A note on \textit{fsg} groups in \textit{p}-adically closed fields

Will Johnson

March 30, 2022

Abstract

Let \(G \) be a definable group in a \(p \)-adically closed field \(M \). We show that \(G \) has finitely satisfiable generics (\textit{fsg}) if and only if \(G \) is definably compact. The case \(M = \mathbb{Q}_p \) was previously proved by Onshuus and Pillay.

1 Introduction

Work in a monster model \(\mathbb{M} \) of some theory. Let \(G \) be a definable group. Say that a definable set \(X \subseteq G \) is \textit{left generic} or \textit{right generic} if \(G \) can be covered by finitely many left translates or right translates of \(X \), respectively. A definable group \(G \) is said to have \textit{finitely satisfiable generics (fsg)} if there is a small model \(M_0 \) and a global type \(p \in S_G(\mathbb{M}) \) such that every left translate \(g \cdot p \) is finitely satisfiable in \(M_0 \). This notion is due to Hrushovski, Peterzil, and Pillay \cite{HP}, who prove the following facts:

\textbf{Fact 1.1} (\cite{HP} Proposition 4.2). Suppose \(G \) has \textit{fsg}, witnessed by \(p \) and \(M_0 \).

1. A definable set \(X \subseteq G \) is left generic iff it is right generic.

2. Non-generic sets form an ideal: if \(X \cup Y \) is generic, then \(X \) is generic or \(Y \) is generic.

3. A definable set \(X \) is generic if and only if every left translate of \(X \) intersects \(G(M_0) \).

If \(G \) is a group definable in a nice o-minimal structure, then \(G \) has \textit{fsg} if and only if \(G \) is definably compact \cite{L} Remark 5.3]. Our main theorem is an analogue for \(p \)-adically closed fields:

\textbf{Theorem 1.2}. Let \(M \) be a \textit{p}-adically closed field and \(G \) be an \(M \)-definable group. Then \(G \) is definably compact if and only if \(G \) has \textit{fsg}.

The case \(M = \mathbb{Q}_p \) was proved by Onshuus and Pillay \cite{OP} Corollary 2.3].
1.1 Notation

We denote the theory of p-adically closed fields by $p\text{CF}$. In a p-adically closed field M, we will let Γ or $\Gamma(M)$ denote the value group, and \mathcal{O} or $\mathcal{O}(M)$ denote the valuation ring. The valuation will be denoted $v(x)$, and written additively, so $v(xy) = v(x) + v(y)$ and $v(x + y) \geq \min(v(x), v(y))$. If D is a definable set, we write $S_D(M)$ for the set of complete types over M concentrating on D.

1.2 Outline

In Section 2 we review the notion of definable compactness in definable groups in p-adically closed fields. In Section 3 we give the easy direction of Theorem 1.2: if G has fsig then G is definably compact. In Section 4 we show that definable compactness is a definable property—it varies definably in a definable family of definable groups. This ensures that every definably compact group is part of a 0-definable family of definably compact groups. In Section 5 we use the VC-theorem to show that fsig is witnessed in a very uniform manner for definably compact groups over \mathbb{Q}_p. In Section 6 we show that definable compactness implies fsig by using Section 4 to transfer the “uniform fsig” of Section 5 from \mathbb{Q}_p to its elementary extensions.

2 Definable compactness in $p\text{CF}$

If X is a definable set and τ is a topology on X, we say that τ is definable if there is a definable family $\{B_i\}_{i \in I}$ such that $\{B_i : i \in I\}$ is a basis for the topology. Two examples of definable topologies are the order topology on an o-minimal structure and the valuation topology on a p-adically closed field. A definable topological space is a definable set with a definable topology.

We will use the following abstract notion of definable compactness, which works well in p-adically closed fields and o-minimal structures:

Definition 2.1 ([1, 5]). A definable topological space X is **definably compact** if the following holds: if $\{F_i\}_{i \in I}$ is a definable family of non-empty closed subsets of X, and $\{F_i : i \in I\}$ is downwards-directed, then the intersection $\bigcap_{i \in I} F_i$ is non-empty.

