Review

Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives

Sen Liu a, Xu Chen a,b,c,* , Tianxin Lin a,b,c,*

a Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
c Guangdong Provincial Clinical Research Center for Urological Diseases, China

HIGHLIGHTS

- The response of chemotherapy and prognosis in bladder cancer is unsatisfied.
- Immunotherapy, targeted therapy, and ADC improve the efficacy of chemotherapy.
- Emerging targets in cancer cells and TME spawned novel preclinical agents.
- Novel drug delivery, such as nanotechnology, enhances effects of chemotherapeutics.
- The organoid and PDX model are promising to screen and evaluate the target therapy.

GRAPHICAL ABSTRACT

- Unidentified patients
- Sensitive to Chemotherapy
- Resistant to Chemotherapy
- Identifying targets
- Precisely Targeting
- Sequencing
- heatmap
- preclinical model & molecular subtype
- Antibodies
- Signalling pathways
- Improving efficacy
- Reducing toxicity
- Elevating response
- Prolong survival
- Cancer cells
- Chemoresistant Tumor microenvironment
- Delivery
- Nanoparticles
- Tumor microenvironment
- Organoid
- Multiple Approaches & Effective Validation
- Patient-derived xenograft
- PFS, progression-free survival
- PGF 2α, prostaglandin E2
- ROC, receiver operator characteristic
- sEH, soluble epoxide hydrolase
- SG, sacituzumab govitecan
- TACC3, transforming acidic coiled-coil protein 3
- TEAD, TEA domain transcription factor
- TME, tumor microenvironment
- VEGF, vascular endothelial growth factor
- VEGFR-2, vascular endothelial growth factor receptor-2
- WDR5, WD repeat domain 5
- YAP, yes associated protein.

Abbreviations: ADC, antibody-drug conjugate; AR, androgen receptor; ARA, arachidonic acid; AUC, area under the curve; BCG, bacilli Calmette-Guerin; CAF, cancer-associated fibroblast; CBPD, CCAT/enhancer-binding protein delta; CHK1, checkpoint kinase 1; CK1δ, casein kinase 1 delta; COX-2, cyclooxygenase-2; CR, complete response; CSCs, cancer stem cells; CYP, cytochrome P450 epoxidegenerases; dCK, deoxyctydine kinase; EET, epoxyeicosatetraenoic acids; EGFR, epidermal growth factor receptor; ERb, estrogen receptor beta; EV, enfortumab vedotin; FDA, Food and Drug Administration; FGFR, fibroblast growth factor receptor 3; GC, gemcitabine and cisplatin; H3K27me3, trimethylation of lysine 27 on histone H3 protein subunit; H3K4me3, trimethylation of lysine 4 on histone H3 protein subunit; Her2, Human epidermal growth factor receptor 2; hnRNPK, heterogeneous nuclear ribonucleoprotein K; HSP90, heat shock protein 90; ICIs, immune checkpoint inhibitors; IGF-1, insulin-like growth factor-1; IGF-1R, insulin-like growth factor-1 receptor; Maspin; Mammary serine protease inhibitor; MIBC, muscle invasive bladder cancer; MMAE, monomethyl auristatin E; MVAC, methotrexate, vinblastine, doxorubicin and cisplatin; NMIBC, non-muscle invasive bladder cancer; ORR, objective response rate; OS, overall survival; PARP, Poly (adenosine diphosphate [ADP]) ribose polymerases; PDGF-BB, platelet-derived growth factor-B dimer; PDGFR, platelet-derived growth factor receptor; PDX, patient-derived xenograft; PFS, progression-free survival; PGF 2α, prostaglandin E2; ROC, receiver operator characteristic; sEH, soluble epoxide hydrolase; SG, sacituzumab govitecan; TACC3, transforming acidic coiled-coil protein 3; TEAD, TEA domain transcription factor; TME, tumor microenvironment; VEGF, vascular endothelial growth factor; VEGFR-2, vascular endothelial growth factor receptor-2; WDR5, WD repeat domain 5; YAP, yes associated protein.

Peer review under responsibility of Cairo University.

* Corresponding authors at: Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107. W. Yanjiang Road, Guangzhou, Guangdong Province 510120, PR China.

E-mail addresses: chenx457@mail.sysu.edu.cn (X. Chen), lintx@mail.sysu.edu.cn (T. Lin).

https://doi.org/10.1016/j.jare.2021.11.010

2090-1232/© 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Current status of chemotherapy in bladder cancer

Bladder cancer is the most common cancer of the urinary system with an estimated 573,000 new cases and 212,000 deaths occurring annually worldwide [1]. Emerging urine assays facilitate early detection and risk stratification of bladder cancer [2,3]. Three-quarters of newly diagnosed bladder cancers are non-muscle invasive bladder cancers (NMIBCs), which are usually treated by transurethral resection followed by intravesical chemotherapy or bacillus Calmette-Guérin (BCG) therapy [4]. Muscle invasive bladder cancer (MIBC) accounts for the remaining newly diagnosed patients and may also arise from 10 to 20% of NMIBC cases that eventually progress [5]. As an aggressive disease, early radical cystectomy plus pelvic node dissection remains the basic management for MIBC. However, the 5-year cancer-specific mortality rate of bladder cancer patients has not notably decreased over the past 3 decades, indicating the limitations of the current therapeutic approaches [6].

Platinum-based chemotherapy, as the first-line management strategy against advanced urothelial cancer, is supported by level 1 evidence [7–10]. The most common regimens for bladder cancer are the combination of gemcitabine and cisplatin (GC) as well as the combination of methotrexate, vinblastine, doxorubicin and cisplatin (MVAC). GC has been demonstrated to have comparable efficacy, better safety and tolerability compared to MVAC [9,10]. For patients who have undergone neoadjuvant chemotherapy (i.e., chemotherapy before operation), platinum-based regimens achieve a complete response (CR) rate of 23.9–24.5%, barely improving the 5-year overall survival (OS) from 45% to 50% compared to local treatment alone [8,11]. Nonresponders gain limited benefit from neoadjuvant chemotherapy due to suffering from the toxicity of chemotherapy drugs and delaying surgery, resulting in a decrease in 5-year cancer-specific survival from 90% to 30–40% compared to responders [8,12,13]. For metastatic bladder cancers, the traditional regimens of chemotherapy exhibit relatively high objective response rates of 36–65%. However, the response does not translate to better survival stats with only 13–15% for the 5-year OS, indicating that chemoresistance appears in almost all patients as the disease progresses [6,14,15]. The prognosis for metastatic patients who do not respond or recur after first-line chemotherapy is extremely poor, yet no alternative approaches have been developed [16]. Based on current knowledge, resistance to chemotherapy agents largely limits the efficacy of the existing standards in bladder cancer. Limited tolerability also notably restricts the application of chemotherapy. Thus, novel combined therapeutic strategies are required to improve the efficacy and decrease the side effects of chemotherapy in bladder cancer.

Targeted therapies are widely used and show satisfactory therapeutic effects in many cancers, such as breast, lung and colon cancers [17–19]. However, only PD-1/PD-L1-based immune checkpoint inhibitors (ICIs), FGFR3 inhibitors and antibody-drug conjugates (ADCs) are approved by the FDA for the management of advanced/metastatic urothelial carcinoma in platinum-refractory or platinum-ineligible patients. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone [20–22]. This review highlights the therapeutic approaches that potentiate the effect of chemotherapy in bladder cancer. We focus on combining chemotherapy with the following other treatments: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. We also briefly discuss the potential of identifying target patients by sequencing and gene expression models as well as by evaluating chemosensitivity via patient-derived xenografts (PDXs) and organoids, which may provide evidence for the precision management and improvement of the chemotherapy efficacy of bladder cancer.

Improvement of chemotherapy in clinical trials

Clinical trials are ongoing to provide high-level evidence of different regimens potentiating the efficacy of chemotherapy in bladder cancer. The reported regimens that improve chemosensitivity include combining cytotoxic drugs with other agents, such as ICIs, targeted agents and ADCs (Table 1).
Table 1
Completed and reported clinical trials of combination of targeted drugs and chemotherapy in urothelial carcinoma.

