Supplementary Information for

Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies

Yuan Xu, Thomas Wieloch, Joshua A.M. Kaste, Yair Shachar-Hill, Thomas D. Sharkey

*Corresponding author, Thomas D. Sharkey

Email: tsharkey@msu.edu

This PDF file includes:

Supplementary text
Figures S1 to S6
Tables S1 to S8
Legends for Datasets S1-S5
SI References

Other supplementary materials for this manuscript include the following:

Datasets S1-S5
T1. Derivation of Polyexponential Models from Analytical Solutions of Compartmental Models

In Figure S1, we show a simplified model of photosynthetic carbon assimilation with three compartments and rates V1-V5. Assuming first-order or pseudo-first-order kinetics:

\[
V_1 = k_1 \times [X] \quad (E1)
\]
\[
V_2 = k_2 \times [Y] \quad (E2)
\]
\[
V_3 = k_3 \times [Y] \quad (E3)
\]
\[
V_4 = k_4 \times [Z] \quad (E4)
\]
\[
V_5 = k_5 \times [Z] \quad (E5)
\]

We define the differential operator D, where [F] is a stand-in for any compartment’s concentration:

\[
\frac{d^n[F]}{dt} = D^n[F] \quad (E6)
\]

Given definitions (E1-E5) and notation from E6, the rates of change of compartments X, Y, and Z are:

\[
D[X] = -k_1 [X] + k_3 [Y] \quad (E7)
\]
\[
D[Y] = k_1 [X] - k_2 [Y] - k_3 [Y] + k_4 [Z] \quad (E8)
\]
\[
D[Z] = k_3 [Y] - k_4 [Z] - k_5 [Z] \quad (E9)
\]

Through a series of substitutions, it can be shown that this system of differential equations simplifies to a linear homogenous differential equation of the 3rd order:

\[
D^3 + aD^2[X] + bD[X] + c[X] = 0 \quad (E10)
\]

Where the coefficients a, b, and c are combinations of rate constants such that:

\[
a = k_1 + k_2 + k_3 + k_4 + k_5 \quad (E11)
\]
\[
b = (k_1 + k_2)(k_3 + k_4 + k_5) \quad (E12)
\]
\[
c = k_1 k_3 k_5 \quad (E13)
\]

Which are all constants. The general solution to a linear homogenous differential equation with constant coefficients is of the form:

\[
[X](t) = e^{mt} \quad (E14)
\]

Where \(m\) is some constant. From E10 and E14, we get the characteristic polynomial:

\[
r^3 + ar^2 + br + c = 0 \quad (E15)
\]

This cubic polynomial has three roots, including repeating and complex roots. Due to the linearity of the system, its general solution is a linear combination of its roots, such that:

\[
[X](t) = c_1e^{r_1t} + c_2e^{r_2t} + c_3e^{r_3t} \quad (E16)
\]

Solving this cubic polynomial for biochemically reasonable estimates of \(k_1\) through \(k_5\) results in three real and negatively valued roots, making the general result of an identical form as the triexponential decay models we fit our data to in this study. The analytical solutions to the differential equations or systems of differential equations describing single and two-compartment models, likewise, correspond to single exponential and biexponential functions, respectively.
T2. Supplemental Methods

Nonlinear regression and bootstrapping

Fitting of $\%^{12}C$ remaining data to polyexponential models was performed in Python using the `curve_fit()` function implemented in the *Scipy* package (1). We performed all regressions 100 times with uniformly sampled initial parameter values and selected the fit with the lowest SSR for further analysis. $N = 1000$ bootstrap resampling with replacement was performed using functions from the Python package *recombinator*. Due to the time-course structure of the data, circular block bootstrapping was used to preserve some of the dependence structure between subsequent measurements (2). Bootstrap samples were fitted using the same general procedure as that used to generate the best-fit lines, with the exception that the initial guesses for the parameter values for the regression of the bootstrap samples were set to the best-fit parameter values. 95% confidence intervals for each parameter were derived by taking the 2.5th and 97.5th percentile values of the resulting distributions of all successful fits.

Data treatment for heteroskedastic residuals and outlier identification

Heteroskedastic residuals from our nonlinear regressions were corrected using a logit transformation (3). Specifically, we performed nonlinear regression on models of the form:

$$\logit \left(\frac{f(t)}{100} \right) = \logit \left(\frac{Ae^{b\cdot t} + \ldots}{100} \right)$$

(E17)

This preserves the relationship between our response, independent variables, and estimated parameters, allowing for straightforward interpretation while substantially reining in the heteroskedasticity of the residuals.

