Positive influence of aqua exercise and burdock extract intake on fitness factors and vascular regulation substances in elderly

Min-Seong Ha,1,2 Ji-Hyeon Kim,2 Soo-Min Ha,2 You-Sin Kim3 and Do-Yeon Kim2,*

1Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
2Laboratory of Exercise Physiology, Department of Physical Education, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
3Department of Leisure Sports, Jungwon University, 83 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Republic of Korea

(Received 19 May, 2018; Accepted 26 June, 2018; Published online 13 October, 2018)

Health issues in elderly individuals are often complex and tend to lead to chronic diseases; such issues can be due to a decline in fitness resulting from lack of physical activity. Aqua exercise and burdock are positive effects on cardiovascular disease and vascular health. This study investigated the changes due to aqua exercise and burdock extract intake in senior fitness, prostaglandin I2 (PGI2), and thromboxane A2 (TXA2) in elderly women. Forty elderly women (65–80 years) volunteered for this study. After baseline measurements, participants were randomized into control (n = 8), aqua exercise (n = 11), aqua exercise and burdock extract intake combination (n = 11), and burdock extract intake groups (n = 10). The variables of senior fitness tests, PGI2 and TXA2, were measured in all participants before and after the 12-week study. Blood collections were carried out at the beginning- and the end of aqua exercise training. Muscular strength, endurance, flexibility, and cardiorespiratory endurance of aqua exercise and burdock extract intake group at post-test significantly increased compared to pre-test (p<0.05). There were no significant differences in PGI2 and TXA2 between pre- and post-training programs. In conclusion, our findings indicated that the aqua exercise and burdock extract intake improves senior fitness factors in elderly Korean women. Also, the program participation led to a balance between PGI2 and TXA2. Additionally, burdock extract intake may be useful in vascular health by playing a secondary role in disease prevention and health promotion.

Key Words: aqua exercise, burdock extract intake, senior fitness, PGI2, TXA2

Society is currently witnessing a sharp growth in the elderly population as the average lifespan increases due to advances in medical and healthcare technologies and improvements in living standards.11 South Korea is fast approaching an aging society phase; 9.5% the population was aged 65 and older in 2006, and that is expected to be 14.3% in 2018 and 20.8% in 2026, entering the aging and ultra-aging society phases, respectively, and that is expected to be 14.3% in 2018 and 20.8% in 2026, entering the aging and ultra-aging society phases, respectively.2 According to the Sports for All General Survey conducted by the Korea Ministry of Culture, Sports, and Tourism,3 the percentage of elderly individuals in their 60s and 70s who engage in regular physical exercise is merely half of those in their 50s.4

Health issues in elderly individuals are often complex and tend to lead to chronic diseases,5 such issues can be due to a decline in fitness resulting from lack of physical activity.6 According to the American College of Sports Medicine (ACSM),7 aquatic exercise is an effective exercise for maintaining and improving muscular strength and physique. Studies show evidence of the positive effects of aqua exercise on cardiovascular and metabolic diseases as well as other positive effects among people with obesity or musculoskeletal disease and elderly individuals.8–10

Burdock is an alkali food with sugar as the main ingredient, 76% water content, high fiber content, and low vitamin content.12,13 Burdock also cleans the blood; lowers body temperature; heals bronchial disease, removes furuncles and toxins; heals weakness of limbs, stroke, beriberi, and visceral pain;12–23 and helps excretion of cholesterol and fat, having a positive effect on cardiovascular disease and vascular health.12–24

Therefore, the objective of this study is to determine the key factors that influence functional fitness, PGI2, and TXA2 in elderly women by implementing a 12-week program of aqua exercise and/or burdock extract intake.

Material and Methods

Participants. Forty elderly women (65–80 years) volunteered for this study. Participants were sedentary at baseline, defined as

*To whom correspondence should be addressed.
E-mail: kdy4955@pusan.ac.kr
having no regular structured exercise or physical activity. The health of the participants was determined using a health questionnaire, physical examination, and laboratory tests. All participants provided written informed consent approved by the Institutional Human Research Committee. The purpose, goal, and experimental procedures were thoroughly outlined verbally to each participant. Prior to their participation, they were informed about the possible risks and discomforts involved in the study.

