Factors affecting rice yield productivity in tidal swamp of South Sumatra

S S Girsang¹ and B Raharjo²

¹North Sumatera Assessment Institute for Agricultural Technology, Medan, Indonesia
²South Sumatera Assessment Institute for Agricultural Technology, Palembang, Indonesia

Email: girsang313@gmail.com

Abstract. Agricultural land expansion in tidal swamp rice (Oryza sativa L.) has not been optimally utilized. The objective of the study was to examine the relationship between soil, climate, and other factors that affect rice productivity. The study was conducted in Muara Telang Sub-district and used the purposive sampling method from 30 respondent farmers. The results showed that rice production was lower in the dry season (DS) than wet season (WS) ($r^2=0.96$) which was closely related to water availability. A low percentage of total pore space (TPS) and availability of P$_2$O$_5$ have an impact on rice yield in WS while rice yields at DS 2019 are directly related to N applications. Low temperatures have a positive impact on the presence of $C_{naphalocrocis medinalis}$ and $G_{ryllotalpa brachyptera}$ but high humidity has a major impact on the presence of $R_{attus argentiventer}$ and $B_{acterial leaf blight}$. On the other hand, the income received by farmers is doubled in WS compared to DS (R/C ratio 2.4 Vs. 1.2). Nutrient management, soil pore space, and climate information can affect rice productivity in tidal swamp rice fields that are economically beneficial in WS, however further research is needed for DS condition.

1. Introduction

Indonesia is the 3rd rice producer and the first largest consumption in the world [1]. Currently, Indonesia's productivity has decreased by 1.71% from 2018 to 2019 [2] which is a challenge in realizing Indonesia as a world food barn in 2045. The government has implemented extensification of agricultural program by opening new paddy fields since 2014 covering an area of 40,000 ha [3]. One of the provinces to receive this program is South Sumatra, which is followed by the program called ‘the safe the swamp and increased farmer prosperity (Serasi) that covered 400,000 ha in three provinces, namely South Sumatra, South Kalimantan and South Sulawesi [4].

Prior to the 2014 rice opening new paddy fields program, South Sumatra was the 5th rice producer. The extensification program using tidal swamp rice land has an impact on increasing production, which peaked in 2016 of 35.5% compared to 2010. In contrast to 2019, there was a decline in production of 48.7% with an average productivity of only 4.8 t ha$^{-1}$. According to Raharjo and Hernewita [5] the factors that cause decreased productivity are land degradation, environmental damage, climate change, and low human resources.
Research result by Waluyo et al [6] showed the potential for lowland swamp in South Sumatra is 13 million ha. The limiting factor of tidal swamp rice is low soil fertility [7], P deficiency, low exchange rate [8], high soluble Al, and low soil pH [9]. This is evidenced by the average production of farmers in swampy tidal land of only 2.7 to 3.0 t ha⁻¹ [10] below the average national production of 5.1 t ha⁻¹ [2].

In addition to soil factors, climate change results in changes in rainfall and temperature patterns [11] which results in stress on plants in the form of heat, salinity, drought, and submerge [12] which in turn has an impact on rice yield fluctuations by 32% or the equivalent of an annual loss of 3 million tons [13]. Climate change also affects the attack of pests and diseases. Based on Peace [14], pests and diseases last longer in the dry season due to warm temperatures. The loss of food crop yields is 40% due to pest attacks [15].

On the other hand, human resources are also important in increasing rice productivity. According to Raharjo and Hernewita [16], there is insignificant relationship between the level of farmers' knowledge and the implementation of farmer technology in tidal swamp rice. Apart from the problem of technological innovation and institutional support, the farmer education factor is also a problem in tidal swamp rice [17]. It needs to conduct research aimed at: 1. To examine the relationship among soil, climate, and other factors affecting the rice productivity in tidal swamp rice; and 2. To determine the benefit of tidal swamp rice farming.

2. Materials and methods

2.1. Experimental site

The research was conducted in July to December 2019 in Sumber Hidup Village (2° 40' 26.67" South latitude and 104° 51’ 32.76" East Longitude, elevation 1.25 to 1.50 m.a.s.l.) and Telang Makmur (2° 41’ 28.82" South latitude and 104° 53' 23.64" East Longitude, elevation 1.50 to 1.75 m.a.s.l.), Muara Telang Sub-district, Banyuasin Regency, South Sumatra. Soil types in the study area were Fluvaquentic Endoaquept, very fine, mixed, semiactive, acid, isohyperthermic [18].

