Effective theory for universal seesaw model and FCNC

Takuya Morozumi12, Apriadi Salim Adam3, Yuta Kawamura4, Albertus Hariwangsa Panuluh5, Yusuke Shimizu12 and Kei Yamamoto6

1 Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
2 Core of Research for the Energetic Universe, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
3 Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
4 Yokkaichi, Mie Prefecture, Japan
5 Department of Physics Education, Sanata Dharma University, Paingan, Maguwohardjo, Sleman, Yogyakarta 55282, Indonesia
6 Department of Global Environment Studies, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan

E-mail: morozumi@hiroshima-u.ac.jp, apriadi.salim.adam@brin.go.id, kawamura1994phy@gmail.com, panuluh-albertus@hiroshima-u.ac.jp, yu-shimizu@hiroshima-u.ac.jp, k.yamamoto.e3@cc.it-hiroshima.ac.jp

Abstract. We study the quark sector of the universal seesaw model with SU(2)$_L \times$ SU(2)$_R \times U(1)$. The model incorporates the seesaw mechanism with the vector-like quarks (VLQs). The purpose of this work is to study the model with the effective theory. After integrating the heavy five VLQs, we derive the effective theory with four up-type quark and three down type quark. In this work, the FCNC of Z boson for top quark and top' quark is derived.

1. Introduction

Though the standard model is a very successful theory, the origin of the flavor and mass hierarchy of quarks can be explained only by tuning the Yukawa coupling [1]. For instance up quark mass and top quark mass are respectively given as,

$$m_u = y_u \frac{v}{\sqrt{2}} < m_t = y_t \frac{v}{\sqrt{2}}$$

$$y_u \simeq 1.25 \times 10^{-5} y_t, \quad y_t \simeq 0.99,$$

where we use the top quark mass from the direct measurement $m_t = 172.69$(GeV) and the up quark mass from the \overline{MS} scheme $m_u(2$GeV) = 2.16(MeV) [2]. We also use $v = 246.22$(GeV) to derive Yukawa coupling of the top quark. The universal seesaw model explains the smallness of the mass of the up quark with a tiny ratio of SU(2)$_R$ breaking scale and a SU(2) singlet vector-like quark (VLQ) mass M_U. The standard model Yukawa coupling y_u is given by the...
The symmetry breaking of SU(2)

3. The mixing of the Neutral Gauge Bosons

where y_{uL} and y_{uR} are mixing type Yukawa couplings between the ordinary quark and VLQ. We study the quark sector of the universal seesaw model with SU(2)$_L \times SU(2)_R \times U(1)$ [3, 4, 5, 6]. Our aim is to construct the effective theory obtained after integrating VLQs with their masses larger than SU(2)$_R$ breaking scale. Then, we study the flavor structure of the effective theory. The same model was investigated with the full theory [7, 8, 9].

2. The Lagrangian of the model

We first present the quark and gauge sector. The two SU(2) doublet Higgs fields are introduced. ϕ_L stands for SU(2)$_L$ doublet and ϕ_R for SU(2)$_R$. Their vacuum expectation values (vevs) v_L and v_R respectively break SU(2)$_L$ and SU(2)$_R$. From the Higgs potential study, one can show that the vevs satisfy $v_R \gg v_L$. The ordinary quarks $\psi_L(\psi_R)$ are also SU(2)$_L$ (SU(2)$_R$) doublets. The six VLQs ($U_1 \sim U_3, D_1 \sim D_3$) are also introduced and the Lagrangian is,

$$\mathcal{L}_{\text{Doublets}} = \sum_{i=1}^{3} \psi^*_{Li} \left(i \partial \cdot g_L W_L - g_1 \frac{1}{6} B_1 \right) \psi_{Li} + (L \rightarrow R),$$

$$\mathcal{L}_{V_{LQ}} = \sum_{i=1}^{3} U_i \left(i \partial \cdot g_L B_{i \frac{2}{3}} - M_{U_i} \right) U_i + \sum_{i=1}^{3} D_i \left(i \partial \cdot g_R B_{i \frac{1}{3}} - M_{D_i} \right) D_i,$$

$$\mathcal{L}_{V_{LQ-Doublets}} = -y_{L1i}^R \psi^*_{Li} \phi_L U_{iR} - y_{R1i}^R \psi^*_{Ri} \phi_R U_{iL} - h.c.,$$

$$-y_{L2i}^R \psi^*_{Li} \phi_L D_{iR} - y_{R2i}^R \psi^*_{Ri} \phi_R D_{iL} - h.c.,$$

where g_L, g_R and g_1 denote the gauge couplings for SU(2)$_L$, SU(2)$_R$ and U(1), respectively.

