Reconfigurable engineered motile semiconductor microparticles

Ugorna Ohiri, C. Wyatt Shields IV, Koohee Han, Talmage Tyler, Orlin D. Velev & Nan Jokerst

Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.
A central goal of active matter research is to mimic the natural mechanisms of biological systems to create new bio-inspired technologies. One of the most captivating and complex biological systems is the brain due to its ability to form memories and store information through neural networks. A distinctive feature of these networks is their plasticity, which entails the rapid formation and dissolution of neural links in response to stimuli. Although much work has been done to assemble colloidal particles into structured networks, such assemblies have been limited by their inability to controllably reconfigure, which enables the formation of new links. The use of intentionally reconfigurable active particles could overcome these challenges, as they can self-interact and form dynamic patterns.

Active particles consume and dissipate energy to drive their motion, thus mimicking natural systems such as molecular motors, swarming bodies, and stimuli-responsive materials. The motion of active particles is strongly dependent upon the materials comprising them, their geometry, and the source of energy (which may be from, e.g., electric,\(^1\)–\(^3\), magnetic,\(^4\)–\(^6\), optical,\(^9\)–\(^10\), chemical\(^21\)–\(^23\), and thermal origins)\(^24,25\), all of which govern their range, navigational control, and propulsion efficiency. Examples of active particles include nanowimmers\(^26,27\), metallocdielectric nanocylinders\(^28\)–\(^30\), Janus spheres\(^31,32\), and asymmetric particle doublets\(^33\)–\(^35\). Although these particles have been powered by different, and in some cases multiple mechanisms, no particle has been shown to controllably assemble and disassemble on demand into plastically reconfigurable and electrically functional assemblies.

Given the intrinsic connection between particle design and function (or behavior)\(^37,38\), we have developed a class of active semiconductor and diode microparticles that can be comprehensively designed in size, shape, composition, and polarizability, as shown in Fig. 1a. This design capability can lead to control over the internal and external charge distributions, polarizabilities, and field rectification of the particles in AC electric fields. Thus, these particles can be engineered to draw energy to interact and propel in a variety of controllable fashions. We demonstrate their controllable motion through multiple concurrent mechanisms, including dielectrophoresis (DEP)\(^39\), induced charge electrophoresis (ICEP)\(^32\), and diode-based propulsion by AC field rectification (Fig. 1b)\(^12,13\). This combination of mechanisms enables a broad range of programmed collective behaviors (e.g., repulsion, bidirectional locomotion, microparticle chaining, and reversible assembly; Fig. 1c), which could enable their use in applications that include self-healing materials and reconfigurable networks.

Results

Design summary for thin film silicon microparticles. In this study, six types of thin film semiconductor silicon microparticles were designed and fabricated (see the Methods section and Supplementary Notes 1 - 5 for more details on the fabrication process). The microparticles were fabricated on silicon-on-insulator (SOI) wafers, where the uppermost device layer (3.5 \(\mu\)m thick) consisted of n-type Si (\(N_d\)) was approximately equal to \(10^{20}\) cm\(^{-3}\) that served as the core material of the particles. This multi-layered wafer structure was fabricated based upon the desired behaviors of the different custom microparticles. Photolithography was used to define the geometry of the microparticles (e.g., shape and size) and other fabrication processes (e.g., diffusion, metallization, dry etching, and wet-etching techniques) were used to engineer and encode responses into the six different types of microparticles. The following nomenclature was developed to describe the different types of microparticles (Fig. 2a; in order of propulsion speeds): PN-0 is a microparticle with a p–n junction and without metal contacts; PN-II is a diode microparticle with a p–n junction and with metal contacts on both the n-side and the p-side; N-I is an n-type silicon microparticle with a metal contact on one side; and PN-I is a microparticle with a p–n junction and with one metal contact on either the n-side or on the p-side. Although our particles were 10 \(\mu\)m x 20 \(\mu\)m (surface area), we note that this approach can be adapted to make particles of smaller or larger size. Traditional top-down photolithography can create well-defined features as small as 0.5 \(\mu\)m, and electron-beam lithography can be used to pattern particles and coating features as small as 50 nm\(^40\).

