EXACT MAXIMUM-ENTROPY ESTIMATION WITH FEYNMAN DIAGRAMS

AMITAI NETSER ZERNIK, TOMER M. SCHLANK, AND RAN J. TESSLER

Abstract. A longstanding open problem in statistics is finding an explicit expression for the probability measure which maximizes entropy with respect to given constraints. In this paper a solution to this problem is found, using perturbative Feynman calculus. The explicit expression is given as a sum over weighted trees. Feynman Calculus and Maximum Entropy and Perturbative Expansion and Weighted Trees

1. Introduction

Given a finite set Σ, the relationship between distributions on Σ and an observable $r : \Sigma \to \mathbb{R}$ on Σ is a two way street. First, given a distribution P_0 on Σ we can ask for the expectation of r, $\mathbb{E}_{P_0} r$.

In the other direction, suppose the distribution P_0 is unknown but we are given, for $1 \leq i \leq k$, the expectation ρ_i of some observable $r_i : \Sigma \to \mathbb{R}$ with respect to P_0. Of course, in general there will be infinitely many distributions P such that

$$\mathbb{E}_P r_i = \rho_i, \quad \forall 1 \leq i \leq k.$$

Arguably, among these distributions P the one that maximizes the entropy is the one that best reflects the information given by the expectations. This approach to estimation was first expounded by E. T. Jaynes in two papers, [Ja57I, Ja57II]. The introduction chapter in [FrLe64] provides a nice review of the subject, another comprehensive source is [CoTh12].

A classical theorem of Ludwig E. Boltzmann shows that the maximum entropy distribution P belongs to a finite-dimensional exponential family of distributions, or Boltzmann-Gibbs distributions, parameterized by λ_i, $0 \leq i \leq k$. It is not hard to prove that these parameters are analytic functions of $\{\rho_i\}_{i=1}^k$. It is possible to directly compute the first few orders of the series expansion of each $\{\lambda_i\}_{i=0}^k$ in terms of $\{\rho_i\}_{i=1}^k$. For example, the quadratic approximation defines the linear regression multivariate normal distribution.

As one tries to calculate higher orders, however, the computations quickly get out of hand. Many algorithms have been proposed for approximating the distribution numerically or by other means.

In this paper we give an explicit, combinatorial formula for computing the full Taylor expansion of $\lambda_i(\rho_1, \ldots, \rho_k)$ in terms of the joint moments of the observables r_i with respect to the uniform distribution. An alternative
formula in terms of cumulants is also proven, which is computationally more efficient.

In estimation problems, one is often not interested in the distribution \(P \) itself, but rather in the expectation value \(\sigma := \mathbb{E}_P s \) of some observable \(s : \Sigma \to \mathbb{R} \). In Theorems 2.10 and 2.5 we compute the Taylor expansion of \(\sigma(\rho_1, \ldots, \rho_k) \).

It is worth mentioning that given the higher moments of \(\{r_i\} \), \(\{r_i\} \cup \{s\} \) the computation is completely independent of the size of the alphabet \(\Sigma \). More precisely, to compute the Taylor expansion to any given order \(d \) only the joint moments of order \(\leq d + 1 \) are required.

The main tool for proving these results is a formula for the Taylor expansion of a perturbed critical point. Folk theorems along these lines go back at least to Richard P. Feynman, and constitute the "classical", or "tree level" part of what is generally called the Feynman Calculus. We found the exposition in [Et02] very useful. At any rate, the discussion in Section 3.1 is completely self-contained, and readers may find it applicable to other optimization problems.

Some application of the problem we consider, in its relative version to be defined below are [Sh08] in chemical physics, [AFHS97] in mathematical finance and the recent [LTR16], which in page 6, argues that part of the success of deep learning techniques is a consequence of the structure of probability distributions that maximizes the entropy. These references are of course just a drop in the sea of applications. We therefore believe that the formulas presented here can find applications in many estimation and classification problems, different areas of science, and have considerable theoretical value as well.

In the next subsection we define precisely the problem we would like to solve, and discuss some analytic properties of the solutions. In the next section we state our main results. In section 3.1 we develop the main technical tool, Feynman calculus, and discuss its application to finding critical points of series expansions. This is used to prove the main results in Section 3.2.

1.1. Kullback-Liebler constraint problems

The problem of maximizing the entropy of a distribution \(P \) on an alphabet \(\Sigma \) subject to some constraints is an instance of the somewhat more general problem of minimizing the Kullback-Liebler divergence, or relative entropy \(D(P||Q) \) of \(P \) relative to a given reference distribution \(Q \). Indeed, if \(Q \) is the uniform distribution then \(D(P||Q) = \log |\Sigma| - H(P) \) where \(H(P) \) is the entropy of \(P \). With this in mind, we can state our results as follows.

Definition 1.1. A Kullback-Liebler constraint problem (or KL constraint problem) consists of a triple \((\Sigma, Q, \{r_i\}_{i=1}^k) \) where

1. \(\Sigma \) is a finite set called the alphabet.
2. \(Q = \{q_\sigma\} \) is a probability distribution on \(\Sigma \), called the reference probability distribution.
3) \(r_i : \Sigma \to \mathbb{R} \) for \(1 \leq i \leq k \) are functions called the constraint functions.

We assume that \(q_\sigma > 0 \) for all \(\sigma \in \Sigma \) and that the \(r_i \) are affinely independent as elements of the vector space \(\mathbb{R}^\Sigma \). By that we mean that no non trivial linear combination of the functions \(r_i \) and the constant function 1 yields the 0 function. One can reduce KL constraint problems which do not satisfy these conditions to ones that do, in an obvious way.

A KL constraint problem \(\left(\Sigma, Q, \{r_i\}_{i=1}^k \right) \) will be called augmented if we are given an additional target function \(s : \Sigma \to \mathbb{R} \).

A KL constraint problem will be called normalized if
\[
E_Q r_i = 0 \quad \text{for} \quad 1 \leq i \leq k
\]
and
\[
E_Q r_i r_j = \delta_{ij} \quad \text{for} \quad 1 \leq i, j \leq k.
\]
An augmented KL constraint problem will be called normalized if the non augmented problem is normalized and, in addition,
\[
E_Q s = 0, \quad E_Q s r_i = 0, \quad \text{for all} \quad 1 \leq i \leq k.
\]

Remark 1.2. There is no loss of generality in assuming that a KL problem is normalized. More precisely, given a KL constraint problem \(\left(\Sigma, Q, \{r_i\}_{i=1}^k \right) \), one obtains a normalized problem in two steps.

(i) Replace \(r_i \) by \(r'_i := r_i - E_Q(r_i) \), so \(E_Q r'_i = 0 \).

Let \(E_0 \subset \mathbb{R}^\Sigma \) denote the sub-vector space \(\{f \in \mathbb{R}^\Sigma | E_Q f = 0 \} \). Because \(q_\sigma > 0 \) the covariance restricts to a non-degenerate positive definite pairing on \(E_0 \):

\[
\text{Cov}(f, f') = \sum_\sigma q_\sigma \cdot f(\sigma) \cdot f'(\sigma).
\]

(ii) Use the Gram-Schmidt process to replace the sequence \(\{r'_i\}_{i=1}^k \) by a Cov-orthonormal sequence \(\{r''_i\}_{i=1}^k \) which has the same linear span.

