Врожденные миопатии — это клинически и генетически гетерогенная группа врожденных миопатий, общий патопатологический признак которых — наличие участков с уменьшенной окислительной активностью при биопсии мышц. Взаимосвязь клинико-генетических, патогенетических и морфологических характеристик пациентов этой группы миопатий до конца не изучена. Целью исследования было проанализировать соответствие клинико-морфологических характеристик пациентов врожденными миопатиями/миодистрофиями и результатов экзомного секвенирования, полученных методами массового параллельного секвенирования (MPS). В исследовании участвовали 8 детей (2 мальчика и 6 девочек 3–14 лет). Морфологический анализ проводили с помощью световой и электронной микроскопии. Молекулярно-генетический анализ проводили с помощью MPS на платформе HiSeq2500. Мутации были обнаружены в 87,5% случаев (у 7 из 8 обследованных: у 6 обследованных (8 мутаций) — в генах, ответственных за врожденные миопатии, и у одного пациента (2 мутации) — в гене LAMA2, ответственном за мерозин-негативную мышечную дистрофию. Доля пациентов с выявленными мутациями в гене RYR1 и мутациями в гене SEPN1 одинаковы и составили 42,86% среди пациентов с мутациями. Из 10 мутаций, выявленных у обследованных пациентов, 3 мутации описаны впервые: в гене RYR1 — с.7561G>A; в гене SEPN1 — c.485C>A, c.485C>A; в гене LAMA2 — р.Cys1136Arg. Сократимость клинических и морфологических признаков, характерных для стержневых миопатий, не позволяет ограничиться молекулярно-генетический поиском причин заболевания генами RYR1 и SEPN1, что приводит к необходимости исследовать другие гены, ответственные за развитие врожденных миопатий/миодистрофий, с использованием современных молекулярно-генетических методов.

Ключевые слова: врожденные миопатии центрального стержня, врожденные многостержневые миопатии, ген RYR1, ген SEPN1, ген LAMA2, мышечная биопсия, экзомное секвенирование.

Информация о вкладе авторов: А. А. Козина — анализ литературы, интерпретация данных экзомного секвенирования, анализ данных, подготовка рукописи; П. А. Шаталов — сбор данных, проведение морфологического исследования, подготовка рукописи; Т. И. Баранич — проведение молекулярного исследования, сбор данных. Соблюдение этических стандартов: исследование одобрено этическим комитетом ФГБОУ ВО РНИМУ имени Н. И. Пирогова (протокол № 172 от 19 февраля 2018 г.); все участники исследования или их законные представители подписали добровольное информированное согласие.

CLINICAL AND MOLECULAR-GENETIC PROFILES OF PATIENTS WITH MORPHOLOGICAL INDICATIONS OF CONGENITAL MULTICORE MYOPATHY

Kozina AA, Shatalov PA, Baranich TI, Artemieva SB, Kupryanova AG, Baryshnikova NV, Krassenko AV, Ilinsky VV, Sukhorukov VS

1 Pirogov Russian National Research Medical University, Moscow, Russia
2 Orekhov Institute of Biomedical Chemistry, Moscow, Russia
3 Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
4 Research Center of Neurology, Moscow, Russia
5 Genotek Ltd., Moscow, Russia

Con genital core myopathies are a clinically and genetically heterogenous group of congenital myopathies that share a specific histopathological feature: areas of reduced oxidative activity in muscle fibers. The relationship between clinical, genetic and morphological characteristics of this group of disorders remains understudied. The aim of this work was to compare clinical presentations and morphological phenotypes of patients with congenital myopathies/myodystrophy to the data yielded by massively parallel exome sequencing. Eight children were included in the study: 2 boys and 6 girls aged 3 to 14 years. Their biopsy material was analyzed by light and electron microscopy. Sequencing was performed on HiSeq2500. Mutations were detected in 7 (87.5%) of 8 participants. Six children had 8 mutations in the genes associated with congenital core myopathies; one patient had 2 mutations in the LAMA2 gene implicated in merosin-deficient muscular dystrophy. The proportions of patients with mutations in RYR1 and SEPN1 were equal (42.86%). Of 10 detected mutations, 3 had not been previously described, including c.7561G>A in RYR1, c.485C>A in SEPN1 and p.Cys1136Arg in LAMA2. The clinical and morphological features of core myopathies suggest that genetic causes of this group of disorders should not be limited to RYR1 and SEPN1 genes only. This necessitates the search for and the study of other genes implicated in congenital myopathies/myodystrophy using state-of-the-art molecular genetic tools.

