Толл-подобные рецепторы при атеросклерозе

Чаулин А.М., аспирант кафедры гистологии и эмбриологии, врач клинической лабораторной диагностики
Самарский государственный медицинский университет;
Самарский областной клинический кардиологический диспансер

Аннотация. В статье рассматривается роль толл-подобных рецепторов (TLR) в патогенезе атеросклероза и сердечно-сосудистых заболеваний. Обсуждаются сложные патофизиологические взаимодействия между TLR и воспалением, и иммунным ответом при атеросклерозе.

Ключевые слова: толл-подобные рецепторы, врожденный иммунитет, атеросклероз, сердечно-сосудистые заболевания.

Toll-like receptors in atherosclerosis

Chaulin A.M., post-graduate student of the Department of histology and embryology, doctor of clinical laboratory diagnostics
Samara state medical University; Samara regional clinical cardiology dispensary

Abstract. The article discusses the role of toll-like receptors (TLR) in the pathogenesis of atherosclerosis and cardiovascular diseases. Complex pathophysiological interactions between TLR and inflammation and the immune response in atherosclerosis are discussed.

Keywords: toll-like receptors, innate immunity, atherosclerosis, cardiovascular disease.

Введение

Атеросклероз вызывает сердечно-сосудистые заболевания, ведущую причину смерти во всем мире [1, 2, 3]. Поэтому изучение патофизиологии атеросклероза является важнейшим исследовательским направлением современного здравоохранения [4, 5, 6]. Поиск новых биомаркеров необходим для совершенствования диагностики атеросклероза и сердечно-сосудистых заболеваний [7, 8, 9, 10].

Атеросклеротический процесс, также описываемый как «уплотнение (затвердение) артерий», вызывается множеством местных и системных факторов риска и часто проявляется наряду с сопутствующими сердечно-сосудистыми заболеваниями, такими как сахарный диабет 2 типа, метаболический синдром, дислипидемия и гипертония [11, 12, 13]. Появляется все больше доказательств того, что механизмы врожденного иммунитета могут инициировать и ускорять атеросклероз [14, 15, 16]. Недавние данные связывают врожденную чувствительность с нижележащими молекулярными сигнальными каскадами при атеросклерозе [17, 18, 19]. В этом обзоре мы рассмотрим биологическое значение толл-подобных рецепторов (TLR) как важнейших преобразователей сигналов, которые регулируют иммунные ответы во время атеросклероза.

TLR являются наиболее хорошо охарактеризованными PRR, из которых 11 были идентифицированы у людей и 13 у мышей [20, 21, 22]. TLR экспрессируются рядом иммунных клеток, таких как макрофаги, дендритные клетки и неиммунные клетки, такие как эпителиальные клетки [20, 23, 24, 25]. TLR1, TLR2, TLR4, TLR5, TLR6 и TLR11 экспрессируются во внеклеточном пространстве и обнаруживают липопептиды [26, 27, 28, 29]. Бактериальные и вирусные нуклеиновые кислоты распознаются TLR3, TLR7, TLR8, TLR9 и мышным TLR13. Все они находятся в эндолизматическом ретикулуме, эндосомах и лизосомах [26, 30, 31].

Функциональное разнообразие внеклеточных TLR при атеросклерозе

И мышные, и человеческие атеросклеротические поражения демонстрируют повышенную экспрессию TLR. Исследования Dunzendorfer et al. опи- скали влияние нарушенного кровотока на эндотелий сосудов и продемонстрировали, что эндотелиальные клетки, находящиеся в условиях ламинарного кровотока in vitro, менее чувствительны к лигандам TLR2 [32, 33, 34]. Напротив, нарушенный поток, по-видимому, вызывает ту же экспрессию и реакцию, что и статический поток, подтверждая, что ламинарный поток снижает чувствительность TLR2 — в соответствии с участками развития поражения [32]. В другом исследовании TLR2 снижение атерогенеза наблюдалось, когда полное истощение было получено у мышей-кроссбreds TLR2−/−LDLR−/− по сравнению с LDLR−/− мышами после 10 и 14 недель на диете с высоким содержанием жиров [35], но не в исследованиях химер костного мозга, это открытие наводит на мысль, что избирательная экспрессия клеточного типа TLR2 вносит различный вклад в развитие поражения. Mullick et al. выявили, что экспрессия TLR2 повышена на поверхности эндотелиальных клеток в сайтах, предрасположенных к развитию атеросклероза, таких как внутренняя кривизна дуги аорты у мышей LDLR−/− [36, 37].

