Domain wall creep in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ thin films

T. Tybell,1,2 P. Paruch,1 T. Giamarchi,3 and J.-M. Triscone1

1DPMC, University of Geneva, 2 Quai E. Ansermet, 1211 Geneva 4, Switzerland
2Department of Physical Electronics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
3Laboratoire de Physique des Solides, CNRS-UMR 8502, UPS Bât. 510, 91405 Orsay France

(Dated: January 14, 2022)

Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocristalline Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which initial nucleation is followed by radial domain wall motion perpendicular to the polarization direction. The electric field dependence of the domain wall velocity demonstrates that domain wall motion in ferroelectric thin films is a creep process, with the critical exponent μ close to 1. The dimensionality of the films suggests that disorder is at the origin of the observed creep behavior.

PACS numbers: 77.80.-e, 77.80.Dj, 77.80.Fm

Understanding the propagation of elastic objects driven by an external force in the presence of a pinning potential is a key to the physics of a wide range of systems, either periodic, such as the vortex lattice in type II superconductors [1], charge density waves [2] and Wigner crystals [3], or involving propagating interfaces, such as growth phenomena [4], fluid invasion [5] or magnetic domain walls [6]. In particular, the response to a small external force is of special theoretical and practical interest. It was initially believed that thermal activation above the pinning barriers should lead to a linear response at finite temperature [7]. However, it was subsequently realized that a pinning potential, either periodic [1] or disordered, [8, 9, 10], can lead to diverging barriers and thus to a non-linear response, nicknamed creep, where the velocity is of the form $v \propto \exp(-\beta R(f_c/f)^{\mu})$. β is the inverse temperature, R a characteristic energy and f_c a critical force. The dynamical exponent μ reflects the nature of the system and of the pinning potential. Despite extensive studies of the creep process in periodic vortex systems [1], precise determination of the exponents has proven difficult, given the many scales present in this problem and the range of voltage needed to check the creep law [11]. For interfaces, a quantitative check of the creep law has been done recently in ultrathin magnetic films [3], where an exponent $\mu = 0.25$ has been measured in very good agreement with the expected theoretical value for this system. Quantitative studies of this phenomena in other microscopic systems with other pinning potentials are clearly needed.

In this respect, ferroelectric materials are of special interest. These systems possess two symmetrically equivalent ground states separated by an energy barrier U_0, as illustrated in Fig. 1 for a tetragonal perovskite structure. Each state is characterized by a stable remanent polarization, reversible under an electric field. Regions of different polarization are separated by elastic domain walls. The application of an electric field favors one polarization state over the other, by reducing the energy necessary to create a nucleus with a polarization parallel to the field, and thus promotes domain wall motion. In addition to pure theoretical interest, understanding the basic mechanism of domain wall motion in ferroelectrics has practical implications for technological applications, such as high-density memories. In bulk ferroelectrics, switching and domain growth were inferred to occur by stochastic nucleation of new domains at the domain boundary, a behavior observed in BaTiO$_3$ and triglycine sulphate by studies using combined optical and etching techniques [12, 13]. Early analysis of such motion reported a field dependence of the domain wall speed, $v \sim \exp[-1/E]$. This bulk system behavior was explained by assuming that domain walls propagate via nucleation along 180$^\circ$ domain boundaries.

In this Letter, we report on studies of ferroelectric domain wall motion in atomically flat single crystal Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ films by atomic force microscopy (AFM), allowing noninvasive investigation of domain dynamics with nanometer resolution. In this model sys-

![FIG. 1: Schematic of a perovskite ferroelectric, characterized by two oppositely polarized ground states, separated by an energy barrier U_0. For Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$, the corner Pb ions and the center Ti/Zr ions are positively charged, and the face O ions are negatively charged.](image)
tem, we identify domain wall motion to be a disorder-controlled creep process. The dynamical exponent \(\mu \) is found to be close to 1. The activation energy increases significantly from 0.5MV/cm to 1.3MV/cm as the film thickness is reduced from 810Å to 290Å.

