Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review

Pascal M. Ayelo 1,2†, Christian W. W. Pirk 2†, Abdullahi A. Yusuf 2†, Anaïs Chailleux 3,4†, Samira A. Mohamed 1† and Emilie Deletre 1,3*

1 International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya, 2 Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa, 3 UPR HORTSYS, Univ Montpellier, CIRAD, Montpellier, France, 4 Biopass2, Cirad-IRD-ISRA-UBG-Centre de coopération internationale en recherche agronomique pour le développement-Institut de Recherche pour le Développement-Institut Sénégalais de Recherches Agricoles-Université Gaston Berger, Dakar, Senegal

Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.

Keywords: field application, attractant blend, HIPVs, pheromones, semiochemicals, crop yield, olfactory learning
INTRODUCTION

The foraging behaviour of a parasitoid or predator is a process by which it behaves for oviposition sites and feeding resources for its survival, growth, and reproductive success [reviewed in Kramer (2001)]. Natural enemies (used hereafter in reference to both parasitoids and predators) play a key role in the biological control of chewing, sucking, and gall-feeding herbivores (Vidal and Murphy, 2018). Understanding the foraging behaviour of natural enemies is crucial for improving the biological control of herbivorous pests (e.g., Mills and Wajnberg, 2008; Gunton and Püyrer, 2016; Mills and Heimpel, 2018). Parasitoids have long served as an insect model in the study of foraging behaviour for oviposition sites, which has often been viewed as a three-sequence process: habitat location, host location, and host selection (Vinson, 1998; Fatouros et al., 2008). However, this behavioural process can also be applied to predatory insects searching for prey (Fellowes et al., 2007; Pervez and Yadav, 2018). During each of these foraging behavioural sequences, natural enemies rely on a combination of environmental stimuli to find their host and prey (hereafter jointly referred to as herbivores). Although kairomones and visual signals are exploited by natural enemies, the former is well-known to play an important role in their foraging behaviour (Colazza and Wanjberg, 2013; Lim and Ben-Yakir, 2020). Kairomones are individual semiochemical molecules or mixtures that mediate interspecific interactions between living organisms (Dicie and Sabelis, 1988; Kost, 2008), while serving as long-range, short-range, and contact cues during herbivore location by natural enemies (Afshen et al., 2008; Heil and Ton, 2008). Kairomones exploited by natural enemies are either plant volatiles or herbivore-associated chemicals such as pheromones (Afshen et al., 2008; Kaplan, 2012a; Kaiser et al., 2017; Peñaflor, 2019).

Herbivory-induced plant volatiles (HIPVs) and oviposition-induced plant volatiles (OIPVs) are the reliable plant volatile compounds that serve as long-range kairomones enabling natural enemies to locate herbivore-infested plants (e.g., Dicie and van Loon, 2000; Mumm and Dicke, 2010; Hilker and Fatouros, 2015; Turlings and Erb, 2018). The use of HIPVs and OIPVs to attract natural enemies has been pointed out as a novel avenue to achieve successful biological control (Kaplan, 2012a; Kelly et al., 2014; Murali-Baskaran et al., 2018; Peri et al., 2018). For example, (E)-4,8-dimethyl-1,3,7-non-atriene (DMNT), an elm plant (Ulmus minor Mill [Ulmaceae]) OIPV induced by Xanthogaleruca luteola (Müller) (Coleoptera: Chrysomelidae), attracted the parasitoid Oomyzus galleraeae (Fonscolombe) (Hymenoptera: Eulophidae) in the field (Büchel et al., 2011). In addition to HIPVs and OIPVs, kairomones include chemicals emitted from different herbivore stages (eggs, larvae/nymphs, pupae, adults), herbivore by-products (e.g., frass, honeydew, exuviae, mandibular gland secretions, defence secretions, etc.) which are exploited by natural enemies in their selection of oviposition and feeding sites [reviewed in Afshen et al. (2008)]. For instance, application of hydrocarbons, e.g., tricosane identified in extracts of Heliothis zeas (Boddie) (Lepidoptera: Noctuidae) moth scales, increased the efficiency of host location by the parasitoids Trichogramma achaeae Nagaraa and Nagarkatti (Hymenoptera: Trichogrammatidae) and Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), thereby increasing the parasitisation rate in the field (Gross et al., 1975; Lewis et al., 1975).

Pheromones are highly species-specific in mediating intraspecific interactions between the emitter and its conspecifics (Dicie and Sabelis, 1988; Kost, 2008). They can be grouped into the following categories: (i) sex pheromones, (ii) aggregation pheromones, (iii) marking pheromones, and (iv) alarm pheromones (Kost, 2008; Ruther, 2013). Eavesdropping is a well-known phenomenon among natural enemies which use pheromones of herbivorous insects as kairomones to detect them (Aukema and Raffa, 2005). A typical example is reported by Kporgbe et al. (2019) who demonstrated that isopentyl-butanol—the aggregation pheromone of Clavigralla tomentosicollis Stål (Hemiptera: Coreidae)—strongly attracts Gryon sp. (Hymenoptera: Scelionidae), the parasitoid of Clavigralla species. However, not only herbivore pheromones play a role in the attraction of herbivore enemies, i.e., pheromones released by natural enemies also attract conspecific individuals seeking for mates (Ruther, 2013), and may modulate their responses to HIPVs (Cabello et al., 2017). For example, pheromones from males of the predator Nabis pseudofeberus Remane (Hemiptera: Nabidae) attracted conspecific females and enhanced their responses to HIPVs from Rhopalosisphum padi (L.) (Hemiptera: Aphididae)-infested wheat plants, whereas pheromones from males of the mirid predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) attracted conspecific females but were found to reduce their attraction to the HIPVs (Cabello et al., 2017).

Kairomone-based lures are deployed in crop plants of which the background odours shape the location of herbivores by natural enemies (e.g., Schröder and Hilker, 2008; Randikofner et al., 2010). In this review, we focus on how to optimise field applications of kairomones for improving biological control of insect pests. First, we present sources of kairomones in tri-trophic systems and discuss how these kairomones are exploited by natural enemies foraging for hosts or prey. Then we provide examples of kairomone field applications, and we stress how the attraction of natural enemies into crop fields might be more efficient when using pheromones rather than HIPVs. Finally, we highlight potential ways to improve the use of kairomone-based lures for attracting enough natural enemies to reduce pest populations and crop damage below economic threshold levels while increasing crop yields in the field.

CHEMICAL INTERACTIONS IN TRI-TROPHIC SYSTEMS

Chemically mediated multitrophic interactions occur both below and above ground between a diversity of organisms among four trophic levels in agro-ecosystems (Aartsma et al., 2019; Stelinski et al., 2019). Research on chemical interactions aiming
at controlling insect pests are, however, usually focused on tri-
trophic systems typically composed of plants, herbivores and
natural enemies (Price et al., 1980; Kaplan, 2012b; Mbaluto
et al., 2020), and in this section we summarise these tri-
trophic chemically mediated interactions at above ground level (Figure 1). Organisms at each trophic level emit chemical
cues (emitters) to mediate intraspecific and/or interspecific
interactions with other organisms that detect the cues (receivers).
These interactions can be direct or indirect (Wootton, 1994).
A direct interaction occurs between two organisms without an
intermediary, whereas an indirect interaction necessitates the
presence of, or occurs through, at least one intermediary which is
usually a third species (Figure 1) (Wootton, 1994). Plants
(emitters) emit volatile organic compounds (VOCs) which are
exploited by herbivores (receivers) to locate host plants (direct
interactions) (Bruce and Pickett, 2011). Plants (emitters) also
release HIPVs and OIPVs to attract natural enemies (receivers)
for controlling herbivores (indirect interactions; Figure 1) (Hilker and Fatouros, 2015; Turlings and Erb, 2018).
In addition to HIPVs and OIPVs that mediate the indirect plant
defences, the role of zoophytophagous-induced plant volatiles
(ZIPVs) in plant-insect chemical communication has recently
 gained attention (Figure 1) (Pappas et al., 2015; Pérez-Hedo
et al., 2015). Zoophytophagous insects are sap sucking predators
which can feed on plants and consequently induce the release
of volatiles that attract conspecific and heterospecific predators,
as well as parasitoids (Pérez-Hedo et al., 2015; Rim et al., 2018).
This effect is like that induced by herbivores feeding
on plants. Compared to volatiles of unexposed tomato plant
(Solanum lycopersicum L. [Solanaceae]), ZIPVs from tomato
plant volatiles induced by the mirid predator Nesiocoris tenus
(Reuter) (Hemiptera: Miridae) were found to attract conspecific
males and females (Rim et al., 2018) and the parasitoid Encarsia
formosa Gahan (Hymenoptera: Aphelinidae) (Pérez-Hedo et al.,
2015). Undamaged plants can also perceive HIPVs, OIPVs,
ZIPVs, and herbivore pheromones as signals to mount defences
against herbivores to the benefit of the host plant community
(known as plant priming defences) (Figure 1) (Dicke and Bruin,
2001; Frost et al., 2008; Pérez-Hedo et al., 2015), but the priming
defence is not observed in all plant species as reported for cotton
plants exposed to pheromones (Magalhães et al., 2019) and tea
plants exposed to the HIPV (E)-4,8-dimethyl-1,3,7-nonatriene
(Jing et al., 2020).

Natural enemies release pheromones that directly mediate
interactions with their respective conspecífics (Ruther, 2013).
While herbivores release pheromones to communicate with
conspecific individuals to their benefit, their natural enemies
eavesdrop on these communication cues to locate them to their
disadvantage (Aukema and Raffa, 2005). Herbivores and their
by-products such as larval frass, larval mandibular secretions,
and honeydew also release chemical compounds that serve as
kairomones for natural enemies in locating herbivores (Afsheen
et al., 2008). Understanding chemical interactions between
plants, herbivores, and natural enemies (Figure 1) is key to
designing and implementing kairomone-based biological control
measures in agro-ecosystems. In the following sections, we focus
on above-ground chemical interactions in which natural enemies
are receivers of pheromones and kairomones involved (Figure 1).

HOST PLANT AND HERBIVORE LOCATION
BY NATURAL ENEMIES WITHIN THE
ODOUR LANDSCAPE

Natural enemies foraging for herbivores locate infested host
plants within the heterogeneous plant community using a sequence of behaviours (Figure 2). This is a tedious
task since host plants are embedded in a semiochemically
heterogeneous environment composed of diverse plant species
and multitherbivore communities whose signals influence the
detection of reliable kairomones during host or prey location
(e.g., Schröder and Hilker, 2008; Randlkofer et al., 2010). This
complex dynamic sensory environment has been described as an
“odour landscape” which is composed of different odour plumes
(an odour plume is a blend of volatile compounds carried by
the wind) (Atema, 1996). How insects track relevant or resource-
indicating odour plumes within the odour landscape has recently
been reviewed (Beyaert and Hilker, 2014). Foraging insects can
follow a single or several relevant odour plumes during which
they shift from one odour plume to another if this conveys a
more reliable signal (or indicates a more suitable resource), and
they continue this behaviour until they find the target host plant
(Beyaert and Hilker, 2014). During foraging, natural enemies rely
on a diversity of resource-indicating odours to first locate the
host plant within the plant community (section Role of Herbivore-
Induced Plant Volatiles in Long-Range Location of Host Plants),
then find the potential infesting herbivores (section Herbivore
Volatiles for Host or Prey Location), and finally select and accept
the target host or prey upon landing on the host plant (section Herbivore Contact Kairomones for Host/Prey Recognition and
Acceptance) (Figure 2).

