Optimal bailout strategies resulting from the drift controlled supercooled Stefan problem

Christa Cuchiero1 · Christoph Reisinger2,12 · Stefan Rigger3

Accepted: 10 March 2023 / Published online: 29 April 2023 © The Author(s) 2023

Abstract
We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash in order to limit defaults to a given proportion of entities. We prove that the value of the central agent’s control problem converges as the number of defaultable institutions goes to infinity, and that it satisfies a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a regularized version of the corresponding mean field control problem using a policy gradient method. Our simulations show that the central agent’s optimal strategy is to subsidise banks whose equity values lie in a non-trivial time-dependent region.

Keywords Systemic risk · Mean field control · Supercooled Stefan problem · Propagation of chaos · Bail-outs

1 Introduction
In this paper, we analyse a simple mathematical model for a central bank that optimally injects cash into a banking system with interbank lending in order to prevent systemic default events. By way of introduction, we first review known results on the dynamics without intervention and its relation to the supercooled Stefan problem. We then describe the optimisation problem...
faced by the central agent and discuss its setting within the literature on Mean Field Control (MFC) problems together with this paper’s contributions.

1.1 Interbank lending and the supercooled Stefan problem

We study a market with N financial institutions and their equity value process $X = (X_t^i)$ for $t \in [0, T]$ with finite time horizon $T > 0$ and $i = 1, \ldots, N$. We interpret X_t^i in the spirit of structural credit risk models as the value of assets minus liabilities. Hence, we consider an institution to be defaulted if its equity value hits 0. We refer the reader to Merton (1974) for the classical treatment as well as to Itkin and Lipton (2017) and the references therein for a discussion of such models in the present multivariate context with mutual obligations.

We consider specifically a stylised model of interbank lending where all firms are exchangeable, their equity values are driven by Brownian motion, and where the default of one firm leads to a uniform downward jump in the equity value of the surviving entities. The latter effect is the crucial mechanism for credit contagion in our model as it describes how the default of one firm affects the balance sheet of others. Here, we follow (Hambly et al., 2019; Nadtochiy & Shkolnikov, 2019; Lipton et al., 2019) to assume that the X_t^is satisfy

$$X_t^i = X_{0^-}^i + B_t^i - \alpha \frac{1}{N} \sum_{i=1}^{N} 1_{\{\tau_i^i \leq t\}}, \quad (1)$$

where $\tau_i^i = \inf\{t : X_t^i \leq 0\}$, $X_{0^-}^i$ are non-negative i.i.d. random variables, $(B_t^i)_{1 \leq i \leq N}$ is an N-dimensional standard Brownian motion, independent of $X_{0^-} = (X_{0^-}^i)_{1 \leq i \leq N}$, and $\alpha \geq 0$ is a given parameter measuring the interconnectedness in the banking system. The initial condition reflects the current state of the banking system. This might include minimal capital requirements prescribed by the regulator as conditions to enter the banking system, but we do not consider this question explicitly.

Even this highly stylised simple system produces complex behaviour for large pools of firms, including systemic events where cascades of defaults caused by interbank lending instantaneously wipe out significant proportions of the firm pool (see Hambly et al. (2019); Nadtochiy and Shkolnikov (2019); Delarue et al. (2022)).

One way of analysing this is to pass to the mean-field limit for $N \rightarrow \infty$. It is known (see, e.g., Delarue et al. (2015)) that the interaction (contagion) term in (1) converges (in an appropriate sense) to a deterministic function $\Lambda : [0, T] \rightarrow [0, \alpha]$ as $N \rightarrow \infty$, i.e.,

$$\alpha \frac{1}{N} \sum_{i=1}^{N} 1_{\{\tau_i^i \leq t\}} \rightarrow \Lambda_t. \quad (3)$$

Moreover, the X_t^i are asymptotically independent with the same law as a process X which together with Λ satisfies a probabilistic version of the supercooled Stefan problem, namely

$$X_t = X_{0^-} + B_t - \Lambda_t, \quad t \geq 0, \quad (2)$$

where Λ is subject to the constraint

$$\Lambda_t = \alpha \mathbb{P}\left(\inf_{0 \leq s \leq t} X_s \leq 0 \right), \quad t \geq 0. \quad (3)$$

Here, B is a standard Brownian motion independent of the random variable X_{0^-}, which has the same law as all $X_{0^-}^i$. We refer to Delarue et al. (2022) for a discussion on how
this probabilistic formulation relates to the classical PDE version of the supercooled Stefan problem.

From a large pool perspective (see Hambly et al. (2019); Nadtochiy and Shkolnikov (2019)), X_t may be viewed as the equity value of a representative bank and $\tau = \inf\{t \geq 0 : X_t \leq 0\}$ as its default time, while Λ_t describes the interaction with other institutions under the assumption of uniform lending and exchangeable dynamics. In particular, $\mathbb{P}(\inf_{0 \leq s \leq t} X_s \leq 0)$ can be interpreted as the fraction of defaulted banks at time t and consequently Λ_t as the loss that the default of these entities has caused for the survivors.

It is known that solutions to (2), (3) are not unique in general (see Delarue et al. (2015); Cuchiero et al. (2023)), which explains the need to single out so-called physical solutions that are meaningful from an economic and physical perspective. Under appropriate conditions on X_{0-}, these physical solutions are characterised by open intervals with smooth $t \mapsto \Lambda_t$, separated by points at which this dependence may only be Hölder continuous or even exhibit a discontinuity, an event frequently referred to as blow-up (see Delarue et al. (2022)). If the mean of the initial values is close enough to zero relative to the interaction parameter α, a jump necessarily happens (see Hambly et al. (2019)).

In case a discontinuity does occur at some $t \geq 0$, the following restriction on the jump size defines such a physical solution:

$$\Lambda_t - \Lambda_{t-} = \inf \left\{ x > 0 : \mathbb{P}(\tau \geq t, X_{t-} \in (0, x]) < \frac{x}{\alpha} \right\}, \quad t \geq 0, \tag{4}$$

with $\Lambda_{t-} := \lim_{s \uparrow t} \Lambda_s$ and $X_{t-} := \lim_{s \uparrow t} X_s$. By the results of Delarue et al. (2022), the above condition on the jumps of Λ uniquely defines a solution to (2) and (3) under some restrictions on the initial condition X_{0-}. For future reference, we also introduce the concept of minimal solutions, which we know to be physical whenever the initial condition is integrable (see Cuchiero et al. (2023)). We call a solution Λ minimal, if for any other X that satisfies (2) with loss process Λ given by (3), we have that

$$\Lambda_t \leq \Lambda_t, \quad t \geq 0. \tag{5}$$

Note that by combining the results of Cuchiero et al. (2023) and Delarue et al. (2022) the minimal solution is the unique physical one, and thus economically meaningful one, if the initial condition satisfies the assumptions of Delarue et al. (2022).

1.2 The central agent’s optimisation problem

The purpose of this paper is to analyse strategies that a central bank (central agent) can take to limit the number of defaults. They achieve this by controlling the rate of capital injected to distressed institutions. That is to say, rather than bailing out firms which are already defaulted, the central agent intervenes already ahead of the time their equity values become critical. This rate of capital1 received by bank i is determined by processes β_i and added to (1). In the finite dimensional situation, the X^i then satisfy

$$X^i_t = X^i_{0-} + \int_0^t \beta^i_s \, ds + B^i_t - \alpha \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{\tau^i \leq t\}}. \tag{6}$$

1 As we are working in continuous time, we also assume that the central agent is able to inject money continuously. At first sight this is a bold approximation of reality but allows us to work without an a-priori fixed time grid determining when the central agent reacts.
A mathematically similar problem has been studied in Tang and Tsai (2018). There the question of finding an optimal drift in order to maximize the number of Brownian particles that stay above 0 is treated, however without the singular interaction term appearing in (6).

In anticipation of a propagation of chaos result (proved in Sect. 2), we therefore consider an extension of (2) and (3) with a drift process \(\beta \), i.e.,

\[
X_t = X_0 + \int_0^t \beta_s \, ds + B_t - \Lambda_t, \tag{7}
\]

\[
\Lambda_t = \alpha \mathbb{P} \left(\inf_{0 \leq s \leq t} X_s \leq 0 \right). \tag{8}
\]

Throughout the paper we will consider a constraint \(0 \leq \beta_t \leq b_{\text{max}} \), which amounts to the assumption that at any point in time the central agent has limited resources for the capital injections. We will specify further technical conditions on \(\beta \) later, which allow us to show that indeed the finite system converges in a suitable sense to this McKean–Vlasov equation.

We now consider a central agent who injects capital into a representative bank at rate \(\beta_t \) at time \(t \) in order to keep

\[
L_{T^-}(\beta) = \mathbb{P} \left(\inf_{0 \leq s < T} X_s \leq 0 \right) = \Lambda_{T^-}(\beta)/\alpha,
\]

that is the number of defaults that occur before a given time \(T \), below a specified threshold \(\delta \), while minimising the expected total cost

\[
C_T(\beta) = \mathbb{E} \left[\int_0^T \beta_t \, dt \right].
\]

We therefore consider the following constrained optimisation problem: For given \(\delta \), the central agent solves

\[
C_T(\beta) \longrightarrow \min_{\beta} \quad \text{subject to} \quad L_{T^-}(\beta) \leq \delta. \tag{9}
\]

Define now for \(\gamma \in \mathbb{R}_+ \) the Lagrange function \(\mathcal{L}(\beta, \gamma) = C_T(\beta) + \gamma (L_{T^-}(\beta) - \delta) \) and use it to express the constrained optimization problem as an unconstrained one, namely \(\min_{\beta} \max_{\gamma \in \mathbb{R}_+} \mathcal{L}(\beta, \gamma) \), which holds true since

\[
\max_{\gamma \in \mathbb{R}_+} \mathcal{L}(\beta, \gamma) = \begin{cases} C_T(\beta) & \text{if } L_{T^-} \leq \delta \\ \infty & \text{else.} \end{cases}
\]

Assuming the absence a duality gap \(^3\) (or equivalently the existence of a saddlepoint \((\beta^*, \gamma^*) \) of \(\mathcal{L} \), i.e. \(\mathcal{L}(\beta^*, \gamma) \leq \mathcal{L}(\beta^*, \gamma^*) \leq \mathcal{L}(\beta, \gamma^*) \) for all \(\beta, \gamma \)), then we can interchange the \(\min \) and \(\max \) and solve the dual problem \(\max_{\gamma \in \mathbb{R}_+} \min_{\beta} \mathcal{L}(\beta, \gamma) \).

For these reasons we shall from now on consider the inner optimisation problem for fixed \(\gamma > 0 \) (which can – due to the complementary slackness condition – only hold if the constraint is binding, i.e. \(L_{T^-}(\beta) = \delta \)). If there is no duality gap, the optimal \(\gamma \) for a

\(^2\) We consider \(L_{T^-} \) rather than \(L_T \) in the constraint because \(\Lambda \) may have a jump discontinuity precisely at \(T \), which would considerably complicate the analysis. However, by Ledger and Søjmark (2021, Corollary 2.3), we know that solutions to (1) cannot have discontinuities after time \(\alpha^2/(2\pi) \). We can derive an analogous result for the controlled case using Girsanov’s theorem if, in addition to the pointwise bound on \(\beta \), we assume a bound on the total cost over the infinite horizon, i.e. \(\int_0^\infty \beta_s \, ds \leq c_{\text{max}} \) for some \(c_{\text{max}} > 0 \). In this setting, by choosing \(T \) sufficiently large, we then do not need to distinguish between \(L_{T^-}(\beta) \) and \(L_T(\beta) \).

\(^3\) Proving the absence a duality gap seems difficult as standard minimax theorems cannot be easily applied. Moreover, our numerical experiments suggest that at least for certain values of \(\delta \) it might fail to hold true.
prespecified threshold δ can in turn be determined by solving the outer optimisation problem, i.e. $\max_{\gamma \in \mathbb{R}_+} g(\gamma)$ where $g(\gamma) = \min_{\beta} \mathcal{L}(\beta, \gamma)$.

Writing $\hat{X}(\beta)$ for the solution process associated with the minimal solution $\Lambda(\beta)$, analogously defined as in (5) but now for (7), we thus minimise the following objective function

$$J(\beta) = \mathbb{E}\left[\int_0^T \beta_t \, dt \right] + \gamma \mathbb{P}\left(\inf_{0 \leq s < T} X_s(\beta) \leq 0 \right) = \mathbb{E}\left[\int_0^T \beta_t \, dt + \gamma 1_{\{\hat{X} \leq 0\}} \right],$$

where $\hat{X} = X_t 1_{\{\tau > t\}}$ is the absorbed minimal solution process and τ the default time. Note that the only difference between $J(\beta)$ and $\mathcal{L}(\beta, \gamma)$ is the constant $-\gamma \delta$, which however does not play a role in the optimisation over β. By varying γ, we can therefore trace out pairs of costs and losses which are solutions to (9) for different δ. The Lagrange multiplier γ (as a function of δ) can then be interpreted as shadow price of preventing further defaults. Indeed, as for usual constrained optimization problems, the optimal cost C_T^\star seen as a function of the loss level δ satisfies under certain technical conditions

$$\partial_\delta C_T^\star(\delta) = \lim_{h \to 0} \frac{C_T^\star(\delta + h) - C_T^\star(\delta)}{h} = -\gamma(\delta).$$

As we show numerically in Sect. 3, the optimal loss L_T^\star as a function of γ is monotone decreasing, so that for large enough γ (and b_{\max}), the threshold δ becomes small enough to avoid systemic events.

Note that, by the arguments at the end of Sect. 1.1, using the minimal solution in the optimisation task is the only economically meaningful concept because non-physical solutions (with a potential higher probability of default) cannot be realistically justified, in particular when seen as limits of particle systems. We refer to Delarue et al. (2015, Section 3.1) for examples of such non-physical solutions.

Both from a theoretical and numerical perspective, we shall analyse the objective function (10) together with the dynamics (7), which is a non-standard MFC problem with a singular interaction through hitting the boundary. As we show in Sect. 2, in particular Theorem 2.8, optimisation of the McKean–Vlasov equation (7) yields the same result as first optimising in the N-particle system and then passing to the limit. In particular, by Theorem 2.10, optimizers of the McKean–Vlasov equation (7) are ϵ-optimal for the N-particle system. This then justifies our numerical implementation described in Sect. 3 where we deal directly with the MFC problem.

