Reduced nitrate level in individuals with hypertension and diabetes

Shiekh Gazalla Ayub, Taha Ayub1, Saquib Naveed Khan2, Rubiya Dar, Khurshid Iqbal Andrabi

Department of Biotechnology, University of Kashmir, 1Government Medical College, Srinagar, 2Department of Accident and Emergency, Sher-i-Kashmir Institute of Medical Sciences, Jammu and Kashmir; India

Address for correspondence: Dr. Khurshid I. Andrabi, Department of Biotechnology, University of Kashmir, 190006, Jammu and Kashmir, India. E-mail: andraik@kashmiruniversity.net

ABSTRACT

Background: Nitric oxide (NO) turnover is vital for proper endothelial function to maintain a healthy vascular system. Various risk factors responsible for hypertension and diabetes may disrupt this homeostasis, leading to decreased bioavailability and/or bioactivity of NO, which potentiates endothelial dysfunction. Plasma NO is a useful indicator of NO homeostasis and vascular endothelial function. Since endothelial function plays a key role in the development and progression of diseases like diabetes and hypertension, we sought to investigate the NO profile in patients having diabetes and hypertension and determine the relationship of NO turnover with the disease. Materials and Methods: For this purpose, three groups were studied for the NO production. The first group consisted of 74 hypertensive patients, the second group consisted of 72 diabetic patients and the third group consisted of 60 healthy controls. Nitrate synthase activity was evaluated by measuring nitrate level using an automated sample injector connected to an automated NO detector – Ion liquid chromatograph. Results: The plasma concentration of NO was found to be significantly lower in both essential hypertensive patients and diabetic patients without complications as compared to the healthy controls (P < 0.05). Conclusion: This data confirms that different factors like hyperglycemia and blood pressure are seen to have immense influence on NO production.

Key words: Diabetes, hypertension, nitric oxide

INTRODUCTION

Endothelium, which is an inert single-cell lining covering the internal surface of blood vessels, plays a crucial role in vascular homeostasis by regulating vascular tone and structure.11 Nitric oxide (NO) is the most pivotal molecule secreted by endothelium and thus is a major mediator of endothelial function. The production of NO is catalyzed by family of enzymes called as nitric oxide synthases (NOS), which convert the amino acid L-arginine to L-citrulline and NO.3,12 Three isoforms of NOS, specific to different organ systems, exist. Apart from playing an important role in vasodilation, NO is also critically involved in the regulation of other protective properties of the healthy endothelium by playing an important role in a wide range of physiological processes like platelet and leukocyte aggregation,13 leukocyte adhesion,14 cell proliferation and vasoconstriction.15,16 Evidence suggests that NO plays a major role in regulating blood pressure and glucose levels, and thus impaired NO bioactivity forms an important component of hypertension and diabetes. The physiological importance of NO in the regulation of blood pressure is evidenced by the fact that pharmacological inhibition of NO synthases leads to severe hypertension, vascular injury, and glomerulosclerosis in experimental animals.17 Moreover, endothelial NOS (eNOS) knockout mice exhibit hypertension,18 thus providing further
Moreover, pressure (SBP) <140 mm Hg and diastolic blood pressure DBP <90 mm Hg. Normal blood pressure was defined as systolic according to the criteria of the World Health Organization. Both hypertension and problems (aged 45–65 years) who served as healthy controls. From a similar ethnic background without any health age of 55±10 years) and 60 healthy volunteers (33 men, 27 women) from a similar ethnic background without any health problems (aged 45–65 years) who served as healthy controls.

The study was conducted on 74 hypertensive patients (40 men, 34 women; mean age of 55±10 years), 72 diabetic patients without complications (37 men, 35 women; mean age of 55±10 years) and 60 healthy volunteers (33 men, 27 women) from a similar ethnic background without any health problems (aged 45–65 years) who served as healthy controls.

Both hypertension and type 2 diabetes were diagnosed according to the criteria of the World Health Organization. Normal blood pressure was defined as systolic blood pressure (SBP) <140 mm Hg and diastolic blood pressure (DBP) <90 mm Hg. Hypertension was defined as either SBP ≥160 mm Hg or DBP of ≥95 mm Hg, or both, with a well-documented history of long-term high blood pressure. Patients were excluded if they had any history of certain vascular complications (i.e., cardiac, cerebral, or peripheral vascular diseases), congestive heart failure, renal dysfunction (serum creatinine concentration > 1.5 mg/dl), malignancy, or hematomal diseases, and if they had taken any antihypertensive/hyperlipidemic medications such as angiotensin converting enzyme inhibitors (ACEI)/statins that might influence NO levels. Participants were instructed to refrain from eating for 18 hours, drinking beverages containing alcohol or caffeine, or smoking for at least 24 hours before blood sampling.