Drug Category	Phase	Characteristics of the participants	Interventions	Pts	Outcomes [Median (95% CI)]	ORR (%)	NCT No./Ref.	
					PFS (months)	OS (months)		
Immune checkpoint inhibitors								
Atezolizumab anti-PD-L1 antibody	III	Locally advanced or metastatic urothelial carcinoma	A + C: Standard chemotherapy + Atezolizumab	451	8.2 (6.5 to 8.3)	16.0 (13.9 to 18.9)	47 (43 to 52)	NCT02807636, [26]
					Atezolizumab	NA		
Pembrolizumab anti-PD-1 antibody	III	Advanced or metastatic urothelial carcinoma	P + C: Standard chemotherapy + Pembrolizumab	351	8.3 (7.5 to 8.5)	15.6 (12.1 to 17.9)	47 (43 to 52)	NCT02853305, [27]
					Pembrolizumab	NA		
Ipilimumab anti-CTLA-4 antibody	II	Chemotherapy-naive patients with metastatic urothelial cancer	GC + Ipilimumab	36	7.9 (6.4 to 9.9)	14.3 (12.3 to 16.7)	69 (NA)	NCT01524991, [28]
Targeted drugs								
Ramucirumab anti-VEGFR-2 antibody	III	Locally advanced / unresectable / metastatic urothelial carcinoma who progressed on or after platinum-based therapy	R + D: Ramucirumab + Docetaxel	263	4.07 (2.96 to 4.47)	9.40 (7.89 to 11.43)	24.5 (18.8 to 30.3)	NCT02426125, [32]
					Docetaxel	NA		
Bevacizumab anti-VEGF antibody	II	Untreated or relapsed locally advanced or metastatic transitional cell carcinoma of the bladder	GC + Bevacizumab	45	8.2 (6.8 to 10.3)	19.1 (12.4 to 22.7)	72 (NA)	NCT00234494, [33]
Bevacizumab anti-VEGF antibody	II	Locally Advanced Urothelial Cancer	Neo-adjuvant ddMVAC + Bevacizumab	60	NA	5-year OS rate: 63% (51% to 77%)	53 (NA)	NCT00506155, [34]
Cetuximab anti-EGFR antibody	II	Metastatic, locally recurrent, or unresectable urothelial carcinoma	Treatment: GC + Cetuximab	60	7.6 (6.1 to 8.7)	17.4 (11.6 to 22.2)	61.4 (48 to 74)	NCT00645593, [35]
Antibody-drug conjugates								
Enfortumab Vedotin Conjugate of anti-Nectin-4 antibody and MMAE	I	Metastatic urothelial carcinoma progressed on chemotherapy, or ineligible for cisplatin	Enfortumab Vedotin monotherapy	155	5.4 (5.1 to 6.3)	12.3 (9.3 to 15.3)	43 (33.6 to 52.6)	NCT02091999, [39]
Sactituzumab Govitecan Conjugate of anti-TROP-2 antibody and SN-38	II	Locally advanced or unresectable or metastatic Urothelial Carcinoma progressed chemotherapy and ICIs	Sactituzumab Govitecan monotherapy	113	5.4 (3.5 to 7.2)	10.9 (8.0 to 13.8)	27 (19.5 to 36.6)	NCT03547973, [41]
RC48-ADC Conjugate of anti-Her2 antibody and MME	II	HER2-positive patients with locally advanced or metastatic urothelial carcinoma	RC48-ADC monotherapy	43	NA	60.5 (44.4 to 75.4)	60.5 (44.4 to 75.4)	NCT03507166, [42]

*The regimen of standard therapy is gemcitabine + cisplatin/carboplatin.

**The designed p value boundary was 0.0019.

The designed p value boundary was 0.0142.

Pts, Patients; PFS, progression-free survival; OS, overall survival; ORR, objective response rate; NA, not available; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor; GC, gemcitabine plus cisplatin; ddMVAC, dose-dense Methotrexate, Vinblastine, Adriamycin and Cisplatin; MMAE, monomethyl auristatin E; ICIs, immune checkpoint inhibitors.
Immune checkpoint inhibitors (ICIs)

ICIs, including PD-1 and PD-L1 inhibitors, have been approved as second-line treatments after traditional chemotherapy in locally advanced or metastatic urothelial carcinoma for years [23–25]. It is also currently being assessed whether immune checkpoint inhibitors improve the efficacy of platinum-based chemotherapy (Table 1). In the IMvigor130 phase 3 trial, Galsky et al supported the use of the anti-PD-L1 agent, atezolizumab, combined with platinum-based chemotherapy as a first-line treatment option for metastatic urothelial carcinoma.[26] Specifically, combining atezolizumab with platinum prolonged the median progression-free survival (PFS) from 6.3 months to 8.2 months (p = 0.007) and improved the median OS from 13.4 months to 16.0 months (p = 0.027) compared to chemotherapy alone. Conversely, the KEYNOTE-361 phase 3 trial compared the efficacy of first-line pembrolizumab (a PD-1 inhibitor) plus chemotherapy versus chemotherapy for advanced urothelial carcinoma [27]. The final data showed that the addition of pembrolizumab to chemotherapy did not improve the median PFS (8.3 months vs. 7.1 months, p = 0.0033 > designed p value boundary of 0.0019) or median OS (17.0 months vs. 14.3 months, p = 0.0407 > designed p value boundary of 0.0142) [27]. Furthermore, a multicentre phase 2 study showed a response rate of 69% and 1-year OS of 61% in the treatment of 2 cycles of GC followed by 4 cycles of GC plus ipilimumab, a CTLA-4 inhibitor, in 36 patients with metastatic urothelial carcinoma [28].

Combination therapy with two ICIs is the latest investigation of immunotherapy against bladder cancer. Combining ipilimumab with nivolumab (another PD-1 inhibitor) has been reported in a multicohort study to have sustained antitumour activity in platinum-pretreated metastatic urothelial carcinoma patients (ORR 26.9% to 38.0% for different doses) [29]. Another phase 3 study has assessed the efficacy of durvalumab (a PD-L1 inhibitor) combined with tremelimumab (a CTLA-4 inhibitor) as the first-line approach to treat metastatic urothelial carcinoma. The study reported a median OS of 15.1 months in the durvalumab plus tremelimumab group versus 12.1 months in the chemotherapy group (p = 0.075), which did not meet its coprimary endpoints [30]. Interestingly, nivolumab plus ipilimumab combined with chemotherapy provided an improvement in OS versus monochemotherapy (14.1 months vs. 10.7 months, p = 0.00065) in a phase 3 trial of non-small-cell lung cancer. These results may encourage researchers to validate whether this regimen could be applied as a novel treatment option for urothelial carcinoma [31]. These aforementioned trials provide feasible approaches for combining chemotherapy plus immunotherapy to treat metastatic urothelial cancer. However, additional clinical trials are required to determine whether ICIs plus chemotherapy can be regarded as a first-line treatment for advanced urothelial carcinoma.

Targeting VEGF, the EGFR pathway and DNA methyltransferase

Since targeted therapy was introduced, the combination of chemotherapeutic agents and targeted drugs has been considered to improve the curative effect of bladder cancer (Table 1). Adding ramucirumab, an inhibitor of VEGFR-2, to docetaxel has been evaluated to treat patients with locally advanced or metastatic disease who progressed on or after platinum-based chemotherapy; the median PFS was significantly improved with ramucirumab plus docetaxel compared to placebo plus docetaxel (4.07 vs. 2.76 months, p = 0.0002), but the median OS was not significantly improved (9.4 vs. 7.9 months, p = 0.25) [32]. Thus, the actual benefit might be restricted for the addition of ramucirumab to docetaxel in an unselected population of platinum-refractory advanced urothelial carcinoma.

Bevacizumab, a recombinant monoclonal antibody against vascular endothelial growth factor (VEGF), which was added to GC, has been identified to achieve a response rate of 72% and a complete response rate of 19% in a phase 2 trial [33]. Moreover, bevacizumab has also been explored in combination with MVAC for neoadjuvant treatment for locally advanced bladder cancer [34]. In this phase 2 trial, the rate of downstaging to ≤ pT1N0 was 53%, and the 5-year OS was 63% for bevacizumab, exhibiting no appreciable impact on outcomes. Interestingly, the authors identified improved survival in patients with the basal subtype compared to luminal and p53-like tumours (5-year OS 91%, 73% and 36%, p = 0.015), suggesting that gene expression profiles differ in the initial sensitivity to chemotherapy in bladder cancer.

Another promising targeted drug, cetuximab, an inhibitor of epidermal growth factor receptor (EGFR), has been combined with GC for the treatment of advanced urothelial carcinoma in a phase 2 trial [35]. However, cetuximab plus GC exhibited no improvements in outcomes but was associated with more adverse effects.

In addition, a DNA methyltransferase inhibitor has been introduced to reverse cisplatin resistance in urothelial carcinoma cell line models [36,37]. A recent phase 1 trial established a tolerable dose of guadecitabine, a DNA methyltransferase inhibitor, in combination with GC for further evaluation of the efficacy [38]. Taken together, targeted therapy has shown a remarkable improvement on chemotherapy in bladder cancer, especially bevacizumab. Additional clinical studies are required to validate and support this hypothesis.

Antibody-drug conjugate (ADC) is a novel target chemotherapy

ADC has been constructed to precisely deliver cytotoxic agents or inhibitors towards cancer cells, depending on the specific antibody that binds to the surface antigen of cancer cells. Importantly, ADC is considered a cutting edge therapy for bladder cancer management (Table 1). Recently, in December 2019, the US Food and Drug Administration (FDA) approved enfortumab vedotin (EV) for bladder cancer treatment, becoming the landmark of ADC application in bladder cancer [21]. EV is a conjugate of monoclonal antibody against Nectin-4, which is overexpressed in urothelial carcinomas, and a microtubule-disrupting agent, monomethyl auristatin E (MMAE). In a phase 1 trial that enrolled 155 metastatic patients who failed chemotherapy, EV treatment exhibited an objective response rate (ORR) of 43%, a median OS of 12.3 months and a 1-year OS rate of 51.8%, while grade ≥ 3 adverse effects occurred in 34% of participants [39]. EV is now being evaluated in combination with ICIs and/or chemotherapy agents in patients with locally advanced/metastatic urothelial carcinoma (NCT03288545). In addition, another ADC has been constructed that conjugates MMAE with an anti-SLITR6 antibody, and this ADC is termed ASG-15ME [40]. A phase 1 trial (NCT01963052) of ASG-15ME given as monotherapy for metastatic urothelial cancer was completed in 2020, and the results have not yet been reported.

