KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties

SK Saha, HY Choi, BW Kim, AA Dayem, G-M Yang, KS Kim, YF Yin and S-G Cho

INTRODUCTION

Breast cancer is a multifactorial disease that can be initiated by genetic mutations, chronic inflammation, exposure to toxic compounds, and abundant stress factors. Despite being a subject of concern across the world, the exact mechanism of breast cancer progression is not completely resolved yet. Some genes of the keratin (KRT) family are important markers in reverse transcriptase polymerase chain reaction (RT–PCR)-mediated detection of tumors in the lymph nodes, peripheral blood, and bone marrows of breast cancer patients. KRTs are intermediate filament proteins responsible for the structural integrity of epithelial cells and markers of the epithelial tissue. Further, they are subdivided into cytokeratins and hair KRTs and also into low molecular weight acidic type I and high molecular weight basic or neutral type II. KRTs are integrated in the cellular framework and interact with a range of cellular proteins including kinases, receptors, adapters, and effectors. These interactions activate signaling networks that regulate cell migration, invasion, metastasis, cell cycle, and apoptosis. For example, KRT8 and KRT18 bind with tumor necrosis factor receptor-2 in order to interact with other specific downstream proteins. Therefore, they affect tumor necrosis factor-dependent activation of downstream effectors such as c-JUN-NH2-kinase and NF-kB. In addition, KRT17 binds to the adaptor protein 14-3-3σ to upregulate protein synthesis and cell growth via the AKT/mTOR pathway.

One of the smallest intermediate filament KRT proteins is a 40-kDa type I KRT, KRT19. It contains a highly conserved α-helical central domain, essential for filament formation, and does not have a C-terminal non-helical tail domain. In a previous study, KRT19-knocked out mice showed induced skeletal myopathy, whereby KRT19 was shown to regulate breast cancer properties by activating the AKT signaling pathway. However, recent studies have shown that modulation of KRT19 expression led to contrasting effects on cell proliferation, survival, invasion, migration, and apoptosis, depending on the cancer cell type. Therefore, extensive molecular studies on KRT19 are required to elucidate its role in cancer cells.

In this study, we demonstrate that knockdown of KRT19 leads to increased proliferation, migration, invasion, drug resistance, and sphere formation in breast cancer cells. We report for the first time, a novel function of KRT19 in the regulation of nuclear import of the β-catenin/RAC1 complex, thus modulating the NUMB-dependent NOTCH signaling pathway in breast cancers and CSLCs, which might bear potential clinical implications for cancer or CSLC treatment.

RESULTS

Differential expression of the KRT family of genes in breast cancer cells

Using the Oncomine database (www.oncomine.org), we compared the expression patterns of the KRT family of genes (KRT7–20) between normal and cancer tissues. Several of these genes showed altered expression in carcinoma compared with that in...
Figure 1. Knockdown of KRT19 increases cell proliferation, migration, invasion, drug resistance, and sphere formation in breast cancer cell lines. Data were obtained from three independent experiments and presented as average values ± s.d. (*P < 0.05, **P < 0.01, ***P < 0.001).

(a) Expression fold changes for KRT genes (KRT1–20) in invasive ductal breast carcinoma versus (vs) normal breast tissue, hepatocellular carcinoma vs normal liver tissue, and colon adenocarcinoma vs normal colon tissue, as obtained from the Oncomine database. (b) mRNA expression of KRT genes in breast cancer (MCF7, SKBR3, and MDA-MB231), hepatocellular carcinoma (HepG2), neuroblastoma (SH-SY5Y), immortalized human keratinocytes (HaCaT), and immortalized human embryonic kidney (HEK293T) cell lines. Bands for KRTs in b were quantified by scanning densitometry and normalized to that of GAPDH (right panel). (c) KRT19 expression analyzed by reverse transcription polymerase chain reaction (RT–PCR) and western blot analysis. Either GAPDH or actin expression was used as control. Both KRT19 mRNA and protein expression were quantified by scanning densitometry and normalized to that of GAPDH and actin, respectively (right panel). (d) Effect of KRT19 knockdown on cell proliferation analyzed by cell counting. Cells were counted up to 4 days. (e) Migration capacity of the indicated cells analyzed using wound-healing/migration assay. The number of cells in the enclosure was enumerated at the indicated time points. (f) Effect of KRT19 suppression on cell invasion assessed using CytoSelect 96-Well Cell Invasion Assay Kit. Fluorescent intensities (RFUs) of the invading cells were plotted for control, scrambled shRNA (scramble), and shKRT19 MDA-MB231 and MCF7 cells. (g) Effect of KRT19 knockdown on drug resistance measured by cell counting after 24 h of doxorubicin treatment (0.5 μM). The mRNA expression level of drug-resistance marker genes was analyzed in the shKRT19 knockdown cells. (h) Cells were cultured in suspension in sphere-forming media (SFM) using non-coated plates. The number of spheres was counted on day 5. (i) mRNA expression levels of stemness marker genes were analyzed in the scramble and/or shKRT19 MDA-MB231 and MCF7 cells.
normal tissues (Figure 1a and Supplementary Figure 1). Interestingly, invasive breast carcinoma tissues showed relatively high KRT18 and KRT19 expression. In particular, the fold change for KRT19 expression in invasive breast carcinoma versus normal breast tissue was significantly higher ($P < 0.00001$) than that for the other KRT genes (Figure 1a and Supplementary Figure 1A). This suggested strong correlation of KRT19 expression with invasiveness of breast cancers. In order to confirm the specificity of our observation, we also examined the fold changes for the KRT genes in liver and colon cancer (Figure 1a and Supplementary Figures 1B and C). The results concluded that indeed, KRT19 expression specifically correlates with the invasiveness of breast carcinoma (Figure 1a).

Using RT-PCR, we next evaluated the expression of KRT genes in several cell lines, including MCF7, SKBR3 and MDA-MB231 (breast cancer); HepG2 (hepatocellular carcinoma); SH-SY5Y (neuroblastoma); HaCaT (immortalized human keratinocytes); and HEK293T (immortalized human embryonic kidney cells). In this case, too, KRT19 was specifically overexpressed in the breast cancer cell lines MCF7, SKBR3, and MDA-MB231 (Figure 1b).

