Pyogenic Vertebral Osteomyelitis in Adults: Ten-year Experience in Two Italian Hospitals

CURRENT STATUS: POSTED

Fabio Zoboli fabiozoboli@hotmail.com
Universita degli Studi di Foggia
Corresponding Author
ORCID: 0000-0002-6397-6575

Diego Ripamonti
Aziende Socio Sanitarie Territoriale Papa Giovanni XXIII

Anna Carretta
Azienda Ospedaliero Universitaria Foggia

Enrico Bombana
Aziende Socio Sanitarie Territoriale Papa Giovanni XXIII

Veronica Ravasio
Aziende Socio Sanitarie Territoriale Papa Giovanni XXIII

Teresa Antonia Santantonio
Universita degli Studi di Foggia

Marco Rizzi
Aziende Socio Sanitarie Territoriale Papa Giovanni XXIII

DOI: 10.21203/rs.2.9448/v1

SUBJECT AREAS
Interdisciplinary Medicine

KEYWORDS
Vertebral Osteomyelitis; Spondylitis; Pyogenic; Hematogenous; Spine
Abstract

Background: The incidence of pyogenic vertebral osteomyelitis (PVO) is increasing, but optimal diagnostic strategy and medical management remain controversial.

Methods: We conducted a retrospective study of PVO in two Italian hospitals, including all the adults admitted from January 2007 to December 2016. PVO was defined probable or definite according to clinical, radiological and microbiological criteria. The main exposures of interest were investigation strategy and antibiotic treatment. The outcome measures were cure rate, mortality during index admission and recurrence rate.

Results: Most cases were diagnosed with MRI. Biopsy was performed in 47% of patients and was successful only in 49% of them. The microbiological diagnosis (mostly Gram-positive agents) was obtained in 111 patients (62%). Treatment duration did not differ between patients with definite or probable diagnosis (108 and 112 days, respectively). Among the 100 patients (56%) with at least 1-year follow-up, the cure rate, the failure rate and the mortality were 88%, 12% and 3%, respectively. Relapses were uncommon (4%) among patients who completed the follow-up. Among the patients who recovered completely, 47 (59%) had a microbiological diagnosis. Among the 111 patients with a definite diagnosis and 68 with a probable diagnosis, 42% and 49% achieved a full recovery, respectively.

Conclusions: Despite influencing the antibiotic selection, the etiological diagnosis did not impact the cure rate and/or duration of treatment. Some open questions remain with regard to the optimal starting regimen, the duration of treatment and the time to switch to oral therapy.

Background

Pyogenic vertebral osteomyelitis (PVO) is defined as an infectious process involving the
vertebra with the potential for local spread to the adjacent disc, muscular and soft tissues [1]. PVO accounts for approximately 2-5% of all osteomyelitis [2] and, although in some geographical areas tuberculosis and brucellosis play a major role [3], in Western countries the most common pathogens are *Staphylococci*, which hematogenously spread to the vertebra [4].

PVO diagnosis is often delayed due to its rarity, the non-specific clinical features and the high frequency of low back pain in the general population, which requires a high degree of suspicion.

We here report the 10-year experience with PVO in two Italian hospitals and review the open issues as to the medical and surgical management.

Methods

Study setting

We performed a retrospective observational study of PVO in two Infectious Diseases Units: one located in Bergamo (a district hospital of 990 beds, in Northern Italy) and one in Foggia (a University teaching hospital of 800 beds, in Southern Italy), respectively.

Inclusion criteria

All adults (>18 years) with a diagnosis of PVO and followed up at the 2 hospital centers for at least 1 year after the diagnosis.

Definitions

PVO was defined as:

- **Definite:** in the presence of (1) radiological evidence (magnetic resonance imaging (MRI), computed tomography (CT), scintigraphy or positron emission tomography (PET) scans), (2) clinical evidence (one or more of back pain, fever or consistent neurological signs) and (3) microbiological isolation (by biopsy or blood culture)

- **Probable:** if the previous first two criteria were respected, no etiological agent was
identified, but resolution was reported following empirical antibiotic treatment.

