Neutrino oscillation phenomenology and impact of Professor Masatoshi Koshiba

OSAMU YASUDA

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Abstract

Neutrino oscillation phenomenology is briefly reviewed, and impact of the late Professor Masatoshi Koshiba on research on neutrino oscillation is discussed from the viewpoint of phenomenology.

1 Introduction

Since the announcement of the discovery of atmospheric neutrino oscillation by the Superkamiokande Collaboration [1] in 1998, there has been remarkable progress in research on neutrino oscillation. In this article I briefly describe neutrino oscillation phenomenology and I emphasize the impact of Professor Koshiba on neutrino oscillation study.

2 Three flavor neutrino oscillation

2.1 Preliminary

If we assume neutrino mass, we have to describe neutrinos in terms of the Dirac equation for spinors with masses. The mass eigenstates \(\nu_j \) \((j = 1, 2, 3)\) of neutrinos with mass \(m_j \) in vacuum can be described by the free Dirac equation. The Dirac equation of a spinor with mass \(m \) and momentum \(\vec{p} \) has the energy eigenvalues \(E, E, -E, -E \) where \(E \equiv \sqrt{\vec{p}^2 + m^2} \). If we extract one component with the positive energy of \(\nu_j \), then the mass eigenstates \(\nu_j \) \((j = 1, 2, 3)\) of neutrinos satisfy the Dirac equation in vacuum

\[
\frac{d}{dt} \nu_j(t) = E_j \nu_j(t), \quad E_j \equiv \sqrt{\vec{p}^2 + m_j^2}. \tag{1}
\]

On the other hand, the flavor eigenstates of neutrinos \((\nu_e, \nu_\mu, \nu_\tau)^T \) are those which can be observed in the processes \(\nu_e + n \to e^- + p, \nu_\mu + n \to \mu^- + p, \nu_\tau + n \to \tau^- + p \). The mass \((\nu_1, \nu_2, \nu_3)^T \) and flavor \((\nu_e, \nu_\mu, \nu_\tau)^T \) eigenstates of the neutrino sector are related by

\[
\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix},
\]

where

\[
U \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}s_{13}e^{i\delta} & s_{13}e^{-i\delta} \\ -c_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}. \tag{2}
\]
is the 3×3 unitary neutrino mixing matrix [2] [3], $\theta_{12}, \theta_{23}, \theta_{13}$ are three mixing angles, δ is a CP phase, and $c_{jk} \equiv \cos \theta_{jk}$, $s_{jk} \equiv \sin \theta_{jk}$. It is known that the propagation of neutrinos in matter is described with the matter effect [4] [5]:

$$i \frac{d}{dt} \begin{pmatrix} \nu_e(t) \\ \nu_\mu(t) \\ \nu_\tau(t) \end{pmatrix} = M \begin{pmatrix} \nu_e(t) \\ \nu_\mu(t) \\ \nu_\tau(t) \end{pmatrix}$$

$$M \equiv [U \text{diag}(E_1, E_2, E_3) U^{-1} + \text{diag}(A_{CC} + A_{NC}, A_{SC}, A_{NC})]$$

$$= [U \text{diag}(0, \Delta E_{21}, \Delta E_{31}) U^{-1} + \text{diag}(A_{CC}, 0, 0) + (E_1 + A_{NC}) \mathbf{1}]$$

where $\Delta E_{jk} \equiv E_j - E_k \simeq (m_j^2 - m_k^2)/2|\tilde{p}| \equiv \Delta m^2_{jk}/2|\tilde{p}| \simeq \Delta m^2_{jk}/2E$,

$$A_{CC} \equiv \sqrt{2} G_F N_e = \begin{pmatrix} \rho \overline{\nu}_e \end{pmatrix} \begin{pmatrix} Y_e/0.5 \end{pmatrix} \times 1.0 \times 10^{-13} \text{ eV}$$

$$A_{NC} \equiv - \frac{1}{\sqrt{2}} G_F N_n = - \begin{pmatrix} \rho \overline{\nu}_n \end{pmatrix} \begin{pmatrix} 1 - Y_e/0.5 \end{pmatrix} \times 5.0 \times 10^{-14} \text{ eV}$$

stand for the matter effect due to the charged and neutral current interactions, N_e and N_n stand for the density of electrons and neutrons, $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$ is the Fermi coupling constant, and $Y_e = N_p/(N_p + N_n)$ is the relative number density of electrons in matter, where N_p represents the number of protons per unit volume. Since the term which is proportional to the 3×3 identity matrix $\mathbf{1}$ only affects the overall phase of the probability amplitude $A(\nu_\alpha \to \nu_\beta)$, $(E_1 + A_{NC}) \mathbf{1}$ in Eq. (4) can be ignored.

2.2 Mixing angles and mass squared differences

If the density is constant, then Eq. (3) can be formally diagonalized as

$$M = \tilde{U} \text{diag} \left(\tilde{E}_1, \tilde{E}_2, \tilde{E}_3 \right) \tilde{U}^{-1},$$

where \tilde{E}_j ($j = 1, 2, 3$) are the energy eigenvalues of M in matter, and \tilde{U} is a unitary matrix which diagonalizes M. The probability $P(\nu_\alpha \to \nu_\beta)$ can be expressed as

$$P(\nu_\alpha \to \nu_\beta) = \delta_{\alpha\beta} - 4 \sum_{j<k} \Re(\tilde{U}_{\alpha j} \tilde{U}_{\beta j}^* \tilde{U}_{\alpha k}^* \tilde{U}_{\beta k}) \sin^2 \left(\frac{\Delta \tilde{E}_{jk} L}{2} \right)$$

$$- 2 \sum_{j<k} \Im(\tilde{U}_{\alpha j} \tilde{U}_{\beta j}^* \tilde{U}_{\alpha k}^* \tilde{U}_{\beta k}) \sin(\Delta \tilde{E}_{jk} L),$$

where $\Delta \tilde{E}_{jk} \equiv \tilde{E}_j - \tilde{E}_k$.

From the parametrization [2], the simplest mixing angle to determine is θ_{13}. If we consider the disappearance experiment of reactor neutrinos with a baseline length $L=2$ km, where the mean neutrino energy is $E \simeq 4$ MeV, and if we assume that the contribution from the smaller mass squared difference $\Delta m^2_{31}/L/2E$ is small, then, because the matter effect, which appears in the form of $A_{CC} L/2 \sim L/(4000 \text{ km})$ in the oscillation probability, can be ignored, and we obtain

$$P(\tilde{\nu}_e \to \tilde{\nu}_e) \simeq 1 - 4 |U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2 \left(\frac{\Delta m^2_{31} L}{4E} \right)$$

$$= 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2_{31} L}{4E} \right).$$

Eq. (6) has the same form as the oscillation probability in the two flavor framework, and one can get information on θ_{13} from the result which is expressed in terms of the two flavor oscillation analysis. From the negative result of the CHOOZ reactor neutrino experiment [6], we obtain

$$\sin^2 2\theta_{13} \lesssim 0.15 \quad \text{for} \quad |\Delta m^2_{31}| = 2.5 \times 10^{-3} \text{eV}^2 \quad (90\% \text{ CL})$$

