Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health [version 2; peer review: 2 approved]

Eunju Kim, Seung-Hee Yoo, Zheng Chen

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA

Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 (Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Keywords
Circadian oscillator, core loop and stabilization/secondary loop, REV-ERBs and RORs, ligands and drugs, circadian amplitude and resilience, physiological health, healthy aging

This article is included in the Cell & Molecular Biology gateway.

This article is included in the Circadian Clocks in Health and Disease collection.

Corresponding author: Zheng Chen (Zheng.chen.1@uth.tmc.edu)

Author roles: Kim E: Writing – Original Draft Preparation; Yoo SH: Writing – Review & Editing; Chen Z: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work is in part supported by The Welch Foundation (AU-2127-20220331) and NIH (R35GM145232, R03AG063286) to S-HY, The Welch Foundation (AU-1731-20190330) and NIH/NIA (R56AG063746, R01AG065984, RF1AG061901) to ZC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Kim E et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Kim E, Yoo SH and Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health [version 2; peer review: 2 approved] F1000Research 2022, 11:1236 https://doi.org/10.12688/f1000research.126364.2

First published: 31 Oct 2022, 11:1236 https://doi.org/10.12688/f1000research.126364.1
The circadian timing system and health implications

Circadian rhythms are daily cycles of intrinsic processes in living organisms. While light/dark cycles of our environment are the predominant input (or zeitgeber, time giver) to reset our internal rhythms, it is now clear that other factors including feeding–fasting state, nutrients, physical activity, and temperature are all capable of manipulating the circadian cycle.\(^1\)\(^–\)\(^6\) Fundamentally, the circadian timing system is a molecular circuit governing cellular and physiological homeostasis throughout lifespan. Alterations to this clock machinery, by either environmental stresses or genetic defects, have been shown to cause or correlate with dysfunction of diverse physiological processes and increased risks for various diseases involving both peripheral organs and the brain.\(^1\)\(^–\)\(^6\)

At the pinnacle of the circadian timing system is the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN clock synchronizes semi-autonomous cellular oscillators in other brain regions and peripheral organs through neuronal and hormonal signals.\(^7\)\(^–\)\(^9\) The ubiquitous cellular oscillator, present in the SCN and throughout the body, contains interlocked transcriptional and translational feedback loops controlling the expression of downstream target genes.\(^10\) The core clock genes functioning in the oscillator include circadian locomotor output cycles kaput (\textit{Clock})/neuronal PAS domain-containing protein 2 (\textit{Npas2}), basic helix-loop-helix ARNT like 1 (\textit{Bmal1}), period 1 (\textit{Per1})/period 2 (\textit{Per2})/period 3 (\textit{Per3}), cryptochrome 1 (\textit{Cry1})/cryptochrome 2 (\textit{Cry2}), Rev-erbas/Rev-erbb (nuclear receptor subfamily 1 group D member 1/2 (\textit{Nrd1d1y2})), and retinoic acid receptor-related orphan receptor alpha (\textit{Rora})/retinoic acid receptor-related orphan receptor beta (\textit{Rorb})/Retinoic acid receptor-related orphan receptor gamma (\textit{Rorc}) (\textit{Nrd1f12/3}), D-box binding protein (\textit{Dbp}), and nuclear factor, interleukin-3 regulated protein (\textit{Nfili3}). By acting on consensus promoter elements or directing the expression of secondary regulators of gene expression, the encoded core clock proteins play a prevalent role in the global gene expression landscape where more than 80% of genes have been shown to oscillate in at least one location in the body.\(^11\)\(^–\)\(^12\)

Perhaps one of the most important physiological functions of the clock is to safeguard energy homeostasis.\(^13\)\(^,\)\(^14\) It has been postulated that an evolutionary origin of the circadian system is energy partitioning: photosynthesis using oxygen during the day and anaerobic metabolism including nitrogen fixation at night.\(^15\) In mammals, central and peripheral clocks coordinately drive rhythmic expressions of metabolic-related genes in organs with high metabolic activity including liver, muscle, and adipose tissue.\(^3\)\(^,\)\(^16\)\(^–\)\(^18\) Over the past 15 years or so, a growing body of evidence has established that the clock gene machinery influences energy homeostasis directly and genetic mutations in clock genes lead to metabolic dysfunctions, including deficient insulin resistance, glucose intolerance, leptin resistance, and abnormal glucocorticoid and melatonin levels.\(^7\)\(^,\)\(^19\)\(^–\)\(^21\) In accordance, human subjects who were exposed to a controlled circadian misalignment condition displayed glucose intolerance, insulin resistance, and other comorbidities.\(^22\) In addition, our lifestyle choices that affect circadian rhythms may also evoke adverse metabolic consequences. For example, external stimuli including abnormal light exposure,\(^23\) jet-lag,\(^20\)\(^,\)\(^25\) and high-fat diet induced-obesity\(^26\)\(^–\)\(^28\) can trigger desynchronization of the internal clock accompanied by many tissue disorders. Furthermore, sleep deprivation, a common occurrence in modern lifestyle, is associated with increased body mass index and type 2 diabetes incidence and has been identified as an independent risk factor for hypertension, obesity, and coronary heart disease.\(^29\)\(^–\)\(^31\) In addition, sleep and feeding alterations and shift work are highly correlated with elevated metabolic syndrome markers such as triglycerides, and lower high-density lipoprotein (HDL)-cholesterol levels.\(^29\)\(^–\)\(^31\)

Dysregulated clocks are also involved in brain dysfunction and diseases.\(^32\)\(^–\)\(^34\) Sleep is well known to be regulated by the clock, and elegant studies combining human genetics and mechanistic investigation have revealed molecular links between several mutations in clock genes, including \textit{PER2} and casein kinase I isoform delta (\textit{CSNK1D}), and sleep disorders.\(^35\) An emerging area of interest is the crosstalk between the clock and neurodegenerative diseases.\(^3\)\(^–\)\(^6\) Circadian clocks have been shown to control several aspects of brain functions linked to neurodegeneration including dopamine synthesis, inflammatory response, oxidative stress, and cellular metabolism.\(^33\)\(^,\)\(^36\) Consistently, circadian and sleep disruptions are closely associated with neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease,\(^40\) as evidenced by amyloid-beta (A\(\beta\)) oscillation,\(^31\) sundowning behaviors,\(^42\) and neuronal inflammation in mouse genetic mutants.\(^40\)
Given the fundamental role of the clock in cellular and physiological homeostasis and the myriads of chronic diseases associated with circadian dysregulation, it is not surprising that age-related decline over time is strongly correlated with and likely exacerbated by dysfunction in the clock system. It is well known that a number of physiological parameters display blunted circadian rhythms during aging, including sleep, temperature, and hormone secretion. More recently, global transcriptomic profiling revealed profound rewiring in the clock network, notably dampening of oscillatory gene expression in accordance with the physiological decline. A key role of the circadian rhythms in aging is further highlighted by two large-scale gene profiling studies where circadian gene expression changes emerged from unbiased analyses as a top underlying pathway during aging. For example, a comparative multi-tissue gene profiling approach was undertaken to search for pathways correlated with maximum lifespan in 26 species, and identified the circadian system as a pillar that governs metabolic and inflammatory pathways for longevity regulation. Furthermore, interventional fasting paradigms designed to incorporate circadian timing were recently reported to markedly prolong lifespan in Drosophila and mice, including 35% lifespan extension in male mice. The convergent spotlight on circadian remodeling during aging provides compelling evidence for the notion that a robust circadian system is key to health and healthspan.

