Original Article

Ratio between negative and positive lymph nodes is a novel prognostic indicator for patients with esophageal cancer: A Surveillance, Epidemiology and End Results database analysis

Wanyi Xiao,†, Huagang Liang,†, Hongdian Zhang, Ran Jia, Yueyang Yang, Yang Wang, Peng Tang & Zhentao Yu

1 Department of Esophageal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

2 Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, China

3 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

Keywords

Esophageal cancer; prognosis; the ratio between negative and positive lymph nodes; tumor-RNP-metastasis stage.

Correspondence

Zhentao Yu, Department of Esophageal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.

Tel: +86 22 2334 0123

Fax: +86 22 2335 9984

Email: yztao2015@163.com

†The authors contributed equally to this work.

Received: 27 August 2020;
Accepted: 20 September 2020.

doi: 10.1111/1759-7714.13688

Thoracic Cancer 11 (2020) 3490–3500

Abstract

Background: The aim of this study was to explore whether the ratio between negative and positive lymph nodes (RNP) could predict the overall survival (OS) of esophageal cancer (EC) patients with lymph node metastasis following esophagectomy.

Methods: We utilized the Surveillance, Epidemiology and End Results (SEER) database to include the records of 2374 patients with lymph node metastases post-surgery. All patients were randomly assigned into the training cohort (n = 1424) and validation cohort (n = 950). Multivariate Cox regression analyses were performed to identify independent prognostic factors. A novel RNP-based TRNP-M staging system was proposed. The prognostic value of N, RNP, TNM and TRNP-M staging system was evaluated using the linear trend χ² test, likelihood ratio χ² test, and Akaike information criterion (AIC) to determine the potential superiorities. We constructed nomograms to predict survival in both cohorts, and the calibration curves confirmed the predictive ability.

Results: Univariate analyses showed that N and RNP stage significantly influenced the OS of patients. Multivariate analyses revealed that RNP was an independent prognostic predictor in both the training and validation cohorts. For the stratification analysis in the two cohorts, we found significant differences in the prognosis of patients in different RNP groups on the basis of the different N stages and the number of dissected lymph nodes. In addition, the lower AIC value of RNP stage and TRNP-M staging system represented superior predictive accuracy for OS than the N stage and TNM staging system, respectively. Furthermore, the calibration curves for the probability of three- and five-year survival showed good consistency between nomogram predictive abilities and actual observation.

Conclusions: We demonstrated that compared to the classical pathological lymph nodal staging system, the RNP stage showed superior predictive accuracy for OS and can serve as a more effective prognostic guidance for lymph node positive EC patients.
Introduction

Esophageal cancer (EC) is a highly invasive digestive system malignancy characterized by rapid growth and early metastasis.1 Esophagectomy with lymphadenectomy has been applied as the standard treatment modality for potentially resectable EC. However, despite significant progress in multimodal treatment in recent years, the prognosis for patients with EC remains poor.2, 3

The identification of prognostic factors for EC is extremely important in predicting prognosis and guiding treatment. The postoperative pathological lymph node (N) staging is a basic staging of lymph node metastasis in line with the eighth edition of the American Joint Commission on Cancer (AJCC) criteria.5 However, the number of metastatic lymph nodes depends on the number of dissected lymph nodes. A low number of examined lymph nodes may lead to stage migration.5 To improve the existing prognostic evaluation system, we aimed to identify the optimal prognostic indicators for EC patients. The number of negative lymph nodes (NLNs) is the difference between the total number of completely removed lymph nodes (RLNs) and the number of positive lymph nodes (PLNs). Previous studies have shown that the NLN count is a valuable predictor of prognosis in various cancers.6–10 Several studies have also demonstrated that the number of NLNs is positively correlated with the OS of EC patients.11 The higher the number of NLNs a patient has, the better the prognosis.12, 13

The ratio of NLNs to PLNs (RNP) is obtained by taking the ratio of the number of NLNs to the number of PLNs. Several studies have validated that the RNP is a novel prognostic predictor in colon cancer and gastric cancer patients post-surgery.14–16 However, the prognostic performance of RNP in EC patients is currently unknown.