1.3 Relation to the literature

1.3.1 Theory of MFC problems and applications to systemic risk

Due to the big amount of literature on MFC problems we focus here on relatively recent works and mostly on MFC and not on the related concept of Mean Field Games (MFG) as introduced in Lasry and Lions (2007) and Huang et al. (2006). We refer to Carmona et al. (2013); Carmona and Delarue (2015); Carmona and Laurière (2021) for definitions of the MFC and MFG optima in general set-ups and discussions on the differences. As we here deal with a central agent our optimization problem corresponds to a Pareto optimum where all the agents cooperate to minimize the costs. Therefore MFC is the appropriate concept. Note that instead of MFC the terminology McKean–Vlasov control is often also used.
Similarly as for classical optimal control, dynamic programming principles have also been derived for MFC problems and can be found in Pham and Wei 2017; Djete et al. 2019. We also refer to Pham and Wei 2018; Achdou and Laurière 2015; Bensoussan et al. 2015; Laurière and Pirroneau 2014, where in diffusion set-ups formulations using a Hamilton-Jacobi Bellman (HJB) equation on the space of probability measures for closed-loop controls (also called feedback controls) are deduced. In the recent work (Guo et al., 2020) this has been generalized to jump diffusion processes. For a dynamic programming principle for open-loop controls we refer to Bayraktar et al. (2018), and to Carmona and Delarue (2015), Acciaio et al. (2019) for a characterisation by a stochastic maximum principle.

We are here interested in feedback controls and would therefore need to solve the corresponding HJB equation (as e.g. in Pham and Wei (2018)), i.e. an infinite dimensional fully nonlinear partial differential equations (PDE) of second order in the Wasserstein space of probability measures. Solving such an equation is challenging, since it involves computing measure derivatives, which is numerically intractable. In our context the situation is even more intricate due to the singular interactions through the boundary. Indeed, even under the (usually not satisfied) assumption that \(\dot{\Lambda}_1 \) is \(C^1 \), the problem is far beyond a standard MFC framework. In this case, \(\Lambda \) in (7) can be replaced by \(\int_0^t \dot{\Lambda}_1 \) \(dt \), thus a time derivative of the measure component, which makes the problem ‘non-Markovian’. Moreover, we deal with subprobability measures describing the marginal distributions of the absorbed process \(\tilde{X} = X_t \mathbb{1}_{\{\tau > t\}} \) which governs the underlying dynamics. Note also that the total mass of these subprobability measures as well as \(\tilde{X} \) itself can exhibit jumps if \(\Lambda \) is discontinuous, and that these jumps emerge endogenously from the feedback mechanism.

This is in contrast to some other recent papers where jumps are exogenously given. For instance, the recent articles (Guo et al., 2020; Agram & Øksendal, 2021) consider the control of (conditional) McKean–Vlasov dynamics with jumps and associated HJB-PIDEs, while in Alasseur et al. (2021) a stochastic maximum principle is derived to analyse a mean-field game with random jump time penalty.

In the context of systemic risk and contagion via singular interactions through hitting times the paper (Nadtochiy & Shkolnikov, 2020) is especially relevant. There a game in which the banks determine their (inhomogeneous) connections strategically is analysed. It turns out that by a reduction of lending to critical institutions in equilibrium systemic events can be avoided. A model involving singular interaction through hitting the boundary is also considered in Elie et al. (2020). There, an optimization component is incorporated via a quadratic functional that allows the institutions to control parts of their dynamics in order to minimize their expected risk, which then leads to a MFG problem. The quadratic cost functional is inspired by the earlier work (Carmona et al., 2015), which also treats the mean-field game limit of a system of banks who control their borrowing from, and lending to, a central bank, and where the interaction comes from interbank lending. Let us finally mention the very recent article (Angiuli et al., 2022a) which applies reinforcement learning to a model that can be considered as an extension of Carmona et al. (2015) adding a cooperative game component within certain groups of banks.

In the wider context of interaction through boundary absorption, a few works on mean-field games have also appeared recently. In Campi and Fischer (2018), the players’ dynamics depends on the empirical measure representing players who have not exited a domain. This is extended to smooth dependence on boundary losses prior to the present time in Campi et al. (2019), and to the presence of common noise in Burzoni and Campi (2021). The economic motivation for these models are, among others, systemic risk and bank runs.
1.3.2 Numerics for MFC and MFG problems

Among the numerical methods proposed for MFC and MFG problems, we refer to Carmona and Laurière (2019) for a policy gradient-type method where feedback controls are approximated by neural networks and optimised for a given objective function; to Fouque and Zhang (2020) and again to Carmona and Laurière (2019) for a mean-field FBSDE method, generalising the deep BSDE method to mean-field dependence and in the former case to delayed effects; and to Achdou and Laurière (2020) for a survey of methods for the coupled PDE systems, mainly in the spirit of the seminal works (Achdou & Capuzzo-Dolcetta, 2010; Achdou & Laurière, 2016); see also a related semi-Lagrangian scheme in Carlini and Silva (2015) and a gradient method and penalisation approach in Pfeiffer (2016).

Beside these works on PDE systems, a lot of research has recently been conducted on how to apply (deep) reinforcement or Q-learning to solve MFC and MFG problems or combinations thereof (see e.g., Guo et al. (2019); Angiuli et al. (2021, 2022c, b) and the references therein). We also refer to two recent survey articles (Hu & Lauriere, 2022; Laurière et al., 2022) on machine learning tools for optimal control and games. The first article focuses on methods that try to solve the problems by relying on exact computations of gradients exploiting the full knowledge of the model, while the second one presents learning tools that aim at solving MFC and MFG problems in a model-free fashion.

In our modeling and numerical approach we have full knowledge of the model, but what distinguishes it from the existing literature is the particular singular interaction through the boundary absorption. This means that all the discussed numerical schemes and methods need to be adapted to accommodate the current special situation. We opted for an adaptation of the policy gradient-type method considered in Reisinger et al. (2021a), since it shares the same computational complexity as the gradient-based algorithms in e.g. Archibald et al. (2020); Kerimkulov et al. (2021); Pfeiffer (2016), but enjoys an accelerated convergence rate and can handle general convex nonsmooth costs (including constraints), which allows to incorporate the current objective function. It exploits a forward-backward splitting approach and iteratively refines the approximate controls based on the gradient of the cost, evaluated through a coupled system of nonlocal linear PDEs. The precise algorithm is outlined in Sect. 3.

1.4 Contributions and findings

As already mentioned, our model differs in a number of fundamental points from the existing literature: first, while (Carmona et al., 2015; Campi & Fischer, 2018; Campi et al., 2019; Nadtochiy & Shkolyanskiy, 2020; Elie et al., 2020; Burzoni & Campi, 2021) study mean-field game solutions and equilibria of N-player games, where each player maximises their own objective, we study the problem of a central planner who specifically seeks to control the number of defaults. Second, in contrast to Campi et al. (2019), where the coefficients of the players’ processes may depend on the loss process and to Burzoni and Campi (2021), which further includes a driver which is a smoothed version of L (hence modeling delayed effects of hitting the boundary), we consider the firm values driven by L directly, resulting in an instantaneous effect of defaults and the emergence of systemic events. Third, the techniques we use are also entirely different from those in these preceding works. Instead of relying on techniques for martingale problems used e.g. in Lacker (2017) to derive a limit theory for controlled McKean–Vlasov dynamics, we extend the method from Cuchiero et al. (2023) to show the convergence of the finite system to the mean-field limit.
Moreover, we provide a numerical solution adapting the approach of Reisinger et al. (2021a) to the current setting. This means first of all to express A_t in the dynamics (7) and in the loss function explicitly in terms of the distribution of \hat{X}_t, which can be (formally) achieved through $\partial_x p(t,0)$, i.e. the spatial derivative of its density at 0 (assuming it exists). To cast the absorbed process formally into a (more) standard McKean–Vlasov framework, instead of (7), we write the dynamics in a form where the drift and diffusion coefficients are multiplied with the Heaviside function (in the state). Both the computation of $\partial_x p(t,0)$ and the presence of the Heaviside function need some regularization, which is treated in Sect. 3.1. This regularized version then allows to apply the policy gradient descent method of Reisinger et al. (2021a) where we compute the gradient via a coupled forward-backward PDE system (instead of a particle method as in Reisinger et al. (2021a)). In particular, the forward problem is given by a smoothed version of the Stefan problem with a drift term determined by the feedback control, while the backward problem determines a decoupling field of the adjoint process.

From an economic point of view, our findings indicate a high sensitivity on the parameter γ in (7). As shown in Fig. 7b, for a certain value of γ and in a regime where α triggers jump discontinuities in the uncontrolled regime, the optimal control strategy switches from not avoiding a jump to avoiding a jump. Moreover, our numerical experiments suggest that it is not possible to vary the capital injection to control the size of the jump continuously, since the possible jump size is restricted by the physical jump constraint (4). Viewed differently, a large systemic event can happen if the central agent withdraws a small amount of capital from a scenario without jumps.

Summarizing, the main contributions of the present paper are as follows:

- We show convergence of the system with N agents to the mean-field limit (see Sect. 2), including well-posedness of the central agent’s optimisation problem, i.e. the existence of unique minimal solutions to the Stefan problem as given by (7)–(8) for any suitably regular control process β and the existence of an optimal control which minimises (10).
- We propose a numerical scheme (see Sect. 3) based on policy gradient iteration, where the gradient is computed via coupled forward and backward PDEs satisfied by the density of a regularized version of the equity value process and a decoupling field corresponding to an adjoint process, respectively.
- We analyse by way of detailed numerical studies the structure of the central agent’s optimal strategy in different market environments, and the minimal losses that are attained under optimal strategies with varying cost (see also Sect. 3).

2 Convergence to a mean-field limit

In this section, we show the existence of a minimising strategy for the central agent’s objective function in the mean-field limit, as well as convergence of the N-agent control problem.

2.1 The model setup

We fix a measure $\nu \in \mathcal{P}([0, \infty))$ and define a reference probability space to be a tuple $\mathcal{S} = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ such that \mathcal{S} supports a Brownian motion that is adapted to $(\mathcal{F}_t)_{t \geq 0}$ and there is a \mathcal{F}_0-measurable random variable X_{0-} with $\text{law}(X_{0-}) = \nu$. Note that with this definition, X_{0-} is independent of B by construction. We endow the space
with the topology of weak convergence in \(L^2([0, \infty)) \). Since \(S_T \) is bounded in the \(L^2([0, \infty)) \)-norm and weakly closed, \(S_T \) is a compact Polish space. We then define the space of admissible controls

\[
B_T := \{ \beta \in (\mathcal{F}_t)_{t \geq 0} - \text{progressively measurable} \mid \mathbb{P}(\beta \in S_T) = 1 \}.
\]

(12)

Note that the space of admissible controls \(B_T \) as well as the objective functional \(J \) as defined in (10) depend implicitly on the choice of stochastic basis \(\mathcal{F} \). We will sometimes write \(B_T(\mathcal{F}) \) or \(J(\mathcal{F}) \) when we wish to emphasize this dependence. To be able to guarantee existence of optimizers and to make the optimization problem independent of the choice of stochastic basis \(\mathcal{F} \), we will consider the relaxed optimization problem

\[
V_\infty := \inf_{\mathcal{F}} \inf_{\beta \in B_T(\mathcal{F})} J(\mathcal{F})(\beta),
\]

(13)

as is standard in the stochastic optimal control literature (see e.g. Fleming and Soner (2006)). We say that \((X_{-\infty}, B, \beta, A)\) solve problem (7)–(8) on \(\mathcal{F} \) if \(\mathcal{F} = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}) \) is a reference probability space with Brownian motion \(B \) and initial condition \(X_{0-} \) such that \(\beta \in B_T(\mathcal{F}) \) and (7)–(8) holds \(\mathbb{P} \)-almost surely.

Note that it is not clear a priori that the process \(X \) given in (7) is well-defined. Indeed, it is known that the McKean–Vlasov problem (2) and (3) may admit more than one solution, and it is not known that physical solutions exist for general \(\beta \in B_T \), although it is known for \(\beta \) of the special form \(b(t, X_t) \), where \(b \) is Lipschitz (see e.g. Delarue et al. (2015); Ledger and Søjmark (2021)). To pin down a meaningful solution concept, we therefore rely on the notion of minimal solutions as defined in (5). By the results of Cuchiero et al. (2023), we know that minimal solutions of the uncontrolled system are physical whenever the initial condition \(X_{0-} \) is integrable.

Throughout the following sections \(\mathcal{P}(E) \) always denotes the set of probability measures on a Polish space \(E \) which we endow with the Lévy-Prokhorov metric, i.e., convergence of probability measures is to be understood in the (probabilistic) weak sense. For function spaces etc. we apply rather standard notation and refer to Sect. A.1 for more details.

2.2 Well-posedness of minimal solutions for general drift

We fix the reference probability space \(\mathcal{F} \) and show that minimal solutions exist for any \(\beta \in B_T \). Define the operator \(\Gamma \) for a càdlàg function \(\ell \) and \(\beta \in B_T \) as

\[
\begin{aligned}
X^\ell_t(\beta) &= X_{0-} + \int_0^t \beta_s \, ds + B_t - \alpha \ell_t, \\
\tau^\ell_\beta &= \inf\{t \geq 0 : X^\ell_t(\beta) \leq 0\}, \\
\Gamma[\ell, \beta]_t &= \mathbb{P}(\tau^\ell_\beta \leq t).
\end{aligned}
\]

(14)

Note here that \((X^\ell(\beta), \tau^\ell_\beta, \ell)\) solves (7) if and only if \(\ell \) is a fixed-point of \(\Gamma[\cdot, \beta] \). We next introduce a function space that is mapped to itself by \(\Gamma[\cdot, \beta] \): Set

\[
M := \{ \ell : \overline{\mathbb{R}} \rightarrow [0, 1] \mid \ell \text{ càdlàg and increasing}, \ell_{0-} = 0, \ell_\infty = 1 \},
\]

(15)

where \(\overline{\mathbb{R}} \) is the extended real line. Note that for \(\ell \in M \), \(\ell \) defines a cumulative distribution function of a probability measure on \([0, \infty)\). Equipping \(M \) with the topology of weak convergence, i.e., we have that \(\ell^n \rightarrow \ell \) in \(M \) if and only if \(\ell^n_t \rightarrow \ell_t \) for all \(t \in [0, \infty) \) that are
continuity points of \(\ell \), we obtain that \(M \) is a compact Polish space. As in the uncontrolled case, \(\Gamma[\cdot, \beta] \) is continuous on \(M \).

Theorem 2.1 For any \(\beta \in \mathcal{B}_T \), the operator \(\Gamma[\cdot, \beta] : M \to M \) is continuous. Furthermore, there is a (unique) minimal solution to (7), and it is given by

\[
\Lambda(\beta) = \alpha \lim_{k \to \infty} \Gamma^{(k)}[0, \beta].
\]

Proof Using Lemma A.1, this follows from Theorem 2.3 in Cuchiero et al. (2022).

2.3 Existence of an optimal control

A key step in proving existence of an optimizer is to show that sequences of solutions to (7)–(8) are compact in a certain sense and that their cluster points are solutions of (7)–(8). This is the content of the next theorem.

Theorem 2.2 Let \((X_{0-}^n, B^n, \beta^n, \Lambda^n)\) solve (7)–(8) on \(\mathcal{S} \). Then, after passing to subsequences if necessary, there is a reference probability space \(\mathcal{S}^\star \) such that \((X_0^\star -, B^\star, \beta^\star, \Lambda^\star)\) solve (7)–(8) on \(\mathcal{S}^\star \) and it holds that \(\text{law}(\beta^n) \to \text{law}(\beta^\star) \) in \(P(ST) \) and \(\frac{1}{\alpha} \Lambda^n \to \frac{1}{\alpha} \Lambda^\star \) in \(M \).

