Photocatalyst of Perovskite CaTiO$_3$ Nanopowder Synthesized from CaO derived from Snail Shell in Comparison with The Use of CaO and CaCO$_3$

I Fatimah, Y Rahmadianti, R A Pudiasari
Chemistry Department, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang KM 14, Sleman, Yogyakarta Indonesia 555584.

E-mail : isfatimah@uii.ac.id

Abstract. Calcium titanate belongs to the important group of compounds with a perovskite structure having high dielectric loss for various applications including photocatalysis mechanism. Refer to the principles of green chemistry, in this work preparation of CaTiO$_3$ was conducted by using CaO derived from snail shell. Aim of this research are to study the physicochemical character of perovskite derived from snail shell and its comparison with CaO and CaCO$_3$ as Ca sources. Material preparation was performed by solid reaction of Ca sources with TiO$_2$ under comparison with CaO and CaCO$_3$ precursors. Mixture of Ca sources with TiO$_2$ in certain proportion were ground and calcined at the temperature of 200 °C for 2 hs. Materials were characterized by using X-ray diffractometer (XRD), Fourier Transform-Infra Red (FTIR) and the photocatalytic activity was tested by using methylene blue photooxidation. Perovskite synthesized using CaO derived from snail shell exhibits the similar XRD pattern with that were prepared by using CaO and CaCO$_3$. From the photooxidation activity test, it is proven that CaTiO$_3$ shows similar photocatalytic activity correspond to that were prepared by CaO and CaCO$_3$. Utilization of shell as agricultural waste of the synthesis of CaTiO$_3$ perovskite is the novelty of this work. Furthermore, the study on material structure and photoactivity is the main focuses for the application in industry and environment.

1. Introduction

During last two decades, photocatalysis becomes developing technology in wastewater treatment and intensively studied. Some advantageous of photocatalysis utilization are laid on the reusability of the material in further process and the more economical and efficient process. [1-3]. Conventional methods for the dye removal from waste water and textile industries viz. physical methods, chemical methods, adsorption, absorption, incineration and biological. Each method has some merits and drawbacks. For example due to large number of dyes molecules and the stability of modern dyes, conventional biological methods are ineffective for decolorization and degradation.

Some previous works explore the utilization of semiconductor materials instead of TiO$_2$ and ZnO that has been an interest for photocatalysis application. One of these materials is perovskite. Perovskites are the class of compounds presenting the general formula ABO$_3$[1]. The perovskite crystal structure has corner connected BO$_6$ octahedra and 12 oxygen coordinated A cations, located in between the eight BO$_6$ octahedra (Figure 1). Some of perovskite material are CaTiO$_3$, PbZrO$_3$, BaTiO$_3$, PbTiO$_3$ commonly used piezoelectric compounds[2,3].
Perovskite of CaTiO$_3$ is the economist material for photocatalysis application and can be synthesized from the reaction of CaO and TiO$_2$. The high content of CaCO$_3$ in snail shell is a high potential commodity for precursors in the synthesis of CaTiO$_3$ material[4–6]. Aim of study is to evaluate chemical properties of CaTiO$_3$ derived from snail shell in comparison with CaTiO$_3$ synthesized from CaO and CaCO$_3$.

2. Materials and Method

2.1. Materials:
Snail shell (Philla ampulacea) was obtained from Paddy field in Bantul District, Special Region of Yogyakarta Indonesia. The determination of snail was performed by Faculty of Biology, Gadjah Mada University, Indonesia. TiO$_2$, methylene blue (MB), H$_2$O$_2$, CaO and CaCO$_3$ were purchased from Merck.

2.2. Synthesis of CaTiO$_3$
CaTiO$_3$ nanocrystalline powder was prepared by using stoichiometric mixture of Ca and TiO$_2$ at mole ratio of 1:1. The mixture was grinded until 20 minutes by using mortar and pastle and followed by calcination at 200°C for 2 hours. The syntheses were at varied source of Ca consist of snail shell, CaO and CaCO$_3$, prepared CaTiO$_3$ were encoded as CaTiO$_3$-ss, CaTiO$_3$-CaO and CaTiO$_3$-CaCO$_3$ respectively.

2.3. Characterization of CaTiO$_3$
Materials were characterized by using x-ray diffractometer (XRD). XRD Shimadzu X6000 was utilized for the analyses. The corresponding X-ray diffraction patterns recorded agreement with the reported values of Joint Commitee on Powder Difraction Standards (JCPDS). FT-IR spectra of a powder sample was recorded using Perkin Elmer Spectrum 10™ Spectrophotometer and SEM profile of materials were recorded by JEOL JSM-7001F instrument.

2.4. Photodegradation experiments
Photodegradation experiment of MB using prepared CaTiO$_3$ was conducted in a photocatalytic reactor equipped with Philips UV Lamp 360nm at 40 watt of power (Figure 1). A solution containing the proper concentration of the dye, e.g., 1, 2, 3 and 5 ppm was transferred into the reactor batch photocatalyst, and then 0.5 g of CaTiO$_3$ nanocrystalline powder and 1 mL H$_2$O$_2$ was added. This mixture was irradiated under ultraviolet light with variations time 5; 10; 15; 30; 45; 60 and 120 minutes, which induced the photochemical reaction to proceed. The samples of the test were monitored on UV-visible spectrophotometer (Shimadzu 1800) at wavelength 664 nm. Co and C are the initial and sample concentration obtained by photometric method using calibration standard method.
3. Results and Discussion
The crystallinity of prepared materials was identified by using XRD and the patterns are presented in Fig. 2. The patterns indicate that all samples exhibit the formation of CaTiO$_3$ in mixture with TiO$_2$, CaO and CaCO$_3$ phases. The spectra of CaTiO$_3$ shows the reflections as indication of (012), (006), (202), (116), (018) and (214) refered to the JCPDS (Card No.22-0153)[7].

