Edge Contraction and Forbidden Induced Subgraphs

Hany Ibrahim Peter Tittmann
University of Applied Sciences Mittweida

Abstract

Given a family of graphs \mathcal{H}, a graph G is \mathcal{H}-free if any subset of $V(G)$ does not induce a subgraph of G that is isomorphic to any graph in \mathcal{H}. We present sufficient and necessary conditions for a graph G such that G/e is \mathcal{H}-free for any edge e in $E(G)$. Thereafter, we use these conditions to characterize claw-free, $2K_2$-free, P_4-free, C_4-free, C_5-free, split, pseudo-split, and threshold graphs.

1 Introduction

A graph G is an ordered pair $(V(G), E(G))$ where $V(G)$ is a set of vertices and $E(G)$ is a set of 2-elements subsets of $V(G)$ called edges. The set of all graphs is \mathcal{G}. The degree of a vertex v, denoted by $\text{deg}(v)$, is the number of edges incident to v. We denote the maximum degree of a vertex in a graph G by $\Delta(G)$. We call two vertices adjacent if there is an edge between them, otherwise, we call them nonadjacent. Moreover, the set of all vertices adjacent to a vertex v is called the neighborhood of v, which we denote by $N(v)$. On the other hand, the closed neighborhood of v, denoted by $N[v]$, is $N(v) \cup \{v\}$. Generalizing this to a set of vertices S, the neighborhood of S, denoted by $N(S)$, is defined by $N(S) := \bigcup_{v \in S} N(v) - S$. Similarly the closed neighborhood of S, denoted by $N[S]$, is $N(S) \cup S$. Moreover, for a subset of vertices S, we denote the set of vertices in S that are adjacent to v by $N_S(v)$. Furthermore, we write v is adjacent to S to mean that $S \subseteq N(v)$ and v is adjacent to exactly S to mean that $S = N(v)$.

A set of vertices S is independent if there is no edge between any two vertices in S. We call a set S dominating if $N[S] = V(G)$. A subgraph H of a graph G is a graph where $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. An induced graph $G[S]$ for a given set $S \subseteq V$, is a subgraph of G with vertex set S and two vertices in $G[S]$ are adjacent if and only if they are adjacent in G. Two graphs G, H are isomorphic if there is a bijective mapping $f : V(G) \to V(H)$ where $u, v \in V(G)$ are adjacent if and only if $f(u), f(v)$ are adjacent in H. In this case we call the mapping f an isomorphism. Two graphs that are not isomorphic are called non-isomorphic. In particular, an isomorphism from a graph to itself is called
automorphism. Furthermore, two vertices u, v are similar in a graph G if there is an automorphism that maps u to v. The set of all automorphisms of a graph G forms a group called the automorphism group of G, denoted by $\text{Aut}(G)$. The complement of a graph G, denoted by \overline{G}, is a graph with the same vertex set as $V(G)$ and two vertices in \overline{G} are adjacent if and only if they are nonadjacent in G.

The independence number of a graph G, denoted by $\alpha(G)$, is the largest cardinality of an independent set in G. In this thesis, we write singletons $\{x\}$ just as x whenever the meaning is clear from the context. A vertex u is a corner dominated by v if $N[u] \subseteq N[v]$. Let \mathcal{H} be a set of graphs. A graph G is called \mathcal{H}-free if there is no induced subgraph of G that is isomorphic to any graph in \mathcal{H}, otherwise, we say G is \mathcal{H}-exist.

By contracting the edge between u and v, we mean the graph constructed from G by adding a vertex w with edges from w to the union of the neighborhoods of u and v, followed by removing u and v. We denote the graph obtained from contracting uv by G/uv. If e is the edge between u and v, then we also denote the graph G/uv by G/e. Further, we call G/e a G-contraction. Finally, any graph in this paper is simple. For notions not defined, please consult [3]. Additionally, we divide longer proofs into smaller claims, and we prove them only if their proofs are not apparent.

For a graph invariant c, a graph G, and a G-contraction H, the question of how $c(G)$ differs from $c(H)$ is investigated for different graph invariants. For instance, how contracting an edge in a graph affects its k-connectivity. Hence, the intensively investigated ([18]) notion of k-contractible edges in a k-connected graph G is defined as the edge whose contraction yields a k-connected graph. Another example is in the game Cops and Robber where a policeman and a robber are placed on two vertices of a graph in which they take turns to move to a neighboring vertex. For any graph G, if the policeman can always end in the same vertex as the robber, we call G cop-win. However, G is CECC if it is not cop-win, but any G-contraction is cop-win. The characteristics of a CECC graph are studied in [6].

A further example is the investigation of the so-called contraction critical, with respect to independence number, that is, an edge e in a graph G where $\alpha(G/e) \leq \alpha(G)$, studied in [24]. Furthermore, the case where c is the chromatic and clique number, respectively, has been investigated in [11, 22, 23].

In this article, we investigate the graph invariant H-free for a given set of graphs \mathcal{H}. In particular, we present sufficient and necessary conditions for a graph G such that any G-contraction is H-free.

Let \mathcal{H} be a set of graphs. The set of elementary (minimal) graphs in \mathcal{H}, denoted by $\text{elm}(\mathcal{H})$, is defined as $\{H \in \mathcal{H} : \text{if } G \in \mathcal{H} \text{ and } H \text{ is } G\text{-exist, then } G \text{ is isomorphic to } H\}$. From the previous definition, we can directly obtain the following.

Proposition 1. Let \mathcal{H} be a set of graphs. Graph G is \mathcal{H}-free if and only if G is $\text{elm}(\mathcal{H})$-free.

We call an \mathcal{H}-free graph G, strongly \mathcal{H}-free if any G-contraction is \mathcal{H}-free.
Furthermore, an \mathcal{H}-exist graph G is a critically \mathcal{H}-exist if any G-contraction is \mathcal{H}-free. If we add any number of isolated vertices to a strongly \mathcal{H}-free or critically \mathcal{H}-exist graph, we obtain a graph with same property. Thus, from this section and forward, we exclude graphs having isolated vertices unless otherwise stated.

We conclude directly the following.

Proposition 2. Let \mathcal{H} be a set of graphs and G be a graph where G is neither critically \mathcal{H}-exist nor \mathcal{H}-free but not strongly \mathcal{H}-free. The graph G is \mathcal{H}-free if and only if any G-contraction is \mathcal{H}-free.

