ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T-cell lymphoma.

Tiphanie Auguste, Marion Travert, Karin Tarte, Patricia Amé-Thomas, Catherine Artchounin, Nadine Martin-Garcia, Aurélien De Reynies, Laurence De Leval, Philippe Gaulard, Marie-Hélène Delfau-Larue

To cite this version:
Tiphanie Auguste, Marion Travert, Karin Tarte, Patricia Amé-Thomas, Catherine Artchounin, et al.. ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T-cell lymphoma.. PLoS ONE, Public Library of Science, 2013, 8 (6), pp.e64536. <10.1371/journal.pone.0064536>. <inserm-00868981>
ROQUIN/RC3H1 Alterations Are Not Found in Angioimmunoblastic T-Cell Lymphoma

Tiphanie Auguste1,2, Marion Travert1, Karin Tarte3, Patricia Amé-Thomas3, Catherine Artchounin1,6, Nadine Martin-Garcia1,6, Aurélien de Reynies4, Laurence de Leval5, Philippe Gaulard1,2,6, Marie-Hélène Delfau-Larue1,2,7

1 INSERM U955, Immunologie et Oncogénèse des Tumeurs Lymphoïdes, Créteil, France, 2 Faculté de Médecine, Université Paris-Est, Créteil, France, 3 INSERM U917, Microenvironnement et Cancer, Rennes, France, 4 Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France, 5 Service de Pathologie Clinique, Institut Universitaire de Pathologie, Groupe Hospitalier Henri Mondor–Albert Chenevier, Créteil, France, 6 Département de Pathologie, Groupe Hospitalier Henri Mondor–Albert Chenevier, Créteil, France, 7 Laboratoire d’Immunologie Biologique, Assistance Publique–Hôpitaux de Paris (AP-HP), Groupe Henri-Mondor Albert-Chenevier, Créteil, France

Abstract

Angioimmunoblastic T-cell Lymphoma (AITL) is one of the most frequent T-cell lymphoma entities. Follicular helper T lymphocytes (TFH) are recognized as the normal cellular counterpart of the neoplastic component. Despite a clonal T-cell feature and few described recurrent cytogenetic abnormalities, a driving oncogenic event has not been identified so far. It has been recently reported that in mice, heterozygous inactivation of Roquin/Rc3h1, a RING type E3 ubiquitine ligase, recapitulates many of the clinical, histological, and cellular features associated with human AITL. In this study we explored whether ROQUIN alterations could be an initial event in the human AITL oncogenic process. Using microarray and RT-PCR analyses, we investigated the levels of ROQUIN transcripts in TFH tumor cells purified from AITL (n = 8) and reactive tonsils (n = 12) and found similar levels of ROQUIN expression in both. Moreover, we also demonstrated that ROQUIN protein was expressed by AITL TFH (PD1+) cells. We then analysed ROQUIN coding sequence in 12 tumor cell-rich AITL samples and found no mutation in any of the samples. Finally, we analysed the expression of MiR101, a putative partner of ROQUIN involved in the modulation of ICOS expression and found similar levels of expression in tumor and reactive TFH. Altogether, this study shows that neither alteration of ROQUIN gene nor deregulation of miR101 expression is likely to be a frequent recurrent event in AITL.

Citation: Auguste T, Travert M, Tarte K, Amé-Thomas P, Artchounin C, et al. (2013) ROQUIN/RC3H1 Alterations Are Not Found in Angioimmunoblastic T-Cell Lymphoma. PLoS ONE 8(6): e64536. doi:10.1371/journal.pone.0064536

Editor: Paul J. Galardy, Mayo Clinic, United States of America

Received September 19, 2012; **Accepted** April 16, 2013; **Published** June 25, 2013

Copyright: © 2013 Auguste et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Institut National du Cancer (INCA), the Fondation pour la Recherche Médicale (FRM), the Plan Cancer (Belgium), the Association pour la Recherche Thérapeutique, Génétique et Immunologique dans les Lymphomes (ARTGIL). MT was supported by the FRM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: marie-helene.delfau@hmn.aphp.fr

