Power spectra in a zero-range process on a ring: total occupation number in a segment

A G Angel1,2 and R K P Zia1

1 Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
2 Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
E-mail: andrew.angel@bbsrc.ac.uk and rkpzia@vt.edu

Received 13 November 2008
Accepted 24 January 2009
Published 5 March 2009

Abstract. We study the dynamics of density fluctuations in the steady state of a non-equilibrium system, the zero-range process on a ring lattice. Measuring the time series of the total number of particles in a segment of the lattice, we find remarkable structures in the associated power spectra, namely, two distinct components of damped oscillations. The essential origin of both components is shown in a simple pedagogical model. Using a more sophisticated theory, with an effective drift–diffusion equation governing the stochastic evolution of the local particle density, we provide reasonably good fits to the simulation results. The effects of altering various parameters are explored in detail. Avenues for improving this theory and deeper understanding of the role of particle interactions are indicated.

Keywords: driven diffusive systems (theory), zero-range processes

ArXiv ePrint: 0811.1977
1. Introduction

For systems in thermal equilibrium, Boltzmann and Gibbs provided a sound framework which forms part of textbook material nowadays. Specifically, the probability distribution (for finding the system in any configuration) is given simply by the Boltzmann factor. In contrast, little is known in general about systems driven into non-equilibrium steady states, specified via, say, a set of transition rates that violate detailed balance. To explore this vast unknown, it is natural to focus on simple solvable models, with the hope of gaining insight for formulating a general framework for non-equilibrium statistical mechanics. One paradigmatic model is the zero-range process (ZRP) [1, 2], in which particles hop from one site to the next on a one-dimensional periodic lattice (i.e., a ring of L sites), with a rate that depends solely on \(n \), the number of particles in the originating site.

The ZRP distinguishes itself in at least two ways. Its steady-state probability distribution takes a factorized form, which can be expressed succinctly in terms of the hopping rate \(u(n) \) (often easing the computation of various averages). Also it exhibits condensation transitions, even in low dimensions which would not be expected in an equilibrium system without long-range interactions. In addition to its utility in the fundamental study of non-equilibrium processes, where it has been employed to develop a general criterion for phase separation in one-dimensional driven systems [3] among other things, the ZRP has also found success as a minimal model for various real systems including vehicular traffic [4], compartmentalized granular gases [5] and gel electrophoresis [6].

Though much is known about the ZRP, there is a simple and natural, but so far unanswered, question that we may ask. While the total number of particles on the (finite, periodic) lattice is fixed as the system evolves, the number in a subsection of, say, \(\ell \) sites—denoted by \(N_\ell(t) \) here—is a quantity that fluctuates in time \(t \); what are its properties? In the steady state, its time average \(\langle N_\ell(t) \rangle \) is of course a constant. Nevertheless, its average power spectrum, \(I(\omega) \equiv \langle |\int e^{-i\omega t} N_\ell(t)|^2 \rangle \), is non-trivial and provides information on the autocorrelation \(\langle N_\ell(t)N_\ell(t') \rangle \). A recent study [7] reported the presence of interesting oscillations in the power spectra for another simple paradigmatic non-equilibrium model,
the open totally asymmetric simple exclusion process (TASEP) \[1, 8, 9\]. In this work, we carry out an extensive investigation of the ZRP, with a variety of rates and a range of ring and subsection sizes \((L \text{ and } \ell)\). In addition to the oscillations discovered in TASEP on an open lattice \[7\], two ‘complementary’ sets of oscillations are found, one controlled by \(L\) and the other by \(\ell\).

The dynamics of density fluctuations in the ZRP has been investigated recently by Gupta et al \[10\], who focused on the variance of the integrated current through a single site as a function of time. This quantity also displays damped oscillations, but in the time domain. The period is proportional to \(L/v\), with \(v\) being the velocity associated with a fluctuation. Being in the frequency domain, our study complements the earlier work. One of the components of our \(I(\omega)\) oscillates with period \(v/L\), and undoubtedly can be traced to the same origin. However, in \[10\], the damping of the oscillations is not the main focus and so diffusive/dispersive properties in the system were not considered. By contrast, we will analyse such behaviour and find that it poses the most challenge for theoretical understanding. Further, by considering a quantity associated with multiple sites \((\ell > 1)\), we hope to extract more information about the dynamics of fluctuations.

The presence of \(v/L\) may lead some to dismiss these phenomena as ‘nothing but finite size effects’. However, understanding these effects is very important, since many such models of non-equilibrium transport are believed to be applicable to physical systems with relatively small values of \(L\). Thus, in the examples given above, \(L \lesssim 10\,000\) for vehicular traffic and gel electrophoresis. The other popular model of non-equilibrium transport, TASEP, was first introduced as a possible model for protein synthesis \[11\], where \(L\) rarely exceeds 1000. By contrast, in traditional macroscopic systems (e.g., in solid state physics), we generally have in mind \(L^3 \sim (10^8)^3\). Consequently, the phenomena discussed here are not merely of theoretical interest, but should be physically observable.

The paper is organized as follows: details of the model and its dynamics will be the focus of section 2; results of simulations, theoretical analysis and comparisons are the themes of the following three sections; we end with a summary and outlook for future research.

2. Model specification and simulation details

The ZRP that we study here takes place on a one-dimensional lattice of \(L\) sites with periodic boundary conditions. A total number of \(N\) particles exists on the lattice, with no restrictions on the occupation of each site, so that a configuration of the system is completely specified by the set \(\{n(x)\}\), i.e., \(n(x)\) particles being on site \(x\) (with \(x = 0, \ldots, L - 1\)). The system evolves through particles hopping from site to site and is defined in discrete space and continuous time. Particles hop to the adjacent site to the right with a rate that depends only on \(n\): \(u(n)\). That this hopping rate is independent of the occupation in any other site in the system gives rise to the ZR part of ZRP. Figure 1 shows a basic diagram of the system.

Ours is perhaps the simplest ZRP, with the particle landing only in the nearest neighbouring site. Many more complex cases exist, e.g., having more than one particle move, landing them in various sites, and inhomogeneous hopping rates: \(u(n, x)\). For a recent review see \[2\].

