ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by *Pseudomonas aeruginosa*

Christopher J. Jones1,2, David Newsom3, Benjamin Kelly4, Yasuhiro Irie4, Laura K. Jennings5, Binjie Xu6, Dominique H. Limoli2, Joe J. Harrison7, Matthew R. Parsek5, Peter White3, Daniel J. Wozniak1,6*

1Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America, 2Department of Infection and Immunity and Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America, 3Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America, 4Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom, 5Department of Microbiology, University of Washington, Seattle, Washington, United States of America, 6Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America, 7Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

Abstract

The transcription factor AmrZ regulates genes important for *P. aeruginosa* virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (*adcA*). PAO1 overexpressing *adcA* accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating *adcA* is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity.

Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is a major burden on the health care industry. Up to 10% of all nosocomial infections are attributed to *P. aeruginosa*, with mortality rates approaching 40% in patients with bacteremia [1,2]. This bacterium is often a causative agent of sepsis, as well as acute and chronic infections of the airway, burn wounds, skin, and medical devices such as catheters [1,3].

Additionally, *P. aeruginosa* forms biofilms that contribute significantly to disease [4]. The formation of a biofilm by *P. aeruginosa* confers resistance to antibiotic treatment and immune cells [5–7]. The classical definition of a biofilm involves a community of bacteria adhered to a surface encased in a self-produced matrix [3,8–11]. *P. aeruginosa* forms these biofilms in the environment, on implanted devices such as catheters, and in wound infections [12]. In addition, *P. aeruginosa* forms biofilms suspended in the dehydrated pulmonary mucus plugs of cystic fibrosis patients [13,14]. Biofilms are often recalcitrant to antibiotics, have anti-phagocytic properties, and are difficult to treat, commonly accounting for the persistence of chronic infections [7,15–17].

Our laboratory has identified the ribbon-helix-helix transcription factor AmrZ (alginate and motility regulator Z) as a modulator of *P. aeruginosa* biofilm development and virulence [18,19]. Five AmrZ-regulated virulence factors have been identified through targeted molecular approaches; however, the global effect of AmrZ on expression of *P. aeruginosa* genes is unknown. AmrZ directly represses transcription of *fleQ* and thus motility [20,21], and its own transcription in a feedback loop
Author Summary

Pathogenic bacteria such as Pseudomonas aeruginosa utilize a wide variety of systems to sense and respond to the changing conditions during an infection. When a stress is sensed, signals are transmitted to impact expression of many genes that allow the bacterium to adapt to the changing conditions. AmrZ is a protein that regulates production of several virulence-associated gene products, though we predicted that its role in virulence was more expansive than previously described. Transcription factors such as AmrZ often affect the expression of a gene by binding and promoting or inhibiting expression of the target gene. Two global techniques were utilized to determine where AmrZ binds in the genome, and what effect AmrZ has on its location. This approach revealed that AmrZ represses the production of a signaling molecule called cyclic diguanylate, which is known to induce the formation of difficult to treat communities of bacteria called biofilms. This study also identified many novel targets of AmrZ to promote future studies of this regulator. Collectively, these data can be utilized to develop treatments to inhibit biofilm formation during devastating chronic infections.

[22,23]. Additionally, AmrZ inhibits production of the extracellular polysaccharide Psl by repressing transcription of the pol operon [19]. In contrast, AmrZ activates alginate production by binding the adgD promoter [24,25] and is essential for twitching motility and formation of a type IV pilus [26]. Each of these AmrZ-regulated genes have been linked to biofilms and P. aeruginosa pathogenicity. The major limitation of the previous approaches is that they are biased towards genes that produce an easily observable phenotype, potentially overlooking many AmrZ-regulated genes that are important in infection. Here, we present a systems-level analysis of the AmrZ regulon utilizing ChIP-Seq and RNA-Seq [27,28]. By combining these two high-throughput techniques, the genome can be scanned for functional AmrZ binding sites. Additionally, these data allow classification of members of the AmrZ regulon into activated or repressed promoters, as well as direct vs. indirect regulation. Herein, we identified 398 regions of the genome bound by AmrZ (≥3-fold enrichment). The RNA-Seq identified 333 genes that were differentially expressed when comparing a ΔamrZ mutant to a complemented strain (≥2-fold difference). Comparison of AmrZ-bound and AmrZ-regulated genes identified 9 genes directly activated by AmrZ and 49 genes that were directly repressed. Many of these genes have been implicated in pathogenesis, highlighting the importance of AmrZ in P. aeruginosa virulence. Finally, these data allow comparisons of the sequence specificity of AmrZ bound promoters, further defining the consensus AmrZ binding site and lending insight into the mechanism of regulation by AmrZ.

One AmrZ-dependent pathway was investigated in detail since it provided important insights into earlier findings that ΔamrZ mutants form hyper biofilms compared with the parental strain, PAO1 [19]. The present study provides a molecular basis for this finding since we discovered that AmrZ directly represses a predicted diguanylate cyclase-encoding gene (PA4843), which we named adca (AmrZ dependent cyclase Δc). Repression of adca led to reduced amounts of the second messenger c-di-GMP. This regulation event explains the hyper-aggregative and -biofilm phenotype of a ΔamrZ strain, as elevated c-di-GMP is often associated with the rugose small colony variant phenotype that shares these characteristics [29–31]. Recent reports indicate that reducing c-di-GMP in P. aeruginosa biofilm infections leads to biofilm dissolution [32,33]. Regulation of c-di-GMP by AmrZ could lend insights into the establishment and persistence of chronic P. aeruginosa infections and open novel avenues of treatment.

Results

amrZ mutants have an RSCV phenotype

Upon observation of overnight growth on VBMM, the wild-type strain PAO1 formed a smooth colony, while the ΔamrZ mutant formed an aggregated rugose small colony variant (RSCV) morphology. (Figure 1A). Prevention of rugosity was dependent on AmrZ, binding DNA, as the DNA binding deficient R22A AmrZ mutant is also an RSCV (Figure 1A). Chromosomal complementation of the ΔamrZ mutant relieves the rugose phenotype and returns the colony morphology to that of the smooth parental strain (Figure 1A). We have included the well-defined RSCV ΔwspF for comparison [29,34,35]. The RSCV phenotype of the ΔwspF mutant has been attributed to the loss of repression of the diguanylate cyclase WspR, leading to elevated intracellular c-di-GMP [32,36]. Cyclic-di-GMP modulates the activity of the transcriptional regulator FleQ at the pel locus, switching FleQ from a repressor to an activator [37,38]. Psl and Pel polysaccharide overproduction in these strains is responsible for the hyper aggregative phenotype and rugose colony morphology observed [35]. We therefore hypothesized that the ΔamrZ mutant displayed a RSCV phenotype due to elevated intracellular c-di-GMP. To test this, we purified nucleotide pools from plate-grown cells and measured the c-di-GMP via LC-MS/MS (Figure 1B) [39]. We observed that the ΔamrZ mutant accumulated nearly double the intracellular c-di-GMP compared to parental wild type PAO1 (p≤0.01). A two-fold change in c-di-GMP levels can have drastic effects on cell physiology and biofilm formation [39–42]. These data are consistent with our classification of ΔamrZ mutants as RSCV. Additionally, we observed that the DNA binding deficient R22A amrZ mutant had similar intracellular levels of c-di-GMP as the ΔamrZ strain (data not shown), indicating that the AmrZ contribution to low c-di-GMP is DNA binding dependent. This observation, in combination with elevated c-di-GMP in the ΔamrZ mutants suggests that AmrZ-mediated modulation of c-di-GMP is either through transcriptional repression of a diguanylate cyclase or activation of a phosphodiesterase. Since AmrZ is a bifunctional transcriptional regulator [22,24,25], either of these mechanisms is possible. Therefore, to provide a comprehensive analysis of the AmrZ regulon and to define the mechanistic basis for c-di-GMP accumulation in the ΔamrZ mutant, RNA-Seq and ChIP-Seq strategies were undertaken.

