La hernia umbilical en el paciente cirrótico: ¿tratamiento conservador o cirugía?
Umbilical hernia in cirrhotic patients: conservative treatment or surgery?

Carlos A. Cano, Abraham R. Arias

Antecedentes: la ascitis es una complicación de frecuente aparición en el paciente cirrótico que al producir un aumento de la presión intraabdominal puede originar una hernia de la pared abdominal; el defecto umbilical latente es su localización más habitual.

Objetivo: presentar la incidencia y los beneficios que ofrece la resolución electiva de la patología umbilical en estos pacientes.

Material y método: se presentan 15 pacientes, todos masculinos, que fueron intervenidos por hernia umbilical sintomática en forma electiva en el medio hospitalario. El período comprende desde enero del año 2015 a enero de 2019. El 100% de los enfermos cursa un cuadro de cirrosis hepática, con antecedentes de etilismo crónico. Se efectuó la reparación de la hernia con cierre del defecto y malla supraaponeurótica de polipropileno en la mayoría de los casos.

Resultados: los pacientes fueron evaluados desde el punto de vista clínico con la escala (score) de Child en el preoperatorio. Se procedió a la evacuación de la ascitis en todos los casos y el control posoperatorio se efectuó cada 30 días los primeros 6 meses. Luego dos veces al año. No se evidenció recidiva. Dos pacientes no volvieron al control luego del año de la cirugía y 1 paciente falleció por la enfermedad de base a los 6 meses de la cirugía.

Conclusiones: los enfermos con cirrosis hepática y hernia umbilical deben ser intervenidos quirúrgicamente en forma electiva. La observación y abstención quirúrgica conllevan el riesgo de rotura del saco herniario con alta morbimortalidad.

RESUMEN
Antecedentes: la ascitis es una complicación de frecuente aparición en el paciente cirrótico que al producir un aumento de la presión intraabdominal puede originar una hernia de la pared abdominal; el defecto umbilical latente es su localización más habitual.

Objetivo: presentar la incidencia y los beneficios que ofrece la resolución electiva de la patología umbilical en estos pacientes.

Material y método: se presentan 15 pacientes, todos masculinos, que fueron intervenidos por hernia umbilical sintomática en forma electiva en el medio hospitalario. El período comprende desde enero del año 2015 a enero de 2019. El 100% de los enfermos cursa un cuadro de cirrosis hepática, con antecedentes de etilismo crónico. Se efectuó la reparación de la hernia con cierre del defecto y malla supraaponeurótica de polipropileno en la mayoría de los casos.

Resultados: los pacientes fueron evaluados desde el punto de vista clínico con la escala (score) de Child en el preoperatorio. Se procedió a la evacuación de la ascitis en todos los casos y el control posoperatorio se efectuó cada 30 días los primeros 6 meses. Luego dos veces al año. No se evidenció recidiva. Dos pacientes no volvieron al control luego del año de la cirugía y 1 paciente falleció por la enfermedad de base a los 6 meses de la cirugía.

Conclusiones: los enfermos con cirrosis hepática y hernia umbilical deben ser intervenidos quirúrgicamente en forma electiva. La observación y abstención quirúrgica conllevan el riesgo de rotura del saco herniario con alta morbimortalidad.

Palabras clave: hernia umbilical, cirrosis hepática, ascitis.

ABSTRACT
Background: Ascites is a common complication in patients with cirrhosis, and elevated intraabdominal pressure can lead to the development of abdominal wall hernias, particularly in patients with latent umbilical defects.

Objectives: The aim of this study was to report the incidence and benefits of elective surgery for the management of umbilical hernias in cirrhotic patients with ascites.

Material and methods: Between January 2015 and January 2019 15 patients with symptomatic umbilical hernia underwent elective surgery in a public hospital; 100% were men with a history of alcoholism and were hospitalized due to liver cirrhosis. The defect was closed, and a polypropylene mesh was placed in the supra-aponeurotic plane in most cases.

Results: The preoperative risk was estimated using the Child-Pugh score. Ascites was evacuated in all the cases. Patients were followed-up every 30 days during the first 6 months and then twice a year. There were no hernia recurrences. Two patients were lost to follow-up 12 months after surgery and 1 patient died 9 months after the procedure due to progression of cirrhosis.

Conclusions: Patients with liver cirrhosis and umbilical hernia should undergo elective surgery. Watchful waiting is associated with higher risk of hernia rupture and high morbidity and mortality.

