Direct Single-Instanton Contributions

to Finite-Energy Sum Rules

A.S. Deakin, V. Elias, Ying Xue
Department of Applied Mathematics
University of Western Ontario
London, Ontario N6A 5B7
Canada

N.H. Fuchs
Department of Physics
Purdue University
West Lafayette, IN 47907
U.S.A.

Fang Shi and T.G. Steele
Department of Physics and Engineering Physics
University of Saskatchewan
Saskatoon, Saskatchewan S7N 5C6
Canada

Abstract

Instanton contributions to pseudoscalar finite-energy sum rules are extracted from the explicit single-instanton contribution to the pseudoscalar Laplace sum rule in the instanton liquid model.
Finite energy sum rules in the pseudoscalar meson channels have been used by a number of researchers to obtain bounds on quark masses [1,2,3]. Substantial higher-order perturbative contributions to the pseudoscalar correlation function are both known [2,3,4] and controllable [5]. As emphasized in ref. 3, however, such calculations are understood to be subject to serious uncertainties from direct instanton contributions [6], which have not been sufficiently well-understood to be incorporated into even the most recent finite energy sum rule calculations [2]. In this note, we use the known contribution to Laplace sum rules in the instanton liquid model [7] to extract the direct single-instanton contribution to finite-energy sum rules:

\[R^p_0(s) = \frac{1}{\pi} \int_0^\infty \text{Im} \left[\pi^p(t) \right] e^{-st} dt \]

\[= \left(\frac{4\pi^2 n_c \rho^2}{3m_s^2} \right) \frac{3\rho^2}{8\pi^2 s^3} e^{-\rho^2/2s} \left[K_0 \left(\frac{\rho^2}{2s} \right) + K_1 \left(\frac{\rho^2}{2s} \right) \right] \]

\[= \frac{3\rho^2}{8\pi^2 s^3} e^{-\rho^2/2s} \left[K_0 \left(\frac{\rho^2}{2s} \right) + K_1 \left(\frac{\rho^2}{2s} \right) \right]. \quad (1) \]

In (1), \(1/\rho \approx 600 \text{ MeV} \) is the instanton size, \(s \) is the Borel parameter \((s \equiv 1/M^2) \) and \(\pi^p(q^2) \) denotes the correlator of appropriate light-quark pseudoscalar currents \(i\bar{q}\gamma_5 q \). In the instanton liquid model the quantity \(n_c \) parametrizes the instanton density and \(m_s \) is the self-consistent dynamical mass.

The finite energy sum rules we wish to obtain are

\[F^p_k(s_0) \equiv \frac{1}{\pi} \int_0^{s_0} \text{Im} \left[\pi^p(t) \right] t^k dt. \quad (2) \]

To evaluate the contributions to (2) in the instanton liquid model, recall that \(R^p_0(s) \) in (1) is itself a Laplace transform:

\[R^p_0(s) = \mathcal{L} \left[\frac{1}{\pi} \text{Im} \left(\pi^p(t) \right) \right]. \quad (3) \]
\[
\mathcal{L}[f(t)] \equiv \int_0^\infty f(t)e^{-st}dt.
\] (4)

From (2) and (3) we see that
\[
\frac{d}{dt} F_k^p(t) = \mathcal{L}^{-1} [R_0^p(s)] t^k.
\] (5)

Upon taking the Laplace transform of both sides of (5) and noting from (2) that
\[F_k^p(0) = 0, \]
we obtain
\[
F_k^p(t) = \mathcal{L}^{-1} \left[\frac{1}{s} \left(-\frac{d}{ds} \right)^k R_0^p(s) \right]
\] (6)

An explicit expression for \(F_k^p(t) \) can be obtained from the identity [8]
\[
\frac{1}{2s} e^{-1/2s} K_0(1/2s) = -\pi \int_0^\infty J_0(x)Y_0(x)e^{-sx^2}x \, dx
\]
\[= \mathcal{L} \left[-\frac{\pi}{2} J_0(\sqrt{t})Y_0(\sqrt{t}) \right].
\] (7)