In case of multiple pathogens, the PVO was defined as *polymicrobial*. Multiple sites involvement was defined as more than 2 vertebral bodies infection, as identified on radiological scans. The *diagnostic delay* was defined as the time elapsed since the onset of symptoms up to the medical diagnosis. Spine invasive procedures included spinal surgery (vertebral stabilization, discectomy, radio frequency ablation, percutaneous vertebroplasty, laminectomy, spinal decompression), lumbar punctures, epidural procedures or infected implanted prosthetic material.

Data collection
We identified all the patients admitted to the two hospitals with a diagnosis of PVO from January 2007 through December 2016. We excluded any case of suspected or proven brucellar or tubercular etiology.

We reviewed the medical records and the database of outpatient visits in both hospitals. We collected the data using a purpose-built paper case report forms and collated data into an electronic database. For each patient, we included the demographic characteristics (age, gender, nationality), the comorbidities, history of intravenous drug abuse, any previous spinal surgery, the presence and the duration of symptoms at admission, the radiographic characteristics, the microbiological findings, the type and duration of antibiotic treatment, the surgical procedures and the follow up.

Outcome measures
The outcome measures were as follows:
a) *cure rate*: in case of symptom resolutions and radiological improvement following antibiotic treatment, the patient was considered *recovered*.
b) *mortality* during hospitalization;
c) *recurrence rate*: re-occurrence of sign/symptoms after the completion of therapy and
need for restarting therapy.

Results

From January 2007 to December 2016 we identified 179 patients with PVO: 134 (75%) Bergamo and 45 (25%) in Foggia.

As shown in Table 1, 64% patients were males, the mean age at diagnosis was 65 years and 81% had comorbidities, while the risk factors (present in less than 50% of patients) included: current intravenous drug use in 9 patients (5%), recent spine invasive procedures in 27 patients (15%), concomitant or prior sepsis and/or endocarditis in 34 patients (19%), recurrence of prior PVO in 7 patients (4%). The mean diagnostic delay was 57 days (range: 3-370). The most common symptoms at diagnosis were localized spinal pain (94%) and fever (55%), while neurological deficits were reported in 20% of the patients on admission. Almost half of the patients (49%) received an empirical antibiotic treatment before PVO diagnosis.

PVO diagnosis

Most cases (163, 91%) were diagnosed by the MRI, in 27 cases (17%) following a non-diagnostic CT scan. PET was used in case of technical contraindications to MRI and also during radiological follow up in 14 patients (7%). The lumbar site was the most commonly affected spinal region (125 patients, 70%), followed by the thoracic (40 patients, 22%) and cervical (14 patients, 8%) one. In 38 patients (21%) multiple sites were involved. In 36 (20%) patients there was also a soft tissue involvement and in 54 (30%) an epidural or paravertebral abscess was present (Table 1).

Blood cultures were performed in 137 (77%) patients and 74 of them (54%) were positive. Vertebral CT-guided fine needle biopsy were performed in 84 patients (47%), but the microbiological diagnosis was achieved only in 41 (49%).

As shown in Table 2, the etiological diagnosis was obtained in 111 patients (62%) and
Staphylococcus aureus was the most frequent pathogen (44 patients, 40% of the *definite* cases), followed by *coagulase-negative staphylococci* (CoNS). Methicillin-resistance was identified in 4 patients with *Staphylococcus aureus* isolation (9%) and in other 4 patients with CoNS isolation (18%).

Therapeutic approach

All patients were prescribed antibiotic treatment. The mean time of hospitalization was 26 days (range 3-114). A total of 147 patients (82%) were prescribed rigid orthosis immobilization, for a mean duration of 22 weeks (range 1-69), and only 11 patients (6%) underwent surgical stabilization.

