Doxazosin attenuates renal matrix remodeling mediated by anti-α1-adrenergic receptor antibody in a rat model of diabetes mellitus

LIN-SHUANG ZHAO1, YAN-YAN LIN1,2, YI LIU1,2, CHUN-YAN XU1, YE LIU1, WEI-WEI BAI1, XUE-YING TAN1, DE-ZHONG LI3 and JIN-LING XU1

1Department of Endocrinology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070; 2Wuhan Clinical Medical School, Graduate College, Southern Medical University, Guangzhou, Guangdong 510515; 3Medical Experiment Center, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China

Received March 30, 2016; Accepted March 17, 2017

Abstract. Diabetic nephropathy is a major complication of diabetes mellitus (DM). Recent studies suggest that immunological mechanisms have a key role in the pathogenesis of DM, therefore these mechanisms may be important targets for diabetes therapy. The present study evaluated the effects of anti-α1-adrenergic receptor antibody (α1-R Ab) mediation and doxazosin treatment in a rat model of DM. It was observed that levels of 24-h urinary protein, serum creatinine and transforming growth factor-β1 in DM were significantly increased after α1-R Ab mediation (all P<0.05). In addition, electron microscopy identified severe damage in the renal tissue microstructures of DM rats following α1-R Ab mediation, while only mild abnormalities were observed in that of healthy rats mediated with α1-R Ab and of untreated DM rats. No marked abnormalities were observed in the renal tissue of healthy blank controls. Furthermore, in DM rats treated with α1-R Ab mediation + doxazosin intervention, the expression of TGF-β1 significantly decreased, and renal functions and renal matrix remodeling were significantly improved, relative to untreated DM controls (P<0.01). These results suggest that α1-R Ab may be involved in renal matrix remodeling during DM, and that kidney protection during DM may be achieved through treatment with corresponding receptor antagonists.

Introduction

Diabetes mellitus (DM) is a disease of the endocrine system disease with a complicated pathogenesis, and is the third biggest threat to human health after cancer and cardiovascular disease (1). There are currently ~250 million worldwide cases of DM (2), and it is estimated that this number will increase to 400 million by 2030 (3,4). China currently has the largest population of DM patients, where early onset of the disease is being more prevalent (5). In addition, large vessel and capillary complications caused by DM impair the quality of life of DM patients, and are a major cause of morbidity and mortality (1,6). All organs and viscera within DM patients are injured to some extent during disease pathogenesis, with diabetic nephropathy (DN) being particularly prevalent (7). Routine treatments for DN include strict regulation and control of blood glucose and the use of renin-angiotensin system suppressants to control blood pressure (8). Although these treatments may sufficiently control blood glucose and blood pressure, few direct treatment strategies exist for the kidneys. It is insufficient to characterize the pathogenesis of DN using only blood parameters, including hemodynamic disturbance and hyperglycemia, as immunology may also have a key role in the pathogenesis and complications of DN (9).

Previous studies demonstrated that the incidence and progression rates of DN are markedly higher in patients that express autoantibodies (Auto Ab) to major receptors, including the angiotensin (AT1), α1 adrenergic (α1), and β1 adrenergic (β1), than in those without, regardless of sufficient blood glucose and pressure control (10,11). Thus, the onset of DN may be related to levels of Auto Ab, though the involvement of Auto Abs in DN-related renal changes is not well understood. It has been suggested that DN may be an inflammatory disease that develops secondary to the metabolic disturbance that occurs during DM (12). In a pathological state, native kidney cells produce a variety of pro-inflammatory factors and inflammatory mediators, including nuclear factor-κB (NF-κB) (13), osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α), which may amplify inflammation initiated by autocrine and paracrine signaling and result in a cascade of inflammatory reactions (14,15). Of these factors, NF-κB is considered to have a primary modulatory role. Activated NF-κB may subsequently activate transforming growth factor-α (TGF-α), interleukin-1 (IL-1)
and monocyte chemotactic protein-1 (MCP-1), and also lead to glomerular hypertrophy, a decreased glomerular filtration rate, a thickened glomerular basement membrane, mesangial cell proliferation, deposition of inflammatory cells and extracellular matrix (ECM) (16). In addition, active NF-κB may induce the generation of inflammatory factors, such as TGF-β1, resulting in a cascade of reactions and enhanced inflammation (16). TGF-β1 is recognized as a primary fibrogenic factor that promotes ECM generation while inhibiting ECM degradation through multiple pathways, which may lead to over-production of the ECM and renal matrix remodeling (17). Under normal conditions, the NF-κB heterodimer complex (composed of P50 and P65 subunits) binds to its cognate inhibitor protein (1xBo) and form the conjugate, which occurs in the cytoplasm of the majority of cells, and free P65 is rarely expressed in cell nuclei to maintain normal physiological functions (18). However, upon activation of factors, such as TGF-β1 and protein kinase C (PKC), P65 migrates to the nuclei and induces the production of NF-κB heterodimers (17-21). PKC is a downstream transduction molecule of G protein-coupled receptor (GPCR) signaling, while serum α1-adrenergic receptor antibodies (α1-R Ab) are the cognate Abs of α1-adrenergic GPCRs.

