Theoretical and Experimental Approach Towards P-Cyano Stilbene Schiff Base as a Potential Linker in E-DNA Sensor

H M Yusoff1,2, N Hassan1,2 and K H Ku Bulat1
1Advanced Nanomaterials Research Group, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
2School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

E-mail: hanismy@umt.edu.my, norhafiefahassan@gmail.com, keriang@umt.edu.my

Abstract. This research aim to synthesis and characterize several p-cyano stilbene Schiff base molecules as a potential linker in electrochemical DNA sensor. Schiff base reaction is form from condensation reaction between primary amine and aldehyde at 79 °C using ethanol as solvent. All compounds are investigated and discussed by Fourier transform-infrared spectrometer (FTIR) and Uv-vis spectrophotometer. For computational study, structure drawings were constructed using GaussView 5.0. Geometry optimization has been carried out using density functional theory (DFT) at bB3LYP/6 31G and performed using Gaussian09 software. FTIR showed formation of C≡N stretching vibrations at 2224 cm⁻¹ also another important stretching at 1604 cm⁻¹ and 1249 cm⁻¹ which represent C=N and C-O mode respectively. In UV-vis, absorbance of C=N (imine) group can be observed at peak range 363 nm and transition of aromatic C=C can be seen at 238 nm. Theoretical and experimental results obtained are comparable and p-cyano stilbene Schiff base compounds were successfully synthesised and can be further applied as a linker in E-DNA sensor.

1. Introduction
Schiff base compounds has been applied in pharmaceutical and biological studies widely [1]. These compounds are also known for its low cost preparation and normally formed by the condensation of aldehydes with primary amines [2-4]. It is reported that Schiff base formed from aromatic aldehyde or aromatic ketones are stable with diverse structural aspects [5]. Application of Schiff base compounds in electrochemical DNA sensor seems as a promising approach. Development of biological sensor have started since 1960s [6]. Fabrication of biosensors include its materials and immobilization methods which required multidisciplinary research. To date there are many methods to detect enzymes, tissue and even DNA. One of the most sensitive and easiest method is electrochemical DNA sensor or known as E-DNA sensor [7].

This type of biosensor required a linker or recognition layer in the sensor system. Obtaining a suitable linker is very important in E-DNA sensor. The linker will be attached onto a suitable substrate. Typical substrates in E-DNA sensor are gold, platinum, silver or indium tin oxide (ITO). All molecular based biosensor reply on specific recognition and DNA probe must be sufficiently immobilised [8]. Furthermore, the length of linker may also affected DNA immobilisation pattern. Typical linker used in several studies normally involve molecules such as 3-mercaptopropionic acid (MPA) and 6-mercapto-1-hexanol (MCH) [9.10].
This paper focuses on synthesizing three different length of stilbene Schiff base having cyano at para position (p-stilbene) at one end of the synthesized molecule. Cyano group will bind with gold surface which act as metal substrate in E-DNA sensor application. Length were varied with 3, 6 and 9 carbon chain. The obtained compounds were also compared with theoretical study using Gaussian 09 software package program [11].

2. Experiment
2.1. Materials
All chemicals and solvents were purchased from Merck, Sigma Aldrich, Acros Organic, Fisher and HmbG chemicals and were used without further purification. To synthesis p-cyano stilbene Schiff base compounds, 4-(4-aminostyryl) benzonitrile was dissolved in 65 ml of ethanol and was treated with equivalent mole of 4-alkoxybenzaldehyde.

Then, the mixture was stirred under reflux for 2 hours and the solvent was reduced to half by using dean stark apparatus. The reaction was monitored by thin layer chromatography (TLC). Precipitate formed was recrystallized using acetonitrile. Figure 1 shows the experimental scheme to synthesis the respective compounds. Figure 2 shows all three different lengths of synthesized p-cyano stilbene Schiff base compounds.

