Hydrodynamic limit
of the Robinson–Schensted–Knuth algorithm

Mikołaj Marciniak

Abstract. We investigate the evolution in time of the position of a fixed number in the insertion tableau when the Robinson–Schensted–Knuth algorithm is applied to a sequence of random numbers. When the length of the sequence tends to infinity, a typical trajectory after scaling converges uniformly in probability to some deterministic curve.

Keywords: RSK algorithm, bumping route, random Young tableaux, limit shape

1 Introduction

The final published version of this manuscript can be found in [Mar22].

1.1 Notations

A partition of a natural number \(n \) is a break up of \(n \) into a sum \(n = \lambda_1 + \lambda_2 + \cdots + \lambda_k \) where \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0 \) are positive integer numbers. The vector \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \) is usually used to denote a partition. Let \(\lambda \vdash n \) denote that \(\lambda \) is a partition of a number \(n \). A Young diagram \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \) is a finite collection of boxes arranged in left-justified rows with the row length \(\lambda_j \) of the \(j \)-th row. Thus the Young diagram \(\lambda \) is a graphical interpretation of the partition \(\lambda \). A Young tableau is a Young diagram filled with numbers. If the entries strictly decrease along each column from top to bottom and weakly increase along each row from left to right, a tableau is called semistandard. A standard Young tableau is a semistandard Young tableau with \(n \) boxes which contains all numbers \(1, 2, \ldots, n \). Figure 1 shows examples of a Young diagram and of a standard Young tableau.

The Robinson–Schensted–Knuth algorithm RSK is a bijective algorithm which takes a finite sequence of numbers of length \(n \) as the input and returns a pair of Young tableaux

*marciniak@mat.umk.pl. Mikołaj Marciniak was partially supported by Narodowe Centrum Nauki, grant number 2017/26/A/ST1/00189 and Narodowe Centrum Badań i Rozwoju, grant number POWR.03.05.00-00-Z302/17-00.
(P, Q) with the same shape \(\lambda \vdash n \). The semistandard tableau \(P \) is called an insertion tableau, and the standard tableau \(Q \) is called a recording tableau. In particular, the RSK algorithm assigns to any permutation \(\sigma \) a pair \((P, Q) \) of standard Young tableaux. A detailed description of the RSK algorithm can be found in [Rom15, Chapter 1.6].

The RSK algorithm is based on applying the insertion step to successive numbers from a given finite sequence \(\{X_j\}_{j=1}^n \). The insertion step takes as input the previously obtained tableau \(P(X_1, X_2, \ldots, X_{j-1}) \) and the next number \(X_j \) from the sequence. It produces as the output a new tableau \(P(X_1, X_2, \ldots, X_j) \) with shape “increased” by one box; this tableau is obtained in the following way, see Figure 2. The RSK-insertion step starts in the first row with the number \(x := X_j \). The insertion step consists of inserting the number \(x \) into the leftmost box in this row containing a number \(y \) greater than \(x \). We then move to the next row with the number \(y \) and repeat the action. At some row we are forced to insert the number at the end of the row, which will end the insertion step. The collection of rearranged boxes is called the bumping route.

We can say that the boxes with numbers are moved along the bumping route during an RSK insertion step.

1.2 Motivations

The RSK algorithm is an important tool in algebraic combinatorics, especially in the context of Littlewood–Richardson coefficients and the plactic monoid [FH91, Lecture 4].

For many years mathematicians have been studying the asymptotic behavior of the insertion tableau when we apply the Robinson–Schensted–Knuth algorithm to a random input. In the following paragraphs we will see several examples of such considerations.

The Ulam–Hammersley problem [Rom15, Chapter 1.1] concerns the typical length of the longest increasing subsequence in a random permutation. This problem corresponds to the problem of finding the typical length of the first row in the Young tableau obtained

\begin{figure}[h]
\centering
\begin{subfigure}{0.4\textwidth}
\centering
\begin{tikzpicture}
\draw (0,0) grid (2,2);
\end{tikzpicture}
\caption{(a) The Young diagram of shape \((4, 3, 2) \vdash 9\) and (b) a standard Young tableau of shape \((4, 3, 2) \vdash 9\).}
\end{subfigure}
\end{figure}
by the RSK algorithm from the sequence of independent random variables \(\{X_j\}_{j=1}^n \) with the uniform distribution \(U(0,1) \) on the unit interval \((0,1)\).