Type of regimen

The most frequently used regimens included two antibiotics. Only one patient with a pansensitive strain of *Enterococcus faecalis* was successfully treated with ampicillin monotherapy. As shown in Table 3, a total of 44 (25%) patients received only oral treatment, while 18 patients (10%) only intravenous agents. Among the patients in the first group, the most commonly used regimens were rifampicin *plus* a fluoroquinolone (approximately 50%) and cotrimoxazole *plus* another molecule (32%). Other 8 patients (18%) received an association including a beta-lactam antibiotic. In the 18 (10%) patients treated only with parental therapy, 80% of them received beta-lactam antibiotics. Among the 115 (64%) patients treated with both oral and intravenous drugs, 12 (10%) started simultaneously with both, while the majority were switched later to oral therapy. Of this group, 25 (22%) received a glycopeptide-based regimen, mostly as empiric treatment.

Duration of antibiotic therapy

In the 100 patients who completed the follow-up, the mean treatment duration was 16 weeks (range 6-68), while intravenous therapy was continued for 5 weeks (range 0.5-19) and oral treatment for 16 weeks (range 6-68). A total of 8 and 23 of the 100 patients who
completed the follow-up were treated only with intravenous or oral treatment, respectively. There was no significant difference in treatment duration between patients with definite or probable diagnosis (108 and 112 days, respectively, in patients who completed follow-up).

Tolerability and adverse events

Only 5 patients (3%) reported allergies to antibiotics (in all cases to β-lactams) before starting treatment. In 6 patients (3%), skin rash was reported during therapy (severe in one case). Treatment was discontinued in 19 cases (11%) following intolerance or toxicity (renal, hepatic or bone marrow). The adjustment of the initial dose was required in 10 patients (6%) due to reduced renal clearance.

Follow-up and clinical outcome

Thirty-two patients (18%), with a similar proportion in both centers, were lost to follow-up. Forty-two patients (24%) had not completed 1-year follow-up, although at their first visits they were clinically improved.

A total of 100 patients (56%) were followed up for at least one year. Eighty (80%) of them had a full recovery, without changing the initial therapy, eight patients recovered after clinical flare-up requiring a therapeutic change, 8 patients had radiologic improvement, but with long-term sequelae, and the last 4 patients relapsed after the conclusion of the initial therapy, but they responded to a new cycle of therapy with different antimicrobials. Five patients (3%) died during hospitalization due to septic complications.

Among the 80 patients who recovered completely, 47 (59%) had an etiological isolation, while in the other 33 patients (41%) the diagnosis was probable. Alternatively, among the 111 patients with a definite diagnosis, only 47 (42%) completed the follow-up with full recovery, while among the 68 patients with a probable diagnosis, 33 (49%) recovered completely.
Discussion

We here describe 179 patients with PVO, consecutively diagnosed over 10 years, in two Italian Infectious Diseases centers. In Italy, PVOs are traditionally referred to the Departments of Infectious Diseases, so our data are considered representative and selection bias unlikely.

PVOs have been increasing in Europe over the last 20 years [5], mostly due to the aging population, the longer life expectancy of patients affected by chronic debilitating diseases and immunodeficiency and the iatrogenic infections following the more frequent surgical procedures [6]. In fact, in our study, the mean age at diagnosis was 65 years, 81% of individuals had comorbidities and 15% of patients underwent spine invasive procedures. Sixty-four per cent of our patients were male, but also in literature the male to female ratio is 1.5-2:1[7].

Up to 15% of cases may be asymptomatic [3], causing a mean diagnostic delay of 90 days [8]. In our case the average time to diagnosis was 57 days from symptoms onset.

Unremitting back pain and increased inflammatory markers should guide the suspicion of PVO [9]. According to IDSA guidelines, fever is only present in up to 45% of patients with bacterial spondylodiscitis and may be masked in patients taking analgesics with antipyretic effects [10]. At diagnosis, the most common symptom in our patients was localized spinal pain (94%), while fever was described in 55% of cases. Neurological deficits were reported in 35% of cases in previous studies [11], while it was present in 20% of our patients. As in other recent studies, the lumbar tract was the most affected [12] and PVO was commonly confined to one level [11]. According to the literature, when multiple sites are involved, such as in 38 patients (21%) of our study, a longer treatment duration or a surgical approach are not necessarily required [13].