Knockdown of KRT19 increases cell proliferation, migration, invasion, drug resistance, and sphere formation

As the breast cancer cells showed significantly high expression of KRT19 compared with other KRT genes, we next assessed the effect of KRT19 knockdown in MDA-MB231 and MCF7 cells.
Compared with KRT19 expression in the control (scrambled) short hairpin (sh)RNA-transduced cells, specific downregulation of KRT19 expression (~80%) was achieved in the KRT19-knockdown shKRT19 MDA-MB231 and shKRT19 MCF7 cells (Figure 1c).

Although the analysis of Oncomine database revealed that the KRT19 expression positively correlates with the invasiveness of breast carcinoma (Figure 1a), knockdown of KRT19 expression resulted in the increased proliferation of the breast cancer cells (Figure 1d). Migration and invasiveness of MDA-MB231 and MCF7 cells were also significantly increased upon KRT19 knockdown (Figures 1e and f). Subsequent experiments in the presence of doxorubicin revealed significantly elevated drug resistance and its marker genes expression, including ABCG2, ABCC1, and ABCB5, in the KRT19-knockdowned cells (Figure 1g). KRT19 knockdown also significantly increased colony formation and expression of stemness markers (OCT4, SOX2, NANOG, and c-MYC) in both the shKRT19 MDA-MB231 and shKRT19 MCF7 cells (Figures 1h and i).

KRT19 knockdown upregulates NOTCH signaling pathway by downregulating the expression of NUMB

The unexpected findings that KRT19 knockdown led to enhancement of breast cancer properties led us to explore the molecular mechanism behind the phenomenon. Recent report demonstrated that KRT19 had a role in modulation of NOTCH signaling pathway during the invasion of hepatocellular carcinoma.35 More recently, a review article summarized on the crucial role of NOTCH and WNT signaling pathways and the cross-talk between NOTCH receptor and other oncogenic proteins such as Ras, c-Myc, and CCND1, was reported to be interlinked with the NOTCH signaling pathway by canonical WNT signaling was generally suggested to be positively correlated with breast cancer cells,26 and its intracellular domain and its target protein expression were downregulated in NUMB-overexpressing shKRT19 cells, compared with the shKRT19 cells (Supplementary Figure 2B). Notably, NUMB overexpression reversed the shKRT19-mediated increase of cell proliferation (Figure 3e), migration (Figure 3f), or sphere formation (Figure 3g), confirming that KRT19-mediated regulation of NOTCH signaling pathway and cancer properties is NUMB dependent.

KRT19 regulates nuclear localization of β-catenin

Next, we focused on the KRT19-dependent regulation of NUMB transcription. A previous study demonstrated that β-catenin translocates to the nucleus and binds the TCF4 region of the NUMB promoter, enhancing transcription of the latter.41 Based on this information, we investigated whether the β-catenin signaling pathway is involved in the KRT19-dependent regulation of NUMB transcription. The expression and phosphorylation (Ser 473 of AKT and Ser9 of GSK3β) of both AKT and GSK3β were not significantly altered in the KRT19-knockdowned cells (Figure 4a), whereas the total amount of β-catenin and RAC1 proteins were slightly decreased (Figure 4b). However, the nuclear translocation of β-catenin was retarded upon KRT19 knockdown (Figure 4b).

Previously, several studies depicted an intriguing but controversial role of Rac1 in regulation of β-catenin nuclear localization.42–45 Our results revealed that KRT19 knockdown markedly suppressed nuclear translocation of RAC1, a binding partner of β-catenin that aids nuclear translocation of the latter.13,46 Meanwhile, the cytoplasm presented higher amounts of β-catenin and RAC1 in the shKRT19 cells compared with that in control cells.

Nuclear translocation of β-catenin and RAC1 was then monitored by immunocytochemistry. This confirmed that both overall and nuclear β-catenin and RAC1 levels were significantly downregulated upon KRT19 knockdown (Figure 4c), whereas that in the cytoplasm was increased. These results strongly suggested that regulation of β-catenin and RAC1 nuclear translocation is involved in the KRT19-dependent regulation of NUMB transcription.

KRT19 interacts with β-catenin and RAC1 to modulate nuclear translocation of the former

As RAC1 was reported to be a binding partner of β-catenin and may help nuclear translocation of β-catenin,13,46 we performed communoprecipitation experiments and revealed the interaction of KRT19 with β-catenin and RAC1 in the breast cancer cell lines (Figure 5a). However, KRT19 knockdown significantly inhibited these interactions (Figure 5b). Upon treatment with the proteasome inhibitor MG132, β-catenin levels were increased and KRT19 levels were slightly augmented, whereas that of RAC1 was not significantly altered (Figure 5c). The interactions among KRT19, β-catenin and RAC1 were only slightly enhanced upon treatment with MG132, but markedly decreased upon KRT19 knockdown even in presence of MG132 (Figure 5d). These results suggest the role of KRT19 in its interactions with β-catenin and RAC1.
Patient-derived CD133$^{\text{high}}$/CXCR4$^{\text{high}}$/ALDH1$^{\text{high}}$ cancer stem-like cells (CSCs) have decreased KRT19 expression and highly enhanced CSC-like properties. Interestingly, we observed a marked suppression of KRT19 expression in the CD133$^{\text{high}}$/CXCR4$^{\text{high}}$/ALDH1$^{\text{high}}$ cancer stem-like cells (KU-CSCs), which were prepared from chemo-treated breast cancer patients at the Konkuk University hospital (Figure 6a). Compared with the MDA-MB231 cells, KU-CSCs showed lower NUMB, but higher NOTCH1 and HES1 (target of NOTCH1) expression (Figure 6b). Our data also demonstrated that KU-CSCs have remarkably high sphere-forming capacity only in sphere-forming media, but also in normal growth media (Figures 6c and d). KU-CSCs also showed significantly enhanced expression of stemness and epithelial-to-mesenchymal transition markers, such as NANOG, OCT4, SOX2, and N-cadherin, with reduction in p53 and E-cadherin levels (Figures 6e and f). Examination of KU-CSCs using a xenograft mouse model revealed that these cells possess highly enhanced tu motogenic capacity in vivo (Figures 6g, h, and i).