To exclude the aging effect possible, only those aged less than 65 years were examined. The samples to be assayed were taken from those who agreed with the experimental use of the research, and a signed informed consent was obtained from all the patients who participated in the study.

MATERIALS AND METHODS

Study design

The study was conducted on 74 hypertensive patients (40 men, 34 women; mean age of 55±10 years), 72 diabetic patients without complications (37 men, 35 women; mean age of 55±10 years) and 60 healthy volunteers (33 men, 27 women) from a similar ethnic background without any health problems (aged 45–65 years) who served as healthy controls.

Analytical methods

About 2 ml of whole blood was drawn from each subject into heparinized tubes, which were promptly chilled in an ice bath. Plasma was isolated by centrifugation (15 min at 13,000 rpm) and then stored at −80°C till further analysis. For deproteinization, equal amount of acetonitrile was added to the plasma followed by centrifugation at 13,000 rpm for 30 min. The supernatant was collected and pellet discarded. The samples obtained were kept at −80°C until the time of NO metabolite analysis. Nitrate level in the plasma samples was measured using an automated sample injector connected to an automated NO detector – Ion liquid chromatograph (Dionex, Model ICS-2500).

Statistical methods

The entire data was statistically analyzed using SPSS program. Data were expressed as the mean±SEM and were compared by analysis of variance. P < 0.05 was considered statistically significant.

RESULTS

The clinical characteristics of hypertensive, diabetic and normal control subjects are summarized in Table 1. With the exception of systemic blood pressure (measured at the time of the study) in case of hypertensive subjects, no significant difference in these characteristics was observed between the patient and control groups. The average plasma nitrate level in essential hypertensive patients was 39.7±13.27 µmol/L (range 30.855–46.63 µmol/L), which showed significant
difference compared to the normotensive healthy group (100.48±32.46 µmol/L). Patients having diabetes without complications had a plasma nitrate level of 24.95±15.79 µmol/L (range 16.808–30.748 µmol/L), which is also significantly less compared to the control group [Table 2].

DISCUSSION

The inverse correlation between the plasma nitrate concentration and hypertensive group makes it imperative that blood pressure plays an important role in the downregulation of NO production in these subjects. The observations concerning the end product of NO metabolites are non-univocal in hypertension; many reports in fact show their decrease, while others demonstrate their increase. However, our results are in agreement with data showing the inverse correlation between the two. A study conducted on hypertensive patients has shown decreased level of NOx and guanosine 3',5'-cyclic monophosphate (cGMP) compared to normotensive subjects, and antihypertensive agents such as calcium channel blockers or ACEI were effective in recovering those levels.[18] It has been seen that SBP and DBP inversely correlated with plasma and urinary nitrate owing to the decline of antioxidative activity (i.e., lipid peroxidation enhanced by the lack of antioxidant activities) which was associated with decreased NO production and the severity of hypertension.[19,20] Li et al, reported a positive association between NOx and BP in normotensive African Americans who carry the “a” allele of eNOS4 polymorphism.[21]

Hypertension can produce structural damage to aortic endothelial cells in animals, and pressure overload is associated with a direct toxic effect on human endothelium; impairment of the release of NO from vascular endothelial cells may thus contribute to the reduced plasma nitrogen oxide concentrations in patients with essential hypertension. Decreased synthesis of NO might also result from abnormal handling of intracellular calcium and a consequent reduction in the activity of NOS.[18] Increased production of superoxide anions in oxidative stress which rapidly deactivate NO is a characteristic feature of experimental models of hypertension.[19,20] It is also seen that plasma indexes of lipid peroxidation are increased in patients with hypertension.[21] Studies have shown that hypertension impairs endothelium-dependent dilation of rat coronary arteries as a result of superoxide anion mediated degradation of NO.[19] Mice with disruption of the gene for eNOS have elevated BP levels compared with control animals, suggesting a genetic component to the link between impaired NO bioactivity and hypertension.[22]

Our results also showed inverse correlation between NO level and diabetic state and this fact clearly underlines that hyperglycemia is a major determinant factor in serum NOx levels. It is widely recognized that hyperglycemia induces impairment of the endothelial function via increased oxidative stress[23] which is a characteristic feature of diabetic individuals. The hyperglycemic state stimulates the production of advanced glycosylated end products,[24] enhances the polyol pathway[25] and activates protein kinase C leading to oxidative stress.[26,27] A reduced content of glutathione, an important antioxidant in erythrocytes,
Our study clearly shows that NO turnover has a definitive noted elevated levels in both diabetes and hypertension. [14–17] Our results coincide with these reports, and we presumed that the cascade of NO bioactivity and availability on smooth muscle cells was impaired in the early affected stage of diabetes mellitus and followed the decrease of endothelial NO production.

