Extreme value statistics of weak lensing shear peak counts

R. Reischke1*, M. Maturi1, and M. Bartelmann1
1Zentrum für Astronomie, IFA, Universität Heidelberg, Philosophenweg 12, D-69120, Heidelberg, Germany

Accepted 2015 November 12.Received 2015 October 12; in original form 2015 July 08

ABSTRACT
The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function.

To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large scale structures.

We derive the extreme value and order statistics for both over-densities (positive peaks) and under-densities (negative peaks) and provide an optimized criterion to split a wide field survey into sub-fields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due to galaxy clusters. We find good agreement of our model predictions with a ray-tracing N-body simulation.

For a Euclid-like survey, we find tight constraints on \(\sigma_8\) and \(\Omega_m\) with relative uncertainties of \(\sim 10^{-3}\). In contrast, the equation of state parameter \(w_0\) can be constrained only with a 10\% level, and \(w_a\) is out of reach even if we include redshift information.

Key words: cosmology: theory - gravitational lensing: weak - cosmological parameters - large-scale structure of the Universe

1 INTRODUCTION
The cluster mass function has proven to be a powerful tool to constrain cosmological parameters (e.g. Haiman et al. 2001, Majumdar & Mohr 2004, Wang et al. 2004 and Vikhlinin et al. 2009). However, the mass is not a direct observable and can only be inferred indirectly. Not even gravitational lensing provides a direct measure of mass because it only constrains the gravitational potential, which is a local quantity in contrast to the mass. It is therefore advantageous to replace the mass with a well defined observable quantity to constrain cosmological parameters in an unambiguous way. Additionally, this observable needs to be predictable from theory in a reliable and clear way. There are different ways to tackle this problem. For instance the mass can be replaced with the X-ray temperature of galaxy clusters (Angrick & Bartelmann 2009, Angriick et al. 2015).

In this paper we replace the mass with the signal-to-noise (S/N henceforth) ratio of weak lensing shear detections (Maturi et al. 2009, 2011, which is based on the work of Bardeen et al. 1986 and van Waerbeke 2000). We then apply general extreme value (GEV) and order statistics to the abundance of S/N-ratio peaks in cosmic shear maps to reproduce the distribution of the highest detections (i.e. with the highest S/N) correctly. Cosmic shear peaks originate from three sources: i) From noise due to the intrinsic ellipticity distribution and the finite number of sources, ii) from chance alignments of large-scale structures (LSS) and iii) from cluster-sized dark matter halos. The highest peaks in a weak lensing map will be due to clusters. Therefore they will carry similar cosmological information as the mass function. Given the constraining power of weak lensing peak counts (Marian et al. 2009, Kratochvil et al. 2010 and Dietrich & Hartlap 2010), the abundance of weak lensing detections has been predicted and used in Maturi et al. (2009, 2011), Cardone et al. (2013), Cardone et al. (2014), Petri et al. (2014), Mainini & Romano (2014) and Lin & Kilbinger (2014).

Under-densities (voids) produce weak lensing signals as well as over-densities. It is possible to model the abundance of negative detections by a Gaussian random field, as those objects evolve mostly linearly. In contrast the over-densities produce detections which are due to halos and therefore due to highly non-linear objects.

We use the abundance of detections of both positive (over-densities) and negative (voids) to extract their respec-
tive GEV and order distributions. This was already done for
the mass function in Davis et al. (2011), Waizmann et al. (2011), Borgani et al. (2004) using GADGET-2 (Springel 2005). We
then investigate the constraining power (with respect to the
matter density \(\Omega_m \), the amplitude of the matter power spec-
trum \(\sigma_8 \) and the equation of state parameter \(w_0 \) for spa-
tially flat cosmologies) of this method by performing a maximum-
likelihood analysis on mock data with the characteristics
expected for future space-based surveys, such as for exam-
ple the Euclid ESA space mission (Laureijs et al. 2011),
for which we assume a sky coverage of 15,000 deg\(^2\) and a
Galaxy number density of 40 arcmin\(^{-2}\).

Throughout this work we use the cosmological base pa-
rameters from Planck-Collaboration et al. (2013), namely
their connection to cosmology. The model predictions are
then compared to numerical N-body simulations in Sect. 4.
Also the model presented in Maturi et al. (2011) is com-
pared to the simulation. In Sect. 5 we discuss the optimal
splitting of a wide field survey into sub-surveys in order to
project out the desired objects, i.e. clusters. The constraints
on cosmology are finally discussed in Sect. 6.

2 MODELLING NUMBER COUNTS

In this section, we provide an analytical recipe to predict the
number of peaks in weak lensing maps. (For a complete
review on weak lensing basics see Bartelmann & Schneider 2001). The model includes the contribution from obser-
vational noise (such as shot and shape noise), large scale
structures and non-linear structures such as galaxy clusters.
The advantage of having a model predicting all contributions
at once is that it avoids the difficult task of splitting these
components and keep those arising from galaxy clusters only
with the risk of having a sample contaminated by spurious
detections and biased constraints of the mass function.

2.1 Weak gravitational lensing

The properties of an isolated lens are given by its lensing
potential

\[
\psi(\theta) = \frac{2}{c^2} \frac{D_{ds}}{D_d D_s} \int_0^s \Phi(D_d \theta, z) dz,
\]

where \(\Phi \) is the Newtonian potential and \(D_s \) and \(D_{ds} \)
are the angular diameter distances between observer and
source, observer and lens and lens and source respectively.
The integral is carried out along the line-of-sight, with \(s \) be-
ing the physical distance to the source. \(\psi \) relates angular
positions of the source \(\beta \) to positions of its images \(\theta \) via
the lens equation \(\beta - \alpha \), where \(\alpha - \nabla \psi \) is the deflec-
tion angle. For small deflections, the lens equation can be loc-
ally linearised, introducing a linear mapping described by the
Jacobian

\[
A = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix},
\]

where \(g_i \equiv \gamma_i/(1 - \kappa) \) is the reduced shear and \(\kappa = \frac{1}{2} \Delta \psi \) is
the convergence. The factor \((1 - \kappa)\) describes the isotropic
magnification of the image, while the complex shear, \(g \), de-
scribes its distortions. Only the reduced shear \(g \) can be ob-
tained by measurements, as the size of the source is un-
known. However, in the weak lensing regime, for which \(\kappa \ll 1, \gamma \approx g \).