Obviously, \(\sum_x n(x) = N\) is a constant in time. The most naive expectation of our simple ZRP is that, after the system settles into a (non-equilibrium) stationary state, the
average occupation is homogeneous: $\langle n(x) \rangle = \bar{\rho} \equiv N/L$. Part of the general interest in the ZRP arises in the existence of a phase transition, when $\bar{\rho}$ exceeds a critical value ρ_c, from such a homogeneous state to an inhomogeneous ‘condensed’ state. In the latter, all but one site is occupied by an average of ρ_c particles, with the excess $(N - \rho_c L)$ just on one site. Because the situation is reminiscent of Bose–Einstein condensation, this macroscopic fraction is referred to as the condensate. Unlike in the Bose–Einstein case, translational invariance is spontaneously broken and the condensate can reside in any site. Indeed, in a finite system, it does disappear from one site and reappear at another on some interesting timescale [12].

Of the infinitely many functions we can choose for $u(n)$, it is the $n \to \infty$ asymptotic properties that control the existence of a transition. A typical rate is $u(n) = 1 + b/n$, which allows a condensation transition provided $b > 2$ [13]. In this paper, we consider several rate functions, including this one, a constant hop rate, and $u(n) \propto n$ (which corresponds to having non-interacting particles on the lattice). Despite the interest in condensation and phase transitions, here we focus on the homogeneous phase of the system, in which many remarkable features already appear. In future studies, we plan to further investigate the power spectra of systems with a condensate, as well as lattices with more interesting topologies [14].

We study the system using a simple Monte Carlo algorithm. In each Monte Carlo step (MCS), we make L attempts to move a particle. In an attempt, a site is selected at random. Provided it contains n (>0) particles, one is moved to the adjacent site to the right with probability $\gamma u(n)$, where γ is a normalization factor, $0 < \gamma \leq 1/\max u(n)$. Of course, a particle leaving site $L - 1$ is moved to site 0. Simulations are typically run for 8×10^7 MCS.

Starting from random initial conditions, we discard the first 10^7 MCS for the system to come to the steady state. Subsequently, we focus on a fixed segment of length ℓ sites.
(with $\ell < L$) and record its total occupation,

$$N_\ell(t) \equiv \sum_{x=0}^{\ell-1} n(x, t),$$

(1)

every 10 MCS. Thus, each of our time series consists of 7×10^6 data points, which we regard as 53 samples of 131 072 points, i.e., $t = 0, \ldots, T - 1$ with $T = 2^{17}$. We choose a power of 2 so that fast Fourier transform routines can be exploited to compute

$$\tilde{N}_\ell(\omega) \equiv \sum_t e^{-i\omega t} N_\ell(t); \quad \omega \equiv 2\pi m/T.$$

(2)

Finally, we average over the 53 samples to arrive at the power spectrum:

$$I(\omega) \equiv \langle |\tilde{N}_\ell(\omega)|^2 \rangle.$$

(3)

We use a typical system size of $L = 10\,000$ sites with varying segment sizes, but most frequently $\ell = 1000$. Mostly, we use the Mersenne Twister \cite{15} random number generator. To rule out systematic errors from these sources, we have also used other generators (e.g., drand48, ran2, /dev/urandom), as well as various data segment sizings and output intervals.

3. Simulation results

Figure 2 shows a typical trace of $N_\ell(t)$ as both an entire sample and a magnified view of a section of this sample. It appears that there is some oscillatory behaviour, but it is difficult to distinguish from random fluctuations; taking averaged power-spectra measurements reveals much more in terms of structure. A typical power-spectra measurement is shown in figure 3 for a system with $L = 32\,000$, $\ell = 1000$ and hop rate $u(n) = 1 + 4/n$. It is a log–log plot and the power spectrum is plotted against the index, m, which is related to the frequency, ω, through the relation $\omega = 2\pi m/T$. The average spectrum displays several prominent features. Two distinct damped-oscillation components can clearly be seen: one at low m and the other at higher m. The former consists of a series of sharp peaks, with the first peak at $m = 14$. Note the positive curvature at low m, a feature notably absent from previously observed power spectra in open systems \cite{7}. The higher m oscillations are more subtle, being obscured partly by the other component. Their character is different, resembling those observed in \cite{7}, i.e., ‘dips’ over a smooth background. The first ‘dip’ can be seen at $m \approx 330$, where the low m oscillations are effectively fully damped. For large m the spectrum tends to m^{-2}, characteristic of white noise that might be expected for frequencies associated with a microscopic timescale.

The effects of various parameter variations on the structure shown in the power spectra are studied numerically. We discuss the results in some detail below.

Density. Examining the changes elicited in the power spectrum when varying the density in the system we see that increasing the overall density lessens and eventually removes the low m damped oscillating component; figure 4. However, we do not conclusively observe the same effect for the higher m damped oscillations. In fact, simulations at higher values of b indicate that this structure remains well into the condensed region, but at high enough density the oscillations will no longer be apparent. It is also notable

\texttt{doi:10.1088/1742-5468/2009/03/P03009}
that the removal of the low \(m \) oscillations coincides with the onset of condensation in the system. For the finite systems studied here condensation does not occur with a sharp transition at the theoretical critical density (in this case \(\rho_c = 0.5 \)) but rather there is a region with unstable wandering condensates which become more and more stable as the density is increased. In the data shown in figure 4 there is a moderately stable wandering condensate for the overall density \(\rho = 0.55 \).

Segment size. Figure 5 shows results for variation in the size of the segment (\(\ell \)) in the system, keeping the total number of sites (\(L \)) and particles (\(N \)) fixed. Here we see that increasing the size of the segment causes the higher \(m \) oscillation component to move to lower and lower \(m \) where its interference with the other component is increasingly apparent. Thus, it is clear that the structure of the spectrum at high \(m \) is due to the size of the segment. Note that for a segment of 5000 sites in the ring of 10 000, the higher \(m \) component interferes constructively and destructively with alternating peaks of the low \(m \) component.