Proof See Sect. A.2 in the Appendix.

Remark 2.3 Note that in Theorem 2.2, we do not assume that either the \(\Lambda^n \) or \(\Lambda^\star \) are minimal solutions. At this point, we do not know how to prove that \(\Lambda^\star \) is minimal if all \(\Lambda^n \) are minimal. Stability of the minimal solution is an open question (cf. [27, Conjecture 6.10]). For the proof of the subsequent theorem where we prove existence of an optimizer to (13), formulated with the minimal solution, this however does not matter.

Next, we prove that the infinite-dimensional problem (13) admits an optimizer.

Theorem 2.4 There is an optimizer of (13), i.e., there is a stochastic basis \(\mathcal{S}^\star \) and \(\beta^\star \in \mathcal{B}_T(\mathcal{S}^\star) \) such that

\[
V_\infty = \inf_{\mathcal{S}^\star} \inf_{\beta \in \mathcal{B}_T(\mathcal{S}^\star)} J^{(\mathcal{S}^\star)}(\beta) = J^{(\mathcal{S}^\star)}(\beta^\star).
\]

Proof Let \((X_{0-}^n, B^n, \beta^n, \Lambda^n)\) be solutions to (7)–(8) on \(\mathcal{S} \) such that \(J^{(\mathcal{S}^\star)}(\beta^n) \leq V_\infty + \frac{1}{n} \). By Theorem 2.2, after passing to subsequences if necessary, there is a reference probability space \(\mathcal{S}^\star \) such that \((X_{0-}^n, B^\star, \beta^\star, \Lambda^\star)\) solves (7)–(8) on \(\mathcal{S}^\star \) and \(\text{law}(\beta^n) \to \text{law}(\beta^\star) \) holds in \(P(ST) \) as well as \(\frac{1}{\alpha} \Lambda^n \to \frac{1}{\alpha} \Lambda^\star \) in \(M \).

In the following, we simply write \(J \) instead of \(J^{(\mathcal{S}^\star)} \) etc. By construction, we have \(J(\beta^n) \leq V_\infty + \frac{1}{n} \) and hence \(\lim_{n \to \infty} J(\beta^n) \leq V_\infty \). It is clear that \(V_\infty \leq \gamma < \infty \) by (13) and (10), as \(J \) attains a value less than or equal to \(\gamma \) for \(\beta = 0 \). We proceed to show that \(J(\beta^\star) \leq \lim \inf_{n \to \infty} J(\beta^n) \).

Since the functional \(b \mapsto \int_0^T b_s \, ds \) is continuous and bounded on \(ST \), it follows that

\[
\lim_{n \to \infty} \mathbb{E}^n\left[\int_0^T \beta^n_s \, ds \right] = \mathbb{E}^\star\left[\int_0^T \beta^\star_s \, ds \right].
\]

The Portmanteau theorem implies that

\[
\lim \inf_{n \to \infty} \Lambda^n_{T-} \geq \Lambda^\star_{T-},
\]
and since \(\Lambda^* \) solves (7)–(8) with drift \(\beta^* \) and \(\Delta(\beta^*) \) is the minimal solution on \(\mathcal{F}^* \) with drift \(\beta^* \), it follows that \(\Delta_T^-(\beta^*) \leq \Lambda^*_T \) which is equivalent to \(L_T^-(\beta^*) \leq L_T^- \), which concludes the proof.

\[\square \]

2.4 Properties of the controlled \(N \)-particle system

We describe the controlled \(N \)-particle system mentioned in the introduction in more detail. We consider a stochastic basis \(\mathcal{G}_N = (\Omega_N, \mathcal{F}_N, (\mathcal{F}_t^N)_{t \geq 0}, \mathbb{P}_N) \) supporting certain exchangeable random variables, defined as follows.

Definition 2.5 Set \(X^N := (X^1, \ldots, X^N) \), where the \(X^i \) are random variables taking values in some space \(E \). We say that \(X^N \) is \(N \)-exchangeable, if

\[
\text{law}(X^N) = \text{law}((X^{\sigma(1)}, X^{\sigma(2)}, \ldots, X^{\sigma(N)})),
\]

for any permutation \(\sigma \) of \(\{1, \ldots, N\} \). We say that \(\beta^N \) is \(\mathcal{G}_N \)-exchangeable if the vector \((X_0^N, B^N, \beta^N)^N_{i=1} \) is \(N \)-exchangeable under \(\mathbb{P}_N \).

The stochastic basis \(\mathcal{G}_N \) is supposed to support an \(N \)-dimensional Brownian motion \(B^N \) and an \(N \)-exchangeable, \(\mathcal{F}_0^N \)-measurable random vector \(X^N_0 \). The particles in the system then satisfy the dynamics

\[
X^i_t := X^i_0 + \int_0^t \beta^i_s \, ds + B^i_t - \Lambda^N_t,
\]

where \(\beta^N \) is \(\mathcal{G}_N \)-exchangeable, and \(\Lambda^N_t = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{t^i \leq t\}} \), where \(\tau^i := \inf\{t \geq 0 : X^i_t \leq 0\} \). In analogy to the infinite-dimensional case, we denote \(L^N \) defined as

\[
L^N := \frac{1}{\sigma} \Lambda^N.
\]

We then consider the set of admissible controls

\[
B^N_t := \{\beta^N \text{ is } \mathcal{G}_N - \text{exchangeable}, (\mathcal{F}_t^N)_{t \geq 0} - \text{progressively measurable} \mid \mathbb{P}(\beta^N \in S_T^N) = 1\}.
\]

The same examples as in the uncontrolled case show that solutions to (19) are not unique in general (cf. Section 3.1.1 in Delarue et al. (2015)). Therefore, in Delarue et al. (2015), physical solutions are introduced. Similarly to the infinite dimensional case we can also consider minimal solutions. We call a solution \(\Lambda^N \) to (19) minimal, if for every solution \(\Lambda^N \) to (19)

\[
\Lambda^N_t \leq \Lambda^N_t, \quad t \geq 0,
\]

holds almost surely. The same argument as in [27, Lemma 3.3] shows that the notions of physical and minimal solution are equivalent in the controlled \(N \)-particle system. In analogy to the infinite-dimensional case, we introduce the operator

\[
\begin{align*}
X^i_t[L, \beta^N] &:= X^i_0 + \int_0^t \beta^i_s \, ds + B^i_t - \alpha L_t \\
\tau^i_t[L, \beta^N] &:= \inf\{t \geq 0 : X^i_t[L, \beta^N] \leq 0\} \\
\Gamma_N[L, \beta^N] &= \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{\tau^i_t[L, \beta^N] \leq t\}}.
\end{align*}
\]

\[\square \]
where \(L \) is some càdlàg process adapted to the filtration generated by \(B^N \). We will often simply write \(\Gamma_N[L] \) instead of \(\Gamma_N[L, \beta^N] \). The statements are then meant to hold for arbitrary, fixed \(\beta^N \). An important property is that \(\Gamma_N[\cdot, \beta^N] \) is monotone in the sense that

\[
L^1_t \leq L^2_t, \quad t \geq 0 \implies \Gamma_N[L^1, \beta^N] \leq \Gamma_N[L^2, \beta^N], \quad t \geq 0.
\]

We then readily see by straightforward induction arguments that

\[
\alpha \Gamma_N^{(k)}[0] \leq \Lambda^N_k, \quad \Gamma_N^{(k)}[0] \leq \Gamma_N^{(k+1)}[0], \quad k \in \mathbb{N},
\]

holds almost surely, where \(\Lambda^N_k \) is any solution to the particle system and \(\Gamma_N^{(k)} \) denotes the \(k \)-th iterate of \(\Gamma_N \). A similar argument as for the system without drift in Cuchiero et al. (2023) shows that the iteration \((\Gamma_N^{(k)}[0])_{k \in \mathbb{N}} \) converges to the minimal solution after at most \(N \) iterations.

Lemma 2.6 For \(N \in \mathbb{N} \), let \(\Gamma_N \) be defined as in (21). Then \(\Delta^N := \alpha \Gamma_N^{(N)}[0, 0] \) is the minimal solution to the particle system with drift \(\beta^N \) and the error bound

\[
\| \alpha \Gamma_N^{(k)}[0, \beta^N] - \Delta^N \|_{\infty} \leq \alpha \frac{(N-k)^+}{N}
\]

holds almost surely.

Proof Analogous to the proof of Lemma 3.1 in Cuchiero et al. (2023). \(\square \)

Roughly speaking, the next result says that limit points (in distribution) of solutions to the controlled \(N \)-particle system converge (along subsequences) to solutions of the controlled McKean–Vlasov equation (7)–(8). By \(D[-1, \infty) \) we denote here the space of càdlàg paths on \([-1, \infty)\) equipped with the \(M_1 \)-topology.

Theorem 2.7 For \(N \in \mathbb{N} \), let \((X^N, \beta^N, \Lambda^N) \) be a solution to the particle system (19) on the stochastic basis \(\mathcal{F}_N \) and define \(\mu_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{X^N_i} \). Suppose that for some measure \(\nu_0 \in \mathcal{P}(\mathbb{R}) \) we have

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{X^N_{i-1}} = \nu_0.-
\]

Then there is a subsequence (again denoted by \(N \)) such that \(\text{law}(\mu_N) \to \text{law}(\mu) \) in \(\mathcal{P}(\mathcal{P}(D([-1, \infty)))) \), where \(\mu \) coincides almost surely with the law of a solution process \(X \) to the McKean–Vlasov problem (7)–(8) satisfying \(\text{law}(X_{0-}) = \nu_0.- \).

Proof See Sect. A.4. \(\square \)

The next theorem shows that when we optimize the policy in the particle system and then take the limit of the resulting optimal values, we obtain the same value that we find by optimizing the infinite-dimensional version of the problem.

Theorem 2.8 For \(\kappa \in (0, 1/2) \), define the value of a perturbed controlled \(N \)-particle system as

\[
V_N := \inf_{\mathcal{F}_N} \inf_{\beta^N \in B(\mathcal{F}_N)} J_N(\beta^N), \quad J_N(\beta^N) := \mathbb{E}^N \left[\int_0^T \beta_s^{1,N} ds + \gamma \int_0^T \Gamma_N^{(k)}(\beta^N) \right],
\]

\(\square \) Springer
where \(\tilde{L}_N(\beta^N) \) := \(\frac{1}{\varrho} \tilde{\Lambda}_N(\beta^N) \) and \(\tilde{\Lambda}_N(\beta^N) \) is the minimal solution of the controlled \(N \)-particle system with drift \(\beta^N \) as introduced in Lemma 2.6 and perturbed initial condition \(\tilde{X}^N_{t_0} = X^i_{t_0} + N^{-\kappa} \) for \(\kappa \in (0, 1/2) \) and all \(i = 1, \ldots, N \). Then it holds that

\[
\lim_{N \to \infty} V_N = V_\infty.
\]

Proof Step 1: We show the inequality \(\lim \inf_{N \to \infty} V_N \geq V_\infty \). To that end, choose \(\mathcal{H} \) and \(\beta^N \in B_T(\mathcal{H}_N) \) such that

\[
\mathbb{E}^N \left[\int_0^T \beta^{1,N}_s \, ds + \gamma \tilde{L}^N_{T-}(\beta^N) \right] \leq V_N + \frac{1}{N}.
\]

Arguing as in the proof of Theorem 2.7, we see that \(\xi_N = \frac{1}{N} \sum_{i=1}^N \delta_{(X^i_{0-} + N^{-\kappa} + B^N, \tilde{L}^N_N(\beta^N))} \) is tight, and by Theorem 2.7 converges to a limit \(\xi \) that is supported on the set of solutions to the McKean–Vlasov problem (7)-(8). By Skorokhod representation, we may assume that this happens almost surely on some stochastic basis \(\mathcal{H} \). Since the map \((w, b, \ell) \mapsto \int_0^T b_s \, ds + \gamma \ell_{T-}\) is bounded and lower semicontinuous on \(C([0, \infty)) \times S_T \times M \), Fatou’s Lemma and the Portmanteau theorem imply

\[
\liminf_{N \to \infty} \mathbb{E}^N \left[\int_0^T \beta^{1,N}_s \, ds + \gamma \tilde{L}^N_{T-}(\beta^N) \right] = \mathbb{E} \left[\liminf_{N \to \infty} \left(\int_0^T b_s \, ds + \gamma \ell_{T-} \right) \right] \geq \mathbb{E} \left[\liminf_{N \to \infty} \int_0^T b_s \, ds + \gamma \ell_{T-} \right] \geq \mathbb{E} \left[\int_0^T b_s \, ds + \gamma \ell_{T-} \right] \geq V_\infty \text{ almost surely.}
\]

Defining \(\mathcal{H}(\omega) = (C([0, \infty)) \times S_T \times M, \mathcal{B}(C([0, \infty)) \times S_T \times M), \xi(\omega)) \), let \((w, b, \ell)\) denote the canonical process on \(\mathcal{H} \). By the arguments in the proof of Theorem 2.7 we have that \(w \) is Brownian motion under \(\xi(\omega) \) with respect to the filtration generated by \((w, b, \ell)\), and we see that \(\mathcal{H}(\omega) \) is an admissible reference space for almost every \(\omega \). Since \(\xi(\omega) \) corresponds to the law of a solution to the McKean–Vlasov problem (7)-(8), it follows that

\[
\int_0^T b_s \, ds + \gamma \ell_{T-} \geq V_\infty \text{ almost surely.}
\]

We have therefore obtained

\[
\liminf_{N \to \infty} V_N \geq \liminf_{N \to \infty} \mathbb{E}^N \left[\int_0^T \beta^{1,N}_s \, ds + \gamma \tilde{L}^N_{T-}(\beta^N) \right] \geq V_\infty.
\]

Step 2: We show that \(\lim \sup_{N \to \infty} V_N \leq V_\infty \). Let \(\mathcal{H}^* \) be a probability space and \(\beta^* \in B(\mathcal{H}^*) \) be an optimizer attaining \(V_\infty \), whose existence was shown in Theorem 2.4. Let \(\mathcal{H}^*_N \) be the product space obtained by taking \(N \) copies of \(\mathcal{H}^* \), and consider the (random) cost functional

\[
c_N(b^N, \ell) = \int_0^T b^{1,N}_s \, ds + \gamma \ell_{T-} + \gamma N^\kappa \| \Gamma_N[\ell, b^N] \|_{\infty}, \quad b^N \in S_T, \quad \ell \in M, \quad (26)
\]

where \(\| \cdot \|_{\infty} \) is the supremum norm on \([0, \infty)\). Let \(M(\mathcal{H}) \) be the set of all \(\mathcal{H} \)-measurable random variables, defined on the stochastic basis \(\mathcal{H} \), taking values in \(M \) and consider the problem

\[
\hat{V}_N := \inf_{\beta^N \in B(\mathcal{H}^*_N)} \mathbb{E}^*_N \left[c_N(\beta^N, L) \right].
\]

(27)
Letting \((\beta^*)^N\) be the vector obtained by taking \(N\) i.i.d. copies of \(\beta^*\), and choosing \(L = L(\beta^*)\), which we abbreviate in the following with \(\tilde{L} := L(\beta^*)\), we obtain

\[
\hat{V}_N \leq \mathbb{E}_N^\ast \left[\int_0^T \beta^*_s \, ds + \gamma \tilde{L}_{T-} + \gamma N^k \| \Gamma_N[L, (\beta^*)^N] - L \|_\infty \right].
\]

Noting that \(\Gamma_N[L, (\beta^*)^N]\) is the empirical cumulative distribution function of the i.i.d. random variables \(\tau_i^N := \inf\{t \geq 0 : X_{t-}^i + \int_0^t \beta^*_s \, ds + B_t^i - \Delta_t^i \leq 0\}\), and that \(\mathbb{P}(\tau_i^N \leq t) = L_t^i(\beta^*)\), the same estimates as in Step 1 of the proof of Proposition 6.1 in Cuchiero et al. (2023) show that

\[
\lim_{N \to \infty} \mathbb{E}_N^\ast \left[N^k \| \Gamma_N[L, (\beta^*)^N] - L \|_\infty \right] = 0.
\]

We have therefore shown that

\[
\limsup_{N \to \infty} \mathbb{E}_N^\ast \left[\int_0^T \beta^*_s \, ds + \gamma \tilde{L}_{T-} (\beta^*) \right] = V_\infty.
\]

Now choose a sequence \(\hat{\beta}^N \in B_T(\mathcal{S}^{\ast}_N), L^N \in \mathcal{M}(\mathcal{S}_N^{\ast})\) such that \(\mathbb{E}_N^\ast_\ast[c(\hat{\beta}^N, L^N)] \leq \hat{V}_N + \frac{1}{N}\).