3. The mixing of the Neutral Gauge Bosons

The symmetry breaking of SU(2)$_L \times SU(2)_R \times U(1)$ into U(1)$_{em}$ leads to the following relation between weak eigenstates (W_L^3, B_1, W_R^3) and mass eigenstates (Z, A, Z') of the three neutral gauge bosons,

$$\begin{pmatrix} W_L^3 \\ B_1 \\ W_R^3 \end{pmatrix} = O_{23}(\theta_{WR}) O_{12}(-\theta_W) O_{13}(\theta_{13}) \begin{pmatrix} Z \\ A_\mu \\ Z' \end{pmatrix},$$

where the rotation matrices are $O_{23}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$, $O_{12}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O_{13}(\theta) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$ and the mixing angles are given as $\tan \theta_{WR} = \frac{g_{LL}}{g_{RR}}, \tan \theta_W = \frac{g_{L\ell}}{g_{R\ell}}, \tan 2\theta_{13} = \frac{\sin^2 \theta_{13} \sin^2 \theta_{13}}{\sin \theta_W \sin \theta_W} \frac{v_{L}^2}{v_{R}^2}$. We note that θ_{13} is suppressed by the ratio of vevs $\frac{v_{L}^2}{v_{R}^2}$. With the mixing angles, the standard model-like U(1)$_{Y}$ hypercharge and the electromagnetic charge crises.
are given by \(g' = g_1 \cos \theta_{W'}, e = g' \cos \theta_{W} \). The isospin current of Z boson is,

\[
\mathcal{L}_{ZI_3} = - \left\{ \frac{1}{2 \cos \theta_{W'}} (u_L^\dagger \gamma^\mu u_L^i - d_L^\dagger \gamma^\mu d_L^i) (g_L \cos \theta_{13} + e \tan \theta_{13}) + \frac{g_R}{2 \cos \theta_{W'}} (u_R^\dagger \gamma^\mu u_R^i - d_R^\dagger \gamma^\mu d_R^i) \sin \theta_{13} \right\} Z^\mu. \tag{5}
\]

4. Effective Lagrangian

We integrate the five VLQs except an up-type VLQ denoted by \(U_3 \) which mass parameter \(M_{U3} \) is smaller than \(v_R \). The following effective Lagrangian is obtained,

\[
\mathcal{L}_{\text{eff}} = \sum_{i=1}^{3} \bar{\psi}_{L_i} \left(i\partial - g_L \mathcal{W}^\mu L - g_1 \frac{1}{6} \mathcal{B}_1 \right) \psi_{L_i} + \left(L \to R \right)
- \sum_{ij} \frac{v_L}{\sqrt{2}} \bar{u}_{Li} u_R y_{ij} + h.c. - \sum_{ij} \frac{v_L}{\sqrt{2}} \bar{d}_{Li} d_R y_{ij}^{d} + h.c.
- \sum_{i} \frac{v_{LR3}}{\sqrt{2}} \bar{u}_{Li} U_{3} - \sum_{i} \frac{y_{LR3}}{\sqrt{2}} \bar{d}_{Li} U_{3} - h.c. - \bar{U}_{3} M_{U3} U_{3}, \tag{6}
\]

where we have ignored the terms suppressed by a factor \(\frac{v^2}{M_X} \ll \frac{v_R}{M_X} \ll 1 \) like Yukawa couplings for light quarks \(u, d, c, s, b \) are given by,

\[
y_{ij}^u = - \sum_{\alpha=1}^{2} \frac{y_{L\alpha ij}}{\sqrt{2}} u_{L\alpha ij} \frac{v_R}{2M_{U\alpha}}, \quad y_{ij}^{d} = - 3 \sum_{\alpha=1}^{3} \frac{y_{L\alpha ij} y_{R\alpha ij}^{d}}{\sqrt{2}} \frac{v_R}{2M_{D\alpha}}, \tag{7}
\]

where we have substituted the vevs to two Higgs doublets. \(\mathcal{L}_{\text{eff}} \) includes four up-type quarks and their \(4 \times 4 \) mass matrix is given by,

\[
\mathcal{L}_{\text{eff up-type mass}} = - \left(\bar{u}_{LR} \ U_{3} \right) M_{U} \left(\begin{array}{c} u_{Rj} \\ U_{3j} \end{array} \right), \quad M_{U} = \left(\begin{array}{c} - \sum_{\alpha=1}^{2} \frac{y_{L\alpha ij}}{2M_{U\alpha}} \left(\sum_{\alpha=1}^{3} \frac{y_{R\alpha ij}}{2M_{D\alpha}} \right) W_{U} \end{array} \right) \frac{y_{L\alpha ij}^{u}}{\sqrt{2}} \frac{v_{R}}{2M_{U\alpha}}, \tag{8}
\]

where \(\frac{y_{L(R)ij}^{u}}{\sqrt{2}} = \left(\frac{y_{L(R)ij}^{u} v_{L}^{T}}{\sqrt{2}} \frac{y_{R(R)ij}^{u} v_{L}}{\sqrt{2}} \frac{y_{L(R)ij}^{u} v_{R}}{\sqrt{2}} \frac{y_{R(R)ij}^{u} v_{R}}{\sqrt{2}} \right) \). We apply the following bi-unitary transformation on \(M_{U} \) with two \(3 \times 3 \) unitary matrices \(V^u \) and \(W^u \),

\[
\begin{pmatrix} V^u \ 0_{3 \times 1} \\ 0_{1 \times 3} \ 1 \end{pmatrix} M_{U} \begin{pmatrix} W^u \ 0_{3 \times 1} \ 0_{1 \times 3} \ 1 \end{pmatrix} = \begin{pmatrix} - V^u \left(\sum_{\alpha=1}^{2} \frac{y_{L\alpha ij} y_{R\alpha ij}}{2M_{U\alpha}} \right) W_{U} \ V^u \left(\frac{y_{L\alpha ij}^{u}}{\sqrt{2}} \frac{v_{R}}{2M_{U\alpha}} \right) \end{pmatrix}, \tag{9}
\]