When PVO is suspected, MRI should be the first imaging of choice, as confirmed by our
study [14].

The radiologist’s role in performing minimally invasive sampling procedures is also highlighted in the literature. We performed a vertebral CT-guided fine needle agobiopsy in 84 patients (47%) with a microbiological diagnosis in less than half the cases, but the usefulness of a second biopsy, if the first one is negative, is a subject of debate [15]. According to the literature, bone biopsy identifies organisms in approximately 40% of the cases, but the yield is reduced if antibiotic therapy had been started [16]. In fact, antibiotics were given before diagnosis to almost half of our patients.

Blood cultures may be successful in identifying the etiological agent. According to several studies [17-18], the rate of positive blood cultures varies from 40 to 89% depending on the prior antibiotic therapy, the relative ease of culturing the pathogen, the concentration of organism in the bloodstream, the local epidemiology and the haematogenous pathogenesis of spondylodiscitis. Despite the best efforts, the pathogen cannot be identified in approximately one third of cases and antibiotics are selected empirically [19]. In our study, the microbiological diagnosis was obtained in 111 patients (62%), without a significant difference in treatment duration and outcome between patients with a definite or a probable diagnosis. In fact, the cure rate was slightly higher among the 68 patients with a probable diagnosis (33/68,49%), compared to those with a definite diagnosis (47/111, 42%), questioning the clinical relevance of etiological identification.

According to the literature, S. aureus is the most common agent of hematogenous vertebral osteomyelitis (42-58%) [20] and it is mostly identified in the settings of recent invasive procedures (55% of patients), insulin use (28%) and hemodialysis (20%) [21]. In our case, S. aureus was isolated in 40% of patients with a definite diagnosis, while risk factors have been identified in less than 50% of them and included a prior surgery or spondylodiscitis, intravenous drug use, sepsis and endocarditis. The prevalence of
methicillin-resistant *S. aureus* (MRSA) seems to be increasing, up to 40-57% [22-23], but in our setting MRSA was identified only in 4 patients with *Staphylococcus aureus* isolation (9%).

Tolerability and adverse events

In our study, 13% of patients had mild-to-moderate adverse events leading to therapeutic discontinuation. Only one severe adverse reaction to teicoplanin occurred. A recent meta-analysis on osteomyelitis in adults has shown that oral and intravenous treatments were equally effective, with a similar number of adverse events (16% and 7% of patients had mild and moderate/severe events, respectively) [24]. In a multicenter trial published by Bernard et al. to establish non-inferiority of a 6-week versus a 12-week treatment, the intolerance to antibiotic regimens was reported in 21/351 (6%) patients, without differences between the 2 arms group [25].

Treatment duration

The optimal duration of parenteral antibiotic therapy and the time to switch to an oral treatment remain unclear. Bernard et al. showed that 6-week treatment for PVO was not inferior to 12-week regimen [25]. However, only 6% of patients in this trial were infected with MRSA and the proportion with concomitant abscess was low (19%). In fact, in a recent large cohort study by Park et al. evaluating the therapeutic outcomes of microbiologically diagnosed PVO, MRSA infection, undrained paravertebral/psoas abscesses, and end stage renal disease were independently associated with recurrence. The authors concluded that a prolonged duration of treatment (more than 8 weeks) should be given to patients with a high risk of recurrence, while, for low-risk patients, a shorter duration (6-8 weeks) may be sufficient [26].