Define the sequence of events \(A^N = \{\omega \in \Omega_N : \| \Gamma_N[L^N, \hat{\beta}^N] - L^N \|_\infty \leq N^{-k}\}\) and set \(\breve{L}^N = L^N \mathbb{1}_{A^N} + L^N(\hat{\beta}^N) \mathbb{1}_{\Omega_N \setminus A^N}\), where \(L^N(\hat{\beta}^N)\) is the minimal solution on \(\mathcal{S}_N^{\ast}\) with drift \(\hat{\beta}^N\). With this choice, \(\breve{L}^N\) is in \(\mathcal{M}(\mathcal{S}_N^{\ast})\) and satisfies

\[
\| \Gamma_N[\breve{L}^N, \hat{\beta}^N] \|_\infty \leq N^{-k}, \quad \mathbb{E}_N^\ast_\ast[c(\hat{\beta}^N, \breve{L}^N)] \leq \mathbb{E}_N^\ast_\ast[c(\hat{\beta}^N, L^N)] \leq \hat{V}_N + \frac{1}{N}.
\]

Here we used that \(L^N(\hat{\beta}^N) \leq 1\) and \(\Gamma_N[L^N(\hat{\beta}^N), \hat{\beta}^N] = L^N(\hat{\beta}^N)\). This implies

\[
\breve{L}^N \geq \Gamma_N[\breve{L}^N, \hat{\beta}^N] - N^{-k}. \tag{28}
\]

Since \(\breve{L}^N \geq -N^{-k}\), the monotonicity of \(\Gamma_N\) implies that

\[
\breve{L}^N \geq \Gamma_N[\breve{L}^N, \hat{\beta}^N] - N^{-k} = \tilde{\Gamma}_N[0, \hat{\beta}^N] - N^{-k}, \tag{29}
\]

where \(\tilde{\Gamma}_N\) is defined as in (21) with initial condition \(\breve{X}^{i,N}_0 := X^{i,N}_0 + \alpha N^{-k}\). Combining (29) with (28) and again using the monotonicity of \(\Gamma_N\), we obtain

\[
\breve{L}^N \geq \Gamma_N[\tilde{\Gamma}_N[0, \hat{\beta}^N] - N^{-k}, \hat{\beta}^N] - N^{-k} = \tilde{\Gamma}_N^{(2)}[0, \hat{\beta}^N] - N^{-k}.
\]

A straightforward induction then shows that \(\breve{L}^N \geq \tilde{\Gamma}_N^{(k)}[0, \hat{\beta}^N] - N^{-k}\) for all \(k \in \mathbb{N}\), and Lemma 2.6 then yields that we have

\[
\breve{L}^N \geq \tilde{L}^N(\hat{\beta}^N) - N^{-k},
\]

where \(\tilde{L}^N(\hat{\beta}^N)\) corresponds to the loss process associated to the particle system with initial condition \(\breve{X}^{i,N}_0\). This yields

\[
V_N - \gamma N^{-k} \leq \mathbb{E}_N^\ast_\ast \left[\int_0^T \hat{\beta}_s^{1,N} \, ds + \gamma \tilde{L}^N_{T-}(\hat{\beta}^N) \right] - \gamma N^{-k} \leq \mathbb{E}_N^\ast_\ast \left[\int_0^T \hat{\beta}_s^{1,N} \, ds + \gamma \tilde{L}^N_{T-} \right] \leq \mathbb{E}_N^\ast_\ast \left[c(\hat{\beta}^N, \breve{L}^N) \right] \leq \hat{V}_N + \frac{1}{N}.
\]
Since we have already shown that \(\limsup_{N \to \infty} \hat{V}_N \leq V_\infty \), this shows \(\limsup_{N \to \infty} V_N \leq V_\infty \), which concludes the proof.

Remark 2.9 We conjecture that the perturbation in the initial condition of the particle system in Theorem 2.8 is an artefact of our proof technique rather than a necessity.

Theorem 2.10 Let \(\mathcal{S}^* \) be a probability space and \(\beta^* \in \mathcal{B}_T(\mathcal{S}^*) \) be an optimizer attaining \(V_\infty \). Let \(\mathcal{S}^*_N \) be the product space obtained by taking \(N \) copies of \(\mathcal{S}^* \) and let \((\beta^*)_N \) be the vector obtained by taking \(N \) i.i.d. copies of \(\beta^* \). Then, \((\beta^*)_N \) is \(\epsilon \)-optimal for the particle system, i.e., for every \(\epsilon > 0 \), it holds that

\[
J_N((\beta^*)_N) \leq V_N + \epsilon
\]

for \(N \) sufficiently large.

Proof Let \(\epsilon > 0 \) be given. Recall the notation introduced in Step 2 of the proof of Theorem 2.8. Consider the problem

\[
\hat{V}_N := \inf_{L \in \mathcal{M}(\mathcal{S}^*_N)} \mathbb{E}^N \left[c_N((\beta^*)_N, L) \right].
\]

(30)

Proceeding as in Step 2 of the proof of Theorem 2.8, it follows that \(\limsup_{N \to \infty} \hat{V}_N \leq V_\infty \). By Theorem 2.8, we have \(\lim_{N \to \infty} V_N = V_\infty \), and therefore \(\hat{V}_N \leq V_N + \epsilon/3 \) for \(N \) large enough. Arguing as in Step 2 of the proof of Theorem 2.8, we can find \(L^N \in \mathcal{M}(\mathcal{S}^*_N) \) such that \(\mathbb{E}[c_N((\beta^*)_N, L^N)] \leq \hat{V}_N + \epsilon/3 \) and \(L^N \geq \hat{L}^N((\beta^*)_N) - N^{-\kappa} \) holds. Choosing \(N \) large enough such that \(\gamma N^{-\kappa} < \epsilon/3 \), we obtain

\[
J_N((\beta^*)_N) \leq \mathbb{E}^N \left[\int_0^T \beta^*_s \, ds + \gamma \hat{L}^N_T \right] + \gamma N^{-\kappa} \leq \hat{V}_N + 2\epsilon/3 \leq V_N + \epsilon.
\]

\boxdot

3 Numerical solution of the MFC problem

In this section, we present a numerical scheme for the central agent’s mean-field control problem. We directly compute the optimal feedback control by a policy gradient method (PGM; see Sect.3.2 and 3.3) applied to a regularised version of the dynamics and the objective function (see Sects. 3.1). The gradient is approximated by finite difference schemes for the density of the forward process and a decoupling field for an adjoint process (see Sect.3.4). This will allow us to conduct parameter studies of the optimal strategies as well as the resulting losses and costs in Sect. 3.5.

Recall from (10) and above the process \(\hat{X}(\beta) \) corresponding to the minimal solution \(\Lambda(\beta) \), and write the objective function as

\[
J(\beta) = \mathbb{E} \left[\int_0^T (\beta_t + \gamma \hat{L}_t) \, dt \right],
\]

(31)

where \(L_t = \mathbb{P} \left(\inf_{0 \leq s < t} X_s(\beta) \leq 0 \right) \), and derivatives of \(L \) are defined in a distributional sense if necessary.

In the case of regular solutions, the absorbed process associated with (7), \(\hat{X} = X_\tau \mathbb{1}_{[\tau > \tau]} \), for \(\tau \) the hitting time of 0, has a sub-probability density \(p \) supported on \((0, \infty)\) and an
atomic mass at 0. Similarly as in Delarue et al. (2022, Theorem 1.1), it satisfies the forward Kolmogorov equation

\[
\frac{\partial}{\partial t} p + \frac{\partial}{\partial x} (\beta p) = \frac{1}{2} \frac{\partial^2}{\partial x^2} p + \frac{\Delta t}{\Lambda_1} \frac{\partial}{\partial x} p, \quad x \geq 0, \quad t \in \mathbb{T},
\]

\[
p(0, x) = f(x), \quad x \geq 0 \quad \text{and} \quad p(t, 0) = 0, \quad t \in \mathbb{T},
\]

where

\[
\Lambda_t = \alpha \left(1 - \int_0^\infty p(t, x) \, dx \right), \quad t \in \mathbb{T},
\]

and where \(\mathbb{T} \) denotes the set of all \(t \in [0, T] \) where \(t \to L_t \) is differentiable. If \(t \not\in \mathbb{T} \), in particular in the event of a blow-up at \(t \), we have the following jump condition for the solution of (32), \(p(t-, x) = p(t, x - \Lambda_t + \Lambda_t-) \).

Assuming again regular enough solutions where we can take the derivative with respect to time of the equation \(L_t = 1 - \int_0^\infty p(t, x) \, dx \), we find that

\[
\dot{L}_t = -\int_0^\infty \partial_t p \, dx = -\int_0^\infty \frac{1}{2} \frac{\partial^2}{\partial x^2} p \, dx - \int_0^\infty \alpha \frac{\partial}{\partial x} p \, dx = \frac{1}{2} \frac{\partial}{\partial x} p(t, 0).
\]

Moreover, we can rewrite the controlled dynamics of \(\hat{X} \) for \(t < \tau \) as

\[
dX_t = (\beta_t - \alpha \hat{L}_t) \, dt + dB_t,
\]

where \(a^h(t, x) = \Phi^h(x) \left(b + \frac{\alpha}{2} (\partial \phi^h, v_t) \right), \quad \sigma^h(x) = \Phi^h(x). \)

3.1 Regularisation

Denote by \(v_t \) the law of \(\hat{X}_t \) corresponding to \(p(t, x) \, dx \) in the regular case where a density exists. For (small) \(h > 0 \), we approximate \(\frac{1}{2} p_x(t, 0) \) in terms of the measure \(v_t \) by

\[
\hat{L}_t^h = \frac{1}{2} \int_{-\infty}^\infty (\partial \phi^h)(x) v_t(dx) = \frac{1}{2} \langle -\partial \phi^h, v_t \rangle,
\]

where \(\phi^h(x) \) is a smooth approximation of the Dirac \(\delta \) distribution with support in \([0, h]\) and where the bracket notation is used to denote the integral.

We then define a smooth function \(\Phi^h : \mathbb{R} \to \mathbb{R} \) such that \(\Phi^h(x) = 0 \) for \(x \leq -\kappa h \) and \(\Phi^h(x) = 1 \) for \(x \geq 0 \), for some \(\kappa > 0 \), and consider the dynamics

\[
dX_t = a^h(X_t, \beta_t, v_t) \, dt + \sigma^h(X_t) \, dB_t,
\]

where

\[
a^h(x, b, v) = \Phi^h(x) \left(b + \frac{\alpha}{2} (\partial \phi^h, v) \right), \quad \sigma^h(x) = \Phi^h(x). \]
For completeness, we give the specific ϕ^h and Φ^h used in our computations in Appendix B.1. There, we also show the graphs of ϕ^h and its first two derivatives for the value $h = 10^{-3}$, which is frequently used in our tests below.

Under the dynamics (35), the process does not get absorbed at 0, but once it crosses 0 from above its diffusion and drift coefficients decay rapidly so that with high probability it remains in the interval $[-\kappa h, 0]$ (see Fig. 4 for an illustration of the density of such a process).

The reason why we consider these modified dynamics is to cast the absorbed process \tilde{X} into a standard McKean–Vlasov framework. The objective function can also be rewritten and becomes

$$J(\beta) = \mathbb{E}\left[\int_0^T f^h(\beta_t, \nu_t) \, dt \right], \quad f^h(b, v) = b + \frac{\gamma}{2}(-\phi^h, v).$$

A crucial point here is that both the coefficients in the dynamics and the objective can be written in terms of β and ν alone, i.e. without any time (or spatial) derivatives of the measure flow (ν_t). Note also that (a^h, σ^h, f^h) satisfy the differentiability assumptions made Acciaio et al. (2019,Section 3), which we shall need for the Fréchet differentiability of the function F defined in (40) below.

Once we have the optimal control in feedback form $\beta^*_t = \beta^*(t, x)$ for $\beta^* : [0, T] \times [0, \infty) \rightarrow [0, b_{\text{max}}]$, and the associated density p of \tilde{X}, we can compute the optimal loss and cost pair as

$$L^*_T = \frac{1}{2} \int_0^T \int_{-\infty}^{\infty} (-\partial \phi^h)(x) \, p(t, x) \, dx \, dt,$$

$$C^*_T = \int_0^T \int_{-\infty}^{\infty} \beta^*(t, x) \, p(t, x) \, dx \, dt.$$

3.2 Policy gradients

We follow here in spirit the approach of Reisinger et al. (2021b). We consider first a slightly more general form of the MFC problem, written as a nonsmooth optimization problem over the Hilbert space $\mathcal{H}^2(\mathbb{R})$ of \mathbb{R}-valued square integrable, progressively measurable processes,

$$\inf_{\beta \in \mathcal{H}^2(\mathbb{R})} (F(\beta) + G(\beta)),$$

with the functionals $F : \mathcal{H}^2(\mathbb{R}) \rightarrow \mathbb{R}$ and $G : \mathcal{H}^2(\mathbb{R}) \rightarrow \mathbb{R} \cup \{\infty\}$ defined as follows: for all $\beta \in \mathcal{H}^2(\mathbb{R}),$

$$F(\beta) := \mathbb{E}\left[\int_0^T f^h(\beta_t, \nu_t) \, dt \right], \quad G(\beta) := \mathbb{E}\left[\int_0^T g(\beta_t) \, dt \right],$$

where f^h is defined in (36).