The ferroelectric materials investigated were epitaxial c-axis oriented Pb(Zr_{0.2}Ti_{0.8})O_3 thin films, RF-magnetron sputtered onto conducting (100) Nb-doped SrTiO_3 substrates [13, 14]. This system allows precise control of film thickness and crystalline quality, exhibiting atomically smooth surfaces with a polarization vector parallel or antiparallel to the c-axis [15, 16]. To study switching dynamics in these films, we used a conductive AFM tip to artificially modify domain structure [15, 17, 18]. Domains were polarized by applying a voltage pulse across the ferroelectric film, between the tip and the substrate. Their sizes were subsequently measured by piezoelectric microscopy [17], as a function of pulse width and amplitude. For every pulse width, we used 12 V pulses to polarize an array of 16 domains, and calculated an average domain size based on their vertical and horizontal radii. The rms error was ~10%. All domains studied were written in a uniformly polarized area. Fig. 2a shows the domain radius as a function of pulse width, and three piezoelectric images of ferroelectric domain arrays written with 50\(\mu \)s, 1ms, and 100ms voltage pulses. As can be seen, varying the writing time (the pulse width) markedly changes the size of the AFM-written domains. We observe that domain radius increases logarithmically with increasing writing time for times longer than ~20\(\mu \)s. Below 20\(\mu \)s, and down to 100ns, the shortest times investigated, domain radius is found to be constant and approximately equal to 20nm, as shown by the shaded area in Fig. 2a [19]. All of our data suggest that this minimum domain size is related to the typical tip size used for the experiments, whose nominal radius of curvature is ~20-50nm. In previous work, we have observed that domain size also depends linearly on writing voltage, above a threshold related to the coercive field [13]. A detailed analysis of the data reveals only well-defined homogeneous domains with regular spacing, as can be seen in the piezoelectric image of a regular 90-domain array, written with 1ms pulses in Fig. 2b. We note that the topographic image of the same area is featureless, with a rms roughness of ~0.2nm. Within our ~5nm resolution we do not detect any randomly nucleated domains. The data thus suggest a two-step domain switching process in which nucleation, originating directly under the AFM tip, is followed by radial motion of the domain wall outwards, perpendicular to the direction of polarization.

To analyze this lateral domain wall motion, we note that the force exerted on the wall is given by the electric field \(E \). To obtain the electric field distribution, we model the tip as a sphere, with a radius \(a \). The potential on the ferroelectric surface at a distance \(r \) from the tip is then \(\Phi \sim \frac{V}{r^2} \), and the local field across the ferroelectric

\[
E = \frac{V_0}{\pi a^2}, \quad V \text{ being the applied tip bias and } d \text{ the film thickness. This equation will allow us to relate the change in domain size to the local electric field near the domain boundary. By writing arrays with different pulse widths, and subsequently calculating the average domain size for a given time, we can extract the speed of the domain wall as } v = \frac{r(t_2) - r(t_1)}{t_2 - t_1} \text{ and the corresponding electric field } E(r) \text{ where } r = (r(t_1) + r(t_2))/2. \text{ Fig. 3 shows the wall speed as a function of the inverse field for three different film thicknesses. The data fits well to a creep formula }

\[
v \sim \exp \left(\frac{R}{k_B T} \left(\frac{E_0}{E} \right)^\mu \right) \quad \text{(1)}
\]

