Supporting Information

In-Plane Distribution of Water inside Nafion® Thin Film Analyzed by Neutron Reflectivity at Temperature of 80 °C and Relative Humidity of 30-80% Based on 4-Layered Structural Model

Teppei Kawamoto¹, Makoto Aoki², Taro Kimura³, Takako Mizusawa⁴, Norifumi L. Yamada⁵, Junpei Miyake⁶, Kenji Miyatake¹,⁶, and Junji Inukai¹,⁶*

¹Fuel Cell Nanomaterials Center, University of Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan

²Division of Life, Medical, Natural Sciences and Technology, Organization for Advanced and Integrated Research, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 658-8501, Japan

³Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8510, Japan

⁴Comprehensive Research Organization for Science and Society Neutron Science and Technology Center, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

⁵Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

⁶Clean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8501, Japan

E-mail: jinukai@yamanashi.ac.jp
Figure S1 Model of a Nafion thin film (thickness = 103 nm when dry) on a Si(100) wafer with native SiO$_2$ intact at 29.6 °C and 92% RH under humidified Ar. Original data were reported in reference 1. SLD values in reference 1 were converted to Nafion and water densities based on the procedures reported in our manuscript.

Reference

1) S. C. DeCaluwe, A. M. Baker, P. Bhargava, J. E. Fischer, and J. A. Dura, Nano Energy 46, 91, (2018).