Therefore, the purpose of this study was to elucidate the value of RNP in predicting the long-term survival of EC patients using a population-based analysis of the Surveillance, Epidemiology and End Results (SEER) database.

Methods

Study population and data source

Utilizing the SEER database, we performed a retrospective study and analyzed the medical records of 5977 EC patients. Clinical data such as patient demographics, lymph node staging and survival data were collected for subsequent analyses.

The EC incidence data were collected from the SEER database, which is originally sourced from publicly available datasets incorporating data from approximately 29% of the US population. The OS of EC patients post-esophagectomy in the SEER database were estimated. We compared the OS using univariate Kaplan-Meier survival analyses and multivariate Cox regression analyses.

The inclusion criteria were as follows: (i) no distant metastasis; (ii) no preoperative neoadjuvant therapy, including chemotherapy, radiotherapy or chemoradiation; (iii) negative incision margins; (iv) confirmed by postoperative histopathological examination; (v) no perioperative death; and (vi) death due to EC progression or cancer-related complications. The exclusion criteria included: (i) presence of other pathological types except for squamous cell carcinoma and adenocarcinoma; (ii) no positive lymph node metastases; (iii) relevant clinicopathological information was incomplete; and (iv) incomplete follow-up data.

After screening, a total of 2374 EC patients who met the specified criteria were assigned into the training and validation cohorts by random assignment, with a study endpoint of OS.

Lymph node classifications

Using the newly published eighth edition of the AJCC staging system, lymph node status was classified using the metastatic lymph node counts as follows: N1, 1–2 regional lymph node metastases; N2, 3–6 regional lymph node metastases; and N3, ≥7 regional lymph node metastases. The tumor-node-metastasis (TNM) staging system is as follows: IIB, T1N1M0; IIIA, T1N2M0, T2N1M0; IIIB, T2N2M0, T3N1M0, T3N2M0, T4aN1M0; IVa, T1N3M0, T2N3M0, T3N3M0, T4aN2M0, T4aN3M0. The number of NLNs was obtained by subtracting the number of PLNs from the total number of RLNs. The NLN intervals were as follows: NLN1 (≤7), NLN2 (8–13), and NLN3 (≥14).

The RNP is defined as the ratio of the number of NLNs to the number of PLNs. We performed the following analysis to identify the appropriate cutoff point for the RNP value to maximize the significant survival differences between the various subgroups. We ranked the RNP values and divided the patients into 10 groups in a 10% proportion, compared the five-year survival rate, and used log-rank test to combine the neighborhood OS curves to determine the intervals of RNP classification. To match the N stages with the TNM staging system, the patients were divided into three subgroups: RNP1 (RNP ≥ 6.3), RNP2 (2.2 ≤ RNP < 6.3), RNP3 (0 ≤ RNP < 2.2). Furthermore, to ensure comparability with the TNM staging system, we utilized a novel Tumor-RNP Metastasis (TRNP-M) staging system based on the RNP classification. The TRNP-M staging system was set-up by replacing the N stage of the traditional TNM staging system with the matched RNP subgroups. The TRNP-M staging system is as follows: IIB, T1RNP1M0; IIIA, T1RNP2M0, T2RNP1M0; IIIB, T2RNP2M0, T3RNP1M0, T3RNP2M0, T4aRNP1M0; IVa, T1RNP3M0, T2RNP3M0, T3RNP3M0, T4aRNP2M0, T4aRNP3M0.
Statistical analysis

We used the Statistical Package of Social Science 26.0 software (IBM Corp., Armonk, NY, USA) for statistical analyses. Kaplan-Meier curves were used for overall survival analyses, and log-rank tests were utilized for comparison. As with the multivariate survival analyses, significant prognostic predictors for OS from the univariate analyses were used for Cox regression analyses and the factors that remained statistically significant were identified to be independent factors in the final models of the effect on prognosis. All the curves are depicted using GraphPad Prism 8 (GraphPad Software, LLC). A two-sided P-value of <0.05 was considered statistically significant.

The Akaike information criterion (AIC) value within a Cox proportional hazard regression model was calculated to compare performances among different lymph node staging systems because of its discriminatory ability. The lower the AIC value, the better the model for predicting outcome. By contrast, a higher linear trend χ² score or likelihood ratio χ² score verified a better model for predicting outcome.