ChIP-Seq provides an unbiased analysis of AmrZ binding to genomic DNA

Previous studies identified four AmrZ-bound promoters utilizing standard molecular methods such as DNA footprinting and Electrophoretic Mobility Shift Assays (EMSA) [18,19,22,26,43]. Though these methods are recognized as the standard for DNA binding analysis, we wished to perform a genome-wide screen for AmrZ binding sites. Chromatin immunoprecipitation (ChIP) allows us to purify DNA bound AmrZ directly from cells [27,28,44,45]. In this assay, chromatin bound AmrZ was cross-linked, the DNA sheared, non-specific proteins and nucleic acids removed, and the DNA was purified and quantified using high-throughput parallel DNA sequencing. The resulting ChIP-Seq tags were analyzed using HOMER (Hypergeometric Optimization of Motif EnRichment) a suite of tools for ChIP-Seq analysis and...
Transcriptional profiling via RNA-Seq defines the AmrZ regulon

Previous work demonstrated that AmrZ regulates genes in a variety of pathways, many of which are implicated in virulence [19,21,25,26]. However, the extent of the AmrZ regulon is unknown. RNA-Seq allows comparison of sequences of the total mRNA from a ΔamrZ mutant to a complemented strain, elucidating the effect of AmrZ on all genes in the cell, both positive and negative. Total RNA was isolated from a mid-exponential culture (OD600 0.5 ± 0.1) of a ΔamrZ mutant containing the empty pHERD20T vector and a complemented strain containing the arabinose inducible AmrZ expression vector pCJ3. These growth conditions were chosen to match those utilized in the ChiP-Seq experiment. cDNA was synthesized and the resulting product was tagged and quantified using high-throughput parallel DNA sequencing. mRNA expression levels and differential expression analysis was performed using the Bioconductor package DESeq [47]. Three hundred and thirty eight genes were significantly regulated at least 2-fold (Benjamini-Hochberg adjusted p value < 0.05), with 89 genes activated and 249 genes repressed by AmrZ (Table S2). Several of the AmrZ-regulated genes described in the literature were identified in this analysis, including algD (activated by AmrZ 19.74 fold) and fleQ (repressed by AmrZ 8.05 fold).

The RNA-Seq data indicate that AmrZ strongly, though indirectly, represses many genes involved in iron acquisition, suggesting a novel mechanism for AmrZ mediated control of virulence (Table 1). AmrZ significantly repressed many genes in the pyochelin and pyoverdine synthesis operons, including pppR. In addition, the Fe(III)-pyochelin receptor fpvA and ferripyoverdine receptors fpvA and fpvB were all significantly repressed by AmrZ, (5.44, 2.01, and 1.45 fold, respectively), suggesting that reliance on the iron acquisition systems is reduced in strains where AmrZ is highly expressed, such as in mucoid isolates from the CF lung. Previous reports indicate that the iron concentration in the CF sputum and lung is elevated [48-50], supporting the hypothesis that there is sufficient iron in the CF lung for bacterial growth with reduced dependence on the high-affinity iron acquisition systems. Many virulence factors are iron-regulated, so the impact of AmrZ-mediated siderophore repression may contribute significantly to the establishment of chronic infections [51,52].
was no alteration of the transcription of the iron-dependent master regulator Fur in the ΔamrZ mutant, implying that AmrZ regulates these iron acquisition genes independent of Fur, perhaps through small RNAs or downstream members of the Fur regulon that have yet to be identified. Future studies will explore the relationship of small RNAs or downstream members of the Fur regulon that have these iron acquisition genes independent of Fur, perhaps through virulence AmrZ directly regulates many genes associated with virulence The results from the RNA-Seq and ChIP-Seq were further evaluated to determine genes potentially directly regulated by AmrZ. To accomplish this, the list of AmrZ-bound genomic regions (at least 3-fold enrichment) was filtered using the list of target genes regulated by AmrZ as determined by the RNA-Seq (at least 2-fold regulation). This approach allows classification of genes based on AmrZ binding status and AmrZ-mediated regulation. Interestingly, only 9 of the AmrZ-activated and 20 of the AmrZ-repressed genes were identified in the ChIP-Seq as also containing an AmrZ binding site within 500 base pairs of the start of the coding region of the gene (Table 2), suggesting that there are 80 activated and 200 repressed genes with promoters that were not directly bound by AmrZ, suggesting indirect regulation. One AmrZ directly activated gene is algD, a known AmrZ-dependent gene [24]. Other AmrZ-activated genes in Table 2A include a putative alginate lyase and members of the pel operon. These two genes, in combination with activation of the algD operon, suggest that when expressed, AmrZ affects the P. aeruginosa polysaccharide profile. Additionally, AmrZ directly activates the cyclic di-GMP response gene cdiA, which is correlated with polysaccharide overexpression [30]. Table 2B depicts genes directly repressed by AmrZ. In addition to the previously described fleQ, this list includes many genes that are known or predicted to be involved in virulence including: pyochelin synthesis (pchG), aggregation (siaA), flagellum synthesis [fleQ, fleG, fleE, fleF], alternative type IV pili production (fleD), chemotaxis [PA2867, pceG, PA4844], multidrug transport (PA13401), and rhamnolipid production and quorum sensing (rhlR). Several of the directly AmrZ-repressed genes are predicted to be involved in Type VI secretion: PA1657, PA1664, PA1668. Type VI secretion is a recently-described system that is involved in P. aeruginosa pathogenesis and fratricide [53–56]. Specifically, the Type VI genes repressed by AmrZ belong to the HSI-II locus, which is involved in P. aeruginosa pathogenicity. HSI-II mutant strains exhibit a delay in

| Table 1. RNA-Seq indicates AmrZ represses pyochelin and pyoverdine siderophore systems. |
|-------------------------------|-------------------|----------------|-----------------|-----------------|
| **Gene Name** | **Gene ID** | **Gene Product** | **RNA-Seq fold Change** | **p-value** |
| Pyochelin synthesis genes | | | | |
| pchC | PA4229 | pyochelin biosynthetic protein PchC | -8.91 | 0.00000 |
| pchG | PA4224 | pyochelin biosynthetic protein PchG | -7.13 | 0.00000 |
| pchB | PA4230 | isochorismate-pyruvate lyase | -5.90 | 0.00000 |
| pchF | PA4225 | pyochelin synthetase | -5.09 | 0.00000 |
| pchD | PA4228 | pyochelin biosynthesis protein PchD | -4.25 | 0.00000 |
| pchA | PA4231 | salicylate biosynthesis isochorismate synthase | -4.17 | 0.00000 |
| pchE | PA4226 | dihydroaeruginic acid synthetase | -4.02 | 0.00000 |
| pchR | PA4227 | transcriptional regulator PchR | -2.54 | 0.00000 |
| Pyochelin receptor gene | | | | |
| fptA | PA4221 | FeIII-pyochelin outer membrane receptor | -5.44 | 0.00000 |
| Pyoverdine synthesis genes | | | | |
| pvdA | PA2386 | L-ornithine N5-oxygenase | -2.94 | 0.00000 |
| pvdQ | PA2385 | 3-oxo-C12-homoserine lactone acylase PvdQ | -1.99 | 0.00000 |
| pvdP | PA2392 | protein PvdP | -1.91 | 0.00000 |
| pvdH | PA2413 | diaminobutyrate-2-oxoglutarate aminotransferase | -1.76 | 0.00038 |
| pvdS | PA2426 | extracytoplasmic-function sigma-70 factor | -1.65 | 0.00116 |
| pvdL | PA2424 | peptide synthase | -1.57 | 0.00000 |
| pvdR | PA2389 | protein PvdR | -1.53 | 0.00095 |
| pvdN | PA2394 | protein PvdN | -1.50 | 0.00244 |
| pvdI | PA2400 | protein PvdI | -1.40 | 0.00014 |
| pvdD | PA2399 | pyoverdine synthetase D | -1.39 | 0.00014 |
| pvdF | PA2396 | pyoverdine synthetase F | -1.37 | 0.00347 |
| pvdT | PA2390 | protein PvdT | -1.35 | 0.01248 |
| pvdE | PA2397 | pyoverdine biosynthesis protein PvdE | -1.33 | 0.00364 |
| Pyoverdine receptor genes | | | | |
| fpvA | PA2398 | ferripyoverdine receptor | -2.01 | 0.00000 |
| fpvB | PA4168 | second ferric pyoverdine receptor FpvB | -1.45 | 0.00038 |
| Pyoverdine regulator gene | | | | |
| ppyR | PA2663 | psl and pyoverdine operon regulator, PpyR | -1.97 | 0.00000 |
mortality in both murine lung and burn wound infections [54]. This regulation may contribute to the role of AmrZ during infection.

