Accumulation of Heavy Metals in Vegetable Food under Wastewater Irrigation

Azra Kalhoro¹, Abdul Aziz Mirani², Fozia Khan Siyal¹, Tahira Jatt¹*,
Abdul Razak Mahar¹, Sadia Iram⁴ and Muhammad Abbas Bhutto⁴

¹Department of Botany, Faculty of Natural Sciences, Shah Abdul Latif University, Khairpur, Pakistan.
²Date Palm Research Institute, Shah Abdul Latif University, Khairpur, Pakistan.
³School of Natural Sciences and Technology, Islamabad 44000, Pakistan.
⁴Pakistan Agricultural Research Council, University of Karachi, Karachi, Pakistan

ABSTRACT
Sewage water contains toxic heavy metals which can be translocated and accumulated in plants and subsequently transferred to human body through the food chain, yet it has become the most commonly used water source for irrigating vegetable crops in peri-urban or urban areas of several countries including Pakistan. Karachi, the metropolitan city of Pakistan, is the largest industrial and financial hub of the country with an estimated 16 Million population of multilingual, multi-cultural and multi-religious peoples. The current study was conducted to examine the accumulation of six heavy metals (Cr, Ni, Cd, Pb, As and Hg) in cabbage, radish, turnip, cauliflower, and carrot crops, irrigated with sewage water (SW) of peri-urban area of the Karachi. Four treatments were designed, the fresh water (FW) was used as the control (T₁), whereas T₂, T₃ and T₄ contained 25, 50, 75 and 100% of SW respectively. The samples analyzed through atomic absorption spectrophotometer using flame atomic absorption techniques revealed that among the five treatments, accumulation of the six metals was found higher with 100% SW, which was decreased with decrease in SW concentration up to 25% SW. The maximum accumulation of the metal was noted with 100% FW (control). Among the five types of vegetables, cabbage and cauliflower revealed a high tendency of accumulating the metals. Hence, in order to avoid exposure of excess heavy metals to human health through vegetables, the cabbage and cauliflower crops may not be grown in the vicinity of Karachi city where the source of irrigation water is only sewage water.

INTRODUCTION
Agriculture is the largest sector of Pakistan’s economy with a great diversity of vegetable, horticultural and cash crops (Azam and Shafique, 2017). It is employing 43.3% workforce and contributing 22.8% to grass domestic productivity (GDP) of the country (GOP, 2018). More than 60% of the people in Pakistan rely directly or indirectly on agricultural farming (Khan et al., 2020). Vegetables, amongst the other crops, are the most important and common source of food and business in several countries. In Asia, vegetables are consumed more than the meet (buckwheat), especially in Pakistan and India, several people are vegetarians and their sole dependency for food is over vegetables. The vegetative parts, fruit and seeds of vegetable plants are rich source of carbohydrates, proteins, vitamins, minerals, antioxidants, dietary fiber and several essential metabolites (Buturi et al., 2021). These crops are cultivated both in rural and urban areas of the world. Currently, the significant increase in sewage water (SW) production due to rapid urbanization and industrialization has left no choice but to use it for agricultural purpose specially in urban areas of a country (Qin et al., 2014). An estimated 2 million km² of land is irrigated with SW around the world (Hamilton et al., 2007). The cultivation of vegetable crops using SW has though a positive impact on vegetable crop in term of their yield (Kaur et al., 2012) but the presence of heavy metals in the sewage water has led to the deterioration of food quality and thus it is a serious issue for health of peoples around the globe (Rehman et al., 2018).

Depending upon the source of generation, sewage water is a potential source of many heavy metals including copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), magnesium (Mg) and iron (Fe) (Marshall et al., 2006). The contamination of soil and vegetable crops grown in the vicinity of industrial areas of a metropolitan city is reported by (Akrum et al., 2014; Bi et al., 2018; Cao et al., 2010; Chabudhara et al., 2016; Kachenko and Singh, 2006; Khan et al., 2010; Proshad et al., 2020).
The uptake or accumulation of metals in vegetative or reproductive parts of a plant varies with the type of vegetable crop (Cherfi et al., 2016; Uzma et al., 2016). The leafy vegetables accumulate higher concentration of heavy metals than the non-leafy vegetables (Khan et al., 2010).

The irrigation of vegetables crops with sewage water and the accumulation of heavy metals in plant parts is the most serious issue worldwide (Islam et al., 2015). The excessive exposure of heavy metals to human body through food chain has profound impacts on its health (Sanaei et al., 2021; Zakir et al., 2020). For example, the contribution of Cadmium (Cd), Fe, Pb, Mercury (Hg), Zn and Ni in causing various kinds of cancers has been reported by (Lui et al., 2006). According to (Patra et al., 2002), the consumption of vegetables with high amount of Pb and Cd can cause heart, kidney, bone and nervous system related problems. Likewise, the consumption of food containing excessive amount of Cu cause iron deficiency and devastation of cellular membranes (Arredondo and Núñez, 2005; Cuypers et al., 2012; Tapiero et al., 2003). Therefore, it is necessary to investigate the quality of vegetables crops irrigated with sewage water in urban areas of metropolitan cities in the world.

The population of Pakistan has increased up to 6.5 billion and is expected to reach 2.34 billion by 2025 (Ayub et al., 2020). This rapid increase in population growth has increased the construction of urban areas, hence the production of SW has been increased every day. In peri-urban or urban areas of Pakistan, the sewage water is most commonly used (32,500 Ha) for growing vegetable crops (Ensink et al., 2004; Khan et al., 2017). Karachi is the main metropolitan city of Pakistan with an estimated 16 Million population (Chandir et al., 2020) of multi-cultural and multi-religious peoples. Majority of the inhabitant rely upon vegetables crops for their daily diet. Several peoples of Hindu community living in the city are also vegetarians, who consume fresh vegetables and pulses as their only source of food. Karachi is an industrial area, harboring textile mills and food industries. Irrigating vegetable crops with sewage water, containing industrial waste municipal water, in the vicinity of Karachi is the most common practice. There is no way to stop irrigating vegetable crops with sewage water in this area due to the lack of sufficient fresh water. However, investigating the quality of SW and vegetables grown on SW to ensure that the toxic metals are under the acceptable limits as per recommendations of the World Health Organization (WHO) is an inevitable goal of a research industry (Ambika and Ambika, 2010; Kumar and Chopra, 2014; Rattan et al., 2005).

Karachi is the largest metropolitan city of with Pakistan with a high population density. A very little data is published, reporting the contamination of vegetable crops with heavy metals in metropolitan cities of Pakistan (Jamali et al., 2009; Jan et al., 2010a, b; Khan et al., 2010). This study reports the accumulation of heavy metals in vegetable crops grown under sewage water in the vicinity of the Karachi city.

