Detection of Hundreds of New Planet Candidates and Eclipsing Binaries in K2 Campaigns 0–8

Ethan Kruse1, Eric Agol2, Rodrigo Luger3, and Daniel Foreman-Mackey3

Abstract

We implement a search for exoplanets in campaigns zero through eight (C0–8) of the K2 extension of the Kepler spacecraft. We apply a modified version of the QATS planet search algorithm to K2 light curves produced by the EVEREST pipeline, carrying out the C0–8 search on 1.5 × 105 target stars with magnitudes in the range of Kp = 9–15. We detect 818 transiting planet candidates, of which 374 were undiscovered by prior searches, with [64, 15, 5, 2, 1] in (2, 3, 4, 5, 6)-planet multiplanet candidate systems, respectively. Of the new planets detected, 100 orbit M dwarfs, including one that is potentially rocky and in the habitable zone. A total of 154 of our candidates reciprocally transit with our solar system: they are geometrically aligned to see at least one solar system planet transit. We find candidates that display transit timing variations and dozens of candidates on both period extremes with single transits or ultrashort periods. We point to evidence that our candidates display similar patterns in frequency and size-period relation to confirmed planets, such as tentative evidence for the radius gap. Confirmation of these planet candidates with follow-up studies will increase the number of K2 planets by up to 50%, and characterization of their host stars will improve statistical studies of planet properties. Our sample includes many planets orbiting bright stars amenable for radial velocity follow-up and future characterization with JWST. We also list the 579 eclipsing binary systems detected as part of this search.

Supporting material: machine-readable tables

1. Introduction

The Kepler mission (Borucki et al. 2010) produced an abundance of transiting planet candidates within the 400 deg2 and 4 yr (2009–2013) of its survey of ∼2 × 105 stars (Borucki 2016; Coughlin et al. 2016; Thompson et al. 2018). The failure of the spacecraft’s second of four reaction wheels in 2013 halted the prime mission owing to pointing degradation; three wheels were required to stabilize the pitch, yaw, and roll of the spacecraft. Symmetric irradiation by the Sun on the solar panels was used to balance the telescope along a third axis, allowing continued operation with only two reaction wheels (Howell et al. 2014). However, such a balance was only achieved by pointing the telescope along the ecliptic—away from the original Kepler mission field of view.

To avoid sunlight in the aperture, the telescope was reoriented to a new field of view along the ecliptic every ∼80 days (a “campaign”). These campaigns along the ecliptic constituted a new mission entitled K2 (Howell et al. 2014); altogether K2 observed 20 campaigns (C0–19) during its 2014–2018 lifetime. Because the K2 campaigns covered more varied portions of the galaxy and the target lists were driven by community proposals, the K2 targets were more diverse than the mostly solar-like stars of the Kepler mission. Late-type M dwarf stars were favored as targets because these gave the best chance within the limited campaign duration to find small, temperate planets that may be rocky and lie in the surface liquid water “habitable zone” (Kasting et al. 1993; Kopparapu et al. 2013). Stellar clusters of varying ages were also targeted, including Praesepe (also called Beehive; Libralato et al. 2016; Obermeier et al. 2016; Mann et al. 2017), M67 (Nardiello et al. 2016), Pleiades (David et al. 2016), and Hyades (Mann et al. 2016), to uniformly study many stars at the same age.

While the photon pressure was approximately balanced and kept the spacecraft relatively stable, the pointing of K2 did drift over a timescale of 6 hr, followed by a thruster fire that abruptly brought the pointing back near the initial position. The pointing typically drifted by ∼3″–4″ (corresponding to ∼1 pixel) in early campaigns and by slightly smaller angles in the later campaigns. These pointing drifts led to gradual systematic changes in the measured flux of target stars due to variations in subpixel sensitivity that cause a different number of photoelectrons to be detected depending on the location of a star on the detector. The gradual systematic change in flux was followed by an abrupt discontinuity caused by the thruster fire changing the pointing more dramatically between cadences. These effects combined to create light curves dominated by sawtooth-shaped systematics on timescales of 6–12 hr; the changes in flux due to these systematic effects were about an order of magnitude larger than the white-noise level of most targets.

The official Kepler pipeline used for the prime mission was not optimized to handle these pointing drift systematics. The team processed the pixels and produced calibrated pixel files using the same methods as the original mission, but the sawtooth-shaped effects were not fully corrected for many of the derived light curves (Howell et al. 2014). Altogether, the raw photometric precision of an average 12th magnitude star in
K2 was ≈400 ppm (compared to 100 ppm in the original Kepler mission), which is too noisy to detect small transits (Howell et al. 2014).

Many groups have modeled the additional K2 systematics with custom pipelines to generate light curves with reduced instrumental noise and artifacts. Since the measured flux correlates strongly with the position of stars on the detector, Vanderburg & Johnson (2014) developed a K2 detrending algorithm, K2SFF, that decorrelates the raw K2 flux against the centroid position of each star versus time with a nonlinear function. Vanderburg & Johnson (2014) demonstrated a precision within a factor of two or better of the original Kepler mission, depending on the magnitude of the target star.

Other approaches to the detrending utilize common-mode variations among stars (Foreman-Mackey et al. 2015; Montet et al. 2015), a Gaussian process (GP) approach to decorrelating the flux against time and stellar centroid (K2SC; Aigrain et al. 2016; Pope et al. 2016), and point-spread function fitting to derive light curves for multiple stars in each postage stamp (Lund et al. 2015).

Building on these detrended light curves, multiple groups have searched the K2 data to find planet candidates (e.g., Barros et al. 2016; Crossfield et al. 2016; Pope et al. 2016; Vanderburg et al. 2016b; Mayo et al. 2018; Petigura et al. 2018b) in campaigns 0–8. These different searches contain some overlap in the resulting planet candidates, but each search also lists planet candidates not included by the others. In addition, comparing with the Kepler planet population, the K2 data set has yet to be fully mined for transiting exoplanets (Dotson et al. 2019). This leaves open the opportunity to find planets that have escaped detection to date.

Here we present a new search for planets in the K2 data set utilizing an approach to detrending that further improves the photometric noise to within 20% of the original Kepler mission for stars in the magnitude range 11 < Kp < 13, where Kp is the magnitude defined in the Kepler bandpass. This approach, EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), solely utilizes information from pixels within the aperture containing each star and sidesteps estimating the stellar centroids (Luger et al. 2016). EVEREST provides improved light curves for K2 target stars, which enables a more sensitive search for planetary transits.

In Section 2 we summarize the EVEREST detrending pipeline and then discuss our planet search pipeline; we also detail the vetting of candidates, the search for multiple candidates, and the Markov chain analysis procedure used for each candidate. In Section 3 we summarize the results of our search, the procedure to separate out eclipsing binaries (EBs), and the properties of the planet candidates. In Section 4 we discuss the implications of those results, and we conclude in Section 5 by pointing out future directions and applications of this planet search.

2. Methods

2.1. Pipeline Overview

Before diving into details, this section sketches the general outline of our pipeline—from raw pixels to planet candidates—and points the reader to the relevant sections discussing each piece in more depth.

To address the systematic variations in the K2 photometry, we have developed a pipeline for the decorrelation of raw K2 light curves, EVEREST (Luger et al. 2016, 2018), which we briefly review in Section 2.2. Our approach makes use of the pixel-level decorrelation (PLD) technique, which bypasses centroid measurements and instead decorrelates the light curve against the normalized flux in each pixel within the aperture (Deming et al. 2015). Once EVEREST has removed the most significant systematics, we apply some further filtering to the data to remove spurious outliers (Section 2.3).

We then use a modified version of the Carter & Agol (2013) Quasi-periodic Automated Transit Search (QATS) technique to search for planet candidates. Although designed specifically to find planets exhibiting transit timing variations (TTVs), QATS can also be used as a general purpose planet detection method, which we apply to the K2 data set. QATS relaxes the strictly periodic constraint assumed in most planet search techniques, such as Box-fitting Least Squares (BLS; Kovács et al. 2002). Instead, consecutive transits must only fall within a tunable time window—the wider the window, the larger the TTVs that can be captured. However, wider time windows come at the cost of raising the noise floor, making the detection of the smallest planets more difficult. We compromise by searching over three different windows, from perfectly periodic to a very large TTV signal.

The original QATS technique worked directly with the light-curve fluxes, but we instead calculate the log-likelihood ratio \(\frac{1}{\frac{1}{2} \Delta \chi^2} \) between a transit of a fixed depth and duration and a simple polynomial continuum centered at every cadence in the light curve; in other words, we ask at every cadence whether a fixed-shape transit centered there is a better fit to the data than a simple polynomial (Section 2.4). These likelihood comparisons at every cadence become the QATS inputs. QATS then searches for (quasi-)periods and phases that maximize the likelihood improvements of the fixed-shape transit over the polynomial continuum. We repeat this search for a grid of possible transit depths and durations. By searching over a range of transit depths, we force the algorithm to only look for features that have the same depth for every transit event.

For each depth, duration, period, and QATS transit window tuple, we input to QATS the log-likelihood ratio versus time to find the maximum likelihood times satisfying these constraints (Section 2.5). Over the entire range of duration, depth, period, and transit window combinations the largest log-likelihood ratio solution is selected for vetting.

QATS will return a “maximum likelihood candidate” for every single star regardless of its actual probability of being a planet, so we perform some automated cuts to select for high-significance transit-shaped events (Section 2.6). Systems that pass the automated cuts are then manually vetted (Section 2.7) for astrophysical significance (i.e., planet transits or EBs). All stars with a candidate planet or EB passing both the automated and manual vetting are passed back through the entire process after masking out the known object to search for further signals; we repeat until nothing else passes both vetting stages and we have a final list of vetted objects of interest (Section 2.8).

This final list of astrophysical objects is modeled through a Markov chain Monte Carlo (MCMC) analysis to determine the systems’ parameters (Section 2.9). We also run an MCMC for the odd and even events separately to help identify EBs (Section 3.1.1) and to check for period and ephemeris matches between candidates indicating likely false positives (Section 3.1.2). All systems that are not flagged by these cuts as false positives or EBs compose our final list of planet candidates (Section 3.3).
2.2. Data Selection and Light-curve Detrending

We used the EVEREST 1.0 detrended light curves for K2 campaigns 0–8 (Luger et al. 2016) as the starting point for our planet search. These were derived from MAST Data Releases 1–115 of the calibrated pixel-level light curves and a version of the EVEREST code that is permanently archived on Zenodo (Luger 2016). We selected all long-cadence targets with object type star or null, yielding a sample of 152,865 stars in C0–8 (we do not search any short-cadence light curves). The EVEREST light curves were generated using aperture number 15 of the K2SFF pipeline (Vanderburg & Johnson 2014; Vanderburg et al. 2016b).

The details of the detrending process are described in Luger et al. (2016). Briefly, the PLD technique in EVEREST uses the normalized flux in each pixel in the aperture as inputs, similar to how a centroid calculation works. The normalization removes the astrophysical signal within the aperture (assuming that the flux is due in total to the target star), leaving only instrumental signals in the pixel time series. EVEREST uses normalized pixel fluxes and products of powers of normalized pixel fluxes as inputs to a linear model that is subtracted from the data to yield a systems-free light curve. Cross-validation is performed to optimize the number of regressors and prevent overfitting, and a GP is employed to capture correlated stellar variability. The EVEREST light curves recover Kepler-like precision for stars brighter than $K_p \sim 13$.

2.3. Further Light-curve Preparation

Prior to searching the publicly available EVEREST light curves for planets, we cleaned up any regions that could interfere with detecting transits. The two main obstacles in the K2 data are (1) bad data points occurring at the same cadence across multiple light curves (primarily due to poorly modeled thruster fire events) and (2) outliers unique to one particular light curve (e.g., stellar flares or cosmic rays).

A straightforward, albeit time-consuming, way to find bad cadences impacting many light curves is to run an initial planet search and make a histogram of the cadences identified as the centers of transits. As transit times should not correlate between stars, the distribution of transit times across all stars should be uniform; an obvious preference for “transits” occurring at a particular cadence across multiple stars is highly indicative of some systematic effect. In our first search we found such pileups, as shown for a subset of Campaign 1 in Figure 1.

For each campaign, we removed the most troublesome cadences, as well as the ones just before and after, in every light curve; we also manually inspected a handful of the events to see whether a longer-duration segment needed to be removed to eliminate the problem. To identify the problem cadences, we used the maximum likelihood signal (MLS) returned by QATS for every star, excluding those with periods shorter than 9 days. Nine days was chosen as a cutoff because shorter-period signals are likely less affected by single bad cadences and only add noise to this measure. A histogram of the number of stars for which a potential transit event is identified at every cadence is shown in Figure 1. The threshold for the number of affected stars to require a cadence’s removal (listed in Table 1) changes with each campaign and with the total number of stars with longer-period signals, but in general cadences that affected more than about 0.25% of such eligible stars were removed. Altogether, we removed around 3% of cadences per campaign at this stage; the full list of excluded cadences in each campaign can be found in Table 2.

Next, we removed outliers within each individual light curve. Single-point outliers are especially common in K2 light curves, frequently cannot be removed by EVEREST detrending, and need to be mitigated. To identify the outliers, we ran a median filter through the light curve (kernel size of five cadences) and compared the flux at any given cadence to its median filter value. The residuals between the observed flux and the median filter were treated as a normal distribution centered on the median whose width we fit with the median absolute deviation (MAD)—scaling appropriately with $\sigma = \frac{1}{\Phi^{-1}(\frac{3}{4})} \text{MAD} \approx 1.4826 \cdot \text{MAD}$, where Φ^{-1} is the quantile function of the normal distribution.

Note. For each campaign, we list the minimum number of stars showing a “transit” at a cadence required for us to remove that cadence (and what percentage of possible stars that limit is). We also list how many total cadences are removed per campaign. See Table 2 for the complete list of removed cadences.

![Figure 1](image-url) Zoom-in on a segment of Campaign 1 (about 1 week of long-cadence data). The histogram presents the number of stars whose top signal has a period longer than 9 days and a “transit” time at a particular cadence. If there were no correlated systematics between stars, each cadence should have approximately the same number of events. The spikes represent uncorrected systematics, and we remove from our search any cadences with bins above the red line (40 different stars; see Table 1), as well as the cadences before and after the problematic ones.

