Poly[μ-aqua-μ5-[2-(2,3,6-trichlorophenyl)acetato]-caesium]

Graham Smith

Acta Cryst. (2013). E69, m628

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr’s highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org
metal-organic compounds

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Poly[μ-aqua-μ2-(2,3,6-trichlorophenyl)acetato]-caesium]

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

Received 22 October 2013; accepted 25 October 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean ϵ(C–C) = 0.009 Å; R factor = 0.050; wR factor = 0.111; data-to-parameter ratio = 16.8.

In the structure of the title complex, [Cs(C₈H₄Cl₃O₂)(H₂O)]ₙ, the caesium salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetato]-caesium, the irregular eight-coordination about Cs⁺ comprises a bidentate O:Cl-chelate interaction involving a carboxylate-O atom and an ortho-related ring-substituted Cl atom, which is also bridging, a triple-bridging carboxylate-O atom and a bridging water molecule. A two-dimensional polymer is generated, lying parallel to (100), within which there are water–carboxylate O–H⋯O hydrogen-bonding interactions.

Related literature

For background information on the herbicide fenac, see: O’Neil (2001). For the structure of fenac, see: White et al. (1979). For examples of caesium complexes involving coordinating carbon-bound Cl, see: Levitskaia et al. (2000); Smith (2013).

Table 1
Selected bond lengths (Å).

Table 2
Hydrogen-bond geometry (Å, °).

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2781).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.
Altomare, A., Cascaro, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554–562.
O’Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Smith, G. (2013). Acta Cryst. E69, m22–m23.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
White, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63–67.

m628 Graham Smith

doi:10.1107/S1600536813029395
Acta Cryst. (2013). E69, m628

Electronic reprint
supplementary materials

Acta Cryst. (2013). E69, m628 [doi:10.1107/S1600536813029395]

Poly[μ-aqua-μ$_5$-2-(2,3,6-trichlorophenyl)acetato]-caesium]

Graham Smith

1. Comment
(2,3,6-Trichlorophenyl)acetic acid (fenac) is a commercial herbicide (O’Neil, 2001) and its crystal structure (White et al., 1979) represents the only entry for this compound in the crystallographic literature. My interest in aromatic carboxylic acid herbicides and in polymeric coordination structures of the alkali metal complexes led to the preparation of the title compound, [Cs(C$_8$H$_4$Cl$_3$O$_2$)(H$_2$O)]$_n$, from the reaction of fenac with caesium hydroxide in aqueous ethanol, and the structure is reported herein.

In this structure (Fig. 1), the irregular eight-coordinate CsClO$_7$ polyhedron comprises a bidentate O:Cl-chelate interaction involving a carboxylate O-atom (O13) and an ortho-related ring substituted Cl-atom (Cl6) which is also bridging, a triple-bridging carboxylate O-atom (O12) and a bridging water molecule O1W (Table 1). A partial expansion of the asymmetric unit in the polymer structure is shown in Fig. 2, forming 4-, 7- and 8-membered cyclic associations linking Cs$^+$ ions (a triple bridge involving Cl6, O1W and O12$^\text{ii}$, extending down b). The minimum Cs···Cs$^\text{vi}$ bridging distance in the structure is 4.4336 (9) Å [for symmetry code (i), see Table 1. For code (vi): -x + 2, y + 1/2, -z + 3/2]. In the Cl bridge, the Cs—Cl bond lengths [3.646 (2) and 3.711 (2) Å] are long compared to those commonly present in the few known examples of caesium complexes having coordinating carbon-bound Cl atoms, e.g. 3.46–3.56 Å for a complex in which 1,2-dichloroethane acts as a bidentate chelate ligand (Levitskaia et al., 2000). However, I have previously reported values similar to those in the title complex in the analogous polymeric structure of caesium 4-amino-3,5,6-trichloropyridine-2-carboxylate monohydrate [3.6052 (11)– 3.7151 (11) Å], in which all three ring-substituted Cl-atoms are coordinated (Smith, 2013).

