Research Article

E-Commerce Enterprise Supply Chain Cost Control under the Background of Big Data

Haijun Mao¹ and Long Chen²

¹School of Economics and Management, Dalian Minzu University, Dalian 116650, Liaoning, China
²School of Management, Hebei GEO University, Shijiazhuang 050031, Hebei, China

Correspondence should be addressed to Long Chen; chenlong85@hgu.edu.cn

Received 23 October 2020; Revised 22 December 2020; Accepted 2 January 2021; Published 16 February 2021

Since the twentieth century, it has been an era of rapid development of information technology; the scale of data is almost the growth rate of the blowout type; no matter what it is, a large number of enterprises or departments are increasing a large number of cost data. However, the current cost management model still remains in the traditional management method and lacks a smarter big data analysis method. In addition, there is a lot of research on big data applications, and there are few e-commerce supply chains. Therefore, the research purpose of this study is to use big data technology to explore a series of practical operation methods for supply chain Cultural Communication Enterprises and summarize the operation mode of building SCC control by using big data technology. In terms of research methods, this study combined bibliographic review and empirical analysis, explored cost-based mobile e-commerce (EU) cost control related to big data information, used smart and digital analysis methods to thoroughly analyze CCE business issues from internal and external supply chains, established an e-commerce business supply chain cost control model based on big data technology and elaborated cost control procedures and measures. Finally, it summarized the research results and drew conclusions to provide a theoretical basis for promoting enterprises products products to reduce supply chain costs. The research in this study has achieved a breakthrough in the cost management and control of EE; it provides empirical guidance and theoretical reference for EE to adopt big data technology for cost command of supply chain (CCSC), could help EE to reduce cost of supply chain management to gain higher profit margins, and promote e-commerce industry as a whole to the next level eventually. This study concluded that the use of big data technology for cost command can solve a series of problems effectively, such as the lack of systematic analysis of cost, the lack of contractual partners, the serious waste of sales links, and the policy errors of logistics links, and continuously improve the enterprise management level and the decline of comprehensive cost. The application mode of supply chain CCE enterprises using big data technology constructed in this study has universal applicability.

1. Introduction

With the popularity of the computer and the rapid development of Internet, the worldwide data online, platform, and cloud technology, such as vocabulary, more and more frequent in people’s daily life, the need for a smartphone has been preliminarily realized. Chinese Internet users have also been broke through 800 million; this is really beyond the forecast process of some experts, can say, today’s world has entered the Internet era of big data in advance. The development of big data technology in daily life is not only a subversive change to the traditional way of life but also a profound change to the production and operation mode of traditional enterprises. Under the background of big data technology era, most enterprises relying on traditional sales means have been seriously impacted, and some enterprises are difficult to adapt to the changes of big data era and survive [1].

More and more people realize that the development of enterprises must take advantage of the trend and only rely on the advancement of current Internet technology to innovate and change the business model and get out of a development model that not only has the traditional offline model but turns to the integration of the traditional offline model and
modern online model [2]. More and more business operators are understood; the economy and the great development of science and technology have brought the big changes in the business mode and not only will have a profound impact on supply and demand; in the context of the overall supply, companies increasingly need to spend more cost to satisfy the consumers with a variety of consumer demand; in order to fundamentally profit space, enterprises urgently need to be done in each link cost control, and the informationization of modern society relying on the traditional cost accounting method efficiency is extremely low and obviously cannot meet the needs of the era of the current business development at high velocity. If enterprises want to change this situation, they must innovate the cost control mode. The arrival of the era of big data makes all this possible. The development of big data technology makes every data full of effective value space, and makes all this possible. The development of big data technology makes every data full of effective value space, and every piece of information contains a large number of value clues, which undoubtedly provides some enlightenment for many enterprises in transition [3]. How to make full use of Internet big data technology to analyze and control the cost of production and sales and realize enterprise profit has become a major issue that all enterprises need to face and solve.