The splitting of the objective function into F and G allows for a separate treatment of the smooth component f^h and a non-smooth component g. We will use g to incorporate the constraints on β, specifically, $g(x) = 0$ for $x \in [0, b_{\text{max}}]$ and ∞ outside. It is clear that $G : \mathcal{H}^2(\mathbb{R}) \rightarrow \mathbb{R} \cup \{\infty\}$ is convex due to the convexity of g.

Assuming that ν_t lies in the Wasserstein space of probability measures on \mathbb{R} with finite second moment, denoted by $\mathcal{P}_2(\mathbb{R})$, we introduce the Hamiltonian $H : \mathbb{R} \times \mathbb{R} \times \mathcal{P}_2(\mathbb{R}) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$H(x, b, v, y, z) := a^h(x, b, v)y + \sigma^h(x)z + f^h(b, v),$$

where a^h and σ^h are the drift and diffusion coefficients, respectively.
with

\[\partial_x H(x, b, v, y, z) = \partial \Phi^h(x) \left(b + \frac{\alpha}{2} \langle \partial \phi^h, v \rangle \right) y + \partial \Phi^h(x) z. \]

Moreover, by Acciaio et al. (2019, Lemma 3.1), \(F : \mathcal{H}^2(\mathbb{R}) \rightarrow \mathbb{R} \) is Fréchet differentiable and its derivative \(\nabla F : \mathcal{H}^2(\mathbb{R}) \rightarrow \mathcal{H}^2(\mathbb{R}) \) satisfies for all \(\beta \in \mathcal{H}^2(\mathbb{R}) \),

\[(\nabla F)(\beta)_t = (\partial_b H)(X_t^\beta, \beta_t, \nu_t, Y_t^\beta, Z_t^\beta) + \hat{E}[(\partial_v H)(\tilde{X}_t^\beta, \tilde{\beta}_t, \nu_t, \tilde{Y}_t^\beta, \tilde{Z}_t^\beta)(X_t^\beta)], \]

\(\text{dr} \otimes d\mathbb{P}\)-a.e. Here, \(X^\beta \) is the state process controlled by \(\beta \), satisfying (35), and \((Y^\beta, Z^\beta) \) are square integrable adapted adjoint processes such that for all \(t \in [0, T] \),

\[dY_t^\beta = (-\partial_x H(X_t^\beta, \beta_t, \nu_t, Y_t^\beta, Z_t^\beta)) dt + Z_t^\beta dW_t, \]

\[Y_T^\beta = 0. \]

Above and hereafter, we use the tilde notation to denote an independent copy of a random variable as in Acciaio et al. (2019).

We now consider controls in feedback form, namely \(\beta_t = \beta(t, X_t) \), which determine \(X_t^\beta \) as solution of

\[dX_t = a^h(X_t, \beta(t, X_t), \nu_t) dt + \sigma^h(X_t) dW_t. \]

Then a sufficiently smooth decoupling field \(u \) such that \(Y_t = u(t, X_t) \) and \(Z_t = \sigma^h(X_t) \partial_x u(t, X_t) \) satisfies

\[\partial_t u + \frac{1}{2} \sigma^h(x)^2 \partial_x^2 u + a^h(x, \beta(t, x), v) \partial_x u = -\partial_x H(x, \beta(t, x), v, u, \sigma^h(x) \partial_x u) \]

\[- \hat{E}[(\partial_v H)(\tilde{X}_t, \tilde{\beta}_t, \nu_t, \tilde{Y}_t, \tilde{Z}_t)(X_t)] \]

with terminal condition \(u(T, \cdot) = 0 \).

3.2.1 Computation of gradient by decoupling fields

In our application, we can express the right-hand side of (46) more explicitly. For the Hamiltonian (41) with \(a^h \) and \(f^h \) defined by (35) and (36), respectively, we have, by Carmona et al. (2018, Section 5.2.2.2, Example 1)

\[(\partial_v H)(\tilde{X}_t, \tilde{\beta}_t, \nu_t, \tilde{Y}_t, \tilde{Z}_t)(X_t) = (\partial_v a^h)(\tilde{X}_t, \tilde{\beta}_t, \nu_t)(X_t) \tilde{Y}_t + (\partial_v f^h)(\tilde{\beta}_t, \nu_t)(X_t) \]

\[= \frac{\alpha}{2} \Phi^h(\tilde{X}_t) \partial^2 \phi^h(X_t) \tilde{Y}_t - fracy 2 \partial^2 \phi^h(X_t), \]

\[- \hat{E}[(\partial_v H)(\tilde{X}_t, \tilde{\beta}_t, \nu_t, \tilde{Y}_t, \tilde{Z}_t)(X_t)] = \frac{1}{2} (\gamma - \alpha \hat{E}[\Phi^h(\tilde{X}_t) \tilde{Y}_t]) \partial^2 \phi^h(X_t) \]

\[= \frac{1}{2} (\gamma - \alpha \langle \Phi^h u(t, \cdot), \nu_t \rangle) \partial^2 \phi^h(X_t). \]

Consequently, for the decoupling field \(u \), with \(z = \sigma^h \partial_x u = \Phi^h \partial_x u \),

\[\partial_t u + \frac{1}{2} \sigma^h(x)^2 \partial_x^2 u + a^h(x, \beta(t, x), v_t) \partial_x u = -\partial \Phi^h(x)(\beta(t, x) + \frac{\alpha}{2} \langle \partial \phi^h, v_t \rangle) u \]

\[- \partial \Phi^h(x) \Phi^h(x) \partial_x u + \frac{1}{2} \left(\gamma - \alpha \langle \Phi^h u(t, \cdot), \nu_t \rangle \right) \partial^2 \phi^h(x), \]

\(\sigma \) Springer
which can be re-written as
\[
\partial_t u + \frac{1}{2} \partial_x \left(\Phi^h(x)^2 \partial_x u \right) + (\beta(t, x) + \frac{\alpha}{2} \langle \partial \Phi^h, \nu_t \rangle) \partial_x \left(\Phi^h(x) u \right) = \frac{1}{2} \left(\gamma - \alpha \langle \Phi^h u(t, \cdot), \nu_t \rangle \right) \partial^2 \phi^h(x).
\]

As \((\partial_b H)(x, b, v, y, z) = \Phi^h(x)y + 1\), we obtain
\[
(\nabla F)(\beta)(t, x) = \Phi^h(x)u(t, x) + 1 - \frac{1}{2} \left(\gamma - \alpha \langle \Phi^h u(t, \cdot), \nu_t \rangle \right) \partial^2 \phi^h(x),
\]
where we will assume that \(\nu_t\) has a density \(p(t, \cdot)\) which satisfies
\[
\partial_t p + \partial_x \left(a^h(x, \beta(t, x), \nu_t) p \right) = \frac{1}{2} \partial_x^2 (\sigma^h(x)^2 p).
\]

3.3 A proximal policy gradient method (PGM)

We now compute a sequence of approximations to the optimal control in feedback form, namely \(\beta^m_t = \beta^m(t, X^m_t)\). Following (Reisinger et al., 2021b), we will carry out proximal gradient steps with \(\beta^0\) given, e.g. zero, and thereafter, for step size \(\tau > 0\),
\[
\beta^{m+1}(t, x) = \operatorname{prox}_{\tau g} \left(\beta^m(t, x) - \tau (\nabla F)(\beta^m)(t, x) \right),
\]
where \(\operatorname{prox}_{\tau g} : \mathbb{R}^k \to \mathbb{R}^k\) is the proximal map of \(\tau g : \mathbb{R} \to \mathbb{R} \cup \{\infty\}\) such that
\[
\operatorname{prox}_{\tau g}(b) = \arg\min_{z \in \mathbb{R}} \left(\frac{1}{2} |z - b|^2 + \tau g(z) \right), \quad a \in \mathbb{R}, \tau > 0.
\]

For the considered \(g\), an indicator function, \(\operatorname{prox}\) is simply the projection onto \([0, b_{\max}]\), i.e. \(\operatorname{prox}_{\tau g}(b) = \min(\max(b, 0), b_{\max})\).

Then a sufficiently smooth decoupling field \(u^m\) such that \(Y^m_t = u^m(t, X^m_t)\) satisfies
\[
\partial_t u^m + \frac{1}{2} \partial_x \left(\Phi^h(x)^2 \partial_x u^m \right) + (\beta^m(t, x) + \frac{\alpha}{2} \langle \partial \Phi^h, \nu^m_t \rangle) \partial_x \left(\Phi^h(x) u^m \right) = \frac{1}{2} \left(\gamma - \alpha \langle \Phi^h u^m(t, \cdot), \nu^m_t \rangle \right) \partial^2 \phi^h(x),
\]
where \(\nu^m(dx) = p^m dx\) for the density \(p^m\) that satisfies
\[
\partial_t p^m + \partial_x \left(a^h(x, \beta^m(t, x), \nu^m) p^m \right) = \frac{1}{2} \partial_x^2 \Phi^h(x)^2 p^m,
\]
and where
\[
a^h(x, \beta^m(t, x), \nu^m) = \Phi^h(x) \left(\beta^m(t, x) + \frac{\alpha}{2} \int_{-\infty}^{\infty} \partial \phi^h(x) p^m(t, x) dx \right).
\]

Finally,
\[
(\nabla F)(\beta^m)(t, x) = \Phi^h(x)u^m(t, x) + 1 - \frac{1}{2} \left(\gamma - \alpha \langle \Phi^h u^m(t, \cdot), \nu^m_t \rangle \right) \partial^2 \phi^h(x).
\]
3.4 Numerical implementation

We pick regularisation parameters $h, \kappa > 0$ for Φ^h and Φ^b defined as above. Then in the m-th iteration, we first solve numerically (51) for p^m and then (46) for u^m, where v^m is the measure with density p^m. We use a semi-implicit finite difference scheme on a non-uniform mesh, as detailed below.

We define a numerical approximation on a time mesh $t_i = i \Delta t$, $i \in \mathbb{I} = \{0, 1, \ldots, N\}$, $\Delta t = T/N$ for a positive integer N.

We also define a non-uniform spatial mesh $(x_j)_{j \in \mathbb{J}}$ with $\mathbb{J} = \{0, 1, \ldots, J\}$, for $x_0 = x_{\min} < 0$, $x_J = x_{\max} > 0$.

In the following, we drop the iteration index m and use instead superscript i to denote the timestep of any function defined on the space-time mesh and subscript j its spatial index, in particular, for the numerical PDE solutions, $p^i_j \approx p(t_i, x_j), u^i_j \approx u(t_i, x_j)$. We assume a feedback control $b^i_j = \beta(t_i, x_j)$ is defined on this mesh.

Starting with the forward equation (51), for each x_j and t_i, we approximate the drift coefficient a by

$$a^i_j = \Phi^b(x_j) \left(b^i_j - \alpha L^i \right) \quad \text{for} \quad L^i = \frac{1}{2} \sum_{k=0}^{J-1} \partial \Phi^b(x_k) p^i_{k+1} (x_{k+1} - x_k),$$

and set $s^i_j = \Phi^b(x_j)^2$. Then define a finite difference scheme by $p^0_j = f(x_j)$, and for $i > 0$,

$$\frac{p^i_j - p^{i-1}_j}{\Delta t} + \max(a^i_j, 0) p^i_j - \max(a^{i-1}_j, 0) p^{i-1}_j + \frac{\min(a^{i+1}_j, 0) p^{i+1}_j - \min(a^i_j, 0) p^i_j}{x_{j+1} - x_j} = \frac{1}{x_{j+1} - x_{j-1}} \left(s^i_{j+1} p^i_{j+1} - s^i_j p^i_j - s^i_{j-1} p^i_{j-1} \right), \quad 0 < j < J,

p^i_j = 0, \quad \text{else.}$$

This is an upwind scheme for the first order terms, taking the appearance of p in a explicit, but otherwise implicit. The form of the scheme is chosen to be consistent with (51) for non-uniform meshes, in particular where the mesh size is piecewise constant.

For the adjoint equation (47), with p^i_j now given in addition to b^i_j, we first define the right-hand side,

$$r^i_j = \frac{1}{2} \left(\gamma - \alpha \sum_{k=0}^{J-1} \partial \Phi^b(x_k) u^i_{k+1} p^i_k (x_{k+1} - x_k) \right) \partial^2 \Phi^b(x_j),$$

and then, with $u^N_j = 0$, we define for $i < N$

$$\frac{u^{i+1}_j - u^i_j}{\Delta t} + \max(a^i_j, 0) u^i_j - u^{i-1}_j + \max(a^{i+1}_j, 0) u^{i+1}_j - u^i_j + \frac{1}{x_{j+1} - x_j} \left(s^i_{j+1/2} u^i_{j+1} - s^i_{j-1/2} u^i_j - s^i_{j-1/2} u^{i-1}_j \right) = r^i_j, \quad 0 < j < J,

u^i_j = 0, \quad \text{else.}$$

This allows us to compute the gradient on the same mesh, from (52),

$$G^i_j = \Phi^b(x_j) u^i_j + 1 - r^i_j.$$
and perform updates \(b_j^i \leftarrow \min(\max(b_j^i - \tau G_j^i, 0), b_{\text{max}}) \).

Finally, (37) is approximated by \(L \) in (53) and (38) by

\[
\frac{T}{N} \sum_{i=1}^{N} \sum_{j=0}^{J-1} b_j^i p_j^i (x_{j+1} - x_j), \quad j_0 = \min\{j : x_j > 0\}.
\]

Let us remark that we do not have a convergence proof for this numerical scheme and it also seems out of reach due to the delicate interplay between the discretization and regularization parameters visible from Table 1. Nevertheless, for fixed \(N \) and \(h \) we can empirically show convergence of the gradient iterations (see Fig. 1), which then allows us to compute approximate optimal policies. In this sense our numerical tests indicate at least qualitatively how the optimal policies look like. Note that a rigorous convergence proof of a similar policy gradient iteration method in the non-mean field regime has recently been provided in Reisinger et al. (2022).

3.4.1 Set-up and model parameters

In the rest of the paper, we give illustrations of the model’s suggested strategies and resulting loss behaviour in different market scenarios, influenced by the interaction parameter \(\alpha \), the risk aversion \(\gamma \), the initial state \(f \), and maximum cash injection rate \(b_{\text{max}} \).

In all examples, we choose a gamma initial density,

\[
f(x) = \frac{1}{\Gamma(k)} \theta^{-k} x^{k-1} e^{-x/\theta}, \quad x \geq 0.
\]

The parameters of the initial distribution could be calibrated to CDS spreads if they are traded (see Bujok and Reisinger (2012)). The default parameters we use are \(k = 2, \theta = 1/3 \), chosen to give a range of different behaviours by varying the other parameters. In this case, \(f \) is differentiable with \(f(0+) = 0 \). This choice implies that there are smooth solutions for a short enough time interval (see Hambly et al. (2019); Delarue et al. (2022)). It also implies (see Hambly et al. (2019, Theorem 1.1)) that a blow-up (of the unregularised system) is guaranteed to happen at some time for \(\alpha > 2\mathbb{E}[X_{0-}] = 2k\theta = 4/3 \). Conversely, it is known (see Ledger et al. (2020, Theorem 2.2 and the comment below it)) that the condition \(\alpha \| f \|_{\infty} < 1 \) leads to the so-called weak feedback regime, where continuity of solutions always holds true.

