Irrigating Corn and Grain Sorghum With Limited Water (1981)

Loyd R. Stone
Roy E. Gwin
Merlin A. Dillon

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation
Stone, Loyd R.; Gwin, Roy E.; and Dillon, Merlin A. (1981) "Irrigating Corn and Grain Sorghum With Limited Water (1981)," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 12. https://doi.org/10.4148/2378-5977.7308

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1981 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Irrigating Corn and Grain Sorghum With Limited Water (1981)

Keywords
Keeping up with research; 51 (July 1981); Kansas Agricultural Experiment Station contribution; no. 81-504-s; Irrigation; Corn; Grain sorghum; Limited water

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

This research report is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol0/iss12/71
Irrigating Corn and Grain Sorghum With Limited Water

Loyd R. Stone, Soil Physicist
Roy E. Gwin, Jr., Superintendent, Tribune Branch
Merlin A. Dillon, Crops Research Agronomist

In 1974 we evaluated how irrigation amount and timing influenced corn and grain sorghum yields at Manhattan and Tribune. The results should help irrigators who want to use limited or less water because of limited pumping capacity, limited time, limited water supplies, increased cost of fuel for pumping, or other reasons.

At Manhattan, the study was on the Ashland Research Farm, approximately 8 miles southwest of Manhattan. The soil is Muir silt loam, which developed from river sediments.

The Tribune data were collected on the Tribune Branch Experiment Station Irrigation Field on Ulysses silt loam; a soil developed from windblown deposits. A brief description of the field plots is given in Table 1. Available water stored in the 5-foot soil profile exceeded nine inches at plant emergence at both locations.

Figure 1 presents the 30-year average rainfall pattern and the rainfall received during the warm season at both Manhattan and Tribune. Rainfall at Tribune was 8.3 inches compared to...
Rainfall at Manhattan was 18.4 inches compared to a 25.5 inch average.

Table 2 gives 1974 corn grain yields at Manhattan and Tribune. Treatments consisted of no in-season irrigation; one irrigation at either one week before tasseling, during silk emergence, or at blister stage; and three irrigations, one at each of the three growth stages mentioned. Corn plots at Tribune received a pre-plant irrigation.

Table 3 gives sorghum grain yields at Manhattan and Tribune. Treatments consisted of no

Figure 1.—Thirty-year rainfall pattern and rainfall received during 1974, Manhattan and Tribune, Kansas.
Table 1.—Information on corn and grain sorghum field plots, 1974.

	Manhattan	Tribune	Manhattan	Tribune
Planting date	May 13	May 7	May 21	May 29
Variety	Prairie Valley 82S	Pioneer 3390	Pioneer 846	T-E 66B
Population (plants/acre)	25,500	23,000	88,500	70,000
Row width (inches)	30	30	30	30
Plot size, ft	25 x 40	25 x 50	25 x 40	25 x 50
Fertilizer (per acre)	170 lbs N	191 lbs N	117 lbs N	191 lbs N
	36 lbs P₂O₅	46 lbs P₂O₅	36 lbs P₂O₅	46 lbs P₂O₅

Inches of available water in 5-foot profile on date listed:
- (June 12) 12.8
- (May 29) 9.1
- (June 20) 13.8
- (June 11) 9.5

Table 2.—Corn grain yields at Manhattan and Tribune, Kansas, as influenced by irrigation in 1974.

Time irrigated*	Water applied (in.)	Yield (bu/acre)*		
	Manhattan	Tribune	Manhattan	Tribune
One week before tasseling	4.0	6.0	106.3	110.7
During silk emergence	4.0	6.0	112.8	91.6
At blister stage	4.0	6.0	70.2	69.1
One week before tasseling, during silk emergence, and at blister stage	12.0	18.0	146.1	119.8
No in-season irrigation	0.0	0.0	45.9	78.5
LSD 0.05	28.3	24.2		

* All plots at Tribune also received a pre-plant irrigation of 7.0 inches April 23, 1974.
** Yields are reported at 12.5% moisture content.

Table 3.—Sorghum grain yields at Manhattan and Tribune, Kansas, as influenced by irrigation in 1974.

Time irrigated*	Water applied (in.)	Yield (bu/acre)*		
	Manhattan	Tribune	Manhattan	Tribune
Boot stage	4.0	6.0	113.7	64.0
Half-bloom	4.0	6.0	106.6	58.1
Soft-dough	4.0	6.0	97.2	73.5
Boot stage, half-bloom, and soft-dough	12.0	18.0	108.8	78.4
No in-season irrigation	0.0	0.0	108.1	55.3
LSD 0.05	15.8	12.3		

* All plots at Tribune also received a pre-plant irrigation of 7.0 inches April 23, 1974.
** Yields are reported at 12.5% moisture content.

Note: All plots at Tribune were damaged by hail August 10 and by frost September 3.
in-season irrigation; a single irrigation at either boot stage, half-bloom, or soft-dough; and three irrigations, one at each of those growth stages. Grain sorghum plots at Tribune received a pre-plant irrigation.

The corn data indicate that a single irrigation applied near tasseling or at early silking increased yields greatly over one irrigation at blister stage or no in-season irrigation. Due to grain sorghum's drought resistance, and timely rainfall, no definite trend between irrigation timing and grain sorghum yield was determined in 1974. Limited in-season irrigation is most practical in soils that contain nothing to restrict extensive root development, that have large water-holding capacity, and if a moderate to large amount of available water is stored before planting.