Różnicowanie charakteru litych zmian ogniskowych w piersiach wsonoelastografii kompresyjnej.

Część II: Ocena wartości diagnostycznej klasyfikacji BIRADS-usg, skali Tsukuba oraz wskaźnika FLR

The differentiation of the character of solid lesions in the breast in the compression sonoelastography.

Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

Katarzyna Dobruch-Sobczak

Zakład Radiodiagnostyki, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie, Warszawa, Polska
Adres do korespondencji: Dr n. med. Katarzyna Dobruch-Sobczak, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie, ul. Wawelska 15, 02-034 Warszawa, e-mail: kdsobczak@gmail.com

Słowa kluczowe
sonoelastografia piersi, lite zmiany ogniskowe, ultrasonografia piersi, FLR, Tsukuba, BIRADS-usg

Streszczenie
Sonoelastografia jest dynamicznie rozwijającą się metodą badania ultrasonograficznego wykorzystywaną w różnicowaniu charakteru zmian ogniskowych w piersiach. Celem II części pracy było określenie przydatności sonoelastografii wdiagnostyce różnicowej litych zmian ogniskowych w piersiach, w tym ocena wartości diagnostycznej skali Tsukuba i wskaźnika FLR wróżnicowaniu charakteru litych zmian w piersiach oraz ocena porównawcza klasycznego obrazowania B-mode i sonoelastografii. Material i metoda: W okresie od stycznia do lipca 2010 roku w Pracowni Ultrasonograficznej Centrum Onkologii – Instytutu im. Marii Skłodowskiej-Curie wykonano 375 badań ultrasonograficznych piersi u kobiet. Do grupy badanej włączono pacjentki, u których na podstawie obrazowania B-mode ustalono wskazania do weryfikacji patologicznej, tj. 80 kobiet w wieku od 17 do 83 lat (średnio 50 lat) zobecnością 99 litych zmian ogniskowych w piersiach. U wszystkich pacjentek wykonano badanie podmiotowe, przedmiotowe oraz badanie ultrasonograficzne B-mode i elastografię gruczołów piersiowych oraz dolów pachowych. Uwidocznięte zmiany ogniskowe w piersiach oceniano zgodnie z klasyfikacją BIRADS-usg, skalą Tsukuba oraz obliczono wskaźnik FLR. We wszystkich przypadkach uzyskano weryfikację histopatologiczną i/lub cytologiczną badanych zmian. Wyniki: W grupie 80 badanych kobiet stwierdzono obecność 39 zmian nowotworowych złośliwych oraz 60 o charakterze łagodnym. Średnia wieku kobiet ze zmianami nowotworowymi złośliwymi wynosiła 55,07 roku (SD=10,54), a kobiet, u których rozpoznano zmiany łagodne – 46,9 roku (SD=15,47). W celu identyfikacji wartości progowych różnicujących zmiany łagodne od złośliwych przeprowadzono analizę porównawczą modeli statystycznych opartych na klasyfikacji BIRADS-usg i skali Tsukuba oraz wyznaczono wartość odcinka dla wskaźnika FLR. Dla klasyfikacji BIRADS-usg 4/5 uzyskano czułość i swoistość odpowiednio 76,92% i 96,67%, a dla skali Tsukuba 3/4 – odpowiednio 64,1% i 98,33%; uzyskana wartość progowa FLR różnicująca zmiany łagodne od złośliwych nowotworów piersi wynosiła 3,13. Łączne zastosowanie obydwu klasyfikacji (z wartością progową BIRADS-usg 4/Tsukuba 3) poprawia sumę czułości i svoistości rozpoznania charakteru zmian ogniskowych (odpowiednio 87,2% i 95%). Wnioski: W przypadku problematycznych zmian ogniskowych, tj. BIRADS-usg 3, wykazano, iż uzyskanie w elastografii stopni Tsukuba 1 i 2 dla zmian BIRADS-usg 3 potwierdza ich łagodny charakter, tym samym pozwala odstąpić od weryfikacji cytologicznej.
Key words
breast sonoelastography, solid focal lesions, breast ultrasound, FLR, Tsukuba, BIRADS-US

Abstract
Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and sonoelastography. **Material and Methods:** From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Sklodowska-Curie, 375 breast ultrasound examinations were conducted. The examined group included patients who in B-mode examinations presented indications for pathological verification. They were 80 women aged between 17 and 83 (mean age was 50) with 99 solid focal lesions in the breasts. All patients underwent: the interview, physical examination, B-mode ultrasound examination and elastography of the mammary glands and axillary fossae. The visualized lesions were evaluated according to BIRADS-US classification and Tsukuba score as well as FLR ratio was calculated. In all cases, the histopathological and/or cytological verification of the tested lesions was obtained. **Results:** In the group of 80 patients, the examination revealed 39 malignant neoplastic lesions and 60 benign ones. The mean age of women with malignant neoplasms was 55.07 (SD=10.54), and with benign lesions – 46.9 (SD=15.47). In order to identify threshold values that distinguish benign lesions from malignant ones, a comparative analysis of statistical models based on BIRADS-US classification and Tsukuba score was conducted and the cut-off value for FLR was assumed. The sensitivity and specificity values for BIRADS-US 4/5 were 76.92% and 96.67% and for Tsukuba 3/4 – 61.4% and 98.33% respectively. The assumed FLR threshold value to differentiate between benign and malignant lesions in the breasts equaled 3.13. The combined application of both classifications (with the threshold value of BIRADS-US 4/Tsukuba 3) improved the total value of sensitivity and specificity of character differentiation of focal lesions (87.2% and 95% respectively). **Conclusions:** In the case of problematic focal lesions, i.e. BIRADS-US 3, the study revealed that obtaining Tsukuba score of 1 and 2 for lesions classified as BIRADS-US 3 confirms their benign character. This allows to avoid the cytological verification.

Wstęp
Odkształcalność (sprężystość) tkanek jest cechą, która może ulegać zmianom w procesach starzenia, w przebiegu ostrzych oraz przewlekłych stanów zapalnych, w chorobach tkanki nowotworowych. Sonoelastografia to metoda zintegrowana z konwencjonalnym badaniem B-mode, pozwalająca obrazować właściwości sprężyste badanych tkanek i na tej podstawie różnicować ich charakter. Liczne badania przeprowadzone na podstawie modeli doświadczalnych oraz na materiale klinicznym wykazały, że tkanka gruczołowa, tłuszczowa i włóknista oraz większość zmian o charakterze łagodnych ulegają większemu odkształceniu niż zmiany nowotworowe złośliwe\(^{1-4}\).

Obecnie sonoelastografia jest dynamicznie rozwijającą się metodą, stosowaną w różnicowaniu charakteru zmian ogniskowych w piersiach\(^{5,6}\). Dostępne aparaty ultrasonograficzne z opcją sonoelastografii bazują na różnych metodach obliczeniowych wielkości odkształceń tkanek. Należy do nich oznaczanie przemieszczeń wzdłużnych względem ustalonego kierunku, które jest wykorzystywane w elastografii statycznej, stosowanej przez autorkę pracy. W metodzie tej kompresji tkanek dokonuje się za pomocą ucisku głowicą ultrasonograficzną. Akwizycja ech pochodzących z badanych tkanek odbywa się w czasie rzeczywistym przed zastosowaniem ucisku i po jego zastosowaniu. Następnie na podstawie przemieszczeń tkanek automatycznie zostaje

Introduction
Displacement (elasticity) of tissues constitutes a feature which may undergo changes during the ageing process, in the course of acute or chronic inflammations, in medical conditions concerning connective tissues as well as in neoplastic diseases. Sonoelastography is a method integrated with conventional B-mode examination and allows for the imaging of the elastic properties of tested tissues. Based on the findings, elastography enables to determine (differentiate) their character. Numerous studies conducted on the basis of experimental models and clinical material demonstrated that glandular, adipose and fibrous tissues as well as the majority of benign lesions undergo greater deformation than malignant neoplastic lesions\(^{1-4}\).

Currently, sonoelastography is a dynamically developing method used in order to differentiate between focal breast lesions\(^{5,6}\). The available ultrasound apparatuses with sonoelastography option are based on various methods of calculating the value of tissue deformations. One of such methods is the indication of longitudinal movement towards a given direction, which is used in static elastography applied by the author of this article. In this case, tissue compression is performed with the use of the ultrasound transducer. The acquisition of echoes from the tested tissues takes place in real-time prior to and after applying compression. Next, on the basis of tissue movement, the arrangement of tissue deformations is achieved, which is
The differentiation of the character of solid lesions in the breast in the compression sonoelastography.
Part II: Diagnostic value of BI-RADS-US classification, Tsukuba score and FLR ratio

wyznaczony rozkład odkształceń badanych tkanek, który jest prezentowany w formie kolorowych map nakładanych na obrazowanie B-mode w czasie rzeczywistym. Dla tej techniki badania opracowana została metoda obliczeniowa funkcji złożonej autokorelacji (combined autocorrelation method, CAM), która pozwala na uzyskiwanie obrazów z dużą prędkością przetwarzania i dużą dokładnością\(^7\).

Poniższy artykuł jest II częścią publikacji przygotowanej na podstawie rozprawy doktorskiej autorki pt.: Przydatność sonoelastografii w diagnostyce różnicowej litych zmian ogniskowych w piersiach (Promotor: Prof. dr hab. n. med. Iwona Sudol-Szopińska, obrona w dniu 25.10.2012 r. w Centrum Onkologii – Instytucie im. Marii Skłodowskiej-Curie w Warszawie).

W I części publikacji\(^6\) analizie poddano cechy obrazu ultrasonograficznego różnicujące zmiany ogniskowe w piersiach oraz wykazano, że dla kategorii 4 w klasyfikacji BI-RADS-usg uzyskano najwyższą sumę czułości i swoistości – 173,6% – w różnicowaniu charakteru tych zmian.

Celem II części pracy było określenie przydatności sonoelastografii w diagnostyce różnicowej litych zmian ogniskowych w piersiach, w tym:

- ocena wartości diagnostycznej skali Tsukuba i wskaźnika FLR w różnicowaniu charakteru litych zmian w piersiach;
- ocena porównawcza klasyficznego obrazowania B-mode (klasyfikacja BI-RADS-usg) i sonoelastografii (skala Tsukuba, wskaźnik FLR).

Material i metoda

W okresie od stycznia do lipca 2010 roku w Pracowni USG Centrum Onkologii – Instytutu im. Marii Skłodowskiej-Curie w Warszawie wykonano 375 badań ultrasonograficznych (USG) piersi z powodu wykrytych palpacyjnie zmian ogniskowych w piersiach, nieprawidłowości opisanych w badaniach obrazowych lub dolegliwości bólowych piersi.