Camp.	Min Number of Stars	Removal % of Possible	Number of Cadences Removed	Percent of Campaign Removed
0	20	0.43%	34	2.10%
1	40	0.29%	115	2.93%
2	30	0.26%	108	2.84%
3	30	0.27%	123	3.63%
4	30	0.26%	86	2.48%
5	50	0.28%	116	3.17%
6	50	0.22%	221	5.72%
7	30	0.27%	89	2.24%
8	50	0.31%	100	2.60%

Note. Each campaign, we list the minimum number of stars showing a “transit” at a cadence required for us to remove that cadence (and what percentage of possible stars limit it). We also list how many total cadences are removed per campaign. See Table 2 for the complete list of removed cadences.
Table 2

Kepler Cadence Numbers Removed from All Light Curves before Searching for Planets

C0	C1	C2	C3	C4
89616–89618	91495–91499	95552–95558	99621–99624	103773–103779
89630–89632	91809–91811	95971–95973	99636–99670	103793–103790
89659–89661	91940–91942	96021–96023	99762–99765	103804–103806
89665–89669	92000–92004	96332–96334	99858–99862	103808–103814
89725–89728	92071–92075	96378–96471	100050–100053	104004–104006
89794–89797	92083–92086	96546–96550	100243–100245	104016–104018
90288–90290	92336–92338	97208–97212	100445–100449	104052–104054
90365–90393	92371–92375	97353–97355	100459–100461	104088–104090
92504–92507	97625–97627	100902–100904	104316–104318	
92528–92531	98265–98267	101105–101108	104965–104967	
92803–92807	98313–98315	101131–101134	105071–105074	
93091–93095	98373–98376	101411–101413	105179–105181	
93464–93466	98960–98964	101489–101494	105359–105363	
93798–93801	97920–97921	101947–101949	105443–105445	
94075–94079	97922–97923	102066–102069	106032–106034	
94460–94462	97930–97933	102078–102081	106127–106131	
94490–94492	97933–97934	102343–102345	106661–106662	
94640–94642	97936–97937	102404–102407	106635–106637	
94762–94765	97946–97948	102476–102478	106702–106707	
94771–94775	97950–97951	102559–102561	106800–106802	
94844–94847	97954–97955	102769–102771	106808–106809	
94868–94871	97958–97959	102857–102860	106810–106811	
95036–95038	97964–97965	102875–102877	106813–106814	
95072–95074	97970–97971	102875–102877	106816–106817	
95120–95123	97975–97976	102875–102877	106819–106820	
95144–95148	97980–97981	102875–102877	106822–106823	
95155–95159	97985–97986	102875–102877	106825–106826	

Any cadence whose flux deviated more than 10 standard deviations (positive or negative) from the median filter prediction was labeled as an outlier candidate, as were any adjacent cadences that were more than three standard deviations from the median filter value (this captures, e.g., the exponential decay of flares). Any single cadence or set of two consecutive cadences identified...
in this manner was immediately removed as an outlier. However, short-duration transits also get classified as large flux deviations from the median baseline value. We made use of a transit’s symmetry to retain any potential transit signals through the following method. In a series of consecutive cadences all labeled as possible outliers as described above, we identified the central cadence(s): the median cadence (two median cadences for the even case) or central 20% of cadences in the rare cases of 10 or more consecutive outliers. If the minimum flux in that central group was within five times the light-curve noise level of the overall minimum flux for the entire group, we retained the group and did not remove the cadences as outliers. This worked to keep overall minimum more consecutive outliers. If the minimum group was within even case outliers at this stage; active stars with as possible outliers as described above, we identified the central cadence(s). We made use of a transit search using all one- and two-point outliers will bias the search against deep, short-duration (1 hr or less) transits, and we discuss this limitation in Section 4.1.3.

Quiet stars usually had fewer than 10 cadences removed as outliers at this stage; active stars with flares had a higher fraction of cadences removed. Stars where EVEREST performed poorly (due to, e.g., saturation or crowding from nearby bright stars) also had an increased number of outliers removed in this process.

2.4. Calculating Likelihoods

With potential outliers removed, we began the transit search using QATS. The original QATS algorithm makes the assumption that the input data have a zero-mean “continuum” and white noise, which requires perfect instrumental and astrophysical detrending at every cadence in the light curve simultaneously and in practice is not achievable for all K2 stars. We instead only locally detrend with a polynomial continuum and have modified the input to the QATS algorithm by replacing the observed flux at each cadence in the light curve with the log-likelihood ratio \(\frac{1}{2} \Delta \chi^2 \) between a local polynomial fit to the data with and without an added transit (of fixed depth and duration) centered there. Positive log-likelihoods indicate that the local light curve is better fit by adding the transit, centered on that cadence, to the modeled polynomial continuum. In this section we describe how we chose our grid of transit depths and durations and calculated the likelihood ratio between a transit of that fixed scale and a polynomial continuum. In Section 2.5 we describe how each of those series of likelihoods was input to QATS to search for planets.

To calculate the likelihood ratio between a transit and polynomial continuum, we first need to choose an appropriate polynomial order and continuum width (nearby out-of-transit cadences on either side of a putative transit at the cadence of interest). These values need to be chosen independently for each light curve to account for the different timescales of variability present in each star.

For a given light curve, we tested several possible combinations of continuum widths, from 0.2 to 0.6 days with a spacing of 0.1 days, and polynomial order, from 2 to 5. For each combination, we calculated the \(\frac{1}{2} \Delta \chi^2 \) as described below for 500 randomly chosen points in the light curve. We fit these 500 \(\frac{1}{2} \Delta \chi^2 \) values for their median \(\mu \) and standard deviation \(\sigma_\mu \) (calculated robustly using \(\sigma_w = 1.4826 \cdot \text{MAD} \)) and chose as the optimal continuum width \(w \) and polynomial order \(M \) the combination that minimized the coefficient of variation \(\sigma_\mu / \mu_\mu \). This criterion is intended to give the most uniform likelihood ratio throughout the light curve so that the transit events are easier to identify.

In all of our \(\chi^2 \) calculations, the uncertainties on each data point were taken to be uniform throughout the light curve and set to our estimate of the white-noise level in the light curve. We calculated the white-noise level by determining the MAD of the residuals of a linear fit through 1000 random 4 hr segments of the light curve. The median value of these 1000 residual MADs was taken to be the white-noise level \(\sigma \), after scaling by the normal factor of 1.4826.

Having chosen the polynomial continuum parameters for a given star, we can proceed to calculate the likelihood of a transit at every cadence in the light curve: we model a potential transit as a polynomial continuum plus a transit shape centered on that cadence \(t_0 \). A worked example of this process is demonstrated in Figure 2, and we recommend referring to it throughout this section.

The transit plus polynomial modeled flux \(m \) at cadence \(t_i \) (using all cadences within the transit duration \(T \) and continuum region \(t_i \in \left(t_0 - w - \frac{T}{2}, t_0 + w + \frac{T}{2}\right) \)) is determined by the sum of the transit model and the polynomial continuum

\[
m(t_i) = \frac{\delta}{\delta_0} \left(F(t_i, t_0, T, b, u_1, u_2, \delta_0) - 1 \right) + \sum_{j=0}^{M} a_j (t_i - t_0)^j,
\]

Figure 2. Example \(\Delta \chi^2 \) calculation at a transit of the planet K2-3 b and an arbitrary continuum region. The top panel depicts a region of the light curve around a specific transit time and a time with no transits (dotted lines). The dashed line is the polynomial continuum fit to the region (i.e., transit depth \(\delta = 0 \), while the solid line is the polynomial continuum fit plus an assumed transit at the particular cadence (of fixed duration \(T = 3.04 \text{ hr} \) and depth \(\delta = 1365 \text{ ppm} \)). The difference in \(\chi^2 \) between these models is plotted as a cross in the middle panel, which also shows how this \(\Delta \chi^2 \) varies with the transit model’s \(t_0 \) at every cadence. The bottom panel depicts the depth at which the \(\Delta \chi^2 \) is maximized when the transit model (still at fixed duration \(T = 3.04 \text{ hr} \)) is centered there. Local maxima used for determining which depths to search for planets are marked with a cross. Note that one of the transits of K2-3 c is visible on the left.
where the continuum polynomial has order \(M \) with coefficients
\((a_0, \ldots, a_M) \), and \(F \) is a Mandel–Agol transit model integrated over the cadence duration with mid-transit time \(t_0 \), duration \(T \) (first to fourth contact), impact parameter \(b \), linear and quadratic limb-darkening parameters \((u_1, u_2) \), and maximum depth of transit \(\delta_0 \).

In all cases we used a transit shape with fixed parameters
\((b, u_1, u_2, \delta_0) = (0.3, 0.4, 0.25, 0.02) \). The depth of a transit can be well approximated by the following function of limb-darkening parameters, impact parameter, and planet-to-star radius ratio \(\frac{R_p}{R_*} \):

\[
\delta_0 = \left(\frac{R_p}{R_*} \right)^2 \frac{1 - u_1(1 - \sqrt{1 - b^2}) - u_2(1 - \sqrt{1 - b^2})^2}{1 - u_1/3 - u_2/6}.
\]

Inverting this equation gives \(\frac{R_p}{R_*} \approx 0.13 \) for our chosen transit parameters, appropriate for a Jupiter-sized planet transiting the Sun or an Earth-sized planet transiting an M dwarf—roughly what one would expect to find in the 80-day-duration K2 campaigns. This transit model was subsampled by a factor of 7 and binned to the 30-minute-long cadence. To maintain linearity (and therefore greatly reduce computation time), this fixed transit shape is scaled by a multiplicative factor to the appropriate depth \(\delta \), rather than adjusting, e.g., the \(\frac{R_p}{R_*} \), which would slightly change the shape of the transit as the depth changes and break the linearity with depth. Our method is robust to the precise shape of the transit model, however, and even a simple box model would work nearly as well.

While the transit shape is not critical to the search and thus held at one set of fixed values, we do need to search over a variety of transit durations. Because the model \(m(t) \) is a nonlinear function of the transit duration, \(T \), we hold the transit duration fixed and instead repeat the search over a grid of 16 fixed transit durations from 2 to 17 hr, with each duration 15\% wider than the previous one. With the transit time, shape, and duration fixed, the model is linear in the remaining free parameters: the transit depth and polynomial coefficients \((\delta, a_0, \ldots, a_M) \).

The solution to this linear equation produces the transit depth (and polynomial continuum parameters) that best fits the data (minimizes the \(\chi^2 \)) in the local region near the \(n_0 \). In many cases this optimal transit depth, \(\delta_{\text{opt}} \), will be near 0, indicating that the region is best fit without a transit at all since even in systems with planets the transits occur in a small fraction of the total cadences in the light curve. Because of the nature of linear equations, the \(\chi^2 \) at any other depth \(\delta \) is a quadratic function and can be computed later after solving the linear equation just once for that \(t_0, T \) combination. We solved for the linear coefficients \((\delta, a_0, \ldots, a_M) \) at every duration in our grid and with the transit model midpoint \(t_0 \) at every cadence for which there was at least one valid cadence both in transit and on each side of the continuum; we then saved the coefficients at each such grid point to later calculate the \(\chi^2 \) at any depth of interest.

Finally, to calculate our desired log-likelihood ratio \(\left(\frac{1}{2} \Delta \chi^2 \right) \) between a specific transit model and pure polynomial continuum (equivalent to setting the transit depth \(\delta = 0 \)), we need to select a fixed depth for the transit model. As with the transit durations, we use a grid of different depths and repeat the search for each depth and duration combination of transits.

Unlike the durations, however, we adaptively choose our grid of transit depths based on the optimal depths \(\delta_{\text{opt}} \) we calculated at every cadence in the light curve.

We used the distribution of optimal depths throughout the light curve to decide at which transit depths to search for planets: we should only search for planets at depths where at least some cadences suggest that there might be such a transit. As an example, the distribution of the optimal depths at all cadences for one particular duration of the Campaign 1 star EPIC 201367065 (the confirmed three-planet system K2-3) is shown in Figure 3. Because in-transit cadences are rare, even for stars with planets, the majority of the light curve has optimal transit depths near 0, with a roughly Gaussian spread (different for each duration). We searched every light curve at every duration for small transits at depths corresponding to 2, 2.5, and 3 standard deviations. Above 3\(\sigma \), the optimal depths were binned with a width of 2\(\sigma \), and any bins containing a local maximum (a cadence where the \(\delta_{\text{opt}} \) is larger than at the cadences immediately preceding and following; identified in the bottom panel of Figure 2) were also searched. This procedure allowed us to adapt the grid of depths to the individual noise properties of each star and to avoid spending time searching for transit depths that would be undetectably small or transit depths larger than the data suggest exist. On average, this method produced around eight depths to search for each duration, or about 100–150 combinations of depth and duration per star.

Having chosen the depths to search for planets at each transit duration, we finally need to calculate at every cadence the log-likelihood ratio between pure continuum (\(\delta = 0 \)) and a transit at that chosen depth. Because of the simplicity of the linear model, these \(\chi^2 \) calculations are straightforward and we generated the \(\Delta \chi^2 \) for every cadence, duration, and depth combination from the previously saved coefficients.

An example of this process is demonstrated in Figure 2 with K2-3 for a fixed duration and depth combination. The top panel shows the polynomial fit compared to a polynomial plus transit fit (of the fixed depth and duration) for a \(t_0 \) centered on one of
the transits of the 10-day period K2-3 b, as well as for an arbitrary continuum region. The middle panel shows how the $\Delta \chi^2$ between the two models changes depending on which cadence the fixed-scale transit is centered. Finally, the bottom panel depicts the δ_{opt}—showing at every cadence what transit depth (still with the fixed transit duration) maximizes the $\Delta \chi^2$. Cadences centered on real transit events will have optimal depths comparable to the true transit depth, while continuum regions will have optimal depths near 0, indicating that the region is best fit without a transit at all.

One final step is required since QATS requires evenly spaced data: we need to handle data gaps and locations in the light curve where the $\Delta \chi^2$ were not computed. Because of the correlated structure of the log likelihoods, simply filling in gaps with randomly chosen likelihoods biases the planet search. To do a better job at capturing this correlation, we used an autoregressive technique to interpolate from surrounding regions similar to the gap-filling technique of Kepler’s Transiting Planet Search (TPS; Jenkins et al. 2010).

We first clipped from the $\Delta \chi^2$ series any points more than $\pm 5 \sigma$ from the median value to avoid predicting anomalous values (such as transits) in gaps without any data. On each side of a data gap, we fit an autoregressive model using the statsmodels Python package’s statsmodels.tsa.ar_model,AR and a maximum lag length of 30 cadences to predict $\Delta \chi^2$ values within the data gap (Seabold & Perktold 2010). The two models were then combined using inverse linear filters: the model based on data before the gap had weights linearly declining from 1 to 0, while the model from data after the gap contributed weights increasing from 0 at the beginning of the gap to 1 at the end. Cadences within the gap were assigned simulated $\Delta \chi^2$ values based on the appropriate weighted average of the two autoregressive models. The results for the data gap in the K2-3 system are shown in Figure 4.

