Human urinary excretion of the herbicide 2-methyl-4-chlorophenoxyacetic acid.

by Fjeldstad P, Wannag A

Key terms: 2-methyl-4-chlorophenoxyacetic acid; 2-methyl-4-chlorophenoxyacetic acid; herbicide; high pressure liquid chromatography; human exposure; human urinary excretion; urinary excretion

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/882857
Human urinary excretion of the herbicide 2-methyl-4-chlorophenoxyacetic acid

by PER FJELDSTAD and AXEL WANNAG

Despite the extensive use of 2-methyl-4-chlorophenoxyacetic acid (MCPA) in agriculture, there has been no study of the toxicity of MCPA in humans, and there is but limited knowledge of the toxicity of MCPA in animals.

The LD_{50} in rats is around 800 mg/kg when MCPA is given orally and around 500 mg/kg when MCPA is injected intraperitoneally (8). In long-time exposure studies rats that received 50 ppm MCPA in food for 90 days did not differ from control rats in growth, food intake, mortality, hematology, blood and liver chemistry, organ weights, or histopathology (10). However, 100 ppm MCPA in the food for 7 months increased the relative kidney weight of the rats, but had no effect on body weight, food consumption, mortality, hematology, or histopathology (8).

MCPA is absorbed from the gastrointestinal tract in rats (5, 10), rabbits (10), mice (8), and cows (1), and it has been detected in the urine of cows (1) and rabbits (10). However, except for the study of Elo (5), no quantitative data are available either on absorption or on excretion. Elo found that male rats which received MCPA orally excreted nearly all of the MCPA during the first 24 h after intake (about 90 % in urine and 7 % in feces).

It can be expected that man will absorb MCPA through the skin, lungs and gastrointestinal tract. When the exposure of field sprayers to MCPA is evaluated, absorption through all these organs must be accounted for. Thus it would be preferable if the total amount of MCPA absorbed by the body could be measured. We undertook the present study in order to see if the urinary excretion of MCPA...
could be used as an indicator of MCPA absorption in humans.

MATERIALS AND METHODS

Four healthy males aged 32 to 36 years were given 5 mg of MCPA orally. We recorded, but put no restrictions on, both physical activity and the intake of food, fluid and medicine.

Urine

A urine sample was obtained before the MCPA intake, and thereafter all urine was collected for the next 5 days. Ten days after the MCPA intake all urine was collected again for a 24-h period. The urine was collected and stored in polyethylene bottles and kept frozen (−20°C) until analyzed.

The urine samples were hydrolyzed and extracted, followed by high pressure liquid chromatography (HPLC). The method is a modification of the one Erne (6) used for thin layer chromatography.

Ten-milliliter samples of urine were treated with 1 ml of 5 M sulfuric acid at 90—95°C for 1 h in a stoppered glass tube and then cooled at room temperature. The hydrolyzed samples were extracted three times with 1 ml of chloroform. The water and chloroform were separated by centrifugation (1,000 g) for 5 min. The total chloroform solution was extracted three times with 1 ml of 0.25 M phosphate buffer (pH 6.2); acidification (pH 2) and extraction (3 times) into 1 ml of chloroform followed. A small amount of anhydrous sodium sulfate was added to remove water from the chloroform solution. The volume was reduced to 250 μl by nitrogen flushing at 50°C.

HPLC was performed with a PerkinElmer LC 604 chromatograph equipped with a variable (LC 55) ultraviolet detector. MCPA was detected at 287 nm. The MCPA peak was identified by its retention volume, and the peak height was measured. The purified samples were injected by means of a Valco loop injector fitted with a 30 μl loop. Separation took place on a column (25×0.3 cm i.d.) with Spherisorb Silica S5W (Spectra-Physics) eluted with v/v isooctane: chloroform (6:1) containing 0.1 % formic acid. The flow was 1 ml/min, pressure 750 psi, and elution volume about 10 ml. The system was calibrated with samples of urine with MCPA added in various amounts. As a check on response and retention, a standard solution of MCPA in chloroform was injected between the samples. The coefficient of variation of the standards was 5.5 %. The detection limit of the method was 0.2 μg/ml urine. A background contribution of 0.1 μg/ml of urine was taken into account when the final standard deviation for every single analysis was estimated.

Blood

A blood sample (in a heparinized vacutainer) was taken before the MCPA intake and 2, 7, 12 and 24 h after the intake. Further samples were taken 2, 3, 4 and 10 days after the intake. All the blood samples were immediately separated into plasma and erythrocytes. The plasma (in plastic tubes) was analyzed as soon as possible for S-aspartate-aminotransferase (ASAT), S-alanine-aminotransferase (ALAT), S-lactate-dehydrogenase (LD), S-alkaline-phosphate (AP) (2), creatine kinase (CK) (4), and γ-glutamyl transferase (GT) (3).

RESULTS AND DISCUSSION

The results are presented in table 1 and fig. 1. The main excretion of MCPA occurred within 48 h of intake. Up to then, about 2.5 mg of MCPA had been passed in the urine. The fifth day after the MCPA intake, the concentration of MCPA in the urine was too small (less than 0.2 μg/ml) to be detected.

