Chewing Lice of Swan Geese (*Anser cygnoides*): New Host-Parasite Associations

Chang-Yong Choi1,2, John Y. Takekawa2, Diann J. Prosser2, Lacy M. Smith2, Craig R. Ely4, Anthony D. Fox4, Lei Cao6, Xin Wang6, Nyambayar Batbayar5, Tseveenmayadag Natsagdorj6, Xiangming Xiao1,4,*

1Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA; 2U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, Vallejo, California 94592, USA; 3U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, Maryland 20705, USA; 4U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska 99508, USA; 5Department of Bioscience, University of Aarhus, Kalo, Randers, DK-8410, Denmark; 6Department of Environmental Bio-Technology, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China; 7Wildlife Science and Conservation Center, Ulaanbaatar 210351, Mongolia; 8Ornithology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar 210351, Mongolia

Abstract: Chewing lice (Phthiraptera: Ischnocera and Amblycera), once commonly referred to as paraphyletic Mallophaga, are small dorsoventrally-flattened insects mainly feeding on feathers, skin scales, and secretions of birds and some mammals as permanent ectoparasites [1]. Although their hosts use diverse defenses, such as grooming and preening, bathing, dusting, feather molting, and some chemicals [2], these lice may cause negative effects as well as by lowering fitness of wild hosts in terms of survival, reproduction, and sexual selection [3-5]. In addition, they may also serve as vectors or intermediate hosts of other parasites [1,6,7]. Although describing the diversity of chewing lice and their host association is an important step for further ecological and evolutionary studies [1], the fauna on a variety of wild hosts in many areas remains unstudied.

The swan goose *Anser cygnoides* (Linnaeus, 1758) is a globally-threatened waterfowl species with a small and rapidly declining wild population [8]. As an endemic goose species to Asia, it breeds in eastern Russia, Mongolia and northern China and virtually the entire global population winters in the Yangtze floodplain in China [8-10] along with a few sites in Korea. In spite of the limited geographic distribution of its wild population, this goose was domesticated many centuries ago and widely farmed especially in warm climates and at low latitudes [9].

Chewing lice parasitism in swan geese has been recognized as early as the 19th century [11,12], and 3 species have been known on the goose. Price et al. [13] listed *Anatoecus icterodes* (Nitzsch, 1818) and *Anaticola cygnopsis* (Rudow, 1869) summarizing previous reports [11,12]. Zlotorzynska [14] added *Cicophilus pectiniventris* (Harrison, 1916) collected in a Polish zoo. Two of them are cosmopolitan ectoparasites occurring on diverse waterfowl (*C. pectiniventris* on geese and swans and...
Anatoecus icterodes on ducks and geese), while A. cygnopsis is assumed to be host specific only to the swan goose [13].

However, our current knowledge about chewing lice on this goose relies on few and outdated observations, including those from the earliest era of chewing louse taxonomy, without any subsequent reports [13]. Here, we aimed to collect new information on the chewing lice parasitizing wild swan geese in East Asia and to update existing knowledge about the host association of identified chewing lice in this little studied area.

From 27 to 31 July in 2014, we captured 14 swan geese at 3 lakes in northeastern Mongolia (Fig. 1) using standard dip-netting and corral trap techniques during the molting period [8,15]. We applied 70% ethyl alcohol to wet neck feathers for disease surveillance through blood sampling [15], and briefly searched head, neck, and breast of geese for lice running out of the plumage of the alcohol-applied and restrained geese.

