Synthesis and biological evaluation of new 1,3,4-thiadiazole derivatives as potent antimicrobial agents

Monica G. Kamel1 · Farid M. Sroor2 · Abdelmageed M. Othman3 · Hamdi M. Hassaneen1 · Tayseer A. Abdallah1 · Fatma M. Saleh1 · Mohamed A. Mohamed Teleb1

Received: 3 June 2022 / Accepted: 26 July 2022 / Published online: 11 August 2022
© The Author(s) 2022

Abstract
A series of 1,3,4-thiadiazole derivatives were designed and synthesized using 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one as starting materials. The treatment of 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one with methyl hydrazinecarbodithioate or hydrazinecarbothioamide afforded 2-[1-[5-methyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine derivatives. The targeted 1,3,4-thiadiazolyl derivatives were prepared by the reaction of 2-[1-[5-methyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine derivatives with hydrazonoyl chloride derivatives. The reaction of N-(4-nitrophenyl)acetohydrazonoyl bromide with 2-[(methylthio)carbonthioyl]hydrazones in absolute ethanol in the presence of triethylamine afforded the corresponding 1,3,4-thiadiazole derivatives. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR, IR, MS, and elemental analysis. Moreover, the antimicrobial activity of the synthesized 1,3,4-thiadiazole derivatives were tested against E. coli, B. mycoides, and C. albicans. Four compounds outperformed the other produced compounds in terms of antimicrobial activity.

Keywords 1,3,4-Thiadiazoles · Alkyl hydrazonoyl bromide · Cycloadditions · IR spectroscopy · Mass spectroscopy · Antimicrobial activity

Introduction
Hydrazonoyl halides are a large group of compounds that have the characteristic functional group –C(X):NNH–. These compounds have gained attention due to their wide biological properties such as anthelmintic, antiarthropodal, antimicrobial, fungicidal, antisarcoptic activities, pharmaceutical and industrial applications that make these chemicals an interesting group in medicinal chemistry [1, 2] in addition to their chemical reactivities in the synthesis of various nitrogen, oxygen, sulfur, and selenium containing compounds [3–25]. We are interested in 1,3,4-thiadiazoles...
which were formed via reactions of hydrazonoyl halides with potassium thiocyanate [26–30], thiosemicarbazide and its aryl derivatives [31], or carbon disulfide [32], in addition to reactions of N-benzylidenenbenzo-hydrazonoyl chloride with potassium ethyl xanthate [33], N-phenylbenzohydrazonoyl chloride with phenylisothiocyanate [34–36], or coupling of aroyldimethylsulfonium bromides with N-nitroso-N-arylacetamide [37, 38]. Many substituted 1,3,4-thiadiazole derivatives exhibit wide range of biological activities such as antimicrobial, antituberculosis, antiviral, carbonic anhydrase inhibitor, antitrypanosomal agent, and anticonvulsant activities (Fig. 1) [39–42]. However, little attention has been given towards alkyl hydrazonoyl halides [43, 44] probably due to difficulties in their preparation and storage. The five-membered aromatic heterocyclic ring of pyrazole and its substituted derivatives are significant biological compounds and a series of research studies have been directed towards these type of derivatives. The presence of the pyrazole moiety in pharmacological agents of various drugs shows a broad spectrum of biological activities and pharmaceuticals such as betazole (H2 receptor agonist), rimonabant (anti-obesity), celecoxib (anti-inflammatory), fezolamide (antidepressant), CDPPB (antipsychotic), difenamizole (analgesic) [45–52].

Herein, we reported the potentiality of N-(4-nitrophenyl)-acetohydrazonoyl bromide (2) and 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one (4) in the synthesis of 1,3,4-thiadiazole derivatives. The antimicrobial activity of the newly synthesized 1,3,4-thiadiazole compounds was tested.

Results and discussion

The starting materials N-(4-nitrophenyl)acetohydrazonoyl bromide (2) and 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one (4) were prepared in a straightforward manner as reported in the literatures. The bromination of 1-ethylidene-2-(4-nitrophenyl)hydrazine (1) afforded 2 which was treated with acetylacetone (3) in the presence of sodium ethoxide to give compound 4 as shown in Scheme 1 [43, 44, 53].

