NEW ERROR TERM FOR THE FOURTH MOMENT OF AUTOMORPHIC L-FUNCTIONS

OLGA BALKANOVA AND DMITRY FROLENKOV

Abstract. We improve the error term in the asymptotic formula for the twisted fourth moment of automorphic L-functions of prime level and weight two proved by Kowalski, Michel and Vanderkam. As a consequence, we obtain a new subconvexity bound in the level aspect and improve the lower bound on proportion of simultaneous non-vanishing.

CONTENTS

1. Introduction 1
2. Selberg’s eigenvalue conjecture 3
3. Large sieve inequality 4
4. Error terms 4
5. Amplification and subconvexity 7
6. Mollification and simultaneous non-vanishing 9
References 9

1. INTRODUCTION

The fourth moment of automorphic L-functions has been studied in [3, 7] using the large sieve inequality and δ-symbol method. As an application Duke, Friendlander and Iwaniec proved the subconvexity bound in the level aspect. Another consequence – simultaneous non-vanishing – was derived by Kowalski, Michel and Vanderkam.

In this paper, we optimize several estimates of [7] and compute the explicit dependence of error terms on the smallest positive eigenvalue for the Hecke congruence subgroup. This allows us to improve the results of [3, 7] by applying the Kim-Sarnak bound.

2010 Mathematics Subject Classification. Primary: 11F12.
Key words and phrases. fourth moment, primitive forms, simultaneous non-vanishing, subconvexity.
We borrow some notations of [3, 7]. Consider the family $H_2^*(q)$ of primitive newforms of prime level q and weight 2. Every $f \in H_2^*(q)$ has a Fourier expansion

\begin{equation}
(1.1) \quad f(z) = \sum_{n \geq 1} \lambda_f(n)n^{1/2}e(nz).
\end{equation}

The associated L-function is defined by

\begin{equation}
(1.2) \quad L(f, s) = \sum_{n \geq 1} \frac{\lambda_f(n)}{n^s}, \quad \Re s > 1.
\end{equation}

The completed L-function

\begin{equation}
(1.3) \quad \Lambda(f, s) = \left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma\left(s + \frac{1}{2}\right)L(f, s)
\end{equation}

can be analytically continued on the whole complex plane. It satisfies the functional equation

\begin{equation}
(1.4) \quad \Lambda(f, s) = \epsilon_f\Lambda(f, 1 - s), \quad \epsilon_f = \pm 1.
\end{equation}

We introduce the natural and harmonic averages

\begin{equation}
(1.5) \quad \sum_{f \in H_2^*(q)} \alpha_f := \sum_{f \in H_2^*(q)} \frac{\alpha_f}{|H_2^*(q)|}, \quad \sum_{f \in H_2^*(q)} \alpha_f := \sum_{f \in H_2^*(q)} \frac{\alpha_f}{4\pi \langle f, f \rangle_q},
\end{equation}

where $\langle f, f \rangle_q$ is the Petersson inner product on the space of level q holomorphic modular forms.

The goal of the present paper is to improve the error term in the asymptotic formula for the twisted fourth moment

\begin{equation}
(1.6) \quad M(l) = \sum_{f \in H_2^*(q)} \lambda_f(l)|L(f, 1/2 + \mu)|^4, \quad \mu \in i\mathbb{R}.
\end{equation}

Our main result is the following.

Theorem 1.1. Let q be a prime and $l < q$. There exists some $B > 0$ such that for any $\epsilon > 0$

\begin{equation}
(1.7) \quad M(l) = M^D(l) + M^{OD}(l) + M^{OOD}(l) + O_\epsilon \left(q^\epsilon(1 + |\mu|)^B \left(\sum_{l_{5/30}, \ldots} \right)\right),
\end{equation}

where $M^D(l)$, $M^{OD}(l)$ and $M^{OOD}(l)$ are the main terms defined by equations (17), (31) – (32) and (34) of [7].
Here
\[(1.8) \quad \theta := \sqrt{\max(0, 1/4 - \lambda_1)}\]
and \(\lambda_1 = \lambda_1(q)\) is the smallest positive eigenvalue for the Hecke congruence subgroup \(\Gamma_0(q)\). Currently the best known estimate on \(\lambda_1\) is due to Kim and Sarnak \([8]\). Accordingly, we can take \(\theta = 7/64\).

