Causal Path of COPD Progression-Associated Genes in Different Biological Samples

Shayan Mostafaeia, Hojat Borna, Alireza Emamvirdizadehd, Masoud Arabfard, Ali Ahmadi, Jafar Salimian, Mahmood Salesia and Sadegh Azimzadeh Jamalkandi

Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Biostatistics, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran; Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease with pulmonary and extra-pulmonary complications. Due to the disease's systemic nature, many investigations investigated the genetic alterations in various biological samples. We aimed to infer causal genes in COPD's pathogenesis in different biological samples using elastic-net logistic regression and the Structural Equation Model. Samples of small airway epithelial cells, bronchoalveolar lavage macrophages, lung tissue biopsy, sputum, and blood samples were selected (135, 70, 235, 143, and 226 samples, respectively). Elastic-net Logistic Regression analysis was implemented to identify the most important genes involved in COPD progression. Thirty-three candidate genes were identified as essential factors in the pathogenesis of COPD and regulation of lung function. Recognized candidate genes in small airway epithelial (SAE) cells have the highest area under the ROC curve (AUC = 97%, SD = 3.9%). Our analysis indicates that macrophages and epithelial cells are more influential in COPD progression at the transcriptome level.

Introduction
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease characterized by airway obstruction that is among the first three causes of death worldwide [1,2]. Clinical presentations of COPD include emphysema, small airway obstructions, and chronic bronchitis.

Although the precise underlying processes of COPD pathogenesis are still unknown, the range of long-term exposure to many types of xenobiotics, such as smoking, occupational hazardous chemicals, and hereditary background, is stated [3], with no effective therapy or medicine [4,5]. Cigarette smoking is the most significant risk factor for the development of COPD [3,6]. Nonetheless, more than 20% of COPD patients are not smokers or ex-smokers [7,8]. Furthermore, additional research has shown that smoke emitted by solid fuels used for cooking or heating are not connected with COPD ethiology [9].

As a systemic multi-organ disease, multiple causes could alter the nature and consequences of COPD at the genomic level. Despite various transcriptomics studies on COPD, the critical role of hidden gene signatures is not clarified in different clinical samples [10–13]. It seems that a comprehensive analysis of heterogeneous biological samples is mandatory to find novel candidate genes in systemic pathogenesis and progression of COPD. The progression of COPD severity depends on the interaction of different cells present in the lung microenvironment. Various techniques have been utilized to interpret the disease complexity and pathogenesis elements. Many studies have been conducted based on top-down and/or bottom-up strategies to identify key players and regulators of the pathogenesis process, but nearly none investigated the level of direct/indirect impact of different cells in the staging and progression process of COPD. Specific statistical classification and prediction approaches can satisfy the need for high throughput high-dimensional transcriptome datasets [14]. Microarray analysis studies permit statistical and mathematical approaches to understand the association between thousands of genes in a disease's specific stages. One of the primary challenges in microarray analysis is identifying genes, or groups of genes, that are differentially expressed in a disease or at different stages. More recently, machine-based learning algorithms have increasingly gained attention in bioinformatics and biology research [15,16]. In contrast, (regularization) based regression models (e.g. elastic-net logistic regression) have been widely used in microarray analysis [17].

We hypothesized that the different biological samples are not equally involved in the progression of COPD at the
transcriptomics level. Also, we questioned if it would be possible to investigate the direct/indirect interaction among them. Therefore, this project was designed to identify novel important genes within different biological samples to provide novel therapeutic targets in COPD. Here, we fitted an elastic-net logistic regression model on transcriptome datasets to overcome overfitting and multi-collinearity issues, as common problems arise in the high throughput data analysis while representing a sparse and interpretable model in high dimensional datasets [12,18]. Following the identification of novel effective genes, structural equation modeling (SEM) was utilized to assess simultaneous direct and indirect effects of candidate genes and biological samples on COPD progression.

Methods

Datasets and data processing

A systematic search was performed in the PubMed database with the search strategy of COPD OR chronic obstructive pulmonary disease) AND (epitheli* OR macrophage OR basophil OR biopsy OR sputum OR BAL OR Bronchoalveolar lavage OR blood OR PBMC OR Lung tissue) AND (microarray OR transcriptomics OR RNA-seq). Then, omics data repository databases were searched to enrich the archived studies. After removing the duplicates, the studies with more than fifty samples and different stages of COPD with published raw data were included. Finally, studies were selected based on mostly matching transcriptomics platforms to minimize the cross-platform biases. The demographic and historical data of the selected datasets are provided in supplementary file 1.