The stabilization loop

The core loop of the oscillator is primarily responsible for generating the near-24hr rhythm via the negative feedback between CLOCK/BMAL1 and CRY/PER. Through binding to E-box elements, the CLOCK/BMAL1 heterodimer activates the expression of many Clock-Controlled Genes (CCGs). As PER/CRY proteins accumulate and reach critical levels in the cytoplasm, they translocate to the nucleus to inhibit the activity of CLOCK/BMAL1, thereby inhibiting their own transcription. On the other hand, the secondary loop, mainly involving the opposing transcription factors REV-ERBs and RORs, confers stability and robustness for the core loop, and is also strategically located at the interface between the core oscillator and many downstream clock-controlled genes (Figure 1). Growing evidence suggests a regulatory and therapeutic potential of the stabilization loop in physiology, disease, and aging.

REV-ERBs and RORs, the main components of the stabilization loop, are multi-functional nuclear receptors to repress and activate target gene expression, respectively. REV-ERBs and RORs bind as monomers to the same consensus

![Figure 1. The stabilization loop of the circadian oscillator is strategically situated at the interface of the rhythm-generating core loop and the circadian output network. The core oscillator mainly consists of core and stabilization loops as indicated by the dotted circle. The REV-ERB and retinoic acid receptor-related orphan receptors (RORs) compete at the consensus ROR response elements (ROREs) of target gene promoters, including basic helix-loop-helix ARNT like 1 (Bmal1) and many clock-controlled genes (CCGs), to regulate circadian transcription in a tissue-specific manner. They may interact via other mechanisms and in clock-independent processes – see text for details. REV-ERBs and RORs play regulatory roles in many tissue and organismal functions and targeting these receptors by small-molecule agents may strengthen circadian resilience, ultimately conferring beneficial effects to promote health and healthspan. CLOCK, circadian locomotor output cycles kaput; CRY, cryptochrome; PER, period.](image-url)
amplitude regulation of clock-controlled genes. In a pioneering study, the mRNA oscillation of belied that their opposing functions and circadian patterns (expression and promoter recruitment) play a key role in many other studies have since established a key role of RORyt as the master transcription factor for Th17 cell

expression level and amplitude with the percentage of cycling transcripts in respective tissues, consistent with a regulatory role of RORγ in circadian oscillation. In addition to jointly regulating Bmal1 transcription, additional modes of genetic and molecular interplay exist between REV-ERBs and RORs. Rorc itself contains a functional RORE element in its promoter, therefore subject to transcriptional regulation by REV-ERBs/ RORs. Moreover, molecular studies have demonstrated a facilitated recruitment mechanism where REV-ERBs are recruited to the target gene promoter by RORs, in a process that requires chromatin remodeling by SWI/SNF factors. These observations suggest an interconnectivity, rather than a simple competition, relationship between these master regulators. As discussed below, our studies of an ROR agonist, nobiletin (NOB), provide further evidence that RORs, and likely REV-ERBs, regulate circadian gene expression levels and amplitude in a context-dependent manner, potentially dictated by an inherent requirement to maintain circadian and physiological resilience.

Consistent with the broad gene regulatory roles of REV-ERBs and RORs, mouse genetic mutants exhibit various circadian and physiological phenotypes. Rev-erba (Nr1d1)-deficient mice showed disrupted circadian rhythms including a shorter period length (0.5 h) and exaggerated light-induced phase shifts compared to wild-type (WT) mice. Rev-erbb (Nr1d2) knockout (KO) mice also displayed a strong diurnal change of gene expression including inhibition of Bmal1 transcription. While individual KO mice retained circadian rhythmicity, Nr1d1/2 double knockout led to severe disruption of overt rhythms, consistent with functional redundancy between these two subtypes. Rora- and Rorb-deficient mice were reported to display altered circadian behavior such as circadian locomotor activity and shortened period length, while no significant alteration in wheel activity is apparent in Rorc-deficient mice. These results indicated that REV-ERBs and RORs are required for the maintenance of normal circadian behavior and period length.

With respect to tissue physiology, REV-ERBs and RORs show overlapping but distinct expression patterns and their deficiency led to a wide range of other physiological deficits. REV-ERBα and REV-ERBβ are expressed in skeletal muscle, adipose tissue, liver, and brain with tissue-specific patterns. Whereas REV-ERBα is broadly expressed in a rhythmic manner in many tissue types with robust amplitude, REV-ERBβ is highly expressed in fewer tissues including certain brain regions (pineal and prefrontal cortex), thyroid, uterus, and pituitary. Deficiency of both Rev-erbs causes liver steatosis, in contrast to relatively minor changes upon loss of each subtype alone.

Like REV-ERBs, the three members of the ROR subfamily, RORα, RORβ, and RORγ, display significant sequence similarities. RORα is expressed broadly, notably in skeletal muscle, liver, kidney, lungs, adipose tissue, skin, and brain. Rora KO (Rora−/−) and staggerer mutant (Rora6/6) mice displayed debilitating cerebellar ataxia and are mostly infertile. RORα-deficient mice also showed a multitude of other defects including thin long bones and abnormal retinal development, the latter corresponding to high expression levels of RORα in the ganglion cell layer, the inner nuclear layer, and cone photoreceptors in the outer layer. RORβ expression is more limited, mainly in the nerve system. Rorb−/− mice exhibited reproductive abnormality and serious degeneration of postnatal retina. RORγ is expressed in several peripheral tissues including skeletal muscle, liver, kidney, adipose tissue, and particularly thymus. In accordance, RORγ KO led to reduced levels of thymocytes and abnormal lymphoid organ development. This and many other studies have since established a key role of RORγt as the master transcription factor for Th17 cell
development, although circadian clock involvement in this function is not fully understood. Several studies have also examined double disruption of RORs, providing evidence for their overlapping functions. As mentioned above, in the liver where both RORα and RORγ are expressed, double Rorα/c KO led to strong disruption of lipogenesis via a direct regulation of the Insig2 gene.65

Therapeutic relevance of REV-ERBs and RORs

REV-ERBα and RORs have been implicated in various diseases including metabolic diseases, immune diseases, and cancers.53,61,66,87 REV-ERBα and RORs show altered expressions and disrupted rhythms during disease development.88–90 Furthermore, alteration of REV-ERBα and RORs affects the organism susceptibility to diseases in both humans and mice and is involved in many pathways associated with pathological processes and diseases.61,87,90,91–93

Metabolic disorders

Myriad studies have illustrated a regulatory role of REV-ERBs and RORs in energy metabolism. REV-ERBα was found to regulate de novo glucose synthesis.94–96 In accordance, REV-ERBα-deficient mice showed a higher plasma glucose level.25,97 whereas activation of REV-ERBα diminished plasma glucose levels, improving disease phenotypes.94–97 RORs are also involved in glucose metabolism. Single nucleotide polymorphism in RORα (rs7164773) has been shown to correlate with increased risk of type 2 diabetes in the Mexican Mestizo population, providing human genetic evidence for a role of RORα in insulin sensitivity.98 In addition, it was reported that RORα was required for the secretion of FGF21, a hormone associated with glucose tolerance and hepatic lipid metabolism.99–101 In another study, RORγ was found to regulate transcription of various genes involved in glucose metabolism including glucose-6-phosphatase (G6p), phosphoenolpyruvate carboxykinase 1 (Pck), and glucose transporter 2 (Glu2), and Rorc-deficient mice in fact displayed a significantly higher insulin sensitivity and glucose tolerance than WT mice, particularly at ZT (zeitgeber time, with ZT0 and ZT12 corresponding to light on and off respectively) 4–6.102 In pharmacological studies, SR1078, an agonist of RORα and RORγ, was able to improve insulin sensitivity, blood glucose, and triglyceride levels in diabetic rodents.103 In comparison, mice treated with SR3335, an RORα inverse agonist, showed dramatically decreased glucose levels in the plasma compared with the control mice, by inhibiting Pck expression and gluconeogenesis.104

