Adaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapy

M Tazzari1,2, T Negri2,3, F Rini1,2, B Vergani4, V Huber1,2, A Villa4, P Dagrada2,3, C Colombo2,5, M Fiore2,5, A Gronchi2,5, S Stacchiotti2,6, P G Casali2,6, S Pilotti2,3, L Rivoltini1,2 and C Castelli*,1,2

1Unit of Immunotherapy of Human Tumours, Department of Experimental Oncology and Molecular Medicine, Via G. Venezian 1, Milan 20133, Italy; 2Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan 20133, Italy; 3Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Via G. Venezian 1, Milan 20133, Italy; 4Consorzio MIA (Microscopy and Image Analysis), University of Milano-Bicocca, Via G. Venezian 1, Milan 20133, Italy; 5Department of Surgery, Via G. Venezian 1, Milan 20133, Italy and 6Adult Sarcoma Medical Oncology Unit, Department of Cancer Medicine, Via G. Venezian 1, Milan 20133, Italy

Background: Host immunity is emerging as a key player in the prognosis and response to treatment of cancer patients. However, the impact of the immune system and its modulation by therapies are unknown in rare soft tissue sarcomas such as solitary fibrous tumours (SFTs), whose management in the advanced forms includes anti-angiogenic therapy. Here, we studied the in situ and systemic immune status of advanced SFT patients and the effects of sunitinib malate (SM) in association with the clinical efficacy.

Methods: Immune contexture of SFTs was assessed by immunohistochemistry in lesions from untreated or SM-treated patients. Frequency of circulating myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and T-cell functions was assessed ex vivo in SFT patients prior and during anti-angiogenic therapy. Patients with long-term tumour control were included to correlate immune profiles and clinical responses.

Results: Anti-angiogenic naïve SFT lesions were heavily infiltrated by CD163+CD14+CD68− and CD163+CD14−CD68− myeloid cells but devoid of T cells. Conversely, post-SM tumours acquired a new subset of CD68+CD14− myeloid cells and displayed traits of an on-going adaptive immunity, strongly enriched in activated CD8+ and CD4+ T cells. These changes at the tumour site paralleled the alleviation of systemic immunosuppression and the drop in the frequency of circulating monocytic MDSCs (mMDSCs) and granulocytic MDSCs (gMDSCs). Rebound in the number of mMDSCs, but not of gMDSCs occurred at disease progression, and a reduced percentages of mMDSCs, comparable to those found in healthy donors (HDs), endured only in the SM-responsive patients.

Conclusions: The immune contexture of SFT patients is heavily involved in anti-angiogenic therapy and it could be exploited to achieve more durable disease control through immune-based combination strategies.

*Correspondence: Dr C Castelli; E-mail: chiara.castelli@istitutotumori.mi.it

Revised 12 June 2014; accepted 3 July 2014; published online 7 August 2014

© 2014 Cancer Research UK. All rights reserved 0007 – 0920/14
Solitary fibrous tumour (SFT) is a rare subtype of soft tissue sarcoma (STS) that can occur in several anatomical sites, most frequently in middle-aged patients. Whereas most SFTs have an indolent course and can be cured by surgery, 15–20% of SFT’s progress with either local recurrence or distant metastases (Chan, 1997; Fletcher et al, 2013). In addition to the classical SFT (CSFT), two more aggressive clinical-pathological variants of SFTs are currently recognised: malignant (MSFT) and dedifferentiated (DSFT), the latter showing a high-grade sarcoma overgrowth (Mosquera and Fletcher, 2009; Collini et al, 2012). We and other groups have recently described the activity of sunitinib malate (SM) (Chow and Eckhardt, 2007), in unresectable, progressive M/DSFT patients (George et al, 2009; Stacchiotti et al, 2010, 2012). Apart from being an anti-angiogenic drug, SM possesses immunomodulatory functions (Ko et al, 2009; Ooza-Choy et al, 2009). The role of the immune system in controlling tumour growth has long been recognised and the immune contexture, defined by the frequency, type, functional polarisation and local distribution of immunocompetent cells at the tumour site, has been shown to impact tumour prognosis (Fridman et al, 2012; Galon et al, 2014). Moreover, ‘avoiding immune destruction’ has been recently listed as an emerging hallmark of cancer (Hanahan and Weinberg, 2011; Schreiber et al, 2011) and among the immune suppression mechanisms active in cancer patients, those mediated by Tregs and MDSCs strongly hinder the anti-tumour response in patients with cancer of different histology (Filipazzi et al, 2007; Diaz-Montero et al, 2009; Mougiakakos et al, 2010). Little is presently known about the nature and features of the immune response to SFT, and no accurate histological description of local immunity exists for this STS. Moreover, the impact of anti-cancer therapies on the immunological status of SFT patients remains unexplored. Herein, we showed that the immunological profiles of CSFT, MSFT and DSFT patients, at the tumour site and in circulating PBMCs, revealed an immunosuppressive status. Our data demonstrated that SM treatment relieves systemic immunosuppression in PBMCs of M/DSFT patients, and at the tumour site it favoured the setting of an immune contexture with typical adaptive immunity traits. Altogether, these findings pave the way for the design of therapies that combine immune-based approach with anti-angiogenic treatment in SFT patients to achieve a more durable control of this aggressive disease.

Immunohistochemistry and confocal analysis. Serial sections of 5-μm thick formalin-fixed, paraffin-embedded (FFPE) SFT samples (n = 19) were cut and processed for immunohistochemistry (IHC) or immunofluorescence staining (see Supplementary materials and methods for details). The clinical and pathological characteristics of each tumour are summarised in Supplementary Table S1. All the tumour samples were analysed for the presence of the NAB2-STAT6 fusion as previously described (Mohajeri et al, 2013; Robinson et al, 2013) (see Supplementary materials and methods). The antibodies used for IHC and confocal analysis and their conditions of use are reported in Supplementary Table S2. Confocal microscopy was carried out using a Radiance 2100 microscope (Bio-Rad Laboratories, Hercules, CA, USA) equipped with a krypton/argon laser and a red laser diode. Evaluation of all IHC stains was performed by the Pathologist (SP) who scored the intensity of the staining using a scale from (−) no staining to (++++) very strong staining.