The second approved ADC for bladder cancer treatment is sacituzumab govitcan (SG), which conjugates an anti-Trop-2 monoclonal antibody with SN-38, the active metabolite of irinotecan. In the latest phase 2 clinical trial, 113 advanced/metastatic urothelial carcinoma patients who had received ineffective ICI treatment or chemotherapy were enrolled. SG treatment in this trial exhibited an ORR of 27%, a median PFS of 5.4 months and a median OS of 10.9 months with 6% of patients terminating treatment because of treatment-related adverse events [41].

Human epidermal growth factor receptor 2 (Her2) is a widely known tyrosine kinase receptor that is expressed in many solid tumours, including bladder cancer. Targeting Her2 has been studied for decades, while anti-Her2 ADCs are also being explored and assessed in clinical trials. RC48-ADC is a novel humanized
anti-Her2 antibody connected with MMAE. In a phase 2 clinical trial started in December 2017, 43 Her-2-positive patients with advanced/metastatic urothelial carcinoma received RC48-ADC monotherapy [42]. By the end of January 2019, the ORR was 60.5%, and the ORR was 64.9% in patients with visceral metastasis and 70.0% in those with liver metastasis; the OS and PFS was not reached [42]. These favourable results encouraged us to keep notice of the final outcomes of the completed phase 2 trial (NCT03507166). Trastuzumab emtansine (TDM1) consists of emtansine, an anti-microtubule, and the anti-Her2 antibody, trastuzumab, which has been approved by the FDA for breast cancer patients. TDM1 has been reported to have antitumour effects in preclinical models of HER2-overexpressing bladder cancer [43]. However, the clinical trial of TDM1 to treat urothelial carcinoma did not report a favourable result (NCT02999672). Trastuzumab deruxtecan (DS-8201a) comprises a trastuzumab conjugated with an exatecan derivative, a topoisomerase I inhibitor, which has a higher drug-to-antibody ratio to potentially target Her2-low-expressed tumours compared to TDM1. A phase 1 clinical trial for the combination of trastuzumab deruxtecan and nivolumab in advanced bladder cancer is ongoing (NCT03523572).

Promising strategies of chemosensitization in preclinical studies

As mentioned above, targeted therapy is important in chemosensitization in bladder cancer. Targeted therapy and immunotherapy are mainly investigated to target cancer cells and/or immune cells that are not under the pressure of chemotherapy agents. Intriguingly, chemotherapy stress drives different heterogeneity in cancer cells and/or immune cells from those unexposed to chemotherapy [44,45]. It is reasonable to assess whether the introduced targeted therapy and/or immunotherapy could expand their use to improve the efficacy of chemotherapy. Novel molecules and pathways that were identified to specifically contribute to chemosensitivity warrant more attention to determine their translational value. Novel phenotypes discovered in recent years, such as cancer stem cells, inflammation pathways and tumour immunology, have shown the potential of sensitizing bladder cancer cells to chemoresistance in animal models. Newly identified regulatory mechanisms of traditional phenotypes of chemoresistance, including drug metabolism, DNA damage repair pathways, oncogenes and tumour suppressors, which have been validated in vivo, provide novel ideas. Furthermore, nanotechnology modifies the pharmacokinetics of chemotherapy drugs in animal models. These findings encourage clinical trials to investigate the potential of agents targeting these molecules and pathways and to apply nanotechnology to improve the outcome of chemotherapy against advanced bladder cancer (Table 2, Fig. 1 and Fig. 2).

Targeting cancer stem cells

Cancer stem cells (CSCs) are tumour-initiating cells that are characterized by self-renewal and differentiation, conserving the heterogeneity of cancer cells [46]. CSCs have been reported to have an advantage in surviving under the pressure of chemotherapy, which is one of the main reasons for chemoresistance [47]. Targeting CSCs may be a promising protocol to improve the response to chemotherapy and has recently been evaluated in preclinical studies (Fig. 1). Tatokoro et al isolated CSCs based on CD44 (a marker of CSCs)-positive cells and found that they are more resistant to cisplatin than the non-CSC subgroups [48]. These researchers also found that 17-DMAG, an HSP90 inhibitor, potentiates the cytotoxicity of cisplatin against CSCs by enhancing cisplatin-induced apoptosis, which was further confirmed in xenografts in vivo [48]. In addition, yes-associated protein (YAP), the effector of the Hippo pathway, plays a key role in CSC self-renewal and expansion in several cancers. YAP drives the self-renewal of CSCs that express OV6, which is also a CSC surface marker [49]. Mechanistically, an autocrine regulatory loop shows that YAP activates PDGFR transcription, while PDGFR-BB is secreted and binds to its receptor, PDGFR, to stabilize YAP. Verteporfin (a YAP inhibitor) and CP-673451 (a PDGFR inhibitor) have been applied to interrupt the autocrine regulatory loop, resulting in alleviation of the chemoresistance of OV6-positive CSCs to cisplatin in vivo [49].

Targeting inflammation pathway

Kurtova et al revealed a novel mechanism, in which chemotherapy-induced inflammation impedes chemoresistance [50]. Specifically, chemotherapy effectively induces apoptosis and then releases prostaglandin E2 (PGE2), an inflammatory cytokine. Chemotherapy-associated PGE2 releases repopulated CSCs from a quiescent label-retaining pool into cell division, which is similar to the mobilization of normal stem cells during wound repair (Figs. 1 and 2). The administration of the cyclooxygenase-2 (COX2) inhibitor, celecoxib, abrogates the PGE2-mediated wound response and weakens the aggressive character of chemoresistance in xenograft models [50]. However, targeting PGE2 with COX-2-selective inhibitors has achieved unsatisfactory results in human clinical trials to enhance the efficacy of chemotherapy in several cancers [51–53]. Furthermore, epoxygenesotrienoic acids (EETs) are also derived from the arachidonic acid pathway but have anti-inflammatory functions [54,55] and are decomposed to inactive forms by soluble epoxide hydrolase (sEH) [56]. EET inhibits the transcription of COX-2, and thus, less PGE2 is produced. Therefore, sEH inhibitors enhance the anti-inflammatory effects of COX-2-selective inhibitors [57]. The strategy of dual inhibition of COX-2/sEH has also shown the potential of enhancing the antitumour efficacy of chemotherapeutic agents. Specifically, a recent study has reported that PTUPB, a compound that inhibits both COX-2 and sEH, potentiates cisplatin efficacy in bladder cancer cell lines and improves the response to GC in patient-derived xenografts by promoting apoptosis and abrogating activation of the MAPK/ERK and PI3K/Akt pathways (Fig. 2) [58].

Targeting drug transportation and metabolism

The transporter and metabolizing enzymes of chemotherapeutic agents reduce the effective drug concentration and, thus, implicate potential effects of chemosensitivity (Fig. 2). Kita et al conducted a high-throughput screening of drugs to identify chemosensitivity-related compounds [59], and they identified disulfiram, an anti-alcoholism drug, to enhance the efficacy of cisplatin by affecting the localization of ATP7A, a cisplatin efflux transporter. In patient-derived and cell-based xenograft models, disulfiram nanoparticles have been demonstrated to show synergistic effects with cisplatin and present a well-characterized safety profile, providing the potential to repurpose disulfiram in clinical practice [59]. For gemcitabine, regulation of its rate-limiting metabolizing enzyme, deoxycytidine kinase (dCK), which phosphorylates gemcitabine to functional forms, also plays an important role in sensitizing the anticancer efficacy. SR-3029 inhibits casein kinase 1 delta (CK1δ), resulting in the upregulation of dCK and synergistic activity to enhance apoptosis in pancreatic and bladder cancer [60]. However, the efficacy of the combination treatment of CK1δ inhibitor and gemcitabine has been verified in the pancreatic tumour model in vivo but not in the bladder cancer model.
Protein-coding genes regulate chemoresistance of bladder cancer in experimental studies.

Preclinical drugs and inhibitors that sensitize chemoresistance in bladder cancer.

Table 2

Preclinical drugs and inhibitors that sensitize chemoresistance in bladder cancer.

