Citation: Vieira-Lanero, R.; Barca, S.; Cobo, M.C.; Cobo, F. Occurrence of Freshwater Cyanobacteria and Bloom Records in Spanish Reservoirs (1981–2017). Hydrobiology 2022, 1, 122–136. https://doi.org/10.3390/hydrobiology1010009
Academic Editor: Baik-Ho Kim
Received: 13 January 2022
Accepted: 11 February 2022
Published: 1 March 2022
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract: Cyanobacterial blooms constitute a global environmental concern, with sometimes serious implications for human and animal health. Consequently, they represent a major problem in the management of water and aquatic ecosystems. The design of good quality control and management programs is therefore imperative and, for this, a good understanding of the state of the art becomes essential. In Spain, information related to freshwater cyanobacteria is somewhat scattered. Thus, the main objective of this work is to gather all the available information related to cyanobacteria in Spanish artificial water bodies (reservoirs), with special attention to episodes of massive proliferation and probable toxic events. Data for this review were obtained from scientific papers, technical reports, and from the websites of the different Spanish basin organizations. From the review carried out, it is relevant that: cyanobacteria species have been recorded in 252 of the 988 existing reservoirs and blooms in 91 of them (most of them destined for water supply), potentially toxic cyanobacteria are widespread, and that occurrence of blooms has increased recently. The latter could be attributed to a spread monitoring effort. Nevertheless, the effect of the increasing eutrophication and climate change should not be underestimated. In addition to the data compilation, the relation between the cyanobacteria recorded in the Spanish water reservoirs and the geological area where the reservoirs are located has been analyzed.

Keywords: CyanoHABs; algal blooms; water-reservoir; monitoring; eutrophication; blooms

1. Introduction

The proliferation of planktonic cyanobacteria in lakes and water reservoirs is related to eutrophication processes. Blooms can modify the chemical conditions of the water with the consequent impact on the survival of other aquatic organisms [1–3]. Additionally, they are generally associated with the presence of cyanotoxins [4–8]. Numerous cyanobacterial species can produce toxins [9–11], including some of the most potent toxins known [8]. It is estimated that 50% (25% to 75%) of cyanobacterial blooms are toxic and generally 75% of the cyanobacteria that appear in a bloom can produce one or more types of toxins. Thus, CyanoHABs (cyanobacterial harmful algal blooms) constitute a serious environmental problem, with implications in human and animal health [3,12–16]. Numerous known cases of lethal poisoning of animals and even of human populations occurred worldwide [11,17], but is important to consider that the damage produced by toxins varies depending on the affected organism. For example, mammals are mainly affected by neurotoxic toxins, which disturb the transmission of nerve impulses and can cause death by respiratory arrest, or by hepatotoxins, which produce changes in cell structure, leading to hepatocellular necrosis, extensive hemorrhagic necrosis, and sinusoidal disruption. In humans, cyanotoxins can produce hepatic damage and can lead to death by intrahepatic hemorrhage and hypovolemic shock [18]. In non-lethal doses, these toxins have been attributed a
tumor-promoting action, and epidemiological studies suggest an increased incidence of hepatocellular carcinoma [19]. And in fish, there is less information on the pathology, affecting not only the liver, but also other organs, such as kidney, heart, gills, skin, marrow, and blood [12]. Moreover, and in addition to the health implications, cyanobacterial blooms have an economic impact with increasing costs of drinking-water treatments and the decrease of recreational water values [3,11,20]. Therefore, they must be considered in the management of water and aquatic ecosystems.

In temperate regions, cyanobacterial blooms usually occur in summer, when temperature and light intensity are high and nutrient renewal and water column conditions stable [21–24]. Some environmental factors can determine an increased abundance of potentially toxic cyanobacteria during a bloom: high phosphorus and nitrogen concentration, low N:P ratio, high residence time and low water renovation rate, low turbulence, high light intensity, high temperature, the increase of dissolved organic matter, iron and trace metals, and low planktophages rates [10]. The frequency and intensity of blooms have risen recently worldwide. This increase has been attributed to anthropogenic changes, primarily the over-enrichment with nutrients and river regulation [25,26]. The possible effects of climate change on water eutrophication, and consequently the increased risk of potentially toxic cyanobacterial blooms, have also been noted [26,27]. Because of this increase and its health and management implications, blooms have drawn the attention of environment agencies, water authorities, and human and animal health organizations with the consequent development of monitoring programs and the publication of numerous technical reports, e.g., [28–37]. Moreover, the Water Framework Directive (WFD) (Directive 000/60/EC [1]) specifies that the ecological status based on phytoplankton should be defined by measuring the biomass, composition, and blooms, especially cyanobacterial blooms. In addition, new methodological approaches to monitor, control, or eliminate cyanobacteria from the environment are being developed [38,39].