Lattice size. It is clear that at fixed segment size and particle density, increasing the lattice size changes the low \(m \) damped oscillating component but has little effect on the higher \(m \) component; figure 6. In conjunction with the results for segment size, this leads
Figure 3. A typical result of a power-spectra measurement. Taken from a system of $L = 32\,000$ sites with a segment of $\ell = 1000$, a density of $\rho = 0.25$ and hop rate $u(n) = 1 + 4/n$. The two damped-oscillation components in the power spectrum can clearly be discerned. The first peak of the low m component is at $m = 14$ and while the location of the first peak of the higher m component is obscured by the oscillation of the other, the second peak is at $m \approx 650$.

Figure 4. Results displaying the effect of varying the density with the standard hop rate. Data shown are from a system of $L = 10\,000$ sites with a segment of $\ell = 1000$ and hop rate $1 + 4/n$. The density varies from $\rho = 0.25$ to 0.55 in increments of 0.1. Note that the data have been scaled on the y-axis for comparison and so the units of this axis are arbitrary and it is a log-log plot.
Figure 5. Results displaying the effect of varying the segment size with the standard hop rate. Data shown are from a system with $L = 10000$ sites, a density of $\rho = 0.25$ and hop rate $1 + 4/n$. The segment size varies from 1000 to 5000 in increments of 1000. Note that the data have been scaled for the purposes of comparison, so the units of the y-axis are arbitrary and it is a log–log plot.

Figure 6. Results displaying the effect of varying the lattice size with the standard hop rate. Data shown are from a system with a segment of $\ell = 1000$ sites, a density of $\rho = 0.25$ and the hop rate $1 + 4/n$. The lattice sizes shown are 6000, 7000 and 8000.

to the conclusion that the higher m component is controlled by the segment size and that the low m component is controlled by the size of the lattice.

doi:10.1088/1742-5468/2009/03/P03009
Figure 7. Results displaying the effect of varying the parameter b in the standard hop rate $u(n) = 1 + b/n$. Data shown are from a system with a lattice of $L = 10000$ sites, a segment size of $\ell = 1000$ and density $\rho = 0.25$, with b values 2, 3 and 4. The units of the y-axis are arbitrary as the data have been scaled so that they may be compared on the same graph and it is a log–log plot.

Parameter b. Remaining with the standard hop rate, figure 7 shows results displaying the effect of varying the parameter b (which can be thought of as controlling the strength of the interaction). It is clear that changing this affects the location of the peaks in both the low m and higher m components. Also, although not immediately apparent from the data shown, it affects the height of the peaks and the number of clearly resolved peaks.

Hop rate form. Moving on from the standard hop rate, figure 8 shows a comparison of this with constant and non-interacting hop rates. From these results it appears that the two damped-oscillation components are most clearly seen in the case of the non-interacting hop rate and least clearly seen in the standard hop rate.

The effect of varying the segment and lattice sizes has much the same effect on the constant hop rate and non-interacting cases as it does with the standard hop rate. However, changing the density continues to affect the power spectra in the case of the constant hop rate, but not for the non-interacting case. In the latter, changing the density merely changes the magnitude of the power spectrum, as shown in figure 9. This suggests that damped oscillations are universal phenomena in particle-transport systems, though inter-particle interactions will affect the detailed properties. Indeed, we show in section 4 that a drift–diffusion type of interpretation is quite successful in describing this phenomenon and that the interaction of the particles controls the values of the drift and the diffusion.

4. Theoretical understanding

Before we present a theory based on the Langevin equation, let us consider a simple toy model, from which we can gain some insight into the origins of both types of oscillation.
In this toy model, a single particle moves on a ring of length L with uniform velocity v_0, and we seek the power spectrum of $N_\ell(t)$, the number of particles in a segment of length ℓ, with $l < L$. (For simplicity, assume continuous space–time.) Of course, $N_\ell(t)$ is trivially a series of step functions, such that

$$\partial_t N_\ell(t) = \sum_{\mu \in \mathbb{Z}} \left[\delta(t - \mu \tau_L) - \delta(t - \mu \tau_L - \tau_\ell) \right],$$

(4)

where

$$\tau_L \equiv L/v_0 \quad \text{and} \quad \tau_\ell \equiv \ell/v_0$$

(5)

are the times that it takes to traverse the ring and the segment, respectively. Taken over a period of M traversals ($t \in [0, M\tau_L)$, to be precise), $\tilde{N}_\ell(\omega) \equiv \int e^{-i\omega t} N_\ell(t)$ is given by

$$i\omega \tilde{N}_\ell(\omega) = \sum_{\mu=0}^{M-1} e^{-i\omega \mu \tau_L} \left[1 - e^{-i\omega \tau_\ell} \right] = \frac{1 - e^{-i\omega \tau_L M}}{1 - e^{-i\omega \tau_\ell}} \left[1 - e^{-i\omega \tau_\ell} \right].$$

(6)

Thus,

$$I_{\text{toy}}(\omega) = \left[\frac{\sin(\omega \tau_L M/2)}{\sin(\omega \tau_L/2)} \right]^2 \left[\frac{\sin(\omega \tau_\ell/2)}{\omega/2} \right]^2.$$

(7)

For M sufficiently large, the first of these factors gives a series of ‘spikes’ when ω is an integer multiple of $2\pi v_0/L$. Thus, these peaks are controlled by the ring size L.

Figure 8. Results comparing power spectra from three different hop rates, from top to bottom: standard $u(n) = 1 + 4/n$; constant $u(n) = 1$; and non-interacting $u(n) \propto n$. The units on the y-axis are arbitrary as the data have been scaled for easy comparison and it is a log–log plot. The data are from a system with $L = 1000$ sites, a segment size of $\ell = 100$, a density of $\rho = 0.1$ and the simulations were all run with the same normalization, γ.