Another group of AmrZ directly repressed genes are those predicted to be involved in cyclic diguanylate signaling. These include a predicted diguanylate cyclase (PA4843), a predicted phosphodiesterase (PA4256), and hypothetical proteins that are proposed c-di-GMP effector proteins containing PilZ domains (PA4324, PA3353). PA4324 does not appear to be part of an operon, while PA3353 is in the flgM operon and may have a function in flagella motility [57]. Dysregulation of c-di-GMP signaling could account for the hyper-aggregative phenotype of a ΔamrZ mutant. We explore this system further in this study.

A common mechanism of AmrZ-mediated repression

Transcriptional start sites were obtained from RNA-Seq data by observing where the sequence reads begin upstream of a coding region [58]. By performing this analysis to a selection of directly AmrZ-regulated promoters, the proximity of the AmrZ binding site was observed relative to the transcription start site. Promoters with strong AmrZ binding (≥4-fold enrichment) and regulation (≥4-fold regulation) were chosen for an alignment of the AmrZ binding site to the start of transcription. The two strongly activated promoters did not suggest a common mechanism (Figure 4A).
Table 2. Systems-level analysis of the AmrZ regulon.

A

Nearest Gene ID	RNA-Seq Fold Change	ChIP-Seq Fold Enrichment	Gene Product
amrZ	483.31	4.80	alginate and motility regulator Z
PA1784	19.74	5.59	hypothetical protein (homologous to Klebsiella alginate lyase)
pelB	6.64	5.76	PelB
PA0102	4.57	3.05	carbonic anhydrase
algD	3.79	6.68	GDP-mannose 6-dehydrogenase AlgD
PA1069	3.22	3.58	hypothetical protein
PA0082	2.84	7.94	TssA1 Type VI secretion
PA4625	2.84	4.24	CdrA
vreA	2.67	6.39	VreA

B

Nearest Gene ID	RNA-Seq Fold Change	ChIP-Seq Fold Enrichment	Gene Product
PA4843	-40.27	4.48	two-component response regulator
PA2867	-14.89	9.60	chemotaxis transducer
PA1913	-13.51	5.01	hypothetical protein (no prediction)
PA3691	-11.66	3.31	hypothetical protein (no prediction)
PA5138	-10.23	4.20	predicted ABC-type amino acid transport/signal transduction
PA3235	-9.18	6.49	predicted membrane protein
PA4222	-9.09	7.13	ABC transporter ATP-binding protein
PA4677	-8.96	5.99	predicted dipeptidase
fleQ	-8.05	3.00	transcriptional regulator FleQ
PA3234	-7.63	3.88	acetate permease
pchG	-7.13	13.60	pyochelin biosynthetic protein PchG
PA0172	-6.59	11.93	SiaA SDS induced aggregation
PA5167	-5.93	4.56	c4-dicarboxylate-binding protein
PA1657	-5.31	3.72	HsiB2 (predicted Type VI secretion)
PA0038	-5.12	7.13	hypothetical protein (no prediction)
PA3722	-5.11	3.30	hypothetical protein (no prediction)
PA1941	-4.87	3.28	hypothetical protein (no prediction)
PA4324	-4.75	4.77	predicted PilZ domain
PA1680	-4.56	6.48	predicted 3-oxoadipate enol-lactonase activity
PA0938	-4.43	3.53	hypothetical protein (predicted exopolysaccharide chain length determinant protein)
fliG	-4.25	3.47	flagellar basal body rod protein FliG
PA1199	-4.04	4.33	lipoprotein
PA2462	-3.75	4.89	hypothetical protein (contains type 1 export signal)
pctC	-3.47	10.67	chemotactic transducer PctC
PA4683	-3.32	4.87	hypothetical protein (no prediction)
flp	-3.17	7.12	type IVb pilin, Flp
flgE	-3.12	4.89	flagellar hook protein FlgE
PA4844	-3.1	4.69	chemotaxis transducer
PA3367	-3.02	3.17	hypothetical protein (contains type 1 export signal)
PA1340	-3.01	5.87	amino acid ABC transporter membrane protein
PA3951	-2.91	3.72	hypothetical protein (no prediction)
PA3413	-2.90	3.30	predicted SOS response gene
rhlR	-2.88	5.57	transcriptional regulator RhlR
PA1664	-2.86	5.77	OrfX (secreted by Type VI)
However, with the exception of PA3235, each of the directly AmrZ-repressed promoters observed contained an AmrZ binding site from −100 to +15 relative to the transcription start site (Figure 4B). This implies that during repression, AmrZ interferes with the binding of RNA polymerase to the promoter, a common mechanism of bacterial transcriptional repression.

Previous publications have identified two AmrZ binding sites in the amrZ promoter, amrZ1 and amrZ2 [22,23]. The amrZ1 binding site was identified by the ChIP-Seq (Figure 4B, red binding site). The previously identified amrZ2-binding site was not specifically identified by ChIP-Seq, however, this is likely due to the reduced AmrZ affinity for the amrZ2 binding site [18,22]. Analysis of the read alignment of the immunoprecipitated sample reveals a biphasic peak including both the amrZ1 and amrZ2 binding sites. One gene (PA3235) that was repressed by AmrZ lacked a binding site in the promoter. However, AmrZ did bind 70 bp downstream of the observed PA3235 start of transcription. This may indicate a second mechanism of AmrZ repression, where bound AmrZ interferes with the elongation of the transcript.

Analysis of the proximal promoter regions of AmrZ-regulated genes indicates that AmrZ may affect RNA polymerase assembly directed by several sigma factors. For example, the −10 and −35 boxes of siiA appear to indicate that this promoter is RpoD-dependent (−35TTGAC/−10TATAAT), while the promoter of PA4843 appears to match the consensus sequence for a σ2-dependent promoter (−24GG/−12GC) [59]. There was no discernable pattern in the relation of the AmrZ binding site to the start of transcription in the AmrZ-activated genes, indicating that there may be several mechanisms of AmrZ-mediated direct activation.

adCA (PA4843) encodes a diguanylate cyclase

The gene most highly repressed by AmrZ was PA4843 (40-fold) (Table 2B). Predictions based on the structure and function of PleD from Caulobacter crescentus indicates that PA4843 contains two component receiver domains (Rec), an I-site, and a GGGEF cyclase domain (Figure S1). Previously, PA4843 was described as a putative diguanylate cyclase [60] since it contains a conserved cyclase domain; however, no reports demonstrate functional cyclase activity for the PA4843-encoding gene. Additionally, deletion of this gene in strain PA14 did not impact attachment or host cell cytotoxicity [60]. Because PA4843 was the most highly repressed AmrZ target gene and ΔamrZ mutants have an RSCV phenotype and elevated levels of c-di-GMP (Figure 1B), we hypothesized that PA4843 encoded a diguanylate cyclase that is de-repressed in ΔamrZ mutants. To address this, PA4843 was cloned into the arabinose inducible vector pHERD20T [61] and the plasmids transferred to wild type PAO1 or a strain lacking adCA. The ΔamrZ-dependent phenotype of the ΔamrZ mutant hyper biofilm phenotype is adCA-and c-di-GMP-dependent.