Study design. After prescreening and recruitment, eligible participants attended a study meeting in which all procedures were explained. Participants were tested in the morning at the same time each day to avoid diurnal variations of temperature. Participants were asked to refrain from exercising 24 h before testing and from caffeine or alcohol ingestion the day before or the morning of each test, to otherwise follow their normal diet, and to eat a light meal 2 h before coming to the laboratory. Upon arrival, a 12 h fasting blood sample, data from a standardized health questionnaire, and anthropometry were obtained. After their baseline measurements, participants were randomized into control group (CG; n = 8), aerobic exercise group (AEG; n = 11), and burdock extract intake combination group (AEBG; n = 11), and burdock extract intake group (BG; n = 10).

The AEBG and BG participants were instructed to not take health supplements other than the burdock extracts that were part of the experimental regimen during the 12 week experimental period.

Anthropometric assessments. Height was measured to the nearest 0.1 cm with the participants barefoot. Weight was measured to the nearest 0.1 kg with light clothes. From these measurements, body mass index was calculated as weight in kilogram divided by the square of height in meters (kg/m²).

Senior fitness tests. Senior Fitness Tests, including aerobic endurance (walking ability test, 6 min walk), upper body strength (grip strength test), lower body strength (30 s chair stand), flexibility (sit-and-reach test), and agility (8-fit-up-and-go) was measured at pre and post the aqua exercise program. All the tests have high reliability and validity.

Blood sampling. All blood obtained after the experiment was collected in an anticoagulant tube, and 50 μl of detection reagent A was added to a plate coated with PGI₂ reagent using an enzyme immunoassay kit (Amersham, Inc., Cleveland, OH), and reacted at 37°C for 1 h. After completion of the reaction, washing was performed four times with 350 μl of 1× wash buffer. After removing the buffer, 100 μl of all detection reagent B was added and reacted at 37°C for 30 min. After the reaction was completed, 350 μl of 1× buffer was washed four times. After removing the buffer, 90 μl of the substrate solution was added to all wells, and the reaction was carried out at room temperature for 15 to 25 min. At the end of the reaction, 50 μl of stop solution was added to all wells, and 450 nm were measured on mainfold-24 (Amersham, Inc., Cleveland, OH) as an unstable TXA₂ conversion.

Aqua exercise program. The aqua exercise program was designed by modifying the water exercise for seniors guideline, and the average water temperature in the swimming pool was maintained at 26–28°C. Considering that the study participants were elderly women aged 65–80 years old, the program was implemented three times a week for 12 weeks after a 1–2-week adjustment period. Each session lasted for 50 min, consisting of a 5 min warm-up, a 40 min main exercise period, and a 5 min wrap-up. Exercise intensity was measured using the rating of perceived exertion (RPE): RPE 9–10 for Weeks 1–4, RPE 11–12 for Weeks 4–8, and RPE 13–14 for Weeks 9–12. Changes in heart rate were also measured with the Polar, a wristwatch-type heart rate measurement device, with a target heart rate of 30–60% heart rate reserve during exercise.

Ingredient and intake. Burdock extracts were obtained by washing the burdock roots harvested in the Sancheong region of Gyeongnam province with water, cutting them into pieces, drying them in the sun, and boiling them for 3 h. The extracts were placed into 100 ml plastic packs, sealed, and given to the study participants. They were instructed to consume 100 ml of extract after breakfast, lunch, and supper daily for a total intake of 300 ml per day. The main ingredients of burdock extract can be found in Table 1.