Table 1. Chewing lice collected from wild swan geese (*Anser cygnoides*) in Mongolia (F: female, M: male, N: nymph, U: unknown)

Date	Locality	Host	Age	Sex	Trinoton anserinum	Ornithobius domesticus	Anaticola anseris
27-Jul-14	Galuut Lake	Juv	F	2F	--	--	--
28-Jul-14	Galuut Lake	Juv	F	1F	--	--	--
29-Jul-14	Bus Lake	Juv	F	1M	--	--	--
29-Jul-14	Bus Lake	Juv	F	1F	--	--	--
29-Jul-14	Bus Lake	Juv	M	1F	--	--	--
29-Jul-14	Bus Lake	Adult	F	3M, 1F, 2N	--	--	--
31-Jul-14	Chukh Lake	Juv	M	1M	2F	--	--
31-Jul-14	Chukh Lake	Juv	M	1M	--	1M	--
31-Jul-14	Chukh Lake	Juv	M	1M	--	3F, 1N	1F
31-Jul-14	Chukh Lake	U	U	--	1M	--	--
31-Jul-14	Chukh Lake	U	U	--	1N	--	--
31-Jul-14	Chukh Lake	U	U	--	1F	--	--
Total				16 (7M, 7F, 2N)	11 (2M, 7F, 2N)	1 (1F)	

Fig. 1. Location of study sites in northeastern Mongolia where wild swan geese were sampled for parasitic lice in 2014.
We collected a few first-observed lice in a non-quantitative manner, to minimize the stress caused by long handling times and blood sampling, and stored the lice in 70% alcohol. Procedures for this field research were approved by Institutional Animal Care and Use Committee of the University of Oklahoma (R12-004) and USGS Patuxent Wildlife Research Center (2007-01). Given the lack of comparative samples for molecular species identification, the collected lice were identified later to the species level using available taxonomic keys and morphological descriptions [13,14,16-26].

A total of 28 chewing lice comprised of 3 different species were collected from all examined individuals in northeastern Mongolia (Table 1; Fig. 2): 16 *Trinoton anserinum* (Fabricius, 1805) consisting of 7 males, 7 females, and 2 nymphs from 9 birds at 3 lakes, 11 *Ornithobius domesticus* Arnold, 2005 including 2 males, 7 females, and 2 nymphs from 7 geese at 2 lakes, and a single female *Anaticola anseris* (Linnaeus, 1758) from 1 juvenile goose at 1 lake (Table 1). All of these 3 species were
new to the swan goose, resulting in a total of 6 chewing lice species in 2 parasitic families and suborders: Philopteridae (Ischnocera) and Menopodidae (Amblycera) (Table 2).

Unlike many other host-specific Anaticola lice in Philopteridae, A. anseris found in this study (Fig. 2A, B) is 1 of 3 exceptions having multiple closely related hosts of goose species belonging to the genera Anser and Branta [13,26]. A. anseris is morphologically similar to A. crassicornis mainly occurring in ducks of the genus Anas, but can be identified by some morphological characteristics such as bigger body size, chetotaxy at the anterior region of the head, setae in the subgenital plate of females, and long and blunt penis in the male genitalia [20,22,26]. One of the ventral anterior head setae appears strongly thickened in A. crassicornis (total length: 3.1-3.3 mm in males, 3.6-3.7 mm in females [26]), but our single female (3.95 mm in total length; Table 3) has long, equal, and relatively thin ventral setae (Fig. 3A) and a pair of long dorsal setae reaching mandibles [26] at the anterior region of the head, showing the key morphological features of the female A. anseris.

T. anserinum in Menopodidae is a large louse (5.3-6.3 mm in length [22]) typically occurring on geese and swans [13,22]. Many morphological features, such as stout spine-like setae on their gular, dorsal hind head, and dorsal prothorax, are shared by T. querquedulae which mainly occurs in ducks [16,18,22]. T. querquedulae is smaller in size (4.3-5.8 mm in length [22]) and it has fewer setae in proternum, smaller brush patches of fewer hairs around short spine-shaped setae on sternites IV and V, and a smaller thickening in the dorsal wall of the female genital chamber than T. anserinum [16,18,22]. Our samples (Fig. 2C-F) were 5.3-6.4 mm in total length (Table 3) and showed numerous fine hairs forming relatively large patches on their sternites IV and V contrasting with adjacent long and thick setae (Fig. 3B) as well as on the third femora (Fig. 3C) unlike other groups, such as the T. aculeatum group and the most similar T. querquedulae group, that have fewer, thicker, and longer hairs in smaller or no patches on the sternites IV and V [16,18,22]. We also confirmed that the posterior tip of the thickened dorsal wall of genital chamber is elongated and pointed in females (Fig. 3D) that is an important diagnostic key for T. anserinum [18]. Eight samples were provided to the Illinois Natural History Survey at University of Illinois, USA for possible molecular analysis, and we deposited 4 and 3 to
the National Institute of Biological Resources (NIBR) and the Parasite Resource Bank at Chungbuk National University, respectively, in South Korea.

