SGLT2 inhibitor associated diabetic ketoacidosis

Evdokia Mitsiou, Charalampos Mandros, Kalliopi Kotsa, Frangiskos Koulis, Charalampos Christofidis, Sofia Georgiadi, Theodolinta Testa, Alexandros Anastasiou, Evgenia Efthymiou, Evangelos Potolidis

ABSTRACT

Empagliflozin is a representative of SGLT2 inhibitors, which is used for the treatment of type 2 diabetes mellitus. Common adverse reactions are hypoglycemia and urinary tract infections. We reported a case of 76-year-old female, receiving empagliflozin and being admitted to the hospital because of diabetic ketoacidosis.
SGLT2 inhibitor associated diabetic ketoacidosis

Evdoxia Mitsiou, Charalampos Mandros, Kalliopi Kotsa, Frangiskos Koulis, Charalampos Christofidis, Sofia Georgiadi, Theodolinta Testa, Alexandros Anastasiou, Evgenia Efthymiou, Evangelos Potolidis

ABSTRACT

Empagliflozin is a representative of SGLT2 inhibitors, which is used for the treatment of type 2 diabetes mellitus. Common adverse reactions are hypoglycemia and urinary tract infections. We reported a case of 76-year-old female, receiving empagliflozin and being admitted to the hospital because of diabetic ketoacidosis.

Keywords: Diabetes type 2, Empagliflozin, Ketoacidosis

INTRODUCTION

SGLT2 inhibitors are sodium-glucose cotransporter 2 inhibitors (SGLT2) in the proximal renal tubules that reduce reabsorption of filtered glucose from the tubular luminal and lower the renal threshold for glucose (RTG). Therefore, SGLT2 is the main site of filtered glucose reabsorption. By inhibiting SGLT2, urine glucose excretion increases and plasma glucose concentration reduces [1]. The SGLT2 inhibitors are generally weak glucose-lowering agents, similar to efficacy to the DPP-4 inhibitors. Empagliflozin is one of the representatives of this category of glucose-lowering agents, which is used for the treatment of type 2 diabetes mellitus, usually in combination with metformin [2] or insulin [3], as an adjunct to exercise and diet to improve glycemic control. Common adverse reactions are hypoglycemia and urinary tract infections [4]. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs may increase the risk of diabetic ketoacidosis [5]. Moreover, in May 2015, the Food and Drug Association issued a warning that SGLT2 inhibitors can increase the incidence of diabetic ketoacidosis [6]. It also identified potential triggering factors such as illness, reduced food and fluid intake, reduced insulin doses, and history of alcohol intake. Our case will be one of the few cases of diabetic ketoacidosis reported in a patient with type 2 diabetes mellitus [7].

CASE REPORT

A 76-year-old female was admitted to our hospital because of increased fatigue and weakness during the last 10 days. At the same time, she started receiving medication for type 2 diabetes mellitus, which concluded metformin 850 (1x1) and empagliflozin 10 (1x1). She did
not receive any other medication. She reported just one fever wave up to 38°C, three days before the admission.

On examination she appeared confused and she had tachypnea. She did not show any signs of infection. The temperature was 36.9°C, the blood pressure 90/60 mmHg, the pulse 100 beats per minute, the respiratory rate 30 breaths per minute and the oxygen saturation 96%, while she was breathing ambient air. Blood tests revealed elevated hematocrit (52.8%), white blood cells (15200/ml) and CRP (100 mg/dl), whereas kidney function was normal (creatinine 1.0 mg/dl, urea 50 mg/dl). Serum electrolytes were also normal (serum potassium 4.9 mEq/l, serum sodium 137 mEq/l), serum calcium was 90 mEq/l and serum glucose was 202 mg/dl. Urinalysis revealed 4+ glucose, 1+ albumin, 4+ ketones by dipstick. Blood gas test revealed severe acidosis with pH 7.06, pCO\textsubscript{2} 24 mmHg, pO\textsubscript{2} 129 mmHg, lac 1.0 mmol/l, HCO\textsubscript{3} 9.6 mmol/l, base excess 20.7 mmol/l, SO\textsubscript{2} 99%. Urine culture was negative. Anion gap was calculated and appeared to be elevated at 36.4. HbA1c was 10.7%.

