Communication: Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields

Galen T. Craven,1 Thomas Bartsch,2 and Rigoberto Hernandez1,a)
1Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
2Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
(Received 24 June 2014; accepted 16 July 2014; published online 29 July 2014)

When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product—for example, an energy barrier—becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, “Persistence of transition state structure in chemical reactions driven by fields oscillating in time,” Phys. Rev. E 89, 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically expensive simulation of the long-time dynamics of a large ensemble of trajectories. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891471]

Controlling the rate at which reactants transform to products, either to accelerate a chemical process or to bias a reaction toward a certain pathway, is fundamental to chemical physics. Such kinetic control can be achieved through forcing from an external field, leading to emergent behavior in molecular structure assembly,1–4 organic synthesis,5 ultracold ing from an external field, leading to emergent behavior in physics. Such kinetic control can be achieved through forc-

An example of a molecular process where an external force influences the transition state (TS) geometry, and thus reaction rates, is the photoinduced isomerization between cis and trans stilbene (Ph-C=C-Ph).32–34 Its unimolecular reaction path can be parameterized through the torsion angle of the C=C double bond. Changing the energetics along this path through photoinduction alters the isomerization reaction rate.

We show here that when a chemical reaction is periodically forced by an external field (such as a laser), the reaction rates are determined directly by the stability of the transition state. We calculate the reaction rate of a model system by simulating large ensembles of trajectories and compare this result with the rate predicted by Floquet analysis of the transition state trajectory. Corresponding to the “chemical method” where the reactant concentration is followed as a function of time,35 we obtain reaction rates from the decay of a given initial distribution. These rates are well-defined because the decay is exponential when averaged over a period of the driving and independent of the choice of distribution. A major result of this work is that the rates can be obtained from a Floquet analysis of the transition state trajectory, an unstable periodic orbit (PO) close to the barrier top. This agreement suggests that chemical reaction rates can be extracted directly from the transition state without knowledge of the dynamics of the reactive population. This general result could have been anticipated from the known connection between the stability of periodic orbits of Hamiltonian systems and rates,36–38 but is here established even in the case of driven systems.

a)Author to whom correspondence should be addressed. Electronic mail: hernandez@chemistry.gatech.edu.
To model barrier crossings in chemical reactions driven by a time-dependent external field $E(t)$ we consider a particle of unit mass with an initial position x_0 on the reactant side of a moving energy barrier. The chosen barrier is a quartic potential of the form

$$U(x) = -\frac{1}{2} \omega_b^2 (x - E(t))^2 - \frac{1}{4} \epsilon (x - E(t))^4,$$

which leads to the equations of motion

$$\dot{x} = v,$$

$$\dot{v} = -\gamma v + \omega_b^2 (x - E(t)) + \epsilon (x - E(t))^3,$$

where γ is a dissipative emission parameter, ω_b is the barrier frequency, and ϵ is an anharmonic coefficient. The anharmonic coefficient is restricted to values $\epsilon \geq 0$ such that there is a single maximum in the potential located at the barrier top (BT). The time dependent, instantaneous position of the BT is specified by $E(t)$. Figure 1 shows the time evolution of $x(t)$ for an ensemble of trajectories following Eq. (2). Each trajectory either crosses the energy barrier forming product or remains on the reactant side, never surmounting the barrier. The normalized flux of reactive trajectories through the phase-space bottleneck—the TS—is the reaction rate.\(^8\)

Every realization of the forcing $E(t)$ has a special trajectory imbedded in the dynamics (2) that remains close to the BT. It is instead a specific trajectory that responds to motion of the BT in such a way that it remains bounded for all time. For the case of a harmonic barrier ($\epsilon = 0$), $x(t)$ follows the time evolution of the energetic maximum given by $E(t) = \cos(\Omega t + \phi)$ with creating a DS that is crossed once and only once by reactive trajectories and then evaluating the flux through that DS that is located at the instantaneous position of the TS trajectory. As shown previously by us,\(^29\) the configuration space projection of the TS trajectory is free of recrossings.

