Hemolysis in patients with Extracorporeal Membrane Oxygenation therapy for severe Acute Respiratory Distress Syndrome – a systematic review of the literature

Lorenz A. Materne¹, Oliver Hunsicker¹,², Mario Menk¹,²,³, Jan A. Graw¹,²,³,⁴

¹. Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health.
². ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
³. Berlin Institute of Health (BIH), Berlin, Germany.
⁴. Corresponding author: Jan A. Graw, MD. Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany. Tel. +49 (30) 450 551119; Fax: +49 (30) 450 551909; E-mail: jan-adriaan.graw@charite.de.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).

Received: 2020.07.02; Accepted: 2020.12.19; Published: 2021.02.18

Abstract

The Acute Respiratory Distress Syndrome (ARDS) is common in patients on the Intensive Care Unit and associated with significant mortality rates. In situations of severe respiratory insufficiency and failure of all possible conservative therapeutic approaches, veno-venous extracorporeal membrane oxygenation (VV ECMO) is used as a final option for temporary replacement of pulmonary function. ARDS as well as sepsis and VV ECMO treatment are all associated with intravascular hemolysis. The extent and relevance of intravascular hemolysis in the context of ARDS therapy is unclear. This systematic review aims to summarize the current evidence on the incidence and associated complications of intravascular hemolysis in adult patients with ARDS and treatment with VV ECMO. The databases MEDLINE, EMBASE and Web of Science were systematically searched and 19 publications fulfilled inclusion criteria. The incidence of hemolysis in patients with ARDS and treatment with VV ECMO ranged from 0 to 41% with survivors showing lower incidences and less severe hemolysis. A pump head thrombosis and high blood flows (≥3 l/min) as well as use of dual-lumen cannulas but not different pump models were associated with increased hemolysis. In conclusion, intravascular hemolysis in patients with ARDS and treatment with VV ECMO is a common and relevant complication that appears associated with increased mortality. Apart from ECMO hardware-settings, no additional possible causes for increased red cell breakdown such as disease severity, duration of ECMO therapy, or number and quality of red blood cell transfusions were investigated. Further research is needed to determine the origin and relevance of intravascular hemolysis in patients with ARDS and treatment with VV ECMO.

Key words: veno-venous ECMO; ARDS; cell-free hemoglobin; hemolysis; ECMO-system; pump head thrombosis

Introduction

The severe Acute Respiratory Distress Syndrome (ARDs), a disease of all age groups and associated with a high mortality, leads to death in 46% of cases with conventional therapy [1, 2]. Although data are still poor, veno-venous extracorporeal membrane oxygenation (VV ECMO) has become a frequent rescue therapy in recent years [2-5]. Therapy with VV ECMO secures oxygenation and decarboxylation and facilitates a lung-protective ventilation strategy to buy time for the recovery of the lungs or as a bridge to a lung transplant [6-8]. During VV ECMO therapy venous blood is drained through a large bore cannula into an extracorporeal circuit. A pump drives the blood through a membrane oxygenator and finally oxygenated and decarboxylated blood is infused back into a large vein of the circulation [8].

Intravascular hemolysis is a known side effect of blood circulating through extracorporeal systems and membrane oxygenators [5]. Current literature reports an incidence of approximately 18% in patients treated with ECMO. However, these data include veno-venous and veno-arterial ECMO-systems (VA ECMO) [5]. There are only few studies reporting the incidence of hemolysis and potential hemolysis-associated side effects in patients treated exclusively with VV ECMO. In addition, accumulating evidence suggests a role of
hemolysis in sepsis and ARDS where an increased plasma concentration of cell-free hemoglobin might be associated with an increased mortality and adverse clinical effects [9-11]. Plasma hemoglobin scavenges endothelial-derived nitric oxide (NO) thereby inducing vasoconstriction and concomitant hypertension [12]. Furthermore, cell-free hemoglobin releases the highly reactive heme molecule, which oxidizes proteins and lipids, induces oxidative stress, and triggers proinflammatory signaling pathways [13, 14].

In this systematic review the current evidence on the incidence of hemolysis in adult patients with ARDS and treatment with VV ECMO is investigated. Furthermore, the evidence on potential associations between intravascular hemolysis, morbidity and mortality, ECMO-settings, and ECMO-hardware is analyzed.

Materials and Methods

Search strategy

We included all studies with data on hemolysis in patients treated with VV ECMO.