Below we diagonalize the first term of Eq.(9) to obtain the spectrum of the heavier up-type quark. The second term is ignored since the contribution is suppressed by \(\frac{1}{M_{U\alpha}} (\alpha = 1, 2) \). With
the bi-orthogonal transformation, it is diagonalized as,

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta_R - \sin \theta_R & 0 \\
0 & 0 & \sin \theta_R & \cos \theta_R
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta_l - \sin \theta_l & 0 \\
0 & 0 & \sin \theta_l & \cos \theta_l
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{|\mathbf{Y}_{u_L}^{u_R}|}{\sqrt{2}} & \frac{|\mathbf{Y}_{u_L}^{u_R}|}{\sqrt{2}} & \frac{|\mathbf{Y}_{u}^{u_R}|}{\sqrt{2}} & \frac{|\mathbf{Y}_{u}^{u_R}|}{\sqrt{2}} \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \cos \theta_R - \sin \theta_R & 0 \\
0 & 0 & \sin \theta_R & \cos \theta_R
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & m_L & 0 \\
0 & 0 & m_R & 0 \\
0 & 0 & -\sin \theta_R & \cos \theta_R
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & m_L & 0 \\
0 & 0 & m_R & 0 \\
0 & 0 & m_L & 0
\end{pmatrix},
\]

\[m_{t'(t')} = \frac{\sqrt{m_{U_3}^2 + (m_R + m_L)^2}}{2} + \frac{\sqrt{m_{U_3}^2 + (m_R - m_L)^2}}{2},\]

where \(m_L = \frac{|Y_{u_L}^{u_R}|}{\sqrt{2}}, m_R = \frac{|Y_{u_L}^{u_R}|}{\sqrt{2}}, \theta_L = \theta_R - \theta_t, \tan \theta_l = \frac{M_{U_3}}{m_R + m_L}\) and \(\tan 2 \theta_R = \frac{2M_{U_3} m_R}{m_R^2 - m_{U_3}^2 - M_{U_3}^2} \).

5. **Z FCNC for top quark and its partner**

One can compute the Z FCNC by rewriting left and right up-type quarks in SU(2) doublet in terms of top quark \(t\) and its partner \(t'\),

\[u'_{3R} = -\sin \theta_R t_R + \cos \theta_R t'_R, \quad u'_{3L} = \cos \theta_L t_L + \sin \theta_L t'_L,\]

where \(u'_{3j}\) denote the basis obtained after unitary transformations \(V\) and \(W\). With Eq.(11) and Eq.(5), Z FCNC for top quark and top prime quark is,

\[L_Z^{t'} = -\frac{g_R \sin \theta_{13} Z^\nu}{2 \cos \theta_W} \left\{ \sin^2 \theta_R \cos \theta_R \right\} + \frac{\cos^2 \theta_R}{2 \cos \theta_W} \left\{ \cos^2 \theta_L t_L \gamma_{\mu} t_L + \sin \theta_L \cos \theta_L (\tilde{t}_L \gamma_{\mu} t'_L + h.c.) + \sin^2 \theta_L t'_L \gamma_{\mu} t'_L \right\}.\]

When \(M_{U_3} \ll m_R\), one can show \(\theta_L \simeq \theta_R \simeq \frac{M_{U_3}}{m_R} \ll 1\).

Acknowledgment

We would like to thank organizers of KAON 2022. The work of T. M. is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP17K05418 and JP16H03993.

References

[1] Kobayashi M and Maskawa T 1973 *Prog. Theor. Phys.* 49 652-657
[2] Workman R L et al. [Particle Data Group], PTEP 2022, 083C01 (2022) doi:10.1093/ptep/ptac097
[3] Berezhiani Z G 1985 *Phys. Lett. B* 150 177-181
[4] Rajpoot S 1987 *Phys. Lett. B* 191 122-126
[5] Chang D and Mohapatra R N 1987 *Phys. Rev. Lett.* 58 1600
[6] Davidson A and Wali K C 1987 *Phys. Rev. Lett.* 59 393
[7] Koide Y and Fusaoka H 1996 *Z. Phys. C* 71, 459-468
[8] Morozumi T, Satou T, Rebelo M N and Tanimoto M 1997 *Phys. Lett. B* 410, 233-240
[9] Kiyo Y, Morozumi T, Parada P, Rebelo M N and Tanimoto M 1999 *Prog. Theor. Phys.* 101, 671-706