Air Pollution in Iraq Sources and Effects

Mohammed K. Al-kasser
University of Al-Qadisiyah, College of science.

mohammed.al-kasser@qu.edu.iq

Abstract

The current study came to clarify the air pollution in different regions in Iraq. This study reviewed most of the Iraqi studies that dealt with the issue of air pollution and found that pollutants released into the atmosphere include gaseous pollutants of various kinds, especially CO, CO₂, NOₓ, SOₓ, O₃, suspended particles, polycyclic aromatic hydrocarbons and heavy metals. The study showed that the main sources for release these pollutants into the atmosphere included fossil fuels combustion, industry, energy production, transportation, heating, brick and cement industry, oil industries, transportation, agriculture fires and dust storms in addition to domestic and public generators. The result showed that these pollutants in many regions exceeded the national and international standard criteria.

Key word: air pollution in Iraq, gaseous pollutants, suspended particles, polycyclic aromatic hydrocarbons, heavy metals.

1. Introduction

Air is a homogeneous mixture of gases and suspended particles that exist in various compositions and sizes, this chemical composition is in a state of continuous change according to place and time as a result to many chemical reactions and physical transformations that affect air quality [1], it's one of the most important environmental media because it's great contribution in the transportation and spread pollutants in both gaseous and suspended particles forms and redistribution between different environments [2].

One of the most important issues at the present time in developed and developing countries alike is air pollution, that due to the effects it causes on the quality of the atmosphere and the resulting great threat on public health [3], and this is due to what the world is witnessing in terms of significant economic development, rapid industrial development, an increase in population growth, construction and demolition projects, and a critical increase in traffic, especially in recent years, has clearly affected the atmospheric environment as a result of the increase emission of various types and quantities of pollutants [4].

Air pollution defined as "the presence of unwanted substances in the air in large quantities sufficient to cause harmful effects to humans, animals, plants and public property, or it interferes with legitimate human uses such as brown and hazy color in the air or the presence of annoying odors" [5], or it "any accumulation of chemicals in the atmosphere as a result of excessive emissions from anthropogenic and natural sources in sufficient quantities to endanger human and environmental health "[6].
Due to the fact that the breathing process is a continuous process, as the daily intake of air by humans is estimated at about 20 m3/day [7], compared to the daily intake of water and food (2-4) kg/day, air pollution is of great importance to the humans and other living organisms health [8], so air pollution has great attention by researchers worldwide as many studies proved that exposure to gaseous and suspended particles pollutants associated with lung cancer, respiratory infections, and respiratory and cardiovascular diseases [9]. Air pollution is also characterized by its unlimited effect with the place where pollutants are released due to the ability of these pollutants to transfer large distances away from their sources by wind [10], also because suspended particles include high levels of toxic substances such heavy metals and polycyclic aromatic hydrocarbons, which play an important role in pollution of land and aquatic ecosystems when deposited, and contribute to atmospheric pollution when re-suspended in air again [11], therefore these pollutants do not affect the quality of the atmosphere only, but also the quality of water and soil, which negatively affects the quality and productivity of plants, human life and different animals directly or by the food chain [12].

In recent years, Iraq has witnessed a deterioration in air quality, and this is due to the increase in the number of electric power plants especially those that work with crude oil, in addition to the excessive spread in the use of domestic and public generators due to the decrease in the supply of electricity, the huge increase in public and private transport modes, the use of fossil fuels for heating and burning solid waste by uncontrolled methods, which resulted in the release of large quantities of pollutants into the atmosphere [13], the most important types of pollutants that negatively affect air quality in various Iraqi cities and regions can be identified as following:

1. **Gaseous pollutants:** The increase in population growth and the accompanying increase in industrial development and transportation have a significant impact in the increase concentrations of pollutants in the surrounding air, which has a negative impact on human and environmental health [14]. Human activities are the main source of gaseous emissions polluted the atmosphere, especially in cities [15], where the concentration of polluted gases such as CO, CO$_2$, NO$_x$, SO$_x$, O$_3$ and others in the air is closely related to the surrounding pollution sources [16].

Exposure to gaseous pollutants leads to many diseases such as respiratory allergy and infections, weakness in lung function, asthma, cardiovascular diseases, affecting the nervous system, and increasing the incidence of bacterial and viral diseases [17].