The databases MEDLINE (Medical Literature Analysis and Retrieval System Online) and Web of Science were systematically searched using the reference management software EndNote X7 (Thomson Reuters) on September 30, 2019. In addition, the database EMBASE (Excerpta Medica dataBASE) was searched using Ovid (Ovid Technologies) on the same day. Publications were screened by the following search terms: [“ECMO” OR “extracorporeal support” OR “extracorporeal life support” OR “ECLS” OR “extracorporeal membrane oxygenation”] AND [“plasma haemoglobin” OR “cell-free haemoglobin” OR “free haemoglobin” OR “haptoglobin” OR “hemolysis”]. Duplicates were detected and deleted by EndNote and manually.

Inclusion and exclusion criteria

All studies found by the above mentioned inclusion criteria were included into further analysis. The following exclusion criteria were applied in a top down hierarchic strategy (Fig. 1): 1) Case reports, comments, editorials, conference abstracts and reports, book chapters and letters to the editor were excluded from further analysis. Reviews, meta-analyses and all non-English papers were also excluded. 2) All non-human, experimental studies were excluded. 3) Studies in pediatric patients (patients aged <18 years) were excluded. 4) Studies on extracorporeal systems other than ECMO such as hemodialysis and cardiopulmonary bypass were excluded. 5) Studies including only treatment with VA ECMO were excluded. 6) Finally, all publications not providing information on hemolysis specifically in VV ECMO patients were excluded. Decisions were made based on the title and the abstract of each study meeting the search terms. For all studies where a clear decision was impossible after reading the abstract, the full text was analyzed. Furthermore, in unclear cases, decisions were made only after agreement and discussion between two independent reviewers.

Data extraction

Full texts of all included studies were analyzed. For studies including patients with VV ECMO and VA ECMO therapy, characteristics of the whole study population treated with ECMO were discussed. If not provided in the papers, the following values were calculated from reported data: percentage of male patients, underlying disease and indication for ECMO therapy, proportion of patients with VV ECMO therapy, pump model, mode of cannulation, pump head thrombosis, and time on ECMO. If possible, incidence of hemolysis was reported or calculated. All data on fHb-measurements were converted to mg/dl. In addition, ECMO circuit characteristics such as pump flow, details of cannulas, pump model, and occurrence of pump head thrombosis were analyzed.

Assessment of systematic reporting

The included studies were screened for information on systematic reporting strategies such as STROBE or CONSORT [15, 16].
Results

A total of 891 articles met the search criteria and were screened in detail (Fig. 1). There were 497 original articles with 284 papers describing findings of non-clinical, experimental studies and 65 studies that were exclusively performed in pediatric patients. Thirty-eight of the remaining 148 clinical studies reported data on veno-venous extracorporeal organ support. Of these 38 studies, 19 studies reported data on hemolysis in patients treated with VV ECMO including data of 7,707 VV ECMO applications (Table 1).

