Supplement of

Synthesizing the impacts of baseflow contribution on concentration–discharge \((C-Q)\) relationships across Australia using a Bayesian hierarchical model

Danlu Guo et al.

Correspondence to: Danlu Guo (danlu.guo@unimelb.edu.au)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. Recommendations on the filtering of flow and water quality data for analysis based on quality code (QC), obtained from individual state agencies.

State	NSW	SA	TAS	VIC	NT	QLD	WA
State agency contacted	WaterNSW	SA DEW	TAS DPIPWE	VIC DELWP	NT DEPWS	QLD DNRME	WA DER
QC recommendation for filtering flow data	QC<152 identifies suitable flow data for analysis	QC<=30 identifies suitable flow data for analysis	QC>=51 identifies suitable flow and water quality data for analysis	QC<=150 identifies suitable flow and water quality data for analysis	QC<100 identifies suitable flow and water quality data for analysis	QC<=26 identifies suitable flow and water quality data for analysis	QC<=3 identifies suitable flow and water quality data for analysis
QC recommendation for filtering water quality data	No QC records	QC for WQ not generally used for filtering data					

Table S2. The ranges and medians of percentage of water quality data with multiple records in the same day for individual study catchments and for each water quality variable.

Water quality variable	min/%	median/%	max/%
TSS	0	3.36	65.4
TP	0	1.10	44.5
SRP	0	1.51	40.1
TN	0	0.54	44.5
NOx	0	0.89	28.3
EC	0	12.7	65.9
Table S3. The ranges and medians of percentage missing/erroneous flow data (which were then in-filled with AWRA-L model) for individual study catchments and for each water quality variable.

Water quality variable	min/%	median/%	max/%
TSS	0	0.13	46.3
TP	0	0	46.3
SRP	0	2.81	46.3
TN	0	0.72	46.3
NOx	0	3.98	46.3
EC	0	0.01	61.0

Figure S1. The temporal coverage of flow data (grey bars) and water quality data (red dots) across all catchments studied for individual water quality variables.
Figure S2. Flow regimes covered by the samples of each water quality variable, shown as the percentage of samples within each 25th percentile of the long-term daily flow. Each plot summarizes all catchments studied for individual water quality variables.

Figure S3. Relationship between BFI_m and catchment area (km2) for catchments analysed in each water quality variable.
Figure S4. Range BFI_m, $BFI_{10\%}$ and $BFI_{90\%}$, for catchments in each climate zone for each water quality variable analysed.

Figure S5. The 10th and 90th percentiles of daily BFI ($BFI_{10\%}$ and $BFI_{90\%}$), and BFI_{range} ($BFI_{90\%} - BFI_{10\%}$) versus BFI_m, each panel shows all catchments analysed in each water quality variable.
Figure S6. Relationship between BFI_m and catchment median concentration (in log scale) for each water quality variable.
Figure S7. Relationship between BFI_m and catchment median flow (in log scale) for catchments analysed in each water quality variable.

Figure S8. Median SRP:TP ratio at individual catchments, by climate zones
Figure S9. median NOx:TN ratio at individual catchments, by climate zones
Figure S10. Rstan codes for the model with BFI_m as the main predictor

data {
 int <lower=1> N;
 int <lower=1, upper=N> site[N];
 real <lower=0> BFI_m[N];
 real <lower=0> BFI_range[N];
 real <lower=0> C[n];
 real <lower=0> Q[n];
 real <lower=0> catkopen[N];
}

parameters {
 real <lower=0> beta_m;
 real <lower=0> eff_catkopen[N];
 real <lower=0> alpha[N];
 real <lower=0> beta_cq;
 real <lower=0> gamma;
 real <lower=0> sigma_m;
 real <lower=0> sigma_cq;
}

transformed parameters {
 real yhat[n];
 real beta[site[N]]
 vector[site[N]] beta_m;
 vector[site[N]] beta_cq;
 vector[site[N]] beta_range;
 vector[site[N]] beta);

 yhat[n] = alpha[site[n]] + Q[n] * beta_m[catkopen[n]];
}

model {
 beta_m = beta_m + eff_catkopen[catkopen[n]];
 yhat[n] = alpha[site[n]] + Q[n] * beta_m[catkopen[n]];
}

Figure S11. Rstan codes for the model with BFI_{range} as the main predictor

data {
 int <lower=1> N;
 int <lower=1, upper=N> site[N];
 real <lower=0> BFI_m[N];
 real <lower=0> BFI_range[N];
 real <lower=0> C[n];
 real <lower=0> Q[n];
 real <lower=0> catkopen[N];
}

parameters {
 real <lower=0> beta_m;
 real <lower=0> eff_catkopen[N];
 real <lower=0> alpha[N];
 real <lower=0> beta_cq;
 real <lower=0> gamma;
 real <lower=0> sigma_m;
 real <lower=0> sigma_cq;
}

transformed parameters {
 real yhat[n];
 real beta[site[N]]
 vector[site[N]] beta_m;
 vector[site[N]] beta_cq;
 vector[site[N]] beta_range;
 vector[site[N]] beta);

 yhat[n] = alpha[site[n]] + Q[n] * beta_m[catkopen[n]];
}

model {
 beta_m = beta_m + eff_catkopen[catkopen[n]];
 yhat[n] = alpha[site[n]] + Q[n] * beta_m[catkopen[n]];
}