A simple estimation of meaningful \(\alpha \) from typical asset volatilities, recovery rates, and mutual lending as proportion of overall debt is found in Lipton et al. (2019), suggesting possible values from 0.3 to possibly higher than 5. We shall conduct tests for \(\alpha \in \{0.5, 1, 1.5\} \).

With \(\| f \|_{\infty} \approx 1.1 \), it is clear that a jump cannot occur for \(\alpha = 0.5 \), but is guaranteed for \(\alpha = 1.5 \) as then \(2\mathbb{E}[X_{0-}] < \alpha \). The terminal time is chosen as \(T = 0.02 \). We find empirically that the uncontrolled system does not jump in this interval for \(\alpha = 1 \) (although it may jump eventually), and does jump halfway through the interval for \(\alpha = 1.5 \). We have intentionally chosen an initial distribution where blow-ups can happen at such relatively short time scales to illustrate the different effects. In our regularised version of the problem, this manifests in a smooth transition to high values of losses, around 60%, over a short period of time. We fix \(b_{\text{max}} = 10 \) at first, and investigate the effect of larger values later on.

In the following, when not stated otherwise, we choose \(\kappa = 1/10 \) in the construction of \(\Phi^h \) (see 3.1 and Appendix B.1), which was found a reasonable choice in our experiments. As default, solutions are computed with \(N = 800 \) timesteps and a non-uniform mesh on \([x_{\text{min}}, x_{\text{max}}] = [-2, 6]\) which is constructed as described below.
Table 1 Mesh convergence, losses, $\alpha = 1.5$ and $\gamma = 0.1$

N_{10^3}	$N_x/10^3$	$10^3 \cdot \theta_N$	ρ_N	1	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	CPU (s)
1	3.75	1.956	-2.42	0.5643	0.6430	0.7137	0.8324	4.7756	0	0.44
2	7.5	-0.806	1.31	0.5663	0.6260	0.6693	0.7268	0.8384	5.1210	1.2
4	15	-0.614	1.82	0.5655	0.6164	0.6481	0.6778	0.8223	0.0336	4.2
8	30	-0.337	1.94	0.5649	0.6118	0.6376	0.6589	0.6884	0.6096	17
16	60	-0.173	–	0.5645	0.6096	0.6327	0.6486	0.6647	0.6893	83
32	120	–	–	0.5643	0.6085	0.6304	0.6440	0.6548	0.6680	427

$10^2 \cdot \theta_N$ | 4.414 | 2.192 | 1.354 | 1.084 | 1.322 | – |

ρ_N | 2.01 | 1.61 | 1.24 | 0.81 | – | – |

3.4.2 Mesh convergence

We first analyse the convergence of the finite difference approximations for fixed control. In particular, we first choose $\beta = 0$. The interaction parameter is $\alpha = 0.5$.

The mesh is chosen uniformly in the intervals $[x_{min}, -0.02], [-0.02, 0.05], [0.05, x_{max}]$, such that approximately 5% of the points lie in the first interval, 45% in the second, and 50% in the third, and the total number N_x of spatial mesh points is approximately $N \cdot (x_{max} - x_{min})/(8T)$. This has the effect that the average mesh size is roughly eight times the time step size, which turns out a reasonable ratio in our numerical tests.

It is of crucial importance to have enough mesh points in the intervals $[-\kappa h, 0]$ and $[0, h]$ to approximate the smoothed Heaviside function and the smoothed delta distribution with its first two derivatives. A strong local mesh refinement as above allows this while keeping the total computational complexity feasible. Notice for our choice above the local mesh size around zero is almost 100 times smaller than for larger x.

In Table 1, we report for a varying number of time-steps N (and proportionally chosen N_x) and smoothing parameter h the computed loss (columns 5–10, rows 3–8). Let L_N^h be the loss computed with N time steps and parameter h. Then from the table we conjecture convergence of L_N^h as $N \to \infty$ for fixed h, but divergence as $h \to 0$ for fixed N.

To investigate this more quantitatively, we report in the third and fourth columns $\theta_N = L_{2N}^h - L_N^h$ and $\rho_N = \theta_N/\theta_{2N}$, where $h = 10^{-3}$. The fact that, for fixed h, the increments θ_N for successive mesh refinements decrease inversely proportional to N is consistent with first order convergence in $1/N$ and $1/N_x$. Conversely, we fix $N = 3200$ and examine $\vartheta_h = L_{N/2}^h - L_N^h$ and $\rho_h = \vartheta_h/\vartheta_{h/2}$ in the last two rows. The behaviour indicates a decrease of first order in h as long as $1/N_x$ is small compared to h, but divergence thereafter. Finally, the approximate computational times, reported in the last column, are approximately linear in NN_x and independent of h.

A similar behaviour is observed for the approximation of the cost and for different parameters, as shown in Appendix B.2.

3.4.3 Convergence of policy gradient iteration (PGM)

Next, we analyse the convergence of the policy gradient iteration. Here and thereafter, we will use a modification whereby (49) is evaluated for $x > h$, while $\beta^{m+1} = b_{max}$ for $x \leq h$.

\[Computations performed using Matlab on a 2.8 GHz Intel Core i7 with 16 GB 1600 MHz DDR3. \]
Fig. 1 Convergence of C and L in the PGM for varying γ and α. Shown are $|L^{(m+1)} - L^{(m)}|$ and $|C^{(m+1)} - C^{(m)}|$.

As the occupation time of $[0, h]$ is small, the effect of this choice has a negligible effect on the expected cost in all cases. We found that this modified iteration converged faster and more reliably in our numerical tests.

We monitor in each iteration the loss at time T computed as in (53), and the expected cost, computed as in (55). For $L^{(m)}$ and $C^{(m)}$ the terminal loss and total expected cost at the m-th iteration, respectively, we plot in Fig. 1 the steps $|L^{(m+1)} - L^{(m)}|$ and $|C^{(m+1)} - C^{(m)}|$. In these tests, the iteration terminates if either both of these quantities are smaller than 10^{-5} or 50 iterations are reached.

The left-hand plot in Fig. 1a shows the convergence for different values of $\gamma \in \{10^{-3}, 10^{-2}, 10^{-1}\}$. The intermediate value of γ has the largest absolute error, while the smallest γ leads to the smallest one. In the latter case, the cost is very small due to the very small penalty of losses. The asymptotic rate of convergence appears similar for all parameters considered.

In Fig. 1b, we analyse the effect of α on the convergence. The error is largest for the smallest of $\alpha \in \{0.5, 1, 1.5\}$, while the error is smallest for $\alpha = 1.5$, which is the case where a jump occurs in an uncontrolled setting and losses are the largest.

Further parameter studies are given in the Appendix, where Fig. 10a establishes robustness of the convergence under mesh refinement and Fig. 10b illustrates the effect of the step size.

In most situations, the number of iterations required for reasonable accuracy, i.e. a relative error below around 10^{-3} was between 10 and 30, so that for the chosen discretisation (with $N = 800$ timesteps and mesh as chosen above) the computing time to solve the MFC problem was between 3 and 10 min on the laptop as specified earlier.

3.5 Computational analysis of central agent’s strategy

We now move to an analysis of the optimal strategies, and the achievable pairs of costs and losses under the optimal and other strategies.

3.5.1 Analysis of the optimal strategy

The policy gradient method produces directly an approximation to the optimal feedback control β^\ast. We found that an initialisation of the iteration with a function of the form $\beta^0(t, x) = b_{\text{max}}$ for $0 < x < c$ and 0 elsewhere, for some $c > 0$ large enough so that
the support of β^0 covers the support of β^*, produces more regular controls for small iteration numbers than a zero initialisation. The following plots were produced with $c = 0.2$ and a tolerance 10^{-5} in the loss and cost (compare Fig. 1a).

We depict in Fig. 2 contours of the optimal feedback control $\beta^*(t, x)$ for different γ. As expected from the form of the Hamilton-Jacobi-Bellmann equation, the control is close to a ‘bang-bang’ structure, i.e. a piecewise constant function where the control always takes one of the two extreme values, i.e. either 0 or b_{max}. The two regions are separated by a narrow strip where the control transitions continuously. We conjecture this to be an effect of the numerical procedure, which is designed for Lipschitz continuous feedback controls.

The (yellow) shaded region closest to $x = 0$ where $\beta^*(t, x) \geq 0.95 b_{\text{max}}$, i.e. the central agent subsidises firms closest to default at or close to the maximum rate. The white region furthest from $x = 0$ where $\beta^*(t, x) \leq 0.05 b_{\text{max}}$, i.e. the central agent does not subsidise firms with high reserves.

For larger γ, here exemplified by $\gamma = 0.1$ in Fig. 2c, the contribution of the loss to the objective is large enough for the central agent to act for all t, for values in x up to a decreasing curve in t. Close to the chosen end point, the effect of the control on the overall losses becomes negligible and does not justify the associated cost. In a sense this behaviour is an artifact of the finite observation interval.

For smaller γ, in Figs. 2b and 2c, the agent only acts (for sufficiently small states) up to a certain point in time and then does nothing. Combining this with the plots of the resulting loss curves in Fig. 3, a possible interpretation is that the agent seeks to delay the onset of the strongly contagious phase until it is no longer viable to do with a certain cost budget, depending on γ. In particular, as visible from Fig. 3, under the current optimization criterion the jump is not avoided for $\gamma = 0.001$. We discuss at the end of the next subsection other strategies for avoiding jumps – for the current optimisation criterion such a strategy is however not necessarily optimal.

Next, we analyse the impact the upper bound of b_{max} on the control strategy. We show only the $0.99 b_{\text{max}}$ level set for clarity in Fig. 4, for different b_{max}. The region under this curve indicates where the agent controls at (or close to) the maximum rate. The region shrinks as b_{max} increases, meaning that the agent is able to control the banks’ equity process more effectively whenever it gets close to zero.

Lastly in this section, we analyse the behaviour of the PDE solutions p and u at different times and on different scales in x around 0. Figure 5 shows in the left panel the accumulation of probability mass in the interval $[-ch, 0]$ due to the smooth truncation of the SDE coefficients, approximating the absorption at $x = 0$. As can be deduced from the right plot in Fig. 5, the area under the density for positive x is thus reduced, but only by a small amount in the current parameter setting (see Fig. 3 for the corresponding loss function with $\gamma = 0.1$).
In Fig. 6 we illustrate the behaviour of u on different scales in x. The left-most plot shows the range $[0, 2h]$, where u attains large positive values; in the middle plot, over $[0, 0.1]$, u has moderate negative values; the right-most plot is truncated below by -1, this being the threshold which determines where the control is active. This can be seen from (52) in conjunction with (49): for $x > h$, the gradient is $u + 1$, so for a converged control we have $\beta = b_{\text{max}}$ where $u + 1 < 0$ and $\beta = 0$ where $u + 1 > 0$. From this the bang-bang structure of the control becomes also clear.
Fig. 6 Parameters $\alpha = 1.5, \gamma = 0.0005$. Left and middle: Decoupling field $u(t, \cdot)$ for different t and two ranges of (small) x. Right: Decoupling field $u(t, \cdot)$ for different t and macroscopic range.

Fig. 7 Cost C^*_T and loss L^*_T in the optimal regime for logarithmically spaced $\gamma \in [0.0001, 0.1]$ and different α in a and the dependence of the losses on γ in b.

3.5.2 Analysis of optimal cost-loss pairs

Finally, we examine the pairs of costs and losses that are obtained under the optimal policy and other heuristic strategies.

In Fig. 7a, we vary γ to trace out the curve $(C^*_T(\gamma), L^*_T(\gamma))$, where $C^*_T(\gamma)$ and $L^*_T(\gamma)$ are the costs and losses given by (37) and (38) for the chosen γ. For a given cost, the graph gives the loss achievable under the optimal strategy. To achieve a smaller loss, a higher cost is generally incurred.

We focus first on the data for $\alpha = 0.5$ and $\alpha = 1$. In these cases, the uncontrolled system exhibits no jumps and cash injection simply reduces the losses. For small γ, minimising the cost is the priority and the losses approach those of the uncontrolled system. For growing γ, it becomes favourable to increase the cash injection and a significant reduction of losses can be achieved. This levels off for large γ as the cap b_{max} on the cash injection rate limits the overall effect of bail-outs.

For strong interaction, here exemplified by $\alpha = 1.5$, we observe a discontinuity, which is further analysed in Fig. 7b. For γ around 0.01, the optimal strategy switches from not preventing a jump to preventing a jump. This is manifested in Fig. 7b by an downward
discontinuity in the number of losses. The optimal value of the central agent’s control problem is also discontinuous in γ at this point. In other words, it is not possible to vary the capital injection to control the size of the jump continuously. Rather, the possible jump size is restricted by the constraint (4) on physical solutions. Conversely, withdrawal of a small amount of cash by the central agent from a scenario with low losses can trigger a large systemic event.

Note that Fig. 7b also allows to deduce the relation between γ and the threshold δ by looking for γ such that $\gamma \in \arg\max_{\gamma \in \mathbb{R}^+} C_T^*(\gamma) + \gamma(L_T^*(\gamma) - \delta)$, as explained in the introduction. Indeed, this corresponds to solving the outer optimization problem $\max_{\gamma \in \mathbb{R}^+} g(\gamma)$ where $g(\gamma) = \min_\beta \mathcal{L}(\beta, \gamma)$ with $\mathcal{L}(\beta, \gamma)$ denoting the Lagrange function. Under the assumption of no duality gap and a unique optimizer γ, γ is necessarily determined via $L_T^*(\gamma) = \delta$. As we observe a jump discontinuity of $\gamma \mapsto L_T^*(\gamma)$, this suggests that there is a duality gap at least for certain values of δ.

We proceed by comparing the costs and losses under the optimal strategy with some other heuristic strategies. As first benchmark, we consider a uniform strategy by which the central agent injects cash at a constant rate b_{\max} whenever an agent’s value $X_t \leq c$ for a constant c, which we vary, resulting in pairs $(C_u^T(c), L_u^T(c))$. The total cost here can be computed as $C_u^T(c) = b_{\max} \cdot \int_0^T \int_0^c p^u(t, x) \, dx \, dt$, where p^u is the density of the regularised process with such uniform (in time) control.

We also consider a ‘front loaded’ strategy whereby at the outset, for some chosen ‘floor’ $d > 0$, the central agent injects a lump sum of $d - X_0$ into all players with $X_0 < d$, hence lifting their reserves up to d. Again, we vary d to obtain a parametrised curve $(C_f^T(d), L_f^T(d))$. The total cost in this case is found as $C_f^T(d) = \int_0^d (d - x) f(x) \, dx$.

