Sequestration of CO₂ by halotolerant algae

Udhaya Ramkrishnan, Benedict Bruno and Sandhya Swaminathan*

Abstract

The potential of halotolerant algae isolated from natural resources was used to study CO₂ fixation and algal lipid production. Biological fixation of CO₂ in photobioreactor in presence of salinity is exploited. The CO₂ concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO₂ removal.

Keywords: Halotolerant algae, CO₂ sequestration, Biomass, Salinity

Background

The world population has been growing rapidly and has nearly doubled in the last fifty years. This rapid growth has been accompanied by economic development both of which have resulted in high energy demand. Fossil fuels, coal oil and gas have been the major sources which have supplied this energy demand for a long time. However limited availability of these sources coupled with the adverse environmental impacts associated with their extraction and use have prompted the search of other renewable energy sources to meet the future energy demands. Several renewable energy sources such as solar, wind, hydel and biomass energy systems are in various stages of development and their applications are steadily increasing. However, one of the sources, which has attracted considerable attention in recent years is the biofuels such as bioethanol and biodiesel. Biofuels can play an essential part in reaching the target to replace petroleum based transportation fuels and in reducing CO₂ emissions, in environmental and economic sustainability are considered carefully [1].

First generations of biofuels, which have attained economic levels of production, have been mainly extracted from food, oil crops and animal fats using conventional technology [2]. Second generation of biofuels have the potential to use waste residues and make use of waste land thereby promoting rural development and improve the economic conditions of developing countries.

Unlike other sources of biofuels, algae have the capability to produce different types of biofuels. This multiproduct paradigm of algae makes it an ideal candidate for the concept of biorefining which involves production of many products from a raw material. The products produced from algal biomass are listed in Table 1. Considering the advantages of algae as a biofuel the present work investigated their effectiveness in CO₂ sequestration. This paper discusses the effectiveness of a halotolerant algae for CO₂ sequestration in a laboratory scale photoreactor with potential to produce biodiesel.

Methods

Algal feedstock

The algal culture was isolated from an agricultural runoff using the medium described by Fiore et al. [5]. The medium has the following composition: (mM): MgSO₄·7H₂O, 162.3; CaCl₂·2H₂O, 81.6; NaCl, 684.5; and microelements. The microelement stock containing (mM): H₃BO₃, 9.25; MnCl₂·4H₂O, 1.82; ZnSO₄·7H₂O, 0.15; Na₂MoO₄·2H₂O, 0.25; CuSO₄·5H₂O, 0.06; COCl₂·6H₂O, 0.03; NH₄VO₃, 0.04 and FeEDA solution 160 ml. The final pH of the medium was 6.4

* Correspondence: sswami_in@yahoo.com
National Environmental Engineering Research Institute, CSIR-Complex, Chennai 600 113, India

© 2014 Ramkrishnan et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Cultures were routinely checked for purity by microscopic examination and plating. The pure culture of halotolerant algae was identified as *Chlorella* sp by 18 S rDNA technique.

Experimental

Algal cultivation was done in photoreactors consisting of 2L borosilicate glass bottles fitted with rubber stopper. CO₂ from a gas cylinder was mixed with air to get desired concentration and bubbled through fine diffuser. The schematic of the experimental setup is shown in Figure 1. The flow rate (20 ml/min) of gas was measured using a rotameter. The photoreactor was irradiated using standard fluorescent lamps (40 w) placed on both the sides. The excess gas was discharged through an outlet tube. The inlet and outlet gas samples were sampled at regular intervals and analyzed for CO₂. The algal samples were collected from an outlet at regular intervals and analyzed for various parameters.

Analytical methods

Algal biomass

The concentration of algal biomass was measured by measuring the optical density of the algal suspension at 680 nm wavelength in a UV-visible spectrophotometer (Thermo Electron Corporation Type UV1, England). The dry weight of algae was estimated from a standard graph.

Alkalinity and pH of the suspension was measured, as per standard procedures [6].