Table 1. Characteristics of the included studies

| Author [year] | Place of study, Study type | No. of ECMO patients (ECMO runs) | No. of vvECMO (%) | Age (years) | Gender, No. of men (%) | Indication for ECMO (%) | Time on ECMO (days) | Hemolysis: Parameter or Endpoints |
|---------------|---------------------------|----------------------------------|-------------------|-------------|------------------------|-------------------------|---------------------|----------------------------------|
| Chan (26) [2010] Hong Kong, multi-center, ORS | 2009-10 | 7 | 7 (100) | 42 (39-50) | 2 (29) | 100 | H1N1-induced ARDS | 6 (6-10) | n/a - review of VV ECMO in Hong Kong |
| Petersen (22) [2011] Denmark, single-center, ORS | 2009-10 | 9 | 8 (88.9) | 47.6 (26-65) | 5 (55.6) | 100 | H1N1-induced ARDS | 16.4 (11-29) | Hb - ICU and 90-day survival |
| Chimot (19) [2013] France, multi-center, survey, ORS, USA | 2009-11 | 52 (100) | 45.3 (17.8) | 77 | ARDS (61.54%) | 10 | VV ECMO | 8 (7.62) | - survival to discharge |
| Guinard (27) [2014] France, multi-center1, ORS | 2001-09 | 26 | 26 (100) | 33.0 (11.5) | 20 (77) | 100 | trauma with severe respiratory failure | 9.33 (9.46) | Hb - survival to discharge |
| Kurella (28) [2014] Canada, single-center, ORS | 2009-13 | 17 | 17 (100) | 43 (23-74) | 12 (71) | 100 | H1N1-induced ARDS | 8.0 (6.5-13.9) | Hb - associated with in-hospital mortality |
| Lehle (29) [2014] Germany, single-center, ORS | 2009-12 | 186 | 186 (100) | 47.3 (16.7) | 119 (63.98%) | 100 | acute lung failure | 9 (4.67) | Hb - flow dynamics of different ECMO-systems |
| Lubnow (30) [2014] Germany, single-center, ORS | 2009-13 | 265 (265) | 50 (36-60) | 175 (66) | 20 | 57 | primary lung failure septis with secondary lung failure | 9 (6.15) | Hb - technical complications during VV ECMO |
| Lehle (31) [2015] Germany, single-center, ORS | 2009-14 | 318 | 318 (100) | 52 (38-61) | 212 (66.7) | 19 | primary lung failure secondary lung failure trauma with ARDS | 13.05 (n/a) | Hb - incidence of hemolysis |
| Omer (23) [2015] USA, single-center, ORS | 2007-13 | 154 | 28 (18) | 51 | 116 (75.3) | 12 | cardiothoracic surgery post MI cardiogenic shock respiratory failure | 6.4 (6-7.6) | Hb - predictors for mortality (in-hospital mortality and long-term survival) |
| Malfertheiner (17) [2016] Germany, single-center, RCT | 2011-13 | 54 | 54 (100) | 52 (41-63) | 28 (51.9) | 5 | cardiogenic shock pneumonia (n=48 before ECMO) | 13.5 (4-7.6) | Hb - predictors for mortality (in-hospital mortality and long-term survival) |
| Pan (24) [2016] Australia, single-center, ORS | 2011-14 | 177 (184) | 56 (30.4) | 49.0 (35.58%) | low level; 10.9 | 9.3 | trauma (n=48 before ECMO) | 7.3 (5.8-14.1) | Hb - predictors for mortality (in-hospital mortality and long-term survival) |
| Kor (21) [2017] worldwide, ELCSO, register, multi-center, ORS | 2009-13 | n/a (717) | 591 (82.4) | vv: 44.0 (28-56), va: 37.5 (25-51) | vv: 556 (90.7), va: 98 (77.8) | 100 | acute respiratory failure | vv: 7.8 (4.0-13.3), va: 5.5 (2.9-11.1) | n/a - comparing to VV ECMO in patients with severe respiratory failure and hypoxemia |
| Lorenza (32) [2017] worldwide, ELCSO, register, multi-center, ORS | 1992-2015 | 4988 (4988) | 46 (32-58) | 2969 (59.2) | 100 | respiratory failure | no CNS injury: 10.8 (11.5%) | Hb - prevalence of CNS injury |
| Brecht (33) [2018] France, single-center, ORS | 2008-12 | 157 | 157 (100) | MERT: 44 (32-55), ICU: 50 (38-58%) | MERT: 68 (57.6), ICU: 29 (74.4) | 100 | severe acute respiratory failure | 9 (4.24) | Hb - MERT and ICU implanted VV ECMO: indications, outcomes and characteristics |
| Hoshino (34) [2018] Japan, single-center, ORS | 2014-16 | 10 | 10 (100) | 62 (10.3) | 9 (90) | 100 | acute pulmonary failure | 10 (11.3) | n/a - coagulation and fibrinolysis markers as predictors for ECMO circuit exchange |
| Mazzeffi (35) [2018] worldwide, ELCSO, Register, multi-center, ORS | 2011-16 | 744 | 744 (100) | 27Chc: 45 (16-76), 31Chc: 46 (14-71) | 27Chc: 150 (48.3), 31Chc: 193 (51.9) | n/a | rate of ICH, hemolysis, cannula complications and in-hospital mortality in patients with 27Chc and 31Chc dual-lumen cannula | 27Chc: 6.9 (3.6-14.8), 31Chc: 7.7 (3.9-15.1) | n/a - comparison to VV ECMO in patients with severe respiratory failure and hypoxemia |
Basic study characteristics

Table 1 gives an overview of the 19 studies that were included in this systematic review. There were only two randomized, prospective but non-blinded trials including a total of 64 patients [17, 18]. Data collection of all other studies occurred retrospectively. Chimon and colleagues used a survey to collect retrospective data and attained responses from 18 out of the 19 contacted institutes [19]. Of the included studies only Fisser et al. stated that they made use of a systematic reporting strategy and provided a STROBE statement [20].

Seventeen of the 19 included studies represent a total of 7,350 patients ranging from 7 to 4,988 patients per study. The two other studies reported data on ECMO runs (n = 769) [19, 21]. There were five studies that included patient populations treated with both, va and vv ECMO [21-25]. Fourteen studies analyzed patient cohorts that were exclusively treated with VV ECMO [17-20, 26-35]. 