The treatment of 4 with methyl hydrazinecarbodithioate (5) [54, 55] or hydrazinecarbothioamide (6) in ethanol and in the presence of hydrochloric acid as a catalyst afforded methyl 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-ethyldiene]hydrazine-1-carbodithioate (7) or 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethyldiene]hydrazine-1-carbothioamide (8), respectively, as depicted in Scheme 2. The chemical structures of 7 and 8 were elucidated from spectral data (1H NMR, 13C NMR, IR, MS) and elemental analysis. As representative example, the 1H NMR spectrum of compound 7 showed the following signals: four singlets at δ = 2.37, 2.39, 2.50, and 2.52 ppm corresponding to four CH3 groups, pair of doublets at 7.84 ppm and 8.39 ppm corresponding to protons of 4-NO2C6H4 and singlet signal at 12.27 ppm corresponding to proton of NH group. The 13C NMR spectrum showed 13 signals corresponding to asymmetric carbon atoms. Also, the mass spectrum of 7 showed a molecular ion peak at m/z = 363. In addition, the IR spectrum showed band at 3180 cm⁻¹ could be attributed to NH group.

On the other hand, the reaction of compounds 7 and 8 with hydrazonoyl chlorides 9a–9d in the presence of triethylamine at room temperature (in case of 7) or by refluxing (in case of 8) afforded the corresponding pyrazolylthiadiazole derivatives 13a–13d as depicted in Scheme 2. As illustrated in Scheme 3, the proposed mechanism for the formation of 13a–13d involved 1,3-addition of nitrilimines 10, which generated in situ by base-catalyzed dehydrochlorination of hydrazonoyl chlorides 9 using triethylamine, to C=S group of methyl 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethyldiene]hydrazine-1-carbodithioate (7) or 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethyldiene]hydrazine-1-carbothioamide (8) led to the initial formation of thiohydrazonate 11 followed by intramolecular cyclization to give cycloadduct 12. The final products 13a–13d formed by the elimination of methyl mercaptan (in case of 7) or ammonia (in case of 8) of the intermediate 12 as shown in Scheme 3. The structures of compounds 13a–13d were elucidated from their spectral data (1H NMR, 13C

Fig. 1 Biologically active drugs containing 1,3,4-thiadiazole moiety

- Acetazolamide (carbonic anhydrase inhibitor)
- Megazol (antitrypanosomal agent)
- Sulfamethizole (antimicrobial)
Synthesis and biological evaluation of new 1,3,4-thiadiazole derivatives as potent…

NMR, IR, MS) and elemental analysis. For example, the 1H NMR spectrum of 13a showed two singlets at $\delta = 2.52$ and 2.63 ppm of three CH$_3$ groups, multiplet at 7.27–7.84 ppm (10H, aromatic protons) and pair of doublets at 8.25 and 8.38 ppm corresponding to the protons of 4-NO$_2$C$_6$H$_4$. Its 13C NMR spectrum showed 21 signals of asymmetric carbon atoms. The mass spectrum showed a molecular ion peak at $m/z = 509$. In addition, its IR spectrum revealed the absence of NH and NH$_2$ bands.

The targeted 1,3,4-thiadiazole derivatives 17a–17h were synthesized in two different methods. The first pathway, the thiadiazole derivatives 17a–17h were synthesized in one step by the treatment of 2 with 2-[(methylthio)carbonthioyl]-hydrazones 16a–16h [52–54] in the presence of triethylamine at room temperature as illustrated in Scheme 4. In the second pathway, by the treatment of N-(4-nitrophenyl)-acetohydrazonoyl bromide (2) with methyl hydrazinecarbothioate (5) to give 2-hydrazono-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (14). Compound 14 was separated and reacted with the appropriate aldehydes or ketones 15 using 2-propanol as a solvent in the presence of hydrochloric acid to afford the corresponding 1,3,4-thiadiazole derivatives 17 (Scheme 4).

The chemical structures of the 1,3,4-thiadiazole compounds 17a–17h were established by their spectral data (1H NMR, 13C NMR, IR, MS) and elemental analysis. For example, the IR spectrum of 17a showed characteristic band at 1713 cm$^{-1}$ could be attributed to C=O stretching frequency. Its 1H NMR spectrum showed triplet signal at $\delta = 1.39$ ppm corresponding to methyl group of OCH$_2$CH$_3$, two singlet signals at 2.31 and 2.52 ppm corresponding to the CH$_3$ groups, quartet signal at 4.33 ppm corresponding...
to methylene group of OCH2CH3 and two doublet signals at 8.33 and 8.42 ppm of the protons of 4-NO2C6H4. Its 13C NMR spectrum showed 12 signals for asymmetric carbon atoms. Its mass spectrum showed the molecular ion peak at m/z = 349.

