Construction and characterization of an experimental ISCOMS-based hepatitis B polypeptide vaccine

Xiao-Ju Guan, Xiao-Jun Guan, Yu-Zhang Wu, Zheng-Cai Jia, Tong-Dong Shi, Yan Tang

Abstract

AIM: To characterize the biochemical and immunological properties of an experimental ISCOMS vaccine prepared from a novel therapeutic polypeptide based on T cell epitopes of HBsAg, and a hepatitis B-ISCOMS was prepared and investigated.

METHODS: An immunostimulating complexes(ISCOMS)-based vaccine containing a novel therapeutic hepatitis B polypeptide was prepared by dialysis method, and its formation was visualized by electron microscopy and biochemically verified by SDS-polyacrylamide gel electrophoresis. Amount of the peptide within ISCOMS was determined by Bradford assay, and specific CTL response was detected by ELISPOT assay.

RESULTS: Typical cage-like structures of submicroparticle with a diameter of about 40nm were observed by electron microscopy. Results from Bradford assay showed that the level of peptide incorporation was about 0.33g·L\(^{-1}\). At the paralleled position close to the sixth band of the molecular weight marker(3480kDa) a clear band was shown in SDS-PAGE analysis, indicating successful incorporation of polypeptide into ISCOMS. It is suggested that ISCOMS delivery system could efficiently improve the immunogenicity of polypeptide and elicit specific immune responses \textit{in vivo} by the results of ELISPOT assay, which showed that IFN-\(\gamma\) producing cells (specific CTL responses) were increased (spots of ISCOMS-treated group: 47±5, \(n=3\); control group: 5±2, \(n=3\)).

CONCLUSION: ISCOMS-based hepatitis B polypeptide vaccine is successfully constructed and it induces a higher CTL response compared with short polypeptides vaccine \textit{in vivo}.

Guang XJ, Guan XJ, Wu YZ, Jia ZC, Shi TD, Tang Y. Construction and characterization of an experimental ISCOMS-based hepatitis B polypeptide vaccine. World J Gastroenterol 2002;8(2):294-297

INTRODUCTION

Infection of hepatitis B virus(HBV) is very common in China\(^{[10-25]}\), and nearly 100 million people have a persistent infection with HBV who are at risk of developing chronic hepatitis leading to liver cirrhosis and hepatocellular carcinoma. Up to now, vaccination is a main way in prevention\(^{[26-30]}\). Based on our knowledge and work on epitopes of HBV natural nucleocapsids, using SGI O2 workstation and Insight \(\textsc{II}\) software modeling the configuration of natural HBV PreS2, HBsAg and HbcAg, we have screened out several novel HBV therapeutic polypeptides containing immunodominant B-, T helper(Th) and cytotoxic T lymphocyte responses (CTL) epitopes of HBV PreS2, HBsAg and HbcAg. It is well known that natural antigens and their dominant epitope peptides can not induce sufficient antigen-specific CTL responses \textit{in vitro}, although they could pulse antigen-specific CTLs \textit{in vivo}. Therefore efforts should be made to potently promote or enhance their antigenicity so as to induce efficient immune responses including CTLs \textit{in vivo}, among which utilization of appropriate adjuvants or delivery systems is a promising and useful strategy.

Elaborate work has demonstrated that ISCOMS, or immunostimulating complexes, first described by Sweden scientist Bror Morein and his colleagues in 1984, is a good vehicle for antigen presentation. Previously antigens used in earlier works in this complexes were isolated from crude molecular components of microbes while is prepared from phosphatidylcholine(or phosphatidylethanolamine), cholesterol and glucoside Quil A(also called Spikoside) and antigen molecule now, which are approximately 40nm submicroscopic cage-like particles(the size is similar to virus particle). ISCOMS formed in the absence of antigen molecules is termed ISCOMS matrix or empty ISCOMS compared to ISCOMS formed in the presence of antigen(s). Elaborate work has demonstrated that ISCOMS is a good vehicle for antigen presentation. Incorporation into ISCOMS not only allows protein antigens to induce strong antibody, major histocompatibility complex(MHC) class II-restricted T cell responses and mucosal immunity, but also allows antigens to enter the endogenous pathway of antigen processing to induce MHC class I-restricted CTL, \textit{in vivo}\(^{[31-35]}\). Immunization with antigens in ISCOMS induces protective immunity against a number of experimental infections, including influenza, toxoplasmosis, measles, feline leukemia, EBV infection, and herpes simplex\(^{[36-42]}\). An ISCOMS-based vaccine against equine influenza was produced and sold by Isotec AB in Sweden in 1988. Compared with liposomes, ISCOMS structure is much more rigid, three-dimensional with marked symmetry, which is extremely stable under many conditions, including in the intestine, and may be present for long periods of time intra- and extracellularly in lymphoid tissues. On the basis of our previous work on the design and synthesis of HBV epitope-based vaccines, choosing a polypeptide containing both Th and CTL epitopes of HBV as a model antigen, an experimental ISCOMS-based vaccine was constructed and prepared, and its biochemical and immunological properties were then investigated and discussed in this study.

