Systemic lupus erythematosus: PKCA is an inhibition pathway for mTOR by the active ingredient of green tea

H Mawarti*, J Nugraha2, D A Purwanto3 and J Soeroso4
1Doctoral Program of Medical Science, Faculty of Medicine, Airlangga University, Indonesia
2Department of Clinical Pathology, Faculty of Medicine, Airlangga University, Indonesia
3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Indonesia
4Department of Internal Medicine, Faculty of Medicine, Airlangga University, Indonesia

*Corresponding author’s email: herinmawarti@fik.unipdu.ac.id

Abstract. This study aims to evaluate the interaction of green tea active compounds with proteins related to mTOR signals. The in silico study uses SEA protein target software, DB strings, and AUTODOCK PYRX 9.5. There are twenty target proteins that can interact with the active compounds of green tea. Of the twenty proteins, only six proteins are connected to the mTOR pathway. Of the six proteins, one that is a regulator of mTOR inhibitors is PKCA. Epigallocatechin has the strongest interaction with PKCA 4ARA (-8 kcal/mol). Cianidanol has the strongest interaction with PKCA 3lW4 (-9.3 kcal/mol). To analyze the involvement of autophagy, a docking between ULK1 and AMPK was conducted, and there was an interaction between ULK1 and AMPK (bond energy of −1446.11 kcal). For the interaction between mTOR and ULK1, the bond energy is −624.5 kcal. For active green tea compounds, the bonding energy is more positive than the mTOR bond with ULK1. It was concluded that the green tea active ingredient as an inhibitor control against mTOR through PKCA and ULK1-AMPK (autophagy pathway).

Keywords: autophagy, green tea, SLE, mTOR, inhibitor

1. Introduction
Systemic lupus erythematosus is a multisystem autoimmune-inflammatory disease, characterized by T and B cell dysfunction and antinuclear antibody production. In 100,000 population, 20-150 people with SLE are found [1]. Factors that cause SLE come from genetic factors and environmental exposure [2]. The spectrum of clinical manifestations is very broad, in the form of mild skin lesions to serious organ damage. Although the etiology of this disease is still unclear, several mechanisms are thought to be involved in the pathogenesis of this disease, including the Toll-like receptor pathway, apoptotic defects, and abnormal activation of the interferon pathway [3].

The mammalian target of rapamycin (mTOR) is a protein complex as a member of phosphoinositide 3-kinase (PI3K)-related protein kinase family [4]. mTOR integrates signal growth factor and nutrition to support cell survival, growth and proliferation [5, 6]. The mTOR mRNA levels in SLE patients
were not significantly different compared to controls [7]. MTOR activation contributes to the pathogenesis of SLE. The contribution of mTOR activation is found in various SLE cell cases, including T cells, B cells, mesenchymal stem cells, and hepatocytes [8].

Autophagy is a catabolic process mediated by lysosomes to eliminate long-lived misfolded proteins and damaged organelles. Autophagy plays a role in maintaining cellular homeostasis and survival under stressful conditions [9, 10]. This process takes place in basal conditions, but increases in stress response and disease [11]. Autophagy dysregulation was found in SLE, in the form of an increase in basal autophagy levels in T cells that have the potential to increase autophagy cell death. In addition, the lack of autophagy response due to induction by certain stimuli causes a decrease in cell survival and an increase in apoptosis which triggers an increase in the release of autoantigen [12].

The chemical composition of green tea varies according to weather, season, horticultural practice, and leaf position. The main composition of the active ingredient is polyphenols. The main polyphenols in green tea are flavonoids. The four main green tea flavonoids include epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG). Epigallocatechin gallate is the most significant component [13]. The use of green tea in autoimmune diseases is still very little. EGCG can suppress RNA and autoantigen proteins in normal cells in the salivary glands and skin [14]. In addition, EGCG is also a competitive inhibitor of active ATP against mTOR [15]. To the knowledge of the researchers, there are still rare studies that analyze the mechanism of green tea active compounds against the mTOR pathway in the autophagy target. Therefore this study aims to investigate the mechanism of green tea active compounds against the mTOR pathway for autophagy as an effort to inhibit the development of SLE.

