Highly improved dielectric properties of polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composites at elevated temperatures

Kenichi Hayashida

\(\alpha\)-Fe\(_2\)O\(_3\) particles were incorporated into ten kinds of polymer matrices, and the dielectric properties of the resultant polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composites were investigated between 40 °C and 160 °C. We found that the dielectric properties strongly depended not only on the temperatures but also on the kind of polymer matrices. For engineering plastics such as polyetherimide (PEI), the dielectric constant \(\varepsilon'\) was highly enhanced at around 1 kHz by incorporation of the \(\alpha\)-Fe\(_2\)O\(_3\) particles owing to Maxwell–Wagner polarization of free electrons in the \(\alpha\)-Fe\(_2\)O\(_3\) particles. This is probably because the \(\pi\) electrons in the aromatic structures of the engineering plastics strongly interact with the electrons in the \(\alpha\)-Fe\(_2\)O\(_3\) particles. Furthermore, the dielectric loss factor \(\varepsilon''\) for the engineering plastics became small at elevated temperatures because the conductivity of the \(\alpha\)-Fe\(_2\)O\(_3\) particle was enhanced and therefore the relaxation frequency of Maxwell–Wagner polarization was shifted to higher frequency. PEI/\(\alpha\)-Fe\(_2\)O\(_3\) composites exhibited highly improved dielectric properties at around 1 kHz, the high \(\varepsilon'\) and very low \(\varepsilon''\), at the elevated temperatures above 120 °C. It was demonstrated that the PEI/\(\alpha\)-Fe\(_2\)O\(_3\) composite was comparable to the PEI/BaTiO\(_3\) composite in dielectric performance at 160 °C. Because the cost of \(\alpha\)-Fe\(_2\)O\(_3\) is much lower than that of BaTiO\(_3\), the PEI/\(\alpha\)-Fe\(_2\)O\(_3\) composite might be promising as a low-cost dielectric material for high-temperature applications.

In this paper, we focus on the conductivity \(\sigma\) of \(\alpha\)-Fe\(_2\)O\(_3\) at elevated temperatures. Typically, \(\alpha\)-Fe\(_2\)O\(_3\) is known to have \(\sigma\) of about \(10^{-5}\) to \(10^{-6}\) S cm\(^{-1}\) at room temperature.\(^{29}\) The \(\sigma\) of semiconductors such as \(\alpha\)-Fe\(_2\)O\(_3\) is enhanced as temperature is raised because electrons are excited from a valence band to a conduction band.\(^{32}\) It is expected that the \(\sigma\) of \(\alpha\)-Fe\(_2\)O\(_3\) is especially increased owing to its narrow band gap of 2.1 eV.\(^{32}\) At elevated temperatures, the enhanced \(\sigma\) of the \(\alpha\)-Fe\(_2\)O\(_3\) particles would bring a high \(\varepsilon'\) to a polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composite owing to the Maxwell–Wagner polarization\(^{31}\) of the resultant free electrons in the \(\alpha\)-Fe\(_2\)O\(_3\) particles. The polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composite might be promising as a low-cost dielectric material for high-temperature applications such as hybrid and electric vehicles.\(^{34,35}\) In this study, \(\alpha\)-Fe\(_2\)O\(_3\) particles were incorporated into ten kinds of polymer matrices, and the dielectric properties of the polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composites were investigated between 40 °C and 160 °C. We found that the dielectric properties strongly depended not only on the temperatures but also on the kind of polymer matrices. Furthermore, the dielectric performance of one of the polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composite was compared with that of a corresponding polymer/BaTiO\(_3\) composite at the elevated temperatures.

Experimental

Sample preparation

\(\alpha\)-Fe\(_2\)O\(_3\) particles were obtained from Kanto Chemical (Japan). The density and specific area of the \(\alpha\)-Fe\(_2\)O\(_3\) particles were

Introduction

Dielectric materials are mainly used in capacitors to store electrical energy.\(^1\)–\(^3\) In comparison to ceramic materials, polymer ones have the advantages of low cost, lightweight and high processability. However, the very low dielectric constant \(\varepsilon'_r\) of the polymer material strongly prevents improvement of the capacitors. Therefore, polymer/ceramic composite materials have been much studied over the last few decades. Among the ceramics, BaTiO\(_3\) has been most widely used for enhancement in the \(\varepsilon'_r\) of polymer materials because of the very high \(\varepsilon'_r\) of BaTiO\(_3\).\(^{22,23}\) However, the high cost of BaTiO\(_3\) is a serious problem for industrial applications.