Results

Demographics of patients

The detailed clinicopathological characteristics in the training and validation cohorts are shown in Table 1. A total of 60% of the participants (n = 1424) were randomly assigned to a training cohort, whereas the remaining 40% were included in a validation cohort (n = 950). For the whole study population, there were 2055 males (86.6%) and 319 females (13.4%). The median age was 64 years old, with a range of 23–92 years old. In the training cohort, there were 776 patients in stage N1, 429 patients in stage N2, and 219 patients in stage N3. For the validation cohort, there were 568 patients in stage N1, 256 patients in stage N2, and 126 patients in stage N3. Based on the number of negative lymph nodes, patients were split up into three groups: NLN1 (n = 505), NLN2 (n = 361), and NLN3 (n = 558) in the training cohort. For the validation cohort, 326, 251 and 373 patients were split up into NLN1, NLN2 and NLN3 groups, respectively. Furthermore, based on the RNP value, there were 554 patients in stage RNP1, 411 patients in stage RNP2, and 459 patients in stage RNP3 in the training cohort, while the number of patients in the validation cohort classified into RNP1, RNP2, RNP3 were 398, 301, and 251, respectively.

Univariate survival analysis

The overall survival curves of the two cohorts by N, NLN, and RNP categories are presented in Fig 1. For patients in the training cohort, the five-year survival rates of N1, N2, and N3 groups under the AJCC nodal staging guidelines were 26.5%, 17.0% and 7.8%, respectively (P < 0.001, Fig 1a). The five-year OS rates for the NLN1, NLN2, and NLN3 groups were 12.7%, 23.9%, and 26.3%, respectively (P < 0.001, Fig 1b). For the RNP1, RNP2, and RNP3 groups, the observed five-year OS rates were 32.0%, 19.0%, and 9.8%, respectively (P < 0.001, Fig 1c). In addition, for patients in the validation cohort, the five-year OS rates of N1, N2, and N3 groups were 26.0%, 10.4% and 7.3%, respectively.

Table 1 Univariate analysis of prognostic factors influencing the survival of esophageal cancer patients with lymph node metastasis

Variable	Training cohort	Validation cohort
Gender, male/female		
Numbers	1226/198	829/121
HR (95% CI)	0.904 (0.757–1.081)	1.245 (0.992–1.561)
P-value	0.268	0.058
Age, <65–≥65		
Numbers	744/680	555/395
HR (95% CI)	1.270 (1.126–1.432)	1.406 (1.205–1.640)
P-value	0.001	<0.001
Tumor location, upper/middle/lower		
Numbers	19/141/1264	16/79/855
HR (95% CI)	0.970 (0.827–1.138)	0.916 (0.747–1.122)
P-value	0.706	0.395
Tumor size, <40 mm≥40 mm		
Numbers	599/825	453/497
HR (95% CI)	1.248 (1.104–1.411)	1.282 (1.100–1.494)
P-value	<0.001	<0.001
Histological type, G1/G2/G3		
Numbers	47/496/881	33/392/525
HR (95% CI)	1.289 (1.153–1.441)	1.450 (1.259–1.670)
P-value	<0.001	<0.001
T stage, T1/T2/T3/T4a		
Numbers	158/199/968/99	116/149/632/53
HR (95% CI)	1.158 (1.115–1.204)	1.136 (1.081–1.194)
P-value	<0.001	<0.001
No. of dissected lymph nodes, <16≥16		
Numbers	777/647	542/408
HR (95% CI)	0.829 (0.734–0.937)	0.736 (0.630–0.860)
P-value	0.003	0.001
N stage, 1/2/3		
Numbers	776/429/219	568/256/126
HR (95% CI)	1.428 (1.319–1.546)	1.449 (1.310–1.603)
P-value	<0.001	<0.001
NLN stage, 1/2/3		
Numbers	505/361/558	326/251/373
HR (95% CI)	0.790 (0.737–0.848)	0.746 (0.682–0.815)
P-value	<0.001	<0.001
RNP, stage 1/2/3		
Numbers	554/411/459	398/301/251
HR (95% CI)	1.444 (1.343–1.552)	1.547 (1.407–1.700)
P-value	<0.001	<0.001