As previously reported, a ΔamrZ mutant forms robust biofilms with more biomass and taller microcolonies than the parental strain, PAO1 [19]. This report demonstrated that direct repression of the psl operon by AmrZ could abrogate the hyper biofilm phenotype of the ΔamrZ mutant [19]. Here, we present data that AmrZ also regulates c-di-GMP concentrations in the cell, thus providing an additional level of control. We hypothesized that the

Nearest Gene ID	RNA-Seq Fold Change	ChIP-Seq Fold Enrichment	Gene Product
PA4033	−2.75	5.32	MucE
PA0494	−2.73	8.98	acetyl-CoA carboxylase biotin carboxylase subunit
PA3333	−2.73	4.04	predicted c-di-GMP binding protein
PA0472	−2.61	3.51	RNA polymerase sigma factor Fiu, sigma 24 homolog
PA1088	−2.56	4.94	Predicted magnesium protoporphyrin IX methyltransferase activity
PA2567	−2.50	3.63	predicted phosphodiesterase
PA3401	−2.41	8.88	predicted ABC-type multidrug transport system, permease component
flif	−2.38	5.49	flagellar MS-ring protein
phzA1	−2.29	5.24	phenazine biosynthesis protein
phzB	−2.15	3.65	2-C-methyl-D-erythritol 2,4-cyclophosphate synthase
PA3019	−2.09	17.74	ABC transporter ATP-binding protein
PA4980	−2.09	7.55	enoyl-CoA hydratase
PA1939	−2.07	3.96	predicted OLD family endonuclease
PA1668	−2.04	6.17	DotU2 Type VI
PA1738	−2.00	3.56	transcriptional regulator

ChIP-Seq identifies regions of the genome bound by AmrZ (≥3-fold enrichment), while transcriptional profiling via RNA-Seq identifies differential regulation at these genes (≥2-fold regulation). A Table indicates genes directly activated by AmrZ. B Table indicates genes directly repressed by AmrZ.

doi:10.1371/journal.ppat.1003984.t002

\[\Delta amrZ \] mutant hyper biofilm phenotype is due to adeC deerepression and c-di-GMP accumulation in this strain. To test this hypothesis, we grew 24-hour flow cell biofilms in a PA01 and \(\Delta amrZ \) mutant background while modulating the amount of adeC expression in the cells (Figure 6A). We reasoned if the hyper biofilm phenotype is dependent on derepression of \(\Delta adeC \) and accumulation of c-di-GMP in the \(\Delta amrZ \) mutant, biofilm cells formed by a \(\Delta amrZ \Delta adeC \) double mutant should have less intracellular c-di-GMP and biofilms with less biomass and microcolony height. Consistent with this hypothesis, the \(\Delta amrZ \Delta adeC \) double mutant produces biofilms with significantly less biomass than the \(\Delta amrZ \) mutant (Figure 6A, Figure S3). Additionally, we observed that the \(\Delta amrZ \Delta adeC \) double mutant produced significantly lower c-di-GMP compared to the \(\Delta amrZ \) mutant (2.33 vs 3.98 fmol/µg total protein, respectively) while the \(\Delta adeC \) overexpressing \(\Delta amrZ \) mutant had significantly higher c-di-GMP (67.00 fmol/µg total protein). These data indicate that the hyper biofilm phenotype of the \(\Delta amrZ \) mutant is due to loss of repression of \(\Delta adeC \) and elevated intracellular c-di-GMP. This mechanism, in addition to the previously reported direct repression of the \(psL \)-encoded biofilm polysaccharide [19], indicates that AmrZ-dependent regulation of c-di-GMP has diverse functions in P. aeruginosa, regulating polysaccharide production, motility, virulence factor production, and biofilm formation [60,68]. When competed against the wild type PA01 in an acute pulmonary infection model, both a \(\Delta adeC \) mutant and a \(\Delta amrZ \Delta adeC \) double mutant retained the virulence defect observed for the \(\Delta amrZ \) mutant (Figure S2). We propose that AmrZ-dependent gene regulation is most important in the establishment of chronic infections, as in the cystic fibrosis lung. Therefore, lack of a phenotype in an acute model of infection does not negate a role for AmrZ in chronic infections and future studies are geared towards this line of investigation. It should be noted that suitable chronic lung infection models that faithfully reproduce CF pathology are limited, though there are several very promising developments in this area [69].

Regulation of the numerous DGC and PDE enzymes in P. aeruginosa presents a complex network of integrated stimuli sensation and physiological response. Work in other systems has

Discussion

Understanding how bacteria respond to varying conditions in the environment and during infection is clearly of importance. Here, we present a comprehensive analysis of a bacterial transcription factor regulon obtained by combining ChIP-Seq and RNA-Seq. The power of these techniques stems from the ability to investigate the activity of bacterial transcription factors [27,28,58,64–67]. We were able to identify 398 regions bound by AmrZ in the P. aeruginosa genome. Additionally, we developed a transcriptional profile of both the \(\Delta amrZ \) mutant and its complemented strain. This allowed us to combine the results of ChIP-Seq and RNA-Seq and divide loci into several categories, either activated, repressed, or unaffected by AmrZ. Each of these groups were then further categorized into directly or indirectly regulated.

Our prior studies revealed that wild type bacteria have a competitive advantage over \(\Delta amrZ \) mutant bacteria in a mixed acute pulmonary model of infection [18]. By combining ChIP-Seq and RNA-Seq analysis, we identified many genes that are AmrZ-regulated and may be important for colonization and disease progression. One of the directly AmrZ-repressed genes, a diguanylate cyclase we named \(\text{adcA} \) (PA4843), emerged as the most highly regulated AmrZ target. Deletion of \(\text{adcA} \) in a \(\Delta amrZ \) mutant eliminated the accumulation of c-di-GMP and the hyper biofilm phenotype. The modulation of c-di-GMP by AmrZ is a novel observation and enhances the molecular explanation for the earlier studies regarding the role of AmrZ in biofilm phenotypes [19]. c-di-GMP has diverse functions in P. aeruginosa, regulating polysaccharide production, motility, virulence factor production, and biofilm formation [60,68]. When competed against the wild type PA01 in an acute pulmonary infection model, both a \(\Delta adeC \) mutant and a \(\Delta amrZ \Delta adeC \) double mutant retained the virulence defect observed for the \(\Delta amrZ \) mutant (Figure S2). We propose that AmrZ-dependent gene regulation is most important in the establishment of chronic infections, as in the cystic fibrosis lung. Therefore, lack of a phenotype in an acute model of infection does not negate a role for AmrZ in chronic infections and future studies are geared towards this line of investigation. It should be noted that suitable chronic lung infection models that faithfully reproduce CF pathology are limited, though there are several very promising developments in this area [69].

Regulation of the numerous DGC and PDE enzymes in P. aeruginosa presents a complex network of integrated stimuli sensation and physiological response. Work in other systems has

Figure 5. PA4843 \((\text{adcA})\) encodes diguanylate cyclase. Expression of \(\text{adcA}\) increases intracellular c-di-GMP. \(\text{adcA}\) was cloned into an arabinose-inducible vector and strains were grown on LANS plates with 0.5% arabinose overnight. Direct LC-MS/MS measurement of c-di-GMP revealed that both PAO1 and \(\Delta\text{adcA}\) containing the empty vector (EV) accumulated minimal amounts of c-di-GMP, while induction of \(\text{adcA}\) (\(\text{adcA}^+\)) was correlated with high accumulation of intracellular c-di-GMP. Each graph point represents the average of three biological replicates performed in triplicates. Significance determined using Student’s t-test (\(* * * \ p \leq 0.001\).

doi:10.1371/journal.ppat.1003984.g005

Figure 4. AmrZ binds near the start of transcription of repressed genes, but not activated genes. Promoter alignment of genes bound by AmrZ (\(\geq 4\) fold enrichment) and A activated or B repressed (\(\geq 4\) fold regulation). Alignment of repressed genes implies a common mechanism for AmrZ-mediated repression. Transcriptional start sites were called from RNA-Seq analysis. Sequences of AmrZ-repressed promoters are aligned at their transcriptional start site (+1). The putative AmrZ binding site is indicated by red text. Blue text in the amrZ promoter indicates a second AmrZ binding site, previously annotated AmrZ2. The promoter regions are indicated by grey shading.
Figure 6. The ΔamrZ mutant strain hyper biofilm phenotype is adcA dependent. A. Biofilm biomass and microcolony height correlate with adcA expression. Orthogonal confocal laser scanning microscopy images of 24-hour flow cell biofilms are shown with Syto-9 stained biomass depicted as green. Scale bars are in the upper right corner of each image and percent biomass (determined via COMSTAT analysis) relative to the
demonstrated that c-di-GMP is freely diffusible in the cytoplasm and is detected by many sensors [31,70,71]. This work highlights the regulation of one DGC, however, deciphering the regulation of c-di-GMP production and cellular response to diverse signals is currently an area of great interest.

