Supporting Information

Predicting Hydrogen Storage in MOFs via Machine Learning

Alauddin Ahmed† and Donald J. Siegel†,§,∆,ß,*

†Mechanical Engineering Department, §Materials Science & Engineering, ∆Applied Physics Program, and ßUniversity of Michigan Energy Institute, University of Michigan, Ann Arbor, MI 48109, United States
Section S1. Details of MOF database reported earlier.¹

The database is publicly available at the HyMARC Data Hub²

Table S1. Database of MOF crystal structures, calculated crystallographic properties, and calculated usable H₂ capacities.

Source¹	Available in database	Zero accessible surface area	H₂ capacity evaluated empirically	H₂ capacity evaluated with GCMC
UM+CoRE+CSD17	15,235	2,950	12,285	12,799
Mail-Order MOFs	112	4	108	112
In Silico MOFs	2,816	154	2,662	466
In Silico Surface MOFs	8,885	283	8,602	1,058
MOF-74 Analogs	61	0	61	61
ToBaCCo	13,512	214	13,298	2,854
Zr-MOFs	204	0	204	204
NW Hypothetical MOFs	137,000	30,160	106,840	20,156
UO Hypothetical MOFs	315,615	32,993	291,507	61,247
In-house synthesized via hypothetical design	18	0	18	5
Total	**493,458**	**66,758**	**426,700**	**98,962**
Section S2 Literature review of machine learning for gas storage in MOFs

Table S2. Summary of recent studies that use machine learning (ML) to predict gas adsorption in MOFs. ρcrys, vf, vsa, mpd, lcd represent single crystal density, void fraction, volumetric surface area, maximum pore diameter, and largest cavity diameter, respectively. R2, AUE, a represent the coefficient of determination, Average Unsigned Error, and Root-Mean-Square Error, respectively. AUC = Area Under tLASSO: Least Absolute Shrinkage and Selection Operator; MLR: Multi-Linear Regression; SVM: Support Vector Machine; DT: Tress; RF: Random Forest; NN: Nearest Neighbors; GBM: Gradient Boosting Method; RBF: Radial Bias Function; PCA: Component Analysis; ANN: Artificial Neural Network.

Study	Gas	ML Features	ML Method	Properties Predicted	Accuracy	
Bucior et al. (2019)	CH4	Energetics of MOF-guest interactions	Multilinear regression with LASSO	H2: Deliverable capacity 2 and 100 bar at 77 K. CH4: Deliverable capacity between 5.8 and 65 bar at 298 K	R2 = 0.96, AUE = 1.4 - 3.4 g/L, RMSE = 3.1 - 4.4 g/L	
Anderson et al. (2018)	CO2	ρcrys, vf, gsa, vsa, mpd, lcd, topology	MLR, SVM, DT, RF, NN, GBM	CO2 capture	R2 = 0.601 - 0.934	
Pardakhti et al (2017)	CH4	ρcrys, vf, gsa, vsa, mpd, lcd interpenetration capacity, number of interpenetration framework, 19 chemical descriptors	DT, Poison regression, SVM, and RP	Total at 35 bar and 298 K	R2 = 0.97	
Aghaji et al. (2016)	CO2, CO2/CH4	vf, gsa, lcd	DT, SVM(RBF),	Working capacity for the pressure swing between 1 and 10 atm at 298 K	AUC = 0.889 to 0.953	
Fernandez & Barnard (2016)	CO2, N2	ρcrys, vf, gsa, vsa, mpd, lcd	PCA, k-means clustering, archetypal analysis, DT, SVM, MLL, ANN, RF	Total at 0.1 and 0.9 bar at 298 K	~94%	
Ohno & Mukae (2016)	CH4	ρcrys, vf, gsa, vsa, mpd, and lcd	GP regression, SVM regression, NN, and LR	Total at 35 bar and 298K.	R2 = 0.79	
Simon et al. (2015)	Xe/Kr	ρcrys, vf, vsa, pld, surface density, Voronoi energy	RF	Xe/Kr selectivity	RMSE = 2.21 for 15,000 unitless numbers between 0 and 35	R2 not Reported
Sezginel et al. (2015)	CH4	ρcrys, vf, gsa, vsa, mpd, and lcd, pld, Qse	MVL regression	Total at 298 K and pressures in 1 to 65 bar	R2 =0.3 - 0.9	
Fernandez et al. (2014)	CO2	AP-RDF	SVM classification	Total at P =0.15 & 1 bar at 298 K	94.5% (classification)	
Fernandez et al. (2013)	CH4, CO2	AP-RDF	PCA, MLR, and SVM regression	Total at low pressure (0.1-0.9 bar) at 298 K	~70% - ~83%	
Fernandez et al. (2013)	CH4	ρcrys, vf, gsa, vsa, mpd, lcd	DT, MLR, and SVM regression	Uptake at 1, 35, and 100 bar at 298 K	~90% at 1 bar (classification); R2 (regression) = 0.85 (35bar); R2 (regression) = 0.93 (100 bar)	
Section S3 Description of crystallographic features

Table S3. Statistics for the datasets used in this study.

Feature	Dataset type	Minimum	Maximum	Mean	Median	% zero values	Skew	Kurtosis
d (g cm\(^{-3}\))	Training	0.03	5.18	0.76	0.62	0	1.84	5.64
	Test	0.03	3.97	0.76	0.61	0	1.79	4.96
	Unseen	0.04	4.7	0.84	0.76	0	1.37	3.81
gsa (m\(^2\) g\(^{-1}\))	Training	0	9750	3112.01	3516	10	-0.16	-0.80
	Test	0	9701	3137.82	3560	10	-0.16	-0.74
	Unseen	0	9671	2530.47	2529	13	0.16	-0.84
vsa (m\(^2\) cm\(^{-3}\))	Training	0	3995	1696.35	1912	10	-1.03	0.23
	Test	0	3966	1703.42	1918	10	-1.04	0.26
	Unseen	0	3482	1473.48	1736	13	-1.10	0.01
vf	Training	0	0.99	0.71	0.76	0	-1.38	2.19
	Test	0.01	0.99	0.71	0.76	0	-1.37	2.18
	Unseen	0	0.98	0.69	0.71	0	-0.70	0.34
pv (cm\(^3\) g\(^{-1}\))	Training	0	35.73	1.34	1.23	0	6.97	91.45
	Test	0.01	29.82	1.37	1.24	0	7.29	89.60
	Unseen	0	24.76	1.18	0.93	0	3.22	30.16
lcd (Å)	Training	0.4	71.6	10.14	9.2	0	2.45	11.94
	Test	0.4	66.2	10.21	9.3	0	2.49	11.95
	Unseen	0.4	69.9	10.41	9.4	0	1.27	3.61
pld (Å)	Training	0	71.5	7.86	7.5	0	2.81	19.54
	Test	0.1	57.7	7.91	7.6	0	2.84	18.43
	Unseen	0	68	7.45	6.9	0	1.21	5.39

Skew and kurtosis were calculated using the scipy.stats module in the SciPy package. Skewness is calculated from the ratio of the third moment \(m_3\) and the cube of the square root of second moment \(m_2\) of a feature variable, \(skew = \mu_3/\mu_2^{3/2}\), where \(\mu_i = (\sum_{k=1}^{n_{samples}} (x[k] - \bar{x})^i/n_{samples}\) is the \(i\)-th central moment, and \(\bar{x}\) is the mean of the feature variable. Kurtosis is the fourth central moment divided by the square of the second moment: \(kurtosis = \mu_4/\mu_2^2\).
Figure S1. Distribution of 6 crystallographic features in 3 different datasets used in this study. (a) pore volume, (b) single crystal density, (c) void fraction, (d) gravimetric surface area, (e) volumetric surface area, and (f) largest cavity diameter.
Section S4 Machine learning work-flow

Figure S2. Machine learning work-flow as described in the text.

Section S5 Metrics for ML accuracy

The coefficient of determination (R^2), average unsigned error (AUE), root-mean-squared error (RMSE), and median absolute error (MAE) are used to assess the accuracy of the various ML models with respect to GCMC calculations. If the test/training set contains n_{samples} and $y_{i,\text{gcmc}}$ is the GCMC calculated H_2 capacity of i-th sample and $y_{i,\text{ml}}$ is the corresponding ML model prediction, then R^2, AUE, RMSE, and MAE are defined as follows:

$$R^2(y_{\text{gcmc}}, y_{\text{ml}}) = \frac{\sum_{i=1}^{n_{\text{samples}}} (y_{i,\text{gcmc}} - \bar{y}_{\text{gcmc}})(y_{i,\text{ml}} - \bar{y}_{\text{ml}})}{\sqrt{\sum_{i=1}^{n_{\text{samples}}} (y_{i,\text{gcmc}} - \bar{y}_{\text{gcmc}})^2 \sum_{i=1}^{n_{\text{samples}}} (y_{i,\text{ml}} - \bar{y}_{\text{ml}})^2}}$$

(1)

$$\text{AUE}(y_{\text{gcmc}}, y_{\text{ml}}) = \frac{1}{n_{\text{samples}}-1} \sum_{i=1}^{n_{\text{samples}}-1} |y_{i,\text{gcmc}} - y_{i,\text{ml}}|$$

(2)

$$\text{RMSE}(y_{\text{gcmc}}, y_{\text{ml}}) = \sqrt{\frac{1}{n_{\text{samples}}-1} \sum_{i=1}^{n_{\text{samples}}-1} (y_{i,\text{gcmc}} - y_{i,\text{ml}})^2}$$

(3)

$$\text{MAE}(y_{\text{gcmc}}, y_{\text{ml}}) = \text{median}(|y_{1,\text{gcmc}} - y_{1,\text{ml}}|, \ldots, |y_{n,\text{gcmc}} - y_{n,\text{ml}}|)$$

(4)

where $\bar{y}_{\text{gcmc}} = \frac{1}{n_{\text{samples}}} \sum_{i=1}^{n_{\text{samples}}} y_{i,\text{gcmc}}$.

Kendal τ rank correlation coefficients were calculated using the scipy.stats module13–15 according to the definition of Kendall τ-b.17–19
Section S6 Training set sizes

Table S4. Training set sizes.

Table S5. Performance of ML models in predicting usable gravimetric capacities under pressure swing conditions. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R²	AUE (wt. %)	RMSE (wt. %)	Kendal τ	EV	MAE
Ada Boost	AB	unscaled	0.975	0.476	0.332	0.910	0.976	0.410
Bagging with Decision Tree	B/DT	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Bagging with Random Forest	B/RF	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Boosted Decision Trees	BDT	unscaled	0.997	0.136	0.037	0.963	0.997	0.100
Decision Trees	DT	unscaled	0.995	0.180	0.065	0.949	0.995	0.100
Extremely Randomized Trees	ERT	unscaled	0.997	0.136	0.034	0.961	0.997	0.104
Gradient Boosting	GB	unscaled	0.997	0.158	0.045	0.955	0.997	0.123
K-Nearest Neighbors	K-NN	unscaled	0.983	0.346	0.226	0.900	0.983	0.260
Linear Regression	LR	unscaled	0.987	0.307	0.170	0.915	0.987	0.241
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel	Nu-SVM/RBF-K	minmax scale	0.986	0.235	0.187	0.958	0.987	0.173
Random Forest	RF	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Ridge Regression	RR	unscaled	0.987	0.307	0.170	0.915	0.987	0.241
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.986	0.236	0.187	0.958	0.987	0.174
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.986	0.306	0.187	0.920	0.986	0.224

Section S7 Performance comparison for ML algorithms

Table S6. Performance of ML models in predicting usable volumetric capacities under pressure swing condition. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R²	AUE (g. Hr.L⁻¹)	RMSE (g. Hr.L⁻¹)	Kendal τ	EV	MAE
Ada Boost	AB	unscaled	0.936	2.218	7.732	0.873	0.918	1.983
Bagging with Decision Tree	B/DT	unscaled	0.982	1.011	2.333	0.918	0.982	0.720
Bagging with Random Forest	B/RF	unscaled	0.983	0.997	2.846	0.919	0.981	0.710
Boosted Decision Trees	BDT	unscaled	0.983	0.979	2.104	0.922	0.981	0.700
Decision Trees	DT	unscaled	0.971	1.298	3.566	0.995	0.971	0.900
Extremely Randomized Trees	ERT	unscaled	0.984	0.967	1.606	0.922	0.984	0.692
Gradient Boosting	GB	unscaled	0.980	1.104	2.454	0.911	0.980	0.829
K-Nearest Neighbors	K-NN	unscaled	0.913	2.378	10.517	0.794	0.913	1.760
Linear Regression	LR	unscaled	0.917	2.403	10.045	0.820	0.917	1.961
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel	Nu-SVM/RBF-K	minmax scale	0.949	1.891	6.337	0.858	0.931	1.549
Random Forest	RF	unscaled	0.982	1.011	2.156	0.918	0.982	0.720
Ridge Regression	RR	unscaled	0.917	2.404	10.066	0.820	0.917	1.980
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.951	1.858	5.957	0.863	0.954	1.468
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.910	2.398	10.005	0.846	0.911	1.982
Table S7. Performance of ML models in predicting usable gravimetric capacities under temperature+pressure swing condition. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R²	AUE (wt. %)	RSME (wt. %)	Kendal τ	EV	MAE
Ada Boost	AB	unscaled	0.970	0.357	0.497	0.039	0.070	0.459
Bagging with Decision Tree	B/DT	unscaled	0.997	0.172	0.055	0.062	0.097	0.150
Bagging with Random Forest	B/RF	unscaled	0.997	0.171	0.054	0.061	0.097	0.150
Boosted Decision Trees	BDT	unscaled	0.997	0.165	0.051	0.063	0.097	0.127
Decision Trees	DT	unscaled	0.994	0.223	0.095	0.051	0.094	0.200
Extremely Randomized Trees	ERT	unscaled	0.997	0.163	0.053	0.068	0.097	0.100
Gradient Boosting	GB	unscaled	0.986	0.199	0.088	0.056	0.096	0.118
K Nearest Neighbors	K-NN	unscaled	0.995	0.250	0.117	0.063	0.095	0.200
Linear Regression	LR	unscaled	0.992	0.266	0.111	0.047	0.092	0.208
Nu Support Vector Machine with Radial Basis Function (RBF) Kernel	Nu-SVM/RBF-K	minmax scale	0.991	0.285	0.155	0.052	0.091	0.217
Random Forest	RF	unscaled	0.997	0.173	0.058	0.061	0.097	0.150
Ridge Regression	RR	unscaled	0.992	0.266	0.131	0.047	0.092	0.208
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.991	0.283	0.155	0.052	0.091	0.215
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.988	0.451	0.525	0.040	0.073	0.141

Table S8. Performance of ML models in predicting usable volumetric capacities under temperature+pressure swing condition. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R²	AUE (wt. %)	RSME (wt. %)	Kendal τ	EV	MAE
Ada Boost	AB	unscaled	0.911	2.187	9.834	0.752	0.012	1.077
Bagging with Decision Tree	B/DT	unscaled	0.965	1.381	4.147	0.809	0.066	0.540
Bagging with Random Forest	B/RF	unscaled	0.964	1.380	4.042	0.809	0.066	0.540
Boosted Decision Trees	BDT	unscaled	0.965	1.322	3.887	0.819	0.066	0.500
Decision Trees	DT	unscaled	0.930	1.912	7.150	0.755	0.058	1.200
Extremely Randomized Trees	ERT	unscaled	0.967	1.320	3.700	0.839	0.067	0.912
Gradient Boosting	GB	unscaled	0.955	1.572	4.953	0.875	0.055	1.126
K Nearest Neighbors	K-NN	unscaled	0.926	2.056	8.202	0.750	0.028	1.460
Linear Regression	LR	unscaled	0.913	2.048	9.691	0.784	0.013	1.529
Nu Support Vector Machine with Radial Basis Function (RBF) Kernel	Nu-SVM/RBF-K	minmax scale	0.913	2.053	9.656	0.787	0.015	1.510
Random Forest	RF	unscaled	0.965	1.303	4.109	0.809	0.066	0.540
Ridge Regression	RR	unscaled	0.913	2.049	9.692	0.784	0.013	1.551
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.913	2.059	9.441	0.788	0.015	1.507
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.987	2.117	10.494	0.787	0.011	1.300
Section S8 Performance of ML models under TPS conditions

Figure S3. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H$_2$ capacities in MOFs. Data is collected under TPS conditions on a test set of 24,674 MOFs. Different colors represent different categories of MOFs. Top (a-c) and bottom (d-f) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (a, d): Agreement between ML and GCMC predictions. (b, e): Difference between ML and GCMC as a function of GCMC capacity. (c, f) Distribution of differences in predictions between ML and GCMC.
Section S9 Difference between ML and GCMC as a function of GCMC capacity for the training set

Figure S4. Difference between ML and GCMC as a function of GCMC capacity for the training set of 74,201 MOFs. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H\textsubscript{2} capacities in MOFs. Data is collected under PS (a, c) and TPS (b, d). Different colors represent different categories of MOFs. Top (a, b) and bottom (c, d) panels illustrate performance for usable gravimetric and volumetric capacities, respectively.
Section S10 Effect of training set size on ML model accuracies

Figure S5. Performance of Extremely Randomized Trees ML models for predicting usable (a) gravimetric and (b) volumetric H₂ capacity as a function of training set size (up to a dataset size of 10,000 MOFs) and the ratio of training to test set size. 100 different training sets ranging in size between 100 and 74,021 MOFs were examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using R² (left axis, black) and the average unsigned error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law fit to the data.

Table S9. Parameters of the power-law fit, ε(m) = \(\alpha m^\beta + \gamma\), where m is the size of the training dataset and \(\varepsilon\) represents the accuracy (here average unsigned error or AUE). \(\alpha\), \(\beta\), and \(\gamma\) are the power-law coefficient, exponent, and constant, respectively:

Condition	\(\beta\) (scaling factor)	\(\alpha\) (coefficient)	\(\gamma\) (constant)
UG - PS	-0.43	1.19	0.13
UG - TPS	-0.37	0.92	0.16
UV - PS	-0.23	1.96	0.85
UV - TPS	-0.16	2.10	1.04
Section 11 Univariate Feature Importance20,21

Feature	Gravimetric – PS	Volumetric – PS	Gravimetric – TPS	Volumetric – TPS
d	7	7	7	7
gsa	2	5	6	6
lcd	4	3	5	5
pld	1	3	3	3
pv	1	1	1	1
vf	1	1	1	1
vsa	1	1	1	1

Figure S6. Relative importance of seven features in predicting H\textsubscript{2} storage in MOFs. Features are ranked 1 (most important) through 7 (least important). Four different methods were used: Pearson’s correlation coefficient (r), Breiman and Friedman’s tree-based algorithm as implemented in Scikit-learn, and the permutation importance method as implemented in rfpimp package. (a) usable gravimetric and (b) volumetric capacities for PS conditions. (c) usable gravimetric and (d) volumetric capacities for TPS conditions.
Section 12. GCMC verification of ML predictions

Table S10. MOFs predicted by ML to have high capacities under PS condition and whose performance was subsequently verified with GCMC. Here NW and UO represent Northwestern University and University of Ottawa databases.

Name	Source	Density (g cm$^{-3}$)	Gravimetric surface area (m2 g$^{-1}$)	Volumetric surface area (m2 cm$^{-3}$)	Void fraction	Void volume (cm3 g$^{-1}$)	Largest cavity diameter (Å)	Pore limiting diameter (Å)	Usable gravimetric capacity (wt. %)	Usable volumetric capacity (g H$_2$ L$^{-1}$)		
mof_7642	ToBaCo	0.30	5561	1695	0.89	2.93	12.8	11.8	11.1	10.5	40.5	37.4
mof_7690	ToBaCo	0.30	5715	1706	0.89	2.98	12.8	12.0	11.3	10.4	40.3	37.3
mof_7594	ToBaCo	0.40	5070	2031	0.86	2.15	11.2	9.7	8.6	7.9	39.9	37.0
mof_7210	ToBaCo	0.29	5936	1730	0.89	3.04	13.4	11.7	11.4	10.5	39.8	37.1
mof_7738	ToBaCo	0.25	6054	1502	0.90	3.64	14.5	13.5	13.0	12.0	39.7	37.0
hypotheticalMOF_5045702_i_1_j_24_k_20_m_2	NW	0.31	5926	1820	0.88	2.87	16.0	11.0	10.9	10.1	39.7	37.2
hypotheticalMOF_5037315_i_1_j_20_k_12_m_1	NW	0.31	5073	1583	0.90	2.88	17.7	12.9	10.8	10.1	39.7	37.1
hypotheticalMOF_5037467_i_1_j_20_k_12_m_8	NW	0.31	5600	1800	0.88	2.85	16.0	11.0	10.9	10.0	39.7	37.0
hypotheticalMOF_5037563_i_1_j_20_k_12_m_13	NW	0.31	5897	1811	0.88	2.87	16.1	11.0	10.9	10.1	39.7	37.2
hypotheticalMOF_5038404_i_1_j_20_k_20_m_15	NW	0.31	5870	1803	0.88	2.87	16.0	11.0	10.9	10.1	39.7	37.2
hypotheticalMOF_5037379_i_1_j_20_k_12_m_4	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037407_i_1_j_20_k_12_m_5	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037479_i_1_j_20_k_12_m_9	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5035561_i_1_j_28_k_20_m_11	NW	0.31	5874	1804	0.88	2.87	16.0	11.0	10.9	10.1	39.6	37.2
hypotheticalMOF_5037439_i_1_j_20_k_12_m_7	NW	0.31	5838	1799	0.88	2.85	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037499_i_1_j_20_k_12_m_10	NW	0.31	5854	1798	0.88	2.85	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037531_i_1_j_20_k_12_m_11	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037523_i_1_j_20_k_12_m_11	NW	0.31	5857	1799	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.1
Figure S7. Comparison of GCMC calculations with ML predictions for the 21,700 highest-capacity MOFs predicted by ML for PS conditions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a, d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (c, f) show the distribution of differences from plots b and e.
Table S11. MOFs predicted by ML to have high capacities under TPS condition and whose performance was subsequently verified with GCMC. Here UO represents University of Ottawa database.

Name	Source	Density (g cm\(^{-3}\))	Gravimetric surface area (m \(^2\) g\(^{-1}\))	Volumetric surface area (m \(^2\) cm\(^{-3}\))	Void fraction	Porosity volume (g cm\(^{-3}\))	Largest cavity diameter (Å)	Pore limiting diameter (Å)	Usable gravimetric capacity (wt.%)	Usable volumetric capacity (g H\(_2\) L\(^{-1}\))
str_m1_o11_f0_pcu.sym.102.out	UO	0.45	4332	1974	0.84	1.84	12.9	10.1	10.4	9.7
str_m1_o11_f0_pcu.sym.117.out	UO	0.47	4162	1977	0.83	1.74	12.8	9.9	9.9	9.0
str_m1_o11_f0_pcu.sym.121.out	UO	0.47	4263	2006	0.83	1.76	12.1	10.2	10.0	9.4
str_m1_o11_f0_pcu.sym.13.out	UO	0.46	4326	2005	0.83	1.79	12.7	9.9	10.1	9.3
str_m1_o11_f0_pcu.sym.159.out	UO	0.58	3703	2138	0.80	1.38	10.4	8.6	8.3	7.6
str_m1_o11_f0_pcu.sym.200.out	UO	0.45	4339	1978	0.84	1.84	12.9	10.1	10.3	9.6
str_m1_o11_f0_pcu.sym.212.out	UO	0.60	3417	2035	0.83	1.39	12.0	10.1	8.1	7.5
str_m1_o11_f0_pcu.sym.51.out	UO	0.46	4330	2007	0.83	1.79	11.9	9.9	10.1	9.3
str_m1_o11_f0_pcu.sym.71.out	UO	0.45	4436	1980	0.84	1.87	13.0	10.9	10.4	9.7
str_m1_o11_f0_pcu.sym.89.out	UO	0.58	3507	2043	0.83	1.42	12.4	9.8	8.2	7.7
str_m1_o17_f0_pcu.sym.1.out	UO	0.46	4283	1985	0.83	1.79	11.9	9.9	10.1	9.4
str_m1_o17_f0_pcu.sym.104.out	UO	0.46	4439	2032	0.83	1.82	12.5	11.0	10.2	9.6
str_m1_o17_f0_pcu.sym.129.out	UO	0.60	3585	2157	0.83	1.37	14.6	9.2	7.9	7.6
str_m1_o17_f0_pcu.sym.132.out	UO	0.60	3438	2048	0.83	1.39	12.7	10.8	8.0	7.8
str_m1_o17_f0_pcu.sym.28.out	UO	0.57	3732	2117	0.80	1.41	13.1	10.9	8.4	7.8
str_m1_o2_f0_pcu.sym.1.out	UO	0.56	3615	2011	0.83	1.49	13.1	10.8	8.5	7.9
str_m1_o2_f0_pcu.sym.101.out	UO	0.56	3549	1978	0.84	1.50	12.9	10.7	8.5	7.7
str_m1_o2_f0_pcu.sym.11.out	UO	0.44	4487	1986	0.84	1.89	12.4	10.3	10.4	9.7
str_m1_o2_f0_pcu.sym.15.out	UO	0.41	4983	2054	0.84	2.04	12.7	9.1	11.1	10.3
str_m1_o2_f0_pcu.sym.2.out	UO	0.47	4179	1977	0.83	1.75	11.9	9.8	9.8	9.0

MOF-5: 7.8 51.9
Figure S8. Comparison of GCMC calculations with ML predictions for the 7,901 highest-capacity MOFs predicted by ML for TPS conditions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a, d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (c, f) show the distribution of differences from plots b and e.

Table S12. Differences between ML-predicted and GCMC-calculated H₂ storage capacities of unseen MOFs at PS and conditions. Overprediction and underprediction mean ML predicted values are greater and smaller than those of GCMC calculated actual values, respectively.

Statistics	Pressure swing	Temperature + pressure swing		
	UG (wt. %)	UV (g-H₂ L⁻¹)	UG (wt. %)	UV (g-H₂ L⁻¹)
Largest overprediction	1.67	3.36	0.94	4.93
Largest underprediction	-0.96	-4.46	-1.0	-6.59
Average unsigned error	0.24	0.66	0.24	1.28
Standard deviation	0.20	0.53	0.17	0.99
References

1. Ahmed, A., Seth, S., Purewal, J., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., and Siegel, D.J. (2019). Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. 10.

2. Ahmed, A., and Siegel, D.J. HyMARC Sorbent Machine Learning Model: Predicting the hydrogen storage capacity of metal-organic frameworks via machine learning. https://sorbent-ml.hymarc.org/.

3. Bucior, B.J., Bobbitt, N.S., Islamoglu, T., Goswami, S., Gopalan, A., Yildirim, T., Farha, O.K., Bagheri, N., and Snurr, R.Q. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol. Syst. Des. Eng. 2018. DOI 10.1039/c8me00050f.

4. Anderson, R., Rodgers, J., Argueta, E., Biong, A., and Go, D.A. (2018). Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chem. Mater 30, 11.

5. Pardakhti, M., Moharreri, E., Wanik, D., Suib, S.L., and Srivastava, R. (2017). Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). ACS Comb. Sci. 19, 640–645.

6. Aghaji, M.Z., Fernandez, M., Boyd, P.G., Daff, T.D., and Woo, T.K. (2016). Quantitative Structure–Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification. 4505–4511.

7. Fernandez, M., and Barnard, A.S. (2016). Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure. ACS Comb. Sci. 18, 243–252.

8. Ohno, H., and Mukae, Y. (2016). Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal–Organic Framework. J. Phys. Chem. C 120, 23963–23968.

9. Simon, C.M., Kim, J., Gomez-Gualdron, D.A., Camp, J.S., Chung, Y.G., Martin, R.L., Mercado, R., Deem, M.W., Gunter, D., Haranczyk, M., et al. (2015). The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199.

10. Sezginel, K.B., Uzun, A., and Keskin, S. (2015). Multivariable linear models of structural parameters to predict methane uptake in metal–organic frameworks. Chem. Eng. Sci. 124, 125–134.

11. Fernandez, M., Woo, T.K., Wilmer, C.E., and Snurr, R.Q. (2013). Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks. J. Phys. Chem. C 117, 7681–7689.

12. Fernandez, M., Boyd, P.G., Daff, T.D., Aghaji, M.Z., and Woo, T.K. (2014). Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture. J. Phys. Chem. Lett. 5, 3056–3060.

13. Zwilinger, D., Kokoska, S., Raton, B., New, L., and Washington, Y. (2000). standard probability and Statistics tables and formulae CRC.

14. Oliphant, T.E. (2007). Python for Scientific Computing. Comput. Sci. Eng. 9, 10–20.

15. Millman, K.J., and Aivazis, M. (2011). Python for Scientists and Engineers. Comput. Sci. Eng. 13, 9–12.

16. Abramowitz, M., and Stegun, I.A. (1965). Handbook of mathematical functions, with formulas, graphs, and mathematical tables, (Dover Publications).

17. Kendall, M.G. (1945). The Treatment of Ties in Ranking Problems. Biometrika 33, 239–251.

18. Kendall, M.G. (1938). A New Measure of Rank Correlation. Biometrika 30, 81–93.

19. Press, W.H. (2007). Numerical recipes : the art of scientific computing (Cambridge University Press).

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
21. Parrt, T., and Turgutlu, K. rfpimp 1.3.4, https://github.com/parrt/random-forest-importances.