Given a graph G and a set of graphs \mathcal{H}, we call G \mathcal{H}-split if there is a G-contraction isomorphic to a graph in \mathcal{H}. Furthermore, G is \mathcal{H}-free-split if G is \mathcal{H}-split and \mathcal{H}-free. Moreover, the set of all \mathcal{H}-free-split graphs, for a given \mathcal{H}, is denoted by $\text{fs}(\mathcal{H})$.

Proposition 3. Let \mathcal{H} be a set of graphs and G be a \mathcal{H}-free graph. Then G is strongly \mathcal{H}-free if and only if G is $\text{fs}(\mathcal{H})$-free.

Proof. Assume for the sake of contradiction that there exists a strongly \mathcal{H}-free graph G with an induced \mathcal{H}-free-split subgraph J. Consequently, there is an edge e in J such that J/e induces a graph in \mathcal{H}. As a result, G/e is \mathcal{H}-exist, which contradicts the fact that G is strongly \mathcal{H}-free.

In contrast, if G is an \mathcal{H}-free but not a strongly \mathcal{H}-free, then there is a set $U \subseteq V(G)$ such that there is an edge $e \in E(G[U])$ where G/e is \mathcal{H}-exist. Let U be a minimum set with such a property. Thus $G[U]$ is \mathcal{H}-free-split.

From Propositions 2 and 3, we deduce the following.

Theorem 4. Let \mathcal{H} be a set of graphs and G be a $\text{fs}(\mathcal{H})$-free graph where G is not critically \mathcal{H}-exist. The graph G is \mathcal{H}-free if and only if any G-contraction is \mathcal{H}-free.

Theorem 4 provides a sufficient and necessary condition that answers the question we investigate in this thesis, however, it translates the problem to determining characterizations for critically \mathcal{H}-exist and \mathcal{H}-free-split graphs for a set of graphs \mathcal{H}. In Sections 1.1 and 1.2, we present some properties for these families of graphs.

1.1 The \mathcal{H}-Split Graphs

Let H be a graph with $v \in V(H)$ and $N_H(v) = U \cup W$. The splitting(H, v, U, W) is the graph obtained from H by removing v and adding two vertices u and w where $N_H(u) = U \cup \{w\}$ and $N_H(w) = W \cup \{u\}$. Furthermore, splitting(H, v) is the set of all graphs for any possible U and W. Moreover, splitting(H) is the union of the splitting(H, v) for any vertex $v \in V(H)$. Given a set of graphs \mathcal{H}, splitting(\mathcal{H}) is the union of the splittings of every graph in \mathcal{H}.

Theorem 5. For a graph G and a set of graphs \mathcal{H}, G is an \mathcal{H}-split if and only if $G \in \text{splitting}(\mathcal{H})$.

3
Proof. Let \(G \) be an \(H \)-split. Hence there is a graph \(H \in \mathcal{H} \) such that \(G \) is \(H \)-split. Thus, there are two vertices \(u, w \in V(G) \) such that \(G/uv \) is isomorphic to \(H \). Let \(x := V(G/uv) - V(G) \), then \(N_{G/uv}(x) = (N_G(u) \cup N_G(w)) - \{u, w\} \). As a result, \(G \in \text{splitting}(H, x) \). Consequently, \(G \in \text{splitting}(H) \).

Conversely, let \(G \in \text{splitting}(H) \). Hence there is a graph \(H \in \mathcal{H} \) such that \(G \in \text{splitting}(H) \). Thus, there are two adjacent vertices \(u, w \in V(G) \) such that \(G/uv \cong H \). Thus, \(G \) is \(H \)-split.

For a set of graphs \(\mathcal{H} \) and using Theorem 5, we can use \(\text{splitting}(\mathcal{H}) \) to construct all \(\mathcal{H} \)-split graphs, consequently \(\mathcal{H} \)-free-split graphs.

Proposition 6. In a graph \(G \), let \(u, v \in V(G) \). If \(u \) is similar to \(v \), then \(\text{splitting}(G, u) = \text{splitting}(G, v) \).

By the previous proposition, for a graph \(H \), the steps to construct the \(H \)-free-split graphs are:

- Let \(\pi \) be the partition of \(V(H) \) induced by the orbits generated from \(\text{Aut}(H) \);
- for every orbit \(o \in \pi \), we choose a vertex \(v \in o \); and
- construct \(\text{splitting}(H, v) \).

Proposition 7. Let \(G \) be a graph, \(v \) a vertex in \(V(G) \) where \(N_G(v) = U \cup W \). If \(U = N_G(v) \) or \(W = N_G(v) \), then \(\text{splitting}(G, v, U, W) \) is not \(G \)-free-split.

Proposition 8. Let \(G \) be a graph and \(v \) a vertex in \(V(G) \). If \(\deg(v) = 1 \), then \(\text{splitting}(G, v) \) contains no \(G \)-free-split graph.

Proposition 9. If \(G \) is a path, then \(\text{splitting}(G) \) contains no \(G \)-free-split graph.

Proposition 10. If \(G \) is a \(C_n \) for an integer \(n \geq 3 \), then the \(G \)-free-split is \(C_{n+1} \).

1.2 Critically \(\mathcal{H} \)-Exist Graphs

Theorem 11. Let \(G \) be a graph and \(\mathcal{H} \) be a set of graphs. If \(G \) is a critically \(\mathcal{H} \)-exist, then for any \(S \subseteq V(G) \) such that \(G[S] \) is isomorphic to a graph in \(\mathcal{H} \), the followings properties hold:

1. \(V(G) - S \) is independent and
2. there is no corner in \(V(G) - S \) that is dominated by a vertex in \(S \).

Proof.

1. For the sake of contradiction, assume there is a \(S \subseteq V(G) \) such that \(G[S] \) is isomorphic to a graph \(H \in \mathcal{H} \) but \(V(G) - S \) is not independent. Hence, there are two vertices \(u, v \in V(G) - S \) where \(u \) and \(v \) are adjacent. Consequently, \(G/uv[S] \) is isomorphic to \(H \), which contradicts the fact that \(G \) is a critically \(\mathcal{H} \)-exist.
2. Since \(V(G) - S \) is independent, the neighborhood of any vertex in \(V(G) - S \) is a subset of \(S \). For the sake of contradiction, assume that there is a corner \(u \in V(G) - S \) that is dominated by \(v \in S \). However, \(G/uv[S] \) is isomorphic to a graph \(H \in \mathcal{H} \), which contradicts the fact that \(G \) is a critically \(\mathcal{H} \)-exist.

\[\square \]

Corollary 12. Let \(G \) be a critically \(\mathcal{H} \)-exist graph for a set of graphs \(\mathcal{H} \). If \(S \) is a vertex set that induces a graph in \(\mathcal{H} \), then no vertex in \(V(G) - S \) is adjacent to exactly one vertex, two adjacent vertices, three vertices that induce either \(P_3 \) or \(C_3 \), or a vertex with degree \(|V(G)| - 1 \).

