APOPTOSIS INDUCING EFFECT OF SILVER NANOPARTICLES SYNTHESIZED USING MAGNOLIA CHAMPACA LEAF EXTRACT ON MCF-7 CELL LINE

ANNANTAUNEY, NEHA SHRIVASTAV1*, SIDDHARTH DUBEY2, ASHUTOSH ACHARYA2

1Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India 560029, 2Cellkraft Biotech Pvt. Ltd, Hebbal, Bengaluru, Karnataka, India 560024

Email: niashrivastav@gmail.com

ABSTRACT

Objective: To synthesize silver nanoparticle (AgNP) using the ethanolic leaf extract of Magnolia champaca (MC-AgNP) and to evaluate its cytotoxicity and apoptotic activity in MCF-7 cell line, and to analyse active Caspase-3 expression in inducing apoptosis.

Methods: AgNP was green synthesized using ethanolic leaf extract of MC. Shape and size were analysed by SEM and particle size analyser. Cytotoxicity was tested to find IC50 value. Apoptosis was explored by mitochondrial membrane potential (ΔΨm) assay and active Caspase-3 expression study using flow cytometry.

Results: AgNP synthesized was observed to be in spherical shape through SEM micrograph with 164.6 nm in size. IC50 value of 15.90 µg/ml was obtained after 24 h of drug treatment. Changes in ΔΨm and positive active Caspase-3 protein expression were observed.

Conclusion: The present results suggest that MC-AgNP has potential anticancer property and also induce cell death via apoptosis through caspase dependent pathway in MCF-7 cells.

Keywords: Magnolia champaca, Green-synthesis, Anticancer, Apoptosis, Caspase-3
Characterization and size analysis of nanoparticles

About 25 μl of the MC-AgNP synthesized was loaded on a copper stub (1 mm diameter) attached to a double-sided carbon material, provided for SEM analysis. SEM observation was performed on a JEOL JSM-6360 electron microscope, with an accelerating voltage of 18 kV and the working distance was adjusted to around 18 mm. The particle size was established by particle size analyzer by Horiba scientific SZ-100. 5 mg/ml stock solution of nanoparticle was prepared in distilled water and sonicated for 15 min at 40 kHz using a bath type sonicator (GT-Sonic Model: VGT-1613GTD). It was diluted at 10:1000 with distilled water and analyzed.

Cell culture

MCF-7 (Michigan Cancer Foundation-7) cell line was obtained from NCCS Pune and matched with ATCC ST R profile. The cells were maintained in Dulbecco’s Modified Eagle Medium with High Glucose (DMEM-HC) supplemented with 10% Foetal Bovine Serum (FBS) and 2% penicillin-streptomycin. The cells were incubated at 37 °C and 5% CO₂ atmosphere.

Cytotoxicity assay by MTT assay

MCF-7 cells were plated to 96 well microtitre plate and the count was adjusted to 10,000 cells/well using DMEM HC medium. To each well, 200 μl of the cell suspension was added and the plate was incubated for 24 h at 37 °C and 5% CO₂ atmosphere. The cells were treated with 200 μl of different concentrations (25, 12.5, 6.25, 3.12 and 1.56 µg/ml) of MC-AgNP for 24 h followed by addition of 10% MTT reagent to get a final concentration of 0.5 mg/ml and was incubated for 3 h at 37 °C. The culture medium was removed completely without disturbing the crystals formed. Then 100 μl of solubilisation solution (DMSO) was added to the wells and the plate was gently shaken in a gyratory shaker to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 570 nm and at shaker to solubilize the formed formazan. The absorbance was added to the wells and the plate was gently shaken in a gyratory shaker to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 570 nm and at 18 kV and the working distance was adjusted to around 18 mm. The particle size was established by particle size analyzer by Horiba scientific SZ-100. 5 mg/ml stock solution of nanoparticle was prepared in distilled water and sonicated for 15 min at 40 kHz using a bath type sonicator (GT-Sonic Model: VGT-1613GTD). It was diluted at 10:1000 with distilled water and analyzed.

