Supplementary Materials

Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery

Ylenia Jabalera 1, Francesca Oltolina 1,2, Maria Prat 2, Concepcion Jimenez-Lopez 1, Jorge F. Fernández-Sánchez 3, Duane Choquesillo-Lazarte 4, and Jaime Gómez-Morales 4,*

1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; yjabalera@correo.ugr.es (Y.J.); cjl@ugr.es (C.J.-L.)

2 Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; francesca.oltolina@med.uniupo.it (F.O); maria.prat@med.uniupo.it (M.P.)

3 Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; jffernan@ugr.es (J.F.-S.)

4 Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain; duane.choquesillo@csic.es (S.C.-L.)

* Correspondence: jaime@lec.csic.es (J.G.-M.); Tel.: +34-958-230000 (ext. 190203)

Figure S1. Standard calibration straight line Doxo on Eu:cit-cAp nanocrystals. Dotted blue line represents the lineal fitting of the experimental data.

Table S1. Kinetics parameters obtained from the lineal fitting of the experimental data.

Parameter	Value
Intercept [ua]	-0.1 ± 0.3
Slope [mL mg⁻¹]	24.7 ± 0.6

R² = 0.99424
Equation S1:

\[Q(t) = Q_{\text{max}} \left(1 - e^{-t/\tau}\right) \]

(Lagergren’s equation)

\(Q \) is the amount of drug adsorbed on the nanoparticle surface and \(\tau \) the time needed to reach approximately a 63% of \(Q_{\text{max}} \).

Figure S2. (a) excitation (dashed line) and emission (solid line) spectra of Eu:cit-cAp nanoparticles suspended in water at 25 °C at several pHs and (b) the effect of the pH on the luminescence emission of these particles; slit-widths \(\text{exc/em} = 10/10 \) nm, \(t_d = 120 \) µs, \(t_g = 5 \) ms, detector voltage 800v.

Figure S3. (a) excitation (dashed line) and emission (solid line) spectra of Eu:cit-cAp nanoparticles loaded with 0.139 mg Doxo/mg Eu:cit-cAp suspended in water at 25 °C at several pHs, and (b) the effect of the pH on the luminescence emission of these particles; slit-widths \(\text{exc/em} = 10/10 \) nm, \(t_d = 120 \) µs, \(t_g = 5 \) ms, detector voltage 800v.
Figure S4. Luminescence decay curve of Eu:3cAp nanoparticles suspended in water at 25 °C at several pHs, λ_{ex/em}=394/618 nm, slit-widths_{ex/em} = 10/10 nm, and detector voltage = 780 V. Circles correspond to experimental data and lines to the fitting equation.
Figure S5. Luminescence decay curve of Eu:cit-cAp nanoparticles loaded with 0.139 mg Doxo/mg Eu:cit-cAp suspended in water at 25 °C at several pHs. $\lambda_{\text{exc/em}} = 394/614$ nm, slit-widths $\text{exc/em} = 10/10$ nm, and detector voltage = 780 V; circles correspond to experimental data and lines to the fitting equation.

pH	Equation	R.L.I. (a.u.)	S.D.
5.0	$\text{R.L.I.} = 4.4307 \cdot e^{-t/0.514} + 0.0808$	4.0	0.0562
5.5	$\text{R.L.I.} = 6.7023 \cdot e^{-t/0.530} + 0.0940$	5.0	0.0751
6.0	$\text{R.L.I.} = 5.7731 \cdot e^{-t/0.514} + 0.0899$	5.5	0.0819
6.5	$\text{R.L.I.} = 4.464 \cdot e^{-t/0.590} + 0.0828$	6.0	0.0566
7.0	$\text{R.L.I.} = 2.9332 \cdot e^{-t/0.547} + 0.1005$	6.5	0.0819
7.4	$\text{R.L.I.} = 3.3564 \cdot e^{-t/0.325} + 0.0579$	7.0	0.0407

S.D. = standard deviation
Figure S6. (a, b) calibration curve of Doxo in water, and (c) determination of the absorbed Doxo on the Eu:ct-cAp nanoparticles versus the equilibrium Doxo concentration.
Figure S7. Luminescence decay curve of Eu:siR/cAp/Doxo nanoparticles with varying concentration of Doxo suspended in HEPES buffer at pH=7.4 and 25°C; \(\lambda_{\text{exc/em}} = 394/614 \text{ nm} \), slit-widths\(\lambda_{\text{exc/em}} = 10/10 \text{ nm} \), and detector voltage = 780 V; circles correspond to experimental data and lines to the fitting equation.
Figure S8. Variation of the apparent quenching constant with the concentration of the quencher.