More generally, the RSK algorithm applied to the sequence of independent and identically distributed random variables with the uniform distribution \(U(0,1) \) on the unit interval \((0,1)\) generates the \textit{Plancherel measure} on Young diagrams [Rom15, Chapter 1.8]. The Plancherel measure is an important element of the representation theory of the symmetric groups because it describes how the left regular representation decomposes into irreducible components [FH91, Chapter 3.3].

Logan and Shepp [LS77] and Vershik and Kerov [KV86] described the limit shape of the insertion tableau \(P(X_1, X_2, \ldots, X_n) \) obtained when we apply the RSK algorithm to a random finite sequence.

Romik and Śniady [RŚ16] considered the limit shape of the bumping routes obtained when applying an RSK insertion step with a fixed number \(w \) to an existing insertion tableau \(P(X_1, X_2, \ldots, X_n) \) obtained from a random finite sequence. In [RŚ15] they also considered the limit shape of \textit{jeu de taquin} obtained from the recording tableau \(Q(w, X_1, X_2, \ldots, X_n) \) made from a random finite sequence preceded by a fixed number \(w \).

1.3 The main problem

This paper concerns the asymptotic behavior of the insertion tableau when we apply the RSK algorithm to a random input. \textit{What can we say about the evolution over time of the insertion tableau from the viewpoint of box dynamics, when we apply the RSK algorithm to a sequence of independent random variables with the uniform distribution \(U(0,1) \)? How do the boxes move in the insertion tableau? If we investigate the scaled position of a box with a fixed number, will we get a deterministic limit, when the number of boxes tends to infinity?}

![Figure 2: (a) The original tableau \(P \). (b) The highlighted boxes form the bumping route which corresponds to an insertion of the number 18. The numbers next to the arrows indicate the bumped numbers. (c) The output of the RSK insertion step.](image)
More specifically, we consider the insertion tableau \(P(X_1, X_2, \ldots, X_n, w, X_{n+1}, \ldots, X_m) \) obtained by applying the RSK algorithm to a random finite sequence containing a fixed number \(w \) at some index. The box with this fixed number \(w \) is being bumped by the RSK insertion step along the bumping routes. We will describe the scaled limit position of the box with the number \(w \) depending on the ratio of the numbers \(m \) and \(n \). This problem was also stated by Duzhin [Duz19].

Our main result for describing the scaled limit position is Theorem 2. A proof of Theorem 2 is given in Section 3.

2 Tools

2.1 The function \(G(x) \)

Following Romik and Śniady in [RŚ15, Chapter 5.1] we define the functions \(F_{SC}, \Omega_\star, u, v \) needed to describe the macroscopic position of the new box in the RSK insertion step and additionally the function \(G \)

\[
F_{SC}(y) = \frac{1}{2} + \frac{1}{\pi} \left(\frac{y\sqrt{4-y^2}}{4} + \sin^{-1}\left(\frac{y}{2}\right) \right) \quad (-2 \leq y \leq 2),
\]

\[
\Omega_\star(y) = \frac{2}{\pi} \left(\sqrt{4-y^2} + y\sin^{-1}\left(\frac{y}{2}\right) \right) \quad (-2 \leq y \leq 2),
\]

\[
u(x) = F_{SC}^{-1}(x)
\]

\[
u(x) = \Omega_\star(u(x))
\]

\[
G(x) = \left(\frac{\nu(x) + u(x)}{2}, \frac{\nu(x) - u(x)}{2} \right) \quad (0 \leq x \leq 1).
\]

