Reelin expression in human liver of patients with chronic hepatitis C infection

Simone Carotti,1 Giuseppe Perrone,2 Michela Amato,2 Umberto Vespasiani Gentilucci,3 Daniela Righi,2 Maria Francesconi,2 Claudio Pellegrini,1 Francesca Zalfa,1 Maria Zingariello,1 Antonio Picardi,3 Andrea Onetti Muda,2 Sergio Morini1

1Laboratory of Microscopic and Ultrastructural Anatomy, CIR, Campus Bio-Medico University, Rome
2Department of Pathology, Campus Bio-Medico University, Rome
3Internal Medicine and Hepatology Unit, Campus Bio-Medico University, Rome

Abstract

Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by colocalization experiments (Reelin + CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.

Introduction

Reelin is a 420 kDa secreted extracellular glycoprotein that plays a critical role during brain development and maturation.12 Reelin is thought to guide migrating neurons by interacting with two cell surface receptors, the very low density lipoprotein receptor (VLDLR), and the apolipoprotein E receptor 2 (ApoER2).3-5 In the downstream signal transduction, Disabled-1 (Dab1) is essential. Dab1 is an intracellular adaptor protein that binds the cytoplasmic tail of Reelin receptors6 and upon Reelin binding, becomes phosphorylated on tyrosine residues. Dab1 phosphorylation is required for cellular migration.7

Reelin was also found to be expressed in adult peripheral tissues suggesting a wide spectrum of biological functions.8 Smallheiser et al demonstrated that the adult liver expressed one-third of the Reelin mRNA concentration found in an adult mouse cerebral cortex, being a leading candidate to produce and maintain the circulating Reelin pool.9 Reelin expression in the human liver was demonstrated in hepatic stellate cells (HSCs) rather than hepatocytes.10,11 Moreover, Reelin has been described as one of the extracellular matrix proteins upregulated in the fibrotic liver,10,12 suggesting it has a key role in the fibrogenic process during the liver injury.13 Botella-Lopez et al consistently demonstrated an increase in plasma Reelin levels in patients with liver cirrhosis.14

The Hepatitis C Virus (HCV) is one of the major causes of chronic liver disease and, in a significant number of patients, chronic hepatitis C will progress to cirrhosis and hepatocellular carcinoma, which represents the end-stage fibrotic liver disease.15 Currently, there is no specific treatment for this disease.16,17,18,19,20 Over the last decades many immunohistochemical HSC/MF markers have been described in rat or mouse models and in human liver. Known HSC/MF markers include alpha-Smooth Muscle Actin (alpha-SMA)21 and Cellular Retinol-Binding Protein-1 (CRBP-1).22 CRBP-1 is a key component of the retinoid signalling pathway and is proposed as an unambiguous marker of quiescent and activated HSCs/MFs since it is highly expressed in both normal and pathological liver samples.23,24 Alpha-SMA represents the traditional marker of fully activated HSCs/MFs and is related with their migratory and contractile properties. It has been extensively used in order to identify...
HSC/MF markers of clinical utility.20-22 The activation and proliferation of HSCs/MFs are often observed in close anatomical and temporal relationship with hepatic progenitor cells (HPCs) of the ductular reaction (DR).26,27 HPCs of the DR have an increasingly documented role in promoting liver fibrosis, such that they were considered the pacemaker of the fibrotic process.28 At the tissue level, HPCs of the DR can be identified according to their shape, portal and periportal localization and immunohistochemical features. The expression of Cytokeratin 7 (CK7), Cytokeratin 19 (CK19) and Epithelial Cell Adhesion Molecule (EpCAM), have been widely used to quantify HPCs of the DR, based on their proven reproducibility.28-34 It would be of great interest to identify novel HSC/MF markers that are functionally related with HPCs and the DR, since both HPCs and HSCs/MFs play an important role in liver regeneration and cicatrization. A better knowledge of the cross-talk between HSCs/MFs and HPCs could furnish new insight into the hepatic reparative and fibrogenic process.

It was on the basis of these concerns, and with a view to shedding further light on the expression of Reelin in human liver injury, that we investigated hepatic Reelin expression in a large series of patients with HCV-related chronic hepatitis, and verified its relationship with the other histological and immunohistochemical markers used to reflect activity and severity of liver disease.

