Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

ECMO in tropical diseases

Suneel Kumar Pooboni

Division of Pediatric Critical Care, Mafraq Hospital, Mafraq, Abu Dhabi, United Arab Emirates

A R T I C L E I N F O

Article history:
Received 4 December 2018
Accepted 10 December 2018
Available online 17 December 2018

Keywords:
Tropical diseases
ECMO
ARDS
Myocarditis
Poisonings

A B S T R A C T

Diseases prevalent in tropics present with varied manifestations compared to diseases that occur commonly in the temperate climate (the West). Tropical diseases contribute to significant mortality and morbidity. If diagnosed at the right time, tropical diseases have good prognosis too. Utilizing the useful function of supporting the cardio-pulmonary status in these critically ill disease states would be very useful to save thousands of lives each year. As these diseases are not frequent in the West, apart from reporting the experiences in the form of an anecdotal case report, much guidance is not available in their management.

© 2018 The Egyptian College of Critical Care Physicians. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diseases prevalent in the tropics present with varied manifestations compared to diseases that occur commonly in temperate climates like in the West. Tropical diseases contribute to significant mortality and morbidity. If diagnosed at the right time, tropical diseases have good prognosis too. Utilizing the useful function of supporting the cardio-pulmonary status in these critically ill disease states would save thousands of lives each year. As these diseases are not frequent in the West, apart from reporting the experiences in the form of an anecdotal case, much guidance is not available in their management. We hold the great responsibility of providing the world with guidance on managing these tropical diseases on ECMO. Some of the examples are: Severe malaria with ARDS, Tuberculosis with secondary infections, Typhus fevers, Rickettsiosis, ARDS in H1N1, Middle East Respiratory Distress Syndrome (MERS) virus and similar viral infections, Chagas disease, Legionellosis, Envenomations such as Scorpion sting with severe vaso-dilatory shock, Snake bites, Myocarditis due to Dengue, Diphtheria, Scrub typhus, Poisonings etc. The list could be longer and these patients could be supported with the underlying understanding of managing the reversible phase of these critically ill diseases with ECMO support when they don’t respond to maximal conventional management (Table 1).

2. Infections presenting as ARDS

A variety of bacterial and viral infections present with an ARDS picture in tropical countries. Besides the usual gram positive infections, increasing number of gram negative organisms are being reported as causative organisms. Management of multi-drug resistant strains and variability in availability of pure drug formulations might contribute to additional challenges. In fact, infections are responsible for 20% increase in the mortality rate in ECMO outcomes compared to the western world [1]. When gas exchange can’t be achieved with maximal conventional management, ECMO would be a potential option in these reversible conditions. In diseases such as Pulmonary/Miliary Tuberculosis, onset of secondary infections are sometimes responsible for life threatening ARDS.

Table 1

Common indications for ECMO in the tropics.

Disease	Indications
ARDS	Bacterial, Viral, Parasites
Septicemia	Fungal (rare)
Myocarditis	Tropical: Dengue, Entero and other viruses
Miscellaneous	Venoms: Scorpion stings, Spider bites, Snake bites

E-mail addresses: spooboni@seha.ae, poobonisk@hotmail.com

Peer review under responsibility of The Egyptian College of Critical Care Physicians.
A plethora of viral infections are responsible for severe ARDS which are unresponsive to conventional measures. Some of the examples are H1N1 (mutated, more virulent versions are proven) [2], Avian Influenza H5N1 [3], H7N9 [4], SARS and MERS (Middle East Respiratory Distress Syndrome) as zoonotic coronavirus infections [5] are becoming increasingly noticeable as epideemics/endemics. Other known viral infections such as Respiratory Syncytial virus and Adenovirus are not only universally ubiquitous, but are also known to co-exist with other bacterial and viral infections.

Malaria has been predominant world-wide, however more so in tropical countries. Severe malaria presenting with ARDS (unresponsive to maximal conventional management) may present as a reversible condition on ECMO.

There are many infections noticeable particularly in the tropical world, of which the physician should be vigilant about and consider wider differential diagnosis under different geographical conditions. Any of the following conditions presenting with Severe ARDS unresponsive to maximal conventional treatment or severe sepsis will be an indication for ECMO support while awaiting the medications to act and the underlying process to resolve. In our experience, pertussis is one of the most difficult infections to be treated on ECMO [6] (Table 2).