MATERIALS AND METHODS

Study area and experimental design

The current study was conducted at experimental fields of Pakistan Agricultural Research Council (PARC), University of Karachi, Karachi. The source of the sewage water was the drainage system of Karachi University. The study comprised five treatments for each of the five vegetable crops and each treatment was replicated thrice. The field was divided into seventy-five (75) sub-plots each measuring 3 × 2 m². The treatments included, T₀ (control, 100% FW), T₁ (25% SW and 75% FW), T₂ (50% SW and 50% FW), T₃ (75% SW and 25% FW) and T₄ (100% SW). The vegetable crops tested were carrot, turnip, radish, cabbage and cauliflower. The experiments were completely randomized block design (RCBD).

Seed sowing and fertilizer applications

The seeds of all the five vegetables were sown from 25th to 27th September 2018. Seed sowing process was carried out following the recommended procedures that included sowing to live with a plant distance of 0.9 cm. DAP (8.5 Kg) was applied after preparation of seed bed before sowing and Urea (12 Kg) was split into two equal dozes of 6.0 Kg, one applied after 20 days of sowing and the other was applied along with SOP 5.5 Kg after 45 days of sowing at the time of fruiting initiation.

Sample collection

Soil and water sampling and processing

Five samples of soil were collected randomly in the plastic bags from the field at the depth of 0-45 cm. Water (fresh and municipal sewage) samples were collected in triplicates from the experimental field. The samples were brought to the PARC laboratory for physicochemical analysis at the Institute of Food Quality and safety Research, Karachi University, Karachi. The soil samples were air-dried and passed through 2 mm sieve before using for the analysis. The physio-chemical characteristics of the soil and water are present in Table 1.

Plant sampling and processing

The edible parts of vegetables i.e. leaf of cabbage; roots of carrot, turnip and radish; and flowers of cauliflower were collected as samples in labeled polythene bags from
Table I. Physicochemical properties of soil and sewage water collected from the experimental site.

Sr. No	Parameters	Soil (µg g⁻¹)	Sewage Water (µg ml⁻¹)	References		
		Current	Safe limit	Current	Safe limit	
1	EC (dS m⁻¹)	0.43 ± 0.03	2-4	2.7 ± 0.09	3	Anwar et al. (2016)
2	pH	8.1 ± 0.01	≤8.5	7.9 ± 0.01	6.0-8.5	Anwar et al. (2016)
3	Cr	5.31 ± 0.14	100	2.73 ± 0.027	0.55	Chiroma et al. (2014)
4	Ni	31.53 ± 1.3	50	13.27 ± 0.82	1.40	Chiroma et al. (2014)
5	Cd	4.18 ± 0.02	3	0.14 ± 0.0007	0.01	Chiroma et al. (2014)
6	Pb	12.83 ± 0.06	100	1.73 ± 0.0015	0.065	Chiroma et al. (2014)
7	Hg	2.47 ± 0.011	--*	0.02 ± 0.0004	--	--
8	As	7.18 ± 0.009	20	0.31 ± 0.0008	0.10	Chiroma et al. (2014)

*Not available.

Table II. Inter-metal Pearson correlation of heavy metals found in vegetable tissues.

Variables	Cr	Ni	Cd	Pb	Hg	As
Cr	1					
Ni	0.66	1				
Cd	0.23	0.50	1			
Pb	0.17	0.30	0.41	1		
Hg	0.60	0.76	0.39	0.36	1	
As	-0.44	-0.42	-0.01	0.47	-0.20	1

Values in bold are different from 0 with a significance level P<0.05

Statistical analysis

The data obtained from the atomic absorption spectrophotometer was processed for ANOVA analysis using factorial design (factors were varied at 5 levels; treatment was performed at 5 levels including control) using SPSS software version 17, Inc. USA. The differences among the mean were determined through the Duncan’s Multiple Range Test (DMRT) at ≤ 0.05 level of significance.

RESULTS

Status of heavy metals in sewage water and soil

The soil used in current study was sandy silt in the texture with an average 47.59%, 38.24% and 14.17% of sand, silt, and clay particles, respectively. The soil was non-saline with an average electrical conductivity of 0.43 dSm⁻¹. The data present in Table II shows that all the metals contents of the soils were under the safe limits, except the Cd concentration (4.18 µg g⁻¹) which exceeded the acceptable limit of (3.0 µg g⁻¹).

The sewage water used for irrigation of the vegetables revealed 2.7 dSm⁻¹ EC and 7.9 pH. Regarding the concentration of heavy metal in sewage water, Cr (2.73 µg ml⁻¹), Ni (13.27 µg ml⁻¹), Cd (0.14 µg ml⁻¹), Pb (1.73 µg ml⁻¹), Hg (0.02 µg ml⁻¹) and As (0.31 µg ml⁻¹) crossed safe limits (Table II).

Status of chromium (Cr) in vegetables

The accumulation of Cr concentration in plant tissues of five different vegetables crops is given in Table

Accumulation of Heavy Metals in Vegetables
It shows that the maximum mean concentration of Cr was found in cabbage (11.57 mg kg$^{-1}$) and cauliflower (8.90 mg kg$^{-1}$). In radish, as compared to 0.99 mg kg$^{-1}$ concentration of Cr accumulated with 0% SW (T$_0$), the significantly highest Cr concentration of 1.60 mg kg$^{-1}$ was found in treatment 4 (T$_4$), which was followed by 1.56 mg kg$^{-1}$ in T$_1$ and 1.22 mg kg$^{-1}$ in T$_2$. The minimum concentration of Cr (after control) in radish tissue was found in T$_4$ (1.08 mg kg$^{-1}$). The highest significant concentration of Cr found in cabbage tissue was 11.57 mg kg$^{-1}$ in T$_4$, which was followed by 9.93 mg kg$^{-1}$ in T$_2$ and 7.62 mg kg$^{-1}$ in T$_1$. The minimum concentration of Cr in cabbage tissue found was 4.68 mg kg$^{-1}$ in T$_0$ which statistically did not differ from the concentration found in T$_1$ (5.50 mg kg$^{-1}$). In turnip, the maximum concentration of Cr found was 2.02 mg kg$^{-1}$ in T$_4$, which further decreased from T$_3$ (1.95 mg kg$^{-1}$) to T$_2$ (1.88 mg kg$^{-1}$) and T$_1$ (1.74 mg kg$^{-1}$). The minimum concentration of Cr in turnip found was 1.74 mg kg$^{-1}$ in T$_0$, which statistically did not differ from any of the sewage water treatments from T$_1$ to T$_4$. In cauliflower, the significantly highest accumulation of Cr concentration found was 8.90 mg kg$^{-1}$ in T$_4$ which was followed by 6.75 mg kg$^{-1}$ in T$_3$. The minimum concentration of Cr in cauliflower found was 4.23 mg kg$^{-1}$ in control which did not statistically differ from the concentration found in T$_1$ (4.70 mg kg$^{-1}$) and T$_2$ (5.26 mg kg$^{-1}$). In carrot, the significantly highest accumulation of Cr concentration was 3.48 mg kg$^{-1}$ in T$_4$ which statistically did not vary from concentration found in T$_3$ (3.24 mg kg$^{-1}$) and T$_2$ (2.78 mg kg$^{-1}$). Similarly, the significantly lowest concentration of Cr was though observed in T$_0$, but it was statistically not different from the results obtained in T$_1$ (1.88 mg kg$^{-1}$) and in T$_2$ (2.78 mg kg$^{-1}$).