MATERIALS AND METHODS

Reagents and preparation

Phosphatidylcholine, cholesterol, and decanoyl-N-methyl-glucamide (Mega-10) were all from Sigma. Quil A was kindly provided by Dr. Erik B Lindblad. SDS molecular mass marker(2500-17000u) was from Sigma (MWM-100). Hepatitis B polypeptide, glycopeptide and lipopeptide were synthesized by the solid-phase method with an automated peptide synthesizer(431A,Applied Biosystems,Foster City, CA).
Lipid mixture stock solution
Phosphatidylcholine and cholesterol (10g·L\(^{-1}\) each) were fully dissolved in 200g·L\(^{-1}\) (in distilled water) Mega10, aliquot and store at low temperature until required.

Bradford solution
Dissolve 100mg Coomassie blue G and 30mg SDS in 50mL 950mL·L\(^{-1}\) ethanol. Add 100mL of 850g·L\(^{-1}\) orthophosphoric acid and make up to 1L with water. Filter before use.

Preparation of an experimental ISCOMS-based vaccine from a therapeutic hepatitis B short polypeptide
To a solution of hepatitis B polypeptide (1g·L\(^{-1}\)) and Quil A (1g·L\(^{-1}\)), add 100µL of lipid mixture stock solution and mix thoroughly. After reaction at room temperature for 2h, the mixture was transferred to a dialysis bag, dialyzed 24h at room temperature, then at 4°C for another 48h. To confirm the presence of typical structure of ISCOMS, a small aliquot (~80µL) was negatively stained and examined by electron microscopy analysis. Sterilize by filtration through a 0.22µm filter.

Amount of polypeptide incorporated into ISCOMS determined by Bradford method
To each 50µL sample of ISCOMS and to each 50µL dilution of BSA add 1mL Bradfords solution. Incubate 5min at room temperature. Measure the A595 of each sample and BSA standard. Plot a standard curve from the BSA values and determine the protein concentration of the ISCOMS by interpolation from this curve.

Incorporation of short peptide into ISCOMS examined by peptide SDS-PAGE analysis

Table 1 Formulation of gels

Components	Stacking gel (mL)	Spacer gel (mL)	Separating gel (mL)
Acrylamide solution	5.00	3.05	1.00
Gel buffer	5.00	5.00	3.10
Glycerol	1.60	—	—
Water	3.40	6.95	8.40
Total	15.00	15.00	12.50

Prepare gels as indicated in Table1. After the gel has set, allow to equilibrate by leaving overnight at 4°C. Remove the comb and rinse wells with water, then with Cathode Buffer. Load the samples and molecular weight marker. Electrophoresis condition: constant current at 20mA for 1h and 30mA for 4-6h (the marker dye is within 1cm of the anodic end of the gel). Immerse in the fixative solution for 30min. Transfer to staining solution for 1h and destaining solution for 2h, renewing the solution every 30 minutes. The gel now is ready for visualization, analysis or photography.

ELISPOT assay
Female Balb/c mice, obtained from the Animal Research Center of Academy of Military Medical Sciences (Beijing, China) were sc injected to the hind footpad with hepatitis B polypeptide-ISCOMS and hepatitis polypeptide (5nmol each) alone. After 7d of the first priming, the animals were boosted and lymph nodes were removed 7d later to prepare single cell suspension for the ELISPOT assay, which was performed according to the instruction of the murine IFN-γ ELISPOT kit (Diaclone, France).

RESULTS

Typical structure of ISCOMS prepared from hepatitis B polypeptide by electron microscopy
Hepatitis B-ISCOMS unique structure was examined by electron microscopy, which showed uniform honeycomb-like open structure composed of several subunits and confirmed the formation of ISCOMS (Figure 1).

Amount of hepatitis B polypeptide incorporated into ISCOMS
Standard curve was shown as Figure 2 (r=0.9968). The mean A595 value of ISCOMS was 0.0835. According to the standard curve, the corresponding peptide concentration was about 0.33g·L\(^{-1}\).