A definable subset $Y \subseteq X$ is definably compact if it is compact with the induced subspace topology, which is definable.

Definable compactness has many properties analogous to compactness [5, Section 3.1]. We will need the following two trivial observations:

Fact 2.2.

1. If $f : X \to Y$ is a definable continuous function between definable topological spaces, and $D \subseteq X$ is definably compact, then the image $f(D) \subseteq Y$ is definably compact.

2. If X is a definable topological space and $D_1, D_2 \subseteq X$ are definably compact, then $D_1 \cup D_2$ is definably compact.
\section{Definable manifolds}

Work in a \(p \)-adically closed field \(M \). A \textit{definable manifold} is a Hausdorff definable topological space \(X \) covered by finitely many definable opens \(U_1, \ldots, U_k \), such that each \(U_i \) is definably homeomorphic to an open subset of \(M^n \). Definable manifolds arise naturally in the study of definable groups by the following theorem of Pillay:

Fact 2.3 (\cite{8}). If \(G \) is a definable group (in a \(p \)-adically closed field), then there is a unique definable topology \(\tau \) on \(G \) such that

- The group operations are continuous.

- \((G, \tau)\) is a definable manifold.

On definable manifolds, we can give a concrete characterization of definable compactness. First consider the case \(M^n \):

Fact 2.4 (\cite{6}, Lemmas 2.4, 2.5). A definable set \(D \subseteq M^n \) is definably compact iff it is closed and bounded.

Here, a set \(D \) is “bounded” if there is \(N \in \Gamma \) such that \(v(x_i) > N \) for all \(x_i \in D \).

This can be generalized to other definable manifolds using the following notion:

Definition 2.5. Let \(X \) be a definable manifold. A \(\Gamma \)-exhaustion is a definable family \(\{W_\gamma\}_{\gamma \in \Gamma} \) such that

1. Each \(W_\gamma \) is an open, definably compact subset of \(X \).
2. \(\gamma \leq \gamma' \implies W_\gamma \subseteq W_{\gamma'} \).
3. \(X = \bigcup_{\gamma \in \Gamma} W_\gamma \).

For example, in \(M^n \), if \(B_\gamma(0) \) denotes the ball of radius \(\gamma \) around \(0 \in M^n \), then \(\{B_{-\gamma}(0)\}_{\gamma \in \Gamma} \) is a \(\Gamma \)-exhaustion.

Fact 2.6 (\cite{6}, Remark 2.8). Let \(X \) be a definable manifold.

1. There is at least one \(\Gamma \)-exhaustion on \(X \).
2. Suppose we write \(X \) as a finite union \(U_1 \cup \cdots \cup U_k \) of definable open sets. Suppose that for \(i < k \), the family \(\{W_{\gamma_i}^i\} \) is a \(\Gamma \)-exhaustion of \(U_i \). Let \(V_\gamma = \bigcup_{i=1}^k W_{\gamma_i}^i \). Then \(\{V_\gamma\} \) is a \(\Gamma \)-exhaustion of \(X \).

We can then characterize definable compactness as follows:

Fact 2.7. Let \(X \) be a definable manifold and \(\{W_\gamma\} \) be a \(\Gamma \)-exhaustion. Let \(D \subseteq X \) be a definable set. The following are equivalent:

1. \(D \) is definably compact.
2. D is closed, and D is bounded, in the sense that $D \subseteq W_\gamma$ for some γ.

3. For any definable continuous function $f : O \setminus \{0\} \to D$, there is a point $p \in D$ which is a cluster point of f at 0, in the sense that for any neighborhood U of p and V of 0, there is $x \in V \setminus \{0\}$ such that $f(x) \in U$.

