1. Introduction

Gall bladder is an important hepatobiliary organ in gastrointestinal tract. This organ is an important reservoir of the biliary fluid. The disorder of gall bladder is common in clinical practice. Acute cholecystitis is an important acute medical problem. The patient with acute cholecystitis usually develops acute upper abdominal pain with localized tenderness at Murphy’s point. In fact, helminth infection is a common pathogenic infection, and might be due to several kinds of intestinal parasites including nematode, cestode and trematode worms. Epidemiologically, helminth infection is endemic in several developing countries around the world, especially in developing countries with poor local sanitation and large population. The helminth infection related to acute cholecystitis also become an important problem in those countries.

Acute cholecystitis is an important biliary tract complication due to intestinal parasite infection. Any patients with intestinal parasitic infestation might develop acute cholecystitis during their illness courses. Nevertheless, helminthic infestation related to acute cholecystitis is usually neglected and rarely mentioned in medical literature despite it is a very important medical problem in acute medicine. In this article, the authors performed a literature review to summarize published data available on acute cholecystitis and helminthic infestation. The relationship of nematode, trematode and cestode infestations with acute cholecystitis is also summarised.
to helminthic infestation. The aim of the present review article is to collect important information regarding acute cholecystitis caused by severe helminthic infections. The literature searching was performed using an international database (PubMed). The link of relevant papers on the disease is available online at https://www.ncbi.nlm.nih.gov/pubmed/?term=acute+cholecystitis+helminth. All available publications with complete information are summarized and extracted.

2. Helminthic infestation and acute cholecystitis

Helminthic infestation is a common problem and can be seen in several countries around the world. The high frequency of infestation is observable in tropical Asian, African and South American countries. The clinical spectrum of helminthic infestation is wide. The disease of gall bladder is possibly caused by helminthic infestation. Acute cholecystitis due to helminthic infection occurs in several developing countries. For example, India is one of the countries with many reports on this problem. Helminthic infestation related acute cholecystitis is mentioned in some cases of helminthic infestations.

2.1. Acute cholecystitis

Ascaris, as an important intestinal roundworm infestation, might induce acute cholecystitis[1,2]. Sometimes, ascariasis induced acute cholecystitis might concomitantly occur with acute hepatitis[3]. If the parasite traverses the ducts repeatedly, it might get trapped and die, resulting in the formation of hepatolithiasis[1,4]. In a study, the molecular investigation confirmed that ascaris worm played an important role in the formation of biliary tract stone[5]. Nevertheless, in some severe cases, cholangitis and obstructive jaundice might occur as well[6]. In addition, pancreatitis might also develop[7,8]. Liver abscess might also be observed in some rare cases[9]. Sometimes, a rare complication of acute ascariasis cholecystitis might occur, such as ascariasis induced pericarditis following eosinophilic cholecystitis[10]. Also, in the most severe case, gangrenous perforation of the gall bladder can be detectable[6]. In clinical presentations, the patient usually presents with unexplained acute abdominal pain[6]. In the tropical world, it is recommended that ascariasis should not be forgotten in the differential diagnosis of any patient presented with acute abdomen[11,12].

Ismaili-Jaha et al.[13], noted that the important clinical presentations of acute ascariasis cholecystitis include abdominal pain, distension, colic, nausea, anorexia, and intermittent diarrhea associated with jaundice, nausea, vomiting, fever, and severe radiating pain. Eosinophilia and finding of the parasite in stool examination might be clues for diagnosis[13]. Khroo et al.[1] noted that ultrasonography is an excellent diagnostic tool in visualizing worms in the gut lumen and ductal system. The movement of the worm might be observed during the investigation[14,15], and there might also be the dilation of bowel[9,15,16].

Antiparasitic drug treatment and removal of the parasite usually is the best therapeutic management[1]. Removal of the worm might be achieved by endoscopic approach[17,18]. In some emergency cases with severe acute abdomen and the possibility of peritonitis, surgical management might be required[19,20], while in some stable cases, conservative treatment with the antiparasitic drug is enough[3]. Finally, it should be noted that there is a chance of reinfection, that ascaris reinvade the biliary tract after the first successful treatment[4].

2.2. Cestode infestation and acute cholecystitis

Regarding the tapeworm, acute cholecystitis induced by taeniasis is with possibility[21-24]. Malik et al. noted that taeniasis is also a rare cause of pancreatitis, cholecystitis as well as cholangitis[21]. Similar to acute ascariasis cholecystitis, ultrasonography is an important tool for diagnosis, and the antiparasitic drug treatment and removal of the parasite is usually the best therapeutic management.

