Asymmetries in $\bar{B}_d^0 \to \bar{K}^{*0} e^+ e^-$ decay and contribution of vector resonances

Alexander Yu. Korchin1 and Vladimir A. Kovalchuk1

1NSC ‘Kharkov Institute of Physics and Technology’, 61108 Kharkov, Ukraine

(Dated: today)

The fully differential angular distribution for the rare flavor-changing neutral current decay $B_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) e^+ e^-$ is studied. The emphasis is placed on accurate treatment of the contribution from the processes $\bar{B}_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) V$ with intermediate vector resonances $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), \ldots$ decaying into the $e^+ e^-$ pair. The two versions of the vector-meson-dominance model for the transition $V \gamma$ are used and tested. The present method of including vector resonances is also compared with the existing in the literature method. The electron-positron invariant mass dependence of the branching ratio and various asymmetries is calculated. The branching ratio, longitudinal polarization fraction of the \bar{K}^{*0} meson, transverse asymmetry $A_T^{(2)}$ and forward-backward asymmetry are compared with data from Belle and CDF, and predictions for experiments at LHCb are made.

PACS numbers: 13.20.He, 13.25.Hw, 12.40.Vv

I. INTRODUCTION

The investigation of rare B decays induced by the flavor-changing neutral current (FCNC) transitions $b \to s$ and $b \to d$ represents an important test of the standard model (SM) and its extensions (see [1] for a review).

Among the rare decays, the process $b \to s l^+ l^-$, where the virtual photon is converted to the lepton pair, is of considerable interest. This decay proceeds through a loop (penguin) diagram, to which high-mass particles introduced in various extensions to the SM may contribute with sizable amplitudes. In this decay the angular distributions and lepton polarizations can probe the chiral structure of the matrix element [2,8] and thereby effects of the new physics (NP) beyond the SM.

In order to unambiguously measure effects of NP in the observed process $B_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) l^+ l^-$ ($l = e, \mu$), mediated by $b \to s l^+ l^-$ decay, one needs to calculate the SM predictions with a high accuracy. The amplitude in the SM consists of the short-distance (SD) and long-distance (LD) contributions. The former are expressed in terms of matrix elements of several low-lying resonances [2,8], and the latter are parameterized in terms of matrix elements of several hadronic matrix elements at energy scales $\sim m_\gamma, m_t$. The LD effects describing the hadronization process are expressed in terms of matrix elements of several $b \to s$ operators between the initial B and the K^* final state. These hadronic matrix elements are parameterized in terms of form factors [2,8] that are calculated in various approaches (see, e.g., [2,10]).

The additional LD effects, originating from intermediate vector resonances $\rho(770), \omega(782), \phi(1020), J/\psi(1S), \psi(2S), \ldots$, in general, may complicate theoretical interpretation and make it more model dependent. The vector resonances modify the amplitude and thus may induce, for example, the right-handed currents which are absent in the SM.

Present experimental studies [11–13] of the $B \to K^* l^+ l^-$ decay aim at the search of effects of the NP in the whole region of dilepton invariant mass $m_{ee} \equiv \sqrt{q^2}$ GeV (here $q = q_+ + q_-$). In these analyses certain cuts are applied in order to exclude a rather big charmonia contribution.

Recently also the region of small dilepton invariant mass, $m_{ee} \lesssim 1$ GeV, attracted attention [2], as having a potential for searching signatures of the NP. The authors of [14] analyzed the azimuthal angular distribution in the decay $B^0 \to \bar{K}^{*0} l^+ l^-$ in this region, to test the possibility to measure this distribution at the LHCb. They have shown the feasibility of measurements with small systematic uncertainties. In Ref. [15] the influence of the low-lying resonances $\rho(770), \omega(782)$ and $\phi(1020)$ on differential branching ratio, polarization fraction of the K^{*0} and transverse asymmetry $A_T^{(2)}$ has been studied.

In the present paper we extend calculations of [12] to the whole region of dilepton invariant mass up to $m_{ee}^{max} = m_B - m_{K^*} = 4.39$ GeV. The effective SM Hamiltonian with the Wilson coefficients in the next-to-next-to-leading order (NNLO) approximation is applied. The LD effects mediated by the resonances, i.e., $B^0 \to \bar{K}^{*0} V \to \bar{K}^{*0} e^+ e^-$ with $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), \ldots$, are included explicitly in terms of the helicity amplitudes of the decays $B^0 \to \bar{K}^{*0} V$. The information on the latter is taken from experiments if available; otherwise it is taken from theoretical predictions.

The fully differential angular distribution over the three angles and dilepton invariant mass for the four-body decay $B_d^0 \to K^- \pi^+ e^+ e^-$ is analyzed. We define a convenient set of asymmetries which allows one to extract these asymmetries from the angular distribution once sufficient statistics is accumulated. These asymmetries may have sensitivity to various effects of the NP, although in order to see signatures of these effects, the resonance

*Electronic address: korchin@kipt.kharkov.ua
†Electronic address: koval@kipt.kharkov.ua
contribution should be accurately evaluated.

One of the ingredients in calculation of the resonance contribution is the transition vertex $V\gamma$. This vertex is conventionally treated in the vector-meson-dominance (VMD) model. In the present paper we apply two versions of the VMD model (called subsequently VMD1 and VMD2) which result in rather different $V\gamma$ vertices, in particular, far from the vector-meson mass shell $q^2 = m_V^2$. Specifically, due to explicit gauge-invariant construction of the VMD2 Lagrangian the $V\gamma$ transition is suppressed in the region $q^2 < m_V^2$ (for $V = J/\psi, \psi(2S), \ldots$). This observation may be important for estimation of resonance contribution to those asymmetries, which are small in the SM.

