Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture

Estefanía Muñoz-Atienza, Beatriz Gómez-Sala, Carlos Araújo, Cristina Campanero, Rosa del Campo, Pablo E. Hernández, Carmen Herranz and Luis M. Cintas

Abstract

Background: The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food.

Results: These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured Inu(A) conferring resistance to lincomamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities.

Conclusions: To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and Inu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture.

Keywords: Lactic Acid Bacteria, Aquatic animals, Aquaculture probiotics, Anti-fish pathogens activity, Antibiotic resistance and virulence factors, Qualified Presumption of Safety

Background
Aquaculture has the potential to make a significant contribution to the increasing demand for aquatic food in most world regions; however, in order to achieve this goal, the sector will have to face significant challenges, including the production intensification, the disease control and the prevention of the environmental deterioration [1]. In fish farming, the widespread use of antibiotics as prophylactic and therapeutic agents to control bacterial diseases has been associated with the emergence of antibiotic resistance in bacterial pathogens and with the alteration of the microflora of the aquaculture environment [2,3]. This resulted in the ban of antibiotic usage as animal growth promoters in Europe and stringent worldwide regulations on therapeutic antibiotic applications. This scenario has led to an evergrowing interest in the search and
development of alternative strategies for disease control, within the frame of good husbandry practices, including adequate hygiene conditions, vaccination programmes and the use of probiotics, prebiotics and immunostimulants [4-6]. Recently, novel strategies to control bacterial infections in aquaculture have emerged, such as specific killing of pathogenic bacteria by bacteriophages, growth inhibition of pathogen by short-chain fatty acids and poly-hydroxyalkanoates, and interference with the regulation of virulence genes (quorum sensing disruption), which have been reviewed by Defoirdt et al. [7]. With regard to probiotics, they are defined as live microbial adjuncts which have a beneficial effect on the host by: (i) modifying the host-associated or ambient microbial community; (ii) improving feed use or enhancing its nutritional value; (iii) enhancing the host response towards disease; and/or (iv) improving its environment [8]. To date, most probiotics proposed as biocontrollers and bioremediation agents for aquaculture belong to the LAB group (mainly to the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus and Carnobacterium), to the genera Vibrio, Bacillus, and Pseudomonas or to the species Saccharomyces cerevisiae [8,9]. Recently, a probiotic culture (Bactoccil®, Pediococcus acidilactici CNCM MA18/5 M) has been authorized for the first time for use in aquaculture in the European Union.

According to the FAO/WHO [10], the development of commercial probiotics requires their unequivocal taxonomic identification, as well as their in vitro and in vivo functional characterization and safety assessment. In Europe, the European Food Safety Agency (EFSA) proposed a system for a pre-market safety assessment of selected groups of microorganisms used in food/feed and the production of food/feed additives leading to a Qualified Presumption of Safety (QPS) status [11-13]. The QPS approach propose that the safety assessment of a defined taxonomic group could be made based on establishing taxonomic identity, body of knowledge, possible pathogenicity and commercial end use. The QPS approach propose that the safety assessment of a collection of 99 LAB belonging to the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella, previously isolated from aquatic animals regarded as human food [14] and intended for use as probiotics in aquaculture.

Results
Direct antimicrobial activity of the 99 LAB of aquatic origin
The 99 LAB strains isolated from fish, seafood and fish products displayed direct antimicrobial activity against, at least, four of the eight tested indicator microorganisms (Table 1). The most sensitive indicators were Listeria anguillarum CECT4344, Ls. anguillarum CECT7199 and Aeromonas hydrophila CECT5734, followed by Lactococcus garvieae JIP29-99, Streptococcus iniae LMG14521 and Streptococcus agalactiae CF01173. On the contrary, Photobacterium damselae CECT626 and Vibrio alginolyticus CECT521 were the less sensitive indicator microorganisms.

Preliminary safety evaluation of enterococci: presence of virulence factors, production of gelatinase and hemolysin and antibiotic susceptibility
Concerning E. faecalis, most of the strains (20 strains, 95%) harbouring, at least, one relevant virulence factor: efaAfs (95%), gelE (71%), or agg (67%) genes (Table 2). A positive gelatinase reaction was found in 15 E. faecalis strains (71%) which harboured gelE, from which 12 also harboured agg gene. Only one E. faecalis strain (E. faecalis SDP10) (5%), harbouring cILc-cILc-cylM, exerted hemolytic activity, while none of the strains amplified hyl or esp genes. With regard to E. faecium, 20 strains (53%) harbouring, at least, one relevant virulence factor: efaAfs (45%), gelE (24%) or agg (8%), but only 4 strains (11%) exerted gelatinase activity. None of the E. faecium strains exerted hemolytic activity nor amplified hyl or esp genes. The results of the antibiotic susceptibility tests revealed that 39 enterococcal strains (66%) displayed acquired antibiotic resistance to antibiotics other than penicillin G, chloramphenicol and high-level gentamicin. In this respect, 13 E. faecalis strains (62%) showed acquired resistance to (i) second generation quinolones (ciprofloxacin and/or norfloxacin) (12 strains, 57%), (ii) rifampicin (5 strains, 24%), (iii) nitrofurantoin (5 strains, 24%), (iv) glycopeptides (vancomycin and teicoplanin) (4 strains, 19%), and/or (v) erythromycin (1 strain, 5%). However, 26 E. faecium strains (68%), including 17 strains that encode virulence factors and nine strains without these traits, displayed acquired resistance to (i) erythromycin (14 strains, 37%), (ii) nitrofurantoin (11 strains, 29%), (iii) second generation quinolones (ciprofloxacin and/or norfloxacin) (10 strains, 26%), (iv) rifampicin (4 strains, 11%), (v) tetracycline (2 strains, 5%), and/or (vi) glycopeptides (vancomycin and teicoplanin) (1 strain, 3%). Moreover, multiple antibiotic resistance (two to six antibiotics) was found in E. faecalis (10 strains, 48%) and, to a lesser extent, in E. faecium (12 strains, 32%) (Table 2). According to the results above, 21 E. faecalis strains were discarded for further studies based on the presence of virulence factors (8 strains,
Table 1 Origin and direct antimicrobial activity against fish pathogens of LAB isolated from aquatic animals

Origin	Strain	Lactococcus garvieae JIP29-99	Streptococcus agalactiae CF01173	Streptococcus iniae LMG14521	Aeromonas hydrophila CECT5734	Listonella anguillarum CECT4344	Ls. anguillarum CECT1999	Photobacterium damselae CECT626	Vibrio alginolyticus CECT521
Albacore (Thunnus alalunga) Enterococcus faecium	BNM58	+	+	+	+	+++	+	+	-
Weissella cibaria									
Atlantic salmon (Salmo salar) E. faecium	BNM69	+	+	+	+++	+++	+	-	-
Enterococcus faecalis	SMF10	+	+	+	+	+++	+	+	+
	SMF28	+	+	+	+	+++	+	+	+
	SMF37	+	+	+	+	+	+	-	+
	SMF69	+	+	+	+++	+++	+	-	+
	SMM67	+	+	+	+++	+	-	-	+
	SMM70	+	+	+	+++	+	-	-	-
E. faecium SMA1		+	+	+	+	+++	+	-	-
SMA7		+	+	+	+	+++	+	+	+
SMA8		+	+	+	+	+++	+	+	+
SMA101		+	+	+	+	+++	+	+	+
SMA102		+	+	+	+++	+	+	+	+
SMA310		+	+	+	+++	+	+	+	+
SMA320		+	+	+	+++	+	+	+	+
SMA361		+	+	+	+++	+	+	+	+
SMA362		+	+	+	+++	+	+	-	-
SMA384		+	+	+	+++	+	+	+	-
SMA389		+	+	+	+++	+	+	-	+
SMA8		+	+	+	+++	+	+	+	-
SMA39		+	+	+	+++	+	+	+	-
Lactobacillus sakei subsp. camosus (Lb. camosus) SMA17		+	+	+	+++	+	+	-	-
Lactococcus lactis subsp. cremoris (L. cremoris) SMF110		+	+	+	+++	+++	+	+	+
	SMF161	+	+	+	+++	+++	+	+	+
	SMF166	+	+	+	+++	+++	+	+	+
Leuconostoc mesenteroides subsp. cremoris (Lc. cremoris) SMM69		+	+	+	+++	+	+	+	-
Pathogen	Strain	Activity	Activity	Activity	Activity	Activity			
----------	--------	----------	----------	----------	----------	----------			
Pediococcus pentosaceus	SMF120	++	++	++	+++	+++	-		
	SMF130	++	+	++	+++	+++	-	+	
	SMM73	++	+	+	+++	+++	+	++	
W. cibaria	SMA14	++	+	+	+++	+++	+	++	
	SMA25	+	+	+	+++	+++	++	-	
E. faecalis	BCS27	++	++	++	+++	+++	-	-	
Cod (Gadus morhua)	BCS32	+	+	+	++	+++	-	+	
	BCS53	+	+	+	+++	+++	+	-	
	BCS67	+	+	-	++	+++	+	-	
	BCS72	+	+	+	++	+++	+	-	
	BCS92	+	+	+	+++	+++	+	-	
E. faecium	BCS59	++	+	++	+++	+++	-	+	
	BCS971	+	+	+	++	+++	-	+	
Lactobacillus curvatus subsp. *curvatus* (*Lb. curvatus*)	BCS35	-	-	+	+++	+++	-	-	
Lc. cremoris	BCS251	-	-	+	+++	+++	-	-	
	BCS252	+	+	++	+++	+++	-	+	
P. pentosaceus	BCS46	++	+	++	+++	+++	-	+	
W. cibaria	BCS50	++	+	++	+++	+++	-	+	
Common cockle (*Cerastoderma edule*)	B13	+	+	++	+++	+++	-	-	
Lb. carnosus	B27	+	+	+	++	+++	-	+	
P. pentosaceus	B43	+	+	+	++	+++	-	-	
	B5	++	+	++	+++	+++	-	-	
	B11	++	+	++	+++	+++	+	-	
	B41	++	+	++	+++	+++	+	-	
	B260	++	+	++	+++	+++	-	++	
Common ling (*Molva molva*)	B420	++	+	++	+++	+++	-	++	
E. faecium	B13	+	+	++	+++	+++	-	+	
Common octopus (*Octopus vulgaris*)	P77	++	+	++	+++	+++	-	+	
Origin and direct antimicrobial activity against fish pathogens of LAB isolated from aquatic animals (Continued)									
--									
E. faecium									
P68 ++ + +++ ++ ++ +++ +++ - +									
P623 + + + ++ +++ ++ - +									
P63 ++ + ++ +++ ++ ++ + + + + + + - +									
P621 ++ + ++ +++ ++ ++ - +									
P. pentosaceus									
P69 ++ + ++ ++ +++ ++ + + + + ++ + + + - +									
P64 ++ + ++ +++ ++ ++ + + + + ++ + + + - +									
P61 ++ + ++ ++ +++ ++ + + + + ++ + + + - +									
P71 + + ++ ++ +++ ++ + + + + ++ + + + - +									
P73 ++ ++ ++ ++ +++ ++ + + + + ++ + + + - +									
P622 ++ ++ ++ + + +++ ++ +++ + + + + + + - +									