Let \(G \) be a graph with adjacent vertices \(u, v \), and \(\{w\} := V(G/uv) - V(G) \).

We define the mapping \(f : 2^{V(G)} \rightarrow 2^{V(G/uv)} \) as follows:

\[
f(S) = \begin{cases}
S & \text{if } u, v \notin S, \\
(S \cup \{w\}) - \{u, v\} & \text{otherwise.}
\end{cases}
\]

Let \(S \) be a vertex set such that \(G[S] \) is isomorphic to a given graph \(H \). We call an edge \(uv \), \(H \)-critical for \(S \) if \(G/uv[f(S)] \) is non-isomorphic to \(H \). Furthermore, we call the edge \(uv \) \(H \)-critical in \(G \) if for any vertex subset \(S \) that induces \(H \), \(uv \) is \(H \)-critical for \(S \).

Theorem 13. Let \(G \) be a graph and \(S \subseteq V(G) \) where \(H \) is the graph induced by \(S \) in \(G \). For any edge \(uv \in E(G) \), \(uv \) is \(H \)-critical for \(S \) if and only if

1. \(u, v \in S \) or
2. \(u \in V(G) - S \), \(v \in S \), and \(u \) is not a corner dominated by \(v \) in the subgraph \(G[S \cup \{u\}] \).

Proof.

1. If \(u, v \in S \), then \(|f(S)| < |S| \). Thus, \(G/uv[f(S)] \) is non-isomorphic to \(H \).

2. Let \(u \in V(G) - S \), \(v \in S \), and \(u \) is not a corner dominated by \(v \) in the subgraph \(G[S \cup \{u\}] \). Additionally, let \(w \in N_S(u) \) but \(w \notin N_S(v) \). In \(G/uv \), let \(x := V(G/uv) - V(G) \). Clearly, \(x \) is adjacent to any vertex in \(N_S(v) \cup \{w\} \). Hence, the size of \(G/uv[f(S)] \) is larger than that of \(G[S] \). Thus, \(G/uv[f(S)] \) is non-isomorphic to \(H \). Conversely, if none of the conditions in the theorem hold, then one of the following holds:

1. both \(u \) and \(v \) are not in \(S \), or
2. \(u \in V(G) - S \), \(v \in S \), and \(u \) is a corner dominated by \(v \) in the subgraph \(G[S \cup \{u\}] \).

In both cases, \(G[S] \cong G/uv[f(S)] \cong H \). Consequently, \(uv \) is not \(H \)-critical for \(S \). \(\square \)
2 Special graphs

Proposition 14. If a graph G is C_n-exist, where $n \geq 4$, then there is a G-contraction that is C_{n-1}-exist.

Proposition 15. The only critical C_3-exist graph is C_3.

3 Claw-Free Graphs

There are several graph families that are subfamilies of claw-free graphs, for instance, line graphs and complements of triangle-free graphs. For more graph families and results about claw-free graphs, please consult [13]. Additionally, for more structural results about claw-free graphs, please consult [7, 8]. In the following, we call the graph H_5 in Figure 1 bull.

Proposition 16. The graphs in Figure 1 are the only claw-split graphs.

Corollary 17. Bull is the only claw-free-split graph.

![Figure 1: Claw-split graphs](image)

Proposition 18. The graphs in Figure 2 are the only critically claw-exist graphs.

Proof. Through this proof, we assume that G is a critically claw-exist graph with $S := \{r, s, t, u\}$, where $G[S]$ is isomorphic to a claw and u is its center. By Theorem 11, $V(G) - S$ is independent. Thus, any vertex in $V(G) - S$ is adjacent to vertices only in S. By Corollary 12, if $v \in V(G) - S$, then neither $|N(v)| = 1$ nor v is adjacent to u.

Let $v, w \in V(G) - S$ such that $N(v) = N(w)$ where $|N(v)| = 2$. W.l.o.g., assume that $N(v) = \{r, s\}$, however, in G/tu, $f(\{v, u, v, w\})$ induces a claw,
which contradicts the fact that G is a critically claw-exist. Thus, if $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$, then $N(v) \neq N(w)$.

Let $v, w, x \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$. No two vertices of $v, w,$ and x (if $|N(x)| = 2$) are adjacent to the same vertices in S. W.l.o.g., assume that $N(v) = \{r, s\}$, $N(w) = \{r, t\}$, and $\{s, t\} \subseteq N(x)$. In G/tx, $f(\{r, u, v, w\})$ induces a claw, which contradicts the fact that G is a critically claw-exist. Thus, if $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$, then G is isomorphic to H_5.

Let $v, w, x \in V(G) - S$ such that $|N(v)| = |N(w)| = 3$. W.l.o.g., assume that s is adjacent to x. In G/sx, $f(\{r, u, v, w\})$ induces a claw, which contradicts the fact that G is a critically claw-exist. Thus, if $v, w \in V(G) - S$ such that $N(v) = N(w)$ and $|N(v)| = 3$, then G is isomorphic to H_3.

Consequently, the possible critically claw-exist graphs are those presented in Figure 2. To complete the proof, we have to show that all these graphs are critically claw-exist, which is straightforward in each case. □

By Theorem 4, Corollary 17, and Proposition 18, we obtain the following result.

Theorem 19. Let G be a bull-free graph that is non-isomorphic to any graph in Figure 2. The graph G is claw-free if and only if any G-contraction is claw-free.

4 The $2K_2$-Free Graphs

Different graphs families are $2K_2$-free graphs; for instance split, pseudo-split, threshold, and co-chordal graphs. Various graph invariants were studied for $2K_2$-free graphs, please consult [4, 5, 9, 12, 15]. The class of $2K_2$-free graphs has been characterized in different ways, see [20, 25]. We call the graph H_5 in Figure 1 Bull.

We call an edge uv in a graph G almost-dominating if $V(G) - N\{u, v\}$ induces edgeless graph.
Proposition 20. A graph G is $2K_2$-free if and only if any edge in $E(G)$ is almost-dominating.