Corollary 1.2. Let \(q\) be a prime. For all \(\epsilon > 0\)
\[(1.9) \quad M(1) = P(\log q) + O_\epsilon \left(q^{-25/228+\epsilon}\right),\]
where \(P\) is a polynomial of degree 6 and the leading coefficient is 1/60\(\pi^2\).

This improves corollary 1.3 of \([7]\), where asymptotic formula \((1.9)\) was established with the error \(O_\epsilon \left(q^{-1/12+\epsilon}\right)\).

Note that for weight \(k > 2\) the remainder term in \((1.9)\) can be majorated by \(O_{\epsilon,k} \left(q^{-1/4+\epsilon}\right)\). This was proved in \([1]\) for the case of prime power level \(q = p^n, n > 2\).

Another consequence of theorem \([11]\) is a new subconvexity bound in the level aspect.

Corollary 1.3. For all \(\epsilon > 0\)
\[(1.10) \quad L(f, 1/2 + \mu) \ll_{\epsilon,\mu} q^{1/4-\delta},\]
where \(\delta = \frac{2\theta - 1}{16(8\theta - 7)}\).

Taking \(\theta = 7/64\), we obtain
\[
\delta = \frac{25}{3136} = \frac{1}{125.44}.
\]
The previously known result with \(\delta = 1/192\) was established by Duke, Friedlander and Iwaniec \([3]\).

2. Selberg’s eigenvalue conjecture

Let \(\Gamma\) be a congruence subgroup of modular group. Let \(0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots\) be the eigenvalues of the automorphic Laplacian on \(L^2(\Gamma \setminus \mathbb{H})\) induced from the Laplace operator
\[(2.1) \quad \Delta_L = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).\]
The eigenvalue \(0 < \lambda < 1/4\) is called an exceptional eigenvalue.

Conjecture 2.1. (Selberg, \([12]\)) The Laplacian for a congruence subgroup has no exceptional eigenvalues, i.e. \(\lambda_1 \geq 1/4\).

Below we provide several results related to conjecture \([2.1]\).
4 OLGA BALKANOVA AND DMITRY FROLENKOV

- 1965 Selberg [12]: $\lambda_1 \geq 3/16$
- 1978 Jacquet and Gelbart [4]: $\lambda_1 > 3/16$
- 1995 Luo, Rudnick, Sarnak [10]: $\lambda_1 > 171/784$
- 1996 Iwaniec [6]: $\lambda_1 > 10/49$
- 2002 Kim, Shahidi [9]: $\lambda_1 \geq 66/289$
- 2003 Kim, Sarnak [8]: $\lambda_1 \geq 975/4096$

Using the bound of Kim-Sarnak and equation (1.8), we find
\[
(2.2) \quad \theta = \sqrt{\max (0, 1/4 - \lambda_1)} = 7/64.
\]

3. LARGE SIEVE INEQUALITY

Let $S(m, n; c)$ be the classical Kloosterman sum.

Theorem 3.1. (theorem 9 of [2] and lemma 9 of [11]) Let r, s and d be positive pairwise coprime integers with r and s square-free. Let C, M, N be positive real numbers and g be real-valued infinitely differentiable function with support in $[M, 2M] \times [N, 2N] \times [C, 2C]$ such that
\[
(3.1) \quad \left| \frac{\partial^{(j+k+l)}}{\partial m^{(j)} \partial n^{(k)} \partial c^{(l)}} g(m, n, c) \right| \leq M^{-j} N^{-k} C^{-l} \text{ for } 0 \leq j, k, l \leq 2.
\]

Let
\[
X_d := \sqrt{dMN} \frac{1}{sC\sqrt{r}}.
\]