In the crystal structure of the title complex, a polymer with a sheet structure is generated which lies parallel to (100) (Fig. 3), and within which there are waterO—H···Ocarboxylate hydrogen-bonding interactions (Table 2).

2. Experimental
The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of (2,3,6-trichlorophenyl)acetic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave thin colourless crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

3. Refinement
Carbon-bound hydrogen atoms were placed in calculated positions [aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å] and allowed to ride in the refinement, with $U_{	ext{w}}$(H) = 1.2$U_{	ext{eq}}$(C). Hydrogen atoms of the coordinating water molecule were located in a difference-Fourier synthesis but were subsequently allowed to ride, with $U_{	ext{w}}$(H) = 1.5$U_{	ext{eq}}$(O). A large maximum residual electron density peak was present (2.176 e$^-$/Å3) located at 0.82 Å from Cs1. A short O1W···O1W$^\text{ii}$ non-bonding contact [2.804 (8) Å] across an inversion centre was also found.
Computing details

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1

The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids. [For symmetry codes, see Table 1.]
Figure 2
A partial expansion of the Cs⁺ coordination in the polymer generated by cyclic links through carboxylate, chlorine and water bridges. Ligand H-atoms are omitted. [For symmetry code (vi): -x + 2, y + 1/2, -z + 3/2. For other codes, see Fig. 1 and Table 1.]
Figure 3
The packing of the sheet structure in the unit cell viewed down b.

Poly[μ-aqua-μ5-[2-(2,3,6-trichlorophenyl)acetato]-caesium]

Crystal data

$[\text{Cs(C}_8\text{H}_4\text{Cl}_3\text{O}_2)(\text{H}_2\text{O})]$
$M_r = 389.39$

Monoclinic, $P2_1/c$

Hall symbol: -P 2ybc

$a = 17.0606$ (12) Å

$b = 4.9834$ (3) Å

$c = 13.9283$ (10) Å

$β = 98.127$ (6)°

$V = 1172.29$ (14) Å3

$Z = 4$

$F(000) = 736$

$D_x = 2.206$ Mg m$^{-3}$

Mo $Kα$ radiation, $λ = 0.71073$ Å

Cell parameters from 2248 reflections

$θ = 3.3$–28.0°

$μ = 3.82$ mm$^{-1}$

$T = 200$ K

Plate, colourless

$0.20 × 0.15 × 0.07$ mm

Data collection

Oxford Diffraction Gemini-S CCD-detector
diffractometer

Detector resolution: 16.077 pixels mm$^{-1}$

ω scans

Radiation source: Enhance (Mo) X-ray source

Absorption correction: multi-scan

Graphite monochromator

(CrysAlis PRO; Agilent, 2012)
supplementary materials

$T_{\text{min}} = 0.582, T_{\text{max}} = 0.980$

7585 measured reflections
2284 independent reflections
1873 reflections with $I > 2\sigma(I)$

$R_{\text{int}} = 0.034$

$\theta_{\text{max}} = 26.0^\circ, \theta_{\text{min}} = 3.4^\circ$

$h = -20\rightarrow 21$

$k = -6 \rightarrow 6$

$l = -17 \rightarrow 12$

Refinement

Refinement on F^2
Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.050$

$wR(F^2) = 0.111$

$S = 1.09$

2284 reflections
136 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 9.056P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta \sigma)_{\text{max}} = 0.001$