The function \(F_{SC} \) is the cumulative distribution function of Wigner’s semicircle distribution. The function \(\Omega_\star \) is the limit shape of the Young tableau sampled from the Plancherel measure. This curve is called the Logan–Shepp–Vershik–Kerov curve [LS77, KV86]. The function \(x \mapsto (u(x), v(x)) \) is a special parameterisation of the function \(\Omega_\star \) and describes the limit position of the new box in the RSK insertion step applied with the number \(x \) to the random Young tableau [RŚ15, Chapter 5.1]. The continuous function \(G: [0, 1] \to \mathbb{R}_+^2 \) is the function \((u(x), v(x)) \) rotated by 45 degrees (see [RŚ15, Chapter 5.1]). Figure 3 shows the graph of the function \(G: [0, 1] \to \mathbb{R}_+^2 \).
2.2 The result of Romik and Śniady

In the proof of Theorem 2 we will need the following result of Romik and Śniady [RS15, Theorem 5.1].

Let \(\{X_j\}_{j=1}^{\infty} \) be a sequence of independent random variables with the uniform distribution \(U(0, 1) \). Let \(\Box_n(x) \in \mathbb{N}^2 \) denote the position of the box with the maximal number in the recording tableau \(Q(X_1, \ldots, X_n, x) \) when we apply the RSK insertion step for the number \(x \in [0, 1] \) to the previously obtained tableau \(P(X_1, \ldots, X_n) \).

Theorem 1. For each \(x \in [0, 1] \) the position \(\Box_n(x) \), after scaling by \(\frac{1}{\sqrt{n}} \), converges in probability to a specific point \(G(x) \in \mathbb{R}_+^2 \), when \(n \) tends to infinity:

\[
\frac{\Box_n(x)}{\sqrt{n}} \overset{p}{\to} G(x).
\]

2.3 The partial order on the plane

We define the partial order \(\prec \) on the plane as follows: \((x_1, y_1) \prec (x_2, y_2) \) if and only if \(x_1 \leq x_2 \) and \(y_1 \geq y_2 \).

For example the function \(G \) is increasing with respect to the relation \(\prec \), i.e. if \(x_1 \leq x_2 \) then \(G(x_1) \prec G(x_2) \). Likewise, as each row of the insertion tableau is non-decreasing, for each natural number \(n \in \mathbb{N} \) the function \(\Box_n \) is increasing with respect to the relation \(\prec \), i.e. if \(x_1 \leq x_2 \) then \(\Box_n(x_1) \prec \Box_n(x_2) \).
2.4 The random increasing sequence

Let $w \in (0, 1]$ be a fixed number and let $\{X'_j\}_{j=1}^{m'}$ be a finite sequence of independent random variables with the uniform distribution $U(0, 1]$. For $j \in \{1, 2, \ldots, m'\}$ we define $z(j)$ as the j-th order statistic, i.e. the j-th smallest number among $X'_1, X'_2, \ldots, X'_{m'}$. The sequence $\{z(j)\}_{j=1}^{m'}$ contains all elements of the sequence $\{X'_j\}_{j=1}^{m'}$ in the ascending order. The sequence $\{z(j)\}_{j=1}^{m'}$ will be called a random increasing sequence with the uniform distribution on the interval $[0, w]$.

In addition, the sequence $\{X'_j\}_{j=1}^{m'}$ is some permutation $\Pi = (\Pi_1, \Pi_2, \ldots, \Pi_{m'})$ of the sequence $\{z(j)\}_{j=1}^{m'}$. Thus

$$\left\{X'_j\right\}_{j=1}^{m'} = \left\{z(\Pi_j)\right\}_{j=1}^{m'} = z \circ \Pi,$$

where z is the function that acts pointwise on every element of the permutation Π. The permutation Π is a random permutation with the uniform distribution. We see that a finite sequence of independent random variables with the uniform distribution $U(0, w)$ has the same distribution as a finite random increasing sequence with the uniform distribution on the interval $[0, w]$ permuted by a random permutation with the uniform distribution.

3 The main result

3.1 Statement of Main Result

Our main result is Theorem 2 describing the asymptotic behavior of the box with a fixed number. It states that when the number of boxes tends to infinity then the (scaled down) trajectory of the box converges in probability to the curve $H: [1, \infty) \to \mathbb{R}_+^2$ given by

$$H(T) := \sqrt{T} G \left(\frac{1}{T} \right).$$

The same curve H also happens to be the limit shape of the bumping routes [RŚ16] in the RSK algorithm. Figure 4 shows the graph of the curve H and the experimentally determined trajectory of the box with the number $w = 0.5$.