![Figure 1](image.png)

Figure 1. Experimental procedures to synthesis p-cyano stilbene Schiff base.
2.2. Computational method
There are many computational chemistry methods and also theoretical studies about the determination of biological and chemical activity [12]. GaussView 5.0 has been used to do all the structure drawing. Calculations were performed with Gaussian 09 software package program [11]. In this study, quantum-chemical descriptors are suitable to determine the ranking of physical descriptors. The parameters involved are highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), the energy gap between LUMO and HOMO (ΔE_{GAP}), dipole moment (μ), hardness (η), softness (σ) and global electronegativity (χ). Density functional theory (DFT) methods named Becke, 3-parameter, Lee-Yang-Parr (B3LYP/6 31G d,p) was selected to analyse and the rest of the atoms were selected as basis sets. Equations 1 to 4 were used to calculate the physical descriptors.

$$\Delta E_{\text{GAP}} = E_{\text{LUMO}} - E_{\text{HOMO}}$$ \hspace{1cm} (1)

Hardness, $\eta = \frac{(E_{\text{LUMO}} - E_{\text{HOMO}})}{2}$ \hspace{1cm} (2)

Softness, $\sigma = \frac{1}{\eta}$ \hspace{1cm} (3)

Global electronegativity $\chi = -\frac{(E_{\text{LUMO}} + E_{\text{HOMO}})}{2}$ \hspace{1cm} (4)

Figure 3 shows one of p-stilbene molecule that has been optimised using DFT with B3LYP 6 31G DP parameters.

3. Results and discussion
3.1. Infrared (IR) Spectroscopic Analysis
Figure 4 shows FTIR spectra for all different length of p-cyano stilbene Schiff base molecules. All the prominent peaks which represent the functional group present in the compounds can be seen. Peaks ranging at 2967 to 2853 cm$^{-1}$ show the presence of C-H stretching of alkyl chain in the compound. Peak that represents C≡N can be seen 2224 cm$^{-1}$. Peaks ranging at 1604 to 1609 cm$^{-1}$ are the
characteristic absorption bands of carbon-nitrogen double bond of the imine group (\(-\text{HC}=\text{N}\)-) [13,14]. Furthermore, peaks at about 1249 cm\(^{-1}\) corresponds to the C-O stretching [12].

From Table 1, the values obtained from theoretical and experimental are comparable except for C-O stretching however the value obtained from experimental is still acceptable since the range for C-O stretching are from 1000 to 1300 cm\(^{-1}\).

Figure 4. FTIR spectra of p-nitro stilbene Schiff base compounds.

Table 1. Comparison of frequency assignments between theoretical and experimental.

Frequency Assignment	Theoretical (Wavenumber, cm\(^{-1}\))	Experimental (Wavenumber, cm\(^{-1}\))
C-H stretching (alkene/aromatic)	3090, 3114 and 3124	2879, 2940 and 2967
C-H stretching (alkane)	3045, 3055	2940, 2968
C-H stretching (alkane, CH\(_2\)-O, CH\(_2\)-N)	3002	2879
\(\text{C}=\text{N}\) stretching	2341	2224
\(\text{C}=\text{N}\) stretching	1614	1604
\(\text{C}=\text{C}\) stretching (aromatic)	1560, 1592	1565, 1584
C-H deformation	1421	1590
CH\(_3\) symmetry deformation	1344	1391
C-C asymmetry deformation (aromatic ring)	1307	1304
C-O (sp2) stretching	1067	1249
C-H deformation (out of phase)	1005	1164
C-O (sp3) stretching	920	973
C-H deformation (aromatic) [out of plane]	859	843
C-H asymmetry deformation (aromatic) [ring breathing]	639, 650	626, 641
C-H deformation [out of plane] (aromatic)	577	560

3.2. Ultraviolet-visible (UV-vis) spectroscopy

The Ultraviolet-visible (UV-vis) spectroscopy analysis of compound 3a-3b was done by using acetonitrile (1 x 10\(^{-5}\) M) as a solvent with cut-off point at 190.0 nm (Figure 5). The ultraviolet-visible
electronic spectra of three compounds showed the presence \(n-\pi^*\) and \(\pi-\pi^*\) electronic transitions of \(\text{C} = \text{C}\) (aromatic) at the wavelength of 238 nm. While, band at wavelength 363 nm indicate to the \(\pi-\pi^*\) electronic transition of the \(\text{C} = \text{N}\) group [13,14,15]. Table 2 shows the comparison of peak assignments of theoretical and experimental UV-Vis.

Figure 5. UV-Vis spectra of p-cyano stilbene Schiff base compounds.

Table 2. Peak assignment of UV-Vis spectra from theoretical finding.