Eq. (7) shows that θ_{13} is small, so we can put $\theta_{13} \to 0$ in the zeroth approximation. If we consider the case where $|\Delta E_{21}| \simeq |\Delta m^2_{21}/2E| \ll |\Delta E_{31}| \simeq |\Delta m^2_{31}/2E| \sim A_{CC}$, then the term
which is proportional to \(\Delta E_{21} \) in Eq. (4) can be ignored, so \(\theta_{12} \) as well as \(\theta_{13} \) disappear, the \(\nu_e \) state decouples from the \(\nu_\mu \) and \(\nu_\tau \) states (i.e., the matter effect disappears from the sector of \(\nu_\mu \) and \(\nu_e \)), and we get

\[
P(\nu_\mu \to \nu_\mu) \simeq 1 - 4|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)
\]

\[
\simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right).
\] (8)

Again Eq. (8) has the same form as the oscillation probability in the two flavor framework. From the results of atmospheric neutrino measurements of the Superkamiokande experiment \cite{1}, we have

\[
\sin^2 \theta_{23} \simeq 0.5 \tag{9}
\]

\[
|\Delta m_{31}^2| \simeq 2.5 \times 10^{-3} \text{eV}^2. \tag{10}
\]

Notice that the sign of \(\Delta m_{31}^2 \) cannot be determined from Eq. (8) because it is invariant under the change of the sign of \(\Delta m_{31}^2 \). The mass pattern for \(\Delta m_{31}^2 > 0 \) (\(\Delta m_{31}^2 < 0 \)) is called Normal (Inverted) Ordering, and is depicted in Fig. 1.

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{mass_patterns.png}
\caption{Two mass patterns: (a) Normal Ordering (\(\Delta m_{31}^2 > 0 \)), (b) Inverted Ordering (\(\Delta m_{31}^2 < 0 \)). Both mass patterns are allowed as of 2021.}
\end{figure}
\end{center}

As for (\(\theta_{12}, \Delta m_{21}^2 \)), there are two ways to determine them. The first one is from KamLAND \cite{7}, the long baseline reactor experiment. If we put \(\theta_{13} \to 0 \) again, then in the zeroth approximation we have \(A_{cc} \ll |\Delta E_{21}| \simeq |\Delta m_{21}^2/2E| \ll |\Delta E_{31}| \simeq |\Delta m_{31}^2/2E| \), because the matter effect, which appears in the form of \(A_{cc}L \sim L/(2000 \text{ km}) \) in the oscillation probability, can be ignored. Hence we obtain the oscillation probability

\[
P(\bar{\nu}_e \to \bar{\nu}_e) \simeq 1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right), \tag{11}
\]

which has the same form as the oscillation probability in the two flavor framework. From the KamLAND result, we get

\[
\sin^2 \theta_{12} \simeq 0.3 \tag{12}
\]

\[
|\Delta m_{21}^2| \simeq 8 \times 10^{-5} \text{eV}^2. \tag{13}
\]

The other way to determine (\(\theta_{12}, \Delta m_{21}^2 \)) is from solar neutrino observations. In the case of solar neutrinos, we have to take into account the fact that the density of electrons varies (we know now that it varies adiabatically) from the production point of neutrinos near the center of the Sun all the way to the Earth. If we assume that the electron density varies adiabatically, then the oscillation probability \(P(\nu_e \to \nu_e) \) is given by

\[
P(\nu_e \to \nu_e) = \sum_{j,k} \tilde{U}_{ej}(L)\tilde{U}_{ek}^*(0)\tilde{U}_{ej}^*(0)\tilde{U}_{ek}(0) \exp \left(-i \int_0^L dt \Delta \tilde{E}_{jk} \right), \tag{14}
\]

where
where \(t = 0 \) (\(t = L \)) stands for the production (detection) point, and we discuss here
detection of solar neutrinos during the day, i.e., the density at the detection point is approxi-
mately zero. Since the distance \(L \) between the Sun and the Earth is literally astronomically
large, we have \(|\int_0^L dt \Delta E_{jk}| \gg 1 \) (\(j \neq k \)), so by averaging over rapid oscillations, we can put
\[
\exp(-i \int_0^L dt \Delta E_{jk}) \to \delta_{jk}
\]
Thus we get
\[
P(\nu_e \to \nu_e) = \sum_j \tilde{U}_{ej}(L)\tilde{U}_{ej}^*(L)\tilde{U}_{ej}(0)\tilde{U}_{ej}(0) = \sum_j |U_{ej}|^2|\tilde{U}_{ej}(0)|^2,
\]
where the mixing matrix \(\tilde{U}(L) \) at the detection point \(t = L \) was replaced by the one \(U \) in vacuum
because the density there is assumed to be zero. If take the limit \(\theta_{13} \to 0 \), then Eq. (15) reduces
to the two flavor case. In the two flavor case, the effective mixing angle is given by
\[
\cos 2\theta_{12} = \frac{1}{\Delta E_{21}} (\Delta E_{21} \cos 2\theta_{12} - A_{CC}) ,
\]
\[
\Delta E_{21} = \left\{ [\Delta E_{21} \cos 2\theta_{12} - A_{CC}]^2 + (\Delta E_{21} \sin 2\theta_{12})^2 \right\}^{1/2}.
\]
Since the effective mixing matrix elements in the two flavor case are given by \(|\tilde{U}_{e1}(0)|^2 = \cos^2 \theta_{12} \)
and \(|\tilde{U}_{e2}(0)|^2 = \sin^2 \theta_{12} \), we have
\[
P(\nu_e \to \nu_e) \approx \frac{1}{2} \left(1 + \cos 2\theta_{12} \frac{\Delta E_{21} \cos 2\theta_{12} - A_{CC}(0)}{\Delta E_{21}(0)} \right),
\]
where the argument (0) stands for the quantity evaluated at the production point of neutrinos.
From the oscillation probability (16) and the data of various experiments which measure \(P(\nu_e \to \nu_e) \)
at different solar neutrino energies, the following results are obtained [8]:
\[
\sin^2 \theta_{12} \approx 0.3
\]
\[
\Delta m_{21}^2 \approx 6 \times 10^{-5}\text{eV}^2
\]
which are approximately consistent with the results [12] and [13] from KamLAND. Notice that the
result from solar neutrino measurements is powerful to determine the sign of \(\Delta m_{21}^2 \) because of the
matter effect, while KamLAND gives little information on the sign of \(\Delta m_{21}^2 \) since the oscillation probability (11)
for KamLAND is basically that in vacuum and therefore it is invariant under the
change of the sign of \(\Delta m_{21}^2 \).

