Expression of Hypersensitive Troponin I and Soluble ST2 in Acute Organophosphorus Pesticide Poisoning

Xiaoting Liu, Lei Wang, Jing Chen, Hongna Qi, Guoying Ma, and Weizhan Wang

Department of Emergency, Hengshui People’s Hospital, Hengshui, Hebei 053000, China

Correspondence should be addressed to Lei Wang; annna1988@21cn.com

Received 20 October 2021; Revised 5 November 2021; Accepted 17 November 2021; Published 27 January 2022

1. Introduction

Our country is an agricultural country, many poisoning patients, including acute organophosphorus pesticide poisoning (acute organophosphorus pesticide poisoning, AOPP) of emergency poisoning disease first [1], the onset of fierce, rapid progress, and high mortality [2]. The toxicity will cause multiple organ function damage, and the myocardial cell damage is the most serious. The present study shows that hypersensitive troponin I (HS-TNI) can indicate early myocardial injury better than conventional troponin [3]. Soluble growth stimulation expression gene 2 protein (sST2) belongs to interleukin-1 receptor, which is a serum protein secreted by myocardial cells and myocardial fibroblasts when stimulated, indicating myocardial necrosis [4]. The purpose is to study the relationship between HS-TNI and sST2 and the myocardial injury induced by AOPP.

2. Data and Methods

2.1. General Clinical Data. 171 AOPP patients treated in the emergency department of Hengshui people’s Hospital from August 2016 to October 2019 were selected for the experiment. Among them, all patients met the AOPP diagnostic criteria in the eighth edition of internal medicine [5]. The poisoning route was oral, 50-200 ml drug, and the poisoning time was within 2 h. Among AOPP patients, there were 67 cases of methamidophos poisoning, 37 cases of parathion poisoning, 47 cases of dimethylamine poisoning, and 20 cases of dichlorvos poisoning. There were 78 males and 93 females, of which 171 were aged from 18 to 55 years, with an average age of 43.11 ± 15.2 years.

2.2. Diagnosis, Treatment, and Grouping after Admission. 171 patients with AOPP were hospitalized after routine
treatment due to acute organophosphorus pesticide poisoning. According to the eighth edition of internal medicine, 171 patients with AOPP were divided into three experimental groups according to the dose of pesticides ingested by mistake and the harm degree of different pesticide components, including 46 cases in the mild group, 56 cases in the moderate group, and 69 cases in the severe group. After treatment, all patients improved without death. Twenty healthy people without any disease were selected as the control group, including 10 males and 10 females, aged from 30 to 55 years, with an average of 43.15 ± 3.80 years. There was no significant difference between the two experimental groups in other aspects, \(P > 0.05 \).

2.3. **Detection and Observation Indicators.** In this experiment, the automatic detection analyzer of heart reader is selected to detect cTnI (0-0.5 ng/ml), HS cTnI (0-0.08 ng/ml), and NT proBNP (0-250). This instrument is an existing common detection instrument in the hospital. At the same time, 5 ml blood samples were collected at the speed of 3000r/min and centrifuged for 10 min to separate the serum. Soluble growth stimulating gene 2 (sst2) protein (< 35 ng/ml) was detected by enzyme-linked immunosorbet assay (ELISA). The toolkit was developed by C & amp, provided by company D. The research scheme of this subject has been approved by the hospital ethics committee, and the patients participating in the experiment have also received the support and consent of their families. The symptoms and ECG of poisoning patients were observed.

2.4. **Statistical Methods.** The data were analyzed by SPSS 21 software. The independent samples were normally distributed. The experimental data are measured in the way of average standard deviation, the pairwise comparison between the data is checked by the \(t \)-test method of independent samples, and the test of multiple groups of data is checked and compared by the method of univariate. Count data \(2 \times 2 \) table comparison between groups using \(X^2 \) test; Spearman correlation coefficient test is used for correlation analysis between data. \(P \) value represents the test level. If \(P < 0.05 \) is measured, it indicates that there is a statistical difference. The \(F \) value of ANOVA was used to evaluate the difference between groups. The greater the \(F \) value, the better the significance as shown in Figure 1.

3. **Experimental Process**

3.1. **Comparison of General Clinical Data of Patients in AOPP Poisoning Groups.** There is no obvious difference in clinical data between AOPP patients with different degrees of poisoning, such as gender, age, weight, and time to visit the doctor for poisoning \((P > 0.05) \). In terms of toxic dose, there was significant statistical significance among the groups \((P < 0.05) \). See Table 1.