Lemma 21. Let G be a graph with a unique subset $S \subseteq V(G)$ such that $G[S]$ induces $2K_2$. If every edge e in $E(G)$ is e is $2K_2$-critical for S, then G is a critically $2K_2$-exist.

Proof. Let H be a G-contraction. Every edge e in $E(G)$ is $2K_2$-critical for S, then $V(G) - S$ is independent set. Furthermore, every vertex in $V(G) - S$ is adjacent to at least two nonadjacent vertices in S. In H, let $u \in V(G) - f(S)$ and $v \in f(S)$. If u, v are adjacent, then uv is almost-dominating. Let $u \in f(S)$, then uv is almost-dominating. Hence, every edge in H is almost-dominating. Thus, G is a critically $2K_2$-exist. \qed

Proposition 22. The graphs $P_2 \cup C_3$ and $P_2 \cup P_3$ are the only $2K_2$-split graphs.

Corollary 23. There is no $2K_2$-free-split graph.

Proposition 24. The graphs in Figure 3 are the only critically $2K_2$-exist graphs.

Proof. Through this proof, we assume that G is a critically $2K_2$-exist graph with $S = \{r, s, t, u\}$ such that $G[S]$ is isomorphic to $2K_2$, where rs and tu are edges in G. By Theorem 11, we note that $V(G) - S$ is independent. Thus, any vertex in $V(G) - S$ is adjacent to vertices only in S. By Corollary 12, if $v \in V(G) - S$, then neither $|N(v)| = 1$ nor v is adjacent to exactly two adjacent vertices.

Figure 3: Critically $2K_2$-exist graphs
Claim 24.1. If $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$ while $N(v) \cap N(w) = \phi$, then G is isomorphic to H_1.

Proof. W.l.o.g., let $N(v) = \{r, u\}$ and $N(w) = \{s, t\}$. We will show that $V(G) = S \cup \{v, w\}$. For the sake of contradiction, assume that there is a vertex $x \in V(G) - S$. Thus, x is adjacent to at least one vertex in S. W.l.o.g., let x be adjacent to r. In G/rx, $f(\{s, u, v, w\})$ induces $2K_2$, which contradicts the fact that G is a critically $2K_2$-exist.

Claim 24.2. If $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$, $|N(x)| = 3$ while $N(v) = N(w)$, then $N(v) \subset N(x)$.

Proof. W.l.o.g., let $N(v) = N(w) = \{r, u\}$. For the sake of contradiction and w.l.o.g., assume $N(x) = \{r, s, t\}$. In G/rw, $f(\{s, u, v, x\})$ induces $2K_2$, which contradicts the fact that G is a critically $2K_2$-exist.

Claim 24.3. If $v, w, x \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$ while $|N(v) \cap N(w)| = 1$ and $|N(x)| = 3$ where $N(v) \cap N(w) \cap N(x) = \phi$, then G is isomorphic to H_4.

Proof. W.l.o.g., let $N(v) = \{r, u\}$, $N(w) = \{r, t\}$, and $N(x) = \{s, t, u\}$. For the sake of contradiction, assume that there is a vertex $y \in V(G) - S$. Hence, y is adjacent to at least one vertex in S. If y is adjacent to s (or u), then $f(\{r, t, v, x\})$ induces $2K_2$ in G/sy (or G/uy), which contradicts the fact that G is a critically $2K_2$-exist. Moreover, if y is adjacent to t, then $f(\{r, u, w, x\})$ induces $2K_2$ in G/ty, which contradicts the fact that G is a critically $2K_2$-exist.

Claim 24.4. If $v, w, x \in V(G) - S$ such that $|N(v)| = |N(w)| = 2$ while $|N(v) \cap N(w)| = 1$ and $|N(x)| = 3$, then either $N(v) \cup N(w) = N(x)$ or $N(v) \cap N(w) \cap N(x) = \phi$ and G is isomorphic to H_4.

Proof. By Claim 24.3, if $N(v) \cap N(w) \cap N(x) = \phi$, then G is isomorphic to H_4. If $N(v) \cup N(w) = N(x)$, then we are done. As a result, and w.l.o.g., let $N(v) = \{r, u\}$ and $N(w) = \{r, t\}$. Assume for the sake of contradiction that $N(x) = \{r, s, t\}$. However, $f(\{s, u, v, x\})$ induces $2K_2$ in G/rw, which contradicts the fact that G is a critically $2K_2$-exist.

Claim 24.5. If $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 3$, while $N(v) \cap N(w)$ consists of two nonadjacent vertices in S, then G is isomorphic to H_3.

Proof. W.l.o.g., let $N(v) = \{r, t, u\}$ and $N(w) = \{r, s, t\}$. For the sake of contradiction, assume that there is a vertex $x \in V(G) - S$. If x is adjacent to r (or t), then $f(\{s, u, v, w\})$ induces $2K_2$ in G/rx (or G/tx), which contradicts the fact that G is a critically $2K_2$-exist graph. Thus, $N(x) = \{s, u\}$, however, $f(\{s, t, v, x\})$ induces $2K_2$ in G/rw, which contradicts the fact that G is a critically $2K_2$-exist.

Claim 24.6. If $v, w \in V(G) - S$ such that $|N(v)| = |N(w)| = 3$, while $N(v) \cap N(w)$ is two adjacent vertices in S, then $|N(x)| \neq 2$.

9
Proof. W.l.o.g., Let \(N(v) = \{r, t, u\} \) and \(N(w) = \{s, t, u\} \). W.l.o.g and for the sake of contradiction, assume that \(N(x) = \{r, u\} \). However, \(f(\{r, t, w, x\}) \) induces \(2K_2 \) in \(G/uv \), which contradicts the fact that \(G \) is a critically \(2K_2 \)-exist.

By Claims 24.1 to 24.6, the possible critically \(2K_2 \)-exist graphs are those presented in Figure 3 whose proofs of being critically \(2K_2 \)-exist for \(H_1 \), \(H_2 \), \(H_3 \), and \(H_4 \) are straightforward.

Claim 24.7. The graph \(H_5 \) in Figure 3 is a critically \(2K_2 \)-exist.

Proof. Graph \(H_5 \) in Figure 3 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u\} \), where \(G[S] \) is isomorphic to a \(2K_2 \) and \(rs, tu \in E(G) \). Moreover, \(V(G) = S \cup W \cup X \cup Y \), such that \(N(w \in W) = \{r, s, t\} \), \(N(x \in X) = \{r, s, u\} \), \(N(y \in Y) = \{r, s, t, u\} \), and \(|W|, |X|, |Y| \geq 0 \).

