Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration

Abstract
In biological systems, ONOO− production depends on production rates of NO and O2−, and on the reactions of these two free radicals with other biological components, which limit the local concentrations of NO and O2−. In mitochondria, O2− is generated through the auto oxidation of semiquinones at Complexes I and III, and it may suffer the SOD-catalyzed dismutation reaction to produce H2O2 or react with NO in a classical termination reaction between free radicals. These diffusion-controlled reactions kinetically compete for O2− degradation. Results from our laboratory have shown that even in physiopathological situations in which NO production is reduced, such as the mitochondrial dysfunction associated to stunned heart, mitochondrial ONOO− production rate may be slightly increased if the steady-state concentration of O2− is augmented. The enhancement in O2− concentration leads to an increase in its degradation by reaction with NO, decreasing NO bioavailability and increasing ONOO− production rate. Therefore, mitochondrial ONOO− generation is mainly driven by O2− rather than by NO steady-state concentrations. In this scenario, the switch from NO-signaling pathways to oxidative damage takes place. The modification of crucial biomolecules by nitration or oxidation can lead to the bioenergetics failure that underlies physiopathological conditions such as neurodegenerative diseases, ischemia-reperfusion, Diabetes, endotoxic shock and aging.

Mitochondrial matrix: a metabolically differentiated space
The mitochondrial matrix is a metabolically differentiated intracellular space concerning superoxide (O2−), nitric oxide (NO) and peroxynitrite (ONOO−) metabolism because of the impermeability of the mitochondrial inner membrane to O2−, H+ and ONOO− and the specific presence of relatively high concentrations of Mn-superoxide dismutase (Mn-SOD), about 3-10 μM.1 Superoxide anion (O2−) is formed through the auto oxidation of ubisemiquinone (at Complex III and of the flavin semiquinone of NADH dehydrogenases.2 In the mitochondrial matrix, O2− is consumed through two diffusion-controlled reactions (Figure 1): the disproportionate reaction catalyzed by Mn-SOD (k=2.3×1010 M−1 s−1)4 that produces O2 and hydrogen peroxide (H2O2),5−9 and the reaction with nitric oxide (NO) to yield peroxynitrite (ONOO−; k=1.9×1010 M−1 s−1).10 Thus, from the kinetic point of view, these reactions compete for O2− degradation.

As a result of O2− disproportionation, isolated respiring mitochondria produce H2O2 at rates that depend on the redox state of the components of the respiratory chain and, consequently, on the mitochondrial metabolic state.3,11 The rates of H2O2 production of mitochondria isolated from mammalian organs are in the range of 0.4−0.9 nmol H2O2/min×mg protein−1 in state 4 and 0.05−0.15 nmol H2O2/min×mg protein−1 in state 3,11 being H2O2 generation in state 4 about 4−16 times higher than in state 3.12 Hydrogen peroxide in the mitochondrial cristae space originates largely from mitochondrial Complex III, whereas mitochondrial Complex I contribute to mitochondrial matrix H2O2.12 In the aristae subspace, “redox nanodomains” have been described which are induced by and control calcium signaling at the endoplasmic reticulum-mitochondrial interface.13 Hydrogen peroxide transients sensitize calcium ion release to maintain calcium oscillation. In this scenario, H2O2 is considered the major redox metabolite operative in redox sensing, signaling and redox regulation.14 While 1−10 nM H2O2 are considered physiological concentrations that play a role in redox signaling pathways under normal conditions, higher H2O2 concentrations lead to adaptive responses and supra physiological concentrations (>100nM) lead to damage of biomolecules.14