Incidence of hemolysis during therapy with VV ECMO

In fourteen of the included studies, hemolysis was quantified using plasma concentrations of cell-free hemoglobin (fHb) (Table 1) [17, 18, 20, 23-25, 27-33, 35]. In addition, six of the studies reported plasma activity of lactate dehydrogenase (LDH) [17, 18, 23, 25, 30, 31]. To quantify hemolysis, Bosma et al. defined a hemolysis-index (H-index) that significantly correlated with plasma levels of fHb [25]. The H-index was automatically measured with every clinical chemistry blood analysis by absorbance measurements of the blood sample at different wavelengths by high throughput analyzers used in the authors’ institution [25].

Six of the included studies did not report the incidence of hemolysis [17, 18, 20, 23, 29, 34]. Moreover, it was not possible to calculate the incidence of hemolysis from the published data. In the remaining studies the reported or calculated hemolysis-incidence ranged from 0 to 41% (Table 2).

The two prospective, randomized studies were among the studies not reporting the incidence of hemolysis. However, Malfertheiner et al. noted a median fHb-plasma concentration of 54 mg/dl on the last day of ECMO therapy [17]. On the day after ending ECMO therapy, plasma concentrations of fHb and LDH-activity decreased significantly [17]. The second prospective, randomized study by Deatrick and colleagues reported normal fHb plasma concentrations but elevated LDH-activity without clear quantification [18]. The retrospective study by Fisser et al. stated a mean concentration of fHb >50 mg/dl during ECMO therapy in both of the analyzed groups [20]. Many of the included authors recognize measurements of fHb-concentration >50 mg/dl to define hemolysis [27, 28, 32, 35].

Hemolysis and mortality

The studies of Kutlesa et al. and Omar et al. found a higher incidence of hemolysis in non-survivors (80-83%) compared to survivors (0-18%) (Table 2) [23, 28]. From the data published by Chan et al. and Petersen et al. higher incidences of hemolysis could be calculated for non-survivors compared to survivors [22, 26]. Similarly, in 2015 Lehle et al. reported that the average maximum plasma concentration of cell-free hemoglobin was significantly higher in non-survivors compared to survivors [31]. The remaining studies did not report data on mortality in patients treated with VV ECMO with regard to increased plasma concentrations of cell-free hemoglobin (Table 2).
Hemolysis and pump head thrombosis

Table 3 shows the studies that report pump head thromboses of the ECMO-system and their association with hemolysis. In 2014, Lehle and colleagues described a patient who had a fHb-plasma concentration greater than 100mg/dl caused by a pump head thrombosis [29]. Furthermore, in 2015, the same group reported 8 pump head thromboses that were associated with hemolysis [31]. Of note, after exchange of the pump head the increased plasma concentration of cell-free hemoglobin decreased within two days [31]. Lubnow and colleagues reported 13 pump head thrombosis, all associated with an increase of hemolysis parameters cell-free hemoglobin and LDH-activity [30]. In 6 of the patients the plasma concentration of cell-free hemoglobin was already elevated on the day before the pump head thrombosis occurred [30]. Pan and colleagues reported five events of a pump head thrombosis which all was associated with hemolysis and occurred exclusively during therapy with VV ECMO [24]. Bosma et al. reported a rise of the H-index when a pump head thrombosis occurred [25].

Hemolysis and blood flow, cannulation and ECMO-system

Lehle and coworkers reported in 2014 that they could not find a causal link between an increase in blood flow and an increase in the plasma concentrations of cell-free hemoglobin [29]. However, in 2015 the same working group reported a minimal but significant increase in fHb-plasma concentrations when blood flows ≥3 l/min were applied (Table 3) [31]. Furthermore, fHb-plasma concentrations were greater in patients treated with dual-lumen NovaPort-24Ch-cannulas compared to larger dual-lumen cannula models (Table 3) [31]. Mazzeffi et al. investigated patients treated with 27 and 31Ch dual-lumen cannulas showing no significant difference in fHb-plasma concentrations [35].

There was no association between increased hemolysis and the usage of a specific ECMO-system (Table 3). Of note, the diagonal pump Deltastream of Medos operating with a rotational speed twice as high compared to centrifugal pumps did not cause a relevant increase of fHb-plasma concentrations [17, 29, 31]. All but one working group of those who reported data on the pump models that were used, utilized second-generation centrifugal pumps. Solely Guirand and colleagues applied roller pumps [27].

