Behaviour analysis of building column structure with retaining wall due to explosion load in front and side a construction

E K Pangestuti and N H Kamilah
Civil Engineering Department, Universitas Negeri Semarang, Sekaran, Gn. Pati, Semarang 50229
endahkp@mail.unnes.ac.id

Abstract. Analysis of the impact of explosion loads on buildings to determine the structural column reaction conditions as a result of the blast loads. The model building structure is a three-story structure with a height of 10.5 meters. At distances between 10 and 15 meters from the source of the blast, the analysed explosive weight of 500 kg TNT was converted to a static load. SAP2000 software was used to conduct the analysis. The analyses' results in the form of a moment force that compares a building's column structure's response. Based on this analysis, it can be concluded that the conditions in the structure without restrained walls are insufficient to withstand the blast load, while the structure with restrained walls is capable of receiving explosive loads.

1. Introduction
There is a design method of civil building in building construction, and the loading factor is an absolute study that is very significant in planning. These loads are classified as dead loads, live loads, wind loads, earthquake loads, and explosion loads. Explosion loads are rarely included in the construction design planning phase, even though blast loads may have a fatal effect on building construction [1-3].

The model will be adjusted based on the difference in distance explosions of 10 meters and 15 meters on the side and front of the structure, with the same bomb mass at both distances. The moment force produced by the explosion load will be compared in two structural models, according to the results of the study [4-6].

The research result is a study of the strength behaviour of columns under explosion loads to see which are stronger at avoiding structural failures. This research aims to determine the effect of waves on the building structure of columns caused by an explosion load at a distance of 10 and 15 meters. The benefits of this study are meant to provide information about building damage caused by explosion loads, and from the research's findings, it can be built into recent knowledge to attempt some explosion load analysis.

The research is based on the following assumptions:

1. For structural modelling, a three-story residential building frame was used.
2. The analysis relied on the SNI 1727-2013 and SNI 2847-2013 criteria.
3. An explosive charge of 500 kg TNT was used at a distance of 10 meters and 15 meters.
4. The bomb was detonated on the structure's side and in front of it.
5. The bomb that is being investigated is external (outside the building),
6. Structural loading simulation using SAP2000 software.
7. The difference in the building structure's moment due to the blast load at 10 meters and 15 meters is the calculated parameter.
8. The following are the structure dimensions: a. The element dimensions and the form of the structure as shown in the diagram:

The element dimensions and the shape of the structure are shown in figure 1 to figure 3.

Figure 1. 3-Dimensional View of The Building

Figure 2. Floor Plan of The Building

Figure 3. Side View of The Building

a. Concrete compression strength, $f_{c'} = 21$ MPa
b. The quality of main reinforcement, $f_y = 400$ MPa
c. The quality of shear reinforcement, $f_y = 240$ MPa
d. Column dimensions = 0.35 m x 0.55 m
e. Beam-1 dimensions = 0.25 m x 0.35 m
f. Tie beam dimensions = 0.35 m x 0.55m

g. Sloff beam dimensions = 0.20 m x 0.25m

h. Ringbalk-1 dimensions = 0.25 m x 0.40m

i. Plate dimensions = 0.12 m

The number of floors = 3 floors with the height of the building is 10.5 meters.

2. Materials and Methods

2.1 Materials

The materials needed in this research is Microsoft Excel software for calculating the distribution of blast waves and SAP2000 software to analyse building structures due to explosion loads [7] as given in Figure 4 and Figure 5.

![Figure 4. Microsoft Excel Software](image1)

![Figure 5. SAP2000 Software](image2)

2.2 Methods

There are several methods used in this research, among others: literature studies, testing of building structures due to blast loads, and analysis of test results. With the following data:
2.2.1 Primary data. Primary data needed in this study include data on the R (Wavelength until it hits the joint point), Z (Scaled distance), Pr (Parameters of the explosion load process), and P (the strength of the explosion wave) [8].

