Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly

Hande Kaymakcalan1 | İlyas Kaya2 | Nagihan Cevher Binici3 | Emrah Nikerel4 | Burcu Özbaran5 | Mehmet Görkem Aksoy5 | Seda Erbilgin6 | Gonca Özyurt7 | Noor Jahan5 | Didem Çelik5 | Kanay Yararbaş8 | Leyla Yalçınkaya9 | Sezen Köse5 | Sibel Durak3 | Adife Gulhan Ercan-Sencicek10,11,12

1Pediatric Genetics Unit, Department of Pediatrics, Demiroglu Bilim University, Istanbul, Turkey
2Department of Child and Adolescent Psychiatry, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
3Department of Child and Adolescent Psychiatry, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Istanbul, Turkey
4Department of Bioinformatics, Yeditepe University, Istanbul, Turkey
5Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
6Department of Child and Adolescent Psychiatry, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
7Department of Child and Adolescent Psychiatry, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
8Department of Medical Genetics, Demiroglu Bilim University, Istanbul, Turkey
9Department of Molecular Biology and Genetics, Bilkent University Faculty of Science, Ankara, Turkey
10Masonic Medical Research Institute, Utica, New York, USA
11Yale University School of Medicine, New Haven, Connecticut, USA
12Department of Neurosurgery, Program on Neurogenetics, New Haven, Connecticut, USA

Abstract

Background: Phosphatase and tensin homolog (PTEN) germline mutations are associated with cancer syndromes (PTEN hamartoma tumor syndrome; PHTS) and in pediatric patients with autism spectrum disorder (ASD) and macrocephaly. The exact prevalence of PTEN mutations in patients with ASD and macrocephaly is uncertain; with prevalence rates ranging from 1% to 17%. Most studies are retrospective and contain more adult than pediatric patients, there is a need for more prospective pediatric studies.

Methods: We recruited 131 patients (108 males, 23 females) with ASD and macrocephaly between the ages of 3 and 18 from five child and adolescent psychiatry clinics in Turkey from July 2018 to December 2019. We defined macrocephaly as occipito-frontal HC size at or greater than 2 standard deviations (SD) above the mean for age and sex on standard growth charts. PTEN gene sequence analysis was performed using a MiSeq next generation sequencing (NGS) platform, (Illumina).
1 | INTRODUCTION

Phosphatase and tensin homolog (PTEN) (OMIM 601728) is a tumor suppressor negatively regulates Phosphoinositide 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway that plays an important role in cell growth, survival, and proliferation (Lv et al., 2013). Germline pathogenic variants in the PTEN gene lead to a range of clinical outcomes including cancer syndrome phenotypes collectively known as PTEN hamartoma tumor syndrome (PHTS), and autism spectrum disorder (ASD) with macrocephaly (MIM 605309) (Lv et al., 2013). Indeed, in mice model of PTEN haploinsufficiency, overgrowth of brain is detectable from birth to adulthood (Chen et al., 2015).

It had been reported that the frequency of PTEN mutations ranged from 1% to 22% in patients with ASD and macrocephaly (Buxbaum et al., 2007; Conti et al., 2012; Frazier et al., 2015; Herman et al., 2007; Hobert et al., 2014; Klein et al., 2013; Kurata et al., 2018; McBride et al., 2010; Varga et al., 2009). Even though same PTEN mutation in different individuals lead to different phenotype (Leslie & Longy, 2016), missense mutations were predominantly reported in autism and macrocephaly syndrome (Leslie & Longy, 2016; Spinelli et al., 2015). These mutations lower, but do not abolish, PTEN’s key activity (Smith et al., 2019). Mighell et al., (2018) proposed that mutations associated with ASD and developmental delay are unstable, but more catalytically active than mutations causing PHTS. It had been suggested that PTEN mutation carrier ASD patients have a distinct neurobehavioral phenotype compared to idiopathic ASD (Busch et al., 2019) that strongly suggests the importance of reliable genotype-phenotype studies to help in patient management, prognosis and therapeutic selection by identifying key mutations associated to ASD phenotypes. Since clinical testing guidelines for PTHS in children are fairly new and not applied uniformly (Butler et al., 2005; Hansen-Kiss et al., 2017; Macken et al., 2019), PTHS often goes undetected in children. We hope that our study will increase awareness of this rare disease in Turkey.