В другом исследовании Choi et al. было обнаружено, что TLR4 обнаруживает минимально окисленный натрийпептид низкой плотности (mmLDL), действовать как мицелл макропиноцизоза и, в конечном итоге, играть роль в образовании патогномонич-
ных «пенистых клеток» [38]. Интересно, что было обнаружено, что TLR4 вносит вклад в формирование ичееч пены в большей степени, чем TLR2 [39]. Стюарт и др. продемонстрировали, что комплекс, располагающийся oxLDL, состоит из TLR4, TLR6 и акцепторного рецептора CD36, представляющего собой гетеродимер, способствующий стерилизованию воспалению [40]. В отличие от предыдущих исследований TLR2, когда ApoE /- мыши с дефицитом TLR4 были инфицированы P. gingivalis они были парадоксальным образом более восприимчивы к развитию атеросклероза, проявляясь повышенным уровнем воспалительных клеток Th17 [41].

Эндосомные рецепторы TLR7 и TLR8 обнаруживают вирусную окРНК и собственную РНК, высокообождаемую из некротических клеток. Некоторые исследования показали, что TLR8 лишен функциональной функции у мышей, тогда как TLR7 был определен как функциональный [42]. У человека как TLR7, так и TLR8 передают сигнал и активируют транскрипцию генов [43]. В своем исследовании TLR7 при атеросклерозе Salagianni et al. обнаружили, что TLR7 может играть защитную роль, ограничивая провоспалительную активность моноцитов/макрофагов [44].

Также предполагается, что TLR играют роль в паготенцез факторов риска. Первым звеном в этом направлении был метаболический синдром. В исследовании, проведенном Vijay-Kumar M., авторы продемонстрировали, что трансплантация кишечной микробиоты от TLR5 /- мышей WT без микробов вызвала прибавку в весе у репиципентов, включая изменение метаболического синдрома [45], что указывает на нарушение работы TLR и врожденная иммунная система может вызывать инсулинорезистентность.

Заключение. TLR являются ключевыми организациями механизмов раний врожденной иммунной защиты, активируя канонические и неканонические пути воспаления. Во время атеросклероза эти механизмы могут быть вредными, что видно по активации TLR2 и TLR4. В целом, есть широкие возможности для дальнейшего анализа потребности в TLR при различных сопутствующих сердечно-сосудистых заболеваниях. Дальнейшие исследования потребуют механистического понимания сложного баланса, прямого и опосредованного факторов риска эффектов TLR при ССЗ.

Литература:

1. Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека // Кардиология. 2019;59(11):66–75. DOI:10.18087/cardio.2019.11.n414.

2. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1 // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 45–57. doi: 10.24411/2309-1908-2019-12005.

3. Чаулин А.М., Мазаев А.Ю., Александров А.Г. Роль пропротеин конвертазы сублимации/кисек типа 9 (pcsk-9) в метаболизме холестерина и новые возможности липидкоррегирующей терапии // Международный научно-исследовательский журнал. 2019. № 4-1 (82). С. 124-126. DOI: 10.23670/JR.2019.82.4.025.

4. Чаулин А.М., Григорьева Ю. В., Дупляков Д. В. Участие катехоламинов в патогенезе диабетической кардиомиопатии // Медицина в Кузбассе. 2020. №. 11-18. https://24411/2687-0053-2020-10003.

5. Чаулин А.М., Григорьева Ю.В., Дупляков Д.В. Коморбидность хронической обструктивной болезни легких и сердечно-сосудистых заболеваний: общие факторы, патофизиологические механизмы и клиническое значение // Клиническая практика. 2020. №(1):112–121. doi: 10.17816/cliniact21218.

6. Чаулин А.М. Клинико-диагностическое значение определения кардиальных тропонинов в крове при сепсисе (обзор литературы) // The scientific heritage. 2020. 46–3 (46): 81–83. https://www.elibrary.ru/item.asp?id=42842712.

7. Дупляков Д.В., Чаулин А.М. Мутации сердечных тропонинов, ассоциированные с кардиомиопатиями // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 3. С. 8–17. doi: 10.24411/2309-1908-2019-13001.

8. Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 1 // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 13–23. doi: 10.24411/2309-1908-2019-12002.

9. Чаулин А.М., Александров А.Г., Карслян Л.С., Нурбалтаева Д.А., Мазаев А.Ю., Григорьева Е.В. Катетептин - новый регулятор сердечно-сосудистой системы (обзор литературы) // Бюллетень науки и практики. 2019. Т. 5. №6. С. 129–136. https://doi.org/10.33619/2414-2948/43/17.

10. Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 2 // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 24–35. doi: 10.24411/2309-1908-2019-12003.

11. Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.

12. Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Особенности метаболизма сердечных тропонинов (обзор литературы). Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8 (4): 103-115. DOI: 10.17802/cardio-1278-2019-8-4-103-115.

13. Robbins J.M., Webb D.A., Sciamanna C.N. Cardiovascular comorbidities among public health clinic patients with diabetes: The Urban. Diabetics Study. BMC Public Health. 2005;5:15.
14. Libby P., Okamoto Y., Rocha V.Z., Folco E. Inflammation in atherosclerosis: Transition from theory to practice. Circ. J. 2010;74:213–220.

15. Чаулин А.М., Григорьева Ю.В. Основные аспекты биохимии, физиологии сердечных тропонинов // Бюллетень науки и практики. 2020. Т. 6. № 5. С. 105–112. https://doi.org/10.33619/2414-2948/54/13

16. Чаулин А.М., Карслян Л.С., Александров А.Г., Мазаев А.Ю., Григорьева Е.В., Нурбальтаева Д.А. Роль пропротеин конвертазы субъединиц/кексин типа 9 в развитии атеросклероза // Бюллетень науки и практики. 2019. Т. 5. №5. С. 112–120. https://doi.org/10.33619/2414-2948/42/15

17. Laberge M.A., Moore K.J., Freeman M.W. Atherosclerosis and innate immune signaling. Ann. Med. 2005;37:130–140.

18. Чаулин А.М., Александров А.Г., Карслян Л.С., Мазаев А.Ю. Катестатин в диагностике сердечно-сосудистых заболеваний // Международный научно-исследовательский журнал. 2019. № 6–1 (84). C. 93–96. DOI: 10.23670/IRJ.2019.84.6.020

19. Чаулин А.М., Мазаев А.Ю., Григорьева Е.В., Нурбальтаева Д.А., Александров А.Г. Клинико-диагностическое значение определения кардиальных тропонинов в крови при сепсисе и септическом шоке (обзор литературы) // Евразийское Научное Объединение. 2019. № 2–2 (48). С. 113–116. URL: https://elibrary.ru/item.asp?id=3734945

20. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

21. Александров А.Г., Мазаев А.Ю., Чаулин А.М., Александрова О.С. Сердечные тромбины: биохимические и клинические особенности // Дневник науки. 2019. № 8 (32). С. 8. eLIBRARY ID: 39422909.

22. Чаулин А.М. Участие пропротеинконвертаз субъединиц кексин типа 9 в патогенезе атеросклероза // Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2020; 1(53):111-128. DOI: 10.21685/2072-3032-2020-1–13

23. Чаулин А.М. Аденозин и его роль в физиологии и патологии сердечно-сосудистой системы // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 3. С. 37-45. doi: 10.24411/2309-1908–2019–13004.

24. Чаулин А.М., Карслян Л.С., Александров А.Г., Дупляков Д.В. Повышение концентрации кардисцепшифных тропонинов при отсутствии инфаркта миокарда. Часть 2. // Врач. 2020. 31 (4): 38-45. DOI: https://doi.org/10.29296/25877305–2020-04–07

25. Чаулин А.М., Григорьева Ю.В., Дупляков Д.В. Коморбидность: хроническая обструктивная болезнь легких и сердечно-сосудистые заболевания. Практическая медицина. 2020. Том 18, № 1, С. 26–31. DOI: 10.320000/2072–1757–2020–1–26–31

26. Cole J.E., Mitra A.T., Monaco C. Treating atherosclerosis: The potential of Toll-like receptors as therapeutic targets. Exp. Rev. Cardiovasc. Ther. 2010;8:1619-1635.