1. R (Wavelength until it hits the joint point)
The first step in performing an explosion wave analysis is to determine the R-value.

 a. To find the value of R on the ground floor in meters, use the following formula:

 \[R (m) = \sqrt{\text{Explosion load distance}^2 + \text{Beam length}^2} \]

 b. To find the R-value on the 1st floor to 3rd floor, use the following formula:

 \[R (m) = \sqrt{\text{Building height}^2 + \text{R ground floor}^2} \]

 c. To calculate the value of R in ft, use the following formula:

 \[R (ft) = \sqrt{R (m)} \times 3.28 \]

2. Z (Scaled distance)
After calculated the R-value, use the following formula to determine the Z value:

\[Z = \frac{R(ft)}{W^3} \]

3. Pr (Parameters of the explosion load process)
Pr is calculated using a graphic by drawing a straight line up in conjunction with the Z value until the Pr wave line is formed, then drawing a straight line to the left to obtain the Pr value [9-10]. The result is given in Figure 6.

After getting the Pr value, the Pr value is converted into Kpa, Mpa, and Newton units. With the following formula:

\[\text{Pr}(KPa) = \text{Pr}(PSI) \times 6.89 \]
\[\text{Pr}(MPa) = \frac{\text{Pr}(KPa)}{1000} \]
\[\text{Pr}(N) = \text{Pr}(MPa) \times \text{column dimensions} \]

4. P (the strength of the explosion wave)
The P-value data is the final data that will be used to calculate the blast wave value that will be inputted into the building structure. The following formula is used to calculate the P-value:

\[P = \frac{\text{Pr}(N)}{9.8} \]
Figure 6. Surface explosion wave parameters [11]

2.2.2 Secondary data. The secondary data required for this study is wall material data, which will be inputted into SAP2000 as a comparison in two cases, namely structures with confined walls and without confined walls.

2.3 Data Processing. Calculations with Excel Microsoft software can be used to collect primary and secondary data, which can then be analysed with SAP2000 software.

Wave data was generated as a result of two separate explosion loads, one on the front centre side of the building structure and the other on the side of the structure with a 500kg TNT blast load, both at a distance of 10 meters and 15 meters.

The measures used to calculate the waves are as follows:

a. Microsoft Excel
 1) Prepare the data for the explosion wave analysis that has been collected.
 2) Comprehend the data, as well as any supporting data.
 3) Calculation of the data collected to obtain R, Z, and Pr results
 4) Once Pr has a result, it is recalculated to produce a P result.
 5) After the P results have been collected, the results can be analyzed using SAP2000 software to assess the structure's strength.

b. SAP2000
 1) On SAP2000, pick a new model from the available toolbar to create a building template.
 2) Next, enter the data in conjunction with the structure to be evaluated, such as the building's height, length, and width.
 3) Once the initial structure drawing is complete, use the toolbar to identify material to enter the material data in the form of reinforcement and consistency used in the structural data.
4) Then, in the define-frame section toolbar, enter the column, beam, and other supporting details.
5) Finally, enter the loading combination so that the results match your expectations.
6) The loading input is in the form of a dead load on the frame and a live load on the floor plate, with the loading results, are written on SNI 2013.
7) Once you’ve done, run the structure's results without using P or wave loads to see if the moment that happens is sufficient.

3. Results of the Study
The sketch of the bomb located in the analysed model variations can be seen in Figure 7. The mass of the TNT bomb used was 500 kg with 10 meters and 15 meters distance in front of the structure.

![Figure 7. Sketch of Bombs on The Structure](image)
The sketch of the bomb located in the analysed model variations can be seen in Figure 8. The mass of the TNT bomb used was 500 kg with 15 meters distance on side of the structure.

Figure 8. Sketch of Bombs on The Structure

The explosion waves that hit the structure would run into the waves propagation which was modelled at each joint point that worked. The following table recapitulated the calculation of wave distribution for the two explosion distances on the front of the structure which can be seen in Tables 1 and 2.

