Using Existing Infrastructure to Realize Low-Cost and Flexible Photovoltaic Power Generation in Areas with High-Power Demand in China

Mingkun Jiang, Jiashuo Li, Wendong Wei, ..., Haoqi Qian, Jianmin Liu, Jinyue Yan

wandongwei@sjtu.edu.cn (W.W.)
jinyue.yan@mdh.se (J.Y.)

HIGHLIGHTS
- Idea using existing infrastructure for low-cost and flexible PV generation proposed.
- The PV$_{pp}$ potential at 1,082 power plants was estimated.
- The PV$_{pp}$ potential for China's coal-fired power generation sector is up to 4 GW.e
- 87% of PV$_{pp}$ systems can achieve plant-side grid parity.

PV$_{pp}$ potential capacity: 4 GW to 11 GW
PV$_{pp}$ potential generation: 5 TWh to 13 TWh
PV$_{pp}$ generation cost: 87% of PV$_{pp}$ systems achieve plant-side grid parity

Advantage of PV$_{pp}$ systems:
- Solar curtailment
- Land cost
- etc.

Jiang et al., iScience 23, 101867
December 18, 2020 © 2020
https://doi.org/10.1016/j.isci.2020.101867
OPEN ACCESS
Using Existing Infrastructure to Realize Low-Cost and Flexible Photovoltaic Power Generation in Areas with High-Power Demand in China

Mingkun Jiang,1,2,9 Jiashuo Li,3,9 Wendong Wei,4,5,* Jiawen Miao,6 Pengfei Zhang,3 Haoqi Qian,7 Jianmin Liu,8 and Jinyue Yan6,10,*

SUMMARY

This study develops a new concept involving using the existing infrastructure for photovoltaic (PV) generation to reduce the costs associated with increased land use and to avoid curtailment due to the mismatch between power supply and demand. We establish a method to estimate the technological potential and economic performance of the PV systems deployed in coal-fired power plants in China. The potential capacity of the examined 1,082 units in China reaches 4 GW, which is equivalent to 32% of China’s newly installed distributed PV capacity in 2019. A total of 87% of PV systems achieve plant-side grid parity compared with desulfurized coal benchmark electricity prices. To the best of our knowledge, this is the first study that investigates the use of rooftops and coal storage sheds in power plants to facilitate low-cost, flexible PV power generation, thus opening a new channel for future PV generation development.

INTRODUCTION

Photovoltaic (PV) technology is widely accepted as a practical solution to climate change and environmental pollution due to the burning of fossil fuels (Hu et al., 2015; Jerez et al., 2015; Creutzig et al., 2017). It has experienced a stunning compound global annual growth rate that has exceeded 40% over the last 15 years (Arnulf, 2019). By the end of 2019, the world’s installed PV generation capacity reached 583 GW, which accounted for 23% of the total renewable energy capacity (IRENA, 2020). In China, a high proportion of electricity is still generated from fossil fuel combustion, which contributes more than 40% of the national carbon emissions (Wei et al., 2020; Luo et al., 2020). China has a strong desire to transition to renewable energy. Driven by this goal, China has been the largest PV installer in the world since 2015, and China had a cumulative PV capacity of 204 GW by the end of 2019 (NEA, 2020).

As the benefits of PV technology, such as reducing pollution emissions and maintaining sustainability, have been widely recognized (King and van den Bergh, 2018; Bogdanov et al., 2019), PV technology is also becoming increasingly attractive as it becomes more economically competitive with fossil fuel power generation (Yan et al., 2019; Green, 2019; He et al., 2020). As the prices for PV modules consistently hit new lows, the soft costs associated with land use and grid connection account for an increasing proportion of the total (Strupeit, 2017; Steffen et al., 2020; Yu et al., 2018). In addition, solar curtailment is a crucial hindrance to PV growth. Regarding issues such as limited flexibility, output fluctuations, transmission congestion, and the mismatch between supply and demand, the power grid restricts, at times, the delivery of PV-derived electricity (Bird et al., 2016; Collins et al., 2018; Sgouridis et al., 2019). In 2019 alone, 4.6 TWh of PV generated electricity was abandoned in China. In regions such as Tibet, the curtailment ratio was up to 24.1% (NEA, 2020). Accordingly, several approaches have been considered to mitigate solar curtailment, such as energy storage (Riesen et al., 2017; Zeraati et al., 2019), demand response (Zhao et al., 2013; Brouwer et al., 2016; Mahmoudi et al., 2017; Rahmani et al., 2017), forecast methods (Litjens et al., 2018), etc. However, these solutions are either expensive or immature. Hence, the future deployment of PV systems must pursue quality over quantity. Blindingly increasing capacity will aggravate the mismatch between power supply and demand, which is not beneficial and may even exacerbate existing problems.

China has the largest number of coal-fired power plants (CFPPs). PV systems can be installed on the rooftops and coal storage sheds of the plants to reduce costs. The power load in the plants can also be utilized to consume the
excessive output from PV systems to avoid curtailment. Therefore, the integration of PV technology with CFPPs deserves attention. Many studies have focused on the integration potential and feasibility of PV technology (Strzalka et al., 2012; Byrne et al., 2017; Yang et al., 2020a). Compared with rooftop PV systems, building-integrated photovoltaics (BIPV) are perceived as more architecturally appealing. Furthermore, as no extra land is needed, the cost of the system can be reduced, and thus, BIPV can reduce the total cost of building materials and the building cooling loads as well (Ballif et al., 2018; Lufkin, 2019; Shukla et al., 2017). By integrating PV technology with agriculture, agrivoltaic systems avoid the competitive relationship between PV land use and agricultural land use while also reducing evaporation and providing shade to protect crops from excessive heat (Barron-Gafford et al., 2019; Marrou, 2019; Dinesh and Pearce, 2016; Amaducci et al., 2018). Moreover, by investigating the potential of PV integration into campuses, industrial parks, and shopping malls, studies have found that the PV output can effectively replace fossil energy consumption, thereby reducing the carbon footprint (Lee et al., 2016; Feng et al., 2018; Colmenar-Santos et al., 2016). The important advantage of these buildings over residential buildings is the higher usability of the rooftops. Because the peak load occurs during the day, the PV output will also match the power consumption profile well. In a study by Jiang et al., the idea of integrating PV into coal-fired power plants to supply auxiliary power demand was proposed (Jiang et al., 2019). Qi et al. reported the feasibility of installing PV on the cooling towers in power plants (Qi et al., 2020). Yang et al. investigated the potential of substituting coal-fired power plants with distributed PV systems in China (Yang et al., 2020b). However, none of the previous studies have considered the potential of using the rooftops and power load of CFPPs to reduce the cost and enhance the flexibility of the PV system.