Status of nickel (Ni) in vegetables

The accumulation of Ni concentration in plant tissues of five different vegetables crops is given in Table III. In Radish, as compared to 3.38 mg kg$^{-1}$ concentration of Ni in T$_0$, the significantly highest Ni concentration of 5.72 mg kg$^{-1}$ was observed in T$_4$, which was followed by 5.01 mg kg$^{-1}$ in T$_3$ and 4.62 mg kg$^{-1}$ in T$_2$. The minimum concentration of Ni (after control) was 3.64 mg kg$^{-1}$ in T$_1$. The highest significant concentration of Ni found in cabbage tissue was 11.48 mg kg$^{-1}$ in T$_4$, which was followed by 9.31 mg kg$^{-1}$ in T$_3$ and 8.93 mg kg$^{-1}$ in T$_2$. The minimum concentration of Ni in cabbage tissue was 5.43 mg kg$^{-1}$ in T$_0$ which statistically did not differ from the concentration found in T$_1$ (6.83 mg kg$^{-1}$). In turnip, the maximum concentration of Ni found was 3.23 mg kg$^{-1}$ in T$_4$, which further decreased from T$_3$ (2.81 mg kg$^{-1}$) to T$_2$ (2.29 mg kg$^{-1}$) and T$_1$ (1.74 mg kg$^{-1}$). The minimum concentration of Ni found in turnip was 1.93 mg kg$^{-1}$ in T$_0$, which statistically did not differ from the results obtained in T$_2$ and T$_1$. In cauliflower, the significantly highest accumulation of Ni concentration found was 12.16 mg kg$^{-1}$ in T$_4$ which was followed by 11.64 mg kg$^{-1}$ in T$_3$. The minimum concentration of Ni accumulated in cauliflower tissue was 8.10 mg kg$^{-1}$ in T$_0$ which did not statistically differ from the concentration found in T$_1$ (9.38 mg kg$^{-1}$), T$_2$ (9.93 mg kg$^{-1}$) and in T$_3$ (11.64 mg kg$^{-1}$). Similarly, in carrot the significantly highest accumulation of Ni found was 10.77 mg kg$^{-1}$ in T$_4$, which statistically did not vary from the concentrations observed in T$_3$ (8.75 mg kg$^{-1}$), T$_2$ (8.60 mg kg$^{-1}$) and in T$_1$ (7.17 mg kg$^{-1}$). The lowest significant Ni concentration of 6.10 mg kg$^{-1}$ was observed in T$_0$, which was statistically non-significant to the results obtained with T$_1$, T$_2$ and T$_3$.

Status of cadmium (Cd) in vegetables

The accumulation of Cd concentration in plant tissues of five different vegetables crops is given in Table III. It shows that the maximum mean concentration of Cd found in all the five kinds of vegetables was 0.23 mg kg$^{-1}$. In radish, as compared to 0.06 mg kg$^{-1}$ concentration of Cd found in T$_0$, the significantly highest concentration of 0.13 mg kg$^{-1}$ was found in T$_4$. While in rest of the treatments from T$_1$ to T$_3$, the concentration of Cd did not significantly differ from the concentration observed in T$_0$ (Table III). Similarly, the maximum concentration of Cd (0.15 mg kg$^{-1}$) in cabbage tissue was found in T$_4$, which was significantly higher than the concentration found in T$_0$ (0.09 mg kg$^{-1}$). The concentrations observed in T$_1$, T$_2$ and T$_3$ was 0.09 mg kg$^{-1}$, 0.10 mg kg$^{-1}$ and 0.13 mg kg$^{-1}$, respectively. In turnip, the concentration of Cd among all the treatments as well as between the control did not differ significantly. The maximum concentration of Cd found in turnip was 0.15 mg kg$^{-1}$ in T$_4$, which was followed by 0.15 mg kg$^{-1}$ in T$_3$, 0.15 mg kg$^{-1}$ in T$_2$ and 0.14 mg kg$^{-1}$ in T$_1$. The minimum Cd concentration in turnip was found in T$_0$ (0.14 mg kg$^{-1}$). In cauliflower, the significantly highest accumulation of Cd concentration found was 0.25 mg kg$^{-1}$ in T$_4$, which was followed by 0.20 mg kg$^{-1}$ in T$_3$. The minimum concentration of Cd accumulated in cauliflower tissue was 0.15 mg kg$^{-1}$ in T$_0$, which did not statistically differ from the concentration found in T$_1$ (0.20 mg kg$^{-1}$), T$_2$ (0.17 mg kg$^{-1}$) and in T$_3$ (0.20 mg kg$^{-1}$). In carrot, the significantly highest accumulation of Cd found was 0.28 mg kg$^{-1}$ in T$_4$, which was followed by 0.21 mg kg$^{-1}$ in T$_3$ and 0.14 mg kg$^{-1}$ in T$_2$. The significantly lowest concentration of Cd was found in T$_1$ (0.12 mg kg$^{-1}$) which was non-significantly different from the results obtained in T$_0$ (0.11 mg kg$^{-1}$) and in T$_2$ (0.14 mg kg$^{-1}$).
Table III. Chromium (Cr), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg) and arsenic (As) concentrations (mg kg⁻¹ in dry weight) in five vegetables.