CI, confidence interval; G1, well differentiated; G2, moderately differentiated; G3, poorly differentiated/undifferentiated; HR, hazard ratio; NLN, negative lymph node; RNP, the ratio between negative and positive lymph nodes.
respectively ($P < 0.001$, Fig 1d). The five-year OS rates for the NLN1, NLN2, and NLN3 groups were 12.4%, 18.7%, and 25.7%, respectively ($P < 0.001$, Fig 1e). For the RNP1, RNP2, and RNP3 groups, the observed five-year OS rates were 29.6%, 16.5%, and 7.9%, respectively ($P < 0.001$, Fig 1f).

The clinicopathological characteristics of the two cohorts and the impact of prognostic factors are summarized in Table 1. Intriguingly, significant risk factors found in the training group and further confirmed in the validation cohort were age (both $P < 0.001$), tumor size (both $P < 0.001$ and $P = 0.001$, respectively), histological grade (both $P < 0.001$), T stage (both $P < 0.001$), number of dissected lymph nodes (both $P < 0.001$ and $P = 0.001$, respectively), N stage (both $P < 0.001$), NLN stage (both $P < 0.001$) and RNP stage (both $P < 0.001$).

Multivariate survival analysis

The effect of the prognostic variables on survival are described in Table 2. We compared three different lymph node stages, and measured their relationship with EC patient survival. The N stage, contained in Model 1, were statistically significantly related to OS in both the training and validation cohorts. The Model 2 incorporated N stage and NLN stage. While replacing the NLN stage, N and RNP stage were included in the Model 3 to see the difference. We then combined these variables to build the fourth model. In Model 2, N stage and NLN count were statistically significantly related to OS in both cohorts. In Model 3 of the training and validation cohorts for OS, RNP (hazard ratio (HR) = 1.276, 95% confidence interval (CI): 1.137–1.432, $P < 0.001$ and HR = 1.325, 95% CI: 1.146–1.532, $P < 0.001$, respectively) were identified as significant predictors, while N stage ($P = 0.054$ and $P = 0.058$, respectively) was not identified as a significant predictor in the two cohorts. Furthermore, in Model 4, we found that the RNP was correlated with survival (HR = 1.231, 95% CI: 1.072–1.414, $P = 0.003$ and HR = 1.222, 95% CI: 1.029–1.452, $P = 0.022$), but NLN no longer predicted OS ($P = 0.360$ and $P = 0.091$). Other significant prognostic predictors of OS remained as independent factors and included age, histological grade, T stage and N stage (Table 2).

Prognostic prediction accuracy of the various categories of lymph node metastasis

To verify the prognostic performance of the RNP stage on the OS of patients, we performed stratification analyses of the prognostic effect of the RNP classifications on the basis of the different N stages and the number of dissected lymph nodes.

In N1 patients of both cohorts, RNP staging was identified as a significant predictor (both $P < 0.001$, Fig 2a and c). In the subgroup which incorporated both N2 and N3 patients, RNP staging was significantly correlated with OS.
in both training (P < 0.001, Fig 2b) and validation cohorts (P < 0.001, Fig 2d).

We also investigated the prognostic value of the RNP stage on OS in the context of the number of dissected lymph nodes. Figure 3 shows that effect of RNP classifications significantly differed across any number of dissected lymph nodes group in both the training and validation cohorts (both P < 0.001) (Fig 3a–d).

Comparison of the prognostic value between TNM and TRNPM classifications

Furthermore, the factor of RNP was incorporated into TNM staging system for EC patients. The two staging systems were directly compared for convenience. With the TNM staging system in the training cohort, 127 cases were stage IIB, 163 cases were stage IIIA, 883 cases were stage IIIB, and 251 cases were stage IVA. Furthermore, 91 cases were stage IIB, 123 cases were stage IIIA, 594 cases were stage IIIB, and 142 cases were stage IVA in the validation cohort. The five-year OS rates of stage IIB, IIIA, IIIB and IVA EC patients were 43.0%, 33.6%, 18.6% and 8.2%, respectively, in the training cohort, while they were 45.6%, 29.9%, 15.3%, 8.6%, respectively, in the validation cohort (Table 3).