Role of Herbivore-Induced Plant Volatiles
in Long-Range Location of Host Plants

Plants emit VOCs while undamaged, known as constitutive
VOCs, and herbivory or oviposition usually results in an
increase in the constitutive VOCs and/or release of specific
herbivore-induced volatiles, known as inducible VOCs (e.g.,
HIPVs and OIPVs). Although natural enemies may sometimes be
attracted by odour plumes of constitutive VOCs, evidences have
culminated in the literature that the odour plumes of HIPVs and
OIPVs are those that play the key role in the foraging behaviour,
serving as long-range signals that natural enemies exploit to
locate plants infested by their hosts or prey within the plant
community (Figure 2) (e.g., Kessler and Baldwin, 2001; Heil
and Ton, 2008; Kaplan, 2012a; Beyaert and Hilker, 2014). Plants
are usually infested by several herbivore species that are hosts
or non-hosts for natural enemies (Vos et al., 2001). Infesting
herbivore species may induce the same or different plant defence
pathways (i.e., Salicylic Acid inducer [SA-inducer] and Jasmonic
Acid-inducer [JA-inducer]), each affecting the composition of
volatiles produced (Danne et al., 2018). The attraction of
natural enemies to infested plants depends on factors such as the infesting herbivores, i.e., single or multiple species; the suitability of the herbivores, i.e., hosts or non-hosts; the infesting herbivore density; and the activated plant defence pathways, i.e., SA and/or JA. For example, the parasitoid *Cotesia marginiventris* (Cresson) (Hymenoptera: Braconidae) was reported to be more attracted to volatiles of maize plants infested by only *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae), a JA-inducer, than plants infested by both *S. littoralis* and *Euscelidius variegatus* (Kirschbaum) (Hemiptera: Cicadellidae), an SA-inducer (Erb et al., 2010). In multi-herbivore systems, the location of target herbivore-infested plants by natural enemies may be disrupted by the co-infestation of non-target herbivores (Takabayashi et al., 2006). The parasitoid *Cotesia plutellae* (Kurdjumov) (Hymenoptera: Braconidae) were less attracted to volatile blends from cabbage plants simultaneously infested by caterpillars of both host (*Plutella xylostella* [L.] [Lepidoptera: Plutellidae]) and non-host (*Pieris rapae* [L.] [Lepidoptera: Pieridae]) species compared to volatiles released from host *P. xylostella*-infested plants (Shiojiri et al., 2001). However, this is not always the case, as illustrated by the fact that the larval parasitoid *Cotesia glomerata* (L.) (Hymenoptera: Braconidae) was more attracted to plants damaged by larvae of both host *P. rapae* and non-host *P. xylostella* compared to plants damaged by host *P. rapae* alone (Shiojiri et al., 2001). The herbivore-infestation level also affects the response of natural enemies to infested plants. The parasitoids *C. glomerata* and *Cotesia vestalis* (Haliday) (Hymenoptera: Braconidae) were more attracted to volatiles of cabbage plants...
with high levels of *P. rapae* and *P. xylostella* larval infestation than those with low infestation levels (Shiojiri et al., 2010). Whereas, relative to volatiles of healthy plants, the predator *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae) was reported to prefer volatiles of cabbage plants infested by an intermediate density of *Myzus persicae* (Sulzer) (Hemiptera: Aphididae) adults, but it showed no preference for plants infested with low and high densities of *M. persicae* (Yoon et al., 2010). Therefore, natural enemy species show different attraction responses to volatiles of infested plants depending on the specificity and density of infesting herbivores (De-Moraes et al., 1998; Shiojiri et al., 2010; McCormick et al., 2012).

The infesting herbivore species and its feeding mode (e.g., leaf chewing, leaf mining, phloem sap sucking, and cell content feeding) determine the plant defence signalling pathways to be activated (either SA or JA alone, or both). Emission of volatiles is regulated by the biosynthesis pathway(s) activated, and qualitative and quantitative differences are substantial between plant volatiles from SA- vs. JA-herbivore inducers (Danner et al., 2018). Chewing herbivores are known to activate the JA-pathway (Danner et al., 2018), while leaf mining larvae likely activate both JA- and SA-pathways (Yang et al., in press). For sap sucking herbivores, however, some species like whiteflies are known to induce a single pathway, i.e., SA (Zhang et al., 2013), whereas others like stink bugs induce both JA- and SA-pathways (Giacometti et al., 2016). A comparison of volatiles from tomato plants infested by the leaf miner *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) larva, and the phloem sap sucking feeder *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) adult, revealed that α- and β-copaene, as well as valencene, were released in higher amounts from plants infested by the sap sucking insect (Silva et al., 2017). Whereas (Z)-3-hexen-1-ol, (E)-β-ocimene, methyl salicylate, and β-caryophyllene were higher from plants infested by the leaf miner, in addition to some novel compounds such as (Z)-jasmonone and (Z)-3-hexen-1-yl crotonate (Silva et al., 2017). Volatile compounds released by single and dual herbivore-infested plants also differ quantitatively and qualitatively. Infestation of tomato plants by both *T. absoluta* and *B. tabaci* led to increased emission of β-myrcene, limonene, γ-terpinene, and β-elemene than in plants infested only by *T. absoluta* or *B. tabaci*, whereas α-pinene emission increased in *T. absoluta*-infested plants (Silva et al., 2018). Conversely, cotton plants simultaneously infested by the leaf chewing larvae of *Spodoptera exigua* (Hübner) (Lepidoptera: Noctuidae) and adults of *B. tabaci* emit lower amounts of HIPVs than plants infested only by *S. exigua* larvae, as a result of so-called “cross-talk” between SA- and JA-signalling pathways (Rodriguez-Saona et al., 2003). Natural enemies rely on these differences to find specific herbivore-infested plants (Mumm and Dicke, 2010; Shiojiri et al., 2010). Herbivores can also suppress the plant defence mechanisms and volatile emission when feeding, which could be a strategy to deceive natural enemies from locating herbivore-infested plants. The feeding and extracts of oral secretion of the leaf chewing larvae of *Spodoptera frugiperda* (Smith) (Lepidoptera: Noctuidae) were found to suppress the emission of HIPVs in maize plants (De-Lange et al., 2020). Similarly, suppression of HIPV emission in host plants was reported upon herbivory by cell content feeders.

FIGURE 2 | Schematic description of the use of kairomones during foraging behavioural sequences involved in host/prey searching by parasitoids and predators. VOCs, volatile organic compounds; tHIPVs, target herbivore-induced plant volatiles; nHIPVs, non-target herbivore-induced plant volatiles; OIPVs = oviposition-induced plant volatiles. Plant community composed of (A) infested non-host plants; (B) infested host plants; (C) uninfested non-host plants; and (D) uninfested host plants.
(e.g., spider mites and thrips) (Schausberger, 2018) and phloem sap sucking feeders (e.g., whiteflies and aphids) (Weing and Vet, 2004; Zhang et al., 2013). Suppression of HIPV emission by herbivores is known to occur through various mechanisms, but the front line mechanism is reported to operate through inoculation of the oral secretion-inhibiting bacteria during feeding, a phenomenon that deceives the plant to incorrectly perceive and identify the attacking herbivore, and to not activate the appropriate signalling defence (Felton et al., 2014; Schausberger, 2018). Unfortunately, volatile suppression, in general, is not found to prevent natural enemies from locating herbivore-infested plants (Sarmento et al., 2011; De-Lange et al., 2020), suggesting that the release rates of the specific attractive compounds or the ratios of the attractive compounds in the released HIPV blend are not necessarily affected.

Volatiles compounds attractive to natural enemies include a subset of HIPV or OIPV compounds, from the same or different chemical classes (D’Alessandro and Turlings, 2006; McCormick et al., 2012). These are often mixtures of compounds in specific ratios (van Wijk et al., 2011), but sometimes these attractants are single compounds (Wei et al., 2008). For example, (R)-(−)-limonene released by the Mongolian oak, Quercus mongolica Fisch. ex. Turcz. (Fagaceae) plants infested by the longhorned beetle, Massicus raddei (Blessig) (Coleoptera: Cerambycidae) elicited strong attraction in the predator Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) (Wei et al., 2008). The predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) was more attracted to the mixture of five compounds β-ocimene, (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetrae (TMTT) and methyl salicylate than to the individual compounds or partial mixtures of these compounds identified from Tetramychus urticae Koch (Acari: Tetranychidae)-infested lima bean plants (van Wijk et al., 2011). The identification of attractant compounds from HIPVs and OIPVs is mostly specific to the tri-trophic system herbivore-plant-natural enemy and associated chemical interactions indicated in Figure 1 (Mumm and Dicke, 2010; Kaplan, 2012b; McCormick et al., 2012).

Herbivore Volatiles for Host or Prey Location

Natural enemies locate herbivores via their emitted kairomones (Figure 2) (Vet and Dicke, 1992; Afsheen et al., 2008). Volatiles compounds emitted by herbivores are generally distinct from plant field background odours and constitute the most noticeable sources of information for natural enemies (Vet and Dicke, 1992; Rodriguez-Saona and Stelinski, 2009). Herbivore pheromones are species-specific and usually serve as kairomones for location of suitable herbivore species by natural enemies (Aukema and Raffa, 2005). The egg parasitoid Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) is highly attracted to (Z)-11-hexadecenyl and (E)-12-tetradecenyl acetates which are, respectively, components of the sex pheromones of Helicoverpa assulta (Guénaé) (Lepidoptera: Noctuidae) and Ostrinia furnacalis (Guénaé) (Lepidoptera: Crambidae) (Boo and Yang, 2000). Other natural enemy species are instead attracted to a blend of pheromone components, as seen in the predatory bug Orius laevigatus (Fieber) (Hemiptera: Anthocoridae), which was only attracted to a mixture of 1:2.3 (R)-lavandulyl acetate and neryl (S)-2-methylbutanoate, the major components of Frankiniella occidentalis (Pergande) (Thysanoptera: Thripidae) aggregation pheromone (Vaello et al., 2017).

Apart from pheromones, natural enemies eavesdrop on volatile compounds produced by herbivore by-products such as honeydew (Leroy et al., 2012; Watanabe et al., 2016), larval frass (Reddy et al., 2002; Wei et al., 2013), and glandular defensive secretions of larvae or adults (Kopf et al., 1997; Zvereva and Rank, 2004). A single component, i.e., phenyl acetaldehyde identified from honeydew excreted by the aphid, Aphis gossypii Glover (Hemiptera: Aphididae), attracted the predator Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) (Watanabe et al., 2016). Reddy et al. (2002) reported that allyl isothiocyanate, a volatile component of larval frass from P. xylostella-infested cabbage plants, was highly attractive to P. xylostella natural enemies, specifically the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and the parasitoids C. plutella and T. chilonis. Moreover, the syrphid fly predator Parasapyrus nigritarsis (Zetterstedt) (Diptera: Syrphidae) was highly attracted to salicyl aldehyde, the main component of the larval secretion of the prey leaf beetle, Phratora vitellinae (L.) (Coleoptera: Chrysomelidae) (Kopf et al., 1997).

Herbivore Contact Kairomones for Host/Prey Recognition and Acceptance

Upon landing on a host plant, natural enemies have to select the target herbivore species and stages for oviposition or feeding (Figure 2) (Jaenike, 1978; Scheirs and De Bruyn, 2002; Grijpber et al., 2010). This step of the foraging behaviour is crucial as it defines the survival of the forager and its offspring. Plants are usually infested by multiple herbivores, which makes it challenging for natural enemies to select the target species. Herbivore contact kairomones are often speciesspecific, and therefore natural enemies generally rely on these non-volatile signals, which are examined by antennating or probing for recognition of hosts or prey (Vinson, 1998; Bénédet et al., 2002). These cues originate from various sources such as adult/larva/nymp body surfaces, larval oral secretions, egg coating, and wing scales (Afsheen et al., 2008; Kaiser et al., 2017). A typical example of this is O-caffeoylsolferine isolated from the body surface of Phenacoccus herreni Cox & Williams (Homoptera: Pseudococcidae) and which elicited strong drumming behaviour, thereby acting as a contact host-recognition kairomone in the parasites Acerophagus coocos Smith and Aenasius vexans Kerrich (both Hymenoptera: Encyrtidae) (Calayay et al., 2001). Moreover, α-amylase from oral secretions of the host Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) larvae mediates oviposition in the parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae) (Bichang et al., 2018). Hydrocarbons extracted from herbivores are also involved in host acceptance by parasitoids, as seen in Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) which uses non-adeeane,
a cuticular hydrocarbon from body extract of its stink bug host, Nezaria viridula (L.) (Hemiptera: Pentatomidae), to discriminate between male and female (Colazza et al., 2007) (see Kaiser et al., 2017, for a recent review on parasitoids). Gomes-Lagôa et al. (2019) further reported the crucial role of hydrocarbons in the selection of preferred stink bug host species by their parasitoids. These authors found that the parasitoid T. basalis preferred the hydrocarbons from the footprint extract of its preferred host, N. viridula, to those of Dicheloplos melacanthus (Dallas) and Euschistus heros (Fab.) (Hemiptera: Pentatomidae), and the parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) chose hydrocarbons of the footprint extract of its preferred host, E. heros, to those of the other two stink bug species. The selective responses of the parasitoids to hydrocarbons of their preferred hosts could be explained by differences in the composition of key hydrocarbons in the blend extract (Gomes-Lagôa et al., 2019) and by the co-evolutionary host-parasitoid interactions that have enabled parasitoids to easily recognise and eavesdrop on chemical stimuli of their suitable associated hosts (Peri et al., 2013).