Regulation category	Pathways/phenotypes	Targets	Drugs/Inhibitors	In vivo experiment	Ref.
CSCs	CSCs apoptosis	HSP90	17-DMAG (in vitro) 17-AAG (in vivo)	Orthotopic model of OV6 + cells	[48]
	YAP/TEAD1/PDGF-BB/PDGFR loop-OV6	YAP, PDGFR	Verteptopin (YAP inhibitor) CP-67451 (PDGFR inhibitor)	T24 Xenograft and PDX	[49]
CSCs and inflammation	PGE2/COX2-mediated CSCs repopulation	COX2	Celecoxib	T24 Xenograft and PDX	[50]
inflammation	EET/COX-2/PGE2	COX-2 and sEH	PTUPB	PDX	[58]
Cisplatin	Localization of ATP7A	–	Disulfiram	PDX and PDX-derived organoid	[59]
Cisplatin	CK1δ-dCK	CK1δ	SR-3029	Pancreatic tumor model	[60]
DNA damage repair	WDR5-MLL complex mediated H3K4me3, PD-L1 based immune invasion	WDR5	OICR-9429	UM-UC-3 xenograft	[67]
DNA damage repair	Nucleotide excision repair	ERCC2 mutation	–	Orthotopic model of ERCC2 WT and Mut cells	[66]
Oncogenes	autophagy and cell senescence in cells with HRAS mutation	–	Pterostilbene	T24 Xenograft	[72]
Tumor suppressors	PT3 accumulation-GC-induced apoptosis	EGFR, STAT3	1,25D3	T24 Xenograft	[74]
Receptors	–	1,25D3	Gefitinib (EGFR inhibitor)	T24 Xenograft	[76]
Receptors	AR	AR	ASC-J3	J82 Xenograft	[77]

CSCs, cancer stem cells; PDX, patient-derived xenograft; HSP90, heat shock protein 90; YAP, yes associated protein; TEAD, TEA domain transcription factor; PDGF-BB, platelet-derived growth factor-B dimer; PDGFR, platelet-derived growth factor receptor; PGE2, prostaglandin E2; EET, epoxyeicosatrienoic acids; sEH, soluble epoxide hydrolase; COX-2, cyclooxygenase-2; CYPE, cytochrome P450 epoxygenases; CK1δ, casein kinase 1 delta; dCK, deoxycytidine kinase; WDR5, WD repeat domain 5; H3K4me3, trimethylation of lysine 4 on histone H3 protein subunit; EGFR, epithelial growth factor receptor; CEBPD, CCAAT/enhancer-binding protein delta; AR, androgen receptor.

Table 3

Protein-coding genes regulate chemoresistance of bladder cancer in experimental studies.

Cytogenes	Expression in tumor	Drug	Regulation mechanism	Ref.
β-arrestins	β-arrestin-1 upregulated; β-arrestin-2 downregulated	Gemcitabine	β-arrestin-2 reduces expression of CSCs markers, β-arrestin-1 has opposite effects	[96]
IGF-1	NA	Cisplatin	GAFs increase IGF-1/ERβ/Bcl-2 to promote cisplatin resistance	[107]
FGFR3c	Uregulated	Cisplatin	P4 binds FGFR3c to abrogate the suppression effects of FGFR5 on cell apoptosis to increase cisplatin sensitivity	[111]
TACC3	Uregulated	Cisplatin	TACC3 activates E2F1 transcription to promote G1/S transition and enhance the sensibility to cisplatin	[115]
ELK1	Uregulated (phosphorylated form)	Cisplatin	PKC/Raf-1/ERK targets ELK1 to contribute to cisplatin sensitivity	[118]
CHK1	NA	Cisplatin	AZD7762 inhibits CHK1 to suppress the repair of gemcitabine-induced double strand breaks	[119]

β-arrestins, cancer stem cells; CAFs, cancer-associated fibroblasts; IGF-1, insulin-like growth factor-1; IGF-1R, insulin-like growth factor-1 receptor; ERβ, estrogen receptor beta; FGFR, fibroblast growth factor receptor; FGFR3c, fibroblast growth factor receptor 3c; TACC3, transforming acidic coiled-coil protein 3; CHK1, checkpoint kinase 1 Maspin, Mammary serine protease inhibitor; hnRNPK, heterogeneous nuclear ribonucleoprotein K.

Targeting DNA damage repair and anti-apoptosis genes

It is widely known that cisplatin induces cytotoxic effects by driving DNA damage. Poly(adenosine diphosphate [ADP]) ribose polymerases (PARPs) participate in the DNA damage repair (DDR) process. Thus, PARP inhibitors lead to DNA double-strand breaks that are normally repaired by the homologous recombination repair mechanism in the late S or G2 phase of the cell cycle, which has shown attractive results in other types of tumours, such as ovarian, breast and prostate cancers [61]. Although genes known to be associated with PARP inhibitor sensitivity (CHEK1/2, RAD51, BRCA1/2, ATM, ATR, MDC1 and FANCF) identified in 34% of bladder cancers and approximately 60% of urothelial carcinoma patients preserve homologous recombination deficiency, PARP inhibitor monotherapy shows no significant activity in advanced urothelial carcinoma regardless of homologous recombination deficiency status [62,63]. Interestingly, defects in ATM, RB1 and FANCC, which are DDR genes, have been identified as biomarkers of neoadjuvant cisplatin sensitivity in bladder cancer [64]. However, few studies have assessed whether the addition of PARP inhibi-
bitor to cisplatin-based chemotherapy achieve a significant improvement in bladder cancer treatment, which may be a future direction to enhance chemotherapy efficacy. ERCC2, another gene that contributes to nucleotide excision repair of the DDR process, repairs the intrastrand crosslinks created by platinum chemotherapies to develop resistance [65]. A novel functional assay has identified mutations in the ERCC2 helix domain that damage its own function of nucleotide excision repair [66], and an ERCC2 mutation has been introduced into a cell line, sensitizing an orthotopic xenograft model of bladder cancer to cisplatin [66].

Given that both the DDR and antiapoptosis give rise chemoresistance, identification of the upstream regulatory mechanism of these proteins is urgent and important. WD repeat domain 5 (WDR5), a key H3K4 methyltransferase, plays an oncogenic role in cisplatin chemoresistance in bladder cancer by regulating DNA damage repair and antiapoptotic genes [67]. Furthermore, the WDR5 inhibitor, OICR-9429, enhances apoptosis and chemoresistance to cisplatin in bladder cancer by blocking the WDR5-MLL complex mediating H3K4me3 in target genes, especially BIRC5, XRCC2 and AURKA. In addition, targeting WDR5 by OICR-9429 also suppresses proliferation and metastasis [68]. A similar result has also been found in prostate cancer [69]. These studies suggest that OICR-9429 is a multipotency anticancer therapy that enhances the antitumour effect of cisplatin in bladder cancer (Fig. 2).

Targeting oncogenes and tumour suppressor genes

Recently, it has been found that regulating some well-known molecules and pathways that have been previously reported to participate in cancer initiation and progression may potentiate the anticancer activity of cytotoxic agents. The mutation of RAS abrogates its GTPase activity, which causes GTP-bound RAS to constitutively trigger a signalling cascade and lead to tumour progression [70]. HRAS is one of the isoforms of RAS proteins, which is mutated in nearly 15% of bladder cancer cases [71]. Chen et al elucidated that pterostilbene, a polyphenol phytoalexin, sensitizes cisplatin-resistant bladder cancer cells to oncogenic HRAS via autophagy and cell senescence in vitro and in vivo [72]. In addition, as a p53 homologue, the transactivation domain of p73 (TAp73) also contributes to bladder cancer development as a tumour suppressor [73]. Furthermore, pretreatment with 1,25D3 induces p73 to potentiate the efficacy of GC in vitro and in vivo in bladder cancer [74].

Targeting receptors

Epidermal growth factor receptor (EGFR) is a broadly investigated target in cancer treatment and is also associated with muscle invasion and poor tumour differentiation in bladder cancer [75]. Tyrosine kinase inhibitors and monoclonal antibodies have long been introduced to inhibit EGFR to generate antitumour effects. Wang et al demonstrated that the EGFR/STAT3 pathway triggers cisplatin-induced CCAAT/enhancer-binding protein delta (CEBPδ) expression. Elevated CEBPδ activates multidrug resistance transporters, including ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member (ABCC2), leading to the cross-resistance of cisplatin and paclitaxel [76]. Cross-resistance is suppressed by gefitinib (an EGFR inhibitor) or S3I-201 (a STAT3 inhibitor) in vitro and in vivo (Fig. 1), suggesting the potential of administrating EGFR inhibitors to bladder cancer patients using cisplatin and paclitaxel.

Increased survival signals of androgen receptor (AR) and NF-κB have been identified in MIBC via tumour tissue microarrays [77]. ASC-J9, an AR degradation enhancer without damaging libido, fer-
tility and sexual behaviour, was first applied as a topical cream for the treatment of acne vulgaris. Combining cisplatin with ASC-J9 suppresses bladder cancer progression better than cisplatin alone in vivo. Mechanistically, the combined therapy not only promotes the degradation of AR but also diminishes the activation of NF-κB in MIBC cells. The inhibition of AR and NF-κB signals increases the expression of pro-apoptosis genes, including BAX and p21, while it decreases the expression of the Bcl-2 pro-survival gene. Nevertheless, establishment of the safety profile of ASC-J9 as a systemic agent is warranted [77, 78].

