ABSTRACT
Soil phosphorus (P) availability is a limiting factor for coffee seedling growth. Usually, large amounts of P fertilizers are required, generating nutritional imbalance, increasing production costs, and raising environmental concerns in water pollution. The use of arbuscular mycorrhizal fungi (AMF) can enhance plant P uptake and growth and reduce the dose of P fertilizers. A greenhouse experiment was conducted in a substrate containing Paleudult soil and quartz sand, with low level of soluble P (1 mg kg⁻¹), to establish the effect of AMF inoculation with *Rhizoglomus fasciculatum* on coffee (*Coffea arabica* L. cv. Colombia) seedlings growth and P uptake under three levels of P in soil solution (0.002, 0.02, and 0.2 mg L⁻¹). AMF colonization was significantly reduced when contents of P in solution increased. Shoot dry weight and P foliar concentration were increased by the AMF inoculation when soil P in solution was 0.02 mg L⁻¹; these effects were lower at 0.2 mg L⁻¹ and null at 0.002 mg L⁻¹ P. Results showed that AMF inoculation can play an important role in the growth of coffee seedlings as long as the content P in soil solution maintains intermediate level. At the lowest P level, the response of coffee seedlings to AMF inoculation was ineffective, while at the highest level, AMF application was unnecessary for coffee growth.

Key words: *Coffea arabica*, *Rhizoglomus fasciculatum*, mycorrhizal colonization, shoot dry weight, soil testing.

Introduction
Coffee represents one of the most important agricultural products of Colombia (Barjolle *et al.*, 2017). Currently, Colombia has 844,700 ha planted with coffee, 84% corresponding to Colombia, Castillo®, Cenicafé 1® and Tabi®; cultivars developed by Cenicafe, which are resistant to the coffee leaf rust disease (FNC, 2021). These coffee cultivars are highly productive and have an outstanding beverage quality (Echeverry-Giraldo *et al.*, 2020). The major concern for coffee growers is to maintain high production levels at a low cost; coffee contributes significantly to the national productivity and gross domestic product and supports approximately 540,000 families, mostly small farm-holders (CCGF, 2020).

Coffee plants have a high demand for phosphorus (P) during nursery stage and vegetative growth. These requirements are commonly satisfied by a high dose of soluble P fertilizers (Ávila *et al.*, 2007; Sadeghian & González, 2012), which increase production costs and increase environmental concerns (Ni & Wang, 2015; Tian *et al.*, 2017).
A solution to this problem is the biotechnological use of arbuscular mycorrhizal fungi (AMF), which can enhance plant P uptake (Cardoso et al., 2017) and growth of coffee seedlings (Rivillas & Dodd, 1996; Osorio & Habte, 2014), due to its capability to explore higher soil volume through extra-radical hyphae (Andrade et al., 2009). These effects are also positive under drought conditions, where AMF colonization efficiently makes use of water conditioning the plant stomatal opening and the leaf turgor (Augé, 2004).

AMF has an important role in organic/biological coffee system production where the use of chemical synthesis P fertilizers is restricted (Chiputwa et al., 2015; Sepúlveda et al., 2016). This bio-technology is environmentally friendly (Cardoso & Kuyper, 2006), cost-effective and contributes to reducing P fertilization (Jaramillo & Osorio, 2009; Rai et al., 2013), considering that the demand of phosphoric fertilizers has exceeded the supply and the prices have globally increased (Williams, 2021), demonstrating, in a short time, high sensitivity on market (Alewell et al., 2020).

