Cardiac Pacing – Is Telemonitoring Now Essential?

Haran Burri

Cardiology Service, University Hospital of Geneva, Geneva, Switzerland

Abstract

Modern pacemakers and implantable defibrillators are able to automatically perform tests executed manually during in-office visits; such as measurement of sensing and pacing thresholds. In addition, the devices also record a wealth of diagnostic data that are of clinical relevance. The advent of wireless technology in these devices allows automatic transmission of these data that can be consulted remotely by the physician. There is now solid evidence indicating that remote device follow-up can safely reduce the number of in-office visits, thereby improving convenience for patients and caregivers alike. Remote monitoring with automatic alerts for arrhythmias, heart failure and technical issues, has been shown to dramatically reduce delay to diagnosis of these events compared with standard follow-up; potentially improving patient safety and outcome. For these reasons, remote device management is becoming the standard of care.

Keywords
Remote monitoring, telemedicine, implantable cardioverter defibrillator, pacemaker

Is Remote Follow-up Safe?

It has been shown that <10 % of all scheduled in-office visits are 'actionable' (i.e. that they result in changes in medication or device programming). A study reported that 94 % of scheduled in-office ICD clinic visits may just as well have been performed remotely. Remote device follow-up allows to safely reduce the numbers of in-office visits, which is attractive both from the patient's perspective (less travel and waiting time) as well as the healthcare provider's perspective (quicker and more flexible follow-up). In the Lumos-T Safely Reduces RouTine Office Device Follow-Up (TRUST) trial, 1,339 patients with a single- or dual-chamber ICD were randomised to three-monthly in-office versus remote follow-ups (with an in-office follow-up performed after implantation and at 12-months in all patients). There was a 45 % decrease in numbers of in-office visits in the home monitoring group (2.1/year versus 3.8/year, P<0.001), without any
The randomized trial of long-term remote monitoring of pacemaker recipients (COMPAS) trial in patients with dual-chamber PMs found that home monitoring allowed delaying scheduled in-office visits for as much as 18 months after device implantation, without any significant difference in major adverse events compared with patients with routine follow-up. Cur{}ent guidelines stipulate that all patients should be seen in-office at least once a year. However, over a third of ICD or cardiac resynchronisation therapy defibrillator (CRT-D) patients would prefer to be seen in-office at intervals of 18-months or longer. It may be that one day, selected low-risk PM patients may be followed-up remotely (especially when using devices with remote monitoring, see below) for the entire device lifetime.

Does Remote Monitoring Improve Patient Outcome?

Remote monitoring has been shown to dramatically reduce the time to detection of events such as arrhythmias and technical issues. Remote monitoring of cardiac arrhythmias, heart failure status (by parameters such as heart rate, daily activity, lung fluid, etc.) as well as device integrity (see Figure 2), has the potential to improve patient outcome. Data analysed as secondary endpoints from several trials are encouraging. In the Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision (CONNECT) trial, randomising 1,997 patients implanted with a dual-chamber or biventricular ICDs to remote monitoring versus in-office visits, there was an 18% reduction (P=0.002) in the length of stay for cardiovascular hospitalisation in the remote monitoring arm. This led to an estimated cost-saving of US$1,793 (95% confidence interval: US$1,644–1,940) per hospitalisation. In the COMPAS trial patients on remote monitoring had a significantly reduced risk of hospitalisation for atrial arrhythmias or for stroke (P<0.05). Incidence of inappropriate shock was also reduced by remote monitoring from 10.4 to 5.0% (P=0.03) in a sub-analysis of the Effectiveness and Cost of ICD Follow-Up Schedule with Telecardiology (ECOST) trial. In the ALTITUDE registry, among 10,272 matched subjects implanted with an ICD or a CRT-D device, patients who were on remote monitoring had an approximately 50% relative reduction of total mortality compared with those on standard care.11

In the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, patients randomised to remote monitoring had a 35% (P=0.006) reduction in emergency visits for arrhythmias, heart failure and device-related events compared with a control group with audible alerts (which probably increased the number of emergency visits in this study). These data are encouraging, but need to be confirmed by adequately powered randomised trials, several of which are currently underway.12,13

Which Patient Should Receive Remote Device Management?

There are currently no guidelines on which patient should be followed by remote device management. Some centres include all patients implanted with a device equipped with wireless technology, but current practice is to choose patients on a case-by-case basis. Travel distance and patient mobility should be considered for remote follow-up. Elderly, debilitated patients benefit from remote device management, with participation of the patient’s family or caregivers if manual transmissions are necessary.14 Patients who are professionally active or who spend considerable time abroad are also good candidates for remote follow-up. As it concerns remote monitoring, the sickest patients (e.g. those most likely to present arrhythmias, heart failure, or who are pacemaker-dependent) are those who may benefit the most. Likewise, devices that are most prone to technical issues (e.g. cardiac resynchronisation therapy, leads increase in adverse events. In this trial using wireless transmitters with a simple and automatic setup process, 91% of the daily transmissions were successfully transmitted to the device clinic, ensuring that at any stage recently refreshed data were automatically available for review. A similar rate of 93% of successful automatic transmission of alerts was reported in the first phase of the MOnitoring Resynchronization dEvices and CARdiac patEnts (MORE-CARE) trial.8
under recall, batteries nearing elective replacement, etc.) are most likely to generate alerts that are of clinical relevance.