GPCRs are a group of membrane glycoproteins that bind guanosine triphosphate and include the AT1, α1β1, and M1 receptors. GPCRs are the largest family of cell membrane receptors involved in signal transduction and mediate signals that regulate renal functions and immune responses (22,23). A typical GPCR consists of transmembrane subunits composed of seven polypeptide chains, which form a spatial configuration with three extracellular loops and three intracellular loops (24). α1-R Abs are a class M or G immunoglobulins (IgM/G) that are specific to the 192-218 amino acid sequence of the second extracellular peptide segment of α1-R (25). A previous study observed that, following repeated stimulation, GPCR may produce Auto Abs by an internalization mechanism, which may subsequently simulate normal physiological signals (26). In particular, these Auto Abs may stimulate angiotensin (AT) and adrenalin may be stimulated to activate corresponding GPCRs, thus inducing similar effects to angiotensin II (AT II) (27) and adrenalin (26). After binding to receptors, α1-R Ab may modulate a number of cellular functions in renal cortex-related cells, including proliferation, differentiation and metabolism, by activating the α1-R Ab/GPCR/PKC/NF-κB/TGF-β1, and/or α1-R Ab/GPCR/PKC/NF-κB/OPN/TGF-β1 signal transduction pathways. While key steps of the immunological responses that occur in the progression of DN have been identified, the mechanisms underlying the development of DN complications and therapeutic targets for the treatment of DN remain unknown.

A previous study demonstrated that α1-R Ab was present in patients with primary and refractory hypertension (1). α1-R Ab also increased the beat frequency of cultured myocardial cells, in a similar way to noradrenaline, and was blocked by prazosin (28,29), indicating that α1-R Ab may have a key role in the development of hypertension. A previous clinical study (10) identified α1-R Ab in the sera of DN patients with albuminuria, and clinical administration of α1-R Ab significantly reduced proteinuria, indicating that α1-R Ab may have an important role in the development of DN. However, the effects of α1-R Ab on renal matrix remodeling are currently unknown.

In the present study, rat models of DM were used to determine the effects of α1-R Ab on renal matrix remodeling in rats, as well as the potential effects of doxazosin, which is an α1-adrenergic receptor blocker (30), in the attenuation of renal matrix remodeling and aberrant renal functions. The potential role of TGF-β1 and the effects of doxazosin on the pathogenesis of DN were also evaluated. To investigate these mechanisms, α1-R Ab was injected into rats via the caudal vein to investigate Ab mediation. Next, via the activation of GPCR, NF-κB was activated, and finally, inflammatory factors, including TGF-β1, were activated to continually expand the inflammatory effects and result in inflammation cascade reactions. The results of this study may aid in the development of molecular targeted therapies for the treatment of DN in patients presenting with high levels of Auto Abs.

Materials and methods

Reagents and equipment. α1-R Ab was synthesized and donated by Huazhong University of Science and Technology, as previously described (31) and streptozotocin (STZ; cat. no. S0130) was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). Rabbit anti-mouse TGF-β1 (cat. no. BA0290), immunohistochemical streptavidin-biotin complex (SABC) kits (cat. no. SA1025) and diaminobenzidine (DAB) colorant (cat. no. AR1022) were obtained from Boster Systems, Inc. (Plesanton, CA, USA). A glucose assay kit (Glucose Oxidase Peroxidase; cat. no. F006) was purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A urinary albumin kit (cat. no. A028-1) for use in a radioimmunoassay was obtained from Beijing Furui Bioengineering Co., Ltd. (Beijing, China) and a serum creatinine (Scr) kit (cat. no. C011-2) was purchased from Nanjing Jiancheng Bioengineering Institute for use with a Beckman Syn Chron-LX20 full-automatic biochemical analyzer (Beckman Coulter, Inc., Brea, CA, USA). FEI Tecnai G2 20 TWIN electron microscopes were provided by the Wuhan Institute of Virology at the Chinese Academy of Sciences (Wuhan, China).

Preparation of high-fat feed. Rats used in the present study were given a high-fat feed comprised of 10% pork fat, 10% cane sugar, 25% cholesterol, 0.4% sodium cholate, and 77% basal feed (19% wheat flour, 23% corn flour, 6% sorghum flour, 10% bran, 15% soybean, 2% vegetable oil, 6.6% starch, 3.4% glycine, 0.5% calcium carbonate, 0.5% methionine, 1% saccharomyces cerevisiae, 1% natrii chloridum). The feed was prepared by thoroughly mixing and granulating all of the above ingredients.

Establishment of DM models and grouping of experimental animals. A total of 64 healthy male Wistar rats, 6 weeks old, weighing 160-170 g, were provided by the Laboratory Animal Center of Wuhan University (Wuhan, China). Following acclimation feeding for 1 week, the rats were weighted and randomized into four groups: the first experiment: i) Healthy blank control rats (n=16); ii) healthy rats with α1-R Ab mediation (n=16); iii) DM rats without α1-R Ab mediation (n=16);
and iv) DM rats with α1-R Ab mediation (n=16). After being fed on a high-fat diet for 4 weeks, DM rats were fasted for 12 h and subsequently administered sterile STZ solution via intraperitoneal injection at 0.5 ml/100 g body weight. Before use, the STZ concentration was adjusted to 20 g/l with 0.1 mol/l sodium citrate buffer (pH 4.3). After 72 h, whole blood was drawn from the caudal vein and fasting blood glucose was determined using blood glucose meter purchased from Johnson & Johnson (New Brunswick, NJ, USA) according to manufacturer's protocol. Successful model establishment was defined as a fasting blood glucose of >16.7 mmol/l (3.4). Following 2 weeks, 32 rats were established DM model successfully. Following which, DM rats were fed basal feed until the end of a 16 week intervention. Rats in the control group (‘healthy rat’ groups) were given common feed throughout the experiment. For the duration of the experimental period, room temperature was maintained at 18-20°C and the humidity at 69%. A 12-h light-dark cycle was used and rats were given free access to water and feed.