The current technology for large data in the electronic commerce research mainly concentrated in the following three points: first, in terms of the application of the big data technology, with the influence of the technology, the government pays more and more attention to the technology as it plays a role in economic development; the domestic experts and scholars have put forward their own mentality, and the representative professor Wang Shan from big data technology professional characteristics discusses the data about the role of e-commerce platform to create. He discussed different aspects that infect big data technology and analyzed the technology of data in the foreseeable future opportunities and challenges facing; he thinks that big data technology in the application of e-commerce is a double-edged sword and can better serve the economic construction; it is very difficult, if there is no scientific system to regulate guarantee has been playing a positive role [4]. Second, in terms of the cost command, the scholar Han Lan believes that the cost command of the enterprise should be extended to all related enterprises in the whole supply chain rather than confined to the enterprise itself. He shall, in accordance with the scientific supply chain management thinking, in order to control cost as the core goal to set up the control model of SCC and its cost to enterprises, use the model analyzed with the laws of the cost management thinking and understanding and successfully applying cooperation and game thinking into SCC control thinking [5]. Third, in the cost control and combining uses of big data technology, a relevant expert Cheng Ping with large depth of the data mining technology construct the ERP management model; the model mainly integrates the cloud computing platform, the Internet of things technology, large inventory management, and data analysis center four core modules; e-commerce products were introduced in detail from the inbound to the outbound way of concrete application and pointed out the enterprise plays a leading role in this process [6]. By consulting a large amount of literature, we found that domestic and foreign scholars have basically the same pace of research on this issue, and both of them focus their research on the application field, cost control, and the combination of the two. First, in terms of the application of large data, Martin Christopher’s study, this study discusses the big data technology development potential and future development direction and is trying to expand its application field to healthcare, retail, education, and other industries; he also probes into the technology of big data in the department of public safety space, and the big data technology popularization after how to ensure the security of personal information anxiety is proposed. Second, in terms of SCC command, Charles Bolier proposed SCC management strategies based on the challenges and opportunities of big data [7]. He also focused on analyzing how enterprises should improve the level of cost command by applying the principles of supply chain in the process of cost command [8]. Finally, in the electronic commerce enterprise cost control and combining use of big data technology, Michel Roberto thinks that the future competition between electric business platforms will focus on the logistics speed contest; he thinks target cost law should get electricity business management platform and thinks rising competitiveness comes from the reasonable positioning of the enterprise; the enterprise’s distribution network can improve the distribution of costs and benefits, in terms of specific measures, and he also gives some suggestions and opinions to the construction [9, 10].

It is not difficult to find that although the current research on the control of traditional SCCs has become mature, the research focus of many experts, and scholars have not focused on the background of big data technology, and the combination of supply chain ideas and the target cost method has basically achieved an organic combination. However, at present, experts and scholars have not been able to really shift their attention to the background of big data technology. Their current research is still in the traditional medical care, education, and search industries, and there is still a lack of study on the integration in e-commerce, a sunrise industry. Therefore, after fully consulting and analyzing the shortcomings of domestic and foreign research results, this study decides to carry out the following innovations on the existing research: first, the research purpose of this study is clear, which directly targets the innovation of the cost control mode under the background of big data technology. Second, this study boldly broke through the current research is only limited to the theoretical dilemma, the first to carry out specific application research. Finally, this study is neutral and does not have the color of commercial dependence, which is different from previous studies that are often subject to the manipulation of a specific company or organization and affect the objective neutrality of research results.

2. Related Research Review and Theoretical Basis

2.1. Research Practice. This study is split into five parts, and the command of each part is arranged.

The first part is the referral. In this part, the significance of this research is stated [11]. On the basis of analyzing numerous research results, we summarized the current research status and objectively pointed out the limitations of
existing research. Finally, according to the goal of this research and the idea of improving the existing research, the new innovation point and goal of this research are summarized [12]. The second part of this study is a review of relevant research and a summary of the theoretical basis; mainly in this study, core concepts and basic theories were described, and the SCC command method of this study is described [13, 14]. The third part analyzes the trouble existing in the CCE enterprises. This study analyzes the trouble existing in the cost command process of e-commerce industry. The fourth part is the construction of the cost command model of big data technology in the supply chain of EE. This study adopts the method of case analysis and constructs a scientific cost control application model [15]. The fifth part is the summary of the research conclusion.

