EFFECT OF NITROGEN, PHOSPHORUS, POTASSIUM, BORON AND MOLYBDENUM ON GROWTH OF CAULIFLOWER

B. Hossaina\ast, N. M. Jahangirb, M. Shamsuddinb, M. R. Bhuiyana and J. Haiderc

aSoil Science Discipline, Khulna University, Khulna 9208, Bangladesh
bSoil Resources Development Institute, Khulna, Bangladesh
cInstitute of Post Graduate Studies in Agriculture, Gazipur, Bangladesh

Abstract: The results of the experiments conducted on a high land belonging to Salna Series under Madhupur Tract (Shallow Red Brown Terrace Soil) with different rates of N, P, K, S, B and Mo with cow dung and organic compost evince that the application of $N_{120}P_{120}K_{100}S_{20}B_{1}Mo_{0.2}OC_{0.5}$ (T_{16}) had the best effect on the growth and yield of cauliflower followed $N_{120}P_{180}K_{100}S_{20}B_{1}Mo_{0.2}CD_{10}(T_{7})$.

Key words: Shallow Red Brown Terrace Soil; Fertilizers; Cauliflower; Growth

Introduction

Cauliflower (Brassica oleracea var. Botrytis) is one of the commercially important vegetable crops in Bangladesh. One hundred gram of edible portion of cauliflower contains calories 31, protein 2.48, calcium 22 mg, vitamin A 40 I. U, thiamine 0.2 mg, ascorbic acid 70 mg, riboflavin 0.1 mg, and niacin 0.57 mg (Anonymous, 1989). Vegetable production in our country is about 2.80 million tones per year of which 83.90\% is produced in winter and only 16.91\% in summer season (BBS, 1993). The present consumption of vegetable is only 25 g/head/day. Daily per capita vegetable consumption is very low in Bangladesh compared with some other Asian countries like Thailand (164g), china (268g), Japan (348g), India (167g) and Myanmar (151g), (FAO, 1986). One adult should consume a minimum of 200 g vegetables. Production should be increased at least three times from its present production level of 2.80 million including potato and sweet potato. Cauliflower is a nutritious vegetable, which may meet up the nutrition shortage of our people.

Even though Bangladesh has a few local cauliflower varieties of her own, they do not have proper description and uniformity in any respect. The Institute of Post Graduate Studies in Agriculture (IPSA) has however developed an early growing cauliflower line. For higher yields, cauliflower needs a combination of N, P, K, S, B and Mo nutrients.
The present investigation was therefore, designed to study the performance of different combinations of N, P, K, S, B and Mo in respect to growth characteristics of cauliflower.

Materials and Methods

The experiment was conducted on a high land belonging to Salna Series under Madhupur Tract, during the period from October to January. The soil samples representing 0-10 cm depth were collected from different spots of the experimental site and analyzed for their chemical characteristics (Table 1).

Table 1. Chemical and physico-chemical properties of the experimental soil.

Soil properties	Analytical data
Soil pH	5.87
NH₄-N (ppm)	38.0
Total N (%)	0.047
Organic carbon (%)	0.39
C:N ratio	8.10
Available P (ppm)	6.50
Exchangeable K (meq/100g soil)	0.31
CEC (meq/100g soil)	11.05
Available S (ppm)	30.0
Available Zn (ppm)	15.0

The size of each unit plot was 2.4X1.8 m accommodating 12 plants, at a row-to-row and plant-to-plant distance of 60 cm. The treatment combinations involving N, P, K, S, B, Mo, CD (cow dung) and OC (Organic compost) were as follows:

Treatment	Combination	Treatment	Combination
T1	N₀P₀K₀S₀B₀Mo₀CD₀	T₅	N₁₂₀P₁₂₀K₀S₀B₀Mo₀CD₀
T₂	N₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₀	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀
T₃	N₆₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₁	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₀CD₁₀
T₄	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₂	N₁₂₀P₁₂₀K₁₀₀S₂₀B₂Mo₀CD₁₀
T₅	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₃	N₁₂₀P₁₂₀K₁₀₀S₂₀B₂Mo₀CD₁₀
T₆	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₄	N₁₂₀P₁₂₀K₁₀₀S₂₀B₂Mo₀CD₁₀
T₇	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₅	N₁₂₀P₁₂₀K₁₀₀S₂₀B₂Mo₀CD₁₀
T₈	N₁₂₀P₁₂₀K₁₀₀S₂₀B₁Mo₂CD₁₀	T₁₆	N₁₂₀P₁₂₀K₁₀₀S₂₀B₂Mo₀OC₅

Where subscripts to N, P, K, S, Mo and B, indicate their dose in kg ha⁻¹ and CD t/ha. The experiment was conducted in a randomized complete block design with There replications. The fertilizers (cow dung compost, TSP, gypsum, solubar and molybdate) were broadcast and incorporated with soils properly. Urea and MP were top dressed in two equal installments, at 15 and 30 days after transplanting. The 28 days old polybag seedlings of the cauliflower line were transplanted in the experimental plots. The transplanted seedlings were protected against strong sunshine by banana leaf sheath cuttings. Shading and irrigation were continued till the seedlings were considered to be settled. After seedling establishment, cultural and intercultural operations were done timely through out the growing period. Five plants were randomly collected from each
plot and plant height was measured from base of the plant up to tip of the leaf. Twelve leaves were collected from four plants of each plot and their size (length X breadth) was measured, number of leaves per plant and single leaf area (length X Breadth X 0.660) per plant was determined.