Establishment of an α1-R Ab-mediated DM rat model. A total of 100 µg/100 g body weight α1-R Ab was injected as a single dose (7) into the caudal vein of healthy and DM rats in the α1-R Ab mediation groups at weeks 0, 4, 8, 12 and 16 after successful establishment of the DM model. An equal volume of physiological saline was injected as a single dose into the caudal vein of healthy blank control and DM rats in the non-α1-R Ab mediation groups at weeks 0, 4, 8, 12 and 16.

Drug intervention grouping and drug administration. Another 48 healthy male Wistar rats, 6 weeks old, weighing 160-170 g, were provided by the Laboratory Animal Center of Wuhan University, and were maintained at 18-20°C and a humidity of 69%. A 12-h light-dark cycle was used and rats were allowed ad libitum access to water and feed. Rats were randomized into 4 groups: i) DM rats without α1-R Ab mediation (n=12); ii) DM rats with α1-R Ab mediation (n=12); iii) DM rats with α1-R Ab mediation + doxazosin intervention (n=12); and iv) DM rats with doxazosin intervention (n=12). The group of DM rats with α1-R Ab mediation and DM rats with α1-R Ab mediation + doxazosin intervention underwent the same treatment protocol as for α1-R Ab rats. Doxazosin tablets (4 mg) were purchased from Pfizer, Inc., (New York, NY, USA; approval no. J20044073). A typical adult dose of doxazosin is 4 mg daily. The equivalent dose in rats, calculated by converting the body surface area ratio of laboratory animals and human beings (assuming a human adult body weight of 70 kg) was: (4 mg x 0.018x5) mg/kg=0.36 mg/kg. Doxazosin intervention was administered after the establishment of DM model, the groups of DM rats with α1-R Ab mediation + doxazosin intervention and DM rats with doxazosin intervention were administered 0.36 mg/kg doxazosin by gavage, once/day, from the establishment of the DM model for 16 weeks.

Sample collection and preservation for all animals. At the end of the experiment, a metabolic cage was used to collect urine for 24 h. The samples were centrifuged (at 1,776 x g for 3 min at 25°C) and the 5 ml of the supernatant was separated to detect the 24 h urinary proteins. At week 16 of intervention, rats were sacrificed and the blood and kidneys samples were harvested for measurements. Blood samples were obtained through the inferior vena cava after anesthesia with 1% pentobarbital sodium (50 mg/kg) through intraperitoneal injection, and the blood was centrifuged (at 999 x g for 10 min at 25°C). From this, the upper serum was used to detect Scr and α1-R Ab. Then, the kidneys were obtained from the abdominal cavity, cleared of connective tissue, washed with saline and fixed at 25°C in 10% neutral formalin for measurements for 24 h.

α1-R Ab assay. Autoantibodies were detected using an enzyme-linked immunosorbent assay (ELISA). Anti-α1-R autoantibodies were detected as previously described (28-30,32). Peptide segments of the second extracellular loop of the α1-R aminoacid sequence were synthesized that comprised of residual segments of amino acids at sites 192-218 of α1-R (amino acid residue sequence, G-W-K-E-P-V-P-D-E-R-F-C-G-I-T-E-E-A-G-Q-A-V-F-S-S-V). The purity of synthesized peptides, analyzed by high-performance liquid chromatography, was >95%. Blank (nothing added), positive (serum, antibody and the solution of antibody added) and negative controls (serum and the solution of antibody added) were used in the experiment. When measuring the absorbance (A), zero adjustment was performed using the blank control to ensure the validity of the test results. The antibody assay was defined as positive when the absorbance ratio of the study serum to the negative serum was >2.1, according to the following formula: Absorbance ratio = (Value of specimen - A value of blank control)/(A value of negative control - A value of blank control). For α1-R Abs, the intra-batch coefficient of variation was 7.26% and the inter-batch variation was 10.1%.

Immunohistochemical assay of TGF-α1 expression in renal tissue. Renal tissue was fixed at 25 C in 10% neutral formalin for 24 h and paraffin sections (3 µm) were prepared. Following routine deparaffinization of sections and addition of rabbit anti-mouse TGF-β1 (1:200), sections were incubated at 4°C overnight. Sections were subsequently incubated with 1:400 goat anti-rabbit immunoglobulin G (cat. no. KS002; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) for 30 min at 4°C, followed by incubation with SABC for 20 min at 4°C, and washed 4 times for 3 min with PBS. Sections were then stained with DAB colorant and counterstained with hematoxylin and sealed using gum.