In Spain, most lentic systems are reservoirs, with different degrees of eutrophication, which favors the proliferation of cyanobacteria. Despite this situation and the growing interest, the available official information is scattered, and cyanobacterial bloom episodes have gone unnoticed frequently in Spanish waters. This could be influenced by the complexity of the Spanish administration and water authorities (there are 19 “river basin districts” according to the RD 125/2007 and RD 29/2011). Regarding the scientific knowledge, in the last years, several studies have been published; nevertheless, the available scientific information is also somewhat patchy. Some works are focused on phytoplankton occurrence in reservoirs scattered all over the country [40,41], others on reservoirs of specific regions [42–48], or on a unique reservoir [49–61]. Furthermore, none of the more thorough studies [58,62,63] are focused over the entire territory.

Since the design of good monitoring and management programs depends on a good understanding of the matter (information on past cyanobacterial blooms, the existing species, their relationships with environmental conditions, etc.), the main objective of the present work is to gather in a single document the available information (from scientific papers and technical reports) on the cyanobacteria and bloom records in Spanish reservoirs, in order to provide a basis to picture the background of the situation. In addition, some circumstances related to the occurrence on blooms are also discussed.

2. Materials and Methods

A bibliometric method was used to analyze the global SCI literature on cyanobacterial blooms in Spanish reservoirs from WOS database (search terms: cyanobacteria, blooms in Spanish reservoirs, Spanish cyanobacterial blooms, harmful algal blooms, HABs, CyanoHABs, monitoring algae blooms). In addition, information on the websites of all basin organizations and technical reports have been consulted. Data covers a range from 1981 to 2017. Specific information of the reservoirs with cyanobacterial records have also been collected. The geological data for every reservoir was obtained from IGME (Instituto Geológico y Minero de España—Geological and Mining Institute of Spain).
The most relevant information has been compiled in tables, extended versions of these included in the manuscript can be consulted as Supplementary Material. In addition to the review, the relations between the cyanobacterial records and the geology where the reservoirs are located were analyzed. To do this, a similarity dendrogram was performed in the statistical package SYSTAT 13.0 software using the Ward method with Euclidean distance. Since in many cases, the information available on the presence of cyanobacteria includes dubious identifications at a specific level or, only identifications at genus level, to maintain consistency we used the cyanobacterial genera for the analysis.

3. Results and Discussion

3.1. Occurrence of Cyanobacteria and Blooms in Spanish Reservoirs

Based on the review carried out, cyanobacteria have been recorded in 252 of the 988 existing reservoirs (Figure 1, Supplementary Material Table S1) with blooms documented in 91 of them. Thus, blooms have been detected in 36% of the existing reservoirs. This is consistent with Quesada et al. [58] who estimated that around 40% of the Spanish reservoirs are susceptible to proliferation episodes. The absence of record in over 600 reservoirs could be related to the potential bias suggested in the introduction, regarding the fact that the available information is scattered, and with the fact that until the last five years there were no general surveillance and warning campaigns the formation of blooms.

Figure 1. Map of Spain showing the reservoirs with records of cyanobacteria. Numbers correspond to reservoirs (see Supplementary Material—Table S1). Green dots indicate reservoirs with cyanobacteria but without registered blooms. Red dots indicate reservoirs with cyanobacterial blooms registered at least once. River Basin Districts (RBD) indicated and represented by background colors.
Among the 19 Spanish river basin districts, Balearic Islands and Galicia-Costa are those with the most reservoirs with cyanobacterial records (100% and 66.67%, respectively). Galicia-Costa is the river basin district with the highest number of reservoirs in which blooms have been recorded (37%, Table 1).

Table 1. Reservoirs with cyanobacteria and bloom records regarding to the River Basin District (RBD) where they are located (AMB: Andalucía Mediterranea; BCB: Basque Country; BI: Balearic Islands; C: Cantabrian; CIB: Catalonia Interna; D: Duero; E: Ebro; G-B: Guadalete-Barbate; G-C: Galicia-Costa; Gd: Guadiana; J: Júcar; M-S: Minho-Sil; S: Segura; T: Tajo; TOP: Tinto, Odiel Piedras).

RBD	Reservoirs in the RBD	With Cyanobacteria	%	With Registered Blooms	%
G-C	27	18	66.67	10	37.04
M-S	60	11	18.33	10	16.67
C	46	7	15.22	1	2.17
BCB	14	4	28.57	0	0.00
D	80	25	31.25	6	7.50
E	175	36	20.57	2	1.14
CIB	13	4	30.77	2	15.38
T	217	69	31.8	41	18.89
Gd	92	24	26.09	11	11.96
J	46	15	32.61	3	6.52
TOP	33	6	18.18	0	0.00
Gq	96	5	5.21	1	1.04
S	34	6	17.65	1	2.94
G-B	15	5	33.33	1	6.67
AMB	38	15	39.47	2	2.26
BI	2	2	100.00	0	0.00
Total	988	252	91	257	

Something worth noting is that 139 of the 252 reservoirs with cyanobacteria are water supply reservoirs (Table 2) and most of the blooms have occurred in this type of water body (Table 2). This higher incidence could be linked to a greater monitoring effort, in order to ensure health safety, which is indispensable in reservoirs intended for water supply for human use. Nonetheless, it is undoubtedly a fact that highlights the health hazards associated with cyanobacterial blooms and the management implications.

