Two-Grid based Adaptive Proper Orthogonal Decomposition Algorithm for Time Dependent Partial Differential Equations

Xiaoying Dai1 · Xiong Kuang1 · Jack Xin2 · Aihui Zhou1

Received: date / Accepted: date

Abstract In this article, we propose a two-grid based adaptive proper orthogonal decomposition (POD) algorithm to solve the time dependent partial differential equations. Based on the error obtained in the coarse grid, we propose an error indicator for the numerical solution obtained in the fine grid. Our new algorithm is cheap and easy to implement. We implement our new method to the solution of time-dependent advection-diffusion equations with Kolmogorov flow and ABC flow. The numerical results show that our method is more efficient than the existing POD algorithms.

Keywords Proper orthogonal decomposition · Galerkin projection · Error indicator · Adaptive · Two grid

1 Introduction

Time dependent partial differential equations play an important role in scientific and engineering computing. Many physical phenomena are described by time dependent partial differential equations, for example, seawater intrusion [4], heat transfer [10], fluid equations [6,39]. The design and analysis of high efficiency numerical schemes for time dependent partial differential equations has always been an active research topic.

For the spatial discretization of the time dependent partial differential equations, some traditional methods, for example, the finite element method [8], the
finite difference method [22], the plane wave method [20], can be used. However, the dimension of the discretized systems from these traditional methods is usually very large when the spatial dimension is three. Therefore, if we always use these traditional methods to do the spatial discretization at each time interval, the computational cost will be very high [5,9,33].

The proper orthogonal decomposition (POD) approach is a dimensionality reduction algorithm, and is widely used in computational physics, engineering etc [3,7,18,24,28]. The basic idea of the POD algorithm is to start with an ensemble of data, called snapshots, collected from numerical solution obtained by one of the traditional methods over some interval \([0,T_0]\), then construct POD modes by performing SVD to these snapshots [19,23,28]. Usually, the number of the POD modes will be much less than the degree of freedom in the traditional methods. Therefore, it will be much cheaper to discretize the time dependent partial differential equations in the subspace spanned by these POD modes. However, if the POD modes are not well constructed, approximation error obtained by the POD algorithm will degrade the accuracy of solutions.

To reduce the approximation error of POD algorithm, some adaptive POD approach is then introduced [26,30,31,34]. Similar to the idea of adaptive finite element method [12,15], some error indicators are needed to determine whether the POD modes are reliable or not. If it is not reliable, then POD modes must be updated from time to time by some strategies. Therefore, it is important to find an efficient error indicator. To our knowledge, the existing adaptive POD methods mainly use the residual to construct an error indicator [14,30,34]. This type of error indicator is efficient, however, it is usually expensive to compute.

In this paper, we propose a two-grid based adaptive POD algorithm, where we use the error obtained in the coarse mesh to construct the error indicator, which is used to tell us if we need to update the POD subspace in the fine mesh or not. Since the degree of freedom of coarse mesh is much less than that of the fine mesh, it is cheap to calculate the error indicator. By our method, we can easily compute the error indicator, and then update the POD subspace when needed.

The rest of this paper is organized as follows. First, we give some preliminaries in Section 2, including basic introduction for the finite element method, the POD-Galerkin method, and the residual based adaptive POD method. Then, we propose our two-grid based adaptive POD algorithm in Section 3. Next, we apply our new method to the simulation of some typical time dependent partial differential equations, including advection-diffusion equation with three-space dimensional velocity field, such as Kolmogorov flow and ABC flow, and use these tests to show the efficiency and the advantage of our method to the existing methods in Section 4. Finally, some concluding remarks are given in Section 5.

2 Preliminaries

We consider the following general time dependent partial differential equation

\[
\begin{align*}
\begin{cases}
 u_t - D_0 \Delta u + B(x,y,z,t) \cdot \nabla u + c(x,y,z,t)u = f(x,y,z,t), & \text{in } \Omega \times (0,T) \\
 u(x,y,z,0) = h(x,y,z), \\
 u(x+l,y,z,t) = u(x,y,z,t+l) = u(x,y,z,t) = u(x,y,z,t),
\end{cases}
\end{align*}
\]
where $\Omega = [0, t]^3$, $f \in L^2(0, T; L^2(\Omega))$, $c \in L^\infty(\Omega)$, $B \in C(0, T; W^{1, \infty}(\Omega)^3)$ and D_0 is a constant.

Define a bilinear form

$$a(t; u, v) = D_0(\nabla u, \nabla v) - D_0 \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, d\sigma + (B \cdot \nabla u, v) + (cu, v), \forall u, v \in H^1(\Omega),$$

where (\cdot, \cdot) stands for the inner product in $L^2(\Omega)$, and the function space $V = \{v \in H^1(\Omega): v_{|\mathbf{x}=0} = v_{|\mathbf{x}=t} = v_{|\mathbf{y}=0} = v_{|\mathbf{y}=t} = v_{|\mathbf{z}=0} = v_{|\mathbf{z}=l}\}$.

Then the variational form of equation (1) can be written as follows: find $u \in V$ such that

$$(\frac{\partial u}{\partial t}, v) + a(t; u, v) = (f(x, y, z, t), v), \forall v \in V. \quad (2)$$

In order to solve (2) numerically, we choose the implicit Euler scheme \cite{1,36} for the temporal discretization. We partition the time interval into $N \in \mathbb{N}$ subintervals with equal length $\delta t = T/N$, and set $u^k(x, y, z) = u(x, y, z, t_k)$ where $t_k = k \ast \delta t$, for $k \in \{0, 1, \ldots, N\}$. Then the semi-discretization scheme of (2) can be written as:

$$\left(\frac{u^k(x, y, z) - u^{k-1}(x, y, z)}{\delta t}, v\right) + a(t_k; u^k(x, y, z), v) = (f(x, y, z, t_k), v), \forall v \in V. \quad (3)$$

2.1 Standard finite element method

In this subsection, we introduce the standard finite element discretization for the equation (3). For more general introduction on standard finite element method, please refer to e.g. \cite{32,35}.

