CHARACTERS OF REPRESENTATIONS OF AFFINE KAC-MOODY LIE ALGEBRAS AT THE CRITICAL LEVEL

TOMOYUKI ARAKAWA

1. Introduction and Main Results

1.1. Let \bar{g} be a complex simple Lie algebra of rank l, g non-twisted affine Kac-Moody Lie algebra associated with \bar{g}:

$$ g = \bar{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D. $$

(1)

The commutation relations of g are given by the following.

$$ [X(m), Y(n)] = [X, Y](m+n) + m\delta_{m+n,0}(X|Y)K, $$

$$ [D, X(m)] = mX(m), $$

$$ [K, g] = 0 $$

for $X, Y \in \bar{g}$, $m, n \in \mathbb{Z}$, where $X(m) = X \otimes t^m$ with $X \in \bar{g}$ and $m \in \mathbb{Z}$ and $(\cdot | \cdot)$ is the normalized invariant inner product of \bar{g}. We identify \bar{g} with $\bar{g} \otimes \mathbb{C} \subset g$. Fix the triangular decomposition $\bar{g} = \bar{n}^- \oplus \bar{h} \oplus \bar{n}^+$, and the Cartan subalgebra of g as $\mathfrak{h} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}D$. We have $\mathfrak{h}^* = \mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$, where Λ_0 and δ are elements dual to K and D, respectively.

Let $L(\lambda)$ be the irreducible highest weight representation of g of highest weight $\lambda \in \mathfrak{h}^*$ with respect to the standard triangular decomposition $g = n^- \oplus \mathfrak{h} \oplus n^+$, where $n^- = \bar{n}^- \oplus \bar{g} \otimes \mathbb{C}[t^{-1}]t^{-1}$, $n^+ = \bar{n}^+ \oplus \bar{g} \otimes \mathbb{C}[t]t$.

The central element K acts on $L(\lambda)$ as the multiplication by the constant $\langle \lambda, K \rangle$, which is called the level of $L(\lambda)$. The level $\langle \lambda, K \rangle = -h^\vee$ is called critical, where h^\vee is the dual Coxeter number of \bar{g}.

1.2. Let $\text{ch} L(\lambda)$ be the formal character of $L(\lambda)$:

$$ \text{ch} L(\lambda) = \sum_{\mu \in \mathfrak{h}^*} e^{\mu} \dim \mathbb{C} L(\lambda)^\mu, $$

where $L(\lambda)^\mu$ is the weight space of $L(\lambda)$ of weight μ.

The Weyl-Kac character formula [Kac74] gives an explicit formula of $\text{ch} L(\lambda)$ in the case that $L(\lambda)$ is an integrable representations of g. It is known that Kac-Wakimoto admissible representations [KW88, KW89] also have the Weyl-Kac type character formulas. The celebrated Kazhdan-Lusztig conjecture [KL79] (proved by [BB81, BK81]) has been generalized to g by Kashiwara-Tanisaki [KT93, KT96] [KT98, KT00] and Casian [Cas96]. As a result the character $\text{ch} L(\lambda)$ is known for any $L(\lambda)$ provided that its level is not critical (see [KT00] for the most general formula).

The author is partially supported by the JSPS Grant-in-Aid for Young Scientists (B) No. 17740006.
1.3. On the contrary not much is known about the characters of $L(\lambda)$ at the critical level. It seems that only the generic case is known, that is, the case that λ satisfies the condition that

$$\langle \lambda + \rho, \alpha \rangle \not\in \mathbb{N} \quad \text{for all } \alpha \in \Delta^+_r,$$

where Δ^+_r is the set of positive real roots of \mathfrak{g}, $\rho = \bar{\rho} + h^\vee \Lambda_0$, $\bar{\rho} = 1/2 \sum_{\bar{\alpha} \in \bar{\Delta}_+} \bar{\alpha}$ and $\bar{\Delta}_+ \subset \Delta^+_r$ is the set of positive roots of $\bar{\mathfrak{g}}$. In this case the Kac-Kazhdan conjecture [KK79] (which is a theorem proved by [Hay88, GW89, FF88, Ku89]) gives the following character formula of $L(\lambda)$:

$$\text{ch} L(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta^+_r} (1 - e^{-\alpha}).$$

By the existence of the Wakimoto modules at the critical level [Wak86, FF90b, Pre05], it follows that the irreducible representation $L(\lambda)$ at the critical level in general has a character equal to or smaller than the right hand side of (3).