In this toy model, a single particle moves on a ring of length L with uniform velocity v_0, and we seek the power spectrum of $N_\ell(t)$, the number of particles in a segment of length ℓ, with $l < L$. (For simplicity, assume continuous space–time.) Of course, $N_\ell(t)$ is trivially a series of step functions, such that

$$\partial_t N_\ell(t) = \sum_{\mu \in \mathbb{Z}} \left[\delta(t - \mu \tau_L) - \delta(t - \mu \tau_L - \tau_\ell) \right],$$

(4)

where

$$\tau_L \equiv L/v_0 \quad \text{and} \quad \tau_\ell \equiv \ell/v_0$$

(5)

are the times that it takes to traverse the ring and the segment, respectively. Taken over a period of M traversals ($t \in [0, M\tau_L)$, to be precise), $\tilde{N}_\ell(\omega) \equiv \int e^{-i\omega t} N_\ell(t)$ is given by

$$i\omega \tilde{N}_\ell(\omega) = \sum_{\mu=0}^{M-1} e^{-i\omega \mu \tau_L} \left[1 - e^{-i\omega \tau_\ell} \right] = \frac{1 - e^{-i\omega \tau_L M}}{1 - e^{-i\omega \tau_\ell}} \left[1 - e^{-i\omega \tau_\ell} \right].$$

(6)

Thus,

$$I_{\text{toy}}(\omega) = \left[\frac{\sin(\omega \tau_L M/2)}{\sin(\omega \tau_L/2)} \right]^2 \left[\frac{\sin(\omega \tau_\ell/2)}{\omega/2} \right]^2.$$

(7)

For M sufficiently large, the first of these factors gives a series of ‘spikes’ when ω is an integer multiple of $2\pi v_0/L$. Thus, these peaks are controlled by the ring size L.

Figure 8. Results comparing power spectra from three different hop rates, from top to bottom: standard $u(n) = 1 + 4/n$; constant $u(n) = 1$; and non-interacting $u(n) \propto n$. The units on the y-axis are arbitrary as the data have been scaled for easy comparison and it is a log–log plot. The data are from a system with $L = 1000$ sites, a segment size of $\ell = 100$, a density of $\rho = 0.1$ and the simulations were all run with the same normalization, γ.

In this toy model, a single particle moves on a ring of length L with uniform velocity v_0, and we seek the power spectrum of $N_\ell(t)$, the number of particles in a segment of length ℓ, with $l < L$. (For simplicity, assume continuous space–time.) Of course, $N_\ell(t)$ is trivially a series of step functions, such that

$$\partial_t N_\ell(t) = \sum_{\mu \in \mathbb{Z}} \left[\delta(t - \mu \tau_L) - \delta(t - \mu \tau_L - \tau_\ell) \right],$$

(4)

where

$$\tau_L \equiv L/v_0 \quad \text{and} \quad \tau_\ell \equiv \ell/v_0$$

(5)

are the times that it takes to traverse the ring and the segment, respectively. Taken over a period of M traversals ($t \in [0, M\tau_L)$, to be precise), $\tilde{N}_\ell(\omega) \equiv \int e^{-i\omega t} N_\ell(t)$ is given by

$$i\omega \tilde{N}_\ell(\omega) = \sum_{\mu=0}^{M-1} e^{-i\omega \mu \tau_L} \left[1 - e^{-i\omega \tau_\ell} \right] = \frac{1 - e^{-i\omega \tau_L M}}{1 - e^{-i\omega \tau_\ell}} \left[1 - e^{-i\omega \tau_\ell} \right].$$

(6)

Thus,

$$I_{\text{toy}}(\omega) = \left[\frac{\sin(\omega \tau_L M/2)}{\sin(\omega \tau_L/2)} \right]^2 \left[\frac{\sin(\omega \tau_\ell/2)}{\omega/2} \right]^2.$$

(7)

For M sufficiently large, the first of these factors gives a series of ‘spikes’ when ω is an integer multiple of $2\pi v_0/L$. Thus, these peaks are controlled by the ring size L.

Figure 8. Results comparing power spectra from three different hop rates, from top to bottom: standard $u(n) = 1 + 4/n$; constant $u(n) = 1$; and non-interacting $u(n) \propto n$. The units on the y-axis are arbitrary as the data have been scaled for easy comparison and it is a log–log plot. The data are from a system with $L = 1000$ sites, a segment size of $\ell = 100$, a density of $\rho = 0.1$ and the simulations were all run with the same normalization, γ.

In this toy model, a single particle moves on a ring of length L with uniform velocity v_0, and we seek the power spectrum of $N_\ell(t)$, the number of particles in a segment of length ℓ, with $l < L$. (For simplicity, assume continuous space–time.) Of course, $N_\ell(t)$ is trivially a series of step functions, such that

$$\partial_t N_\ell(t) = \sum_{\mu \in \mathbb{Z}} \left[\delta(t - \mu \tau_L) - \delta(t - \mu \tau_L - \tau_\ell) \right],$$

(4)

where

$$\tau_L \equiv L/v_0 \quad \text{and} \quad \tau_\ell \equiv \ell/v_0$$

(5)

are the times that it takes to traverse the ring and the segment, respectively. Taken over a period of M traversals ($t \in [0, M\tau_L)$, to be precise), $\tilde{N}_\ell(\omega) \equiv \int e^{-i\omega t} N_\ell(t)$ is given by

$$i\omega \tilde{N}_\ell(\omega) = \sum_{\mu=0}^{M-1} e^{-i\omega \mu \tau_L} \left[1 - e^{-i\omega \tau_\ell} \right] = \frac{1 - e^{-i\omega \tau_L M}}{1 - e^{-i\omega \tau_\ell}} \left[1 - e^{-i\omega \tau_\ell} \right].$$

(6)

Thus,

$$I_{\text{toy}}(\omega) = \left[\frac{\sin(\omega \tau_L M/2)}{\sin(\omega \tau_L/2)} \right]^2 \left[\frac{\sin(\omega \tau_\ell/2)}{\omega/2} \right]^2.$$

(7)

For M sufficiently large, the first of these factors gives a series of ‘spikes’ when ω is an integer multiple of $2\pi v_0/L$. Thus, these peaks are controlled by the ring size L.
By contrast, the second factor displays an oscillation over a smooth background \((\omega^{-2})\), noticeably with zeros at integer multiples of \(2\pi v_0/\ell\). We see that these are governed by the segment size \(\ell\). As a toy model, it also serves as a pedagogical tool. What we have here is the temporal version of the diffraction pattern from a large \((M)\) array of slits of width \(\ell\), spaced a distance \(L\) apart. Of course, once we add dispersion (velocity here; wavelength in diffraction), we will see both smoothing of the peaks and infilling of the zeros.