To summarize our procedure, we calculated the log-likelihood ratio \(\left(\frac{1}{\Delta \chi^2} \right) \) between a local polynomial and a polynomial plus a transit of fixed duration and depth at every cadence in the light curve. This likelihood ratio is what was fed into the QATS algorithm instead of raw fluxes. The likelihood ratio calculation was repeated over a grid of transit durations \(D \) and the measured value at our discrete cadences depends on the \(\delta_{\text{opt}} \) distribution. On average, this method produced 100–150 different duration and depth combinations per star, each of which was fed to QATS to search for a planet with a transit of that scale.

Our likelihood ratios are akin to the Kepler TPS’s single-event statistics, although they use wavelet-based matched filters instead of polynomials to remove stellar variability (Jenkins et al. 2010; Seader et al. 2013). Our total likelihoods after running the likelihood ratio time series through QATS similarly mirror TPS’s multiple-event statistics.

There are two notable limitations in our chosen implementation. First, by setting our minimum depth at two standard deviations above 0, we have reduced sensitivity to planets smaller than this level. This mostly affects ultra-short-period planets, which could transit over 200 times in a single K2 campaign; even with single-transit depths of one standard deviation, combined together they would add up to a detectable signal.

Second, in setting the cadence of our likelihood evaluations equal to the Kepler cadence, we will have reduced sensitivity to shorter-duration transits whose center might fall in between cadences. The maximum $\frac{1}{2} \Delta \chi^2$ naturally occurs when the center of our transit model aligns perfectly with the center of the actual transit. The difference between this true maximum and the measured value at our discrete cadences depends on the transit duration, most severely affecting short-duration transits whose shape changes significantly over the course of a cadence. Our model evaluation cadence was chosen because the original QATS algorithm operated directly on fluxes and thus required its evaluations to occur at the same cadence as the data. Because our new technique can evaluate the $\frac{1}{2} \Delta \chi^2$ in between cadences, we could revisit our model evaluation cadence in future searches to increase sensitivity to the shortest-duration transits.

2.5. QATS

With a complete, evenly spaced measure of the log-likelihood of a transit of a certain depth and duration at every cadence in the light curve, we can run QATS. As a brief summary of how it works, given a chosen minimum and maximum allowable time span between transits, \(T_{\text{min}} \) and \(T_{\text{max}} \), QATS returns the maximum total likelihood, as well as the set of cadences that maximize it, from the input series of likelihoods. The parameters \(T_{\text{min}} \) and \(T_{\text{max}} \) are integer multiples of the Kepler/K2 long cadence. We refer to the “period” as \(P = (T_{\text{min}} + T_{\text{max}})/2 \), and the number of cadences between them, \(W = T_{\text{max}} - T_{\text{min}} \), as the transit window—indicating the allowable range of TTVs. For a periodic search we set \(W = T_{\text{max}} - T_{\text{min}} = 1 \); we cannot set \(T_{\text{max}} = T_{\text{min}} \), as this would require the period of the planet to be an exact integer multiple.
of the number of cadences. The original version of QATS contains a transit duration parameter in units of the number of cadences; we set this to unity, as the log-likelihood already accounts for an assumed transit duration.

Because we do not know the period of any potential planets in advance, we searched over possible periods ranging from a minimum of 0.3 days ($T_{\text{min}} = 14$ cadences) up to the entire duration of each campaign. Any vetted candidate with a period between 0.3 and 0.6 days was rerun with a minimum period of 0.1 days (2.4 hr) to ensure that we found the correct period and were not biased by the lower limit. We also searched for periodic planets ($T_{\text{max}} = T_{\text{min}} + 1$), as well as two quasi-periodic allowances ($T_{\text{max}} = \text{ceil}[1.0033T_{\text{min}}]$ and $T_{\text{max}} = \text{ceil}[1.00667T_{\text{min}}]$). The more we relax the periodic constraint by widening W, the larger TTVs QATS can find, but at the cost of extra noise because QATS is also more easily able to string together random positive deviations. Under the widest 0.66% quasi-periodic window, the first case in which $T_{\text{max}} = T_{\text{min}} + 2$ occurs at 154 = 152 + 2 cadences, or a period of 3.1 days.

For every unique combination of T_{min} and T_{max} (~7000 total), QATS returned the maximum total likelihood improvement possible for a transiting planet at the specified depth and duration. We do not need to discuss the phase, because for a given period QATS implicitly searches over all phases. For a given depth and duration combination, we plot the QATS total likelihoods over all periods (and thus also phases) and transit windows to create a QATS “spectrum,” as in the top panel of Figure 5. We have a similar spectrum for each of the ~150 depth and duration combinations per star. For most cases, the maximum log-likelihood improvement is negative (a transiting planet is less likely than a pure stellar continuum), but the combinations where the maximum likelihood is positive could be a planet. For every star we saved the depth, duration, period, and transit window combination that produced the maximum likelihood improvement (greater than 0) across all possible combinations as the best result in the system.

2.6. Automated Cuts

For clarity, we refer to every star’s top QATS result as a “maximum likelihood signal” and withhold the “candidate” label until it has been fully vetted.

The maximum likelihood and period for every star’s MLS in C1 are shown in the top panel of Figure 6. Each K2 target with a maximum likelihood above 0 is shown at its period, with the color corresponding to the best-fit transit duration. The blue cloud (short transit durations) at lower total likelihood improvements and intermediate periods shows the baseline level for stars without planets. It is almost always possible to stitch together a handful of regions where the stellar continuum is randomly lower than average for a few cadences, so a shallow-depth, short-duration transit can marginally improve the fit. The sudden onset of signals at 3.1 days is the result of the widened QATS window, making it easier for random noise to add up.

The larger likelihoods at long periods and longer transit durations tend to be caused by “transits” being fit to local stellar activity. In some cases a “transit” is fit to a local minimum owing to stellar rotation, while in other cases the fits are skewed by flares or cosmic rays that were missed in our outlier rejection step.

To narrow the results from the top signal in every star to only the ones most likely to have a real transiting planet, we made several automated cuts, which we describe next.

2.6.1. QATS Peaks

An indicator of a transiting planet candidate is that the QATS spectrum should show much-improved likelihoods at the planet’s period and its aliases compared to other periods. As seen in the top panel of Figure 5 for the 10-day planet in K2-3, the total likelihood smoothly increases with increasing period, but overlaid on that smooth background is a series of sharp likelihood increases at the 10-day period and its aliases (1:1, 3:2, etc.).

Since nearly every star will produce a total likelihood above zero at some small depth, short transit duration, and long period, we need a way to distinguish planets from noise. Our first automated cut focused on the fact that planets will have these spikes in their QATS spectrum at the planet’s period and aliases thereof, while other stars show only the smoother
and two-transit events longer than 40 days is due to the limited effectiveness of this measure for one-standard deviations above the example. Bottom: results from the top panel after normalizing the peak event to shaded region at 8.86 indicate our cutoff: any points below that are rejected from manual examination. Any values above 50 are clipped down to 50 and marked with a triangle. The long-duration, high-significance cloud at periods longer than 40 days is due to the limited effectiveness of this measure for one- and two-transit events (see text).

Unfortunately, there is no theoretical means to predict the baseline for a QATS spectrum, so we must make an empirical estimate. To do so, we robustly fit a second-order polynomial to a local region of the QATS spectrum, while including a linear step parameter for changes in the QATS window size, as well as the number of transits used to create the maximum likelihood. The robust estimate (an iterative fit where points 3 standard deviations away from the fit are down-weighted) was crucial to avoid biasing the baseline estimate owing to the spikes in likelihood from planets.

The robust baseline estimate is shown in the top panel of Figure 5 as the orange line, and the residuals after subtracting this baseline are shown in the middle panel. Aside from the spikes from the planet’s period and its aliases, the residuals decrease with period with a power law of \(\alpha \approx -0.5 \), which we accounted for by measuring the MAD of the residuals as a function of period. Using those MAD estimates, we normalized the QATS spectrum against the baseline level and calculated the z-score (standard deviations above the baseline) for each total likelihood, as shown in the bottom panel of Figure 5. Because real planets have spikes rising high above the surrounding regions, we expect this z-score measure to separate planets with high values from the remainder of the stars without significant transit signals.

The distribution of z-scores for the MLS of every star in C1 is shown in the bottom panel of Figure 6; indeed, most of the stars show relatively low values, while the high z-scores often contain astrophysical events—either EBs or transiting planets. The distribution of each star’s MLS in standard deviations above the QATS spectrum baseline level (this time for all C0–8) is shown in the top panel of Figure 7. Most results form a Gaussian distribution at the core with z-scores of 3–8, with long tails in both directions. The upper tail contains the planets and EBs, which exhibit the sharp spikes in the QATS spectrum and should be further followed up.

We pause to note, however, as seen in the bottom panels of Figures 5 and 6, that the z-score measure begins to break down at the longest periods (>40 days). When the period becomes large enough for only one or two cadences to contribute to the total likelihood, many QATS quasi-periodic period windows (with a choice of, e.g., two cadences near the ends of a campaign or a single cadence near the middle) will end up with
the same total likelihood—choosing only the single cadence in the light curve with the highest likelihood. This clumping of many periods with the same total likelihood affects our \texttt{QATS} spectrum baseline estimate and the standard deviation estimate of the residuals, causing many periods to have either a z-score near 0 or an artificially high value (and is thus the cause for the excess of results at the low end of the Gaussian tail in Figure 7).

More careful handling of one- and two-transit events will be addressed in updated versions of our search pipeline; for now we accept these z-score estimates and the increased likelihood of false positives and false negatives at the longest periods in this stage of automated vetting. The main effects are (a) an increased likelihood that one- and two-transit planets are missed in this search (having z-scores of \(\sim 0 \)) and (b) the occasionally inflated z-scores at long periods, which also mean that an increased number of false positives pass our automated threshold—however, these are subsequently culled in the manual vetting and ultimately have minimal impact on the validity of the final candidate list.

To select a minimum z-score threshold for an MLS to pass this stage, we looked at the distribution (top panel of Figure 7) for each campaign individually. We fit for the median and standard deviation of the z-score distribution (using the MAD) for each campaign; however, to avoid biasing the fit with the long tails, we only used those with periods less than 10 days and z-scores between 1.5 and 10. We then selected as our minimum z-score threshold a value of \(3.5 \) standard deviations above this fit—the exact value is listed for each campaign in Table 3 but is near a z-score of 9.

We chose 3.5 standard deviations to balance eliminating nearly all stars from the core distribution indicative of no planets with not eliminating potentially real planet candidates from the long tail too early. As this is just the first of several rounds of automated and manual cuts, we wanted to be lenient at this first stage. In Figure 7 we also show how many stars pass all our automated cuts (described below), then those that also pass the manual vetting, then those that become planet candidates (not EBs), and finally the new planet candidates that have not been found by any other groups. The bottom panel shows the same, except as a fraction of stars in the bin.

Above z-scores of \(\sim 20 \), our results stay consistent: about 35% of all stars will end up passing all the automated cuts, and about half of those will go on to pass the manual vetting as well. As the z-score drops from 20 to our lower limit near 9, the rate of systems passing the automated cuts remains consistent, but fewer systems pass our manual vetting (Section 2.7), indicating more contamination by false positives. We discuss the lowest signal-to-noise ratio (S/N) planet candidates further in Section 4.1.

In total, we identified 8086 MLSs across all campaigns above our z-score cutoffs (5.3% of all stars searched). However, the majority of these are spurious owing to the \texttt{QATS} algorithm picking up on stellar variability (which is also quasi-periodic and will produce a similar \texttt{QATS} spectrum to periodic transits) or other sources of false positives. To separate planets from quasi-periodic stellar variability, we made a cut based on the candidate transit morphology.

2.6.2. Morphology Cut: Sine Fit versus Transit Model

As seen in Figure 6, the fraction of systems passing the z-score cut is exceptionally high at periods of less than 2 days. The majority of these systems are variable stars where a “transit” can be well fit at the local minimum of stellar oscillations or variability. Although stars display a wide diversity of variability, in general stellar variability is roughly sinusoidal while transits are more localized in time and phase. To automatically eliminate the most obvious cases of stellar variability, we compared a folded transit fit to a folded sinusoidal fit and eliminated systems where the sinusoidal fit is better.

We selected each transit and a continuum region twice the transit duration on either side (or 0.2 days, whichever is larger for especially short transits). We fit a transit model plus local polynomial to each transit and found the optimal global transit parameters. We then repeated the procedure but fit a local polynomial continuum plus a sine wave, optimizing for the amplitude, phase, and period of the sine curve. The sine curve fit was initialized with a semi-amplitude of negative the transit depth and a phase such that the sine curve’s minimum is at the center of transit. We tested three different initial sine curve periods to start the optimization (0.5, 1, and 2 times the transit duration) and used the best result. This process is similar to the Sine Wave Event Evaluation Test performed by the \textit{Kepler} Robovetter (Thompson et al. 2018).

A comparison between the transit and sine fit for a real transiting planet (K2-3 b) is shown in Figure 8, while a false positive due to stellar variability is demonstrated in Figure 9. Any MLS in which the sine fit had a smaller \(\chi^2 \), and thus higher likelihood, than the transit fit was rejected as being caused by stellar variability. This cut eliminated 5029 of the 8086 systems passing the z-score test (62%), leaving 3057 MLSs to continue to the next stage.

2.6.3. Duration Limits

After the z-score and sine-versus-transit fit comparisons, the final automated cut we made is on the transit duration. The motivation behind this cut was a subset of obvious false positives that were difficult to differentiate via our other cuts but had poor fits and exceptionally long durations.

We chose an empirical cut to eliminate events of long durations by comparing the period–duration relation of the \textit{Kepler} objects of interest (KOIs; Thompson et al. 2018) and ensuring that the cut was well above them. Our chosen relation for the maximum allowed duration \(T_{\text{max}} \) to pass the automated cut was (in hours) \(T_{\text{max}} = 0.017 \cdot P + 7 \). Thus, anything under 7 hr will pass no matter its period, while at a 10-day period, the MLS must have a duration of less than 11 hr.

Table 3

Campaign	Min z-score
0	8.71
1	8.86
2	9.61
3	8.93
4	8.93
5	8.87
6	8.99
7	9.54
8	8.99

\textbf{Note.} Any star with an MLS below this threshold (Figure 7) is removed from our search.
Figure 8. Comparison between a local polynomial plus sine curve fit (left) and a local polynomial plus transit fit (right) to the real planet K2-3 b. In both cases the local polynomial has been divided out of each transit before plotting the folded fit of all transits together. The individual cadences are shown in the background in black points, while the binned median is displayed by larger blue points. The best-fit model is the red line. The χ^2 of the fit and number of cadences contributing are displayed in the lower right corner. Bottom: residuals of each fit on the same scale, emphasizing how much better the transit fit is in this case. The vertical dashed line shows the beginning and end of the best-fit transit.