Z grupy tej do badań sonoelastograficznych zakwalifikowano 80 kobiet w wieku od 17 do 83 lat (średnia 50 lat), z obecnością 99 litych zmian ogniskowych w piersiach, u których na podstawie klasyficznego badania USG piersi B-mode ustalono wskazania do weryfikacji histopatologicznej i/lub cytotologicznej.

U wszystkich pacjentek wykonano badanie podmiotowe i przedmiotowe, badania obrazowe: USG i sonoelastografię oraz weryfikację histopatologiczną i/lub cytotologiczną.

Badania USG przeprowadzono aparatem EUB-7500 HV (Hitachi Medical, Japan), głowicą liniową 7,5–13 MHz. Zmiany ogniskowe w piersiach oceniano w postaci ze względu w prezentacji B-mode, którego cechy i przydatność w różnicowaniu charakteru zmian ogniskowych w piersiach zostały szczegółowo opisane w I części artykułu\(^6\). Do badań kwalifikowano lże zmiany ogniskowe w piersiach, presented in the form of color maps that are combined with a B-mode real-time image. Especially for this technique, a calculation method, called combined autocorrelation method (CAM), was prepared. It enables to obtain images with high processing velocity and accuracy\(^7\).

The article presented below is the second part of the publication prepared on the basis of the author’s doctoral thesis entitled: The usefulness of sonoelastography in the diagnostics of solid lesions in the breast (written under the supervision of: Prof. Iwona Sudol-Szopińska, defended on 25 October 2012 in the Cancer Centre, The Institute of Maria Skłodowska-Curie in Warsaw).

The first part of the publication\(^8\) discussed the features of ultrasound image, which differentiate focal breast lesions. Additionally, it was demonstrated that the highest total value of sensitivity and specificity (173.6%) in differentiating the character of lesions was obtained in the BI-RADS-US 4 category.

The aim of the second part of the publication was to evaluate the usefulness of sonoelastography in the differential diagnosis of solid, focal lesions in the breasts including:

- the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts;
- a comparative assessment of classic B-mode imaging (BI-RADS-US classification) and sonoelastography (Tsukuba score, FLR ratio).

Material and methods

From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Skłodowska-Curie in Warsaw, 375 ultrasound examinations (US) were conducted due to focal lesions in the breasts found by palpation as well as abnormalities detected in the imaging tests or breast pain.

Out of this group, 80 women were selected for a sonoelastography examination. They were 17–83 years old (mean age was 50) with 99 solid, focal lesions present in the breasts, which were qualified for histopathological and/or cytotological verification on the basis of the classic B-mode breast ultrasound.

All patients underwent: the interview, physical examination and imaging scans: US examination and sonoelastography as well as histopathological and/or cytotological verification.

US examinations were conducted with the use of EUB-7500 HV apparatus (Hitachi Medical, Japan) with a linear transducer of 7.5–13 MHz. Focal lesions in the breasts were initially evaluated in B-mode images whose features and usefulness in character differentiation were presented in detail in the first part of the publication\(^8\). The examination encompassed solid focal lesions in the breasts which were categorized as BI-RADS-US 3, 4 and
którym przydzielano kategorię klasyfikacji BIRADS-USG 3, 4 i 5, zgodnie ze standardami Polskiego Towarzystwa Ultrasonograficznego\(^9,10\).

Następnie wykonywano badanie sonoelastograficzne HI-RTE (Hitachi Real-time Tissue Elastography). Technika badania polegała na stosowaniu ucisku sondy utrzymywaną bezpośrednio nad zmianą, na głębokość 1–2 mm, z częstotliwością 1–2 ucisków na sekundę i stałej kontroli siły ucisku za pomocą liczbowego wskaźnika prezentowanego na ekranie aparatu USG, zgodnie z metodą przedstawioną przez Itoha i wsp.\(^1\) Wszystkie badania archiwizowano.

Elastogramy oceniano według pięciostopniowej klasyfikacji Tsukuba przedstawiającej stopień odkształcenia zadanego tkanki za pomocą pięciu wzorców\(^2\).

1. Stopień 1. obejmuje zmiany (obszary) hipoechogeniczne w badaniu B-mode, ulegające w trakcie elastografii pełnemu odkształceniu; są one przedstawiane na elastogramie w kolorze identycznym jak otaczające je tkanki gruczołu. To jest wzorzec typowy dla zmian łagodnych.

2. Stopień 2. obejmuje zmiany (obszary) hipoechogeniczne w obrazowaniu B-mode, których większa część ulega odkształceniu w trakcie elastografii; na elastogramie są widoczne jako mozaika kolorów niebieskiego i zielonego. Jest to także wzorzec typowy dla zmian łagodnych, np. gruczołaków.

3. Stopień 3. obejmuje zmiany (obszary) hipoechogeniczne w badaniu B-mode, ulegające w trakcie elastografii odkształceniu w częściach obwodowych; na elastogramie część centralna jest w kolorze niebieskim, część obwodowa w zielonym. Taki wzorzec częściej odpowiada zmianom łagodnym.

4. Stopień 4. wskazuje na zmiany (obszary) hipoechogeniczne w badaniu B-mode, które w całości nie ulegają odkształceniu i na elastogramie są widoczne w kolorze niebieskim. Jest to wzorzec wskazujący na zmianę nowotworową złośliwą.

5. Stopień 5. stwierdza się wówczas, gdy zarówno cała zmiana hipoechogeniczna w badaniu B-mode, jak i otaczające tkanki nie ulegają odkształceniu; na elastogramie obszar ten jest w kolorze niebieskim. Jest to wzorzec wskazujący na raka naciekającego.

Na podstawie wykonanych elastogramów, oprócz oceny charakteru zmiany zgodnie ze skalą Tsukuba, uzyskiwano także wartość wskaźnika FLR\(^1\). Jest on ilorazem odkształcenia zaznaczonego kursorem obszaru tkanki tłuszczowej sąsiadującej ze zmianą i odkształcenia nieprawidłowej zmiany (obszaru) – oblicza go oprogramowanie aparatu USG.

\[
FLR = \frac{Odkształcenie w tkance tłuszczowej (B)}{Odkształcenie w badanej zmianie (A)}
\]

Sonoelastography was conducted by means of HI-RTE tool (Hitachi Real-time Tissue Elastography). The examination consisted in applying pressure with the probe directly above the lesion to the depth of 1–2 mm with the frequency of 1–2 compressions per second and constant control of force by means of the numerical indicator displayed on the screen of the US apparatus. Such a technique is consistent with the method presented by Itoh et al.\(^2\) All scans were archived.

The obtained elastograms were evaluated on the basis of a five-point Tsukuba classification which presents the degree of tissue deformation on the basis of five patterns\(^2\).

1. Score 1 encompasses hypoechoic lesions (areas) in a B-mode scan in which strain during elastography appears in the entire area; the elastogram presents them in the identical color to the adjacent glandular tissues. This is a typical pattern for benign lesions.

2. Score 2 encompasses hypoechoic lesions (areas) in a B-mode scan image whose greater part undergoes deformation during elastography; the elastogram presents them as a mosaic of blue and green. This is also a typical pattern for benign lesions, for example fibroadenomas.

3. Score 3 encompasses hypoechoic lesions (areas) in a B-mode scan in which strain during elastography is present in their peripheral areas; the elastogram presents a central part in a blue color and a peripheral area in green. Such a pattern more frequently corresponds to benign lesions.

4. Score 4 encompasses hypoechoic lesions (areas) in a B-mode scan in which no strain appears in the entire area; the elastogram presents them in a blue color. This pattern indicates malignant lesions.

5. Score 5 occurs when hypoechoic lesions in a B-mode examination and adjacent tissues present no strain in the elastogram; the elastogram shows these areas in a blue color. This pattern indicates invasive carcinoma.

Apart from the evaluation of the character of lesions according to Tsukuba score, the value of FLR ratio was also obtained on the basis of the achieved elastograms\(^11\). It constitutes a ratio of the strain of adipose tissue surrounding the lesion, which is indicated by a cursor, and the strain of abnormal lesion (area). It is calculated by US software.

\[
FLR = \frac{\text{Strain in the adipose tissue (B)}}{\text{Strain in the examined lesion (A)}}
\]

Method of statistical analysis

The obtained results were analyzed statistically by means of statistical software packages (Statistica and IDAMS). The assumed statistical significance level was \(\alpha \leq 0.05\).

As in the case of BIRADS-US classification, four statistical models based on Tsukuba score were prepared for.
The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

Metoda obliczeń statystycznych

Uzyskane wyniki badań poddano analizie statystycznej z wykorzystaniem pakietów statystycznych (Statistica i IDAMS). Przyjęto poziom istotności α=0,05.

Dla potrzeb obliczeń statystycznych opracowano, podobnie jak w przypadku klasyfikacji BIRADS-usg, cztery modele statystyczne oparte na skali Tsukuba w celu identyfikacji wartości progowej różnicującej zmiany łagodne i złośliwe. Dla wszystkich modeli porównywano wskaźniki czułości, swoistości, PPV, NPV oraz sumy czułości i swoistości. Za wartość progową uznano wartość odcinka uzyskaną dla tego modelu Tsukuba, w przypadku którego suma wskaźników czułości i swoistości była najwyższa.

Results

In the group of 80 patients, 99 focal, solid lesions in the breasts were visualized. Thirty-nine lesions were of malignant character (group I of the analyzed lesions) and 60 lesions were benign (group II of the analyzed lesions).
Wyniki

W badanej grupie 80 pacjentek uwidoczniiono 99 litych zmian ogniskowych w piersiach. Trzydzieści sześć pacjentek miało charakter nowotworowy złośliwy (grupa I analizowanych zmian), a 60 zmian – charakter łagodny (grupa II analizowanych zmian).

Średnia wieku kobiet w grupie I wynosiła 55,07 roku i była znacznie wyższa niż średnia wieku kobiet w grupie II, wynosząca 46.9 (p=0.0067).

Szczegółowe wyniki weryfikacji patomorfologicznej badanych zmian przedstawiono w I części artykułu(8).

Ocena badanych zmian na elastogramach

Ocena według skali Tsukuba

W tab. 1 przedstawiono rozkład poszczególnych stopni w grupach I i II w pięciostopniowej skali Tsukuba.

Spośród 39 zmian nowotworowych złośliwych 25 (64,1%) otrzymało stopnie 4. i 5. w skali Tsukuba, 8 zmian (20,5%) zakwalifikowano do stopnia 3., a 6 zmian (15,4%) do stopnia 2. Żadnej zmiany nie przypisano do stopnia 1.

Ryc. 7 przedstawia rozkład stopni odkształcenia zmian ogniskowych w piersiach w grupie I w korelacji z uzyskaną weryfikacją patologiczną.