3.2. **Dynamic Comparison of cTnI and HS-CTNI in Each Group of AOPP Patients.** The levels of serum cTnI and HS cTnI in AOPP patients at different times were compared, which were divided into 1 hour, 4 hours, and 12 hours. See Table 2 for specific conditions of experimental measured data:

The serum HS cTnI level of AOPP patients with different 1-hour poisoning degrees was higher than that of the control group (healthy people). Compared with the mild group, the poisoning degree in the severe group was higher than that in the mild group, but there was no significant difference in cTnI level between the two groups \((P > 0.05) \), and there was significant difference between the two groups \((P < 0.05) \). It was found that the levels of cTnI and HS cTnI in the experimental group increased with the increase of time and poisoning degree. The test results within 12 hours were significantly higher than those within 4 hours. There was significant difference between severe group and mild group \((P < 0.05) \), indicating that the measurement data were statistically significant as shown in Figure 2.

3.3. **Comparison of NT-proBNP and sST2 in Each Group of AOPP Patients.** According to the serum NT proBNP and ST2 levels of AOPP patients at different times, they were divided into 1 hour, 4 hours, and 12 hours. The comparison of NT proBNP and ST2 concentrations in patients \(d \) with different degrees of poisoning is shown in Table 3.

One hour after admission, the level of ST2 in the experimental group was higher than that in the control group. In the experimental group, ST2 in the severe group was higher than that in the mild group and moderate group, and the measured data between groups were statistically significant \((P < 0.05) \). At 4 and 12 hours after admission, the results showed that ST2 in the experimental group and the control group increased, and the increase was most obvious in the severe group. The SST measured at 212 hours in each group was significantly higher than that measured at 4 hours. There was significant statistical significance in the comparison of measurement data among groups. At 1 h after admission, NT proBNP in each group was within the normal range. At 4 h and 12 h after admission, NT proBNP gradually increased with time, and the severe group was significantly higher than the control group, which confirmed that NT proBNP could evaluate the severity of AOPP myocardial injury. The more severe the myocardial injury, the higher the level of ntprobnp. With the

![Figure 1: Correlation between hs-TnI and severity of AOPP.](image-url)
aggravation of AOPP poisoning, the level of NT proBNP increased gradually. The comparison between ST2 and ST2 was statistically significant (P < 0.05).

3.4. Correlation Analysis of HS-TNI and sST2 with AOPP.
According to the analysis of the obtained data, there is a positive correlation between Hs-TNI and sST2 in AOPP patients (R = 0.938, P < 0.001, R = 0.827, P < 0.001). The more serious the patient’s condition, the higher the concentration of Hs-TNI and sST2, and the more severe the myocardial injury.

Through the data analysis of the research results, it can be found that the ST2 of the moderate and severe groups in the experimental group is higher than that of the control group and also higher than that of the mild and moderate groups in the experimental group. Compared with the control group, the difference was statistically significant (P < 0.05). In addition, the level of ST2 in the experimental group and the control group increased at 4 and 12 hours, especially in the severe group. ST2 increased significantly at 12 hours after admission compared with 4 hours after admission (P < 0.05).

4. Discussion
The mechanism of myocardial injury after AOPP poisoning is as follows: (1) toxin directly damages cardiomyocytes [6]; (2) the accumulation of acetylcholine leads to the abnormal destruction of ion channels and the inhibition of cardiac conduction system [7]; (3) a series of inflammatory reactions were induced after poisoning, and the inflammatory response conduction of cardiomyocytes was inhibited [8]; (4) vomiting and gastric lavage during treatment resulted in electrolyte disorder and increased blood concentration and blood viscosity [9]; and (5) poisoning causes sympathetic nerve excitation. Anticholinergic drug treatment leads to increased heart rate and myocardial oxygen consumption, aggravating cell ischemia and hypoxia, leading to coronary artery spasm, decreased myocardial contractility, malignant arrhythmia, and even sudden cardiac death. Early detection, early diagnosis, and early treatment should be taken for AOPP poisoning [10], which will help to shorten the average length of hospital stay, reduce hospitalization expenses, and reduce mortality.

When the heart is damaged due to AOPP poisoning, a large amount of cTnI is released into the blood, which can be detected 3-6 hours after the onset and reach the peak at 18-24 hours, and the blood concentration can be maintained for 6-10 days [11]. However, the level of cTnI in blood circulation is often low; so, there may be a risk of misdiagnosis and missed diagnosis [12]. With the wide application of HS cTnI (high-sensitivity troponin I) detection, its
The decrease of serum cholinesterase cannot fully reflect the degree of organophosphorus pesticide poisoning, let alone evaluate the situation of myocardial injury.

