Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Santhiti Vadthanarat1,2,3, Saisamorn Lumyong1,3,6, Olivier Raspé4,5

1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 2 PhD’s Degree Program in Biodiversity and Ethnobiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 3 Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 4 Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 5 Fédération Wallonie-Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Bruxelles, Belgium 6 Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand

Corresponding author: Olivier Raspé (olivier.raspe@botanicgardenmeise.be)

Academic editor: M. P. Martín | Received 30 March 2019 | Accepted 26 April 2019 | Published 10 June 2019

Citation: Vadthanarat S, Lumyong S, Raspé O (2019) Cacaoporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 54: 1–29. https://doi.org/10.3897/mycokeys.54.35018

Abstract

We introduce a new genus, Cacaoporus, characterised by chocolate brown to dark brown basidiomata and hymenophore, tubes not separable from the pileus context, white to off-white basal mycelium, reddening when bruised, amygdaliform to ovoid spores and dark brown spore deposit. Phylogenetic analyses of a four-gene dataset (atp6, tef1, rpb2 and cox3) with a wide selection of Boletaceae showed that the new genus is monophyletic and sister to the genera Cupreoboletus and Cyanoboletus in the Pulveroboletus group. Two new species in the genus, C. pallidicarneus and C. tenebrosus are described from northern Thailand. Full descriptions and illustrations of the new genus and species are presented. The phylogeny also confirmed the reciprocal monophyly of Neoboletus and Sutorius, which further support the separation of these two genera.

Keywords

3 new taxa, atp6, Boletales, cox3, Fungal Diversity, multigene phylogeny, Neoboletus, Pulveroboletus group, Taxonomy
Introduction

In the last decade or so, since molecular techniques and phylogenetic analyses have been used in taxonomy and systematics of the Boletaceae, many new species and genera have been described worldwide (e.g. Halling et al. 2012, 2016; Zeng et al. 2012; Arora and Frank 2014; Gelardi et al. 2014, 2015; Li et al. 2014, Zhao et al. 2014b, Zeng et al. 2014; Wu et al. 2015, 2016; Zhu et al. 2015). In Thailand, although the Boletaceae have been studied for a long time, only a few new Boletaceae species and a new genus have recently been described (Desjardin et al. 2009; Neves et al. 2012; Halling et al. 2014; Raspé et al. 2016; Vadthanarat et al. 2018). At the same time, many new species and genera have been described from southern and south-western China, an area with a climate and forests similar to Thailand (e.g. Li et al. 2011; Wu et al. 2015, 2016; Zhu et al. 2015). Similarly, a high number of new species and possibly new genera are expected to occur in Thailand (Hyde et al. 2018).

During our survey on the diversity of boletes in Thailand, several collections of brown to chocolate to dark brown boletes were obtained. Some collections bearing resemblance to *Sutorius* Halling, Nuhn & N.A. Fechner species, which typically have brown or reddish to purplish-brown basidiomata with reddish to purplish-brown hymenophore, reddish-brown spore deposit and narrowly ellipsoid to ellipsoid basidiospores (Halling et al. 2012). However, our chocolate brown bolete collections also showed differences, in particular in having a darker hymenophore, as well as in some microscopic characters like spore shape. We therefore performed a family-wide phylogeny, which showed that those brown to chocolate to dark brown boletes belong in a generic lineage, different from *Sutorius*. Consequently, we introduce the new Boletaceae genus *Cacaoporus* and describe two new species, *C. pallidicarneus* and *C. tenebrosus*, with full descriptions and illustrations.

Materials and method

Specimens collecting

Fresh basidiomata were collected in Chiang Mai Province, northern Thailand during the rainy season in 2013 to 2018. The specimens were photographed *in situ*, wrapped in aluminium foil and taken to the laboratory. After description of macroscopic characters, the specimens were dried in an electric dryer at 45–50 °C. Examined specimens were deposited in the herbaria CMUB, MFLU, BKF and BR (listed in Index Herbariorum; Thiers, continuously updated).

Morphological studies

Macroscopic descriptions were made, based on detailed field notes and photos of fresh basidiomata. Colour codes were taken from Kornerup and Wanscher (1978). Macrochemical reactions (colour reactions) of pileus, pileus context, stipe, stipe context and hy-
menophore were determined using 10% aqueous potassium hydroxide (KOH) and 28–30% ammonium hydroxide (NH$_4$OH). Microscopic structures were observed from dried specimens, using 5% KOH, NH$_4$OH, Melzer’s reagent or stained with 1% ammoniacal Congo red. A minimum of 50 basidiospores, 20 basidia and 20 cystidia were randomly measured at 1000× with a calibrated ocular micrometer using an Olympus CX51 compound microscope. The notation “[m/n/p]” represents the number of basidiospores “m” measured from “n” basidiomata of “p” collections. Dimensions of microscopic structures are presented in the following format: (a–)b–c–d(–e), in which “c” represents the average, “b” the 5th percentile, “d” the 95th percentile, “a” the minimum and “e” the maximum. Q, the length/width ratio, is presented in the same format. A section of the pileus surface was radially and perpendicularly cut to the surface at a point halfway between the centre and margin of the pileus. Sections of stipitipellis were taken from halfway up the stipe and longitudinally cut, perpendicularly to the surface (Hosen et al. 2013; Li et al. 2011). All microscopic features were drawn by free hand using an Olympus Camera Lucida model U–DA fitted to the microscope cited above. For scanning electron microscopy (SEM), a spore print was mounted on to an SEM stub with double-sided tape. The samples were coated with gold, then examined and photographed with a JEOL JSM–5910 LV SEM.

DNA isolation, PCR amplification and DNA sequencing

Genomic DNA was extracted from fresh tissue preserved in CTAB or about 10–15 mg of dried tissue using a CTAB isolation procedure adapted from Doyle and Doyle (1990). Portions of the genes atp6, tef1, rpb2 and cox3 were amplified by polymerase chain reaction (PCR) and sequenced by Sanger sequencing. The primer pairs ATP6-1M40F/ATP6-2M (Raspé et al. 2016), EF1-983F/EF1-2218R (Rehner and Buckley 2005) and bRPB2-6F/bRPB2-7.1R (Matheny 2005) were used to amplify atp6, tef1 and rpb2, respectively. Part of the mitochondrial gene cox3 was amplified with the newly designed primers COX3M1-F (5’-ATYGGAGCWGTAATGTWYATGC-3’) and COX3M1-R (5’-CCWACTAWTACRTGRATWCCATG-3’), using the following PCR programme: 2 min 30 s at 95 °C; 35 cycles of 25 s at 95 °C, 30 s at 48 °C, 30 s at 72 °C; 3 min at 72 °C. PCR products were purified by adding 1 U of Exonuclease I and 0.5 U FastAP Alkaline Phosphatase (Thermo Scientific, St. Leon-Rot, Germany) and incubated at 37 °C for 1 h, followed by inactivation at 80 °C for 15 min. Standard Sanger sequencing was performed in both directions by Macrogen Europe (The Netherlands) with PCR primers, except for atp6, for which universal primers M13F-pUC(-40) and M13F(-20) were used; for tef1, additional sequencing was performed with two internal primers, EF1-1577F and EF1-1567R (Rehner and Buckley 2005).

Alignment and phylogeny inference

The sequences were assembled in GENEIOUS Pro v. 6.0.6 (Biomatters) and introns were removed prior to alignment based on the amino acid sequence of previously
published sequences. All sequences, including sequences from GenBank, were aligned using MAFFT (Katoh and Standley 2013) on the server accessed at http://mafft.cbrc.jp/alignment/server/.

Maximum Likelihood (ML) phylogenetic inference was performed using RAxML (Stamatakis 2006) on the CIPRES web portal (RAxML-HPC2 on XSEDE; Miller et al. 2009). The phylogenetic tree was inferred by a single analysis with three partitions (one for each gene), using the GTRCAT model with 25 categories, two Buchwaldoboletus and nine Chalciporus species from sub-family Chalciporoideae were used as outgroup since Chalciporoideae always appeared as sister to the remainder of the Boletaceae in recent phylogenetic analyses (e.g. Nuhn et al. 2013; Wu et al. 2014, 2016). Statistical support of clades was obtained with 1,000 rapid bootstrap replicates.

For Bayesian Inference (BI), the best-fit model of substitution amongst those implementable in MrBayes was estimated separately for each gene using jModeltest (Darriba et al. 2012) on the CIPRES portal, based on the Bayesian Information Criterion (BIC). The selected models were HKY+I+G for atp6 and rpb2 and GTR+I+G for cox3 and tefl. Partitioned Bayesian analysis was performed with MrBayes 3.2 (Ronquist et al. 2012) on the CIPRES portal. Two runs of five chains were run for 15,000,000 generations and sampled every 500 generations. The chain temperature was decreased to 0.02 to improve convergence. At the end of the run, the average deviation of split frequencies was 0.008147.

Results

Phylogenetic analysis

A total of 325 sequences were newly generated and deposited in GenBank (Table 1). The alignment contained 1,013 sequences from four genes (186 for atp6, 358 for tefl, 326 for rpb2, 143 for cox3) from 362 voucher specimens and was 2946 characters long (TreeBase number 23886).

The four-gene analyses retrieved the six subfamilies (Austroboletoideae, Boletoideae, Chalciporoideae, Leccinoideae, Xerocomoideae, Zangioideae) as monophyletic (Fig. 1). The genera belonging to the Pulveroboletus group of Wu et al. (2014, 2016) did not form a monophyletic group. The new genus, Cacaoporus was monophyletic (BS=100% and PP=1) within a clade containing the genera Cupreoboletus Simonini, Gelardi & Vizzini and Cyanoboletus Gelardi, Vizzini & Simonini and one undescribed taxon, Boletus p.p. sp., clade 2 (specimen voucher JD0693) with high support (BS=94% and PP=0.99). The macromorphologically most similar genus, Sutorius, formed another clade (BS=100% and PP=1) sister to Neoboletus Gelardi, Simonini & Vizzini, with 67% BS and 0.97 PP support, in another clade of the Pulveroboletus group.

Our phylogeny also showed that thirteen Sutorius species including S. brunneissimus (W.F. Chiu) G. Wu & Zhu L. Yang, S. ferrugineus G. Wu, Fang Li & Zhu L. Yang, S. flavidus G. Wu & Zhu L. Yang, S. hainanensis (T.H. Li & M. Zang) G. Wu & Zhu L. Yang, S. junquilleus (Quél.) G. Wu & Zhu L. Yang, S. magnificus (W.F. Chiu) G. Wu &
Table 1. List of collections used for DNA analyses, with origin, GenBank accession numbers and reference(s).

