Pubertal Presentation in Seven Patients with Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency.

Idkowiak, Jan; O’Riordan, S; Reisch, Nicole; Malunowicz, EM; Collins, F; Kerstens, MN; Köhler, B; Graul-Neumann, LM; Szarras-Czapnik, M; Dattani, M; Silink, M; Shackleton, Cedric; Maiter, D; Krone, Nils; Arlt, Wiebke

DOI:
10.1210/jc.2010-1607

License:
Creative Commons: Attribution-NonCommercial (CC BY-NC)

Citation for published version (Harvard):
Idkowiak, J, O’Riordan, S, Reisch, N, Malunowicz, EM, Collins, F, Kerstens, MN, Köhler, B, Graul-Neumann, LM, Szarras-Czapnik, M, Dattani, M, Silink, M, Shackleton, C, Maiter, D, Krone, N & Arlt, W 2011, 'Pubertal Presentation in Seven Patients with Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency.', Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. E453-62. https://doi.org/10.1210/jc.2010-1607

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published under the terms of a Creative Commons Non-Commercial license - http://creativecommons.org/licenses/by-nc/3.0/us/.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 23. Nov. 2019
Pubertal Presentation in Seven Patients with Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

Jan Idkowiak, Stephen O’Riordan, Nicole Reisch, Ewa M. Malunowicz, Felicity Collins, Michiel N. Kerstens, Birgit Köhler, Luitgard Margarete Graul-Neumann, Maria Szarras-Czapnik, Mehul Dattani, Martin Slink, Cedric H. L. Shackleton, Dominique Maiter, Nils Krone, and Wiebke Arlt

Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine (J.I., N.R., C.H.L.S., N.K., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Developmental Endocrinology Research Group (S.O., M.D.), Clinical and Molecular Genetics, Institute of Child Health, University College London, London WC1E 6BT, United Kingdom; Departments of Biochemistry and Experimental Medicine (E.M.M.) and Metabolic Diseases, Endocrinology, and Diabetology (M.S.-C.), The Children’s Memorial Health Institute, 20 04-830 Warsaw, Poland; Departments of Clinical Genetics (F.C.) and Pediatric Endocrinology (M.S.), Children’s Hospital at Westmead, 2145 Sydney, Australia; Department of Endocrinology (M.N.K.), University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; Institute of Experimental Pediatric Endocrinology (B.K.) and Institute of Human Genetics (L.M.G.-N.), Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; and Department of Endocrinology (D.M.), University Hospital Saint Luc, 1200 Brussels, Belgium

Context: P450 oxidoreductase (POR) is a crucial electron donor to all microsomal P450 cytochrome (CYP) enzymes including 17α-hydroxylase (CYP17A1), 21-hydroxylase (CYP21A2) and P450 aromatase. Mutant POR causes congenital adrenal hyperplasia with combined glucocorticoid and sex steroid deficiency. P450 oxidoreductase deficiency (ORD) commonly presents neonatally, with disordered sex development in both sexes, skeletal malformations, and glucocorticoid deficiency.

Objective: The aim of the study was to describe the clinical and biochemical characteristics of ORD during puberty.

Design: Clinical, biochemical, and genetic assessment of seven ORD patients (five females, two males) presenting during puberty was conducted.

Results: Predominant findings in females were incomplete pubertal development (four of five) and large ovarian cysts (five of five) prone to spontaneous rupture, in some only resolving after combined treatment with estrogen/progestin, GnRH superagonists, and glucocorticoids. Pubertal development in the two boys was more mildly affected, with some spontaneous progression. Urinary steroid profiling revealed combined CYP17A1 and CYP21A2 deficiencies indicative of ORD in all patients; all but one failed to mount an appropriate cortisol response to ACTH stimulation indicative of adrenal insufficiency. Diagnosis of ORD was confirmed by direct sequencing, demonstrating disease-causing POR mutations.

Conclusion: Delayed and disordered puberty can be the first sign leading to a diagnosis of ORD. Appropriate testosterone production during puberty in affected boys but manifest primary hypogonadism in girls with ORD may indicate that testicular steroidogenesis is less dependent on POR than adrenal and ovarian steroidogenesis. Ovarian cysts in pubertal girls may be driven not only by high gonadotropins but possibly also by impaired CYP51A1-mediated production of meiosis-activating sterols due to mutant POR. (J Clin Endocrinol Metab 96: 0000–0000, 2011)
P450 oxidoreductase (POR) deficiency (ORD) is a variant of congenital adrenal hyperplasia caused by mutations in the POR gene (1–3). POR encodes the electron donor enzyme POR that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate to all microsomal cytochrome P450 (CYP) enzymes; mutations result in impaired steroid and steroid synthesis and metabolism. Clinically, ORD manifests with disordered sex development (DSD), adrenal insufficiency, and skeletal malformations (1–5).

The skeletal malformations in ORD patients resemble the malformation phenotype of Antley-Bixler syndrome (OMIM 207410) (6). The malformation phenotype in ORD is thought to reflect impaired activities of POR-dependent enzymes involved in cholesterol synthesis and retinoic acid metabolism (7–10), including lanosterol 14α-demethylase (CYP51A1), squalene epoxidase, and CYP26 subfamily members. In ORD patients, combined deficiencies of the steroidogenic enzymes CYP17A1 and CYP21A2 represent the most striking biochemical findings. Steroid 21-hydroxylase (CYP21A2) catalyzes crucial steps of adrenal gluco- and mineralocorticoid production. CYP17A1 is expressed in adrenals and gonads and catalyzes 17α-hydroxylase and 17,20-lyase activities, required for glucocorticoid and sex steroid synthesis, respectively. Notably, ORD patients of both sexes may present at birth with DSD. Male undervirilization, i.e. 46,XY DSD, can be readily explained by inhibition of CYP17A1, which results in decreased androgen production. Masculization of affected females, i.e. 46,XX DSD, is a more puzzling finding because circulating androgen levels are usually low. This apparent contradiction could possibly be explained by the presence of an alternative pathway toward active androgen synthesis, which is active only during human fetal development (2). Elements of this proposed alternative pathway have been previously found in the fetal gonad of the tammar wallaby (11). P450 aromatase (CYP19A1), the microsomal CYP enzyme responsible for the conversion of androgens to estrogens, also depends on electron transfer from POR. In the fetus, loss of aromatase activity due to inactivating CYP19A1 mutations is associated with maternal virilization due to placental aromatase deficiency, virilization of the female fetus (46,XX DSD), and disordered pubertal development in females (12). The broad variability in phenotypic manifestation of ORD may well be explained by differential inhibition of the various POR-dependent CYP enzymes by distinct POR mutants (13, 14).