With this insight, we turn to the power spectra here, which can be reasonably well understood through a Langevin equation for the local particle density (continuous variable) on discrete space–time: \(\rho(x, t)\) (we go to discrete time to more closely match the simulations). To connect with section 3, we may think of \(\rho(x, t)\) as a kind of coarse-grain average of \(n(x, t)\). The starting point is a discrete continuity equation

\[
\rho(x, t+1) - \rho(x, t) = J(x-1, t) - J(x, t),
\]

with \(J(x, t)\) being the net local current from site \(x\) to \(x+1\) at time \(t\). Clearly, it is controlled by the hop rate \(u(x, t)\). Now, as we are considering power spectra for \(\omega > 0\), we need only account for the deviations of this density from the mean, i.e.,

\[
\varphi \equiv \rho(x, t) - \bar{\rho}; \quad x = 0, 1, \ldots, L-1; \quad t = 0, 1, \ldots, T-1.
\]

Except for the condensed phase, \(\bar{\rho}\) is just the global density of particles, \(N/L\); otherwise, it is \(\rho_c\) (apart from the site with the condensate). The strategy is that, for systems far from criticality, these deviations should be small and their essentials can be understood via an approximate Langevin equation that is linear in \(\varphi(x, t)\).
Following the standard route, we recognize the deterministic part of \(J \) as a function of \(\rho \) and expand it to first order in \(\phi \):

\[
J_{\text{det}}(x, t) = J_{\text{det}}(\bar{\rho} + \phi(x, t)) = J_{\text{det}}(\bar{\rho}) + J'_{\text{det}}(\bar{\rho})\phi(x, t) + \cdots. \tag{10}
\]

Defining

\[
v \equiv J'_{\text{det}}(\bar{\rho}), \tag{11}
\]

and adding the noisy part of the current, \(\eta(x, t) \), we have

\[
\phi(x, t+1) - \phi(x, t) = v [\phi(x - 1, t) - \phi(x, t)] + \eta(x - 1, t) - \eta(x, t). \tag{12}
\]

We assume the noise to be uncorrelated and Gaussian, so that

\[
\langle \eta \rangle = 0; \quad \langle \eta(x, t)\eta(x', t') \rangle = A\delta_{x,x'}\delta_{t,t'}. \tag{13}
\]

Here, \(A \) is a measure of the strength of the noise, which we regard as a phenomenological parameter. Before proceeding to the solution, let us emphasize that this somewhat unusual form of the drift–diffusion equation is a signature of the ZRP. In many other driven diffusive systems \[16\], the current from \(x \) to \(x + 1 \) would depend on both \(\rho(x, t) \) and \(\rho(x + 1, t) \), so an additional term involving \(\phi(x + 1, t) \) will appear on the right-hand side of equation (12). By contrast, in the ZRP, the jump rates (from \(x \) to \(x + 1 \)) depend only on the occupation at \(x \).

In this linear approximation, our Langevin equation (12) can be easily solved by Fourier methods. Defining

\[
\tilde{\phi}(k, \omega) = \frac{1}{LT} \sum_{x,t} e^{-i(kx+\omega t)}\phi(x, t), \tag{14}
\]

where \(k \equiv 2\pi j/L, \omega \equiv 2\pi m/T \) (\(j = 0, 1, 2, \ldots, L - 1 \) and \(m = 0, 1, 2, \ldots, T - 1 \)), we find the solution easily:

\[
\tilde{\phi}(k, \omega) = \frac{e^{-ik} - 1}{e^{i\omega} - 1 - v [e^{-ik} - 1]} \tilde{\eta}(k, \omega). \tag{15}
\]

Note that, if we keep terms to lowest (relevant) order in \(k \) and \(\omega \), the propagator assumes the familiar form,

\[
\frac{-ik}{i\omega + ik + Dk^2}, \tag{16}
\]

of a drift–diffusion equation with conserved noise: \(\partial_t \rho = D\nabla^2 \rho - v \nabla \rho - \nabla \eta \). For us, the zero-range aspect of the ZRP imposes a relation between \(v \) and the diffusion ‘constant’ \(D \).

Now, our focus here is the number of particles in a segment and so we consider

\[
\tilde{N}_{\ell}(t) = \tilde{\rho}_{\ell} + \sum_{x=0}^{\ell-1} \phi(x, t). \tag{17}
\]

Carrying out the summation over \(x \) of \(e^{ikx} \), we find (for \(\omega > 0 \))

\[
\tilde{N}_{\ell}(\omega) = \sum_{k} \frac{1 - e^{ik\ell}}{1 - e^{ik\omega} - 1 - v [e^{-ik} - 1]} \tilde{\eta}(k, \omega), \tag{18}
\]

doi:10.1088/1742-5468/2009/03/P03009
from which we can compute the power spectrum via equation (3). Before comparing such a result to data, we recall that, in the previous study [7], the diffusion coefficient seems to be seriously renormalized by interactions. Anticipating the same behaviour here, we relabel the coefficient of our \(1 - \cos(k) \) term (i.e., terms even in \(k \)) in the propagator as \(2D_{\text{eff}} \)—twice the effective diffusion constant—and regard it as a phenomenological parameter. The resulting power spectrum, after performing the averaging over the noise (equation (13)), is

\[
I(\omega) = \langle |\tilde{N}_\ell(\omega)|^2 \rangle = \frac{2A}{LT} \sum_k \frac{1 - \cos(k\ell)}{(\cos(\omega) - 1 - 2D_{\text{eff}}(\cos(k) - 1))^2 + (\sin(\omega) + v\sin(k))^2}.
\]

As we discuss below, to fit the data well, we must choose the value of \(D_{\text{eff}} \) to be far from that naively derived above (\(D_{\text{eff}} = v/2 \)). By contrast, we will see that the ‘bare’ value of \(v \) (i.e., \(J_{\text{det}}(\bar{\rho}) \), with \(J_{\text{det}}(\rho) \) being the known current–density relationship of the ZRP [13, 2]) fits the data quite well. At this stage, there is no good explanation for why \(D_{\text{eff}} \) is significantly ‘renormalized’, while \(v \) seems to be ‘unscathed’. Our conjecture is that Galilean invariance imposes a Ward identity, as in the case of the driven lattice gas [17]. This is an avenue which we plan to pursue in the future.