Species	Voucher	Origin	atp6	cox3	rps16	rpb2	Reference(s)	
Afroboletus aff. multijugus	JD671	Burundi	MH614651	MH614794	MH614700	MH614747	This study	
Afroboletus coquatiporus	ADK4644	Togo	KT823958	MH614795*	KT824024	KT823991	Raspé et al. 2016; *This study	
Afroboletus lateralis	ADK4844	Togo	MH614652	MH614796	MH614701	MH614748	This study	
Aureoboletus catarinarius	HKAS54467	China	–	–	KT990711	KT990349	Wu et al. 2016	
Aureoboletus duplicatiporus	HKAS50498	China	–	–	KFI12230	KFI12754	Wu et al. 2014	
Aureoboletus gentilis	ADK4865	Belgium	KT823961	MH614797*	KT824027	KT823994	Raspé et al. 2016; *This study	
Aureoboletus mirabilis	HKAS57776	China	–	–	KFI12229	KFI12743	Wu et al. 2014	
Aureoboletus monticulus	VDK01120	Belgium	MG212528	MH614798*	MG212573	MG212615	Vadtthanarat et al. 2018; *This study	
Aureoboletus nephraporus	HKAS67931	China	–	–	KT990720	KT990357	Wu et al. 2016	
Aureoboletus projectellus	AFTOL-ID-713	USA	DQ534604*	–	AY879116	AY878218	Binder and Hilbert 2006; Binder et al., Unpublished	
Aureoboletus shichimiens	HKAS76852	China	–	–	KFI12237	KFI12756	Wu et al. 2014	
Aureoboletus sp.	HKAS56317	China	–	–	KFI12239	KFI12753	Wu et al. 2014	
Aureoboletus sp.	OR0245	China	MH614653	MH614799	MH614702	MH614749	This study	
Aureoboletus sp.	OR0369	Thailand	MH614654	MH614800	MH614703	MH614750	This study	
Aureoboletus thibetanus	HKAS76655	Thailand	–	–	KFI12236	KFI12752	Wu et al. 2014	
Aureoboletus thiobatus	AFTOL-ID-450	China	DQ534600*	–	DQ029199	DQ366279*	*Binder and Hilbert 2006; Unpublished	
Aureoboletus tomentosus	HKAS80485	China	–	–	KT990715	KT990353	Wu et al. 2016	
Aureoboletus vicinus	OR0361	Thailand	MH614655	MH614801	MH614704	MH614751	This study	
Aureoboletus xanhui	HKAS74766	China	–	–	KT990726	KT990363	Wu et al. 2016	
Austroboletus cl. dictyopus	OR0045	Thailand	KT823966	MH614802*	KT824032	KT823999	Raspé et al. 2016; *This study	
Austroboletus cl. subvirens	OR0573	Thailand	MH614656	MH614803	MH614705	MH614752	This study	
Austroboletus eburneus	REH9487	Australia	–	–	JX889708	–	Halling et al. 2012b	
Austroboletus olivaceoglutinosus	HKAS77576	China	–	–	KFI12212	KFI12764	Wu et al. 2014	
Austroboletus sp.	HKAS59624	China	–	–	KFI12217	KFI12765	Wu et al. 2014	
Austroboletus sp.	OR0891	Thailand	MH614657	MH614804	MH614706	MH614753	This study	
Bassoaria major	OR0209	Thailand	MG897421	MK372295*	MG897431	MG897441	Phookamsak et al. 2019; *This study	
Bassoaria pseudocaloporus	HKAS63007	China	–	–	KFI12167	KFI12677	Wu et al. 2014	
Bassoaria pseudocaloporus	HKAS75739	China	–	–	KJ184570	KMG005497	Wu et al. 2015	
Bassoaria pseudocaloporus	HKAS75081	China	–	–	KFI112168	KFI12678	Wu et al. 2014	
Bassoaria raeforumculata	BOTH4144	USA	MG897415	MH614805*	MG897425	MG897435	Phookamsak et al. 2019; *This study	
Bolellia ananas	NY814559	Costa Rica	–	–	KFI12308	KFI12760	Wu et al. 2014	
Bolellia ananas	KMI123769	Belize	MH614658	MH614807	MH614707	MH614754	This study	
Bolellia aff. exomoides	OR0061	Thailand	KT823970	MH614806*	KT824036	KT824003	Raspé et al. 2016; *This study	
Bolellia sp.	HKAS59536	China	–	–	KFI12306	KFI12758	Wu et al. 2014	
Bolellia sp.	OR0821	Thailand	MG212529	MH614808*	MG212574	MG212616	Vadtthanarat et al. 2018; *This study	
Boletus aureus	VDK01055	Belgium	MG212530	MH614809*	MG212575	MG212617	Vadtthanarat et al. 2018; *This study	
Boletus albobrunneicis	OR0131	Thailand	KT823973	MH614810*	KT824039	KT824006	Raspé et al. 2016; *This study	
Boletus batyroides	HKAS53403	China	–	–	KT990738	KT990375	Wu et al. 2016	
Boletus edulis	HMIJAU4637	Russia	–	–	KFI12202	KFI12704	Wu et al. 2014	
Boletus edulis	VDK00869	Belgium	MG212531	MH614811*	MG212576	MG212618	Vadtthanarat et al. 2018; *This study	
Boletus p.p. sp	JD0693	Burundi	MH645583	–	MH645591	MH645599	This study	
Boletus p.p. sp	OR0832	Thailand	MH645584	MH645605	MH645592	MH645600	This study	
Species	Voucher	Origin	apf6	coz3	tef1	rpb2	Reference(s)	
---------	---------	--------	------	------	------	------	--------------	
Boletus p.p. sp.	OR1002	Thailand	MH645585	MH645606	MH645593	MH645601	This study	
Boletus pallidus	BOTH4356	USA	MH614659	MH614812	MH614708	–	This study	
Boletus pallidus	TBD-1231-Bruns	–	AF002142	–	AF002154	–	Kreutzer and Bruns 1999	
Boletus reticulocystis	HKAS7671	China	–	–	–	–	Wu et al. 2014	
Boletus s.s. sp.	OR0446	China	MG212532	MH614813	MG212577	MK112703	Vadtanarat et al. 2018; *This study	
Boletus sp.	HKAS95660	China	–	–	–	–	Wu et al. 2014	
Boletus sp.	HKAS63598	China	–	–	–	–	Wu et al. 2014	
Boletus violaceofuscus	HKAS62900	China	–	–	–	–	Wu et al. 2014	
Borodiniothyrium abominans	HKAS7749	Bangladesh	–	JQ928576	JQ928597	–	Hosen et al. 2013	
Borodiniothyrium abominans	OR0345	Thailand	MH614660	MH614814	MH614709	MH614675	This study	
Butyriboletus appendiculatus	VDK0193b	Belgium	MG212537	MH614816	MG212582	MG212624	Vadtanarat et al. 2018; *This study	
Butyriboletus cl. roseoflavus	OR0230	China	KT823974	MH614819	KT824040	KT824007	Raspé et al. 2016; *This study	
Butyriboletus fossii	NY815462	USA	–	–	–	–	Wu et al. 2014	
Butyriboletus pseudoreguis	VDK03925	Belgium	MG212538	MH614817	MG212583	MG212625	Vadtanarat et al. 2018; *This study	
Butyriboletus pseudospeciosus	HKAS63513	China	–	–	KT990743	KT990380	Wu et al. 2016	
Butyriboletus roseoflavus	HKAS54099	China	–	–	KF739779	KF739703	Wu et al. 2014	
Butyriboletus roseopurpureus	BOTH4497	USA	MG897418	MH614818	MG897428	MG897438	Phookamsak et al., 2019; *This study	
Butyriboletus sp.	HKAS52661	China	–	–	–	–	Wu et al. 2014	
Butyriboletus sp.	HKAS52525	China	–	–	–	–	Wu et al. 2014	
Butyriboletus sp.	HKAS77774	China	–	–	–	–	Wu et al. 2014	
Butyriboletus sp.	HKAS95814	China	–	–	–	–	Wu et al. 2014	
Butyriboletus sp.	HKAS63528	China	–	–	–	–	Wu et al. 2014	
Butyriboletus sp.	MHHN7456	China	–	KT990741	KT990378	Wu et al. 2016		
Butyriboletus suboperculatus	HKAS50444	China	–	–	KT990742	KT990379	Wu et al. 2016	
Butyriboletus yicichu	HKAS55413	China	–	–	KF112157	KF112674	Wu et al. 2014	
Cacaoporus pallidicarnosus	OR0681	Thailand	MK372259	MK372296	–	MK372283	This study	
Cacaoporus pallidicarnosus	OR0683	Thailand	MK372260	MK372297	–	MK372284	This study	
Cacaoporus pallidicarnosus	OR1306	Thailand	MK372261	MK372298	MK372272	MK372285	This study	
Cacaoporus pallidicarnosus	SV0221	Thailand	MK372262	MK372299	MK372273	MK372286	This study	
Cacaoporus pallidicarnosus	SV0451	Thailand	MK372263	MK372300	MK372274	MK372287	This study	
Cacaoporus p.p.	SV0402	Thailand	MK372270	–	MK372281	MK372293	This study	
Cacaoporus tenebricous	OR0054	Thailand	MK372264	MK372301	MK372275	MK372288	This study	
Cacaoporus tenebricous	OR1435	Thailand	MK372265	MK372302	MK372276	MK372289	This study	
Cacaoporus tenebricous	SV0223	Thailand	MK372266	MK372303	MK372277	MK372290	This study	
Cacaoporus tenebricous	SV0224	Thailand	MK372267	MK372304	MK372278	MK372291	This study	
Cacaoporus tenebricous	SV0422	Thailand	MK372268	MK372305	MK372279	–	This study	
Cacaoporus tenebricous	SV0452	Thailand	MK372269	MK372306	MK372280	MK372292	This study	
Caloboletus aff. calopus	HKAS7439	China	–	–	KF112166	KF112667	Wu et al. 2014	
Caloboletus calopus	ADK4087	Belgium	MG212539	MH614820	KJ184566	KP053030	Vadtanarat et al. 2018; Zhao et al. 2014a, b; This study	
Caloboletus inedulis	BOTH3963	USA	MG897414	MH614821	MG897424	MG897434	Phookamsak et al. 2019; *This study	
Caloboletus panniformis	HKAS55444	China	–	–	KF112165	KF112666	Wu et al. 2014	
Caloboletus radicans	VDK01187	Belgium	MG212540	MH614842	MG212584	MG212626	Vadtanarat et al. 2018; *This study	
Caloboletus sp.	HKAS53353	China	–	–	KF112188	KF112668	Wu et al. 2014	
Caloboletus sp.	OR0068	Thailand	MH614662	MH614823	MH614711	MH614757	This study	
Caloboletus yunnanensis	HKAS69214	China	–	–	KJ184568	KTO90396	Zhao et al. 2014a; Wu et al. 2016	
Chaetiporus aff. piperatus	OR0586	Thailand	KT823976	MH614824	KT824042	KT824009	Raspé et al. 2016; *This study	
Chaetiporus aff. rubinlus	OR0139	China	MH614663	–	–	MH614712	MH614758	This study
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Species	Voucher	Origin	atp6	cox3	tef1	rpb2	Reference(s)
Chacipora africana	JD517	Cameroon	KT823963	MH614825*	KT824029	KT823996	Raspé et al. 2016; *This study
Chacipora piperata	VDK01063	Belgium	MH614664	MH614826	MH614713	MH614759	This study
Chacipora ruhius	AF2835	Belgium	KT823962	–	KT824028	KT823995	Raspé et al. 2016
Chacipora sp.	HKAS56400	China	–	–	–	–	Wu et al. 2014
Chacipora sp.	HKAS74797	China	–	–	–	–	Wu et al. 2014
Chacipora sp.	OR0363	Thailand	MH645586	MH645607	MH645594	MH645602	This study
Chacipora sp.	OR0373	Thailand	MH645587	MH645608	MH645595	MH645603	This study
Chius sp.	OR0141	China	MH614665	MH614827	MH614714	MH614760	This study
China vires	OR0206	China	MG212541	MH614828*	MG212585	MG212627	Vadhyanathar et al. 2018; *This study
China vires	HKAS74928	China	–	–	–	–	Wu et al. 2014
Crocinoboletus cl. laetissimus	OR0576	Thailand	KT823975	MH614833*	KT824041	KT824008	Raspé et al. 2016; *This study
Crocinoboletus rubraeus	HKAS53424	China	–	–	–	–	Wu et al. 2014
Cuproboletus poikilochromus	GS10070	Italy	–	–	KT157072	KT157068	Gelardi et al. 2015
Cuproboletus poikilochromus	GS11008	Italy	–	–	KT157071	KT157067	Gelardi et al. 2015
Cyanoboletus brunneoceruber	HKAS80579_1	China	–	–	KT990763	KT990401	Wu et al. 2016
Cyanoboletus brunneoceruber	OR0233	China	MG212542	MH614834*	MG212586	MG212628	Vadhyanathar et al. 2018; *This study
Cyanoboletus instabilis	HKAS59554	China	–	–	–	–	Wu et al. 2014