European seabass (Dicentrarchus labrax)
E. faecium
LPP29 + + + + ++ +++ + -
P. pentosaceus
LPM78 ++ + ++ ++ +++ ++ + + - -
LPM83 ++ + ++ ++ +++ ++ + + - -
LPP32 ++ ++ ++ ++ +++ ++ + + + + - +
LPMV7 ++ + ++ ++ +++ ++ + + + + - +

European squid (Loligo vulgaris)
E. faecium
CV1 + + ++ + ++ +++ +++ + - -
CV2 ++ + ++ + ++ +++ +++ + + + - +

Megrim (Lepidorhombus boscii)
E. faecalis
GM22 - - + ++ +++ +++ ++ + + - -
GM26 - - - + ++ ++ + + + + + - -
GM33 - - ++ + ++ + ++ + + + + + - -
E. faecium
GM23 + + ++ ++ ++ +++ ++ + + + + + + +
GM29 ++ ++ + ++ ++ ++ ++ ++ + + + + +
GM351 - - + ++ ++ ++ ++ ++ ++ + + + +
GM352 ++ + ++ ++ ++ ++ ++ ++ ++ + + +

Norway lobster (Nephrops norvegicus)
E. faecalis
CGM16 ++ + ++ ++ +++ +++ ++ + + + + + -
CGM156 + + ++ ++ +++ +++ ++ + + + + + -
Table 1 Origin and direct antimicrobial activity against fish pathogens of LAB isolated from aquatic animals (Continued)

Origin	E. faecium	E. faecalis	W. cibaria	P. pentosaceus	Sardine (Sardina pilchardus)	Swimcrab (Necora puber)
Rainbow trout (Oncorhynchus mykiss)	CGM1514	++	++	++	+++	++
	CGM171	+	+	+	+++	+++
	CGM172	+	+	+	+++	+++
	CGV67	++	+	+	+++	+
	E. faecium	CGM171	+	+	+++	+++
	TPM76	+	+	+	+++	+
	TPP2	+	+	+	+++	+
	TPP3	++	+	+	+++	+
	SDP10	+	+	+	+++	-
	E. faecalis	TP43	+	+	+++	+
	W. cibaria	SDM381	+	+	+++	-
	SDM389	+	+	+	+++	-
	E. faecium	NV50	+	+	+++	+
	NV51	++	+	+	+++	+
	NV52	++	+	+	+++	+
	NV54	++	+	+	+++	+
	NV56	++	+	+	+++	+

aDirect antimicrobial activity was determined by a SOAT and the scores reflect different degrees of growth inhibition (diameter in mm); -, no inhibition; +, 3–5 mm inhibition zone; ++, 6–9 mm inhibition zone; +++ ≥10 mm inhibition zone.
Table 2 Preliminary safety evaluation of enterococci

Enterococcus spp.	Strain	Genotype\(^a\)	Virulence Factors	Phenotype\(^b\)	Antibiotic resistance phenotype\(^c\)
E. faecalis	SMF10	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NOR	
	SMF28	efaA\(^+\), gelE\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NOR	
	SMF37	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	SMF69	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, RIF	
	SMM67	n.d.	GelE\(^+\), Hly\(^+\)	CIP, NIT, NOR, TEC, VAN	
	SMM70	efaA\(^+\), gelE\(^+\)	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	BCS27	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NIT, NOR, RIF, TEC, VAN	
	BCS32	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	NOR	
	BCS53	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	BCS67	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	CIP	
	BCS72	efaA\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	BCS92	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	P77	efaA\(^+\), gelE\(^+\)	GelE\(^+\), Hly\(^+\)	NIT, NOR, RIF, TEC, VAN	
	GM22	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NOR	
	GM26	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	GM33	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	CGM156	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NIT, NOR, RIF, TEC, VAN	
	CGM1514	efaA\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	CGM16	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NOR, RIF	
	CGV16	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	NOR	
	SDP10	efaA\(^+\), gelE\(^+\), agg\(^+\), cylL, L\(^+\), cylL\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	BNMS58	n.d.	GelE\(^+\), Hly\(^+\)	-	
E. faecium	SMA1	n.d.	GelE\(^+\), Hly\(^+\)	CIP	
	SMA7	n.d.	GelE\(^+\), Hly\(^+\)	-	
	SMA8	n.d.	GelE\(^+\), Hly\(^+\)	-	
	SMA101	n.d.	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	SMA102	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	SMA310	n.d.	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	SMA320	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	SMA361	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	ERY	
	SMA362	n.d.	GelE\(^+\), Hly\(^+\)	ERY, NIT	
	SMA384	gelE\(^+\)	GelE\(^+\), Hly\(^+\)	NIT	
	SMA389	gelE\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NIT, NOR	
	SMF8	n.d.	GelE\(^+\), Hly\(^+\)	-	
	SMF39	efaA\(^+\), gelE\(^+\)	GelE\(^+\), Hly\(^+\)	-	
	BCS59	n.d.	GelE\(^+\), Hly\(^+\)	NIT	
	BCS971	n.d.	GelE\(^+\), Hly\(^+\)	ERY	
	BCS972	n.d.	GelE\(^+\), Hly\(^+\)	ERY	
	B13	gelE\(^+\)	GelE\(^+\), Hly\(^+\)	CIP	
	B27	efaA\(^+\), gelE\(^+\)	GelE\(^+\), Hly\(^+\)	CIP	
	MV5	efaA\(^+\), gelE\(^+\), agg\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NIT	
	P68	efaA\(^+\), gelE\(^+\), cylL, L\(^+\)	GelE\(^+\), Hly\(^+\)	CIP, NIT, NOR, RIF, TEC, VAN	
	P623	efaA\(^+\)	GelE\(^+\), Hly\(^+\)	ERY	
38%), acquired antibiotic resistance (1 strain, 5%) or both (12 strains, 57%). Regarding \textit{E. faecium} strains, 29 (76%) were dropped from further screening based on acquired antibiotic resistance (9 strains, 24%), the presence of virulence factors (3 strains, 8%) or both (17 strains, 45%).