Table 2. Incidence of hemolysis in VV ECMO

| Study [year] | Definition of hemolysis (fHb [mg/dl], LDH [U/l]) | Time of measurement | Incidence of hemolysis (%) | Hemolysis before ECMO | Impact of hemolysis on mortality |
|--------------|-----------------------------------------------|---------------------|---------------------------|-----------------------|---------------------------------|
| Chan (26) [2010] | fHb <50 | n/a | 7 (41%) (these patients all required pump head exchange or change of the complete ECMO-system) | n/a | n/a |
| Petersen (22) [2011] | fHb <50 | n/a | 0 (0%) | n/a | n/a |
| Chinot (19) [2013] | blood transfusion requirement/deficiency of fHb with no other explanation | n/a | 11 (21%) | n/a | n/a |
| Guirand (27) [2014] | fHb <50 | n/a | 0 (0%) | n/a | n/a |
| Kothien (28) [2014] | fHb >50 | n/a | 20 (24.1%) | n/a | n/a |
| Lehle (29) [2014] | acceptable on ECMO: fHb <10, LDH <350 | daily | 20 (24.1%) | n/a | n/a |
| Lehle (31) [2015] | normal: fHb ≤10, LDH ≤250, critical: fHb >50 | before and 2h after ECMO start, days 1-10, the day of and one day after ECMO end | 8 (2.5%) only patients with PHT, critical: 1.7% of all fHb-values | n/a | n/a |
| Omar (21) [2015] | normal: fHb <10, critical: fHb >50 | frequently checked | n/a | n/a | n/a |
Table 3. Pump head thrombosis, pump flow and extracorporeal circuit

| Study [year] | PHT (n) | Pump flow [l/min] | Extracorporeal circuit | VV-cumulation (n) |
|--------------|---------|-------------------|------------------------|-------------------|
| Chan (26) [2010] | no equipment failure | initially: 2.5–5.7 | 7 (100%) centrifugal pumps | SLC: DC: 21-23Ch femoral veins, IC: 15-17Ch internal jugular vein |
| Petersen (22) [2011] | n/a | 2 | Maquet RotafloA | n/a |
| Chirn (19) [2013] | 20Ch: 2.175 ± (0.55) 2, 23Ch: 3.207 ± (0.60) 2, 27Ch: 3.963 ± (0.72) 2, 31Ch: 4.909 ± (0.98) 2 | n/a | DLC: 52 (100%) Avonon 20-24Ch |
| Guiraud (27) [2014] | n/a | 17 (100%) Medtronic Biomedicus BPH (A) | DCL: Avalon, DC: femoral vein, IC: internal jugular vein |
| Kallau (28) [2014] | possibly up to 2.41 (A) | n/a | DCL: 14 (8.2%) femoro-femoral, 6 (10.5%) femoral-femoral, average DC: 23Ch, IC: 21Ch |
| Lebl (29) [2014] | increased pump flow does not lead to elevated median fHb | 97 (52.2%) Maquet Rotaflo, FHb: 49mg/dl (34-75), 36 (19.4%) Medros Deltastream, FHb: 37mg/dl (30-50), 17 (9.1%) Sorin Revolution | DCL: 7 (3.8%) NovaPort 24Ch, 20 (10.8%) Avalon 23Ch, 21 (11.8%) Avolon 27Ch |
| Lebl (31) [2015] | initially approximately 1.5-2 | 116 (43.8%) Maquet Rotaflo, 51 (19.2%) Maquet Rotaflo, 47 (17.7%) Medro Deltastream, 36 (13.6%) Sorin Revolution, 15 (5.5%) Novadon il (A) | DCL: 19 (7.2%) NovaPort, 55 (20.8%) Avalon, SLC: 191 (72.1%) |
Discussion

This systematic review includes 19 publications on adult ARDS patients treated with VV ECMO and associated intravascular hemolysis. The reported incidence of hemolysis varied greatly among the different studies. Hemolysis occurred more frequently in non-survivors compared to survivors of an ARDS and therapy with VV ECMO [22, 23, 26, 28, 31]. All reported cases of a pump head thrombosis were accompanied by hemolysis [24, 25, 28-31, 34]. The use of centrifugal- or diagonal-pump-systems had no, a high blood flow (≥3 l/min) had only a minimal effect on the occurrence of hemolysis [17, 29, 31]. However, using a dual-lumen NovaPort-24Ch-cannula with high blood flow was associated with a significantly higher rate of hemolysis compared to the use of larger cannulas [31].

There were only two studies with a prospective study design [17, 18]. Therefore, there is only a relatively low level of evidence describing an association between hemolysis and therapy with VV ECMO and it is unclear whether the ECMO is the reason for the damage of the red blood cells. In addition, the survey of Chimot and colleagues might suffer from a recall bias since data collection was done retrospectively [19].

