A (forgotten) upper bound for the spectral radius of a graph

Clive Elphick,∗ Chia-an Liu†

October 7, 2014

Abstract

The best degree-based upper bound for the spectral radius is due to Liu and Weng. This paper begins by demonstrating that a (forgotten) upper bound for the spectral radius dating from 1983 is equivalent to their much more recent bound. This bound is then used to compare lower bounds for the clique number. A series of line graph based upper bounds for the Q-index is then proposed and compared experimentally with a graph based bound. Finally a new lower bound for generalised r–partite graphs is proved, by extending a result due to Erdős.

1 Introduction

Let G be a simple and undirected graph with n vertices, m edges, and degrees $\Delta = d_1 \geq d_2 \geq ... \geq d_n = \delta$. Let d denote the average vertex degree, ω the clique number and χ the chromatic number. Finally let $\mu(G)$ denote the spectral radius of G, $q(G)$ denote the spectral radius of the signless Laplacian of G and G^L denote the line graph of G.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary) that $\mu \leq y - 1$, where y is defined by the equality:

$$y(y - 1) = \sum_{k=1}^{[y]} d_k + (y - [y])d_{[y]}.$$

(1)

Edwards and Elphick [6] show that $1 \leq y \leq n$ and that y is a single-valued function of G.

This bound is exact for regular graphs because, we then have that:

$$d = \mu \leq y - 1 = \frac{1}{y} \left(\sum_{k=1}^{[y]} d + (y - [y])d_{[y]} \right) = d.$$

∗clive.elphick@gmail.com
†twister.imm96g@g2.nctu.edu.tw
The bound is also exact for various bidegreed graphs. For example, let G be the Star graph on n vertices, which has $\mu = \sqrt{n-1}$. It is easy to show that $\lfloor \sqrt{n-1} \rfloor < y < \lceil \sqrt{n-1} \rceil$. It then follows that y is the solution to the equation:

$$y(y - 1) = (n - 1) + \lfloor \sqrt{n-1} \rfloor - 1 + (y - \lfloor \sqrt{n-1} \rfloor) = n - 2 + y,$$

which has the solution $y = 1 + \sqrt{n-1}$, so $\mu \leq y - 1 = \sqrt{n-1}$.

Similarly let G be the Wheel graph on n vertices, which has $\mu = 1 + \sqrt{n}$. It is straightforward to show that $y = 2 + \sqrt{n}$ is the solution to (1) so again the bound is exact.

2 An upper bound for the spectral radius

The calculation of y can involve a two step process.

1. Restrict y to integers, so (1) simplifies to:

$$y(y - 1) = \sum_{k=1}^{y} d_k.$$

Since $d \leq \mu$, we can begin with $y = \lfloor d + 1 \rfloor$, and then increase y by unity until $y(y - 1) \geq \sum_{k=1}^{y} d_k$. This determines that either $y = a$ or $a < y < a + 1$, where a is an integer.

2. Then, if necessary, solve the following quadratic equation:

$$y(y - 1) = \sum_{k=1}^{a} d_k + (y - a)d_{a+1}. \quad (2)$$

For convenience let $c = \sum_{k=1}^{a} d_k$. Equation (2) then becomes:

$$y^2 - y(1 + d_{a+1}) - (c - ad_{a+1}) = 0.$$

Therefore

$$y = \frac{d_{a+1} + 1 + \sqrt{(d_{a+1} + 1)^2 + 4(c - ad_{a+1})}}{2}$$

so

$$\mu \leq y - 1 = \frac{d_{a+1} - 1 + \sqrt{(d_{a+1} + 1)^2 + 4(c - ad_{a+1})}}{2}.$$

This two step process can be combined as follows, by letting $a + 1 = k$:

$$\mu \leq \frac{d_k - 1 + \sqrt{(d_k + 1)^2 + 4\sum_{i=1}^{k-1}(d_i - d_k)}}{2}, \text{ where } 1 \leq k \leq n. \quad (3)$$

In 2012, Liu and Weng [12] proved (3) using a different approach. They also proved there is equality if and only if G is regular or there exists $2 \leq t \leq k$ such that $d_1 = d_{t-1} = n - 1$ and $d_t = d_n$. Note that if $k = 1$ this reduces to $\mu \leq \Delta$.