Extracellular antimicrobial activity of the 49 pre-selected LAB

The antimicrobial activity of supernatants from the 49 pre-selected LAB (9 \textit{E. faecium} selected based on their preliminary safety assessment and 40 non-enterococcal strains) with direct antimicrobial activity against fish pathogens was assayed against three indicator microorganisms by an ADT (Table 3). In this regard, 24 (49%) and 10 (20%) strains displayed extracellular antimicrobial activity in their supernatants and 20-fold concentrated supernatants against \textit{Pediococcus damnosus} CECT4797 and \textit{L. garvieae} JIP 29–99, respectively, but none of the strains inhibited the Gram-negative strain \textit{A. hydrophila} CECT5734. Interestingly, the antimicrobial activity of the respective supernatants was sensitive to proteinase K treatment, but was not affected by the heat treatment, revealing the proteinaceous nature and heat stability of the secreted antimicrobial compounds (i.e., heat-stable bacteriocins). The 24 LAB strains secreting bacteriocins into the liquid growth medium belong to the species \textit{P. pentosaceus} (15 strains), \textit{E. faecium} (8 strains), and \textit{Lb. curvatus} (1 strain).

In vitro safety assessment of the 49 pre-selected LAB

The 49 pre-selected LAB were further submitted to a comprehensive safety assessment by different \textit{in vitro} tests.

Hemolysin production, bile salts deconjugation and mucin degradation

None of the non-enterococcal strains showed hemolytic activity, similarly as found for the 9 enterococci. Moreover, bile salts deconjugation and mucin degradation abilities were not found in any of the tested strains.

Enzymatic activities

The results of the analysis of enzymatic activity profiles of the tested LAB are shown in Table 4. None of the strains showed lipolytic activity, except \textit{E. faecium} LPP29, TPM76, SMA7, and SMF8 which produced esterase (C4) and esterase lipase (C8). Moreover, none of the LAB strains showed protease activity (trypsin and \(\alpha\)-chymotrypsin). Nevertheless, peptidase activity (leucine, valine or cystine arylamidase) was found in all the species. All strains showed acid phosphatase (except \textit{E. faecium} TPM76 and \textit{Lc. cremoris}) and naphthol-AS-BI-phosphohydrolase activities, but none displayed alkaline phosphatase activity. \(\beta\)-Galactosidase was found in most species (but not in all strains) except \textit{Lb. curvatus} and \textit{Lc. cremoris}. However, \(\alpha\)-glucosidase was only found in the three \textit{Lc. cremoris} strains. \(\beta\)-Glucosidase and N-acetyl-\(\beta\)-glucosaminidase activities were observed in most \textit{E. faecium}, \textit{Lactobacillus} spp., \textit{L. cremoris}, and \textit{P. pentosaceus} strains, but only in two \textit{W. cibaria} strains, while the three \textit{Lc. cremoris} strains showed \(\beta\)-glucosidase but lacked N-acetyl-\(\beta\)-glucosaminidase activity. On the other hand, \(\alpha\)-galactosidase, \(\beta\)-glucuronidase, \(\alpha\)-mannosidase, and

Table 2 Preliminary safety evaluation of enterococci (Continued)
Strain
LPP29
CV1
CV2
GM23
GM29
GM351
GM352
CGM171
CGM172
TPM76
TPP2
NV50
NV51
NV52
NV54
NV56

\(^a\)n.d., not detected.
\(^b\)GelE and Hly refer to gelatinase and cytolysin/hemolysin activity, respectively.
\(^c\)Abbreviation of antibiotics: CIP, ciprofloxacin; ERY, erythromycin; NIT, nitrofurantoin; NOR, norfloxacin; RIF, rifampicin; TEC, teicoplanin; TET, tetracycline; VAN, vancomycin.
α-fucosidase activities were not detected in any of the tested LAB strains.

Antibiotic susceptibility determined by the broth microdilution test

The distribution of MICs of the tested antibiotics is summarized in Tables 5 and 6. Microbiological breakpoints for ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, and chloramphenicol reported by the FEEDAP document on the assessment of bacterial products used as feed additives in relation to antibiotic resistance [15] were used to categorise the 49 LAB as susceptible or resistant strains. In this document, the genus Weissella, which is considered a group of heterofermentative Leuconostoc-like LAB [16], is not included. For this reason, the respective MICs were interpreted by using the breakpoints given for the genus Leuconostoc. Besides, due to the lack of microbiological breakpoints for penicillin and linezolid on the FEEDAP document, we interpreted our results on these antibiotics according to the cut-off levels proposed by Klare et al. [17] for pediococci, namely 1 and 2 mg/L for penicillin and linezolid, respectively. According to our results, the percentages of strains showing antibiotic resistance in the genera Weissella, Pediococcus, Lactobacillus and Enterococcus were 60, 44, 33 and 11%, respectively, while none of the leuconostocs and lactococci showed this phenotype. In summary, 97.5% of the 40 non-enterococal

Table 3 Extracellular antimicrobial activity of the 49 pre-selected LABa
LAB speciesb
Enterococci
E. faecium
Non-enterococci
Lb. curvatus

aAntimicrobial activity (mm) of supernatants (S) and 20-fold concentrated supernatants (CS) as determined by an ADT.
bLb. carnosus, L. cremoris, L. cremoris and W. cibaria strains did not show extracellular antimicrobial activity against any of the tested indicator microorganisms.
Table 4 Enzymatic activity profiles of the 49 pre-selected LABa

Species	Strain	Esterase (C4)	Esterase lipase (C8)	Leucine arylamidase	Valine arylamidase	Cystine arylamidase	Acid phosphatase	Naphthol-AS-BI-phosphohydrolase	β-Galactosidase	α-Glucosidase	β-Glucosidase	N-acetyl-β-glucosaminidase	
Enterococci													
E. faecium	BNM58	0	0	≥40	10	10	20	10	0	0	0	0	
	SMA7	20	20	≥40	30	20	30	10	0	0	0	0	
	SMA8	0	0	≥40	≥40	5	5	5	5	20	0	20	≥40
	SMF8	5	5	10	5	10	20	10	0	0	30	0	
	LPF29	10	10	30	5	20	10	10	0	0	0	0	
	CV1	0	0	≥40	≥40	5	10	20	20	20	0	30	≥40
	CV2	0	0	≥40	≥40	10	10	20	0	0	10	20	≥40
	TPM76	30	10	20	0	0	10	10	0	0	0	0	
	TPP2	0	0	≥40	≥40	10	10	5	0	30	0		
Non-enterococci													
Lb. carnosus	SMA17	0	0	≥40	≥40	0	30	20	20	0	30	30	
	B43	0	0	≥40	≥40	5	5	10	0	0	0	0	
Lb. curvatus	BCS35	0	0	≥40	10	5	10	20	0	0	5	10	
L. cremoris	SMF110	0	0	≥40	≥40	0	20	20	0	0	30	30	
	SMF161	0	0	20	0	5	≥40	20	0	0	0	0	
	SMF166	0	0	≥40	240	0	20	20	0	0	10	10	
Lc. cremoris	SMM69	0	0	10	0	0	0	10	≥40	30	≥40	0	
	BCS251	0	0	5	0	0	0	5	20	20	10	0	
	BCS252	0	0	10	0	0	0	10	30	20	10	0	
P. pentosaceus	SMF120	0	0	≥40	≥40	20	≥40	≥40	0	0	20	20	
	SMF130	0	0	≥40	≥40	20	30	≥40	0	0	20	20	
	SMF73	0	0	≥40	30	10	20	30	20	0	30	≥40	
	BCS46	0	0	≥40	≥40	5	20	30	30	0	≥40	≥40	
	B5	0	0	30	≥40	10	10	20	20	0	30	≥40	
	B11	0	0	≥40	30	5	20	20	0	0	30	≥40	
	B41	0	0	30	≥40	0	5	20	5	0	20	≥40	
	B260	0	0	≥40	≥40	10	20	30	0	0	20	20	
	P63	0	0	≥40	≥40	5	20	20	30	0	30	≥40	
	P621	0	0	≥40	≥40	5	30	0	0	30	30		
	LPM78	0	0	30	30	5	10	20	20	0	30	≥40	
Table 4 Enzymatic activity profiles of the 49 pre-selected LABa (Continued)

	LPM83	LPP32	LPV46	LPV57	TPP3	W. cibaria	BNM69	SMA14	SMA25	BCS50	B4620	P38	P50	P61	P64	P69	P71	P73	P622	SDM381	SDM389
	0	0	0	0	0	≥40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	30	30	5	20	5	≥40	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
	30	≥40	5	20	5	≥40	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
	5	5	5	5	5	0	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
	10	0	0	0	10	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
	20	0	0	0	20	0	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
	30	0	0	0	30	0	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	30	20	30	20	30	≥40	0	0	0	0	0	0	0	0	0
BNM69	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
SMA14	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
SMA25	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
BCS50	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
B4620	0	0	20	20	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P38	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P50	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P61	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P64	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P69	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P71	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P73	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
P622	0	0	0	0	0	0	30	20	30	20	30	0	0	0	0	0	0	0	0	0	0
SDM381	0	0	10	5	0	0	20	10	30	10	30	0	0	0	0	0	0	0	0	0	0
SDM389	0	0	0	0	0	0	20	10	30	10	30	0	0	0	0	0	0	0	0	0	0

Enzymatic activities determined by an APIZYM test. Relative activity between 0 and ≥40 nmol.
strains resulted susceptible to ampicillin, 100% to gentamicin, 72.5% to kanamycin, 100% to streptomycin, 95% to erythromycin, 87.5% to clindamycin, 95% to tetracycline, and 100% to chloramphenicol. For vancomycin, it is known that facultative and obligate heterofermentative Lactobacillus, Pediococcus spp. and Leuconostoc spp. are intrinsically resistant. In contrast, the three lactococci were clearly susceptible to these antibiotics, showing a MIC of 0.5 mg/L. On the other hand, according to the cut-off values proposed by Klare et al. [17], 93% of P. pentosaceus strains were susceptible to penicillin and linezolid. With regard to E. faecium, all the tested strains were susceptible to ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, tetracycline, chloramphenicol, and erythromycin except E. faecium BNM58 against the latter antibiotic (MIC = 8 mg/L). Moreover, multiple antibiotic resistance (three antibiotics) was only detected in P. pentosaceus LPM78 (6.2%) and W. cibaria SMA25 (6.7%).

