On the parameter μ_{21} of a complete bipartite graph

A.M. Khachatryan1, R.R. Kamalian2

1Ijevan Branch of Yerevan State University, e-mail: khachatryanarpine@gmail.com
2The Institute for Informatics and Automation Problems of NAS RA, e-mail: rrkamalian@yahoo.com

Abstract

A proper edge t-coloring of a graph G is a coloring of edges of G with colors $1, 2, \ldots, t$ such that all colors are used, and no two adjacent edges receive the same color. The set of colors of edges incident with a vertex x is called a spectrum of x. An arbitrary nonempty subset of consecutive integers is called an interval.

Suppose that all edges of a graph G are colored in the game of Alice and Bob with asymmetric distribution of roles. Alice determines the number t of colors in the future proper edge coloring of G and aspires to minimize the number of vertices with an interval spectrum in it. Bob colors edges of G with t colors and aspires to maximize that number. $\mu_{21}(G)$ is equal to the number of vertices of G with an interval spectrum at the finish of the game on the supposition that both players choose their best strategies.

In this paper, for arbitrary positive integers m and n, the exact value of the parameter $\mu_{21}(K_{m,n})$ is found.

Keywords: proper edge coloring, interval spectrum, game, complete bipartite graph.

We consider finite, undirected, connected graphs without loops and multiple edges containing at least one edge. For any graph G, we denote by $V(G)$ and $E(G)$ the sets of vertices and edges of G, respectively. For any $x \in V(G)$, $d_G(x)$ denotes the degree of the vertex x in G. For a graph G, $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of vertices in G, respectively. For a graph G, and for any $V_0 \subseteq V(G)$, we denote by $G[V_0]$ the subgraph of the graph G induced by the subset V_0 of its vertices. We denote by C_4 a simple cycle with four vertices.

An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by $[p, q]$.

A function $\varphi : E(G) \to [1, t]$ is called a proper edge t-coloring of a graph G, if all colors are used, and for any adjacent edges $e_1 \in E(G), e_2 \in E(G)$, $\varphi(e_1) \neq \varphi(e_2)$.

The minimum value of t for which there exists a proper edge t-coloring of a graph G is denoted by $\chi'(G)$ [2].

For any graph G, and for any $t \in [\chi'(G), |E(G)|]$, we denote by $\alpha(G, t)$ the set of all proper edge t-colorings of G.

Let us also define a set $\alpha(G)$ of all proper edge colorings of a graph G:

$$\alpha(G) \equiv \bigcup_{t=\chi'(G)} |E(G)| \alpha(G, t).$$

If $\varphi \in \alpha(G)$ and $x \in V(G)$, then the set $\{\varphi(e)/e \in E(G), e \text{ is incident with } x\}$ is called a spectrum of the vertex x of the graph G at the coloring φ and is denoted by $S_G(x, \varphi)$; if $S_G(x, \varphi)$ is an interval,
we say that φ is interval in x. If G is a graph, $\varphi \in \alpha(G)$, $R \subseteq V(G)$, then we say, that φ is interval on R iff for $\forall x \in R$, φ is interval in x. We say, that a subset R of vertices of a graph G has an i-property iff there exists $\varphi \in \alpha(G)$ interval on R. If G is a graph, and a subset R of its vertices has an i-property, we denote by $w_R(G)$ and $W_R(G)$ (omitting the index in these notations in a peculiar case with $R = V(G)$) the minimum and the maximum value of t, respectively, for which $\exists \varphi \in \alpha(G, t)$ interval on R. If G is a graph, $\varphi \in \alpha(G)$, then set $V_{\text{int}}(G, \varphi) \equiv \{x \in V(G) / S_G(x, \varphi) \text{ is an interval}\}$ and $f_G(\varphi) \equiv |V_{\text{int}}(G, \varphi)|$. A proper edge coloring $\varphi \in \alpha(G)$ is called an interval edge coloring $[3, 4, 5]$ of the graph G iff $f_G(\varphi) = |V(G)|$. The set of all graphs having an interval edge coloring is denoted by \mathfrak{M}.