Likewise, the treatment of the starting material 2 with methyl carbodithioate derivatives 18–21 under the same conditions afforded the corresponding 1,3,4-thiadiazole derivatives 22–25, respectively (Scheme 5). The chemical structures of 22–25 were confirmed by the spectral data (1H NMR, 13C NMR, IR, MS) and elemental analysis. For example, the 1H NMR spectrum of 25 showed multiplet at δ = 1.97–2.01 ppm corresponding to CH2 group, singlet at 2.50 ppm refer to the CH3 group, two triplets at 2.86 and 3.01 ppm corresponding to two CH2 groups, multiplet at 7.17–7.32 ppm due to three aromatic protons, doublet at 8.26 ppm due to one aromatic proton and pair of doublets at 8.34 and 8.47 ppm corresponding to protons of 4-NO2C6H4. Its 13C NMR spectrum showed 17 signals for asymmetric carbon atoms. Its mass spectrum showed the molecular ion peak at m/z = 379.

Antimicrobial activity

Table 1 and Fig. 2 illustrate the inhibition zones induced by the tested synthesized 1,3,4-thiadiazole derivatives against the tested micro-organisms. All compounds were shown to be capable of reducing the growth of the tested microbial strains.

Antimicrobial susceptibility studies demonstrated that compound 14 outperformed the other produced compounds in terms of antimicrobial activity, with inhibition zones of 21 mm against E. coli, 23 mm against B. mycoides, and 22 mm against C. albicans (Table 1 and Fig. 2). Furthermore, compounds 13a, 17c, and 17h have inhibition zone diameters of 17–18 mm against E. coli and B. mycoides, respectively, whereas compounds 13a, 13c, and 17g have an inhibition zone diameter of 17 mm against C. albicans.

Compound 17b, on the other hand, displayed the least antimicrobial activity (inhibition zone of 14 mm) against all tested microbes (Table 1 & Fig. 2). Furthermore, the results showed that the Gram-positive bacterium example (B. mycoides) was more vulnerable to the majority of the examined produced chemicals than Gram-negative bacteria (E. coli). Streptomycin (10 mcg) as a positive control had lesser antimicrobial efficacy than compound 14, but findings are comparable to other synthetic compounds evaluated (Table 1).

Conclusion

N-(4-Nitrophenyl)acetoxydrazonyl bromide (2) and 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one (4) used as a useful precursor in synthesis of new series of 1,3,4-thiadiazole derivatives 13a–13d, 17a–17h, and 22–25. The newly synthesized compounds were evaluated as antimicrobial agents. The maximum antimicrobial activity was reported against gram-positive bacteria (B. mycoides), whereas yeast (C. albicans) and gram-negative bacteria (E. coli) were the least sensitive groups to the chemical compounds. The antibacterial activity of compound 14 was greater than that of the positive control, indicating that this chemical might be used in the future to prevent microbial transmission.

Antimicrobial activity

Table 1 | Antimicrobial activity assessment of the new synthesized compounds using agar diffusion method

Compound	Inhibition zone diameter/mm		
	E. coli	B. mycoides	C. albicans
13a	17 ± 0.85	17 ± 0.58	17 ± 1.32
13b	15 ± 0.05	15 ± 0.14	13 ± 1.00
13c	17 ± 0.96	16 ± 0.33	17 ± 0.75
13d	15 ± 0.51	17 ± 0.11	15 ± 0.28
14	21 ± 0.10	23 ± 0.31	22 ± 0.06
17a	14 ± 0.05	16 ± 0.08	15 ± 1.21
17b	14 ± 0.08	14 ± 0.58	14 ± 0.16
17c	17 ± 0.02	18 ± 0.14	15 ± 0.54
17d	16 ± 0.11	17 ± 0.00	15 ± 0.44
17e	15 ± 0.31	14 ± 0.65	16 ± 1.23
17f	15 ± 1.06	15 ± 0.60	15 ± 0.00
17g	16 ± 0.26	16 ± 1.25	17 ± 0.00
17h	18 ± 0.08	17 ± 0.47	15 ± 0.08
22	16 ± 0.15	17 ± 0.23	15 ± 0.07
23	14 ± 0.07	16 ± 0.22	14 ± 0.86
24	14 ± 0.23	17 ± 0.42	16 ± 0.34
25	15 ± 0.64	15 ± 1.25	16 ± 0.04
Streptomycin	17 ± 0.75	15 ± 0.00	17 ± 0.1