Neonatal presentation in ORD has been well described (2, 4, 5, 15, 16). However, there is a paucity of detailed data on the pubertal phenotype that is likely to be affected by impaired sex steroid synthesis. Here we present seven patients (five females, two males) with ORD and describe their clinical and biochemical characteristics during puberty.

Patients and Methods

Patients

The cohort consisted of five female and two male patients from six different countries. In all patients, appropriate written consent and assent, respectively, had been obtained in accordance with local Institutional Review Board guidelines. Patient characteristics including genetic and biochemical findings are summarized in Table 1 for the affected girls and in Table 2 for the two male patients.

Case 1

The neonatal presentation of this case, virilized genitalia (46,XX DSD) and low circulating androgens, has been described previously (2). At the age of 14 yr, the patient presented with acute abdominal pain. Investigations revealed rupture of a large (4.5 cm) left ovarian cyst requiring surgical intervention, with removal of a largely degenerative polycystic ovary. Physical examination also revealed mild dysmorphic features (depressed nasal bridge, arachnodactyly, camptodactyly, restricted elbow extension bilaterally, syndactyly of toes 2/3). Tanner stages were PH4, B4, and M0. However, serum estradiol (E2) was prepertual and gonadotropins were high (Table 1). 17-Hydroxyprogesterone (17OHP) and progesterone were elevated, cortisol showed a subnormal response to ACTH1-24 (Table 1), and hydrocortisone cover during stress was recommended. After 6 months of treatment with synthetic progestin, E2 levels slightly increased, but gonadotropins were still high (E2, 106 pmol/liter; LH, 15.3 U/liter; FSH, 8 U/liter). Treatment was changed to an E2/progestin combination. Follow-up 1 yr later showed low E2 levels and elevated gonadotropins (E2, 63 pmol/liter; LH, 40 U/liter; FSH, 16 U/liter), possibly reflecting compliance problems. At the age of 15.8 yr, spontaneous rupture of a right ovarian cyst occurred that required emergency surgical intervention resulting in the removal of the residual right ovary. The patient now receives continuous estrogen/progestin replacement therapy.

Case 2

The patient (46,XX) was born after 42 wk gestation as the third child of nonconsanguineous parents of Polish origin. Her genitalia were virilized at birth (clitoromegaly and urogenital sinus). At the age of 11.5 yr, bilateral ovarian masses were diagnosed by ultrasound and computed tomography and subsequently surgically removed. Histopathology confirmed ovarian follicular cysts. Endocrine assessment revealed undetectable E2 and elevated LH and FSH (Table 1). After 10 months, ovarian cysts on both sides recurred, and the patient was referred for further endocrine investigations. Tanner stages were B1, PH2, and M0. Several dysmorphic features were noted, including midface hypoplasia, brachycephaly, dysplastic ears, arachno- and camptodactyly, and bilaterally restricted elbow extension. Hormonal assessment showed elevated 17OHP, progesterone, and ACTH concentrations; however, cortisol was high-normal at baseline and after iv cosyntropin (Table 1). Medical treatment of the ovarian cysts with a combination of E2 (1 mg/d), GnRH superagonist (Diphereline, 3.75 mg/month), and dexamethasone (0.25 mg/d; reduction to 0.125 mg/48 h after 2 months) was initia-
TABLE 1. Summary of clinical, genetic, and hormonal findings in five female pubertal ORD patients