Materials and Methods

Patients and histopathology

Eighty-one patients with HCV-related CLD underwent a liver biopsy for diagnostic purposes at the Campus Bio-Medico Hospital of Rome and were included in the study. The inclusion criteria were in all cases: i) before their liver biopsy or surgery was performed, patients had given and signed their informed consent for the use of their liver tissue for research studies; ii) complete clinical data and paraffin-embedded liver tissue from biopsy specimens or resected liver was available. The exclusion criteria were: i) a history of alcohol abuse or coinfection with hepatitis B or human immunodeficiency virus; ii) a diagnosis of hepatocellular carcinoma.

Normal liver tissue was obtained from autopic liver specimens taken from three patients with a histological absence of liver disease and from histologically healthy margins of liver resected for tumour metastasis. Biopsies were scored in accordance with the Knodell classification. The Knodell histology activity index (HAI) is widely regarded as the benchmark for the objective, semiquantitative, reproducible description of the various morphological lesions of chronic hepatitis.33 The lesions of fibrosis and parenchymal or vascular remodelling are referred to as the ‘stage’ and indicate long-term disease progression.15 Moreover, the DR was recognized by evaluating immunohistochemical staining for CK7.26 The DR was semiquantitatively graded (0-4) by an experienced pathologist (SC) Gadd et al.37 Perisinusoidally located stellate shaped cells residing in the parenchymal lobules or nodules and stellate- or spindle-shaped cells at the interface between the parenchyma and the portal tract or between the parenchyma and the septa, as well as those residing in the portal tracts and the fibrotic septa were identified as HSCs/MFs.26,39

The study protocol complied with the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the local Ethics Committee.

Immunohistochemical staining

Reelin and CRBP-1 expression were investigated by immunohistochemistry performed on 3-µm thick consecutive sections obtained from formalin-fixed tissue embedded in paraffin. Moreover, the expression of Dab1, alpha-SMA and CK7 was evaluated in a subgroup of patients (20 cases).

After deparaffinization and antigen retrieval with Citrate Buffer (pH 6) (Dako, Glostrup, Denmark), the blockage of the endogenous peroxidase activity by incubation in 3% hydrogen peroxide (5 min), and the blockage of the endogenous biotin by the Biotin Blocking System (Dako, Milan, Italy) were subsequently performed. The sections were then washed 3 times in phosphate-buffered saline and incubated for 1 h at room temperature with the following primary antibodies: anti-Reelin mouse monoclonal antibody (Chemicon: 142 clone; 1/250; Chemicon International, Inc., Temecula, CA, USA) and an anti-Crk19 rabbit monoclonal antibody (EP72 clone; 1/100; Epitomics, Burlingame, CA, USA) with the polymer detection kit MACH2 Double Stain 2 (Biocare Medical), Betazoid DAB and War Red Chromogen Kit (Biocare Medical).

Immunofluorescence

Immunofluorescence staining was performed with the same anti-Reelin, anti-CRBP-1 and anti-Dab1 antibodies used for immunohistochemistry, since they can also be visualized and evaluated in sections stained using the immunofluorescence technique. The EpCAM antibody (dilution 1:25; mouse monoclonal, clone C-10; Santa Cruz Biotechnology)34 was also used. In order to characterize the HSCs/MFs’ Reelin expression, double-labelling experiments (anti-Reelin + anti-CRBP-1) were performed. Moreover, double-labelling experiments (anti-Dab1 + anti-EpCAM) were performed in order to verify the location of Dab1 expression. Incubation with primary antibodies was followed by Alexa Fluor 488 (green; dilution 1:50; goat anti-mouse; Invitrogen, Carlsbad, CA, USA) for Reelin and EpCAM, and by Alexa Fluor 568 (red; dilution 1:50; donkey anti-rabbit; Invitrogen) for CRBP-1 and Dab1. Nuclear counterstaining was achieved with DAPI. Fluorescence images were collected using an Eclipse80i Nikon microscope (Nikon,
Statistical analysis

Variables are expressed as the median and 95% confidence intervals (95% CI). The statistical correlation between the clinicopathologic, morphologic, and immunohistochemical parameters was tested using a 2-sided Spearman test. The difference was analyzed according to Mann-Whitney U-tests for non-parametric independent variables. Multivariate linear regression analysis was applied to verify if the association between the Reelin-positive HSCs/MFs and the DR was independent of dependent on the number of alpha-SMA-positive or CRBP-1-positive HSCs/MFs. A P<0.05 was considered statistically significant in 2-tailed tests. SPSS software (ver. 17.00, SPSS, Chicago, IL, USA) was used for the statistical analysis.