Table 2. Reservoirs with cyanobacteria and bloom records regarding to the main water use of the reservoirs (Aqu: Aquaculture; Fd: Flood defence; Fish: Fishing; Hyd: Hydroelectric; Ind: Industrial; Irr: Irrigation; Liv: Livestock sector; Rec: Recreational; Sto: Storage; Wd: Water derivation; Ws: Water supply).

Water Use	Total Reservoirs	Reservoirs with Cyanobacteria	Reservoirs with Registered Blooms	Number of Blooms Registered
Aqu	2	0	0	0
Fd	36	6	1	1
Fish	4	0	0	0
Hyd	280	58	23	61
Ind	32	9	4	11
Irr	193	33	15	41
Liv	4	0	0	0
Rec	18	1	1	2
Sto	14	6	2	8
Wd	17	0	0	0
Ws	388	139	45	133
Total	988	252	91	257
3.2. Species of Cyanobacteria in Spanish Reservoirs

According to the available information, 126 different species of cyanobacteria, belonging to 38 genera, have been identified in the Spanish reservoirs (Supplementary Table S2 for references). In several of the consulted works, identifications remained at the genus level (as Genus sp.; indicated here as spp.). A detailed list with the identified taxa and the reservoirs in which they were cited is available in the Supplementary Material (Table S2).

Of the 38 genera, 11 have been recorded in more than 20% of the reservoirs, while the remaining have a much narrower distribution range (Table 3), with species recorded in only one reservoir. Several available studies state that *Microcystis* and *Microcystis aeruginosa* are the most common genus and species in Spanish waters, e.g., [2,58,64–71]. However, from the review carried out for this work, it is found that the most common genus in the Spanish reservoirs is *Anabaena* (60.71% of the 252 reservoirs), followed by *Microcystis* (57.14%), and *Aphanizomenon* (50.00%) (Table 3). Of the identified species, most of them have a low distribution range, being present in less than 10% of the reservoirs with record of cyanobacteria (see Table S2). The most frequent species (distribution range > 10%) (Table 4) are species of the genus *Anabaena* (*Anabaena* spp.) (38.49%), *Microcystis aeruginosa* (34.13%), *Woronichinia naegeliana* (32.54%), and *Aphanizomenon flos-aquae* (30.16%).

Table 3. Distribution range (% of the reservoirs with cyanobacteria records in which each genus was recorded) of the identified genera of cyanobacteria in the Spanish reservoirs.

Genus	Distribution Range
Anabaena	60.71
Microcystis	57.14
Aphanizomenon	50.00
Aphanocapsa	40.08
Merismopedia	38.89
Pseudanabaena	37.30
Woronichinia	35.32
Oscillatoria	30.95
Chroococcus	26.98
Aphanotoce	22.22
Planktothrix	21.43
Coelosphaerium	9.92
Anabaenopsis	8.73
Cylindrospermopsis	7.94
Phormidium	7.54
Limnothrix	7.54
Synechococcus	7.54
Gelerinema	7.14
Snowella	5.95
Planktoendyghya	5.56
Spirulina	5.16
Raphidiopsis	4.37
Synechocystis	4.37
Romeria	3.97
Lyngbya	2.78
Nostoc	2.38
Gomphosphaeria	2.38
Cyanogranis	1.98
Cylindrospermum	1.59
Radiocystis	1.59
Jaeginema	1.59
Tolypothrix	0.79
Arthrospra	0.40
Dermocarpella	0.40
Gloecapsa	0.40
Schizothrix	0.40
Chamaesiphon	0.40
Coelomorin	0.40
Table 4. Species of cyanobacteria with a distribution range of over 10% (Complete data in Supplementary Material—Table S2) (Distribution range: % of the reservoirs with cyanobacteria records in which each taxon was recorded).

Species	Distribution Range
Anabaena spp.	38.49
Microcystis aeruginosa	34.13
Woronichinia naegeliana	32.54
Aphanizomenon flos-aquae	30.16
Microcystis spp.	26.19
Pseudanabaena spp.	23.41
M. tenuissima	23.41
Aphanizomenon gracile	18.25
Anabaena flos-aquae	17.46
Microcystis flos-aquae	17.46
Aphanizomenon spp.	17.06
Aphanocapsa spp.	16.67
Oscillatoria spp.	16.27
Oscillatoria limnetica	15.87
Planktothrix agarthii	15.08
Aphanocapsa holsatica	14.29
Anabaena spiroides	13.89
Aphanocapsa incerta	13.49
Anabaena circinalis	13.10
Oscillatoria agarthii	13.10
Anabaena planctonica	12.70
Merismopedia spp.	12.70
Chroococcus spp.	12.30

In addition to native species, 2 exotic cyanobacteria have been recorded: *Aphanizomenon ovalisporum*, in 8 reservoirs, and *Cylindrospermopsis raciborskii*, in 18. The first one comes from tropical and subtropical regions, although the recent appearance in temperate latitudes is considered as an expansion of its natural distribution [72] and the second is established in the Spanish region according to De Hoyos et al., 2004. The potential impact [73] of these and other possible exotic cyanobacteria has not been studied in Spanish waters. Nevertheless, the potential production of highly-toxic cylindrospermopsin by *C. raciborskii* has been assessed; therefore, this can be applied to Spanish waters.