The pairs of cost and loss are shown in Fig. 8. In particular, Fig. 8a illustrates the case without jump for $\alpha = 1$, whereas in the situation of 8b with $\alpha = 1.5$ there is a jump in the uncontrolled system, which can be avoided with sufficiently large control.

In both cases, the optimal strategy gives lower losses than the heuristic strategies for the same fixed cost. Conversely, less cash injection is required for a given loss tolerance.5

We observe that we cannot enforce the sufficient condition for avoiding jumps, i.e., $\alpha \|f\|_\infty < 1$, for any of these strategies. It is clear that the strategy where the initial capital of

5 Note that the strategy with upfront payments is not in the class of Lipschitz feedback controls for which the policy gradient method is designed.
all banks is raised to a certain minimum level \(d \) satisfies \(\mathbb{E}[X_{0-}] \geq d \) and hence the necessary condition for avoiding jumps, \(\mathbb{E}[X_{0-}] \geq \alpha/2 \), holds for \(d \geq \alpha/2 \). However, the sufficient condition can be violated even when all banks have a high initial capital. What would work to enforce the sufficient condition is to set \(X_{0-} \sim U(d, d + \alpha + \varepsilon) \) for some \(\varepsilon > 0, d \geq 0 \) and \(U \) the uniform distribution on \([d, d + \alpha + \varepsilon]\).

Considering the physical jump condition (4), for a jump to occur it matters how much of the surviving mass can be concentrated around zero at any given point. Intuitively, starting with a higher initial condition, the Brownian motion will diffuse the mass sufficiently and make large concentrations at zero less likely, hence preventing a jump. Similarly, sufficiently large \(\beta(t, x) \) for small \(t \) and \(x \) should transport mass away from zero and prevent a jump as long as the initial density satisfies \(f(0+) < 1/\alpha \) (which rules out an instantaneous jump).

Therefore, both the constant and optimal strategies should be able to prevent jumps for large enough \(\max \). A rigorous analysis, however, goes beyond the scope of this paper.

Funding The authors gratefully acknowledge financial support by the Vienna Science and Technology Fund (WWTF) under Grant MA16-021 and by the Austrian Science Fund (FWF) through Grant Y 1235 of the START-program.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs

A.1 Notation

Throughout the paper, \(D([-1, \infty)) \) denotes the space of càdlàg functions on \([-1, \infty)\) endowed with the \(M_1 \)-topology, \(C([0, \infty)) \) denotes the space of continuous functions on \([0, \infty)\) endowed with the topology of compact convergence, i.e., \(f_n \to f \) in \(C([0, \infty)) \) if and only if \(f_n|K \to f|K \) uniformly for every compact \(K \subseteq [0, \infty) \). If \(S \) is a Polish space, we denote the space of probability measures on \(S \) by \(\mathcal{P}(S) \) and endow it with the topology of weak convergence, i.e., we say that \(\mu_n \to \mu \) in \(\mathcal{P}(S) \) iff \(\int_S F(x) d\mu_n(x) \to \int_S F(x) d\mu(x) \) for all \(F \in C_b(S; \mathbb{R}) \). If \(\mu \in \mathcal{P}(S) \) and \(F: S \to \mathbb{R} \), we denote the integral of \(F \) with respect to \(\mu \) also with brackets, i.e., we write \(\int_S F(x) d\mu(x) = \langle \mu, F \rangle \). Furthermore, if \(\nu \) is the pushforward of the measure \(\mu \) with respect to the map \(T \), we denote this by \(T(\mu) = \nu \).

A.2 Existence of minimal solutions and optimizers

Lemma A.1 For any \(\beta \in \mathcal{B}_T \), define the process

\[
Z_t = X_{0-} + \int_0^t \beta_s \, ds + B_t, \quad t \geq 0.
\]

Then, the process \(Z \) satisfies the extended crossing property, i.e.,
\[\mathbb{P}\left(\inf_{0 \leq s \leq h} (Z_{\tau+s} - Z_\tau) = 0 \right) = 0, \quad h > 0, \]

for any stopping time \(\tau \) with respect to \((\mathcal{F}_t)_{t \geq 0}\), the natural filtration generated by \(Z \).

Proof Let \(\tau \) be a \((\mathcal{F}_t)_{t \geq 0}\)-stopping time. Since \(\beta \in B_T \) is almost surely bounded, by Novikov’s condition and Girsanov’s theorem we may find an equivalent probability measure \(\bar{\mathbb{Q}} \) such that \(Z \) is a \((\mathcal{F}_t)_{t \geq 0}\)-Brownian motion under \(\bar{\mathbb{Q}} \). The strong Markov property of Brownian motion then yields

\[\mathbb{Q}\left(\inf_{0 \leq s \leq h} (Z_{\tau+s} - Z_\tau) = 0 \right) = \mathbb{Q}\left(\inf_{0 \leq s \leq h} Z_s = 0 \right) = 0, \quad h > 0 \]

and by the equivalence of \(\mathbb{P} \) and \(\mathbb{Q} \) the claim follows. \(\square \)

A.3 Existence of solutions

Lemma A.2 Suppose that \(f_n \to f \) in \(S_T \). Then, \(\int \! f_n(s) \, ds \to \int \! f(s) \, ds \) uniformly in \(t \) on any compact subset of \([0, \infty)\).

Proof Let \(T' > 0 \). By weak \(L^2([0, \infty))\)-convergence, we have \(\int_0^t f_n(s) \, ds \to \int_0^t f(s) \, ds \) for any \(t \in [0, T'] \). Let \(\epsilon > 0 \) and choose \(t_k \) with \(0 = t_0 \leq t_1 \leq \cdots \leq t_{m-1} = T' \) such that

\[\int_{t_i}^{t_{i+1}} f(s) \, ds < \epsilon/2, \quad i \in \{0, \ldots, m - 1\}. \]

Choose \(n \) large enough such that \(\left| \int_0^t f_n(s) \, ds - \int_0^t f(s) \, ds \right| < \epsilon/2 \) for all \(i \in \{0, \ldots, m\} \). We obtain, for \(t \in [t_i, t_{i+1}] \),

\[\int_0^t f_n(s) \, ds - \int_0^t f(s) \, ds \leq \int_0^{t_{i+1}} f_n(s) \, ds - \int_0^{t_{i+1}} f(s) \, ds + \epsilon/2 \leq \epsilon, \]

\[\int_0^t f_n(s) \, ds - \int_0^t f(s) \, ds \geq \int_0^{t_i} f_n(s) \, ds - \int_0^{t_i} f(s) \, ds - \epsilon/2 \geq -\epsilon, \]

which yields the claim. \(\square \)

Proof of Theorem 2.2 Step 1: We construct the reference probability space \(\mathcal{S} \).

Since the sequence law((\(X_{0-}^n, B^n \)) is constant and the space \([0, \infty) \times C([0, \infty))\) (endowed with the product topology of Euclidean and uniform topology) is Polish, the sequence \((X_{0-}^n, B^n)\) is tight on \([0, \infty) \times C([0, \infty))\). Since \(S_T \) is compact, the sequence \((X_{0-}^n, B^n, \beta^n)\) is tight on \([0, \infty) \times C([0, \infty)) \times S_T \). By Prokhorov’s theorem, after passing to a subsequence if necessary, we may assume that \(\text{law}((X_{0-}^n, B^n, \beta^n)) \to \text{law}((X_{0-}, B, \beta)) \) in \(\mathcal{P}([0, \infty) \times C([0, \infty)) \times S_T) \). By the Skorokhod representation theorem, we may without loss of generality assume that \((X_{0-}^n, B^n, \beta^n) \to (X_{0-}, B, \beta)\) holds almost surely on some probability space, which we denote by \(\mathcal{S} = (\Omega, \mathcal{F}, \mathbb{P}) \). Note that this is possible since the property of \(\Lambda \) solving (7)–(8) only depends on the (joint) law of \((X_{0-}, B, \beta)\). We then define \(\mathcal{F}_t \) to be \(\mathcal{S}((X_{0-}, B, \int_0^s \beta_0 \, ds), s \leq t) \) for \(t \geq 0 \). Since \(\beta \) is measurable and \((\mathcal{F}_t)_{t \geq 0}\)-adapted, it admits a progressively measurable modification, which we again denote by \(\beta \), and we see that \(\beta \in B_T(\mathcal{S}) \). We next show that \(B \) is a \((\mathcal{F}_t)_{t \geq 0}\)-Brownian motion: by the continuous mapping theorem and the continuity of the coordinate projections, it follows that \(\text{law}(B) \) is the Wiener measure. Let \(0 < r_1 < \cdots < r_k < s < t \) and let \(f_i \in C_b(\mathbb{R}^2; \mathbb{R}), i = 1, \ldots, k \).
and $g \in C_b(\mathbb{R}; \mathbb{R})$ and set $F(w^1, w^2) := \prod_{i=1}^k f_i(w^1_i, w^2_i)$, then we have by dominated convergence

$$
E \left[F \left(B, \int_0^t \beta_u du \right) g(B_t - B_s) \right] = \lim_{n \to \infty} E \left[F \left(B^n, \int_0^t \beta^n_u du \right) g(B^n_t - B^n_s) \right]
$$

$$
= \lim_{n \to \infty} E \left[F \left(B^n, \int_0^t \beta^n_u du \right) \right] E \left[g(B^n_t - B^n_s) \right]
$$

$$
= E \left[F \left(B, \int_0^t \beta_u du \right) \right] E \left[g(B_t - B_s) \right].
$$

Since the Borel σ-algebra on $C([0, \infty))$ is generated by the evaluation mappings, we obtain that $B_t - B_s$ is independent of \mathcal{F}_s for $0 < s < t$, and therefore B is an $(\mathcal{F}_t)_{t \geq 0}$-Brownian motion. We have shown that \mathcal{S} is an admissible reference space.

Step 2: Since M is compact, after passing to subsequences if necessary, we may assume that $\frac{1}{\alpha} \Lambda^n \to \frac{1}{\alpha} \Lambda$ in M. We now show that $(X_{0-}, B, \beta, \Lambda)$ solves (7)–(8) on \mathcal{S}. Let $\bar{E} = C([0, \infty)) \times M$ be endowed with the product topology and define $Z^n_t := X^n_{0-} + B^n_t + \int_0^t \beta^n_s ds$ and Z analogously as $Z_t = X_{0-} + B_t + \int_0^t \beta_s ds$. By Lemma A.2, it follows that $Z^n \to Z$ in $C([0, \infty))$ almost surely. Since Λ is deterministic, it follows that $\xi^n := (Z^n, \frac{1}{\alpha} \Lambda^n) \to (Z, \frac{1}{\alpha} \Lambda) := \xi$ in distribution on \bar{E}. We introduce some notation: define $\iota: \bar{E} \to D([-1, \infty))$ for $w \in C([0, \infty))$ and $\ell \in M$ as

$$
\iota(w, \ell) := \begin{cases} w_0, & t \in [-1, 0), \\ w_t - \alpha \ell_t, & t \in [0, \infty). \end{cases}
$$

For $t \in \mathbb{R}$ and $x \in D([-1, \infty))$, define the path functionals $\tau_0(x) := \text{inf}\{s \geq 0 : x_s \leq 0\}$ and $\lambda_\iota(x) := \mathbb{1}_{\{\tau_0(x) \leq \iota\}}$. Then, $(X_{0-}, B, \beta, \Lambda)$ is a solution to (7)–(8) on \mathcal{S} if and only if $\alpha \bar{P}(\tau_0(Z - \Lambda) \leq \iota) = \Lambda_\iota$. We may write this condition equivalently on the canonical path space $D([-1, \infty))$ as $\alpha \langle \iota(\xi), \lambda_\iota \rangle = \Lambda_\iota$ for $t \geq 0$. Note that with the notational conventions explained in Sect. A.1, $\iota(\xi)$ denotes the pushforward of the measure ξ by the map ι and $\langle \iota(\xi), \lambda_\iota \rangle$ denotes the integral of the functional λ_ι with respect to $\iota(\xi)$. Since Z satisfies the extended crossing property by Lemma A.1, $\iota(\xi)$ satisfies the crossing property (cf the proof of Lemma 5.5 in Cuchiero et al. (2023)). Lemma 5.3 in Cuchiero et al. (2023) and Step 1 imply that

$$
\Lambda = \lim_{n \to \infty} \Lambda^n = \lim_{n \to \infty} \alpha \langle \iota(\xi^n), \lambda \rangle = \alpha \langle \iota(\xi), \lambda \rangle.
$$

in M. \hfill \Box

A.4 Proof of Theorem 2.7

Proof The proof is to a large extent analogous to the proof of Proposition 5.6 in Cuchiero et al. (2023). Define

$$
\xi_N := \frac{1}{N} \sum_{i=1}^N \delta_{\left(X^n_{0-} + B^n_{i, \ell}, \beta^n_{i, \ell}, L_N\right)}.
$$

Since ξ_N is a random probability measure on $C([0, \infty)) \times S_T \times M$ and the spaces S_T and M are compact, ξ_N is tight by the same reasoning as in Corollary 4.5 in Cuchiero et al. (2023). Therefore, after passing to a subsequence if necessary, we may assume that

\[\square\] Springer
law(ξ_N) → law(ξ) for some random probability measure ξ on C([0, ∞)) × ST × M. By Skorokhod representation, we may assume without loss of generality that the convergence happens almost surely on the same probability space S. Arguing in the same fashion as in the proof of Lemma 5.4 in Cuchiero et al. (2023), we see that for almost every ω ∈ Ω1, if law((W, β, L)) = ξ(ω), then W = W_0 is a Brownian motion with respect to the filtration generated by (W, \int_0^t β_s ds, L). For (w, b, ℓ) ∈ C([0, ∞)) × ST × M, set \hat{ι}(w, b, ℓ) := \ell(w, ℓ) + \int_0^t b_s ds, where \ell is defined as in (60). By Lemma A.2, the map b → \int_0^t b_s ds is continuous from ST to C([0, ∞)), and therefore also as a map from ST to D([-1, ∞)).

Theorem 4.2 in Cuchiero et al. (2023) together with Corollary 12.7.4 in Whitt (yyy) then shows that \hat{ι} is continuous. Since \hat{ι}(ξ_N) = \hat{μ}_N, the continuous mapping theorem implies that \hat{ι}(ξ) = \mu. Applying the continuous mapping theorem to (w, b, ℓ) → w_0, we see that law(W_0) = \nu_0 holds almost surely. It remains to check that if law(W, β, L) = ξ(ω), then L_t = ⟨μ(ω), λ_t⟩ for t ≥ 0 holds ξ(ω)-almost surely for almost every ω ∈ Ω. This can be checked as in Step 1 of the proof of Proposition 5.6 in Cuchiero et al. (2023), making use of Lemma A.1 to show that \mu(ω) satisfies the crossing property (almost surely).

B Further numerical details and tests

We here report further details and tests of our numerical procedure.