Image analysis of renal tissue. Renal tissues stained with anti-TGF-β1 were analyzed using Image-Pro plus software, version 6.0 (Media Cybernetics, Rockville, MD, USA) under a light microscope (Olympus Corporation, Tokyo, Japan), using average luminosity and positive units as representatives, as described previously (33-35). Ten random images were captured of the renal cortex (including the renal glomerulus and renal tubule) of each renal section, and the average luminosity value was used as the result of the specimen for statistical analysis.

Statistical analysis. Experimental data are presented as the mean ± standard deviation. Statistical analyses were performed using SPSS 13.0 software (SPSS, Inc., Chicago, IL, USA). All measurement data satisfied a normal distribution and homogeneity of variances. A paired-samples t-test was used
Table I. Comparison of 24-h Upro and Scr levels among the experimental groups.

Group	N	24-h Upro, mg/24 h	Scr, mmol/l
Healthy blank control rats	16	0.32±0.18	24.35±2.25
Healthy rats with α₁-R Ab mediation	16	0.47±0.13	25.15±2.81
t	-	2.735	0.887
P-value	-	0.011	0.383
DM rats without α₁-R Ab mediation	16	1.59±0.26	27.02±2.71
t	-	5.845	7.078
P-value	-	<0.001	<0.001
DM rats with α₁-R Ab mediation	16	2.13±0.26	33.26±2.25
t	-		
P-value	-		

Data are presented as the mean ± standard deviation and were compared using an independent-samples t-test. *P<0.05 vs. healthy blank control rats; †P<0.05 vs. DM rats without α₁-R Ab mediation. Upro, urinary protein; Scr, serum creatinine; DM, diabetes mellitus; α₁-R Ab, anti-α₁-adrenergic receptor antibody.

Results

Changes in 24-h Upro and Scr of DM rats following α₁-R Ab mediation. As depicted in Table I, levels of 24-h Upro and Scr of DM rats with α₁-R Ab mediation were significantly increased when compared to DM rats without α₁-R Ab mediation (both P<0.001), indicating a degree of renal function impairment following α₁-R Ab mediation. In addition, the level of 24 h Upro of healthy rats with α₁-R Ab mediation were significantly increased when compared to healthy blank control rats (P<0.001; Table I).

Pathological changes in the renal tissues of rats following α₁-R Ab mediation. Proximal convoluted tubules, distal convoluted tubules and renal glomeruli of the renal tissue from healthy blank control rats (Fig. 1), healthy rats following α₁-R Ab mediation (Fig. 2), DM rats without α₁-R Ab mediation (Fig. 3) and DM rats with α₁-R Ab mediation (Fig. 4) were observed under an electron microscope. No apparent abnormalities were observed in the (A) proximal convoluted tubules, (B) distal convoluted tubules or (C) renal glomeruli. Magnification, x1,700. Lesions are demonstrated by arrow(s) or box(es); scale bar, 2 µm. Two arrows, cytoplasm; three arrows, basilar membrane; one box, lumen; two boxes, nucleus.
DM rats without α₁-R Ab mediation (Figs. 1-4). All samples presented with a degree of degeneration following α₁-R Ab mediation. Renal structures of DM rats with α₁-R Ab mediation were markedly damaged, as indicated by thickening of the basement membrane, the formation of an interlayer and subsequent renal matrix remodeling.

Figure 2. Electron microscopy of the renal cortex in healthy rats following anti-α₁-adrenergic receptor antibody mediation. (A) The proximal convoluted tubule exhibited cell and microvilli swelling, a dissolved cytoplasmic matrix and partially dissolved endoplasmic reticulum, a slightly increased nuclei concentration and irregular morphologies. (B) The distal convoluted tubule exhibited cell membrane destruction, a dissolved cytoplasmic matrix, rough endoplasmic reticulum and smooth endoplasmic reticulum, and partial destruction of chondriosomes. (C) The renal glomerulus exhibited increased interstitial space between foot cells and slightly increased endothelial cell concentration near the basement membrane. Figures are representative of a group of rats. Lesions are demonstrated by arrow(s) or box(es). Magnification, x1,700; scale bar, 2 µm. One arrow, organelle; two arrows, cytoplasm; three arrows, basal membrane; two boxes, nucleus.

Figure 3. Electron microscopy of the renal cortex in rat models of diabetes mellitus lacking anti-α₁-adrenergic receptor antibody mediation. (A) The proximal convoluted tubule exhibited cell swelling, liberated and suspended cellular organs, a dissolved cytoplasmic matrix, a loss of membrane structure and separation and disorder in the microvilli. (B) The distal convoluted tubule exhibited concentrated cells and accumulation of residue in the lumen. (C) The renal glomerulus exhibited uneven thickening of the basement membrane. Figures are representative of a group of rats. Lesions are demonstrated by arrow(s) or box(es). Magnification, x1,700; scale bar, 2 µm. One arrow, organelle; two arrows, cytoplasm; three arrows, basal membrane; one box, lumen; two boxes, nucleus.