One should mention that the $c\bar{c}$ vector resonances $J/\psi, \psi(2S), \ldots$ have been included earlier in Refs. [16] in the analysis of the $B^0 \to K^{*0}\mu^+\mu^-$ decay. This method of including resonances has been originally suggested in [17]. In order to see sensitivity of observables to the method of including the $c\bar{c}$ resonances, we perform calculations using the two methods, and compare the results.

Results of the present calculations are compared with the recent data from Belle (KEKB) and CDF (Tevatron) experiments for the differential branching, asymmetry A_q^{\perp}, longitudinal polarization fraction of K^* and forward-backward asymmetry.

The paper is organized as follows. In Sec. II A the fully differential angular distribution is discussed. In Section II B one-dimensional distributions and definition of asymmetries are defined. Section II C contains expressions for the transversity amplitudes in framework of the SM. The models of vector-meson dominance and contributions of vector resonances to the amplitudes are discussed in Sec. II D. Results for the dependence of observables on the invariant mass squared are presented in Sec. II E In Sec. II B we compare two approaches to inclusion of vector resonances in the amplitudes of the $B_d^0 \to K^-\pi^+\pi^-\pi^0$ decay. In Sec. II F we draw conclusions. In Appendix A some details of the calculation of the matrix element and the model of the $B \to K^*$ transition form factors are described. Appendix B deals with calculation of the $\bar{B}_d^0 \to \bar{K}_d^{*0}V$ amplitudes for the off-mass-shell vector meson V.

II. ANGULAR DISTRIBUTIONS AND AMPLITUDES FOR THE $B_d^0 \to K^{*0}e^+e^-$ DECAY

A. Differential decay rate

The decay $\bar{B}_d^0 \to \bar{K}_d^{*0}e^+e^-$, with $\bar{K}_d^{*0} \to K^-\pi^+$ on the mass shell [22], is completely described by four independent kinematic variables: the electron-positron pair invariant-mass squared, q^2, and the three angles θ_l, θ_K, ϕ. In the helicity frame (Fig. 1), the angle θ_l is defined as the angle between the directions of motion of $e^+(K^-)$ in the $\gamma^*(K^{*0})$ rest frame and the $\gamma^*(K^{*0})$ in the \bar{B}_d^0 rest frame. The azimuthal angle ϕ is defined as the angle between the decay planes of $\gamma^* \to e^+e^-$ and $K^{*0} \to K^-\pi^+$ in the \bar{B}_d^0 rest frame. The fully differential angular distribution in these coordinates is given by

$$W(q^2, \theta_l, \theta_K, \phi) \equiv \frac{d^4 \Gamma}{dq^2 d\cos \theta_l d\cos \theta_K d\phi} \frac{d\Gamma}{dq^2} = \frac{9}{64\pi} \sum_{k=1}^{9} \alpha_k(q^2) g_k(\theta_l, \theta_K, \phi),$$

where the angular terms g_k are defined as

$$g_1 = 4\sin^2 \theta_l \cos^2 \theta_K, \quad g_2 = (1 + \cos^2 \theta_l) \sin^2 \theta_K, \quad g_3 = \sin^2 \theta_l \sin^2 \theta_K \cos 2\phi,$$

$$g_4 = -2\sin^2 \theta_l \sin^2 \theta_K \sin 2\phi, \quad g_5 = -\sqrt{2} \sin 2\theta_l \sin 2\theta_K \cos \phi, \quad g_6 = -\sqrt{2} \sin 2\theta_l \sin 2\theta_K \sin \phi,$$

$$g_7 = 4\cos \theta_l \sin^2 \theta_K, \quad g_8 = -2\sqrt{2} \sin \theta_l \sin 2\theta_K \cos \phi, \quad g_9 = -2\sqrt{2} \sin \theta_l \sin 2\theta_K \sin \phi,$$

and the amplitude terms α_k as

$$\alpha_1 = |a_0|^2 = f_L, \quad \alpha_2 = |a_L|^2 + |a_\perp|^2 = f_\perp + f_L, \quad \alpha_3 = |a_\perp|^2 - |a_L|^2 = f_\perp - f_L, \quad \alpha_4 = \text{Im} (a_L a_\perp^*), \quad \alpha_5 = \text{Re} (a_0 a_L^*),$$

$$\alpha_6 = \text{Im} (a_0 a_\perp^*), \quad \alpha_7 = \text{Re} (a_L a_\perp L - a_\perp R a_L^*), \quad \alpha_8 = \text{Re} (a_L a_\perp L - a_0 R a_\perp^*), \quad \alpha_9 = \text{Im} (a_0 a_\perp L - a_0 R a_\perp^*),$$

where $\bar{q}^2 \equiv q^2/m_B^2$, m_B is the mass of the B_d^0 meson, and

$$\frac{d\Gamma}{dq^2} = m_B N^2 \bar{q}^2 \sqrt{\lambda} (|a_0|^2 + |a_L|^2 + |a_\perp|^2).$$

By using (3)

$$a_i a_j^* \equiv a_iL(q^2)a_jL^*(q^2) + a_iR(q^2)a_jR^*(q^2),$$

FIG. 1: Definition of helicity angles θ_l, θ_K, and ϕ, for the decay $\bar{B}_d^0 \to \bar{K}_d^{*0}e^+e^-$.
Here \(i, j = (0, \parallel, \perp) \), we have neglected the electron mass \(m_e \) and \(A_{0L(R)}, A_{\parallel L(R)} \) and \(A_{\perp L(R)} \) are the complex decay amplitudes of the three helicity states in the transversity basis, \(f_L, f_{\parallel} \) and \(f_\perp \) are polarization parameters of the K* meson, \(f_L + f_{\parallel} + f_\perp = 1, \hat{\lambda} \equiv \lambda(1, q^2, \hat{m}_{K*}^2) = (1 - \hat{q}^2)^2 - 2(1 + \hat{q}^2)\hat{m}_{K*}^2 + \hat{m}_{K*}^4, \hat{m}_{K*} = m_{K*}/m_B \), where \(m_{K*} \) is the mass of the K* meson, and

\[
N = |V_{tb}V_{ts}^*| G_F m_B^2 \alpha_{\text{em}} \sum_{j} |A_j|^2.
\]

Here, \(V_{ij} \) are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements \([1] \), \(G_F \) is the Fermi coupling constant, \(\alpha_{\text{em}} \) is the electromagnetic fine-structure constant.

