First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Aaltonen, T. et al. "First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider." Physical Review Letters 103.9 (2009): 091803. (C)2010 The American Physical Society.
As Published	http://dx.doi.org/10.1103/PhysRevLett.103.091803
Publisher	American Physical Society
Version	Final published version
Citable link	http://hdl.handle.net/1721.1/50758
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

T. Aaltonen,24 J. Adelman,14 T. Akimoto,56 B. Álvarez González,12,a S. Amerio,44b,44a D. Amidei,35 A. Anastassios,39 A. Anno,20 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,55 A. Artikov,16 W. Ashmanskas,18 A. Attal,4 A. Aurisano,54 F. Azfar,43 W. Badger,18 A. Barbaro-Galtieri,29 V. E. Barnes,49 B. A. Barnett,26 P. Barria, V. Bartsch,31 G. Bauer,31 P.-H. Beauchemin,31 F. Bedeschi,47d D. Beecher,31 S. Behan,26 G. Belletti,47a J. Bellinger,60 D. Benjamin,17 A. Beretvas,18 J. Beringer,29 A. Bhatti,51 M. Binkley,18 D. Bisello,44b,44a I. Bizjak,31,a R. E. Blair,5 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 G. Bolla,39 D. Bortoletto,49 J. Boudreau,48 A. Boveia,11 B. Brau,11,b A. Bridgeman,25 L. Brigliadori,5b,6a C. Bromberg,36 E. Brubaker,14 J. Budagov,16 H. S. Budy,50 S. Budd,25 S. Burke,18 K. Burket,18 G. Busetto,44b,44a P. Bussey,22 A. Buzatu,34 K. L. Byrum,2 S. Cabrera,17,a W. Calanca,32 M. Campanelli,36 M. Campbell,35 F. Canelli,18,a A. Canepa,46 B. Carls,25 D. Carlsmith,60 R. Carosi,47a S. Carrillo,19,a S. Carron,34 B. Casal,12 M. Casarsa,18 A. Castro,6b,6a P. Catastini,47c,47a D. Cauz,53b,55a V. Cavaliere,47a M. Cavalli-Sforza,4 A. Cerri,29 L. Cerrito,31,q S. H. Chang,62 Y. C. Chen,1 M. Chertok,8 G. Chiarelli,47a G. Chlachidze,18 F. Chlebana,18 K. Cho,62 D. Chokheli,16 J. P. Chou,23 G. Choudalakis,33 S. H. Chuang,53 K. Chung,18,p W. H. Chung,60 Y. S. Chung,50 T. Chwalek,27 C. I. Ciobanu,45 M. A. Ciocci,47a A. Clark,21 D. Clark,7 G. Compostella,44a M. E. Convery,18 J. Conway,25 G. Cordone,20 G. Cortiana,17,a 44b,44a C. A. Cox,8 D. J. Cox, F. Crescioli,18 C. Cuenca Almenar,6w J. Cuevas,12,a R. Culbertson,17 J. C. Cully,35 D. Dagenhart,18 M. Datta,17 T. Davies,22 P. de Barbaro,50 S. De Cecco,52a A. Deisher,20 G. De Lorenzo,4 M. Dell’Orso,47h,c 47a C. Deluca,4 L. Demortier,51 J. Deng,103 PRL 103, 091803 (2009) PHYSICAL REVIEW LETTERS week ending 28 AUGUST 2009
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (WW, WZ, or ZZ) in $p \bar{p}$ collisions has been observed in the fully leptonic final states at the Fermilab Tevatron collider [1,2]. Diboson production has not yet been conclusively observed in $p \bar{p}$ collisions in decay channels involving hadrons [3]; however, evidence for diboson decays into an $l\nu q\bar{q}^{(0)}$ final state ($l = e, \mu, \tau$; $q = u, d, s, c, b$) has been recently presented by the D0 collaboration [4].

Measurements of diboson production cross sections provide tests of the self-interactions of the gauge bosons. Deviations from the standard model (SM) prediction for the production rates could indicate new physics [5,6]. Furthermore, given that diboson production is topologically similar to associated Higgs boson production, $p \bar{p} \rightarrow VH + X (V = W, Z)$, the analysis techniques described in this Letter are important for Higgs boson searches.