TGF-α₁ expression in the renal cortex of rats following α₁-R Ab mediation. Using immunohistochemistry, the expression of TGF-β₁ was evaluated based on average luminosity and positive units. As depicted in Table II, it was observed that healthy rats and DM rats exhibited a higher degree of TGF-β₁ expression following α₁-R Ab mediation. In particular, markedly high levels of average gray value and number of positive
units of TGF-β₁ were identified in DM rats with α₁-R Ab mediation, which was deemed to be significant relative to DM rats without mediation (all P<0.01). In addition, the mean gray value and number of positive units of TGF-β₁ in healthy rats with α₁-R Ab mediation were significantly increased when compared to healthy blank control rats (P<0.05; Table II). Observations by electron microscopy also identified markedly higher levels of TGF-β₁ expression in DM rats with α₁-R Ab mediation, relative to DM rats without α₁-R Ab mediation and each of the healthy rat groups (Fig. 5).

Changes in 24-h Upro and Scr of DM rats following doxazosin intervention. Levels of 24-h Upro in rats in each of the DM groups treated with doxazosin (DM + doxazosin intervention and DM + α₁-R Ab mediation + doxazosin intervention) were significantly decreased when compared to the DM groups without doxazosin intervention (DM rats without α₁-R Ab mediation and DM rats with α₁-R Ab mediation; P<0.01). Scr in rats with DM + α₁-R Ab mediation + doxazosin intervention group were significantly decreased when compared to DM rats with α₁-R Ab mediation (P<0.01). These results indicate that renal function improved following doxazosin intervention (Table III).

TGF-α₁ expression in the renal cortex of rats following doxazosin intervention. Following doxazosin intervention, levels of TGF-β₁ expression in DM rats with α₁-R Ab mediation + doxazosin intervention were significantly decreased when compared with the other groups that underwent α₁-R Ab mediation (P<0.01; Fig. 6 and Table IV), indicating that TGF-β₁ expression significantly improved in DM rats following α₁-R Ab mediation + doxazosin intervention.

Structural changes in the renal tissue of rats following doxazosin intervention. In DM rats with α₁-R Ab mediation + doxazosin intervention, cellular swelling and structural damage to the membrane of proximal convoluted tubules...
Figure 5. Expression of TGF-β in the renal cortex. (A) Healthy blank control group. (B) Healthy rats with α₁-R Ab mediation. (C) DM rats lacking α₁-R Ab mediation. (D) DM rats with α₁-R Ab mediation. Streptavidin-biotin complex stain (purple) indicates TGF-β expression. Upon comparison of the average luminosity values in each group, it was observed that TGF-β expression in DM rats significantly increased following α₁-R Ab mediation (P<0.001; Table II). TGF-β expression in healthy rats with α₁-R Ab mediation significantly increased compared to that in healthy blank control rats (P=0.010; Table II). Comparison of positive unit values in each group: TGF-β expression in DM rats with α₁-R Ab mediation significantly increased compared to that in DM rats without α₁-R Ab mediation (P<0.001). TGF-β expression in healthy rats with α₁-R Ab mediation significantly increased compared to that in healthy blank control rats (P=0.006; Table II). Magnification, x400; scale bar, 50 µm. TGF, tumor growth factor; DM, diabetes mellitus; α₁-R Ab, anti-α₁-adrenergic receptor antibody.

Figure 6. Expression of TGF-β receptor antibody of rats with diabetes mellitus. (A) α₁-R Ab-mediated group; the arrow shows strongly positive units of the tubule. (B) Non-mediated group; the arrow shows medium positive units of the tubule. (C) Doxazosin alone group; the arrow shows none positive unit of the glomerulus. (D) Doxazosin + α₁-R Ab-mediated group; the arrow shows a non-positive unit of the tubule. Streptavidin-biotin complex stain (purple) indicates TGF-β expression. Magnification, x400; scale bar, 50 µm. TGF, tumor growth factor; α₁-R Ab, anti-α₁-adrenergic receptor antibody.
Discussion

The activity of kidney cells, like other cells, involves the modulation of cellular signal transduction systems comprised of multiple components, including membrane and nuclear receptors (36,37). GPCRs account for the majority of membrane receptors (1). GPCRs, including the AT1, α1, β1 and M1 receptors, are the largest family of cell membrane receptors involved in signal transduction. Signals mediated by GPCRs are critical in numerous cellular activities, including those related to the regulation of vision, renal functions and immune responses (38).

Regarding renal function, the present study observed that levels of 24-h Upro (mg/24 h) and Scr (µmmol/l) increased in DM rats following α1-R Ab mediation; an effect deemed to be significant when compared with healthy rats and DM rats lacking α1-R Ab mediation. These data indicated that α1-R Ab mediation may have induced renal impairment in DM rats. In addition, microstructural changes in the proximal and distal convoluted tubules and collecting tubes of the kidneys of DM rats with α1-R Ab mediation were observed. Other indicators of microstructural damage included increased cellular swelling and concentration, liberation of cellular organs, thickening of the basement membrane and formation of interlayers. By contrast, no structural abnormality was identified in the renal tissues of healthy blank control rats, and only slight and mild abnormalities were observed in healthy rats with α1-R Ab mediation and DM rats without α1-R Ab mediation, respectively. These data suggest that damage to the renal structures may have been associated with α1-R Ab mediation.

