THE SLEEP, CIRCADIAN RHYTHMS AND MENTAL HEALTH IN SCHOOLS (SCRAMS) FEASIBILITY STUDY

Introduction Adolescence is a key developmental period for the onset of mental illness. Healthy rhythms of sleep and activity are critical for mental wellbeing in young people. Yet getting healthy diurnal rhythms becomes challenging for teens, due to developmental changes and multiple social and technological factors modifiable risk factor. We addressed this relationship in a feasibility study by investigating sleep-wake patterns of teenagers and their mental health, wellbeing, and cognitive performance.

Methods 9 schools of the SHINE network in Scotland took part in the study. Pupils wore an actigraph for 3 weeks, allowing the collection of objective rest-activity data. During the 3 weeks, they filled in -twice a day- a brief ecological momentary assessment with mood questions on their mobile phone (EMAapp). At the beginning and at the end of this period, participants also completed a digital online survey with further questions about mental health, sleep, and wellbeing (pre- and post-questionnaire) and they performed a cognitive assessment (6 subtests) on the online platform Test-MyBrain (TMB).

Results The feasibility study included two data acquisitions. In Winter (Feb-March 2021), during the lockdown, 8 schools took part for a total of 60 students, whereas, in Summer (May-June 2021), 3 schools took part for a total of 15 students.

Preliminary feasibility results are summarised in the table below.

Discussion Overall, relatively good participation, especially during the lockdown. Compliance decreased from the pre- to the post-questionnaire session and within TMB itself. Only 2 people fully completed the study. 11% of the pupils had problem with the EMA app, as reflected in the average low entries. Regarding the actigraph, it was generally well tolerated (a few pupils complained having a rash at the end). Further actigraphy analyses are ongoing.

Funding MRC Engagement Award for Adolescent Mental Health.

Abstract 46 Table 1

Winter Data Acquisition (Feb-March 2021, lockdown, home schooling)	8 schools; N_{\text{total}} = 60 (4 excluded)	Age 14.5; 72% female
Pre questionnaire	Post questionnaire	
Online Survey (n participants)	56 (91%)	47 (79%)
TMB 1: Letter-Number Switching (n participants)	46 (72%)	47 (74%)
TMB 2: Multiple Object Tracking (n participants)	46 (72%)	47 (72%)
TMB 3: Verbal Pairing Associate (n participants)	46 (72%)	47 (72%)
TMB 4: Fast Choice Test (n participants)	46 (72%)	47 (72%)
TMB 5: Visual Pairs (n participants)	46 (72%)	47 (72%)
TMB 6: Continuous Concentration (n participants)	46 (72%)	47 (72%)
EMAapp (n participants, 2 weeks)	57 (90%)	19 (44%)
EMAapp (n entire EMAapp)	Upcoming	
Actigraphy (n participants)	13 (44%)	Upcoming

Summer Data Acquisition (May-June 2021, back to school)	3 schools; N_{\text{total}} = 15 (2 excluded)	Age 14; 34% female
Pre questionnaire	Post questionnaire	
Online Survey (n participants)	15 (100%)	12 (79%)
TMB 1: Letter-Number Switching (n participants)	14 (89%)	14 (89%)
TMB 2: Multiple Object Tracking (n participants)	14 (89%)	12 (79%)
TMB 3: Verbal Pairing Associate (n participants)	14 (89%)	14 (89%)
TMB 4: Fast Choice Test (n participants)	14 (89%)	12 (79%)
TMB 5: Visual Pairs (n participants)	14 (89%)	12 (79%)
TMB 6: Continuous Concentration (n participants)	14 (89%)	12 (79%)
EMAapp (n participants, 2 weeks)	11 (73%)	21 (46%)
EMAapp (n entire EMAapp)	Upcoming	

*no entries excluded
seven consecutive days electronically. On Day 7, participants completed three cognitive tasks (Ravens Standard Progressive Matrices, Wisconsin Card Sorting task and a Mental Rotation task). Standard measures of sleep continuity were derived from sleep diaries, including sleep onset latency (SOL), number of awakenings (NWAK), wake after sleep onset (WASO), time in bed (TIB) and sleep efficiency (SE%). Three Pearson’s correlations were conducted between the cognitive tasks and sleep continuity measures. All p-values were adjusted for multiple comparisons (adjusted p-value = .01).

Results Overall, no association was found between subjective sleep continuity (SOL, NWAK, WASO, TIB and SE%) and Ravens Standard Progressive Matrices, Wisconsin Card Sorting task, or Mental Rotation accuracy scores (all p-values > .01).

Discussion These results indicate that fluid intelligence, mental rotation and set-shifting are not associated with subjective sleep continuity. Previous literature has found associations between objective sleep measures and sleep spindle activity (Bódizs et al., 2014; Ujma et al., 2015), therefore fluid intelligence may only be associated with objective sleep architecture.