Blood sample collection and patient characteristics. This study was conducted in compliance with the Declaration of Helsinki and approved by the Ethical Committee of Fondazione IRCCS Istituto Nazionale dei Tumori, and all of the patients signed a written informed consent for the collection of blood samples. Blood samples were collected from SFT patients before and at different time points after initiating continuous treatment with anti-angiogenic therapy. Blood was also collected at the time of disease progression. Blood from age-matched healthy donors (HDs) was also obtained for control. PBMCs were isolated by Ficoll/Paque PLUS density gradient centrifugation within 2 h of the blood draw, as described elsewhere (Casati et al, 2006). To avoid assay-to-assay variability, purified PBMCs were cryopreserved in liquid nitrogen for batch acquisition of Tregs and MDSCs based on phenotype and frequency. Immunological monitoring of circulating Tregs and MDSCs was conducted in a total of 17 SFT patients. The clinical characteristics of patients are reported in Table 1. The mean duration of the anti-angiogenic treatment was 6 months (range, 1–20); patients underwent disease assessment at baseline and after ~1–2 months. Objective responses according to the Response Evaluation Criteria in Solid Tumors (RECIST) and tumour burden were determined by physician assessment of radiographs. Patients were treated until they experienced RECIST-defined disease progression or unacceptable toxicity.

SFT tumour dissociation and tumour-infiltrating lymphocytes analysis. Tumour-infiltrating lymphocytes (TILs) were obtained from tumour sample of patients who underwent surgery by enzymatic and mechanic digestion using the gentleMACS Dissociator (Miltenyi, Bergisch-Gladbach, Germany). Briefly, tumour specimens were minced under sterile conditions into small pieces and digested over 1 h at 37 °C following the gentle MACS Dissociator protocol (Miltenyi). The resulting cell suspension was filtered through a 70-μm mesh (BD Biosciences, San Jose, CA, USA), the red blood cells were lysed, and the cell suspension was washed with RPMI. Cells were stored in liquid nitrogen until use. For intracellular cytokine staining, patients’ TILs were seeded into 96-well round-bottom plates at 1.5 × 10^6 cells per well in RPMI + 10% human serum and stimulated overnight with PMA and Ionomycin (50 and 500 ng ml−1, respectively) plus GolgiStop (4 μl 6 ml−1, BD Biosciences) at 37 °C. Tumour-infiltrating lymphocytes were stained for the cell-surface markers CD3, CD4 and CD8. The cells were then washed, fixed and permeabilised with Fix/Perm reagents (eBioscience, San Diego, CA, USA) following the manufacturer’s protocol and then stained with a488-labelled anti-IFN-γ (BioLegend, San Diego, CA, USA), PE-labelled anti-Tbet (eBioscience) or PE-labelled anti-granzyme B (BD Biosciences). Dead cells were identified using the LIVE-DEAD Fixable Violet Dead Cell Stain Kit (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions and excluded from the analysis. The fluorescence intensity was measured using a Gallios (Beckman Coulter, Brea, CA, USA) flow cytometer and analysed using the Kaluza software (Tree Star Inc, Ashland, OR, USA).

Flow cytometry and intracellular cytokine staining. Treg and MDSC frequencies were determined by six-colour immunofluorescence staining of thawed PBMCs. The antibodies used are reported in Supplementary Table S3. Dead cells were identified using the LIVE-DEAD Fixable Violet Dead Cell Stain Kit (Life Technologies) and excluded from the analysis. For surface staining, cells were incubated with antibodies for 30 min at 4 °C after blocking non-specific antibody binding to the Fc receptors using FcR Blocking Reagent (Miltenyi). For Treg analysis, intracellular staining with APC-conjugated anti-Foxp3 (eBioscience) or the proper isotype control (rat IgG2a) was performed after fixation and permeabilisation of cells using an intracellular staining kit (eBioscience) according to the manufacturer’s instructions. Intracellular staining was performed as follows. Lymphocytes activated overnight with anti-CD3/CD28 beads (DynalBeads CD3/CD28 T cell Expander, Invitrogen Dynal AS, Oslo, Norway) in the presence

www.bjcancer.com | DOI:10.1038/bjc.2014.437
of 1 μl ml⁻¹ GolgiPlug (BD Biosciences) were stained for the cell-surface marker CD3. The cells were then washed, fixed and permeabilised with Cytofix/Cytoperm buffer (BD Biosciences) and stained with a488-labelled anti-IFN-γ (BioLegend), PE-labelled anti-IL-2 (BD Biosciences). Data acquisition was performed using a Gallios (Beckman Coulter) flow cytometer, and the Kaluza software was used for data analysis.

Intracellular protein kinase assay. Cryopreserved PBMCs were thawed, washed and rested 2 h at 37 °C in RPMI containing 1% HS. Then, cells were incubated either without stimulation or stimulated with GM-CSF 10 ng ml⁻¹, IL-4 100 ng ml⁻¹, VEGF 50 ng ml⁻¹ (all from Peprotech, Rocky Hill, NJ, USA) and IFNγ 10 000 U ml⁻¹ (all from Peprotech, Rocky Hill, NJ, USA) and IFNγ 10 000 U ml⁻¹ (Sigma-Aldrich, St Louis, MO, USA). Immediately after stimulation cells were fixed with pre-warmed BD Cytofix Buffer (BD Biosciences) for 10 min at 37 °C. After incubation cells were washed with PBS 1% FCS and then stained with anti-CD14 APC alexa750 (Beckman Coulter) and HLA-DR FITC (BD Biosciences) for 30 min and permeabilised with Perm Buffer III solution (BD Biosciences). Cell were then stained for intracellular expression of anti-pSTAT1 (Y701) Alexa Fluor 647, -pSTAT3 (Y705) Alexa Fluor 647, -pSTAT6 (Y641) PE and -pSTAT5 (Y694) PE (all from BD Biosciences). Data were acquired on a Gallios (Beckman Coulter) flow cytometer and analysed using the Kaluza software.

