Functional dissection of inherited non-coding variation influencing multiple myeloma risk

Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.

1 Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, 221 84 Lund, Sweden. 2 Broad Institute of Massachusetts Institute of Technology and Harvard University, 415 Main Street, Boston, MA 02142, USA. 3 Division of Genetics and Epidemiology, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom. 4 Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 5 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. 6 deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland. 7 German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. 8 Hopp Children’s Cancer Center, Heidelberg, Germany. 9 Department of Internal Medicine V, University Hospital of Heidelberg, 69120 Heidelberg, Germany. 10 Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague 30605, Czech Republic. 11 Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway. 12 Harvard Stem Cell Institute, Cambridge, MA, USA.

✉email: bjorn.nilsson@med.lu.se
G

o

genome-wide association studies (GWAS) have identified tens of thousands of sequence variants associated with human diseases and traits, yet our understanding of the underlying mechanisms is still limited. Each association signal is usually represented by tens to hundreds of variants in linkage disequilibrium (LD). The vast majority of these variants map to noncoding regions of the genome, and likely act by altering gene expression\(^1\). For most signals, however, the causal variants, their target genes, and target cell types remain unknown.

Multiple myeloma (MM) is defined by uncontrolled, clonal growth of plasma cells, usually in the bone marrow. It is a common blood malignancy, with strong epidemiological support for inherited susceptibility\(^2\). While genome-wide association studies have identified 24 risk loci\(^3\)–\(^7\), the causal variants remain largely unknown\(^2\)–\(^9\). Further, plasma cells can be readily isolated from MM patients using routine methods, and cell lines appropriate for the investigation of MM biology exist. For these reasons, MM is an attractive model disease for deciphering the functional basis of risk loci. To our knowledge, no systematic functional dissection of risk loci for a hematologic malignancy has been reported\(^10\)–\(^18\).

Here, we carried out an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, and PChIC), and chromatin accessibility quantitative loci (caQTL) analyses in primary cells to investigate 1039 variants in linkage disequilibrium with multiple myeloma (MM) lead variants. We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci. Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.

Results

Designing an MPRA to screen MM risk variants. To identify putative causal variants, we first designed an MPRA\(^4\)–\(^19\), to screen 1039 variants in high LD (\(r^2 > 0.8\)) with MM lead variants for transcriptional activity (Fig. 1a and Supplementary Table 1). For each variant, we designed twelve 120-bp oligonucleotide sequences corresponding to reference and alternative alleles in six genomic contexts (both strands \(\times\) three sliding windows with the sequences corresponding to reference and alternative alleles in six genomic contexts (both strands \(\times\) three sliding windows with the variant at \(-20, 0,\) and \(+20\) bp from the center). Sequences were coupled to a reporter gene with random 20-bp sequence barcodes 3' of its open reading frame. Following transfection into cell lines, the transcriptional activity of each construct was measured by determining the barcode representation in reporter mRNA relative to DNA (Fig. 1b). Plasmid sequencing identified \(1.73 \times 10^6\) unique barcodes tagging 12,378 (99.2%) of the 12,468 designed oligonucleotides (Fig. 1c). As a positive control, we included the RUNX3 variant rs188468174, which influences immunoglobulin (Ig) levels and exhibits luciferase activity across a broad range of MM cell lines\(^22\).

Identification of causal cell types for MM susceptibility. Since reporter assays can show cell type-dependent activity, MPRA should ideally be performed in an appropriate cellular model. We therefore carried out computational analyses to identify cell types where MM risk variants likely act. First, using ATAC-seq data for blood cell populations\(^23\), we found an enrichment of risk variants in genomic regions with accessible chromatin in plasma cells and total mature B-cells (Supplementary Fig. 1). Second, investigating blood cell populations for expression\(^23\)–\(^28\) of genes located at MM risk loci, we identified plasma cells and total mature B-cells as the most enriched cell types (Supplementary Fig. 2). Third, using gene expression profiles of CD138\(^*\) plasma cells isolated from the bone marrow of 2650 MM patients\(^12\)–\(^29\), we identified cis-eQTLs in LD with ten risk alleles (Supplementary Table 2). Additional cis-eQTLs were found in whole blood (Supplementary Table 3) or in CD19\(^*\) total mature B-cells isolated from 758 random blood donors (Supplementary Table 4). Fourth, since plasma cells are responsible for producing Ig, we tested MM lead variants for association with blood IgA, IgG, and IgM levels\(^22\). This revealed enrichments of association signal within the set of 24 MM lead variants for all three Ig isotypes (binomial test \(P = 6.8 \times 10^{-5}\) for IgA, \(P = 0.02\) for IgG, \(P = 0.004\) for IgM for the enrichment of association \(P < 0.05\)), as well as individually significant associations (Supplementary Fig. 3), including for the SMARC3, WAC, and ELL2 associations, which also showed plasma cell cis-eQTLs (Supplementary Table 2). Collectively, these data are consistent with many MM risk variants acting by altering gene regulation in plasma cells, while others may act in other cell populations, including B-cells.

Identification of MM risk variants influencing transcription. Focusing our analysis on plasma cells, we performed MPRA in the MM plasma cell lines L363 and MOLP8. Each cell line was assayed in three replicates (Fig. 1d). Based on barcode activity estimates, we calculated a log score for each variant reflecting the transcriptional activity of the alternative relative to the reference allele, averaged across genomic contexts and replicates\(^22\). L363 and MOLP8 scores showed a positive correlation (Fig. 2a), did not display strand bias (Fig. 2b), and additional validation of 20 selected variants showed a positive correlation with luciferase data (Fig. 2c, Supplementary Fig. 4 and Supplementary Table 5). Moreover, variants with strong MPRA scores were enriched in chromatin accessibility regions in primary plasma cells, consistent with our assay selecting variants with endogenous regulatory activity (Fig. 2d and Supplementary Fig. 5).

In L363, 142 variants were significant (FDR <5%), including 33 with strong effects (absolute log; score >0.2). In MOLP8, 28 were significant, including 21 with strong effects (Fig. 2e, f and Supplementary Data 1). The higher number of significant variants in L363, compared to MOLP8, cells was congruent with a higher transfection efficiency (54% for L363 versus 15% for MOLP8) and higher post-transfection viability (90% for L363 versus 65% for MOLP8). In total, 23 variants were significant in both screens, and eight of these showed concordant plasma cell cis-eQTLs, making them putative causal variants that were selected for follow-up (Table 1, Fig. 3, and Supplementary Figs. 4, 6). The other 15 had discordant or no plasma cell cis-eQTLs, either because of technical limitations (e.g., TERC was not in our eQTL data; the JARID2 and RUNX3 variants are rare), or because these alter gene expression in another cell state (e.g., TNFRSF13B is primarily expressed in switch-memory B-cells\(^33\) and had a cis-eQTL in total mature B-cells; Supplementary Table 4).

