HIV-1 and Amyloid Beta Remodel Proteome of Brain Endothelial Extracellular Vesicles

Ibolya E. András, Brice B. Sewell and Michal Toborek *

Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33136-1019, USA; IAndras@med.miami.edu (I.E.A.); bbs53@miami.edu (B.B.S.)
* Correspondence: mtoborek@med.miami.edu

Received: 11 March 2020; Accepted: 7 April 2020; Published: 15 April 2020

Abstract: Amyloid beta (Aβ) depositions are more abundant in HIV-infected brains. The blood–brain barrier, with its backbone created by endothelial cells, is assumed to be a core player in Aβ homeostasis and may contribute to Aβ accumulation in the brain. Exposure to HIV increases shedding of extracellular vesicles (EVs) from human brain endothelial cells and alters EV-Aβ levels. EVs carrying various cargo molecules, including a complex set of proteins, can profoundly affect the biology of surrounding neurovascular unit cells. In the current study, we sought to examine how exposure to HIV, alone or together with Aβ, affects the surface and total proteomic landscape of brain endothelial EVs. By using this unbiased approach, we gained an unprecedented, high-resolution insight into these changes. Our data suggest that HIV and Aβ profoundly remodel the proteome of brain endothelial EVs, altering the pathway networks and functional interactions among proteins. These events may contribute to the EV-mediated amyloid pathology in the HIV-infected brain and may be relevant to HIV-1-associated neurocognitive disorders.

Keywords: HIV-1; amyloid beta; extracellular vesicles; blood–brain barrier

1. Introduction

HIV-infected brains tend to have enhanced amyloid beta (Aβ) deposition [1–6], mostly in the perivascular space [3,7–9]. Indeed, the blood–brain barrier (BBB) is thought to be a key player in the brain’s Aβ homeostasis [10]. It is now widely accepted that extracellular vesicles (EVs) may also be important in Aβ pathology [11–17]. Our earlier work has shown that HIV can increase the release of brain endothelial EVs and alter EV-Aβ levels. Moreover, brain endothelial cell-derived EVs can transfer Aβ to other cells of the neurovascular unit [18]. EVs carry specific cargo molecules, including a complex set of proteins, which can be transferred to the neighboring cells and affect their biology. Some of these proteins are on the EV surface. The surface proteins may allow for selective EV uptake by the recipient cells, like in the case of receptor-mediated endocytosis. Total proteomics can give detailed information on the EV protein cargo overall. Surface proteomics could indicate the “address” of a targeted delivery, while total proteomics would represent the delivered “package.”

In this work, we investigated how exposure to HIV, alone and together with Aβ, impacts the surface and total proteomic landscape of EVs from human brain microvascular endothelial cells (HBMEC-EVs). By using this unbiased strategy, we obtained a complex, high-resolution insight into these changes.
2. Results

2.1. Extracellular Vesicles from Human Brain Microvascular Endothelial Cells (HBMEC-EVs) Are Enriched with the Major EV Markers

At first, we examined whether proteins that are frequently identified in EVs/exosomes from various sources can be found in our isolated HBMEC-EVs. Based on the ExoCarta EV proteomics database from different human cell types that have been isolated using different approaches [19,20], we compiled the list of 100 marker proteins that are most often present on EVs (Table 1). The surface HBMEC-EV proteome, which contained a total of 283 identified proteins, included 62 of the top 100 ExoCarta EV markers (Figure 1A, Table 1). In addition, the total HBMEC-EV proteome, which contained 501 identified proteins, included 80 of such markers (Figure 1B, Table 1). These results demonstrate that our HBMEC-EV isolation was highly enriched with known EV markers.

Figure 1. Cont.
Figure 1. Extracellular vesicle (EV)-specific markers in the surface and total proteomes of human brain microvascular endothelial cells (HBMEC)-derived EVs. Venn diagram showing the overlap between the HBMEC-EV surface proteome (283 proteins) (A) or the HBMEC-EV total proteome (501 proteins) (B) and the top 100 EV marker proteins from ExoCarta. Cellular component enrichment of the identified surface (C) and total (D) EV proteomes. The identified EV proteins were enriched for cellular component using the Scaffold software.

2.2. Cellular Component Enrichment of the Identified Surface and Total EV Proteins

Using the Scaffold software, we next evaluated the HBMEC-EV proteins according to their known cellular localization. This approach may indicate the parent cellular compartment origin of the identified HBMEC-EV proteins. The majority of the HBMEC-EV surface proteins were extracellular region proteins, followed by cytoplasmic, intracellular organelle, membrane, nuclear, endoplasmic reticulum, cytoskeleton, Golgi, mitochondrial, endosomal, ribosomal proteins, and one unknown protein (Figure 1C). For the total HBMEC-EV proteome, the majority of proteins were cytoplasmic and extracellular region proteins (Figure 1D).

2.3. HIV and Aβ Exposure Results in Unique HBMEC-EV Proteome Signatures

We next focused on the unique proteins induced by the exposure to HIV and Aβ. Comparison of the control vs. HIV surface HBMEC-EV proteomes identified 112 unique proteins in the control and
three unique proteins in the HIV group (Figure 2A). By contrast, a similar comparison for the total proteome identified only three unique proteins in the control and as many as 259 unique proteins in the HIV group (Figure 2B). Comparison of the surface proteome between the HIV vs. HIV+Aβ groups identified six unique proteins in the HIV group and 116 unique proteins in the HIV+Aβ group (Figure 2C). Finally, analysis of the total proteome revealed 28 unique proteins in the HIV group and 201 unique proteins in the HIV+Aβ group (Figure 2D). A list of these unique proteins is provided in Tables 2 and 3 for the surface and total proteomes, respectively.

![Figure 2. Cont.](image-url)
Figure 2. Cont.
2.4. Functional Enrichment of the Unique HBMEC-EV Proteins

We next grouped these unique protein signatures into the biological process categories of the Scaffold software. Overall, 19 main categories were established, and the number of unique proteins mapping to these categories is illustrated in Figure 2, separately for the surface (A and C) and the total proteome (B and D). Note that individual proteins could map to more than one category; on the other hand, not all categories have been identified for all comparisons. This is consistent with the fact that selected group comparisons identified only a limited number of unique proteins that mapped to a limited number of categories. The number of unique proteins corresponding to the main biological process categories in the combined comparisons is illustrated on the bar graphs in Figure 2E for the surface proteome and Figure 2F for the total proteome. The majority of both surface and total unique proteins were mapped to “response to stimulus,” “multicellular organismal process,” “metabolic process,” and “localization” categories.

Figure 2. Enrichment for biological processes of the identified unique EV proteins. Scaffold software was used to enrich for the main biological processes for the identified unique EV proteins. The upper Venn diagrams show the compared groups with the number of their unique and shared proteins. The lower pie charts depict the enriched biological processes corresponding to the unique lists highlighted in yellow. The number of proteins in a particular biological process category is also provided. (A) Surface proteome, control vs. HIV. (B) Total proteome, control vs. HIV. (C) Surface proteome, HIV vs. HIV+ amyloid beta (Aβ). (D) Total proteome, HIV vs. HIV+Aβ. Combined graph for the biological processes in the EV unique surface (E) and total (F) proteomes. The number of unique proteins corresponding to the main biological processes in the different comparisons is illustrated on the graph.
Next, we evaluated the unique proteins in the control vs. HIV and in the HIV vs. HIV+Ab comparisons using STRING for functional enrichment in the biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. In addition, we enriched these analyses for cellular components and PMID publications.

The results of these analyses for the EV surface proteome unique proteins in the control group in the control vs. HIV comparison are listed in Table 4 and Supplementary Table S1A. In addition, Supplementary Table S1B lists the enrichment for cellular components. The observed gene count (Obs), background gene count (Bgr), false discovery rate (FDR), and matched proteins are also included in these tables. The three unique proteins identified when comparing the surface proteome in the HIV group to the control group are dynein heavy chain 8, axonemal (DNAH8), titin (TTN), and immunoglobulin heavy constant gamma 2 (IGHG2). According to the description in the STRING or GeneCards database, DNAH8 is a force-generating protein of the respiratory cilia and is also involved in sperm motility. In addition, DNAH8 is highly expressed in prostate cancer [21]. Titin appears to be a key component of the vertebrate striated muscles [22]. IGHG2 may participate in antigen binding and the regulation of actin dynamics. It was linked to severe respiratory syncytial virus infection [23]. Overall, very limited or no data were found for the different enrichment analyses in STRING regarding these three proteins.

Next, we analyzed the EV surface proteome unique lists for the HIV vs. HIV+Ab comparison in order to dissect the effect of exogenous EV-Ab cargo in the context of HIV. In this analysis, six unique proteins were identified in the HIV group, namely, TTN, ninein (NIN), DNAH8, adenylyl cyclase-associated protein 1 (CAP1), actin-related protein 2/3 complex subunit 4 (ARPC4), and IGHG2. For these unique proteins, all enriched biological processes are shown in Table 5. No KEGG pathways were enriched; however, several PMID publications were found by textmining (Table 5). Cellular localization of these enriched proteins to only a few categories was found, namely, “cytoskeletal part” (ARPC4, CAP1, DNAH8, NIN, TTN), “actin cytoskeleton” (ARPC4, CAP1, TTN), “supramolecular fiber” (DNAH8, NIN, TTN), “microtubule” (DNAH8, NIN), “ciliary part” (DNAH8, NIN), and “cytoplasmic region” (CAP1, DNAH8).

For the unique proteins in the HIV+Ab group in this comparison, the enriched biological processes, KEGG pathways, and PMID publications are presented in Table 6 and Supplementary Table S2A. The enrichment for cellular components is included in Supplementary Table S2B.

Next, we analyzed the EV total proteome unique lists for the control vs. HIV comparison. For the unique proteins in the control group, no gene ontology (GO) terms were found for biological processes. Similarly, no KEGG Pathways were enriched, likely because only three unique proteins were identified in this group and comparison. The cellular localization of these proteins is presented in Supplementary Table S3. In addition, the first 10 PMID publications enriched are shown in Table 7. The total proteome revealed 259 unique proteins in the HIV group that mapped to a variety of GO terms for biological processes (Table 8 and Supplementary Table S4A). They were also enriched in several KEGG pathways (Table 8) and assigned to diverse cellular components, as listed in Supplementary Table S4B. Textmining resulted in an unbiased PubMed search with the 10 most significant publications listed in Table 8.

Finally, we analyzed the list of the unique proteins present in the total HBMEC-EV proteome in the HIV and HIV+Ab groups. The unique proteins in the HIV group in this comparison mapped to only one GO term for biological processes, namely, “cell envelope organization,” presented in Table 9. No KEGG pathways and no cellular components were enriched for this group. The first 10 textmined PMID citations are presented in Table 9. The unique proteins in the HIV+Ab group were enriched to several biological processes, KEGG pathways, and PMID publications (Table 10 and Supplementary Table S5A). Supplementary Table S5B lists the enrichments for the cellular component in this group.

2.5. Analysis of Unique Protein Interactions

We also explored in STRING whether these unique proteins have functional interactions among each other. The statistical background assumed for this enrichment analysis was the whole human...
We filtered our search for established interactions only for the input proteins, for the highest confidence (over 0.900), and for a static map without the protein structures. In the obtained interaction maps, different nodes are connected with colored lines depending on the functional association type. The results imply that the identified proteins have more interactions among themselves than what would be expected for a random set of proteins of similar size, drawn from the genome. Such enrichments indicate that the proteins are, at least partially, biologically connected as a group and may contribute jointly to shared functions.

