Adaptive mechanism of *Lactobacillus amylolyticus* L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles

Yongtao Fei1,2,3 | Li Huang1 | Hong Wang1,2 | Jinglong Liang1,3 | Gongliang Liu1,2,3 | Weidong Bai1,2,3

1Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
2College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
3Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China

Correspondence
Gongliang Liu and Weidong Bai, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.

Emails: gongliangliu@126.com (G.L.) and whitebai2001@163.com (W.B.)

Funding information
Key-Area Research and Development Program of Guangdong Province, Grant/Award Number: 2020B020226008; Key Realm R&D Program of Guangdong Province, Grant/Award Number: 2018B020206001; Zhongkai University of Agricultural Engineering Innovation Fund for College Students in 2021, Grant/Award Number: S202111347048; The Research Capacity Enhancement Project of Key Discipline in Guangdong Province, Grant/Award Number: 2021ZDJS005; Guangdong Province Rural Science and Technology Commissioner Assistance Project, Grant/Award Number: Yueke Hanong Zi [2021] No. 1056; The Projects of Science and Technology of Guangzhou, Grant/Award Number: 202102020558

Abstract
Lactobacillus amylolyticus L6 isolated from naturally fermented tofu-whey was characterized as potential probiotics. To give insight into the adaptive mechanism of *L. amylolyticus* L6 in soymilk, the gene-expression profiles of this strain and changes of chemical components in fermented soymilk were investigated. The viable counts of *L. amylolyticus* L6 in soymilk reached 10^{12} CFU/mL in the stationary phase (10 hr). The main sugars reduced gradually while the acidity value significantly increased from 45.33° to 95.88° during fermentation. About 50 genes involved in sugar metabolism and lactic acid production were highly induced during soymilk fermentation. The concentration of total amino acid increased to 668.38 mg/L in the logarithmic phase, and 45 differentially expressed genes (DEGs) in terms of nitrogen metabolism and biosynthesis of amino acid were detected. Other genes related to lipid metabolism, inorganic ion transport, and stress response were also highly induced. Besides, the concentration of isoflavone aglycones with high bioactivity increased from 14.51 mg/L to 36.09 mg/L during the fermentation, and the expression of 6-phospho-β-glucosidase gene was also synchronously induced. This study revealed the adaptive mechanism of *L. amylolyticus* L6 in the soymilk-based ecosystem, which gives the theoretical guidance for the application of this strain in other soybean-derived products.

KEYWORDS
chemical components, *Lactobacillus amylolyticus* L6, soymilk, transcriptome
1 | INTRODUCTION

Soybean and its derived food products are important part of the Asian diet. These foods are rich in various nutrients, such as protein, oligosaccharides (raffinose and stachyose), grease, vitamins, and insoluble dietary fiber (Lokuruka, 2011). Meanwhile, they were reported to have many beneficial functions to consumers, including the prevention of cardiovascular disease, osteoporosis, hormone-related cancers, and modulation of immunity and intestinal flora (Ko, 2014; Yan et al., 2017). As consumers become increasingly interested in functional foods, they have higher requirements for the varieties of functional soybean products. In recent years, fermentation of soymilk by probiotics has become one of the research hotspots because of the function-promoting effects brought about by these microorganisms and soymilk (Marazza et al., 2013; Wang et al., 2012; Wei et al., 2007).

Probiotics were able to attach to the surface of intestinal mucosa and colonize in the intestinal tract, which could allow them to bring beneficial effects to human health (Bron et al., 2012). For example, the probiotics could competitively exclude and inhibit pathogens in the intestinal tract (Kholy et al., 2014), enhance intestinal flora (Gerritsen et al., 2011), augment both cellular and humoral immunity (Yan & Polk, 2011), and relieve inflammation and food allergy (Majamaa & Isolauri, 1997). Except for the above functional characteristics, the probiotics used as soymilk starter were required to adapt to a complex nutritional environment of soymilk. In general, the minimum number of living probiotics in the final product of soybean yoghurt should reach 10^8 CFU/ml (Shah, 2000). Meanwhile, the pH for coagulating soymilk was 4.5–5.0 (Qiao & Li, 2018), which required the strong acid-producing ability of probiotics in soymilk. Although the stachyose and raffinose in soymilk have been regarded as prebiotics, excessive intake by human body would cause gastric bloating or diarrhea, requiring probiotics to own ability of hydrolyzing soybean oligosaccharides in soymilk with α-galactosidase (Donkor et al., 2007). In addition, soymilk is rich in low-absorptive isoflavone glycosides (occupying approximately 90% of isoflavone content) (Izumi et al., 2000), and the probiotic strain with the ability of converting isoflavone glycosides into high-absorptive aglycones by β-glucosidase were the best choice (Donkor et al., 2007). On the other hand, stachyose and raffinose in soymilk could promote the proliferation of fermentation probiotic strains (Kim et al., 2010; Sarina et al., 2017). In addition, the soymilk could be used as food vehicles of probiotics, protecting bacterial cells from adverse environment such as low pH of gastric acid, bile salt, and various digestive enzymes in the gastrointestinal tract (Zhuang et al., 2009). Therefore, the selection of probiotic strains suitable for soymilk environment is very important for the production of soybean yoghurt.

Lactobacillus amylyticus L6 was isolated from naturally fermented tofu-whey (Fei et al., 2018) and its safety, potential probiotic characteristics, and fermentation properties in tofu-whey have been extensively studied (Fei et al., 2020; Fei, Li, et al., 2017; Fei, Liu, et al., 2017). Since L. amylyticus L6 was one of the dominant bacteria in naturally fermented tofu-whey for a long time, it has evolved the adaptability to nutritional environment in soybean products, which makes L. amylyticus L6 one of the best candidate probiotic strains for fermenting soymilk. In this study, the changes of nutrient and functional substances in soymilk and gene-expression profiles of L. amylyticus L6 during fermentation were investigated to reveal the molecular mechanisms of synergistic effect between soymilk and L. amylyticus L6.

2 | MATERIALS AND METHODS

2.1 | Strains and cultivation

Lactobacillus amylyticus L6 (CGMCC NO.9090) was isolated from naturally fermented tofu-whey (Fei et al., 2018). This strain was preserved in 15% glycerol at −80°C and cultivated in De Man, Rogosa and Sharpe (MRS) (Guangdong Huankai Microbiology Biotech Inc., Guangzhou, China) plate at 37°C for 36 hr before use. A single colony was then picked and inoculated into 10 ml of MRS broth and incubated for 24 hr.

2.2 | Preparation of fermented soymilk

Soymilk was prepared according to the method described by Salma et al. (Elghali et al., 2014) with slight modification. Soybean (100 g) was washed and then soaked in 600 ml of drinking water with 0.5% NaHCO$_3$ at 26°C for 14 hr. The soaked soybean was ground and heated with 800 ml of drinking water in a soymilk maker (DJ12B-DEF4, Midea, China). The slurry was filtered through a double-layered cotton cloth and then mixed with drinking water in a ratio of 8:2. Glucose (Sigma Chemical Co., Ltd, Guangzhou, China) with a concentration of 1.5% (w/v) was added to make soymilk. Soymilk was heated at 85°C for 15 min for sterilization and then cooled to 37°C. Subsequently, the soymilk was inoculated with 10% (w/v) L. amylyticus L6 and incubated at 37°C for 24 hr. The growth curve was plotted according to the viable counts determined at 0 hr, 2 hr, 4 hr, 6 hr, 8 hr, 10 hr, 12 hr, 14 hr, and 16 hr during fermentation (Tang et al., 2007). All analyses were performed in triplicate.