As KU-CSCs showed either very low or no KRT19 expression together with high NOTCH1 expression, similar to the shKRT19 MDA-MB231 cells, we next investigated whether KRT19 can regulate cancer stem cell properties by modulating the NOTCH signaling pathway. First, we treated the cells with DAPT (a NOTCH signaling inhibitor), which led to significant decrease in the expression of NOTCH1 and HES1. However, DAPT did not affect NUMB expression in both the shKRT19 MDA-MB231 and KU-CSCs (Figure 6j). Importantly, DAPT treatment suppressed proliferation and migration of KU-CSCs, similar to that in the shKRT19 MDA-MB231 cells (Figures 6k and l; Supplementary Figure 3A). The cancer stem cell properties, including expression of stemness/epithelial-to-mesenchymal transition markers, and sphere formation capacity of KU-CSCs were also suppressed by DAPT treatment (Supplementary Figures 3B and C). KU-CSCs showed KRT19 and NOTCH1 expression lower and higher, respectively, than the shKRT19 MDA-MB231 cells did (Figure 6j). The DAPT-mediated effect was also more marked in KU-CSCs than in the shKRT19 MDA-MB231 cells (Figures 6–1). These results supported KRT19-dependent regulation of the NOTCH signaling pathway.

Either overexpression of KRT19 or knockdown of NOTCH1 led to decreased proliferation, migration, drug resistance, and sphere formation in the patient-derived KU-CSCs. Finally, to confirm the function of KRT19 in regulating the NOTCH signaling pathway, we either overexpressed KRT19 or knocked down NOTCH1 in the KU-CSCs, both of which were successfully achieved (Figure 7a). Overexpression of KRT19 increased NUMB and decreased NOTCH1 and HES1 expression. Meanwhile, NOTCH1 knockdown led to decreased HES1 expression, without affecting either NUMB or KRT19 levels (Figure 7a). Importantly, both KRT19 overexpression and NOTCH1 knockdown suppressed cell proliferation (Figure 7b) and migration (Figure 7c and Supplementary Figure 4). Drug resistance, expression of drug-resistance markers (Figure 7d), sphere formation (Figure 7e), and expression of stemness markers (Figure 7f) were also suppressed upon KRT19 overexpression and NOTCH1 knockdown in KU-CSCs. These results strongly supported that KRT19 modulates the NUMB-dependent NOTCH signaling pathway in breast cancers and patient-derived CD133$^{\text{high}}$/CXCR4$^{\text{high}}$/ALDH1$^{\text{high}}$/KRT19$^{\text{low}}$ CSCs, thus harboring potential clinical implications.

DISCUSSION

A prominent type I filament protein, KRT19 is abundantly expressed in epithelial tumor cells and is a marker for metastatic tumors. Its overexpression in circulating tumor cells (CTCs) governs its crucial role in regulating their cancerous properties. However, a previous gene profiling microarray study showed that KRT19 is differentially expressed in different breast cancer cell lines. Moreover, its expression in these cell lines showed reciprocal correlation with their cancer properties (that is, high KRT19 with low CD44 and vice versa). In fact, several reports have demonstrated the contradictory effects of KRT19 on cancer properties, depending on its concentration and the cell type involved. For instance, cancer properties were positively regulated through the KRT19/HER2 signaling pathway by very high KRT19 levels in HER2-overexpressed breast cancer. Meanwhile, negative regulation was observed in the BT474 and SKBR3 breast cancer cells, through the KRT19/Egr-1 signaling pathway, at either very low or no KRT19 concentration. Another study demonstrated that overexpression of KRT19 in the BT549 breast cancer cell line (expresses low levels of endogenous KRT19) inhibits cell proliferation and induces cell arrest by regulating endoplasmic reticulum stress and its related signaling pathway. Meanwhile, KRT19 knockdown yielded the opposite results in MDA-MB231 cells (which express high endogenous KRT19).

In this study, we compared the expression patterns of KRT genes (KRT1–20) in normal and cancer tissues, and found specific high expression of KRT19 in invasive breast cancer. Although the analysis of Oncomine database suggested strong correlation of KRT19 expression with breast cancer invasiveness, knockdown of KRT19 expression yielded increased cell proliferation, migration, invasion, drug resistance and sphere formation in breast cancer cells, which showed specifically enhanced KRT19 expression. Our results demonstrate that high KRT19 levels may negatively affect proliferation and invasiveness of breast cancers, though several KRT genes (including KRT19) are reported as important markers for RT–PCR-mediated detection of cancers. Importantly, KRT19 expression was markedly suppressed in CD133$^{\text{high}}$/CXCR4$^{\text{high}}$/ALDH1$^{\text{high}}$ KU-CSCs, which were prepared from chemo-treated breast cancer patients and showed abnormally elevated cell proliferation, migration, invasion, drug resistance, and sphere formation. In addition, KRT19 overexpression in KU-CSCs significantly suppressed their proliferation and migration (Figure 7), strongly supporting the anticancer/CSC function of KRT19.