SDS-PAGE analysis of ISCOMS
In the SDS-PAGE separation of ISCOMS prepared from different hepatitis B polypeptides we observed that at the paralleled position close to the sixth band of the molecular weight marker there was a clear band indicating the peptide incorporated into ISCOMS (Figure 3). Compared to the polypeptide sample, it was at the similar position but somewhat with a slight tailer, which might be affected by other components in the ISCOMS.
IFN-γ linked-CTL activity of Hepatitis B polyepitope-ISCOMS determined by ELISPOT assay

Swelling of lymph nodes were obvious in ISCOMS treated group. In ELISPOT assay, significantly improved IFN-γ linked cytotoxic T lymphocytes (CTL) proliferation response to hepatitis B polyepitope was observed in HBP-ISCOMS group compared to the polyepitope control group (spots of B: 47±5, n=3; A: 5±2, n=3, respectively) (Figure 4).

Figure 4 ELISPOT results showing improved specific CTL responses induced by hepatitis B polyepitope incorporated into ISCOMS (B) compared with the polyepitope (A)

DISCUSSION

Studies in immunological mechanisms and T cell function have demonstrated that class I major histocompatibility complex (MHC)-restricted cytoxic T lymphocytes (CTL) play a critical role in the control of intracellular pathogens and tumor cells growth, but the problems of CTL responses induced in vivo and cell-mediated immunity have not been solved yet. Exogenous soluble antigens are not allowed to enter the endogenous pathway necessary for MHC class I-restricted presentation, therefore are not capable of stimulating MHC class I-restricted CD8+ CTL responses. Obviously, intracellular expression and synthesis of antigens by infection or through pathological/physiological genes could lead to MHC class I-restricted representation pathway, but vaccination of infectants or transfected cells might lead to certain diseases, thus development of adequate novel vaccine adjuvants, especially those themselves are not immunogenic and could present non-replicable soluble antigens to the endogenous pathway and are capable of inducing MHC class I-restricted CTL responses, are badly in demand.

ISCOMS technique is just one of the novel adjuvanted-vaccine systems to meet this demand. Since the first description of ISCOMS appeared more than a decade ago, ISCOMS has been widely used to generate antigen-adjuvant complex in vaccine development, especially in viral antigen studies to promote immune responses. ISCOMS has a unique ability to provoke a full range of immune response to protein antigens, which is efficient after both parenteral and oral immunization. It has a unique ability to allow the antigen molecules to enter the endogenous pathway for antigen processing, which in turn to provoke MHC class I-restricted CTL. It is safe and stable, prepared in mild conditions. Furthermore, as ISCOMS is a non-viable adjuvant vesicle and is not immunogenic and antigenic itself, it could enhance antigen specific immune responses, but not unwanted immunity. Different antigen molecules are able to produce vaccine-adjuvant complex with ISCOMS matrix after proper modification, so are useful and promising in various vaccine design.

Preparations of experimental ISCOMS-based vaccines, have been done with large number of whole microbe or isolated from microbe, especially viruses such as HIV[43-46], influenza virus[38,47-49], EBV[41], HSV[42,50] and Measles[45,51]. The work with the major S gene products (HBsAg) of the hepatitis B virus genome has been reported, but not with epitope-based hepatitis B polyepitope. In our study, on the basis of the molecular design and synthesis of therapeutic hepatitis B peptides previously, different hepatitis B polyepitopes were investigated for their abilities to incorporating into ISCOMS.

Formation of typical structure of ISCOMS was verified by electron microscopy. Adequate proportion of the components, extensive dialysis and purification by density gradient ultracentrifugation when necessary, are important factors involved in the preparation of ISCOMS. The presence of typical cage-like microparticles visualized by electron microscopy is a simple and direct method to examine the formation of ISCOMS, but ISCOMS matrix also shows similar structure as ISCOMS containing antigen molecules, so other methods are required to verify the presence of antigen component. Results from Bradford assay suggested that ISCOMS was successfully formed with polypeptide (30) and other components. In our study, polypeptide incorporated into ISCOMS was about 0.33 g·L−1 (incorporation rate 33%). In addition, we observed that the short polypeptide which was easily degraded in a couple of days even at 4°C, was stable while stored at 4°C for months without notable degradation, indicating markedly improved stability of antigen peptide after the formation of hepatitis B short polypeptide-ISCOMS.