1.4. In this paper we study the irreducible highest weight representations of \mathfrak{g} at the critical level which are integrable over $\bar{\mathfrak{g}}$. Denote by $\bar{\lambda}$ the restriction of $\lambda \in \mathfrak{h}^*$ to $\bar{\mathfrak{h}}$. Set

$$P^+_{\text{crit}} = \{ \lambda \in \mathfrak{h}^*; \bar{\lambda} \in \bar{P}^+, \langle \lambda, K \rangle = -h^\vee \},$$

where \bar{P}^+ the set of integral dominant weights of $\bar{\mathfrak{g}}$:

$$\bar{P}^+ = \{ \bar{\lambda} \in \bar{\mathfrak{h}}^*; \langle \bar{\lambda}, \alpha \rangle \in \mathbb{Z}_{\geq 0} \text{ for all } \alpha \in \bar{\Delta}_+ \}.$$

The $L(\lambda)$ at the critical level is integrable over $\bar{\mathfrak{g}}$ if and only if λ belongs to P^+_{crit}.

We have the following result.

Theorem 1. Let $\lambda \in P^+_{\text{crit}}$. The character of $L(\lambda)$ is given by

$$\text{ch} L(\lambda) = \sum_{w \in \bar{W}} (-1)^{\ell(w)} e^{w \circ \lambda} \prod_{\alpha \in \bar{\Delta}_+} \left(1 - q^{-\langle \lambda + \rho, \alpha \rangle} \right) \prod_{\alpha \in \Delta^+_r} (1 - e^{-\alpha}),$$

where $q = e^\delta$, \bar{W} is the Weyl group of $\bar{\mathfrak{g}}$, $\ell(w)$ is the length of w and $w \circ \lambda = w(\lambda + \rho) - \rho$.

1.5. Recently the representations of \mathfrak{g} at the critical level have been studied in detail by Frenkel and Gaitsgory [FG04, FG05, FG06, FG07] in the view point of the geometric Langlands program. Our original motivation was to confirm Conjecture 5 of [Pre06] in the case that the opers are “graded” (see Theorem 10) by applying the method of the quantum Drinfeld-Sokolov reduction [FF90a, FF92, FBZ04] (cf. [FKW92, KRW03, KW04, Ara04, Ara05, Ara06, Ara07a]). Theorem 1 has been obtained as a byproduct of the proof.

1. See also [Mat03, Pre05, Ara06].
2. After finishing this paper we were notified that Frenkel and Gaitsgory have recently proved Conjecture 5 of [Pre06] and that Theorem 1 was known to E. Frenkel.
2. **Endomorphism rings, duality and the character level**

2.1. **The category O^{KL}_{crit}.** Denote by O^{KL}_{crit} the full subcategory of the category of \mathfrak{g}-modules consisting of objects M such that the following hold: (1) K acts on M as the multiplication by $-h^\vee$, (2) D acts on M semisimply: $M = \bigoplus_{d \in \mathbb{C}} M_d$, where $M_d = \{ m \in M; Dm = dm \}$, (3) dim $M_d < \infty$ for all d, (4) there exists a finite subset $\{ d_1, \ldots, d_r \}$ of \mathbb{C} such that $M_d = 0$ unless $d \in \bigcup_{i=1}^r d_i - Z_{\geq 0}$.

Any object M of O^{KL}_{crit} admits a weight space decomposition: $M = \bigoplus_{\lambda \in \mathbb{C}} M^\lambda$, $M^\lambda = \{ m \in M; hm = \langle \lambda, h \rangle m \ \forall h \in \mathfrak{h} \}$. We set $\text{ch} M = \sum_{\lambda \in \mathbb{C}} e^\lambda \dim M^\lambda$.