2.2. Research design

This study used purposive sampling method in collecting farmer data and soil sampling of 30 respondent farmers. Data collection used a questionnaire covering technical, socio-economic, institutional and accessibility aspects which functioned to obtain individual information and problems faced by farmers. The selected farmers are farmers who are in Type B (12 farmers) and C (18 farmers), have more than 10 years of experience in rice farming, planting index 2 to 3 (rice-rice-food crops/fallow), and assisted farmers of ALAT South Sumatra in the Serasi program. Soil variables observed for soil chemistry for a depth of 30 cm include pH H₂O, C-Organic, N-total, P₂O₅ and K₂O HCl, cation exchange capacity (CEC), exchange bases such as exchangeable K, Na, Ca, Mg, and base saturation while soil physical properties such as bulk density (BD), total pore space (TPS), permeability (Ksat), and texture.

2.3. Soil analysis

Analysis of the chemical and physical properties of the soil was carried out at the Indonesian Soil Research Institute (ISRI) and Sriwijaya University in 2019 by taking four points in each farmer and then composing. Water permeability (Ksat) was measured using a double ring at each direct treatment at the study site until it reached a stable condition. [19]. Soil texture using the pipette method, soil density (g cm⁻³) with soil sampling using the ring sample method, and pore space filled with water was determined using the equation according to Linn and Doran [20].

Soil chemical analysis such as pH analysis; C-organic; N-total; P₂O₅ and K₂O available; Exchange cations (Ca, Mg, Na, K) and CEC; as well as family planning using the respective pH meter methods; Walkley and Black; Kjehdahl; Bray I; Morgan; Ammonium acetate 1 N pH 7.0; and the calculation of the number of
bases divided by the CEC then multiplied by 100. Composite soil samples were taken randomly at four points from 0 to 0.30 m. The soil categories based on Eviati and Sulaeman [21].

2.4. Data analysis
Primary data analysis obtained from survey data and soil analysis tabulated into excel. To answer the first objective, it is processed using statistical analysis tools for agriculture research (STAR) and the second goal is using MS. Excel. Pearson's correlation coefficient for parameters measured using STAR. Significance at the 0.05 probability level; 0.01; and 0.001 are indicated by *, **, and ***, respectively. Agronomic costs are analyzed by comparing income to costs (R/C ratio). Secondary data is in the form of climate and pest and disease data produced by [22] and [23] for the last 8 years.

3. Results and discussion

3.1. Land typology and soil fertility
Tidal swamp is directly affected by marine activity with a sedimentation process where the land is formed as part of the river delta [24]. The research location is tidal swamp area which includes type B and C (Sumber Hidup Village) and type C (Telang Makmur Village). According to agricultural extension agencies data from Muara Telang Sub-district, the total area of land cultivated by farmers in Sumber Hidup Village is 1.688 ha while Telang Makmur Village covers an area of 1600 ha. Based on Arsyad et al [8] and Masganti et al [25] the characteristic of type B is that it gets an overflow at high tide, while type C does not receive overflow but the depth of groundwater table is <50 cm.

Table 1. Chemical analysis of tidal swamp rice soils in Muara Telang Sub-district, Banyuasin Regency, South Sumatra.

No.	Type of analysis	Method of analysis	Value	Category*)
1.	pH (H2O)	pH meter	4.60	Acid
2.	Organic-C (%)	Wakley & Black	5.60	Very high
3.	N-total (%)	Kjeldahl	0.43	Medium
4.	Available P2O5 (ppm P)	Bray I	265.7	Very high
5.	Available K2O (ppm K)	Morgan	254.8	Very high
6.	Ca-dd (me100 g⁻¹ soil)	NH4OAc 1.0 N	3.40	Low
7.	Mg-dd (me 100 g⁻¹ soil)	NH4OAc 1.0 N	2.98	High
8.	Na-dd (me 100 g⁻¹ soil)	NH4OAc 1.0 N	0.90	High
9.	K-dd (me 100 g⁻¹ soil)	NH4OAc 1.0 N	0.60	High
10.	Base saturation (%)	NH4OAc 1.0 N	22.72	Low
11.	CEC (me 100 g⁻¹ soil)	NH4OAc 1.0 N	34.00	High
12.	Texture	Pipet		Silty clay
	Sand (%)		0	
	Silt (%)		49	
	Clay (%)		51	

*) Categories based on Eviati and Sulaeman [21].

The results of soil analysis showed that soil pH is in the acid category, organic-C content and available P2O5 is very high categories, the content of Mg-dd, Na-dd, K-dd and CEC is high, it is inversely to the content of Ca-dd and base saturation (BS) is in the low category, while the total N content is in the medium category. Soil acidity that occurs is due to land drying, especially in the dry season [26] which results in
pyrite oxidation [27,28], high iron solubility, and availability Low P and K [18,29,30]. The available P and K nutrient content is very high (table 1.) due to the return of straw and P fertilizer residues. The results of the 2019 survey showed that farmers applied P₂O₅ fertilizer in various amounts of 37.5 to 135 kg ha⁻¹. This was done in WS and DS in the hope of an increase in production in the DS. The reality faced by production farmers is two times higher in WS compared to DS [31].

