Progressive Limitation in Mouth Opening: Jacob Disease

To the Editor: We would like to discuss with you a rare condition known as Jacob disease. The first description of corooid process enlargement was by Langenbeck in 1853, but the first report of an osteochondroma of the coronoid process, forming a pseudojoint between the coronoid process and zygomatic arch, was attributed to the French anatomist Jacob in 1899. Currently, only 42 patients of Jacob disease have been reported and confirmed by histologic evidence.

Additionally, to our knowledge, our patient is the sixth typical patient of mushroom-shaped Jacob disease—only 5 similar patients having been reported.1-5

THE PATIENT

A 59-year-old female presented at our department with a 1-year history of progressive limitation in mouth opening. She reported no pain or other symptoms. No relevant medical history was elicited, and no trauma reported. Physical examination revealed a maximum mouth opening (MMO) of 9 mm with a mandibular deviation to the right side (Fig. 1A). She also presented facial asymmetry with a mild swelling in the right malar region. There was no involvement of the temporomandibular joint on the right or left side. Painless rigid end-feel was also present.

A panoramic radiography revealed abnormal elongation of the right coronoid process overlapping the ipsilateral malar bone and computed tomography, showed a mushroom-shaped coronoid process enlargement and accommodation of the distal coronoid process on the inside of the malar bone (Fig. 1C).

Surgery was performed under general anaesthesia using an emicoronal approach. A joint structure was observed between the enlarged coronoid process and the inner surface of the malar bone with visible cartilage between the 2 surfaces. We performed right coronoidectomy and remodeled the malar bone. In the immediate postoperative period, a 44-mm MMO was obtained.

Two separate bone fragments were sent for histological evaluation. The first consisted of an elongated structure of about 1 cm in length with a round, mushroom-like extremity that showed histologically features of an osteochondroma with a thin cortical envelope, normal trabeculae, and a thick hyaline cartilaginous cap overlying endochondral ossification (Fig. 1E and F). The second fragment removed from the attachment of the first to the mandible showed a nodular bone lesion 0.5 cm in diameter, with features of a compact variant of osteoma with few fibrovascular spaces within compact lamellar bone (Fig. 1G).

From the first postoperative day, the patient underwent joint physiotherapy, passive for the first week and then active for the following 3 months. Six months after surgery, the patient has a 49-mm MMO with no deviation during mouth opening (Fig. 1B and D). The aesthetic results are satisfactory with improvement of facial asymmetry.

FIGURE 1. (A) Preoperative MMO; (B) postoperative MMO; (C) preoperative CT; (D) postoperative CT; (E) extremity of the elongated structure showing a thick cartilaginous cap, the bone trabeculae are regular in size and spacing and the lacunae contain hematopoietic tissue (H&E, original magnification ×4); (F) detail of the cartilaginous cap showing chondrocytes embedded singly in lacunae within the chondroid matrix, with features of regular maturation toward the surface and of endochondral ossification toward its base (H&E, original magnification ×20); (G) detail of the osteoma, showing compact lamellar bone with few fibrovascular spaces (H&E, original magnification ×20). CT, computed tomography; MMO, maximum mouth opening.

REFERENCES

1. Mahmoud FE, Lubna F. Nasal dermoid: a segmental approach. Ann Ped Surg 2008;4:100–106
2. Hughes GB, Sharpino G, Hunt W, et al. Management of the congenital midline nasal mass: a review. Head Neck Surg 1980;2:222–233
3. Mohot S, Samil B, Rohit S, Ajay L. A nasal dermoid sinus cyst: an unusual presentation, investigation and management. Int J Pharm Sci Life Sci 2012;2:190–194
4. Clark WD, Bailey BJ, Sternberg CM. Nasal dermoid with intracranial involvement. Otolaryngol Head Neck Surg 1986;95:303–306
5. MacGregor FB, Geddes NK. Nasal dermoids: the significance of a midline punctum. Arch Dis Child 1993;68:418–419
6. Hamikert M1, Waterhouse N, Kirkpatrick N, et al. The management of midline transcranial nasal dermoid sinus cysts. Br J Plast Surg 2005;58:1043–1050
7. Kayashima H, Maeda T, Harada N, Ishida T. Usefulness of three-dimensional computed tomography reconstruction of incisional hernia for planning laparoscopic hernia repair. Int J Case Rep Images 2015;6:181–183
8. Saigal K, Winokur RS, Finden S, et al. Use of three-dimensional computerized tomography reconstruction in complex facial trauma. Facial Plast Surg 2005;21:214–220
9. Huismann TA, Schneider JF, Kellenberger CJ, et al. Developmental nasal midline masses in children: neuroradiological evaluation. Eur Radiol 2004;14:243–249
10. Rahbar R, Shah P, Mulliken JB. The presentation and management of nasal dermoid: a 30 year experience. Arch Otolaryngol Head Neck Surg 2003;129:464–471

© 2016 Mutaz B. Habal, MD

Copyright © 2015 Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited.
DISCUSSION

Osteochondroma is a cartilaginous lesion. The true nature of the process, whether developmental, reactive or neoplastic, is unknown.\(^7\)\(^8\) It is thought that the proliferating cartilage cells may derive from displaced epiphyseal cartilage cells, from stimulated mesenchymal cells of tendinous insertions, or from pluripotent periosteal cells.\(^5\)\(^9\) An unusual feature of the patient herein presented is the presence of a relatively small lesion at the basis of the osteochondroma showing the features of the compact variant of an osteoma. Solitary osteomas of the jaw are rare, mostly occurring on the lingular aspect of the mandibular angle but may also involve the coronoid process or condylar notch.\(^10\) It can therefore be suggested that the osteochondroma in the present patient is reactive in nature, due to the presence of the underlying osteoma.