Detection of antibiotic resistance genes

The non-enterococcal strains showing antibiotic resistances in the VetMIC assays (17 strains) were further submitted to PCR in order to identify the presence of the respective antibiotic resistance genes. The tested strains were the following: Lb. carnosus B43 (ampicillin resistant), P. pentosaceus TPP3 and SMF120 (tetracycline resistant), P. pentosaceus LPP2, LPM83 and B5 (clindamycin resistant), P. pentosaceus LPV57 and W. cibaria P50, P61, P64, P73, SDM381, SDM389, SMA14 and BCS50 (kanamycin resistant), and P. pentosaceus LPM78 and W. cibaria SMA25 (kanamycin, erythromycin and clindamycin resistant). Acquired antibiotic resistances likely due to added genes were only found in strains within the genera Pediococcus (12.5%) and Weissella (6.7%). The genes involved in the horizontal transfer of resistance to tetracycline [tet(K), tet(L) and tet (M)], kanamycin [aac(6’)-Ie-aph(2’’)-Ia] and erythromycin [erm(A), erm(B) and erm(C)] were not detected. However, P. pentosaceus LPM78 and W. cibaria SMA25 harboured the erythromycin resistance gene mef(A/E). The obtained amplicons were sequenced and found to have 99% homology with the macrolide-efflux protein (mef(E)) gene described for Streptococcus pneumoniae and other Streptococcus spp. Moreover, P. pentosaceus LPM78 and LPM83 harboured the lnu(A) gene encoding the lincosamide O-nucleotidyltransferase that inactivates lincosycin and clindamycin. Sequencing of both amplicons showed 97% and 93% homology with lincosamide nucleotidyltransferase [lnu(A)] gene described for Staphylococcus haemolyticus and S. aureus, respectively. Nevertheless, lnu(B) was not detected in any of the tested strains. With regard to E. faecium BNM58, which was phenotypically resistant to erythromycin, none of the respective genes [erm(A), erm(B), erm(C) and mef(A/E)] were detected.

Discussion

In this work, the antimicrobial activity against fish pathogens and the in vitro safety of 99 LAB previously isolated from fish, seafood and fish products [14] have been assayed by using microbiological, biochemical and genetic assays in order to identify and select the most suitable candidates to be further evaluated as probiotics for a sustainable aquaculture. LAB are widely known for their ability to inhibit bacterial pathogens by the production of antimicrobial compounds such as organic acids, oxygen peroxide and ribosomally-synthesized peptides referred to as bacteriocins, which constitutes a desirable property for probiotics and a sustainable alternative to antibiotics [9,18]. In this respect, most of the LAB of aquatic origin tested in this work displayed a broad antimicrobial spectrum against the main Gram-positive and

Table 5 MICs distribution of 10 antibiotics for the 9 enterococcal strains

Antibiotics	Number of strains with the indicated MIC (mg/L)	EFSA breakpoints (mg/L)
	0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048	
Ampicillin	5 3 1	2
Vancomycin	9	4
Gentamicin	4 5	32
Kanamycin	1 2 4 2	1024
Streptomycin	1 3 5	128
Erythromycin	5 3 1	4
Tetracycline	9	4
Chloramphenicol	8 1	16
Linezolid	9	n.a.
Narasin	1 8	n.a.

*MICs determined by a VetMIC test. The antibiotic dilution ranges were: 0.25-32 mg/L (ampicillin), 1-128 mg/L (vancomycin), 2-256 mg/L (gentamicin), 16-2048 mg/L (kanamycin), 8-1024 mg/L (streptomycin), 0.5-64 mg/L (erythromycin, tetracycline and chloramphenicol), 0.25-16 mg/L (linezolid) and 0.12-16 (narasin). MICs which exceeded the upper or lower limit of the tested range are listed in the next dilution series. MICs higher than the EFSA breakpoints are indicated in bold.

*LAB with MICs higher than the EFSA breakpoints are considered as resistant strains [15]. n.a., not available.
Table 6 MICs distribution of 15 antibiotics for the 40 non-enterococcal strains

Antibiotics	Species (no. of tested isolates)	Number of strains with the indicated MIC (mg/L)*	EFSA breakpoints (mg/L)**
		0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048	
Ampicillin	Lb. carnosus (2)	1 1	4
	Lb. curvatus (1)	1	4
	L. cremoris (3)	1 2	2
	Lc. cremoris (3)	1 2	2
	P. pentosaceus (16)	15 1	4
	W. cibaria (15)	15	n.a.
Vancomycin	Lb. carnosus (2)	2	n.r.
	Lb. curvatus (1)	1	n.r.
	L. cremoris (3)	3	4
	Lc. cremoris (3)	3	n.r.
	P. pentosaceus (16)	16	n.r.
	W. cibaria (15)	15	n.a.
Gentamicin	Lb. carnosus (2)	1 1	16
	Lb. curvatus (1)	1	16
	L. cremoris (3)	3	32
	Lc. cremoris (3)	3	16
	P. pentosaceus (16)	1 1 9 3 2	16
	W. cibaria (15)	6 7 1 1	n.a.
Kanamycin	Lb. carnosus (2)	1 1	64
	Lb. curvatus (1)	1	64
	L. cremoris (3)	2 1	64
	Lc. cremoris (3)	1 2	64
	P. pentosaceus (16)	1 13 2	64
	W. cibaria (15)	1 1 4 4 4 1	n.a.
Streptomycin	Lb. carnosus (2)	1 1	64
	Lb. curvatus (1)	1	64
	L. cremoris (3)	2 1	32
	Lc. cremoris (3)	1 2	64
	P. pentosaceus (16)	1 5 10	64
	W. cibaria (15)	2 7 5 1	n.a.
Erythromycin	Lb. carnosus (2)	2	1
	Lb. curvatus (1)	1	1
	L. cremoris (3)	2 1	1
	Lc. cremoris (3)	1 2	1
	P. pentosaceus (16)	1 4 7 3 1	1
	W. cibaria (15)	9 5 1	n.a.
Clindamycin	Lb. carnosus (2)	1 1	1
	Lb. curvatus (1)	1	1
	L. cremoris (3)	2 1	1
Table 6 MICs distribution of 15 antibiotics for the 40 non-enterococcal strains (Continued)

Antibiotics	Lc. cremoris (3)	2	1	1
Tetracycline	Lb. carnosus (2)	1	1	8
	Lb. curvatus (1)	1		8
	L. cremoris (3)	1	1	4
	Lc. cremoris (3)	1	2	8
	P. pentosaceus	1	13	2
	(16)	8		
W. cibaria (15)		15		n.a.
Chloramphenicol	Lb. carnosus (2)	1	1	4
	Lb. curvatus (1)	1		4
	L. cremoris (3)	1	2	8
	Lc. cremoris (3)	3		4
	P. pentosaceus	1	5	10
	(16)	4		
W. cibaria (15)		15		n.a.
Neomycin	Lb. carnosus (2)	1	1	n.a.
	Lb. curvatus (1)	1		n.a.
	L. cremoris (3)	2	1	n.a.
	Lc. cremoris (3)	3		n.a.
	P. pentosaceus	1	9	4
	(16)	2		
W. cibaria (15)		4	6	4
Penicillin	Lb. carnosus (2)	1	1	n.a.
	Lb. curvatus (1)	1		n.a.
	L. cremoris (3)	3		n.a.
	Lc. cremoris (3)	1	2	n.a.
	P. pentosaceus	7	8	1
	(16)	n.a.		
W. cibaria (15)		7	7	1
Linezolid	Lb. carnosus (2)	2		n.a.
	Lb. curvatus (1)	1		n.a.
	L. cremoris (3)	1	2	n.a.
	Lc. cremoris (3)	1	2	n.a.
	P. pentosaceus	15	1	n.a.
	(16)	n.a.		
W. cibaria (15)		15		n.a.
Ciprofloxacin	Lb. carnosus (2)	2		n.a.
	Lb. curvatus (1)	1		n.a.
	L. cremoris (3)	2	1	n.a.
	Lc. cremoris (3)	1	2	n.a.
	P. pentosaceus	16		n.a.
	(16)	n.a.		
W. cibaria (15)		5	10	n.a.
Rifampicin	Lb. carnosus (2)	1	1	n.a.
Table 6 MICs distribution of 15 antibiotics for the 40 non-enterococcal strains (Continued)