Raw transcriptomics data from small airway epithelial cells (SAE) (GSE20257) [19], alveolar macrophages (GSE13896) [20], lung tissue (GSE47460) [21–23], sputum (GSE22148) [24], and blood samples (GSE54837) [25] were downloaded from GEO database. Initially, raw expression data were combined by the R package of "merging", as the combined dataset for each of biological samples included healthy controls and the patients in the GOLD stages of COPD [1–4]. After normalization of the datasets, the batch effect was removed and statistical comparison was performed by "Affy", "SVA", and "Limma" R packages, respectively [26,27]. The false discovery rate was corrected using the Benjamini-Hochberg correction method. Alpha as a hyper-parameter, controls the distribution between the LASSO and ridge penalties. In this study, alpha was considered as a fixed value of 0.5.

Also, the statistical comparison was performed by the "pROC" R package between areas under the Roc curves (AUCs) for identified candidate genes in all biological samples [32]. The identification of novel candidate genes was performed by the elastic-net logistic regression method based on the trend of gene expression data over gold stages of COPD, and then, enrichment was performed using the ClueGO plugin of Cytoscape software.

Structural equation modeling

Structural equation modeling (SEM) includes causal modeling, analysis of covariance structures, and latent variable models. This modeling has many advantages as a generalization of multivariate multiple regression compared with conventional regression. SEM can assess multiple regression equations simultaneously, allowing identifying the strength and sign of direct and indirect effects for complex causal diagrams [33,34].

Path standardized coefficients (β) were calculated as the effect size that is free of scale and is robust against heterogeneity in the integration of genomics datasets. Goodness of fit (GOF) indices (e.g. The Root Mean Square Error of Approximation (RMSEA)<0.08, Standardized Root Mean Square Residual (SRMR)<0.08) were applied for assessing the fitness of the model. SEM was performed using the "lavaan" R package [35]. Numerical estimation of path coefficients (β) was derived by an iterative maximum likelihood algorithm. Multiple regression equations in SEM are represented below:

$$
\beta_{\text{elastic net}} = \arg\min_{\beta} \sum_{i=1}^{n} \left\{ y_i\ln(\pi_i) + (1-y_i)\ln(1-\pi_i) \right\} + \alpha \lambda \sum_{p=1}^{p} \beta_i + (1-\alpha)\lambda_2 \sum_{j=1}^{p} \beta^2_j
$$

β is a vector of gene expression parameters, and lambda is tuning parameters for LASSO and ridge penalties, respectively. Beta parameters were estimated by coordinate descent as an optimization algorithm [31]. The best estimates for lambda parameters were derived by K-fold cross-validation. Alpha as a hyper-parameter, controls the distribution between the LASSO and ridge penalties.
\[Y = \beta_{gene_1} + \beta_{gene_2} + \ldots + \beta_{gene_n}, \text{ candidate genes in SAE cells samples} \]

\[Y = \beta_{gene_1} + \beta_{gene_2} + \ldots + \beta_{gene_n}, \text{ candidate genes in alveolar macrophages samples} \]

\[Y = \beta_{gene_1} + \beta_{gene_2} + \ldots + \beta_{gene_n}, \text{ candidate genes in lung tissue samples} \]

\[Y = \beta_{gene_1} + \beta_{gene_2} + \ldots + \beta_{gene_n}, \text{ candidate genes in sputum samples} \]

\[Y = \beta_{gene_1} + \beta_{gene_2} + \ldots + \beta_{gene_n}, \text{ candidate genes in blood samples} \]

Y in each equation is the number of stages in the biological sample. Beta coefficient is the strength and sign of candidate genes involved in the progression of COPD (Y).