Then for any $\epsilon > 0$ and complex sequences $a = \{a_m\}, b = \{b_n\}$ one has
\[
(3.2) \quad \sum_m a_m \sum_n b_n \sum_{(c,r)=1} g(m, n, c) S(dm\bar{r}, \pm n; sc) \ll \epsilon
\]
\[
C^\epsilon d^\theta sC\sqrt{r} \left(1 + X_d^{-1} \right)^{2\theta} \left(1 + X_d + \sqrt{\frac{M}{rs}} \right) \left(1 + X_d + \sqrt{\frac{N}{rs}} \right) \times \left(\sum_{M < m \leq 2M} |a_m|^2 \right)^{1/2} \left(\sum_{N < n \leq 2N} |b_n|^2 \right)^{1/2},
\]
where θ is defined by equation (1.8).

4. ERROR TERMS

In this section, we consider the terms that give the largest contribution to the error in [7]. Our goal is to optimize the estimates of these terms and compute the exact dependence of the error on parameter θ.

First, we improve bound (21) of [7].
Note that the function $F_{M,N}(m, n)$ defined on page 108 of [7] is compactly supported on $[M/2, 3M] \times [N/2, 3N]$ and
\begin{align}
F_{M,N}(x, y) \ll (1 + |\mu|)^B(MN)^{-1/2}.
\end{align}

Lemma 4.1. Assume that for any $\epsilon > 0$ one has $M, N \ll q^{1+\epsilon}$. Then for any $C > \sqrt{MN}$
\begin{align}
\sum_{d \in I} \frac{1}{d^{1/2}} \sum_{ab \equiv d} \frac{\mu(a)}{a^{1/2}} \tau(b) \sum_{c \geq C \atop \gcd(c, d)} \frac{1}{c^2} T_{M,N}(c) \ll \epsilon
\end{align}
\begin{align}
(1 + |\mu|)^B(Cq)^{\epsilon l^{1/2}} \left(\frac{\sqrt{MN}}{C} \right)^{1-2\theta}.
\end{align}

Proof. We split $[C, \infty)$ into dyadic intervals and take $c \in [C, 2C]$. By equation (18) of [7] we have
\begin{align}
\sum_{q \mid c} \frac{1}{c^2} T_{M,N}(c) = \sum_{m, n, \gcd(m, c), \tabular{c}{\text{Here } m \in [M/2, 3M], n \in [N/2, 3N] \text{ and } c_1 \in [C_1, 2C_1]} \text{ with } C_1 := C/q.}
\end{align}

Here $m \in [M/2, 3M]$, $n \in [N/2, 3N]$ and $c_1 \in [C_1, 2C_1]$ with $C_1 := C/q$. Let
\begin{align}
Y := \sqrt{MN}C_1 \left(\frac{\sqrt{aeMN}}{C} \right)^{-1}.
\end{align}

As a test function we choose
\begin{align}
g(m, n, c_1) := \frac{Y}{c_1} F_{M,N}(m, n) J_1 \left(\frac{4\pi \sqrt{aemn}}{c_1 q} \right).
\end{align}

It satisfies condition (3.1), and theorem 3.1 can be applied with $d = ae$, $r = 1$ and $s = q$. Hence
\begin{align}
\sum_{d \in I} \frac{1}{d^{1/2}} \sum_{ab \equiv d} \frac{\mu(a)}{a^{1/2}} \tau(b) \sum_{c \geq C \atop \gcd(c, d)} \frac{1}{c^2} T_{M,N}(c) \ll \epsilon
\end{align}
\begin{align}
(1 + |\mu|)^B(Cq)^{\epsilon l^{1/2}} \left(\frac{\sqrt{MN}}{C} \right)^{1-2\theta}.
\end{align}
The optimal value of C can be chosen by making equal the estimate (4.2) and the first summand of equation (26) of [7], namely

$$l^{1/2} \left(\frac{\sqrt{MN}}{C} \right)^{1-2\theta} = l^{3/4} N^{1/4} C / M^{1/2} q.$$

This gives

$$C = l^{- \frac{1}{8-8\theta}} \min \left(q^{2-2\theta} \sqrt{MN}^{\frac{1-4\theta}{8-8\theta}}, q^{\frac{9-8\theta}{8-8\theta}} \right).$$

After performing the dyadic summation over M and N, we find that for any $l < q^{1/5 - 4\theta}$ the error term in lemma 4.1 is bounded by

$$O\left(q^\theta \left(1 + |\mu| \right)^B l^{\frac{5-4\theta}{8-8\theta}} q^{-\frac{1-2\theta}{8-8\theta}} \right).$$

Now we consider two other error terms that depend on C. These are the errors resulting from extension of summation over $c > C$. See section 3.5 (pages 111-112) of [7].