Keywords: Umbilical hernia, hepatic cirrhosis, ascites.
Introducción

La cirugía de la pared abdominal en ciertos escenarios constituye un verdadero desafío para el cirujano actuante. Entre ellos, la cirrosis y la ascitis secundaria condicionan los resultados cuando la hernia umbilical es intervenida bajo estas circunstancias.

La ascitis es una complicación de frecuente aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición de este tipo de hernias en pacientes con defectos umbilicales latentes.

La realidad en nuestra experiencia es que los enfermos están confinados a internarse en las salas de Gastroenterología por una cirrosis descompensada y la presencia de la hernia umbilical es infravalorada, por la que la actuación del cirujano se limita ante la complicación de esta.

Material y métodos

En el periodo comprendido entre enero de 2015 y enero de 2019 fueron intervenidos en el hospital público 15 pacientes con diagnóstico de cirrosis hepática portadores de una hernia umbilical sintomática. Se procedió al análisis retrospectivo de Historias Clínicas. Todos pertenecían al sexo masculino (100%). El examen físico de los pacientes se realizó ante la presencia de una ascitis abdominal, por lo que el diagnóstico de la patología herniaria no requirió otro procedimiento complementario. No se evidenciaron complicaciones oclusivas ni de estrangulamiento; sin embargo, todas eran irreductibles y en 8 pacientes (53,3%) había signos de compromiso vascular a nivel de la piel que cubría el saco herniado.

La estimación del riesgo quirúrgico se llevó a cabo con la escala (score) de Child-Pugh en el preoperatorio (Tabla 1).

Técnica quirúrgica

En quirófano, los pacientes recibieron un cepillado con yodopovidona previo a la realización del campo quirúrgico. Se abordó la región umbilical con una incisión cóncava subumbilical cuando no fue necesario resecar la piel comprometida. Se evitó una incisión de la piel relacionada con el saco peritoneal, ya que a este nivel la piel es muy fina, mal vascularizada y con posibilidades de mala cicatrización. Ante su compromiso vascular, la conducta fue una incisión en losangio extrirpando la cicatriz umbilical. Debe procurarse una hemostasia cuidadosa en estos pacientes, utilizando cautero hasta llegar al plano aponeurótico.

Se resecó el saco herniario y se procedió a la resección del anillo umbilical fibroso en todos los pacientes. El diámetro del defecto umbilical midió en promedio 3 cm (2-4,5). En este momento quirúrgico se puso en evidencia la atrofia muscular consecutiva a la desnutrición calórico-proteica al permitir levantar los bordes del anillo umbilical en “tienda de campaña”. Luego del cierre del defecto umbilical se procedió a descartar la posibilidad de infección, el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intraabdominal originada determina la aparición en tales enfermos, y el aumento de la presión intr...
de polipropileno, con pico truncado de polipropileno pesado en plano preperitoneal, confeccionado antes de su colocación. Se fijo con material reabsorbible en los cuatro puntos cardinales.

Cuando fue necesario, se aproximó el tejido celular subcutáneo al plano aponeurótico con puntos separados de material reabsorbible a efectos de disminuir el espacio muerto y minimizar la posibilidad de seromas. La piel se aproximó con sutura continua y de manera estanca para evitar fuga de líquido ascítico. No se utilizaron drenajes en ningún caso. La externación se produjo dentro de los primeros 3 días.

En los primeros 6 meses, los pacientes se controlaron cada 30 días. El control se efectuó en conjunto con Gastroenterología. A partir de entonces se citó a los pacientes dos veces al año.

Resultados

Se procede al análisis descriptivo y retrospectivo de historias clínicas de los pacientes cirróticos con ascitis sometidos a una hernioplastia umbilical en forma electiva en un hospital público.

El análisis corresponde a 15 pacientes sometidos al procedimiento, todos de sexo masculino (100%). El estudio de las variables clínicas estableció que 13 pacientes pertenecían al estadio C en la escala de Child-Pugh (Tabla 2).

La edad media de los pacientes fue 60 años (rango 28-72). Se procedió a evaluar el tamaño del anillo en el intraoperatorio, que osciló entre los 2 y 4,5 cm, así como la existencia de ascitis y el tipo de procedimiento empleado en cada caso, entre las variables quirúrgicas consideradas (Tabla 3).