In our data, the etiological diagnosis did not influence the rate of clinical cure and/or duration of treatment, despite influencing the antibiotic selection. In fact, the empirical
therapy should include broad-spectrum antibiotics with a proven efficacy on MRSA (such as glycopeptides), but when MSSA is identified, alternatives, such as cefazolin and oxacillin, may be used. In our study, the combination of rifampicin and a fluoroquinolone was used in half of patients treated only with oral antibiotic, with a good cure rate. In the trial by Bernard et al [25], the combination of fluoroquinolone and rifampicin was used in 73% of S. aureus infected patients. High-dose levofloxacin (500 mg every 12 hours) plus rifampicin 600 mg daily (both orally) has been successfully used also as empirical treatment [27]. The use of rifampicin (as a second agent) is recommended in patients with PVO because of its excellent bone and biofilm penetration [4].

Some studies [28,29] concerning osteoarticular infections postulate that a longer duration of antibiotic therapy implies a greater toxicity even if the duration of treatment they refer to is significantly longer than that reported in our study, both in the case of empiric therapy (242 versus 112 days) [28] and in the case of targeted anti-staphylococcal therapy (26 versus 16 weeks) [29].

Among the therapeutic options not available until recently, dalbavancin may be a promising molecule due to its long half-life, the activity against MRSA, a favorable safety profile and a high bone concentration [30].

The optimal duration of spine immobilization was not established. In a recent Italian study [12], the average time of immobilization was approximately 7 months, but our data suggest that a shorter duration (22 weeks) is reasonable for selected cases without medullary involvement, receiving treatment before a definitive spine instability occurs [31].

Response to therapy

In general, the correlation between improvement in MRI findings and clinical recovery is weak [32]. In fact, up to 85% of MRI, taken 4-8 weeks after starting therapy, fails to
demonstrate any change [33] and the uptake of contrast on the MRI may persist for several months [34], despite the clinical improvement. A PET study was performed only in 14 of our patients (7%) due to the higher costs and the unavailability in the first years. In these cases, the most reliable criterion to confirm a favorable treatment response was a decrease in maximum standardized uptake values (SUVmax) between the baseline and follow-up studies [35]. Conservative treatment is a safe and effective therapeutic option for patients without neurological deficits, spinal instability and spondylodiscitic complications [11,36]. In our study surgery was required in a minority of cases (6%), when specific complications were present. Rigid orthosis immobilization is necessary to maintain spinal stability until bony ankylosis occurs [37]. The combination of the brace plus antibiotic therapy can achieve a high success rate, ranging from 86 to 91% [37-38]. In our study, among patients who completed 1-year follow-up, the cure rate was 88%. Following conservative treatment, failure rates range from 12-18% [38-39]. Our failure rate was 12%, but we had a high number of patients (79, 44%) who did not complete the 1-year follow up. This is mainly due to the retrospective nature and the time frame (ten years) of our study. There is a wide range of published mortality rates for PVO (4-29%) across a heterogeneous collection of studies [18,40]. In our study, mortality was low (3%) and mainly due to septic complications in patients with comorbidities.

Conclusions

Although a rare condition, clinicians should consider PVO in patients with unremitting back pain and increase in inflammatory markers. When PVO is suspected, MRI is the gold standard of imaging and the microbiological diagnosis may be of help in targeting therapy. In the absence of neurological complication, medical treatment may be sufficient. Some open questions remain with regard to the optimal starting regimen, the duration of treatment and the time to switch to oral therapy. A standardized treatment algorithm
based on clinical-radiological classification and including all available medical and surgical therapeutic options could be useful.

List Of Abbreviations

PVO: pyogenic vertebral osteomyelitis
MRI: magnetic resonance imaging
CT: computed tomography
PET: positron emission tomography
CoNS: coagulase-negative Staphylococci
MRSA: methicillin-resistant Staphylococcus aureus
MSSA: methicillin-sensitive Staphylococcus aureus

Declarations

Ethics approval and consent to participate

Ethical clearance was obtained from Institutional Review Board (IRB) of ASST Papa Giovanni XXIII in Bergamo and University of Foggia. The nature of the study, which was retrospective record review, limits to access study subjects to request their consent to participate into the study. As a result of this, IRB waived the consent from the study participants directly.