The underlying molecular mechanism of KRT19 must be studied in order to understand better its functions in cancer cells. We report here, for the first time, a novel function of KRT19 in regulation of the NUMB-dependent NOTCH signaling pathway in breast cancer cells and CSCs. NOTCH possesses oncogenic functions in several cancers, including leukemia and breast cancer, and also regulates differentiation, proliferation, and growth of either cancer or stem cells. Several studies also reported that NUMB-mediated regulation of the NOTCH signaling pathway modulates migration and invasion in different tumor cell types, including pancreatic, ovarian, and prostate. Numb also suppresses the NOTCH signaling pathway through proteolytic degradation of the NOTCH intracellular domain. Furthermore, it regulates asymmetric cell division in mammalian development, cell adhesion and migration, as well as a number of signaling pathways. Recent studies confirmed that the NOTCH signaling pathway is suppressed by overexpressed NUMB, suggesting that the latter acts as a tumor suppressor. In the current study, KRT19 knockdown-mediated suppression of KRT19 expression led to increased NOTCH activity as well as NOTCH-dependent proliferation of breast cancer cells. Importantly, we demonstrated the crucial function of KRT19 in...
Figure 2. Silencing of KRT19 expression upregulates the NOTCH signaling pathway by downregulating NUMB expression. Data were obtained from three independent experiments and presented as average values ± s.d. (*\(P < 0.05\), **\(P < 0.01\), ***\(P < 0.001\)). (a) Expression levels of *WNT1*, *CTNNB1*, *AXIN2*, *TCF7*, *LEF1*, and *NUMB* were analyzed using RT–PCR. Bands were quantified by scanning densitometry and normalized to that of *GAPDH* (right panel). (b) The TOP-/FOP-Flash assays were evaluated using luciferase assay system. The indicated cells were transfected with TOP- or FOP-Flash plasmid, and then luciferase activity was measured. (c) Expression levels of *NOTCH1*, *MAML1*, *RBPjK*, *HES1*, *CCND1*, and *H-RAS* were analyzed using RT–PCR; protein levels of *NICD*, *HES1*, *cyclinD1*, *H-RAS*, and *NUMB* were assessed using western blotting (lower panel). Bands were quantified by scanning densitometry and normalized to that of *GAPDH* or actin (right panel). (d) Relative levels of *KRT19*, *NOTCH1*, and *NUMB* expression were analyzed in normal and invasive breast carcinomas using different Oncomine databases. Box, whiskers and asterisks reflect the interquartile range, 10–90% range, and the minimum or maximum values, respectively. Data are normalized facilitating inter-study comparison. The image was downloaded from the Oncomine datasets provided by Ma et al., Finak et al., Radvanyi et al. or Zhao et al.
modulating the NOTCH signaling pathway and related cancer and CSLC properties, not only in breast cancer cells (MCF7 and MDA-MB231), but also in patient-derived CD133high/CXCR4high/ALDH1high/KRT19low CSLCs.

At the molecular level, we demonstrated that KRT19 functionally interacts with the β-catenin-RAC1 complex, and promotes stability and nuclear translocation of the same. This regulation is crucial to the expression of NUMB, which suppresses the NOTCH
Figure 3. DAPT treatment and NUMB overexpression help to overcome the effects of KRT19 knockdown on proliferation, migration, invasion, and sphere formation in breast cancer cell lines. Data were obtained from three independent experiments and presented as average values ± s.d. (*P < 0.05, **P < 0.01, ***P < 0.001). (a) Cell proliferation upon DAPT treatment (20 μM) was analyzed by cell counting. Cells were counted up to 4 days. (b) Wound-healing/migration assay in DAPT-treated shKRT19 knockdown cells. Images were acquired at the indicated time points using bright-field microscopy (upper panel). The number of cells in the enclosure was counted (lower panel). (c) Invasiveness was analyzed in DAPT-treated shKRT19 knockdown cells. (d) The indicated cells were cultured in suspension in SFM using non-coated plates. The number of spheres was stained with crystal violet (upper panel), and counted (lower panel) on day 5. (e) Cell proliferation upon NUMB overexpression in shKRT19 cells was analyzed by cell counting. Cells were counted up to 4 days. (f) Wound-healing/migration assay was conducted in NUMB-overexpressed shKRT19 knockdown cells. Images were acquired at the indicated time points using bright-field microscopy (upper panel). The number of cells in the enclosure was counted (lower panel). (g) The indicated cells were cultured in suspension in SFM using non-coated plates. The number of spheres was stained with crystal violet (upper panel), and counted (lower panel) on day 5.
signaling pathway. NUMB, a direct transcriptional target of the WNT signaling pathway, could ubiquitously degrade NOTCH intracellular domain and negatively regulate NOTCH signaling pathway.35,36 Furthermore, previous studies demonstrated that inhibition of NUMB resulted in activation of NOTCH signaling pathway.65,66 KRT19-mediated regulation of NUMB expression may be crucial for cross-linking and balancing of the canonical WNT and NOTCH signaling pathways, which will be characterized in detail in the further study. Essentially, our results demonstrated that silencing of KRT19 expression inhibits formation of the β-

Figure 3. Continued.
catenin-RAC1 complex, and positively regulates NOTCH signaling by inhibiting β-catenin-mediated NUMB transcription. A recent study reported that the canonical WNT signaling pathway upregulates NUMB expression in myoblasts. This occurs when β-catenin binds to regulatory regions of the NUMB promoter at TCF sites 545 and 640 bp upstream of the transcriptional start site. Moreover, RAC1 genetically interacts with β-catenin and controls its nuclear localization to the TCF3/4 sites of the target.
Furthermore, active/inactive Rac1 could shift Rac1–β-catenin complexes toward the nucleus. In addition, a protein complex composed of RAC1B, β-catenin and disheveled functions to enhance nuclear translocation of transcription factors required for increased interaction with the target promoters. These studies corroborate our proposed mechanism that KRT19 directly interacts with the β-catenin-RAC1 complex to promote nuclear translocation of β-catenin and activate NUMB transcription.