\(\left(\Sigma, Q, \{r''_i\}_{i=1}^k \right) \) defines an equivalent KL-constraint problem, in the sense that the set of distributions \(P \) satisfying Equation (\(\Box \)) is equal to the set of distributions \(P \) satisfying

\[
E_Q r''_i = \rho''_i
\]

where \((\rho''_i)_{i=1}^k \) is obtained from \((\rho_i)_{i=1}^k \) by the affine-linear transformation effecting the change from \(r_i \) to \(r''_i \) computed above.

Similar reasoning shows that there is no loss of generality in assuming that an augmented KL constraint problem is normalized.

Given a normalized KL constraint problem \(\left(\Sigma, Q, \{r_i\}_{i=1}^k \right) \) and sufficiently small parameters \(\rho_i \in \mathbb{R}, \quad 1 \leq i \leq k \), we consider the probability distribution \(P = \{p_\sigma\}_{\sigma \in \Sigma} \) minimizing the Kullback-Liebler divergence of \(P \) relative to \(Q \),

\[
D_{KL}(P||Q) = E_P \log \left(\frac{P}{Q} \right) = \sum_{\sigma \in \Sigma} p_\sigma \log \left(\frac{p_\sigma}{q_\sigma} \right)
\]

subject to the constraints \(E_P r_i = \rho_i \).
By Lagrange multipliers (see the beginning of Subsection 3.2.1) we have

\[p_\sigma = q_\sigma \exp \left(-1 - \lambda_0 - \sum_{i=1}^{k} \lambda_i r_i (\sigma) \right) \]

for some numbers \(\lambda_i = \lambda_i (\rho_1, \ldots, \rho_k) \in \mathbb{R} \) which we call the exponential parameters.

In Appendix A we prove Lemma 1.3.

Lemma 1.3. For \(1 \leq i \leq k \) the exponential parameter \(\lambda_i \) is an analytic function of \(\rho_1, \ldots, \rho_k \).

Now suppose the normalized KL-constraint problem is augmented by a target function \(s : \Sigma \rightarrow \mathbb{R} \). We call \(\sigma = \sigma(\rho_1, \ldots, \rho_k) = \mathbb{E}_P s \) the target expectation.

Corollary 1.4. The target expectation \(\sigma(\rho_1, \ldots, \rho_k) \) is an analytic function of \(\rho_1, \ldots, \rho_k \).

Proof. We have

\[\sigma(\rho_1, \ldots, \rho_k) = \mathbb{E}_P s = \mu (\lambda_1(\rho_1, \ldots, \rho_k), \ldots, \lambda_k(\rho_1, \ldots, \rho_k)) \]

for

\[\mu (\lambda_1, \ldots, \lambda_k) = \frac{\sum_{\sigma} s(\sigma) q_\sigma \exp \left(- \sum_{i=1}^{k} \lambda_i r_i (\sigma) \right)}{\sum_{\sigma} q_\sigma \exp \left(- \sum_{i=1}^{k} \lambda_i r_i (\sigma) \right)} \]

which is clearly analytic in a neighborhood of \(\lambda_1 = \cdots = \lambda_k = 0 \). Since the composition of analytic functions is analytic, the result follows. \(\square \)

The upshot is that the Taylor expansions of \(\lambda_i(\rho_1, \ldots, \rho_k) \), \(1 \leq i \leq k \) and of \(\sigma(\rho_1, \ldots, \rho_k) \) converge in an open polydisc around \(\rho_1 = \cdots = \rho_k = 0 \). We refer to the power series expansions of these functions about the origin as the perturbed exponential parameters

\[\lambda_i (\rho_1, \ldots, \rho_k) = \sum_{I} L_{i,I} \rho^I \]

and the perturbed expectation function

\[\sigma (\rho_1, \ldots, \rho_k) = \sum_{I} M_I \rho^I \]

here \(I = (i_1, \ldots, i_k) \) ranges over \(\mathbb{Z}_{\geq 0}^k \) and \(\rho^I := \prod_{j=1}^{k} \rho_j^{i_j} \).

2. Results

2.1. Moment trees. Let \((\Sigma, Q, \{r_i\}_{i=1}^{k})\) be a normalized KL constraint problem. It will be notationally convenient to write \(r_0 : \Sigma \rightarrow \mathbb{R} \) for the constant function 1. If \((\Sigma, Q, \{r_i\}_{i=1}^{k}, s)\) is an augmented KL constraint problem.
problem we introduce an additional function \(r_{k+1} : \Sigma \to \mathbb{R} \) which we set equal to the target function \(s \).

Definition 2.1. A rooted tree (or RT) \(\Gamma \) is a tree with vertices \(V = V(\Gamma) \) and a nonempty set of edges \(E = E(\Gamma) \), together with a distinguished leaf \(v_{\text{out}} \in V \). We call the vertex to which the distinguished leaf \(v_{\text{out}} \) is connected the root of \(\Gamma \). We define the internal vertices \(V_{\text{in}} \) to be the vertices which are not leaves. In particular, when \(|V(\Gamma)| = 2 \), \(V_{\text{in}} = \emptyset \).

Definition 2.2. For \(j = 0, \ldots, k + 1 \) a \(j \)-moment tree \(\Gamma \) for the normalized KL constraint problem \((\Sigma, Q, \{r_i\}_{i=1}^k)\) is a rooted tree whose edges are labeled by \(\{r_i\}_{i=0}^{k+1} \) subject to the following conditions:

- Shape conditions: each vertex which is not a leaf has degree \(\geq 3 \).
- Labeling conditions: The edge connected to \(v_{\text{out}} \) is labeled by \(r_j \); the edges connected to the other leaves are labeled by \(r_1, \ldots, r_k \). All other edges are labeled by \(r_0, \ldots, r_k \).

A moment tree is a \(j \)-moment tree for some \(0 \leq j \leq k + 1 \).

Two moment trees \(\Gamma_1, \Gamma_2 \), are isomorphic if there exist bijections \(f_V : V(\Gamma_1) \to V(\Gamma_2), f_E : E(\Gamma_1) \to E(\Gamma_2) \) such that

1. \(f_V(v_{\text{out}}(\Gamma_1)) = v_{\text{out}}(\Gamma_2) \).
2. \(f_E \) maps the edges of \(v \) to the edges of \(f_V(v) \).
3. The label of \(f_E(e) \) agrees with the label of \(e \).

An automorphism of \(\Gamma \) is an isomorphism from \(\Gamma \) to itself. The equivalence classes of moment trees modulo isomorphisms are called the isomorphism types.

To a moment tree \(\Gamma \) we associate a leaf multi-index \(I_\Gamma = (a_1, \ldots, a_k) \) with \(a_i \) the number of leaves with edges labeled by \(r_i \), excluding \(v_{\text{out}} \) (but including the root, in case it is also a leaf). We define the order of \(\Gamma \) to be \(|I_\Gamma| = \sum_{i=1}^k a_i \). Note that since the degree of inner nodes is \(\geq 3 \) there are only a finite number of moment trees with any given leaf multi-index.