Lice in the genus *Ornithobius* belonging to Philopteridae are found on geese and swans of the genera *Anser*, *Branta*, and *Cygnus* [23], and especially *O. domesticus* was reported only on swans (unknown *Cygnus* species) in Shanghai, China [23]. The type specimens of this species were collected from domestic or captive swans in 1939, but the collection site is located in the Yangtze River watershed, the main wintering range of swan geese in China. This species, ranging from 3.8-4.6 mm in size (Fig. 2G-L; Table 3), can be distinctively separated from all other *Ornithobius* species by strongly enlarged antennae (Fig. 3E) [23], the elongated tongue-shaped mesosome of the male genitalia (Fig. 3F) [23], and the distinctly forked terminal segment of abdomens (Fig. 3F) [24], the elongated tongue-shaped mesosome of the male genitalia (Fig. 3G). In particular, a small Head-Index (length/width of head [24]) of 0.92 (range: 0.85-0.99) was derived from our measurements (Table 3). This result represents their width of head (24) but the lack of occurrence in our samples indicates that *A. cygnoptis* is not a highly prevalent louse, at least, amongst wild swan geese, as previously noted [27]. However, more importantly, we suggest that the previous information on chewing lice on the swan goose may be biased towards sampling of

Table 3. Morphometrics of chewing lice collected from wild swan geese (*Anser cygnoides*) in Mongolia

Measured part	*Trinoton anserinum*	*Ornithobius domesticus*	*Anaticola anseris*				
	Male (n=3)	Female (n = 1)	Nymph (n=2)	Male (n=2)	Female (n=6)	Nymph (n=2)	Female (n=1)
Head length in midline (HL)	0.92 (0.89-0.95)	0.90 (0.52-0.53)	0.95 (0.86-1.03)	0.96 (0.89-0.99)	0.94 (0.71-0.81)	0.76 (0.67)	
Head width at temple (HW)	1.44 (1.36-1.55)	1.53 (0.78-0.89)	1.03 (1.01-1.04)	0.97 (0.93-1.06)	0.92 (0.89-0.90)	0.90 (0.59)	
Thorax length (LT)	1.72 (1.65-1.77)	1.85 (0.69-0.71)	0.97 (0.93-1.01)	0.97 (0.84-0.97)	0.89 (0.57-0.71)	0.89 (0.42)	
Prothorax width (PW)	1.09 (1.05-1.14)	1.20 (0.54-0.59)	0.63 (0.62-0.63)	0.63 (0.55-0.62)	0.59 (0.49-0.52)	0.51 (0.42)	
Metathorax width (MW)	1.57 (1.52-1.63)	1.60 (0.69-0.76)	1.02 (0.99-1.05)	1.03 (0.91-1.07)	1.03 (0.79-0.83)	0.81 (0.61)	
Abdominal length in midline (AL)	2.84 (2.73-2.91)	3.62 (0.68-1.23)	2.52 (2.41-2.63)	2.32 (2.06-2.42)	1.90 (1.76-1.84)	1.90 (2.39)	
Abdomen width (AW)	1.78 (1.73-1.86)	1.96 (0.62-0.82)	1.39 (1.24-1.44)	1.45 (1.26-1.56)	1.15 (1.09-1.21)	1.15 (0.81)	
Total length (TL)	5.47 (5.29-5.63)	6.37 (1.89-2.44)	4.38 (4.41-4.64)	4.11 (3.76-4.26)	3.16 (3.01-3.31)	3.95 (3.5)	

Measurements are given as mean values in millimeters with the ranges in parentheses.
captive or domestic geese. Of the current records, C. pectiniven-tris was found on a captive swan goose as a probable straggler from other associated but unknown captive hosts in a zoo [14], and A. cygnop-sis was first described on a goose from the 'East Indies' [11], far beyond the natural distribution of the swan goose [8-10].