Cyanoboletus pulvinellus	RW109	Belgium	KT823980	MH614835*	KT824046	KT824013	Raspé et al. 2016; *This study
Cyanoboletus sinopulverulentus	HKAS59609	China	–	–	–	–	Wu et al. 2014
Cyanoboletus sp.	HKAS52639	China	–	–	–	–	Wu et al. 2014
Cyanoboletus sp.	HKAS76850	China	–	–	–	–	Wu et al. 2014
Cyanoboletus sp.	OR0257	China	MG212543	MH614836*	MG212587	MG212629	Vadhyanathar et al. 2018; *This study
Cyanoboletus sp.	HKAS90208_1	China	–	–	–	–	Wu et al. 2016
Cyanoboletus sp.	OR0322	Thailand	MH614673	MH614837	MH614722	MH614768	This study
Cyanoboletus sp.	OR0491	China	MH614674	MH614838	MH614723	MH614769	This study
Cyanoboletus sp.	OR0961	Thailand	MH614675	MH614839	MH614724	MH614770	This study
Fuscumella prunicolor	REH9880	Australia	MH614676	MH614840	MH614725	MH614771	This study
Gymnopaster boletoides	NY01194009	Australia	–	–	KT990768	KT990406	Wu et al. 2016
Harrya atriceps	REH4703	Costa Rica	–	–	JX889702	–	Halling et al. 2012b
Harrya chromopora	HKAS50527	China	–	–	–	–	Wu et al. 2014
Harrya moniliformis	HKAS49627	China	–	–	KT990881	KT990500	Wu et al. 2016
Heimioporus cl. mandarinus	OR0661	Thailand	MG212545	MH614841*	MG212589	MG212631	Vadhyanathar et al. 2018; *This study
Heimioporus japonicus	OR0114	Thailand	KT823971	MH614842*	KT824037	KT824004	Raspé et al. 2016; *This study
Heimioporus retioperus	HKAS55237	China	–	–	KT990228	KT990806	Wu et al. 2014
Heimioporus sp.	OR0218	Thailand	MG212546	–	MG212590	MG212632	Vadhyanathar et al. 2018; *This study
Hemileccinum depilation	AF2845	Belgium	MG212547	MH614843*	MG212591	MG212633	Vadhyanathar et al. 2018; *This study
Hemileccinum impolitum	ADK4078	Belgium	MG212548	MH614844*	MG212592	MG212634	Vadhyanathar et al. 2018; *This study
Hemileccinum indecorum	OR0863	Thailand	MH614677	MH614845	MH614726	MH614772	This study
Hemileccinum vagum	HKAS84970	China	–	–	KT990773	KT990412	Wu et al. 2016
Hortiboletus amygdalinus	HKAS54166	China	–	–	KT990777	KT990416	Wu et al. 2016
Hortiboletus rubellas	VDK00403	Belgium	MH614679	MH614847	–	MH614774	This study
Hortiboletus sp.	HKAS50466	China	–	–	–	–	Wu et al. 2014
Hortiboletus sp.	HKAS51239	China	–	–	–	–	Wu et al. 2014
Hortiboletus sp.	HKAS51292	China	–	–	–	–	Wu et al. 2014
Hortiboletus sp.	HKAS76673	China	–	–	–	–	Wu et al. 2014
Hortiboletus subpaludosus	HKAS59608	China	–	–	–	–	Wu et al. 2014
Houtania cl. parvula	OR0762	Thailand	MH614680	MH614848	MH614728	MH614775	This study
Houtania cheni	HKAS74744	China	–	–	–	–	Wu et al. 2014
Species	Voucher	Origin	atp6	cox3	tef1	rpb2	Reference(s)
-------------------------------	---------------	-------------	------	------	------	------	--------------
Hourangia cheni	Zhu108	China	–	–	–	–	Wu et al. 2015
Hourangia nigropunctata	HKAS 57427	China	–	–	–	–	Wu et al. 2015
Hymenobolus leptoasperatus	HKAS46334	China	–	–	–	–	Wu et al. 2014
Imleria bakia	VDKO0709	Belgium	KT823983	MH614849²	KT824049	KT824016	Rapé et al. 2016; *This study
Imleria obscuribrunea	OR0263	China	MH614681	MH614850	MH614729	MH614776	This study
Imleria subulipina	HKAS4712	China	–	–	–	–	Wu et al. 2015
Lamarnia argyripunctata	HKAS4759	China	–	–	–	–	Wu et al. 2015
Lamarnia argyripunctata	HKAS4765	China	–	–	–	–	Wu et al. 2015
Lamarnia argyripunctata	HKAS4752	China	–	–	–	–	Wu et al. 2015
Lamarnia asiatica	HKAS4504	China	–	–	–	–	Wu et al. 2014
Lamarnia asiatica	HKAS4516	China	–	–	–	–	Wu et al. 2016
Lanmaoa flavorubra	BOTH4591	USA	MG897419	MH614852²	MG897429	MG897439	Phookamsak et al. 2019; *This study
Lanmaoa flavorubra	BOTH4432	USA	MG897417	MH614853²	MG897427	MG897437	Phookamsak et al. 2019; *This study
Lanmaoa sp.	HKAS52518	China	–	–	–	–	Wu et al. 2014
Lanmaoa sp.	OR0130	Thailand	MH614683	MH614854	MH614731	MH614778	This study
Lanmaoa sp.	OR0370	Thailand	MH614684	MH614855	MH614732	MH614779	This study
Leccinellum aff. crocepiodes	HKAS76658	Japan	–	–	–	–	Wu et al. 2014
Leccinellum aff. griecum	KPM-NC-001783	Japan	KC552164	JN378450²	–	unpublished, *Orihara et al. 2012	
Leccinellum corvus	Bu4507	USA	–	–	–	–	Nuhn et al. 2013
Leccinellum crenenum	HKAS90639	China	–	–	–	–	Wu et al. 2016
Leccinellum crocepiodes	VDKO1006	Belgium	KT823988	MH614856²	KT824054	KT824021	Rapé et al. 2016; *This study
Leccinellum sp.	KPM-NC-001804	Japan	KC552165	–	KC552094	–	Orihara et al. 2016
Leccinellum sp.	OR0711	Thailand	MH614685	–	MH614733	MH614780	This study
Leccinum monticolus	HKAS76699	China	–	–	–	–	Wu et al. 2014
Leccinum quercinum	HKAS63502	China	–	–	–	–	Wu et al. 2014
Leccinum scabrum	RW105a	Belgium	KT823979	MH614857²	KT824045	KT824012	Rapé et al. 2016; *This study
Leccinum scabrum	VDKO0938	Belgium	MG212549	MH614858²	MG212593	MG212635	Vadthanarat et al. 2018; *This study
Leccinum scabrum	KPM-NC-0017840	Scotland	KC552170	JN378455	–	Orihara et al. 2016, 2012	
Leccinum ochraceolens	VDKO1128	Belgium	KT823989	MH614859²	KT824055	KT824023	Rapé et al. 2016; *This study
Leccinum ochraceolens	VDKO0844	Belgium	MG212550	MH614860²	MG212594	MG212636	Vadthanarat et al. 2018; *This study
Macrolepiota castaneiceps	HKAS75045	China	–	–	–	–	Wu et al. 2014
Neobolus brunneainitius	HKAS50538	China	–	–	–	–	Wu et al. 2015
Neobolus brunneainitius	HKAS52600	China	–	–	–	–	Wu et al. 2014
Neobolus brunneainitius	HKAS57451	China	–	–	–	–	Wu et al. 2015
Neobolus brunneainitius	OR0249	China	MG212551	MH614861²	MG212595	MG212637	Vadthanarat et al. 2018; *This study
Neobolus erythropus	VDKO0690	Belgium	KT823982	MH614864²	KT824048	KT824015	Rapé et al. 2016; *This study
Neobolus ferrugineus	HKAS77718	China	–	–	–	–	Wu et al. 2016
Neobolus ferrugineus	HKAS77617	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS59443	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS58724	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS63515	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS47880	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS90209	China	–	–	–	–	Wu et al. 2016
Neobolus flavida	HKAS95469	China	–	–	–	–	Wu et al. 2014
Neobolus flavidus	AF2922	France	MG212552	MH614862²	MG212596	MG212638	Vadthanarat et al. 2018; *This study
Species	Voucher	Origin	atp6	cox3	rpb2	Reference(s)	
-------------------------	-----------	--------------	--------	--------	------	---------------	
Neoboletus magnificus	HKAS54096	China	–	–	–	Wu et al. 2014	
Neoboletus magnificus	HKAS47939	China	–	–	–	Wu et al. 2014	
Neoboletus multiplicatus	HKAS76851	China	–	–	–	Wu et al. 2014	
Neoboletus multiplicatus	OR0128	Thailand	MH614686	MH614863	MH614734	This study	
Neoboletus obscuruspinus	OR0553	Thailand	MK372271	–	–	This study	
Neoboletus obscuruspinus	HKAS6498	China	–	–	KT990791	Wu et al. 2016	
Neoboletus obscuruspinus	HKAS77774	China	–	–	KT990792	Wu et al. 2016	
Neoboletus obscuruspinus	HKAS89014	China	–	–	KT990793	Wu et al. 2016	
Neoboletus obscuruspinus	HKAS89027	China	–	–	KT990794	Wu et al. 2016	
Neoboletus rubriporus	HKAS57512	China	–	–	KT990795	Wu et al. 2016	
Neoboletus rubriporus	HKAS83026	China	–	–	KT990799	Wu et al. 2016	
Neoboletus sanguineodes	HKAS57766	China	–	–	KT990900	Wu et al. 2016	
Neoboletus sanguineodes	HKAS74733	China	–	–	KT990800	Wu et al. 2016	
Neoboletus sanguineodes	HKAS55440	China	–	–	KT112145	Wu et al. 2014	
Neoboletus sanguineodes	HKAS80823	China	–	–	KT990802	Wu et al. 2016	
Neoboletus tamentosus	HKAS7756	China	–	–	KT990806	Wu et al. 2016	
Neoboletus tamentosus	HKAS53369	China	–	–	KT112154	Wu et al. 2014	
Neoboletus sanguineodes	HKAS57489	China	–	–	KT112158	Wu et al. 2014	
Neoboletus sanguineodes	HKAS63355	China	–	–	KT990807	Wu et al. 2016	
Neoboletus sp.	HKAS76660	China	–	–	KT112180	Wu et al. 2014	
Octavia australisipata	KPM-NC-1782	Japan	KC552154	–	JN378430	Orihara et al.	
						2016, 2012	
Octavia australisperpera	AQUI3899	Italy	KC552159	–	KC552093	Orihara et al.	
						2016, 2016	
Octavia celatilifia	KPM-NC-1777	Japan	KC552147	–	JN378416	Orihara et al.	
						2016, 2012	
Octavia cyanecens	PNW-FUNGI-5603	USA	KC552160	–	JN378438	Orihara et al.	
						2016, 2012	
Octavia decipens	KPM-NC-1776	Japan	KC552145	–	JN378409	Orihara et al.	
						2016, 2012	
Octavia taimanica	MEL2128484	Australia	KC552157	–	JN378437	Orihara et al.	
						2016, 2012	
Octavia taimanica	MEL2341996	Australia	KC552156	–	JN378436	Orihara et al.	
						2016, 2012	
Octavia zelleri	MES270	USA	KC552161	–	JN378440	Orihara et al.	
						2016, 2012	
Pararexornis pseudoaquis	OR0155	China	MG212553	MH614865	MG212577	MG212639	
Phylloporus bellus	OR0473	China	MHS80778	MH614866	MHS80798	MHS80818	
Phylloporus brunniceps	OR0050	Thailand	KT823968	MH614867	KT824034	KT824001	
Phylloporus castanopidis	OR0052	Thailand	KT823969	MH614868	KT824035	KT824002	
Phylloporus imbricatus	HKAS68642	China	–	–	KT112299	KT112786	
Phylloporus luxentarios	HKAS57077	China	–	–	KT112298	KT112785	
Phylloporus maculatus	OR0285	China	MHS80780	–	MHS80800	MHS80820	
Phylloporus pelletieri	WU18746	Austria	MHS80781	MH614869	MHS80801	MHS80821	
Phylloporus palustris	OR1158	Thailand	MHS80783	MH614870	MHS80803	MHS80823	
Phylloporus rhodoxanthus	WU17978	USA	MHS80785	MH614871	MHS80805	MHS80824	
Phylloporus rubenoides	OR0251	China	MHS80786	MH614872	MHS80806	MHS80825	
Phylloporus rubiginosus	OR0169	China	MHS80788	MH614873	MHS80808	MHS80827	
Phylloporus sp.	OR0896	Thailand	MHS80790	MH614874	MHS80810	MHS80829	
Phylloporus subbacillisporus	OR0436	China	MHS80792	MH614875	MHS80812	MHS80831	
Phylloporus subrubroviolus	BC022	Thailand	MHS80793	MH614876	MHS80813	MHS80832	