To the best of our knowledge, an assessment of the integration of PV systems with CFPPs (called PVpp systems) at the national level has not been conducted to date. Our study attempts to demonstrate the concept, potential generation capability, and economic performance of PVpp systems. A case study is conducted to verify the cost reduction and flexibility enhancement of PVpp systems. We establish a method to estimate the PVpp potential of 1,082 Chinese CFPPs, investigate the potential for grid parity, and study the economic performance by creating five scenarios (see Transparent Methods in the Supplemental Information for details). The results may provide countries with a high share of coal-fired power generation, such as China and India, with a new approach to PV development.

RESULTS
The Concept of PVpp
As shown in Figure 1, a PVpp system uses the roofs and surfaces of the CFPP infrastructure, including suitable buildings (B) and coal storage sheds (E) to deploy PV panels. The output of the PVpp system is
transmitted to the power grid or end-users by existing transmission towers and lines (F). The system is also connected to the local electricity distribution networks in the power plant, making it possible to distribute the excessive output to the auxiliaries, such as pumps and compressors, to avoid curtailment. The output of the PV system will first be sold to end-users or to the power grid to obtain higher income than using it on-site. When the PV pp system lacks transmission access or the system’s generation becomes excessive during low load periods, the output can be consumed on-site by the power plant. As a consequence, potential PV curtailment can be avoided. Moreover, the economic costs of the PV pp system are effectively reduced, as the need to rent both the land and roof is avoided.

PV pp Systems Enhance Flexibility and Reduce the System Cost

PV pp systems use the power load of CFPPs to consume any excessive output and avoid curtailment due to insufficient system flexibility and transmission congestion. Thus, CFPPs must be capable of consuming the excessive output from PV pp systems. Accordingly, a case study is conducted to verify this. The case plant, which is located in Xinjiang, has an available area of 23,931 m² and a PV pp potential of 3.84 MWe. The potential PV generation is estimated to be 5.16 GWh annually. In comparison, the annual electricity demand of the plant is 162.80 GWh, according to the actual data provided by the case power plant. Hence, the ratio of PV output to local electricity demand is only 3.17%. We select the winter solstice and summer solstice, i.e., the day with the shortest sunshine duration and the day with the longest sunshine duration, to conduct hourly energy flow simulations. As depicted in Figures 2A and 2B, as the PV pp system output is merely equivalent to a marginal fraction of the electricity demand of the plant, the entire PV generation at any time on a given day is much lower than the demand of the power plant, not to mention the excessive portion. Consequently, the excessive output can be consumed by the power plant. Thus, curtailment can be avoided, and the flexibility of the PV pp system can be enhanced.

Another advantage of PV pp systems is that when deploying PV in power plants, there is no need to pay land rent, rooftop rent, or grid connection fees. Therefore, the system cost decreases effectively. The results of the case study show that the PV pp system reduces the cost by 15% and 21% per watt in comparison to...
distributed PV system and a centralized PV system, respectively (see Figure 2C). Because the PVpp system uses local loads to consume the excessive output, it does not need storage devices, such as batteries, to deal with the excessive output. Therefore, the PVpp system cost is reduced 54% per watt compared with a PV with storage system (see Table S5 for details). Consequently, the levelized cost of electricity (LCOE) of the PVpp system is the lowest among the four PV systems. Specifically, the LCOE of the PVpp system is 0.27 CNY/kWh. In contrast, the LCOEs of the distributed PV system, the centralized PV system, and the stand-alone PV system are 0.31 CNY/kWh, 0.34 CNY/kWh, and 0.54 CNY/kWh, respectively. Accordingly, the lower LCOE of the PVpp system proves to be a cost advantage over other systems.

PVpp Technical Potential Is Enormous in China

The potential PVpp capacity for China’s 1,082 existing CFPPs with an available rooftop area of $2.46 \times 10^7 \text{ m}^2$ amounts to 3.96 GWe, which is equivalent to approximately 32% of the newly installed distributed capacity in China in 2019 (NEA, 2020). As illustrated in Figure 3, the potential PVpp system capacity varies from 2 to 13 MWe. Figure 4B shows that PVpp systems mainly range in size between 2 MW and 5 MW. Jiangsu province exhibits the highest potential capacity at 321 MWe, whereas Tibet has a minimal potential capacity of 3 MWe (see Figure 4A and Table S6). Eastern China, where the potential is the highest, exhibits 43% of the total potential PVpp capacity.

The potential annual generation of the PVpp systems in China is estimated to be 4.69 TWh. The annual generation amounts of PVpp systems vary from 2 GWh to 16 GWh (see Figure 4B). Eastern China has 45% of the total PVpp potential generation, northwestern China has 12% of the total PVpp potential generation, and central China has 11% of the total PVpp potential generation.

The ratio of the PVpp output to the electricity demand of power plants is vital if we want to use the local loads of CFPPs to enhance the flexibility of the PVpp systems and avoid PV curtailment. According to the annual electricity demand data of the 934 power plants in the dataset we used, the ratio of PVpp systems’ output to the electricity demand of 83% of power plants is less than 5% (see Figure 4C), which indicates that...
CPFFs are capable of consuming the excessive output of PV pp systems to enhance flexibility and avoid curtailment.

PV pp Systems Have Competitive Generation Costs and Strong Economic Performance

The LCOEs of PV pp systems vary from 0.27 CNY/kWh to 0.46 CNY/kWh. We applied the user-side grid parity index and plant-side grid parity index (GPI p) developed by Yan et al. to measure the grid parity potential (Yan et al., 2019). The user-side grid parity index is further divided into an industrial and commercial (I&C) user-side grid parity index (GPI iu) and a residential user-side grid parity index (GPI ru). As depicted in Figure 5, the user-side grid parity indices of all PV pp systems are lower than 1, which means all of the PV pp systems in the 1,082 power plants can re a c hu s e r - s i d eg r i dp a r i t y .H o w e v e r ,t h es i t u a t i o no nt h ep l a n t - s i d ei s s l i g h t l y d i f f e r e n t , w i t h 941 of the 1,082 plants achieving plant-side grid parity compared with the local desulfurized coal benchmark electricity prices. The PV pp systems that fail to achieve plant-side grid parity are located primarily in Xinjiang, Sichuan, Ningxia, Inner Mongolia, and Guizhou. The natural endowment in Guizhou impedes the PV pp systems from reaching user-side grid parity. However, the situation on the plant-side is slightly different, with 941 of the 1,082 plants achieving plant-side grid parity compared with the local desulfurized coal benchmark electricity prices. The PV pp systems that fail to achieve plant-side grid parity are located primarily in Xinjiang, Sichuan, Ningxia, Inner Mongolia, and Guizhou. The natural endowment in Guizhou impedes the PV pp systems from reaching plant-side grid parity because the local solar radiation is insufficient. However, it is worth noting that although the solar radiation is abundant in Xinjiang, Ningxia, and Inner Mongolia and the LCOEs of these systems may be lower than others, the PV pp systems in these regions still cannot achieve grid parity due to the rather low local desulfurized coal benchmark electricity prices. Hence, the PV pp systems in these regions face increased challenges in reaching grid parity.