Unlike in parasitoids, contact kairomones involved in prey recognition and acceptance by predatory insects have been explored in few species and little attention has been paid to the identification of the chemical cues involved. However, the predator Cerceris funipennis Say (Hymenoptera: Crabronidae) was reported to exploit methyl-branch hydrocarbons from the cuticle of Buprestidae beetles to recognise prey from non-prey Chrysomelidae beetles (Rutledge et al., 2014). The author reported that washed buprestid prey that had been treated with their crude cuticular extract were accepted by the predator, whereas those treated with crude cuticular extract of non-prey beetles were rejected, suggesting that the predator uses cuticular hydrocarbons as contact kairome to discriminate prey from non-prey.

USE OF KAIROMONES IN BIOLOGICAL CONTROL STRATEGIES

Biological control is a pest management method where natural enemies are used to reduce populations and damages of pest organisms (Eilenberg et al., 2001). There are three main forms of biological control: classical, augmentation, and conservation (Bale et al., 2008). Classical biological control aims at introducing and releasing a co-evolved exotic natural enemy—generally a parasitoid—of an invasive herbivore into invaded areas for permanent long-term control of the invasive herbivore (Eilenberg et al., 2001; Bale et al., 2008). Augmentation biological control involves periodical releases of a natural enemy when environmental conditions tend to limit its survival, reproduction, and establishment (van Lenteren, 2000; Collier and van Steenwyk, 2004). On the other hand, conservation biological control requires no release, but habitat manipulation or improvement of control practises are implemented to provide resources to maintain and enhance survival, fitness, and reproductive success of natural enemies (Gurr et al., 2000; Zhu et al., 2014). Biological control is one of the most promising alternatives to synthetic chemical insecticides, which are widely applied for the control of herbivores but unsustainable due to the development of herbivore resistance and associated with negative impacts on the environment and human health (Gay, 2012).

Cases of successful implementation of biological control have been documented (e.g., Beddington et al., 1978; Collier and van Steenwyk, 2004). The parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae) was used in an augmentation biological control and successfully controlled the red scale insect Aonidiella aurantii Maskell (Homoptera: Diaspididae) in citrus orchards (Moreno and Luck, 1992). However, many cases of failures in the biological control of insect pests have been observed (Lynch and Thomas, 2000; Collier and van Steenwyk, 2004). The main issues that cause failures include an insufficient population level of natural enemies in the target crop and the emigration or dispersal of natural enemies from cropping sites, limiting the control of insect pests in the target crops (Heimpel and Asplin, 2011). In this line, recent studies have highlighted the use of kairomone-based lures as a sound solution for limiting emigration of natural enemies and increasing their populations in target crops, in turn enhancing the efficacy of natural enemies for satisfactory control of insect pests (Kelly et al., 2014; Peri et al., 2018).

The effectiveness of kairomones in attracting natural enemies to enhance biological control of insect pests has been demonstrated in crop field conditions. The use of HIPVs/OIPVs in crop fields has generally led to a lower ratio of attracted natural enemies in kairomone-treated plots relative to control plots, than when pheromones are used (Tables 1, 2). Unlike HIPVs or OIPVs, pheromones are species-specific (Aukema and Raffa, 2005; Ruther, 2013), and in most cases they are generally distinct from plant background odours and therefore reliable indicators for natural enemies searching for herbivorous insects (Vet and Dicke, 1992; Rodriguez-Saona and Stelinski, 2009). Insects are likely to detect and react to blends of odourant compounds in nature (Thomas-Danguin et al., 2014; Conchou et al., 2019), but reported studies have mainly focused on field applications of single kairomonal compounds (Kaplan, 2012a; Tables 1, 2). The studies published in the last two decades documenting the use of HIPVs, OIPVs, and pheromones, whereby natural enemies have been reported to be more attracted to kairomone-baited plots compared to control plots are summarised in the following subsections.

Field Applications of Herbivore-Induced Plant Volatiles

The use of HIPVs and OIPVs as kairomones for the recruitment of natural enemies against insect pests in crop fields has been reported (e.g., Kaplan, 2012a; Peñaflor and Bento, 2013). Applications of methyl salicylate (MeSA) through dispensers in cranberry and soybean fields attracted more natural enemies and resulted in increased predation and parasitism rates, associated with a reduced number of herbivores on plants (e.g., Mallinger et al., 2011; Rodriguez-Saona et al., 2011). A pioneer review has addressed the role of (Z)-3-hexenol in attracting natural enemies into herbivore-infested field plants (Arabidopsis thaliana, Nicotiana spp., and Phaeolus spp.) (Wei et al., 2011). A typical example was reported in a study conducted by Kessler and Baldwin (2001), where
Kairomone	Natural enemy	Type, order*, and family of natural enemy	Host/prey species inducing release of the compound	Field crop species	Amount of kairomone	Ratio\(^b\) of natural enemies caught between treated plot and control	Is the crop yield improved in the treated plot relative to control?	References\(^c\)
Methyl salicylate	Chrysopa nigricornis	Predator (Neu.: Chrysopidae)	Not specified	Vitis vinifera	2 mL of neat compound	6	nd	James, 2003a
					5 g of neat compound	2	nd	James and Price, 2004
	Geocoris pallens	Predator (Hem.: Geocoridae)	Not specified	Vitis vinifera	1 mL of neat compound	7	nd	James, 2003b
	Orius tristicolor	Predator (Hem.: Anthocoridae)	Not specified	Vitis vinifera	1 mL of neat compound	7	nd	James and Price, 2004
	Chrysopa oculata	Predator (Neu.: Chrysopidae)	Tetranychus urticae	Vitis vinifera	1 mL of neat compound	6	nd	James, 2006
	Stethorus punctum picipes	Predator (Col.: Coccinellidae)	Not specified	Vitis vinifera	5 g of neat compound	57	nd	James and Price, 2004
	Coccinella septempunctata	Predator (Col.: Coccinellidae)	Aphis glycines	Glycine max	1 mL of 1.5 µL/mL	2	nd	Maeda et al., 2015
					100 mg of neat compound	3	nd	Zhu and Park, 2005
	Predatory beetles and parasitoids\(^d\)	–	Not specified	Triticum aestivum	120 mg of neat compound	2	Improved	Wang et al., 2011
	Toxomerus sp. & Orius insidiosus	Predators (Dip: Syrphidae) & (Hem.: Anthocoridae)	Not specified	Phaseolus vulgaris	3 mL of neat compound	7 & 2	Not improved	Salamancas et al., 2018
	Stethorus punctum picipes	Predator (Col.: Coccinellidae)	Not specified	Vitis vinifera	1 mL of 1.5 µL/mL each (1:1:1 ratio)	2	nd	Maeda et al., 2015
Mixture of Methyl salicylate, (Z)-3-hexenol and (Z)-3-hexenyl acetate	Orius tristicolor	Predator (Hem.: Anthocoridae)	Not specified	Vitis vinifera	1 mL of neat compound	5	nd	James, 2003b
(Z)-3-hexenyl acetate	Coccinella septempunctata	Predator (Col.: Coccinellidae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	9	nd	Yu et al., 2008
	Orius similis	Predator (Hem.: Anthocoridae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	4	nd	Yu et al., 2008
	Anaphes iole	Parasitoid (Hym.: Mymaridae)	Lygus lineolaris	Gossypium hirsutum	2 mL of neat compound	3\(^{++}\)	nd	Williams et al., 2008
2-Phenylethanol	Chrysoperla carnea	Predator (Neu.: Chrysopidae)	Aphis glycines	Glycine max	100 mg of neat compound	5	nd	Zhu and Park, 2005
	Eupholus volucris or Eupholus fumipennis	Predators (Dip: Syrphidae)	Not specified	Apple trees	1 mL of neat compound	8	nd	Jones et al., 2016

(Continued)
Kaimrome	Natural enemy	Type, order*, and family of natural enemy	Host/prey species inducing release of the compound	Field crop species	Amount of kairomone	Ratio\(^{b}\) of natural enemies caught between treated plot and control	Is the crop yield improved in the treated plot relative to control?	References^c
(E,E)-α-Farnesene	Anaphes iole	Parasitoid (Hym.: Mymaridae)	Lygus lineola	Gossypium hirsutum	2 mL of neat compound	4++	nd	Williams et al., 2008
Tetrastichus asparagi & Paralips efernalis	Cricotus aspara	Parasitoids (Hym.: Eulophidae)	Phaseolus vulgaris	0.75 mL of neat compound	2	nd	Ingrao et al., 2019	
cis-α-Bergamotene	Geocoris puncticpes	Predator (Hem.: Lygaeidae)	Manduca sexta	Nicotiana attenuata	40 µL of 0.1 nmol	4++	nd	Halitschke et al., 2008
Octanal	Deraeocoris punctulatus	Predator (Hem.: Miridae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	8	nd	Yu et al., 2008
Nonanal	Harmonia axyridis	Predator (Col.: Coccinellidae)	Not specified	Sophora japonica	150 µL of 10 or 100 mg/mL	8 & 15	nd	Xiu et al., 2019a
3,7-Dimethyl-1,3,6-octatriene	Orius similis	Predator (Hem.: Anthocoridae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	3	nd	Yu et al., 2008
Isopropanol	Chrysopa quadripunctata	Predator (Neu.: Chrysopidae)	Cotinis nitida	Malus domestica	125 mL of 45% dilution	100*	nd	Pszczolikowski and Johnson, 2011
Squaene	Chrysopa nigrincomis	Predator (Neu.: Chrysopidae)	Not specified	Apple trees	2 mL of neat compound	5	nd	Jones et al., 2011
Iridodial	Chrysopa nigrincomis	Predator (Neu.: Chrysopidae)	Not specified	Apple trees	4 mg of neat compound	3	nd	Jones et al., 2011
Mixture of methyl salicylate and Iridodial	Chrysopa oculata & C. nigrincomis	Predators (Neu.: Chrysopidae)	Not specified	Apple trees	2 mL; 4 mg ratio of neat compound	100* & 10	nd	Jones et al., 2011
Benzaldehyde	Chrysoperla plorabunda	Predator (Neu.: Chrysopidae)	Not specified	Apple trees	0.5 mL of neat compound	80	nd	El-Sayed et al., 2018
Mixture of phenylacetonitrile, 2-phenylethanol and acetic acid	Chrysoperla plorabunda	Predator (Neu.: Chrysopidae)	Not specified	Pandemis pyrusana	100 mg: 100 mg: 3 mL amounts of neat compounds	100*	nd	El-Sayed et al., 2018
Dimethyl disulfide	Aleochara biclineata & A. bipustulata	Predators (Col.: Staphilinidae)	Delta raddicum	Brassica oleracea	500 µL neat compound: paraffin oil (1:250 ratio)	6 & 2	Not improved	Ferry et al., 2009
Indole	Propylaea japonica	Predator (Col.: Coccinellidae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	3	nd	Yu et al., 2017
Linalool	Propylaea japonica	Predator (Col.: Coccinellidae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	4	nd	Yu et al., 2017
α-Pinene	Chrysoperla sinica	Predator (Neu.: Chrysopidae)	Not specified	Gossypium hirsutum	1 mL of 10 mg/mL	4	nd	Yu et al., 2017
	Harmonia axyridis	Predator (Col.: Coccinellidae)	Aphids gossypii	Gossypium hirsutum	150 µL of 10 or 100 mg/mL	19 & 53	nd	Xiu et al., 2019b

