Comment on “Provably secure biometric-based client–server secure communication over unreliable networks”

Mahdi Nikooghadam, Hamid Reza Shahriari

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract
In key agreement protocols, the user will send a request to the server and the server will respond to that message. After two-way authentication, a secure session key will be created between them. They use the session key to create a secure channel for communication. In 2021, Saleem et al. proposed a protocol for securing user and server communications, claiming that their proposed protocol meets a variety of security needs and is also resistant to known types of attacks. In this article, we will show that Saleem et al.’s scheme does not meet the security requirement of perfect forward secrecy.

Keywords: Authentication, Cryptanalysis, unreliable networks, Security

1. Introduction
Currently, with the significant growth of information technology, one of the major concerns, especially in the field of IoT, is about authentication protocols and the security of messages that send between users and server. There is a lot of research present to ensure the information security requirements of messages that transmit between users and servers. Most research is based on smart cards.

In 1981, Lamport et al. [1] proposed a simple authentication protocol based on one-way hash functions. However, Sung-Ming et al. [2] proved that the protocol presented in [1] is not resistant to stolen verifier attack. He showed the attacker can obtain users’ confidential information by infiltrating the server database. Also in 2000, a key authentication scheme was proposed by Hwang et al. [7]. The protocol has a very high computational and communication overhead.

Das presented a two-factor authentication protocol for communication between

*Hamid Reza Shahriari
Email addresses: mahdi.nikooghadam@aut.ac.ir (Mahdi Nikooghadam), shahriari@aut.ac.ir (Hamid Reza Shahriari)
users and servers in IoT environment based on a password and smart card. The study by Khan, Alghathbar and Lee, et al. demonstrates that the Das protocol does not guarantee user anonymity and is susceptible to password guessing attacks. In 2016, Nikoghadam and Arshad proposed a protocol for authentication and key agreement with the aim of ensuring user anonymity. This protocol could not meet the perfect forward secrecy.

An improved two-factor authentication technique for client-server environments was presented by Xie et al. in 2014. After then, Lu et al. conducted cryptanalysis on and discovered that it was susceptible to tracking, insider attack, and user impersonation attacks. In order to fix the problems with the Xie et al. protocol, Lu et al. propose an improved two-factor authentication scheme. The protocol fails to withstand user impersonation, server impersonation, and MITM attacks, according to Mahmood et al. in 2020. In order to address the shortcomings of, Mahmood et al. introduced an anonymous authentication mechanism for client-server environments. However, Mahmood et al. scheme were not suitable for real-world use.

Saleem et al. also presented a scheme in 2021 for authentication and key agreement to secure the communications between servers and users. They claimed the proposed protocol could meet various security requirements and was also resistant to known attacks. In this paper, we show that Saleem et al.’s scheme does not meet perfect forward secrecy.

2. Overview and cryptanalysis

In this section, we carry out cryptanalysis of Saleem et al.’s scheme and show it is vulnerable against perfect forward secrecy. Also, we show the Saleem et al.’s scheme can’t provide security for authentication and key agreement protocols.

2.1. Overview of Saleem et al.’s Scheme

Salman et al. scheme includes two main phases, authentication and key agreement. In registration phase, the communication channel between active entities considers secure. The communication channel is also regarded as insecure in the authentication and key agreement phase, so the attacker can eavesdrop, manipulate, or store messages during this phase. Table 1 shows the notations used in Salman et al.’s scheme. Also, figures 1 and 2 show their proposed protocol in detail.

2.2. Cryptanalysis of Saleem et al.’s Scheme

In this section, we analyze the defects of the proposed scheme by Saleem et al. And explain its vulnerabilities in detail. In this section, we analyze Saleem et al.’s scheme and explain its vulnerabilities in detail. Saleem et al. claimed that their protocol could meet this forward secrecy. We prove the claim of Saleem et al is incorrect and their protocol can not guarantee these security requirements.
Registration Phase
C_e
Select an unique identity ID_e
Select a password PW_e
Imprint the biometric B_e
Choose $a \in Z_p^*$ at random
$PW_e' = h(ID_e

ID_e, PW_e'
(Secure Channel)

Compute
$G_e = h(ID_e
$H_e = G_e \oplus PW_e'$
$E_e = h(G_e
Stores $[H_e, E_e, Pub]$ in SC_e.