We differentiate both sides of (7) with respect to \(s \), noting that \(K'_0(z) = -K_1(z) \) and that
\[
\frac{d}{ds} \mathcal{L}[f(t)] = \mathcal{L}[-tf(t)],
\]
in order to obtain the relation
\[
H_0(s) \equiv \frac{1}{(2s)^3} e^{-1/2s} [K_0(1/2s) + K_1(1/2s)] = \mathcal{L}[h(t)],
\] (8)

\[
h(t) = \frac{\pi}{4} t J_0(\sqrt{t})Y_0(\sqrt{t}) + \mathcal{L}^{-1} \left[\frac{1}{2s} \mathcal{L} \left[-\frac{\pi}{2} J_0(\sqrt{t})Y_0(\sqrt{t}) \right] \right]
\]
\[= \frac{\pi}{4} t J_0(\sqrt{t})Y_0(\sqrt{t}) - \frac{\pi}{4} \int_0^t J_0(\sqrt{w})Y_0(\sqrt{w})dw,
\] (9)

where the integral in the final line above is a convolution of \(J_0(\sqrt{t})Y_0(\sqrt{t}) \) and \(1/2 = \mathcal{L}^{-1}(1/2s) \). Comparing the top line of (8) with (3), we see that
\[
R_0^p(s) = \frac{3}{\pi^2 \rho^4} H_0(s/\rho^2)
\] (10)

Using the rescaling relation \(G(s/\rho^2) = \rho^2 \mathcal{L}[g(\rho^2 t)] \) for \(G(s) = \mathcal{L}[g(t)] \), one can easily show via (3) and (10) that
\[
F_k^p(t) = \frac{3}{\pi^2 \rho^{4+2k}} \phi_k(\rho^2 t)
\] (11)
where
\[\phi_k(t) = L^{-1} \left[\frac{1}{s} \left(-\frac{d}{ds} \right)^k H_0(s) \right] = \int_0^t \tau^k h(\tau) d\tau. \] (12)

We find from substitution of (9) into (12) that
\[\phi_k(t) = \frac{\pi}{4} \int_0^t d\tau \tau^k \left[\tau J_0(\sqrt{\tau}) Y_0(\sqrt{\tau}) - \int_0^\tau dw J_0(\sqrt{w}) Y_0(\sqrt{w}) \right] = \frac{\pi}{4(k+1)} \int_0^t \left[(k+2)\tau^{k+1} - t^{k+1} \right] J_0(\sqrt{\tau}) Y_0(\sqrt{\tau}) d\tau. \] (13)

Substitution of (13) into (11) yields a closed-form expression for the instanton contribution (2) to finite energy sum rules:
\[F^p_k(s_0) = \frac{3}{4\pi(k+1)} \int_0^{s_0} \left[(k+2)w^{k+1} - s_0^{k+1} \right] J_0(\rho\sqrt{w}) Y_0(\rho\sqrt{w}) dw. \] (14)

The appearance of the explicit \(s_0^{k+1} \) term in (14) reminiscent of perturbative contributions, raises the concern that the instanton and perturbative contributions might be comparable. A simplification of (14) addresses this question. Applying a change of variables in (14), using the identity
\[\int x J_0(x) Y_0(x) dx = \frac{1}{2} x^2 \left[J_0(x) Y_0(x) + J_1(x) Y_1(x) \right] \] (15)
and performing an integration by parts results in the expression
\[F^p_k(s_0) = -\frac{3}{4\pi} \int_0^{s_0} w^{k+1} J_1(\rho\sqrt{w}) Y_1(\rho\sqrt{w}) dw \] (16)
which, by comparing the integrands, is easily seen to be smaller than the leading perturbative contribution. From comparison of (14) and (2) it is also possible to make the identification
\[\frac{1}{\pi} Im \left[\pi^p(w) \right]_{\text{inst}} = -\frac{3}{4\pi} w J_1(\rho\sqrt{w}) Y_1(\rho\sqrt{w}) \] (17)
Approximate expressions for the inverse Laplace transforms (13) in terms of elementary trigonometric functions may be obtained via asymptotic expansion methods in the complex plane. We rewrite (13) as follows:

\[
F_p^k(t) = \frac{1}{2\pi i} \int_C \left[\frac{1}{s} \left(-\frac{d}{ds} \right)^k R_0^p(s) \right] e^{st} ds,
\]

with the contour \(C \) in the complex \(s \) plane [Fig. 1] being a vertical line on which \(\text{Re}(s) \) is a positive constant. We can distort \(C \) as indicated in Fig. 2. The arc contributions \(C_1 \) and \(C_2 \) vanish, because as \(|s| \to \infty \)

\[
R_0^p(s) \to \frac{1}{|s|^2},
\]

as is evident from (14). Consequently, \(F_p^k(t) \) can be expressed as an integral around the Hankel loop contour \(L \) given in Fig. 2.

To proceed further, we make use of the asymptotic expansion [9]

\[
K_0(z) + K_1(z) \sim \left(\frac{\pi}{2z} \right)^\frac{1}{2} e^{-z} \sum_{n=0}^{\infty} a_n z^{-n},
\]

\[
a_0 = 2, \quad a_1 = \frac{1}{4}, \quad a_2 = -\frac{3}{64}, \quad a_3 = \frac{15}{512}, \ldots
\]

in order to obtain the following result:

\[
F_p^k(t) \sim \sum_{n=0}^{\infty} b_n \frac{1}{2\pi i} \int_L \left[\left(-\frac{d}{ds} \right)^k \left[e^{-\rho^2/s s^{n-3+1/2}} \right] \right] ds
\]

where

\[
b_n \equiv \frac{3\rho^{1-2n}}{8\pi^{3/2}} 2^n a_n.
\]

The integrals in (22) can be evaluated through explicit use of Schl"afli’s integral [10] over the Hankel contour \(L \):

\[
J_v(z) = \frac{1}{2\pi i} \int_L w^{-v-1} e^{z(w-1/w)/2} dw,
\]
valid for $Re(z) > 0$. Correspondence between (22) and (24) is obtained by letting $w = (\sqrt{t}/\rho)s$, $z = 2\rho\sqrt{t}$, in which case we find for $k = 0$ that

$$F_0(t) \sim \sum_{n} b_n \left(\frac{\rho}{\sqrt{t}} \right)^{n-5/2} \frac{1}{2\pi i} \int_{L} w^{n-7/2} e^{\rho\sqrt{t}(w-1/w)} dw$$

$$= \sum_{n} b_n \left(\frac{\rho}{\sqrt{t}} \right)^{n-5/2} J_{5/2-n}(2\rho\sqrt{t}).$$

Higher sum-rule moments can be obtained via explicit differentiation with respect to s in the integrand of (22); e.g.,

$$F^p_1(t) \sim \sum_{n=0} b_n \left\{ \left(\frac{5}{2} - n \right) \frac{1}{2\pi i} \int_{L} e^{st-\rho^2/s} s^{n-9/2} ds - \rho^2 \frac{1}{2\pi i} \int_{L} e^{st-\rho^2/s} s^{n-11/2} ds \right\}$$

$$= \sum_{n=0} b_n \left\{ \left(\frac{5}{2} - n \right) \left(\frac{\rho}{\sqrt{t}} \right)^{n-4} J_{2-n}(2\rho\sqrt{t}) - \rho^2 \left(\frac{\rho}{\sqrt{t}} \right)^{n-4} J_{2-n}(2\rho\sqrt{t}) \right\}.$$

Finally, we note that Bessel functions of half-integer order can be expressed in terms of elementary trigonometric functions. We find from (25) that

$$F_0(s_0) = \frac{3}{4\pi^2 \rho^4} \left\{ \sin(2\rho\sqrt{s_0}) \left[-\rho^2 s_0 + \frac{25}{32} + O\left(\frac{1}{\rho^2 s_0} \right) \right] \right.$$

$$+ \cos(2\rho\sqrt{s_0}) \left[-\frac{7\rho s_0^{1/2}}{4} + \frac{15}{128\rho s_0^{1/2}} + O\left(\frac{1}{\rho^2 s_0^{3/2}} \right) \right] \right\}.$$

For $\rho^2 s_0 > 2$ this approximate expression differs from (14) with $k = 0$ by less than 5%.