The Weyl module

\begin{equation}
V(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{g} \otimes \mathbb{C}[t] \oplus CK)} E(\lambda)
\end{equation}

with $\lambda \in P^+_{\text{crit}}$ belongs to O^{KL}_{crit}. Here $E(\lambda)$ is the irreducible finite-dimensional representation of \mathfrak{g} of highest weight λ, considered as a $\mathfrak{g} \otimes \mathbb{C}[t] \oplus CK \oplus CD$-module on which $\mathfrak{g} \otimes \mathbb{C}[t]$ acts by zero, and K and D act as the multiplication by $-h^\vee$ and $\langle \lambda, D \rangle$, respectively. By the Weyl character formula one has

\begin{equation}
\text{ch} V(\lambda) = \frac{\sum_{w \in W} (-1)^{f(w)} e^w \omega_\lambda}{\prod_{i \geq 1} (1-q^{-i})^\ell \prod_{i \in \Delta^+} (1-e^{-\alpha})}.
\end{equation}

The $V(\lambda)$ has $L(\lambda)$ as its unique simple quotient.

2.2. **The derived algebra \mathfrak{g}' of \mathfrak{g}.** Let \mathfrak{g}' be the derived algebra of \mathfrak{g}:

\begin{equation}
\mathfrak{g}' := [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus CK.
\end{equation}

One sees that each $L(\lambda)$ remains irreducible over \mathfrak{g}'.

2.3. **The vertex algebra associated with $\bar{\mathfrak{g}}$ at the critical level.** The vacuum Weyl module

\begin{equation}
\mathcal{V}_{\mathfrak{g}, \text{crit}} := V(-h^\vee \Lambda_0)
\end{equation}

has the natural structure of vertex algebras (see eg. [Kac98] [FBZ04]). The $\mathcal{V}_{\mathfrak{g}, \text{crit}}$ is called the universal affine vertex algebra associated with $\bar{\mathfrak{g}}$ at the critical level. Each object of O^{KL}_{crit} can be regarded as a $\mathcal{V}_{\mathfrak{g}, \text{crit}}$-module.

For a vertex algebra V in general we denote by

\begin{equation}
Y(a, z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1} \in (\text{End} V)[[z, z^{-1}]])
\end{equation}

the quantum field corresponding to $a \in V$. Also, we write $\text{Zh}(V)$ for the Zhu algebra [FZ92] [Zhu96] (see also [NT05]) of V. One knows by [FZ92] that there is a natural isomorphism

\begin{equation}
\text{Zh}(\mathcal{V}_{\mathfrak{g}, \text{crit}}) \cong U(\bar{\mathfrak{g}}).
\end{equation}

2.4. **Feigin-Frenkel’s theorem.** The vertex algebra $\mathcal{V}_{\mathfrak{g}, \text{crit}}$ has a large center [Hay88] [FF92], which we denote by $\mathfrak{Z}(\mathcal{V}_{\mathfrak{g}, \text{crit}})$:

$\mathfrak{Z}(\mathcal{V}_{\mathfrak{g}, \text{crit}}) = \{ a \in \mathcal{V}_{\mathfrak{g}, \text{crit}}; a_{(n)} v = 0 \text{ for all } n \in \mathbb{Z}_{\geq 0}, v \in \mathcal{V}_{\mathfrak{g}, \text{crit}} \}$.

Then

$\mathfrak{Z}(\mathcal{V}_{\mathfrak{g}, \text{crit}}) = \{ a \in \mathcal{V}_{\mathfrak{g}, \text{crit}}; [a_{(m)}, v_{(n)}] = 0 \text{ for all } m, n \in \mathbb{Z}, v \in \mathcal{V}_{\mathfrak{g}, \text{crit}} \}$.

Let $a \in \mathfrak{Z}(\mathcal{V}_{\mathfrak{g}, \text{crit}})$ and $n \in \mathbb{Z}$. The action of $a_{(n)}$ on $M \in O^{KL}_{\text{crit}}$ commutes with the action of \mathfrak{g}'. Therefore each $a_{(n)}$ acts as the multiplication by a constant on $L(\lambda)$.
Let $I = \{1, 2, \ldots, l\}$ ($l = \text{rank } \mathfrak{g}$), $\{d_i; i \in I\}$ the exponents of \mathfrak{g}, $\mathcal{Z}(\mathfrak{g})$ the center of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}.