For the case of a harmonic barrier ($\epsilon = 0$), Eq. (2) can be solved analytically with eigenvalues $\lambda_{u,s} = -i/2(\gamma$}

\begin{align*}
\lambda_{u,s} &= \frac{\omega_b^2}{\lambda_u - \lambda_s}, \\
\mu &= \frac{\omega_b^2}{\Omega_1}, \\
\gamma &= \epsilon = 4, \\
S &= \frac{\mu}{\Omega_1 - \gamma}, \\
V &= \frac{1}{2} \epsilon (x - E(t))^4.
\end{align*}

The initial position for every trajectory, $x(0)$, is shown in black. The critical velocity V^* is indicated by a red circle at the intersection of the dashed red line and x_0. The initial velocities are sampled from η_R. Parameters are $\epsilon = 1$, $\Omega = 3$, $\gamma = 4$, and $\phi = 0$.\(^9\)
external driving. The anharmonic equations of motion (2) are not amenable to an exact analytical solution, although approximate analytical methods have previously been employed. Instead, we obtain the TS trajectory $\Gamma^\dagger = (x^\dagger(t), v^\dagger(t))$ in phase space numerically as the periodic solution to the system of Eqs. (2). A DS that is attached to Γ^\dagger will be recrossing free. Phase space portraits of Γ^\dagger are shown in Fig. 2.

The barrier crossing rates for Eq. (1) were calculated by simulating ensembles of trajectories driven by an external field of the form $E(t) = \sin(\Omega t + \varphi)$. For single mode sinusoidal driving, the TS trajectory is a PO with period $2\pi/\Omega$. Physical units were set by normalizing a and ω_0, to unity, making all other parameters dimensionless. Each trajectory was given an initial position $x_0 = -0.1$ to the left of the instantaneous barrier top and v_0 was sampled from two separate distributions: (1) a Boltzmann distribution q_B with $k_B T = 1$, and (2) a uniform distribution q_U (bounded over the region $[1^\dagger - 1/2, 1^\dagger + 1/2]$). For each parameter set $(\Omega, \gamma, \epsilon)$, 10^8 trajectories were simulated. The normalized reactant population $P_R(t)$ is obtained from a histogram of those trajectories that are on the reactant side of the TS trajectory at time t. Assuming first order kinetics, the scaled logarithm of the reactant population

$$\ln \left[\frac{1}{1 - P_R(t)} \right]$$

is the barrier crossing rate k_r, corresponding to a respective ϵ value. Parameters are $\gamma = 1$ and $\varphi = 0$.

The long-time decay rate of $P_R(t)$ is determined by the behavior of trajectories close to the stable manifold. Once a trajectory is sufficiently close to the TS trajectory, it can be described by a linearization of the equations of motion (6),

$$\Delta \dot{x} = \Delta v,$$

$$\Delta \dot{v} = -\gamma \Delta v - U'(\Delta x + x^\dagger(t)) + U'(x^\dagger(t)).$$

The last term represents a time-dependent driving for the relative dynamics that does not depend on the current trajectory. It ensures that the relative equations of motion have a fixed point $\Delta \Gamma^\ast$ at $\Delta x = \Delta v = 0$, i.e., on the TS trajectory.

For harmonic driving, the TS trajectory is a PO with period 2π, and the positivity of the Floquet multipliers, the vectors $\Delta \Gamma(t)$ is the Jacobian of Eq. (6) about $\Delta \Gamma^\ast$. The linearity of Eq. (8) allows its solution to be expressed as

$$\Delta \Gamma(t) = \sigma(t) \Delta \Gamma(0),$$

where the fundamental matrix solution $\sigma(t)$ is a 2×2 matrix that satisfies

$$\dot{\sigma} = J(t) \sigma, \quad \sigma(0) = I,$$

where I is the identity matrix.

The fundamental matrix for one period of $\Delta \Gamma^\dagger$ is the monodromy matrix $M = \sigma(T)$ whose eigenvalues $m_{u,s}$ are called Floquet multipliers. The Floquet exponents $\mu_{u,s} = 1/T \ln |m_{u,s}|$ give the rates by which nearby trajectories approach or recede from $\Delta \Gamma^\dagger$. For a harmonic barrier, the multipliers are bounded according to $0 < m_u < 1 < m_s$ giving rise to a positive Floquet exponent μ_u and a negative exponent μ_s. We will assume that this qualitative condition is also satisfied for the anharmonic barriers; we neglect the possibility that for strong anharmonicities bifurcations of the TS trajectory might occur.