If we set $k = n$ in (3) then:

$$\mu \leq \frac{\delta - 1 + \sqrt{(\delta + 1)^2 - 4n\delta + 8m}}{2}$$

which was proved by Nikiforov [13] in 2002.
3 Lower bounds for the clique number

Turán's Theorem, proved in 1941, is a seminal result in extremal graph theory. In its concise form it states that:

\[
\frac{n}{n - d} \leq \omega(G).
\]

Edwards and Elphick [6] used \(y \) to prove the following lower bound for the clique number:

\[
\frac{n}{n - y + 1} < \omega(G) + \frac{1}{3}.
\] (4)

In 1986, Wilf [16] proved that:

\[
\frac{n}{n - \mu} \leq \omega(G).
\]

Note, however, that:

\[
\frac{n}{n - y + 1} \not\leq \omega(G),
\]

since for example \(\frac{n}{n - y + 1} = 2.13 \) for \(K_{7,9} \) and \(\frac{n}{n - y + 1} = 3.1 \) for \(K_{3,3,4} \).

Nikiforov [13] proved a conjecture due to Edwards and Elphick [6] that:

\[
\frac{2m}{2m - \mu^2} \leq \omega(G).
\] (5)

Experimentally, bound (5) performs better than bound (4) for most graphs.

4 Upper bounds for the Q-index

Let \(q(G) \) denote the spectral radius of the signless Laplacian of \(G \). In this section we investigate graph and line graph based bounds for \(q(G) \) and then compare them experimentally.

4.1 Graph bound

Nikiforov [14] has recently strengthened various upper bounds for \(q(G) \) with the following theorem.

Theorem 1. If \(G \) is a graph with \(n \) vertices, \(m \) edges, with maximum degree \(\Delta \) and minimum degree \(\delta \), then

\[
q(G) \leq \min \left(2\Delta, \frac{1}{2} \left(\Delta + 2\delta - 1 + \sqrt{(\Delta + 2\delta - 1)^2 + 16m - 8(n - 1 + \Delta)\delta} \right) \right).
\]

Equality holds if and only if \(G \) is regular or \(G \) has a component of order \(\Delta + 1 \) in which every vertex is of degree \(\delta \) or \(\Delta \), and all other components are \(\delta \)-regular.
4.2 Line graph bounds

The following well-known Lemma (see, for example, Lemma 2.1 in [2]) provides an equality between the spectral radii of the signless Laplacian matrix and the adjacency matrix of the line graph of a graph.

Lemma 2. If G^L denotes the line graph of G then:

$$q(G) = 2 + \mu(G^L). \quad (6)$$

Let $\Delta_{ij} = \{d_i + d_j - 2 \mid i \sim j\}$ be the degrees of vertices in G^L, and $\Delta_1 \geq \Delta_2 \geq \ldots \geq \Delta_m$ be a renumbering of them in non-increasing order. Cvetković et al. proved the following theorem using Lemma 2.

Theorem 3. (Theorem 4.7 in [4])

$$q(G) \leq 2 + \Delta_1$$

with equality if and only if G is regular or semi-regular bipartite.

The following lemma is proved in varying ways in [15, 5, 12].

Lemma 4.

$$\mu(G) \leq \frac{d_2 - 1 + \sqrt{(d_2 - 1)^2 + 4d_1}}{2}$$

with equality if and only if G is regular or $n - 1 = d_1 > d_2 = d_n$.

Chen et al. combined Lemma 2 and Lemma 4 to prove the following result.

Theorem 5. (Theorem 3.4 in [3])

$$q(G) \leq 2 + \frac{\Delta_2 - 1 + \sqrt{(\Delta_2 - 1)^2 + 4\Delta_1}}{2}$$

with equality if and only if G is regular, or semi-regular bipartite, or the tree obtained by joining an edge to the centers of two stars $K_{1, \frac{n}{2} - 1}$ with even n, or $n - 1 = d_1 = d_2 > d_3 = d_n = 2$.