SDS-PAGE separation of short polypeptide showed an apparent band close to 3480Da which confirmed the successful incorporation of hepatitis B polypeptide into ISCOMS (peptide failed to incorporate into ISCOMS was removed during dialysis). The peptide control showed a straight and regular band, while those for peptide-ISCOMS were broad which indicated effects of other components on SDS-PAGE separation. Specific CTL responses were markedly enhanced by ISCOMS-adjuvanted hepatitis B vaccine compared to antigen peptide control in mice visualized by ELISPOT assay. More work will be done to investigate the immunological properties and mechanisms underlying of this experimental ISCOMS-based vaccine from hepatitis B polypeptide in vivo.

ACKNOWLEDGMENTS

We are grateful to Dr. Soren Kambstrup and Dr. Erik B Lindblad from Danmark, Dr. Anna Lunden from Sweden and Dr. John Simms from United Kingdom for their kind help in this study.

REFERENCES

1. Wang PZ, Zhang ZW, Zhou YX, Bai XF. Quantitative PCR detection of HBV-DNA in patients with chronic hepatitis B and its significance. Shijie Huaren Xiuhaoxia Zazhi 2000; 8: 753-755
2. Shi H, Wang FS. Host factors in chronicity of hepatitis B virus infection and their significance clinic alh. Shijie Huaren Xiuhaoxia Zazhi 2001; 9: 66-69
3. Fang DX, Li FQ, Tan WG, Chen HB, Jin HY, Li SQ, Lin HJ, Zhou ZY, Transient expression and antigenic characterization of HBsAg of HBV nt531. A to G mutant. World J Gastroenterol 1999; 5: 73-74
4. Guo SP, Ma ZS, Wang WL. Construction of eukaryotic expression vector of HBV x gene. World J Gastroenterol 1999; 5: 351-352
5. Tang RX, Gao FC, Zeng LY, Wang YW, Wang YL. Detection of HBV DNA and its status of existence in liver tissues and peripheral blood lymphocytes from chronic hepatitis B patients. World J Gastroenterol 1999; 5: 359-361
6. Chen K, Han BG, Ma XK, Zhang HQ, Meng L, Wang GH, Xia F, Song XG, Ling SG. Establishment and preliminary use of hepatitis B virus preS1/2 antigen assay. World J Gastroenterol 1999; 5: 550-552
7. Qin LL, Su JF, Li Y, Yang C, Ban KC, Yan BQ. Expression of KGF1 p53, P21 and HBsAg in precancerous events of hepatocarcinogenesis induced by AFB1 and/or HBV in tree shrews. World J Gastroenterol 2000; 6: 138-139
Studies of a novel hepatitis B polypeptide-ISCOMs

297

Guan XJ, et al. World J Gastroenterol 2000; 8: 289-293

He XS, Huang JF, Chen GH, Fu Q, Zhu XF, Lu MQ, Wang GD, Guan XD. Orthotopic liver transplantation for fulminant hepatitis B. World J Gastroenterol 2000; 6: 398-399

Hu YP, Yao YC, Li JX, Wang XM, Li H, Wang ZH, Lei ZH. The cloning of 3'truncated pre/S gene from HBV genomic DNA and its expression in E. coli. World J Gastroenterol 2000; 6: 734-737

Wang XZ, Chen XC, Yang YH, Chen ZX, Huang YH, Tao QM. Relationship between HBsAg and Fas/Fasl in patients with hepatocellular carcinoma. World J Gastroenterol 2000; 6: 17

Wang SP, Xu DZ, Yan YP, Shi MY, Li RL, Zhang XJ, Bai GZ, Ma JX. Hepatitis B virus DNA positive and negative results in the PCR. J Integr Med (Chin) 2000; 6: 58

Ma CH, Sun WS, Zhang LN, Ding PF. Inhibitory effect of antisense oligodeoxynucleotides complementary to HBV on HepG2.2.15 cell line. World J Gastroenterol 2000; 6: 239-242

Gao XW, Jia SY, Liu XM. BCG vaccine combined with dipyridamole in the treatment of HBV infection. World J Gastroenterol 2000; 6: 76

You J, Zhuang L, Tang BZ, Yang H, Yang WB, Li W, Zhang HL, Zhang YM, Li YN. Interferon alpha with Thymopeptide in the treatment of HBV patients. World J Gastroenterol 2000; 6: 83-86

Fang JN, Jin CJ, Cui LH, Quan ZY, Choi BY, Ki MR, Park HB. A comparative study on serologic profiles of virus hepatitis B. World J Gastroenterol 2000; 1: 107-110