A key advantage of this integrated circuit fabrication approach is the ability to diffuse patterned regions of the microparticles with dopants. For the case of the PN-0, PN-II, and PN-I microparticles, we altered the electrical properties of the silicon material by patterning and diffusing specific regions with dopants to attain p-type compositions on half of the microparticle. Thus, we formed p–n junctions, which enabled distinct differences in their behaviors when stimulated by AC electric fields. The two metal contacts on the PN-II microparticle enabled internal rectifying flow of electronic carriers (electrons and holes) across the p–n junction (see Supplementary Note 5 for details), and was the only p–n junction particle capable of this internal flow. We also note that pure n-type microparticles were fabricated with uniform doping and without metallization (N-0; see Supplementary Note 1 for more details on the fabrication of the N-0 microparticle).

Once fabricated, the microparticles were released from the silicon substrate by sacrificially etching the silicon dioxide layer (SiO\(_2\)), washed to remove impurities, and suspended in deionized (Millipore) water for experimental testing (see Supplementary Note 1 for details on microparticle preparation). We note that as soon as the microparticles are exposed to water, a thin SiO\(_2\) typically forms over exposed Si surfaces\(^41,42\). Each type of microparticle was subjected to an external AC electric field generated in a fluidic chamber with co-planar gold electrodes (electrical circuit equivalent shown in Fig. 2a). The independent variables of the electric field, \(E\), used to power the microparticles include the field strength (\(E^2\) was approximately equal to 10–75 kV\(^2\) cm\(^{-2}\)) and AC frequency (0.05–500 kHz; see Supplementary Note 7 for detailed field and frequency-based tracking analyses of the fabricated microparticles). In all cases, the microparticles initially aligned with their longest axis parallel to the electric field due to dielectrophoretic torque\(^43\).

Hydrodynamic flow analysis of PN-0, N-I, and PN-I microparticles. First, we performed a series of tracer experiments (\(E^2 = 54.4\) kV\(^2\) cm\(^{-2}\) and 500 Hz; Supplementary Movie 1 through Supplementary Movie 5) to understand the relationship between microparticle design and the mechanism of propulsion for the PN-0 (Fig. 2b-d), N-I (Fig. 2e-g), and PN-I (Fig. 2h-j) particles. Before the start of each experiment, 500 nm latex beads were suspended in the chamber and became randomly dispersed around the microparticles. We used ImageJ (NIH) to quantify the speed of tracer bead movement and thus localized fluid flow. In separate experiments without tracer beads, we tracked the speed of the semiconductor microparticles in response to stimulation from AC electric fields (\(E^2 = 54.4\) kV\(^2\) cm\(^{-2}\) and 500 Hz). We found that, of these particles, the PN-0 microparticles had the slowest propulsion velocities (note that N-0 is reported in the SI and had the slowest propulsion velocity of all particles studied) and the PN-I microparticles had the fastest velocities.