Consent for publication

Not applicable.

Availability of data and material

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.
Funding

The authors received no specific funding for this work.

Authors' contributions

DR and MR conceived of the study, and participated in its design and coordination and helped to draft the manuscript. AC, EB, VR participated in the design of the study. TS coordinated the study in Foggia hospital. All authors read and approved the final manuscript.

Acknowledgements

We thank Filippo Barbano MD and Luca Stoppino MD for their collaboration in the radiological follow-up of our patients.

References

1. Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. Hematogenous pyogenic spinal infections and their surgical management. Spine (Phila Pa 1976) 2000;25:1668–79.

2. Zarghooni K, Röllinghoff M, Sobottke R, Eysel P. Treatment of spondylodiscitis. Int Orthop. 2012 Feb; 36(2): 405–411.

3. Sakkas LI, Davas EM, Kapsalaki E, et al. Hematogenous spinal infection in central Greece. Spine (Phila Pa 1976). 2009;34(15):E513-8.

4. Darley ES, MacGowan AP. Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemother. 2004 Jun;53(6):928-35.

5. Kehrer M, Pedersen C, Jensen TG, Lassen AT. Increasing incidence of pyogenic spondylodiscitis: a 14-year population-based study. J Infect. 2014;68:313-20.

6. Torda AJ, Gottlieb T, Bradbury R. Pyogenic vertebral osteomyelitis: analysis of 20 cases and review. Clin Infect Dis. 1995 Feb; 20(2):320-8.

7. Skaf GS, Domloj NT, Fehlings MG, et al. Pyogenic spondylodiscitis: an overview. J Infect Public Health. 2010;3(1):5-16.
8. Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J. 2013;22:2787-99.

9. Siemionow K, Steinmetz M, Bell G, et al. Identifying serious causes of back pain: cancer, infection, fracture. Cleve Clin J Med 2008; 75:557–66.

10. Berbari EF, Kanj SS, Kowalski TJ, et al. Review 2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adults. Clin Infect Dis. 2015 Sep 15; 61(6):e26-46.

11. Shiban E, Janssen I, Wostrack M, et al. A retrospective study of 113 consecutive cases of surgically treated spondylodiscitis patients. A single-center experience. Acta Neurochir (Wien). 2014 Jun;156(6):1189-96.

12. Pola E, Autore G, Formica VM, et al. New classification for the treatment of pyogenic spondylodiscitis: validation study on a population of 250 patients with a follow-up of 2 years. Eur Spine J. 2017 Oct;26(Suppl 4):479-488.

13. Lener S, Hartmann S, Barbagallo GMV, et al. Management of spinal infection: a review of the literature. Acta Neurochir (Wien). 2018 Mar;160(3):487-496

14. Diehn FE. Imaging of spine infection. Radiol Clin North Am. 2012;50(4):777-98

15. Fuursted K, Arpi M, Lindblad BE, Pedersen LN. Broad-range PCR as a supplement to culture for detection of bacterial pathogens in patients with a clinically diagnosed spinal infection. Scand J Infect Dis. 2008;40(10):772-7

16. Chong BSW, Brereton CJ, Gordon A, Davis JS. Epidemiology, Microbiological Diagnosis, and Clinical Outcomes in Pyogenic Vertebral Osteomyelitis: A 10-year Retrospective Cohort Study. Open Forum Infect Dis. 2018 Mar 10;5(3):ofy037

17. Lora-Tamayo J, Euba G, Narvaez JA, et al: Changing trends in the epidemiology of pyogenic vertebral osteomyelitis: the impact of cases with no microbiologic diagnosis. Semin Arthritis Rheum 2011; 41:pp. 247-255
18. Mylona E, Samarkos M, Kakalou E, et al. Pyogenic vertebral osteomyelitis: a systematic review of clinical characteristics. Semin Arthritis Rheum 2009; 39: pp. 10-17

19. D'Agostino C, Scorzolini L, Massetti AP, et al. A seven-year prospective study on spondylodiscitis: epidemiological and microbiological features. Infection. 2010 Apr;38(2):102-7.