More specifically, let $w \in (0, 1]$ be a fixed number. Let $\{X_j\}_{j=1}^{\infty}$ be a sequence of independent random variables with the uniform distribution $U(0, 1)$ on the unit interval $[0, 1]$. For every $n \in \mathbb{N}$ we define the function $\text{Pos}_n : \{n+1, n+2, \ldots\} \to \mathbb{N}^2$ by:

$$\text{Pos}_n (j) = \text{box}_w \left(P (X_1, \ldots, X_n, w, X_{n+1}, \ldots, X_j) \right)$$
Figure 4: (a) The initial shape of the insertion tableau \(P(X_1, \ldots, X_n, w) \) immediately after the new box with the number \(w \) was added (the highlighted box in the bottom row) for \(n = 400 \) and \(w = 0.5 \). (b) The shape of the insertion tableau \(P(X_1, \ldots, X_n, w, X_{n+1}, \ldots, X_{\lfloor Tn \rfloor}) \) at the time parameter \(T = 2 \). The highlighted boxes indicate the trajectory of the box with the number \(w \). The red smooth curve is the plot of \(H \). (c) Analogous picture for \(T = 3 \).

for \(j \in \{n + 1, n + 2, \ldots\} \), where for a tableau \(P \) we denote by \(\text{box}_w(P) \in \mathbb{N}^2 \) the coordinates of the box with the number \(w \).

Theorem 2. Let \(R \in (1, \infty) \) be a real number. For each number \(T \in [1, R] \) the random variable \(\text{Pos}_n(\lfloor Tn \rfloor) \), after scaling by \(\frac{1}{\sqrt{wn}} \), converges in probability to \(H(T) \), when \(n \) tends to infinity. Moreover, the convergence is uniform, i.e. for each \(\epsilon > 0 \)

\[
\lim_{n \to \infty} \mathbb{P} \left(\sup_{T \in [1,R]} \left\| \frac{\text{Pos}_n(\lfloor Tn \rfloor)}{\sqrt{wn}} - H(T) \right\| > \epsilon \right) = 0.
\]

3.2 The strategy of the proof of Theorem 2

The proof will be presented in consecutive subsections of this section. Here we present a sketch of the proof.

First, we prove pointwise convergence in the following way.

- We reduce the case to numbers less than \(w \).
- We restrict our attention only to the permutation generated by the numbers.
We use the property of the RSK algorithm that the insertion tableau is equal to the recording tableau of the inverse permutation.

We return to the sequence of numbers from the interval $[0, 1]$.

We apply the Romik-Sniady result about bumping routes to deduce the pointwise convergence.

Second, using Dini’s second theorem we prove the uniform convergence.

3.3 Pointwise convergence

First, we prove only pointwise convergence, i.e. we prove that for each number $T \in [1, \infty)$ and for each $\epsilon > 0$

$$
\lim_{n \to \infty} \mathbb{P} \left(\left\| \frac{\text{Pos}_n \left(\lfloor Tn \rfloor \right)}{\sqrt{wn}} - H(T) \right\| > \epsilon \right) = 0.
$$

Proof. We apply the RSK algorithm to a random sequence of real numbers containing the number w and investigate the position of the box with the number w in the insertion tableau. Any insertion step applied to a number greater than w does not change the position of the number w in the tableau, so it is enough to consider only the subsequence containing numbers not greater than w.

Now we will use this observation in the proof. Let $m = \lfloor Tn \rfloor$. The probability that the same number occurs twice in the sequence (w, X_1, X_2, \ldots) is equal to 0, hence without losing generality we assume that the numbers w, X_1, X_2, \ldots are all different. Let $\{X'_j\}_{j=1}^{\infty}$ be the subsequence of the sequence $\{X_j\}_{j=1}^{\infty}$ containing all elements of the sequence $\{X_j\}_{j=1}^{\infty}$ which are less than w. The sequence $\{X'_j\}_{j=1}^{\infty}$ is a sequence of independent random variables with the uniform distribution $U(0, w)$.

