Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at $\sqrt{s} = 13$ TeV. The data set corresponds to an integrated luminosity of 138 fb^{-1} collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Z' bosons with masses from 1.8 to 2.4 TeV and of excited b quarks with masses from 1.8 to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date.

Published in Physical Review D as doi:10.1103/PhysRevD.108.012009.
1 Introduction

Searches for heavy resonances decaying into jet pairs provide a powerful tool with the potential for discovering new physics at hadron colliders. These resonances can be produced via parton-parton interactions, and then can decay to two partons. The final-state partons hadronize and are observed as two jets, referred to as dijets.

Such heavy resonances at the TeV scale are a feature of several models that extend the standard model (SM) to address some of its shortcomings, such as the extreme fine tuning required in quantum corrections to accommodate a Higgs boson observed at a mass of 125 GeV [1–4]. These models introduce heavy resonances that couple to the SM bosons and fermions [5, 6]. A minimal extension of the SM is represented by the sequential standard model (SSM) [7], which introduces a spin-1 Z' boson with the same couplings to fermions as the SM Z boson, but with a much larger mass. The SSM, among many others, is generalized in the heavy vector triplet (HVT) framework [8], which extends the SM by introducing a triplet of heavy vector bosons, one neutral Z' and two oppositely charged W', collectively referred to as V'. The heavy vector bosons couple to SM bosons and fermions with strengths $g_H = g_V c_H$ and $g_F = g^2 c_F / g_V$, respectively, where g_V is the strength of the new interaction; c_H is the coupling between an HVT boson, the Higgs boson, and a longitudinally polarized SM vector boson; c_F is the coupling between an HVT boson and an SM fermion; and g is the electroweak coupling. In this search, we consider two benchmarks, defined in Ref. [8]. In the Model A scenario of the HVT framework, the coupling strengths of the heavy vector bosons to SM bosons and fermions are of the same order, and the new particles decay primarily to fermions. In the Model B scenario of the same framework, the couplings to fermions are suppressed with respect to the couplings to bosons, resulting in a branching fraction of the new particles to SM bosons that is close to unity.

Other models extending the SM postulate that leptons and quarks are composite objects, composed of more fundamental constituents. At an energy beyond the scale of constituent binding energies, the compositeness scale Λ, a new interaction should emerge [9–11]. Such models foresee the existence of excited states of quarks (q^*) and leptons (ℓ^*), which could be produced in high-energy collisions and then detected through their decays to SM particles. Excited states of composite quarks [12], which would be produced through a gauge interaction or via contact interactions (CI) [13], can result in large cross sections and could decay predominantly to a quark and a gluon (qg). In the model considered in this search, the compositeness scale Λ is set equal to the resonance mass and the couplings of excited quarks to other particles are assumed to be the same as for nonexcited fermions.

Since the early 1980s, searches for resonances in the dijet invariant mass spectrum [14] have been common at hadron colliders. From proton-proton (pp) collision data at $\sqrt{s} = 7$ and 8 TeV, the CMS Collaboration has published searches for dijet resonances where at least one of the two jets in the final state arises from a b quark [15–17], based on a jet flavor identification commonly referred to as b tagging. The most recent search from the CMS Collaboration at $\sqrt{s} = 13$ TeV [18] did not attempt to identify the type of final-state parton that produced the jets, and considered resonance models where the final-state partons could be gluons or any flavor of SM quarks. Similar to a recent search from the ATLAS experiment [19], the present search identifies heavy-flavored quarks among the two final-state partons, and has increased sensitivity to models of dijet resonances that decay to b quarks. Examples are such models that predict an excited b quark (b^*), or a Z' where the couplings to the third generation are enhanced relative to the couplings to the first and second generations. Such enhanced couplings are also favored in models created to accommodate the possible anomalies observed in the low-energy heavy-flavor sector of the SM [20, 21].
In this paper we report a search for Z' decaying into a b quark pair as well as b^* decaying into b quark and gluon, where two production modes are considered for the latter; $bg \rightarrow b^*$ and b^* via CI. Both resonances are assumed to be narrow. The data used for the analysis were collected by the CMS detector from pp collisions at a center-of-mass energy of 13 TeV during the LHC Run 2 (2016–2018), and correspond to a total integrated luminosity of 138 fb$^{-1}$.

Tabulated results are provided in the HEPData record for this analysis [22].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The ECAL and HCAL provide pseudorapidity coverage up to $|\eta| < 3.0$, which is further extended by forward calorimeters [23]. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. For nonisolated particles of transverse momentum $1 < p_T < 10$ GeV and $|\eta| < 1.4$, the reconstructed tracks have a p_T resolution of 1.5%, a transverse impact parameter resolution of 25–90 μm, and a longitudinal impact parameter resolution of 45–190 μm [24].

Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 μs [25]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage [26].

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

3 Data and simulated samples

The data sample analyzed has been collected by the CMS experiment with trigger algorithms that require large hadronic activity in the event. In particular, two sets of trigger algorithms are used: single-jet triggers that require a jet with $p_T > 550$ GeV to be present in the event and triggers requiring the scalar p_T sum for all jets with $p_T > 30$ GeV and $|\eta| < 3.0$ in the event, to exceed 1050 GeV.

The $qq \rightarrow Z' \rightarrow b\bar{b}$ signal Monte Carlo (MC) simulated events are produced at leading-order (LO) accuracy in quantum chromodynamics (QCD) with the MadGraph5_aMC@NLO v2.4.2 matrix element generator [27]. Various Z' mass hypotheses in the range of 1.6 to 8 TeV are considered for these narrow resonance signals, which have a natural width smaller than the experimental dijet mass resolution (2–3%). This approximation is valid in a large fraction of the HVT parameter space, and is fulfilled in the Model A and Model B benchmarks discussed earlier [8].

For the b^* production processes, the signal samples are produced with Pythia 8.230 [28] for resonance masses up to 6 TeV. The characteristic dijet mass shape corresponding to the $bg \rightarrow b^* \rightarrow bg$ signal component is reported in Fig. [1] for resonance masses from 1 to 6 TeV. The contribution of the low-mass tail to the signal shape becomes more dominant at large res-
onance masses. This is because the resonance natural mass shape coming from a Breit-Wigner distribution is convolved with falling parton distribution functions (PDFs), where for larger resonance masses the PDFs fall more steeply.