2. Material and Methods

2.1. Protein target prediction analysis
The green tea compound content was obtained from Dr. Duke's database (https://phytochem.nal.usda.gov/phytochem/search/list). One of the main compounds of green tea is known as EGCG, so further exploration is needed. To find out the target of the EGCG compound protein from green tea, analysis was carried out using the SEA Target webserver (http://sea.bkslab.org/). The parameter used in SEA Target is the Max TC value that reflects the accuracy of predictions if it approaches a score of 1.

2.2. Network analysis
To determine the interaction of the relationship between the target of EGCG protein and mTOR pathway, a network analysis was performed using STRING webserver (https://string-db.org). The STRING webserver is able to show the interaction of several proteins taken from several study pathways namely Biocarta, BioCyc, GO, KEGG, and Reactome (Szklarczyk et al. 2015). Some proteins obtained from the target SEA and have a value of less than 1 are considered potential and play a role in finding new pathways, such as PRKCA, PRKCE, PRKCH also included as input at STRING.

2.3. Molecular docking
To determine the relationship between PRKCA and bioactive compounds in green tea, molecular docking analysis was performed using PyRxD v0.9.5. 3D samples of PRKCA proteins (ID 4ARA and 31W4) were obtained from the GDP database (https://www.rcsb.org), while the green tea bioactive compounds were theoflavin (ID 1147), epigallocatechin (ID 65064), and cianidanol (ID 73160) obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov). When docking, validation using two 3D structures with different controls to show that the potential possessed by bioactive Green Tea has a target MTOR protein through PRKCA. Furthermore, the docking protein is visualized using PyMol software.
3. Results
First, we analyze the content of green tea compounds with Dr. Duke Phytochemical. The analysis shows that green tea contains EGCG. Then the target protein analysis of EGCG was carried out with the SEA Target Protein badger device. From the target analysis the accuracy values are obtained as in Table 1.

Target Name	Description	Max TC
FUTP4	Alpha-(1,3)-fucosyltransferase 4	1
PGD	6-phosphogluconate dehyrogenase, decarboxylating	1
ST3GAL3	CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltransferase	1
FUT7	Alpha-(1,3)-fucosyltransferase 7	1
BCL2	Apoptosis regulator Bcl-2	1
MMP14	Matrix metalloproteinase-14	1
MAPT	Microtubule-associated protein tau	1
STAT1	Signal transducer and activator of transcription 1-alpha/beta	1
DNMT1	DNA (cytosine-5)-methyltransferase 1	1
TERT	Telomerase reverse transcriptase	1
MMP2	72 kDa type IV collagenase	1
MET	Hepatocyte growth factor receptor	1
DYRK1A	Dual specificity tyrosine-phosphorylation-regulated kinase 1A	1
MAPK14	Mitogen-activated protein kinase 14	1
KCNH2	Potassium voltage-gated channel subfamily H member 2	1
PGF	Placenta growth factor	0.32
PRKCA	Camp dependent protein kinase catalytic subunit alpha	0.31
PRKCH	Protein kinase c eta type	0.31
PRKCE	Protein kinase c epsilon type	0.31
SERPINE1	Plasminogen activator inhibitor 1	0.48

Table 2. Docking With PKCA 4ARA.

Receptor	Ligand	Binding Affinity (kkal/mol)
PKCA 4ARA	Theoflavin 11477	-7.4
PKCA 4ARA	Epifalocatechin 65064	-8
PKCA 4ARA	Cianidanol 73160	-7.3
PKCA 4ARA	Control inhibitor 4ara (1R)-9-{(3S,4S)-1,3-dimethylpiperidin-4-yl}-8-(2-fluorophenyl)-1-methyl-3,5-dihydro[1,2,4]triazino[3,4-c][1,4]benzoxazin-2(1H)-one	-9.8

Table 3. Docking With PKCA 3IW4.

Receptor	Ligand	Binding Affinity (kkal/mol)
PKCA 3IW4	Theoflavin 11477	-7.4
PKCA 3IW4	Epifalocatechin 65064	-9.0
PKCA 3IW4 | Cianidanol 73160 | -9.3
PKCA 3IW4 | Control inhibitor 3iw4 | -11.3
-((1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-y1)]quinazolin-4-yl)-1H-pyrrole-2,5-dione

All proteins presented in table 1 are then analyzed by STRING DB to find out their interactions with mTOR. Some proteins that have interactions with mTOR include PRKCA, PRKCE, TERT, BCL2, MAPK14, and PRKCH, as presented in Figure 1.