A. icterodes was originally described from the goose as Decophorus brunneiceps [12], but any detailed information on its host and locality was not described, raising a reasonable doubt that its host was a wild goose. Our suggestion is largely supported by the great abundance and worldwide distribution of domesticated forms of the swan goose, in contrast to the small, wild population (60,000-80,000 birds) and its restricted and remote geographic distribution [8,9]. After the recent spread of highly pathogenic avian influenza in wild waterfowl, surveillance of the heath condition and diseases of wild geese has been emphasized and conducted in East Asia [28]. Nevertheless, to our best of knowledge, no previous survey has been conducted to document the host-chewing lice association in wild swan goose populations. Therefore, we believe that our findings provide the first data on the chewing lice and host association confirmed from the true wild swan goose.

In conclusion, the lack of overlap between previous studies and our preliminary findings suggests that ectoparasites collected from domestic or captive animals may provide biased information on the occurrence, prevalence, host selection, and host-ectoparasite interactions from those in wild populations of the same host. Therefore, as a first step in understanding diversity, ecology, and evolution of chewing lice and their associated hosts, surveillance sampling should be taken into account on the nature and ecology of wild hosts. Close cooperation among field biologists, parasitologists, and entomologists based on extensive and systematic collection efforts and phylogenetic studies will benefit these efforts. Furthermore, it is also recommended to examine the validity of the A. cygnop-sis that has poor descriptions for a future work, because authenticated material from the type host was never found after the original collection in the 19th century [27].

ACKNOWLEDGMENTS

We appreciate assistance of the staff of the Wildlife Science and Conservation Center of Mongolia, Korea Institute of Environmental Ecology, and Korean Ministry of Agriculture, Food, and Rural Affairs during the field study. This work was led by the U.S. Geological Survey Western Ecological Research Center and University of Oklahoma, and supported by grants from the National Institutes of Health (1R56TW009502-01), National Institute of Allergy and Infectious Diseases (1R01AI101028-01A1), and U.S. Geological Survey (A14-0064), USA.

CONFLICT OF INTEREST

We declare that there is no conflict of interests in this study.

REFERENCES

1. Johnson JP, Clayton DH. The biology, ecology, and evolution of chewing lice. In Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH eds, The Chewing Lice: World Checklist and Biological Overview. Springfield, Illinois, USA. Illinois Natural History Survey. 2003, pp 449-476.

2. Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE. How birds combat ectoparasites. Open Ornithol J 2010; 3: 41-71.

3. Booth DT, Clayton DH, Block BA. Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc R Soc Lond B 1993; 253: 125-129.

4. Kose M, Möller AP. Sexual selection, feather breakage and parasites: the importance of white spots in the tail of the barn swallow (Hirundo rustica). Behav Ecol Sociobiol 1999; 45: 430-436.

5. Moreno-Rueda G, Hoi H. Female house sparrows prefer big males with a large white wing bar and fewer feather holes caused by chewing lice. Behav Ecol 2012; 23: 271-277.

6. Seegar WS, Schiller EL, Sladen WJ, Trips M. A mallophaga, Tri-noton anserium, as a cyclo developmental vector for a heartworm parasite of waterfowl. Science 1976; 194: 739-741.

7. Cohen S, Greenwood MT, Fowler JA. The louse Trinoton anserium (Amblycera: Phthiraptera); an intermediate host of Sarconema eurycentra (Filarioidea: Nematoda), a heartworm of swans. Med Vet Entomol 1991; 5: 101-110.

8. Batbayar N, Takekawa JY, Newman SH, Prosser DJ, Natsagdorj T, Xiao X. Migration strategies of swan geese Anser cygnoides from northeast Mongolia. Wildfowl 2011; 61: 90-109.

9. Keir J. Ducks, Geese, and Swans. Volume 1: General Chapters, and Species Accounts (Anhima to Salvadorina). New York, USA. Oxford University Press. 2005, pp 263-266.