El promedio de duración del acto quirúrgico fue 60 minutos y los pacientes fueron externados a las 72 horas. No se constató recidiva herniaria en el control alejado. Dos pacientes no volvieron al control a los 12 meses de la cirugía y se destaca un óbito a los 6 meses por evolución de la enfermedad de base, por lo que el seguimiento correspondió al (86,6%) de los pacientes operados.

Discusión

La Medicina basada en la evidencia (MBE) y su hija predilecta, la cirugía basada en la evidencia, se fundamentan en una tríada: información externa, experiencia clínica y preferencias y/o necesidades de los pacientes. Un inadecuado tamaño de la muestra no es razón suficiente para no reconocer, en algunas situaciones específicas, que el resultado sea o no superior

En este sentido, la literatura publicada sobre el manejo de la hernia umbilical en el paciente cirrótico carece de certeza –a la luz de los conocimientos actuales– acerca de cuál es la mejor evidencia existente sobre su tratamiento; la mayoría son series demasiado cortas en cuanto al seguimiento y número de pacientes.

La reparación de una hernia umbilical es una técnica segura en ausencia de ascitis; no obstante, la presencia de complicaciones de la cirugía en el paciente cirrótico ha motivado que los gastroenterólogos en general y los cirujanos en particular prefieran el tratamiento conservador a la cirugía electiva.

Actuar, cuando la complicación se presenta, eleva considerablemente las cifras de morbimortalidad, sobre todo la rotura del saco herniario con paracentesis espontánea y evisceración de asas intestinales.

TABLA 2	Variables clínicas						
Pacientes	Bilirrubina total	Albúmina sérica	Tiempo de protrombina	Ascitis	Encefalopatía hepática	Puntos Child- pugh	
1	2,5 mg/d	2,25 g/dL	70%	Sí	Grado I	10	C
2	3 mg/dL	2,8 g/dL	68%	Sí	Grado I	9	B
3	2,8 mg/dL	3,1 g/dL	52%	Sí	Grado II	10	C
4	2,3 mg/dL	2,60 g/dL	71%	Sí	Grado I	10	C
5	3,2 mg/dL	2,18 g/dL	60%	Sí	Grado II	10	C
6	2 mg/dL	2,72 g/dL	65%	Sí	Grado I	10	C
7	3,8 mg/dL	3 g/dL	50%	Sí	Grado II	10	C
8	4 mg/dL	3,1 g/dL	48%	Sí	Grado III	12	C
9	3,4 mg/dL	2,20 g/dL	58%	Sí	Grado II	11	C
10	3,5 mg/dL	2,3 g/dL	53%	Sí	Grado II	11	C
11	2,6 mg/dL	2,9 g/dL	65%	Sí	Grado I	9	B
12	3,2 mg/dL	2,28 g/dL	43%	Sí	Grado I	11	C
13	3,7 mg/dL	2,5 g/dL	48%	Sí	Grado II	12	C
14	3,2 mg/dL	2,1 g/dL	52%	Sí	Grado I	11	C
15	3,6 mg/dL	2,8 g/dL	60%	Sí	Grado I	10	C
86
cuyo deslizamiento es favorecido por un fenómeno asimi-
lable a la lubricación (Figs. 1 y 2).
Esta rotura del ombligo constituye el accidente más grave que, junto a las alteraciones tróficas y ulceraciones de la piel de saco, se asocia de manera constante a una reducción de los factores de coagulación y a una falta de respuesta de la ascitis al tratamiento. Es en estos casos donde el tratamiento simultáneo de la hernia y de la ascitis mediante un shunt peritoneo-yugular podría estar indicado, a pesar del aumento de la morbibilidad infecciosa cuando se opta por esta conducta3.
Aun así, para los pacientes con hepatopatía crónica existen contraindicaciones a la cirugía, sobre todo los catalogados como estadio C de Child-Pugh4.
Según Chapman, el 42% de los pacientes cirróticos con ascitis presentarán una hernia umbilical y precisarán una reparación urgente durante la evolución de la enfermedad5.
En nuestro medio, la incidencia de esta hernia se encuentra en el 20% de los pacientes ingresados con hepatopatía crónica y ascitis.
Desde hace muchos años hemos iniciado el tratamiento de pacientes con cirrosis y hernia umbilical en forma programada y hemos notado que los resultados fueron satisfactorios, no tan solo respecto de su bienestar y calidad de vida sino también en cuanto a las recidivas.
Esta forma de proceder nos llevó a pensar a estos pacientes en las salas de clínica y gastroenterología y convencer a sus médicos de cabecera sobre la importancia del tratamiento oportuno.
Otro de los dilemas que enfrentamos es sobre la elección de la técnica quirúrgica apropiada para estos pacientes, ya que las recidivas de esta patología oscilan entre el 5 y el 30%6.