Springer
Experimental

Melting points were measured with Electrothermal 9100 apparatus. The IR spectra were recorded using a FTIR Bruker–vector 22 spectrophotometer as KBr pellets. The 1H and 13C NMR spectra were recorded in CDCl$_3$ or DMSO-d_6 as a solvent on Varian Gemini NMR spectrometer at 300 MHz and 75 MHz, respectively, using TMS as internal standard. Chemical shifts were reported as δ values in ppm. Mass spectra were recorded with a Shimadzu GCMS–QP–1000 EX mass spectrometer in EI (70 eV) model. The elemental analyses were performed at Microanalytical Center, Cairo University. 1-Ethylidene-2-(4-nitrophenyl)hydrazine (1) [43], N-(4-nitrophenyl) acetohydrazonoyl bromide (2) [44], 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one (4) [53], methyl hydrazinecarbodithioate (5) [54, 55], N-aryl-C-substituted methanohydrasononyl chlorides 9 [56–62], and 2-[methylthio]carbonyl]hydrazones 16 and 18–21 [63–67] were prepared using the reported procedures.

Synthesis of 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine derivatives 7 and 8

1-[3,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one (4, 1.4 g, 5 mmol) was refluxed with 0.6 g methyl hydrazinecarbodithioate (5, 5 mmol) or 0.5 g hydrazinecarbothioamide (6, 5 mmol) in 50 cm3 absolute ethanol for 2 h in the presence of few drops of hydrochloric acid. The resulting solid product that precipitated was collected, washed with ethanol and crystallized from acetonitrile to give 7 or 8, respectively.

Methyl 2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine-1-carbodithioate (7, C$_{15}$H$_{17}$N$_5$O$_2$S$_2$)

Yellow crystals; m.p.: 180–182 °C; yield 74%; IR: $\bar{\nu}$=3180 (NH) cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ=2.37 (s, 3H, CH$_3$), 2.39 (s, 3H, CH$_3$), 2.50 (s, 3H, CH$_3$), 2.52 (s, 3H, CH$_3$), 7.84 (d, 2H, Ar–H, $J=8.7$ Hz), 8.39 (d, 2H, Ar–H, $J=9$ Hz), 12.27 (s, 1H, NH) ppm; 13C NMR (75 MHz, DMSO-d_6): δ=13.2, 14.4, 17.2, 18.3, 119.7, 124.7, 124.9, 139.6, 143.8, 145.8, 149.0, 149.3, 199.2 ppm; MS (EI, 70 eV): m/z (%) = 363 (M+, 7.40), 315 (65.07), 257 (26.69), 211 (22.49), 117 (37.22), 91 (36.54), 76 (100), 65 (30.83).

2-[1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine-1-carbothioamide (8, C$_{14}$H$_{16}$N$_6$O$_2$S)

Yellow crystals; m.p.: 206–208 °C; yield 71%; IR: $\bar{\nu}$=3222 and 3293 (NH$_2$), 3460 (NH) cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ=2.29 (s, 3H, CH$_3$), 2.31 (s, 3H, CH$_3$), 2.45 (s, 3H, CH$_3$), 7.48 (s, 1H, NH$_2$), 7.84 (d, 2H, Ar–H, $J=8.7$ Hz), 8.22 (s, 1H, NH$_2$), 8.38 (d, 2H, Ar–H, $J=9$ Hz), 10.16 (s, 1H, NH) ppm; 13C NMR (75 MHz, DMSO-d_6): δ=12.7, 13.7, 17.8, 120.7, 124.5, 124.8, 138.9, 144.0, 144.6, 145.6, 148.7, 178.7 ppm; MS (EI, 70 eV): m/z (%) = 332 (M$^+$, 30.19), 298 (33.37), 257 (45.23), 211 (51.69), 117 (48.41), 76 (100), 60 (60.49).