It is relevant that there is a different degree of taxonomic expertise in the consulted sources, with identifications at different taxonomical levels even in the same study, and sometimes ambiguous identifications. This could constitute another bias in the knowledge of the background of cyanobacterial occurrence in Spanish waters. In this paper, the identifications have been kept as they appear in the consulted works, since we consider that the scope was the collection of data and not the taxonomic or nomenclatural arrangement. Being aware that, for example, synonymous or current unaccepted names could appear in the main text and the Supplementary Material (e.g., the use of *Anabaena* instead of *Dolichospermum*; [74]).

3.3. Toxic Cyanobacteria and Blooms in Spanish Reservoirs

According to the available data, 257 blooms occurred in 91 reservoirs between 1981 and 2017. The dominant species in blooms varies between reservoirs and even within the same reservoir in different episodes (Supplementary Material—Table S3).

The most frequently dominant species in blooms (Table 5) are: *Microcystis aeruginosa* (17.90%), *Aphanizomenon flos-aquae* (12.84%), and *Woronichinia naegeliana* (9.34%). These species have the potential to produce cyanotoxins; moreover, microcystins are considered the main pollutants in freshwater in terms of risk for human health [14]. Therefore, blooms produced by these species are of great concern.
It is assumed that, in Europe, cyanobacterial blooms are mainly dominant by species of genera Microcystis, Planktothrix, Anabaena, and Aphanizomenon [15]. Agha [70] stated that Microcystis, Planktothrix, Anabaena, and Aphanizomenon are the most frequent genera in the Spanish waters. Our data compilation agrees with both works in the dominance of Microcystis and Aphanizomenon. However, it shows a lower frequency of appearance of Planktothrix (2.72% for P. agardhii and 3.11% for P. rubescens) and Anabaena (between 0.39% for A. sphaerica and 2.72% for A. planctonica) (Table 5).

Microcystis aeruginosa is the most globally common source of toxic blooms and it also has a higher incidence in Spain (17.9%) (Table 5), but it is not the only potentially toxic species recorded in Spanish reservoirs. Potential producers of microcystins (e.g., *Microcystis* spp., *M. aeruginosa*, *M. smithii*, *M. flos-aquae*, *M. novaceckii*, *M. wesenbergii*, *Anabaena* spp., *A. flos-aquae* and *P. agardhii*), cylindrospermopsin (e.g., *Aphanocapsa ovalisporum* and *Cylindrospermum raciborskii*) and anatoxin-a (e.g., *Anabaena circinalis*, *A. flos-aquae*, *A. planctonica*, *Aphanizomenon flos-aquae*, *Cylindrospermum* spp., *Oscillatoria* spp., *Planktothrix* rubescens, and *Raphidiopsis mediterranea*) have also been documented [39].

Data on cyanobacteria in Spanish reservoirs seem to indicate that blooms have been increased in recent years (Figure 2). This can be associated with many causes still as the
increasing eutrophication, river regulation, or the gradual temperature increase as consequence of climate change [15,27,36]. The increasing monitoring effort, especially in water supply reservoirs, should not be dismissed. In addition, studies on the toxicity of these blooms, including measurements on the dissolved cyanotoxins in water, should be implemented. While increased monitoring efforts are leading to more records of the presence of these organisms and the formation of blooms, progress is still needed in the implementation of standardized measures to understand their consequences and facilitate management.

For this work, we considered a bloom an episode where the recorded cyanobacterial abundance was higher than 20,000 cells per milliliter, which corresponds to 10 μg of chlorophyll “a” per liter.

3.4. Cyanobacteria and Geology

On a broad geographic scale, it has been demonstrated that phytoplankton, in Spanish reservoirs, is mainly influenced by two environmental factors: the mineral water contents, depending on bedrock geology and climate [40,75–78], and the trophic state of the water body (see references in [78]).

During the analysis of the information, it emerged a derived objective: investigating the relation between the cyanobacteria recorded in the Spanish water reservoirs and the geological area where the reservoirs are located. Reservoirs with cyanobacterial occurrence (252 reservoirs) belong to 21 different specific geological areas that can be distinguished (Figure 3).

- Siliceous zones (types I: Gneiss, schist, marble, and vulcanite; J: Granitoid; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; S: Schist and limestone; and U: Slate, schist, and paragneiss) and calcareous zones (types A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite) (Figure 3). Consequently, 118 of the 252 reservoirs with cyanobacterial records (46.83%) are in siliceous areas and 134 (53.17%) in calcareous zones. Of the 91 reservoirs with reported
blooms, 51.69% are in siliceous zones, whereas only the 22.39% belong to calcareous areas (Supplementary Material—Tables S1 and S3). These results are consistent with those reported by De Hoyos et al. (2004): cyanobacterial blooms in the Iberian Peninsula are more frequent in reservoirs located to the west, with less soluble rocks (siliceous zone), than in those located in the east, where rocks are more soluble.