2.3. Trematode infestation and cholecystitis

Blood fluke infestation related to acute cholecystitis is also reported. Schistosomiasis might be the cause of acute cholecystitis[25,26]. Acute granulomatous schistosomal cholecystitis is an important acute gall bladder disorder due to schistosomiasis[26]. Sharara et al.[26] proposed that the possible pathogenesis is that “schistosomal eggs deposited in the wall of the gallbladder trigger a clinically manifest acute cholecystitis”.

In addition to blood fluke, liver fluke can also induce acute cholecystitis. *Opisthorchis* species are reported in many publications as etiologies of acute cholecystitis[27-31]. The concurrent cholangitis is common and this condition is specially named as acute opisthorchiasis cholecystocholangitis[27]. Tret’iakov et al. proposed that occlusion of the common bile duct and the presence of infection in the bile duct are the main pathogeneses of acute opisthorchiasis cholecystocholangitis[27-29]. In addition to *Opisthorchis* species, *Clonorchis* species can also cause acute cholecystitis[32-37]. In fact, clonorchiasis can cause chronic disease and induce cholelithiasis, pyogenic cholangitis, cholecystitis, and biliary tract obstruction[33,34]. In serious cases, perforated eosinophilic cholecystitis also occurs[33]. Pathologically, the infestation might cause proliferation of the periductal connective tissue with scattered abortive acini of epithelial cells and fibrosis of the wall of the bile duct[34]. In emergency cases, surgical management might be required[34]. Use of antiparasitic drugs, such as praziquantel, is also necessary[34].

Except for intestinal fluke infestation, fascioliasis can also result in acute cholecystitis[38-42]. Indeed, fascioliasis might cause acute attack of cholangitis, cholecystitis and biliary obstruction[38,39]. The formation of stone due to fascioliasis is also possible[42]. Acute cholecystitis due to *Fasciola* infestation is sporadically reported, in which some are also reported from non-tropical endemic countries. Of interest, the problem already exists in some developed European countries such as Germany and Italy[40,43]. The patient usually
presents with acute abdominal pain and obstructive jaundice[38,44], and might also have asymptomatic eosinophilia and fever[38]. Surgical management might also be required in emergency[41]. However, after surgery, the treatment with antiparasitic drug is required. It is observed that parasite passed via the T-tube may exist for a long term after cholecystectomy[40].

3. Discussion

Acute cholecystitis is an important medical problem in clinical practice worldwide, and helminthic infection is a possible etiology of acute cholecystitis. Nevertheless, there are few reports on this specific problem. The problem is sporadically reported from several tropical countries around the world. The patient usually displays classical clinical presentations of acute cholecystitis. The severe clinical feature such as peritonitis might be detectable. The clinical problem is usually due to active mobile worms in the gall bladder. In general, the patient usually gets the primary diagnosis of acute cholecystitis. The definitive diagnosis is usually derived later. The imaging technology, especially medical sonography, is the main diagnostic tool that helps presumptive diagnosis of helminthic infestation related acute cholecystitis. The final diagnosis would be obtained via detection of the pathogenic worm for cases receiving surgical therapy. Antiparasitic drug therapy is also necessary.

In the future, the problem might be more often detected due to the globalization. The epidemiology of helminthic infection is changed. Newly increased incidence of intestinal parasite infection is observable in non-endemic countries due to the migration from the endemic area. In addition, the travelers from the non-endemic country might visit the endemic area and carry the parasite back to their non-endemic origins. To avoid the delayed diagnosis, practitioners should recognize the possibility of helminthic infection as an underlying cause of acute cholecystitis. A specific investigation by medical imaging might be useful. Finally, parasitic infection might also lead to carcinogenesis. Cholangiocarcinoma and gall bladder cancer might be the result of helminthic infection[45]. Early detection of helminthic related gall bladder problems and the prompt treatment will be a useful preventive measure against possible cancer development in the future[45].

4. Conclusion

Helminthic infestation related acute cholecystitis is an important medical problem but has been little mentioned in literature. There are many helminthic infestations that might induce acute cholecystitis. Either nematode, cestode or trematode infections has the possibility to induce acute cholecystitis. The patient can present with classical signs and symptoms of acute cholecystitis. Some patients might have severe clinical presentations with peritonitis characteristics and required surgical management. The definitive diagnosis is usually obtained by detection of the worm via medical imaging investigation or the finding of worm during surgical manipulation. The diagnosis by the practitioner who is not familiar with tropical medicine usually is very difficult.