There is a remarkable realization of $3(V_{\mathfrak{g}, \text{crit}})$ due to Feigin and Frenkel \[FF92\] as a chiralization of Kostant’s Whittaker model \[Kos78\] of $\mathcal{Z}(\mathfrak{g})$ (for details, see \[FBZ04\]). As a result one has the following description of $3(V_{\mathfrak{g}, \text{crit}})$.

Theorem 2 (E. Frenkel and B. Feigin \[FF92\]). There exist homogeneous vectors $p^i \in 3(V_{\mathfrak{g}, \text{crit}}) \cap (V_{\mathfrak{g}, \text{crit}})_{-d_i - 1}$ with $i \in I$ that generate a PBW basis of $3(V_{\mathfrak{g}, \text{crit}})$: that is, there is a linear isomorphism

$$\mathbb{C}[p^i_{(-n)}; i \in I, n \in \mathbb{Z}_{\geq 1}] \xrightarrow{\sim} 3(V_{\mathfrak{g}, \text{crit}}),$$

where $|0\rangle$ is the highest weight vector of $V_{\mathfrak{g}, \text{crit}}$.

2.5. **The linkage principle for $O_{\text{KL}}^{\text{crit}}$**. Let p^i with $i \in I$ be generators of $3(V_{\mathfrak{g}, \text{crit}})$ as in Theorem 2. (We have $p^i = p^i_{(-1)}|0\rangle$.) Write

$$Y(p^i, z) = \sum_{n \in \mathbb{Z}} p^i_n z^{-n-d_i-1},$$

so that

$$[D, p^i_n] = np^i_n$$
on $M \in O_{\text{KL}}^{\text{crit}}$. Set

$$R_Z = \mathbb{C}[p^i_n; i \in I, n \in \mathbb{Z}].$$

An object M of $O_{\text{KL}}^{\text{crit}}$ is regarded as a R_Z-module naturally.

There is a natural map

$$\mathbb{C}[p^i_0; i \in I] \to \text{Zh}(3(V_{\mathfrak{g}, \text{crit}})),$$

which is actually an isomorphism. To be precise we have the following assertion.

Theorem 3. The natural map $\text{Zh}(3(V_{\mathfrak{g}, \text{crit}})) \to \text{Zh}(V_{\mathfrak{g}, \text{crit}}) = U(\mathfrak{g})$ is injective and its image coincides with $\mathcal{Z}(\mathfrak{g})$.

See \[Ara07a\] for a proof of Theorem 3. We shall identify $\text{Zh}(3(V_{\mathfrak{g}, \text{crit}}))$ with $\mathcal{Z}(\mathfrak{g}) \subset U(\mathfrak{g})$ through Theorem 3.

Let $o(p^i)$ be the image of p^i_0 in $\text{Zh}(3(V_{\mathfrak{g}, \text{crit}}))$. If $v_\lambda \in M \in O_{\text{KL}}^{\text{crit}}$ is annihilated by n_+, then one has

$$p^i_0 v = o(p^i)v = \tilde{\chi}_\lambda(o(p^i))v,$$

where

$$\tilde{\chi}_\lambda : \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$$

is the evaluation of $\mathcal{Z}(\mathfrak{g})$ at the Verma module of \mathfrak{g} of highest weight $\tilde{\lambda}$.

Because p^i_0 commutes with the action of \mathfrak{g}' on $M \in O_{\text{KL}}^{\text{crit}}$, the following assertion follows immediately.

Proposition 4. If $L(\mu)$ appears in the local composition factor of $V(\lambda)$ then $\mu = \lambda - n\delta$ for some $n \in \mathbb{Z}_{\geq 0}$.
2.6. The conjecture of Frenkel and Gaitsgory for graded opers. Let $\bar{\lambda} \in \bar{P}^+$. The character $\bar{\chi}_\lambda$ naturally extends to the graded central character of $\mathfrak{g}_{\text{crit}}$, that is, to the ring homomorphism

\begin{equation}
\chi_{\bar{\lambda}} : R_{\mathfrak{g}} \to \mathbb{C}
\end{equation}

defined by

\begin{equation}
\chi_{\bar{\lambda}}(p^i_n) = \begin{cases}
\bar{\chi}_\lambda(a(p^i_n)) & \text{if } n = 0, \\
0 & \text{if } n \neq 0.
\end{cases}
\end{equation}