Regarding renal TGF-β1 expression, DM rats with α1-R Ab mediation exhibited high expression of TGF-β1 with significant increases in the mean gray value and number of positive units when compared with DM rats without α1-R Ab mediation. As TGF-β1 acts as a renal fibrogenic factor (39), high expression of renal TGF-β1 in DM rats with α1-R Ab mediation indicates that α1-R Ab may promote renal matrix remodeling and subsequent renal dysfunction by mediating the expression of TGF-β1. Furthermore, these data indicate that renal matrix remodeling in DN may be associated with Ab-mediated autoimmunity. It was also observed that TGF-β1 expression in the renal cortex of DM + α1-R Ab rats treated with doxazosin was significantly lower than that in DM + α1-R Ab rats lacking doxazosin intervention, indicating that doxazosin blocked the stimulatory effects of α1-R Ab on TGF-β1 expression. Therefore, inhibition of TGF-β1 may aid in preventing the development of renal fibrosis and matrix remodeling in DN.

Table III. Comparison of 24-h Upro and Scr levels among the experimental groups.

Group	N	24-h Upro, mg/24 h	Scr, µmmol/l
DM rats without α1-R Ab mediation	12	1.58±0.09	28.08±1.00
DM rats with α1-R Ab mediation	12	2.50±0.08	37.81±1.42
DM rats with α1-R Ab mediation + doxazosin intervention	12	1.27±0.13	27.21±1.72
DM rats with doxazosin intervention	12	1.21±0.13	27.88±1.06

The F and P-values are comparing the homogeneity of variance for the data. Data are presented as the mean ± standard deviation and were compared using a Student-Newman-Keuls-q test. *P<0.01 vs. DM rats without α1-R Ab mediation; †P<0.01 vs. DM rats with α1-R Ab mediation.

Table IV. Expression of TGF-β1 in the renal cortex in each experimental group.

Group	N	Mean gray value	Number of positive units
DM rats without α1-R Ab mediation	12	131.77±6.25	29.97±4.99
DM rats with α1-R Ab mediation	12	183.20±9.09	44.08±4.91
DM rats with α1-R Ab mediation + doxazosin intervention	12	47.42±7.20	6.25±4.30
DM rats with doxazosin intervention	12	31.06±6.72	6.68±3.76
F	-	0.931	0.137
P-value	-	0.434	0.937

The F and P-values are comparing the homogeneity of variance for the data. Data are presented as the mean ± standard deviation and were compared using an SNK-q test. *P<0.01 vs. DM rats without α1-R Ab mediation; †P<0.01 vs. DM rats with α1-R Ab mediation. One-way analysis of variance was used to compare values of average luminosity and positive units of renal tissue TGF-β1 between each group, and the variance was determined to be homogenous. An SNK-q test was used for multiple comparisons. TGF, tumor growth factor; DM, diabetes mellitus; α1-R Ab, anti-α1-adrenergic receptor antibody; SNK-q, Student-Newman-Keuls-q.

were markedly reduced when compared with DM rats treated with α1-R Ab alone. In addition, mitochondrial cristae and reduced damage to the microvilli and smooth endoplasmic reticulum of the distal convoluted tubules was observed in the DM + α1-R Ab mediation + doxazosin intervention group. Damage to foot cells, foot processes and basal membranes of the renal glomeruli were markedly improved in DM rats treated with α1-R Ab mediation + doxazosin when compared to DM rats treated with α1-R Ab alone (Fig. 7). In DM rats treated with doxazosin alone, damage to the proximal convoluted tubules, distal convoluted tubules and renal glomeruli were improved when compared to DM rats alone, though improvements were less marked than in DM rats treated with α1-R Ab + doxazosin (Fig. 8).
Following intervention with doxazosin, the present study demonstrated that levels of 24-h Upro and Scr significantly decreased in rats treated with α_1-R Ab + doxazosin, whereas these levels were significantly increased in DM + α_1-R Ab rats lacking intervention with doxazosin. These results support the hypothesis that α_1-R Ab mediation impairs renal function and that targeted intervention with receptor antagonists improves renal function. Observations by electron microscopy also identified marked improvements in the renal microstructures of DM + α_1-R Ab rats following doxazosin intervention. By contrast, the renal cortex structure of DM + α_1-R Ab rats lacking drug intervention remained damaged, and the direct changes of the proximal convoluted tubules, distal convoluted tubules and collecting tubes indicated severe microstructural damage. In particular, the glomerular basement membranes were substantially thickened and exhibited interlayer formation. These pathological changes verify that α_1-R Ab mediation may lead to renal matrix remodeling. The recovery of renal cortex components following doxazosin intervention
also suggests that renal impairment and matrix remodeling associated with α1-R Ab mediation may be attenuated by early treatment with receptor antagonists.

It is possible that α1-R Ab influences renal matrix remodeling in DM rats through the stimulation of TGF-β1 protein synthesis and secretion, possibly by activating the α1-R Ab/GPCR/PKC/NF-κB/TGF-β1 signal transduction pathway (40). This may lead to glomerular hypertrophy, an increased glomerular filtration rate, thickening of the glomerular basement membrane and mesangial cell proliferation. Activated NF-κB may also result in a cascade of reactions and enhanced inflammation by inducing the generation of inflammatory factors, including OPN and in particular, TGF-β1, as a key fibrogenic factor (33,41-43). Auto Abs may be produced by auto receptors via an internalization mechanism upon repeated stimulation, and are considered to have pathological agonist-like activity that leads to pathological effects via corresponding receptors, resulting in autoimmune responses and tissue injury (1,16,44,45). These GPCR auto Abs may also simulate normal physiological signals, including those mediated by AT1 and adenalin, by activating the corresponding GPCRs. This may induce AT1 and adrenalin-like effects, including upregulation of TGF-β1 expression and fibrogenesis of renal tubular interstitial substances, resulting in ECM deposition and renal matrix remodeling (17,19,46).