Arginase activity assay. Plasma from HDs and SFT patients was tested for arginase activity by measuring the production of L-ornithine from L-arginine, as previously reported (Rodriguez et al, 2004). In brief, a mix of 25 μl of plasma and 25 μl of buffer (Tris-HCl 50 mM pH 7.5 plus 10 mM MnCl₂, Sigma-Aldrich) was heated at 55 °C for 20 min. Then, 150 μl carbonate buffer (100 mM; Sigma-Aldrich) and 50 μl L-arginine (100 mM; Sigma-Aldrich) were added and the mix incubated at 37 °C for 20 min. The hydrolysis of L-arginine was stopped with 750 μl of glacial acetic acid. In all, 250 μl of ninhydrin solution (2.5 g ninhydrin (Sigma-Aldrich); 40 ml H₃PO₄ 6 M; 60 ml glacial acetic acid) was added followed by incubation at 95 °C for 1 h. The amount (nmol) of L-ornithine was determined measuring the absorbance at 570 nm.

Statistical analysis. The two-tailed unpaired Student’s t test (with a 95% confidence interval (CI)) was used to compare groups, while the two-tailed paired Student’s t test was used to analyse the effect of the treatments between different time points, as indicated in the figure legends. Statistical calculations were performed using the Prism5 software (GraphPad Software, La Jolla, CA, USA). P-values <0.05 were considered as statistically significant. Error bars represent the standard error of the mean (s.e.m.).

RESULTS

Tumour-infiltrating immune cells in CSFT and M/DSFT. To gain insight into the immune contexture of SFTs, the presence and functional polarisation of tumour-infiltrating T cells and myeloid/macrophage cells were assessed by IHC analysis on a retrospective series of FFPE SFT specimens (n = 11) collected from patients who did not receive anti-angiogenic therapy before surgery. This series
of anti-angiogenic-naive SFTs included three CSFTs, and five MSFTs and three DSFTs. Supplementary Table S1 reports the histopathological features of the studied tumours. The majority of the analysed samples were negative or very poorly infiltrated with CD3⁺ T cells (Figure 1A). Only two cases (MSFT Tumour ID #8 and DSFT Tumour ID #9) displayed a remarkable positivity for CD3 staining (Figure 1A) that, however, was paralleled by a strong positivity for the Foxp3 nuclear marker, thus indicating enrichment in infiltrating Tregs (Figure 1A). In our samples, antibodies directed against the CD68 and CD163 markers did not stain tumour cells but did identify two different subgroups of tumour-associated macrophages (TAMs). All of the SFT cases displayed strong infiltration by CD163⁺ cells intermingled with the tumour cells, and the frequency of this myeloid cell type was further enhanced in tumours with a worse prognosis, namely M/DSFT samples. Conversely, CD68 staining was completely negative or revealed only few/scattered positive cells (Figure 1A). Confocal analysis, performed to better clarify the nature of the myeloid cells present in the M/DSFT microenvironment, showed that the majority of the CD163⁺ cells were positive for CD14, fitting with a pro-tumour, M2-TAM nature (Figure 1B, arrows) (Mantovani et al, 2002). Moreover, a subset of CD163 single-positive cells was also detected (Figure 1B, circle). According to the literature, these cells might represent a subset of myeloid progenitors or immature cells (de Vos van Steenwijk et al, 2013). Analysis of the granulocytic component was also performed and no evidence for a selective infiltration of this cell subset was evidenced. CD66b⁺ cells were in fact only occasionally found inside the tumour, with some positivity detected only in perivascular areas (see Supplementary Figure S1). Collectively, the IHC and confocal analyses indicated poor T-cell infiltration and an immunological status skewed towards immune suppression in CSFT and in M/DSFT lesions.

Tumour ID	Diagnosis	CD3	Foxp3	CD163	CD68
1	CSFT	±	±	++	±
2	CSFT	±	±	++	±
3	CSFT	±	±	++	±
4	MSFT	±	/	+++	±
5	MSFT	±	/	++	±
6	MSFT	±	/	+	±
7	MSFT	±	/	+++	±
8	MSFT	±	/	+++	±
9	DSFT	+++	++	+++	±
10	DSFT	±	/	+++	±
11	DSFT	±	/	+++	±

Summary of IHC results for anti-angiogenic-naive SFT lesions abbreviations: CSFT, classical solitary fibrous tumour; MSFT, malignant solitary fibrous tumour; DSFT, dedifferentiated solitary fibrous tumour; /, not done; –, no staining; ±, very weak; +, weak; ++, moderate; +++, strong; ++++, very strong.

Figure 1. Analysis of tumour-infiltrating immune cells in M/DSFTs not treated with anti-angiogenic therapy. Representative IHC stainings of two targeted therapy-naive MSFT lesions (Tumour IDs #5 and #8). (A) (H&E) Haematoxylin and eosin staining. Images show MSFT lesions (ID #5) with no or (ID #8) moderate CD3 infiltration. (ID #8) CD3⁺ T cells showed positivity for the Foxp3 nuclear marker. (Tumour IDs #5 and #8) Presence of a very high density of CD163-positive macrophages diffusely dispersed among the cancer cells. (ID #5) Sparse or (ID #8) absence infiltration of CD68⁺ macrophages. (B) (Tumour ID #4) Double-label immunofluorescence staining for CD163 (green) and CD14 (red) macrophage markers. The arrow indicates CD163⁺CD14⁻ cells. The circle identifies CD163⁺ cells that do not express CD14.
Evidence of a distinct immune cell signature in M/DSFT lesions from SM-treated patients. Pro-angiogenic factors and abnormal tumour vasculature hamper the extravasation of immune cells into the tumour parenchyma and promote immune suppression (Dirks et al., 2003). Conversely, anti-angiogenic treatments, while normalising blood vessels, enhance immune infiltration, as recently shown in different animal models (Shrimali et al., 2010; Jain, 2013). In M/DSFT patients, we recently described the activity of SM, and we reported that SM led to vascular normalisation at the tumour site (Stacchiotti et al., 2012). We thus explored the immune contexture in four M/DSFT lesions surgically removed from patients who received SM in neo-adjuvant setting.