Let

$$\eta_C(c) := \begin{cases} 1 & c \leq C \\ 0 & \text{otherwise} \end{cases}$$

Lemma 4.2. Let C be defined by equation (4.4). For any $\epsilon > 0$

$$\sum_{M,N \ll q^{1+\epsilon}} \sum_{d = 1} d^{1/2} \sum_{ab = d} \frac{\mu(a)}{a^{1/2}} \tau(b) \sum_{q|c} (1 - \eta_C(c)) c^{-2T^{OD}} \ll \epsilon$$

$$\left(1 + |\mu| \right)^B l^{\frac{5-4\theta}{8-8\theta}} q^{-\frac{1-2\theta}{8-8\theta}}.$$

Proof. Consider

$$\sum_{q|c} (1 - \eta_C(c)) c^{-2T^{OD}} = -2\pi \sum_n \tau(aen) \tau(n)$$

$$\times \int_0^\infty Y_0(4\pi \sqrt{aent}) J_1(4\pi \sqrt{aent}) \sum_{q|c \atop c > C} \phi(c) F_{M,N}(c^2 t, n) dt.$$

Since $C^2 t < c^2 t \leq 2M$, the sum over c can be estimated as follows

$$\sum_{q|c \atop c > C} \phi(c) F_{M,N}(c^2 t, n) \ll \frac{1}{\sqrt{M N}} \frac{M}{q t}.$$
Next we apply $Y_0(x) \ll \log x$ and $J_1(x) \ll x$. Then

$$\sum_{q|c} (1 - \eta_C(c)) c^{-2} T^{OD} \ll \epsilon$$

$$= (1 + |\mu|) B q^\epsilon \frac{N}{\sqrt{MN}} \int_0^{2M/C^2} t^M (ae Nt)^{1/2} dt \ll \epsilon$$

$$= (1 + |\mu|) B q^\epsilon (ae)^{1/2} \frac{MN}{qC}. $$

Finally, using (4.4), we obtain

$$\sum_{M,N \ll q^{1+\epsilon}} \sum_{d,e,l} \frac{1}{d^{1/2}} \sum_{a,b,d} \frac{\mu(a)}{a^{1/2}} \tau(b) \sum_{q|c} (1 - \eta_C(c)) c^{-2} T^{OD} \ll \epsilon$$

$$= (1 + |\mu|) B q^\epsilon (ae)^{(5-4\theta)/(8-8\theta)} q^{-1/(8-8\theta)}.$$

Lemma 4.3. Let C be defined by equation (4.4). For any $\epsilon > 0$

$$\sum_{M,N \ll q^{1+\epsilon}} \sum_{d,e,l} \frac{1}{d^{1/2}} \sum_{a,b,d} \frac{\mu(a)}{a^{1/2}} \tau(b) \sum_{q|c} (1 - \eta_C(c)) c^{-2} T^{OOD} \ll \epsilon$$

$$= (1 + |\mu|) B q^\epsilon (ae)^{(5-4\theta)/(8-8\theta)} q^{-1/(8-8\theta)}.$$

Proof. According to [7] page 111 we have

$$\sum_{q|c} (1 - \eta_C(c)) c^{-2} T^{OOD} \ll \epsilon (1 + |\mu|) B q^\epsilon (ae)^{1/2} \frac{MN}{qC}. $$

Equation (4.4) yields the assertion.

To sum up, the largest error terms in theorem [1.1] come from lemmas 4.1, 4.2, 4.3 and equation (26) of [7]. In particular, the error term $O_\epsilon ((1 + |\mu|)^{B l^{17/8}} q^{-1/4+\epsilon})$ is given by the second summand in (26) of [7].