2.3 Parameter degeneracy
To determine the CP phase \(\delta \), precise measurements of the oscillation probabilities are required,
since the effect of \(\delta \) appears only in the combination of \(s_{13}e^{\pm i\delta} \) as we can see from Eq. (2). It is
expected that long baseline accelerator-based experiments are advantageous to perform precise
measurements, because one can control the baseline length and the neutrino energy. Conventional
neutrino beams, which can be obtained from pion decays, are \(\nu_\mu \) and \(\bar{\nu}_\mu \), so \(\nu_\mu \to \nu_e \) and \(\bar{\nu}_\mu \to \bar{\nu}_e \)
are the two major channels to determine the CP phase. Now the question is, given the appearance
probabilities \(P(\nu_\mu \to \nu_e) = \text{constant} \equiv P \) and \(P(\bar{\nu}_\mu \to \bar{\nu}_e) = \text{constant} \equiv \bar{P} \) in addition to the
disappearance probabilities \(P(\nu_\mu \to \nu_\mu) = \text{constant} \) and \(P(\bar{\nu}_\mu \to \bar{\nu}_\mu) = \text{constant} \), is it possible to
determine \(\delta \) uniquely? The answer to this question turns out to be negative because there can be
8 possible values for \(\delta \), and this is called 8-fold parameter degeneracy. In the approximation to
second order in \(\theta_{13} \) and \(\Delta m_{21}^2 \), the appearance probabilities can be written as [9] [10]
\[
P(\nu_\mu \to \nu_e) = x^2 P^2 + 2 \text{sign}(\Delta m_{31}^2) xy F g \cos \left[\delta + \text{sign}(\Delta m_{31}^2) \Delta \right] + y^2 g^2 = P
\]
\[
P(\bar{\nu}_\mu \to \bar{\nu}_e) = x^2 \bar{P}^2 + 2 \text{sign}(\Delta m_{31}^2) xy \bar{F} g \cos \left[\delta - \text{sign}(\Delta m_{31}^2) \Delta \right] + y^2 g^2 = \bar{P}
\]
where
\[x \equiv s_{23} \sin 2\theta_{13} \]
\[y \equiv \alpha c_{23} \sin 2\theta_{12} \]
\[(F, \bar{F}) = \begin{cases} (f, \bar{f}) & \text{for NO} \\ (\bar{f}, f) & \text{for IO} \end{cases} \]
\[\left\{ \begin{array}{l} f \\ \bar{f} \end{array} \right\} = \frac{\sin(\Delta + A_{\text{CC}} L/2)}{(1 + A_{\text{CC}} L/2\Delta)} , \]
\[g \equiv \frac{\sin(A_{\text{CC}} L/2)}{A_{\text{CC}} L/2\Delta} \]
\[\Delta = \frac{|\Delta m^2_{31}| L}{4E} = 1.27 \times \frac{(|\Delta m^2_{31}|/\text{eV}^2)(L/\text{km})}{(E/\text{GeV})} \]
\[\alpha \equiv \left| \frac{\Delta m^2_{31}}{\Delta m^2_{21}} \right| \]

Defining \(X \equiv \sin^2 2\theta_{13} \), \(Y \equiv 1/s_{23}^2 \), and eliminating \(\delta \), we obtain the following expression from Eqs. (19) and (20) [11]:
\[
16CX(Y - 1) = \frac{1}{\cos^2 \Delta} \left[\left(\frac{P - C}{F} + \frac{\bar{P} - C}{F} \right) (Y - 1) - (F + \bar{F})X + \frac{P}{F} + \frac{\bar{P}}{F} \right]^2 \\
+ \frac{1}{\sin^2 \Delta} \left[\left(\frac{P - C}{F} - \frac{\bar{P} - C}{F} \right) (Y - 1) - (F - \bar{F})X + \frac{P}{F} - \frac{\bar{P}}{F} \right]^2 ,
\]
where
\[C \equiv \left(\frac{\Delta m^2_{21}}{\Delta m^2_{31}} \right)^2 \left[\frac{\sin(A_{\text{CC}} L/2)}{A_{\text{CC}} L/2\Delta} \right]^2 \sin^2 2\theta_{12} . \]

Eq. (22) gives a quadratic curve in the \((X, Y)\)-plane. At the oscillation maximum \((|\Delta m^2_{31}| L/4E = \pi/2)\), the numerator of the first term on the right hand side of Eq. (22) must vanish, and it yields a straight line in the \((X, Y)\)-plane:
\[
\left(\frac{P - C}{F} + \frac{\bar{P} - C}{F} \right) (Y - 1) - (F + \bar{F})X + \frac{P}{F} + \frac{\bar{P}}{F} = 0 .
\]

Eqs. (22) and (23) are depicted in Fig. 2 (a) and (b).

Figure 2: Parameter degeneracy for Normal Ordering and Inverted Ordering: (a) Off the oscillation maximum \((|\Delta m^2_{31}| L/4E \neq \pi/2)\), (b) At the oscillation maximum \((|\Delta m^2_{31}| L/4E = \pi/2)\). In the case of (a), there are eight solutions with a different value of \(\delta \). In the case of (b), there are four solutions with two-fold degeneracy.
As can be seen from Fig. 2, there are eight (four) solutions in general off (at) the oscillation maximum. This parameter degeneracy is in general eight fold [10], since there are two intersections between the curve (22) and \(\gamma = \) constant due to quadratic nature of the curve (23) (intrinsic degeneracy [12]), there are two curves depending on whether the mass ordering is Normal (red in Fig. 2) or Inverted (blue) (sign degeneracy [13]), and there are two possibilities for the \(\theta_{23} \) octant given a value of \(\sin^2 2\theta_{23} \) (octant degeneracy [14]). The problem with this parameter degeneracy is that the value of \(\delta \) is different for a different point in Fig. 2 and we must resolve this degeneracy to determine \(\delta \) precisely. In particular, it is known [10] that the value of \(\delta \) depends strongly on the mass ordering, so even if the long baseline experiment is done at the oscillation maximum, resolution of sign degeneracy is important to determine \(\delta \).

2.4 Status of measurements of the oscillation parameters

Measurements of \(\theta_{13} \) have been done by the appearance channel \(\nu_\mu \rightarrow \nu_e \) at the accelerator neutrino experiments, T2K [15], MINOS [16], and by the disappearance channel \(\bar{\nu}_e \rightarrow \bar{\nu}_e \) at the reactor neutrino experiments, Double-CHOOZ [17], Daya Bay [18] and Reno [19], and \(\theta_{13} \) has been determined precisely. On the other hand, the two long baseline experiments, T2K [20] and Nova [21] are performed approximately at the oscillation maximum, so the present situation is approximately described by (b) of Fig. 2.

Ref.	Date of update	Param	Value	Value	Value			
22 w SK-ATM	29 Nov 2021	\(\sin^2 \theta_{12}/10^{-1} \)	3.04\(+0.12\)\(-0.12\)	2.69 \rightarrow 3.43	3.03\(+0.13\)\(-0.13\)	2.63 \rightarrow 3.45	3.18\(+0.16\)\(-0.16\)	2.71 \rightarrow 3.69
23 w SK-ATM	28 Sep 2021	\(\theta_{12}/^\circ \)	83.5\(+0.8\)\(-0.8\)	31.3 \rightarrow 35.9	33.4\(+0.8\)\(-0.8\)	30.9 \rightarrow 36.0	34.3\(+1.0\)\(-1.0\)	31.4 \rightarrow 37.4
24 w SK-ATM	19 Jan 2021	\(\sin^2 \theta_{23}/10^{-1} \)	4.50\(+0.19\)\(-0.16\)	4.08 \rightarrow 6.03	4.55\(+0.18\)\(-0.15\)	4.16 \rightarrow 5.99	5.74\(+0.14\)\(-0.14\)	4.34 \rightarrow 6.10
		\(\theta_{23}/^\circ \)	42.1\(+1.1\)\(-0.9\)	39.7 \rightarrow 50.9	42.4\(+1.0\)\(-0.9\)	40.2 \rightarrow 50.7	49.3\(+0.7\)\(-0.8\)	41.2 \rightarrow 51.3
		\(\sin^2 \theta_{13}/10^{-2} \)	2.25\(+0.06\)\(-0.06\)	2.06 \rightarrow 2.44	2.2\(+0.07\)\(-0.06\)	2.04 \rightarrow 2.44	2.20\(+0.07\)\(-0.06\)	2.00 \rightarrow 2.41
		\(\theta_{13}/^\circ \)	8.62\(+0.13\)\(-0.12\)	8.25 \rightarrow 8.98	8.59\(+0.12\)\(-0.12\)	8.21 \rightarrow 8.99	8.53\(+0.12\)\(-0.12\)	8.13 \rightarrow 8.92
		\(\delta/^\circ \)	230\(+36\)\(-25\)	144 \rightarrow 350	274\(+25\)\(-27\)	139 \rightarrow 355	194\(+24\)\(-27\)	128 \rightarrow 359
		\(\Delta m^2_{21}/10^{-5} \text{ eV}^2 \)	7.42\(+2.01\)\(-2.02\)	6.82 \rightarrow 8.04	7.36\(+1.16\)\(-1.15\)	6.93 \rightarrow 7.93	7.50\(+1.22\)\(-1.20\)	6.94 \rightarrow 8.14
		\(\Delta m^2_{3\text{ atm}}/10^{-3} \text{ eV}^2 \)	2.51\(+0.03\)\(-0.03\)	2.43 \rightarrow 2.59	2.49\(+0.02\)\(-0.03\)	2.40 \rightarrow 2.57	2.55\(+0.02\)\(-0.03\)	2.47 \rightarrow 2.63
		\(\Delta \chi^2=7.0 \)						
		\(\Delta \chi^2=6.5 \)						
		\(\Delta \chi^2=6.4 \)						