2.2. Core Concept Elaboration

2.2.1. Big Data Technology. Big data is a collection of data processing technologies with a large scale and the ability to store, analyze, and process data for surpassing the scope of conventional database processing capabilities. Big data has fast data flow cycle, massive data scale, low value density space, and diversified data types [16]. Different from traditional database processing technology, big data need to go through the deep processing of big data processing technology to truly play its value. Massive parallel processing, distributed file, data mining, and distributed database technology is the big data technology to adapt to the form, and the concrete form of big data is often characterized by big data pretreatment technology, data acquisition technology, and data statistical analysis technology [17, 18]. Large data pretreatment technology is the combination of large data acquisition technology of large amounts of data input to a centralized distribution of a large database, and on the basis of the data preprocessing and data cleaning, make vast amounts of information data and valuable data, and the characteristic of the process need a lot of import data; its transport amount could reach MB per second or even in the near future to gigabit per second. Data collection technology is to use multiple database tags to collect and store data information from the Internet, mobile phone client, and other end users [19]. The depth of the data mining technology is according to the relevant provisions of the state and the request; using the algorithm classifies the concept of the data and extracting; the technology is mainly suitable for column type storage calculation and may use GreenPlum algorithm; the process of data mining is the most critical step because the link is often needed to use tools and Kmeans clustering Naive Bayes classification and SVM statistical tools to assist in the completion; the challenge to give priority to with single thread control algorithm is complex and both computation and large amount of data [20].

2.2.2. SCC and Control Theory. SCC refers to the sum of all costs incurred by enterprises in production, sales, procurement, and other links to support the operation of the supply chain. The cost of supply chain management is the extension of the cost of the whole supply chain. Cost of SCC control is the enterprise according to the previous data as well as the recent strategic arrangements and make cost management control plan in advance before the creation of the cost or being in the process of producing cost of the various factors that affect the cost to ensure the expected cost goals to achieve management behavior.

The theory of SCC command mainly includes transaction cost theory, interorganization cost management theory, and value chain theory. Transaction cost is the cost generated in the transaction process, including negotiation, contrast, contract signing, supervision performance, incentive, and other expenses. In addition, interest sharing is the basis for long-term cooperation between supply chain companies. It is based on the contribution of each company to the entire supply chain, but it is actually difficult to divide and evaluate the tribute of each enterprise. In this case, the profit distribution may be unfair, resulting in a large number of agency arbitration events, which leads to the increase of transaction costs, and the increase of these costs has no economic benefits. Therefore, only by mutual trust and full information sharing can enterprises reduce the total cost of the supply chain. Interorganizational cost management is to regard the upstream and downstream enterprises or related enterprises as the same organization. The common goal of the organization is to reduce the total cost of the supply chain through joint efforts. All the relevant enterprises in the supply chain share risks and share profits and strive to improve their profits and efficiency on the same ship. The greater the contribution of the chain, the more profit is allocated. However, the interorganizational cost management mode is largely dependent on the coordination among the interorganizational enterprises, so the model is more suitable for information sharing and fine-grained supply chain with larger interaction. The greater the contribution of the chain, the more profit is allocated.

2.2.3. Methods of SCC Control

(1) Target cost control method. The target cost control method is based on customer demand and market-oriented. It uses value engineering to analyze the cost function in the planning and design stages of products and thus creates a method to manage the cost.

(2) Activity cost control method. Activity-based costing is usually based on the guiding ideology of "products consume activities, activities consume resources." Under the guidance of this idea, resource cost is allocated to the process of operation, and then, the cost of product consumption is tracked based on the driver of activity, so as to calculate the unit cost of various products and the cost of bulk total products to achieve the optimal cost management scheme.

(3) Responsibility cost control method. Responsibility cost refers to the cost generated in the process of assigning the enterprise to each responsibility management center. The establishment of responsibility cost needs the support of the responsibility
cost system, which establishes the responsibility cost center according to the production and operation structure of the enterprise, divides responsibility into the control cost control effect, and carries out performance assessment, and carries out cost control responsibility for each department and specific executive to control cost.

(4) Standard cost control methods. The standard cost control method is a comprehensive management method which combines the accounting function, feedback function, and forecast function organically.

