\textbf{p-Biharmonic Hypersurfaces in Einstein Space and Conformally Flat Space}

\begin{abstract}
In this paper, we present some new properties for \(p \)-biharmonic hypersurfaces in Riemannian manifold. We also characterize the \(p \)-biharmonic submanifolds in an Einstein space. We construct a new example of proper \(p \)-biharmonic hypersurfaces. We present some open problems.

\textit{AMS Mathematics Subject Classification (2020):} 53C43, 58E20, 53C25.

\textit{Key words and phrases:} \(p \)-biharmonic maps, \(p \)-biharmonic submanifolds, Einstein space.
\end{abstract}

1 Introduction

Let \(\varphi : (M^m, g) \longrightarrow (N^n, h) \) be a smooth map between Riemannian manifolds. The \(p \)-energy functional of \(\varphi \) is defined by

\[E_p(\varphi; D) = \frac{1}{p} \int_D |d\varphi|^p v_g, \]

where \(D \) is a compact domain in \(M \), \(|d\varphi| \) the Hilbert-Schmidt norm of the differential \(d\varphi \), \(v_g \) the volume element on \((M^m, g) \), and \(p \geq 2 \).

A smooth map is called \(p \)-harmonic if it is a critical point of the \(p \)-energy functional (1). We have

\[\frac{d}{dt} E_p(\varphi_t; D) \bigg|_{t=0} = -\int_D h(\tau_p(\varphi), v) v_g, \]

where \(\{\varphi_t\}_{t \in (-\epsilon, \epsilon)} \) is a smooth variation of \(\varphi \) supported in \(D \), \(v = \frac{\partial \varphi_t}{\partial t} \bigg|_{t=0} \) the variation vector field of \(\varphi \), and \(\tau_p(\varphi) = \text{div}^M (|d\varphi|^{p-2} d\varphi) \) the \(p \)-tension field of \(\varphi \).

Let \(\nabla^M \) the Levi-Civita connection of \((M^m, g) \), and \(\nabla^\varphi \) the pull-back connection on \(\varphi^{-1}TN \), the map \(\varphi \) is \(p \)-harmonic if and only if (see [1][3][7])

\[|d\varphi|^{p-2} \tau(\varphi) + (p-2)|d\varphi|^{p-3} d\varphi (\text{grad}^M |d\varphi|) = 0, \]

where \(\tau(\varphi) = \text{trace}_g \nabla d\varphi \) is the tension field of \(\varphi \) (see [2][6]). The \(p \)-bienergy functional of \(\varphi \) is defined by

\[E_{2,p}(\varphi; D) = \frac{1}{2} \int_D |\tau_p(\varphi)|^2 v_g. \]

We say that \(\varphi \) is a \(p \)-biharmonic map if it is a critical point of the \(p \)-bienergy functional (4), the Euler-Lagrange equation of the \(p \)-bienergy functional is given by (see [1][11])

\[\tau_{2,p}(\varphi) = -|d\varphi|^{p-2} \text{trace}_g R^N (\tau_p(\varphi), d\varphi) d\varphi - \text{trace}_g \nabla^\varphi |d\varphi|^{p-2} \nabla^\varphi \tau_p(\varphi) \]

\[-(p-2) \text{trace}_g \nabla < \nabla^\varphi \tau_p(\varphi), d\varphi > |d\varphi|^{p-4} d\varphi = 0, \]
where R^N is the curvature tensor of (N^n, h) defined by

$$R^N(X, Y)Z = \nabla^N_X \nabla^N_Y Z - \nabla^N_Y \nabla^N_X Z - \nabla^N_{[X,Y]} Z, \quad \forall X, Y, Z \in \Gamma(TN),$$

and ∇^N the Levi-Civita connection of (N^n, h). The p-energy functional (resp. p-bienergy functional) includes as a special case ($p = 2$) the energy functional (resp. bienergy functional), whose critical points are the usual harmonic maps (resp. biharmonic maps) [9].

A submanifold in a Riemannian manifold is called a p-harmonic submanifold (resp. p-biharmonic submanifold) if the isometric immersion defining the submanifold is a p-harmonic map (resp. p-biharmonic map). Will call proper p-biharmonic submanifolds a p-biharmonic submanifolds which is non p-harmonic.