Functional characterization of MPRA-functional variants. We next investigated potential mechanisms of action for the selected variants. rs78740585 maps to SMARC3 (Fig. 4a). In humans, SMARC1, SMARC2, and SMARC3 encode alternative, mutually exclusive 60-kD subunits of the SWI/SNF nucleosome remodeling complex\(^34\)–\(^36\). Incorporation of either SMARC subunit variant into the complex influences its activity\(^37\). In blood, SMARC3 is primarily expressed in granulocytes and monocytes whereas basal expression in plasma cells is very low; instead these cells exhibit high expression of SMARC1 and SMARC2 (Fig. 5a). By contrast, the MM risk allele associates
with upregulation of SMARCD3 in plasma cells (Supplementary Tables 2 to 4). rs78740585-A creates a binding site for IRF4 (Fig. 5b, c, Supplementary Fig. 7, and Supplementary Data 2), a key plasma cell transcription factor essential for the survival of MM cells38. Knockdown of IRF4 attenuated rs78740585-A luciferase activity (Fig. 5d, e). Furthermore, analysis of promoter-capture Hi-C (PCHi-C) data for three MM plasma cell lines showed a chromatin looping interaction between the rs78740585 region and the SMARCD3 promoter (Fig. 4a and Supplementary Fig. 8a). Collectively, these data are consistent with rs78740585-A effecting ectopic SMARCD3 expression in plasma cells by introducing a new IRF4 site into an enhancer, In theory, increased levels of SMARCD3 protein could lead to the displacement of SMARCD1 and SMARCD2 in the SWI/SNF complex through stoichiometric competition, potentially impacting on SWI/SNF-dependent gene expression.

rs2790444 maps to the autophagy gene WAC (Fig. 4b). Rare loss-of-function variants in WAC cause De Santo-Shinawi syndrome39, which can feature hypogammaglobulinemia40. The common MM risk allele associates with increased levels of IgM in the blood (Supplementary Fig. 3) and downregulation of WAC in plasma cells (Supplementary Table 2). rs2790444 maps close to the WAC transcription start site, within the PCHi-C bait region (Fig. 4b and Supplementary Fig. 8a). We found that rs2790444-T creates a binding site for the POU2F1 transcription factor and knockdown of POU2F1 attenuated rs2790444-T luciferase activity (Fig. 6a–d, Supplementary Fig. 9, and Supplementary Data 2). POU2F1 has a dual role in the regulation of gene expression; recruiting the nucleosome remodeling and deacetylase (NuRD) complex, POU2F1 promotes methylation and suppressive histone modifications, while in the context of MAPK signaling it recruits the KDM3A demethylase, promoting pro-transcriptional effects41. Consistent with pro-transcriptional activity, we detected a significant plasma cell cis-meQTL at WAC with rs2790444 ($P = 1.37 \times 10^{-8}$), with rs2790444-T being associated with reduced methylation (Supplementary Table 6). Moreover, CRISPR/Cas9 deletion of a 139-bp region harboring rs2790444 downregulated WAC, supporting functional coupling between the variant-harboring region and the transcriptional regulation of WAC (Fig. 6e, f). These data are compatible with rs2790444-T creating a promoter-proximal POUS2F1 site, upregulating WAC through decreased methylation.
Fig. 2 Overarching analysis of screening data. We performed MPRA in the MM plasma cell lines L363 and MOLP8. a Variant log2 scores for the L363 and MOLP8 screens. For each variant, log2 reflects the transcriptional activity of the alternative relative to the reference allele. Scores were calculated based on barcode activity estimates in all six genomic contexts (i.e., across both strands and all three sliding windows) and three replicates per cell line. Variants with strong effects (absolute log2 score >0.2) in either screen are indicated in red. Pearson r and two-sided P values are shown. b Calculating log2 scores using either positive-strand (x-axis) or negative-strand constructs (y-axis) for the same variant, we did not observe strand bias. c As an additional assay validation step, we carried out luciferase experiments for 20 variants, showing a significant positive correlation between the MPRA effect (x-axis) and the luciferase effect (y-axis). d g-chromVAR analysis of screened variants, weighted by their L363 log2 scores showed enrichment of variants with strong MPRA scores in genomic regions with accessible chromatin in plasma cells, consistent with our assay selecting variants with endogenous regulatory activity. e Numbers of significant variants with FDR <5% in the two cell lines. f Numbers of variants showing both FDR <5% and strong effects (absolute log2 score >0.2).

rs3777182, rs3777183, and rs3777189 map to ELL2 encoding a key protein in the super-elongation complex that drives Ig synthesis42–45 (Fig. 4c). The MM risk allele downregulates ELL2 in plasma cells and Ig levels in blood8,12. Recently, we nominated rs3777189 as causal using non-systematic approaches and demonstrated that it changes a MAF/G/K binding site12. In our MPRA screen, we now identify rs3777189 as the most active variant within its LD block, providing additional, unbiased evidence for causality. In addition, we identify rs3777182 and rs3777183 as previously unappreciated regulatory variants within the ELL2 LD block. Analyzing our PCHi-C data, we identified a chromatin looping interaction between the rs3777183-rs3777182 region and the ELL2 promoter (Fig. 4c and Supplementary Fig. 8c), and predicted several altered motifs (Supplementary Data 2). CRISPR/Cas9 deletion of a 141-bp region harboring rs3777183-rs3777182 and an 89-bp region harboring rs3777189 both altered ELL2 expression, supporting that the ELL2 eQTL is caused by genetic variation in multiple intronic regulatory elements that are involved in the transcriptional regulation of ELL2 (Fig. 7a, b and Supplementary Fig. 10a, b).

rs4487645 maps to the DNAH11-CDCA7L locus (Fig. 4d and Supplementary Fig. 8d), and the risk allele rs4487645-C upregulates the cMyc-interacting CDCA7L29,46. We previously proposed rs4487645 as causal, finding that rs4487645-C creates a new IRF4 binding site13. Our current analysis provides additional unbiased evidence for this variant indeed being the functional basis of the 7p15.3 association. CRISPR/Cas9 deletion of a 76-bp region harboring rs4487645 downregulated CDCA7L (Fig. 7c and Supplementary Fig. 10c), supporting a regulatory link between the region and CDCA7L. Moreover, we employed CRISPR/Cas9 with homology-directed repair (HDR) to generate L363 single-cell clones with different rs4487645 genotypes. In total, we generated six rs4487645-C homozygous clones, three rs4487645-C/A heterozygous clones, and six rs4487645-A homozygous clones. We observed a significant association between rs4487645 genotype and CDCA7L expression, with the C allele yielding higher expression (Fig. 7d), further supporting that rs4487645 causes the CDCA7L eQTL.