![Fig. 2 Antimicrobial activity assessment of the new synthesized compounds using agar diffusion method](image-url)
Synthesis of 2-[[1-[5-methyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazono]-2,3-dihydro-1,3,4-thiadiazole derivatives 13a–13d Method A A mixture of 0.4 g methyl 2-[[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine-1-carboxdiimide (7, 1 mmol) and the appropriate hydrazonoyl chlorides 9a–9d (1 mmol) was dissolved in 30 cm³ absolute ethanol. To the resulting solution, triethylamine was added and reaction mixture was stirred for 6 h at room temperature. The resulting solid product that precipitated was collected, washed with ethanol, and crystallized from dimethylformamide to afford the corresponding thiadiazole derivatives 13a–13d.

Method B Refluxing of 0.3 g 2-[[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine-1-carbothioamide (8, 1 mmol) with the appropriate hydrazonoyl chlorides 9a–9d (1 mmol) in 30 cm³ absolute ethanol in the presence of triethylamine for 4 h. The resulting solid product that precipitated was collected, washed with ethanol, and crystallized from dimethylformamide to afford the same products 13a–13d.

2-[[1-[3,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazono]-3,5-diphenyl-2,3-dihydro-1,3,4-thiadiazole (13a, C₂₇H₂₃N₇O₂S) Yellow crystals; m.p.: 230–232 °C; yield 61%; ¹H NMR (300 MHz, CDCl₃): δ = 2.52 (s, 6 H, 2CH₃), 2.63 (s, 3 H, CH₃), 7.27–7.84 (m, 10 H, Ar–H), 8.25 (d, 2H, Ar–H, J = 8.4 Hz), 8.38 (d, 2H, Ar–H, J = 8.7 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 13.7, 14.5, 19.1, 120.9, 121.2, 124.6, 124.7, 125.6, 126.2, 128.7, 128.9, 130.4, 130.6, 138.7, 140.1, 144.5, 145.1, 149.8, 150.3, 155.7, 164.0 ppm; MS (EI, 70 eV): m/z (%) = 509 (M⁺, 24.33), 243 (16.19), 135 (16.98), 91 (100), 77 (37.27).

2-[[1-[3,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazono]-3-phenyl-5-styryl-2,3-dihydro-1,3,4-thiadiazole (13b, C₂₉H₂₅N₇O₂S) Yellow crystals; m.p.: 226–228 °C; yield 63%; ¹H NMR (300 MHz, CDCl₃): δ = 2.51 (s, 3 H, CH₃), 2.52 (s, 3 H, CH₃), 2.63 (s, 3 H, CH₃), 7.00–7.54 (m, 10 H, Ar–H), 7.73 (d, 2H, Ar–H, J = 9.3 Hz), 8.18 (d, 2H, Ar–H, J = 7.8 Hz), 8.39 (d, 2H, Ar–H, J = 9 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 13.7, 14.5, 19.1, 113.2, 115.2, 124.5, 124.7, 127.2, 127.4, 129.6, 134.7, 137.9, 138.5, 142.8, 145.0, 145.8, 151.7, 158.3, 159.3 ppm.

Synthesis of 5-methyl-2-arylidenehydrazono-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole derivatives 17 and 22–25 Method A A mixture of 1.3 g N-(4-nitrophenyl)acetohydrazonyl bromide (2, 5 mmol) and the appropriate 2-((methylthio)carbonthioyl)hydrazones 15 and 18–21 (5 mmol) was dissolved in 50 cm³ absolute ethanol. To the resulting solution, 2 cm³ of triethylamine was added and reaction mixture was stirred for 6 h at room temperature. The resulting solid product that precipitated was collected, washed with ethanol, and crystallized from a suitable solvent to give the corresponding 1,3,4-thiadiazole derivatives 17 and 22–25.

