Research Article

Guiying Li, Yueyao Jiang, Yingjun Li, Tong He, Ying Wang, Tianyi Ji, Wanchen Zhai, Lichun Zhao*, Xiaoping Zhou*

Analysis and Biological Evaluation of Arisaema Amuremse Maxim Essential Oil

https://doi.org/10.1515/chem-2019-0054
received June 11, 2018; accepted September 11, 2018.

Abstract: The chemical composition and antitumor activity of essential oil were compared for four parts of the Arisaema Amuremse Maxim. Chemical constituent of essential oil in every parts of Arisaema Amuremse Maxim was identified by GC-MS analysis systematically. Arisaema Amuremse Maxim had 114 kinds of essential oils. Tubers, petioles, leaves, and fruits were identified 53, 48, 5 and 21 species essential oil, respectively. The antiproliferative activity against Hep2, HCT-116, A549, SW480, HepG2 cell lines had been investigated by MTT assay. The essential oil of tubers, petioles, leaves and fruits all had strong antiproliferative activity. The IC50 was 19.60μg·mL⁻¹, 17.60μg·mL⁻¹, 23.80μg·mL⁻¹, and 30.23μg·mL⁻¹, respectively. Among them, the essential oil of tubers and petioles had stronger antitumor activity. The essential oil of tubers, petioles, leaves and fruits had strong antiproliferative activity. This study was of great significance to increase the medicinal parts of Arisaema Amuremse Maxim.

Keywords: Arisaema; Amuremese; Maxim essential oil; MTT.

1 Introduction

Arisaema Amuremese Maxim, also called aliased corn and snake corn, is traditional Chinese perennial herb medicine, mainly distributed in Heilongjiang, Jilin and Liaoning Provinces of China, as well as in Korea and Russia [1]. It is bitter in taste, pungent, warm, poisonous, and effects on fight swelling [2-3]. It can also be used to cure the dizziness, epilepsy, anti-tumor, coronary heart disease and inflammation [4-6]. Currently, there are not many reports on Arisaema Amuremese Maxim chemical components, mainly flavone glycosides, sterols, glycosides and brain esters, etc. As far as the essential oil of this plant was rarely studied, which chemical constituent is more complicated [7]. This essay concentrated on chemical constituent of essential oil. First, we used steam distillation to extract the tubers, petioles, leaves and fruits of Arisaema Amuremese Maxim and obtained the essential oil. Then the essential oil was extracted by diethyl ether, dried with anhydrous sodium sulfate, and analyzed by GC-MS. Finally, the antineoplastic activities of the essential oils were tested by MTT assay [8-14]. The Arisaema Amuremese Maxim was adopted and identified by Professor Chendi of the School of Pharmacy of Jilin University in the Changbai Mountain area of Jilin Province in 2016.

2 Experimental section

2.1 Plant material

Arisaema Amuremese Maxim was collected from the Changbai Mountain in Jilin province and was identified by the School of pharmacy Chendi professor of Jilin University.
2.2 Extraction and Identification

100 g dry tubers, petioles, leaves, fruits were put in the different essential oil extractor. Then, 1000 ml distilled water were added to extract for 10 hours. After extraction with diethyl ether and drying with anhydrous sodium sulfate, diethyl ether was evaporated to get essential oils which were all the pale yellow oily special aroma matters.

2.3 GC-MS chromatographic conditions

The GC-MS used for the gas chromatographic analysis consisted of a chromatographic column Agilent hp-5 (0.25mm×30m,0.25μm); the injection temperature was 260℃ and transmission line temperature was 280℃, carrier gas was helium, flow rate was 1.0 mL/min, split ratio was 20:1, sample size was 1 μL. Temperature program: column temperature 80℃ for 3 min, in 10℃/ min up to 150℃, not reserved, continued to heat in 5℃/ min to 240℃, not reserved, then in 10℃/ min to 280℃, keeping 10 min. Mass spectrometer conditions: EI ionization, electron bombardment energy 70 eV, ion source temperature 230℃, scanning range from 20 to 800 aμm; multiplier voltage 2141 V solvent delay 3 min, nist 2008 standard mass spectrometry gallery. Using gas chromatography data processing system, data processing by computer, identified the kinds of chemical composition by NIST 2008 standard mass spectrometry gallery. The relative content of each component in the sample was determined by peak area normalization method.