Figure 3. Percentage of reservoirs with cyanobacteria records according to the geology area type where they are located (Only types I, J, O, P, S, and U correspond to siliceous areas (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).

Therefore, to determine if the blooms records were related or have a higher incidence in function on the geology of the area (siliceous or calcareous) where the reservoirs were located, a similarity dendrogram was performed. The dendrogram (Figure 4) shows two main groups, one group with the genera related with reservoirs located on areas with granitoid (siliceous) materials (Microcystis, Woronichinia, Aphanizomenon, Anabaena, Merismopedia, Aphanocapsa, Chroococcus, Pseudanabaena, and Oscillatoria), and a second group in which all the remaining genera are bounded together. Being the genera linked to the granitoid areas, the most frequent ones in blooms (>25%) (Table 4).
Therefore, to determine if the blooms records were related or have a higher incidence in function on the geology of the area (siliceous or calcareous) where the reservoirs were located, a similarity dendrogram was performed. The dendrogram (Figure 4) shows two main groups, one group with the genera related with reservoirs located on areas with granitoid (siliceous) materials (Microcystis, Woronichinia, Aphanizomenon, Anabaena, Merismopedia, Aphanocapsa, Chroococcus, Pseudanabaena, and Oscillatoria), and a second group in which all the remaining genera are bounded together. Being the genera linked to the granitoid areas, the most frequent ones in blooms (>25%) (Table 4).

Figure 4. Similarity dendrogram based on the relation between cyanobacterial genera and the geological area where reservoirs in which they were recorded are located (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).

4. Conclusions

Once the data was compiled and analyzed, it became evident that the available information for each reservoir is variable and scattered. Standardizing the information is an important target in order to be able to make comparisons. Uniform information is also helpful when it comes to the development of monitoring and control programs.

Species identification and nomenclature in some of the consulted works (mainly technical reports) is sometimes not precise. Greater effort in this sense would be desirable. Cyanobacterial species with a greatest distribution in Spanish reservoirs are Anabaena spp. (38.49%), Microcystis aeruginosa (34.13%), Woronichinia naegeliana (32.54%), and Aphantzomenon flos-aquae (30.16%). Blooms have been dominated most frequently by Microcystis aeruginosa (17.90%), Aphantzomenon flos-aquae (12.84%), Microcystis spp. (11.28%), and Woronichinia naegeliana (9.34%). All of them can potentially produce cyanotoxins, so their proliferation is of great concern.
Even though a slightly higher percentage of cyanobacterial records were made in calcareous areas (53.17% against 46.83% in siliceous areas), blooms have been recorded mainly in siliceous areas.

It is known that blooms have sometimes gone unnoticed, so the number of these episodes in Spanish reservoirs could be considered higher. The increase of bloom records during the last decade may be due to an improvement in the monitoring effort. Nevertheless, the effect of anthropogenic actions and climate change cannot be ruled out.

An increased monitoring efforts as well as standardization of sampling and analysis are desirable to mitigate the potential adverse effects of blooms, especially the toxic or potentially toxic ones.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/hydrobiology1010009/s1, Table S1: Characterization of the 252 Spanish reservoirs with cyanobacteria records, Table S2: Cyanobacteria in Spanish reservoirs and their distribution range (% of reservoirs of species with cyanobacterial records in which the genera/species have appeared), Table S3: Dominant species in each recorded bloom in Spanish reservoirs. Refs. [1,22,23,25,28–33,39,42–45,47,50–52,54–62,64,68,79–89].

Author Contributions: R.V.-L.: tables and figures, drafting manuscript; S.B.: recompilation of data, drafting manuscript. M.C.C.: drafting and editing manuscript; F.C.: original concept, drafting and editing manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Almodóvar, A.; Nicola, G.G.; Nuevo, M. Effects of a bloom of Planktothrix rubescens on the fish community of a Spanish reservoir. Limnnetica 2004, 23, 167–178. [CrossRef]
2. Cobo, F.; Lago, L.; Barca, S.; Vieira-Lanero, R.; Servia, M.J. Cianobacterias y medioambiente. In Aspectos Ecotoxicológicos De Sus Floraciones En Aguas Continentales; AGAIA (Asociación Galega de Investigadores da Auga): Santiago de Compostela, Spain, 2012; p. 131.
3. Cobo, F. Métodos de control de las floraciones de cianobacterias en aguas continentales. Limnnetica 2015, 34, 247–268.
4. Brittain, S.; Mohamed, Z.; Wang, J.; Lehmann, V.; Carmichael, W.; Rinehart, K. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon 2000, 38, 1759–1771. [CrossRef]
5. Hitzfeld, B.; Lampert, C.; Spaeth, N.; Mountfort, D.; Kaspar, H.; Dietrich, D. Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 2000, 38, 1731–1748. [CrossRef]
6. Freitas de Magalhães, V.F.; Soares, R.M.; Azevedo, S.M. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): Ecological implication and human health risk. Toxicon 2001, 39, 1077–1085. [CrossRef]
7. Park, H.; Namikoshi, M.; Brittain, S.; Carmichael, W.; Murphy, T. [d-Leu1] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon 2001, 39, 855–862. [CrossRef]
8. Humpage, A. Toxin Types, Toxicokinetics and Toxicodynamics. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Springer: Berlin/Heidelberg, Germany, 2008; pp. 383–415.
9. Bláha, L.; Babica, P.; Maršálek, B. Toxins produced in cyanobacterial water blooms—Toxicity and risks. Interdiscip. Toxicol. 2009, 2, 36. [CrossRef]
10. Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [CrossRef]
11. Svrček, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Merluotto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [CrossRef]
12. Sivonen, K.; Jones, G. Chapter 3: Cyanobacterial toxins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; Taylor & Francis: Abingdon, UK, 1999; pp. 14–111.
13. Jones, G.J. Cyanobacterial Research in Australia; CSIRO: Melbourne, Australia, 1994; p. 193.
14. Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; World Health Organization: London, UK, 1999; p. 416.
15. Niamien-Ebrottie, J.E.; Bhattacharyya, S.; Deep, P.R.; Nayak, B. Cyanobacteria and cyanotoxins in the World: Review. Int. J. Appl. Res. 2015, 1, 563–569.