(Continued)
TABLE 1 | Continued

Kairomone	Natural enemy	Type, order, and family of natural enemy	Host/prey species inducing release of the compound	Field crop species	Amount of kairomone	Ratio of natural enemies caught between treated plot and control	Is the crop yield improved in the treated plot relative to control?	References
(E)-4,8-Dimethyl-1,3,7-non-atriene (DMNT)	Omorius galerita	Parasitoid (Hym.: Eulophidae)	Xanthogalerua lutrola	Ulmus minor	10 μL of 10 ng/μL	3	nd	Büchel et al., 2011
3-Methylbutylalcohol	Glyaptapanteles lparidis	Parasitoid (Hym.: Braconidae)	Lymantria dispar	Populus nigra	10 μL of 10 μg/μL	9	nd	McCormick et al., 2014
4-Methylacetophenone	Peristenus apterum	Parasitoid (Hym.: Braconidae)	Apolygus lucorum	Gossypium hirsutum	300 μL of 10 or 100 mg/μL	1(7 & 3)++ or 2(4 & 6)++	nd	Xiu et al., 2019c
Ocimene	Tetraschis asparagi & Parasite infernalis	Parasitoids (Hym.: Eulophidae)	Crioceris asparagi	Phaseolus vulgaris	500 μL of neat compound	2	nd	Ingrao et al., 2019

a Orders abbreviated as Dip., Diptera; Hem., Hemiptera; Col., Coleoptera; Neu., Neuroptera; Hym., Hymenoptera. b Ratio as directly reported in the studies or expressed from the length of plots or graphs displaying the number of insects caught. c We included only studies conducted within the last two decades and in which the number of the attracted natural enemy was reported to be significantly greater in kairomone-baited plots than in control plots, and where the attracted natural enemy has been identified to species level. d The predator species are C. septempunctata, H. axyridis, and Propylaea japonica, and the parasitoids are Aphidius avenae and Aphidius gifuensis; * nearly zero insects caught in the control plots; ++ = egg predation or parasitism was measured; nd, not determined.
TABLE 2 | Summary of some pheromones applied in the field to attract natural enemies.

Kairomone Type, order*, and family of natural enemy	Host/prey species releasing the compound	Field crop species	Compound and its composition (amount)	Type of pheromone (sex of the emitter)	Ratio \(^b\) of insects caught between treated plot and control	Is the crop yield improved in the treated plot relative to control?	References\(^c\)
Methyl (2E,4Z)-decadienoate	Gymnoclytia occidentalis	Parasitoid (Dipt.: Tachinidae)	Euschistus conspersus Apple trees 200 µL of neat compound	Aggregation (male) 19	nd	Krupke and Brunner, 2003	
(2E,5R,6E,8E)-5,7-dimethyl-2,6,8-decatrien-4-one	Hemerobius stigma	Predator (Neu: Hemerobidae)	Matsucoccus josephi Pinus resinosa 50 µg of neat compound	Sex (female) 100*	nd	Mendel et al., 2004	
Eiatophilus hebraicus	Matsucoccus josephi Pinus resinosa 220 µg of neat compound	Sex (female) 100*	Mendel et al., 2004				
(2E, 4E)-4,6,10,12-Tetramethyl-2,4-tridecadien-7-one	Hemerobius stigma	Predator (Het.: Anthocoridae)	Matsucoccus matsumurae Pinus resinosa 600 µg of neat compound	Sex (female) 100*	nd	Mendel et al., 2004; Branco et al., 2006	
(3S,7R,8E,10E)-3,7,9-trimethyl-8,10-dodecadien-6-one	Eiatophilus crassicornis	Predator (Het.: Anthocoridae)	Matsucoccus feytaudi Pinus pinaster 220 µg of neat compound	Sex (female) 100*	nd	Mendel et al., 2004	
(R)-(C)-Y-decalactone	Eister ferrugineus	Predator (Col.: Eisteridae)	Osmoderma eremita Quercus robur 400 µL of neat compound	Sex (male) 20	nd	Svensson et al., 2004	
(6Z,9Z,11S,12S)-11,12-Epoxyhexenocosa-6,9-diene	Telenomus euproctidis	Parasitoid (Hym.: Scelionidae)	Orgyia postica Hibiscus spp. 200 µL of 2.5 µg/µL	Sex (female) 44	nd	Arakaki et al., 2011	
Mixture of trans-Verbenol and Exo-brevicomin	Thanasimus dubius	Predator (Col.: Cieridae)	Dendroctonus ponderosae Pinus resinosa 150 mg of neat compound	Aggregation (male) 47	nd	Pfammatter et al., 2015	
Cyclolavandulyl butyrate	Anagyrus subalbipes	Parasitoid (Hym.: Encyrtidae)	Planococcus krauitha Persimmon and apple 10 µL of 0.16 µg/µL	Sex (-)	nd+	Sugawara and Ueno, 2020	
\(\alpha\)-Terpineol**	Podius maculiventris	Predator (Het: Pentatomidae)	Self	Not quantified	Aggregation (male)	nd+	Aldrich and Cantelo, 1999
Blend of (E)-2-octenal and (E)-2,7-octadienal	Orius sauteri	Predator (Het: Anthocoridae)	Self	1 mg of neat compound each (1:1 ratio)	Sex (female) 4	nd	Uehara et al., 2019
Blend of (E)-2-Hexenal, Benzyl alcohol, (E)-2-Hexen-1-ol and Benzaaldehydes	Arma chinensis	Predator (Hem: Pentatomidae)	Self	Poplar trees 130 µL of neat compound in 5:5:2:1 ratio	Aggregation (male) 100*	nd	Wu et al., 2019

*Orders abbreviated as Dip., Diptera; Hem., Hemiptera; Col., Coleoptera; Neu., Neuroptera; Hym., Hymenoptera.

\(^b\)Ratio as directly reported in the studies or expressed from the length of plots displaying the number of insects caught.

\(^c\)We included only studies conducted within the last two decades in which the number of the attracted natural enemy was reported to be significantly greater in pheromone-baited plots than in control plots, and where the attracted natural enemy has been identified to species level. *Nearly zero insects caught in the control plots; **Live insects producing the pheromone were used in the experiments; nd, not determined; nd+, not determined because there were no control plots in the experiments; self, the natural enemy itself is the pheromone emitter.
of chemical ecology (Kaplan, 2012a; Kelly et al., 2014; Murali-Baskaran et al., 2018; Peri et al., 2018; Blassioli-Moraes et al., 2019; Peñaflor, 2019). Several questions will have to be addressed in future research to improve kairomone use and thereby to efficiently benefit biological control (Kaplan, 2012b; Gish et al., 2015). Here, we present some strategies and discuss gaps for consideration when designing a kairomone-oriented control strategy for the protection of field crops. This is particularly important because many previous applications of synthetic kairomones have not considered the direct benefits for plants, especially the reduction in pest populations and crop damage, and the increase in crop yields (Hiltpold and Turlings, 2012; Kaplan, 2012a; Tables 1, 2 of this review). It is therefore opportune to examine how kairomones have been implemented in the field and assess possible options to optimise their use.

An Optimised Attract and Reward Technique

The attract and reward technique consists of the combined use of an attractant—usually a kairomone—and a reward component such as flowering companion plants (Simpson et al., 2011). The technique has gained considerable attention since it promotes early establishment of natural enemies in crop fields and reduces their subsequent emigration from these cropping sites (Simpson et al., 2011; Parolin et al., 2012). The attract component stimulates the foraging behaviour and maintenance of natural enemies in target crops, whereas the reward component offers alternative foods such as nectar and pollen which supplement the diet of natural enemies. Consumption of nectar, which is source of carbohydrates, has proved to increase the longevity and fecundity of natural enemies (Araj and Wratten, 2015, and references therein). Apart from supplying extra-floral nectars and pollen, the reward component can also offer additional benefits such as shelter and supply of alternative hosts and prey to natural enemies.

The attract and reward combination significantly increases natural enemy populations in crop fields over the application of either of these components alone (Simpson et al., 2011; Salamanca et al., 2018). The combination of MeSA as attractant and buckwheat *Fagopyrum esculentum* Möench (Polygonaceae) as reward plant boosted the abundance of *Scolenidae* wasps on broccoli plants, and that of *Eulophidae* wasps on sweetcorn plants (Simpson et al., 2011). Salamanca et al. (2018) reported that the combination of MeSA and coriander plants also led to an increased abundance of the predatory thrips *Frankliniella* *vespiformis* (Crawford) (Thysanoptera: Thripidae), predatory bugs *Orius insidiosus* (Say) (Hemiptera: Anthocoridae), and hoverflies, *Toxomerus* sp. (Diptera: Syrphidae), on bean plants, but no increase was found in the abundance of earwigs *Doru* sp. (Dermaptera: Forficulidae). However, the spatial arrangement of the attract and reward components influences the abundance of natural enemies and the control level of insect pests. For example, an increased abundance of the predator *Propylea japonica* (Thunberg) (Coleoptera: Coccinellidae) and a decreased population of the aphid *Aphis citricola* van der Goot (Hemiptera: Aphididae) were noted when MeSA was placed inside and *Calendula officinalis* L. (Asteraceae) reward was placed at the edge of apple tree orchards compared to the opposite arrangement (reward inside and MeSA at the edge) and the control (no MeSA, no reward) (Jaworski et al., 2019). The efficacy of the spatial arrangement supports the design of the push-pull technique which promotes intercropping of companion plants, one placed inside the crop field for repelling herbivores, i.e., “push,” and another placed at the edge of the crop field for attracting them, i.e., “pull” (Cook et al., 2007; Khan et al., 2010). Although the push-push itself increases the abundance of natural enemies compared to mono-cropping (Khan et al., 2008; Leslie et al., 2020), the combination of push-pull with the deployment of synthetic kairomone attractive to natural enemies could further increase the natural enemy population to a level required to reduce the insect pest density and crop damage to below economic threshold levels, which could be assessed in future studies.

Apart from increasing the abundance of natural enemies, the combination of attract and reward has a long-lasting effect, whereby more natural enemies can be sustained over time in a crop field with reward than those without reward. Simpson et al. (2011) used MeSA as attractant and buckwheat as reward and recorded an increase in populations of parasitoids; e.g., *Dolichogenidae tasmanica* (Cameron), *Microplois demolitor* Wilkinson (both Hymenoptera: Braconidae), *Trichogramma pretiosum* Riley (Hymenoptera: Trichogrammatidae), *Diadegma semicaudatum* (Hellen) (Hymenoptera: Ichneumonidae), and predators of Tachinidae family in crop fields with the reward compared to those without reward, especially as time elapsed. Jaworski et al. (2019) also recorded more predator *P. japonica* persisting in apple tree orchards bearing MeSA and the reward, *C. officinalis* plant, which resulted in long-term control of the pest *A. citricola* compared to control orchards.

Successful implementation of the attract and reward technique has some limitations, e.g., attraction of non-target organisms. Herbivores and hyper-parasitoids/predators can also be attracted into crop fields because most field-tested HIPVs are commonly emitted volatiles with broad-scale attraction effects, and the reward plants can also serve as habitat for herbivores (Simpson et al., 2011; Orre-Gordon et al., 2013; Sarkar et al., 2018). Methyl salicylate is a common plant volatile compound used to attract natural enemies. However, it was found to be attractive to untargeted insect species such as herbivorous insect pests (e.g., *P. rapae*, *P. xylostella*, *Scaptomyza flava*) and hyper-parasitoids (e.g., *Baryscapus galactopus* (Ratzburg) (Hymenoptera: Eulophidae), *Anacharis zealandica* Ashmead (Hymenoptera: Figitidae), and *Diplazon laetatorius* Fab. (Hymenoptera: Ichneumonidae) (Orre-Gordon et al., 2013). Buckwheat is a rewarding plant that is commonly used in an attract and reward technique. However, it was also reported to harbour herbivorous thrips such as *Thrips tabaci* Lindeman (Thysanoptera: Thripidae) and aphids (Orre-Gordon et al., 2013; Sarkar et al., 2018). Despite such unwanted effects, the attract and reward combination could potentially enhance conservation biological control through the recruitment of natural enemies and their retention into the vicinity of target crops (Orre-Gordon et al., 2013; Peñaflor and Bento, 2013). Ways to improve its
implementation and overcome such negative impacts could include the selection of HIPVs that are attractive to a narrow range of natural enemies but not to their hosts or prey (Ferry et al., 2009), the use of natural enemy pheromone as the attractant (Ruther, 2013), reward plants which are non-hosts to the target insect pest(s) (Sarkar et al., 2018), an appropriate spatial arrangement of the attractant and reward (Jaworski et al., 2019), and the introduction of a herbivore-repellent component into the system (Cook et al., 2007; Xu et al., 2017a; Pålsson, 2019). Future studies are needed to investigate the integration of these tactics for an improved attract and reward technique to enhance biological control in agro-ecosystems.