Vegetables	Treatment	Cr	Ni	Cd	Pb	Hg	As
Radish	T0	0.99±0.16	3.38±0.74	0.06±0.02	0.16±0.03	0.02±0.00	0.05±0.01
	T1	1.08±0.16	3.64±0.42	0.06±0.02	0.17±0.04	0.02±0.00	0.07±0.02
	T2	1.22±0.18	4.62±1.11	0.08±0.03	0.19±0.05	0.02±0.00	0.09±0.01
	T3	1.56±0.36	5.01±0.24	0.09±0.02	0.25±0.06	0.02±0.00	0.09±0.02
	T4	1.60±0.19	5.72±0.78	0.13±0.02	0.35±0.06	0.02±0.00	0.11±0.01
Cabbage	T0	4.68±1.23	5.43±0.75	0.09±0.02	0.13±0.02	0.02±0.00	0.03±0.00
	T1	5.50±0.86	6.83±1.43	0.09±0.02	0.16±0.03	0.02±0.00	0.04±0.00
	T2	7.62±1.54	8.93±1.92	0.10±0.01	0.19±0.02	0.03±0.00	0.04±0.00
	T3	9.93±1.85	9.31±2.33	0.13±0.04	0.22±0.02	0.03±0.00	0.04±0.01
	T4	11.57±2.38	11.48±1.85	0.15±0.03	0.25±0.04	0.04±0.01	0.05±0.01
Turnip	T0	1.72±0.10	1.81±0.12	0.12±0.02	0.17±0.04	0.01±0.00	0.06±0.01
	T1	1.74±0.12	1.93±0.21	0.14±0.02	0.17±0.02	0.02±0.00	0.06±0.01
	T2	1.88±0.26	2.29±0.36	0.15±0.02	0.19±0.06	0.02±0.00	0.08±0.01
	T3	1.95±0.19	2.81±0.35	0.15±0.01	0.22±0.04	0.02±0.00	0.09±0.01
	T4	2.02±0.10	3.23±0.40	0.15±0.02	0.28±0.06	0.02±0.00	0.10±0.01
Cauliflower	T0	4.23±0.58	8.10±1.43	0.15±0.02	0.19±0.01	0.02±0.00	0.03±0.00
	T1	4.70±1.02	9.38±2.26	0.16±0.03	0.20±0.03	0.02±0.00	0.04±0.00
	T2	5.26±1.11	9.33±1.19	0.17±0.01	0.23±0.02	0.03±0.00	0.04±0.01
	T3	6.75±0.58	11.64±2.13	0.20±0.03	0.26±0.03	0.03±0.01	0.05±0.01
	T4	8.90±1.73	12.16±2.84	0.23±0.04	0.28±0.02	0.04±0.01	0.05±0.01
Carrot	T0	1.36±0.20	6.15±1.13	0.11±0.04	0.15±0.03	0.02±0.00	0.04±0.00
	T1	1.88±0.35	7.17±1.2	0.12±0.03	0.17±0.02	0.03±0.00	0.04±0.01
	T2	2.78±0.87	8.60±1.99	0.14±0.04	0.18±0.03	0.03±0.01	0.05±0.01
	T3	3.24±1.12	8.75±2.10	0.21±0.03	0.22±0.03	0.03±0.00	0.06±0.01
	T4	3.48±1.05	10.77±1.85	0.28±0.07	0.29±0.02	0.03±0.01	0.07±0.01

MAC: Maximum allowable concentration in vegetable tissue; **Souri et al. (2019); Huang et al. (2014).**

Status of lead (Pb) in vegetables

The accumulation of Pb concentration in plant tissues of five different vegetable crops is given in Table III. In radish, the maximum accumulated concentration observed was 0.35 mg kg⁻¹ in T4 which was significantly higher than rest of the treatments and the control (0.16 mg kg⁻¹). The minimum accumulated concentration after control (T0) was found in T2 (0.19 mg kg⁻¹) which was non-significantly different from the concentrations observed in T2 (0.19 mg kg⁻¹) and T3 (0.25 mg kg⁻¹). The highest significant concentration of Pb found in cabbage tissues was 0.25 mg kg⁻¹ in T4, which was followed by 0.22 mg kg⁻¹ in T3 and 0.19 mg kg⁻¹ in T2. The minimum concentration of Pb in cabbage found was 0.13 mg kg⁻¹ in T0 which statistically did not differ from the concentration achieved in T1 (0.16 mg kg⁻¹). In turnip, the maximum concentration of Pb found was 0.28 mg kg⁻¹ in T4, which further decreased in T3 up to 0.22 mg kg⁻¹. The minimum concentration of Pb found in turnip was 0.17 mg kg⁻¹ in T0, which statistically did not differ from the results found in T1 (0.14 mg kg⁻¹) and in T2 (0.17 mg kg⁻¹). In cauliflower, the significantly highest accumulation of Pb concentration found was 0.28 mg kg⁻¹ in T4, which was followed by 0.26 mg kg⁻¹ in T3 and 0.23 mg kg⁻¹ in T2. The minimum concentration of Pb accumulated in cauliflower was 0.19 mg kg⁻¹ in T0, which was statistically non-significant from the concentration found in T1 (0.20 mg kg⁻¹). In carrot, the significantly highest accumulation of Pb found was 0.29 mg kg⁻¹ in T4.
which statistically did not vary from concentration found in T3 (0.22 mg kg\(^{-1}\)) and in T2 (0.18 mg kg\(^{-1}\)). Similarly, the significantly lowest concentration of Pb was found in T0, which was significantly non-significant to the results obtained in T1 (0.17 mg kg\(^{-1}\)) and in T2 (0.18 mg kg\(^{-1}\)).