Studentized residuals were calculated for all model fits and datapoints whose studentized residuals exceeded an absolute value of 3 were excluded ($N = 5$). Due to the substantial impure heteroskedasticity in the Model 1 fits studentized residuals greater than 3 in Model 1 fits were ignored for the purposes of outlier removal.

Model selection criteria

Extra-sum-of-squares: For each nested pair of models we calculated the probability that, given the null hypothesis that the simpler of the two models is true, we would see the observed improvement in model fit as measured by the sum-of-squared residuals (SSR) (4). We calculate an F statistic as follows:

$$F = \frac{SSR_{\text{simple}} - SSR_{\text{complex}}}{SSR_{\text{complex}}} \frac{DF_{\text{simple}} - DF_{\text{complex}}}{DF_{\text{complex}}}$$

(E18)

Where SSR_{simple} and SSR_{complex} are the SSR values for the simpler and complex – i.e., fewer and more parameters – models, respectively, and DF_{simple} and DF_{complex} are the degrees of freedom for the two models. The F statistic resulting from E19 was then compared to the F-distribution to derive a p-value representing the probability of observing this F statistic given our null hypothesis, which is that our simpler model is correct. For this study, we set $\alpha = 0.05$ and used the Holm-Bonferroni correction (5) to adjust our p-value cutoff to one that corresponds to a family-wise α of 0.05. For each p-value P_k in the family of hypothesis tests being tested, we evaluate the following expression:

$$P_k < \frac{\alpha}{m + 1 - k}$$

(E19)
where α is the family-wise α we are adjusting to, m is the number of hypothesis tests being conducted, and k is the rank of the p-value P_k in a ranked list of increasing p-values.

We selected the best-supported model for a given dataset by starting with the single exponential model and adding more parameters until we got to a model comparison that did not meet our adjusted p-value cutoff, in which case we went with the simpler model in the comparison. In cases where there was a comparison of two more complex models than the one we arrived at using the method just described that yielded a low p-value, we calculated p-value for the F-statistic comparison between the more complex of those two and the accepted model. If we were justified in rejecting the null hypothesis that the simpler model is better in this case, we went with the more complex model.

Cross-validation: For this study we used the `cross_validate()` function from the SciKitLearn package to perform between 5 and 10 iterations of 5-fold cross-validation on our datasets [(6, 7). The same non-linear ordinary least squares fitting procedure used for our best-fit parameter estimation on the full datasets was used for our cross-validation, with the only difference being that the fitting was done 5 times with different randomly selected bins of data for training and testing, resulting in 5 estimates of prediction error for each alternative model at each iteration. After 5-10 iterations, we took all the negative mean squared error estimates for each model for a given metabolite or aggregated metabolite dataset and then calculated their mean value and 95% confidence interval (± 1.96 SE). The model with the lowest average error and whose 95% CI does not overlap with the next simplest model in terms of the number of fitted parameters was chosen as the best-performing model for each dataset.

AIC/BIC: For each best-fit of Models 1-7, the AIC (8) and BIC (9) were calculated as follows:

\[AIC = 2k + n \ln SSR \]
\[BIC = k \ln n + n \ln SSR \]

(E20)
(E21)

where k is the number of estimated parameters in the model, and n is the sample size. The best-supported model for each dataset was chosen by identifying the model with the lowest AIC/BIC value that is not within two absolute units of a simpler (i.e., fewer parameters) model.

T3. Calculation of v_0/v_c

We begin with the equation from (10)

\[A = v_c - 0.5v_o - R_L \]

(E22)

where A is the net rate of CO$_2$ assimilation (uptake), v_c is the velocity of carboxylation, v_o is the velocity of oxygenation, and R_L is all other sources of CO$_2$ release in the light, possibly primarily CO$_2$ released by the glucose 6-phosphate shunt (11). Next, we define

\[\Phi = \frac{v_o}{v_c} \]

(E23)

and so

\[A = v_c(1 - 0.5\Phi) - R_L \]

(E24)

Rearranging

\[v_c = \frac{(A + R_L)}{(1 - 0.5\Phi)} \]

(E25)

We can also estimate v_o.