Ethnicity	Case 1	Case 2	Case 3	Case 4	Case 5
Karyotype	White Caucasian				
POR mutations (p.)	A287P/R457H	A287P/A287P	A287P/A287P	T142Y376	A287P/R223X
46,XX DSD	Yes	Yes	Yes	No	Yes
Skeletal malformations	Mild	Mild	Mild	Overt at birth	Overt at birth
Age at investigation (yr)	16	12	23	19	16
Tanner stages	PH4, B4, M0	PH2, B1, M0	PH3, B3, M0	PH3, B5, M1	PH3, B3, M0
Height (cm)	168 (0.9 SDS)	148 (−1.4 SDS)	166 (0.4 SDS)	182.5 (2.0 SDS)	158.7 (−0.7 SDS)
Target height (cm)	168 (−0.9 SDS)	61 (0.9 SDS)	1545 (−1.5 SDS)	175 (+0.8 SDS)	169.5 (+0.5 SDS)
Weight (kg)	51.3 (−0.7 SDS)	32.0 (−2.2 SDS)	61.4 (−0.3 SDS)	88.0 (3.1 SDS)	40.2 (−2.4 SDS)
BMI (kg/m²)	18.2 (−0.9 SDS)	14.61 (−2.1 SDS)	22.3 (0.5 SDS)	26.3 (1.5 SDS)	16.1 (−2.3 SDS)
17OHP (nmol/liter)	25 (0.45–2.9)	72.7 (0.45–2.9)	67.5 (<5)	25 (0.45–2.9)	15 (0.1–8.1)
ACTH (pmol/liter)	3.1 (2.2–11)	34.8 (2.2–11)	22 (2.2–11)	19 (2.2–11)	5.3 (2.2–11)
ACTH₁₋₂₄ iv Baseline	289 (150–780)	607 (150–780)	149 (150–780)	375 (150–780)	190 (120–780)
ACTH₁₋₂₄ iv 60 min after 250 μg	436 (>550)	717 (>550)	158 (>550)	425 (>550)	314 (>550)
Progesterone (nmol/liter)	Yes	No	Yes	Yes	Yes
Baseline	8.8 (0.9–2.3)	53.4	181.5	58 (0.9–2.3)	28.8 (0.1–5.1)
60 min after 250 μg ACTH₁₋₂₄ iv	53 (0.1–8.1)	15 (0.1–8.1)	36	n.m.	n.m.
17OHP (nmol/liter)	2.6 (1.8–12.9)	3.45 (2.8–6.6)	n.m.	0.6 (3.0–9.6)	1.7 (0.1–5.5)
Baseline	5.7 (1.1–6.2)	2.41 (0.8–9.3)	2 (2.5–5.25)	1.2 (3.0–13.0)	4.2 (0.4–7.9)
60 min after 250 μg ACTH₁₋₂₄ iv	5.3 (0.1–8.1)	1.1 (1.0–3.5)	0.48 (<2.4)	1.2 (1.0–3.5)	0.48 (0.1–1.7)
Androstenedione (nmol/liter)	5.7 (1.1–6.2)	2.41 (0.8–9.3)	n.m.	90 (70–530)	84 (66–246)
Baseline	2.6 (1.8–12.9)	3.45 (2.8–6.6)	n.m.	0.6 (3.0–9.6)	1.7 (0.1–5.5)
DHEAS (µmol/liter)	5.7 (1.1–6.2)	2.41 (0.8–9.3)	n.m.	90 (70–530)	84 (66–246)
Testosterone (nmol/liter)	n.m.	n.m.	0.48 (<2.4)	1.2 (1.0–3.5)	4.2 (0.4–7.9)
E2 (pmol/liter)	53.5 (78–312)	Undetectable	n.m.	90 (70–530)	84 (66–246)
LH (U/liter)	35.0 (1.1–3.7)	19.0 (0.3–1.2)	53.0 (0.7–4.7)	6.1 (1.1–3.7)	19.2 (0.7–4.7)
FSH (U/liter)	12.6 (3.1–8.1)	17.0 (1.6–7.3)	29.0 (3.9–7.0)	10.0 (3.1–8.1)	13.1 (3.9–7.0)

n.m., Not measured; SDS, sd score.

Case 3

The patient was born with ambiguous genitalia after an uneventful pregnancy to consanguineous parents of Italian origin. The baby was raised as a boy until the age of 5 when her gender assignment was reconsidered after the birth of a sister with obvious 46,XX DSD. A diagnostic laparotomy showed the presence of normal internal female genital organs. Multiple genital corrective surgeries including vaginoplasty and partial clitoral reduction were performed between 5 and 12 yr of age. Normal psychomotor development, bone age, and growth velocity (50th to 75th percentile) were documented. Her younger sister later died at age 8 yr after developing signs and symptoms of shock shortly after undergoing an appendectomy.

Pubertal development was induced at the age of 17 yr by treatment with equine estrogens and progesterone. At the age of 23 yr, she was assessed as having normal female appearance but with only moderate breast development (Table 1). Several mild dysmorphic features were noted (narrow hard palate, low-set ears, clinodactyly, camptodactyly, and brachydactyly of the fourth toe bilaterally). Genetic analysis confirmed a 46,XX karyotype. Hormonal evaluation showed elevated serum progesterone and 17OHP levels, whereas serum androgens were low; serum cortisol was low at baseline and did not increase appropriately after iv cosyntropin (Table 1). After 3 months of estrogen withdrawal, the patient’s gonadotropins were increased (LH, 53 U/liter; FSH, 29 U/liter). Concurrently, large ovarian cysts up to 7 cm in diameter developed, which regressed partially after reintroduction of estrogen/progestin treatment, but only resolved after the addition of glucocorticoid treatment (dexamethasone, 0.375 mg/d).

Case 4

The patient was the first child born to nonconsanguineous parents of Dutch origin. There was no genital ambiguity, but she underwent early postnatal assessment for dysmorphic features, including frontal bossing, midface hypoplasia, pear-shaped nose, low-set ears with flat helices, impaired supination of the forearms, arachnodactyly, and synostosis of several distal and interphalangeal joints. However, no precise diagnosis was established, and she was subsequently lost to follow-up.
At the age of 19 yr, she presented with irregular menses. Pubertal development was partially delayed (Table 1). Hormonal assessment revealed low E2 with normal gonadotropins; 17OHP and progesterone were elevated; baseline cortisol was normal but did not increase sufficiently after iv cosyntropin, and adrenal androgens were low (Table 1). A magnetic resonance imaging scan of the pelvic region revealed cystic enlargement of the right ovary (3 × 4 cm) with normal appearance of the left ovary and normal female anatomy of the reproductive system. Combined treatment with E2 (2 mg daily) and dydrogesterone (10 mg/d) was initiated. At present, the patient has been on hormone replacement therapy for 12 months, and repeat imaging revealed complete regression of the ovarian cyst.

Case 5

The girl was born at 36 wk gestation as the first child of a Chinese mother and a Costa Rican father. Both testes were undescended but palpable in the inguinal canal; the scrotum was not palpable at birth. Skeletal malformations (brachycephaly, frontal bossing, mid-face hypoplasia, arachnodactyly, shoulder and knee contractures, radial synostosis, multiple skeletal abnormalities, including arachnodactyly, shoulder and knee contractures, radial synostosis, bilateral coronal synostosis, partial fusion of thoracic vertebrae T3/T4, were noted. No conclusive diagnosis was made, and the patient was lost to follow-up.