In addition to the DGC activity described here, AdcA contains a predicted N-terminal two-component receiver domain. This combination of receiver domain and DGC is also observed in the well-characterized PleD of *C. crescentus* [72,73]. Previous studies have revealed PleC-dependent activation of the PleD receiver domain by phosphorylation, leading to dimerization and c-di-GMP production [72]. The end result of this signaling cascade is the loss of flagellum and development of the stalk leading to a sessile lifestyle. Another example of a hybrid response regulator/diguanylate cyclase is WspR of *P. aeruginosa* [32]. Surface growth leads to phosphorylation of WspR, inducing clustering of the protein and activation of cyclase activity [74,75]. This model of clustered cyclases suggests that such subcellular foci can lead to regional increases of c-di-GMP, which may be an explanation for why subtle changes in whole-cell c-di-GMP pools can have drastic and varied effects on biofilm and motility phenotypes [73–76]. Analysis of AdcA for conserved domains indicates that the aspartate at residue 300 is a probable phosphorylation site. Activation of AdcA in *P. aeruginosa* leads to a hyper biofilm phenotype, suggesting that AdcA, PleD, and WspR have similar cellular effects. Based on the homology between these proteins, future studies will identify the partner sensor kinase and evaluate the effects of AdcA phosphorylation.

AmrZ activates alginate transcription and twitching motility, but represses Psl, flagella, and c-di-GMP production (Figure 7). Each of these pathways have been implicated in biofilm formation and disease chronicity [77–85]. The complete analysis of the AmrZ regulon indicates that AmrZ may serve as a molecular switch that triggers biofilm maturation in *P. aeruginosa*. We have observed that nonmucoid, environmental strains produce a low amount of AmrZ, allowing for high production of the adherent and aggregative polysaccharide Psl [19]. Additionally, low AmrZ in these strains allows expression of *fleQ* and flagellum production, further enhancing the attachment phenotypes [21,80]. We present here that low AmrZ also permits expression of the diguanylate cyclase *adcA*, producing elevated c-di-GMP in the cell. This signaling molecule can affect the production of all of the above pathways in addition to the direct regulation by AmrZ [29,32,37,38]. Cumulatively, the result of derepression of these genes results in a motile strain that is primed to colonize and form biofilms by expressing the adhesive polysaccharide Psl. We observe a hyper aggregative and hyper biofilm phenotype in the *ΔamrZ* mutant, supporting this hypothesis. A similar phenomenon is observed in a *ΔretS* mutant, where elevated c-di-GMP leads to hyper biofilm formation [40,86]. The GacS/RetS sensor systems are involved in the transition from acute to chronic infections by regulating polysaccharide production, motility, and secretion systems [40,86,87]. These systems regulate virulence genes through RsmA, which has a vast regulon [41,88]. Though AmrZ was not identified as regulating any of the members of the Gac/Rsm signaling cascade, the ultimate effects of the two pathways are
AmrZ Regulon Defined in Pseudomonas aeruginosa

Materials and Methods

Ethics statement

All animals were maintained in the OSU College of Medicine IACUC-approved vivarium located in the Biomedical Research Tower. The University has many veterinarians and trained animal caretakers available for consultation on the studies. The protocol for these studies has been approved by the OSU IACUC committee (Protocol # 2009A0177). There is adequate space for the animals to be housed in the vivarium. Animals are monitored frequently during the infection. Animals that meet the criteria for removal from study will be euthanized via CO₂ inhalation. Each room contains sentinel mice that are sacrificed at regular time points for examination for infectious agents by vivarium staff. During infection, mice were lightly sedated with isoflurane and inoculated intranasally with bacteria suspended in sterile PBS. Thirty μL of the PBS solution is pipetted onto the nares of the mouse as soon as the anesthetic administration is discontinued. The animal rapidly recovers under supervision from the researcher. The mice are not in discomfort or distress during this procedure. There are no restraining devices utilized during this study. Mice were sacrificed via CO₂ inhalation. This method of euthanasia causes minimal discomfort to the animals. Cardiac puncture was used as a second method of euthanasia. These methods are consistent with the recommendations of the American Veterinary Medical Association Guidelines on Euthanasia.

Bacterial strains and growth conditions

The bacterial strains used along with genotypes are provided in Table S3. P. aeruginosa strains were inoculated in LBNS (10 g L⁻¹ tryptone, 5 g L⁻¹ yeast extract, pH 7.5) at 37°C for overnight cultures under shaking conditions unless otherwise noted. Strains were grown at 37°C on LANS (LBNS with 1.5% agar) or Pseudomonas Isolation Agar (Difco, Detroit, MI) agar plates. E. coli was routinely cultured at 37°C in lysogeny broth (LB, 10 g L⁻¹ tryptone, 5 g L⁻¹ yeast extract, 5 g L⁻¹ NaCl). Semi-solid media was prepared by adding 1.5% Bacto agar to LB. Colony morphology was imaged on modified Vogel-Bonner minimal medium (VBMM) plates (0.2 g L⁻¹ MgSO₄ 7H₂O, 7H₂O, 2.0 g L⁻¹ citric acid, 3.5 g L⁻¹ NaNH₄HPO₄, 4H₂O, and 10 g L⁻¹ K₂HPO₄), 1 g L⁻¹ casamino acids, and 5 mM CaCl₂, Congo Red (40 μg/mL) and Brilliant Blue R (15 μg/mL) were added to VBMM to aid in visualization of morphology. Antibiotics were added to maintain or select for plasmids in P. aeruginosa as follows: gentamicin (Gm) at 100 μg/mL, Rifampicin (Rif) at 100 μg/mL and carbenicillin (Cb) at 300 μg/mL. Antibiotics were added to maintain or select for plasmids in E. coli as follows: gentamicin (Gm) at 10 μg/mL and spectinomycin (Sp) at 50 μg/mL.

Plasmid construction

Plasmids and primers used in genetic manipulations are listed in Tables S4 and S5, respectively.

Primers AmrZF2 and AmrZR2 amplified the 324 bp DNA sequence of amrZ. High Fidelity DNA Polymerase was used in PCR following manufacturer’s instructions. The PCR product of amrZ was inserted into pET29a (Novogen) through NotI and NdeI restriction sites. The 432 bp DNA sequence of the amrZ gene, ribosome binding site, and C-terminal 6x His tag were amplified from the resulting plasmid using primers AmrZF3 and AmrZR3. The PCR product was inserted into pHERD20T [61] through XbaI and HindIII restriction sites. The resulting construct (pCJ3) was verified by DNA sequencing.

A deletion allele for PA4843 was assembled by removing an in-frame, 1593 bp fragment of coding sequence from the PA4843 open reading frame (ORF), leaving a scar ORF encoding a 10-amino acid peptide. In a first step, two PCR products were amplified using primers that targeted the adjacent upstream and downstream regions of the chromosome flanking PA4843. Subsequently, these PCR products were joined by splicing by overlapping extension (SOE) PCR [97] to create the ΔPA4843 allele. The upstream forward and downstream reverse primers used to generate this deletion allele were tailed with attB1 or attB2

strikingly similar. Further work will investigate how AmrZ is interacting or overlapping with these well-established regulators of acute to chronic transition. Identification of the signal activating AdeA will enhance the understanding of the interactions of these two functionally similar pathways.