4. If r is a 1-dimensional definable type concentrating on D, then there is a point $p \in D$ such that r specializes to p, in the sense that for any definable neighborhood U of p, the type r concentrates on U.

The equivalence of (1) and (2) follows from Proposition 2.9 and Fact 2.2(4–5) in [6]. The equivalence of (1) and (3) is [6, Proposition 2.15]. The equivalence of (1) and (4) is [6, Proposition 2.24].

Fact 2.8 ([6, Remark 2.12]). Let X be a \Q_p-definable manifold and $Y \subseteq X$ be \Q_p-definable. Then Y is definably compact if and only if $Y(\Q_p)$ is compact as a subset of the p-adic manifold $X(\Q_p)$.

Remark 2.9. Suppose $M \preceq N$ are two models of pCF, and $X = X(M)$ is a definable topological space in M. Let $X(N)$ denote the associated definable topological space in N. One can easily show from Definition 2.1 that $X(M)$ is definably compact if and only if $X(N)$ is definably compact. In other words, “definable compactness” is invariant under elementary extensions.

In particular, if $G = G(M)$ is a definable group in M, then $G(M)$ is definably compact in M iff $G(N)$ is definably compact in N.

Consequently, we can move to a monster model without changing whether a definable group G is definably compact.

3 fsg implies definable compactness

Work in a monster model $\mathbb{M} \models p$CF.

Proposition 3.1. Let G be a definable group. If G has fsg, then G is definably compact.

Proof. Take $p \in S_G(\mathbb{M})$ and a small model $M_0 \preceq \mathbb{M}$ witnessing fsg. Take a Γ-exhaustion $\{W_\gamma\}_{\gamma \in \Gamma}$. By definition, $G = \bigcup_{\gamma \in \Gamma} W_\gamma$. The set $G(M_0)$ is small, so by saturation there is $\gamma \in \Gamma = \Gamma(\mathbb{M})$ such that $G(M_0) \subseteq W_\gamma$. Let $D = W_\gamma$ and D' be the complement $G \setminus D$. Then $D' \cap G(M_0) = \emptyset$. By Fact 1.1, the definable set D' is not generic, and therefore D is generic. Then finitely many left translates of D cover G:

$$G = a_1 \cdot D \cup \cdots \cup a_k \cdot D.$$

The maps $x \mapsto a_i \cdot x$ are continuous, so by Fact 2.2, G is definably compact. \qed
4 Definable compactness is definable in families

Work in a monster model $\mathbb{M} \models p\text{CF}$.

Proposition 4.1. Let $\{G_i\}_{i \in I}$ be a definable family of definable groups. Then the set

$$\{i \in I : G_i \text{ is definably compact}\}$$

is definable.

If you stare carefully at Fact 2.4, Fact 2.6, and the equivalence between (1) and (2) in Fact 2.7, you can convince yourself that this is automatically true. But we include the details for completeness.

Proof. Let n be the dimension of G. Take a small model M_0 defining the family $\{G_i\}$. Let $X = \{i \in I : G_i \text{ is definably compact}\}$. It suffices to show that both X and $I \setminus X$ are \lor-definable, i.e., unions of M_0-definable sets. We consider X; the proof for $I \setminus X$ is similar.

Take some $i_0 \in X$, so that G_{i_0} is definably compact. Fix the following data:

1. Finitely many open definable sets U_1, \ldots, U_k covering G_{i_0}.
2. Open definable sets $V_j \subseteq M^n$ for $j \leq k$ and definable homeomorphisms $h_j : U_j \to V_j$.
3. For each j, a Γ-exhaustion $\{W^j_\gamma\}_{\gamma \in \Gamma}$ of U_j.

These exist by Facts 2.3 and 2.6[2]. Take a finite tuple $b_0 \in M^f$ over which the data in (1)–(3) are definable. We can define some U^b_1 for $b \in M^f$ such that U^b_1 depends 0-definably on b, and $U_1 = U^b_1$. Define U^b_j, V^b_j, h^b_j and $\{W^j_\gamma\}_{\gamma \in \Gamma}$ for $1 \leq j \leq k$ in a similar fashion.