16. Chorus, I.; Walke, M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Taylor & Francis: Abingdon, UK, 2021; p. 858.

17. Huisman, J.; Coed, G.A.; Paerl, H.W.; Belings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [CrossRef]

18. Lucena, E. Aspectos sanitarios de las cianotoxinas. Hig. Sanid. Ambient. 2008, 8, 291–302.

19. Camean Fernandez, A.M.; Moreno Navarro, I.; Repetto Kuhn, G.; Pichardo Sanchez, S.; Prieto Ortega, A.I. Cianobacterias y cianotoxinas: Necesidad de su control en el agua de consumo humano. Rev. Salud Ambient. 2005, 5, 137–141.

20. Kapsalis, V.C.; Kalavroutziotis, I.K. Eutrophication—A worldwide water quality issue. In Chemical Lake Restoration; Springer: Cham, Switzerland, 2021; pp. 1–21.

21. Sivonen, K. Cyanobacterial toxins and toxin production. Phycololy 1996, 35, 12–24. [CrossRef]

22. Dasi, M.J.; Miracle, M.R.; Camacho, A.; Soria, J.M.; Vicente, E. Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs. Phytoplankton Trophic Gradients 1998, 369, 27–43. [CrossRef]

23. Sanchis, D.; Padilla, C.; Fernandez-Valiente, E.; Del Campo, F.F.; Carrasco, D.; Leganes, F.; Quesada, A. Spatial and temporal heterogeneity in succession of cyanobacterial blooms in a Spanish reservoir. Ann. Limnol. Int. J. Limnol. 2002, 38, 173–183. [CrossRef]

24. Cook, C.M.; Vardaka, E.; Lanaras, T. Toxic Cyanobacteria in Greek Freshwaters, 1987—2000: Occurrence, Toxicity, and Impacts in the Mediterranean Region. Acta Hydrochim. Hydrobiol. 2004, 32, 107–124. [CrossRef]

25. Carvalho, L.; Poikane, S.; Solheim, A.L.; Phillips, G.; Borics, G.; Catalan, J.; De Hoyos, C.; Drakare, S.; Dudley, B.J.; Jarvinen, M.; et al. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 2013, 704, 127–140. [CrossRef]

26. Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229. [CrossRef]

27. Paerl, H.W.; Huisman, J. Blooms Like It Hot. Science 2008, 320, 57–58. [CrossRef]

28. Confederación Hidrográfica del Ebro. Diagnóstico y Gestión Ambiental de Embalses en el Ámbito de la Cuenca Hidrográfica del Ebro. Embalse de Ullivarri. 1996; pp. 602–612. Available online: https://hispagua.cedex.es/documentacion/documento/32331 (accessed on 11 October 2017).

29. Jaurralizeta, E.; Vasco, G. Caracterización de las Masas de Aguas Superficiales de la CAPV. Tomo III: Caracterización de los Embalses de la CAPV. 2002; p. 197. Available online: http://www.uragentzia.euskadi.eus/contenidos/libro/caracterizacion_masas_agua/es_12298/adjuntos/T03_1EmbalsesMemoria.pdf (accessed on 11 October 2017).

30. Confederación Hidrográfica del Duero. Informe Sobre Estado Trófico de los Embalses de la Cuenca del Duero. 2006. Available online: http://www.chduero.es/descarga.aspx?fich=/CalidadAguas/Estado_trofico_embalses_2006.pdf (accessed on 11 October 2017).

31. Infraco & Confederación Hidrográfica del Ebro. Ejecución de Trabajos Relacionados con los Requisitos de la Directiva Marco (2000/60/CE) en el Ámbito de la Confederación Hidrográfica del Ebro Referidos a: Elaboración del Registro de Zonas Protegidas, Determinación del Potencial Ecológico de los Embalses, Desarrollo de Programas Específicos de Investigación. Documento I: Memoria. 2006; p. 234. Available online: https://www.chebro.es/es/web/guest/search?q=2006_Embalses_Memoria.pdf (accessed on 11 October 2017).