5. Amplification and subconvexity

Contribution of the main terms M^D, M^{OD}, M^{OOD} in [7] is bounded by

$$O_\epsilon \left((1 + |\mu|)^{B l^{-1/2}} \right). $$
According to theorem 1.1, for \(l < q^{\frac{1}{20+120\theta}} \) we have

\[
\sum_{f \in H_{\ast}^2(q)} \frac{1}{4\pi \langle f, \bar{f} \rangle_q} \lambda_f(l)|L(f, 1/2 + \mu)|^4 \ll \epsilon, \mu
\]

\[
q^\epsilon \left(l^{-1/2} + l^{\frac{60}{36} - \frac{1}{4} \theta} q^{-\frac{1}{4} \theta} \right) .
\]

Let

\[
\Lambda_f(c) := \sum_{l \leq L \atop (l, q) = 1} c_l \lambda_f(l)
\]

be an amplifier. Then

\[
\sum_{f \in H_{\ast}^2(q)} \frac{1}{4\pi \langle f, \bar{f} \rangle_q} \Lambda_f^2(c)|L(f, 1/2 + \mu)|^4 \ll \epsilon, \mu
\]

\[
q^\epsilon \left(\|c\|_2^2 + L^{\frac{60}{36} - \frac{1}{4} \theta} q^{-\frac{1}{4} \theta} \|c\|_1^2 \right) ,
\]

where \(\|c\|_p \) denotes \(l_p \)-norm.

We choose coefficients \(c_l \) as in [3], making \(\Lambda_f(c) \) large for a particular form \(f \in H_{\ast}^2(q) \), namely

\[
c_l = \begin{cases}
\lambda_f(l) & \text{if } l \text{ is prime } \leq L^{1/2} \\
-1 & \text{if } l \text{ is a square of a prime } \leq L^{1/2} \\
0 & \text{otherwise}.
\end{cases}
\]

Thus,

\[
\Lambda_f(c) = \sum_{l \text{ prime} \leq L^{1/2} \atop (l, q) = 1} (\lambda_f(l)^2 - \lambda_f(l^2)).
\]

Note that \(\lambda_f(l^2) = 1 \) for prime \(l \) such that \((l, q) = 1 \). Therefore,

\[
\Lambda_f(c) \sim 2L^{1/2}(\log L)^{-1}.
\]

By Deligne’s bound

\[
\|c\|_2^2 \leq 5\Lambda_f(c) \text{ and } \|c\|_1 \leq 3\Lambda_f(c).
\]

The results of [5] imply that

\[
\frac{1}{4\pi \langle f, \bar{f} \rangle_q} \ll \frac{\log q}{q} .
\]

Taking \(L = q^{\frac{20}{20+120\theta}} \) in (5.3) and applying (5.7), (5.8), (5.9), we have

\[
L(f, 1/2 + \mu) \ll_{\epsilon, \mu} q^{1/4 - \delta}
\]
with \(\delta = \frac{2\theta - 1}{16(8\theta - 7)} \).

6. Mollification and simultaneous non-vanishing

We follow section 5.2 of [7]. In order to determine the largest admissible length of mollifier \(\Delta \), we sum the error terms in theorem 1.1 against \(l^{-1/2+\varepsilon} \) for \(l < q^{2\Delta} \). This gives

\[
q^{\frac{1-2\theta}{8-8\theta}} q^{2\Delta (\frac{1-2\theta}{8-8\theta} + 1) + \varepsilon} + q^{-1/4} q^{2\Delta/4 + \varepsilon} + q^{-\frac{1}{8-8\theta}} q^{2\Delta (\frac{1}{8-8\theta} + 1) + \varepsilon}.
\]

Therefore, the error term is negligible for any \(\Delta < \frac{1-2\theta}{2(9-10\theta)} \).

In order to change the harmonic mean into the natural average as defined by (1.5), we apply results of section 5. Accordingly, condition (82) of [7] is satisfied for any \(\Delta < \frac{1-2\theta}{4(7-8\theta)} \).