All of these samples showed a high density of CD3+ TILs (Figure 2A), which included both CD4+ and CD8+ T cells. The intratumoral lymphocytes were mainly HLA-DR positive, and a consistent fraction of them also stained positive for granzyme B (GZMB) and T cell-restricted intracellular antigen (TIA-1, a cytotoxic granule-associated protein expressed by cytotoxic T cells and involved in the induction of apoptosis in CTL-sensitive targets) (Figure 2A). Thus, the CD8+ infiltrating cells were mainly activated T cells endowed with cytolytic potential. Moreover, their positivity for the nuclear transcription factor T-bet (immune cell-specific member of the T-box family of transcription factor coordinating type 1 immune responses) suggested enrichment in functional, Th-1-polarised T cells (Figure 2A). No Foxp3+ cells were detected (Figure 2A), indicating the absence of regulatory, suppressive T cells at the tumour site in post-SM M/DSFT patients.

Concerning the monocyte/macrophage compartment, in addition to the CD163+/CD68+ myeloid population (Figure 3), post-SM M/DSFTs displayed a strong positivity for intratumoral CD68+ myeloid cells (Figure 3A). On confocal analysis, these CD68+ cells co-expressed CD14 and represented a newly acquired population of macrophages rarely found in untreated tumours (Figure 3B). Moreover, these CD68+ macrophages displayed a typical round morphology, and double-immunofluorescence staining revealed co-expression of both the CD68 and HLA-DR markers (Figure 3C). These features are compatible with the M1 phenotype of activated macrophages. On IHC evaluation, all of the cases treated with SM showed signs of a pathologic response. Extensive areas of necrosis and tumour regression were observed in the proximity of the immune and inflammatory infiltration. Of note, around the area of tumour regression, CD8+ and CD4+ T cells were organised in clusters (Figure 2B). Altogether, the IHC results were consistent with an ongoing adaptive immunity in post-SM M/DSFTs. To strengthen this conclusion, ex vivo TILs were isolated from the excised naïve and post-SM MSFT (Patient ID #13) specimens and tested in vitro for their immunological properties. T cells from post-SM lesions were found to contain functionally active CD4+ T cells producing IFN-γ and CD8+ GZMB-positive T cells, representing effector cytotoxic T lymphocytes (Figure 2C).

Standard treatment for M/DSFT patients includes different regimens of cytotoxic chemotherapy (CT) associated or not with radiotherapy (RT). To verify whether modulation of the immune contexture at the tumour site also occurred in patients responding to CT, IHC analysis was performed in four M/DSFT tumour lesions surgically removed from patients who received CT/RT in neo-adjuvant setting. Weak/moderate CD3 infiltration and only few, spared CD68+ cells were detected in the two tumours post-CT (isosfamide and/or epirubicin) plus RT (see Supplementary Figure S2; Tumour IDs #14 and #15). The absence of CD68+ cells and very week CD3+ T-cell infiltration characterised the post-epirubicin (monotherapy) tumour (see Supplementary Figure S2; Tumour ID #13). Of note, in the tumour sample from a patient treated with doxorubicin and dacarbazine, moderate CD3+ infiltration, associated with a still weak but more clustered CD68+ positive infiltrate was detected in the proximity of areas showing signs of necrosis and tumour regression likely suggesting a possible engagement of the immune response.

Accumulation of immunosuppressive cells in the peripheral blood of SFT patients. To evaluate the systemic immunological status of SFT patients, we explored the frequency of Tregs and M/DSFs in the peripheral blood of a prospectively collected series of 17 SFT patients who included 5 patients with tumours classified as CSFTs, 6 as MSFTs and 6 as DSFTs (Table 1). PBMCs of HDs, matched for gender and age, were included as controls. Regulatory T cells, defined as CD25+Foxp3+ within a live-gated CD3+ CD4+ T cell population, were significantly expanded in M/DSFT patients compared with age-matched HDs (n = 11) (P = 0.0008, 1.04 ± 0.65 vs 2.57 ± 1.03); conversely, no statistically significant difference existed between HDs and CSFT patients (Figure 4A). The percentage of mMDSCs, first defined by our group as CD11b+ CD14+ HLA-DR− Foxp3− (Filippazzi et al., 2007; Hoechst et al., 2008; Walter et al., 2012), was significantly higher in subjects with both CSFTs and M/DSFTs than in HDs (P = 0.0398, 6.19 ± 4.03; P < 0.0001, 13.88 ± 5.66 vs 3.23 ± 1.31, respectively) (Figure 4B). No difference in the percentages of Lin−HLA-DR+ CD3+ mMDSCs was detected between patients and HDs (data not shown). The overall frequency of CD3+ CD4+ T cells and myeloid/macrophage CD14+ CD11b+ cells did not differ significantly between patients and HDs (Figure 4C and D). Moreover, circulating CD3+ T cells from CSFT and M/DSFT patients were functionally impaired. Figure 4E and F shows that the frequency of CD3+ T cells that produced IFN-γ and IL-2 ex vivo was strongly reduced in patients' PBMCs compared with HDs. Altogether, these phenotypic and functional assays suggested a status of systemic immunosuppression in SFT patients.