Definition 2.3. Let \(\Gamma \) be a moment tree. Let \(v \) be an inner vertex of \(\Gamma \) of degree \(d \) with edges labeled by \(r_{i_1}, \ldots, r_{i_d} \).

1. The coupling value \(C_v \) of \(v \) is

\[
C_v = (-1)^{d+1} \mathbb{E} Q r_{i_1} \cdots r_{i_d}.
\]

2. The amplitude \(A_\Gamma \) of \(\Gamma \) is

\[
A_\Gamma = (-1)^{|I_\Gamma|} \prod_{v \in V_{\text{in}}(\Gamma)} C_v,
\]

or \(-1\) when \(V_{\text{in}} = \emptyset \).
Theorem 2.4. Given a normalized KL constraint problem, the coefficients of the perturbed exponential parameters of Equation 6 are given by

\[L_{j,I} = \sum_{\Gamma} \frac{A_{\Gamma}}{|\text{Aut}(\Gamma)|} \]

for \(1 \leq j \leq k\) where the sum runs over representatives \(\Gamma\) for all isomorphism types of \(j\)-moment trees \(\Gamma\) with \(I_{\Gamma} = I\), and where \(\text{Aut}(\Gamma)\) is the group of automorphisms of \(\Gamma\), i.e. the group of rooted tree automorphisms, preserving the labels and the root.

Theorem 2.5. Given an augmented normalized KL constraint problem, the perturbed expectation coefficients of Equation 7 are given by

\[M_{I} = \sum_{\Gamma} \frac{A_{\Gamma}}{|\text{Aut}(\Gamma)|} \]

where the sum runs over representatives \(\Gamma\) for all isomorphism types of \((k+1)\)-moment trees \(\Gamma\) with \(I_{\Gamma} = I\).

Remark 2.6. Suppose we are given a normalized KL constraint problem, and augment it with a target function \(s\). Subtracting its expectation and applying the Gram-Schmidt process on \(s\) as in 1.2 is just equivalent to performing the classical linear regression estimation on \(s\). For this reason, it is natural to interpret Theorem 2.5, as well as Theorem 2.10 below as a "perturbed regression" method, which generalizes linear regression to incorporate higher order moments.

2.2. Cumulant trees. Let \((\Sigma, Q, \{r_i\}_{i=1}^{k+1})\) be a normalized KL constraint problem. Now we will not have use for \(r_0\); but as before, if the problem is augmented we will denote \(r_{k+1} = s\).

Definition 2.7. For \(j = 1, \ldots, k+1\) a \(j\)-cumulant tree is a rooted tree whose edges are labeled by \(\{r_i\}_{i=1}^{k+1}\) subject to the following conditions:

1. Shape conditions: each vertex which is not a leaf has degree \(\geq 3\).
2. Labeling conditions: The edge connected to \(v_{\text{out}}\) is labeled by \(r_j\), all other edges (including edges connected to non-root leaves) are labeled by \(r_1, \ldots, r_k\).

A cumulant tree is a \(j\)-cumulant tree for some \(1 \leq j \leq k+1\). We define the notions of isomorphism, automorphism and isomorphism types with similarly to the analogous notions for moment trees.

The leaf multi-index of \(\Gamma\) is defined as before. Again there are only a finite number of cumulant trees with any given multi-index.

Definition 2.8. Let \(\Gamma\) be a cumulant tree. Let \(v\) be an inner vertex of \(\Gamma\) of degree \(k\) whose edges are labeled by \(r_{i_1}, \ldots, r_{i_d}\).

1. The coupling value \(C_v\) of \(v\) is

\[C_v = (-1)^{d+1} \kappa(r_{i_1}, \ldots, r_{i_d}) \]
where $\kappa(r_{i_1},\ldots,r_{i_k})$ is the joint cumulant (cf. Eq (23)) of r_{i_1},\ldots,r_{i_k}.

(2) The amplitude of Γ is

\begin{equation}
A_{\Gamma} := (-1)^{|I_\Gamma|} \prod_{v \in V_{\text{in}}(\Gamma)} C_v,
\end{equation}

or -1 when $V_{\text{in}} = \emptyset$.

Theorem 2.9. Given a normalized KL constraint problem, the coefficients of the perturbed exponential parameters, defined in 6, are given by

\begin{equation}
L_{j,I} = \sum \frac{A_{\Gamma}}{|\text{Aut}(\Gamma)|} \text{ for } 1 \leq j \leq k,
\end{equation}

where the sum runs over all isomorphism types of j-cumulant trees Γ with $I_\Gamma = I$.

Theorem 2.10. Given an augmented normalized KL constraint problem, the coefficients of perturbed expectation, defined in 7, are given by

\begin{equation}
M_{I} = \sum \frac{A_{\Gamma}}{|\text{Aut}(\Gamma)|},
\end{equation}

where the sum runs over all isomorphism types of $(k+1)$-cumulant trees Γ with $I_\Gamma = I$.

These theorems are proved in Subsection 3.2.2.

Remark 2.11. The number of labeled trees is exponential where the base depends on the number of labels. Since cumulant trees have one less labels, working with them produces an exponential reduction in the complexity. In practice the improvement may be even more significant since cumulants tend to decay more rapidly than moments.

Remark 2.12. Consider the equivalence relation on moment trees which is generated by contracting edges labeled by 0. Equivalence classes of this relation correspond to cumulant trees, in an obvious way. This correspondence preserves the output edge label and the leaf multiindex, and it is possible to show that the contribution of each cumulant tree in Eq (11) is the sum of the contributions to Eq (9) of the moment trees in the corresponding equivalence class. A similar statement holds for the perturbed expectation.

2.3. **Further Discussion and Future Directions.** The formulas presented in this paper give a first derivation of maximum entropy estimation under constraints. Although the derivation is fairly long, the formulas themselves are simple, and can be easily programmed. Of course, the formulas become longer and consist of more terms, the higher in perturbation order one goes. Writing an efficient algorithm for calculating the order by order contribution is a natural future direction. Another inviting future direction is to try and solve the maximum entropy problem described here in other models, for example Markovian models.
It is well known that the statistically correct solution to many scientific or algorithmic problems is given by the entropy maximizer. Because maximizing entropy is sometimes difficult, an alternative, less optimal solution is sometimes taken, such as optimizing second moment (e.g., linear regression). The most fascinating challenge arising from this work is to apply the formulas found in this paper to practical problems and to understand when they allow an improvement to the current solutions.

3. Feynman Calculus and Proofs of the Theorems

3.1. Feynman Calculus: Perturbative Expression for Critical Point.

We now introduce the main technical tool of this paper - using Feynman calculus to express critical points of functions.

Let \(\tau : \mathbb{C}^{r+m} \to \mathbb{C} \) be an analytic function. Consider \(V = \mathbb{C}^m \) as a vector space over \(\mathbb{C} \). We write \(\tau_x : V \to \mathbb{C} \) for the value of \(\tau \) at \((x,y)\) and think of it as a family of functions \(\tau_x : V \to \mathbb{C} \) parameterized by \(x \in \mathbb{C}^r \). Henceforth, unless explicitly stated otherwise, functions between vector spaces are not necessarily linear.