With its rich multidimensional structure, the differential decay rate in Eq. \([11] \) has sensitivity to various effects modifying the SM, such as CP violation beyond the CKM mechanism and/or right-handed currents. Given sufficient data, all \(\alpha_k \) can, in principle, be completely measured from the full angular distribution in all three angles \(\theta_1, \theta_K, \) and \(\phi \).

B. One-dimensional angular distributions and asymmetries

The one-dimensional angular distributions in \(\cos \theta_1 \) and \(\cos \theta_K \) simply are

\[
\mathcal{W}_{\theta_1}(q^2, \cos \theta_1) \equiv \frac{d^2 \Gamma}{dq^2 d \cos \theta_1} \frac{d \Gamma}{dq^2} = \frac{3}{4} f_L (1 - \cos^2 \theta_1) + \frac{3}{8} (1 - f_L) (1 + \cos^2 \theta_1) + \frac{\hat{A}_1^{(1)}{q^2}}{dq^2} \cos \theta_1
\]

and

\[
\mathcal{W}_{\theta_K}(q^2, \cos \theta_K) \equiv \frac{d^2 \Gamma}{dq^2 d \cos \theta_K} \frac{d \Gamma}{dq^2} = \frac{3}{2} f_L \cos^2 \theta_K + \frac{3}{4} (1 - f_L) (1 - \cos^2 \theta_K),
\]

where \(\frac{\hat{A}_1^{(1)}{q^2}}{dq^2} \) is the normalized lepton forward-backward asymmetry

\[
\frac{d \hat{A}_1^{(1)}{q^2}}{dq^2} = \int_{-1}^{1} \text{sgn}(\cos \theta_1) \mathcal{W}_{\theta_1}(q^2, \cos \theta_1) \, d \cos \theta_1
\]

\[
= \frac{3}{2} \text{Re}(a_{\parallel L} a_{\perp} - a_{\parallel R} a_{\perp}^*) \equiv A_{7\perp}.
\]

While \(\mathcal{W}_{\theta_K}(q^2, \cos \theta_K) \) depends only on \(f_L \), \(\mathcal{W}_{\theta_1}(q^2, \cos \theta_1) \) depends both on \(f_L \) and \(\frac{\hat{A}_1^{(1)}{q^2}}{dq^2} \).

The measurement of the lepton forward-backward asymmetry \(d \hat{A}_1^{(1)}{q^2}/dq^2 \) alone is not enough to fully reconstruct the \(\cos \theta_K \) distribution. One can then think about other asymmetries. For any fixed \(z \) in the interval \([-1, 1]\), one can define an asymmetry

\[
A_z \equiv \frac{E_z - P_z}{E_z + P_z},
\]

where

\[
E_z \equiv \int_{-1}^{1} \mathcal{W}_{\theta}(q^2, \cos \theta) \, d \cos \theta,
\]

and

\[
P_z \equiv \left(\int_{-1}^{1} d \cos \theta + \int_{-1}^{1} d \cos \theta \right) \mathcal{W}_{\theta}(q^2, \cos \theta).
\]

Measuring the asymmetry \(A_z \), for \(z = \pm 0.596 \), \((\cos^3 \theta_1 + 3 \cos \theta_1 - 2 = 0) \), we can find the fraction of the longitudinal polarization of the K* meson

\[
A_z \approx 3(2z - 1) n_L \approx 0.576 n_L,
\]

Similarly, measuring the asymmetry \(A_{xK} \) for \(z = z_K = 2 \cos^2 \phi - 0.347 \), \((\cos^3 \theta_K - 3 \cos \theta_K + 1 = 0) \), we can find the fraction of the longitudinal polarization of the K* meson

\[
A_{xK} \approx 3(2z - 1) n_L \approx -0.916 n_L.
\]

Finally, the one-dimensional angular distribution in the angle \(\phi \) between the lepton and meson planes takes the form

\[
\mathcal{W}_{\theta}(q^2, \phi) \equiv \frac{d^2 \Gamma}{dq^2 d \phi} \frac{d \Gamma}{dq^2} = \frac{1}{2\pi} \left(1 + \frac{1}{2} \left(1 - f_L \right) \mathcal{A}_T^{(2)} + P_{2\phi} \right),
\]

where the asymmetry \(\mathcal{A}_T^{(2)}(q^2) \) is sensitive to new physics from right-handed currents, and the amplitude \(A_{\text{Im}}(q^2) \) is sensitive to complex phases in the hadronic matrix elements. Sometimes \(\mathcal{A}_T^{(2)}(q^2) \) is called transverse asymmetry \([2]\).

Measurement of the angular distribution in the azimuthal angle \(\phi \) allows one to determine the quantities \((1 - f_L) \mathcal{A}_T^{(2)}(q^2) \) and \(A_{\text{Im}}(q^2) \):

\[
A_3 \equiv \left(\int_{0}^{\pi/4} d \phi - \int_{\pi/4}^{3\pi/4} d \phi + \int_{3\pi/4}^{5\pi/4} d \phi \right)
\]

\[
\mathcal{W}_{\theta}(q^2, \phi) \equiv \left(\int_{0}^{\pi/4} d \phi + \int_{\pi/4}^{3\pi/4} d \phi \right) \mathcal{W}_{\theta}(q^2, \phi)
\]

\[
= \frac{1}{\pi} \left(1 - f_L \right) \hat{A}_T^{(2)} = \frac{f_{\perp} - f_{\parallel}}{\pi}.
\]
\[A_4 \equiv \left(\int_0^{\pi/2} d\phi - \int_{\pi/2}^{\pi} d\phi + \int_{3\pi/2}^{2\pi} d\phi \right) W_{\phi}(\hat{q}^2, \phi) = -2\pi A_{1\text{Im}}. \] (16)