Anti-angiogenic therapy modulates peripheral immunosuppressive cells in patients with M/DSFT. Our in situ analysis provided evidence that anti-angiogenic treatment reprogrammed the immune contexture of M/DSFTs and favoured the onset of an active T-cell immunity. To evaluate whether anti-angiogenic therapy also affected the systemic immunological status of patients with M/DSFT, we monitored the frequency of circulating Tregs and M/DSFs in PBMCs from patients with M/DSFTs collected at different time points during SM (n = 6 patients) or pazopanib (n = 1 patient) therapy (Table 1). These anti-angiogenic drugs did not induce lymphopenia (data not shown). Interestingly, at the end of the second week of treatment (T15), the frequency of blood Tregs, evaluated within the CD3+ CD4+ compartment (Figure 5A) or in the total number of live cells (see Supplementary Figure S3), was significantly reduced (P = 0.0020, 2.63 ± 1.12 vs 1.41 ± 0.75; P = 0.0117, 0.57 ± 0.37 vs 0.36 ± 0.26). This effect was long lasting, and it was maintained for the duration of the treatment (P = 0.0024, 1.41 ± 0.75 vs 0.95 ± 0.48; P = 0.0043, 0.36 ± 0.26 vs 0.22 ± 0.14). The frequency of circulating M/DSFs, within the monocyte compartment (Figure 5B) or in the total number of live cells (Supplementary Figure S3), was significantly reduced at T15 (P = 0.0040, 11.93 ± 4.84 vs 6.27 ± 5.52; P = 0.0295, 0.75 ± 2.18 vs 0.44 ± 0.31). An increase in mMDSC frequency occurred in all of the patients at the time of disease progression although patients were still under drug treatment (P = 0.0043, 6.27 ± 5.52 vs 13.13 ± 5.86; P = 0.0030 0.44 ± 0.31 vs 1.8 ± 0.66) (Figure 5B). The MDSC population includes also gMDSCs. A consensus has been reached in considering human gMDSCs as CD14+ CD66b+ and/or CD15+ activated neutrophils within total PBMCs or inside the Lin−HLA-DR− fraction, displaying low density (thus being co-purified with PBMCs during blood centrifugation) and releasing arginine I in the circulation (Zea et al., 2005; Rodriguez et al., 2009; Brandau et al., 2011). We thus assessed the frequency of this MDSC subtype in PBMC of M/DSFT by monitoring the CD66b+ CD15+, or CD66b+ Lin−HLA-DR− cells as done in others published studies (Zea et al., 2005;
Moreover, for each M/DSFT patient, the arginase activity was quantified in the plasma and plotted along the absolute neutrophil count (Figure 5E). With respect to HDs, M/DSFT patients displayed an enhanced frequency of gMDSCs (Figure 5D) and an increased number of neutrophils in the blood (Figure 5E),

Table: Summary of IHC results for post-SM M/DSFT lesions

Tumour ID	Diagnosis	CD3	CD4	CD8	Granzyme B	T-bet	TIA-1	Foxp3
6	MSFT	++	++	++	–	+	/	–
12	DSFT	++	++	++	+	+	–	–
13	MSFT	++++	++++	+++	+	++	–	–
14	DSFT	++++	++++	++++	–	++	–	–

Abbreviations: MSFT, malignant solitary fibrous tumour; DSFT, dedifferentiated solitary fibrous tumour; /, not done; –, no staining; ±, very weak; +, weak; ++, moderate; ++++, very strong.

The expression of TIA-1, T-bet and Granzyme B was evaluated inside the T-cell area.

Figure 2. Analysis of infiltrating immune T cells in SM-treated M/DSFT lesions. (A) Representative IHC stainings of an SM-treated MSFT lesion (Tumour ID #13). (H&E) Haematoxylin and eosin stain. Staining for CD3⁺ (low and high magnifications), CD4⁺ and CD8⁺ T cells is showed. Representative images of the expression of T cell-associated markers HLA-DR, granzyme B (GZMB), T-bet and Foxp3 are reported. (B) IHC analysis of an SM-treated DSFT lesion (Tumour ID #14) with evidence of tumour regression. In areas of tumour regression, T cells (CD3, CD4 and CD8) are organised in clusters. (C) Multi-parametric flow cytometry analysis of live lymphocytes from freshly dissociated naïve and SM-treated MSFT tumours (Tumour ID #13). Expression levels of T-bet, IFN-γ and GZMB were evaluated by intracellular flow cytometry in CD3⁺ T cells. The gating strategy is reported.
number that matched the higher plasma arginase activity. Frequency of gMDSCs, number of neutrophils and arginase activity were co-ordinately downmodulated by SM. However, similarly to Treg and at difference from mMDSCs, gMDSCs remained low all along the duration of SM treatment including at progressive disease (Figure 5D and E).

The functional assessment of the circulating CD3⁺ T cells, which was based on their capacity to produce IFN-γ and IL-2 ex vivo (Figure 5F and G), revealed that immunosuppression, present in patient PBMCs before anti-angiogenic treatment (Figure 5F and G, PRE), was quickly relieved at T15. At progression, with the increase in mMDSCs, T cells displayed again an impaired function characterised by a limited IFN-γ and IL-2 production, similarly to what was found for the pre-treatment T cells.

Three patients displaying a long lasting response to SM treatment (Table 1, Pts #6a,8a,10a; SD or PR according RECIST evaluation after ≥ 10 months) consistently showed a low level of mMDSCs, with values comparable to HDs (Figure 6Aa) and no evidence of CD3⁺ T-cell dysfunction in the peripheral blood could be detected in these SM-responsive patients (Figure 6Ab and c). Monocytic MDSCs from patients at time of disease progression were assessed for the activation of STAT-1, 3, 5 and 6 in response to the ex vivo cytokine stimulation. VEGF was unable to trigger STAT-3 phosphorylation in mMDSCs, likely as a result of the blocking activity exerted by SM. The other cytokines tested namely GM-CSF and IL-4, exerted their canonical activation pathways and induced STAT-5 and STAT-6 activation, respectively (data not shown). Conversely, these mMDSCs stimulated with IFNα, in addition to STAT-1 (data not shown), displayed a consistent phosphorylation of STAT-3. IFNα-dependent STAT-3 activation did not occurred in mMDSCs of HDs and SM-responsive patients (Figure 6B and C).

In summary, the analysis of the circulating immune cells in PBMCs from M/DSFT patients provided phenotypic and functional evidence of an immunosuppressive status that was quickly but temporary relieved by anti-angiogenic treatment. Suspension in the immunosuppression correlated with response to treatment.