B.1 Smoothing

Let us start by precisely specifying the smoothing functions φ^h and Φ^h used in the regularization procedure of the objective function and the dynamics. We choose φ^h(x) = φ(x)/h, where,

$$ φ(x) = \begin{cases} 1 \frac{\exp(-1/(1-x))}{\mathcal{I}}, & x \in [0, 1], \\ 0, & \text{else.} \end{cases} $$

(62)

where \mathcal{I} = 0.007029858406609 normalises the integral (close) to 1. The function φ^h and its first two derivatives are shown in Fig. 9 for h = 10^{-3}. Note in particular the large positive and negative values of \partial^2 φ^h.

We also choose for some κ > 0, Φ^h(x) = Φ(x/κh), where Φ(x) = \mathcal{N}((x + 1/2)/(x * (1 + x))), x ∈ (-1, 0), and 0 else, with \mathcal{N} the standard normal CDF.
Table 2 Mesh convergence, 100 · costs, $\alpha = 1.5$ and $\gamma = 0.1$

N_{10^3}	$N_x/10^3$	$10^3 \cdot \theta_N$	ρ_N	$10^3 \cdot h$	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
1	3.75	−1.650	1.86	1.2548	1.1449	1.0225	0.8010	0.0526	0.5638
2	7.5	−0.887	0.83	1.2383	1.1115	1.0085	0.9004	0.6965	0.0343
4	15	−1.066	1.99	1.2294	1.0970	0.9939	0.9246	0.6131	0.4506
8	30	−0.534	2.00	1.2187	1.0846	0.9839	0.9126	0.8484	1.0968
16	60	−0.267	−	1.2134	1.0784	0.9790	0.9126	0.8644	0.8199
32	120	−	−	1.2107	1.0753	0.9764	0.9123	0.8701	0.8365

$10^3 \cdot \varrho_h$: -1.354, -0.989, -0.641, -0.422, -0.335, -2

ϱ_h: 1.37, 1.54, 1.51, 1.25, $-$, $-$

Table 3 Mesh convergence, 100 · losses, $\alpha = 0.5$ and $\gamma = 0.1$

N_{10^3}	$N_x/10^3$	$10^3 \cdot \theta_N$	ρ_N	$10^3 \cdot h$	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
1	3.75	3.802	1.99	7.3549	7.4198	7.6336	8.7134	735.42	0
2	7.5	1.910	2.03	7.3929	7.4573	7.4919	7.6925	8.7711	735.91
4	15	0.941	2.00	7.4120	7.4771	7.5103	7.4765	9.5999	−4.196
8	30	0.470	2.00	7.4214	7.4868	7.5203	7.5373	7.5867	6.2291
16	60	0.235	−	7.4261	7.4916	7.5251	7.5421	7.5504	7.5550
32	120	−	−	7.4285	7.4939	7.5275	7.5445	7.5531	7.5571

$10^3 \cdot \varrho_h$: 0.6547, 0.3353, 0.1701, 0.0860, 0.0398, $-$

ϱ_h: 1.95, 1.97, 1.97, 2.15, $-$, $-$

B.2 Mesh convergence

Here, we demonstrate the convergence of the finite difference approximation in two more settings. In Table 2 for the cost, for $\alpha = 1.5$, and in Table 2 again for the losses, but now for $\alpha = 0.5$. The notation with θ_N, ρ_N, ϱ_N and ϱ_h is analogous as before.

In these settings, the behaviour in h is somewhat better than in Table 1 (losses for $\alpha = 1.5$, i.e. with jump in the uncontrolled case), but as there, a good approximation is only achieved if the mesh size is sufficiently small in comparison with h.

B.3 Gradient iteration

Finally we conducted further tests in view of the mesh refinement and the role of the step size τ in the gradient iteration.

Figure 10a, left, illustrates that the convergence is robust with respect to mesh refinement, i.e., the number of iterations required for a prescribed accuracy does not increase significantly as the number of time steps and mesh points increases simultaneously.

In Fig. 10b we investigate the effect of the step size τ. Choosing $\tau = 0.3$ is optimal among the values presented here. Picking even larger step sizes can lead to divergence.
References

Acciaio, B., Backhoff-Veraguas, J., & Carmona, R. (2019). Extended mean field control problems: Stochastic maximum principle and transport perspective. *SIAM Journal on Control and Optimization, 57*(6), 3666–3693.

Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: Numerical methods. *SIAM Journal on Numerical Analysis, 48*(3), 1136–1162.

Achdou, Y., & Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. *Discrete and Continuous Dynamical Systems, 35*(9), 3879–3900.

Achdou, Y., & Laurière, M. (2016). Mean field type control with congestion (II): An augmented Lagrangian method. *Applied Mathematics and Optimization, 74*(3), 535–578.

Achdou, Y., & Laurière, M. (2020). Mean field games and applications: Numerical aspects. *Mean Field Games, 2019*, 249–307.

Agram, N. & Øksendal, B. (2021). Fokker–Planck PIDE for McKean–Vlasov diffusions with jumps and applications to HJB equations and mean-field games. arXiv:2110.02193.

Alassueur, C., Campi, L., Dumitrescu, R., & Zeng, J. (2021). MFG model with a long-lived penalty at random jump times: Application to demand side management for electricity contracts. arXiv:2101.06031.

Angiuli, A., Detering, N., Fouque, J. P., Laurière, M., & Lin, J. (2022). Reinforcement learning for intra-and-inter-bank borrowing and lending mean field control game, arXiv preprint arXiv:2207.03449.

Angiuli, A., Detering, N., Fouque, J. P., & Lin, J. (2022). Reinforcement learning algorithm for mixed mean field control games, arXiv preprint arXiv:2205.02330.

Angiuli, A., Fouque, J. P., & Lauriere, M. (2021). Reinforcement learning for mean field games, with applications to economics, arXiv preprint arXiv:2106.13755.

Angiuli, A., Fouque, J. P., & Laurière, M. (2022). Unified reinforcement q-learning for mean field game and control problems. *Mathematics of Control, Signals, and Systems, 34*, 217–271.

Archibald, R., Bao, F., Yong, J., & Zhou, T. (2020). An efficient numerical algorithm for solving data driven feedback control problems. *Journal of Scientific Computing, 85*(2), 1–27.

Bayraktar, E., Cosso, A., & Pham, H. (2018). Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics. *Transactions of the American Mathematical Society, 370*(3), 2115–2160.

Bensoussan, A., Frehse, J., & Yam, S. C. P. (2015). The master equation in mean field theory. *Journal de Mathématiques Pures et Appliquées, 103*(6), 1441–1474.

Bujok, K., & Reisinger, C. (2012). Numerical valuation of basket credit derivatives in structural jump-diffusion models. *Journal of Computational Finance, 15*(4), 115.

Burzoni, M., & Campi, L. (2021). Mean field games with absorption and common noise with a model of bank run, arXiv:2107.00603.

Campi, L., & Fischer, M. (2018). N-player games and mean-field games with absorption. *Annals of Applied Probability, 28*(4), 2188–2242.
Campi, L., Ghio, M., & Livieri, G. (2019). N-player games and mean-field games with smooth dependence on past absorptions, Available at SSRN 3329456.

Carlini, E., & Silva, F. J. (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system. *Discrete and Continuous Dynamical Systems, 35*(5), 4269–4292.

Carmona, R., & Delarue, F. (2015). Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. *Annals of Probability, 43*(5), 2647–2700.

Carmona, R., Delarue, F., & Lachapelle, A. (2013). Control of McKean-Vlasov dynamics versus mean field games. *Mathematics and Financial Economics, 7*(2), 131–166.

Carmona, R., Fouque, J.-P., & Sun, L. H. (2015). Mean field games and systemic risk. *Communications in Mathematical Sciences, 13*(4), 911–933.

Carmona, R., & Laurière, M. (2019). Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II – The finite horizon case, arXiv:1908.01613.

Carmona, R., & Delarue, F. (2018). *Probabilistic theory of mean field games with applications I*. Springer.

Carmona, R., & Delarue, F. (2015). Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. *Annals of Applied Probability, 25*(4), 2096–2133.

Carmona, R., Delarue, F., & Tanré, E. (2015). Particle systems with a singular mean-field self-excitation. Application to neuronal networks. *Stochastic Processes and their Applications, 125*(6), 2451–2492.

Cuchiero, C., Reisinger, C., & Rigger, S. (2022). Implicit and fully discrete approximation of the supercooled Stefan problem in the presence of blow-ups, arXiv:2206.14641.

Delarue, F., Inglis, J., Rubenthaler, S., & Tanré, E. (2015). Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. *Annals of Applied Probability, 25*(4), 2096–2133.

Delarue, F., Inglis, J., Rubenthaler, S., & Tanré, E. (2015). Particle systems with a singular mean-field self-excitation. Application to neuronal networks. *Stochastic Processes and their Applications, 125*(6), 2451–2492.

Elie, R., Ichiba, T., & Laurière, M. (2020). Large banking systems with default and recovery: A mean field game model, arXiv preprint arXiv:2001.10206.

Fleming, W. H., & Soner, H. M. (2006). *Controlled Markov processes and viscosity solutions*. Springer.

Fouque, J.-P., & Zhang, Z. (2020). Deep learning methods for mean field control problems with delay. *Frontiers in Applied Mathematics and Statistics, 6*, 11.

Huang, M., Malhamé, R. P., & Caines, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. *Commerce Information Systems, 6*(3), 221–252.

Ishii, H., & Souganidis, P. E. (1991). On the stochastic homogenization of Hamilton–Jacobi equations. *Communications in Partial Differential Equations, 16*(5–6), 1051–1074.

Itô, K. (1951). Stochastic differential equations. *Mathematica Japonica, 5*, 37–49.

Lasry, J.-M., & Lions, P.-L. (2007). Mean field games. *Japanese Journal of Mathematics, 2*(1), 229–260.

Laurière, M., & Pironneau, O. (2014). Dynamic programming for mean-field type control. *Comptes Rendus Mathematique, 352*(9), 707–713.

Laurière, M., Perrin, S., Geist, M., & Pietquin, O. (2022). Learning mean field games: A survey, arXiv preprint arXiv:2205.12944.

Ledger, S., & Sojmark, A. (2021). At the mercy of the common noise: blow-ups in a conditional McKean-Vlasov Problem. *Electronic Journal of Probability, 26*, 1–39.

Liu, S.-J., & Sircar, R. (2019). Mean field games with regime switching. *SIAM Journal on Control and Optimization, 57*(5), 3020–3049.

Lücke, C., & Luecken, D. (2013). A modified MSA for stochastic control problems. *Applied Mathematics & Optimization, 68*(2), 303–337.

Marschall, S., & Ebenbichler, F. (2017). A mean field game interpretation of adiabatic limits of optimal control problems. *Journal of Optimization Theory and Applications, 174*(1), 180–204.

McClamroch, N. H. (1987). Stochastic differential games with applications to resource management and pollution control. *Journal of Optimal Control Applications and Methods, 8*(4), 315–331.

Menaldi, J.-L., Mortensen, K., & Santi, P. (2018). Stochastic differential games with ergodic cost. *SIAM Journal on Control and Optimization, 56*(6), 3561–3585.

Pérez, A., & Souganidis, P. (2018). Homogenization of degenerate Hamilton–Jacobi equations in the plane. *Communications in Partial Differential Equations, 43*(12), 1757–1787.

Pham, H. (2013). *Continuous-time stochastic control and the stochastic maximum principle*. Springer.

Pham, H., & Saporito, F. (2017). Mean field games with absorption: The case of a small number of agents. *Nonlinearity, 30*(6), 2771–2801.

Pham, H., & Veretennikov, A. E. (2014). Mean field games and mean field type control, *Probability, Uncertainty and Quantitative Risk, 9*, 1–43.

Polunin, A., & Sircar, R. (2020). Mean field games with regime switching and linear quadratic cost. *Mathematical Control and Related Fields, 10*(3), 755–801.

Pu, X., & Wang, Z. (2022). Mean field game model for a large population of dynamically interacting agents. *Journal of Optimization Theory and Applications, 188*(1), 243–261.

Ribeiro, L., & Souza, M. (2021). Asymptotic analysis of McKean-Vlasov games with large discount factors. *Journal of Differential Equations, 273*(2), 559–586.

Sanz-Solé, M., & Tindel, S. (2012). McKean-Vlasov stochastic differential equations, backward SDEs, and related partial differential equations. *Annales de l’Institut Henri Poincaré Probabilités et Statistiques, 48*(4), 985–1035.

Sojmark, A. (2017). McKean-Vlasov games with regime switching and linear quadratic cost. *SIAM Journal on Control and Optimization, 55*(4), 2200–2224.

Tziki, Y., & Zidani, H. (2018). Mean field games for a large number of agents. *Stochastic Analysis and Applications, 36*(1), 1–15.

Zhang, H., & Zhang, Z. (2017). Mean field games with absorption: A backward-forward approach. *Journal of Optimization Theory and Applications, 173*(1), 92–134.

Zhang, H., & Zhang, Z. (2019). McKean-Vlasov games with absorption: The case of a large number of agents. *SIAM Journal on Control and Optimization, 57*(5), 3538–3576.

Zhang, H., & Zhang, Z. (2020). McKean-Vlasov games with absorption: The case of a large number of agents. *SIAM Journal on Control and Optimization, 58*(2), 1125–1153.

Zhang, H., & Zhang, Z. (2021). Mean field games with absorption: Convergence to Nash equilibrium. *SIAM Journal on Control and Optimization, 59*(3), 1196–1229.

Zhang, H., & Zhang, Z. (2022). Mean field games with absorption: The case of a large number of agents. *SIAM Journal on Control and Optimization, 59*(3), 1196–1229.
Lipton, A., Kaushansky, V., & Reisinger, C. (2019). Semi-analytical solution of a McKean-Vlasov equation with feedback through hitting a boundary. European Journal of Applied Mathematics, 32(6), 1035–1068.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.

Nadtochiy, S., & Shkolnikov, M. (2019). Particle systems with singular interaction through hitting times: application in systemic risk modeling. Annals of Applied Probability, 29(1), 89–129.

Nadtochiy, S., & Shkolnikov, M. (2020). Mean field systems on networks, with singular interaction through hitting times. Annals of Probability, 48(3), 1520–1556.

Pfeiffer, L. (2016). Numerical methods for mean-field-type optimal control problems. Pure and Applied Functional Analysis, 1(4), 629–655.

Pham, H., & Wei, X. (2017). Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM Journal on Control and Optimization, 55(2), 1069–1101.

Pham, H., & Wei, X. (2018). Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM - Control, Optimisation and Calculus of Variations, 24(1), 437–461.

Reisinger, C., Stockinger, W., & Zhang, Y. (2021). A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems, arXiv preprint arXiv:2108.06740.

Reisinger, C., Stockinger, W., & Zhang, Y. (2022). Linear convergence of a policy gradient method for finite horizon continuous time stochastic control problems, arXiv preprint arXiv:2203.11758.

Tang, W., & Tsai, L. (2018). Optimal surviving strategy for drifted Brownian motions with absorption. The Annals of Probability, 46(3), 1597–1650.

Whitt, W. (2002). Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002, An introduction to stochastic-process limits and their application to queues.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.