Antibiotic	MIC (mg/L)
Lb. curvatus (1)	1
L. cremoris (3)	1 2
Lc. cremoris (3)	1 2
P. pentosaceus (16)	2 13 1
W. cibaria (15)	12 3
Trimethoprim	
Lb. carnosus (2)	1 1
Lb. curvatus (1)	1
L. cremoris (3)	3
Lc. cremoris (3)	1 2
P. pentosaceus (16)	8 8
W. cibaria (15)	15

*MICs determined by a VetMIC test. The antibiotic dilution ranges were: 0.03-16 mg/L (ampicillin, clindamycin, penicillin and linezolid), 0.25-128 mg/L (vancomycin and ciprofloxacin), 0.5-256 mg/L (gentamicin, streptomycin and neomycin), 2-1024 mg/L (kanamycin), 0.016-8 mg/L (erythromycin), 0.12-64 (tetracycline, chloramphenicol, rifampicin and trimethoprim). MICs which exceeded the upper or lower limit of the tested range are listed in the next dilution series. MICs higher than the EFSA breakpoints are indicated in bold.

LAB with MICs higher than the EFSA breakpoints are considered as resistant strains [15]. n.r., not required; n.a., not available.

Gram-negative fish pathogens, being remarkable that a high number of strains (24 out of 49 strains, 49%) were identified as potential bacteriocin producers. Recently, bacteriocin production ability has been proposed as a key property for selection of probiotic LAB to be used in aquaculture as an alternative to antibiotics to fight against fish pathogen infections [19], similarly as proposed for human and farm animal probiotics [20-22]. In aquaculture farming, lactococcusosis produced by the zoonotic agent L. garvieae, causing hemorrhagic septicemia and meningococcal diseases, is one of the most serious diseases affecting several marine and fresh water fish species [23]. With regard to this, our work shows that putative bacteriocinogenic LAB active against this relevant fish pathogen are common amongst the microbiota isolated from aquatic animals (10 strains, 20%).

The application of probiotics in aquaculture may modify the microbial ecology of the aquatic hosts and their surrounding environment, and thus the assessment of their safety to the target aquatic species, the environment, and humans constitutes an essential issue [24]. To date, several studies describe the screening and evaluation of LAB as probiotic candidates for aquaculture have been reported [25-28]; however, the safety assessment of the strains is generally limited to in vivo challenge tests and rearing trials in order to confirm their lack of toxicity to the aquatic hosts [24,25,28-31]. Strikingly, in vitro safety assessment studies have not been generally addressed, despite they have lower economic and ethic costs and result very effective to evaluate the safety of a high number of candidate probiotic strains not only for the host species, but also for humans and the environment. According to EFSA [13], most of the LAB species tested in this work (P. pentosaceus, Lb. curvatus, L. lactis, Lc. mesenteroides) are included in the QPS list and, therefore, demonstration of their safety only requires confirmation of the absence of determinants of resistance to antibiotics of human and veterinary clinical significance. However, in the case of enterococci, a more thorough, strain-specific evaluation is required to assess the risk associated to their intentional use in the food chain, while no guidelines are given for the safety assessment of the species W. cibaria [13].

Our results show that enterococcal virulence factors were more frequently found in E. faecalis than in E. faecium, which is in concordance with previous reports [32-34]. In this respect, most of the E. faecalis (95%) and a large percentage of the E. faecium (53%) strains evaluated in this work showed, at least, one virulence factor, being efaAfs, gelE and agg the most frequently detected genes. With regard to gelE, which encodes for an extracellular zinc endopeptidase that hydrolyzes gelatin, collagen, hemoglobin, and other bioactive compounds, this gene was detected at high frequency in E. faecalis, with all the gelE strains showing gelatinase activity. However, five out of nine E. faecium strains harbouring gelE were unable to degrade gelatin, suggesting the carriage of a non-functional gene, as previously reported [32,33]. Likewise, in the case of E. faecium P68 and E. faecium GM29 harbouring cylLac, cylLS, the lack of hemolytic activity may be explained by the absence of cylM, whose product is involved in the post-translational modification of cytolsin. On the other hand, esp and hyl, which encode a cell wall-associated protein involved in immune evasion and an hyaluronidase enzyme, respectively, were not found in any of the tested LAB. Previous studies have reported that esp and hyl are more common in ampicillin-resistant/vancomycin-resistant E. faecium (VREF) than in ampicillin-susceptible/VREF
strains [35]. In this context, the increase in the incidence of VREF at hospital settings has been attributed mainly to the spread of ampicillin-resistant VREF exhibiting esp and/or fyl [36,37]. Therefore, the fact that the E. faecium strains evaluated in this work lack these genes might be related with their non-clinical origin and absence of ampicillin resistance.

The use and frequent overuse of antibiotics, including those used in human medicine, in fish farming has resulted in the emergence and spread of antibiotic-resistant bacteria in the aquaculture environment. This possesses a threat to human and animal health due to the increase of acquired antibiotic resistance in fish pathogens, the transfer of their genetic determinants to bacteria of terrestrial animals and to human pathogens, and the alterations of the bacterial microbiota of the aquatic environment [11,29]. In our study, the percentage of enterococcal strains showing acquired antibiotic resistance was 68%. Interestingly, the results found in E. faecium (71%) and E. faecalis (62%) were similar, however, higher percentages of resistance to ciprofloxacin and/or norfloxacin, rifampicin, and glycopeptides were observed in E. faecalis. Nevertheless, the occurrence of erythromycin and tetracycline resistance was frequently detected amongst E. faecium (45%) but only in one E. faecalis strain (5%). In spite of the high prevalence of acquired antibiotic resistance found in enterococci of aquatic origin, they showed low incidence or absence of resistance to the clinically relevant antibiotics vancomycin (8.5%) and ampicillin, penicillin and gentamicin, respectively, which is in agreement with previous studies [33,38]. Moreover, the percentages of strains showing antibiotic resistance in the genera Weissella, Pediococcus and Lactobacillus were 60, 44 and 33%, respectively, while none of the leuconostocs and lactococci showed this phenotype. In this regard, our results indicate that the LAB susceptibility patterns of MIC values to clinically relevant antibiotics are species-dependent, similarly as previously described by other authors [39,40]. Moreover, multiple antibiotic resistance was commonly found in strains within the genus Enterococcus (37%), mainly in E. faecalis, while being very infrequent in the non-enterococcal strains (5%).