As Figure 6A depicts, 26% and 27% of the PV pp systems’ lifetime profits exceed 20 million CNY in Scenarios I (half sold to I&C users and half fed into the grid, see Transparent Methods and Table S2 for the details of the scenarios) and II (half sold to residential users and half fed into the grid), whereas there are more PV pp systems with profits between 10 million CNY and 15 million CNY in Scenario II. In Scenario III (selling all output
to I&C users), 46% of the systems exhibit lifetime profits over 20 million CNY. In Scenarios IV and V, only 13% and 8% of the PVpp systems’ lifetime profits exceed 20 million CNY. These results indicate that if the output of a PVpp system is completely sold to the power grid (Scenarios V) or to the residents (Scenarios IV) without a subsidy, the profit will be minimal. By comparison, the PVpp systems in Scenario III demonstrate the greatest profitability.

The discounted payback period (DPBP) is highly correlated with the scenarios. Figure 6B shows that 46% and 54% of PVpp systems can recover their investments in the seventh year in Scenarios I and II, respectively. In Scenario III, the DPBP for 54% of the PVpp systems are less than or equal to six years, and the cash flow values of 124 PVpp systems are always positive. The DPBP in Scenario V is much longer, with 47% of the systems requiring more than ten years to reach the breakeven point.

The return on investment (ROI) measures the efficiency of investment. Figure 6C shows that the ROI values of most of the PVpp systems in Scenario I and Scenario II fall between 100% and 120% (the proportions are 38% and 44%, respectively). In Scenario I, 19% of the PVpp systems have ROI values greater than 120%. The ROI values of 15% of the PVpp systems exceed 120% in Scenario II. In Scenario III, the ROI values of 35% of the PV systems exceed 140%, whereas in Scenarios IV and V, the ROI values of most of the PVpp systems (48% and 74%, respectively) are less than 80%.

DISCUSSION
A Greater PV Potential Can Be Achieved by Making Use of Coal Storage Sheds

China’s coal-fired power plants are constructing coal storage sheds and enclosures to cover coal storage yards to reduce dust pollution and meet the increasingly stringent environmental protection regulations. The surfaces of coal storage sheds and enclosures are also suitable for PV deployment, increasing the available area in power plants. Because the coal storage shed construction is an ongoing project, we predicted how much PVpp potential would be increased if all power plants in China installed coal sheds or enclosures. According to our measurement, the coal storage sheds and enclosures can provide an area of 4.30×10^7 m2, which increases the potential capacity by 6.91 GWe. The generation capacity is believed to be 8.20 TWh of electricity a year. That is, the PVpp capacity and annual generation potential of the 1,082 power plants could reach 10.87 GWe and 12.89 TWh, respectively. This potential capacity is equivalent to approximately 89% of the newly installed distributed PV capacity in China in 2019 (NEA, 2020).

With greater potential PVpp capacity comes greater electricity generation, but the power plant can still consume excessive electricity easily. According to Figure 7A, the ratio of the PVpp output to power plants’ electricity demand is typically between 3% and 8% when both the available rooftop and coal storage shed areas are considered. The ratio is less than 10% in 79% of power plants. Furthermore, the lifetime revenue of PVpp systems also increases significantly (see Figure 7B).
PVpp Systems Are Capable of Avoiding Curtailment

The flexibility of a power system refers to “the ability of a power system to reliably and cost-effectively manage the variability and uncertainty of demand and supply across all relevant timescales” (IEA, 2018). When the power grid is congested, distributed PV systems and centralized PV systems without storage devices curtail their output, as they cannot cope with excessive output. This situation is an indication of insufficient system flexibility. Consuming excessive output on-site is a practical solution to curtailment. The total output of most PVpp systems is less than 8% of the CFPPs’ electricity demand (See Figure 4C). When PVpp systems cannot feed the output into the power grid, the CFPPs can easily consume the excessive portion. The massive electricity demand of power plants enhances the flexibility of the PVpp system. It guarantees that the output of the PVpp can be consumed rather than curtailing it. Given that the PVpp can accommodate excessive electricity on-site, another advantage of the system is that it does not need an additional transmission infrastructure, which will cause a large amount of carbon emissions during the construction (Wang et al., 2019), to transmit the excessive electricity.

Xinjiang, Tibet, and Gansu suffer from high curtailment rates due to oversupply and transmission failings (NEA, 2019b). Despite the abundant solar resources, regulators had suspended solar projects in these regions to curb overcapacity and curtailment (NEA, 2019a). Restricting PV development is not a long-term solution, and the abundant solar resources in these regions should be utilized properly without aggravating the curtailment issue. Accordingly, the PVpp system exhibits its superiority in this situation.

PVpp Systems Are More Economically Competitive in the Upcoming Subsidy-free Era

Since first being announced in 2011 in China, the feed-in-tariff (FiT) has continued to decrease with technological progress, allowing solar PV to develop an economically competitive edge over traditional
generation technology. In 2013, the Chinese government set a subsidy of 0.42 CNY/kWh for distributed PV systems (NDRC, 2013). In 2019, the subsidy fell to 0.18 CNY/kWh for residential PV systems and 0.10 CNY/kWh for I&C PV systems (NDRC, 2019). As the subsidy-free era approaches, the PV systems need to be economically comparable to fossil fuel generation technology. The PV system cost has plummeted rapidly in recent years, mainly due to reduced PV module prices. As a consequence, the proportions of the balance of system (BOS) costs and nontechnical costs are increasing, which has become an impediment to the further decline in the costs of PV systems (Elshurafa et al., 2018). To cope with the transition of the incentive policy, the BOS costs and soft costs, such as grid connection fees and land rents, must be reduced effectively. As demonstrated above, the PVpp system provides a feasible and applicable way to reduce the costs by integrating the PV system with existing infrastructure at CFPPs. As Figure 8 depicts, assuming the four types of PV systems are deployed at same places, the number of the PVpp systems reaching grid parity is maximized; 941 PVpp systems (87% of the total amount), 727 distributed PV systems (67% of the total amount), and 448 centralized PV systems (41% of the total amount) achieve grid parity. PV with storage systems cannot achieve grid parity, as batteries drastically increase the cost.