For the case of the PN-0 microparticles, the tracer beads revealed a slow flow toward the p–n junction along the sides of
the microparticle (Fig. 2b). In Supplementary Movie 1, the tracer beads are seen to flow with an average speed of \(250 \text{ nm s}^{-1}\) in the \(x\)-direction (note that the PN-0 microparticle propels with the p-side facing forward (described below); tracer beads predominantly move in the opposite direction; Fig. 2c). As is common for second-order propulsive effects such as ICEP, the velocity of the PN-0 microparticles was found to be dependent on the square of the electric field \(E^2\), \(U_{\text{ICEP}} \propto E^2\) (Fig. 2d). Weak anisotropic polarization (weak-ICEP) directionally propelled the microparticles through the fluid where the electrical conductivity of the doped n-type silicon, with phosphorous atoms (\(\sigma\) is approximately equal to \(1 \times 10^5 \text{ S cm}^{-1}\)), is higher than that of the doped p-type silicon, with boron atoms (\(\sigma\) is approximately equal to \(1 \times 10^{-6} \text{ S cm}^{-1}\))\(^{44}\). This effect is caused by the non-uniform dopant concentration across the p–n junction of the microparticle where the n-side acts as the propeller and the p-side acts as an insulating coating\(^{45}\). In this case, the n-side of the microparticle had a uniform dopant concentration \((N_D)\) of \(\sim 10^{15} \text{ cm}^{-3}\). The p-side of the microparticle, which was an n-type material counter-doped with p-type boron spin-on diffusants, had a maximum dopant concentration \((N_A)\) of \(\sim 10^{20} \text{ cm}^{-3}\) at the surface. This non-uniform doping concentration creates a non-uniform charge distribution of counterions in the surrounding fluid\(^{41,42}\), causing weak-ICEP flows and propulsion of the PN-0 microparticles when exposed to an AC electric field. To understand the relationship between the doping concentration, counterionic charge distribution, and polarizability, we also evaluated the surface potential for each silicon microparticle composition (in water) and found that the magnitude of the potential was in qualitative correlation to the particle propulsive speeds (see Supplementary Table 1). The most likely reason for this correlation is that particles with uniform doping (N-0) had a lower estimated surface potential than particles with non-uniform doping (PN-0).Particles with a metal contact (N-I and PN-I) had a higher estimated surface potential than particles with uniform doping (N-0) or particles that were symmetrically polarized (PN-II).

For the case of the N-I microparticles, the tracer beads revealed a flow toward the metal contact along the sides of the microparticle (Fig. 2e). In Supplementary Movie 2, the tracer beads are seen to...
flow at an average speed of 300 nm s\(^{-1}\) in the x-direction (note that the N-I microparticle propels with the non-metal side facing forward; as tracer beads predominately move in the opposite direction; Fig. 2f). As expected, the average velocity of the N-I microparticle was closely proportional to the square of the electric field strength (\(E^2 = 54.4 \text{ kV}^2 \text{ cm}^{-2}\)) and frequency (100 Hz). c The x- and y-velocity of tracer beads surrounding a PN-0 microparticle, indicating slow fluid flows. d Velocity of PN-0 microparticles as a function of the square of the electric field, indicating that their motion arises from weak-ICEP forces from the p-n junction. e Tracer beads flowing around an N-I microparticle at a fixed field strength (\(E^2 = 54.4 \text{ kV}^2 \text{ cm}^{-2}\)) and frequency (100 Hz). f The x and y-velocity of tracer beads surrounding an N-I microparticle, indicating fluid flows with an intermediate speed. g Velocity of N-I microparticles as a function of the square of the electric field, indicating motions are due to ICEP forces from the Au contact. h Tracer beads flowing around a PN-I microparticle at a fixed field strength (\(E^2 = 54.4 \text{ kV}^2 \text{ cm}^{-2}\)) and frequency (500 Hz). i The x and y-velocity of tracer beads surrounding a PN-I microparticle, indicating fast fluid flows. j Velocity of PN-I microparticles as a function of the square of the electric field, indicating motions are due to strong-ICEP forces via combined interactions from the p-n junction and the Au contact. Note: the propulsion characterization of the PN-II particles (or diode microparticles) is shown in Fig. 5. Each data point represents the average and SD (one above and one below for the error bars), as measured from five different microparticles in a single experiment. Scale bar = 20 \(\mu\text{m}\).
propelling by the combination of the p-n junction and the ICEP effect (from the metal) at 500 Hz. As expected, the average PN-I microparticle velocity was proportional to the square of the electric field (at a fixed frequency of 500 Hz; Fig. 2). Tracer experiments and polarization flow origins for the remaining types of microparticles (i.e., N-0 and PN-II) are discussed in Supplementary Note 8.