Results

Clinicopathological data

Of the 81 HCV-patients, 40 (49.4%) were women and 41 (50.6%) were men. The median age at initial diagnosis was 56 years (age range 45 to 64 years). The clinicopathological data are summarized in Table 1. As expected, a significant positive correlation was found between the Knodell's grade and the stage of liver disease (r=0.26; P<0.0001). No statistical differences were found between the various Knodell's stages in terms of age and sex.

Immunohistochemistry experiments

Reelin immunostaining was observed in the cytoplasm of HSCs/MFs localized in lobule tissue, both in normal and in pathological liver samples. Sometimes Reelin positive cells exhibited clear cytoplasmatic lipid droplets (Figure 1 A-C). Reelin positive HSCs/MFs were found, to a lesser degree, in enlarged portal tracts and fibrous septa, where cells lining putative lymphatic vessels were also Reelin-positive as previously described42 and where some small bilary ductules exhibited a mild Reelin expression (Figure 2 A-C). Moreover, Reelin expression was found in neural structures (fibers and ganglion) present in the tissue sections.

CRBP-1 was highly expressed in the cytoplasm of HSCs/MFs both in normal and in pathological liver samples, confirming CRBP-1 expression in both quiescent lobular HSCs and activated lobular and portal/septal HSCs/MFs cells (Figure 3 A-C). A scant CRBP-1 expression was observed in some interlobular bile ducts (Figure 3C). Hepatocytes were negative for Reelin and CRBP-1 immunostaining, then were used as a negative internal control.

Alpha-SMA, a marker of activated HSCs/MFs, was expressed by a few cells in normal liver tissue, whereas it was expressed by most HSCs/MFs in cases of HCV-related liver disease (Figure 4 A-C). Dab1, a Reelin adaptor protein, was highly expressed in the cytoplasm and nuclei of bile ducts of the DR and also, to a lower degree, in normal bile ducts of portal tracts. Notably, Dab1 was not expressed in HSCs/MFs and hepatocytes (Figure 5 A,B).

Double-labelling experiments by fluorescent and light microscopy

Double-labelling experiments were performed in order to characterize Reelin and, separately, Dab1-expressing cells by means of fluorescent microscopy. CRBP-1 expressing cells, perisinusoidal spindle shaped cells individuated as HSCs/MFs, were negative for Reelin (Figure 6 A-F) and positive for CRBP-1 (Figure 6 G-I). Reelin was expressed by perisinusoidal spindle shaped cells in normal liver tissue, whereas it was negative in HCV-related liver disease (Figure 6 A-F). Double-labelling experiments with CRBP-1 (red, D) and Reelin (green, E), confirmed that Reelin was expressed by hepatic stellate cells (merge, F). Original magnification: A9), X400; B), X1000; C), X100; D), X1000; scale bars: A), 20 µm; D), 10 µm.

Table 1: Clinicopathological variables.

No. of patients	81
Sex	
Female	40 (49.4%)
Male	41 (50.6%)
Age	56 (45-64)
HAI Grade	
1	6 (7.4%)
5-8	28 (34.6%)
9-12	35 (43.2%)
13-18	12 (14.8%)
HAI Stage	
0	9 (11.1%)
1	4 (5.1%)
3	18 (22.9%)
4	11 (13.6%)

HAI, histology activity index.
were demonstrated to co-express Reelin (Figure 1D).

In order to confirm that Dab1 expressing cells are cells of DR, a marker of HPCs was tested in the areas of the DR, together with Dab1. EpCAM-positive cells, recognized as HPCs, were shown to co-express Dab1 (Figure 5 C-E).