Status of mercury (Hg) in vegetables

The accumulation of Hg concentration in plant tissues of five different vegetable crops is given in Table III. It shows that the maximum mean concentration of Hg found in five different kind of vegetables was 0.04 mg kg\(^{-1}\). The data presented in Table III shows that the maximum accumulated concentration of As in radish tissues was 0.022 mg kg\(^{-1}\) in T4 but, it did not significantly differ from the concentrations found in T3 (0.020 mg kg\(^{-1}\)), T2 (0.019 mg kg\(^{-1}\)), T1 (0.019 mg kg\(^{-1}\)) and in T0 (0.019 mg kg\(^{-1}\)). The highest significant concentration of Hg found in cabbage tissue was 0.038 mg kg\(^{-1}\) in T4, which was followed by 0.030 mg kg\(^{-1}\) in T3 and 0.029 mg kg\(^{-1}\) in T2. The minimum concentration of Hg in cabbage found was 0.021 mg kg\(^{-1}\) in T0, which was statistically non-significant to the results obtained in T1 (0.019 mg kg\(^{-1}\)), T1 (0.019 mg kg\(^{-1}\)) and in T0 (0.019 mg kg\(^{-1}\)). The minimum concentration of Hg in turnip was 0.023 mg kg\(^{-1}\) in T4, which was followed by 0.20 mg kg\(^{-1}\) in T3, 0.019 mg kg\(^{-1}\) in T2 and 0.016 mg kg\(^{-1}\) in T1. The minimum concentration of Hg found in turnip was 0.023 mg kg\(^{-1}\) in T0, which was statistically non-significant to the results found in T1 (0.022 mg kg\(^{-1}\)), T2 and in T3. In turnip, all treatments revealed non-significant difference with the control in terms of the accumulation of Hg concentration in vegetable tissues. The maximum concentration of Hg found in turnip was 0.023 mg kg\(^{-1}\) in T4, which was followed by 0.20 mg kg\(^{-1}\) in T3, 0.019 mg kg\(^{-1}\) in T2 and 0.016 mg kg\(^{-1}\) in T1. The minimum concentration of Hg (0.015 mg kg\(^{-1}\)) found in turnip was observed in T0. In cauliflower, the significantly highest accumulated concentration of Hg found was 0.038 mg kg\(^{-1}\) in T4, which was followed by 0.030 mg kg\(^{-1}\) in T3 and 0.029 mg kg\(^{-1}\) in T2. The minimum concentration of Hg found in cauliflower was 0.021 mg kg\(^{-1}\) in T0, which was statistically non-significant to the results obtained in T1 (0.022 mg kg\(^{-1}\)), T2 and T3. In carrot, accumulation of Hg did not vary significantly among the treatments as well as between the treatments and the control. However, the highest accumulated concentration of 0.033 mg kg\(^{-1}\) was found in T4, which was followed by 0.031 mg kg\(^{-1}\) in T3, 0.029 mg kg\(^{-1}\) in T2 and 0.025 mg kg\(^{-1}\) in T1. The minimum accumulated concentration of Hg was found in T0 (0.023 mg kg\(^{-1}\)).

Status of arsenic (As) in vegetables

The data regarding the accumulation of As concentration in vegetable tissues of five different vegetables crops is given in Table III. It shows that the maximum mean concentration of As accumulated in tissue of five different vegetable crops was 0.05 mg kg\(^{-1}\). In radish, as compared to 0.05 mg kg\(^{-1}\) concentration of As in T0, the significantly highest concentration found in T4 was 0.11 mg kg\(^{-1}\), which was followed by 0.09 mg kg\(^{-1}\) in T3 and 0.09 mg kg\(^{-1}\) in T2. The minimum concentration of As (after control) found was 0.07 mg kg\(^{-1}\) in T1. In cabbage, the highest significant concentration of As found was 0.05 mg kg\(^{-1}\) in T4, which was followed by 0.03 mg kg\(^{-1}\) in T3 and 0.04 mg kg\(^{-1}\) in T2. The minimum concentration of As in cabbage found was 0.03 mg kg\(^{-1}\) in T0, which statistically did not differ from the concentration found in T1 (0.04 mg kg\(^{-1}\)). In turnip, the maximum concentration of As found was 0.10 mg kg\(^{-1}\) in T4, which further decreased to 0.09 mg kg\(^{-1}\) in T3 and to 0.08 mg kg\(^{-1}\) in T2. The minimum concentration of As found in turnip was 0.06 mg kg\(^{-1}\) in T0, which was statistically non-significant to the results obtained in T1 (0.06 mg kg\(^{-1}\)). In cauliflower, the significantly highest accumulation of As concentration found was 0.05 mg kg\(^{-1}\) in T4, which was followed by 0.05 mg kg\(^{-1}\) in T3. The minimum concentration of As accumulated in cauliflower was 0.03 mg kg\(^{-1}\) in T0, which was found statistically non-significant to the concentrations found in T1 (0.04 mg kg\(^{-1}\)) and in T2 (0.04 mg kg\(^{-1}\)). In carrot, the significantly highest accumulation of As found was 0.05 mg kg\(^{-1}\) in T4, which statistically did not vary from the results obtained in T3 (0.06 mg kg\(^{-1}\)). The minimum concentration of As observed in T0 was 0.04 mg kg\(^{-1}\), which was statistically non-significant to the results obtained in T1 (0.04 mg kg\(^{-1}\)) and T2 (0.05 mg kg\(^{-1}\)).

Inter-metal correlation and PCA analysis

To find any association among the heavy metal in five different vegetables, an inter-metal correlation method was applied on the obtained data (Table III). Results revealed that the Cr was found highly positive and significantly correlated with Ni \(r = 0.66; P<0.05\) and Hg \(r = 0.60; P<0.05\) but correlated negatively with As \(r = 0.44; P<0.05\), however it's correlation with Ni \(r = 0.76; P<0.05\) and Cd \(r = 0.50; P<0.05\), however it's correlation with As was found negative \(r = 0.42; P<0.05\). Among all the metals, As was having significantly positive correlation with only Pb \(r = 0.47; P<0.05\).

A multivariate statistical method, PCA, was applied on the obtained data to analyze the inter-dependencies within heavy metals and for their qualitative evaluation of clustering behavior (Fig. 1). Four factors having a cumulative variance of 68.32% were obtained. Factor-1 contributed 43.21% to the total variability with a high loading on Ni \(r = 0.95\), Hg \(r = 0.80\), Cr \(r = 0.71\) and Cd \(r = 0.49\). Hence, Factor-1 supported three primary cluster, i.e. Hg-Cr, Hg-Ni and Pb-Cd. Factor-2 contributed 22.39% to the total variability with high negative loading on As \(r = -0.81\) and Pb \(r = -0.76\), supporting the As-Pb cluster.
The accumulation of heavy metals in vegetable tissues is a serious threat to human health. Industrial and municipal sewage water is an important source of heavy metals that may accumulate in the agricultural soil and subsequently translocated into the vegetable tissues. Depending upon its source of generation, it may contain different types and concentration of heavy metals (Marshall et al., 2006). The contamination of agricultural soil with heavy metals and their subsequent uptake and accumulation within plant tissues depend upon the physicochemical properties of the soil and type of vegetable crops (Karami et al., 2011; Zhou et al., 2016). The level of contamination of the heavy metals in plants relies on, amongst other, the time of crop harvesting as well as the soil type, humidity, pH and micronutrient contents (Gu et al., 2016; Hu et al., 2017; Leitzmann, 2003; Właśniewski and Hajduk, 2012).