Strains of P. aeruginosa that infect patients are Psl-producing, nonmucoid, and form biofilms more readily than mucoid strains [79,89]. Once a cystic fibrosis patient is infected with a nonmucoid strain, there is an aggressive neutrophil influx into the lungs [90]. These neutrophils produce many antimicrobial products, including reactive oxygen species, antimicrobial peptides, and neutrophil nets [91,92]. Additionally, CF patients with active infections are treated with high doses of antibiotics. These factors, coupled with the high salinity, low oxygen, and high viscosity of the mucus in the CF lung, provide an environment that is highly selective for bacterial variants able to persist [93]. One clear phenotype that emerges in this environment is the production of alginate (mucoidy), which provides resistance to phagocytosis and protection against antibiotics and reactive oxygen species [7,16,94–96]. Mucoid strains express AmrZ at levels much higher than those observed in nonmucoid counterparts [24,25,43]. We propose that AmrZ acts as a molecular switch that transitions P. aeruginosa from a motile, adherent, colonizing strain causing acute virulence and tissue damage to a nonmotile, mucoid, chronic strain that is more adept at persistence and immune evasion. We suggest that the enhanced virulence of the wild type is due to the expression of various virulence factors such as the type III secretion system regulator ExsC and iron sequestration proteins such PchC and FptA. AmrZ represses these genes [2,9]. Additional contributions of polysaccharides to virulence during different stages of infection. Future work will delve into virulence contribution by AmrZ-regulated genes to identify the molecular basis for the effect of c-di-GMP on the AmrZ regulon. Previous reports indicate that AmrZ can directly repress cdrA [19]. Combined with the published knowledge of the c-di-GMP signaling could provide insight to the complexity of the CdrA [19]. Additionally, CdrA has been reported to stabilize biofilm structure [93]. Further reinfection with mucoidy, which provides resistance to oxygen species [7,16,94–96]. Mucoid strains express AmrZ at levels much higher than those observed in nonmucoid counterparts [24,25,43]. We propose that AmrZ acts as a molecular switch that transitions P. aeruginosa from a motile, adherent, colonizing strain causing acute virulence and tissue damage to a nonmotile, mucoid, chronic strain that is more adept at persistence and immune evasion. We suggest that the enhanced virulence of the wild type is due to the expression of various virulence factors such as the type III secretion system regulator ExsC and iron sequestration proteins such PchC and FptA. AmrZ represses these genes [2,9]. Additionally, we demonstrate that AmrZ activates expression of cdvA, encoding a biofilm matrix protein and the pel polysaccharide operon. Previous reports indicate that AmrZ can directly repress the pel operon, leading to multifactorial control of this polysaccharide [19]. Combined with the published knowledge of the effect of c-di-GMP on the pel operon through FlgQ, these data further reinforce the potential for additive effects of AmrZ at multiple points of polysaccharide and matrix protein regulation. Cumulatively, these experiments suggest that the high production of AmrZ in mucoid strains during chronic infections could lead to a polysaccharide transition from expressing Psl to alginate and Pel. Additionally, CdRA has been reported to stabilize biofilm structure [30]. The overlap of these regulatory networks with the inclusion of c-di-GMP signaling could provide insight to the complexity of the contributions of polysaccharides to virulence during different stages of infection. Future work will delve into virulence contribution by the AmrZ-regulated genes to identify the molecular basis for the acute virulence defect in the ΔamrZ mutant.
sequences as described in the Gateway Cloning Technology Manual (Invitrogen). Using Gateway technology, the ΔPA4404 allele was first recombined with pDONR223 using BP Clonase II (Invitrogen) to create pHJ125, which was sequenced using M13F and M13R primers. Finally, the ΔPA4404 allele from pHJ125 was recombinated with pEX18GmGW using LR Clonase II (Invitrogen) to create the allelic exchange vector pHJ129.

The adcA overexpression plasmid pBX22 was constructed by inserting adcA coding sequence into the arabinose-inducible vector pHERD20T [61]. The 1659 bp DNA sequence of the adcA gene was amplified by primers PA4843_F and PA4843_R. N.E.B Q5 High Fidelity DNA Polymerase was used in PCR following manufacturer’s instructions. The PCR product of adcA was inserted into pHERD20T through XbaI and HindIII restriction sites. The adcA coding sequence in pBX22 was verified by Sanger-based DNA sequencing.

Quantification of c-di-GMP by LC/MS

c-di-GMP was extracted and quantified as described previously with minor modifications [39]. Cells were cultured overnight on LANS plates. An isolated colony was transferred to a fresh LANS plate and incubated at 37°C for 24 hrs before harvesting. Colonies were scraped from agar plates and resuspended in 990 μL of LC/MS grade water (Optima). 2-chloro-adenosine-5'-O-monophosphate (2Cl-AMP, 10 μM, Biolog) was added as an internal standard. Nucleotides were extracted from cells by the addition of 94 μL of 70% perchloric acid and incubated for 30 min on ice. Cell debris were removed by centrifugation and reserved for subsequent protein quantification. The supernatant containing c-di-GMP was neutralized by the addition of 219 μL of 2.5 M KHCO3. The resulting precipitate was removed by centrifugation.

The supernatant was stored at -80°C until LC/MS analysis. Pure c-di-GMP standards (Biolog) were extracted in parallel and treated identically to samples.

ChIP-Qseq library construction and sequencing

The chip DNA was quantified with Qubit 2 fluorometer (Life Technologies) using Qubit dsDNA BR Assay. 10 ng of DNA was used to construct each Chip sequencing library, following NEXTflex ChIP-Qseq kit (Bioo Scientific) instruction. NEXTflex ChIP-Qseq Barcodes (Bioo Scientific) were used to index the library. The final DNA libraries were validated with Agilent 2100 Bioanalyzer using Agilent High Sensitivity DNA Kit. The library concentrations were determined by Q-PCR using KAPA SYBR Fast qPCR kit. The libraries were then run on Single End flowcell on HiSeq2000.

ChIP-Qseq data analysis

HiSeq2000 sequencing was performed, resulting in approximately 255 million total single-end 52 bp reads from the six control and eight treatment samples. Reads were aligned using bwa (0.5.10) to the Pseudomonas aeruginosa PAO1 reference genome [99]. Approximately 220 million reads aligned uniquely to the reference (86.3%). A TDF file was created for each sample for visualization in IGV, which was scaled to reads per 10 million data using bedtools (2.17.0) and igvtools (2.2.3). ChIP-Qseq analysis was performed using HOMER (4.2). First, aligned data was transformed into a platform-independent data structure for further HOMER analyses using the maketagDirectory function. Secondly, HOMER’s findPeaks-style factor was utilized to identify peaks, or regions of the genome where more reads are present than random. Lastly, HOMER’s findMotifsGenome.pl was used to analyze genomic positions for de novo enriched motif regions of length 50 or 200 and identified peaks were annotated with the motifs using the annotatePeaks.pl function.
RNA isolation

Cultures were induced with 0.5% arabinose at an OD_{600} of 0.1 and allowed to grow for two hours at 37°C in a roller. The final OD_{600} was recorded and 0.1 OD_{600} was centrifuged at 10,000 x g for 3 minutes. The supernatant was removed and pellets were resuspended in 1 mL of TRIZol (Invitrogen). Following a 5-minute incubation at room temperature, 0.2 mL of chloroform was added and the samples were shaken for 15 minutes. Phases were separated by centrifugation (12,000 x g, 5 minutes, 4°C) and the aqueous phase was combined with 0.6 mL of 70% ethanol and transferred to an RNeasy mini column (Qiagen). After centrifugation, 0.7 mL of buffer RW1 (Qiagen) was added to the column and centrifuged. Samples were washed twice with 0.5 mL of Buffer RPE (Qiagen) and eluted in 50 µL of water.

RNA-Seq library construction and sequencing

Following assessment of the quality of total RNA using Agilent 2100 bioanalyzer and RNA Nano Chip kit (Agilent Technologies, CA), rRNA was removed from 2.5 µg of RNA with Ribo-Zero rRNA removal kit for Gram-negative bacteria (Epitome Biotechnologies, WI). To generate directional signal in RNA seq data, libraries were constructed from first strand cDNA using ScriptSeq v2 RNA-Seq library preparation kit (Epitome Biotechnologies, WI). Briefly, 50 ng of rRNA-depleted RNA was fragmented and reverse transcribed using random primers containing a 5’ tagging sequence, followed by 3’ end tagging with a terminal-tagging oligo to yield di-tagged, single-stranded cDNA. Following purification by a magnetic-bead based approach, the di-tagged cDNA was amplified by limit-cycle PCR using primer pairs that anneal to tagging sequences and add adaptor sequences required for sequencing cluster generation. Amplified RNA-seq libraries were purified using AMPure XP System (Beckman Coulter). Quality of libraries were determined via Agilent 2100 Bioanalyzer using DNA High Sensitivity Chip kit, and quantified using Kappa SYBRFast qPCR kit (KAPA Biosystems, Inc, MA). 50 bp sequence reads were generated using the Illumina HiSeq 2000 platform.