Let $u_{u,s}(0)$ be the eigenvectors of M. By Floquet’s theorem and the positivity of the Floquet multipliers, the vectors

$$u_{u,s}(t) = e^{-\mu_{u,s} t} \sigma(t) u_{u,s}(0)$$

are periodic in time with period T. In the coordinate system defined by these vectors,

$$\Delta \Gamma(t) = z_{u,s}(t) u_{u,s}(t) + z_{s,u}(t) v_{s,u}(t),$$

the linearized equations of motion (8) read

$$\dot{z}_{u,s} = \mu_{u,s} z_{u,s},$$

with the solution

$$z_{u,s}(t) = C_{u,s} e^{\mu_{u,s} t}. (15)$$
Therefore, the vectors $v_{u,s}(t)$ determine the instantaneous directions of the stable and unstable manifolds in the linear approximation. The actual stable and unstable manifolds are tangent to these directions at the TS trajectory.

According to Eq. (13), the dynamics of Eq. (7) is therefore given by

$$\Delta x(t) = C_u \alpha_u(t) e^{\mu_u t} + C_s \alpha_s(t) e^{\mu_s t},$$

(16)

where $\alpha_{u,s}$ are the first components of the vectors $v_{u,s}$. They are periodic with period T. A trajectory with given initial conditions C_u and C_s will cross the moving dividing surface $\Delta x = 0$ at time t determined by

$$e^{(\mu_u - \mu_s)t} = -\frac{C_s}{C_u} \frac{\alpha_u(t)}{\alpha_s(t)}.$$

(17)

If the initial condition C_s is fixed and a trajectory with a certain value of C_u crosses the moving DS at time t, Eq. (17) shows that a trajectory with initial value $C_u e^{-(\mu_u - \mu_s)t}$ will cross at time $t + T$. Iteration then leads to the existence of trajectories with initial values $C_u e^{-(\mu_u - \mu_s)nt}$ that cross at time $t + nT$.

Now consider an arbitrary ensemble of initial conditions with fixed $x(0)$ on the reactant side and with a fixed value $C_s < 0$ small enough to be in the region of phase space where the linear approximation (8) is accurate. In this region, the phase space density is constant up to linear corrections in the distance from the stable manifold and the number of trajectories that cross the DS in a given time interval is proportional to the width of the strip that contains these trajectories. From one period to the next this width decreases by a factor $e^{-(\mu_u - \mu_s)T}$. Thus, up to periodic modulation, the flux must decay by this same factor. The flux through the moving DS is the time derivative of the population, $F(M,t) = \dot{P}(t)$, and thus the decay of $P(R)(t)$ is proportional to $e^{-(\mu_u - \mu_s)T}$. From this decay rate it follows that, $k_f = \mu_u - \mu_s$, which states that the rate of barrier crossing is the difference in the Floquet exponents. Note that we have made no assumption for the energy distribution and thus this rate is independent of the ensemble of initial conditions.

A comparison between the rates calculated from numerical simulation k_f for both the Boltzmann q_B and uniform q_U distributions, and rates predicted by the Floquet exponents $\mu_u - \mu_s$ is shown in Fig. 4. For all values of the forcing frequency Ω, dissipative parameter γ, and anharmonic strength ϵ, the numerical rate is in agreement with rate predicted by stability analysis. This result opens the possibility that when chemical reactions are forced by periodic external fields the reaction rates can be extracted from knowledge of the stability of the TS trajectory. The extension of TS trajectory stability analysis to aperiodically forced or thermally activated reactions is a focus of our future research.

This work has been partially supported by the National Science Foundation (NSF) through Grant No. NSF-CHE-1112067. Travel between partners was partially supported through the People Programme (Marie Curie Actions) of the European Union’s (EU) Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. 294974.