Several studies have been published about AMF colonization in different Coffea arabica varieties (Bolaños et al., 2000; Lebrón et al., 2012; Sewnet & Tuju, 2013; Franca et al., 2014; De Beenhouwer et al., 2015). In respect to the response of coffee plant growth during the nursery stage to AMF applications, Orozco (1988) evaluated Gigaspora margarita (GM), Entrophospora colombiana (EC), Glomus manihotis (GMH), AMF native (N), and GM-EC-GMH-N combination, in a sterile soil (P-Bray II level: 151 mg kg⁻¹) and found best results with GM and combining GM-EC-GMH-N. Recently, Sadeghian and Ospina (2021), working with an AMF containing 50 spores/g inoculum according to technical sheet of product and composed by AMF containing 50 spores/g inoculum according to technical sheet of product and composed by Glomus sp., Entrophospora sp. and Scutellospora sp. (20 g/plant) at two levels of P (1 and 2 g P₂O₅/plant), did not find an additive effect of AMF. Hernández-Acosta et al. (2020) carried out an experiment in coffee seedlings cultivars Garnica, Catimor, Caturra and Catuai growing in a sterilized substrate (P-Bray II level: 33 mg kg⁻¹) and inoculated with different AMF (10 g/plant), with its quality previously verified (colonization between 57 and 65%). Plant height and dry biomass were positively affected by the joint application of Glomus claroideus, Rhizophagus diaphanus, and Paraglomus albicum. Changes in the leaf P content varied among varieties, achieving highest levels when the AMF were applied in consortium (Hernández-Acosta et al., 2020).

Based on the last consideration, despite promising effects reported by using AMF, the response of coffee during the nursery stage to its application has been uncertain, and in some cases, inconsistent, due to variations in the experimental conditions, soil fertility status (sterile o non-sterile substrate, P level), species, formulations of AMF (single species application o joint application of various AMF species), dose per plant, as well as quality of AMF. In addition, few studies carried out verifications of AMF colonization at the end of the experimental goal to corroborate the real effect of AMF on plant growth under soil conditions.

Although more than 100 species of AMF establish association with coffee plants (Hernández-Acosta et al., 2021), in Colombia, there are few options based on AMF formulations as related to their quality for use in soil-coffee systems and to variability in soil fertility, particularly P availability in different soils.

Taking in account these issues, the hypothesis of this study was: plant P uptake and growth promotion of coffee seedlings due AMF inoculation depend on the soil P availability. Thus, our aim was to evaluate the response of coffee seedlings of C. arabica cv. Colombia to the inoculation of the AMF Rhizoglomus fasciculatum under different levels of P in the soil solution.

Materials and methods

The study was conducted under greenhouse conditions in the Universidad Nacional de Colombia in Medellín (6°15' N, 75°35' W, 1495 m a.s.l.). A sub-superficial (30-50 cm) soil sample from a Paleudult - Bt horizon (P-Bray II: 1 mg kg⁻¹) was air-dried, passed through a 4 mm sieve, mixed with quartz sand (soil:quartz sand ratio w/w of 2:1), and autoclaved twice at 120°C and 0.1 MPa for 1 h. Based on a soil test, the following fertilizers were applied to 1 kg of the soil-sand mixture: 2 g of calcium carbonate, 436 mg of ammonium sulfate, 1550 mg of calcium sulfate, 980 mg of magnesium sulfate, 5 mg of Fe-EDTA, 5 mg of Cu-EDTA, 5 mg Zn-EDTA, and 5 g Borax.

A soil P adsorption isotherm was conducted following the procedure proposed by Fox and Kamprath (1970) to determine the P requirement and to achieve three levels of P in soil solution: 0.002, 0.02, and 0.2 mg L⁻¹. Accordingly, KH₂PO₄ was applied at three doses: 0.95, and 2,800 mg kg⁻¹, respectively, and mixed thoroughly. To balance the level of potassium added, potassium sulfate was applied to the first two levels (1,533 and 1,066 mg kg⁻¹). The substrate was transferred into black plastic bags of 17x23 cm with capacity of 1.8 kg per bag, dry basis, the recommended conditions to grow coffee seedlings at the nursery stage. Then, the substrate was left uninoculated (control) or inoculated with 50 g of a crude mycorrhiza containing 250 spores of...
Results and discussion

The variables under study were affected by the treatments. For instance, mycorrhizal colonization was only detected in those plants grown in the inoculated substrate, regardless of the soil solution P level (Fig. 1). Mycorrhizal colonization did not differ between 0.002 mg L\(^{-1}\) and 0.02 mg L\(^{-1}\) P levels (54% and 49%, respectively), but these two were statistically different (P<0.05) from that at 0.2 mg L\(^{-1}\) P level, which had the lowest value (9%). These results indicate that, in young coffee seedlings, mycorrhizal colonization depended on the P level in the soil solution.