Double labelling experiments by means of light microscopy were performed in order to investigate the spatial relationship between cells of DR and Reelin expressing cells. CK19-positive cells in the perportal area, having the morphological features of HPCs of DR, were localized close to Reelin positive HSCs/MFs (Figure 6A).

HSCs/MFs markers and correlation with fibrosis stage

The median of Reelin positive lobular HSCs/MFs in healthy and disease liver is set out in Table 2. Data showed a significant increase of Reelin positive lobular HSCs/MFs liver fibrosis progressed (r=0.32; p=0.002) (Table 2; Figure 2 A-D). We used CRBP-1 in order to characterize the entire lobular HSCs/MFs population in liver samples. The median of CRBP-1 positive lobular HSCs/MFs in healthy and diseased liver is summarized in Table 2. Correlation analysis showed that the number of CRBP-1 positive lobular HSCs/MFs increases in line with the fibrosis stage according to Knodell (r=0.26; P=0.012), suggesting an expansion of the lobular HSC/MF population during fibrosis progression (Table 2; Figure 3 A-D).

In the same manner, the number of alpha-SMA positive HSCs/MFs in hepatic lobules increased significantly with fibrosis progression (r=0.61; P<0.0001), confirming the role HSC/MF activation in fibrotic liver disease (Table 2; Figure 4 A-D). A significant correlation was also found between alpha-SMA and CRBP-1 positive portal/septal HSCs/MFs (r=0.42; P=0.012). Moreover, the number of Reelin and CRBP-1 positive portal/septal HSCs/MFs was 0 (CI 0-0.2) in healthy liver and 1 (CI 1-1.8) in diseased liver (P<0.001). Moreover, the median scores for both CRBP-1-positive and alpha-SMA-positive portal/septal HSCs/MFs correlated with Knodell’s stage of fibrosis (r=0.29; P=0.018 and r=0.63; P<0.001 for CRBP-1 and alpha-SMA, respectively). A significant correlation was also found between the median score of both CRBP-1-positive and alpha-SMA-positive portal/septal HSCs/MFs (r=0.65; P<0.001).

Table 2. Immunohistochemical analyses of lobular hepatic stellate cells / myofibroblasts markers.

	Healthy liver	Stage of fibrosis 0	Stage of fibrosis 1	Stage of fibrosis 3	Stage of fibrosis 4	P-value*
Reelin-positive lobular HSCs/MFs	2.7(1.3-3.8)	3.7(2.4-7.4)	4.7(4.7-6.8)*	92 (62.1-101)*	7.6 (4.0-8.2)*	0.006
CRBP-1-positive lobular HSCs/MFs	3.4(2.4-4.9)	5.5(3.2-8.7)	6.3(5.7-8.3)*	101(7-128)*	7.6 (4.1-10.1)*	0.022
Alpha SMA-positive lobular HSCs/MFs	9(5.6-10.2)	10(8.5-32.6)	12.6(11.9-13.9)**	13 (6.5-23.7)	23 (4.3-50.5)**	0.003

Variables are expressed as median and 95% confidence interval (95% CI); *P-value obtained by Kruskall Wallis test. *P<0.05 vs healthy liver; **P<0.05 vs stage 0; ***P<0.01 vs stage 1; obtained by Mann Whitney Test.

Figure 2. Immunohistochemical expression of Reelin in healthy livers (A), livers with mild to moderate fibrosis (B) and with severe fibrosis (C). Reelin expression was also detected in cells lining putative lymphatic vessels (open arrowheads) and, faintly, in biliary ductules (*). Reelin positive portal/septal HSCs/MFs was lower degree of expression in the portal tract and septa compared to that found in the hepatic lobule. The median scores for Reelin and CRBP-1 positive portal/septal HSCs/MFs are summarized as follows: 0.5 (CI 0.4-0.8) and 0 (CI 0.0-0.3) in healthy liver, 0.5 (CI 0.4-0.6) and 1 (CI 1.2-0.8) in diseased liver, for Reelin and CRBP-1 respectively. A significant difference (P<0.001) was found between CRBP-1-positive HSCs/MFs in both healthy and diseased liver. The median score of alpha-SMA-positive portal/septal HSCs/MFs was 0 (CI 0-0.2) in healthy liver and 1 (CI 1.1-1.8) in diseased liver (P<0.001). Moreover, the median scores for both CRBP-1-positive and alpha-SMA-positive portal/septal HSCs/MFs correlated with Knodell’s stage of fibrosis (r=0.29; P=0.018 and r=0.63; P<0.001 for CRBP-1 and alpha-SMA, respectively). A significant correlation was also found between the median score of both CRBP-1-positive and alpha-SMA-positive portal/septal HSCs/MFs (r=0.65; P<0.001).
HSC/MF markers expression and ductular reaction