2.2 Lensing signal

Weak lensing peak counts can be described as the sum of
three contributions:

i) The signal due to real objects, i.e. galaxy clusters.
Their intrinsic abundance is given by the mass function
(Press & Schechter 1974; Jenkins et al. 2001; Sheth & Tor-
men 1999) and the expected density profile.

ii) The signal due to chance projections of the LSS
which is described by the projected two-dimensional power spectrum is given by (Limber 1953)

\[P_s(\ell) = \frac{9H_0^2\Omega_m^2}{4c^2} \int_0^{w_H} \frac{W^2(w)}{a^2(w)} P_s \left(\frac{\ell}{f_K(w)}, w \right), \]

(3)

where \(w_H \) is the comoving distance to the horizon and \(W(w) \) is a weight function including the line of sight integral over the distribution of background sources \(G(w) \).

\[W(w) = \int_0^{w_H} \frac{dw' G(w')}{f_K(w')}, \]

(4)

In this work the distribution \(G(w) \) is taken from [Benjamin et al. 2007] with parameters \((a, b, c) = (0.748, 3.932, 0.8)\). Note that this parameter choice implies a distribution with mean redshift \(\langle z \rangle \approx 1 \). As Eq. (3) gives the total convergence, the tangential component used in (7) is \(P_{\gamma t} = P_\gamma / 2 \) due to isotropy.

iii) The observational noise is given by the intrinsic ellipticity and the finite number of galaxies used to measure the shear. This contribution has a white power spectrum:

\[P_\epsilon = \frac{\sigma_\epsilon^2}{2n_g}, \]

(5)

with the number density of source galaxies \(n_g = 40 \text{ arcmin}^{-2} \) and ellipticity variance \(\sigma_\epsilon^2 = 0.3 \) (When comparison with the ray-tracing simulation \(n_g = 30 \text{ arcmin}^{-2} \) and \(\sigma_\epsilon^2 = 0.25 \) are used.)

As the contributions by LSS and the observational noise are described by Gaussian random fields, the total contribution to the signal is given by the sum of their respective power spectra,

\[P(\ell) = P_{\gamma t}(\ell) + P_\epsilon. \]

(6)

2.3 Optimal filtering

A method to measure the signal of weak gravitational lensing is the aperture mass (Schneider 1996), which is a weighted average of the tangential shear at the position \(\theta \):

\[A(\theta) = \int_{S_2} d^2\theta' \gamma_{\gamma t}(\theta', \theta) Q(|\theta' - \theta|). \]

(7)

Since we are interested in the signal of non-linear structures and therefore in the exponential tail of the mass function this filter should maximize the \(S/N \)-ratio of non-linear structures. A linear filter constructed for this purpose was introduced by Maturi et al. (2005) and reads in Fourier space:

\[\hat{Q}(\ell) = \alpha P(\ell), \quad \text{where} \quad \alpha^{-1} = \int_{S_2} d^2\ell |\hat{Q}(\ell)|^2 / P(\ell). \]

(8)

Here \(P(\ell) \) is given by equation (9) and \(\hat{Q} \) is the expected shear profile of halos. Here we assume NFW halos (Navarro et al. 1996) for which the shear profile is given analytically (Bartelmann 1996). The variance of the aperture mass estimate in polar coordinates is

\[\sigma_A^2 \equiv \frac{\ell d\ell}{2\pi} P_s |\hat{Q}(\ell)|^2. \]

(9)

When applied to ellipticity catalogues of galaxies the aperture mass (7) can be approximated by

\[A(\theta) = \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i,\gamma}(\theta) Q(|\theta_i - \theta|). \]

(10)

where \(n \) is the number density of galaxies and \(\epsilon_{i,\gamma} \) is the tangential ellipticity of the \(i \)-th galaxy with respect to the position \(\theta \) which provides an estimate for the tangential shear. \(Q \) is the filter function in real space given by the Fourier transform of Eq. (8).

2.4 Number counts for linear and non-linear structures

The abundance of number lensing peaks can be described by:

(1) The contribution by non-linear structures which depends on the mass function and their shear profile. Due to shot noise from the discrete positions of background galaxies and their intrinsic ellipticities, its contribution to the aperture mass \(A \) given by Eq. (10) will scatter around its expectation value \(A(M) \), where \(M \) is the halo mass, with the variance given by Eq. (9). Thus halos with mass \(M \) will not have a unique signal amplitude, but a probability to produce a certain signal \(p(A|M) \), which can be modeled as a Gaussian with width \(\sigma_A \). It has been shown by Bartelmann et al. (2002) that the probability for the \(S/N \)-ratio \(S \) to exceed some threshold \(S_{th} \) is given by

\[p(S > S_{th}|M, z) = \frac{1}{2} \text{erfc} \left[\frac{S(M, z) - S_{th}}{\sqrt{2}} \right]. \]

Thus, the number of lenses in a redshift interval \(dz \) and mass interval \(dM \) is given by

\[\frac{d^2 n_{\text{nl}}(S > S_{th}, M, z)}{dz dM} = p(S > S_{th}|M, z) n(M, z), \]

(12)

where \(n(M, z) \) is the mass function (in this work we present the difference between the Press & Schechter 1974, Jenkins et al. 2001, and Sheth & Tormen 1999 mass functions). Integrating over the volume \(dV \) and \(dM \) yields the total number of weak lensing peaks caused by clusters (see Maturi et al. 2011).

(2) The contribution by the LSS and the instrumental noise which can both be described by a Gaussian random field. In fact, the convergence field is not perfectly Gaussian, however if the applied filter is chosen to be large enough, only small deviations from Gaussianity remain (Maturi et al. 2009).

The number density of detections above some signal threshold \(S = S/N_\sigma A \equiv x_{\sigma A} \) is given by

\[n_{\text{lim}}(S > S_{\text{lim}}) = \frac{1}{4\sqrt{2\pi} \sigma_\sigma} \left(\frac{\sigma_1}{\sigma_0} \right)^2 S \frac{\sigma_0}{\sigma_\sigma} \exp \left(-\frac{S^2}{2\sigma_\sigma^2} \right), \]

(13)

where \(\sigma_\sigma^2 \) are the spectral moments generated by the LSS and the noise:

\[\sigma_\sigma^2 = \int_0^\infty \frac{d^2 \ell + 1}{2\pi} P(\ell) |\hat{Q}(\ell)|^2. \]

(14)

Finally the total number density of detections is given as the sum

\[n_{\text{det}}(x > x) = n_{\text{nl}}(x > x) + n_{\text{lim}}(x > x). \]

(15)
In this work we distinguish between negative and positive detections. Positive peaks are caused by over-densities and thus also by non-linear objects, hence both terms of \(\text{Eq. (15)} \) have to be taken into account. In contrast the negative detections evolve linearly only and are therefore described by the LSS term only. Note again that we use the definition of detections [Maturi et al. 2009] rather than peaks. A detection is thus given by a continuous region in a lensing catalogue above a given threshold. However, for our application these definitions tend to coincide, as we are only interested in the highest peaks.