There is an L_{M_0} formula $\phi(x, y)$ such that $\phi(i, b)$ holds if and only if the following eight conditions hold:

- $i \in I$. (This can be expressed because I is M_0-definable.)
- Each U^b_j is a subset of G_i, and $G_i = \bigcup_{j=1}^k U^b_j$.
- Each V^b_j is an open subset of M^n.
- Each h^b_j is a bijection from U^b_j to V^b_j.
- The collection of $h^b_j : U^b_j \to V^b_j$ for $j = 1, \ldots, k$ is an atlas making G_i into a Hausdorff definable manifold.
- The group operations on G_i are continuous with respect to the definable manifold structure.
- Each $\{W^j_\gamma\}_{\gamma \in \Gamma}$ is a Γ-exhaustion on U^b_j. (In order to express that W^j_γ is definably compact, use the homeomorphism $h^b_j : U^b_j \to V^b_j$. Fact 2.4 shows how to express definable compactness for definable subsets of V^b_j.)
If we let $\tilde{W}^b_\gamma = \bigcup_{j=1}^k W^j b$, then there is some γ such that $\tilde{W}^b_\gamma = G_i$.

Claim 4.2. $\phi(i_0, b_0)$ holds

Proof. All the bullet points are clear except the last one. Note that $\{\tilde{W}^b_\gamma\}$ is a Γ-exhaustion of G_{i_0} by Fact 2.6(1). Then there is γ such that $G_{i_0} \subseteq \tilde{W}^b_\gamma$, by the equivalence of parts (1) and (2) in Fact 2.7. □

Claim 4.3. If $\phi(i, b)$ holds, then G_i is definably compact.

Proof. The definition of ϕ ensures that $i \in I$ and the sets U^b_1, \ldots, U^b_k are an open cover of G_i. The family $\{\tilde{W}^b_\gamma\}_{\gamma \in \Gamma}$ appearing in the eighth bullet point is a Γ-exhaustion of G_i, by Fact 2.6(2). The eighth bullet point then ensures that G_i is definably compact. □

Combining the two claims, we see that

$$i_0 \in \{i \in I \mid \exists b \in M^\ell : \phi(i, b)\} \subseteq X.$$

So there is an M_0-definable set containing i_0 and contained in X. As i_0 is an arbitrary element of X, it follows that X is a union of M_0-definable sets.

A nearly identical argument shows that $I \setminus X$ is a union of M_0-definable sets. By saturation, X is definable.

Corollary 4.4. Let G be a definably compact definable group. Then there is a 0-definable family $\{G_i\}_{i \in I}$ such that $G = G_i$ for some i, and every G_i is definably compact.

Proof. We can always find some 0-definable family of definable groups $\{G_i\}_{i \in J}$ containing G. Let I be the set of $i \in J$ such that G_i is definably compact. Then I is $\text{Aut}(M/\emptyset)$-invariant, and definable by Proposition 4.1. Consequently, I is 0-definable. Then the family $\{G_i\}_{i \in I}$ is 0-definable and contains G. □

5 Uniform witnesses to fsg

If $\phi(x, y)$ is an L_{rings}-formula, then the VC-dimension of $\phi(x, y)$ will denote the VC-dimension of $\phi(x, y)$ in $p\text{CF}$, i.e., the largest n such that there is $M \models p\text{CF}$ and a set $\{a_1, \ldots, a_n\} \in M^{[x]}$ shattered by ϕ, meaning that for any $S \subseteq \{a_1, \ldots, a_n\}$ there is $b \in M^{[y]}$ such that

$$S = \{a_1, \ldots, a_n\} \cap \phi(M, b).$$

The VC-dimension of ϕ is always finite, because $p\text{CF}$ is NIP.