Overall, these results indicate that the p–n junction, metal contact, and the interface between the two materials contribute to the active propulsion of microparticles via ICEP, with the metal contact being more polarizable, as it drives much larger fluid flows. This makes it possible to program different modes of active electrical propulsion simply by changing the design of the microparticles. Importantly, as we discuss next, we can also control the fluid flows around the microparticles simply by changing the signal of the AC electric field, which can lead to direct control over the collective interactions between microparticles. Specifically, we show that we can electrically program the microparticles to: (i) continuously rebound in a controlled fashion (Fig. 3a), and (ii) controllably assemble and disassemble on demand by switching the frequency of the external electric field (Fig. 3b).

Cyclic attraction, repulsion, and reversible assembly of N-I microparticles. By making use of the well-controlled fluid flows around the N-I microparticles (Fig. 2e-g), we demonstrate the ability of a pair of microparticles to synchronously rebound (cyclically attract and repel; Fig. 3a). In Supplementary Movie 6 and Supplementary Movie 7 (100 Hz), two N-I microparticles propel in the same direction when sharing the same orientation (i.e., when the two metal contacts are aligned side-by-side). In this case, cyclic rebounding occurred as the particles drew closer around 4, 5, and 7 s. The N-I microparticles propelled by ICEP and approached each other due to long-range dipolar attraction forces. However, the rebounding occurred due to the overlap of the hydrodynamic flows (at low AC frequencies) driven by the double layer ion charges, in the moving liquid, around each microparticle (Fig. 2e-g). This collective swimming effect is a result of the asymmetric design of the N-I microparticles. We are not aware of previous reports demonstrating this type of synchronized swimming for diode microparticles and expect that in the future, it may be possible to design systems that take advantage of such synchronized swimming-rebounding dynamics. For example, Supplementary Movie 8 shows PN-0 microparticles also hydrodynamically rebounding at low AC frequencies (100 Hz), by weak-ICEP polarization forces. In this case, cyclic rebounding occurs due to the overlap of the hydrodynamic flows and when the microparticles share the same orientation (i.e., when the n-side of the particle are aligned side-by-side).

To investigate the effect of frequency modulation on microparticle interactions and dynamics, we analyzed the reversible assembly of two N-I particles by switching the frequency of an AC electric field (Fig. 3b). The particles actively propelled at low frequencies (<10 kHz) via ICEP and assembled into a short, staggered chain at high frequencies (≥10 kHz) via DEP. From t = 0.0–6.0 s (low frequencies), the microparticles separated due to the decrease in the polarizability of the ionic layer, from the metallic patches on the surface of the particles. Electrokinetically, the electric double layer has sufficient time to charge in this frequency regime and generate ionic flow that powers the microparticle to propel through the fluid. Physically, the particles separated and synchronously propelled due to the overlap of the hydrodynamic flows driven by the double layer charges in the moving liquid around each similarly oriented microparticle. The active propulsion of the N-I microparticles during their disassembled state can thus enable rapid mixing and rearrangement, which would otherwise be slow given the near-negligible diffusivity rate of the microparticles due to their size. However, from t = 6.0–12.0 s, a high-frequency electric signal was applied and ICEP was suppressed, thus allowing DEP to drive the microparticles to assemble. At 100 kHz, the mobility of the induced charges around the microparticles is suppressed, and thus they assemble spontaneously by dipolar attraction.

Interestingly, these two dynamical modes of attraction and repulsion are completely reversible. This process is shown in real time (Supplementary Movie 9) and is investigated more in detail later (Fig. 4).