Method B Stirring of 0.6 g methyl hydrazinecarbothioate (5, 5 mmol) with 1.3 g N-(4-nitrophenyl)acetohydrazonyl bromide (2, 5 mmol) in 50 cm³ absolute ethanol in the presence of 2 cm³ of triethylamine for 6 h at room temperature. The resulting solid product that precipitated was collected and crystallized from dimethylformamide to afford 2-hydrazono-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole 14. Refluxing of the respective aldehydes or ketones 15 with the resulted compound 14 (1.3 g, 5 mmol) in 2-propanol for 2 h in the presence of few drops of hydrochloric acid. The resulting solid product that precipitated was collected, washed with ethanol, and crystallized from a suitable solvent to give the corresponding 1,3,4-thiadiazole derivatives 17 and 22–25.

2-Hydrazono-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (14, C₉H₈N₂O₂S) Brown crystals (DMF); m.p.: 196–198 °C; yield 60%; IR: ν = 3379 and 3325 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 2.48 (s, 3 H, CH₃), 6.27 (s, 2 H, NH₂), 8.09 (d, 2 H, Ar–H, J = 9 Hz), 8.45
Synthesis and biological evaluation of new 1,3,4-thiadiazole derivatives as potent...
129.7, 129.9, 130.1, 133.0, 134.5, 135.5, 141.3, 152.4, 161.6, 164.1 ppm.

2- (Cyclopentylidenehydrazono)-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (23, C_{14}H_{15}N_{5}O_{2}S) Yellow crystals (CH_{3}CN); m.p.: 188–190 °C; yield 62%; 1H NMR (300 MHz, CDCl$_3$): δ = 1.81–1.88 (m, 4H, 2CH$_2$), 2.46 (s, 3H, CH$_3$), 2.53 (t, 2H, CH$_2$, J = 6.3 Hz), 2.61 (t, 2H, CH$_2$, J = 6.3 Hz), 8.29 (d, 2H, Ar–H, J = 9.6 Hz), 8.41 (d, 2H, Ar–H, J = 9.3 Hz) ppm; 13C NMR (75 MHz, CDCl$_3$): δ = 16.2, 23.1, 26.2, 32.1, 38.5, 112.5, 124.2, 136.3, 146.4, 154.0, 158.3, 163.4 ppm.

2- (Cyclohexylidenehydrazono)-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (24, C_{15}H_{17}N_{5}O_{2}S) Yellow crystals (CH$_3$CN); m.p.: 166–168 °C; yield 61%; 1H NMR (300 MHz, DMSO-d$_6$): δ = 1.63–1.67 (m, 6H, 3CH$_2$), 2.33 (t, 2H, CH$_2$, J = 6.8 Hz), 2.47 (s, 3H, CH$_3$), 2.67 (t, 2H, CH$_2$, J = 6.9 Hz), 8.32–8.37 (m, 4H, Ar–H) ppm; 13C NMR (75 MHz, DMSO-d$_6$): δ = 17.3, 25.8, 26.6, 27.5, 29.6, 35.2, 119.9, 125.4, 143.4, 145.1, 152.2, 163.1, 169.3 ppm.

2-[(3,4-Dihydropyridin-1(2H)-ylidene)hydrazono]-5-methyl-3-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (25, C$_{19}$H$_{17}$N$_{5}$O$_{2}$S) Orange crystals (CH$_3$CN); m.p.: 204–206 °C; yield 60%; 1H NMR (300 MHz, CDCl$_3$): δ = 1.97–2.01 (m, 2H, CH$_2$), 2.50 (s, 3H, CH$_3$), 2.86 (t, 2H, CH$_2$, J = 6.3 Hz), 3.01 (t, 2H, CH$_2$, J = 6.3 Hz), 7.17–7.32 (m, 3H, Ar–H), 8.26 (d, 1H, Ar–H, J = 7.5 Hz), 8.34 (d, 2H, Ar–H, J = 9.6 Hz), 8.47 (d, 2H, Ar–H, J = 9.3 Hz) ppm; 13C NMR (75 MHz, CDCl$_3$): δ = 16.80, 21.0, 23.4, 29.3, 113.4, 124.2, 125.2, 126.3, 128.2, 129.2, 131.9, 137.9, 138.8, 144.5, 154.9, 156.2, 163.7 ppm; MS (EI, 70 eV): m/z (%) = 379 (M$^+$, 37%), 299 (M$^+$, 10%), 193 (M$^+$, 5%)

Antimicrobial assay

Using the agar well diffusion method, the antimicrobial properties of the produced compounds were tested against Gram-negative bacteria *Escherichia coli*, Gram-positive bacteria *Bacillus mycoides*, and yeast *Candida albicans* in a nutrient agar medium (70,148 Nutrient Agar, Fluka) at pH 7.0. Before forming the wells (12 mm in diameter) within the solidified nutritional agar, the microorganisms were dispersed uniformly on the surface of the plates with a sterile glass rod. Each well received 100 mm3 of each antiseptic solution studied (10 mg/cm3). Streptomycin at a concentration of 10 mcg was used as a positive control. The culture plates were cultured at 37 °C for 18 h before measuring the width of inhibitory zones generated by the various synthesized compounds [48, 68, 69].