Figure 9. Same as Figure 8, but for a star in which the sinusoidal fit was better than the transit model fit. This MLS was discarded as being caused by stellar variability.
This ad hoc decision will be revisited in future searches, but in this case the cut removed 110 stars that would otherwise have passed on to manual vetting. The most likely real astrophysical victims of this cut are short-period, near-contact binaries rather than a large population of genuine planet candidates. After all three automatic cuts (z-score, sine-versus-transit fit comparisons, and transit duration), we were left with 2947 MLSs. These were then subjected to diagnostic plots and manual inspection. The distributions of these MLSs after the automated cuts and after both the automated and manual vetting are shown in Figures 10 and 11, respectively.

2.7. Manual Vetting

To date, only three transit searches have been fully automated: (1) the Foreman-Mackey et al. (2016) search of quiet, bright Kepler stars for single-transit events, and (2) the final two official Kepler planet lists that used a Robovetter to automatically test for completeness and reliability (Coughlin et al. 2016; Thompson et al. 2018). Those searches were only able to accomplish full automation by building on years of efforts to understand and quantify the instrumental systematics of Kepler and using the results of manual vetting and sorting of candidates by previous groups to help train and verify the automated pipelines.

K2, while using the same telescope as Kepler, has dramatically different and more extreme instrumental artifacts owing to the thruster fires and pointing drift. Further, each K2 reduction pipeline introduces its own biases. Thus, as with nearly every other planet search to date, we visually inspected all 2947 remaining MLSs that passed our automated cuts and removed systems manually judged to be unlikely to be due to a transiting planet or EB. This process is inevitably subjective, but in this section we describe our manual vetting tools and diagnostic plots used to discriminate false positives.

The QATS algorithm returns an array of transit time estimates for an MLS, but only to the nearest cadence; it also returns the transit depth and duration grid points that generated that MLS. We first refined the transit times and solved for the best transit parameters, including refining the impact and limb-darkening parameters, which were fixed to the “default transit shape” in the QATS search. We used an iterative procedure to find the best times and transit parameter values. We started with the input QATS transit shape and let each transit time float individually to allow for subcadence precision. We made no assumptions about periodicity and thus can account for TTVs. We then fixed those transit times and optimized the five transit parameters ($R_p/R_*, T, b, u_1, u_2$). We iteratively continued this approach until we reached “convergence,” which we defined as neither the depth nor duration changing by more than 0.1% between iterations. We found this to be sufficiently accurate for visual inspection and use in further diagnostics; however, we note that we use a more rigorous (but much more computationally intensive) MCMC approach for all reported parameter measurements (see Section 2.9). In most cases we achieved convergence within a few iterations, although we capped it at 40 to prevent infinite loops (most common in false positives not actually well fit by a transit shape or planets with very shallow transits whose individual times cannot be well determined).

With better transit parameters and transit time estimates, we created diagnostic plots for vetting planet candidates. The first and most important diagnostic figure is the folded transit plot, demonstrated in Figure 12. This figure allows us to quickly evaluate how well all the transits combine to fit a transit shape and reject false positives that are visually poor fits. The folded transit figure is especially critical for the low-S/N candidates where individual transits are not visible by eye, and thus many...
of the other diagnostic plots that rely on individual transits are not helpful.

Next, we generated a “river plot” for each MLS (Figure 13). We fit our measured transit times with a periodic ephemeris \(t_N = t_0 + N P \). We then plot each detrended transit (the best-fit polynomial continuum divided out) as a row in the figure, with time 0 the best-fit periodic ephemeris. Perfectly periodic planets will show a vertical river of blue transits centered at 0 offset in the river plot. Real planets will have correlated transit timing, with subsequent transits not occurring too much earlier or later than the one immediately previous. In contrast, essentially random individual transit timing relative to the periodic ephemeris indicates that QATS picked up on noise and the MLS is unlikely to be real; we rejected such systems even if the folded transits looked promising.

Our next diagnostic plot is a transit stack of all transits (or the first 20 for extremely short period planets) as in Figure 14.

The left column shows the raw fluxes of each transit (vertically offset for clarity), while the right column shows the detrended fluxes (polynomial continuum removed). This figure allows us to individually analyze every transit, and the alternating colors allow us to compare the even and odd transits to the overall best-fit model. From this information we can visually determine whether all the transits appear consistent or whether perhaps one or two false-positive events are dominating the detection; we can also check for likely binary-star false positives if the even and odd transits have different depths or durations. This plot, in conjunction with the folded transit figure, allows us to discard false positives where the individual “transits” have wildly different and non-transit-shaped events, often due to outliers or systematic or stellar variability.

We also plot a snapshot of the entire light curve (Figure 15) with the times of transit identified by vertical dashed lines. This allows us to easily identify broader trends in the light curve and to quickly see whether the identified “transits” happen to occur in a bad region of data or whether the entire light curve may have problems that put the validity of the MLS in doubt (e.g.,
due to **EVEREST** having problems with blended sources and saturated stars).

Finally, we calculated a simple autocorrelation of the entire light curve and identified the period of the first local maximum as shown in Figure 16. The autocorrelation function helps to identify likely periods of stellar variability and provokes extra skepticism if an MLS is at the same period as the autocorrelation period.

Taking all of these diagnostic plots into consideration along with the **QATS** spectrum, we vetted each MLS that passed the automated cuts. In this manual vetting stage, only one decision was made: if the MLS is astrophysically real, or is it a false positive. In other words, planet candidates and EBs are grouped together and separated from stellar variability, systematic errors, and other false alarms. The EB versus planet candidate decision is made later through automated cuts (Section 3.1).

While no quantitative limitations can be placed on what passes and what does not (or else manual vetting would not be necessary), some examples of systems that did not pass the manual cut are as follows. On the short-period end, the dominant false-positive cases were a result of stellar rotation and/or oscillations that are asymmetric or otherwise able to show the spikes in $\Delta \chi^2$ that **QATS** picked up on, and transits showing significant and uncorrelated TTVs.

We only accepted systems with TTVs if the individual transits were easily identifiable. Over long baselines with many transits, small transits below the noise with TTVs are exactly what **QATS** is designed for; however, over the short baseline of **K2** (which itself does not allow enough time for most real TTVs to develop), and with only a dozen or fewer transits, **QATS**’s flexibility more often allows it to string together noise than find actual planets with TTVs. In fact, that is mostly what the MLS looks like in the thousands of systems that did not pass our **QATS** z-score cut.

Manually reviewing 2947 MLSs is a time-intensive process (24 hr of work if given just 30 s per star), and E.K was the only one to vet every single one. Of these, he passed 1312 as being astrophysically real (planets or EBs). E.A. reviewed those 1312 and agreed with the assessment for all but six—a sign of the conservative approach taken for the vetting. Those six systems were removed, leaving 1306 stars with at least one candidate.

2.8. Multiplanet Searching

For all systems that passed the first stage of manual vetting (1306 of the 2947), we iteratively searched the light curve again for further planets until the newest MLS no longer passed the automatic and manual vetting stages. The only change we made to the process was lowering the z-score threshold for subsequent events to 8; this change was made because of the significantly smaller number of systems required to analyze and a desire to pass as many potentially interesting MLSs onto the manual vetting process as feasible.

To avoid rediscovering candidates, we masked all of them out before searching the light curve again. This was accomplished by fitting the continuum region around the transit as above, except this time ignoring all the cadences within the duration of the transit. We filled those masked in-transit fluxes with the polynomial continuum interpolation and added white noise to match the rest of the light curve.

We note that because **QATS** is able to identify the specific times of transit, regardless of the presence of TTVs, we have no need to mask out wider windows around the transit than just the transit itself. This is in contrast to, e.g., the **Kepler** pipeline, which removes a total of $3 \times$ the transit duration around every transit, which has been shown to lead to a reduced sensitivity to multiplanet systems ([Zink et al. 2019](#)). The **K2** searches of

Figure 16. Autocorrelation function of the light curve of the planet candidate host EPIC 201596733. Our identified local maximum indicating the star’s rotation period is marked by the dashed line and annotated in both days and **Kepler** cadences. (Note that this is not the **K2-3** system, as that one does not have an identifiable rotation period.)
Crossfield et al. (2016), Petigura et al. (2018b), Vanderburg et al. (2016b), and Mayo et al. (2018) all follow the Kepler example and remove $3\times$ the transit duration of data at every transit. This could partially explain why we find more multiplanet systems than all of these groups (see Section 4.1).

2.9. Modeling Candidates

In all, 1702 candidates around 1306 stars passed both the automated and manual vetting stages. Many of these are EBs, however, and we used MCMC results to help separate the true planet candidates from likely EBs and false positives (due to e.g., ephemeris matching indicating that the same source is contaminating multiple targets).

We modeled each astrophysical candidate and obtained the optimal physical parameters and associated uncertainties with an affine-invariant Markov chain (emcee; Foreman-Mackey et al. 2013). Before running the MCMC, we recalculated the light curve with EVEREST, this time masking out all transiting signals to prevent their partial removal by the detrending process, and thus to obtain accurate transit depths.

In the case of multiplanet systems, any transits by other planets in the continuum regions were masked and removed before we started the following detrending and fitting. However, for cadences where other planets’ transits overlap with the one being fit, no attempt was made to disentangle them: that transit will be deeper. Any candidates with a significant fraction of transits overlapping those of other planets may have biased parameters.

Before starting the MCMC, we detrended each individual transit and then fed the detrended transits into the MCMC. We modeled the local variability around each transit (centered on the original cadence QATS predicted) with a third-order polynomial and a continuum region on each side with a width given by the larger of 0.2 days or two transit durations. In some cases third order was not enough to capture the stellar variability, so we continued to increment the polynomial up to a maximum of sixth order while the model’s reduced chi square was above 1.5. We then fed each of these detrended transits into MCMC to find the optimal transit model parameters.

Although our search allowed for TTVs, in this stage we modeled all candidates as periodic and used only a period and initial time of transit as parameters owing to computational constraints. The initial transit time and period have priors such that the center of every transit must fall within the detrended transit window W. The other parameters in our MCMC model were the transit duration T (uniform prior between 0 and W), planet-to-star radius ratio R_p/R_* (log uniform prior with a maximum of 10), two quadratic limb-darkening parameters using the transformed Kipping (2013) q_1, q_2 formalism (uniform prior between 0 and 1), and impact parameter b.

As with many prior analyses, we found that low-S/N transits produced almost no constraints on the transit shape. This simply means that the limb-darkening parameters default to the distribution of the prior, but the impact parameter can cause extra complications. Without an S/N large enough to distinguish between “U”-shaped planet transits and “V”-shaped grazing EBs, finely tuned planet-to-star radius ratios and impact parameters can match the transit depth for any impact parameter. As this study is focused on planet candidates, and to help the MCMC converge, we limited the impact parameter to a uniform prior between $[0, 1 + 2\sqrt{\delta}]$, where δ is maximum depth of transit measured from the numerical light-curve model.

We added five additional parameters to account for further uncertainty in the light curves. A systematic error parameter (log uniform prior between 10^{-7} and 10^{-1}) allows for inflating the white noise on each data point. A flux dilution parameter accounts for the fraction of flux in the light curve due to additional light from another star (a binary companion, background star, or extra light spilling into the aperture) diluting the transit depth (log uniform prior between 10^{-6} and 1). By adopting a maximum flux dilution value of 1, we implicitly assume that the planet candidate transits the brightest star in the aperture; if additional observations suggest that this is not true, the MCMC should be rerun with a more informative and accurate prior. Further, this prior, by definition, will not hold when modeling an EB when the brighter star eclipses the dimmer star; in such cases the radius ratio can also exceed our limit of 10. We therefore urge caution in using the fit parameters for the EB systems. Complete and accurate modeling of all K2 EBs is beyond the scope of this study.

The final three parameters in our MCMC fits are for an outlier mixture model (Foreman-Mackey 2014). Because thruster fires, flares, etc., cause numerous outlier events in K2 data, we needed a way to prevent the outliers from skewing the transit model. We accomplished this with a mixture model, for which the three parameters are the fraction of data points in the normal transit model (uniform prior between 0 and 1) and the outlier points’ median (uniform prior between $[1 - \delta, 1 + \delta]$) and standard deviation (log uniform between 10^{-7} and 1).

All of the parameters describing the model used for transit fitting, along with their priors, are summarized in Table 4. A total of 12 parameters are allowed to vary within the range of priors. Other parameters, such as the EVEREST detrending parameters, the continuum windows, and the coefficients of the polynomials used in detrending each transit, are held fixed during the fitting.

We ran the MCMC (using 60 walkers) initially for a burn-in phase of 10,000 steps. Every 10,000 steps thereafter, if any chains got stuck in regions of lower probability (the chain’s maximum likelihood was smaller than a factor of half of the overall maximum likelihood), we stopped and reset the sampler

Parameter	Description	Range
t_0	Initial time of transit	\ldots
P	Orbital period	P
T	Transit duration	$T(0, W)$
$\log(R_p/R_*)$	Log radius ratio	$L(−8, 1)$
q_1, q_2	Quadratic limb darkening	$L(0, 1)$
b	Impact parameter	$L[0, 1 + 2\sqrt{\delta}]$
$\log(\sigma_{sys})$	Log systematic error	$L(−7, −1)$
$f_{dilution}$	Log flux dilution	$L(−6, 0)$
Q	Fraction of normal data	$L(0, 1)$
$f_{outliers}$	Median of outliers	$L[1 − \delta, 1 + \delta]$
$\log(\sigma_{outliers})$	Log std. dev. of outliers	$L(−7, 0)$

Note. The ephemeris parameters, t_0 and P, are allowed to vary such that every transit time falls within the detrended window W centered on the original QATS predicted time.
near the previous maximum likelihood solution to bring all chains into similar parameter space. All iterations up to this point were also discarded as part of the burn-in. We terminated the MCMC chains once we achieved 2000 independent samples of each parameter (measured using the number of steps times the number of walkers divided by the longest autocorrelation length) or 1 million iterations if convergence seemed unlikely. Lack of convergence can occur when the \textit{EVEREST} light curves are not well detrended and each transit or eclipse has varying and inaccurate depths. This is most common for deep \textit{EB}s and is noted below.

Finally, in addition to calculating full chains for the parameters of the model, we calculated three derived parameters at every step for each walker. We measured the transit depth (Mandel \& Agol 2002 value at the step’s impact parameter, adjusted for the quadratic limb-darkening parameters and extra light flux dilution), ratio of semimajor axis to stellar radius \((a/R_*$)), calculated assuming a circular orbit using Equations (7) and (14) of Winn (2010), and the subsequent stellar density (Equation (30) of Winn 2010), neglecting the contribution of the planet to the density.