Collective reversible assembly and disassembly of PN-0 and PN-I microparticles. Next, we investigated the switchable assembly and disassembly of ensembles of two types of microparticles (PN-0 and PN-I; Fig. 4). For the case of PN-0 microparticles, weak anisotropic polarization (weak-ICEP) forces propelled the particles through the fluid, as described above (Fig. 2b-d). As seen in Supplementary Movie 10 and Supplementary Movie 11 (at $E = 40 \text{kV}^2 \text{cm}^{-2}$), the microparticles propelled with the p-side facing forward, as expected. At low
The microparticles disassembled and propelled via weak anisotropic polarization forces from the metal contact caused the PN-0 microparticles to weakly repel, whereas the anisotropic polarization forces from the metal contact caused the PN-I microparticles to strongly repel. To further study the relationship between different propulsive mechanisms involved during the disassembly process, tracer experiments were performed on PN-0 and PN-I microparticles (see Supplementary Movie 18 and Supplementary Movie 19 performed at $E^2 = 40 \text{kV}^2 \text{cm}^{-2}$, and Supplementary Note 9 for details).

We also studied the dynamics of higher concentrations of PN-I microparticles (i.e., greater than 100 particles in a single microscope frame; see Supplementary Movie 14, Supplementary Movie 15, Supplementary Movie 16, and Supplementary Note 10 for details). These microparticles also statically assembled and disassembled around the frame frequency regimes as for the N-I particles (Fig. 3b), but their separation distances during disassembly varied (average separation distance for N-I microparticle was 5.4 μm after 1.0 s) as a function of particle composition (Fig. 4e). These data corroborate our findings from the hydrodynamic flows and variation in propulsive effects depending on microparticle composition (Fig. 2). Further, these particles assembled into straight chains at frequencies higher than those shown in Fig. 4 (i.e., 10 kHz), which was not reversible, unlike the staggered chains formed by PN-0 and PN-I microparticles.

Self-propulsion of PN-II diode microparticles. Finally, we investigated PN-II diode microparticles, which are the only electrically active diodes in this study due to the presence of metallic contacts on each side of the p–n junction. The electrical diode characteristics of the PN-II diode microparticle, was verified by measuring their $I–V$ (current–voltage) curves on the SOI substrate before lateral etching (Fig. 5b). Similar to the PN-0, N-I, and PN-I microparticles, the PN-II microparticles propelled through the fluid in response to an AC electric field. As established previously, the particles are polarized only in the positive half of the cycle, and rectified the AC electric field into a local DC potential12,13. This DC potential directionally propels the microparticles by electro-osmotic flows generated around their surfaces (Fig. 5a; see Supplementary Movie 17 performed at $E^2 = 40 \text{kV}^2 \text{cm}^{-2}$ to understand how the microparticles hydrodynamically propel by self-electroosmotic flows)12,13.

Once released from the substrate and exposed to an AC electric field (at a fixed field strength of $E^2 = 54.4 \text{kV}^2 \text{cm}^{-2}$), the tracking analysis revealed significant differences in the velocity of the asymmetrically polarized PN-I microparticles and the asymmetrically polarized N-I microparticles (Fig. 5c; note that this relationship was also examined for microparticles (i.e., PN-II); see Supplementary Note 7 for details). Both types of PN-I microparticles exhibited a strong frequency-dependent propulsion behavior. The particles attained higher speeds than the PN-II diode microparticles at low frequencies (<10 kHz), but were slower at high frequencies (≥10 kHz). In contrast, the PN-II diode microparticles demonstrated a frequency-dependent propulsion behavior different from all other compositions. Specifically, as the frequency increased above 10 kHz, the particles maintained their motion at nearly constant velocity. This finding reveals that strong-ICEP effects (from the metal contacts) dominate the motion of microparticles with one metal contact at low frequencies (i.e., <10 kHz), which does not occur with the
small ensembles of motile particles can be tuned by changing the frequency of the electric field. This demonstration shows silicon microparticles that can switch between multiple modes of active locomotion, while also being able to move in long-range coordinated cyclic manner and driven to rapidly assemble and disassemble on demand. This capability may give rise to systems that can form structured networks and liquefy to reconfigure into new structures, toward plastically deformable electronic circuits and synthetic neural networks. This level of "knob-controlled" dynamics provides a step forward in realizing the synthetic expression of natural systems such as atomic freezing and melting, as well as the formation of percolated gels.