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00706-022-02967-z.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Shawali AS (2016) Adv Res 7:873
2. Farghaly TA, Gomha SM, Abbas EM, Abdalla MM (2012) Arch Pharm 345:117
3. Hassaneen HM, Shetta A, Shawali AS (1980) J Heterocycl Chem 17:1185
4. Shawali AS, Hassaneen HM, Shetta AF, Osman A, Abdel-Galil F (1982) Heterocycles 19:57
5. Awad EM, Elwan NM, Hassaneen HM, Linden A, Heimgartner H (2002) Helv Chim Acta 85:320
6. Elwan NM, Awad EM, Hassaneen HM, Linden A, Heimgartner H (2003) Helv Chim Acta 86:739
7. Hassaneen HM, Hassaneen HME, Mohammed YS, Pagni RM (2011) Z Naturforsch B 66:299
8. Abdelhamid AO, Hassaneen HM, Shawali AS, Pärkäni C (1983) J Heterocycl Chem 20:639
9. Abdelhamid AO, Hassaneen HM, Shawali AS (1985) J Heterocycl Chem 22:453
10. Hassaneen HM, Moussa HAH, Shawali AS (1987) J Heterocycl Chem 24:1665
11. Hassaneen HM, Ead HA, Elwan NM, Shawali AS (1988) Heterocycles 27:2857
12. Hassaneen HM, Moussa HAH, Shawali AS (1988) Sulfur Lett 8:217
13. Hassaneen HM, Shawali AS, Elwan NM (1990) Heterocycles 31:247
14. Elwan NM, Abdelhadi HA, Abdallah TA, Hassaneen HM (1996) Tetrahedron 52:3451
15. Hassaneen HM, Abdelhadi HA, Abdallah TA (2001) Tetrahedron 57:10133
16. Shawali AS, Pärkäni C (1980) J Heterocycl Chem 17:833
17. Shawali AS (1983) Heterocycles 20:2239
18. Shawali AS (1993) Chem Rev 93:2731
19. Shawali AS, Abdallah MA (1995) Adv Heterocycl Chem 63:277
20. Shawali AS, Mosselhi MAN (2003) J Heterocycl Chem 40:725
21. Shawali AS, Edrees MM (2006) ARKIVOC ix:292
22. Shawali AS, Samy NA (2009) Open Bioact Compd J 2:8
23. Huisgen R (1963) Angew Chem Int Ed 2:565