The $\ker \chi_{\bar{\lambda}} \cdot V(\lambda)$ is a submodule of $V(\lambda)$. One has

\begin{equation}
\ker \chi_{\bar{\lambda}} \cdot V(\lambda) = \sum_{n>0, i \in I} U(n_-)p^i_{-n}|\lambda|,
\end{equation}

where $|\lambda|$ is the highest weight vector of $V(\lambda)$. Thus $\ker \chi_{\bar{\lambda}} \cdot V(\lambda)$ is a proper submodule of $V(\lambda)$ which lies in O^{KL}_{crit}. Hence there is a following exact sequence in O^{KL}_{crit}:

\begin{equation}
V(\lambda)/\ker \chi_{\bar{\lambda}} \cdot V(\lambda) \to L(\lambda) \to 0.
\end{equation}

The following assertion is clear.

Proposition 5. Any vector of $L(\lambda)$ is annihilated by $\ker \chi_{\bar{\lambda}}$.

Let \mathcal{M}^λ_0 be the full subcategory O^{KL}_{crit} consisting of objects M such that $\ker \chi_{\bar{\lambda}} \cdot M = 0$. Any simple object of \mathcal{M}^λ_0 is isomorphic to $L(\mu)$ with $\mu \in P^+_{\text{crit}}$ such that $\bar{\mu} = \bar{\lambda}$ (thus all the simple modules are mutually isomorphic as \mathfrak{g}'-modules).

The following striking assertion was conjectured by Frenkel and Gaitsgory (announced in [Fre06]).

Conjecture 1 (E. Frenkel and D. Gaitsgory).

(i) The category \mathcal{M}^λ_0 is semisimple for any $\bar{\lambda} \in \bar{P}^+$.

(ii) For each $\lambda \in P^+_{\text{crit}}$ there is an isomorphism $V(\lambda)/\ker \chi_{\bar{\lambda}} \cdot V(\lambda) \cong L(\lambda)$.

Remark 6.

(i) By the “Langlands duality” [FF92], the $\chi_{\bar{\lambda}}$ can be considered as an element of the \mathfrak{g}-oper $\text{Op}_{\mathfrak{g}}(D^\infty)$ [BD04] on the punctured disk D^∞, which is “graded”. The original conjecture (Conjecture 5 of [Fre06]) of Frenkel and Gaitsgory is more general and applies to any (not necessarily graded) central character χ (i.e. to any element of $\text{Op}_{\mathfrak{g}}^\lambda$, see Remark 5 and [Fre06]).

(ii) In the case that $\lambda = 0$, Conjecture 1 follows from Theorem 6.3 of [FG04] (applied to the graded oper χ).

2.7. Endomorphism rings of Weyl modules. Let $\lambda \in P^+_{\text{crit}}$. Recall that $|\lambda|$ denotes the highest weight vector of $V(\lambda)$. Define

\begin{equation}
R^\lambda_{\mathfrak{g}} = R_{\mathfrak{g}}/\text{Ann}_{R_{\mathfrak{g}}} |\lambda|.
\end{equation}

Note that $R^\lambda_{\mathfrak{g}}$ is naturally graded by D:

\begin{equation}
R^\lambda_{\mathfrak{g}} = \bigoplus_{d \in -Z_{\geq 0}} (R^\lambda_{\mathfrak{g}})_d, \quad (R^\lambda_{\mathfrak{g}})_d = \{a \in R^\lambda_{\mathfrak{g}}; [D_a] = da\}.
\end{equation}

There is a natural algebra homomorphism

\begin{equation}
R^\lambda_{\mathfrak{g}} \to \text{End}_{U(\mathfrak{g})}(V(\lambda)).
\end{equation}
If $\bar{\lambda} = 0$, then $R^0_{\bar{\lambda}} \cong \mathcal{Z}(\mathcal{V}_{\text{crit}})$. In this case it is known by [FF92] that (22) gives an isomorphism

$$\mathcal{Z}(\mathcal{V}_{\text{crit}}) \cong \text{End}_{U(\mathfrak{g}')} (\mathcal{V}_{\text{crit}}).$$

This is true for any $\lambda \in P^+_\text{crit}$.

Theorem 7. Let $\lambda \in P^+_{\text{crit}}$.