Guo SP, Wang WL, Zhai YQ, Zhao YL. Expression of nuclear factor-κB in chronic hepatitis B carriers. World J Gastroenterol 2000; 6: 239-242

Wang Y, Liu H, Zhou Q, Li X. Analysis of point mutation in site 1896 of hepatitis B virus surface antigen in mice without activation of C-myc. World J Gastroenterol 2000; 1: 849-851

Huang ZH, Zeng XJ, Yang GH, Liao SS, Chen AP, Tan JH, Huang ZL. Zoster in a human H5N1 influenza virus. J Infect Dis 1999; 279: 1320-1323

Heeney J, Akerblom L, Barnett S, Bogers W, Davis D, Fuller D, Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thippawong-J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvant carriers (ISCOMs). AIDS Res Hum Retroviruses 2000; 16: 1281-1294

Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thippawong-J. Attenuation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvant carriers (ISCOMs). J Infect Dis 1999; 179: 1568-1573

J Invert Pest Dis 2000; 18: 2521-2526

Rimmelzwaan GF, Claas EC, Osterhaus AD. Antigen presentation by facilitating helper T-cell responses to a covalently linked peptide sequence, when tandemly repeated, enhances immunogenicity. J Immunol 2001; 166: 3589-3598

Rimmelzwaan GF, Nieuwkoop N, Lovgren-Bengtsson K, Osterhaus AD. Introduction of the haemagglutinin transmembrane region into the internal matrix protein facilitates its incorporation into ISCOM and activation of specific CD8+ cytotoxic T lymphocytes. Vaccine 2000; 19: 514-522

Wyde PR, Stittelaar KJ, Osterhaus AD, Guzman E, Gilbert BE. Use of cotton rats for preclinical evaluation of measles vaccines. Vaccine 2000; 18: 42-53

Wilson AD, Lovgren-Bengtsson K, Villacres-Ericson M, Morein B, Morgan AJ, et al. The major Epstein-Barr virus (EBV) envelope glycoprotein gp340 when incorporated into ISCOMS primes cytotoxic T-cell responses directed against EBV lymphoblastoid cell lines. Vaccine 1999; 17:1282-1290

Sanyamlami SA, Brede JM, Alexander J, Heath AW, Jennings P. Antibody responses, cytokine levels and protection of mice immunized with HSV-2 antigens formulated into NISV or ISCOM delivery systems. Vaccine 2000; 18: 2083-2094

Rimmelzwaan GF, Akerblom L, Albrecht S, Boggens W, Davis D, Fuller D, Koopman G, Lehner T, Mooij P, Morein B, de-Giullt-Morgren C, Rosenbich V, Bressieux H, Wagner R, Wolf H. HIV-1 vaccine-induced immune responses which correlate with protection from SHIV infection: compiled preclinical efficacy data from trials with different HIV-1 vaccine candidates. Immunol Lett 1999; 66: 189-199

Rimmelzwaan GF, Baars M, van-beek R, de-Lijster P, de-Jong JC, Claas EC, Osterhaus AD. Influenza virus subtype cross-reactivities of haemagglutination inhibiting and virus neutralising serum antibodies induced by infection or vaccination with an ISCOM-based vaccine. Vaccine 1999; 17: 2521-2526

Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thippawong-J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvant carriers (ISCOMs). Virology 1999; 259: 256-261

Olowska E, Spiesz SA, Weijers H, Ploegh HL. Antigen presentation in the context of class I MHC by a V3 loop haptenspecific peptide bearing a thymic hormone signal. J Immunol 2000; 164: 6138-6147

Stittelaar KJ, Boes J, Kersten GF, Spiekstra A, Mulder PG, de-Vries P, Osterhaus AD. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine 1999; 17: 1355-1358

Simms JR, Heath AW, Jennings R. Use of herpes simplex virus (HSV) type 1 ISCOM 703 virus for prophylactic and therapeutic treatment of primary and recurrent HSV-2 infection in guinea pigs. J Infect Dis 2000; 181: 1240-1248

Stittelaar KJ, Boes J, Kersten GF, Spieszka A, Mulder PG, de-Vries P, Rohl J, Dalsgaard K, van-den-Dobbelsteen G, van-Allen P, Osterhaus AD. In vivo antibody response and in vitro CTL activation induced by selected measles vaccine candidates, prepared with purified Quil A components. Vaccine 2000; 18: 2482-2490