Measurement of the azimuthal angle dependence of the forward-backward asymmetry for mesons

\[\frac{d^2 A_{\text{FB}}^{(K)}}{dq^2 d\phi} = \frac{1}{4\pi} \int_{-1}^{1} \text{sgn}(\cos \theta_K) \, d\cos \theta_K \left(\int_0^{\pi/2} d\phi \right) W_{\phi}(q^2, \theta, \phi) \]

will allow one to find \(\text{Re}(a_0 a_{+}^*) \) and \(\text{Im}(a_0 a_{+}^*) \)

\[A_5 \equiv \left(\int_0^{\pi/2} d\phi - \int_{\pi/2}^{3\pi/2} d\phi + \int_{3\pi/2}^{2\pi} d\phi \right) \frac{d^2 A_{\text{FB}}^{(K)}}{dq^2 d\phi} = -\sqrt{2} \text{Re}(a_0 a_{+}^*), \] (18)

\[A_6 \equiv \left(\int_0^{\pi} d\phi - \int_{\pi}^{2\pi} d\phi \right) \frac{d^2 A_{\text{FB}}^{(K)}}{dq^2 d\phi} = -\sqrt{2} \text{Im}(a_0 a_{+}^*). \] (19)

Measurement of the azimuthal angle dependence of the forward-backward asymmetry for \(K^- \) mesons

\[\frac{d^2 A_{\text{FB}}^{(K)}}{dq^2 d\phi} = \int_0^{1} d\cos \theta_K \int_{-1}^{1} \text{sgn}(\cos \theta_K) \, d\cos \theta_K W(q^2, \theta, \phi) \]

will allow one to find \(\text{Re}(a_{\text{eff}} a_{+}^*) - a_{\text{eff}} a_{+}^*) \) and \(\text{Im}(a_{\text{eff}} a_{+}^*) - a_{\text{eff}} a_{+}^*) \)

\[A_8 \equiv \left(\int_0^{\pi/2} d\phi - \int_{\pi/2}^{\pi} d\phi + \int_{3\pi/2}^{2\pi} d\phi \right) \frac{d^2 A_{\text{FB}}^{(K)}}{dq^2 d\phi} \]

\[= -\frac{3\sqrt{2}}{4} \text{Re}(a_{\text{eff}} a_{+}^* - a_{\text{eff}} a_{+}^*). \] (21)

C. Transversity amplitudes

The nonresonant amplitudes follow from the matrix element of the \(B_d^0(p) \to K^{*0}(k, \epsilon) e^+(q_+^*) e^-(q_-^*) \) process in Eq. (11),

\[A_{0\text{NR}} = \frac{C_0(q^2)}{2 m_K \sqrt{q^2}} \left(C_{9\gamma}^{\text{eff}} + C_{10A} \right) \]

\[+ \frac{2\hat{m}_b}{q^2} (C_{7\gamma}^{\text{eff}} - C_{\gamma\gamma}^{\text{eff}} \kappa_0(q^2)), \] (23)

\[A_{\|, L, R}^{\text{NR}} = -\sqrt{2} C_{\|}(q^2) \left(C_{9\gamma}^{\text{eff}} + C_{10A} \right) \]

\[+ \frac{2\hat{m}_b}{q^2} (C_{7\gamma}^{\text{eff}} + C_{\gamma\gamma}^{\text{eff}} \kappa_\perp(q^2)), \] (24)

\[A^{\text{NR}}_{\perp, L, R} = \sqrt{2} \lambda C_\perp(q^2) \left(C_{9\gamma}^{\text{eff}} + C_{10A} \right) \]

\[+ \frac{2\hat{m}_b}{q^2} (C_{7\gamma}^{\text{eff}} + C_{\gamma\gamma}^{\text{eff}} \kappa_\perp(q^2)), \] (25)

where the form factors enter as

\[C_{0}(q^2) = (1 - q^2 - \hat{m}_K^2)(1 + \hat{m}_K^2)A_1(q^2) \]

\[- \frac{\lambda}{1 + \hat{m}_K^2} A_2(q^2), \] (26)

\[C_{\|}(q^2) = (1 + \hat{m}_K^2)A_1(q^2), \] (27)

\[C_\perp(q^2) = \frac{V(q^2)}{1 + \hat{m}_K^2}, \] (28)

\[\kappa_0(q^2) \equiv \left((1 - \hat{q}^2 + 3\hat{m}_K^2)(1 + \hat{m}_K^2)T_2(q^2) \right) \]

\[+ \frac{\lambda}{1 - \hat{m}_K^2} T_3(q^2) \left((1 - \hat{q}^2 - \hat{m}_K^2) \right)^{-1}, \] (29)

\[\kappa_\perp(q^2) \equiv \frac{T_2(q^2)}{A_1(q^2)} (1 - \hat{m}_K^2), \] (30)
In the above formulas the definition \(\hat{m}_b \equiv m_b(\mu)/m_B, \hat{m}_s \equiv m_s(\mu)/m_B \) are used, and \(A_1(q^2), A_2(q^2), V(q^2), T_1(q^2), T_2(q^2), T_3(q^2) \) are the \(B \to K^* \) transition form factors, specified in Appendix A.