Figure 1. Prediction of Interaction of Compounds with Interest Proteins.

PKCA 4ARA is docking with EGCG and the comparative compounds include theaflavin, cianidanol, and control inhibitor compounds, namely (3S, 4S)-1,3-dimethylpiperidin-4-yl)-8-(2-fluorophenyl)-1-methyl-3,5-dihydro [1,2,4] triazino [3,4] [1,4] benzo-xazin-2 (1H) -one. Bond affinity can be seen in Table 2.

PKCA 3IW4 is docking with EGCG and the comparative compounds include theaflavin, cianidanol, and control inhibitor compounds, namely (1H-indol-3-yl) -4-[2-(4-methylpiperazin-1-y1)]quinazolin-4-yl]-1H-pyrrole-2,5-dione. Bond affinity can be seen in Table 3.

Furthermore, to analyze the involvement of the autophagy pathway, a docking between ULK1 and AMPK was carried out, there was an interaction between ULK1 and AMPK (bond energy of 41,446.11 kcal. For interactions between mTOR and ULK1, bonding energy was −624.5 kcal. (+)-Epigallocatechin has docking energy with mTOR of −242.8 kcal. (+)-catechin has docking energy with mTOR of −245.8 kcal. (-)-Epicatechin gallate has docking energy with mTOR of −279.7 kcal. -
catechin has docking energy with mTOR of −246.9 kcal. (-)-gallocatechin has docking energy with mTOR of −253.1 kcal. Epicatechin it has docking energy with mTOR of −247.3 kcal. Epigallocatechin gallate has docking energy with mTOR of 272.2 kcal (as shown in Table 4).

Table 4. Docking With mTOR.

Docking	Energy Docking
1. ULK1 with AMPK	41.446,11kkal
2. ULK1 with mTOR	-624,5 kcal
3. Epigallocatechin_CID_104	-242,8 kcal
	25234 with bmTOR complexes
4. catechin_CID_9064 with mTOR complexes
-245.0 kcal/mol

5. Epicatechin gallate_CID_107905 with mTOR complexes
-279.7 kcal/mol

6. -catechinCID_73160 with mTOR complexes
-246.9 kcal/mol

7. -galocatechinCID_9882981 with mTOR complexes
-253.1 kcal/mol
8. EpicatechinCID_72276 with mTOR complexes -247.3 kkal/mol

9. (-)-epigallocatechin gallate (EGCG) with mTOR complexes -272.7 kkal

4. Discussion

mTOR is a master regulator of cellular metabolism and plays an important role in autophagy. When there is energy deficiency, mTOR activity is low, autophagy is upregulated to carry out nutrient recycling. When nutrients and energy are available, mTOR is active and downregulated. In SLE mTOR levels were found to be comparable to controls. This indicates that in SLE the formation of phagolysosomes is obtained but there is a degradation blockade [7]. In this study it was proven that EGCG as the active ingredient of green tea has the ability with proteins in the mTOR pathway, namely PKCA. Regarding PKCA 4ARA it was found that EGCG was easier to interact than theaflavin and cianidinol. Meanwhile, against PKCA 31W4 it was found that EGCG was easier to interact with theaflavin. This indicates that the effect of EGCG as one of the active ingredients of green tea is at least through the PKCA 4ARA pathway. PKC is one of the regulators that is involved in pathway transduction that is related to various cell functions [16]. This study is consistent with previous findings that EGCG can inhibit PKC activity [17, 18].

Against the autophagy pathway, this study proved that the interaction between ULK1 and AMPK has more negative docking energy compared to the docking energy between ULK1 and mTOR. This indicates that in basal conditions there is an easier interaction between ULK1 and AMPK than ULK1 with mTOR. Interestingly, of the various green tea active compounds, the docking energy formed in the interaction with mTOR was more positive than that between mTOR and ULK1. This indicates that there is an easier interaction between mTOR and ULK1 compared to the interaction of green tea active ingredients with mTOR. This study extends previous findings that EGCG is able to modulate and inhibit mTOR [19, 20].