Let $n' = n'(n)$ and $m' = m'(n)$ denote the number of elements, respectively, of the sequences $\{X_j\}_{j=1}^{n}$ and $\{X_j\}_{j=1}^{m}$ which are smaller than w. Then there is an equality:

$$
\text{Pos}_n \left(\lfloor Tn \rfloor \right) = \text{box}_w \left(P \left(X_1, \ldots, X_n, w, X_{n+1}, \ldots, X_m \right) \right) = \text{box}_w \left(P \left(X'_1, \ldots, X'_{n'}, w, X'_{n'+1}, \ldots, X'_{m'} \right) \right).
$$

The random variable $n' = \sum_{j=1}^{n} [X_j < w]$ counts how many numbers from the sequence $\{X_j\}_{j=1}^{n}$ are smaller than w, so n' is a random variable with the binomial distribution with parameters n and w. We denote it $n' \sim B(n, w)$. Likewise, the random variable $m' - n'$ counts how many numbers from the sequence $\{X_j\}_{j=n+1}^{m}$ are smaller than w, so
\(m' - n' \sim B(m - n, w)\). Moreover, the random variables \(n'\) and \(m' - n'\) are independent, because the random variables \(X_1, X_2, \ldots\) are independent.

From the Strong Law of Large Numbers [Dur19, Theorem 2.4.1] we know that if \(n\) tends to infinity then the following limits exist almost surely:

\[
\lim_{n \to \infty} \frac{n'}{n} = \mathbb{E}[X_j < w] = \mathbb{P}(X_j < w) = w,
\]
\[
\lim_{n \to \infty} \frac{m' - n'}{m - n} = \mathbb{E}[X_j < w] = \mathbb{P}(X_j < w) = w.
\]

Therefore, also the following limits exist almost surely

\[
\lim_{n \to \infty} \frac{m'}{n'} = 1 + \lim_{n \to \infty} \frac{m' - n'}{n'} = 1 + \lim_{n \to \infty} \frac{m - n}{n} = T
\]

and

\[
\lim_{n \to \infty} \frac{m'}{n} = \lim_{n \to \infty} \frac{m'}{n'} = wT.
\]

We define the function \(z : \{1, 2, \ldots, m'\} \cup \{m' + 1, n' + \frac{1}{2}\} \to [0, 1]\) that assigns to a number \(j \in \{1, 2, \ldots, m'\}\), the \(j\)-th smallest number among \(X'_1, X'_2, \ldots, X'_{m'}\) and additionally \(z \left(m' + 1 \right) = w\) and \(z \left(n' + \frac{1}{2} \right) = \frac{z(n') + z(n' + 1)}{2}\).

From the property of the random increasing sequence with the uniform distribution (Section 2.4) we have:

\[
\left\{ X'_j \right\}_{j=1}^{m'} = \left\{ z(\Pi_j) \right\}_{j=1}^{m'} = z \circ \Pi,
\]

where \(\{z(j)\}_{j=1}^{m'}\) is a random increasing sequence with the uniform distribution on the interval \([0, w]\) and \(\Pi\) is a random permutation of range \(m'\) with the uniform distribution. The function \(z\) acts pointwise on every element of the permutation \(\Pi\). Similarly, the function \(z\) acts on the insertion tableau by acting on each box individually. The function \(z\) by acting on the input of the RSK algorithm changes pointwise the numbers in the insertion tableau, since the function \(z\) is increasing. Then