With respect to lipid metabolism, Rev-erba−/− mice showed increased very low-density lipoprotein (VLDL) and triglyceride levels, consistent with the observed upregulation of apolipoprotein C-III (ApoC3), a critical regulator in triglyceride metabolism.105,106 Depletion of both Rev-erbs in the liver synergistically de-repressed several metabolic genes as well as genes that control the positive limb of the molecular clock.107 Consistent with these genetic results, administration of the REV-ERB agonist SR9009 decreased cholesterol levels in the plasma in both wild-type and low-density lipoprotein receptor (Ldlr) null mice through downregulating cholesterol biosynthesis gene expression.108 Extensive mouse studies also point to a key role of RORs in lipid metabolism. In Roraγ−/− staggerer mice, expression levels of hepatic sterol regulatory element-binding protein 1, isof orm c (Srebp-1c), and fatty acid synthase (Fas) were decreased, whereas expression of PGC-1α and β, coactivators involved in oxidative metabolism and gluconeogenesis, were elevated.109,110 At the molecular level, gene expression and circostate analysis showed that RORα and/or RORγ broadly regulate genes involved in lipid metabolism in both liver and muscle tissues.105,109,110,111 Furthermore, structural and biochemical studies identified lipid moieties, mainly cholesterol metabolic intermediates, as possible endogenous ligands for RORα/γ, consistent with the notion that RORs may function as a lipid sensor in the regulation of lipid metabolism.109,110,111–115

Immune diseases

Mounting evidence indicates circadian rhythms in immunity and inflammation. For example, rheumatoid arthritis patients exhibit diurnal variations in functional disability such as joint pain and stiffness in morning time.116,117 REV-ERBα deletion abolished the diurnal rhythms of various inflammatory factors and aggravates inflammation in diseases including autoimmune encephalomyelitis,118,119 fulminant hepatitis,91 neuroinflammation,120,121 heart failure,122,123 myocardial infarction,124 and ulcerative colitis.118,125 At the molecular level, REV-ERBα regulates rhythmic transcription of inflammation-related genes involved in macrophage polarization, immune cell differentiation, and NF-κB signaling.90,125 For example, REV-ERBα was found to obstruct NF-κB signaling in human endometrial stroma cells and macrophages/microglia cells in mouse models, suppressing expression of inflammatory genes such as IL-1β, IL-6, IL-18, tumor necrosis factor alpha (Tnfa), NACHT, LRR and PYD domains-containing protein 3 (Nlrc3), and C-C motif chemokine 2 (Ccl2).90,120,121,126 Activation of REV-ERBα by SR6472 inhibits NF-κB signaling and NLRP3 inflammasome activity to prevent cytokines and chemokines productions, consistent with an anti-inflammatory role of REV-ERBα.2,90,121

RORs also play important roles in immunity.87 Extensive research has established RORγt, a subtype of RORγ, as a master regulator of Th17 cell differentiation and therefore highly involved in autoimmune diseases.127 In Th17 cells, RORγt is expressed at dramatically higher levels during daytime than at nighttime.128 This diurnal expression pattern in turn
up-regulates BMAL1-dependent Rev-erb expression during daytime and conversely represses NFIL3 transcription. Given the central role of RORγt in Th17 cells, several compounds targeting RORγt have been tested in autoimmune disease models. For example, SR1001, an RORα and RORγ inverse agonist, inhibited Th17 cell differentiation under autoimmune disease conditions. Moreover, this effect is associated with decreased expression of several cytokines such as IL17A, IL17F, IL21, and IL22 by specially targeting TH17. Likewise, SR2211, an RORγ inverse agonist, suppressed Th17 cell differentiation and reduced IL17a and IL23R expression levels as well as intracellular IL17 protein level.

Brain diseases

Circadian disruption can adversely impact brain development and function, potentially leading to various mood and neurological disorders. Previously, Rev-erbα knockout mice were found to exhibit enhanced anxiety, and treatment of an REV-ERB agonist showed anxiolytic effects. On the other hand, acute administration of SR8278, a REV-ERB antagonist, improves anxiety symptom and manic-like behavior. Furthermore, REV-ERBα was shown to diminish fatty acid-binding protein 7 (Fabp7) expression, thereby impairing neuronal differentiation and depleting neuronal progenitor cells. Relatedly, deficiency of REV-ERBα adversely affected hippocampal neurogenesis, which contributes to altered mood behaviors.

RORα is highly expressed in several brain regions such as cerebellar Purkinje cells (PC) and thalamus, and functions to regulate brain development. The classical RORα-deficient staggerer mice have been shown to present severe ataxia because of cerebellar neurodegeneration and abnormal PC development. Likewise, Rora KO mice exhibit reduced numbers and sizes of PC in the cerebellar region reminiscent of clinical observations from patients with autism-spectrum disorder (ASD). RORα also showed neuroprotective effects in astrocytes and neurons during hypoxia. RORβ is highly expressed in the retina, pineal gland, and suprachiasmatic nucleus, and has been implicated in visual function, motor ability, and circadian rhythms. For example, RORβ-deficient mice showed abnormal motor and olfactory functions, anxiety control, and alterations in circadian behavior. The noteworthy question regarding a potential functional overlap in the neuronal system between RORα and RORβ remains to be investigated.

Muscle pathologies

REV-ERBs (α and β) and RORs (α and γ) are highly expressed in the skeletal muscle where they modulate myofiber types and energy metabolism and may be targeted against myopathies. In an early study, REV-ERBα-deficient mice showed a marked increase in the relative amount of the slow (type I) myosin heavy chain (MyHC) isoform compared to WT controls. Extensive research since has further revealed the regulatory roles of REV-ERBs in skeletal muscle function. For example, REV-ERBβ has been implicated in skeletal muscle lipid metabolism since ectopic expression of its dominant-negative form upregulated expression of genes associated with fatty acid uptake in skeletal muscle. Consistently, SR8278, an antagonist of REV-ERBs, was found to activate expression of myogenesis genes including Myogenic determination 1 (Myod), Myogenin (Myog), and Major histocompatibility complex 3 (Mhc3), suggesting a role of REV-ERBs in myogenesis.

Loss-of-function studies also suggest an important role of RORα in skeletal muscle metabolism. For example, ectopic expression of a dominant-negative RORα in C2C12 cells or mouse skeletal muscle broadly alters the expression of genes associated with lipid metabolism, lipogenesis, and energy expenditure, including carnitine palmitoyltransferase-1 (Cpt1), caveolin 3 (Cav3), and Srebp1c and its downstream targets.

Cancer

REV-ERBα has been implicated in the progression and development of various cancers. Activation of REV-ERBα by SR9009 and SR9011 was found to confer cancer cell-selective cytotoxicity as well as in vivo efficacy against glioma, and autophagy and lipogenesis were identified as cellular hallmarks closely associated with this anti-cancer activity. In a recent study investigating lung adenocarcinoma-associated cachexia, REV-ERBα functions as a key effector whose exaggerated turnover contributes to gluconeogenesis gene induction and glucose production in mice.

A number of studies have shown that RORα expression is significantly decreased during tumor development and progression, and exogenous RORα expression repressed cell proliferation and tumor growth. For example, downregulated RORα expression has been observed in colorectal cancer and mammary cancer, and is associated with poor prognosis in patients with hepatocellular and breast carcinoma. Conversely, restoring RORα expression suppressed cell migration and tumor growth of breast cancer cells as well as metastasis in nude mice, which was accompanied by up-regulated expression of semaphorin 3F (SEMA3F), a tumor suppressor that reduces tumor growth and invasion. In colon cancer HCT116 cells treated with DNA-damage agents, a p53-RORα crosstalk was required for...
apoptosis, where Rora gene transcription was dependent on p53 and RORγ in turn rendered greater p53 protein stability. In RORγ deficient mice, there was an aggravated development of T-cell lymphomas within the first months after birth, which rapidly metastasized to other organs including liver and spleen.