In all cases parton showering and hadronization processes are simulated by interfacing the event generators with PYTHIA 8.230 with the CUETP8M1 [29, 30] tune. The NNPDF2.3LO [31, 32] PDFs are used to model the momentum distribution of the colliding partons inside the protons. The generated events include additional pp interactions (pileup) with a distribution that is chosen to match that observed in the data. These events are processed through a full detector simulation based on GEANT4 [33] and reconstructed with the same algorithms as those used for data.

![Figure 1: Simulated signal shapes of b* from the process bg → b* → bg. Shown are the wide jets (see text) used to reconstruct the dijet mass spectra.](image)

4 Event reconstruction and selection

The event reconstruction is performed using a particle-flow (PF) algorithm [34], which uses an optimized combination of information from the various elements of the CMS detector to reconstruct and identify individual particles produced in each collision. The algorithm identifies each reconstructed particle either as an electron, a muon, a photon, or a charged or neutral hadron. The charged component of the pileup contribution is removed by applying the charged hadron subtraction mitigation algorithm. The momenta of neutral hadrons are rescaled according to their probability to originate from the primary interaction vertex deduced from the distribution of associated energy deposits in the calorimeters [35]. The PF candidates are then clustered into jets using the anti-\(k_T\) algorithm [36] implemented in the FASTJET package [37, 38] with a distance parameter \(R = 0.4\).

Jet energy corrections, extracted from simulation and data in multijet, \(\gamma + \text{jets}\), and \(Z + \text{jets}\) events, are applied as a function of \(p_T\) and \(\eta\) to correct the jet response and to account for residual differences between data and simulation. Multijet events refer to SM events composed uniquely of jets produced through the strong interaction. The energy resolution for jets with \(p_T \sim 1\,\text{TeV}\) is approximately 5% [39]. Jets are required to pass identification criteria, which have negligible impact on the signal efficiency, in order to remove spurious jets arising from detector noise [40].

Events are required to contain at least two jets, each with \(p_T > 30\,\text{GeV}\) and \(|\eta| < 2.5\), and each separated by \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} > 0.4\) from any electrons or muons. Here, \(\phi\) is the azimuthal angle in radians. Geometrically close jets are combined into “wide jets”, and used
to determine the dijet mass, as in our previous dijet searches \[18\]. In forming wide jets, the two jets with the largest \(p_T\) are used as seeds, and the four-momenta of jets within \(\Delta R < 1.1\) of a seed jet are added to the seed jet’s four-momentum. The wide-jet algorithm, designed for dijet resonance event reconstruction, reduces the analysis sensitivity to gluon radiation from the final-state partons.

The pseudorapidity separation of the two wide jets is required to be \(|\Delta \eta| < 1.1\). This requirement suppresses \(t\)-channel multijet production, and enhances the contribution to the signal from \(s\)-channel production.

In order to ensure the full efficiency of the trigger, only events with a dijet invariant mass \(m_{jj}\) larger than 1530 GeV are considered. The trigger efficiency measurement is performed with a sample acquired with an independent trigger algorithm that requires the presence of a muon with \(p_T > 50\) GeV at the high-level trigger.

Jets from \(b\) quarks are identified using a \(b\)-tagging DeepJet discriminator that relies on the application of convolutional neural networks on low-level objects, such as PF candidates and secondary vertex information, and improves the jet flavor identification capabilities of the CMS experiment, especially at high jet momenta \[41, 42\]. The operation point of the discriminator was chosen in order to maximize the sensitivity to the \(Z'\) and \(b^*\) signal searches. It corresponds to a misidentification probability of 1\% for jets from light (\(u, d, s\)) quarks and gluons with \(p_T\) of about 80 GeV. For this mistagging value, the efficiency of identifying genuine \(b\) quarks is approximately 75, 45, and 10\% for a jet with \(p_T\) of 0.2, 1.0, and 3.0 TeV, respectively. The simulated event distributions passing the tagger are adjusted via scale factors such that they agree with the observed data.

Events are divided into independent categories, depending on the signal model considered. When searching for a \(b^*\) resonance decaying to a \(b\) quark and a gluon, only a single category with at least one \(b\)-tagged jet is needed. For a \(Z'\) signal, three categories are defined: 2\(b\), 1\(b\) and muon. Events are included in the 2\(b\) category if both jets fulfill the \(b\)-tagging requirements, and in the 1\(b\) category if only one of the two jets is \(b\) tagged. The muon category contains the events in which neither jet passes the \(b\) tag selection, but at least one jet contains a muon, identified within both the inner tracker and the muon detector. The presence of the muon naturally enriches the heavy-flavor component of the jets, mitigating the loss of signal efficiency of the \(b\)-tagging algorithm at very large \(p_T\). This category dominates the signal sensitivity for \(Z'\) mass larger than 5 TeV, a region where the muon presence request has a roughly 50\% larger signal efficiency than in the 2\(b\) category. The product of acceptance and efficiency of the selections for the signal were very similar in all three data-taking years, and the average values are shown in Fig. 2. The dominant source of inefficiency is the requirement \(|\Delta \eta| < 1.1\), which reduces the acceptance to approximately 41\%.

5 Background estimation

Background estimates based on simulated data predict that it is largely dominated by multijet production, which accounts for more than 95\% of the total background. The contribution of top quark pair production is approximately 3–4\% of the total background, depending on the \(b\)-tagging category. Production of vector bosons in association with partons, and production of boson pairs, contribute the remaining 1–2\% of the total background.

The background is estimated directly from data assuming that it can be described by a smooth, monotonically decreasing function. The validity of this assumption is checked in simulation.
The functions considered are power laws of the variable $x = m_{jj} / \sqrt{s}$, where $\sqrt{s} = 13$ TeV. Starting from the simplest functional form, an iterative procedure based on the Fisher F-test \cite{43} is used to check at 90% confidence level (CL) if additional parameters are needed to model the individual background distributions. Depending on the dataset considered for the fit, a three-parameter ($p_0(1 - x)^p_1 / x^p_2$), four-parameter ($p_0(1 - x)^p_1 / x^p_2 + p_3 \log(x)$) or five-parameter ($p_0(1 - x)^p_1 / x^p_2 + p_3 \log(x) + p_4 \log^2(x)$) functional form is necessary to describe the data. The observed dijet mass spectra are well modeled by the background functional forms, as shown in Fig. 3, where the widths of the dijet mass bins correspond to the dijet mass resolution.