In this study, we screened PTEN variants in children with ASD, mild intellectual disability and macrocephaly without significant developmental delay in Turkey to determine the prevalence of PTEN mutations in pediatric ASD and macrocephaly patients and to find novel mutations that would lead to greater insight into genotype-phenotype correlations for PTEN mutations.

2 | METHODS

After Istanbul University ethics committee approval (Number: 2014/798), we recruited 131 Turkish children (108 males, 23 females) aged 3–18 years with macrocephaly and ASD who were seen at five different child and adolescent psychiatry clinics in Turkey from July 2018 to December 2019. ASD diagnosis was made by experienced child and adolescent psychiatrists using DSM V criteria. We defined macrocephaly as occipito-frontal HC size at or greater than 2 standard deviations (SD) above the mean for age and sex on standard growth charts. All patients had thyroid ultrasounds (USG) and cranial magnetic resonance imagining (MRI).

Total of 3cc’s of peripheral venous blood was collected from each patient after written informed parental consent forms were signed. The blood samples were archived and stored for possible further analysis. DNA extraction was performed with DNA extraction kits (Qiagen. inc) and the DNA samples were preserved at −20°C for future analysis.

First tier PTEN gene sequence analysis was performed using a MiSeq next generation sequencing (NGS) platform, (Illumina, San Diego, CA, USA) an FDA approved diagnostic system. All coding exons of the PTEN gene and their flanking splice site junctions were amplified by in house designed primers. PCRs were validated by agarose gel electrophoresis. After PCR amplification, the
libraries were prepared with the NexteraXT kit (Illumina Inc.), according to the manufacturer’s instructions. Next-generation sequencing was carried on MiSeq (Illumina Inc.). Sequences were aligned to the hg19 genome within MiSeq Reporter software (Illumina Inc.). Visualization of the data was performed with IGV 2.3 (Broad Institute) software. Confirmatory Sanger sequencing was performed for 10 randomly selected patients, patients with positive results, and their respective parents.

To determine the confidence interval of the estimated prevalence, we followed Lwanga and Lemeshow (1991), where the absolute precision is defined as: $D = \sqrt{z^2 \times P \times (1 - P)/n}$ with z the significance threshold, P the calculated prevalence, D the absolute precision and n the sample size. Using the genomic data on 131 patients and considering five SNPs discovered, we calculated the prevalence to be $3.8 \pm 3.3\%$, with 95% confidence interval being (0.5, 7.1). The clinical significance of each variant was evaluated with ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) database and Database of Genomic Structural Variation (dbVar).

Patients with positive results were seen by a pediatric geneticist (except for patient 3 lost to follow up) for dysmorphology exam, additional family history, and genetic counselling.

RESULTS

In our cohort of 131 patients (108 males, 23 females) between the ages of 3 and 18, we found two variants of uncertain significance and three pathogenic mutations according to ClinVar database. The prevalence of PTEN mutations is 3.8% and 2.29% by including or excluding VUS, respectively.

Among pathogenic mutations, two are frameshift mutations and one is a missense mutation. We confirmed the de novo nature of these mutations by using DNA from the parents of four patients. Clinical and molecular characteristics of these patients are summarized in Table 1.

Patient 1 was a 5-year-old female diagnosed with mild ASD when she was 4 years old. She did not have any dysmorphic features nor other medical problems. She had normal intellectual capacity based on observations and Turkish developmental test. Her HC had the biggest SD among 131 patients; measuring 59 cm, 99.98% and +5.65 SD. Her weight was +3.47 SD. She had a normal EEG and thyroid USG. Cranial MRI showed nonspecific hyperintense areas on T2. She was non-dysmorphic. There were no cutaneous lesions. Her height and weight were −0.4 and −0.5 SD respectively whereas her HC was +2.01 SD. She had thyroid and abdominal USG’s which were normal. Cranial MRI showed nonspecific hyperintense areas on T2.). Her PTEN mutation has moderate evidence level according to Clingen PTEN Expert Panel phenotype scoring. (Mester et al., 2018) (Table 2 and SupplInfo 1). PTEN mutation has strong evidence level according to ClinVar database classified this variant as of uncertain significance, while ClinVar classified it as likely benign (Table 1 and SupplInfo 2).