On the other hand, hematite (\(\alpha\)-Fe\(_2\)O\(_3\)) is a very low cost ceramic material although \(\alpha\)-Fe\(_2\)O\(_3\) has not been paid attention as a high \(\varepsilon'_r\) filler for polymer materials owing to the low \(\varepsilon'_r\) of \(\alpha\)-Fe\(_2\)O\(_3\); according to the reported literature, the \(\varepsilon'_r\) of \(\alpha\)-Fe\(_2\)O\(_3\) is as low as 30.\(^{22,27}\) Therefore, few studies are available on the dielectric properties of polymer/\(\alpha\)-Fe\(_2\)O\(_3\) composites.\(^{28,30}\)

Djoković and coworkers reported dielectric properties of a composites epoxy resin and \(\alpha\)-Fe\(_2\)O\(_3\) nanorods.\(^{28}\) Also, \(\alpha\)-Fe\(_2\)O\(_3\) nanorods were dispersed in a poly(vinyl alcohol)/poly(ethylene glycol) blend by Sayed et al.\(^{29}\) There are only small improvements of the \(\varepsilon'_r\) of the polymer materials in these studies.

Materials and Processing Dept. II, Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan. E-mail: e14400@mosk.tytlabs.co.jp

Received 16th May 2016
Accepted 3rd July 2016
DOI: 10.1039/c6ra12752e
www.rsc.org/advances

Cite this: RSC Adv., 2016, 6, 64871

This journal is © The Royal Society of Chemistry 2016

Open Access Article. Published on 04 July 2016. Downloaded on 7/24/2018 8:19:21 AM.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
determined to be 4.94 g cm$^{-3}$ and 8.71 m2 g$^{-1}$ using helium pycnometry and a standard BET method, respectively. The average diameter of the α-Fe$_2$O$_3$ particles was calculated to be 139 nm from the obtained density and specific area data. In the same manner, the density, specific area and average diameter of BaTiO$_3$ particles obtained from Wako Pure Chemical Industries (Japan) were determined to be 5.73 g cm$^{-3}$, 9.99 m2 g$^{-1}$ and 105 nm, respectively.

Polystyrene (PS) and poly(methyl methacrylate) (PMMA) were purchased from Wako Pure Chemical Industries (Japan). Poly(2-vinylpyridine) (P2VP) was obtained from Scientific Polymer Products. Styrene/acylonitrile copolymer (SAN) with 30 wt% of acrylonitrile, polyphenylene ether (PPE), polysulfone (PSF), polyethersulfone (PES) and polyetherimide (PEI) were purchased from Sigma-Aldrich. Styrene/N-phenylmaleimide alternating copolymer (St-PMI)36 and polyarylate (PAR)37 were synthesized using reported methods, where PAR contained equimolar amounts of isophthaloyl and terephthaloyl moieties.

A series of polymer/α-Fe$_2$O$_3$ composites were prepared by simply blending the α-Fe$_2$O$_3$ particles with the polymer matrices. First, the α-Fe$_2$O$_3$ particles and the polymer matrix except PES were homogeneously dispersed in 1,4-dioxane by sonication. The dispersion was quickly frozen by liquid nitrogen, and then freeze-dried under vacuum. For preparation of PES/α-Fe$_2$O$_3$ composites, dichloromethane was used instead of 1,4-dioxane because PES was insoluble in 1,4-dioxane. Subsequently, all the pre-mixtures thus-obtained were further kneaded in molten states. Also, PEI/BaTiO$_3$ composites were prepared in the same manner. The resultant composites were hot-pressed into disklike specimens with a diameter of 33 mm and a thickness of ~0.52 mm. For electrical measurements, two gold electrodes with a diameter of 27 mm were deposited on the top and bottom of the specimens.