Figure 3. Analysis of infiltrating myeloid cells in SM-treated M/DSFT lesions. Stainings representative of an SM-treated MSFT lesion (Tumour ID #13). (A) IHC staining for the macrophage-associated markers CD163 and CD68 (low and high magnifications). (B) Double-label immunofluorescence staining and confocal analysis for (a) CD163 (green) and CD68 (red), (b) CD68 (green) and CD14 (red), and (c) CD68 (green) and HLA-DR (red).
anti-tumour activity in M/DSFT (George et al, 2009; Stacchiotti et al, 2010, 2012) and patients achieving long-term tumour control have been reported (Domont et al, 2010; Levard et al, 2013). Besides the notion that immunity is emerging as a critical player in the response to treatment in cancer patients (Zitvogel et al, 2013), the rationale of assessing the role of the immune system in the efficacy of SM in SFTs stems from our previous observation that the levels of PDGFRβ and/or VEGFR2 activation, evaluated by IHC in tumour lesions, did not fully account for the therapeutic response to treatment (Stacchiotti et al, 2012).

The first interesting observation of our analysis was the presence of an immunosuppressed environment at the tumour site, characterised by a very dense infiltrate of myeloid cells and the absence of granulocytic component. Myeloid cells, mostly CD68 negative, included CD163+/CD14−/CD68− TAMs, interdispersed among cancer cells and with an elongated, ramified morphology compatible with M2-type macrophages (Mantovani et al, 2002; Jensen et al, 2009; Caillou et al, 2011; Ino et al, 2013), together with CD163+/CD14+CD68− cells likely representing immature myeloid-derived cells (Jensen et al, 2009; de Vos van Steenwijk et al, 2013). Conversely, CD3+ lymphocytes were mainly absent, and when present, they were enriched in suppressive Foxp3+ Tregs. An immunosuppressive status was also detectable in the peripheral blood of SFT patients. In fact, circulating T cells were consistently functionally impaired, and a significant accumulation of mMDSCs and gMDSCs was observed in all the patients analysed. Notably, the increased frequency of circulating mMDSCs (Figure 4B) and gMDSCs (data not shown) seemed to correlate with tumour grade and disease aggressiveness, being already detectable in CSFT patients and reaching the highest level in M/DSFT patients. The more compromised immunostatus of these patients with advanced SFTs was further confirmed by the additional accumulation of circulating Tregs, which instead showed frequency close to normal values in patients with CSFTs. Altogether, this scenario reveals a previously unappreciated tumour-mediated immunosuppression in SFT patients and particularly in patients with M/DSFTs. This observation opens the question whether this immunosuppressive signature can be reversed by anti-angiogenic treatments and whether re-activated tumour immunity could be part of the response to treatment. Noteworthy, no information about the immunological effect of SM, as detected in situ at the tumour site in human setting, are available to date. Our IHC analysis showed that, as opposed to SM-naıve tumours, SM-treated lesions were all characterised by a remarkable CD3+ T-cell infiltration, with no Foxp3+ Treg, but that included Th1 and cytotoxic-competent CD4+ and CD8+ T cells. Moreover, TILs purified from an SM-treated MSFT lesion released ex vivo Th1-related cytokines and cytotoxic GZMB, thus supporting the local engagement of a functionally active host immune response. Activated T cells at the tumour site correlated with the concomitant presence of a new subset of CD68+ myeloid cells rarely found in untreated tumours. These CD68+ macrophages displayed the round-shape morphology typical of the M1 polarisation (McWhorter et al, 2013), and expressed high level of HLA-DR. The pro-inflammatory and anti-tumour activity of CD68+ macrophages infiltrating post-therapy SFTs is also supported by their organisation in clusters around the areas of tumour regression and in close proximity with activated T lymphocytes. Since macrophages display an elevated grade of plasticity in response to external stimuli (Mantovani et al, 2013), we may hypothesise that in SFTs, SM re-educated tumour-resident myeloid cells towards a more M1-related phenotype, or, alternatively, it recruited ex novo a new subset of monocytes/macrophages from peripheral blood.

Standard treatment for M/DSFT patients includes cytotoxic CT and/or RT. Evidence from the literature indicates that some CT regimens can be endowed with immunomodulatory activities
Analysis of the immune contexture was thus performed in M/DSFT tumours obtained from cytotoxic responsive patients. Only very mild modulation of the immune infiltration was observed and this occurred mainly in those cases receiving RT, thus confirming previously published data (Sharma et al, 2013). Of note, two of the analysed tumours, one that showed very few infiltration of T cells and the absence of myeloid cells (Tumour ID #13) and one treated with CT plus RT (Tumour ID #14),

Figure 5. Anti-angiogenic therapy modulates immunosuppression in M/DSFT patients. (A, B, D and E) Anti-angiogenic therapy modulates the frequencies of immunoregulatory cells in M/DSFT patients. PBMCs of M/DSFT patients collected at three time points during anti-angiogenic treatment were analysed for the frequency of (A) CD25hiFoxp3hi cells (Tregs) in CD3+CD4+ T cells and (B) CD11b+CD14+HLADR−/flow cells (mMDSCs) in CD14+CD11b+ cells. (C) Gating strategy for gMDSC determination; (D) gMDSCs detected as CD15+CD66b+ in live-gated PBMCs (black) or as CD66b+ cells within the Lin−HLA-DR− fraction (light blue). (E) Absolute neutrophil count obtained by complete blood count (black dots), and arginase activity (red dots) evaluated as nmol ornithine per hour in 25 μl of patient’s plasma. Each dot represents one patient; bars indicate s.e.m. PRE, PBMCs collected prior anti-angiogenic therapy; T15, PBMCs collected at day 15 during therapy; at progression, PBMCs collected at the time of disease progression. (F, G) Increased levels of circulating mMDSCs correlated with decreased T-cell functionality. PBMCs from M/DSFT patients (n = 7) collected at different time points during anti-angiogenic treatment (PRE; T15; at progression) were assayed for (F) IFN-γ and (G) IL-2 after anti-CD3/CD28 overnight stimulation. Analysis was performed on CD3+ gated T cells. The box plot depicts the median percentages of cytokine-positive CD3+ T cells. Statistical analysis: two-tailed paired Student’s t test (95% confidence interval (CI)); only significant P-values are shown; bars indicate s.e.m.
Host immunity in solitary fibrous tumours