2.4 The antiproliferative activity against Hep2, HCT-116, A549, SW480, HepG2 cell lines has been investigated by MTT assay.

2.4.1 Cell culture:

DMEM complete medium containing 10% fetal bovine serum, 100 μg·mL⁻¹ penicillin and 100 μg·mL⁻¹ streptomycin. Under 37℃, 5% CO₂, saturated humidity conditions. The medium was changed every other day and once every 3-4 days.

2.4.2 The tumor cells in vitro growth inhibition test (MTT)

Hep2 cells (throat cancer), HCT-116 cells (colon cancer), A549 lung adenocarcinoma cells), SW480 (colon cancer) and HepG-2 (HCC) cells were digested by 0.25% trypsin-0.01% EDTA solution, suspending in the culture medium and counting. Adjusting the cell density to 5 x10⁴ (a ·mL⁻¹), added to 96 – well culture plate (100 μL per well). After 24h, the experimental group added 100 μl different concentration of each part of Arisaema Amuremse Maxim into each well. The concentration gradients of volatile oils in the four parts were 62.5 μg·mL⁻¹, 125 μg·mL⁻¹, 250 μg·mL⁻¹, 500 μg·mL⁻¹ and 1000 μg·mL⁻¹ and the positive control group added the same concentration gradient 5 - fluorouracil. The blank control group, cell control group, ethanol solvent control group were set up. Each group had three wells. They were put in the saturated humidity, 37℃, 5% CO₂ incubator to continue culturing for 48 h. The cell morphology changes with the inverted microscope were observed

Before the end of the experiment 20 μL of 5mg·mL⁻¹ MTT were added to each well, removed the cell culture medium with a syringe. Then 150 μL DMSO were added into each well, and shaken on the shaking bed with low speed for 10 min to make crystals dissolve completely. The OD₅₇₀nm absorbance values were measured by an enzyme-linked immune detector.

The following formula was used to calculate the fruit growth inhibition rate (IR) of tumor cells: IR (%) = (1 - (dosing average OD value - blank group average OD value) / (control group average OD value - blank group average OD value) ×100%) and found the half inhibitory concentration (IC50) by the Origin software.

Ethical approval: The conducted research is not related to either human or animal use.

3 Results and discussion

3.1 Identification of essential oil

Aristides Amusement Maxim had 114 kinds of essential oil as shown in Table 1. The most was located in tubers, up to 53; the second was in petioles, totaling 48; the least was found in leaves, only 5. 2-pentadecanone, ethyl ester and ethyl oleate were more abundant in tubers and petioles. Phytone, hexadecanoic acid methyl ester, methyl oleate, heneicosane were common composition of tubers and fruits. Methyl palmitate and methyl oleate were similar in tubers, leaves, fruits, petioles and Leaves both had 6,10,14-trimethyl-2-pentadecane ketone. Nonadecane was common composition of petioles and fruits.

The systematic research of essential oil in Arisaema Amuremese Maxim in this paper was the foundation for
Table 1: Analysis on chemical constituent of essential oil in every parts of Arisaema Amurense Maxim by GC-MS.