10. Zhang Y, Cao L, Barter M, Fox AD, Zhao M, Meng F, Shi H, Jiang Y, Zhu W. Changing distribution and abundance of swan goose Anser cygnoides in the Yangtze River floodplain: the likely loss of a very important wintering site. Bird Conserv Int 2011; 21: 36-48.

11. Rudow F. Beitrag zur Kenntniss der Mallophagen oder Pelzfrass er. Neue exotische Arten der Familie Philopterinae. Leipzig, Germany. Universitat Leipzig. 1869, pp 37-38.

12. Giebel CG. Insecta Epizoa. Leipzig, Germany. Otto Wagnard. 1874, p 308.

13. Price RD, Hellenthal RA, Palma RL. World checklist of chewing
lice with host associations and keys to families and genera. In Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH eds, The Chewing Lice: World Checklist and Biological Overview. Springfield, Illinois, USA. Illinois Natural History Survey. 2003, pp 1-448.

14. Złotorzycka J. Wszoly - Mallophaga: Nadrodzina Menoponi-dea. Polskie Towarzystwo Entomologiczne [Klucze do Oznaczenia Owadów Polski] 1976; 15: 1-189.

15. Whitworth D, Newman SH, Mundkur T, Harris P. Wild Birds and Avian Influenza: an Introduction to Applied Field Research and Disease Sampling Techniques. Rome, Italy. Food and Agriculture Organization of the United Nations. 2007, pp 33-84.

16. Clay T, Hopkins GHE. The early literature on Mallophaga: Part I. Bull Br Mus (Nat Hist) Entomol 1950; 1: 221-272.

17. Clay T, Hopkins GHE. The early literature on Mallophaga: Part II. Bull Br Mus (Nat Hist) Entomol 1951; 2: 1-36.

18. Clay T, Hopkins GHE. The early literature on Mallophaga: Part IV. Bull Br Mus (Nat Hist) Entomol 1960; 9: 1-61.

19. Clay T. A key to the genera of the Menoponidae (Amblycera: Mallophaga: Insecta). Bull Br Mus (Nat Hist) Entomol 1969; 24: 1-26.

20. Eichler W, Vasjukova TT. Die Mallophagengattung Anaticola (Phthiraptera, Mallophaga). Dtsch Zool Inst (NF) 1980; 27: 335-375.

21. Eichler W, Vasjukova TT. Die Mallophagengattung Trinoton. Mitt Zool Mus Berlin 1981; 57: 23-62.

22. Castresana L, Totario A, Mateo PM. Study of the ectoparasitic mallophaga of Anatidae (Insecta, Mallophaga) in the Iberian Peninsula: identification, biometric characteristics and biological aspects. Zool Baetica 1999; 10: 63-86.

23. Arnold DC. Review of the genus Ornithobius (Phthiraptera: Ischnocera: Philopteridae), with descriptions of two new species. J Kans Entomol Soc 2005; 78: 158-166.

24. Balát F. Ornithobius matthewsi: Eine neue Mallophagenart der Graugans, Anser anser L. Annot Zool Bot 1974; 94: 1-6.

25. Timmermann G. Gruppen-Revisionen bei Mallophagen. V. Zur näheren Kennzeichnung des Ornithobius-komplexes (Philopteridae), parasitisch bei Entenvögeln. Z Parasitenkd 1962; 22: 133-147.

26. Naz S, Rizvi SA, Sychra O. Anaticola crassicornis (Phthiraptera: Ischnocera: Philopteridae) on wild geese from Pakistan. Zootaxa 2010; 2659: 60-66.

27. Clay T, Hopkins GHE. Notes on the Rudow collection of Mallophaga at Hamburg. Mitt Hamburg Zool Mus Inst 1955; 55: 49-73.

28. Takekawa JY, Prosser DJ, Newman SH, Muzaffar SB, Hill NJ, Yan B, Xiao X, Lei F, Li T, Schwarzbach SE, Howell JA. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds. Avian Biol Res 2010; 3: 1-23.