(i) The map (22) gives the isomorphism $R^\lambda_{\bar{\lambda}} \cong \text{End}_{U(\mathfrak{g}')} (V(\lambda))$.

(ii) Set $\text{ch} R^\lambda_{\bar{\lambda}} = \bigoplus_{d \in \mathbb{C}} q^d \dim (R^\lambda_{\bar{\lambda}})_d$. Then

$$\text{ch} R^\lambda_{\bar{\lambda}} = \prod_{\alpha \in \Delta^+} (1 - q^{-(\lambda + p, \alpha')}).$$

Theorem 7 was obtained earlier in [FG07]. In [Ara07b] we give an independent proof of Theorem 7 by the method of quantum Drinfeld-Sokolov reduction.

Remark 8. According to Frenkel and Gaitsgory [FG07], one has

$$\text{Spec } R^\lambda_{\bar{\lambda}} \cong \text{Op}^\lambda_G,$$

where Op^λ_G is a certain sub-pro-variety of $\text{Op}_G(D^\infty)$ described in [Fre04] (cf. (7.17) of [Fre94]).

2.8. An equivalence of categories.

Let $\mathcal{M}^{\bar{\lambda}}$ be the full subcategory of $\mathcal{O}^{K_{\text{crit}}}_{\text{crit}}$ consisting of objects M that are annihilated by

$$p_i^j - \chi_{\bar{\lambda}}(p_n^i) \text{ for all } i \in I, n \geq 0.$$

Then $V(\lambda), L(\lambda) \in \mathcal{M}^{\bar{\lambda}}$. Also, $\mathcal{M}_0^{\bar{\lambda}}$ is a full subcategory of $\mathcal{M}^{\bar{\lambda}}$.

Let $R^\lambda_{\bar{\lambda}}$-gmod be the full subcategory of the category of graded $R^\lambda_{\bar{\lambda}}$-modules consisting of objects $X = \bigoplus_{d \in \mathbb{C}} X_d$ such that (1) $\dim X_d < \infty$ for all $d \in \mathbb{C}$; (2) there exists a finite subset $d_1, \ldots, d_r \subset \mathbb{C}$ such that $X_{d_i} = 0$ unless $d \in \bigcup d_i - \mathbb{Z}_{>0}$. Then any simple object of $R^\lambda_{\bar{\lambda}}$-gmod is isomorphic to

$$R^\lambda_{\bar{\lambda}} / \ker \chi_{\bar{\lambda}} : R^\lambda_{\bar{\lambda}}$$

as $R^\lambda_{\bar{\lambda}}$-modules.

Set

$$F(M) = \text{Hom}_{U(\mathfrak{g}')} (V(\lambda), M)$$

for $M \in \mathcal{M}^{\bar{\lambda}}$. Then $F(M) \cong M^{n_+}$. The $F(M)$ is naturally a graded $R^\lambda_{\bar{\lambda}}$-module:

$$F(M) = \bigoplus_{d \in \mathbb{Z}} F(M)_d$$

where $F(M)_d = M^{n_+} \cap M_d$. Thus F defines a functor from $\mathcal{M}^{\bar{\lambda}}$ to $R^\lambda_{\bar{\lambda}}$-gmod.

Next let

$$G(X) = V(\lambda) \otimes_{R^\lambda_{\bar{\lambda}}} X$$

for $X \in R^\lambda_{\bar{\lambda}}$-gmod (See 1) of Theorem 7). Then $G(X)$ is an object of $\mathcal{M}^{\bar{\lambda}}$. Here the action of D on $G(X)$ is defined in an obvious way.

Theorem 9. Let $\lambda \in P^+_{\text{crit}}$.

(i) The $V(\lambda)$ is a free $R^\lambda_{\bar{\lambda}}$-module.
(ii) (cf. Theorem 6.3 of [FG04]) The functor F gives an equivalence of categories $M^\lambda \cong R^\lambda_{Z}\mathsf{grmod}$. The inverse functor is given by G.

The proof of Theorem (ii) is given in [Ara07b].

The following assertion follows immediately from Theorem 9.

Theorem 10. Conjecture 7 holds.

Because $L(\lambda) = G(C_{\chi}^\lambda)$, by (ii) of Theorem 9, one has

$$\text{ch} V(\lambda) = \text{ch} R^\lambda_Z \cdot \text{ch} L(\lambda).$$

Therefore (i) and (ii) of Theorem 10 give Theorem 1.