Regulating tumour immunology

Immune escape is one of the major processes that occur during bladder cancer tumorigenesis and progression. Immunotherapy has achieved favourable results in the management of bladder cancer. PD-1/PD-L1 is one of the most well-known molecular pairs that contribute to bladder cancer progression [79]. Generally, PD-L1 is expressed on the surface of bladder cancer cells to inhibit the activation of T cells when it binds to PD-1, its receptor expressed on T cells. Hence, ICIs are introduced based on the anti-tumour activity of inhibiting PD-1/PD-L1. Despite the antitumour effect of anti-PD-1/PD-L1 when it is administered as monotherapy, it has a potential future in overcoming chemoresistance of bladder cancer based on the results of clinical trials, which has been reviewed in the above section. Other agents may also target PD-1/PD-L1 to enhance the efficacy of chemotherapy. The aforementioned small molecule compound, OICR-9429, a WDR5 inhibitor, also regulates the expression of PD-L1 and potentiates chemosensitivity in bladder cancer [68]. Mechanistically, OICR-9429 inhibits WDR5-MLL complex-mediated H3K4me3, resulting in decreased transcription of PD-L1. Hence, OICR-9429 suppresses immune evasion by blocking PD-L1, ultimately enhancing cisplatin chemosensitivity [68].

Xenotransplantation was designed to compensate for the shortage of donors in organ transplantation, but it faces challenges due to the xenogeneic immune reaction. Conversely, the xenogeneic immune reaction is a potential way to overcome immune tolerance induced by cancer cells. Hence, xenovaccination has become another effective immunotherapy strategy. Huang et al reported a novel intravesical application of xenogeneic urothelial cells isolated from porcine bladders combined with GC chemotherapy in bladder tumour mouse models [80]. The combined therapy prolongs survival time in the orthotopic MBT-2 graft model and suppresses tumour progression in the BBN-induced tumour model. Mechanistically, the application of intravesical xenogeneic urothelial cells stimulates lymphocytes to release more IFN-γ and significantly enhances the capacity of CD8+ cytotoxic T cells. The results of this study support the possibility that xenogeneic urothelial cells may be regarded as a novel immunotherapeutic agent alone or used in combination with chemotherapy for the management of bladder cancer.

Nanotechnology

Novel drug delivery systems, including nanoparticles and liposomes, have been designed to optimize pharmacokinetics in cancer treatment, thus showing better antineoplastic effects by directly targeting cancer cells and modulating the tumour microenvironment (TME). A recent study has reported a considerable effect of combining gemcitabine nanoparticles and cisplatin nanoparticles as an antitumour therapy by targeting cancer-associated fibrob-
lasts (CAF cells) [81]. The combined nanoparticles of GC show a stronger inhibition of tumour growth and less toxicity than single GC. Mechanistically, the effect of combined nanoparticles increases the uptake of drugs into cancer cells and depletes CAFs with alterations in collagen deposition. Interestingly, although cisplatin nanoparticles injure CAFs and inhibit tumour progression initially, long-term application of the nanoparticles increases the secretion of Wingless-type MMTV integration site family member 16 (Wnt16) in a paracrine fashion, leading to chemoresistance and stroma reconstruction [82]. These results suggest that inhibition of Wnt16 might have a synergistic effect with cisplatin nanoparticle therapy of bladder cancer.

Nanoparticles have also been reported to be combined with gas therapy to sensitize patients to chemotherapy. Recently, a photoactivated hydrogen nanogenerator has been introduced. The novel agent is a self-assembled nanoparticle containing gencitabine with the ability to produce hydrogen gas upon laser irradiation in situ of the bladder [83]. Hydrogen gas has been previously attributed to contribute to antioxidant, antiapoptotic and antitumour activities in combination with nanomedicine [84–86]. The intravesical instillation of the hydrogen nanogenerator effectively penetrates tumour cells and then releases hydrogen gas to significantly enhance chemotherapy in vitro and in vivo, mainly by attenuating P-gp capacity [83].

Regarding liposomes, Zhai et al developed a targeted liposome to deliver β-elemene into urokinase plasminogen activator receptor (uPAR)-overexpressing bladder cancer cells [87]. An amino-terminal fragment (ATF) peptide, which competes with urokinase plasminogen to bind with uPAR, is assembled to construct the ATF$_{195}$ peptide-functionalized β-elemene-nanorodified lipid carrier. The combination of uPAR-targeted β-elemene liposomes and cisplatin exerts a synergistic effect on apoptosis and cell cycle arrest, resulting in inhibition of tumour growth [87].

Although nanomedicines have been investigated and applied for years, the following challenges still exist: immune clearance by the liver and spleen; the efficacy of permeation and penetration to the stroma; and endocytosis and diffusion in target cells [88]. Second-generation nanomedicines with active-targeting vehicles or smart vectors with stimuli-responsive properties are being investigated to enhance their efficacy [88]. Furthermore, nanotechnology has shown advantages for intravesical chemotherapy [89]. Hydrogels have been designed to prolong the residence time and sustain the release of drugs, resulting in maintenance of the local drug concentration [90]. For example, a PEG-containing thermogel has been developed for combination doxorubicin-based chemotherapy and photodynamics to treat bladder cancer after transurethral resection [91]. Additionally, engineered nanomedicines have been introduced to improve tumour penetration [92]. In bladder cancer, Guo et al developed a smart disulfide-crosslinked polypeptide nanogel to promote the mucoadhesion and penetrability of 10-hydroxycamptothecin for intravesical chemotherapy [93,94]. Evolution in nanomedicine is rapid, and sequentially stimuli-responsive anticancer nanomedicines are the cutting edge [95]. The integration of sequentially stimuli-responsive nanomedicines and chemotherapy in both intravesical and systemic treatment of bladder cancer should be further investigated.

Potential targets of chemosensitization in experimental studies

Apart from the aforementioned molecules and pathways that have been targeted to potentially overcome chemoresistance of bladder cancer, other coding genes (Table 3 and Fig. 3) and noncoding RNAs (Table 4) also contribute to sensitization of chemoresistance by regulating cancer cell metabolism, CSC functions and other phenotypes. Although these findings are still preliminary, they provide ideas for the discovery of novel drugs that target these potential pathways.

Cancer stem cell-related pathways

We reviewed drugs that regulate CSCs and contribute to sensitization to cisplatin resistance in bladder cancer. The CSC-associated pathway has also been suggested to regulate the response to gencitabine in bladder cancer. β-arrestins that contain β-arrestin-1 and β-arrestin-2 attenuate G-protein-coupled receptor signalling. β-arrestins regulate the stem cell-like phenotype and the response to gencitabine in bladder cancer [96]. In bladder cancer tissues, β-arrestin-1 is upregulated, while β-arrestin-2 is downregulated. Overexpression of β-arrestin-2 reduces the expression of CSC markers and potentiates sensitivity to gencitabine in vitro and in vivo, while β-arrestin-1 has the opposing effect [96]. Thus, β-arrestins act as potential prognostic indicators and targets for the identification and modification of the gencitabine response.

Noncoding RNAs are also implicated in enhancing chemosensitivity by regulating CSCs. Accumulating evidence has suggested a critical role of miR-34a in bladder cancer chemosensitization. MiR-34a was first found to be epigenetically increased via promoter hypermethylation in MIBC cells following cisplatin treatment [97]. The increased miR-34a targets CD44 and reduces its expression, which in turn sensitizes MIBC cells to cisplatin [97]. Additionally, a decreased expression level of miR-34a in GC-resistant cell lines has been reported [98]. MiR-34a abrogates CSC characteristics by inhibiting GOLPH3, resulting in resensitization of GC cells in vitro and in vivo [98]. In addition, miR-34a also regulates sensitivity to cisplatin and epirubicin in bladder cancer via other mechanisms, which will be discussed in later sections. Regarding IncRNAs, Chen et al identified an IncRNA, termed Inc-LBCS, that is downregulated in bladder CSCs and tumour tissues, and they reported that Inc-LBCS is associated with chemotherapy response and prognosis [99]. Inc-LBCS was discovered to inhibit chemoresistance by directly binding to heterogeneous nuclear ribonucleoprotein K (hnRNPK) and enhancer of zeste homologue 2 (EZH2), thereby repressing SRY-Box 2 (SOX2) transcription by mediating histone H3 lysine 27 trimethylation [99]. The effect of chemosensitization of Inc-LBCS has been further confirmed in vivo, indicating that the Inc-LBCS/hnRNPK/EZH2/SOX2 axis may provide a potential target for overcoming chemoresistance in bladder cancer [99]. Furthermore, EZH2 is also silenced by miR-101-3p to increase the sensitivity to cisplatin in bladder cancer [100].