In general, soil fertility at tidal swamp land is low [8,25,31]. However, the 2015 to 2019 government program in distributing agricultural machine tools such as the combine harvester, 1-ton ha⁻¹ lime, and bio decomposer has an impact on increasing soil fertility. Harvesting using a combine harvester directly returns all rice straw without being transported. This is evidenced by the results of soil analysis in table 1. All categories are included in the medium-very high category except for Ca-dd and BS. The provision of organic rice straw can increase the availability of P, K, Ca, and Mg nutrients (, improve soil physical properties and increase rice productivity [32,33,25], soil N availability [34], and CEC [18]. Furthermore, the soil texture in the study location was silty clay. In accordance with the research of Prasetyo et al [18] the texture in Banyuasin is clay to silty clay texture with a high content of clay fractions (>50%). Increasing clay content can increase soil fertility [35] and rice yield [36].

3.2. Rice planting conditions
The cropping pattern of two villages is rice-paddy/fallow-fallow/corn/vegetables/melon. In both growing seasons, direct seeded rice was planted in rice to avoid stress at the beginning of seed growth due to water and limited labor. Labor problems [37], capital, farmers’ mastery of technology [8], lack of government attention in maintaining macro water system networks, and underdeveloped rural institutions are important problems in tidal swamp rice [38].

Table 2. Cropping practices, soil management, and climate for the last two years in Muara Telang Sub-district, Banyuasin Regency, South Sumatera.

Parameter	2017/2018	2018	2018/2019	2019
Commodities	Rice	Rice	Rice	Rice
Varieties	Inpari 30, 32, 42, dan 43			
Cropping pattern	Rice-paddy/fallow-fallow/corn/vegetables/melon			
Land management	Dry			
Farming techniques a)	Dry seeded rice			
Planting date	19-Oct-17	01-March-18	12-Oct-18	23-Feb-19
Harvesting date	15-Feb-18	28-Jun-18	8-Feb-19	21-Jun-19
Production (t ha⁻¹)				
Type B	7.4	3.0	7.3	3.0
Type C	6.1	2.9	5.9	3.0
Total rainfall (mm) b)	1052.6	1058.0	1011.2	1099.2
Mean Temperature (°C) c)	27.5	27.5	27.5	27.7
Humidity (%) d)	86.1	87.0	90.1	90.3

a) dry seeded rice without flooding.
b, c, d) climate data from BMKG South Sumatra per season.

Furthermore, rainfall plays an important role in crop growth and production in both locations. South Sumatra BMKG data for 2017 to 2019 shows that the number of rainy days in the four seasons is 74 to 76 days. The average rainfall throughout the season during the rainy season (WS) is ≥13 mm per day until
flowering, but at the time of maturation the seeds are only 7 mm per day. Furthermore, the rainfall in the dry season (DS) is ≥ 15 mm per day at the beginning of plant growth, but at the time of flowering the amount of rainfall is only 7 mm per day. The high rainfall on WS resulted in an overflow of river water (fresh water) which filled the upper layer, whereas in DS, which was initially high, then flowering began to be filled with sea water (salt water), thus affecting production. Table 1 shows the average production in WS is two times higher than in DS. Tidal swamp rice is very suitable for rice plants as long as there is enough water available throughout the season [39] with a water requirement of 2,500 liters including evapotranspiration, seepage, and percolation to produce 1 kg of rice [40]. On the other hand, the average temperature in DS and WS were almost the same, while RH in WS 2018/2019 and DS 2019 was higher than the previous season.

3.3. Relationship of soil, climate, and other factors

The mean soil physics and farmers method of tidal swamp rice in Muara Telang Sub-district, South Sumatra are shown in table 3. The dominant of mean clay percentage is 46.8% and mean rice yield in WS is higher 42% than dry season. Furthermore, the high variation of sand content between types B and C is 0 to 30% with a high CV variation of 44 to 75 affecting the Ksat variation of 4 to 13 mm h$^{-1}$ (CV 28 to 36). Girsang et al [41] reported that BD and Ksat are good indicators of projecting rice yields on aerobic soil. Likewise, the variation of K$_2$O fertilizer application for farmers was 15 to 180 with the highest CV 41 to 83 on both MH and MK. Another thing is the mean cropping index (CI) of 2.7 with a CV of 17, the range between types is 15-19. Agricultural mechanization plays an important role in increasing CI in addressing labor problems [42]. The availability of agricultural mechanization and changes in soil fertility (table 1) with the Serasi program in South Sumatra is very beneficial for farmers, but farmers must be able to change their habits in operating fertilizer tools and applications according to crop needs and yield targets.