Spośród 60 zmian o charakterze łagodnym 44 (73,3%) przypisano stopnie 1. i 2. w skali Tsukuba, a 15 (25%) – stopień 3.; jedna zmiana (1,7%) wykazywała cechy zmiany nowotworowej.

The average age of patients in group I was 55.07 and it was significantly higher than the average age of the women in group II, which constituted 46.9 (p=0.0067).

The detailed results of pathomorphological verification of the examined lesions were presented in the first part of the article(8).

The evaluation of lesions on elastograms

Evaluation according to Tsukuba score

Tab. 1 presents the arrangement of particular scores in groups I and II on the basis of a five-point Tsukuba scale.

Out of 39 neoplastic malignant lesions, 25 (64.1%) received Tsukuba score 4 and 5; eight lesions (20.5%) were classified as score 3 and 6 lesions (15.4%) as score 2. No lesion was marked as score 1.

Fig. 7 presents the arrangement of strain of focal breast lesions in group I in relation to the obtained pathological verification.

Out of 60 benign lesions, 44 (73.3%) achieved Tsukuba scores 1 and 2; fifteen lesions (25%) obtained score 3; one lesion (1.7%) demonstrated the features of a lesion that does not undergo deformation and was classified to score 4. No lesion was assigned to score 5.

Fig. 8 presents the arrangement of strain of focal breast lesions in group II in relation to the obtained pathological verification.
nieulegającej odkształceniu w stopniu 5. Żadnej nie przyporządkowano stopnia 5.

Na ryc. 8 przedstawiono rozkład stopni odkształcenia zmian ogniskowych w piersiach w grupie II w korelacji z uzyskaną weryfikacją patologiczną.

Przeprowadzona analiza statystyczna wykazała, że zmiany złośliwe cechują się znamieniowo wyższymi wartościami stopni w skali Tsukuba. Wartość testu niezależności chi-kwadrat: $\chi^2=52.029$, df=4, $p=0.0000$.

Analiza modeli statystycznych wykorzystujących skalę Tsukuba

Dla potrzeb obliczeń statystycznych opracowano cztery modele statystyczne oparte na skalę Tsukuba, w celu identyfikacji wartości progowej różnicującej zmiany łagodne i złośliwe (tab. 2).

Analizując poszczególne wskaźniki statystyczne, takie jak czułość, swoistość, PPV, NPV, oraz sumy wartości wskaźników czułości i swoistości, najwyższą wartość progową uzyskano dla modelu Tsukuba 3/4 (odpowiednio 64.1%, 98.3%, 96.2%, 80.8% i 162.4%). Ten model w badanym materiale klinicznym najlepiej różnicował zmiany łagodne i złośliwe w oparciu o skalę Tsukuba.

Ocena wskaźnika FLR

W kolejnym etapie badania ultrasonograficznego zmian ogniskowych w piersiach obliczono na elastogramach wskaźnik FLR. Uzyskano obliczenia dla 94 spośród 99 zmian. Ponieważ rozkład wartości liczbowych FLR był skrajnie asymetryczny, dla potrzeb obliczeń statystycznych zastosowano transformację Boxa-Coxa $y=(x^\lambda-1)/\lambda$, gdzie $\lambda=0.037982$.

W analizie statystycznej porównano wartości mediany oraz średnie wartości wskaźnika FLR w obu badanych grupach. W grupie I zmian nowotworowych złośliwych mediana

The statistical analysis revealed that malignant lesions obtain significantly higher values of Tsukuba score. The value of the chi-squared test of independence: $\chi^2=52.029$, df=4, $p=0.0000$.

Analysis of statistical models that use Tsukuba score

Four statistical models based on Tsukuba score were prepared for the purposes of statistical calculations in order to identify threshold values differentiating benign and malignant lesions (tab. 2).

After analyzing the individual statistical indicators, i.e. sensitivity, specificity, PPV, NPV and the sum of sensitivity and specificity, the highest threshold value was obtained for the Tsukuba 3/4 model (64.1%, 98.3%, 96.2%, 80.8% and 162.4% respectively). In the analyzed clinical material, this model proved to be the most accurate in differentiating between benign and malignant lesions based on Tsukuba score.

Evaluation of FLR ratio

The next stage of the ultrasound examination of focal breast lesions constituted the calculation of FLR ratio in elastograms. The calculations for 94 out of 99 lesions were obtained. Due to the fact that the arrangement of FLR values was highly asymmetrical, Box-Cox transformation technique was applied for the purposes of statistical calculations: $y=(x^\lambda-1)/\lambda$, where $\lambda=0.037982$.

In the statistical analysis, the median and average values of FLR were compared in both groups. In group I, the FLR median for malignant lesions was 5.075 and the average value constituted 6.372 (SD=2.958). In group II, the FLR median for benign lesions was 1.555 and the average value constituted 1.606 (SD=2.471) (tab. 3).

The statistical analysis of this parameter revealed that malignancies receive significantly higher values of FLR.
The value of the Mann-Whitney U test: $Z=6.349$, $p=0.0000$.

Based on the obtained FLR values for lesions in groups I and II, the threshold value to differentiate the character of focal lesions was determined. The highest values of sensitivity, specificity, PPV, NPV were obtained for FLR=3.13 (82.05%, 85%, 78.05% and 87.93% respectively).

In the subsequent stage of the analysis, the overall assessment of focal breast lesions in accordance with BIRADS-US classification, Tsukuba score and FLR ratio was compared in groups I and II (tab. 4).

Model statystyczny oparty na skali Tsukuba
Statistical models based on Tsukuba score

Grupa/Group	N	Średnia/Average	SD	Min.	Q25	Mediana/Median	Q75	Maks./Max.
Grupa I	38	6,372	2,958	0,890	3,520	5,075	7,600	65,780
Grupa II	56	1,606	2,467	0,010	1,120	1,555	2,800	11,300
Razem/Total	94	2,828	3,300	0,010	1,380	2,700	4,900	65,780

Tab. 3. Wartości oraz media dla wskaźnika FLR w grupach I i II
Tab. 3. Values and median for FLR ratio in groups I and II

FLR wyniosła 5,075, średnia 6,372 (SD=2,958). W grupie II zmian o łagodnym charakterze mediana FLR wyniosła 1,555, natomiast średnia 1,606 (SD=2,467) (tab. 3).

Analiza statystyczna omawianego parametru wykazała znacząco wyższe wartości wskaźnika FLR dla zmian nowotworowych złożonych. Wartość testu Manna-Whitneya: $Z=6.349$, $p=0.0000$.

Na podstawie uzyskanych wartości wskaźnika FLR dla zmian w grupach I i II wyznaczono wartość progową różnicującą charakter zmian ogniskowych. Najwyższe wartości wskaźników czułości, swoistości, PPV i NPV uzyskano dla wartości FLR=3,13 (odpowiednio 82.05%, 85%, 78.05% i 87.93%).

Correlation of BIRADS-US classification, Tsukuba score and FLR ratio

BIRADS-US classification versus Tsukuba score

In the subsequent stage of the analysis, the overall assessment of focal breast lesions in accordance with BIRADS-US classification, Tsukuba score and in relation to a pathological verification was compared in groups I and II (tab. 4).
The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

Korelacja klasyfikacji BIRADS-usg, skali Tsukuba i wskaźnika FLR

Klasyfikacja BIRADS-usg a skala Tsukuba

W kolejnym etapie analizy wyników badań zestawiono łączną ocenę zmian ogniskowych w pięściach w grupach I i II zgodnie z klasyfikacją BIRADS-usg oraz skalą Tsukuba, w odniesieniu do weryfikacji patologicznej (tab. 4).

Z danych zawartych w tab. 4 wynika, że w grupie zmian nowotworowych złożonych 39 zmian przypisano do kategorii BIRADS-usg 4 i 5, w tym 9 zmian do BIRADS-usg 4, a 30 zmian do BIRADS-usg 5. Spośród 9 zmian zakwalifikowanych jako BIRADS-usg 4 stopień Tsukuba 2 otrymało 5 zmian (przykładowy obraz jednej ze zmian – ryc. 9), 3 zmiany otrzymały stopień Tsukuba 4, a jedna zmiana

Group	BIRADS-usg	Tsukuba 1	Tsukuba 2	Tsukuba 3	Tsukuba 4	Tsukuba 5	Total
Grupa I	3	0	0	0	0	0	0
	4	0	5	0	3	1	9
	5	0	1	8	14	7	30
Ogółem (w grupie I)							39

Group II	BIRADS-usg	Tsukuba 1	Tsukuba 2	Tsukuba 3	Tsukuba 4	Tsukuba 5	Total
	3	7	10	1	0	0	18
	4	5	21	13	1	0	40
	5	0	1	1	0	0	2
Ogółem (w grupie II)							60

| | | | | | | | 99 |

Tab. 4. Zależność pomiędzy klasyfikacją BIRADS-usg a oceną zmian w skali Tsukuba dla obu grup

Tab. 4. Relation between BIRADS-US classification and lesion assessment on the basis of Tsukuba score for both groups

Ryc. 9. Zmiana hipoechoogeniczna o wymiarach 6×7×11 mm zakwalifikowana jako Tsukuba 2 (A), BIRADS-usg 4 (B). Wynik badania histopatologicznego: rak przewodowy przed-inwazyjny – CDIS

Ryc. 10. Zmiana hipoechoogeniczna o wymiarach 12×9×8 mm zakwalifikowana jako Tsukuba 2 (A), BIRADS-usg 5 (B). Wynik badania histopatologicznego: rak przewodowy inwazyjny

The information included in table 4 reveal that in the group of malignancies, 39 lesions were assigned to BIRADS-US 4 and 5, including 9 lesions classified as BIRADS-US 4 and 30 to BIRADS-US 5. Nine lesions classified as BIRADS-US 4 comprised: 5 lesions with Tsukuba score 2 (an example is presented in fig. 9), 3 lesions with Tsukuba score 4 and one lesion with Tsukuba score 5. From among 30 lesions classified as BIRADS-US 5, 1 received Tsukuba score 2 (fig. 10), 8 gained Tsukuba score 3, 14 were classified as Tsukuba score 4 and 7 – as Tsukuba score 5.

Benign lesions, on the other hand, were classified to categories: BIRADS-US 3, 4 and 5. Eighteen lesions classified as BIRADS-US 3 comprised: 7 lesions with Tsukuba score 1, 10 lesions with Tsukuba score 2 and 1 lesion with Tsukuba score 3. Forty lesions classified as BIRADS-US 4 comprised: 5 lesions with Tsukuba score 1, 21 lesions with
Ocena porównawcza modelu Tsukuba 3/4 z modelem FLR (wartość progowa 3,13) dla zmian ogniskowych wykazała, że model FLR cechuje wyższą wartość sumarycznej

The results of the statistical analysis demonstrated that the model that strongly indicates a benign lesion has the following parameters: BIRADS-US 3, 4 and Tsukuba 1, 2 and 3. When higher parameters are obtained, the lesions should be treated as malignant. The aforementioned cut-off values were characterized by the sensitivity of 87.18%, specificity of 95%, PPV of 91.89%, NPV of 91.94% and the sum of specificity and sensitivity equaled 182.18% (tab. 5).