Four plants were collected randomly from each plot and over dried at 72°C for 72 hours. Dried samples were ground using a grinding machine. The plant sample of different treatments was analyzed for N, P, and K. Nitrogen content was estimated following colorimetric method (Yamakawa, 1993), phosphorus and potassium by vanadomolybdate method (Yamakawa, 1993).

Results and Discussion

Plant height, the number of leaves per plant, leaf size and leaf area were significantly influenced by different fertilizer treatments (Table 2). Nitrogen and phosphorus at the rate of 120 kg ha\(^{-1}\), potassium at the rate of 100 kg ha\(^{-1}\), sulfur at the rate of 20 kg ha\(^{-1}\), boron at the rate of 1 kg ha\(^{-1}\), molybdenum at the rate of 0.2 kg ha\(^{-1}\) and organic compost at the rate of 0.5 ton ha\(^{-1}\) (T16) contributed maximum to the growth.

Table 2. Effect of different fertilizer treatments on physical character of cauliflower.

Treatment	Plant height (cm)	Number of leaves/plant	Size of leaf (m\(^2\))	Area of leaf (m\(^2\))
T1	27.80	19.78	0.018	0.246
T2	32.29	17.66	0.025	0.298
T3	42.81	18.33	0.057	0.790
T4	45.74	21.78	0.067	0.974
T5	46.19	22.33	0.073	1.097
T6	46.08	20.56	0.070	0.610
T7	45.57	21.00	0.065	0.899
T8	42.28	21.56	0.053	0.773
T9	43.18	21.33	0.061	0.877
T10	43.34	20.56	0.073	0.972
T11	43.27	22.00	0.055	0.860
T12	41.21	20.67	0.059	0.784
T13	45.60	20.67	0.068	0.903
T14	45.37	21.78	0.068	0.990
T15	45.28	22.33	0.063	0.854
T16	47.61	23.00	0.074	1.124
LSD\(_{05}\)	6.02	2.79	0.015	0.223
CV\%	8.43	7.99	14.64	16.23

Maximum plant height (47.61 cm) was observed in T16, which did not differ from other treatments except T1, T2 and T12. Plant height increased with increasing rates of nitrogen (Table 3). Nitrogen application at the rates of 60 and 120 kg/ha in presence of other elements showed 32.58 and 41.65% higher plant height than that of control (T2) treatment, respectively. Balyan et al. (1988) who obtained maximum plant height in cauliflower with 120 kg N/ha when 160 kg N/ha was applied a reduction in plant height was noticed. Plant height was not influenced by the different levels of potassium (Table...
3). Deshi et al., (1964) reported no significant difference in cauliflower with 112 kg k/ha. Plant height was not also influenced by the P and Mo applications (Table 3). The highest number of leaves was obtained in T_{16} treatment which was statistically identical to other treatments except T_{1}, T_{2} and T_{3}. The results were in agreement with to those of Balyan et al. (1988). Number of leaves was not affected by the different levels of N, P, K, and Mo applications.

Table 3. Effect of nitrogen, phosphorus, potassium and molybdenum fertilizer treatments on physical character of cauliflower.

Nutrient levels	Plant height (cm)	Number of leaves/plant	Size of leaf (m²)	Area of leaf (m²)
Nitrogen levels (kg/ha)				
0	32.29	17.66	0.025	0.298
60	42.81	18.33	0.057	0.790
120	45.74	21.78	0.067	0.974
LSD _0.05	8.44	NS	0.124	0.143
CV%	9.24	16.34	9.62	9.46
Phosphorus levels (kg/ha)				
0	46.19	22.23	0.073	1.097
60	46.08	20.56	0.070	0.610
120	45.74	21.78	0.067	0.974
180	45.57	21.00	0.065	0.899
LSD _0.05	NS	NS	NS	0.154
CV%	8.00	3.35	10.89	8.64
Potassium levels (kg/ha)				
0	42.28	21.56	0.053	0.773
50	43.18	21.33	0.061	0.877
100	45.74	21.78	0.067	0.974
LSD _0.05	NS	NS	NS	NS
CV%	4.28	3.03	13.60	11.12
Molybdenum levels (kg/ha)				
0	41.21	20.67	0.059	0.784
0.1	45.60	20.67	0.068	0.903
0.2	45.74	21.78	0.067	0.974