Measurements

Complex permittivity was obtained in the frequency f range of 10^2 to 10^6 Hz at 2 V using an LCR meter (E4980A, Agilent) coupled with a rheometer (ARES G2, TA instruments). The temperature of the specimen was controlled in the oven of the rheometer. Direct current (DC) resistance of the specimen was measured at room temperature under a nitrogen atmosphere using a megohmmeter (SM-8220, Hioki), and the value was recorded after 10 minute from application of a voltage of 500 V. The cross-section of the specimen that had been flattened with argon ion beam38 was observed using an SEM (S-4300, Hitachi) operated at an accelerating voltage of 2 kV.

Results and discussion

Dielectric properties of polymer/α-Fe$_2$O$_3$ composites at 40 °C

We prepared a series of polymer/α-Fe$_2$O$_3$ composites with the volume fraction Φ of α-Fe$_2$O$_3$, $\Phi = 0.2$. The chemical structures of the polymer matrices are shown in Fig. 1. All the polymers are

![Fig. 1](image-url)
Fig. 1 Chemical structures of polymer matrices used in this study. (a) PS. (b) PMMA. (c) P2VP. (d) SAN. (e) St-PMI. (f) PPE. (g) PSF. (h) PAR. (i) PES. (j) PEI.
Table 1: Dielectric characteristics (1 kHz) for polymer/α-Fe2O3 composites with Φ = 0.2 obtained at 40 °C

Polymer	ε′	ε″	ε′′ polymer	ε′′ Fe2O3
PS	4.12	0.123	2.58	27.8
PMMA	5.25	0.453	3.39	31.2
P2VP	6.34	0.447	4.22	33.3
SAN	5.05	0.286	3.03	40.5
PSF	5.71	0.339	3.13	66.2
St-PMI	5.59	0.182	2.88	83.4
PAR	6.52	0.402	3.27	109
PEI	6.23	0.250	3.09	109
PES	7.13	0.475	3.52	116
PPE	5.38	0.162	2.63	120

* ε′ of the polymer matrix only.
* Apparent ε′ of α-Fe2O3 calculated using Lichteneker’s logarithmic mixing rule.

This is an interesting phenomenon that has never been reported. However, it is difficult to correctly evaluate the ε′ enhancement effect by direct comparing of the ε′ values of the composites because each ε′ of the polymer matrix ε′ polymer is different to some extent as shown in Table 1. Therefore, we suggest that apparent ε′ of α-Fe2O3, ε′ Fe2O3, is calculated using Lichteneker’s logarithmic mixing rule and then compared in order to separate a contribution of the ε′ polymer itself from the ε′ of the composite. It is known that the ε′ of a polymer/filler composite often obeys Lichteneker’s logarithmic mixing rule as follows:4,7,9,15–17,39

$$\varepsilon'_r = \varepsilon'_p \left(\frac{\varepsilon'_r \text{ filler} \varepsilon'_r \text{ polymer}}{\varepsilon'_r} \right)^\Phi,$$

where ε′ filler and Φ are the ε′ and volume fraction of the filler. Notice that the ε′ filler is not the ε′ of the filler itself but an apparent ε′ of the filler particles in the polymer matrix. Generally, the ε′ filler is much smaller than the ε′ of the corresponding bulk compound, mainly because the filler particles do not form a continuous phase in the polymer/filler composite system; the ε′ filler is significantly reduced by the interface between the filler particles. Furthermore, the ε′ filler is affected not only by the size and form of the filler particle but also by the dispersivity of the filler particles in the matrix.16 For example, the apparent ε′ of spherical BaTiO3 nanoparticles with a diameter of less than 100 nm is reported to be around 100 according to literatures.4,39