The statistical analysis of the selected models based on BIRADS-US classification, Tsukuba score and FLR ratio were juxtaposed in order to determine the most useful method in determining the character of examined lesions.

The comparative analysis of Tsukuba 3/4 and FLR model (threshold value of 3.13) for focal lesions revealed that FLR model shows a greater value of the sum of sensitivity and specificity. Moreover, in differentiating between benign and malignant lesions, FLR model was characterized by a statistically higher sensitivity in comparison with Tsukuba model (82.05% versus 64.1%; p=0.0370). On the other hand, the model Tsukuba 3/4 showed significantly higher specificity as compared to FLR (98.33% versus 85%; p=0.042).

To conclude, the analysis showed that the model that combines BIRADS-US classification (BIRADS-US 4/5) and Tsukuba score (Tsukuba 3/4) demonstrated significantly higher sensitivity (p=0.0088) and negative predictive value (p=0.0321) as compared to Tsukuba score 3/4. Moreover, in relation to FLR indicator, a statistically significant improvement of specificity (p=0.0340) and positive predictive value (p=0.0454) was noted. In the case of BIRADS-US (the cut-off value of 4), the authors also obtained higher values of sensitivity and NPV but without statistical significance.
The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

Discussion
Sonoelastography is currently more and more frequently used during breast US examinations particularly in the cases of problematic focal lesions classified to BIRADS-US 3 and 4. Numerous publications concerning the application of this method confirm its usefulness especially in these cases\(^1\(^,\)\(^2\))\(^,\)\(^3\)). The multicenter research and metaanalyses demonstrated that this method improves the specificity of breast US examination (up to 99%) significantly more.

BIRADS-usg 3	BIRADS-US 3									
Zmiana złośliwa Malignant lesion	Tsukuba 1	Tsukuba 1	Tsukuba 2	Tsukuba 2	Tsukuba 3	Tsukuba 3	Tsukuba 4	Tsukuba 4	Tsukuba 5	Tsukuba 5
Zmiana łagodna Benign lesion	39	0	39	0	39	0	39	0	39	0
Czułość Sensitivity	100,00	100,00	100,00	100,00	100,00	100,00				
Swoistość Specificity	11,67	28,33	30,00	30,00	30,00					
PPV	42,39	47,56	48,15	48,15	48,15					
NPV	100,00	100,00	100,00	100,00	100,00					
Czułość + swoistość Sensitivity + specificity	111,67	128,33	130,00	130,00	130,00					

BIRADS-usg 4	BIRADS-US 4									
Zmiana złośliwa Malignant lesion	Tsukuba 1	Tsukuba 1	Tsukuba 2	Tsukuba 2	Tsukuba 3	Tsukuba 3	Tsukuba 4	Tsukuba 4	Tsukuba 5	Tsukuba 5
Zmiana łagodna Benign lesion	39	0	34	5	34	5	31	8	30	9
Czułość Sensitivity	100,00	87,18	73,3–94,4	87,18	79,49	76,92				
Swoistość Specificity	20,00	71,67	86,3–98,3	95,00	96,67	96,67				
PPV	44,83	66,67	78,7–97,2	91,89	93,94	93,75				
NPV	100,00	89,58	82,5–96,5	91,94	87,88	86,57				
Czułość + swoistość Sensitivity + specificity	120,00	158,85	182,18	176,15	173,59					

Tab. 5. Ocena modeli opartych na klasyfikacji BIRADS-usg i skali Tsukuba
Tab. 5. Assessment of models based on BIRADS-US classification and Tsukuba score

czułości i swoistości. Model FLR charakteryzował się ponadto statystycznie wyższą czułością w porównaniu z modelem Tsukuba (82,05% vs 64,1%) (p=0,0370) w różnicowaniu zmian łagodnych i złośliwych, a model Tsukuba 3/4 znamiennie wyższą swoistością w porównaniu z modelem FLR (98,33% vs 85%) (p=0,042).

Przeprowadzona analiza wykazała zatem, że model łączący klasyfikację BIRADS-usg (BIRADS-usg 4/5) i skalę Tsukuba (Tsukuba 3/4) cechował się znamiennie wyższą czułością...
Wykonywanie biopsji zmian ogniskowych w równej gorstach BIRADS-usg 3 i ultrasonograficznych może szczególnie w zastosowaniu tej metody potwierdzać karczach problematycznych zmian ogniskowych piersi w elementem badania USG piersi, szczególnie w niej (p=0,0454). W swoistości B-mode cechuje wysoka czułość (p=0,0088) oraz wartość poprawia znamiennie częśści histopatologicznym zostało mach stopnie Tsukuba 1–3, z siach ołakowów, w szczególności w badaniach USG piersi (do 99%) (3,5,12–14) , a w wencjonalnym badaniu guzek wykazali nierówne zarysy. Speńiał ultrasonograficzne kryteria (p=0,0088) oraz wartością predykcyną ujemną (p=0,0321) w odniesieniu do skali Tsukuba 3/4. Z kolei w odniesieniu do wskaźnika FLR uzyskano istotne statystycznie poprawę swoistości (p=0,0340) oraz wartości predykcynie dodatniej (p=0,0454). W przypadku klasyfikacji BIRADS-usg (wartość odcięcia 4) również otrzymano wyższą wartość czułości i NPV, jednak bez cech znamienności statystycznej.

| Tab. 6. Analiza wskaźników statystycznych w wybranych modelach |
| Tab. 6. Analysis of statistical indicators in the selected models |

Ocena Evaluation	Tsukuba 3	Model FLR FLR model	BIRADS-usg 4 BIRADS-US 4	BIRADS-usg 4/Tsukuba 3 BIRADS-US 4/Tsukuba 3	
Złośliwa Malignant	Złośliwa Malignant	Złośliwa Malignant	Złośliwa Malignant	Złośliwa Malignant	
25	14	32	7	30	9
Łagodna Benign	Łagodna Benign	Łagodna Benign	Łagodna Benign	Łagodna Benign	
1	59	9	51	2	58
Czułość Sensitivity	64,10	82,05	76,92	87,18	
Swoistość Specificity	98,33	85,00	96,67	95,00	
PPV	96,15	78,05	93,75	91,89	
NPV	80,82	87,93	86,57	91,94	
Czułość + swoistość Sensitivity + specificity	162,44	167,05	173,59	182,18	

Omówienie

Sonoelestrografia jest obecnie coraz częściej stosowanym elementem badania USG piersi, szczególnie w przypadkach problematycznych zmian ogniskowych piersi w kategoriach BIRADS-usg 3 i 4. Liczne publikacje dotyczące zastosowania tej metody potwierdzają jej przydatność szczególnie w tych przypadkach. Wielośródowowe baddania oraz przeprowadzone metaanalizy wykazały, że metoda ta poprawia znamiennie częścieć swoistość wyników badań USG piersi (do 99%) (3,5,12–14), a w nielicznych badaniach także czułość badania (do 97%) (4,5). Konwencjonalne badania B-mode cechuje wysoka czułość (do 98%), ale niższa swoistość (do 96%) (5,15). Łącznie zastosowanie obu technik ultrasonograficznych mogłoby pozwolić na dokładniejsze różnicowanie charakteru zmian ogniskowych w piersiach, a w związku z tym precyzyjniej typować pacjentów do wykonywania biopsji zmian ogniskowych w piersiach (4,5,16).

W pracy własnej wszystkim znanym ogniskowym w pierśach o charakterze łagodnym przypisano na elastogra- mach stopnie Tsukuba 1–3, z wyjątkiem jednej, zaklasifikowanej do stopnia Tsukuba 4 (przypadek fałszywie dodatni). Zmiannę tę ujawniono u 83-letniej pacjentki. W badaniu histopatologicznym została zweryfikowana jako gruczołakowłośniak z cechami szkliwienia i włóknienia. W konwencjonalnym badaniu guzek wykazywał mieszaną echo- genicznosc z ogniskami hiperechogenicznymi oraz miał nierówne zarysy. Speńiał ultrasonograficzne kryteria frencently (3,5,12–14). Moreover, some studies also reveal an improvement of sensitivity (up to 97%) (4,5). Conventional B-mode examinations are characterized by a high sensitivity (up to 98%), but lower specificity (up to 96%) (5,15).

Furthermore, 30 benign lesions were marked as Tsukuba score 4 (a false positive case). This lesion was diagnosed in an 83-year old patient. On histopathology, it was verified as a fibroadenoma with the features of hyalinization and fibrosis. In a conventional examination, the tumor showed lower echogenicity with hyperechoic foci and had indistinct margin. It fulfilled ultrasound criteria of a complex fibroadenoma of BIRADS-US 4 in which no strain appeared in the elastogram. It is commonly known that complex fibroadenomas are burdened with higher relative risk of developing a breast neoplasm (RR – a ratio of the probability that a given end point will occur in an experimental group, which is subject to the tested measure, versus a control group). This was confirmed in the study Dupont et al. (16) which revealed 3.1 times greater relative risk of developing breast carcinoma in persons with negative family history and 3.9 times greater risk in the case of positive family history.

When assessing benign lesions in elastograms, Schaefer et al. (14) found a considerably greater number of false positive cases than the author of this paper. In their study, 1 lesion, which on histopathology occurred to be fibrocystic breast disease, was marked with Tsukuba score 5. Furthermore, 30 benign lesions were marked as Tsukuba 4 (however, the authors do not describe histopathological findings in this group). In the quoted study, as compared to the author’s own research, fibroadenomas were
The differentiation of the character of solid lesions in the breast in the compression sonoelastography.

Part II: Diagnostic value of BI-RADS-US classification, Tsukuba score and FLR ratio

gruczolakowłóknika złożonego BI-RADS-usg 4, który na elastogramie nie ulega odkształceniu. Jak wiadomo, gruczolakowłókniki złożone cechują się wyższym ryzykiem względym (relative risk, RR; jest to iloraz prawdopodobieństwa wystąpienia określonego punktu końcowego w grupie eksperymentalnej, w której stosuje się ocenianą interwencję, i tego prawdopodobieństwa w grupie kontrolnej) zachorowania na raka piersi, co zostało potwierdzone w badaniach Duponta i wsp.(14), w których wykazano 3,1-krotne wzrost ryzyka względnego zachorowania na raka piersi u osób z negatywnym wywiadem rodzinnym oraz 3,9-krotny wzrost ryzyka w przypadku dodatniego wywiadu rodzinnego.