Remark 11. Using Theorem 9, one can show the irreducibility of the g'-module $V(\lambda)/\ker \chi \cdot V(\lambda)$ for any $\chi \in \text{Op}_{\mu}^\lambda L^{G}$. This confirms the original conjecture of Frenkel and Gaitsgory (Conjecture 5 of [Pre06], see Remarks 5 and 8) partially.

2.9. Acknowledgment. This work grew out of stimulating conversations with E. Frenkel, and the author is grateful to him. He also thanks for W. Wang for useful discussions.

References

[Ara04] Tomoyuki Arakawa. Vanishing of cohomology associated to quantized Drinfeld-Sokolov reduction. *Int. Math. Res. Not.*, (15):730–767, 2004.

[Ara05] Tomoyuki Arakawa. Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. *Duke Math. J.*, 130(3):435–478, 2005.

[Ara06] Tomoyuki Arakawa. A new proof of the Kac-Kazhdan conjecture. *Int. Math. Res. Not.*, pages Art. ID 27091, 5, 2006.

[Ara07a] Tomoyuki Arakawa. Representation theory of W-algebras. *Invent. Math.*, 2007. (published on line).

[Ara07b] Tomoyuki Arakawa. Quantum Drinfeld-Sokolov reduction and representation theory of affine Kac-Moody Lie algebras. *to appear*.

[BB81] Alexandre Beĭlinson and Joseph Bernstein. Localisation de g-modules. *C. R. Acad. Sci. Paris Sér. I Math.*, 292(1):15–18, 1981.

[BD04] Alexander Beilinson and Vladimir Drinfeld. *Chiral algebras*, volume 51 of *American Mathematical Society Colloquium Publications*. American Mathematical Society, Providence, RI, 2004.

[BK81] J.-L. Brylinski and M. Kashiwara. Kazhdan-Lusztig conjecture and holonomic systems. *Invent. Math.*, 64(3):387–410, 1981.

[Cas96] Luis Casian. Proof of the Kazhdan-Lusztig conjecture for Kac-Moody algebras (the characters $\text{ch} L_{\nu^\lambda\nu^\rho}$). *Adv. Math.*, 119(2):207–281, 1996.

[FBZ04] Edward Frenkel and David Ben-Zvi. *Vertex algebras and algebraic curves*, volume 88 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, second edition, 2004.

[FF88] B. L. Feĭgin and E. V. Frenkel’. A family of representations of affine Lie algebras. *Uspekhi Mat. Nauk*, 43(5(263)):227–228, 1988.

[FF90a] Boris Feigin and Edward Frenkel. Quantization of the Drinfeld-Sokolov reduction. *Phys. Lett. B*, 246(1-2):75–81, 1990.

[FF90b] Boris L. Feigin and Edward V. Frenkel. Affine Kac-Moody algebras and semi-infinite flag manifolds. *Comm. Math. Phys.*, 128(1):161–189, 1990.

[FF92] Boris Feigin and Edward Frenkel. Affine Kac-Moody algebras at the critical level and Gel’fand-Dikii algebras. In *Infinite analysis, Part A, B (Kyoto, 1991)*, volume 16 of *Adv. Ser. Math. Phys.*, pages 197–215. World Sci. Publ., River Edge, NJ, 1992.

[FG04] Edward Frenkel and Dennis Gaitsgory. D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras. *Duke Math. J.*, 125(2):279–327, 2004.

[FG05] Edward Frenkel and Dennis Gaitsgory. Localization of $\widehat{\mathfrak{g}}$-modules on the affine Grassmannian. *preprint*, 2005. math.RT/0512562.
[FG06] Edward Frenkel and Dennis Gaitsgory. Local geometric Langlands correspondence and affine Kac-Moody algebras. In *Algebraic geometry and number theory*, volume 253 of *Progr. Math.*, pages 69–260. Birkhäuser Boston, Boston, MA, 2006.

[FG07] Edward Frenkel and Dennis Gaitsgory. Weyl modules and opers without monodromy. to appear.

[FKW92] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. *Comm. Math. Phys.*, 147(2):295–328, 1992.