The expected shape of the reconstructed signal mass distribution is extracted from the simulated signal samples. The b^* signal shapes are dijet mass distributions obtained directly from the simulation, as shown in Fig. 1, while the Z' signal shapes are parametrizations that are fit separately to the simulation samples for each category, using a double-sided Crystal Ball function \cite{44}. This functional form consists of a Gaussian distribution that models the core of the shape, and two power law functions that model the upper and lower tails, and requires a total of six parameters. The resolution of the reconstructed Z' is given by the width of the Gaussian core, and is found to be constant at 2% of the resonance mass. The signal shape, for a Z' of arbitrary mass, is then obtained by a spline interpolation of the simulated signal shape parameter values as a function of mass. Examples of the Z' and b^* shapes are shown in Fig. 3 with arbitrary normalizations.

Statistical tests have been performed to check the robustness of the fit method. Pseudoexperiments are generated after injecting a simulated signal with a range of values for the signal mass and cross section. The dijet mass distribution of the pseudodata is then fitted with the signal distribution combined with an alternate background function containing one more parameter than the nominal function. The fitted signal yield is found to be compatible within one third of the statistical uncertainty to the injected yield, regardless of the injected signal strength and resonance mass. These tests confirm that the background estimation is insensitive both to the choice of the function used and to the possible presence of a signal in the data.

6 Systematic uncertainties

The background shape is estimated from the fit to the data in the considered categories, and no assumption or constraint is applied to function parameters. These parameters are considered as uncorrelated among categories and data-taking periods. As described in Sec. 5, different parametrizations of the fit function were studied and introduce no additional source of uncer-
Figure 3: The observed differential cross sections as a function of the dijet mass, shown as fit with the background functions, for the four tagging categories (rows) and the three data-taking periods (columns). The number of parameters in the fit, and the goodness of fit “χ²/ndf”, are listed where “ndf” is the number of degrees of freedom. The lower panel within each row shows the pulls, (data – fit)/uncertainty, in units of the statistical uncertainty in data. The upper three rows are used to search for Z models, the bottom row is used to search for the b model, and example shapes of these signal models are shown with the same arbitrary normalization for three choices of resonance mass.
The dominant uncertainties in the signal arise from the b tagging and the jet-reconstruction uncertainties. The uncertainty in the b-tagging scale factors [45] yields an uncertainty in the signal normalization of 2% and 4% in the 1b and $\geq 1b$ categories, respectively, and 15% in the 2b and muon categories. Uncertainties in the reconstruction of the hadronic jets affect mainly the shape of the reconstructed resonance mass. The four-momenta of the reconstructed jets are scaled and smeared according to the uncertainties in the jet p_T and momentum resolution. These effects result in a 2% uncertainty in the mean, and 10% in the width of the signal. The signal normalization is also affected by the uncertainty in the selection of the muons inside the jets. The efficiency of the identification of the muons inside jets is measured in a statistically independent and almost pure sample of high-p_T b jets, originating from the decay of pair-produced top quarks. This uncertainty is deduced from the statistical uncertainty in the efficiency measurement, ranging up to 43% for muons with $p_T < 100$ GeV. An uncertainty of 100% is assumed for jets with the p_T of an associated muon beyond this 100 GeV threshold, because no data was available in this region. Additional systematic uncertainties affecting the signal normalization include the vetoes for high-p_T leptons and missing transverse momenta (accounting for 1% each), pileup contributions (0.1%), and the integrated luminosity (1.2% in 2016 [46], 2.3% in 2017 [47], and 2.5% in 2018 [48]). The systematic uncertainty from the choice of PDFs [49] is estimated to be 8–41% of the normalization of the signal cross section, depending on the resonance mass. The factorization and renormalization scale uncertainties are estimated by varying the scales up and down by a factor of 2, both simultaneously and independently, using the maximum obtained value. The resulting effect is a variation of 6–14% of the normalization of the signal cross section.

7 Results and interpretation

Exclusion limits are obtained by performing a background-only fit and a combined signal-plus-background fit to the dijet mass distributions, separately by category and data-taking year. In the fit, based on a profile likelihood, the parameters and the normalization of the background in each category are left free to float. The systematic uncertainties in the signal are treated as nuisance parameters, with Gaussian constraints for the jet energy scale and resolution, and log-normal constraints for the integrated luminosity, and are profiled in the statistical interpretation [50]. The uncertainties that affect the signal normalization (PDFs and factorization and renormalization scales) are treated differently depending on how the exclusion is presented. When deriving upper limits on the cross section, these uncertainties are not varied in the fit, but are reported separately as the uncertainty in the theoretical cross sections from the model. When placing limits on the model parameters, these nuisance parameters are fixed at the best-fit values, in the same manner as with the other systematic uncertainties. A more detailed description of the statistical treatment and the likelihood function is reported in Ref. [51]. Upper limits at 95% CL are set using the CL$_s$ modified frequentist method [52, 53], adopting the asymptotic approximation [54].

A model-independent representation of the observed upper limit on the product of cross section and branching fraction of a $b\bar{b}$ resonance, as well as the expected limit and its relative 68 and 95% uncertainty bands, are shown in Fig. [4]. The acceptance, which is included in the product on the right side of Fig. [4], is defined exclusively via the geometric requirements $p_T > 30$ GeV, $|\eta| < 2.5$, and $|\Delta\eta| < 1.1$. This analysis sets an observed mass limit of 2.4 TeV, and an expected mass limit of 2.3 TeV, at 95% CL, on a narrow Z$'$ resonance in both the SSM and the HVT Model A. No upper limit can be set on Model B with suppressed fermionic coupling.
Figure 4: The observed 95% CL upper limits (solid curve) on the product of the cross section and branching fraction (left), and multiplied by signal acceptance (right), for a resonance decaying to b\bar{b}. The corresponding expected limits (dashed curve) and their variations at the 1- and 2-standard deviation levels (shaded bands) are also shown. Limits are compared to predicted cross sections for Z' bosons from the sequential SM (SSM) and the heavy vector triplet (HVT) models A and B. The latter two models follow the parameter choices of \(g_V = 1 \) and \(g_V = 3 \) respectively.