Joint (m)	v	W (lb)	R (m)	R (ft)	Z	Pr (N)	P (Kg)
0	3.5	1102.32	10	32.00	3.175	737919	75297.86
4	3.5	1102.32	10.770	35.327	3.420	612521	62502.14
8	3.5	1102.32	12.806	42.004	4.066	397897.5	40601.79
12	3.5	1102.32	15.620	51.235	4.960	359313.5	36664.64
16	3.5	1102.32	18.868	61.887	5.991	110929	11319.29
20	3.5	1102.32	22.361	73.343	7.100	67522	6890.00
24	3.5	1102.32	26	85.280	8.256	45818.5	4675.36
24	3.5	1102.32	10.770	35.327	3.420	612521	62502.14
8	3.5	1102.32	12.806	42.004	4.066	397897.5	40601.79
12	3.5	1102.32	15.620	51.235	4.960	359313.5	36664.64
16	3.5	1102.32	18.868	61.887	5.991	110929	11319.29
		1102.32	22.361	73.343	7.100	67522	6890.00
---	---	---------	--------	--------	-------	-------	---------
20	3.5						
24	3.5	1102.32	26	85.280	8.256	45818.5	4675.36
0	3.5	1102.32	10.595	34.751	3.364	595640.5	60779.64
4	3.5	1102.32	11.325	37.145	3.596	504003.5	51428.93
8	3.5	1102.32	13.276	43.545	4.215	359313.5	36664.64
12	3.5	1102.32	16.008	52.506	5.083	177245.25	18086.25
16	3.5	1102.32	19.190	62.943	6.093	101283	10335.00
20	3.5	1102.32	22.633	74.236	7.186	68727.75	7013.04
24	3.5	1102.32	26.235	86.049	8.330	47024.25	4798.39
4	3.5	1102.32	11.325	37.145	3.596	504003.5	51428.93
8	3.5	1102.32	13.276	43.545	4.215	359313.5	36664.64
12	3.5	1102.32	16.008	52.506	5.083	177245.25	18086.25
16	3.5	1102.32	19.190	62.943	6.093	101283	10335.00
20	3.5	1102.32	22.633	74.236	7.186	68727.75	7013.04
24	3.5	1102.32	26.235	86.049	8.330	47024.25	4798.39
0	7	1102.32	12.698	41.651	4.032	352079	35926.43
4	7	1102.32	13.314	43.668	4.227	332787	33957.86
8	7	1102.32	15.008	49.227	4.765	262853.5	26821.79
12	7	1102.32	17.471	57.306	5.548	147101.5	15010.36
16	7	1102.32	20.427	67.000	6.486	92842.75	9473.75
20	7	1102.32	23.691	77.706	7.522	57876	5905.71
24	7	1102.32	27.152	89.060	8.621	39789.75	4060.18
4	7	1102.32	13.314	43.668	4.227	332787	33957.86
8	7	1102.32	15.008	49.227	4.765	262853.5	26821.79
12	7	1102.32	17.471	57.306	5.548	147101.5	15010.36
16	7	1102.32	20.427	67.000	6.486	92842.75	9473.75
20	7	1102.32	23.691	77.706	7.522	57876	5905.71
24	7	1102.32	27.152	89.060	8.621	39789.75	4060.18
0	10.5	1102.3	16.477	54.045	5.232	177245.25	18086.25
4	10.5	1102.3	16.956	55.615	5.384	143484.25	14641.25
8	10.5	1102.3	18.317	60.079	5.816	130221	13287.86
Table 2. Distribution of Explosion Waves 15 Meters Distance on The Front of The Structure