D. Resonant contribution

Next, we implement the effects of LD contributions from the decays \(B_d^0 \to K^{*0} e^+ e^- \), where \(V = \rho, \omega, \phi, J/\psi(1S), \psi(2S), \ldots \) mesons, followed by \(V \to e^+ e^- \) in the decay \(B_d^0 \to K^{*0} e^+ e^- \) (see Fig. 2). We apply vector-meson dominance (VMD) approach. In general, the \(V \gamma \) transition can be included into consideration using various versions of VMD model. In the “standard” version (see, e.g. [19], chapter 6), the \(V \gamma \) transition vertex can be written as

\[
\langle \gamma(q); \mu|V(q); \nu \rangle = -ef_V V_q m_V g^{\mu\nu},
\]

where \(q \) is the virtual photon (vector meson) four-momentum, \(g^{\mu\nu} \) is the metric tensor, \(Q_V \) is the effective electric charge of the quarks in the vector meson:

\[
Q_\rho = \frac{1}{\sqrt{2}}, \quad Q_\omega = \frac{1}{3\sqrt{2}}, \quad Q_\phi = -\frac{1}{3},
\]

\[
Q_{J/\psi} = Q_{\psi(2S)} = \ldots = \frac{2}{3}.
\]

The decay constants of neutral vector mesons \(f_V \) can be extracted from their electromagnetic decay width, using

\[
\Gamma_V \to e^+ e^- = \frac{4\pi\alpha_e^2 m_V}{3m_V} f_V^2 Q_V^2.
\]

This version of VMD model will be called VMD1. The vertex (32) comes from the transition Lagrangian

\[
\mathcal{L}_{\gamma V} = -e A^\mu \sum_V f_V V^\nu V_{\mu\nu}.
\]

A more elaborate model (called hereafter VMD2) originates from Lagrangian

\[
\mathcal{L}_{\gamma V} = -\frac{e}{2} F^{\mu\nu} \sum_V f_V V^\nu V_{\mu\nu}
\]

where \(V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu \) and \(F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu \) is the electromagnetic field tensor.

Lagrangian (30) is explicitly gauge invariant, unlike Eq. (35), and gives rise to to the \(V \gamma^* \) vertex

\[
\langle \gamma(q); \mu|V(q); \nu \rangle = -\frac{ef_V V_q}{m_V} (q^2 g^{\mu\nu} - q^\mu q^\nu),
\]

This transition vertex is suppressed at small invariant masses, \(q^2 \ll m_V^2 \), i.e. in the region far from the vector-meson mass shell.

Note that these two versions of the VMD model have been discussed in Refs. [20, 21]. The VMD2 version naturally follows from the Resonance Chiral Theory [22]; in this context VMD2 coupling has been applied in [23] for studying electron-positron annihilation into \(\pi^+ \pi^- \gamma \) and \(\pi^0 \gamma \gamma \) final states.

Parameters of vector resonances are presented in Table I.

\(V \)	\(m_V \) (MeV)	\(\Gamma_V \) (MeV)	\(\Gamma_{\gamma V \to \pi^+ \pi^-} \) (keV)	\(f_V \) (MeV)
\(\rho^0 \)	775.49	149.1	7.04	221.2
\(\omega \)	782.65	8.49	0.60	194.7
\(\phi \)	1019.455	4.26	1.27	228.6
\(J/\psi \)	3096.916	0.0929	5.55	414.6
\(\psi(2S) \)	3686.09	0.304	2.35	295.6
\(\psi(3770) \)	3772.92	27.3	0.265	100.4
\(\psi(4040) \)	4039	80	0.86	187.2
\(\psi(4160) \)	4153	103	0.83	186.5
\(\psi(4415) \)	4421	62	0.58	160.8

Based on VMD approach, we obtain the total amplitude including nonresonant and resonant parts,

\[
A_{0,LR} = \frac{1}{2\hat{m}_{K^*}} \sqrt{q^2} \left(C_{0}(q^2) \left(C_{0V} + C_{10A} \right) + 2\hat{m}_b \left(C_{\gamma V}^{\text{eff}} - C_{\gamma V}^{\text{eff}} \right) \right.

\[
+ \frac{8\pi^2}{3} \sum_V C_V D_{\gamma V}^{-1}(q^2) \left(1 - q^2 - \hat{m}_{K^*}^2 \right) S_Y^V
\]

\[

\left. + \hat{x} \left(S_Y^V \right) \right),
\]

\[
A_{\|,LR} = -\sqrt{2} \left(C_{\|}(q^2) \left(C_{\|V}^{\text{eff}} + C_{10A} \right)

\[
+ 2\hat{m}_b \left(C_{\gamma V}^{\text{eff}} - C_{\gamma V}^{\text{eff}} \right) \right)

\[
+ \frac{8\pi^2}{3} \sum_V C_V D_{\gamma V}^{-1}(q^2) S_Y^V \right)
\]

\[

\right).
\]

\[

\right).
\]
\[
A_{\perp L,R} = \sqrt{2\lambda} \left(C_{\perp} (q^2) \left(C_{\text{eff}} + C_{10_A} \right) + 2m_\perp \eta V \left(C_{\gamma_7} + C_{\gamma_7} \right) \kappa (q^2) \right) + 4\pi^2 \sum V C_V D_V^{-1} (q^2) S_V^i, \tag{40}
\]

where

\[
D_V(q^2) = q^2 - m_V^2 + i m_V \Gamma_V(q^2)
\]
is the usual Breit-Wigner function for the \(V \) meson resonance shape with the energy-dependent width \(\Gamma_V(q^2) \).

\[
[\Gamma_V(q^2) = \Gamma_V(q^2)/m_B, m_V \equiv m_V/m_B, \Gamma_V \equiv \Gamma_V/m_B, m_V(\Gamma_V) \text{ is the mass (width) of a } V \text{ meson.}
\]

\[
C_V = \frac{Q_V m_V f_V}{q^2} \text{ (VMD1)}, \quad C_V = \frac{Q_V f_V}{m_V} \text{ (VMD2)}.
\tag{41}
\]

In Eqs. (38)-(40), \(S_V^i \ (i = 1, 2, 3) \) are the invariant amplitudes of the decay \(B_d^0 \to K^{*0} V \). These amplitudes are calculated in Appendix B.