Here, we present the first observation at a hadron collider of diboson production with one boson decaying into leptons and the other into hadrons. The analysis is performed on a sample of events with large transverse momentum imbalance (E_T) and two jets whose invariant mass can be reconstructed. This signature is sensitive not only to $l\nu q\bar{q}^{(0)}$, but also to $\nu \bar{\nu} q\bar{q}^{(0)}$ decays because we do not explicitly require presence of identified charged leptons. The limited dijet mass resolution results in a significant overlap of the $W \rightarrow q\bar{q}^*$ and the $Z \rightarrow q\bar{q}$ dijet mass peaks, and therefore the combination of the three diboson signals, WW, WZ, and ZZ, is considered.

We analyze a dataset of $p \bar{p}$ collisions corresponding to an integrated luminosity of 3.5 fb$^{-1}$ collected with the CDF II detector at the center-of-mass energy of 1.96 TeV. The CDF II detector is described in detail elsewhere [7]. The detector is cylindrically symmetric around the proton beam axis which is oriented in the positive z direction. The polar angle, θ, is measured from the origin of the coordinate system at the center of the detector with respect to the z axis. The pseudorapidity, transverse energy, and transverse momentum are defined as $\eta = - \ln(\tan(\theta/2))$, $E_T = E \sin(\theta)$, and $p_T = p \sin(\theta)$, respectively. The central and plug calorimeters, which, respectively, cover the pseudorapidity regions of $|\eta| < 1.1$ and $1.1 < |\eta| < 3.6$, surround the tracking system with a projective tower geometry. The missing E_T is defined by $\not{E}_T = - \sum E_T \hat{n}_i$, where \hat{n}_i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. The sum E_T is defined by $\sum E_T = \sum E_T'$. Both sums are over all calorimeter towers with $E_T > 100$ MeV.

The diboson signal (WW, WZ, and ZZ) is simulated using the PYTHIA V6.2 Monte Carlo generator [8]. The most significant backgrounds to the diboson signal are $W(l\nu) +$ jets, $Z(l\nu\bar{\nu}) +$ jets, and QCD multijet production (in the following referred to as multijet background or MJB). Other less significant backgrounds include $Z(ll) +$ jets, $t\bar{t}$, and single t-quark production. The $W +$ jets backgrounds are simulated using the fixed-order matrix element generator ALPGEN V2.1 [9] which is interfaced with PYTHIA V6.3 to simulate parton showering and fragmentation, the underlying event, and additional $p \bar{p}$ interactions in the same bunch crossing. The $Z +$ jets and t-quark production processes are simulated with PYTHIA V6.2. The detector response in all Monte Carlo samples is modeled by a GEANT-based CDF II detector simulation [10]. The MJB does not typically result in signatures of large intrinsic E_T. However, when jet energy is not measured accurately, an event may be reconstructed with large E_T and pass the analysis selection criteria. Because of the large multijet production rate, this can still be a significant background in a $E_T > 50$ GeV analysis. The MJB is determined from the data. All other background predictions are normalized using next-to-leading-order (NLO) calculations for SM cross sections.

The selection of signal proceeds as follows: first events are selected by a set of hardware triggers, then a series of analysis cuts reduces the backgrounds, and finally the signal is extracted using a minimization of a fitting procedure. The hardware triggers have benefited significantly from the calorimeter trigger upgrade completed in 2007 [11]. The majority (94%) of events satisfy the inclusive E_T trigger, which requires $E_T > 45$ GeV. Jets are reconstructed in the calorimeter using the JETCLU cone algorithm [12] with a cone radius of 0.4 in (η, ϕ) space. We select events that have $E_T > 60$ GeV and exactly two reconstructed jets with $E_T > 25$ GeV and $|\eta| < 2.0$. This ensures a trigger efficiency of 96% ± 2% on signal. We search for diboson production in the dijet mass range $40 < M_{jj} < 160$ GeV/c^2. The lower edge of the mass range is chosen to ensure that events are on the trigger efficiency plateau with respect to dijet mass. In addition to the requirements discussed above, the electromagnetic fraction of the total energy for each of the two jets is required to
be less than 90% to ensure that electrons and photons are not counted as jets.