Figure 2. XRD pattern of (a) CaTiO$_3$-CaO, (b) CaTiO$_3$-CaCO$_3$, (c) CaTiO$_3$-ss,
However, some reflections are appeared as an indication of the other minerals than the perovskite phases in the solids. The identified minerals are silica (SiO$_2$), MgO and Si$_5$P$_6$O$_{25}$. The presence of impurities related to the incomplete reaction during calcination at 200°C.

Comparison on surface profile of materials is described by SEM-EDX profile in Figure 3. It can be seen that there is a surface evolution of snail shell powder to CaTiO$_3$ in which the smaller grain obtained after modification to CaTiO$_3$. There is no significant difference between CaTiO$_3$ from different CaO source indicating that the chemical interaction in the synthesis is not affected much by the impurities in snail shell content (Table 1).

Component	Percentage (% wt.)
Na$_2$O	0.12
C	14.2
CaO	83.9
Si	0.32
Mg	0.21

Fig.3. SEM profile of (a) snail shell powder (b) CaTiO$_3$-CaO, (c) CaTiO$_3$-CaCO$_3$, (d) CaTiO$_3$-ss
The FTIR spectra of materials presented in Fig. 4 demonstrate some important peaks at around 632 cm$^{-1}$, 1626 cm$^{-1}$ and 3403 cm$^{-1}$. The peaks at 1626 cm$^{-1}$ can be ascribed to the bending vibration of O-H and the peak in the range of 500–900 cm$^{-1}$ was assigned to the Ti-O stretching and Ti–O–Ti bridging stretching modes. The bands at 3400 cm$^{-1}$ are clearly shows the presence of moisture and water molecular.

Photocatalytic activity of materials was evaluated in MB photodegradation and the kinetics are presented in Fig. 5. The photodegradation was conducted in varied MB concentration. It is seen that all CaTiO$_3$ demonstrate the photoactive properties as decreasing MB concentration along increasing time of treatment is found.
Fig 5. Kinetics of MB over (a) CaTiO$_3$-CaO, (b) CaTiO$_3$-CaCO$_3$, (c) CaTiO$_3$-ss,
From photooxidation test, kinetics of MB degradation shows that CaTiO$_3$ derived snail shell is in similarly values with the kinetics degradation over CaTiO$_3$ synthesized from CaO and CaCO$_3$. The initial rate data of MB degradation over varied CaTiO$_3$ are presented in Table 2. From the data it is found that photocatalytic activity of CaTiO$_3$-ss is lower compared to other CaTiO$_3$ samples. The kinetics of MB photooxidation occurs in random trend but the in general lowest rate over CaTiO$_3$-ss. The possible reason for the photoactivity is from the presence of impurities in the sample.

Table 2. Initial rate of MB photooxidation over prepared materials

[MB]/ppm	Initial rate (ppm/mins)		
	CaTiO$_3$-CaO	CaTiO$_3$-CaCO$_3$	CaTiO$_3$-ss
1	0.0533	0.047	0.045
2	0.022	0.103	0.112
3	0.115	0.167	0.164
5	0.235	0.299	0.170

From the kinetic simulation, it is found that the MB photodegradation obeys second order reaction.

4. Conclusion
The CaTiO$_3$ synthesis was carried out under ecofriendly, easily and cheap solid state mechanochemical method. Synthesis of CaTiO$_3$ exhibits photocatalytic activity in MB photodegradation.

References

[1] Heydari M, Fazaeli R and Yousefi M 2012 Preparation of Perovskite Nanocomposites and Photochemical Degradation Kinetics of Acid Yellow 199 15 7–15
[2] Seo S S A, Lee H N and Noh T W 2005 Infrared spectroscopy of CaTiO3, SrTiO3, BaTiO 3, Ba0.5Sr0.5TiO3 thin films, and (BaTiO3)/((SrTiO3)5 superlattice grown on SrRuO3/SrTiO3(001) substrates Thin Solid Films 486 94–7
[3] Liotta L F, Gruttadaura M, Di Carlo G, Perrini G and Librando V 2009 Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. *Journal of hazardous materials* 162 588–606
[4] Liu H, Guo H shuang, Wang X jing, Jiang J zhong, Lin H, Han S and Pei S peng 2016 Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production *Renewable Energy* 93 648–57
[5] Roschat W, Siritanon T, Kaewpuang T, Yoosuk B and Promarak V 2016 Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method *Bioresource Technology* 209 343–50
[6] Viriya-Empikul N, Krasae P, Nualpaeng W, Yoosuk B and Faungnawakij K 2012 Biodiesel production over Ca-based solid catalysts derived from industrial wastes *Fuel* 92 239–44
[7] Gaikwad S S, Borhade A V. and Gaikwad V B 2012 A green chemistry approach for synthesis of CaTiO3 photocatalyst: Its effects on degradation of methylene blue, phytotoxicity and microbial study *Der Pharma Chemica* 4 184–93