The cross section limit shown in Fig. 4 (left), is reinterpreted in Fig. 5 as limits on the coupling strengths of a heavy vector boson to SM bosons (\(g_H \)) and fermions (\(g_F \)). The subset of the parameter space where the natural width of the resonance is larger than the typical experimental resolution, and hence the narrow width approximation is invalid, is indicated in Fig. 5 with a gray shaded area.

Figure 5: The coupling strengths to SM bosons (\(g_H \)) and fermions (\(g_F \)) of a Z' boson with mass 2.0 TeV (blue) and 2.5 TeV (red) that are excluded at 95% CL for the HVT model. The shading indicates the excluded side of the contour. The benchmark scenarios corresponding to HVT models A and B are represented by a purple cross and a red point, respectively. The gray shaded area corresponds to the region where the resonance natural width is predicted to be larger than the typical experimental resolution, and thus the narrow-width approximation is not fulfilled.

For resonances that decay to a b quark and a gluon, upper limits are set by using the category where at least one of the two leading jets is b tagged. Upper limits on the joint product of cross section, branching fraction, and acceptance are reported in Fig. 6. When considering the single b* production process, bg → b* → bg, with the cross section shown in Fig. 6, this analysis
sets 95% CL mass limits of 2.5 TeV (observed) and 2.6 TeV (expected) for an excited b quark. Additionally the b^* production via contact interactions has been considered. Several processes contribute to the b^* production via CI [13], the dominant one being $q\bar{q} \rightarrow \bar{b} b^* (\text{or } b \bar{b}^*) \rightarrow b \bar{b} g$ where three jets are present in the final state. In order to display the theory cross section for this new process on the same exclusion limit plot, only its resonant component has been considered. In particular events are selected when the reconstructed dijet originates from the b^* decay, and does not include the other q_b quark in the event, which is the case for 50 (80)% of the events within the acceptance at 2 (4) TeV. Including both processes in the total signal cross section (single b^* production and the resonant component of the b^* production via CI) gives a significantly more stringent 95% CL mass limit of 4 TeV on excited b quarks.

Figure 6: The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for dijet resonances decaying to a b quark and a gluon (points). The corresponding expected limits (short dashed) and their variations at the 1- and 2-standard deviation levels (shaded bands) are also shown. Limits are compared to predictions for single b^* production (blue, dot dashed), the resonant component of the b^* production via contact interactions (magenta, long dashed), and the total b^* signal from the sum of these two production modes (red, solid).

8 Summary

A search for heavy resonances decaying into b quarks has been presented and no excess has been found over the standard model (SM) expectations. The data were collected by the CMS experiment at $\sqrt{s} = 13$ TeV during 2016–2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. Model-independent upper limits are set on the product of the cross section of the resonance and its branching fraction to b quarks. Signals of Z' bosons decaying to pairs of b quarks are considered, for both the previously explored sequential standard model (SSM), and also for a new heavy vector triplet (HVT) model. The decays of Z' bosons in both the SSM and the HVT Model A are excluded at 95% confidence level for masses from 1.8 to 2.4 TeV, and limits are set on the coupling strengths of the HVT boson to SM bosons and fermions. Signals of an excited b quark are considered for a previously explored channel, $b \bar{b} \rightarrow b^* \rightarrow b \bar{b} g$, and a production mode via contact interactions. The excited b quark is excluded at 95% confidence level for masses from 1.8 to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TEMA (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.1309/50110011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).
References

[1] CMS Collaboration, “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”, Eur. Phys. J. C 75 (2015) 212, doi:10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662.

[2] ATLAS Collaboration, “Measurement of the Higgs boson mass from the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector”, Phys. Rev. D 90 (2014) 052004, doi:10.1103/PhysRevD.90.052004, arXiv:1406.3827.

[3] ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, Phys. Lett. B 726 (2013) 120, doi:10.1016/j.physletb.2013.08.026, arXiv:1307.1432.

[4] CMS and ATLAS Collaborations, “Combined measurement of the Higgs boson mass in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS experiments”, Phys. Rev. Lett. 114 (2015) 191803, doi:10.1103/PhysRevLett.114.191803, arXiv:1503.07589.

[5] V. D. Barger, W.-Y. Keung, and E. Ma, “A gauge model with light W and Z bosons”, Phys. Rev. D 22 (1980) 727, doi:10.1103/PhysRevD.22.727.

[6] E. Salvioni, G. Villadoro, and F. Zwirner, “Minimal Z' models: present bounds and early LHC reach”, JHEP 11 (2009) 068, doi:10.1088/1126-6708/2009/11/068, arXiv:0909.1320.

[7] P. Langacker, “The physics of heavy Z' gauge bosons”, Rev. Mod. Phys. 81 (2009) 1199, doi:10.1103/revmodphys.81.1199, arXiv:0801.1345.

[8] D. Pappadopulo, A. Thamm, R. Torre, and A. Wulzer, “Heavy vector triplets: bridging theory and data”, JHEP 09 (2014) 60, doi:10.1007/JHEP09(2014)060, arXiv:1402.4431.

[9] H. Terazawa, M. Yasuè, K. Akama, and M. Hayashi, “Observable effects of the possible sub-structure of leptons and quarks”, Phys. Lett. B 112 (1982) 387, doi:10.1016/0370-2693(82)91075-9.

[10] E. J. Eichten, K. D. Lane, and M. E. Peskin, “New tests for quark and lepton substructure”, Phys. Rev. Lett. 50 (1983) 811, doi:10.1103/PhysRevLett.50.811.

[11] H. Harari, “Composite models for quarks and leptons”, Phys. Rep. 104 (1984) 159, doi:10.1016/0370-1573(84)90207-2.