Cross-validation, stability, and accuracy

The repeated k-fold cross-validation by bootstrapping is a good strategy to reduce the high variability of cross-validation [36]. Sensitivity analysis was performed to check the robustness of the results against changes in the training sets [37]. In the present study, the algorithm split the data set using repeated random 100 times sub-sampling in 5-fold cross-validation, permuting the sample labels every time. Cross-validated performances were summarized by observed sensitivities and specificities with standard deviation (SD). Furthermore, the area under the Receiver Operator Characteristic (ROC) curve (AUC) was used to calculate the precision of performance under the Receiver Operator Characteristic (ROC) curve. Furthermore, we can estimate the variability of our estimate without generating additional samples. Rather than repeatedly obtaining an independent dataset, we instead obtain distinct datasets by repeatedly sampling observations from the original data set with replacement. To validate the selected genes with previous studies, literature mining was performed in PubMed. Interactive cluster heatmap was applied by the "heatmaply" R package [40].

Results

Differential analysis of genes expression data

Removing batch effects and normalizing data, according to the differential expression analysis of COPD vs. healthy samples, 918 probes from SAE, 1942 probes from lung tissue, 134 probes from blood, 1074 probes from alveolar macrophages, and 5768 probes from sputum samples were identified as the differentially expressed genes (adjusted p-value < 0.0001 or absolute fold-change >2) (Table 1).

Gene selection and prediction

After adjustment of the effects of confounding variables (e.g., age and smoking status) by using Elastic-net penalized logistic regression, the total number of 33 genes was selected as associated factors with COPD progression with AUCs, sensitivities, and specificities in each biological sample (Table 2). According to statistical comparisons of AUCs of selected genes in different biological samples, genes identified in SAE cells and macrophages performed significantly better to predict the disease progression/stage. However, the AUC of the candidate genes in SAE samples was not significantly different (p-value = 0.478) compared to the AUC in macrophages to predict the disease stage (Figure 1).

Functional enrichment classified the novel genes into five groups, including "Regulation of CoA-transferase activity", "Vacuole organization", "dendritic spine organization", and "Cell adhesion molecules" (supplementary file 2). The expression level of candidate genes was measured and graphed among all biological samples (Lung Tissue, SAE, Blood, Macrophage, and Sputum) in each healthy and all COPD stages (Figure 2).

For plotting co-expression patterns of selected genes among the patients, heatmap with agglomerative hierarchical clustering were plotted (Figure 3). Co-expression pattern of the selected genes resulted in four major clusters in COPD patients, including (OXNAD1, CCR4, ITK, C10orf66, C10orf67). The summarized data indicating the primary, qualified, and differentially expressed probes in each biological sample is presented in Tables 1 and 2.

Table 1. The summarized data indicating the primary, qualified, and differentially expressed probes in each biological sample.

Biological samples	GEO_ID	Platform	GOLD Stage (Number)	Samples	N. probes	N. differential probes
Lung tissue	GSE47460	GPL6480 GPL14550	Healthy N=108	N=328	N=42,545	N=1,942
			II= (N=100)			
			III= (N=37)			
			IV= (N=83)			
Small Airway	GSE20257	GPL 570	Healthy N=112	N=135	N=54,675	N=932
Epithelial cells			I= (N=9)			
(SAE)			II= (N=12)			
			III= (N=2)			
Blood samples	GSE54837	GPL570	Healthy N=88	N=226	N=54,675	N=134
			I= (N=88)			
			II= (N=70)			
			III= (N=55)			
Macrophages	GSE13896	GPL6947	Healthy N=54	N=65	N=54,675	N=1,074
			I= (N=8)			
			II= (N=3)			
			III= (N=59)			
			IV= (N=13)			
Sputum	GSE22148	GPL570	Healthy N=71	N=143	N=54,675	N=5,768
			I= (N=71)			
			II= (N=59)			
			III= (N=13)			
and GPR171), (ADAMTS1, THSD4, PPP4R4, ITGA6), (BTBD19, EPHB2, CHRFAM7A, SSBP1, GABARAPL1, ATOH8, PTPN4, MTHFS5D, CCDC37, NRG1, CADM1, CLEC7A, VCAN), and (KIAA1199, DNM3, SRPX, CDKN2A, RPUSD2, RAB11B, HSPA4, RGS20, SH3RF2, CST6, CD109, UHRF1) based on the similarity of correlation coefficients/co-expression pattern (Figure 3). Of these 33 genes, 24 have previously been reported in the literature to be associated with lung diseases, including COPD or other lung disorders (Table 3). THSD4, PPP4R4, CDKN2A, CADM1, and NRG1, which has previously been detected in GWAS studies to determine single nucleotide polymorphisms (SNPs) in COPD and asthma, were among the mentioned 24 genes (https://www.ebi.ac.uk/gwas/home) [41–43]. However, we identified nine genes that have not been previously reported in COPD and other lung diseases, including RPUSD2, RAB11B, BTBD19, DNM3, SH3RF2, MTHFS5D, ATOH8, SRPX, and HSPA4 (Table 3). These genes may represent novel potential biomarkers in the diagnosis and prognosis of COPD. The functional protein interaction network for the selected genes is illustrated in Figure 3, based on the STRING database (Figure 4).