Finally, rs11960493 and rs6066832 map to CEP120 and PREX1, respectively, and upregulate these genes in plasma cells (Fig. 4e, f and Supplementary Fig. 8e, f). CEP120 is implicated in microtubule assembly47, and PREX1 encodes a guanine nucleotide exchange factor mutated or aberrantly expressed in several cancers48,49. While we predicted several motif changes for both variants (Supplementary Data 2) and a looping interaction between the rs6066832 region and the PREX1 promoter (Fig. 4e and Supplementary Fig. 8f), we could not identify differentially bound proteins.

Effects in the endogenous chromosomal context in vivo. Following characterization in vitro, we investigated if the eight selected variants are active in an endogenous chromosomal context in vivo. Altered gene-regulatory activity is associated with the release or recruitment of proteins to DNA and/or changes in chromatin structure. In turn, this could cause allele-dependent changes in accessibility (chromatin accessibility quantitative trait loci, caQTLs) around the variant, detectable by ATAC-seq of limited numbers of primary cells. Hence, we performed ATAC-seq on plasma cells from MM patients. To detect caQTLs, we
Table 1 Variants showing FDR <5% in both L363 and MOLP8 cells, with MM risk alleles underlined.

Locus	rsID	Ref	Alt	Gene	L363 cells	MOLP8 cells	plasma cell dis-eQTL				
					log2 score	P value	Q value	log2 score	P value	Q value	
5q15	rs3777189	C	G	ELL2	1.210	1.2E-08	0.000	0.222	1.3E-03	0.041	concordant
7q36.1	rs78740585	G	A	SMARC3	1.154	1.2E-08	0.000	0.103	1.2E-08	0.000	concordant
10q21.2	rs188468174	C	T	RUNK3	0.941	1.2E-08	0.000	1.217	1.2E-08	0.000	concordant
17p11.2	rs4273077	T	C	TNFRSF13B	0.725	1.2E-08	0.000	0.694	1.2E-08	0.000	concordant
3q26.2	rs1711621	C	G	TERC	0.570	1.2E-08	0.000	0.544	1.2E-08	0.000	concordant
6q21	rs3827644	C	G	ATG5	0.523	1.2E-08	0.000	0.617	1.2E-08	0.000	concordant
20q13.13	rs6066831	C	T	PREX1	-0.479	1.2E-08	0.000	-0.409	1.2E-08	0.000	discordant
17p11.2	rs4792800	A	G	TNFRSF13B	0.472	1.2E-08	0.000	0.274	9.8E-08	0.000	n/a
6p22.3	rs13198600	A	G	JARID2	0.428	1.2E-08	0.000	0.265	1.5E-05	0.001	n/a
10q12.1	rs2790444	C	T	WAC	0.414	2.4E-08	0.000	0.963	1.2E-08	0.000	concordant
6q21	rs7779127	G	A	ATG5	0.347	2.4E-08	0.000	0.408	1.2E-08	0.000	concordant
7p15.3	rs4487645	C	A	CDC2A7L	-0.346	1.2E-08	0.000	-0.159	1.5E-04	0.007	concordant
5q23.2	rs1960493	G	T	CEPI20	0.330	2.4E-08	0.000	0.227	3.0E-04	0.012	discordant
5q15	rs777183	A	G	ELL2	0.306	2.4E-08	0.000	0.426	1.2E-08	0.000	concordant
5q23.2	rs11241694	T	G	CEPI20	-0.317	1.2E-08	0.000	-0.258	4.9E-07	0.000	discordant
5q15	rs3777182	G	A	ELL2	0.305	2.4E-08	0.000	0.243	2.5E-04	0.010	discordant
5q23.2	rs6881775	T	G	CEPI20	-0.296	1.2E-08	0.000	-0.159	8.0E-04	0.026	discordant
6q21	rs3804329	G	T	ATG5	0.209	2.9E-06	0.000	0.279	2.5E-05	0.001	n/a
20q13.13	rs6066832	A	G	PREX1	0.197	2.4E-08	0.000	0.210	1.9E-06	0.000	concordant
17p11.2	rs4792798	G	T	TNFRSF13B	-0.186	1.9E-06	0.000	-0.198	6.6E-04	0.022	n/a
5q23.2	rs899013	A	T	CEPI20	-0.184	3.0E-05	0.000	-0.275	6.7E-06	0.000	discordant
6p22.3	rs13963736	A	T	JARID2	0.121	2.9E-05	0.000	0.224	4.0E-07	0.000	n/a
5q23.2	rs6884179	G	T	CEPI20	-0.105	1.4E-03	0.012	-0.177	5.8E-04	0.021	discordant

P- and Q-values are from MPRA score when integrating all barcodes that represent the variant (i.e., all three genomic windows and both strands). Concordant denotes a cis-eQTL in the same direction as the MPRA effect. Discordant denotes a cis-eQTL in the opposite direction. n/a indicates that no cis-eQTL was detected.

The RUNK3 variant rs188468174, which associates with blood Ig levels, was included as a positive control because of its known luciferase activity in plasma cell lines.

The TNFRSF13B risk allele showed a concordant cis-eQTL in total mature B-cells.
estimated the local ATAC-seq signal intensity as the average Tn5 transposase cut-site density across a 150-bp sliding window positioned at every 10 bps across LD regions and examined correlations with the MM lead variant. We also developed a segmentation algorithm ("caQTLseg") to partition LD regions into subregions with either allele-dependent or allele-independent accessibility.

In an initial set of 56 ATAC-seq samples, we detected lead variant caQTLs at SMARCD3, CDCA7L, and CEP120 (Supplementary Fig. 11). For replication, we performed ATAC-seq on an additional 105 samples. In a combined analysis of all 161 samples, the three caQTL signals increased in significance (Fig. 8). The regions identified as having allele-dependent accessibility were identified with a broad range of caQTLseg parameter settings (Online Methods and Supplementary Figs. 12 and 13). Furthermore, the SMARCD3 and CDCA7L signals were centered at rs78740585 and rs4487645, and were the only LD variants within their caQTLs; both of these risk variants create new IRF4 binding sites. Consistent with the recently described role of IRF4 as a pioneer-like transcription factor that regulates chromatin accessibility50–53, the SMARCD3- and the CDCA7L-high-expressing MM risk alleles associated with increased accessibility at rs78740585 and rs4487645 (Fig. 8a, b). By contrast, the caQTL at CEP120 (Fig. 8c) was more complex, encompassing rs11960493 plus eight other LD variants, one of which (rs62376437) was borderline-significant in the MPRA (q value 7.57×10^{-6} in L363; 2.72×10^{-1} in MOLP8; Supplementary Data 1) and concordant with the CEP120 cis-eQTL, suggesting multi-variant causality, as in the case of the ELL2 association. These results demonstrate that three of our selected MPRA-functional variants co-localize with significant plasma cell caQTLs, signaling the presence of causal regulatory activity at these variants in an endogenous chromosomal context in vivo.

