INDEX

Section	Page
OBJECT	1
CONTENT OF THE DATABASE	1
PROCESSING PROTOCOL	2
STRUCTURE OF THE DATABASE	2
(*) MAIN SYSTEMS OF REFERENCE	4
BIBLIOGRAPHY	5
OBJECT
Written by: Paolo Mistretta
Date: 27/01/2020

This document contains supplementary material for the article “Collection of kinematic and kinetic data of young & adult, male & female subjects performing periodic and transient gait tasks for gait pattern recognition” (Authors: Paolo Mistretta, Cecilia Marchesini, Andrea Volpini, Luca Tagliapietra, Tommaso Sciarra, Aldo Lazich, Salvatore Forte, Mauro De Matteis, Emanuele Menegatti and Nicola Petrone) presented at the 13th conference of the International Sports Engineering Association, Tokyo, Japan, 22-25 June 2020.

Data are contained in the file: “database_ISEA2020.mat”

For additional information, please contact paolo.mistretta@phd.unipd.it

CONTENT OF THE DATABASE
This sample dataset includes data relative to 5 repetitions of 4 different subject belonging to the 4 different populations analyzed, performing 16 gait task.

The 4 population analyzed are described in table 1.

Table 1. Population analyzed

Name	Code	Numerical identifier	Inclusion criteria	Population average (mean±SD)
Young Male	YM	1XX	male, 20-35 years old	age: 25.6 ± 1.8 y; height: 1.86 ± 0.06 m, weight: 76.9 ± 8.3 kg
Young Female	YF	2XX	female, 20-35 years old	age: 25.4 ± 2.9 y; height: 1.69 ± 0.06 m, weight: 58.3 ± 4.0 kg
Adult Male	AM	3XX	male, 40-60 years old	48.2 ± 7.1 y; height: 1.77 ± 0.08 m, weight: 74.8 ± 9.8 kg
Adult Female	AF	4XX	female, 40-60 years old	age: 49.3 ± 6.1 y; height: 1.62 ± 0.06 m, weight: 55.8 ± 8.2 kg

The 16 gait tasks studied are reported in table 2.

Table 2. Gait tasks collected in the database

Type	Name	Trial code	Description
Periodic	Level walk neutral	P_NW	Walking over ground at self-selected speed
	Level walk slow	P_SW	Walking over ground at self-selected slow speed
	Uphill walk	P_UW	Walking uphill on a +10° inclined ramp
	Downhill walk	P_DW	Walking downhill on a -10° inclined ramp
	Stair up	P_SU	Climbing up stairs (step height: 170 mm; step width: 280 mm)
	Stair down	P_SD	Climbing down stairs (step height: 170 mm; step width: 280 mm)
	Standing	P_ST	Standing on both feet in a natural position
	Sitting	P_SI	Sitting on a chair
	Sit to stand	T_SI_ST	From sit to stand
	Stand to sit	T_ST_SI	From stand to sit
	Stair up to stand	T_SU_ST	From climbing up stairs to stand
	Stand to stair down	T_ST_SD	From stand to climbing down stairs
	Stand to stair up	T_ST_SU	From stand to climbing up stairs
	Stair down to stand	T_SD_ST	From climbing down stairs to stand
	Level walk to stair	T_NW_SU	From over ground walk to climbing up stairs
	Stair down to level	T_SD_NW	From climbing down stairs to over ground walk

Note: All trials are at self-selected speed.
PROCESSING PROTOCOL

For the development of this database the “Helen Hayes MM” processing protocol has been used, derived from the studies of Kadaba and Davis [1-2]. The protocol relies on 22 reflective markers to build the “static” biomechanical virtual model, and on 18 to build the “dynamic” one.

The scheme of the marker locations is showed below for both the “static” (left) and the “dynamic” (right) model.

STRUCTURE OF THE DATABASE

The file “database_ISEA2020.mat” is organized in the following manner:

- Each trial contains the following data:
 - “subj_code”, subject code (see table 1);
 - “trial_code”, trial code (see table 2);
 - “trial_number”, trial number (from 00 to 04);
 - “anthropometry”, anthropometry of the subject;
 - “mTB”, mass [kg];
 - “dTH”, height [m];
“gait_cycle”, gait cycle temporal parameters;
- “gait_time”, stride time [s];
- “rTO_time”, toe off of the right leg [s];
- “rTO_perc”, toe off as a percentage of the gait cycle [%];

“ang”, joint and body segment angles;
- “jRAtb”, right ankle 3D joint angle;
 - “time”, time of the frame, native framerate of 250 Hz [s];
 - “perc”, percentage of the gait cycle of the frame, native framerate of 250 Hz [%];
 - “x”, “y”, “z”, inversion/eversion, abduction/adduction and flexion/extension joint angle respectively, native framerate of 250 Hz [deg];
 - “time_res”, time of the frame, interpolated on 100 points [s];
 - “perc_res”, percentage of the gait cycle of the frame, interpolated on 100 points [%];
 - “x_res”, “y_res”, “z_res”, inversion/eversion, abduction/adduction and flexion/extension joint angle respectively, interpolated on 100 points [deg];
- “jRkb”, right knee joint angle (same sub-fields as “jRAtb”);
- “jRHp”, right hip joint angle (same sub-fields as “jRAtb”);
- “jLAtb”, left ankle joint angle (same sub-fields as “jRAtb”);
- “jLkb”, left knee joint angle (same sub-fields as “jRAtb”);
- “jLHp”, left hip joint angle (same sub-fields as “jRAtb”);