Parameter	Mean	Min	25%	75%	Max	CV among field†
Sand, %	17.2	0.0	9.0	25.0	30.58	57 (44 to 75)
Silt, %	36.0	13.5	31.3	40.2	49	22 (18 to 27)
Clay, %	46.8	35.5	39.7	51	78.7	18 (13 to 22)
BD 0 to 0.3 m, g cm$^{-3}$	1.02	0.72	0.97	1.14	1.30	14 (13 to 14)
BD 0.3 to 0.6 m, g cm$^{-3}$	1.05	0.79	1.02	1.12	1.20	10 (8 to 10)
TPS 0 to 0.3 m, %	63.5	52.7	58.7	64.7	74.4	9 (8 to 9)
TPS 0.3 to 0.6 m, %	62.8	57.4	60.0	64.9	71.8	6 (5 to 7)
Ksat, mm h$^{-1}$	8.6	4.3	6.2	11.4	13.8	35 (28 to 36)
N, kg	136.9	68.5	105.0	154.3	252	29 (24 to 33)
P$_2$O$_5$, kg	79.7	30.0	52.5	102	135	37 (24 to 40)
K$_2$O, kg	46.0	15.0	30.0	52.5	180	70 (41 to 83)
WS grain yield, ton	6.9	5.0	6.0	7.6	9.2	16 (13 to 18)
DS grain yield, ton	2.9	1.5	2.4	4	4.2	28 (27 to 28)
Crop Index	2.7	2.0	2.0	3	3	17 (15 to 19)

*CV, the coefficient of variation calculated from the average value of 30 farmers at the survey location. The values shown are the mean CV of tidal swamp rice and the ranges in the two types (in brackets).

Sand content was inversely related with silt and clay (p <0.001) and BD 0 to 0.3 m (p <0.01) and BD 0.3 to 0.6 m (p <0.05) across the 30 farmers field (table 5). High sand content can affect the water holding capacity which results in N loss and production [36]. Planting with a planting index of 2 to 3 with high clay content can be done as long as water is available throughout the season [41]. Furthermore, Bulk density 0
to 0.3 m was directly related (p < 0.001) to BD 0.3 to 0.6 m while inversely related to total pore space (TPS) 0 to 0.3 m TPS 0.3 to 0.6 m. More TPS corresponded to low availability of P₂O₅ and grain yield in WS, as indicated by high infiltration.

Application of P₂O₅ was directly related to grain yield in WS 2018/2019 (p < 0.001) and DS 2019 (p < 0.05). The range of P₂O₅ applications between 30 to 135 kg ha⁻¹ with an average of 79.7 kg ha⁻¹ is already in the high category with 100% return of straw to the field using a combine harvester. Masganti et al [25] stated that recommendation for rice fertilization in tidal swamp rice is 60 kg ha⁻¹ plus 2 t ha⁻¹ organic fertilizer. According to the soil analysis data (table 1), the P available at the research location is in the very high category.

Table 4. shows the status of pests and diseases, climate, and grain yield for the 2011/2012 to 2020 period in South Sumatra. The highest total area attacked per season was caused by Rattus argentiventer, Cnaphalocrosis medinalis, Pyricularia grisea, and Leptocorisa oratorius, each with an area of 137.8 ha; 139.6 ha; 144.6 ha; and 86.7 ha with CV 97; 99; 121; and 81 for 18 growing seasons with high CV variations between type B and type C. This affects the mean grain yield in the range 1.5 to 7.3 with CV 11 to 26. Climatic factors such as total rainfall, mean temperature, and humidity have low variations with CV 21; 1; and 4 as well as between land types B and C.

Parameter	Mean	Min	25%	75%	Max	CV among field
Gryllotalpa brachyptera	33.5	3.0	7.0	159.8	385.0	166 (53 to 199)
Pomacea canaliculata	46.1	7.5	21.8	160.8	224.5	82 (62 to 120)
Rattus argentiventer	137.8	11.0	32.8	187.8	456.0	97 (90 to 110)
Cnaphalocrosis Medinalis	139.6	9.0	60.3	317.4	735.0	99 (44 to 91)
Pyricularia grisea	144.6	15.5	29.0	192.5	682.0	121 (51 to 109)
Leptocorisa oratorius	86.7	21.5	47.8	182.3	324.0	81 (80 to 86)
Helminthosporium Oryzae	12.4	3.0	7.0	58.8	70.0	97 (31 to 104)
Bacterial leaf blight	28.3	2.0	6.1	95.0	170.0	129 (108 to 114)
Mythimna separat a	13.6	19.0	19.5	124.0	146.0	97 (72 to 106)
Nilaparvata lugens	34.8	2.5	3.5	127.5	369.0	147 (63 to 117)
Scirpophaga incertulas	26.7	16.0	17.3	212.0	212.0	128 (98 to 141)
Total rainfall	999.9	568.2	824.1	1137.8	1388.2	21 (17 to 27)
Mean temperature	27.6	26.9	27.5	27.8	28.0	1 (1 to 2)
Humidity	85.0	79.7	83.2	86.3	90.3	4 (3 to 4)
Grain yield	4.4	1.5	2.1	6.8	7.3	51 (11 to 26)

† CV, the coefficient of variation calculated from the average value of 30 farmers at the survey location. The values shown are the mean CV of tidal swamp rice and the ranges in the two types (in brackets).