2 Main Results

Let (M^m, g) be a hypersurface of $(N^{m+1}, \langle \cdot, \cdot \rangle)$, and $i : (M^m, g) \hookrightarrow (N^{m+1}, \langle \cdot, \cdot \rangle)$ the canonical inclusion. We denote by ∇^M (resp. ∇^N) the Levi-Civita connection of (M^m, g) (resp. of $(N^{m+1}, \langle \cdot, \cdot \rangle)$), grad^M (resp. grad^N) the gradient operator in (M^m, g) (resp. in $(N^{m+1}, \langle \cdot, \cdot \rangle)$), B the second fundamental form of the hypersurface (M^m, g), A the shape operator with respect to the unit normal vector field η, H the mean curvature of (M^m, g), ∇^\perp the normal connection of (M^m, g), and by Δ (resp. Δ^\perp) the Laplacian on (M^m, g) (resp. on the normal bundle of (M^m, g) in $(N^{m+1}, \langle \cdot, \cdot \rangle)$) (see [2, 13, 15]). Under the notation above we have the following results.

Theorem 1. The hypersurface (M^m, g) with the mean curvature vector $H = f \eta$ is p-biharmonic if and only if

$$\begin{cases}
-\Delta^M(f) + f|A|^2 - f \text{Ric}^N(\eta, \eta) + m(p-2) f^3 = 0; \\
2A(\text{grad}^M f) - 2f(\text{Ricci}^N \eta)^\top + (p-2 + \frac{m}{2}) \text{grad}^M f^2 = 0,
\end{cases}
$$

where Ric^N (resp. Ricci^N) is the Ricci curvature (resp. Ricci tensor) of $(N^{m+1}, \langle \cdot, \cdot \rangle)$.

Proof. Choose a normal orthonormal frame $\{e_i\}_{i=1, \ldots, m}$ on (M^m, g) at x, so that $\{e_i, \eta\}_{i=1, \ldots, m}$ is an orthonormal frame on the ambient space $(N^{m+1}, \langle \cdot, \cdot \rangle)$. Note that, $\text{d}(X) = X$, $\nabla^\perp Y = \nabla^N_{\otimes} Y$, and the p-tension field of i is given by $\tau_p(i) = m^2 f \eta$. We compute the p-tension field of i

$$\tau_{2,p}(i) = -|\text{d}|^{p-2} \text{trace}_g R^N(\tau_p(i), \text{d}) \text{d}\i
\begin{align*}
(p-2) \text{trace}_g \nabla \langle \nabla^\perp \tau_p(i), \text{d}\i \rangle |\text{d}|^{p-4} \text{d}\i
\text{trace}_g |\text{d}|^{p-2} \nabla^\perp \tau_p(i).
\end{align*}
$$

The first term of (7) is given by

$$-|\text{d}|^{p-2} \text{trace}_g R^N(\tau_p(i), \text{d}) \text{d}\i = -|\text{d}|^{p-2} \sum_{i=1}^m R^N(\tau_p(i), \text{d} e_i) \text{d}(e_i) = -m^{p-1} f \sum_{i=1}^m R^N(\eta, e_i) e_i = -m^{p-1} f \text{Ricci}^N \eta = -m^{p-1} f \left[(\text{Ricci}^N \eta)^\perp + (\text{Ricci}^N \eta)^\top\right].
$$

We compute the second term of (7)

$$-(p-2) \text{trace}_g \nabla \langle \nabla^\perp \tau_p(i), \text{d}\i \rangle |\text{d}|^{p-4} \text{d}\i = -(p-2)m^{p-2} \sum_{i,j=1}^m \nabla^N_{e_i} \langle \nabla^N_{e_j} f \eta, e_i \rangle e_j,$n

$$\sum_{i=1}^m \langle \nabla^N_{e_i} f \eta, e_i \rangle = \sum_{i=1}^m \langle e_i(f) \eta, e_i \rangle + f \langle \nabla^N_{e_i} \eta, e_i \rangle
$$

$$= -f \sum_{i=1}^m \langle e_i, B(e_i, e_i) \rangle
$$

$$= -m f^2.$$
Thus, at \(x \), we have the following

\[
- (p - 2) \text{trace}_g \nabla (\nabla^1 \tau_p (i), d\bar{i}) |d\bar{i}|^{p-4} d\bar{i} = m^{p-1} (p - 2) \left(\text{grad}^M f^2 + m f^3 \eta \right).
\]