PVpp Systems Are More Profitable in Places with Abundant Sunshine and High Electricity Price

The high generation potential, high electricity price, and abundant solar resources are favorable factors regarding the profitability of PVpp systems. Therefore, Guangdong and Shandong are ideal regions for PVpp deployment from an economic aspect. There is also a huge generation potential in Xinjiang and Inner Mongolia. However, given the relatively low electricity prices, the PVpp systems there will struggle to gain a satisfactory revenue. In addition, as Sichuan and Guizhou lack abundant solar resources, the systems’ performances in these regions will be limited, and the generation cost will also increase. These regions can deploy PVpp systems later when the PV system costs further decrease to compensate for the disadvantages.

Deploying PVpp Systems Is a Feasible Way for Coal-Fired Electric Power Companies to Add Renewable Energy Capacity

Many countries have adopted renewable portfolio standards to prompt the development of renewable energy (Carley et al., 2018; Stokes and Warshaw, 2017). In 2016, China’s National Energy Administration released the guidance for renewable portfolio standards, which proclaimed that the share of non-hydro renewable energy power generation of electric power companies should account for 9% of the companies’ total power generation (NEA, 2016). The electric power companies that fail to meet this requirement will
lose their electricity generation licenses. In the future, electric power companies might have to either expand their renewable capacity or buy renewable energy certificates to avoid penalties. Our study demonstrates that deploying the PV(pp) systems at CFPPs is feasible. In addition to the many technical advantages, PV(pp) systems also have excellent economic performance. Their good profit potential and short payback periods are significant to coal-fired power plants, as many of them have been suffering from financial loss (Yuan et al., 2016; Wang et al., 2019). Therefore, deploying PV(pp) systems is an option worth considering for coal-fired electric power companies to increase their renewable capacity.

Limitations of the Study
This article aims to introduce the concept of PV(pp) and to study its feasibility, so an empirical formula was used to model the PV generation without considering the impact of shade and temperature on the system performance. This method can be further improved in future work. The PV potential discussed in this article mainly focuses on the potential in the coal-fired power generation sector; however, the concept of PV(pp) applies to all energy-intensive industrial sectors, so future research can continue to explore the potential of integrating PV with other sectors.

Resource Availability

Lead Contact
Further information and requests for resources and data should be directed to and will be fulfilled by the Lead Contact, Jinyue Yan (jinyue.yan@mdh.se).

Materials Availability
This study did not use or generate any reagents.

Data and Code Availability
The power plant information was obtained from the Annual Compilation of Statistics for Power Industry (CEC, 2014). The specifications and construction plan for the case power plant and electricity demand data were provided by China Energy Investment Corporation. The satellite image data were from Google Earth software. The monthly meteorological data were obtained from the meteorological dataset WorldClim (Fick and Hijmans, 2017). The hourly solar radiation data used in the calculation of the case power plant were retrieved from Meteonorm software (version 7.1.3). PV policies were gathered from the official websites of the National Energy Administration (www.nea.gov.cn) and the National Development and Reform Commission (www.ndrc.gov.cn). This study did not generate any code. The preliminary data are available on request from the corresponding authors.
METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101867.

ACKNOWLEDGMENTS
The authors thank Dr. He Zhu (IGSNRR) for the careful mapping of Figure 3 and thank Hans de Ridder and Sup for the SOLIDWORKS 3D power plant and PV panel model. This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFE0196000), the National Natural Science Foundation of China (7208101, 71904125, 72022009, 71810107001, 71690241 and 72033005), Swedish Knowledge Foundation (KK-stiftelsen) “FREE” project, the Shanghai Sailing Program (18YF1417500), and the Taishan Scholars Program of Shandong Province. M.K.J. acknowledges financial support from the China Scholarship Council.

AUTHOR CONTRIBUTIONS
Conceptualization, J.Y.Y.; Methodology, J.Y.Y., W.D.W., and M.K.J.; Investigation, W.D.W., J.S.L., M.K.J., J.W.M., and J.Y.Y.; Formal analysis, M.K.J., W.D.W., J.S.L., J.W.M., and J.Y.Y.; Data Curation, W.D.W., J.W.M., and H.Q.Q.; Writing—Original Draft, M.K.J.; Writing—Review & Editing, M.K.J., W.D.W., J.S.L., P.F.Z., and J.Y.Y.; Visualization, M.K.J. and P.F.Z.; Supervision, J.Y.Y., W.D.W., and J.S.L.; Resource, W.D.W. and H.Q.Q.; Funding Acquisition, J.Y.Y., W.D.W., and J.S.L.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: July 21, 2020
Revised: November 5, 2020
Accepted: November 18, 2020
Published: December 18, 2020

REFERENCES
Amaducci, S., Yin, X., and Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 220, 545–561.
Arnulf, J.-W. (2019). PV Status Report 2019 (Publications Office of the European Union).
Ballif, C., Perret-Aebi, L.-E., Lufkin, S., and Rey, E. (2018). Integrated thinking for photovoltaics in buildings. Nat. Energy 3, 438–442.
Barron-Gaffford, G.A., Pavao-Zuckerman, M.A., Minor, R.L., Sutter, L.F., Barnett-Moreno, I., Blackett, D.T., Thompson, M., Dimond, K., Gerlak, A.K., Nabhan, G.P., et al. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2, 848–855.
Bird, L., Lew, D., Milligan, M., Carlini, E.M., Estanqueiro, A., Flynn, D., Gomez-Lazaro, E., Hoftinien, H., Menemenlis, N., Orths, A., et al. (2016). Wind and solar energy curtailment: a review of international experience. Renew. Sustain. Energy Rev. 65, 577–586.
Bogdanov, D., Farfan, J., Sadovskaia, K., Aghahosseini, A., Child, M., Gulagi, A., Oyewo, A.S., de Souza Noel Simas Barboza, L., and Breyer, C. (2019). Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077.
Brouwer, A.S., van den Broek, M., Zappa, W., Turkenburg, W.C., and Faas, A. (2016). Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 161, 48–74.
Byrne, J., Taminiau, J., Seo, J., Lee, J., and Shin, S. (2017). Are solar cities feasible? A review of current research. Int. J. Urban Sci. 21, 239–256.
Carley, S., Davies, L.L., Spence, D.B., and Zirogiannis, N. (2018). Empirical evaluation of the stringency and design of renewable portfolio standards. Nat. Energy 3, 754–763.
CEC (2014). Annual Compilation of Statistics for Power Industry (China Electricity Council).
Collins, S., Deane, P., O’Gallachóir, B., Pfenninger, S., and Staffell, I. (2018). Impacts of inter-annual wind and solar variations on the European power system. Joule 2, 2076–2090.
Colmenar-Santos, A., Campinez-Romero, S., Perez-Molina, C., and Mur-Perez, F. (2016). An assessment of photovoltaic potential in shopping centres. Sol. Energy 135, 662–673.
Creutzig, F., Agoston, P., Goldschmidt, J.C., Luderer, G., Nemet, G., and Pietzcker, R.C. (2017). The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140.
Dinesh, H., and Pearce, J.M. (2016). The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 54, 299–308.
Elshurafa, A.M., Albardi, S.R., Bigerna, S., and Bollino, C.A. (2018). Estimating the learning curve of solar PV balance–of–system for over 20 countries: Implications and policy recommendations. J. Clean. Prod. 196, 122–134.
Feng, J.-C., Yan, J., Yu, Z., Zeng, X., and Xu, W. (2018). Case study of an industrial park toward zero carbon emission. Appl. Energy 209, 65–78.
Fick, S.E., and Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315.
Green, M.A. (2019). How did solar cells get so cheap? Joule 3, 631–633.
He, G., Lin, J., Sifuentes, F., Liu, X., Abhyankar, N., and Phadke, A. (2020). Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nat. Commun. 11, 2486.
Jerez, S., Tobin, I., Vautard, R., Montavez, J.P., (International Renewable Energy Agency). Flexibility (International Energy Agency). Transformation 2018 – Advanced Power Plant solar panels on global climate. Nat. Clim. Chang. 6, 290.