The interactions of the 112 unique surface proteins in the control group as compared to the HIV group are illustrated in Figure 3A. The HIV group in this comparison had only three unique surface proteins (DNAH8, TTN, and IGHG2). Being present on the EV surface, these proteins may be prone to interact with their potential functional partners beyond the EV surface. Therefore, we examined their possible interactions not only with each other but with other proteins as well. The STRING program identified predicted functional partners for DNAH8 and TTN, and the top five candidates that were predicted with the highest confidence, as well as their interacting networks, are illustrated in Figure 3B.

Next, we evaluated the unique surface protein list in the HIV vs. HIV+\(\text{A}\beta\) group. No protein–protein interactions were found for the six proteins uniquely expressed in the HIV group. By contrast, the HIV+\(\text{A}\beta\) unique surface proteins had several complex interactions, as illustrated in Figure 3C.

Finally, we analyzed the interactions between the unique proteins present in the total HBMEC-EV proteome. No interactions were found in the control group as compared to the HIV group; however, the elaborate interaction map for the total unique proteins in the HIV group is presented in Figure 4A. For the HIV vs. HIV+\(\text{A}\beta\) comparison, the HIV group exhibited 28 unique proteins without any identified interactions. In contrast, the unique proteins in the HIV+\(\text{A}\beta\) group showed a complicated interaction network, as illustrated in Figure 4B.

Figure 3. Cont.
Figure 3. Protein–protein interactions between the identified unique proteins of the EV surface proteome. Venn diagrams illustrating the type of comparison and the number of identified unique proteins (highlighted). (A) Protein–protein interactions (PPI) (STRING) among the unique surface proteins in the control group. Only interactions with the highest confidence are shown with a minimum required interaction score of 0.900 (PPI enrichment p-value: 6.59×10^{-7}; the network has significantly more interactions than expected). Known interactions: From curated databases (turquoise), experimentally determined (pink); predicted interactions: Gene neighborhood (green), gene fusions (red), gene co-occurrence (blue); other interactions: Textmining (light green), co-expression (black), protein homology (purple). (B) No interactions with highest confidence were identified in STRING among the three unique proteins identified in the HIV group. Predicted functional partners of dynein heavy chain 8, axonemal (DNAH8) (upper map) and titin (TTN) (lower map). Only the first shell of five interactions with the highest confidence is shown. Color code of the interaction lines as described in (A). (C) Protein–protein interactions among the unique proteins in the HIV+Ab group. Only interactions with the highest confidence are shown (PPI enrichment p-value: 0.00158; the network has significantly more interactions than expected). Color code of the interaction lines as described in (A).
Figure 4. Protein–protein interactions in the identified unique proteins of the EV total proteome. Venn diagrams illustrating the type of comparison and the number of identified unique proteins (highlighted). (A) Protein–protein interactions among the unique proteins in the HIV group. Only interactions with the highest confidence are shown (PPI enrichment p-value: 1.0 × 10^{−16}; the network has significantly more interactions than expected). (B) Protein–protein interactions among the unique proteins in the HIV+Aβ group. Only interactions with the highest confidence are shown (PPI enrichment p-value: 1.45 × 10^{−7}; the network has significantly more interactions than expected). Color code of the interaction lines as described in Figure 3A.
3. Discussion

In the current study, we evaluated HBMEC-EV surface and total proteome changes evoked by HIV-1 alone and together with Aβ. We limited our analyses to the unique lists of proteins identified in the treatment groups; thus, we did not include the shared protein lists and the complex changes in the up- and down-regulated proteins. In addition, we specifically focused on the unique proteins in the control vs. HIV and in the HIV vs. HIV+Aβ group comparisons. The identified proteins were mapped to different gene ontology (GO) terms for biological processes, KEGG pathways, and Cell Components. We also explored the protein–protein interactions among the identified unique proteins.

Overall, the surface proteome control vs. HIV comparison indicated that the functions of the identified unique proteins ranged from diverse biological processes in the control (mainly “extracellular matrix organization,” “metabolic processes,” “vesicle-mediated transport,” “exocytosis”) and KEGG pathways (mainly “proteoglycans in cancer,” “focal adhesion,” “carbohydrate and cholesterol metabolism,” “HIF-1 signaling pathway”) to few or no distinct biological processes in the HIV group (Figure 2A and Table 4). The latter phenomenon was likely due to the limited number of proteins (namely, DNAH8, TTN, IGHG2) that were unique in the HIV-1 group when compared to the HBMEC-EV surface proteome of the controls. Nevertheless, we found several potential functional partners for DNAH8, such as platelet-activating factor acetylhydrolase IB subunit alpha (PAFAH1B1), dynactin subunit 1 (DCTN1), dynactin subunit 2 (DCTN2), CAP-Gly domain-containing linker protein 1 (CLIP1), and cytoplasmic dynein 1 light intermediate chain 1 (DYNC1L1). Similarly, we identified several predicted functional partners for TTN, namely, nebulin (NEB), telethonin (TCAP), troponin C, skeletal muscle (TNNC2), myosin light chain 1/3, skeletal muscle isoform (MYL1), and alpha-actinin-2 (ACTN2) (Figure 3B). Thus, these few unique surface EV proteins in the HIV group may engage primarily with proteins of actin cytoskeleton/microtubule remodeling and vesicle-mediated transport.

The control EV proteome exhibited more than a hundred unique proteins; thus, it appears that after HIV-1 exposure of the parent cells, the EV surface proteome almost completely “blended” into the control proteome. This relative lack of surface HBMEC-EV protein signature in the HIV group is particularly striking in light of our previous findings where the exposure of HBMEC to HIV results in increased EV shedding [18] and the fact that EVs are involved in spreading HIV infection to the neighboring cells. However, it is possible that the localization of some proteins could alter from the EV surface to the vesicle lumen, resulting in a highly enriched total but not surface proteome. Indeed, comparison of the total proteome revealed a highly diverse number of 259 unique proteins in the HIV group as compared to the control that mapped to a variety of biological processes and KEGG pathways. The most prominent enrichment among the biological processes category was “vesicle-mediated transport,” followed by “extracellular structure organization.” In addition, mapping these unique proteins to “exocytosis” and “secretion by cell” categories points to processes that may be involved in EV release and EV transport (Figure 2B and Table 8). Likewise, the KEGG pathways were also diverse, from “focal adhesion” and “endothelial cell medium (ECM)-receptor interaction” to “proteoglycans in cancer,” different infections, “endocytosis,” “cholesterol metabolism,” and “glycolysis/gluconeogenesis” (Table 8). Thus, the total EV proteome in the HIV group, with a large number of unique proteins, may suggest that the rich, unique cargo is somewhat “hidden” within the EVs with a surface proteome that was barely altered. This notion is supported by the observations that the HIV group in the HIV versus HIV+Aβ group surface proteome comparison also exhibited only six unique proteins (Figure 2C). On the other hand, the relative lack of unique EV surface protein signatures may facilitate EV internalization and, thus, HIV transmission to other cells.

In addition to the effects of HIV-1, we explored the impact of Aβ on the HBMEC-EV proteome in the context of HIV-1. It was reported that increased brain Aβ induced profound proteome remodeling in multiple cell types, altering brain molecular pathways in an Alzheimer’s disease (AD) mouse model [24]. Another brain proteomic study using a different AD mouse model with amyloid and neurofibrillary tangle pathologies indicated age-dependent immune responses and synaptic dysfunctions. It was proposed that these changes were evoked by the advancing Aβ pathology in the
Comparison of surface proteomes of EVs derived from HBMEC exposed to HIV alone vs. HIV + Aβ revealed profound changes, as demonstrated by 116 unique proteins in the HIV + Aβ group (Figure 2C). Aβ, acting on a HIV background, appeared to shift biological processes from mainly actin cytoskeleton organization (Table 5) to immune responses, extracellular matrix organization, and carbohydrate metabolic processes. In addition, enrichment of the “vesicle-mediated transport” and “exocytosis” also pointed to processes involved in EV release and EV transport (Figure 2C and Table 6). The KEGG pathways changed from a “blended” profile in the HIV group to a very diverse profile in the HIV + Aβ group, pointing mainly to the carbohydrate metabolic processes, “focal adhesion,” different infections, and signaling pathways as demonstrated by HIF-1, MAPK, and AGE-RAGE enrichment (Table 6). Regarding these signaling pathways, we have shown before the involvement of the RAGE pathway in the HIV-induced Aβ accumulation in HBMEC [26].

The HIV vs. HIV + Aβ comparison for the total proteome indicated substantial remodeling in the HIV + Aβ with 201 unique proteins as compared to 28 of such proteins in the HIV group. Consistent with HIV + Aβ-mediated EV release [18], the biological processes changed from “cell envelope organization” (Table 9) to mainly “vesicle-mediated transport,” “exocytosis,” and immune responses (Figure 2D and Table 10). The KEGG pathways also shifted to a diverse profile. “Endocytosis” was the most significant, followed by “focal adhesion” and “bacterial invasion of epithelial cells.” Several proteins were part of the carbohydrate metabolic pathways, such as the “pentose phosphate pathway,” “starch and sucrose metabolism,” and “proteoglycans in cancer” (Table 10).

Surprisingly, surface and total proteome analysis across different groups did not find any Aβ species in EVs, not even in samples that were isolated from Aβ-exposed HBMEC. This lack of Aβ identification could be related to technical issues, such as aggregation of Aβ, its insolubility, and possibly indigestibility by trypsin. The tryptic peptide used to quantify β-amyloid, LVFFAEDVGSNK, corresponding to amino acids 688–699, maps to all species of Aβ and full-length APP [27] and has been identified in the human CSF proteome [28]. In our study, no peptides mapping to the Aβ-generating region of APP were identified, even though APP was identified on the surface proteome. Similar obstacles were described in another proteomic study, in which Aβ was not identified in human AD brains. However, Aβ was detected by dot blot and ELISA from the same samples [29], supporting the notion that the lack of Aβ detection in the proteome was likely due to technical limitations.

Our previous studies demonstrated that treatment of HBMEC with Aβ could enrich EVs with this peptide, which can then be carried and delivered to different cells of the neurovascular unit [18,30]. In support of these findings, literature reports described Aβ as being present on the EV surface. For example, neuron-derived EVs accelerated Aβ fibril formation from monomeric Aβ and this process was inhibited by cleavage of glycosphingolipid (GSL) glycans by endoglycosidase (EGCase) [31]. The same group also demonstrated that EV GSL-glycans were critical for Aβ binding in vitro and in vivo [15]. GSLs are found mainly in lipid rafts in the outer layer plasma membrane with their glycans facing outside; however, they are more abundant in EVs than in the parent cells [15]. Besides GSL, EVs were shown to bind Aβ through the prion protein (PrP) [14], a glycosylphosphatidylinositol-anchored protein in the outer leaflet of the neuron and neuron-derived EV membrane [32].

Some of the unique proteins identified in our HBMEC-derived EVs exhibit a substantial overlap with proteins detected by label-free proteomics in Aβ-enriched extracts from human AD brains [29], suggesting the relevance of EV proteins to Aβ pathology. The examples include ANXA5, FGB, LAMA5, and VIM found both in the total proteome of EVs in the HIV group and in Aβ-enriched extracts from human AD brains [29]. In addition, specific types of tubulins, such as TUBA1B and TUBB4B, were present, although they did not change in AD brains. Among the unique proteins in the HIV + Aβ group’s total proteome, FGG and HIST1H2BK, as well as tubulins TUBB and TUBB2A, were also enriched in extracts from AD brains [29]. In addition, HIST1H2BK has been one of the unique proteins in the EV total proteome from the Aβ group. In contrast, RNF213 was not identified in any of our
EV samples, although it was unique to the AD brain samples and also found within the amyloid plaques [29]. One explanation for this phenomenon could be that RNF213 in the AD brain might not originate from brain endothelial cells.