The ratio of semimajor axis to stellar radius is given by

\[
a/R_* = \left(\frac{1 + \frac{R_p}{R_*}}{2} - b^2 \cos^2 \beta \right)^{1/2},
\]

where \(\beta = \pi T/P\). The incident flux on the planet can be computed from this and the stellar luminosity via \(L_p(a/R_*)^{-2}\), assuming a circular orbit for the planet.

3. Results

From the initial sample of 152,865 stars in \textit{K2} C0–8, 1702 candidates around 1306 stars passed our automated and manual vetting for astrophysical significance. Table 5 summarizes the results of our cuts for astrophysical significance, showing how many stars were cut and remained in the pipeline after each stage of the automatic and then manual vetting. Also, the iterative search for additional candidates around the 1306 that passed the first stage of manual vetting turned up a further 396 astrophysical candidates, as indicated in the table. However, many of these objects are actually EBs or other false positives.

With our full list of candidates set, we turn toward discriminating between the likely EBs and planet candidates.

3.1. Identifying EBs and False Positives

In doubly-eclipsing EBs where the primary and secondary eclipses have significantly different depths or where the secondary occurs too far from phase 0.5 to be picked up as TTVs by the \textit{QATS} transit window, \textit{QATS} will find the deeper eclipse first and then the shallower secondary in our follow-up search for additional signals. In this case, we have two distinct candidates at the same period with significantly different depths, and we can confidently label the system as an EB (discounting the rare circumstances of detectable occultations of hot Jupiters).

When the primary and secondary eclipses approach the same depth, however, \textit{QATS} will often combine them together into a single candidate at half the true binary orbital period. Careful modeling of the odd and even events independently can determine that the two sets do indeed have different depths or ephemerides (i.e., the secondary eclipse is not precisely at phase 0.5), which then allows us to once again label the system as an EB instead of a planet candidate.

Another confounding factor in the search for planet candidates is the source of false positives due to the same binary signal appearing in many different targets at varying depths. This contamination can be caused by internal reflections within the telescope, by electronic cross talk between readout channels, and/or by sources affecting the signal of other targets on the same CCD column; these false positives were identified in the original \textit{Kepler} mission and found to be the cause of \(~10\%) of the KOIs (Coughlin et al. 2014). These false positives thus need to be seriously considered and can be found by looking for multiple candidates that have the same period and ephemeris—indicating that they are ultimately caused by the same source.

Taking all of these contaminants into consideration, we ran three different tests to discriminate and remove the obvious EB cases and false positives from our planet candidate sample:

1. odd–even tests to check for consistent parameters between odd and even candidate transit events;
2. a period and ephemeris collision match to test for the same signal appearing in multiple targets; and
3. a maximum depth cut to remove singly-eclipsing EBs.

We describe each of these in the following sections.

3.1.1. Odd–Even Tests

For every candidate, in addition to a full fit with all transits, we carried out the MCMC fit (Section 2.9) to the odd and even transits separately and then compared the posterior distributions. Any depth variations or ephemeris offsets are indicative of the candidate actually consisting of both the primary and secondary eclipses of an EB.

Figure 17 compares every candidate’s odd and even transits, showing how many standard deviations apart the periods and depths are. We display all candidates separated into four classes: (1) systems \textit{QATS} identified as two different signals at
the same period (we treat the first as the “odd” and the second as the “even” here), (2) systems manually noted to have possible depth or ephemeris variations during the manual vetting (before the MCMC was run, Section 2.7), (3) candidates in multiplanet systems (multiple candidates at different periods, each showing more than one transit), and (4) all other candidates.

The QATS and manually identified EBs should show significant depth and/or ephemeris differences between their odd and even fits, indicating that they are caused by two different eclipse events. The multiplanet systems—which in the original Kepler sample were found to be much more likely to be real planets (Rowe et al. 2014)—should show no differences between the odd and even depths and ephemerides since they will predominantly be complementary subsets of the same planetary transit. Indeed, that is what we find in Figure 17, further motivating this cut.

Because EVEREST 1.0 can sometimes get transit depths a little wrong, even after masking them out before running the pipeline, we were conservative in our cuts; we set our limits at 10σ for both depth and transit ephemeris. If the odd and even depths or ephemerides deviated from one another above this value, we automatically categorized the system as an EB. This cut eliminated 215 candidates and thus created 215 doubly-eclipsing EBs.

The only exception to this occurred in EPIC 203771098, which was originally a two-planet system with an outer 42.4-day planet and an inner 20.9-day companion. However, the outer planet had just two transits, and those transits differed in depth by 36σ (3150 and 4370 ppm), making it a supposed odd/even binary. This is the only case of our odd/even systems being composed of two single-transit events, both with depths below 4%, so we instead call them single transits of planets 1 and 3, with planet 2 remaining the inner 20.9-day candidate. We note, however, that it is likely that these two transits are a single planet, since these depth variations are not present in other reductions, and the planet has been confirmed at 42 days as a single radial velocity planet, K2-24 c (Petigura et al. 2018a, 2016).

We also made the same tests when multiple candidates around a star have nearly the same period. This accounts for instances where QATS found primary and secondary eclipses individually (usually because the depths are wildly different or the secondary eclipse phase is far from 0.5). When two or more candidates were found around the same star, we checked to see whether the periods were the same within 5% tolerance. We identified 259 target stars that showed two transiting candidates each (518 candidates in total) for which the periods were consistent within this tolerance (the QATS binaries in Figure 17). In only one pair of the 518 objects (one of the 259 targets) were the depths and ephemerides consistent within our cuts. That pair (EPIC 214984368) was combined and reclassified as a single-planet candidate; however, we note that it appears to be an EB with depths slightly too shallow to discriminate the difference, due to our high threshold, with a single campaign of data. All others were removed from the planet candidates list and labeled EBs.

3.1.2. Period and Ephemeris Matching

Nearby targets whose point-spread functions overlap can cause one EB to be detected at varying depths in nearby sources. Similarly, bright stars can have their light reflect across to widely separated areas of the detector, again causing the same signal to appear at different depths in many stars (Coughlin et al. 2014).

Within each campaign, we compared the period and time of first transit for every pair of candidates (Figure 18). Any pair where both the periods and first transit times were consistent within 5 standard deviations were flagged as false positives. It is beyond the scope of this work to track down which (if any) of the targets is the true source—sometimes the actual EB is a bright star whose light is not downloaded in the postage stamps. Through this method we identified 39 candidates or EBs (around 30 distinct EPICs, the nine overlaps were primary and secondary eclipses of a single EB) with matching periods and transit times and labeled them as false positives. They are listed in Table 6.
Table 6

False-positive EPICs
201467358
201467521
202073124
202073125
202627452
202627721
20372604
203730072
204676803
204676841
205916737
205916793
210386880
210386883
210512752
210512842
211078690
211079188
212409658
212497267
212516916
212516935
212656950
212656914
212844216
212844260
220222029
220222060

Note. These systems are removed from both our candidates and EB lists.

After eliminating the obvious false positives and doubly-eclipsing EBs, we were left with 942 candidates around 809 stars. However, none of our previous cuts account for singly-eclipsing EBs. Rather than make any judgments about transit shape, we imposed a simple depth cut of 4%, which comfortably encompasses all confirmed Kepler planets to date. Only 11 of the 2297 confirmed Kepler planets have depths above 2%, and just two are above 3%. Any candidate with a transit deeper than 4% was labeled as a likely EB for our purposes. This cut eliminated 124 candidates.

After all our cuts, the only star with objects labeled both planet candidates and EBs is EPIC 220598367. This star has both a 7.65-day planet candidate and primary and secondary eclipses of a 5.27-day binary with significant phase offsets between the two. This can be explained by examining the postage stamp, which shows light from two 14th magnitude stars contributing to the light curve. One of them likely hosts the planet candidate, while the other is the EB source. All other stars are hosts to exclusively planet candidates or EBs.

3.2. Stellar Parameters

To convert the observationally measured planet-to-star radius ratio to a physical planetary radius, we require parameters of the host star. While the target stars in the K2 fields have not been studied as extensively as the original Kepler field, some work has been done to characterize all of the K2 stars.

Most recently, the Gaia second data release (DR2) has provided stellar parameters (radius, temperature, and luminosity) for over 70 million sources, though notably excluding all stars with radii less than 0.5 R_\odot (Gaia Collaboration et al. 2016, 2018; Andrae et al. 2018). For stars they do constrain, they have stellar radius errors of about 10%.

For our stellar parameters, we adopt the Gaia DR2 radii, luminosities, and effective temperatures when available. As recommended by Andrae et al. (2018), we only trust the Gaia parameters when the parallax uncertainty is less than 20% and the Priam flag values suggest that the effective temperature can be trusted. We also only use the Gaia values if the Gaia source is within 3″ of the EPIC listed coordinates. Altogether, Gaia provides parameters for 648 of our 818 planet candidates.

For stars not in the clean Gaia sample, our secondary source of stellar parameters comes from Huber et al. (2016), who classified 88% of the stars targeted in C1–8. They provide stellar radii to an uncertainty of about 40%. They do not directly give a luminosity estimate (needed for incident flux calculations), so we derive one from the effective temperature and radius. The Huber et al. (2016) values fall in stellar parameters for all but 17 candidates, of which 13 are in C0 and not covered by their work. For those 17 candidates, we simply leave blank any field relying on stellar parameters and report only those deduced directly from the light curve.

The median error in stellar radius for our Gaia stars (most of those above 0.5 R_\odot) is 5.7%, although see Andrae et al. (2018) for reasons this may be an underestimate. For the Huber et al. (2016) stars, the stellar radius uncertainty has a median of 17.9%.

Our planet radius and incident flux ranges are calculated using the $-\sigma$, median, and $+\sigma$ values from our MCMC analysis, combined with the respective stellar uncertainties. In other words, the lower and upper errors are each treated as one-sided normal distributions and propagated independently.

3.3. General Properties of the Planet Candidates

After applying our selection cuts to eliminate EBs and false positives, we are left with 818 planet candidates around 698 stars, listed in Table 7. Our recovered multiplicity rate is tabulated in Table 8; most notably we have five four-planet systems (EPIC 205071984, EPIC 206135682, EPIC 21193752, EPIC 212157262, and EPIC 220221272), two five-planet systems (EPIC 211413752 and EPIC 211428897), and a six-planet system (EPIC 210965800), discussed below. We compare our ratio of multiplet to single-planet systems to those from Kepler and other K2 searches in Section 4.1.

All of our planet candidates are shown as a function of period and radius in Figure 19 and compared to the Kepler candidates. As with Kepler, the majority (69%) of our candidates are smaller than Neptune, and the period and radius distribution is qualitatively similar between the two samples. The notable difference is that our candidates cut off at periods of about 50 days owing to K2’s limited campaign duration; similarly, we are not as efficient at finding small, long-period planets without the benefit of several years to build up enough low-S/N transits for detection.

We also show how the period ratios of neighboring planets in our multiplet systems compare to the Kepler sample (Figure 20). While we have many fewer systems, we find the same pileup of planet pairs just outside of a 3:2 period ratio that was uncovered from Kepler (Lissauer et al. 2011; Fabrycky et al. 2014).

3.4. Comments on Individual Systems

We pause briefly to discuss and call attention to some individual systems uncovered in our search that show unusual or especially interesting properties.

3.4.1. Transit Timing Variations

The main reason QATS was developed was to detect planets with TTVs. However, TTVs will not be nearly as evident in the brief 80 days of a K2 campaign as they were in the 4 yr of Kepler. In Kepler, a TTV planet’s transit times would vary on timescales of many hundreds of days (Mazeh et al. 2013). Trimmed to an 80-day window, those same variations would not show their full amplitude, and the planet would be difficult to distinguish from one without TTVs. Still, we use the full power of QATS and allow for it to pick up large TTV systems (Section 2.5).
Candidate C# shows the size of some solar system planets for references. Our planet candidates with a single transit, and thus no well-defined period, are left off this figure.

![Diagram of solar system planets](image)

Figure 19. Our planet candidates (larger blue points) as a function of period and radius compared to the Kepler planet candidates (smaller black points). The right-hand scale shows the size of some solar system planets for references. Our planet candidates with a single transit, and thus no well-defined period, are left off this figure.

Multiplicity No. of Systems
1
2
3
4
5
6

A quantitative search separating small-amplitude TTVs from periodic systems is beyond the scope of this work, but we did make note of any candidates with TTV amplitudes visible by eye in the manual vetting stage. Because our MCMC model does not account for TTVs, the parameters of these candidates will not be completely accurate. In total, four single-planet systems were noted as showing signs of TTVs: EPIC 201561956, EPIC 212639319, EPIC 220639177, and EPIC 211924657, the last of which is the most notable and we discuss further.

The C5 star EPIC 211924657 hosts a single 2.64-day candidate that shows considerable TTVs (TTV amplitude on
a campaign might have durations longer than that limit, causing hundreds of days that would only produce one or two transits in durations up to 17 hr, and systems with periods of 50 up to periods, resulting in a reduced sensitivity to one- and two-\(K2\)-146 b by Hirano et al. previously detected by several other groups and validated as 50 days.

compared to those of the \textit{Kepler} planet candidates with periods less than 50 days.

Figure 21. Same as Figure 13, a “river plot” showing the large transit timing variations of our planet candidate EPIC 211924657.1 (period 2.64 days). This planet has been previously validated as \(K2\)-146 b.

Figure 20. Period ratios of neighboring planets in our multiplanet systems compared to those of the \textit{Kepler} planet candidates with periods less than 50 days.

Eppepar with the transit duration, shown in Figure 21); it was previously detected by several other groups and validated as \(K2\)-146 b by Hirano et al. (2018). This star is considered an M dwarf and thus does not have \textit{Gaia} parameters, but with the Huber et al. (2016) stellar radius, the planet is 1.5 \(R_{\oplus}\). No additional transit signals have been detected from C5 data alone, but TTV modeling may be able to constrain the properties of the perturbing planet, especially because this target was also observed in C16 and C18 (and in short cadence) —providing a 3 yr baseline for the TTVs.

3.4.2. Single-transit Candidates

As discussed at the end of Section 2.6.1, our chosen metric to separate planet candidates from noise based on the \textit{QATS} spectrum peaks above the baseline breaks down at the longest periods, resulting in a reduced sensitivity to one- and two-transit candidates. Furthermore, we only search for events with durations up to 17 hr, and systems with periods of 50 up to hundreds of days that would only produce one or two transits in a campaign might have durations longer than that limit, causing us to miss them (the most notable example of which is the 54 hr transit found by Giles et al. 2018).

Nevertheless, we detected 77 astrophysical single “transit” events in total. Of those, the majority are exceptionally deep and labeled as EBs via our depth cut (Section 3.1.3) or likely secondary eclipses for a deep EB that eclipsed twice. Just 21 are labeled planet candidates, and most of those are V-shaped and likely to be shallow secondary eclipses of long-period EBs.