The primary ingredient of doxazosin is doxazosin mesylate, an α1-R antagonist, which may outcompete α1-R Ab in receptor binding. Doxazosin mesylate also selectively blocks postganglionic α1-adrenergic receptors (16,47). Furthermore, doxazosin may prevent the direct attack of renal tissue cells by Ab and reduce pathological agonistic effects, thereby interrupting renal matrix remodeling. In addition, receptors binding to α1-R Ab belong to the GPCRs, including AT1, α1, β1, and M2 receptors (24,26).

Collectively, these results indicate that doxazosin may be useful in the treatment of DN. Though the effects of doxazosin in a clinical setting remain unknown, its potential ability to downregulate the expression of the fibrogenic factor TGF-β1, as indicated in the present experiment, suggests that doxazosin may be a novel agent for the treatment of DN patients presenting with high expression of auto Abs. Doxazosin, as a ‘diabetic receptor’ antagonist, may also have a therapeutic role in the development of molecular and individualized targeted therapy for the treatment of DN. Future studies are warranted to elucidate the underlying mechanisms regarding the effects of doxazosin on renal function and fibrogenic factor expression.

Acknowledgements

The present study was supported by the Natural Science Fund Project of Hubei Province, China (grant no. 2010-8201X5C18).

References

1. Diabetes Control and Complications Trial Research Group; Nathan DM, Gennuth S, Lachin J, Cleary P, Crockford O, Davis M, Rand L and Siebert C: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977-986, 1993.
2. Adeghate E and Singh J: Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 19: 15-23, 2014.
3. Sarras MP Jr, Leontovich AA and Intine RV: Use of zebrafish as a model to investigate the role of epigenetics in propagating the secondary complications observed in diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 178: 3-7, 2015.
4. Wolf E, Braun-Reichhart C, Streekel E and Renner S: Genetically engineered pig models for diabetes research. Transgenic Res 23: 27-38, 2014.
5. Zou X, Zhou X, Ji L, Yang W, Lu J, Weng J, Jia W, Shan Z, Liu J, Tian H, et al.: The characteristics of newly diagnosed adult early-onset diabetes: A population-based cross-sectional study. Sci Rep 7: 46534, 2017.
6. Kagan P, Dall T and Nikolov P: American Diabetes Association: Economic costs of diabetes in the US in 2002. Diabetes Care 26: 917-932, 2003.
7. Jones S, Jones S and Phillips AO: Regulation of renal proximal tubular epithelial cell hylanuronan generation: Implications for diabetic nephropathy with positive β1-adrenergic and anti-angiotensin II type 1 receptor antibody. Chin Med J (Engl) 125: 3545-3547, 2012.
8. Shikata K and Makino H: Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 4: 142-149, 2013.
9. Aradhya S and Nelson DL: NF-κappaB signaling and human disease. Curr Opin Genet Dev 11: 300-306, 2001.
10. Tak PP and Firestein GS: NF-κappaB: A key role in inflammatory diseases. J Clin Invest 107: 7-11, 2001.
11. Baldwin AS Jr: Series introduction: The transcription factor NF-kappaB and refractory hypertension. Exp Ther Med 9: 177-182, 2015.
12. Zhao LS, Bai WW, Xiang GD, Yue L and Sun HL: Clinical evaluation of valsartan and metoprolol tartrate in treatment of diabetic nephropathy with positive β1-adrenergic and anti-angiotensin II type 1 receptor antibody. Chin Med J (Engl) 125: 3545-3547, 2012.
13. Veerasamy M, Nguyen TQ, Motazed R, Pearson AL, van Kooten C and Müller G: TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59: 579-592, 2001.
14. Tak PP and Firestein GS: NF-κappaB signalling and human disease. Curr Opin Genet Dev 11: 300-306, 2001.
15. Baldwin AS Jr: Series introduction: The transcription factor NF-kappaB and human disease. J Clin Invest 107: 3-6, 2001.
16. Mattson MP and Camandola S: NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107: 247-254, 2001.
17. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C and Müller G: TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59: 579-592, 2001.
18. Tak PP and Firestein GS: NF-κappaB: A key role in inflammatory diseases. J Clin Invest 107: 7-11, 2001.
19. Baldwin AS Jr: Series introduction: The transcription factor NF-kappaB and human disease. J Clin Invest 107: 3-6, 2001.
20. Tak PP and Firestein GS: NF-κappaB signalling and human disease. Curr Opin Genet Dev 11: 300-306, 2001.
21. Baldwin AS Jr: Series introduction: The transcription factor NF-kappaB and human disease. J Clin Invest 107: 3-6, 2001.
22. Adeghate E and Singh J: Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 19: 15-23, 2014.
23. Sarras MP Jr, Leontovich AA and Intine RV: Use of zebrafish as a model to investigate the role of epigenetics in propagating the secondary complications observed in diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 178: 3-7, 2015.
24. Wolf E, Braun-Reichhart C, Streekel E and Renner S: Genetically engineered pig models for diabetes research. Transgenic Res 23: 27-38, 2014.
25. Zou X, Zhou X, Ji L, Yang W, Lu J, Weng J, Jia W, Shan Z, Liu J, Tian H, et al.: The characteristics of newly diagnosed adult early-onset diabetes: A population-based cross-sectional study. Sci Rep 7: 46534, 2017.
25. Fu ML, Wallukat G, Hjalmarson A and Hoebeke J: Characterization of anti-peptide antibodies directed against an extracellular immunogenic epitope on the human alpha 1-adrenergic receptor. Clin Exp Immunol 97: 146-151, 1994.