Discussion

We have carried out a systematic functional analysis of inherited noncoding variants that predispose for MM. Our analysis represents a functional dissection of inherited noncoding variation predisposing for a hematologic malignancy. To our best knowledge, MPRA and caQTL analysis have not been previously used as mutually complementary approaches to identify putative causal variants. While MPRA is a powerful in vitro screening approach, caQTLs provide evidence for causal regulatory activity at specific genomic positions in an endogenous chromosomal context in vivo.
Our analysis identifies eight putative causal regulatory variants at six risk loci: SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1. Out of these variants, seven map to intronic regions within their target genes, and one maps to an enhancer region within a neighboring gene (Fig. 4). These observations are in accordance with other studies where GWAS signals have been dissected functionally (c.f., refs. 14,16,19,23,54,55). Notable findings include a variant effecting ectopic expression of the SWI/SNF gene SMARCD3 in plasma cells by introducing a new IRF4 site into an enhancer, and a variant upregulating the autophagy gene WAC by creating a POU2F1 site. Additionally, we find evidence for multi-variant causality at ELL2 and CEP120, and further
support for rs4487645 being a causal variant at CDCA7L. Collectively, our findings provide functional insight into the genetic architecture of MM predisposition.

Regarding limitations, functional dissection of a GWAS signal should ideally include systematic perturbation of each variant within the LD block, for example using CRISPR/Cas or base editors (to replace each reference allele with its corresponding variant allele or vice versa in situ). However, it is widely recognized that such an approach is currently not possible, both because of the workload and because only some variants are accessible to precision editing because of the lack of nearby sgRNAs, and base editors can only achieve certain types of base changes. Additionally, in the case of MM, it is not possible to culture primary plasma cells or primary multiple myeloma cells ex vivo, and thus any editing experiments will need to be done in cell lines. For these reasons, we instead followed up our MPRA screen with dual-sgRNA CRISPR/Cas9 experiments to link variant-harboring regions to eQTL target genes. We achieved successful editing of rs4487645 at CDCA7L, whereas precision editing was not achieved for the other variants of interest. Finally, we carried out caQTL experiments in primary MM plasma cells, demonstrating allele-dependent chromatin accessibility (as a sign of altered regulatory activity) at the positions of the SMARCD3, CDCA7L, and CEP120 MPRA-functional variants in an endogenous chromosomal context.
Deciphering the functional basis of cancer risk variants provides for a more comprehensive understanding of the biological networks underlying tumorigenesis and predisposition. Here we have addressed this challenge in the context of MM by combining information from high-throughput functional screens, QTL analyses, and additional assays. Our integrative approach illustrates how functional dissection of noncoding variation in fluencing the development of human malignancies can be undertaken.

Methods

MPRA. We designed an MPRA for variants in LD ($r^2 > 0.8$) with lead variants at 22 loci robustly associated with MM risk (Supplementary Table 1). We also included twelve candidate MM risk loci that have not so far been replicated, although these were excluded in the final data analysis. Finally, we included RUNX3 rs188468174 as a positive control because of its known luciferase activity in plasma cell lines.

For each variant, we designed twelve 120-bp sequences corresponding to the reference and alternative allele in six genomic contexts (positive and negative strand × three windows with the variant at −20, 0, and +20 bp from the center), flanked by 15-bp adapters:

![DNA sequence](attachment://sequence.png)

In total, 12,468 sequences representing 1039 variants were synthesized (CustomArray Inc.). Random 3′ 20-bp barcodes were then added by PCR (Supplementary Table 7). The library was synthesized per ref. The barcoded oligos were inserted by Gibson assembly (cat no. E2611S, New England Biolabs) into a pGL4:23:ΔxbaΔluc vector to create a mpraΔorf library. A mpra:gfp library was then generated from the mpraΔorf library by inserting minimal promoter, GFP, and partial 3′ UTR from Pgl4.23:gfp plasmid (gift from Ryan Tewhey). The final library was transfected (Neon system; Life Technologies) into 5 × 10⁸ L363 or MOLP8 cells (ACC49 and ACC569; DSMZ). Cells were cultured at 37 °C and 5% CO₂ in RPMI 1640 plus 10% fetal bovine serum (Gibco BRL, Thermo Fisher Scientific) at 0.5 to 0.7 × 10⁶ cells/mL. 48 h after transfection, RNA was extracted and reporter mRNA pulled down. After adding sequencing adapters to cDNA synthesized from the DNase-treated GFP-mRNA, samples were sequenced (Illumina NextSeq 1 × 75 bp).

eQTL and gene expression data. To identify cis-eQTLs in plasma cells, we analyzed gene expression profiles of CD138+ cells isolated from MM patients harvested using immunomagnetic beads. First, we used Affymetrix microarray data, including 183 UK Myeloma IX trial patients (a study aimed at comparing two bisphosphonates in the treatment of MM; Medical

Fig. 6 Characterization of rs2790444. a Motif analysis predicted that the WAC high-expressing allele rs2790444-T creates a new binding site for POU2F1. Arrow indicates the altered recognition base. b Electromobility shift assay showing selective binding of POU2F1 to rs2790444-T probe. Arrow indicates supershift with an antibody towards POU2F1. c siRNA-knockdown of POU2F1 attenuated luciferase activity for rs2790444-T relative to rs2790444-C in L363 cells. The y-axis indicates the log₂ ratio of the luciferase/renilla signal for rs2790444-T relative to the rs2790444-C construct. The bottom, middle, and top of each box plot represent the 25th, 50th, and 75th percentiles. The whiskers represent the non-outlier minimum and maximum values, located at 1.5 times the interquartile range from the bottom and top of the box, respectively. d Western blot confirming knockdown. e Quantitative PCR showing expression of WAC relative to control in MOLP8 cells upon dual-sgRNA CRISPR/Cas9 deletion of a 139-bp region harboring rs2790444, heterozygous for rs2790444. Blue bars indicate the averages of the individual measurements. f Agarose gel confirming deletion of the targeted region. LP labeled probe, NE L363 nuclear extract, ULP unlabeled probe, α-POU2F1 antibody against POU2F1. The P values is for the two-sided Student’s t-test.
Research Council Leukemia Data Monitoring and Ethics committee, no. MREC 02/ 8/95, ISRCTN68454111, 59 German GMMG patients, and 604 patients treated at the University of Arkansas for Medical Sciences Myeloma Center, USA. Second, we used 185 RNA-seq samples from Lund University (Lund, Sweden). Third, we used 716 RNA-seq samples with DNA copy number covariates from the CoMMpass study. Fourth, we used 309 RNA-seq samples from the Dana Farber Cancer Institute (Boston, USA). For the first two data sets, paired SNP microarray genotypes were available. For the third and fourth data sets, only RNA-seq data were available, limiting eQTL analysis to risk alleles with these coding proxies: rs3815768, rs34562254, rs6122720, rs1052501, rs7193541, and rs7782699. For blood, we used eQTLgen (www.eqtlgen.org) and data at deCODE Genetics (RNA-seq for 13,175 Icelanders). For B-cells, we generated eQTL data for 758 Icelanders by isolating B-cells from peripheral blood with negative selection using magnetic beads (StemCell Technologies 19674). To test for enrichment of gene expression of MM-associated genes in blood cell populations, we used gene expression microarray data for sorted blood cells (NCBI Gene Expression Omnibus; accession GSE24759, GSE15695, GSE4381, GSE19784, GSE26760, and GSE5900). These were generated on Affymetrix microarrays and quantile-normalized to a log-normal distribution. For enrichment testing, we used a one-sided Student’s t-test for genes in MM-associated regions versus other genes in the genome.