In order to suppress the MJB, we use a E_T resolution model to distinguish true E_T originating from undetected neutrinos from fake E_T due to jets that are not measured accurately. The E_T significance is a dimensionless quantity based on the energy resolution of the jets, on soft unclustered particles, and on the event topology. The E_T significance is typically low when E_T arises from mismeasurement. In addition to having a small significance, the E_T will often be aligned with a jet. We select events with E_T significance larger than 4 and azimuthal angle between E_T and the nearest jet ($\Delta \phi_{E_T}^{\text{jet}}$) greater than 0.4 radians.

Finally, we apply several requirements that suppress contamination due to cosmic-ray, beam-related, and other noncollision backgrounds. Events are required to have at least one reconstructed vertex formed by charged particle tracks. The transverse energies of all calorimeter towers are calculated with respect to the z position of the primary vertex with the largest $\sum p_T$ of associated tracks. The electromagnetic fraction of the total event energy has to be larger than 30% in order to reduce beam-related backgrounds. The arrival time of both leading jets as measured by the electromagnetic shower timing system [13] has to be consistent with the $p\bar{p}$ collision time. The remaining noncollision background has a smooth M_{jj} distribution and accounts for less than 0.2% of the final number of selected events. After all cuts were applied, we find 44,910 events in the final sample.

The shape and normalization of the MJB are determined from the data. A vector, \mathbf{p}_T, analogous to the calorimeter-based E_T, is constructed from the vector sum of the transverse momenta of particles measured in the tracking system, and is largely uncorrelated to E_T for events where jets are not reconstructed accurately. In the absence of E_T arising from mismeasurement in the calorimeter, the E_T and \mathbf{p}_T will be aligned in most events. The MJB is expected to be the dominant background component at larger values of $\Delta \phi(E_T, \mathbf{p}_T)$. The dijet mass shape and normalization for the remaining MJB contribution in the sample is found by selecting events with $\Delta \phi(E_T, \mathbf{p}_T) > 1.0$ and subtracting out the non-MJB backgrounds. The normalization is scaled up to account for the MJB contamination in the region $\Delta \phi(E_T, \mathbf{p}_T) < 1.0$. The shape of the MJB is fit to an exponential in M_{jj} to derive a dijet mass template. The MJB shapes of M_{jj} and $\Delta \phi(E_T, \mathbf{p}_T)$ distributions are verified with a large statistics MC sample.

The signal extraction is performed using a minimization of the unbinned extended negative log likelihood with the ROOFIT program [14]. Three M_{jj} template distributions are used in the fit: the first is $V + \text{jets}$ and $t\bar{t}$-quark production [in the following referred to as “electroweak” (EWK) backgrounds] and is taken from Monte Carlo simulation; the second is the MJB template, where the slope and normalization are Gaussian constrained to their previously measured values; the third template describes the signal. The signal shape is comprised of the WW, WZ, and ZZ distributions. This template is obtained from a Gaussian + polynomial fit to the signal Monte Carlo simulation where the mean and the width of the Gaussian distribution are linearly dependent on the jet energy scale (JES).

To assess the effect of systematic uncertainties on the measurement, we address separately two classes of sources: those that affect the signal extraction procedure and those that affect the signal acceptance in the cross section calculation. The signal extraction systematic uncertainties come from uncertainties in signal and background shapes. The shape uncertainties take into account the effect of jet energy resolution (JER), JES, MJB shape, and the shape of the EWK background. The jet energy scale and the shape and the normalization of MJB are treated as nuisance parameters in the fit and Gaussian constrained to their independently measured values. These uncertainties are therefore accounted for in the statistical uncertainty of the extraction.