The management mode constructed in this study is to distinguish the process steps, including the comprehensive cost management method of regeneration prediction and adjustment in the process of production and postproduction analysis. In the forecasting stage before cost generation, it is necessary to use target cost law and standard cost law to reasonably forecast the cost of each department. In the process of cost generation, it is often necessary to conduct repeated accounting combined with activity-based cost rule. After the cost is generated, the utility of the cost control process is judged, and the consequence is held accountable.

2.3. Supply Chain Cost Control Methods. According to the "Organizational Industry Theory," first assume that consumers have the following preferences:

\[U = \int_{Q_s}^{P} Q_s - P \, dQ. \]

(1)

The positive real number \(Q_s \) is the quality preference parameter of consumers. At a given price, all consumers like high quality, but consumers with high quality preferences are more willing to spend money for high quality. The model assumes that product preferences are uniformly distributed in a positive interval \((Q_L, Q_H) \):

\[f(Q) = \frac{1}{\Delta Q} \left(Q_L < Q < Q_H \right). \]

(2)

Assuming that there is only one product in the market with quality \(s \) and price \(p \), the demand for this product is equal to the number of consumers who have product preference parameter \(Q \) and satisfy \(Q \geq p \). In other words, assuming that the total number of consumers is 1, the demand for the product is

\[D(p, s) = \begin{cases} 0, & (\frac{p}{s} > Q_H), \\ \frac{Q_H - p}{\Delta Q - s} \frac{p}{\Delta Q - s}, & (Q_L \leq \frac{p}{s} \leq Q_H), \\ 1, & (\frac{p}{s} < Q_L). \end{cases} \]

(3)

The demand for products cannot reach the total number of consumers, so it can be seen that the actual demand for products is

\[\max \pi = (p - CM - CR) \times QM = (p - CM - CR) \times \left(\frac{Q_H - p}{\Delta Q - s} \right). \]

(5)

P0 is the consumer’s maximum payment capacity for the product. Assuming that the payment capacity is large enough to not affect the company’s decision-making conditions, the solution can be obtained:

\[p^* = \frac{1}{2} (sQ_H + CM + CR), \]

\[QM^* = \frac{1}{2\Delta Q} \left(Q - \frac{CM + CR}{s} \right), \]

\[\pi^* = \frac{1}{2\Delta Q} (sQ_H - CM - CR)^2. \]

(6)

It can be seen that \(\pi^* \) is the largest profit achieved under the collaborative management of the supply chain.

2.4. Financial Benefits under Supply Chain Management. Assume that the supply chain is a simple supply chain consisting of a manufacturer and a seller. Assuming that the quality of the product is constant, the manufacturer and seller only determine the output \(QM \), the sales \(QR \), and the final market price \(P \) of the product. The median price \(PM \) of the product is set as the product price that the manufacturer asks for when the product is delivered to the seller’s location, which actually includes the production cost and transportation cost of the product. Assume that the manufacturer’s marginal production cost and transportation cost of the product are uniformly recorded as \(CM \), and the seller’s marginal cost of sales of the product is \(CR \). It is assumed that the information between the manufacturer and the seller is symmetrical and complete, that is, the demand function faced by the product and \(CM \) and \(CR \) are the common knowledge of the manufacturer and the seller.

When manufacturers and sellers cooperate to determine output and final prices, the supply chain can be regarded as a “super organization.” The purpose of manufacturers and sellers is to maximize the profits of the entire supply chain. Distribute effectively and reasonably among enterprises. Then, the financial benefits of the organization can be seen as

\[D(p, s) = \frac{Q_H}{\Delta Q} \frac{p}{\Delta Q - s}. \]

(4)