32. Infraco & Confederación Hidrográfica del Ebro. Ejecución de Trabajos Relacionados con los Requisitos de la Directiva Marco (2000/60/CE) en el Ámbito de la Confederación Hidrográfica del Ebro Referidos a: Elaboración del Registro de Zonas Protegidas, Determinación del Potencial Ecológico de los Embalses, Desarrollo de Programas Específicos de Investigación. Embalse de Urrunaga. 2006; p. 41. Available online: https://www.chebro.es/documents/20121/49621/Informe_Final_Embalse_de_Urrunaga_2004_2005.pdf (accessed on 11 October 2017).

33. UTE RED Biológica Ebro & Confederación Hidrográfica del Ebro. Informe Final del Embalse de Mequinensa, Pena y Rialp, año 2007. Available online: http://195.55.247.234/webcalidad/estudios/embalses/2007/embalsesbio/2007_reservoir_name.pdf (accessed on 28 September 2017).

34. Confederación Hidrográfica del Jucar. Explotación de la Red de Control Biológico de Lagos y Embalses de la Confederación Hidrográfica del Júcar. Informe Anual de Embalses 2016. Available online: http://www.chj.es/es-es/medioambiente/redescontrol/InformesAguasSuperficiales/Biol%3C%3gico%20Embalses%20anual%202016.pdf (accessed on 2 October 2017).

35. Junta de Andalucía. Programa de Seguimiento del Estado de Calidad de las Aguas Continentales de las Cuenca Intra-Comunitarias de la Comunidad Autónoma de Andalucía. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. Diseño y Explotación del Programa de Control de Calidad Biológica e Hidromorfología de las Aguas Superficiales en la Demarcación de las Cuenca Mediterráneas Andaluzas. Informe Resultados Segunda Campaña 2014. Available online: https://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/2_calidad/superficiales_continuales/datos/informes_calidad_dmed/2014/sp_md_2c_bhm_2014.pdf (accessed on 2 October 2017).
36. Confederación Hidrográfica del Tajo. Resultados/Informes: Aguas Superficiales Potencial Ecológico en Empalces. 2017; p. 68. Available online: http://www.chtajo.es/LaCuenca/CalidadAgua/Resultados_Informes/Paginas/RISupPotencialEmbalses.aspx (accessed on 5 October 2017).

37. Xunta de Galicia. SIAM: Seguimiento de Cianobacterias nos Encoros. 2017. Available online: http://siam.xunta.gal/resultados-do-seguimiento-de-cianobacterias (accessed on 10 October 2017).

38. Forján-Lozano, E.; Domínguez Vargas, M.J.; Vilchez Lobato, C.; Miguel, R.; Costa, C.; Reis, M.P. Cianotoalerta: Estra-tegia para predecir el desarrollo de Cianobacterias tóxicas en embalses. Ecosistemas 2008, 17, 37–45.

39. Lago, L. Tratamientos de Inhibición de las Floraciones de Cianobacterias en Condiciones Controladas Mediante el uso de Limnocorales. Ph.D. Thesis, University of Santiago de Compostela, Galicia, Spain, 2015. (In Spanish)

40. Planas, D. Distribution and productivity of the phytoplankton in Spanish reservoirs. SIL Proc. 1975, 19, 1860–1870. [CrossRef]

41. Quesada, A.; Carrasco, D.; Sanchís, D.; De Hoyos, C. Abundancia de cianobacterias y cianotoxinas en embalses españoles. Rev. Salud Ambient. 2005, 1, 99.

42. Bennasar, G.; Frau, C.; García, L.; Gómez, M.; Moyá, G.; Ramón, G. Composición cualitativa del fitoplancton de los embalses de Cúber y Gorg Blau (Serra de Tramuntana, Mallorca) I. Cyanophyta Dinophyta. Bolletí Soc. D’Història Nat. Balear. 1990, 33, 87–98.

43. Carrasco, D.; Moreno, E.; Sanchís, D.; Wörmer, L.; Paniagua, T.; Del Cueto, A.; Quesada, A. Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: Microcystins in the Madrid area. Eur. J. Phycol. 2006, 41, 281–291. [CrossRef]

44. Caputo, L.; Naselli-Flores, L.; Ordoñez, J.; Armengol, J. Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwa. Biol. 2008, 53, 2543–2556. [CrossRef]

45. Negro, A.I.; De Hoyos, C.; Del Rio, A.; Le Cohu, R. Comparación de las comunidades fitoplanctónicas en dos embalses de reciente creación: Riaño y Valparaíso (España). Limnetica 1994, 10, 115–121. [CrossRef]

46. López, P.; Marcé, R.; Ordoñez, J.; Urrutia, I.; Armengol, J. Sedimentary phosphorus in a cascade of five reservoirs (Lozoya River, Central Spain). Lake Reserv. Manag. 2009, 25, 39–48. [CrossRef]

47. Alonso-Fernández, J.R.A.; Nieto, P.J.G.; Muñiz, C.D.; Antón, J.C.Á. Modeling eutrophication and risk prevention in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines analysis. Ecol. Eng. 2014, 68, 80–89. [CrossRef]

48. Lago, L.; Barca, S.; Vieira-Lanero, R.; Cobo, F. Floraciones de cianobacterias y valores de microcistina-LR seston y disuelta en embalses de la cuenca hidrográfica del Miño-Sil (NW-España). MOL. 2016, 16, 113–125.