TABLA 3

Pacientes	Edad	Sexo	Diámetro del defecto	Ascitis	Tratamiento	Child-pugh
1	48	M	2 cm	Sí	Tapón de Rutkow	B
2	63	M	3,8 cm	Sí	Malla preaponeurótica	B
3	35	M	4 cm	Sí	Malla preaponeurótica	B
4	52	M	2,7 cm	Sí	Malla preaponeurótica	B
5	43	M	3,5 cm	Sí	Malla preaponeurótica	B
6	37	M	4,5 cm	Sí	Malla preaponeurótica	B
7	56	M	3 cm	Sí	Malla preaponeurótica	B
8	43	M	4,2 cm	Sí	Malla preaponeurótica	B
9	52	M	2,5 cm	Sí	Malla preaponeurótica	B
10	47	M	4,5 cm	Sí	Malla preaponeurótica	B
11	39	M	3,2 cm	Sí	Malla preaponeurótica	B
12	70	M	3,8 cm	Sí	Malla preaponeurótica	B
13	43	M	3,2 cm	Sí	Malla preaponeurótica	B
14	72	M	4 cm	Sí	Malla preaponeurótica	B
15	28	M	4,5 cm	Sí	Malla preaponeurótica	B

FIGURA 1

Hernia umbilical en paciente cirrótico con ascitis. Necrosis de la piel del saco y fuga de líquido ascítico

FIGURA 2

Rotura espontánea de saco herniario con paracentesis y evisceración de asas de intestino delgado
Un trabajo prospectivo y aleatorizado de Arroyo y col. compara la utilización de mallas y hernioplastias sin mallas, observando en este último grupo una recidiva del 11% frente al 1% de las técnicas con prótesis.

Una vez decidida la utilización de prótesis, el lugar donde implantarla sería el otro interrogante por resolver y, si bien es cierto que el espacio preperitoneal es el adecuado, las características anatómopatológicas de los tejidos en estos pacientes y la presencia de ascitis (refractaria en muchos de ellos) nos llevaron a considerar el espacio supraaponeurótico como el ideal hacerlo.

Técnicamente es más sencillo y reproducible, y la morbilidad asociada con este espacio no mostró diferencias en relación con otros pacientes sin esta patología de base.

Ninguno de nuestros pacientes presentó hernias complicadas pero sí complejas por las características externas del saco. Aunque no es muy frecuente, se han descrito en la literatura hernias estranguladas coincidentes con hemorragia digestiva alta de origen variceal.

No consideramos que el abordaje mininvasivo en este tipo de pacientes sea el adecuado. En tal sentido, una técnica como el eTEP endoscópico, que sitúa la malla en el espacio preperitoneal-retromuscular, requiere una disección importante que lleva a la posibilidad aumentada de sangrado en ellos. Por otro lado, en el caso de la IPOM, con la malla colocada intraperitoneal, la ascitis recurrente ha sido descripta como causa de recidiva y como factor condicionante en la integración del implante en la interfase huésped-prótesis.

Algunos autores como Saric describen buenos resultados en hernias umbilicales complicadas con ascitis, utilizando videolaparoscopia.

Cuando se comparan los datos en una evaluación de metanálisis, la tasa de recurrencia fue del 45% en la ascitis no controlada y del 4% en el grupo controlado, por lo que los autores concluyen que la recurrencia se relaciona fundamentalmente con la ascitis no controlada. En nuestra experiencia no se registró recidiva herniaria a pesar de que la mayoría de los pacientes presentó ascitis refractaria en los controles posoperatorios (Fig. 3).

A pesar de que siempre se consideró que este tipo de hernia en pacientes cirróticos con ascitis no debería operarse porque con la paracentesis se lograba la reducción espontánea, someterlos a una cirugía ante la complicación eleva considerablemente las posibilidades de efectos adversos posoperatorios y puede derivar en una fuga de líquido cuando se recurre a un ostoma ante una resección intestinal.

Sin embargo, cuando a corto plazo se planifica un trasplante hepático, la hernia umbilical puede tratarse conminuamente. Una reciente recomendación surgida de la opinión de expertos europeos y noramericanos considera que la reparación mininvasiva de la hernia umbilical puede ser satisfactoria en pacientes sin ascitis.