The mean total area offensive per season of Rattus argentiventer was directly related to the extent of attack by Leptocorisa oratorius and Helminthosporium Oryzae (P < 0.001) also Bacterial leaf blight, Scirpophaga incertulas, and Humidity (P < 0.01) across the 18s seasons. Leptocorisa oratorius was directly related to Helminthosporium Oryzae (P < 0.001), Bacterial leaf blight, and Scirpophaga incertulas (P < 0.01) while it was inversely related to grain yield (P < 0.05). The increased attack area of Helminthosporium Oryzae was due to the increasing humidity (P < 0.05) and it was directly related to Bacterial leaf blight and
Scirpophaga incertulas (P <0.001). Mean temperature was inversely related to medial Cnaphalocrosis (P <0.001), Gryllotalpa brachyptera and total rainfall (P <0.05). The high variation in mean grain yield of 1.5 to 7.3 t ha⁻¹ was related to season (P <0.001). Rice planting is not synchronous due to limited labor and most farmers use the salibu/fallow method in the second season. Based on Pujiastuti et al [43] the highest rat attack in DS I started from initial growth to harvest by cutting 5 rice stalks and eating one plant.

3.4. Rice farming analysis
According to the farming analysis in table 1, it shows that labor is the highest contributor (63%) to rice production input in South Sumatra. Generally, the workforce comes from the farming families themselves, especially for fertilizer application, weeding, and pest and disease control. The second component is fertilizer at 18.8%. According to [44] the labor costs are the main input (63%) followed by fertilizer (20%), seed (7%), pesticide (6%), and water irrigation (4%). The limited workforce in tidal swamp rice [37] provides an opportunity for the government to introduce agricultural mechanization in 2015 to support an increase in the cropping index (IP) and a program to save swamps, prosper farmers (Serasi) in South Sumatra. Based on Umar and Alihamsyah [45] the contribution of family labor is only 70% and the rest uses agricultural mechanization to overcome labor shortages. Furthermore, WS rice production was 58% higher than that of DS with components of farmer revenue of 29.14 million and 13.30 million, respectively. This is reinforced by the higher income of farmers in WS compared to DS with Revenue Cost Ratio (R/C) of 2.5 and 1.2, respectively, which means that every rupiah spent by farmers gets a return of 2.5 and 1.2-rupiah.
Table 5. Pearson correlation coefficient between soil physical properties and farmer fertilizer application, production, and crop index (CI) on WS 2018/2019 and DS 2019 for 30 respondent farmers in South Sumatra.

Parameter	Silta)	Siltb)	Claybe)	BDCd)	BDe)	TPSf)	TPSg)	Ksath)	P2O5i)	K2Oj)	WS grain yield	DS grain yield	CI
Sand, %	-0.68***	-0.88***	-0.51**	-0.38*	0.46**	0.33	0.10	-0.28	-0.25	-0.33	-0.04	-0.27	
Silt, %	0.24	0.46*	0.22	-0.34	-0.11	0.23	0.23	-0.13	0.15	0.07	0.07	0.06	
Clay, %	0.37	0.35	-0.38*	-0.37**	-0.28	0.28	0.46**	0.24	0.40*	0.40*	0.20	0.32	
BD 0-0.3 m, g cm⁻³	0.65***	-0.77***	-0.63**	-0.27	0.22	-0.07	0.34	0.10	0.39*	0.10	0.39*	0.39*	
BD 0.3-0.6 m, g cm⁻³	-0.35	0.10	0.14	0.10	0.09	-0.08	0.24						
TPS 0.0-0.3 m, %	0.83***	0.52**	-0.43*	0.39*	-0.41*	-0.13	-0.33						
TPS 0.3-0.6 m, %	-0.35	0.37	-0.33	0.13	0.29								
Ksat, cm jam⁻¹	-0.38*	0.33	-0.37*	-0.01	0.23								
N, kg ha⁻¹	-0.19	0.35	-0.12	-0.37*	-0.14								
P2O5, kg ha⁻¹	-0.26	0.70***	0.43*	0.34									
WS grain yield, t ha⁻¹	0.96***	0.40*											

* *, **, and *** denote significance at the probability level of 0.05, 0.01, and 0.001, respectively.
a, b, c, e top 0.3 m soil layer.
d, f soil layer 0.3-0.6 m.