[Figure 1] Mitochondrial O2− is consumed by two competitive diffusion-controlled reactions: the dismutation reaction catalyzed by SOD and the free radical termination reaction with NO. NO and O2− steady-state concentrations and SOD concentration in the mitochondrial matrix are shown between brackets.
In addition, nitric oxide (NO) is produced through the reaction catalyzed by mitochondrial nitric oxide synthase (mtNOS), an isoform of the NOS family located in the mitochondrial inner membrane that requires NADPH, L-arginine, O$_2$, and Ca$^{2+}$ for its enzymatic activity. Mitochondrial NOS is a highly regulated enzyme. Several reports have shown that mtNOS is regulated by the O$_2$ partial pressure in the inspired air,21-23 the sympathetic autonomic system,24 the thyroid hormones,25 insulin26 and angiotensin II.27 As well as H$_2$O$_2$ generation, mtNOS activity is modified by mitochondrial metabolic state,19,30,31 during the transition from resting to active respiration, NO release decreases about 40-45%. Nitric oxide production depends on mitochondrial membrane potential ($\Delta$$\psi$), being this dependence more important at physiological $\Delta$$\psi$ range (150-180 mV).30,31 In addition, mtNOS expression and activity are positively regulated in inflammatory processes22,23 and positively or negatively modulated by pharmacological situations,34 such as haloperidol,35 chlorpromazine36 and enalapril treatments.37 Moreover, changes in mtNOS activity and expression have been associated to the role of NO as signaling molecule involved in mitochondrial biogenesis,38,39 understood as de novo formation of mitochondria during the cellular life cycle. In turn, the product of mtNOS activity, i.e. NO, is an effective modulator of mitochondrial function40 through the inhibition that it exerts over Complex IV41-43 and Complex III44-45 activities. Mitochondrial NO is produced at rates of 1.0-1.5 nmol NO/min \cdot mg protein and kept at a steady-state level of about 10$^{-4}$-10$^{-5}$ M in the mitochondrial matrix.39

When O$_2$ and NO are synthesized simultaneously and in close proximity, they will combine spontaneously to form ONOO$^-$. This diffusion-limited reaction is a key element in deciding the roles of NO in physiology and pathology.46-50 Peroxynitrite is a strong oxidant that can directly react with biomolecules by one or two-electron oxidations.50 Peroxynitrite oxidizes the sulphydryl group of cysteine and glutathione (GSH),51 the sulfur atom of methionine,52 ascorbate,53 and the Purina and pyramiding bases of DNA.54 However, the reaction rate constants are relatively slow for these second-order reactions, ranging from 107 to 108 M$^{-1}$s$^{-1}$.55 Peroxynitrite is also able to start the lipoperoxidation process in biomembranes and liposomes56 and in isolated LDL.57 In addition, ONOO$^-$ can promote protein tyrosine and tryptophan nitration, and lipid nitration that serve as important in vivo biological markers in vivo.58,59 Tyrosine nitration affects protein structure and function, resulting in changes in the catalytic activity of enzymes, altered cytoskeletal organization, and impaired cell signal transduction and is thus increasingly considered as a central aspect of peroxynitrite-mediated cytotoxicity.58,59 Nevertheless, ONOO$^-$ is normally reduced by the mitochondrial reductant NADH, ubiquinol (UQH$_2$) and GSH and kept at intramitochondrial steady-state level of about 5-100 mM.59 When the steady-state concentration of ONOO$^-$ is enhanced at about 20-50mM, tyrosine nitration, protein oxidation and damage to Fe-S centers might take place. Therefore, the switch from signaling pathways of NO to oxidative damage takes place. Peroxynitrite production rate enhancement has been found in a series of clinical conditions such as Parkinson’s disease,60 ischemia-reperfusion61 diabetes,62 endotoxic shock,63 and aging.64 In these pathophysiological situations, partial inactivation and dysfunction of Complex I (NADH:ubiquinone oxidoreductase) was also observed.65 Because of the fact that mitochondrial Complex I is the major entry point for feeding the respiratory chain with the reducing equivalents and that it is one of the H$^+$ pumps that generates the mitochondrial $\Delta$$\muH^+$ needed for the subsequent ATP synthesis, changes in Complex I activity lead to impairment of mitochondrial capacity to produce ATP and to cellular bioenergetics imbalance which underlies the above cited pathologies. Moreover, the increase in O$_2$ production by modified Complex I intensify the enhancement in ONOO$^-$ generation, leading to a positive feedback toward oxidative damage. Figure 2 outlines the metabolism of reactive oxygen and nitrogen species, in the mitochondrial matrix.

![Figure 2: Metabolism of reactive oxygen and nitrogen species in mitochondrial matrix.](image)

Figure 2 Metabolism of reactive oxygen and nitrogen species in mitochondrial matrix. The NO produced by mtNOS can readily interact with Complexes III and IV. O$_2$ is formed at Complexes I and III and undergoes a very fast reaction with NO to form ONOO$^-$ or it is catabolized by Mn-SOD to form H$_2$O$_2$. NO and H$_2$O$_2$ are considered mitochondrial-cytosol signaling molecules.