Let \mathcal{T}_h be a regular mesh over Ω, that is, there exists a constant γ^* such that \cite{11}

$$\frac{h_\tau}{\rho_\tau} < \gamma^*, \forall \tau \in \mathcal{T}_h$$

where h_τ is the diameter of τ for each $\tau \in \mathcal{T}_h$ and ρ_τ is the diameter of the biggest ball contained in $\tau \in \mathcal{T}_h$, $h = \max h_\tau, \tau \in \mathcal{T}_h$. Denote $\# \mathcal{T}_h$ the number of degree of freedom of mesh \mathcal{T}_h. Define the finite element space as

$$V_h = \{v_h : v_h|_e \in P_e, \forall e \in \mathcal{T}_h \text{ and } v_h \in C^0(\overline{\Omega})\} \cap V,$$

where P_e is a set of polynomial function on element e.

Let $\{\phi_{h,i}\}_{i=1}^n$ be a basis for V_h, that is

$$V_h := \text{span}\{\phi_{h,1}, \phi_{h,2}, \ldots, \phi_{h,n}\}.$$

Then the numerical approximation of $u^k(x, y, z)$ can be expressed as

$$u_h^k(x, y, z) = \sum_{i=1}^n \beta_{h,i}^k \phi_{h,i}(x, y, z). \quad (4)$$
Fig. 1: Sketch of the POD method. I_{FEM}, I_{POD} refers to the time intervals where (3) is discretized in V_h and the subspace spanned by the POD modes, respectively.

Inserting (4) into (3), and setting $v = \phi_{h,j}, j = 1, 2, 3, \ldots, n$, respectively, we obtain

$$\sum_{i=1}^{n} \frac{\beta_{h,i}^k - \beta_{h,i}^{k-1}}{\delta t} (\phi_{h,i}, \phi_{h,j}) + \beta_{h,i}^k a(t_k; \phi_{h,i}, \phi_{h,j}) = (f(x, y, z, t_k), \phi_{h,j}). \quad (5)$$

We can rewrite (5) as

$$\sum_{i=1}^{n} \beta_{h,i}^k [(\phi_{h,i}, \phi_{h,j}) + \delta t a(t_k; \phi_{h,i}, \phi_{h,j})] = \delta t (f(x, y, z, t_k), \phi_{h,j}) + \sum_{i=1}^{n} \beta_{h,i}^{k-1} (\phi_{h,i}, \phi_{h,j}). \quad (6)$$

Define

$$A_{h,ij}^k = (\phi_{h,j}, \phi_{h,i}) + \delta t a(t_k; \phi_{h,j}, \phi_{h,i}), \quad u_h^k = (\beta_{h,1}^k, \beta_{h,2}^k, \beta_{h,3}^k, \ldots, \beta_{h,n}^k)^T,$$

$$b_h^k = \delta t * \left((f, \phi_{h,1}), \ldots, (f, \phi_{h,n})\right)^T, \quad C_{h,ij} = (\phi_{h,j}, \phi_{h,i}).$$

Then (6) can be written as the following algebraic form

$$A_{h}^k u_h^k = b_h^k + C_{h} u_h^{k-1}. \quad (7)$$

2.2 POD method

The POD method is a widely used dimensionality reduction algorithm[18,21,29]. It can capture the principal component of the numerical solution by using proper orthogonal decomposition. People then can construct POD modes based on the principal component. Usually, the number of POD modes will be much smaller than the degree of freedom for traditional methods. Therefore, the computational cost can usually be reduced largely by using the POD method. The sketch of the POD method is shown in Fig. 1, from which we can see the POD method for discretizing problem (3) include the following steps.

1. **Snapshots**

Discretize (3) in V_h on the interval $[0, T_0]$, and collect the numerical solution per δM steps(δM is a parameter to be specified in the numerical experiment).

Set $n_s = \left\lfloor \frac{T_0}{\delta t \cdot \delta M} \right\rfloor$, where $\lfloor * \rfloor$ mean round down, and denote

$$U_h = [u_h^0, u_h^{\delta M}, \ldots, u_h^{n_s \cdot \delta M}],$$
2. **POD modes**

Perform SVD to the snapshots $U_h \in \mathbb{R}^{n \times (n_a+1)}$, and obtain

$$U_h = RSV^T,$$

where $R = [R_1, R_2, \ldots, R_r] \in \mathbb{R}^{n \times r}$, $V = [V_1, \ldots, V_r] \in \mathbb{R}^{(n_a+1) \times r}$ are the left and right projection matrices, respectively, and $S = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_r\}$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. The rank of U_h is r, and obviously $r \leq \min(n, n_a + 1)$.

Set $m = \min\{k| \sum_{i=1}^{k} s_{i,i} > \gamma \ast \text{Trace}(S)\}$ (γ is a parameter to be specified in the numerical experiment), then the POD modes are constructed by

$$(\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m}) = (\phi_{h,1}, \phi_{h,2}, \ldots, \phi_{h,n})\tilde{R},$$

where $\tilde{R} = [R_1, R_2, \ldots, R_m]$.

For the convenience of the following discussion, we summarize the process of constructing POD modes as routine POD Mode($U_h, \gamma_1, \Phi_h, m, \Psi_h$), where $\Phi_h = (\phi_{h,1}, \phi_{h,2}, \ldots, \phi_{h,n})$ and $\Psi_h = (\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m})$, please see Algorithm 1 for the details.

Algorithm 1 POD Mode($U_h, \gamma_1, \Phi_h, m, \Psi_h$)

Input: $U_h, \gamma_1, \Phi_h = (\phi_{h,1}, \phi_{h,2}, \ldots, \phi_{h,n})$.

Output: m and POD modes $\{\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m}\}$.

Step1: Perform SVD to U_h, and obtain $U_h = RSV^T$, where $S = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_r\}$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.

Step2: Set $m = \min\{k| \sum_{i=1}^{k} s_{i,i} > \gamma \ast \text{Trace}(S)\}$.