Reduced NO availability in diabetes mellitus and hypertension underlines its relevance to the development of secondary complications in these clinical conditions. Alteration of NO metabolism and increased oxidant stress, previously demonstrated in diabetic patients, have been demonstrated to be involved in the pathogenesis of macrovascular events, which are increased in hypertensive as well as diabetic patients. [18–21]

To the horizon of our knowledge, our work represents the first study of this kind done in Kashmir, India. Moreover, the distinct features of Kashmir including unique geographic locale, traditions, culture and genetically pure and ethnic population prompted us to take this particular study and compare NO levels in diseased and normal states. Our study is a preliminary attempt to investigate the correlation of NO turnover with diabetes and hypertension. However, further studies need to be done to gain information for better understanding of the key events relevant to the designing and establishing the role of NO assays in diabetes and hypertension. In conclusion, our results coincide with these reports, and we presumed that the cascade of NO bioactivity and availability on smooth muscle cells was impaired in the early affected stage of diabetes mellitus and followed the decrease of endothelial NO production.

Reduced NO availability in diabetes mellitus and hypertension underlines its relevance to the development of secondary complications in these clinical conditions. Alteration of NO metabolism and increased oxidant stress, previously demonstrated in diabetic patients, have been demonstrated to be involved in the pathogenesis of macrovascular events, which are increased in hypertensive as well as diabetic patients. [18–21]

To the horizon of our knowledge, our work represents the first study of this kind done in Kashmir, India. Moreover, the distinct features of Kashmir including unique geographic locale, traditions, culture and genetically pure and ethnic population prompted us to take this particular study and compare NO levels in diseased and normal states. Our study is a preliminary attempt to investigate the correlation of NO turnover with diabetes and hypertension. However, further studies need to be done to gain information for better understanding of the key events relevant to the designing and establishing the role of NO assays in diabetes and hypertension. In conclusion, our results coincide with these reports, and we presumed that the cascade of NO bioactivity and availability on smooth muscle cells was impaired in the early affected stage of diabetes mellitus and followed the decrease of endothelial NO production.

Reduced NO availability in diabetes mellitus and hypertension underlines its relevance to the development of secondary complications in these clinical conditions. Alteration of NO metabolism and increased oxidant stress, previously demonstrated in diabetic patients, have been demonstrated to be involved in the pathogenesis of macrovascular events, which are increased in hypertensive as well as diabetic patients. [18–21]

To the horizon of our knowledge, our work represents the first study of this kind done in Kashmir, India. Moreover, the distinct features of Kashmir including unique geographic locale, traditions, culture and genetically pure and ethnic population prompted us to take this particular study and compare NO levels in diseased and normal states. Our study is a preliminary attempt to investigate the correlation of NO turnover with diabetes and hypertension. However, further studies need to be done to gain information for better understanding of the key events relevant to the designing and establishing the role of NO assays in diabetes and hypertension. In conclusion, our results coincide with these reports, and we presumed that the cascade of NO bioactivity and availability on smooth muscle cells was impaired in the early affected stage of diabetes mellitus and followed the decrease of endothelial NO production.

Reduced NO availability in diabetes mellitus and hypertension underlines its relevance to the development of secondary complications in these clinical conditions. Alteration of NO metabolism and increased oxidant stress, previously demonstrated in diabetic patients, have been demonstrated to be involved in the pathogenesis of macrovascular events, which are increased in hypertensive as well as diabetic patients. [18–21]

To the horizon of our knowledge, our work represents the first study of this kind done in Kashmir, India. Moreover, the distinct features of Kashmir including unique geographic locale, traditions, culture and genetically pure and ethnic population prompted us to take this particular study and compare NO levels in diseased and normal states. Our study is a preliminary attempt to investigate the correlation of NO turnover with diabetes and hypertension. However, further studies need to be done to gain information for better understanding of the key events relevant to the designing and establishing the role of NO assays in diabetes and hypertension. In conclusion, our results coincide with these reports, and we presumed that the cascade of NO bioactivity and availability on smooth muscle cells was impaired in the early affected stage of diabetes mellitus and followed the decrease of endothelial NO production.
Relation of endothelial nitric oxide synthase gene to plasma nitric oxide level, endothelial function and blood pressure in African Americans. Am. J Hypertens 2004;17:560-7.