Kinetic control of ONOO$^-$ production in mitochondria

Mitochondrial ONOO$^-$ generation depends on NO and O$_2$ production rates and on the reactions of these two free radicals with other biological components, which limit the local concentrations of NO and O$_2$. Results from our laboratory have shown that even in physiopathological situations in which NO production is reduced, mitochondrial ONOO$^-$ production rate may be slightly increased if the steady-state concentration of O$_2$ is augmented, with the consequent oxidation of biomolecules or modification of proteins by nitration.61,65 We have observed that in myocardial stunning66,67 and in streptozotocin (STZ)-induced diabetes,68,69 the cardiac mitochondrial dysfunction implied the reduction in state 3 O$_2$ consumption sustained by glutamate-malate, the decrease in mitochondrial Complex I-III activity, and the enhancement in H$_2$O$_2$ production rate (Table 1), among others. However, while in the mitochondrial dysfunction produced as a consequence of hyperglycemia, an increase in NO production rate (23%) and in mtNOS expression (132%)69 were observed together with a reduction (50%) in Mn-SOD activity, in the mitochondrial impairment that accompanied the initial phase of stunned heart (15 min of ischemia and 30 min of reperfusion), a reduction in NO production rate (28%), without changes in mtNOS expression and SOD activity61 were detected, as expected for an acute stress model. Strikingly, an increase in tyrosine nitration (about 60-80%) of heart mitochondrial proteins was observed in both experimental models (Table 1).

Citation: Valdez LB, Bombicino SS, Iglesias DE et al. Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration. Int J Mol Biol Open Access. 2018;3(2):58-63. DOI: 10.15406/ijmboa.2018.03.00051
Table 1 Reactive species production rates and steady-state concentrations in heart mitochondria in physiopathological situations

	Myocardial stunning\#	STZ-induced diabetes\#		
	Control (0/0)	I/R (15/30)	Control	Diabetes
H$_2$O$_2$ production (nmol × min$^{-1}$×mg protein$^{-1}$)	0.18±0.02	0.32±0.04*	0.40±0.19	0.91±0.08****
Mn-SOD activity (U×mg protein$^{-1}$)	53±5	56±3	143±22	71±8*
Active [Mn-SOD] (\um\um enzyme)	7.4±0.7	7.9±0.4	17±3	8.5±0.9
NO production (nmol × min$^{-1}$×mg protein$^{-1}$)	0.90±0.05	0.65±0.05***	0.93±0.07	1.14±0.06*
[NO]ss (10$^{-9}$ M)	9.1	6.6	9.4	12
[O$_2$]ss (10$^{-11}$ M)	4.8	8.1	4.7	21
ONOO$^-$ production (nM×s$^{-1}$)	8.4	10.1	8.4	46
Tyr nitration (%)	100	178*	100	158***

*Experimental model of myocardial stunning: isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 30 min).

**Experimental model of type I Diabetes: rats were sacrificed after 28 days of Streptozotocin injection (STZ, 60 mg×kg$^{-1}$, i.p.) and heart mitochondrial function was studied.

The concentration of Mn-SOD (\um enzyme) in the mitochondrial matrix was calculated as (\um active center)/4, because mammalian Mn-SOD is a homotetramer with a manganese ion per subunit. The concentration of Mn-SOD active centers was calculated taking into account the value of Mn-SOD activity, the amount of commercial SOD that inhibits 50% ferricytochrome c reduction by each SOD unit (1 U SOD corresponds to 4 pmol SOD), the sample protein concentration (0.3–1.0 mg mitochondrial protein ml$^{-1}$), and a volume of 7.2 μl mitochondrial matrix×mg protein$^{-1}$.

*\textit{p}<0.05, **\textit{p}<0.01, ***\textit{p}<0.001, ****\textit{p}<0.005 significantly different respect to control (Myocardial stunning: one-way analysis of variance followed by Bonferroni multiple comparisons test; Diabetes, Student's t-test).

Taking into account the experimental values of H$_2$O$_2$ and NO production rates in both physiopathological situations and the Mn-SOD concentration in the mitochondrial matrix calculated from Mn-SOD activity, the steady-state concentrations of O$_2^-$ and NO and the ONOO$^-$ production rate were estimated (Table 1).