Nobiletin (NOB): A natural ROR agonist

NOB is a natural bioactive polymethylated flavonoid. Many studies have provided functional evidence both in vitro and in vivo for its biological efficacy in diverse disease models, including metabolic diseases and inflammation. In our previous unbiased chemical screen, we identified NOB, along with its close analog tangeretin, as a clock-enhancing small molecule in cell-based circadian reporter assays. Focusing on NOB, we demonstrated a circadian clock-dependent efficacy to blunt obesity and metabolic dysfunction in mouse models, and importantly identified RORα and RORγ as its direct targets via radioactive ligand binding assays. NOB shows robust binding to the LBDs of RORα and RORγ, with somewhat higher affinity for RORγ. Currently there is no functional evidence to suggest subtype selectivity analogous to CRY-selective compounds. Subsequent published studies, from our group and others, have provided further evidence that NOB plays a beneficial role in strengthening circadian physiologies in various mouse models, including aging, metabolic disorders, cardiovascular disease, and Alzheimer’s disease (AD).

In further support of NOB as an anti-inflammatory agent, recent studies demonstrated a potent role of NOB against neuroinflammation and astrogliosis, accompanied by mitigation of Aβ plaque deposition, in an amyloid AD mouse model. Given the increasing appreciation of circadian rhythms in aging, recent studies have also tested its effect in aging models. In naturally aged mice fed with either regular or high-fat diets (HFD), NOB was found to promote healthy aging at several levels, including metabolic homeostasis, inflammatory markers, tissue functions, and systemic behaviors. An important target organ is skeletal muscle, where circadian gene reprogramming and metabolomic alteration support an improved mitochondrial function, accompanied by respiratory supercomplex formation. Notably, while NOB-mediated improvement in general healthy aging parameters seems more pronounced in metabolically challenged aged mice (HFD fed) than in those fed with regular diet, the latter group showed an extension of median lifespan, but not maximum lifespan. In comparison, NOB was found to exhibit longevity effects in C. elegans, extending median lifespan by up to 21%. Overall, these and many other studies underscore a strong health-promoting effect of NOB, at least in part via circadian mechanisms.

Mechanistic studies have begun to shed light on the circadian modulatory action of NOB. In addition to its clock amplitude-enhancing effects, NOB also alters the other two cardinal circadian parameters, period, and phase, at least in vitro. Following chronic treatment in vivo (10-12 weeks), NOB was able to strengthen oscillatory amplitude, as well as peak expression, of core clock components at both transcript and protein levels in HFD-fed mice, and wheel-running activity was also increased at nighttime. Given the extensive crosstalk between clocks and metabolism/physiology, these overt enhancements of circadian rhythms may result from both direct and indirect effects of NOB on the core oscillator/RORs and clock-regulated downstream functions, respectively. Acute in vivo effects on circadian rhythms remain to be investigated. Another important issue is related to the varying effects of NOB according to the clock functional state. There seems to be a general inverse correlation between NOB efficacy and clock health. For example, in young and healthy mice under normal husbandry conditions, NOB showed essentially no effects on circadian and metabolic functions, contrary to the profound improvements in obese or diabetic mouse models. Likewise, as mentioned above, aged mice further challenged with HFD known to dampen circadian rhythms showed a greater responsiveness to NOB in healthy aging compared with aged mice fed with normal diets. A similar pattern was observed between WT and AD mice at old ages (>22 months) where NOB was found to mitigate neuroinflammation more markedly in the latter, correlating with a more severe circadian disruption in AD mice. These in vivo results together suggest a role of NOB to enhance circadian resilience toward restoring normal circadian rhythms that may have evolved to operate within a physiological range. Either dampening or indiscriminately enhancing the normal circadian rhythms is likely detrimental to organismal health.

Further research should investigate the downstream cellular mechanisms intersecting with the clock machinery. In a recent study, an inhibitory function of NOB against triple-negative breast cancer (TNBC) was found after cell line screening. Both in vitro and in xenografts, NOB was able to blunt TNBC cell growth, either alone or in combination with chemotherapeutic agents. The cellular mechanism entailed, at least in part, suppression of NF-kB signaling, via a pathway where activation of RORs by NOB increased expression of its downstream target gene encoding IκBα, and ChIP analysis showed that ROR recruitment to the IκBα gene promoter was potentiated. While this study illustrates a cellular pathway targeted by NOB in TNBC, it should be noted that the TNBC cells examined do not have a functional clock despite detectable clock gene expression, and NOB was not able to restore the core oscillator in these cells. Therefore, this is a scenario that NOB effects are mediated by ROR transcriptional regulation independent of oscillator function. However, since the host mice have circadian rhythms, whether NOB modulates host rhythms as part of the
effect against TNBC remains to be investigated. Finally, as a natural compound with an excellent safety profile, NOB is ideally suited for future trials in clinically relevant settings against clock-related disorders.

Concluding remarks
Accumulating evidence from molecular, genetic and interventional studies highlight a critical role of the circadian secondary/stabilization loop, specifically the REV-ERBα/β and RORα/β/γ nuclear receptors, in linking the core oscillator with physiology and behavior under both normal and pathological conditions. These are multi-functional transcription factors, playing important regulatory roles in circadian regulation as well as other processes not primarily tied to the clock (e.g., RORγt in Th17 differentiation and autoimmunity). It is therefore a challenge to dissect the underlying mechanisms and devise disease-specific interventions from the circadian perspective. Whenever possible, detailed circadian characterization should be performed, especially at the tissue and organismal levels. As illustrated by pharmacological studies targeting these factors, including those on NOB, the concept of circadian resilience, or restoration of homeostatic clock function, should be an important consideration regarding intervention. Finally, given the tissue-specific nature of circadian regulation and the growing evidence for inter-organ communication with the clock system, the functional effects, mechanistic pathways and interventional approaches should be interrogated accordingly in an integrative manner. In that regard, distribution and functional redundancy among the subtypes of these receptors should be considered. Despite the inherent complexity and practical challenges, targeting the circadian machinery, including the secondary loop, represents an exciting frontier in the 4th dimension for research and medicine.

Author contributions
Conceptualization: Z.C.; Original draft preparation: E.K. and Z.C.; Review and Editing: S.-H.Y. and Z.C.

Data availability
Underlying data
No data are associated with this article.

Acknowledgments
We apologize for not citing many other relevant studies due to scope limitations.

References

1. Bass J, Takahashi JS: Circadian integration of metabolism and energetics. Science. 2010; 330: 1349–1354. PubMed Abstract | Publisher Full Text
2. Güldür T, Otlu HG: Circadian rhythm in mammals: time to eat & time to sleep. Biol. Rhythm. Res. 2017; 48: 243–261. Publisher Full Text
3. Panda S, et al.: Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002; 109: 307–320. PubMed Abstract | Publisher Full Text
4. Burris TP: Nuclear hormone receptors for heme: REV-ERBα and REV-ERBβ are ligand-regulated components of the mammalian clock. Mol. Endocrinol. 2008; 22: 1509–1520. PubMed Abstract | Publisher Full Text
5. Bass J, Lazar MA: Circadian time signatures of fitness and disease. Science. 2016; 354: 994–999. PubMed Abstract | Publisher Full Text
6. Cedérroth CR, et al.: Medicine in the Fourth Dimension. Cell Metab. 2019; 30: 238–250. PubMed Abstract | Publisher Full Text
7. Mohawk JA, Green CB, Takahashi JS: Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012; 35: 445–462. PubMed Abstract | Publisher Full Text
8. Liu AC, et al.: Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 2007; 129: 605–616. PubMed Abstract | Publisher Full Text
9. Finger AM, et al.: Intercellular coupling between peripheral circadian oscillators by TGF-beta signaling. Sci. Adv. 2021; 7. PubMed Abstract | Publisher Full Text
10. Takahashi JS: Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017; 18: 164–179. PubMed Abstract | Publisher Full Text
11. Mure LS, et al.: Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018; 359. PubMed Abstract | Publisher Full Text
12. Zhang R, Lahens NF, Ballance-HI, et al.: A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 16219–16224. PubMed Abstract | Publisher Full Text
13. Rutter J, Reick M, McKnight SL: Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002; 71: 307–331. Publisher Full Text
14. Green CB, Takahashi JS, Bass J: The meter of metabolism. Cell. 2008; 134: 728–742. PubMed Abstract | Publisher Full Text
15. Rosbash M: The implications of multiple circadian clock origins. PLoS Biol. 2009; 7: e69. PubMed Abstract | Publisher Full Text
16. Ando H, et al.: Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005; 146: 5631–5636. PubMed Abstract | Publisher Full Text
17. Bass J: Circadian topology of metabolism. Nature. 2012; 491: 348–356. Publisher Full Text
18. Harfmann BD, et al.: Muscle-specific loss of Bma1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet. Muscle. 2016; 6: 12. PubMed Abstract | Publisher Full Text
19. Stenvers DJ, Scheer FA, Schnauwein P, et al.: Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019; 15: 75–89. Publisher Full Text
42. Volicer L, Harper DG, Manning BC, et al.: Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metab. 2015; 22: 448–459. PubMed Abstract | Publisher Full Text