Step3: $$(\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m}) = \Phi_h\tilde{R}[\cdot, 1:m].$$

3. **Galerkin projection**

For $t > T_0$, we discretize the equations (3) in the space span$\{\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m}\}$, which is sometimes called the POD subspace. That is, the solution of (3) is approximated by

$$u_h^k \text{POD}(x, y, z) = \sum_{i=1}^{m} \beta_{h,i}^k \psi_{h,i}(x, y, z).$$

Inserting (10) into (3), and setting $v = \psi_{h,j}$, $j = 1, 2, 3, \ldots, m$, respectively, we then obtain the following discretized problem:

$$\sum_{i=1}^{m} \beta_{h,i}^k [(\psi_{h,i}, \psi_{h,j}) + \delta t a(t_k; \psi_{h,i}, \psi_{h,j})] = \delta t (f(x, y, z, t_k), \psi_{h,j})$$

$$+ \sum_{i=1}^{m} \beta_{h,i}^{k-1} (\psi_{h,i}, \psi_{h,j}).$$

(11)

We define

$$\tilde{A}_{h,i,j} = (\psi_{h,j}, \psi_{h,i}) + \delta t a(t_k; \psi_{h,j}, \psi_{h,i}),$$

$$\tilde{b}_{h,i} = \delta t \ast ((f, \psi_{h,1}), \ldots, (f, \psi_{h,m}))^T, \quad \tilde{C}_{h,i,j} = (\psi_{h,j}, \psi_{h,i}),$$

$$u_{h, \text{POD}} = (\beta_{h,1}^k, \beta_{h,2}^k, \beta_{h,3}^k, \ldots, \beta_{h,m}^k)^T.$$
Then (11) can be written as following algebraic form

$$\tilde{\mathbf{A}}_h^k \mathbf{u}_{h,\text{POD}}^k = \tilde{\mathbf{b}}_h^k + \tilde{\mathbf{C}}_h \mathbf{u}_{h,\text{POD}}^{k-1}. \quad (12)$$

By some simple calculation, we have that

$$\tilde{\mathbf{A}}_h^k = \tilde{\mathbf{R}}^T \mathbf{A}_h^k \tilde{\mathbf{R}}, \quad \tilde{\mathbf{b}}_h^k = \tilde{\mathbf{R}}^T \mathbf{b}_h^k, \quad \tilde{\mathbf{C}}_h = \tilde{\mathbf{R}}^T \mathbf{C}_h \tilde{\mathbf{R}}.$$

Summarizing the above discussion, we then get the standard POD method for discretizing (3), which is shown as Algorithm 2.

Algorithm 2 POD method

1: Give $\delta t, \gamma_1, T_0, \delta M$, and the mesh T_h. Set $n_s = \lfloor T_0 / \delta t \rfloor$.
2: Discretize (3) in V_h on interval $[0, T_0]$, and obtain $\mathbf{u}_h^k, k = 0, \ldots, \lfloor T_0 / \delta t \rfloor$.
3: Take snapshots \mathbf{U}_h at $t_0, t_\delta M, \ldots, t_{n_s} \cdot \delta M$, respectively, that is $\mathbf{U}_h = [\mathbf{u}_h^0, \mathbf{u}_h^{\delta M}, \ldots, \mathbf{u}_h^{n_s \cdot \delta M}]$.
4: Construct POD modes Ψ_h by PODMode($\mathbf{U}_h, \gamma_1, \Phi_h, m, \Psi_h$).
5: $t = T_0$.
6: while $t \leq T$ do
7: \hspace{1em} $t = t + \delta t, k = k + 1$.
8: \hspace{1em} Discretize (3) in the subspace span($\psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m}$), and obtain $\mathbf{u}_h^k,\text{POD}$.
9: end while

2.3 Adaptive POD method

When the numerical solution changes greatly as time increase, the original POD modes cannot catch the behavior of the solution efficiently, then the POD algorithm will result in wrong results. To overcome this problem, some adaptive POD algorithms are proposed[2,31]. Similar to the adaptive finite element method[15], the adaptive POD method consists of the loop of the form

$$\text{Solve} \rightarrow \text{Estimate} \rightarrow \text{Mark} \rightarrow \text{Update}. \quad (13)$$

Here, we introduce this loop briefly. Suppose we have the POD modes $\{\psi_{h,1}, \ldots, \psi_{h,m}\}$, which can be written as

$$\begin{pmatrix} \psi_{h,1}, \psi_{h,2}, \ldots, \psi_{h,m} \end{pmatrix} = \begin{pmatrix} \phi_{h,1}, \phi_{h,2}, \ldots, \phi_{h,m} \end{pmatrix} \tilde{\mathbf{R}},$$

where $\tilde{\mathbf{R}} = [R_1, R_2, \ldots, R_m]$.

First, we discretize the equation (3) in the space spanned by these POD modes $\{\psi_{h,1}, \ldots, \psi_{h,m}\}$, and obtain the POD approximation. Then, we construct an error indicator to Estimate the error of the POD approximation. Next, we Mark the time where the error indicator is too large. Finally, we Update the POD modes at the marked time, and obtain the new POD modes. We repeat this loop in the new time interval until the terminal point.

The design of error indicator is an essential part in the Estimate step. For the error indicator, there are usually two requirements, one is that it can estimate the
error of the approximated solution very well, the other is that it should be very cheap to compute. In fact, the main difference between different adaptive POD methods lies in the construction of the error indicator.

For the Update of the POD modes, we can do as follows. Give a threshold η_0, when the error indicator $\eta_k \geq \eta_0$, which means that the error of POD approximation is too large, then we trace back to the previous time layer of the current time (which is labeled as the p-th time layer). Starting from the p-th time layer, we discretize equation (3) in the finite element space V_h and obtain $u_h^p, u_h^{p+1}, \ldots, u_h^{p+\lceil \frac{\delta T}{\delta M} \rceil}$. Set $n_{s1} = \lfloor \frac{\delta T}{\delta M} \rfloor$ and denote $W_{h,1} = [u_h^p, u_h^{p+\delta M}, \ldots, u_h^{p+n_{s1}\delta M}]$.