Table (1) shows the concentrations of gases air pollutants in different regions of Iraqi cities and the most important sources of these gases emission include transportation [18], power plants [19], industrial activities [20], petroleum industry and oil refinery [21], oil combustion [22], brick factories [23], diesel generators [24], and agriculture fires [25].

CO	NO$_x$	SO$_x$	O$_3$	Measuring unit	Site	Year	Reference
18	1.3	0.9	-	ppm	Basra	2013	19
13	0.16	0.1	0.09	ppm	Karbala	2014	26
2. **Suspended particles**: one of the main atmospheric pollutants that affect the energy balance, climate, human and environmental components health [30], because its contain many toxic organic and inorganic compounds [31], suspended particles emitted from natural and anthropogenic sources, are either primary, which are the particles released directly to the atmosphere, or secondary, which are the particles resulting from interaction of the primary particles in the atmosphere with each other or with the other components of the atmosphere [32], the size of suspended particles ranges from 0.001 to greater than 100 micrometers, in general, the particles are divided according to their aerodynamic diameter into: Coarse particles with a diameter between 2.5-10 micrometers are called PM10 and Fine particles which are less than 2.5 micrometers, it is called PM 2.5, while these two types together are called Total Suspended Particles (TSP) [33], Fine particles PM2.5 can be divided into Accumulation particles between 0.1-2.5 micrometers in diameter and Ultrafine particles, also called Nuclei, are less than 0.1 micrometers in diameter [34].

From a toxicology view point, the most important particles with diameters less than 10 micrometers are called inhalable particles which characterized by its ability to penetrate deep into the respiratory system, causing severe health effects that lead to lung and respiratory diseases [35], exposure to suspended particles leads to death, heart and respiratory diseases, especially in children and the elderly [36], an influential decrease in the life expectancy of the population [37], genotoxicity and mutagenicity [38], cytotoxicity and pro-inflammatory and carcinogen induction [39].

Suspended particles negatively affect plants, directly and indirectly, which leads to reduced growth and productivity [40], and also contribute to the formation of acid rain [41], and can cause severe damage to artistic works, historical monuments and buildings and lead to a reduction in their aesthetic appearance and life span [42].
Table (2) indicates the total concentration reached by the suspended particles in different cities in Iraq, and the most important sources of suspended particles in Iraq are dust storm [18], resuspension of dust [43], agriculture fires [44], building construction process [25], transport [45], tire and brake wear [46], combustion of fossil fuel [25] and crude oil [23], industrial activities [47], oil refinery [43], power plant [46], bricks manufacture [22], and cement plants [48].

Table (2) concentration of total suspended particles in Iraq.

TSP	Measuring unit	Site	Year	Reference
3555.6	µg/m³	Kirkuk	2012	49
2241.37	µg/m³	Baghdad	2012	50
3223.24	µg/m³	Daura	2014	51
1400	µg/m³	Baghdad	2015	52
9480.17	µg/m³	Al Najaf	2015	27
3985	µg/m³	Baiji	2016	47
4000	µg/m³	Baiji	2016	43
317	ppm	Baghdad	2016	18
510.2	µg/m³	Maysan	2018	53
2098	µg/m³	Baghdad	2018	23
4397.57	µg/m³	Karbala	2018	54
6609.68	µg/m³	Baghdad	2018	55
1807.28	µg/m³	Al-Diwaniyah	2018	46
114.94	µg/m³	Karbala	2018	20
757.02	mg/m³	Babylon	2019	22
1798.1	mg/m³	Al Najaf	2020	48
4787.6	µg/m³	Wasit	2020	29

3. Polycyclic aromatic hydrocarbons (PAH): one of the most important environmental pollutants releasing into the air from anthropogenic and natural sources [8], its resulting from pyrolysis or incomplete combustion of fossil fuels and organic materials [56], its includes a large group of compounds contains two or more of aromatic rings joined together and many of them in the air characterized with low vapor pressure so its tend to adsorb on particles suspended in the air [57].
Polycyclic aromatic hydrocarbons poses a serious risk to human health due to its carcinogenicity [58], ability to induce mutations, endocrine disruptions even at relatively low levels [59], in addition to weak immune system [60].