MPRA data analysis. To map oligo-barcode combinations, we amplified the mpRaorf library using Illumina_Universal_Adapter and MPRA_v3_TruSeq Amp2Sa_F primers, added indices by PCR using Illumina_Universal_Adapter and Illumina_Multiplex primers and sequenced the library (Illumina HiSeq 2 × 150 bp). Paired-end reads were merged using PEAR (v0.9.10) and aligned to the designed sequences using BWA-MEM (v0.7.15). Alignments with more than four mismatches within the designed oligonucleotide, or mismatches within 10 bp of the variant, were excluded. Based on filtered alignments, oligonucleotide-barcode pairs were identified. Combinations supported by at least two reads were included in the mapping. However, barcodes that mapped to more than one oligonucleotide were discarded if fewer than 50 reads supported the barcode or none of the oligo-barcode combinations were supported by at least 95% of the reads (i.e., if one oligo-barcode combination was supported by at least 95% of more than 50 reads, that combination was included). In total, we identified 1.73 × 10^6 oligonucleotide-barcode pairs mapping to 12,378 of the 12,468 designed sequences.

To score variants, we used MPRA score. Basically, the activity of each barcode was estimated based on \(b_i = \log(1 + \#RNA)/(1 + \#DNA) \), where \#RNA and \#DNA are the read counts for barcode \(i \) normalized to counts per 10 million reads. Subsequently, an overall log2 score representing the transcriptional activity of the alternative relative to the reference allele was calculated by forming the weighted alternative relative to the reference allele was calculated by forming the weighted alternative relative to the reference allele was calculated by forming the weighted alternative relative to the reference allele was calculated by forming the weighted alternative relative to the reference allele was calculated by forming the weighted
We performed ATAC-seq on plasma cells from 161 MM patients and scanned the LD regions for lead variant caQTLs using two computational approaches.

a In the SMARCD3 region, we detected a significant caQTL around rs78740585, with the minor allele conferring increased accessibility. Consistent with this, rs78740585[T > A] showed a positive MPRA log2 score and the rs78740585-A risk allele creates an IRF4 site (Supplementary Fig. 4).

b In the CDCA7L region, we detected a significant, 1.6 kb wide caQTL around rs4487645, with the major allele conferring increased accessibility. Consistent with this, rs4487645[C > A] showed a negative MPRA log2 score and the rs4487645-C risk allele creates an IRF4 site.

c At CEP120, we detected a significant caQTL covering rs11960493 and eight other variants, including rs62376437 which was borderline-significant in MPRA, suggesting the CEP120 association is enshrined in multiple causal variants. Dashed blue indicates a false discovery rate ($-\log_{10} Q$ value) for Pearson correlation between ATAC-seq signal intensity and lead variant genotype. Regions with lead variant-dependent accessibility called by caQTLseg are indicated in light blue. Upper panels show full regions of LD, lower panels are close-ups of highlighted regions. Red circles indicate variants that show evidence of association with MM (data from Fig. 1a; variants with $P < 10^{-5}$ for association shown). In the lower panels, average local ATAC-seq signal intensity across individuals with different lead variant genotypes is indicated by the yellow (minor/minor), orange (minor/major), and red (major/major) lines.

Fig. 8 Identification of co-localized caQTLs at MPRA-functional variants. We performed ATAC-seq on plasma cells from 161 MM patients and scanned the LD regions for lead variant caQTLs using two computational approaches. **a** In the SMARCD3 region, we detected a significant caQTL around rs78740585, with the minor allele conferring increased accessibility. Consistent with this, rs78740585[T > A] showed a positive MPRA log2 score and the rs78740585-A risk allele creates an IRF4 site (Supplementary Fig. 4). **b** In the CDCA7L region, we detected a significant, 1.6 kb wide caQTL around rs4487645, with the major allele conferring increased accessibility. Consistent with this, rs4487645[C > A] showed a negative MPRA log2 score and the rs4487645-C risk allele creates an IRF4 site. **c** At CEP120, we detected a significant caQTL covering rs11960493 and eight other variants, including rs62376437 which was borderline-significant in MPRA, suggesting the CEP120 association is enshrined in multiple causal variants. Dashed blue indicates a false discovery rate ($-\log_{10} Q$ value) for Pearson correlation between ATAC-seq signal intensity and lead variant genotype. Regions with lead variant-dependent accessibility called by caQTLseg are indicated in light blue. Upper panels show full regions of LD, lower panels are close-ups of highlighted regions. Red circles indicate variants that show evidence of association with MM (data from Fig. 1a; variants with $P < 10^{-5}$ for association shown). In the lower panels, average local ATAC-seq signal intensity across individuals with different lead variant genotypes is indicated by the yellow (minor/minor), orange (minor/major), and red (major/major) lines.
average of the b belonging to the variant across the six genomic contexts and three replicates. To identify strand bias, we also calculated log, scores based on constructs representing the variant on either the positive or negative strand.

ATAC-seq data for blood cell populations. Sequencing reads for published ATAC-seq libraries from 18 sorted hematopoietic cell types were downloaded from the Sequence Read Archive.23,46 Reads were processed as the MM ATAC-seq libraries using the hg38 reference genome. Next, we created a master peak file by aggregating the summits of each population and enumerating the fragments overlapping each peak for each population.25 From this peak-by-cell type matrix, we noted g-chromVAR expression across cell types and used the same two types of annotations for the MM variants: the fine-mapped probability of causality (Supplementary Figure 1) and log, MPRA scores (Figure 2D).