Our data also showed that the effect of KRT19 knockdown is more marked in the highly invasive and metastatic MDA-MB231 breast cancer cells ('basal' type, triple negative (ER− PR− HER2−)), compared with that in the MCF7 cells ('luminal' type, ER+PR+). A previous report demonstrated that KRT19+ CTCs differentially affect breast cancer patients with ER-negative and -positive (basal-and luminal-like CTCs, respectively) tumors. Despite of similar KRT19 expression in CTCs of both tumor types, the clinical outcomes of prognosis differed depending on the ER expression, especially at the early stages. Specifically, breast cancer patients with ER− CTCs showed poor prognosis than those with ER+ CTCs. Concomitantly, in this study, KRT19-dependent regulation of the NOTCH signaling pathway significantly modulated the cancer/CSLC properties of KU-CSLCs, which are ER−. ERα is known to increase the expression of KRT19, and NOTCH signaling activity is higher in ERα− cells than in ERα+ ones. Furthermore, one previous study has reported an important and differential role of NOTCH signaling pathway in regulation of cancer/CSLC properties either in ERα− or ERα+ and triple negative breast cancer. Further studies are required to elucidate the effects of ER, PR, and HER2 expression on KRT19-mediated regulation of the NOTCH signaling pathway as well as cancer/CSLC properties.

In conclusion, our study shows that KRT19 directly interacts with the β-catenin-RAC1 complex, and stabilizes ubiquitination and proteasomal degradation of β-catenin to increase its nuclear translocation.

Figure 5. KRT19 interacts with β-catenin and RAC1. (a) Lysates from the indicated cells were used for immunoprecipitation using Protein A/G Sepharose, antibodies specific for KRT19, β-catenin, and RAC1, and normal IgG. The immunoprecipitates were analyzed by western blotting with the antibodies indicated. For inputs, lysates were analyzed by western blotting with the indicated antibodies. (b) Immunoprecipitation conducted with the indicated antibodies using lysates from the indicated cells. For inputs, lysates were analyzed by western blotting with the indicated antibodies. (c) Cells were treated with MG132 and the protein levels of KRT19, β-catenin, and RAC1 were assessed by western blotting. (d) Immunoprecipitation assay was performed after MG132 treatment, using the antibodies indicated.
Figure 6. Patient-derived CD133high/CXCR4high/ALDH1high cancer stem-like cells (KU-CSLCs) show significantly decreased expression of KRT19 and highly enhanced CSLC properties. Data were obtained from three independent experiments and presented as average values ± s.d. *P < 0.05, **P < 0.01, ***P < 0.001). (a) mRNA expression of KRT19 analyzed by RNA sequencing in MDA-MB231 cells and KU-CSLCs. (b) Expression levels of KRT19, NUMB, NOTCH1, and HES1 analyzed using reverse transcription polymerase chain reaction (RT–PCR) and western blotting. (c and d) Sphere-formation analysis in either growth (GM) or SFM medium using non-coated plates. Spheres from either MDA-MB-231 cells or KU-CSLCs were collected after 5 days of culture, stained with crystal violet (c) and counted (d). (e and f) mRNA expression levels of stemness (OCT4, SOX2, and NANOG) and epithelial-to-mesenchymal (EMT; N- and E-cadherin) markers analyzed using RT–PCR (e) and quantitative (qPCR) (f) in MDA-MB231 cells and KU-CSLCs cultured in either GM or SFM. (g) Representative images of the MDA-MB231- or KU-CSLC-injected SCID mice (left), and the excized tumors (right) 4 weeks post tumor formation (n = 5). Tumor volume (mm3) (h) and weight (g) (i) assessed after biopsy. (j) Expression of KRT19, NUMB, NOTCH1, and HES1 analyzed in the indicated cells after treatment with DAPT (20 μM). (k) Proliferation of the indicated cells was assessed for 4 days after DAPT treatment. (l) Wound-healing/migration assay in control and DAPT-treated cells. The number of cells in the enclosure was enumerated at the time points indicated.
Figure 7. Overexpression of KRT19 or knockdown of NOTCH1 leads to decreased CSLC properties in KU-CSLCs. Data were obtained from three independent experiments and presented as average values ± s.d. (⁎ P < 0.05, ⁎⁎ P < 0.01, ⁎⁎⁎ P < 0.001). (a) Expression of KRT19, NUMB, NOTCH1, and HES1 analyzed in the KRT19-overexpressing or NOTCH1-knocked down KU-CSLCs using reverse transcription polymerase chain reaction (RT–PCR; upper panel). Protein levels of KRT19, NUMB, NICD, and HES1 were assessed by western blotting. (b) Proliferation of the indicated cells was assessed for 4 days. (c) Wound-healing/migration assay for the indicated cells. The number of cells in the enclosure was counted at the time points indicated. (d) Cell survival measured by cell counting after 24 h of treatment with doxorubicin (0.5 μM) (upper panel) and expression of drug-resistance markers analyzed by RT–PCR (lower panel). (e) Sphere formation in SFM using non-coated plates. Spheres from the indicated cells were collected after 5 days of culture, stained with crystal violet (upper panel) and counted (lower panel). (f) Expression of stemness markers in the indicated cells.
then downregulates NOTCH signaling; its target genes; and consequently, cell proliferation, migration, invasion, drug resistance, and sphere formation (Figure 8). Our data might be crucial to understand the molecular basis of KRT19- and NOTCH-mediated regulation of cancer/CSLC properties, and might hold potential clinical implications as well.

MATERIALS AND METHODS

Cell culture
Human cell lines for breast cancer (MDA-MB231, SKBR3, and MCF7), hepatocellular carcinoma (HepG2), neuroblastoma (SH-SY5Y), immortalized human keratinocytes (HaCaT), and embryonic kidney cells (HEK293T) are obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). All cell lines and breast cancer patient-derived CD133high/CXCR4high/ALDH1high high sphere-forming KU-CSLCs were cultured in either high glucose-Dulbecco’s Modified Eagle Medium or Roswell Park Memorial Institute medium (DMEM or RPMI) 1640 (Sigma-Aldrich, Saint Louis, MO, USA) supplemented with 10% fetal bovine serum. Cells were maintained in a humidified incubator at 5% CO2 and 37 °C. All cell lines were authenticated by short tandem repeat profiling and were tested for mycoplasma contamination using BioMycoX Mycoplasma PCR Detection Kit (Cat. No. CS-D-25) (Cellsafe, Yeongtong-gu, Suwon, Republic of Korea).