Tumour microenvironment

The acquisition and maintenance of the hallmarks of cancer have been demonstrated to be dependent, to various degrees, on the contributions from nonmalignant cells in tumours, including stromal cells (e.g., cancer-associated fibroblasts and endothelial cells) and immune cells [101]. These noncancerous cells and their extracellular milieu form the tumour microenvironment (TME) and interact with cancer cells to play key roles in bladder cancer progression, metastasis and therapeutic responses [102–105]. The application of ICIs is the landmark of targeting TME-cancer cell interactions to inhibit cancer progression. Intriguingly, the diversity and complexity of the cell subpopulations in tumours have been unmasked due to the development of single-cell sequencing technology. Furthermore, components of the TME mediate the response to selection pressure of cytotoxic agents [106], but the mechanisms remain unknown. As a key component of the TME, cancer-associated fibroblasts (CAFs) promote cisplatin resistance in bladder cancer by triggering the insulin-like growth factor-1/
oestrogen receptor β (IGF-1/ERβ) pathway, which elevates the expression of Bcl-2, an antiapoptotic gene [107]. Shan et al found that exosomal miR-148b-3p derived from CAFs is downregulated in bladder cancer, which inhibits the Wnt/β-catenin pathway and increases PTEN expression to enhance chemosensitivity in vitro and in vivo [108]. These results suggest that targeting CAFs may be an effective therapeutic strategy to ameliorate chemoresistance in bladder cancer. Other components of the TME also contribute to the plasticity of chemotherapy-treated cancer cells. The mechanisms by which the TME regulates chemosensitivity and targeting of the TME to potentiate the efficacy of chemotherapy warrant further investigation.

Fibroblast growth factor receptor

The fibroblast growth factor (FGF) family has been reported to play essential roles in oncogenesis and tumour progression [109]. Erdafitinib, a pan-FGFR inhibitor, was the first approved targeted agent by the FDA for the treatment of metastatic urothelial carcinoma [110]. FGFR3c, one of the subtypes of FGFR, is overexpressed in bladder cancer [111]. Wang et al isolated a binding peptide of FGF9 from a phage display random heptapeptide library, termed P4, and they reported that P4 increases sensitivity to cisplatin by antagonizing the FGF9/FGFR3c/Akt pathway [112]. Interestingly, transforming acidic coiled-coil protein 3 (TACC3), which participates in mitosis by regulating microtubule stability, has been reported to fuse to FGFR3 by chromosomal rearrangement and continuously activate kinase [113]. TACC3 expression is elevated in bladder cancer, and a genome-wide association study (GWAS) has identified TACC3 as a cancer susceptibility gene of bladder cancer [114,115]. Lin et al demonstrated that TACC3 transcriptionally activates E2F1, thereby promoting the G1/S transition to enhance the sensitivity to cisplatin [115].

Apoptosis and cell cycle-related coding genes

The combined application of introduced drugs and compounds has been investigated to show the potential efficacy of sensitizing bladder cells against chemoresistance by regulating apoptosis and the cell cycle. Triptolide, an extract from Chinese herbal medicine, has been reported to have antineoplastic effects [116]. Triptolide combined with cisplatin induces a synergistic cytotoxic effect via cell cycle arrest and the upregulation of caspase-3/8/9, PARP and cytochrome C in a cisplatin-resistant T24 cell line [117].

Silodosin is a selective α1A-adrenergic blocker for the treatment of benign prostatic hyperplasia, and it has been found to increase drug sensitivity to cisplatin but not to gemcitabine in bladder cancer [118]. Mechanistically, silodosin silences ELK1, which has been identified to be elevated in bladder cancer cell lines and tumour tissues, and diminishes NF-κB in vitro [118]. A checkpoint kinase 1 (CHK1) inhibitor, termed AZD7762, also sensitizes bladder cancer cells to gemcitabine by increasing the fraction of sub-G1 cells, the level of cleaved PARP and the activity of caspase 3/7 to induce apoptosis [119].

Some regulators of apoptosis and cell cycle-related pathways also show the potential to improve the efficacy of chemotherapy. Mammary serine protease inhibitor (maspin) expression is significantly reduced in invasive bladder cancer compared to superficial bladder cancer, and it is correlated with the prognosis of patients who have received cisplatin-based neoadjuvant chemotherapy.
Non-coding RNAs sensitize chemoresistance of bladder cancer in experimental studies.

microRNA	Expression in tumor	Target Gene	Drug	Regulation mechanism	Ref.
miR-34a	Downregulated (in nonresponders)	CDK6, SIRT1, CD44	Cisplatin	As a downstream effector of p53 to inhibit expression of CDK6 and SIRT1	[123]
miR-34a	Upregulated (After cisplatin treatment)	GOLPH3	GC	miR-34a/GOLPH3 abrogates chemoresistance via reduced cancer stemness	[98]
miR-34a	Downregulated (in GC resistant cell lines)	TCF1, LEF1, CCND2, P2RY1	Epirubicin	As an inhibitor of TCF1/LEF1 axis	[124]
miR-101-3p	Downregulated (in cisplatin resistant cell lines)	Glut1	Cisplatin	miR-101-3p advances sensitivity to cisplatin through targeted silencing Glut1	[100]
miR-129-5p	Downregulated (in cisplatin resistant tissues)	Wnt5a	Gemcitabine	restoration of miR-129-5p increases cell sensitivity to gemcitabine by targeting Wnt5a	[128]
miR-143	Downregulated	IGF-1R	Gemcitabine	miR-143 enhances gemcitabine sensitivity via IGF-1R suppression	[129]
miR-148b-3p	Downregulated (in CAI-derived exosomes)	PTEN, Doxurubicin, Paclitaxel	Gemcitabine	miR-148b-3p inhibits the Wnt/β-catenin pathway and promotes PTEN expression to abrogate drug resistance	[108]
miR-203	Downregulated (in progression group)	Bcl-w, Survivin	Cisplatin	miR-203 overexpression enhances cisplatin sensitization by promoting apoptosis via targeting Bcl-w and Survivin	[126]
miR-214	Downregulated	Netrin-1	Cisplatin	miR-214 decreases chemoresistance by suppressing Netrin-1 expression	[127]
miR-218	NA	Glut1	Cisplatin	miR-218 reduces the rate of glucose uptake and total level of GSH and enhances the chemosensitivity via targeting Glut1	[137]
Inc-LBCS	Downregulated (in CSCs)	SOX2	GC	As a scaffold to form the complex of Inc-LBCS/hnRNPK/EZH2 to repress SOX2 transcription via H3K27me3 in CSCs	[99]
GAS5	Downregulated	Bcl-2	Doxorubicin	GAS5 increases doxorubicin-induced apoptosis through Bcl-2 suppression	[130]
circular RNA	NA	APAF1	Cisplatin	As a miRNA sponge to regulate miR-1270/APAF1 axis	[131]
circFNTA	Upregulated	FNTA	Cisplatin	circFNTA regulates miR-370-3p/FNTA/KRAS axis to sensitize chemotherapy to cisplatin	[134]
circLIFR	Downregulated	p73	Cisplatin	Interacting with MSH2 to increase cisplatin sensitivity through MutS/ATM-p73 axis	[133]

NA, not available; GC, gemcitabine plus cisplatin; CAF, cancer-associated fibroblast; CSCs, cancer stem cells; H3K27me3, trimethylation of lysine27 on histone H3 protein subunit.

Non-coding RNAs regulating apoptosis and cell cycle

Apart from regulating CSC function, miR-34a inhibits CDK6 to regulate the p53-Rb axis to enhance chemosensitivity to cisplatin [123]. Furthermore, Liu et al also discovered that miR-34a directly targets TCF and LEF1, which are involved in the Wnt/β-catenin pathway, to reduce chemoresistance both in vivo and in vitro [124]. Other miRNAs, including miR-34b-3p [125], miR-203 [126], miR-214 [127], miR-129-5p [128] and miR-143 [129], have been reported to attenuate chemoresistance by targeting different mRNAs to regulate apoptosis and the cell cycle in bladder cancer cells. Details of these miRNAs are summarized in Table 4.

For lncRNAs and circRNAs, the regulation of apoptosis and the cell cycle are also common mechanisms by which they regulate chemoresistance in bladder cancer. IncRNA GAS5 decreases the expression of Bcl-2 to promote apoptosis induced by doxorubicin in a doxorubicin-resistant cell line [130]. CircRNA Cdr1as sponges miR-1270 to abolish its inhibitory effect on apoptosis proteinase-activating factor 1 (APAF1), which is a key factor that regulates apoptosis, thereby promoting sensitization to cisplatin in vitro and in vivo [131]. MutS homologue 2 (MSH2) is a mediator of cisplatin sensitivity [132]. A downregulated circRNA in bladder cancer, termed CircLIFR, has been reported to interact with MSH2 to stabilize p73, a key trigger of apoptosis, thereby augmenting the sensitivity to cisplatin in bladder cancer [133]. We reviewed that AR and RAS are targeted to increase sensitivity to cisplatin. Surprisingly, Chen et al found that inhibition of circFNTA regulates the miR-370-3p/FNTA/KRAS axis to sensitize cisplatin chemotherapy in vitro and in vivo [134].

Glucose metabolism

Cancer cells prefer using glucose to produce lactate (i.e., glycolysis) even under oxygen-rich conditions, which is widely known as the “Warburg effect” [135]. Glycolysis-associated genes, such as...
glucose transporter type 1 (GLUT1), enhance glycolytic activity and contribute to cancer progression; GLUT1 is overexpressed in bladder cancer [136]. MiR-218 increases the sensitivity of bladder cancer by targeting GLUT1 in vitro [137]. Casein kinase 2 (CK2) also augments the Warburg effect and promotes the proliferation, migration and invasion of cancer cells [138], of which CK2α is the essential catalytic subunit [139]. AlkB homologue 5 RNA demethylase (ALKBH5) has been reported to sensitize cisplatin resistance through a CK2α-mediated glycolysis pathway. These findings suggest that epigenetic regulation of glycolysis pathways may alter the "Warburg effect" and potentially attenuate chemoresistance.