The prospective study performed by Deatrick et al. only included ten patients. Because it was a pilot study, the authors did not perform a sample size calculation [18]. Malfertheiner and colleagues expected an adequate statistical power with a sample size of 18 patients per group. Nevertheless, a statistical power calculation was not performed a priori. In addition, inclusion criteria required a minimum duration of five days of therapy with VV ECMO. However, at least one patient of one 18-patient cohort received VV ECMO only for four days [17].

Kurtlesa and colleagues published an exceptionally high hemolysis incidence of 41%, which might be influenced by the small number of included patients (n=17) [28]. With a hemolysis incidence of 5% the recently publishes EOLIA-trial is within the common range [4]. However, hemolysis was defined differently among the studies: A significant number of studies did not define a critical threshold for hemolysis or did not report any data on fHb-concentrations [19-22, 26, 29, 34]. Whether the blood hemoglobin concentration or transfusion requirements are helpful parameters to estimate the degree of hemolysis remains questionable [19]. In addition, transfusion of red blood cells itself can increase circulating levels of fHb especially when packed red blood cells are transfused that are near the end of the allowed storage duration [36, 37].

The search strategy of this systematic review considered all work published in MEDLINE, Web of Science and EMBASE. Because almost all included studies followed a retrospective study design, this review is limited to only report an association between hemolysis and therapy with VV ECMO but cannot claim a causal link between both entities. This systematic review is further limited by the heterogenic nature of the included studies. There was a wide variety of inclusion and exclusion criteria,
sample sizes, time on and indication for ECMO, definition and quantification of hemolysis and measured endpoints. In most studies, male sex dominated the groups of included patients. Lubnow et al. included only patients that received a complete change of the ECMO-circuit during therapy with VV ECMO [30]. Both studies of Lehle and colleagues excluded patients with hemolysis before ECMO therapy. However, the threshold for plasma concentrations of cell-free hemoglobin before therapy with VV ECMO was different in both studies [29, 31]. Furthermore, patients with significant hemolysis during ECMO therapy were excluded when a cause for increased red blood cell break down such as a pump head thrombosis was considered evident [29, 31]. For this systematic review the effects and strategies of anticoagulation during VV ECMO therapy that might have an impact on development of a pump head thrombosis were not analyzed. Additionally, it is known that hemolysis can be caused by high negative pressure within the drainage cannula [38]. The negative pressure is linked to the small cannula size, high blood flow and patient specific factors. However, these connections were not investigated in this review. The study by Guirand et al. allowed inclusion of patients from the age of 16 [27]. Furthermore, from the data reported in the study by Hoshino et al. it is unclear whether truly only adults were included [34]. Moreover, this review is limited by including different papers that accessed the same databases. Therefore, several papers may have reported data on the same set of patients [17, 20, 21, 29-32, 35]. A meta-analysis of the studies with data from patients treated with VV ECMO and with a unique definition and severity grading of hemolysis might be necessary to obtain reliable information on the incidence of hemolysis during therapy with VV ECMO and whether hemolysis during therapy with VV ECMO might affect mortality in patients with severe ARDS.

Taken together, this systematic review indicated that hemolysis might be a frequent complication associated with VV ECMO therapy in severe ARDS [19, 24-26, 28, 30, 33]. Nevertheless, especially the studies providing data on large VV ECMO populations reported incidences of hemolysis of less than 10% [21, 32, 35]. In addition, there is emerging evidence that hemolysis might be associated with increased mortality during therapy with VV ECMO [22, 23, 26, 28, 31]. It seems that in today’s common VV ECMO-systems the pump model, cannulas and blood flow do not have a significant impact on the development of a hemolysis [17, 29, 31]. On the other hand, various systemic diseases like ARDS or sepsis are associated with a certain degree of hemolysis [9, 10, 39]. Whether hemolysis associated with VV ECMO therapy increases the side effects of fHb on systemic inflammation and end organ damage or whether therapy of the underlying disease using VV ECMO helps to reduce the total amount of circulating intravascular cell-free hemoglobin is unclear.

A prospective study that includes measurements for fHb-levels before the start of VV ECMO therapy, the quality and number of transfused red blood cell concentrates, and additional hemolysis markers such as haptoglobin or lactate dehydrogenase activity would be warranted. Such a study would clarify if VV ECMO-induced hemolysis clearly exceeds the levels of fHb that are released in patients with ARDS but not treated with ECMO. In addition, a prospective trial could also address whether hemolysis is just a marker of disease severity and mortality in patients with ARDS and VV ECMO therapy or whether hemolysis and the toxic effects of fHb might be relevant cofactors for disease progression. For the latter, treatment options could be developed that include scavenging and reduction of increased plasma concentrations of cell-free hemoglobin.