Stating (3) as a Lemma we have:

Lemma 6. For $1 \leq k \leq n$,

$$\mu(G) \leq \phi_k := \frac{d_k - 1 + \sqrt{(d_k + 1)^2 + 4 \sum_{i=1}^{k-1} (d_i - d_k)}}{2} \quad (7)$$

with equality if and only if G is regular or there exists $2 \leq t \leq k$ such that $n - 1 = d_1 = d_{t-1} > d_t = d_n$. Furthermore,

$$\phi_\ell = \min\{\phi_k \mid 1 \leq k \leq n\}$$

where $3 \leq \ell \leq n$ is the smallest integer such that $\sum_{i=1}^{\ell} d_i < \ell(\ell - 1)$.

Combining Lemma 2 and Lemma 6 provides the following series of upper bounds for the signless Laplacian spectral radius.

Theorem 7. For \(1 \leq k \leq m\), we have

\[
q(G) \leq \psi_k := 1 + \frac{\Delta_k + 1 + \sqrt{(\Delta_k + 1)^2 + 4 \sum_{i=1}^{k-1} (\Delta_i - \Delta_k)}}{2}
\]

with equality if and only if \(\Delta_1 = \Delta_m\) or there exists \(2 \leq t \leq k\) such that \(m - 1 = \Delta_1 = \Delta_{t-1} > \Delta_t = \Delta_m\). Furthermore,

\[
\psi_t = \min\{\psi_k \mid 1 \leq k \leq m\}
\]

where \(3 \leq \ell \leq m\) is the smallest integer such that \(\sum_{i=1}^\ell \Delta_i < \ell(\ell - 1)\).

Proof. \(G^L\) is simple. Hence (8) is a direct result of (6) and (7). The sufficient and necessary conditions are immediately those in Lemma 6.

Remark 8. Note that Theorem 7 generalizes both Theorem 3 and Theorem 5 since these bounds are precisely \(\psi_1\) and \(\psi_2\) in (8) respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theorem 3 the graphs with \(q(G) = \psi_1\), i.e. \(\Delta_1 = \Delta_m\), are regular or semi-regular bipartite.

From Theorem 5 the graphs with \(q(G) < \psi_1\) and \(q(G) = \psi_2\), i.e. \(m - 1 = \Delta_1 > \Delta_2 = \Delta_m\), are the tree obtained by joining an edge to the centers of two stars \(K_{1, \frac{m}{2}-1}\) with even \(n\), or \(n - 1 = d_1 = d_2 > d_3 = d_n = 2\).

The only graph with \(q(G) \leq \min\{\psi_i \mid i = 1, 2\}\) and \(q(G) = \psi_3\), i.e. \(m - 1 = \Delta_1 > \Delta_2 = \Delta_3 = \Delta_m\), is the 4-vertex graph \(K^+_{1,3}\) obtained by adding one edge to \(K_{1,3}\).

We now prove that no graph satisfies \(q(G) < \min\{\psi_i \mid 1 \leq i \leq k - 1\}\) and \(q(G) = \psi_k\) where \(m \geq k \geq 4\). Let \(G\) be a counter-example such that \(m - 1 = \Delta_1 = \Delta_{k-1} > \Delta_k = \Delta_m\). Since \(\Delta_3 = m - 1\) there are at least 3 edges incident to all other edges in \(G\). If these 3 edges form a 3-cycle then there is nowhere to place the fourth edge, which is a contradiction. Hence they are incident to a common vertex, and \(G\) has to be a star graph. However a star graph is semi-regular bipartite so \(q(G) = \psi_1\), which completes the proof.