18. Dominiczak AF, Bohr DF. Nitric oxide and its putative role in hypertension. Hypertension 1995;25:1207-8.

19. Grunfeld S, Hamilton CA, Mesaro S, McClain SW, Dominiczak AF, Bohr DF, et al. Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension 1995;25:854-7.

20. Tschudi MR, Mesaro S, Luscher TF, Malinski T. Direct in situ measurement of nitric oxide in mesenteric resistance arteries: Increased decomposition by superoxide in hypertension. Hypertension 1996;27:32-35.

21. Sagar S, Kallo IJ, Nalini K, Ganguly NK, Sharma BK. Oxygen free radicals in essential hypertension. Mol Cell Biochem 1992;111:103-8.

22. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskwitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995;377:239-42.

23. Aydin A, Oshal H, Sayal A, Ozata M, Sahin G, Işmer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: Effects of glycemic control. Clin Biochem 2001;34:65-70.

24. Bucala R, Tracey KJ, Cerami A. Advanced glycation end-products cause a decrease in nitric oxide and mediate defective endothelium dependent vasodilation in experimental diabetes. J Clin Invest 1991;87:432-8.

25. Tesfamariam B, Palacio JJ, Weisbrod RM, Cohen RA. Aldose reductase inhibition restores endothelial cell function in diabetic rabbit aorta. J Cardiovasc Pharmacol 1993;21:205-211.

26. Williams B, Gallacher B, Patel H, Orme C. Glucose induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 1997;46:1497-503.

27. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001;88: E14-22.

28. Thronalley PJ, McLellan AC, Lo TW, Benn J, Stinksen PH. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci 1996;90:575-82.

29. Jan SK, McVie R. Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 1994;43:306-9.

30. Frei B. Reactive oxygen species and antioxidant vitamins: Mechanism of action. Am J Med 1994;97:5S-13S.

31. Donnini D, Zambito AM, Perrella G, Ambesi-Impiombato FS, Curcio F. Glucose may induce cell death through a free radical-mediated mechanism. Biochem Biophys Res Commun 1996;219:412-7.

32. Pieper GM, Langenstroer P, Siebereich W. Diabetic-induced endothelial dysfunction in rat aorta: Role of hydroxyl radicals. Cardiovasc Res 1997;34:145-56.

33. Vanizor B, Orem A, Karahan SC, Kiran E, Erem C, Alyazieigol R, et al. Decreased nitric oxide end-products and its relationship with high density lipoprotein and oxidative stress in people with type 2 diabetes without complications. Diabetes Res Clin Pract 2001;54:33-9.

34. Mikiwa K, Tadashi I, Kayoko K, Atsushi N, Masahito H, Hiroshi H, et al. Plasma nitrate/nitrite levels in healthy population and patients with diabetes mellitus - relationships with gender, aging and diabetic complications. Bull Osaka Med Coll 2002;48:1-6.

35. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001;88: E14-22.

36. Mohamed AK, Bierhaus A, Schiofkoer S. The role of oxidative stress and NF-kappa B activation in late diabetic complications. Biofactors 1999;10:157-67.

37. Tretjakovs P, Kalnins U, Dabina I, Erglis A, Dinne I, Jurka A, et al. Nitric oxide production and arachidonic acid metabolism in platelet membranes of coronary heart disease patients with and without diabetes. Med Princ Pract 2003;12:10-6.

38. Bulent S, Cahit T, Dilek T, Akan AL, Sozmen EY. Plasma antioxidant status and nitrate levels in patients with hypertension and coronary heart disease. Tr J Med Sci 1998;28:525-31.

39. Kiraly S, Libby P, Ganz P. Endothelial function and coronary artery disease. Carr Opin Lipidol 2001;12:383-9.

How to cite this article: Ayub SG, Ayub T, Khan SN, Dar R, Andradi KL. Reduced nitrate level in individuals with hypertension and diabetes. J Cardiovasc Dis Res 2011;2:172-8.

Source of Support: Nil. Conflict of Interest: None declared.