4
\[A = v_d \left(\frac{1}{\Phi} - 0.5 \right) - R_L \]

(E26)

and so

\[v_o = \frac{(A + R_L)}{\left(\frac{1}{\Phi} - 0.5 \right)} \]

(E27)

Taking the ratio of equations and canceling \((A+R_L)\)

\[\frac{v_o}{v_c} = \frac{\left(\frac{1}{\Phi} - 0.5 \right)}{(1 - 0.5\Phi)} \]

(E28)

We can expand \(\Phi\) as (10)

\[\Phi = \frac{2\Gamma_r}{C} \]

(E29)

where \(\Gamma_r\) is the CO\(_2\) compensation point in the absence of \(R_L\). Therefore,

\[\frac{v_o}{v_c} = \frac{\left(1 - \frac{\Gamma_r}{C} \right)}{0.5 \left(\frac{C}{\Gamma_r} - 1 \right)} \]

(E30)

Where \(C\) is the CO\(_2\) partial pressure equivalent at the sites of carboxylation. This is determined by

\[C = C_i - \frac{A}{g_m} \]

(E31)

where \(C_i\) is the partial pressure of CO\(_2\) in the intercellular air spaces of the leaf (estimated from gas exchange) and \(g_m\) is the mesophyll conductance for CO\(_2\) diffusion. In the absence of a direct measurement \(g_m\) can be estimated as

\[g_m = 0.3 + 0.11 \cdot A \]

(E32)

Based on multiple measurements reported in (12)

We can parameterize as follows based on measured gas exchange of the leaves used for this data set:

\[A = 17.4 \pm 1.9 \text{ µmol m}^{-2} \text{ s}^{-1} \text{ (avg ± SD) (measured)} \]
\[\Gamma^* = 3.18 \text{ µmol m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1} \text{ (for tobacco, from (13), adjusted to 22°C)} \]
\[C = 20.5 \text{ Pa (measured } C_i \text{ and corrected for } g_m \text{ using E31)} \]

\[\frac{v_o}{v_c} = \frac{\left(1 - \frac{3.18}{20.5} \right)}{0.5 \left(\frac{20.5}{3.18} - 1 \right)} = 0.31 \]

(E33)

T4. Plant Growth, Gas Exchange, and \(^{13}\)CO\(_2\) Labeling.

Wild-type *Camelina sativa* ecotype Suneson was grown under 8/16-h day/night cycles, under a light intensity of 500 µmol m\(^{-2}\) s\(^{-1}\), temperature of 22°C, and 50% relative humidity for 4 weeks. The youngest fully expanded leaves were used for gas exchange and labeling experiments. A LI-COR 6800 portable photosynthesis system (LI-COR Biosciences, Lincoln, NE, USA) was used to measure carbon.
assimilation. The reference [CO₂] was set to 400 ppm, light intensity was 500 μmol m⁻² s⁻¹, temperature was 22°C, and relative humidity was 70% to ensure that the leaf vapor pressure deficit was ~0.85 kPa. After 10-15 min acclimation, net CO₂ assimilation rate was logged and then the CO₂ source was switched to ¹³CO₂ with all other parameters held constant. Gases were mixed with mass flow controllers (Alicat Scientific, Tucson AZ, USA). Labeled leaf samples were collected at time points of 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, 30, 60, 90, and 120 min. Liquid nitrogen was directly sprayed on the leaf surface via a customized fast quenching (0.1-0.5 s to <0°C) labeling system (11). Leaf temperature fell below 0°C between 100 and 500 ms depending on location within the chamber. The frozen leaf sample was stored at -80°C. There were three biological replicates for data points from 0-90 min, and two biological replicates at 120 min.

T5. Analysis of Mass Spectrometry Data.
Data from LC-MS/MS were acquired with MassLynx 4.0 (Agilent, Santa Clara, CA, USA). Data from GC-El-MS was acquired with Agilent GC/MSD Chemstation (Agilent, Santa Clara, CA, USA). Data from GC-CI-MS was acquired with Agilent MassHunter Workstation (Agilent, Santa Clara, CA, USA). Metabolites were identified by retention time and mass to charge ratio (m/z), in comparison with authentic standards. Both LC-MS and GC-MS data were converted to MassLynx format and processed with QuanLynx software for peak detection and quantification. Parameters for transitions of measured metabolites in multiple reaction monitoring (MRM) with LC-MS/MS and selected ion monitoring (SIM) with GC-MS are shown in Dataset S5. Experimentally measured mass isotopologue distributions of measured metabolites are shown in Dataset S1.