Knockdown and overexpression of KRT19 and NOTCH1
Sense and antisense oligonucleotides for control (scrambled), KRT19- (shKRT19),12 and NOTCH1-specific (shNOTCH1) shRNA,84 containing BamH1 and EcoRI restriction sites, were annealed by using annealing buffer (Tris-EDTA buffer (pH 8), 100 mM NaCl (Sigma-Aldrich)). Next, the annealed oligonucleotides were inserted into the pGreenPuro lentiviral expression vector (System Biosciences, Mountain View, CA, USA) to construct KRT19-, NOTCH1-knocked down, or control vectors. The oligonucleotide sequences of the shRNAs are listed in Table 1.

For overexpression of KRT19, its complete coding sequence was cloned into the pGEM-T Easy vector (Promega, Madison, WI, USA) using the primers listed in Table 1. The complete coding sequence was further subcloned into the pCDH-EF1-MCS-T2A-copGFP lentiviral vector (System Biosciences) using XbaI and EcoRI restriction enzymes and the primers listed in Table 1.

HEK293T cells were transfected with the specific lentiviral vector and viral packaging plasmids, RRE and REV, using calcium phosphate transfection protocol. After 72 h of incubation at 5% CO2 and 37 °C,

Figure 8. Schematic diagram depicting the KRT19-mediated regulation of NUMB expression, NOTCH signaling pathway and cancer/cancer stem-like cells (CSLC) properties in KRT19-overexpressing breast cancer cells. (a) KRT19 directly interacts with the β-catenin-RAC1 complex and stabilizes the ubiquitination and proteasomal degradation of β-catenin. This increases the nuclear translocation of β-catenin, enhancing NUMB expression in the process, which downregulates NOTCH signaling, its target genes, and consequently, cell proliferation, migration, invasion, drug resistance, and sphere formation. Patient-derived CD133high/CXCR4high/ALDH1high KU-CSLCs, which showed significantly reduced KRT19 expression, (b) displayed highly enhanced CSLC properties.

Table 1. List of primers used for knockdown and overexpression of KRT19 and NOTCH1, respectively

Accession no.	shRNA	Oligomers (5′–3′)	Target site
NM_002276.4	KRT19	AACCATGAGGAGGAAATCA	791–809
NM_017617.3	NOTCH1	GTCAGGAAACACCTGCAA	782–800
	Scrambled	CCTAAGGTTAAGTCGCCCTCGE	Non-specific

Plasmid name	Gene	Forward (5′–3′)	Reverse (5′–3′)
pGEMR-T easy vector	KRT19	CTCGCGCATGACTGTCTACA	TCCATCCCTCTACCAGAAGA
pCDH-EF1-MCS-T2A-copGFP	KRT19	CGCTctagatCTCGCCATGGTCCCTACXbaol	CGCggatttGAGGAGCCTTGGAGGAGCAGACACGGAAG

Underlined sequence is for restriction sites.
viruses were collected and concentrated using an ultracentrifuge (Optima L-90K, Beckman Coulter Inc., CA, USA). MDA-MB231 and MCF7 cells were then infected with either scrambled shRNA or shKRT19 lentiviruses, whereas KU-CSCs were infected with either scrambled shRNA, shNOTCH1 or KRT19-expressing lentiviruses and incubated overnight at 5% CO2 and 37°C. For virus infection, ~8.0 x 10^8 IU/ml viral particles were used to get stably expressing cells. To measure virus titre, we use the following equation, titre in IU/ml = (((no. of cells at starting time) × (dilution factor) × (percent infection))) / (volume virus solution added expressed in ml)) as described previously. Next, the media were substituted with normal growth media (high glucose DMEM/RPMI 1640 with 10% fetal bovine serum). The virus infection efficiency was calculated to be < 95%, and knockdown or overexpression was assessed by RT–PCR and western blot analyses.

For NUMB overexpression, MDA-MB231 and MCF7 KRT19-knocked down cells were incubated overnight at a density of 2 x 10^5 cells per well in 24-well culture plate and transfected with the expression vectors (pEF-BOS-myc-NUMB and control vector, kind gifts from professor Hee-Sae Park (Chonnam National University) using Lipofectamine in 1:3 ratio (Invitrogen, Carlsbad, CA, USA). After 48 h of post-transfection, half of cells were harvested for western blotting and the remained cells were used for cell proliferation, migration and sphere-formation analyses.

Total RNA extraction and RT–PCR analyses

Total RNA was extracted from the cells using Easy-Blue total RNA extraction kit (iNtRON Biotechnology, Republic of Korea) according to the manufacturer's instructions. The concentration of total RNA was measured using Nanodrop (ND1000) spectrophotometer (Nanodrop Technologies Inc., Wilmington DE, USA). Subsequently, 2 µg of total RNA was used for cDNA synthesis with M-MLV reverse transcriptase (Promega) according to the manufacturer's instructions. Sequences of the primers used are given in Table 2. After the PCR reaction, the products were analyzed on either 1 or 1.5% agarose gels. Quantitative real-time RT–PCR analyses were done using a PTC-200 thermal cycler with Chromo4 optical detector (MJ Research/ Bio-Rad, CA, USA) using Fast SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA, USA). MDA-MB231 and MCF7 cells were transfected with the expression vectors (pEF-BOS-myc-NUMB and control vector, kind gifts from professor Hee-Sae Park (Chonnam National University) using Lipofectamine in 1:3 ratio (Invitrogen, Carlsbad, CA, USA). After 48 h of post-transfection, half of cells were harvested for western blotting and the remained cells were used for cell proliferation, migration and sphere-formation analyses.