Introduction

Angioimmunoblastic T-cell Lymphoma (AITL) is a distinct T-cell lymphoma entity [1] originally described as a dysimmune condition [2]. It usually manifests with generalized lymphadenopathy, hepatomegaly, splenomegaly, fever, sweats, and skin rash and is frequently associated with clinical and biological autoimmune manifestations [3]. A clonal T-Cell Receptor gene rearrangement is detected in around 80% of the cases [4,5], and few recurrent cytogenetic abnormalities have been reported [reviewed in [6]]. Recently, we have reported mutations in isocitrate dehydrogenases 2 (IDH2) [7] and Ten-Eleven Translocation 2 (TET2) [8] genes in AITL, two genes involved in epigenetic gene regulation, but to date, no driving oncogenic event has been identified. We and others have shown that Follicular Helper T (THF) cells are the normal cellular counterpart of the neoplastic component of AITL [9–12]. THF cells constitute a specialized subset of T cells which allows the selection of high-affinity B lymphocytes within germinal centers and provide helper function for antibody production [13]. Human THF cells express high levels of BCL6, PD1, ICOS, the chemokine CXCL13 and its receptor (CXCR5) and secrete the cytokine IL-21 [14–18].

Recently, a mouse model has been proposed for AITL [19]. It recapitulates many of the clinical and pathological features associated with AITL, including lymphadenopathy, hypergammaglobulinemia and accumulation/expansion of clonal THF cells. This phenotype is specifically linked to heterozygous Roquin/Rc3h1 point mutation (sanroque allele) in T cells [20]. Roquin, a RING-type E3 ubiquitin ligase family member, has been previously identified as a regulator of autoimmune responses in mice [20]. We thus hypothesized that in human, ROQUIN/RC3H1 alterations could occur as an initial event of the AITL oncogenic process, leading to THF accumulation or proliferation prone to subsequent transforming events.

Material and Methods

The present study was approved by the institutional review board “Comité de Protection des Personnes, Créteil, France” (CPP 09–008). Written consent was obtained from patients with lymphoma. Reactive human tonsils were collected from children...
undergoing routine tonsillectomy. Oral information was given to parents. A consent form attesting the oral consent was signed by the surgeon and given to the research team with tonsils.

Cell samples and AITL tissues

Normal cell subsets were isolated from reactive human tonsils. Briefly, mononuclear cells were isolated by mechanical disruption followed by Ficoll-hypaque density gradient centrifugation. T_{FH} cells were purified after depletion of CD19, CD8, CD14 and CD16-positive cells with magnetic beads (Milteny Biotec, Paris, France), by cell sorting of CD4⁺-FITC, CXCR5-PE and ICOS-PC7 triple-positive cells on Mo-Flo legacy (Beckman Coulter, Villepinte, France). Tonsil CD4⁺, CD8⁺ T-cells and B-cells were purified by positive selection with antibodies directed against CD4, CD8, and CD19 respectively (Milteny Biotec, Paris, France).

Neoplastic T_{FH} cells were isolated from cryopreserved mononuclear cell suspensions of AITL lymph node biopsies, through a one-step CD4⁺-FITC, CXCR5-PE and ICOS-PC7 cell sorting.

Twelve AITL tumor frozen tissue samples were selected on the basis of high tumor cell content. After complete immunostaining for T_{FH} markers including PD1, ICOS and CXCL13, a semi-quantitative evaluation of tumor cells was performed as previously described [21] and cases with more than 50% tumor cells were selected for ROQUIN sequence analyses (Figure 1).

Immunohistochemistry

For in situ evaluation of ROQUIN expression, deparaffinised tissue sections of 8 AITL samples were stained with a polyclonal antibody (Novius biologicals NBP1-89590, Cambridge, United Kingdom) using a Vectastain immunoperoxidase method (Vector Labs, Peterborough, UK) and revealed with Diaminobenzidine (DAB). Specificity of the antibody was validated using NIH3T3 transfected with human full length ROQUIN cDNA (data not shown). The distribution and phenotypic characteristics of ROQUIN-positive cells in vivo was explored by double immuno-stainings for ROQUIN and either PAX5 (as a B-cell marker) and PD1 (as T_{FH} marker). Briefly, cases were first stained for ROQUIN using an immunoperoxidase method (Vectastain), then for PAX5 ((DakoCytomation, Glostrup, Denmark) or PD1 (Figure 3).