With the TRNPM staging system, there were 81 stage IIB patients, 164 stage IIIA patients, 687 stage IIIB patients, and 492 stage IVA patients in the training cohort. Furthermore, 67 cases were stage IIB, 109 cases were stage IIIA, 505 cases were stage IIIB, and 269 cases were stage IVA in the validation cohort. The five-year OS rates of stage IIB, IIIA, IIIB and IVA patients were 48.5%, 38.2%, 21.0% and 10.4%, respectively, while they were 52.1%, 34.8%, 17.9% and 8.4%, respectively in the validation cohort. Therefore, the TRNPM staging system had a greater statistical significance comparable to the TNM staging system in both independent cohorts (P < 0.001, respectively) (Fig 4a–d).
Comparison of the prognostic superiority between N, RNP, TNM and TRNP/M classifications

We used three parameters to compare the N and RNP classification: linear trend χ^2 score, likelihood ratio χ^2 score and AIC value. The higher linear trend χ^2 score and higher likelihood ratio χ^2 score, the better the system, whereas the lower the AIC value, the better the system. In the multivariable regression analyses, they were all independent factors of overall survival (both $P < 0.001$). We found that the linear trend χ^2 scores were 55.24 and 95.42 of N and RNP, respectively in the training cohort, while they were 30.51 and 69.50 in the validation cohort. While the likelihood ratio χ^2 scores were 72.88 and 117.5 in the training cohort, and 50.24 and 77.52 in the validation cohort.

Figure 2 Cumulative five-year overall survival (OS) curves for ratio between negative and positive lymph nodes (RNP) stage in patients with (a) N1 stage, (b) N2+N3 stage of the training cohort, (c) N1 stage, (d) N2+N3 stage of the validation cohort.

Figure 3 Cumulative five-year overall survival (OS) curves for ratio between negative and positive lymph nodes (RNP) stage in patients with (a) dissected lymph nodes <16, (b) dissected lymph nodes ≥ 16 of the training cohort, (c) dissected lymph nodes <16, (d) dissected lymph nodes ≥ 16 of the validation cohort.
and 99.32 of N and RNP, respectively in the training cohort, they were 48.27 and 80.84 in the validation cohort. From the results of the AIC value in Cox regression, we determined that the AIC of RNP was lower than that of N stage (Table 4). Therefore, we considered that RNP had the better discrimination ability for obvious improvement in the accuracy of prognostic prediction for EC patients than the N classification.

The linear trend χ^2 scores, likelihood ratio χ^2 scores, and AIC values were also used to compare the prognostic performance of the two staging systems. We found that the TRNpM classification had the higher linear trend χ^2 scores, likelihood ratio χ^2 scores and lower AIC values compared to the TNM staging system in both cohorts (Table 4). We therefore demonstrated that the performance of the

Variable	Training cohort	Validation cohort				
	Numbers, 5-YSR (%)	HR (95% CI)	P-value	Numbers, 5-YSR (%)	HR (95% CI)	P-value
TNM stage						
IIIB	127	43.0	<0.001	91	45.6	<0.001
IIIA	163	33.6		123	29.9	
IIIB	883	18.6		594	15.3	
IVA	251	8.2		142	8.6	
TRNpM stage						
IIIB	81	48.5	<0.001	67	52.1	<0.001
IIIA	164	38.2		109	34.8	
IIIB	687	21.0		505	17.9	
IVA	492	10.4		269	8.4	

5-YSR, five-year survival rate; CI, confidence interval; HR, hazard ratio; TNM, tumor-node-metastasis; TRNpM, tumor-RNP-metastasis.
TRNPM staging system is superior to the traditional TNM staging system in predicting the survival of EC patients after esophagectomy.