\[\text{counts} = 20 + 40 + 1000 \]

\[\text{(black line, Eq. (13)+(18)) and the uncorrected (blue line, upper panel of Figure 1 we compare the corrected model} \]

\[\text{X density at the threshold} \]

\[\text{The additional minus sign is due to the fact that the number} \]

\[\text{of detections moves randomly around its expected value to} \]

\[\text{Such a shift will effectively increase the number} \]

\[\text{of objects above a certain threshold. This random} \]

\[\text{shift will move peaks from lower to higher signals and reverse} \]

\[\text{with equal probability. However, as there are more objects at} \]

\[\text{a lower signal, this shift will effectively increase the number} \]

\[\text{of objects at higher signals. To see this, consider some} \]

\[\text{S/N threshold (S/N)_th} \]

\[\text{and a Gaussian PDF} \]

\[\text{p(x, ě0) with zero} \]

\[\text{mean and width} \]

\[\text{σ_0 = σ_p^2,} \]

\[\text{(16)} \]

\[\text{where σ_p^2 is the variance due to the LSS together with} \]

\[\text{the noise contribution and σ_A is the variance of the aperture} \]

\[\text{mass due to the noise. At a certain S/N a small fraction} \]

\[\text{of detections moves randomly around its expected value to} \]

\[\text{larger or smaller values. Therefore the corrected number} \]

\[\text{counts are, again with} \]

\[\text{S/N = x,} \]

\[\text{n_{nl}^{corr}(x) = n_{nl}(x) + gain(x) - loss(x),} \]

\[\text{(17)} \]

\[\text{where loss(x) is the number of detections which are removed} \]

\[\text{from the S/N bin because their amplitude became too large} \]

\[\text{or small due to the scatter, while gain(x) is the number of} \]

\[\text{detections which are moved from other bins into the} \]

\[\text{considered bin. Thus, more explicitly we have:} \]

\[\text{n_{nl}^{corr}(x) = n_{nl}(x) - \int_{x_{min}}^{x} \text{d} \tilde{x} n_{nl}(\tilde{x}) p(\tilde{x} - x; ě0) + \int_{x}^{\infty} \text{d} \tilde{x} n_{nl}'(\tilde{x}) p(\tilde{x} - x; ě0),} \]

\[\text{(18)} \]

\[\text{where the prime denotes the derivative with respect to} \]

\[\text{x. The additional minus sign is due to the fact that the number} \]

\[\text{density at the threshold x is needed, which is given by the} \]

\[\text{negative derivative of n_{nl}(x). The symmetry is now broken} \]

\[\text{due to the fact that n_{nl} is monotonically decreasing. In the} \]

\[\text{upper panel of Figure 1 we compare the corrected model} \]

\[\text{relative} \]

\[\text{impact of the correction is small as it does not influence} \]

\[\text{the linear regime. Altogether the correction is small at low} \]

\[\text{S/N but becomes large in the relevant S/N ranges.} \]

\[\text{We finally note remaining discrepancies. Especially for} \]

\[\text{S/N ∈ [3, 5], which is the regime where the contribution of} \]

\[\text{non-linear and linear counts are comparable. In this regime} \]

\[\text{the detections caused by the linear contribution and the non-linear} \]

\[\text{structures will start to blend affecting the statistics in} \]

\[\text{a way which cannot be modeled analytically. A possible way} \]

\[\text{out would be the creation of a mock WL map based on a} \]

\[\text{Gaussian random fields with power spectrum} \]

\[\text{P(k) given by} \]

\[\text{Eq. (3)} \]

\[\text{and adding halos according to their mass function} \]

\[\text{and signal profile. A similar approach has been followed by} \]

\[\text{Lin & Kilbinger (2014). However, this regime is not of interest} \]

\[\text{for our study as we consider only the peaks with extreme} \]

\[\text{values (with large positive S/N) far away from this regime.} \]

\[\text{Additionally we are interested in an analytic prescription to} \]

\[\text{evaluate the extreme value statistics.} \]

\[\text{Furthermore we neglected the influence of halo triaxiality} \]

\[\text{(see Oguri & Blandford 2009 and Hamana et al. 2012).} \]

\[\text{This effect will introduce an additional scatter into the} \]

\[\text{detection amplitude.} \]
3 GENERAL EXTREME VALUE AND ORDER STATISTICS

This section will review the basic concepts of general extreme value (GEV) statistics and order statistics and how they can be calculated from the fiducial distribution given by the weak lensing counts given by Eq. (15) or (18) for the old and new model respectively. Now the parameters α, β, γ from Eq. (19) can be derived for the specific peak number density $n_{\text{det}}(x)$ by applying a Taylor expansion around the maximum of the corresponding PDFs and equating coefficients. This yields

$$\gamma = n(x_0)A - 1, \quad \beta = -\left(1 + \gamma \right)^{1 + \gamma}, \quad \alpha = x_0 - \frac{\beta}{\gamma} (1+\gamma)^{-\gamma} - 1,$$

where the prime denotes the derivative with respect to x and x_0 is the most likely signal which can be found by running a root search on

$$n''(x_0) - A(n'(x_0))^2 = 0,$$

as a result of the constraint $P_0'(x_0) = 0$ (see appendix A.1 for a derivation). The distribution of the largest weak lensing signals can thus be described by the three GEV parameters α, β, γ which can be directly obtained from the number counts.

As an example we show in Figure 2 the CDFs resulting from Eq. (20) for a one square degree survey in the fiducial cosmology, introduced in Sect. 1, and mass functions: Press & Schechter (1974), Jenkins et al. (2001) and Sheth & Tormen (1999) in blue, red and black, respectively. It can be seen that the choice of the mass function has only a small impact on the distribution of the highest lensing signals except for the PS mass function.

3.2 Order statistics

As described in Waizmann et al. (2013) we now introduce the basic concepts of order statistics, describing the statistics not of the maxima or minima of a distribution, but of their i-th highest or lowest values.