IEA (2018). Status of Power System Transformation 2018 – Advanced Power Plant Flexibility (International Energy Agency).

IRENA (2020). Renewable Capacity Statistics 2020 (International Renewable Energy Agency).

Jerez, S., Tobin, I., Vautard, R., Montavez, J.P., López-Romero, J.M., Thais, F., Bartok, B., Christensen, O.B., Colette, A., Déqué, M., et al. (2015). The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014.

Jiang, M., Lv, Y., Wang, T., Sun, Z., Liu, J., Yu, X., and Yan, J. (2019). Performance analysis of a photovoltaics aided coal-fired power plant. Energy Proced. 158, 1348–1353.

King, L.C., and van den Bergh, J.C.M. (2018). Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 3, 334–340.

Lee, J., Chang, B., Aktas, C., and Gorthala, R. (2016). Economic feasibility of campus-wide photovoltaic systems in New England. Renew. Energy 99, 452–464.

Litjens, G.B.M.A., Worrell, E., and van Sark, W.G.J.H.M. (2018). Assessment of forecasting methods on performance of photovoltaic-battery systems. Appl. Energy 227, 358–373.

Lufkin, S. (2019). Towards dynamic active façades. Nat. Energy 4, 635–636.

Luo, F., Guo, Y., Yao, M., Cai, W., Wang, M., and Wei, W. (2020). Carbon emissions and driving forces of China’s power sector: Input-output model based on the disaggregated power sector. J. Clean. Prod. 268, 112925.

Mahmoudi, N., Shafie-Khah, M., Saha, T.K., and Catalao, J.P.S. (2017). Customer-driven demand response model for facilitating roof-top PV and wind power integration. IET Renew. Power Gen. 11, 1200–1210.

Marrou, H. (2019). Co-locating food and energy. Nat. Sustain. 2, 793–794.

NDRC (2013). Notice of the National Development and Reform Commission on the Use of Price Leverage to Promote the Healthy Development of the Photovoltaic Industry. https://www.ndrc.gov.cn/xsgd/tz/201308/ 20130830_963954.html.

NDRC (2019). Notice of the National Development and Reform Commission on Relevant Issues Concerning the Improvement of the Photovoltaic Power Generation Price Mechanism. https://www.ndrc.gov.cn/xsgd/tz/201904/20190412109433_ext.html.

NEA (2016). Guidance on Establishing a Guidance System for the Development and Utilization of Renewable Energy. http://zxsgk.nea.gov.cn/auto87/201603/t20160331_2205.htm.

NEA (2019a). Notice of the General Department of the National Energy Administration on Releasing the Results of the 2018 Environmental Monitoring and Evaluation of the Photovoltaic Power Generation Market. http://zxsgk.nea.gov.cn/auto87/201902/20190214_3625.htm.

NEA (2019b). Photovoltaic Power Generation Construction and Operation Report in the First Quarter of 2019. http://www.nea.gov.cn/2019-06/ 06/c_138121866.htm.

NEA (2020). Grid-connected Operation Report of Photovoltaic Power Generation in 2019. http:// www.nea.gov.cn/2020-02/26/c_138827923.htm.

Qi, L., Jiang, M., Lv, Y., and Yan, J. (2020). A celestial motion-based solar photovoltaics installed on a cooling tower. Energy Convers. Manag. 216, 112957.

Rahmani, R., Moser, I., and Seyyedmahmoudian, M. (2017). Multi-agent based operational cost and inconvenience optimization of PV-based microgrid. Sol. Energy 150, 177–191.

Riesen, Y., Baliff, C., and Wyrsh, N. (2017). Control algorithm for a residential photovoltaic system with storage. Appl. Energy 202, 78–87.

Sgouridis, S., Carbajales-Dale, M., Csaia, D., Chiesa, M., and Bardi, U. (2019). Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat. Energy 4, 456–465.

Shukla, A.K., Sudhakar, K., and Baredar, P. (2017). Recent advancement in BIPV product technologies: a review. Energy Build. 1200–1210.

Steffen, B., Beuse, M., Tautrot, P., and Schmidt, T.S. (2020). Experience curves for Operations and Maintenance costs of renewable energy technologies. Joule 4, 359–375.

Stokes, L.C., and Warshaw, C. (2017). Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2, 17107.

Strupeit, L. (2017). An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: the case of Germany. Renew. Sustain. Energy Rev. 77, 273–286.

Strzalka, A., Alam, N., Duminni, E., Coons, V., and Eicker, U. (2012). Large scale integration of photovoltaics in cities. Appl. Energy 93, 413–421.

Wang, L., Yu, Y., and Du, G. (2019). How to Solve the Flight of Coal Power Companies. http://www. jjiang.de/2019-08-22/c_138527530.htm.

Wei, W., Hao, S., Yao, M., Chen, W., Wang, S., Wang, Z., Wang, Y., and Zhang, P. (2020). Unbalanced economic benefits and the electricity-related carbon emissions embodied in China’s interprovincial trade. J. Environ. Manag. 263, 110390.

Yan, J., Yang, Y., Elia Campana, P., and He, J. (2019). City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 4, 709–717.

Yang, Y., Campana, P.E., Stridh, B., and Yan, J. (2020a). Potential analysis of roof-mounted solar photovoltaics in Sweden. Appl. Energy 279, 115786.

Yang, Y., Campana, P.E., and Yan, J. (2020b). Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities. Renew. Sustain. Energy Rev. 131, 109967.

Yu, Z.J., Carpenter, J.V., and Holman, Z.C. (2018). Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat. Energy 3, 747–753.

Yuan, J., Li, P., Wang, Y., Liu, Q., Shen, X., Zhang, K., and Dong, L. (2016). Coal power overcapacity and investment bubble in China during 2015–2020. Energy Policy 97, 136–144.