[12] U. Baur, I. Hinchliffe, and D. Zeppenfeld, “Excited Quark Production at Hadron Colliders”, Int. J. Mod. Phys. A 02 (1987) 1285, doi:10.1142/S0217751X8700661.

[13] U. Baur, M. Spira, and P. M. Zerwas, “Excited quark and lepton production at hadron colliders”, Phys. Rev. D 42 (1990) 815, doi:10.1103/PhysRevD.42.815.

[14] R. M. Harris and K. Kousouris, “Searches for Dijet Resonances at Hadron Colliders”, Int. J. Mod. Phys. A 26 (2011) 5005, doi:10.1142/S0217751X11054905, arXiv:1110.5302.
[15] CMS Collaboration, “Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at $\sqrt{s}=7$ TeV”, *JHEP* 01 (2013) 013, doi:10.1007/jhep01(2013)013, arXiv:1210.2387.

[16] CMS Collaboration, “Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *Phys. Rev. D* 91 (2015) 052009, doi:10.1103/PhysRevD.91.052009, arXiv:1501.04198.

[17] CMS Collaboration, “Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $\sqrt{s}=8$ TeV”, *Phys. Rev. Lett.* 120 (2018) 201801, doi:10.1103/PhysRevLett.120.201801, arXiv:1802.06149.

[18] CMS Collaboration, “Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* 05 (2020) 033, doi:10.1007/JHEP05(2020)033, arXiv:1911.03947.

[19] ATLAS Collaboration, “Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *JHEP* 03 (2020) 145, doi:10.1007/JHEP03(2020)145, arXiv:1910.08447.

[20] G. Ciezarek et al., “A Challenge to Lepton Universality in B Meson Decays”, *Nature* 546 (2017) 227, doi:10.1038/nature22346, arXiv:1703.01766.

[21] LHCb Collaboration, “Test of lepton universality in beauty-quark decays”, *Nature Phys.* 18 (2022) 277, doi:10.1038/s41567-021-01478-8, arXiv:2103.11769.

[22] CMS Collaboration, “EXO-20-008”. HEPData record for this analysis, 2022. https://doi.org/10.17182/hepdata.127768

[23] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[24] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[25] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.

[26] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[27] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[28] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[29] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, *Eur. Phys. J. C* 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
[30] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[31] R. D. Ball et al., “Parton distributions with QED corrections”, *Nucl. Phys. B* 877 (2013) 290, doi:10.1016/j.nuclphysb.2013.10.010, arXiv:1308.0598.

[32] R. D. Ball et al., “Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO”, *Nucl. Phys. B* 855 (2012) 153, doi:10.1016/j.nuclphysb.2011.09.024, arXiv:1107.2652.

[33] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[34] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[35] CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, *JINST* 15 (2020) P09018, doi:10.1088/1748-0221/15/09/p09018, arXiv:2003.00503.

[36] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_T\) jet clustering algorithm”, *JHEP* 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[37] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[38] M. Cacciari, G. P. Salam, and G. Soyez, “The catchment area of jets”, *JHEP* 04 (2008) 005, doi:10.1088/1126-6708/2008/04/005, arXiv:0802.1188.

[39] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[40] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[41] E. Bols et al., “Jet Flavour Classification Using DeepJet”, *JINST* 15 (2020) P12012, doi:10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.

[42] CMS Collaboration, “Performance of the DeepJet \(b\) tagging algorithm using 41.9/\(fb\) of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018.

[43] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, “Applied linear statistical models”. Irwin, 1996. Fifth edition. ISBN 9780256117363.

[44] M. J. Oreglia, “A study of the reactions \(\psi' \rightarrow \gamma \gamma \psi\)” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.

[45] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, *JINST* 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
[46] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS”, *Eur. Phys. J. C* 81 (2021) 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.

[47] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[48] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.

[49] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* 43 (2016) 23001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.

[50] CMS and ATLAS Collaborations, “Procedure for the LHC Higgs boson search combination in Summer 2011”, CMS Note CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[51] CMS Collaboration, “Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons”, *Phys. Lett. B* 798 (2019) 134952, doi:10.1016/j.physletb.2019.134952, arXiv:1906.00057.

[52] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[53] A. L. Read, “Presentation of search results: the CL$_s$ technique”, *J. Phys. G* 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[54] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam², J.W. Andrulevičius, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Tempel, W. Waltenberger, C.-E. Wulz

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, T. Janssen, T. Kello⁴, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, L. Favart, A. Grebenyuk, A.K. Kalsi, K. Lee, M. Mahdavikhorrami, I. Makarenko, L. Moureaux, L. Pétre, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Roskas, A. Samalan, K. Skovpen, M. Tytgat, B. Vermassen, L. Wezenbeek

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke, A. Bethani, G. Brunc, F. Bury, C. Caputc, P. David, C. Delaere, I.S. Donertas, A. Giammanco, K. Jaffe, Sa. Jain, V. Lemaître, K. Monda, J. Prisciandaro, A. Taliercio, M. Teklishyn, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandonao Malbouisson, W. Carvalho, J. Chinellato⁵, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, C. Mora Herrera, K. Mota Amariluci, L. Mundim, H. Nogima, P. Rebello Teles, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D. S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tadic, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Bar, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xie

