Synthesis and Characterization of PVP/Tb\(4/3\)L•7H\(_2\)O Luminescent Complex

Jianhui Zhang, Bizhen Yuan and Huijuan Ren
Zhuhai College of Jilin University, Zhuhai, China

*Corresponding author e-mail: 09033@jluzh.com

Abstract. Rare earth terbium [Tb (III)]-pyromellitic acid [H\(_4\)L] luminescent complex has been synthesized in polyvinylpyrrolidone (PVP) matrix by precipitation method. The chemical constitution of the complex has been demonstrated as PVP/Tb\(_{4/3}\)L•7H\(_2\)O by a combination of elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction analysis (XRD) has shown that the complex is a new kind of crystal whose structure is totally different from the ligand. The morphology of the complex has been investigated by scanning electron microscopy (SEM). The results have shown that the well dispersed complex has a bulk crystal structure and the diameter of the crystal is about 1-2 \(\mu\)m. Thermogravimetric analysis (TG) has indicated that the luminescent complex is thermally stable below 467 \(^\circ\)C. Photoluminescence spectra (PL) have revealed that the complex can emit Tb\(^{3+}\) characteristic green fluorescence under ultraviolet excitation.

1. Introduction

Rare earth elements possess the electron configuration with the same outermost electron number and similar 4f electron energy levels, thus the rare earth complexes exhibit many unique chemical and physical properties [1, 2]. It is widely used in optical, electrical, magnetic fields etc [1-7], and regarded as a treasury of new materials [2]. Rare earth luminescent complex has been attracted increasing interest in the development of rare earth functional materials due to its excellent luminescent properties [8-10].

Recently, the synthesis and fluorescence properties of rare earth terbium Tb (III) luminescent complex have been reported in the literatures [3, 11-13]. However, the synthesis and characterization of Tb (III)-H\(_4\)L luminescent complex obtained in PVP matrix is rarely published [14, 15]. In this paper, the bulk like Tb (III)-H\(_4\)L luminescent complex has been synthesized and the constitution, structure, morphology and properties of the complex have been studied in detail.

2. Experimental Section

2.1. Reagents

Tb\(_4\)O\(_7\) (99.95%) was purchased from Baotou Rare Earth Research Institute. Pyromellitic acid was obtained from Beijing Chemical Company. Polyvinylpyrrolidone was purchased from Beijing Yingli Chemical Company. All of the other chemicals were of analytical grade and used as received.
2.2. Characterization

C, H, and N elemental analysis of the sample was carried out with a VarioEL elemental analyzer and Tb\(^{3+}\) was determined by TJA POEMS plasma mass spectrometer. FT-IR of the complex was performed on a BIO-RAD FTS135 Fourier-transform infrared (FT-IR) spectrometer using the KBr pellet technique with a wave number range of 4000-400 cm\(^{-1}\). The structure of the complex was measured by a RIGAKU D/max-II B X-ray diffractometer (XRD) using Cu Kα radiation (\(\lambda = 0.1542 \text{ nm}, \theta = 2-60^\circ\)). The morphologies of the complex were observed on a JEOL JSM-5600LV scanning electron microscope (SEM). Thermogravimetric (TG) analysis of the complex was performed with TA SDT-2960 analyzer with the temperature range from 10 to 700 \(^\circ\)C at a rate of 10\(^\circ\)/min in air. The excitation and emission spectra of the sample were measured by a HITACHI F-4500 fluorescence spectrophotometer with the photomultiplier voltage of 700 V.

2.3. Synthesis and composition analysis of the complex

Firstly, 30.00 mL of 0.05 mol/L H\(_4\)L (1.5 mmol), 12.20 mL 0.08223 moL\(\cdot\)L\(^{-1}\)Tb\(^{3+}\)(1.0 mmol) and were dropped in 35 mL of 5% PVP solution respectively. The pH value was adjust to 5 using aqueous ammonia under stirring. Then, the mixture was reacted at 80\(^\circ\)C for 2h. Finally, the precipitate was cooled, centrifugated, washed, dried at 80\(^\circ\)C for 2h and the white powder was obtained. The filtrate drops are not precipitated with dropping ammonia water, which proves that the Tb\(^{3+}\) reaction is complete.

Element analysis data (the theoretical calculation number is included in the brackets): C, 20.02% (20.41 %); H, 2.42 % (2.72 %); Tb, 37.85% (36.04 %). It can be estimated that the constitution of the complex in PVP matrix is PVP/Tb\(_{4/3}\)L\(\cdot\)7H\(_2\)O.