Isotopologue Network and Flux Determination.
The metabolic network model with all reactions and their respective carbon atom transitions describing photosynthetic central metabolism in Camelina sativa was constructed based upon the previous studies (11, 14) and KEGG database. A list of the reactions and abbreviations are provided in Table S1. INST-MFA was performed to estimate metabolic fluxes using the Isotopomer Network Compartmental Analysis software package (INCA2.0, http://mfa.vueinnovations.com, Vanderbilt University) (15) implemented in MATLAB 2018b. The fit for all the tested models were accepted based on χ² test of the sum-of-squared residuals (SSR). Global best fit SSR were calculated by parameter continuation analysis. Fatty acid synthesis rate is constrained to 0.0329-0.4405 μmol CO₂ g⁻¹ FW h⁻¹ by combining the previous measurements of 0.049-0.067 μmol CO₂ m⁻² s⁻¹ with 0.005-0.012 μmol CO₂ m⁻² s⁻¹ (11, 16). Rᵢ is constrained to 8.1-10.7 μmol CO₂ g⁻¹ FW h⁻¹ based on previous measurement (11). vo∕vc is constrained to 0.3-0.32 based on measurement in this study.

Assessment of Flux Precision
Both parameter continuation method and Monte Carlo method were independently estimated the 95% confidence intervals of the estimated flux values as shown in Dataset S4. 10,000 sets of perturbed data were used for Monte Carlo analysis. The resulting distribution of flux values enabled the estimation of confidence intervals. The computation-intensive parameter continuation and Monte Carlo simulations were computed in parallel using a SLURM job scheduler to distribute jobs to hundreds of compute nodes within a high-performance computing cluster provided by the Institute for Cyber-Enabled Research at Michigan State University. The two approaches gave similar results of confidence intervals for each flux solution.

Calculation of predicted percentage of isotopologues (fₘₙ)
Predicted percentage of isotopologues (fₘₙ) is calculated by the equation of:

\[f_{mn} = (p_{13C})n \ast (p_{12C})m - n \ast mCn \]

(p₁₃C) is the measured ¹³C enrichment; (p₁₂C) is the measured ¹²C enrichment; n is the number of ¹³C carbon; m is the number of total carbons; \(mCn \) is the combination for choosing objects of n from the total number of objects of m.
Figure S1. Simplified compartmental model used in “T1: Derivation of Polyexponential Models from Analytical Solutions of Compartmental Models” showing the metabolite compartments and rates interconnecting them. Note that we are modeling the depletion of ^{12}C here, not the enrichment of ^{13}C, hence the lack of external input to the CBC under the assumption that we are working with pure $^{13}\text{CO}_2$.
Figure S2. Nonlinear regression fits for all polyexponential models fitted to the aggregated Calvin-Benson Cycle intermediate dataset along with a summary of model selection results. The orange line represents the best-fit line and the shaded region represents the 95% CI estimated by bootstrap resampling. In the bottom-right table, green squares represent model selection results supporting the model indicated by that row representing a statistical improvement over a simpler model. Orange squares represent model selection results that do not support adding the additional parameters needed for the model in that row. Figure 1 is a subset of these data.
Figure S3. Transient 13CO$_2$ labeling in glucose, fructose, sucrose glucosyl moiety, and sucrose fructosyl moiety. Experimentally determined isotope labeling measurements are shown as points with error bars (n=3, ± standard deviation). INST-MFA fitted mass isotopologue distributions are shown as solid lines. Error bars represent standard errors.
Figure S4. Transient 13CO$_2$ labeling in measured ions. Experimentally determined isotope labeling measurements are shown as points with error bars (n=3, ± standard deviation). INST-MFA fitted mass isotopologue distributions are shown as solid lines. Error bars represent standard errors. (A) C$_3$ and Glycolysis related metabolites. Core C$_3$-only intermediates [labeled in red]; intermediates shared with glycolysis [purple]; core glycolysis metabolites and products [green]; photorespiratory intermediates [blue]; then carbohydrate building substrates [black]. (B) TCA cycle related metabolites. OAA derived AA’s [labeled in red]; and more slowly Thr which is made from Asp at a slower rate than Asn [purple]; Citrate [green]; Glu and Gln ions [labeled Glx in blue]; Malate Fumarate and Succinate [black].
Figure S5. Transient 13CO$_2$ labeling in measured ions. Experimentally determined isotope labeling measurements are shown as points with error bars ($n=3$, ± standard deviation). INST-MFA fitted mass isotopologue distributions are shown as solid lines. Error bars represent standard errors. (A) C$_3$ and glycolysis-related metabolites. Core C$_3$-only intermediates [labeled in red]; intermediates shared with glycolysis [purple]; core glycolysis metabolites and products [green]; photorespiratory intermediates [blue]; then carbohydrate building substrates [black]. (B) TCA cycle related metabolites. OAA derived AA’s [labeled in red]; and more slowly Thr which is made from Asp at a slower rate than Asn [purple]; Citrate [green]; Glu and Gln ions [labeled Glx in blue]; Malate Fumarate and Succinate [black].
Figure S6. The INST-MFA estimated inactive pools for serine, glycine, R5P, RUBP, 3-PGA, H6P, FBP, RU5P, S7P, 2PG, ADPG, UDPG, and alanine were compared with Xu et al., 2021 (11) and Ma et al., 2014 (14). MSU model lowered the inactive pool sizes for all the above metabolites. Among them, the inactive pools for RUBP, 3-PGA, H6P, RU5P, 2PG, ADPG, UDPG dramatically lowered to almost zero.
Table S1. Rate parameters for CBC intermediates, ADPG, and UDPG. The top row is data derived from the average of all the individual metabolites and following the data for each metabolite, the time constants for each is averaged (CBC average not included) and standard deviation is shown.