Conflict of interest statement

The authors report no conflict of interest.

References

[1] Khuroo MS, Rather AA, Khuroo NS, Khuroo MS. Hepatobiliary and pancreatic ascariasis. World J Gastroenterol 2016; 22(33): 7507-7517.
[2] Amjad N, Nor AM, Singh H. An unusual presentation of acute cholecystitis: biliary ascariasis. Hosp Med 2001; 62(6): 370-371.
[3] Montiel-Jarquín A, Carrillo-Ríos C, Flores-Flores J. Gallbladder ascariasis with acute hepatitis. Conservative treatment. Cir Cir 2003; 71(4): 314-318.
[4] Khuroo MS, Zargar SA, Mahajan R. Hepatobiliary and pancreatic ascariasis in India. Lancet 1990; 335(8704): 1503-1506.
[5] Jang JS, Kim KH, Yu JR, Lee SU. Identification of parasite DNA in common bile duct stones by PCR and DNA sequencing. Korean J Parasitol 2007; 45(4): 301-306.
[6] Sharma A, Jariwala P, Kaur N. Biliary ascariasis presenting with gangrenous perforation of the gall bladder: report of a case and brief review of literature. Trop Doct 2018; 48(3): 242-245.
[7] Azhar M, Sheikh AS, Khan A, Mustafa S, Shah IA, Hameed B. Hepatobiliary ascariasis complicated by pancreatitis. J Ayub Med Coll Abbottabad 2015; 27(2): 479-481.
[8] Baldwin M, Eisenman RE, Prellip AM, Breuer RI. Ascaris lumbricoides resulting in acute cholecystitis and pancreatitis in the Midwest. Am J Gastroenterol 1993; 88(12): 2119-2121.
[9] Grover SB, Pari NK, Rattan SK. Sonographic diagnosis of Ascaris-induced cholecystitis and pancreatitis in a child. J Clin Ultrasound 2001; 29(4): 254-259.
[10] Kaji K, Yoshiji H, Yoshikawa M, Yamazaki M, Ikemura Y, Noguchi R, et al. Eosinophilic cholecystitis along with pericarditis caused by Ascaris lumbricoides: a case report. World J Gastroenterol 2007; 13(27): 3760-3762.
[11] Nag HH, Ji R. Ascarisiasis presenting as acute abdomen-a case report. Indian J Surg 2013; 75(Suppl 1): 128-130.
[12] Uygur-Bayramci O, Akg O, Dabak R, Demirhan G, Ozer S. Taenia saginata: a rare cause of acute cholangitis: a case report. Acta Clin Belg 2012; 67(6): 436-437.
[13] Ismaili-Jaha V, Toro H, Spahiu L, Azemi M, Hoxha-Kamberi T, Avdiu M, et al. Gallbladder ascariasis in Kosovo-focus on ultrasound and conservative therapy: a case series. J Med Case Rep 2018; 12(1): 8.
[14] Wani I. Gallbladder ascariasis. Turk J Gastroenterol 2011; 22(2): 178-182.
[15] Barzilai M, Khamaysi N. Sonographic imaging of Ascaris lumbricoides. Harefuah 1996; 131(7-8): 247-248, 295.
[16] Sharma UK, Rauniyar RK, Bhatta N. Roundworm infestation presenting as acute abdomen in four cases: sonographic diagnosis. Kathmandu Univ
Khuroo MS. Ascariasis. *Gastroenterol Clin North Am* 1996; 25(3): 553-577.

Mendoza tapia HR. Abdominal surgical emergencies in children caused by *Ascaris lumbricoides*. *Rev Esp Pediatr* 1959; 15(87): 353-364.

Adler E. Surgical picture of ascariasis. *Chirurg* 1970; 41(9): 423-427.

Malik AA, Wani RA, Bari S. Acute acalculous cholecystitis due to *Taenia saginata*. *Ann Saudi Med* 2008; 28(5): 388-389.

Dau R, Achram M, Abousalbi M, Dannaoui M. Acute acalculous cholecystitis due to *Taenia saginata*. *Chirurgie* 1998; 123(2): 195-197.

Verdiev Glu. Acute cholecystitis caused by tapeworms. *Khirurgia (Mosk)* 1958; 34(11): 106-107.