Implications for Workflow

Whereas remote follow-up is a convenience for both patients and caregivers, remote monitoring adds work burden to the device clinic. Phone contact with the patients in response to the alerts can be time-consuming and may increase patient anxiety. Technical troubleshooting, reviewing of alert messages and patient contact in response to these alerts may require considerable time and effort. Most centers have a device nurse who periodically logs on to the secure servers to perform remote follow-up and to deal with the alert messages. The nurse may perform triage of the alerts (local protocols on how to deal with the different alerts are useful in this respect), and then filter the data that require attention by the physician. In a study with 117 device patients on a remote monitoring system, a nurse spent 59 minutes/week screening the messages, with 12 minutes/week by the cardiologist to deal with issues that required specific attention. Automated algorithms based upon integrated diagnostics (e.g. combining data for lung fluid overload with other parameters) may also help triage alerts, but these need to be validated in clinical trials.

Patients often express a desire to know about the results of their device check, whether in-person or remote. Results of an automatic remote follow-up may be communicated by sending a letter, but some systems allow automatic feedback to the patient (e.g. a text or voice message, St. Jude Medical Merlin.net®) or via a message on the home monitor screen (Boston Scientific LATITUDE®). As current and future generations of patients are likely to increase their use of SMS and email, these may be increasingly employed in the future to provide a rapid, efficient and cheap means to communicate results.

It is accepted that remote monitoring is usually only provided during office hours, and patients should be made aware that it does not replace emergency healthcare. Many centres require that the patient signs an informed consent form that explains these points.

Economic Aspects

A review on the economic implications of remote device management for patients, manufacturers, caregivers and payers has recently been published. A Markov model using data from published trials reports that remote device management generates negligible costs after seven years of use (and is increasingly cost-saving after 10 years) despite the initial cost of the home transmitter of £1,534. This is mainly due to prolongation of battery life (resulting from a reduction in shocks). In the EVOLVO study, patients on remote monitoring had a reduction of emergency room visits compared with those with audible alerts), leading to cost-savings of 888 euros/patient. Trials are currently underway in Europe that will be useful to make more accurate evaluations of the financial impact of this technology. Remote follow-up of PMs and ICDs has been reimbursed in the US since 2006, in Germany since 2008 and also in a few other countries, but still needs to be addressed across most of Europe.

Future Perspectives

There is room for improvement for some systems to avoid recurrent technical issues (mainly related to data transmission) and ease of utilisation (e.g. avoid requiring in-office visits to reset alerts, full online configuration of alert settings, more possibilities of communicating with the patient via the transmitter, etc.). Energy consumption by the system should be minimised to avoid premature battery drain. Daily transmissions by the Home Monitoring® system of Biotronik for instance consume the equivalent of only a single maximal energy shock over the lifetime of the device according to the manufacturer. The Medtronic system consumes approximately 1–2 days of device longevity for each transmission, which are therefore usually performed at intervals of several weeks or months. Prolonging time-box replacement by monitoring battery voltage and reducing numbers of shocks with remote monitoring should, however, offset the excess consumption. Data transmission by the GSM network is usually preferred to landline transmission, and most systems have implemented this, at least as an option. Another important technical aspect is that the implanted device should be able to perform all routine measurements (e.g. pacing thresholds of all leads, especially of the left ventricular lead) to be able to replace in-office visits (not all devices are currently able to do so).

Direct importation of interrogated data into electronic medical records (EMR) would be a great asset to staff performing device follow-up. Even though most systems are Health Level Seven (HL-7) compatible, few allow direct importation into EMR. A common platform that allows importation of data from most major device companies and exportation to the hospital EMR is commercially available (MediConnect® from Fleischhacker, Germany). Another aspect is the wealth of data available on remote monitoring databases for conducting clinical research. The databases are also useful for tracking and reporting product performance.

Conclusions

Remote management of PMs and ICDs is preferred to in-office follow-up by many patients and physicians. It will be increasingly adopted to deal with the growing number of device patients, and is likely to improve outcome. However, the issue of reimbursement needs to be properly addressed by healthcare authorities of most European countries, with economic models tailored to local requirements that will allow this technology to be viable in the long term.