Table 6. Pearson correlation coefficient between pests and diseases with climate and grain yield for 18 seasons (WS 2011/2012 to DS 2020) in South Sumatra.

Parameter	Caphalocrosis Medinalis	Pyricularia grisea	Leptocorisa oratorius	Helminthisporium Oryzae	Bacterial leaf blight	Mythimna separata	Scirpophaga incertulas	Mean temperature (°C)	Humidity (%)	Grain yield (t ha⁻¹)
Season	0.31	0.59*	0.03	0.82**	0.05	-0.05	0.05	-0.04	0.01	0.96***
Gryllotalpa brachyptera, ha⁻¹	0.43	0.59*	-0.16	0.82**	0.23	-0.14	-0.31	-0.53	0.03	0.25
Rattus argentiventer	0.51*	-0.01	0.86***	0.63*	0.05	0.69*	0.05	0.61	0.03	0.57*
Caphalocrosis Medinalis	0.27	0.21	0.31	0.10	0.61**	-0.05	0.04	0.60*	-0.31	0.27
Leptocorisa oratorius	0.80**	0.58**	0.12	0.69**	0.05	0.43	0.50*	0.60*	-0.15	-0.31
Helminthisporium Oryzae	0.82**	0.14	0.86***	-0.08	0.50*	-0.31				
Bacterial leaf blight	-0.17	0.89***	-0.04	0.60*	0.53*	0.31	-0.10			

* *, **, and *** denote significance at the probability level of 0.05, 0.01, and 0.001, respectively.
Pest, disease and climate data for 18 seasons since WS 2019/2020-DS 2020 comes from BPTP-H and BMKG South Sumatra.
Table 7. Analysis of tidal swamp rice farming in Muara Telang Sub-district, Banyuasin Regency, South Sumatra.

Input	Type B	Type C	Percentage		
	WS	DS	WS	DS	
Mean area of cultivated land	1.3	1.4	1.3	1.4	
Productivity, t ha⁻¹	7.4	3.0	6.8	2.9	

Variable Cost per ha (IDR 000) *)
Labor
Seed
Fertilizer
Pesticide
Property tax
Total cost
Receipt
Total cost
R/C

Note: *) The values used are rounded values.

4. Conclusions

The success of the agricultural land expansion program using tidal swamp rice must be balanced with an intensification program. Agricultural mechanization assistance and other agricultural inputs which have been intensely carried out in the last five years have had a positive impact in increasing soil fertility. Furthermore, the relationship of soil physical properties such as increased TPS corresponded to low availability of P₂O₅ and grain yield in WS, as indicating by high infiltration is inversely proportional to BD and CI. On the other hand, Rattus argentiventer is the highest attack in every season which is directly proportional to temperature, pest and disease attacks such as Leptocorisa oratorius, Helminthosporium Oryzae, and Bacterial leaf blight, but inversely proportional to humidity. Profits in WS are 58% higher than DS (R/C ratio 2.5 and 1.2) where the highest input component is 63% of the labor cost. Agricultural mechanization, simultaneous planting, water management, and site-specific fertilization can increase rice productivity, cropping index, and fertilizer efficiency in tidal swamp rice.

Acknowledgments

The first author is the main contributor and the second author is supporting contributor. Thanks to the Corigap-pro (IRRI) project and Assessment Institute for Agricultural of Technology North Sumatra and South Sumatra for the research facilities provided to the author.

References

[1] GRiSP (Global Rice Science Partnership) 2013 Rice almanac, 4th edition Los Baños (Philippines): International Rice Research Institute p 283

[2] BPS Statistics Indonesia 2020 Statistical yearbook of Indonesia BPS Statistics Indonesia pp 1-748

[3] Dirjen Prasarana dan Sarana 2013 Cetak sawah Indonesia (in Bahasa) Direktorat perlrausan dan perlindungan lahan Direktorat Jenderal Prasarana dan Sarana Kementriah Pertanian pp 1-71
[4] Dirjen Prasarana dan Sarana 2019 *Pedoman teknis optimasi lahan rawa mendukung kegiatan serasi 2019* (in Bahasa) Direktorat perluasan dan perlindungan lahan Direktorat Jenderal Prasarana dan Sarana Kementrian Pertanian pp 1-19

[5] Haryono 2013 *Lahan Rawa: Lumbung Pangan Masa Depan Indonesia* (in Bahasa) IAARD Press Jakarta 141 hlm

[6] Waluyo, Suparwoto, dan Sudaryanto 2008 Fluktuasi genangan air lahan rawa lebak dan manfaatnya bagi bidang pertanian di Ogan Komering Ilir (in Bahasa) *J Hidrosfir Indonesia* 3(2): 57-66