Performing SVD to $W_{h,1}$, we get

$$W_{h,1} = R_1 S_1 V_1.$$

Here $R_1 \in \mathbb{R}^{n \times r_1}$, $V_1 \in \mathbb{R}^{(n_{s1}+1) \times r_1}$ are the left and right projection matrices, respectively, and $S_1 = \text{diag}\{\sigma_{1,1}, \sigma_{1,2}, \ldots, \sigma_{1,r_1}\}$ with $\sigma_{1,1} \geq \sigma_{1,2} \geq \cdots \geq \sigma_{1,r_1} > 0$. The rank of $W_{h,1}$ is $r_1 \leq \min(n, n_{s1} + 1)$.

Set $m_1 = \min\{k : \sum_{i=1}^{k} S_{1,ii} \geq \gamma_2 \text{Trace}(S_1)\}$ (γ_2 is a parameter to be specified in the numerical experiment), then we combine the first m_1 column of R_1 and the old (previously used) POD modes, and get new matrix $W_{h,2}$. That is

$$W_{h,2} = [R_1[:,1:m_1], \tilde{R}].$$

We then perform SVD to $W_{h,2}$, and obtain

$$W_{h,2} = R_2 S_2 V_2.$$

(14)

Here $R_2 \in \mathbb{R}^{n \times r_2}$, $V_2 \in \mathbb{R}^{(m_1+m) \times r_2}$ are the left and right projection matrices, respectively, and $S_2 = \text{diag}\{\sigma_{2,1}, \sigma_{2,2}, \ldots, \sigma_{2,r_2}\}$ with $\sigma_{2,1} \geq \sigma_{2,2} \geq \cdots \geq \sigma_{2,r_2} > 0$. The rank of $W_{h,2}$ is $r_2 \leq \min(n, m_1 + m)$.

Set $m_2 = \min\{k : \sum_{i=1}^{k} S_{2,ii} \geq \gamma_3 \text{Trace}(S_2)\}$ (γ_3 is a parameter to be specified in the numerical experiment), then the new POD modes are

$$\tilde{\psi}_{h,i}^{\text{new}} = \sum_{j=1}^{n} R_{2,j} \phi_{h,j}, \quad i = 1, 2, \ldots, m_2.$$

(15)

For the convenience of the following discussion, we summarize the process of updating the POD modes as routine Update POD Mode($W_{h,1}, \gamma_2, \gamma_3, \Phi_h, m, \Psi_h$), which is shown as Algorithm 3.
Then we obtain the following framework of adaptive POD method for discretizing problem (3), see Algorithm 4 for the details.

Algorithm 4 Adaptive POD method

1: Give $\delta t, T_0, \delta T, \tau_1, \tau_2, \tau_3, \delta M$ and the mesh T_h. Set $n_s = \lfloor \frac{T_0}{\tau_3 \delta T} \rfloor$
2: Discretize (3) in V_h on interval $[0, T_0]$ and obtain $u_{h,k}^n, \forall k \in [0, \lfloor T_0/\delta t \rfloor]$, then take snapshots U_h at different times $t_0, t_\delta M, \ldots, t_n, s M$, that is $U_h = [u_{h,1}^0, u_{h,1}^{s M}, \ldots, u_{h,n}^{s M}]$.
3: Construct POD modes Ψ_h by POD_Mode($U_h, \tau_1, \tau_2, m, \psi_h$).
4: $t = t_0$.
5: while $t \leq T$ do
6: $t = t + \delta t, k = k + 1$.
7: Discretize (3) in the space span{$\psi_{h,1}, \ldots, \psi_{h,m}$}, and obtain $u_{h,POD}^k$ then compute error indicator η_k by some strategy.
8: if $\eta_k > \eta_0$ then
9: $t = t - \delta t, k = k - 1$.
10: Discretize (3) in V_h on interval $[t, t + \delta T]$ to get $u_{h,k+i}^0, i = 1, \ldots, \frac{\delta T}{\delta t}$, from which to get snapshots $W_{h,1}^1$, then update POD models Ψ_h by $\text{Update_POD_Mode}(W_{h,1}, \tau_1, \tau_2, \tau_3, m, \psi_h), k = k + \frac{\delta T}{\delta t}$.
11: end if
12: end while

2.4 Residual based adaptive POD method

The main difference between different adaptive POD methods is the way to construct the error indicator. Among the existing adaptive POD methods, the residual based adaptive POD method is the most widely used [14,30]. The residual based adaptive POD algorithm uses the residual to construct the error indicator. Based on the residual corresponding to the POD approximation, people construct the error indicator η_k as:

$$
\eta_k = \frac{\|b_h^k + C_h \bar{R}u_{h,POD}^k - A_h^k \bar{R}u_{h,POD}^k\|_2}{\delta t \|\bar{R}u_{h,POD}^k\|_2}.
$$

(16)
3 Two-grid based adaptive POD method

For the residual based adaptive POD algorithm, we can see from (16) that in order to calculate the error indicator, we need to go back to the finite element space \(V_h \) to calculate the residual, which is too expensive. Here, we propose a two-grid based adaptive POD algorithm (TG-APOD). The main idea is to construct two finite element spaces, coarse finite element space and fine finite element space, then construct the POD subspace in the fine finite element space, and use the coarse finite element space to construct the error indicator to tell us when the POD modes need to be updated.

We first construct a coarse partition \(\mathcal{T}_H \) for the space domain \(\Omega \) with mesh size \(H \) which is much larger than \(h \) and a coarse partition for the time domain with time step \(\Delta t \) which is much bigger than \(\delta t \). The finite element space corresponding to the partition \(\mathcal{T}_H \) is denoted as \(V_H \). In our following discussion, coarse mesh means coarse spacial mesh size \(H \) together with coarse time step \(\Delta t \), and fine mesh means fine spacial mesh size \(h \) together with fine time step \(\delta t \). For simplicity, we require that there exist some integers \(M_1 \gg 1 \) and \(M_2 \gg 1 \), such that \(\Delta t = M_1 \delta t \) and \(H = M_2 h \).