Fatty acids estimation

Algal cells were harvested by centrifugation (10000 rpm) for 10 min. The cell pellets separated from the supernatant were washed with distilled water and dried. Fifty mg of dried algal biomass was taken in 15 ml of test tube, 1.6 ml of double distilled water, 4 ml methanol and 2 ml of chloroform were added and mixed thoroughly for 30 S. Thereafter, an additional 2 ml of chloroform and 2 ml of double distilled water were added and solution was mixed for 30 S. Following this, the mixture was centrifuged, at 5000 rpm for 10 min. The upper layer decanted and the lower chloroform layer containing the extracted lipids was collected in another test tube. The extraction procedure was repeated again with the residual pellet and both the chloroform extracts were mixed to gather and evaporated till dryness. The dried total lipids were measured gravimetrically and lipid content was calculated as percentage of algal biomass.

DNA isolation, PCR amplification

During CO₂ sequestration, algae samples were processed for DNA extraction as method. 18S rDNA gene was amplified using universal eukaryotic primers F5′-GTCAGGAGTGAATTCTTGGATTTA-3′ and R 5′-AAAGGGCAGGGACGTAATCAACG-3′ [7]. The PCR conditions were 30 cycles of denaturation at 95°C for 2 min. followed by annealing at 55°C for 2 min. and final extension at 72°C for 10 min. The reaction mixture content 5 ul DNA template, 1X PCR buffer and 5U Taq DNA polymerase to a final volume of 50 ul. The amplified product was resolved on 1.2% (w/v) agarose.

Results and discussion

Since the objective of the study was to evaluate the CO₂ sequestration potential of the isolated halotolerant algae the growth profile was measured at different CO₂ concentrations.

Growth of halotolerant algae

The growth profile of the halotolerant algae at two different CO₂ concentrations are shown in Figure 2. At both the concentrations, the growth increased steady with time till 11 days after which a sharp increase in growth was observed for high CO₂ concentration (1060 ppm) and stationary stage was reached after 14 days. Similar increase in *Chlorella vulgaris* growth with increasing CO₂ concentration has been reported by Zeng et al. [8]. The lower growth rate of algae at low CO₂ concentration may be attributed to insufficient CO₂ supply. This is further confirmed from the CO₂ removal efficiency at both the CO₂ concentrations shown in Figure 3. The halotolerant algae were observed to be more

Table 1 Integrated production system of algal biomass: perspective products value and market

Product	Example	Value	Market
Fatty acids	Docosahexanoic acid	High	Food Ingredients
	Eicosapentanoic acid	Moderate	
	Alpha linolenic acid	Moderate	
	Arachidonic acid	High	
Carotenoids	Astaxanthin	High	Food Ingredients
	Zeaxanthin	High	
	Lutein	High	
Fluorescent label	Phycoerythrin	High	Biomedical
	Phycocyanin	High	Transport industries
Biofuel	Biodiesel	High	
	Bioethanol	High	
	Biohydrogen	High	
Meal	Algal meal residual amount of docosahexanoic acid and eicosapentanoic acid	Moderate	Feeds (Poultry fish shrimp swine feed)
By product	Glycerin	Low	Biodiesel Industry, algal fuel
Chemicals	Algal alggin caragenin, 1,3 Propanediol	Moderate	Biotechnology & Food industry
Nanotech devices	Silicon nanochips	High	Semiconductor, nanotech
Figure 1 Schematic diagram of lab scale 2L Photo bioreactor.

Figure 2 Algal growths in presence of CO₂.
Figure 3 CO₂ removals by halotolerant algae.

Figure 4 Variation in alkalinity during growth of halotolerant algae.

Figure 5 Variation in pH during growth of halotolerant algae.
efficient at higher CO2 concentration. The maximum removal efficiency increased from 60% to 90% as CO2 concentration increased from 380 to 1060 ppm. It was also observed that the trends of CO2 removal and growth were similar. Weissman and Tillett reported that microalgae could convert up to 99% of CO2 in solution [9].