Phosphorus concentration in soil is a key factor to explain AMF colonization; while Hernández-Acosta et al. (2020) and Cuervo (2017) worked under P concentration in soil corresponding to 33.0 and 2.0 mg kg\(^{-1}\), respectively, soil P concentration in our study was 1.0 mg kg\(^{-1}\). According to Moreira et al. (2019), AMF colonization decreased significantly (around 50%) as P applications increased up to 0.74 g kg\(^{-1}\) of soil in coffee Catuai Vermelho IAC 99 growing in substrate without sterilization. These findings demonstrate that AMF symbiosis is activated as the defense of plants against combined stress conditions as documented by Rashad et al. (2021).

González-Osorio, Góngora Botero, Jaramillo Padilla, and Osorio: Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation

FIGURE 1. Mycorrhizal colonization in roots of C. arabica cv. Colombia, in a substrate inoculated with the mycorrhizal fungus R. fasciculatum at three levels of P in solution. Columns a are significantly different from b (P<0.05) according to the Duncan multiple range test. Bars represent the standard errors.
The shoot dry weight (SDW) was significantly affected by the soil solution P concentration, the AMF inoculation, and the interaction between both factors. At the 0.002 mg L\(^{-1}\) level of P, the AMF inoculation did not affect the SDW, which fluctuated between 0.39 and 0.52 g/plant (Fig. 2). By contrast, at the 0.02 mg L\(^{-1}\) level of P, the inoculation with *R. fasciculatum* significantly increased the SDW by 3.05x respect to the uninoculated control at 1.03 g/plant on average. Similarly, at 0.2 mg L\(^{-1}\) level, the SDW was significantly affected by the inoculation with *R. fasciculatum* (3.13 g/plant), while the uninoculated control was 2.07 g/plant.

![Figure 2](image2.png)

FIGURE 2. Shoot dry weight (SDW) of coffee cv. Colombia seedlings grown in a substrate either uninoculated (control) or inoculated with *R. fasciculatum* at three levels of P in solution. Different lowercase letters indicate significant differences according to the Duncan multiple test \((P<0.05)\). Bars represent the standard errors.

The foliar P concentration was significantly affected by the interaction soil P level x AMF inoculation only at day 150. At the 0.002 mg L\(^{-1}\) level, the AMF inoculation did not increase the foliar P content at any time of evaluation; the values ranged from 0.07 to 0.15%. By contrast, at 0.02 mg L\(^{-1}\) the inoculation with *R. fasciculatum* significantly increased the foliar P concentration from 110 d after transplanting; the uninoculated plants had values between 0.10 and 0.13%, whereas the inoculated plants had between 0.17 to 0.19%, respectively. On the other hand, at 0.2 mg L\(^{-1}\) of P the AMF inoculation did not significantly affect the foliar P concentration (Figs. 3A-C).

![Figure 3A](image3A.png)

FIGURE 3A. Foliar P concentration (%) in *C. arabica* cv. Colombia seedlings grown in a substrate either uninoculated or inoculated with *R. fasciculatum* and three levels of P in solution. The asterisks indicate significant \((P<0.05)\) differences at the respective time between the respective means. Bars represent standard errors.

In addition, the P foliar content (µg/leaf disc) showed a similar behavior to the P concentration (%). At the 0.002 mg L\(^{-1}\) level, the AMF did not promote increase of foliar P content at any time, the values ranged from 0.93 to 1.19 µg/leaf disc. By contrast, at the 0.02 mg L\(^{-1}\), the inoculation with *R. fasciculatum* significantly increased this nutrient in the leaf tissues, particularly after 110 d of growth. For example, uninoculated plants had values among 1.11, 1.08, and 1.22 µg/leaf disc at 110, 130, and 150 d, respectively, while the inoculated plants had 2.44, 2.38, and 2.34 µg/leaf disc at the same sampling days. These results represent increases of foliar P content of 119%, 120%, and 92%, respectively (Figs. 4A-C).