Apoptosis study by mitochondrial membrane potential (ΔΨm) assay

Flow cytometry was used in apoptotic study (BD™ MitoScreen Kit) according to the instructions of the manufacturer. MCF-7 cells at a density of 3 x 10⁵ cells/2 ml were cultured in a 6-well plate followed by incubation in CO₂: incubator overnight at 37 °C for 24 h. The cells were treated with (IC₅₀) of MC-AgNP, Cisplatin (80 µg/ml) as the positive control and one of the wells was left untreated to be used as the negative control. The cells undergone trypsin treatment with 200 μl of trypsin-EDTA solution after 24 h of incubation. All the cells were harvested and centrifuged for 5 min at 300 x g (25 °C). After decanting the supernatant, pellet was re-suspended in PBS to which about 0.5 ml of freshly prepared IC-1 working solution was added followed by incubation for 15 min at 37 °C in a CO₂ incubator. The cells were washed twice with 1X assay buffer, re-suspended and centrifuged at 400×g for 5 min. The sample was analysed by Cytomics FC500 flow cytometer (Beckman Coulter, USA) after re-suspension of the cell pellet in 0.5 ml of 1X assay buffer.

Active caspase-3 expression study

A 6-well plate was used for seeding MCF-7 cells at a density of 3 x 10³ cells/2 ml. And the cells were treated with (IC₅₀) of MC-AgNPs (experimental test compound), after 24 h of seeding. MCF-7 cells were treated with Cisplatin that served as the positive control while the untreated cells served as the negative control. The cells were provided with trypsin treatment after incubation of 24 h followed by centrifugation at 300 x g at 25 °C for 5 min and the obtained pellet was re-suspended in PBS. This was followed by the addition of 0.5 ml of 2% paraformaldehyde solution and incubation for 20 min. The cells were then washed with 0.5% BSA in 1X PBS. Triton-X 100 (0.1%) in 0.5% BSA solution was added to the cells. After 10 min incubation, it was washed twice with 0.5% BSA in 1X PBS. Then 0.5% BSA in 1X PBS and 20 µl FITC rabbit anti-active caspase-3 IgG was added according to manufacturer’s instructions. It was mixed thoroughly by pipetting and incubated for 30 min in the dark at room temperature (25 °C). 0.5 ml of PBS was added after washing the cells, mixed thoroughly and analysed using Cytomics FC500 flow cytometer (Beckman Coulter, USA).

RESULTS AND DISCUSSION

Preliminary phytochemical analysis of MC leaf extract showed positive for glycosides, alkaloids, flavonoids, tannins, phenols, steroids and terpenoids. Silver nanoparticles were synthesised from ethanolic extract of MC leaf using silver nitrate. The colour change from green to brownish-yellow denoted the successful formation of AgNP after 72 h incubation in dark at room temperature. The MC-AgNPs were observed to be sticky. Fig. 1 shows SEM micrograph of AgNP aggregates. The SEM images showed the nanoparticles of various shapes, most of which were spherical. A mean size distribution of 164.6 nm was recorded by Particle size analyser as shown in fig. 2. Silver nanoparticle possess unique physical, chemical, biological and physicochemical properties such as chemical stability, high thermal and electrical conductivity etc. which makes it is applicable in medicines [25].
Anti-proliferative activity of MC-AgNPs on MCF-7 cell line was evaluated using MTT assay. MTT acts as a substrate which is reduced by mitochondrial dehydrogenase enzyme to form DMSO soluble formazan crystals [26]. MTT assay was performed for testing cytotoxicity by treating different concentration of the MC-AgNPs (3.125, 6.25, 12.5, 25 and 50 µg/ml) on MCF-7 cell line (fig. 3). Based on the IC50 value of MC-AgNPs that was observed to be 15.90 µg/ml for 24 h, it could be concluded that the drug had an inhibitory effect on the growth of MCF-7 cells.