Figure 1. Illustrative case of AITL rich in tumor cells. Diffuse proliferation of large neoplastic cells surrounded by inflammatory cells (plasma cells, eosinophils) and vascular hyperplasia (hematoxylin-eosin, original magnification ×20) (A). Numerous neoplastic cells highlighted by positivity for T_{FH} markers CXCL13 (B), ICOS (C) and PD1(D) (immunoperoxidase, original magnification ×20). doi:10.1371/journal.pone.0064536.g001

Figure 2. ROQUIN expression in human reactive and tumoral lymphoid samples. Levels of ROQUIN transcripts determined by gene expression profiling of 17 AITL tumor tissue samples and 2 AITL cell suspensions enriched in tumor cells (≥50%) samples as previously reported [10]. (probe-set 228996_at): ROQUIN transcripts level is slightly higher in enriched tumor cell sample (P = 0.0067 unpaired t-test) (A). ROQUIN mRNA levels determined by quantitative RT-PCR in reactive tonsils: total extract (n = 1), CD4⁺ (n = 2), CD8⁺ (n = 2), or CD19⁺ (n = 2) lymphocytes. Results were normalized by HPRT and compared to reactive purified T_{FH} cells as calibrator: reactive CD4⁻CD8⁻- and CD19⁻-positive subsets display heterogeneous levels of ROQUIN mRNA (B). ROQUIN mRNA levels ([228996_at probeset] in purified reactive (n = 12) and neoplastic T_{FH} cells (n = 8). T_{FH} cells were purified from 12 reactive tonsils and 8 AITL lymph nodes. RNA was extracted and whole genome expression was analysed on HG-U133 plus 2.0 Affymetrix GeneChip arrays. Similar levels of ROQUIN transcript are observed (C).

doi:10.1371/journal.pone.0064536.g002

Figure 3. Immunohistochemical detection of ROQUIN in AITL. Among the many cells showing a cytoplasmic granular staining for ROQUIN (brown), a few are PAX5-positive large cells (B-immunoblasts) (pink arrow) whereas most of them are small to medium-sized PAX5-negative lymphoid cells forming small aggregates, corresponding to neoplastic cells of AITL (black arrows) (A). In addition, these aggregates of medium-sized ROQUIN-positive cells (brown, granular staining) co-expressed the T_{FH}-associated marker PD1 (red, membrane staining) (B). Double immunohistochemistry, original magnification ×250. doi:10.1371/journal.pone.0064536.g003
The level of ICOS mRNA expression is maintained even in the presence of ROQUIN transcripts both in human reactive and tumor T\(_{FH}\) cells (A). Level of miR101 (has-miR-101) is low and similar in both tumor and reactive T\(_{FH}\) cells (p = 0.8, unpaired t-test, NS) (B).

Results and Discussion

The levels of ROQUIN transcripts are similar in neoplastic and reactive T\(_{FH}\) cells

The analyses of ROQUIN probesets in our previously published transcriptomic dataset [12] disclosed the presence of ROQUIN transcripts in 17/17 AITL tissue samples with a slightly higher transcriptomic dataset [12] or for microRNA gene expression profiling on Agilent Human v3 miRNA microarray (G4471A, Agilent, Santa Clara CA). Analyses of gene expression profiles focused on probesets matching to ROQUIN (228996_at), ICOS (210439_at), and on miR101 (has-miR-101). The levels of ROQUIN and ICOS transcripts in reactive and neoplastic T\(_{FH}\) were determined by TaqMan quantitative reverse-transcriptase PCR (qRT-PCR; Applied Biosystems) on Light Cycler 480, after normalization to HPRT mRNA, and compared to purified reactive T\(_{FH}\) according to the 2\(^{-}\text{ΔΔCT}\) method.

Sequence analyses

ROQUIN cDNA was amplified by PCR in 3 fragments encompassing the coding sequence. Direct sequencing of PCR products was performed for the first two 5’ fragments. A cloning phase was necessary for exons 16 to 19 sequencing due to alternative splicing. Sequences were obtained from 12 AITL samples with a high tumor load as well as normal CD4\(^{+}\)/CXCR5\(^{+}\)/ICOS\(^{+}\) sorted T\(_{FH}\) cells obtained from reactive tonsils (n = 12) and AITL (n = 8) on Affymetrix microarray. Similar levels of ROQUIN transcripts were observed in T\(_{FH}\) purified either from reactive tonsils or from AITL lymph nodes (Figure 2C), thus excluding the hypothesis of a ROQUIN extinction by promoter alteration or gene expression dysregulation in AITL.