21. Scheer FA, Hilton MF, Mantzoros CS, et al.: Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 4453–4458. PubMed Abstract | Publisher Full Text

22. Buxton OM, et al.: Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012; 4: 129ra143.

23. McHill AW, et al.: Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 17802–17807. PubMed Abstract | Publisher Full Text

24. Lucassen EA, et al.: Environmental 24-hr cycles are essential for health. Curr. Biol. 2016; 26: 1843–1853. PubMed Abstract | Publisher Full Text

25. Inokawa H, et al.: Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci. Rep. 2020; 10: 2569. PubMed Abstract | Publisher Full Text

26. Kohsaka A, et al.: High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007; 6: 414–421. PubMed Abstract | Publisher Full Text

27. Arble DM, Bass J, Laposky AD, et al.: Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009; 17: 2100–2102. PubMed Abstract | Publisher Full Text

28. Buxton OM, et al.: Circadian rhythm and metabolic function. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6551–6556. PubMed Abstract | Publisher Full Text

29. Rudic RD, Curtis AM, Cheng Y, et al.: Peripheral clocks and the regulation of cardiovascular and metabolic function. Methods Enzymol. 2005; 393: 524–539. PubMed Abstract | Publisher Full Text

30. Gangwish JE, et al.: Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension. 2006; 47: 833–839. PubMed Abstract | Publisher Full Text

31. Gottlieb DJ, et al.: Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 2005; 165: 863–867. PubMed Abstract | Publisher Full Text

32. Slat E, Freeman GM Jr, Herzog ED: The clock in the brain: neurons, glia, and networks in daily rhythms. Handb. Exp. Pharmacol. 2013; Publisher Full Text

33. Logan RW, McClung CA: Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2019; 20: 49–65. PubMed Abstract | Publisher Full Text

34. Burish MJ, Chen Z, Yoo SH: Neural Mechanisms Underlying Circadian Rhythms in Headaches and Neuropathic Pain. Acta Physiol (Oxf.). 2019; 225: e13161. PubMed Abstract | Publisher Full Text

35. Jones CR, Huang AL, Manning BC, et al.: Circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 2012; 13: 325–335. PubMed Abstract | Publisher Full Text

36. Masui ET, Holtzman DM: Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016; 354: 1004–1008. PubMed Abstract | Publisher Full Text

37. Colwell CS: Defining circadian disruption in neurodegenerative disorders. J. Clin. Invest. 2021; 131: 2757–2770. PubMed Abstract | Publisher Full Text

38. Kress QJ, et al.: Regulation of amyloid-beta dynamics and pathology by the circadian clock. J. Exp. Med. 2018; 215: 1059–1068. PubMed Abstract | Publisher Full Text

39. Homolak J, Mudrovic M, Yukic B, et al.: Circadian rhythm and Alzheimer’s disease. Med. Sci. 2018; 6: 52. PubMed Abstract | Publisher Full Text

40. Kang J-E, et al.: Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science. 2005; 312: 1005–1007. PubMed Abstract | Publisher Full Text

41. Volcic L, Harper DG, Manning BC, et al.: Sundowning and circadian rhythms in Alzheimer’s disease. Am. J. Psychiatry. 2001; 158: 704–711. Publisher Full Text

42. Acosta-Rodriguez VA, Rijo-Ferreira F, Green CB, et al.: Importance of circadian timing for aging and longevity. Nat. Commun. 2021; 12: 2862. PubMed Abstract | Publisher Full Text

43. Acosta-Rodriguez V, et al.: Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6j mice. Science. 2022; 376: 1192–1202. PubMed Abstract | Publisher Full Text

44. Ugliaro M, et al.: Circadian autophagy drives IFR-mediated longevity. Nature. 2021; 598: 353–358. PubMed Abstract | Publisher Full Text

45. Lopez-Otin C, Kroemer G: Hallmarks of health. Cell. 2021; 184: 1929–1939. PubMed Abstract | Publisher Full Text

46. Harding HP, Lazar MA: The orphan receptor Rev-erbα activates transcription via a novel response element. Mol. Cell. Biol. 1993; 13: 3113–3121. PubMed Abstract

47. Prenter N, et al.: The orphan nuclear receptor Rev-ERβ controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002; 110: 251–260. PubMed Abstract | Publisher Full Text

48. Giguere V, et al.: Isomor-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 1994; 8: 538–553. PubMed Abstract | Publisher Full Text

49. Carlborg O, Hovde J, Nielsen L, et al.: RORA, a new family of retinoid-related orphan receptor that function as both monomers and homodimers. Mol. Endocrinol. 1998; 12: 757–770. PubMed Abstract

50. Hirose T, Smith RJ, Jetten AM: RORα; the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun. 1994; 205: 1976–1983. PubMed Abstract | Publisher Full Text

51. André E, et al.: Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillations phenotype in mice. EMBO J. 1998; 17: 3867–3877. PubMed Abstract | Publisher Full Text

52. Ueda HR, et al.: System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 2005; 37: 187–192. PubMed Abstract | Publisher Full Text

53. Jetten AM: Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal. 2009; 7: e003. PubMed Abstract | Publisher Full Text

54. Kang HS, et al.: Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol. Genomics. 2011; 43: 818–828. PubMed Abstract | Publisher Full Text

55. Lazar MA: The orphan nuclear receptor RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem. 2008; 283: 18411–18421. PubMed Abstract | Publisher Full Text

Page 10 of 21
64. Zhang Y, et al.: GENE REGULATION. Discrete functions of nuclear receptor Rev-erba and RXRα couple metabolism to the clock. Science 2015; 348:1488-1492. PubMed Abstract | Publisher Full Text

65. Zhang Y, et al.: The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORα/RORβ/gamma. Genes Dev. 2017; 31:1202-1211. PubMed Abstract | Publisher Full Text

66. Limetton ES, Childress ML, Gosting ML, et al.: Genome-wide correlation analysis to identify amplitude regulators of circadian transcriptome output. Sci. Rep. 2020 Dec 14; 10(1):21839. PubMed Abstract | Publisher Full Text

67. Takeda Y, Jothi R, Birla V, et al.: RORα directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res. 2012 Sep 1; 40(17):8519-8535. PubMed Abstract | Publisher Full Text

68. Ikeda R, Tsuchiya Y, Koike N, et al.: Rev-erbs: Integrating metabolism around the clock. J. Histoch. Cytochem. 2004; 52:311-323. PubMed Abstract | Publisher Full Text

69. Liu AC, Lazar MA: Regulation of circadian output. Diab. Vasc. Dis. Res. 2008; 5:82-88. PubMed Abstract | Publisher Full Text

70. Sun Z, et al.: Requirement for RORα in thymocyte survival and lymphoid organ development. Science. 2000; 288:2369-2373. PubMed Abstract | Publisher Full Text

71. Everett LJ, Lazar MA: Nuclear receptor Rev-eru: up, down, and all around. Trends Endocrinol. Metab. 2014; 25:586-592. PubMed Abstract | Publisher Full Text

72. Fujieda H, Bremner R, Mears AJ, et al.: Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development. J. Neurochem. 2009; 108:91-105. PubMed Abstract | Publisher Full Text