Analysis for predicted significant functional interactions among the unique proteins produced several elaborate interaction maps (Figures 3 and 4). It is striking to notice that several proteins on these maps act like “hubs” or centers by having a substantial number of connections to other proteins. Such “hubs” for the surface proteomes were SERPINE1 (PAI-1), GPC1, FERMT3 (Figure 3A), and ALDOA (Figure 3C). The most complex functional interaction maps were obtained for the total proteomes due to the high number of unique proteins. The identified “hubs” were RAC1, GAS6, SERPINE1, AGRN, APOB, and RAB5C (Figure 4A), as well as CDC42 and RAB1A (Figure 4B). Among these proteins, endothelial AGRN (agrin) was shown to be implicated in the brain Aβ pathology. For example, deletion of the Agrn gene from endothelial cells resulted in significantly increased Aβ levels in the mouse brain; however, overexpression of Agrn restored brain Aβ levels [33]. SERPINE1 (PAI-1) and GPC1 (glypican-1) may be additional important players in the Aβ pathology [34,35]. Indeed, GPC1, a heparan sulfate proteoglycan, localized mainly in detergent-insoluble, GSL-rich membrane domains, was shown to bind fibrillar Aβ in the human brain [36], further suggesting that protein “hubs” identified in the present study may be involved in EV-mediated Aβ pathology.

In summary, our results provide information, with an unprecedented resolution, on the brain endothelial surface and total EV proteome changes after HIV and Aβ exposure of the parent cells. The analyses identified protein–protein interaction networks, biological processes, pathways, and cellular localization. Overall, the obtained results factor for a better understanding of HBMEC-EV protein landscape changes induced by HIV and Aβ and their contribution to the HIV-associated Aβ pathology in the brain.

4. Materials and Methods

4.1. Cell Cultures

Primary human brain microvascular endothelial cells (HBMEC) used in the study were purchased from ScienCell Research laboratories (Carlsbad, CA, USA). HBMEC were isolated from human brain and cryopreserved at passage one. HBMEC were characterized by immunofluorescence with antibodies specific to vWF/Factor VIII and CD31 (PECAM). Cells were cultured on bovine plasma fibronectin (ScienCell)-coated dishes in endothelial cell medium (ECM). Specifically, 500 mL of basal ECM medium was supplemented with 25 mL of exosome-depleted fetal bovine serum (Exo-FBS; System Biosciences, Mountain View, CA, USA), 5 mL of endothelial cell growth supplement (ECGS, ScienCell), and 5 mL of penicillin/streptomycin solution (P/S, ScienCell). We initiated two separate cultures on 100 mm cell culture dishes to reduce the number of passages and subcultured the cells twice at the 1:4 ratio. This resulted in 32 confluent cultures, with the average cell number at the end of experiment of 9.065×10^7 cells/dish. Sixteen confluent cultures were used for EV surface proteomics, and 16 for EV total proteomics. The treatment groups were: 1) Control exposed to vehicle, 2) Aβ alone, 3) HIV alone, 4) HIV plus Aβ, with four samples/group.

4.2. HIV Infection and Aβ Treatment

HIV-1 stock was generated using human embryonic kidney (HEK) 293T cells (ATCC, Manassas, VA, USA) transfected with pYK-JRCSF plasmid containing full-length proviral DNA. Throughout the study, HBMEC were exposed to HIV particles at the p24 level of 30 ng/mL as previously reported [37]. Treatment was terminated by removing the cell culture media for EV isolation.

Aβ (1–40) was purchased from Anaspec (San Jose, CA, USA) and dissolved in PBS. Freshly solubilized Aβ solutions without pre-aggregation were used for experiments as such a form of Aβ was demonstrated to induce proinflammatory reactions in isolated rat brain microvessels [38]. Cells were treated with Aβ (1–40) at the concentration of 100 nM for 48 h in complete medium. Although uptake
of Aβ by the BBB occurs rapidly [39], we terminated the treatment at 48 h to allow more EV to be secreted into the culture medium. Confluent HBMEC were exposed to HIV-1 or/and Aβ (1–40) for 48 h.

4.3. EV Isolation

EV isolation was performed using ExoQuick-TC precipitation solution (System Biosciences) from conditioned culture media according to the manufacturer’s specifications. Briefly, 10 mL culture media from confluent HBMEC cultures was centrifuged at 3000 g for 15 min to remove cells and debris, and then mixed thoroughly with 2 mL of Exo-Quick precipitation solution and incubated overnight at 4 °C. The next day, samples were centrifuged at 1500 g for 30 min, and the supernatants were removed and centrifuged again at 1500 g for 5 min. The EV pellets were stored at −80 °C and used for proteomics analysis. Separate EV samples were prepared for EV surface and total proteomics.

4.4. Proteomics

Sample Preparation. Each sample was processed by SDS-PAGE using a 10% Bis Tris NuPage mini-gel (Invitrogen, Waltham, MA, USA) in the MES buffer system. The migration windows (1 cm lane) were excised and processed by in-gel digestion with trypsin using a ProGest robot (DigiLab) with the following protocol: The samples were washed with 25 mM ammonium bicarbonate followed by acetonitrile, reduced with 10 mM dithiothreitol at 60 °C, followed by alkylation with 50 mM iodoacetamide at room temperature, digested with trypsin (Promega, Madison, WI, USA) at 37 °C for 4 h, and quenched with formic acid. The supernatants were then analyzed directly without further processing.

Mass Spectrometry. Half of each digested sample was analyzed by nano LC-MS/MS with a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Q Exactive. Peptides were loaded on a trapping column and eluted over a 75 µm analytical column at 350 nL/min; both columns were packed with Luna C18 resin (Phenomenex, Torrance, CA, USA). The mass spectrometer was operated in data-dependent mode, with the Orbitrap operating at 70,000 FWHM and 17,500 FWHM for MS and MS/MS respectively. The fifteen most abundant ions were selected for MS/MS analysis.

Data Processing. Data were searched using Mascot (Matrix Science, London, UK; version 2.6.0) with the following parameters: Enzyme: Trypsin/P; Databases: SwissProt Human (concatenated forward and reverse plus common contaminants); fixed modifications: Carbamidomethyl (C); variable modifications: Acetyl (N-term), deamidation (N,Q), oxidation (M), Pyro-Glu (N-term Q); mass values: Monoisotopic; peptide mass tolerance: 10 ppm; fragment mass tolerance: 0.02 Da; max missed cleavages: 2. Mascot DAT files were parsed into Scaffold (Proteome Software, version Scaffold 4.8.7, Proteome Software Inc., Portland, OR, USA) for validation, filtering, and to create a non-redundant list per sample. Data were filtered using a 1% protein and peptide FDR and required at least two unique peptides per protein. Protein probabilities were assigned by the Protein Prophet algorithm [40]. Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins were annotated with GO terms from NCBI (downloaded on Sep 6, 2018) [41]. The normalized spectral abundance factor (NSAF) calculation contains the conversion to the spectral abundance factor (SAF) and subsequent normalized spectral abundance factor (NSAF). This was based on the equation: NSAF = (SpC/MW)/Σ(SpC/MW)N, where SpC = spectral counts, MW = protein molecular weight in kDa, and N = total number of proteins. NSAF values can be used to approximate the relative abundance of proteins within a given sample and the relative abundance of a given protein between samples. The different treatment groups were compared using the t-test, and p < 0.05 was considered significant.

4.5. ExoCarta Database Search and Functional Enrichment Analysis

The list of the top 100 proteins most often identified in EVs was composed based on the ExoCarta EV proteomics database from different human cell types [19]. Enrichment in molecular functions of the identified EV proteins was analyzed using the Scaffold Proteome Software and STRING [42].
A gene ontology analysis study was carried out with the proteomic profiles obtained to identify overrepresentation profiles. Gene ontology was investigated at the levels of the biological process, KEGG pathways, and cell component. Textmining in STRING provided the most relevant publications for a particular enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) established pathway maps representing molecular interactions, reactions, and relation networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, Human Diseases and Drug Development. KEGG PATHWAY is the reference database for pathway mapping in KEGG Mapper.

Table 1. List of the top 100 ExoCarta proteins present in the brain endothelial extracellular vesicle (EV) surface (S) and total (T) proteome. Bold, top 100 ExoCarta proteins present in S or T; bold and red, proteins present in both S and T.

Gene Symbol	Detected in S	Detected in T
1 CD9	−	+
2 HSPA8	+	+
3 PDCD6IP	+	+
4 GAPDH	+	+
5 ACTB	+	+
6 ANXA2	+	+
7 CD63	−	+
8 SDCBP	+	+
9 ENO1	+	+
10 HSP90AA1	+	+
11 TSG101	−	+
12 PKM	+	+
13 LDHA	+	+
14 EEF1A1	+	+
15 YWHAZ	+	+
16 PGK1	+	+
17 EEF2	+	+
18 ALDOA	+	+
19 HSP90AB1	+	+
20 ANXA5	+	+
21 FASN	+	+
22 YWHAE	+	+
23 CLTC	+	+
24 CD81	−	+
25 ALB	+	+
26 VCP	+	+
27 TPI1	+	+
28 PPIA	+	+
29 MSN	+	+
30 CFL1	+	+
31 PRDX1	+	+
32 PFN1	+	+
33 RAP1B	+	+
34 ITGB1	+	+
35 HSPA5	+	+
36 SLC3A2	−	+
37 HIST1H4A	+	+
38 GNB2	−	−
39 ATP1A1	−	+
40 YWHAQ	+	+
41 FLOT1	−	−
42 FLNA	+	+
43 CLIC1	+	+
Gene Symbol	Detected in S	Detected in T
-------------	--------------	---------------
CDC42	+	+
CCT2	+	+
A2M	+	+
YWHAG	+	+
TUBA1B	+	+
RAC1	−	+
LGALS3BP	+	+
HSPA1A	+	+
GNAI2	+	+
ANXA1	+	+
RHOA	−	−
MFGE8	−	+
PRDX2	+	−
GD12	+	+
EHD4	−	+
ACTN4	+	+
YWHAB	−	−
RAB7A	−	+
LDHB	+	+
GNAS	−	−
TFRC	−	−
RAB5C	−	+
ARF1	−	−
ANXA6	+	+
ANXA11	−	+
ACTG1	−	−
KPNB1	+	+
EZR	−	+
ANXA4	−	−
ACLY	+	+
TUBA1C	−	−
RAB14	−	+
HIST2H4A	−	−
GNB1	+	+
UBA1	+	+
THBS1	+	+
RAN	+	+
RAB5A	−	−
PTGFRN	+	+
CCT5	+	+
CCT3	−	+
BSG	−	+
AHCY	+	+
RAB5B	−	−
RAB1A	−	+
LAMP2	−	+
ITGA6	−	−
HIST1H4B	−	−
GSN	+	+
FN1	+	+
YWHAH	−	+
TUBA1A	+	−
TKT	−	−
TCP1	+	+
STOM	−	+
SLC16A1	−	−
RAB8A	−	−
Table 2. List of the unique proteins in the EV surface proteome.