ROQUIN protein is expressed by AITL tumor cells

In situ evaluation of the pattern of ROQUIN expression was performed by immunohistochemistry. In all eight AITL cases investigated, numerous cells showing a granular cytoplasmic staining were observed. These comprised scattered large cells resembling B-blasts, smaller lymphocytes and many small to medium-sized atypical cells suggestive of the neoplastic cell component, as well as endothelial cells (Figure 3A). Double immunostainings performed in 4 cases demonstrated that most ROQUIN-positive cells were PAX5-negative and that many of them expressed PD1, therefore sharing the characteristic morphological and phenotypic features of neoplastic T\(_{FH}\) cells (Figure 3B). Furthermore, the observed granular cytoplasmic staining is compatible with Roquin localization in P bodies or stress granules as reported in the mouse [23,24].

ROQUIN coding sequence is not mutated in human AITL

We next investigated the presence of missense mutations in ROQUIN coding sequence. The 3402 bp ROQUIN coding sequence was obtained from 12 AITL samples with a high tumor load as well as normal CD4\(^{+}\) T cells sorted from 2 reactive tonsils. In contrast to Sanroque mice that develop a T\(_{FH}\) cell lymphoproliferative disorder with several symptoms of AITL including auto-immune manifestations and organomegaly as a result of Roquin mutations [19], no mutation was found in any of the AITL patients.

ICOS and miR101 expression are similarly expressed in reactive and AITL T\(_{FH}\) cells

Physiologically, in mice, Roquin limits ICOS expression by promoting the degradation of ICOS mRNA in a dose-dependent manner [24,25]. In sanroque mice, mutated Roquin is unable to promote ICOS mRNA degradation, resulting in the overexpression of the protein. Here, we show that the level of ICOS mRNA expression is maintained even in the presence of ROQUIN transcripts both in human reactive and tumor T\(_{FH}\) cells.
shown here that neither alteration of pathways deregulated by recurrent abnormality in AITL. Expanding knowledge on the deregulation of miR101 expression is likely to be a frequent accordance with recent finding in mouse showing that BCL6 could repress inhibitors of specific Tfh expressing gene including miR101 [29].

Conclusion

Altogether, by comparing reactive and AITL Tfh cells, we have shown here that neither alteration of ROQUIN gene nor deregulation of miR101 expression is likely to be a frequent recurrent abnormality in AITL. Expanding knowledge on the pathways deregulated by Roquin mutation in Sanroque mice might uncover other molecules of potential relevance to AITL pathophysiology.

Acknowledgments

The authors wish to thank Dr Launey for providing children tonsils and Virginie Fataccioli for her contribution. We are also thankful for the contribution made by Christelle Thibault from the IGBMC platform (Allysynetrix, Philippe Kastner, Strasbourg) and Philippe Dessen from Agilent miRNA platform, Institut Gustave Roussy.

Author Contributions

Conceived and designed the experiments: MHDL TA MT LiL. AdR KT PA. Performed the experiments: TA MT LiL. AdR KT PA CA NM. Analyzed the data: TA MHL1 MT AdR NM PG. Contributed reagents/materials/analysis tools: KT PA AdR. Wrote the paper: MHL1 TA PG LiL.