Work in the standard model $\mathbb{Q}_p \models p\text{CF}$. For definable groups G, compactness is equivalent to definable compactness (Fact 2.8). Any compact definable group G has a Haar measure $\mu = \mu_G$, which we normalize to make $\mu(G) = 1$. Any definable set is Borel, hence measurable.

1For $I \setminus X$, change “some” to “no”.
2For $I \setminus X$, insert “not”.
3For $I \setminus X$, insert “not”.

6
Proposition 5.1. Let G be a compact definable group. Let μ be normalized Haar measure on G. Let $\phi(x, y)$ be a formula. Let $\varepsilon > 0$. There is $\{a_1, \ldots, a_N\} \in G$ such that for any ϕ-set D contained in G,

$$\mu(D) > \varepsilon \implies D \cap \{a_1, \ldots, a_N\} \neq \emptyset.$$

Moreover, N can be chosen to depend only on the VC-dimension of ϕ and on ε, not on G.

This is essentially a direct consequence of the VC-theorem, but we include the details for lack of a reference that proves the exact statement we want. We will closely follow the argument from [9, Proposition 7.26].

Proof. We will need some notation from [9]. If $a_1, \ldots, a_n, b_1, \ldots, b_n \in G$, then

$$f_n(a_1, \ldots, a_n; b_1, \ldots, b_n) = \sup_{c \in \mathbb{Q}_p^{[\phi]}} |\text{Av}(a_1, \ldots, a_n; \phi(Q_p; c)) - \text{Av}(b_1, \ldots, b_n; \phi(Q_p; c))|.$$

The following is trivial:

Claim 5.2. Suppose D is a ϕ-set such that $D \cap \{a_1, \ldots, a_n\} = \emptyset \neq D \cap \{b_1, \ldots, b_n\}$. Then

$$f_n(a_1, \ldots, a_n; b_1, \ldots, b_n) \geq |\text{Av}(a_1, \ldots, a_n; D) - \text{Av}(b_1, \ldots, b_n; D)| = \text{Av}(b_1, \ldots, b_n; D).$$

Let k be the VC-dimension of ϕ. By the Sauer-Shelah Lemma [9, Lemma 6.4], the shatter function $\pi_\phi(n)$ is bounded by $\sum_{i=0}^{k} \binom{n}{i}$. (See [9, Section 6.1] for the definition of the shatter function.) Let $\delta = \varepsilon/2$. Let N be large enough that $1/(N\varepsilon^2) < 1 - \delta$ and

$$4 \left(\sum_{i=0}^{k} \binom{N}{i} \right) \exp \left(- \frac{N\delta^2}{8} \right) < \delta.$$

Note that δ and N can be chosen to depend only on k and ε.

Applying [9, Lemma 7.24] to normalized Haar measure on G^{2N}, we see the following:

Claim 5.3. If $a_1, \ldots, a_N, b_1, \ldots, b_N$ are chosen randomly in G, then

$$\text{Prob}(f_N(\bar{a}, \bar{b}) > \delta) \leq 4\pi_\phi(N) \exp \left(- \frac{N\delta^2}{8} \right) < \delta.$$

By Fubini’s theorem, we can fix some a_1, \ldots, a_N such that the following holds:

Claim 5.4. If b_1, \ldots, b_N are chosen randomly in G, then

$$\text{Prob}(f_N(\bar{a}, \bar{b}) > \delta) < \delta.$$
We claim that a_1, \ldots, a_N have the desired property. Otherwise, there is some ϕ-set D such that $\mu(D) > \varepsilon$ but $D \cap \{a_1, \ldots, a_N\} = 0$. Combining [5.2] and [5.3] we see