Application of patient-derived tumour xenografts (PDXs) and organoids in chemosensitization and targeted therapy

Due to the heterogeneity of tumours, none of the agents or regimens exert comparable effects in different patients. Identifying biomarkers and testing the sensitivity of chemotherapeutic agents in models derived from tumour tissues of specific patients are promising approaches. The present platforms have originated from primary tumour tissues, including patient-derived xenografts (PDXs) and organoids, and these models have the potential to design sensitive drugs for bladder cancer patients. First, genomic profiling of two PDXs derived from two bladder cancer patients with different responses to cisplatin indicated distinct profiles [140]. In the less sensitive PDX, nonsense mutations in cisplatin resistance-associated genes and the overexpression of other cisplatin resistance-associated genes were identified, suggesting that specific gene alterations from the PDX may be predictive of cisplatin sensitivity [140]. PDXs simulate tumour characteristics in vivo and preserve the TME, but PDXs are difficult to generate and utilize for high-throughput screening of drugs. An ex vivo tissue culture model generated from bladder cancer tissue slices from a transurethral resection of a bladder from a NMIBC patient has been reported to be more applicable; the tissue slices can be cultured in the presence of gemcitabine to identify the level of cleaved caspase-3 and the number of cytokeratin-18-positive tumour cells, which can be exploited to monitor the gemcitabine response [141].

Organoids are three-dimensional in vitro culture systems derived from self-organizing stem cells that recapitulate the in vivo architecture, functionality and genetic signature of primary tissues. Organoids of bladder cancer have been established and developed to predict drug responses to targeted therapy and chemotherapy [142-144]. Kong et al. conducted a machine-learning framework to identify robust biomarkers from pharmacogenomic data derived from organoids [144]. The identified biomarkers have been reported to predict cisplatin responses of 77 bladder cancer patients [144]. Although the structure of organoids is simpler than that of PDXs, it is difficult to simulate the circulation and metabolism of drugs in vivo. Additional incorporation of immune components in organoids will increase the sophistication while preserving the advantages of easy culturing and expansion, allowing more advanced estimations of drug responses.

Future perspectives for improving chemotherapy in bladder cancer

Platinum-based chemotherapy has long been the first-line treatment of MIBC with definite effects of downstaging and prolonging OS and PFS. Unfortunately, limited patients receive considerable advantages, while others delay operations and suffer from chemotherapy-associated adverse effects. Thus, developing novel strategies to improve the efficacy of chemotherapy is important. In this review, we summarized novel regimens, drugs and targets that exert the potential of chemosensitization based on the results of clinical trials and preclinical and experimental studies. In clinical trials, monotherapy and/or a combination of ICIs, ADCs and VEGF inhibitors has shed light on the potential of elevating the response rate as well as increasing OS and PFS, providing high-level evidence of potentiating chemosensitivity. Specifically, PD-1/PD-L1/CTLA-4 inhibitors are presently available for the clinical treatment of bladder cancer and other cancer types, indicating their controllable adverse effects and increased application experience compared to novel generated compounds, such as targeted drugs. Thus, the good performance of these inhibitors in ameliorating chemoresistance is the beginning for establishing a novel clinically applicable regimen. Clinicians and researchers should pay more attention to the application of these ICIs along with chemotherapy drugs in ongoing phase 2 and 3 clinical trials. For preclinical and experimental studies, massive prospects have been exhibited in targeting critical mechanisms and pathways of chemoresistance, including CSCs, DNA damage repair, antiapoptosis, drug metabolism and the TME. In addition to abrogating chemoresistance by applying small molecule inhibitors, targeting noncoding RNAs is also a new approach that is worth further development and verification. Pharmacokinetics, as an inherent characteristic of an introduced drug, is not easy to optimize by changing the structure of the compound without affecting the therapeutic effects and safety. Importantly, packing drugs in nanoparticle carriers enhances their accumulation in tumours, resulting in better cytotoxic effects in tumours and less damage to unrelatable tissues. Present studies mainly focus on potentiating antitumour effects through nanotechnology, but we suggest that the ability to attenuate chemotherapy-associated adverse effects is also essential. Less systemic damage from cytotoxic drugs may help patients tolerate postchemotherapy operations and allow an easier recovery. More data comparing the adverse effects of nanoparticle-packed chemotherapeutic drugs to unpacked drugs are required.

Further illustration of the molecular mechanism of chemoresistance will provide more targets and biomarkers. To attenuate chemoresistance, efforts should be devoted to the following aspects. Considering that bladder cancer is a heterogeneous disease, multi-omics sequencing and analysis may contribute to more robust biomarkers for chemosensitivity prediction. Gene expression models and/or the molecular subtypes established from the data of multi-omics sequencing may screen specific groups of patients who may achieve a favourable response to cytotoxic agents. Synergic targeting of the dysregulated molecular pathways that are explicitly identified in patients resistant to chemotherapy has the potential to reverse the resistance. In addition to cancer cells, other components of the stroma and/or TME, such as immune cells and CAFs, are also worth targeting to regulate chemoresistance-associated tumour-TME interactions. It is worth investigating whether multitarget intervention sensitizes patients to chemotherapy by using PDXs and/or organoids. Nanotechnology and ADCs have the potential for precise delivery of drugs. All the above strategies aim to overcome the barriers of limited curative rate and undesired adverse effects, resulting in improved response rate and increased OS and PFS (Fig. 4).

In addition to chemotherapy, the efficacy of all introduced agents should be improved. It is important to realize that all kinds of drugs are only effective for a certain portion of patients. To date, the response of patients can only be determined after the application of therapeutic drugs. Thus, one of the remaining challenges for the treatment of bladder cancer is to identify the specific population sensitive to a certain agent prior to its administration using blood, urine and tumour samples. Considering the characteristics of the tumour change under the pressure of therapeutic agents, the establishment of validation models, including PDXs and organoids, is important for the development of drug screening and val-
Compliance with Ethics Requirement

Not Applicable.

CRediT authorship contribution statement

Sen Liu: Conceptualization, Writing – original draft, Writing – review & editing. Xu Chen: Conceptualization, Funding acquisition, Writing – review & editing. Tianxin Lin: Supervision, Funding acquisition, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0902803), the National Natural Science Foundation of China (Grant No. 82072827, 81961128027, 81825016), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515020009, 2020A1515010888), Science and Technology Program of Guangzhou (Grant No. 201202010002), Guangdong Provincial Clinical Research Center for Urological Diseases (2020B111170006), and Guangdong Science and Technology Department (2020B1212060018). All the figures were created with BioRender.com.

References

[1] Song H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020. GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209–49.
[2] Chen X, Zhang J, Ruan W, Huang M, Wang C, Wang H, et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J Clin Invest 2020;130(12):6278–89.
[3] Ruan W, Chen Xu, Huang M, Wang H, Chen J, Liang Z, et al. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin Epigenetics 2021;14(1). doi: https://doi.org/10.1186/s13148-021-01073-x.
[4] Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: non-muscle-invasive bladder cancer. J Urol 2020;193(2):202–6.
[5] Sun M, Trinh Q-D. Diagnosis and staging of bladder cancer. Hematol Oncol Clin North Am 2015;29(2):205–18.
[6] Flax TG, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, et al. NCCN Guidelines Insights: Bladder Cancer, Version 5.2018. J Natl Compr Canc Netw 2018;16(9):1041–53.
[7] Vale CL. Neoadjuvant Chemotherapy in Invasive Bladder Cancer: Update of a Systematic Review and Meta-Analysis of Individual Patient Data. Eur Urol 2005;48(2):202–6.
[8] Tran L, Xiao J-F, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer biology and therapy. Nat Rev Cancer 2021;21(2):104–21.
[9] Lenis AT, Lee PM, Chunie K, Mshs MD. Bladder Cancer: A Review. JAMA 2020;324(19):1980–91.
[10] Zargar H, Espiritu PN, Fairey AS, Mertens LS, Dinney CP, Mir MC, et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol 2015;67(2):241–9.
[11] Wezel F, Vallo S, Rogmann F. Young Academic Urologist Urothelial Carcinoma Group of the European Association of U. Do we have biomarkers to predict response to neoadjuvant and adjuvant chemotherapy and immunotherapy in bladder cancer? Transl Androl Urol 2017;6(6):1067–80.
[12] von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 2005;23(21):4602–8.
[13] Flax TG, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020;18(3):329–54.
[14] Yafi FA, North S, Kassouf W. First- and second-line therapy for metastatic urothelial carcinoma of the bladder. Curr Oncol 2011;18(1):e25–34.
[15] Crimini E, Repetto M, Aftimos P, Botticelli A, Marchetti P, Curigliano G. Precision medicine in breast cancer: From clinical trials to clinical practice. Cancer Treat Rev 2021;98:102223. doi: https://doi.org/10.1016/j.ctrrev.2021.102223.
Arbour KC, Riely GJ. Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer: A Review. JAMA 2019;322(8):764–74.