For the first case, we used recallibration of marginal association effects using an approximate Bayes’ method as a proxy for fine-mapping to obtain a probability of causality for each variant.24 Because the approximate Bayes’ method does not account for LD, we first performed stepwise conditional analysis, where we did not detect any secondary signals at any of the loci.10,11 We intentionally used a pure genetics approach, as opposed to fine-mapping methods that factor in functional annotations, to ensure that the downstream g-chromVAR cell type enrichment analysis would be unbiased. For the second case, we used the MPRA score log, scores to weight variants by the strength of transcriptional activity. g-chromVAR p values thus correspond to the enrichment of MM risk variants within cell types, weighted by quantitative chromatin accessibility signatures and either the variant genetic fine-mapping score or log, MPRA score. Default parameters for g-chromVAR were used.

meQTL data generation and analysis. We performed cis-meQTL analysis using Illumina 450 K methylation array data for plasma cells from 379 patients from the MRC Myeloma XI trial.44 Briefly, patients were randomized to induction therapy with CTd (cyclophosphamide, thalidomide, and dexamethasone) or CRD (cyclophosphamide, lenalidomide, and dexamethasone) with or without CVD (cyclophosphamide, bortezomb, and dexamethasone) intensification in patients with less than very good partial response (VGPR) after initial CRd or CR. Fitter, younger patients were included in the intensive treatment pathway and received high-dose melphalan (HD-MEL) and autologous stem cell transplantation (ASCT) as consolidation. Post induction ± ASCT patients were randomized to lenalidomide, lenalidomide plus vorinostat, or observation. Primary outcome data has been reported in a meta-analysis of 1024 samples was used with informed consent and ethical review board approval from the Oxfordshire Ethics Committee (MREC 17/09/09, ISRCTN 49407852). Diagnosis of MM was established in accordance with World Health Organization guidelines. MM cells from patient bone marrow aspirates were obtained at diagnosis and purified (>95%) using immunomagnetic beads with CD138 antibody (Miltenyi Biotec). RNA and DNA were extracted using RNA/DNA mini kit and AllPrep kits (Qiagen). The EZ DNA Methylation kit (Zymo Research) was used for bisulfite conversion of genomic DNA. Nucleo DNA methylation was profiled using Illumina Infinium Human Methylation450 (450K) or EPIC 850 K arrays. Raw data were exported from GenomeStudio (Illumina) and quality checking and normalization was performed using the Chop Analysis Methylation Pipeline (CHAMP).45 The BIMQ method was used to perform normalization. Preprocessed data were analysed using a Bayesian approach to the probablistic estimation of expression residuals to infer broad variance components, thus accounting for hidden determinants influencing global expression variance. Temporal normalization, transcription status, and batch effects were accounted for using variance components, thus accounting for hidden determinants in the MM variants.12 Because the approximate Bayes’ method does not account for LD, we first performed stepwise conditional analysis, where we did not detect any secondary signals at any of the loci.10,11 We intentionally used a pure genetics approach, as opposed to fine-mapping methods that factor in functional annotations, to ensure that the downstream g-chromVAR cell type enrichment analysis would be unbiased. For the second case, we used the MPRA score log, scores to weight variants by the strength of transcriptional activity. g-chromVAR p values thus correspond to the enrichment of MM risk variants within cell types, weighted by quantitative chromatin accessibility signatures and either the variant genetic fine-mapping score or log, MPRA score. Default parameters for g-chromVAR were used.

siRNA experiments. siRNAs against IRF4 were purchased from Qiagen (cat. no. FlexiTube GeneSolution GS6662, IRF4), against POU2F1 from Sigma (cat. no. S36_H01_00020104). L36 cells (3 × 10^6) were transfected with 300 nmol siRNA using the Neon system (Thermo Fisher Scientific) in 100 µl volume. Electroporation conditions were 1500 V, 10 pulse width, and 3 pulse number. Luciferase analysis was done 24 h after transfection. In parallel, cells were harvested for immunoblotting. Luciferase constructs (5 µg plasmid/3 × 10^6 cells) were transfected with 300 nmol siRNA using the Neon system (Thermo Fisher Scientific) in 100 µl volume. Electroporation conditions were 1500 V, 10 pulse width, and 3 pulse number. Luciferase analysis was done 24 h after transfection. Analysis of total protein was done and 20 µg was loaded on 4 to 20% Mini-PROTEAN TGX Gel (cat: 456-1039, Bio-Rad). Post-electrophoresis gel was transferred to Trans-Blot turbo PVDF membrane and blotting was performed on Trans-Blot Turbo transfer system (Bio-Rad) using the same antibodies used in EMSA experiments.