We will assume that \(\tau_0 \) has a critical point at \(y = 0 \), which is non-degenerate (see below). This will imply that for sufficiently small values of \(x \) and \(y \), \(\tau_x \) obtains a unique critical point \(y = \text{crit}(\tau_x) \), and the assignment \(x \mapsto \text{crit}(\tau_x) \) is an analytic function. We will see that the coefficients of the Taylor expansion of \(x \mapsto \text{crit}(\tau_x) \) around \(x = 0 \) are given in terms of summation over trees. The entire discussion can be viewed as a kind of effective version of the contraction mapping proof of the implicit function theorem. We now explain this in more detail.

Let \(V^* = \text{Hom}(V, \mathbb{C}) \) denote the dual vector space, consisting of \(\mathbb{C} \)-linear maps from \(V \) to \(\mathbb{C} \). The derivative of a function \(h : V \to \mathbb{C} \) is a function \(\partial h : V \to V^* \). We define a function \(f : \mathbb{C}^r \times V \to V^* \) to be the partial derivative of \(\tau_x \) in the \(y \) direction,

\[
 f(x, y) = \partial \tau_x.
\]

Thus \(f(x, y) = 0 \) if and only if \(y \) is a critical point for \(\tau_x \). We assume that \(\tau_0 \) has a critical point at 0, so \(f(0,0) = 0 \). We further assume that this critical point is non-degenerate, which means

\[
 B := \partial_y f|_{(x,y)=(0,0)} : V \to V^*
\]

is an invertible linear transformation.

Define \(g : \mathbb{C}^r \times V \to V \) by

\[
 g^x(y) = y - B^{-1} \circ f(x, y)
\]

Clearly, \(f(x, y) = 0 \) iff \(g^x(y) = y \). In particular, \(g^0(0) = 0 \).

Now consider \(\partial g : \mathbb{C}^r \times V \to \text{Hom}(V,V) \).

We have

\[
 (\partial g)(0,0) = \text{id}_V - B^{-1} \circ B = 0.
\]
By continuity, there exist open neighborhoods \(0 \in U \subseteq \mathbb{C}^r, 0 \in W \subseteq V \) such that

1. For all \(x \in U \), \(g^x(W) \subseteq W \), and
2. for all \(x \in U, y \in W \), \((\partial g)(x, y) \in Hom(V, V) \) is a (linear) contraction mapping with respect to the standard inner product on \(V \).

It follows that for all \(x \in U \), \(g^x : W \to W \) is a contraction mapping.

Now by the Banach fixed point theorem, for any \(x \in U \) there exists a unique \(g^x \)-fixed point \(y = \text{crit}(\tau^x) \in W \),

\[
g^x(\text{crit}(\tau^x)) = \text{crit}(\tau^x).
\]

Moreover, for any \(x \in U \) the sequence \(y^x_n \) defined by \(y^x_0 = 0, y^x_1 = g^x(0), y^x_2 = g^x(g^x(0)), \ldots, y^x_{n+1} = g^x(y^x_n) \), converges to \(\text{crit}(\tau^x) \).

By the standard contraction-mapping proof of the implicit function theorem, one shows that the assignment \(x \mapsto \text{crit}(\tau^x) \) is an analytic function \(U \to W \). Write the multivariate Taylor expansion of \(\tau^x \) as

\[
\tau^x(y) = \hat{T}_0 + \hat{T}_1 y + \frac{1}{2!}(\hat{B} + \hat{T}_2)(y, y) + \sum_{l \geq 3} \frac{1}{l!} \hat{T}_l(y, \ldots, y).
\]

This expansion is unique provided we assume that \(\hat{T}_l^x \in Hom(V^\otimes l, \mathbb{C}) \simeq (V^*)^\otimes l \) is symmetric: \(\hat{T}_l^x \in \text{Sym}^l(V^*) \subset (V^*)^\otimes l \).

\[
\hat{B} \in V^* \otimes V^*
\]

is obtained from \(B \in Hom(V, V^*) \) via the natural isomorphism \(Hom(V, V^*) \simeq V^* \otimes V^* \), so that \(\hat{T}_2^{x=0} = 0 \). Similarly, we define

\[
\hat{T}_l^x \in Hom(V^\otimes (l-1), V^*)
\]

to be the image of \(\hat{T}_l^x \) under the natural isomorphism \((V^*)^\otimes l \simeq Hom(V^\otimes (l-1), V^*) \).

Unwinding definitions we see that

\[
g^x(y) = -B^{-1}T_1^x - B^{-1}T_2^x(y) - \sum_{l \geq 3} \frac{1}{(l-1)!} B^{-1}T_l^x(y^{\otimes (l-1)})
\]

We now explain how \(y^x_n := (g^x)^n(0) \) can be interpreted as a sum over rooted planar trees of height \(\leq n \).

Definition 3.1. Let \(\Lambda \) be a rooted tree. The height of \(\Lambda \), \(h \), is the length of the longest simple path \((v_0, v_1, \ldots, v_h) \) in \(\Lambda \) with \(v_0 = v_{\text{out}} \). A planar rooted tree (or \(\text{PRT} \)) \(\Lambda \) is a rooted tree with an additional specification of a cyclic order on the set of edges incident to \(v \) for every \(v \in V \).

1 See for example the proof in Joel Feldman’s lecture notes, http://www.math.ubc.ca/~feldman/m425/impFnThm.pdf To apply the argument we need that \((\partial f)(x, y) \in Hom(V, V^*) \) is invertible for all \((x, y) \in U \times W \). Since \(\partial f = B(id - \partial g) \) this follows from our assumption that \((\partial g)(x, y) \in Hom(V, V) \) is contracting.
We now give a precise definition of the contribution $\text{Cont}^x(\Lambda)$ of a PRT to y^x_n. Some readers may be satisfied with the more informal definition in Remark 3.2 below.

Let Λ be a planar rooted tree, with a distinguished leaf v_{out}. Fix some $v \in V$. We define an (ordered) tuple of planar rooted trees, the subtrees of v, as follows. Remove the path from v_{out} to v, including both endpoints. Each connected component of the resulting topological space corresponds to a subtree of v. To obtain this subtree, we append a leaf at the end of the half-open edge which was connected to v; this is the distinguished leaf of the subtree. The cyclic orders at the vertices are determined by those of Λ; the order on the set of subtrees of v is determined by the cyclic order of the edges around v, starting from the (omitted) edge toward v_{out}. If Λ has height $\leq h$ then the subtrees of the root are of height $\leq h - 1$ and completely specify the isomorphism type of Λ. This leads us to the following recursive construction.