Statistical analysis. Before conducting the research, we checked the sample size needed using a priori power analysis with the statistical software G-Power. An optimal total sample size of n = 38, with a medium-large effect size of [β] = 0.2 and a power of 0.5 and alpha = 0.05 was calculated. All data were presented as a mean ± SD, and all statistical analyses were completed using the Statistical Package for Social Sciences (SPSS) ver. 23.0 for Windows (SPSS Inc., Chicago, IL). All statistical tests used an alpha level set at p<0.05. This intervention trial was designed to compare pre- and post-exercise intervention variables. Changes from baseline to the end of the intervention were determined by a paired t test and one-way analysis of variance.

Results

Demographic characteristics of study participants are shown in Table 2. The variables of senior fitness, PGI₂, and TXA₂ were measured in all participants before the start and after the end of the 12-week aqua exercise and burdock extract intake program.

Muscular strength of the AEG and AEBG at post-test significantly increased compared to pre-test (p<0.05, p<0.05) (Fig. 1). The muscular endurance of the CG at post-test significantly increased compared to pre-test (p<0.01). There was a significant difference in the rate of muscle endurance change among groups (p<0.001), (BG, AEG, and AEBG>CG) (Fig. 2).

The flexibility of the AEBG at post-test significantly increased compared to pre-test (p<0.05). There was a significant difference in the rate of flexibility change among groups (p<0.05), (AEBG>CG, AEG, and BG) (Fig. 3). Agility and balance of the AEG at post-test significantly decreased compared to pre-test (p<0.05) (Fig. 4). The cardiorespiratory endurance of the AEBG at post-test significantly increased compared to pre-test (p<0.05) (Fig. 5).

There were no significant differences in PGI₂ and TXA₂ between pre- and post-training programs. But PGI₂ and TXA₂ kept the equilibrium. Data are summarized in Table 3 and 4.

Table 1. The main ingredients of Burdock extract

Water (%)	Crude ash (%)	Crude fat (%)	Crude protein (%)	Crude fiber (%)	Calcium (%)	Phosphorus (%)
98.02 ± 0.02	0.10 ± 0.00	1.12 ± 0.00	0.20 ± 0.00	0.03	0.004 ± 0.00	0.009 ± 0.00

(Feed & Foods Nutrition Research Center, Pukyong National University, Busan, Republic of Korea)
Discussion

Aqua exercise is more effective than non-aqua exercise in terms of weight loss from body fat decomposition because of its burns fat at about twice the rate of non-aqua exercise, despite burning fewer calories per minute. Moreover, it has been reported that aqua exercise is effective at enhancing muscular strength and losing weight and body fat as it applies constant water resistance to joints and muscles. In particular, for elderly individuals, aqua exercise is not only effective at reducing the pressure on joints and, thus, pain, because it reduces loads on

Variables	Age (years)	Weight (kg)	Height (cm)	BMI (kg/m²)	% body fat (%)
Groups					
A (n = 8)	76.00 ± 5.52	57.68 ± 1.78	152.38 ± 4.31	29.11 ± 12.47	35.41 ± 2.86
B (n = 11)	74.09 ± 4.21	56.44 ± 7.29	154.45 ± 4.16	23.92 ± 1.82	39.02 ± 6.23
C (n = 11)	74.64 ± 4.59	60.91 ± 7.41	151.90 ± 2.77	26.39 ± 3.26	38.23 ± 4.16
D (n = 10)	74.11 ± 4.65	62.17 ± 8.79	154.78 ± 4.94	25.94 ± 2.38	35.50 ± 3.69

Values are Means ± SD. A (CG): Control Group, B (AEG): Aqua Exercise Group, C (AEBG): Aqua Exercise and Burdock extract intake Group, D (BG): Burdock extract intake Group.
body parts but also advantageous at reducing risks associated with exercising.\(^{(31,32)}\)

According to previous studies, a 50–60 min aqua fall-prevention exercise three times a week for 24 weeks improved muscular strength of elderly women aged 65 and older,\(^{(33)}\) and 50 min aqua exercise with the intensity of RPE 11–13 three times a week for eight weeks increased dynamic muscular strength in women in late 50s through 60s.\(^{(31,34)}\) Tsourlou et al.\(^{(35)}\) reported that the 24-week 20 min aqua exercise consisting of the endurance exercise with the intensity of 80% maximum heart rate (HRmax) and the upper and lower body resistance exercise with the equipment designed for muscular strength exercise increased static and dynamic muscular strength in healthy elderly women.