We believe that understanding the physical characteristics of the semiconductor-oxide-liquid and the semiconductor-metal-oxide-liquid interfaces is critical to the design of new types of active semiconductor microparticles (see Supplementary Note 1 for details on the electrostatic potential across these key interfaces). The distribution of electronic charges in the semiconductor, the semiconductor-oxide interface, and the interaction between the oxide and metal surface engenders ionic charges in the surrounding liquid, which directly affects the propulsion and propulsion of the microparticles when subjected to AC electric fields. The doping profile of the microparticles has a significant effect on the formation of surface charges and on the electrostatic potential distribution in the fluid surrounding the microparticles, which thus affects the distribution of ions in the fluid and the multipolar interaction between groups of microparticles. Further, the choice of metal (e.g., ohmic or Schottky) could lead to very interesting behaviors and properties at the semiconductor-metal junction interface. Thus, the ability to engineer the interfacial (both internal and external) electrostatic properties of the semiconductor, along with their size, shape, and doping, is critical to the design of future motile assembling and self-reconfiguring microcircuits.

This study provides the groundwork for understanding the relationship between the design of semiconductor microparticles and their response to AC electric fields, which includes three phenomenologically distinct locomotive effects that lead to a wide variety of controllable interactions and switchable dynamics. We anticipate that further alterations in the geometry (e.g., shape and size), electrical properties (e.g., patterned dopant diffusion and metallization), insulating properties (e.g., integrating dielectric patterns), and applied field effects (e.g., electrical, and additionally, optical and magnetic) will result in higher-level functionalities that enable their use as a class of highly programmable active matter towards new types of electromechanical switches, artificial muscles, dynamically reconfigurable circuitry, dynamically reassembled bio-inspired neural networks, and other intriguing applications.

Methods

Cleanroom fabrication. Microparticles were fabricated in the Shared Materials Instrumentation Cleanroom Facility (SMiF) at Duke University (see Supplementary Note 1 for further details on the thin film silicon fabrication process). Briefly, the microparticles were defined on SOI wafers (100 orientation), which consisted of a 3.5 μm-thick n-type phosphorous-doped Si device layer (calculated back-ground donor density of device layer n_d_{sub} = 7.22 x 10¹⁴ cm⁻³, μ = 6.17 Ω⁻¹ cm, University Wafer, Inc.), bonded to a 2 μm-thick buried SiO2 (BOX) layer, bonded to a 525 μm-thick n-type antimony-doped Si handle substrate.

The thin film fabrication process began with a three-part standard RCA clean to remove organic contaminants (by 10 min of submersion in 5:1:1 H₂O:H₂O₂:NH₄OH), thin native oxide layers (by 5 s of submersion in a buffered oxide etchant (BOE)) and ionic contaminants (by 10 min of submersion in 6:1:1 H₂O:H₂O₂:HCl) on the surface of the device layer. The next step in the fabrication process depended upon the target structure and intended functionality of the particles. To fabricate particles with p-n junctions, a 150 nm-thick layer of SiO2 was grown on the surface of the device layer by heating the wafer to 1000 °C for 5 h in a high-temperature furnace (Tempress 6304 4-stack O2 atmosphere furnace), which served as a diffusion mask for formation of the p-n junction. Next, the thermal oxide was
patterned using topside photolithography (Karl Suss Mask Aligner M4E) and BOE was used to open the diffusion windows. The surface of the wafer was then coated with a boron-doped spin-on-glass (SOG, borosilicate film, surface concentration, $\rho_{\text{SOG}} = 6.57 \times 10^{19}$ cm$^{-3}$, Filmtronics, Inc.) to counter dope p-type regions into the device layer. The SOG was annealed at 1050°C for 17.5 h in a high-temperature furnace (to achieve high density of N_2 and O_2 atmosphere furnace) to achieve an estimated 3.5μm junction diffusion depth into the particle areas. Once the annealing process was complete, the residual dopant oxide was removed using a dry (Triton Technology Phantom II Reactive Ion Etcher (RIE)) and wetetch process (i.e., BOE).

