Brubaker, Nicholas; Murphy, Thomas; Negron, K. Oskar
Numerically destabilizing minimal discs. (English) Zbl 07589785
Exp. Math. 31, No. 3, 794-805 (2022)

Summary: When calculating the index of a minimal surface, the set of smooth functions on a domain with compact support is the standard setting to describe admissible variations. We show that the set of admissible variations can be widened in a geometrically meaningful manner leading to a more general notion of index. This allows us to produce explicit examples of destabilizing perturbations for the fundamental Scherk surface. For the dihedral Enneper surfaces we show that both the classical and modified index can be explicitly determined.

MSC:
32-XX Several complex variables and analytic spaces
49-XX Calculus of variations and optimal control; optimization

Keywords:
stability of minimal surfaces; numerical spectral techniques; bounded index

Full Text: DOI arXiv

References:
[1] Beeson, M.
[2] Chodosh, O.; Maximo, D., On the topology and index of minimal surfaces, J. Differential Geom, 104, 3, 399-418 (2016) · Zbl 1357.53016 · doi:10.4310/jdg/1478138547
[3] Chodosh, O., Maximo, D. (2018). On the Topology and Index of Minimal surfaces. II arXiv preprint arXiv:1808.06572 · Zbl 1357.53016
[4] Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O., Minimal Surfaces I (1991), Berlin, Germany: Springer-Verlag, Berlin, Germany
[5] Dierkes, U.; Hildebrandt, S.; Tromba, A. J., Global Analysis of Minimal Surfaces (2010), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 1215.53013
[6] Fischer-Colbrie, D.; Schoen, R., The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math, 33, 2, 199-211 (1980) · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[7] Fomenko, A. T.; Tuzhilin, A. A., Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space, Translations of Mathematical Monographs, 93 (1991), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0745.53001
[8] Fraser, A.; Schoen, R., The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Advances in Mathematics, 226, 2, 4011-4211 (2011) · Zbl 1215.53002 · doi:10.1016/j.aim.2010.11.007
[9] Montiel, S.; Ros, A., Schrödinger Operators Associated to a Holomorphic Map, Global Differential Geometry and Global Analysis (Berlin, 1990), Lecture Notes in Math, 1481, 147-174 (1991), Berlin: Springer, Berlin · Zbl 0744.58007
[10] McCuan, J., A variational formula for floating bodies, Pacific J. Math., 231, 1, 167-191 (2007) · Zbl 1148.76012 · doi:10.2140/pjm.2007.231.167
[11] Smale, S., On the Morse Index Theorem, Indiana Univ. Math. J, 14, 6, 1049-1055 (1965) · Zbl 0166.36102 · doi:10.1512/iumj.1965.14.14066
[12] Nitsche, J. C. C., Lectures on Minimal Surfaces, 1 (1989), Cambridge, UK: Cambridge Univ. Press, Cambridge, UK
[13] Trefethen, L. N., Spectral Methods in Matlab (2000), Oxford, UK: Oxford University Press, Oxford, UK · Zbl 0953.68643
[14] Vogel, T., Sufficient conditions for capillary surfaces to be energy minima, Pacific J. Math., 194, 2, 469-489 (2000) · Zbl 1021.58014 · doi:10.2140/pjm.2000.194.469
[15] Wente, H., The stability of the axially symmetric pendent drop, Pacific J. Math, 88, 2, 421-470 (1980) · Zbl 0473.76087 · doi:10.2140/pjm.1980.88.421

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.