Number	Chemical composition	Tubers	Petioles	Leaves	Fruits
1	Hexanal	0.861			
2	trimethyl Oxazole	0.543			
3	2-Furanmethanol	5.501			
4	2,6-dimethyl Pyrazine	1.562			
5	2,4,5-trimethyl Thiazole	0.171			
6	2,3,5-trimethyl Pyrazine	1.988			
7	Benzeneacetaldehyde	1.235			
8	3-ethyl-2,5-dimethyl Pyrazine	1.317			
9	2,3-Dimethyl-5-ethylpyrazine	0.942			
10	Linalool (3,7-dimethyl-1,6-Octadien-3-ol)	0.516			
11	2-n-Butylfuran	0.491			
12	2-Isopropyl-4,5-dimethyl Thiazole	0.601			
13	2,3-diethyl-5-methyl Pyrazine	0.360			
14	2-ethyl-3-hydroxy-4H-Pyan-4-one	0.598			
15	2,5-dimethyl-3-(2-methylpropyl) Pyrazine	0.209			
16	5-ethyl-2-methyl-4-propyl Thiazole	0.382			
17	4,5-dimethyl-2-(2-methylpropyl) Thiazole	0.587			
18	2,5-dimethyl-3-(3-methylbutyl) Pyrazine	0.398			
19	(R)-1,5,5,9-tetramethyl-,Spiro[5.5]undeca-1,8-diene	0.264			
20	(+)-Epi-bicyclosesquiphellandrene	0.743			
21	2,6-Di(tert-butyl) benzo-1,4-quinone	0.853			
22	[1S-(1π4π5π]-1,8-dimethyl-4-(1-methylethenyl)- Spiro [4.5] dec-7-ene	0.296			
23	2-Tridecanone	1.708			
24	2,6-di-tert-butyl-p-cresol (Butylated Hydroxytoluene)	1.242			
25	2-Dodecanone	0.345			
26	1,3-bis(1,1-dimethyl)-2-methoxy-5-methyl Benzene	0.601			
27	(Z, Z)-6, 9-Pentadecadien-1-o1	0.705			
28	(Z, Z)-10,12-Hexadecadienal	0.387			
29	Cyclopentadecanone	2.076			
30	2-Pentadecanone	8.904	0.543		
31	4,5,5a,6,6a,6b-hexahydro-4,4, 6b-trimethyl-2-(1-methylethenyl)- 2H-Cyclopropa [g] benzofuran	0.621			
32	2-Nonanone	0.562			
33	Perhydrofarnesyl acetone®6,10,14-trimethyl-2-Pentadecanone®	7.151	0.388		
34	(Z)-9,17-Octadecadienal	1.433			
35	5-heptenyl Benzene	1.064			
Number	Chemical composition	Tubers	Petioles	Leaves	Fruits
--------	---	--------	----------	--------	--------
	Relative Contents				
36	(E)-1-methoxy-9-Octadecene	0.822			
37	2-Heptadecanone	0.922			
38	(E,E)-6,10,14-trimethyl-5,9,13-Pentadecatrien-2-one	1.189			
39	Hexadecanoic acid methyl ester	1.333		38.622	53.452
40	Dibutyl phthalate	1.488			
41	Hexadecanoic acid ethyl ester	3.692		0.405	
42	[1R-(1R*,3E,7E,11R*,12R*)]-4,8,12,15,15-pentamethyl-Bicyclo[9.3.1]pentadeca-3,7-dien-12-ol	1.034			
43	Aromadendrene oxide-(2)	0.598			
44	3-cyclohexyl-1-phenyl Propane	14.859			
45	(Z, Z)-9,12-Octadecadienoic acid methyl ester	1.475		5.402	
46	(Z) 9-Octadecenoic acid methyl ester	0.866		12.276	0.117
47	Oxacycloheptadec-8-en-2-one	0.861			
48	9,12-Octadecadienoic acid, ethyl ester	5.619		3.586	
49	(Z, Z, Z)-9,12,15-Octadecatrienoic acid ethyl ester	1.515			
50	Ethyl Oleate	1.839		0.527	
51	(Z, Z)-9,12-Octadecadienoyl chloride	0.780			
52	Heneicosane	6.277		0.559	
53	Pentacosane	2.601			
54	Tetradecane	0.098			
55	1-(2-nitropropyl)- Cyclohexanol	0.149			
56	1H-Cycloprop[a]napththalene	0.067			
57	2,6,10-trimethyl-Tetradecane	0.098			
58	Pentadecane	0.171			
59	Hexadecane	0.770			
60	Heptadecane	2.527			
61	5,6-bis(2,2-dimethylpropyliidine)-(E,Z)- Decane	2.805			
62	1-chloro-Octadecane	1.043			
63	Octadecane	1.755			
64	1-Hexadecanol acetate	4.052			
65	6,10,14-trimethyl-2-Pentadecanone	0.997		46.276	
66	1,2-Benzenedicarboxylic-acid bis(2-methylpropyl) ester	1.091			
67	Nonadecane	1.032		0.279	
68	14-Methylpentadecanoic acid methyl ester	7.699			
69	7,9-Di-tert-butyl-1-oxaspir (4, 5) deca-6,9-diene-2,8-dione	7.909			
70	tert-Hexadecanethiol	1.851			
Table 1: Analysis on chemical constituent of essential oil in every parts of Arisaema Amurense Maxim by GC-MS.