Zeraati, M., Hamedani Golshan, M.E., and Guerrero, J.M. (2019). A consensus-based cooperative control of PEV battery and PV active power curtailment for voltage regulation in distribution networks. IEEE Trans. Smart Grid 10, 670–680.

Zhao, J., Kucukkaya, S., Mazhari, E., and Son, Y.J. (2013). Integrated analysis of high-penetration PV and PHEV with energy storage and demand response. Appl. Energy 112, 35–51.
Supplemental Information

Using Existing Infrastructure to Realize Low-Cost and Flexible Photovoltaic Power Generation in Areas with High-Power Demand in China

Mingkun Jiang, Jiashuo Li, Wendong Wei, Jiawen Miao, Pengfei Zhang, Haoqi Qian, Jianmin Liu, and Jinyue Yan
Supplemental Figures and Tables

Figure S1. The PV array layout. Related to Transparent Methods (PV Generation Model).

Figure S2. Regression results of the available rooftop area. Related to Figure 3 and Transparent Methods equation 1.
Figure S3. Regression results of the coal storage yard area. Related to Transparent Methods equation 2.
Table S1. PV Panel Specifications. Related to Transparent Methods (PV Generation Model) section.

Item	Parameters
Solar Cell	Monocrystalline silicon, 6 inches
Dimensions	1960 × 992 × 40 mm
Area	1.944 m²
Maximum power under STC (P_{max})	0.365 kW

Table S2. Business Models for the Different Scenarios. Related to Figure 6 and Figure 7B.

Business model	Electricity selling price	Subsidy (CNY/kWh)
Scenario I: Half sold to I&C users and half fed into the grid	Local desulfurized coal benchmark prices and electricity market prices for I&C users	0.10
Scenario II: Half sold to residential users and half fed into the grid	Local desulfurized coal benchmark prices and electricity market prices for residential users	0.18
Scenario III: All sold to I&C users	Electricity market prices for I&C users	-
Scenario IV: All sold to residential users	Electricity market prices for residential users	-
Scenario V: All fed into the grid	Utility-scale PV prices	-
Table S3. Hourly energy demand of case power plant and PV output in the summer solstice. Related to Figure 2A.

Time	Electricity demand (kWh)	PV output (kWh)
0	19200	0
1	19200	0
2	19200	0
3	19200	0
4	14400	0
5	19200	0
6	19200	0
7	14400	39
8	24000	489
9	24000	1038
10	19200	1614
11	19200	2133
12	19200	2550
13	19200	2826
14	19200	2961
15	19200	2943
16	19200	2742
17	19200	2403
18	19200	1938
19	19200	1392
20	24000	810
21	28800	303
22	28800	3
23	28800	0
Table S4. Hourly energy demand of case power plant and PV_{pp} output in the winter solstice. Related to Figure 2B.

Time	Electricity demand (kWh)	PV output (kWh)			
0	24000	0			
1	19200	0			
2	19200	0			
3	24000	0			
4	19200	0			
5	24000	0			
6	19200	0			
7	24000	0			
8	19200	0			
9	19200	0			
10	24000	6			
11	24000	132			
12	19200	249			
13	24000	336			
14	19200	390			
15	24000	369			
16	24000	297			
17	19200	192			
18	24000	78			
19	19200	0			
20	24000	0			
21	19200	0			
22	24000	0			
23	19200	0			
Unit	PV$_{pp}$	Distributed PV system	Centralized PV system	PV with storage system	
-----------------------------	-----------	-----------------------	-----------------------	------------------------	
PV modules	CNY/W	2	2	2	
Supports	CNY/W	0.3	0.3	0.3	
Inverter	CNY/W	0.3	0.3	0.3	
Wirings	CNY/W	0.2	0.2	0.2	
Engineering	CNY/W	0.6	0.9	0.9	
Junction boxes	CNY/W	0.1	0.1	0.1	
Insurance cost	CNY/W	0.035	0.035	0.035	
Grid connection cost	CNY/W	-	-	0.5	
Battery	CNY/Wh	-	-	-	
O&M cost	CNY/W/year	0.04	0.04	0.04	
Rooftop rent	CNY/m2/year,	-	4	-	
Land rent	CNY/m2/year,	-	-	1.5	
Interest rate	%	8	8	8	
Yearly cost for the first 5 years	CNY/W	0.93	1.03	1.16	
Battery replacement for the 5th year	CNY/W	-	-	1.17	
Yearly cost for the 6th-9th years	CNY/W	0.04	0.06	0.06	
Yearly cost for the 10th years	CNY/W	0.34	0.36	0.36	
Yearly cost for the 11th-14th years	CNY/W	0.04	0.06	0.06	
Yearly cost for the 15th year	CNY/W	0.04	0.06	0.06	
Yearly cost for the 16th-19th years	CNY/W	0.04	0.06	0.06	
Yearly cost for the 20th year	CNY/W	0.34	0.36	0.36	
Yearly cost for the 21st-25th years	CNY/W	0.04	0.06	0.06	
Total		6.03	7.06	7.66	13.16

a. Numbers were rounded.

b. The discount rate was not taken into account.
Table S6. Provincial potential PV \(p_p \) capacity, installed PV capacity and the ratio of PV \(p_p \) capacity to installed PV capacity. Related to Figure 4A.

Region	Province	Potential PV \(p_p \) capacity (MW)	Installed PV capacity (MW)\(^a\)	The ratio of PV \(p_p \) capacity to installed PV capacity
E	JS	321	14860	2.16%
E	SD	309	16190	1.91%
E	IM	300	10810	2.78%
E	HE	196	14740	1.33%
E	ZJ	180	13390	1.34%
E	AH	159	12540	1.27%
E	FJ	109	1690	6.45%
E	SH	87	1090	7.98%
E	JX	58	6300	0.92%
C	HA	269	10540	2.55%
C	HB	105	6210	1.69%
C	HN	86	3440	2.50%
N	SX	258	10880	2.37%
N	TJ	54	1430	3.78%
N	BJ	21	510	4.12%
S	GD	290	6100	4.75%
S	GX	70	1350	5.19%
S	HI	20	1400	1.43%
NE	LN	142	3430	4.14%
NE	JL	96	2740	3.50%
NE	HL	91	2740	3.32%
NW	XJ	181	10800	1.68%
NW	SN	109	9390	1.16%
NW	GS	82	9080	0.90%
NW	NX	78	9180	0.85%
NW	QH	14	11010	0.13%
SW	GZ	99	5100	1.94%
SW	SC	65	1880	3.46%
SW	YN	54	3750	1.44%
SW	CQ	52	650	8.00%
SW	XZ	3	1100	0.27%

\(^a\) the data of 2019.
Transparent Methods
Identification and Estimation of Available Area