For $h \geq 0$ we define the set $\mathcal{PRT}^{\leq h}$ of representative planar rooted trees of height $\leq h$ by setting $\mathcal{PRT}^{\leq 0} = \emptyset$ and $\mathcal{PRT}^{\leq h} = \text{Seq}(\mathcal{PRT}^{\leq h-1})$ for $h \geq 1$ where $\text{Seq}(A) = \bigcup_{k \in \mathbb{Z} \geq 0} A^k$ denotes the set of all finite sequences $(a_1, ..., a_k)$ with $k \geq 0$ and $a_i \in A$; by definition, $A^0 = \{()\}$ is the set containing only the empty sequence. The set $\mathcal{PRT} := \bigcup_{h=0}^{\infty} \mathcal{PRT}^{\leq h}$ is then a set of representatives for the isomorphism types of planar rooted trees.

Fix $x \in U \subset \mathbb{C}^r$. For $l \geq 0$ define $S^x_l : V^\otimes l \to V$ by $S^x_l = B^{-1} T^x_{l+1}$. Now, define $\text{Cont}^x : \mathcal{PRT} \to V$ recursively on the height. For $\mathcal{PRT}^{\leq 0}$ define it to be 0. For $h \geq 1$ we define $\text{Cont}^x((a_1, ..., a_l))$ for $(a_1, ..., a_l) \in \mathcal{PRT}^{\leq h}$ by

$$\text{Cont}^x((a_1, ..., a_l)) = -\frac{1}{l!} S^x_l \left(\bigotimes_{i=1}^l \text{Cont}^x(a_i) \right)$$

Remark 3.2. Somewhat less formally, given a PRT Λ we can compute $\text{Cont}^x(\Lambda)$ by placing $B^{-1} \in V \otimes V$ on the edges $E(\Lambda)$ and $(\frac{-1}{(\text{val}(v) - 1)!})^x T^x_{\text{val}(v)} \in (V^*)^\otimes \text{val}(v)$ on each vertex $v \in V(\Lambda) \setminus \{v_{\text{out}}\}$ of degree $\text{val}(v)$, and then using the incidence pairing to contract the tensors. The result is $\text{Cont}^x(\Lambda) \in V$.

Lemma 3.3. For $h \geq 0$ we have

$$y^x_h = \sum_{\Lambda \in \mathcal{PRT}^{\leq h}} \text{Cont}^x(\Lambda)$$

In particular,

$$\text{crit}(\tau^x) = \sum_{\Lambda \in \mathcal{PRT}} \text{Cont}^x(\Lambda),$$

where the right hand side converges for all $x \in U$.

Proof. We show the result holds by induction on h. For $h = 0$ $y^x_0 = 0$ which by convention is equal to the empty sum. Now suppose we have established Equation (14) for some h, let us show it holds for $h + 1$.
By Equation (13) and Equation (14) for \(h \) we have:

\[
y^{x}_{h+1} = g^{x}(y^{x}_{h}) = \sum_{l \geq 0} \frac{(-1)^{l}}{l!} S_{l}^{x} ((y^{x}_{h}) \otimes l) = \\
\sum_{l \geq 0} \frac{(-1)^{l}}{l!} S_{l}^{x} \left(\sum_{a \in PRT \leq h} \text{Cont}^{x}(a) \otimes l \right) = (16)
\]

On the other hand we have

\[
\sum_{\Gamma \in PRT \leq (h+1)} A^{x}(\Gamma) = \sum_{l \geq 0, (a_{1},...,a_{l}) \in (PRT \leq h)^{l}} \frac{(-1)^{l}}{l!} S_{l}^{x} (\otimes A^{x}(a_{i})) = \\
\sum_{l \geq 0} \frac{(-1)^{l}}{l!} S_{l}^{x} \left(\sum_{a \in PRT \leq h} A^{x}(a) \right) = (17)
\]

which shows that Equation (14) holds for \(h + 1 \), and the proof of the first claim is complete. The second claim, Eq (15), immediately follows. \(\Box \)

3.1.1. Coordinate Expression for the Perturbed Critical Point

Definition 3.4. Let \(L \) be a finite set. An \(L \)-labeled rooted tree (or labeled-RT, if \(L \) is clear from the context) is a rooted tree \(\Gamma \) such that all the edges of \(\Gamma \) are labeled by elements of \(L \). We will say an \(L \)-labeled rooted tree \(\Gamma \) has output \(l_{0} \in L \) if the edge connecting the distinguished leaf \(v_{\text{out}} \) to the root is labeled \(l_{0} \). The automorphism group \(\text{Aut}(\Gamma) \) of \(\Gamma \) consists of maps \(\psi : V(\Gamma) \rightarrow V(\Gamma) \) that fix the distinguished leaf \(v_{\text{out}} \) and such that \(u, v \in V(\Gamma) \) are connected by an edge labeled \(l \) iff \(\psi(u), \psi(v) \) are connected by an edge labeled \(l \).

Let \(L \) be a set of size \(m = \dim V \). In this subsection, we assume that \(B \in \text{Sym}^{2}(V^{*}) \) is the complexification of a positive definite pairing. In other words, there exists a basis \(\{ e_{i} \}_{i \in L} \) to \(V \) such that

\[
B = \sum_{i \in L} e_{i}^{*} \otimes e_{i}^{*},
\]

where \(\{ e_{i}^{*} \} \) be the basis of \(V^{*} \) dual to \(\{ e_{i} \} \).

For \(l \geq 1 \) and \(i_{1},...,i_{l} \in L \) define \(\theta_{i_{1},...,i_{l}} : C^{r} \rightarrow \mathbb{C} \) by

\[
\tilde{T}_{l}^{x} = \sum_{i_{1},...,i_{l} \in L} \theta_{i_{1},...,i_{l}}(x) e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{l}}^{*}.
\]

The symmetry condition \(\tilde{T}_{l}^{x} \in \text{Sym}(V^{*}) \subset (V^{*})^{\otimes l} \) is equivalent to requiring \(\theta_{i_{1},...,i_{l}}(x) \) to be invariant under any permutation of the indices \(i_{1},...,i_{l} \).

Definition 3.5. Let \(\Gamma \) be an \(L \)-labeled tree. For any internal vertex \(v \) such that the edges incident to \(v \) are labeled \(i_{1},...,i_{d} \) write

\[
C_{v}^{x} = -\theta_{i_{1},...,i_{d}}(x).
\]
We define the amplitude function $A_{\Gamma}^x : C^r \to C$ of Γ by
\begin{equation}
A_{\Gamma}^x = \prod_{v \neq v_{out}} C_v^x,
\end{equation}
where the product is taken over all vertices except v_{out}.

Write
\[\text{crit}(\tau^x) = \sum_{i \in L} \text{crit}(\tau^x)_i e_i \]

Theorem 3.6. For $i \in L$ we have
\begin{equation}
\text{crit}(\tau^x)_i = \sum_{\Gamma} \frac{A_{\Gamma}^x}{|\text{Aut}(\Gamma)|}
\end{equation}
where Γ ranges over a set of representatives for the isomorphism types of L-labeled rooted trees with output i.

In the special case when $T_x^\sigma = 0$ for all x, the sum is taken over trees where all vertices are either leaves or of degree at least 3.

The following definition will be useful for proving the theorem.