SC_e
(Secure Channel)

Compute
$Z_e = h(ID_e
Store Z_e in SC_e
SC_e hold $[H_e, E_e, Z_e, Pub]$

Figure 1: Registration Phase of Saleem et al.'s scheme
Login and Authentication Phase

Enter ID_c and PW_c
Imprint the biometric B_c

\[a = Z_c \oplus h(ID_c||PW_c \oplus B_c) \]
\[G'_c = H_c \oplus h(ID_c||PW_c||a||B_c) \]
\[E'_c = h(G'_c||ID_c) \]
If $(E'_c \neq E_c)$
Abort the session

Else, choose $r_c \in Z_p^*$ at random

Compute
\[M_c = r_c.\text{Pub} = r_c.s.P \]
\[PID_c = ID_c \oplus r_c.P \]
\[N_c = r_c \oplus h(E_c||t_c) \]

\[Auth_c = h(ID_c||G_c||r_c||t_c) \]

if $(t_s - t_c > \Delta t)$

Abort the session

Else and compute
\[ID_c = PID_c \oplus s^{-1}.M_c \]
\[G_c = h(ID_c||s) \]
\[E_c = h(G_c||ID_c) \]
\[r_c = N_c \oplus h(E_c||t_c) \]
\[Auth'_c = h(ID_c||G_c||r_c||t_c) \]
if $(Auth'_c \neq Auth_c)$

Terminate the session
else, choose $r_s \in Z_p^*$ at random

compute
\[O_s = r_s \oplus r_c \]
\[SK = h(G_c||r_s||r_c||t_c||t_s) \]
\[Auth_s = h(SK||E_c||ID_s) \]

\[O_s, Auth_s, t_s \]

if $(t_k - t_s > \Delta t)$

Abort the session

Else and compute $r_s = O_s \oplus r_c$

Computes
\[SK = h(G'_c||r_s||t_c||t_s) \]
if $(Auth'_s \neq h(SK||E_s||ID_s))$

Abort the session
else, accept SK is the session key

Figure 2: Authentication phase of Saleem et al.’s scheme
Table 1: Notations used in Saleem et al.'s scheme

Notation	Description		
C_c	cth client		
S_s	sth server		
ID_c	Identity of C_c		
PW_c	Password of C_c		
B_c	Biometric of C_c		
$E_p(a,b)$	Elliptic curve over \mathbb{Z}_p		
P	Base point of $E_p(a,b)$		
s	Secret key of S_s, where $s \in \mathbb{Z}_p^*$		
Pub	Public key of S_s, where $Pub = s.P$		
$h(.)$	Secure hash function		
SC_c	Smartcard of C_c		
A	A malicious client/adversary		
$\oplus,		$	XOR/Concatenation operator
SK	Common session key between C_c and S_s		

In perfect forward secrecy, it is assumed that if an attacker has access to long-term parameters of active entities such as private and public keys, he should not be able to access the session key.

Assuming this, if the attacker obtain access to the server’s private key, a premise of perfect forward secrecy, since the M_c and PID_c parameters are exchanged on the public channel, the attacker can obtain the ID_c parameter through the $ID_c = PID_c \oplus s^{-1}.M_c$.

In the next step, by the assumption that the attacker has server private key, and also ID_c which was obtained in the previous step, it will be able to obtain G_c from the relation $G_c = h(ID_c||s)$ Who has already obtained ID_c will be able to generate E_c from $E_c = h(G_c||ID_c)$.