This study used Google EarthTM software (version 7.3.3.7786) to obtain satellite images of power plants and to measure the available area of suitable rooftops. The authors collaborated with experienced experts from China Energy Investment Corporation to set criteria to identify the suitable rooftops for PV deployment. We divided the rooftops of the power plants into two types, i.e., suitable rooftops and unsuitable rooftops, based on roof structure, building function and safety concerns. Additionally, it is easy to observe that there are many structures and pieces of functional equipment on some rooftops; hence, the rooftops that are not obstacle-free are also excluded from the suitable rooftop group. The material that the rooftop is constructed from also affects whether PV panels can be installed or not. Concrete and steel are two common materials for rooftops. We exclude steel rooftops from the suitable rooftop group because it may not be strong enough to hold PV panels. In China, most steel roofs are blue or red. Therefore, all blue rooftops and red rooftops are excluded from the available area measurement process. Although PV panels cannot be directly deployed on coal storage yards, coal-fired power plants are installing coal sheds and enclosures to meet environmental protection requirements, which is believed to increase the available area for PV deployment. Therefore, the area of coal storage yards was also taken into account to estimate the maximum PV\textsubscript{pp} potential in the discussion section.

Power plant information was collected from the annual compilation of statistics of the power industry (CEC, 2014). There are more than 3000 power plants with capacity values between 6 MW and 4800 MW in the dataset. However, the units with capacity values below 50 MW and the units with capacity values below 100 MW that have been operating for 20 years face shutdown plans (NDRC, 2007), which indicates that most of the small power plants will not continue to operate in the future. The typical lifetime of a PV system is approximately 20 to 30 years. As a result, we studied only the PV\textsubscript{pp} potential of the 1082 power plants with capacity values over 100 MW in this work.

Measuring the available areas in all 1082 Chinese coal-fired power plants can be time consuming. Therefore, this study adopted a linear regression approach to estimate the available area. Fifty-six power plants (5\% of the total population) were randomly chosen as samples, and their available area was measured manually. A prediction model was developed to identify the relationship between the capacity of power plants (predictor variable) and the available area for PV deployment (response variable). Data from 56 sample power plants were used to train the regression model (see Figure S2 and Figure S3). The model was used to predict the available area based on the power plants’ capacity. We performed a regression analysis using Microsoft Excel. The equations for the available area estimation are as follows:

\begin{align}
 \text{area}_{\text{roof}} &= 13.181x + 12746 \\
 \text{area}_{\text{coal yard}} &= 33.855x + 14012
\end{align}

where \(x\) is the capacity of the coal-fired power plant, \(\text{area}_{\text{roof}}\) is the available rooftop area of the power plant site, and \(\text{area}_{\text{coal yard}}\) is the coal storage yard area of the power plant.
PV Generation Model

A monocrystalline 72-cell module from a Chinese solar photovoltaic manufacturer was chosen to build the PV generation model. The specification of the PV module listed in Table S1 was used for the PV generation modeling.

Following existing instances and Hong et al.’s work, we assumed that PV modules are installed horizontally on the roofs (Hong et al., 2017). We used the packing factor η to calculate the effective panel area. The packing factor refers to the ratio of the array area to the actual land or rooftop area (SBH, 2020). When installing PV panels, we need to leave space between the PV arrays for maintenance and operation purposes. Therefore, the actual space a PV array needs is larger than its actual size. With regard to real cases, it is common to see PV panels deployed 1- to 4-rows into an array on industrial roofs. The spaces between the PV arrays enable workers to walk between them. We found that the width of the fiber-reinforced plastic grating used to pave the PV maintenance channel is 400 mm (http://gxblbggs.com/showproducts.asp?id=168), so we assumed that the width of the space between the PV arrays is 500 mm, and the PV array is assumed to have 3 rows of PV modules (see Figure S1).

Based on the assumptions, the packing factor is calculated as follows:

$$\eta = \frac{2976 \times 1960}{(2976 + 500) \times 1960} \approx 0.856 \quad (3)$$

In this case study section, we assume that the centralized PV and PV with battery systems are tilted-mounted. There should be enough distance between the PV arrays to ensure that the PV arrays do not shade the adjacent array from 9:00 am to 3:00 pm on the winter solstice (MOHURD and AQSIQ, 2012). The packing factor of tilted PV panels is calculated as follows:

$$D = W \times \cos \beta + W \times \sin \beta \times \frac{0.707 \tan \phi + 0.4338}{0.707 - 0.4338 \tan \phi} \quad (4)$$

$$\eta_t = \frac{W}{D} \quad (5)$$

where D is the distance between the PV arrays (m), W is the width of a PV pane (m), which is 0.992 m, ϕ is the latitude of the site, which is 42° and β is the tilt angle, which is equal to ϕ (Mondol et al., 2007). η_t is the packing factor of the tilted PV arrays.

The potential PV capacity is calculated as follows:

$$\text{capacity} = \frac{\text{area}_{\text{available}}}{\text{area}_{\text{PV}}} \times P_{\text{max}} \times \eta \quad (6)$$

where capacity is the potential capacity of the PV system (kW), $\text{area}_{\text{available}}$ is the available area for PV deployment (m²), area_{PV} is the area of the PV panel (m²), P_{max} is the peak power
of the PV module (kW), and η is the packing factor of PV arrays.

The solar radiation used to predict the annual generation potential in this study was from WorldClim, which provides average monthly climate data from 1970 to 2000 (Fick and Hijmans, 2017). The spatial resolution of the solar radiation data was 2.5 minutes. We extracted the radiation data for each power plant using the ESRI ArcGIS® software (version 10.2). The solar radiation used to predict the hourly generation in the case study section was from the Meteonorm database. We compared the two datasets and found that the annual solar radiation data for the case power plant in the two datasets were very similar. In addition to the PV modules, a PV system also consists of equipment such as inverters and cables. The efficiency of all the equipment will also affect the overall performance of the PV system. The overall performance coefficient of PV systems is usually between 0.75 and 0.85. This study used 0.78 for the calculation (Verso et al., 2015; Ito et al., 2010). We did not take the effects of shade into account for two reasons. First, it can be highly challenging to consider the effect of shade on the PV output of 1082 power plants. Second, the buildings of power plants are typically widely spaced, so they do not typically shade each other. According to GB 50797-2012, the annual PV generation is calculated as follows (MOHURD and AQSIQ, 2012):

$$E_{p,h} = H_h \times \frac{\text{capacity}}{E_S} \times K$$ \hspace{1cm} (7)

$$E_{p,i} = H_A \times \frac{\text{capacity}}{E_S} \times K \times (1 - D)^i$$ \hspace{1cm} (8)

$$E_{p,\text{total}} = \sum_{i=1}^{25} H_A \times \frac{\text{capacity}}{E_S} \times K \times (1 - D)^i$$ \hspace{1cm} (9)

where $E_{p,h}$ is the PV output (kWh) of the hth hour of a day, H_h is the global horizontal irradiance (kWh/m²) of the hth hour of a day, and K is the overall performance coefficient, which is 0.78. $E_{p,i}$ is the annual PV (kWh) output in year i, H_A is the annual local horizontal irradiance (kWh/m²), E_S is the standard PV test condition (1000 W/m²), capacity is the potential capacity of the PV system (kW). D is the annual degradation rate of PV panels, which is 0.01 (Azizi et al., 2018); $E_{p,\text{total}}$ is the total PV output over the lifetime of the PV system (kWh), and the lifetime of the PV system is set to 25 years.