Ozbek A, Güzel C, Babacan M, Ozbek E. An infestation due to a *Taenia saginata* with an atypical localization. *Am J Gastroenterol* 1999; 94(6): 1712-1713.

Majrashi SA, Al Ameed OM. Schistosomiasis as a cause of acute cholecystitis. *Saudi Med J* 2018; 39(7): 725-728.

Sharara AI, Abi-Saad G, Haddad M, Mansour A, Tawil A. Acute granulomatous schistosomal cholecystitis. *Eur J Gastroenterol Hepatol* 2001; 13(8): 1001-1003.

Tret‘akov AM, Zhukov BG, Baranov NN. Acute opisthorchiasis cholecystocholedocholithiasis. *Vestn Khir Im I I Grek* 1985; 135(7): 30-35.

Al‘perovich BI, Brazhnikova NA. Characteristics of acute cholecystitis in opisthorchiasis. *Klin Khir* 1985; 9(9): 20-22.

Tret‘akov AM, Lozitskii IA, Tret‘akova OA. Acute opisthorchiotic cholecystocholedocholithiasis. *Khirurgiia (Mosk)* 1977; (3): 35-39.

Ziganshin RV, Tret‘akov AM. An x-ray-manometric study of the biliary ducts in acute opisthorchiosaesthesia. *Vestn Khir Im I I Grek* 1972; 108(6): 46-48.

Mirer VI. The etiology and treatment of acute cholecystitis provoked by the Siberian liver fluke *Opisthorchis felineus*. *Vestn Khir Im I I Grek* 1958; 81(9): 139-140.

Figurnov VA, Satyurov MR, Koscher SI, Figurnova EV, Bliznets OI. A case of intraoperatively discovered clonorchiosis. *Klin Med (Mosk)* 2008; 86(9): 72.

Lai CH, Chin C, Chung HC, Liu H, Hwang JC, Lin HH. Clonorchiasis-associated perforated eosinophilic cholecystitis. *Am J Trop Med Hyg* 2007; 76(2): 396-398.

Rohela M, Johari S, Jamaiah I, Init I, Lee SH. Acute cholecystitis caused by *Clonorchis sinensis*. *Southeast Asian J Trop Med Public Health* 2006; 37(4): 648-651.

Min HK. Clonorchis sinensis: pathogenesis and clinical features of infection. *Arzneimittelforschung* 1984; 34(9B): 1151-1153.

Taat CW. Acute cholecystitis and clonorchis sinensis infection. *Ned Tijdschr Geneeskd* 1981; 125(49): 2008-2012.

Wang CA. Acute cholecystitis caused by *Clonorchis sinensis*; report of a case. *Chin Med J* 1949; 67(1): 19.

Arslan F, Batirel A, Samasti M, Tabak F, Mert A, Özer S. Fascioliasis: 3 cases with three different clinical presentations. *Turk J Gastroenterol* 2012; 23(3): 267-271.

Parsak CK, Koltas IS, Sakman G, Erkocak EU, Inal M. Surgery in *Fasciola hepatica* pancreatitis: report of a case and review of literature. *Z Gastroenterol* 2007; 45(4): 313-316.

Riedtmann HJ, Obied T, Aebberhard P, Sakmann P. Fasciola hepatica: a unusual cause of acute cholecystitis with cholestatic jaundice. *Schweiz Med Wochenschr* 1995; 125(35): 1642-1648.

Marcos LA, Terashima A, Gotuzzo E. Update on hepatobiliary flukes: fascioliasis, opisthorchiasis and clonorchiasis. *Curr Opin Infect Dis* 2008; 21(5): 523-530.

Cosme A, Marcos JM, Galvany A, Arriola JA, Bengoechea MG, Alzate LF, et al. Choledochal obstruction due to *Fasciola hepatica* (author’s transl). *Med Clin (Barc)* 1979; 73(10): 438-442.

Caprino P, Ferranti F, Passa G, Quintiliani A. A rare case of obstructive jaundice and cholecystitis in hepatic fascioliasis in Italy. *Chir Ital* 2007; 59(6): 891-894.

Tesana S, Pamarapa A, Sio OT. Acute cholecystitis and *Fasciola* sp. infection in Thailand: report of two cases. *Southeast Asian J Trop Med Public Health* 1989; 20(3): 447-452.

Feng M, Cheng XJ. Parasite-associated cancers (blood flukes/liver flukes). *Adv Exp Med Biol* 2017; 1018: 193-205.