BRITISH JOURNAL OF CANCER

derived from patients subsequently treated and responding to SM and whose post-SM tumours were here analysed (Figure 2A and B). At difference from the autologous post-CT counterpart, post-SM tumours displayed a profound change in the tumour immune microenvironment with huge CD3+ and CD68+ infiltrating cells organised in cluster and intermingled with tumour cells and areas of tumour necrosis. A coordinated presence of CD3+ and CD68+ cell infiltration at lower density but with distribution similar to that observed in post-SM tumours was found in the sample treated with doxorubicin and dacarbazine, thus possibly testifying an involvement of the immune system in the response to this CT regimen. In summary, a modulation of both myeloid and lymphoid immune infiltrate occurred in all the four post-SM tumours, thus indicating a tight association between immune system and response to SM. This was not the case for the post-CT samples. However, the here analysed post-CT tumours were derived from patients who underwent heterogeneous CT treatments. Moreover, for the doxorubicin and dacarbazine regimen, a single case was available for testing. Consequently, definitive conclusions on the involvement of immune system into CT-induced response deserve further investigation. This is expressly true for the doxorubicin and dacarbazine CT in view of the fact that a retrospective study recently reported this CT regimen as effective in M/DSFT (Stacchiotti et al, 2013).

The ability of SM to interfere with myeloid cells, a property already suggested in other cancer patients (van Cruijsen et al, 2008; Ko et al, 2009), was further supported by our evidence that circulating mMDSCs and gMDSCs were significantly decreased in M/DSFT patients upon SM administration. The frequency of gMDSCs remained low and similar to the frequency found in HDs (Ko et al, 2008), while SM-responsive (n = 3) and SM-progressive patients (n = 6). Δ% pSTAT3 was calculated as: % pSTAT3 (IFNz) – % pSTAT3 (basal). Columns represent mean values; bars indicate s.e.m.

Figure 6. Modulation of mMDSCs in SM-treated M/DSFT patients. (A) Patients responding to SM treatment had normal levels of mMDSCs and did not display dysfunctional T cells. (a) Frequency of CD11b+CD14+HLADR−/low mMDSCs in PBMCs from M/DSFT patients treated with SM and displaying disease progression (Progression) or responsive to SM treatment (Response: 2 PR and 1 SD, duration of the response ≥10 months). The same PBMCs as in (a) were evaluated for the (b) frequency of CD3+ T cells producing IFN-γ and (c) IL-2 after anti-CD3/CD28 overnight stimulation. (a) Each dot represents the data of a single patient. (b and c) Dot represents the mean value. (B) Representative histograms of pSTAT3 analyses in CD11b+CD14+HLADR−/low cells (mMDSCs) with (black) and without (grey) IFNz stimulation (10 000 U ml−1 for 15 min at 37°C). (C) Columns represent the IFNz-induced STAT3 activation in CD11b+CD14+HLADR−/low cells of HDs (n = 4), SM-responsive (n = 3) and SM-progressive patients (n = 6). Δ% pSTAT3 was calculated as: % pSTAT3 (IFNz) – % pSTAT3 (basal). Columns represent mean values; bars indicate s.e.m.
blood of patients progressing during SM treatment revealed the
capacity of these cells to promote STAT3 phosphorylation upon
IFNα stimulation. The IFNα-mediated STAT3 phosphorylation did
not occur in mMDSCs of SM-responding patients. The role of
STAT3 in the development and effector functions of MDSCs is well
documented in murine setting (Gabrilovich and Nagaraj, 2009) and
recently suggested as crucial also for human mMDSCs (Poschke et al.,
2010). However, the functional implication of this alternative STAT3
activation in mMDSC biology, and most importantly, the effects of
anti-angiogenic therapy on such a signalling pathway deserve to
be further explored. Nevertheless, these data together with the mMDSC
boost at progression suggest that SM treatment might induce/select a
qualitatively different mMDSC population, possibly representing an
immune-mediated mechanism of acquired resistance. This ‘immuno-
nological resistance to treatment’ occurred only for the mMDSC
compartment, as the SM-induced modulation of Treg and gMDSC
frequency was detected in all the treated patients and it lasted for all
the duration of the treatment.

In conclusion, our results shed light on a previously unappreci-
ated phenomenon of immune dysfunction in this STS subtype and
demonstrate that anti-angiogenic therapy opens a temporal
window during which SFT patients regain normalisation in
systemic myeloid differentiation status and T-cell functions thus,
suggesting a contribution of the host immunity to the drug efficacy.
Moreover, the rebound of circulating mMDSCs and impaired
T-cell functions at tumour progression suggest that therapeutic
strategies limiting residual myeloid suppressor activities (Nagaraj
et al., 2010; Iclozan et al., 2013; Mok et al., 2013) and boosting
tumour-specific immune responses represent a promising approach
to improve the activity of anti-angiogenic treatment in SFT patients.
Of note, the recent discovery that SFTs are marked by a tumour-
specific chromosomal translocation (NAB2-STAT6) makes this
tumour type an attractive target for active immunotherapy
(Mohajeri et al., 2013; Robinson et al., 2013). In fact, the chimeric
protein encoded by the recombinant NAB2-STAT6 gene is a potential
reservoir of unique tumour-specific antigens that are now considered
as crucial in the design of an efficient personalised immunotherapy
(Nadler and Schultz, 2002; Robbins et al., 2013; Tran et al., 2014).

REFERENCES

Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based
mechanisms of cytotoxic chemotherapy: implications for the design of
novel and rationale-based combined treatments against cancer. Cell Death
Differ 21: 15–25.

Brandau S, Trellakis S, Bruderek K, Schmalitz D, Steller G, Elia M,
Suttmann H, Schenck M, Welling J, Zabel P, LANG S (2011) Myeloid-
derived suppressor cells in the peripheral blood of cancer patients contain
a subset of immature neutrophils with impaired migratory properties.
J Leukoc Biol 89: 311–317.