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, M. Xia

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisac, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, E. Erodotou, A. Ioannou, G. Kale, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla, Y. Assran, M.A. Mahmoud, A. Lotfy, M. A. Mahmoud, S. Bhowmik, R.K. Dewanjee, K. Etafaht, M. Kadastik, S. Nandar, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken, A. Lotfy, M.A. Mahmoud, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia, S. Bhowmik, R.K. Dewanjee, K. Etafaht, M. Kadastik, S. Nandar, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken, Department of Physics, University of Helsinki, Helsinki, Finland, P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen, Helsinki Institute of Physics, Helsinki, Finland, S. Bharthuar, E. Brückner, F. Garcia, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampéri, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Martikainen, M. Myllymäki, J. Ot, H. Siikonen, E. Tuominen, J. Tuominiemi, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, P. Luukka, H. Petrow, T. Tuuva, IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France, C. Amendola, M. Besançon, F. Coudert, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu, Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France, S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, A. Cappat, C. Charlot, O. Davignori, B. Diab, F. Falmagne, S. Ghost, R. Granier de Cassagnac, A. Hakim, I. Kuchet, J. Motta, M. Nguyer, C. Ochando, P. Paganini, J. Remsber, R. Salerno, U. Sarkar, J.B. Sauvar, Y. Siros, A. Zabi, A. Zghiche, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France, J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Bron, E.C. Chabert, C. Collard, D. Darej, J.-C. Fontaine, U. Goerlach, C. Grimault, A.-C. Le Bihan, E. Nibigira, P. Van Hove, Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France, E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanor, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascor, M. Gouzevitch, B. Ille, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, K. Shchablo, V. Sordin, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret, Georgian Technical University, Tbilisi, Georgia, I. Bagaturia, I. Lomidze, Z. Tsamalaidze, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany, V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwer, J. Schulz, M. Teroerde, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany, A. Dodonova, E. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghost, T. Hrebek, K. Hoepfner, F. Ivone, L. Mastrolorenzo, M. Merschmeyer, A. Meyer.
G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, L. Vigilante, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Serf, A. Stahl, T. Ziemons, A. Zott

Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martín, P. Asmuss, S. Baxter, M. Bayatmakou, O. Behnke, A. Bermúdez Martínez, S. Bhattacharya, A.A. Bin Anuar, K. Borras, D. Brunner, A. Campbell, A. Cardini, C. Cheng, F. Colombina, S. Consuegra Rodríguez, G. Correia Silva, V. Danilov, M. De Silva, L. Didukh, G. Eckerlin, D. Eckstein, L.I. Estevez Banos, O. Filatov, E. Gallo, A. Geiser, A. Giraldi, A. Grohsjear, M. Guthoff, A. Jafari, N.Z. Jomhari, A. Kasen, M. Kasemann, H. Kavel, C. Kleinwort, D. Krücker, W. Lange, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, M. Mendizabal Moretín, J. Metwally, A.B. Meyer, M. Meyer, J. Miñich, A. Mussigger, Y. Otariad, D. Pérez Adan, D. Pitzel, A. Raspereza, B. Ribeiro Lopes, J. Rübenach, A. Saggion, A. Saibel, M. Savitskyi, M. Scham, V. Scheurer, S. Schnake, P. Schütze, C. Schwanenberger, M. Shchedrolosiev, R.E. Sosa Ricardo, D. Stafford, N. Tonon, M. Van De Klundert, R. Walsh, D. Walter, Y. Wert, K. Wichmann, L. Wiens, C. Wissing, S. Wuchterl

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Albrecht, S. Bein, L. Benat, P. Connor, K. De Lee, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, M. Hajheidari, J. Hallett, A. Hinzmann, G. Kasieczka, R. Klanner, R. Kogler, T. Kramer, V. Kutzner, J. Lange, A. Lobanov, A. Malara, A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schlepetz, M. Schröder, J. Schwandt, M. Sommerhalder, J. Sonneveld, H. Stadie, G. Steinbrück, A. Tews, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
J. Bechtel, S. Brommet, M. Burkart, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, M. Giffels, J.o. Gosewisch, A. Gottmann, F. Hartmann, C. Heidecker, U. Husemann, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, Th. Müller, M. Neukum, A. Nürnberg, G. Quasi, K. Rabbertz, J. Rauser, D. Savoï, M. Schepf, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, J. Van Der Linden, R.F. Von Cube, M. Wassmer, M. Weber, S. Wieland, R. Wolf, S. Wozniewski, S. Wunsch

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraki, A. Manousakis-Katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, E. Tziaveri, K. Vellidis, E. Vourlioti

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiopitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
K. Adamidis, I. Bestintzanos, I. Evangelou, C. Foudas, P. Giannneios, P. Katsoulis, P. Kokkas, N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanád, K. Farkas, M.M.A. Gadallah, S. Lőkös, P. Major, K. Manda, A. Mehta, G. Pécskna, A.J. Rád, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvar

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Cseto, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

Panjab University, Chandigarh, India
S. Bansal, B.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Meena, P. Sandeep, J.B. Singh, A. K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjar, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber, M. Maity, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhok, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar, G.B. Mohanty

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India
S. Bahinipati, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, P. Saha, N. Sui, S.K. Swain, D. Vats
A.O.M. Iorioa,b, L. Listaa,b, S. Meolaa,d,21, P. Paoluccia,2, B. Rossia, C. Sciaccaa,b

INFN Sezione di Padovaa, Università di Padovab, Padova, Italy; Università di Trentoc, Trento, Italy

P. Azzia, N. Bacchettaa, D. Biselloa,b, P. Bortignona, A. Bragagnoloa,d, R. Carlinia,b, P. Checchiaa,b, T. Dorigoa,b, U. Dossellia,b, F. Gasparinia,b, U. Gasparia,b, G. Grossoa,b, S.Y. Hoha,b, L. Layera,b, E. Lusiania,b, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, P. Ronchesea,b, R. Rossinia,b, F. Simonettoa,b, G. Stronga, M. Tosia, H. Yarara,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy

C. Aimea,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, T. Vaia,b, P. Vituloa,b

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy

P. Asenova,b, G.M. Bileia,b, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, M. Magherinia,b, G. Mantovania,b, V. Mariannia,b, M. Menichellia, F. Moscatellia,b,c, A. Piccinellia,b, M. Presillaa,b, A. Rossia,b, A. Santocchiaa,b, D. Spigaa,b, T. Tedeschia,b

INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy; Università di Sienad, Siena, Italy

P. Azzurria,b, G. Bagliesia,b, V. Bertacchinia,b, L. Bianchinia,b, T. Boccala,b, E. Bossinia,b, R. Castaldia,b, M.A. Cioccia,b, V. D’Amantea,b, R. Dell’Orsoa,b, M.R. Di Domenicoa,b, S. Donatoa,b, A. Giassia,b, F. Ligabuea,b, E. Mancaa,b, G. Mandorlia,b,c, D. Mats Figueiredoa,b, A. Messineoa,b, F. Pallaa,b, S. Parola,b, G. Ramirez-Sancheza,b,c, A. Rizzia,b,c, G. Rolandia,b, S. Roy Chowdhurya,b, A. Scribana,b, N. Shafieia,b, P. Spagnoloa,b, R. Tanchinia,b, G. Tonellia,b, N. Turinia,b, A. Venturia,b, P.G. Verdina,b