2.5. Financial Benefits under Nonsupply Chain Coordination. Assuming that the manufacturer has absolute authority and can unilaterally determine the most favorable intermediate price \(PM \), since the assumption is that the information is symmetric, the manufacturer can accurately predict the seller’s optimal price and optimal sales volume. A rational manufacturer should make own output and sales volume consistent, that is, \(QM = QR^0 \); then, the manufacturer’s profit function is
the seller's profit function is
\[\text{max } \pi = (CM - CR) \cdot \left(\frac{Q_H}{AQ} - \frac{P}{AQ \cdot s} \right), \] (7)
\[
\text{s.t. } \text{max } \pi = (P - PM - PR) \cdot \left(\frac{Q_H}{AQ} - \frac{P}{AQ \cdot s} \right).
\]
Solving this function can be obtained, and the optimal solution for the seller is
\[p^* = \frac{1}{2} (sQ_H + PM + CR), \]
\[QM^* = \frac{1}{2AQ} \left(Q_H - \frac{PM + CR}{s} \right), \] (8)
\[\pi^* = \frac{1}{16sAQ} (sQ_H - CM - CR)^2. \]

For the manufacturer, the optimal solution is
\[p^* = \frac{1}{4} (3sQ_H + CM + CR), \]
\[QM^* = \frac{1}{4AQ} \left(Q_H - \frac{CM + CR}{s} \right), \] (9)
\[\pi^* = \frac{1}{8sAQ} (sQ_H - CM - CR)^2. \]

The total profit of the supply chain is
\[\pi_{SC1} = \frac{1}{16sAQ} (sQ_H - CM - CR)^2. \] (10)

Assuming that the seller has absolute power and can unilaterally determine the most favorable middle price PM because the hypothetical information is symmetric, the seller can accurately predict the seller's optimal price and optimal sales volume, and a rational seller should make your sales volume consistent with the expected output, that is, QM = QR; then, the seller's profit function is
\[\text{max } \pi = (P - PM - CR) \cdot \left(\frac{Q_H}{AQ} - \frac{P}{AQ \cdot s} \right), \] (11)
\[
\text{s.t. } \text{max } \pi = (PM - CM) \cdot \left(\frac{Q_H}{AQ} - \frac{P}{AQ \cdot s} \right).
\]
Solving this function can be obtained, and the optimal solution for the seller is
\[p^* = \frac{1}{2} (sQ_H + CM + CR), \]
\[QM^* = \frac{1}{2AQ} \left(Q_H - \frac{CM + CR}{s} \right), \] (12)
\[\pi^* = \frac{1}{4sAQ} (sQ_H - CM - CR)^2. \]

As for the manufacturer, his profit depends entirely on the intermediate price and the order quantity. In this case, the manufacturer is completely passive, and the manufacturer's profit is 0. The profit of the entire supply chain is
\[\pi_{SC2} = \frac{1}{4sAQ} (sQ_H - CM - CR)^2. \] (13)

Compared with the formula profit under collaborative management, there is no loss, but because the producer has no profit, this structure is very unstable.

3. Analysis of the Problems and Causes in the Cost Control Process of the Supply Chain of EE

3.1. Problems and Reasons of External Supply Chain

3.1.1. Lack of System. Instead, it makes a preliminary calculation of the costs of product sales, management, operation, and production and processing, which are difficult to truly reflect the logistics cost. Therefore, EE have not yet made accurate cost accounting in terms of logistics costs, and it is difficult to control the costs of each link in detail. In addition, it is difficult to evaluate the marketing impact and understand the true intentions of customers to accurately control them. The imperfect information security of the e-commerce platform is also an important reason for adapting to the difficulties of SCC e-commerce. Information security in the information society is also very important for e-commerce operators. A series of operations of consumers purchasing consumer goods often involve personal data security in various aspects. However, the information security situation of EE is not optimistic at present, and consumers' information such as registration, browsing, payment, purchase, and address are still at risk of being leaked. The EE exposed to the existence of leakage of user information scandal will bring incalculable losses to enterprises.

3.1.2. Lack of Stable Business Partners. Purchasing departments are often cheaper than prices as a means of supplier selection at this stage; but even with long-term cooperation, they are not formed for long-term cooperation in supply chain channels. In fact, relationships tend to be due to price discounts and improved quality of service for suppliers, but a truly valuable spirit of cooperation must be based on contracts. EE is always looking for a partner because there is no stable partner. Such frequent partner changes actually increase the cost of inventory management.

Problems existing in the external supply chain have an adverse impact on cost control, which is reflected in the lack of systems and stable business partners. Specific research data are shown in Table 1 and Figure 1.

3.2. Problems and Reasons of Internal Supply Chain. The cost analysis results of internal supply chain issues affecting the supply chain are shown in Table 2 and Figure 2.