This study
Species	Voucher	Origin	atp6	cox3	rpb2	Reference(s)
Phylloporus yunnanensis	OR0448	China	MG212554	MH614877*	MG212598	Vadhanarat et al. 2018; *This study
Porphyrellus castaneus	OR0241	China	MG212555	MH614878*	MG212599	Vadhanarat et al. 2018; *This study
Porphyrellus cf. nigroporphyra	ADK3733	Benin	MH614687	MH61479	MH614735	This study
Porphyrellus nigroporphyra	HKAS74938	China	–	–	KF112246	Wu et al. 2014
Porphyrellus porphyra	MB97 023	Germany	DQ534609	–	GU187794	Wu et al. 2016
Porphyrellus sp.	HKAS53366	China	–	–	KF112241	Wu et al. 2014
Porphyrellus sp.	JD659	Burundi	MH614688	MH614880	MH614736	This study
Porphyrellus sp.	OR0222	Thailand	MH614689	MH614881	MH614737	This study
Pulveroboletus aff. ravenelii	HKAS50203	China	–	–	KT990810	Wu et al. 2016
Pulveroboletus aff. ravenelii	ADK4360	Togo	KT823957	MH614882*	KT824023	Raspé et al. 2016; *This study
Pulveroboletus aff. ravenelii	ADK4650	Togo	KT823959	MH614883*	KT824025	Raspé et al. 2016; *This study
Pulveroboletus brunneopunctatus	HKAS52615	China	–	–	KT990813	Wu et al. 2016
Pulveroboletus brunneopunctatus	HKAS55369	China	–	–	KT990814	Wu et al. 2016
Pulveroboletus brunneopunctatus	HKAS74926	China	–	–	KT990815	Wu et al. 2016
Pulveroboletus fuscus	OR0873	Thailand	KT823977	MH614884*	KT824043	Raspé et al. 2016; *This study
Pulveroboletus macrosporus	HKAS57628	China	–	–	KT990812	Wu et al. 2016
Pulveroboletus ravenelii	REH2565	USA	KU656355	MH614885*	KU656357	*Raspé et al. 2016; *This study
Pulveroboletus sp.	HKAS4933	China	–	–	KF112262	Wu et al. 2014
Pulveroboletus sp.	HKAS57605	China	–	–	KF112264	Wu et al. 2014
Rhodactina aff. nigerrimus	OR0049	Thailand	KT823967	MH614886*	KT824033	Raspé et al. 2016; *This study
Rhodactina griseus	HKAS52680	China	–	–	KF112179	Wu et al. 2014
Rhodactina fuscus	HKAS59460	China	–	–	JQ282580	Hosen et al. 2013
Rhodactina fuscus	OR0231	China	MG212556	MH614887*	MG212600	Vadhanarat et al. 2018; *This study
Rhodactina fuscus	HKAS63624	China	–	–	KT990829	Wu et al. 2016
Rhodactina fuscus	HKAS74756	China	–	–	KT990830	Wu et al. 2016
Rhodactina grisea	MB03 079	USA	KT823964	MH614888*	KT824030	Raspé et al. 2016; *This study
Rhodactina grisea	HKAS65390	China	–	–	KF112178	Wu et al. 2014
Rhodactina kauffmannii	OR0278	China	MG212557	MH614889*	MG212601	Vadhanarat et al. 2018; *This study
Rhodactina nigerrimus	HKAS53418	China	–	–	KT990824	Wu et al. 2016
Rhodactina sinensis	HKAS59832	China	–	–	KT990827	Wu et al. 2016
Rhodactina angolensis	HKAS59609	China	–	–	JQ282582	Hosen et al. 2013
Rhodactina bimalayensis	CMU25117	Thailand	MG212558	–	MG212602, MG212605	Vadhanarat et al. 2018
Rhodactina rivulosa	SV170	Thailand	MG212560	–	MG212605	Vadhanarat et al. 2018
Rossbeevera cryptocephala	KPM-NC17843	Japan	KT581441	–	KC552072	Orihara et al. 2016
Rossbeevera cyanaeana	TNS-F-36986	Japan	KC552115	–	KC552068	Orihara et al. 2016
Rossbeevera griseoalutina	TNS-F-36989	Japan	KC552124	–	KC552076	Orihara et al. 2016
Rossbeevera pacificicus	KPM-NC23336	New Zealand	KJ001064	–	KF222912	Orihara et al. 2016
Rossbeevera vittatissima	OSC61484	Australia	KC552109	–	JN378446	Orihara et al. 2016, 2012
Ryosynaga reticulata	HKAS52253	China	–	–	KT990786	Wu et al. 2016
Ryosynaga rubina	HKAS53379	China	–	–	KF112274	Wu et al. 2014
Ruhroboletus latipes	HKAS80358	China	–	–	KP055020	Zhao et al. 2014b
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Species	Voucher	Origin	atp6	cox3	tef1	rpb2	Reference(s)
Rubroboletus legitiae	VDK030936	Belgium	KT823985	MH614890*	KT824051	KT824018	Raspé et al. 2016; *This study
Rubroboletus rhodoangiogenus	BOTH4263	USA	MG897416	MH614891*	MG897426	MG897436	Phookamsk et al. 2019; *This study
Rubroboletus rhodoanthus	HKAS84879	Germany	–	–	KT990831	KT990468	Wu et al. 2016
Rubroboletus satanas	VDK030968	Belgium	KT823986	MH614892*	KT824052	KT824019	Raspé et al. 2016; *This study
Rubroboletus sinicus	HKAS86620	China	–	–	KFI12146	KFI11261	Wu et al. 2014
Rubroboletus sinicus	HKAS56304	China	–	–	KF614983	KP955031	Zhao et al. 2014a; Zhao et al. 2014b
Rubroboletus sp.	HKAS86679	China	–	–	KF112147	KFI121662	Wu et al. 2014
Rugiboletus brunnescens	HKAS68586	China	–	–	KF112197	KFI121791	Wu et al. 2014
Rugiboletus brunnescens	HKAS83009	China	–	–	KM605146	KM605169	Wu et al. 2015
Rugiboletus brunnescens	HKAS83329	China	–	–	KM605144	KM605158	Wu et al. 2015
Rugiboletus extremiorientalis	HKAS76663	China	–	–	KM605147	KM605170	Wu et al. 2015
Rugiboletus extremiorientalis	OR0406	Thailand	MG212562	MH614893*	MG212607	MG212647	Vadhanarat et al. 2018; *This study
Singerocoma insindabili	TWH9199	Guyana	MH645588	MH645609	MH645596	LC043089*	*Henkel et al. 2016; This study
Singerocoma rubriflavus	TWH9585	Guyana	MH645589	MH645610	MH645597	–	This study
Spongiforma thailandica	DED7873	Thailand	MG212563	MH614894*	KF030436*	MG212648*	*Nuhn et al. 2013; Vadhanarat et al. 2018; **This study
Strobilomyces atrocauleanus	HKAS55368	China	–	–	KT990839	KT990476	Wu et al. 2016
Strobilomyces echinocephalus	OR0243	China	MG212564	–	MG212608	MG212649	Vadhanarat et al. 2018
Strobilomyces mirandus	OR0115	Thailand	KT823972	MH614896*	KT824058	KT824005	Raspé et al. 2016; *This study
Strobilomyces strobilaceus	MB03 102	USA	DQ534607*	–	AY883428	AY786065	*Binder and Hibbett 2006; Unpublished
Strobilomyces strobilaceus	RW103	Belgium	KT823978	MH614895*	KT824044	KT824011	Raspé et al. 2016; *This study
Strobilomyces verruculosus	HKAS55389	China	–	–	KFI12259	KFI12183	Wu et al. 2014
Strobilomyces sp.	OR0259	China	MG212565	MH614897*	MG212609	MG212650	Vadhanarat et al. 2018; *This study
Strobilomyces sp.	OR0319	Thailand	MH614690	MH614898	MH614738	MH614785	This study
Strobilomyces sp.	OR0778	Thailand	MG212566	MH614899*	MG212610	MG212651	Vadhanarat et al. 2018; *This study
Strobilomyces sp.	OR1092	Thailand	MH614691	MH614900	MH614739	MH614786	This study
Suillellus amygdalinus	112605ba	USA	–	–	JQ327024	–	Halling et al. 2012a
Suillellus luridus	VDK00241b	Belgium	KT823981	MH614901*	KT824047	KT824014	Raspé et al. 2016; *This study
Suillellus queleti	VDK01185	Belgium	MH645590	MH645611	MH645598	MH645604	This study
Suillellus subamygdalinus	HKAS57262	China	–	–	KFI12174	KFI12660	Wu et al. 2014
Suillellus subamygdalinus	HKAS53641	China	–	–	KT990841	KT990478	Wu et al. 2016
Suillellus subamygdalinus	HKAS74745	China	–	–	KT990843	KT990479	Wu et al. 2016
Sutorius aff. eacinus	HKAS52672	China	–	–	KFI12207	KFI12802	Wu et al. 2014
Sutorius aff. ecinus	HKAS56291	China	–	–	KFI12208	KFI12803	Wu et al. 2014
Sutorius austeraliensis	REPF9441	Australia	MG212567	MK386576*	JQ327032*	MG212652*	"Halling et al. 2012a; Vadhanarat et al. 2018; **This study
Sutorius ecinus	HKAS59657	China	–	–	KT990887	KT990505	Wu et al. 2016
Sutorius ecinus	REH9400	USA	MG212568	MH614902*	JQ327029*	MG212653	"Halling et al. 2012a; Vadhanarat et al. 2018; **This study
Sutorius ecinus	HKAS50420	China	–	–	KT990750	KT990387	Wu et al. 2016
Sutorius sp.	OR0378B	Thailand	MH614692	MH614903	MH614740	MH614787	This study
Sutorius sp.	OR0379	Thailand	MH614693	MH614904	MH614741	MH614788	This study
Species	Voucher	Origin	atp6	cox3	tef1	rp2	Reference(s)
--------------------------------------	-----------------	------------	------	------	------	-----	----------------------------
Trogia boletus glutinosus	HKAS53425	China	–	–	–	–	Wu et al. 2014
Trogia boletus reticulatus	HKAS53426	China	–	–	–	–	Wu et al. 2014
Trogia boletus sp.	HKAS76661	China	–	–	–	–	Wu et al. 2014
Turmalinea persicina	KPM-NC18001	Japan	KC552130	–	KC552082	–	Orihara et al. 2016
Turmalinea yunnanensis	KPM-NC18011	Japan	KC552138	–	KC552089	–	Orihara et al. 2016
Tylascomium grieaudi	HKAS50281	China	–	–	–	–	Wu et al. 2014
Tylasporus alpinus	HKAS55438	China	–	–	–	–	Wu et al. 2014
Tylasporus atriporporens	HKAS50208	China	–	–	–	–	Wu et al. 2014
Tylasporus balloni s.l.	OR00039	Thailand	KT823965	MH614905	KT824031	KT823998	Raspé et al. 2016; *This study
Tylasporus brunneirubens	HKAS53388	China	–	–	–	–	Wu et al. 2014
Tylasporus felleus	VDK00992	Belgium	KT823987	MH614906	KT824053	KT824020	Raspé et al. 2016; *This study
Tylasporus ferringineus	BOTJ34369	USA	MH614694	MH614907	MH614742	MH614789	This study
Tylasporus otsurii	HKAS53401	China	–	–	–	–	Wu et al. 2014
Tylasporus sp.	HKAS74925	China	–	–	–	–	Wu et al. 2014
Tylasporus sp.	HKAS50229	China	–	–	–	–	Wu et al. 2014
Tylasporus sp.	JD938	Gabon	MH614695	MH614908	MH614743	MH614790	This study
Tylasporus sp.	OR0252	China	MG212569	MH614909	MG212611	MG212654	Vedanthanar et al. 2018; *This study
Tylasporus sp.	OR0542	Thailand	MG213530	MH614910	MG212612	MG212655	Vedanthanar et al. 2018; *This study
Tylasporus sp.	OR0583	Thailand	MH614606	–	MH614744	–	This study
Tylasporus sp.	OR1009	Thailand	MH614607	MH614911	–	MH614791	This study
Tylasporus vinaceipallidus	HKAS50210	China	–	–	–	–	Wu et al. 2014
Tylasporus vinaceipallidus	OR0137	China	MG212571	MH614912	MG212613	MG212656	Vedanthanar et al. 2018; *This study
Tylasporus violaceobrunneus	HKAS89443	China	–	–	–	–	Wu et al. 2016
Tylasporus virens	KPM-NC-0018054	Japan	KC552174	–	KC552103	–	Unpublished
Veloporphyrellus alpinus	HKAS68301	China	JX984515	–	JX984550	–	Li et al. 2014b
Veloporphyrellus concius	REH8510	Belize	MH614698	MH614913	MH614745	MH614792	This study
Veloporphyrellus gniclioides	HKAS55900	China	–	–	–	–	Wu et al. 2014
Veloporphyrellus pseudorelatius	HKAS94444	China	JX984519	–	JX984553	–	Li et al. 2014b
Veloporphyrellus relatus	HKAS63668	China	JX984523	–	JX984554	–	Li et al. 2014b
Xanthoconium affine	NY00015399	USA	–	–	–	–	Wu et al. 2016
Xanthoconium porphyllum	HKAS90217	China	–	–	–	–	Wu et al. 2016
Xanthoconium sp.	HKAS7651	China	–	–	–	–	Wu et al. 2016
Xerocomellus chrysenteron	VDK00821	Belgium	KT823984	MH614914	KT824050	KT824017	Raspé et al. 2016; *This study
Xerocomellus ciliaripes	ADK51843	Belgium	KT823960	MH614915	KT824026	KT823993	Raspé et al. 2016; *This study
Xerocomellus communi	HKAS94067	China	–	–	–	–	Wu et al. 2016
Xerocomellus corni	HKAS90206	Philippines	–	–	–	–	Wu et al. 2016
Xerocomellus poroportus	VDK003011	Belgium	MH614678	MH614846	MH614727	MH614773	This study
Xerocomellus ripariellus	VDK00404	Belgium	MH614697	MH614916	MH614746	MH614793	This study
Xerocomellus sp.	HKAS56311	China	–	–	–	–	Wu et al. 2014
Xerocomus aff. macrobius	HKAS56280	China	–	–	–	–	Wu et al. 2014
Xerocomus fulvipes	HKAS76666	China	–	–	–	–	Wu et al. 2014
Xerocomus magnipes	HKAS58000	China	–	–	–	–	Wu et al. 2014
Xerocomus s.s.	OR0237	China	MHS80796	–	MHS80816	MHS80835	Chuannd et al. 2019
Xerocomus s.s.	OR0443	China	MHS80797	MH614917	MHS80817	MHS80836	Chuannd et al. 2019; *This study
Xerocomus sp.	OR0053	Thailand	MH614975	MH614918	MHS80815	MHS80834	Chuannd et al. 2019; *This study
Xerocomus subrmoentouls	VDK00987	Belgium	MG212572	MH614919	MG212614	MG212657	Vedanthanar et al. 2018; *This study
Zangia cirtina	HKAS52684	China	HQ326850	–	HQ326872	–	Li et al. 2011
Zangia olivacea	HKAS5445	China	HQ326854	–	HQ326873	–	Li et al. 2011
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Species	Voucher	Origin	Reference(s)
Zangia olivaceobrunnea	HKAS52272	China	HQ326857–HQ326876–Li et al. 2011
Zangia roseola	HKAS51137	China	HQ326858–HQ326877–Li et al. 2011
Zangia roseola	HKAS75046	China	KF112269–KF112791–Wu et al. 2014