The energy-dependent widths of light vector resonances \(\rho, \omega, \phi \) are chosen as in Ref. [13]. The updated branching ratios for resonances decays to different channels are taken from [24]. For the \(c\bar{c} \) resonances \(J/\psi, \psi(2S) \), we take the constant widths.

In order to calculate the resonant contribution to the amplitude of the \(B_d^0 \to K^{*0} \rho^+ \rho^- \) decay, one has to know the amplitudes of the decays \(B_d^0 \to K^{*0} \rho, B_d^0 \to K^{*0} \omega, B_d^0 \to K^{*0} \phi \). We use the experimental prediction [24] for the decay amplitudes. At the same time, we are not aware of a similar prediction for the higher \(c\bar{c} \) resonances, such as \(\psi(3770) \), in order to do not include contribution of these resonances to amplitudes.

The parameters of the model are indicated in Table II. The SM Wilson coefficients have been obtained at the scale \(\mu = 4.8 \text{ GeV} \) to NNLO accuracy. In our notation (see Appendix A) these coefficients are given in Table II. In the numerical estimations, we use the form factors from the light-cone sum rules (LCSR) calculation [2].

III. RESULTS OF THE CALCULATION FOR THE \(B_d^0 \to K^{*0} e^+ e^- \) DECAY

A. Dependence of observables on dilepton invariant mass squared

In Figs. 3 we present results for the dependence of various observables in the \(B_d^0 \to K^{*0} e^+ e^- \) decay on the dilepton invariant mass squared. The interval of \(m_{ee} = \sqrt{q^2} \) is taken from 10 MeV to \(m_{c\bar{c}} - m_{K^*} \approx 4.384 \text{ GeV} \). The phase \(\delta_V \) is chosen zero for all resonances except the \(\phi \) meson, for which \(\delta_V = 2.82 \text{ rad} \) (see Table IV).

As is seen in Fig. 3 predictions of VMD1 and VMD2 models differ for \(f_L, A_{FB} \) and \(A_T^{(2)} \) at small \(q^2 \lesssim 2 \text{ GeV}^2 \), while for the differential branching at the bigger values, \(q^2 \lesssim 8 \text{ GeV}^2 \). At the bigger values of invariant mass, VMD1 and VMD2 yield close results. Note that the difference between predictions of these two models is especially large for the high-lying resonances \(J/\psi, \psi(2S) \).

In addition, VMD1 and VMD2 models lead to a qualitatively different behavior of longitudinal fraction \(f_L \) at small \(q^2 \) (the upper right panel in Fig. 3). The data demonstrate that \(f_L \to 0 \) at very small \(q^2 \), that is in agreement with calculation in the VMD2 model. In general, from comparison with data the VMD2 version seems somewhat more preferable.

Let us comment on the coefficient \(A_T^{(2)} \) in the azimuthal distribution \(\Delta T \), plotted in Fig. 3 (the lower right panel). According to the definition \(\Delta T \) and due to the properties of the \(K^* \) polarization fractions \(0 \leq f_{||,\perp} \leq 1 \), the coefficient \(A_T^{(2)} \) is constrained:

\[
-1 \leq A_T^{(2)} \leq 1.
\tag{42}
\]

The calculation in the SM with resonances yields the values of \(A_T^{(2)} \) which are much smaller than the data (see Fig. 3). In this connection we note that the experimental uncertainties are still big, and it is not clear if the measured \(q^2 \)-dependence of \(A_T^{(2)} \) indeed lies in the limits 42.
demonstrates a very big resonance contribution.

interval of invariant masses, shown in the 2nd column, ratio in Table IV. Calculation over the whole allowed charmonia resonances we calculate the total branching ratio without resonances taken into account. Dashed and dotted lines are calculated with account of resonances in the VMD1 and VMD2 versions of VMD model respectively. The form factors are taken from [9]. The data from Belle (KEKB) [12] calculation without resonances taken into account. Dashed and dotted lines are calculated with account of resonances in the

FIG. 3: The upper row: differential branching ratio (left), longitudinal polarization fraction of K^+ meson (right); the lower row: forward-backward asymmetry A_{FB} (left), coefficient $A^{(2)}_T$ (right) as functions of q^2. Solid line corresponds to the SM calculation without resonances taken into account. Dashed and dotted lines are calculated with account of resonances in the VMD1 and VMD2 versions of VMD model respectively. The form factors are taken from [9]. The data from Belle (KEKB) [12] and CDF (Tevatron) [13] are shown by the circles and boxes respectively. Due to the choice of reference frame in Fig. 1, the forward-backward asymmetry A_{FB} in Refs. [12, 13] is related to asymmetry in Eq. (12) via $A_{FB} = A_{FB}^{(1)} - A_{FB}^{(0)}$. The dash-double-dot vertical lines in the figure for differential branching ratio indicate “charmonia veto” (see the text).

TABLE IV: Branching ratio for the decay $B^0_d \rightarrow K^{*0}e^+e^-$ calculated within the limits: $m_{ee}^\text{min} = 30$ MeV, $m_{ee}^\text{max} = m_B - m_{K^*}$. The 2nd column: for the whole interval of invariant mass, the 3rd column: with the “charmonia veto” (see the text).

model	BR (10^-6)
no reson.	1.32
no veto with veto	1.01
SM, res. VMD1	134.2
	49.6
SM, res. VMD2	85.6
	1.03

Table standard deviations ± 10 GeV and ± 11 GeV, respectively.

charmnia resonances we calculate the total branching ratio in Table IV. Calculation over the whole allowed interval of invariant masses, shown in the 2nd column, demonstrates a very big resonance contribution.

Usually in experimental analyses [11, 13] certain cuts are applied in order to cut out the charmonia contributions (the so-called charmonia veto). In the 3rd column of Table IV we used the integration region with the following cut out intervals taken as in the BaBar analysis [11] for the e^+e^- pairs: $8.11 \leq q^2 \leq 10.03$ GeV2 and $12.15 \leq q^2 \leq 14.11$ GeV2.