2.3 | Transcriptomic analysis

The fermented soymilk was sampled at the fermentation time of 4 hr, 7 hr, and 10 hr corresponding to the lag phase, logarithmic phase, and stationary phase, respectively. Three parallel samples were obtained in each sampling point. The quality and integrity of total RNA were assessed by 1% agarose gels and RNA 6000 Nano Assay Kit of the Bioanalyzer 2100 system. Probes were used to purify mRNA from the total RNA of prokaryotic samples. Fragmentation was carried out using divalent cations under hyperthermal temperature in first strand synthesis reaction buffer (5X). Synthesis of first strand complementary DNA (cDNA) was performed with random hexamer primer and...
Moloney murine leukemia virus (M-MuLV) reverse transcriptase. The second strand was synthesized by DNA Polymerase I and M-MuLV reverse transcriptase. The 3’ ends of DNA fragments were adenylated and then ligated to the adaptor with hairpin loop structure for hybridization. The cDNA library fragments with 350–400 bp were selected and purified with AMPure XP system. Polymerase chain reaction (PCR) was carried out with Phusion High-Fidelity DNA polymerase and the PCR products were purified with AMPure XP system. Finally, library quality was evaluated with Agilent 2100 Bioanalyzer system (Cheng et al., 2019). Gene descriptions and annotations were performed in the Genome Database of L. amylolyticus strain L6 in National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov) with GenBank Accession Number of CP020457.1. The annotated genes were then used to predict biochemical pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) terms were retrieved from the KEGG database (http://www.kegg.jp/kegg) and gene ontology (GO) database (http://geneontology.org), respectively.

Real-time quantitative PCR (RT–qPCR) was applied to verify the accuracy of transcriptomic results. Primers were designed and synthesized according to gene sequences on NCBI (Table S1). The gene-expression levels were calculated via the 2ΔΔCt method (Xu et al., 2015), which was used to compare with the sequencing results of the transcriptome.

2.4 Sugars and organic acid

The determination of sugars, including sucrose, glucose, fructose, galactose, raffinose, and stachyose in fermented soymilk, was performed by high-performance liquid chromatography (HPLC) according to the National Standard of China GB/T 22,221–2008. The samples with a volume of 5 ml were collected at 0 hr, 4 hr (lag phase), 7 hr (log phase), and 10 hr (stationary phase) and then centrifuged at 10,000 r/min for 10 min at 4°C. The supernatant (4 ml) was transferred to a 10-mL volumetric flask, diluted with methanol to the constant volume, and extracted with sonication for 1 hr. The resulting extracts were filtered through a 0.22-µm membrane into HPLC vials for HPLC testing.

The content of amino acid in fermented soymilk was determined by HPLC according to Agilent AdvanceBio AAA method (www.agilent.com/chem/advancedbioaa). Briefly, the pretreated samples were derivatized with o-phthalaldehyde (OPA), and the specific operations were carried out according to the method provided by Agilent. Analysis of amino acid by HPLC was carried out on Agilent 1100 equipped with an Agilent AdvanceBio AAA amino acid column (4.6 mm×250 mm, 5 µm) under isocratic elution. Na2HPO4 with a concentration of 0.01 mol/L and acetonitrile–methanol solution (acetonitrile:methanol:water 45:45:10) were used as mobile phase A and mobile phase B, respectively, with a flow rate of 1.5 ml/min. The detection wavelength was 338 nm, and the column temperature was set at 35°C. The content of sucrose, glucose, fructose, galactose, raffinose, and stachyose (Sigma Chemical Co., Ltd, Guangzhou, China) was dissolved in deionized water and transferred to a 10-mL volumetric flask for gradient dilution. The equation parameters of standard curve were used to determine the concentration of organic acid in fermented soymilk.

2.5 Analysis of isoflavones and amino acids by HPLC

The content of lactic acid and acetic acid in fermented soymilk was detected by HPLC according to GB/T 5009.157–2003. The samples with a volume of 5 ml were collected at 0 hr, 4 hr (lag phase), 7 hr (log phase), and 10 hr (stationary phase) and then centrifuged at 10,000 r/min for 10 min. The supernatant was filtered through a 0.22-µm syringe membrane into HPLC vials for testing. HPLC was performed on Agilent 1100 equipped with Luna C18(2) 100A column (4.6 mm×250 mm, 5 µm) and VWD 3100 ultraviolet detector. KH2PO4 (95%) with a concentration of 10 mmol/L-methanol (5%) was used as mobile phase with a flow rate of 0.5 ml/min. The detection wavelength was 210 nm, and the column temperature was set at 25°C. The standard of lactic acid and acetic acid (Sigma Chemical Co., Ltd, Guangzhou, China) was dissolved in deionized water and transferred to a 10-mL volumetric flask for gradient dilution. The equation parameters of standard curve were used to determine the concentration of organic acid in fermented soymilk.

2.6 Statistical analysis

Analyses were performed using SPSS (SPSS Inc., Chicago, IL, USA, V23.0.0). One-way analysis of variance (ANOVA) was performed
That might be because tofu-whey isolated L. amylolyticus L6 were identified. There were 260 SDEGs in logarithmic phase versus a total of 313 significantly differentially expressed genes (SDEGs) transcriptomic analysis of different growth phases next to each other. (RNA-seq). Our research mainly focused on the comparative transcriptomic analysis between L. amylolyticus L6 and Lactobacillus casei Zhang grown from the lag phase into the logarithmic phase at a time of 3 hr and reached stationary phase at 14 hr with a cell concentration of 10^9 CFU/mL. It was reported that Lactobacillus casei Zhang grew from the lag phase into the logarithmic phase at a time of 3 hr and reached stationary phase at 14 hr with a cell concentration of 10^12 CFU/mL (Wang et al., 2012). L. amylolyticus L6 need less time than L. casei Zhang to grow into stationary phase, while L6 could produce more bacterial cells in soymilk than L. casei Zhang. That might be because tofu-whey isolated L. amylolyticus L6 is more adaptable in the soymilk-based ecosystem than koumiss-isolated L. casei Zhang (Fei, Liu, et al., 2017).

RESULTS AND DISCUSSION

3.1 Growth characteristics of L. amylolyticus L6 in soymilk

The growth curve of L. amylolyticus L6 in soymilk was plotted according to viable counts (Figure 1). L. amylolyticus L6 started to grow after 2 hr inoculation in soymilk. It needed approximately 4 hr for bacteria to grow from lag phase into the logarithmic phase. Bacteria grew into the stationary phase at the time of 10 hr with a cell concentration of 10^12 CFU/mL. It was reported that Lactobacillus casei Zhang grew from the lag phase into the logarithmic phase at a time of 3 hr and reached stationary phase at 14 hr with a cell concentration of 10^9 CFU/mL (Wang et al., 2012). L. amylolyticus L6 need less time than L. casei Zhang to grow into stationary phase, while L6 could produce more bacterial cells in soymilk than L. casei Zhang. That might be because tofu-whey isolated L. amylolyticus L6 is more adaptable in the soymilk-based ecosystem than koumiss-isolated L. casei Zhang (Fei, Liu, et al., 2017).