CRISPR/Cas9 deletion of variant-harboring regions. Dual-sgRNA CRISPR/Cas9 knockout constructs were designed to generate a null allele for each variant of interest. The sgRNAs were cloned into the pSpCas9(BB)-2A-GFP PX458 vector (gift from Feng Zhang and Addgene cat. no. 48138). Cloned sgRNA pairs were co-transfected using the Neon system (Thermo Fisher Scientific) into the follow cell lines, when viable: at least one cell line, expressing the respective allele: CDCA7L (POU2F1), ELL2 (CDCA7L), because the variants of interest themselves were not accessible to CRISPR-HDR due to a lack of efficient sgRNAs that cut DNA close to these variants. To delete variant-harboring regions, we used a dual-sgRNA CRISPR/Cas9 plasmid in plasma cell lines. We identified functional sgRNAs targeting the rs2790444, rs3777189, rs3777182-rs3777183, and rs4487645 regions (Supplementary Table 8). The sgRNAs were cloned into the pSpCas9(BB)-2A-GFP PX548 vector (gift from Feng Zhang. Addgene cat. no. 48138). Cloned sgRNA pairs were co-transfected using the Neon system (Thermo Fisher Scientific) into the follow cell lines, when viable: at least one cell line, expressing the respective allele: CDCA7L (POU2F1), ELL2 (CDCA7L), because the variants of interest themselves were not accessible to CRISPR-HDR due to a lack of efficient sgRNAs that cut DNA close to these variants. To delete variant-harboring regions, we used a dual-sgRNA CRISPR/Cas9 plasmid in plasma cell lines. We identified functional sgRNAs targeting the rs2790444, rs3777189, rs3777182-rs3777183, and rs4487645 regions (Supplementary Table 8). The sgRNAs were cloned into the pSpCas9(BB)-2A-GFP PX548 vector (gift from Feng Zhang. Addgene cat. no. 48138). Cloned sgRNA pairs were co-transfected using the Neon system (Thermo Fisher Scientific) into the follow cell lines, when viable: at least one cell line, expressing the respective allele: CDCA7L (POU2F1), ELL2.
CRISPR/Cas9 with homology-directed repair. To further test variant causality, we considered the possibility of precisely editing the identified MPRA-functional variants in MM cells using CRISPR/Cas9 with homology-directed repair (HDR)\(^3\). We achieved successful editing of CDCA7L rs4847645[C]→T in L363 cells. To generate L363 clones with different rs4847645 genotypes, we used the sgRNA sequence CCTCTGAATACATATCATC with PAM sequence AGGG cloned into a pSpCas9(BB)-2A-GFP vector (PX458, Addgene), along with the following repair templates: GTTGAACATTAAGGAGCTGTCAGACG GCTGACGACACAGTGAACCTTGATAGAAATAGAGGAGT[G]TAATGTA AAACCTCCTAGTTCAAGTTCAGCCTGTTAAAGGGGACAGCT AATGGAATAGGAGGATAGCGATTGATCATGTA. Repair templates were synthesized by IDT (Alt-R HDR donor oligo, 2 n mole), with IDT’s proprietary 5′ overhangs and 3′ overhangs using a NEON electroporation system (Thermo Fisher). Post 48 h of transfection, single GFP positive cells were sorted using a BD FACSAria Fusion and cultured in a 96 well plate. Clones were genotyped for rs4847645 using TaqMan genotyping assay (C_69726888_10, part no. 4351379) on a StepOnePlus qPCR instrument (Applied Biosystems). The selected clones were also analyzed by Sanger sequencing of the region encompassing the targeted region. Because CDCA7L is a genetically unstable cell line, and selected clones were also analyzed by Sanger sequencing of the region encompassing the targeted region. Notably, the cut-side density (i.e., the average number of cut-sites per bp) across a 150-bp sliding window, was used to test for mycoplasma. At 24 h post-transfection, GFP-positive cells were isolated by fluorescence-activated cell sorting. Genomic DNA was extracted and the targeted region was amplified by PCR to verify deletion (Supplementary Table 9). In this case, we also set \(\lambda_1 = 1\). In allele-dependent segments, the optimal \(\lambda_0\) values are the average of the \(\lambda_1\) across all \(j\), i.e., the same optimal values are fit to all samples. In this case, \(\lambda_0\) also seeks a subspace with fewer false positives. To estimate the noise level, we defined a statistic \(\pi\), defined as \(\min(\pi_0/\pi_1, 1)\), where \(\pi_0\) is the average number of base pairs in the region-of-interest that are called allele-dependent under the null (i.e., when genotypes are randomly permuted between samples) and \(\pi_1\) is the number of base pairs in the region-of-interest that are called allele-dependent with corrected, unpermuted genotypes. We calculated \(\pi_0\) using 500 random genotype permutations. The \(\pi_0\) statistic serves to estimate the proportion of signal that can be attributed to noise (similar to, say, the false discovery rate), and can be used to titrate the degree of over-segmentation versus under-segmentation. Increasing \(\lambda_1\) produces a solution with fewer false positives. To identify \(\pi_0\), we used a two-stage approach, with a discovery set of 56 samples and a follow-up set of 105 samples. In the caQTLseg analysis, we used \(\lambda_1 = 1.075\) and \(\lambda_2 = 10^{-12}\). With these parameters, we detected allele-dependent regions conservatively in the combined data set of 161 samples (\(\pi_0 = 0.03\) for SMARCD3 rs7874585; \(\pi_0 = 0.0022\) for CDCA7L rs4847645; \(\pi_0 = 0.0022\) for CEPI1 rs6595443). To further assess the robustness of the results, we also repeated the analysis with a broad range of parameter choices (\(\lambda_1\) from 1.025 to 1.20, \(\lambda_2\) from 10^{-1} to 10^{-5}\)). Throughout, we identified essentially the same regions as allele-dependent, though the estimated noise level \(\pi_0\) and false positive fragmentation varied as expected (Supplementary Table 11 and Supplementary Figs. 12, 13).

Statistics and reproducibility. The experiments in Fig. 5c were done three times, Fig. 5e once, Fig. 6b twice, Fig. 6d once, and Fig. 6f twice. The gels shown are representative. Aggregating results were seen in the replicates.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The raw sequencing data for the MPRA experiment have been deposited in the Sequence Read Archive, accession no. PRJNA679966 and are publicly available. The ATAC-sequencing data for primary CD138+ MM plasma cells have been deposited in the European Genome-phenome Archive (EGA), accession no. EGAS00001005394 and EGAD00001007814 and are available to other researchers with controlled access. The PCIC data for KMS11 is available through IGA; accession number EGAD00001001026-14 and EGAD00001003597 and are available to other researchers with controlled access, as are the mouseQTL data (accession number EGAS00001057588 and EGAD00001002259). The following previously published data sets were used: Gene expression data for MM samples from the CoMMpass study, available in dbGaP, accession number phs000748.v7.p4 (available to senior investigators through dbGaP [https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed] and after application in dbGaP [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000748.v7.p1]); publicly available blood eQTL data from the eQTLGen Consortium [http://www.eqtlgen.org]; and publicly available gene expression data from the NCBI Gene Expression Omnibus (GEO) repository, accession numbers GSE111199, GSE24759, GSE15695, GSE4581, GSE19784, GSE26760, and GSE5990. Source data are provided with this paper.
3. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human

6. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 in

14

13. Li, N. et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding

9. Mitchell, J. S. et al. Genome-wide association study identi

15. Chen, X. F. et al. Multiomics dissection of molecular regulatory mechanisms

20. Melnikov, A. et al. Systematic dissection and optimization of inducible

23. Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and

25. Boyd, K. D. et al. Mapping of chromosome 1p deletions in myeloma identi

27. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

28. Draper, J. F. et al. Gene expression signature of benign monoclonal gamopathy evident in multiple myeloma is linked to good prognosis. Blood 109, 1692–1700 (2007).

29. Weinhold, N. et al. The 7p15.3 (rs4487845) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDC6L.

30. Samur, M. K. et al. Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia 32, 2626–2635 (2018).

31. Manojlovic, Z. et al. Comprehensive molecular profiling of 718 Multiple Myelomas reveals significant differences in mutation frequencies between previously described and European cases. Leukemia 13, e107078 (2017).

32. Niroula, A., Ajore, R. & Nilsson, B. MPRAscore: robust and non-parametric analysis of massively parallel reporter assays. Bioinformatics https://doi.org/10.1093/bioinformatics/btx591 (2019).

33. Salzer, U. et al. Mutations in TNFRSF1B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 37, 820–828 (2005).

34. Rajadurai, S., Lefebvre, B., Cudeckio, C., Staaks, B. & Lefebvre, P. The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol. Cell Endocrinol. 270, 23–32 (2007).

35. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

36. Malhatir, N. & Meir. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018).

37. Puri, P. L. & Mercola, M. RAf60 A, B and Cs of muscle determination and renewal. Genes Dev. 26, 2673–2683 (2012).

38. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).

39. DeSanto, C. et al. WAC loss-of-function mutations cause a recognisable syndrome characterised by dysmorphic features, developmental delay and hypothy­nia and recapitulate 10p11.23 microdeletion syndrome. J. Med Genet. 52, 754–761 (2015).

40. Vanegas, S., Ramirez-Montano, D., Candelo, E., Shinawi, M. & Pachajoa, H. DeSanto-Shinawi syndrome: first case in South America. Mol. Syndromol. 9, 154–158 (2018).

41. Vazquez-Arreguin, K. & Tantin, D. The Oct1 transcription factor and epithelial malignancies: old protein learns new tricks. Biochem. Biophys. Acta 1859, 792–804 (2016).