The third term of (7) is given by

\[
- \text{trace}_g \nabla^1 |d\bar{i}|^{p-2} \nabla^1 \tau_p (i) = -m^{p-1} \sum_{i=1}^m \nabla^N \nabla^N e_i \eta
\]

\[
= -m^{p-1} \left[\nabla^N \left(e_i (f) \eta + f \nabla^N \eta \right) \right]
\]

\[
= -m^{p-1} \left[\Delta^M (f) \eta + 2 \nabla^N \text{grad}^M f \eta + m \sum_{i=1}^m \nabla^N \nabla^N e_i \eta \right].
\]

Thus, at \(x \), we obtain

\[
\sum_{i=1}^m \nabla^N \nabla^N e_i \eta = \sum_{i=1}^m \nabla^N \left[\left(\nabla^N e_i \eta \right)^T + \left(\nabla^N \eta \right)^T \right]
\]

\[
= - \sum_{i=1}^m \nabla^N A(e_i)
\]

\[
= - \sum_{i=1}^m \nabla^N A(e_i) - \sum_{i=1}^m B(e_i, A(e_i)).
\]

Since \(\langle A(X), Y \rangle = \langle B(X, Y), \eta \rangle \) for all \(X, Y \in \Gamma(TM) \), we get

\[
\sum_{i=1}^m \nabla^M A(e_i) \eta = \sum_{i,j=1}^m \langle \nabla^M A(e_i), e_j \rangle e_j
\]

\[
= \sum_{i,j=1}^m \left[e_i \langle A(e_i), e_j \rangle e_j - \langle A(e_i), \nabla^M e_j \rangle e_j \right]
\]

\[
= \sum_{i,j=1}^m e_i \langle B(e_i, e_j), \eta \rangle e_j
\]

\[
= \sum_{i,j=1}^m e_i \langle \nabla^N e_i, \eta \rangle e_j
\]

\[
= \sum_{i,j=1}^m \langle \nabla^N \nabla^N e_i, \eta \rangle e_j.
\]

By using the definition of curvature tensor of \(\left(N^{m+1}, \langle \cdot, \cdot \rangle \right) \), we conclude

\[
\sum_{i=1}^m \nabla^M A(e_i) \eta = \sum_{i,j=1}^m \left[\langle R^N (e_i, e_j) e_i, \eta \rangle e_j + \langle \nabla^N \nabla^N e_i, \eta \rangle e_j \right]
\]

\[
= \sum_{i,j=1}^m \left[-\langle R^N (\eta, e_i) e_i, e_j \rangle e_j + \langle \nabla^N e_i, \eta \rangle e_j \right]
\]

\[
= - \sum_{j=1}^m \langle \text{Ricci}^N \eta, e_j \rangle e_j + \sum_{i,j=1}^m e_j \langle \nabla^N e_i, \eta \rangle e_j - \sum_{i,j=1}^m \langle \nabla^N e_i, \nabla^N \eta \rangle e_j
\]

\[
= -\langle \text{Ricci}^N \eta \rangle^T + m \text{grad}^M f.
\]
On the other hand, we have
\[
\sum_{i=1}^{m} B(e_i, A(e_i)) = \sum_{i=1}^{m} (B(e_i, A(e_i)), \eta) \eta = \sum_{i=1}^{m} (A(e_i), A(e_i)) \eta = |A|^2 \eta. \tag{14}
\]
Substituting (11), (13) and (14) in (10), we obtain
\[
- \text{trace}_g \nabla^i |d_i|^{p-2} \nabla^i \tau_p(i) = -m^{p-1} [\Delta^M(f) \eta - 2A(\text{grad}^M f) + f(\text{Ricci}^N \eta)^T \\
- \frac{m}{2} \text{grad}^M f^2 - f|A|^2 \eta], \tag{15}
\]
The Theorem follows by (7)-(9), and (15).

The Corollary follows by Theorem 1.

Corollary 2. A hypersurface \((M^m, g)\) in an Einstein space \((N^{m+1}, \langle , \rangle)\) is \(p\)-biharmonic if and only if its mean curvature function \(f\) is a solution of the following PDEs
\[
\begin{aligned}
\Delta^M(f) + f|A|^2 + m(p - 2)f^3 - \frac{S}{m+1}f &= 0; \\
2A(\text{grad}^M f) + (p - 2 + \frac{m}{2}) \text{grad}^M f^2 &= 0,
\end{aligned} \tag{16}
\]
where \(S\) is the scalar curvature of the ambient space.