Suppose $X_1, X_2, ..., X_n$ is a sample of random numbers drawn from some continuous population with a PDF...
$f(x)$ and a corresponding CDF $F(x)$. The random numbers can now be ordered by magnitude and re-labelled X_1, X_2, \ldots, X_n, such that $X_i < X_{i+1}$. Now, if X_i belongs to x, i.e. the event $x < X_i < x + \delta x$ we have a number of $(i-1)$ X_k such that $X_k \leq x$. Here exactly one X_k lies in the mentioned interval and the remaining $(n-i)$ X_k have $X_k > x + \delta x$. Since n observations (random numbers) belong to the set, they can be arranged in several ways. The total number of such arrangements is

$$A(n, i) = \frac{n!}{(i-1)!(n-i)!} \quad (23)$$

with a corresponding probability of having a certain realization

$$\text{prob}(x) = [F(x)]^{i-1}[F(x + \delta x) - F(x)][1 - F(x)]^{n-i} \quad (24)$$

Here δx denotes the width of the interval containing only one element. For large n, δx is small and thus terms $O(\delta x^2)$ can be neglected yielding

$$f_{(i)}(x) = \lim_{\delta x \to 0} \left[\frac{\text{prob}(x < X_{(i)} \leq x + \delta x)}{\delta x} \right] = A(n, i)[F(x)]^{i-1}[1 - F(x)]^{n-i}f(x).$$

Integrating this equation yields the corresponding CDF, which is given by

$$F_{(i)} = \sum_{k=1}^{n} \binom{n}{k} [F(x)]^{k}[1 - F(x)]^{n-k}. \quad (26)$$

Thus the distribution of the largest, i.e. the extreme value, or smallest value is

$$F_{(n)}(x) = [F(x)]^n \quad \text{and} \quad F_{(1)} = 1 - [1 - F(x)]^n \quad (27)$$

respectively. This means that, given a set of random variables X_i, $i \in [1, n]$ drawn from a distribution $F(x)$, the smallest X_i can be described as a random number drawn from $F_{(1)}$, while the largest value is a random variable from $F_{(n)}(x)$. As discussed in Sect. 3.1 for large n both cases can be described by Eq. (19).

This procedure can be extended to joint distributions of several orders. Given two ordered random variables $X_{(r)}$, $X_{(s)}$ such that $1 \leq r < s \leq n$ and $x < y$ their joint PDF is

$$f_{(r,s)}(x, y) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} \times [F(x)]^{r-1}[F(y) - F(x)]^{s-r-1}[1 - F(y)]^{n-s}, \quad (28)$$

while the joint CDF is given by

$$F_{(r,s)}(x, y) = \sum_{j=r}^{n} \sum_{i=s}^{n} \frac{n!}{(j-i)!(n-j)!} \times [F(x)]^{j}[F(y) - F(x)]^{s-j-1}[1 - F(y)]^{n-j}. \quad (29)$$

Figure 4 shows the joint PDFs for different combinations of rank orders of the positive peaks. The calculations are carried out with a survey area of 1 deg2. The color ranges from the minimum (blue) to the maximum (red) of the distribution.

Figure 3 shows the first 22 orders in a one square degree field for the positive detections. The expected number of observations is therefore $N = n_{\text{det}}(x_{\text{min}})A$, with the detection
threshold x_{min}. Note that we need to introduce the cut-off x_{min} because n_{det} cannot be converted into a distribution function as it is not monotonically decreasing (Maturi et al. 2009). However, by setting a boundary, x_{min}, we restrict ourselves to the region where the distribution is monotonically decreasing. The actual choice of x_{min} is not crucial, as long as it converts $n_{\text{det}}(x)$ into a monotonically decreasing function for all $x > x_{\text{min}}$ and as long as it is small with respect to the expected values x given by the resulting PDF. We thus write the CDF of weak lensing peak counts as

$$F(x) = 1 - \frac{n_{\text{det}}(x)}{n_{\text{det}}(x_{\text{min}})},$$

which enters in Eq. (29) and (26). As a first result it can be seen that the CDF steepens with increasing order and thus the constraining power of a single measurement increases. This is due to the fact that for detections with lower S/N more objects occur in the corresponding signal bin. We will call the detection with he highest signal the first order, the detection with the second highest signal the second order and so on.

Figure 4 shows the joint probability distribution of different combinations of orders, as denoted in the individual panels. For example we compare the first with the third order in the upper left plot of Figure 4 which quantify the panels. For example we compare the first with the third order different combinations of orders, as denoted in the individual and so on.

4 CONFRONTING THEORETICAL PREDICTIONS WITH SIMULATIONS

4.1 N-body numerical simulation

We test our prediction outlined in Section 2 by processing a mock ellipticity catalogue derived by a ray-tracing N-body numerical simulation carried out with GADGET-2 (Springel 2005) and presented by Borgani et al. (2004). The simulation represents a standard ΛCDM model including dark matter as well as additional baryonic physics for the gas component modeled by radiative cooling, star formation and supernova feedback in the form of galactic winds. The base cosmological parameters are $\Omega_m = 0.3$, $\Omega_L = 0.7$ and $\Omega_k = 0.04$. The Hubble constant is $H_0 = 100\text{km s}^{-1}\text{Mpc}^{-1}$ with $h = 0.7$ and the linear power spectrum of the matter-density fluctuations is normalised to $\sigma_8 = 0.8$. The simulated box has a side length of $192h^{-1}\text{Mpc}$, containing 480^3 dark-matter particles with a mass of $6.6 \times 10^8h^{-1}M_\odot$ each and an initially equal number of gas particles with a mass of $8.9 \times 10^8h^{-1}M_\odot$ each.

As discussed in Pace et al. (2007) and Maturi et al. (2009) backward light cones have been constructed using the simulation by taking snapshots at different redshifts ranging from $z = 1$ to $z = 0$. In order to avoid repetitions of the same structures in snapshots at different redshifts, these are randomly shifted and rotated. The light cone has been sliced into thick planes whose particles are subsequently projected with a triangular-cloud scheme on lens planes perpendicular to the line-of-sight. Finally a bundle of 2048×2048 light rays is traced through the light cone starting from the observer into directions on a grid of 4.9 degrees on each side. From this ray tracing simulation effective convergence and shear maps are obtained. These are used to lens a background source population of galaxies at $z = 1$ with a number density of $n_g = 30\text{arcmin}^{-2}$ and random intrinsic ellipticities drawn from

$$p(\epsilon_s) = \frac{\exp[(1 - \epsilon_s^2)/\sigma_s^2]}{\pi\sigma_s^2[\exp(1/\sigma_s^2) - 1]},$$

with $\sigma_s = 0.25$. The mock catalog of galaxy ellipticities is then analysed with optimal filter described in Sect. 2.3 on a grid of 512×512 positions covering the entire field-of-view. To account for the survey geometry, the pixelized shear map and the discretization of the sky, a filter functions W needs to be introduced in the spectral moments (Eq. (14)) when evaluating the number counts model from the simulation.