Apoptosis plays a critical role in immune response development, homeostatic control of tissue integrity and tumour regression where many morphological and biochemical changes occur in the cell, following specific signals [27]. Significantly, the events taking place in mitochondria during apoptosis is the loss or collapse of mitochondrial membrane potential (ΔΨm) [28]. The ability of MC-AgNPs to induce apoptosis on MCF-7 cell was studied by JC-1 uptake into mitochondria that can be used to detect change in ΔΨm. Polarization of ΔΨm of normal, healthy mitochondria allows itself to take up the dye in aggregated form to give red fluorescence [29, 30]. As shown in table 1, Cisplatin (positive control) at a concentration of 80 µg/ml caused 32.5% apoptotic cell death and the MC-AgNPs (test drug) at IC50 caused 77.1% apoptotic cell death, whereas in untreated cells, only 3.94% induction of cell death was observed via apoptosis. JC-1 green fluorescence was collected in the FL1 detector with 525 nm band pass filter while red fluorescence was collected in the FL3 detector using 620 nm band pass filter (fig. 4).

Caspases are key protease that gets activated in both pathways of apoptosis [31]. Of all the caspases, Caspase-3 is the most important in the induction of apoptosis as it cleaves majority of caspase substrates [3, 27]. An increase in the active caspase-3 positive cell population was observed in MCF-7 cells treated with the test sample MC-AgNP and positive control (Cisplatin) as compared to the untreated cells from 7.21% positive caspase-3 cells in the untreated to 66.7% in Cisplatin treated cells and 13.7% in the MC-AgNP treated cells (table 2). Enzyme assay showed about 7% increase in the active caspase-3 positive cell population in the cells treated with the MC-AgNP as compared to the untreated cells (fig. 5). Therefore, it was found that in MCF-7 cells induction of apoptosis was through caspase dependent pathway that contributed to its anti-cancerous property.
Fig. 4: The plot showing the green versus red fluorescence of JC-1 A) Untreated MCF-7 cells, B) Cisplatin treated MCF-7 cells and C) AgNP treated MCF-7 cells in apoptotic study by mitochondrial membrane potential assay using Flow cytometry

Table 2: The values of flow cytometry detection of activated caspase-3 in MCF-7 cell line

Treatment	Geometric mean fluorescence intensity (MFI) of FITC Caspase-3	Percentage of cells	
	(FL1-A parameter)	Caspase-3 negative	Caspase-3 positive
Untreated	613	92.8	7.21
Cisplatin	1709	33.3	66.7
MC-AgNP	623	86.3	13.7

Fig. 5: The histogram plots showing the expression of active caspase-3 in x-axis versus count A) Untreated MCF-7 cells, B) Cisplatin treated MCF-7 cells and C) AgNP treated MCF-7 cells in Caspase 3 study using Flow cytometry

CONCLUSION
From the present study, it can be concluded that the MC-AgNPs can potentially induce cell death by inhibiting cell proliferation and by activating caspase dependent apoptotic pathway in MCF-7 cells. This was the first study assessing the apoptosis induction properties of silver nanoparticle synthesised from ethanolic extract of MC leaves on MCF-7 cell line. Advanced studies are crucial to interpret the appropriate mechanism by which MC-AgNP induces apoptosis.

ACKNOWLEDGMENT
The authors are grateful to Cellkraft Biotech Pvt. Ltd. and CHRIST (Deemed to be University), Bangalore, Karnataka, for providing an opportunity and good facility for the completion of the project successfully.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
All authors have contributed equally.

CONFLICT OF INTERESTS
Declared none

REFERENCES
1. Yeh Y, Huang J, Kuo P, Chen C. Bioactive constituents from Michelia champaca. Nat Prod Commun 2011;6:1251-2.
2. Comşa S, Cimpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 y of experience in research. Anticancer Res 2015;35:3147-54.
3. Jamalzadeh L, Ghafouri H, Aghamaali M, Sariri R. Induction of apoptosis in human breast cancer MCF-7 cells by semisynthetic derivative of artemisinin: a caspase-related mechanism. Iran J Biotechnol 2017;15:157-65.
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79:629-61.

Ren Y, Blanco E, Fuchs JR, Soejarto DD, Burdette JE, Swanson S, et al. Potential anticancer agents characterized from selected tropical plants. J Nat Prod 2011;74:657-79.

Tsai P, Naik S, Rao VR, Liquid C, extraction of flowers and fractionation of floral concrete of Michelia champaca linn. J Supercrit Fluids 2011;56:249-52.