The soil used in current study was sandy silt in the texture with an average 47.59%, 38.24% and 14.17% of sand, silt, and clay particles, respectively. The average electrical conductivity of the sewage water and soil was 3.0 and 0.43 dSm⁻¹, respectively. Regarding the concentration of heavy metal in sewage water, Cr (2.73 µg ml⁻¹), Ni (13.27 µg ml⁻¹), Cd (0.14 µg ml⁻¹), Pb (1.73 µg ml⁻¹), Hg (0.02 µg ml⁻¹) and As (0.31 µg ml⁻¹) exceeded the international standards (Chiroma et al., 2014). However, the metals contents of the soils were under the safe limits, except the Cd content (4.18 µg g⁻¹) which exceeded the acceptable limit of 3.0 µg g⁻¹ (Chiroma et al., 2014). This increase in soil Cd contents may be associated with granulometric composition of soils and the properties of soil top layer including soluble and total contents of Cd (Właśniewski and Hajduk, 2012). The soil pH also plays an important role in metals uptake by plant roots. According to Zvolak et al. (2019) acidic soil pH increases the absorption of heavy metals by plant roots. The change in soil pH from acidic to basic pH (7.1-8.1) increase the leaching of heavy metals and lowers the bioavailability to plant roots (Bielicza et al., 2009). The absorption of heavy metals by roots is also inhibited with the addition of organic matter to soil (Palteva et al., 2018; Zhang et al., 2010). In current study the soil pH (8.1) and sewage water pH (7.9) were basic which perhaps have discouraged the accumulation of heavy metals in the soil. Thus, the pH of soil and sewage water in current study are under the safe limits as per international standards that do not favor the uptake of heavy metals by plant roots (Anwar et al., 2016; Bielicza et al., 2009).

Depending upon the type of vegetable, the leafy vegetables are reported to accumulate higher concentration of heavy metals than the non-leafy vegetables (Gu et al., 2016; Hu et al., 2017; Khan et al., 2010; Właśniewski and Hajduk, 2012). Chromium, lead, mercury and cadmium are considered amongst the top toxic heavy metals. Chromium is commonly found in soil as Cr (III) and Cr (VI) with distinct chemical and toxic properties (Sandep et al., 2019). Cr (VI) is reported to be 10 to 100 times more toxic than Cr (III) (Garnier et al., 2006). Cr (VI), being a strong oxidizing agent cause harmful effects on overall microbial population in agricultural soil (Jie et al., 2009).

In current study, the mean concentration of Cr contents at 100% SW (T4) in cabbage (11.57 mg kg⁻¹) and cauliflower (8.90 mg kg⁻¹) exceeded the allowable concentration of 5 mg kg⁻¹ in vegetable tissue (Souri et al., 2019; WHO, 2007). In radish, turnip and carrot the maximum of Cr concentration found was 3.48 mg kg⁻¹ (T4). However, it was noticed that the concentration of Cr in all the kinds of vegetables, except in turnip, was significantly decreased with a decrease in sewage water concentration from 100% (T4) to 75% (T3), and from 50% (T2) to 25% (T1) and 0% (T0, control). The vegetables grown on 0% SW (T0) accumulated the minimum concentration of Cr that falls under the acceptable limits of 5 mg kg⁻¹. In cabbage and cauliflower, the minimum concentration that falls under acceptable limits were found on 0% SW (T0) and 25% SW (T1), respectively. Similarly, the maximum mean concentration of Hg found in five different kind of vegetables (0.04 mg kg⁻¹) exceeded the acceptable concentration of 0.02 mg kg⁻¹ (Huang et al., 2014; WHO, 2007). However, the concentration of Hg in cabbage and cauliflower was significantly decreased with a decrease in sewage water concentration from 100% (T4) to 75% (T3), and from 50% (T2) to 25% (T1) and 0% (T0, control).

In contrast, the concentration of Ni, Cd and Pb concentrations among all the five types of vegetables were
under acceptable limits as per defined by international health organizations (Souri et al., 2019; WHO, 2007). The maximum concentration of Ni, Cd and Pb accumulated with 100% SW (T4) among all the five vegetables were 12.16 mg kg⁻¹, 0.23 mg kg⁻¹ and 0.35 mg kg⁻¹, respectively. These concentrations were significantly decreased with a decrease in swage water concentration from 100% (T4) to 75% (T3), and from 50% (T2) to 25% (T1) and 0% (T0, control). The current results are in agreement with the reports published by several scholars from Pakistan on the contamination of irrigated soil and plant tissues with heavy metals under wastewater treatments. For example, Mahmood and Malik (2014) revealed the change of chemical and physical properties of the soil which led to the uptake of heavy metals by plants including vegetables. Similarly, other reports published from Pakistan has showed the higher uptake of heavy metals by vegetable plants under sewage water irrigation than the groundwater irrigation (Jan et al., 2010a, b; Khan et al., 2013).

CONCLUSION

It can be concluded from the obtained results that among the four treatments, the accumulation of the six metals was higher under 100% SW irrigation. The accumulated concentration was decreased with decrease in SW concentration up to 25% SW. The minimum accumulation of the metals was noted with 100% FW (control). Among the five types of vegetables crops, cabbage and cauliflower accumulate higher contents of Cr than radish, turnip, and carrot. Hence, these results suggest that in order to avoid exposure of heavy metals specially the Cr to human health through plant food, the cabbage and cauliflower crops may not be grown in the vicinity of Karachi city where the source of irrigation water is only sewage water.

Supplementary material

There is supplementary material associated with this article. Access the material online at: https://dx.doi.org/10.17582/journal.pjz/20210818080816

Statement of conflict of interest

The authors have declared no conflict of interest.

REFERENCES

Abbas, M., Parveen, Z., Iqbal, M., Riazuuddin, M., Iqbal, S., Ahmed, M. and Bhutto, R., 2010. Monitoring of toxic metals (cadmium, lead, arsenic and mercury) in vegetables of Sindh, Pakistan. Kathmandu Univ. J. Sci. Eng. Technol., 6: 60-65. https://doi.org/10.3126/kuset.v6i2.4013

Akram, B., Akram, A., Zahra, S.I. and Yousaf, H., 2014. Soils and vegetables enrichment with heavy metals from application of sewage water. J. environ. Earth Sci., 4: 68-81.

Ambika, S. and Ambika, P., 2010. Crop growth and soil properties affected by sewage water irrigation-A review. Agric. Rev., 31: 203-209.

Anwar, S., Nawaz, M.F., Gul, S., Rizwan, M., Ali, S. and Kareem, A., 2016. Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water. Environ. Monit. Assess., 188: 1-9. https://doi.org/10.1007/s10661-016-5560-4

Arredondo, M. and Nuñez, M.T., 2005. Iron and copper metabolism. Mol. Aspects Med., 26: 313-327. https://doi.org/10.1016/j.mam.2005.07.010

Ayub, C., Aslam Pervez, M., Ahmad, W. and Manan, A., 2020. Threats of untreated wastewater irrigation to vegetable crops in Pakistan. Available at: https://www.pakissan.com/english/issues/threats.untreated.wastewater.irrigation.vegetable.crops.pakistan.shtml (accessed 1 Augst 2021).