“absangRT”, absolute Euler angles of the right thigh with respect to the gait system of reference (SoR)*
 - “time”, time of the frame, native framerate of 250 Hz [s];
 - “perc”, percentage of the gait cycle of the frame, native framerate of 250 Hz [%];
 - “x”, “y”, “z”, Euler X, Y and Z angles of the sequence XYZ, native framerate of 250 Hz [deg];
 - “time_res”, time of the frame, interpolated on 100 points [s];
 - “perc_res”, percentage of the gait cycle of the frame, interpolated on 100 points [%];
 - “x_res”, “y_res”, “z_res”, Euler X, Y and Z angles of the sequence XYZ, interpolated on 100 points [deg];
- “absangRC”, absolute Euler angles of the right calf with respect to the gait SoR* (same sub-fields as “absangRT”);
- “absangRF”, absolute Euler angles of the right foot with respect to the gait SoR* (same sub-fields as “absangRT”)
- “absangLT”, absolute Euler angles of the left thigh with respect to the gait SoR* (same sub-fields as “absangRT”);
- “absangLC”, absolute Euler angles of the left calf with respect to the gait SoR* (same sub-fields as “absangRT”);
- “absangLF”, absolute Euler angles of the left foot with respect to the gait SoR* (same sub-fields as “absangRT”);

“angvel”, joint and body segment angular velocity [deg/s] (same structure of “ang”);

“torque”, joint 1D torque;
- “tRAFE”, right joint ankle flexion/extension torque;
 - “time”, time of the frame, native framerate of 250 Hz [s];
 - “perc”, percentage of the gait cycle of the frame, native framerate of 250 Hz [%];
 - “data”, flexion/extension torque, native framerate of 250 Hz [Nm];
 - “time_res”, time of the frame, interpolated on 100 points [s];
 - “perc_res”, percentage of the gait cycle of the frame, interpolated on 100 points [%];
 - “data_res”, flexion/extension torque, interpolated on 100 points [Nm];
- “tRKFE”, right joint knee flexion/extension torque (same sub-fields as “tRAFE”);
- “trHFE”, right joint hip flexion/extension torque (same sub-fields as “tRAFE”);
- “tLFE”, left joint ankle flexion/extension torque (same sub-fields as “tRAFE”);
- “tLKFE”, left joint knee flexion/extension torque (same sub-fields as “tRAFE”);
- “tLHPFE”, left joint hip flexion/extension torque (same sub-fields as “tRAFE”);

“power”, joint 1D power [W] (same structure of “torque”);

“imu_acc”, virtual IMU 3D linear acceleration;
- “rIMUP acc g rel”, IMU virtually located on the right calf [m/s^2];
- “rIMUPs acc g rel”, IMU virtually located on the left calf [m/s^2];

“imu_angvel”, virtual IMU 3D angular velocity;
- “rIMUP angvel rel”, IMU virtually located on the right calf [deg/s];
- “rIMUPs angvel rel”, IMU virtually located on the left calf [deg/s];

“reference”, different systems of reference with respect to the LAB SoR*;
- “rGAIT”, gait SoR*;
 - “time”, time of the frame, native framerate of 250 Hz [s];
• “x”, “y”, “z”, coordinates of the center of the SoR, native framerate of 250 Hz [m];
• “rpx”, “rpy”, “rpz”, Euler Z, Y and X angles of the sequence ZYX, native framerate of 250 Hz [rad];
• “time_res”, time of the frame, interpolated on 100 points [s];
• “x_res”, “y_res”, “z_res”, coordinates of the center of the SoR, interpolated on 100 points [m];
• “rpx_res”, “rpy_res”, “rpz_res”, Euler Z, Y and X angles of the sequence ZYX, interpolated on 100 points [rad];
- “rRT”, right thigh SoR (same sub-fields as “rGAIT”);
- “rRC”, right calf SoR (same sub-fields as “rGAIT”);
- “rRF”, right foot SoR (same sub-fields as “rGAIT”);
- “rLT”, left thigh SoR (same sub-fields as “rGAIT”);
- “rLC”, left calf SoR (same sub-fields as “rGAIT”);
- “rLF”, left foot SoR (same sub-fields as “rGAIT”);
1. Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of Lower Extremity Kinematics During Level Walking. *Journal of Orthopaedic Research*, 1990, doi: 10.1002/jor.1100080310

2. Davis, R.B.; Öunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. *Human Movement Science*, 1991, vol.10, pp.575-587, doi: 10.1016/0167-9457(91)90046-Z.