The DR score, evaluated by CK7, increased with fibrosis progression (r=0.57; P<0.0001), and a positive correlation was found between the DR score and the number of lobular HSCs/MFs quantified with the different markers tested (r=0.44 P=0.004 for DR vs CRBP-1; r=0.48 P=0.004 for DR vs alpha-SMA). Interestingly HPCs of DR were typically found in close proximity to Reelin positive HSCs/MFs (Figure 6A) and a positive correlation was found between the DR and Reelin positive lobular HSCs/MFs (r=0.38; P=0.01) (Figure 6B). A positive correlation was also found between DR score and portal/septal HSCs/MFs, identified by CRBP-1 (r=0.48; P=0.007) or alpha-SMA (r=0.56; P=0.001) but not Reelin (r=0.08; P=0.6) expression. By multivariate linear regression analysis, the association between Reelin-positive lobular HSCs/MFs and DR was shown to be independent of the number of a-SMA-positive and CRBP-1-positive lobular HSCs/MFs (P=0.01).

Discussion

In this study, we demonstrated that Reelin is expressed by human HSCs/MFs and that the Reelin positive lobular HSCs/MFs significantly increased during liver fibrosis progression. Reelin is a serine protease of the extracellular matrix which rapidly degrades fibronectin and laminin,43 and that its expression and function are well described in brain development and maturation. Smallheiser et al. reported Reelin plasma levels thought to be produced by liver tissue.9 Samama et al. demonstrated Reelin expression in the spindle-shaped cells of fetal and adult rat liver and human liver identified as stellate (Ito) cells.11 Here, in a cohort of HCV patients, we demonstrated a significant positive correlation between Reelin positive lobular HSCs/MFs and the stage of liver fibrosis stage. These results are in line with Botella-Lopez et al. who demonstrated increased Reelin levels in the liver and plasma of bile duct ligated (BDL) rats.13 They also observed a marked increase in levels of the Reelin protein in cirrhotic livers of BDL rats accompanied by an increase in mRNA transcripts compared to sham-operated controls.13 In this scenario, in line with Mansy et al., the increase of Reelin expression in different stages of chronic HCV liver disease suggests its role in HSC activation and consequently in liver fibro-
genesis. In order to explore the role of Reelin in liver fibrosis progression, the HSCs/MFs compartment of our cohort of patients was investigated. CRBP-1 is a key component of the retinoid signalling pathway and is highly expressed in both normal and pathological liver samples.24,25 We found a relatively low number of CRBP-1 cells in normal human liver and a progressive and significant increase of CRBP-1 HSCs/MFs during the hepatic fibrogenic process. These data, confirming the key role of HSCs/MFs in liver disease,20 demonstrate the expansion of HSCs/MFs compartment during liver fibrosis. With regards HSC activation, alpha-SMA protein, a proven marker of fully activated HSCs/MFs, as already demonstrated in previous studies,20 was also investigated. Our data showed a significant correlation between CRBP-1 and alpha-SMA positive lobular HSCs/MFs. Taken together, these results confirm that the process of liver fibrosis is mediated by both the proliferation and activation of HSCs/MFs.44 Interestingly, despite the association shown to exist between Reelin positive and CRBP-1 positive HSCs/MFs, at least in the lobule, no relationship was found between Reelin and alpha-SMA positive HSCs/MFs. This suggests that Reelin should not be regarded as a marker of HSCs differentiation but rather as a functional protein expressed by HSCs/MFs during some phases of liver fibrosis progression, possibly linked with HSCs/MFs migration activities. Moreover, Reelin expression was found mainly in the lobules rather than in the portal tracts and septa. Taking into account that HSCs/MFs