Definition 3.7. (a) An L-labeled planar rooted tree $\tilde{\Gamma}$ is a planar rooted tree together with a labeling.
(b) The small amplitude $\tilde{A}_{\tilde{\Gamma}}^x$ of an L-labeled planar rooted tree Γ is defined by
\begin{equation}
\tilde{A}_{\tilde{\Gamma}}^x = \prod_{v \neq v_{out}} \frac{C_v^x}{(\deg(v) - 1)!},
\end{equation}
where the product is taken over all vertices except v_{out}, and $\deg(v)$ is the degree of v.

Proof of Theorem 3.6. The i^{th} coordinate of the expression (15) for $\text{crit}(\tau^x)$ is
\[\text{crit}(\tau^x)_i = \sum_{\tilde{\Gamma}} \tilde{A}_{\tilde{\Gamma}}^x \]
where $\tilde{\Gamma}$ ranges over the L-labeled planar rooted trees with output i. There is a forgetful map For from the set of labeled planar rooted trees to the set of labeled rooted trees, obtained by forgetting the cyclic orders.

Let Γ be a labeled rooted tree. We claim that size of the fiber over Γ of the forgetful map is given by
\[|\text{For}^{-1}(\{\Gamma\})| = \frac{1}{|\text{Aut}(\Gamma)|} \prod (\deg(v) - 1)! \]
where the product is taken over all vertices.

Indeed, fix some reference $\tilde{\Gamma}_0 \in \text{For}^{-1}(\Gamma)$. There is a group G of order $|G| = \prod_{v \in V(\tilde{\Gamma}_0)} (\deg(v) - 1)!$ which acts transitively on $\text{For}^{-1}(\Gamma)$ by changing the order of the subtrees. In fact G can be constructed as the semi-direct product of the symmetric groups $\{S_{\deg(v) - 1}\}_{v \in V(\tilde{\Gamma}_0)}$. The stabilizer of $\tilde{\Gamma}_0$ is
naturally identified with $\text{Aut}(\Gamma)$, so by the orbit-stabilizer theorem the size of the fiber is $\frac{1}{|\text{Aut}(\Gamma)|} \prod (\deg(v) - 1)!$ as claimed.

The amplitude function \tilde{A}_Γ^x is independent of the specific $\tilde{\Gamma} \in \text{For}^{-1}(\Gamma)$. By summing over all $\text{For}^{-1}(\Gamma)$-preimages we get,

$$\sum_{\tilde{\Gamma} \in \text{For}^{-1}(\Gamma)} \tilde{A}_\Gamma^x = \prod (\deg(v) - 1)! \prod_{\sigma} \frac{C_v^x}{|\text{Aut}(\Gamma)|} = \frac{A_x^\Gamma}{|\text{Aut}(\Gamma)|}.$$

As claimed.

The last claim follows from the observation that $C_v = 0$ for any bivalent vertex. \square

3.2. Proofs of the main theorems. Let $(\Sigma, Q, \{r_i\}_{i=1}^k)$ be a normalized KL-problem. Let

$$\Delta' = \{p_\sigma \in \mathbb{R}^\Sigma | (\forall \sigma \ p_\sigma > 0) \land \sum_{\sigma} p_\sigma = 1\}$$

denote the open simplex of probability distributions. We are looking for the probability distribution $P \in \Delta'$ that minimizes

$$D(P || Q) = \sum_{\sigma \in \Sigma} p_\sigma \log \left(\frac{p_\sigma}{q_\sigma} \right)$$

subject to the constraints $E_P r_i = \rho_i$. Using the assumption $q_\sigma > 0$, simple analysis shows that $D(P || Q)$ tends to $+\infty$ as we approach the boundary of Δ'. To be precise, for every $M \in \mathbb{R}$ there is a compact subset $K \subset \Delta'$ such that $D(P || Q) \geq M$ for all $P \in \Delta' - K$. It follows that $D(P || Q)$ obtains a minimum in Δ', which is unique since $D(P || Q)$ is a strictly convex function of P. Now apply Lagrange multipliers

(22) $D(P || Q) - \sum_{i=1}^k \lambda_i (E_P r_i - \rho_i) = \sum_{\sigma} Q_\sigma \frac{p_\sigma}{Q_\sigma} \left(- \log \frac{p_\sigma}{Q_\sigma} - \sum_{i=1}^k \lambda_i r_i(\sigma) - \lambda_0 \right) + \sum_{i} \lambda_i \rho_i + \lambda_0.$

Set $x_\sigma = \frac{p_\sigma}{Q_\sigma}$. By requiring the vanishing of the partial derivatives with respect to x_σ, we find that

$$x_\sigma = \exp \left(- \sum_{i=1}^k \lambda_i r_i(\sigma) - \lambda_0 - 1 \right).$$

Plugging this into Equation 22, we are looking for the minimum of

(23) $\hat{\rho}(\lambda) = E_Q \exp \left(- \sum_{i=1}^k \lambda_i r_i(\sigma) - \lambda_0 - 1 \right) + \sum_{i} \lambda_i \rho_i + \lambda_0$

We will compute $\text{crit}(\hat{\rho})$, the critical point of $\hat{\rho}(\lambda)$, in two ways. First, by applying the Feynman calculus directly, we will express $\text{crit}(\hat{\rho})$ as a
sum over moment trees, and thus prove Theorem 2.4. Second, we can solve $\frac{\partial}{\partial \lambda_0} T = 0$ for λ_0 and only then apply the Feynman calculus. This way will lead to a sum over cumulant trees, and the formula of Theorem 2.9.

3.2.1. Proof of moment tree theorems.

Proof of Theorem 2.4. Write $\lambda_i' = \lambda_i$ for $1 \leq i \leq k$ and $\lambda_0' = \lambda_0 + 1$. Define $\tau^\rho(\lambda')$ by analytically continuing $\hat{\tau}^\rho(\lambda_0' - 1, \lambda_1', \ldots, \lambda_k')$ to $\mathbb{C}^k \times V$ for $V = \mathbb{C}^{k+1}$. We assume that for $0 \leq i \leq k$, $\lambda_i' \in V^*$ is the dual to the standard basis $\{e_i\}_{i=0}^k$ for V. Since we assume $(\Sigma, Q, \{\rho_i\})$ is a normalized KL problem, the quadratic term of τ^ρ is

$$\frac{1}{2} \sum_{0 \leq i,j \leq k} (\mathbb{E}_Q r_i r_j) \lambda_i' \lambda_j' = \sum_{i=0}^k \lambda_i'^2$$

and Equation (19) holds. Now apply Theorem 3.6. In the notation of Subsection 3.1.1, with $x = \rho$ and $y = \lambda'$, we have

$$\theta^\rho_{i_1, \ldots, i_l} = \begin{cases} (-1)^l \mathbb{E}_Q (\prod_{j=1}^l r_{i_j}) & \text{if } l \geq 3 \\ \rho_{i_1} & \text{if } l = 1 \text{ and } 1 \leq i_1 \leq k \\ 0 & \text{if } l = 1 \text{ and } i_1 = 0, \text{ or } l = 2. \end{cases}$$

and

$$\lambda_i' = \text{crit}(\tau^\rho)_i = \sum_{\Gamma} \frac{A^\rho_\Gamma}{|\text{Aut}(\Gamma)|},$$

where Γ ranges over a set of representatives for the isomorphism types of $\{0, 1, \ldots, k\}$-labeled rooted trees, with output i, each vertex which is not a leaf is of degree at least 3, and, the edge of no leaf, other than the root, can be labeled 0. The last condition is a consequence of $\theta^\rho_0 = 0$. Hence, Γ ranges over a set of representatives for the isomorphism types of i-moment trees as defined in 2.1. A^ρ_Γ is the amplitude defined in Equation 20. But by Equation 24, A^ρ_Γ is just $A_\Gamma \rho^{\rho^\prime}$, where A_Γ is the amplitude defined in Definition 2.3. Theorem 2.4 is thus proved.