Table (3) indicates the total concentrations reached by the total polycyclic aromatic hydrocarbons in different regions in Iraq, and perhaps the most important sources of their emission to the atmosphere in Iraq include incomplete combustion of inorganic material of both natural and anthropogenic origin like fossil fuel and wood [61], oil refinery [51], power plant [49], home and public generators [28], transportation [62], petrol stations [20], petroleum industry [21], and brick industry [23].

Table (3) concentration of total polycyclic aromatic hydrocarbons in Iraq.

PAH	Measuring unit	Site	Year	Reference
145.3	µg/m3	Kirkuk	2012	49
1.3	ppm	Basra	2013	19
952.84	ng/m3	Daura	2014	51
31.23	ppm	Basra	2015	21
175.5	µg/m3	Baiji	2016	43
0.381	ppm	Baghdad	2016	28
0.225	ppm	Baghdad	2018	23
5031.44	ng/m3	Al-Diwaniyah	2018	62
8.122	ppm	Karbala	2018	20
1.8	ppm	Kirkuk	2019	24

4. **Heavy metals:** atmospheric pollution with heavy metals associated with great effects to the environment and finally human health due to increase the route of exposure to such toxic pollutants because of large quantities and wide spread in the air [63]. Heavy metals are those metals or metalloids with high stability that have a density greater than 4.5 gm.cm$^{-3}$ and high atomic numbers greater than 24 such as mercury, lead, cadmium, and others [64]. Many of heavy metals in small quantities are necessary for normal development in living systems, but most of them becomes toxic at high concentrations [65].

The air polluted with heavy metals by emitted from natural and anthropogenic sources which causing increase the air pollution problem, resulting in humans toxic and carcinogenic effects [41], air polluted Heavy metals enter the body by inhalation, ingestion of particulate form or by absorption within the skin [66], heavy metals that absorbed into the body may show different types of effects and may lead to neurotoxicity, renal toxicity, Hepatotoxicity, Immunotoxicity, and congenital abnormalities, which may affect human behavior, and cause
impairment in the functions of the brain and nervous system that may lead to attention impaired and autism disease [67], also its an important source of environmental pollution after being deposited on the surface of soil and water, and thus, these toxic substances will eventually enter the biosphere [68], causing damage to animals, plants and the natural environment, erosion of buildings and contamination of foodstuffs [69].

Table (4) indicates heavy metals concentration in the air in a number of Iraqi cities, and the most important sources of atmospheric pollution with heavy metals include industrial activities [53], oil refinery [49], cement plants [48], brick industries [22], tires wear, brake linings and road construction materials, road traffic [44], fuel combustion [47], power plant [43], resuspension of road dust [25], and home and public generators [70].

Table (4) concentration of heavy metals in Iraq.

Pb	Cr	Cd	Cu	Ni	Co	Hg	Measuring unit	Site	Year	Reference
9.08	2.49	0.18	0.22	0.86	-	-	µg/m³	Kirkuk	2012	49
24.05	-	0.75	17.50	55.50	-	-	ppm	Baghdad	2012	50
6.50	48.60	0.40	-	26.50	-	-	µg/m³	Baghdad	2015	52
1.50	16.51	3.13	5.53	-	6.57	-	µg/m³	Al-Najaf	2015	27
-	-	0.14	-	0.63	0.38	-	µg/m³	Baiji	2016	47
4.90	0.90	0.13	-	0.65	0.35	-	ppm	Baiji	2016	43
95.21	22.99	0.79	-	43.55	-	-	µg/m³	Basra	2017	71
45.00	-	1.10	27.10	-	-	-	ppm	Duhok	2018	44
4.99	-	2.01	7.73	4.93	-	1.82	ppm	Maysan	2018	53
6.39	1.55	1.58	-	1.39	-	-	µg/m³	Karbala	2018	54
94.00	2.02	53.00	3.10	38.70	11.10	-	µg/m³	Baghdad	2018	55
3.19	0.33	0.06	5.25	-	-	-	µg/m³	Al-Diwaniyah	2018	70
11.23	-	-	-	2.51	3.07	-	µg/m³	Babylon	2019	22
0.56	-	1.29	-	-	-	-	µg/m³	Al-Najaf	2020	48
45.00	-	-	27.10	-	-	-	ppm	Duhok	2020	25
4.46	5.55	0.86	4.16	2.48	-	-	µg/m³	Wasit	2020	29
2. Conclusions: Through reviewing the various Iraqi studies that dealt with the issue of air pollution in the current study, conclude the following:

1. An increase in gaseous pollutants such as CO, NO\textsubscript{x}, SO\textsubscript{x}, O\textsubscript{3} as a result of the increase in fossil fuel combustion, industry, transportation, electric power generation and agricultural fires.