\[
\text{Pos}_{m'} = \text{box}_w \left(P \left(X'_1, \ldots, X'_n, w, X'_{n'+1}, \ldots, X'_{m'} \right) \right)
\]
\[
= \text{box}_w \left(P \left(z(\Pi_1), \ldots, z(\Pi_{n'}), w, z(\Pi_{n'+1}), \ldots, z(\Pi_{m'}) \right) \right)
\]
\[
= \text{box}_w \left(z \circ P \left(\Pi_1, \ldots, \Pi_{n'}, m' + 1, \Pi_{n'+1}, \ldots, \Pi_{m'} \right) \right)
\]
\[
= \text{box}_{m'+1} \left(P \left(\Pi_1, \ldots, \Pi_{n'}, m' + 1, \Pi_{n'+1}, \ldots, \Pi_{m'} \right) \right).
\]
We denote the inverse permutation to Π by $\Pi^{-1} = \left(\Pi^{-1}_1, \ldots, \Pi^{-1}_m \right)$ and we define the permutation
\[\Pi^\uparrow = \left(\Pi_1, \ldots, \Pi_{n'}, m' + 1, \Pi_{n'+1}, \ldots, \Pi_m \right) \]
as a natural extension of the permutation Π. Then $\Pi^\uparrow-1 = \left(\Pi^\uparrow_{1}^{-1}, \ldots, \Pi^\uparrow_{m'}^{-1} \right)$ where
\[\Pi^\uparrow_j^{-1} = \begin{cases}
\Pi^{-1}_j & \text{if} \; \Pi^{-1}_j \leq n', \\
\Pi^{-1}_j + 1 & \text{if} \; n' < \Pi^{-1}_j \leq m', \\
n' + 1 & \text{if} \; j = m' + 1.
\end{cases} \]

In addition, we will use the fact [Sch63] that for any permutation Π^\uparrow the insertion tableau of Π^\uparrow is equal to the recording tableau of the inverse permutation Π^\uparrow^{-1}:
\[P(\Pi^\uparrow) = Q\left(\Pi^\uparrow^{-1}\right). \]

Therefore
\[\text{Pos}_n(m) = \text{box}_{m'+1} \left(P(\Pi_1, \ldots, \Pi_{n'}, m' + 1, \Pi_{n'+1}, \ldots, \Pi_m) \right) = \text{box}_{m'+1} \left(Q\left(\Pi^\uparrow^{-1}\right) \right) = \text{box}_{m'+1} \left(Q\left(\Pi^\uparrow_{1}^{-1}, \ldots, \Pi^\uparrow_{m'}^{-1}, n' + 1 \right) \right). \]

We want to rewrite this in terms of $\square_n(x)$ so that we can apply Theorem 1. Now, by replacing the number $n'+1$ with the number $n'+\frac{1}{2}$ we get the inverse permutation Π^{-1}
\[\text{Pos}_n(m) = \text{box}_{m'+1} \left(Q\left(\Pi^\uparrow_{1}^{-1}, \ldots, \Pi^\uparrow_{m'}^{-1}, n' + 1 \right) \right) = \text{box}_{m'+1} \left(Q\left(\Pi^\uparrow_{1}^{-1}, \ldots, \Pi^\uparrow_{m'}^{-1}, n' + \frac{1}{2} \right) \right) = \text{box}_{m'} \left(Q\left(\Pi_{1}^{-1}, \ldots, \Pi_{m'}^{-1}, n' + \frac{1}{2} \right) \right). \]

Since the function z is increasing, when acting on the input of the RSK algorithm it will not change the content of the recording tableau. Using the function z, we will get a sequence of independent random variables with the uniform distribution $U(0,1)$. Indeed
Hydrodynamic limit of RSK

\[\text{Pos}_n(m) = \boxed{m'} \left(Q \left(\Pi^{-1}_1, \ldots, \Pi^{-1}_{m'}, n' + \frac{1}{2} \right) \right) \]

\[= \boxed{m'} \left(z \circ Q \left(\Pi^{-1}_1, \ldots, \Pi^{-1}_{m'}, n' + \frac{1}{2} \right) \right) \]

\[= \boxed{m'} \left(Q \left(z \left(\Pi^{-1}_1 \right), \ldots, z \left(\Pi^{-1}_{m'} \right), z \left(n' + \frac{1}{2} \right) \right) \right). \]

The permutation \(\Pi \) is a random permutation with the uniform distribution on \(S_n \), so \(\Pi^{-1} \) is also a random permutation with the uniform distribution on \(S_n \). If we act with a random permutation on a random increasing sequence with the uniform distribution we will get a sequence of independent random variables with the uniform distribution, thus the sequence

\[z \circ \Pi^{-1} = \left(z \left(\Pi^{-1}_1 \right), \ldots, z \left(\Pi^{-1}_{m'} \right) \right) \]

is a sequence of independent random variables with the uniform distribution \(U(0, w) \).