Patient 2 was a 5-year-old female diagnosed with mild ASD when she was 4 years old. He also had attention deficit hyperactivity disorder (ADHD). He had mild intellectual deficiency based on observations and Turkish developmental test. On physical exam, he was found to have almond shaped eyes, low set ears, and prominent ear lobes. His HC was 56cm, 99.32% and +2.41 SD. He did not want his height and weight measured during exam. Thyroid USG and cranial MRI was normal. There were no cutaneous lesions. His PTEN mutation has strong evidence level according to ClinGen PTEN Expert Panel phenotype scoring. (Table 2 and SupplInfo 1) A79T [Ref seq NM_000314.6; c.235G>A, p.(Ala79Thr)] missense variant was identified in this patient. The dbSNP database classified this variant as of uncertain significance, while ClinVar classified it as likely benign (Table 1 and SupplInfo 2).

Patient 3 was a 7-year-old male diagnosed with mild ASD when he was 3 years old. His HC was 55cm, 98.07% and +2.42 SD. He and his family were lost to follow up. Developmental test could not be done. He had mild ID based on observations. His PTEN mutation has strong evidence level according to ClinGen PTEN Expert Panel phenotype scoring. (Table 2 and SupplInfo 1) c.*10del (Ref seq NM_000314.6; c.*10del) variant was identified. It was classified as a variant of uncertain significance in the ClinVar database (Table 1 and SupplInfo 2).

Patient 4 was a 5-year-old female diagnosed with mild ASD when she was 3 years old. She had mild intellectual deficiency based on observations and Turkish developmental test. Her HC had the biggest SD among 131 patients; measuring 59 cm, 99.98% and +5.65 SD. Her weight was +3.47 SD. She had a normal EEG and thyroid USG. Cranial MRI showed nonspecific hyperintense areas on T2. She was non-dysmorphic. There were no cutaneous lesions. Her PTEN mutation has strong evidence level according to ClinGen PTEN Expert Panel phenotype scoring. (Table 2 and SupplInfo 1) Her mother also had HC +2 SD, a nasal bridge lipoma, diabetes mellitus, and hypertension. She was suffering from depression. A de novo p.Arg233* [Ref seq NM_000314.6; c.697C>T, (p.Arg233*)] loss-of-function (LOF) mutation was identified. It was classified as pathogenic with no conflicts in ClinVar and dbSNP database (Table 1 and SupplInfo 2).

Patient 5 was a 15-year-old male diagnosed with mild ASD when he was 7 years old. He had mild intellectual deficiency according to observations. His parents refused the developmental test. His HC was 61 cm, 99.75% and +2.81 SD. His weight was −1.05 SD and height was +0.38 SD. He had frontal bossing and penile freckling. Thyroid and scrotal USG were normal. Abdominal USG showed grade I hepatosteatosis. Cranial MRI was normal. His PTEN mutation has strong evidence level according to ClinGen PTEN Expert Panel phenotype scoring. (Table 2 and SupplInfo 1)
Pt	Mutation	ClinVar	dbSNP	Age	Sex	Psychiatric comorbidities	Type of mutation	Thyroid usg	Cranial MR	Cutaneous lesions	HC at exam/SD	Dysmorphology
1	c.611C>T p.(P204L)	NA	—	5 years	F	—	Likely pathogenic	normal	Nonspecific hyperintense areas in T2	—	53.5 cm/+2.01	Macrocephaly
2	c.235G>A p.(Ala79Thr)	Likely benign	Uncertain significance	8 years	M	ADHD	VUS	normal	normal	—	56cm/+2.42	Almond shaped eyes, low set ears, prominent ear lobes, macrocephaly
3	C*10del	Uncertain significance	—	7 years	M	—	VUS	NA	NA	NA	55cm/+2.41	Macrocephaly
4	c.697C>T p.(Arg233*)	Pathogenic with no conflicts	Pathogenic with no conflicts	5 years	F	ID	Pathogenic	normal	Nonspecific hyperintense areas in T2	—	60cm/+5.65	Macrocephaly
5	c.525_526dupTG p.(Tyr176Cys*)	—	—	15 years	M	—	Likely pathogenic	normal	normal	Penile freckling	61cm/+ 2.81	Frontal bossing, macrocephaly

Note: 3*: Patient lost contact.