73. Wang S, Li F, Lin Y, et al.: Targeting REV-ERBS for therapeutic purposes: promises and challenges. Theranostics. 2020; 10:4158-4182. PubMed Abstract | Publisher Full Text

74. Goumidi L, et al.: Nuclear receptor subfamily 1 group D member 1 (NR1D1) integrates circadian and metabolic processes in the hypothalamus and regulates circadian transcriptome output. J. Neurosci. 1997; 17:6875-6886. PubMed Abstract | Publisher Full Text

75. Liu AC, et al.: Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 2008; 4:e1000232. PubMed Abstract | Publisher Full Text

76. Akashi M, Takumi T: The orphan nuclear receptor Rev-erα regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 2005; 12:641-648. PubMed Abstract | Publisher Full Text

77. Liu AC, et al.: Coactivator-Dependent Oscillations of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERBα. Mol. Cell. 2015; 69:769-783. PubMed Abstract | Publisher Full Text

78. Cho H, et al.: Regulation of circadian behaviour and metabolism by REV-ERBα and REV-ERBβ. Nature. 2012; 485:123-127. PubMed Abstract | Publisher Full Text

79. Iida K, et al.: REV-ERBα regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology. 2018; 154:1449-1464, e1420. PubMed Abstract | Publisher Full Text

80. Wang S, Li F, Lin Y, et al.: Targeting REV-ERBS for therapeutic purposes: promises and challenges. Theranostics. 2020; 10:4158-4182. PubMed Abstract | Publisher Full Text

81. Solt LA, et al.: Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 2012; 485:62-68. PubMed Abstract | Publisher Full Text

82. Yin L, et al.: Rev-eru, a heme sensor that coordinates metabolic and circadian pathways. Science. 2007; 318:1786-1789. PubMed Abstract | Publisher Full Text

83. Yuan X, Dong D, Li Z, et al.: Rev-eru activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice. Pharmacol. Res. 2019; 141:310-318. PubMed Abstract | Publisher Full Text

84. Ino H: Immunohistochemical characterization of the orphan nuclear receptor RORα in the mouse nervous system. J. Histoch. Cytochem. 2004; 52:311-323. PubMed Abstract | Publisher Full Text

85. Wang Y, et al.: Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. ACS Chem. Biol. 2010; 5:1029-1034. PubMed Abstract | Publisher Full Text

86. Kumar N, et al.: Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem. Biol. 2011; 6:218-222. PubMed Abstract | Publisher Full Text

87. Chomez P, et al.: Increased cell death and delayed development in the cerebellum of mice lacking the rev-erα (alpha) orphan
receptor, Development. 2000; 127: 1489-1498.

106. Raspé E, et al.; Identification of Rev-erbα as a physiological repressor of apoc-III gene transcription. J. Lipid Res. 2002; 43: 2172–2179.
PubMed Abstract | Publisher Full Text

107. Bugge A, et al.; Rev-erbeta and Rev-erbalpha coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012; 26: 567-567.
PubMed Abstract | Publisher Full Text

108. Sitaula S, Zhang J, Ruiz F, et al.; Rev-erb regulation of cholesterologenesis. Biochem. Pharmacol. 2017; 131: 68–77.
PubMed Abstract | Publisher Full Text

109. Wada T, et al.; Identification of oyster toxin 7α-hydroxylase (Cyp7b1) as a novel retinoid-related orphan receptor α (RORα)/NR1F1) target gene and a functional cross-talk between RORα and liver X receptor (NR1H3). Mol. Pharmacol. 2008; 73: 891–899.
PubMed Abstract | Publisher Full Text

110. Lau P, Nixon SJ, Parton RG, et al.; RORα regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J. Biol. Chem. 2004; 279: 36628–36640.
PubMed Abstract | Publisher Full Text

111. Kim K, et al.; RORalpha controls hepatic lipid homeostasis via structural and functional data that cholesterol derivative is the natural ligand of RORα1. Biochem. Pharmacol. 2017; 2017; 667.
PubMed Abstract | Publisher Full Text

112. Boukhtouche F, et al.; REV-ERBα controls hepatic lipid homeostasis via suppression of Th17 cell differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011; 472: 491–494.
PubMed Abstract | Publisher Full Text

113. Ivanov II, et al.; The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006; 126: 1121–1133.
PubMed Abstract | Publisher Full Text

114. Zhang L, et al.; Identification of a selective RORα ligand that suppresses Th17 cells and stimulates T regulatory cells. ACS Chem. Biol. 2012; 7: 1515–1519.
PubMed Abstract | Publisher Full Text

115. Mamontova A, et al.; Identification of the human ApoAIV gene as a novel RORα target gene. Biochem. Biophys. Res. Commun. 2005; 330: 233–241.
PubMed Abstract | Publisher Full Text

116. Ivanov II, et al.; Natural ligands of RORα (α–α) and liver X receptor (NR1H3). Mol. Pharmacol. 2017; 891–899.
PubMed Abstract | Publisher Full Text

117. Kallen JA, et al.; Inverse) Agonists of Retinoic Acid-Related Orphan receptor (α–α) and liver X receptor (NR1H3). Mol. Pharmacol. 2017; 891–899.
PubMed Abstract | Publisher Full Text

118. Amir M, et al.; Identification of the human ApoAIV gene as a novel RORα target gene. Biochem. Biophys. Res. Commun. 2005; 330: 233–241.
PubMed Abstract | Publisher Full Text

119. Mamatova A, et al.; Severe osteosclerosis and hypophosphatoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORα. Circulation. 1998; 98: 2738–2743.
PubMed Abstract | Publisher Full Text

120. Straub RH, Cutolo M; Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 2007; 56: 409–408.
PubMed Abstract | Publisher Full Text

121. Bechtold DA, Gibbs JE, Louden AS; Circadian dysfunction in disease. Trends Pharmacol. Sci. 2010; 31: 191–198.
PubMed Abstract | Publisher Full Text

122. Amir M, et al.; REV-ERBα regulates TH17 cell development and autoimmunity. Cell Rep. 2018; 25: 3733–3740.
PubMed Abstract | Publisher Full Text

123. Chang C, et al.; The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease, Proc. Natl. Acad. Sci. 2019; 116: 18528–18536.
PubMed Abstract | Publisher Full Text

124. Griffin P, et al.; Circadian clock protein Rev-erbs regulates neuroinflammation. Proc. Natl. Acad. Sci. 2019; 116: 5102–5107.
PubMed Abstract | Publisher Full Text

125. Zhao W, et al.; Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLK4-regulated NF-κB activation. Acta Biochim. Biophys. Sin. 2019; 51: 908–914.
PubMed Abstract | Publisher Full Text

126. Doulazmi M, et al.; A comparative study of Purkinje cells in two RORα gene mutant mice: staggerer and RORα–/–. Dev. Brain Res. 2001; 127: 165–174.
PubMed Abstract | Publisher Full Text