Causal pathway of selected candidate genes

Fitting the path diagram of selected genes (Figure 5), the genes in SAE, lung tissue, and sputum had more significant direct effects on COPD progression, respectively. In contrast, the identified genes in blood samples had less significant direct and indirect effects on COPD progression. Based on the magnitude of indirect standardized path coefficient, the novel genes in macrophages, lung tissue, SAE cells, and sputum affected COPD progression significantly indirectly compared with blood samples (Table 4). All goodness of fit indices indicated that the model has an acceptable fit (RMSEA = 0.059, p-value < 0.05; SRMR = 0.051).

Table 2. Probes and corresponding 33 candidate genes by elastic-net penalized logistic regression model for the association between the genes with COPD progression.

Gene symbol	Probe ID	Up/down	Tissue	Epithelium	Blood	Macrophage	Sputum
Tissue							
CCR4	A_23_P72989	Up	100%	–	–	–	–
ITK	A_23_P354151	Down	84%	–	–	–	–
RPUSD2	A_23_P309850	Down	82%	–	–	–	–
RAB11B	A_23_P67748	Down	78%	–	–	–	–
OXNAD1	A_24_P927189	Up	68%	–	–	–	–
GPR171	A_23_P253317	Up	62%	–	–	–	–
BTBD19	1557049_at	Up	–	100%	–	–	–
THSD4	222835_at	Down	–	96%	–	–	–
PPP4R4	233002_at	Down	–	95%	–	–	–
NRG1	206343_s_at	Up	–	90%	–	–	–
DNM3	209839_at	Up	–	89%	–	–	–
Epithelium							
ITGA6	201656_at	Down	–	84%	–	–	–
CD109	226545_at	Down	–	77%	–	–	–
UHRF1	225655_at	Down	–	76%	–	–	–
CST6	206595_at	Down	–	75%	–	–	–
EPHB2	209589_s_at	Up	–	70%	–	–	–
CDKN2A	207039_at	Up	–	70%	–	–	–
KIAA1199	212942_s_at	Up	–	67%	–	–	–
RGS20	210138_at	Down	–	63%	–	–	–
SH3RF2	243582_at	Down	–	62%	–	–	–
Blood							
MTHFS5D	244734_at	Up	–	100%	–	–	–
CLEC7A	1554406_s_at	Up	–	89%	–	–	–
VCAN	211571_s_at	Up	–	66%	–	–	–
Macrophage							
PTPN4	236935_at	Down	–	–	100%	–	–
CCDC37	242615_at	Up	–	–	77%	–	–
GABARAPL1	208869_s_at	Up	–	–	67%	–	–
ADAMTS1	1552808_at	Down	–	–	64%	–	–
ATOH8	1558706_s_at	Down	–	–	64%	–	–
SSBP1	202591_s_at	Up	–	–	62%	–	–
SRPX	204955_at	Up	–	–	61%	–	–
CHRFAM7A	210123_s_at	Up	–	–	100%	–	–
SH3RF2	243582_at	Down	–	62%	–	–	–
Sputum							
HSPA4	208814_at	Down	–	–	–	63%	–
CADM1	232767_at	Up	–	–	–	62%	–
AUC (SD)	0.92 (0.035)	0.97 (0.039)	0.73 (0.051)	0.96 (0.052)	0.82 (0.064)		
Sensitivity (SD)	0.86 (0.073)	0.89 (0.138)	0.46 (0.079)	0.88 (0.222)	0.62 (0.122)		
Specificity (SD)	0.80 (0.097)	0.93 (0.057)	0.82 (0.023)	0.95 (0.064)	0.82 (0.044)		
COPD patients can currently be classified based on clinical tests, including spirometry or St George’s Respiratory Questionnaire (SGRQ), but the need for further prognosis mandates identifying novel biomarkers that highly correlate with the disease progression. Nowadays, the application of high-throughput techniques as well as systems biology and machine learning approaches deeply alter the vision of researchers toward identification of novel diagnostic and prognostic biomarkers. Different studies have been conducted on the transcriptome of various cell lines involved in COPD’s pathogenicity. In this study, previously reported influencing cell types were studied to identify the most impacting genes in the development of COPD staging. Heterogeneity of samples make the algorithms vulnerable to identify higher number, more pure, and less noisy differentially expressed genes (DEGs), which in case narrows the discovery route of novel predicting genes.