The results of the present study were consistent with the findings of previous studies as muscular strength increased significantly in the AEG and AEBG. This result is likely attributable to the improved ability to perform exercise and the increased range of motion in the joints associated with the positive change in body composition.

According to previous studies, 60 min aqua exercise with the intensity of 70% HRmax three times a week for 24 weeks improved muscular endurance in both elderly men and women aged 65–75,\(^{(36,37)}\) and 90 min aqua fall-prevention exercise twice a week for 13 weeks increased muscular endurance of the upper and lower limbs in elderly individuals aged 60 and older.\(^{(33)}\)

The results of the present study show that muscle endurance was significantly lower in the CG than in other groups and tended to increase, although statistically insignificantly, in the AEG and AEBG. This result supports the finding of previous studies that regular exercise increases muscular endurance. The negative result in the muscular endurance of the CG stresses the importance of exercise.

According to previous studies, a 12 week aqua exercise program with the intensity of 50–60% HRmax improved the flexibility of hemiplegic elderly men,\(^{(38,39)}\) and 60 min aqua exercise three times a week for 24 weeks increased flexibility in elderly women aged 65–75.\(^{(37)}\)

The results of the present study show a significant increase of flexibility in the AEBG, and the flexibility was also significantly higher in that group than in the other three groups, supporting the findings of previous studies. This likely suggests the positive effect of aqua exercise and burdock extract intake in improving the range of motion in the joints.

According to previous studies, 60 min aqua exercise three times a week a week for 12 weeks increased balance in elderly women.

Table 3. %diff values of PGI\(_2\) and TXA\(_2\) in each group

Variable Group	Group A (n = 8)	Group B (n = 11)	Group C (n = 11)	Group D (n = 10)
PGI\(_2\) (pg/ml)	8.27 ± 14.42	6.83 ± 25.35	0.25 ± 18.65	0.55 ± 23.98
TXA\(_2\) (pg/ml)	7.92 ± 16.91	-0.48 ± 12.03	12.04 ± 31.96	7.02 ± 21.06

Values are Means ± SD. A (CG): Control Group, B (AEG): Aqua Exercise Group, C (AEBG): Aqua Exercise and Burdock extract intake Group, D (BG): Burdock extract intake Group.

Table 4. Changes of PGI\(_2\) and TXA\(_2\) between pre and post aqua exercise and burdock extract intake intake

Variable Group	Pre	Post	t value
PGI\(_2\) (pg/ml)	19.73 ± 5.54	21.44 ± 7.17	-1.516
TXA\(_2\) (pg/ml)	21.48 ± 6.44	22.68 ± 5.89	-0.857

Values are Means ± SD. A (CG): Control Group, B (AEG): Aqua Exercise Group, C (AEBG): Aqua Exercise and Burdock extract intake Group, D (BG): Burdock extract intake Group.
aged 60 and older with osteoarthritis, and 60 min aqua rehabilita-
tion twice a week for 16 weeks improved static balance in elderly
individuals with chronic degenerative knee osteoarthritis. Baena-
Baeta et al. also reported that aqua exercise three times a week
for eight weeks increased agility in elderly individuals aged 65 and
older.

The results of the present study show that agility and balance
increased significantly in the AEG and tended to increase, al-
though statistically insignificantly, in the AEBG and BG, in contrast
to the decrease in agility and balance in the CG. This is likely a
result of the positive change in body composition and overall
improvement in physical fitness and functioning due to
aqua exercise and burdock extract intake.

According to previous studies, 60 min aqua exercise three times
a week for 12 weeks improved cardiorespiratory endurance in
women aged 65–75, and 60 min aqua exercise with the intensity of
VO\textsubscript{2}\text{max} 50–70% three times a week for 12 weeks increased
cardiorespiratory endurance in elderly women. The results of the
present study show that cardiorespiratory endurance increased
significantly in all groups, and the AEG and the AEBG, supporting
the findings of previous studies. This result likely reflects the positive
effect of the sustained aqua exercise and burdock extract intake on improving physical fitness and functioning.