Ante la presencia de esta, la reparación abierta con malla onlay o preaponeurótica aparece como una buena opción de tratamiento sobre todo en pacientes Child A y Child B. El puntaje de enfermedad hepática avanzada, según el modelo de MELD (basado en bilirrubina, INR y creatinina), predice malos resultados por encima de 15, en enfermos en etapa terminal. Conclusiones

La incidencia de hernia umbilical en el paciente cirrótico con ascitis se encuentra en el 20%. Una conducta expectante predispone al enfermo a graves complicaciones. En ese sentido, la resolución electiva, previa compensación del estado general, beneficia a los enfermos otorgándoles mejor calidad de vida. El uso de prótesis de polipropileno en plano preaponeurótico, posterior a la onfalectomía, se presenta como una técnica reproducible. El manejo de la ascitis es vital para evitar la recurrencia.

Se requieren series prospectivas y aleatorizadas con muestras grandes y seguimiento alejado para determinar evidencias fuertes sobre la técnica ideal.
Introduction

In certain scenarios, abdominal wall surgery constitutes a real challenge for surgeons. The results of umbilical hernia surgery may be affected in patients with cirrhosis and secondary ascites.

In such patients, ascites is a common complication, and elevated intraabdominal pressure as a consequence of ascites leads to the development of this type of hernias in patients with latent umbilical defects.

In our experience, in patients hospitalized in gastroenterology wards due to decompensated cirrhosis, the presence of umbilical hernia is underestimated, and surgeons are only called upon in case of complicated hernias.

Material and methods

Between January 2017 and January 2019, 15 patients with liver cirrhosis and symptomatic umbilical hernia underwent surgery in a public hospital. The clinical records were reviewed. All the patients were men. The diagnosis of umbilical hernia was made after physical examination and no further tests were necessary. There was no evidence of obstruction or strangulation; however, all hernias were irreducible, and in 8 patients (53.3%) there were signs of vascular involvement at the level of the skin covering the hernia sac.

The preoperative risk was estimated using the Child-Pugh score (Table 1).

Parameter	1 Point	2 Points	3 Points
Total bilirubin	< 2	2 - 3	> 3
Albumin	> 3.5	2.8 – 3.5	< 2.8
Inr or prothrombin time	< 1.7 / > 50	1.71 – 2.20 / 30 – 50	> 2.20 / < 30
Ascites	None	Suppressed with medication	Refractory
Hepatic encephalopathy	None	Grade I - II (or suppressed with medication)	Grade III - IV (or refractory)

Points	Class	1-year survival	2-year survival
5 - 6	A	100 %	85 %
7 - 9	B	81 %	57 %
10 - 15	C	45 %	35 %

In 13 patients (86.6%) were classified as Child class C. After specific preoperative treatment, these patients were reclassified as Child class B.

All patients had preanesthetic evaluation to assess the preoperative risk and were classified as American Society of Anesthesiologists (ASA) grade 3.

In 100% of the patients, the procedure was performed under epidural regional anesthesia. Some patients required anxiolytics to relieve the anxiety caused by surgery.

Patients were hospitalized 48 hours before surgery and routine laboratory tests were carried out with measurement of white blood cell count, platelet count, prothrombin time, total bilirubin, AST, ALT, albumin levels, BUN and glycemia.

Evacuation of ascites was an essential preoperative step; occasionally, it was necessary to perform an ultrasound scan to detect the fluid in the perirenal spaces and Douglas’ pouch.

A catheter was placed in the abdomen to allow for intermittent paracentesis. Neutrophil count in the abdominal fluid was done routinely to rule out bacterial peritonitis.

Surgical technique

Once in the operating room, the skin was prepared with povidone-iodine scrub before establishing the surgical field. The umbilical region was approached using a concave infraumbilical incision when it was not necessary to resect the involved skin.

The hernia sac and the fibrous umbilical ring were resected in all the patients. Mean defect size was 3 cm (2-4.5). Muscle atrophy due to malnutrition became evident when the borders of the umbilical ring were raised. The defect was closed in two layers with non-absorbable suture and a 10 × 6 cm preaponeurotic lightweight polypropylene mesh was placed in 14 patients. In a patient with a 2-cm umbilical ring, a cone with a truncated beak made of heavyweight polypropylene mesh was prepared and placed in the preperitoneal plane and was fixed with four cardinal points.