We conclude that the green tea active ingredient which is an inhibitor control against mTOR through PKCA and ULK1-AMPK pathway. Thus, in the pathomechanism of SLE, EGCG can be a candidate in SLE treatment through the PKCA-mTOR pathway and ULK1-AMPK (autophagy).
References

[1] Tsokos G C 2011 Systemic lupus erythematosus N. Engl. J. Med. 365 2110–2121
[2] Leffers H C B, Lange T, Collins C, Ulf-Moller D J and Jacobsen S 2019 The study of interactions between genome and exposome in the development of systemic lupus erythematosus Autoimmun Rev. 18 382-392
[3] Hsu S and Dickinson D 2006 A new approach to managing oral manifestations of Sjogren’s syndrome and skin manifestations of lupus J. Biochem Mol. Biol. 39 229-239
[4] Laplante M and Sabatini D M 2012 mTOR signaling in growth control and disease Cell 149 (2) 274–293
[5] Guertin D A and Sabatini D M 2007 Defining the role of mTOR in cancer Cancer Cell 12 (1) 9–22
[6] Duzgun Z, Eroglu Z and Avci C B 2016 Role of mTOR in glioblastoma Gene 575 187-190
[7] Wu Z Z, Zhang J J, Gao C C, Zhao M, Liu S Y, Gao G M and Zheng Z H 2017 Expression of autophagy related genes mTOR, Becline-1, LC3 and p62 in the peripheral blood mononuclear cells of systemic lupus erythematosus Am. J. Clin. Exp. Immunol. 6 (1) 1-8
[8] Scheinecker C, Bonelli M and Smolen J S 2010 Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells J. Autoimmun. 35 (3) 269–275
[9] Klionsky D J 2007 Autophagy: from phenomenology to molecular understanding in less than a decade Nat. Rev. Mol. Cell Biol. 8 931–937
[10] Mizushima N and Klionsky D J 2007 Protein turnover via autophagy: implications for metabolism Annu. Rev. Nutr. 27 19–40
[11] Pan Q, Gao C, Chen Y, Feng Y, Liu W J and Liu H F 2015 Update on the role of autophagy in systemic lupus erythematosus: a novel therapeutic target Biomed. Pharmacother. 71 190–193
[12] Alessandri C, Barbati C, Vacirca D, Piscopo P, Confaloni A, Sanchez M et al 2012 Tlymphocytes from patients with systemic lupus erythematosus are resistant to in-duction of autophagy FASEB J. 26 (11) 4722–4732
[13] Pastore R L and Frarellone P 2006 Potential health benefits of green tea (Camellia sinensis): a narrative review Explore 2 (6) 531-539
[14] Hsu S and Dickinson D 2006 A new approach to managing oral manifestations of Sjogren’s syndrome and skin manifestations of lupus J. Biochem Mol. Biol. 39 229-239
[15] Van Aller G S, Carson J D, Tang W, Peng H, Zhao L, Copelanda R A, Tumminop J and Luol 2011 Epigallocatechin gallate (EGCG), a major component of green tea, is a dualphosphoinositide-3-kinase/mTOR inhibitor Biochem. & Biophys. Res. Comm. 406 194-199
[16] Hall J L, Matter C M, Wang X and Gibbons G H 2000 Hyperglycemia inhibits vascular smooth muscle cell apoptosis through a protein kinase C-dependent pathway Circ. Res. 87 574–80
[17] Singh B N, Shankar S and Srivastav R K 2011 Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications Biochem. Pharmacol. 82 1807-1821
[18] Das J, Ramani R and Suraju M O 2016 Polyphenol compounds and PKC signaling Biochem. Biophys. Acta 1860 2107-2121
[19] Glenn S, Van Aller G S, Carson J D, Tang W, Peng H, Zhao L, Copelanda R A, Tumminop J and Luol 2011 Epigallocatechin gallate (EGCG), a major component of green tea, is a dualphosphoinositide-3-kinase/mTOR inhibitor Biochem. Biophys. Res. Comm. 406 194-199
[20] Sato S, Mukai Y, Hamaya M, Sun Y and Kurasaki M 2013 Long-term effect of green tea extract during lactation on AMPK expression in rat offspring exposed to fetal malnutrition Nutrition 29 1152-1158