Abbreviations: HC, head circumference; ID, Intellectual disability; NA, not available VUS, variant of unsignificance; Patient, Pt; SD, standard deviation; usg, ultrasound.
This patient fit the diagnostic criteria of BRRS. A novel \textit{de novo} \textit{p.Y176Cfs*8} [Ref seq NM_000314.6; \textit{c.525_526dup}, (\textit{p.Tyr176Cys*8})] LOF mutation was found. It was classified as likely pathogenic in ACMG classification. (Table 1 and SuppInfo 2) It has not previously been reported in the literature nor found in the Population Frequency Databases.

DISCUSSION

\textit{PTEN} is composed of 403 amino acids that comprise five functional domains: a phosphatidylinositol-4,5-bisphosphate (PIP2)-binding domain (PBD) and a phosphatase domain containing the catalytic core (spans amino acids 123–130) at the N-terminus, a C2 domain, two PEST (proline, glutamic acid, serine, threonine) domains, and a PDZ interaction motif for protein-protein interactions at the C-terminus (Yehia & Eng, 2018) (Figure 1).

The \textit{c.*10del} (NM_000314.6; \textit{c.*10del}) variant (rs756681683) that is located in 3'UTR region of the \textit{PTEN} gene is classified as a variant of uncertain significance in the ClinVar database. It was absent from controls in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium. However, in ALFA Project (Allele Frequency Aggregator), the minor allele frequency reported for the variant was below 1\% (delT=0.00036) (Phan et al., 2020) (Table 1 and SuppInfo 2).

Novel loss-of-function mutation \textit{p.Y176Cfs*8} (NM_000314.6; \textit{c.525_526dup}, \textit{p.Tyr176Cys*8}) and \textit{p.Arg233*} [NM_000314.6; \textit{c.697C>T}, (\textit{p.Arg233*})], located in PTP and C2 domains of \textit{PTEN}, respectively, result in an early truncated protein. They might affect the enzymatic activity and protein stability of \textit{PTEN}, cell migration, and protein–protein interactions (Phan et al., 2020; Song et al., 2011; Vazquez et al., 2000). \textit{p.Y176Cfs*8} meets criteria to be classified as likely pathogenic (Table 1 and SuppInfo 2). The other LOF mutation of \textit{PTEN} \textit{c.697C>T} at cDNA level creates a stop codon from Arginine at 233 position at the protein level. It was classified as pathogenic with no conflicts in ClinVar database (ClinVar: 7813) and it is a well-known stop codon mutation reported in the literature multiple times and results in Cowden Syndrome, Bannayan-Riley-Ruvalcaba syndrome and other cancers (Busch et al., 2013; Lachlan et al., 2007; Marsh et al., 1997; Ngeow et al., 2014).

The \textit{A79T} variant was located on the catalytic phosphatase tensin-type domain (spans amino acids 14 – 185). The analysis of the effect of the \textit{A79T} substitution on the stability and conformational dynamics of the protein (PDB: 1D5R) using DynaMut web server suggested
that A79 destabilizes this protein ($\Delta \Delta G: -0.3431 \text{ kcal/mol}$; a negative value of $\Delta \Delta G$ indicates the mutation destabilizes the protein) (Wu et al., 2000) (Figure 2a). Additionally, we used HOPE web server (Project Have yOur Protein Explained) that analyzes the structural and functional effects of point mutations (Rodrigues et al., 2018). Wildtype A79 residue positioned within PTP domain is smaller and more hydrophobic than the mutant T79 residue that suggests mutation of the A79T might disturb the function of the protein.