Schaefer i wsp.(14) w ocenie zmian łagodnych na elastogramach stwierdzili znacznie większą liczbę przypadków fałszowo dodatnich niż autorów. W pracy autorów w jednym przypadku zmiany łagodnej przypisano stopień Tsukuba 5; zmiana ta w badaniu histopatologicznym okazała się zwyrodnieniem włóknisto-torbielowatym. Ponadto 30 zmian łagodnych zostało opisanych jako stopień Tsukuba 4 (autorzy nie precyzują jednak szczegółowo rozpoznania histopatologicznego w tej grupie zmian). Gruczolakowłókniki częściej były interpretowane na elastogramach jako zmiany nieulegające odkształceniu (wyniki fałszywie dodatnie) w materiale cytowanych autorów niż w pracy własnej (34.5% vs 20%). Z kolei w badaniach własnych częściej występowały zmiany o typie zwyrodnienia włóknisto-torbielowatego, które na elastogramach ulegały odkształceniu (56.7% vs 37.2%) (wyniki prawdziwie ujemne). W pracy własnej zmiany o charakterze nowotwórowym złożonym w większości przypadków (64.1%) uzyskały stopień Tsukuba 4 i 5, gdyż nie ulegały odkształceniu. Do stopnia Tsukuba 3 zakwalifikowano 8 zmian (20.5%), a do stopnia Tsukuba 2 – 6 zmian (15.4%). Według danych z piśmiennictwa14 stopień Tsukuba 2 jest charakterystyczny dla zmian o charakterze łagodnym. W materiale autori 5 zmian w klasyficznym obrazowaniu otrzymali kategorię BI-RADS-usg 4 (12,8%), a jedna zmiana – kategorię BI-RADS-usg 5 (2,6%). W badaniu histopatologicznym jedną z tych zmian był CDIS (przypadek przedstawiony na ryc. 9), w 3 przypadkach zmianom CDIS towarzyszyły niewielkie ogniska raka inwazyjnego, w pozostałych 2 przypadkach były to inwazyjne raki przewodowe (zmiana przedstawiona na ryc. 10). Itoh i wsp.(15) analizowali 111 zmian ogniskowych w piersiach, wśród których stwierdzili 52 zmiany o charakterze nowotwórowym złożonym. Pięć z nich złożonymi (9,6%) przypisali stopień Tsukuba 2. Dwie spośród tych 5 zmian w badaniu patologicznym okazały się CDIS. Powyższe rezultaty potwierdzają własne obserwacje, jak również rezultaty badania Krouskopa i wsp.(16), w których wykazano, iż nowotwory przedinwazyjne cechują się niższymi wartościami modułu Younga, zatem ulegają większemu odkształceniu niż nowotwór inwazyjny. Wynika to także z odmiennej biologii tego typu nowotworów, które naciekają tylko nabłonie, nie przekraczając błony podstawowej, zatem nie powodują desmoplazji podcieslika, odpowiedzialnej w przypadku raków inwazyjnych za brak ich odkształcalności.

more frequently interpreted as lesions that do not undergo deformations (false positive results) in the elastograms (34.5% versus 20%). In the author’s own study, however, fibrocystic breast lesions which showed strain on the elastograms occurred more frequently as compared to the study quoted above (56.7% versus 37.2%) (true negative results). In the author’s own study, malignant lesions, in the majority of cases (64.1%), obtained Tsukuba score 4 and 5 since they did not show strain. Tsukuba score 3 encompassed 8 such lesions (20.5%) and Tsukuba score 2 – 6 lesions (15.4%). According to the references(2–4), Tsukuba 2 is characteristic of benign changes. In the material of the author, during conventional imaging, 5 lesions obtained BI-RADS-US 4 (12.8%) and 1 lesion – BI-RADS-US 5 (2.6%). Histopathology revealed that one of these changes was CDIS (presented in fig. 9); in 3 cases, CDIS was accompanied by slight foci of invasive carcinoma and the remaining 2 cases constituted invasive ductal carcinomas (presented in fig. 10). Itoh et al.(15) analyzed 111 focal lesions in the breast, 52 of which were malignant. Five of the malignancies (9.6%) were marked with Tsukuba score 2. Two of them, after pathological examination, occurred to be CDIS. These results are confirmed in the author’s own observations as well as in the study of Krouskop et al.(16), which revealed that in situ neoplasms are characterized by lower values of Young’s modulus and thus, undergo greater deformations than invasive carcinomas. This also results from different biological features of these neoplasms. They infiltrate only the epithelium and do not cross the basement membrane of the ducts. Therefore, they do not cause the desmoplasia of the stroma, which in the case of invasive carcinomas is responsible for their deformability.

Another interesting fact in the results of Schaefer et al.(14) is that except for 2 malignant lesions marked as Tsukuba 1, the remaining ones showed no strain and were classified as Tsukuba 4 and 5. These two false negative cases, revealed by histopathological examination, were marked as invasive ductal carcinomas of intermediate malignancy grade. The authors explain that in a conventional US examination, the lesions were assigned to BI-RADS-US 4, which constituted an indication for histopathological examination.

In the author’s own study, the lesions which were classified as Tsukuba 3 were both benign and malignant (malignant ones constituted 35%). Similar results were obtained by other authors(2,3,12) who reported 13–30% of malignant lesions in this Tsukuba category. On the other hand, Schaefer et al. obtained different results(14). In the group with Tsukuba score 3, no malignancies were found. Therefore, it seems that the elasticity pattern of Tsukuba 3 proposed by Itoh et al.(15) is as controversial and diagnostically problematic as category 4 in BI-RADS-US classification. In their studies, Locatelli et al.(16) and Regini et al.(14) applied a classification prepared by the Italian Multicentre Study Group. It encompasses solid and cystic lesions and Tsukuba score in the way described above except for the problematic score 3 which was presented in a different manner. It characterized lesions with the majority of the green color and single areas of blue. With such a criterion, the authors managed to obtain a considerably lower
W wynikach Schaefera i wsp.\(^{(4)}\) zwraca również uwagę fakt, że z wyjątkiem 2 zmian nowotworowych złośliwych opisanych jako Tsukuba 1 pozostałe nie ulegały odkształceniu i zostały zakwalifikowane do stopni Tsukuba 4 i 5. Dwa przypadki zmian fałszywie ujemnych w badaniu histopatologicznym opisano jako raki inwazyjne przewodowe o pośrednim stopniu złośliwości. Autorzy wyjaśniają, że w konwencjonalnym badaniu USG zmiany opisano jako BIRADS-usg 4, co było wskazaniem do badania histopatologicznego.

W badaniach własnych w grupie zmian, które otrzymały na elastogramie ocenę Tsukuba 3, występowały zarówno zmiany o charakterze łagodnym, jak złośliwym (zmiany złośliwe stanowiły około 35%). Podobne wyniki uzyskali inni autorzy\(^{(2,3,12)}\), stwierdzając 13–30% zmian złośliwych w tym stopniu skali Tsukuba. Odmiennie rezultaty odnotowali Schaefer i wsp.\(^{(4)}\), którzy w grupie zmian Tsukuba 3 nie stwierdzili zmian nowotworowych złośliwych. Wydaje się więc, że zaproponowany przez Itoh i wsp.\(^{(2)}\) wzorzec odkształceń Tsukuba 3 jest najbardziej dyskusyjny i problematyczny diagnostycznie, podobnie jak w klasyfikacji BIRADS-usg kategoria 4. Locatelli i wsp.\(^{(13)}\) oraz Regini i wsp.\(^{(14)}\) zastosowali w badaniach własnych klasyfikację opracowaną przez włoską grupę Italian Multicentre Study Group. Klasyfikacja ta obejmuje zmiany lite i płynne oraz stopnie Tsukuba opisane jak wyżej w pracy własnej, poza problematycznym stopniem Tsukuba 3, który został przedstawiony inaczej. Charakteryzuje zmiany, w których wzór przeważa kolor zielony z pojedynczymi obszarami koloru niebieskiego. Stosując to kryterium, autorzy uzyskali znacznie mniejszy odsetek zmian złośliwych w tej grupie (około 6%) w porównaniu z wyżej prezentowanymi rezultatami opierającymi się na klasyfikacji wg Itoha i wsp.\(^{(2)}\) i wysoką czułość – 88,5% oraz swoistość – 92,7% sonoelektografii w różnicowaniu zmian ogniskowych w piersiach\(^{(14)}\), Itoh i wsp.\(^{(2)}\), twórcy skali Tsukuba i pionierzy klinicznych zastosowań elastografii piersi, uzyskali odmienne wyniki w przypadku zmian łagodnych. Z opublikowanej pracy na materiale obejmującym 111 zmian ogniskowych w piersiach tylko 3,8% zmian łagodnych (2/52) otrzymało stopień Tsukuba 3, natomiast w grupie zmian nowotworowych złośliwych odsetek ten wyniósł 22% (13/59), był więc zbliżony do uzyskanego w badaniach własnych. Powyższe wyniki są istotne pod kątem dalszej diagnoptyki. W przypadku zmian w stopniach Tsukuba 3 i wyższych badacze sugerują bowiem weryfikację cytologiczną i/lub histopatologiczną. Własne wyniki, w tym tak znaczni odsetek zmian nowotworowych złośliwych w stopniu Tsukuba 3, potwierdzają, że zmiany w tym stopniu powinny zostać poddane weryfikacji patologicznej. O wyborze procedury – biopsja aspiracyjna cienkoigłową celowaną (BACC) czy biopsja gruboigłową (BG) – należy zdecydować w korelacji z kategorią BIRADS-usg.

W pracy własnej na podstawie weryfikacji patologicznej zmian ocenianych na elastogramach dokonano analiz typu zmian nowotworowych złośliwych kwalifikowanych do poszczególnych stopni wg skali Tsukuba. W grupie zmian nowotworowych złośliwych najczęściej stwierdzane były raki przewodowe (rzadziej raki in situ, raki mieszané percentage of malignant lesions in this group (circa 6%) in comparison with the aforementioned results based on the classification proposed by Itoh et al.\(^{(12)}\) They also obtained high sensitivity (88.5%) and specificity (92.7%) of sonoelektografie in determining the character of focal lesions in the breast\(^{(14)}\), Itoh et al.\(^{(2)}\), the creators of Tsukuba score and the pioneers in the clinical application of breast elastography, obtained different results for benign lesions. Out of 111 focal breast lesions presented in the published papers, merely 3.8% of benign changes (2/52) received Tsukuba score 3. In the group of malignancies, however, they obtained 22% (13/59). The percentage was then similar to the one obtained in the author’s own research. The aforementioned results are significant in terms of further diagnosis. In the case of lesions marked with Tsukuba 3 and higher, the scholars suggest cytological and/or histopathological verification. The author’s own results that include such a high percentage of malignancies in Tsukuba 3, confirm that lesions with this score should undergo pathological verification. The choice of the procedure, either a fine-needle aspiration biopsy (FNAB) or a core-needle biopsy (CNB), should be made in relation to BIRADS-US category.