Control vs. HIV	HIV Unique	HIV vs. HIV+Aβ	HIV Unique	HIV Unique
Control Unique	GPC6	TGM1	1433E	GPC1
Unique HIV			1433G	GPC6
Unique HIV			1433T	GSTA5
			1A34	TCPE
			1A34	TCPH
			5NTD	HMCN1
			5NTD	TCP2
6PGD	TBP1	TSP4	ACLY	IGL1
ACLY	K2C6B	UBB	ACTC	IMB1
ACTC	LAMA1	UGPA	ADA10	ITA3
ALDOA	LCAT	URP2	AL9A1	ITA5
AMPN	LDHA	VINC	ALDOA	ITAV
AMY1	LDHB	WDR1	AMY1	ITB1
ANXA1	LOXL2	WNT5A	ANXA1	LDHA
APOA4	LRC17		ARF3	LDHB
ARF3	LRP1		ARF3	LOXL2
ARG11	LTBP1		ARG11	LTBP1
ARN3	MPM2		ARN3	LRC17
ATS13	MPRI		ATS13	WNT5A
C1S	MYL6		C1S	NID2
CASPE	NID2		CASPE	NID2
CDD80	P3H1		CDD80	P3H1
CFAH	PAII		CFAH	PAII
CHIA	PCOC1		CHIA	PCOC1
CLIC1	PDG6		CLIC1	PDG6
CO4A2	PDIA3		CO4A2	PDIA3
CO5A2	PGK1		CO5A2	PGK1
CO7	PLEC		CO7	PLEC
CO7A1	PLOD3		CO7A1	PLOD3
COBA1	PPIA		COBA1	PPIA
COF1	PRDX4		COF1	PRDX4
COFA1	PYGB		COFA1	PYGB
COMP	RAB1B		COMP	RAB1B
EFIN	RACK1		EFIN	RACK1
ENO2	RAP1B		ENO2	RAP1B
EXT1	RLA0		EXT1	RLA0
EXT2	RS16		EXT2	RS16
F13A	S10A9		F13A	S10A9
FA11	SDCB1		FA11	SDCB1
FAS	SEPR		FAS	SEPR
FBN1	SPR1B		FBN1	SPR1B
FBN2	SPR2E		FBN2	SPR2E
FLNB	SRCL		FLNB	SRCL
FLNC	SRPX2		FLNC	SRPX2
FPRP	SULF1		FPRP	SULF1
FRH	SULF2		FRH	SULF2
FSCN1	SYTC		FSCN1	SYTC
GAS6	TAGL2		GAS6	TAGL2
GNA12	TBA1A		GNA12	TBA1A
GPC1	TCPD		GPC1	TCPD
Table 3. List of the unique proteins in the EV total proteome.

Control Unique	HIV Unique			
1433T	CD81			
1433Z	GDI1			
1A24	MVP			
5NTD	S10AB			
6PGD	URP2			
A4	CD82			
ACLY	MYH1			
ACTN1	TAU			
ACTN4	1433T			
ADA10	MYH1			
AEBP1	1433Z			
AGRN	1A24			
AHNK	5NTD			
ALDOA	6PGD			
AMPN	CO1A2			
ANX11	4NTD			
ANXA1	CO5A2			
ANXA5	CO5A2			
ANXA6	CO5A2			
AP2A1	ALDOA			
AP2M1	AGRN			
ACTCT	APOA4			
MYH1	APOB			
TAU	APOE			
ARF3	ARF4			
ARG11	ARG11			
ARP2	ARP2			
ARPC2	ARPC2			
AT1A1	AT1A1			
ATL1	ATL1			
ATS12	ATS12			
ATS13	ATS13			
AX2	AX2			
B4GA1	B4GA1			
BGH3	BGH3			
BMP1	BMP1			
C1QT3	C1QT3			
C1S	C1S			
CAP1	CAP1			
CASPE	CASPE			
CATA	CATA			
CCSI80	CCSI80			
CD151	CD151			
CD44	CD44			
CD59	CD59			
CD63	CD63			
TGL2	TGL2			
TGM2	TGM2			
TGM3	TGM3			
TGBG	TGBG			
RTHB	RTHB			
RAR1B	RAR1B			
TPR1B	TPR1B			
RANR	RANR			
RBS6	RBS6			
RPRD	RPRD			
RL12	RL12			
RL13A	RL13A			
RL10A	RL10A			
RL27	RL27			
RL3	RL3			
TP1	TP1			
TPR4	TPR4			
TSW11	TSW11			
TTYH3	TTYH3			
UBA1	UBA1			
UBB	UBB			
HIV unique	HIV vs. HIV+Aβ	HIV+Aβ unique		
--------------	-------------------	--------------		
AHNK	1433E	CO88 MIME	RL3	
ARGJ1	1433F	COF1 MOB1B	RL7	
ATX2	1433G	COPB2 MPRI	RL7A	
B4GA1	1B40	COR1A MRP	RL0	
CASPE	2AAA	COR1C MXRA5	RS11	
CATA	4F2	CTL1 MYH16	RS18	
CYTA	ACTC	CTL2 NDKA	RS2	
FBX50	AKLA1	CTND1 NEP	RS20	
FILA	AL9A1	CYFP1 NIBL1	RS25	
GGCT	ALS	DHX9 NOTC3	RS3A	
HORN	ANGL2	DSG4 NRP1	RS9	
IGH1A	ANGL4	DX39B OLM2B	RTN4	
K1C13	ANM1	ECM1 P3H1	RUVB1	
KLL1	ANR51	ECM2 PARMR1	SC23A	
LORI	AP1G1	EEA1 PARVB	SCUB3	
LYSC	AP2B1	EFG1 PCOC1	SEM3C	
MYOF	APOM	EGLN PDIA1	SEPI1	
PLS1	AR6F	EHD4 PDIA6	SEPT2	
PRC2A	ARP3	EIF3A PDL5	SERA	
RIMB1	ARPC4	EZRI PGFRB	SLT2	
RL27	ASSY	FA10 PGM1	STOM	
S10A9	AT1B3	FA11 PIP	SVEP1	
SNEP1	ATPA	FBN2 PLOD2	SYF8	
SPB12	ATPB	FIBG PP1B	SYHC	
TGM1	ATS7	FRIH PPIA	SYK	
TGM3	B4GT5	G6PD PRS23	SYRC	
TITIN	BAS1	G6P1 PRS8	SYSC	
ZA2G	BASP1	GANAB PSA3	TARSH	
BGAL	H13	PSA6 TBA2A		
C1R	H2A1	PSD11 TBB5		
C1TC	H2B1K	PSD12 TCP6		
CAD23	HGFL	PSD13 TCPG		
CALR	HHIP	PSD1 TGBF1		
CAND1	HMCN1	PSM2 TICN1		
CAP2B	HRNRK	PSM3 TIE1		
CAV1	IG5F8	PUR6 TIMP3		
CAZA1	ILK	PYGB TS101		
CBPN	IMB1	PYGL TSN6		
CCB1E	IPO5	QSOX1 TSN9		
CD9	IPO7	RAB10 TSP4		
CDC42	IQGA1	RAB14 UACA		
CEMIP	KCRM	RAB1A UGDH		
CFAH	KR101	RAB2A VAT1		
CHIA	KR111	RALA VDAC1		
CHSS2	KRA11	RELN VDAC2		
CISY	LAMB2	RGN VGFR1		
CLUS	LI51	RL14 XPO1		
CNTN1	LMNA	RL18 XPO2		
CO7	LRC15	RL18A XPP1		
CO8A	LUM	RL22 XRPC6		
			XYL1	
Term description	Obs	Bgr	FDR	Matching proteins in the network
-----------------	-----	-----	-----	---------------------------------
Extracellular structure organization	16	339	2.01×10^{-10}	APOA4, COMP, FBLN1, FBN1, FBN2, GAS6, LAMA1, LCAT, LOXL2, MMP2, NID2, PLOD3, PRDX4, SERPINE1, SULF1, SULF2
Extracellular matrix organization	14	296	4.25×10^{-9}	COMP, FBLN1, FBN1, FBN2, GAS6, LAMA1, LOXL2, MMP2, NID2, PLOD3, PRDX4, SERPINE1, SULF1, SULF2
Organonitrogen compound metabolic process	42	5281	3.69×10^{-6}	ACLY, AICDA, ALDOA, ANXA1, APOA4, C1S, CHIA, EEFG1, EXT1, EXT2, F13A1, FBLN1, FBN1, GAS6, GN2B1, GPC1, GPC6, GSTP1, IGF2R, JGLL1, KRT1, LCAT, LDHA, LDHB, LEPRE1, LOXL2, LRPI, LTBP1, MMP2, MSRB1, PIDA3, PGD, PGK1, PLOD3, PPIA, PRDX4, RAB1B, SULF1, SULF2, TGM1, UBR1, WNT5A
Immune response	22	1560	6.48×10^{-6}	ACLY, ACTR3, AICDA, ALDOA, ANXA1, APOA4, C1S, CHIA, FAS, FLNB, GAS6, GSTP1, IGF2R, JGLL1, KRT1, LRPI, MSRB1, PPIA, PRDX4, PYGB, RAP1B, WNT5A
Vesicle-mediated transport	23	1699	6.48×10^{-6}	ACLY, ACTR3, ALDOA, ANXA1, APOA4, C1S, CHIA, FAS, FLNB, GAS6, GSTP1, IGF2R, JGLL1, KRT1, LOXL2, LRPI, PPIA, PRDX4, PYGB, RAP1B, SERPINE1, TIMP3, UBB, WDR1
Regulated exocytosis	15	691	6.48×10^{-6}	ACLY, ALDOA, F13A1, FERMT3, GAS6, GSTP1, IGF2R, KRT1, PPIA, PRDX4, PYGB, RAP1B, SERPINE1, TIMP3, WDR1
Positive regulation of biological process	42	5459	6.48×10^{-6}	ACLY, ACTC1, ACTR3, AICDA, ANXA1, APOA4, C1S, CHIA, CLC1, FAS, FBLN1, FBN1, FBN2, FERMT3, FSCN1, GAS6, CN2B1, GPC1, GSTP1, IGF2R, JGLL1, KRT1, LHDHA, LEPRE1, LOXL2, LRPI, MMP2, PIDA3, PPIA, RAP1B, RAP1B, SERPINE1, SRPX2, SULF1, SULF2, TGM1, THBS4, TIMP3, UBR1, WNT5A
Table 4. Cont.

Gene Ontology (GO) Terms for Biological Processes
10 Most Significant Results per FDR (for all GO Terms, See Supplemental Table S1A)

Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Anatomical structure development	40	5085	6.48×10^{-6}	ACTC1, AICDA, ANXA1, APOA4, COMP, EXT1, EXT2, FAS, FBN1, FBN2, FERMT3, FLNB, FLNC, FSCN1, GAS6, GNR21L1, GPC1, GPTP1, IGF2R, KRT1, LDHA, LEPRE1, LOXL2, LRP1, LTBP1, MMP2, MYL6, PK1, PLOD3, PRDX4, RAP1B, SERPINE1, SRPX2, SULF1, SULF2, TGM1, UBB, WDR1, WNT5A
Response to stimulus	51	7824	6.48×10^{-6}	ACTC1, AICDA, APOA4, C1S, CHIA, CLIC1, EEF1G, EXT1, EXT2, F13A1, FAS, FBN1, FBN2, FERMT3, FLNB, FSCN1, GAS6, GNA12, GNB21L1, GPC1, GPC6, GPRC5A, GSTP1, IGF2R, JGL1, KRT1, LAMA1, LDHA, LOXL2, LRP1, LTBP1, MMP2, MSR1B, PDIA3, PGK1, PLOD3, PPIA, PRDX4, PYGB, RAP1B, SERPINE1, SULF1, SULF2, THBS4, TIMP3, UBB, WNT5A
Positive regulation of cellular process	39	4898	7.40×10^{-6}	ACTC1, AICDA, ANXA1, APOA4, CHIA, CLIC1, FAS, FBN1, FBN2, FERMT3, FSCN1, GAS6, GNA12, GNB21L1, GPC1, GSTP1, IGF2R, JGL1, LDHA, LEPRE1, LOXL2, LRP1, MMP2, PDHA3, PPIA, RAB18, RAP1B, SERPINE1, SRPX2, SULF1, SULF2, TGM1, THBS4, TIMP3, UBB, WDR1, WNT5A

KEGG Pathways

Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Proteoglycans in cancer	7	195	0.00093	FAS, FBN1, FLNC, GPC1, MMP2, TIMP3, WNT5A
Focal adhesion	6	197	0.0053	COMP, FLNB, FLNC, LAMA1, RAP1B, THBS4
Glycolysis / Gluconeogenesis	4	68	0.0054	ALDOA, LDHA, LDHB, PGK1
HIF-1 signaling pathway	4	98	0.0155	ALDOA, LDHA, PGK1, SERPINE1
Cholesterol metabolism	3	48	0.0195	APOA4, CAT, LRP1
Malaria	3	47	0.0195	COMP, LRP1, THBS4
Table 4. Cont.

Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
PMID:21654676	D-glucuronyl C5-epimerase suppresses small-cell lung cancer cell proliferation in vitro and tumour growth in vivo.	8	62	1.79×10^{-5}	EXT1, EXT2, FAS, GPC1, GPC6, MMP2, SERPINE1, TIMP3
PMID:2239382	In vitro phenotypic, genomic and proteomic characterization of a cytokine-resistant murine Beta-TC3 cell line.	7	42	2.32×10^{-5}	ALDOA, FAS, GSTP1, LDHA, LDHB, PDI A3, PRDX4
PMID:25829250	Insights into the key roles of proteoglycans in breast cancer biology and translational medicine.	10	156	2.32×10^{-5}	EXT1, FBLN1, FBN1, GPC1, GPC6, MMP2, SULF1, SULF2, TIMP3, WNT5A
PMID:26779482	The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source.	7	41	2.32×10^{-5}	FBLN1, FBN1, FBN2, LOXL2, LTBP1, PLOD3, SULF2
PMID:23143224	The biology of the extracellular matrix: Novel insights.	6	28	5.53×10^{-5}	COMP, FBN1, FBN2, LTBP1, MMP2, TIMP3
PMID:24223867	Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro.	6	31	7.90×10^{-5}	COMP, LDHA, LDHB, MMP2, SERPINE1, THBS4
PMID:26076122	Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: Mechanisms and mysteries.	6	31	7.90×10^{-5}	EXT1, EXT2, GPC1, GPC6, SULF1, SULF2
PMID:20236620	Unraveling the mechanism of elastic fiber assembly: The roles of short fibrils.	6	33	8.27×10^{-5}	FBLN1, FBN1, FBN2, LOXL2, LTBP1, TIMP3
PMID:20140087	Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells.	8	103	8.31×10^{-5}	ALDOA, ANXA1, CLIC1, FLNB, FLNC, PDI A3, PGK1, PLEC
PMID:27513329	Differential Expression Pattern of THBS1 and THBS2 in Lung Cancer: Clinical Outcome and a Systematic-Analysis of Microarray Databases.	7	65	8.31×10^{-5}	COMP, FBLN1, FBN1, MMP2, NID2, SULF1, THBS4
Table 5. Biological processes and PMIDs for the EV surface unique proteins in the HIV group for the HIV vs. HIV+Aβ comparison.

Gene Ontology (GO) Terms for Biological Processes	Obs	Bgr	FDR	Matching Proteins in the Network
Cytoskeleton organization	5	953	8.35 × 10^{-5}	ARPC4,CAP1,DNAH8,NIN,TTN
Supramolecular fiber organization	4	383	0.00011	ARPC4,CAP1,NIN,TTN
Actin filament organization	3	200	0.0011	ARPC4,CAP1,TTN
Cellular protein-containing complex assembly	4	832	0.0012	ARPC4,DNAH8,NIN,TTN
Actin polymerization or depolymerization	2	43	0.0031	ARPC4,CAP1
Protein polymerization	2	83	0.0058	ARPC4,NIN
Localization	5	5233	0.0296	ARPC4,CAP1,DNAH8,NIN,TTN

PMID Publications	Obs	Bgr	FDR	Matching Proteins in the Network
PMID:210500039 (2010) Titin A-band-specific monoclonal antibody Tit1 5H1.1. Cellular Titin as a centriolar protein in non-muscle cells.	2	2	0.0016	NIN,TTN
PMID:22985877 (2012) Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells.	2	6	0.0037	NIN,TTN
PMID:26655833 (2016) The centrosome is an actin-organizing centre.	2	12	0.0081	ARPC4,NIN
PMID:27094867 (2016) Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function.	2	27	0.027	NIN,TTN
PMID:29255378 (2017) The human, F-actin-based cytoskeleton as a mutagen sensor.	2	35	0.0353	DNAH8,TTN
Table 6. Biological processes, KEGG pathways, and PMIDs for the EV surface unique proteins in the HIV+\(\alpha\)-\(\beta\) group for the HIV vs. HIV+\(\alpha\)-\(\beta\) comparison.

Gene ontology (GO) Terms for Biological Processes
Term Description

Immune effector process
Leukocyte-mediated immunity
Vesicle-mediated transport
Extracellular matrix organization
Regulated exocytosis
Response to stimulus
Negative regulation of cellular response to growth factor stimulus
Immune system process
Carbohydrate metabolic process
Immune response
KEGG Pathways
--
Glycolysis / Gluconeogenesis
Proteoglycans in cancer
Focal adhesion
Pentose phosphate pathway
Starch and sucrose metabolism
Metabolic pathways
HIF-1 signaling pathway
Glucagon signaling pathway
Malaria
Carbon metabolism
Fluid shear stress and atherosclerosis
Biosynthesis of amino acids
Platinum drug resistance
Necroptosis
Complement and coagulation cascades
Salmonella infection
MAPK signaling pathway
AGE-RAGE signaling pathway in diabetic complications
Human papillomavirus infection
Propanoate metabolism
Leukocyte transendothelial migration
Primary immunodeficiency
Table 6. Cont.

Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
PMID:23823696	(2013) Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy.	8	42	1.26×10^{-6}	ACLY, ALDOA, ANXA1, EEF1G, LDHB, PGM1, PPIA, PRDX2
PMID:29250190	(2017) Role of exosomes in hepatocellular carcinoma cell mobility alteration.	7	34	8.40×10^{-6}	ANXA1, CLIC1, FBLN1, LRP1, PPIA, PYGB, PYGL
PMID:20140087	(2010) Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells.	9	103	9.47×10^{-6}	ALDOA, ANXA1, CLIC1, FBLN1, FBN1, KPNB1, PDLA3, PGK1, PLEC
PMID:29360750	(2018) Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells.	7	37	9.47×10^{-6}	ACLY, ANXA1, FBN1, FBLN1, FSN1, MMP2, PRDX2
PMID:26779482	(2015) The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source.	7	41	1.08×10^{-5}	FBLN1, FBN1, FBN2, LOXL2, LTBP1, PLOD3, SULF2
PMID:24142637	(2013) Gastric autoantigenic proteins in Helicobacter pylori infection.	7	50	2.96×10^{-5}	ACTR3, GSTP1, LDHB, PDLA3, PRDX2, PRDX6, WDR1
PMID:26184160	(2015) A Review: Proteomics in Nasopharyngeal Carcinoma.	8	83	2.96×10^{-5}	ANXA1, CLIC1, KRT1, MMP2, PPIA, PRDX2, PRDX6, SERPINE1
PMID:26918450	(2016) A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells.	8	89	3.71×10^{-5}	ACLY, CLIC1, GPC1, GPC6, LDHA, PGM1, PHGDH, WNT5A
PMID:24223867	(2013) Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro.	6	31	5.98×10^{-5}	COMP, LDHA, LDHB, MMP2, SERPINE1, THBS4
PMID:20236620	(2010) Unraveling the mechanism of elastic fiber assembly: The roles of short fibrilins.	6	33	7.46×10^{-5}	FBLN1, FBN1, FBN2, HMCN1, LOXL2, LTBP1
Table 7. PMIDs for the EV total unique proteins in the control group for the control vs. HIV comparison.

Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
PMID:19812696	(2009) Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1.	3	154	0.0084	ACTC1,MAPT,MYH1
PMID:20587776	(2010) Mathematical modeling of endocytic actin patch kinetics in fission yeast: disassembly requires release of actin filament fragments.	2	12	0.0086	ACTC1,MYH1
PMID:25275480	(2014) Urethral dysfunction in female mice with estrogen receptor Beta deficiency.	2	10	0.0086	ACTC1,MYH1
PMID:22406440	(2012) Deferiprone reduces amyloid-Beta and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet.	2	15	0.0088	ACTC1,MAPT
PMID:10931867	(2000) Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin.	2	25	0.0099	ACTC1,MYH1
PMID:11994316	(2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo.	2	26	0.0099	ACTC1,MYH1
PMID:14557251	(2003) Skeletal myosin heavy chain function in cultured lung myofibroblasts.	2	26	0.0099	ACTC1,MYH1
PMID:17908293	(2007) Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity.	2	52	0.0099	ACTC1,MYH1
PMID:19291799	(2009) Fast-twitch sarcomeric and glycolytic enzyme protein loss in inclusion body myositis.	2	36	0.0099	MAPT,MYH1
PMID:19325835	(2008) Myosin assembly, maintenance and degradation in muscle: Role of the chaperone UNC-45 in myosin thick filament dynamics.	2	44	0.0099	ACTC1,MYH1
Table 8. Biological processes, KEGG pathways, and PMIDs for the EV total unique proteins in the HIV group for the control vs. HIV comparison.

Gene Ontology (GO) Terms for Biological Processes	10 Most Significant Results per FDR (for All GO Terms, See Supplementary Table S4A)	Matching Proteins in the Network
Vesicle-mediated transport	57, 1699, 1.02 × 10^{-18}	ACLY, ACTN1, ACTN4, ALDOA, ANXA1, ANXA11, ANXA5, AP2A1, AP2M1, APLP2, APOB, APOE, ARF3, ARF4, ARPC2, CAP1, CD44, CD59, CD63, CD81, EEF2, EHD1, EHD2, F13A1, FERMT3, FLNA, GAS6, ITIH3, ITIH4, KRT1, LAMP1, LAMP2, LOX1, LRPI, MFGES8, MRCC2, MVP, MYH9, PKP1, PRDX6, PTX3, RAB5C, RAB7A, RAC1, RAP1B, SERPINE1, SPTBN1, SRGN, SRPX, TGM2, THBS1, TNN1, TTN, UBB, VPS35, VWF, WDR1
Extracellular structure organization	28, 339, 7.06 × 10^{-17}	AGRN, APOA4, APOB, APOE, BMP1, CD44, COMP, DCPN, FBLN1, FBN1, GAS6, HTRA1, KLK7, LAMA1, LAMA2, LAMA4, LAMA5, LOXL2, MMP2, NID1, NID2, PLOD3, PXDN, SERPINE1, SULF1, SULF2, THBS1, VWF
Platelet degranulation	20, 129, 2.26 × 10^{-16}	ACTN1, ACTN4, ALDOA, ANXA5, APLP2, CD63, F13A1, FERMT3, FLNA, GAS6, ITIH3, ITIH4, LAMP2, SERPINE1, SRGN, THBS1, TNN1, TTN, VWF, WDR1
Regulated exocytosis	35, 691, 1.19 × 10^{-15}	ACLY, ACTN1, ACTN4, ALDOA, ANXA5, APLP2, CD1, CD44, CD59, CD63, EEF2, F13A1, FERMT3, FLNA, GAS6, ITIH3, ITIH4, KRT1, LAMP1, LAMP2, MVP, PKP1, PRDX6, PTX3, RAB5C, RAB7A, RAC1, RAP1B, SERPINE1, SRGN, THBS1, TNN1, TTN, VWF, WDR1
Extracellular matrix organization	25, 296, 2.14 × 10^{-15}	AGRN, BMP1, CD44, COMP, DCPN, FBLN1, FBN1, GAS6, HTRA1, KLK7, LAMA1, LAMA2, LAMA4, LAMA5, LOXL2, MMP2, NID1, NID2, PLOD3, PXDN, SERPINE1, SULF1, SULF2, THBS1, VWF
Cellular component organization	89, 5163, 2.93 × 10^{-14}	ACTN1, ACTN4, AGRN, ALDOA, ANXA1, ANXA6, AP2A1, AP2M1, APOA4, APOB, APOE, ARF3, ARF4, ARPC2, AT1, ATXN2, BMP1, CAP1, CD151, CD44, CD59, COMP, DCPN, EHD1, EHD2, EXT1, FA5, FAT1, FBN1, FLNA, FERMT3, FLNB, FLNC, FSCN1, GAS6, GGC1, HIST1H4F, HTRA1, KLK7, KRT1, LAMA1, LAMA2, LAMA4, LAMA5, LAMP1, LAMP2, LOX1, LTBP2, MFGES8, MMP2, MSR81, MYH9, MYOF, NID1, NID2, PKP1, PLEC, PLOD3, PLS1, PLS3, TGFBR1, PXDN, RAB7A, RAC1, RAN, RHOC, SD4, SEMG1, SERPINE1, SGC, SL25A, SPAG1, SPTBN1, SRGN, SRPX, SULF1, SULF2, TGM1, TGM2, TGM3, THBS1, TNN1, TTN, UBB, VPS35, VWF, WDR1, WNT5A
Table 8. Cont.

Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Secretion by cell	37	959	2.43×10^{-13}	ACLY, ACTN1, ACTN4, ALDOA, ANXA1, ANXA5, AP2A1, AP2M1, APOA4, APOE, ARF3, ARPC2, ATXN2, AZGP1, CAP1, CD151, CD44, CD59, CD63, CD81, CLIC1, EEF2, EHDI, EHD2, FAT1, FBN1, FERMT3, FLNA, FLNB, FSCN1, GAS6, GGT, GNA2, GNB1, GNC, GPCR5A, HIST1H4E, HSPA5, ITIH3, LAMA1, LAMA2, LAMA5, LAMP1, LAMP2, LOXL2, LRP1, LTB1, LTB2, MMP2, MRC2, MSRB1, MVP, MYH9, MYOE2NMT, PDLA3, PK1, PLOD1, PLOD3, POLR3G, PRDX1, PRDX6, PTX3, PXDN, RAB5C, RAB7A, RAC1, RAN, RAP1B, RHOC, SDC4, SEMG1, SERPINE1, SLC25A6, SPTBN1, SRCN, SRPX, STK33, SULF1, SULF2, TGM2, THBS1, THRB, THY1, TTN, TUBA1, TUBB, VPS55, VWF, WNT5A
Response to stimulus	107	7824	6.96×10^{-12}	ACLY, ACTN4, AGRN, AHCY, ACDA, ANXA1, ANXA11, ANXA5, ANX6, AP2A1, AP2M1, APLP2, APOA4, APOE, ARF3, ARPC2, ATXN2, AZGP1, CAP1, CD151, CD44, CD59, CD63, CD81, CLIC1, EEF2, EHDI, EHD2, FAT1, FBN1, FERMT3, FLNA, FLNB, FSCN1, GAS6, GGT, GNA2, GNB1, GNC, GPCR5A, HIST1H4E, HSPA5, ITIH3, ITIH4, KRT1, LAMA1, LAMA2, LAMA5, LAMP1, LAMP2, LOXL2, LRP1, LTB1, LTB2, MMP2, MRC2, MSRB1, MVP, MYH9, MYOE2NMT, PDLA3, PK1, PLOD1, PLOD3, POLR3G, PRDX1, PRDX6, PTX3, PXDN, RAB5C, RAB7A, RAC1, RAN, RAP1B, RHOC, SDC4, SEMG1, SERPINE1, SLC25A6, SPTBN1, SRCN, SRPX, STK33, SULF1, SULF2, TGM2, THBS1, THRB, THY1, TTN, TUBA1, TUBB, VPS55, VWF, WNT5A
Localization	83	5233	9.26×10^{-11}	ACLY, ACTN1, ACTN4, AGRN, ALDOA, ANXA1, ANXA11, ANXA5, ANX6, AP2A1, AP2M1, APLP2, APOA4, APOE, ARF3, ARPC2, ATXN2, AZGP1, CAP1, CD151, CD44, CD59, CD63, CD81, CLIC1, EEF2, EHDI, EHD2, FAT1, FBN1, FERMT3, FLNA, FLNB, FSCN1, GAS6, GGT, GNA2, GNB1, GNC, GPCR5A, HIST1H4E, HSPA5, ITIH3, ITIH4, KRT1, LAMA1, LAMA2, LAMA5, LAMP1, LAMP2, LOXL2, LRP1, LTB1, LTB2, MMP2, MRC2, MSRB1, MVP, MYH9, PK1, PLOD3, PLS1, PRDX6, PTX3, RAB5C, RAB7A, RAC1, RAN, RAP1B, RHOC, SDC4, SERPINE1, SLC25A6, SPTBN1, SRCN, SRPX, STK33, SULF1, SULF2, TGM2, THBS1, THY1, TTN, TTYH3, TUBA1, TUBB, VPS55, VWF, WDR1, WNT5A
Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
--	-----	------	--------------	----------------------------------
Anatomical structure development	80	5085	5.90 × 10⁻¹⁰	ACTN1, AEBP1, AFP, AGRN, AICDA, ANXA1, AP2A1, APOA4, APOB, APOE, ARF4, ATL1, BMP1, C6orf58, CAP1, CD151, CD44, COMP, DCN, EEF2, EHD1, EXT1, EXT2, FAS, FAT1, FBLN1, FBN1, FERM1, FLNA, FLNB, FLNC, FSCN1, GAS6, GNB2L1, HSPA5, HTRA1, KLK7, KRT1, LAMA2, LAMA5, LDHA, LOXL2, LRP1, LTBP1, MFEGE8, MMP2, MYH9, MYL6, MYOF, NID1, NNMT, PGK1, PKP1, PLD1, PLD3, PL3S, PPB, PRDX1, RAC1, RAP1B, RHOC, SDC4, SERPINE1, SGC, SPTBN1, SRGN, SRF, SF2, SULF1, SULF2, TGM1, TGM2, TGM3, THBS1, THBS3, THRB, THY1, TN, UBB, WDR1, WNT5A
KEGG Pathways				
Focal adhesion	17	197	1.23 × 10⁻¹⁰	ACTN1, ACTN4, COMP, FLNA, FLNB, FLNC, LAMA1, LAMA2, LAMA4, LAMA5, RAC1, RAP1B, THBS1, THBS2, THBS3, TNL1, VWF
ECM-receptor interaction	12	81	5.47 × 10⁻¹⁰	AGRN, CD44, COMP, LAMA1, LAMA2, LAMA4, LAMA5, SDC4, THBS1, THBS2, THBS3, VWF
Proteoglycans in cancer	12	195	3.88 × 10⁻⁶	CD44, CD63, DCN, FAS, FLNA, FLNB, FLNC, MMP2, RAC1, SDC4, THBS1, WNT5A
Phagosome	10	145	1.40 × 10⁻⁵	COMP, LAMP1, LAMP2, MRC2, RAB5C, RAB7A, RAC1, THBS1, THBS2, THBS3
Amoebiasis	8	94	4.01 × 10⁻⁵	ACTN1, ACTN4, LAMA1, LAMA2, LAMA4, LAMA5, RAB5C, RAB7A
Malaria	6	47	8.88 × 10⁻⁵	CD81, COMP, LRP1, THBS1, THBS2, THBS3
Salmonella infection	7	84	0.00016	ARPC2, FLNA, FLNB, FLNC, MYH9, RAB7A, RAC1
Table 8. Cont.

KEGG Pathways	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Endocytosis	10	242	0.00054	AP2A1, AP2M1, ARF3, ARPC2, EHD1, EHD2, RAB5C, RAB7A, UBB, VPS35	
Leukocyte transendothelial migration	7	112	0.0007	ACTN1, ACTN4, GNAI2, MMP2, RAC1, RAP1B, THY1	
Human papillomavirus infection	11	317	0.00079	COMP, FAS, LAMA1, LAMA2, LAMA4, LAMA5, THBS1, THBS2, THBS3, VWF, WNT5A	
PI3K-Akt signaling pathway	10	348	0.0069	COMP, LAMA1, LAMA2, LAMA4, LAMA5, RAC1, THBS1, THBS2, THBS3, VWF	
Complement and coagulation cascades	5	78	0.0069	C1S, CD59, F13A1, SERPINE1, VWF	
Cholesterol metabolism	4	48	0.0088	APOA4, APOB, APOE, LRP1	
Toxoplasmosis	5	109	0.0226	GNAI2, LAMA1, LAMA2, LAMA4, LAMA5	
Glycolysis / Gluconeogenesis	4	68	0.0259	ALDOA, LDHA, LDHB, PGK1	
p53 signaling pathway	5	123	0.0308	CD82, FAS, SERPINE1, THBS1	
Platelet activation	5	123	0.0308	FERMT3, GNAI2, RAP1B, TLN1, VWF	

10 Most Significant PMID Publications per FDR

Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
PMID: 29250190	(2017) Role of exosomes in hepatocellular carcinoma cell mobility alteration.	17	34	1.84×10^{-18}	ACTN1, ANXA1, ANXA11, ANXA5, ANXA6, APOB, APOE, CAP1, CLIC1, FBLN1, FLNA, ITIH4, LRP1, MFGE8, NID1, RAN, TLN1
PMID: 24009881	(2012) Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells.	21	161	9.74×10^{-14}	AHCY, ANXA1, ANXA11, ANXA5, ANXA6, ARF3, ARPC2, CD44, CD63, CD81, FSCN1, KRT1, LAMP1, MFGE8, MYH9, MYL6, PGK1, PTGFRN, RAB5C, RAB7A, VPS35
Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
-------------	--	-----	------	-----------	--
PMID:19948009	(2009) Proteomic analysis of blastema formation in regenerating axolotl limbs.	22	221	1.76×10^{-12}	ANXA1,ANXA11,ANXA5,ANXA6,DCN,EEF2,FBN1,FLNB,GNB2L1,MVP,MYH9,MYL6,MYOF,PDIA3,PLS3,PRDX1,PXDN,RAN,SND1,TTN,UBA1,WNT5A
PMID:24392111	(2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?	16	79	1.87×10^{-12}	ALDOA,ANXA5,CD44,CD63,CD81,CD82,EEF2,FLNC,LAMP1,LAMP2,LDHA,MYOF,PGK1,TLN1,TTN,VPS35
PMID:27605433	(2016) Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.	17	107	5.36×10^{-12}	ACLY,ANXA1,ANXA6,CD44,CD63,CD81,CD82,FAT1,GNB2L1,LAMA1,LAMP1,MFGE8,MMP2,PLS3,SULF1,THBS1,VPS35
PMID:22897585	(2012) Rat mammary extracellular matrix composition and response to ibuprofen treatment during postpartum involution by differential GeLC-MSMS analysis.	13	42	1.24×10^{-11}	AGRN,ANXA1,ANXA5,ANXA6,CD44,DCN,FBN1,LAMA1,LAMA2,LAMA4,LAMA5,VWF
PMID:27770278	(2017) Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease.	14	63	3.75×10^{-11}	ACTN4,ANXA1,CCT6A,CD44,EHD1,HSPA5,LAMA4,MMP2,MVP,MYH9,RAB5C,RAB7A,UBA1,VPS35
PMID:22159717	(2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices.	14	64	3.97×10^{-11}	AGRN,ANXA1,ANXA5,ANXA6,DCN,FBN1,LOXL2,LTBP2,NID1,NID2,SRPX,THBS1,VWF
PMID:25201077	(2015) Proteomics of apheresis platelet supernatants during routine storage: Gender-related differences.	16	106	5.20×10^{-11}	ACTN1,APOB,APOE,ARPC2,C1S,FERMT3,FLNA,ITIH4,LDHA,MMP2,MYL6,PRDX6,SRGN,THBS1,TLN1,VWF
PMID:28071719	(2017) Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression.	13	54	1.20×10^{-10}	ANXA1,ANXA5,ANXA6,DCN,FBN1,LAMA1,LAMA2,LAMA4,LAMA5,NID1,NID2,THBS2
Table 9. Biological processes and PMIDs for the EV total unique proteins in the HIV group for the HIV vs. HIV+Aβ comparison.