42. Park, K. S. et al. Transcription elongation factor ELL2 drives Ig secretory- elongation. Cell 151, 1529–1539 (2016).

43. Martincic, K., Alkan, S. A., Cheatle, A., Borghesi, L. & Milcarek, C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat. Immunol. 10, 1102–1109 (2009).

44. Benson, M. J. et al. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA production in plasma cells. Proc. Natl Acad. Sci. USA 109, 16252–16257 (2012).

45. Milcarek, C., Albring, M., Langer, C. & Park, K. S. The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production. J. Biol. Chem. 286, 33795–33803 (2011).

46. Ou, X. M., Chen, K. & Shih, J. C. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc. Natl Acad. Sci. USA 103, 10923–10928 (2006).

47. Comartin, D. et al. CEPI20 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23, 1360–1366 (2013).

48. McCarthy, N. Signalling: REX rules. Nat. Rev. Cancer 11, 83 (2011).

49. Srikartoke, N. et al. P-Rex1 and P-Rex2 RacGEFs and cancer. Biochemical Soc. Trans. 45, 963–977 (2017).

50. Giofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

51. Kurachi, M. et al. The transcription factor RBF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

52. Karwaz, K. et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat. Immunol. 18, 412–421 (2017).

53. Shaffer, A. L., Emer, N. C., Romesser, P. B. & Staudt, L. M. IRF4: immunity, malignancy? therapy? Clin. Cancer Res. 15, 2954–2961 (2009).

54. Christophersen, M. K. et al. SMIM1 variants rs1175550 and rs143702418 are associated with survival in multiple myeloma. Blood Cancer J. 7, 10923–10928 (2006).

55. Condamine, D. et al. CEPI20 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23, 1360–1366 (2013).

56. Srikartoke, N. et al. P-Rex1 and P-Rex2 RacGEFs and cancer. Biochemical Soc. Trans. 45, 963–977 (2017).

57. Giofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

58. Kurachi, M. et al. The transcription factor RBF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

59. Karwaz, K. et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat. Immunol. 18, 412–421 (2017).

60. Shaffer, A. L., Emer, N. C., Romesser, P. B. & Staudt, L. M. IRF4: immunity, malignancy? therapy? Clin. Cancer Res. 15, 2954–2961 (2009).

61. Christophersen, M. K. et al. SMIM1 variants rs1175550 and rs143702418 are associated with survival in multiple myeloma. Blood Cancer J. 7, 10923–10928 (2006).
59. Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MB: Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

60. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate illumina paired-end read merger. Bioinformatics 30, 614–620 (2014).

61. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

62. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Nat. Methods 13, 1479–1485 (2016).

63. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

64. Jackson, G. H. et al. Lenalidomide maintenance versus observation for patients with Newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 20, 57–73 (2019).

65. Morris, T. J. et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics 30, 428–430 (2014).

66. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain improved power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

67. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for the extraction of DNA-binding proteins from Illumina sequence data. Bioinformatics 29, 428–430 (2013).

68. Corces, M. R. et al. Lineage-specific enhancer polymorphism. Cell Rep. 20, 2556–2564 (2017).

69. Orlando, G., Knippers, B. & Houlston, R. S. Capture Hi-C library generation and analysis to detect chromatin interactions. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/cphg.63 (2018).

70. Cairns, J. et al. CHICAGO: robust detection of DNA looping interactions in capture Hi-C data. Genome Biol. 17, 127 (2016).

71. Lawrence, C. A. et al. Genome analysis toolkit (GATK): methods and data. Nat. Methods 10, 37–40 (2013).

72. Lawrence, M., Gentleman, R. & Carey, V. A rapid micropreparation technique for the extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499 (1991).

73. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a efficient B Burrows-Wheeler transform. Bioinformatics 29, 511–512 (2013).

74. Boeke, J. D., Girelli, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

75. Nilsson, B., Johannson, M., Al-Shahrour, F., Carpenter, A. E. & Ebert, B. L. UltraMose: efficient aberration caller for copy number studies of ultra-high resolution. Bioinformatics 25, 1078–1079 (2009).

76. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a efficient B Burrows-Wheeler transform. Bioinformatics 29, 511–512 (2013).

77. Nilsson, B., Johannson, M., Heyden, A., Neland, S. & Fioretos, T. An enhanced enhancer polymorphism. Cell Rep. 20, 2556–2564 (2017).

78. Nilsson, B., Skotheim, M. T., Nilsson, B., Heyden, A., Neland, S. & Fioretos, T. An enhanced enhancer polymorphism. Cell Rep. 20, 2556–2564 (2017).

79. Taslam, L. & Nilsson, B. A framework for regularized non-negative matrix factorization, with application to the analysis of gene expression data. PLoS ONE 7, e64331 (2012).

80. Niroula, A. & Nilsson, B. Source code for caQTLseg. GitHub https://doi.org/10.5281/zenodo.5239301 (2021).

Acknowledgements
This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012:0193 and 2017:0436), the Swedish Research Council (2017-02023 and 2018-00424), the Swedish Cancer Society (2017:265), the Nordic Cancer Union (R217–A13329-18-S65), Arne and Inga-Britt Lundberg’s Stiftelse (2017-0055), European Research Council (EU-MSCA-COFUND grant no. 754299 and 847583) Myeloma UK and Cancer Research UK (C1298/A8362), The National Institute of Health (R01 DK103794 and R01HL146500), the New York Stem Cell Foundation, a gift from the Lodish Family to Boston Children’s Hospital, and Mr. Ralph Stockwell. We thank Ellison Johnson for her assistance between 2011 and 2020. We are indebted to the patients who participated in the study.

Author contributions
R.A., A.N., M.P., and B.N. designed the project. C.C., M.T., E.L.B., L.D.L., A.L.d.L.P., I.J., T.R., U.T., V.S., and R.H. contributed to design. R.A., M.P., C.C., L.D.L., O.M., G.N., and K.G. performed experiments. S.K., A.M., K.A., N.M., N.W., K.H., H.G., A.P., I.I., T.R., F.v.R., A.W., U.T., V.G.S., K.S., and R.H. contributed data or samples. R.A., A.N., M.P., C.C., M.T., M.W., E.L.B., L.D.L., A.L.d.L.P., T.O., N.U.D., M.S., C.A.I., G.H.H., G.T., N.W., and B.N. carried out statistical analyses or analyzed the data. R.A., A.N., M.P., C.C., M.T., M.W., L.D.L., A.L.d.L.P., R.H., and B.N. wrote the manuscript. All authors contributed to the final manuscript.

Funding
Open access funding provided by Lund University.

Competing interests
Authors T.O., O.M., G.H.H., G.T., G.L.N., K.G., I.J., T.R., U.T., and K.S. are employed by deCODE Genetics/Amgen Inc. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-27666-x.

Correspondence and requests for materials should be addressed to Björn Nilsson.

Peer review information Nature Communications thanks Yue Li and the other anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.