In the author’s own study, based on pathological verification of lesions assessed in the elastograms, the types of malignancies marked with individual Tsukuba scores were determined. The most common neoplasms in the group of malignancies were ductal carcinomas (carcinomas in situ, mixed and cribriform occurred more rarely). They showed various elastic properties ranging from lesions in which strain did not appear to those in which it appeared in a considerable area (i.e. Tsukuba 2–5). The creators of Tsukuba score – Itoh et al.\(^{(2)}\) as well as other scholars made similar observations\(^{(12)}\).

When analyzing benign lesions in relation to Tsukuba classification, no significant differences in their deformation were observed. In the elastograms, the most common fibrocytic dysplasia was classified to Tsukuba scores 1–3. The second most common benign lesion was fibroadenoma which was characterized by diverse level of deformability. Only one fibroadenoma, which has been discussed above, did not undergo deformation probably due to the presence of hyalinization and fibrosis (false positive result). Itoh et al. presented similar observations\(^{(2)}\). In their study lesions corresponding to fibrocytic disease ANDI (aberrations of normal development and involution) and fibroadenomas were classified as Tsukuba 1–4.

Similarly to BIRADS-US classification, the threshold value for Tsukuba scale was determined taking into consideration the results of pathological examinations. The model with the threshold value Tsukuba 3/4 proved the most accurate in differentiating between benign and malignant lesions: sensitivity – 64.1%, high specificity – 98.33% (and only one false positive result). Zhi et al.\(^{(17)}\) obtained similar results in their study of 559 solid focal lesions which comprised 415 benign and 144 malignant changes (sensitivity 70.1% and specificity 93%). Other authors\(^{(2,18)}\) also present high values of specificity (nearly 90%) in elastography with the threshold value of Tsukuba 3/4.
Algoli obliczany przez oprogramowanie aparatu i wartości progowej w 10% przypadków (tj. Tsukuba 2–5). Podobne obserwacje poczynili twórcy skali Tsukuba – Itoh i wsp. (2) oraz inni badający (12).

Analizując zmiany o charakterze łagodnym w odniesieniu do klasyfikacji Tsukuba, nie zauważano istotnych różnic w ich odkształceniu, a najczęściej występująca dysplazja włóknisto-torbielowata była kwalifikowana na elastogramach do stopni Tsukuba 1–3. Drugą do częstości zmianą łagodną były gruczołakowłóknikia, które cechowały się zróżnicowaną odkształcalnością. Tylko jeden gruczołakowłóknik, omówiony powyżej, prawdopodobnie z uwagi na obecność szkliwienia i włókien nie ulegał odkształceniu (wynik fałszywie dodatni). Podobne obserwacje przedstawił Itoh i wsp. (17), w których badaniu zmiany odpowiadające zwyrodnieniu włóknisto-torbielowatemu ANDI (aberrations of normal development and involution) oraz gruczołakowłókniki występowali w stopniach Tsukuba 1–4.

Uwzględniając wyniki badania patologicznego, wyznaczano podobnie jak dla klasyfikacji BIRADS-usg wartość progową dla skali Tsukuba. Najdokładniej zmiany łagodne i złożiste różnicowali model z wartością progową Tsukuba 3/4 – czułość 64,1%, swoistość až 98,33% (tj. jeden wynik fałszywie dodatni). Podobne wyniki uzyskiwali Zhi i wsp. (17) w badaniu 559 liłym dzian omogowych, w tym 415 zmian łagodnych oraz 144 zmian nowotworowych złożylnych (czułość 70,1% i swoistość 93%). Innii autorzy (2,3,18) również przedstawiały wysokie, bliskie 90% wartości swoistości dla badania elastograficznego przy wartości progowej Tsukuba 3/4.

Odmienne rezultaty referują Schaefer i wsp. (4), którzy dla takiej samej wartości progowej Tsukuba 3/4 uzyskali czułość elastografi 96,9%, a swoistość 76,0%. Tak wysoka czułość wynikała prawdopodobnie z wysokiego odsetka rozpoznaw prawdziw odnotóż nie i tam innych dzian owych (wśród 62/64 zmian nowotworowych w stopniu Tsukuba 4 i 5) oraz małej liczby przypadków fałszywie ujemnych (tj. 2 zmiany Tsukuba 1). Natomiast na stosunkowo niską swoistość wpłynęły až 32/94 wyniki fałszywie dodatnie.

Badanie USG z wykorzystaniem opcji elastografi pozwalało nie tylko na ocenę jakościowymi zmian ogniskowych w piersiach z zastosowaniem skali Tsukuba, ale także na ilośćową ocenę za pomocą wskaźnika FLR. Wskaźnik ten jest obliczany przez oprogramowanie aparatu i wyraża stosunek odkładania okolikowej tkanki tłuszczowej piersi do odkładania zmiany ogniskowej. Tkankę tłuszczową uznaje się za obszar referencyjny z uwagi na jej niemal stałą odkładalność (11). W badaniach własnych średnie wartości FLR dla zmian nowotworowych złożylnych były istotnie wyższe niż dla zmian o charakterze łagodnym i wynosiły odpowiednio 6,37 i 1,61. Przy wartości progowej FLR 3,13 charakter zmian różnicowano prawdopodobno z czułością 82,05% i swoistością 85%. Badania własne potwierdziły zatem przydatność tego dodatkowego parametru ilościowego w różnicowaniu charakteru zmian ogniskowych w piersiach. Podobne rezultaty uzyskali inni

On the other hand, Schaefer et al. (4) reported different outcomes. Using the same threshold value of Tsukuba 3/4, the authors obtained sensitivity of 96.9% and specificity of 76.0%. Such a high sensitivity probably resulted from a high percentage of true positive outcomes (among 62/64 neoplastic lesions in Tsukuba score 4 and 5) and slight number of false negative cases (only 2 lesions marked with Tsukuba 1). A relatively low specificity, on the other hand, was caused by a high number of false positive results (32/129).

US examinations with elastography option not only allow for a qualitative evaluation of focal lesions in the breast with the use of Tsukuba score, but also for a quantitative assessment with the help of FLR ratio. This indicator is calculated by the software of the US apparatus and expresses the ratio of the strain of the adjacent adipose tissue in the breast to the strain of the focal lesion. The adipose tissue is considered a reference area due to its stable deformability (11). In the author’s own research, average values of FLR for malignant neoplastic lesions were significantly higher than for benign ones and constituted 6.37 and 1.61 respectively. With the threshold value of FLR 3.13, lesions were adequately differentiated with the sensitivity of 82.05% and specificity of 85%. The author’s own research confirmed the usefulness of this quantitative parameter in determining the character of focal lesions in the breasts. Other scholars obtained similar results. For instance, Thomas et al. (11) analyzed the usefulness of FLR indicator on the material of 113 benign and 114 malignant lesions. The FLR mean value for benign lesions was 1.6±1.0 and for the malignant ones 5.1±4.2. Similarly to the author’s own material, such a difference was statistically significant. For the assumed threshold value of 2.455, the authors obtained high levels of sensitivity and specificity (90% and 89% respectively). They also drew attention to a high value of the indicator in the case of scars – it was higher than the threshold value and constituted 3.3±1.1. In the author’s own study that encompassed 99 focal breast lesions, postoperative scars were not analyzed. Moreover, in the study of Zhi et al. (17), the mean value of FLR for benign lesions was 1.83±1.22, and 8.38±7.65 for the malignant ones. The assumed threshold value was 3.05. High values of sensitivity and specificity obtained in this study should be emphasized: sensitivity constituted 92.4% and specificity – 91.1%. The authors explained that they applied a different technique to calculate the ratio. Instead of using the subcutaneous adipose tissue as a reference area, they used glandular tissue located at the same depth as the tested focal lesion.

The author’s own research also analyzed the correlations between BIRADS-US categories and Tsukuba scores. According to the assumed guidelines, the category BIRADS-US 3 probably indicates a benign character of lesions, but the risk of malignancy constitutes ≤2% and therefore, it is recommended to perform a US control examination after the lapse of 6 months or a cytological verification (8,19). In the analyzed material, all 18 lesions classified as BIRADS-US 3 were of benign character. Only one lesion among them obtained Tsukuba score 3, the remaining ones were marked with Tsukuba 1 or 2. Therefore,
badający. Dla przykładu Thomas i wsp. analizowali przydatność wskaźnika FLR na materiale 113 zmian łagodnych i 114 zmian nowotworowych złośliwych. Średnia wartość FLR dla zmian łagodnych wyniosła 1,6±1,0, a dla złośliwych 5,1±4,2. Tak jak w materiale własnym różnica ta była istotna statystycznie. Dla uzyskanej wartości progowej 2,455 autorzy otrzymali wysokie wartości czułości i swoistości (odpowiednio 90% i 89%). Zwrócił przy tym uwagę na wysokie wartości wskaźnika w przypadku blizn, który wyniósł powyżej wartości progowej 3,3±1,1. W badaniach własnych obejmujących 99 zmian ogniskowych w piersiach nie oceniano blizn pooperacyjnych. Zhi i wsp. uzyskali średnią wartość wskaźnika FLR dla zmian łagodnych 1,83±1,22, a w grupie zmian nowotworowych złośliwych 8,38±7,65. Wyznaczona wartość progowa dla FLR wyniosła 3,05. W badaniu tym zwraca uwagę wysoka wartość wskaźników czułości i swoistości, które wyniosły 92,4% i 91,1%. Autorzy wyjaśnili, iż stosowali odmienne technikę pomiaru wskaźnika z wykorzystaniem jako obszaru refe
dencyjnego tkanki gruczołowej na tej samej gęstości co oceniana zmiana ogniskowa, zamiast podskórnej tkanki tłuszczowej.