Table 1: The updated results of global fit by the three groups. The definition of the mass squared difference \(\Delta m^2_{\text{atm}} \) of atmospheric neutrino oscillation is different for different groups. Although two different results, with and without the Superkamiokande atmospheric neutrino data, are presented in Ref. [22], only those with the atmospheric neutrino data are quoted. Normal ordering gives the best fit, but the significance of NO over IO is not strong enough to exclude IO yet.

Table 1 gives the results by the three groups [21, 23, 22] for the values of the mixing angles and the mass squared differences from global analysis of solar neutrinos (Chlorine [23], Gallex/GNO [26], SAGE [27], and Super-Kamiokande [28, 29, 30], SNO [31], and Borexino [32, 33, 34, 35]) KamLAND [36], atmospheric neutrinos (Super-Kamiokande [36] and IceCube/DeepCore [37, 38]) medium baseline reactor neutrinos (Double Chooz [39], Daya Bay [40], and RENO [41]), disappearance chan-
nel at accelerator-based long baseline experiments (MINOS [42], T2K [43], and NOvA [44]), and appearance channel at accelerator-based long baseline experiments (MINOS [45], T2K [43], and NOvA [44]). As can be seen from Eq. (21), the matter effect appears in the form $A_{CC}L/2 \sim L/4000$ km. Since the baseline lengths of T2K and Nova are not long enough to satisfy $A_{CC}L/2 \sim O(1)$, the results by these long baseline experiments are not conclusive enough to determine the mass pattern as of 2021. Octant degeneracy is also unresolved.

2.5 Prospect of future experiments

![Figure 3: Sensitivity of the future experiments and their combinations to the unknown quantities in the case of normal ordering [49]. Left panel: Significance of mass ordering as a function of the true value of the CP phase δ. Middle panel: Significance of octant as a function of the true value of θ_{23}. Right panel: $\Delta \chi^2 = \{\text{significance of CP violation}(\sigma)\}^2$ as a function of the true value of the CP phase δ. The horizontal straight line in each panel stands for 5σ which corresponds to discovery.

The quantities which are not determined as of 2021 are the pattern of mass ordering (the two mass patterns in Fig.1 are allowed at present), the octant of θ_{23} (in other words the sign of $(\theta_{23} - 45^\circ)$) and the CP phase δ. Determination of the mass ordering, the octant of θ_{23} and the CP phase δ is expected to be carried out in the future long baseline experiments, T2HK [46] and DUNE [47]. The figure 3 shows the sensitivity of these experiments together with atmospheric neutrino measurements at the Hyperkamiokande (HK) experiment [48] to the unknown quantities. The DUNE experiment has a baseline length $L=1300$ km, and it has the highest sensitivity to the mass ordering and the significance to reject wrong mass ordering is at least 7σ for any value of δ. T2HK has a short baseline length $L=295$ km, and it has therefore poor sensitivity to the mass ordering, but if it is combined with the HK atmospheric neutrino data, then the significance to reject wrong mass ordering is at least 4σ. Octant degeneracy is expected to be solved if $|\theta_{23} - 45^\circ| > 3^\circ$ if we combine T2HK, DUNE and HK atmospheric neutrinos. As for the CP phase, unless δ is close to 0 or 180$^\circ$, DUNE, the combination of T2HK and atmospheric neutrino observation at HK and the combination of all these can exclude the hypothesis $\delta = 0$ or $\delta = 180^\circ$.

3 New physics beyond the Standard Model with massive three neutrinos

As of 2021, there are several anomalies which cannot be accounted for by the standard three-flavor framework. One is a class of anomalies which may be explained if we assume the existence of light sterile neutrinos [50] whose mass is of order 1 eV. These are the results of LSND [51], MiniBooNE [52], reactor antineutrino anomaly [53, 54] and gallium anomaly [55]. Also the recent IceCube data [56] suggests a mild preference for light sterile neutrinos in the disappearance channel
$\nu_\mu \rightarrow \nu_\mu + \bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$. The other anomaly is the discrepancy between the mass squared differences of the solar and KamLAND experiments. This may be explained if we assume either flavor-dependent nonstandard interactions during the propagation of neutrinos, or light sterile neutrinos whose mass squared difference is of order 10^{-5} eV2. These anomalies have attracted a lot of attention because they may provide us a key to physics beyond the Standard Model.

3.1 Light sterile neutrinos

If we assume four flavor and mass eigenstates, then the fourth flavor eigenstate must be sterile neutrino state ν_s, which is singlet with respect to the gauge group of the Standard Model because the number of weakly interacting light neutrinos is three from the LEP data. So the equation of motion is described by the following 4×4 Hamiltonian:

$$i \frac{d}{dt} \begin{pmatrix} \nu_e(t) \\ \nu_\mu(t) \\ \nu_\tau(t) \\ \nu_s(t) \end{pmatrix} = M \begin{pmatrix} \nu_e(t) \\ \nu_\mu(t) \\ \nu_\tau(t) \\ \nu_s(t) \end{pmatrix} \quad (24)$$

$$M \equiv [U \text{ diag}(E_1, E_2, E_3, E_4) U^{-1}] + \text{diag}(A_{CC}, 0, 0, -A_{NC}) + A_{SC} \mathbf{1}$$

$$= [U \text{ diag}(0, \Delta E_{21}, \Delta E_{31}, \Delta E_{41}) U^{-1}] + \text{diag}(A_{CC}, 0, 0, -A_{NC}) + (E_1 + A_{SC}) \mathbf{1}, \quad (25)$$