Incorporating Olfactory Associative Learning to Improve the Efficiency of Foraging Behaviour by Natural Enemies

Olfactory associative learning is a training process that involves conditioning an insect to learn and recognise to associate a particular odour with the presence of a reward (Arthur, 1971; Turlings et al., 1993). This process tends to modify the insect's innate host preference (Weiss, 1997), which is established during larval development (Hopkins, 1917; Barron, 2001) or shortly after adult emergence (Jaenike, 1983; Barron, 2001). It is likely that insect foragers learn and use odour stimuli that increase their chances of finding suitable hosts (Jaenike, 1983; Vet et al., 1995; Scheirs and De Bruyn, 2002). In conditioned insects, olfactory associative learning develops their ability to exhibit a strong response upon perception of the learned odour (Vet and Papaj, 1992; Faber et al., 1999). Therefore, odour learning has emerged as a strategy to enhance foraging success and to consequently minimise interference of environmental background odours (Vet and Papaj, 1992; Arenas et al., 2007).

The use of olfactory associative learning in natural enemies to improve biological control has recently been a focus of great interest, especially by training or conditioning them on kairomones during the mass rearing process before their release in fields [reviewed in Giunti et al. (2015), Kruidhof et al. (2019)]. Exposure of parasitoid Hysopsis pallidius (Askew) (Hymenoptera: Eulophidae) larvae to the apple fruit extract odour led to an adult preference for apple fruit extract, whereas unexposed individuals did not show any preference (Gandolf et al., 2003). Unlike naïve individuals of the predator Anthocoris nemoralis (Fab.) (Hemiptera: Anthocoridae), individuals that had experience on MeSA-treated prey showed a pronounced preference for the volatile (Drukker et al., 2000). Interestingly, Meiners et al. (2003) showed that parasitoids that had learned to recognise a mixture of compounds could also respond to the individual blend compounds.

The efficiency of olfactory associative learning has also been reported for improving host location behaviour by natural enemies in crop fields. Females of the parasitoids C. glomerata and D. semiclausum with previous experience on HIPVs from Brassicaceae plants infested by P. brassicae and P. xylostella successfully oriented towards host-infested plants even in the presence of surrounding non-host and alternative host plant vegetation, whereas unexperienced parasitoids failed to preferentially locate the host-infested plants (Tibor et al., 2007; Kruidhof et al., 2015). Moreover, Hare et al. (1997) reported that the parasitoid A. melinus previously trained on O-cafeoyltyrosine during rearing achieved greater egg parasitisation on field populations of A. aurantii than naïve parasitoids. Similarly, the predators Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae), Ceracochrysa cubana (Hagen) (Neuroptera: Chrysopidae), and Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) trained on mint oil, a commercial volatile blend predominantly consisting of menthol, menthone, (+)-mentyl acetate, menthofuran, isomenthone, limonene, and 1,8-cineole, consumed more eggs of Thyrinteina leucoceraea (Rindge) (Lepidoptera: Geometridae) and Diatraea saccharalis (Fab.) (Lepidoptera: Pyralidae) in field plots bearing the mint oil than in control plots (Janssen et al., 2014).

Although olfactory associative learning enhances host finding success by natural enemies, it remains unknown how long the learned odour could persist in the insect's memory. Natural enemy species differ in their intrinsic capacity to conserve information over time (short-term, mid-term, and long-term memories) (Vet and Dicke, 1992; Hoedjes et al., 2011; Mery, 2013). Moreover, it is worth considering to what extent acquired information could be conserved under natural conditions, knowing that environmental variation has been reported as one of the major factors underlying variation in learning and memory retention (Mery, 2013; Smid and Vet, 2016). Future studies should therefore be focused on investigating how to fine-tune odour learning in natural enemies for long-term memory consolidation to the benefit of their foraging success. However, periodic releases of natural enemies trained on kairomones during rearing could provide an efficient control of insect pests in crop fields (Hare et al., 1997; Giunti et al., 2015; Kruidhof et al., 2019).

Applying Volatile Kairomones Based on Field Background Odour of Target Crop

Plant field background odour is one factor that could mask the relevance of kairomone-based lures to natural enemies in agricultural fields (Schröder and Hilker, 2008; Cai et al., 2017; Xu et al., 2017b). Some HIPVs and OIPVs are common in the volatile profiles of host plants, but they are often released in different ratios between plant species. Plants therefore have different potentials for shaping the attraction of natural enemies to field applied synthetic HIPVs/OIPVs. Braasch et al. (2012) evaluated the effects of target crop species on parasitoid attraction to MeSA and found that more hymenopteran parasitoids were attracted to MeSA-baited traps in field soybean plants than in corn plants. Similarly, when (E)-β-farnesene and (E)-β-caryophyllene were deployed in beet, bean, and wheat crops, predatory hoverflies of the Syrphidae family were significantly attracted to (E)-β-caryophyllene-baited traps only in beet crops, and to (E)-β-farnesene-baited traps only in bean crops compared to unbaited controls (Heuskin et al., 2012).

Field HIPV-based lures are usually applied in crops which also release the HIPV of interest, and this may increase interference with the successful location of lures by natural enemies.
et al. (1979) found that the attraction of the green predatory lacewing, *C. carnea*, to synthetic carophyllene applied on cotton plants reduced as the plants grew and released the compound, and detection of the lure thereby waned. Carophyllene was, however, not attractive to *C. carnea* in wheat plants (Dean and Satasook, 1983) for which it is one of the most abundant volatile compounds (Jiménez-Martínez et al., 2004). In such cases, the use of concentrations beyond that of the target HIPV in the plant field background odour or in specific blends could help pinpoint the relevant concentration or blend composition that would best attract natural enemies to kairomone-based lures (Szendredi and Rodriguez-Saona, 2010; Xu et al., 2017b). Field application of a synthetic volatile blend composed of oicemene, limonene, (Z)-3-hexenol, and (Z)-3-hexenyl acetate attracted tea leafhoppers in autumn when the tea field background odour contained only low quantity of these compounds, yet the blend was unattractive to the insects in summer when the individual compounds were present in much higher concentrations in the background odour (Xu et al., 2017b).

An alternative strategy for reducing this interplay between the kairomone-based lure and volatile emission by the target field crops could be to use an attractant HIPV in crop fields where it is not released or only released in very low quantity to enhance the detection of the lure within the crop background odour. Field traps baited with phenylacetaldehyde attracted 10–100-fold more predator *C. carnea* than unbaited traps when deployed in cherry and peach orchards (Tóth et al., 2006). Interestingly, the volatile profiles of cherry and peach plants contain minor amounts or no phenylacetaldehyde (Najar-Rodriguez et al., 2013; Bandeira-Reidel et al., 2017; Ye et al., 2017; Maatallah et al., 2020). Therefore, unlike carophyllene, it is likely that the predator *C. carnea* would be attracted to phenylacetaldehyde on cotton and wheat plants of which the headspace volatiles lack this compound (Thompson et al., 1971; Rodriguez-Saona et al., 2001; Jiménez-Martínez et al., 2004; Starr et al., 2015). Two synthetic blends which differed in their benzaldehyde and ethyl benzoate content attracted tea leafhoppers in the laboratory, but the results differed when they were deployed in tea field plantations. The blend that contained ethyl benzoate that was absent in the tea field background odour attracted more tea leafhoppers in field experiments compared to a paraffin oil control solvent (Cai et al., 2017). The blend that contained benzaldehyde, a compound which dominated the tea background odour, was no longer attractive to tea leafhoppers in crop fields (Cai et al., 2017).

Standardising Kairomone-Based Field Implementation Design to Be Able to Draw Generic Conclusions

Kairomones have been validated for the recruitment of natural enemies in crop fields across diverse agro-ecosystems (James and Price, 2004; Tóth et al., 2009; Jones et al., 2016; Cai et al., 2017; Peñaflor, 2019). However, the approaches used in these studies varied, and this may lead to some discrepancies. Although abiotic factors are hardly standardised across landscapes (Almekinders et al., 1995), a number of biotic factors and kairomone implementation practises could be made uniform in studies to strengthen the conclusions drawn from the findings of spatial and temporal studies. There is a need to improve how kairomones have been applied and assessed regarding their effectiveness with the aim of enhancing biological control strategies.

Firstly, there is a need to optimise the concentrations, compositions, and release rates of kairomones under field conditions. Since natural enemies display concentration-dependent responses in nature (James, 2006; Ferry et al., 2007; Kaplan, 2012a), conclusions drawn from studies considering only one concentration of the test kairomone are to be interpreted with caution. Field studies have demonstrated that population levels of attracted natural enemies differed according to the kairomone concentrations (*Tables 1, 2*). Therefore, it is crucial to test a range of concentrations to better assess the effectiveness of kairomone-based lures and their possible optimisation for field application. Using MeSA-baited yellow sticky cards in vineyards, James (2006) recorded more than 2-fold increase in green predatory lacewing *Chrysopa oculata* Say (Neuroptera: Chrysopidae) populations in plots baited with 99% MeSA compared to plots baited with 10 and 1% MeSA, while both of the latter did not differ from the control. Similarly, field application of different dimethyl disulfide concentrations (0.1, 1, 10, and 100% v/v dimethyl sulphide/paraffin oil) revealed that a 10% dilution caught the highest number of predators, *Aleochara bipustulata* (L.) and *Aleochara bilineata* Gyênenthal (both Coleoptera: Staphilinidae). Whereas more predatory carabid beetles were caught with a 1% concentration compared with a 100% concentration and the control (Ferry et al., 2007). It is also important that future studies focus on the use of odourant mixtures as field attractants for the recruitment of natural enemies. In a simulated model, Chan et al. (2018) showed that odourant mixtures elicit faster olfactory processing responses in insects (e.g., honeybees) and are more reliable for insect olfaction than single odourants. Insects are likely to exploit blend of odourants when foraging in nature (Thomas-Danguin et al., 2014; Conchou et al., 2019). Jones et al. (2011) reported high numbers of the predators *C. nigricornis* and *C. oculata* in apple orchard plots with traps baited with the blend of MeSA and iridodial compared to plots with traps baited with either compound alone. The release rate of kairomone-based lures should also be taken into consideration, as it can provide insight on their diffusion and the frequency of lure replacement during the study period. The solvent used to formulate the lure, the dispenser used to deliver it, and some abiotic factors (e.g., temperature and relative humidity) affect the release rate of kairomone and consequently its long-lasting effect and effectiveness in attracting natural enemies in crop fields (Jones et al., 2011; Heuskin et al., 2012; Kaplan, 2012a; Xu et al., 2017b). James (2006) used a 99% MeSA lure replaced at weekly intervals over a 5-week period and observed that the number of captured *C. oculata* was 5–8-fold higher in MeSA-treated plots than in the controls during the first 3 weeks, but then the captures declined to a low level in the final 2 weeks. Likewise, more predatory ladybeetle and hoverfly adults were recorded on wheat plants when the applied pheromone (E)-ß-farnesene-based lure was formulated in paraffin oil compared with an alginate bead-based formulation (Xu et al., 2017b). The observed difference was
explained by the effect of the experimental conditions whereby the diffusion of (E)-β-farnesene from alginate beads was limited by the high relative humidity that prevailed, as reported by Heuskin et al. (2012).