The patient was referred for endocrine assessment at the age of 10.5 yr because of poor genital development (Table 2). His genitalia were undermasculinized for age (phallus of 15 mm length with little erectile tissue). Serum gonadotropins and androgen levels were prepubertal (Table 2). Cortisol was normal at baseline but insufficiently stimulated after 250 μg ACTH₁₋₂₄ iv 550 n.m. 411 (n.m.) 14 (n.m.) 54 (n.m.) 1.3 (1.1–6.2)

n.m., Not measured; SDS, SD score.

Case 6	Case 7	
Ethnicity	Hispanic/Asian	White Caucasian
Karyotype	46,XY	46,XY
POR mutations (p.)	R457H/Y576X	A287P/IV57 + 2dupT
Age at investigation (yr)	12	16
Testicular volume (right/left) (ml)	1/2	20/25
Height (cm)	143 (–0.6 SDS)	166.1 (–0.9 SDS)
Weight (kg)	28.7 (–1.8 SDS)	39.9 (–2.95 SDS)
BMI (kg/m²)	14.1 (–2.3 SDS)	15.0 (–3.3 SDS)
Skeletal malformations	Overt at birth	Overt at birth
Target height (cm)	178.5 (+1.3 SDS)	174 (–0.1 SDS)
ACTH (pmol/liter)	39.6 (2.2–11)	16 (2.2–11)
Cortisol (nmol/liter)	12.4 (2.2–11)	99.1 (2.2–11)
FSH (U/liter)	1.7	37 (0.2–6.1)
LH (U/liter)	2.4 (0.4–4.6)	1.9 (2.5)
BMI (kg/m²)	14.1 (–1.8 SDS)	39.9 (–2.95 SDS)
Weight (kg)	28.7 (–1.8 SDS)	39.9 (–2.95 SDS)
Testicular volume (right/left) (ml)	1/2	20/25
Height (cm)	143 (–0.6 SDS)	166.1 (–0.9 SDS)
Weight (kg)	28.7 (–1.8 SDS)	39.9 (–2.95 SDS)
BMI (kg/m²)	14.1 (–2.3 SDS)	15.0 (–3.3 SDS)
Skeletal malformations	Overt at birth	Overt at birth
Target height (cm)	178.5 (+1.3 SDS)	174 (–0.1 SDS)
ACTH (pmol/liter)	39.6 (2.2–11)	16 (2.2–11)
Cortisol (nmol/liter)	12.4 (2.2–11)	99.1 (2.2–11)
FSH (U/liter)	2.4 (0.4–4.6)	1.9 (2.5)
BMI (kg/m²)	14.1 (–1.8 SDS)	39.9 (–2.95 SDS)
Weight (kg)	28.7 (–1.8 SDS)	39.9 (–2.95 SDS)

At 16 yr of age, she presented to the endocrine clinic because of primary amenorrhea. Tanner staging revealed PH3, B3, and M0. Bone age was delayed by 2 yr. Pelvic ultrasound revealed an infantile uterus and bilateral polycystic ovaries with the largest cyst measuring 1 cm in diameter and with increased total ovarian volumes of 8.6 and 10 ml, respectively. Hormonal analysis showed a low E2 with up-regulated gonadotropins; baseline cortisol was low and did not increase sufficiently after iv cosyntropin, and adrenal androgens were normal (Table 1). She was started on E2 valerate for hormone replacement.

Case 6

This boy was born at 39 wk gestation as the first child of a Chinese mother and a Costa Rican father. Both testes were undescended but palpable in the inguinal canal; the scrotum was hypoplastic. Bilateral orchidopexies were performed at the age of 12 months. In addition, at birth, choanal stenosis, facial dysmorphism (brachycephaly, frontal bossing, mid-face hypoplasia, preauricular skin tags), and multiple skeletal abnormalities, including arachnodactyly, shoulder and knee contractures, radioulnar synostosis, bilateral coronal synostosis, and partial fusions of thoracic vertebrae T3/T4, were noted. No conclusive diagnosis was made, and the patient was lost to follow-up.
bental staging (Table 2). Hormonal investigations revealed normal androgens but up-regulated gonadotropins (Table 2).

Case 7

This boy was born after an uneventful pregnancy to nonconsanguineous parents of British origin. At birth, several dysomorphic features were noted including choanal stenosis, brachycephaly, and joint contractures due to radioulnar synostosis. There was no genital ambiguity; however, his right testicle was undescended but palpable in the inguinal channel. Right-sided orchiopexy was undertaken at the age of 12 months, and the boy underwent a series of osteotomies for coronal craniosynostosis.

He presented at 12 yr of age to the endocrine clinic with lack of pubertal development and testicular volumes of 4 and 12 ml, respectively. Adrenal androgen concentrations were low; testosterone was high-normal in comparison to age-specific reference (Table 2). Baseline cortisol was normal, but response to iv cosyntropin was insufficient (Table 2). Hydrocortisone treatment was initiated (10 mg/m² daily), and further pubertal development was monitored at 6-month intervals. Puberty progressed spontaneously, and when assessed at the age of 13.5 yr testicular volumes had increased to 10 and 25 ml, respectively (Table 2). Dehydroepiandrostosterone sulfate (DHEAS), testosterone, and baseline gonadotropins were within age-specific reference ranges (Table 2).