The findings discussed so far indicate that aqua exercise and
burdock extract intake have a positive effect on health-related
fitness, highlighting the importance of aqua exercise for elderly
women and suggesting the potential of burdock as a dietary
supplement for enhancing health-related fitness.

Blood vessels voluntarily regulate their expansion and contrac-
tion to regulate blood distribution and flow to respond to physio-
logical and chemical stimuli, and the function of blood vessels
is reduced drastically after 45 years of age. Healthy endothelial cells secrete PGI\textsubscript{2}, which acts as a vasodi-
lator and a platelet aggregation inhibitor. However, in the
event of blood vessel damage, endothelial cells separate the blood
collagen, a potential platelet-activating factor, thus pre-
vailing platelet aggregation in the healthy endothelial cells.

The endothelial cells secrete PGI\textsubscript{2}, which inhibits platelet aggrega-
tion, and activated PGI\textsubscript{2} generates TXA\textsubscript{2} and forms a platelet
plug.

PGI\textsubscript{2} is a bioactive substance and performs various functions
such as relaxation of vascular smooth muscle and platelet aggrega-
tion inhibition. Change in PGI\textsubscript{2} secretion results in vascular
functions in various organs, and diagnostic significance has not
been clearly established. Its balance with other factors such as
TXA\textsubscript{2} has particular importance, and the reduction in its secretion
increases the risk of diabetes, angina pectoris, cerebral throm-
bosis, arteriosclerosis, and hypercholesterolemia.

TXA\textsubscript{2} maintains homoeostasis in blood vessels through mutually
antagonistic action with PGI\textsubscript{2}. TXA\textsubscript{2} has a strong prothrombolytic
property and is produced by the enzyme reactions that involve
activation of phospholipase A\textsubscript{2}, cyclooxygenase, and thromboxane
synthase. In the synthetic regulation of TXA\textsubscript{2}, phospholipase A\textsubscript{2},
which generates an arachidonic acid from membranes of phospha-
lipids, plays an important role.

The results of the present study show no changes in PGI\textsubscript{2} and
TXA\textsubscript{2} levels in any group; however, the program participation led
to balance between PGI\textsubscript{2} and TXA\textsubscript{2}, which is consistent with the
finding of Zoladz et al. Considering that both substances are
extremely unstable, each with a very short half-life, the positive
effects of aqua exercise and burdock extract intake in achieving
balance between PGI\textsubscript{2} and TXA\textsubscript{2} and maintaining them within
the normal range can be viewed as a significant finding.

Conclusion

Regular and continuous aqua exercise was effective at im-
proving the senior fitness and cardiovascular risk factors of elderly
women exposed to decreased muscle mass decreased cardio-
pulmonary function, and lower cardiovascular disease risk, all of
which are due to decreased physical activity. And PGI\textsubscript{2} and TXA\textsubscript{2}
kept the equilibrium. Additionally, the intake of burdock extracts
in vascular health by serving a secondary role in disease pre-
vention and health promotion.

Abbreviations

- ETA: eicosatetraenoic
- HR\text{max}: heart rate maximum
- PGI\textsubscript{2}: prostaglandin I\textsubscript{2}
- RPE: rating of perceived exertion
- TXA\textsubscript{2}: thromboxane A\textsubscript{2}