Secondly, there is need for an implementation design that enables a uniform distribution of the attracted natural enemies within the semiochemical-treated field. Studies investigating the effects of semiochemical-based lures have been implemented in diverse crop fields, but little attention has been paid to the distribution of natural enemies within the target field, which is nevertheless a key factor with regard to herbivorous insect pest control (Rodriguez-Saona et al., 2011; Braasch and Kaplan, 2012; Lim and Mainali, 2013; Vidal and Murphy, 2018). A simulated model conducted by Kaplan and Lewis (2014) revealed that the size of the kairomone field had a marked effect on the number and distribution of attracted predators, with more predators attracted to small fields compared to large fields, and with abundance of attracted predators within the target field decreasing with increasing distance from the field edge. In these scenarios, the core of the target field becomes an enemy-free space, and therefore an unprotected zone where herbivore outbreaks could occur. Apart from the field size, the density of kairomone-release points and the distance over which the formulated lure can be effective also affect also the distribution of attracted natural enemies for successful control of insect pests. By tracking the abundance of natural enemies over a gradient of distances from the HIPV lure-releasing point, 90d Predalure (AgBio Inc. Westminster, CO, USA), a commercially available MeSA lure, was reported to be active over a small spatial scale of 1.5 to 2.5 m (i.e., increased abundance only in a localised area surrounding the emission source) in soybean and cranberry crop fields (Mallinger et al., 2011; Rodriguez-Saona et al., 2011). A 40d Predalure was active over a broad spatial scale of 8–10 m (i.e., increased abundance both at the immediate emission source as well as in neighbouring areas) in tomato crop fields (Kelly et al., 2014). Similarly, phenylethyl alcohol and an induced maize volatile blend were also active at a broad spatial scale of 8–10 m in soybean and maize crop fields (Ockroy et al., 2001; Braasch and Kaplan, 2012). The bioactive attraction range of a formulated kairomone could generate insight on the experimental field size and the adequate lure density (i.e., number of lure sources per unit area), both of which have a profound effect on the abundance of natural enemies and the insect pest control level. For example, over a transect distance of 36 m from pheromone releasing-points, Lim and Mainali (2013) recorded high abundance of the parasitoids Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) and Gyrion japonicum (Ashmead) (Hymenoptera: Scelionidae) associated with a high parasitism rate up to 18 m in soybean fields baited with the pheromone [blend of (E)-2-hexenyl (E)-2-hexenoate and (E)-2-hexenyl (Z)-3-hexenoate] identified from the host, Riptortus pedestris (Fab.) (Hemiptera: Alydidae). Using MeSA in hop yards and vineyards, abundance of predators increased with less lure density (James and Price, 2004), but such relationship may depend on the attracted natural enemy species and family (Gadino et al., 2012). Under field conditions, the odour concentration decreases with increasing distance from its source (Beyaert and Hilker, 2014). Therefore, when designing a kairomone-based lure field experiment, it is also important to create enough space between kairomone and kairomone-free zones to prevent interference of odours and emigration of natural enemies between both zones. Although there is no rule on how to define the space of such interzone (buffer zone), we suggest a minimum of 2-fold the distance over which the kairomone-based lure is bioactive. However, future studies are needed to be able to draw evidence-based recommendations.

Thirdly, when used to enhance conservation biological control strategies, a kairomone should not only show effectiveness in attracting natural enemies, but its application should also lead to reduction in pest populations and crop damage through increased parasitism and predation rates, and to an increase in crop yields (Kaplan, 2012a; Salamanca et al., 2018). This may require assessment of kairomone effectiveness shifting from simply looking at natural enemy catches to direct field observation when possible, or at least a combination of the two methods. The field application of synthetic HIPVs is known to prime HIPV production in neighbouring undamaged plants, hence triggering indirect defences against herbivores (Engelberth et al., 2004; von Mérey et al., 2011). James and Price (2004) reported that canopy shake samples from hop yards resulted in a 7- and 57-fold increase in Orius tristicolor (White) (Hemiptera: Anthocoridae) and Stethorus punctum picipes (Casey) (Coleoptera: Coccinellidae), respectively, in MeSA-baited compared to unbaited plots. Although it is widely acknowledged that kairomones increase the abundance of natural enemies in crop fields, it is debatable whether their increase leads to a reduction in crop damage by pests, and a subsequent increase in crop yields. In a 2-year study, Wang et al. (2011) recorded an increase in the abundance of predatory lady beetles (C. septempunctata, H. axyridis, and P. japonica) associated with a reduced density of the grain aphid, Sitobion avenae (Fab.) (Hemiptera: Aphididae), and increases in the parasitism rate and wheat yield in MeSA-baited wheat plots compared to unbaited plots. Although, Salamanca et al. (2018) reported an increased abundance of biocontrol agents (Toxomerus sp. and O. insidiosus) with a reduced spider mite damage to bean plants, the yield of beans was not improved by the application of MeSA compared to control plots. Application of MeSA also did not reduce pest populations or increase strawberry and grapevine yields (Lee, 2010; Simpson et al., 2011). We speculate that, in the latter studies, the population levels of the attracted natural enemies may not have been enough to cause a reduction of crop damage to under the economic threshold level, or the attracted natural enemies may not have been those of the primary insect pests of the target crops. The application of kairomone-based lures may sometimes lead to sex-biased recruitment of natural enemies, whereby one sex (male or female) predominantly responds to the lure, which affects the mating status and may influence natural enemy population dynamics in the target field (Jones et al., 2011; Kaplan, 2012a). One way of dealing with this would be to combine sex-specific attractants to target both sexes of natural enemies. Although the use of semiochemicals has evolved as a novel tool for environmentally friendly pest control, farmers who are the end-users continue to primarily rely on the use of chemical insecticides for crop protection.
that future studies investigate the effectiveness of applying semiochemical-based lures vs. use of chemical insecticides in terms of the reduction of herbivore populations and damage, the improvement of crop yield, and cost-benefit analysis. Above all, the use of semiochemical-based lures offers great potentials for reducing crop damage by pests and improving crop productivity, and the effectiveness of their application could be further improved by taking into account the different aspects discussed earlier in this section.

CONCLUDING REMARKS

Over the last two decades, application of kairomones in crop fields has evolved as a novel approach to enhance biological control strategies through the attraction and retention of natural enemies on crops. To date, effective application measures and more effective lures are needed to increase kairomone implementation and boost its effectiveness under field conditions. The efficiency of kairomone-based lures under field conditions could be improved on the basis of the formulation, concentration, ratio, and release rate of the kairomone. Moreover, kairomone detection by natural enemies could be facilitated by taking into consideration the kairomone concentration and the crop field background odour. The control of insect pests by natural enemies could be further enhanced with the use of kairomone-based lures, the release of odour-based experienced natural enemies, and the combination of kairomone with reward plants set up in an appropriate spatial arrangement. Several field experiments have tested the use of single kairomonal compounds, and it is important that future studies assess the use of compound blends in recruiting natural enemies in crop fields. In addition to the attraction of natural enemies, future studies should be focused on evaluating the reduction of pest populations and crop damage when using kairomones compared to pesticide application, as well as the increase in crop yields, so as to be able to address and take full advantage of kairomone-based field pest control.

AUTHOR CONTRIBUTIONS

PA and ED conceptualised the structure of the review. PA wrote the first draft of the review manuscript. CP, AY, AC, SM, and ED contributed to the development of the review content. All authors provided intellectual inputs, proofread the manuscript, and approved the final version for submission.

FUNDING

We gratefully acknowledged the financial supports received from the French National Research Agency (ANR) through CIRAD (Award no. ANR-16-CE32-0010-01); the University of Pretoria and the National Research Foundation through the NRF grants of CWWP (Grant no. CPRR160502163617) and AAY (IFFR Grant no. 109380 and Y-rated Researchers Grant no. RDYR180504326262). FMA was supported by the University of Pretoria and the German Academic Exchange Service (DAAD) In-Region Postgraduate Scholarship (Personal Grant no. 91672680).

ACKNOWLEDGEMENTS

We thank Dr. Steve S. Baleba for comments on a previous draft of the manuscript. We gratefully acknowledge the bursary offered by the University of Pretoria, and the ICIPE core funding donors: the UK’s Foreign, Commonwealth & Development Office (FCDO); the Swedish International Development Cooperation Agency (SIDA); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Kenyan Government. The views expressed herein do not necessarily reflect the official opinion of the donors.

REFERENCES

Aartsma, Y., Cusumano, A., de Bobadilla, F. M., Rusman, Q., Vosteen, V., and Poelman, E. H. (2019). Understanding insect foraging in complex habitats: insights from specialist host-parasitoid-hyperparasitoid systems. *Cur. Opin. Insect Sci.* 32, 54–60. doi: 10.1016/j.cois.2018.11.001

Afseen, S., Wang, X., Li, R., Zhu, C.-S., and Lou, Y.-G. (2008). Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. *Insect Sci.* 15, 381–397. doi: 10.1111/j.1744-7917.2008.00225.x

Aldrich, J. R., and Cantelo, W. W. (1999). Suppression of Colorado potato beetle infestation by pheromone-mediated augmentation of the predatory spined soldier bug, *Podisus maculiventris* (Say) (Heteroptera: Pentatomidae). *Agric. For. Entomol.* 1, 209–217. doi: 10.1046/j.1461-9563.1999.00026.x

Almekinders, C. J. M., Fresco, L. O., and Struik, P. C. (1995). The need to study and manage variation in agroecosystems. *Neth. J. Agric. Sci.* 43, 127–142. doi: 10.18174/njas.v43i2.572

Arakaki, N., Yamazawa, H., and Wakamura, S. (2011). The egg parasitoid *Telenomus eucryptotis* (Hymenoptera: Scelionidae) uses sex pheromone released by immobile female tussock moth *Orgyia postica* (Lepidoptera: Lymantriidae) as kairomone. *Appl. Entomol. Zool.* 46, 195–200. doi: 10.1007/s14355-011-0031-4

Arenas, A., Fernández, V. M., and Farina, W. M. (2007). Floral odor learning within the hive affects honeybees’ foraging decisions. *Naturwissenschaften* 94, 218–222. doi: 10.1007/s00114-006-0176-0

Arthur, A. P. (1971). Associative learning by *Nemeritis canescens* (Hymenoptera: Ichneumonidae). *Can. Entomol.* 103, 1137–1141. doi: 10.4039/Ent1031137-8

Atema, J. (1996). Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. *Biol. Bull.* 191, 129–138. doi: 10.2307/1543074

Aukema, B. H., and Raffa, K. F. (2005). Selective manipulation of predators using pheromones: responses to frontalin and ipsdienol pheromone components of bark beetles in the Great Lakes Region. *Agric. For. Entomol.* 7, 193–200. doi: 10.1111/j.1461-9555.2005.00250.x

Bale, J. S., van Lenteren, J. C., and Bigler, F. (2008). Biological control and sustainable food production. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 363, 761–776. doi: 10.1098/rstb.2007.2182