26. Dragun D, Philippe A, Catar R and Hegner B: Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies. Thromb Haemost 101: 643-648, 2009.

27. Gouwy M, Struyf S, Verbeke H, Put W, Proost P, Opdenakker G and Van Damme J: CC chemokine ligand-2 synergizes with the nonchemokine G protein-coupled receptor ligand fMLP in monocyte chemotaxis and it cooperates with the TLR ligand LPS via induction of CXCL8. J Leukoc Biol 86: 671-680, 2009.

28. Lazou A, Sugden PH and Clerk A: Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 332: 459-465, 1998.

29. Zhou ZH, Liao YH, Li LD, Wang B, Wei F, Wang M and Wei YM: Immune mechanism of cardiac remodeling induced by antibodies against to the alpha1-adrenergic receptor. Zhonghua Yi Xue Za Zhi 85: 625-629, 2005 (In Chinese).

30. Markiewicz W, Jasiecka A, Barski D, Janiuk J, Bossowska A and Jaroszewski JJ: The influence of doxazosin, an alpha1-adrenergic receptor antagonist on the urinary bladder contractility in pigs. Pol J Vet Sci 17: 527-529, 2014.

31. Zhou ZH, Qi Q, Liao YH, Bin W, Li LD, Wei F, Wang M and Wei YM: Preparation of the antibodies against alpha 1-adrenergic receptor with exciting actions. Zhongguo Lin Chuang Kang Wei YM: Immune mechanism of cardiac remodeling induced by antibodies against the alpha1-adrenergic receptor in patients with hypertension. Hypertens Res 25: 527-529, 2006 (In Chinese).

32. Liao YH, Wei YM, Wang M, Wang ZH, Yuan HT and Cheng LX: Autoantibodies against AT1-receptor and alpha1-adrenergic receptor in patients with hypertension. Hypertens Res 25: 641-646, 2002.

33. Fujita H, Omori S, Ishikura K, Hida M and Awazu M: ERK and p38 mediate high-glucose-induced hypertrophy and TGF-beta expression in renal tubular cells. Am J Physiol Renal Physiol 286: F120-F126, 2004.

34. Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature 410: 37-40, 2001.

35. Jiang Y, Chen C, Li Z, Gao W, Gnegner JA, Lin S and Han J: Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271: 17920-17926, 1996.

36. Tomlinson DR: Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42: 1271-1281, 1999.

37. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J and Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156-160, 1994.

38. Okruhlicova L, Morwinski R, Schulze W, Bartel S, Weisman P, Tribulova N and Wallukat G: Autoantibodies against G-protein-coupled receptors modulate heart mast cells. Cell Mol Immunol 4: 127-133, 2007.

39. Sutariya B, Jhonsa D and Saraf MN: TGF-β: The connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 38: 39-49, 2016.

40. Kang SW, Adler SG, Lapage J and Natarajan R: p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 60: 543-552, 2001.

41. Wilmer WA, Dixon CL and Hebert C: Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int 60: 858-871, 2001.

42. Kang MJ, Wu X, Ly H, Thai K and Scholey JW: Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 55: 2203-2214, 1999.

43. Velarde V, Jenkins AJ, Christopher J, Lyons TJ and Jaffa AA: Activation of MAPK by modified low-density lipoproteins in vascular smooth muscle cells. J Appl Physiol (1985) 91: 1412-1420, 2001.

44. Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC and Tesch GH: Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney Int 65: 116-128, 2004.

45. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuith S, Ismail-Beigi F, et al: Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545-2559, 2008.

46. Mizuno S, Matsumoto K, Kurosawa T, Mizuno-Horikawa Y and Nakamura T: Macrophage activation is involved in the development of diabetic glomerulopathy. J Clin Invest 115: 23-32, 2005.

47. Okruhlicova L, Morwinski R, Schulze W, Bartel S, Weisman P, Tribulova N and Wallukat G: Autoantibodies against G-protein-coupled receptors modulate heart mast cells. Cell Mol Immunol 4: 127-133, 2007.

48. Sutariya B, Jhonsa D and Saraf MN: TGF-β: The connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 38: 39-49, 2016.

49. Kang SW, Adler SG, Lapage J and Natarajan R: p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 60: 543-552, 2001.

50. Wilmer WA, Dixon CL and Hebert C: Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int 60: 858-871, 2001.

51. Kang MJ, Wu X, Ly H, Thai K and Scholey JW: Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 55: 2203-2214, 1999.

52. Velarde V, Jenkins AJ, Christopher J, Lyons TJ and Jaffa AA: Activation of MAPK by modified low-density lipoproteins in vascular smooth muscle cells. J Appl Physiol (1985) 91: 1412-1420, 2001.