We note that \(S \) is the only vertex set inducing \(2K_2 \) in \(G \). Moreover, every edge in \(E(G) \) is \(G[S] \)-critical for \(S \). Thus, and by Lemma 21, \(H_5 \) in Figure 3 is a critically \(2K_2 \)-exist. \(\Box\)

Claim 24.8. Graph \(H_6 \) in Figure 3 is a critically \(2K_2 \)-exist.

Proof. Graph \(H_6 \) in Figure 3 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u\} \) where \(G[S] \) is isomorphic to a \(2K_2 \) and \(rs, tu \in E(G) \). Moreover, \(V(G) = S \cup W \cup X \cup Y \cup Z \), such that \(N(w \in W) = \{s, t\} \), \(N(x \in X) = \{s, u\} \), \(N(y) = \{s, t, u\} \), \(N(z) = \{r, s, t, u\} \), and \(|W|, |X|, |Y|, |Z| \geq 0 \).

We note that \(S \) is the only vertex set inducing \(2K_2 \) in \(G \). Moreover, every edge in \(E(G) \) is \(G[S] \)-critical for \(S \). Thus, and by Lemma 21, \(H_6 \) in Figure 3 is a critically \(2K_2 \)-exist. \(\Box\)

By Claims 24.7 and 24.8, the proof is complete. \(\Box\)

By Theorem 4, Corollary 23, and Proposition 24, we obtain the following.

Theorem 25. Let \(G \) be a graph that is non-isomorphic to any graph in Figure 3. The graph \(G \) is \(2K_2 \)-free if and only if any \(G \)-contraction is \(2K_2 \)-free.

5 The \(P_4 \)-Free Graphs

By Proposition 9, the following result follows.

Corollary 26. There is no \(P_4 \)-free-split graph.

Proposition 27. The graphs in Figure 4 are the only critically \(P_4 \)-exist graphs.
Proof. Through this proof, we assume that G is a critically P_4-exist graph with $S = \{r, s, t, u\}$ such that $G[S]$ is isomorphic to P_4 where $rs, st, tu \in E(G)$. By Theorem 11, $V(G) - S$ is independent. Thus, any vertex in $V(G) - S$ is adjacent to vertices only in S. By Corollary 12, if $v \in V(G) - S$, then v is nonadjacent to exactly: one vertex, two adjacent vertices, or three vertices inducing a path.

Let $v, w \in V(G) - S$ such that v is adjacent to exactly the leaves of S. If w is adjacent to r (or u), then in G/rw, $f(\{s, t, u, v\})$ induces P_4, which contradicts the fact that G is a critically P_4-exist. If w is adjacent to s (or t), then in G/sw, $f(\{r, t, u, v\})$ induces P_4, which contradicts the fact that G is a critically P_4-exist. Thus, if there is a vertex $v \in V(G) - S$ such that v is adjacent to exactly the leaves of the path induced by S, then G is isomorphic to H_1.

Let $v \in V(G) - S$ such that $|N(v)| = 2$. If v is adjacent to exactly the leaves of the path induced by S, then G is isomorphic to H_1. Assume that v is nonadjacent to exactly the leaves of the path induced by S. Hence, v is exactly adjacent to $\{r, t\}$ (or $\{s, u\}$). Assume that there is a vertex $w \in V(G) - S$ that is not exactly adjacent to $\{r, t\}$. Hence, w is nonadjacent to exactly $\{r, u\}$. If w is adjacent to s, then in G/sw, $f(\{r, t, u, v\})$ induces P_4, which contradicts the fact that G is a critically P_4-exist. Hence, w is adjacent to exactly $\{r, t, u\}$, however, in G/st, $f(\{r, u, v, w\})$ induces P_4, which contradicts the fact that G is a critically P_4-exist. Thus, if $v \in V(G) - S$ such that $|N(v)| = 2$, then G is isomorphic to either H_1 or a graph in H_4.

Figure 4: The critically P_4-exist graphs
Figure 4 whose proofs, of being critically P_4-exist, are straightforward, which completes the proof. □

By Theorem 4, Corollary 26, and Proposition 27, we obtain the following.

Theorem 28. Let G be a graph that is non-isomorphic to any graph in Figure 4. The graph G is P_4-free if and only if any G-contraction is P_4-free.

6 The C_4-Free Graphs

Proposition 29. The graphs in Figure 5 are the only C_4-split graphs.

Corollary 30. C_5 is the only C_4-free-split graph.

![Figure 5: C_4-split graphs](image)

Proposition 31. The graphs in Figure 6 are the only critically C_4-exist graphs.

![Figure 6: Critically C_4-exist graphs](image)

Proof. Through this proof, we assume that G is a critically C_4-exist graph with $S = \{r, s, t, u\}$ such that $G[S]$ is isomorphic to C_4 where r and t are adjacent to both s and u. By Theorem 11, we note that $V(G) - S$ is independent. Thus, any vertex in $V(G) - S$ is adjacent to vertices only in S. By Corollary 12, if $v \in V(G) - S$, then v is nonadjacent to exactly: one vertex, two adjacent vertices, or three vertices.

Let $v \in V(G) - S$ such that $|N(v)| = 2$. W.l.o.g, assume that $N(v) = \{r, t\}$. Let $w \in V(G) - S$, however, if w is adjacent to s (or u), then in G/sw, $f(\{r, t, u, v\})$ induces C_4, which contradicts the fact that G is a critically C_4-exist. Thus, if $v \in V(G) - S$ such that $|N(v)| = 2$, then G is isomorphic to a graph in H_1.

12
Let $v, w, x \in V(G) - S$ such that $|N(v)| = |N(w)| = 4$. Hence, $|N(x)| = 4$, however, in G/rv, $f(\{s, u, w, x\})$ induces C_4, which contradicts the fact that G is a critically C_4-exist. Thus, if there is a vertex outside S that is adjacent to every vertex in S then G is isomorphic to either H_2 or H_3.

Consequently, the possible critically C_4-exist graphs are those presented in Figure 6 whose proofs, of being critically C_4-exist, are straightforward, which completes the proof. □

By Theorem 4, Corollary 30, and Proposition 31, we obtain the following.

Theorem 32. Let G be a C_5-free graph that is non-isomorphic to any graph in Figure 6. The graph G is C_4-free if and only if any G-contraction is C_4-free.