P204L [NM_000314.6; c.611C>T p.(Pro204Leu)] missense variant was identified in our study, it was previously reported in cancer database. In addition, this variant was predicted to be deleterious by PolyPhen, FATHMM, ClinPred, MetaSVM, REVEL, and SIFT in silico analyses. An alternative P204A (p.Pro204Ala) variant has been found to be Likely Pathogenic in the ClinVar Database (ClinVar: 189415) (Table 1 and SuppInfo 2). Also, additional missense variants in nearby residues (F200S, T202I, M205V, S207R) have been reported in PTEN-related disorders (Stenson et al., 2014), providing functional importance of this region of the protein. Based on the currently available evidence, P204L is, therefore, considered likely pathogenic. The analysis of the effect of P204L missense mutation that is located at the C2 domain using DynaMut web server found the positive $\Delta \Delta G$ ($\Delta \Delta G: 1.022 \text{ kcal/mol}$), which indicates the mutation does not destabilize the protein. However, HOPE web server revealed that the mutant residues of P204L bigger than the wild-type residue (proline) and the mutation introduces an amino acid (leucine) with different properties, which can disturb the C2 domain and abolish its function. Moreover, rigidity of a protein structure is essential for specific function. The wild-type 204 residue, proline, is known to be very rigid (Figure 2b) and substitution with leucine can disrupt this required rigidity of the PTEN protein.

Macrocephaly prevalence in ASD is estimated to be 20% in some studies (Fombonne et al., 1999; Miles et al., 2000), however another study reported no difference in head size between children with autism and controls (Langen et al., 2009). Although it was not the aim of our study, we found a 10.2% prevalence of macrocephaly in one center. At this center, head circumferences of 361 patients with autism spectrum disorder were measured for our study and 37 of these patients had macrocephaly. (SuppInfo 3) To the best of our knowledge this is the largest cohort of pediatric patients with ASD and macrocephaly and is the first prevalence study of PTEN mutations in macrocephaly and ASD in Turkey and South Eastern Europe region.

The patient 5 with de novo pathogenic LOF mutation (c.525_526dup, p.Tyr176Cys*8) displayed Grade 1 hepatosteatosis. PTEN loss has been previously hypothesized to cause hepatosteatosis by resulting in increased lipogenesis and hepatic apoB-lipoprotein degradation (Qiu et al., 2008). Clinically, our patient does not have any other risk factors for hepatosteatosis (patient is not obese, does not have diabetes, does not have high cholesterol and not an adult) Therefore,
PTEN mutation in this patient may be also associated with hepatosteatosis. This feature, to the best of our knowledge, is not previously described in the literature. Clinical outcome of pediatric patients with PTEN mutations are not well known yet; there are few studies suggesting a follow up plan in this group (Ciaccio et al., 2019). Smokou et al., (2015) showed that thyroid carcinoma can occur at a very early age (6–7 years). This indicates the importance of screening for PTEN mutations to allow later thyroid carcinoma surveillance. Ciaccio et al., (2019) recommend screening of patients with ASD when HC is more than 3 SD. However, in our cohort, three patients with PTEN mutations have HC less than 3 SD. Also a progressive increase in HC is described. (Balci et al., 2018; Vanderver et al., 2014) We therefore recommend screening all patients with ASD whose HC are more than 2 SD.

Studies showed that individuals with ASD who carries PTEN mutations have reduced performance on attention, impulsivity, reaction time, processing speed, motor coordination and worse ID’s compared to individuals with ASD without PTEN mutations (Busch et al., 2013, 2019; Frazier et al., 2015). The limitations of our study is that we could not do a detailed neurobehavioral tests to observe these domains. Interestingly, in our cohort, one patient did not have ID and others had mild ID. However, it is not possible to make a genotype-phenotype correlation at this time.

Studies of the mutation types in PTEN have varying results (Spinelli et al., 2015) and the genotype-phenotype correlations reported are not substantial enough to predict the phenotype. (Macken et al., 2019).

Among our pathogenic mutations, two are LOF mutations and one is missense mutation. With this small number it is difficult to make a conclusion. Patient 5 with LOF mutation, demonstrated the clinical phenotype of BRRS. Patient 4 with LOF mutation had the biggest head circumference and since she is only 5 years old she may not show the clinical characteristics of PHTS yet. (She carries a well known stop codon). LOF mutation had the biggest head circumference and since she is only 5 years old she may not show the clinical characteristics of PHTS yet. (She carries a well known stop codon)

Interestingly, in our cohort, one patient did not have ID and others had mild ID. However, it is not possible to make a genotype-phenotype correlation at this time.