The calculated ε′ Fe2O3 is shown in Table 1. There is a strong dependency of the ε′ Fe2O3 on the polymer matrix; the ε′ Fe2O3 is about 30 for PS, PMMA and P2VP whereas over 100 for PAR, PEI, PES and PPE. In other words, the ε′ for engineering plastics is more enhanced by the α-Fe2O3 particles than that for general-purpose plastics such as PS and PMMA. Fig. 2 shows the frequency f dependence of the ε′ r and ε′″ f of four kinds of composites for PEI, PSF, PPE and PS with Φ = 0.2 obtained at 40 °C. Every ε′ r is decreased as f is increased. This is because the dielectric relaxation of a polarization occurs in the f range, which results in a ε′″ peak as shown in Fig. 2b. This polarization would be attributed to the interfacial polarization of free electrons in the α-Fe2O3 particles, that is Maxwell–Wagner polarization.33 Because the relaxation frequency becomes high as the σ of the α-Fe2O3 particles is high for Maxwell–Wagner polarization, it is suggested that the σ of the α-Fe2O3 particles in the PEI/α-Fe2O3 and PPE/α-Fe2O3 composites is higher than that in the PS/α-Fe2O3 composite, resulting in the higher ε′ Fe2O3 for PEI and PPE over the reported value of ~30.22–27 This is probably because the π electrons in the aromatic structures of the engineering plastics strongly interact with the electrons in the α-Fe2O3 particles. Also, it is suggested that the enhanced ε′ Fe2O3 is caused by the dispersivity of the α-Fe2O3 particles in the polymer matrix and the interfacial state between the α-Fe2O3 particles and the polymer matrix. However, it is difficult to explain the strong frequency dependence of the dielectric properties as shown in Fig. 2 by these two contributions (the dispersivity and the interfacial state). Therefore, we conclude...
that the enhanced ε'_r of a-Fe_2O_3 is mainly due to the interaction between the electrons in the a-Fe_2O_3 particles and the polymer matrix. From the viewpoint of the molecular structures of the polymer matrix, the a-Fe_2O_3 particles might be more effective for fully aromatic polyester and polyimide with long conjugations.

Dielectric properties of polymer/a-Fe_2O_3 composites at 160 °C

The PEI/a-Fe_2O_3 and PPE/a-Fe_2O_3 composites are not useful at 40 °C owing to the large ε''_r values over 0.1 (Table 1). Under an electric field E, the power loss of a dielectric material per unit volume, P, is expressed as,

$$P = E^2 \times 2\pi\epsilon_0\varepsilon''_r,$$

(2)

where ϵ_0 is the permittivity of vacuum. Because P is proportional to ε''_r, the ε''_r of the material must be low for industrial applications such as capacitors.

The large ε''_r values of the polymer/a-Fe_2O_3 composites are drastically reduced at 160 °C. Dielectric characteristics (1 kHz) obtained at 160 °C were listed in Table 2 for six kinds of polymer/a-Fe_2O_3 composites with $\Phi = 0.2$. At 1 kHz, all the ε''_r values are less than 0.05. Furthermore, for PEI, PSF, PAR and PES, the ε'_r of a-Fe_2O_3 is more than 150 at 160 °C. For the four kinds of composites, the f dependences of the ε'_r and ε''_r are shown in Fig. 3. Because the dielectric relaxations of Maxwell–Wagner polarization are not started at around 1 kHz as shown in Fig. 3b, the ε''_r values are small in the lower f range than 1 kHz. This result indicates the σ of the a-Fe_2O_3 particle is higher at 160 °C than 40 °C. Fig. 4 shows a variation in the f dependences of the ε'_r and ε''_r of the PEI/a-Fe_2O_3 composites with $\Phi = 0.2$ between 40 and 160 °C. The ε'_r peak is shifted to the higher f until the temperature reaches 120 °C.

For the four polymer matrices, we also prepared polymer/a-Fe_2O_3 composites with $\Phi = 0.4$. Fig. 5 shows the f dependences of the ε'_r and ε''_r of polymer/a-Fe_2O_3 composites with $\Phi = 0.4$ at 160 °C. The ε'_r of the PEI/a-Fe_2O_3 composite remains small whereas for PAR and PES, the ε'_r becomes very large over all the f range. In order to elucidate the large ε''_r, the volume resistivity ρ_{DC} of the composites was measured. At $\Phi = 0.4$, the ρ_{DC} for PAR and PES is much lower than that for PEI and PSF as shown in Fig. 6. ε''_r is the sum of a loss from σ, ε''_r and losses from dielectric polarizations ε''_{GD} as:

$$\varepsilon''_r = \varepsilon''_{r(\sigma)} + \varepsilon''_{r(GD)}.$$

(3)

Furthermore, $\varepsilon''_{r(\sigma)}$ is described using ρ_{DC} as follows:

$$\varepsilon''_{r(\sigma)} = 1/(2\pi f \rho_{DC}).$$

(4)