Conflict of Interest

No potential conflicts of interest were disclosed.
15 Ren R, Hashimoto T, Mizuno M, et al. A lipid peroxidation product 9-
oxononanoic acid induces phospholipase A2 activity and thromboxane A2 production in human blood. J Clin Biochem Nutr 2013; 52: 228–233.
16 Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardio-
vascular response to thromboxane A2. Science 2002; 296: 539–541.
17 American College of Sports Medicine. ACSM’s Guidelines for Exercise
Testing and Prescription (10th edition). Lippincott Williams & Wilkins, 2017; 57–60.
18 Cugusi L, Cadeddu C, Nocco S, et al. Effects of an aquatic-based exercise
program to improve cardio-metabolic profile, quality of life, and physical
activity levels in men with type 2 diabetes mellitus. PM R 2015; 7: 141–148.
19 Enblom A, Wicher M, Nordell T. Health-related quality of life and musculo-
skeletal function in patients with musculoskeletal disorders: after compared to
before short-term group-based aqua-exercises. Eur J Physiother 2016; 18:
218–225.
20 Ferracane R, Graziani G, Gallo M, Fogliano V, Ritiener A. Metabolic profile
of the bioactive compounds of burdock (Arctium lappa) seeds, roots and
leaves. J Pharm Biomed Anal 2010; 51: 399–404.
21 Chen WC, Hsu YJ, Lee MC, et al. Effect of burdock extract on physical
performance and physiological fatigue in mice. J Vet Med Sci 2017; 79:
1698–1706.
22 Chan VS, Cheng LN, Wu JH, et al. A review of the pharmacological effects
of Arctium lappa (burdock). Inflammopharmacology 2011; 19: 245–254.
23 Barceloux DG. Medical Toxicology of Natural Substances: Foods, Fungi,
Medicinal Herbs, Plants, and Venomous Animals. John Wiley and Sons,
2008; 39–43.
24 Damalas CA, Alexoudis C, Koutroubas SD. Common burdock (Arctium
minus); a common weed of nonarable land in Orestiada, Greece. Hell Plant
Prot J 2015; 8: 15–20.
25 Toogood S. Teaching pool: water exercise for seniors. Hydro-actif proprietor
2014; 8.
26 Borg G, Løllgen H. Borg’s perceived exertion and pain scales. Dtsch Z
Sportmed 2001; 52: 252.
27 Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical
power analysis program for the social, behavioral, and biomedical sciences.
Behav Res Methods 2007; 39: 175–191.
28 Bello M, Sousa MC, Neto G, et al. The effect of a long-term, community-
based exercise program on bone mineral density in postmenopausal women
with pre-diabetes and type 2 diabetes. J Hum Kinet 2014; 43: 43–48.
29 Chien MY, Wu YT, Hsu A-T, Yang RS, Lai JS. Efficacy of a 24-week
aerobic exercise program for osteoporotic postmenopausal women. Calcif
Tissue Int 2000; 67: 443–448.
30 Woo-Cheol K, Suk-Lip C, Sung-Woon K, Hae-Ryoung P. The effects of
aquarobics on blood pressure, heart rate, and lipid profile in older people
with hypertension. Indian J Sci Tech 2016; 9. DOI:10.17485/ijst/2016/
v9i46/107177.
31 Souza Vasconcelos KS, Dias JM, de Araújo MC, Pinheiro AC, Maia MM,
Dias RC. Land-based versus aquatic resistance therapeutic exercises for older
women with sarcopenic obesity: study protocol for a randomised controlled
trial. Trials 2013; 14: 296.
32 Kim JH, Kim DY. Aquarobic exercises improve the serum blood irisin and
brain-derived neurotrophic factor levels in elderly women. Exp Gerontol
2018; 104: 60–65.
33 Hwang Y-H, Kim D-H. The effects of aquarobic exercise program on body
composition and blood lipid concentrations in obese elderly females. J Korean
Acad Coop Soc 2016; 17: 226–232.
34 Yoo SH, Lee CI, Kwak CS, Yang JS. The effects of aquarobic exercise on fitness
and metabolic syndrome risk factors in senior women. J Korean Acad Kinesiol
2010; 12: 23–32.
35 Tsourlou T, Benik A, Dipla K, Zafeiridis A, Kellis S. The effects of a twenty-