Acknowledgements

We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Fund of Charité – Universitätsmedizin Berlin.

Funding

This research received no external funding. Dr. Graw is participant in the BfH-Charité Clinician Scientist Program funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health.

Competing Interests

The authors have declared that no competing interest exists.

References

1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A,Gattinoni L, van Haren F, Larsson A, McAuley DF et al: Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama 2016, 315(8):788-800.
2. Noah MA, Peek GJ, Finney SJ, Griffiths MJ, Harrison DA, Grieve R, Sadique MZ, Sekhon JS, McAuley DF, Firmin RK et al: Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(HINI). Jama 2011, 306(15):1659-1668.
3. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanan MM, Hibbert CL, Trudsdale A, Clemens F, Cooper N et al: Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009, 374(9698):1351-1363.
4. Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Saumitou-Laprade P, Teboul JL, Luyt R, Dejaudin L, Mari PM, et al: Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. The New England journal of medicine 2018, 378(21):1965-1975.
5. Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, Patroniti N, Antonelli M, Pesenti A, Pappalardo F: A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Critical care and...
resuscitation: the Australasian College of Critical Care Medicine 2013, 15(3):172-178.
6. Hemmila MR, Rowe SA, Boudes TN, Miskulin J, McGillicuddy JW, Schuerer DJ, Hut J, Swinkler F, Arbabi S, Hirsch RJ et al: Extracorporeal life support for severe acute respiratory distress syndrome in adults. Ann Surg 2004, 240(4):595-605.
7. Schmidt M, Pellegrino V, Combes A, Scheinkestel C, Cooper DJ, Hodgson C: Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care 2014, 18(1):203.
8. Ventetuolo CE, Muratore CS: Extracorporeal life support in critically ill adults. Am J Respir Crit Care Med 2014, 190(5):497-508.
9. Azizmur RA, Hambour T, Potrai F, Peters J, de Groot H, Hartmann M: Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care 2012, 16(4):R125.
10. Lin T, Maia D, Thundivallappali SR, Foley JE, Hambusch J, Van Marter LJ, Christou NV, Barlow L, Fagan S, Christiansi DC et al: Hemopexin in severe inflammation and infection: mouse models and human diseases. Crit Care 2015, 19:166.
11. Deatrick KB, Galvagno SM, Mazzeffi MA, Kaczorowski DJ, Herr DL, Rector R, Lin T, Maita D, Thundivalappil SR, Riley FE, Hambsch J, Van Marter LJ, 2nd, Ware LB: Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Crit Care Med 2018, 46(1):157-161.
12. Villagran J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ: Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007, 111(10):4267-4272.
13. Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM: Hemin: a possible physiological modulator of low density lipoprotein oxidation and endothelial injury. Arteriosclerosis and thrombosis: a journal of vascular biology 1991, 11(6):1709-1711.
14. Lin T, Kwak YH, Sammy F, He P, Thundivalappal S, Sun G, Chao W, Warren HS: Synergistic inflammation is induced by blood degradation products with microbial Toll-like receptor agonists and is blocked by hemopexin. J Infect Dis 2010, 202(4):624-632.
15. von Elm E, Altman DG, Moher D: CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. Journal of clinical epidemiology 2010, 63(8):834-840.
16. Fisser C, Reichenbacher C, Muller T, Schmid C, Muller T, Lehle K: Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Critical care medicine 2018, 46(1):74-754.
17. Deatrick KB, Galvagno SM, Mazzefi MA, Kazchoroswki DJ, Herr DL, Rector R, Hochberg E, Rabinoval RB, Scala TM, Menaker J: Pilot study evaluating a non-filtrating, weight-based anticoagulation scheme for patients on veno-venous extracorporeal membrane oxygenation. Perfusion. 2019.
18. Chmott L, Marque S, Gros A, Gacouin A, Lavoue S, Camus C, Le Tulzo Y: Avalon(c) bicaval dual-lumen cannula for venovenous extracorporeal membrane oxygenation: survey of cannula use in France. ASAIO journal 2013, 59(5):157-161.