3.2.1. Trouble and Cause in the Procurement Process. Now, many EE do not have a clear definition of the rights and responsibilities of the procurement system, and there
are many problems not only in the postsetting, even some nominal, but also in the name of saving costs. For individual purchasers, the lack of audit link or slack audit makes the procurement link prone to fraud. This responsibility setting mode that fails to regulate the procurement standard will inevitably lead to the procurement link cost higher than the actual required cost, resulting in inflated cost.

3.2.2. Trouble and Cause in the Sales Link. Now, most large e-commerce platforms lack quantitative segmentation of the sales market, with large span of sales objects and levels, complex business scope, and failure to form core competitiveness, which inevitably leads to excessive marketing costs.

3.2.3. Existing Problems and Reasons in Logistics. Along with our country logistics network, the upgrade of the actual logistics cost is gradually narrowing, but the implementation of the phase to the terminal consumers rarely see the substantial fee reduction effect, still appeared in some remote areas, and the present situation of the cost is higher and higher; this seems to increase the income of electricity, but in terms of volume compromised, and network construction is, in fact, is not conducive to reduce logistics cost of recovery.

The side effect of the lack of the internal supply chain system on cost reduction is also increased. The survey and analysis table is given in Table 2.

4. Construction of the Supply Chain Cost Control Instruction Mode under Big Data

Based on the analysis of a huge number of cases, this study constructs a model of using big data technology to control the cost of supply chain. This model is based on the analysis and research of a large number of e-commerce cases through big data technology, which is the core part of this study with most energy.

4.1. Construction Principles of the SCC Command Model

Building big data technology under the cost command model is a complex and systematic project, wants to get ideal result, inevitable need in the process of constructing the model following the general principles of control, and in particular also requires a combination of electricity enterprise organization structure, the advantages and disadvantages, the enterprise strategic target, and the industry of the enterprise environmental factors. These factors can be summarized in the following principles: first, to cut the cost as the basic guide; second, pay more attention to the control
of core costs; third, the implementation of the employee responsibility incentive and punishment system, to ensure the cost of the problem to the people responsible; and fourth, strengthen overall planning for the cost of each link to avoid the domino effect. The priority of these principles is shown in Figure 3.

4.2. SCC Analysis under Big Data Technology. SCC under big data technology mainly includes commodity cost, ordering cost, transaction cost, information cost, labor cost, and transaction cost. Among them, the cost incurred in a series of negotiation, contract signing, and negotiation activities with the supplier is the transaction cost. Information cost refers to the cost of unable to effectively select high-quality suppliers caused by information asymmetry. The order cost is divided into fixed cost and variable cost. The order number and variable cost are related, and the fixed cost does not change. The total cost is the sum of information cost, ordering cost, and commodity cost. The cost composition of the procurement link is shown in Table 3 and Figure 4.

4.3. Analysis of the Role of the SCC Command Mode

4.3.1. Continuously Improve Performance Appraisal Results. The control effect in turn improves performance and helps to continuously improve performance evaluation results. The schematic diagram of the 2016–2020 KPI performance evaluation is shown in Figure 5.

4.3.2. Continuous Improvement of Enterprise Supply Chain Management. Prior to cost command, the organization can make a reasonable budget and inform and correct the deviation in time in cost control. After cost control, the course can be summarized, and the next management plan can be improved. Enterprise the cost of data in the business process is improved, through scientific analysis of defects in the process of management, to improve and promote the improvement of the enterprise management level, not only it can produce positive impact to the enterprise, and the progress of the domain also has a strong reference meaning. This field also has strong reference significance. The distribution diagram of the standardized enterprise supply chain management model is shown in Figure 6.