Proof. It is well known that if \((N^{m+1}, \langle , \rangle)\) is an Einstein manifold then \(\text{Ric}^N(X, Y) = \lambda \langle X, Y \rangle\) for some constant \(\lambda\), for any \(X, Y \in \Gamma(TN)\). So that
\[
S = \text{trace}_{\langle , \rangle} \text{Ric}^N
= \sum_{i=1}^{m} \text{Ric}^N(e_i, e_i) + \text{Ric}^N(\eta, \eta)
= \lambda(m + 1),
\]
where \(\{e_i\}_{i=1,...,m}\) is a normal orthonormal frame on \((M^m, g)\) at \(x\). Since \(\text{Ric}^N(\eta, \eta) = \lambda\), on conclude that
\[
\text{Ric}^N(\eta, \eta) = \frac{S}{m+1}.
\]
On the other hand, we have
\[
(\text{Ricci}^N \eta)^T = \sum_{i=1}^{m} (\text{Ricci}^N \eta, e_i) e_i = \sum_{i=1}^{m} \text{Ric}^N(\eta, e_i) e_i = \sum_{i=1}^{m} \lambda(\eta, e_i) e_i = 0.
\]
The Corollary follows by Theorem 1.

Theorem 3. A totally umbilical hypersurface \((M^m, g)\) in an Einstein space \((N^{m+1}, \langle , \rangle)\) with non-positive scalar curvature is \(p\)-biharmonic if and only if it is minimal.
Proof. Take an orthonormal frame \(\{e_i, \eta\}_{i=1}^{m} \) on the ambient space \((N^{m+1}, (,))\) such that \(\{e_i\}_{i=1}^{m} \) is an orthonormal frame on \((M^m, g)\). We have
\[
f = \langle H, \eta \rangle = \frac{1}{m} \sum_{i=1}^{m} \langle B(e_i, e_i), \eta \rangle = \frac{1}{m} \sum_{i=1}^{m} \langle g(e_i, e_i)\beta \eta, \eta \rangle = \beta,
\]
where \(\beta \in C^\infty(M) \). The \(p \)-biharmonic hypersurface equation (16) becomes
\[
\begin{cases}
-\Delta^M(\beta) + m(p-1)\beta^3 - \frac{s}{m+1} \beta = 0; \\
(p - 1 + \frac{m}{2}) \beta \text{ grad}^M \beta = 0,
\end{cases}
\]
Solving the last system, we have \(\beta = 0 \) and hence \(f = 0 \), or
\[
\beta = \pm \sqrt{\frac{s}{m(m+1)(p-1)}},
\]
it’s constant and this happens only if \(s \geq 0 \). The proof is complete. \(\square \)

3 \(p \)-biharmonic hypersurfaces in conformally flat space

Let \(i : M^m \hookrightarrow \mathbb{R}^{m+1} \) be a minimal hypersurface with the unit normal vector field \(\eta \). \(\tilde{\iota} : (M^m, \tilde{g}) \hookrightarrow (\mathbb{R}^{m+1}, \tilde{h} = e^{2\gamma}h) \), \(x \mapsto \tilde{\iota}(x) = i(x) = x \), where \(\gamma \in C^\infty(\mathbb{R}^{m+1}) \), \(h = (,)_{\mathbb{R}^{m+1}} \), and \(\tilde{g} \) is the induced metric by \(\tilde{h} \), that is
\[
\tilde{g}(X,Y) = e^{2\gamma}g(X,Y) = e^{2\gamma}(X,Y)_{\mathbb{R}^{m+1}},
\]
where \(g \) is the induced metric by \(h \). Let \(\{e_i, \eta\}_{i=1}^{m} \) be an orthonormal frame adapted to the \(p \)-harmonic hypersurface on \((\mathbb{R}^{m+1}, h)\), thus \(\{\tilde{e}_i, \tilde{\eta}\}_{i=1}^{m} \) becomes an orthonormal frame on \((\mathbb{R}^{m+1}, \tilde{h})\), where \(\tilde{e}_i = e^{-\gamma}e_i \) for all \(i = 1, \ldots, m \), and \(\tilde{\eta} = e^{-\gamma}\eta \).