Urinary steroid metabolite analysis

Analysis as described urinary steroid metabolite excretion was performed as described previously by a quantitative gas chromatography/mass spectrometry (GC/MS) selected ion-monitoring method (2, 17). In brief, steroids were enzymatically released from conjugation and, after extraction, chemically derivatized before GC/MS selected ion-monitoring analysis. Steroids quantified included corticosterone metabolites [tetrahydrocorticosterone (THB), 5αTHB, tetrahydro-11-dehydrocorticosterone (THA), and 5αTHA], the progesterone metabolite pregnenediol (PD), 17OHP metabolites [pregnanetriol (PT), and 17-hydroxy pregnanediol (17HP)], the 17-hydroxypregnenolone metabolite pregnenetriol (5-PT), the 21-desoxycortisol metabolite tetrahydro-11-desoxycortisol (THF), tetrahydro-11-dehydrocorticosterone (THB), 5α-hydroxy pregnenolone (5-THP), tetrahydro-11-dehydrocorticosterone (THF), and 5α-hydroxy pregnenolone (5-THB). The overall secretion of metabolites of 17-hydroxypregnenolone (5-PT), progesterone (PD), and 17OHP (17HP, PT, P'TONE) and a mild increase in mineralocorticoid precursor metabolites (e.g. THB, tetrahydrodeoxycorticoste-

Results

Clinical and serum biochemical characteristics

All seven patients presented with absent or incomplete pubertal development leading to the diagnosis of ORD. Three female patients had presented neonatally with 46,XX DSD, and five of the seven patients had overt skeletal malformations noted immediately after birth. However, in all cases this had not prompted the establishment of a conclusive diagnosis before puberty.

Generally, female patients presented with significant pubertal impairment and ovarian cysts. In case 1, spontaneous cyst rupture required two surgical emergency interventions, resulting in loss of both ovaries despite ongoing estrogen/progestin therapy. Ovarian cysts in cases 2 and 3 only resolved after the addition of glucocorticoids and GnRH agonists to ongoing estrogen/progestin therapy. Four of the five female patients presented with primary amenorrhea and biochemical evidence of primary hypogonadism (Table 1). By contrast, both boys showed spontaneous, albeit slightly delayed, pubertal progression, with testicular volumes appropriate for age, and biochemical signs of compensated hypogonadism, with normal testosterone but up-regulated gonadotropins (Table 2).

In all patients, adrenal androgens were either normal or low (Table 1). All cases had elevated 17OHP and progesterone concentrations, accompanied by increased ACTH levels in five patients. Baseline cortisol secretion was normal in five patients and borderline low in two. In all but one patient, cortisol secretion was not sufficiently stimulated by iv cosyntropin, indicative of partial adrenal insufficiency (Table 1).

Auxological investigations in all seven cases showed a normal height at investigation within the familial target height range (Table 1).

In vivo assessment of steroidogenesis by urinary steroid profiling

Steroid profiling by GC/MS revealed a typical pattern for ORD in all patients studied (Fig. 1). Twenty-four-hour excretion analysis revealed a characteristically increased excretion of metabolites of 17-hydroxypregnenolone (5-PT), progesterone (PD), and 17OHP (17HP, PT, P'TONE) and a mild increase in mineralocorticoid precursor metabolites (e.g. THB, tetrahydrodeoxycorticoste-
FIG. 1. *In vivo* steroidogenic enzyme activities in pubertal ORD patients as determined by total 24-h urinary steroid metabolite excretion (A) and diagnostic steroid substrate/product ratios (B) measured by GC/MS and shown in comparison to an age-matched reference cohort (n = 12). Box plots represent the interquartile ranges (25th to 75th percentiles), and whiskers represent the 5th and 95th percentiles, respectively, of the reference cohort; each pubertal ORD case is represented by specific symbols as indicated in the legend.
tions clearly demonstrated attenuation of 17α-hydroxylase and 21-hydroxylase activities. In keeping with impaired 17,20-lyase activity, androgen and androgen precursor metabolite excretion was decreased or low normal (Fig. 1A). Cortisol metabolites were low or in the lower normal reference range, indicative of impaired 21-hydroxylase activity (Fig. 1A). Substrate/product ratios clearly demonstrated attenuation of 17α-hydroxylase, 17,20-lyase, and 21-hydroxylase activities in all cases examined (Fig. 1B).

Genetic confirmation of diagnosis

Sequencing analysis of the POR gene revealed compound heterozygous missense mutations p.A287P/p.R457H in case 1. Cases 2 and 3 were homozygous for p.A287P, and case 4 showed compound heterozygous mutations comprising a missense mutation (p.T142A) and a novel frameshift mutation resulting in a premature stop codon (p.Y376fsX74). Case 5 was compound heterozygous, with a p.A287P mutation on one allele, and a novel p.R223X nonsense mutation on the other allele.

Case 6 was compound heterozygous for p.R457H and p.Y567X, whereas case 7 was compound heterozygous for p.A287P and a novel duplication disrupting the splice donor site of intron 7, IVS7 + 2dupT. The duplication does not yield an alternative splice site according to splice site prediction tool http://www.cbs.dtu.dk/services/NetGene2/, thus resulting in translation of intron 7 until a premature stop codon 64 aa downstream of the last exon 7 codon (p.P277PfsX65).

Discussion

Here, we describe the clinical phenotype as well as biochemical and genetic findings in seven adolescents with ORD all presenting with disturbed pubertal development, manifesting with insufficient pubertal development and primary amenorrhea in four of the five girls and delayed, albeit spontaneously progressive, puberty in the two boys.

All five females presented with ovarian cysts. This is a common finding in females affected by steroidogenic disorders and has been reported in 21-hydroxylase deficiency (18, 19), 17α-hydroxylase deficiency (20–22), congenital lipoid adrenal hyperplasia due to mutant steroidogenic acute regulatory protein (23–25), P450 aromatase deficiency (26, 27), and also recently in ORD (5, 28). Of note, two infants with ORD have been described who even developed large ovarian cysts at 2 and 4 months of age, respectively (15, 29). Excessive LH-mediated ovarian stimulation as a consequence of primary hypogonadism is an obvious underlying mechanism. Interestingly, girls with congenital lipoid adrenal hyperplasia often spontaneously undergo puberty and have normal circulating E2 levels (23) but still present with large ovarian cysts. It has been suggested that this may be the consequence of chronic anovulation rather than LH overstimulation (24), a concept that is supported by a study in a patient with amenorrhea, ovarian cysts, and inactivating mutations of the LH receptor gene (30). Similarly, multiple ovarian cysts can be found in women with steroidogenic disorders resulting in androgen excess such as 21-hydroxylase deficiency (19, 31), which again could be a consequence of chronic anovulation or potentially direct androgen effects.