ACKNOWLEDGMENTS

The work of Kaymakcalan et al. is supported by funding from PTEN Research; a United Kingdom registered charity. The authors thank Dr. James McGrath for his review and feedback on the manuscript.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

H.K designed and supervised the study and wrote the manuscript. E.N performed data and statistical analysis. K.Y performed genetic analysis. I.K, N.C, B.Ö, S.E, G.Ö, S.G, and S.D made ASD diagnosis. M.G.A, N.J, and D.Ç took the consents, did the HC measurements and collected peripheral blood sample. L.Y did the literature review. A.G.E.S assisted in analyzing the genetic data and reviewed the manuscript.

ORCID

Hande Kaymakcalan https://orcid.org/0000-0001-7736-7634
Seda Erbilgin https://orcid.org/0000-0002-0861-8492

REFERENCES

Balci, T. B., Davila, J., Lewis, D., Boafo, A., Sell, E., Richer, J., Nikkel, S. M., Armour, C. M., Tomiak, E., Lines, M. A., & Sawyer, S. L. (2018). Broad spectrum of neuropsychiatric phenotypes associated with white matter disease in PTEN hamartoma tumor syndrome. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 177(1), 101–109. https://doi.org/10.1002/ajmg.b.32610
Busch, R. M., Chapin, J. S., Mester, J., Ferguson, L., Haut, J. S., Frazier, T. W., & Eng, C. (2013). Cognitive characteristics of PTEN hamartoma tumor syndromes. Genetics in Medicine, 15(7), 548–553. https://doi.org/10.1038/gim.2013.1
Busch, R. M., Srivastava, S., Hogue, O., Frazier, T. W., Klaas, P., Hardan, A., Martinez-Agosto, J. A., Sahin, M., & Eng, C. (2019). Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Translational Psychiatry, 9, 253. https://doi.org/10.1038/s41398-019-0588-1
Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., Miles, J. H., Wang, C. H., Stratton, R., Pilarski, R., & Eng, C. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42(4), 318–321. https://doi.org/10.1136/jmg.2004.024646
Buxbaum, J. D., Cai, G., Chaste, P., Nygren, G., Goldsmith, J., Reichert, J., Ankarsäter, H., Rastam, M., Smith, C. J., Silverman, J. M., Hollander, E., Leboyer, M., Gillberg, C., Verloes, A., & Betancur, C. (2007). Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. American Journal of Medical Genetics B Neuropsychiatric Genetics, 144B(4), 484–491. https://doi.org/10.1002/ajmg.b.30493
Chen, Y., Huang, W. C., Séjourné, J., Clipperton-Allen, A. E., & Page, D. T. (2015). Pten mutations alter brain growth trajectory and allocation of cell types through elevated β-catenin signaling.
Ciaccio, C., Saletti, V., D’Arrigo, S., Esposito, S., Alfei, E., Moroni, L., Tonduti, D., Chiapparini, L., Pantaleoni, C., & Milani, D. (2019). Clinical spectrum of PTEN mutation in pediatric patients: A bicenter experience. European Journal of Medical Genetics, 62(12), 103596. https://doi.org/10.1016/j.ejmg.2018.12.001

Conti, S., Condò, M., Posar, A., Mari, F., Resta, N., Renieri, A., Neri, I., Patrizi, A., & Parmeggiani, A. (2012). Phosphatase and tensin homolog (PTEN) gene mutations and autism: Literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy. Journal of Child Neurology, 27(3), 392–397. https://doi.org/10.1177/088308941240296

Fombonne, E., Rogé, B., Claverie, J., Courty, S., & Frémolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29(2), 113–119. https://doi.org/10.1023/a:102036509476

Frazier, T. W., Embacher, R., Tilot, A. K., Koenig, K., Mester, J., & Eng, C. (2015). Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Molecular Psychiatry, 20(9), 1132–1138. https://doi.org/10.1038/mp.2014.125

Hansen-Kiss, E., Beinkampen, S., Adler, B., Frazier, T., Prior, T., Erdman, S., Eng, C., & Herman, G. (2017). A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. Journal of Medical Genetics, 54(7), 471–478. https://doi.org/10.1136/jmedgenet-2016-104484