Theorem 4. The hypersurface \((M^m, \tilde{g})\) in the conformally flat space \((\mathbb{R}^{m+1}, \tilde{h})\) is \(p \)-biharmonic if and only if
\[
\begin{cases}
\eta(\gamma)e^{-\gamma} \left[-\Delta^M(\gamma) - m \text{ Hess}_{\gamma}^R(\eta, \eta) + (1 - m) \right| \text{ grad}^M \gamma |^2 \\
-|A|^2 + m(1-p)\eta(\gamma)^2 + \Delta^M(\eta(\gamma)e^{-\gamma}) + (m - 2)(\text{ grad}^M \gamma)(\eta(\gamma)e^{-\gamma}) = 0; \\
-2A(\text{ grad}^M(\eta(\gamma)e^{-\gamma})) + 2(1-m)\eta(\gamma)e^{-\gamma}A(\text{ grad}^M \gamma) + (2p - m)\eta(\gamma) \text{ grad}^M(\eta(\gamma)e^{-\gamma}) = 0,
\end{cases}
\]
where \(\text{ Hess}_{\gamma}^R \) is the Hessian of the smooth function \(\gamma \) in \((\mathbb{R}^{m+1}, h)\).

Proof. By using the Kozul’s formula, we have
\[
\begin{cases}
\bar{\nabla}^M_X Y = \nabla^M_X Y + X(\gamma) Y + Y(\gamma) X - g(X,Y) \text{ grad}^M \gamma; \\
\bar{\nabla}^R_{U} V = \nabla^R_{U} V + U(\gamma) V + V(\gamma) U - h(U,V) \text{ grad}^R \gamma,
\end{cases}
\]
for all \(X, Y \in \Gamma(TM) \), and \(U, V \in \Gamma(T\mathbb{R}^{m+1}) \). Consequently
\[
\bar{\nabla}^L_X d\tilde{\iota}(Y) = \bar{\nabla}^L_X Y = \bar{\nabla}^R_{d\tilde{\iota}(X)} Y = \bar{\nabla}^R_{d\tilde{\iota}(X)^{-1}} Y = \bar{\nabla}^R_{d\tilde{\iota}(X)} Y + X(\gamma) Y + Y(\gamma) X - h(X,Y) \text{ grad}^R \gamma,
\]
and the following
\[d\tilde{\Omega}(\nabla^M Y) = d\Omega(\nabla^M Y) + X(\gamma)\Omega(Y) + \gamma(X, Y)\Omega - g(X, Y)\Omega(\text{grad}^M Y). \]

From equations (19) and (20), we get
\[(\nabla d\tilde{\Omega})(X, Y) = \nabla^T_d d\tilde{\Omega}(Y) - d\tilde{\Omega}(\nabla^M Y) = \partial (\nabla d\tilde{\Omega})(X, Y) + g(X, Y)[\text{grad}^M Y - \text{grad}^{m+1} Y] = B(X, Y) - g(X, Y)\eta(\gamma)\eta. \]

So that, the mean curvature function \(\tilde{f} \) of \((M^m, \tilde{g}) \) (in \(\mathbb{R}^{m+1} \)) is given by \(\tilde{f} = -\eta(\gamma)e^{-\gamma} \). Indeed, by taking traces in (21), we obtain
\[e^{2\gamma}\tilde{H} = H - \eta(\gamma)\eta. \]

Since \((M^m, g) \) is minimal in \((\mathbb{R}^{m+1}, \tilde{g}) \), we find that \(\tilde{H} = -e^{-2\gamma}\eta(\gamma)\eta \), that is \(\tilde{H} = -e^{-\gamma}\eta(\gamma)\tilde{g} \).

With the new notations the equation (6) for \(p \)-biharmonic hypersurface in the conformally flat space becomes
\[\begin{cases}
-\Delta(\tilde{f}) + \tilde{f}A_{\eta}^2 - f\tilde{R} - m(p - 2)\tilde{f}^3 & = 0; \\
2A(\text{grad} \tilde{f}) - 2f(\tilde{R} - m(p - 2 + \frac{m}{2})\text{grad} \tilde{f}^2 & = 0,
\end{cases} \]