We define the random variable \(A_n \) and the sequence \(\{Y_j\}_{j=1}^{m'} \):

\[Y_j = \frac{z \left(\Pi^{-1}_j \right)}{w} \quad \text{for } j \in 1, 2, \ldots, m', \]

\[A_n = \frac{z \left(n' + \frac{1}{2} \right)}{w} = \frac{z(n') + z(n' + 1)}{2w}. \]

The sequence \(\{Y_j\}_{j=1}^{m'} \) is a sequence of independent random variables with the uniform distribution \(U(0, 1) \), and the random variable \(A_n \) converges almost surely to the limit \(A = \frac{1}{T} \):

\[\lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{z(n') + z(n' + 1)}{2w} \]

\[= \lim_{n \to \infty} \frac{z(n')}{w} + \lim_{n \to \infty} \frac{z(n' + 1) - z(n')}{2w} \]

\[= \lim_{n \to \infty} \frac{n'}{m'} + 0 \]

\[= \frac{1}{T}. \]
Therefore

\[
\text{Pos}_n (m) = \boxm_{m+1} \left(Q \left(z \left(\Pi_1^{-1}, \ldots, z \left(\Pi_m^{-1}, z \left(n' + \frac{1}{2} \right) \right) \right) \right) \right)
\]

\[
= \boxm_{m+1} \left(Q \left(\frac{z \left(\Pi_1^{-1} \right)}{w}, \ldots, \frac{z \left(\Pi_m^{-1} \right)}{w}, \frac{z \left(n' + \frac{1}{2} \right)}{w} \right) \right)
\]

\[
= \boxm_{m+1} \left(Q \left(Y_1, \ldots, Y_{m'}, A_n \right) \right)
\]

\[
= \square_{m'}(A_n).
\]

Let

\[
G_n(x) := \frac{\square_{m'}(x)}{\sqrt{Tnw}}.
\]

The function \(\square_{m'} \) is increasing with respect to the relation \(\prec \) (of Section 2.3). Hence \(G_n \) is also increasing with respect to the relation \(\prec \), i.e. if \(x_1 \leq x_2 \), then

\[
G_n(x_1) \prec G_n(x_2).
\] (3.1)

From Theorem 1 for each \(x \in [0, 1] \) the random variable \(G_n(x) \) converges in probability to the limit \(G(x) \), when \(n \) tends to infinity. Indeed

\[
G_n(x) = \sqrt{\frac{m'}{n} \frac{1}{Tw} \frac{\square_{m'}(x)}{\sqrt{m'}}} \xrightarrow{p} \sqrt{\frac{Tw}{Tn}} G(x) = G(x).
\]

\[\square\]

3.4 The uniform convergence on the interval

In this section we prove the uniform convergence on the interval \([1, R]\).

Proof. For each \(x \), the sequence \(G_n(x) \) converges in probability to the limit \(G(x) \), when \(n \) tends to infinity. Both coordinates of each function \(G_n(x) \) are monotonic and the limit function \(G(x) \) is continuous. Then from Dini’s second theorem we get that for each \(x \), the sequence \(G_n(x) \) converges uniformly in probability to the limit \(G(x) \), when \(n \) tends to infinity.

Since

\[
\|G_n(A_n) - G(A)\| \leq \|G_n(A_n) - G(A_n)\| + \|G(A_n) - G(A)\|
\]

the sequence \(G_n(A_n) \) converges uniformly in probability to the limit \(G(A) \), when \(n \) tends to infinity. Then for each \(A \in [1, R] \) and each \(\epsilon > 0 \) we have:

\[
\lim_{n \to \infty} \mathbb{P} \left(\sup_{A \in [\frac{1}{2}, 1]} \|G_n(A_n) - G(A)\| > \epsilon \right) = 0.
\]
Using the inequality $T \leq R$ we obtain

$$
\lim_{n \to \infty} \mathbb{P} \left(\sup_{A \in [\frac{1}{T}, 1]} \sqrt{T} \| G_n(A_n) - G(A) \| > \sqrt{R} \epsilon \right) = 0,
$$

$$
\lim_{n \to \infty} \mathbb{P} \left(\sup_{T \in [1, R]} \left\| \frac{\text{Pos}_n(\lfloor Tn \rfloor)}{\sqrt{wn}} - H(T) \right\| > \sqrt{R} \epsilon \right) = 0.
$$