Remark 9. By analogy with (11), if \(z\) is defined by the equality

\[
z(z - 1) = \Delta_k + (z - \lfloor z \rfloor)\Delta_k,
\]

then \(q \leq z + 1\). This bound is exact for \(d\)-regular graphs, because we then have:

\[
2d = q \leq z + 1 = 2 + (z - 1) = 2 + \frac{1}{z} \left(\sum_{k=1}^{\lfloor z \rfloor} \Delta + (z - \lfloor z \rfloor)\Delta \right) = 2 + \Delta = 2d.
\]
4.3 Experimental comparison

It is straightforward to compare the above bounds experimentally using the named graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for some graphs (e.g., Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and 7 are exact for some graphs (e.g., complete bipartite) for which Theorem 1 is inexact. Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28 vertices in Mathematica and the average values of q and the bounds in Theorems 1, 5 and 7.

n	irregular graphs	$q(G)$	Theorem 1	Theorem 5	Theorem 7
10	59	9.3	10.0	10.3	9.8
16	48	10.3	11.2	11.5	11.0
25	25	11.5	13.4	13.1	12.6
28	21	11.2	12.6	12.7	12.2

It can be seen that Theorem 5 gives results that are broadly equal on average to Theorem 1 and Theorem 7 gives results which are on average modestly better. This is unsurprising since more data is involved in Theorem 7 than in the other two theorems. For some graphs, $q(G)$ is minimised in Theorem 7 with large values of k.

5 A lower bound for the Q-index

Elphick and Wocjan [7] defined a measure of graph irregularity, ν, as follows:

$$\nu = \frac{n \sum d_i^2}{4m^2},$$

where $\nu \geq 1$, with equality only for regular graphs.

It is well known that $q \geq 2\mu$ and Hofmeister [9] has proved that $\mu^2 \geq \sum d_i^2 / n$, so it is immediate that:

$$q \geq 2\mu \geq \frac{4m\sqrt{\nu}}{n}.$$

Liu and Liu [11] improved this bound in the following theorem, for which we provide a simpler proof using Lemma 2.

Theorem 10. Let G be a graph with irregularity ν and Q-index $q(G)$. Then

$$q(G) \geq \frac{4m\nu}{n}.$$

This is exact for complete bipartite graphs.

Proof. Let G^L denote the line graph of G. From Lemma 2 we know that $q(G) = 2 + \mu(G^L)$ and it is well known that $n(G^L) = m$ and $m(G^L) = (\sum d_i^2 / 2) - m$. Therefore:

$$q = 2 + \mu(G^L) \geq 2 + \frac{2m(G^L)}{n(G^L)} = 2 + \frac{2}{m} \left(\frac{\sum d_i^2}{2} - m \right) = \frac{\sum d_i^2}{m} = \frac{4m\nu}{n}.$$
For the complete bipartite graph $K_{s,t}$:

$$q \geq \frac{\sum_i d_i^2}{m} = \frac{\sum_{ij \in E}(d_i + d_j)}{m} = d_i + d_j = s + t = n,$$

which is exact.

\[\square\]

6 Generalised r–partite graphs

In a series of papers, Bojilov and others have generalised the concept of an r–partite graph. They define the parameter ϕ to be the smallest integer r for which $V(G)$ has an r–partition:

$$V(G) = V_1 \cup V_2 \cup \ldots \cup V_r,$$

such that $d(v) \leq n - n_i$, where $n_i = |V_i|$, for all $v \in V_i$ and for $i = 1, 2, \ldots, r$.

Bojilov et al [1] proved that $\phi(G) \leq \omega(G)$ and Khadzhiivanov and Nenov [10] proved that:

$$\frac{n}{n - d} \leq \phi(G).$$

Despite this bound, Elphick and Wocjan [7] demonstrated that:

$$\frac{n}{n - \mu} \leq \phi(G).$$

However, it is proved below in Corollary 10 that:

$$\frac{n}{n - \mu} \leq \frac{n}{n - \gamma + 1} < \phi(G) + \frac{1}{3}.$$

Definition

If H is any graph of order n with degree sequence $d_H(1) \geq d_H(2) \geq \ldots \geq d_H(n)$, and if H^* is any graph of order n with degree sequence $d_{H^*}(1) \geq d_{H^*}(2) \geq \ldots \geq d_{H^*}(n)$, such that $d_H(i) \leq d_{H^*}(i)$ for all i, then H^* is said to "dominate" H.

Erdős proved that if G is any graph of order n, then there exists a graph G^* of order n, where $\chi(G^*) = \omega(G) = r$, such that G^* dominates G and G^* is complete r–partite.