A straightforward computation yields
\[\tilde{\Omega}^{\text{Ricci}}_{\eta} = e^{-2\gamma}\left[\text{Ricci}^{\text{Ricci}}_{\eta} - \Delta^{\text{Ricci}}_{\eta} - \text{grad}^{\text{Ricci}}_{\eta}\gamma \right] + (1 - m)|\text{grad}^{\text{Ricci}}_{\eta}\gamma|^2 \eta - (1 - m)\eta(\gamma)\text{grad}^{\text{Ricci}}_{\eta}\gamma; \]
\[\tilde{\Omega}^{\text{Ricci}}_{\eta}(\tilde{\eta}, \tilde{\eta}) = \tilde{h}(\text{Ricci}^{\text{Ricci}}_{\eta}, \tilde{\eta}, \tilde{\eta}) \]
\[= e^{-2\gamma}h(\text{Ricci}^{\text{Ricci}}_{\eta}, \eta, \eta) \]
\[= e^{-2\gamma}h(\text{Ricci}^{\text{Ricci}}_{\eta} - \Delta^{\text{Ricci}}_{\eta} - \text{grad}^{\text{Ricci}}_{\eta}\gamma) + (1 - m)|\text{grad}^{\text{Ricci}}_{\eta}\gamma|^2 \eta - (1 - m)\eta(\gamma)\text{grad}^{\text{Ricci}}_{\eta}\gamma; \]
\[= e^{-2\gamma}\left[-\Delta^{\text{Ricci}}_{\eta} - \text{grad}^{\text{Ricci}}_{\eta}\gamma + (1 - m)\text{Hess}^{\text{Ricci}}_{\eta}(\eta, \eta) + (1 - m)|\text{grad}^{\text{Ricci}}_{\eta}\gamma|^2 \right] - (1 - m)\eta(\gamma)^2; \]
\[\tilde{\Omega}^{\text{Ricci}}_{\eta}(\tilde{\eta}, \tilde{\eta}) = \sum_{i=1}^{m} h(\text{Ricci}^{\text{Ricci}}_{\eta}, \tilde{\eta}, e_i)e_i \]
\[= (1 - m)e^{-3\gamma}\sum_{i=1}^{m} \left[h(\text{grad}^{\text{Ricci}}_{\eta}\gamma, e_i)e_i - \eta(\gamma)h(\text{grad}^{\text{Ricci}}_{\eta}\gamma, e_i)e_i \right] \]
\[= (1 - m)e^{-3\gamma}\left[\sum_{i=1}^{m} h(\text{grad}^{\text{Ricci}}_{\eta}\gamma, e_i)e_i - \eta(\gamma)\text{grad}^{\text{Ricci}}_{\eta}\gamma \right] \]
\[= (1 - m)e^{-3\gamma}\left[\sum_{i=1}^{m} h(\text{grad}^{\text{Ricci}}_{\eta}\gamma, e_i) + \sum_{i=1}^{m} h(\text{grad}^{\text{Ricci}}_{\eta}\gamma, e_i - \eta(\gamma) \text{grad}^{\text{Ricci}}_{\eta}\gamma \right] \]
\[= (1 - m)e^{-3\gamma}\left[\text{grad}^{\text{Ricci}}_{\eta}\gamma + \eta(\gamma)\text{grad}^{\text{Ricci}}_{\eta}\gamma \right] \]
\[= (1 - m)e^{-3\gamma}\left[\text{grad}^{\text{Ricci}}_{\eta}\gamma + A(\text{grad}^{\text{Ricci}}_{\eta}\gamma - \eta(\gamma)\text{grad}^{\text{Ricci}}_{\eta}\gamma) \right]; \]
\(\Delta(f) = e^{-2\gamma}[\Delta(f) + (m - 2)d\bar{f}(\text{grad}^M \gamma)] \)
\[= e^{-2\gamma}[-\Delta(\eta(\gamma)e^{-\gamma}) - (m - 2)(\text{grad}^M \gamma)(\eta(\gamma)e^{-\gamma})]; \quad (25) \]

\[|\tilde{A}|^2_g = \sum_{i=1}^{m} g(\tilde{A}e_i, \tilde{A}e_i) \]
\[= \sum_{i=1}^{m} g(\tilde{A}e_i, \tilde{A}e_i) \]
\[= \sum_{i=1}^{m} h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \nabla_{\tilde{e}_i}^m \tilde{\eta}) \]
\[= \sum_{i=1}^{m} h(\nabla_{\tilde{e}_i}^m \tilde{\eta} + e_i(\gamma)\tilde{\eta} + \tilde{\eta}(\gamma)e_i, \nabla_{\tilde{e}_i}^m \tilde{\eta} + e_i(\gamma)\tilde{\eta} + \tilde{\eta}(\gamma)e_i) \]
\[= \sum_{i=1}^{m} [h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \nabla_{\tilde{e}_i}^m \tilde{\eta}) + 2\tilde{\eta}(\gamma)h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, e_i) + e_i(\gamma)^2e^{-2\gamma} + 2e_i(\gamma)h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \tilde{\eta})] + m\tilde{\eta}(\gamma)^2. \quad (26) \]

