance. The point we want to make is that the authors did not take into account the presence of an incoherent series resistance R_{series} from the contacts, which is different when the Nb is in the superconducting or normal state. Since the measured $\text{rms}(R)$ only originates from the phase-coherent part of the disordered conductor, with resistance R_c, the correct procedure is to calculate $\text{rms}(G)$ according to: $\text{rms}(G) = \text{rms}(R)/R_c^2 = \text{rms}(R)/(R - R_{\text{series}})^2$. As shown below, when we correct for the presence of this series resistance, we find that rms(G_{NS}) is not significantly larger than rms(G_N).

Their device consists of a narrow Au wire (Auw, length $L = 1.0\mu$m, width $W = 0.13\mu$m) connected at its ends to a macroscopic Nb and Au contact (Nbc or Auc) via a rectangular shaped contact (Nbc or Auc, $L = 0.8\mu$m, $W = 1.6\mu$m). The total resistance is the sum of these five contributions: $R = R_{\text{Nb}} + R_{\text{Au}} + R_{\text{Au}}^c + R_{\text{Au}}^c + R_{\text{Au}}^w$. As shown below, when we correct for the presence of this series resistance, we find that rms(G_{NS}) is not significantly larger than rms(G_N).

TABLE I. The measured resistance R_{NS} and uncorrected conductance fluctuations rms(G_{NS}) in the superconducting state at $T=50$ mK and $B=1$ T, and the measured resistance R_N and the corrected conductance fluctuations rms(G_N) in the normal state at $T=50$ mK and $B=4$ T.

	sample 1	sample 2
R_{NS} (Ω)	11.60	9.72
R_N (Ω)	15.87	14.34
rms(G_{NS}) (e²/h)	0.16 ±0.02	0.14 ±0.02
rms(G_N) (e²/h)	0.109 ±0.006	0.109 ±0.009
rms(G_{NS})/rms(G_N)	1.5 ±0.2	1.3 ±0.2

Since the series resistances of the Au contact ($R_{\text{Au}}^c + R_{\text{Au}}^w \approx 1.2 R_{\text{Au}}^c \approx 1.1$ Ω) are small compared to phase-coherent resistance of the Au wire (10.5Ω), we will only correct for the series resistances of the Nb contact ($R_{\text{Nb}} + R_{\text{Nb}}^c \approx 1.2 R_{\text{Nb}}^c \approx 4.8$ Ω). This series resistance is only present in the normal state and is exactly equal to the increase in resistance when the magnetic field exceeds B_c (see Fig. 1a). We note that not only the macroscopic Nb contact is regarded to be incoherent, but the rectangular shaped Nb contact as well. Namely, the phase-breaking length $L_\phi \equiv \sqrt{D_{\text{Au}}/D_{\text{Nb}}}$ for Nb is expected to be reduced compared to $L_\phi \approx 0.6\mu$m for Au by $\sqrt{D_{\text{Au}}/D_{\text{Nb}}}$, which implies that the resistance fluctuations from this Nb rectangle are strongly suppressed due to ensemble-averaging as well.

In Table I we have reproduced the measured (average) resistance of the two studied samples in the normal state and in the superconducting state. We did not correct rms(G_{NS}) [2]. The rms(G_N) has been corrected as described above. As a result, the rms(G_N) are a factor of $(R_N/R_{NS})^2 \approx 2$ larger than reported in Ref. [1] and consequently the ratio rms(G_{NS})/rms(G_N) becomes about 1.4±0.2. We doubt, however, that the remaining difference from 1 is significant, since the statistical error could well be larger than 0.2 due to the fact that only a few large fluctuations determine rms(G_{NS}) (see Fig. 1b) and Fig. 2).

In conclusion, we have argued that the measured rms(G_{NS}) is not significantly enhanced compared to rms(G_N), and it remains an experimental challenge to observe the predicted enhancement factor of $2\sqrt{2}$.

S.G. den Hartog and B.J. van Wees
Department of Applied Physics and Materials Science Centre
University of Groningen
Nijenborgh 4
9747 AG Groningen, The Netherlands

PACS numbers: 73.23.-b, 73.50.Jt, 74.80.-g

[1] K. Hecker, H. Hegger, A. Altland, and K. Fiegle, Phys. Rev. Lett. 79, 1547 (1997).
[2] The reported values for rms(G_{NS}) are considerably smaller than the rms magnitude of the sample-specific conductance fluctuations of about $\text{rms}(G_{NS}) \approx 1.0e^2/h$ observed in both a cross-shaped and a T-shaped 2-dimensional electron gas coupled to superconductors: S.G. den Hartog et al., Phys. Rev. Lett. 77, 4954 (1996); S.G. den Hartog et al., ibid. 76, 4592 (1996). A comparison with the normal state values was not made in these experiments.