$\Delta \rho_{\text{max}} = 2.18 \text{ e Å}^{-3}$

$\Delta \rho_{\text{min}} = -1.86 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

x	y	z	U_{eq}^*	U_{eq}
Cs1	0.91683 (3)	1.08611 (9)	0.65098 (4)	0.0524 (2)
Cl2	0.66412 (12)	1.1809 (4)	0.23490 (12)	0.0501 (6)
Cl3	0.53476 (12)	1.4225 (4)	0.34892 (17)	0.0616 (8)
Cl6	0.76993 (11)	0.5765 (4)	0.54801 (14)	0.0508 (6)
O1W	1.0140 (3)	0.5882 (12)	0.5977 (4)	0.065 (2)
O12	0.8947 (3)	0.8961 (12)	0.2855 (4)	0.0529 (19)
O13	0.8658 (3)	1.0892 (13)	0.4175 (5)	0.072 (2)
C1	0.7124 (3)	0.8850 (12)	0.3931 (4)	0.0274 (17)
C2	0.6586 (4)	1.0773 (13)	0.3521 (4)	0.0326 (19)
C3	0.6013 (4)	1.1852 (14)	0.4022 (5)	0.0367 (19)
C4	0.5961 (4)	1.1051 (15)	0.4948 (5)	0.040 (2)
C5	0.6479 (4)	0.9137 (15)	0.5385 (5)	0.039 (2)
C6	0.7052 (4)	0.8101 (13)	0.4877 (5)	0.0322 (19)
C11	0.7748 (4)	0.7685 (14)	0.3401 (5)	0.036 (2)
C12	0.8505 (4)	0.9352 (12)	0.3479 (4)	0.0307 (19)
H4	0.55790	1.17900	0.52840	0.0480*
H5	0.64430	0.85520	0.60120	0.0470*
H11A	0.75320	0.75000	0.27210	0.0430*
H11B	0.78800	0.59030	0.36530	0.0430*
H11W	1.06400	0.68180	0.60200	0.0970*
H12W	1.02500	0.45100	0.63200	0.0970*
supplementary materials

Atomic displacement parameters (Å²)

	\(U_{11}^{\text{ij}}\)	\(U_{22}^{\text{ij}}\)	\(U_{33}^{\text{ij}}\)	\(U_{12}^{\text{ij}}\)	\(U_{13}^{\text{ij}}\)	\(U_{23}^{\text{ij}}\)
Cs1	0.0581 (3)	0.0302 (3)	0.0667 (4)	−0.0028 (2)	0.0012 (2)	0.0010 (2)
Cl2	0.0655 (12)	0.0500 (11)	0.0322 (9)	−0.0108 (9)	−0.0020 (8)	0.0071 (8)
Cl3	0.0487 (12)	0.0503 (12)	0.0787 (15)	0.0179 (9)	−0.0157 (10)	−0.0073 (11)
Cl6	0.0477 (11)	0.0492 (11)	0.0530 (11)	0.0041 (9)	−0.0016 (8)	0.0152 (9)
O1W	0.067 (4)	0.073 (4)	0.061 (3)	−0.041 (3)	0.031 (3)	−0.027 (3)
O12	0.039 (3)	0.075 (4)	0.049 (3)	−0.016 (3)	0.021 (2)	−0.026 (3)
O13	0.061 (4)	0.081 (4)	0.083 (4)	−0.042 (3)	0.041 (3)	−0.050 (4)
C1	0.025 (3)	0.026 (3)	0.031 (3)	−0.006 (3)	0.003 (2)	−0.004 (3)
C2	0.035 (4)	0.032 (3)	0.029 (3)	−0.011 (3)	−0.002 (3)	−0.004 (3)
C3	0.022 (3)	0.034 (3)	0.051 (4)	0.003 (3)	−0.006 (3)	−0.011 (3)
C4	0.032 (4)	0.051 (4)	0.039 (4)	−0.001 (3)	0.011 (3)	−0.017 (3)
C5	0.042 (4)	0.047 (4)	0.030 (3)	−0.009 (3)	0.013 (3)	−0.005 (3)
C6	0.025 (3)	0.030 (3)	0.039 (4)	−0.002 (3)	−0.004 (3)	−0.003 (3)
C11	0.035 (4)	0.035 (4)	0.038 (4)	−0.003 (3)	0.010 (3)	−0.010 (3)
C12	0.038 (4)	0.026 (3)	0.029 (3)	0.001 (3)	0.008 (3)	−0.005 (3)