with \(\mu = 1 \). The exact dynamical exponent \(\mu \) is found to be 1.12, 1.01 and 1.21 for the 290Å, 370Å, and 810Å thick films respectively, with an estimated 10% rms error on the field [20]. We find the effective “activation energy” \((R/(k_B T)^\mu)E_0 \) to be 1.321MV/cm, 1.305MV/cm, and 0.506MV/cm for 290Å, 370Å, and 810Å thick films.
Let us now consider the possible microscopic origins of the observed creep behavior. Creep phenomena are a consequence of competition between the elastic energy of a propagating interface, tending to keep it flat, and a pinning potential, preventing it from simply sliding when submitted to an external force. The dynamical exponent in the creep scenario depends on both the dimensionality of the system, and the nature of the pinning potential. Although creep processes are generally associated with the glassy behavior of disordered systems, they can also be observed in a periodic potential if the dimensionality of the object is larger than or equal to 2. For thick films, as for bulk ferroelectrics, the domain wall is a two dimensional object. In this case, from free-energy considerations, and neglecting the anisotropic dipole field present in a ferroelectric, one would expect the exponent to be $\mu = 1$ \cite{14}. In PbTiO$_3$, it has been shown theoretically that domain wall energy depends upon whether the wall is centered on a Pb or Ti plane \cite{20, 21}, giving rise to an intrinsic periodic pinning potential. One possible explanation could thus be that the observed creep is due to the motion of the two-dimensional wall in this periodic potential. Note that this scenario is a generalization of the nucleation model developed for bulk ferroelectrics \cite{14}. In order to test this hypothesis we calculated the size of the critical nucleus, using the formula derived by Miller and Weinreich \cite{14}. To estimate l^*, the critical length along the c-axis, we used the standard remanent polarization, lattice parameters and dielectric constant values for PZT, the 169mJ/m2 domain wall energy derived for PbTiO$_3$ \cite{2}, and the corrected values for the electric field across the ferroelectric film. We find l^* to vary, depending on the field range, between 200Å and 500Å, 600Å and 1100Å, and 900Å and 1700Å for the 290Å, 370Å and 810Å. The critical nucleus would thus need to be larger than the thickness of the system. Furthermore, the effective “activation energy” calculated for the nucleation model is two orders of magnitude greater than the 0.5-1.3MV/cm determined experimentally. Calculations directly starting from the periodic potentials given in \cite{21} lead to similar conclusions. These results strongly suggest that the films are in a two dimensional limit, and that the nucleation model or equivalently the motion through a periodic potential does not adequately explain the experimental data.

The creep behavior in the film thus has to be due to disorder in the system, and thereby to the glassy characteristics of a randomly pinned domain wall, with the creep exponent dependent on the nature of the disorder. Defects locally modifying the ferroelectric double well depth U_0 and giving rise to a spatially varying pinning potential would lead to a “random bond” scenario similar to the one for the ferromagnetic domain walls \cite{1}. The exponent μ would be $\mu = \frac{d-2+2\zeta}{2-\zeta}$, where ζ is a characteristic wandering exponent and d the dimensionality of the wall. For one dimensional domain walls $\mu = 1/4$ whereas for two dimensional ones $\mu \sim 0.5 - 0.6$, hardly compatible with the data. If, however, the defects induce a local field, asymmetrizing the double well, or if there are spatial inhomogeneities in the electric field, the situation is different. For such a “random field” scenario $\zeta = \frac{d-1}{d}$ \cite{22} and thus leads to $\mu = 1$ for $1 < d < 4$. This scenario is therefore compatible with the observed data. However, further study determining the wandering exponent would be needed to ascertain this precise point \cite{20}.

Finally, we note the applications of these results to technological developments. The fact that the domain walls exhibit creep motion with a relatively large exponent $\mu = 1$ implies a strong stability of ferroelectric domains in thin films, since the induced speed of the domain wall becomes exponentially small as the driving force goes to zero. All domains studied in this work were stable under ambient conditions for the entire 7 day duration of the experiment. Furthermore, sub-μm wide line-shaped domains were stable up to one month \cite{23}. Previously, large, regular arrays of ferroelectric domains with densities of ~6Gbit/cm2 have been reversibly written \cite{19}, and densities up to 150Gbit/cm2 have been extrapolated from sizes of individual domains \cite{24}. This work iden-
tifies the key parameters controlling domain size: the strength, duration, and confinement of the applied electric field. These can be exploited to increase the information storage density in ferroelectric arrays. By using short voltage pulses, for which the resulting domain size is independent of the writing time, and domain-domain separation as small as 10nm, regular arrays with densities of the order \(\sim 30\text{Gbit/cm}^2 \) could be written. Fig. 4 shows such an array written on a 370Å thick sample with a density of \(28\text{Gbit/cm}^2 \). Furthermore, it has been suggested that the minimum stable domain size is given by the film thickness. Our data, however, show that the minimum stable domain size, \(\sim 40\text{nm} \), is independent of the thickness used in this study; rather, it is given by the area over which the electric field is applied during the polarization process. Therefore, by confining the field to a smaller area, domain wall creep will be limited, leading to smaller domains and hence even higher information densities.