Next, an array of 4 μm × 4 μm square metal contacts was aligned (Karl Suss Mask Aligner M4E), patterned (JSR Micro NFR Negative Photoresist Series) using topside photolithography, ashed in an O$_2$ plasma (Emitech K-1050X), vacuum deposited (Kurt Lesker PVD 75 Electron Beam Evaporator), and annealed (Ipielec JetFirst 100 RTA) using a rapid thermal annealer. Each of these steps were completed on each side of the p-n junction. A Titanium (Ti; 800 Å)-Nickel (Ni; 600 Å) stack was deposited on the n-side of the SOI substrate (see Supplementary Note 2, Supplementary Note 3, Supplementary Note 4, and Supplementary Note 5 for further details on the sacrificial release process). A small volume of microparticles, released in suspension, was extracted with a calibrated pipette. The sample was then washed three times (i.e., by centrifuging 2000 × g for 2 min, VWR Field optical microscope (Olympus SZ-61)).

Characterization. A representative set of devices (still attached to the substrate) was electrically probed using a source measurement unit (SMU; Keithley Instruments, Co.) to measure the I–V characteristic curve (see Supplementary Note 6 for further details on the characterization process for the microparticles). A 200 nm diameter, 2”-long tungsten cat whisker tip (Lucas Signatone, Corp.) was used to probe the metal electrodes. A DC voltage sweep was set up across the gold electrodes for characterization.

Experimental chamber and testing. The experimental chamber was constructed on a glass slide where two co-planar gold electrodes (10 cm long × 1 cm wide with a 3 mm inter-electrode gap) were vacuum deposited by evaporating 100 Å of Cr and 2000 Å of Au, respectively. The sample was then washed three times (i.e., by centrifuging 2000 × g for 2 min, VWR Field optical microscope (Olympus SZ-61)).

Received: 23 June 2017 Accepted: 9 April 2018

Data availability. The data that support the findings of this study are available from the authors upon request.

References

1. Pautot, S., Wyart, C. & Isacoff, E. Y. Colloid-guided assembly of oriented 3D networks. Nat. Methods, 575–740 (2008).

2. Al-Rabadi, A. N. Reversible logic neural networks. Proc. IEEE Int. Conf. Neural Netw. 4, 2677–2682 (2004).

3. Ducrot, É., He, M., Yi, G. R. & Pine, D. J. Colloidal alloys with preassembled 3D architectures. Science 358, 633–636 (2017).

4. Bricard, A., Caussin, J.-B., Desreuxmaux, N., Dauchot, O. & Bartolo, D. 3D colloidal self-assembly through orthogonal functionalizable patchy colloids. Nature 503, 95–98 (2013).

5. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

6. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

7. Takatori, S. C. & Brady, J. F. Forces, stresses and the (thermal) dynamics of active matter. Curr. Opin. Colloid Interface Sci. 21, 24–33 (2015).

8. Han, K., Bevan, M. & Velev, O. D. Feedback controlled colloidal self-assembly. Adv. Funct. Mater. 22, 3833–3839 (2012).

9. Zhang, J. & Granick, S. Natural selection in the colloid world: active chiral spirals. Faraday Discuss. 85, 1143 (2016).

10. Sharma, R. & Velev, O. D. Remote steering of self-propelling microcircuits by modulated electric field. Adv. Funct. Mater. 25, 5312–5319 (2015).

11. Chang, S. T., Paunov, V., Potev, D. N. & Velev, O. D. Rockerpowered self-propelling microparticles and micropumps based on miniatures. Nat. Mater. 6, 235–240 (2007).

12. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

13. Sacanna, S., Ross, L. & Pine, D. J. Magnetic click colloidal assembly. J. Am. Chem. Soc. 134, 6112–6115 (2012).

14. Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10, 698–703 (2011).