As is seen, the $c\bar{c}$-resonances contribution is completely eliminated. The result obtained in the VMD2 model becomes close (within a few percent) to the calculation without resonances. At the same time the VMD1 calculation still yields a big value of branching ratio, which is due to the steep rise of the differential branching at small invariant masses in Fig. 5.

The calculations, presented in Table IV, are the predictions of our model for the current experiments carried out at LHCb [14]. We can also compare predictions (with veto) in Table IV with experimental measurements: $(1.07^{+0.11}_{-0.09} \pm 0.09) \times 10^{-6}$ for the $B \rightarrow K^* \ell^+ \ell^-$ decay ($\ell = e, \mu$) at Belle [12], $(1.02 \pm 0.10 \pm 0.06) \times 10^{-6}$ for the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay at CDF [13], and
(1.02^{+0.30}_{-0.28} \pm 0.06) \times 10^{-6}$ for the $B^0 \rightarrow K^{*0} e^+ e^-$ decay at BaBar [11].

In Figs. 4 we present asymmetries calculated according to Eqs. (13), (19), (18), (19), (21), (22). Asymmetry $A_3 = \frac{1}{2} (1 - f_L) A_T^{(2)}$ takes sizable values at large invariant masses, while in the wide region of m_{ee} this observable is small, of the order of 10^{-2} (see also Figs. 3 for $A_T^{(2)}$). Account of resonances change it mainly in the vicinity of the resonance positions, i.e. at $m_{ee} \approx m_{V}^\ast$.

As for A_5 and A_8, they take sizable values in the whole region of q^2 (see Figs. 4). The resonances give considerable contribution, especially to A_5. One of features is the point q^2_0, where these asymmetries cross zero. Calculation shows that the zero point, $q^2_0 \sim 1.5$ GeV2, is almost insensitve to the presence of the resonances. This feature makes these asymmetries convenient observables for experimental study, similarly to the forward-backward asymmetry A_{FB} in Fig. 3.

Some of the asymmetries are very small in the SM without resonances, in particular, $A_3 \equiv 0$, $A_4 \sim 10^{-4}$ and $A_6 \sim 10^{-3}$ (Figs. 4). Note that these asymmetries are determined by the imaginary part of the bilinear combinations of the amplitudes. The imaginary part of the amplitudes in the SM (without resonances) is determined by the u, d, s and c quark loop through the function $Y(q^2)$ [26], and therefore the imaginary part of the non-resonant amplitudes appears to be very small. Therefore in framework of the naive factorization, applied in the present work, it is not surprising that these asymmetries are small in the SM without resonances. Inclusion of the resonances changes behavior of these asymmetries in the wide region of invariant masses (see Figs. 4).

Recently the asymmetry $A_{1m} = -\frac{\pi}{2} A_4$ in the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay has been measured for the first time at CDF [13]. Note that the average values of this asymmetry over the q^2-ranges $[0.0 - 4.3]$ GeV2 and $[1.0 - 6.0]$ GeV2 are consistent with our calculations in framework of the SM.

One should note, that the amplitudes for the decay of B meson to two vector mesons are experimentally determined by the four polarization parameters, branching fraction and one overall phase δ^V_0 (the phase of the amplitude with zero helicity for decay $B \rightarrow K^*V$). As it is seen from Eqs. (25), (30) the contribution of resonances depends on the invariant amplitudes S^V. Values of these amplitudes are determined in Table 1, however their phases are defined with respect to the phase δ^V_0, which is experimentally known only for the decay $B \rightarrow K^*\phi$. For other resonances, the phase δ^V_0 is not known either experimentally or theoretically.

As is seen in Figs. 4 the asymmetries A_4 and A_8 essentially depend on the choice of the δ^V_0 phase. Thus, in order to unambiguously determine the resonance contribution to the process $B^0 \rightarrow K^{*0} (\rightarrow K^{-}\pi^+) \ell^+ \ell^-$, the phases δ^V_0 should be known for all vector resonances ρ, ω, ϕ, J/ψ, These phases can be found from experiments on B-meson decays through the interference with other B decays with the same final states, for example, $B^0 \rightarrow \phi K^{*0}$ and $B^0 \rightarrow \phi(K\pi)^{0}$, where $(K\pi)^{0}$ is the $J^P = 0^+$ $K\pi$ component [27].

B. Comparison of two approaches to including the resonances

Earlier in the literature [17] it has been suggested to combine the factorization assumption and VMD approximation in estimating LD effects for the B decays. This can be accomplished in an approximate manner through the substitution

$$C_{g\bar{V}} \rightarrow C_{g\bar{V}}^\text{eff} = \frac{3 \pi}{\alpha_{em}} C^{(0)} \sum_{\psi} k_{\psi} \hat{m}_{\psi} \hat{\Gamma}(\psi \rightarrow e^+ e^-) q^2 - m_{\psi}^2 + i m_{\psi} \hat{\Gamma}_\psi,$$

where the properties of the vector mesons $\psi = J/\psi(1S), \phi(2S), . . . , \psi(4415)$ are summarized in Table 1. $\hat{\Gamma}_\psi$ is the phase of the amplitudes $\Gamma_{\psi(0)}, C^{(0)} = 3 C_1 + C_2 + 3 C_3 + C_4 + 3 C_5 + C_6$, and the Wilson coefficients are presented in Table 11.