Since CO2 is a weakly acidic gas, it affects the alkalinity of the solution. As seen from Figure 4, it was observed that the alkalinity increased from 60 to 350 mg/l during the growth of algae at both the CO2 concentrations. However, the pH of the solution remained constant throughout the growth at both CO2 concentrations (Figure 5). Rangarao et al. have observed that bubbling of CO2 continuously resulted in decrease in pH of culture solution thereby fall in cell density [10].

Effect of salinity on growth of halotolerant algae

Since the algae was isolated from agriculture runoff water containing relatively high salt concentration, the optimal salt concentration required for growth of algae was investigated. The result presented in Figure 6 show that the algal growth has increased with increased in salt concentration till 4% and it was relatively poor in absence. The removal of CO2 at 4% salt concentration is shown in Figure 7 and almost 80% of CO2 was removed till 11 days. This indicates the salt loving nature of the algae. However, when the salt concentration was increased above 4%, the growth rate decreased which indicates an optimal level for growth. Hence this species is termed as halotolerant algae. There is little impact on CO2 removal efficiency.

Lipid content of halotolerant algae

The halotolerant alga was not only evaluated for its CO2 sequestration potential based on its growth, but also for its potential use as a feed stock for biodiesel. This was determined from the lipid content of the algal cell given in Table 2. It was observed that as the cell growth increased with the time, its lipid content was also increased, with a maximum of 10% in 14 days. However, this is much lower compared with the 20-40% lipid content reported for same algal strains [11]. Liu et al. reported that total lipid contents representing 20-50% of the dry weight were found to be quite common [12]. Go et al., reported 12.2 mg/g/day oil productivity in marine algae *Tetraselmis suecica* [13]. Higher salinity might be affecting lipid production pathway in algae.

Identification of halotolerant algae

A phylogenetic study based on 18S r DNA sequencing is one of the most useful methods for inferring relationship between genera or between the species belonging to a genus [14]. The identification of the halotolent strains isolated from the agricultural runoff was done based on DNA elongation using 18S rDNA primers in PCR and by comparison with 18S rDNA sequences of a library of species. Sixteen strains that were reported for CO2 sequestration were collected from NCBI and were used as reference strains for construction of a dendogram presented in Figure 8. They were identified following the BLAST analysis of the 18S rRNA gene sequence and based on >97% 18S rRNA gene
Table 2 Effect of salinity on biomass, specific growth rate and lipid production from halotolerant algae

Salt content	Biomass, mg/l	Specific growth rate, u/d	Fatty acid, %
No salt	300	0.09	0.02
1%	304	0.08	0.03
2%	343	0.12	2.77
4%	711	0.17	10.33
5%	317	0.11	2.5

Sequence similarity, the nine isolates were categorized to two groups comprising of two sub groups. Based on the phylogeny, it was found that these reference strains mainly belonged to the phylum Chlorophyceae. From the nearest phylogenetic neighbour of the reference strains showing 100% similarity, the halotolerant algae isolated in study identified as Chlorella species and its gene bank accession no KC492080. Among the thirteen strains, five strains belonged to the family Chlamydomonadaeae and Chlorococcaceae showing close similarity (64.7%) with that of the neighbour Chlorella sp. (KC166137) that was reported to grow under heterotrophic condition.