Superoxide anion production rate was calculated from the experimental H$_2$O$_2$ production values and considering the 2:1 stoichiometry of the disproportionation reaction of O$_2^-$ to H$_2$O$_2$:

\[-d[O_2^-]/dt = 2d[H_2O_2]/dt\]

In the steady-state, the production rate is equal to the consumption rate of a chemical species. In the case of O$_2^-$:

\[-d[O_2^-]/dt = d[O_2^-]/dt\]

Superoxide is consumed by the reaction with NO (reaction I) and the disproportionation reaction (reaction II) catalyzed by SOD:

\[O_2^- + NO \rightarrow k_1^{-}\text{ONOO}^-\]

\[2O_2^- + 2H^+ \rightarrow k_2^{-}\text{H}_2O_2 + O_2\]

Mitochondrial NO is produced by mtNOS and released into the mitochondrial matrix where NO reacts with O$_2^-$ (reaction I), ubiquinol (UQH$_2$) (reaction III) and cytochrome oxidase (cyt aa$_3$, c$^{+}$) (reaction IV):

\[O_2^- + NO \rightarrow k_1^{-}\text{ONOO}^-\]

\[NO + UQH_2 \rightarrow k_1^{-}\text{UQH}^+ + H^+ + NO^-\]

\[NO + \text{cyt aa}_3 \rightarrow 2Fe \rightarrow k_1^{-}\text{cyt aa}_3 - Fe^{3+} + NO^-\]

Thus, NO production rate was expressed as:

\[d[NO]/dt = d[NO]/dt = k_1^{-}[NO][O_2^-][UQH_2] + k_1^{-}[NO][cyt aa_3 - Fe^{3+}]\]

Superoxide and NO steady-state concentrations ([O$_2^-$]$_{ss}$ and [NO]$_{ss}$) were calculated from the equations 1 and 2, respectively, by mathematical iteration, and using the following rate constants: $k_1^{-} = 1.9\times10^{10}$ M$^{-1}$ s$^{-1}$, $k_2^{-} = 2.3\times10^{9}$ M$^{-1}$ s$^{-1}$, $k_3^{-} = 1.5\times10^{8}$ M$^{-1}$ s$^{-1}$, $k_4^{-} = 4.0\times10^{3}$ M$^{-1}$ s$^{-1}$.

\[
[O_2^-]_{ss} = d[NO]/dt \times k_1^{-}[NO][Mn-SOD]
\]

\[
[NO]_{ss} = d[NO]/dt \times (k_1^{-}[O_2^-] + k_1^{-}[UQH_2] + k_1^{-}[cyt aa_3 - Fe^{3+}])
\]

Nitric oxide diffusion to and from cytosol was not included in Eq. 2. Ubiquinol and cytochrome aa$_3$ contents were taken as 277μM and 5.6μM, respectively, considering a mitochondrial matrix volume of 7.0μl×mg protein$^{-1}$.

Once the O$_2^-$ and NO steady-state concentrations were calculated, the ONOO$^-$ production rate was estimated from Eq. 3, taking into account the second-order rate constant k$_2^{-}$:

\[d[ONOO^-]/dt = k_2^{-}[O_2^-][NO]\]

In the physiological conditions assessed (Table 1, control data), the mitochondrial O$_2^-$ steady-state concentrations calculated were about 0.05nM, because of its short half-life (50-100 μs) and its degradation by the reaction catalyzed by Mn-SOD. In these experimental situations, NO steady-state concentrations have resulted about of 0.05nM, more than 100-fold higher than O$_2^-$ concentration. Therefore, the second-order reaction rate between O$_2^-$ and NO to produce ONOO$^-$ is converted in a pseudo-first order reaction respect to O$_2^-$, being O$_2^-$ concentration the driving factor to generate ONOO$^-$ in a given time. Consequently, under normal mitochondrial conditions,