Total RNA was extracted from the cells using Easy-Blue total RNA extraction kit (iNtRON Biotechnology, Republic of Korea) according to the manufacturer's instructions. The concentration of total RNA was measured using Nanodrop (ND1000) spectrophotometer (Nanodrop Technologies Inc., Wilmington DE, USA). Subsequently, 2 µg of total RNA was used for cDNA synthesis with M-MLV reverse transcriptase (Promega) according to the manufacturer's instructions. Sequences of the primers used are given in Table 2. After the PCR reaction, the products were analyzed on either 1 or 1.5% agarose gels. Quantitative real-time RT–PCR analyses were done using a PTC-200 thermal cycler with Chromo4 optical detector (MJ Research/ Bio-Rad, CA, USA) using Fast SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA, USA). MDA-MB231 and MCF7 cells were transfected with the expression vectors (pEF-BOS-myc-NUMB and control vector, kind gifts from professor Hee-Sae Park (Chonnam National University) using Lipofectamine in 1:3 ratio (Invitrogen, Carlsbad, CA, USA). After 48 h of post-transfection, half of cells were harvested for western blotting and the remained cells were used for cell proliferation, migration and sphere-formation analyses.

Table 2. List of primers used for quantification of specific gene expression

Accession no.	Gene	Forward (5′–3′)	Reverse (5′–3′)
NM_0057088.2	KRT3	GAGCGGGAACAGATCAAGAC	TCCACTGGTGGTCTCCAGGACT
NM_002272.3	KRT4	AGATACCTTGGGCAATGACA	CGTGTACGGAGCTGCTGCGGG
NM_000424.3	KRT5	CACCAAGAAGTGGAGCAGA	CTGGTCCTTGAGGGCGAG
NM_005556.3	KRT7	CTCCGGAAATACCGGAAGTAG	ATACAGATATACCGCAGG
NM_153490.2	KRT13	ACCGCAAGATGATGTCCTCA	CGACAAGAGCTGAGGAG
NM_002224.2	KRT18	GCCGAGTGAGTGGAGAAGT	CGGAAATCTGGTACGGCA
NM_002276.4	KRT19	TCCACCTTCTCTACTCTC	TGGCTTCTCCCCTTCTTCTC
NM_00100574.1	NUMB	TCTGGGAGCTGAGAGTTCCT	CAGGGCTTCAAGGGCGG
NM_005430.3	WNT1	CCTCCGGGGAGCTGGTCGG	CACGGTGATCTACGGCAG
NM_001904.3	CTNNB1	AAAAAAGGCTGAGGTTGTTA	TGGTACAGGCGCTGTG
NM_004655.3	AXIN2	CCTCTTGAGGACAGAGC	GGGCGAGACGACCGAG
NM_003202.3	TCF7	GACATCGAGGGACGAAAG	CACAGGAAGCAGCAGT
NM_012679.4	LEF1	CCTGTGCCGCCACCAACTG	GCCGCTTCAGTCTTCCTC
NM_017617.3	NOTCH1	GGTTAACCAGTTGCTGGTA	CGCGCACTGCTACAATAC
NM_014757.4	MAML1	CACCAAGCCACCGGATTC	AACAGGGAGGCTGCTG
NM_005349.3	RBPK	GAAACAAGTGAAACAGGAGG	GAGTACGTGTTTCGCTG
NM_005524.3	HES1	GCTACAAGGGTGGAGGCTC	GGGGATTTGGGGAATGG
NM_00113044.1	H-RAS	TTTTACGACCGTGGTGGTG	CCCACGGGAGGCTGCTG
NM_001447.2	CCND1	CACAGGACATACGGGAGT	ATGGTATCCGCTGAGC
Invasion assay was conducted using CytoSelect 96-Well Cell Invasion Assay Kit (Cell Biolabs Inc., CA, USA) as described. Cells (1 x 10⁴) were seeded in 96-well culture plates, and the assay was conducted according to the manufacturer's protocol.

Wound-healing/migration assay was performed as described. In brief, 1 x 10⁶ cells were seeded in 60-mm plates and grown until 90% confluent. Prior to the experiment, the cells were incubated with mitomycin C (10 μg/ml), which inhibits cell division. After 2–3 h of incubation at 5% CO₂ and 37 °C, the cell monolayer was wounded with a 200 μl pipette tip. Cells were then washed thrice with phosphate-buffered saline (PBS), and images of this wound were acquired by Nikon eclipse TE2000-U microscopy (Nikon Instruments Inc., Melville, NY, USA) at various time points (0, 12 and 24 h).

Drug-resistance analysis was performed as described previously. In brief, 1 x 10⁶ cells were seeded in 12-well dishes. Following overnight incubation at 5% CO₂ and 37 °C, they were treated with 0.5 μM doxorubicin and incubated for another 48 h. They were then enumerated and represented as percent (%) of surviving cells.

Sphere-formation assay

Cells (1 x 10⁴) were cultured and suspended in either growth medium (DMEM/RPMI 1640 (Sigma-Aldrich) with 10% fetal bovine serum) or SM (sphere-formation medium: serum-free DMEM/F12 supplemented with B27-supplement (1:50; Invitrogen)) supplemented with 20 ng/ml epidermal growth factor (Sigma-Aldrich), 10 μg/ml insulin (Invitrogen), and 0.4% bovine serum albumin (Sigma-Aldrich), using non-coated plates. To propagate the spheres in vitro, they were collected by gentle centrifugation, dissociated into single cells as described previously, and then cultured to obtain next-generation spheres. Spheres from MDA-MB-231, MCF7 cells, and KU-CSLCs were collected after 5 days of culture, stained with crystal violet (Sigma-Aldrich) and photographed by Nikon eclipse TE2000-U microscopy (Nikon Instruments Inc.) prior to colony counting.

 Luciferase reporter assay

For luciferase reporter assays, 1 x 10⁵ MDA-MB-231 or MCF7 cells were seeded in 12-well plate and transiently transfected with either 200 ng of TOP- or FOP-FLASH (kind gifts from professor Keun Il Kim (Sookmyung Women's University)) by using Lipofectamine 2000 reagents (1:3 ratio). After 48 h post transfection, the luciferase activity using a luciferase assay system (Promega) was analyzed by a luminometer (Veritas microplate luminometer, Turner Biosystems, CA, USA) and presented as average values ± s.d. Statistical analyses were done using two-tailed Student’s t-test for two groups and, for multiple comparison test, analysis of variance was performed with adjusting Tukey–Kramer to compare treated versus control. A P-value < 0.05 was considered statistically significant.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Research Foundation (NRF) funded by the Korean government (2013M3A9D3045880 and 2015R1A5A1009701).