The result of the filtering procedure is

$$\sigma_s^2 = \int \frac{k^{2j+1}dk}{2\pi} P(k) \tilde{W}^j(k) Q(k)^2,$$

where Q is the optimal filter introduced in Eq. (5) and the filter function W is a product of the following terms: a high-pass filter, suppressing scales larger than the side length of the field of view,

$$\tilde{W}_h(k) = \exp\left(\frac{-k^2}{k^2_h}\right),$$

and another low-pass filter including the finite size of the pixels

$$\tilde{W}_{\text{pix}} = \frac{2\sqrt{\pi}}{kd_{\text{pix}}} J_1 \left(\frac{kd_{\text{pix}}}{\sqrt{\pi}}\right),$$

where $k_l = 2\pi/l_d$, $k_g = 2\pi\sqrt{\mu_d}d_{\text{pix}} = 4.9^6/512$ and J_1 is a cylindrical Bessel function of order one, representing a circular step function of the size of a pixel.

4.2 Estimation of the CDF

The detections are defined by the up-crossing criteria discussed in Maturi et al. (2009), i.e. the resulting weak lensing maps are sliced into different S/N-ratios. Then the number of detections is counted above every threshold. A detection is defined as a continuous group of pixels above the given threshold, which are linked if they are closer to each other than a certain linking length. In this case the latter is 1.42 pixels, so that also pixels diagonal with respect to each other are linked together.

In order to study the order statistics of the WL maps in the numerical simulation, the field has to be divided into N smaller sub-fields, each with area A_{sub}. The sample of the i-th highest value drawn from each sub-field represents the order statistic of order i corresponding to a survey area
\(A_{\text{sub}} \). The CDF of the \(i \)-th order from the simulation can be estimated by
\[
F_{(i)}(x^{(i)}_j) = \frac{1}{N} j, \quad j \in [1, N],
\] (36)
where \(x^{(i)}_j \) is the ordered (from small to large values) vector of the \(i \)-th highest value in each subfield \(A_{\text{sub}} \). As all \(x^{(i)}_j \) are drawn from the same distribution, \(f_{(i)}(x) \), their respective error is given by the width of the distribution. In Sect. 4.3 we compare the order statistics of both, positive and negative \(S/N \), with the simulation. By splitting the WL map into 24 tiles. Note that the error bars are rather confidence regions which are given by the width \(\Delta_{(i)} \) of the PDF of the \(i \)-th order statistics. We define this to be
\[
\Delta_{(i)} \equiv Q_{80} - Q_{20},
\] (37)
where \(Q_p \) is the quantile of the distribution with \(p = 100 \times \text{CDF}(Q_p) \), i.e. the inverse of CDF. The value \(x_{(i)}^{(i)} \) of the simulation is than given by \(x_{(i)}^{(i)} = x_{(i)}^{(i)} \pm \Delta_{(i)}/2 \).

4.3 Negative detections

The first row of Figure 5 shows the model prediction for the first three orders together with the distribution resulting from the numerical simulation calculated from Eq. 36. Clearly the prediction lies well within the error bars. The steepening and shifting to smaller values of the order statistic in the simulation are in good agreement with the theoretical prediction. We stress the fact that Figure 5 shows a prediction and not a fit of the model to the simulated data.

4.4 Positive detections

In the second row of Figure 5 we repeat the same exercise for the positive detections. Again, the model is in good agreement with the simulation. Note that for the first order the CDF from the simulation cannot reach unity because there are two peaks at very high \(S/N \), namely \(S/N = 13 \) and \(S/N = 17 \), which are not shown for easier comparison of the different orders. In this Figure two models are shown: The dashed blue line corresponds to the order statistics calculated from the uncorrected version of the number counts, while the black line includes the correction acting on the detections caused by non-linear structures. This clearly illustrates that the contribution of the LSS is relevant also for the detections with the highest \(S/N \) ratios. Ignoring the contribution would lead to biased cosmological parameters, even though the detections at large \(S/N \) are only due to non-linear structures. We further notice that the difference induced by the correction is much larger than the one due to the use of different mass functions (Figure 2).
5 Optimizing the Area of the Sub-Fields

The previous analysis has been performed by splitting the simulated field \((4.9 \times 4.9 \text{ deg}^2)\) into \(N\) sub-fields. So far the choice was arbitrary and we used a size of \(1\text{ deg}^2\) for simplicity. Thus, the question is whether this can be done in a more objective and optimal way to do it.

Since the goal is to estimate some distribution on a large number of sub-fields is preferred as the sampling improves and thus the overall constraining power on cosmological parameters. However, increasing the number of sub-fields automatically decreases the size of each sub-field given a fixed total survey area, \(A\). Therefore the strongest lenses in each sub-field will have smaller signals, diluting the presence of those with larger amplitude and mostly related to non-linear structures. Furthermore, the sensitivity on cosmological parameters shrinks due to the dilution of non-linear structures and LSS due to the noise. The probability of finding a signal above some threshold \(t_{sn}\) is

\[
\text{Prob}[t_{sn};N] = \int_{t_{sn}}^{\infty} p_n(x) \, dx,
\]

where \(p_n(x)\) denotes the PDF of the order statistics corresponding to a sub-field size of \(A_{\text{sub}} = A/N\). Again, increasing \(N\) will lead to a better sampling of the distribution, but it also leads to a lower probability of finding a detection due to a cluster in each sub-field. The expected number of objects above this threshold is thus

\[
\langle N \rangle = N \text{Prob}[t_{sn};N].
\]

The threshold \(t_{sn}\) chosen such that the largest signals are likely to be due to clusters. Eq. (38) is the probability that a halo with \(S/N > t_{sn}\) can be found in a certain area, conversely,

\[
q = 1 - \text{Prob}[t_{sn};N] = 1 - p
\]

is the probability of not finding a halo. However, aiming at galaxy clusters, the largest signal in each sub-field is required to be due to the non-linear contribution. Therefore no object should be below the threshold \(t_{sn}\), which marks a boundary between non-linear and linear counts, thus

\[
qN \leq 1,
\]

such that in each sub-field the corresponding largest signal occurs above the threshold. Eq. (41) sets a maximum for \(N\). Combining this with the goal to sample the distribution as well as possible the maximum \(N\) can be used as the number of sub-fields. As a result we present in Figure 6 the number of sub-fields as a function of the threshold \(t_{sn}\) and the total survey area. As expected, increasing the threshold lowers the maximum number \(N\), since there are fewer objects above higher thresholds. Accordingly, with increasing total survey area the \(N\) also increases as more data are available. As the total survey area is fixed by the experiment the only free parameter left is \(t_{sn}\), which should be chosen such that everything above the threshold will most likely be a halo and not due to LSS. A reasonable value for the threshold is found to be \(t_{sn} \approx 5 - 6\), which is the value at which well observable galaxy clusters show themselves.