49. Vidal-Celma, A. Evolution d’un lac de barrage dans le NE. de l’Espagne pendant les quatre premières années de service. SIL Proc. 1969, 17, 191–200. [CrossRef]

50. Toja, J.; Casco, M.A. Contribution of phytoplankton and periphyton to the production in a reservoir of S.W. Spain. Oecologia Aquat. 1991, 10, 61–76.

51. Negro, A.I.; De Hoyos, C.; Vega, J.C. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Trophic Spectr. Revist. 2000, 424, 25–37. [CrossRef]

52. Gomà, J. El fitoplancton de l’embassament de Foix: Estudis del cicle annual (1996), Trobada d’Estudiosos del Foix; Barcelona Provincial Council: Barcelona, Spain, 2005; pp. 35–41.

53. Moreno, I.M.; Pereira, P.; Franca, S.; Cameán, A. Toxic cyanobacteria strains isolated from blooms in the Guadiana river (southwestern Spain). Biol. Res. 2004, 37, 405–417. [CrossRef] [PubMed]

54. Moreno, I.; Repetto, G.; Carballal, E.; Gago, A.; Cameán, A.M. Cyanobacteria and microcystins occurrence in the Guadiana River (SW Spain). Int. J. Environ. Anal. Chem. 2005, 85, 461–474. [CrossRef]

55. Moreno-Ostos, E.; Elliott, J.A.; Cruz-Pizarro, L.; Escot, C.; Basanta, A.; George, G. Using a numerical model (PRO-TECH) to examine the impact of water transfers on phytoplankton dynamics in a Mediterranean reservoir. Limnetica 2007, 26, 1–11. [CrossRef]

56. Moreno-Ostos, E.; Palomino-Torres, R.L.; Escot, C.; Blanco, J.M. Planktonic metabolism in a Mediterranean res-ervoir during a near-surface cyanobacterial bloom. Limnetica 2016, 35, 117–130.

57. Padilla, C.; Sanz-Alfèrez, S.; Del Campo, F.F. Toxicin caracterisation and identification of a Microcystis flos-aquae strain from a Spanish drinking-water reservoir. Arch. Für Hydrobiol. 2006, 165, 383–399. [CrossRef]

58. Quesada, A.; Moreno, E.; Carrasco, D.; Paniagua, T.; Wörmer, L.; De Hoyos, C.; Sukenik, A. Toxicidad de Aphaniomezono ovalispurum(Cyanobacteria) in a Spanish water reservoir. Eur. J. Phycol. 2006, 41, 39–45. [CrossRef]

59. Becker, V.; Caputo, L.; Ordoñez, J.; Marcé, R.; Armengol, J.; Crosetto, L.O.; Huszar, V.L. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 2010, 44, 3345–3354. [CrossRef]

60. Barco, M.; Flores, C.; Rivera, J.; Caixach, J. Determination of microcystin variants and related peptides present in a water bloom of Planktothrix (Oscillatoria) rubescens in a Spanish drinking water reservoir by LC/ESI-MS. Toxicon 2004, 44, 881–886. [CrossRef]

61. Lago, L.; Barca, S.; Vieira-Lanero, R.; Cobo, F. Caracteristicas ambientales, composición del fitoplancton y variación temporal de microcistina-LR disuelta en el embalse de As Forcadas (Galicia, NW España). Limnetica 2015, 34, 187–204.

62. De Hoyos, C.; Negro, A.I.; Áviles, J. Las Cianobacterias en los embalses españoles: Situación actual. Centro de estudios hidrográficos del CEDEX. Ing. Civ. 2003, 129, 93.

63. Quesada, A.; Sanchis, D.; Carrasco, D. Cyanobacteria in Spanish reservoirs. How frequently are they toxic? Limnetica 2004, 23, 109–118. [CrossRef]
86. Confederación Hidrográfica Miño-Sil. Capítulo 8. Objetivos Medioambientales y Exenciones. Plan Hidrológico del ciclo 2016–2021. 2015, p. 391. Available online: https://www.chminosil.es/es/ide-mino-sil/80-chms/1359-plan-hidrologico-2015-2021-rd-1-2016 (accessed on 11 October 2017).

87. García-Nieto, P.; Fernández, J.A.; Juez, F.D.C.; Lasheras, F.S.; Muñiz, C.D. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environ. Res. 2013, 122, 1–10. [CrossRef]

88. Cobo, F. Floraciones de Cianobacterias tóxicas en augas continentais. CERNA 2008, 54, 24–28.

89. Komarek, J. Cyanobacterial taxonomy: Current problems and prospects for the integration of traditional and molecular approaches. Algae 2006, 21, 349–375. [CrossRef]