Peak Assignment \(\lambda\)	Oscillator strength \(f (f \geq 0.01)\)	Transition
413	1.9767	HOMO \(\rightarrow\) LUMO \((\pi \rightarrow \pi^*)\)
275	0.3003	(HOMO-1) \(\rightarrow\) (LUMO+1) \((\pi \rightarrow \pi^*)\)
254	0.0885	(HOMO-2) \(\rightarrow\) (LUMO+1) \((\pi \rightarrow \pi^*)\)
218	0.1187	(HOMO-6) \(\rightarrow\) (LUMO+1) \((\pi \rightarrow \pi^*)\) (HOMO-1) \(\rightarrow\) (LUMO+5) \((\pi \rightarrow \pi^*)\)

3.3. Physical descriptors calculation

HOMO is an important quantum chemical descriptor and mainly associated with electron donating ability of molecule. The higher the value of HOMO, the higher the tendency of electron transfer to acceptor molecule. LUMO value indicates that the electron-accepting ability of the molecules is higher. Lower value of \(E_{\text{gap}}\) explains the eventual charge transfer interaction taking place within the molecules. The lower value of this descriptor shows that the molecule is more active [12].
Table 3. Calculated quantum physical descriptors at B3LYP method.

	p-cyano stilbene 3C	p-cyano stilbene 6C	p-cyano stilbene 9C
E_{SCF}	-1150.6497	-1268.5992	-1386.5489
Dipole moment, μ (Debye)	9.6513	9.8435	9.8745
E_{HOMO}	-0.20153	-0.20128	-0.20128
E_{LUMO}	-0.07735	-0.07721	-0.07729
ΔE_{gap}	3.38	3.38	3.37
Hardness, η (eV)	1.69	1.69	1.68
Softness, σ (eV$^{-1}$)	0.5917	0.5917	0.5952
Global Electronegativity, χ (eV)	3.79	3.79	3.79

Generally there is no significant change in value obtained from the calculated physical descriptors especially for ΔE_{gap}, hardness, η and softness, σ since the attached functional group is the same which is cyano. Chemical hardness is associated with the stability and reactivity of a chemical system. Soft molecules are preferable because they can easily interact with biological molecules.

4. Conclusions

Three different length of p-cyano stilbene Schiff base compounds has been successfully synthesized and characterized. Experimental results obtained in FTIR analysis is comparable with theoretical study using Gaussian 09 at B3LYP 6-31G (d, p). These molecules will be further applied as a linker in E-DNA sensor and will be studied in both experimental and theoretical level. DFT is a promising tool to study theoretical aspect of recognition layer’s length in E-DNA sensor.

5. References

[1] Karamunge K G and Vibhute Y B 2013 J Phys: Conf. Ser. 423 1-6
[2] Sashikala S and Shafi S S 2014 Der. Pharm. Lett. 6(2) 90-97
[3] Sidappa K, Sunilkumar B M and Deene M 2014 Bioinorg. Chem. Appl. http://dx.doi.org/10.1155/2014/343540
[4] Nataliya E B, Marina D R and Yuri A U 2007 Chem. Rev. 107(1) 46-79
[5] Al-Garawi Z S, Tomi R and Al-Daraji A 2014 E J. Chem. 9(2) 962-969
[6] Parikhia M 2016 J. Oral. Biol. Craniofac. Res. 6(2) 153-159
[7] Fernandes A, Zhang F and Sun X 2014 Int. J. Curr. Microbiol. Appl. Sci. 3(4) 750–759
[8] Wang Q, Zhang B, Lina X and Weng W 2011 Sens. Actuators B 156 599–605
[9] McEwan G, Chen F and Zhou A 2009 Anal. Chim. Acta. 643 26-37
[10] Lee H, Kang YO and Choi S 2014 Int. J. Electrochem Sci. 9 6793-6808
[11] Roy D, Todd K and John M 2009 GaussView Version 5, Semichem Inc. Shawnee Mission
[12] Mirsada S, Sukrija H, Selma SH, Alem A, Zilha A and Davorka Z 2014 Glas. Hem. Tehnol Bosne Hercegovine 42 31-36
[13] Ibrahim H 2009 Journal of Al-Nahrain University 12(4) 1-6
[14] Hussain Z, Yousif E, Ahmed A and Altaie A 2014 Org. Med. Chem. Lett. 4 1
[15] Issa R, Khedr A and Rizk H 2005 Spectrochim. Acta Part A 62 621-629

Acknowledgments

We would like to thank the Ministry of Higher Education (MOHE) for research grant FRGS vot number 59383 and Universiti Malaysia Terengganu (UMT) for giving us financial support and opportunity to be involved in this research.