4.3.3. Steadily Improve the Comprehensive Competitiveness of Enterprises. EE to strengthen the training and the training of staff, improve staff’s professional skills and culture quality, fundamentally protect the company’s operating efficiency, effectively command the company cost, implement relevant indicators, and make the enterprise overall goals agreed, can promote to achieve the enterprise strategic goals; the standardization of the competitive enterprise image shows the diagram as shown in Figure 7. After the establishment of the cost command system, the cost command can be effectively implemented. With the improvement of the enterprise management level, enterprise competitiveness will be more and more strong. The enterprise will have strong and huge space. Through the establishment of the assessment system, the innovation of the management level and the improvement of comprehensive competitive power, the cost of EE under the background of big data technology is significantly reduced.
Take cost reduction as the basic guide
Organize the layout of all links as a whole
Focus on core cost control
Implement rewards and penalties

Figure 3: Radar chart of influencing factors of SCC control.

Table 3: Cost composition chart of the procurement link.

Cost structure	Transaction costs	Their own costs	Ordering costs
Percentage (%)	17%	16%	25%
Cost structure	Artificial costs	Information costs	Transaction costs
Percentage (%)	17%	8%	17%

Cost structure chart of purchasing link

Figure 4: Cost composition chart of the procurement link.

Schematic diagram of KPI performance appraisal

Figure 5: Schematic diagram of KPI performance appraisal.
Figure 6: Demonstration chart of the standardized management enterprise supply chain level.

Figure 7: The standardized corporate image with strong competitiveness.

Figure 8: Comparison of SCCs under the intervention of big data.

Table 4: Running time when Co, GA, and PSO are applied to the dataset.
compared with the traditional model. The specific comparison figure is shown in Figure 8.

4.4. Analysis of Data Mining Algorithms under Big Data. The coevolutionary algorithm is implemented by Matlab7.6 programming under the Windows XP operating system, and the genetic algorithm, particle swarm algorithm, and coevolutionary algorithm are, respectively, applied to association rule mining by tracking the average fitness value and running time of the population during the evolution process. Performance pros and cons at the time.

Using genetic algorithm, particle swarm algorithm, and co-evolution algorithm for data mining and calculation, the Chess dataset, Solar Flare dataset, and the Plants dataset are obtained respectively, which is shown in Table 4. The dimensions of these two datasets are 6-dimensional and 10-dimensional, respectively, which belong to low-dimensional datasets. It can be seen from Figure 9 that Using the genetic algorithm, particle swarm algorithm, and co-evolution algorithm for data mining and calculation, the Chess dataset, Solar Flare dataset, and the Plants dataset are obtained respectively. It can be seen from Figure 9 that in the early stage of evolution, the convergence speed and individual quality of the coevolutionary algorithm are slightly better than the other two algorithms. As the number of iterations continues to increase, the three algorithms all converge. From the experimental results, when mining association rules on low-dimensional datasets, the mining quality of the three is not very different, and the coevolutionary algorithm is slightly better than genetic algorithm and particle swarm algorithm.

5. Conclusion
This study mainly studies the trouble existing in the SCC command process of EE in the era of big data, proposes the management and command mode of SCC command based on big data technology, and analyzes the role that each supply chain link can play in this mode. In this study, the research for big data era background, promoting EE, adopts the strategy of big data view for cost control experience

theory instruction and guidance, gives full play to the author’s knowledge and energy to help e-commerce businesses to get more profit by reducing cost, and vigorously promotes the further development of the electricity industry.

This study reflects the strong characteristics of new arguments in both the topic selection stage and the creation stage. First of all, this study discusses how to apply big data technology to save the cost of supply chain under the background of booming big data technology. Second, in the creative process, this study changes the previous scholars’ emphasis on theory and ignores the practical defects and focuses on the possibility of practice on the basis of summarizing the theory.

Through research, this study finds that there are still many improvements to be made in the practice of SCC command in the e-commerce industry. For example, most EE lack systematic analysis of costs, do not have contractual partners, serious waste of costs in sales, and wrong policies in logistics. Through the study of this research work, the conclusion is drawn that using big data technology for cost control can effectively solve many of the above problems, so as to continuously promote the progress of enterprise management and the reduction cost. The practical feature of this study lies in that it not only puts forward corresponding measures but also has a general significance for the CCE industry.

Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported by special project of serving national strategy of Dalian Minzu University (2020fwgj056).