Joint (m)	v	W (lb)	R (m)	R (ft)	Z	Pr (N)	P (Kg)
0	3.5	1102.32	15	49.200	4.763	237532.75	24238.04
4	3.5	1102.32	15.524	50.919	4.929	225475.25	23007.68
8	3.5	1102.32	17.000	55.760	5.398	186891.25	19070.54
12	3.5	1102.32	19.209	63.007	6.099	108517.5	11073.21
16	3.5	1102.32	21.932	71.936	6.964	74756.5	7628.21
20	3.5	1102.32	25.000	82.000	7.938	53053	5413.57
24	3.5	1102.32	28	92.830	8.986	40995.5	4183.21
4	3.5	1102.32	15.524	50.919	4.929	225475.25	23007.68
8	3.5	1102.32	17.000	55.760	5.398	186891.25	19070.54
12	3.5	1102.32	19.209	63.007	6.099	108517.5	11073.21
16	3.5	1102.32	21.932	71.936	6.964	74756.5	7628.21
20	3.5	1102.32	25.000	82.000	7.938	53053	5413.57
24	3.5	1102.32	28	92.830	8.986	40995.5	4183.21
---	---	---	---	---			
24	3.5	1102.32	28.518	93.538	9.055	35931.35	3666.46
4	3.5	1102.32	15.914	52.197	5.053	231504	23622.86
8	3.5	1102.32	17.357	56.930	5.511	178451	18209.29
12	3.5	1102.32	19.526	64.044	6.200	97665.75	9965.89
16	3.5	1102.32	22.209	72.846	7.052	69933.5	7136.07
20	3.5	1102.32	25.244	82.800	8.015	47024.25	4798.39
24	3.5	1102.32	28.518	93.538	9.055	35931.35	3666.46
0	7	1102.32	16.919	55.494	5.372	190508.5	19439.64
4	7	1102.32	17.385	57.024	5.520	178451	18209.29
8	7	1102.32	18.715	61.385	5.942	110929	11319.29
12	7	1102.32	20.742	68.035	6.586	89225.5	9104.64
16	7	1102.32	23.286	76.379	7.394	62699	6397.86
20	7	1102.32	26.196	85.924	8.318	45818.5	4675.36
24	7	1102.32	29.364	96.314	9.324	33761	3445.00
4	7	1102.32	17.385	57.024	5.520	178451	18209.29
8	7	1102.32	18.715	61.385	5.942	110929	11319.29
12	7	1102.32	20.742	68.035	6.586	89225.5	9104.64
16	7	1102.32	23.286	76.379	7.394	62699	6397.86
20	7	1102.32	26.196	85.924	8.318	45818.5	4675.36
24	7	1102.32	29.364	96.314	9.324	33761	3445.00
0	10.5	1102.32	19.912	65.312	6.323	98871.5	10088.93
4	10.5	1102.32	20.310	66.617	6.449	95254.25	9719.82
8	10.5	1102.32	21.459	70.386	6.814	80785.25	8243.39
12	10.5	1102.32	23.249	76.256	7.382	60287.5	6151.79
16	10.5	1102.32	25.544	83.785	8.111	47024.25	4798.39
20	10.5	1102.32	28.222	92.569	8.961	40995.5	4183.21
24	10.5	1102.32	31.185	102.287	9.902	28938	2952.86
The following table recapitulated the calculation of wave distribution for the explosion distances on the side of the structure which can be seen in Table 3.

Joint	W (lb)	R (m)	R (ft)	Z	Pr (N)	P (Kg)
0	1102.32	18.9670767	62.21	6.02	62699	6397.857143
3.5	1102.32	19.583156	64.23	6.22	57187	5833.074
6	1102.32	20.2854628	66.54	6.44	52364	5341.128
8	1102.32	21.1541958	69.39	6.72	44096	4497.792
10	1102.32	23.3130865	76.47	7.40	33072	3373.344
14	1102.32	18.3098334	60.06	5.81	83369	8503.638
0	1102.32	16.5529454	54.29	5.26	188338.15	19210.4913
3.5	1102.32	16.9189243	55.49	5.37	183032.85	18669.3507
6	1102.32	17.6068169	57.75	5.59	171095.925	17451.78435
8	1102.32	18.3847763	60.30	5.84	124674.55	12716.8041
10	1102.32	19.3390796	63.43	6.14	1167166	11905.0932
14	1102.32	21.6794834	71.11	6.88	84884.8	8658.2496
0	1102.32	15.4029218	50.52	4.89	259959.7	26515.8894
3.5	1102.32	15.795569	51.81	5.02	248022.775	25298.32305
6	1102.32	16.5302753	54.22	5.25	237412.175	24216.04185
8	1102.32	17.356555	56.93	5.51	222822.6	22727.9052
10	1102.32	18.3643677	60.24	5.83	204254.05	20833.9131
14	1102.32	20.8146583	68.27	6.61	90190.1	9199.3902
0	1102.32	15	49.20	4.76	120333.85	12274.0527
3.5	1102.32	15.4029218	50.52	4.89	118163.5	12052.677
6	1102.32	16.1554944	52.99	5.13	108155.775	11031.88905
8	1102.32	17	55.76	5.40	89225.5	9101.001
10	1102.32	18.0277564	59.13	5.72	76565.125	7809.64275
14	1102.32	20.5182845	67.30	6.51	41839.525	4267.63155

Furthermore, the force that had been obtained was inputted at each joint using SAP2000 software. Load that worked statically. The results of the load that has been inputted on the joint of the portal building structure can be seen in Figure 9, Figure 10 and Figure 11.
Figure 9. Load Input at the Joint with a Load Distance of 10 Meters

Figure 10. Load Input at the Joint with a Load Distance of 15 meters.