According to EFSA [29], the determination of MICs above the established breakpoint levels, for one or more antibiotic, requires further investigation to make the distinction between added genes (genes acquired by the bacteria via gain of exogenous DNA) or to the mutation of indigenous genes. According to our results, acquired antibiotic resistance likely due to added genes is not a common feature amongst the non-enterococcal LAB of aquatic origin (7.5%). In this respect, this genotype was only found in the genera Pediococcus (12.5%) and Weissella (6.7%). Although P. pentosaceus LPV57 and LPM78 showed resistance to kanamycin (MIC of 128 mg/L), the respective resistance gene [aac(6’)-Ia-aph(2’’)-Ia] was not found in these strains. Similarly, P. pentosaceus TPP3 and SMF120 were phenotypically resistant to tetracycline (MIC of 16 mg/L), but did not contain tet (K), tet(L) or tet(M). In this respect, Ammor et al. [41] reported that pediococci are intrinsically resistant to the latter two antibiotics, as well as to glycopeptides (vancomycin and teicoplanin), streptomycin, ciprofloxacin and trimethoprim-sulphamethoxazole. Other authors proposed a MIC for tetracycline in pediococci ranging between 8 and 16 mg/L [42], or of 32 mg/L for oxytetracycline in P. pentosaceus [17]. The tetracycline breakpoints suggested for pediococci by EFSA are lower than the MICs observed in our work and others [17,42]. On the other hand, the only antibiotic resistance detected in Leuconostoc strains was for vancomycin, which is an intrinsic property of this genus. It has been previously reported that Leuconostoc strains display poor, if any, resistance to antibiotics of clinical interest [38]. With regard to lactococci, the three L. cremoris strains evaluated were susceptible to all the antibiotics; however, relatively high MICs for rifampicin (16–32 mg/L) and trimethoprim (≥ 64 mg/L) were detected. In fact, most lactococcal species are resistant to trimethoprim [41]. As expected, all strains of heterofermentative Lactobacillus spp. were resistant to vancomycin but susceptible to the rest of the assayed antibiotics, except Lb. carnosus B43, which showed the highest MIC for ampicillin and penicillin (MICs of 8 and 4 mg/L, respectively). In this context, the presence of modifications in the low affinity penicillin-binding protein (PPB) that confers resistance to penicillin and β-lactams in E. faecium and Streptococcus pneumoniae, has been reported [43,44]. Moreover, nine PBPs have been described in Lb. casei ATCC 393 [45], which leads us to suggest that a similar mechanism may be also responsible for the ampicillin and penicillin resistance found in Lb. carnosus B43. The resistance to vancomycin detected in Pediococcus, Leuconostoc and Lactobacillus species in this study might be due to the presence of D-Ala-D-Lactate in their peptidoglycan rather than D-Ala-D-Ala dipeptide [46]. In this context, all tested W. cibaria strains showed MICs ≥ 128 mg/L for vancomycin, suggesting that vancomycin resistance is an intrinsic property of this species. In relation to Weissella spp., studies on antibiotic resistance profiles are very limited [47] and breakpoints have not been defined by EFSA [15]. In our study, most W. cibaria strains showed low MIC values; however W. cibaria BC550 showed relatively high MICs for penicillin (8 mg/L) and kanamycin (64 mg/L), and W. cibaria SMA25 showed MICs of 128 mg/L for kanamycin, 8 mg/L for gentamicin, erythromycin and neomycin, and 2 mg/L for clindamycin. Therefore, these two strains were discarded of this study, while W. cibaria P50, P61, P64, P73, SMA14, SDM381 and SDM389 were not included in the final selection due to their MICs for kanamycin (32–
According to these results, as a rule of thumb, we propose for *W. cibaria* the breakpoints assigned to *Leuconostoc* spp. by EFSA [15], until further studies establish the wild-type MIC ranges within this species. In spite of that, different MICs for rifampicin and trimethoprim for *W. cibaria* and *Lc. cremoris* were found in this study. The reduced susceptibility of *W. cibaria* towards trimethoprim could indicate an intrinsic resistance to this antibiotic [48]. In our work, the only antibiotic resistance genes found were mef(A/E), which encodes a drug efflux pump conferring a low to moderate level of resistance to 14 (erythromycin and clarithromycin-) and 15 (azithromycin-)membered macrolides but not to lincosamide or streptogramin B antibiotics [49], and lnu(A), encoding the lincosamide-O-nucleotidyltransferase that inactivates lincomycin and clindamycin [50]. In this respect, *P. pentosaceus* LPM78 and *W. cibaria* SMA25, displaying erythromycin resistance (MIC = 8 and ≥ 8 mg/L, respectively), carried the gene mef(A/E), which can be found in a variety of Gram-positive bacteria, including corynebacteria, enterococci, micrococci, and several streptococcal species [51,52]. On the other hand, two pediococci (*P. pentosaceus* LPM78 and LPM83) that showed resistance to clindamycin (MIC = 4 and 2 mg/L, respectively) carried the gene lnu(A), which had been only previously found in staphylococci, streptococci, enterococci and lactobacilli of animal origin and in staphylococci isolated from humans [50,53]. Strikingly, the clindamycin resistant strains *P. pentosaceus* LPP32 and B5 and *W. cibaria* SMA25 (MIC = 4 and 2 mg/L, respectively) did not harbour this gene nor lnu(B). To our knowledge, this is the first description of mef(A/E) in the genera *Pediococcus* and *Weissella*, and lnu(A) in the genus *Pediococcus*. The detection of resistance genes for macrolide and lincosamide in non-enterococcal strains suggests a wider distribution of this group of genes than previously anticipated.

The *in vitro* subtractive screening proposed in this work also include the assessment of bile salts deconjugation, mucin degradation, biogenic amine production and other potentially detrimental enzymatic activities such as the β-glucuronidase activity, which should be absent in probiotic candidates [54-56]. Excessive deconjugation of bile salts may be unfavourable in animal production since unconjugated bile acids are less efficient than their conjugated counterparts in the emulsification of dietary lipids. In addition, the formation of micelles, lipid digestion and absorption of fatty acids and monoglycerides could be impaired by deconjugated bile salts [57]. Similarly, excessive degradation of mucin may be harmful as it may facilitate the translocation of bacteria to extra-intestinal tissues [55]. In this respect, it is worthy to note that none of the 49 tested LAB deconjugated bile salts nor exhibited mucinolytic activity, the latter indicating their low invasive and toxigenic potential at the mucosal barrier. These results are in accordance with previous findings showing that LAB do not degrade mucin *in vitro* [58,59]. Moreover, β-glucuronidase activity has been associated with the generation of potential carcinogenic metabolites [56]; however, none of the LAB tested in our study displayed this harmful enzymatic activity. In a previous work [60], we demonstrated that none of the 40 non-enterococcal strains evaluated herein produced histamine, tyramine or putrescine. With regard to enterococci, the nine *E. faecium* strains only produced tyramine, being *E. faecium* CV1 a low producer of this biogenic amine. Although the lack of biogenic amine production by probiotic strains is a desirable trait, it should be borne in mind that tyramine production by enterococci is a very frequent trait [60,61]. Finally, several studies have suggested that probiotic microorganisms might exert a beneficial effect in the digestion process of fish due to the production of extracellular enzymes [62-65]. In our work, the LAB strains of aquatic origin within the genera *Pediococcus*, *Enterococcus* and *Lactobacillus* showed a higher number of enzymatic activities than *Lactococcus*, *Leuconostoc* and *Weissella*, being the enzymatic profiles similar amongst strains within the same genus. In this respect, nearly all the strains produced phosphatases, which might be involved in nutrient absorption [64], and peptidases and glucosidases that breakdown peptides and carbohydrates, respectively. However, the tested LAB showed weak lipolytic activity and no proteolytic activity.

Conclusions

This work shows that antimicrobial/bacteriocin activity against fish pathogens is a widespread probiotic property amongst LAB isolated from aquatic animals regarded as human food. However, particular safety concerns based on antibiotic resistances and virulence factors were dominant within *E. faecalis* (100%) and *E. faecium* (79%), and acquired antibiotic resistance genes were not commonly found (7.5%; erythromycin and clindamycin) amongst the non-enterococcal isolates of aquatic origin. To our knowledge, this is the first large-scale study describing the antimicrobial activity against fish pathogens and the safety assessment beyond the QPS approach of LAB isolated from aquatic animals. The *in vitro* subtractive screening presented herein, which allowed the selection of 33 strains (8 *E. faecium*, 11 *P. pentosaceus*, 1 *Lb. carnosus*, 1 *Lb. curvatus*, 3 *Lc. cremoris*, 3 *Lc. cremoris* and 6 *W. cibaria*) out of 99 LAB isolates of aquatic origin, constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture and to avoid the spreading of bacterial cultures with harmful traits into the aquatic environment. Nevertheless, a comprehensive *in vivo* assessment of their lack of toxicity and undesirable effects must be also carried out using cell lines, live food and, ultimately, aquatic animals.
before their unequivocal consideration as safe probiotics for a sustainable aquaculture.

Methods

Bacterial strains and growth conditions

A total of 99 LAB (59 enterococci and 40 non-enterococci) of aquatic origin with antimicrobial activity against spoilage and food-borne pathogenic bacteria of concern for the fish industry, previously isolated and identified by our group from fish, seafood and fish products [14], were used in this study (Table 1). The LAB strains were isolated on non-supplemented MRS (Oxoid, Ltd., Basingstoke, United Kingdom) or KAA (Oxoid) agar (1.5%, w/v) at 25°C, and taxonomically identified [14] by sequencing of the genes encoding 16S rRNA (16S rDNA) [66] and/or superoxide dismutase (sodA) [67]. Unless otherwise stated, LAB were grown aerobically in MRS broth at 32°C.

Extracellular antimicrobial activity assay

The antimicrobial activity of the 99 LAB against the main Gram-positive and Gram-negative fish pathogens was assayed by a qualitative stab-on-agar test (SOAT) as previously described by Cintas et al. [68]. Briefly, pure cultures were stabbed onto MRS or Tryptone Soya Agar (TSA) (Oxoid) plates supplemented with glucose (2%, w/v) and incubated at 32°C for 5 h, and then 40 ml of the corresponding soft agar (0.8%, w/v) medium containing about 1 × 10⁵ CFU/ml of the indicator strain was poured over the plates. After incubation at 28-37°C for 16–24 h depending on the indicator strain, the plates were checked for inhibition zones (absence of visible microbial growth around the stabbed cultures), and only inhibition halos with diameters >3 mm were considered positive. _L. garvieae_ JIP29-99 was grown aerobically in Tryptone Soya Broth (TSB) (Oxoid) at 37°C. _S. agalactiae_ CFI01173 and _S. iniae_ LMG14521 were grown aerobically in Brain Heart Infusion (BHI) broth (Oxoid) at 37°C. _A. hydrophila_ CECT5734, _L. anguillarum_ CECT4344, _L. anguillarum_ CECT7199, and _P. damselae_ CECT626 strains were grown aerobically in TSB at 28°C. _V. alginolyticus_ CECT521 was grown aerobically in TSB supplemented with NaCl (1%, w/v; Panreac Química S.A.U, Barcelona, Spain) at 28°C.