7 The C_5-Free Graphs

Proposition 33. The graphs in Figure 7 are the only C_5-split graphs.

![Figure 7: C_5-split graphs](image)

Corollary 34. C_6 is the only C_5-free-split graph.

Proposition 35. The graphs in Figure 8 are the only critically C_5-exist graphs.

Proof. Through this proof, we assume that G is a critically C_5-exist graph with $S = \{r, s, t, u, v\}$ such that $G[S]$ is isomorphic to a C_5 where rs, st, tu, uv, and vr are the edges in $E(G[S])$. By Theorem 11, we note that $V(G) - S$ is independent. Thus, any vertex in $V(G) - S$ is adjacent to vertices only in S. By Corollary 12, if $w \in V(G) - S$, then the neighborhood of w is not exactly: one vertex, two adjacent vertices, or three vertices that induce a path.

Claim 35.1. If $w, x \in V(G) - S$ such that $|N(w)| = 2$, then for any vertex y in $N(x)$, $N(w) \cup \{y\}$ do not induce P_3.

Proof. For the sake of contradiction, and w.l.o.g., assume that there are vertices $w, x \in V(G) - S$ such that $N(w) = \{r, t\}$ and there is a vertex $y \in |N_S(x)|$, where $N(w) \cup \{y\}$ induces P_3. Consequently, $y = s$. In G/sx, the set $f(\{r, t, u, v, w\})$ induces C_5, which contradicts the fact that G is a critically C_5-exist. □

Claim 35.2. If $w, x, y \in V(G) - S$ such that $|N(w)| = |N(x)| = 3$ where $N(w) \cup N(x) = S$, then y is nonadjacent to any vertex in S that is adjacent to $N(w) \cap N(x)$.

13
Proof. W.l.o.g., assume that there are vertices $w, x, y \in V(G) - S$ such that $N(w) = \{r, t, u\}$ and $N(w) \cup N(x) = S$. As a result, $N(x) = \{s, t, v\}$ or $\{s, u, v\}$. Because of symmetry, we assume that $N(x) = \{s, t, v\}$. For the sake of contradiction, we assume that y is adjacent to s (or u). However, in G/sy (or G/uy), the set $f(\{r, t, v, w, x\})$ induces C_5 which contradicts the fact that G is a critically C_5-exist. \(\square\)
Claim 35.3. If \(w, x, y \in V(G) - S \) such that \(|N(w)| = |N(x)| = 4 \), where \(N(w) \cap N(x) \) induces \(P_3 \), then \(y \) is nonadjacent to the leaves in the path induced by \(N(w) \cap N(x) \).

Proof. W.l.o.g., assume that there are vertices \(w, x, y \in V(G) - S \) such that \(N(w) = \{r, s, t, u\} \), while \(N(w) \cap N(x) \) induces \(P_3 \). As a result, \(N(x) = \{s, t, u, v\} \) or \(\{r, t, u, v\} \). Because of symmetry, we assume that \(N(x) = \{s, t, u, v\} \). For the sake of contradiction, we assume that \(y \) is adjacent to \(s \) (or \(u \)). However, in \(G/\text{sy} \) (or \(G/\text{uy} \)), the set \(f(\{r, t, v, w, x\}) \) induces \(C_5 \), which contradicts the fact that \(G \) is a critically \(C_5 \)-exist. \(\Box \)

Claim 35.4. If \(w, x \in V(G) - S \) such that \(|N(w)| = 3 \) and \(|N(x)| = 4 \) where neither of the leaves of the \(P_4 \) induced by \(N(x) \) are in \(N(w) \), then \(G \) is isomorphic to \(H_1 \).

Proof. W.l.o.g., assume vertices \(w, x \in V(G) - S \) such that \(N(w) = \{r, t, u\} \) and \(N(x) = \{s, t, u, v\} \). For the sake of contradiction, we assume that there is a vertex \(y \in V(G) - S \). If \(y \) is adjacent to \(s \) (or \(u \)), then in \(G/\text{sy} \) (or \(G/\text{uy} \)), the set \(f(\{r, t, v, w, x\}) \) induces \(C_5 \), which contradicts the fact that \(G \) is a critically \(C_5 \)-exist. In contrast, if \(y \) is adjacent to \(t \) (or \(v \)), then in \(G/\text{ty} \) (or \(G/\text{vy} \)), the set \(f(\{r, s, u, w, x\}) \) induces \(C_5 \), which contradicts the fact that \(G \) is a critically \(C_5 \)-exist. \(\Box \)

By Claims 35.1 to 35.4, we deduce that the possible critically \(C_5 \)-exist graphs are the ones presented in Figure 8. To complete the proof, we demonstrate that every graph in Figure 8 is a critically \(C_5 \)-exist.

Claim 35.5. There is no \(C_6 \)-exist graph in Figure 8.

Proof. Assume for the sake of contradiction, there is a graph \(G \) in in Figure 8 that is \(C_6 \)-exist. Moreover, \(T \subseteq V(G) \) where \(G[T] \) induces \(C_6 \). Let \(S \subseteq V(G) \) such that \(G[S] \) induces \(C_5 \). No more than two vertices in \(S \) can form an independent set. Hence \(T \) can contain at most two vertices from \(S \). Consequently, \(T \) has four vertices from \(V(G) - S \), however, two of such four vertices are adjacent, which contradicts the fact that \(V(G) - S \) is independent set. \(\Box \)

All graphs in Figure 8 are \(C_6 \)-free. Consequently, any contraction of a graph of Figure 8 has an induced \(C_5 \), then this \(C_5 \) must be an induced subgraph of the original graph too. Thus, it would be sufficient to prove that in every graph \(G \) in Figure 8, the edges of \(G \) are critical for every induced \(C_5 \) in \(G \).

Claim 35.6. The graph \(H_1 \) in Figure 8 is a critically \(C_5 \)-exist.

Proof. The graph \(H_1 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, uv, vr \in E(G) \). Moreover, \(V(G) = S \cup \{w, x\} \) such that \(N(w) = \{r, t, u\} \) and \(N(x) = \{s, t, u, v\} \). Clearly, the vertex subsets of \(V(G) \) that induce \(C_5 \) are \(S, \{r, s, u, w, x\} \), and \(\{r, t, v, w, x\} \). Furthermore, it is straightforward that every edge in \(E(G) \) is
\[C_5 \text{-critical for the previous three vertex subsets. Thus, } G \text{ is a critically } C_5\text{-exist.} \]

\textbf{Claim 35.7.} The graph \(H_2 \) in Figure 8 is a critically \(C_5\)-exist.