Figure 1. Phylogenetic tree inferred from the four-gene dataset (atp6, cox3, rpb2 and tef1), including Cacaoporus species and selected Boletaceae using Maximum Likelihood and Bayesian Inference methods (ML tree is presented). The two Buchwaldoboletus and nine Chalciporus species in subfamily Chalciporoideae were used as outgroup. Most of the taxa not belonging to the Pulveroboletus group were collapsed into subfamilies. All genera clades in Pulveroboletus group that were highly supported were also collapsed. Bootstrap support values (BS ≥ 70%) and posterior probabilities (PP ≥ 0.90) are shown above the supported branches.

Zhu L. Yang, *S. obscureumbrinus* (Hongo) G. Wu & Zhu L. Yang, *S. rubriporus* G. Wu & Zhu L. Yang, *S. sanguineoides* G. Wu & Zhu L. Yang, *S. sanguineus* G. Wu & Zhu L. Yang, *S. tomentulosus* (M. Zang, W.P. Liu & M.R. Hu) G. Wu & Zhu L. Yang and
S. venenatus (Nagas.) G. Wu & Zhu L. Yang clustered in the Neoboletus clade with high support (85% BS and 0.95 PP), while the true Sutorius, including the typus generis S. eximius (Peck) Halling, Nuhn & Osmundson, formed a different well-supported clade (BS=100% and PP=1).

Taxonomy

Cacaoporus Raspé & Vadthanarat, gen. nov.
MycoBank: MB829655

Etymology. Refers to the dark, chocolate brown hymenophore and overall colour of basidiomata.

Diagnosis. Similar to the genus *Sutorius* in having brown basidiomata with brown encrustations in the flesh but differs from *Sutorius* in having the following combination of characters: brown to chocolate brown or greyish-brown to dark brown or blackish-brown basidiomata, without violet tinge, chocolate brown to dark brown hymenophore, tubes not separable from the pileus context, white to off-white basal mycelium which turns reddish-white to pale red when bruised, amygdaliform to ovoid with subacute apex in side view to ovoid basidiospores and dark brown spore deposit.

Description. Basidiomata stipitate-pileate with poroid hymenophore, small to medium-sized, dull, brown to greyish-brown to dark brown or blackish-brown. Pileus convex when young becoming plano-convex to slightly depressed with age, with deflexed to inflexed margin; surface even to subrugulose, minutely tomentose or slightly cracked at the centre; context soft, yellowish to greyish off-white then slightly greyish-orange to dull orange to greyish-brown when exposed to the air, patchy or marmorated with greyish-brown to dark brown, sometimes with scattered small dark brown to brownish-black encrustations, not or inconsistently reddening when cut. Hymenophore tubulate, adnate, subventricose to ventricose, slightly depressed around the stipe; tubes brown to greyish-brown to dark brown, not separable from the pileus context; pores regularly arranged, mostly roundish at first becoming slightly angular with age, sometimes irregular, elongated around the stipe, dark brown to greyish-brown at first, becoming brown to chocolate brown with age. Stipe central, terete to sometimes slightly compressed, cylindrical to sometimes slightly wider at the base; surface even, minutely tomentose, dull, dark brown to greyish-brown, basal mycelium white to off-white becoming reddish-white to pale red when touched; context solid, yellowish to orange white to yellowish-grey to pale orange to dull orange to reddish-grey, marmorated or virgated with brownish-grey to greyish-brown to dark brown, sometimes scattered with small reddish-brown to brownish-black fine encrustations, unchanged or inconsistently reddening when cut. Spore print dark brown.

Basidiospores amygdaliform to ovoid or ovoid with subacute apex in side view, thin-walled, smooth, slightly reddish to brownish hyaline in water, slightly yellowish to greenish hyaline in KOH or NH₄OH, inamylloid. **Basidia** 4-spored, clavate to nar-
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

rowly clavate without basal clamp connection. *Cheilocystidia* fusiform or cylindrical with obtuse apex, sometimes bent or sinuate, thin-walled, often scattered with small brownish-yellow to yellowish-brown crystals on the walls in KOH or NH₄OH. *Pleurocystidia* narrowly fusiform with obtuse apex or cylindrical to narrowly subclavate, sometimes bent or sinuate, thin-walled, densely covered with small reddish-brown to brownish dark encrustations on the walls when observed in H₂O, which are discoloured then dissolved in KOH or NH₄OH. *Pileipellis* a trichoderm becoming tangled trichoderm to tomentum, composed of thin-walled hyphae; terminal cells mostly slightly sinuate cylindrical to irregular with rounded apex or clavate to elongated clavate. *Stipitipellis* a trichoderm to tangled trichoderm or disrupted hymeniderm, composed of loosely to moderately interwoven cylindrical hyphae anastomosing at places. *Clamp connections* not seen in any tissue.

Typus generis. Cacaoporus tenebrosus

Distribution. Currently known from Thailand.

Notes. *Sutorius* most closely resembles the new genus. In the field, *Cacaoporus* is easily distinguished from the *Sutorius* by the following combination of characters: chocolate brown to dark brown to blackish-brown basidiomata, which are darker than in *Sutorius* and never purplish-brown like in *Sutorius* species; chocolate brown to dark brown hymenophore, which is much darker than in *Sutorius* and never reddish- to purplish-brown like in *Sutorius*; tubes that are not separable from the pileus context but can be separated in *Sutorius*; off-white basal mycelium that more or less turns red when bruised, which is never the case in *Sutorius*.

Cacaoporus pallidicarneus Vadthanarat, Raspé & Lumyong, sp. nov.

MycoBank: MB829657
Figs. 2a, 3a, 4a and 5

Etymology. Refers to the context, which is paler than in the other species, especially at the stipe base and in the pileus.