Geometric parameters (Å, °)

	\(d_{\text{ij}}\)	\(d_{\text{ij}}\)	\(d_{\text{ij}}\)	\(d_{\text{ij}}\)	\(d_{\text{ij}}\)	\(d_{\text{ij}}\)
Cs1—Cl6	3.711 (2)	O1W—H12W	0.8400			
Cs1—O1W	3.131 (6)	C1—C2	1.392 (9)			
Cs1—O13	3.246 (7)	C1—C11	1.496 (9)			
Cs1—Cl6i	3.646 (2)	C1—C6	1.392 (9)			
Cs1—O1Wi	3.148 (6)	C2—C3	1.387 (9)			
Cs1—O12ii	3.213 (5)	C3—C4	1.365 (10)			
Cs1—O12ii	3.103 (6)	C4—C5	1.382 (10)			
Cs1—O12vi	3.242 (6)	C5—C6	1.385 (10)			
Cl2—C2	1.727 (6)	C11—C12	1.527 (10)			
Cl3—C3	1.732 (7)	C4—H4	0.9300			
Cl6—C6	1.737 (7)	C5—H5	0.9300			
O12—C12	1.244 (8)	C11—H11A	0.9700			
O13—C12	1.235 (9)	C11—H11B	0.9700			
O1W—H11W	0.9700					
Cl6—Cs1—O1W	73.58 (10)	Cs1—a—O12—Cs1vi	89.15 (14)			
Cl6—Cs1—O13	62.95 (11)	Cs1—a—O12—Cs1vi	86.76 (13)			
Cl6—Cs1—Cl6i	85.27 (4)	Cs1—O12—Cs1vi	103.50 (16)			
Cl6—Cs1—O1Wi	143.35 (11)	Cs1—O13—C12	141.3 (5)			
Cl6—Cs1—O12ii	136.07 (11)	Cs1—O1W—H12W	126.00			
Cl6—Cs1—O12ii	64.54 (11)	H11W—O1W—H12W	103.00			
Cl6—Cs1—O12vi	129.83 (10)	Cs1—O1W—H11W	95.00			
O1W—Cs1—O13	80.93 (15)	Cs1—a—O1W—H11W	149.00			
Cl6—Cs1—O1W	142.70 (11)	C2—C1—C11	122.6 (5)			
O1W—Cs1—O1Wi	150.07 (14)	C6—C1—C11	121.8 (5)			
O1W—Cs1—O12ii	62.90 (14)	C2—C1—C6	115.6 (5)			
O1W—Cs1—O12vi	69.09 (14)	C12—C2—C1	118.2 (5)			
O1W—Cs1—O12vi	151.22 (14)	C12—C2—C3	119.7 (5)			
Cl6—Cs1—O13	62.00 (11)	C1—C2—C3	122.1 (5)			

Acta Cryst. (2013). E69, m628

sup-6
Bond/Angle	Dist./Angle	Bond/Angle	Dist./Angle
O1Wi—Cs1—O13	80.54 (15)	C2—C3—C4	120.4 (6)
O12ii—Cs1—O13	113.08 (14)	Cl3—C3—C4	118.6 (5)
O12iii—Cs1—O13	124.78 (15)	Cl3—C3—C2	121.0 (5)
O12iv—Cs1—O13	122.59 (15)	C3—C4—C5	119.7 (6)
Cl6—Cs1—O1Wi	74.34 (10)	C4—C5—C6	119.1 (6)
Cl6—Cs1—O12ii	134.05 (11)	Cl6—C6—C5	116.7 (5)
Cl6—Cs1—O12iii	128.39 (10)	C1—C6—C5	123.2 (6)
Cl6—Cs1—O12iv	64.16 (10)	Cl6—C6—C1	120.2 (5)
O1Wi—Cs1—O12ii	60.21 (14)	C1—C11—C12	114.1 (5)
O1Wi—Cs1—O12iii	150.59 (14)	O12—C12—C11	117.1 (6)
O1Wi—Cs1—O12iv	67.16 (14)	O13—C12—C11	118.5 (6)
O12ii—Cs1—O12iii	93.30 (14)	O12—C12—O13	124.3 (7)
O12ii—Cs1—O12iv	90.73 (14)	C3—C4—H4	120.00
O12iii—Cs1—O12iv	103.50 (15)	C5—C4—H4	120.00
Cs1—Cl6—C6	94.4 (2)	C4—C5—H5	120.00
Cs1—Cl6—Cs1v	85.27 (4)	C6—C5—H5	120.00
Cs1v—Cl6—C6	173.7 (2)	C1—C11—H11A	109.00
Cs1—O1W—Cs1v	105.07 (15)	C1—C11—H11B	109.00
Cs1ii—O12—C12	119.0 (4)	C12—C11—H11A	109.00
Cs1vi—O12—C12	132.9 (4)	C12—C11—H11B	109.00
Cs1vii—O12—C12	114.3 (4)	H11A—C11—H11B	108.00