The first term of (26) is given by
\[\sum_{i=1}^{m} h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \nabla_{\tilde{e}_i}^m \tilde{\eta}) = \sum_{i=1}^{m} h(-e^{-\gamma}e_i(\gamma)\eta + e^{-\gamma}\nabla_{\tilde{e}_i}^m \tilde{\eta}, -e^{-\gamma}e_i(\gamma)\eta + e^{-\gamma}\nabla_{\tilde{e}_i}^m \tilde{\eta}) \]
\[= \sum_{i=1}^{m} [e^{-2\gamma}e_i(\gamma)^2 + e^{-2\gamma}h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \nabla_{\tilde{e}_i}^m \tilde{\eta})] \]
\[= e^{-2\gamma}|\text{grad}^M \gamma|^2 + e^{-2\gamma}|A|^2. \]

The second term of (26) is given by
\[2\tilde{\eta}(\gamma) \sum_{i=1}^{m} h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, e_i) = -2e^{-\gamma}\eta(\gamma) \sum_{i=1}^{m} h(e^{-\gamma}\eta, \nabla_{\tilde{e}_i}^m e_i) \]
\[= -2me^{-2\gamma}\eta(\gamma)h(\eta, H) \]
\[= 0. \]

Here \(H = 0 \). We have also
\[2 \sum_{i=1}^{m} e_i(\gamma)h(\nabla_{\tilde{e}_i}^m \tilde{\eta}, \tilde{\eta}) = \sum_{i=1}^{m} e_i(\gamma)e_ih(\tilde{\eta}, \tilde{\eta}) \]
\[= \sum_{i=1}^{m} e_i(\gamma)e_i(e^{-2\gamma}) \]
\[= -2e^{-2\gamma} \sum_{i=1}^{m} e_i(\gamma)^2 \]
\[= -2e^{-2\gamma}|\text{grad}^M \gamma|^2. \]

Thus
\[|\tilde{A}|^2_g = e^{-2\gamma}|A|^2 + m e^{-2\gamma}\eta(\gamma)^2. \quad (27) \]

We compute
\[\text{grad}^M f = e^{-2\gamma} \sum_{i=1}^{m} e_i(\bar{f})e_i \]
\[= -e^{-2\gamma}\text{grad}^M(\eta(\gamma)e^{-\gamma}); \quad (28) \]
and the following
\[
\tilde{A}(\tilde{\nabla} f) = -\tilde{\nabla} f \tilde{\eta} =
\]
\[
-\tilde{\nabla} f e^{-\gamma} \eta
\]
\[
e^{-\gamma}(\nabla f)(\gamma) \eta - e^{-\gamma} \tilde{\nabla} f \eta
\]
\[
e^{-3\gamma} \nabla M (\eta e^{-\gamma})(\gamma) \eta + e^{-3\gamma} \tilde{\nabla} M (\eta e^{-\gamma}) \eta
\]
\[
e^{-3\gamma} \nabla M (\eta e^{-\gamma})(\gamma) \eta + e^{-3\gamma} \tilde{\nabla} M (\eta e^{-\gamma}) \eta
\]
\[
e^{-3\gamma} \eta (\gamma) \nabla M (\eta e^{-\gamma}) - e^{-3\gamma} \tilde{A}(\nabla M \eta e^{-\gamma}).
\]
(29)

Substituting (23) – (29) in (22), and by simplifying the resulting equation we obtain the system (18).

Remark 5.