We first discretize the partial differential equation (2) by the same time discretized scheme as that used for obtaining (3), that is, the implicit Euler scheme, with coarse time step \(\Delta t \), to obtained the following equation, which is similar as (3) but with a coarse time step \(\Delta t \),

\[
\frac{u^k(x,y,z) - u^{k-1}(x,y,z)}{\Delta t} + a(t_k; u^k(x,y,z), v) = (f(x,y,z,t_k), v), \forall v \in V. \tag{17}
\]

Then, we discretize the above equation in \(V_H \) and obtain the finite element approximation \(u^k_H \). We then discretize (17) by the adaptive POD method to obtain its adaptive POD approximation \(u^k_H \) with the error indicator \(\eta_k \) being defined as

\[
\eta_k = \frac{\|u^k_H - u^k_{H,\text{POD}}\|_2}{\|u^k_H\|_2}. \tag{18}
\]

Now, we introduce each step of the loop (13) one by one for our TG-APOD algorithm.

1. **Solve.** Discretize the problem (3) in the subspace spanned by the POD modes \(\{\psi_{h,1}, \cdots, \psi_{h,m}\} \).
2. **Estimate.** For \(t = k\Delta t \), we calculate the error indicator defined in (18), from which we decide if we need to update the POD modes.
3. **Mark.** Giving a threshold \(\eta_0 \), we set

\[
\text{flag}_k = \begin{cases}
1, & \text{if } \eta_k > \eta_0, \\
0, & \text{otherwise}.
\end{cases} \tag{19}
\]

4. **Update.** If \(\text{flag}_k = 1 \), then we move to the \(k-1 \)-th time layer, and discretize the equation (3) in the fine finite element space \(V_h \) on time interval \([t_{k-1}, t_{k-1} + \delta T] \), to get \(u^{k+1}_h, i = 1, \ldots, \frac{\delta T}{\delta t} \), from which to get snapshots \(W_{h,1} \), then update POD models \(\Psi_h \) by \(\text{Update}_{\text{POD Mode}}(W_{h,1}, \gamma_2, \gamma_3, \Phi_h, m, \Psi_h) \).
From the discussion above, we can see that the steps **Estimate** and **Mark** are only dependent on the coarse mesh. Therefore, in practice, we can first gather all the marked time layers on the coarse mesh, then share the marked time layers with the fine mesh, from which we can easily know when we should **Update** the POD modes on the fine mesh.

We summarize the discussion above and obtain our two-grid based adaptive POD method, and state it as Algorithm 5.

Algorithm 5 Two-grid based adaptive POD method

1: Give coarse mesh T_H with coarse time step Δt and fine mesh T_h with fine time step δt,
2: Discretize (3) in V_H on interval $[0, T_0]$, and take the snapshots U_H.
3: Construct POD modes Ψ_H by POD Mode($U_H, \gamma_1, \Phi_H, m, \Psi_H$).
4: $t = T_0$
5: while $t \leq T$
6: $t = t + \Delta t$
7: Discretize (3) in V_H to get u_H^k, and discretize (3) in the space span{$\psi_{H,1}, \ldots, \psi_{H,m}$} to get $u_H^{k,POD}$,
8: if $\eta(t) > \eta_0$ then
9: $t = t - \Delta t$
10: $S = S \cup \{t\}$
11: Discretize (3) in V_H on interval $[t, t + \delta T]$, and take snapshots $W_H, 1$, then update POD modes Ψ_H by Update POD Mode($W_H, 1, \gamma_2, \gamma_3, \Phi_H, m, \Psi_H$).
12: end if
13: end while
14: Discretize (3) in V_h on interval $[0, T_0]$, and get the snapshots U_h.
15: Construct POD modes Ψ_h by POD Mode($U_h, \gamma_1, \Phi_h, m, \Psi_h$).
16: $t = T_0$
17: while $t \leq T$ do
18: $t = t + \delta t$
19: Discretize (3) in the space span{$\psi_{h,1}, \ldots, \psi_{h,m}$}, and obtain $u_h^{k,POD}$,
20: if $t \in S$ then
21: Discretize (3) in V_h on interval $[t, t + \delta T]$, and take snapshots $W_h, 1$, then update POD mode Ψ_h by Update POD Mode($W_h, 1, \gamma_2, \gamma_3, \Phi_h, m, \Psi_h$).
22: end if
23: end while

Remark 1 For our two-grid based adaptive POD method, the steps **Estimate** and **Mark** are all carried out in the coarse mesh. Since $\Delta t \gg \delta t$, the number of calculation for the error indicator is much smaller than that carried in the fine time interval. Besides, $H \gg h$ means $\# T_H \ll \# T_h$, which implies that the cost for calculating the error indicator η_k is cheap. These two facts make our two-grid based adaptive POD method much cheaper than the existing adaptive POD methods.

4 Numerical examples

In this section, we apply our new method to two types of fluid equations, kolmogorov flow and ABC flow, which will show the efficiency of our two-grid based
adaptive POD algorithm. For these two types of equations, we compare our new algorithm with the POD algorithm and the residual based adaptive POD algorithm. In our test, we use the standard finite element approximation corresponding to the fine mesh as the reference solution, and the relative error of approximation obtained by the POD algorithm, or the residual based adaptive POD algorithm, or our new two-grid based adaptive POD algorithm is calculated as

$$\text{Error} = \frac{\| u^k_h - u^k_{h,*} \|_2}{\| u^k_h \|_2}, \quad (20)$$

where u^k_h and $u^k_{h,*}$ represent finite element approximations and different kinds of POD approximations at the k-th time layer.

Our numerical experiments are carried out on LSSC-IV in the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences, and our code is written based on the 3D adaptive finite element software platform PHG [27].