However, one of our single-transit events (211087003.1) also hosts an inner candidate with three transits (period 28 days), which provides strong evidence that the single transit is from an outer planet in the system. In addition, one of our four-planet systems, EPIC 211939692, consists of two transits showing two transits each at periods of 27 and 39 days, and two further outer single transits with significantly different depths and durations. All of these candidates are newly discovered by our search.

3.4.3. High-multiplicity Systems

Perhaps the most exciting aspect of \textit{EVEREST}’s detrending is the capability to find systems with several planets. To date, one five-planet system has been announced from \(K2\)’s C0–8, but it contained three single-transit events, which makes the periods hard to constrain (and also caused our search to miss them; Vanderburg et al. 2016a). Recently, another five-planet system has been announced from C12, and all five planets have well-determined periods with two potential transits of a sixth planet (Christiansen et al. 2018). Here we add two more five-planet systems, as well as a new six-planet system, in which all planets have at least three transits.

EPIC 211413752 hosts five planet candidates, of which only the shortest period (2.15 days) and deepest (9.33–day period) had been previously reported (and validated as \(K2\)-268 b & c by Livingston et al. 2018). Our five planets have periods of 2.15, 4.53, 6.13, 9.33, and 26.27 days; the middle three are very near to 3:4:6 period ratios, a common trait of short-period multiplanet systems (Fabrycky et al. 2014). It is possible that these three planets form a Laplace resonance as \(1/4.53^2−6/13^2+1/9.33^2≈0.0018\) day\(^{-1}\). The host star is uncertainly labeled a giant by Huber et al. (2016), but \textit{Gaia} classifies it as a K dwarf, which is more consistent with the stellar densities of \(\approx1\) g cm\(^{-3}\) derived from each of the planet candidates. With the \textit{Gaia} value, the planets range between 1.6 and 3.6 \(R_{\oplus}\).

Similarly, we report that EPIC 211428897 hosts five planet candidates, of which the first, second, and fourth had been previously found (Dressing et al. 2017b). This star has been characterized by both Dressing et al. (2017b) and Huber et al. (2016) as an M dwarf, and it hosts five planets, all with periods less than 7 days: 1.61, 2.18, 3.29, 4.97, and 6.27 days. These planets also appear to be near a resonant chain of periods, with corresponding ratios near 3:4, 2:3, 2:3, and 4:5, respectively, and are all smaller than Earth (between 0.5 and 0.8 \(R_{\oplus}\)). Both of these five-planet systems are in C5 and have been observed again in C16 or C18.

Finally, the C4 star EPIC 210965800 is host to a six-planet candidate system. Only the deepest planet (8.75 days) had been previously found (and validated as \(K2\)-178 b by Mayo et al. 2018), but we add five additional planets, bracketing it at periods of 1.83, 4.28, 13.16, 21.09, and 30.29 days. The second through fourth planets form a chain near 1:2:3 period ratios, but the innermost and outer two planets are relatively far from first-order resonances. It may be that the outer planets form a chain
of Laplace resonances, with $\frac{1}{4}2.8-4/8.75 + 3/13.16 \approx 0.0045 \text{ day}^{-1}$, $1/8.75 - 2/13.16 + 1/21.09 \approx 0.01 \text{ day}^{-1}$, and $1/3.16 - 3/21.09 + 1/30.29 \approx -0.00027 \text{ day}^{-1}$, reminiscent of Kepler-80 (MacDonald et al. 2016), Kepler-223 (Mills et al. 2016), and Trappist-1 (Luger et al. 2017). The host star is slightly subsolar, and the planets range from 1.5 to 3.8 R_{\oplus}.

3.5. EBs

In our search for planets, we inevitably uncovered EBs as well, which we have done our best to separate out (Section 3.1). Compared to our 818 planet candidates around 698 stars, we found 579 EB systems (455 of which we found both primary and secondary eclipses). Our ratio of 1.21 transiting planet host stars per EB compares very favorably to the original Kepler mission, which has a ratio of 1.19 (3456 planet host stars) to 2909 EBs (Kirk et al. 2016) listed in the online catalogs.

While not the focus of this paper, we list all of our EBs in Table 9 and briefly discuss some of the highlights and caveats.

We compare the EB sample to the planet candidates in Figure 22. The two have similar period distributions, but of course the EBs have considerably deeper eclipses than planet transits.

Binary	C#	Period	t_0	Duration	Depth
201160323.1	1	22.27219	1811.49231	4.270	0.059
201160323.2	1	22.30085	1820.02090	4.955	0.133
201161715.1	1	59.88733	1822.51092	21.909	0.400
201161715.2	1	1840.41351	19.875	0.117	
201173390.1	1	16.99566	1816.43053	12.649	0.097
201173390.2	1	16.99471	1824.81490	9.039	0.057
201174640.1	1	1812.70325	5.696	0.084	
201182911.1	1	1.9931320	1811.08992	2.298	0.021
201182911.2	1	1.9931181	1812.08669	2.343	0.021
201184068.1	1	1.5885425	1810.57649	2.667	0.099

Figure 22. Distribution of our planet candidates and EBs (with primary and secondary eclipses as separate points) as a function of period and transit or eclipse depth. By our definition, anything above 4% transit depth (4 x 10^{10} ppm) is labeled as an EB, forcing that upper limit for planets (Section 3.1.3).

We also emphasize that the parameters listed in Table 9 may not be fully accurate for the EBs. In our MCMC analysis that calculates the values in the table (Section 2.9), we include a “second light” parameter that allows for contaminating flux in the aperture, but we limit that ratio of additional to host starlight to 1—the majority of flux is assumed to be from the star being transited/eclipsed. By definition, however, one star in an EB is brighter than the other (except in the limiting case of perfectly equal stars), and when the brighter star eclipses the other, our assumption is broken. Similarly, our prior on R_p/R_* only allows for values up to 10; some EBs may have one star more than 10 x bigger than the other, which would prevent it from being modeled accurately. Our limits on impact parameter may also prevent EBs from being modeled accurately, and in some cases quadratic limb darkening is not precise enough to fully model the eclipses.

All of these poor assumptions for EB modeling combine to cause the EB fits to not be fully accurate. The periods and ephemerides can usually be trusted, but the depths and durations should only be used as guides to select various systems for follow-up and analysis.

| (This table is available in its entirety in machine-readable form.)

Table 9

Binary	C#	Period	t_0	Duration	Depth
201160323.1	1	22.27219	1811.49231	4.270	0.059
201160323.2	1	22.30085	1820.02090	4.955	0.133
201161715.1	1	59.88733	1822.51092	21.909	0.400
201161715.2	1	1840.41351	19.875	0.117	
201173390.1	1	16.99566	1816.43053	12.649	0.097
201173390.2	1	16.99471	1824.81490	9.039	0.057
201174640.1	1	1812.70325	5.696	0.084	
201182911.1	1	1.9931320	1811.08992	2.298	0.021
201182911.2	1	1.9931181	1812.08669	2.343	0.021
201184068.1	1	1.5885425	1810.57649	2.667	0.099

7 http://exoplanetarchive.ipac.caltech.edu/
8 http://keplerebs.villanova.edu/
3.5.1. EBs of Note

In this section, we briefly mention some EBs that stood out during the manual vetting stage and may warrant individual follow-up:

1. EPIC 212096658 is a 2.93-day binary that shows eclipse timing variations in both the primary and secondary eclipses (Figure 23). By the end of C5, both show a full sinusoidal cycle of ETVs from a perturbing third body in the system. This star was observed again in long cadence in C16 and short cadence in C18.

2. EPIC 203878683 is a 13.75-day binary that also shows signs of ETVs (amplitude ×10 minutes). In this case, the ETV signal is only parabolic, and the ETVs of the primary and secondary eclipses are anticorrelated.

3. EPIC 201740472 is a short-period EB candidate with a period of just 0.96 days. Despite the short orbital period, the system’s orbit is far from circular, and the secondary eclipse occurs at phase 0.72. The durations also significantly differ, with the primary eclipse lasting 82 ± 6 minutes and the secondary just 23 ± 5 minutes.

4. EPIC 216814711 is a 4.5-day binary and a classic example of a “heartbeat” star—eccentric, short-period binaries where periastron passages induce tidal pulsations in the stars and cause them to brighten (Thompson et al., 2012).

5. EPIC 212432524 is a 4.95-day binary whose secondary eclipse is noticeably asymmetric. The secondary eclipse is 10% deep at its midpoint, but the eclipse depths one-quarter and three-quarters of the way through eclipse differ by about 1%, and this asymmetry is consistent throughout the campaign.

6. EPIC 210766835 is a 24.78-day EB that shows large eclipse depth variations. The three primary eclipses in the campaign have depths of around 7%, 10%, and 11%, while the secondary depths change by about 0.2%. The star appears isolated in the aperture, and the depth variations are evident in other reductions of the light curve, so they appear to be astrophysical and not an artifact of EVEREST.

7. EPIC 220374480 presents a single 60% deep eclipse, but it is obviously asymmetric. The eclipse appears as if it were an inner binary with both stars nearly simultaneously eclipsing a third companion.

4. Discussion

In this section we place the candidate planets we have found in the context of prior searches of K2 data (Section 4.1), including a discussion of the nature of the planet candidates that were missed by our pipeline but found by other surveys (Section 4.1.1). Although the planet candidates we have identified have yet to be confirmed, the properties of the multiplanet candidate systems suggest that most of these are real planet systems (Section 4.1.2).

Among the planet candidates, there are several categories that stand out. We have discovered new ultra-short-period planet candidates, several of which are potentially smaller than 4 R\(_e\) (Section 4.1.3). We have found dozens of single-transit candidates (Section 4.1.4) and planet candidates orbiting stars that are brighter and smaller than the typical stars in the original Kepler survey (Section 4.2). Although we have not refined the stellar parameters of the host stars in our sample, we see a tantalizing hint of the radius gap found by Fulton et al. (2017) in our data (Section 4.3). Finally, a handful of planet candidates orbiting late-type stars are candidates for habitable zone exoplanets (Section 4.4), and those planets and stellar hosts need further vetting to validate this categorization.

4.1. Comparison to Previous Searches

The K2 mission began with a trial campaign (C0) from 2014 March to May. However, the spacecraft did not enter fine guidance pointing until the latter half, so only the final 35 days of the campaign produced higher-quality data. The data were released publicly in 2014 September, and several groups began developing ways to correct for the pointing drift due to the loss of the two reaction wheels (Vanderburg & Johnson, 2014; Lund et al., 2015). Individual planets began to be published (e.g., Petigura et al., 2015), and Foreman-Mackey et al. (2015) published the first candidates from a systematic search of C1.

Since then, there have been hundreds of planet candidates announced, but we choose to compare our QATS pipeline to those with more than one campaign of overlap and at least 100 candidates on their list. The list of other searches and the detailed comparison of the overlap between our lists of planet candidates can be found in Table 10. In general, we find approximately 75%–85% of the candidates found by other groups; however, they tend to find just 20%–50% of our candidates. Compared to every published K2 C0–8 planet candidate to date from all searches (even those not individually listed in the table), we find 72% of them, while 46% of our candidates are new and unlisted in every other search. We split our planet candidates into those that are new and those that had been previously reported by at least one other group in Figure 24.

Our new candidates (those missed by other groups) are unlikely to be dominated by high-significance false positives or EBs that we include in our lists but other groups found and discarded. Figure 25 highlights how our new planet candidates differ from the candidates shared between our search and
previous efforts. Our planet candidates tend to be found at lower total transit S/N values, indicative of our better sensitivity to small planets. We estimate the total S/N as $\delta \sqrt{N/T}$, with δ the transit depth, σ the EVEREST light-curve noise level, N the number of transits, and T the transit duration (in cadences). Our new planet candidates have a median total transit S/N of 38, and 66% of our new planet candidates have a total transit S/N below the median value of 62 for the planet candidates found by at least one other group.

On the low-significance end, our new candidates are also unlikely to be false positives found by digging into noise owing to the similarity between our new candidates and previously found ones. For one, we find 49 new candidates in systems that already had at least one planet previously found (e.g., five new planets in the previously single EPIC 210965800 and two new planets in the previously three-planet system EPIC 211428897). In total, 25% (93/374) of our new planet candidates are found in multiplanet systems, consistent with the overall 25% rate (207/818) for all our planet candidates.

Table 10
Comparison of Our Results to Previous Groups with at Least Two Campaigns of Overlap and More Than 100 Candidates

Candidate List	Campaigns Searched	Number They Found	Number We Found (We Also Found)	Number We Found (They Also Found)
Barros et al. (2016)	1–6	175 (134)	586 (116)	
Crossfield et al. (2016)	0–4	167 (133)	380 (132)	
Vanderburg et al. (2016b)	0–3	231 (182)	301 (157)	
Pope et al. (2016)	5–6	168 (126)	236 (119)	
Petigura et al. (2018b)	5–8	151 (128)	438 (110)	
Mayo et al. (2018)	0–8	231 (191)	818 (189)	
All previous searches*	0–8	692 (500)	818 (444)	

Notes. The columns indicate how many planet candidates are on one list and in parentheses how many overlap between their search and ours. The final row indicates our search compared to every published K2 candidate in C0–8, including smaller searches not included individually in this table.

* As listed on NASA Exoplanet Archive’s K2 Candidates table, including those found by others not individually listed above.
We compare our multiplicity to that from the Kepler planet candidate sample and the combined results of previous K2 searches in Figure 26. To make a more uniform comparison, we only consider KOI multiplicity at periods less than 50 days—KOIs with periods beyond 50 days are not counted in the systems. Still, the KOIs have relatively fewer singles and more multiplanet systems: 88% of our systems are single, compared to 79% of the KOI sample with periods less than 50 days. This could be a result of Kepler’s longer baseline, allowing the detection of smaller planets inside periods of 50 days. It could also indicate that our sample contains slightly more false positives in the single-candidate systems, and/or that the stellar target selection results in different planet populations being compared. On the other hand, all previous K2 searches combined have 92% of their systems with just a single candidate.