Figure 8 Dendogram for algae. KC492078 – Chlorococcum, KC492079 - Chlamydomonas sp., KC492080 - Chlorella sp., KC492081 - Chlamydomonas sp., KC218498 - Chlorella sp., KC166137 - Chlamydomonas reinhardtii, KC218488 - Scenedesmus maegelii, KC218482 - Chlorococcum sp., KC218500 - Dunaliella sp., JN934686 - Chlamydomonas sp., AJ000708 - Cyanotherce sp., AJ000709 - Euhalothece sp., AJ000710 - Euhalothece sp., AJ000711 - Dactylococcopsis sp., AJ000712 - Euhalothece sp., AJ000713 - Euhalothece sp., AJ000724 - Halothece sp.
Conclusions
A halotolerant algal strain was isolated from agricultural runoff and its potential for CO2 sequestration was evaluated. The strain was found to grow well at a salt concentration of 4% and yielded 204 mg/l biomass in 14 days. The cell growth and CO2 removal efficiency increased with increasing CO2 concentration. The lipid content of the algae also increased with time and the maximum lipid content observed was 10%. Based on 18S rDNA technique, the halotolerant algae was identified as *Chlorella* sp.

Competing interests
All authors declare that they have no competing interest.

Authors’ contributions
UR contributed in growth measurements, CO2 removal, alkalinity, pH variation studies. BB helps in algal DNA isolation, PCR amplification, and dendogram preparation. SS is overall guide for the R & D work. All the authors read and approved the final manuscript.

Acknowledgement
Authors like to thank Director, NEERI for allowing publishing the manuscript and Department of Biotechnology, New Delhi for financial support.

Received: 30 September 2013 Accepted: 26 April 2014
Published: 6 May 2014

References
1. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart H: Plants to power: bioenergy to fuel the future. Trends Plant Sci 2008, 13:421–429.
2. Nigam SP, Singh A: A production of liquid biofuels from renewable resources. Progress Energy Combust Sci 2011, 37:52–68.
3. Hanon M, Gimbel J, Tian M, Rasala B, Mayfield S: Biofuels from algae, challenge and potential. Biofuels 2010, 1:763–784.
4. Chinnaswamy S, Bhatnagar A, Hunt RW, Das KC: Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technol 2010, 101:3097–3105.
5. Fiore MF, Moon DH, Tatsui SM, Lee H, Trevizo JT: Miniprep DNA Isolation from unicellular and filamentous Cyanobacteria. J Microbiol Methods 2000, 39:159–169.
6. APHA: Standard Methods for Examination of Water and Wastewater. 19th edition, Washington DC, USA: American Public Health Association; 1998.
7. Gross W, Hellmann I, Lenze D, Schnarenberger C: Biogeography of the Cyanidiaceae (Rohdophyta) based on 18S ribosomal RNA sequence data. Eur J Phycol 2001, 36:275–280.
8. Zheng HZ, Gao Z, Yin F, Ji X, Huang H: Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysis of lipid extracted microalgal biomass residues. Bioresour Technol 2012, 126:24–30.
9. Weissman JC, Tillett DT: Design and operation of an outdoor microalgae test facility: large scale system results. In Aquatic Species Project Report, National Renewable Energy Laboratory Golden. Edited by Brown LM, Sprague S.; 1992:32–56.
10. Ranga Rao A, Dayananda C, Sarada R, Shaula TR, Ravishankar GA: Effect of salinity on growth of green algae Botryococcus braunii and its constituent. Bioresource Technol 2007, 98:560–564.
11. Hu Q, Sommerfeld M, Jarvis E, Ghiardi M, Posewitz M, Seibert M, Darzins A: Microbial triglycerolcs as feed stock for biofuel production; perspective and advances. Plant J 2008, 54:621–639.
12. Liu ZY, Wang GC, Zhou BC: Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technol 2008, 99:4717–4721.
13. Go S, Lee SJ, Jeons GT, Kim SK: Factors affecting the growth and the oil accumulation of marine microalgae Tetraselmis suecica. Bioresour Bioprocess Eng 2012, 38:145–55.
14. Hayashimoto N, Takakura A, Itoh T: Genetic diversity on 16 S rDNA sequence and phylogenetic tree analysis in Pastewella pneumonia strains isolated from laboratory animals. Curt Microbiol 2005, 51:239–243.

Cite this article as: Ramkrishnan et al.: Sequestration of CO2 by halotolerant algae. Journal of Environmental Health Science & Engineering 2014 12:81.