Herman, G. E., Butter, E., Enrile, B., Pastore, M., Prior, T. W., & Sommer, A. (2007). Increasing knowledge of PTEN germline mutations: Two additional patients with autism and macrocephaly. American Journal of Medical Genetics A, 143A(6), 589–593. https://doi.org/10.1002/ajmg.a.31619

Hobert, J. A., Embacher, R., Mester, J. L., Frazier, T. W., 2nd, & Eng, C. (2014). Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. European Journal of Human Genetics, 22(2), 273–276. https://doi.org/10.1038/ejhg.2013.114

Klein, S., Sharifi-Hannahour, P., & Martinez-Agosto, J. A. (2013). Macrocephaly as a clinical indicator of genetic subtypes in autism. Autism Research, 6(1), 51–56. https://doi.org/10.1002/aur.1266

Kurata, H., Shirai, K., Saito, Y., Okazaki, T., Ohno, K., Oguri, M., Adachi, K., Nanba, E., & Maegaki, Y. (2018). Neurodevelopmental disorders in children with macrocephaly: A prevalence study and PTEN gene analysis. Brain & Development, 40(1), 36–41. https://doi.org/10.1016/j.braindev.2017.07.005

Lachlan, K. L., Lucassen, A. M., Bujanov, D., & Temple, I. K. (2007). Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: Results of a clinical study of PTEN mutation carriers. Journal of Medical Genetics, 44(9), 579–585. https://doi.org/10.1136/jmedgenet.2007.049881

Langen, M., Schnack, H. G., Nederveen, H., Bos, D., Lahuis, B. E., de Jonge, M. V., van Engeland, H., & Durston, S. (2009). Changes in the developmental trajectories of striatum in autism. Biological Psychiatry, 66(4), 327–333. https://doi.org/10.1016/j.biopsych.2009.03.017

Leslie, N. R., & Longy, M. (2016). Inherited PTEN mutations and the prediction of phenotype. Seminars in Cell & Developmental Biology, 52, 30–38. https://doi.org/10.1016/j.semcdb.2016.01.030

Lv, J. W., Cheng, T. L., Qiu, Z. L., & Zhou, W. H. (2013). Role of the PTEN signaling pathway in autism spectrum disorder. Neuroscience Bulletin, 29(6), 773–778. https://doi.org/10.1007/s12264-013-1382-3

Lwang, S. K., & Lemeshow, S. (1991). Sample size determination in health studies: A practical manual. World Health Organization (WHO).

Macken, W. L., Tischkowitz, M., & Lachlan, K. L. (2019). PTEN Hamartoma tumor syndrome in childhood: A review of the clinical literature. American Journal of Medical Genetics C Seminars in Medical Genetics, 181(4), 591–610. https://doi.org/10.1002/ajmg.c.31743

Marsh, D. J., Dahia, P. L., Zheng, Z., Liaw, D., Parsons, R., Gorlin, R. J., & Eng, C. (1997). Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nature Genetics, 16(4), 333–334. https://doi.org/10.1038/ng0897-333

McBride, K. L., Varga, E. A., Pastore, M. T., Prior, T. W., Manickam, K., Atkin, J. F., & Herman, G. E. (2010). Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Research, 3(3), 137–141. https://doi.org/10.1002/aur.132

Mester, J. L., Ghosh, R., Pesaran, T., Huether, R., Karam, R., Hruska, K. S., Costa, H. A., Lachlan, K., Ngeow, J., Barnholtz-Sloan, J., Sesock, K., Hernandez, F., Zhang, L., Milko, L., Plon, S. E., Hegde, M., & Eng, C. (2018). Gene-specific criteria for PTEN variant curation: Recommendations from the ClinGen PTEN Expert Panel. Human Mutation, 39(11), 1581–1592. https://doi.org/10.1002/humu.23636

Mighell, T. L., Evans-Dutson, S., & O’Roak, B. J. (2018). A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. American Journal of Human Genetics, 102(5), 943–955. https://doi.org/10.1016/j.ajhg.2018.03.018

Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95(4), 339–350. https://doi.org/10.1002/1096-8628(20001121)95:4<339;AID-AJMG9>3.0.CO;2-B