3.2 Gene-expression profiles of L. amylolyticus L6 during fermentation in soymilk

The gene-expression profiles of L. amylolyticus L6 during growth in the soymilk ecosystem were investigated by the RNA-sequencing (RNA-seq). Our research mainly focused on the comparative transcriptomic analysis of different growth phases next to each other. A total of 313 significantly differentially expressed genes (SDEGs) were identified. There were 260 SDEGs in logarithmic phase versus lag phase and 171 SDEGs identified in the stationary phase versus logarithmic phase (Figure 5). The SDEGs of L. amylolyticus L6 in logarithmic phase versus lag phase were functionally categorized, indicating that SDEGs mainly enriched in biological process (transmembrane transport, oxidation and reduction, and translation), cellular component (ribosome and membrane), and molecular function (structural constituent of ribosome, nucleotide binding, and catalytic activity) (Figure 2a). In the stationary phase compared to the logarithmic phase, SDEGs mainly enriched in molecular function, such as structural constituent of ribosome, nucleotide binding, and catalytic activity (Figure 2b). The pathway enrichment for different growth phases is shown in Figure 3 according to the KEGG pathway database. As for logarithmic phase versus Lag phase group, the pathway of SDEGs enriched in starch and sucrose metabolism, fatty acid degradation, ribosome, biosynthesis of secondary metabolites, and folate biosynthesis. The pathway of SDEGs in stationary versus logarithmic phase group enriched in ribosome, starch, and sucrose metabolism, adenosine triphosphate (ATP)-binding cassette (ABC) transporter, phosphotransferase system (PTS), and amino acid metabolism.

In order to determine the reliability of transcriptomic results, expression changes of nine target genes (B1704_03855, B1704_02440, B1704_01765, B1704_01760, B1704_00925, B1704_00910, and B1704_06165) between lag phase and stationary phase were selected for detection. The result indicated a high consistency between platform of RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR), proving the validity of RNA-seq data (Figure 4).

3.3 Carbon metabolism of L. amylolyticus L6

It has been reported that Lactobacillus amylolyticus could metabolize various carbohydrates such as dextrin, fructose, galactose, glucose, maltose, mannose, sucrose, melibiose, and raffinose, and in some cases salicine, esculin, amygdalin, and starch (Bohak et al., 1998; Fei et al., 2018). Soymilk mainly contained four different kinds of sugars, including glucose, sucrose, raffinose, and stachyose (Table 1). To provide a guide for industrial applications of L. amylolyticus L6 in fermenting soymilk, 1.5% (w/v) of glucose was added to provide enough carbon source for the growth of L6. The metabolism of carbohydrate to produce organic acid by L. amylolyticus L6 during its fermentation in soymilk is shown in Figure 5. The results indicated that four kinds of sugars reduced significantly (p < .05) during the fermentation and the main carbon sources used for the growth of L. amylolyticus L6 were sucrose and glucose (Table 1 and Figure 5). Many genes related to glucose metabolism were significantly up-regulated in logarithmic phase, such as genes coding for PTS β-glucoside transporter (B1745_01765), 6-phospho-alpha-glucosidase (B1745_05130), gluconate kinase (B1745_01565), and glucose-6-phosphate dehydrogenase (B1745_01805) (Table 2). However, several genes involved in sucrose transportation, especially sugar ABC transporters (B1745_06760, B1745_06745, and B1745_06750), and galactose metabolism (B1745_05485 and B1745_05490) were
significantly down-regulated in logarithmic phase. Microbes intend to utilize easily metabolizable carbohydrate and inhibit the metabolism of the other carbohydrate by down-regulating the expression of related genes (Luesink et al., 1998), the phenomenon of which, called carbon catabolite repression (CCR), has been widely found in lactic acid bacteria (LAB) (Görke & Stülke, 2008; Wang et al., 2012). In the stationary phase, few genes related to glucose metabolism were induced while many genes involved in sucrose (B1745_04485, B1745_04615, B1745_06775), raffinose, and stachyose utilization were found to be significantly up-regulated (Table 3). Among these sugars, only the content of galactose increased slightly (Table 1), which was due to the partial hydrolysis of raffinose and stachyose by α-galactosidase (B1745_RS08070) (Table 2). This phenomenon has also been reported in several researches of soybean products fermented by LAB (Battistini et al., 2018; Elghali et al., 2014; Xia et al., 2019). The production of energy for *L. amylolyticus* L6 is mainly through the Embden–Meyerhof–Parnas pathway (EMP). The gene (B1745_01805) of glucose 6-phosphate dehydrogenase that is the key regulatory enzyme of the Hexose Monophosphate Pathway (HMP) was highly expressed in the log phase, indicating that HMP was also indispensable in the glycometabolism of *L. amylolyticus* L6. Besides, two genes (B1745_05365 and B1745_06945) relevant to ATP production were also significantly up-regulated. During the fermentation, the acidity of soymilk increased significantly from 45.33° to 95.88° (Table 1). The acidity increment was mainly derived from lactic acid with its content increased from 2.62g/L to 4.65g/L (stationary phase) (p < .05). In addition, the content of acetic acid also increased slightly. Organic acid production was produced by *L. amylolyticus* L6 through the consumption of sugars in the soymilk (Wang et al., 2012; Xia et al., 2019). The production

FIGURE 2 Significantly differentially expressed genes (SDGEs) between different growth phase based on gene ontology (GO) analysis. Logarithmic phase versus Lag phase (a), Stable phase versus Logarithmic phase(b); BP, CC, and FF refer to biological process, cellular component, and molecular function, respectively

FIGURE 3 Scatter plot of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for different growth phases. Rich factor is the ratio of the number of differentially expressed genes (DEGs) annotated to the Pathway Term to the number of genes annotated to the Pathway entry
of acetic acid indicated that this strain was a facultatively heterofermentative bacterium. After glucose is converted into pyruvate by glycolysis, it can generate lactic acid through the action of lactate dehydrogenase under anaerobic conditions (Figure 5). RNA-Seq results showed that the expression of LDH gene (B1745_03165) encoding L-lactate dehydrogenase was significantly increased in the log phase (Table 2). In addition, it was also observed that adhE (B1745_05695) encoding acetaldehyde hydrogenase related to acetic acid production was up-regulated in the log phase. Therefore, high expression of LDH and adhE genes promotes the production of lactic acid and acetic acid which are important for coagulating soymilk.