The 4×4 mixing matrix U has 6 mixing angles and 3 CP phases, and one of the parametrization for U is given by

$$U = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, 0) R_{14}(\theta_{14}, \delta_{14}) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0), \quad (26)$$

where $R_{ij}(\theta_{ij}, \delta_i)$ are the complex rotation matrices in the ij-plane defined as:

$$[R_{ij}(\theta_{ij}, \delta_i)]_{pq} = \begin{cases} \cos \theta_{ij} & p = q = i, j \\ 1 & p = q \neq i, j \\ \sin \theta_{ij} e^{-i\delta_{ij}} & p = i; q = j \\ -\sin \theta_{ij} e^{i\delta_{ij}} & p = j; q = i \\ 0 & \text{otherwise}. \end{cases}$$

The angles $\theta_{14}, \theta_{24}, \theta_{34}$ stand for the mixing of oscillations at short baseline experiments of reactor neutrino ($\bar{\nu}_e \rightarrow \bar{\nu}_e$) and radioactive sources ($\nu_e \rightarrow \nu_e$), that of oscillations at short baseline accelerator neutrino experiments ($\nu_\mu \rightarrow \nu_\mu$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$), and the ratio between $\nu_\mu \rightarrow \nu_\tau$ and $\nu_\mu \rightarrow \nu_\tau$ at short baseline accelerator neutrinos experiments, respectively. In the limit $\theta_{34} \rightarrow 0$ ($j = 1, 2, 3$), the mixing is reduced to the PMNS paradigm with $\delta = \delta_{13}$. In the case of four neutrino mixing scenarios, there are two schemes, the (2+2)-scheme (Fig 4(a)) and the (3+1)-scheme (Fig 4(b)). The (2+2)-scheme is excluded by combining the constraints from the solar and atmospheric neutrinos. On the other hand, in the (3+1)-scheme, three massive states must be in the lower side as in Fig 4(b) because the one with three massive states in the upper side is excluded by the cosmological bound $\sum m_j \lesssim 0.5$ eV (95% C.L.).

![Figure 4: Two schemes of four neutrino mixing. (a): (2+2)-scheme, (b): (3+1)-scheme.](image-url)
If the neutrino energy E and the baseline length L satisfy $|\Delta m^2_{21} L/E| \sim O(1)$ for the value $\Delta m^2_{21} \gtrsim 0.1$ eV2, then the contributions from the smaller mass squared differences Δm^2_{31} and Δm^2_{21} become negligible, and the oscillation probability in vacuum can be expressed as

$$
P(\nu_\alpha \to \nu_\beta) \approx P(\bar{\nu}_\alpha \to \bar{\nu}_\beta) \approx |\delta_{\alpha\beta} - \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{\Delta m^2_{21} L}{4E}\right)| ,
$$

where

$$
\sin^2 2\theta_{\alpha\beta} = 4|U_{\alpha4}|^2 |U_{\beta4}|^2 \left(1 - |U_{\epsilon4}|^2\right)\left(1 - |U_{\mu4}|^2\right) = 4|U_{\alpha4}|^2 |U_{\beta4}|^2 = 4 \sin^2 2\theta_{14} \left(1 - \sin^2 2\theta_{14}\right) \left(1 - c_{14}^2 s_{24}^2\right)
$$

so the formula for the oscillation probability reduces to that in the two flavor framework. In the following subsections, we will discuss the three channels $(\alpha, \beta) = (e, e), (\mu, e)$ and (μ, μ). In the parametrization of Eq. (20), we have the following mixing angle:

$$
\sin^2 2\theta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) = 4 \sin^2 2\theta_{14} \ \ (27)
$$

$$
\sin^2 2\theta_{\mu e} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) = 4 \sin^2 2\theta_{14} \left(1 - \sin^2 2\theta_{14}\right) \left(1 - c_{14}^2 s_{24}^2\right) \ \ (28)
$$

$$
\sin^2 2\theta_{\mu \mu} = 4|U_{\mu4}|^2 |U_{e4}|^2 = s_{24}^2 \sin^2 2\theta_{14} \ \ (29)
$$

3.1.1 $\nu_e \to \nu_e$ channel

To probe neutrino oscillations $\nu_e \to \nu_e$ or $\bar{\nu}_e \to \bar{\nu}_e$ for the region of 0.1 eV$^2 \lesssim \Delta m^2 \lesssim 10$ eV2, short baseline experiments of electron antineutrinos from reactors or electron neutrinos from radioactive sources have been performed. In 2011 the flux of the reactor neutrino was recalculated in Ref. [63, 54] and it was claimed that the normalization is shifted by about $+3\%$ on average. If their claim on the reactor neutrino flux is correct, then neutrino oscillation with $\Delta m^2 \gtrsim 1$ eV2 may be concluded from a re-analysis of 19 reactor neutrino results at short baselines [64]. This is called reactor antineutrino anomaly. The result in 2019 by Daya Bay [65] disfavors the new flux of reactor antineutrinos [64, 54] from the shape analysis of the energy spectrum. However, as far as the overall normalization of reactor antineutrinos is concerned, there is uncertainty which is as large as that of the difference between the old and new flux [66] and it is not clear whether the reactor antineutrino anomaly is disfavored from the result of Ref. [65]. Among the recent short baseline reactor neutrino experiments, NEOS [67], DANS [68], STEREO [69], PROSPECT [70] and Neutrino-4 [71], the only experiment which had an affirmative result is Neutrino-4.

On the other hand, it was pointed out in Ref. [55] that the measured and predicted 71Ge production rates differ in the gallium radioactive source experiments GALLEX and SAGE, and this is called gallium anomaly. The recent affirmative result of the BEST experiment [72] is consistent with the region in $(\sin^2 2\theta_{14}, \Delta m^2_{31})$ which was suggested by Ref. [55], although most of the BEST region is disfavored by the reactor experiments except Neutrino-4.

Fig. 5 shows the results of reactor and radioactive source neutrino experiments. There are criticisms on significance of the affirmative results and the readers are referred to Ref. [73] for references. To observe the oscillation pattern at short baseline experiments with low energy, it is necessary to have a detector with very good energy resolution and to have relatively small size of a reactor core. This is the reason why short baseline experiments become difficult for $\Delta m^2_{21} \gtrsim \text{several eV}^2$. In Ref. [74] it was suggested that we may be able to improve sensitivity to $\sin^2 2\theta_{14}$ by observing high energy atmospheric neutrino shower events at a neutrino telescope whose size is at least ten times as large as the IceCube facility. The reason why observation of high energy neutrinos with a very long baseline length is advantageous is because there can be enhancement of the effective mixing angle in matter and therefore the sensitivity can be improved.

3.1.2 $\nu_\mu \to \nu_\mu$ channel

Neutrino oscillations $\nu_\mu \to \nu_\mu$ or $\bar{\nu}_\mu \to \bar{\nu}_\mu$ for the region of 0.1 eV$^2 \lesssim \Delta m^2 \lesssim 100$ eV2 have been searched by experiments with accelerator (CDHSW [76], CCFR [77], MiniBooNE/SciBooNE [78] and MINOS/MINOS+ [79]) as well as atmospheric (Superkamiokande [80] and IceCube [54]) neutrinos. Most of these experiments had negative results, and the only experiment which obtained
Figure 5: The excluded and allowed region for $\nu_e \rightarrow \nu_e$ or $\bar{\nu}_e \rightarrow \bar{\nu}_e$ channel. The curves of DayaBay+Bugey (90%CL) [75], NEOS (90%CL) [67], DANSS (90%CL) [68], STEREO (95%CL) [69] and PROSPECT (95%CL) [70] stand for negative results. Those of gallium anomaly (95%CL) [55], reactor antineutrino anomaly (RAA) (95%CL) [64, 54], Neutrino-4 (90%CL) [71] and BEST (95%CL) [72] are affirmative ones.
an affirmative result is IceCube [56], although its significance is weak, i.e., no sterile neutrino hypothesis is disfavored only by \(\Delta \chi^2 = 4.94 \) for two degrees of freedom, naively corresponding to 1.7\(\sigma \) in the Gaussian distribution.