5. Conclusion

This paper studied the diagnosis of soluble growth stimulating gene 2 protein ST2 and highly sensitive cardiac troponin IHS cTnI for early myocardial injury caused by acute organophosphorus pesticide poisoning. 171 inpatients with AOPP were divided into three groups (experimental group) and 20 healthy people (control group). The levels of cTnI and HS-CtNI in the experimental group increased with the extension of time and the deepening of poisoning degree; ST2 and NT proBNP water increased significantly on average. By detecting the levels of HS-CtNI and ST2, the degree of early myocardial injury in patients with AOPP can be determined, so as to evaluate the degree of myocardial injury more objectively.

To sum up, when the AOPP caused human myocardial injury, we can know and evaluate the degree of human myocardial injury through early detection and detection of HS-CtNI and sST2 levels and timely guidance and adjustment of therapeutic measures, reduce the further deterioration of cardiac function, reduce the disability rate, and improve the long-term prognosis.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

There is no potential conflict of interest in our paper.

Authors’ Contributions

All authors have seen the manuscript and approved to submit to your journal.

Acknowledgments

The project was supported by the Hengshui Research Foundation (2017014049Z) in 2017.
References

[1] Y. H. Lu, M. A. Zhou, and Y. S. Fu, “Evaluation of soluble ST2 and high sensitive troponin T on cardiac function in patients with ischemic cardiomyopathy,” Hebei Pharmaceutical, vol. 38, no. 13, pp. 2045–2047, 2019.

[2] A. Pascual-Figal, J. Ordoñez-Llanos, P. L. Tornel et al., “Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2174–2179, 2009.

[3] Y. J. Wang, “Correlation analysis between cardiac function classification and cardiac ultrasonic indexes in coronary atherosclerotic heart disease,” Chinese Basic Medicine, vol. 23, no. 1, 2019.

[4] L. C. van Vark, I. Lesman-Leegte, S. J. Baart et al., “Prognostic value of serial ST2 measurements in patients with acute heart failure,” Journal of the American College of Cardiology, vol. 17, no. 19, pp. 2378–2388, 2017.

[5] G. Ying, H. Hualan, Z. Shuai, and L. Guixing, “Risk assessment of acute myocardial infarction in patients with chest pain with initial hs-cTnT level ≤ 14ng/L,” Journal of Practical Medicine., vol. 19, 2019.

[6] C. Rong, J. Chao, and W. Di, “Analysis of the application value of high-sensitivity troponin T in the diagnosis of chronic heart failure,” Primary Medical Forum, vol. 16, 2016.

[7] G. Huijia, Z. Jianyi, H. Yajun, and Z. Liming, “Correlation between high-sensitivity troponin T and chronic heart failure and differential significance of acute myocardial infarction,” Chinese General Medicine, vol. 8, 2019.

[8] M. Weiwei and X. Chenling, “Value analysis of triple diagnosis of acute myocardial infarction with high sensitivity troponin T and myocardial infarction,” Chinese Journal of Gerontology, vol. 1, 2020.

[9] E. Donnellan and D. Phelan, “Biomarkers of cardiac stress and injury in athletes: What do they mean?” Current Heart Failure Reports, vol. 15, no. 2, pp. 116–122, 2018.

[10] J. A. Wang, Y. Qin, J. Lv, Y. F. Tian, and Y. J. Dong, “Clinical application of high-sensitivity cardiac troponin T test in acute myocardial infarction diagnosis,” Genetics and Molecular Research, vol. 14, no. 4, pp. 17959–17965, 2015.

[11] L. Xuefeng, W. P. Inkanisorn, P. Kellman, A. H. Aletras, and A. E. Arai, “Quantitative myocardial infarction on delayed enhancement MRI. Part II: Clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm.” Journal of Magnetic Resonance Imaging, vol. 23, no. 3, pp. 309–314, 2006.

[12] W. Jili, C. Xiaoying, and C. Fengying, “Correlation analysis between N-terminal brain natriuretic peptide, brain natriuretic peptide and ST2 and severity of patients with heart failure,” Chinese Medicine Guides, vol. 2, 2019.

[13] Z. Xiaoyi, Y. Yafeng, W. Weiyun, Z. Xuanming, and L. Xuefeng, “Research progress of correlation between ST2 and ventricular remodeling after myocardial infarction,” Journal of Mudanjiang Medical College, vol. 3, 2020.

[14] C. Xuefei, X. Guanxue, and M. Yi, “Research progress of soluble ST2 in heart failure,” Hainan Medical., vol. 21, 2020.

[15] Y. Shuai and L. Jia, “Application of st2 in diagnosis and prognosis of heart failure,” Chinese Journal of Cardiovascular Medicine, vol. 5, 2016.