3. Results and Discussion

3.1. FT-IR analysis

From the standard FT-IR spectrum of pyromellitic acid H\(_4\)L (Sadtler standard spectra 15238K), It can be seen that the stretching vibration band of carbonyl group in carboxyl group (\(\nu_{C=O}, 1700-1680 \text{ cm}^{-1}\)), the stretching vibration band of hydroxyl group in carboxyl group (\(\nu_{O-H}, 3300-2500 \text{ cm}^{-1}\)) and the out-of-plane bending vibration band of hydroxyl group (\(\delta_{O-H}, 950-890 \text{ cm}^{-1}\)), the inner-plane bending oscillation of hydroxyl group (\(\delta_{O-H}, 1440-1395 \text{ cm}^{-1}\)), and \(\nu_{C=O}\) coincidence band of C=O, (\(\nu_{C=O} 1320-1210 \text{ cm}^{-1}\)). The peaks of \(\nu_{C=O}\), \(\nu_{O-H}\) and \(\delta_{O-H}\) (outplane) are the three characteristic peaks in the standard FT-IR spectrum of pyromellitic acid (H\(_4\)L).

![FTIR Spectrum of PVP and PVP/Tb\(_{4/3}\)L\(\cdot\)7H\(_2\)O](image)

From the standard FT-IR spectrum of Tb\(_{4/3}\)L\(\cdot\)7H\(_2\)O (Fig. 1), it can be found that the three characteristic peaks of \(\nu_{C=O}\), \(\nu_{O-H}\), \(\delta_{O-H}\) in the H\(_4\)L disappeared, whereas, the characteristic peaks of
$v_{^{\text{COO}}}$ and $v_{^{\text{COO}^-}}$ are observed at 1557 cm$^{-1}$ and 1392 cm$^{-1}$, respectively. This indicates the formation of Terbium pyromellitic acid complex. Meanwhile, the appearance of the out-of-plane bending vibration band of C-H ($\delta_{\text{C-H}}$, 650-900 cm$^{-1}$) is caused by the out-of-plane bending vibration of benzene ring. The stretching vibration bands of hydroxyl group of the complex ($\nu_{\text{O-H}}$, 3376 cm$^{-1}$ and 3393 cm$^{-1}$) can be attributed to the existence of water molecules in the complex.

3.2. XRD analysis
The XRD patterns of PVP/ Tb$_{4/3}$L\cdot7H$_2$O and PVP are shown in Fig 2. The diffraction peak positions, peak intensities and lattice distance of the complex are totally different from H$_4$L (No. 13-882 in JCPDS cards), and PVP. It can be demonstrated that a new complex is formed by banding Tb$^{3+}$ with ligands together. Moreover, the sharp peaks of the complex show that the complex is crystalline.

![Figure 2 XRD pattern of PVP/Tb$_{4/3}$L\cdot7H$_2$O](image)

3.3. SEM analysis
The SEM image of the Tb$_{4/3}$L\cdot7H$_2$O is shown in Fig. 3. It can be seen that the luminescent complex behaves as bulk crystals with high dispersity, and the mean diameter of the spheres is about 1-2 μm.

![Figure 3. SEM photograph of PVP/Tb$_{4/3}$L\cdot7H$_2$O](image)

3.4. TG-DTA analysis
The thermogravimetry and differential thermal analysis (TG-DTA) curve of the Tb$_{4/3}$L\cdot7H$_2$O is shown
in Fig. 4. The DTA curve of the complex has an endothermic peak at 71 °C, indicating the existence of water molecules. It is noted that the complex decomposed from 50 °C to 483 °C. The mass loss is about 59.53 % (theoretically 58.52 %), which loss of water molecules and ligands in general. There is a strong exothermic peak near 463 °C in the corresponding DTA, where the ligand decomposes. Above 483 °C, decomposition and oxidation process have finished and terbium oxide Tb₂O₃ is generated.