2. Increase the suspended particles in the air as a result of burning fossil fuels, transportation modes, power generating, industrial activities such as cement manufacturing, dust resuspension by wind and dust storms.

3. High concentrations of polycyclic aromatic hydrocarbons as a result of burning wood, fossil fuels, power generation, oil refining, fuel stations, and the oil and bricks industry.

4. An increase in the heavy metals concentration such as Pb, Cr, Cu, Cd, Ni, Co, and Hg resulting from industrial activities such as the manufacture of cement, bricks, oil industries, combustion fossil fuels, power generation, traffic, and tires and brakes wear.

5. Many pollutants exceeded the national and international standards criteria.

6. Studies have indicated the possibility of many diseases due to an increase in pollutants, such as cancer diseases, respiratory diseases, cardiovascular diseases, brain and nervous system functions defects, and birth defects.

3. References:

[1] Mazzeo A. (2015). Air Pollution in the City of Naples: methods of measurements and prognostic models for the improvement of the air quality. PhD Thesis. Department of Chemical Sciences, University Of Naples Federico II.

[2] Saghatelyan A., Sahakyan L., Belyaeva O., Tepanosyan G., Maghakyan N. and Kafyan M. (2013). Dust and stream of heavy metals in the atmosphere of the city of Yerevan. Electronic J. of Natural Sci., 1(20): 38-40.

[3] Rakib M.A., Ali, M., Akter, M.S. and Mohammad, A.H. Bhuiyan (2014). Assessment of Heavy Metal (Pb, Zn, Cr and Cu) Content in Roadside Dust of Dhaka Metropolitan City, Bangladesh. Int. Res. J. Environ. Sci., 3(1):1-5.

[4] Alghamdi M. A. (2016). Characteristics and Risk Assessment of Heavy Metals in Airborne PM10 from a Residential Area of Northern Jeddah City, Saudi Arabia. Pol. J. Environ. Stud. 25(3): 939-949.

[5] Nevers N. (2000). Air pollution control engineering. 2nd ed. McGraw – Hill, USA.

[6] Pan Y. and Wang Y. (2015). Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys., 15: 951-972.

[7] US EPA (1991). Risk Assessment Guidance For Superfund, Volume I: Human Health Evaluation Manual Supplemental Guidance "Standard Default Exposure Factors” Interim Final. Office of Emergency and Remedial Response, Washington, D.C.
[8] Chantara S. and Sangchan W. (2009). Sensitive analytical method for particle-bound polycyclic aromatic hydrocarbons: A case study in Chiang Mai, Thailand. Sci. Asia 35: 42-48.

[9] Dey, S., Gupta, S. and Mahanty U. (2014). Study of particulate matters, heavy metals and gaseous pollutants at Gopalpur (23°29′52.67″ N, 87°23′46.08″E), a tropical industrial site in eastern India. IOSR J. of Environ. Sci., Toxico. And Food Tech., 8(2):1-13.

[10] Pepper I., Gerba C. and Brusseau M. (2006). Environmental and Pollution Science. 2nd ed. Elsevier, USA.

[11] Zheng X, Zhao W., Yan X., Shu T., Xiong Q. and Chen F. (2015). Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations. Int. J. Environ. Res. Public Health, 12: 9658-9671.

[12] Sardar K., Ali S., Hameed S., Afzal S., Fatima S., Shakoor M., Bharwana S. and Tauqeer H. (2013). Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener J. of Environ. Manag. and Public Safety, 2 (4):172-179.

[13] Al-Kasser M. (2018). Evaluation The Level of Some Toxic Pollutants in Atmospheric Total Suspended Particles in Al-Diwaniya City – Iraq. Ph.D. thesis, Faculty of Science, Al-Qadisiyah University.

[14] Suryati I., Khair H., and Gusrianti D. (2019). Distribution analysis of nitrogen dioxide (NO2) and ozone (O3) in Medan city with Geographic Information System (GIS). MATEC Web of Conferences 276, 0 6013. https://doi.org/10.1051/matecconf/20192760 6013

[15] Kampa, M. and Castanas, E. (2008). Human health effects of air pollution, Environ. Pollut., (151):362–367.