3.4 | Nitrogen metabolism and biosynthesis

Due to the lack of various biosynthetic pathways, especially amino acid synthesis pathways, LAB generally need various nutritional ingredients and therefore they are usually found in nutrient-rich environments, such as vegetables, meat, and milk (Fernández & Zúñiga, 2006). Amino acids as an important nitrogen resource for LAB played important roles in physiological functions such as intracellular pH maintenance, stress resistance, and energy generation (Lei et al., 2018; Slonczewski et al., 2009). As a consequence, the proteolytic enzyme system serves a key role for LAB to grow in protein-rich soymilk. A total of 17 kinds of amino acids were detected in the fermented soymilk, including seven kinds of essential amino acids (EAAs) and 10 kinds of nonessential amino acids (NEAAs) (Table 4). The content of EAAs decreased gradually along with the fermentation and reached 177.26 mg/L in the stationary phase. But the content of total amino acids and NEAAs increased significantly and reached the highest 668.38 mg/L and 187.40 mg/L in the logarithmic phase respectively. Although the content of total amino acids and NEAAs decreased slightly in the stationary phase, it was still higher than that of unfermented soymilk. The increase of free amino acid content in the soymilk fermented by different lactobacilli and their mixes has been widely

Table 1: Changes of sugar and organic acid in soymilk fermented with L. amylophilus L6

	Unfermented	Lag phase	Logarithmic phase	Stationary phase
Sugars (g/L)				
Sucrose	3.75 ± 0.09a	3.36 ± 0.09b	2.89 ± 0.10c	2.61 ± 0.05c
Glucose	8.01 ± 0.15a	7.65 ± 0.12b	7.36 ± 0.10b	7.06 ± 0.14c
Fructose	0.13 ± 0.01a	0.11 ± 0.00b	0.09 ± 0.00b	0.09 ± 0.00b
Raffinose	0.59 ± 0.00a	0.59 ± 0.01b	0.57 ± 0.01b	0.53 ± 0.05c
Stachyose	2.89 ± 0.02a	2.88 ± 0.02a	2.88 ± 0.01a	2.76 ± 0.01b
Galactose	0.23 ± 0.01c	0.35 ± 0.01b	0.41 ± 0.01a	0.44 ± 0.02a
Organic acids (g/L)				
Lactic acid	2.62 ± 0.04d	3.38 ± 0.04c	4.12 ± 0.04b	4.65 ± 0.06a
Acetic acid	0.36 ± 0.02c	0.43 ± 0.03b	0.57 ± 0.04a	0.62 ± 0.03c
Acidity (°)	45.33 ± 1.14c	47.64 ± 1.86c	88.42 ± 2.31b	95.88 ± 2.65a
pH	6.7 ± 0.1a	6.6 ± 0.1a	5.5 ± 0.2b	4.3 ± 0.2b

Note: Data are the mean ± standard deviation (n = 3). Means in the same column with different superscript letters (a-d) are significantly different (p < .05)
reported (Ceh et al., 2020; Song et al., 2008). Besides, the content of glutamate and arginine was higher than those of other amino acids in unfermented and fermented soymilk, accounting for approximately 40% content of total amino acid. This phenomenon has been found in soy powder yoghurt fermented by L. brevis WCP02 and L. plantarum P120 that content of arginine is the highest (reached 380 mg/g), and accounted for almost 50% content of the total amino acid in soy powder yoghurt (Ceh et al., 2020). Therefore, fermentation of soymilk by L. amylolyticus L6 could promote the hydrolysis of protein into amino acid, improving the nutritional quality and digestibility of soymilk.

The proteolytic system of LAB generally consisted of protease, transport systems of amino acid or peptides, and peptidases (Wang et al., 2012). The protein in soymilk was first hydrolyzed by protease into amino acids and peptides, which were then transported to cytoplasm by transport systems. Finally, the translocated peptides were degraded by peptidases (Savijoki et al., 2006). Transcriptomic results indicated that the expression of clpP (B1745_04695), clpC (B1745_01265), and clpE (B1745_04960) genes encoding subunits of caseinolytic protease (Clp) previously identified in Lactobacillus plantarum IIA-1AS (Mega et al., 2020) was highly induced in the logarithmic and stationary phase. Meanwhile, two genes (B1745_00550 and B1745_06165) coding for metalloprotease were also found to be up-regulated in the logarithmic and stationary phase. Besides, the gene of another intramembrane metalloprotease showed higher induction levels in the stationary phase than in the logarithmic phase. These highly expressed protease genes indicated the strong proteolytic ability of L. amylolyticus L6 in the fermentation of soymilk.