[7] Masganti 2008 *Kesuburan tanah dan hasil padi lokal di lahan pasang surut kawasan PLG Kabupaten Kapuas, Kalimantan Tengah* (in Bahasa) Hlm 89-100 Dalam D Subardja, R Saraswati, Mamat H S, P Setyanto, D Setyorini, Wahyunto, M Noor, Irawan, dan E Husen (Ed.) *Prosiding Seminar Nasional Sumberdaya Lahan* Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian Bogor Buku II

[8] Arsyad, D M, Saidi, B B and Enrizal 2014 Development of agricultural innovations in tidal swamp land for increasing food sovereignty *Jurnal Pengembangan Inovasi Pertanian* Vol 7 No 4 Desember 2014: 169-176

[9] Triadiati, N R Mubarik dan Y Ramasita 2013 Respon Pertumbuhan Tanaman Kedelai terhadap Bradyrhizobium japonicum Toleran Masam dan Pemberian Pupuk di Tanah Masam (in Bahasa) *J Agron Indonesia* 41 (1): 24-31

[10] Suparwoto and Waluyo 2019 Cultivation and adaptation of new superior varieties of paddy in lebak swampland in South Sumatra *Jurnal Penelitian dan Pengembangan Pertanian* 38(1): 13-22

[11] Nguyen, N V 2005 “Global Climate Changes and Rice Food Security.” *International Rice Commission Newsletter (FAO)* 54: 24-30

[12] Wassmann, R, K Sumfleth, K S V Jagadish, D S Pathak 2009 Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation

[13] Ray, D K, Gerber, J S MacDonald, G.K West, P C 2015 Climate variation explains a third of global crop yield variability *Nature communications* 6, Article number 5989

[14] Peace N 2020 Impact of climate change on insect, pest, disease, and animal biodiversity *International journal Environmental science & natural resources Review article* Vol 23 issue 5 March 2020 DOI:10.19080/IJESNR.2020.23.556123

[15] Heeb, L, Jenner, E, and Cock, M J W 2019 Climate smart pest management: building resilience of farms and landscapes to changing pest threats *Journal of Pest Science* 92: 951-969 https://doi.org/10.1007/s20340-019-01083-y

[16] Raharjo and Hernewita 2019 Relationship Between Farmers Knowledge Level and Technologies Implementation in Tidal Swamp Land in South Sumatra *Sriwijaya Journal of Environment* Vol 4 No 3, 165-170

[17] Susilawati and I A Rumanti 2018 Potential and constraints of rice farming in tidal swamp land *International Journal of Advances in Science Engineering and Technology*, ISSN(p): 2321-8991, ISSN(e): 2321-9009 Volume-6, Issue-3, Jul 2018, http://iraj.in

[18] Prasetyo, B H Suping, S Subagyo, H Mujiono and Suhardjo H 2001 Characteristics of rice soils from the tidal flat areas of Musi Banyuasin, South Sumatera Indonesia *Journal of Agriculture Science* 2 (1) 2001: 10-26

[19] Reynolds W D, Elrick D E, Youngs E G and Amoozegar A 2002 Field methods (vadose and saturated zone techniques) In: Dane J H, Topp G C (Eds.) *Methods of Soil Analysis: Part 4 Physical Methods* Soil Sci Am Book Series 5 4 SSSA, Madison, WI, USA, pp 817–843 https://doi.org/10.2136/sssabookser5.4.c32
[20] Linn D M and Doran J W 1984 Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils *Soil Sci Soc Am J* 48 1267-1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x

[21] Badan Meteorologi, Klimatologi, dan Geofisika 2020 *Data iklim harian periode 2001 to 2020* (in Bahasa) BMKG Sumatera Selatan

[22] Dinas Pertanian Tanaman Pangan dan Hortikultura 2020 *Data hama dan penyakit harian periode 2001 to 2020* (in Bahasa) Balai Perlindungan Tanaman Pangan dan Hortikultura Provinsi Sumatera Selatan

[23] Eviati dan Sulaeman 2009 *Pedoman Teknis Analisis Kimia Tanah, Tanaman, Air dan Pupuk* (in Bahasa) Edisi II Lembaga Penelitian Tanah Bogor

[24] Suriadikarta D A dan Sutriadi M T 2007 Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa (in Bahasa) *Jurnal Penelitian & Pengembangan Pertanian* 26(3):115-122

[25] Masganti, Nurhayati and Yuliani, A 2017 Peningkatan Produktivitas Padi Di Lahan Pasang Surut Dengan Pupuk P Dan Kompos Jerami Padi (in Bahasa) *Journal of Soil and Climate* Vol 41 No 1 July 2017: 17-24