RNA-Seq data analysis

HiSeq 2000 sequencing was performed, resulting in approximately 165 million total single-end 52-bp reads from the six total control and treatment samples. Reads were aligned using bwa (0.5.10) to the P. aeruginosa PAO1 reference genome [99]. Approximately 143 million reads aligned uniquely to non-ribosomal regions of the reference (86.9%). A TDF file was created for each sample for visualization in IGV, which was scaled to reads per million data using bedtools (2.17.0) and igvtools (2.3.3). A coverage file, describing the coverage for each feature in the PAO1 genome, was created using bedtools. These coverage’s were normalized and the means of the control and treatment groups were tested for significant differences using the binomial test in the R package DESeq (1.10.1), producing fold changes and adjusted p-values for each feature. Resulting p-values were adjusted for multiple testing with the Benjamin-Hochberg procedure, which controls false discovery rate (FDR).

EMSA

6FAM labeled DNA used for EMSA was amplified using Quickload Taq 2X Mastermix (New England Biolabs), FAM-labeled forward primer and non-labeled reverse primer, and PAO1 genomic DNA as the template. The EMSA procedure is similar to that previously reported [18]. Each EMSA reaction contains 4 mM Tris-HCl (pH8.0), 40 mM NaCl, 4 mM MgCl2, 4% glycerol, 150 ng/ul Poly d[(I-C)] (non-specific DNA control), 100 µg/mL BSA (non-specific protein control), 5 nM FAM labeled DNA, and a defined concentrations of AmrZ or AmrZ22A. Protein-DNA binding was equilibrated at room temperature (25°C) for 20 min after adding all reagents to each reaction. 10 µL of each reaction was loaded onto a 4% non-denaturing acrylamide gel. Electrophoresis was conducted for 22 min at 200 V in 0.5% TBE. 6FAM fluorescence was detected with a Typhoon scanner (GE Lifesciences). A similar length DNA sequence within the algD coding sequence but lacking an AmrZ binding site was selected as the specificity control.

Protein structure and function prediction

Protein sequence was submitted to the Phyre2 server for analysis of homology [100]. Predicted structure was imaged in Jmol (http://www.jmol.org).

Flow cell biofilm study

Inoculation of flow cells was done by normalizing overnight cultures to an optical density of 0.5 and injecting into an ibidi µ-Slide VI0.4 (Ibidi 80601). To seed the flow cell surface, the media flow was suspended and the bacteria allowed to adhere at room temperature for 3 hours. Flow of 5% v/v LBNS with 0.5% arabinose was initiated at a rate of 0.15 mL min\(^{-1}\) and continued for 24 h. Following the biofilm growth period, the flow was terminated and the biofilms were fixed with 4% paraformaldehyde. Confocal images were taken at the Ohio State University Campus Microscopy and Imaging Facility on an Olympus Fluview 1000 Laser Scanning Confocal microscope. Images were obtained with a 20X oil immersion objective. Images were processed using the Olympus FV1000 Viewer software. Quantitative analyses were performed using the COMSTAT software package [101]. Total biomass was determined from Z-stack images using the BIOMASS command with the threshold set to 15. Three independent biofilms were imaged and analyzed. Statistical significance was determined using a Student’s t-test.

Supporting Information

Figure S1 A Phyre 2 structural model of AdcA. Structural model of AdcA is based on similarities to Pdeo of C. crescentus. Model is colored based on amino acid position, with the N-terminus red and the C-terminus violet. Predicted cyclase active site (GGEEF), allosteric inhibitory site (I-site), and two component receptors (Rec domains) are indicated. (TIFF)

Figure S2 AdcA is not responsible for the acute virulence defect of a AmrZ mutant. Strains were coinoculated intranasally at a 1:1 ratio (10^6 total bacteria). Lungs were harvested, homogenized, and plated for CFU at 24 hours post infection. Competitive index is displayed, comparing the input ratio of bacteria to the output ratio. Mean of the competitive index of three independent experiments (n = 5) are displayed, comparing input ratio of bacteria to output ratio of bacteria. Groups were compared using the Student’s t-test. ns = No significant difference. (TIF)

Figure S3 Quantification of biofilm changes using COMSTAT. Average total biomass of three biofilm images was quantified for strains PAO1, AmrZ, pBADAmrZ, and AmrZ strains using COMSTAT. Student’s t-test was performed to determine statistical differences among these strains (* p<0.05). Unmarked comparisons are not statistically significant. (TIF)
Table S1 ChIP-Seq data. List of all regions of the genome significantly enriched for AmrZ binding as determined by ChIP-Seq. ChIP-Seq fold enrichment indicates the change in detection of a region comparing the sequences complexed to the induced AmrZ to the WT control from that sample. Predicted binding motif is included. The closest predicted promotor to the predicted binding site is listed. Expression fold change as determined by RNA-Seq is included for each region, if significant. (XLSX)

Table S2 RNA-Seq data. List of all genes whose expression is significantly different comparing the complemented AmrZ strain to the AmrZ mutant. Negative fold change indicates that the expression was lower in the complemented strain than the mutant (repressed by AmrZ), while positive fold change indicates that the expression was higher in the complemented strain than the mutant (activated by AmrZ). (XLSX)

Table S3 Bacterial strains. List of bacterial strains used in this study. (DOCX)

Table S4 Plasmids. List of plasmids used in this study. (DOCX)

Table S5 Primers. List of primers used in this study. *Regions of identity to the target amplicons are underlined, regions of reverse complementarity are italicized, and Gateway attBI and attB2 sequences are in bold. (DOCX)

Supporting Methods S1 Methods utilized to produce Supporting Information. (DOCX)

Acknowledgments

Library construction and next-generation sequencing analysis was performed in the Biomedical Genomics Core of The Research Institute at Nationwide Children’s Hospital. We thank Sarah B. Chaney at Ohio State University and Dale Whittington and Mariko Nakano at the University of Washington School of Pharmacy’s Mass Spectrometry Center for technical assistance. Images presented in this report were generated using the instruments and services at the Campus Microscopy and Imagine Facility of Ohio State University. Reference DNA sequences were obtained from the Pseudomonas Genome Database [99,102].

Author Contributions

Conceived and designed the experiments: CJJ DN MRP PW DJW. Performed the experiments: CJJ DNYI LJK BX DHL. Analyzed the data: CJJ BW DJW. Contributed reagents/materials/analysis tools: CJJ BK BX JH DHL. Wrote the paper: CJJ DJW.
30. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, et al. (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75: 827–842. doi:10.1111/j.1365-2958.2009.06099.x.

31. Boyd CD, O’Toole GA (2012) Second messenger regulation of biofilm morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 78: 4809–4821. doi:10.1128/AEM.01973-11.

32. Castang S, McManus HR, Turner KH, Dove SL (2008) H-NS family members as a c-di-GMP-responsive transcription regulator with a GGDEF output domain. Microbiology 154: 980–994. doi:10.1099/mic.0.02284-0.

33. Heinz S, Benner C, Spann N, Bertolino E, Lin Y-C, et al. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory modules of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 107: 14422–14427. doi:10.1073/pnas.0911610107.

34. Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, et al. (2012) The Hfq protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the ϕ6 operon. In response to c-di-GMP. Nucleic Acids Res 40: 7207–7218. doi:10.1093/nar/gks384.

35. Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 21: 439–473. doi:10.1146/annurev.cellbio.21.050804.154621.

36. Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, et al. (2007) The Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73: 1072–1085. doi:10.1111/j.1365-2958.2009.06093.x.

37. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69: 1471–1481. doi:10.1111/j.1365-2958.2008.06101.x.

38. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, et al. (2007) A Pseudomonas aeruginosa cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65: 1474–1484. doi:10.1111/j.1365-2958.2007.05879.x.