It is suggested that because $\varepsilon''_{r(\sigma)}$ is inversely proportion to f and ρ_{DC}, the ε''_r is highly increased at the low f range for PAR and PES. The low ρ_{DC} for PAR and PES could be attributed to a leak current passing through the conductive networks of the a-Fe_2O_3 particles, that is, percolation of the a-Fe_2O_3 particles. According to the percolation theory with a random packing of spherical particles, the percolation threshold is calculated to be about 0.30.41,42 Therefore, it was reasonable that the percolation of the a-Fe_2O_3 particles occurred in the polymer/a-Fe_2O_3 composites with $\Phi = 0.4$. To the contrary, it was unusual that the PEI/a-Fe_2O_3 composite had a high ρ_{DC} even at $\Phi = 0.4$. We suspected that the dispersivity of the a-Fe_2O_3 particles in the polymer matrix was different between

Table 2 Dielectric characteristics (1 kHz) for polymer/a-Fe_2O_3 composites with $\Phi = 0.2$ obtained at 160 °C

Polymer	ε'_r	ε''_r	ε'_r polymer	ε'_r a-Fe_2O_3
St-PMI	5.95	0.0307	2.87	116
PPE	5.71	0.0110	2.61	139
PEI	6.73	0.0321	3.11	157
PSF	6.82	0.0525	3.12	165
PAR	7.29	0.0509	3.31	182
PES	8.32	0.0533	3.53	246

a ε'_r of the polymer matrix only. b Apparent ε'_r of a-Fe_2O_3 calculated using Lichteneker’s logarithmic mixing rule.

Fig. 3 Frequency f dependence of (a) ε'_r and (b) ε''_r of polymer/a-Fe_2O_3 composites with $\Phi = 0$ (open symbols) and $\Phi = 0.2$ (filled symbols) obtained at 160 °C. The polymer matrices are PEI (circles), PSF (triangles), PAR (diamonds) and PES (squares).
the PEI/α-Fe₂O₃ and PAR/α-Fe₂O₃ composites, and observed it using SEM. Fig. 7 shows SEM images of the PEI/α-Fe₂O₃ and PAR/α-Fe₂O₃ composites with \(F = 0.20 \) and \(F = 0.4 \). There is no great difference in the dispersivity of the α-Fe₂O₃ particles, which means that the significant difference in \(\rho_{DC} \) is not due to the dispersivity of the α-Fe₂O₃ particles. In the PEI/α-Fe₂O₃ composite, the α-Fe₂O₃ particles would be covered with a PEI layer at a nanometer scale, resulting in the high \(\rho_{DC} \) for PEI owing to inhibition of the tunneling conduction of the free electron.\(^{39,43}\)

Comparing of dielectric performance for PEI/α-Fe₂O₃ and PEI/BaTiO₃ composites

As mentioned above, the PEI/α-Fe₂O₃ composite exhibits the high \(\varepsilon' \) and very low \(\varepsilon'' \) at the elevated temperature above 120 °C, which might be promising as a low-cost dielectric material for high-temperature applications; PEI has a maximum operating temperature of 200 °C.\(^{35}\) Therefore, the novel PEI/α-Fe₂O₃ composite was compared with a conventional PEI/BaTiO₃ composite.
composite in dielectric performance. As shown in Fig. 6, the ρ_{DC} values of both the composites are comparable at room temperature when Φ is less than 0.4, whereas the ρ_{DC} of PEI/α-Fe$_2$O$_3$ is much lower than that of PEI/BaTiO$_3$ at the higher Φ. This is because the interparticle distance becomes small enough for tunneling conduction to occur owing to high loading of particles. Fig. 8 shows the f dependences of the ε'_r and ε''_r of the two types of composites obtained at 40 °C and 160 °C. At 40 °C, although the ε'_r of PEI/α-Fe$_2$O$_3$ is higher than that of PEI/BaTiO$_3$ in the lower f range, the ε''_r of PEI/α-Fe$_2$O$_3$ is much larger than that of PEI/BaTiO$_3$. At 160 °C, however, ε'_r has comparable ε''_r values to PEI/BaTiO$_3$ except with $\Phi = 0.5$, and higher ε'_r than PEI/BaTiO$_3$. The dielectric characteristics at 1 kHz obtained at 160 °C are plotted as a function of Φ in Fig. 9. These results show that the PEI/α-Fe$_2$O$_3$ composite was comparable to the PEI/BaTiO$_3$ composite in dielectric performance at 160 °C. The fitting curves for the ε'_r of the two types of composites are drawn in Fig. 9a in solid lines using Lichtenecker's logarithmic mixing rule. These theoretical curves well fit to the experimental results and give ε'_r of BaTiO$_3$ of 86 and ε'_r of Fe$_2$O$_3$ of 170, respectively. This value of 86 for BaTiO$_3$ is
consistent with some reported results; ε'_r of α-Fe$_2$O$_3$ is around 100.8,19