The aetiology of progressive limitation in oral opening can arise from extra- or intra-articular pathology. The presence of an intra-articular pathology, like chronic temporomandibular joint disk displacement, can lead the clinician to neglect Jacob disease when the 2 conditions coexist in the same patient. Therefore, we recommend a radiographic study; a screening panoramic radiograph can show enlargement of the coronoid processes, and magnetic resonance imaging can rule out internal derangement and joint pathology; computed tomography can confirm the absence of temporomandibular joint ankylosis and will clearly show coronoid enlargement.\(^11\\)\(^12\)

Coronoidectomy is the definitive treatment for Jacob disease. According to our experience, advantages such as direct vision, easy and safe osteotomy control, minimal risk of damage to the medial tissue, bloodless operatory field, fast surgery, and brief hospitalization can be obtained using endoscopically assisted intraoral coronoidectomy.\(^12\) When exostosis is bulbous and large, such as in our patient of a mushroom-shaped lesion, reconstruction of a deformed zygoma with a calvarial bone graft is required, or a bilateral condition exists, we recommend a coronal or an emicoronal approach. The latter approach guarantees a good view of the surgical field and results in an acceptable scar behind the hairline; but the risk of damage to the facial nerve remains.\(^8\) Based on the authors’ experience, during the osteotomy, the best control and maximum cutting precision can be achieved using the ultrasonic bone-cutting technique.\(^13\)

CONCLUSION

Additional studies are needed to define aetiology of Jacob disease, but our study represents a supporting evidence to reactive nature of the lesion.

In patient of progressive limitation in mouth opening the coexistence of an intra-articular pathology can lead, even experienced clinician, to neglect Jacob disease, therefore radiographic study is recommended.

For intraoral coronoidectomy endoscopic assistance is advised, but large lesion can justify extraoral approach.

Massimo Robiony, MD, FEBOMFS
Clinic of Maxillo-Facial Surgery
Department of Medical and Biological Sciences
University Hospital of Udine
Udine, Italy

Matteo Casadei, MD
Craniofacial Unit
Department of Medical and Surgical Sciences for Children & Adults
University of Modena and Reggio Emilia
Modena, Italy

Cathrin Anne Scott, MD
Institute of Pathological Anatomy
University Hospital of Udine
Department of Laboratory Medicine
Udine, Italy

Luigi Chiariini, MD
Craniofacial Unit
Department of Medical and Surgical Sciences for Children & Adults
University of Modena and Reggio Emilia
Modena, Italy

dr.mcasadei@gmail.com

REFERENCES

1. Langenbeck B. Congenital mandibular hypoplasia [in German]. Langenbecks Arch 1861:1:451
2. Jacob O. A rare cause of permanent constriction of the jaws [in French]. Bull Mem Socie Anatomique Paris 1899:1:917
3. Choi JG, Kim SY, Perez-Ataye AR, et al. Bilateral coronoid process hyperplasia with pseudocartilaginous joint formation: Jacob disease. J Oral Maxillofac Surg 2013;71:316–321
4. D’Ambrosio N, Kellman RM, Karimi S. Osteochondroma of the coronoid process (Jacob’s disease): an unusual cause of restricted jaw motion. Am J Otolaryngol 2011;32:52–54
5. Yesildag A, Yariktas M, Doner F, et al. Osteochondroma of the coronoid process and joint formation with zygomatic arch (Jacob disease): report of a patient. Eur J Dent 2010;4:91–94
6. Etoz OA, Alkan A, Yikilmaz A. Osteochondroma of the mandibular coronoid process: a rare cause of limited mouth opening. Br J Oral Maxillofac Surg 2009;47:409–411
7. Ostrofsky MK, Lowrie JF. Zygomatico-coronoid ankylosis. J Oral Surg 1977;35:752–754
8. Roychoudhury A, Gupta YK, Parkash H, et al. Jacob disease: report of a case and review of the literature. J Oral Maxillofac Surg 2002;60:699–703
9. Sreevananeni SK, Chakravarthi PS, Krishna Prasad L, et al. Jacob’s disease: report of a rare case and literature review. Int J Oral Maxillofac Surg 2011;40:753–757
10. Sciubba JJ, Fantasia JE, Kahn LB. AFIP Atlas of Tumor Pathology: Tumors and Cysts of the Jaw, Third Series, Fascicle 29 Washington, DC: AFIP Press; 2001
11. Akar H, Mehreliyeva N. The value of three-dimensional computed tomography in diagnosis and management of Jacob’s disease. Dentomaxillofac Radiol 2006;35:55
12. Robiony M, Casadei M, Costa F. Minimally invasive surgery for coronoid hyperplasia: endoscopically assisted intraoral coronoidectomy. J Craniofac Surg 2012;23:1838–1840
13. Robiony M, Casadei M, Shuelz M, et al. Ultrasonic aesthetic cranioplasty. J Craniofac Surg 2014;25:1448–1450

Oral Reconstruction Using Medial Sural Artery Perforator Flap in a Patient With Fanconi Anemia

To the Editor: Fanconi anemia (FA) is a rare genetic disorder characterized by congenital malformations and aplastic anemia in childhood; followed by hematologic malignancies and solid cancers such as squamous cell carcinomas of the head and neck region.