INFN Sezione di Romaa, Sapienza Università di Romab, Roma, Italy

P. Barrioza,b, M. Campanaa,b, F. Cavallaria,b, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza,b, E. Longoa,b, P. Meridiania,b, G. Organtinia,b, G. Pandolfia,b, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia,b, F. Santanastasioa,b, C. Soffia,b, R. Tramontanoa,b

INFN Sezione di Torinoa, Università di Torinob, Torino, Italy; Università del Piemonte Orientalec, Novara, Italy

N. Amapanea,b, R. Arcidiaconoa,b, S. Argiroa,b, M. Arneodoa,b, N. Bartosika,b, R. Bellana,b, A. Belloraa,b, J. Berenguer Antequeraa,b, C. Biunoa,b, N. Cartigliaa,b, S. Comettia,b, M. Costaa,b, R. Covarellia,b, N. Demariaa,b, B. Kiania,b, F. Leggera,b, C. Mariottia,b, S. Masellia,b, E. Migliorea,b, E. Monteila,b, M. Montenoa,b, M.M. Obertinoa,b, G. Ortonaa,b, L. Pachera,b, N. Pastronea,b, M. Pelliccionia,b,c, G.L. Pinna Angionia,b, M. Ruspaia,b, K. Shchelinaa,b, F. Sivieroa,b, V. Solaa,b, A. Solanoa,b, D. Soldia,b, A. Staianoa,b, M. Tornagoa,b, D. Trocinoa,b, A. Vagnerinia,b

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy

S. Belfortea,b, V. Candelisea,b, M. Casarsaa,b, F. Cossuttia,b, A. Da Rolda,b, G. Della Riccaa,b, G. Sorrentinoa,b, F. Vazzolera,b

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H. S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, M.S. Ryu, D. Song, Watson, I.J., S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
K. Dreimanis, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. León Coello, J.A. Murillo Quijada, A. Sahrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, Y. Chac, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, H.y. Wu, E. Yazgan, Pr. Yu

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Özdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisci, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, I. Hos, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci, C. Zorbilmez

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv, Ukraine
B. Grynyov

National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.L. Holmberg, J. Linares, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, A. Tapper, K. Uchida, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid
Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanungo, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniya, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, Alabama, USA
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, Massachusetts, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, E. Fontanesi, D. Gastler, S. May, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan, D. Zou

Brown University, Providence, Rhode Island, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, U. Heintz, J.M. Hogan, T. KWON, G. Landsberg, K.T. Lau, D. Li, M. Lukasik, J. Luc, M. Narain, N. Pervan, S. Sagir, F. Simpson, E. Usai, W.Y. Wong, X. Yan, D. Yu, W. Zhang

University of California, Davis, Davis, California, USA
J. Bonilla, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, P.T. Cox, R. Erbacher, G. Haza, F. Jensen, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, B. Regnery, D. Taylor, Y. Yac, F. Zhang

University of California, Los Angeles, California, USA
M. Bachtis, R. Cousins, A. Datta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, W.A. Nash, S. Regnard, D. Saltzberg, B. Stone, V. Valuev

University of California, Riverside, Riverside, California, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, M. Gordon, G. Hansori, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, W. Shen, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, California, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deeler, D. Diaz, J. Duarte, R. Gerosa, L. Giannini, J. Guiang, J. Guan, R. Kansal, V. Krutelyov, R. Lee, J. Letts, M. Masciovecchi, F. Mokhtar, M. Pier, B.V. Sathia Narayanar, V. Sharma, M. Tadel, A. Vartak, F. Würthwein, Y. Xiang, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, California, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, M. Kilpatrick, J. Kim, B. Marsh, H. Mei, M. Oshiro, M. Quinnan, J. Richman, U. Sarica, F. Setti, J. Sheplock, D. Stuart, S. Wang

California Institute of Technology, Pasadena, California, USA
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mac, H.B. Newmar, T. Q. Nguyen, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
J. Alisov, S. An, M.B. Andrews, P. Bryant, T. Ferguson, A. Harilal, C. Liu, T. Mudholkar, M. Paulini, A. Sanchez, W. Terrill
Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Le Mahieu, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Ragan, C. Royon, R. Salvatico, S. Sanders, E. Schmitz, C. Smith, J.D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson

Kansas State University, Manhattan, Kansas, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, California, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, Maryland, USA
E. Adams, A. Bader, O. Baron, A. Belloni, S.C. End, N.J. Hadley, S. Jabeer, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabil, C. Palmer, M. Seide, A. Skuja, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
D. Abercrombie, G. Andreassi, R. Bi, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez-Ceballos, M. Goncharov, P. Harris, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, C. Mironov, C. Paus, D. Rankir, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, J. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, Minnesota, USA
R.M. Chatterjee, A. Evans, J. Hiltbrand, Sh. Jair, M. Krohn, Y. Kubota, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Nebraska-Lincoln, Lincoln, Nebraska, USA
K. Bloom, M. Bryson, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, C. Joo, I. Kravchenko, M. Musich, I. Reed, J.E. Siado, G.R. Snow, W. Tabb, F. Yan, A.G. Zecchinelli

State University of New York at Buffalo, Buffalo, New York, USA
G. Agarwal, H. Bandypadhyay, L. Hay, I. Iashvili, A. Kharchilava, C. McLear, D. Nguyen, J. Pekkanen, S. Rappoccio, A. Williams

Northeastern University, Boston, Massachusetts, USA
G. Alversor, E. Barberis, Y. Haddad, A. Hortiangtham, J. Li, G. Madigar, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnar, A. Tishelman-Charny, T. Wamorkal, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, Illinois, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, Y. Liu, N. Odell, M.H. Schmitt, M. Velasco