For a graph G, and for any $t \in [\chi'(G), |E(G)|]$, we set $[6]$:

$$
\mu_1(G, t) \equiv \min_{\varphi \in \alpha(G, t)} f_G(\varphi), \quad \mu_2(G, t) \equiv \max_{\varphi \in \alpha(G, t)} f_G(\varphi).
$$

For any graph G, we set $[6]$:

$$
\mu_{11}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G, t), \quad \mu_{12}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G, t),
$$

$$
\mu_{21}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G, t), \quad \mu_{22}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G, t).
$$

Clearly, the parameters μ_{11}, μ_{12}, μ_{21} and μ_{22} are correctly defined for an arbitrary graph. Their exact values are found for simple paths, simple cycles and some outerplanar graphs $[7]$, Möbius ladders $[6]$, complete graphs $[8]$, complete bipartite graphs $[9][10]$, prisms $[11]$ and n-dimensional cubes $[11][12]$. The exact values of μ_{11} and μ_{22} for trees are found in $[13]$. The exact value of μ_{12} for an arbitrary tree is found in $[14]$.

In addition to the definitions given above, let us note that exact values of the parameters μ_{12} and μ_{21} have certain game interpretations. Suppose that all edges of a graph G are colored in the game of Alice and Bob with asymmetric distribution of roles. Alice determines the number t of colors in the future coloring φ of the graph G, satisfying the condition $t \in [\chi'(G), |E(G)|]$, Bob colors edges of G with t colors.

When Alice aspires to maximize, Bob aspires to minimize the value of the function $f_G(\varphi)$, and both of them choose their best strategies, then at the finish of the game exactly $\mu_{12}(G)$ vertices of G will receive an interval spectrum.

When Alice aspires to minimize, Bob aspires to maximize the value of the function $f_G(\varphi)$, and both of them choose their best strategies, then at the finish of the game exactly $\mu_{21}(G)$ vertices of G will receive an interval spectrum.

In this paper, for arbitrary positive integers m and n, we determine the exact value of μ_{21} for the complete bipartite graph $K_{m,n}$.

For $m \geq n$, let $K_{m,n}$ be a complete bipartite graph with a bipartition (X,Y), where $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_m\}$.

Clearly, for any positive integers m and n, $\chi'(K_{m,n}) = \Delta(K_{m,n}) = m$, $|E(K_{m,n})| = mn$.

First we recall some known results.

Theorem 1. $[3][4][5]$ If R is the set of all vertices of an arbitrary part of a bipartite graph G, then:

1) R has an i-property,

2) $W_R(G) = |E(G)|$,

3) for any $t \in [w_R(G), W_R(G)]$, there exists $\varphi_t \in \alpha(G, t)$ interval on R.

Theorem 2. $[15]$ For arbitrary positive integers m and n, $w_Y(K_{m,n}) = n \cdot \left\lceil \frac{m}{n} \right\rceil$.

Theorem 3. $[5][10]$ For arbitrary positive integers m and n, $K_{m,n} \in \mathfrak{M}$, $w(K_{m,n}) = m + n - \gcd(m, n)$, $W(K_{m,n}) = m + n - 1$; moreover, for any $t \in [w(K_{m,n}), W(K_{m,n})]$, there exists $\varphi_t \in \alpha(K_{m,n}, t)$ with $V_{\text{int}}(K_{m,n}, \varphi_t) = V(K_{m,n})$.
Corollary 1. For arbitrary positive integers \(m \) and \(n \), the inequality \(\max\{m,n\} \leq \min\{m,n\} \cdot \left\lfloor \frac{\max\{m,n\}}{\min\{m,n\}} \right\rfloor \leq m + n - \gcd(m,n) \leq m + n - 1 \) is true.

Theorem 4. If \(G \) is a graph with \(\delta(G) \geq 2, \varphi \in \alpha(G,|E(G)|), V_{int}(G,\varphi) \neq \emptyset \), then \(G[V_{int}(G,\varphi)] \) is a forest each connected component of which is a simple path.

If \(G \) is a graph with \(\chi'(G) = \Delta(G), t \in [\Delta(G),|E(G)|], \xi \in \alpha(G,t) \), then for any \(j \in [1,t] \), we denote by \(E(G,\xi,j) \) the set of all edges of \(G \) colored by the color \(j \) at the coloring \(\xi \). The coloring \(\xi \) is called a harmonic \(t \)-coloring of the graph \(G \), if for any \(i \in [1,\Delta(G)] \), the set

\[
\bigcup_{1 \leq j \leq t, j \equiv i(\mod(\Delta(G)))} E(G,\xi,j)
\]

is a matching in \(G \).