6 Constraining Cosmology

In this section we use the method outlined in Sect. 2 and 3 to constrain cosmological parameters. Before applying the method to mock data we briefly discuss the impact on individual cosmological parameters on the extreme value statistics. Afterwards we carry out a likelihood analysis using a Euclid-like survey with \(A = 15000 \text{ deg}^2\). We mimic a source redshift distribution with a mean redshift of approximately unity, using the parametrisation given in [Benjamin et al. (2007)] \((a, b, c) = (0.748, 3.932, 0.8)\) and a source number density \(n_g = 40 \text{ arcmin}^{-2}\). We investigate two scenarios, one completely ignoring redshift information and one dividing the survey into two redshift bins. In the first case we use \(N = 4574\) sub-fields and in the second case the following number of sub-fields: \(N_{\text{low}} = 2858\) and \(N_{\text{high}} = 2059\) according to the criterion given in Sect. 3. Mock data are created by sampling \(N\) random numbers drawn from the distribution of the largest signal given by Eq. (22). Note that small survey sizes, allowing a sampling of \(N \sim 500\) sub-fields, can create a sample bias when deriving the cosmological parameters because of under-sampling of the fiducial distribution and its non-Gaussianity. This effect can be re-
Relative deviations Δ in percent of quantiles of the extreme value distribution (1st order) as a function of cosmological parameters. Quantiles used are 5% (solid blue) 50% (dashed black) and 95% (dotted red). The fiducial model is given by the base parameters described in section 1. Top: positive detections. Bottom: negative detections.

Figure 8. Relative deviations Δ in percent of quantiles of the extreme value distribution (1st order) as a function of cosmological parameters. Quantiles used are 5% (solid blue) 50% (dashed black) and 95% (dotted red). The fiducial model is given by the base parameters described in section 1. Top: positive detections. Bottom: negative detections.

duced by using the average likelihood, i.e. by averaging over many realisations of Eq. 44. This will increase the uncertainties in the derived parameters. In Figure 7 the relative bias $(\theta_{\text{fit}} - \theta_{\text{fid}})/\theta_{\text{fid}}$, with θ being the parameter is shown as a function of the number of sub-fields N. It can be seen that the bias increases at low N. At higher N it is close to zero and approximately constant. The systematic offset just arises from the finite resolution of the likelihood and can be in principle reduced to zero by introducing more grid points in parameter space. Note that the plotted parameters were not fitted simultaneously. However, for our application the number of sub-fields is much larger and this sample bias will not pose any problem.

6.1 Impact on cosmology

We take a first look at the dependence on cosmology of the order statistic ignoring any redshift information as a starting point. Figure 8 shows the dependence of quantiles Q_p, i.e. the inverse of the CDF at a given value p of the extreme value distribution (1st order) of both positive and negative peaks as a function of cosmological parameters (for example Q_{50} corresponds to $p = 0.5$ and therefore 50% probability occurs below Q_{50}). We show the relative deviation from the fiducial model

$$\Delta \equiv \frac{(Q_p - Q_{\text{fid}}^p)}{Q_{\text{fid}}^p},$$

and for which we assumed a flat universe.

The sensitivities to Ω_m and σ_8 are comparable and very strong in case of the positive detections. This also shows the degeneracy between the two parameters which is typical for estimates based on weak lensing. The shape of the distribution changes slightly when varying the parameters as the curves of different quantiles have different slopes. This effect is due to the highly non-linear dependence of the positive detections on those parameters. This behaviour cannot be seen in the bottom row, where the negative detections are shown. Because of the Gaussian nature of the peaks in this case, the overall shape of the extreme value distribution does not vary significantly when changing cosmological parameters. We also note that the sensitivity is much stronger in case of the positive detections, causing changes up to 12% in case of Ω_m and σ_8 in the considered region of parameter space, while the negative detections only give rise to changes up to 4%.

The dependence on the equation of state parameter is much weaker than the dependence on parameters related to structure formation. Volume effects are less important, compared to the dependence on Ω_m and σ_8. The increase of the relative difference for smaller w_0 (less negative) is mainly due to the modifications of the exponential tail of the mass...
function. It can again be seen that the negative detections show a weak sensitivity compared to the positive peaks with respect to \(w_0 \). This agrees with the fact that volume effects are not the dominating factor.

Note that when adopting a time dependent equation of state \(w(a) = w_0 + w_a(1-a) \), the quantiles nearly stay constant in the parameter range. In [Waizmann et al. (2013)] and [Pace et al. (2010)] it has already been shown that the most massive objects are only affected at higher redshifts when adopting a simple linear model for \(w(a) \). For halos at high redshift the lensing signal shrinks and thus those objects are not captured.

Additionally, the number of background galaxies \(n_g \) shrinks when going to higher redshifts, thus the \(S/N \)-ratio drops as the shot noise increases. Thus, even though the abundance of very massive halos will change (see [Waizmann et al. (2013)]), the most extreme weak lenses are not affected that much as those massive halos appear at higher redshift, where the \(S/N \)-ratio is lower in the first place. Therefore the dependence on \(w_0 \) is very weak as its impact becomes important only at higher redshift when keeping \(w_0 \) constant. Note that the impact of cosmological parameters also depends on the adopted source redshift distribution, for example a higher sensitivity in \(w_0 \) can be reached if the sources populate higher redshifts.

We finally note that the corresponding GEV parameters \(\alpha, \beta \) and \(\gamma \) depend nearly linearly on the cosmological parameters except for \(w_0 \), allowing the use of simple schemes to quickly evaluate the likelihood.

6.2 The likelihood

For calculating the likelihood a mock data set is created by sampling \(N \) random numbers from the fiducial model, i.e. from the derivative of Eq. (20) \(p_{\alpha,\beta,\gamma}(x) \) evaluated at the fiducial cosmology. The components of the vector \(D \) are denoted \((D)_i \equiv X_i \). Those \(N \) numbers are the highest \(S/N \)-ratios in the \(N \) sub-fields with area \(A = A_{\text{tot}}/N \), i.e. we fix \(A_{\text{tot}} = 15000 \text{ deg}^2 \) and calculate the optimal number of sub-surveys \(N \) via the condition (41). Having fixed \(A_{\text{tot}} \) and \(N \), the mock data is sampled from the resulting distribution (20) for both the positive and negative peaks.