Fernando MTR, Jayasuriya G, Walck JL, Wijsentung ASTB. Identifying dormancy class and storage behaviour of champak (Magnolia champaca) seeds, an important tropical timber tree. J Nat Sci Found 2013;4:141-6.

Sinha R, Varma R. Michelia champaca L. (Swarna Champa): a review. Int J Enhanc Res Sci Technol Eng 2016;5:78-82.

Khan MR, Kihara M, Omoloso A. Antimicrobial activity of silver nano particles and evaluation of their antimicrobial activity of Michelia champaca. Fitoterapia 2002;73:744-8.

Hasan SMR, Hassan MM, Akter R, Jamila M, Mazumder EH, Rahman S. DPPH free radical scavenging activity of some Bangladeshi medicinal plants. J Med Plant Res 2009;3:875-9.

Jarald EE, Joshi SB, Jain DC. Anti diabetic activity of flower buds of Michelia champaca linn. Indian J Pharmaco 2008;40:256-60.

Hoffmann JJ, Torrance SJ, Wiedhopf RM, Cole JR. Cytotoxic agents from Michelia champaca and Talaula ovata: parthenolide and costunolide. J Pharma Sci 1977;66:983-4.

Vimala R, Nagarajan S, Alam M, Susan T, Joy S. Anti inflammatory and antipryretic activity of Michelia champaca linn. (White variety), Ixora brachiata Roxb. and Rhynchosia cana (Wild.) D.C. flower extract. Indian J Exp Biol 1997;35:1310-4.

Takahashi M, Fuchino H, Satake M, Agatsuma Y, Sekita S. In vitro screening of leishmanicidal activity in Myanmar timber extracts. Biol Pharm Bull 2004;27:921-5.

Ahmed H, Saxena V, Mishra A, Gupta R. Diuretic activity of aqueous extracts of Michelia champaca L. leaves and stem bark in rats. Pharmacognyonline 2011;2:568-74.

Armedariz V, Herrera I, Peralta Videa JR, Jose Yacaman M, Troiani H, Santiago P, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Res Nanobiotechnology 2004;6:377-82.

Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007;24:1415-26.

Parimi U, Amperayani KR. Green synthesis of plant mediated silver nano particles and evaluation of their antimicrobial activities. Am J PharmTech Res 2014;4:673-9.

Ajboye BO, Ibufuk EO, Edobor G, Ojo AO, Onikanni SA. Qualitative and quantitative analysis of phytochemicals in Senecio biafrae leaf. Int J Pharm Sci Invent 2013;4:392-8.

Bhattacharya G, Rajaendra R. Phytochemical screening of active secondary metabolites present in Withania somnifera root: role in traditional medicine. Int J Pharm Sci Res 2013;4:2770-6.

Ruwali P, Ambwani TK, Gautam P, Thapliyal A. Qualitative and quantitative phytochemical analysis of Artemisia indica wild. J Chem Pharm Res 2015;7:942-9.

Vijayanand S, Thomas A. Screening of Michelia champaca and Muntingia calabura extracts for potential bioactives. Int J Pharm Sci Res 2016;7:266-73.

Gul R, Jan SI, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci World J 2017:1-7. https://doi.org/10.1155/2017/5873648

Bahuguna A, Khan I, Bajpai V, Kang S. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol 2017;12:115-8.

Tran QA, Nguyen VQ, Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adm Nat Sci Nanosci 2013;4:1-20.

Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.

Riccardi G, Nicoleti L. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 2006;1:1458-61.

Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12.

Salvioni S, Ardizzoni A, Franceschi C, Cossartizza A, JC-1, but not DiOC6 or rhodamine 123, is a reliable fluorescent probe to assess ΔΨm changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 1997;411:77-82.

Salvioni S, Dobruci J, Moretti L, Troiano L, Fernandez MG, Pinti M, et al. Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. Cytometry 2000;40:189-97.

Luo J, Hu Y, Kong W, Yang M. Evaluation and structure-activity relationship analysis of a new series of arylmorpholine lignans as potential anti-tumor agents. PLoS One 2014;9:1-10.