When necessary, the subcutaneous cellular tissue was sutured to the aponeurotic plane with separate stitches of absorbable suture to minimize dead space and the development of seromas. The skin was closed with locked running suture to prevent leakage of ascitic fluid. We did not leave drains in any of the cases.

Vitamin K, fresh plasma and recombinant factor VII were administered to improve the coagulation status.
Patients were discharged within the first 3 days and were followed-up monthly during the first 6 months by gastroenterologists and surgeons. Thereafter, visits were scheduled twice a year.

Results

The clinical records of patients with cirrhosis and ascites undergoing elective umbilical hernia repair in a public hospital were retrospectively reviewed. The analysis corresponds to 15 patients; 100% were men. Thirteen patients were classified as Child class C of the Child-Pugh score (Table 2).

Mean age was 60 years (range 28-72). The intraoperative variables analyzed included the ring size (between 2 and 4.5 cm), the presence of ascites and the type of procedure used (Table 3).

Mean operative time was 60 minutes and the patients were discharged within 72 hours. There were no long-term recurrences. Two patients were lost to follow-up 12 months after surgery and 1 patient died 6 months after the procedure due to progression of cirrhosis; thus, 86.6% of the patients completed follow-up.

TABLE 2
Clinical variables
Patients

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

TABLE 3
Surgical variable
Patients

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Discussion

Evidence-based medicine (EBM) and its favorite daughter, evidence-based surgery, are based on a triad: external clinical evidence, clinical experience and patients’ preferences or needs. An inadequate sample size, in some special situations, is not an argument to disregard an outcome. In this sense, the literature available on the management of umbilical hernias in cirrhotic patients is not definite - in view of the current knowledge - about the best treatment based on the existing evidence, as most of the publications are case series with limited follow-up and few patients.

Umbilical hernia repair is a safe technique in the absence of ascites; however, the presence of postoperative complications in cirrhotic patients has led gastroenterologists and particularly surgeons to prefer conservative treatment rather than elective surgery. When complications develop, morbidity and mortality increase significantly, mostly in case of rupture of the hernia sac with spontaneous paracentesis and eviscerated bowel loops facilitated by a phenomenon similar to lubrication (Figures 1 and 2).

The rupture of the umbilicus constitutes the most serious complication which, along with trophic ulcers of the skin overlying the hernia, is always associated with coagulopathy and lack of response of ascites to treatment. In these cases, hernia repair and concomitant insertion of a peritoneojugular shunt could be indicated despite the high rate of infections associated with this treatment. Even so, there are contraindications to surgery for patients with chronic liver disease, especially for those classified as Child-Pugh class C.

According to Chapman, 42% of cirrhotic patients with ascites will develop an umbilical hernia and require urgent repair during the disease. In our environment, umbilical hernia occurs in 20% of patients admitted with chronic liver disease and ascites.

For many years, we have been performing elective surgery in patients with cirrhosis and umbilical hernia, and we have been satisfied with the results in terms of patients' well-being, quality of life and hernia recurrence. This approach made us visit internal medicine and gastroenterology wards to look for these patients and convince their primary care physicians of the importance of timely treatment.

Another dilemma is to choose the appropriate surgical technique for these patients, since recurrences range between 5 and 30%. In a prospective randomized trial, Arroyo et al. compared mesh repair with primary suture and reported that hernia recurrence rate was 11% after suture repair and 1% after mesh repair. Once mesh repair has been decided, the site of mesh placement must be defined. The preperitoneal space is adequate, but considering the pathological characteristics of the tissues in these patients and the presence of ascites (refractory in many cases), we considered the supra-aponeurotic space as the ideal site for mesh location.

The technique is easy and reproducible, and the rate of complications was not different compared with that of patients without cirrhosis. None of our patients presented complicated hernias, but the external characteristics of the hernia sacs were complex. Strangulated hernias associated with upper gastrointestinal bleeding due to variceal bleeding may rarely occur. We do not consider minimally invasive surgery as an adequate approach in this type of patients. In endoscopic extended totally extraperitoneal (eTEP) repair, a mesh is placed in the preperitoneal-retromuscular space and involves significant dissection with greater incidence of bleeding. In intraperitoneal onlay mesh (IPOM) placement, recurrent ascites has been described as a cause of recurrence and as a
conditioning factor in mesh tissue integration and host-tissue response.