Now considering that the parameter N_c and the time stamp t_c are exchanged on the public channel, as well as the parameters that the attacker has obtained so far, he/she will be able to generate r_c through $r_c = N_c \oplus h(E_c||t_c)$.

Next, by considering the parameters that exchange in the second message in the authentication and key agreement phase (O_s, $Auth_s$, t_s) and the assumption that the attacker can distinguish them, he will be able to obtain the r_s parameter from $O_s = r_s \oplus r_c$.

Finally, considering all the parameters obtained so far, it is possible to generate the session key from the $SK = h(G_c||r_c||r_s||t_c||t_s)$. In this way, we show the claim of Saleem et al. is incorrect.
3. Conclusion and Future Work

Nowadays providing a secure communication channel that enables users to send messages to servers with preservation of privacy, has been considered by many researchers. In this article, we review the Saleem et al scheme, and we showed that even though they use elliptic curve encryption in their proposed protocol, their scheme does not provide perfect forward secrecy. Their proposed protocol can’t meet perfect forward secrecy because elliptic curve encryption was not used properly. In future work, we will propose a secure key authentication scheme using elliptic curve encryption and the ECDHP. The protocol will meet the security requirements in authentication and key agreement protocols.

References

[1] Lamport, Leslie. “Password authentication with insecure communication.” Communications of the ACM 24.11 (1981): 770-772.

[2] Sung-Ming, Yen, and Liao Kuo-Hong. “Shared authentication token secure against replay and weak key attacks.” Information Processing Letters 62.2 (1997): 77-80.

[3] Saleem, Muhammad Asad, et al. “Provably secure biometric-based client–server secure communication over unreliable networks.” Journal of Information Security and Applications 58 (2021): 102769.

[4] Xu, Shuishuai, et al. “An improved mutual authentication protocol based on perfect forward secrecy for satellite communications.” International Journal of Satellite Communications and Networking 38.1 (2020): 62-73.

[5] Ravanbakhsh, Niloofar, Mohadeseh Mohammadi, and Morteza Nikooghadam. “Perfect forward secrecy in VoIP networks through design a lightweight and secure authenticated communication scheme.” Multimedia Tools and Applications 78.9 (2019): 11129-11153.

[6] Nikooghadam, Mahdi, and Haleh Amintoosi. “Perfect forward secrecy via an ECC-based authentication scheme for SIP in VoIP.” The Journal of Supercomputing 76.4 (2020): 3086-3104.

[7] Hwang, Min-Shiang, and Li-Hua Li. “A new remote user authentication scheme using smart cards.” IEEE Transactions on consumer Electronics 46.1 (2000): 28-30.

[8] Das, Manik Lal. “Two-factor user authentication in wireless sensor networks.” IEEE transactions on wireless communications 8.3 (2009): 1086-1090.
[9] Khan, Muhammad Khurram, and Khaled Alghathbar. “Cryptanalysis and security improvements of ‘two-factor user authentication in wireless sensor networks’.” Sensors 10.3 (2010): 2450-2459.

[10] Lee, Cheng-Chi, Chun-Ta Li, and SHUN-DER Chen. “Two attacks on a two-factor user authentication in wireless sensor networks.” Parallel Processing Letters 21.01 (2011): 21-26.

[11] Nikooghadam, Morteza, Reza Jahantigh, and Hamed Arshad. “A lightweight authentication and key agreement protocol preserving user anonymity.” Multimedia Tools and Applications 76.11 (2017): 13401-13423.

[12] Xie, Qi, et al. “Cryptanalysis and security enhancement of a robust two-factor authentication and key agreement protocol.” International Journal of Communication Systems 29.3 (2016): 478-487.

[13] Lu, Yanrong, et al. “Robust anonymous two-factor authenticated key exchange scheme for mobile client-server environment.” Security and Communication Networks 9.11 (2016): 1331-1339.

[14] Mahmood, Khalid, et al. “Revised anonymous authentication protocol for adaptive client-server infrastructure.” International Journal of Communication Systems 33.4 (2020): e4253.