Azam, A. and Shafique, M., 2017. Agriculture in Pakistan and its impact on economy. A review. Int. J. Adv. Sci. Technol., 103: 47-60. https://doi.org/10.14257/ijast.2017.103.05

Bi, C., Zhou, Y., Chen, Z., Jia, J. and Bao, X., 2018. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ., 619: 1349-1357. https://doi.org/10.1016/j.scitotenv.2017.11.177

Bielicka, A., Rylko, E. and Bojanowska, I., 2009. Contents of metals in soils and vegetables from Gdansk and Straszyn allotments. Ochrona Środowiska i Zasobów Naturalnych., pp. 40.

Buturi, C.V., Mauro, R.P., Fogliano, V., Leonardi, C. and Giuffrida, F., 2021. Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10: 223. https://doi.org/10.3390/foods10020223

Cao, H., Chen, J., Zhang, J., Zhang, H., Qiao, L. and Men, Y., 2010. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. J. environ. Sci., 22: 1792-1799. https://doi.org/10.1016/S1001-0742(09)60321-1

Chabukdhara, M., Munjal, A., Nema, A.K., Gupta, S.K. and Kaushal, R.K., 2016. Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum. Ecol. Risk Assess. Int. J., 22: 736-752.
Chandir, S., Siddiqui, D.A., Setayesh, H. and Khan, A.J., 2020. Impact of COVID-19 lockdown on routine immunisation in Karachi, Pakistan. Lancet Glob. Hlth., 8: 1118-1120. https://doi.org/10.1016/S2214-109X(20)30290-4

Cherfi, A., Cherfi, M., Maache-Rezzoug, Z. and Rezzoug, S.A., 2016. Risk assessment of heavy metals via consumption of vegetables collected from different supermarkets in La Rochelle, France. Environ. Monit. Assess., 188: 136. https://doi.org/10.1007/s10661-016-5140-7

Chiroma, T., Ebewele, R. and Hymore, F., 2014. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int. Refereed J. Eng. Sci., 3: 01-09.

Cuypers, A., Keunen, E., Bohler, S., Jozegefzak, M., Opdenakker, K., Gielen, H., Vercampt, H., Bielen, A., Schellingen, K. and Vangronsveld, J., 2012. Cadmium and copper stress induce a cellular oxidative challenge leading to damage versus signalling. In: Metal toxicity in plants: Perception, signaling and remediation. Springer, pp. 65-90.

Ensink, J.H., Mahmood, T., Van der Hock, W., Raschid-Sally, L. and Amerasinghe, F.P., 2004. A nationwide assessment of wastewater use in Pakistan: An obscure activity or a vitally important one? Water Policy, 6: 197-206. https://doi.org/10.2166/wp.2004.0013

Garnier, J., Quantin, C., Martins, E. and Becquere, T., 2006. Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. J. Geochem. Explorat., 88: 206-209. https://doi.org/10.1016/j.gexelo.2005.08.040

GOP, Ŷ., 2018. Pakistan economic survey. Ministry of Finance, Economic Advisory Wing, Finance Division, Islamabad, Islamabad, Pakistan, pp. 8-10.

Gu, Y.-G., Lin, Q. and Gao, Y.-P., 2016. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Cleaner Prod., 115: 122-129. https://doi.org/10.1016/j.jclepro.2015.12.031

Hamilton, A.J., Stagnitti, F., Xiong, X., Kreidl, S.L., Benke, K.K. and Maher, P., 2007. Wastewater irrigation: The state of play. Vadose Zone J., 6: 823-840. https://doi.org/10.2136/vzj2007.0026

Hu, B., Jia, X., Hu, J., Xu, D., Xia, F. and Li, Y., 2017. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Publ. Hlth., 14: 1042. https://doi.org/10.3390/ijerph14091042

Huang, Z., Pan, X.D., Wu, P.G., Han, J.L. and Chen, Q., 2014. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Fd. Contr., 36: 248-252. https://doi.org/10.1016/j.foodcont.2013.08.036

Islam, M.S., Ahmed, M.K., Habibullah-Al-Mamun, M. and Rakuzzaman, M., 2015. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol. Environ. Saf., 122: 462-469. https://doi.org/10.1016/j.ecoenv.2015.09.022

Jamali, M.K., Kazi, T.G., Arain, M.B., Afridi, H.I., Jalbani, N., Kandhro, G.A., Shah, A.Q. and Baig, J.A., 2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J. Hazard. Mater., 164: 1386-1391. https://doi.org/10.1016/j.jhazmat.2008.09.056

Jan, F.A., Ishaq, M., Ihsanullah, I. and Asim, S., 2010a. Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: A case study from the City of Peshawar and district Dir Lower. J. Hazard. Mater., 176: 609-616. https://doi.org/10.1016/j.jhazmat.2009.11.073

Jan, F.A., Ishaq, M., Khan, S., Ihsanullah, I., Ahmad, I. and Shakerullah, M., 2010b. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. Hazard. Mater., 179: 612-621. https://doi.org/10.1016/j.jhazmat.2010.03.047

Jie, Y., Zhen-shun, H. and Yu-feng, G., 2009. Yielding characteristics of natural soft Lianyungang clay. J. Southeast Univ. (Nat. Sci. Ed.), 39: 1059-1064.

Kachenko, A.G. and Singh, B., 2006. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, Soil Pollut., 169: 101-123. https://doi.org/10.1007/s11270-006-2027-1

Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N.W. and Beesley, L., 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater., 191: 41-48. https://doi.org/10.1016/j.jhazmat.2011.04.025

Kaur, R., Wani, S., Singh, A. and Lal, K., 2012. Wastewater production, treatment and use in India, National Report presented at the 2nd regional workshop on safe use of wastewater in agriculture, available at: http://www.ais.unwater.
Khan, H., Chaudhry, K., Ashraf, I., Usman, M., Ejaz, R. and Khadm, M., 2020. An investigation of the problems faced by vegetable growers regarding post-harvest practices in district Faisalabad. *Biol. Clin. Sci. Res. J.*, **2020**: 15-15. https://doi.org/10.54112/bcsrj.v2020i1.15

Khan, K., Azhar Naeem, A. and Awan, Z., 2017. Accumulation and translocation of heavy metals from soils to vegetables by sewage effluent application in territory of Rawalpindi. 15th International Conference on Environmental Science and Technology Rhodes, Greece.