Suppose that \(G \) is a graph with \(\chi'(G) = \Delta(G), t \in [\Delta(G),|E(G)|], \xi \) is a harmonic \(t \)-coloring of \(G \). Let us define a sequence \(\xi^*, \xi^*_1, \ldots, \xi^*_{\chi'(G)} \) of proper edge colorings of the graph \(G \).

Set \(\xi_0^* \equiv \xi \).

Case 1. \(t = \chi'(G) \). The sequence mentioned above is already constructed.

Case 2. \(t \in [\chi'(G)+1,|E(G)|] \). Suppose that \(j \in [1,t-\chi'(G)] \), and the proper edge colorings \(\xi^*_0, \ldots, \xi^*_{t-1} \) of the graph \(G \) are already constructed. Let us define \(\xi^*_j \). For an arbitrary \(e \in E(G) \), set:

\[
\xi^*_j(e) = \begin{cases}
\xi^*_{j-1}(e), & \text{if } \xi^*_{j-1}(e) \neq \max(\{\xi^*_{j-1}(e)/e \in E(G)\}) \\
\xi^*_{j-1}(e) - \Delta(G), & \text{if } \xi^*_{j-1}(e) = \max(\{\xi^*_{j-1}(e)/e \in E(G)\})
\end{cases}
\]

Remark 1. Suppose that \(G \) is a graph with \(\chi'(G) = \Delta(G), t \in [\Delta(G),|E(G)|], \xi \) is a harmonic \(t \)-coloring of \(G \). All proper edge colorings \(\xi^*_0, \xi^*_1, \ldots, \xi^*_{\chi'(G)-1} \) of the graph \(G \) are already constructed. Then, for any \(j \in [1,\chi'(G)] \), \(\xi_j^* \) is a harmonic \((t-j) \)-coloring of the graph \(G \).

Remark 2. Suppose that \(G \) is a graph with \(\chi'(G) = \Delta(G), t \in [1+\chi'(G),|E(G)|], \xi \) is a harmonic \(t \)-coloring of \(G \). It is not difficult to see, that for any \(j \in [1,\chi'(G)] \), \(\xi_j^* \) is a harmonic \((t-j) \)-coloring of the graph \(G \).

Lemma 1. If integers \(m \) and \(n \) satisfy either conditions \(m \geq 3, n = 2 \), or the inequality \(m \geq n \geq 3 \), then \(\mu_G(K_{m,n}, mn) \leq m \).

Proof. Assume the contrary. Then there exists \(\varphi_0 \in \alpha(K_{m,n}, mn) \) with \(f_{K_{m,n}}(\varphi_0) = m + k \), where \(k \in [1,n] \). Clearly, \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = m + k - |V_{int}(K_{m,n},\varphi_0) \cap X| \).

Case 1. \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = 0 \). In this case we obtain a contradiction \(m < m + k = |V_{int}(K_{m,n},\varphi_0) \cap Y| \leq |Y| = m. \)

Case 2. \(|V_{int}(K_{m,n},\varphi_0) \cap X| = 1 \). In this case \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = m + k - 1 \geq m \). From this inequality we obtain that \(\Delta(K_{m,n}[V_{int}(K_{m,n},\varphi_0)]) \geq 3 \), but it is impossible because of Theorem 4.

Case 3. \(2 \leq |V_{int}(K_{m,n},\varphi_0) \cap Y| \leq n \). In this case \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = m + k - |V_{int}(K_{m,n},\varphi_0) \cap X| \geq m - n + k \).

Clearly, if at least one of the inequalities \(m - n \geq 1 \) and \(k \geq 2 \) is true, we obtain the inequality \(|V_{int}(K_{m,n},\varphi_0) \cap Y| \geq 2 \), which contradicts Theorem 4.

Therefore, without loss of generality, we can assume, that \(m = n, k = 1 \), \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = m + 1 - |V_{int}(K_{m,n},\varphi_0) \cap X|, 1 \leq |V_{int}(K_{m,n},\varphi_0) \cap Y| \leq m - 1 \).