127. Jammal S, et al.; Age-related Purkinje cell death is steroid dependent: RORα haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. Age. 2011; 33:
147. Pircher P, Chomez P, Yu F, et al.
150. Boulinguiez A, et al.
159. Kottorou AE, et al.
157. Verlande A, et al.
156. Sulli G, Manoogian ENC, Taub PR, et al.
153. Fitzsimmons RL, Lau P, Muscat GE: RORalpha and the regulation of lipid homeostasis.
154. Raichur S, et al.
162. Du J, Xu R: The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 2016; 23: 610-621.
Publisher Full Text
161. Ou Z, et al.: Regulation of the human hydroxyoxygen sulfotransferase (SULT2A1) by RORs and RORγ and its potential relevance to human liver diseases. Mol. Endocrinol. 2013; 27: 106–115.
Publisher Full Text
158. Jolly S, et al.: High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORγt. Cancer Res. 2002; 62: 901–909.
Publisher Abstract
151. Ramakrishnan SN, Lau P, Burke LJ, et al.: Rev-erbα regulates the expression of genes involved in lipid absorption in skeletal muscle cells: evidence for cross-talk between orphan nuclear receptors and myokines. J. Biol. Chem. 2005; 280: 8651-8659.
Publisher Full Text
152. Welch RD, Flavney CA: REV-ERB and ROR: therapeutic targets for treating myopathies. Phys. Biol. 2017; 14: 045002.
Publisher Abstract | Publisher Full Text
153. Verlande A, et al.
154. Raichur S, et al.
157. Verlande A, et al.
156. Sulli G, Manoogian ENC, Taub PR, et al.
155. Ercolani L, et al.: The Circadian clock: Time for novel anticancer strategies? Pharmacol. Res. 2015; 100: 288-295.
Publisher Full Text
156. Sulli G, Manoogian ENC, Taub PR, et al.: Training the Circadian Clock: Cloaking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol. Sci. 2018; 39: 812-827.
Published Abstract | Publisher Full Text
157. Verlande A, et al.: Glucagon regulates the stability of REV-ERBalpha to modulate hepatic glucose production in a model of lung cancer-associated cachexia. Sci. Adv. 2021; 7.
Published Abstract | Publisher Full Text
158. Jolly S, et al.: High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORγt. Cancer Res. 2002; 62: 901–909.
Publisher Abstract
159. Kottorou AE, et al.
160. Moretti RM, Montagnani Marelli M, Sala A, et al.: Activation of the orphan nuclear receptor RORα targets the proliferative effect of fatty acids on prostate cancer cells: Crucial role of S-lipoxygenase. Int. J. Cancer. 2004; 113: 87–93.
Published Abstract | Publisher Full Text
161. Ou Z, et al.: Regulation of the human hydroxyoxygen sulfotransferase (SULT2A1) by RORs and RORγ and its potential relevance to human liver diseases. Mol. Endocrinol. 2013; 27: 106–115.
Publisher Full Text
162. Du J, Xu R: RORα, a potential tumor suppressor and therapeutic target of breast cancer. Int. J. Mol. Sci. 2012; 13: 17555–17566.
Published Abstract | Publisher Full Text
163. Ye Y, et al.: The Genetic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell systems. 2018; 6: 314-328.e2.
Published Abstract | Publisher Full Text
164. Fu R-D, Qiu C-H, Chen H-A, et al.: Retinoic acid receptor-related receptor alpha (RORα) is a prognostic marker for hepatocellular carcinoma. Tumor Biol. 2014; 35: 7603-7610.
Published Abstract | Publisher Full Text
165. Ou Z, et al.: Regulation of the human hydroxyoxygen sulfotransferase (SULT2A1) by RORs and RORγ and its potential relevance to human liver diseases. Mol. Endocrinol. 2013; 27: 106–115.
Publisher Full Text
166. Kim H, et al.: DNA damage-induced RORα is crucial for p53 stabilization and increased apoptosis. Mol. Cell. 2011; 44: 797-810.
Published Abstract | Publisher Full Text
167. Ueda E, et al.: High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORγt. Cancer Res. 2002; 62: 901–909.
Publisher Abstract
168. Huang H, et al.: The Multifunctional Effects of Nobiletin and Its Metabolites in vivo and In Vitro. Evid. Based Complement. Alternat. Med. 2016; 2016: 2918796.
Publisher Abstract
169. Evans M, Sharma P, Guthrie N: Bioavailability of Citrus Polyphenols and Their Biological Role in Metabolic Syndrome and Hyperlipidemia. InTech, 2012; 1–19.
Publisher Full Text
170. Mulvihill EE, Burke AC, Huff MW: Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis. Annu. Rev. Nutr. 2016; 36: 275–295.
Published Abstract | Publisher Full Text
171. Miyakekivskaia E, You SH, Dowhan W, et al.: Nobiletin: Targeting the Circadian Network to Promote Bioenergetics and Healthy Aging. Biochemistry. Biokhimiya. 2020; 85: 1554-1559.
Published Abstract | Publisher Full Text
172. He B, et al.: The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 2016; 23: 610-621.
Published Abstract | Publisher Full Text
173. Miller S, Son YL, Akaiwa Y, et al.: Isoform-selective regulation of mammalian cryptochrome proteins. Nat. Chem. Biol. 2020 Jun; 16(6): 676-685.
Published Abstract | Publisher Full Text
174. Noraha K, et al.: Ammonia-lowering activities and carbamyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid. Nutr. Metabol. (Lond.). 2015; 12: 23.
Published Abstract | Publisher Full Text
175. Noraha K, et al.: Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat. Commun. 2019; 10: 3923.
Published Abstract | Publisher Full Text
176. Noraha K, et al.: Cardiopulin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. Oxidative Med. Cell. Longev. 2020; 2020: 5304768.
Published Abstract | Publisher Full Text
177. Kim E, et al.: Effects of the Clock Modulator Nobiletin on Circadian Rhythms and Pathophysiology in Female Mice of an Alzheimer’s Disease Model. Biomolecules. 2021; 11: 1004.
Published Abstract | Publisher Full Text
178. Rakshit K, Matvejenko AV: Induction of Core Circadian Clock Transcription Factor Bmal1 Enhances beta-Cell Function and Protects Against Obesity-Induced Glucose Intolerance. Diabetes. 2021; 70: 143–154.
Published Abstract | Publisher Full Text
179. Petrenko V, et al.: In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc. Natl Acad. Sci. U. S. A. 2020; 117: 24844–2495.
Published Abstract | Publisher Full Text
180. Noraha K, et al.: Coordination of Circadian Clocks in Cardiomyocytes: A master clock model. Cell Metab. 2014; 20: 714–724.
Published Abstract | Publisher Full Text
181. Noraha K, Emi M, et al.: Coordination of Circadian Clocks in Cardiomyocytes: A master clock model. Cell Metab. 2014; 20: 714–724.
Published Abstract | Publisher Full Text
182. Shinozaki A, et al.: Cell injury and apoptosis. FASEB J. 2022; 36: e21816.
Yang X, et al.: Nobiletin Delays Aging and Enhances Stress Resistance of Caenorhabditis elegans. Int. J. Mol. Sci. 2020; 21. Publisher Full Text

Kim E, et al.: ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis. 2022; 13: 374. PubMed Abstract | Publisher Full Text

Lellupitiyage Don SS, et al.: Nobiletin affects circadian rhythms and oncogenic characteristics in a cell-dependent manner. PLoS One. 2020; 15: e0236315. PubMed Abstract | Publisher Full Text

Chen Z, Yoo S-H, Takahashi JS: Development and therapeutic potential of small-molecule modulators of circadian systems. Annu. Rev. Pharmacol. Toxicol. 2018; 58: 231–252. PubMed Abstract | Publisher Full Text

Koronowski KB, Sassone-Corsi P: Communicating clocks shape circadian homeostasis. Science. 2021; 371. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status:

Version 2

Reviewer Report 13 December 2022

https://doi.org/10.5256/f1000research.141657.r157995

© 2022 Hirota T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tsuyoshi Hirota
Nagoya University, Nagoya, Japan

The authors addressed all my points in the revised manuscript, and I have no further comments.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: circadian biology, small molecules

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 11 November 2022

https://doi.org/10.5256/f1000research.138767.r154584

© 2022 Hirota T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tsuyoshi Hirota
Nagoya University, Nagoya, Japan

In this manuscript, Kim, Yoo, and Chen beautifully and convincingly describe the relevance of REV-ERB and ROR nuclear hormone receptors as therapeutic targets of metabolic disorders, immune diseases, brain diseases, muscle pathologies, and cancer, as well as current challenges in the research, with special emphasis on natural compound nobiletin. This well-written review article
covers the translation of the molecular clock mechanism for health and healthy aging, which is an important topic in the field. I strongly support the publication of this article, and a brief description of the following points would be useful for further understanding:

- Are the therapeutic effects of nobiletin dependent on both RORα and RORγ? As the authors described, isoforms of REV-ERB (α and β) and ROR (α, β, and γ) have different expression patterns and physiological functions. Therefore, it would be nice to discuss the possibility and potential of isoform-selective ligands as well.