The likelihood is now the joint conditional probability for having a set of parameters, collected in the parameter vector \(\Theta \), given a data set \(D \):

\[
L(\Theta|D) = \prod_{i=1}^{N} p_{\alpha,\beta,\gamma,i}(\Theta|X_i),
\]

where we already assumed a flat prior \(p(\Theta) \) and the evidence \(p(D) \) was already included into the normalization. The log-likelihood \(L \) is

\[
L(\Theta) = \sum_{i=1}^{N} \sum_{j=\pm} \log \left(p_{\alpha,\beta,\gamma,i,j}(\Theta|X_i) \right),
\]

where the plus and minus signs denote positive and negative peaks respectively. Again flatness is assumed, i.e. \(\Omega_m = 1 - \Omega_{\Lambda} \), while parameters like \(h \) and \(\Omega_b \) are fixed in the first place, as their influence is negligible, thus yielding only an overall factor. Since the individual terms \(p_{\alpha,\beta,\gamma,i,j} \) of the likelihood are not Gaussian or have a simple exponential form, also the likelihood will of course not assume this simple form. Therefore a Fisher approach is not suitable and the likelihood has to be sampled directly or via Monte-Carlo methods.

In Figure 9 we show the influence of the source number density \(n_g \). Clearly, fewer background galaxies lead to a lower weak lensing \(S/N \)-ratio, which is expected. However, the sensitivity of the highest peaks to cosmological parameters is due to the mass function. Thus the shape of the likelihood will be conserved. Nonetheless, as the \(S/N \) decreases if \(n_g \) is decreased, the expected \(S/N \) of the highest peak will also decrease if the sub-field area is kept fixed. For example, if we are given two surveys with the same total survey area \(A_{\text{tot}} \) but different source densities \(n_g \), the possible number of sub-fields \(N \) will also differ. Especially if \(n_{g1} > n_{g2} \) we have \(N_1 > N_2 \). As the sub-fields are considered to be independent, the likelihood scales with \(N^{-1/2} \) due to the Poissonian nature of the statistical error. In the survey discussed in this work the uncertainties of the cosmological parameters for \(n_g = 40 \text{ deg}^{-2} \) will pick up a factor \(\sqrt{40/30} \approx 1.2 \) if we calculate the likelihood with \(n_g = 30 \text{ deg}^{-2} \).

When including the two redshift bins, their individual
contributions are included in Eq. (44) as an additional sum over all redshift bins. Furthermore the upper limit of the summation \(N \) is bin-dependent. The likelihood therefore reads \(L_z(\Theta) = \sum L_{bin}(\Theta) \), where \(L_{bin}(\Theta) \) is given by Eq. (44).

6.3 Confidence regions

We show in Figure 10 the resulting likelihood without using redshift information in the \(\Omega_m - \sigma_8 \) plane. In this case we only fit \(\Omega_m \) and \(\sigma_8 \) and keep \(w_0 \) fixed, because its variation around the fiducial value only marginally affects the results. The fiducial cosmology is marked with a point. It can be seen that the expected degeneracy between \(\Omega_m \) and \(\sigma_8 \) exists. Note that the likelihood is really non-Gaussian even though the contours look like ellipses, with contours corresponding to 68.3%, 95.4% and 99.7% confidence. The error contours are nearly orthogonal to those obtained from the CMB (Planck-Collaboration et al. 2013) and thus a joint analysis can yield very tight constraints on both parameters. The relative uncertainties of both parameters are \(\sim 10^{-3} \). Note that, assuming a source background density \(n_g = 30 \text{ deg}^{-2} \) the relative uncertainty will pick up a factor of 1.2 as mentioned before. Especially for \(\sigma_8 \) this result is competitive, for example Wang et al. (2010) showed that a relative uncertainty of \(\sim 7 \times 10^{-2} \) can be achieved by using Baryon Acoustic Oscillation measurements.

So far we neglected any redshift information regarding the detections discarding all the information about the time evolution of the universe. Here, we introduce only two redshift bins for simplicity in order to trace the evolution of structure formation. By introducing redshift boundaries when integrating over Eq. (12). We would like to stress that here we assume the minimum amount of information when including redshift in the analysis, i.e. we do not assume to have the redshift of each individual detection, but we simply perform the peak counts on two shear maps, one for the higher and one for the lower redshift bin. This is because a redshift estimate can only be associated to those detections which have been identified to be galaxy clusters (Bellagamba et al. 2011, Bellagamba et al. 2012). The estimate could be given by taking advantage of optical filters or other external data. Thus the procedure described in Sect. 5 has to be applied to each of the two shear maps separately, i.e. by fixing the total survey area one can calculate the optimal number of sub-fields for each shear map.

In order to get comparable statistics in the redshift bins, the expected number of objects should also be comparable. For our purpose we use two redshift bins such that the expected number of peaks above the threshold \(t_{sn} \) is roughly equal, resulting into redshift bins with \(0 < z < 0.35 \) (named \'low\') and \(0.35 < z \) (named \'high\').

We fit \(\Omega_m \), \(\sigma_8 \) and \(w_0 \) simultaneously while setting \(w_a = 0 \). In Figure 11 we show the resulting likelihoods. On the diagonal the maximized likelihoods can be seen, i.e. the one dimensional sub-spaces with the other parameters set to their best fit value. The lower triangle shows the maximized constraints on all three parameter permutations. One can see that the constraining power in the \(\Omega_m - \sigma_8 \) plane is very similar to the one obtained from Figure 10. However, \(w_0 \) can now be constrained allowing an uncertainty below 0.1 at 1\(\sigma \) and thus a relative uncertainty \(< 9\% \). We also note that the degeneracy between \(w_0 \) and each of the other two parameters is very small.

7 CONCLUSIONS

The results presented show that applying order statistics to the distribution of cosmic shear peaks is a powerful tool to constrain cosmological parameters associated with structure growth and the geometrical evolution of the universe. We evaluated the extreme value and order statistics for both over-densities and under-densities of weak lensing shear maps, we optimized the criterion to split a wide field survey into sub-fields in order to optimally sample the distribution of extreme values, and we forecasted the constraints on \(\Omega_m \), \(\sigma_8 \) and \(w_0 \) achievable with wide fields surveys. In the process we also improved the analytic recipe provided in Maturi et al. (2009) and Maturi et al. (2011) by accounting for the impact of LSS on the largest \(S/N \) peaks which cannot be neglected even though these are caused by highly non-linear structures. A good agreement was found when comparing our model with a ray-tracing \(N \)-body numerical simulation.