Keywords: congenital core disease, congenital multicore myopathies, RYR1 gene, SEPN1 gene, LAMA2 gene, muscle biopsy, exome sequencing

Author contribution: Kozina AA — literature analysis, analysis and interpretation of exome sequencing data, manuscript preparation; Shatalov PA — data acquisition, microscopy, manuscript preparation; Baranich TI — microscopy; Artemieva SB — medical histories and neurological examinations; Kupryanova AG — clinical data acquisition; Baryshnikova NV — literature analysis, analysis and interpretation of exome sequencing data, manuscript preparation; Krassenko AV — exome sequencing; Ilinsky VV — exome sequencing; Sukhorukov VS — study design, data acquisition.

Compliance with ethical standards: the study was approved by the Ethics Committee of Pirogov Russian National Research Medical University (Protocol № 172 dated February 19, 2018). All participants or their legal representatives gave informed consent to participate.

Correspondence should be addressed: Anastasia A. Kozina

Nastavnichesky per. 17, bld. 1, Moscow, 105120; doctor@genotek.ru

Received: 07.02.2019 Accepted: 19.04.2019 Published online: 30.04.2019

DOI: 10.24075/brsmu.2019.034
Врожденные миопатии — это клинически и генетически гетерогенная группа нервно-мышечных заболеваний со сложным патогенезом, неоднородной клинической картиной и разными типами наследования [1]. Функциональная недостаточность мышечной ткани при заболеваниях данной группы проявляется на фоне развития специфических патологических структур в мышечных волокнах при отсутствии миодистрофических процессов в них [2].

На основании морфологической картины биопсийного материала различают несколько форм врожденных структурных миопатий, самые распространенные из которых — болезнь центрального стержня, немалиновая миопатия, многостержневая миопатия, центро-нуклеарная миопатия, описаны как классические формы [2]. Каждая морфологическая форма включает несколько генетических вариантов, различающихся и по тяжести клинической картины, и по типу наследования, что имеет значение для тактики ведения пациентов и медико-генетического консультирования семьи.

Оценка распространенности отдельных морфологических форм и генетических вариантов врожденных структурных миопатий, их истинного вклада в структуру симптомомалякомплекса «вялый ребенок», клиническая дифференциальная диагностика, а также классификация по-прежнему затруднены. Это обусловлено высокой гетерогенностью и редкостью отдельных вариантов, перекрыванием клинических симптомов при нервно-мышечных заболеваниях, формирующих симптомомалякомплекс «вялый ребенок», ограничениями использования молекулярно-генетических методов диагностики.

Несмотря на то что изучать врожденные структурные миопатии начало с описания болезни центрального стержня еще в 1956 г., до сих пор до конца не изучены этиопатогенез и клинико-генетические корреляции при врожденных миопатиях, сопровождающихся формированием морфологической картины в виде «стержней».

Общей морфологической особенностью стержневых миопатий является наличие области сниженной окислительной активности ферментов в мышечных волокнах первого типа, определяемой при гистохимическом анализе, в сочетании с дезорганизацией саркомеров и почти полным истощением митохондрий [3, 4]. Выделяют две основные формы стержневых миопатий: болезнь центрального стержня и многостержневую миопатию.

Согласно литературным данным, основными причинами развития наследственных форм стержневых миопатий являются мутации в генах, кодирующих два белка саркоплазматического ретикулума: рианодиновый рецептор (RYR1), обеспечивающий работу канала высвобождения кальция, и селенопротеин N (SEPN1) [5, 6]. Ген рианодинового рецептора (RYR1) локализован на хромосоме 19q13.1 и включает 13 экзонов, в то время как ген селенопротеина N (SEPN1) локализован на хромосоме 1p36-p35, включает 13 экзонов и кодирует белок селенопротеин N, представляющий собой гликопротеин, расположенный в эндоплазматическом ретикулуме и выступающий в роли медиатора селена, который входит в состав различных защитных и метаболических систем. Кроме того, он принимает участие в поддержании кальциевого гомеостаза в мышечной ткани путем обеспечения окислительной активности ферментов и контроля окислительного стресса рианодиновых рецепторов.

![Рис. 1. Скелетная мышечная ткань пациента с врожденной миопатией центрального стержня (возраст 21 год). Гистохимическое выявление активности сукцинатдегидрогеназы нитро-СТ по Нахласу и др. (1957) методом светового микроскопа в продольно срезанных мышечных волокнах. В центре и при периферии мышечных волокон интактны зоны высокой активности сукцинатдегидрогеназы, а вокруг центра и на периферии неизменны зоны низкой активности. Показано стрелками активное участие сукцинатдегидрогеназы в метаболизме].
Показано, что дефицит селенопротеина N приводит к повышению оксидантной активности в миофibrиллах, вызывая развитие ряда симптомов, таких как слабость конечностей, задержка развития, задержка психомоторного развития. Данный дефект приводит к снижению активности ферментов антиоксидантной системы, что способствует оксидативному стрессу, нарушению гомеостаза и развитию неспецифических симптомов заболевания.

В исследовании было включено 8 детей, среди которых 2 мальчика и 6 девочек (3–14 лет). Критерии включения пациентов в исследование: наличие диагноза врожденной многостержневой миопатии, наличие клинических и морфологических признаков стержневых структур, наличие данных молекулярно-генетического исследования.

Цель настоящего исследования — сопоставить клинико-морфологические характеристики с результатами экзомного сканирования, полученных методами массового параллельного секвенирования (MPS), у пациентов с клиническими и морфологическими признаками врожденных стержневых миопатий.

ПАЦИЕНТЫ И МЕТОДЫ

В исследовании были включены 8 детей, среди которых 2 мальчика и 6 девочек (3–14 лет). Критерии включения пациентов в исследование: наличие диагноза врожденной многостержневой миопатии, морфологических признаков стержневых структур, наличие результатов молекулярно-генетического исследования. Критерии исключения: отсутствие морфологических признаков стержневых структур по данным биопсии.
Мутации обнаружены в 87,5% случаев (у 7 из 8 обследованных пациентов); у 6 обследованных — в генах RYR1 и SEPN1, ответственных за врожденные стервенные миопатии, и у одного пациента — в гене LAMA2, ответственным за мерозин-негативную мышечную дистрофию (табл. 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты молекулярно-генетического анализа достаточно хорошо коррелируют с клиническими и морфологическими данными пациентов: у троих пациентов с морфологической картиной болезни центрального стержня (пациенты 1, 2 и 3) выявлены мутации в гене RYR1, у троих пациентов с морфологической картиной многоструктурной миопатии (пациенты 4, 5 и 6) выявлены мутации в гене SEPN1 (табл. 2). Доля пациентов с мутациями в генах RYR1 и SEPN1 одинаковы и составляют 42,86% для каждого гена среди пациентов с мутациями.

В гене RYR1 обнаружено 4 мутации у трех пациентов. Три выявленные мутации c.11798A>G, c.14387A>G и c.14581C>T описаны ранее [21, 22, 23]. Согласно литературным данным, мутации c.11798A>G c.14387A>G и c.14581C>T ассоциированы со спорадическими случаями болезни центрального стержня и у наших пациентов (1-го и 2-го соответственно) также выявлены в гетерозиготном состоянии.

У пациента 3 выявлены две мутации (c.14581C>T и c.7561G>A) в гене RYR1 предположительно в компаунд-гетерозиготном состоянии, что позволяет думать об аутосомно-рецессивном типе наследования заболевания. Мутация c.14581C>T описана и при спорадических случаях, и как рецессивный аллель [27]. Мутация c.7561G>A идентифицирована впервые. Наличие двух мутаций позволяет предполагать аутосомно-рецессивный тип наследования.

В гене SEPN1 обнаружено 4 мутации у трех пациентов. Мутации c.611dupA, c.713dupA, c.583G>A были описаны ранее [24, 25]. Мутация c.611dupA представляет собой мутацию сдвига рамки считывания (frameshift), приводящую к синтезу укороченного нефункционального белка. Данный тип мутации обнаружена в гомозиготном состоянии (пациент 5), что согласуется с аутосомно-рецессивным типом наследования заболевания.

Мутация c.713dupA, также являющаяся мутацией типа frameshift, выявлена у пациента 4 в компаунд-гетерозиготном состоянии. Она описана как причина Muscular dystrophy, rigid spine, 1 (OMIM: 602771) у французских пациентов и в гомозиготном, и в гетерозиготном состояниях [24]. Выявленный у пациента 4 генетический вариант c.583G>A, расцененный предикторами как вероятно патогенный, описан в базах данных мутаций как доброкачественный, однако его значимость для развития заболевания пациента необходимо дополнительно исследовать. Мутация c.485C>A идентифицирована впервые и обнаружена в гетерозиготном состоянии (пациент 6). Это не
У двух пациентов с направляющим диагнозом врожденной миопатии/миодистрофии и морфологическими признаками болезни центрального стержня (пациенты 7 и 8) и не были выявлены мутации в генах РYR1 и SEPN1. У пациента 7 были обнаружены две мутации предположительно в компаунд-гетерозиготном состоянии в гене LAMA2 (14,28% случаев с выявленными мутациями). Мутации в гене LAMA2 связаны с развитием поясно-конечностной мышечной дистрофии 23-го типа (OMIM 618138) и с врожденной мерозин-негативной мышечной дистрофии (OMIM 607855), наследующейся аутосомно-рецессивно.

Выявленная у пациента 7 мутация в гене LAMA2 c.7147C>T (p.Arg2383*) приводящая к синтезу укороченного нефункционального белка, описана ранее в гомозиготном состоянии у девочки 4-х лет [28], с характеристиками для мерозин-дефицитной врожденной мышечной дистрофии типа A признаками (врожденная гипотония, мышечная слабость, высокий уровень сывороточной креатинкиназы (1556 ME/l) и аномалии белого вещества при магнитно-резонансной томографии). Кроме того, у пациентов с этим заболеванием могут отмечаться судороги и структурные аномалии головного мозга. Причины вариабельной тяжести клинического фенотипа при врожденной мышечной дистрофии с частичным дефицитом ламинина альфа 2 до конца не известны и могут быть обусловлены нарушениями генетического статуса [26].

Вторая мутация в гене LAMA2, выявленная у нашей пациентки, — нонсиномимичная замена c.3406T>C (p.Cys1136Arg) — не описана. Нонсиномимичные замены могут приводить как к формированию альтернативных сайтов сплайсинга и синтезу новых изоформ белка, так и к конформационным изменениям структуры белка, нарушающим его функцию. В связи с этим необходимы дальнейшие исследования для уточнения роли обнаруженной мутации в развитии заболевания.

У нашей пациентки клиническая картина была отличной от описанной выше и неоднозначной. Дифференциальную диагностику проводили между спинальной мышечной

| Таблица 1. Выявленные симптомы пациентов с морфологическими признаками стержневой миопатии |
|---|---|---|---|---|---|---|---|
| Симптомы / Пациент | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Показатели массы и роста при рождении (г/см) | 3310/50 | 3540/55 | 2480/48 | 2800/49 | 3780/53 | 3060/50 | 2859/50 | 3500/54 |
| Б рожденный \ выводноспазаз а бедра | – | – | + (вывих) | – | – | – | + (дисплазия) | – |
| Отставание формирования моторных навыков | – | + | – | + | – | ++ | + |
| Сила мышц | 4 балла | 4 балла | 4 балла | 2–3 балла | 4 балла | 2–3 балла | 1–2 балла | 3–4 балла |
| П оходка | Миопатическая | Не ходит | Миопатическая | Миопатическая | Миопатическая | Не ходит с 9 лет | Никогда не ходила | Миопатическая |
| П оражение позвоночника | Кифоз грудного отдела | Кифоз грудного отдела | Искривление позвоночника | Сколиоз грудного и поясничного отделов | Ригидность позвоночника | Кифосколиоз | Сколиоз | Сколиоз |
| Н аличие контрактур суставов | Генелостопных суставов | – | – | Тазобедренных, коленных, голеностопных суставов | Генелостопных суставов | Генелостопных суставов | Тазобедренных, коленных, голеностопных, пояснично-грудных суставов | Тазобедренных, коленных, голеностопных, пояснично-грудных суставов |
| Снижение рефлексов верхних и нижних конечностей | + | + | + | ++ | + | ++ | ++ | ++ |
| Нарушение дыхания | + | + | нет данных | +++ | + | + | нет данных | + |
| Снижение интеллекта | – | + | – | – | – | – | – | – |
| Дополнительные признаки | – | – | – | Недостаточность питания, тяжелой степени | – | Птоз верхнего века, хроническая гиповентиляция | Слабость лицевой мускулатуры, загипертоническая эпилепсия | – |
| Уровень КФК, ед/л (норма 15–190) | 78 | 66 | 79 | 188 | 284 | 174 | 290 | 194 |

Примечание: 1 — мальчик, 4 года; 2 — девочка, 3 года; 3 — девочка, 5 лет; 4 — девочка, 8 лет; 5 — мальчик, 7 лет; 6 — девочка, 11 лет; 7 — девочка, 14 лет; 8 — девочка, 7 лет.
Таблица 2. Спектр выявленных мутаций у пациентов с морфологическими признаками стержневой миопатии

Пациент	Диагноз, поставленный при направлении на исследование	Ген	Выявленные мутации, генотип	Ссылки на публикации
1	Врожденная структурная миопатия. Болезнь центрального стержня	RYR1, 19q13.2	NM_000540.2 c.11798A>G, p.Tyr3933Cys гетерозигота	[21]
2	Врожденная миопатия	RYR1, 19q13.2	NM_000540.2 c.14367A>G, p.Tyr4796Cys гетерозигота	[22]
3	Врожденная структурная миопатия	RYR1, 19q13.2	NM_000540.2 c.14581C>T, p.Arg4861Cys гетерозигота	[23]
4	Врожденная миопатия	SEPN1, 1p36.11	NM_000540.2 c.7561G>A, p.Val2521Met гетерозигота, NM_000540.2 c.713dupA гетерозигота	Не описана
5	Врожденная миопатия	SEPN1, 1p36.11	NM_000540.2 c.713dupA, p.Asn238fs гетерозигота	[24]
6	Врожденная миопатия	SEPN1, 1p36.11	NM_000540.2 c.583G>A, p.Ala195Thr гетерозигота	[25]
7	Врожденная миопатия	LAMA2, 6q22.33	NM_000426.3 c.7147C>T, p.Arg2383* гетерозигота	[26, 28]
8	Врожденная мышечная дистрофия	--	--	Не выявлено

Примечание: 1 — мальчик, 4 года; 2 — девочка, 3 года; 3 — девочка, 5 лет; 4 — девочка, 8 лет; 5 — мальчик, 7 лет; 6 — девочка, 11 лет; 7 — девочка, 14 лет; 8 — девочка, 7 лет; * — стоп-кодон.

Мутации в генах RYR1 и SEPN1 ассоциированы с различными формами врожденных миопатий и миодистрофий. Гетерокарионная миопатия (генотип RYR1, 19q13.2) наблюдалась у одного из наших пациентов, при котором выявлена гетерозиготная мутация p.Tyr3933Cys. Другой пациент с гомозиготной мутацией RYR1, 19q13.2 (p.Tyr4796Cys) также был выявлен у одного из наших пациентов. Уровень КФК, как правило, позволяет предположить локализацию поражения при нервно-мышечных заболеваниях и свидетельствует об остроте и длительности патологического процесса при поражении мышц. Мутации в гене RYR1 обнаружены только у пациентов с нормальным уровнем КФК. Найболее повышен уровень данного фермента выявлен у пациента с frameshift-мутацией в гомозиготном состоянии в гене SEPN1 и у пациента с мутациями в гене LAMA2, ассоциированным с наиболее тяжелой формой врожденной миопатии. Возможно, что уровень КФК служит своеобразным маркером патогенности молекулярно-генетического нарушения (степени влияния на наличие и функцию белкового продукта гена), приводящего к развитию заболевания и возникновению вторичных миодистрофических процессов.

ВЫВОДЫ

Полученные результаты еще раз подтверждают генетическую гетерогенность миопатий, характеризующихся наличием морфологической картины стержневых структур мышечных волокон. Основными генетическими причинами развития стержневых миопатий у российских пациентов являются мутации в гене RYR1, ассоциированном с наиболее тяжелой формой врожденной миопатии. Возможно, что уровень КФК служит своеобразным маркером патогенности молекулярно-генетического нарушения (степени влияния на наличие и функцию белкового продукта гена), приводящего к развитию заболевания и возникновению вторичных миодистрофических процессов.

Морфологические признаки стержневых миопатий могут быть выявлены и при других формах врожденных миопатий/миодистрофий. Это свидетельствует о необходимости дальнейшего изучения клинических, морфологических и генетических корреляций для понимания патогенетических механизмов и их морфологических проявлений при врожденных миопатиях и миодистрофических процессах. Были также выявлены корреляции между значениями КФК и обнаруженными мутациями. Уровень КФК, как правило, позволяет предположить локализацию поражения при нервно-мышечных заболеваниях...
Литература

1. Bonna G, Rivier F, Hamroun D. The 2019 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2018 Dec; 28 (12): 1031–63. DOI: 10.1016/j.nmd.2018.09.006.
2. Сухоруков В. С., Харламов Д. А. Врожденные миопатии. М.: ООО Пресс-Арт, 2010; 155 с.
3. Jungbluth H, Sewry CA, Muntoni F. Core Myopathies. Semin Pediatr Neurol. 2011 Dec; 18 (4): 239–49. DOI: 10.1016/j.spen.2011.10.005.
4. Харламов Д. А., Баранич Т. И., Глинкина В. В., Брыдун А. В. Митохондриальные нарушения при врожденных миопатиях. Российский вестник перинатологии и педиатрии. 2014; 59 (3): 32–38.
5. MacLennan DH, Zorzato F, Fuji J, Otsu K, Phillips M, Lai FA, et al. Cloning and localization of the human calcium release channel (ryanodine receptor) gene to the proximal long arm (cen-q13.2) of human chromosome 19. (Abstract) Am J Hum Genet [Internet]. 1989; 45 (suppl.).
6. Moghadasazadeh B, Petit N, Jaillard C, Brockington M, Roy SQ, Merlini L, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nature Genet. 2001; (29): 17–45.
7. Мельников К. Н. Разнообразие и свойства кальциевых каналов возбудимых мембран. Психофармакология и биологическая наркология. 2006; (1–2): 1139–51.
8. Chen W, Koop A, Liu Y, Guo W, Wei J, Wang R, et al. Reduced threshold for store overload-induced Ca2+ release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease. Biochem J. 2017 Aug 7; 474 (16): 2749–61. DOI: 10.1042/BCJ20170282. PMID: 28687594.
9. Сухоруков В. С., Харламов Д. А., Шаталов П. А., Харабадзе М. Н., Яблонская М. И., Брыдун А. В. и др. Врожденная миопатия. М.: ООО Пресс-Арт, 2010; 155 с.
10. Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Ferrero A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, et al. Mutations of the seleno–protein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002 Oct; 71 (4): 739–49. PMID: 12192640.
11. Tajsharghi H, Darin N, Tulinis M, Oktars A. Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1). Neuromuscular Disord. 2005 Apr; 15 (4): 299–302. PMID: 15792869.
12. Pogorelo E, Fanin M, Trevisan CP, Angelini C, Hoffman E. A novel laminin alpha 2 isoform in severe laminin alpha 2 deficient congenital muscular dystrophy. Neurology. 2000 Oct 24; 55 (8): 1128–34. PMID: 11071490.
13. Козлова О. Ю., Рыжкина И. Н., Калиновский О. Б., Наров – Цветкович М. Б., Калашникова Е. Е. и др. Врожденные миопатии. Медицинская генетика. 2017; 16 (7): 4–17.
14. Duarte ST, Oliveira J, Santos R, Pereira P, Barroso C, Conceição I, et al. Dominant and recessive RYR1 mutations in adults with core lesions and mild muscle symptoms. Muscle Nerve. 2011 Jul; 44 (1): 102–8. DOI: 10.1002/mus.22009. PMID: 21674524.
15. Monnier N, Romero NB, Lenale J, Nivoche Y, Qi D, MacLennan DH, et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neurenomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. 2000 Nov 1; 9 (18): 2599–608. PMID: 11063719.
16. Пирс Э. Гистохимия. М.: Изд-во иностранной литературы, 1962; 963 с.
17. Luft JH. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961; (9): 409–14.
18. Reynolds ES. The use of lead citrate at high pH as an electron- opaque stain in electron microscopy. J Cell Biol. 1963; (17): 208–12.
19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17 (5): 405–23.
20. Яблонская М. И., Брыдун А. В. и др. Врожденная миопатия. М.: ООО Пресс-Арт, 2010; 155 с.
21. ВЕСТНИК РГМУ. 2019; 12 (5): 233–6. PMID: 24223650.
9. Suhorukov VS, Harlamov DA, Shatalov PA, Harabadze MN, Yablonskaya MI, Brydun AV i dr. Vrozhdenaja «mnogosterzhnaja» miopatija. Rossijskij vestnik perinatologii i pediatrii. 2012; 57 (4–1): 90–3.
10. Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Longman C, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology. 2005 Dec 27; 65 (12): 1930–5. PMID: 16380615.
11. Jungbluth H. Multi-minicore disease. Orphanet J Rare Dis. 2007; (2): 31–45.
12. McCarthy EJ. Malignant hyperthermia: pathophysiology, clinical presentation, and treatment. AACN Clin Issues. 2004 Apr–Jun; 15 (2): 231–7. PMID: 15461040.
13. Suhorukov VS, Shatalov PA, Harlamov DA, Brydun AV. Izmenenija mitohondrij pri vrozhdennoj miopatii «central'nogo sterzhnja» u detej. Rossijskij vestnik perinatologii i pediatrii. 2011; 56 (4): 84–7.
14. Lescure A, Rederstorff M, Krol A, et al. Selenoprotein function and muscle disease. Biochim Biophys Acta. 2009; (1790): 1569–74.
15. Engel AG, Gomes MR. Congenital myopathy associated with multifocal degeneration of muscle fibers. Trans Am Neurology Assoc. 1966; (91): 222–3.
16. Pirs A. Gistohimiya. M.: Izd-vo inostrannoj literatury, 1962; 963 s.
17. Luft JH. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961; (9): 409–14.
18. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963; (17): 208–12.
19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5): 406–23.
20. Ryzhkova OP, Kardymon OL, Prohorchuk EB, Konovalov FA, Maslennikov AB, Stepanov VA i dr. Rukovodstvo po interpretacii dannyh, poluchennyh metodami massovogo parallel'nogo sekvenirovanija (MPS). Medicinskaja genetika. 2017; 16 (7): 4–17.
21. Duarte ST, Oliveira J, Santos R, Pereira P, Barroso C, Conceição I, et al. Dominant and recessive RYR1 mutations in adults with core lesions and mild muscle symptoms. Muscle Nerve. 2011 Jul; 44 (1): 102–8. DOI: 10.1002/mus.22009. PMID: 21674524.
22. Monnier N, Romero NB, Lérelale J, Nivoche Y, Qi D, MacLennan DH, et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. 2000 Nov 1; 9 (18): 2599–608. PMID: 11063719.
23. Davis MR, Haan E, Jungbluth H, Sewry C, North K, Muntoni F, et al. Principal mutation hotspot for central core disease and related myopathies in the C-terminal transmembrane region of the RYR1 gene. Neuromuscul Disord. 2003 Feb; 13 (2): 151–7. PMID: 12565913.
24. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, et al. Mutations of the seleno-protein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002 Oct; 71 (4): 739–49. PMID: 12192640.
25. Tajsharghi H, Darin N, Tulinius M, Oldfors A. Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1). Neuromuscul Disord. 2005 Apr; 15 (4): 299–302. PMID: 15792869.
26. Pegoraro E, Fanin M, Trevisan CP, Angelini C, Hoffman EP. A novel laminin alpha 2 isoform in severe laminin alpha 2 deficient congenital muscular dystrophy. Neurology. 2000 Oct 24; 55 (8): 1128–34. PMID: 11071490.
27. Kosssgue PM, Paim JF, Navarro MM, Silva HC, Pavanello RC, Gurgel-Giannetti J, et al. Central core disease due to recessive mutations in the RYR1 gene: is it more common than described? Muscle Nerve. 2007 May; 35 (5): 670–4. PMID: 17226826.
28. He Z, Luo X, Liang L, Li P, Li D, Zhe M. Merosin-deficient congenital muscular dystrophy type 1A: A case report. Exp Ther Med. 2013 Nov; 6 (5): 1233–6. PMID: 24223650.