Citation: Valdez LB, Bombicino SS, Iglesias DE et al. Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration. Int J Mol Biol Open Access. 2018;3(2):58–63. DOI: 10.15406/ijmboa.2018.03.00051
ONOO⁻ production and concentration are relatively low. Moreover, taking into account that the rate constant of the ONOO⁻ formation reaction is approximately 8 times higher than the rate constant of the O₂⁻ dismutation reaction, physiological concentrations of SOD (in µM range) can effectively compete with NO concentration (nM) for O₂⁻ consumption (Figure 1). It is known that in physiological situations, only about 15-20% of the O₂⁻ generated in mitochondria is catabolized through its reaction with NO₂; but this pathway consumes about 80% of mitochondrial NO. On the other hand, Table I shows that although the mitochondrial NO steady-state concentration is reduced (28%) in the stunned heart, the ONOO⁻ generation is slightly increased (20%), mainly because of an increase (70%) in O₂⁻ steady-state concentration, leading to an increase (~80%) in nitration of tyrosine residues of mitochondrial proteins. Therefore, mitochondrial ONOO⁻ generation is mainly driven by O₂⁻ steady-state concentration rather than by NO steady-state concentration. In pathological situations in which the O₂⁻ steady-state concentration is increased and Mn-SOD expression is not modified, as it is the case in the stunned heart, the metabolic pathway of O₂⁻ degradation through its reaction with NO is exacerbated, leading to an enhancement in ONOO⁻ generation (Figure 3). In addition, in experimental diabetes, an increase in the NO steady-state (28%) was observed together with a large increment in O₂⁻ steady-state concentration (3.5 fold), this latter as a consequence of not only the enhancement of O₂⁻ production but also the reduction in SOD active concentration. This physiopathological situation caused a 5-fold increase in ONOO⁻ production rate in heart mitochondria from diabetic in comparison with control animals. Accordingly, when O₂⁻ formation is stimulated more than two-fold the rate of NO synthesis and Mn-SOD concentration is reduced, NO is quantitatively converted to ONOO⁻ acquiring fundamental importance the ONOO⁻-derived chemical reactions (Figure 3). The conversion from reversible inhibition of cellular respiration by NO to pathological inhibition of mitochondrial function by the NO-derived ONOO⁻ has been observed in many physiopathological conditions, and it seems to be controlled by O₂⁻ steady-state concentration rather than by NO concentration. Mitochondrial dysfunction accompanied by ONOO⁻ generation increase is a hallmark of heart hypoxia-reperfusion injury, sepsis, diabetes, among others. Moreover, these results agree with the modulation of the NO bioavailability in the vascular endothelium, another interesting microenvironment. In this case, an increased O₂⁻ production by NADPH oxidase (NOX 1 and NOS 2 isoforms) compromises the NO bioavailability, this latter fact associated. In a high-blood pressure experimental model, it has been observed that the flavanol(-)-epicatechin regulates NO bioavailability not only through the modulation of NO activity but also by regulating O₂⁻ production and NOX expression, suggesting that the reaction between O₂⁻ and NO is a key pathway in the endothelium-dependent vasorelaxation process.

Conclusion

To conclude, in physiopathological conditions, ONOO⁻ generation is mainly driven by O₂⁻ steady-state concentration. The enhancement in O₂⁻ concentration increases its degradation by reaction with NO₂, declining NO bioavailability and increasing ONOO⁻ concentration. This way, the switch from NO-signaling pathways to oxidative damage takes place, with protein tyrosine nitration, protein oxidation and damage to Fe-S centers. Among them, changes in Complex I structure and function can exacerbate ONOO⁻ generation-secondary to O₂⁻ production rate enhancement-producing to a positive feedback toward oxidative distress, bioenergetics failure and the subsequent cell death.

Acknowledgements

This work was supported by research grants from the University.

Citation: Valdez LB, Bombicino SS, Iglesias DE et al. Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration. Int J Mol Biol Open Access. 2018;3(2):58–63. DOI: 10.15406/ijmboa.2018.03.00051

Figure 3 schematic representations showing the changes in the steady-state concentrations of reactive oxygen and nitrogen species, in two physiopathological situations in which heart mitochondrial dysfunction has been observed. Mitochondrial NO production decreased in the myocardial stunning while NO generation increased in STZ-induced diabetes. However, mitochondrial ONOO⁻ production was increased in both physiopathological situations due to the enhancement in the O₂⁻ steady-state concentration.
of Buenos Aires (UBACYT 200-201-301-00731 and 200-201-601-00132), Agencies National de Promotion Scientifique et Technological (ANPCYT, PICT 2014-0964), and Consejo Nacional de Investigaciones Scientific y Technical (CONICET; PIP 112-201-100444).

Conflict of interest

The author declare no conflict of interest.