The transport of peptides into the cell is an essential step for LAB multiplying in soymilk (Hagting, 1995). Transcriptomic data showed that genes involved in the transport and hydrolysis of peptide in the cytoplasm also exhibited high expression levels (Tables 2 and 3). The gene cluster oppDFBCA encoding the oligopeptide transport system (Opp) and PepC encoding the aminopeptidase, which have been identified in an operon of Lactococcus lactis (Tynkkynen et al., 1993), were found to be up-regulated in soymilk-grown L. amylolyticus L6 cells. Five genes in Opp operon were highly expressed, including B1745_00920 (OppA coding for substrate-binding proteins), B1745_00925 and B1745_00940 (OppB and OppC coding for membrane proteins), and B1745_00945 (OppD and OppF coding for ATP-binding proteins). Meanwhile, pepC coding for aminopeptidase that could hydrolyze oligopeptide into amino acid also exhibited high expression levels. Additionally, another five peptidase genes were highly induced in the logarithmic phase, which include two peptidases (pepO, B1745_02860; pepT, B1745_06070), two aminopeptidases (pepC, B1745_00910 and B1745_00955), and a dipeptidyl-peptidase (pepX, B1745_02545). Dipeptidyl-peptidase (pepX, B1745_02545) identified in Lactobacillus helveticus (Ojennus et al., 2019) and Lactococcus lactis (Nurizzo et al., 2002) could hydrolyze peptide bonds from the N-terminus of substrates when the penultimate amino acid residue is a proline. The highly induced dipeptidyl-peptidase might suggest the high content of oligopeptides
Function group and ORF	Gene	Description	Value of log₂ variable expression
Genes up-regulated			
Carbohydrate transport and metabolism			
B1745_05615	nagZ	beta-N-acetylhexosaminidase	3.54
B1745_05130	glvA	6-phospho-alpha-glucosidase	3.26
B1745_03165	ldh	L-lactate dehydrogenase	3.18
B1745_05695	adhE	acetaldehyde dehydrogenase/alcohol dehydrogenase	2.67
B1745_RS08070	galA	alpha-galactosidase	2.32
B1745_01765	scrA	PTS beta-glucoside transporter subunit EII BCA	1.98
B1745_04615	spp	HAD family hydrolase	1.93
B1745_03820	gyoR	hypothetical protein	1.80
B1745_03825	spp	sugar-phosphatase	1.69
B1745_01805	zwf	glucose-6-phosphate dehydrogenase	1.62
B1745_06170	gpmB	histidine phosphatase family protein	1.58
B1745_07215		transcriptional regulator	1.44
B1745_02045	docC	D-alanyl-D-alanine carboxypeptidase	1.44
B1745_02005	bcrC	phospholipid phosphatase	1.44
B1745_03140	fumC	class II fumarate hydratase	1.43
B1745_04590	murB	UDP-N-acetylenolpyruvoylglucosamine reductase	1.38
B1745_04460	glgC	YebC/PmpR family DNA-binding transcriptional regulator	1.36
B1745_04525	spp	HAD family hydrolase	1.33
B1745_03145	frdA	flavocytochrome c	1.32
B1745_02465	galE	UDP-glucose-4-epimerase	1.30
B1745_07245	poxL	pyruvate oxidase	1.29
B1745_04860	pgl	3-carboxymuconate cyclase	1.29
B1745_06310	rpe	ribulose phosphate epimerase	1.22
B1745_00870		aldose 1-epimerase	1.19
B1745_07130	bdhAB	aldo/keto reductase	1.19
B1745_03235	lysozyme	lysis	1.12
B1745_01565	gntK, idnK	gluconate kinase	1.09
B1745_04605	pta	phosphate acetyltransferase	1.09
B1745_05160	rpiA	ribose 5-phosphate isomerase A	1.03
B1745_04420	ackA	acetate kinase	1.00
B1745_03855	bglA	6-phospho-beta-glucosidase	1.00
B1745_05365	zntA	copper-translocating P-type ATPase	1.09
B1745_06945		cadmium-translocating P-type ATPase	2.16
Amino acids transport and metabolism			
B1745_06855	asnA	aspartate–ammonia ligase, asparagine biosynthetic process	4.16
B1745_02860	pepO	peptidase M13	2.44
B1745_00965	hsp20	heat-shock protein Hsp20	2.39
B1745_04695	clpP	ATP-dependent Clp protease proteolytic subunit	2.35
B1745_04960	clpE	Clp protease ClpE	2.25
B1745_05185	glnP	glutamine ABC transporter permease	2.16
B1745_03105	att	amino acid permease	2.14
B1745_00925	oppB	peptide ABC transporter substrate-binding protein	2.07
Function group and ORF	Gene	Description	Value of log₂ variable expression
------------------------	----------	--	---
	htx	zinc metalloprotease Htx	1.97
B1745_00550	pepT	peptidase T	1.89
B1745_09050	oppF	ABC transporter ATP-binding protein	1.83
B1745_03200	prmA	ribosomal protein L11 methyltransferase	1.81
B1745_00910	pepC	aminopeptidase	1.67
B1745_01265	clpC	ATP-dependent Clp protease ATP-binding protein	1.63
B1745_04890	-	transcriptional activator, Rgg/GadR/MutR family domain-containing protein	1.60
	glnM	glutamine ABC transporter permease	1.60
	pepX	dipeptidyl-peptidase	1.56
	dacD	D-alanyl-D-alanine carboxypeptidase	1.44
	pepC	aminopeptidase	1.44
	oppD	peptide ABC transporter ATP-binding protein	1.43
	lysC	aspartate kinase	1.41
	att	amino acid permease	1.40
	atpA	haloacid dehalogenase	1.40
	pepC	aminopeptidase	1.38
	glnH	glutamine ABC transporter substrate-binding protein	1.32
	groEL	chaperonin GroEL	1.23
	lysC	metalloprotease	1.18
	GlnP	glutamine ABC transporter permease	1.08
	oppA	peptide ABC transporter substrate-binding protein	1.07
	cth	aluminum resistance protein	1.05
	uvrB	excinuclease ABC subunit B	1.02
	oppC	peptide ABC transporter permease	1.01
	gadC	glutamate:gamma-aminobutyrate antiporter	1.79

Lipid metabolism, inorganic ion transport and stress response

Gene	Description	Value of log₂ variable expression
B1745_05970	esterase	1.41
B1745_00245	esterase	1.03
B1745_02830	acyl-CoA thioesterase	1.40
B1745_05670	biotin carboxylase	1.58
B1745_00100	mgtC putative Mg²⁺ transporter family protein	1.26
B1745_00845	pot potassium transporter	1.36
B1745_05305	amt ammonium transporter	1.97
B1745_06945	cadmium-translocating P-type ATPase	2.16

Genes down-regulated

Carbohydrate transport and metabolism

Gene	Description	Value of log₂ variable expression
B1745_06195	hypothetical protein	-1.03
B1745_05125	glvB PTS alpha-glucoside transporter subunit IICB	-1.06
B1745_05025	atoB 3-ketoacyl-CoA thiolase	-1.08
B1745_00695	ddl D-alanine-D-alanine ligase A	-1.27
B1745_05485	tagA galactosyltransferase	-1.33
B1745_05490	Malk sugar ABC transporter ATP-binding protein	-1.56
B1745_06760	acyP acylphosphatase	-1.50
with penultimate proline residue in the fermented soymilk. In the stationary phase, there were only two aminopeptidase genes (pepC, B1745_00910 and B1745_01515) that were significantly up-regulated, which might be due to the stagnation of cell growth and proliferation, reducing the requirement for peptide and amino acid.

Genome analysis of L. amylolyticus L6 with KEGG pathways revealed that this strain was able to synthesize nine kinds of amino acids, including valine (Val), leucine (Leu), isoleucine (Ile), phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), aspartate (Asp), and arginine (Arg), alanine (Asn), and arginine (Arg). The overexpression of the glutamate transporter operon has also been reported in L. casei Zhang under soymilk environment (Wang et al., 2012). Meanwhile, many uncharacterized amino acid permease genes (B1745_03105, B1745_06875, B1745_06870, and B1745_06860) were up-regulated, while two amino acid permease genes (B1745_04680 and B1745_03815) were down-regulated in the logarithmic and stationary phase. Interestingly, two genes livB and brnQ coding for branched-chain amino acid transport system II carrier protein and branched-chain amino acid ABC transporter permease were significantly down-regulated in the stationary phase. That’s because L. amylolyticus L6 could synthesize branched-chain amino acids (leucine, isoleucine, and valine) and did not require the help of their transporters, therefore repressing the expression of corresponding genes.

3.5 Lipid metabolism, inorganic ion transport, and stress response

There are 14 genes involved in fatty acid biosynthesis which were identified in the genome of L. amylolyticus L6, which includes accA (acetyl-CoA (coenzyme A) carboxylase), accB (acetyl-CoA carboxylase biotin carboxyl carrier protein), accC (acyl-CoA carboxylase, biotin carboxylase subunit), accD (acyl-CoA carboxylase carboxyl transferase subunit beta), fabD (acyl-carrier-protein S-malonyltransferase), fabF (3-oxoacyl-[acyl-carrier-protein] synthase II), fabG (3-oxoacyl-acyl-carrier protein reductase), fabH (3-oxoacyl-3-oxoacyl-acyl-carrier protein synthase III), fabI (enoyl-[acyl-carrier protein] reductase I), fabZ (3-hydroxyacyl-[acyl-carrier-protein] dehydratase), and mch (medium-chain acyl-[acyl-carrier-protein] hydrolase). Only accC gene (B1745_05670) was found to be up-regulated in the logarithmic phase during the growth of L. amylolyticus L6 in soymilk. It was reported that soymilk contained 2.64% grease, and the relative