References

1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, et al. (2008) WHO Classification of Haematopoietic and Lymphoid Tissues. IARC Press.
2. Frizerra G, Moran EM, Rappaport H (1974) Angio-immunoblastic lymphadenopathy with dysproteinemia. Lancet 1(7866): 1070–3.
3. Mourad N, Mounier N, Brière J, Raffoux E, Delneri A, et al. (2008) Clinical, biological, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood 111(9): 4463–70.
4. Theodouros I, Bigouyne C, Delfau MH, Lahet C, Cochet G, et al. (1996) VJ rearrangements of the TCR gamma locus in peripheral T-cell lymphomas: analysis by polymerase chain reaction and denaturing gradient gel electrophoresis. J Pathol 178(3): 303–10.
5. Brüggemann M, White H, Gaulard P, Garcia-Sanz R, Gameiro P, et al. (2007) Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies. Report of the BIOMED-2 Concerted Action BHM4 CT98–3956. Leukemia 21(2): 215–21.
6. de Leval L, Gisselbrecht C, Gaulard P (2010) Advances in the understanding and management of angioimmunoblastic T-cell lymphoma. British Journal of Haematology 149(5): 673–89.
7. Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, et al. (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119(8): 1901–3.
8. Lemonnier F, Couronné L, Parness M, Jain JP, Travert M, et al. (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with Tfh-like features and adverse clinical parameters. Blood 120(7): 1466–9.
9. Dupuis J, Boye K, Marm M, Cognie-Bergman C, Plonquet A, et al. (2006) Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol 30(4): 490–4.
10. Grogg KL, Artygalle AD, Maccon WR, Remstein ED, Kurtin PJ, et al. (2005) Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106(4): 1501–2.
11. Krenacs L, Schaefer P, Kis G, Bagdi E (2006) Phenotype of neoplastic cells in angioimmunoblastic T-cell lymphoma is consistent with activated follicular helper T cells. Blood 108(5): 1110–1111.
12. de Leval L, Rickman DS, Thielien C, Revelin A de, Huang Y-L, et al. (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (Tfh) cells. Blood 109(11): 4952–63.
13. Walker LS, Guilbrann-Judge A, Flynn S, Brocker T, Lane PJ (2000) Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today 21(7): 335–7.
14. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, et al. (2009) Bcl6 mediates the development of T follicular helper cells. Science 325(5943): 1001–5.
15. Johnston RJ, Poholek AC, DiToro D, Ysuf I, Ezo D, et al. (2009) Bcl6 and Bnip-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325(5943): 1006–10.
16. Chittova T, Tangye SG, Newton R, Frank N, Hodge MR, et al. (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173(1): 68–78.
17. Kim CH, Lim HW, Kim JR, Rott L, Hillsamer P, et al. (2004) Unique gene expression program of human germinal center T helper cells. Blood 104(7): 1952–60.
18. Moser B, Schaefer P, Loetscher P (2002) CXC(R5)+ T cells: follicular homing takes center stage in T-helper-cell responses. Trends Immunol 23(5): 250–4.
19. Ellyard JI, Chia T, Rodriguez-Puilla S-M, Martin JL, Hu X, et al. (2012) Heterozygosity for Roquin leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 120(4): 812–21.
20. Vinnesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, et al. (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmune. Nature 435(7041): 452–8.
21. Delfau-Larue MH, de Leval L, Joly B, Plonquet A, Challine D, et al. (2012) Targeting intratumoral B cells with rituximab in addition to CHOP in angioimmunoblastic T-cell lymphoma. A clinicobiological study of the GELA Haematologica 97(10): 1594–602.
22. Chaligur R, James C, Tonetti C, Besancenot R, Le Couédic JP, et al. (2007) Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 110(10): 3735–43.
23. Athanasopoulos V, Barker A, Yu D, Tan AH, Sivastava M, et al. (2010) The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J 277(9): 2109–27.
24. Glaumacher E, Hauf KP, Vogel KR, Rath N, Du L, et al. (2010) Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat Immunol 11(8): 725–33.
25. Yu D, Tan AH-M, Hu X, Athanasopoulos V, Simpson N, et al. (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 456(7216): 299–303.
26. Marafioti T, Paterson JC, Ballardio E, Chott A, Natkunam Y, et al. (2010) The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell derivation. Haematologica 95(5): 432–9.
27. Basergio L, Traverse-Glehen A, Berger F, French M, Jailhades L, et al. (2011) CD10 and ICOS expression by multiparametric flow cytometry in angioimmunoblastic T-cell lymphoma. Mod Pathol 24(7): 995–1003.
28. Yu D, Rao S, Tsai LM, Lee SK, Hu Y, et al. (2009) The transcriptional repressor Bcl6 directs T follicular helper cell lineage commitment. Immunity 31(3): 457–61.

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e64536