Number	Chemical composition	Tuber	Petiole	Leaf	Fruit
71	1,2-Benzenedicarboxylic acid butyl 8-methylnonyl ester				
72	Eicosane				
73	2,4,4,6,6,8,8-Heptamethyl-2-nonene				
74	5,6,6-Trimethyl-5-(3-oxobut-1-enyl)-1-oxaspiro[2.5] octan-4-one				
75	Methyl-11,14-eicosadienoate	0.570			
76	8-Octadecenoic acid methyl ester	0.755			
77	5-dodecyldihydro-2(3H)-Furanone	0.470			
78	Hexadecanoic acid butyl ester	2.189			
79	Docosane	0.587			
80	Behenic alcohol	5.025			
81	Heptacosane	4.005			
82	Butyl 9,12-octadecadienoate	0.555			
83	Tetracosane	6.873			
84	Octacosane	4.641			
85	1,2-Benzenedicarboxylic acid diisoctyl ester	0.516			
86	Hexacosane	0.463			
87	Sulfurous acid cyclohexylmethyl pentadecyl ester	0.462			
88	9-octyl-Tetracosane	0.576			
89	Hexatriacontane	6.734			
90	9-octyl-Hexacosane	0.486			
91	1-Hexacosene	0.538			
92	13-dodecyl-Hexacosane	5.129			
93	Nonacosane	0.773			
94	i-Propyl 24-methyl-pentacos-5,9-dienoate	5.109			
95	Triacontane	2.544			
96	Hentriacontane	3.285			
97	Dotriacontane	1.230			
98	Tritriacontane	1.701			
99	1-(1-Ethyl-2,3-dimethyl-cyclopent-2-enyl)-ethanone		1.602		
100	3,7,11,15-Tetramethyl-2-hexadecen-1-ol		1.224		
101	Methyl-9-Tetradecenoate			0.115	
102	Methyl tetradecanoate			1.539	
103	Pentadecanoic acid methyl ester			0.095	
104	12-methyl Pentadecanoic acid methyl est			0.111	
105	14-methyl-Pentadecanoic acid methyl est			0.048	
further study, which was of great significance to increase the medicinal parts of Arisaema Amuremse Maxim.

3.2 The antiproliferative activity was investigated by MTT assay

The essential oil of tubers, petioles, leaves, and fruits was tested against cancer cell lines, including Hep2, HCT-116, A-549, SW-480, HepG-2 for proliferation and survival by MTT assay. In general, the essential oil of Arisaema Amuremse Maxim all activated on cancer cells effectively. The essential oil of tubers, petioles, leaves and fruits all had strong antiproliferative activity. Among them, the essential oil of tubers and petioles had stronger antitumor activity. The results were presented in Table 2.

4 Discussion

In the literature, reports were mainly on the study of essential oil of Arisaema Amuremse Maxim tubers. In this paper, the antitumor activity of essential oil in various parts of Arisaema Amuremse Maxim (including tubers, petioles, leaves and fruits) was studied and compared for the first time.

Arisaema Amuremse Maxim had 114 kinds of essential oil. There were 24 kinds of essential oil of tubers with ingredients over 1%. The highest was three-cyclohexyl -1-phenyl propane, occupied 14.859%. There were 25 kinds of essential oil of petiole with ingredients over 1%, the highest was 7,9-two tertiary butyl-1-oxygen screw [4.5]-decane-6, 9-diene-2,8-diketone (7.909%) and 14-methyl pentadecane acid methyl ester (7.699%). The highest in leaves was 6,10,14-trimethyl-2-pentadecane ketone (46.276%). The highest in fruits was methyl palmitate (53.452%). There were 9 kinds of essential oil of fruits with ingredients over 1%, the highest was methyl palmitate (53.452%).