Function group and ORF	Gene	Description	Value of log2 variable expression
B1745_06765	pgmB	beta-phosphoglucosamide	-1.61
B1745_06730	gmpB	hypothetical protein	-2.38
B1745_06745	ganQ	sugar ABC transporter permease	-2.58
B1745_06750	ganP	sugar ABC transporter permease	-2.79

Amino acids transport and metabolism

- **Table 2**

Gene	Description	
B1745_01435	rpoA	DNA-directed RNA polymerase subunit alpha
B1745_02350	yidC	insertase
B1745_04680	-	amino acid permease
B1745_05775	secG	preprotein translocase subunit SecG
B1745_06880	lepB	S26 family signal peptidase
B1745_04160	valS	valine-tRNA ligase
B1745_01405	secY	preprotein translocase subunit SecY
B1745_02435	cth	aluminum resistance protein
B1745_03815	-	amino acid permease

Gene	Description		
B1745_05195	glnH		-1.02
B1745_05185	glnP		-1.07
B1745_05775	glnQ		-1.14
B1745_06740	glnR		-1.17
B1745_06750	glnS		-1.19
B1745_06760	glnT		-1.22
B1745_06770	glnU		-1.38
B1745_06780	glnV		-1.74
B1745_06790	glnW		-2.08
Function group and ORF	Gene	Description	Expression ratio
--------------------------------------	-----------	---	------------------
Genes up-regulated			
Carbohydrate transport and metabolism			
B1745_04550	glmS	glutamine-fructose-6-phosphate transaminase (isomerizing)	2.34
B1745_04615	spp	HAD family hydrolase	1.91
B1745_04860	pgl	3-carboxymuconate cyclase	1.30
B1745_06170	gpmB	histidine phosphatase family protein	1.26
B1745_04485	spp	sugar-phosphatase	1.20
B1745_06775	nplT	alpha-glycosidase	1.14
Amino acid transport and metabolism			
B1745_04550	glmS	glutamine-fructose-6-phosphate transaminase (isomerizing)	2.34
B1745_00615	adaB	cysteine methyltransferase	2.00
B1745_01515	pepC	aminopeptidase	1.55
B1745_06860		amino acid permease	1.54
B1745_00965	hsp20	heat-shock protein Hsp20	1.52
B1745_03805	uvrC	excinuclease ABC subunit C	1.45
B1745_06885	clpE	ATP-dependent Clp protease ATP-binding subunit	1.40
B1745_04960	clpE	Clp protease ClpE	1.33
B1745_04860	pgl	3-carboxymuconate cyclase	1.30
B1745_01540	cysS	cysteine-tRNA ligase	1.29
B1745_04890		transcriptional activator, Rgg/GadR/MutR family domain-containing protein	1.23
B1745_03010	grpE	nucleotide exchange factor GrpE	1.23
B1745_00550	htxP	zinc metalloprotease HtxP	1.19
B1745_04855	atpA	haloacid dehalogenase	1.18
B1745_01260		histidine kinase	1.16
B1745_00985		CPBP family intramembrane metalloprotease	1.15
B1745_04695	clpP	ATP-dependent Clp protease proteolytic subunit	1.14
B1745_07110	pcp	pyroglutamyl-peptidase I	1.06
B1745_06165		metalloprotease	1.05
B1745_00910	pepC	aminopeptidase	1.03
Lipid metabolism, inorganic ion transport, and stress response			
B1745_02830		acyl-CoA thioesterase	2.30
B1745_01775	groEL	chaperone	1.22
B1745_03010	grpE	nucleotide exchange factor GrpE	1.23
B1745_03015	dnaK	molecular chaperone	1.10
B1745_00745	uspA	universal stress protein	1.14
B1745_01850	trxA	thioredoxin	1.20
Genes down-regulated			
Carbohydrate transport and metabolism			
B1745_01165	murF	UDP-N-acetyl-D-muramoyl-tripeptide--D-alanyl-D-alanine ligase	-1.02
B1745_05730	manY	PTS mannose/fructose/sorbose transporter subunit IIC	-1.04
B1745_05730	manY	PTS mannose/fructose/sorbose transporter subunit IIC	-1.04
B1745_05735	manX	PTS mannose transporter subunit IIAB	-1.15
B1745_05130	glvA	6-phospho-alpha-glucosidase	-1.33
B1745_07135	nagB	glucosamine-6-phosphate deaminase	-2.70
content of unsaturated fatty acid is more than 80% (Xiangnan et al., 2019), which inhibited the expression of genes related to fatty acid biosynthesis in *L. amylolyticus* L6. Meanwhile, acyl-CoA thioesterase gene (B1745_02830) that catalyzes the hydrolysis of acyl-CoAs to the free fatty acid and regulates intracellular levels of free fatty acids and acyl-CoAs (Tillander et al., 2017) was highly induced during its growth in soymilk. Besides, several genes coding for esterase (B1745_05970 and B1745_00245) were also up-regulated in logarithmic phase to utilize the grease in soymilk.

Inorganic ions, especially metal ions, are important for LAB to maintain normal functions in the metabolism (Mrvčić et al., 2012). Generally, membrane transporters play a crucial role in regulating

Function group and ORF	Gene	Description	Expression ratio
Amino acid transport and metabolism	B1745_04680	- amino acid permease	-1.01
	B1745_05320	livB branched-chain amino acid transport system II carrier protein	-1.02
	B1745_05735	manX PTS mannose transporter subunit IIAB	-1.15
	B1745_02915	tsf translation elongation factor Ts	-1.17
	B1745_03935	- peptide-binding protein	-1.24
	B1745_02235	thrS threonine-tRNA ligase	-1.41
	B1745_00785	asnB asparagine synthase (glutamine-hydrolyzing)	-1.47
	B1745_00270	brnQ branched-chain amino acid ABC transporter permease	-1.69

TABLE 3 (Continued)

Function group and ORF	Gene	Description	Expression ratio
Lipid metabolism, inorganic ion transport, and stress response	B1745_00715	- acetylesterase	-1.10

TABLE 4 Changes of amino acids in soymilk fermented with *L. amylolyticus* L6

Free amino acids (mg/L)	Period	Unfermented	Lag phase	Log phase	Stationary phase
Essential amino acids					
Lysine		39.68 ± 1.72	36.60 ± 1.21	35.13 ± 0.28	33.06 ± 0.99
Phenylalanine		29.62 ± 0.79	30.39 ± 0.86	28.87 ± 2.03	26.79 ± 1.39
Methionine		47.04 ± 1.50	43.05 ± 1.79	43.72 ± 1.09	42.30 ± 1.85
Threonine		8.59 ± 0.21	9.31 ± 0.25	9.59 ± 0.25	9.01 ± 0.22
Isoleucine		20.32 ± 1.33	21.28 ± 0.92	20.80 ± 0.53	19.57 ± 2.50
Leucine		50.91 ± 1.98	48.33 ± 1.76	46.65 ± 1.20	43.40 ± 2.11
Valine		5.74 ± 0.33	2.19 ± 0.22	2.63 ± 0.08	3.13 ± 0.08
Total of EAA		201.90 ± 7.95	191.14 ± 8.18	187.40 ± 4.82	177.26 ± 9.56