Fig. 6 shows the results of experiments for disappearance channel of \(\nu_\mu \) or \(\bar{\nu}_\mu \).

3.1.3 \(\nu_\mu \rightarrow \nu_e \) channel

Several accelerator-based neutrino experiments have been performed in the past to search for oscillations \(\nu_\mu \rightarrow \nu_e \) or \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \). The only two experiments which reported an affirmative result are LSND [51] and MiniBooNE [52]. Since the early stage of sterile neutrino oscillation study, it has been known \[81, 82\] that the LSND region in the \((\Delta m^2, \sin^2 2\theta) \)-plane has tension with other negative results in the disappearance channels \(\nu_e \rightarrow \nu_e \) and \(\nu_e \rightarrow \nu_\mu \). By defining \(\sin^2 2\theta_{\alpha\beta} (\alpha, \beta = \mu, e) \) as a value of the horizontal coordinate as a function of \(\Delta m^2_{41} \) in Figs 6 and 5 from Eqs. (27) and (28), negative results in the two channels \(\nu_e \rightarrow \nu_e \) and \(\nu_\mu \rightarrow \nu_\mu \) at a given value of \(\Delta m^2_{41} \) indicate

\[
4|U_{e4}|^2 \left(1 - |U_{e4}|^2 \right) < \sin^2 2\theta_{ee} \left(1 - |U_{e4}|^2 \right) < \sin^2 2\theta_{\mu\mu}.
\]

On the other hand, from Eq. (30), an affirmative result in the channel \(\nu_\mu \rightarrow \nu_e \) leads to

\[
4|U_{\mu4}|^2 |U_{e4}|^2 = \sin^2 2\theta_{\mu e}.
\]

Assuming \(|U_{e4}|^2 \ll 1, |U_{\mu4}|^2 \ll 1 \), we have the following inequality at a given value of \(\Delta m^2_{41} \):

\[
\sin^2 2\theta_{\mu e} < \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}.
\]

\(\sin^2 2\theta_{ee} \) (\(\sin^2 2\theta_{\mu\mu} \)) can be regarded as the strongest bound from the negative results of the disappearance channel \(\nu_e \rightarrow \nu_e \) (\(\nu_\mu \rightarrow \nu_\mu \)). The value of \((1/4) \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \) at 90%CL is plotted as a function of \(\Delta m^2_{41} \) in Fig. 7 (indicated as “disappearance(n)” together with the allowed regions suggested by LSND and MiniBooNE, and other negative results. Eq. (31) indicates that the allowed region of LSND or MiniBooNE should be the left side of the curve \((1/4) \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \) but the MiniBooNE region is on the right side of the “disappearance(n)” curve for all the values of \(\Delta m^2_{41} \) and the LSND region is either on the right side the “disappearance(n)” curve or it is disfavored by the negative results of other experiments at 90%CL. Thus the results by LSND and MiniBooNE are disfavored by the negative results of other experiments. On the other hand, if we take the affirmative results by Neutrino-4 of \(\nu_e \rightarrow \nu_e \) and IceCube of \(\nu_\mu \rightarrow \nu_\mu \) seriously, then the allowed region is the region which is referred to as “disappearance(a)” in Fig. 7. In this case, the mixing \(\sin^2 2\theta_{\mu e} \) in the appearance probability \(P(\nu_\mu \rightarrow \nu_e) \) can be smaller than the present upper bound by more than one order of magnitude for \(\Delta m^2_{41} \sim 7 \ eV^2 \) or 9 \(eV^2 \), and some part of the “disappearance(a)” region in Fig. 7 is still consistent with all other experiments in the past except LSND and MiniBooNE.

The anomalies of LSND, reactor and gallium provide the main motivation to study sterile neutrino oscillations. Search for sterile neutrinos in the same channel \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \) as that of LSND is still on-going [83], and it is hoped that these anomalies will be confirmed in the future.

3.2 Non-standard interactions in propagation

If there is a flavor-dependent neutrino non-standard interaction (NSI) in neutrino propagation:

\[
L_{\text{NSI}} = -2\sqrt{2} \epsilon_{\alpha\beta}^{f'f} G_F (\bar{\nu}_L \gamma^\mu \nu_L) (\bar{f'} P^\gamma f) ,
\]

where \(f \) and \(f' \) are the fermions with chirality \(P \), \(\epsilon_{\alpha\beta}^{f'f} \) is a dimensionless constant normalized in terms of the Fermi coupling constant \(G_F \), then the matter potential in the flavor basis is modified as

\[
A = \begin{pmatrix}
1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\
\epsilon_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\
\epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau}
\end{pmatrix} ,
\]

(34)
Figure 6: The excluded and allowed region for $\nu_\mu \rightarrow \nu_\mu$ or $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ channel. The curves of CDHSW (90%CL) [76], CCFR (90%CL) [77], MiniBooNE/SciBooNE (90%CL) [78], Superkamiokande (90%CL) [80] and MINOS/MINOS+ (90%CL) [79] stand for negative results. That of IceCube (90%CL) [56] is affirmative one.
Figure 7: The excluded and allowed region for $\nu_\mu \to \nu_e$ or $\bar{\nu}_\mu \to \bar{\nu}_e$ channel. The curves of E776 (90%CL) [84], KARMEN2 (90%CL) [85] and NOMAD (90%CL) [86] stand for negative results. Those of LSND (90%CL) [51] and MiniBooNE (90%CL) [52] are affirmative ones. “Disappearance(n)” stands for the constraint at 90%CL from the negative results of disappearance channels $\nu_e \to \nu_e$ ($\bar{\nu}_e \to \bar{\nu}_e$) and $\nu_\mu \to \nu_\mu$ ($\bar{\nu}_\mu \to \bar{\nu}_\mu$) as is given by Eq. (31). “Disappearance(a)” stands for the possible region at 90%CL which can be inferred if we take seriously the two affirmative results of disappearance channels, i.e., Neutrino-4 ($\bar{\nu}_e \to \bar{\nu}_e$) and IceCube ($\nu_\mu \to \nu_\mu$ and/or $\bar{\nu}_\mu \to \bar{\nu}_\mu$).
where $A \equiv \sqrt{2} G_F N_e$ stands for the matter effect, $\epsilon_{\alpha\beta}$ is defined by $\epsilon_{\alpha\beta} \equiv \sum_{f=e,u,d}(N_f/N_e)\epsilon^f_{\alpha\beta}$ and N_f ($f = e, u, d$) stands for number densities of fermions f. Here we defined the new NSI parameters as $\epsilon^f_{\alpha\beta} \equiv \epsilon^f_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}$ since the matter effect is sensitive only to the coherent scattering and only to the vector part in the interaction.