Let us notice that the inequality \(|V_{int}(K_{m,n},\varphi_0) \cap Y| \geq 2 \) is incompatible with the inequality \(|V_{int}(K_{m,n},\varphi_0) \cap X| \geq 2 \) because of Theorem 4, therefore \(|V_{int}(K_{m,n},\varphi_0) \cap Y| = 1 \).

An assumption \(|V_{int}(K_{m,n},\varphi_0) \cap X| \geq 3 \) implies the inequality \(\Delta(K_{m,n}[V_{int}(K_{m,n},\varphi_0)]) \geq 3 \), which contradicts Theorem 4.
An assumption $|V_{int}(K_{m,n}, \varphi_0) \cap X| = 2$ implies the equality $f_{K_{m,n}}(\varphi_0) = 3$, which is incompatible with the equality $f_{K_{m,n}}(\varphi_0) = m + k$ because of $m \geq 3$ and $k = 1$.

The Lemma is proved.

Lemma 2. If integers m and n satisfy either conditions $m \geq 3$, $n = 2$, or the inequality $m \geq n \geq 3$, then $\mu_2(K_{m,n}, mn) = m$.

Proof. It follows from Theorem [4] that there exists $\bar{\varphi} \in \alpha(K_{m,n}, mn)$ interval on Y. It means that $\mu_2(K_{m,n}, mn) \geq m$. From Lemma [1] we have $\mu_2(K_{m,n}, mn) \leq m$.

The Lemma is proved.

Theorem 5. For arbitrary positive integers m and n, where $m \geq n$,

$$\mu_{21}(K_{m,n}) = \begin{cases}
 m + 1, & \text{if } n = 1 \text{ or } m = n = 2 \\
 m & \text{otherwise.}
\end{cases}$$

Proof.

Case 1. $n = 1$. In this case $\chi'(K_{m,1}) = \Delta(K_{m,1}) = |E(K_{m,1})| = m$. It means that for all $\varphi \in \alpha(K_{m,1}, m)$, $f_{K_{m,1}}(\varphi) = m + 1$. Hence, $\mu_2(K_{m,1}, m) = m + 1$, $\mu_{21}(K_{m,1}) = m + 1$.

Case 2. $m = n = 2$. Clearly, $K_{2,2} \cong C_4$, and the theorem follows from the results of [7].

Case 3. $m \geq 3$, $n = 2$ or $m \geq n \geq 3$.

From Lemma [2] we have $\mu_2(K_{m,n}, mn) = m$. Let us show that for any $t \in [m, mn]$, the inequality $\mu_2(K_{m,n}, t) \geq m$ holds.

From Theorems [1] and [2] it follows that for any $t \in [n \cdot \lceil \frac{m}{n} \rceil, mn]$, there exists $\varphi_t \in \alpha(K_{m,n}, t)$ interval on Y with $f_{K_{m,n}}(\varphi_t) \geq m$. It means that for any $t \in [n \cdot \lceil \frac{m}{n} \rceil, mn]$, the inequality $\mu_2(K_{m,n}, t) \geq m$ is true.

Now let us show that for any $t \in [m, m + n - 1]$, the inequality $\mu_2(K_{m,n}, t) \geq m$ is also true.

Let us define [5, 16] a proper edge $(m + n - 1)$-coloring ξ of the graph $K_{m,n}$. For any integers m and n, satisfying the inequalities $1 \leq i \leq n$, $1 \leq j \leq m$, set $\xi((x_i, y_j)) \equiv i + j - 1$. It is easy to see that ξ is a harmonic $(m + n - 1)$-coloring of $K_{m,n}$ with $f_{K_{m,n}}(\xi) = m + n$. Let us consider the sequence $\xi_0^*, \xi_1^*, \ldots, \xi_{n-1}^*$ of proper edge colorings of $K_{m,n}$. Taking into account Remarks [1]–[3] it is not difficult to notice, that for any $j \in [1, n - 1]$, $f_{K_{m,n}}(\xi_j^*) = m + n - j$. Consequently, for any $j \in [1, n - 1]$, $f_{K_{m,n}}(\xi_j^*) \geq m + 1$.

It means that for any $t \in [m, m + n - 1]$, the inequality $\mu_2(K_{m,n}, t) \geq m$ is true indeed.