Nonessential amino acids					
Asparagine		21.70 ± 0.76	14.10 ± 1.14	10.64 ± 1.02	5.48 ± 0.52
Glutamate		102.04 ± 3.21	133.14 ± 2.90	133.30 ± 3.15	129.07 ± 0.99
Serine		23.27 ± 0.82	26.16 ± 1.63	27.98 ± 0.92	27.53 ± 0.66
Histidine		4.65 ± 0.41	7.03 ± 0.23	6.82 ± 0.13	6.15 ± 0.25
Glycine		48.10 ± 1.61	61.88 ± 1.93	76.37 ± 1.00	83.97 ± 1.12
Arginine		125.25 ± 2.85	121.10 ± 2.56	120.45 ± 2.65	115.86 ± 1.73
Alanine		60.34 ± 1.87	51.74 ± 2.00	53.91 ± 1.00	52.86 ± 0.98
Tyrosine		11.42 ± 0.19	16.97 ± 0.24	16.23 ± 0.51	15.09 ± 0.41
Cysteine		0.79 ± 0.06	1.21 ± 0.04	1.92 ± 0.09	3.18 ± 0.05
Proline		32.66 ± 1.55	32.83 ± 1.84	33.35 ± 0.67	32.69 ± 1.05
Total of NEAAs		430.23 ± 13.34	466.16 ± 14.53	480.99 ± 11.14	471.86 ± 7.77
Total amino acids		632.12 ± 21.28	657.30 ± 22.70	668.38 ± 15.97	649.12 ± 17.33

Note: Data are the mean ± standard deviation (n = 3). Means in the same row with different superscript letters (a–d) are significantly different (p <.05).
the intracellular concentrations of metal ions (Boyaval, 1989). The expression of five genes, such as mgtC (B1745_00100) coding for Mg$^{2+}$ transporter, pot (B1745_00845) coding for potassium transporter, amt (B1745_05305) coding for ammonium transporter, and cadmium-translocating P-type ATPase gene (B1745_06945), was significantly induced in the logarithmic phase, indicating the importance of inorganic ions in regulating physiological functions of L. amylolyticus L6, such as ion homeostasis, coenzyme factor, and electron transport system.

During the fermentation, the pH values and acidity of soymilk in the stationary phase could reach 4.0 and 95.88°, respectively, which would induce the expression of genes in responding to acidity stress. Molecular chaperones have been regarded as a ubiquitous feature of cells, including LAB, in which these proteins cope with stress-induced denaturation of other proteins (Feder & Hofmann, 1999). Chaperone proteins GroL, DnaK, and GrpE participate actively in the response to stress conditions by preventing the aggregation of stress-denatured proteins (Lemos et al., 2007). Transcriptomic analysis indicated that the expression of genes groEL (B1745_01775), dnaK (B1745_03015), and grpE (B1745_03010) coding for chaperone proteins was highly up-regulated in the stationary phase, while these two genes were not significantly induced in the logarithmic phase. The difference was mainly due to a relatively higher pH value in logarithmic phase that is not enough to cause acid stress to L. amylolyticus L6 (Table 1). The increased expression level of a universal stress protein (B1745_00745) in the stationary phase that was required for resistance to DNA damage also engaged in acid tolerance of L. amylolyticus L6. In addition, the high transcript level of thioredoxin (trxA, B1745_01850) in the stationary phase that acts as an antioxidant by promoting the reduction of other proteins through the cysteine thiol–disulfide bond exchange was related to stress adaptation in L. amylolyticus L6. The gene highly expressed in logarithmic phase was glutamate:γ-aminobutyrate antiporter (gadC, B1745_00320) that exchanges the intracellular γ-aminobutyric acid (GABA) with extracellular Glu to expel protons in the cytoplasm (Dan et al., 2012).

3.6 | Change of isoflavones in fermented soymilk

Soymilk was rich in isoflavones in the form of isoflavone aglycones (10%) and their corresponding glucosidic conjugates (90%) (Rodriguez-Roque et al., 2013). Isoflavones’ glucosidic conjugates could be converted into highly bioactive aglycones by β-glucosidase in lacticobacilli (Tang et al., 2007; Wei et al., 2007; Xia et al., 2019). As shown in Table 5, most of the isoflavones in unfermented soymilk occurred in the form of glucosides with the concentration of 285.77 mg/L and the content of aglycones was only 14.51 mg/L. During the fermentation, the total concentration of isoflavone aglycones increased from 14.51 mg/L to 36.09 mg/L, and three forms of aglycones’ (daizein, glycine, and genistin) concentration also increased significantly. However, the content of glucosidic isoflavones changed irregularly during the fermentation. Compared with the unfermented phase, the glucosidic isoflavones (daizaid, glyctin, and genistin) exhibited a decreasing tendency in the lag phase (2h) and then the content of glucosidic isoflavones increased gradually in the logarithmic and stationary phase. A similar phenomenon has been reported in the soymilk beverage fermented by Kombucha rich in LAB (Xia et al., 2019). It is presumed that the fermentation of L. amylolyticus L6 could promote the release of free flavonoids from binding forms with soluble fibers in the soymilk. Transcriptomic data indicated that the expression of bg1A gene coding for 6-phospho-β-glucosidase increased significantly in logarithmic phase, which was consistent with the increasing concentrations of isoflavone aglycones. 6-phospho-β-glucosidase that could convert isoflavone glucosides into aglycones has been reported in our previous study (Fei, Liu, et al., 2017).

4 | CONCLUSION

This study revealed the chemical component changes and transcriptomic changes of L. amylolyticus L6 in fermented soymilk.

Isoflavones (mg/L)	Period	Unfermented	Lag phase	Log phase	Stationary phase
Glycosides					
Daidzin	216.65 ± 3.80a	154.96 ± 1.92c	188.45 ± 1.83b	217.22 ± 2.01a	
Glyctin	46.02 ± 1.77b	35.17 ± 0.47d	43.60 ± 0.19c	50.73 ± 0.29a	
Genistin	23.09 ± 0.12a	11.87 ± 0.63b	12.10 ± 0.06b	12.62 ± 0.77b	
Total	285.77 ± 5.50a	202.01 ± 1.80c	244.15 ± 1.87b	280.57 ± 1.41a	

Aglycones					
Daizein	10.03 ± 0.49c	9.17 ± 0.48d	11.89 ± 0.08b	16.63 ± 0.14a	
Glycine	ND	ND	ND	5.61 ± 0.07a	
Genistein	4.48 ± 1.16b	5.65 ± 1.87b	12.11 ± 0.99a	13.85 ± 1.27a	
Total	14.51 ± 1.65 c	14.82 ± 0.62 c	24.00 ± 1.07 b	36.09 ± 1.48 a	

Note: Data are the mean ± standard deviation (n = 3). Means in the same column with different superscript letters (a–d) are significantly different (p < .05). ND means not detected.