Bandeira-Reidel, R. V., Cioni, P. L., and Pistelli, L. (2017). Volatile emission of different plant parts and fruit development from Italian cherry plums...
Conchou, L., Lucas, P., Meslin, C., Proffit, M., Staudt, M., and Renou, M. (2019). Testing for phytochemical Cai, X., Bian, L., Xu, X., Luo, Z., Li, Z., and Chen, Z. (2017). Field background Bruce, T. J. A., and Pickett, J. A. (2011). Perception of plant volatiles? Braasch, J., Wimp, G. M., and Kaplan, I. (2012). Testing for phytochemical synergism: arthropod community responses to induced plant volatile blends across crops. J. Chem. 38, 1264–1275. doi: 10.1007/s10886-012-0202-y Braanco, M., Franco, J. C., Dunkelblum, E., Assael, F., Protasov, A., Ofer, D., et al. (2006). A common mode of attraction of larvae and adult insects to predators to the sex pheromone of their prey (Hemiptera: Matsucoccidae). Bull. Entomol. Res. 96, 179–185. doi: 10.1079/BER2005415 Bruce, T. J. A., and Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects - finding the right mix. Phytochemistry 72, 1605–1611. doi: 10.1016/j.phytochemistry.2011.04.011 Büchel, K., Malskies, S., Mayer, M., Fenning, T. F., Gershenzon, J., Hilker, M., et al. (2014). Plant odour plumes as mediators of plant-insect Trichogramma Boo, K. S., and Yang, J. P. (2000). Kairomones used by its stink bug host Nezara viridula Trissolcus basalis parasitoid Beyaert, I., and Hilker, M. (2014). Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 220, 726–738. doi: 10.1111/nph.14428 Dean, G. J., and Satasook, C. (1983). Response of Chrysoperla carnea (Neuroptera: Chrysopidae) to some potential attractants. Bull. Entomol. Res. 73, 619–624. doi: 10.1016/S0007-4855(00)009226 De-Lange, E. S. D., Lanpachine, D., Guo, H., Xu, W., Vlimant, M., Erb, M., et al. (2020). Spodoptera frugiperda caterpillars suppress herbivore-induced volatile emissions in maize. J. Chem. 46, 344–360. doi: 10.1016/j.snb.2020-01153-x De-Moraes, C. M., Lewis, W. J., Paré, P. W., Alb orn, H. T., and Tumlinson, J. H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–573. doi: 10.1038/31219 Dicke, M., and Bruin, J. (2001). Chemical information transfer between plants: back to the future. Biochem. Syst. Ecol. 29, 981–994. doi: 10.1016/S0305-1978(01)00045-X Dicke, M., and Sabelis, M. W. (1988). Insectochemical terminology: based on cost-benefit analysis rather than origin of compounds. Funct. Ecol. 2, 131–139. doi: 10.2373/2389687 Dicke, M., and van Loon, J. J. A. (2000). Multitransfer effects of herbivore-induced plant volatile in an evolutionary context. Entomol. Exp. Appl. 97, 237–249. doi: 10.1046/j.1570-7458.2000.00736.x Drukker, B., Bruin, J., and Sabelis, M. W. (2000). Anticoch demonstrars predators to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25, 260–265. doi: 10.1111/j.1095-3640.2000.00190.x Eilenberg, J., Hajek, A., and Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl 46, 387–400. Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. PNAS 101, 1781–1785. doi: 10.1073/pnas.030837101 Erb, M., Foresti, N., and Turlings, T. C. J. (2010). A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol. 10:247. doi: 10.1186/1471-2229-10-247 Faber, T., Joerges, J., and Menzel, R. (1999). Associative learning modifies neural representations of odors in the insect brain. Nat. Neurosci. 2, 74–78. doi: 10.1038/4576 Fatouros, N. E., Dicke, M., Mumm, R., Meiners, T., and Hilker, M. (2008). Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19, 677–689. doi: 10.1093/beheco/arm011 Fellowes, M. D. E., van Alphen, J. J. M., and Jervis, M. A. (2007). “Foraging behaviour”, in Insects as Natural Enemies: A Practical Perspective, ed M. A. Jervis (Dordrecht: Springer), 1–71. doi: 10.1007/978-1-4020-2625-6_1 Felton, G. W., Chung, S. H., Hernandez, M. G. E., Lewis, J., Peiffer, M., and Tian, D. (2014). “Herbivore oral secretions are the first line of protection against plant-induced defences,” in Annual Plant Reviews, Insect Plant-Interactions, eds C. Voelckel and G. Jander (Oxford: Wiley), 37–76. doi: 10.1002/9781118132949.apr0506 Ferry, A., Dugravot, S., Delattre, T., Bagéries, A.-G., Poinot, D., and Cortesero, A. M. (2007). Identification of a widespread monomolecular odor differentially attractive to several delia radicum ground-dwelling predators in the field. J. Chem. Ecol. 33, 2064–2077. doi: 10.1007/s10886-007-9373-3 Fatouros, N. E., Troun, L. E., Dugravot, S., and Cortesero, A. M. (2009). Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on Delia radicum and its natural enemies. Biol. Control 49, 219–226. doi: 10.1016/j.biocontrol.2009.01.013
in parasitoid wasps: opportunities for converging ecology and neuroscience. *Proc. Royal Soc. B: Biol. Sci.* 278, 889–897. doi: 10.1098/rspb.2010.2199

Hopkins, A. D. (1917). A discussion of H. G. Hewitt's paper on insect behaviour. *J. Ecol. Environol.* 10, 92–93.

Ingrao, A. J., Walters, J., and Szendrei, Z. (2019). Biological control of *Asparagus* pests using synthetic herbivore-generated volatiles. *Environ. Entomol.* 48, 202–210. doi: 10.1093/eevy/171

Jaenike, J. (1978). On optimal oviposition behavior in phytophagous insects. *Theoretical Popul. Biol.* 14, 350–356. doi: 10.1016/0040-5809(78)90012-6

Jaenike, J. (1983). Induction of host preference in *Drosophila melanogaster*. *Oecologia* 58, 320–325. doi: 10.1007/BF00385230

James, D. G. (2003a). Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, *Chrysopa nigricornis*. *J. Chem. Ecol.* 29, 1601–1609. doi: 10.1007/b1027013493

James, D. G. (2003b). Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. *Environ. Entomol.* 32, 977–982. doi: 10.1603/0046-225X-32.7.977

James, D. G. (2006). Methyl salicylate is a field attractant for the golden eye lacewing, *Chrysopa oculata*. *Biocontrol Sci. Technol.* 16, 107–110. doi: 10.1080/09583150500188510

James, D. G., and Price, T. S. (2004). Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. *J. Chem. Ecol.* 30, 1613–1628. doi: 10.1007/BF00042072.18151.6f

Jansen, A., Fonseca, J. O., Calaix, F., Silva, L., Pedrosa, A. R. P., Lima, E. R., et al. (2014). Time scales of associating food and odor by predator communities in the field. *Behav. Ecol.* 25, 1123–1130. doi: 10.1093/behavco/aur094

Jaworski, C. C., Xiao, D., Xu, Q., Ramirez-Romero, R., Guo, X., Wang, S., et al. (2019). Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. *J. Appl. Ecol.* 56, 1716–1788. doi: 10.1111/1365-2664.13353

Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemreta, R. S., Ding, H., and Eigenbrode, S. D. (2004). Volatile cues influence the response of *Rhopalosiphum padi* (Homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. *J. Chem. Ecol.* 33, 1207–1216. doi: 10.1006/0046-225X.33.5.1207

Jing, T., Du, W., Gao, T., Wu, Y., Zhang, N., Zhao, M. J., et al. (2020). Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. *Plant Cell Environ.* 44, 1178–1191. doi: 10.1111/pce.13861

Jones, V. P., Horton, D. R., Mills, N. J., Unruh, T. R., Baker, C. C., Melton, T. D., et al. (2016). Evaluating plant volatiles for monitoring natural enemies in apple, pear and walnut orchards. *Biological Control.* 102, 53–65. doi: 10.1016/j.biocontrol.2015.03.009

Jones, V. P., Steffan, S. A., Wiman, N. G., Horton, D. R., Miliczky, E., Zhang, Q.-H., et al. (2011). Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. *Biological Control.* 56, 98–105. doi: 10.1016/j.biocontrol.2010.10.001

Kaiser, L., Ode, P., van Nouhuys, S., Calatayud, P. A., Colazza, S., Cortesero, A. M., et al. (2017). “The plant as a habitat for entomophagous insects,” in *Insect-Plant Interactions in a Crop Protection Perspective*. Advances in Botanical Research, eds N. Sauvion, P-A. Calatayud, and D. Thiéry (Londres: Elsevier Ltd.), 179–223. doi: 10.1016/bs.abr.2016.09.006

Kaplan, I. (2012a). Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? *Biocontrol.* 60, 77–89. doi: 10.1016/j.biocontrol.2011.10.017

Kaplan, I. (2012b). Trophic complexity and the adaptive value of damage-induced plant volatiles. *Plos Biol.* 10(6):e1001437. doi: 10.1371/journal.pbio.1001437

Kaplan, I., and Lewis, D. (2014). What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. *Pest Manag. Sci.* 71, 139–150. doi: 10.1002/ps.3779

Kelly, J. L., Hagler, J. R., and Kaplan, I. (2014). Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. *Biological Control.* 71, 70–77. doi: 10.1016/j.biocontrol.2014.01.010