This has been done with mock data under the assumption that (1) the contribution of noise and LSS in weak lensing shear maps produced with relatively broad kernels are well represented by a Gaussian random field and (2) by ignoring blending between the peaks mainly caused by noise and LSS and those caused by non-linear structures. For a Euclid like survey with and without including photometric redshifts of the galaxies in our analysis we obtained the following:

(i) When modelling the statistics of weak lensing peak maps the embedding of the contribution from clusters into the LSS has to be taken into account. While this might appear as counter-intuitive at first glance, but both LSS and noise fluctuations (even if occuring at low \(S/N \) ratios) are very important also in the high signal-to-noise regime. Their impact is not negligible, especially when constraining the extreme value statistics, and cannot be ignored. The impact of the LSS and noise contributions to large \(S/N \) ratio peaks is of order 15%. For this reason great attention has to be given to a detailed description of the data noise which, even if of low amplitude, may result in large biases if its statistical properties are not well understood.

(ii) Using extreme value statistics we give an analytic prediction for the largest weak lensing signals expected in wide field surveys. These values can also be used to verify if the existence of extremely massive clusters such as ‘El gordo’ are falsifying \(\Lambda \)CDM or not. For example, this cluster, which has been widely claimed to be ‘troublesome’ for \(\Lambda \)CDM, is not in contrast expectations from \(\Lambda \)CDM (Waizmann et al. 2012).

(iii) The extreme value statistics applied to peak counts has the advantage that the resulting likelihood from which cosmological parameters are extracted does not need any assumption of the shape of the distribution as it is given by the model itself. Furthermore the identification of the highest peaks is a straightforward task.

(iv) We evaluated the constraints of the cosmological parameters achievable with the extreme value statistics applied to weak lensing maps. Both \(\Omega_m \) and \(\sigma_8 \) can be well constrained below the percent level, additionally the parameter...
Extreme value statistics of weak lensing shear peak counts

Figure 11. Confidence regions for a survey with $A = 15000 \text{deg}^2$ and two redshift bins. Confidence regions shown in the lower triangle are again 1σ, 2σ and 3σ. The plots on the diagonal show one dimensional cuts through the likelihood, while plots in the lower triangle show two dimensional cuts and the respective confidence regions. The fiducial cosmology is marked with a dot.

Investigating the highest shear peaks in wide weak lensing surveys, the presented method directly reflects the statistics of the most massive objects, i.e. galaxy clusters, avoiding any reference to their mass and the danger of using potentially biased mass proxies and scaling relations. Even though few assumptions have been used, this method has the potential to provide strong constraints on the underlying cosmological model.

ACKNOWLEDGMENTS

We would like to thank Björn Schäfer, Robert Lilow, Elena Kozlikin, Celia Vierrmann and Jonas Frings for helpful discussions. This work was supported in part by the Transregio-Sonderforschungsbereich TR 33 of the Deutsche Forschungsgemeinschaft.

REFERENCES

Angrick C., Bartelmann M., 2009, A&A, 494, 461
Angrick C., Pace F., Bartelmann M., Roncarelli M., 2015, ArXiv e-prints
Bardeen J. M., Bond J., Kaiser N., Szalay A., 1986, The Astrophysical Journal, 304, 15
Bartelmann M., 1996, A&A, 313, 697
Bartelmann M., Perrotta F., Baccigalupi C., 2002, A&A, 396, 21
Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Bellagamba F., Maturi M., Hamana T., Meneghetti M., Miyazaki S., Moscardini L., 2011, MNRAS, 413, 1145
Bellagamba F., Meneghetti M., Moscardini L., Bolzonella M., 2012, MNRAS, 422, 553
Benjamin J., Heymans C., Semboloni E., van Waerbeke L., Hoekstra H., Erben T., Gladders M. D., Hetterscheidt M., Mellier Y., Yee H. K. C., 2007, MNRAS, 381, 702
Borgani S., Murante G., Springel V., Diaferio A., Dolag K., Moscardini L., Tormen G., Tornatore L., Tozzi P., 2004, MNRAS, 348, 1078
Cardone V. F., Camera S., Mainini R., Romano A., Diaferio A., Moli R., Scaramella R., 2013, MNRAS, 430, 2896
Cardone V. F., Camera S., Sereno M., Covone G., Maoli R., Scaramella R., 2014, ArXiv e-prints
Davis O., Devriend et J., Colombi S., Silk J., Pichon C., 2011, MNRAS, 413, 2087
Dietrich J. P., Hartlap J., 2010, MNRAS, 402, 1049
Gumbel E., 1958, Statistics of Extremes. Dover Books on Mathematics, Dover Publications
Equating coefficients of the Taylor expansion around the peaks of both distributions one finds via

\[P_0(x_0) = G_{\gamma, \alpha, \beta}(x_0) \]

the equation

\[-n(x_0)A = \left[1 + \gamma \left(\frac{x_0 - \alpha}{\beta} \right) \right]^{-1/\gamma}. \]

(A1)

Due to the maximum constraint the third term of the expansions has to vanish:

\[G''_{\gamma, \alpha, \beta}(x_0) = 0 = P''_0(x_0) \]

yielding

\[1 + \gamma = \left[1 + \gamma \left(\frac{x_0 - \alpha}{\beta} \right) \right]^{-1/\gamma}. \]

(A2)

After inserting (A6) into (A4) one can conclude

\[\beta = \frac{1}{n'(x_0)A}. \]

(A7)

Using again (A4) and inserting \(\beta \) from the latter equation one ends up with

\[\alpha = x_0 - \frac{\beta}{\gamma} \left[(1 + \gamma)^{-\gamma} - 1 \right]. \]

(A9)

This paper has been typeset from a TeX/LaTeX file prepared by the author.

APPENDIX A: DERIVATION OF THE GEV PARAMETERS

Equating coefficients of the Taylor expansion around the peaks of both distributions one finds via

\[P_0(x_0) = G_{\gamma, \alpha, \beta}(x_0) \]

the equation

\[-n(x_0)A = \left[1 + \gamma \left(\frac{x_0 - \alpha}{\beta} \right) \right]^{-1/\gamma}. \]

The second term

\[P'_0(x_0) = G'_{\gamma, \alpha, \beta}(x_0) \]

yields immediately

\[-n'(x_0)A = \frac{1}{\beta^2} \left[1 + \gamma \left(\frac{x_0 - \alpha}{\beta} \right) \right]^{-1/\gamma}. \]

(A4)

\[1 + \gamma = \left[1 + \gamma \left(\frac{x_0 - \alpha}{\beta} \right) \right]^{-1/\gamma}. \]

(A6)

and Eq. (19). Plugging (A6) into (A2) yields

\[\gamma = n(x_0)A - 1. \]

(A7)

\[\beta = \frac{1}{n'(x_0)A}. \]

(A8)

Using again (A4) and inserting \(\beta \) from the latter equation one ends up with

\[\alpha = x_0 - \frac{\beta}{\gamma} \left[(1 + \gamma)^{-\gamma} - 1 \right]. \]

(A9)