Type. THAILAND, Chiang Mai Province, Mae On District, 18°52′37″N, 99°18′23″E, elev. 860 m, 15 August 2015, Santhiti Vadthanarat, SV0221 (CMUB!, isotype BR!).

Diagnosis. *Cacaoporus pallidicarneus* is characterised by having a paler context than the other species and basidiospores that are amygdaliform or elongated amygdaliform to ovoid in side view, sometimes with subacute apex, shorter basidia and fusiform to narrowly bent fusiform to narrowly fusiform hymenophoral cystidia.

Description. *Basidiomata* small to medium-sized. *Pileus* (1.6)2.4–5.5 cm in diameter, convex when young becoming plano-convex with age; margin deflexed to inflexed, slightly exceeding (1–2 mm), surface even to subrugulose, minutely tomentose, dull, at first brown to greyish-brown to blackish-brown (8F3–4) sometimes paler (8C2) at places, becoming paler to greyish-brown (8E3–5) with age; *context* 4–9 mm thick half-way to the margin, soft, yellowish to greyish off-white then slightly
Figure 2. Habit of *Cacaoporus* species. a *C. pallidicarneus* (SV0221) b–d *C. tenebrosus* (b - SV0223, c - SV0224, d - SV0422). Scale bars: 1 cm (a–d).

Figure 3. Close-ups of hymenium/pileus context transition zone in *Cacaoporus* species, illustrating the non-separability of both tissues a *C. pallidicarneus* (OR0681) b *C. tenebrosus* (OR0654) c *C. tenebrosus* (SV0452). The transition between both tissues is particularly unmarked in *C. pallidicarneus* (a). Scale bars: 3 mm (a); 5 mm (b–c).

Pale orange to greyish-orange (6A3 to 6B3) when exposed to the air, with patchy or marmorated with greyish-brown (8E3) especially when young, scattered with reddish-brown to brownish-black of fine encrustations at places, slightly reddening when cut. **Stipe** central, terete or sometimes slightly compressed, cylindrical with slightly wider base, (2.0)2.8–3.7 × 0.4–0.7 cm, surface even, minutely tomentose, dull, greyish-brown to dark brown (8 E/F 3–4 to 8F2), basal mycelium white to off-white becoming pale red (7A3) when bruised; **context** solid, yellowish to greyish off-
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

white then orange white to pale orange (5A2–3) when exposed to the air, virgate to marmorate with brownish-grey (8F2), less so at the stipe base, at places scattered with brownish-black fine encrustations, unchanged to slowly slightly reddening when cut. **Hymenophore** tubulate, adnate, subventricose, slightly depressed around the stipe. **Tubes** (2)4–6 mm long half-way to the margin, brown to greyish-brown (8F3), not separable from the pileus context. **Pores** 0.4–1.5 mm wide at mid-radius, regularly arranged, mostly roundish to elliptical at first, becoming slightly angular with age, slightly elongated around the stipe, colour distribution even, dark brown to chocolate brown (9F4 to 10F3) at first, becoming chocolate brown to brown (10F4 to 7–8F4–5) with age. **Odour** rubbery. **Taste** slightly bitter at first, then mild. **Spore print** dark brown (8F4/5) in mass.

Macrochemical reactions. KOH, orange brown on cap, yellowish-black on stipe, yellowish-black on the pileus context and stipe context, brownish-black on hymenium; NH₄OH, yellowish-brown on cap, yellowish-orange on stipe, orangey yellow to yellowish-orange on the pileus context, stipe context and hymenium.

Basidiospores [437/7/5] (6.5–)6.7–7.7–8.6(–11.5) × (3.8–)4–4.6–5.1(–5.5) µm

\[Q = (1.4–)1.48–1.68–1.9(–2.44). \]

From the type (3 basidiomata, \(N = 177 \)) (6.8–7–7.8–8.5(–9.1) × (4–)4.2–4.6–5(–5) µm, \(Q = (1.49–)1.5–1.69–1.9(–2.21), \) amygdaliform or elongated amygdaliform sometimes to ovoid with subacute apex in side view, ovoid in front view, thin-walled, smooth, slightly reddish to brownish hyaline in water, slightly yellowish to greenish hyaline in KOH or NH₄OH, inamyloid. **Basidia** 4-spored, (25.3–)25.4–29.7–33.8(–33.8) × (7.3–)7.3–8.4–9.8(–10) µm, clavate without basal clamp connection, slightly yellowish to brownish hyaline in KOH or NH₄OH; sterigmata up to 5 µm long. **Cheilocystidia** (16–)16.3–23.4–32.8(–34) × (5.5–)5.8–7.3–9(–9) µm, frequent, fusiform, thin-walled, yellowish to brownish hyaline to brown in KOH or NH₄OH. **Pleurocystidia** (44–)44.2–54.7–67.6(–68) × (5–)5–6–7(–7) µm, frequent, usually narrowly bent fusiform to narrowly fusiform with obtuse apex, thin-walled, yellowish to brownish hyaline in KOH or NH₄OH. **Hymenophoral trama** subdvergent to divergent, 62–175 µm wide, with 25–100 µm wide, regular to subregular mediostratum, composed of cylindrical, 4–7(11) µm wide.
Figure 5. Microscopic features of *Cacaoporus pallidicarneus* a basidiospores b basidia c cheilocystidia d pleurocystidia e caulocystidia f pileipellis g stipitpellis. Scale bars: 10 µm (a–b); 25 µm (c–e); 50 µm (f–g). All drawings were made from the type (SV0221).
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

hyphae, yellowish to brownish hyaline in KOH or NH₄OH. **Pileipellis** a trichoderm to tangled trichoderm at first, becoming a tomentum to tangled trichoderm with age, 65–110 µm thick, composed of firmly to moderately interwoven thin-walled hyphae; terminal cells 12–55 × 4–6 µm, slightly bent cylindrical with rounded apex, at places clavate to sub-clavate to elongated clavate, 16–34 × 8–10 µm, slightly dark to reddish to brownish in water, yellowish to brownish hyaline to yellowish-brown to slightly dark at places in KOH or NH₄OH. **Pileus context** made of moderately interwoven, thin-walled, hyaline hyphae, 6–12 µm wide. **Stipitipellis** a disrupted hymeniderm, 55–95 µm thick, composed of clavate cells, 11–37 × 5–8 µm, yellowish-brown to slightly dark in KOH or NH₄OH mixed with caulocystidia. **Caulocystidia** (17–)17–23.6–31(–31) × (5–)5–6.3–7(–7) µm, frequent, thin-walled, mostly yellowish-brown to slightly dark at places in KOH or NH₄OH. **Stipe context** composed of parallel, 3–7 µm wide hyphae, brownish hyaline to yellowish pale brown in KOH or NH₄OH. **Clamp connections** not seen in any tissue.

Habitat and Distribution. solitary to gregarious up to 4 basidiomata, on soil in hill evergreen forest dominated by Fagaceae trees, with a few *Dipterocarpus* spp. and *Shorea* spp. or in Dipterocarp forest dominated by *Dipterocarpus* spp. and *Shorea* spp. with a few *Lithocarpus* sp., *Castanopsis* sp. and *Quercus* sp. Currently known only from Chiang Mai Province, Northern Thailand.

Additional specimens examined. THAILAND, Chiang Mai Province, Mae Taeng District, 23 km marker (Ban Tapa), 19°08′50″N, 98°46′50″E, elev. 930 m, 2 August 2013, Olivier Raspé & Anan Thawthong, OR0681; Ban Mae Sae, 19°14′70″N, 98°38′70″E, elev. 960 m, 3 August 2013, Olivier Raspé & Anan Thawthong, OR0683; Muang District, Doi Suthep-Pui National Park, 18°48′37″N, 98°53′33″E, elev. 1460 m, 14 July 2016, Olivier Raspé, OR1306; Mae On District, 18°52′35″N, 99°18′16″E, elev. 860 m, 6 June 2018, Santhiti Vadthanarat, SV0451.

Remarks. We observed some small yellowish to reddish to brownish dark particles or crystals covering the cell walls in pileipellis, stipitipellis and on the hymenium, especially the cystidia and basidia when observed in water. The small particles or crystals were mostly dissolved in KOH.

Cacaoporus pallidicarneus differs from *C. tenebrosus* by its basidiomata context colour which is paler, especially at the stipe base. A combination of the following characters are also distinctive: spore shape which is amygdaliform or elongated amygdaliform or sometimes ovoid with subacute apex in side view and ovoid in front view, while *C. tenebrosus* has ovoid spores, shorter basidia and differently shaped hymenophoral cystidia (see note under *C. tenebrosus*). *Cacaoporus pallidicarneus* has a stipitipellis which is a disrupted hymeniderm composed of caulocystidia and clavate cells, while the other species has a loose trichoderm or tangled trichoderm. Interestingly, one collection (SV0402) had a slightly paler context than *C. tenebrosus* but not as pale as *C. pallidicarneus*. The phylogenetic analyses indicated that this collection might be a species different from *C. pallidicarneus* and *C. tenebrosus*. However, the specimen was immature and, therefore, more collections are needed before the species can be formally recognised.
Cacaoporus tenebrosus Vadthanarat, Raspé & Lumyong, sp. nov.
MycoBank: MB829656
Figs. 2b–d, 3b–c, 4b and 6

Etymology. Refers to the overall darkness of basidiomata, including the context.

Type. THAILAND, Chiang Mai Province, Mae On District, 18°52’37”N, 99°18’32”E, elev. 940 m, 15 August 2015, *Santhiti Vadthanarat*, SV0223 (holotype CMUB!, isotype BR!).

Diagnosis. *Cacaoporus tenebrosus* is characterised by having a darker context than the other species, longer basidia and cylindrical to narrowly subclavate hymenophoral cystidia.

Description. *Basidiomata* medium-sized. *Pileus* (2.3)3.1–5(9) cm in diameter, convex when young becoming plano-convex to slightly depressed with age; margin inflexed to deflexed, slightly exceeding (1–2 mm); surface even to subrugulose, minutely tomentose, slightly cracked at the centre, dull, greyish-brown (10F3) to dark brown to blackish-brown (8F4–5) to the margin; *context* 5–10 mm thick half-way to the margin, soft, marmorated, greyish-brown to dark brown (10F3–5) with greyish-brown (9B/D3), scattered with reddish-brown to brownish-black, fine encrustations at places, slightly reddening in paler spots when cut. *Stipe* central, terete, cylindrical to sometimes with slightly wider base, 4.3–7.0 × 0.7–1.4 cm, surface even, minutely tomentose, dull, dark brown to greyish-brown (9F4 to 10F3), basal mycelium white to off-white becoming reddish-white to pale red (7A3–4) when bruised; *context* solid, greyish-brown to dark brown (9–10F3–5) marmorated with reddish-grey (7/10B2), usually scattered with small reddish-brown to brownish-black fine encrustations, slightly reddening when cut. *Hymenophore* tubulate, adnate, subventricose to ventricose, slightly depressed around the stipe. *Tubes* (4)7–13 mm long half-way to the margin, brown to dark brown (8F3 to 9F4), not separable from the pileus context. *Pores* 0.8–2 mm wide at mid-radius, regularly arranged, mostly roundish at first, becoming slightly angular with age, sometime irregular, elongated around the stipe; colour distribution even, greyish-brown to dark brown (9F4) at first, becoming chocolate brown to brown (10F3 to 7–8F4–5) with age. *Odour* mild fungoid. *Taste* slightly bitter at first, then mild. *Spore print* dark brown (8/9F4) in mass.

Macrochemical reactions. KOH, yellowish then brown to black on cap, stipe, pileus context, stipe context and hymenium; NH₄OH, yellowish then orange to brown on cap, stipe, pileus context, stipe context and hymenium.