Thus for each $\epsilon > 0$ we have

$$
\lim_{n \to \infty} \mathbb{P} \left(\sup_{T \in [1, R]} \left\| \frac{\text{Pos}_n(\lfloor Tn \rfloor)}{\sqrt{wn}} - H(T) \right\| > \epsilon \right) = 0.
$$

3.5 Further questions

Instead of one box with the number w we can simultaneously observe the position of r boxes. If r is finite, then Theorem 2 describes the hydrodynamic behavior of all r boxes. Is this also true if r goes to infinity?

The function H behaves asymptotically for $T \to \infty$ like the function $(\frac{1}{\sqrt{T}}, 2\sqrt{T})$. The function H describes the asymptotic position of the box with a fixed number w. The x-coordinate of this position after scaling tends to zero. If we did not scale it, would it also be similar? Will the box with the number w be moved to the first column? We expect that almost surely yes. How long will we have to wait for this? We expect that if the number w appears in the RSK algorithm after n steps, the waiting time for the number in the first column is $O(n^2)$. Is this really true? More formally, let $\{X_j\}_{j=1}^\infty$ be a sequence of independent random variables with the uniform distribution $U(0, 1)$. What is the probability that the box with a fixed number w will be in the first column in the insertion tableau $P(X_1, \ldots, X_n, w, X_{n+1}, \ldots, X_{\lfloor Tn^2 \rfloor})$ depending on parameter T?

Acknowledgments

I would like to thank my supervisor, Professor Piotr Śniady, for his support, understanding, patience, positive outlook, guidance, valuable advice, and useful and constructive recommendations during writing this article. I would like to thank also to Dr Jacinta Torres and Dr Stephen Moore for the help with the text editing.
References

[Dur19] Rick Durrett, *Probability—theory and examples*, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49, Cambridge University Press, Cambridge, 2019, Fifth edition of [MR1068527]. MR 3930614

[Duz19] Vasilii Duzhin, *Investigation of insertion tableau evolution in the Robinson-Schensted-Knuth correspondence*, Discrete and Continuous Models and Applied Computational Science 27 (2019), 316–324.

[FH91] William Fulton and Joe Harris, *Representation theory*, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. MR 1153249

[KV86] Sergei V. Kerov and Anatol M. Vershik, *The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm*, SIAM J. Algebraic Discrete Methods 7 (1986), no. 1, 116–124. MR 819713 (87e:22014)

[LS77] B. F. Logan and L. A. Shepp, *A variational problem for random Young tableaux*, Advances in Math. 26 (1977), no. 2, 206–222. MR 1417317 (98e:05108)

[Mar22] Mikolaj Marciniak, *Hydrodynamic limit of the Robinson–Schensted–Knuth algorithm*, Random Structures & Algorithms 60 (2022), 106–116.

[Rom15] Dan Romik, *The surprising mathematics of longest increasing subsequences*, Institute of Mathematical Statistics Textbooks, vol. 4, Cambridge University Press, New York, 2015. MR 3468738

[RŚ15] Dan Romik and Piotr Śniady, *Jeu de taquin dynamics on infinite Young tableaux and second class particles*, Ann. Probab. 43 (2015), no. 2, 682–737. MR 3306003

[RŚ16] ______, *Limit shapes of bumping routes in the Robinson-Schensted correspondence*, Random Structures Algorithms 48 (2016), no. 1, 171–182. MR 3432576

[Sch63] M. P. Schützenberger, *Quelques remarques sur une construction de Schensted*, Math. Scand. 12 (1963), 117–128. MR 0190017 (32 #7433)