REFERENCES

1. Lopez de Silanes I, Quezada MP, Esteller M. Aberrant regulation of messenger RNA 3'-untranslated region in human cancer. Cell Oncol 2007; 29: 1–17.
2. Ignotiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafoussi M et al. Different prognostic value of cytokerin-19 mmr- positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 2007; 25: 5194–5202.
3. Bozionellou V, Mavroudis D, Perraki M, Papadopoulos S, Apostolaki S, Stathopoulos E et al. Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 2004; 10: 8185–8194.
4. Coulombe PA, Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 2004; 6: 699–706.
5. Omary MB, Ku N-O, Tao G-Z, Toivola DM, Liao J. Heads and tails’ of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 2006; 31: 383–394.
6. Hendrix MJ, Seffor EA, Chui Y-W, Trevor KT, Seffor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1996; 15: 507–525.
7. Caulin C, Ware CF, Magin TM, Oshima RG. Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 2000; 149: 17-22.
8. Kim S, Wong P, Coulombe PA. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 2006; 441: 362–365.
9. Wu Y-J, Rheinwald JG. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell 1981; 25: 627–635.
19 Bernemann C, Hülsewig C, Ruckert C, Schäfer S, Blümel L, Hempel G
20 Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S
21 Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F et al.
22 Jang G-B, Kim J-Y, Cho S-D, Park K-S, Jung J-Y, Lee H-Y
23 Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW et al.
24 Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB. Wnt pathway
25 Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at
26 Mol Cancer
27 Sci Rep
28 J Clin Invest
34 Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 Activation Controls
35 J Biol Chem
36 Exp Cell Res
37 Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G et al.
38 Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and
39 Pui C-H. T cell acute lymphoblastic leukemia: NOTCHing the way toward a better
40 Ju J, Oh S, Lee K, Yang W, Nam K, Moon H et al. Cytokeratin19 induced by
41 Charaf-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006; 25: 2273–2284.
42 Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell stem cell 2013; 12: 761–773.
43 Pethe W, Charames GS, Bapat B. Rac1b receptors Dishevelled and β-catenin to Wnt target gene promoters independent of Wnt3a stimulation. J Oncol 2011; 39: 805–810.
44 Stathopoulos E, Sanidas E, Kafousi M, Bozionelou V et al. Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann Oncol 2005; 16: 240–246.
45 Yang X-R, Xu Y, Shi G-M, Fan M, Jian Z, JI Y et al. Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatic carcinoma patients after curative resection. Clin Cancer Res 2008; 14: 3850–3859.
46 Chen T-F, Jiang G-L, Fu X-L, Wang L-J, Qian H, Wu K-L et al. CK19 mRNA expression measured by reverse-transcription polymerase chain reaction (RT-PCR) in the peripheral blood of patients with non-small cell lung cancer treated by chemoradiotherapy: an independent prognostic factor. Lung Cancer 2007; 56: 105–114.
47 Pui C-H. T cell acute lymphoblastic leukemia: NOTCHing the way toward a better treatment outcome. Cancer Cell 2009; 15: 85–87.
48 Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL et al. Human Hepatocellular carcinomas with ‘Stemness’-related marker expression: keratin 19 expression and a poor prognosis. Histochemistry 2011; 54: 1707–1717.
49 Pui C-H. T cell acute lymphoblastic leukemia: NOTCHing the way toward a better treatment outcome. Cancer Cell 2009; 15: 85–87.
50 Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL et al. Human Hepatocellular carcinomas with ‘Stemness’-related marker expression: keratin 19 expression and a poor prognosis. Histochemistry 2011; 54: 1707–1717.
51 Pui C-H. T cell acute lymphoblastic leukemia: NOTCHing the way toward a better treatment outcome. Cancer Cell 2009; 15: 85–87.
52 Bambang IF, Lu D, Li H, Chiu L-L, Lau QC, Koay E et al. Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Exp Cell Res 2009; 315: 1964–1974.
53 Kim H, Choi GH, Na DC, Ahn EY, Kim GL, Lee JE et al. Human Hepatocellular carcinomas with ‘Stemness’-related marker expression: keratin 19 expression and a poor prognosis. Histochemistry 2011; 54: 1707–1717.
54 Pui C-H. T cell acute lymphoblastic leukemia: NOTCHing the way toward a better treatment outcome. Cancer Cell 2009; 15: 85–87.
55 Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology 2010; 56: 286–296.
56 Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signalling: cell fate control and signal integration in development. Science 1999; 284: 770–776.
57 Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev 2007; 28: 339–363.
58 Wang Z, Banerjee S, Li Y, Rahman KW, Zhang Y, Sarkar FH. Down-regulation of Notch-1 inhibits invasion by inactivation of nuclear factor-κB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006; 66: 2778–2784.
et al. 77 Tee MK, Rogatsky I, Tzagarakis-Foster C, Cvoro A, An J, Christy RJ et al. Estriol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors α and β. Mol Cell 2004; 15: 1262–1272.

90 Hua G, Liu Y, Li X, Xu P, Luo Y. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol Rep 2014; 31: 2727–2734.

91 Shaw FL, Harrison H, Spence K, Ablett MP, Simões BM, Farnie G et al. A detailed mammmosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia 2012; 17: 111–117.

92 Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. Let-7 regulates self renewal and tumorigenicty of breast cancer cells. Cell 2007; 131: 1109–1123.

93 Lee JM, Kim IS, Kim H, Lee JS, Kim K, Yim HY et al. RORa attenuates Wnt/β-catenin signaling by PKCδ-dependent phosphorylation in colon cancer. Mol Cell 2010; 37: 183–195.

94 Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Fukuushima T et al. Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26. Oncol Lett 2015; 9: 2361–2367.

95 Feldman JP, Goldwasser R, Mark S, Schwartz J, Orion I. A mathematical model for tumor volume evaluation using two-dimensions. J Appl Quant Methods 2009; 4: 455–462.