Claim 5.5. If b_1, \ldots, b_N are chosen randomly in G, then

$$\text{Prob}(\text{Av}(b_1, \ldots, b_N; D) > \delta) < \delta.$$

Since $\delta = \varepsilon/2$ and $\mu(D) > \varepsilon$, the following implication holds for any b_i:

$$\text{Av}(b_1, \ldots, b_N; D) \leq \delta \implies |\text{Av}(b_1, \ldots, b_N; D) - \mu(D)| \geq \varepsilon/2.$$

The weak law of large numbers [9, Proposition B.4] shows that for random $\bar{b} \in G^N$,

$$\text{Prob}(\text{Av}(\bar{b}; D) \leq \delta) \leq \text{Prob}(|\text{Av}(\bar{b}; D) - \mu(D)| \geq \varepsilon/2) \leq \frac{1}{N \varepsilon^2} < 1 - \delta.$$

The event $\text{Av}(\bar{b}; D) \leq \delta$ has probability less than $1 - \delta$, and the event $\text{Av}(\bar{b}; D) > \delta$ has probability less than δ (by Claim 5.5). This is absurd.

Remark 5.6. We will let $N_{k,\varepsilon}$ denote the N in Proposition 5.1 that works uniformly across all ϕ-sets $D \subseteq G$ with $\mu_G(D) > \varepsilon$ and ϕ of VC-dimension k.

Remark 5.7. Proposition 5.1 can also be seen using facts about generically stable measures. Embed \mathbb{Q}_p into a monster model \mathbb{M}. By [4, Theorem 6.3], the Haar measure μ on $G(\mathbb{Q}_p)$ is smooth, meaning that it has a unique extension to a global Keisler measure $\tilde{\mu}$ on $G(\mathbb{M})$. By [9, Lemma 7.17(i)], $\tilde{\mu}$ is generically stable. By [9, Theorem 7.29(ii)], for any formula ϕ and any $\varepsilon > 0$ there is $\{a_1, \ldots, a_N\} \in G(\mathbb{Q}_p)$ such that for any \mathbb{Q}_p-definable ϕ-set $D \subseteq G$, we have

$$|\tilde{\mu}(D) - \frac{|D \cap \{a_1, \ldots, a_N\}|}{n}| < \varepsilon.$$

This implies the conclusion of Proposition 5.1. Tracing through the proofs, one can see that n depends only on ε and the VC-dimension of ϕ.

6 Definable compactness implies fsg

Let \mathbb{Q}_p^\dagger be the expansion of $(\mathbb{Q}_p, +, \cdot)$ by the following data:

1. A new sort \mathbb{R} with its full field structure.

2. For every 0-definable family $\mathcal{F} = \{G_i\}_{i \in I}$ of compact definable groups and every $\mathcal{L}_{\text{rings}}$-formula $\phi(x, y)$ a function $f_{\mathcal{F}, \phi} : I \times \mathbb{Q}_p^{[\mathbb{R}]} \to \mathbb{R}$ defined by

$$f_{\mathcal{F}, \phi}(i, b) = \mu_{G_i}(\phi(\mathbb{Q}_p; b) \cap G_i),$$

where μ_G denotes normalized Haar measure on G_i.

8
Let $\mathbb{M}^\dagger = (\mathbb{M}, \mathbb{R}^*)$ be a monster model of \mathbb{Q}_p^\dagger, and let \mathbb{M} be the reduct to $\mathcal{L}_{\text{rings}}$ (discarding the new sort \mathbb{R}^*). Then \mathbb{M} is a monster model of ρCF.

Definition 6.2. Suppose that G is a definably compact group in \mathbb{M} and $D \subseteq G$ is a definable subset. Let $\mathcal{F} = \{G_i\}_{i \in I}$ be a 0-definable family containing G. (This exists by Corollary 4.4.) Let $i \in I$ be such that $G = G_i$. Let $D = G \cap \phi(\mathbb{M}; b) = G \cap \psi(\mathbb{M}; c)$. Then

$$f_{\mathcal{F}, \phi}(i, b) = f_{\mathcal{F}, \psi}(j, c).$$ \hfill (1)

Proof. For fixed $\mathcal{F}, \mathcal{F}', \phi, \psi$, the second paragraph of the lemma can be expressed as a single first-order sentence in the language of \mathbb{M}^\dagger and \mathbb{Q}_p^\dagger. The sentence holds in \mathbb{Q}_p^\dagger by construction, so it holds in the elementary extension \mathbb{M}^\dagger. \hfill \Box

Proposition 6.3. Let G be a definably compact group in \mathbb{M}, and let D, D' be definable subsets of G.