The results suggest that the use of *R. fasciculatum* is adequate to promote plant growth and P uptake for coffee
The lack of response at the lowest level of soluble P is because this concentration is too low for uptake by both plant and AMF. In other words, the low soil P availability was a limiting factor to the mycorrhizal dependency (Osorio & Habte, 2014). Since the plant cannot grow properly under such condition, it cannot share carbon with the mycorrhizal fungus. Mycorrhizal plants invest nearly 20 to 30% of the fixed photosynthate carbon compounds in order to satisfy the nutritional requirements of the fungus (Eskandari et al., 2017), and specifically in coffee plants increasing photosynthetic rate (Cruz et al., 2020). This carbon allocates to the extra radical fungal hyphae, which operate as an extension of the plant root system (Lebrón et al., 2012) and acquire P from surrounding soil areas beyond the plant roots zone (López-Arredondo et al., 2014).

An opposite scenario occurred at the highest soil P availability level, where the AMF inoculation seems to be unnecessary, because there is enough P for plant growth and the magnitude of the response is lower (Harrison, 1999). In fact, several authors showed that AMF inoculation at that high level of soil P can produce negative effects due to an imbalance associated to an expensive metabolic cost required to support a micro-symbiont system with carbon, which does not improve the plant performance (Roth & Paszkowski, 2017; Wang et al., 2017). For instance, Jaramillo and Osorio (2009) indicated negative effects in coffee seedlings cultivars Caturra and Colombia using Glomus fistulosum inoculum when the soil P availability was 0.2 mg L\(^{-1}\).

In order to contextualize the P values in the soil solution, González (2018) found that many soils in the Colombian coffee region according to the magnitude of P fixation in soils present values between P\(_{0.1}\) and P\(_{0.2}\) in soil solution, corresponding to P-Bray II levels between 10 and 30 mg kg\(^{-1}\).

As shown by Sadeghian and Ospina (2021), coffee plants require between 1.0 and 2.0 g of P\(_{2}O_{5}\)/plant to satisfy the requirements during the nursery stage. This amount generates, according to the soil order, P levels in the soil from 200 to 490 mg kg\(^{-1}\) P-Bray II. In consequence, high doses of fertilizers generate soil salinity, with a negative impact on coffee growth and P uptake. In that case, the SDW increase with AMF inoculation was 10 times higher in respect to the uninoculated plants. Earlier works of Habte and Bittenbender (1999) in an Oxisol soil from Hawaii with coffee seedlings variety Typica showed positive response in plant growth when Glomus aggregatum was used.

Figure 4

Foliar P content (µg/leaf disc) of coffee C. arabica cv. Colombia seedlings grown in a soil either uninoculated (control) or inoculated with the AMF *R. fasciculatum* at three levels of soil solution P. The asterisks indicate significant (P<0.05) difference at the respective time between the respective means. Bars represent standard errors.

González-Osorio, Góngora Botero, Jaramillo Padilla, and Osorio: Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation
on the AMF colonization (Rashad et al., 2021) and, hence, a lower effect on plant growth.

It is also likely that at 0.2 mg L\(^{-1}\) the availability of other essential nutrients (e.g., Zn) can decrease (Bhattacharya & Bagyaraj, 2002; Ozdemir et al., 2010; Sewnet & Tuju, 2013; Zhang et al., 2017), thus, affecting the functioning, formation, and multiplication of AM fungi in the rhizosphere (Dutt et al., 2013; Sewnet & Tuju, 2014).

In summary, this study clearly demonstrated a positive effect of AMF \(R.\) \(fasciculatum\) inoculation on SDW and foliar phosphorus (P) content of coffee seedlings only if the P level in the soil solution is 0.02 mg L\(^{-1}\). At 0.002 mg L\(^{-1}\) of P, the AMF inoculation proceeds only if P fertilizers were added to reach an optimal P level for the mycorrhizal association. On the other hand, if the P level in the soil solution is 0.02 mg L\(^{-1}\), the AMF inoculation can be used without any P fertilization. By contrast, when P concentration in soil solution is as high as 0.2 mg L\(^{-1}\), the AMF inoculation seems to be unnecessary.