20. Nickerson EK, Sinha R. Vertebral osteomyelitis in adults: an update. Br Med Bull. 2016 Mar;117(1):121-38.

21. Priest DH, Peacock JE Jr. Hematogenous vertebral osteomyelitis due to Staphylococcus aureus in the adult: clinical features and therapeutic outcomes. South Med J. 2005;98:854-62.

22. Marschall J, Bhavan KP, Olsen MA, et al. The impact of prebiopsy antibiotics on pathogen recovery in hematogenous vertebral osteomyelitis. Clin Infect Dis 2011; 52: pp. 867-872

23. Park KH, Chong YP, Kim SH, et al. Clinical characteristics and therapeutic outcomes of hematogenous vertebral osteomyelitis caused by methicillin-resistant Staphylococcus aureus. J Infect. 2013 Dec;67(6):556-64.

24. Conterno LO, Turchi MD. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst Rev. 2013 Sep 6;(9):CD004439.

25. Bernard L, Dinh A, Ghout I, et al. Antibiotic treatment for 6 weeks versus 12 weeks in patients with pyogenic vertebral osteomyelitis: an open-label, non-inferiority, randomised, controlled trial. Lancet. 2015 Mar 7;385(9971):875-82

26. Park KH, Cho OH, Lee JH, et al. Optimal Duration of Antibiotic Therapy in Patients With Hematogenous Vertebral Osteomyelitis at Low Risk and High Risk of Recurrence. Clin Infect Dis. 2016 May 15;62(10):1262-1269

27. Viale P, Furlanut M, Scudeller L, et al. Treatment of pyogenic (non-tuberculous)
spondylodiscitis with tailored high-dose levofloxacin plus rifampicin. Int J Antimicrob Agents. 2009 Apr;33(4):379-82.

28. Pulcini C, Couadau T, Bernard E, et al. Adverse effects of parenteral antimicrobial therapy for chronic bone infections. Eur J Clin Microbiol Infect Dis. 2008 Dec;27(12):1227-32.

29. Valour F, Karsenty J, Bouaziz A, et al. Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(2):746-55.

30. Dunne MW, Puttagunta S, Sprenger CR, et al. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother. 2015;59(4):1849-55

31. Mavrogenis AF, Igoumenou V, Tsiavos K, et al. When and how to operate on spondylodiscitis: a report of 13 patients. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):31-40.

32. Zarrouk V, Feydy A, Sallès F, et al. Imaging does not predict the clinical outcome of bacterial vertebral osteomyelitis. Rheumatology (Oxford). 2007 Feb;46(2):292-5

33. Hinners J. Vertebral Osteomyelitis and the Role of Imaging. Radiol Technol. 2017 May;88(5):519-535.

34. An HS, Seldomridge JA. Spinal infections: diagnostic tests and imaging studies. Clin Orthop Relat Res. 2006 Mar;444:27-33.

35. Riccio SA, Chu AK, Rabin HR, Kloiber R. Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Interpretation Criteria for Assessment of Antibiotic Treatment Response in Pyogenic Spine Infection. Can Assoc Radiol J. 2015 May;66(2):145-52

36. Grados F, Lescure FX, Senneville E, et al. Suggestions for managing pyogenic (non-
tuberculous) discitis in adults. Joint Bone Spine. 2007 Mar;74(2):133-9.

37. Rutges JP, Kempen DH, van Dijk M, Oner FC. Outcome of conservative and surgical treatment of pyogenic spondylodiscitis: a systematic literature review. Eur Spine J. 2016;25(4):983-99

38. Bettini N, Girardo M, Dema E, Cervellati S. Evaluation of conservative treatment of non specific spondylodiscitis. Eur Spine J. 2009 Jun;18 Suppl 1:143-50.