1. $\mu_G(\emptyset) = 0$ and $\mu_G(G) = 1$.
2. $0 \leq \mu_G(D) \leq 1$.
3. $\mu_G(D \cup D') = \mu_G(D) + \mu_G(D') - \mu_G(D \cap D')$.
4. If $a \in G$, then $\mu_G(a \cdot D) = \mu_G(D)$.
5. For any $\mathcal{L}_{\text{rings}}$-formula $\phi(x; y)$ of VC-dimension k and any n, if $N = N_{k, 1/n}$ is as in Remark 5.6, then there are $a_1, \ldots, a_N \in G$ such that if $D = \phi(\mathbb{M}; b) \subseteq G$ and $\mu_G(D) > 1/n$, then $D \cap \{a_1, \ldots, a_N\} \neq \emptyset$.

Proof. The proof is similar to Lemma 6.1 transfering things from \mathbb{Q}_p^\dagger to \mathbb{M}^\dagger. Part (5) uses Proposition 5.1. \hfill \Box

Proposition 6.4. Let G be a definably compact group in \mathbb{M}. Then G has fsg.

Proof. For any definable set $D \subseteq G$, let $\mu^*(D)$ be the standard part of $\mu_G(D)$. Parts (1)–(4) of Proposition 6.3 imply that $\mu^*(D)$ is a left-invariant Keisler measure on G. By part (5), we can find a countable set $A \subseteq G$ such that if $\mu^*(D) > 0$, then $D \cap A \neq \emptyset$. Then μ^* and all of its left translates are finitely satisfiable in a small model. By [2, Remark 4.6], G has fsg. \hfill \Box
The M of this section is a monster model of the complete theory pCF, so Proposition 6.4 applies to definable groups in any model of pCF. Combined with Proposition 3.1, Theorem 1.2 follows.

Acknowledgments. The author was supported by the National Natural Science Foundation of China (Grant No. 12101131). This paper grew out of discussions with Ningyuan Yao. Anand Pillay provided some helpful references.

References

[1] Antoni Giuli Fornasiero. Definable compactness for topological structures. Unpublished, 2015.

[2] Ehud Hrushovski, Ya’acov Peterzil, and Anand Pillay. Groups, measures, and the NIP. *J. Amer. Math. Soc.*, 21(2):563–596, April 2008.

[3] Ehud Hrushovski and Anand Pillay. On NIP and invariant measures. *J. Eur. Math. Soc.*, 13(4):1005–1061, 2011.

[4] Ehud Hrushovski, Anand Pillay, and Pierre Simon. Generically stable and smooth measures in NIP theories. *Trans. Am. Math. Soc.*, 365(5):2341–2366, May 2013.

[5] Will Johnson. Interpretable sets in dense o-minimal structures. *J. Symbolic Logic*, 83:1477–1500, 2018.

[6] Will Johnson and Ningyuan Yao. On non-compact p-adic definable groups. arXiv:2103.12427v1 [math.LO], 2021.

[7] A. Onshuus and A. Pillay. Definable groups and compact p-adic Lie groups. *Journal of the London Mathematical Society*, 78(1):233–247, 2008.

[8] A. Pillay. On fields definable in \mathbb{Q}_p. *Arch. Math. Logic*, 29:1–7, 1989.

[9] Pierre Simon. *A guide to NIP theories*. Lecture Notes in Logic. Cambridge University Press, July 2015.