Metabolite(s)	Slopes (min⁻¹)		
	Fast	Middle	Slow
CBC average	-1.071	-0.203	-0.007
PGA	-1.007	-0.161	-0.003
S7P	-1.078	-0.163	-0.003
GAP	-1.050	-0.196	-0.008
DHAP	-0.950	-0.140	-0.005
FBP	-1.690	-0.371	-0.018
RUBP	-0.802	-0.141	0.002
ADPG	-0.665	-0.179	-0.013
Average - CBC	-1.04	-0.194	-0.007
Std Dev	0.30	0.075	0.006
Table S2. Abbreviations for metabolites and reactions

Abbreviations	Full name
2PG	2-phosphoglycolate
ACA	acetyl-CoA
acetyl-CoA	acetyl-coenzyme A
ADPG	adenosine diphosphate glucose
AGP	ADP-glucose phosphorylase
AKG	α-ketoglutarate
ALA	alanine
ALD	aldolase
ALT	alanine transaminase
AS	asparagine synthase
ASN	asparagine
ASP	aspartate
ASPT	aspartate transaminase
C₃ cycle	Calvin–Benson–Bassham cycle
CIT	citrate
CO₂	carbon dioxide
CS	citrate synthase
DOF	degrees of freedom
E4P	erythrose-4-phosphate
EC2	transketolase-bound-2-carbon-fragment
ESI	electrospray ionization
F6P	fructose-6-phosphate
FBA	fructose-bisphosphate aldolase
FBP	fructose-1,6-bisphosphatase
Fru	fructose
FUM	fumarate
FVCB	Farquhar, von Caemmerer and Berry
G1P	glucose-1-phosphate
G6P	glucose-6-phosphate
G6PDH	glucose-6-phosphate dehydrogenase
GA	glycerate
GAPDH	glyceraldehyde-3-phosphate dehydrogenase
GC-MS	gas chromatography-mass spectrometry
GDC	glycine decarboxylase
GK	glyceraldehyde kinase
Glc	glucose
GLN	glutamine
GLY	glycine
GPU	UDP-glucose pyrophosphorylase
GS	glutamine synthetase
IC1	isocitrate
IDH	isocitrate dehydrogenase
INST-MFA	isotopically nonstationary metabolic flux analysis
LC-MS/MS	liquid chromatography-tandem mass spectrometry
MAL	malate
M1P	mannose 1-phosphate
MDH	malate dehydrogenase
ME	malic enzyme
MFA	metabolic flux analysis
MID	mass isotopologue distribution
MRM	multiple reaction monitoring
netA	net CO₂ assimilation
OAA	oxaloacetate
OPP	oxidative pentose phosphate
PCR | pyrroline-5-carboxylate reductase
PDH | pyruvate dehydrogenase
PEP | phosphoenolpyruvate
PFK | phosphofructokinase pyrophosphate
PGA | 3-phosphoglycerate
PGAM | 3-phosphoglyceric acid
PGI | phosphoglycerate mutase
PGM | phosphoglucomutase
PGP | phosphoglycolate phosphatase
PK | pyruvate kinase
PPC | phosphoenolpyruvate carboxylase
PPE | phosphopentose epimerase
PPI | phosphopentose isomerase
PRK | phosphoribulokinase
PRO | proline
PYR | pyruvate
R5P | ribose-5-phosphate
RL | respiration in the light
RU5P | ribulose-5-phosphate
RUBISCO_CO2 | ribulose-1,5-bisphosphate carboxylase (oxygenase)
RUBISCO_O2 | ribulose-1,5-bisphosphate (carboxylase) oxygenase
RUBP | ribulose-1,5-bisphosphate
S6P | sucrose-6-phosphate
S7P | sedoheptulose-7-phosphate
SBP | sedoheptulose-1,7-bisphosphate
SBPase | sedoheptulose-1,7-bisphosphatase
SCA | succinyl-CoA
SER | serine
SFrc | sucrose fructosyl moiety
SGA1 | serine:glyoxylate aminotransferase
SGlc | sucrose glucosyl moiety
SIM | selected ion monitoring
SPS | sucrose-phosphate synthase
SRES | squared residual
SS | starch synthase
SSR | sum-of-squared residuals
Suc | sucrose
SUC | succinate
T_3PGA | 3PGA transporter
T_TP | TP transporter
TBDMS | tert-butyldimethylsilyl
TCA | tricarboxylic acid
THR | threonine
TK1 | transketolase
TMS | trimethylsilyl
TP | triose phosphate
TS | threonine synthase
UDPG | uridine diphosphate glucose
v_c | velocity of rates of carboxylation
v_o | velocity of rates of oxygenation
Vpr | photorespiratory CO₂ release
X5P | xylulose-5-phosphate
Table S3. A comparison of the goodness of fit between data and best-fit simulations from alternative models. Starting model with no inactive pools, model with unlabeled glucose source, and model with sucrose recycling reactions and sucrose vacuole pool reactions were compared with fluxes for key reactions, SSR, top five most different SSR, and change in the number of degrees of freedom (ΔDOF). 5* ΔDOF in terms of net fluxes. The lowest value of SSR is shown in blue, the 50th percentile of SSR is shown in yellow, the highest value of SSR is shown in red. The starting model with no inactive pools had the biggest overall SSR (1340) and highest individual SSR for R5P, FBP, UDPG, G6P, and F6P. The model with an unlabeled glucose source had both lower overall SSR and individual SSR for R5P, FBP, UDPG, G6P, and F6P. The model with sucrose recycling reactions and sucrose vacuole pool reactions had both lowest overall SSR and individual SSR for R5P, FBP, UDPG, G6P, and F6P. All abbreviations are shown in Table S1.