Basidiospores [290/8/6] (7.4–)7.7–8.4–9.2(–10) × (4.5–)5–5.3–5.7(–6.1) µm \(Q = (1.25–)1.44–1.57–1.77(–2) \). From the type (2 basidiomata, \(N = 134 \)) (7.5–)7.7–8.2–9(–9.9) × (4.9–)5–5.4–5.7(–5.9) µm, \(Q = (1.41–)1.43–1.54–1.71(–1.9) \), ovoid, thin-walled, smooth, slightly reddish to brownish hyaline in water, slightly yellowish to greenish hyaline in KOH or NH₄OH, inamyloid. **Basidia** 4-spored, (33.6–)34.3–38.8–45.8(–47) × (7.7–)7.8–9.5–10.8(–10.9) µm, clavate to narrowly clavate without basal clamp connection, yellowish to brownish hyaline to slightly dark in KOH or NH₄OH; sterigmata up to 5 µm long. **Cheilocystidia** (22–)22.1–28.7–37(–37) × (3–
Figure 6. Microscopic features of *Cacaoporus tenebrosus* **a** basidiospores **b** basidia **c** cheilocystidia **d** pleurocystidia **e** caulocystidia **f** pileipellis **g** stipitipellis. Scale bars: 10 µm (**a–b**); 25 µm (**c–e**); 50 µm (**f–g**). All drawings were made from the type (SV0223).
3.1–4.4–5(–5) µm, frequent, cylindrical with obtuse apex, sometimes bent or sinuate, thin-walled, yellowish-brown to dark brown in KOH or NH₄OH, often scattered with small brownish-yellow to yellowish-brown crystals on the walls in KOH or NH₄OH. **Pleurocystidia** (62–)62.5–81.5–99(–99) × (7–)7–8–9(–9) µm, frequent, cylindrical to narrowly subclavate, sometimes bent or sinuate, thin-walled, with yellowish-brown to slightly dark content in KOH or NH₄OH, densely covered with small reddish-brown to brownish dark encrustations on the walls when observed in H₂O, with some scattered small brownish-yellow to yellowish-brown crystals on the walls in KOH or NH₄OH. **Hymenophoral trama** subdivergent to divergent, 80–170 µm wide, with 60–80 µm wide of subregular mediostratum, composed of cylindrical, 4–8(11) µm wide hyphae, slightly yellowish to brownish hyaline in KOH or NH₄OH. **Pileipellis** a tangled trichoderm to tomentum at places, 70–110 µm thick, composed of moderately interwoven thin-walled hyphae; terminal cells 12–48 × 4–7 µm mostly slightly sinuate, cylindrical to irregular with rounded apex, at places clavate to elongated clavate terminal cells 18–33 × 7–9 µm, slightly dark to reddish to brownish dark in water, yellowish-brown to slightly dark in KOH or NH₄OH, scattered with small brownish-yellow to yellowish-brown crystals on the walls in KOH or NH₄OH. **Pileus context** made of moderately interwoven, thin-walled, hyaline hyphae, 7–12 µm wide. **Stipitipellis** a trichoderm to tangled trichoderm, 70–120 µm thick, composed of loosely to moderately interwoven cylindrical hyphae anastomosing at places, brownish dark to dark in KOH or NH₄OH. **Caulocystidia** (17–)17.6–29.4–46.3(–47) × (4–)4.1–5.5–6.9(–7) µm, clavate to cylindrical with obtuse apex, thin-walled, yellowish to brownish dark in KOH or NH₄OH. **Stipe context** composed of parallel, 4–6(12) µm wide hyphae, brownish hyaline to yellowish pale brown in KOH or NH₄OH. ** Clamp connections** not seen in any tissue.

Habitat and distribution. Gregarious (up to 9 basidiomata) to fasciculate or solitary, on soil in hill evergreen forest dominated by Fagaceae trees, with a few Dipterocarpus spp. and Shorea spp. or in Dipterocarp forest dominated by Dipterocarpus spp., Shorea spp. with a few Lithocarpus sp., Castanopsis sp. and Quercus sp. Currently known only from Chiang Mai Province, Northern Thailand.

Additional specimens examined. THAILAND, Chiang Mai Province, Mae Taeng District, 19°07'15"N, 98°43'55"E, elev. 910 m, 29 July 2013, Olivier Raspé & Benjarong Thongbai, OR0654; ibid. 19°7'29"N, 98°40'59"E, elev. 1010 m, 24 May 2018, Santhiti Vadthanarat, SV0422; Mae On District, 18°52'37"N, 99°18'19"E, elev. 850 m, 15 August 2015, Santhiti Vadthanarat, SV0224; ibid., 18°52'35"N, 99°18'16"E, elev. 860 m, 15 July 2017, Olivier Raspé, OR1435; ibid., 6 June 2018, Santhiti Vadthanarat, SV0452.

Remarks. There were many small yellowish to reddish to dark brown particles or crystals on the walls of pileipellis, stipitipellis and hymenium cells, especially on the cystidia and basidia when observed in water. The small particles or crystals are somewhat dissolved and discoloured in KOH.

Microscopically, *Cacaoporus tenebrosus* differs from *C. pallidicarneus* by having a darker context, longer basidia (33.6–47 µm vs. 25.3–33.8 µm, respectively), longer and larger...
hymenophoral cystidia, which also differ in shape (cylindrical to narrowly subclavate in *C. tenebrosus* but fusiform to narrowly fusiform in *C. pallidicarneus*). Phylogenetically, all *Cacaoporus* collections with a dark context formed a clade sister to *C. pallidicarneus* (BS = 85% and PP = 0.88), but some (SV0224 and SV0422) were genetically somewhat distant from the other collections. However, we could not find any difference in morphology. Consequently, we consider them as the same species (*C. tenebrosus*). Study of more collections is needed to confirm or infirm that they belong to the same species.

Discussion

Morphologically, *Cacaoporus* is most similar to *Sutorius*, with which it shares the overall brown colour of basidiomata and encrustations in the flesh. However, the genus *Cacaoporus* has darker basidiomata, especially the hymenophore and pore surface and is more chocolate brown, not reddish-brown or purplish-brown like *Sutorius*, tubes that are not separable from the pileus context whereas they are easily separable in *Sutorius*, white to off-white basal mycelium which becomes reddish when bruised, whereas in *Sutorius*, the basal mycelium is more or less white and unchanging. *Cacaoporus* also produces dark brown spore deposits whereas in *Sutorius*, spore deposits are reddish-brown (Halling et al. 2012). Microscopically, the two genera differ in the shape of basidiospores, which is amygdaliform to ovoid or ovoid with subacute apex in side view in *Cacaoporus*, whereas *Sutorius* produces narrowly ellipsoid to ellipsoid or subfusoid to fusoid basidiospores. Phylogenetically, *Cacaoporus* and *Sutorius* are not closely related - the two genera belong in two different clades of the *Pulveroboletus* group.

Some species in *Porphyrellus* E.-J. Gilbert also have brown to dark brown to umber basidiomata similar to *Cacaoporus*. However, *Porphyrellus* differs from the new genus in having white to greyish-white hymenophore when young, becoming greyish-pink to blackish-pink with age, white to pallid context in pileus and stipe variably staining blue and/or reddish when cut and white basal mycelium that does not turn red when bruised (Wolfe 1979; Wu et al. 2016). Some species in *Strobilomyces* Berk also share some characters with *Cacaoporus*, including dark brown basidiomata, white to off-white basal mycelium that turns red when bruised and the context turning red when cut. However, *Strobilomyces* species clearly differ from *Cacaoporus*, especially in the pileus surface, which is coarsely fibrillose or shows conical to patch-like scales, in the hymenophore, which is whitish-cream or greyish-brown or vinaceous drab and stains reddish then blackish when bruised and also basidiospores, which are subglobose to obtusely ellipsoid with reticulation or longitudinally striate (Gelardi et al. 2012; Antonín et al. 2015; Wu et al. 2016). Moreover, *Porphyrellus* and *Strobilomyces* were phylogenetically inferred to belong in subfamily Boletoideae (Wu et al. 2014, 2016; Vadthanarat et al. 2018) distinct from *Cacaoporus*.

Phylogenetically, *Cacaoporus* was monophyletic and clustered in a well-supported clade with the genera *Cyanoboletus* and *Cupreoboletus* and one undescribed taxon, *Boletus* p.p. sp. (specimen voucher JD0693), belonging to the *Pulveroboletus* group.
of Wu et al. (2014, 2016). *Cyanoboletus* and *Cupreoboletus*, however, differ from *Cacaoporus* in important morphological characters. The former two genera have a yellow hymenophore and yellowish context and tissues instantly discoloring dark blue when injured, and olive-brown spore deposits (Gelardi et al. 2014, 2015; Wu et al. 2016). The undescribed taxon represented by the voucher specimen JD0693, which clustered within the same clade as *Cacaoporus*, *Cyanoboletus* and *Cupreoboletus*, is also morphologically very different from *Cacaoporus*, in having yellow tubes, reddish pores, pale yellow to off-white context and reddish-brown pileus and stipe.

Our survey on the diversity of Boletes in the north of Thailand has been conducted since 2012 and no *Cacaoporus* has been found in the forests at elevations lower than 850 m. *Cacaoporus* was found only between 850 m and 1460 m elevation. However, more collections are needed to confirm that the distribution of the genus is restricted to mid- to high-elevation forests and does not occur in the lower elevation, drier forests. Most collections were made from Fagaceae-dominated, evergreen hill forests. The dominant trees in these forests belong to the Fagaceae, including *Lithocarpus*, *Castanopsis* and *Quercus*, but some Dipterocarpaceae may also occur. At the lower end of its elevation range, however, *Cacaoporus* was also found in Dipterocarpaceae-dominated forests (in which Fagaceae, especially *Quercus* spp., also occurs). The Dipterocarpaceae trees include *Dipterocarpus*, namely *D. tuberculatus*, *D. obtusifolius* and *Shorea*, namely *S. obtusa* and *S. siamensis*. The listed trees have previously been reported as ectomycorrhizal hosts of Boletaceae (Moser et al. 2009; Desjardin et al. 2009, 2011; Hosen et al. 2013; Arora and Frank 2014; Halling et al. 2014; Wu et al. 2018) and presumably are also the hosts for *Cacaoporus*.

Interestingly, our phylogeny indicated that the genera *Neoboletus* and *Sutorius* formed two different clades, both with high support (BS = 85% and PP = 0.95 for *Neoboletus*; BS = 100% and PP = 1 for *Sutorius*). Recently, Wu et al. (2016) synonymised *Neoboletus* with *Sutorius* because, in their phylogeny based on a four-gene dataset (28S+*tef1+rpb1+rpb2*), *Boletus obscureumbrinus*, a species morphologically more similar to *Neoboletus* than to *Sutorius*, seemed to cluster with *Sutorius* rather than with the *Neoboletus* species, although with neither ML nor BI support. Moreover, the *Neoboletus* clade was not supported either. Later, Chai et al. (2019) treated the two genera as different genetic lineages based on morphology and phylogeny (28S+ITS+*tef1+rpb2*), in which *B. obscureumbrinus* clustered with the other *Neoboletus* species in a well-supported clade. Our phylogenetic analyses, based on a different set of genes (*atp6+tef1+rpb2+cox3*), confirm the separation of the two genera *Neoboletus* and *Sutorius*. The differences in gene trees obtained could be explained by a long-branch attraction artefact in datasets with different taxon and gene samplings and/or problems in the dataset (e.g. suboptimal alignment). *Neoboletus obscureumbrinus* is quite atypical amongst *Neoboletus* species and its phylogenetic affinities within this genus remain unclear (Fig. 7).