Figure 11. Load Input at the Joint with a Load Distance of 15 meters inside of the structure.
The distribution calculation of the explosion wave on each model with different distances using SAP2000 software assistance according to Table 1, Table 2, and Table 3. The wave parameters obtained were the weight of the load due to the generated explosion load. The output obtained from structural modeling explained how the generated wave load could cause failure in columns structures.

Table 4. Results analysis of the 1st floor

Columns	P (KNmm)	M (KNmm)	Status
C1	226.328	9458.823	Safe
C2	396.324	10201.392	Safe
C3	455.568	11726.313	Safe
C4	456.444	11748.87	Safe
C5	453.817	11681.241	Safe
C6	517.641	13324.069	Not Safe
C7	517.434	15098.843	Not Safe
C8	517.641	13324.069	Not Safe
C9	453.817	11681.241	Safe
C10	456.444	11748.87	Safe
C11	455.568	11726.313	Safe
C12	396.324	10201.392	Safe
C13	226.328	9458.823	Safe

Table 5. Results analysis of the 2nd floor

Columns	P (KNmm)	M (KNmm)	Status
C1	146.399	4214.092	Safe
C2	253.595	6649.357	Safe
C3	283.274	7291.476	Safe
C4	283.231	7290.363	Safe
C5	280.552	7221.398	Safe
C6	332.661	8561.161	Not Safe
C7	330.569	9214.262	Not Safe
C8	332.661	8561.161	Safe
The results of the column structure capacity check revealed that the moments obtained on each floor were different, with the construction moments on the first floor being larger than the second and third floors. Damage was found in columns 6, columns 7, and 8 with the successive moment magnitude, is 13324.069 KNmm, 15098.843 KNmm, and 13324.069 KNmm.

The result for the second floor, the damage was found in columns 6, and columns 7 with the successive moment magnitude, is 8561.161 KNmm, and 9214.262 KNmm. So it could be said that the column structure failed in a percentage of 4.27% for the first floor and 2.99% for the second floor. While on the third floor it could be known that the moment was smaller than the first and second floor, so the structure didn't run into failure.

Columns	P (KNmm)	M (KNmm)	Status
C27	74.037	1905.724	Safe
C28	100.889	2596.875	Safe
C29	100.47	2586.088	Safe
C30	100.264	2580.801	Safe
C31	98.866	2544.823	Safe
C32	89.549	2304.995	Safe
C33	88.445	2324.178	Safe
C34	89.549	2304.995	Safe
C35	98.866	2544.823	Safe
C36	100.264	2580.801	Safe
C37	100.47	2586.088	Safe
C38	100.889	2596.875	Safe
C39	74.037	1905.724	Safe

Table 6. Results analysis of the 3rd floor
Table 7. Analysis Results Columns

	Average of M3 (KNmm)	Percentage (%)
1st FLOOR	11644.635	4.27%
2nd FLOOR	7051.535	2.99%
3rd FLOOR	2412.523	0%

Table 8. Results analysis of the 1st floor

	P (KNmm)	M (KNmm)	Status
C1	242.68	9311.848	Safe
C2	414.689	10674.084	Safe
C3	475.74	12245.517	Safe
C4	476.805	12272.965	Safe
C5	475.105	12229.213	Safe
C6	441.854	11373.315	Safe
C7	440.83	12637.128	Safe
C8	441.854	11373.315	Safe
C9	475.105	12229.213	Safe
C10	476.805	12272.965	Safe
C11	475.74	12245.517	Safe
C12	414.689	10674.084	Safe
C13	242.68	9311.848	Safe

Table 9. Results analysis of the 2nd floor

	P (KNmm)	M (KNmm)	Status
K14	153.641	11073.564	Safe
K15	261.929	7000.843	Safe
K16	292.459	7527.892	Safe
K17	292.635	7860.935	Safe
K18	290.731	7483.418	Safe
Based on the results of checking the capacity of the column structure, it can be shown that the moments obtained on each floor have different results. The resulting moment is smaller than the structure due to the explosion at a distance of 10 meters, and the column structure on each portal is safe and able to withstand loading due to explosion load, that the column structure on each portal is safe due to explosion and there is no damage to the structure of the building.