A unique mechanism driving ovarian cyst development in females affected by ORD in addition to high gonadotropins resulting from estrogen deficiency might be the disruptive impact of mutant POR on sterol synthesis and metabolism (Fig. 2). CYP51A1 requires electron transfer from POR for catalytic activity and catalyzes the conversion of lanosterol to meiosis-activating sterols (MAS). Follicular fluid MAS (FF-MAS) has been shown to be crucial for the resumption of oocyte meiosis at puberty and also supports oocyte maturation (32–34). The detailed mechanism underlying the effects of FF-MAS on oocyte maturation is not clear yet but may involve the protein kinase C pathway (35) or hedgehog signaling pathways (36, 37). FF-MAS is further converted to testicular MAS, which has been found to be highly expressed in mammalian testis, especially in spermatozoa, suggesting a role in male fertility (37); however, its precise role in male human reproduction remains to be elucidated. Importantly, CYP51A1 is highly expressed in murine and human gonads (38), and its inhibition in vitro results in oocyte arrest (39). Interestingly, it has recently been shown that gonadotropins induce up-regulation of CYP51A1 in mice and rabbits (39, 40), suggesting that POR-dependent CYP51A1 may be a crucial contributor to oocyte maturation at puberty. Thus, it is conceivable that female ORD patients have to take a “double hit” driving ovarian cyst development, disrupted MAS synthesis, and high gonadotropins due to low estrogen production (Fig. 2). This may possibly explain why the cysts appeared to be more difficult to control in our patients than in patients with other steroidogenic disorders, with two of our patients requiring long-acting glucocorticoids in addition to sex steroid replacement to control the effects of excess LH secretion.

In contrast to the findings in the five female cases, pubertal development in our two male ORD cases was more mildly affected. Case 6 presented with poor development at the age of 10 yr, but subsequently he and the other male patient spontaneously progressed through puberty with near normal testosterone production. This may indicate that sex steroid production in the testicles during puberty...
is less dependent on fully functional POR than ovaries or adrenals. Fukami et al. (5) previously reported that three of six male ORD patients had a normal pubertal development, whereas all seven pubertal-age girls in their cohort had impaired pubertal development; however, only limited detail on the pubertal findings and no longitudinal data were provided. The only other paper previously reporting on pubertal age ORD patients described two young women aged 17 and 19 yr, one of them presenting with normal breast development but primary amenorrhea, the other with complete lack of pubertal development (29).

Interestingly, circulating androgens in our pubertal patients were relatively normal, although low androgen levels in infants and younger children with ORD are well documented (1, 2, 5). The relative increase in androgen production at pubertal age despite POR-dependent inhibition of sex steroid synthesis by CYP17A1 could possibly be explained by increased expression of cytochrome b5 (CYB5), which acts as an allosteric facilitator of POR and CYP17A1 (41) thereby facilitating CYP17A1 17,20-lyase activity. CYB5 is expressed pre- and postnatally in human adrenal and testicular tissues (42). However, its expression increases in the adrenal zona reticularis around the age of adrenarche (43), and a similar increase in testicular Leydig cells could enhance 17,20-lyase activity significantly to rectify androgen production during adrenarche and puberty despite partially impaired POR function. A recently reported ORD case with severe neonatal 46,XY DSD, who presented with normal adrenal androgens and phallic catch-up growth during adrenarche, supports this hypothesis (16).

A diagnosis of adrenal insufficiency was established in all but one of our cases at presentation during puberty, generally displaying normal baseline cortisol levels but failure to respond appropriately to ACTH. Of note, despite neonatal presentation with DSD of unknown origin, none of the patients had previously undergone assessment of adrenal function, which had put them at considerable risk of adrenal crisis in case of intercurrent illness, inflammatory stress, or surgery. The untimely death of the younger sister of case 3, who also presented with 46,XX DSD and died at the age of 8 yr of unexplained shock after a routine appendectomy, illustrates the dramatic consequences that overlooking adrenal insufficiency can have.

Some of the phenotypic variability we observed in our patients may be explained by the differential effects of distinct POR mutations on electron-accepting CYP enzymes (13). Interestingly, the three patients with either homozygous or compound heterozygous missense mutations presented with rather mild skeletal malformations and lack of pubertal progression. By contrast, the four patients carrying a major loss of function mutation in addition to a missense mutation on the other allele presented with severe skeletal malformations but only relatively mildly impaired pubertal development. This finding will require further genotype-phenotype analysis based on larger cohorts. Data from the Japanese ORD cohort (5) support the notion that the presence of a null mutation on one allele is associated with a higher incidence of severe malformations; however, pubertal data of this cohort are not described in sufficient detail to compare them to our findings. The most common POR mutation in Caucasians, p.A287P (44), was found on seven alleles in five of our
patients. p.R457H, the most common POR mutation in Japan (5, 45), was found in two of our patients, who were of Polish and Chinese origin, respectively. p.A287P decreases 17α-hydroxylase to 20–40% of wild-type activity but retains 70% of 21-hydroxylase wild-type activity (13). p.R457H equally disrupts CYP17A1 and CYP21A2 activities (13). p.T142A has been reported to only mildly impair CYP17A1 activity (4) and was found in our case 4, the only patient with spontaneous menarche and a considerable degree of spontaneous pubertal development.