[16] Bahino J., Yoboue V., Galy-Lacaux C., Adon M., Akpo A., Keita S., Liousse C., Gardrat E., Chiron C., Ossohou M., Gnamien S., and Djossou J. (2018). A pilot study of gaseous pollutants’ measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Cote d’Ivoire: contribution to an overview of gaseous pollution in African cities. Atmos. Chem. Phys., (18): 5173–5198.

[17] WHO, (2000). Air Quality Guidelines for Europe. 2nd ed. WHO Regional Publications, European Series, No. 91.

[18] Chaichan M., Kazem H., and Abed T. (2016). Traffic and outdoor air pollution levels near highways in Baghdad, Iraq. Environ Dev Sustain. DOI 10.1007/s10668-016-9900.

[19] Douabul A., Al Maarofi S., Al-Saad H., and Al-Hassen S. (2013). Gaseous Pollutants in Basra City, Iraq. Air, Soil and Water Research (6):15-21.

[20] Al-Anbari R., Mohammed Z., Ismail M, and Resheq A. (2018). Assessment of air quality for Kerbala city using field survey. MATEC Web of Conferences 162, 05015.
[21] Al-Hassen S., Sultan A., Mahdi A., and Alhello A. (2015). Spatial Analysis on the Concentrations of Air Pollutants in Basra Province (Southern Iraq). Open Journal of Air Pollution, (4):139-148.

[22] Issa M., Hussain H., and Shaker I. (2019). Assessment of the Toxic Elements Resulting from the Manufacture of Bricks on Air and Soil at Abu Smeache Area - Southwest Babylon governorate – Iraq. Iraqi Journal of Science, 60(11):2443-2456.

[23] Al-Nuzal S., Al-Bakri S., and Zankana S. (2018). Environmental Impact Assessment for Brick Factory in Baghdad, Iraq. Engineering and Technology Journal Vol. 36, Part C,(1):38-47.

[24] Ali S. (2019). Study the environmental effects of private electrical generators for some locations in Kirkuk city. Sulaimani Journal for Engineering Sciences, 6 (1):135-145.

[25] Mahdi B., Yousif K., and Dosky L. (2020). INFLUENCE OF METEOROLOGICAL PARAMETERS ON AIR QUALITY AND OTHER POLLUTANTS IN DUHOK CITY, IRAQ. Iraqi Journal of Agricultural Sciences, 51(4):1160-1172.

[26] Mahdi A. and Alasedi K. (2014). Determination of concentrations of pollutant gases and trace elements in air of holy city of Karbala. Alqadisiyah J. of pure science, 19(2):55-66.

[27] Al-Duhaidahawi F. (2015). The Spatial Analysis of Air Pollution in Al-Najaf Al-Ashraf Governorate. Ph.D. thesis. Faculty of Arts, University of Kufa.

[28] Rasheed K., Azeez Z., and Al-Salhy A. (2016). Effects of Air Pollutants from Al-Dura Power plant in the Surrounding Area South Baghdad. J. Int. Environmental Application & Science, 11(2):170-175.

[29] Abdul Reda A. and Al-Shammari A. (2020). Spatial analysis of air pollution in suspended particles and heavy elements in urban centers in Wasit Governorate. Al-Qadisiyah Journal For Humanities Sciences, 23(3):29-69.

[30] Tasic M., Rajsic S., Novakovic V. and Mijic Z. (2006). Atmospheric Aerosols and Their Influence on Air Quality In Urban Areas. Phys., Chem. and Tech., 4(1):83-91.

[31] Chuesaard T., Chetiyanukornkul T., KamedaT., Hayakawa K. and Toriba A. (2014). Influence of Biomass Burning on the Levels of Atmospheric Polycyclic Aromatic Hydrocarbons and Their Nitro Derivatives in Chiang Mai, Thailand. Aerosol and Air Quality Res., 14: 1247-1257.

[32] Alves C. A. (2008). Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. An. Acad. Bras. Cienc., 80(1): 21-82.

[33] Kumar A. U. (2008). Characterisation of soluble components and PAH in PM10 atmospheric particulate matter in Brisbane. Master Thesis. Faculty of Science. Queensland University.
[34] Daher N. (2013). Size-Resolved Particulate Matter (PM) In Urban Areas: Toxicological Characteristics, Sources, Trends And Health Implications. Ph.D. thesis. Faculty of The USC Graduate School, University of Southern California.