Theorem 6.1. Let \(M(f) \) be the mollifier defined by equation (63) of [7] with \(P(x) = x^3 \). Let \(F(\Delta) \) be defined by equation (5) of [7].

For all \(0 < \Delta_1 < \frac{1-2\theta}{2(9-10\theta)} \) we have

\[
\sum_{f \in H^*_2(q)} h L(f, 1/2)^4 M(f)^4 = (1 + o(1)) F(\Delta_1) \left(\frac{\zeta(2)}{\log q} \right)^4.
\]

For all \(0 < \Delta_2 < \frac{1-2\theta}{4(7-8\theta)} \) we have

\[
\sum_{f \in H^*_2(q)} n L(f, 1/2)^4 M(f)^4 = (1 + o(1)) F(\Delta_2) \left(\frac{\zeta(2)}{\log q} \right)^4.
\]

Taking \(\theta = 7/64 \), we find that \(\Delta_1 < \frac{25}{566} = \frac{1}{22.64} \) and \(\Delta_2 < \frac{25}{784} = \frac{1}{31.36} \).

This improves \(\Delta_1 < \frac{1}{37} \) and \(\Delta_2 < \frac{1}{48} \) proved in [7].

In particular, extension of admissible length of mollifier \(\Delta_2 \) gives a better lower bound on the proportion of simultaneous non-vanishing

\[
\sum_{f \in H^*_2(q)} \frac{1}{L(f, 1/2) L(f \otimes \chi, 1/2) \neq 0}
\]

where \(\chi \) is a fixed primitive character of conductor \(D \) such that \((D, q) = 1 \). See Proposition 7.2 of [7] for the exact formulas.

References

[1] O. Balkanova. *The shifted fourth moment of automorphic \(L \)-functions of prime power level*, Acta Arith., to appear.
[2] J. M. Deshouillers, H. Iwaniec. *Kloosterman sums and Fourier coefficients of cusp forms*, Invent. Math. 70 (1982), 219–288.
[3] W. Duke, J. Friedlander, H. Iwaniec. *Bounds for automorphic \(L \)-functions II*, Invent. Math. 115-2 (1994), 219–239.
[4] S. Gelbart, H. Jacquet. A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Ecole Norm. Sup. 4 (1978), 11(4), 471–542.

[5] D. Goldfeld, J. Hoffstein, D. Liemann. An effective zero-free region (Appendix to Coefficients of Maass forms and the Siegel zero), Ann. Math. 140 (1994), 177–181.

[6] H. Iwaniec. The lowest eigenvalue for congruence groups, In Topics in geometry, volume 20 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA (1996), 203–212.

[7] E. Kowalski, Ph. Michel, J. VanderKam. Mollification of the fourth moment of automorphic L-functions and arithmetic applications, Invent. Math. 142-1 (2000), 95–151.

[8] H. H. Kim (with appendices by D. Ramakrishnan, H. H. Kim and P. Sarnak). Functoriality for the exterior square of GL₄ and the symmetric square of GL₂, J. Amer. Math. Soc. 16 (2003), 139–183.

[9] H. Kim, F. Shahidi. Functorial products for GL₂ × GL₃ and the symmetric cube for GL₂, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by C. J. Bushnell and G. Henniart.

[10] W. Luo, Z. Rudnick, P. Sarnak. On Selberg’s eigenvalue conjecture, Geom. Funct. Anal., 5-2 (1995), 387–401.

[11] K. Matomäki. The distribution of αp modulo one, Math. Proc. Camb. Phil. Soc. 147-2 (2009), 267–283.

[12] A. Selberg. On the estimation of Fourier coefficients of modular forms, In Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I. (1965), 1–15.

Institute for Applied Mathematics of Russian Academy of Sciences, Khabarovsk, Russia
E-mail address: olgabalkanova@gmail.com

Steklov Mathematical Institute of Russian Academy of Sciences, National Research University Higher School of Economics, Moscow, Russia
E-mail address: frolenkov@mi.ras.ru