Prognostic nomograms for predicting the survival of EC patients

Furthermore, nomograms were used to calculate the three- and five-year OS of patients. \(R_{NP} \) was selected as an independent prognostic predictor in nomograms in both training and validation cohorts, which were identical to those in the aforementioned multivariate analyses conducted by Cox regression. In the training group, the C-index for predicting OS with the formulated nomogram was 0.648. The calibration curves exhibited optimal consistency between the actual observation of OS and nomogram-predicted OS at three- and five-years after surgery (Fig 5a and c). In the validation cohort, the C-index

Table 4	Comparison of the prognostic performance of different staging systems								
Classification	Subgroups	Training cohort	Validation cohort						
		Figure	Linear trend \(\chi^2 \)	Likelihood ratio \(\chi^2 \)	AIC	Figure	Linear trend \(\chi^2 \)	Likelihood ratio \(\chi^2 \)	AIC
N stage	N1, N2, N3	1A	55.24	72.88	13 831.30	1D	30.51	48.27	8093.79
\(R_{NP} \) stage	\(R_{NP1}, R_{NP2}, R_{NP3} \)	1C	95.42	99.32	13 804.86	1F	69.50	80.84	8061.22
TNM stage	IIIB, IIIC	4A	72.09	108.48	13 795.70	4C	34.28	57.88	8084.18
TRNPM stage	IIIB, IIIC	4B	100.36	122.91	13 781.27	4D	66.54	90.10	8051.96

AIC, Akaike information criterion; \(R_{NP} \), ratio between negative and positive lymph nodes; TNM, tumor-node-metastasis; TRNPM, tumor-RNP-metastasis.

Figure 5 Nomogram for predicting cumulative five-year overall survival (OS) in esophageal cancer patients. The sum of the points assigned to each factor by the nomogram is located on the total point axis, and a line is drawn downward to the survival axes to determine the probability of five-year OS. The c-indexes values for the training cohort (a) and the validation cohort (c) are 0.648 and 0.674, respectively. Calibration curves for predicting three- and five-year OS, which are indicative of predictive accuracy, for the training cohort (b) and the validation cohort (d). The x-axis represents the nomogram-predicted survival, and the actual survival is plotted on the y-axis. The dotted line represents the ideal correlation between predicted and actual survival.
for OS prediction was 0.674. The calibration plot in such group for OS prediction at three- and five-years also fitted very well between the observation and the prediction nomogram (Fig 5b and d).

Discussion

Our study analyzed the OS of two random cohorts of EC patients who underwent radical surgery and assessed the prognostic prediction performance of N, NLN and RNP. We confirmed RNP acted as significant prognostic factor in both the training and validation cohorts. Our nomogram also confirmed the prognostic significance of the RNP staging system in EC patients.

Lymph node status is considered one of the key elements which influence the treatment decision of esophageal cancer patients. To the best of our knowledge, the N category and NLNs are identified by the number of PLNs. Thus, an inadequate number of dissected lymph nodes will influence lymph node count, further affecting treatment and prognosis.17–19 To accurately assess lymph node metastasis for improving long-term outcomes, previous studies have included several different prognostic factors such as N, positive lymph node ratio, log odds of positive lymph nodes and NLN.2, 9, 13, 19–22 However, controversies still exist over which lymph node metastasis factor system is optimal for accurately predicting patient prognosis following radical esophagectomy.

To help eliminate the effect of the number of lymph nodes dissected on N and NLN count, we propose RNP as a new prognostic indicator. In recent years, RNP has attracted attention in gastric cancer and colon cancer as a novel category of lymph node metastasis. In the two studies by Deng et al.14, 23 it was demonstrated that RNP could help improve the accuracy of prognostic evaluation when compared with other prognostic factors, and was recommended for use in predicting OS of GC patients. To date, little research has been devoted to elucidating the prognostic value of RNP in EC patients.

The univariate analysis demonstrated that the three lymph node categories, including N, NLN and RNP stages, were all significantly associated with survival. We further conducted multivariate analyses and established four models. After eliminating the influence of confounders, we found the RNP remained statistically significant among all the established models, whereas the N and NLN stage were not significant in Model 3 and Model 4, respectively. To further verify the prognostic performance of OS in EC patients, we performed a log-rank test on the three matched RNP subgroups on the basis of the different N stages and the number of dissected lymph nodes. Stratification analysis of the training cohort identified RNP as appropriate for distinguishing evaluation survival differences for all N subgroup patients. As for the validation cohort, RNP was identified as applicable for distinguishing evaluation survival differences between patients of N stage and patients with fewer or more than 16 dissected lymph nodes. Lower RNP stage was also associated with better survival regardless of the number of dissected lymph nodes in both cohorts. Therefore, we deduced RNP could serve as the optimal category for EC patients who underwent radical surgery.