Direct antimicrobial activity assay

The antimicrobial activity of the 99 LAB against the main Gram-positive and Gram-negative food-borne pathogenic bacteria of concern for the fish industry, previously isolated and identified by our group from fish, seafood and fish products [14], were used in this study (Table 1). The LAB strains were isolated on non-supplemented MRS (Oxoid, Ltd., Basingstoke, United Kingdom) or KAA (Oxoid) agar (1.5%, w/v) at 25°C, and taxonomically identified [14] by sequencing of the genes encoding 16S rRNA (16S rDNA) [66] and/or superoxide dismutase (sodA) [67]. Unless otherwise stated, LAB were grown aerobically in MRS broth at 32°C.

PCR detection of potential virulence factors in enterococci

Detection of genes encoding potential virulence factors in the 59 enterococci was performed by PCR. The following primer pairs were used: TE3/TE4 for detection of _agg_ (aggregation substance), TE9/TE10 for _gelE_ (gelatinase), TE34/TE36 for _esp_ (enterococcal surface protein), TE5/T6 for _efaAfs_ (Enterococcus faecalis endocarditis antigen) [32], HYLn1/HYLn2 for _hyl_ (hyaluronidase) [35], CYLLR1/CYLLR2 for _cylLr_cylLs_ _cytLs_ (cytolysin precursor) [69], and RHCT1/RHCT2 for _cylLr_cylLs_ _cytLs_ (cytolysin precursor and posttranslational modifier) [70]. Oligonucleotide primers were obtained from Sigma-Genosys Ltd. (Cambridge, United Kingdom). The positive control strains for detection of potential virulence factors were the following: _E. faecalis_ P4 for _cylLr_cylLs_ _cytLs_ and _cytLs_ (cytolysin precursor), _agg_, _gelE_ and _efaAfs_. _E. faecalis_ P36 for _esp_ [32], and _E. faecium_ C68 for _hyl_ [35]. PCR-amplifications were performed from total bacterial DNA obtained using the Wizard DNA Purification Kit (Promega, Madrid, Spain) in 25 μl reaction mixtures with 1 μl of purified DNA, 0.7 μM of each primer, 0.2 mM of each dNTP, buffer 1×, 1.5 mM MgCl₂ and 0.75 U of Platinum Taq DNA polymerase (Invitrogen, Madrid, Spain). Samples were subjected to an initial cycle of denaturation (97°C for 2 min), followed by 35 cycles of denaturation (94°C for
45 °C, annealing (48 to 64 °C for 30 s) and elongation (72 °C for 30 to 180 s), ending with a final extension step at 72 °C for 7 min in an Eppendorf Mastercycler thermal cycler (Eppendorf, Hamburg, Germany). PCR products were analyzed by electrophoresis on 1-2% (w/v) agarose (Pronadisa, Madrid, Spain) gels stained with Gel red (Biotium, California, USA), and visualized with the Gel Doc 1000 documentation system (Bio-Rad, Madrid, Spain). The molecular size markers used were HyperLadder II (Bioline GmbH, Germany) and 1Kb Plus DNA ladder (Invitrogen).

Production of gelatinase by enterococci
Gelatinase production was determined using the method previously described by Eaton and Gasson [32]. Briefly, enterococci were grown in MRS broth overnight at 32 °C, and streaked onto Todd-Hewitt (Oxoid) agar plates. The plates were placed at 4 °C for 5 h before examination for zones of turbidity (protein hydrolysis) around the colonies. E. faecalis P4 was used as positive control.

Production of hemolysin
To investigate hemolysin production by the 99 LAB, the strains grown in MRS broth were streaked onto layered fresh horse blood agar plates (BioMérieux, Marcy l’Étoile, France) and grown at 37 °C for 1–2 days [32]. β-hemolysis was revealed by the formation of clear zones surrounding the colonies on blood agar plates. E. faecalis P4 was used as positive control.

Determination of antibiotic susceptibility
Antibiotic susceptibility of the 59 enterococci was determined by overlaying antibiotic-containing disks (Oxoid) on Diagnostic Sensitivity Test Agar (Oxoid) previously seeded with 1 × 10^8 CFU/ml of each enterococcal isolate. The antibiotics tested were ampicillin (10 μg), chloramphenicol (30 μg), ciprofloxacin (5 μg), erythromycin (15 μg), gentamicin (120 μg), nitrofurantoin (300 μg), norfloxacin (10 μg), penicillin G (10 IU), rifampicin (5 μg), teicoplanin (30 μg), tetracycline (30 μg), and vancomycin (30 μg). Inhibition zone diameters were measured after overnight incubation of the plates at 37 °C. Resistance phenotypes were recorded as recommended by the Clinical and Laboratory Standards Institute [71]. E. faecalis CECT795 and Staphylococcus aureus CECT435 were used for quality control. The minimum inhibitory concentration for the 49 pre-selected LAB was determined by a broth microdilution test using e-cocci (for enterococci), and Lact-1 and Lact-2 VetMIC microplates (National Veterinary Institute, Uppsala, Sweden). The antibiotics evaluated for enterococci were ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, tetracycline, chloramphenicol, narasin, and linezolid, while for the non-enterococcal strains, the tested antibiotics were ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, chloramphenicol, neomycin, penicillin, linezolid, ciprofloxacin, rifampicin, and trimethoprim. Individual colonies were suspended in a sterile glass tube containing 5 ml saline solution (0.85% NaCl) to a turbidity of 1 in the McFarland scale (approx. 3 × 10^6 CFU/ml) and further diluted 1000-fold. Iso-sensitest (IST) broth (Oxoid) was used for enterococci, while LSM medium (IST:MRS, 9:1) was used for all the non-enterococcal strains except Lactobacillus curvatus subsp. curvatus BCS35, that required LSM broth supplemented with 0.03% (w/v) L-cysteine (Merck KGaA) [72]. Fifty or 100 μl of the diluted enterococcal and non-enterococcal suspensions, respectively, was added to each microplate well which was then sealed with a transparent covering tape and incubated at 37 °C for 18 h (in the case of Lb. curvatus BCS35, the plates were incubated anaerobically at 32 °C for 18 h). After incubation, MICs were established as the lowest antibiotic concentration that inhibited bacterial growth, and interpreted according to the breakpoints identified by the FED-DAP Panel and adopted by EFSA to distinguish between susceptible and resistant strains [15]. Accordingly, strains showing MICs higher than the respective breakpoint were considered as resistant. E. faecalis CECT795 and S. aureus CECT794 were used for quality control of c-cocci, and Lact-1 and Lact-2 VetMIC microplates, respectively.

Deconjugation of bile salts
The ability of the 49 pre-selected LAB to deconjugate primary and secondary bile salts was determined according to Noriega et al. [73]. Bile salt plates were prepared by adding 0.5% (w/v) sodium salts of taurocholate (TC) and taurodeoxycholate (TDC) (Sigma-Aldrich Corporation, St. Louis, Missouri, USA) to MRS agar (1.5%, w/v) supplemented with 0.05% (w/v) L-cysteine (Merck KGaA, Darmstadt, Germany). Overnight liquid cultures of strains (10 μl) were spotted onto agar plates and incubated under anaerobic conditions (Anaerogen, Oxoid) at 37 °C for 72 h. The presence of precipitated bile acid around the colonies (opaque halo) was considered as a positive result. A fresh fecal slurry of a healthy adult horse was used as positive control for bile salts deconjugating activities.

Degradation of mucin
The capacity of the 49 pre-selected LAB to degrade gastric mucin was determined as described by Zhou et al. [58]. Mucin from porcine stomach type III (Sigma-Aldrich Corp.) and agar were added to medium B without glucose at concentrations of 0.5% (w/v) and 1.5% (w/v), respectively. A volume of 10 μl of 24 h viable bacterial cultures was inoculated onto the surface of medium B. The
plates were incubated anaerobically at 37°C for 72 h, subsequently stained with 0.1% (w/v) amido black (Merck KGaA) in 3.5 M acetic acid for 30 min, and then washed with 1.2 M acetic acid (Merck KGaA). A discoloured zone around the colony was considered as a positive result. A fresh fecal slurry of a healthy adult horse was used as positive control for mucin degradation ability.