PV system costs

The equipment costs (PV module cost, support cost, inverter, wirings, combiner box, battery cost) and soft costs (engineering cost, insurance cost, grid connection cost, O&M cost, rooftop rent, land rent, interest) make up the total PV system cost. The lifetime of a PV system is assumed to be 25 years in this work. Batteries and inverters need to be replaced every 5 and 10 years, respectively (Kaabeche et al., 2011; Shabani et al., 2020; Yan et al., 2019). We used a PV to battery ratio of 1.50 to size the battery capacity (Boeckl and Kienberger, 2019). The
interest rate was 8%, and the loan term was 5 years (Yan et al., 2019). The cost breakdown of PV systems is shown in Table S5.

Economic metrics

The lifetime cost is calculated as follows:

\[
LC = \sum_{i=1}^{25} \left(\left(C_{\text{equipment},i} + C_{\text{O&M},i} \right) \times \text{capacity} \right) \times 1.05^i
\]

where \(LC \) is the lifetime cost (CNY), \(C_{\text{equipment},i} \) is the unit equipment investment and equipment replacement cost for year \(i \) (CNY), \(C_{\text{O&M},i} \) is the unit O&M cost for year \(i \) (CNY), and the discounted value is set to 5%.

The lifetime revenue can be generated from selling electricity, and it can be calculated using the following equation:

\[
Revenue_k = \sum_{i=1}^{25} E_{p,i} \times \left(P_k + S_{PV,i,k} \right)
\]

where \(Revenue_k \) is the lifetime revenue in scenario \(k \) (CNY), \(E_{p,i} \) is the PV output in year \(i \) (kWh), \(P_k \) is the electricity selling price in scenario \(k \) (CNY/kWh), and \(S_{PV,i,k} \) represents the PV system subsidy for year \(i \) in scenario \(k \) (CNY/kWh).

Another metric to evaluate economic performance is the return on investment (ROI), which reflects the efficiency of investment and is calculated as follows:

\[
ROI = \frac{NI}{LC} \times 100\%
\]

where \(NI \) is the lifetime net income (CNY).

The discounted payback period (DPBP) refers to the amount of time the PV_pp system takes to reach the break-even point. The payback period is calculated as follows based on the yearly net cash flow:

\[
\sum_{i=1}^{\text{DPBP}} \frac{R_i}{1.05^i} = 0
\]

where \(R_i \) is the yearly net cash flow in year \(i \) (CNY/kWh).

This study uses the levelized cost of electricity (LCOE) to calculate the generation cost, which is calculated as follows:
\[
LCOE = \frac{\sum_{j=1}^{25} (C_{equipment,j} + C_{O&M,j}) \times \text{capacity}}{\left(\sum_{j=1}^{25} E_{p,j}\right)(1.05)^i}
\]

The variables in the equation have been defined above.

The grid parity indicators from Yan et al.’s work are applied to demonstrate the grid parity ability of each PV system (Yan et al., 2019). They are calculated as follows:

\[
GPI = \frac{LCOE}{CP}
\]

Here, \(CP\) is the desulfurized coal benchmark price (CNY/kWh).

\[
GPI_{iu} = \frac{LCOE}{MP_{iu}}
\]

Here, \(MP_{iu}\) is the electricity market price for industrial and commercial (I&C) users (CNY/kWh).

\[
GPI_{ru} = \frac{LCOE}{MP_{ru}}
\]

Here, \(MP_{ru}\) is the electricity market price for residential users (CNY/kWh).

Scenarios considered in the study

The revenues are mainly from selling electricity. In addition to feeding electricity into the power grid, we also assume that electricity can be sold directly to end-users. We created five scenarios to comprehensively investigate the economic performance of the PV systems according to China’s PV pricing and subsidy policy. The subsidy and business model of each scenario are detailed in Table S2. In Scenario I, half of the system output is sold to I&C users and the other half is fed into the grid. In Scenario II, half of the system output is sold to residential users and the other half is fed into the grid. In Scenario III, the output is sold to I&C users. In Scenario IV, the output is sold to residential users. In Scenario V, the output is fed into the power grid. The subsidies for PV system last for 20 years.
Supplemental References

Azizi, A., Logerais, P.-O., Omeiri, A., Amiar, A., Charki, A., Riou, O., Delaleux, F. and Durastanti, J.-F. (2018). Impact of the aging of a photovoltaic module on the performance of a grid-connected system. Sol. Energy 174, 445-454.

Boeckl, B. and Kienberger, T. (2019). “Sizing of PV storage systems for different household types”. J. Energy Storage 24, 100763.

CEC (2014). Annual Compilation of Statistics for Power Industry (China Electricity Council).

Fick, S. E. and Hijmans, R. J. (2017). WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315.

Hong, T., Lee, M., Koo, C., Jeong, K. and Kim, J. (2017). Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis. Appl. Energy 194, 320-332.

Ito, M., Komoto, K. and Kurokawa, K. (2010). Life-cycle analyses of very-large scale PV systems using six types of PV modules. Curr. Appl. Phys. 10, S271-S273.

Kaabeche, A., Belhamel, M. and Ibitiouen, R. (2011). Techno-economic valuation and optimization of integrated photovoltaic/wind energy conversion system. Sol. Energy 85, 2407-2420.

MOHURD and AQSIQ (2012). GB 50797-2012 Code for design of photovoltaic power station (JH Press).

Mondol, J. D., Yohanis, Y. G. and Norton, B. (2007). The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renew. Energy 32, 118-140.

NDRC. (2007). Several opinions on speeding up the shutdown of small coal-fired power units. http://www.gov.cn/zwgk/2007-01/26/content_509911.htm.

SBH. (2020). Glossary of solar energy terms: packing factor. https://resources.solarbusinesshub.com/solar-energy-glossary/item/packing-factor.

Shabani, M., Dahlquist, E., Wallin, F. and Yan, J. (2020). Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden. Appl. Energy 279, 115830.

Verso, A., Martin, A., Amador, J. and Dominguez, J. (2015). GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. Sol. Energy 117, 236-245.

Yan, J., Yang, Y., Elia Campana, P. and He, J. (2019). City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 4, 709-717.