3. Myocarditis

Tropical: Infections and bites from venomous animals such as Scorpions and Snakes can be transiently supported on ECMO while awaiting the effects of the causative agent to be neutralized. Myocarditis secondary to Dengue [7] and Enterovirus [8] have been successfully treated on ECMO unless the myocardium doesn’t recover within 10 days. In cases requiring prolonged ECMO, transition to a ventricular assist devise would be an option. Wide geographical areas such as deserts and forests infested with poisonous scorpions, spiders and snakes, the resulting myocarditis or vasodilatory shock could be supported on ECMO [9].

4. Poisonings

Unfortunately, poisonings are ubiquitous in South Asia and West Asia. One such scenario resulting from Celphos poisoning has been successfully treated on ECMO support given that patients are brought to centers having access to ECMO [10]. This principle applies to management of any similar condition which is transitory and expected to get better with support on ECMO.

There is a huge need for bringing this modality of healthcare to the majority of needy people in these resource limited countries. The future is promising.

Conflict of interest

None declared.

References

[1] Pooboni Suneel, Goyal Venkat, Oza Pranay, Kapoor Poonam Malhotra. ECMO challenges and its future: Indian Scenario. J Card Crit Care 2017;1(02):89–94.
[2] Parida Mannohan, Dash Paban Kumar, Kumar Jyoti S, Malviya Vatsala, et al. Emergence of influenza A(H1N1)pdm09 geno group 6B and drug resistant virus, India. Eurosurveillance 2015;21(5).
[3] Moura FE. Influenza in the tropics. Curr Opin Infect Dis 2010;23(5):415–20.
[4] Nie Qi, Zhang Ding-yu, Wu Wen-juan, Huang Chao-li, Ni Zheng-yi. Extracorporeal membrane oxygenation for avian influenza A (H7N9) patient with acute respiratory distress syndrome: a case report and short literature review. BMC Pulm Med 2017;17(38).
[5] Ashleigh Trimble V, Moffat, Collins AM. Pulmonary infections in the returned traveler. Pneumonia 2017;9:1.
[6] Pooboni S, Roberts N, Westrope C, Jenkins DR, Killer H, Pandya HC, et al. Extracorporeal life support in pertussis. Pediatr Pulmonol 2003;36(4):310–5.
[7] Ku Yee-Huang, Yu Wen-Liang. Fatal dengue myocarditis despite the use of extracorporeal membrane oxygenation. Infect Dis 2016;2016:5627217.
[8] Cortina G, Best D, Deisenberg M, Chiletti R, Butt. Extracorporeal membrane oxygenation for neonatal collapse caused by enterovirus myocarditis. Arch Dis Child Fetal Neonatal Ed 2018;103(4):F370–6.
[9] Chu Pei-Lun, Chang Wei-Tien, Chen Wen-Jone, Chen Yih-Shang. Acute viral myocarditis presenting as sudden cardiac arrest and refractory ventricular tachycardia. Am J Emergency Med 2004;22(7):628–9.
[10] Mohan Bishav, Singh Bhupinder, Gupta Vivek, et al. Outcome of patients supported by extracorporeal membrane oxygenation for aluminum phosphide poisoning: an observational study. Indian Heart J 2016;68(3):295–301.

Table 2

Vectors	Diseases	
Bites	Tick	Q fever, Rickettsia
	Mosquitos	Severe Malaria, Dengue
	Animal	H1N1, Avian influenza, MERS, SARS, Ebola
	Environmental	Coccidiomycosis, Histoplasmosis (rare)
	Dust exposure (e.g., caves or deserts)	Legionella
	Air conditioners/Hot Tubes	Schistosomiasis,
	Fresh-water exposure	Leptospirosis, plague (pneumonic and septicemic)
	Zoonosis	HIV
	Sexual exposure	Immunocompromised: TB, Drug resistant TB
	Miscellaneous	Bodioly Fluids: Ebola
		Respiratory: Pertussis

Pooboni/ The Egyptian Journal of Critical Care Medicine 6 (2018) 101–102