Conflict of interest statement
The authors declare that there is no conflict of interest regarding the publication of this article.

Author’s contributions
WO conceived the idea, designed the research, and was involved in planning and supervising the work. HG and WO performed statistical analysis of all data. HG, CEG and WO wrote the manuscript. SPJ conducted the laboratory experiments. HG, WO and CEG provided critical feedback, helped shape the research, and read and approved the manuscript.

Literature cited
Allevew, C., Ringleval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. *Nature Communications, 11*, Article 4546. https://doi.org/10.1038/s41467-020-18326-7

Andrade, S. A. L., Mazzafera, P., Schiavinato, M. A., & Silveira, A. P. D. (2009). Arbuscular mycorrhizal association in coffee. *The Journal of Agricultural Science, 147*(2), 105–115. https://doi.org/10.1017/S0021859608008344

Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. *Canadian Journal of Soil Science, 84*(4), 373–381. https://doi.org/10.4141/S04-002

Ávila, W., Sadeghian, S., Sánchez, P., & Castro, H. (2007). Producción de almácigos de café en el departamento de Santander con diferentes fuentes de materia orgánica y de fósforo. *Avances Técnicos Cenicafé*, Article 356. https://www.cenicafecol.org/es/publications/avt0356.pdf

Aziz, T., & Habte, M. (1987). Determining vesicular–arbuscular mycorrhizal effectiveness by monitoring P status of leaf disks. *Canadian Journal of Microbiology, 33*(12), 1097–1101. https://doi.org/10.1139/m87-191

Barjolle, D., Quiñones-Ruiz, X. F., Bagal, M., & Comoé, H. (2017). The role of the state for geographical indications of coffee: case studies from Colombia and Kenya. *World Development, 98*, 105–119. https://doi.org/10.1016/j.worlddev.2016.12.006

Bhattacharya, S., & Bagyaraj, D. J. (2002). Effectiveness of arbuscular mycorrhizal fungal isolates on arabica coffee (Coffee arabica L.). *Biological Agriculture & Horticulture, 20*(2), 125–131. https://doi.org/10.1080/01448765.2002.9754956

Bolaños, M. M., Rivillas-Osorio, C. A., & Suárez-Vásquez, S. (2000). Identificación de micorrizas arbusculares en suelos de la zona cafetera colombiana. *Revista Cenicafé, 51*(4), 245–262.

Cardoso, E. J. B. N., Nogueira, M. A., & Zangaro, W. (2017). Importance of mycorrhizae in tropical soils. In J. L. de Azevedo, & M. C. Quecine (Eds.), *Diversity and benefits of microorganisms from the Tropics* (pp. 245–267). Springer. https://doi.org/10.1007/978-3-319-55804-2_11

Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. *Agriculture, Ecosystems & Environment, 116*(1–2), 72–84. https://doi.org/10.1016/j.agee.2006.03.011

Chiputwa, B., Spielman, D. J., & Qaim, M. (2015). Food standards, certification, and poverty among coffee farmers in Uganda. *World Development, 66*, 400–412. https://doi.org/10.1016/j.worlddev.2014.09.006

Colombian Coffee Growers Federation--CCGF. (2020). Management report. When the world seemed to stop due to pandemic, we coffee it turn around. Informe de Gestión 2020. https://doi.org/10.38141/10793/2020

Cruz, R. de S., Araújo, F. H. V., França, A. C., Sardinha, L. T., & Machado, C. M. M. (2020). Physiological responses of *Coffea arabica* cultivars in association with arbuscular mycorrhizal fungi. *Coffee Science, 15*, Article e151641. https://doi.org/10.25186/cs.v15i.1641

Cuervo, C. J. (2017). Dependencia micorrizal de variedades de café bajo diferentes concentraciones de fosfato soluble en el suelo. Universidad Nacional de Colombia, Medellín. [Magister dissertation, Universidad Nacional de Colombia]. UN Medellín Repository. https://repositorio.unal.edu.co/handle/unal/59647