Conclusion

The dielectric properties of polymer/α-Fe$_2$O$_3$ composites strongly depended not only on the temperatures but also on the kind of polymer matrices. For engineering plastics such as PEI, PSF, PAR and PES, the ε'_r was highly enhanced at around 1 kHz by incorporation of α-Fe$_2$O$_3$ particles owing to Maxwell–Wagner polarization of free electrons in the α-Fe$_2$O$_3$ particles. This is probably because the π electrons in the aromatic structures of the engineering plastics strongly interact with the electrons in the α-Fe$_2$O$_3$ particles. Furthermore, the ε'_r for the engineering plastics became small at the elevated temperatures because the σ of the α-Fe$_2$O$_3$ particle was enhanced and therefore the relaxation frequency of Maxwell–Wagner polarization was shifted to higher f. PEI/α-Fe$_2$O$_3$ composites exhibited highly improved dielectric properties at around 1 kHz, the high ε'_r and very low ε''_r at the elevated temperature above 120°C. It was demonstrated that the PEI/α-Fe$_2$O$_3$ composite was comparable to the PEI/BaTiO$_3$ composite in dielectric performance at 160°C. Because the cost of α-Fe$_2$O$_3$ is much lower than that of BaTiO$_3$, the PEI/α-Fe$_2$O$_3$ composites might be promising as a low-cost dielectric material for high-temperature applications.

Acknowledgements

SEM observation was carried out by Mr Yasuhiro Takatani at Toyota Central R&D Labs Inc. The authors appreciate his help.

References

1 W. J. Sarjeant, J. Zirnheld, F. W. MacDougall, J. S. Bowers, N. Clark, I. W. Clelland, R. A. Price, M. Hudis, I. Kohlberg, G. McDuff, I. McNab, S. G. Parler Jr and J. Prymak, in Handbook of low and high dielectric constant materials and their applications, ed. H. S. Nalwa, Academic Press, London, 1999, vol. 2, ch. 9, pp. 423–491.

2 Q. Wang and L. Zhu, J. Polym. Sci., Part B: Polym. Phys., 2011, 49, 1421–1429.

3 Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li and G. H. Hu, Prog. Mater. Sci., 2012, 57, 660–723.

4 S. D. Cho, S. Y. Lee, J. G. Hyun and K. W. Paik, J. Mater. Sci.: Mater. Electron., 2005, 16, 77–84.

5 P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder and J. W. Perry, Adv. Mater., 2007, 19, 1001–1005.

6 J. Lu and C. P. Wong, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, 1322–1328.

7 K. W. Jang and K. W. Paik, J. Appl. Polym. Sci., 2008, 110, 798–807.

8 P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M. J. Pan, S. R. Marder, J. Li, J. P. Calame and J. W. Perry, ACS Nano, 2009, 3, 2581–2592.

9 Y. Kobayashi, A. Kuroswa, D. Nagao and M. Konno, Polym. Eng. Sci., 2009, 49, 1069–1075.

10 A. Choudhury, Mater. Chem. Phys., 2010, 121, 280–285.

11 L. Xie, X. Huang, C. Wu and P. Jiang, J. Mater. Chem., 2011, 21, 5897–5906.

12 S. Siddabattuni, T. P. Shuman and F. Dogan, Mater. Sci. Eng., B, 2011, 176, 1422–1429.

13 M.-F. Lin, V. K. Thakur, E. J. Tan and P. S. Lee, RSC Adv., 2011, 1, 576–578.

14 Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li and C. W. Nan, J. Mater. Chem., 2012, 22, 16491–16498.