The patient was treated as having diabetic ketoacidosis due to type 1 diabetes mellitus. She aggressively received intravenous fluids and insulin and she was covered empirically with a broad spectrum antibiotic because of elevated CRP, even though she did not have any fever during her hospitalization. Urinalysis continued to show elevated glucose levels and ketones, until the day of discharge, on day-8. Blood gas tests stopped to show acidosis on the third day, but the base deficit remained high until the seventh day (HCO\textsubscript{3}, 16.9 mmol/l, base excess 9.0 mmol/l). The test was normal on the day of discharge.

DISCUSSION

Empagliflozin is an SGLT2 inhibitor usually used in combination with metformin or insulin in order to further decrease serum glucose levels. Lately, apart from the common adverse reactions of hypoglycemia and urinary tract infections, cases of diabetic ketoacidosis come to light. Food and Drug administration issued a special warning about this adverse reaction, which include not only empagliflozin but also all drugs of this category. Based on the pharmacological characteristics of this type of drugs and the physiology of SGLT2, several possible mechanisms could be suggested for the development of diabetic ketoacidosis. Inhibition of SGLT2 causes a rapid increase in urinary volume excretion, which lasts more than 24 hours [8]. Also, the decrease in plasma glucose levels, that is caused by these drugs [9], lead to a decrease in plasma insulin levels and a significant increase in plasma glucagon concentrations, because of a diminished paracrine inhibition by insulin and a decreased SGLT2-mediated glucose transport into α-cells [10]. Therefore, SGLT2 inhibitors seem to be associated with euglycemic diabetic ketoacidosis, perhaps as a consequence of their non-insulin dependent glucose clearance, hyperglucagonemia and volume depletion [8].

CONCLUSION

Patients who are treated with SGLT2 inhibitors should be closely monitored for this adverse reaction and clinicians should also be aware of it. Further research should be done in order to minimize the risk of ketoacidosis due to SGLT2 inhibitors.

Author Contributions

Evdoxia Mitsiou – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Charalampos Mandros – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Kalliopi Kotsa – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Kalliopi Kotsa – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Evangelos Potolidis – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Frangiskos Koulis – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Sofia Georgiadi – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Theodolinta Testa – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Alexandros Anastasiou – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Evgenia Efthymiou – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Charalampos Christofidis – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Evangelos Potolidis – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.
Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2017 Evdoxia Mitsiou et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes; Sodium glucose co-transport (SGLT) inhibitors: Systematic review and meta-analysis of randomized trials. Ann Med 2012 Jun;44(4):375–93.

2. Ridderstråle M, Andersen KR, Zeller C, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: A 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2014 Sep;2(9):691–700.

3. Rosenstock J, Jelaska A, Frappin G, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 2014 Jul;37(7):1815–23.

4. Nyirjesy P, Zhao Y, Ways K, Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr Med Res Opin 2012 Jul;28(7):1173–8.

5. Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab 2015 Aug;100(8):2849–52.

6. U.S. food and drug administration. Drug safety communications: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. 2015. [Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM446954.pdf]

7. Venkatesh B, Moore G, Gill D, Kelly W. Diabetic ketoacidosis precipitated by therapy with antidiabetic agents SGLT2 inhibitors: Two cases. Crit Care Resusc 2015 Dec;17(4):280–2.

8. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: A predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 2015 Sep;38(9):1638–42.

9. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibitor in type 2 diabetic patients. J Clin Invest 2014 Feb;124(2):499–508.

10. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 2015 May;21(5):512–7.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Something more...
We request you to have a look at our website to know more about us and our services.

* Terms and condition apply. Please see Edorium Journals website for more information.

We welcome you to interact with us, share with us, join us and of course publish with us.