References
[1] C. Viola and S. Gammelgaard, “The influence of the digital divide on big data generation within supply chain management,” International Journal of Logistics Management, vol. 29, no. 2, pp. 592–628, 2018.
[2] T. Fan and Q. He, “A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity,” Rapid Prototyping Journal, vol. 19, no. 1, pp. 144–167, 2018.
[3] J. Ruan, “An immune genetic algorithm for multi-echelon inventory cost control of IoT based supply chains,” IEEE Access, vol. 323, no. 12, pp. 122–128, 2018.
[4] S. Wang, “Cost optimization control of logistics service supply chain based on cloud genetic algorithm,” Wireless Personal Communications, vol. 102, no. 4, pp. 3171–3186, 2018.
[5] L. Han, “Cost-sharing contract of supply chain based on carbon emission control,” International Conference on Computational Intelligence & Security, vol. 29, no. 1, pp. 56–68, 2018.
[6] P. Cheng, “The effects of supply chain integration on the cost efficiency of contract manufacturing,” *Journal of Supply Chain Management*, vol. 54, no. 3, pp. 34–87, 2018.

[7] C. Martin, “Regional manufacturing cost structures and supply chain considerations for sic power electronics in medium voltage motor drives,” *Materials Science Forum*, vol. 924, no. 431, pp. 518–522, 2018.

[8] C. Bolier, "Linking supply chain governance and biosecurity in the context control in western java: a value chain perspective," *Frontiers in Veterinary Science*, vol. 5, no. 2, pp. 94–121, 2018.

[9] M. Roberto, "Pricing decision for information product supply chain under demand and cost disruption," *Computer Integrated Manufacturing Systems*, vol. 371, no. 4, pp. 62–67, 2018.

[10] D. Ghosh and J. Shah, "Supply chain analysis under green sensitive consumer demand and cost sharing contract," *International Journal of Production Economics*, vol. 164, no. 4, pp. 319–329, 2015.

[11] M. A. Jacobs, W. Yu, and R. Chavez, "The effect of internal communication and employee satisfaction on supply chain integration," *International Journal of Production Economics*, vol. 171, no. JAN., PT.1, pp. 60–70, 2016.

[12] T. Supeekit, T. Somboonwiwat, and D. Kritchanchai, "Dematel-modified anp to evaluate internal hospital supply chain performance," *Computers & Industrial Engineering*, vol. 102, pp. 318–330, 2016.

[13] D. Makepeace, P. Tatham, and Y. Wu, “Internal integration in humanitarian supply chain management,” *Journal of Humanitarian Logistics and Supply Chain Management*, vol. 7, no. 1, pp. 26–56, 2017.

[14] A. D. Smith, “Balancing internal supply chain logistics: a comparative analysis of manufacturing and service firm operations,” *International Journal of Procurement Management*, vol. 3, no. 2, pp. 145–166, 2017.

[15] J. M. Riley, R. Klein, J. Miller, and V. Sridharan, “How internal integration, information sharing, and training affect supply chain risk management capabilities,” *International Journal of Physical Distribution & Logistics Management*, vol. 46, no. 10, pp. 953–980, 2016.

[16] V. Turkulainen, J. Roh, J. M. Whipple, and M. Swink, "Managing internal supply chain integration: integration mechanisms and requirements," *Journal of Business Logistics*, vol. 38, no. 4, pp. 290–309, 2017.

[17] S. Graham, "Antecedents to environmental supply chain strategies: the role of internal integration and environmental learning," *International Journal of Production Economics*, vol. 197, pp. 283–296, 2018.

[18] Y. Agyabeng-Mensah, E. Ahenkorah, E. Afum, A. Nana Agyemang, C. Agnikpe, and F. Rogers, "Examining the influence of internal green supply chain practices, green human resource management and supply chain environmental cooperation on firm performance," *Supply Chain Management: An International Journal*, vol. 25, no. 5, pp. 585–599, 2020.

[19] Kailash, R. K. Saha, and S. Goyal, "Benchmarking practice for identification of internal supply chain management performance factors gap," *Journal of Supply Chain Management Systems*, vol. 6, no. 4, pp. 33–38, 2017.

[20] A. Agarwal, F. C. Giraud-Carrier, and Y. Li, “A mediation model of green supply chain management adoption: the role of internal impetus,” *International Journal of Production Economics*, vol. 205, pp. 342–358, 2018.