four-week aquatic training program on muscular strength performance in
healthy elderly women. J Strength Cond Res 2006; 20: 811–818.
36 Ramirez-Villada JF, León-Ariza HH, Argüello-Gutiérrez YP, Porras-Ramírez
KA. Effect of high impact movements on body composition, strength and
bone mineral density on women over 60 years. Rev Esp Geriatr Gerontol
2016; 51: 68–74.
37 Jeon JG, Lee WR, Park HG, Yoon AR, Joung SH, Lee YR. Effects of water
exercise program for 24 weeks on the body composition, health related
fitness, and quality of life infeeders. J Physic Edu Sport Sci 2010; 12:
25–33.
38 Valtonen A, Pöyhönen T, Sipilä S, Heinonen A. Effects of aquatic resistance
training on mobility limitation and lower-limb impairments after knee
replacement. Arch Phys Med Rehabil 2010; 91: 833–839.
39 Yemman P, Suputtittada A, Yuktanandana P. Effects of aquatic exercise and
land-based exercise on postural sway in elderly with knee osteoarthritis.
Asian Biomed 2010; 4: 739–745.
40 Carbonell-Baeza A, Ruiz JR, Aparicio VA, et al. Land- and water-based
exercise intervention in women with fibromyalgia: the al-Andalus physical
activity randomised controlled trial. BMC Musculoskelet Disord 2012; 13:
18.
41 Simas V, Hing W, Pope R, Clinstein M. Effects of water-based exercise on
bone health of middle-aged and older adults: a systematic review and meta-
analysis. Open Access J Sport Med 2017; 8: 39–60.
42 Baena-Beato PA, Artero EG, Arroyo-Morales M, Robles-Fuentes A, Gatto-
Cardia MC, Delgado-Fernández M. Aquatic therapy improves pain, disabili-
ity, quality of life, body composition and fitness in sedentary adults with
chronic low back pain. A controlled clinical trial. Clin Rehabil 2014; 28:
350–360.
43 Meredith-Jones K, Waters D, Legge M, Jones L. Upright water-based
exercise to improve cardiovascular and metabolic health: a qualitative review.
Complement Ther Med 2011; 19: 93–103.
44 Colado JC, Triplett NT, Tellà V, Saezco P, Abellán J. Effects of aquatic
resistance training on health and fitness in postmenopausal women. Eur J
Appl Physiol 2009; 106: 113–122.
45 Ribeiro F, Alves AJ, Duarte JA, Oliveira J. Is exercise training an effective
therapy targeting endothelial dysfunction and vascular wall inflammation?
Int J Cardiol 2010; 141: 214–221.
46 Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogin K. Effects of exercise
training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Bio-
chem Nutr 2017; 60: 180–186.
47 Giles LV, Warburton DER, Esch BT, Fredoruk MN, Rupert JL, Taunton
JE. The effect of exercise in hypoxic and normoxic conditions on endo-
theelin-1 and arterial compliance. J Sports Sci 2012; 30: 261–267.
48 Widmayer E, Raft H, Strang K. Vander’s Human Physiology. McGraw-Hill
Education, 2015; 375–383.
49 U.S. Bureau of Labor Statistics. Medical and Clinical Laboratory Technolo-
gists and Technicians: Occupational Outlook Handbook. https://
www.bls.gov/oeoh/healthcare-medical-and-clinical-laboratory-technologists-
and-technicians.htm. Accessed 1 June 2018.
50 Wang D, Wang Y, Ma J, et al. MicroRNA-20a participates in the aerobic
exercise-based prevention of coronary artery disease by targeting PTEN.
Biomed Pharmacother 2017; 95: 756–763.
51 Cathcart MC, Reynolds JV, O’Byrne KJ, Pidgeon GP. The role of
prostacyclin synthase and thromboxane synthase signaling in the develop-
ment and progression of cancer. Biochim Biophys Acta 2010; 1805:
153–166.
52 Zoladz JA, Majerczek J, Duda K, Chłopicki S. Endurance training increases
exercise-induced prostacyclin release in young, healthy men—relationship
with VO2max. Pharmucol Rep 2010; 62: 494–502.