Table 5 | Concentration of isoflavones (mg/L) in soymilk fermented with L. amylolyticus L6

Isoflavones (mg/L)	Period	Unfermented	Lag phase	Log phase	Stationary phase
Glycosides					
Daidzin	216.65 ± 3.80a	154.96 ± 1.92c	188.45 ± 1.83b	217.22 ± 2.01a	
Glyctin	46.02 ± 1.77b	35.17 ± 0.47d	43.60 ± 0.19c	50.73 ± 0.29a	
Genistin	23.09 ± 0.12a	11.87 ± 0.63b	12.10 ± 0.06b	12.62 ± 0.77b	
Total	285.77 ± 5.50a	202.01 ± 1.80c	244.15 ± 1.87b	280.57 ± 1.41a	

Aglycones					
Daizein	10.03 ± 0.49c	9.17 ± 0.48d	11.89 ± 0.08b	16.63 ± 0.14a	
Glycine	ND	ND	ND	5.61 ± 0.07a	
Genistein	4.48 ± 1.16b	5.65 ± 1.87b	12.11 ± 0.99a	13.85 ± 1.27a	
Total	14.51 ± 1.65 c	14.82 ± 0.62 c	24.00 ± 1.07 b	36.09 ± 1.48 a	
Large amount of genes related to carbon metabolism in *L. amylolyticus* L6 were significantly up-regulated in the logarithmic phase and stationary phase, which allowed this strain to metabolize various sugars in soymilk. Highly expressed α-galactosidase gene could help to reduce the content of raffinose and stachyose that caused flatulence of human body. Meanwhile, the concentration of total amino acid increased significantly in the logarithmic phase for highly induced genes involved in the proteolysis, hydrolysis, and transport of peptide, transport and biosynthesis of amino acid. Highly efficient utilization of carbon and nitrogen sources significantly raised the viable counts of *L. amylolyticus* L6 in soymilk. High expression of β-glucosidase promoted the conversion of isoflavone glycoside into highly bioactive aglycones. Besides, other genes related to lipid metabolism, inorganic ion transport, and stress response were also up-regulated. Further study should be conducted in terms of applying this strain into developing soymilk products and vitro digestion simulation test to testify its production performance. In conclusion, this study reveals that *L. amylolyticus* L6 isolated from the soybean-derived environment exhibited excellent adaptability in a soymilk-based ecosystem, which is expected to become the specific probiotic strain used for the fermentation of soybean products.

ACKNOWLEDGMENTS

This work was supported by the Key-Area Research and Development Program of Guangdong Province (2020B020226008); Key Realm R&D Program of Guangdong Province (2018B020206001); The Projects of Science and Technology of Guangzhou (20212020558); The Research Capacity Enhancement Project of Key Discipline in Guangdong Province (2021ZDS005); Zhongkai University of Agricultural Engineering Innovation Fund for College Students in 2021 (S202111347048); and Guangdong Province Rural Science and Technology Commissioner Assistance Project (Yueke Hanong Zl [2021] No. 1056).

CONFLICT OF INTEREST

None declared.

ETHICAL APPROVAL

The authors declare that they have no conflict of interest. This article does not contain any studies involving animal’s trials performed by any of the authors. Furthermore, this article does not contain any studies involving human participants performed by any of the authors.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, and further inquiries can be directed to the corresponding authors.

ORCID

Yongtao Fei © https://orcid.org/0000-0001-7175-4406

REFERENCES

Battistini, C., Gullon, B., Ichimura, E. S., Gomes, A. M. P., Ribeiro, E. P., Kunigk, L., Moreira, J. U. V., & Jurkiewicz, C. (2018). Development and characterization of an innovative sybiotic fermented beverage based on vegetable soybean. *Brazilian Journal of Microbiology*, 49, 303–309. https://doi.org/10.1016/j.bjm.2017.08.006

Bohak, I., Back, W., Richter, L., Ehrmann, M., Ludwig, W., & Schleifer, K. H. (1998). *Lactobacillus amylolyticus* sp. nov., isolated from beer malt and beer wort. *Systematic & Applied Microbiology*, 21, 360–366. https://doi.org/10.1078/0723-2020(98)00453-3

Boyaval, P. (1989). Lactic acid bacteria and metal ions. *Le Lait*, 69, 87–113. https://doi.org/10.1051/laith:198927

Bron, P. A., Van Baarlen, P., & Kleerebezem, M. (2012). Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. *Nature Reviews Microbiology*, 10, 66–78. https://doi.org/10.1038/nrmicro2690

Ceh, A., Su, C., Du, H., Hyl, A., Hks, B., Kmc, A., & Jin, H. (2020). Enhancement of isoflavone aglycone, amino acid, and CLA contents in fermented soybean yogurts using different strains: Screening of antioxidant and digestive enzyme inhibition properties. *Food Chemistry*, 340, 128–199. https://doi.org/10.1016/j.foodchem.2020.128199

Cheng, L., Zhang, X., Zheng, X., Wu, Z., & Weng, P. (2019). RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. *World Journal Microbiology Biotechnology*, 35, 59–69. https://doi.org/10.1007/s11274-019-2639-4

Donkor, O. N., Henriksen, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. *Food Chemistry*, 104, 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065

Elghali, S., Mustafa, S., Amid, M., & Manap, M. Y. A. (2014). Variations in soy milk components during fermentation by Lactobacillus and Bifidobacterium strains. *Journal of Food, Agriculture & Environment*, 12, 1–5.

Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. *Annual Review of Physiology*, 61, 243–282. https://doi.org/10.1146/annurev.physiol.61.1.243

Fei, Y., Jiao, W., Wang, Y., Li, G., & Lu, L. (2020). Cloning and expression of a novel alpha-galactosidase from *Lactobacillus amylo-lyticus* L6 with hydrolytic and transgalactosyl properties. *PLoS One*, 15, e0235687. https://doi.org/10.1371/journal.pone.0235687

Fei, Y., Li, L., Chen, L., Zheng, Y., & Yu, B. (2018). High-throughput sequencing and culture-based approaches to analyze microbial diversity associated with chemical changes in naturally fermented tofu whey, a traditional Chinese tofu-coagulant. *Food Microbiology*, 76, 69–77. https://doi.org/10.1016/j.fm.2018.04.004

Fei, Y., Li, L., Zheng, Y., Liu, D., Zhou, Q., & Fu, L. (2017). Characterization of *Lactobacillus amylolyticus* L6 as potential probiotics based on genome sequence and corresponding phenotypes. *LWT - Food Science and Technology*, 90, 460–468. https://doi.org/10.1016/j.lwt.2017.12.028

Fei, Y., Liu, L., Liu, D., Chen, L., Tan, B., Fu, L., & Li, L. (2017). Investigation on the safety of *Lactobacillus amylolyticus* L6 and its fermentation properties of tofu whey. *LWT - Food Science and Technology*, 84, 314–322. https://doi.org/10.1016/j.lwt.2017.05.072

Fernández, M., & Zúñiga, M. (2006). Amino acid catabolic pathways of lactic acid bacteria. *CRC Critical Reviews in Microbiology*, 32, 155–183. https://doi.org/10.1080/10408410600880643

Gerritsen, J., Smidt, H., Rijkers, G. T., & Vos, W. (2011). Intestinal microbiota in human health and disease: The impact of probiotics. *Genes & Nutrition*, 6, 209–240. https://doi.org/10.1007/s12263-011-0229-7
SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.