Ngeow, J., Stanuch, K., Mester, J. L., Barnholtz-Sloan, J. S., & Eng, C. (2014). Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. Journal of Clinical Oncology, 32(17), 1818–1824. https://doi.org/10.1200/JCO.2013.53.6656

Phan, L., Jin, Y., Zhang, H., Qiang, W., Shekhtman, E., Shao, D., Revoe, D., Villamarin, R., Ivanchenko, E., Kimura, M., Wang, Z. Y., Hao, L., Sharopova, N., Bihan, M., Sturcke, A., Lee, M., Popova, N., Wu, W., Bastiani, C., … Kattman, B. L. (2020). ALFA: Allele frequency aggregator. National Center for Biotechnology Information, U.S. National Library of Medicine. www.ncbi.nlm.nih.gov/snp/ds/gst/alfa/

Qiu, W., Federico, L., Napoles, M., Avramoglou, R. K., Mleshkani, R., Zhang, J., Tsai, J., Hussain, M., Dai, K., Isbah, J., Kontos, C. D., Horie, Y., Suzuki, A., & Adeli, K. (2008). Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology, 48(6), 1799–1809. https://doi.org/10.1002/hep.22565

Rademacher, S., & Eickholt, B. J. (2019). PTEN in autism and neurodevelopmental disorders. Cold Spring Harbor Perspectives in Medicine, 9(11), a036780.
Raftopoulou, M., Etienne-Manneville, S., Self, A., Nicholls, S., & Hall, A. (2004). Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. *Science, 303*(5661), 1179–1181. https://doi.org/10.1126/science.1092089

Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. *Nucleic Acids Research, 46*(W1), W350–W355. https://doi.org/10.1093/nar/gky300

Savasir, I., Sezgin, N., & Erol, N. (2005). *Ankara Gelişim Tarama Envanteri El Kitabı, KayıtFormu ve Değerlendirme-Profüllerı, Genişletilmiş Ücüncü Basım* (3rd ed.). Ankara Üniversitesi Tıp Fakültesi.

Smith, I. N., Thacker, S., Jaini, R., & Eng, C. (2019). Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. *Journal of Biomolecular Structure and Dynamics, 37*(7), 1766–1782. https://doi.org/10.1080/07391102.2018.1465854

Smpokou, P., Fox, V. L., & Tan, W. H. (2015). *PTEN hamartoma tumour syndrome: Early tumour development in children. Archives of Disease in Childhood, 100*(1), 34–37. https://doi.org/10.1136/archdischild-2014-305997

Vanderver, A., Tonduti, D., Kahn, I., Schmidt, J., Medne, L., Vento, J., Chapman, K. A., Lanpher, B., Pearl, P., Gropman, A., Lourenco, C., Bamforth, J. S., Sharpe, C., Fineda, M., Schallner, J., Bodamer, O., Orcesi, S., Oberstein, S. A., Sistermans, E. A., … Van Der Knaap, M. S. (2014). Characteristic brain magnetic resonance imaging pattern in patients with macrocephaly and PTEN mutations. *HHS Public Access. American Journal of Medical Genetics. Part A, 164*(3), 627–633. https://doi.org/10.1002/ajmg.a.36309

Varga, E. A., Pastore, M., Prior, T., Herman, G. E., & McBride, K. L. (2009). The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. *Genetics in Medicine, 11*(2), 111–117. https://doi.org/10.1097/GIM.0b013e31818fd762

Vazquez, F., Ramaswamy, S., Nakamura, N., & Sellers, W. R. (2000). Phosphorylation of the PTEN tail regulates protein stability and function. *Molecular and Cellular Biology, 20*(14), 5010–5018. https://doi.org/10.1128/mcb.20.14.5010-5018.2000

Wu, X., Hepner, K., Castelino-Prabhu, S., Do, D., Kaye, M. B., Yuan, X.-J., Wood, J., Ross, C., Sawyer, C. L., & Whang, Y. E. (2000). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. *Proceedings of the National Academy of Sciences, 97*(8), 4233–4238. https://doi.org/10.1073/pnas.97.8.4233

Yehia, L., & Eng, C. (2018). 65 years of the double helix: One gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. *Endocrine-related Cancer, 25*(8), T121–T140. https://doi.org/10.1530/ERC-18-0162

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.