Lemma 3.8. The unique solution to $\frac{\partial}{\partial \lambda_0} \tau^\rho = 0$ is given by

$$\exp(\lambda_0') = \sum_{\sigma \in \Sigma} q_{\sigma} \exp(- \sum_{i=1}^k \lambda_i r_i(\sigma)).$$

Proof. By Equation 23 $\tau^\rho(\lambda')$ has the form

$$\tau^\rho(\lambda') = \mathbb{E}_Q \exp \left(- \sum_{i=1}^k \lambda_i r_i(\sigma) - \lambda_0' \right) + \sum \lambda_i \rho_i + \lambda_0'$$

and
A direct computation gives $\mathbb{E}_Q \exp \left(- \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right) = 1$, or

$$\mathbb{E}_Q \exp \left(- \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right) = e^{\lambda'_0},$$

as claimed. \hfill \square

Proof of Theorem 2.5. We have

$$\mu(\lambda_1, \ldots, \lambda_k) = \sum_{\sigma} s(\sigma) q_\sigma \exp \left(- \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right) \frac{\sum_{\sigma} q_\sigma \exp \left(- \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right)}{\sum_{\sigma} q_\sigma \exp \left(- \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right)},$$

which by Lemma 3.8 can be rewritten as

$$\mu(\lambda_1, \ldots, \lambda_k) = \sum_{\sigma} s(\sigma) q_\sigma \exp \left(- \lambda'_0 \sum_{i=1}^{k} \lambda_i r_i(\sigma) \right) = \sum_{\sigma} s(\sigma) q_\sigma \exp \left(- \sum_{i=0}^{k} \lambda'_i r_i(\sigma) \right),$$

where $r_0 = 1$, as before. Expand $\exp(x) = \sum_{a \geq 0} \frac{x^a}{a!}$ to obtain

$$\mu(\lambda_1, \ldots, \lambda_k) = \sum_{\sigma} s(\sigma) q_\sigma \exp \left(\sum_{i=0}^{k} \lambda'_i r_i(\sigma) \right) = \sum_{\sigma} s(\sigma) q_\sigma \exp \left(\sum_{i=0}^{k} \lambda'_i r_i(\sigma) \right),$$

We can rewrite the last equation as

$$\mu(\lambda_1, \ldots, \lambda_k) = \sum_{\Lambda} C_{\Lambda} \rho^{\Gamma_{\Lambda}} / |\text{Aut}(\Lambda)| \chi_{\Lambda}^{'i_{\Lambda}},$$

where the sum is taken over labeled rooted trees with a single non-leaf vertex v, where the output edge is labeled by $k+1$, and the other edge-labels are taken from $\{0, 1, \ldots, k\}$. The coupling value C_Λ is as in Definition 2.3. By Equation 25, we may write the critical value λ'_i as a sum over labeled rooted trees. Substituting this into Equation 30 can be interpreted as a sum over all possible ways of replacing the leaves of Λ whose edge is labeled by $i \in \{0, 1, \ldots, k\}$ by i-moment trees. It follows that

$$\mu = \sum_{\Gamma} \frac{A_{\Gamma} \rho^{t_{\Gamma}}}{|\text{Aut}(\Gamma)|},$$

where the sum is taken over $k+1$-moment trees Γ. The $1/|\text{Aut}(\Gamma)|$ coefficient is obtained from the orbit-stabilizer theorem, by considering the action of $\text{Aut}(\Lambda) = \prod_{j=0}^{k} i_j!$ on the trees obtained after substitution. \hfill \square
3.2.2. Proofs of cumulant tree theorems.

Proof of Theorem 2.9. Recall that the critical \(\lambda'_i \), for \(0 \leq i \leq k \), are those which minimize

\[
\tau^\rho(\lambda') = \mathbb{E}_Q \exp \left(-\sum_{i=1}^k \lambda'_i r_i(\sigma) - \lambda'_0 \right) + \sum \lambda'_i \rho_i + \lambda'_0 - 1
\]

of Equation 27.

In order to get an expression in terms of joint cumulants, substitute \(\lambda'_0 \) such that \(\frac{\partial}{\partial \lambda'_0} \tau^\rho = 0 \). \(\log(\sum_{\sigma \in \Sigma} q_{\sigma} \exp(-\sum_{i=1}^k \lambda'_i r_i(\sigma))) \), by Lemma 3.8.

Denote by \(T(\lambda_1, \ldots, \lambda_k) \) the result of this substitution (recall \(\lambda_i = \lambda'_i \) for \(i \neq 0 \)). Then

\[
T(\lambda_1, \ldots, \lambda_k) = e^{-\log \mathbb{E} - 1} - \log \mathbb{E} + \phi + \log \mathbb{E} - 1 = \log \mathbb{E} + \phi.
\]

where \(\mathbb{E} = \mathbb{E}_Q \exp \left(-\sum_{i=1}^k \lambda_i r_i(\sigma) \right) \) and \(\phi = \sum_{i=1}^k \lambda_i \rho_i \). By definition, \(\log \mathbb{E} \) is the generating function for the joint cumulants. More precisely,

\[
\log \mathbb{E} = \sum_n \sum_{1 \leq i_1, \ldots, i_n \leq k} (-1)^n \frac{\kappa(r_{i_1}, \ldots, r_{i_n})}{n!} \prod_{j=1}^n \lambda_{i_j},
\]

We claim that within the convergence domain there exists a unique critical value of \(\lambda_i \). Indeed, \(\log \mathbb{E} + \phi \) is convex since \(\mathbb{E} \) is a linear combination of exponents with non-negative coefficients. By Theorem 3.6, this unique critical value is given by Eq (11). The shape conditions hold since the propagator is the quadratic tensor in \(\log \mathbb{E} + \phi \), hence all vertices must either be of degree 1 or degree at least 3. \(\square \)

Proof of Theorem 2.10. As in the proof of Theorem 2.5, the strategy will be to substitute the expressions of \(\lambda_i \) in terms of cumulants in

\[
\mu(\lambda_1, \ldots, \lambda_k) = \frac{\sum_{\sigma} s(\sigma) q_{\sigma} \exp \left(-\sum_{i=1}^k \lambda_i r_i(\sigma) \right)}{\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{i=1}^k \lambda_i r_i(\sigma) \right)}
\]