The penalized logistic regression model and SEM are used to identify novel genes and to assess the connection network of the selected genes, respectively. The studies show that the elastic net often performs better than ridge and LASSO for the model selection consistency and prediction accuracy in microarray data [17]. The strengths of this study include the application of modern computational methods such as the statistical learning, SEM, validation of all of the results by literature review, and repeated cross-validation method (repeated 5-CV). However, some of the limitations of this study were the small sample size of disease stages, the lack of external validation dataset. On the other hand, applied novel methodologies in this study are robust against

Figure 1. Statistical comparison of AUCs among different biological samples based on the identified genes (* indicated significant difference at the level of 0.05, ** indicated significant difference at the level of 0.01, *** indicated significant difference at the level of 0.001).

Discussion

Figure 2. (A) Expression level of CCR4, ITK, RPUSD2, RAB11B, OXNAD1, and GPR171 in lung tissue. (B) Expression level of BTBD19, THSD4, PPP4R4, NRG1, DNM3, ITGA6, D109, UHRF1, CST6, EPHB2, CDKN2A, KIAA1199, RGS20, and SH3RF2 in SAE. (C) Expression level of MTHFS5D, CLEC7A, and VCAN in Blood. (D) Expression level of PTPN4, CCDC37, GABARAPL1, ADAMTS1, ATOH8, SSBP1, and SRPX in macrophages. (E) Expression level of CHRFA7A/CHR7A, HSPA4, and CADM1 in sputum.
outliers and heterogeneity in gene expression data according to the bootstrap and cross-validation, standardized path coefficient in SEM and sensitivity analysis.

Analysis determined that identified genes in SAE cells, and macrophages had a higher accuracy rate than other biological samples in prediction of the disease progression. According to our results, twenty-four out of 33 genes were previously reported to associate with COPD, lung function (FVC, FEV₁ or the FEV₁/FVC ratio), and other lung related complications. Nine novel genes were identified with no background in COPD studies, including RPUSD2, RAB11B, BTBD19, DNM3, SH3RF2, MTHFSD, ATOH8, SRPX, and HSPA4. Amongst all, RPUSD2, RAB11B, BTBD19, DNM3, and MTHFSD were the most important novel genes in the analyses that can be nominated as novel important genes involved in the prognosis of COPD staging progression.

Contributing with the highest number of novel genes, epithelial cells appear to be most influential in pathogenesis of the COPD. The second rank in number of predicting genes belongs to macrophages. Macrophages have long been reported for their pillar role in inflammatory diseases and tissue remodeling processes. Enrichment analysis of novel candidate genes of epithelial cells demonstrated high contribution in cancer progression processes, initiation of inflammation and healing processes, and immune cell recruitment. On the other hand, some candidate genes impact hydrolyzing enzymes that leads to accumulation of mucus in bronchioles.

Thereupon, epithelial cells play a central direct role in COPD pathogenesis. However, macrophages are more indirectly in charge of inflammatory circumstances of lung microenvironment. Overall, it must be considered that macrophages have the upper hand compared to epithelial cells when it comes to COPD progression. Both M1 and M2 subclasses of macrophages are critical for healing processes. M1 cells remove damaged cells and M2 cells prepare an environment for proliferation and remodeling.