Some authors as Saric have reported good results with the laparoscopic approach for complicated umbilical hernias in cirrhotic patients with ascites. When the data were grouped in a meta-analysis, the recurrence rate was 45% in uncontrolled ascites and 4% in controlled ascites. The authors concluded that uncontrolled ascites strongly correlated with umbilical hernia recurrence. In our experience, we did not find hernia recurrence despite most patients presented refractory ascites during postoperative follow-up (Figure 3).

Surgery has not been considered an indication for this type of hernia in cirrhotic patients with ascites because spontaneous reduction is achieved after paracentesis. Nevertheless, complicated hernias increase the likelihood of postoperative adverse events and can lead to fluid leakage when an ostomy is used after bowel resection.

However, when liver transplantation is planned in the short term, concurrent repair of an umbilical hernia present at the time of liver transplantation is feasible. A recent recommendation issued by European and American experts suggests that minimally invasive umbilical hernia repair seems safe in patients without ascites.

In case of ascites, open repair with onlay or preaponeurotic mesh seems to be a good option in patients with Child class A or B. A MELD score above 15 (based on bilirubin, INR and creatinine levels) is a risk factor for poor outcome, particularly in end-stage disease.

Conclusions

The incidence of umbilical hernia in cirrhotic patients with ascites is 20%. Watchful waiting can lead to serious complications. Once the general status has been compensated, elective surgery provides benefit by increasing patients’ quality of life. Placement of a polypropylene mesh in the preaponeurotic plane after omphalectomy is a reproducible technique. Management of ascites is essential to avoid recurrence.

Large prospective randomized series with long-term follow-up are needed to provide strong evidence on the ideal technique.

References

1. Arribalzaga EB, Rubinstein R, Needelman C, Patiño J, Lew D. Medicina Basada en la Evidencia y su aplicación en Cirugía. Rev Argent Cirug. 2001;80(1-2):23-37.
2. Gutiérrez de la Peña C, Márquez Platero R, Domínguez-Adame Lanuza E, Gil Quiróz FJ, García Molina FJ, Montes Posada E y cols. La hernia umbilical en el paciente cirrótico. Cir Espan. 1999; 66(6):526-8.
3. Belghiti J, Desgrandchamps F, Farges O, Fékété F. Herniorraphy and concomitant Peritoneovenous shunting in cirrhotic patients with umbilical hernia. World J Surg. 1990; 14:242-8.
4. Friedman LS. The risk of surgery in patients with liver disease. Hepatology. 1999;26:1617.
5. Chapman CB, Snell AM, Rowntree LG. Decompensated Portal Cirrhosis. Report On one hundred and twelve cases. Clinical features of the ascitic stage of cirrhosis of the liver. JAMA. 1981; 97:237-44.
6. Velazco M, García Urueña MA, Hidalgo M, Vega V, Carnero FJ. Current Concept on adult umbilical hernia. Hernia. 1999; 4:233-9.
7. Arroyo A, García P, Pérez F, Andreu J, Candela F, Calpena R. Randomized clinical Trial comparing suture and mesh repair of umbilical hernia in adults. Br J Surg. 2001; 88:1321-3.
8. Fung BM, Kalani A, Tabibian J. Varicel Hemorraghe with White Nipple Sign associated with embolized Umbilical Hernia in a Patient with Cirrhosis. Clin Gastroenterol Hepatol. 2018; 16:XXVII.
9. Sarit C, Eliezer A, Mizvahis S. Minimally invasive repair of recurrent strangled umbilical hernia in cirrhotic patients with refractory ascites. Transpl. 2003; 9:621-2 (Pub med).
10. Coelho J, Claus C, Campos A, Costa M, Blum C. Umbilical hernia in patients with Liver cirrhosis: a surgical challenge. World J Gastrointest Surg. 2016 ; 27(8):76-82.
11. Choi SB, Hong K, Lee JS, Han HJ, Kim WB, Son TJ, Suh SO. Management of umbilical hernia complicated with liver cirrhosis: and advocated of early and elective herniorrhaphy. Digestive and liver disease. 2011;43:991-5.
12. Martens P, Laleman W. Umbilical hernia in a patient with cirrhosis. Cleveland Clinic Journal of Medicine. 2015; 82(7):404.
13. Henriksen N A, et al. E.H.S and A.H.S. Guidelines for treatment of primary hernias in rare locations or special circumstances. BJ5 Open. 2020; 4(2):342-53.