Abstract 48

CHARACTERISTICS OF INITIAL SLEEP STUDY IN INFANTS WITH PRADER WILLI SYNDROME

1Laura Gardener1, 1N Ghosh, 1R Pabary, 2N Bridges, 1F Trucco, 1H Tan, 1Ruth O’Reilly, 1Royal Brompton Hospital, UK; 2Chebeba and Westminster Hospital.

Introduction Patients with Prader Willi syndrome are predisposed to problems with ventilatory control and sleep disordered breathing. This may be further impacted by the commencement of growth hormone in infancy. As a result early monitoring with sleep study is indicated, however it can be challenging to effectively council families about the expected results in the first few months of life due to the paucity of data pertaining to infants reported in the literature.

Methods We retrospectively collected first sleep study and demographic data from 36 children with a confirmed diagnosis of Prader Willi syndrome as determined by endocrine assessment and genetic variant.

Abstract 48 Table 1 First sleep study parameters of infants with Prader Willi Syndrome. Results are reported in medians with interquartile ranges. (TcPCO2 = transcutaneous carbon dioxide, AHI = apnoea hypopnoea index)

Characteristic, n=36	Result
Gender M:F (%)	23 (64%) : 13 (36%)
Age at first study, Decimals years	0.57 (0.46, 0.75)
ODI 3%, events per hr (n=33)	7.44 (4.3, 12.5)
Mean Oxygen Saturations, %	97.2 (96.1, 98.6)
Minimum Oxygen Saturation, %	86 (81, 88)
Mean TcPCO2, KPa (n=35)	5.5 (5.15, 5.8)
Maximum TcPCO2, KPa (n=35)	6.1 (5.7, 6.5)
Total AHI, events/hour (n=27)	3.8 (1.9, 9.1)
Obstructive AHI (OAHI), events/hour (n=26)	0.95 (0.1, 2.8)
Central AHI (CAHI), events/hour (n=26)	1.65 (0.3, 4.8)
Mixed AHI (MAHI), events/hour (n=26)	0 (0, 0.13)
Undefined AHI (UAHI), events/hour (n=26)	0.00 (0.00, 0.1)

Results The clinical characteristics and sleep study parameters are described in table 1. Whilst the median results related to both gas exchange and ventilation are reassuring, 6 (23%) patients of the 26 who had a breakdown of their AHI had an AHI >5, with a maximum recorded OAHI of 27.7. Six (23%) of the 26 who had a breakdown of their AHI had a CAHI >5, with a maximum recorded CAHI of 9.9

Discussion This data shows that whilst the majority of patients who undergo baseline sleep study for Prader Willi syndrome will have a normal result, 23% may be expected to have an excess of obstructive events. This project may serve as useful pilot data to help council families ahead of the initial sleep study. It is our intention to follow these patients and collect longitudinal data to determine if baseline results are predictive of future need for respiratory support or response to growth hormone.

49

A PILOT META-ANALYSIS ON CONCUSSION-RELATED SLEEP DISTURBANCES

1^2Suleyman Noordeen, 1^3Mehtem Ergisi, 1^2Rebeka Popovic, 1^2Abinayan Mahendran, 1^2Mohammed Momon, 1^3Saahil Hegde, 1^3Poh Wang, 1^3Connor Oiu, 1^2Yizhou Yu*, 1^3International Sleep Charity, UK; 2University of Cambridge, UK; 3Imperial College London, UK.

10.1136/bmjresp-2021-bssconf.43

Fatigue and poor sleep have been shown as factors of post-concussive symptoms (Broshek et al., 2015, Brain injury). Students, previously reported to have poor sleep, thus might be at increased risk of concussion-related sleep disturbances (McGrath et al., 2010, Journal of athletic training). This study explored the relationship between concussion and sleep, to serve as a pilot for a systematic meta-analysis.

We searched the following databases MEDLINE, EMBASE, CINAHL, Web of Science, Psychnfo, Cochrane Central Register of Controlled Trials, MedNar and OAIster with the search terms: sleep, concussion, mild traumatic brain injury, college/university and sports. Only studies using the Epworth sleepiness scale (ESS) and the Pittsburgh sleep quality index (PSQI) were included. Studies were excluded if they included non-human animals, patients with other neurological conditions or military personnel. Two researchers performed the filtering independently.

Our search produced 4460 results. We removed 834 duplicates and examined a random subset of 8 studies that met our exclusion criteria as a pilot study. Our analysis totaled 1086 participants (683 concussed). Using a random-effects model containing 4 studies per outcome test, we found that concussion was associated with increased PSQI (standardised mean difference: 0.76, 95% confidence intervals [0.52, 1.01], 2: 0.03, 12: 49.28%, p value < 0.0001), and ESS (standardised mean difference: 0.47, 95% confidence intervals [0.24, 0.70], 2: 0.02, 12: 42.56%, p value < 0.0001).

Our results suggest a diagnosis of concussion or mild traumatic brain injury is associated with lower sleep quality, as measured by PSQI, and sleepiness as measured by ESS, in this population. Further analyses of the rest of our dataset, covariates of the studies, verifications of the updated literature and assessments of the quality of each study are required.