Macrophage candidate genes have high co-express with TWIST1 and PRRX1 transcription factors, which can be classified as oncogenes. These genes are mostly involved in genome replication and repair, along with autophagy and mitophagy processes. Comparing up and down-regulated candidate genes in macrophages reveal that downregulated genes mostly belong to antioxidant or proliferation initiation, while upregulated genes mostly belong to oxidant or tension responses.

Most candidate genes in tissue samples mainly contribute to chemokine signaling pathways, immune systems activation, cell-cell adhesion, and different G-protein related signaling cascades.

The co-expression network of candidate genes reveals that mostly tightly correlate with the immune system signaling mediators. We previously conducted research on COPD that highlighted the importance of epithelial cells in the progression of the disease. Also, 17 novel genes were introduced to be associated with the pathogenesis of COPD. PRKAR2B, GAD1, LINC00930, and SLITRK6 were the most important genes, which are consistent with the current study [12].

Figure 3. Spearman’s rank correlation, co-expression, matrix between the selected genes in the COPD patients: heatmap for hierarchical clustering the 33 candidate genes based on their pattern of gene expression.
Table 3. Confirmation of the association of 33 selected genes with COPD/or lung function by literature reviewing in PubMed databank.

Gene symbol	Probe ID	Number of studies	Associated diseases	References (PMIDs)
CCR4	A_23_P72989	4	idiopathic pulmonary fibrosis, lung cancer, lung metastasis in breast cancer	11590382, 16095529, 17168792, 23915095
ITK	A_23_P354151	7	idiopathic pulmonary fibrosis, sarcoidosis, allergic lung disease	16630934, 15323564, 12734350, 1646075, 26628680, 25512530, 24089408
RPUSD2	A_23_P309850	0	–	–
RAB11B	A_23_P67748	0	–	–
OXNAD1	A_24_P927189	1	lung cancer	24040438
GFPR151	A_23_P253317	1	lung cancer	26760963
BTBD19	1557049_at	0	–	–
THSD4	222835_at	8	COPD, airway diseases, asthma, pulmonary fibrosis	27564456, 24286382, 23932369, 23541324, 23409998, 22461431, 21965014, 20010834
PPP4R4	233002_at	1	COPD	28170284
NRG1	206343_s_at	23	lung cancer, COPD	31382039, 30988082, 30694715, 30568455, 30268483, 30069512, 29595202, and etc.
DNM3	209839_at	0	Lung Fibrosis, idiopathic pulmonary fibrosis, lung cancer, prostate, head and neck cancers	33396340, 30969242, 28701000, 27149279
ITGA6	201656_at	4	Lung Fibrosis, idiopathic pulmonary fibrosis, lung cancer, prostate, head and neck cancers	31396340, 30969242, 28701000, 27149279
CD109	226545_at	8	Lung cancer, prostate and breast carcinoma, squamous epithelium, tumor cells	29113323, 28191888, 24667143, 17922683, 15116102
UHRF1	225655_at	8	Lung cancer, human ovarian cancer tissues, gastric and breast cancers, metastasis in hepatocellular carcinoma, renal cell carcinoma	30528265, 30008828, 29516630, 28849055, 27437769, 26695082, 21351083, 20517312
CST6	206595_at	1	lung cancer	24398667
EPHB2	209589_s_at	2	Allergic Rhinitis and Asthma, lung disease	28231727, 10037197
CDKN2A	207039_at	28	Lung cancer, COPD, head and neck cancer, malignant mesothelioma	30178167, 28487878, 27987577, and etc.
KIAA1199	212942_s_at	2	Non-small-cell lung cancer, cancer cells	30478628, 28901311
RGS20	210138_at	1	Lung cancer	29872324
SH3RF2	243582_at	0	–	–
MTHFSD	244734_at	0	–	–
CLEC7A	1554466_a_at	2	pulmonary fibrosis, lung inflammatory response	27852745, 27473664
VCAN	211571_s_at	7	Lung cancer, breast cancer, lung metastasis, asthma	27895126, 27581786, 27513329, 25044411, 21742797, 22392539, 23204249
PTPN4	236935_at	1	Non-small cell lung cancer (NSCLC)	26951513
CCDC37	242615_at	2	Non-small cell lung cancer (NSCLC)	26200272, 22011669
GABARAPL1	208869_s_at	1	Non-small cell lung cancer (NSCLC)	26356813
ADAMTS1L	1552808_at	1	Lung cancer	29207642
ATOH8	1558706_a_at	0	–	–
SSBP1	202591_s_at	1	Lung cancer	28638454
SRPX	204955_at	0	–	–
CHRFAM7A/CHRNA7	210123_s_at	5	Non-small cell lung cancer (NSCLC), lung tumor, smoking-related lung cancers	25407004, 28238678, 28978081, 31096457, 30282908
HSPA4	208814_at	0	–	31069869, 23620770, 22429880, 22429880, and etc.
CADM1	232767_at	18	Lung cancer, lung tumor, lung epithelial cell apoptosis, lung fibroblasts, lung tumorigenesis	31069869, 23620770, 22429880, 22429880, and etc.
Conclusions