[Fre04] Edward Frenkel. Opers on the projective line, flag manifolds and Bethe ansatz. *Mosc. Math. J.*, 4(3):655–705, 783, 2004.

[Fre05] Edward Frenkel. Wakimoto modules, opers and the center at the critical level. *Adv. Math.*, 195(2):297–404, 2005.

[Fre06] Edward Frenkel. Ramifications of the geometric Langlands program. preprint, 2006. math.QA/0611294.

[FZ92] Igor B. Frenkel and Yongchang Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. *Duke Math. J.*, 66(1):123–168, 1992.

[GW89] Roe Goodman and Nolan R. Wallach. Higher-order Sugawara operators for affine Lie algebras. *Trans. Amer. Math. Soc.*, 315(1):1–55, 1989.

[Hay88] Takahiro Hayashi. Sugawara operators and Kazhdan conjecture. *Invent. Math.*, 94(1):13–52, 1988.

[Kac74] V. G. Kac. Infinite-dimensional Lie algebras, and the Dedekind η-function. *Funkcional. Anal. i Priložen.*, 8(1):77–78, 1974.

[Kac98] Victor Kac. *Vertex algebras for beginners*, volume 10 of *University Lecture Series*. American Mathematical Society, Providence, RI, second edition, 1998.

[KK79] V. G. Kac and D. A. Kazhdan. Structure of representations with highest weight of infinite-dimensional Lie algebras. *Adv. in Math.*, 34(1):97–108, 1979.

[KL79] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. *Invent. Math.*, 53(2):165–184, 1979.

[Kos78] Bertram Kostant. On Whittaker vectors and representation theory. *Invent. Math.*, 48(2):101–184, 1978.

[KRW03] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine superalgebras. *Comm. Math. Phys.*, 241(2-3):307–342, 2003.

[KT95] Masaki Kashiwara and Toshiyuki Tanisaki. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. *Duke Math. J.*, 77(1):21–62, 1995.

[KT96] Masaki Kashiwara and Toshiyuki Tanisaki. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case. *Duke Math. J.*, 84(3):771–813, 1996.

[KT98] Masaki Kashiwara and Toshiyuki Tanisaki. Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras. III. Positive rational case. *Asian J. Math.*, 2(4):779–832, 1998. Mikio Sato: a great Japanese mathematician of the twentieth century.

[KT99] Masaki Kashiwara and Toshiyuki Tanisaki. Characters of irreducible modules with noncritical highest weights over affine Lie algebras. In *Representations and quantizations (Shanghai, 1998)*, pages 225–296. China High. Educ. Press, Beijing, 2000.

[Ku89] Jong Min Ku. Structure of the Verma module $M(-\rho)$ over Euclidean Lie algebras. *J. Algebra*, 124(2):367–387, 1989.

[KW88] Victor G. Kac and Minoru Wakimoto. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. *Proc. Nat. Acad. Sci. U.S.A.*, 85(14):4956–4960, 1988.

[KW89] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In *Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988)*, volume 7 of *Adv. Ser. Math. Phys.*, pages 138–177. World Sci. Publ., Teaneck, NJ, 1989.

[KW04] Victor G. Kac and Minoru Wakimoto. Quantum reduction and representation theory of superconformal algebras. *Adv. Math.*, 185(2):400–458, 2004.

[Math03] Olivier Mathieu. On the endomorphism algebra of the Steinberg module. In *Studies in memory of Issai Schur (Chevaleret/Réhovot, 2000)*, volume 210 of *Progr. Math.*, pages 225–250. Birkhäuser Boston, Boston, MA, 2003.
[NT05] Kiyokazu Nagatomo and Akihiro Tsuchiya. Conformal field theories associated to regular chiral vertex operator algebras. I. Theories over the projective line. *Duke Math. J.*, 128(3):393–471, 2005.

[Wak86] Minoru Wakimoto. Fock representations of the affine Lie algebra $\mathfrak{a}_1^{(1)}$. *Comm. Math. Phys.*, 104(4):605–609, 1986.

[Zhu96] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. *J. Amer. Math. Soc.*, 9(1):237–302, 1996.

Department of Mathematics, Nara Women's University, Nara 630-8506, JAPAN

E-mail address: arakawa@cc.nara-wu.ac.jp