comprise mesenchymal cell populations of different origin with myofibroblast-like features,25 Reelin could be mainly exhibited by HSCs/MFs originating from perisinusoidal HSCs in the lobule. Since these cells have recently been implicated as being primarily responsible for liver fibrosis, irrespective of its etiology,41 the findings of this study suggest that further investigations into the role of Reelin in the hepatic fibrogenic process are required. Our data also showed Dab1 immunoreactivity in the cytoplasm and in the nuclei of bile ducts of DR and also, to a lesser degree, in the normal bile ducts of the portal tracts. Dab1 expression has never been investigated in human liver tissue. Actually, Smalheiser et al. did not find Dab1 expression in adult rat liver, either by immunocytochemistry or Western blotting.9 This result, which is in apparent contrast with our findings, could be partly attributed to the relative poor number of liver cells expressing the Dab1 receptor in physiological conditions. Indeed, in our cohort of patients with liver disease in which DR is conspicuous, Dab1 immunoreactive cells were readily found. The Dab1 expression in DR cells suggest that Reelin might exert its function through its paracrine effect on liver tissue rather than being secreted into the blood for action on distal target(s), as previously suggested.9 Moreover, HPCs are found in the DR compartment. They are able to differentiate between a cholangiocyte and a hepatocyte cell line in the course of prolonged liver injury when the replicative capacity of hepatocytes is compromised.25 HPCs and DR are also able to promote hepatic fibrogenesis through their interaction with HSCs in the course of a chronically persistent liver injury. Mediators produced by cells of DR have been proven to induce HSCs activation46,47 and an enhanced pro-fibrogenic
response has been found during HPCs activation in animal models and in human liver pathologies. In this study an association was also observed between the expression of DR and HSC markers. Interestingly Reelin-positive lobular HSCs/MFs were associated with DR irrespective of the number of both alpha-SMA-positive and CRBP-1-positive lobular HSCs/MFs. Moreover, the finding of Dab1 expression in HPCs of DR further supports the belief that Reelin could play a role in the regulation of HPCs. In this scenario, Reelin HSCs/MFs secretion may have a role in both restoring the mass of damaged hepatocyte cells and in further promoting liver fibrogenesis through HPCs activation. This putative role for Reelin in the activation of the progenitor compartment following tissue injury was also suggested in other damaged organs such as the retina and cornea. The role of Reelin in regulating the trafficking of stem cells in different injured tissues could be investigated since this protein activity mimics its function in normal organogenesis.

This study is based on the results obtained from human liver tissue taken from clinical biopsy specimens with the aim of investigating Reelin expression at different stages of human liver disease. Functional in vitro experiments are needed in order to explore the effective role and function of Reelin protein in liver disease.

In conclusion, this study demonstrates that Reelin expression correlates significantly with stages of liver fibrosis and suggests, for the first time, that Reelin is involved in the cross-talk between HSCs/MFs and HPCs of DR during liver injury. Reelin may represent a useful biomarker for assessing the progress of liver fibrosis and may thus be potentially incorporated in liver injury evaluation in combination with other histological data. Further research into the role of Reelin in liver injury will make a helpful contribution towards understanding the mechanisms of fibrosis development in patients with chronic hepatitis C.