It was pointed out [57] that there was tension at 2σ between the mass squared difference from the solar neutrino data ($\Delta m^2_{21} \simeq 4 \times 10^{-5} \text{eV}^2$) and that of the KamLAND experiment ($\Delta m^2_{21} = 7.5 \times 10^{-5} \text{eV}^2$). Ref. [58] showed that a nonvanishing value of the new NSI parameters $\epsilon^f_{\alpha\beta}$ solves this tension. This fact gives a motivation to take seriously NSI in propagation. The significance of the anomaly was approximately 2σ in 2016 [57], but it has reduced to 1.4σ in 2020 [30]. If the significance keeps decreasing in the future, then this should not be listed in the list of anomalies.

4 Impact of Professor Koshiba on neutrino physics

Today we have a lot of information on neutrinos, such as the two mass squared differences, three mixing angles, and a hint of a CP violating phase. In the process of gaining such information, Professor Masatoshi Koshiba made outstanding contributions to the field, by the Kamiokande experiment which was proposed by him in 1979 [57] and was started in 1983, and by the Superkamiokande experiment which was again proposed by him in 1983 [58] and was started in 1996. The significant feature of the Kamiokande and Superkamiokande experiments is that they give information on the energy spectrum and the zenith angle dependence of neutrinos, which plays a crucial role in discovering neutrino oscillations. He even proposed an idea of a Mega-ton class water Cherenkov detector in 1992 [90], and it is now being turned into reality as the Hyperkamiokande experiment [48]. Now it is evident that huge numbers of neutrino events are required to determine the leptonic CP phase, and a Mega-ton class water Cherenkov detector is ideal for that purpose.

In the standard framework of three massive neutrinos, the remaining quantities to be measured are the sign of Δm^2_{31}, the sign of $\theta_{23} - 45^\circ$, and the CP phase δ. These quantities are expected to be determined by the huge underground neutrino experiments in the near future. On the other hand, to complete the picture of the Standard Model with three massive neutrinos, we need to exclude the anomalies mentioned in Section 3. If we cannot exclude or confirm them by the experiments in the near future, then we may need a new type of experiments, which even Professor Koshiba could not imagine.

Acknowledgments

When I was an undergraduate student, I had an opportunity to participate in an experiment under Prof. Koshiba’s guidance. Some twenty years later when we organized NuFact04 Summer Institute at Tokyo Metropolitan University, Prof. Koshiba kindly accepted our invitation to give a talk [91] for students and postdocs, who were strongly impressed by his presentation. I would like to thank Prof. Koshiba for many things; for his guidance during my undergraduate studies, for giving a wonderful talk at NuFact04 Summer Institute, and among others, for his great contributions to neutrino physics. This research was partly supported by a Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, under Grants No. 18K03653, No. 18H05543 and No. 21K03578.

References

[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562 doi:10.1103/PhysRevLett.81.1562 [hep-ex/9807003].
[2] B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549].

1It was initially named JACK (Japan-America Collaboration at Kamioka), and was named Superkamiokande in 1984 [89].
2It was named DOUGHNUTS (Detector Of Under-Ground Hideous Neutrinos from Universe and from Terrestrial Sources) in Ref. [90].
[3] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870. doi:10.1143/PTP.28.870

[4] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

[5] S. P. Mikheyev and A. Y. Smirnov, Sov. J. Nucl. Phys. 42 (1985), 913-917

[6] M. Apollonio et al. [CHOOZ], Phys. Lett. B 466 (1999), 415-430 doi:10.1016/S0370-2693(99)01072-2 arXiv:hep-ex/9907037 [hep-ex].

[7] K. Eguchi et al. [KamLAND], Phys. Rev. Lett. 90 (2003), 021802 doi:10.1103/PhysRevLett.90.021802 arXiv:hep-ex/0212021 [hep-ex].

[8] J. Hosaka et al. [Super-Kamiokande], Phys. Rev. D 73 (2006), 112001 doi:10.1103/PhysRevD.73.112001 arXiv:hep-ex/0508053 [hep-ex].

[9] A. Cervera, A. Donini, M. B. Gavela, J. J. Gomez Cadenas, P. Hernandez, O. Mena and S. Rigolin, Nucl. Phys. B 579 (2000), 17-55 [erratum: Nucl. Phys. B 593 (2001), 731-732] doi:10.1016/S0550-3213(00)00221-2 arXiv:hep-ph/0002108 [hep-ph].

[10] V. Barger, D. Marfatia and K. Whisnant, Phys. Rev. D 65 (2002), 073023 doi:10.1103/PhysRevD.65.073023 arXiv:hep-ph/0112119 [hep-ph].

[11] O. Yasuda, New J. Phys. 6 (2004), 83 doi:10.1088/1367-2630/6/1/083 arXiv:hep-ph/0405005 [hep-ph].

[12] J. Burguet-Castell, M. B. Gavela, J. J. Gomez-Cadenas, P. Hernandez and O. Mena, Nucl. Phys. B 608 (2001) 301 hep-ph/0103258.

[13] H. Minakata and H. Nunokawa, JHEP 0110 (2001) 001 hep-ph/0108085.

[14] G. L. Fogli and E. Lisi, Phys. Rev. D 54 (1996) 3667 hep-ph/9604145.

[15] K. Abe et al. [T2K], Phys. Rev. Lett. 107 (2011), 041801 doi:10.1103/PhysRevLett.107.041801 arXiv:1106.2822 [hep-ex].

[16] P. Adamson et al. [MINOS Collaboration], Phys. Rev. Lett. 107 (2011) 181802 arXiv:1108.0015 [hep-ex].

[17] Y. Abe et al. [DOUBLe-CHOOZ Collaboration], Phys. Rev. Lett. 108 (2012) 131801 arXiv:1112.6353 [hep-ex].

[18] F. P. An et al. [DAYA-BAY Collaboration], Phys. Rev. Lett. 108 (2012) 171803 arXiv:1203.1669 [hep-ex].

[19] J. K. Ahn et al. [RENO Collaboration], Phys. Rev. Lett. 108 (2012) 191802 arXiv:1204.0626 [hep-ex].

[20] K. Abe et al. [T2K], Phys. Rev. D 103 (2021) no.11, 112008 doi:10.1103/PhysRevD.103.112008 arXiv:2101.03779 [hep-ex].

[21] M. A. Acero et al. [NOvA], arXiv:2108.08219 [hep-ex].

[22] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Universe 7 (2021) no.12, 459 doi:10.3390/universe7120459 arXiv:2111.03089 [hep-ph].

[23] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Phys. Rev. D 104 (2021) no.8, 083031 doi:10.1103/PhysRevD.104.083031 arXiv:2107.00532 [hep-ph].

[24] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola and J. W. F. Valle, JHEP 02 (2021), 071 doi:10.1007/JHEP02(2021)071 arXiv:2006.11237 [hep-ph].

[25] B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain and J. Ullman, Astrophys. J. 496 (1998), 505-526 doi:10.1086/305343
[26] F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Phys. Lett. B 685 (2010), 47-54 doi:10.1016/j.physletb.2010.01.030 [arXiv:1001.2731 [hep-ex]].

[27] J. N. Abdurashitov et al. [SAGE], Phys. Rev. C 80 (2009), 015807 doi:10.1103/PhysRevC.80.015807 [arXiv:0901.2200 [nucl-ex]].

[28] J. P. Cravens et al. [Super-Kamiokande], Phys. Rev. D 78 (2008), 032002 doi:10.1103/PhysRevD.78.032002 [arXiv:0803.4312 [hep-ex]].