[26] Noorsyamsi H dan Hidayat M 1976 The tidal swamp rice culture in South Kalimantan *Contr. Center Res. Ins. Agric.* Bogor 10: 1-18

[27] Priatmadi B J and Haris A 2009 Reaksi pemasaman senyawa pirit pada tanah rawa pasang surut (in Bahasa) *Jurnal Soil Trop., Vol 14, No 1, 2009: 19-24 ISSN 0852-257X

[28] Alwi M, Sabiham S, Anwar S, Suwarno and Achmadi 2010 Soil Leaching of on Particular Condition of Redox Potential by Insitu Water Source in Balandean South Kalimantan *Jurnal Tanah dan Iklim* 32: 83-94

[29] Yosida S 1981 Fundamentals of rice crop science *The International rice research institute Manila* Philippines

[30] Olaleye A O, Tabi F O, Ogunkunle A O, Singh B N and Sahrawat K L 2001 Effect of toxic iron concentrations on the growth of lowland rice *Journal of plant nutrition* 24(3) 441-457

[31] Ratmini N P S 2018 Kajian Provitas Lahan Sulfat Masam Sumatera Selatan: Studi Kasus Desa Mulya Sari Kecamatan Tanjunglago (in Bahasa) *Agroecotenia* Vol 1 No 1 p-ISSN 2621-2846, e-ISSN 2621-2854

[32] Anwar K, Sabiham S, Sumawinata B, Sapei A and Alihamsyah T 2006 Pengaruh kompos jerami terhadap kualitas tanah, kelarutan Fe²⁺ dan SO₄²⁻ serta produksi padi pada tanah sulfat masam (in Bahasa) *Jurnal Tanah dan Iklim* 24: 29-39

[33] Wahida, A Y 2014 Peran Bahan Organik dan Tata Air Mikro terhadap Kelarutan Besi, Emisi CH₄, Emisi CO₂, dan Produktivitas padi di Lahan Sulfat Masam (in Bahasa) *Disertasi Program Pascasarjana UGM* Yogyakarta 173 halaman

[34] Buresh R J and Haefele S M 2010 Changes in paddy soils under transition to water-saving and diversified cropping systems *19th World Congress of Soil Science, Soil Solutions for a Changing World* 1 to 6 August 2010, Brisbane, Australia Published on DVD

[35] Dou F, Soriano J, Tabien R E and Chen K 2016 *Soil texture and cultivar effects on rice (Oryza Sativa L) grain yield, yield components and water productivity in three water regimes* PLoS ONE 2016 [CrossRef]

[36] Girsang S S, Correa Jr T Q, Quilty J R, Sanchez P B and Buresh R J 2020 Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel *Soil and Tillage Research* 202 (2020) 104647

[37] Irmawati, H Ehara, R A Suwignyo and J Sakagami 2015 Swamp rice cultivation in South Sumatera, Indonesia *An Overview Trop Agr.Develop* 59 (1): 35-39, 2015
[38] Suriadikarta D A 2005 Pengelolaan lahan sulfat masam untuk usaha pertanian (in Bahasa) Jurnal Litbang Pertanian 24 (1) 2005

[39] Ponnamperuma F and Bandyopadhyya A 1980 Soil salinity as a constraint on food production in the humid tropics. Priorities for Alleviating Soil-Related Constraints to Food Production in the Tropics; International Rice Research Institute (IRRI): Los Baños Laguna Philippines pp 203

[40] Bouman B 2009 How much water does rice use? Rice today January to March

[41] Girsang S S, Quilty J R, Correa Jr T Q, Sanchez P B and Buresh R J 2019 Rice yield and relationships to soil properties for production using overhead sprinkler irrigation without soil submergence Geoderma 352 (2019) 277-288

[42] Susilawati A, Nursyamsi D and Syakir M 2016 Optimalisasi penggunaan lahan rawa pasang surut mendukung swasembada pangan nasional (in Bahasa) Jurnal Sumberdaya Lahan Vol 10 No 1, Juli 51-64

[43] Pujiastuti Y, Sitompul K B, Suparman, Weni H W S, Herlinda S and Hadi B A 2018 Study on trap barrier system towards rodent population and rice production in Tidal-Area of South Sumatera Indonesia Agrivita Journal of Agriculture Science 2018 40 (3); 490-497

[44] Pampolino M F, Manguiat I J, Ramanathan S, Gines H C, Tan P S, Chi T N, Rajendran R and Buresh R J 2007 Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems Agricultural Systems 93:1-24

[45] Umar S and Alihamsyah T 2014 Mekanisasi Pertanian. Untuk produksi padi di lahan rawa Pasang Surut (in Bahasa) (Badan Penelitian dan Pengembangan Pertanian. Kementrian Pertanian)