Gene ontology (GO) Terms for Biological Processes	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Cell envelope organization		2	3	0.0017	TGM1,TGM3

10 Most Significant PMID Publications per FDR	Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
PMID:22329734	(2012) Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair.	3	14	0.0016	KLK7,TGM1,TGM3	
PMID:11093806	(2000) Transglutaminase-3, an esophageal cancer-related gene.	2	2	0.0136	TGM1,TGM3	
PMID:11562168	(2001) Crystallization and preliminary X-ray analysis of human transglutaminase 3 from zymogen to active form.	2	2	0.0136	TGM1,TGM3	
PMID:11980702	(2002) Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation.	2	2	0.0136	TGM1,TGM3	
PMID:12850301	(2003) Analysis of epidermal-type transglutaminase (transglutaminase 3) in human stratified epithelia and cultured keratinocytes using monoclonal antibodies.	2	3	0.0136	TGM1,TGM3	
PMID:14508061	(2003) A model for the reaction mechanism of the transglutaminase 3 enzyme.	2	2	0.0136	TGM1,TGM3	
PMID:14645372	(2004) Structural basis for the coordinated regulation of transglutaminase 3 by guanine nucleotides and calciummagnesium.	2	2	0.0136	TGM1,TGM3	
PMID:14987256	(2004) Identification of calcium-inducible genes in primary keratinocytes using suppression-subtractive hybridization.	2	8	0.0136	KLK7,TGM1	
PMID:15084592	(2004) Crystal structure of transglutaminase 3 in complex with GMP: structural basis for nucleotide specificity.	2	2	0.0136	TGM1,TGM3	
PMID:15172109	(2004) Transglutaminase activity and transglutaminase mRNA transcripts in gerbil brain ischemia.	2	3	0.0136	TGM1,TGM3	
Table 10. Biological processes, KEGG pathways, and PMIDs for the EV total unique proteins in the HIV+Aβ group for the HIV vs. HIV+Aβ comparison.

Gene Ontology (GO) Terms for Biological Processes	Obs	Bgr	FDR	Matching Proteins in the Network
Vesicle-mediated transport	41	1699	2.01×10^{-13}	ACTR3,AP1G1,AP2B1,ARF6,ARP4,CALR,CAND1,CAPZB,CAV1,CD9,CDC42,COPB2,ECM1,EEA1,EHD4,IGF2R,KPNB1,LMNA,MME,NME1,PDI46,PSM1,PSM2,PSM3,PSM4,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RAB2A,RALA,SLC44A2,SOD1,STOM,SYK,TGFB1,TIMP3,VAT1,XRCC6
Localization	66	5233	4.37×10^{-11}	ACTR3,AP1G1,AP2B1,APOM,ARF6,ARP4,CALR,CAND1,CAPZB,CAV1,CD9,CDC42,COPB2,ECM1,EEA1,EHD4,IGF2R,KPNB1,LMNA,MME,NME1,PAFAH1B1,PAFAH1B1,PGM1,PSM1,PSM2,PSM3,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RAB2A,RALA,RELN,RNF128,RPL14,RTN4,SLC3A2,SLC44A1,SLC44A2,SLIT2,SOD1,STOP1,SYK,TGFB1,TIMP3,VAT1,VDAC1,VDAC2,WLS,XPO1,XRCC6
Secretion	30	1070	8.12×10^{-11}	CAND1,CAV1,CD9,ECM1,IGF2R,KPNB1,MME,NME1,PAFAH1B1,PGM1,PSM1,PSM2,PSM3,PSM4,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RALA,SLC44A2,SOD1,STOM,SYK,TGFB1,TIMP3,VAT1,VDAC1,VDAC2,WLS,XPO1,XRCC6
Transport	57	4130	1.80×10^{-10}	ACTR3,AP1G1,AP2B1,APOM,ARF6,ARP4,CALR,CAND1,CAPZB,CAV1,CD9,CDC42,COPB2,EEA1,EHD4,IGF2R,IP5,IP7,KPNB1,LMNA,MME,NME1,PAFAH1B1,PAFAH1B1,PGM1,PSM1,PSM2,PSM3,PSM4,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RABA,RALA,RTN4,SLC3A2,SLC44A1,SLC44A2,SOD1,STOM,SYK,TGFB1,TIMP3,VAT1,VDAC1,VDAC2,WLS,XPO1,XRCC6
Secretion by cell	28	959	1.80×10^{-10}	CAND1,CD9,ECM1,IGF2R,KPNB1,MME,PAFAH1B1,PGM1,PSM1,PSM2,PSM3,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RALA,SLC44A2,SOD1,STOM,SYK,TGFB1,TIMP3,VAT1,VDAC1,VDAC2,WLS,XPO1,XRCC6
Regulated exocytosis	24	691	2.67×10^{-10}	CAND1,CD9,ECM1,IGF2R,KPNB1,MME,PAFAH1B1,PGM1,PSM1,PSM2,PSM3,PGY,PGY2,QSOX1,RAB10,RAB14,RAB1A,RALA,SLC44A2,SOD1,STOM,SYK,TGFB1,TIMP3,VAT1,VDAC1,VDAC2,WLS,XPO1,XRCC6
Table 10. Cont.

Gene Ontology (GO) Terms for Biological Processes

10 Most Significant Results per FDR (for All GO Terms, See Supplementary Table S5A)

Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
Exocytosis	25	774	3.25×10^{-10}	CAND1, CD9, ECM1, IGF2R, KPNB1, MME, PGM1, PPIA, PSMD1, PSMD2, PSMD3, PYGB, PYGL, QSOX1, RAB10, RAB14, RALA, SLC44A2, SOD1, STOM, SYK, TGFBI, TIMP3, VAT1, XRCC6
Neutrophil activation involved in immune response	19	489	1.06×10^{-8}	CAND1, IGF2R, KPNB1, MME, PGM1, PPIA, PSMD1, PSMD2, PSMD3, PYGB, PYGL, QSOX1, RAB10, RAB14, SLC44A2, STOM, SYK, VAT1, XRCC6
Myeloid leukocyte activation	20	574	1.48×10^{-8}	CAND1, IGF2R, KPNB1, MME, PGM1, PPIA, PSMD1, PSMD2, PSMD3, PYGB, PYGL, QSOX1, RAB10, RAB14, SLC44A2, STOM, SYK, TGFBI, VAT1, XRCC6
Neutrophil degranulation	18	485	4.95×10^{-8}	CAND1, IGF2R, KPNB1, MME, PGM1, PPIA, PSMD1, PSMD2, PSMD3, PYGB, PYGL, QSOX1, RAB10, RAB14, SLC44A2, STOM, VAT1, XRCC6

KEGG Pathways

Term Description	Obs	Bgr	FDR	Matching Proteins in the Network	
Endocytosis	10	242	0.00016	AP2B1, ARF6, ARPC4, CAP2B, CAV1, CDC42, EEA1, EHD4, IGF2R, RAB10	
Focal adhesion	8	197	0.0012	CAV1, CDC42, ILK, LAMB2, PARVB, PPP1CB, RELN, THBS4	
Bacterial invasion of epithelial cells	5	72	0.003	ARPC4, CAV1, CDC42, ILK, SEPT2	
Pentose phosphate pathway	3	30	0.0278	G6PD, PGM1, RGN	
Starch and sucrose metabolism	3	33	0.0278	PGM1, PYGB, PYGL	
Proteoglycans in cancer	6	195	0.0278	CAV1, CDC42, LUM, PPP1CB, TGFBI, TIMP3	
Proteasome	3	43	0.0347	PSMD1, PSMD2, PSMD3	
Necroptosis	5	155	0.0347	PPIA, PYGB, PYGL, VDAC1, VDAC2	
Fc gamma R-mediated phagocytosis	4	89	0.0347	ARF6, ARPC4, CDC42, SYK	
Amino sugar and nucleotide sugar metabolism	3	48	0.0396	CHI1A, PGM1, UGDH	
HTLV-I infection	6	250	0.0396	CALR, NRP1, TGFBI, VDAC1, VDAC2, XPO1	
Term ID	Term Description	Obs	Bgr	FDR	Matching Proteins in the Network
--------------	--	-----	--------	----------------	--
PMID:11149929	(2001) The phagosome proteome: insight into phagosome functions.	9	47	3.12×10^{-6}	ARF6,CALR,DFFA,P4HB,RAB10,RAB14,RAB2A,STOM,VDAC1
PMID:17892558	(2007) Quantifying raft proteins in neonatal mouse brain by 'tube-gel' protein digestion label-free shotgun proteomics.	10	83	6.99×10^{-6}	ACTC1,BASP1,CAV1,CNTN1,RAB10,RAB14,RAB1A,RAB2A,SLC3A2,VDAC1
PMID:22578496	(2012) Harnessing the power of the endosome to regulate neural development.	7	35	0.00014	ARF6,EEA1,EHD4,NRP1,RAB14,RTN4,WLS
PMID:24009881	(2012) Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells.	11	161	0.00014	ACTR3,CAPZB,CD9,EHD4,ILK,RAB10,RALA,SLC3A2,SLC44A1,SYK,UGDH
PMID:27770278	(2017) Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease.	8	63	0.00016	ACTR3,CALR,ECM1,IGF2R,IPO5,PSMD2,RAB10TGFB1
PMID:26205348	(2015) Fluoxetine increases plasticity and modulates the proteome profile in the adult mouse visual cortex.	6	22	0.00023	APIG1,CDC42,NME1,SOD1,VDAC1,VDAC2
PMID:20140087	(2010) Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells.	9	103	0.00024	DHX9,HNRNPK,KPNB1,LMNA,P4HB,PDIA6,RTN4,VDAC1,VDAC2
PMID:27549615	(2016) Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.	6	23	0.00024	LMNA,PAMR1,PP1A,PSMD2,SLIT2,THBS4
PMID:23170974	(2012) Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate.	6	27	0.00044	HNRNPK,RAB10,RAB14,RAB1A,RAB2A,RPL14
PMID:24505448	(2014) Characterisation of four LIM protein-encoding genes involved in infection-related development and pathogenicity by the rice blast fungus Magnaporthe oryzae.	6	28	0.00047	CDC42,ILK,LMNA,PHGDH,RAB2A,XRCC6
Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/8/2741/s1.