Theorem 11. If G is any graph of order n, then there exists a graph G^* of order n, where $\omega(G^*) = \phi(G) = r$, such that G^* dominates G, and G^* is complete r–partite.

Proof. Let G be a generalised r–partite graph with $\phi(G) = r$ and $n_i = |V_i|$, and let G^* be the complete r–partite graph K_{n_1, \ldots, n_r}. Let $d(v)$ denote the degree of vertex v in G and $d^*(v)$ denote the degree of vertex v in G^*. Clearly $\chi(G^*) = \omega(G^*) = r$, and by the definition of a generalised r–partite graph:

$$d^*(v) = n - n_i \geq d(v)$$

for all $v \in V_i$ and for $i = 1, \ldots, r$. Therefore G^* dominates G.

\[\square\]
Lemma 12. (Lemma 4 in [6])
Assume G^* dominates G. Then $y(G^*) \geq y(G)$.

Theorem 13.

$$\frac{n}{n - y(G) + 1} < \phi(G) + \frac{1}{3}.$$

Proof. Let G^* be any graph of order n, where $\omega(G^*) = \phi(G)$ such that G^* dominates G. (By Theorem 7 at least one such graph G^* exists.) Then, using Lemma 8:

$$\frac{n}{n - y(G) + 1} \leq \frac{n}{n - y(G^*) + 1} < \omega(G^*) + \frac{1}{3} = \phi(G) + \frac{1}{3} \leq \omega(G) + \frac{1}{3}.$$

Corollary 14.

$$\frac{n}{n - \mu} < \phi(G) + \frac{1}{3}.$$

Proof. Immediate since $\mu \leq y - 1$.

References

[1] A. Bojilov, Y. Caro, A. Hansberg and N. Nenov, Partitions of graphs into small and large sets, Discrete Applied Math., 161(13), 2013, 1912 - 1924.

[2] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Ser. B 3 (2002) 371 - 376.

[3] Y.H. Chen, R. Pan, and X. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Mathematics, Algorithms and Appl. Vol. 3, No. 2 (2011) 185 - 191.

[4] D. Cvetković, P. Rowlinson and S. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007) 155 - 171.

[5] K. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra Appl. 435 (2011) 2420 - 2424.

[6] C. S. Edwards and C. H. Elphick, Lower bounds for the clique and the chromatic numbers of a graph, Discrete. Appl. Math. 5 (1983), 51 - 64.

[7] C. Elphick and P. Wocjan, New measures of graph irregularity, El. J. Graph Theory Appl., 2(1), (2014), 52 - 65.

[8] P. Erdős, On the graph theorem of Turán (in Hungarian), Mat. Lapok 21 (1970) 249 - 251. [For a proof in English see B. Bollobas, Chapter 6, Extremal Graph Theory, Academic Press, New York.]

[9] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139, (1988), 37 - 44.
[10] N. Khadzhiivanov and N. Nenov, *Generalized r-partite graphs and Turán’s Theorem*, Compt. Rend. Acad. Bulg. Sci. 57 (2004)

[11] M. Liu and B. Liu, *New sharp upper bounds for the first Zagreb index*, MATCH Commun. Math. Comput. Chem., 62(3), (2009), 689 - 698.

[12] C. Liu and C. Weng, *Spectral radius and degree sequence of a graph*, Linear Algebra and Appl., 438, (2013), 3511- 3515.

[13] V. Nikiforov, *Some inequalities for the largest eigenvalue of a graph*, Combin. Probab. Comput. 11 (2002), 179 - 189.

[14] V. Nikiforov, *Maxima of the Q-index: degenerate graphs*, Elec. J. Linear Algebra 27 (2014), 250 - 257.

[15] Jinlong Shu and Yarong Wu, *Sharp upper bounds on the spectral radius of graphs*, Linear Algebra Appl., 377 (2004) 241 - 248.

[16] H. Wilf, *Spectral bounds for the clique and independence numbers of graphs*, J. Combin. Theory Ser. B 40 (1986), 113 - 117.