\textbf{Proof.} The graph \(H_2 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, uw, vr \in E(G) \). Moreover, \(V(G) = S \cup \{w, x\} \cup Y \), such that \(N(w) = \{r, t, u\} \), \(N(x) = \{s, u, v\} \), \(N(y \in Y) = \{r, s, u\} \), and \(|Y| \geq 0 \).

We prove that \(G \) contains only two induced \(C_5 \). For any \(i, j \) where \(1 \leq i < j \leq |Y| \), if both \(y_i \) and \(y_j \) are in a vertex subset that induces a cycle in \(G \), then this vertex subset would be \(\{r, u, y_i, y_j\} \) and \(\{s, u, y_i, y_j\} \). Thus, no induced \(C_5 \) in \(G \) contains both \(y_i \) and \(y_j \). Moreover, the vertex subsets that induce a cycle in \(G \) that contain \(y_i \) but not \(y_j \) are \(\{r, s, y_i\} \), \(\{r, u, v, y_i\} \), \(\{s, t, u, y_i\} \), and \(\{s, u, x, y_i\} \). Clearly, none of them induces \(C_5 \). Thus, no induced \(C_5 \) in \(G \) contain a vertex \(y_i \) for any \(i \leq l \). Furthermore, no four vertices from \(S \) with either \(w \) or \(x \) induce a \(C_5 \). Consequently, no vertex subset that induces \(C_5 \) in \(G \) contains either \(w \) or \(x \). As a result, a cycle \(C_5 \) is induced in \(G \) only by \(S \) or \(\{r, s, u, w, x\} \). We note that any edge in \(E(G) \) is a critical edge for all subsets that induce \(C_5 \). Thus, \(G \) is a critically \(C_5\)-exist. \(\Box \)

The proof of the following claim can be performed in a similar way as that one of Claim 35.7. We will just explain the structure of the graph \(H_3 \), the remaining part is left to the interested reader.

\textbf{Claim 35.8.} The graph \(H_3 \) in Figure 8 is a critically \(C_5\)-exist.

\textbf{Proof.} The graph \(H_3 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, uw, vr \in E(G) \). Moreover, \(V(G) = S \cup \{w, x\} \cup Y \), such that \(N(w) = \{r, s, t, u\} \), \(N(x) = \{s, t, u, v\} \), \(N(y \in Y) = \{r, t, v\} \), and \(|Y| \geq 0 \). \(\Box \)

\textbf{Claim 35.9.} The graph \(H_4 \) in Figure 8 is a critically \(C_5\)-exist.

\textbf{Proof.} The graph \(H_4 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, uw, vr \in E(G) \). Moreover, \(V(G) = S \cup W \cup X \cup Y \), such that \(N(w \in W) = \{r, t\} \), \(N(x \in X) = \{r, u\} \), \(N(y \in Y) = \{r, t, u\} \), and \(|W|, |X|, |Y| \geq 0 \).

For any \(k, p \) where \(1 \leq k < p \leq |Y| \), if both \(y_k \) and \(y_p \) are in a vertex subset that induces cycle in \(G \), then this vertex subset would be \(\{r, u, y_k, y_p\} \) or \(\{r, t, y_k, y_p\} \). Thus, no induced \(C_5 \) in \(G \) contains both \(y_k \) and \(y_p \). Additionally, the induced cycles in \(G \) that contain \(y_k \) but not \(y_p \) (or vice versa) are of length less than five. Thus, no induced \(C_5 \) in \(G \) contains one vertex \(y_k \) for any \(k \leq n \). Indeed, a vertex subset in \(G \) that induces a \(C_5 \) is composed of \(\{r, t, u\} \), one vertex from \(W \cup \{s\} \), and one vertex from \(X \cup \{v\} \). We conclude that any edge in \(E(G) \) is a critical edge for all subsets that induce \(C_5 \). Thus, \(G \) is a critically \(C_5\)-exist. \(\Box \)

\textbf{Claim 35.10.} The graph \(H_5 \) in Figure 8 is a critically \(C_5\)-exist.
Proof. The graph \(H_5 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, wv, vr \in E(G) \). Moreover, \(V(G) = S \cup W \cup X \cup Y \cup Z \), such that \(N(w \in W) = \{r, t\}, N(x \in X) = \{r, t, u\}, N(y \in Y) = \{r, t, v\}, N(z \in Z) = \{r, t, u, v\} \), and \(|W|, |X|, |Y|, |Z| \geq 0 \).

It is clear that no vertex subset in \(G \) that induces \(C_5 \) contains two vertices from \(V(G) - S \). Moreover, we can prove that no vertex subset in \(G \) that induces \(C_5 \) contains one vertex from \(V(G) - (S \cup W) \). As a result, the vertex subsets that induce a \(C_5 \) in \(G \) are either \(S \) or \(\{r, t, u, v\} \) together with one vertex from \(\{w_1, w_2, \ldots, w_l\} \). Any edge in \(E(G) \) is a critical for all subsets that induce \(C_5 \). Thus, \(G \) is a critically \(C_5 \)-exist.

Being similar to the proof of Claim 35.10, the proof of Claim 35.11 is left for the interested reader; however, we explain the structure of \(H_6 \) in Figure 8 in the proof.

Claim 35.11. The graph \(H_6 \) in Figure 8 is a critically \(C_5 \)-exist.

Proof. The graph \(H_6 \) in Figure 8 is isomorphic to a graph \(G \) that contains a vertex subset \(S = \{r, s, t, u, v\} \) that induces \(C_5 \), where \(rs, st, tu, wv, vr \in E(G) \). Moreover, \(V(G) = S \cup W \cup X \cup Y \cup Z \cup A \), such \(N(w \in W) = \{r, t, u\}, N(x \in X) = \{r, t, v\}, N(y \in Y) = \{r, s, t, u\}, N(z \in Z) = \{r, t, u, v\} \), \(N(a \in A) = S \), and \(|W|, |X|, |Y|, |Z|, |A| \geq 0 \).

By Claims 35.5 to 35.11, the proof is complete. \(\square \)

By Theorem 4, Corollary 34, and Proposition 35, we obtain the following.

Theorem 36. Let \(G \) be a \(C_6 \)-free graph that is non-isomorphic to any graph in Figure 8. The graph \(G \) is \(C_5 \)-free if and only if any \(G \)-contraction is \(C_5 \)-free.