De Beenhouwer, M., Van Geel, M., Ceulemans, T., Muleta, D., Lievens, B., & Honnay, O. (2015). Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffee arabica) in Ethiopia across a management intensity gradient. *Soil Biology and Biochemistry, 91*, 133–139. https://doi.org/10.1016/j.soilbio.2015.08.037

Dutt, S., Sharma, S. D., & Kumar, P. (2013). Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (*Prunus armeniaca* L.). *Scientia Horticulturae, 155*, 97–104. https://doi.org/10.1016/j.scienta.2013.03.012

Echeverri-Giraldo, L. F., Ortiz, A., Gallego, C. P., & Imbachi, L. C. (2020). Caracterización de la fracción lípida del café verde en variedades mejoradas de *Coffea arabica* L. *Revista Cenicafé, 71*(2), 39–52. https://doi.org/10.38141/10778/71203

Eskandari, S., Guppy, C. N., Knox, O. G. G., Flavel, R. J., Backhouse, D., & Haling, R. E. (2017). Mycorrhizal contribution...
to phosphorus nutrition of cotton in low and highly sodic soils using dual isotope labelling (13C and 32P). Soil Biology and Biochemistry, 105, 37–44. https://doi.org/10.1016/j.soilbio.2016.11.004

Federación Nacional de Cafeteros de Colombia-FNC. (2021, September). Sistema de información cafetera @SICA.

Fox, R. L., & Kamprath, E. J. (1970). Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Science Society of America Journal, 34(6), 902–907. https://doi.org/10.2136/sssaj1970.03615995003400060025x

França, A. C., Carvalho, F. P., Franco, M. H. R., de Avelar, M., Souza, B. P., & Stürmer, S. L. (2014). Crescimento de mudas de cafeeiro inoculadas com fungos micorrizicos arbusculares. Revista Brasileira de Ciências Agrárias, 9(4), 506–511. https://doi.org/10.5093/agriaria.v9i4a3938

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

González, O. H. (2018). Biotechnological alternatives to improve phosphorus (P) fertilization efficiency in coffee growing. [Doctoral dissertation, Universidad Nacional de Colombia]. UN Medellín. https://repositoriounal.eco.utfam.edu.co/bitstream/handle/unal/63742/75076781.2018.pdf?sequence=1&isAllowed=y

Habte, M., & Bittenbender, H. C. (1999). Reactions of coffee to soil solution P concentration and arbuscular mycorrhizal colonization. Journal of South Pacific Agriculture, 6, 29–34.

Habte, M., & Osorio, N. W. (2001). Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. University of Hawaii, College of Tropical Agriculture and Human Resources, Honolulu, HI.

Harrison, M. J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiolog -

Hernández-Acosta, E., Trejo-Aguilar, D., Rivera-Fernández, A., Ferrera-Cerrato, R. (2020). La micorriza arbuscular como biofertilizante en cultivo de café. Terra Latinoamericana, 38(3), 613–628. https://doi.org/10.28894/terra.v38i3.659

Hernández-Acosta, E., Banuelos, J., Trejo-Aguilar, D. (2021). Revisión: Distribución y efecto de los hongos micorrízicos en el agroecosistema de café. Revista de Biología Tropical, 69(2), 445–461. http://doi.org/10.15517/rbt.v69i2.42256

Jaitieng, S., Sinma, K., Rungcharoenthong, P., & Amkha, S. (2021). Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee. Soil Science and Plant Nutrition, 67 (1), 97–101. https://doi.org/10.1080/00380768.2020.1848343

Jaramillo, S., & Osorio, W. (2009). Factores que determinan la dependencia micorrizal de las plantas. Suelos Ecuatoriales, 35(2), 34–40.