In summary, pubertal development of children with ORD is impaired and frequently manifests with primary hypogonadism in girls, requiring medical induction of puberty and monitoring for ovarian cyst development. Affected boys may have the capacity for spontaneous pubertal development justifying a primarily observatory approach. Importantly, adequate hydrocortisone replacement and stress dose cover to prevent life-threatening adrenal crisis is crucial in these patients. The late diagnosis of adrenal insufficiency in our patients and the death of a sibling likely to have suffered from ORD emphasizes the need for concurrent assessment of adrenal and gonadal function not only in ORD but also in all DSD patients with an unclear diagnosis. This will facilitate early diagnosis of partial adrenal insufficiency, thus hopefully preventing adrenal crisis-related deaths in ORD, and timely establishment of a conclusive diagnosis in affected patients.

Acknowledgments

Address all correspondence and requests for reprints to: Prof. Wiebke Arlt, M.D., D.Sc., FRCP, Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail: w.arlt@bham.ac.uk.

This work was supported by the Medical Research Council UK (Program Grant 0900567, to W.A.), the European Society for Pediatric Endocrinology (research fellowship, to J.I.), the European Community’s Seventh Framework Program (Collaborative Research Project EuroDSD GA-2008-201444, to W.A.; Marie Curie Intra-European Fellowship PIEF-GA-2008-221058, to N.R.), and the Wellcome Trust (Clinician Scientist Fellowship GR079865MA, to N.K.).

Disclosure Summary: The authors have nothing to disclose.

References

1. Flück CE, Tajima T, Pandey AV, Arlt W, Okuhara K, VERGE CF, Jabs EW, Mendonça BB, Fujieda K, MILLER WL. 2004 Mutant P450 oxidoreductase causes disturbed steroidsogenesis with and without Antley-Bixler syndrome. Nat Genet 36:228–230
2. ARLT W, Walker EA, Draper N, Ivison HE, Ride JP, Hammel F, Chalder SM, Borucka-Mankiewicz M, Hauffa BP, Malunowicz EM, Stewart PM, Shackleton CHL. 2004 Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 363:2128–2135
3. Kronen HE, Ivison HE, Arlt W. 2007 Congenital adrenal hyperplasia and P450 oxidoreductase deficiency. Clin Endocrinol (Oxf) 66:162–172
4. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, Jabs EW, Van Vliet G, Sack J, Flück CE, Miller WL. 2005 Diversity and function of mutations in P450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. J Hum Genet 57:729–749
5. Fukami M, Nishimura G, Homma K, Nagai T, Hanaki K, Uematsu A, Ishii T, Numakura C, Sawada H, Nakacho M, Kowase T, Motomura K, Haruna H, Nakamura M, Ohishi A, Adachi M, Tajima T, Hasegawa Y, Hasegawa T, Horikawa R, Fujieda K, Ogata T. 2009 Cytochrome P450 oxidoreductase deficiency: identification and characterization of biallelic mutations and genotype-phenotype correlations in 35 Japanese patients. J Clin Endocrinol Metab 94:1723–1731
6. Antley R, Bixler D. 1975 Trapezooidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig Artic Ser 11:397–401
7. Schmidt K, Hughes C, Chudek JA, Goodyear SR, Aspden RM, Talbot R, Gundersen TE, Blomhoff R, Henderson C, Wolf CR, Tickle C. 2009 Cholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb. Mol Cell Biol 29:2716–2729
8. Rous C, Wolf C, Mulliez N, Gaoua V, Cormier V, Chevy F, Citedelle D. 2000 Role of cholesterol in embryonic development. J Clin Nutr 71:1270S–1279S
9. Ribes V, Otto DM, Dickmann L, Schmidt K, Schuhbaur B, Henderson C, Blomhoff R, Wolf CR, Tickle C, Döll P. 2007 Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Dev Biol 303:66–81
10. Otto DM, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH, Tickle C, Wolf CR. 2003 Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic acid homeostasis. Mol Cell Biol 23:6103–6116
11. Wilson JD, Aucup RJ, Leiby MW, Guryev OL, Estabrook RW, Osborn SM, Shaw G, Renfree MB. 2003 5α-Androstane-α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate. Endocrinology 144:575–580
12. Bulun SE. 1996 Clinical review 78: aromatase deficiency in women and men: would you have predicted the phenotypes? J Clin Endocrinol Metab 81:867–871
13. Dhir V, Vison HE, Krone N, Shackleton CH, Doherty AJ, Stewart PM, Arlt W. 2007 Differential inhibition of CYP17A1 and CYP21A2 activities by the P450 oxidoreductase mutant A287P. Mol Endocrinol 21:1958–1968
14. Huang N, Agrawal V, Giaconomi KM, MILLER WL. 2008 Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci USA 105:1733–1738
15. Fukami M, Hasegawa T, Horikawa R, Ohashi T, Nishimura G, Homma K, Ogata T. 2006 Cytochrome P450 oxidoreductase deficiency in three patients initially regarded as having 21-hydroxylase deficiency and/or aromatase deficiency: diagnostic value of urine steroid hormone analysis. Pediatr Res 59:276–280
16. Idkowiak J, Malunowicz EM, Dhir V, Reisch N, Szarras-Czapnik M, Holmes DM, Shackleton CH, Davies JD, Hughes IA, Krone N, Arlt W. 2010 Comitant mutations in the P450 oxidoreductase and androgen receptor genes presenting with 46,XY disordered sex development and androgenization at adrenarche. J Clin Endocrinol Metab 95:3418–3427
17. Shackleton C, Marcus J, Malunowicz EM, Szarras-Czapnik M, Jira
P, Taylor NF, Murphy N, Crushell E, Gottschalk M, Hauffa B, Cragun DL, Hopkin RJ, Adachi M, Arlt W 2004 Biochemical diagnosis of Antley-Bixler syndrome by steroid analysis. Am J Med Genet A 128A:223–231

18. New MI 1993 Nonclassical congenital adrenal hyperplasia and the polycystic ovarian syndrome. Ann NY Acad Sci 687:193–205