Model	Reactions	Flux	SSR	UDPG	R5P	FBP	G6P	F6P	TOP5 most different SSR	ΔDOF
No inactive pools			1340	UDPG	R5P	FBP	G6P	F6P		0
				215	115	112	123	109		
	CO2.u -> CO2	0	1340	UDPG	R5P	FBP	G6P	F6P		1
				218	118	114	112	98		
No inactive pools + unlabeled carbon source	Glucose.u -> G6P.p	0.5	1300	UDPG	R5P	FBP	G6P	F6P		1
				216	116	113	85	102		
	TP.u -> TP.p	0.3	1273	UDPG	R5P	FBP	G6P	F6P		1
				209	112	62	109	96		
Glucose.u -> G6P.c		1.9	1126	UDPG	R5P	FBP	G6P	F6P		1
				109	117	101	62	59		
No inactive pools + sucrose recycling	Suc.v <-> Suc.c	2.11	968	UDPG	R5P	FBP	G6P	F6P		
reactions + sucrose vacuole pool reactions	Glc.v <-> Glc.c	2.11		UDPG	R5P	101	76	32		5*
	Suc.c-> Glc.c + Fru.c	0.05		UDPG	R5P	76	32	19		
	Glc.c -> G6P.c	2.16		UDPG	R5P	76	32	19		
	Fru.c -> F6P.c	2.16		UDPG	R5P	76	32	19		

Lowest value, 50th percentile, highest
Table S4. Predicted and measured ratios between M1 to M0 of CBC intermediates based on their predicted and measured percentage of isotopologues.