Given an instanton size $1/\rho \approx 600$ MeV, eq. (27) is seen to oscillate slowly as s_0 increases past 1 GeV2, going from positive to negative as s_0 increases past 2.9 GeV2. Since the purely-perturbative contribution is also positive and quadratic in s_0 [1,2], we see the effect of instanton contributions is to enhance the size of field-theoretic contributions to F^p_0 at low s_0, but to diminish somewhat the magnitude of field-theoretic contributions for values of the continuum threshold chosen to be above 2.9 GeV2. The corresponding expression for F_1 in
terms of elementary trigonometric functions can be obtained from (26):

\[F_1(s_0) = \frac{3}{8\pi^2\rho^6} \left\{ \sin(2\rho\sqrt{s_0}) \left[-2\rho^4 s_0^2 + \frac{129}{16} \rho^2 s_0 + \mathcal{O}(1) \right] \\
+ \cos(2\rho\sqrt{s_0}) \left[-\frac{11}{2} \rho^3 s_0^{3/2} + \frac{531}{64} \rho s_0^{1/2} + \mathcal{O}\left(\frac{1}{\rho\sqrt{s_0}}\right) \right] \right\} \quad . \quad (28) \]

Once again, the leading instanton contribution to \(F_1 \) is seen to be lower-degree in \(s_0 \) than the \(\mathcal{O}(s_0^3) \) purely-perturbative contribution. As a final comment, it should be noted that for detailed phenomenological work, all the FESRs require inclusion of an overall renormalization-group factor which is identical for the (leading) perturbative and instanton contributions.

A.S. Deakin, V. Elias and T.G. Steele are grateful for support from the Natural Sciences and Engineering Research Council of Canada.
References

1. W. Hubschmid and S. Mallik, Nucl. Phys. B 193 (1981) 368; T. Truong, Phys. Lett. B 117 (1982) 109; A.L. Kataev, N.V. Krasnikov, and A.A. Pivovarov, Phys. Lett. B 123 (1983) 93.

2. J. Bijnens, J. Prades, E. de Rafael, Phys. Lett. B 348 (1995) 226; J. Prades, hep-ph/9708395.

3. S.G. Gorishny, A.L. Kataev, and S.A. Larin, Phys. Lett. B 135 (1984) 457.

4. S.G. Gorishny, A.L. Kataev, S.A. Larin, and L.R. Surguladze, Mod. Phys. Lett. A5 (1990) 2703; K.G. Chetyrkin, Phys. Lett. B 390 (1997) 309.

5. M.A. Samuel, G. Li, and E. Steinfelks, Phys. Rev. E 51 (1995) 3911.

6. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl. Phys. B 191 (1981) 301; E. Gabrielli and P. Nason, Phys. Lett. B313 (1993) 430; P. Nason and M. Poratti, Nucl. Phys. B421 (1994) 518; P. Nason and M. Palassini, Nucl. Phys. B444 (1995) 310.

7. A.E. Dorokhov, S.V. Esabegian, N.I. Kochelev, N.G. Stefanis, J. Phys. G 23 (1997) 643; E.V. Shuryak, Nucl. Phys. B 214 (1983) 237.

8. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products (Academic Press, New York, 1980) p. 718 [eq. 6.633.3] and p. 1062 [eq. 9.235.2].

9. Ibid, p. 963 [eq. 8.451.6].
10. G.F.D. Duff and D. Naylor, Differential equations of applied mathematics (Wiley, New York, 1966) p. 300.
Figure Captions

Fig. 1: The contour C characterizing the inverse Laplace-transform contour integral.

Fig. 2: Distortion of C into the sum of infinite-radius arc contributions $C_{1,2}$ and the Hankel loop contour L.
Fig. 2