39. Liu J, Schurr MJ, Sauer K (2013) The MerR-like regulator Blr confers biofilm tolerance by activating multihomed efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195(15):3352–63. doi:10.1128/JB.00318-13.

40. Nakagami H, Maruyama H, Taoka T, Shiba R, Takahashi Y, et al. (2005) Biofilm formation by Pseudomonas aeruginosa multiple signaling systems regulating virulence in Pseudomonas aeruginosa and other bacteria. Appl Environ Microbiol 71: 7422–7426. doi:10.1128/AEM.01369-08.

41. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316: 1497–1502. doi:10.1126/science.1141339.

42. Russel AB, O'Toole GA, Christen M (2011) Biofilm formation by Pseudomonas aeruginosa as a c-di-GMP-responsive regulatory network and hypoxia. Nature 499: 178–183. doi:10.1038/nature12337.

43. Rehm DF, Chen Z, Culver LH, Tsuchida TA, McFadden DP, et al. (2006) Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 42(9):9795–9810. doi:10.1093/nar/gkq420.

44. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Aziz R, et al. (2013) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms: a c-di-GMP-regulated regulatory network. Mol Microbiol 87: 526–538. doi:10.1111/mmi.12111.

45. Paul R, Abel S, Wassmann P, Beck A, Heerklotz H, et al. (2007) Activation of the homologous loci II and III, which are required for pathogenesis. Microbiology 153: 2844–2853. doi:10.1099/mic.0.029082-0.

46. Mougous JD, Cuff ME, Thompson JA, Xaviera KB, Cool RH, et al. (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76: 46–65. doi:10.1128/MMBR.00067-11.

47. Ogleby AG, Farrow JM, Lee JH, Tomaras AP, Greenberg EP, et al. (2008) The influence of iron on Pseudomonas aeruginosa Physiology: A REGULATORY LINK BETWEEN IRON AND QUORUM SENSING. J Biol Chem 283: 15358–15367. doi:10.1074/jbc.M707042200.

48. Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 23: 187–203. doi:10.1146/annurev.cellbio.23.010306.145310.

49. Persson PN, O’Toole GA (2012) Regulation of biofilm production by Pseudomonas aeruginosa. J Mol Biol 364: 551–564. doi:10.1016/j.jmb.2006.08.032.

50. Russell AB, O’Toole GA, Christen M (2011) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 80: 1511–1524.

51. Klausen M, Aaes-Jørgensen A, Sørensen SD, Hansen J, Nielsen T (2005) Involvement of the iron-regulated protein IbeA in bacterial biofilm formation. J Bacteriol 187: 6296–6301. doi:10.1128/JB.187.21.6296-6301.2005.

52. Klausen M, Aaes-Jørgensen A, Sørensen SD, Hansen J, Nielsen T (2005) Involvement of the iron-regulated protein IbeA in bacterial biofilm formation. J Bacteriol 187: 6296–6301. doi:10.1128/JB.187.21.6296-6301.2005.
79. Overhage J, Schemionek M, Webb JS, Rehm BHA (2005) Expression of the \textit{pil} operon in \textit{Pseudomonas aeruginosa} PAO1 biofilms: PaA performs an essential function in biofilm formation. Appl Environ Microbiol 71: 4407–4413. doi:10.1128/AEM.71.8.4407-4413.2005.

80. Toutain CM, Gaira NC, Zegans ME, O’Toole GA (2007) Roles for flagellar stators in biofilm formation by \textit{Pseudomonas aeruginosa}. Res Microbiol 158: 471–477. doi:10.1016/j.resmic.2007.04.001.

81. Byrd MS, Pang B, Mishra M, Swords WE, Wozniak DJ (2010) The \textit{Pseudomonas aeruginosa} exopoly saccharide \textit{Psl} facilitates surface adherence and \textit{NF-kappaB} activation in A434 cells. MBio 1: e00140-10. doi:10.1128/mBio.00140-10.

82. Byrd MS, Pang B, Hong W, Waligora EA, Janeu RA, et al. (2011) Direct evaluation of \textit{Pseudomonas aeruginosa} biofilm mediators in a chronic infection model. Infect Immun 79: 3087–3095. doi:10.1128/IAI.00057-11.

83. Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, et al. (2011) Distinct roles of \textit{Pseudomonas aeruginosa} alginate in biofilm formation. Appl Environ Microbiol 71: 4407–4413. doi:10.1128/AEM.71.8.4407-4413.2005.

84. Yang L, Hengzhuang W, Wu H, Damkjaer S, Jochumsen N, et al. (2012) \textit{Pseudomonas aeruginosa} exopolysaccharide Psl facilitates surface adherence and \textit{NF-kappaB} activation in \textit{Pseudomonas aeruginosa} biofilm develop-ment. Environ Microbiol 13: 1705–1717. doi:10.1111/j.1462-2920.2011.02305.x.

85. Wang S, Parsek MR, Wozniak DJ, Ma LZ (2013) A spider web strategy of type IV pili-mediated migration to build a fiber-like \textit{Psl} polysaccharide matrix in \textit{Pseudomonas aeruginosa} biofilms. Environ Microbiol 15(8): 2238–53. doi:10.1111/1462-2920.12095.

86. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, et al. (2004) A mechanism for biofilm matrix assembly in \textit{Pseudomonas aeruginosa}. J Bacteriol 186: 6570–6580. doi:10.1128/JB.186.21.6570-6580.2004.

87. Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, et al. (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23: 745–754. doi:10.1101/gad.1739009.

88. Burrows E, Bayse C, Adams C, O’Gara F (2006) Influence of the regulatory protein \textit{RusA} on cellular functions in \textit{Pseudomonas aeruginosa} PAO1, as revealed by transcriptome analysis. Microbiology 152: 405–410. doi:10.1099/mic.0.28324-0.

89. Mann EE, Wozniak DJ (2011) \textit{Pseudomonas} biofilm matrix composition and niche biology. FEMS Microbiol Rev 36: 893–916. doi:10.1111/j.1574-6976.2011.00322.x.

90. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lübert JG, et al. (2005) Enhanced \textit{Pseudomonas aeruginosa} biofilm development mediated by human neutrophils. Infect Immun 73: 3693–3701. doi:10.1128/IAI.73.6.3693-3701.2005.

91. Mishra M, Byrd MS, Sergeant S, Azad AK, Parsek MR, et al. (2012) \textit{Pseudomonas aeruginosa} \textit{Psl} polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell Microbiol 14: 95–106. doi:10.1111/j.1462-3822.2011.01704.x.

92. Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, et al. (2011) Neutrophil extracellular trap (NET)-mediated killing of \textit{Pseudomonas aeruginosa}: evidence of acquired resistance within the CF airway, independent of C1FTR. PLoS ONE 6: e26367. doi:10.1371/journal.pone.0026367.

93. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid \textit{Pseudomonas aeruginosa} and \textit{Burkholderia cepacia}. Microbiol Rev 60: 539–574.

94. Lehn DB, Brestel EP, Seetharama S (1987) Hypochlorite scavenging by \textit{Pseudomonas aeruginosa} alginate. Infect Immun 55: 1813–1818.

95. Pedersen SS, Kharazmi A, Eipersen F, Høiby N (1990) \textit{Pseudomonas aeruginosa} alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58: 3363–3368.

96. Mai GT, Seers WC, Pier GB, McCormack JG, Thong YH (1993) Suppression of lymphocyte and neutrophil functions by \textit{Pseudomonas aeruginosa} mucoid exopolysaccharide (alginate): reversal by physicochemical, alginate, and specific monoclonal antibody treatments. Infect Immun 61: 559–564.

97. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked \textit{Pseudomonas aeruginosa} mutants. Gene 212: 77–86.

98. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press. 2028 p.

99. Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD, et al. (2011) \textit{Pseudomonas aeruginosa} biofilms. Environ Microbiol 13: 1705–1717. doi:10.1111/j.1462-2920.2011.02305.x.

100. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi:10.1038/nprot.2009.2.

101. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, et al. (2000) \textit{Pseudomonas aeruginosa} PAO1, an opportunistic pathogen. Nature 406: 959–964. doi:10.1038/35023079.