8 Split Graphs

Split graphs were introduced in [14] and were characterized as follows:

Theorem 37. [14] A graph \(G \) is split if and only if \(G\) is \(\{2K_2, C_4, C_5\}\)-free.

Thus, we call a graph that is \(\{2K_2, C_4, C_5\}\)-exist non-split graph. Additionally, split graphs have been characterized in [14] as chordal graphs whose complements are also chordal. Furthermore, it was characterized by its degree sequences in [16]. Moreover, further properties of split graphs are studied in [1, 17, 21].

By Theorems 4, 25, 32, and 36 and Propositions 10, 14, and 15, we obtain:

Theorem 38. Let \(G \) be a graph that is non-isomorphic to any graph in Figure 9. The graph \(G \) is split if and only if any \(G \)-contraction is split.

The class of split graphs is a closed class under edge contraction. The definition of a split graph implies that by contraction of an arbitrary edge in a split graph leads to another split graph. So the contribution of Theorem 38 is in listing the critically non-split graphs.
9 Pseudo-Split Graphs

In [2], the family of \{2K_2, C_4\}-free graphs was investigated and later referred to as pseudo-split graphs in [19]. Thus, we call a graph that is \{2K_2, C_4\}-exist non-pseudo-split graph.

By Theorems 4, 25 and 32 and Propositions 10, 14, and 15, we obtain:

Theorem 39. Let \(G \) be a \(C_5 \)-free graph that is non-isomorphic to any graph in Figure 10. The graph \(G \) is Pseudo-split if and only if any \(G \)-contraction is Pseudo-split.

10 Threshold Graphs

Threshold graphs were characterized as follows:
Theorem 40. [10] A given a graph G is threshold if and only if G is $\{2K_2, P_4, C_4\}$-free.

Thus, we call a graph that is $\{2K_2, P_4, C_4\}$-exist non-threshold graph.

By Theorems 4, 25, 28, and 32 and Propositions 10, 14, and 15, we obtain:

Theorem 41. Let G be a C_5-free graph that is non-isomorphic to any graph in Figure 9. The graph G is threshold if and only if any G-contraction is threshold.

![Critically non-threshold graphs](image)

Figure 11: The critically non-threshold graphs

11 Acknowledgments

The research presented here is funded by the European Social Fund (ESF).

References

[1] Bertossi, A. A. (1984). Dominating sets for split and bipartite graphs. Information Processing Letters 19(1), 37–40.

[2] Blázskovits, Z., M. Hujter, A. Pluhár, and Z. Tuza (1993). Graphs with no induced C_4 and $2K_2$. Discrete Mathematics 115(1-3), 51–55.

[3] Bondy, J. A. and U. S. Murty (2000). Graph Theory. Springer.

[4] Brause, C., B. Randerath, I. Schiermeyer, and E. Vumar (2019). On the chromatic number of $2K_2$-free graphs. Discrete Applied Mathematics 253, 14–24.

[5] Broersma, H., V. Patel, and A. Pyatkin (2014). On toughness and hamiltonicity of $2K_2$-free graphs. Journal of Graph Theory 75(3), 244–255.

[6] Cameron, B. and S. Fitzpatrick (2015). Edge contraction and cop-win critical graphs. Australasian Journal of Combinatorics 63, 70–87.
[7] Chudnovsky, M. and P. Seymour (2008). Claw-free graphs. IV. Decomposition theorem. *Journal of Combinatorial Theory, Series B* 98(5), 839–938.

[8] Chudnovsky, M. and P. D. Seymour (2005). The structure of claw-free graphs. *Surveys in Combinatorics* 327, 153–171.

[9] Chung, F. R., A. Gyárfás, Z. Tuza, and W. T. Trotter (1990). The maximum number of edges in $2K_2$-free graphs of bounded degree. *Discrete Mathematics* 81(2), 129–135.

[10] Chvátal, V. and P. Hammer (1977). Aggregation of inequalities in integer programming. *Ann. Discrete Math* 1, 145–162.

[11] Diner, Ö. Y., D. Paulusma, C. Picouleau, and B. Ries (2018). Contraction and deletion blockers for perfect graphs and h-free graphs. *Theoretical Computer Science* 746, 49–72.

[12] El-Zahar, M. and P. Erdős (1985). On the existence of two non-neighboring subgraphs in a graph. *Combinatorica* 5(4), 295–300.

[13] Faudree, R., E. Flandrin, and Z. Ryjáček (1997). Claw-free graphs a survey. *Discrete Mathematics* 164(1-3), 87–147.

[14] Földes, S. and P. L. Hammer (1977). Split graphs. *Proc. 8th southeast. Conf. on Combinatorics, Graph Theory, and Computing; Baton Rouge 1977*, 311–315.

[15] Golan, G. and S. Shan (2016). Nonempty intersection of longest paths in $2k_2$-free graphs. *arXiv preprint arXiv:1611.05967*.

[16] Hammer, P. L. and B. Simeone (1981). The splittance of a graph. *Combinatorica* 1(3), 275–284.

[17] Kratsch, D., J. Lehel, and H. Müller (1996). Toughness, hamiltonicity and split graphs. *Discrete Mathematics* 150(1), 231–246.

[18] Kriesell, M. (2002). A survey on contractible edges in graphs of a prescribed vertex connectivity. *Graphs and Combinatorics* 18(1), 1–30.

[19] Maffray, F. and M. Preissmann (1994). Linear recognition of pseudo-split graphs. *Discrete Applied Mathematics* 52(3), 307–312.

[20] Meister, D. (2006). Two characterisations of minimal triangulations of $2K_2$-free graphs. *Discrete Mathematics* 306(24), 3327–3333.

[21] Merris, R. (2003). Split graphs. *European Journal of Combinatorics* 24(4), 413–430.

[22] Paulusma, D., C. Picouleau, and B. Ries (2016). Reducing the clique and chromatic number via edge contractions and vertex deletions. In *International Symposium on Combinatorial Optimization*, pp. 38–49. Springer.
[23] Paulusma, D., C. Picouleau, and B. Ries (2019). Critical vertices and edges in H-free graphs. *Discrete Applied Mathematics* 257, 361–367.

[24] Plummer, M. D. and A. Saito (2014). A note on graphs contraction-critical with respect to independence number. *Discrete Mathematics* 325, 85–91.

[25] S. Dhanalakshmi, N. S. and V. Manogna (2016). On $2K_2$-free graphs. *International Journal of Pure and Applied Mathematics* 109(7), 167–173.