In conclusion, our studies demonstrate that lateral domain wall motion in ferroelectric thin films is a creep process, governed by a characteristic dynamical exponent \(\mu \) close to 1. The dimensionality of our films suggests that disorder is at the origin of the observed creep behavior, which inherently explains the measured \(\exp(-1/E) \) dependence of the domain wall speed. The activation energy is found to be around 1MV/cm, decreasing with increasing film thickness. Finally, these results suggest a high degree of stability for ferroelectric domains in low electric fields and identify the key parameters controlling domain size.

The authors would like to thank Gianni Blatter, Dima Geshkenbein, and Piero Martinoli for enriching discussions. Special thanks to Steve Brown for carefully reading the manuscript, and to Daniel Chablaix for useful technical developments. This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research “Materials with Novel Electronic Properties-MaNEP” and Division II.

[1] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
[2] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
[3] E. Y. Andrei and al., Phys. Rev. Lett. 60, 2765 (1988).
[4] M. Kardar, Physica B Special Issue (to be published) (1995).
[5] D. Wilkinson and J. F. Willemsen, J. Phys. A 16, 3365 (1983).
[6] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal, Phys. Rev. Lett. 80, 849 (1998).
[7] P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
[8] L. B. Ioffe and V. M. Vinokur, J. Phys. C 20, 6149 (1987).
[9] T. Nattermann, Europhys. Lett. 4, 1241 (1987).
[10] P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 62, 6241 (2000).
[11] D. T. Fuchs and al., Phys. Rev. Lett. 80, 4971 (1998).
[12] W. J. Merz, Phys. Rev. 95, 690 (1954).
[13] F. Fatuzzo and W. J. Merz, Phys. Rev. 116, 61 (1959).
[14] R. C. Miller and G. Weinreich, Phys. Rev. 117, 1460 (1960).
[15] T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 72, 1454 (1998).
[16] J.-M. Triscone, L. Frauchiger, M. Decroux, L. Miville, O. Fischer, C. Beeli, P. Stadelmann, and G.-A. Racine, J. Applied Phys. 79, 4298 (1996).
[17] P. Gütner and K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992).
[18] C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, O. Fischer, and J.-M. Triscone, Science 276, 1100 (1992).
[19] P. Paruch, T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
[20] S. Pöykö and D. J. Chadi, Appl. Phys. Lett. 75, 2830 (1999).
[21] B. Meyer and D. Vanderbilt, preprint, cond-mat/9509145 (2001).
[22] D. S. Fisher, Phys. Rev. Lett. 56, 1964 (1986).
[23] D. Marré, T. Tybell, C. Beneduce, and J.-M. Triscone, Appl. Phys. A. (to be published) (2001).
[24] T. Maruyama, M. Saitoh, and I. Sakai, Appl. Phys. Lett. 73, 3524 (1999).
[25] J. Woo, S. Hong, and N. Setter, J. Vac. Sci. Tech. B 19, 818 (2001).
[26] T. Hidaka, T. Maruyama, I. Sakai, M. Saitoh, L. A. Wills, R. His kes, S. A. Discarolis, J. Amano, and C. M. Foster, Integr. Ferroelectr. 17, 319 (1997).
[27] The 10% rms error in the local electric field is given by the precision of the domain size measurements. We used 20nm as the AFM tip radius of curvature.
[28] The exact magnitude of the electric field across the ferroelectric is difficult to quantify, because of a possible gap between the film surface and the tip, and the unknown and gradually changing tip shape. Local piezoelectric hysteresis measurements on 120Å-800Å thick films show that the minimum switching field is \(\sim 16 - 6 \) times larger than the bulk coercive field. We therefore correct the calculated field \(E \) by a factor of 10 to estimate the effective field across the film in our spherical tip model.
Only short range elastic forces are considered in the above discussion. Long range interactions would change the elastic energy, and therefore the dynamics of the system, and hence the exponent μ. In this case, the random bond scenario could also lead to different exponents and possibly to μ close to 1.