Returning our attention to equation (19), we see that it predicts the locations of the first set of peaks (low \(\omega \) ones resulting from the sojourn time of a fluctuation around the entire lattice, \(L \)) of the power spectra measured from simulation. For example, if we consider small (positive) \(\omega \), we find peaks in \(I(\omega) \) whenever \(\sin(\omega) + v\sin(k) \) vanishes, i.e., \(\omega \approx \frac{2\pi jv}{L} \) \((j = 1, 2, 3, \ldots \) associated with the \(k = L - j \) terms). In a similar way, \(\cos(k\ell) \) introduces oscillations on the scale controlled by the segment length, \(\ell \). In particular, the factor \(1 - \cos(k\ell) \) suppresses the \(j \)th peak if \(\ell \) is a unit fraction of \(L \), i.e., \(\ell = L/j \). This behaviour, which is reminiscent of interference, is most pronounced in the case of \(j = 2 \) (top curve \(L = 10000, \ell = 5000 \)) in figure 5, where the second peak in the other curves is clearly ‘missing’. A less prominent ‘interference’ can be seen for the third peak in the middle curve \((L = 10000, \ell = 3000, j \approx 3)\). If \(\ell \ll L \), then such effects will be noticeable only at values of \(\omega \) that are large compared to those among the peaks. In this regime, the damping is so severe that the peaks dissolve into a smooth background and the effects of this factor appear as ‘dips’.

Turning to the specifics of the ZRP, the current (in the thermodynamic limit) is equal to the fugacity \(z [13, 2] \), so \(v \) will be given by \(\partial z/\partial \rho \). In the case of the standard hop rate, \(u(n) = 1 + b/n \), the \(\rho-z \) relation is

\[
\rho = \frac{z}{1 + b} \frac{2F_1(2, 2; 2 + b; z)}{2F_1(1, 1; 1 + b; z)},
\]

where we have used the notation \(2F_1(a, b, c; z) \) for the hypergeometric function

\[
2F_1(a, b, c; z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!},
\]

and \((a)_n \) is the Pochhammer symbol

\[
(a)_n = a(a + 1) \cdots (a + n - 1).
\]

doi:10.1088/1742-5468/2009/03/P03009
Thus, the velocity is

\[v = (1 + b) \left(2F_1(1, 1; 1 + b; z) \right) \left\{ \begin{array}{ll}
2F_1(2, 2; 2 + b; z) + \frac{4z}{2 + b} 2F_1(3, 3; 3 + b; z) \\
\frac{z}{1 + b} 2F_1(2, 2; 2 + b; z)
\end{array} \right\} \] \tag{23}

Similarly, it is easy to show that, in the other cases,

\[v = \left\{ \begin{array}{ll}
1 & \text{for } u \propto n, \text{ i.e., non-interacting particles,} \\
(1 + \rho)^{-2} & \text{for } u = \text{const.}
\end{array} \right\} \tag{24}

With these analytic results, we are in a position to examine how well this theory fits the simulation data.

5. Comparison between analytic and simulation results

There is generally good agreement between the simple theory presented above and results from simulation, i.e., appropriate choices of the parameters \(A\) and \(D_{\text{eff}}\) produce reasonable fits. Not surprisingly, the agreement is best for the non-interacting case. In fact, using \(D_{\text{eff}} = v/2\) as predicted by the theory, the match with simulation results over the entire range of \(m\) is quite good—see figure 10. For systems with interacting particles, reasonable fits result only if the effective diffusion constant, \(D_{\text{eff}}\), is drastically changed from the

\[\text{Figure 10.} \quad \text{Comparison of power spectra taken from simulation data and generated by the simple theory for the non-interacting system. The system is a segment of } \ell = 500 \text{ sites in a lattice of } L = 5000 \text{ with a global particle density of } \rho = 0.1. \text{ Note that in the non-interacting system the velocity is } 1, \text{ but the timescale for the simulation (and theory) has been changed such that its actual value is } 0.2. \text{ For this system the fit is apparently good over the entire range and } D_{\text{eff}} = v/2. \]
Figure 11. Comparison of power spectra taken from simulation data and generated by the simple theory for the interacting system with the standard hop rate. The system is a segment of $\ell = 1000$ sites in a lattice of $L = 10000$ with a global particle density of 0.25 and hop rate $u(n) = 1 + 4/n$. The system has a velocity of 3.32653. Here it is apparent that the effective diffusion constant is a long way removed from the naive expected value but also that the fit is only really good in the mid-range of the plot, around where the second peak due to the size of the segment lies. At the low end, the diffusion seems to be too small to capture the rapid oscillations perfectly and at the high end, although not shown here, there is an effect from a cancellation in the first term of the denominator in (19).

Moreover, the quality of the fit is not uniformly good over all m. As an example, in figure 11, where simulation data (for $L = 10^4$, $\ell = 10^3$, $u(n) = 1 + 4/n$, and $\rho = 0.25$, below the condensation threshold) are compared with theory plots with three values of D_{eff}, we see that a value of 60 matches the data reasonably well. To put this result in context, the naive (‘bare’) value of the diffusion constant is 1.667, so we would need to invoke ‘renormalization effects’ at the level of a factor of ~ 35. Such a sizable ‘renormalization’ is comparable to that observed in the totally asymmetric simple exclusion process (TASEP) [7]. We believe the origin is universal—inter-particle interactions—and that the resolution of this issue can be applied to both models. Even treating D_{eff} as a phenomenological parameter, the theory fits well only in the mid-range, with some discrepancies in the low and high m regimes. In the low m regime the peaks and troughs are not ideally fitted by the theory; changing D_{eff} to match this region typically destroys the agreement in the mid-range. For $m \gtrsim 1500$ (not shown here), the lack of agreement is also qualitatively similar, with the addition of occasional extra peaks due to a cancellation in the first term in the denominator of (19).

Since D_{eff} is seriously modified by interactions, we investigate systematically the effects of varying various parameters in the ZRP. In contrast, changing the parameters of the non-interacting system leaves the $D_{\text{eff}} = v/2$ relation completely intact.
Figure 12. Effective diffusion constant plotted against velocity for a varying value of the standard hop rate parameter, b. Data shown are fits between the simple theory and simulations of a system of $L = 10000$ sites with a segment of $\ell = 1000$ at a density of $\rho = 0.25$ and b varying from 0.5 to 4.0 in increments of 0.5, with low b corresponding to low velocity.