Kessler, A., and Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. *Science* 291, 2141–2244. doi: 10.1126/science.291.5511.2141
Lim, U. T., and Mainali, B. P. (2013). Effect of aggregation pheromone
Lynch, L. D., and Thomas, M. B. (2000). Nontarget effects in the biocontrol of
Kruidhof, H. M., Kostenko, O., Smid, H. M., and Vet, L. E. M. (2019). .
Maatallah, S., Dabbou, S., Castagna, A., Guizani, M., Hajlaoui, H., Rechelt, M., et al. (2014). Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant Cell Environ. 37, 1909–1923. doi: 10.1111/pce.12287
McCormick, A. C., Unsicker, S. B., and Gershenson, J. (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310. doi: 10.1016/j.plants.2012.03.012
Meiners, T., Wäckers, F., and Lewis, W. J. (2003). Associative learning of complex odours in parasitoid host location. Chem. Senses 28, 231–236. doi: 10.1093/chemse/28.3.231
Mendel, Z., Assael, F., and Dunkelblum, E. (2004). Kairomonal attraction of predatory bugs (Heteroptera: Anthocoridae) and brown lacewings (Neuroptera: Hemerobiidae) to sex pheromones of Matsucoccus species (Hemiptera: Matsucoccidae). Biocontrol Control 30, 134–440. doi: 10.1016/j.biocontrol.2003.06.001
Mery, F. (2013). Natural variation in learning and memory. Cur. Opin. Neurobiol. 23, 52–56. doi: 10.1016/j.conb.2012.09.001
Mills, N. J., and Heimpel, G. E. (2018). Could increased understanding of foraging behavior help to predict the success of biological control? Cur. Opin. Insect Sci. 27, 26–31. doi: 10.1016/j.cois.2018.02.013
Mills, N. J., and Wainberg, E. (2008). “Optimal foraging behavior and efficient biological control methods,” in Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications, eds E. Wanjberg, C. Bernstein, and J. M. van Alphen (Blackwell: Oxford), 3–30. doi: 10.1002/9780470696200.ch1
Moreno, D. S., and Luck, R. F. (1992). Augmentative releases of Aphysitis melinus (Hymenoptera: Aphelinidae) to suppress california red scale (Homoptera: Diaspididae) in Southern California lemon orchards. J. Econ. Entomol. 85, 1112–1119. doi: 10.1093/jee/85.4.1112
Mumm, R., and Dicke, M. (2010). Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667. doi: 10.1139/Z10-032
Murali-Baskaran, R. K., Chander, K., Kaushal, P., Kumar, J., Parthiban, P., Senthil-Nathan, S., et al. (2018). Role of kairomone in biological control of crop pests - a review. Physiol. Mol. Plant Pathol. 101, 3–15. doi: 10.1016/j.pmpp.2017.07.004
Najar-Rodriguez, A., Orschel, B., and Dorn, S. (2013). Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory. J. Chem. Ecol. 39, 418–429. doi: 10.1007/s10886-013-0262-7
Ockroy, M. L. B., Turlings, T. C. J., Edwards, P. J., Fritzsche-hoballah, M. E., Ambrosetti, L., Bassetti, P., et al. (2001). Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agric. For. Entomol. 3, 201–209. doi: 10.1046/j.1461-9555.2001.00107.x
Orre-Gordon, G. U. S., Wraaten, S. D., Jonsson, J., Simpson, M., and Hale, R. (2013). “Attract and Reward: combining a herbivore-induced plant volatile with floral resource supplementation - multi-trophic level effects,” in Biological Control 64, 106–115. doi: 10.1016/j.biocontrol.2012.10.003
Pålsson, J. (2019). “Attract, Reward and Disrupt: Combining Habitat Manipulation and Semiochemicals to Enhance Pest Control in Apple Orchards,” in Ph.D Thesis: Swedish University of Agricultural Sciences.
Pappas, M. L., Steppuhn, A., Geuss, D., Tgapaloud, N., Zografou, A., Sabelis, M. W., et al. (2015). Beyond predation: the zoophytophagous predator Macrolopus pygmaeus induces tomato resistance against spider mites. PLoS ONE 10:e0127251. doi: 10.1371/journal.pone.0127251
Parolin, P., Breseh, C., Desneux, N., Brun, R., Bout, A., Boll, R., et al. (2012). Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100. doi: 10.1080/09670874.2012.659229
Salamanca, J., Souza, B., and Rodriguez-Saona, C. (2018). Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in agro-ecosystem. Pest Manag. Sci. 74, 2133–2145. doi: 10.1002/ps.4910
Sarkar, S. C., Wang, E., Wu, S., and Lei, Z. (2018). Application of trap cropping as companion plants for the management of agricultural pests: a review. Insects 9:128. doi: 10.3390/insects9040128
Sarmiento, R. A., Lemos, F., Bleeker, P. M., Schuurink, R. C., Pallini, A., Olivera, A. M. G., et al. (2011). A herbivore that manipulates plant defence. Ecol. Lett. 14, 229–236. doi: 10.1111/j.1461-0248.2010.01575.x
Schrauscher, P. (2018). Herbivore-associated bacteria as potential mediators and modifiers of induced plant defense against spider mites and thrips. Front. Plant Sci. 9:1107. doi: 10.3389/fpls.2018.01107
Scheirs, J., and De Bruyn, L. (2002). Integrating optimal foraging and optimal oviposition theory in plant–insect research. Oikos 96, 187–191. doi: 10.1034/j.1600-0706.2002.960121.x
Schröder, R., and Hilker, M. (2008). The relevance of background odor in resource location by insects: a behavioral approach. BioScience 58, 308–316. doi: 10.1641/B580406
Shiojiri, K., Ozawa, R., Kugimiya, S., Uefune, M., van Wijk, M., Sabelis, M. W., et al. (2010). Herbivore-specific, density-dependent induction of plant volatiles: honest or ‘cry wolf’ signals? PLoS ONE 5:e12161. doi: 10.1371/journal.pone.0012161
Shiojiri, K., Takabayashi, J., and Yano, S. (2001). Infochemically mediated tritrophic interaction webs on cabbage plants. Popul. Ecol. 43, 23–29. doi: 10.1007/pl00012011
Silva, D. B., Bueno, V. H. P., van Loon, J. J. A., Pefaflor, M. F. G. V., Bento, J. M. S., and van Lenteren, J. C. (2018). Attraction of three mirid predators to tomatoes infected by both the tomato leaf mining moth tuta absoluta and the whitley Bemisia tabaci. J. Chem. Ecol. 44, 29–39. doi: 10.1007/s10886-017-0909-x
Silva, D. B., Weldegbertis, B. T., van Loon, J. J. A., and Bueno, V. H. P. (2017). Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J. Chem. Ecol. 43, 53–65. doi: 10.1007/s10886-016-0807-7
Simpson, M., Gurr, G. M., Simmons, A. T., Watt, S. D., James, D. G., Leeson, G., et al. (2011). Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 48, 580–590. doi: 10.1111/j.1365-2664.2010.01946.x
Smid, H. M., and Vet, L. E. M. (2016). The complexity of learning, memory and neural processes in an evolutionary ecological context. Cur. Opin. Insect Sci. 15, 61–69. doi: 10.1016/j.cois.2016.03.008
Starr, G., Petersen, M. A., Jespersen, B. M., and Hansen, A. S. (2015). Variation of volatile compounds among wheat varieties and landraces. Food Chem. 174, 527–237. doi: 10.1016/j.foodchem.2014.11.077
Stelinski, L. L., Willett, D., Rivero, M. J., and Ali, J. G. (2019). “Tuning” communication among four trophic levels of the root biome to facilitate biological control. Biol. Control 131, 49–53. doi: 10.1016/j.biocbull.2019.01.006
Sugawara, Y., and Ueno, T. (2020). Field evaluation of CLB as an attractant for beneficial parasitoid wasps attacking mealybug pests. J. Entomol. Zool. Stud. 8, 192–196. doi: 10.22271/ento
Svensson, G. P., Larsson, M. C., and Hedlin, J. (2004). Attraction of the larval predator Elater ferrugineus to the sex-pheromone of its prey, Osmodera ermita, and its implication for conservation biology. J. Chem. Ecol. 30, 353–363. doi: 10.1023/B:OECO.0000017982.51642.8c
Symonds, M. R. E., and Gitau-Clarke, C. W. (2016). “The evolution of aggregation pheromone diversity in bark beetles,” In Advances in Insect Physiology, eds C. Tittiger and G. J. Blomquist (Amsterdam: Elsevier Ltd.), 195–234. doi: 10.1016/bs.aiip.2015.12.003
Szendrei, Z., and Rodriguez-Saona, C. (2010). A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol. Exp. Appl. 134, 201–210. doi: 10.1111/j.1365-7458.2009.00954.x
Takabayashi, J., Sabelis, M. W., Janssen, A., Shiojiri, K., and van Wijk, M. (2006). Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecol. Res. 21, 3–8. doi: 10.1007/s11783-005-0129-7
Thomas-Danguin, T., Sinding, C., Romagny, S., Mountassir, F. E., Atanasova, B., Le Berre, E., et al. (2014). The perception of odor objects in everyday
life: a review on the processing of odor mixtures. Front. Physiol. 5:504.

doi: 10.3389/fphys.2014.00504

Thompson, A. C., Baker, D. N., Gueldner, R. C., and Hedin, P. A. (1971). Identification and quantitative analysis of the volatile substances emitted by maturing cotton in the field. Plant Physiol. 48, 50–52. doi: 10.1104/pp.48.1.50

Tibor, B., Gols, R., Hemerik, L., van Lenteren, J. C., and Vet, L. E. M. (2007). Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host–parasitoid interactions. J. Anim. Ecol. 76, 845–853. doi: 10.1111/j.1365-2656.2007.01259.x

Tittiger, C., and Blomquist, G. J. (2016). Pheromone production in pine bark beetles. Adv. Insect Physiol. 50, 235–263. doi: 10.1016/bs.api.2016.02.002

Tóth, M., Szentkirályi, F., Letardi, A., Tabilio, R. M., Jaastad, G., van Wijk, M., De Bruijn, P. J. A., and Sabelis, M. W. (2011). Complex odor from the bee family Apidae that attracts natural enemies? Ecol. Lett. 14, 1105–1112. doi: 10.1111/j.1461-0248.2011.01605.x

van Lenteren, J. C. (2000). “Success in biological control of art hropods by using an understanding of host chemical cues.” In Biological control of art hropods. Amsterdam: Springer Science+Business Media. pp. 209–218. doi: 10.1007/978-94-011-4014-0_3

Wei, J., Cai, X., Bian, L., Luo, Z., Li, Z., and Chen, Z. (2017a). A push for the parasitoid Aphytis melinus to recognize and attack the pest. J. Pest Sci. 90, 509–517. doi: 10.1007/s10909-017-9502-9

Wei, J., Cao, L., Sun, J., Du, W., and Lu, J. (2017). Roles of (Z)-3-hexenol and (Z)-3-hexenyl acetate in the attraction of Chrysoperla carnea. J. Asia-Pac. Entomol. 20, 75–81. doi: 10.1007/s12561-016-0502-z

Wei, J.-R., Lu, X.-P., and Jiang, L. (2013). Monoterpenes from larval frass of two cerambycids as chemical cues for a parasitoid, Dastarchus helophoroides. J. Insect Sci. 13:59. doi: 10.1673/031.013.5901

Wei, J.-R., Yang, Z.-Q., Hao, H.-L., and Du, J.-W. (2008). (R)–(+)–Limonene, kairomone for Dastarchus helophoroides, a natural enemy of longhorned beetles. Agric. For. Entomol. 10, 323–330. doi: 10.1111/j.1614-9653.2008.00384.x

Weiss, M. R. (1997). Innate color preferences and flexible color learning in the bee Apis mellifera. J. Comp. Physiol. A Neuroethol. Psychol. Anim. Behav. 63, 235–263. doi: 10.1006/jcbp.1997.0089

Wu, H., Coudron, T. A., Zhang, L., Aldrich, R. J., Xu, W., Xu, J., et al. (2019). Identification and field verification of aggregation-sex pheromone from the millipede beetle, Armathia chinensis. Chemoecology 29, 235–245. doi: 10.1007/s10009-019-00292-2

Xiu, C., Dai, W., Pan, H., Zhang, W., Luo, S., Wyckhuys, K. A. G., et al. (2019c). Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum. Biol. Control 135, 41–47. doi: 10.1016/j.biocontrol.2019.05.004

Xiu, C., Xu, B., Pan, H., Zhang, W., Yan, Y., and Lu, Y. (2019b). Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coccinellidae). J. Integr. Agric. 18, 873–883. doi: 10.1007/s11356-018-1927-6

Xiu, C., Zhang, W., Xu, B., Wyckhuys, K. A. G., Cai, X., and Lu, Y. (2019a). Volatiles from aphid-infested plants attract adults of the multicolored asian lady beetle Harmonia axyridis. Biol. Control 129, 1–11. doi: 10.1016/j.biocontrol.2018.11.008

Xu, Q., Hatt, S., Lopes, T., Zhang, Y., Rodson, B., Chen, J., et al. (2017a). A push – pull strategy to control aphids combines intercropping with semiologocal releases. J. Pest Sci. 91, 93–103. doi: 10.1007/s10340-017-0888-2

Xu, X., Cai, X., Bian, L., Luo, Z., Li, Z., and Chen, Z. (2017b). Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onokii matsuda. J. Econ. Entomol. 110, 2357–2363. doi: 10.1093/jeet/oxx269

Yang, J.-N., Wei, J.-N., and Kang, L. (in press). Feeding of pea leaminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense. Insect Sci. 1–43. doi: 10.1111/1744-7917.12820

Ye, L., Yang, C., Li, W., Hao, J., Sun, M., Zhang, J., et al. (2017). Evaluation of volatile compounds from chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) germplasms by headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chem. 217, 389–397. doi: 10.1016/j.foodchem.2016.08.122

Yoon, C., Seo, D.-K., Yang, J.-O., Kang, S.-H., and Kim, G.-H. (2010). Attraction of the predator, harmonia axyridis (Coccinellidae), to its prey, Myzus persicae (Hemiptera: Aphididae). Feeding on chinese cabbage. J. Asia-Pac. Entomol. 13, 255–260. doi: 10.1007/s12561-010-0609-9

Yu, H., Khashaveh, A., Li, Y., Li, X., and Zhang, Y. (2017). Field trapping of predaceous insects with synthetic herbivore-induced plant volatiles
in cotton fields. *Environ. Entomol.* 47, 114–120. doi: 10.1093/ee/nvx201

Yu, H., Zhang, Y., Wu, K., Gao, X. W., and Guo, Y. Y. (2008). Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. *Chem. Ecol.* 37, 1410–1415. doi: 10.1603/0046-225X-37.6.1410

Zhang, P.-J., Li, W.-D., Huang, F., Zhang, J.-M., Xu, F.-C., and Lu, Y.-B. (2013). Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. *J. Chem. Ecol.* 39, 612–619. doi: 10.1007/s10886-013-0283-2

Zhu, J., and Park, K. C. (2005). Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator *Coccinella septempunctata*. *J. Chem. Ecol.* 31, 1733–1746. doi: 10.1007/s10886-005-5923-8

Zhu, P., Lu, Z., Heong, K., Chen, G., Zheng, X., Xu, H., et al. (2014). Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, *Cyrtorhinus lividipennis* (Heteroptera: Miridae). *PLoS ONE* 9:e108669. doi: 10.1371/journal.pone.0108669

Zverava, E. L., and Rank, N. E. (2004). Fly parasitoid *Megaselia opacicornis* uses defensive secretions of the leaf beetle *Chrysomela lapponica* to locate its host. *Oecologia* 140, 516–522. doi: 10.1007/s00442-004-1602-7

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ayelo, Pirk, Yassuf, Chailleux, Mohamed and Deletre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.