We believe that the vast majority of our newly discovered planet candidates are in fact real planets that went undetected by other groups for any of several reasons. First, EVEREST produces higher-precision light curves than other groups. A full comparison between EVEREST and other groups can be found in Luger et al. (2016), but in general, EVEREST 1.0 (as used in this work) produced light curves of 20%–50% higher precision than K2SFF (Vanderburg & Johnson 2014) and K2SC (Aigrain et al. 2016). Second, our better results could also be due to differences in the planet search methods themselves. One possible difference is the approach used to reject outliers before searching—an especially critical step in K2 with its frequent thruster fires causing additional outliers. Other searches did not first run a full search to identify problematic cadences and remove them, likely leading to many real signals being overwhelmed by residual thruster fires and instrumental noise. Our version of QATS also includes a grid search in depth, helping enforce similar transit depths between events; this differs from most other searches that only use a 3D grid of period, phase, and transit duration. Our inclusion of depth may help boost low-S/N candidates over the threshold of detection. Our method of selecting significant peaks in our QATS spectrum based on their height above the background level (Section 2.6.1) differs from other groups and could help us better distinguish candidates. Finally, when searching for multiple planets in a system (Section 2.8), we only mask exactly the transit duration rather than a window three times the transit duration, potentially allowing us to detect additional planets that others missed as a result of lower duty cycles of real data in their multiplanet searches (Zink et al. 2019).

As a brief test, we searched the publicly available K2SFF light curves for 20 of our planet candidates that have not been found by any other groups. In about half the cases, the resulting signal is weak enough that it would not have passed our tests, and we also would have missed these candidates if we had used the K2SFF light curves. There are still hints of the individual transits at the times we found them, but the signal gets lost in the additional noise present in the light curve. In the other half of cases, our search of the K2SFF light curves clearly rediscovers our planet candidates exactly where we found them in the EVEREST light curves. In many cases, the individual transits are identifiable by eye in both the EVEREST and K2SFF light curves. We therefore attribute an estimated half of our new planet candidates to the increased precision of the EVEREST light curves and the other half to the increased sensitivity of our QATS planet search. We leave a detailed and more quantitative analysis of the differences between all planet search techniques to future investigation.

4.1.1. Planets We Missed

If indeed our planet search is more sensitive to the smallest planets and we are finding almost twice as many planets as had been found by all previous searches combined, then it merits pausing to discuss why there were any planets found by other groups that we missed. In this section we explore those cases and discuss the different ways they fell out of our search.

The 192 planets found by other groups that were missed in our search (bottom row of Table 10) orbit 182 unique stars. Of those 182 stars where others find planets that we missed, the simplest explanation is one of differing target lists: we did not search eight of those stars, leaving 174 systems to explain. Another 10 systems are not major problems; we found the same candidates, but we disagree on the period (almost always by a factor of 2). For example, EPIC 201577112 has a candidate with two transits separated by 44 days, which we call the planet’s period. However, if the planet’s period had been 22 days, a potential third transit would have fallen in the C1 data gap, and Vanderburg et al. (2016b) used 22 days as the period (they were the only other group to find this candidate).

Missed Planets as Top QATS Result.—Of the 164 remaining systems with planets we “missed,” one-third of them (58) were in fact found by QATS as the top MLS, but they were dropped somewhere along the way. Thirty-four of those 58 were dropped at the very first of our automated cuts: the QATS spectrum peak above the baseline level (Section 2.6.1). The most common reason (20) was that the candidate only had one or two transits in the campaign, which we have a documented difficulty detecting. Six of the candidates were dropped because the transit duration is shorter than 1 hr, and many of the transits were removed as outliers, making the overall signal much weaker. These systems may be recovered in future versions of QATS as we improve the pipeline, especially for the one- and two-transit systems.
Six more systems were discarded in the other two stages of automated vetting. Two were discarded for having the sine curve fit better than a transit. EPIC 203533312 is a 0.18-day likely EB, and EPIC 206152015 is a 0.81-day EB with out-of-eclipse variability at a larger amplitude than the eclipses (Barros et al. 2016 only found the primary eclipse and called it a planet candidate). We might revisit the sine curve test in future versions, but recovering short-period binaries with large-amplitude variability is not a present priority.

The other four systems (EPIC 206247743, EPIC 206439513, EPIC 210365511, EPIC 210609658) were removed by our duration limit: they all have exceptionally long transit durations for their orbital periods, most likely indicating that they are orbiting evolved stars and could be EBs (and two of the four have V-shaped transits, also indicative of EBs). Removing the duration cut would allow these systems to be detected, but it will place extra burden on the manual vetting stage (an extra 110 systems to vet to find these four candidates) unless we are able to better remove results due to stellar variability without the duration limit.

Finally, 17 planet candidates found by other groups were removed by us at the manual vetting stage (without any prior knowledge of the candidacy status from other groups). One reason they were removed was because the planet candidate has a very similar period to the obvious stellar rotation period, and we were not confident enough that the transits were distinct from stellar variability (EPIC 204346718, EPIC 210843708, EPIC 210857328, and EPIC 211834065). Most of the candidates were removed in manual vetting, though, because they were on the low-S/N end, and we were not confident enough to pass them. Our manual rejection of 17 systems approved by other groups highlights the subjectivity of manual vetting at the lowest-S/N limit. On the other hand, it bolsters the idea that our new candidates are not due to laxer vetting standards on our part by allowing through lower-S/N false positives than others.

Missed Planets Overlooked by QATS.—Of the remaining 106 systems where our search does not find a planet claimed by other groups, in 2 of them (EPIC 203823381 and EPIC 212737443) the top result from QATS was instead a long-period candidate (one or two transits) that appears to be an outer companion to the inner planet others found; because that outer companion did not pass our automated cuts (as with other one- and two-transit systems), we never masked it out and searched for the inner planet.

Four more systems (EPIC 201488365, EPIC 202072965, EPIC 204489514, and EPIC 212579424) are clear, deep EBs, but EVEREST had trouble detrending them. EVEREST 2.0 handles deep EBs better, and these would be found in a search of the newer light curves. On the other hand, these systems are definitely not planet candidates, despite their label as such by other groups.

Finally, we have the 100 systems in which others claim there to be planet candidates but our search comes up with nothing. In roughly one-third of these cases, the EVEREST light curve shows excessive amounts of outliers indicative of poor detrending; most of these stars show evidence of crowded apertures, saturated pixels, or stellar light drifting out of the aperture during the campaign— all of which are known to cause degraded quality in our v1.0 light curves. Inspection of v2.0 light curves shows better quality and often the transits visible by eye, indicating that we will be able to recover a number of these “missing” candidates using the newest detrending.

Even in cases where there is nothing obviously wrong with the light curve, we find that using the updated EVEREST 2.0 light curves can help improve detectability. For example, EPIC 211784767 is an isolated, 12th magnitude star whose light curve looks normal in v1.0, but QATS finds no evidence of a 3.58-day planet as claimed by Barros et al. (2016). However, running an identical version of QATS on the EVEREST 2.0 light curve turns up the planet exactly as expected, at the same depth and duration claimed.

We cannot find every “missing” planet simply by upgrading EVEREST, however. Around 50 candidates found by any one of the other groups elude detection in our search, even with v2.0. We note, however, that each such candidate was only found by one of the various groups, even though every campaign (C0–8) has been searched by at least three different teams, often more.

Consistency of planet yields between groups has been a recurring problem for K2 searches (see, e.g., Petigura et al. 2018b’s comparison to Pope et al. 2016 and Barros et al. 2016, where catalogs overlap on about 60% of each other’s candidates). Our recovery rate of 75%–85% of planets found by other groups is better than these previous overlaps, and improving our pipeline and updating EVEREST will only bolster that result.

4.1.2. Evidence Supporting the Validity of Our Multiplanet Systems

In this section we will provide two lines of evidence that the planets in our multiplanet systems in particular are indeed real and orbit the same star, even if they were missed by other searches. Both rely on the Keplerian orbits of planets and the fact that real planets orbiting the same star are expected to follow those laws. On the other hand, if the candidates were not real, but false positives resulting from digging into noise, the resulting planetary architectures would have no reason to obey the Keplerian relationships.

Kepler’s laws relate a planet’s transit duration (T, first to fourth contact) and orbital period to the stellar and planetary properties via the relation

\[
TP^{-4} = \left(\frac{4}{\pi G M_\star}\right)^{\frac{1}{3}} (R_\star + R_p),
\]

(Seager & Mallén-Ornelas 2003). This equality assumes a circular orbit (e = 0), zero impact parameter (b = 0), and negligible planet masses (\(M_p \ll M_\star\)). In the small planet approximation (\(R_p \ll R_\star\)), the right-hand side depends only on the stellar density

\[
TP^{-4} = \left(\frac{3}{\pi^2 G}\right)^{\frac{1}{3}} \rho_\star^{-\frac{1}{3}}.
\]

We call this value \(TP^{-4}\) the (period) normalized transit duration.

Normalized Duration Ratios.—We can define the normalized duration ratio \(\xi\) as the ratio of the normalized transit durations between two planets:

\[
\xi \equiv \frac{T_1 P_1^{-\frac{1}{3}}}{T_2 P_2^{-\frac{1}{3}}}.
\]
where we will always consider planet 1 the innermost of the two planets. For planets orbiting the same star, hence having the same ρ_*, the normalized transit duration must be the same constant value for each planet and $\xi = 1$—but only under the simplifications made in this derivation, namely, that $e = 0$, $b = 0$, $M_p \ll M_*$, and $R_p \ll R_*$. These assumptions are of course not always true, but ξ should be close to 1 for all planet pairs in multiplanet systems. Significant deviations from $\xi = 1$ hint that planets are not orbiting the same star, or that at least one of the candidates may not be real but a false positive due to instrumental systematics or digging too deep into noise. This normalized duration ratio has been used in the past to provide evidence that multiplanet systems are real planets orbiting the same star (Steffen et al. 2010; Fabrycky et al. 2014).

We compare our normalized duration ratio distribution for all our K2 multiplanet pairs to those of the Kepler KOIs with periods less than 50 days in Figure 27. Because our sample size is much smaller than the KOIs (161–1186 planet pairs), our metric is noisier. However, both distributions show a similar pattern: a peak in the normalized duration ratio at 1, indicating that most multiplanet pairs are real candidates that orbit the same star.

Another trend appears in both our K2 and the Kepler sample: an asymmetry favoring normalized duration ratios slightly above 1. In Figure 27 we plot both ξ and ξ^{-1}; if the true distribution were values of $\xi = 1$ with random scatter, the two would be symmetric, but instead we see ξ slightly favoring values above 1.

This asymmetric distribution was used by Fabrycky et al. (2014) as evidence of multiplanet systems having small mutual inclinations—orbiting in nearly, but not exactly, the same planes. If planets are perfectly coplanar, then any inclination of that mutual plane as viewed from Earth will cause the outer planets in a system to have higher impact parameters than the inner planets; therefore, the outer planets will have slightly lower normalized durations, causing ξ to be slightly above 1. Allowing for a small eccentricity and mutual inclination distribution can create the smaller tail of ξ ratios below 1, while the majority are still distributed just above 1.

Stellar Density Comparisons in Multiplanet Systems.—As demonstrated in Equation (5), a measure of a transit’s duration and period can provide insight about the average density of the host star. Once again, these measures should provide identical stellar densities under the stated assumptions, but eccentricity, inclination, and non-negligible planet masses or radii will cause the stellar density estimates to deviate slightly from one planet to another. Nonetheless, when comparing multiple planets in a system, we should get similar stellar densities; vast deviations would suggest that our candidates were not real or not orbiting the same star.

As described in Section 2.9, we generate the derived stellar density for every step in our MCMC chains for every planet candidate, using equations from Winn (2010) and Seager & Mallén-Ornelas (2003). This allows us to get full posterior distributions for the stellar density estimates and compare the results for pairs of planets in our multiplanet systems.

The difference in density between each pair of planets is shown in Figure 28. Like the normalized duration ratios, the derived stellar densities for most pairs of planets are consistent, indicating that the planets in the multiplanet systems are real and orbiting the same star. The broad consistency between the period ratios discussed in Section 3.3 is yet another indication that the multiplanet candidates are likely real planets.

Finally, the similarity in the numbers of single-planet and multiplanet candidate systems discussed in Section 3.3 indicates that by extension the single-planet systems are likely mostly real planets, although with a possible small false-positive contamination. Although the candidates we have found are still candidates, we are optimistic that further vetting and follow-up will reveal the majority of these to be confirmed transiting planet systems.

4.1.3. Ultra-short-period Planets

One goal of our new QATS pipeline is to detect all planets, even those edge cases that cause the most trouble for most
methods. In this section and the following we look at QATS’s performance in the two period limits of a transit search: ultra-short-period (USP) planets and single-transit events.

USP planets, usually defined as those with periods less than a day, are a unique class of planet predominantly found with Kepler (Sanchis-Ojeda et al. 2014). Many pipelines set the minimum period to start their planet searches above 1 day, making USP detections challenging. Furthermore, USP transit durations are also very short, less than an hour in many cases, which means that they span just one or two Kepler cadences and can be difficult to find even if the pipeline searches for such short-period events. The official Kepler search (TPS; Jenkins et al. 2010), for example, sets a minimum transit duration of 1 hr and a minimum period of 0.5 days, so many USP planets were missed before a dedicated search for them (Sanchis-Ojeda et al. 2014).

In our search of C0–8, we used a minimum transit duration of 2 hr and a minimum period of 0.3 days, so the especially short-duration events will be harder to detect. Because we also removed one and two cadence outliers, deep USP candidates may also have had many transits removed and thus been overlooked (our median star’s outlier removal level was \(\sim 1500 \text{ppm}\) or \(4.2 \, R_\oplus\) assuming a solar-sized star). Nevertheless, we compare our search to the dedicated USP search of Adams et al. (2016), who found 19 USP candidates in C0–5.

Of their 19 candidates, we found 13. However, we also found eight new planet candidates in C0–5 not in their catalog (or in their list of likely EBs). Two of these candidates (EPIC 202092559 and EPIC 210801536) have depths less than 200 ppm. We also find 17 previously unreported USP candidates in C6–8. Of these 25 combined new USP candidates, after applying our stellar parameters, 8 have radii less than \(4 \, R_\oplus\), indicative of small planets worth following up.

4.1.4. Single-transit Events

One of the benefits to our version of QATS is that it can be used to identify both periodic and single-transit events simultaneously. As discussed in Section 2.6.1, this first search has a reduced sensitivity to single-transit events, often labeling them as having no signal above the QATS spectrum baseline and prematurely cutting them from the pipeline. This will be adjusted in future versions, but even so, we have detected 77 single-transit events in our C0–8 search. The other reason our QATS search will have difficulty with some single-transit events is our duration limit. We only search for events up to a maximum of 17 hr, and planets or EBs that only eclipse once in a K2 campaign may be on orbital periods of hundreds of days with event durations much longer than 17 hr. For example, the longest-duration transiting planet so far was found in C14 and lasts for 54 hr (Giles et al. 2018)—longer than our longest complete search window that includes a 17 hr transit and 0.6 days of continuum on either side.

Single-transit searches have historically been done independently of periodic searches, and the most common approach is not systematic but rather scanning all light curves by eye for potential transit events. Wang et al. (2015) found 41 long-period systems in the original Kepler by eye with citizen scientists from the Planet Hunters initiative; Uehara et al. (2016) similarly found 28 single transits manually, Foreman-Mackey et al. (2016) performed the most comprehensive systematic single-transit search in Kepler, creating an automated search and validation procedure and finding 16 candidates.