Author Contributions: Conceptualization, I.E.A. and M.T.; Formal analysis, I.E.A. and B.B.S.; Funding acquisition, M.T.; Investigation, I.E.A. and B.B.S.; Supervision, I.E.A. and M.T.; Visualization, I.E.A.; Writing—original draft, I.E.A.; Writing—review & editing, M.T. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by the Florida Department of Health grant 8AZ24 and the National Institutes of Health (NIH), grants MH072567, MH098891, HL126559, DA039576, DA040537, DA044579, and DA047157. We acknowledge support from the Miami Center for AIDS Research (CFAR) at the University of Miami Miller School of Medicine, which is funded by a grant (P30AI073961) from the National Institutes of Health (NIH). We would like to thank Joshua Zahner, undergraduate student at the University of Miami, for his help in sorting the unique protein lists.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

- Aβ: amyloid beta
- AD: Alzheimer’s disease
- BBB: Blood–brain barrier
- ECGS: Endothelial cell growth supplement
- EV: Extracellular vesicle
- ELISA: Enzyme-linked immunosorbent assay
- HAND: HIV-associated neurocognitive disorders
- HBMEC: Human brain microvascular endothelial cells
- HEK cells: Human embryonic kidney cells
- HIV: Human immunodeficiency virus type 1
- PBS: Phosphate buffered saline
- PECAM: Platelet endothelial cell adhesion molecule
- RAGE: Receptor for advanced glycation end products

References

1. Esiri, M.M.; Biddolph, S.C.; Morris, C.S. Prevalence of Alzheimer plaques in AIDS. J. Neurol. Neurosurg. Psychiatry 1998, 65, 29–33. [CrossRef] [PubMed]
2. Rempel, H.C.; Pulliam, L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. Aids 2005, 19, 127–135. [CrossRef] [PubMed]
3. Xu, J.; Ikezu, T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: A foreseeable medical challenge in post-HAART era. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2009, 4, 200–212. [CrossRef] [PubMed]
4. Brew, B.J.; Crowe, S.M.; Landay, A.; Cysique, L.A.; Guillemín, G. Neurodegeneration and ageing in the HAART era. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2009, 4, 163–174. [CrossRef]
5. Achim, C.L.; Adame, A.; Dumaop, W.; Everall, I.P.; Masliah, E.; Neurobehavioral Research, C. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2009, 4, 190–199. [CrossRef] [PubMed]
6. Pulliam, L. HIV regulation of amyloid beta production. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2009, 4, 213–217. [CrossRef]
7. Green, D.A.; Masliah, E.; Vinters, H.V.; Beizai, P.; Moore, D.J.; Achim, C.L. Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. Aids 2005, 19, 407–411. [CrossRef]
8. Soontornniyomkij, V.; Moore, D.J.; Gouaux, B.; Soontornniyomkij, B.; Tatro, E.T.; Umlauf, A.; Masliah, E.; Levine, A.J.; Singer, E.J.; Vinters, H.V.; et al. Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. Aids 2012, 26, 2327–2335. [CrossRef]
9. Steinbrink, F.; Evers, S.; Buerke, B.; Young, P.; Arendt, G.; Koutsilieri, E.; Reichelt, D.; Lohmann, H.; Husstedt, I.W.; German Competence Network, H.A. Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur. J. Neurol. 2013, 20, 420–428. [CrossRef]
10. Deane, R.; Zlokovic, B.V. Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 2007, 4, 191–197. [CrossRef]
11. Vella, L.J.; Sharples, R.A.; Nisbet, R.M.; Cappai, R.; Hill, A.F. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. *Eur. Biophys. J. EBJ* **2008**, *37*, 323–332. [CrossRef] [PubMed]

12. Kalani, A.; Tyagi, A.; Tyagi, N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. *Mol. Neurobiol.* **2014**, *49*, 590–600. [CrossRef] [PubMed]

13. Gupta, A.; Pulliam, L. Exosomes as mediators of neuroinflammation. *J. Neuroinflammation* **2014**, *11*, 68. [CrossRef] [PubMed]

14. An, K.; Klyubin, I.; Kim, Y.; Jung, J.H.; Mably, A.J.; O’Dowd, S.T.; Lynch, T.; Kamert, D.; Lemere, C.A.; Finan, G.M.; et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Abeta assemblies in vivo. *Mol. Brain* **2013**, *6*, 47. [CrossRef] [PubMed]

15. Yuyama, K.; Sun, H.; Sakai, S.; Mitsutake, S.; Okada, M.; Tahara, H.; Furukawa, J.; Fujitani, N.; Shinohara, Y.; Igarashi, Y. Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. *J. Biol. Chem.* **2014**, *289*, 24488–24498. [CrossRef] [PubMed]

16. Yuyama, K.; Sun, H.; Usuki, S.; Sakai, S.; Hanamatsu, H.; Mioka, T.; Kimura, N.; Okada, M.; Tahara, H.; Furukawa, J.; et al. A potential function for neuronal exosomes: Sequestering intracerebral amyloid-beta peptide. *FEBS Lett.* **2015**, *589*, 84–88. [CrossRef]

17. Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; He, Q.; Kong, J.N.; Bieberich, E. The 5XFAD Mouse Model of Alzheimer’s Disease Exhibits an Age-Dependent Increase in Anti-Ceramide IgG and Exogenous Administration of Ceramide Further Increases Anti-Ceramide Titers and Amyloid Plaque Burden. *J. Alzheimer's Dis. JAD* **2015**, *46*, 55–61. [CrossRef]

18. Andras, I.E.; Leda, A.; Contreras, M.G.; Bertrand, L.; Park, M.; Skowron ska, M.; Toborek, M. Extracellular vesicles of the blood-brain barrier: Role in the HIV-1 associated amyloid beta pathology. *Mol. Cell. Neurosci.* **2017**, *79*, 12–22. [CrossRef]

19. Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. *J. Mol. Biol.* **2016**, *428*, 688–692. [CrossRef]

20. Mathivanan, S.; Fahner, C.J.; Reid, G.E.; Simpson, R.J. ExoCarta 2012: Database of exosomal proteins, RNA and lipids. *Nucleic Acids Res.* **2012**, *40*, D1241–D1244. [CrossRef] [PubMed]

21. Wang, Y.; Ledet, R.J.; Imberg-Kazdan, K.; Logan, S.K.; Garabedian, M.J. Dynemin axonemal heavy chain 8 promotes androgen receptor activity and associates with prostate cancer progression. *Oncotarget* **2016**, *7*, 49268–49280. [CrossRef] [PubMed]

22. Chauveau, C.; Rowell, J.; Ferreiro, A. A rising titan: TTN review and mutation update. *Hum. Mutat.* **2014**, *35*, 1046–1059. [CrossRef] [PubMed]

23. Aurivillius, M.; Oymar, K.; Oxelius, V.A. Immunoglobulin heavy G2 chain (IGHG2) gene restriction in the development of severe respiratory syncytial virus infection. *Acta Paediatr.* **2005**, *94*, 414–418. [CrossRef] [PubMed]

24. Savas, J.N.; Wang, Y.Z.; DeNardo, L.A.; Martinez-Bartolome, S.; McClatchy, D.B.; Hark, T.J.; Shanks, N.F.; Cozzolino, K.A.; Lavallee-Adam, M.; Smukowski, S.N.; et al. Amyloid Accumulation Drives Proteome-wide Alterations in Mouse Models of Alzheimer’s Disease-like Pathology. *Cell Rep.* **2017**, *21*, 2614–2627. [CrossRef] [PubMed]

25. Kim, D.K.; Park, J.; Han, D.; Yang, J.; Kim, A.; Woo, J.; Kim, Y.; Mook-Jung, I. Molecular and functional signatures in a novel Alzheimer’s disease mouse model assessed by quantitative proteomics. *Mol. Neurodegener.* **2018**, *13*, 2. [CrossRef] [PubMed]

26. Andras, I.E.; Eum, S.Y.; Huang, W.; Zhong, Y.; Hennig, B.; Toborek, M. HIV-1-induced amyloid beta accumulation in brain endothelial cells is attenuated by simvastatin. *Mol. Cell. Neurosci.* **2010**, *43*, 232–243. [CrossRef] [PubMed]

27. Yu, L.; Petyuk, V.A.; Tasaki, S.; Boyle, P.A.; Gaiteri, C.; Schneider, J.A.; De Jager, P.L.; Bennett, D.A. Association of Cortical beta-Amyloid Protein in the Absence of Insoluble Deposits With Alzheimer Disease. *JAMA Neurol.* **2019**, *76*, 818–826. [CrossRef] [PubMed]

28. Macron, C.; Lane, L.; Nunez Galindo, A.; Dayon, L. Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification. *J. Proteome Res.* **2018**, *17*, 4113–4126. [CrossRef]
29. Pedrero-Prieto, C.M.; Flores-Cuadrado, A.; Saiz-Sanchez, D.; Ubeda-Banon, I.; Frontinan-Rubio, J.; Alcain, F.J.; Mateos-Hernandez, L.; de la Fuente, J.; Duran-Prado, M.; Villar, M.; et al. Human amyloid-beta enriched extracts: Evaluation of in vitro and in vivo internalization and molecular characterization. *Alzheimer’s Res. Ther.* 2019, 11, 56. [CrossRef]

30. Andras, I.E.; Toborek, M. Extracellular vesicles of the blood-brain barrier. *Tissue Barriers* 2016, 4, e1131804. [CrossRef]

31. Yuyama, K.; Sun, H.; Mitsutake, S.; Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. *J. Biol. Chem.* 2012, 287, 10977–10989. [CrossRef] [PubMed]

32. Lauren, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. *Nature* 2009, 457, 1128–1132. [CrossRef]

33. Lauren, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. *Nature* 2009, 457, 1128–1132. [CrossRef] [PubMed]

34. Rauch, S.M.; Huen, K.; Miller, M.C.; Chaudry, H.; Lau, M.; Sanes, J.R.; Johanson, C.E.; Stopa, E.G.; Burgess, R.W. Changes in brain beta-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. *J. Neuropathol. Exp. Neurol.* 2011, 70, 1124–1137. [CrossRef] [PubMed]

35. Liu, R.M.; van Groen, T.; Katre, A.; Cao, D.; Kadisha, I.; Ballinger, C.; Wang, L.; Carroll, S.L.; Li, L. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. *Neurobiol. Aging* 2011, 32, 1079–1089. [CrossRef]

36. Bi Oh, S.; Suh, N.; Kim, I.; Lee, J.Y. Impacts of aging and amyloid-beta deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer’s disease. *Brain Res.* 2015, 1597, 159–167. [CrossRef]

37. Watanabe, N.; Araki, W.; Chui, D.H.; Makifuchi, T.; Ihara, Y.; Tabira, T. Glypcan-1 as an Abeta binding HSPG in the human brain: Its localization in DIG domains and possible roles in the pathogenesis of Alzheimer’s disease. *FASEB J.* 2004, 18, 1013–1015.

38. Paris, D.; Townsend, K.P.; Obregon, D.F.; Humphrey, I.; Mullan, M. Pro-inflammatory effect of freshly solubilized beta-amyloid peptides in the brain. *Prostaglandins Other Lipid Mediat.* 2002, 70, 1–12. [CrossRef]

39. Yamada, K.; Hashimoto, T.; Yabuki, C.; Nagae, Y.; Tachikawa, M.; Strickland, D.K.; Liu, Q.; Bu, G.; Basak, J.M.; Holtzman, D.M.; et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. *J. Biol. Chem.* 2008, 283, 34554–34562. [CrossRef]

40. Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. *Anal. Chem.* 2003, 75, 4646–4658. [CrossRef]

41. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. *Nat. Genet.* 2000, 25, 25–29. [CrossRef] [PubMed]

42. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Res.* 2017, 45, D362–D368. [CrossRef] [PubMed]