Maximum leaf size (0.074 m²) was obtained the in T_{16} followed by T_{5} (0.073 m²) and T_{10}. A significant increase in leaf size was observed when N was applied at the rate of 60 kg/ha. When 120 kg N/ha was applied, leaf size was increased only by 17% compared with 60 kg N/ha. Nitrogen application at rates of 60 and 120 kg/ha in presence of other nutrient elements age 128 to 168% higher leaf size over N control (T2) treatment respectively. Rajput and Singh (1975) obtained maximum leaf size with 120 kg N/ha. Leaf size was not significantly influenced by the different levels of P, Balyan et al. (1988) obtained no effect of P fertilizer on leaf size. Leaf size was also not influenced by the different levels of K and Mo applications.

Maximum leaf area (1.124 m²) was observed in T_{16} treatment having no with T_{4} (1.097 m²), T_{9} (0.974 m2), T_{10}, T_{13} and T_{14} treatment. Leaf area was significantly influenced by different levels of N and P fertilizer. Rajput and Singh (1975) obtained maximum leaf area in cauliflower with 120 kg N/ha. It was not influenced by the different levels of Mo.
and K application. Deshi et al. (1964) reported no significant effect in cauliflower with 112 kg K/ha.

Nutrient Uptake: Nutrients uptake by cauliflower is presented in Table-4. Nitrogen, phosphorus and potassium uptake by plants were inconsistent to some extent with the treatments. The highest uptake of nitrogen (54.92 kg/ha), phosphorus (100.40 kg/ha) and potassium (280.15) was found in T_{16} treatment and lowest uptake in control (T_{1}) treatment.

Table 4. Nitrogen, phosphorus and potassium uptake by cauliflower as influenced by different fertilizer treatments.

Treatments	Nitrogen kg/ha	Phosphorus kg/ha	Potassium kg/ha
T_{1}	11.90	15.20	73.68
T_{2}	13.42	70.50	112.15
T_{3}	36.10	77.10	243.60
T_{4}	54.20	80.59	258.57
T_{5}	50.75	57.50	165.34
T_{6}	52.78	60.59	250.85
T_{7}	53.88	83.70	265.90
T_{8}	53.50	58.21	190.50
T_{9}	52.75	65.12	248.31
T_{10}	50.89	72.65	185.10
T_{11}	52.62	79.98	164.11
T_{12}	52.51	75.59	144.92
T_{13}	53.10	77.23	217.70
T_{14}	52.82	78.75	225.95
T_{15}	53.21	76.85	210.35
T_{16}	54.92	100.40	280.15

From the findings of this experiment it can be concluded that the application of N_{120}P_{120}K_{100}S_{20}B_{1}Mo_{0.2}OC_{0.5}(T_{16}) had the most favourable effect with respect to growth and yield of cauliflower followed by N_{120}P_{180}K_{100}S_{20}B_{1}Mo_{0.2}CD_{10}(T_{7}). Therefore, it may be recommended that higher doses of nitrogen, phosphorus and potassium with appropriate doses of S, B, Mo fertilizers and organic compost is effective for optimum growth of cauliflower in Shallow Red Brown Terrace soils.

References

Anonymous, 1989. Year Book of Agricultural Statistics of Bangladesh Bureau of Statistics, Ministry of Planning, Dhaka, 114 pp.

Balyan, D.S., Dhankar, B.S., Ruhal, D.S. and Singh, K.P. 1988. Growth and yield of cauliflower variety, Snowball 16 as influenced by nitrogen, phosphorus and zinc. *Haryana Journal of Horticulture Science*, 17 (3-4): 247-254.

BBS. 1993. Statistical Year Book of Bangladesh. Statistics Division. Ministry of Planning. Govt. of the Peoples Republic of Bangladesh, 120 pp.

Deshi, N.S., Padda, D.S., Kumar, J.C. and Malik, R.S., 1964. Effect of nitrogen, Phosphate and potash on the yield of cauliflower, *Punjab Horticulture*, 4 (3-4): 176-179.
Hossain, B., Jahangir, N.M., Shamsuddin, M., Bhuiyan, M.R. and Haider, J., 2000. Effect of nitrogen, phosphorus, potassium, boron and molybdenum on growth of cauliflower

FAO., 1986. Production Year Book. Food and Agriculture Organization of the United Nations, Rome, Italy.

Jackson, M.L., 1985. Soil Chemical Analysis. Prentice Hall of India (Pvt.) Ltd. New Delhi.

Rajput, C.B.S. and Singh, K., 1975. Response of cauliflower cultivar Snowball-16 to various levels and methods of nitrogen application. Bangladesh Horticulture, 3 (1): 23-30.

Yamakawa, T., 1993. Laboratory methods for soil science and plant nutrition. IPSA-JICA project publication No. 2 IPSA, Gazipur, Bangladesh.