1. Using Theorem 4 we can construct many examples for proper p-biharmonic hypersurfaces in the conformally flat space.

2. If the functions \(\gamma \) and \(\eta(\gamma) \) are non-zero constants on \(M \), then according to Theorem 4 the hypersurface \((M^m, \tilde{g}) \) is p-biharmonic in \((\mathbb{R}^{m+1}, \tilde{h}) \) if and only if

\[|A|^2 = m(1-p)\eta(\gamma)^2 - m\eta(\gamma) \]

Example 6. The hyperplane \(i : \mathbb{R}^m \leftrightarrow (\mathbb{R}^{m+1}, e^{2\gamma(x)}h), x \in (x, c), \) where \(\gamma \in C^\infty(\mathbb{R}), h = \sum_{i=1}^m dx_i^2 + dz^2 \), and \(c \in \mathbb{R} \), is proper p-biharmonic if and only if \((1-p)\gamma'(c)^2 - \gamma''(c) = 0 \). Note that, the smooth function

\[\gamma(z) = \ln(c_1(p-1)z + c_2(p-1)) \]

\[p-1 \]

\[c_1, c_2 \in \mathbb{R}, \]

is a solution of the previous differential equation (for all c).

Example 7. Let \(M \) be a surface of revolution in \(\{(x, y, z) : \mathbb{R}^3 | z > 0 \} \). If \(M \) is part of a plane orthogonal to the axis of revolution, so that \(M \) is pararametrized by

\[(x_1, x_2) \mapsto (f(x_2) \cos(x_1), f(x_2) \sin(x_1), c), \]

for some constant \(c > 0 \). Here \(f(x_2) > 0 \). Then, \(M \) is minimal, and according to Theorem 4 the surface \(M \) is proper p-biharmonic in 3-dimensional hyperbolic space \((\mathbb{H}^3, z^\frac{2}{p-2}h), \) where \(h = dx^2 + dy^2 + dz^2 \).

Open Problems.

1. If \(M \) is a minimal surface of revolution contained in a catenoid, that is \(M \) is parametrized by

\[(x_1, x_2) \mapsto \left(a \cosh \left(\frac{x_2}{a} + b \right) \cos(x_1), a \cosh \left(\frac{x_2}{a} + b \right) \sin(x_1), x_2 \right), \]

where \(a \neq 0 \) and \(b \) are constants. Is there \(p \geq 2 \) and \(\gamma \in C^\infty(\mathbb{R}^3) \) such that \(M \) is proper p-biharmonic in \((\mathbb{R}^3, e^{2\gamma} (dx^2 + dy^2 + dz^2)) \)?

2. Is there a proper p-biharmonic submanifolds in Euclidean space \((\mathbb{R}^n, dx_1^2 + ... + dx_n^2) \)?

References

[1] P. Baird, S. Gudmundsson, p-Harmonic maps and minimal submanifolds, Math. Ann. 294 (1992), 611-624.
[2] P. Baird, J. C. Wood, Harmonic morphisms between Riemannain manifolds, Clarendon Press Oxford 2003.
[3] B. Bojarski and T. Iwaniec, p-Harmonic equation and quasiregular mappings, Partial differential equations (Warsaw, 1984), 25-38, Banach Center Publ., vol. 19, PWN, Warsaw, 1987.
[4] B-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.
M. Djaa and A. M. Cherif, *On Generalized f-biharmonic Maps and Stress f-bienergy Tensor*. Journal of Geometry and Symmetry in Physics JGSP 29 (2013), pp. 65-81.

J. Eells and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86 (1964), 109-160.

A. Fardoun, *On equivariant p-harmonic maps*, Ann.Inst. Henri. Poincare, 15 (1998), 25-72.

Y. Han and W. Zhang, *Some results of p-biharmonic maps into a non-positively curved manifold*, J. Korean Math. Soc. 52 (2015), No. 5, pp. 1097-1108.

G. Y. Jiang, *2-Harmonic maps between Riemannian manifolds*, Annals of Math., China, 7A(4) (1986), 389-402.

E. Loubeau, S. Montaldo, And C. Oniciuc, *the stress-energy tensor for biharmonic maps*, arXiv:math/0602021v1 [math.DG] 1 Feb 2006.

A. Mohammed Cherif, *On the p-harmonic and p-biharmonic maps*, J. Geom. (2018) 109:41

C. Oniciuc, *Biharmonic maps between Riemannian manifolds*, An. Stiint. Univ. Al.I. Cuza Iasi Mat (N.S.) 48 (2002), 237-248.

O’Neil, *Semi-Riemannian Geometry*, Academic Press, New York, 1983.

Ye-Lin Ou, *Biharmonic hypersurfaces in Riemannian manifolds*, Pacific Journal of Mathematics, Vol. 248, No. 1, 2010.

Y. Xin, *Geometry of harmonic maps*, Fudan University, 1996.