19. Hague WM, Adams J, Rodda C, Brook CG, de Bruyn R, Grant DB, Jacobs HS 1990 The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin Endocri- nol (Oxf) 33:501–510

20. Rosa S, Duff C, Meyer M, Lang-Muritano M, Balercia G, Boscaro M, Topaloglu AK, Mioni R, Fallo F, Zuliani L, Mantero F, Schoenle EJ, Biaso-Lauber A 2007 P450c17 deficiency: clinical and molecular characterization of six patients. J Clin Endocrinal Metab 92:1000–1007

21. ten Kate-Booij MJ, Cobbaert C, Koper JW, de Jong FH 2004 Deficiency of 17,20-lyase causing giant ovarian cysts in a girl and a female phenotype in her 46,XY sister: case report. Hum Reprod 19:456–459

22. Mallin SR 1969 Congenital adrenal hyperplasia secondary to 17-hydroxylase deficiency. Two sisters with amenorrhea, hypokalemia, hypertension, and cystic ovaries. Ann Intern Med 70:69–75

23. Fujieda K, Tajima T, Nakae J, Sageshima S, Tachibana K, Suwa S, Sugawara T, Strauss 3rd JF 2000 Mechanism for the development of ovarian cysts in patients with congenital lipid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J Clin Invest 99:1265–1271

24. Shima M, Tanae A, Miki K, Katsumata N, Matsumo S, Nakajima S, Harada T, Shinagawa T, Tanaka T, Okada S 2000 Mechanism for the development of ovarian cysts in patients with congenital lipid adrenal hyperplasia. Eur J Endocrinol 142:274–279

25. Tanae A, Katsumata N, Sato N, Horikawa R, Tanaka T 2000 Genetic and endocrinological evaluations of three 46,XX patients with congenital lipid adrenal hyperplasia previously reported as having presented spontaneous puberty. Endocrinology 147:629–634

26. Belgorosky A, Pepe C, Marino R, Guercio G, Saraco N, Vaiani E, Rivarola MA 2003 Hypothalamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who presented spontaneous puberty. J Clin Endocrinol Metab 88:5127–5131

27. Mullis PE, Yoshimura N, Kuhlmann B, Lippuner K, Jaeger P, Grøndahl C, Hansen TH, Jacobs HS 1990 The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia previously reported as having presented spontaneous puberty. Endocrinology 147:629–634

28. Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, Okuyama T, Nakai H, Soneda S, Tachibana K, Matsuo N, Sato S, Homma K, Nishimura G, Hasegawa T, Ogata T, Suzuki T, Sasano H, Takeyama J, Kaneko C, Freige WA, Carr BR, Rainey WE 2000 Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol (Oxf) 53:739–747

29. Tomalik-Scharte D, Maier D, Kircheiner J, Ivison HE, Fuhr U, Arlt W 2010 Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. Eur J Endocrinol 163:919–924

30. Adachi M, Asakura Y, Matsuo M, Yamamoto T, Hanaki K, Arlt W 2006 POR R457H is a global founder mutation causing Antley-Bixler syndrome with autosomal recessive trait. Am J Med Genet A 140:633–635

31. Falhammar H, Thoren M, Hagenfeldt K 2008 A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classical congenital adrenal hyperplasia due to a novel CYP21 mutation. J Endocrinol Invest 31:176–180

32. Byskov AG, Andersen CY, Nordholm L, Thøgersen H, Xia G, Wassmann O, Andersen JV, Guddal E, Roed T 1995 Chemical structure of sterols that activate oocyte meiosis. Nature 374:559–562

33. Grondahl C, Ottesen JL, Lessl M, Faarup P, Murray A, Gronvald FC, Hegele-Hartung C, Ahnfelt-Rønne I 1998 Meiosis-activating steroid promotes resumption of meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols. Biol Reprod 58:1297–1302

34. Grondahl C, Hansen TH, Marky-Nielsen K, Ottesen JL, Hyttel P 2000 Human oocyte maturation in vitro is stimulated by meiosis-activating sterol. Hum Reprod 15(Suppl 5):3–10

35. Jin S, Zhang M, Lei L, Wang C, Fu M, Ning G, Xia G 2006 Meiosis activating steroid (MAS) regulate FSH-induced meiotic resumption of cumulus cell-enclosed porcine oocytes via PKC pathway. Mol Cell Endocrinol 249:64–70

36. Nguyen NT, Lin DP, Chen KY, Chuang JY, Chen BY, Lin TA, Chang HH, Ju JC 2009 Sonic hedgehog promotes porcine oocyte maturation and early embryo development. Reprod Fertil Dev 21:805–815

37. Mann RK, Beachy PA 2004 Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923

38. Rozman D, Cotman M, Frangez R 2002 Lanosterol 14α-demethylase and MAS sterols in mammalian gametogenesis. Mol Cell Endocrinol 187:179–187

39. Wang C, Xu B, Zhou B, Zhang C, Yang J, Ouyang H, Ning G, Zhang M, Shen J, Xia G 2009 Reducing CYP51 inhibits follicle-stimulating hormone induced resumption of mouse oocyte meiosis in vitro. J Lipid Res 50:2164–2172

40. Wang F, Yang J, Wang H, Xia G 2010 Gonadotropin-regulated expressions of lanosterol 14α-demethylase, sterol Delta14-reductase and C-4 sterol methyl oxidase contribute to the accumulation of meiosis-activating sterol in rabbit gonads. Prostaglandins Other Lipid Mediat 92:23–32

41. Auchtus RJ, Lee TC, Miller WL 1998 Cytochrome b5 enhances the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 273:3158–3165

42. Dharia S, Slane A, Jian M, Conner M, Conley AJ, Parker JR CR 2004 Colocalization of P450c17 and cytochrome b5 in androgen-synthesizing tissues of the human. Biol Reprod 71:83–88

43. Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, Rainey WE 2000 Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol (Oxf) 53:739–747