Cacaoporus is the second novel bolete genus described from Thailand, the first one being *Spongiforma* Desjardin, Manfr. Binder, Roekring & Flegel, described in 2009 (Desjardin et al.). However, fungal diversity in Thailand is high and still poorly known (Hyde et al. 2018), with a large number of species and possibly genera that remain to be described.
Figure 7. Sub-tree of the phylogram in Fig. 1, showing the well-supported Sutorius and Neoboletus clades and the unsupported sister relationship of Neoboletus obscureumbrinus.
Acknowledgements

Financial support from the Graduate School, Chiang Mai University, is appreciated. The work was partly supported by a TRF Research Team Association Grant (RTA5880006) to SL and OR. OR is grateful to the Fonds National de la Recherche Scientifique (Belgium) for travel grants. The authors are grateful for the permit number 0907.4/4769 granted by the Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment for collecting in Doi Suthep-Pui National Park. Beatriz Ortiz-Santana (CFMR), Roy E. Halling (NY), and Terry W. Henkel are gratefully acknowledged for the loan of specimens.

References

Antonín V, Vizzini A, Ercole E, Leonardi M (2015) Strobilomyces pteroreticulosporus (Boletales), a new species of the S. strobilaceus complex from the Republic of Korea and remarks on the variability of S. confusus. Phytotaxa 219(1): 78–86. https://doi.org/10.11646/phytotaxa.219.1.6

Arora D, Frank JL (2014) Clarifying the butter Boletes: a new genus, Butyriboletus, is established to accommodate Boletus sect. Appendiculati, and six new species are described. Mycologia 106(3): 464–480. https://doi.org/10.3852/13-052

Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98: 971–981. https://doi.org/10.1080/15572536.2006.11832626

Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticariales ord. nov. and Jaa- piales ord. nov.: early diverging clades of agaricomycetidae dominated by corticioid forms. Mycologia 102: 865–880. https://doi.org/10.3852/09-288

Chai H, Xue R, Jiang S, Luo SH, Wang Y, Wu LL, Tang LP, Chen Y, Hong D, Liang ZQ, Zeng NK (2019) New and noteworthy boletes from subtropical and tropical China. MycoKeys 46: 55–96. https://doi.org/10.3897/mycokeys.46.31470

Chuankid B, Vadthanarat S, Hyde KD, Thongklang N, Zhao R, Lumyong S, Raspé O (2019) Three new Phylloporus species from tropical China and Thailand. Mycological Progress 18: 603–614. https://doi.org/10.1007/s11557-019-01474-6

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109

Desjardin DE, Binder M, Roekring S, Flegel T (2009) Spongiforma, a new genus of gasteroid boletes from Thailand. Fungal Diversity 37: 1–8.

Desjardin DE, Peay KG, Bruns TD (2011) Spongiforma squarepantsii, a new species of gasteroid bolete from Borneo. Mycologia 103(5): 1119–1123. https://doi.org/10.3852/10-433

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus, 12: 13–15. https://doi.org/10.2307/2419362

Gelardi M, Vizzini A, Ercole E, Voyron S, Wu G, Liu XZ (2012) Strobilomyces echinocephalus sp. nov. (Boletales) from southwestern China, and a key to the genus Strobilomyces worldwide. Mycological Progress 12: 575–588. https://doi.org/10.1007/s11557-012-0865-3
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Gelardi M, Simonini G, Ercole E, Vizzini A (2014) Alessioporus and Pulchroboletus gen. nov. (Boletaceae, Boletineae), two novel genera to accommodate Xerocomus ichnusanus and X. roseoalbidus from European Mediterranean basin: molecular and morphological evidence. Mycologia 106(6): 1168–1187. https://doi.org/10.3852/14-042

Gelardi M, Simonini G, Ercole E, Davoli P, Vizzini A (2015) Cupreoboletus (Boletaceae, Boletineae), a new monotypic genus segregated from Boletus sect. Luridi to reassign the Mediterranean species B. poikilochromus. Mycologia 107(6): 1254–1269. https://doi.org/10.3852/15-070

Halling RE, Desjardin DE, Fechner N, Arora D, Soytong K, Dentinger BTM (2014) New porcini (Boletus sect. Boletus) from Australia and Thailand. Mycologia 106: 830–834. https://doi.org/10.3852/13-340

Halling RE, Nuhn M, Fechner NA, Osmundson TW, Soytong K, Arora D, Hibbett DS, Binder M (2012a) Sutorius: a new genus for Boletus eximius. Mycologia 104(4): 951–961. https://doi.org/10.3852/11-376

Halling RE, Nuhn M, Osmundson T, Fechner N, Trappe JM, Soytong K, Arora D, Hibbett DS, Binder M (2012b) Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus. Australian Systematic Botany 25: 418–431. https://doi.org/10.1071/SB12028

Henkel TW, Obase K, Husbands D, Uehling JK, Bonito G, Aime MC, Smith ME (2016) New Boletaceae taxa from Guyana: Binderoboletus segoi gen. and sp. nov., Guyanaporus albipodus gen. and sp. nov., Singerocomus rubriflavus gen. and sp. nov., and a new combination for Xerocomus inundabilis. Mycologia 108(1): 157–173. https://doi.org/10.3852/15-075

Hosen MI, Feng B, Wu G, Zhu XT, Li YC, Yang ZL (2013) Borofutus, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy. Fungal Diversity 58: 215–226. https://doi.org/10.1007/s13225-012-0211-8

Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, Hongsanan S, Jayawardena RS, Jeewon R, Perera RH, Thongbai B, Wanasinge DN, Witsirassameewong K, Tippromma S, Stadler M (2018) Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93: 215–239. https://doi.org/10.1007/s13225-018-0415-7

Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/msr010

Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour (3rd edn). Eyre Methuen Ltd, London, 252 pp.

Kretzer AM, Bruns TD (1999) Use of atp6 in fungal phylogenetics: an example from the Boletales. Molecular Phylogenetics and Evolution 13: 483–492. https://doi.org/10.1006/mpve.1999.0680

Li YC, Feng B, Yang ZL (2011) Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Diversity 49: 125–143. https://doi.org/10.1007/s13225-011-0096-y

Li YC, Li F, Zeng NK, Cui YY, Yang ZL (2014a) A new genus Pseudoaustroboletus (Boletaceae, Boletales) from Asia as inferred from molecular and morphological data. Mycological Progress 13: 1207–1216. https://doi.org/10.1007/s11557-014-1011-1
Li YC, Ortiz-Santana B, Zeng NK, Feng B (2014b) Molecular phylogeny and taxonomy of the genus *Veloporphyrellus*. Mycologia 106(2): 291–306. https://doi.org/10.3852/106.2.291

Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*; Agaricales). Molecular Phylogenetics and Evolution 35: 1–20. https://doi.org/10.1016/j.ympev.2004.11.014

Miller MA, Holder MT, Vois R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2009) The CIPRES portals. CIPRES. http://www.phylo.org/portal2/home.

Moser AM, Frank JL, D’Allura JA, Southworth D (2009) Ectomycorrhizal communities of *Quercus garryana* are similar on serpentine and nonserpentine soils. Plant Soil 315: 185–194. https://doi.org/10.1007/s11104-008-9743-9

Neves MA, Binder M, Halling R, Hibbett D, Soytong K (2012) The phylogeny of selected *Phylloporus* species inferred from NUC-LSU and ITS sequences, and descriptions of new species from the Old World. Fungal Diversity 55(1): 109–123. https://doi.org/10.1007/s13225-012-0154-0

Nuhn ME, Binder M, Taylor AFS, Halling RE, Hibbett DS (2013) Phylogenetic overview of the Boletineae. Fungal Biology 117: 479–511. https://doi.org/10.1016/j.funbio.2013.04.008

Orihara T, Lebel T, Ge Z-W, Smith ME, Maekawa N (2016) Evolutionary history of the sequestrate genus *Rosseevera* (Boletaceae) reveals a new genus *Turmalinea* and highlights the utility of ITS minisatellite-like insertions for molecular identification. Persoonia 37: 173–198. https://doi.org/10.3767/003158516X691212

Orihara T, Smith ME, Shimomura N, Iwase K, Maekawa N (2012) Diversity and systematics of the sequestrate genus *Octaviania* in Japan: two new subgenera and eleven new species. Persoonia 28: 85–112. https://doi.org/10.3767/003158512X650121

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN et al. (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity. https://doi.org/10.1007/s13225-019-00421-w

Raspé O, Vadthanarat S, De Kesel A, Dreguef J, Hyde KD, Lumyong S (2016) *Pulveroboletus fragrans*, a new Boletaceae species from Northern Thailand, with a remarkable aromatic odor. Mycological Progress 15: 38. https://doi.org/10.1007/s11557-016-1179-7

Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, et al (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Stamatakis A (2006) RAxML-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Vadthanarat S, Raspé O, Lumyong S (2018) Phylogenetic affinities of the sequestrate genus *Rhodactina* (Boletaceae), with a new species, *R. rostratispora* from Thailand. MycoKeys 29: 63–80. https://doi.org/10.3897/mycokeys.29.22572
Cacaoporus, a new Boletaceae genus, with two new species from Thailand

Wolfe CB (1979) *Austroboletus* and *Tylopilus* subg. *Porphyrellus*, with emphasis on North American taxa. Bibliotheca Mycologica 69: 1–148.

Wu G, Feng B, Xu J, Zhu XT, Li YC, Zeng NK, Hosen MI, Yang ZL (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity 69: 93–115. https://doi.org/10.1007/s13225-014-0283-8

Wu G, Lee S ML, Horak E, Yang ZL (2018) *Spongispora temakensis*, a new boletoid genus and species from Singapore. Mycologia 110(5): 919–929. https://doi.org/10.1080/00275514.2018.1496387

Wu G, Li YC, Zhu XT, Zhao K, Han LH, Cui YY, Li F, Xu JP, Yang ZL (2016) One hundred noteworthy boletes from China. Fungal Diversity 81: 25–188. https://doi.org/10.1007/s13225-016-0375-8

Wu G, Zhao K, Li YC, Zeng NK, Feng B, Halling RE, Yang ZL (2015) Four new genera of the fungal family Boletaceae. Fungal Diversity 81: 1–24. https://doi.org/10.1007/s13225-015-0322-0

Zeng NK, Cai Q, Yang ZL (2012) *Corneroboletus*, a new genus to accommodate the southeastern Asian *Boletus indecorus*. Mycologia 104(6): 1420–1432. https://doi.org/10.3852/10-326

Zeng NK, Wu G, Li YC, Liang ZQ, Yang ZL (2014) *Crocinoboletus*, a new genus of Boletaceae (Boletales) with unusual polyene pigments boletocrocins. Phytotaxa 175: 133–140. https://doi.org/10.11646/phytotaxa.175.3.2

Zhao K, Wu G, Feng B, Yang ZL (2014a) Molecular phylogeny of *Caloboletus* (Boletaceae) and a new species in East Asia. Mycological Progress 13: 1127–1136. https://doi.org/10.1007/s11557-014-1001-3

Zhao K, Wu G, Yang ZL (2014b) A new genus, *Rubroboletus*, to accommodate *Boletus sinicus* and its allies. Phytotaxa 188: 61–77. https://doi.org/10.11646/phytotaxa.188.2.1

Zhu XT, Wu G, Zhao K, Halling RE, Yang ZL (2015) *Hourangia*, a new genus of Boletaceae to accommodate *Xerocomus cheoi* and its allied species. Mycological Progress 14: 37. https://doi.org/10.1007/s11557-015-1060-0