The essential oil of tubers, petioles, leaves, and fruits was tested against cancer cell lines, including Hep2, HCT-116, A-549, SW-480, HepG-2 for proliferation and survival.
by MTT assay. Among them, the tubers were the most sensitive to HCT-116 cells, and the IC50 was 19.60±0.95℃. Petioles was the most sensitive to HepG-2 cells, IC50 is 17.60±1.96; Fruits were the most sensitive to SW-480 cells, IC50 was 30.23±4.99; Leaves were most sensitive to HepG-2 cells, IC50 was 23.80±2.77. It can be seen from Table 2 that essential oil of tubers, petioles, leaves, and fruits of Arisaema Amuremse Maxim had a good in vitro inhibition over the above four experimental cells. With the increase of the dose, the inhibition of tumor cells gradually increased. Therefore, the four parts of Arisaema Amuremse Maxim, including petiole, leaf and fruit, could be used in medicine. The medicinal part of Arisaema Amuremse Maxim recorded by the first edition of the 2015 edition of the Chinese Pharmacopoeia was its dried tubers. In addition to the medicinal studies on the tuber parts of Arisaema Amuremse Maxim, the petiole, leaf and fruit parts of Arisaema Amuremse Maxim were also studied in this paper. Therefore, this study was of great significance in increasing the effective medicinal parts of Arisaema Amuremse Maxim.

5 Conclusions

The essential oil components of the whole plant of Arisaema Amuremse Maxim were studied systematically in this paper, which would lay the foundation for further research on its chemical composition and increasing the effective medicinal parts of Arisaema Amuremse Maxim.

Acknowledgments: The authors expressed many thanks for the funding and support of Department of Pharmaceutical chemistry, College of Pharmacy, Jilin University, and also grateful for the assistance from Dr. Xiaohong Yang.
Conflict of interest: Authors declare no conflict of interest.

References

[1] Li C.N., Liu Y.Y., Li P.S., Shi X.J., Xu T.H. and Liu T. H., Chemical constituents and pharmacological activities of arisaema amurense maxim, Jilin Tradit. Chin. Med., 2015, 35, 293-296.
[2] Huang J., Yi J.H., Liu Y.H., Huang Z.F., Chen Y. and Liu Y.H., Determination of eight nucleosides in rhizoma arisaema, rhizoma pinellie and rhizoma typhonii, Chin. Exp. Tradt. Medi. Formulae., 2013, 19, 59-62.
[3] Du X., Rhizoma arisaematis pharmacological action and clinical application research work, Med. Inform., 2011, 7, 3048.
[4] Tang J.H., Ren Y.L., Liu K.Q., Su J., Zhang Z.L., Rhizoma arisaematis pharmacological action and clinical application research work, Shanxi Tradit. Chin. Med., 2010, 478-479.
[5] Li Y., Luo T.S., Dai X.T., Qian J.F., Antibacterial activity of the extracts from arisaema erubescens (wall.) schott, Dali. Univer., 2014, 13, 9-11.
[6] Han J.T., Advances in pharmacological action and clinical application of araceae, Mod. Medi. Health., 2010, 26, 2487-2488.
[7] Kong D.X., Yang X.H., Dong L., Shi Y.Y., Li X.H., Li G.Y., et al., Study on chemical components of volatile oil in stem of arisaema amurense maxim by GC-MS, Spec. Econo. Animal. Plant., 2013, 66-69.
[8] Tang J.H., Zhang H.M., Dong Y.C., Yang Z.H., Experimental study on apoptosis of BGC823 Cell in human gastric carcinoma induced by araceae alcohol extraction liquid, Shanxi Trad. Chin. Medi., 2011, 32, 1421-1422.
[9] Zhang Y., Wang S., Bao Y.R., Meng X.S., The study for activity of araceae extractions resisting lung cancer cell, Chin. Mod. Medi., 2013, 20, 80-83.
[10] Qi X.X., Li H., Du G.J., Preliminary study of rhizome arisaematis on anti-tumor, Henan. Univer., 2014, 33, 85-87.
[11] Yang G.P., Lv X.M., Gan P., Peng F., Bai L., Qian J., The anti-tumor effect of araceae arisaema extract on S180 sarcoma-bearing mice, LiShi. Medi. Mater., 2011, 21, 752-753.
[12] Yang G.P., Cao H.Z., Li Y., Bai L., Qian J., The inhibitory effect of the fruit extract of araceae arisaema on leukemia cell line in vitro, Northwest Pharm., 2012, 27, 133-135.
[13] Zhang H.M., Tang J.H., Yang Z.H., Gao Y.Y., Experimental study of alcoholic extract of rhizoma arisaematisinduced apoptosis on human K562 cells, Chin. Drug. Appli. Monit., 2011, 8, 214-234.
[14] Yang X.H., Li G.Y., Wang X.Y., Dong L., Chemical analysis and anti-tumor activity test of the volatile oil from arisaema amurense maxim tubers, Faseb., 2014, 28, 647.