The shape uncertainty for the EWK background is determined by using $\gamma + \text{jets}$ data [15] as an alternative background model in the M_{jj} fit. All major non-MJB backgrounds include a gauge boson accompanied by jets. There are similarities between the $\gamma + \text{jets}$ and $V + \text{jets}$ production; however, due largely to the mass difference between the γ and the W/Z, the kinematics is not identical. To take this into account, the $\gamma + \text{jets}$ data are weighted by the ratio of the dijet mass distributions of the EWK background MC samples to $\gamma + \text{jets}$ PYTHIA MC sample. We use these adjusted $\gamma + \text{jets}$ data to determine a systematic uncertainty on the EWK M_{jj} template. Selection cuts applied to the $\gamma + \text{jets}$ events are not identical to those applied to the $E_T + \text{jets}$ sample. For example, the Z decay into neutrinos will register as E_T in the detector, while the photon E_T will be measured in the calorimeter. For this reason, we cut on the vector sum of the photon E_T and any E_T present in $\gamma + \text{jets}$ events at 60 GeV, treating this sum as analogous to E_T in $V + \text{jets}$ events. A further consideration in the construction of the $\gamma + \text{jets}$ template is the effect of $\gamma + V$ events, as these events will cause a peak in the $\gamma + \text{jets}$ dijet mass distribution. We subtract this contribution using the $\gamma + V$ PYTHIA sample. Finally, we perform two signal extraction fits using the default EWK and $\gamma + \text{jets}$ templates, respectively. The uncertainty due to the shape of the EWK background is then estimated as the difference in the results obtained from these two fits. The described method accounts for a combined effect of JES, JER, and modeling of jets in MC simulations on the EWK M_{jj} template.

The uncertainty associated with the JES is the dominant source of systematic uncertainty on the acceptance and,
therefore, the cross section. Other less significant sources of systematic uncertainty that affect the measured cross section are jet energy resolution, initial and final state radiation (ISR/FSR), and parton distribution functions (PDF). A summary of all sources of systematic uncertainty is presented in Table I.

The measured yields for signal and backgrounds are given in Table II. Based on the MC simulation, the acceptances for the WW, WZ, and ZZ production is 2.5%, 2.6%, and 2.9%, respectively. In the calculation of the combined diboson cross section, we assume that each signal process contributes proportionally to its predicted SM cross section: 11.7 pb for WW, 3.6 pb for WZ, and 1.5 pb for ZZ.

The number of signal events we extract $1516 \pm 239 \text{ (stat)}$ corresponds to a cross section of $18.0 \pm 2.8 \text{ (stat)} \pm 2.4 \text{ (syst)} \pm 1.1 \text{ (lumi)}$ pb, in agreement with the SM prediction of 16.8 ± 0.5 pb obtained using the MCFM V5.4 program [16] with CTEQ6.1M PDFs [17].

Figure 1 shows a comparison between the observed $\Delta \phi_{\mathbb{E}_{T}}$ distribution and the MJB and EWK (signal + background) components. This distribution provides a strong consistency check on our MJB model. Figure 2 shows the fit result and a comparison between the expected signal and data after background subtraction.

In summary, we use the $\mathbb{E}_{T} +$ jets final state to measure the $WW + WZ + ZZ$ cross section in $p\bar{p}$ collisions at

Table I. The systematic uncertainties and their effect on the number of extracted signal events, the acceptance, and the cross section. All systematics are added in quadrature.

Systematic	% uncert.
Extraction	
EWK shape	7.7
Resolution	5.6
Total extraction	9.5
JES	8.0
JER	0.7
Acceptance	
\mathbb{E}_{T} resolution model	1.0
Trigger inefficiency	2.2
ISR/FSR	2.5
PDF	2.0
Total acceptance	9.0
Total systematics	13.1
Luminosity	5.9
Total	14.4

Table II. Value of parameters in the model used to fit the M_{jj} distribution. $1516 \pm 239 \text{ (stat)}$ signal events are extracted from the 44.910 data events which pass our selection cuts. The jet energy scale is also extracted from the fit and agrees well with the default value (1.0) as measured from calibrations.