Di Nicolantonio F, Vitiello PP, Marsoni S, Siena S, Tabernero J, Trusolino L, et al. Precision medicine in metastatic colorectal cancer – from biology to medicine. Nat Rev Clin Oncol 2021;18(8):506–25.

Grivas P, Agarwal N, Pal S, Kalebasyar AS, Sridhar SS, Smith J, et al. Avelumab first-line maintenance in locally advanced or metastatic urothelial carcinoma: Applying clinical trial findings to clinical practice. Cancer Treat Rev 2021;97:102187. doi: https://doi.org/10.1016/j.ctrv.2021.102187.

Chang E, Weinstock C, Zhang L, Charlab R, Dorr F, Gong Y, et al. FDA Approval Summarization: Pembrolizumab for Locally Advanced or Metastatic Urothelial Carcinoma. Clin Cancer Res 2021;27(4):922–7.

Moraes-Ranaeza R, Suarez C, Gonzalez M, Valdevieze C, Serra E, Mateo J, et al. The future of bladder cancer therapy: Optimizing the inhibition of the fibroblast growth factor receptor-4. Cancer Treat Rev 2020;86:102000. doi: https://doi.org/10.1016/j.ctrv.2020.102000.

Powles T, Duran I, van der Heijden MS, Loriot Y, Vogelzang NJ, de Giorgi U, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018;391(10122):748–57.

Bellmunt J, de Wit R, Vaughan DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med 2017;376(11):1015–26.

Abol AP, Infante JR, Banakoulis A, Patel MR, Wang D, Kelly K, et al. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, in Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicentre Phase Ib Study. J Clin Oncol 2017;35(19):2117–24.

Galsky MD, Arja JAA, Bamias A, Davis ID, De Santis M, Kikuchi E, et al. Atezolizumab with or without chemotherapy in metastatic urothelial carcinoma (KEYNOTE 150): multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020;395(10236):1547–57.

Powles T, Ciozzi S, Ozogurculo M, Matsabura N, Geci L, Cheng S-S, et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet 2021;2022(7):931–45.

Galsky MD, Wang W, Hahn NM, Twardowski P, Pal SK, Albany C, et al. Phase 2 Trial of Gemcitabine, Cisplatin, plus Ipiplumab in Patients With Metastatic Urothelial Cancer and Impact of DNA Damage Response Gene Mutations on Outcomes. Eur Urol 2018;73(5):751–6.

Pharma P, Siebker-Radtke A, de Braud F, Basso U, Calvo E, Bono P, et al. Pembrolizumab Alone or Combined With Iplimumab in Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipiplumab 3 mg/kg Expansion Cohort Results. J Clin Oncol 2019;37(19):1608–16.

Powles T, van der Heijden MS, Castellano D, Galsky MD, Loriot Y, Petrylak DP, et al. Durvalumab alone and durvalumab plus pemtrexed versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial, Lancet Oncol 2020;21(12):1574–88.

Pathik L, Chawla S, Cobo M, Bocci E, Menciejes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): a randomised, open-label, phase 3 trial. Lancet Oncol 2020;21(2):198–211.

Petrylak DP, de Wit R, Chu KN, Drakaki A, Sternberg CN, Nishiyama H, et al. Atezolizumab versus chemotherapy in patients with platinum-treated advanced or metastatic urothelial carcinoma from a phase 2, open-label trial (ATLAS). BMC Cancer 2021;21(1). doi: https://doi.org/10.1186/s12885-021-08085-z.
Beecken W-D, Engl T, Engels K, Blumenberg C, Oppermann E, Camphausen K, Wang H, Li Qi, Niu X, Wang G, Zheng S, Fu G, et al. miR-143 inhibits bladder cancer cell chemosensitivity. J Exp Clin Cancer Res 2017;36(1). doi: 10.1186/s13046-016-0947-3.

Isozo M, Hoffmann MJ, Pinkorneil M, Sato A, Michaels M, Cinatl J, et al. Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine. J Exp Clin Cancer Res 2017;36(1). doi: 10.1186/s13046-016-0947-3.

Beecken W-D, Engl T, Engel K, Blumenberg C, Oppermann E, Camphausen K, et al. Clinical relevance of maspin expression in bladder cancer. World J Urol 2006;24(3):338–44.

Chen J, Wang L, Tang Y, Gong G, Liu L, Chen M, et al. Maspin enhances cell chemosensitivity in bladder cancer T24 and 5637 cells and correlates with prognosis of muscle-invasive bladder cancer patients receiving cisplatin based neoadjuvant chemotherapy. J Exp Clin Cancer Res 2016;35(1). doi: 10.1186/s13046-015-0282-y.

Chen X, Gu P, Xie R, Han J, Liu H, Wang Bo, et al. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med 2017;21(7):1266–79.

Vinall RL, Ripoll AZ, Wang S, Pan C-X, deVeric White RW. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-3B pathway status. Int J Cancer 2012;130(11):2526–38.

Liu X, Liu X, Wu Y, Fang Z, Wu Q, Wu C, et al. MicroRNA-34a Attenuates Metastasis and Chemoresistance of Bladder Cancer Cells by Targeting the TCF7/LEF1 Axis. Cell Physiol Biochem 2018;48(1):87–98.

Tao Y, Zhang T, Zhou L, Liu S, Liang C. MiR-34b-3p Represses the Multidrug-Chemoresistance of Bladder Cancer Cells by Regulating the CCND2 and P2RY1 Genes. Med Sci Monit 2019;25:1233–35.

Zhang X, Zhang Y, Liu X, Fang A, Li P, Li Z, et al. MicroRNA-203 Is a Prognostic Indicator in Bladder Cancer and Enhances Chemosensitivity to Cisplatin via Apoptosis by Targeting Bcl-w and Survivin. PLoS ONE 2015;10(11):e0143441.

Liu J, Li J, Lu Z, Li Z, Liu X, Kong C. miR214 reduces cisplatin resistance by targeting netrin1 in bladder cancer cells. Int J Mol Med 2018;41(3):765–73.

Cao J, Wang Q, Wu G, Li S, Wang Q, miR-129-5p inhibits gemcitabine resistance and promotes cell apoptosis of bladder cancer cells by targeting Wnt5a. Int Urol Nephrol 2018;50(10):1811–9.

Wang H, Li Qi, Niu X, Wang G, Zheng S, Fu G, et al. miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Oncol Lett 2017;13(1):435–40.

Zhang H, Guo Y, Song Y, Shang C. Long noncoding RNA GAS5 inhibits malignant proliferation and chemotherapy resistance to doxorubicin in bladder transitional cell carcinoma. Cancer Chemother Pharmacol 2017;79(1):49–55.

Yuan W, Zhou R, Wang J, Han J, Yang X, Yu H, et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol Oncol 2019;13(7):1559–76.

Edelbrock MA, Kalypserumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling, and other noncanonical activities. Mutat Res 2013;743–744:53–66.

Zhang H, Xiao X, Wei W, Huang C, Wang M, Wang L, et al. CircLRF synergizes with MSH2 to attenuate chemoresistance via Multi5a/ATM-p73 axis in bladder cancer. Molecular Cancer 2021;20(1). doi: 10.1186/s12935-021-01365-4.

Chen J, Sun Y, Ou Z, Yeh S, Huang CP, You B, et al. Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep 2020;21(4).

Warburg O. On the origin of cancer cells. Science 1956;123(3191):309–14.

Younes M, Juarez D, Letchago LV, Lerner SP. Glut 1 expression in transitional cell carcinoma of the urinary bladder is associated with poor patient survival. Anticancer Res 2001;21(18):575–8.

Li P, Yang X, Cheng Y, Zhang Y, Yang C, Deng X, et al. MicroRNA-218 Increases the Sensitivity of Bladder Cancer to Cisplatin by Targeting Glut1. Cell Physiol Biochem 2017;41(3):921–32.

Im DK, Cheong H, Lee JS, Oh MK, Kang KM. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci Rep 2019;9(1):1:5337.

Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003;369(Pt 1):1–15.

Wei L, Chintala S, Camporero E, Ramakrishnan S, Elabbana M, Wang J, et al. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Oncotarget 2016;7(47):76374–89.

van de Merbel AF, van der Horst G, van der Mark MH, van Uhm JM, van Gennepl EF, Kloo K, et al. An ex vivo Tissue Culture Model for the Assessment of Individualized Drug Responses in Prostate and Bladder Cancer. Front Oncol 2018;8:460.

Lee SH, Hu W, Matyalu JT, Silva MV, Owczarek TB, Kim K, et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell 2018;173(2):515–528.e17.

Mullenders J, de Jongh E, Brousal A, Roosen M, Bloem JPA, Begthel H, et al. Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc Natl Acad Sci U S A 2019;116(10):4567–74.

Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020;11(1). doi: 10.1038/s41467-020-19311-8.