4.1 Kolmogorov flow

First, we consider the following advection-dominated 3D Kolmogorov flow equation with the cosines term [13, 17, 25].

\[
\begin{aligned}
&u_t - \epsilon \Delta u + B(x, y, z, t) \cdot \nabla u = f(x, y, z, t), \quad (x, y, z) \in \Omega, t \in [0, T], \\
&u(x, y, z, 0) = 0, \\
&u(x + 2\pi, y, z, t) = u(x, y + 2\pi, z, t) = u(x, y, z + 2\pi, t) = u(x, y, z, t), \quad (21)
\end{aligned}
\]

where

\[
\begin{aligned}
B(x, y, z, t) &= (\cos(y), \cos(z), \cos(x)) + (\sin(z), \sin(x), \sin(y)) \cos(t), \\
f(x, y, z, t) &= -\cos(y) - \sin(z) \ast \cos(t), \\
\Omega &= [0, 2\pi]^3, \quad T = 100.
\end{aligned}
\]

For this example, we have tested 4 different cases with $\epsilon = 0.5, 0.1, 0.05,$ and 0.01, respectively. We divide the $[0, 2\pi]^3$ into tetrahedrons to get the initial mesh containing 6 elements, then refine the initial mesh 22 times uniformly using bisection to get our computational mesh. We set $\delta t = 0.005$, and the type of the finite element basis is piecewise linear function (P_1). For the three cases with $\epsilon = 0.5, 0.1,$ and 0.05, the parameters are chosen as $T_0 = 1.5, \delta T = 1, \delta M = 5$; for case of $\epsilon = 0.01$, the parameters are chosen as $T_0 = 5, \delta T = 3, \delta M = 20$. In the two-grid based adaptive POD algorithm, we refine the initial mesh 16 times uniformly using bisection to obtain the coarsen mesh, and the time step of the coarse mesh is set to 0.09. We use 36 processors for the simulation. The detailed information of numerical results are listed in Table 1.

In Table 1, ‘DOFs’ means the degree of freedom, ‘Time’ is the wall time for the simulation, ‘Average Error’ is computed by averaging the errors of numerical solution for each time layer.

From Table 1, we can see that the number of those POD modes for each POD type method is much smaller than standard-FEM, which means that those POD
Table 1: The results of Kolmogorov flow with different ϵ obtained by Standard-FEM, POD, Residual-APOD, and TG-APOD, respectively.

ϵ	Methods	η_0	DOFs	Average Error	Time(s)
0.5	Standard-FEM	–	4194304	0.193343	13786.49
	POD	–	13	0.001019	547.75
	Residual-APOD	4.0 \times 10$^{-6}$	47	0.000280	6761.29
	TG-APOD	0.002	58		1843.86
0.1	Standard-FEM	–	4194304	0.559466	11950.82
	POD	–	22	0.005903	535.47
	Residual-APOD	1.0 \times 10$^{-5}$	107	0.003628	8222.21
	TG-APOD	0.005	121		3771.56
0.05	Standard-FEM	–	4194304	0.805803	11379.64
	POD	–	16	0.019034	546.51
	Residual-APOD	3.0 \times 10$^{-5}$	140	0.012306	9503.81
	TG-APOD	0.01	179		6204.12
0.01	Standard-FEM	–	4194304	0.104584	12955.44
	POD	–	43	0.100980	1265.95
	Residual-APOD	2.0 \times 10$^{-4}$	133	0.104584	1265.95
	TG-APOD	0.01	193		7197.82

algorithms have good performance in dimensional reduction. For this example, the error of the numerical solution obtained by the POD algorithm is too large. However, both the residual based adaptive POD method and our two-grid based adaptive POD method can obtain numerical solution with higher accuracy, which validates the effectiveness of the adaptive POD methods. We then compare our two-grid adaptive POD method with the residual based adaptive POD method. We can see that our method not only obtains numerical solutions with higher accuracy but also takes less cpu time than the residual-based adaptive POD method. This shows that our two-grid adaptive POD method is more effective.

To see more clearly, we compare the error of the numerical solutions obtained by the different methods in Fig. 2.

In Fig. 2, the x-axis is time, the y-axis is relative error of numerical solution. The results obtained by POD algorithm, residual based adaptive POD algorithm, and our two-grid based adaptive POD algorithm are reported in line with color darkslategray, blue, and red, respectively.

From the left figure of Fig. 2, we can see that the error curve obtained by the POD algorithm is above both those obtained by the two adaptive POD algorithms, which means that the adaptive POD algorithms are more efficient than the POD algorithm. From the right figure of Fig.2, we can see that our two-grid based adaptive POD algorithm is more efficient than the residual based adaptive POD algorithm.

4.2 ABC flow

We then consider the ABC flow. ABC flow was introduced by Arnold, Beltrami, and Childress [13] to study chaotic advection, enhanced transport and dynamo
Fig. 2: The change of error for solution of (21) with different ϵ obtained by POD algorithm, Residual-APOD algorithm, and TG-APOD algorithm, respectively.
effect, see [6, 16, 37, 38] for the details.

\[
\begin{aligned}
&\left\{ \\
&\quad u_t - \epsilon \Delta u + B(x, y, z, t) \cdot \nabla u = f(x, y, z, t), \quad (x, y, z) \in \Omega, t \in [0, T], \\
&\quad u(x, y, z, 0) = 0, \\
&\quad u(x + 2\pi, y, z, t) = u(x, y, z, t) = u(x, y, z + 2\pi, t) = u(x, y, z, t),
\end{aligned}
\]

where

\[
B(x, y, z, t) = \sin(z + \sin wt) + \cos(y + \sin wt), \\
\sin(x + \sin wt) + \cos(z + \sin wt), \\
\sin(y + \sin wt) + \cos(x + \sin wt)), \\
f(x, y, z, t) = -\sin(z + \sin wt) - \cos(y + \sin wt), \\
\Omega = [0, 2\pi]^3, T = 100.
\]

For this example, we also test 4 different cases with \(\epsilon = 0.5, 0.1, 0.05, \) and \(0.01, \) respectively. We divide the domain \([0, 2\pi]^3\) into tetrahedrons to get the initial grid containing 6 elements, then refine the initial mesh 22 times uniformly using bisection to get our computational mesh. We set \(w = 1.0, \Delta t = 0.005, \) and choose the finite element basis to be piecewise linear function (\(P_1 \)). For the two cases with \(\epsilon = 0.5, 0.1, \) the parameters are chosen as \(T_0 = 1.5, \delta T = 1, \delta M = 5; \) for other cases with \(\epsilon = 0.05, 0.01, \) the parameters are chosen as \(T_0 = 5, \delta T = 4, \delta M = 20. \)

In the two-grid based adaptive POD algorithm, we refine the initial mesh 16 times uniformly using bisection to obtain the coarsen mesh, and the time step of the coarse mesh is set to 0.09. We use 36 processors for the simulation. We list the detailed information in Table 2. The notation in Table 2 has the same meaning as in Table 1.