Figure 4. TG-DTA curves of PVP/Tb₄/3L·7H₂O

3.5. *Diffuse reflectance spectroscopy analysis*

The fluorescence excitation spectrum of PVP/Tb₄/3L·7H₂O is shown in Fig. 5. The absorption band near 310 nm can be assigned to π→π* transition of the ligands. The strongest excitation peak is at 310 nm, so the emission spectrum of PVP/Tb₄/3L·7H₂O is obtained as shown in Fig. 6 using 310 nm as excitation wavelength. There are four groups of emission peaks near 489 nm, 544 nm, 583nm, 619 nm which are attributed to 5D₄→7F₆, 5D₄→7F₅, 5D₄→7F₄ and 5D₄→7F₃ transition of Tb³⁺ respectively. The strongest peak is at 544 nm and 5D₄→7F₅ transition induces the emission of the characteristic green fluorescence of Tb³⁺.

Figure 5. Excitation spectrum of PVP/Tb₄/3L·7H₂O
4. Conclusion
Terbium [Tb (III)]-pyromellitic acid [H₄L] luminescent complex has been synthesized in PVP matrix by precipitation method. The chemical constitution of the complex has been determined as PVP/Tb₄/3L·7H₂O. FT-IR spectrum demonstrates the ligand takes part in the coordination. The complex has been observed as bulk like crystals with good dispersion and 1-2 μm in diameter by XRD and SEM. The complex has fine stability below 467 °C proved by TG analysis. The diffuse reflectance spectrum shows that the complex has good optical absorption in ultraviolet region. The complex can emit green fluorescence under the excitation of ultraviolet light 310 nm.

Acknowledgments
This work was financially supported by department of education of guangdong province fund. (Grand No. 2016KTSCX174).

References
[1] J-C. G. Bünzli, Benefiting from the Unique Properties of Lanthanide Ions, Accounts of Chemical Research. 37 (2006) 53-61.
[2] S. V. Eliseeva, J-C. G. Bünzli, Rare Earths: Jewels for Functional Materials of the Future, Cheminform. 42 (2011), 1165-1176.
[3] K. Zheng, Z-Q. Liu, Y. Huang, F. Chen, C-H. Zeng, S-l. Zhong, S. W. Ng, Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor, Sensors and Actuators B: Chemical. 257 (2018) 705-713.
[4] J-C. G. Bünzli, Lanthane Luminescence for Biomedical Analyses and Imaging, Chem. Rev. 110 (2010) 2729-2755.
[5] S. V. Eliseeva, J-C. G. Bünzli, Lanthane luminescence for functional materials and biosciences, Chem. Soc. Rev. 39 (2010) 189-227.
[6] A. Thibon, V. C. Pierre, Principles of responsive lanthanide-based luminescent probes for cellular imaging, Anal Bioanal Chem. 394 (2009) 107-120.
[7] S. Shinoda, H. Tsukube, Luminescent lanthanide complexes as analytical tools in anion sensing, pH indication and protein recognition, Analyst. 136 (2011) 431-435.
[8] D. E. Barry, D. F. Caffrey, T. Gunnlaugsson, Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands, Chemical Society reviews. 45 (2016) 3244-3274.
[9] J-C. G. Bünzli, On the design of highly luminescent lanthanide complexes, Coordination Chemistry Reviews. 293-294 (2015) 19-47.
[10] J-C. G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev. 34(2005) 1048-1077.

[11] E. A. Mikhalyova, A. V. Yakovenko, M. Zeller, K. S. Gavrilenko, M. A. Kiskin, et al. Crystal structures and intense luminescence of tris(2-(2’-pyridyl)-pyrazolyl)borate Tb$^{3+}$ and Eu$^{3+}$ complexes with carboxylate co-ligands, Dalton Transactions. 46 (2017) 3457-3469.

[12] N. S. Kariakaa, V. A. Trush, S. S. Smola, Y. M. Fadieiev, V. V. Dyakonenko, S. V. Shishkina, T. Y. Sliva, V. M. Amirkhanova, Highly luminescent diphenyl-N-benzoylamido phosphosphate based lanthanide tetrakis-complexes, Journal of Luminescence. 194 (2018) 108-115.

[13] X. Zhou, L. Chen, Z. Feng, S. Jiang, J. Lin, Y. Pang, L. Li, G. Xiang Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes, Inorganica Chimica Acta. 469 (2018) 576-582.

[14] H. Ren, Z. Cui, D. Sun, G. Hong, Synthesis and Characterization of Tb$_4$L$_3$(Phen)$_0.75$·7H$_2$O Nanorods, Advanced Materials Research. 194-196 (2011) 878-881.

[15] Synthesis and characterization of terbium(III)-pyromellitic acid (H$_4$L)-1,10-phenanthroline (phen) luminescent complex, Journal of rare earths. 28 (2010) 47-50.