University of Notre Dame, Notre Dame, Indiana, USA
R. Band, R. Bucci, M. Cremonesi, A. Das, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, K. Lannon, J. Lawrence, N. Loukas, L. Lutton, N. Marinelli, I. Mcalister, T. McCauley, C. Mcgrady, K. Mohrman, C. Moore, Y. Musienko, R. Ruchti, P. Siddireddy, A. Townsend, M. Wayne, A. Wightman, M. Zarucki, L. Zygala

The Ohio State University, Columbus, Ohio, USA
B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, M. Nunez Ornelas, K. Wei, B.L. Winer, B. R. Yates
Princeton University, Princeton, New Jersey, USA
F.M. Addesa, B. Bonham, P. Das, G. Dezoort, P. Elmer, A. Frankenlta, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, D. Marlow, K. Mei, I. Ojalvo, J. Olser, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, Indiana, USA
A.S. Bakshi, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, S. Karmarkar, D. Kondratyev, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thiemari, F. Wang, R. Xiad, W. Xie

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen, N. Parashar

Rice University, Houston, Texas, USA
A. Baty, T. Carnahan, M. Decaro, S. Dildick, K.M. Ecklund, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumal, W. Li, B.P. Padley, R. Redjimi, W. Shi, A.G. Stahl Leiton, S. Yang, L. Zhang, Y. Zhang

University of Rochester, Rochester, New York, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvil, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, Texas, USA
O. Bouhali, M. Dalchenko, A. Delgadfo, R. Eusebi, C. J. Gilmore, T. Huang, T. Kamor, H. Kim, S. Luci, S. Malhotra, R. Mueller, D. Overtor, D. Rathjens, A. Safonov, N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Pertola, I. Volobouev, Z. Wang, A. Whitbeck

Texas Tech University, Lubbock, Texas, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovsky, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, Michigan, USA
N. Poudyal

University of Wisconsin - Madison, Madison, Wisconsin, USA

K. Black, T. Bose, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

Authors affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN

S. Afanasiev, V. Andreev, Yu. Andreev, T. Aushhev, M. Azarkin, A. Babaev, A. Belyaev, V. Blinov, E. Boos, V. Borshch, D. Budkouski, V. Bunichev, O. Bychkova, V. Chekhovsky, R. Chistov, M. Danilov, A. Dermenev, T. Dimova, I. Dremin, M. Dubinin, L. Dudko, V. Epshteyn, G. Gavrilov, V. Gavrilov, S. Gninenko, V. Golovtsov, N. Golubev, I. Golutvin, I. Gorbunov, A. Gribushin, V. Ivanenchko, Y. Ivanov, V. Kachanov, L. Kardapoltsev, V. Karjavine, A. Karneyeu, V. Kim, M. Kirakosyan, D. Kiritchenkov, M. Kirsanov, V. Klyukhin, O. Kodolova, D. Konstantinov, V. Korenkov, A. Kozyrev, N. Krasnikov, E. Kuznetsova, A. Lane, A. Litomin, N. Lychkovskaya, V. Makarenko, A. Malakhov, V. Matveev, V. Murzin, A. Nikitenko, S. Obraztsov, V. Okhotnikov, V. Oreshkin, A. Oskin, I. Ovtin, V. Palichik, P. Parygin, A. Pashenkov, V. Perelygin, M. Perfilov, S. Petrushanko, G. Pivovarov, S. Polikarpov, V. Popov, O. Radchenko, M. Savina, V. Savrin, D. Seito, V. Shalaev, S. Shmatov, S. Shulha, Y. Skowpen, S. Slabospitski, I. Smirnov, V. Smirnov, D. Sokov, A. Stepenov, V. Sulimov, E. Tcherniaev, A. Terkulov, O. Teryaev, M. Toms, A. Toropin, L. Uvarov, A. Uzunian, E. Vlasov, S. Volkov, A. Vorobyev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhir, A. Zhokin

†: Deceased

1 Also at Yerevan State University, Yerevan, Armenia
2 Also at TU Wien, Vienna, Austria
3 Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
4 Also at Université Libre de Bruxelles, Bruxelles, Belgium
5 Also at Universidade Estadual de Campinas, Campinas, Brazil
6 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7 Also at The University of the State of Amazonas, Manaus, Brazil
8 Also at University of Chinese Academy of Sciences, Beijing, China
9 Also at UFMS, Nova Andradina, Brazil
10 Also at Nanjing Normal University Department of Physics, Nanjing, China
11 Now at The University of Iowa, Iowa City, Iowa, USA
12 Also at University of Chinese Academy of Sciences, Beijing, China
13 Also at an institute or an international laboratory covered by a cooperation agreement with CERN
14 Also at Cairo University, Cairo, Egypt
15 Also at Suez University, Suez, Egypt
16 Now at British University in Egypt, Cairo, Egypt
17 Also at Purdue University, West Lafayette, Indiana, USA
18 Also at Université de Haute Alsace, Mulhouse, France
Also at Ozyegin University, Istanbul, Turkey
Also at Necmettin Erbakan University, Konya, Turkey
Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
Also at Marmara University, Istanbul, Turkey
Also at Milli Savunma University, Istanbul, Turkey
Also at Kafkas University, Kars, Turkey
Also at Istanbul Bilgi University, Istanbul, Turkey
Also at Hacettepe University, Ankara, Turkey
Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
Also at Vrije Universiteit Brussel, Brussel, Belgium
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Also at IPPP Durham University, Durham, United Kingdom
Also at Monash University, Faculty of Science, Clayton, Australia
Also at Università di Torino, Torino, Italy
Also at Bethel University, St. Paul, Minnesota, USA
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
Also at California Institute of Technology, Pasadena, California, USA
Also at Ain Shams University, Cairo, Egypt
Also at Bingöl University, Bingöl, Turkey
Also at Georgian Technical University, Tbilisi, Georgia
Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Now at Istanbul University, Istanbul, Turkey
Also at Yerevan Physics Institute, Yerevan, Armenia
Now at University of Florida, Gainesville, Florida, USA
Also at Imperial College, London, United Kingdom
Now at University of Rochester, Rochester, New York, USA
Now at Baylor University, Waco, Texas, USA
Now at INFN Sezione di Torino, Università di Torino, Torino, Italy; Università del Piemonte Orientale, Novara, Italy
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan