Exponential Convergence to Equilibrium
for the Homogeneous Boltzmann Equation for Hard
Potentials Without Cut-Off

Isabelle Tristani

Received: 29 March 2014 / Accepted: 1 July 2014 / Published online: 20 August 2014
© Springer Science+Business Media New York 2014

Abstract This paper deals with the long time behavior of solutions to the spatially homogeneous Boltzmann equation. The interactions considered are the so-called (non cut-off with a moderate angular singularity and non mollified) hard potentials. We prove an exponential in time convergence towards the equilibrium, improving results of Villani (Commun Math Phys 234(3): 455–490, 2003) where a polynomial decay to equilibrium is proven. The basis of the proof is the study of the linearized equation for which we prove a new spectral gap estimate in a L^1 space with a polynomial weight by taking advantage of the theory of enlargement of the functional space for the semigroup decay developed by Gualdani et al. (http://hal.archives-ouvertes.fr/ccsd-00495786, 2013). We then get our final result by combining this new spectral gap estimate with bilinear estimates on the collisional operator that we establish.

Keywords Boltzmann equation without cut-off · Hard potentials · Spectral gap · Dissipativity · Exponential rate of convergence · Long-time asymptotic

Mathematics Subject Classification 76P05 Rarefied gas flows · Boltzmann equation · 47H20 Semigroups of nonlinear operators · 35B40 Asymptotic behavior of solutions

1 Introduction

1.1 The Model

In the present paper, we investigate the asymptotic behavior of solutions to the spatially homogeneous Boltzmann equation without angular cut-off, that is, for long-range interactions. Previous works have shown that these solutions converge towards the Maxwellian
equilibrium with a polynomial rate when time goes to infinity. Here, we are interested in improving the rate of convergence and we show an exponential decay to equilibrium.

We consider particles described by their space homogeneous distribution density \(f = f(t, v) \). We hence study the so-called spatially homogeneous Boltzmann equation:

\[
\partial_t f(t, v) = Q(f, f)(t, v), \quad v \in \mathbb{R}^3, \quad t \geq 0.
\]

(1.1)

The Boltzmann collision operator is defined as

\[
Q(g, f) := \int_{\mathbb{R}^3 \times S^2} B(v - v_*, \sigma) \left[g_*' f_*' - g_* f \right] d\sigma dv_*.
\]

Here and below, we are using the shorthand notations \(f = f(v) \), \(g_* = g(v_*) \), \(f_*' = f(v_*') \) and \(g_*' = g(v_*') \). In this expression, \(v, v_* \) and \(v', v_*' \) are the velocities of a pair of particles before and after collision. We make a choice of parametrization of the set of solutions to the conservation of momentum and energy (physical law of elastic collisions):

\[
v + v_* = v' + v_*',
\]

\[
|v|^2 + |v_*|^2 = |v'|^2 + |v_*'|^2,
\]

so that the post-collisional velocities are given by:

\[
v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2} \sigma, \quad v_*' = \frac{v + v_*}{2} - \frac{|v - v_*|}{2} \sigma, \quad \sigma \in S^2.
\]

The Boltzmann collision kernel \(B(v - v_*, \sigma) \) only depends on the relative velocity \(|v - v_*| \) and on the deviation angle \(\theta \) through \(\cos \theta = \langle \kappa, \sigma \rangle \) where \(\kappa = (v - v_*)/|v - v_*| \) and \(\langle \cdot, \cdot \rangle \) is the usual scalar product in \(\mathbb{R}^3 \). By a symmetry argument, one can always reduce to the case where \(B(v - v_*, \sigma) \) is supported on \(\langle \kappa, \sigma \rangle \geq 0 \) i.e. \(0 \leq \theta \leq \pi/2 \). So, without loss of generality, we make this assumption.

In this paper we shall be concerned with the case when the kernel \(B \) satisfies the following conditions:

- it takes product form in its arguments as

\[
B(v - v_*, \sigma) = \Phi(|v - v_*|) b(\cos \theta);
\]

(1.2)

- the angular function \(b \) is locally smooth, and has a nonintegrable singularity for \(\theta \to 0 \), it satisfies for some \(c_b > 0 \) and \(s \in (0, 1/2) \) (moderate angular singularity)

\[
\forall \theta \in (0, \pi/2], \quad \frac{c_b}{\theta^{1+2s}} \leq \sin \theta b(\cos \theta) \leq \frac{1}{c_b \theta^{1+2s}};
\]

(1.3)

- the kinetic factor \(\Phi \) satisfies for some \(C_\Phi > 0 \)

\[
\Phi(|v - v_*|) = C_\Phi |v - v_*|^\gamma \quad \text{with} \quad \gamma \in (0, 1),
\]

(1.4)

we will assume that \(C_\Phi = 1 \) in the remaining part of the paper.

Our main physical motivation comes from particles interacting according to a repulsive potential of the form

\[
\phi(r) = r^{-(p-1)}, \quad p \in (2, +\infty).
\]

For these potentials, Maxwell \cite{25} has shown that the collision kernel should be computed in terms of the interaction potential \(\phi \). More precisely, the collision kernel cannot be computed...
I. Tristani

explicitly but satisfies the previous conditions (1.2), (1.3) and (1.4) in dimension 3 (see [11, 12, 39]) with \(s := \frac{1}{p-1} \in (0, 1) \) and \(\gamma := \frac{p-5}{p-1} \in (-3, 1) \).

One traditionally calls hard potentials the case \(p > 5 \) (for which \(0 < \gamma < 1 \)), Maxwell molecules the case \(p = 5 \) (for which \(\gamma = 0 \)) and soft potentials the case \(2 < p < 5 \) (for which \(-3 < \gamma < 0 \)). Note that our assumptions made on \(B \) include the case of hard potentials.

The Eq. (1.1) preserves mass, momentum and energy. Indeed, at least formally, we have:

\[
\int_{\mathbb{R}^3} Q(f, f)(v) \varphi(v) \, dv = 0 \quad \text{for} \quad \varphi(v) = 1, v, |v|^2;
\]

from which we deduce that a solution \(f_t \) to the equation (1.1) is conservative, meaning that

\[
\forall t \geq 0, \quad \int_{\mathbb{R}^3} f(t, v) \varphi(v) \, dv = \int_{\mathbb{R}^3} f_0(v) \varphi(v) \, dv \quad \text{for} \quad \varphi(v) = 1, v, |v|^2. \tag{1.5}
\]

We introduce the entropy \(H(f) = \int_{\mathbb{R}^3} f \log(f) \) and the entropy production \(D(f) \). Boltzmann’s \(H \) theorem asserts that

\[
\frac{d}{dt} H(f) = -D(f) \leq 0 \tag{1.6}
\]

and states that any equilibrium (i.e any distribution which maximizes the entropy) is a Maxwellian distribution \(\mu_{\rho, u, T} \) for some \(\rho > 0, u \in \mathbb{R}^3 \) and \(T > 0 \):

\[
\mu^f(v) = \mu_{\rho, u, T}(v) = \frac{\rho e^{-|v-u|^2/2}}{(2\pi T)^{3/2}},
\]

where \(\rho, u \) and \(T \) are the mass, momentum and temperature of the gas:

\[
\rho := \rho_f = \int_{\mathbb{R}^3} f(v) \, dv, \quad u := u_f = \frac{1}{\rho} \int_{\mathbb{R}^3} f(v) v \, dv, \quad T := T_f = \frac{1}{3\rho} \int_{\mathbb{R}^3} f(v) |v-u|^2 \, dv.
\]

Thanks to the conservation properties of the Eq. (1.5), the following equalities hold:

\[
\rho = \rho_{f_0}, \quad u = u_{f_0}, \quad T = T_{f_0}.
\]

Moreover, a solution \(f_t \) of the Boltzmann equation is expected to converge towards the Maxwellian distribution \(\mu_{\rho, u, T} \) when \(t \to +\infty \).

In this paper, we only consider the case of an initial datum satisfying

\[
\rho_{f_0} = 1, \quad u_{f_0} = 0, \quad T_{f_0} = 1, \tag{1.7}
\]

one can always reduce to this situation (see [40]). We then denote \(\mu \) the Maxwellian with same mass, momentum and energy of \(f_0 \): \(\mu(v) = (2\pi)^{-3/2} e^{-|v|^2/2} \).

1.2 Function Spaces

We introduce some notations about weighted \(L^p \) spaces. For some given Borel weight function \(m \geq 0 \) on \(\mathbb{R}^3 \), we define the Lebesgue weighted space \(L^p(m) \), \(1 \leq p \leq +\infty \), as the Lebesgue space associated to the norm

\[
\| h \|_{L^p(m)} := \| h m \|_{L^p}.
\]
We also define the weighted Sobolev space $W^{s,p}(m)$, $s \in \mathbb{N}$, $1 \leq p < +\infty$, as the Sobolev space associated to the norm

$$
\|h\|_{W^{s,p}(m)} := \left(\sum_{|\alpha| \leq s} \|\partial^{\alpha} h\|_{L^p(m)}^p \right)^{1/p}.
$$

1.3 Main Results and Known Results

1.3.1 Convergence to Equilibrium

We first state our main result on exponential convergence to equilibrium.

Theorem 1.1 Consider a collision kernel B satisfying conditions (1.2), (1.3), (1.4) and f_0 a nonnegative distribution with finite mass, energy and entropy:

$$
f_0 \geq 0, \quad \int_{\mathbb{R}^3} f_0(v) \left(1 + |v|^2\right) dv < \infty, \quad \int_{\mathbb{R}^3} f_0(v) \log(f_0(v)) dv < \infty
$$

and satisfying (1.7). Then, if f_t is a smooth solution (see Definition 1.2) to the Eq. (1.1) with initial datum f_0, there exists a constant $C > 0$ such that

$$
\forall t \geq 0, \quad \|f_t - \mu\|_{L^1} \leq Ce^{-\lambda t}
$$

where $\lambda > 0$ is defined in Theorem 1.4.

We improve a polynomial result of Villani [40] and generalize to our context similar exponential results known for simplified models. Mouhot [32] proved such a result for the spatially homogeneous Boltzmann equation with hard potentials and Grad’s cut-off. Carrapatoso [10] recently proved exponential decay to equilibrium for the homogeneous Landau equation with hard potentials which is the grazing collisions limit of the model we study in the present paper. Let us also mention the paper of Gualdani et al. [22] where an exponential decay to equilibrium is proved for the inhomogeneous Boltzmann equation for hard spheres (see also [26–28] for related works).

It is a known fact that our Eq. (1.1) admits solutions which are conservative and satisfy some suitable properties of regularity, we will call them smooth solutions. We here precise the meaning of this term and give an overview of results on the Cauchy theory of our equation.

Definition 1.2 Let f_0 be a nonnegative function defined on \mathbb{R}^3 with finite mass, energy and entropy. We shall say that $(t, v) \mapsto f(t, v)$ is a smooth solution to the Eq. (1.1) if the following conditions are fulfilled:

- $f \geq 0, f \in C(\mathbb{R}^+, L^1)$;
- for any $t \geq 0$,

$$
\int_{\mathbb{R}^3} f(t, v) \varphi(v) dv = \int_{\mathbb{R}^3} f_0(v) \varphi(v) dv \quad \text{for} \quad \varphi(v) = 1, v, |v|^2
$$

and

$$
\int_{\mathbb{R}^3} f(t, v) \log(f(t, v)) dv + \int_0^t D(f(s, \cdot)) ds \leq \int_{\mathbb{R}^3} f_0(v) \log(f_0(v)) dv;
$$

where $D(f)$ is the entropy production defined in (1.6);
for any $\varphi \in C^1(\mathbb{R}^+, \mathcal{D}(\mathbb{R}^3))$ and for any $t \geq 0$,
\[
\int_{\mathbb{R}^3} f(t, v) \varphi(t, v) \, dv = \int_{\mathbb{R}^3} f_0(v) \varphi(0, v) \, dv + \int_0^t \int_{\mathbb{R}^3} f(\tau, v) \partial_t \varphi(\tau, v) \, dv \, d\tau + \int_0^t \int_{\mathbb{R}^3} Q(f, f)(\tau, v) \varphi(\tau, v) \, dv \, d\tau
\]
where the last integral is defined through the following formula
\[
\int_{\mathbb{R}^3} Q(f, f)(v) \varphi(v) \, dv = \frac{1}{4} \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B(v - v_*, \sigma) \left[f'_* f' - f_* f \right] \\
\times (\varphi + \varphi_* - \varphi' - \varphi'_*) \, d\sigma \, dv_\sigma \, dv;
\]

• for any $t_0 > 0$ and for any $\ell \in \mathbb{R}^+$,
\[
\sup_{t \geq t_0} \| f(t, \cdot) \|_{L^1((v)\ell)} < \infty; \tag{1.8}
\]

• for any $t_0 > 0$ and for any $N, \ell \in \mathbb{R}^+$,
\[
\sup_{t \geq t_0} \| f(t, \cdot) \|_{H^N((v)\ell)} < \infty. \tag{1.9}
\]

Such a solution is known to exist. The problem of existence of solutions was first studied by Arkeryd in [2] where existence of solutions is proven for not too soft potentials, that is $\gamma > -1$ (Goudon [20] and Villani [38] then improved this result enlarging the class of γ considered). We mention that uniqueness of solution for hard potentials can be proved under some more restrictive conditions on the initial datum, see the paper of Desvillettes and Mouhot [16] where f_0 is supposed to be regular ($f_0 \in W^{1,1}((v)2)$) and the paper of Fournier and Mouhot [19] where f_0 is supposed to be localized ($\int_{\mathbb{R}^3} f_0 e^{a|v|^\gamma} \, dv < \infty$ for some $a > 0$) for hard potentials.

Concerning the moment production property, it was discovered by Elmroth [17] and Desvillettes [15] and improved by Wennberg [42], which justifies our point (1.8) in the definition of a smooth solution.

Finally, we mention papers where regularization results are proven for “true” (that is non mollified) physical potentials: [1] by Alexandre et al. [13] by Chen and He where the initial datum is supposed to have finite energy and entropy, [3] by Bally and Fournier where only the 2D case is treated and [18] by Fournier under others conditions on the initial datum. Theorem 1.4 from [13] explains our point (1.9).

We now recall previous results on convergence to equilibrium for solutions to Eq. (1.1). It was first studied by Carlen and Carvalho [8,9] and then by Toscani and Villani [36]. Up to now, the best rate of convergence in our case was obtained by Villani [40]:

Theorem 1.3 Let us consider f_t a smooth solution to (1.1) with an initial datum f_0 satisfying (1.7) with finite entropy. Then f_t satisfies the following polynomial decay to equilibrium: for any $t_0 > 0$ and any $\varepsilon > 0$, there exists $C_{t_0, \varepsilon} > 0$ such that
\[
\forall t \geq t_0, \quad \| f_t - \mu \|_{L^1} \leq C_{t_0, \varepsilon} t^{-\frac{1}{2}}.
\]
This result comes from [40, Theorem 4.1] which states that if f is a function which satisfies the following lowerbound
\[
\forall v \in \mathbb{R}^3, \quad f(v) \geq K_0 e^{-A_0|v|^{q_0}} \quad \text{with} \quad K_0, A_0 > 0, \ q_0 \geq 2 \tag{1.10}
\]
then for any $\varepsilon > 0$, there exists an explicit constant $K_\varepsilon > 0$ such that
\[
D(f) \geq K_\varepsilon H(f | \mu)^{1+\varepsilon}.
\] (1.11)

It is a result from Mouhot [30, Theorem 1.2] that the lowerbound (1.10) holds for any smooth solution f_t of our equation (1.1). Let us mention that lowerbounds of solutions were first studied by Carleman [7] (for hard spheres) and then by Pulvirenti and Wennberg [35] (for hard potentials with cut-off). Finally, Mouhot [30] extended these results to the spatially inhomogeneous case without cut-off. We here state Theorem 1.2 from [30] thus: for any $t_0 > 0$ and for any exponent q_0 such that
\[
q_0 > 2 \frac{\log \left(\frac{2 + 2s}{1-s} \right)}{\log 2},
\]
a smooth solution f_t to (1.1) satisfies
\[
\forall t \geq t_0, \quad \forall v \in \mathbb{R}^3, \quad f(t, v) \geq K_0 e^{-A_0 |v|^{q_0}}
\]
for some $K_0, A_0 > 0$.

We can then deduce that the conclusion of Theorem 1.3 holds using the Csiszár-Kullback-Pinsker inequality $\|f - \mu\|_{L^1} \leq \sqrt{2H(f | \mu)}$ combined with the result of Villani (1.11).

Let us here emphasize that the method of Villani to prove the polynomial convergence towards equilibrium is purely nonlinear. Ours is based on the study of the linearized equation.

1.3.2 The Linearized Equation

We introduce the linearized operator. Considering the linearization $f = \mu + h$, we obtain at first order the linearized equation around the equilibrium μ
\[
\partial_t h = \mathcal{L} h := Q(\mu, h) + Q(h, \mu),
\] (1.12)
for $h = h(t, v), v \in \mathbb{R}^3$. The null space of the operator \mathcal{L} is the 5-dimensional space
\[
\mathcal{N}(\mathcal{L}) = \text{Span} \{ \mu, \mu v_1, \mu v_2, \mu v_3, \mu |v| \}.
\] (1.13)

Our strategy is to combine the polynomial convergence to equilibrium and a spectral gap estimate on the linearized operator to show that if the solution enters some stability neighborhood of the equilibrium, then the convergence is exponential in time. Previous results on spectral gap estimates hold only in $L^2(\mu^{-1/2})$ and the Cauchy theory for the nonlinear Boltzmann equation is constructed in L^1-spaces with polynomial weight. In order to link the linear and the nonlinear theories, our approach consists in proving new spectral gap estimates for the linearized operator \mathcal{L} in spaces of type $L^1(\langle v \rangle^k)$. To do that, we exhibit a convenient splitting of the linearized operator in such a way that we may use the abstract theorem from [22] which allows us to enlarge the space of spectral estimates of a given operator.

Here is the result we obtain on the linearized equation which provides a constructive spectral gap estimate for \mathcal{L} in $L^1(\langle v \rangle^k)$ and which is the cornerstone of the proof of Theorem 1.1.

Theorem 1.4 Let $k > 2$ and a collision kernel B satisfying (1.2), (1.3) and (1.4). Consider the linearized Boltzmann operator \mathcal{L} defined in (1.12). Then for any positive $\lambda < \min(\lambda_0, \lambda_k)$ (where λ_0 is the spectral gap of \mathcal{L} in $L^2(\mu^{-1/2})$ defined in Proposition 2.1 and λ_k is a constant
depending on \(k \) defined in Lemma 2.7), there exists an explicit constant \(C_\lambda > 0 \), such that for any \(h \in L^1(\langle v \rangle^k) \), we have the following estimate
\[
\forall t \geq 0, \quad \| S_L(t) h - \Pi h \|_{L^1(\langle v \rangle^k)} \leq C_\lambda e^{-\lambda t} \| h - \Pi h \|_{L^1(\langle v \rangle^k)},
\]

where \(S_L(t) \) denotes the semigroup of \(L \) and \(\Pi \) the projection onto \(\mathcal{N}(L) \).

Let us briefly review the existing results concerning spectral gap estimates for \(L \). Pao [34] studied spectral properties of the linearized operator for hard potentials by non-constructive and very technical means. This article was reviewed by Klaus [24]. Then, Baranger and Mouhot gave the first explicit estimate on this spectral gap in [4] for hard potentials \((\gamma > 0) \).

If we denote \(D \) the Dirichlet form associated to \(-L \):
\[
D(h) := \int_{\mathbb{R}^3} (-Lh) h \mu^{-1},
\]
and \(\mathcal{N}(L)^\perp \) the orthogonal of \(\mathcal{N}(L) \) defined in (1.13) and \(\Pi \) the projection onto \(\mathcal{N}(L) \), the Dirichlet form \(D \) satisfies
\[
\forall h \in \mathcal{N}(L)^\perp, \quad D(h) \geq \lambda_0 \| h \|_{L^2(\mu^{-1/2})}^2,
\]

for some constructive constant \(\lambda_0 > 0 \). This result was then improved by Mouhot [31] and later by Mouhot and Strain [33]. In the last paper, it was conjectured that a spectral gap exists if and only if \(\gamma + 2s \geq 0 \). This conjecture was finally proven by Gressman and Strain [21].

Another question would be to obtain similar results in other weighted \(L^p \) spaces \((1 \leq p \leq 2) \) with stretched exponential or polynomial weights. Our computations do not allow to conclude in those cases, more precisely, we are not able to do the computations which allow to obtain the suitable splitting of the linearized operator to get spectral estimates in those spaces. However, we believe that such results may hold.

We here point out that the knowledge of a spectral gap estimate in \(L^1(\langle v \rangle^k) \) for the fractional Fokker-Planck equation (see [37]) is consistent with our result. Indeed, the behavior of the Boltzmann collision operator has been widely conjectured to be that of a fractional diffusion (see [14,20,38]).

Throughout this paper, we will use the same notation \(C \) for positive constants that may change from line to line. Moreover, the notation \(A \approx B \) will mean that there exist two constants \(C_1, C_2 > 0 \) such that \(C_1 A \leq B \leq C_2 A \).

2 The Linearized Equation

Here and below, we denote \(m(v) := \langle v \rangle^k \) with \(k > 2 \). The aim of the present section is to prove Theorem 1.4. To do that, we exhibit a splitting of the linearized operator into two parts, one which is bounded and the second one which is dissipative. We can then apply the abstract theorem of enlargement of the functional space of the semigroup decay from Gualdani et al. [22] (see Sect. 2.4).

2.1 Notations

We first introduce notations about spectral theory of unbounded operators. For a given real number \(a \in \mathbb{R} \), we define the half complex plane
\[
\Delta_a := \{ z \in \mathbb{C}, \Re z > a \}.
\]
For some given Banach spaces \((E, \| \cdot \|_E)\) and \((\mathcal{E}, \| \cdot \|_\mathcal{E})\), we denote by \(\mathcal{B}(E, \mathcal{E})\) the space of bounded linear operators from \(E\) to \(\mathcal{E}\) and we denote by \(\| \cdot \|_{\mathcal{B}(E, \mathcal{E})}\) or \(\| \cdot \|_{E \to \mathcal{E}}\) the associated norm operator. We write \(\mathcal{B}(E) = \mathcal{B}(E, E)\) when \(E = \mathcal{E}\). We denote by \(\mathcal{C}(E, \mathcal{E})\) the space of closed unbounded linear operators from \(E\) to \(\mathcal{E}\) with dense domain, and \(\mathcal{C}(E) = \mathcal{C}(E, E)\) in the case \(E = \mathcal{E}\).

For a Banach space \(X\) and \(\Lambda \in \mathcal{C}(X)\) we denote by \(S_{\Lambda}(t), t \geq 0\), its semigroup, by \(D(\Lambda)\) its domain, by \(N(\Lambda)\) its null space and by \(R(\Lambda)\) its range. We also denote by \(\Sigma(\Lambda)\) its spectrum, so that for any \(z\) belonging to the resolvent set \(\rho(\Lambda) := \mathbb{C} \setminus \Sigma(\Lambda)\) the operator \(\Lambda - z\) is invertible and the resolvent operator

\[
\mathcal{R}_\Lambda(z) := (\Lambda - z)^{-1}
\]

is well-defined, belongs to \(\mathcal{B}(X)\) and has range equal to \(D(\Lambda)\). An eigenvalue \(\xi \in \Sigma(\Lambda)\) is said to be isolated if

\[
\Sigma(\Lambda) \cap \{z \in \mathbb{C}, \ |z - \xi| \leq r\} = \{\xi\} \text{ for some } r > 0.
\]

In the case when \(\xi\) is an isolated eigenvalue, we may define \(\Pi_{\Lambda, \xi} \in \mathcal{B}(X)\) the associated spectral projector by

\[
\Pi_{\Lambda, \xi} := -\frac{1}{2i\pi} \int_{|z - \xi| = r'} \mathcal{R}_\Lambda(z) \, dz
\]

with \(0 < r' < r\). Note that this definition is independent of the value of \(r'\) as the application \(\mathbb{C} \setminus \Sigma(\Lambda) \to \mathcal{B}(X), z \to \mathcal{R}_\Lambda(z)\) is holomorphic. For any \(\xi \in \Sigma(\Lambda)\) isolated, it is well-known (see [23] paragraph III-6.19) that \(\Pi_{\Lambda, \xi}^2 = \Pi_{\Lambda, \xi}\), so that \(\Pi_{\Lambda, \xi}\) is indeed a projector.

When moreover the so-called “algebraic eigenspace” \(R(\Pi_{\Lambda, \xi})\) is finite dimensional we say that \(\xi\) is a discrete eigenvalue, written as \(\xi \in \Sigma_d(\Lambda)\).

2.2 Spectral Gap in \(L^2(\mu^{-1/2})\)

We here state a direct consequence of inequality (1.15) from [4], which gives us a spectral gap estimate in \(L^2(\mu^{-1/2})\).

Proposition 2.1 There is a constructive constant \(\lambda_0 > 0\) such that

\[
\forall t \geq 0, \quad \forall h \in L^2(\mu^{-1/2}), \quad \|S_\mathcal{L}(t) h - \Pi h\|_{L^2(\mu^{-1/2})} \leq e^{-\lambda_0 t} \|h - \Pi h\|_{L^2(\mu^{-1/2})}.
\]

2.3 Splitting of the Linearized Operator

We first split the linearized operator \(\mathcal{L}\) defined in (1.12) into two parts, separating the grazing collisions and the cut-off part, we define

\[
\begin{align*}
 b_\delta &:= 1_{\theta \leq \delta} b \quad \text{and} \quad b_\delta^c := 1_{\theta > \delta} b
\end{align*}
\]

for some \(\delta \in (0, 1)\) to be chosen later, it induces the following splitting of \(\mathcal{L}\):

\[
\mathcal{L} h = \mathcal{L}_b h + \mathcal{L}_b^c h =: \int_{\mathbb{R}^3 \times \mathbb{S}^2} \left[\mu_s' h' - \mu_s h + h'_s \mu' - h_s \mu \right] b_\delta(\cos \theta) |v - v_s| \gamma \, d\sigma \, dv_s
\]

\[
+ \int_{\mathbb{R}^3 \times \mathbb{S}^2} \left[\mu_s' h' - \mu_s h + h'_s \mu' - h_s \mu \right] b_\delta^c(\cos \theta) |v - v_s|^\gamma \, d\sigma \, dv_s.
\]
In the rest of the paper, we shall use the notations

\[B_\delta(v - v^*, \sigma) := b_\delta(\cos \theta) |v - v^*|' \quad \text{and} \quad B^c_\delta(v - v^*, \sigma) := b^c_\delta(\cos \theta) |v - v^*|'. \]

As far as the cut-off part is concerned, our strategy is similar to the one adopted in [22] for hard-spheres. For any \(\varepsilon \in (0, 1) \), we consider \(\Theta_\varepsilon \in C^\infty \) bounded by one, which equals one on

\[\{ |v| \leq \varepsilon^{-1} \text{ and } 2 \varepsilon \leq |v - v^*| \leq \varepsilon^{-1} \text{ and } |\cos \theta| \leq 1 - 2 \varepsilon \} \]

and whose support is included in

\[\{ |v| \leq 2 \varepsilon^{-1} \text{ and } \varepsilon \leq |v - v^*| \leq 2 \varepsilon^{-1} \text{ and } |\cos \theta| \leq 1 - \varepsilon \} . \]

We then denote the truncated operator

\[A_{\delta, \varepsilon}(h) := \int_{\mathbb{R}^3 \times S^2} \Theta_\varepsilon[\mu^* h' + \mu' h^* - \mu h] b^c_\delta(\cos \theta) |v - v^*|' d\sigma dv^* \]

and the corresponding remainder operator

\[B^c_{\delta, \varepsilon}(h) := \int_{\mathbb{R}^3 \times S^2} (1 - \Theta_\varepsilon)[\mu^* h' + \mu' h^* - \mu h] b^c_\delta(\cos \theta) |v - v^*|' d\sigma dv^* . \]

We also introduce

\[\nu_\delta(v) := \int_{\mathbb{R}^3 \times S^2} \mu^* b^c_\delta(\cos \theta) |v - v^*|' d\sigma dv^* , \]

so that we have the following splitting: \(L^c_\delta = A_{\delta, \varepsilon} + B^c_{\delta, \varepsilon} - \nu_\delta . \)

Moreover, \(\nu_\delta \) satisfies

\[\nu_\delta(v) = K_\delta (\mu \ast | \cdot |')(v) \]

with

\[K_\delta := \int_{S^2} b^c_\delta(\cos \theta) d\sigma = \int_0^{2\pi} d\phi \int_{0}^{\pi/2} b(\cos \theta) \sin \theta d\theta \approx \delta^{-2s} - (\pi/2)^{-2s} \delta \rightarrow 0 +\infty . \]

and

\[(\mu \ast | \cdot |')(v) \approx \langle v \rangle' . \]

We finally define

\[B_{\delta, \varepsilon} := L_\delta + B^c_{\delta, \varepsilon} - \nu_\delta \]

so that \(L = A_{\delta, \varepsilon} + B_{\delta, \varepsilon} \).

2.3.1 Dissipativity Properties

Lemma 2.2 There exists a function \(\varphi_k(\delta) \) depending on \(k \) and tending to 0 as \(\delta \) tends to 0 such that for any \(h \in L^1(\langle v \rangle^m) \), the following estimate holds:

\[\int_{\mathbb{R}^3} L_\delta(h) \text{sign}(h) m dv \leq \varphi_k(\delta) \| h \|_{L^1(\langle v \rangle^m)} . \]

(2.1)
Proof Let us first introduce a notation which is going to be useful in the sequel of the proof:

\[\kappa_\delta := \int_0^{\pi/2} b_\delta(\cos \theta) \sin^2(\theta) d\theta = \int_0^\delta b(\cos \theta) \sin^2(\theta) d\theta \approx \delta^{1-2s} \quad \delta \to 0, \quad (2.2) \]

where the last equality comes from (1.3).

We split \(L_\delta \) into two parts in the following way:

\[
L_\delta h = \int_{\mathbb{R}^3 \times S^2} \left[\mu_* \mu_* h - \mu_* h \right] b_\delta(\cos \theta) |v - v_*|^\gamma d\sigma dv_* \\
+ \int_{\mathbb{R}^3 \times S^2} \left[h' \mu_* - h_* \mu \right] b_\delta(\cos \theta) |v - v_*|^\gamma d\sigma dv_*
\]

where the last equality comes from (1.3).

We split \(L_\delta \) into two parts in the following way:

\[
L_\delta h = \int_{\mathbb{R}^3 \times S^2} \left[\mu_* \mu_* h - \mu_* h \right] b_\delta(\cos \theta) |v - v_*|^\gamma d\sigma dv_* \\
+ \int_{\mathbb{R}^3 \times S^2} \left[h' \mu_* - h_* \mu \right] b_\delta(\cos \theta) |v - v_*|^\gamma d\sigma dv_*
\]

this splitting corresponds to the splitting of \(L_\delta \) as \(Q_\delta(\mu, h) + Q_\delta(h, \mu) \) if \(Q_\delta \) denotes the collisional operator associated to the kernel \(B_\delta \).

We first deal with \(L^{1}_{\delta} \). Let us recall that we have \(\mu \mu_* = \mu' \mu'_* \). In the following computation, we denote \(g := h \mu^{-1} \):

\[
\int_{\mathbb{R}^3} L^{1}_{\delta}(h) \text{sign}(h) m dv \\
= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g' - g \right] \text{sign}(g) m d\sigma dv_* dv
\]

\[
= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g' - g \right] \text{sign}(g) - \text{sign}(g') m d\sigma dv_* dv
\]

\[
+ \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g' - g \right] \text{sign}(g') m d\sigma dv_* dv
\]

\[
\leq \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g' - g \right] \text{sign}(g') m d\sigma dv_* dv,
\]

where we used that for any \(a, b \in \mathbb{R}, (a - b)(\text{sign}(a) - \text{sign}(b)) \leq 0 \) to get the last inequality.

Remark 2.3 We here emphasize that this computation is particularly convenient in the \(L^1 \) case since \(\text{sign}(h) = \text{sign}(g) \). In the \(L^p \) case with \(p > 1 \), it is trickier and for now, we are not able to adapt it to get the wanted estimates.

We now use the classical pre-post collisional change of variables to pursue the computation:

\[
\int_{\mathbb{R}^3} L^{1}_{\delta}(h) \text{sign}(h) m dv \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g - g' \right] \text{sign}(g) m' d\sigma dv_* dv
\]

\[
= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g - g' \right] \text{sign}(g) (m' - m) d\sigma dv_* dv
\]

\[
+ \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g - g' \right] \text{sign}(g) m d\sigma dv_* dv.
\]

\[
= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_\delta(v - v_*, \sigma) \mu \mu_* \left[g - g' \right] \text{sign}(g) (m' - m) d\sigma dv_* dv
\]

\[
- \int_{\mathbb{R}^3} L^{1}_{\delta}(h) \text{sign}(h) m dv.
\]
We hence deduce that
\[
\int_{\mathbb{R}^3} \mathcal{L}_1^1(h) \text{sign}(h) \, m \, dv \\
\leq \frac{1}{2} \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_5(v - v_*, \sigma) \mu \mu_\ast \left[g - g' \right] \text{sign}(g) \, (m' - m) \, d\sigma \, dv_\ast \, dv \\
\leq \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_5(v - v_*, \sigma) \mu \mu_\ast \left| m' - m \right| \, d\sigma \, dv_\ast \, dv \\
= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} B_5(v - v_*, \sigma) \mu \left| m' - m \right| \, d\sigma \, dv_\ast \, dv.
\]

We now estimate the difference \(|m' - m| \):
\[
|m' - m| \leq \left(\sup_{z \in B(v, |v' - v|)} |\nabla m|(z) \right) |v' - v|,
\]
with
\[
|v' - v| = |v - v_\ast|/2 \sin (\theta/2) \leq \frac{1}{2\sqrt{2}} |v - v_\ast| \sin \theta.
\]

Then, we use the fact
\[
\sup_{z \in B(v, |v' - v|)} |\nabla m|(z) \leq C_k \left(\langle v \rangle^{k-1} + \langle v - v_\ast \rangle^{k-1} \right) \\
\leq C_k \left(\langle v \rangle^{k-1} + \langle v_\ast \rangle^{k-1} \right),
\]
which implies that
\[
|m' - m| \leq C_k |v - v_\ast| \sin \theta \left(\langle v \rangle^{k-1} + \langle v_\ast \rangle^{k-1} \right).
\]

(2.3)

Remark 2.4 We here point out that this kind of estimate does not hold in the case of a stretched exponential weight. Indeed, taking the gradient of a stretched exponential function does not induce a loss in the degree as in the case of a polynomial function.

We finally obtain
\[
\int_{\mathbb{R}^3} \mathcal{L}_1^1(h) \text{sign}(h) \, m \, dv \\
\leq C_k \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times S^2} b_5(\cos \theta) \sin \theta \mu_\ast |v - v_\ast|^{\gamma + 1} \left(\langle v \rangle^{k-1} + \langle v_\ast \rangle^{k-1} \right) \left| h \right| \, d\sigma \, dv_\ast \, dv \\
\leq C_k \int_0^{\pi/2} b_5(\cos \theta) \sin^2(\theta) d\theta \int_0^{2\pi} d\phi \int_{\mathbb{R}^3 \times \mathbb{R}^3} \mu_\ast |v - v_\ast|^{\gamma + 1} \left(\langle v \rangle^{k-1} + \langle v_\ast \rangle^{k-1} \right) \left| h \right| \, dv_\ast \, dv \\
\leq C_k \kappa_5 \int_{\mathbb{R}^3} \left| h \right| \langle v \rangle^\gamma \, m \, dv,
\]
(2.4)

where we used spherical coordinates to obtain the second inequality and (2.2) to obtain the last one.

We now deal with \(\mathcal{L}_2^2 \). We split it into two parts:
\[
\mathcal{L}_2^2 h = \int_{\mathbb{R}^3 \times S^2} \left[h'_\ast \mu' - h_\ast \mu \right] b_5(\cos \theta) |v - v_\ast|^{\gamma} \, d\sigma \, dv_\ast
\]
where the last inequality comes from (1.3). We deduce that

\[\int R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) h'_* \left[\mu' - \mu \right] d\sigma dv_* \]

\[+ \int R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) \left[h'_* - h_* \right] d\sigma dv_* \mu \]

\[=: L^{2.1}_\delta h + L^{2.2}_\delta h. \]

Concerning \(L^{2.2}_\delta \), we use the cancellation lemma [1, Lemma 1]. It implies that

\[L^{2.2}_\delta h = (S_\delta * h) \mu \]

with

\[S_\delta(z) = 2\pi \int _0^{\pi/2} \sin \theta b_\delta(\cos \theta) \left(\frac{|z|}{\cos^{\nu+3}(\theta/2)} - |z|^{\nu} \right) d\theta \]

\[= 2\pi |z|^{\nu} \int _0^{\pi/2} \sin \theta b_\delta(\cos \theta) \frac{1 - \cos^{\nu+3}(\theta/2)}{\cos^{\nu+3}(\theta/2)} d\theta \]

\[\leq C |z|^{\nu} \int _0^{\delta} \sin \theta b(\cos \theta) \theta^2 d\theta \]

\[\leq C \delta^{2 - 2s} |z|^{\nu}, \]

where the last inequality comes from (1.3). We deduce that

\[\int R^3 \quad L^{2.2}_\delta(h) \text{sign}(h) m \, d\nu \leq \int R^3 \quad |S_\delta * h| \, m \mu \, d\nu \]

\[\leq C \delta^{2 - 2s} \int R^3 \quad (|\cdot| \nu * |h|) \mu \, m \, d\nu \]

\[\leq C \delta^{2 - 2s} \int R^3 \quad (|\cdot| \nu * \mu m) \, |h| \, d\nu \]

\[\leq C \delta^{2 - 2s} \int R^3 \quad |h| \langle v \rangle \nu \, d\nu. \]

(2.5)

We now deal with \(L^{2.1}_\delta \). To do that, we introduce the notation \(M := \sqrt{\mu} \) and write that \(\mu' - \mu = (M' - M)(M' + M) \), which implies

\[\int R^3 \quad L^{2.1}_\delta(h) \text{sign}(h) m \, d\nu \leq \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h'_*| \nu |M' - M| (M' + M) m \, d\sigma \, dv_* \, d\nu \]

\[\leq \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h'_*| \nu |M' - M| M' \nu - m \, d\sigma \, dv_* \, d\nu \]

\[+ \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h'_*| \nu |M' - M| M' \nu \, d\sigma \, dv_* \, d\nu \]

\[+ \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h'_*| \nu |M' - M| M \nu \, d\sigma \, dv_* \, d\nu. \]

We now perform the pre-post collisional change of variables, which gives us:

\[\int R^3 \quad L^{2.1}_\delta(h) \text{sign}(h) m \, d\nu \leq \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h_*| |M' - M| M |\nu - m| \, d\sigma \, dv_* \, d\nu \]

\[+ \int R^3 \times R^3 \times S^2 \quad B_\delta(v - v_*, \sigma) |h_*| |M' - M| M \, d\sigma \, dv_* \, d\nu. \]
\[+ \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} B_3(v - v_*, \sigma) |h_*| |M' - M| M' m' d\sigma d v_* d v =: I_1 + I_2 + I_3. \]

For the term \(I_1 \), we use the fact that \(M \) is bounded and the estimate (2.3) on \(|m' - m| \):

\[
I_1 \leq C_k \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} b_3(\cos \theta) \sin \theta |v - v_*|^{\gamma+1} |h_*| M \left((v)^{k-1} + (v_*)^{k-1}\right) d\sigma d v_* d v
\]
\[
\leq C_k \kappa \int_{\mathbb{R}^3} |h| \langle v \rangle^{\gamma} m d v. \tag{2.6}
\]

The term \(I_2 \) is treated using that \(M \) is Lipschitz continuous, we obtain:

\[
I_2 \leq C_k \kappa \int_{\mathbb{R}^3} |h| \langle v \rangle^{\gamma+1} d v. \tag{2.7}
\]

To treat \(I_3 \), we first estimate the integral

\[
\int_{\mathbb{R}^3 \times \mathbb{S}^2} B_3(v - v_*, \sigma) |M' - M| M' m' d\sigma d v =: J(v_*) = J.
\]

Using the fact that \(M \) is Lipschitz continuous, we have

\[
J \leq C \int_{\mathbb{R}^3 \times \mathbb{S}^2} b_3(\cos \theta) \sin(\theta/2) |v - v_*|^{\gamma+1} M' m' d\sigma d v.
\]

Then, for each \(\sigma \), with \(v_* \) still fixed, we perform the change of variables \(v \to v' \). This change of variables is well-defined on the set \(\{\cos \theta > 0\} \). Its Jacobian determinant is

\[
\left| \frac{dv'}{dv} \right| = \frac{1}{8} (1 + \kappa \cdot \sigma) = \frac{(k' \cdot \sigma)^2}{4},
\]

where \(\kappa = (v - v_*)/|v - v_*| \) and \(k' = (v' - v_*)/|v' - v_*| \). We have \(k' \cdot \sigma = \cos(\theta/2) \geq 1/\sqrt{2} \).

The inverse transformation \(v' \to \psi_\sigma(v') = v \) is then defined accordingly. Using the fact that

\[
\cos \theta = \kappa \cdot \sigma = 2(k' \cdot \sigma)^2 - 1 \quad \text{and} \quad \sin(\theta/2) = \sqrt{1 - \cos^2(\theta/2)} = \sqrt{1 - (k' \cdot \sigma)^2},
\]

we obtain

\[
J \leq C \int_{\mathbb{R}^3 \times \mathbb{S}^2} b_3(2(k' \cdot \sigma)^2 - 1) \sqrt{1 - (k' \cdot \sigma)^2} |\psi_\sigma(v') - v_*|^{\gamma+1} M(v') m(v') d v d \sigma
\]
\[
\leq C \int_{k' \cdot \sigma \geq 1/\sqrt{2}} b_3(2(k' \cdot \sigma)^2 - 1) \sqrt{1 - (k' \cdot \sigma)^2} |\psi_\sigma(v') - v_*|^{\gamma+1}
\]
\[
\times M(v') m(v') \frac{1}{(k' \cdot \sigma)^2} d v' d \sigma
\]
\[
\leq C \int_{k \cdot \sigma \geq 1/\sqrt{2}} b_3(2(k \cdot \sigma)^2 - 1) \sqrt{1 - (k \cdot \sigma)^2} |\psi_\sigma(v) - v_*|^{\gamma+1}
\]
\[
\times M(v) m(v) \frac{1}{(k \cdot \sigma)^2} d v d \sigma.
\]

We now use the fact that \(|\psi_\sigma(v) - v_*| = |v - v_*|/(k \cdot \sigma) \). We deduce that

\[
J \leq C \int_{k \cdot \sigma \geq 1/\sqrt{2}} b_3(2(k \cdot \sigma)^2 - 1) \sqrt{1 - (k \cdot \sigma)^2} |v - v_*|^{\gamma+1} M(v) m(v) \frac{1}{(k \cdot \sigma)^{\gamma+2}} d v d \sigma.
\]
\[\leq C \int_{\mathbb{R}^3 \times S^2} b_\delta (2(\kappa \cdot \sigma)^2 - 1) \sqrt{1 - (\kappa \cdot \sigma)^2} |v - v_*|^{\gamma + 1} M(v) m(v) \, dv \, d\sigma \]

where we used the fact that \(\kappa \cdot \sigma \geq 1/\sqrt{2} \) to bound from above \(1/(\kappa \cdot \sigma)^{\gamma + 3} \). Using the equalities

\[\cos(2\theta) = 2(\kappa \cdot \sigma)^2 - 1 \quad \text{and} \quad \sin \theta = \sqrt{1 - (\kappa \cdot \sigma)^2}, \]

we obtain

\[J \leq C \int_{\mathbb{R}^3 \times S^2} b_\delta (\cos(2\theta)) \sin \theta |v - v_*|^{\gamma + 1} M \, dv \, d\sigma \]

\[\leq C \int_{S^2} b_\delta (\cos(2\theta)) \sin \theta \, d\sigma \int_{\mathbb{R}^3} \langle v \rangle^{\gamma + 1} M \, dv \, \langle v_* \rangle^{\gamma + 1} \]

\[\leq C \kappa_\delta \langle v_* \rangle^{\gamma + 1}, \]

Using this last estimate, we can conclude that

\[I_3 \leq C \kappa_\delta \int_{\mathbb{R}^3} |h| \langle v \rangle^{\gamma + 1} \, dv. \quad (2.8) \]

Gathering estimates (2.4), (2.5), (2.6), (2.7) and (2.8), we can conclude that (2.1) holds. \(\square \)

We now want to deal with the part \(B_{\delta, \varepsilon}^c - v_\delta \). To do that, we shall review a classical tool in the Boltzmann theory, a version of the Povzner lemma (see [5, 6, 29, 41]). The version stated here is a consequence of the proof of Lemma 2.2 from [29].

Lemma 2.5 For any \(k > 2 \),

\[\forall v, v_* \in \mathbb{R}^3, \int_{S^2} \left[\langle v'_* \rangle^k + \langle v' \rangle^k - \langle v_* \rangle^k - \langle v \rangle^k \right] b_\delta (\cos \theta) \, d\sigma \]

\[\leq C_k \left(\langle v_* \rangle^{k-1} \langle v \rangle + \langle v \rangle^{k-1} \langle v_* \rangle \right) - C'_k |v|^k \]

for some \(C_k, C'_k > 0 \).

Proof If we adapt the proof of Lemma 2.2 from [29] taking \(\psi = \langle \cdot \rangle \), we obtain

\[\int_{S^2} \left[\langle v'_* \rangle^k + \langle v' \rangle^k - \langle v_* \rangle^k - \langle v \rangle^k \right] b_\delta (\cos \theta) \, d\sigma \]

\[\leq C_k \left(\int_0^{\pi/2} b_\delta (\cos \theta) \sin^2(\theta) \, d\theta \right) \left(\langle v_* \rangle^{k-1} \langle v \rangle + \langle v \rangle^{k-1} \langle v_* \rangle \right) - C'_{k, \delta} |v|^k \]

with \(C'_{k, \delta} \xrightarrow{\delta \to 0} +\infty \) and \(C'_{k, \delta} \geq C'_k > 0 \) for any \(\delta \in (0, 1) \). We then conclude using (1.3) which implies that

\[\int_0^{\pi/2} b_\delta (\cos \theta) \sin^2(\theta) \, d\theta \approx \left(\frac{\pi}{2} \right)^{1-2s} - \delta^{1-2s} \leq C \]

for any \(\delta \in (0, 1) \). \(\square \)

We can now prove the following estimate on \(B_{\delta, \varepsilon}^c - v_\delta \).
Lemma 2.6 For any $k > 2$, for any $\varepsilon \in (0, 1)$ and for $\delta \in (0, 1)$ small enough, we have the following estimate: for any $h \in L^1((v)')\gamma m$,

$$
\int_{\mathbb{R}^3} B^c_{\delta,\varepsilon}(h) \text{sign}(h) \, m \, dv - \int_{\mathbb{R}^3} v_\delta |h| \, m \, dv \leq \left(\Lambda_{k,\delta}(\varepsilon) - \lambda_k \right) \| h \|_{L^1((v)')\gamma m} \tag{2.9}
$$

where $\lambda_k > 0$ is a constant depending on k and $\Lambda_{k,\delta}(\varepsilon)$ is a constant depending on k and δ which tends to 0 as ε goes to 0 when k and δ are fixed.

Proof We compute

$$
\| B^c_{\delta,\varepsilon} h \|_{L^1(\gamma)} \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} (1 - \Theta_\varepsilon) B^c_{\delta}(v - v_\varepsilon, \sigma) \left[\mu'_a |h'| + \mu'_a |h'_a| + \mu |h_\varepsilon| \right] m \, d\sigma \, dv_\varepsilon \, dv.
$$

We first bound from above the truncation function $(1 - \Theta_\varepsilon)$:

$$
\| B^c_{\delta,\varepsilon} h \|_{L^1(\gamma)} \leq \int_{|\cos \theta| \in [1-\varepsilon, 1]} B^c_{\delta}(v - v_\varepsilon, \sigma) \mu_a |h| (m' + m'_a + m_a) \, d\sigma \, dv_\varepsilon \, dv

+ \int_{|v - v_\varepsilon| \leq \varepsilon} B^c_{\delta}(v - v_\varepsilon, \sigma) \mu_a |h| (m' + m'_a + m_a) \, d\sigma \, dv_\varepsilon \, dv

+ \int_{|v| \geq \varepsilon^{-1} \sigma \geq |v - v_\varepsilon| \geq \varepsilon^{-1}} B^c_{\delta}(v - v_\varepsilon, \sigma) \left[\mu'_a |h'| + \mu'_a |h'_a| + \mu |h_\varepsilon| \right] m \, d\sigma \, dv_\varepsilon \, dv,
$$

where the pre-post collisional change of variables has been used in the two first terms. We obtain that $\| B^c_{\delta,\varepsilon} h \|_{L^1(\gamma)}$ is bounded from above by

$$
C_k \left(\int_{|\cos \theta| \in [1-\varepsilon, 1]} 1_{\Theta_\delta} b(\cos \theta) \, d\sigma + K_{\delta,\varepsilon} \varepsilon' \right) \int_{\mathbb{R}^3 \times \mathbb{R}^3} \mu_a (v_\varepsilon)^\gamma + k |h| (v_\varepsilon)^\gamma + k \, dv_\varepsilon \, dv

+ \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} \chi_{\varepsilon^{-1}} B^c_{\delta}(v - v_\varepsilon, \sigma) \left[\mu'_a |h'| + \mu'_a |h'_a| + \mu |h_\varepsilon| \right] m \, d\sigma \, dv_\varepsilon \, dv

=: J_1 + J_2 \tag{2.10}
$$

where $\chi_{\varepsilon^{-1}}$ is the characteristic function of the set

$$
\left\{ \sqrt{|v|^2 + |v_\varepsilon|^2} \geq \varepsilon^{-1} \text{ or } |v - v_\varepsilon| \geq \varepsilon^{-1} \right\}.
$$

The first term of the right hand side of (2.10) is easily controlled as

$$
J_1 \leq C_k \, C_\delta \varepsilon' \| h \|_{L^1((v)')\gamma m}, \tag{2.11}
$$

As far as the second term in (2.10) is concerned, we write

$$
\int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} \chi_{\varepsilon^{-1}} B^c_{\delta}(v - v_\varepsilon, \sigma) \left[\mu'_a |h'| + \mu'_a |h'_a| + \mu |h_\varepsilon| \right] m \, d\sigma \, dv_\varepsilon \, dv

= \int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2} \chi_{\varepsilon^{-1}} B^c_{\delta}(v - v_\varepsilon, \sigma) \left[\mu'_a |h'| + \mu'_a |h'_a| - \mu |h_\varepsilon| - \mu_\varepsilon |h| - \mu |h_a| \right] m \, d\sigma \, dv_\varepsilon \, dv

+ K_\delta \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\varepsilon^{-1}} \mu_a |h| |v - v_\varepsilon| \gamma m \, dv_\varepsilon \, dv

+ 2 K_\delta \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\varepsilon^{-1}} \mu_\varepsilon |h_a| |v - v_\varepsilon| \gamma m \, dv_\varepsilon \, dv

=: T_1 + T_2 + T_3.
Exponential Convergence for the Boltzmann Equation Without Cut-Off

We notice that the characteristic function $\chi_{\epsilon^{-1}}$ is invariant under the usual pre-post collisional change of variables as it only depends on the kinetic energy and momentum. We hence bound the term T_1 thanks to Lemma 2.5:

$$T_1 \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \int_{\mathbb{R}^2} \left(\langle \nu'_* \rangle^k + \langle \nu' \rangle^k - \langle \nu_* \rangle^k - \langle \nu \rangle^k \right) b_{\delta}^*(\cos \theta) \, d\sigma \, dv_* \, dv$$

$$\leq C_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \left(\langle \nu \rangle^{k-1} \langle \nu_* \rangle + \langle \nu \rangle \langle \nu_* \rangle^{k-1} \right) \, dv_* \, dv$$

$$- C'_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} |v|^k \, dv_* \, dv$$

$$\leq C_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \left(\langle \nu \rangle^{k-1} \langle \nu_* \rangle + \langle \nu \rangle \langle \nu_* \rangle^{k-1} \right) \, dv_* \, dv$$

$$+ C'_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \, dv_* \, dv$$

$$- C'_k 2^{1-k/2} \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \langle \nu \rangle \, dv_* \, dv$$

$$=: T_{11} + T_{12} + T_{13}.$$

We treat together the terms T_{11}, T_{12} and T_3 using the following inequality:

$$\chi_{\epsilon^{-1}}(v, v_*) \leq \mathbb{I}_{\{|v| \geq \epsilon^{-1}/2\}} + \mathbb{I}_{\{|v_*| \geq \epsilon^{-1}/2\}} \leq 2 \varepsilon (|v| + |v_*|).$$

We obtain:

$$T_{11} + T_{12} + T_3 \leq \varepsilon C_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \left(|v| + |v_*| \right) |\mu| |v - v_*|^{\gamma} \left(\langle \nu \rangle^{k-1} \langle \nu_* \rangle + \langle \nu \rangle \langle \nu_* \rangle^{k-1} \right) \, dv_* \, dv$$

$$+ \varepsilon C'_k \int_{\mathbb{R}^3 \times \mathbb{R}^3} \left(|v| + |v_*| \right) |\mu| |v - v_*|^{\gamma} \, dv_* \, dv$$

$$+ \varepsilon K_\delta \int_{\mathbb{R}^3 \times \mathbb{R}^3} \left(|v| + |v_*| \right) |\mu| \, |v - v_*|^{\gamma} \, m \, dv_* \, dv$$

$$\leq \varepsilon C_k C_{L_1} \|h\|_{L^1(\nu \gamma m)}.$$

(2.12)

Putting together (2.11) and (2.12), we conclude that

$$J_1 + T_{11} + T_{12} + T_3 \leq C_k C_{\delta}(\varepsilon + \varepsilon') \|h\|_{L^1(\nu \gamma m)} =: \Lambda_{k,\delta}(\varepsilon) \|h\|_{L^1(\nu \gamma m)}.$$

We now gather the terms T_{13}, T_2 and the term coming from v_5, their sum is bounded from above by

$$- K_\delta \int_{\mathbb{R}^3 \times \mathbb{R}^3} \left(1 - \chi_{\epsilon^{-1}} \right) |\mu| |v - v_*|^{\gamma} \, m \, dv \; \ast \, dv$$

$$- C'_k 2^{1-k/2} \int_{\mathbb{R}^3 \times \mathbb{R}^3} \chi_{\epsilon^{-1}} |\mu| |v - v_*|^{\gamma} \, m \, dv \; \ast \, dv.$$

Since $K_\delta \to +\infty$, we can take δ small enough so that $K_\delta \geq C'_k 2^{1-k/2}$, we obtain the following bound:

$$- C'_k 2^{1-k/2} \int_{\mathbb{R}^3} (|\mu| \cdot |\gamma|) \, |h| \, m \, dv \leq - \lambda_k \|h\|_{L^1(\nu \gamma m)}.$$

(2.13)
Combining the bounds obtained in (2.11), (2.12) and (2.13), we can conclude that (2.9) holds, which concludes the proof.

We can now prove the dissipativity properties of \(B_{\delta, \varepsilon} = L_{\delta} + B_{\delta, \varepsilon}^c - v_{\delta} \).

Lemma 2.7 Let us consider \(a \in (-\lambda_k, 0) \) where \(\lambda_k \) is defined in Lemma 2.6. For \(\delta > 0 \) and \(\varepsilon > 0 \) small enough, \(B_{\delta, \varepsilon} - a \) is dissipative in \(L^1(m) \), namely

\[
\forall t \geq 0, \quad \| S_{B_{\delta, \varepsilon}}(t) \|_{L^1(m) \to L^1(m)} \leq e^{at}.
\]

Proof Gathering results coming from lemmas 2.2 and 2.6, we obtain

\[
\int_{\mathbb{R}^3} B_{\delta, \varepsilon}(h) \text{sign}(h) \, m \, dv \leq \int_{\mathbb{R}^3} \left(\varphi_k(\delta) + \Lambda_{k, \delta}(\varepsilon) - \lambda_k \right) |h| \langle v \rangle \, m \, dv
\]

We first take \(\delta \) small enough so that \(\varphi_k(\delta) \leq (a + \lambda_k) / 2 \). We then chose \(\varepsilon \) small enough so that \(\Lambda_{k, \delta}(\varepsilon) \leq (a + \lambda_k) / 2 \). With this choice of \(\delta \) and \(\varepsilon \), we have the following inequality:

\[
\varphi_k(\delta) + \Lambda_{k, \delta}(\varepsilon) - \lambda_k \leq a.
\]

It implies that

\[
\int_{\mathbb{R}^3} B_{\delta, \varepsilon}(h) \text{sign}(h) \, m \, dv \leq a \| h \|_{L^1(\langle v \rangle \, m)},
\]

which concludes the proof.

2.3.2 Regularization Properties

We first state a regularity estimate on the truncated operator \(A_{\delta, \varepsilon} \) which comes from [22, Lemma 4.16].

Lemma 2.8 The operator \(A_{\delta, \varepsilon} \) maps \(L^1(\langle v \rangle) \) into \(L^2 \) functions with compact support. In particular, we can deduce that \(A_{\delta, \varepsilon} \in \mathcal{B}(L^2(\mu^{-1/2})) \) and \(A_{\delta, \varepsilon} \in \mathcal{B}(L^1(m)) \).

We now study the regularization properties of \(T(t) := A_{\delta, \varepsilon} S_{B_{\delta, \varepsilon}}(t) \).

Lemma 2.9 Consider \(a \in (-\lambda_k, 0) \). For a choice of \(\delta, \varepsilon \) such that the conclusion of Lemma 2.7 holds, there exists a constant \(C > 0 \) such that

\[
\| T(t)h \|_{L^2(\mu^{-1/2})} \leq C e^{at} \| h \|_{L^1(m)}.
\]

Proof We here use Lemma 2.8. We introduce a constant \(R > 0 \) such that for any \(h \) in \(L^1(\langle v \rangle) \), \(\text{supp}(Ah) \subset B(0, R) \). We then compute

\[
\| T(t)h \|_{L^2(\mu^{-1/2})} \leq C \left(\int_{B(0, R)} (T(t)h)^2 \, dv \right)^{1/2}
\]

\[
\leq C \| S_{B_{\delta, \varepsilon}}(t)h \|_{L^1(\langle v \rangle)}
\]

\[
\leq C \| S_{B_{\delta, \varepsilon}}(t)h \|_{L^1(m)}
\]

\[
\leq C e^{at} \| h \|_{L^1(m)},
\]

where the last inequality comes from Lemma 2.7.
2.4 Spectral Gap in $L^1(\langle v \rangle^k)$

2.4.1 The Abstract Theorem

Let us now present an enlargement of the functional space of a quantitative spectral mapping theorem (in the sense of semigroup decay estimate). The aim is to enlarge the space where the decay estimate on the semigroup holds. The version stated here comes from [22, Theorem 2.13].

Theorem 2.10 Let E, \mathcal{E} be two Banach spaces such that $E \subset \mathcal{E}$ with dense and continuous embedding, and consider $L \in \mathcal{C}(E), \mathcal{L} \in \mathcal{C}(\mathcal{E})$ with $\mathcal{L}|_E = L$ and $a \in \mathbb{R}$. We assume:

1. L generates a semigroup $S_L(t)$ and
 \[\Sigma(L) \cap \Delta_a = \{ \xi \} \subset \Sigma_d(L) \]
 for some $\xi \in \mathbb{C}$ and $L - a$ is dissipative on $\mathbb{R} (\text{Id} - \Pi_{L,\xi}).$
2. There exist $A, B \in \mathcal{C}(\mathcal{E})$ such that $\mathcal{L} = A + B \text{ (with corresponding restrictions } A \text{ and } B \text{ on } E)$ and a constant $C_a > 0$ so that
 (i) $B - a$ is dissipative on $\mathcal{E},$
 (ii) $A \in \mathcal{B}(E)$ and $A \in \mathcal{B}(\mathcal{E}),$
 (iii) $T(t) := AS_B(t)$ satisfies
 \[\forall t \geq 0, \quad \| T(t) \|_{\mathcal{B}(\mathcal{E}, E)} \leq C_a e^{at}. \]

Then the following estimate on the semigroup holds:

\[\forall a' > a, \forall t \geq 0, \quad \| S_L(t) - S_L(t)\Pi_{\mathcal{L},\xi} \|_{\mathcal{B}(\mathcal{E})} \leq C_a' e^{a't} \]

where $C_{a'} > 0$ is an explicit constant depending on the constants from the assumptions.

2.4.2 Proof of Theorem 1.4

The conclusion of Theorem 1.4 is a direct consequence of Theorem 2.10. Indeed denoting $E = L^2(\mu^{-1/2})$ and $\mathcal{E} = L^1(m)$, assumption (1) is nothing but Proposition 2.1, assumption (2)-(i) comes from Lemma 2.7, (2)-(ii) from Lemma 2.8 and (2)-(iii) from Lemma 2.9. We can conclude that estimate (1.14) holds.

3 The Nonlinear Equation

We first establish bilinear estimates on the collisional operator and we then prove our main result: Theorem 1.1.

3.1 The Bilinear Estimates

Proposition 3.1 Let B satisfying (1.2), (1.3) and (1.4). Then

\[\| Q(h, h) \|_{L^1(m)} \leq C \left(\| h \|_{L^1(\langle v \rangle^\gamma_m)} \| h \|_{L^1(m)} + \| h \|_{L^1(\langle v \rangle^{\gamma+1})} \| h \|_{W^{1,1}(\langle v \rangle^{\gamma+1} m)} \right) \]

for some $C > 0.$
Proof We split $Q(h, h)$ into two parts and we use the pre-post collisional change of variables for the second one, we obtain

$$\|Q(h, h)\|_{L^1(m)} = \int_{\R^3} \left| \int_{\R^3 \times \S^2} B(v - v_s, \sigma) \left((h'_s - h_s)h + (h' - h)h'_s \right) \, d\sigma \, dv_s \right| \, m \, dv$$

$$\leq \int_{\R^3} \left| \int_{\R^3 \times \S^2} B(v - v_s, \sigma) (h'_s - h_s) \, d\sigma \, dv_s \right| \, |h| \, m \, dv$$

$$+ \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) |h' - h| \, |h'_s| \, m \, d\sigma \, dv_s \, dv$$

$$\leq \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) (h'_s - h_s) \, d\sigma \, dv_s \, dv$$

$$+ \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) |h' - h| \, |h_s| \, m' \, d\sigma \, dv_s \, dv$$

$$=: T_1 + T_2.$$

We first deal with T_1 using the cancellation lemma [1, Lemma 1]:

$$T_1 = \int_{\R^3} |S * h| \, |h| \, m \, dv$$

with

$$S(z) = 2\pi \int_0^{\pi/2} \sin \theta \, b(\cos \theta) \left(\frac{|z|}{\cos^3(\theta/2)} - |z|^\gamma \right) \, d\theta$$

$$= 2\pi \, |z|^\gamma \int_0^{\pi/2} \sin \theta \, b(\cos \theta) \frac{1 - \cos^3(\theta/2)}{\cos^3(\theta/2)} \, d\theta$$

$$\leq C \, |z|^\gamma.$$

We deduce that

$$T_1 \leq C \, \|h\|_{L^1((v)\gamma)} \, \|h\|_{L^1((v)\gamma \cdot m)}, \quad (3.1)$$

We now treat the term T_2 which is splitted into two parts:

$$T_2 = \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) |h' m' - hm| \, |h_s| \, d\sigma \, dv_s \, dv$$

$$\leq \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) |h' m' - hm| \, |h_s| \, d\sigma \, dv_s \, dv$$

$$+ \int_{\R^3 \times \R^3 \times \S^2} B(v - v_s, \sigma) |h' m' - m| \, |h| \, |h_s| \, d\sigma \, dv_s \, dv$$

$$=: T_{21} + T_{22}.$$

Concerning T_{21}, we have to estimate

$$\int_{\R^3 \times \S^2} b(\cos \theta) |v - v_s|^\gamma |h' m' - hm| \, dv \, d\sigma =: J(v_s) = J.$$

To do that, we use Taylor formula denoting $\bar{v}_u := (1 - u)v + uv'$ for any $u \in [0, 1]$, which allows us to estimate $|h' m' - hm|$:

$$|h' m' - hm| = \left| \int_0^1 \nabla(hm)(\bar{v}_u) \cdot (v - v') \, du \right|$$
\[\leq \int_0^1 |\nabla (hm)(\tilde{v}_{u})| |v - v_{s}| \sin(\theta/2) \, du. \]

It implies the following inequality on \(J \):
\[J \leq C \int_{\mathbb{R}^3 \times S^2 \times [0,1]} b(\cos \theta) \sin(\theta) |v - v_{s}|^{\gamma + 1} |\nabla (hm)(\tilde{v}_{u})| \, du \, d\sigma \, dv. \]

Moreover, if \(v \neq v_{s} \), we have the following equality:
\[|v - v_{s}| = \frac{1}{\left| 1 - \frac{u}{2} \kappa + \frac{u}{2} \sigma \right|} |\tilde{v}_{u} - v_{s}|. \]

Using the fact that \(0 \leq \kappa, \sigma \leq 1 \), one can show that for any \(u \in [0, 1] \),
\[\left| 1 - \frac{u}{2} \kappa + \frac{u}{2} \sigma \right| \geq \frac{1}{\sqrt{2}}. \]

We can thus deduce that for any \(u \in [0, 1] \), we have \(|v - v_{s}| \leq C |\tilde{v}_{u} - v_{s}| \) for some \(C > 0 \), which implies
\[J \leq C \int_{\mathbb{R}^3 \times S^2 \times [0,1]} b(\cos \theta) \sin(\theta) |\tilde{v}_{u} - v_{s}|^{\gamma + 1} |\nabla (hm)(\tilde{v}_{u})| \, du \, d\sigma \, dv. \]

For \(u, v_{s} \) and \(\sigma \) fixed, we now perform the change of variables \(v \to \tilde{v}_{u} \). Its Jacobian determinant is
\[\left| \frac{d\tilde{v}_{u}}{dv} \right| = \left(1 - \frac{u}{2} \right)^2 \left(1 - \frac{u}{2} + \frac{u}{2} \kappa, \sigma \right) \geq \left(1 - \frac{u}{2} \right)^3 \geq \frac{1}{8} \]
since \(\kappa, \sigma \geq 0 \). Gathering all the previous estimates, we obtain
\[J \leq C \int_{S^2} b(\cos \theta) \sin(\theta) d\sigma \int_{\mathbb{R}^3} |v - v_{s}|^{\gamma + 1} |\nabla (hm)(v)| \, dv. \]

We thus obtain :
\[T_{21} \leq C \|h\|_{L^1((v)^{\gamma + 1})} \|h\|_{W^{1,1}((v)^{\gamma + 1})}. \quad (3.2) \]

Let us finally deal with \(T_{22} \). We here use the inequality (2.3):
\[T_{22} \leq \int_{\mathbb{R}^3 \times S^2 \times [0,1]} B(v - v_{s}, \sigma) |h| |h_{s}| \left(\langle v \rangle^{k-1} + \langle v_{s} \rangle^{k-1} \right) |v' - v| d\sigma \, dv_{s} \, dv \]
\[\leq \int_{S^2} b(\cos \theta) \sin(\theta) d\sigma \int_{\mathbb{R}^3 \times \mathbb{R}^3} |h| |h_{s}| \left(\langle v \rangle^{k-1} + \langle v_{s} \rangle^{k-1} \right) |v - v_{s}|^{\gamma + 1} \, dv_{s} \, dv \]
\[\leq C \|h\|_{L^1((v)^{\gamma + 1})} \|h\|_{L^1((v)^{\gamma + 1})}. \quad (3.3) \]

Inequalities (3.1), (3.2) and (3.3) together yields the result. \(\square \)

We now recall a classical result from interpolation theory (see for example Lemma B.1 from [27]).

Lemma 3.2 For any \(k, k^*, q, q^* \in \mathbb{Z} \) with \(s \geq s^* \), \(q \geq q^* \) and any \(\theta \in (0, 1) \), there exists \(C > 0 \) such that for any \(h \in W^{s^*,1}((v)^{q^*}) \), we have
\[\|h\|_{W^{1,1}((v)^{q^*})} \leq C \|h\|_{W^{s^*,1}((v)^{q^*})}^{1-\theta} \|h\|_{W^{s^*,1}((v)^{q^*})}^{\theta} \]
with \(s^*, q^* \in \mathbb{Z} \) such that \(s = (1-\theta)s^* + \theta s^{**} \) and \(q = (1-\theta)q^* + \theta q^{**} \). \(\heartsuit \) Springer
It allows us to prove the following corollary which is going to be useful in the proof of our main theorem.

Corollary 3.3 Let \(B \) satisfying (1.2), (1.3) and (1.4). Then

\[
\|Q(h, h)\|_{L^1(m)} \leq C \left(\|h\|_{L^1(m)}^{3/2} \|h\|_{L^1(\gamma+1)}^{1/2} + \|h\|_{L^1(m)}^{3/2} \|h\|_{H^k(\gamma+6)}^{1/2} \right).
\]

Proof On the one hand, using Lemma 3.2, we obtain

\[
\|h\|_{L^1(\gamma+1)} \leq \|h\|_{L^1(m)}^{1/2} \|h\|_{L^1(\gamma+1)}^{1/2}.
\]

On the other hand, using twice Lemma 3.2, we obtain

\[
\|h\|_{L^1(\gamma) \gamma+1 \gamma+1} \|h\|_{L^1(\gamma+1)} \leq C \|h\|_{L^1(m)}^{3/2} \|h\|_{L^1(\gamma+1)}^{1/2} \|h\|_{H^k(\gamma+4)}^{1/2}.
\]

To conclude we use that for any \(q \in \mathbb{N} \), we can show using Hölder inequality that

\[
\|h\|_{L^1(\gamma+1)} \leq C \|h\|_{L^2(\gamma+2)}.
\]

We hence obtain the wanted inequality

\[
\|h\|_{L^1(\gamma+1)} \|h\|_{L^1(\gamma+1)} \|h\|_{L^1(\gamma+1)} \leq C \|h\|_{L^1(m)}^{3/2} \|h\|_{L^1(\gamma+1)}^{1/2} \|h\|_{H^k(\gamma+4)}^{1/2}.
\]

\(\square \)

3.2 Proof of Theorem 1.1

Let \(f_0 = \mu + h_0 \) and consider the equation

\[
\partial_t h_t = \mathcal{L} h_t + Q(h_t, h_t), \quad h(t = 0) = h_0.
\]

Let us notice that for any \(t \geq 0 \), we have \(\Pi h_t = 0 \). Indeed, \(f_0 \) has same mass, momentum and energy as \(\mu \), it implies that \(\Pi h_0 = 0 \) and these quantities are conserved by the equation.

We now state a nonlinear stability theorem which is the third key point (with Theorems 1.3 and 1.4) in the proof of Theorem 1.1.

Theorem 3.4 Consider a solution \(h_t \) to (3.4) such that

\[
\forall t \geq 0, \quad \|h_t\|_{H^k(\gamma+6)} \leq K
\]

for some \(K > 0 \). There exists \(\eta > 0 \) such that if moreover

\[
\forall t \geq 0, \quad \|h_t\|_{L^1(\gamma+6)} \leq \eta
\]

then there exists \(C > 0 \) (depending on \(K \) and \(\eta \)) such that

\[
\forall t \geq 0, \quad \|h_t\|_{L^1(m)} \leq C \ e^{-\lambda t} \|h_0\|_{L^1(m)}
\]

for any positive \(\lambda < \min(\lambda_0, \lambda_k) \) (see Theorem 1.4).

Proof We use Duhamel’s formula for the solution of (3.4):

\[
h_t = S_{\mathcal{L}}(t) h_0 + \int_0^t S_{\mathcal{L}}(t-s) Q(h_s, h_s) \, ds.
\]
We now estimate $\|h_t\|_{L^1(m)}$ thanks to Theorem 1.4 and Corollary 3.3:

$$
\|h_t\|_{L^1(m)} \leq e^{-\lambda t} \|h_0\|_{L^1(m)} + C \int_0^t e^{-\lambda(t-s)} \left(\|h_s\|_{L^1(m)}^{1/4} \|h_s\|_{H^k(v)\gamma}^{1/2} + \|h_s\|_{L^1(m)}^{3/4} \right) \|h_s\|_{L^1(m)}^{5/4} \, ds
$$

$$
\leq e^{-\lambda t} \|h_0\|_{L^1(m)} + C \int_0^t e^{-\lambda(t-s)} \left(K^{1/2} \eta^{1/4} + \eta^{3/4} \right) \|h_s\|_{L^1(m)}^{5/4} \, ds.
$$

We denote $\eta' := C \left(K^{1/2} \eta^{1/4} + \eta^{3/4} \right)$. We end up with a similar differential inequality as in [32, Lemma 4.5]. We can then conclude in the same way that

$$
\forall t \geq 0, \quad \|h_t\|_{L^1(m)} \leq C' e^{-\lambda t} \|h_0\|_{L^1(m)},
$$

for some $C' > 0$.

To conclude the proof of Theorem 1.1, we consider $\eta > 0$ defined in Theorem 3.4. Using Theorem 1.3, we can choose $t_1 > 0$ such that

$$
\forall t \geq t_1, \quad \|h_t\|_{L^1(m)} = \|f_t - \mu\|_{L^1(m)} \leq \eta.
$$

Thanks to the properties of a smooth solution, we also have

$$
\forall t \geq t_1, \quad \|h_t\|_{H^k(v)\gamma} \leq \|f_t\|_{H^k(v)\gamma} + \|\mu\|_{H^k(v)\gamma} \leq K
$$

for some $K > 0$. We can hence apply Theorem 3.4 to h_t starting from t_1. We finally obtain

$$
\forall t \geq t_1, \quad \|f_t - \mu\|_{L^1(m)} \leq C' e^{-\lambda t} \|h_t\|_{L^1(m)} \leq C'' e^{-\lambda t},
$$

for some $C'' > 0$. The conclusion of Theorem 1.1 is hence established.

Acknowledgments We thank Stéphane Mischler for fruitful discussions and his encouragement.

References

1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)
2. Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Ration. Mech. Anal. 77(1), 11–21 (1981)
3. Bally, V., Fournier, N.: Regularization properties of the 2D homogeneous Boltzmann equation without cutoff. Probab. Theory Relat. Fields 151(3–4), 659–704 (2011)
4. Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoam. 21(3), 819–841 (2005)
5. Bobylev, A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5–6), 1183–1214 (1997)
6. Bobylev, A.V., Gamba, I.M., Panferov, V.A.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5–6), 1651–1682 (2004)
7. Carleman, T.: Sur la théorie de l’équation intégral-différentielle de Boltzmann. Acta Math. 60(1), 91–146 (1933)
8. Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)
9. Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)
10. Carrapatoso, K. On the trend to equilibrium for the homogeneous Landau equation with hard potentials. http://hal.archives-ouvertes.fr/hal-00851757 (2013)
11. Cercignani, C.: The Boltzmann Equation and its Applications, vol. 67 of Applied Mathematical Sciences. Springer, New York (1988)
12. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences. Springer, New York (1994)
13. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case. Arch. Ration. Mech. Anal. 201(2), 501–548 (2011)
14. Desvillettes, L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys. 21(3), 259–276 (1992)
15. Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Ration. Mech. Anal. 123(4), 387–404 (1993)
16. Desvillettes, L., Mouhot, C.: Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch. Ration. Mech. Anal. 193(2), 227–253 (2009)
17. Elmroth, T.: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Ration. Mech. Anal. 82(1), 1–12 (1983)
18. Fournier, N.: Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition. To appear in Ann. Appl. Probab.
19. Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Commun. Math. Phys. 289(3), 803–824 (2009)
20. Goudon, T.: On Boltzmann equations and Fokker–Planck asymptotics: influence of grazing collisions. J. Stat. Phys. 89(3–4), 751–776 (1997)
21. Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)
22. Gualdani, M.P., Mischler, S., and Mouhot, C. Factorization for non-symmetric operators and exponential H-theorem. http://hal.archives-ouvertes.fr/ccsd-00495786 (2013). Accessed December 2013
23. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition
24. Klaus, M.: Boltzmann collision operator without cut-off. Helv. Phys. Acta 50(6), 893–903 (1977)
25. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)
26. Mischler, S., Mouhot, C.: Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations
27. Mischler, S., Scher, J.: Spectral analysis of semigroups and growth-fragmentation equations. http://hal.archives-ouvertes.fr/hal-00877780 (2013). Accessed December 2013
28. Mouhot, C., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)
29. Mouhot, C.: Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions. Commun. Partial Differ. Ereq. 30(4–6), 881–917 (2005)
30. Mouhot, C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Ereq. 31(7–9), 1321–1348 (2006)
31. Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261(3), 629–672 (2006)
32. Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87(5), 515–535 (2007)
33. Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I, II. Commun. Pure Appl. Math. 27, 407–428 (1974), ibid. 27 (1974), 559–581
34. Pulvirenti, A., Wennberg, B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Commum. Math. Phys. 183(1), 145–160 (1997)
35. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)
36. Tristani, I.: Fractional Fokker-Planck equation. http://hal.archives-ouvertes.fr/hal-00914059 (2013). Accessed December 2013
37. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305. North-Holland, Amsterdam, (2002)
38. Villani, C.: Cercignani's conjecture is sometimes true and almost always true. Commun. Math. Phys. 234(3), 455–490 (2003)
39. Wennberg, B.: The Povzner inequality and moments in the Boltzmann equation. In Proceedings of the VIII International Conference on Waves and Stability in Continuous Media, Part II (Palermo, 1995) (1996), no. 45, part II, pp. 673–681
40. Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86(5–6), 1053–1066 (1997)