[29] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 83 (2011), 052010 doi:10.1103/PhysRevD.83.052010 [arXiv:1010.0118 [hep-ex]].

[30] Y. Nakajima, “Recent results and future prospects from Super-Kamiokande,” Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. doi:10.5281/zenodo.3959640.

[31] B. Aharmim et al. [SNO], Phys. Rev. C 88 (2013), 025501 doi:10.1103/PhysRevC.88.025501 [arXiv:1109.0763 [nucl-ex]].

[32] G. Bellini, J. Benziger, D. Bick, S. Bonetti, G. Bonfini, M. Buizza Avanzini, B. Caccianiga, L. Cadonati, F. Calaprice and C. Carraro, et al., Phys. Rev. Lett. 107 (2011), 141302 doi:10.1103/PhysRevLett.107.141302 [arXiv:1104.1816 [hep-ex]].

[33] G. Bellini et al. [Borexino], Phys. Rev. D 82 (2010), 033006 doi:10.1103/PhysRevD.82.033006 [arXiv:0808.2868 [astro-ph]].

[34] G. Bellini et al. [BOREXINO], Nature 512 (2014) no.7515, 383-386 doi:10.1038/nature13702.

[35] A. Gando et al. [KamLAND], Phys. Rev. D 88 (2013) no.3, 033001 doi:10.1103/PhysRevD.88.033001 [arXiv:1303.4667 [hep-ex]].

[36] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 97 (2018) no.7, 072001 doi:10.1103/PhysRevD.97.072001 [arXiv:1710.09126 [hep-ex]].

[37] M. G. Aartsen et al. [IceCube], Phys. Rev. D 91 (2015) no.7, 072004 doi:10.1103/PhysRevD.91.072004 [arXiv:1410.7227 [hep-ex]].

[38] J. P. Yanez et al. [IceCube], “IceCube Oscillations: 3 Years Muon Neutrino Disappearance Data,” http://icecube.wisc.edu/science/data/nuosc.

[39] T. Bezerra, “New Results from the Double Chooz Experiment,” Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. doi:10.5281/zenodo.3959542.

[40] D. Adey et al. [Daya Bay], Phys. Rev. Lett. 121 (2018) no.24, 241805 doi:10.1103/PhysRevLett.121.241805 [arXiv:1809.02261 [hep-ex]].

[41] J. Yoo, “RENO,” Proc. of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. https://doi.org/10.5281/zenodo.3959698.

[42] P. Adamson et al. [MINOS], Phys. Rev. Lett. 110 (2013) no.25, 251801 doi:10.1103/PhysRevLett.110.251801 [arXiv:1304.6335 [hep-ex]].

[43] P. Dunne, “Latest Neutrino Oscillation Results from T2K,” Proc. of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. doi:10.5281/zenodo.3959558.

[44] A. Himmel, “New Oscillation Results from the NOvA Experiment,” Proc. of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. doi:10.5281/zenodo.3959581.

[45] P. Adamson et al. [MINOS], Phys. Rev. Lett. 110 (2013) no.17, 171801 doi:10.1103/PhysRevLett.110.171801 [arXiv:1301.4581 [hep-ex]].
[46] K. Abe et al. [Hyper-Kamiokande Proto-Collaboration], PTEP 2015 (2015), 053C02 doi:10.1093/ptep/ptv061 [arXiv:1502.05199 [hep-ex]].

[47] R. Acciarri et al. [DUNE Collaboration], arXiv:1512.06148 [physics.ins-det].

[48] K. Abe et al., “Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —,” arXiv:1109.3262 [hep-ex].

[49] S. Fukasawa, M. Ghosh and O. Yasuda, Nucl. Phys. B 918 (2017) 337 doi:10.1016/j.nuclphysb.2017.02.008 [arXiv:1607.03758 [hep-ph]].

[50] K. N. Abazajian et al., arXiv:1204.5379 [hep-ph].

[51] A. Aguilar et al. [LSND Collaboration], Phys. Rev. D 64 (2001) 112007 [arXiv:hep-ex/0104049].

[52] A. A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Rev. D 103 (2021) no.5, 052002 doi:10.1103/PhysRevD.103.052002 [arXiv:2006.16883 [hep-ex]].

[53] T. A. Mueller et al., Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663 [hep-ex]].

[54] P. Huber, Phys. Rev. C 84 (2011) 024617 Erratum: [Phys. Rev. C 85 (2012) 029901] doi:10.1103/PhysRevC.85.029901, 10.1103/PhysRevC.84.024617 [arXiv:1106.0687 [hep-ph]].

[55] C. Giunti and M. Laveder, Phys. Rev. D 77 (2008) 093002 [arXiv:0707.4593 [hep-ph]].

[56] M. G. Aartsen et al. [IceCube], Phys. Rev. Lett. 125 (2020) no.14, 141801 doi:10.1103/PhysRevLett.125.141801 [arXiv:2005.12942 [hep-ex]].

[57] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 94 (2016) no.5, 052010 doi:10.1103/PhysRevD.94.052010 [arXiv:1606.07538 [hep-ex]].

[58] M. C. Gonzalez-Garcia and M. Maltoni, JHEP 1309 (2013) 152 doi:10.1007/JHEP09(2013)152 [arXiv:1307.3092 [hep-ph]].

[59] M. Maltoni and A. Y. Smirnov, Eur. Phys. J. A 52 (2016) no.4, 87 doi:10.1140/epja/i2016-16087-0 [arXiv:1507.05287 [hep-ph]].

[60] M. M. Guzzo, A. Masiero and S. T. Petcov, Phys. Lett. B 260 (1991) 154.

[61] E. Roulet, Phys. Rev. D 44 (1991) 935.

[62] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01 doi:10.1093/ptep/ptaa104

[63] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6 (2004) 122 doi:10.1088/1367-2630/6/1/22 [hep-ph/0405172].

[64] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribe and A. Le-tourneau, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755 [hep-ex]].

[65] D. Adey et al. [Daya Bay], Phys. Rev. Lett. 123 (2019) no.11, 111801 doi:10.1103/PhysRevLett.123.111801 [arXiv:1904.07812 [hep-ex]].

[66] A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman and G. Jonkmans, Phys. Rev. Lett. 112 (2014), 202501 doi:10.1103/PhysRevLett.112.202501 [arXiv:1309.4146 [nucl-th]].

[67] Y. J. Ko et al. [NEOS], Phys. Rev. Lett. 118 (2017) no.12, 121802 doi:10.1103/PhysRevLett.118.121802 [arXiv:1610.05134 [hep-ex]].

[68] I. Alekseev et al. [DANSS], Phys. Lett. B 787 (2018), 56-63 doi:10.1016/j.physletb.2018.10.038 [arXiv:1804.04046 [hep-ex]].

[69] H. Almazán et al. [STEREO], Phys. Rev. D 102 (2020) no.5, 052002 doi:10.1103/PhysRevD.102.052002 [arXiv:1912.06582 [hep-ex]].
[90] M. Koshiba, “Observational neutrino astrophysics,” Phys. Rept. 220 (1992), 229-381
doi:10.1016/0370-1573(92)90083-C

[91] M. Koshiba, “The history of neutrino physics and the future,” Talk at 3rd International School on Neutrino Factories and Superbeams (NuFact04 Summer Institute),
http://musashi.phys.se.tmu.ac.jp/NuFact04_SI/lectures/koshiba-e.pdf