39. O'Daly BJ, Morris SF, O'Rourke SK. Long-term functional outcome in pyogenic spinal infection. Spine (Phila Pa 1976). 2008 Apr 15;33(8):E246-53.

40. Loibl M, Stoyanov L, Doenitz C, et al. Outcome-related co-factors in 105 cases of vertebral osteomyelitis in a tertiary care hospital. Infection. 2014 Jun;42(3):503-10.

Tables

Table 1 - Baseline characteristics of the study population
Characteristics	Number (%)
Males	114 (64)
Median age, years (range)	65 (33-90)
Comorbidity	
Hypertension	145 (81)
Diabetes	63 (43)
Ischemic heart disease	34 (23)
Malignancies	22 (15)
Atrial fibrillation	17 (12)
CKD (clearance < 60 ml/min)	17 (12)
Chronic obstructive pulmonary disease (COPD)	13 (9)
Cirrhosis	8 (6)
Mean diagnostic delay, days (range)	57 (3-370)
Fever	99 (55)
Back pain	169 (94)
Neurological signs	35 (20)
Leucocytes count, median (range) cells/mmc	8,464 (1,800-30,500)
C-reactive protein, median (range) mg/L	71 (0-356)
Soft tissue involvement	36 (20)
Epidural/paravertebral abscess	54 (30)
PVO localization	
Cervical	40 (22)
Thoracic	14 (8)
Lumbar	125 (70)
Multiple	38 (21)

CRP: C-reactive protein, **PVO:** Pyogenic Vertebral Osteomyelitis
Due to technical limitations, Table 2 is only available as a download in the supplemental files section.

Table 3 - Type of antibiotic regimen in patients with PVO

Regimen	N. of patients (%)	Outcome		
	Total number: 179§	Empiric treatment (n=68)	Microbiologically guided therapy (n=111)	Recovered# (n=88)
Exclusively oral or parental treatment				
Oral only	44 (25)	27 (61)	17 (39)	21 (48)
Rifampicin + Fluoroquinolone	22 (50)	14 (64)	8 (36)	10 (45)
Cotrimoxazole + others	14 (32)	10 (71)	4 (29)	8 (57)
β-lactam* + others	8 (18)	3 (38)	5 (62)	3 (38)
Recovered	21 (48)	13 (48)	8 (47)	
Parental only	18 (10)	2 (11)	16 (89)	5 (28)
β-lactam* + others	14 (78)	2 (14)	12 (86)	4 (29)
Glycopeptide + others	5 (28)	2 (40)	3 (60)	1 (20)
Recovered	5 (28)	0 (0)	5 (31)	
Parental followed by oral treatment				
Total patients	115 (64)	38 (33)	77 (67)	62 (54)
Parental antibiotic				
β-lactam* + others	75 (65)	19 (25)	56 (75)	40 (53)
Glycopeptide + others	25 (22)	15 (60)	10 (40)	13 (52)
Fluoroquinolone +	57 (50)	22 (39)	35 (61)	32 (56)
Treatment	Count (Percentage)			
-----------	-------------------			
Rifampicin + others	15 (13)			
Oral antibiotic				
β-lactam* + others	55 (48)			
Fluoroquinolone + others	89 (77)			
Rifampicin + others	30 (26)			
Cotrimoxazole + others	30 (26)			
Recovered	62 (54)			

*B-lactam: cefazolin, oxacillin, ampicillin + sulbactam, amoxicillin + clavulanate, cefalexin, cefixime, cefotaxime, ceftazidime, ceftriaxone, cefepime, piperacillin/tazobactam, ertapenem, meropenem, imipenem.

#Recovered: 80 patients had a full recovery, without changing the initial therapy, while 8 patients recovered after clinical flare-up requiring a therapeutic change.

§: two patients are not included because, after been diagnosed with PVO, they received treatment at another hospital.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.
Table 2.pdf