Now, taking into account Corollary [1] we can conclude that for any $t \in [m, mn]$, the inequality $\mu_2(K_{m,n}, t) \geq m$ is proved. From Lemma [2] we obtain $\mu_{21}(K_{m,n}) = m$.

The Theorem is proved.

Corollary 2. For any positive integers m and n, where $m \geq n$, the inequality $m \leq \mu_{21}(K_{m,n}) \leq m + 1$ holds.

References

[1] D.B. West, *Introduction to Graph Theory*, Prentice-Hall, New Jersey, 1996.

[2] V.G. Vizing, *The chromatic index of a multigraph*, Kibernetika 3 (1965), pp. 29–39.

[3] A.S. Asratian, R.R. Kamalian, *Interval colorings of edges of a multigraph*, Appl. Math. 5 (1987), Yerevan State University, pp. 25–34.

[4] A.S. Asratian, R.R. Kamalian, *Investigation of interval edge-colorings of graphs*, Journal of Combinatorial Theory. Series B 62 (1994), no.1, pp. 34–43.

[5] R.R. Kamalian, *Interval Edge Colorings of Graphs*, Doctoral dissertation, the Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990.
[6] N.N. Davtyan, R.R. Kamalian, *On boundaries of extremums of the number of vertices with an interval spectrum among the set of proper edge colorings of "Möbius ladders" with t colors under variation of t*, Proc. of the 3rd Ann. Sci. Conf. (December 5–10, 2008) of the RAU, Yerevan, 2009, pp. 81–84.

[7] N.N. Davtyan, R.R. Kamalian, *On properties of the number of vertices with an interval spectrum in proper edge colorings of some graphs*, the Herald of the RAU, №2, Yerevan, 2009, pp. 33–42.

[8] A.M. Khachatryan, *On boundaries of extremums of the number of vertices with an interval spectrum among the set of proper edge colorings of complete graphs with t colors under variation of t*, Proc. of the 5th Ann. Sci. Conf. (December 6–10, 2010) of the RAU, Yerevan, 2011, pp. 268–272.

[9] A.M. Khachatryan, *On the parameters µ₁₁, µ₁₂ and µ₂₂ of complete bipartite graphs*, the Herald of the RAU, №1, Yerevan, 2011, pp. 76–83.

[10] R.R. Kamalian, A.M. Khachatryan, *On the sharp value of the parameter µ₂₁ of complete bipartite graphs*, the Herald of the RAU, №2, Yerevan, 2011, pp. 19–27.

[11] R.R. Kamalian, A.M. Khachatryan, *On properties of a number of vertices with an interval spectrum among the set of proper edge colorings of some regular graphs*, Proc. of the 6th Ann. Sci. Conf. (December 5–9, 2011) of the RAU, Yerevan, 2012, to appear.

[12] A.M. Khachatryan, R.R. Kamalian, *On the µ-parameters of the graph of the n-dimensional cube*, Book of abstracts of the International Mathematical Conference devoted to the 70 year anniversary of Professor Vladimir Kirichenko, June 13-19 (2012), Mykolaiv, Ukraine, to appear.

[13] N.N. Davtyan, *On the least and the greatest possible numbers of vertices with an interval spectrum on the set of proper edge colorings of a tree*, Math. Problems of Computer Science, Vol. 32, Yerevan, 2009, pp. 107–111.

[14] N.N. Davtyan, R.R. Kamalian, *On the parameter µ₁₂ of a tree*, Proc. of the 4th Ann. Sci. Conf. (November 30 – December 4, 2009) of the RAU, Yerevan, 2010, pp. 149–151.

[15] R.R. Kamalian, *On one-sided interval colorings of bipartite graphs*, the Herald of the RAU, №2, Yerevan, 2010, pp. 3–11.

[16] R.R. Kamalian, *Interval colorings of complete bipartite graphs and trees*, Preprint of the Computing Centre of the Academy of Sciences of Armenia, 1989, 11p.

[17] N.N. Davtyan, A.M. Khachatryan, R.R. Kamalian, *On a subgraph induced at a labeling of a graph by the subset of vertices with an interval spectrum*, Book of abstracts of the 8th International Algebraic Conference in Ukraine. July 5–12(2011), Lugansk, pp. 61–62.