We found that RNP had higher linear trend χ^2 score, higher likelihood ratio χ^2 score and smaller AIC value in Cox regression than the N stage, which implied that RNP had the better ability to exactly predict the prognosis of patients. The results of the validation cohort were consistent with the training cohort. Furthermore, our novel TRNP-M staging system, which uses RNP instead of N staging, demonstrated better discrimination in EC patients compared to the TNM staging system according to the higher linear trend χ^2 score, higher likelihood ratio χ^2 score and smaller AIC value in both cohorts. Thus, the TRNP-M staging system is more reliable for exact evaluation of the prognosis for patients than TNM staging system. Thus, we suggest that the RNP staging system can be used as a novel factor describing lymph node metastasis for predicting the prognosis of EC patients. In the current study, we constructed nomograms to predict survival in two cohort EC patients. The nomogram accurately predicted three-, and five-year overall survival in the training and validation cohorts; C-indexes confirmed the accuracy of these predictions and the calibration curves confirmed the predictive ability.

There are several limitations of our study that should be addressed. First, the survival dataset is incomplete and cannot be completed since this study was a retrospective analysis. To address this in the future, prospective studies are needed to confirm our results. Second, since the ratio of negative to positive lymph nodes was calculated, we excluded patients without positive lymph nodes. Therefore, only patients with specific lymph node metastases were involved in the analysis. Third, the SEER database was used for this study. Although this database is large with extensive long-term follow-up information, it lacks data correlated with survival, including adjuvant treatments, comorbidities and chemotherapy regimens and dosage. Also, whether using adjuvant therapy or not has an inevitable impact on surgical treatments for survival, especially for node-positive EC patients, remains to be determined. Therefore, the broader applicability of our results may be limited. In addition, the lack of detailed treatment information may have biased the results of the study.

In conclusion, the results of this study confirmed that RNP is more accurate than the N staging system in predicting survival and reflects comprehensive information.
on lymph node dissection and positive and negative lymph node count. R_{NP} can be used as a valuable indicator to provide prognostic guidance for lymph node positive EC patients. The novel TR_{NP} staging system based on R_{NP} should be considered as an alternative to the current TNM classification.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (81772619, 81702405), the Clinical Trial Project of Tianjin Medical University (2017kylc006), Tianjin Natural Science Foundation for Youth (19JQNJ10800), Bethune Charitable Foundation, Ethicon Excellence in Surgery Grant (HZB-20190528-18), and the Doctoral Foundation of Tianjin Medical University Cancer Institute and Hospital (B1718). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Disclosure
No potential conflicts of interest are disclosed.