- Because nobiletin is a natural compound and other REV-ERB/ROR ligands are synthetic compounds, it would be nice to mention the merit (and demerit) of natural compounds compared to synthetic compounds.

Minor points:
- Page 4, line 2: Drosophila to be italic.
- Page 5, “Therapeutic relevance of REV-ERBs and RORs” section, lines 2-3: “expression” is duplicated.
- Page 6, line 11: ZT may need an explanation.
- Page 6, the second paragraph, line 1: Rev-erba-/- to be italic.
- Please check whether references 60 (Emery and Clayton, 2001) and 137 (Nagoshi et al., 2004) are proper literature in the context.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: circadian biology, small molecules

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
We thank both expert reviewers for their thorough and thoughtful comments. Our response is as follows.

Reviewer 2

In this manuscript, Kim, Yoo, and Chen beautifully and convincingly describe the relevance of REV-ERB and ROR nuclear hormone receptors as therapeutic targets of metabolic disorders, immune diseases, brain diseases, muscle pathologies, and cancer, as well as current challenges in the research, with special emphasis on natural compound nobiletin. This well-written review article covers the translation of the molecular clock mechanism for health and healthy aging, which is an important topic in the field. I strongly support the publication of this article, and a brief description of the following points would be useful for further understanding:

Thank you very much for the positive comments.

Are the therapeutic effects of nobiletin dependent on both RORα and RORγ? As the authors described, isoforms of REV-ERB (α and β) and ROR (α, β, and γ) have different expression patterns and physiological functions. Therefore, it would be nice to discuss the possibility and potential of isoform-selective ligands as well.

Thank you for this valuable comment. NOB shows robust binding to the LBDs of RORα and RORγ, with somewhat higher affinity for RORγ (PMID: 27076076). However, there is currently no functional evidence for a possible selectivity of NOB toward either ROR. We agree that potential isoform/subtype-selective ligands, such as those characterized for CRYS, would be valuable. We have added this discussion to the text on page 9.

Because nobiletin is a natural compound and other REV-ERB/ROR ligands are synthetic compounds, it would be nice to mention the merit (and demerit) of natural compounds compared to synthetic compounds.

Thank you for this excellent comment. NOB's excellent safety profile is indeed a significant advantage over other synthetic ligands which may require extensive medicinal chemistry efforts before in vivo and clinical applications. Without making a direct comparison, we have added a sentence on page 10 to highlight this point. Thank you.

Minor points:

Page 4, line 2: *Drosophila* to be italic.
As suggested, we have italicized the word.

Page 5, “Therapeutic relevance of REV-ERBs and RORs” section, lines 2-3: “expression” is duplicated.
As suggested, we corrected the sentence.

Page 6, line 11: ZT may need an explanation.
Apologies for this omission. We added the full name and explanation of ZT in the manuscript.

Page 6, the second paragraph, line 1: *Rev-erba/-* to be italic.
As suggested, we have italicized the word.
Please check whether references 60 (Emery and Clayton, 2001) and 137 (Nagoshi et al., 2004) are proper literature in the context.
As suggested, we have removed these references as they are not immediately relevant as the reviewer pointed out.

Thank you again.

Competing Interests: No competing interests were disclosed.

Reviewer Report 11 November 2022

https://doi.org/10.5256/f1000research.138767.r154583

© 2022 Kojima S et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shihoko Kojima
Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
Evan S. Littleton
Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA

Summary:

In the review article titled “Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health”, the authors discuss various studies on the role of Rev-erbs and Rors on health and aging with the main focus being their function within the circadian clock. The authors give a well-balanced and comprehensive approach to discussing the importance of these genes in many different physiological pathways, such as immune response, metabolic disorders, cancer, and more. The authors provide extensive citations to support their discussion as well. We only have minor comments, and believe the article is suitable for approval.

Minor Concerns:

1. In the second paragraph of the section titled “The circadian timing system and health implications”, Dbp and Nfil3 are not mentioned as part of the circadian clock, despite their known regulation of multiple clock genes via D-boxes.

2. In the third paragraph of the section titled “The stabilization loop”, the authors state “While Ror expressions display relatively moderate circadian oscillatory amplitude, Rev-erbs are among the most oscillatory genes (highest amplitude) in both protein and mRNA expression”. However, Rors themselves differ in amplitude with Rora expression showing little to no rhythmicity in most tissues. Meanwhile, Rorc expression is rhythmic and displays similar amplitude to Rev-erbs in some tissues/cell types1,2,3.
3. The nomenclature for mouse models should be superscripted (for example, \textit{Rora}^{sg/sg} rather than \textit{Rorasg/sg})

References
1. Takeda Y, Jothi R, Birault V, Jetten AM: ROR\textsubscript{y} directly regulates the circadian expression of clock genes and downstream targets in vivo. \textit{Nucleic Acids Res}. 2012; \textbf{40} (17): 8519-35 \textcolor{blue}{PubMed Abstract | Publisher Full Text}
2. Littleton E, Childress M, Gosting M, Jackson A, et al.: Genome-wide correlation analysis to identify amplitude regulators of circadian transcriptome output. \textit{Scientific Reports}. 2020; \textbf{10} (1). \textcolor{blue}{Publisher Full Text}
3. Ikeda R, Tsuchiya Y, Koike N, Umemura Y, et al.: REV-ERB\textsubscript{a} and REV-ERB\textsubscript{b} function as key factors regulating Mammalian Circadian Output. \textit{Scientific Reports}. 2019; \textbf{9} (1). \textcolor{blue}{Publisher Full Text}

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes
Are all factual statements correct and adequately supported by citations?
Yes
Is the review written in accessible language?
Yes
Are the conclusions drawn appropriate in the context of the current research literature?
Yes

\textbf{Competing Interests:} No competing interests were disclosed.

\textbf{Reviewer Expertise:} Circadian genomics, rhythmic gene expression, mouse, clock-controlled genes

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 28 Nov 2022

\textbf{Eunju Kim}, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, USA

\textbf{Point-by-Point Response}
We thank both expert reviewers for their thorough and thoughtful comments. Our response is as follows.

\textbf{Reviewer 1}

In the review article titled “Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health”, the
authors discuss various studies on the role of Rev-erbs and Rors on health and aging with the main focus being their function within the circadian clock. The authors give a well-balanced and comprehensive approach to discussing the importance of these genes in many different physiological pathways, such as immune response, metabolic disorders, cancer, and more. The authors provide extensive citations to support their discussion as well. We only have minor comments, and believe the article is suitable for approval.

We thank the reviewer for the overall positive comments.

Minor Concerns:
1. In the second paragraph of the section titled “The circadian timing system and health implications”, Dbp and Nf1f3 are not mentioned as part of the circadian clock, despite their known regulation of multiple clock genes via D-boxes. Apologies for this omission. We have added Dbp and Nf1f3 as additional core clock genes functioning in the oscillator on page 3.

2. In the third paragraph of the section titled “The stabilization loop”, the authors state “While Ror expressions display relatively moderate circadian oscillatory amplitude, Rev-erbs are among the most oscillatory genes (highest amplitude) in both protein and mRNA expression”. However, Rors themselves differ in amplitude with Rora expression showing little to no rhythmicity in most tissues. Meanwhile, Rorc expression is rhythmic and displays a similar amplitude to Rev-erbs in some tissues/cell types. Thank you for this great comment. We have added a discussion text with these references to highlight the differences between the RORs (page 5, paragraph 2 in “the stabilization loop”). We thank the reviewer for this excellent suggestion.

3. The nomenclature for mouse models should be superscripted (for example, Rora sg/sg rather than Rorasg/sg)
As suggested, we have superscripted the mouse model names. Thank you again.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com