Introduce a new variable \(\alpha \) and write

\[
F(\lambda, \alpha) = F(\lambda_1, \ldots, \lambda_k, \alpha) = \log \left(\mathbb{E}_Q \exp \left(\alpha s - \sum_{i=1}^k \lambda_i r_i(\sigma) \right) \right).
\]

Then

\[
\mu(\lambda_1, \ldots, \lambda_k) = \frac{\partial}{\partial \alpha} F(\lambda_1, \ldots, \lambda_k, \alpha) |_{\alpha=0}.
\]

Now by the definition of cumulants again,

\[
F(\lambda, \alpha) = \sum_{1 \leq i_1, \ldots, i_n \leq k+1} (-1)^{n-k+1} \frac{\kappa(r_{i_1}, \ldots, r_{i_n})}{n!} \prod_{j=1}^n \lambda_{i_j},
\]
where \(n_{k+1} \) is the number of indices \(i_j = k + 1 \) and \(\lambda_{k+1} = \alpha \). Hence the partial derivative in \(\alpha = 0 \) is just
\[
\mu(\lambda) = \sum_{1 \leq i_1, \ldots, i_n \leq k} (-1)^n \frac{k^{(r_{k+1}, r_{i_1}, \ldots, r_{i_n})}}{n!} \prod_{j=1}^{n} \lambda_{i_j}.
\]

As in the proof of Theorem 2.5, \(\mu \) can thus be written as
\[
\mu(\lambda_1, \ldots, \lambda_k) = \sum_{\Lambda} \frac{C_{\nu}}{|Aut(\Lambda)|} \chi^{I_{\Lambda}},
\]
where the summation is taken over labeled rooted trees with a single non-leaf vertex \(v \), output \(k + 1 \), and the other labels are in \{1, \ldots, k\}. The coupling value is as in Definition 2.8. The proof now ends by substituting the expressions for \(\lambda_i, 1 \leq i \leq k \) in terms of cumulants, just as in the proof of Theorem 2.5.

ACKNOWLEDGEMENTS

We thank O. Bozo, B. Gomberg, R.S. Melzer, A. Moscovitch-Eiger, R. Schweiger, A. Solomon and D. Zernik for discussions related to the work presented here.

R.T. was partially supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation.

APPENDIX A. PROOF OF LEMMA 1.3

Recall that by Lemma 3.8
\[
\log \left(\sum_{\sigma} q_\sigma \exp \left(-\sum_{i=1}^{k} \lambda_i r_i(\sigma) \right) \right) = 1 + \lambda_0 = 1 + \lambda_0(\lambda_1, \ldots, \lambda_k).
\]
Hence \(\lambda_0 \) is an analytic function of \(\lambda_1, \ldots, \lambda_k \) around \(\lambda_1 = \cdots = \lambda_k = 0 \). Now,
\[
\rho_i(\lambda_1, \ldots, \lambda_k) = \sum_{\sigma} r_i(\sigma) q_\sigma \exp \left(-1 - \lambda_0(\lambda_1, \ldots, \lambda_k) - \sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) = \sum_{\sigma} r_i(\sigma) q_\sigma \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) / \exp(1 + \lambda_0(\lambda_1, \ldots, \lambda_k)) = \sum_{\sigma} r_i(\sigma) q_\sigma \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) / \sum_{\sigma} q_\sigma \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right).
\]
So that \(\rho_i(\lambda_1, \ldots, \lambda_k) \) is an analytic function of \(\lambda_1, \ldots, \lambda_k \).

The proof that \(\lambda_i = \rho_i(\rho_1, \ldots, \rho_k) \) is an analytic function of \(\rho_1, \ldots, \rho_k \) around
\[
\lambda_1 = \cdots = \lambda_k = \rho_1 = \cdots = \rho_k = 0,
\]
uses the analytic inverse function theorem. It is enough to show that the Jacobian \(\frac{\partial(\rho_1, \ldots, \rho_k)}{\partial(\lambda_1, \ldots, \lambda_k)} \) is invertible for \(\lambda_1 = \cdots = \lambda_k = 0 \).
But

$$\frac{\partial \rho_i}{\partial \lambda_j} = \frac{\left(\sum_{\sigma} r_i(\sigma)r_j(\sigma)q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right) \left(\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right) - \left(\sum_{\sigma} r_i(\sigma)q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right) \left(\sum_{\sigma} r_j(\sigma)q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right)}{\left(\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right)^2 \left(\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right)^2} \left(\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right) \left(\sum_{\sigma} q_{\sigma} \exp \left(-\sum_{l=1}^{k} \lambda_l r_l(\sigma) \right) \right).$$

Evaluation at $\lambda_1 = \cdots = \lambda_k = 0$ gives

$$\frac{\partial \rho_i}{\partial \lambda_j} \bigg|_{\lambda_1 = \cdots = \lambda_k = 0} = \frac{\left(\sum_{\sigma} r_i(\sigma)r_j(\sigma)q_{\sigma} \right) \left(\sum_{\sigma} q_{\sigma} \right) - \left(\sum_{\sigma} r_i(\sigma)q_{\sigma} \right) \left(\sum_{\sigma} r_j(\sigma)q_{\sigma} \right)}{\left(\sum_{\sigma} q_{\sigma} \right)^2} \left(\sum_{\sigma} q_{\sigma} \right) \left(\sum_{\sigma} q_{\sigma} \right)^2$$

$$= \frac{E_Q(\sigma_{ij}) \cdot 1 - E_Q(\sigma_{i})E_Q(\sigma_{j})}{1^2} = \text{Cov}_Q(\sigma_{ij}).$$

By assumption the KL constraint problem is normalized, hence

$$\frac{\partial \rho_i}{\partial \lambda_j} \bigg|_{\lambda_1 = \cdots = \lambda_k = 0} = \text{Cov}_Q(\sigma_{ij}) = \delta_{ij}.$$

The Jacobian $\frac{\partial (\rho_1,\ldots,\rho_k)}{\partial (\lambda_1,\ldots,\lambda_k)} = I_k$ is thus invertible. □

References

[AFHS97] M. Avellaneda, C. Friedman, R. Holmes, and D. Samperi, Calibrating volatility surfaces via relative-entropy minimization. App. Math. Finance 4, number 1, 37-64 (1997).

[CoTh12] T.M. Cover, and J.A. Thomas, Elements of information theory. John Wiley & Sons (2012).

[Et02] P. Etingof, Geometry and quantum field theory. MIT OpenCourseware 18.238 (2002), Ch. 2.3.

[FrLe64] H.L. Frisch, and J.L. Lebowitz The equilibrium theory of classical fluids. New York, N.Y.: Benjamin (1964).

[Ja57I] E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, issue 4, 620-630 (1957). American Physical society.

[Ja57II] E.T. Jaynes. Information theory and statistical mechanics II. Phys. Rev. 108, issue 2, 171-190 (1957). American Physical society.

[LTR16] H.W. Lin, M. Tegmark, and D. Rolnick. Why does deep and cheap learning work so well?. arXiv preprint arXiv:1608.08225 (2016).

[Sh08] S.M. Shell, The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. chem. phys. 129, number 14, 144108 (2008). American Institute of Physics.