These novel genes may provide the basis for the development of therapeutics in COPD and its associated morbidities in the future. It is hoped that further studies on this issue would identify novel genes as biomarkers to help diagnosis and prognosis in COPD.

Acknowledgments

This work was supported by Baqiyatallah University of Medical Sciences, Tehran, Iran.

Authors’ contributions

SM participated in the design of the study and wrote the manuscript. HB and JS performed the data gathering. AE and MA performed the statistical analysis. AA and SAJ conceived of the study, and participated in its design and coordination, and helped to draft the manuscript. MS edited the manuscript. All authors read and approved the final manuscript.

Disclosure statement

The authors declare that they have no competing interests.
Funding

The author(s) reported there is no funding associated with the work featured in this article.

Data sharing availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. Zhao J, Li M, Chen J, et al. Smoking status and gene susceptibility play important roles in the development of chronic obstructive pulmonary disease and lung function decline: a population-based prospective study. Medicine. 2017;96(25):e7283. DOI:10.1097/MD.0000000000007283
2. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–2128. DOI:10.1016/S0140-6736(12)61728-0
3. Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. DOI:10.1164/rccm.201204-0566PP
4. Harries TH, Rowland V, Corrigan CJ, et al. Blood eosinophil count, a marker of inhaled corticosteroid effectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic review and meta-analysis. Respir Res. 2020;21(1):3. DOI:10.1186/s12931-019-1268-7
5. Dobler CC, Morrow AS, Farah MH, et al. Pharmacologic and nonpharmacologic therapies in adult patients with exacerbation of COPD: a systematic review. 2019.
6. de Marco R, Accordini S, Marcon A, et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am J Respir Crit Care Med. 2011;183(7):891–897. DOI:10.1164/rccm.201107-1125OC
7. Lamprecht B, McBurnie MA, Vollmer WM, BOLD Collaborative Research Group, et al. COPD in never-smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011;139(4):752–763. DOI:10.1378/chest.10-1253
8. Eisner MD, Anthonisen N, Coughlin D, Committee on Nonsmoking COPD, Environmental and Occupational Health Assembly, et al. An official American thoracic society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. DOI:10.1164/rccm.200811-1757ST
9. Amaral AFS, Patel J, Kato BS, BOLD Collaborative Research Group, et al. Airflow obstruction and use of solid fuels for cooking or heating: BOLD results. Am J Respir Crit Care Med. 2018;197(5):595–610. DOI:10.1164/rccm.201701-0205OC
10. Yang J, Jin J, Zhang Z, et al. Integration microarray and regulation datasets for chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2013;17(14):1923–1931.
11. Pierrou S, Broberg P, O’Donnell RA, et al. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(6):577–586. DOI:10.1164/rccm.200607-931OC
12. Mostafaei S, Kazemnejad A, Jamalkandi SA, et al. Identification of novel genes in human airway epithelial cells associated with chronic obstructive pulmonary disease (COPD) using machine-based learning algorithms. Sci Rep. 2018;8(1):1–20. DOI:10.1038/s41598-018-33986-8
13. Ham S, Oh Y-M, Roh T-Y. Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease. Genomics Inform. 2019;17(1):e2. DOI:10.5808/GI.2019.17.1.e2
14. Cui Y, Zheng C-H, Yang J, et al. Sparse maximum margin discriminant analysis for feature extraction and gene selection on gene expression data. Comput Biol Med. 2013;43(7):933–941. DOI:10.1016/j.combiomedi.2013.04.018
15. Tan AC, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. 2003.
16. Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput Biol Med. 2006;36(6):553–573. DOI:10.1016/j.compbiomed.2005.04.001
17. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B. 2005;67(2):301–320. DOI:10.1111/j.1467-9868.2005.00503.x
18. Huang H-H, Liu X-Y, Liang Y. Feature selection and cancer classification via sparse logistic regression with the hybrid L1/2 + 2 regularization. PLoS One. 2016;11(5):e0149675. DOI:10.1371/journal.pone.0149675
19. Shyakhiev R, Otaki F, Bonsu P, et al. Cigarette smoking programs apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011;68(5):877–892. DOI:10.1007/s00018-010-0500-x
20. Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–288. DOI:10.1016/j.immuni.2014.01.006
21. Peng X, Moore M, Mathur A, et al. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. Faseb J. 2016;30(12):4056–4070. DOI:10.1096/fj.201600373R
22. Anathy V, Lahue KG, Chapman DG, et al. Reducing protein oxidation reverses lung fibrosis. Nat Med. 2018;24(8):1128–1135. DOI:10.1038/s41591-018-0090-y
23. Kim S, Herzao-Mayo JD, Kang DD, et al. Integrative phenotyping framework (IPF): intuitive clustering of multiple omics data identifies novel lung disease subphenotypes. BMC Genomics. 2015;16(1):924. DOI:10.1186/s12864-015-2170-4
24. Singh D, Fox SM, Tal-Singer R, On behalf of the ECLIPSE Investigators, et al. Induced sputum genes associated with spirometric and radiological disease severity in COPD ex-smokers. Thorax. 2011;66(6):489–495. DOI:10.1136/thx.2010.153767
25. Singh D, Fox SM, Tal-Singer R, et al. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort. PLoS One. 2014;9(9):e107381. DOI:10.1371/journal.pone.0107381
26. Irizarry RA, Gairtuer L. Package affy. 2013.
27. Smyth GK. Linma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. Springer; 2005. pp. 397–420.
28. Torang A, Gupta P, Klinke DJ. An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets. BMC Bioinf. 2019;20(1):1–15. DOI:10.1186/s12859-019-2994-z
29. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Springer Series in Statistics, New York; 2001.
30. Ongu JO, Schulz-Streeck T, Piepho H-P, editors. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proceedings; 2012;6(Suppl. 2):S10. DOI:10.1186/1753-5231-6-S2-S10
31. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.
32. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf. 2011;12(1):77. DOI:10.1186/1471-2105-12-77
33. Cohen J, Cohen P, West SG, et al. Applied multiple regression/ correlation analysis for the behavioral sciences. Routledge; 2013.
34. Wolfe LM. Strategies of path analysis. Am Educ Res J. 1980;17(2):183–209. DOI:10.3102/0028312017002183
35. Rosseel Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Soft. 2012;48(2):1–36. DOI:10.18637/jss.v048.i02
36. Kim J-H. Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput Stat Data Anal. 2009;53(11):3735–3745. DOI:10.1016/j.csda.2009.04.009
37. Rodríguez JD, Perez A, Lozano JA. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2010;32(3):569–575. DOI:10.1109/TPAMI.2009.187
38. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet. 2003;362(9381):362–369. DOI:10.1016/S0140-6736(03)14023-8
39. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5-6):352–359. DOI:10.1016/S1532-0464(03)00034-0
40. Galili T, O’Callaghan A, Sidi J, et al. Heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2018;34(9):1600–1602. DOI:10.1093/bioinformatics/btx657
41. Morrow JD, Cho MH, Hersh CP, et al. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;11(10):730–739. DOI:10.1080/15592294.2016.1226451
42. Busch R, Hobbs BD, Zhou J, COPDgene Investigators, et al. Genetic association and risk scores in a chronic obstructive pulmonary disease Meta-analysis of 16,707 subjects. Am J Respir Cell Mol Biol. 2017;57(1):35–46. DOI:10.1165/rcmb.2016-0331OC
43. Akhabir I, Sandford AJ. Genome-wide association studies for discovery of genes involved in asthma. Respirology. 2011;16(3):396–406. DOI:10.1111/j.1440-1843.2011.01939.x