Caillou B, Talbot M, Weyemi U, Pinche-Durieu C, Al Ghuzlan A, Bidart JM,
Chouaib S, Schlumberger M, Dupuy C (2011) Tumor-associated
macrophages (TAMs) form an interconnected cellular supportive network
in anaplastic thyroid carcinoma. PLoS One 6: e22567.

Casci C, Camisacchi C, Rini F, Arienti F, Rivoltini L, Tripell F, Parmiani G,
Castelli C (2006) Soluble human LAG-3 molecule amplifies the
in vitro generation of type 1 tumor-specific immunity. Cancer Res 66:
4450–4460.

Chan JK (1997) Solitary fibrous tumour—everywhere, and a diagnosis in
vogue. Histopathology 31: 568–576.

Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical
efficacy. J Clin Oncol 25: 884–896.

Collini P, Negri T, Barisella M, Palassini E, Tarantino E, Pastorino U,
Granchi A, Stacchioti S, Pilotti S (2012) High-grade sarcomatous
overgrowth in solitary fibrous tumours: a clinicopathologic study of 10
cases. Am J Surg Pathol 36: 1202–1215.

de Vos van Steenwijk PJ, Ramwadhdohee TH, Goedemans R, Doorrijn EM,
v van Ham JH, Gorter A, van Haal T, Kuijer ML, van Poelgeest MI,
vander Burg SH, Jordanova ES (2013) Tumor-infiltrating CD4-positive
myeloid cells and CD8-positive T-cells prolong survival in patients with
cervical carcinoma. Int J Cancer 133: 2884–2894.

Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ,
Montero AL (2009) Increased circulating myeloid-derived suppressor cells
correlate with clinical cancer stage, metastatic tumor burden, and
doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol
Immunother 58: 49–59.

Dirx AE, Oude Egbrink MG, Kuijpers MI, van der Niet ST, Heijnen VV,
Bouma-ter Steege JC, Wagstaff I, Griffioen AW (2003) Tumor
angiogenesis modulates leukocyte-vessel wall interactions in vivo by
reducing endothelial adhesion molecule expression. Cancer Res 63:
2322–2329.

Domont J, Massard C, Lassau N, Armand JP, Le Cesne A, Soria JC (2010)
Hemangiopericytoma and antiangiogenic therapy: clinical benefit of
antiangiogenic therapy (sorafenib and sunitinib) in relapsed malignant
haemangiopericytoma / solitary fibrous tumour. Invest New Drugs 28:
199–202.

Filipazzi P, Valentti R, Huber V, Pilla L, Canese P, Iero M, Castelli C,
Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of
myeloid suppressor cells in peripheral blood of melanoma patients with
modulation by a granulocyte-macrophage colony-stimulation factor-based
antitumor vaccine. J Clin Oncol 25: 2546–2553.

Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical
implications of myeloid-derived suppressor cells in cancer patients. Cancer
Immunol Immunother 61: 255–263.

Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2013) World Health
Organization Classification of Tumours of Soft Tissue and Bone, 4th edn.
IARC Press: Lyon.

Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune
contexture in human tumors: impact on clinical outcome. Nat Rev Cancer 12:
298–306.

Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as
regulators of the immune system. Nat Rev Immunol 9: 162–174.

ACKNOWLEDGEMENTS

We thank Dr Paola Frati and Mrs Felicetta Giardino (Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy) for their precious clinical help. We are grateful to Dr Valeria Beretta (Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy) for expert technical help. We are grateful to Dr Maria Grazia Daidone for coordinating the activities of the Tissue Bank internal to our institution. This study was supported by AIRC (Associazione Italiana Ricerca sul Cancro) (IG grants: CC (10615), SP (10300), and LR (10727); MFAG grant: TN (11817)). MT is supported by a fellowship from FIRC (Fondazione Italiana Ricerca sul Cancro).

CONFLICT OF INTEREST

SS received Pfizer coverage for medical meetings and research
funding. CPG received Pfizer advisory honoraria and research
funding. The remaining authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

MT, TN, BV, VH, SS, LR, SP and C Castelli made intellectual
contributions to the conception and/or design of the study.

MT and FR conducted the experiments. BV and AV designed and
performed the immunohistochemical and confocal analysis.

C Colombo, MF and AG performed selection and clinical
evaluation of patients. MT, TN, BV, AV, SS, LR, SP and C Castelli
were involved in the interpretation of data. All of the authors
were involved in drafting and/or critical revisions of the manuscript
and approved the final submitted version.
Galon J, Milenik B, Bindea G, Angeli HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Massucci GV, Botti G, Tanatangelo F, Delrio P, Maio M, Laghi L, Grizi A, Fais A, Aislaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Choucane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogin O, Gibb S, Pipher M, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scipicaruu V, Ascierto PA, Marincola FM, Fox BA, Pages F (2014) Towards the introduction of the ‘Immunoscope’ in the classification of malignant tumours. _J Pathol_ 232: 199–209.

Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces tumor immune escape. _Curr Opin Mol Ther_ 10: 646–674.

Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces tumor immune escape. _Curr Opin Mol Ther_ 10: 646–674.

Haojet B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces tumor immune escape. _Curr Opin Mol Ther_ 10: 646–674.

Izoezcan S, Antonia S, Chiapori O, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. _Cancer Immunol Immunother_ 62: 909–918.

intro cancer 199: 747–752.

Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS, Chen CL, Zhang L, Wang R, Su F, Iyer MK, Roychowdhury S, Siddiqui J, Pienta KJ, Kunju LP, Talpaz M, Mosquera JM, Singer S, Schuetze SM, Angell HK, Bindea G, Lagorce C, Lugli A, Host immunity in solitary fibrous tumours

George S, Merriam P, Maki RG, Van den Abbeele AD, Yap JT, Akhurst T, Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.

Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. _J Clin Oncol_ 31: 2205–2218.

Ko JS, Zea AH, Piazza ME, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2009) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res_ 69: 5839–5849.
Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18: 1254–1261.

Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65: 3044–3048.

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39: 74–88.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)