19. Fisser C, Reichenbacher C, Muller T, Schnepchenpointner R, Mallertheiner MV, Philipps A, Lubmow M, Zeman F, Enger TB, Bein T, Lunz D, Schmid M, Muller T, Lehle K: Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Critical care medicine 2018, 46(1):74-754.
20. Griffith BF: Venovenous Versus Venoarterial Extracorporeal Membrane Oxygenation for Adults With Acute Respiratory Distress Syndrome Requiring Precannulation Hemodynamic Support: A Review of the ELSO Registry. The Annals of thoracic surgery 2010, 104(2):645-649.
21. Petersen E, Keld DB, Ellermann-Eriksen S, Gubbel S, Ilkjarf S, Jensen-Fangel S, Lindskov C: Failure of combination oral oseltamivir and inhaled zanamivir antiviral treatment in ventilator- and ECMO-treated critically ill patients with pandemic influenza A (H1N1)v. Scand J Infect Dis 2011, 43(6-7):495-503.
22. Chmott L, Marque S, Gros A, Gacouin A, Lavoue S, Camus C, Le Tulzo Y: Avalon(c) bicaval dual-lumen cannula for venovenous extracorporeal membrane oxygenation: survey of cannula use in France. ASAIO journal 2013, 59(5):157-161.
23. Deatrick KB, Galvagno SM, Mazzefi MA, Kazchoroswki DJ, Herr DL, Sanchez PG, Griffith BF: Venovenous Versus Venoarterial Extracorporeal Membrane Oxygenation for Adults With Acute Respiratory Distress Syndrome Requiring Precannulation Hemodynamic Support: A Review of the ELSO Registry. The Annals of thoracic surgery 2010, 104(2):645-649.
24. Rosenthal RB, Rabinowitz RP, Scalea TM, McMillan J, Kelsay S, Gogia A, Cusick J, Venkatesan T, Mokrzycki J et al: Pilot study evaluating a non-filtrating, weight-based anticoagulation scheme for patients on veno-venous extracorporeal membrane oxygenation. Perfusion. 2019.
25. Chmott L, Marque S, Gros A, Gacouin A, Lavoue S, Camus C, Le Tulzo Y: Avalon(c) bicaval dual-lumen cannula for venovenous extracorporeal membrane oxygenation: survey of cannula use in France. ASAIO journal 2013, 59(5):157-161.
26. Fisser C, Reichenbacher C, Muller T, Schnepchenpointner R, Mallertheiner MV, Philipps A, Lubmow M, Zeman F, Enger TB, Bein T, Lunz D, Schmid M, Muller T, Lehle K: Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Critical care medicine 2018, 46(1):74-754.
27. Deatrick KB, Galvagno SM, Mazzefi MA, Kazchoroswki DJ, Herr DL, Sanchez PG, Griffith BF: Venovenous Versus Venoarterial Extracorporeal Membrane Oxygenation for Adults With Acute Respiratory Distress Syndrome Requiring Precannulation Hemodynamic Support: A Review of the ELSO Registry. The Annals of thoracic surgery 2010, 104(2):645-649.
28. Rosenthal RB, Rabinowitz RP, Scalea TM, McMillan J, Kelsay S, Gogia A, Cusick J, Venkatesan T, Mokrzycki J et al: Pilot study evaluating a non-filtrating, weight-based anticoagulation scheme for patients on veno-venous extracorporeal membrane oxygenation. Perfusion. 2019.
29. Chmott L, Marque S, Gros A, Gacouin A, Lavoue S, Camus C, Le Tulzo Y: Avalon(c) bicaval dual-lumen cannula for venovenous extracorporeal membrane oxygenation: survey of cannula use in France. ASAIO journal 2013, 59(5):157-161.
30. Fisser C, Reichenbacher C, Muller T, Schnepchenpointner R, Mallertheiner MV, Philipps A, Lubmow M, Zeman F, Enger TB, Bein T, Lunz D, Schmid M, Muller T, Lehle K: Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Critical care medicine 2018, 46(1):74-754.
31. Deatrick KB, Galvagno SM, Mazzefi MA, Kazchoroswki DJ, Herr DL, Sanchez PG, Griffith BF: Venovenous Versus Venoarterial Extracorporeal Membrane Oxygenation for Adults With Acute Respiratory Distress Syndrome Requiring Precannulation Hemodynamic Support: A Review of the ELSO Registry. The Annals of thoracic surgery 2010, 104(2):645-649.
32. Rosenthal RB, Rabinowitz RP, Scalea TM, McMillan J, Kelsay S, Gogia A, Cusick J, Venkatesan T, Mokrzycki J et al: Pilot study evaluating a non-filtrating, weight-based anticoagulation scheme for patients on veno-venous extracorporeal membrane oxygenation. Perfusion. 2019.