27. Чаулин А.М., Карслян Л.С., Александров А.Г., Дупляков Д.В. Повышение концентрации кардисцепшифных тропонинов при отсутствии инфаркта миокарда. Часть 1. // Врач. 2020. 31 (3): 22–27. DOI: https://doi.org/10.29296/25877305–2020–03–04

28. Чаулин А.М., Карслян Л.С., Нурбальтаева Д.А., Григорьева Е.В., Дупляков Д.В. Метаболизм кардиальных тропонинов в нормальных и патологических условиях // Сибирское медицинское обозрение. 2019.(6):5–14. DOI: 10.20333/2500136–2019–6–5–14

29. Александров А.Г., Чаулин А.М., Мазаев А.Ю., Александрова О.С. Сердечные тромбины: биохимические и клинические особенности // Евразийское научное объединение. 2019. № 8–2 (54). С. 110–114. DOI: 10.5281/zenodo.3402432

30. Чаулин А.М. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 1 // Кардиология. 2019; 2 (24). С. 13–23.

31. Chunlin A.M., Duplyakov D.V. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers // International Journal of Biomedicine. 2020;10(3). http://dx.doi.org/10.21103/Article10(3)_Rax

32. Dunzendorfer S., Lee H.K., Tobias P.S. Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SPI activity. Circ. Res. 2004;95:684–691.

33. Чаулин А.М., Милютин И.Н., Тимофеев Н.В., Дупляков Д.В. Некоронарные причины повышения сердечных тропонинов в практике врача (литературный обзор) // Вестник медицинского института "Ревиза": реабилитация, врач и здоровье. 2019; № 5 (41). С. 201-214.

34. Чаулин А.М., Карслян Л.С., Александров А.Г., Мазаев А.Ю., Григорьева Е.В., Нурбальтаева Д.А. Роль пропротеин конвертазы субъединиц/кексин типа 9 в развитии атеросклероза // Бюллетень науки и практики. 2019. Т. 5. №5. С. 112–120. https://doi.org/10.33619/2414–2948/42/15

35. Mullick A.E., Tobias P.S., Curtiss L.K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 2005;115:3149–3156.

36. Mullick A.E., Soldau K., Kiosses W.B., Bell T.A., 3rd, Tobias P.S., Curtiss L.K. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 2008;205:373–383.

37. Чаулин А.М., Григорьева Ю.В., Дупляков Д.В. Современные представления о патофизиологии атеросклероза. Часть 1. Роль нарушения обмена липидов и эндотелиальной дисфункции (обзор литературы) // Медицина в Кубабесе. 2020. №2. С. 34–41. DOI: 10.24411/2687–0053–2020–10015

38. Choi S.H., Harkewicz R., Lee J.H., Boulier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. Lipoprotein accumulation in macrophages via toll-like receptor–4-dependent fluid phase uptake. Circ. Res. 2009;104:1355–1363.
39. Higashimori M., Tatro J.B., Moore K.J., Mendelsohn M.E., Galper J.B., Beasley D. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2011;31:50–57.

40. Stewart C.R., Stuart L.M., Wilkinson K., van Gils J.M., Deng J., Halle A., Rayner K.J., Boyer L., Zhong R., Frazier W.A., et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 2010;11:155–161.

41. Hayashi C., Papadopoulos G., Gudino C.V., Weinberg E.O., Barth K.R., Madrigal A.G., Chen Y., Ning H., Lavalle M., Gibson F.C., 3rd, et al. Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J. Immunol. 2012;189:3681–3688.

42. Hemmi H., Kaisho T., Takeuchi O., Sato S., Sanjo H., Hoshino K., Horiuchi T., Tomizawa H., Takeda K., Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 2002;3:196–200.

43. Jurk M., Heil F., Vollmer J., Schetter C., Krieg A.M., Wagner H., Lipford G., Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 2002;3:499.

44. Salagianni M., Galani I.E., Lundberg A.M., Davos C.H., Varela A., Gavriil A., Lyttikainen L.P., Lehtimaki T., Sigala F., Folkesen L., et al. Toll-like receptor 7 protects from atherosclerosis by constraining “inflammatory” macrophage activation. Circulation. 2012;126:952–962.

45. Vijay-Kumar M., Aitken J.D., Carvalho F.A., Cullender T.C., Mwangi S., Srinivasan S., Sitaraman S.V., Knight R., Ley R.E., Gewirtz A.T. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–231.