Because of the precision of the analysis, the differences observed in total MCPA excretion between persons after 48 h are not significant. Initially one person (fig. 1, no. 4) excreted less MCPA than the others, possibly because of individual differences in the rate of MCPA excretion in urine or because of differences in the rate of the gastrointestinal absorption of MCPA. However, the total amount of MCPA excreted in the urine was about
Table 1. MCPA excretion in urine as the percentage of intake (5 mg). The individual cumulative values of the four persons are given. The coefficients of variation are calculated on the basis of the estimated error of the analysis.

Person no.	Hours after intake			
	24	48	72	96
1	50.0 ± 2.3	56.6 ± 4.4	57.2 ± 4.8	57.2 ± 5.2
2	42.9 ± 1.4	56.9 ± 2.8	59.0 ± 3.5	61.1 ± 4.1
3	48.6 ± 2.6	47.7 ± 6.5	47.7 ± 9.8	50.0 ± 10.1
4	29.3 ± 2.4	44.7 ± 3.3	50.9 ± 4.4	51.8 ± 5.5
Mean	40.7	51.5	53.7	55.0

MCPA excreted, mg

![MCPA excretion graph](image)

Fig. 1. MCPA excretion in urine after an oral intake of 5 mg by four persons, numbered 1—4.

The urinary excretion of MCPA seems useful for estimating MCPA exposure when the total dose is about 5 mg. The estimation must be made from the amount of MCPA in all urine passed within the first 48 h of exposure.

Previous studies have shown that about 75% of 2,4-dichlorophenoxyacetic acid (2,4-D) (9) and about 90% of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) (7) can be found in the urine of humans after oral intake. Our recovery of MCPA was less. However, these results may not reflect differences in the toxicokinetics of the compounds, but may be due to differences in the amount ingested. In the 2,4-D and 2,4,5-T studies 5 mg/kg of body weight were used; in our study the intake was 5 mg per person. However, the possibility that MCPA undergoes biotransformation in humans cannot be excluded.

For only one person were all serum enzyme values within normal limits. Among the others, two had pathological enzyme values (CK and LDH) before the MCPA intake, and further abnormal values were detected during the days of observation. These pathological values were probably due to physical training, salicylate intake, and some hemolysis in the serum samples. ALAT and AP were normal in all four persons. Thus MCPA in the amount ingested does not seem to cause liver cell damage or intrahepatic cholestasis. Some CK and ASAT values were pathological, but a toxic effect of MCPA in muscle cells is not likely, as all CK values were normal in two persons and all ASAT values were normal in three persons.

ACKNOWLEDGMENTS

We wish to thank Dr. S. Skrede, who supervised the analyses of the serum enzymes at the Institute of Clinical Biochemistry, Rikshospitalet, Oslo, and K. E. Halgard at the Institute of Occupational Health, Oslo, for her skilled technical assistance.

REFERENCES

1. BACHE, C. A., LISK, D. J., WAGNER, D. G. and WARNER, R. G. Elimination of 2-methyl-4-chlorophenoxyacetic acid and
4-(2-methyl-4-chlorophenoxy) butyric acid in the urine from cows. J. dairy sci. 47 (1964) 93—95.

2. THE COMMITTEE ON ENZYMES OF THE SCANDINAVIAN SOCIETY FOR CLINICAL CHEMISTRY AND CLINICAL PHYSIOLOGY. Recommended methods for the determination of four enzymes in blood. Scand. j. clin. lab. invest. 33 (1974) 291—306.

3. THE COMMITTEE ON ENZYMES OF THE SCANDINAVIAN SOCIETY FOR CLINICAL CHEMISTRY AND CLINICAL PHYSIOLOGY. Recommended method for the determination of γ-glutamyl transferase in blood. Scand. j. clin. lab. invest. 36 (1976) 119—125.

4. THE COMMITTEE ON ENZYMES OF THE SCANDINAVIAN SOCIETY FOR CLINICAL CHEMISTRY AND CLINICAL PHYSIOLOGY. Recommended method for the determination of creatine kinase in blood. Scand. j. clin. lab. invest. (in press).

5. ELO, H. Distribution and elimination of 2-methyl-4-chlorophenoxyacetic acid (MCPA) in male rats. Acta pharmacol. toxicol. 39 (1976) 58—64.

6. ERNE, K. Determination of phenoxyacetic herbicide residues in biological materials. Acta vet. scand. 7 (1966) 77—96.

7. GEHRING, P. J., KRAMER, C. G., SCHWETZ, B. A., ROSE, J. Q., and ROWE, V. K. The fate of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) following oral administration to man. Toxicol. appl. pharmacol. 26 (1973) 352—361.

8. GURD, M. R., HARMER, G. L. M. and LESSEL, B. Summary of toxicological data: Acute toxicity and 7-month feeding studies with Mecoprop and MCPA. Food cosmet. toxicol. 3 (1965) 882—885.

9. KOHLI, J. D., KHANNA, R. N. and GUPTA, B. N. Absorption and excretion of 2,4-dichlorophenoxyacetic acid in man. Xenobiotica. 4 (1974) 97—100.

10. VERSCHUUREN, H. G., KROES, R. and DEN TONKELAAR, E. M. Short-term oral and dermal toxicity of MCPA and MCPP. Toxicology 3 (1975) 349—359.

Received for publication: 1977-11-12