Metabolites	Isotopologue	Percentage of isotopologue	Ratio between M1/M0		
		Predicted	Measured	Predicted	Measured
GAP/DHAP	M0	0.01	2.4	65	0.2
	M1	0.6	0.5		
	M2	12.1	5.0		
	M3	87.4	92.1		
PGA	M0	0.01	1.6	67	0.4
	M1	0.5	0.7		
	M2	11.7	6.5		
	M3	87.7	91.1		
R5P	M0	0.001	2.4		
	M1	0.04	0.4		
	M2	0.7	4.6		
	M3	6.6	4.0	48	0.2
	M4	31.7	11.2		
	M5	61.0	77.3		
RU5P/XU5P	M0	0.001	2.2		
	M1	0.03	0.4		
	M2	0.6	4.7		
	M3	6.1	3.1	51	0.2
	M4	30.9	12.2		
	M5	62.4	77.4		
RUBP	M0	0.00001	1.6	85	0.2
	M1	0.0005	0.4		
	M2	0.2	1.3		
	M3	2.6	1.5		
	M4	22.2	11.5		
	M5	75.1	83.7		
F6P	M0	0.000004	2.3		
	M1	0.0004	0.3		
	M2	0.02	0.4		
	M3	0.3	1.2	97	0.1
	M4	4.0	1.9		
	M5	25.9	11.4		
	M6	69.7	82.6		
G6P	M0	0.0001	2.9		
	M1	0.003	0.4		
	M2	0.1	0.3		
	M3	1.1	2.1	61	0.1
	M4	8.3	8.3		
	M5	33.6	10.4		
	M6	57.0	75.6		
S7P	M0	0.0000001	1.2		
	M1	0.000002	0.3		
	M2	0.0002	0.2		
	M3	0.01	1.6	175	0.2
	M4	0.2	2.1		
	M5	2.6	2.3		
	M6	21.3	12.1		
	M7	76.0	82.1		
Table S5. Contributions of fully unlabeled and partially labeled isotopologues to the lack of complete labeling in glucose 6-phosphate after two hours of labeling with 13CO$_2$. Relative abundances are from Table S5. Fully unlabeled G6P accounts for only $0.174 / (0.174+0.365) = 32\%$ of the labeling deficit.

	Relative abundance	12C in M0	12C in M1 to M6
M0	0.029	0.174	-
M1	0.004	-	0.02
M2	0.003	-	0.012
M3	0.021	-	0.063
M4	0.083	-	0.166
M5	0.104	-	0.104
M6	0.756	-	0
Sum	1	0.174	0.365
Table S6. Carbon accounting for the model. Values in the absolute columns are fluxes from the model (Fig. 3) converted to a carbon basis. The last two columns are absolute values divided by the net rate of CO$_2$ assimilation.

Calvin-Benson cycle carbon inputs and outputs	Absolute μmol g$^{-1}$ FW hr$^{-1}$	Relative to net assimilation %		
	In	Out	In	Out
Rubisco	172			123%
Photorespiration	75	102	54%	73%
TPT	117			84%
Starch synthesis	63			45%
G6P shunt	35			25%
Total	282	282	202%	202%

CO$_2$ budget	Absolute μmol g$^{-1}$ FW hr$^{-1}$	Relative to net assimilation %		
Rubisco	172			123%
Photorespiration	25			18%
G6P shunt	7			5%
Fatty acids	0.4			0.3%
In minus out	139.6		100%	

End Products	Absolute μmol g$^{-1}$ FW hr$^{-1}$	Relative to net assimilation %		
Starch	63.0			45%
Sucrose	68.4			49%
Other cytosolic	6.5			5%
Fatty acids	0.8			1%
Total end products	138.7		99%	
Table S7. v_o/v_c for models with and without labeling input for serine and glycine, with and without constraints of v_o/v_c. Four scenarios were tested: 1) with serine and glycine labeling input, unconstrained v_o/v_c; 2) with serine and glycine labeling input, constrained $v_o/v_c = 0.31 +/- 5\%$; 3) without serine and glycine labeling input, unconstrained v_o/v_c; 4) without serine and glycine labeling input, constrained $v_o/v_c = 0.31 +/- 5\%$ based on the variation in the gas exchange data used to determine v_o/v_c.

	with serine and glycine	without serine and glycine		
	Unconstrained	Constrained	Unconstrained	Constrained
v_c	162	215	167	167
v_o	33	65	51	51
v_o/v_c	0.20	0.30	0.30	0.30
Table S8. Additional modeling to test (a) whether addition of reactions representing starch turnover to the metabolic model meaningfully improves the agreement between the measured and simulated labeling and other flux data; and (b) whether the fitting of such models to the data indicates a biologically significant flux through starch turnover.

Models	SSR	ΔSSR	Starch turnover flux
Final model	971.5		
Final model+ Glucose.u -> G6P.p	971.5	0	Glucose -> G6P.p 0.000013
Final model+ Glucose.u -> G6P.c	962.2	-9.3	Glucose -> G6P.c 0.43
Final model+ Glucose.u -> G6P.p + dummyX ADPG + dummyX -> Starch	970.4	-1.1	Glucose -> G6P.p + dummy 0.32
Final model+ Glucose.u -> G6P.c + dummyX ADPG + dummyX -> Starch	962.2	-9.3	Glucose -> G6P.c + dummy 0.81
Final model+ ADPG -> Intermediate Starch Intermediate Starch -> G6P.p Intermediate Starch -> Starch	968.8	-2.7	StarchI -> G6P.p 0.053
Final model+ ADPG -> Intermediate Starch Intermediate Starch -> G6P.c Intermediate Starch -> Starch	970.5	-1	StarchI -> G6P.c 0.000050
Supplemental Dataset Legends

Dataset S1 (separate file). Experimentally measured mass isotopologue distributions of measured metabolites.