Khan, K., Lu, Y., Khan, H., Ishiq, M., Khan, S., Waqas, M., Wei, L. and Wang, T., 2013. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. *Fd. Chem. Toxicol.*, **58**: 449-458. https://doi.org/10.1016/j.fct.2013.05.014

Khan, S., Rehman, S., Khan, A.Z., Khan, M.A. and Shah, M.T., 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. *Eco-toxical. environ. Saf.*, **73**: 1820-1827. https://doi.org/10.1016/j.ecosaf.2010.08.016

Kumar, V. and Chopra, A., 2014. Accumulation and translocation of metals in soil and different parts of French bean (*Phaseolus vulgaris L.*) amended with sewage sludge. *Bull. environ. Contamin. Toxicol.*, **92**: 103-108. https://doi.org/10.1007/s00128-013-1142-0

Leitzmann, C., 2003. Nutrition ecology: The contribution of vegetarian diets. *Am. J. clin. Nutr.*, **78**: 6578-6598. https://doi.org/10.1093/ajcn/78.3.6578

Lui, W.-X., Li, H.-H., Li, S. and Wang, Y.-W., 2006. Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou City, People’s Republic of China. *Bull. environ. Contamin. Toxicol.*, **76**: 163-170. https://doi.org/10.1007/s00128-005-0903-9

Mahmood, A. and Malik, R.N., 2014. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. *Arab. J. Chem.*, **7**: 91-99. https://doi.org/10.1016/j.arabjc.2013.07.002

Marshall, F., Sharma, R., Agrawal, M., Bhupeal, D., Ghose, C. and Agarwal, R., 2006. *Waste water irrigation and heavy metal contamination in peri-Urban India*. Geophysical Research Abstracts.

Paltseva, A., Cheng, Z., Deeb, M., Groffman, P.M., Shaw, R.K. and Maddaloni, M., 2018. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. *Sci. Total Environ.*, **640**: 273-283. https://doi.org/10.1016/j.scitotenv.2018.05.296

Patra, N., Kumar, B., Shukla, K., Ram, P. and Srivastava, H., 2002. Problems and issues of Agrotechnology transfer in menthol mint: A case study with variety Kosi. *Proc. Aromat. Pl.*, CIMAP 440443.

Proshad, R., Kormoker, T., Islam, M.S. and Chandra, K., 2020. Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial areas of Bangladesh. *Hum. Ecol. Risk Assess. Int. J.*, **26**: 921-943. https://doi.org/10.1080/01080709.2018.1546114

Qin, H.P., Su, Q., Khu, S.T. and Tang, N., 2014. Water quality changes during rapid urbanization in the Shenzhen River catchment: An integrated view of socio-economic and infrastructure development. *Sustainability*, **6**: 7433-7451. https://doi.org/10.3390/su6107433

Rattan, R., Datta, S., Chhonkar, P., Suribabu, K. and Singh, A., 2005. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater a case study. *Agric. Ecosyst. Environ.*, **109**: 310-322. https://doi.org/10.1016/j.agee.2005.02.025

Rehman, K., Fatima, F., Waheed, I. and Akash, M.S.H., 2018. Prevalence of exposure of heavy metals and their impact on health consequences. *J. Cell. Biochem.*, **119**: 157-184. https://doi.org/10.1002/jcb.26234

Sanai, F., Amin, M.M., Alavijeh, Z.P., Esfahani, R.A., Sadeghi, M., Bandarrig, N.S., Fatehizadeh, A., Taheri, E. and Rezakazemi, M., 2021. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. *Environ. Sci. Pollut. Res.*, **28**: 1479-1490. https://doi.org/10.1007/s11356-020-10450-7

Sandeep, G., Vijayalatha, K. and Anitha, T., 2019. Heavy metals and its impact in vegetable crops. *Int. J. Chem. Stud.*, **7**: 1612-1621.

Souri, M.K., Hatamian, M. and Tesfamariam, T., 2019. Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. *Chem. Biol. Technol. Agric.*, **6**: 1-7. https://doi.org/10.1186/s40538-019-0170-3

Tapiero, H., Townsend, D.Á. and Tew, K., 2003. Trace elements in human physiology and pathology. *Copper Biomed. Pharmacother.*, **57**: 386-398.
Uzma, S., Azizullah, A., Bibi, R., Nabeela, F., Muhammad, U., Ali, I., Rehman, Z.U. and Häder, D.-P., 2016. Effects of industrial wastewater on growth and biomass production in commonly grown vegetables. *Environ. Monit. Assess.*, **188**: 328. https://doi.org/10.1007/s10661-016-5338-8

WHO, 2007. Joint FAO/WHO Expert standards program codex Alimentarius Commission, Geneva, Switzerland.

William, H., 2000. *Official methods of analysis of AOAC international*. AOAC official method 985.29.

Właśniewski, S. and Hajduk, E., 2012. The accumulation of cadmium in soils and selected vegetables cultivated in the allotment gardens of Rzeszów. *Roczники Gleboznawcze*, **63**: 55-60. https://doi.org/10.2478/v10239-012-0013-4

Zakir, H., Quadir, Q. and Mollah, M., 2020. Human health risk assessment of heavy metals through the consumption of common foodstuffs collected from two divisional cities of Bangladesh. *Exposu. Hth.*, pp. 1-16. https://doi.org/10.1007/s12403-020-00380-7

Zhang, M.K., Liu, Z.Y. and Wang, H., 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. *Commun. Soil Sci. Pl. Anal.*, **41**: 820-831. https://doi.org/10.1080/00103621003592341

Zhou, H., Yang, W.-T., Zhou, X., Liu, L., Gu, J.-F., Wang, W.-L., Zou, J.-L., Tian, T., Peng, P.-Q. and Liao, B.-H., 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. *Int. J. environ. Res. Publ. Hlth.*, **13**: 289. https://doi.org/10.3390/ijerph13030289

Zwolak, A., Sarzyńska, M., Szpyrka, E. and Stawarczyk, K., 2019. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. *Water, Air, Soil Pollut.*, **230**: 1-9. https://doi.org/10.1007/s11270-019-4221-y
Supplementary Material

Accumulation of Heavy Metals in Vegetable Food under Wastewater Irrigation

Azra Kalhoro¹, Abdul Aziz Mirani², Fozia Khan Siyal¹, Tahira Jatt*², Abdul Razak Mahar¹, Sadia Iram³ and Muhammad Abbas Bhutto⁴

¹Department of Botany, Faculty of Natural Sciences, Shah Abdul Latif University, Khairpur, Pakistan.
²Date Palm Research Institute, Shah Abdul Latif University, Khairpur, Pakistan.
³School of Natural Sciences and Technology, Islamabad 44000, Pakistan.
⁴Pakistan Agricultural Research Council, University of Karachi, Karachi, Pakistan.

Fig. 1. PCA analysis of the heavy metals found in vegetable tissues.

* Corresponding author: tahirajatt@gmail.com

Copyright 2022 Zoological Society of Pakistan