Table 2: The results of ABC flow with different \(\epsilon \) obtained by Standard-FEM, POD, Residual-APOD, and TG-APOD algorithm, respectively.

\(\epsilon \)	Methods	\(n_0 \)	DOFs	Average Error	Times (s)
0.5	FEM	–	4194304	–	16690.55
	POD	–	12	0.303585	534.96
	Res-APOD	1.0 \times 10^{-5}	52	0.010679	9656.49
	TG-APOD	0.02	53	0.007453	1875.04
0.1	FEM	–	4194304	–	15238.87
	POD	–	14	0.658382	536.73
	Res-APOD	1.0 \times 10^{-5}	148	0.010298	13924.65
	TG-APOD	0.005	181	0.005460	8043.11
0.05	FEM	–	4194304	–	14457.24
	POD	–	42	0.504838	1485.62
	Res-APOD	1.0 \times 10^{-5}	172	0.009505	14671.97
	TG-APOD	0.005	217	0.005441	8736.96
0.01	FEM	–	4194304	–	16074.96
	POD	–	61	0.676701	1878.01
	Res-APOD	1.0 \times 10^{-4}	164	0.078336	14882.99
	TG-APOD	0.01	244	0.070448	11401.42

Similar to the first example, we can see from Table 2 that those POD type methods can indeed reduce the number of basis a lot. For this example, the accuracy for the approximation obtained by the POD method is so large that they
are meaningless. While both the residual based adaptive POD method and our two-grid based adaptive POD method can obtain numerical solution with high accuracy. Among the two adaptive POD methods, our two-grid adaptive POD method can get higher accuracy numerical solution than the residual based adaptive POD method. When it comes to time, our two-grid adaptive method takes less cpu time than the residual based adaptive POD method. These shows that our two-grid adaptive POD method is more effective.

Similarly, we show the error of the numerical solutions obtained by the different methods in Fig. 3.

In Fig. 3, the x-axis is time, the y-axis is the relative error of POD approximations. The results obtained by POD algorithm, residual based adaptive POD algorithm, and our two-grid based adaptive POD algorithm are reported in line with color darkslategray, blue, and red, respectively.

From Fig. 3, we can see more clearly that both the two-grid adaptive POD method and the residual based adaptive POD method behave much better than the POD method, and our two-grid based adaptive POD method behaves a little better than the residual based adaptive POD method.

We have some more tests for setting different parameters w. The results for cases with $w = 1, 1.5, 2, 2.5$ are shown in Table 3.

From Table 3, we can obtain the same conclusion as those from Table 1 and Table 2, that is, adaptive POD methods outperform the POD method a lot, and our two-grid based adaptive method outperforms the residual based adaptive method.

5 Concluding remarks

In this paper, we proposed a two-grid based adaptive POD method to solve the time dependent partial differential equations. We apply our method to some typical 3D advection-diffusion equations, with Kolmogorov flow and ABC flow. Numerical results show that our two-grid based adaptive POD algorithm is more effective than the residual based adaptive POD algorithm, especially than the original POD algorithm. Here, we simply use the relative error of the POD solution on the coarse spacial and temporal meshes to construct the error indicator. In our future work, we plan to construct some other error indicator based on our two-grid approach or some other approach, and study nonlinear or other types of time dependent partial differential equations.

References

1. Acary, V., Brogliato, B.: Implicit euler numerical scheme and chattering-free implementation of sliding mode systems. Systems & Control Letters. 59(5), 284–293 (2010)
2. Alla, A., Falcone, M.: An adaptive pod approximation method for the control of advection-diffusion equations. In: Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164, pp. 1–17. Birkhäuser, Basel (2013)
3. Atwell, J.A., King, B.B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Mathematical and Computer Modelling. 33(1-3), 1–19 (2001)
4. Bakker, M.: Simple groundwater flow models for seawater intrusion. Proceedings of SWIM16, Wolin Island, Poland. pp. 180–182 (2000)
5. Bieterman, M., Babuška, I.: The finite element method for parabolic equations. Numerische Mathematik. 40(3), 373–406 (1982)
Fig. 3: The change of error for solution of (22) with different ϵ obtained by POD algorithm, Residual-APOD algorithm, and TG-APOD algorithm, respectively.
Table 3: Compare the result of (22) with different w and ϵ obtained by standard-FEM, POD, Residual-APOD and TG-APOD algorithm, respectively