Supplementary materials

Acta Cryst. (2013). E69, m628
supplementary materials

O12ii—Cs1—O13—C12 −161.3 (7) C11—C1—C2—C3 −179.6 (6)
Cl6—Cs1—Cl6i—Cs1i 180.00 (4) C11—C1—C6—Cl6 0.3 (9)
O1W—Cs1—Cl6i—Cs1i −125.21 (17) C11—C1—C6—C5 −179.8 (6)
O13—Cs1—Cl6i—Cs1i −118.22 (12) C2—C1—C11—C12 85.3 (7)
Cl6—Cs1—O1Wii—Cs1i 97.39 (19) C6—C1—C11—C12 −93.7 (7)
O1W—Cs1—O1Wii—Cs1i 179.98 (16) C12—C2—C3—Cl3 0.2 (8)
O13—Cs1—O1Wii—Cs1i 102.15 (17) C12—C2—C3—C4 179.9 (6)
Cl6—Cs1—O12iii—Cs1vii −157.48 (7) C1—C2—C3—Cl3 −179.6 (5)
Cl6—Cs1—O12iii—Cs1v −62.1 (5) C1—C2—C3—C4 0.2 (10)
O1W—Cs1—O12iii—Cs1v −166.04 (19) C2—C3—C4—C5 −0.5 (11)
O1W—Cs1—O12iii—Cs1vii 53.6 (5) C2—C3—C4—C5 179.2 (6)
O13—Cs1—O12iii—Cs1vii 128.20 (15) C3—C4—C5—C6 1.1 (11)
O13—Cs1—O12iii—Cs1v −12.2 (5) C4—C5—C6—Cl6 178.4 (6)
Cl6—Cs1—O12iii—Cs1v 52.02 (11) C4—C5—C6—C1 −1.5 (11)
Cl6—Cs1—O12iii—Cs1vii −91.1 (6) C1—C11—C12—O12 −160.0 (6)
O1W—Cs1—O12iii—Cs1vii −29.16 (14) C1—C11—C12—O12 23.4 (9)

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) x, −y+5/2, z+1/2; (v) x, y, −z; (vi) x, −y+3/2, z−1/2; (vii) x, −y+5/2, z−1/2; (viii) −x+2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

\begin{tabular}{cccccc}
D—H···A & D—H & H···A & D···A & D—H···A \\
\hline
O1W—H11W···O13ii & 0.97 & 1.70 & 2.638 (8) & 161 \\
O1W—H12W···O13ix & 0.84 & 2.40 & 3.191 (8) & 158 \\
C11—H11A···Cl2 & 0.97 & 2.64 & 3.026 (7) & 104 \\
C11—H11B···Cl6 & 0.97 & 2.61 & 3.062 (7) & 109 \\
\end{tabular}

Symmetry codes: (ii) −x+2, −y+2, −z+1; (ix) −x+2, −y+1, −z+1.