Determination of enzymatic activities

The APIZYM test (BioMérieux, Montpellier Vercieu, France) was used for determination of enzymatic activities of the 49 pre-selected LAB. Cells from cultures grown at 32°C overnight were harvested by centrifugation at 12,000 g for 2 min, resuspended in 2 ml of API Suspension Medium (BioMérieux) and adjusted to a turbidity of 5–6 in the McFarland scale (approx. 1.5–1.9 x 10^8 CFU/ml). Aliquots of 65 µl of the suspensions were added to each of the 20 reaction cups in the APIZYM strip. The strips were incubated at 37°C for 4.5 h and the reactions were developed by addition of one drop each of the APIZYM reagents A and B. Enzymatic activities were graded from 0 to 5, and converted to nanomoles as indicated by the manufacturer’s instructions.

PCR detection of antibiotic resistance genes

The presence of genetic determinants conferring resistance to aminoglycosides except streptomycin [aac (6’)-le-aph(2’)-la], to erythromycin [erm(A), erm(B), erm(C) and mef(A/E)], to tetracycline [tet(K), tet(L) and tet(M)], and to lincomasides [linu(A) and linu(B)] was determined by PCR in the LAB strains showing antibiotic resistance by the VetMIC assay. PCR-amplifications and PCR-product visualization and analysis were performed as described above using the following primer-pairs: aacF/aacR for detection of aac(6’)-le-aph(2’)-la [74], ermA/ermAII for erm(A) [75,76], ermBII/ermBII for erm(B) [17], ermCII/ermCII for erm(C) [17,77], mef(A/E)/mef(A/E)II for mef(A/E) [75,76], tetKII/tetKII for tet(K) [17], tetL1/tetL1 for tet(L) [17,78], tetMII/tetMII for tet(M) [17,78], linuA1/linuA2 for linu(A) [79], linuB1/linuB2 for linu(B) [50]. E. faecalis C1570 was used as positive control for amplification of erm(C), linu(A) and tet(K) and E. faecalis C1231 for erm(A). E. faecium 3Er1 (clonal complex of hospital-associated strain CC9) and E. faecium RC714 were used as positive controls for amplification of aac(6’)-le-aph(2’)-la, tet(M) and tet(L), and for erm(B) and mef(A/E), respectively. The amplicons obtained with mef(A/E) and linu(A) specific primers were purified by using the NucleoSpin Extract II Kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) and both DNA strands were sequenced at the Unidad de Genómica (Parque Científico de Madrid, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Spain). Analysis of DNA sequences was performed with the BLAST program available at the National Center for Biotechnology Information (NCBI).

Abbreviations

LAB: Lactic Acid Bacteria; FAO: Food and Agriculture Organization of the United Nations; WHO: World Health Organization; EFSA: European Food Safety Agency; QPS: Qualified Presumption of Safety; EC: European Commission; MRS: de Man, Rogosa and Sharpe; KAA: Kanamycin, Aesculin Azide.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EMA carried out the phenotypic and genetic analyses, prepared the manuscript draft and participated in the design of the experiments. BGS carried out the isolation of the LAB strains and collaborated in the genetic studies. CA contributed to the phenotypic analyses and to prepare the manuscript draft. CC participated in the phenotypic analyses. RC collaborated in the antibiotic susceptibility tests. LMC conceived the study and, together with CH and PEH, designed the experiments, analyzed the results and revised the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

This work was partially supported by projects AGL2009 – 08348–ALI from Ministerio de Ciencia y Tecnología (MICYT), Spain; GR35/10-A from Banco Santander-Central Hispano-Universidad Complutense de Madrid (UCM), Spain; S – 2009/AGR – 1489 from Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad de Madrid, Spain, and Spanish-Portuguese Integrated Action HP2008-0070 from Ministerio de Ciencia e Innovación (MICINN), Spain. E. Muñoz-Atienza is recipient of a predoctoral fellowship from UCM, Spain. C. Araújo is financially supported by a predoctoral fellowship from Fundação da Ciência e Tecnologia, Portugal. C. Campanero holds a predoctoral fellowship from UCM, Spain. The authors express their gratitude to Dr. C. Michel, INRA, Jouy-en-Josas, France, for providing a number of fish pathogens strains used as indicators and to Dr. C. Torres, Universidad de la Rioja, Spain; Dr. T.J. Eaton, Institute of Food Research, Norwich, United Kingdom, and Dr. V. Vankerkhoven, University of Antwerp, Belgium, for supplying strains used as PCR controls.

Author details

1Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP) Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain. 2Centro de Genética e Biotecnologia, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. 3Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.

Received: 23 July 2012 Accepted: 18 December 2012 Published: 24 January 2013

References

1. FAO: FAO Fisheries Department. State of world aquaculture 2006. *FAO Fish Tech Pap* 2006, 5001–134.
2. FAO: Responsible use of antibiotics in aquaculture. *FAO Fish Tech Pap* 2005, 469:1–97.
3. Cable LF, King M, Sibley DR, Trappe JM: Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environ Microbiol* 2006, 8:137–144.
4. Austin B, and Family: The bacterial microflora of fish, revised. *ScientificWorldJournal* 2006, 6931–945.
5. Robertson PAW, ODowd C, Burrells C, Williams P, Austin B: Use of *Camobacterium sp.* as a probiotic for Atlantic salmon (*Salmo salar L.*) and rainbow trout (*Oncorhynchus mykiss*, *Walbaum*). Aquaculture 2000, 185:235–243.
6. Wang Y-B, Li J-R, Lin J: Probiotics in aquaculture: challenges and outlook. *Aquaculture* 2008, 281:1–4.
7. Defoirdt T, Sorgeloos P, Bossier P: Alternatives to antibiotics for the control of *bacterial disease in aquaculture*. *Can Open Microbiol* 2011, 1:251–258.
8. Verschueren L, Rombaut G, Sorgelbos P, Verstraelen W: Probiotic bacteria as biological control agents in aquaculture. Microb Mol Biol Rev 2000, 64:655–671.

9. Gavriilides H, Skerget M, Brembati M: Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutr Pap 2006, 85:1–50.

10. EC: Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to as EFSA. The EFSA Journal 2007, 587:1–16.

11. EFSA: Maintenance of the list of QPS biological agents intentionally added to food and feed. The EFSA Journal 2011, 9:1–82.

12. Gómez-Sala B, Sánchez JM, Martín M, Criado R, Gutiérrez J, Citti R, Herranz C, Hernández PE, Cintas LM: Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and fish products. In 7ème Colloque du Club des Bactéries Lactiques, p 45. Abstracts: Nantes, France: ENITIABA and French National Institute for Agricultural Research (INRA); 2004.

13. EFSA: Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal 2012, 10:2740–2749.

14. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S: The properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Microbiol Biotechnol 2007, 75:603–612.

15. Muroz-Atienza M, Basanta A, Sánchez J, Martín M, Criado R, Gutiérrez J, Citti R, Herranz C, Hernández PE, Cintas LM: Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus humanus isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 2007, 59:900–912.

16. Ringa E, Gavriilides H: Lactic Acid bacteria in fish: a review. Aquaculture 1998, 160:177–203.

17. Desirac F, Deferr D, Bourgounon N, Billet B, Le Chevalier P, Fleury Y: Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquatic probiotic. Mar Drugs 2010, 8:1153–1177.

18. O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C: Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int J Food Microbiol 2012, 152:189–205.

19. Gillor O, Eitan A, Rileya MA: The dual role of bacteriocins as anti- probiotics. Appl Environ Microbiol 2006, 72:491–496.

20. Con SC, Li Y, Daniel CJ, O’Toole PW, Hill C, Galan GC: Bacteriocin production as a mechanism for the antifictive activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007, 104:7617–7621.

21. Vendrell D, Balcaráz JL, Ruiz-Zaruela I, de Ibi S, Girones O, Muzzquiz JL: Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 2006, 29:177–198.

22. Decamp O, Moriarty D: Aquaculture species profit from probiotics. Feed Mix 2007, 15:20–23.

23. Dimitroglou A, Menifield DL, Carnevali O, Piccietti S, Avella M, Daniels C, Guroy D, Davies SJ: Microbial manipulations to improve fish health and production - A Mediterranean perspective. Fish Shellfish Immunol 2011, 30:1–16.

24. Nikolaisen S, Salminen S, Bylund G, Oudeh A: Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 2001, 67:2430–2435.

25. Balcaráz JL, Vendrell D, de Ibi S, Ruiz-Zaruela I, Muzzquiz JL, Girones O: Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 2008, 278:181–191.

26. Menifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Casteel M, Ringa E: The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 303:318–21.

27. Das S, Ward LR, Burke C: Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture 2010, 305:32–41.

28. Wang Y-B, Tian Z-Q, Yao J-T, Li W: Effect of probiotics, Enterococcus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 2008, 277:203–207.