Kormanik, P. P., Bryan, W. C., & Schultz, R. C. (1980). Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Canadian Journal of Microbiology, 26(4), 536–538. https://doi.org/10.1139/m80-090

Lebrón, L., Lodge, D. J., & Bayman, P. (2012). Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico. International Scholarly Research Notices, Article 148042. https://doi.org/10.5402/2012/148042

López- Arredondo D. L., Leyva- González, M. A., González-Morales, S. I., López-Bucio, J., & Herrera-Estrella, L. (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95–123. https://doi.org/10.1146/annurev-arplant-05213-035949

Moreira, S. D., França, A. C., Grazziotti, P. H., Leal, F. D. S., & Silva, E. de B. (2019). Arbuscular mycorrhizal fungi and phosphorus doses on coffee growth under a non-sterile soil. Revista Caatinga, 32(1), 72–80. https://doi.org/10.1590/1983-21252019v32n108rc

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Ni, Z., & Wang, S. (2015). Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake, Southwest China. Ecological Engineering, 79, 42–50. https://doi.org/10.1016/j.ecoleng.2015.03.005

Orozco, P. F. H. (1988). Efecto de la inoculación con hongos formadores de micorrizas vesicular arbuscular en plántulas de café Coffea arabica. var. Colombia. Suelos Ecuatoriales, 18(2), 213–219.

Osorio, N. W., & Habte, M. (2014). Effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in tropical soils with contrasting phosphate sorption capacity. Plant and Soil, 389(1–2), 375–385. https://doi.org/10.1007/s11104-014-2357-5

Ozdemir, G., Akpinar, C., Sabir, A., Bilir, H., Tangolar, S., & Ortas, I. (2010). Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science, 75(3), 103–110.

Rai, A., Rai, S., & Rakshit, A. (2013). Mycorrhiza-mediated phosphorus use efficiency in plants. Environmental and Experimental Biology, 11, 107–117.

Rashad, Y. M., Fekry, W. M. E., Sleem, M. M., & Elazab, N. T. (2021). Effects of mycorrhizal colonization on transcriptional expres -sion of the responsive factor JERF3 and stress-responsive genes in banana plantlets in response to combined biotic and abiotic stresses. Frontiers in Plant Science, 12, Article 742628. https://doi.org/10.3389/fpls.2021.742628

Rivillas, C., & Dodd, J. C. (1995). The effects of arbuscular mycorrhizal fungi on two different coffee varieties from Colombia and their biochemical detection in roots. Kent, University of Kent. Research School of Biosciences.

Roth, R., & Paszkowski, U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 39, 50–56. https://doi.org/10.1016/j.pbi.2017.05.008

Sadeghian, K. S., & González-Osorio, Góngora Botero, Jaramillo Padilla, and Osorio: Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation

Sadeghian, K., & Osphina, P. M. (2021). Manejo nutricional de café durante la etapa de almácigo. Avances Técnicos Cenicafé, Article 532, 1-8. https://doi.org/10.38141/10779/0532
Sepúlveda, W. S., Chekmam, L., Maza, M. T., & Mancilla, N. O. (2016). Consumers’ preference for the origin and quality attributes associated with production of specialty coffees: Results from a cross-cultural study. *Food Research International, 89* (Part 2), 997–1003. https://doi.org/10.1016/j.foodres.2016.03.039

Sewnet, T. C., & Tuju, F. A. (2013). Arbuscular mycorrhizal fungi associated with shade trees and *Coffea arabica* L. in a coffee-based agroforestry system in Bonga, Southwestern Ethiopia. *Afrika Focus, 26* (2), 111–131. https://doi.org/10.21825/af.v26i2.4912

Tian, J., Boitt, G., Black, A., Wakelin, S., Condron, L. M., & Chen, L. (2017). Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. *Agriculture, Ecosystems & Environment, 239*, 228–235. https://doi.org/10.1016/j.agee.2017.01.022

Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. *Molecular Plant, 10*(9), 1147–1158. https://doi.org/10.1016/j.molp.2017.07.012

Williams G. (2021, August). Phosphate outlook 2022: Geopolitics to be a key market mover. Investing News (INN). https://investingnews.com/phosphate-outlook-2022/

Zhang, W., Liu, D. Y., Li, C., Chen, X. P., & Zou, C. Q. (2017). Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply. *European Journal of Agronomy, 86*, 48–59. https://doi.org/10.1016/j.eja.2017.03.005