W pracy własnej analizowano ponadto zależności pomiędzy kategorią BIRADS-usg oraz stopniom Tsukuba. Zgodnie z przyjętymi zalezniemi kategoria BIRADS-usg 3, w której ryzyko złośliwości zmiany wynosi ≤2%, wskazuje na jej prawdopodobnie łagodny charakter – rekomenduje się wykonanie kontrolnego USG za 6 miesięcy lub weryfikację cytologiczną[8,19]. W analizowanym materiale własnym wszystkie 18 zmian w kategorii BIRADS-usg 3 miały charakter łagodny. Wśród nich tylko jedna otrzymała stopień Tsukuba 3, pozostałe Tsukuba 1 i 2. Można więc sądzić, iż przypisanie zmiany łagodnej w piersiach kategorii BIRADS-usg 3 oraz na elastogramach Tsukuba 1 i 2 upoważnia do rozpoznania łagodnego charakteru zmiany i w związku z tym do odstąpienia od wykonywania BACC, z zaleceniem przeprowadzenia kontrolnego badania USG za 12 miesięcy. Do podobnych wniosków doszli Wojcinski i wsp. (3), którzy w pracy przedstawiającej wyniki wielośrodowiskowego badania niemieckiego obejmującego 779 zmian ogniskowych w piersiach zalecają w przypadku zmian BIRADS-usg 3, które na elastogramach otrzymały stopnie Tsukuba 1, 2, a nawet 3, niewykonanie weryfikacji cytologicznych, a jedynie przeprowadzenie kontrolnego badania USG w krótkim odstępie czasu (autorzy nie precyzują tego okresu). W tej grupie pacjentek stwierdzili największą trafiłość w wykonywaniu choroby (NPV 96,9%). W przypadku zmian w kategorii BIRADS-usg 3, Tsukuba 4 i 5 (nie stwierdzono takich zmian w materiale własnym) niemiecze badacze zalecili wykonanie weryfikacji histologicznej z powodu wysokiego prawdopodobieństwa złośliwości (45,5%).

Cho i wsp. (12) nie stwierdzili zmian nowotworowych złośliwych wśród 27 zmian kategorii BIRADS-usg 3, które na elastogramach w większości otrzymały stopnie Tsukuba 1 i 2, mimo że w 2 przypadkach zmiany oceniono jako Tsukuba 3 i 4. It may be stated that when a focal breast lesion is assigned to BIRADS-US 3 category and to Tsukuba 1 or 2 in the elastograms, it might be diagnosed as benign and thus, it is not necessary to conduct FNAB, but a US control examination should be recommended after the lapse of 12 months. Wojcinski et al. (13) arrived at the same conclusions in their paper presenting the results of the German multicenter study which encompassed 779 focal lesions in the breast. In the case of a lesion classified to BIRADS-US 3 and Tsukuba 1, 2 and even 3, they recommended a US control examination performed in a short period of time (the authors, however, did not specify this period) and did not render the cytological verification essential. In this group of patients, the highest accuracy of excluding a disease was noted (NPV of 96.9%). In the case of lesions classified to BIRADS-US 3 and Tsukuba 4 and 5, the German authors recommend histological verification due to a high risk of malignancy (45.5%). Such cases, however, were not observed in the author’s own study.

Cho et al. (12) did not detect any malignant changes in the group of 27 lesions classified to BIRADS-US 3 and most of which obtained Tsukuba scores 1 and 2 in elastograms (two lesions were marked with Tsukuba scores 3 and 4).

The analysis of focal lesions classified as BIRADS-US 4 (49 cases in the author’s own material), 40 of which were benign and 9 were malignant, demonstrated a diversity in terms of their elasticity. The majority of cases, i.e. 26 lesions, were marked with Tsukuba score 2 and 13 changes with Tsukuba score 3. The remaining ones were assigned to Tsukuba 1, 4 and 5. Assuming that the category BIRADS-US 4 and Tsukuba 2 encompass benign lesions according to the threshold values established in this paper, 5 false negative results were obtained both in BIRADS-US classification and in Tsukuba score. Histopathological verification demonstrated that in 4/5 cases the lesions constituted one carcinoma in situ and 3 carcinomas in situ with a slight component of invasive carcinomas. Such diseases pose diagnostic problems both in conventional US examination and in the assessment of their elastic features in elastograms. Such a considerable percentage of lesions in this category, including preinvasive ones, necessitates their pathological verification. Similar conclusions were drawn by Wojcinski et al. (3) If upon elastography, changes are classified as Tsukuba 1–3, the authors recommend histopathological verification even though the risk of malignancy is low (24.2%). In their opinion, the recognition of a benign character does not necessitate further diagnosis. In the case of lesions classified as BIRADS-US 4 and Tsukuba 4 or 5, the authors suggest that the second histopathological verification should be performed even if the lesion has been verified as benign. Wojcinski et al. do not recommend elastography in BIRADS-US 1, 2 and 5 since clinical trials have not demonstrated the usefulness of such procedures. The author’s own study brings similar conclusions. The category BIRADS-US 5 encompassed 32 lesions, comprising 30 malignancies. Two benign lesions, which showed deformations, obtained Tsukuba score 2 (pathological verification confirmed inflammation – fig. 11) and 3 (verified as papilloma with hyalinization – fig. 12). In the group

Katarzyna Dobruch-Sobczak
Analiza zmian ogniskowych BIRADS-usg 4 (49 w materiale własnym), wśród których 40 miało łagodny, a 9 złożony charakter, wykazała zróżnicowanie ich elastyczności. Najwięcej przypadków, tj. 26, otrzymało stopień Tsukuba 2, 13 zmian zakwalifikowano jako Tsukuba 3. Pozostałym zmiannom przypisano stopnie Tsukuba 1, 4 i 5. Zakładając, iż kategoria BIRADS-usg 4 oraz Tsukuba 2, zgodnie z wyznaczonymi wartościami progowymi w niniejszej pracy, dotyczą zmian łagodnych, uzyskano 5 wynikówafszywie uwjemnych, zarówno w klasifikacji BIRADS-usg, jak i w skali Tsukuba. Weryfikacja histopatologiczna wykazała, iż w 4/5 przypadków były to rak przedinwazyjny oraz 3 raki przedinwazyjne z niewielką komponentą raka inwazyjnego, które sprawiają trudności diagnostyczne zarówno w konwencjonalnym badaniu USG, jak i w ocenie ich właściwości sprężystych na elastogramie. Tak znaczny odsetek zmian, w tym przedinwazyjnych, nakazuje przeprowadzenie w tej kategorii weryfikacji patologicznej. Podobne wnioski przedstawił Wojcinski i wsp. (3). W przypadku wyniku badania elastograficznego Tsukuba 1–3, pomimo niskiego prawdopodobieństwa choroby nowotworowej złożowej wynoszącego 24,2%, autorzy zalecają wykonanie weryfikacji histopatologicznej. W opinii autorów stwierdzenie łagodnego charakteru zmiany zwalnia od dalszej diagnostyki. W przypadku zmian BIRADS-usg 4 i Tsukuba 4 lub 5 autorzy sugerują przeprowadzenie ponownej weryfikacji histopatologicznej, nawet jeżeli pierwotnie zmianę zwerfikowano jako łagodną. Wojcinski i wsp. nie zalecają wykonywania elastografii w kategoriach BIRADS-usg 1, 2 oraz 5, gdyż w badaniach klinicznych nie wykazano korzyści z takiego postępowania. Podobne spostrzeżenia wynikają z badań własnych, gdyż do kategorii BIRADS-usg 5 autorka włączyła 32 zmiany, w tym 30 nowotworowych złożowych. W grupie tej 2 zmiany łagodne, które uległy odkształceniu, uzyskały w skali Tsukuba ocenę 2 (w badaniu patologicznym zapalenie – ryc. 11) oraz 3 (w badaniu patologicznym brodawczak ze szkliwieniem – ryc. 12). W grupie zmian złożowych BIRADS-usg 5 aż 8 zmian uzyskało stopień Tsukuba 3, a jedna zmianna stopień Tsukuba 2.

Analiza porównawcza oceny jakościowej na elastogramach wg skali Tsukuba oraz ilościowej za pomocą wskaźnika FLR wykazała wyższą sumę wskaźników czułości i swoistości w przypadku oceny ilościowej, natomiast w ocenie jakościowej uzyskano bardzo wysoką swoistość wynoszącą 98,33% dla zmian kwalifikowanych jako Tsukuba 3.

W dostępnym piśmiennictwie dotyczącym przydatności elastografii w różnicowaniu charakteru litych zmian ogniskowych w piersiach autorzy przede wszystkim koncentrują się na uzyskaniu odpowiedzi na pytanie, czy metoda ta poprawia różnicowanie charakteru zmian ogniskowych w piersiach i wykrywalność zmian nowotworowych. Ponieważ elastografia jest uzupełnieniem kluczowego badania ultrasonograficznego, autorka podjęła próbę odpowiedzi na pytanie, w jakim stopniu łączna ocena zmian ogniskowych za pomocą obu technik USG, tj. kluczowego B-mode i elastografii, wpłynie na czułość i swoistość w różnicowaniu ich charakteru. Przeprowadzona analiza statystyczna w odniesieniu do weryfikacji histopatologicznej wykazała, iż stopnie BIRADS-usg 3 i 4 oraz Tsukuba 1, 2 i 3 of malignant lesions classified as BIRADS-US 5, as many as 8 lesions obtained Tsukuba score 3 and 1 lesion was marked with Tsukuba score 2.

The comparative analysis of qualitative assessment in the elastograms according to Tsukuba score and quantitative assessment by means of FLR ratio, expressed higher sum of sensitivity and specificity in the quantitative assessment. In the case of qualitative evaluation, however, a very high specificity level was obtained for lesions classified as Tsukuba 3. It constituted 98.33%.

In the available literature concerning the usefulness of elastography in determining the character of solid focal lesions in the breast, the authors mainly focus on seeking the answer to a question of whether or not the method improves the character differentiation of focal breast lesions and facilitates the detectability of neoplasms. Due to the fact that elastography constitutes a supplementation of a classic ultrasound scan, the author attempted to answer the following question: to what extent will the combined assessment of focal lesions, made by means of both techniques, i.e. classic B-mode and elastography, influence the sensitivity and specificity in their character differentiation? The statistical analysis with reference to the pathological verification demonstrated that categories BIRADS-US 3 and 4 as well as the scores Tsukuba 1, 2 and 3 indicate benign lesions with the sensitivity of 87.2% and specificity of 95% as well as PPV and NPV of above 90%. In comparison with Tsukuba scale, a combined assessment significantly improved the sensitivity and NPV of the examination. However, a statistically significant improvement of specificity and PPV was noted in terms of FLR ratio.

To conclude, the conducted own research indicate that breast elastography is a promising technique of ultrasound imaging. The study confirms the validity of the technique as part of a diagnostic algorithm of focal breast lesions. The author demonstrated a high level of specificity of this examination in the diagnosis of the most problematic solid focal lesions in the breast classified to BIRADS-US 3 and 4 in a B-mode examination. The majority of such cases constituted benign lesions in the author’s material. Similarly to the studies of other authors[3,12], it was confirmed that in the case of lesions classified to BIRADS-US 3 and Tsukuba 1 and 2, only a control US scan should be performed and that cytological verification is not necessary. On the other hand, in the case of changes classified to BIRADS-US 4, pathological verification is essential. Additionally, all lesions classified as Tsukuba 1 were benign. In classic B-mode imaging they were characterized by low or medium risk of malignancy (BIRADS-US 3 and 4). Therefore, it needs to be stated that this group of lesions, whose strain is identical to the surrounding tissues, are of benign character and do not require pathological verification. Moreover, the study of Yi et al., conducted on the material of 1786 nonpalpable focal breast lesions, confirm the lack of necessity to perform cytological verifications of lesions classified as Tsukuba1/BIRADS-US 4a[20].
Podsumowując, przeprowadzone badania własne wskazują, że elastografia piersi jest obiecującą metodą pozwala na ocenę prawdopodobieństwa choroby w obrazie USG i pozwala w niektórych przypadkach na różnicowanie nabiegów bliznowych oraz innych zmian, dotyczących głównie zmian ogniskowych w piersiach. Udowodniono wysoką skuteczność tego badania w diagnozie najbardziej problematycznych litych zmian ogniskowych w piersiach, klasyfikowanych w badaniu B-mode do kategorii BIRADS-usg 3 i 4, obejmujących w pracy autorki w większości przypadków zmiany o charakterze łagodnym. Potwierdzono, podobnie jak w pracach innych autorów (3,12), że w przypadku zmian BIRADS-usg 3, Tsukuba 1, 2 można przeprowadzać jedynie kontrolne badania USG, rezygnując z weryfikacji cytologicznej, z kolei w grupie zmian BIRADS-usg 4 konieczna jest weryfikacja patologiczna. Dodatkowo wszystkie zmiany zakwalifikowane do stopnia Tsukuba 1 miały charakter łagodny, w klasycznym obrazowaniu B-mode cechowały się niskim i umiarkowanym prawdopodobieństwem charakteru nowotworowego (BIRADS-usg 3 i 4). Należy zatem uznać, że ta grupa zmian, ulegających identycznemu odkształceniu jak otaczające je tkanki, ma charakter łagodny i nie wymaga weryfikacji patologicznej. Badania Yi i wsp. na materiale 1786 niepalpacyjnych zmian ogniskowych w piersiach potwierdzają możliwość odstąpienia od weryfikacji cytologicznej zmian Tsukuba 1/BIRADS-usg 4a(20).

Dotychczas w Polsce przeprowadzono nieliczne badania dotyczące oceny przydatności sonoelestografii w diagnozycie różnicowej zmian ogniskowych w piersiach (21). Prezentowane badania własne miały więc charakter nowatorski – zarówno pod względem liczności badanej grupy, jak i metodyki, obejmującej poza oceną elastogramów w skali Tsukuba oraz obliczeniem wskaźników FLR także ocenę porównawczą modeli łączonych BIRADS-usg oraz Tsukuba. Wykazano, iż zmiany ogniskowe w piersiach są grupą zmian o zróżnicowanych właściwościach sprężystych, co pozwala wykluczyć w elastografii ich podejrzane charakter, zwłaszcza w przypadku zmian ocenionych w klasycznym badaniu USG B-mode jako BIRADS-usg 3. Przy zastosowaniu obu technik ocena zmian ogniskowych w piersiach kwalifikowanych jako BIRADS-usg 3 i 4 pozwala z jeszcze większą precyzją oceniać charakter zmian ogniskowych.

Wnioski
1. Przeprowadzone badania wykazały, że badanie USG B-mode wzbogacone o ocenę elastograficzną jest cen- nym badaniem w ocenie litych zmian ogniskowych w piersiach.
2. W ocenie wartości diagnostycznej klasyfikacji BIRADS-usg oraz skali Tsukuba modelami najlepiej różnicują- cymi charakter litych zmian ogniskowych w piersiach były BIRADS-usg 4/5 (czułość 76,92%, swoistość So far, in Poland, there have been few studies concerning the evaluation of the usefulness of sonoelastography in differen- tial diagnosis of focal breast lesions(21). The research presented herein was innovative both in terms of the number of subjects and its methods, which apart from the eval- uation of elastograms in Tsukuba scale and the calculation of FLR indicators, also encompassed a comparative analy- sis of combined BIRADS-US and Tsukuba models. It has been demonstrated that focal lesions in the breast consti- tute a diversified group in terms of their elastic properties, which enables to exclude their suspicious character in elast- tography. This particularly concerns the lesions assessed as BIRADS-US 3 in a classic B-mode examination. When both techniques are used, the evaluation of focal breast lesions classified as BIRADS-US 3 and 4 allows for a determina- tion of their character with greater accuracy.

Conclusions
1. The research carried out by the author revealed that when a B-mode examination is enriched with elastog- raphic assessment, it becomes a valuable tool in the diagnosis of solid focal lesions in the breast.
2. In the assessment of the diagnostic value of BIRADS-US classification and Tsukuba score, it occur- red that the models which differentiate the character of solid focal lesions in the breast with the highest accu- racy were BIRADS-US 4/5 (sensitivity of 76.92%, specifi- city of 96.67%) and Tsukuba 3/4 (sensitivity of 64.1%, specificity of 98.33%). The average values of FLR for malignant neoplastic lesions were significantly higher than for benign ones (p=0.0000). The threshold value obtained in the examined clinical material, which diffe- rentiated between benign and malignant lesions in the breast, equaled 3.13.
3. The conducted comparative analysis of the classic B-mode imaging and sonoelastography demonstrated a significant improvement in the diagnosis of benign lesions by means of sonoelastography. Furthermore, the combined application of both classifications (with the threshold value BIRADS-US 4/Tsukuba 3) im- proved the total value of sensitivity and specificity of char- acter differentiation of focal lesions (87.2% and 95% respectively). In the case of problematic focal lesions classified as BIRADS-US 3, the study revealed that when such changes obtain Tsukuba score of 1 and 2, their benign character is confirmed. Thus, it renders cytological verification unnecessary.

Conflict of interest
Author do not report any financial or personal links with other per- sons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.
The differentiation of the character of solid lesions in the breast in the compression sonoelastography.
Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

96.67%) and Tsukuba 3/4 (czołność 64.1%, swoistość 98.33%). Średnie wartości wskaźnika FLR dla zmian nowotworowych złośliwych były istotnie wyższe niż dla zmian łagodnych (p=0.0000). Uzyskana wartość progowa w badanym materiale klinicznym różnicująca zmiany łagodne z złośliwe nowotworów pieri wyniośla 3,13.

3. Przeprowadzona analiza porównawcza klasyfikacyjnego obrazowania B-mode i sonoelastografii wykazała istotną poprawę rozpoznania zmian łagodnych przy zastosowaniu sonoelastografii. Ponadto łączne zastosowanie obu klasyfikacji (z wartością progową BIRADS-usg 4/Tsukuba 3) poprawiło sumę czułości i swoistości rozpoznawania charakteru zmian ogoniokowych (odpowiednio 87.2% i 95%). W przypadku problematycznych zmian ogoniokowych BIRADS-usg 3 wykazano, iż uzyskanie dla tych zmian w elastografii stopni Tsukuba 1 i 2 potwierdza ich łagodny charakter, tym samym pozwala odsądzić o weryfikacji cytologicznej.

Konflikt interesów

Autorka nie zgłasza żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T: Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20: 260–274.
2. Itcho A, Ueno E, Tohno E, Kamma H, Takahashi H, Shima T et al.: Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341–350.
3. Wojcinski S, Farrokh A, Weber S, Thomas A, Fischer T, Slowinski T et al.: Multicenter study of ultrasound real-time tissue elasticity in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the B1-RADS-US classification system with sonoelastography. Ultraschall Med 2010; 31: 484–491.
4. Schaefer FKW, Heer I, Schaefer PJ, Mundhenke C, Osterholz S, Order BM et al.: Breast ultrasound elastography – results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 2011; 77: 450–456.
5. Sadigh G, Carlos RC, Neal CH, Dwamena BA: Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 2012; 133: 23–35.
6. Mansour SM, Omar OS: Elastography ultrasound and questionable breast lesions: Does it count? Eur J Radiol 2012; 81: 3234–3244.
7. Shima T, Nitta N, Yamakawa M, Ueno E: Real-time tissue elasticity imaging using the combined autocorrelation method. MEDIX Suppl 2007: 4–7.
8. Dobruch-Sobczak K: Różnicowanie charakteru litych zmian ogoniokowych w piersiach w sonoelastografii kompresyjnej. Część I: Ocena wartości diagnosticznej obrazowania ultrasonograficznego B-mode w diagnostyce różnicowej litych zmian ogoniokowych w piersiach w odniesieniu do weryfikacji patomorfologicznej. J Ultrason 2012; 12: 402–419.
9. Jakubowski W (red.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Wyd. 4: Praktyczna Ultrasonografia, Rzotoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2011: 91–96.
10. Jakubowski W, Dobruch-Sobczak K, Migda B: Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja. Badanie sonomammograficzne. J Ultrason 2012; 12: 245–261.
11. Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T: Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17: 558–563.
12. Cho N, Moon WK, Park JS, Cha JH, Jang M, Seong MH: Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol 2008; 9: 111–118.
13. Locatelli M, Rizzatto G, Aiani L, Margarini A, Baldassarre S, Giuseppetti GM et al.: Characterization of breast lesions with real-time sonoelastography: results from the Italian Multicenter Clinical Trial. Eur Radiol 2007; 17 (Suppl 1): 200.
14. Regini E, Bagnera S, Tota D, Campanino P, Lurzia A, Barisone F et al.: Role of sonoelastography in characterising breast nodules. Preliminary experience with 120 lesions. Radiol Med 2010; 115: 551–562.
15. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995; 196: 123–134.
16. Dupont WD, Page DL, Parf FF, Vnencak-Jones CL, Plummer WD Jr, Rados MS et al.: Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med 1994; 331: 10–15.
17. Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM: Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 2010; 17: 1227–1233.
18. Thomas A, Fischer T, Frey H, Oehlering L, Grunnwald S, Blohmmer Ju et al.: Real-time elastography – an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 2006; 28: 335–340.
19. Stavros AT: Ultrasonografia piersi. Medipage, Warszawa 2007: 29, 96–108, 276–350, 597–688, 877.
20. Yi A, Cho N, Chang JM, Koo HH, La Yun B, Moon WK: Sonoelastography for 1,786 non-palpable breast masses: diagnostic value in the decision to biopsy. Eur Radiol 2012; 22: 1033–1040.
21. Dobruch-Sobczak K, Sudoł-Zopińska I: Przydatność sonoelastografii w diagnostyce różnicowej litych zmian ogoniokowych w sутkach. Ultrasonografia 2011; 11 (44): 8–16.