[35] Krzeminska-Flowers M., Bem H. and Gorecka H. (2006). Trace Metals Concentration in Size-Fractioned Urban Air Particulate Matter in Lodz, Poland. I. Seasonal and Site Fluctuations. Polish J. of Environ. Stud., 15(5): 759-767.

[36] Lippmann M. (2009). Environmental toxicants: human exposures and their health effects. 3rd ed., John Wiley & Sons, Inc. New Jersey, USA.

[37] WHO (2006). Health risks of particulate matter from long-range transboundary air pollution. European Centre for Environment and Health, Bonn Office.

[38] Rai P. (2015). Multifaceted health impacts of Particulate Matter (PM) and its management: An overview. Environ. Skeptics and Critics, 4(1): 1-26.

[39] Valavanidis A., Fiotakis K. and Vlachogianni T. (2008). Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. of Environ. Scien. and Health Part C, 26:339-362.

[40] Prajapati S. (2012). Ecological effect of airborne particulate matter on plants. Environ. Skeptics and Critics, 1(1):12-22.

[41] Hassan S., El-Abssawy A., AbdEl-Maksoud A., Abdou M. and Khoder M. (2013). Seasonal Behaviours and Weekdays/Weekends Differences in Elemental Composition of Atmospheric Aerosols in Cairo, Egypt. Aerosol and Air Quality Res., 13: 1552-1562.

[42] Jimoda I. (2012). Effects Of Particulate Matter On Human Health, The Ecosystem, Climate And Materials: A Review. Working and Living Environ. Prot., 9(1): 27-44.

[43] Al-Dabbas M. and Al- Khafaji R. (2016). Comparison of the Polycyclic Aromatic Hydrocarbons and Heavy Metal Concentrations in Air for the July 2012 and Oct.2013 at Baiji District, Iraq. Int. J. of Sci. and Tech., 5 (10):513-522.

[44] Mahdi B., Yousef K., and Dosky L. (2018). Characterization of airborne particles collected in Duhok city (in Iraq), by using various techniques. IOP Conf. Series: Materials Science and Engineering 454 (2018) 012073 doi:10.1088/1757-899X/454/1/012073.

[45] Jassim H., Ibraheem F. and Zangana B. (2014). Environmental issues caused by the increasing number of vehicles in Iraq. WIT Transactions on Eco. and the Environ, 186: 341-352.

[46] Al-kasser M. (2018). Evaluation The Level of Some Toxic Pollutants in Atmospheric Total Suspended Particles in Al-Diwaniya City – Iraq. Ph.D. thesis. Faculty of Science, University of Al-Qadisiyah.
[47] Al-Hasnawi S., Hussain H., Al-Ansari N. and Knutsson S. (2016). The Effect of the Industrial Activities on Air Pollution at Baiji and Its Surrounding Areas, Iraq. Engineering, 8: 34-44.

[48] Mutlag N., Al Duhaidadah F., Jawad H., Hassan W., and Ali E. (2020). Evaluating the Effect of Dust at Al Kufa Cement Plant on humans Health, Plants and Microorganisms in South of Al –Najaf Al-Alshraf . Ann Trop Med & Public Health; 23(S13B): SP231358. DOI: http://doi.org/10.36295/ASRO.2020.231358.

[49] Al-Dabbas M., Ali L. and Afaj A. (2012). The effect of Kirkuk Oil Refinery on Air pollution of Kirkuk City-Iraq. Iraqi J. of Sci., Proceeding of the 1st Conference on Dust Storms and their environmental effects, 17-18 Oct. 2012.p:8-18.

[50] Sultan M., Al-Rubaiee M. , and Abdulrahim E. (2012). Assessment of toxic and carcinogenic elements in Dust and Soil in Baghdad city and their effects on the distribution of some diseases. 1st conference for dust storm and environmental impact, 17-18 October ,2012.

[51] Shanshal M., Afaj A. and Almousawi I. (2014). Environmental Assessment of Polycyclic Aromatic Hydrocarbon Concentrations in Atmospheric Air at Daura Refinery. Iraqi Journal of Science, 55(3A): 932-942.