15 X. Wu, Z. Chen and Z. Cui, Compos. Sci. Technol., 2013, 81, 48–53.

16 K. Hayashida and Y. Matsuoka, Carbon, 2012, 60, 506–513.

17 K. Hayashida, Y. Matsuoka and Y. Takatani, RSC Adv., 2014, 4, 33530–33536.

18 C. Fettkenhauer, J. Glenneberg, W. Münchgesang, H. S. Leipner, G. Wagner, M. Diestelhorst, C. Pientschke, H. Beige and S. G. Ebbinghaus, RSC Adv., 2014, 4, 40321–40329.

19 W. Lei, R. Wang, D. Yang, G. Hou, X. Zhou, H. Qiao, W. Wang, M. Tian and L. Zhang, RSC Adv., 2015, 5, 47429–47438.
20 W. Yang, S. Yu, S. Luo, R. Sun, W.-H. Liao and C.-P. Wong, J. Alloys Compd., 2015, 620, 315–323.
21 Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang and W. D. Fei, J. Mater. Chem. C, 2015, 3, 1250–1260.
22 R. B. Hilborn Jr, J. Appl. Phys., 1965, 36, 1553–1557.
23 K. Iwauchi, S. Yamamoto, Y. Bando and N. Koizumi, Bull. Inst. Chem. Res., Kyoto Univ., 1970, 48, 159–169.
24 D. A. Sverjensky and N. Sahai, Geochim. Cosmochim. Acta, 1996, 60, 3773–3797.
25 M. L. Jimenez, F. J. Arroyo, F. Carrique and U. Kaatze, J. Phys. Chem. B, 2003, 107, 12192–12200.
26 J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, A. Bendavid and P. J. Martin, Thin Solid Films, 2008, 516, 1716–1724.
27 R. A. Lunt, A. J. Jackson and A. Walsh, Chem. Phys. Lett., 2013, 586, 67–69.
28 D. Dudić, M. Marinović-Cincović, J. M. Nedeljković and V. Djoković, Polymer, 2008, 49, 4000–4008.
29 A. M. E. Sayed and W. M. Morsi, J. Mater. Sci., 2014, 49, 5378–5387.
30 D. Chen, H. Quan, Z. Huang, S. Luo, X. Luo, F. Deng, H. Jiang and G. Zeng, Compos. Sci. Technol., 2014, 102, 126–131.
31 C. Kittel, in Introduction to Solid State Physics, ed. C. Kittel, John Wiley & Sons, New York, 7th edn, 1996, ch. 8, pp. 197–232.
32 S. Mohanty and J. Ghose, J. Phys. Chem. Solids, 1992, 53, 81–91.
33 A. Schönhaus and F. Kremer, in Broadband Dielectric Spectroscopy, ed. F. Kremer and A. Schönhaus, Springer-Verlag, Berlin, 2003, ch. 3, pp. 59–98.
34 D. Tan, L. Zhang, Q. Chen and P. Irwin, J. Electron. Mater., 2014, 43, 4569–4575.
35 Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L. Q. Chen, T. Jackson and Q. Wang, Nature, 2015, 523, 576–580.
36 M. N. Teerenstra, P. A. M. Steeman, W. Iwens, A. Vandervelden, D. R. Suwier, B. V. Mele and C. E. Koning, e-Polym., 2003, 3, 596–607.
37 H.-B. Tsai and Y.-D. Lee, J. Polym. Sci., Part A: Polym. Chem., 1987, 25, 1505–1515.
38 N. Erdman, R. Campbeli and S. Asahina, Microsc. Today, 2006, 14, 22–25.
39 K. Hayashida, RSC Adv., 2013, 3, 221–227.
40 K. Hayashida and Y. Matsuoka, Carbon, 2015, 85, 363–371.
41 G. E. Pike and C. H. Seager, Phys. Rev. B: Solid State, 1974, 10, 1421–1434.
42 C. D. Lorenz and R. M. Ziff, J. Chem. Phys., 2001, 114, 3659–3661.
43 K. Hayashida and H. Tanaka, Adv. Funct. Mater., 2012, 22, 2338–2344.