15. Han, K. et al. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Adv. Mater. 23, 6170–6178 (2011).

16. Nourhani, A. et al. Engineering contactless particle–particle interactions in active microswimmers. Adv. Mater. 29, 1703910 (2017).

17. Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

18. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living colloidal asters. Science 334, 956–940 (2010).

19. Aydogan, A., Lee, G., Lee, C. H. & Sessler, J. L. Reversible assembly and disassembly of receptor-decorated gold nanoparticles controlled by ion recognition. Chem. A Eur. J. 21, 2368–2376 (2015).

20. Hiramatsu, H. & Osterloh, F. E. pH-controlled assembly and disassembly of electrostatically linked CdSe-SiO2 and Au-SiO2 nanoparticle clusters. Langmuir 19, 7003–7011 (2003).

21. Acuna, G. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

22. Wang, Y., Zheng, X., Wang, Y., Pine, D. J. & Weck, M. Thermal regulation of colloidal materials architecture through orthogonal functionalizable patchy particles. Chem. Mater. 28, 3984–3989 (2016).

23. Liang, H. R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 1–4 (2010).

24. Calvo-Marziali, P. et al. Propulsion of nanowire diodes. Chem. Commun. 46, 1623 (2010).

25. Li, T. et al. Magnetically propelled fish-like nanowimmers. Small 12, 6098–6105 (2016).

26. Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).

27. Vilela, D., Parmar, J., Zeng, Y., Zhao, T. & Sanchez, S. Graphene-based microrobots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860–2866 (2016).

28. Soler, L., Magdanza, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013).

29. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1–6 (2016).

30. Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. Induced-charge electrophoresis of metallo-dielectric particles. Phys. Rev. Lett. 100, 058302 (2008).

31. Wang, S., Ma, F., Zhao, H. & Wu, N. Bulk synthesis of metal-organic hybrid dimers and their propulsion under electric fields. ACS Appl. Mater. Interfaces 16, 4560–4569 (2014).

32. Ma, F., Yang, X., Zhao, H. & Wu, N. Inducing propulsion of colloidal dimers by breaking the symmetry in electrohydrodynamic flow. Phys. Rev. Lett. 115, 208302 (2015).

33. Ma, F., Wang, S., Wu, D. T. & Wu, N. Electric-field-induced assembly and propulsion of chiral colloidal clusters. Proc. Natl Acad. Sci. USA 112, 5307–5312 (2015).

34. Li, J. et al. Magneto-acoustic hybrid nanomotor. Nano Lett. 15, 4814–4821 (2015).

35. Shields, C. W. IV & Velev, O. D. The evolution of active particles: toward externally powered self-propelling and self-reconfiguring particle systems. Science 353, 539–559 (2017).

36. Han, K., Shields IV, C. W. & Velev, O. D. Engineering of self-propelling micromotors and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201705953 (2018).

10.1038/s41467-018-04183-y
Acknowledgements

The National Science Foundation’s (NSF’s) Research Triangle Materials Research Science and Engineering Center (MRSEC; Grant DMR-1121107) and the NSF Graduate Research Fellowship Program (U.O.; Grant DGE-1106414) supported this work. This work was performed in part at the Duke University Shared Materials Instrumentation Facility (SMIF), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the NSF (Grant ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI). We gratefully acknowledge Professors Gabriel P. López and Dimiter Petsev in the Department of Chemical and Biological Engineering at the University of New Mexico for helpful early discussions.

Author contributions

U.O. designed the particles as well as carried out fabrication, experiments, electrical characterization, data analysis, and manuscript preparation. C.W.S. assisted with designing the particles, performing experiments, data analysis, and preparing the manuscript. K.H. carried out experiments, data analysis, and manuscript editing. T.T. provided fabrication guidance and assistance with editing the manuscript. O.D.V. provided theoretical guidance, experimental guidance, design of experiments, manuscript editing, and was a co-investigator of the primary supporting grant. N.J. provided theoretical guidance, fabrication guidance, design of experiments, manuscript editing, and was a co-investigator of the primary supporting grant.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-04183-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018