ϵ	w	Methods	η_0	DOFs	Average Error	Time (s)
0.5	1.5	FEM	–	4194304	0.294394	16745.85
		POD	–	14	0.005888	9627.10
		Res-APOD 1.0 x 10^{-5}	57	0.002513	2361.77	
		TG-APOD 0.01	59	0.270138	730.91	
0.5	2.0	FEM	–	4194304	0.270138	17258.89
		POD	–	15	0.017753	561.23
		Res-APOD 1.0 x 10^{-5}	44	0.006577	1931.23	
		TG-APOD 0.02	59	0.005998	8890.87	
0.5	2.5	FEM	–	4194304	0.216109	17161.84
		POD	–	17	0.014760	9627.10
		Res-APOD 1.0 x 10^{-5}	48	0.007357	1550.19	
		TG-APOD 0.02	49	0.006577	1931.23	
0.1	1.5	FEM	–	4194304	0.729666	15322.78
		POD	–	15	0.010995	531.42
		Res-APOD 8.0 x 10^{-6}	154	0.008529	6298.07	
		TG-APOD 0.01	159	0.009955	14431.22	
0.1	2.0	FEM	–	4194304	0.751065	15324.38
		POD	–	16	0.011761	536.24
		Res-APOD 8.0 x 10^{-6}	127	0.006577	730.91	
		TG-APOD 0.01	143	0.006577	1931.23	
0.1	2.5	FEM	–	4194304	0.657750	15104.35
		POD	–	18	0.022907	589.66
		Res-APOD 8.0 x 10^{-6}	113	0.021733	3574.45	
		TG-APOD 0.02	114	0.021733	3574.45	
0.05	1.5	FEM	–	4194304	0.445832	14141.53
		POD	–	45	0.037319	12322.02
		Res-APOD 2.0 x 10^{-5}	125	0.018763	6094.93	
		TG-APOD 0.008	165	0.018763	12322.02	
0.05	2.0	FEM	–	4194304	0.325020	14332.82
		POD	–	47	0.018739	12347.84
		Res-APOD 1.0 x 10^{-5}	127	0.006625	7628.33	
		TG-APOD 0.008	224	0.006625	7628.33	
0.05	2.5	FEM	–	4194304	0.245578	14355.11
		POD	–	49	0.017663	1528.92
		Res-APOD 1.6 x 10^{-5}	129	0.007226	6301.64	
		TG-APOD 0.006	169	0.007226	6301.64	
0.01	1.5	FEM	–	4194304	0.670596	16223.32
		POD	–	46	0.141915	12703.29
		Res-APOD 1.8 x 10^{-4}	126	0.089605	11494.74	
		TG-APOD 0.008	246	0.089605	11494.74	
0.01	2.0	FEM	–	4194304	0.557215	16376.39
		POD	–	48	0.091943	12917.72
		Res-APOD 1.4 x 10^{-4}	244	0.050542	8789.69	
		TG-APOD 0.008	208	0.050542	8789.69	
0.01	2.5	FEM	–	4194303	0.582593	16226.39
		POD	–	49	0.072278	12573.98
		Res-APOD 6 x 10^{-5}	129	0.041294	10908.90	
		TG-APOD 0.01	209	0.041294	10908.90	
6. Biferale, L., Crisanti, A., Vergassola, M., Vulpiani, A.: Eddy diffusivities in scalar transport. Physics of Fluids. 7(11), 2725–2734 (1995)
7. Borggaard, J., Iliescu, T., Wang, Z.: Artificial viscosity proper orthogonal decomposition. Mathematical and Computer Modelling. 53(1-2), 269–279 (2011)
8. Brenner, S., Scott, R.: The mathematical theory of finite element methods. Springer, New York (2007)
9. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics. 54(4), 937–954 (2014)
10. Cannon, J.R.: The one-dimensional heat equation. Addison-Wesley, Mento Park,CA (1984)
11. Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for kohn–sham models. Multiscale Modeling & Simulation. 12(4), 1828–1869 (2014)
12. Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Mathematics of Computation. 73(247), 1167–1193 (2004)
13. Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: the Fast Dynamo. Springer, Berlin (1995)
14. Dai, X., Kuang, X., Liu, Z., Jack, X., Zhou, A.: An adaptive proper orthogonal decomposition galerkin method for time dependent problems. preprint (2017)
15. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numerische Mathematik. 110(3), 313–355 (2008)
16. Galanti, B., Sulem, P.L., Pouquet, A.: Linear and non-linear dynamos associated with abc flows. Geophysical & Astrophysical Fluid Dynamics. 66(1-4), 183–208 (1992)
17. Galloway, D.J., Proctor, M.R.: Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691–693 (1992)
18. Grässel, C., Hinze, M.: Pod reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations. Advances in Computational Mathematics. 44(6), 1941–1978 (2018)
19. Ito, K., Ravindran, S.: A reduced-order method for simulation and control of fluid flows. Journal of Computational Physics. 143(2), 403–425 (1998)
20. Kosloff, D., Kosloff, R.: A fourier method solution for the time dependent schrödinger equation as a tool in molecular dynamics. Journal of Computational Physics. 52(1), 35–53 (1983)
21. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik. 90(1), 117–148 (2001)
22. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM,Philadelphia (2007)
23. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer Modelling. 33(1-3), 223–236 (2001)
24. Lyu, J., Xin, J., Yu, Y.: Computing residual diffusivity by adaptive basis learning via spectral method. Numerical Mathematics: Theory, Methods and Applications. 10(2), 351–372 (2017)
25. Obukhov, A.M.: Kolmogorov flow and laboratory simulation of it. Russian Mathematical Surveys. 38(4), 115–126 (1983)
26. Peherstorfer, B.: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. arXiv:1812.02094 (2018)
27. PHG: http://lsec.cc.ac.cn/phg/
28. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Model Order Reduction: Theory, Research Aspects and Applications, pp. 95–109. Springer, Berlin, Heidelberg (2008)
29. Quarteroni, A., Rozza, G., et al.: Reduced Order Methods for Modeling and Computational reduction, vol. 9. Springer,Berlin (2014)
30. Rapún, M.L., Terragni, F., Vega, J.M.: Adaptive pod-based low-dimensional modeling supported by residual estimates. International Journal for Numerical Methods in Engineering. 104(9), 844–868 (2015)
31. Rapün, M.L., Vega, J.M.: Reduced order models based on local pod plus galerkin projection. Journal of Computational Physics. 229(8), 3046–3063 (2010)
32. Shen, L., Xin, J., Zhou, A.: Finite element computation of kpp front speeds in 3d cellular and abc flows. Mathematical Modelling of Natural Phenomena. 8(3), 182–197 (2013)
33. Smith, G.D.: Numerical solution of partial differential equations: finite difference methods. Applied Mathematics and Computation,Oxford (1986)
34. Terragni, F., Vega, J.M.: Simulation of complex dynamics using pod on the fly and residual estimates. Dynamical Systems, Differential Equations and Applications AIMS Proceedings. pp. 1060–1069 (2015)
35. Thomée, V.: Galerkin finite element methods for parabolic problems, vol. 25. Springer-Verlag, Berlin (1984)
36. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit euler scheme for the two-dimensional navier–stokes equations. SIAM Journal on Numerical Analysis. 44(1), 29–40 (2006)
37. Wirth, A., Gama, S., Frisch, U.: Eddy viscosity of three-dimensional flow. Journal of Fluid Mechanics. 288, 249–264 (1995)
38. Xin, J., Yu, Y., Zlatos, A.: Periodic orbits of the abc flow with a = b = c = 1. SIAM Journal on Mathematical Analysis. 48(6), 4087–4093 (2016)
39. Zu, P., Chen, L., Xin, J.: A computational study of residual kpp front speeds in time-periodic cellular flows in the small diffusion limit. Physica D: Nonlinear Phenomena. 311, 37–44 (2015)