References

1. Rice DS, Curran T. Role of the Reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001;24:1005-39.
2. Jossin Y, Bar I, Ignatova N, Tissir F, De Rouvroit CL, Goffinet AM. The Reelin signaling pathway: some recent developments. Cereb Cortex 2003;13:627-33.
3. Curran T, D’Arcangelo G. Role of Reelin in the control of brain development. Brain Res Brain Res Rev 1998;26:285-94.
4. Frotscher M, Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 1998;8:570-5.
5. Tissir F, Goffinet AM. Reelin and brain development. Nat Rev Neurosci 2003;4:496-505.
6. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpp J, et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 1999;97:689-701.
7. Howell BW, Herrick TM, Hildebrand JD, Zhang Y, Cooper JA. Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 2000;10:877-85.
8. Ikeda Y, Terashima T. Expression of Reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev Dyn 1997;210:157-72.
9. Smalheiser NR, Costa E, Guidotti A, Impagnatiello F, Auta J, Lacor P, et al. Expression of Reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc Natl Acad Sci USA 2000;97:12816.
10. Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, et al. Expression of Reelin in hepatic stellate cells and during tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol 2002;36:607-13.
11. Samama B, Boehm N. Reelin immunoreactivity in lymphatics and liver during development and adult life. Anat Rec A Discov Mol Cell Evol Biol 2005;285:595-9.
12. Magness JT, Bataller R, Yang L, Brenner DA. A dual reporter gene transduction system demonstrates heterogeneous expression in hepatic fibrogenic cell populations. Hepatology 2004;40:1159-9.
13. Botella-Lopez A, De Madaria E, Jover R, Bataller R, Sancho-Bru P, Candela A, et al. Reelin is overexpressed in the liver and plasma of bile duct ligated rats and its levels and glycosylation are altered in plasma of humans with cirrhosis. Int J Biochem Cell Biol. 2008;40:766-75.
14. WHO [Internet]. Geneva: World Health Organization; Hepatitis C, fact sheet [updated July 2016]. Available from: www.who.int/mediacentre/factsheets/fs164/en.
15. Mansy SS, Nosseir MM, Zoheiry MA, Hassanain MH, Guda MF, Othman MM et al. Value of Reelin for assessing hepatic fibrogenesis in a group of Egyptian HCV infected patients. Clin Chem Lab Med 2014;52:1319-28.
16. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011;6:425-56.
17. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125-72.
18. Blomhoff R, Wake K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 1991;5:271-7.
19. Roskams T. Relationships among stellate cell activation, progenitor cells, and hepatic regeneration. Clin Liver Di. 2008;12:853-60.
20. Carpio G, Morini S, Ginanni Corradi S, Franchitto A, Merli M, Siciliano M, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 2005;37:349-56.
21. Carotti S, Morini S, Corradi S, Burza MA, Molinaro A, Carpio G, et al. Gliarial fibrillary acidic protein as an early marker of hepatic stellate cell activation in chronic and posttransplant recurrent hepatitis C. Liver Transpl 2008;14:806-14.
22. Gawrieh S, Papouchado BG, Burgart LJ, Kobayashi S, Charlton MR, Gores GJ. Early hepatic stellate cell activation predicts severe hepatitis C recurrence after liver transplantation. Liver Transpl 2005;11:1207-13.
23. Schmitt-Gräff A, Krüger S, Bocharoff, D, Gabbiani G, Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 1991;138:1233–42.
24. Van Rossen E, Vander Boght S, Van Grunsven LA, Reynaert H, Bruggeman V, Blomhoff R, et al. Vinculin and cellular retinol-binding protein-1 are markers for quiescent and activated hepatic stellate cells in formalin-fixed paraffin embedded human liver. Histochem Cell Biol 2009;131:313-25.
25. Lepreux S, Bioulac-Sage P, Gabbiani G, Sapin V, Housset C, Rosenbaum J, et al. Cellular retinol-binding protein-1 expression in normal and fibrotic/cirrhotic human liver: different patterns of expression in hepatic stellate cells and
Carotti S, Vespasiani-Gentilucci U, Perrone G, Picardi A, Morini S. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation. J Clin Pathol 2015;68: 883-90.

Brunt EM. Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond. Hepatology 2000; 31:241-6.

Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004;39:1739-45.

Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014;59:1393-405.

Cassiman D, Libbrecht L, Desmet V, Roskams TA, Theise ND, Balabaud C, et al. Nomenclature of hepatic stellate cells/myofibroblast subpopulations. J Hepatol 2010;53:1035-45.

Vespiasian-Gentilucci U, Carotti S, Perrone G, Mazzarelli C, Galati G, Onetti-Muda A, et al. Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. 2015;35:569-81.

Carotti S, Vespiasian-Gentilucci U, Perrone G, Picardi A, Morini S. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation. J Clin Pathol 2015;68: 883-90.

Brunt EM. Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond. Hepatology 2000; 31:241-6.