1. Wilkoff BL, Auricchio A, Brugada J, et al. HRS/EHRA Expert Consensus on the Monitoring of Cardiovascular Implantable Electronic Devices (ICDs): description of techniques, indications, personnel, frequency and ethical considerations: developed in partnership with the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA); and in collaboration with the American College of Cardiology (ACC), the American Heart Association (AHA), the European Society of Cardiology (ESC), the Heart Failure Association of ESC (HFA), and the Heart Failure Society of America (HFSA). Endorsed by the Heart Rhythm Society, the European Heart Rhythm Association (a registered branch of the ESC), the American College of Cardiology, the American Heart Association, Europe 2008;10;707–25.

2. Dubner S, Auricchio A, Steinberg S, et al. IHRA/EHRA expert consensus on remote monitoring of cardiovascular implantable electronic devices (ICED). Europace 2012;14:278–9A.

3. Halimi F, Cantu F, European Heart Rhythm Association (EHRA). Scientific initiatives committee (SICRAS). Remote monitoring for active cardiovascular implantable electronic devices: a European survey. Europace 2007;9:1177–80.

4. Heidbüchel H, Lioen P, Foulon S, et al. Potential role of remote monitoring for scheduled and unscheduled evaluations of patients with an implantable defibrillator. Europace 2008;10:351–7.

5. Verma N, Ernstien AE, Himmel A, et al. Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumas-T Safety Reduces Routine Office Device Follow-up (Reassure) trial. Circulation 2010;122:325–32.

6. Borioni G, Da Costa A, Ricci R, et al. The Monitoring Resynchronization devices and Calciums patients (MORE-CARE) randomized controlled trial: phase 1 results on dynamics of early intervention with remote monitoring. J Med Internet Res 2013;15:142.

7. Malbo F, Victor F, Iason D, et al. A randomized trial of long-term remote monitoring of pacemaker recipients (the COMPAS trial). Eur Heart J 2013;34:1500–11.

8. Pettersen HK, Larsen MC, Nielsen OW, et al. Patient satisfaction and suggestions for improvement of remote ICD monitoring. J Intra Card Electrophysiol 2013;34:317–24.

9. Crossley GR, Boyle A, Viteles H, et al. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol 2011;57:1881–9.

10. Gudjonsson M, Lacioglu O, Saduk N, et al. A randomized study of remote follow-up of implantable cardioverter defibrillators: safety and efficacy report of the ECOST trial. Eur Heart J 2013;34:605–14.

11. Saxon LA, Hayes DL, Gillam FR, et al. Long-term outcome after ICD and CRT implantation and influence of remote...
device follow-up: the ALTITUDE survival study. Circulation 2012;125:2981–92.

12. Landolina M, Perego GB, Lunati M, et al. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation 2010;122:2359–67.

13. Burri H, Quesada A, Ricci RP, et al. The Monitoring Resynchronization Devices and CAREdiac patients (MORE-CARE) study: rationale and design. Am Heart J 2010;160:42–8.

14. Ip L, Waldo AL, Lip GY, et al. Multicenter randomized study of anticoagulation guided by remote rhythm monitoring in patients with implantable cardioverter-defibrillator and CRT-D devices: Rationale, design, and clinical characteristics of the initially enrolled cohort. The IMPACT study. Am Heart J 2010;158:364–70.e1.

15. Folino AF, Breda R, Calzavara P, et al. Remote follow-up of pacemakers in a selected population of debilitated elderly patients. Europace 2013;15:382–7.

16. Ricci RP, Monchell L, Quarta L, et al. Long-term patient acceptance of and satisfaction with implanted device remote monitoring. Europace 2010;12:674–9.

17. Ricci RP, Monchell L, Santini M. Home monitoring remote control of pacemaker and implantable cardioverter defibrillator patients in clinical practice: impact on medical management and health-care resource utilization. Europace 2008;10:164–70.

18. Whealan D, Gussigian K, Al-Khatib SM, et al. Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations: results from PARTNERS HF (Program to Access and Review Trending Information and Evaluate Correlation to Symptoms in Patients With Heart Failure) study. J Am Coll Cardiol 2010;55:1803–10.

19. Burri H, Heidbüchel H, Jung W, et al. Remote monitoring: a cost or an investment? Europace 2011;13:644–8.

20. Burri H, Sticherling C, Wright D, et al. Cost-consequence analysis of daily continuous remote monitoring of implantable cardiac defibrillator and resynchronization devices in the UK. Europace 2013;15:11:1601–8.

21. Zanaboni P, Landolina M, Mazegalli M, et al. Cost-utility analysis of the EVOLVO study on remote monitoring for heart failure patients with implantable defibrillators: randomized controlled trial. J Med Internet Res 2013;15:e106.

22. Borani S, Burri H, Mantovani LG, et al. Device therapy and hospital reimbursement practices across European countries: a heterogeneous scenario. Europace 2011;13:659–65.

23. Medtronic. Clinician Manual Supplement Protecta™ XT/ Protecta™, 489 Projected Service Life Information Related to Remote Monitoring. Manual no. MN4538A001A, Minneapolis 490 (MN): Medtronic Inc., 2010.