References
1 Huang S, Guo Y, Li Z et al. A systematic review of metabolomic profiling of gastric cancer and esophageal cancer. Cancer Biol Med 2020; 17 (1): 181–98.
2 Guan X, Liu C, Zhou T et al. Survival and prognostic factors of patients with esophageal fistula in advanced esophageal squamous cell carcinoma. Biosci Rep 2020; 40 (1). http://dx.doi.org/10.1042/BSR20193379.
3 Zeng H, Chen W, Zheng R et al. Changing cancer survival in China during 2003–15: A pooled analysis of 17 population-based cancer registries. Lancet Glob Health 2018; 6 (5): e555–67.
4 Rice TW, Ishwaran H, Ferguson MK, Blackstone EH, Goldstraw P. Cancer of the esophagus and esophagogastric junction: An eighth edition staging primer. J Thorac Oncol 2017; 12 (1): 36–42.
5 Zhang H, Liang H, Gao Y et al. Metastatic lymph node ratio demonstrates better prognostic stratification than pN staging in patients with esophageal squamous cell carcinoma after esophagectomy. Sci Rep 2016; 6 (1). http://dx.doi.org/10.1038/srep38804.
6 Zhang N, Deng J, Wang W et al. Negative lymph node count as an independent prognostic factor in stage III patients after curative gastrectomy: A retrospective cohort study based on a multicenter database. Int J Surg 2020; 74: 44–52.
7 Lu H, Guo R, Yang H et al. The prognostic value of negative lymph node count for patients with cervical cancer after radical surgery. Oncotarget 2018; 9 (2): 2810–8.
8 Wang S, Zhang B, Li C et al. Prognostic value of number of negative lymph node in patients with stage II and IIIa non-small cell lung cancer. Oncotarget 2017; 8 (45): 79387–96.
9 Ma M, Tang P, Jiang H et al. Number of negative lymph nodes as a prognostic factor in esophageal squamous cell carcinoma. Asia Pac J Clin Oncol 2017; 13 (5): e278–83.
10 Wu SG, Wang Y, Zhou J et al. Number of negative lymph nodes should be considered for incorporation into staging for breast cancer. Ann J Cancer Res 2015; 5 (2): 844–53.
11 Duan X, Tang P, Shang XB, Jiang HJ, Yu ZT. Metastatic to negative lymph node ratio demonstrates significant prognostic value in patients with esophageal squamous cell carcinoma after esophagectomy. Oncotarget 2017; 8 (49): 86908–16.
12 Hao Y, Zhang J, Du R, Huang X, Li H, Hu P. Impact of negative lymph nodes on colon cancer survival and exploring relevant transcriptomics differences through real-world data analyses. Ann Transl Med 2019; 7 (20): 525–5.
13 Zhou L, Zhao Y, Zheng Y et al. The prognostic value of the number of negative lymph nodes combined with positive lymph nodes in esophageal cancer patients: A propensity-matched analysis. Ann Surg Oncol 2020; 27 (6): 2042–50.
14 Deng J, Zhang R, Wu L et al. Superiority of the ratio between negative and positive lymph nodes for predicting the prognosis for patients with gastric cancer. Ann Surg Oncol 2015; 22 (4): 1258–66.
15 Yamashita H, Deng J, Liang H, Seto Y. Re-evaluating the prognostic validity of the negative to positive lymph node ratio in node-positive gastric cancer patients. Surgery 2017; 161 (6): 1588–96.
16 Li Q, Liang L, Jia H et al. Negative to positive lymph node ratio is a superior predictor than traditional lymph node status in stage III colorectal cancer. Oncotarget 2016; 7 (44): 72290–9.
17 Liu Y, Yang H, Fu H et al. Prognostic impact of examined lymph node count in pT1N0M0 esophageal cancer: A population-based study. Thorac Cancer 2019; 10 (7): 1636–43.
18 Twine CP, Lewis WG, Morgan MA et al. The assessment of prognostic of surgically resected oesophageal cancer is dependent on the number of lymph nodes examined pathologically. Histopathology 2009; 55 (1): 46–52.
19 Wu H, Liu CQ, Xu MQ, Guo MF, Xu SB, Xie MR. Prognostic value of the number of negative lymph nodes in esophageal carcinoma without lymphatic metastasis. Thorac Cancer 2018; 9 (9): 1129–35.
20 Wu SG, Sun JY, Yang LC et al. Prognosis of patients with esophageal squamous cell carcinoma after esophagectomy using the log odds of positive lymph nodes. Oncotarget 2015; 6 (34): 36911–22.
21 Shao Y, Geng Y, Gu W et al. Assessment of lymph node ratio to replace the pN categories system of classification of the TNM system in esophageal squamous cell carcinoma. J Thorac Oncol 2016; 11 (10): 1774–84.
22 Cao J, Yuan P, Ma H et al. Log odds of positive lymph nodes predicts survival in patients after resection for esophageal cancer. *Ann Thorac Surg* 2016; **102** (2): 424–32.

23 Deng J, Sun D, Pan Y et al. Ratio between negative and positive lymph nodes is suitable for evaluation the prognosis of gastric cancer patients with positive node metastasis. *PLOS One* 2012; **7** (8): e43925.