Dataset S2 (separate file). Parameter value estimates and model selection results for aggregated CBC intermediate datasets and individual metabolites. Parameters in exponential terms are sorted in terms of the absolute magnitude of their decay term.

Dataset S3 (separate file). Comparisons of the model in this work with previous models (11, 14). Reactions that are different from Ma, Jazmin, Young and Allen (14) are labeled in red. Reactions from Xu, Fu, Sharkey, Shachar-Hill and Walker (11) are shown in yellow. Reactions newly added in this publication are shown in blue. Reactions have been removed from (11, 14) are shown in green. Note that the parameters for alanine, glycine, and serine have been kept in the model because of their compartmentation complexity.

Dataset S4 (separate file). Estimated flux values and 95% confidence intervals by parameter continuation. Values are absolute fluxes (µmol metabolites g\(^{-1}\) FW hr\(^{-1}\)) based on the measured net CO\(_2\) uptake rate. The net flux is the difference between influx and efflux of metabolites moved in or out of the cell. The exchange flux is the minimum of the forward and backward fluxes of a reversible reaction. Some confidence intervals of exchange fluxes are unidentifiable or infinite. Subcellular fluxes are shown by metabolites spatially separated in the plastid (.p) and cytosol (.c).

Dataset S5 (separate file). Parameters for transitions of measured metabolites in multiple reaction monitoring (MRM) with LC-MS/MS and selected ion monitoring (SIM) with GC-MS. LC-MS/MS dwell time was set at 20 ms for each transition. Q1, m/z of the precursor ion; Q3, m/z of the product ion. Cone and collision energy were optimized by direct infusion of standards. Amino and organic acids were measured by GC-MS by tert-butyldimethylsilyl (TBDMS) derivatization whereas glucose, fructose, and sucrose were derivatized by trimethylsilyl (TMS).

SI References

1. Jardine K, *et al.* (2014) Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress. *Plant Physiol.* 166(4):2051-2064.
2. Politis DN & Romano JP (1991) A circular block-resampling procedure for stationary data. in *Technical Report # 91-07* (Purdue University, Department of Statistics), pp 1-9.
3. Johnson NL (1949) Systems of frequency curves generated by methods of translation. *Biometrika* 36(1/2):149-176.
4. Draper NR & Smith H (1998) Extra sums of squares and tests for several parameters being zero. *Applied Regression Analysis*, pp 149-177.
5. Holm S (1979) A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics* 6(2):65-70.
6. Pedregosa F, *et al.* (2011) Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* 12:2825-2830.
7. Hastie T, Tibshirani R, & Friedman J (2017) Model assessment and selection. *Elem. Stat. Learn. Data Mining, Inference, Predict.*, (Springer), pp 219-260.
8. Akaike H (1998) Information theory and an extension of the maximum likelihood principle. *Selected Papers of Hirotugu Akaike*, eds Parzen E, Tanabe K, & Kitagawa G (Springer New York, New York, NY), pp 199-213.
9. Schwarz G (1978) Estimating the dimension of a model. *The Annals of Statistics* 6(2):461-464.
10. Farquhar GD, von Caemmerer S, & Berry JA (1980) A biochemical model of photosynthetic CO$_2$ assimilation in leaves of C$_3$ species. *Planta* 149:78-90.

11. Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, & Walker B (2021) The metabolic origins of non-photorespiratory CO$_2$ release during photosynthesis: A metabolic flux analysis. *Plant Physiol.* in press.

12. von Caemmerer S & Evans JR (1991) Determination of the CO$_2$ pressure in chloroplasts from leaves of several C$_3$ plants. *Aust. J. Plant Physiol.* 18:287-305.

13. Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. *Plant Cell and Environment* 39(6):1161-1163.

14. Ma F, Jazmin LJ, Young JD, & Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in *Arabidopsis thaliana* leaf metabolism due to high light acclimation. *Proc. Nat. Acad. Sci. USA* 111(47):16967-16972.

15. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. *Bioinformatics* 30(9):1333-1335.

16. Tcherkez G, Cornic G, Bligny R, Gout E, & Ghashghaie J (2005) In vivo respiratory metabolism of illuminated leaves. *Plant Physiol.* 138(3):1596.