Parameter b. The parameter b in the hop rate $u = 1 + b/n$ can be thought of as a measure of the strength of the interaction: increasing b first makes a condensation transition possible and then reduces ρ_c, the density at which the transition occurs. With the density, system size, segment size and normalization (γ) kept constant, we investigate the effects of varying b. Now, neither v nor D_{eff} varies linearly with b, so we find it more meaningful to plot D_{eff} against v (figure 12), especially to highlight the contrast with $D_{\text{eff}} = v/2$ for a non-interacting system. From the figure, D_{eff} seems to change with v mostly in a linear way, although the intercept of this linear component will not go through the origin. Of course, we should expect more serious non-linear dependence outside the regime shown here.

Normalization γ. When simulating systems such as the one under consideration here, it is common to assign unit probability to the most likely event in order to reduce simulation time. This corresponds to choosing $\gamma = 1/\max\{u(n)\}$. However, such a choice can sometimes introduce errors when a random-sequential update scheme is being used to simulate a system defined in continuous time. Figure 13 shows the results from investigation of the $D_{\text{eff}} - v$ relationship with varying normalization. The apparently linear correspondence shown is reassuring: changing γ alone should correspond to nothing more than changing the timescale, while both D_{eff} and v are linear in t. Also, a linear correspondence implies that the relative ‘renormalization’ of D_{eff} with respect to its naive expected value of $v/2$ is independent of the choice of γ and is around 20. Note that a factor of 20 is comparable to the factor 35 shown earlier.

Density. With fixed L, ℓ, and b, increasing the overall density (ρ) lowers both v and D_{eff} dramatically. Figure 14(a) shows an example of D_{eff} versus ρ. Once we take into account the renormalization discussed above, the data are well described by $D_{\text{eff}} \propto \rho^2$. The linear dependence of v on ρ seen in figure 12 is also consistent with this behaviour.
account the v–ρ relationship and plot D_{eff} against v (figure 14(b)), we again recover the line $D_{\text{eff}} \sim 10v$, with possibly a small negative curvature.

Segment size. Changing the segment size (ℓ) does not affect the velocity, but it does noticeably affect the value of D_{eff}; figure 15. The relationship is sub-linear, a behaviour that could be traced to the conserved dynamics. That is, the number of particles in a segment (ℓ) plus the number of particles in the complementary segment ($L - \ell$) is a constant, so the two averaged power spectra must be the same. Unless $D_{\text{eff}}(\ell)$ develops a singularity at the symmetry point, $\ell = L/2$, we must have $\partial_{\ell} D_{\text{eff}}(L/2) = 0$. From this perspective, a sub-linear variation may have been expected so as to give a flat profile around $\ell = L/2$. However, it is not obvious why the relationship should take this form in general.

System size. It is also perhaps surprising that varying the system size does not appear to change D_{eff}. It is especially so when taken in conjunction with the fact that changing the segment size does have an effect.

It is best to summarize our findings as follows: although the observed power spectra can be reasonably well fitted by the predictions of a linear theory, we must regard the effective diffusion constant D_{eff} and the noise amplitude A as phenomenological parameters. By contrast, the data are entirely consistent with v, the velocity predicted from the theory of ZRPs. It is clear that the simulation results do not support the prediction of the ‘naive’ theory: $D_{\text{eff}} = v/2$. In addition, altering the control parameters in our study (system size, hopping rate, overall density, and segment size) not only affects D_{eff} dramatically, but also does so in such a way that its relationship with v changes. At this stage, none of these features are well understood.
Figure 14. (a) Effective diffusion constant plotted against density for a varying value of the density, ρ. A non-linear decrease of the effective diffusion constant is shown with increasing density. (b) Effective diffusion constant plotted against velocity for a varying value of the density, ρ. Densities are $\rho = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8, 1.0, 1.6, 2.0$, with increasing density corresponding to decreasing velocity. For both, data shown are fits between the simple theory and simulations of a system with $L = 10\,000$ sites, a segment of $\ell = 1000$ and a hop rate of $1 + 1/n$.

6. Conclusion

In this paper, we study the dynamics of fluctuations in the non-equilibrium steady state of the zero-range process (ZRP). Specifically, we collect time series of the number of particles in a contiguous segment of a ring lattice, and compute the average power spectrum, $I(\omega)$.

doi:10.1088/1742-5468/2009/03/P03009
We find interesting structure in $I(\omega)$, namely, two distinct damped-oscillation components. The small ω component consists of narrow peaks over a smooth background. The other component resembles broad dips, similar to those observed in the power spectra of the open TASEP [7]. The origins of these are traced to, respectively, the time it takes a fluctuation to travel around the ring and the time for traversing the segment.

We present a simple toy model to shed some light on these two types of oscillation: a single particle moving ballistically around a ring in continuous space–time. The time series of the ‘total particle occupation’ in a segment is just a periodic square wave, so its Fourier transform is the product of a comb and a sinc function, controlled respectively by the ring and segment lengths. Diffusion and noise will broaden the peaks of the comb and fill in the zeros of the sinc function, so the oscillations will appear damped. Let us emphasize that these oscillations are controlled by the system and segment sizes, so they are absent from the usual autocorrelation function (for particles at one site, in the thermodynamic limit). On the basis of the insight from the toy model, we believe that these features are universal for the power spectra of all finite driven diffusive systems.