References

1. Boveris A, Cadenas E. Cellular sources and steady-state levels of reactive oxygen species. In: Clerch LB, Massaro DJ, editors. Oxygen. gene expression and cellular function. New York: Marcel Decker; Springer; 1997: p. 1–25.
2. Boveris A, Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 1975;54(3):311–314.
3. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochim J. 1980;191(2):421–427.
4. Mc Cord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) J Biol Chem. 1969;244(22):6049–6055.
5. Klug D, Rabani J, Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972;247:4839–4842.
6. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. Biochem J. 1973;134(3):707–716.
7. Boveris A, Cadenas E, Stoppani AOM. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochim J. 1976;156(2):435–444.
8. Cadenas E, Boveris A, Ragan CL, et al. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180(2):248–257.
9. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.
10. Kissner R, Nauser T, Bugnon P, et al. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique and pulse radiolysis. Chem Res Toxicol. 1997;10(11):1285–1292.
11. Boveris A, Valdez LB, Zaobornyj T, et al. Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta. 2006;1757(5-6):535–542.
12. Bleier L, Wittig I, Heide H, et al. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med. 2015;78:1–10.
13. Booth DM, Enyedi B, Geiszt M, et al. Redox nanodomains are induced by and control Calcium signaling at the ER-mitochondrial interface. Mol Cell. 2016;63(2):240–248.
14. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–619.
15. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418(3):291–296.
16. Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998;273:11038–11043.
17. Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998;273(18):11044–11048.
18. Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem. 2002;277(41):38079–38086.
19. Traaseth N, Elfering S, Soljen J, et al. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochim Biophys Acta. 2004;1658(1-2):64–71.
20. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26(4):190–195.
21. Valdez LB, Zaobornyj T, Bombicino S, et al. Physiological regulation of heart mitochondrial nitric oxide synthase. In: Alvarez S, Evelson P, editors. Free Radical Pathophysiology. India: Transworld Research Network; 2008: p. 177–190.
22. Alvarez S, Valdez LB, Zaobornyj T, et al. Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Bioph Res Commun. 2003;305(3):771–775.
23. Valdez LB, Zaobornyj T, Alvarez S, et al. Heart mitochondrial nitric oxide synthase. Effects of hypoxia and aging. Mol Aspects Med. 2004;25(1-2):49–59.
24. Gonzales GF, Chung A, Miranda S, et al. Heart mitochondrial nitric oxide synthase is upregulated in male rats exposed to high altitude (4,340 m). Am J Physiol Heart Circ Physiol. 2005;288(6):2568–2573.
25. Zaobornyj T, Valdez LB, La Padula P, et al. Effect of sustained hypobaric hypoxia during maturation and aging on rat myocardium. II. mtNOS activity. J Appl Physiol. 2005;98(6):2370–2375.
26. Fellet AL, Balaszczuk AM, Arranz C, et al. Autonomic regulation of pacemaker activity: role of heart nitric oxide synthases. Am J Physiol Heart Circ Physiol. 2006;291(3):1246–1254.
27. Carreras MC, Peralta JG, Converso DP, et al. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O2 uptake. Am J Physiol Heart Circ Physiol. 2001;281(6):2282–2288.
28. Finocchietto P, Barretoy F, Holod S, et al. Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: Implications for the metabolic syndrome. PLoS One. 2008;3:e1749.
29. Costa LE, La Padula P, Lores Arnaiz S, et al. Long-term angiotensin II inhibition increases mitochondrial nitric oxide synthase and not antioxidant enzyme activities in rat heart. J Hypertens. 2002;20(12):2487–2494.
30. Valdez LB, Zaobornyj T, Boveris A, Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta. 2006;1757(3):166–172.
31. Valdez LB, Boveris A. Mitochondrial nitric oxide synthase, a voltage-dependent enzyme, is responsible for nitric oxide diffusion to cytosol. Front Biosci. 2007;12:1210–1219.
32. Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004;37(9):1472–1478.
33. Vanasco V, Magnani ND, Cimolai MC, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr. 2012;44(2):243–252.
34. Boveris A, Lores Arnaiz S, Bustamante J, et al. Pharmacological regulation of mitochondrial nitric oxide synthase. Meth Enzymol. 2002;359:328–339.
35. Lores Arnaiz S, Coronel MF, Boveris A. Nitric oxide, superoxide, and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric oxide. 1999;3(3):235–243.
36. Lores Arnaiz S, Czerniczyniec A, Bustamante J, et al. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition
Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration.

Citation: Valdez LB, Bombicino SS, Iglesias DE et al. Mitochondrial peroxynitrite generation is mainly driven by superoxide steady-state concentration rather than by nitric oxide steady-state concentration. Int J Mol Biol Open Access. 2018;3(2):58–63. DOI: 10.15406/ijmboa.2018.03.00051