1N. Elsner, C. P. Royall, B. Vincent, and D. R. E. Snoswell, “Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields,” J. Chem. Phys. 130, 154901 (2009).
2S. Jäger and S. H. L. Klapp, “Pattern formation of dipolar colloids in rotating fields: Layering and synchronization,” Soft Matter 7, 6606 (2011).
3A. Prokop, J. Vacek, and J. Michl, “Friction in carbaborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics,” ACS Nano 6, 1901–1914 (2012).
4F. Ma, D. T. Wu, and N. Wu, “Formation of colloidal molecules induced by alternating-current electric fields,” J. Am. Chem. Soc. 135, 7839–7842 (2013).
5P. Lidström, J. Tierney, B. Wathey, and J. Westman, “Microwave assisted organic synthesis,” Tetrahedron 57, 9225–9238 (2001).
6K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. De Miranda, J. Bohn, J. Ye, and D. Jin, “Dipolar collisions of polar molecules in the quantum regime,” Nature (London) 464, 1324–1328 (2010).
7Y. Zheng and F. L. H. Brown, “Single molecule counting statistics for systems with periodic driving,” J. Chem. Phys. 139, 164120 (2013).
8W. H. Miller, “Beyond transition-state theory: A rigorous quantum theory of chemical reaction rates,” Acc. Chem. Res. 26, 174 (1993).
9D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, “Current status of transition-state theory,” J. Phys. Chem. 100, 12771–12800 (1996).
10R. Hernandez, T. Bartsch, and T. Uzer, “Transition state theory in liquids beyond planar dividing surfaces,” Chem. Phys. 370, 270–276 (2010).
11R. G. Mullen, J.-E. Shea, and B. Peters, “Communication: An existence test for dividing surfaces without recrossing,” J. Chem. Phys. 140, 041104 (2014).
12E. Pollak and P. Pechukas, “Transition states, trapped trajectories, and classical bound states embedded in the continuum,” J. Chem. Phys. 69, 1218 (1978).
13P. Pechukas and E. Pollak, “Classical transition state theory is exact if the transition state is unique,” J. Chem. Phys. 71, 2062 (1979).
14N. De Leon, M. A. Mehta, and R. Q. Topper, “Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory,” J. Chem. Phys. 94, 8310–8328 (1991).
15T. Uzer, C. Jaffé, J. Palacián, P. Yanguas, and S. Wiggins, “The geometry of reaction dynamics,” Nonlinearity 15, 957 (2002).
16G. S. Ezra, H. Waalkens, and S. Wiggins, “Microcanonical rates, gap times, and phase space dividing surfaces,” J. Chem. Phys. 130, 164118 (2009).
17G. S. Ezra and S. Wiggins, “Phase-space geometry and reaction dynamics near index 2 saddles,” J. Phys. A 42, 205101 (2009).
18. H. Teramoto, M. Toda, and T. Komatsuzaki, “Dynamical switching of a reaction coordinate to carry the system through to a different product state at high energies,” Phys. Rev. Lett. 106, 054101 (2011).
19. A. Allahem and T. Bartsch, “Chaotic dynamics in multidimensional transition states,” J. Chem. Phys. 137, 214310 (2012).
20. C.-B. Li, A. Shoujiguchi, M. Toda, and T. Komatsuzaki, “Definability of no-return transition states in the high-energy regime above the reaction threshold,” Phys. Rev. Lett. 97, 028302 (2006).
21. H. Waalkens and S. Wiggins, “Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be re-crossed,” J. Phys. A 37, L435–L445 (2004).
22. U. Çiftçi and H. Waalkens, “Reaction dynamics through kinetic transition states,” Phys. Rev. Lett. 110, 233201 (2013).
23. J. Lehmann, P. Reimann, and P. Hänggi, “Surmounting oscillating barriers,” Phys. Rev. E 62, 6282–6303 (2000).
24. J. Lehmann, P. Reimann, and P. Hänggi, “Activated escape over oscillating barriers: The case of many dimensions,” Phys. Status Solidi B 237, 53–71 (2003).
25. R. S. Maier and D. L. Stein, “Noise-activated escape from a sloshing potential well,” Phys. Rev. Lett. 86, 3942–3945 (2001).
26. M. I. Dykman, B. Golding, and D. Ryvkine, “Critical exponent crossovers in escape near a bifurcation point,” Phys. Rev. Lett. 92, 080602 (2004).
27. M. I. Dykman and D. Ryvkine, “Activated escape of periodically modulated systems,” Phys. Rev. Lett. 94, 070605 (2005).
28. G. T. Craven, T. Bartsch, and R. Hernandez, “Persistence of transition state structure in chemical reactions driven by fields oscillating in time,” Phys. Rev. E 89, 040801(R) (2014).
29. A. E. Orel and W. H. Miller, “Collision induced absorption spectra for gas phase chemical reactions in a high power IR laser field,” J. Chem. Phys. 72, 5139–5144 (1980).
30. V. Y. Argonov and S. V. Prants, “Theory of dissipative chaotic atomic transport in an optical lattice,” Phys. Rev. A 78, 043413 (2008).
31. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2012), see ChaosBook.org.