At the quantitative level, the observed $I(\omega)$ are fitted quite well by a somewhat more sophisticated approach, based on a Langevin equation for the local particle density. Focusing on systems far from criticality, we linearize this equation about the average density. The solution of such an approximate equation, even if we account for discrete space–time, is easy. However, except for the case with non-interacting particles, not all the parameters of this simple theory fit the simulation results. In particular, by identifying the even/odd parity (i.e., $\nabla \leftrightarrow \pm \nabla$) terms with diffusion and drift, we assign the parameters D_{eff} and v, respectively. Good fits can be achieved only when D_{eff} is chosen to be considerably larger than the naively predicted value. By contrast, v from the simple theory appears to be adequate. At present, we can only present the dependence of D_{eff} on various control parameters as phenomenological results from our extensive simulation.
Power spectra in a zero-range process on a ring

studies. In the same vein, we see that the relationship between D_{eff} and v (for the range of systems that we consider) deviates significantly from the naive theoretical prediction of $D_{\text{eff}} = v/2$. Such ‘anomalies’ associated with D_{eff} were also observed in similar studies of another system [7]. Another puzzling aspect here is that D_{eff} apparently depends more strongly on the segment size (ℓ) than on the system size (L). This feature may indicate that the introduction of an effective diffusion constant to a linear Langevin theory is not an entirely satisfactory treatment. While this approach is somewhat successful at fitting individual power spectra, it leaves much room for improvement, as we seek better understanding and a comprehensive theory.

Although we rule out the possibility of these anomalies being due to a systematic effect of our random number generator or sampling method (by using different generators and choosing parameters to be incommensurate with each other), we do not consider alternative simulation methods. Two such alternatives come readily to mind. One is kinetic Monte Carlo [18], where an appropriate event is chosen at each update and the time advanced according to a Poisson distribution. Another alternative would be to try a common method of reducing simulation times which is to pick a particle at random and hop with an appropriate probability. Fundamentally, we believe that inter-particle interactions are responsible for large deviations from the simple linearized theory presented here, rather than some subtle effect due to the details of the particular dynamics that we choose.

It is interesting that similar structures in the power spectra are observed in two of the simplest models for non-equilibrium systems, namely TASEP and ZRP. Oscillations seen in the variance of the integrated current at a single site in the time domain [10] are also undoubtedly related. These suggest that damped-oscillatory behaviour is universal for finite systems driven out of equilibrium. Further investigations to place this notion on a sound foundation would be worthwhile.

Along with information on the autocorrelation of the occupation of the segment, the power spectra must also contain information on the currents into and out of the segment. In particular, the change $N_{\ell}(t+1) - N_{\ell}(t)$ (for the segment $[1,\ell]$) is just $J_{\ell}(t)$. Thus, $(1 - \cos(\omega))I(\omega)$ is the Fourier transform of $C(0, \tau) - C(\ell, \tau)$, where $C(x, t)$ is the current–current correlation function: $\langle J(0, 0)J(x, t) \rangle - \langle J(0, 0) \rangle^2$. In this sense, correlations between the fluctuations of two currents, separated by a distance ℓ and a time t, carry the same information as $I(\omega)$. Now, there is considerable recent interest in current fluctuations in the ZRP [10,19] and damped oscillations in the time domain of period L/v are found in the integrated current [10]. Moreover, a study of tagged particle correlations in the asymmetric exclusion process [20] (which correspond to current fluctuations in the ZRP with a constant hop rate) has found similar oscillations which can also be adequately described by a drift–diffusion equation like ours. Clearly, these are different aspects of the same driven diffusive system. Beyond the scope of this paper, an integrated perspective would be very desirable.

It is clear that fluctuations in non-equilibrium steady states are non-trivial and their dynamics induce interesting behaviour. This study shows only a limited view in a small corner of this vast area. Even within this corner, there is room for improvement, especially in terms of a more complete analytic theory. We hope that a better understanding of this particular problem will lead to deeper insights into the nature of fluctuations in physical systems driven far from thermal equilibrium.
Acknowledgments

This work was supported in part by the US National Science Foundation through DMR-0705152. We thank J J Dong, V Elgart, S Mukherjee and B Schmittmann for illuminating discussions.

References

[1] Spitzer F, 1970 Adv. Math. 5 246
[2] Evans M R and Hanney T, 2005 J. Phys. A: Math. Gen. 38 R195
[3] Kafri Y, Levine E, Mukamel D, Schütz G M and Török J, 2002 Phys. Rev. Lett. 89 035702
[4] Kaupužs J, Mahnke R and Harris R J, 2005 Phys. Rev. E 72 056125
[5] Török J, 2005 Physica A 355 374
[6] van Leeuwen J M J and Kooiman A, 1992 Physica A 184 79
[7] Adams D A, Zia R K P and Schmittmann B, 2007 Phys. Rev. Lett. 99 020601
[8] Schütz G, 2001 Exactly Solvable Models in Many-Body Systems (Phase Transitions and Critical Phenomena vol 19) ed C Domb and J L Lebowitz (London: Academic)
[9] Derrida B, 1998 Phys. Rep. 301 65
[10] Gupta S, Barma M and Majumdar S N, 2007 Phys. Rev. E 76 060101
[11] MacDonald C, Gibbs J and Pipkin A, 1968 Biopolymers 6 1
MacDonald C and Gibbs J, 1969 Biopolymers 7 707
[12] Godrèche C and Luck J M, 2005 J. Phys. A: Math. Gen. 38 7215
[13] Evans M R, 2000 Braz. J. Phys. 30 42
[14] Angel A G, Schmittmann B and Zia R K P, 2007 J. Phys. A: Math. Theor. 40 12811
[15] Matsumoto M and Nishimura T, 1998 ACM Trans. Model. Comput. Simul. 8 3
[16] Schmittmann B and Zia R K P, 1995 Statistical Mechanics of Driven Diffusive Systems (Phase Transitions and Critical Phenomena vol 17) ed C Domb and J L Lebowitz (London: Academic)
[17] Janssen H K and Schmittmann B, 1986 Z. Phys. B 64 503
Leung K-t and Cardy J L, 1986 J. Stat. Phys. 44 567
Leung K-t and Cardy J L, 1986 J. Stat. Phys. 45 1087 (erratum)
[18] Young W M and Elcock E W, 1966 Proc. Phys. Soc. 89 735
Cox D R and Miller H D, 1965 The Theory of Stochastic Processes (London: Methuen) p 6
Chatterjee A and Vlachos D G, 2007 J. Comput.-Aided Mater. Des. 14 253
[19] Harris R J, Rákos A and Schütz G M, 2005 J. Stat. Mech. P08003
[20] Gupta S, Majumdar S N, Godèche C and Barma M, 2007 Phys. Rev. E 76 021112

doi:10.1088/1742-5468/2009/03/P03009