Thermal Energy Grid Storage Using Multi-Junction Photovoltaics (TEGS-MPV)

Asegun Henry, Ph.D.
Noyce Career Development Chair
Associate Professor
Department of Mechanical Engineering
Massachusetts Institute of Technology
What is Thermal Energy Grid Storage (TEGS)?

Electricity \rightarrow Heat (storage) \rightarrow Electricity

System with thermal storage and conversion

Electricity in
Electricity out
Like a battery
Electricity \rightarrow \text{Heat (storage)} \rightarrow \text{Electricity}

Why would anyone ever do this?
Storing heat can be 10-100X cheaper than storing electricity!

System with thermal storage and conversion

Can be 100% efficient going from lower to higher entropy

Can never be 100% efficient going from higher to lower entropy
Why is it so cheap? – Atomistic Insight

Low concentration of active species
Large energy per active atom
Special, pure, organized materials
Impurities and byproducts are bad

100% concentration of active species
Low energy per active atom
Disordered, simple scrap material
Impurity tolerant

$250-695$ kWh/m3 $\$150-400$/kWh

$300-600$ kWh/m3 $\$4-77$/kWh

\[\Delta G = \frac{1}{2} m v^2 \]
Simple Estimate

Liquid silicon storage

\[\begin{align*}
 \text{Cp} &= 950 \text{ J kg}^{-1} \text{ K}^{-1} \\
 \text{Cost} &= $1.5/\text{kg} \\
 \Delta T &= 500^\circ\text{C} \\
 \text{Cost/Energy} &= \frac{\text{Cost}}{(\text{Cp} \times \Delta T)} = \frac{$1.5}{(950 \times 500)} = $11.4/\text{kWh} \\
 \text{At 50% efficiency} \\
 \text{Cost/Energy} &= \frac{$11.4}{0.5} = $22.8/\text{kWh-e}
\end{align*} \]

Liquid iron storage

\[\begin{align*}
 \text{Cp} &= 444 \text{ J kg}^{-1} \text{ K}^{-1} \\
 \text{Cost} &= $0.11/\text{kg} \\
 \Delta T &= 500^\circ\text{C} \\
 \text{Cost/Energy} &= \frac{\text{Cost}}{(\text{Cp} \times \Delta T)} = \frac{$0.11}{(444 \times 500)} = $0.18/\text{kWh} \\
 \text{At 50% efficiency} \\
 \text{Cost/Energy} &= \frac{$0.18}{0.5} = $0.36/\text{kWh-e}
\end{align*} \]
Heat Leakage?

Volume to surface area ratio

\[\tau = \frac{m\cdot C_p\cdot R}{\rho\cdot V\cdot C_p\cdot L/kA} \]

For tanks of order 10 m

\[\tau \text{ on the order of months} \]

Lose \(\leq 1\% \) of energy stored per day
What about corrosion? The hotter the faster/worse!

Si melts at 1414°C
Fe melts at 1538°C

Molten metal dissolves metal
Like Sugar water dissolves sugar

Key New Idea = Liquid Metal + Ceramics
“Sun in a Box” TEGS-MPV

Electricity → Heat → Electricity

Liquid Silicon Hot Tank
~2400°C

Any Electricity Source Powers the Heaters

Liquid Silicon “Cold” Tank
~1900°C

MPV Panels Can Be Mechanically Retracted For Load Following

Krypton Gas in the Gap

Tungsten Foil Fins Cover Graphite Pipes to Block Sublimation

High Quality Single Crystal III-IV Multi-junction PV (MPV) Cells

Active Water Cooling Of Cells ~ 35°C

Multi-Junction Photovoltaics (MPV)
How Are You Going To Pump It?

Pumping at 1350°C

C. Amy et al., Nature 550, 199–203 (2017)
What About The Tank (2400°C)?

- Graphite + Si(l) react to form SiC
- Dense graphite forms protective SiC layer
- Tank cannot be monolithic piece
- Use sections that are bolted
- Carbon fiber bolts
- Use grafoil gaskets to seal
- Tested successfully > 2000°C

C. Amy et al., Energy & Environmental Science, 12, 334 (2019)
Why Use MPV Instead of a Turbine?

- **Turbine**
 - Doesn’t currently exist
 - **Large barrier to new turbine deployment**
 - > $100M of R&D
 - New materials + New HXs
 - Min-Hour response time to full load

- **MPV**
 - **Much lower barrier to deployment**
 - **Lower cost < $0.5/W-e**
 - Similar efficiency (50-55%)
 - Fast response time (seconds)
 - Fundamentally new cost/learning curve
 - Lower maintenance
Why Multi-Junction Photovoltaics?

[Graph showing modeled efficiencies of 1- and 2-junction cells as a function of junction bandgap for several different emitter temperatures.]

B – Optimal top-junction bandgap for the 2-junction cells as a function of the bottom junction bandgap.

C. Amy et al., Energy & Environmental Science, 12, 334 (2019)
System Efficiency & Cost

Efficiency = \(\frac{\text{Power}_{\text{out}}}{\text{Q}_{\text{total}}} = \frac{123}{(123 + 89.4 + 18.7 + 4.6)} = 52\% \)

- \(Q_{\text{blackbody}} = 1.95 \text{ MW/m}^2 \)
- Tungsten has low emissivity in the IR
- \(Q_{\text{tungsten}} = 689 \text{ kW/m}^2 \)
- \(Q_{\text{above BG}} = 213 \text{ kW/m}^2 \)
- \(Q_{\text{below BG}} = 476 \text{ kW/m}^2 \)
- \(Q_{\text{gen}} = 89.4 \text{ kW/m}^2 \)
- \(Q_{\text{below BG}} = 18.7 \text{ kW/m}^2 \)

Cost per unit energy = CPE
Cost per unit power = CPP

\[\text{Cost} = \text{CPE} \times \text{time} + \text{CPP} \]

C. Amy et al., Energy & Environmental Science, 12, 334 (2019)
Centrifugal pump ~ 1 ft diameter

Graphite double wall
Carbon fiber bolts
Porous graphite insulation
Aluminum silicate insulation

System at Scale
Charge/discharge 100 MW
10 hrs of storage (1 GWh)
What’s Next?

- ARPA-E Project
- Build a prototype
- Pumping
- 2500°C Heaters
- Emitter evaporation/deposition
- Cell redesign/optimization + fabrication
- High current density
- High reflectivity (> 98%)
- High efficiency (≥ 50%)
- Long term testing
Commercialization Pathway

- Finish existing ARPA-E project
 - [scale = 1 kWh, 300 W]
 - Fully functioning prototype
 - Cell performance demonstrated
 - Pumping demonstrated
 - Actuation demonstrated
 - Deposition prevention demonstrated

- Pilot demonstration
 - [scale = 1 MWh, 300 kW]
 - Demonstrate > 40% efficiency
 - Demonstrate cycles with no degradation
 - Develop maintenance procedures
 - ARPA-E Pilot program
 - [up to $10M + 50% cost share] - $6M estimated
 - Need to raise cost share
 - Create/lead a startup company

- Full scale
 - [scale = 1 GWh, 100 MW] - $200M
 - Secure a utility as a customer
 - DOE Loan guarantee program
 - Demonstrate > 50% efficiency
 - Demonstrate cycle life and low cost
Questions?