The difference distance of explosion source on the structure has a significant impact on the structure's effects and decides whether the structure is safe or not. So that the structure's ratio due to the blast load can be seen at a distance between 10 meters and 15 meters, and the structure of this building has a safe distance from the explosion load at a distance of 15 meters.

Table 10. Results analysis of the 3rd floor

Columns	P (KNmm)	M (KNmm)	Status
K27	88.412	2275.712	Safe
K28	103.062	2652.825	Safe
K29	102.794	2645.924	Safe
K30	102.739	2644.507	Safe
K31	101.74	2618.8	Safe
K32	94.704	2437.683	Safe
K33	93.957	2472.24	Safe
K34	94.704	2437.683	Safe
K35	101.74	2618.8	Safe
K36	102.739	2644.507	Safe
K37	102.794	2645.924	Safe
K38	103.062	2652.825	Safe
K39	88.412	2275.712	Safe
Table 11. Results analysis of the 1st floor

Columns	P (KNmm)	M (KNmm)	Status
C1	261.021	19744	Safe
C2	402.308	12165.779	Safe
C3	372.886	11276.087	Safe
C4	362.357	10957.685	Safe
C5	462.47	13985.106	Safe
C6	357.51	10811	Safe

Table 12. Results analysis of the 2nd floor

Columns	P (KNmm)	M (KNmm)	Status
C14	163.928	10310.376	Safe
C15	249.385	10362.73	Safe
C16	225.681	10490.624	Safe
C17	221.578	10954.73	Safe
C18	277.836	10630.597	Safe
C19	215.941	9590.138	Safe

Table 13. Results analysis of the 3rd floor

Columns	P (KNmm)	M (KNmm)	Status
C27	61.325	11194.655	Safe
C28	95.372	10437.183	Safe
C29	73.888	9706.022	Safe
C30	70.685	9413.66	Safe
C31	94.387	9345.319	Safe
C32	68.998	8391.816	Safe

The structure of the building due to the blast load beside the structure with a distance of 15 meters is analysed to prove that the structure of this building has a safe distance to the explosion load at a distance of 15 meters.
The results of the analysis indicate that the column structure does not collapse and is safe to receive a 500 kg TNT explosive wave load. So that it can prove that the building structures' safe distance from the blast wave is 15 meters.

4. Conclusion
Based on the data of wave analysis generated by explosion load which was positioned perpendicular to the side of the building structure by Y coordinate and Z coordinate with different explosion load distances and getting common explosion load mass, it could be concluded as:
1. The resultant moment force that is too large causes structural damage to the building column with an explosion load distance of 10 meters in front of the structure, with a moment of magnitude 15098.843 Knm.
2. The structure can withstand waves generated by an explosive load of 500 kg of TNT at a distance of 15 meters.
3. The structure has a safe distance from the blast wave, which is 15 meters from the structure.

Reference
[1] Frapanti S 2018 Educational Building 4 1-10
[2] Heriana 2019 Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 1-6
[3] SNI 15-2094-2000 2000 Bata merah pejal untuk pasangan dinding (Bandung: Badan Standardisasi Indonesia) 196
[4] SNI 1727:2013 2013 Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain (Bandung: Badan Standardisasi Indonesia) 196
[5] Hussein A T 2010 European Journal of Scientific Research 45 430-437
[6] SNI, 2847:2013 2013 Persyaratan Beton Struktural untuk Bangunan Gedung (Bandung: Badan Standardisasi Indonesia) 1–265
[7] Jayasooriya R 2010 PhD Thesis Queensland University of Technology 1-214
[8] Joni M, Suryanita R and A K 2016 Jom FTEKNIK 3 1-7
[9] Mukhlis A, Afifuddin M and Abdullah 2010 Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) 131-138
[10] Mulrony B P, Suryanita R, and Ismeddyanto 2016 Jom FTEKNIK 3 1-15
[11] Singla S, Singla P and Singla A 2015 International Journal of Research in Engineering and Technology 4 759-766