investigate whether excitatory ECS of the infarcted cortex or inhibition of the noninfarcted cortex combined with daily impaired-forelimb rehabilitative training (RT) results in greater motor functional recovery compared to RT alone. Immunohistochemical (IHC) analyses and unbiased stereological techniques will be performed to investigate changes in proteins associated with dendritic restructuring (MAP2), synaptic plasticity (PSD95 and synaptophysin), and alteration in the expression of BDNF and NOGO-A.

RESULTS/ANTICIPATED RESULTS: We expect that inhibitory ECS of the noninfarcted motor cortex will improve behavioral outcomes in moderate to severe stroke animals compared with excitatory ECS or no stimulation (RT alone) animals. We predict that the ECS condition that improves motor performance most significantly compared with RT alone will have a corresponding greater increase in remaining ipsi-infarct motor cortical dendritic and synaptic plasticity (demonstrated by a greater density of MAP2, synaptophysin, and PSD-95 immunoreactivity), and greater expression of BDNF. It is unknown, but also expected that better behavioral recovery will coincide with a greater reduction in NOGO-A in the injured motor cortex.

DISCUSSION/SIGNIFICANCE OF IMPACT: These studies will aid in creating a model that will allow for a better understanding of the relationship between brain stimulation, severity of injury and, in future studies, aging. These studies will also help clarify previous conflicting brain stimulation results.

Self-assembling cartilage from equine mesenchymal stem cells: A comparison of bone marrow and cord blood-derived MSCs
Jamie L. White, Jerry C. Hu, Dori L. Borjesson and Kyriacos A. Athanasiou

OBJECTIVES/SPECIFIC AIMS: Joint injury is a common cause of premature retirement for many equine athletes. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) offer a particularly attractive cell source for cartilage engineering. Although bone marrow-derived MSCs (BM-MSCs) have been the most extensively characterized for musculoskeletal tissue engineering, studies suggest cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine superior equine MSC source for cartilage engineering via a self-assembling process (SAP). METHODS/STUDY POPULATION: MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis via 3D culture and then used to generate cartilage via SAP. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring biochemical, mechanical, and histological properties. RESULTS/ANTICIPATED RESULTS: We found that while BM-MSCs possessed higher tensile properties and collagen content, CB-MSCs had superior compressive properties and GAG content. Moreover, CB-MSCs had lower alkaline phosphatase activity and higher collagen type II, suggesting a more hyaline cartilage-like phenotype. DISCUSSION/SIGNIFICANCE OF IMPACT: In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage, and is therefore the superior MSC source for purposes of cartilage self-assembly.

Loss of eptB decreases systemic inflammation during Salmonella infection and allows for evasion of the host immune response
Lillian F. Zhang, Fabian Rivera-Chavez, Hirokata Hiyoshi and Andreas J. Baumler

OBJECTIVES/SPECIFIC AIMS: Our long-term goal is to elucidate the molecular mechanisms and virulence factors that control the differential presentation of infection with Salmonella typhimurium and Salmonella typhi. The objectives of this study are to study the mechanisms that enable S. typhi to trigger a loss of function eptB mutant S. typhimurium strain was generated. Lipopolysaccharide (LPS) was isolated from wild-type and eptB mutant S. typhimurium and, in future studies, aging. These studies will also help clarify previous conflicting brain stimulation results.

2395

Magnetic nanoparticles facilitate tracking of dendritic cells for treatment of malignant brain tumors
Adam Grippin, Elias Sayour, Jon Dobson and Duane A. Mitchell

OBJECTIVES/SPECIFIC AIMS: Immune-based therapies hold great promise for treatment of refractory tumors. However, development is limited by a lack of identified immune correlates to vaccination. We recently showed that dendritic cells (DCs) prolong progression-free survival (PFS) and overall survival (OS) in patients with glioblastoma, and that DC migration to site draining lymph nodes robustly correlates with both PFS and OS. While this appears to be a reliable immune correlate, the complexity of routine labeling for PET and SPECT prohibits validation in a large clinical study. We therefore seek to develop a safe, translatable reporter that can be imaged with a widely available imaging modality.

METHODS/STUDY POPULATION: The cationic liposome 1,2-doleoyl-3-trimethylammonium-propane (DOTAP) was loaded with MRI-imagable iron oxide nanoparticles (IONPs) with or without the neutral molecules PEG and cholesterol. The resulting nanoparticles were loaded with RNA to form RNA-NPs that were characterized with transmission electron microscopy (TEM) and used to transfect DCs in vitro; 4.7 T MRI was then used to image particles or cells in agarose gel phantoms. RESULTS/ANTICIPATED RESULTS: TEM images of RNA-NPs indicate the presence of IONP-loaded liposomes. In vitro transfection experiments demonstrate that iron oxide does not reduce RNA-NP-mediated transfection of DCs. Additionally, small amounts of either PEG or cholesterol within RNA-NPs increased transfection of DC2.4s and enhanced T-cell priming by bone marrow-derived dendritic cells. A series of 4.7 T MRI images of particles in cells, spleens, and LNs demonstrated quantifiable differences in particle density between groups.

DISCUSSION/SIGNIFICANCE OF IMPACT: This data suggests that IONP-loaded RNA-NPs can be imaged with MRI and manipulated to augment DC function. Future work will include in vivo imaging in mice and safety studies to facilitate translation into first-in-human studies. Successful completion of this project would provide a powerful clinical tool to improve and track patient responses to immune therapy.

2427

Metabo-therapy for RARRES1-depleted epithelial cells using repurposed mitochondrial metabolism inhibitor, metformin
Sara Maimoni, Mi-Hye Lee and Stephen Byers
Georgetown - Howard Universities, Washington, DC, USA

OBJECTIVES/SPECIFIC AIMS: The goal of this study is to examine bioenergetic phenotype of retinoic acid receptor responder 1 (RARRES1)-depleted epithelial cells and to facilitate the discovery of personalized metabo-therapeutics in the context of cancers characterized with loss of or low expression of RARRES1. METHODS/STUDY POPULATION: Anchored array and annexinV labeling were used to assess drug resistance and apoptotic phenotype in RARRES1-depleted epithelial cells. Metabolomics, AMP kinase activity, mito-tracker, and extracellular flux assays were used to examine the bioenergetic profile of