© Springer

936 M. G. Kamel et al.
24. Heusgen R (1968) J Org Chem 33:2291
25. Heusgen R (1963) Angew Chem Int Ed 2:633
26. Shawali AS, Abdelhamid AO (1976) J Heterocycl Chem 13:45
27. Ahmad S, Shawali AS, Hassaneen HM (1976) Indian J Chem 14:425
28. Hassaneen HM, Mousa HAH (1988) Sulfur Lett 7:93
29. Hassaneen HM, Shawali AS, Abdallah TA (1992) Sulfur Lett 15:103
30. Pocar D, Rossi LM, Stradi R (1976) Synthesis 1976:684
31. Quilico A, Rend FR (1936) 1st Lombardo Sci Lett, 439–422
32. Huisgen R, Grashey R, Seidel M, Knupfer H, Schmidt R (1962) Justus Liebigs Ann Chem 658:169
33. Flowers WT, Robinson JF, Taylor DR, Tipping AE (1981) J Chem Soc Perkin Trans 1:356
34. Wolkoff P, Nemeth ST, Gibson MS (1975) Can J Chem 53:3211
35. Gomha SM, Edrees MM, Muhammad ZA, El-Reedy AA (2018) Drug Des Devel Ther 12:1333
36. Saleh FM, Abdelhamid AO, Hassaneen HM (2020) J Sulfur Chem 41:130
37. Eweiss NF, Osman A (1980) J Heterocycl Chem 17:1713
38. Farag AM, Hassaneen HM, Abbas IM, Shawali AS, Algharib MS (1988) Phosphorus, Sulfur Silicon Relat Elem 40:243
39. Shawali AS (2014) J Adv Res 5:1
40. Dawood KM, Farghaly TA (2017) Expert Opin Ther Pat 27:477
41. Haider S, Alam MS, Hamid H (2015) Eur J Med Chem 92:156
42. Serban G, Stanasel O, Serban E, Bota S (2018) Drug Des Devel Ther 12:1545
43. Vogel AI (1971) A text book of practical organic chemistry including quantitative organic analysis, Longman, London
44. Hegarty AF, Cashman MP, Scott FL (1972) J Chem Soc Perkin Trans 2:1381
45. Zagni C, Citarella A, Oussama M, Rescifina A, Maugeri A, Navarra M, Scala A, Piperno A, Micale N (2019) Int J Mol Sci 20:945
46. Bennani FE, Doudach L, Cherrah Y, Ramli Y, Karrouchi K, Ansar MH, Faouzi MEA (2020) Bioorg Chem 97:103470
47. Sroor FM, Mohamed MF, Abdullahlh GK, Mahrous KF, Zoheir KMA, Ibrahim SA, Elwahy AHM, Abdelhamid IA (2022). Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2022.2046616
48. Kamel MG, Sroor FM, Othman AM, Mahrous KF, Saleh FM, Hassaneen HM, Abdallah TA, Abdelhamid IA, Teleb MAM (2022) Monatsh Chem 153:211
49. Helmy MT, Sroor FM, Mahrous KF, Mahmoud K, Hassaneen HM, Saleh FM, Abdelhamid IA, Mohamed Teleb MA (2021) Arch Pharm 355:2100381
50. Othman IM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Anwar MM, Nosier ES (2021) Bioorg Chem 114:105078
51. Sharshira EM, Hamada NNM (2012) Molecules 17:4962
52. Sroor FM, Abouelenin MM, Mahrous KF, Mahmoud K, Elwahy AHM, Abdelhamid IA (2020) Arch Pharm 353:200069
53. Shawali AS, Hassaneen HM (1976) Indian J Chem 14B:549
54. Audrieth LF, Scott ES, Kippur PS (1954) J Org Chem 19:733
55. Klayman DL, Bartosevich JF, Griffin TS, Mason CJ, Scovill JP (1979) J Med Chem 22:855
56. Wolkoff P (1975) Can J Chem 53:1333
57. Wedekind E (1901) Ber 34:2075
58. Shawali AS, Hassaneen HM, Ibrahim HA, Mekki ST, Fahmi AA (1990) Arch Pharm Res 13:126
59. Hassaneen HM, Mousa HAH, Abed NM, Shaliw AS (1988) Heterocycles 27:695
60. Hassaneen HM, Hilal RH, Elwan NM, Harhash A, Shawali AS (1984) J Heterocycl Chem 21:1013
61. Rateb NM (2005) Phosphorus Sulfur Silicon Relat Elem 180:2361
62. Hassaneen HM, Shawali AS, Elwan NM (1990) Heterocycles 31:1041
63. Zohdi HF, Emam HA, Abdelhamid AO (1997) Phosphorus Sulfur Silicon Relat Elem 129:147
64. Emam HA, Zohdi HF, Abdelhamid AO (1998) J Chem Res 1:12
65. Zohdi HF, Rateb NM, Sallam MM, Abdelhamid AO (1998) J Chem Res Synopses 12:742
66. Abdelhamid AO, Mohamed GS (1999) Phosphorus Sulfur Silicon Relat Elem 152:115
67. Mahapatra M, Kulandaivelu U, Saiko P, Graser G, Szekeres T, Andrei G, Snochek R, Balzarini J, Jayaprakash V (2013) Chem Pap 67:650
68. Sroor FM, Othman AM, Abouelenin MM, Mahrous KF (2022) Med Chem Res 31:400
69. Sroor FM, Othman AM, Tantawy MA, Mahrous KF, El-Naggar ME (2021) Bioorg Chem 112:104953

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.