Parameter	Fitted value
Jet energy scale, JES	0.985 ± 0.019
Yield of EWK background events	36, 140 ± 1230
Yield of MJB events	7249 ± 1130
Yield of diboson candidates	1516 ± 239

FIG. 1 (color online). Data compared with the sum of the predicted EWK and MJB backgrounds for the $\Delta \phi_{\mathbb{E}_{T}}$ variable. The band represents the total systematic uncertainty on the background. The measured signal is included here in the EWK contribution.

FIG. 2 (color online). Top: Comparison between data and fitted background only. The measured signal is shown unstacked. The band represents the systematic uncertainty due to the shape of EWK background as described in the text. Bottom: Comparison of the diboson signal (solid line) with the background-subtracted data (points). The dashed lines represent the ±1σ statistical variations on the extracted signal. The gray band represents the systematic uncertainty due to the EWK shape.
\(\sqrt{s} = 1.96 \text{ TeV} \) to be \(18.0 \pm 2.8 \text{(stat)} \pm 2.4 \text{(syst)} \pm 1.1 \text{(lumi)} \text{ pb}. \) This is consistent with the SM prediction of \(16.8 \pm 0.5 \text{ pb}. \) To assess the strength of the observed signal, the effects of parameter variations due to all relevant sources of uncertainty are studied by comparing the likelihood of the background-only fit with the full fit result, and converting the difference into significance numbers. We thus measure that the signal corresponds to a significance of at least 5.3 standard deviations from the background-only hypothesis. This is the first time the vector boson pair production has been observed in a hadronic final state at the Tevatron collider.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Foundation of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation; the Academy of Finland; the Ministerio de Educación, Cultura, Sports, Science and Technology of Spain; the Czech Science Foundation; the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\[\text{References} \]

[1] D. Acosta et al. (CDF collaboration), Phys. Rev. Lett. \textbf{94}, 211801 (2005); A. Abulencia \textit{et al.}, \textit{ibid.} \textbf{98}, 161801 (2007); T. Aaltonen \textit{et al.}, \textit{ibid.} \textbf{100}, 201801 (2008).
[2] V. M. Abazov \textit{et al.} (D0 collaboration), Phys. Rev. Lett. \textbf{94}, 151801 (2005); Phys. Rev. D \textbf{76}, 111104(R) (2007).
[3] T. Aaltonen \textit{et al.} (CDF collaboration), Phys. Rev. D \textbf{76}, 111103 (2007).
[4] V. M. Abazov \textit{et al.} (D0 collaboration), Phys. Rev. Lett. \textbf{102}, 161801 (2009).
[5] K. Hagiwara \textit{et al.}, Nucl. Phys. B\textbf{282}, 253 (1987).
[6] M. Kober, B. Koch, and M. Bleicher, Phys. Rev. D \textbf{76}, 125001 (2007).
[7] A. Abulencia \textit{et al.} (CDF collaboration), J. Phys. G \textbf{34}, 2457 (2007).
[8] T. Sjostrand \textit{et al.}, Comput. Phys. Commun. \textbf{135}, 238 (2001).
[9] M. L. Mangano \textit{et al.}, J. High Energy Phys. \textbf{07} (2003) 001.
[10] G. Gerchtein and M. Paulini, eConf C0303241, TUMT005 (2003).
[11] A. Bhatti \textit{et al.}, IEEE Trans. Nucl. Sci. \textbf{56}, 1685 (2009).
[12] A. F. Abe \textit{et al.} (CDF collaboration), Phys. Rev. D \textbf{45}, 1448 (1992).
[13] M. Goncharov \textit{et al.}, Nucl. Instrum. Methods Phys. Res., Sect. A \textbf{565}, 543 (2006).
[14] W. Verkerke and D. Kirby, arXiv:physics/0306116.
[15] F. Abe \textit{et al.} (CDF collaboration), Phys. Rev. Lett. \textbf{81}, 1791 (1998) contains standard photon identification criteria.
[16] J. M. Campbell and R. K. Ellis, Phys. Rev. D \textbf{60}, 113006 (1999).
[17] J. Pumplin \textit{et al.}, J. High Energy Phys. \textbf{07} (2002) 012.