The only systematic search for single-transit events in K2 has been Osborn et al. (2016), who searched C1–3 and found seven candidates, of which we found two (EPIC 203311200 and EPIC 201635132). Two of the Osborn et al. (2016) candidates have durations significantly longer than a day, explaining our lack of detection, one is very shallow and does not appear in the EVEREST light curve, and the other two were found but rejected by QATS in its automated vetting stage as described above. We also find 20 additional single-transit candidates in C1–3 not mentioned by Osborn et al. (2016); however, these are much deeper, and it is not clear whether they filtered likely EBs out from their sample.

The most comprehensive single-transit search of K2 to date is another manual one. LaCourse & Jacobs (2018) searched C0–14 by eye and found 164 single-transit events, 101 of which are in C0–8 around 100 different stars. Of those 101 events, we find just 34—a sign that we can improve our detection of single-transit events significantly. Most are identified by QATS but eliminated in the automatic cuts stage, while about a dozen have durations longer than a day and are missed altogether. On the other hand, we find 34 systems in C0–8 with a single-transit event that is not listed in the LaCourse & Jacobs (2018) catalog.

Altogether, our 77 single-transit events represent the largest such catalog to date in either Kepler or K2 found via systematic search (i.e., not by eye). QATS is also the only transit search that is able to find both single transits and periodic planets simultaneously—not to mention those with TTVs. This capability has proven useful in the short 70- to 80-day K2 campaigns, but it will take on even more significance when applied to the TESS mission data, where the majority of stars are only observed for just 27 days.

4.2. K2’s Brighter and Smaller Stellar Sample

The Kepler mission was designed for a very specific task: finding Earth-sized planets around stars like the Sun. To accomplish its goal, Kepler’s stellar sample was carefully crafted to include as many FGK-type main-sequence stars as possible that were bright enough to detect small transits. By stellar type, only about 4000 of Kepler’s 200,000 targets were M dwarfs, and they yielded just 150 of the mission’s over 4000 planet candidates (Dressing & Charbonneau 2013, 2015). On the magnitude side, 60% of Kepler’s observed targets and 65% of its planet candidates’ host stars were fainter than 14th magnitude, making follow-up difficult. Radial velocity follow-up of small planets is typically only possible for stars brighter than 12th–13th magnitude (Marcy et al. 2014).

On the other hand, the K2 targets were chosen via community proposal, and a much more diverse set of stars were selected around typically brighter stars. A total of 50% of K2’s targets are brighter than 14th magnitude, and 30% are listed in the EPIC as M dwarfs (radii below 0.6 \(R_\oplus\)) by Huber et al. (2016).

Figure 29 shows how our K2 planet candidates skew brighter: while 85% of Kepler candidates are fainter than 13th magnitude, 47% of our K2 planet candidates orbit stars brighter than 13th magnitude. At all magnitudes brighter than 13, our K2 candidate count from C0–8 is within a factor of 2 of the original Kepler; after a complete search through all 20 K2 campaigns, K2 will have found more planets around stars brighter than 13th magnitude and amenable to follow-up than Kepler did. In addition, K2’s planets are on average shorter
period than *Kepler* because of the limited *K2* campaign duration, so the RV signal will be larger for the average *K2* planet.

As a function of host star radius, *K2* has focused on M dwarfs considerably more than *Kepler* did. Figure 29 also shows the stellar radius distribution for the planet candidates’ host stars. Above 0.7 R_{\odot}, *Kepler* has found 5–10× as many candidates as our *K2* C0–8 sample. Yet around small M dwarfs, *K2*’s planet candidate count already outnumbers that from *Kepler*. *K2* has already matched *Kepler*’s total planet candidate count for stars less than 0.5 R_{\odot} and will more than double it after all 20 campaigns are thoroughly searched. Combining magnitude and host star size, *K2* has already produced more planets transiting stars brighter than 13th magnitude and smaller than the Sun (190 in our *K2* candidate list vs. 130 from *Kepler*).

4.3. Exploring the Radius Gap

The possible boundary between rocky and gaseous exoplanets is one of the most intriguing results to come from the *Kepler* population. Fulton et al. (2017) found a gap in the radius distribution of small exoplanets at periods less than 100 days, indicating that planets with radii of 1.5–2.0 R_{\oplus} are relatively rare. Lopez & Rice (2018) and Van Eylen et al. (2018) provide tentative evidence that this gap is due to photoevaporation of the atmospheres because the gap appears to move to smaller planet radii at lower stellar fluxes incident on the planets (although see Gupta & Schlichting 2019 for an alternative explanation). These short-period rocky planets therefore may have started off with gaseous atmospheres and only later come to have their rocky cores exposed after intense stellar radiation blew off the entire gaseous envelope.

Introduced in Section 3.2, the nominal errors for our *Gaia* stellar radii (most of the stars above 0.5 R_{\odot}) are just 5.7% (better than the 11% of Fulton et al. 2017), while the M dwarf sample with parameters from Huber et al. (2016) has larger uncertainties of 17.9%. This translates into a median planet radius error of 14% and 30%, respectively. The disparity is larger for luminosity. Because the *K2* stars are brighter than average for *Gaia*, and *Gaia* was designed specifically to measure the distance and brightness of stars, *Gaia* uncertainties on stellar luminosities average just 2.5%. However, Huber et al. (2016) do not estimate luminosity for the EPIC stars at all, so our luminosity values are derived from their temperature and radius values and have a median uncertainty of 37%. This makes our incident flux estimates for M dwarfs particularly uncertain compared to the larger stars in the *Gaia* sample (median 86% and 48%, respectively); however, all incident fluxes are also largely affected by our median 23% uncertainty in the derived a/R_s values.

Using the stellar luminosity and radius, combined with the derived a/R_s from the transit fits, we estimate the flux received for each candidate, assuming a circular orbit; the results are shown in Figure 30. As with Fulton et al. (2017), the radius gap in our sample appears strongest at incident fluxes near 300 S_{\odot} and occurs at a radius of about 2 R_{\oplus}, but our radius and incident flux errors are slightly too large to make out a significant gap with our limited planet sample.

With *K2*’s larger focus on M dwarfs, our new planet candidates present an opportunity to explore how the radius gap might change as a function of host star mass. For example, Wu (2019) claims a dependence of the radius gap on the host of the primary star such that larger stars host larger planets and the gap moves to larger radii. However, they also note that M dwarfs provide a key anchor to that relation and there were not enough known planets around M dwarfs near the radius gap yet.

Our work provides the first step: finding the planets at all. As our survey of the *K2* campaigns doubles the number of planet candidates around M dwarfs, follow-up characterization with *Gaia* and ground-based spectra can increase the precision of the incident fluxes and planet radii to measure how the shape and location of the radius gap might depend on various stellar and environmental properties.

4.4. The Habitable Zone

Due to the nature of the short *K2* campaign durations, most of our planet candidates are found at very short periods and correspondingly high instellations. However, a handful of planet candidates around smaller stars may lie within their star’s liquid water “habitable zone.” Unfortunately, because the more precise *Gaia* parameters only consider stars above 0.5 R_{\odot}, most of the potential habitable zone planets only have EPIC parameters with poorer luminosity estimates.
We plot the incident fluxes near the habitable zone in Figure 31, limited only to those systems where our measure of the incident flux is more than 1 standard deviation above 0 (80% of our candidates). The majority of planets are well interior to the habitable zone, although the uncertain incident fluxes allow many to cover the entire region within one standard deviation.

Many candidates have such uncertain stellar luminosities that their parameters more than span the entire habitable zone. A better characterization of our new M dwarf hosts will be necessary to pin down potential habitat zone planets, as was done by Dressing et al. (2017a).

Even so, there are five planet candidates in or near the habitable zone with planet radii small than 2 R_{\oplus}. Of those five, four have been previously found by other groups (EPIC 201367065.3 [K2-3 d], EPIC 205489894.1, EPIC 201912552.1 [K2-18 b], and EPIC 211579112.1), while one is new: EPIC 210508766.3.

Our new small-planet candidate near the habitable zone, EPIC 210508766.3 (if confirmed, it would be K2-83 d), is an outer companion to the previously confirmed two-planet system K2-83 (Crossfield et al. 2016; Dressing et al. 2017b). Dressing et al. (2017a) characterize the star as an M1 dwarf, slightly larger and brighter than the values we use from the EPIC, but the planet remains in the habitable zone regardless, with an instellation between 33% and 96% of Earth at 68.3% confidence. The planet has a radius that is about 31%–73% larger than that of Earth, which is in the range where it may be rocky, if planets at shorter period are any guide (Rogers 2015). We show the architecture of this system and its habitable zone in Figure 32. This planet highlights the usefulness of EVEREST and QATS by finding outer small, temperate companions that other groups overlooked. We note that the same three transits used in our discovery of the outer planet candidate are found in the K2SFF light curves as well, but at lower significance and more variable depths. The planet would not have passed our automated vetting steps if we used the K2SFF light curves. Detection of outer, cooler companions with a limited number of transits will become especially important with TESS, and QATS could be used to help expand TESS’s reach to more habitable zone planets.

4.5. Reciprocal Transits

The transit method has become the most successful planet detection method, especially for rocky, Earth-sized planets. As we move from planet detection toward detailed characterization and ultimately a search for life on these transiting planets, a natural question arises: would theoretical observers in a particular planetary system be able to detect any planets in...
our own solar system via transits? We define any transiting planet geometrically capable from their perspective of seeing at least one solar system planet transit as a reciprocally transiting planet.

All reciprocally transiting planets will be located near the ecliptic along the eight planes of our solar system planets’ orbits. Because K2 is the first and only space-based transit mission to observe along the ecliptic to date, K2 planets will dominate the known population of reciprocally transiting planets (at least until a potential TESS extended mission along the ecliptic). This idea was first explored by Wells et al. (2018), who identified 68 known planets or planet candidates (not all of which transit) around 50 unique stars in zones of the sky that could detect at least one solar system planet’s transit; only seven had been discovered via K2.

Among the 818 planet candidates presented here, 154 of them (around 138 stars) are reciprocally transiting; 73 of these are new planet candidates in this work. Just one system, the previously known K2-101 b (EPIC 211913977, presented in Wells et al. 2018), can detect three transiting solar system planets: it is in the two-in-a-million alignment capable of observing transits of Jupiter, Saturn, and Uranus. Nineteen other single-planet systems (nine of them new in this work) are reciprocally transiting with two solar system planets.

Among our multiplanet systems, nine of our two-planet systems are capable of seeing one of our solar system planets transit. The previously known and validated three-planet system K2-58 (EPIC 206026904) would be able to see transits of Venus. The four-planet system EPIC 211939692 (all new planet candidates in this work) is capable of seeing Jupiter and Saturn transit from its perspective. Finally, our new four-planet system EPIC 206135682 (only one of the planets had been previously found) reciprocally transits with Earth: planets in this system would see the Sun as a single-planet transit host with a 365-day habitable zone planet.

5. Conclusions

We have presented a comprehensive update to the Carter & Agol (2013) QATS transit detection pipeline with the goal of developing it into a nearly all-encompassing transit search that can find periodic planets, those with TTVs, single-transit events, and ultra-short-period planets—all without losing sensitivity to the lowest-S/N planets or multiplanet systems. We applied this method to 152,865 stars in K2 campaigns 0–8, using the light curves from EVEREST 1.0 (Section 2). In total, we found 818 planet candidates, 374 of which are new and undetected by all previous searches (Section 3.3); along the way we also presented our catalog of 579 EBs (Section 3.5).

Among our candidates, we did indeed find planets with TTVs (Section 3.4.1), 77 single-transit/eclipse events (Section 3.4.2), and 25 new USP candidates (Section 4.1.3). We report two new five-planet systems and a new six-planet system (Section 3.4.3). In total, we found 87 multiplanet systems, up from the previously known 57 in C0–8. We also identified 154 reciprocally transiting planets (73 new here); transiting planets that could see at least one solar system planet transit from its point of view; 12 of our multiplanet systems are reciprocally transiting, including a four-planet system that could see transits of Earth (Section 4.5).

As it stands, K2 has doubled the number of transiting planets around M dwarfs, and we introduce 100 new candidates here, including one potentially rocky and in the habitable zone (Section 4.4). This number will double again once campaigns 10–19 are fully searched. Unlike Kepler, the majority of the K2 host stars are brighter than 13th magnitude, making follow-up and characterization more feasible (Section 4.2). One of many potential applications of this smaller, brighter sample of stars is the future prospect of measuring the planet radius gap as a function of host star mass (Section 4.3), which will require improved characterization of the host stars.

Comparing to the previous searches, we were able to recover 72% of candidates reported by at least one previous group, while only 54% of our planet candidates had previously been found by all the other searches combined. As discussed in Section 4.1, future updates to our pipeline should allow us to recover more than 90% of the candidates found by other groups while continuing to find a comparable number of new candidates missed by the other searches—thus approximately doubling K2’s planet yield.

One of the sources of our missed planets has already been addressed with the newest EVEREST pipeline that improves light-curve precision on saturated, crowded-field, and faint stars (Luger et al. 2018). Even with no further updates to QATS, we can recover some planets found by other groups just by using their light curves or the EVEREST 2.0 light curves, even though they were missed in our EVEREST 1.0 search presented in this paper. Future updates to QATS will address the other two main difficulties: short-duration transits and properly assessing the significance of single-transit events. While we successfully detected some candidates in each category, our efficiency can be significantly improved. As we look to TESS and its 27-day baseline for most stars, these single-transit detections will become even more critical. The more we can improve that particular feature of QATS, the further we can expand TESS’s sensitivity.

The authors thank Jason Curtis, Jeff Coughlin, and the referee for feedback and helpful discussions.

This research was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA. This material is based on work supported by the National Science Foundation Graduate Research Fellowship under Grant DGE 1256082. This research is part of the Blue Waters sustained-petascale computing project (Graduate Research Fellowship), which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. E.A. acknowledges support from NSF grant AST-1615315, from NASA grant NNX13AF62G, and from the NASA Astrobiology Institute’s Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement No. NNA13AA93A.

Facility: Kepler.

Software: EVEREST (Luger et al. 2016, 2018), K2SFF (Vanderburg & Johnson 2014; Vanderburg et al. 2016b), QATS (Carter & Agol 2013), emcee (Foreman-Mackey et al. 2013), batman (Kreidberg 2015), numpy (van der Walt et al. 2011), matplotlib (Hunter 2007), scipy (Jones et al. 2001), statsmodels (Seabold & Perktold 2010), astropy (Astropy Collaboration et al. 2013, 2018).