[52] Al-Azzawi M. and Al-Dulaimi S. (2015). Measuring the concentration of Suspended Particulate Matter and some heavy metals in air of two areas of Rusafa in Baghdad. Iraqi J. of Sci., 56,(1B): 361-366.

[53] Ajmi R., Zeki H., Ati E., and Al-Newani H. (2018). Monitoring of Some Heavy Metals Transboundary Air Pollution. J. Eng. Applied Sci. 13(23):9862-9867.

[54] Alhesnawi S., (2018). Quantitative and qualitative study for Kerbala city dust and assessment the tolerance ability and treatment for some plants. Ph.D. thesis. Faculty of Education for Pure Sciences University of Karbala.

[55] Naji A., (2018). Evaluation of Air Pollution in Al Nahrawan region-Iraq. Muthanna Journal of Engineering and Technology, 6(1):1-9.

[56] Nguyen H., Kim K., Ma C., and Oh J. (2010). Polycyclic Aromatic Hydrocarbon Concentration Levels on the Korean Peninsula between 2006 and 2008. Scientific World J. 10: 20-37.

[57] Srogi K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169-195.

[58] Chlopek Z., Suchocka K., Dudek M. and Jakubowski A. (2016). Hazards posed by polycyclic aromatic hydrocarbons contained in the dusts emitted from motor vehicle braking systems. Archives of Environ. Pro., 42 (3):3-10.

[59] Nassar F., Tang N., Toriba A., Abdel-Gawad F., Guerriero G., Basem S., and Hayakawa K. (2015). Environmental carcinogenic polycyclic aromatic hydrocarbons (PAHs): concentrations, sources and hazard effects. Int. J. of Advan. Res., 3(10): 511 - 524.
[60] Hayakawa K. (2009). Atmospheric pollution and its countermeasure in east Asia from the viewpoint of polycyclic aromatic hydrocarbons. J. of Health Sci., 55(6): 870-878.

[61] Ahmed T. (2015). Determination of OPAHs and PAHs in Particulate Matter from Ambient Air and Engine Emissions. Ph.D. thesis, Faculty of Science, Stockholm University.

[62] Al-Kasser M. and Alkam F. (2018a). Determination of Atmospheric Particulate Matter Polycyclic Aromatic Hydrocarbons (PAHs) in Al-Diwaniyah City, Iraq. Advance Research Journal of Multidisciplinary Discoveries, 29(1):1-4.

[63] Dinis M. And Fiuza A. (2011). Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. NATO Science for Peace and Security Series C: Environ. Security, 1:27-50.

[64] Duffus J. (2002). Heavy metals - a meaningless term. Pure Appl. Chem., 74(5):793-807.

[65] Jeje J. and Oladejo K. (2014). Assessment of Heavy Metals of Boreholes and Hand Dug Wells in Ife North Local Government Area of Osun State, Nigeria. Int. J. of Sci. and Tech. 3(4):209-214.

[66] Wan D., Han Z., Yang J., Yang G. and Liu X. (2016). Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China. Int. J. Environ. Res. Public Health, 13:1-13.

[67] Saghatelyan A., Sahakyan L., Belyaeva O., Tepanosyan G., Maghakyan N. and Kafyan M. (2013). Dust and stream of heavy metals in the atmosphere of the city of Yerevan. Electronic J. of Natural Sci., 1(20): 38-40.

[68] Ubwa S., Abah J., Ada C. and Alechenu E. (2013). Levels of some heavy metals contamination of street dust in the industrial and high traffic density areas of Jos Metropolis. J. Bio. & Env. Sci., 3(7):13-21.

[69] Habeebullah T. (2014). An analysis of Heavy Metals of atmospheric aerosols in Makkah. J. of Natural Sci. and Math., 7(1):21-35.

[70] Al-Kasser M. and Alkam F. (2018b). Spatial and Seasonal Variation of Atmospheric Particulate Matter Heavy Metals in Al-Diwaniyah City, Iraq. Indian Journal of Natural Sciences, 8(49):14492 -14498.

[71] Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.

[72] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[73] Hassan W., Hassan I., Al-Khuzaie D., Abdulnabi Z., Khalaf H, Kzaal R., Almansour W. (2017). Monitoring of trace elements in dust fallout in Shaibah, Basrah city/ Iraq. Mesopo. Environ., 3(4):1-5.