The last term in Eq. (13) describes the LD contribution of the real intermediate $c\bar{c}$ states, $k_{\psi} = |k_{\psi}| e^{i \delta_{\psi}}$ is the factor that the $B \rightarrow K^*\psi$ amplitude, calculated using naive factorization, must be multiplied by to get the measured $B \rightarrow K^*\psi$ rate. Under naive factorization, the branching ratio for $B \rightarrow K^*\psi$ is

$$BR(B \rightarrow K^*\psi) = m_B \tau_B \frac{\sqrt{\lambda(1, \hat{m}_{K^*}, \hat{m}_{\psi})}}{16\pi} \times \left(\frac{G_F m_B^2}{\sqrt{2}} \right)^2 \left| \frac{V_{tb} V_{ts} C^{(0)}}{3} \right|^2 \times \left(|X^\psi_0|^2 + |X^\psi_\parallel|^2 + |X^\psi_\perp|^2 \right),$$

where

$$X^\psi_0 = \frac{\hat{f}_\psi}{2 \hat{m}_{K^*} (1 + \hat{m}_{K^*})} \left((1 + \hat{m}_{K^*})^2 (1 - \hat{m}_{K^*}^2) - \hat{m}_{\psi}^2 \right) A_1(m_{\psi}^2) - \lambda(1, \hat{m}_{K^*}, \hat{m}_{\psi}^2) A_2(m_{\psi}^2),$$

$$X^\psi_\parallel = -\sqrt{2} \hat{m}_{\psi} \hat{f}_\psi (1 + \hat{m}_{K^*}) A_1(m_{\psi}^2),$$

$$X^\psi_\perp = \sqrt{2} \lambda(1, \hat{m}_{K^*}, \hat{m}_{\psi}^2) \hat{m}_{\psi} \hat{f}_\psi / (1 + \hat{m}_{K^*}) V(m_{\psi}^2).$$

Here, $\hat{f}_\psi \equiv f_\psi / m_B$.

We calculate the values of k_{ψ} for each $c\bar{c}$ resonance using experimental information from Tables 1 and 11 and equation

$$|k_{\psi}|^2 = \frac{BR(B \rightarrow K^*\psi)^\text{exp}}{BR(B \rightarrow K^*\psi)^\text{theor}}.$$
Using the form factors A_1, A_2, V in the LCSR model \cite{9} we find the values: $|k_{J/\psi}| = 0.894$, $|k_{\psi(2S)}| = 0.841$ and for the higher resonances the average of the $|k_{J/\psi}|$ and $|k_{\psi(2S)}|$ is used. The phase of k_ψ is chosen zero as in the factorization approach. Note, that the above values of the parameters k_ψ are considerably smaller than the values used in the earlier papers \cite{4,10,17}. Therefore we can expect the smaller resonance contribution to the differential branching and forward-backward asymmetry as compared with results of these papers.

Using Eqs. (13), (23), (25) we calculate the observables for the $B_d^0 \rightarrow K^{*0}e^+e^-$ decay. These results are compared with results of calculations performed in the previous sections, in which only J/ψ and $\psi(2S)$ resonances are included. This comparison may show sensitivity of the branching, K^* polarization fractions and asymmetries to the method of including the vector resonances.

Firstly, from Fig. 4 one sees that the two ways of including the resonances give very close predictions for differential branching, forward-backward asymmetry and asymmetry A_8 in the region of q^2 up to $m_{\psi(2S)}^2$. Note, that calculations of the branching and forward-backward asymmetry have been performed in Ref. \cite{4} using formulas analogous to Eqs. (43). Our results in Figs. 5 qualitatively agree with calculations in \cite{4}.

Secondly, in Fig. 6 we present asymmetries, which strongly depend on the method of including resonances. As for asymmetries $A_T^{(2)}$ and A_5, these two methods give essentially different predictions in the region of resonances J/ψ and $\psi(2S)$, while far from the resonance region, the predictions coincide with the non-resonant calculations. In the other asymmetries, A_4, A_6 and A_9, the two methods give different predictions not only in the resonance region but also at q^2 away from resonances.

IV. CONCLUSIONS

The rare FCNC decay $B_d^0 \rightarrow \bar{K}^{*0}(\rightarrow K^-\pi^+)e^+e^-$ has been studied in the whole region of electron-positron invariant masses up to $m_B - m_{K^*}$. The fully differential angular distribution over the three angles and dilepton invariant mass for the four-body decay $B_d^0 \rightarrow K^-\pi^+e^+e^-$ is analyzed. We defined a convenient set of asymmetries which allows one to extract them from measurement of the angular distribution once sufficient statistics is accumulated. We performed calculations of the differential branching ratio, polarization fractions of K^* meson and asymmetries. These asymmetries may have sensitivity to various effects of NP, although in order to see signatures of these effects the resonance contribution should be accurately estimated.

Contribution of the intermediate vector resonances in the process $B_d^0 \rightarrow \bar{K}^{*0}(\rightarrow K^-\pi^+)V$ with $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S)$, decaying into the e^+e^- pair, has been taken into account. Various aspects of theoretical treatment of this long-distance contribution have been studied.
The important aspect is the choice of the VMD model, describing the $V\gamma$ transition. We used two variants of the VMD model, called here VMD1 and VMD2 versions, in particular, the VMD2 one is explicitly gauge-invariant and yields a $V\gamma$ vertex which is suppressed at small values of the photon invariant mass far from the vectormeson mass shell. This is especially important in the treatment of the high-lying J/ψ and other $c\bar{c}$ resonances at values $q^2 \ll m_\gamma^2$. Some of the observables appeared to be rather sensitive to the choice of the $V\gamma$ vertex. Based on comparison of calculation with the recent data from Belle and CDF experiments we can conclude that the VMD2 version is somewhat more preferable.

For the vertex $B_d^0 \to K^{*0} V$ we used an off-mass-shell extension of the helicity amplitudes describing production of on-shell vector mesons. For the latter the experimental information is used if available, and otherwise theoretical predictions.

The total branching ratio of the decay $B_d^0 \to K^{*0}\pi^+\pi^-$ in the interval $30 \text{ MeV} \leq m_{ee} \leq m_{\rho} - m_{K^*}$ is calculated, and the resonance contribution is evaluated. The latter appeared to be very big, as expected. The calculated branching is $\text{BR} = 1.32 \times 10^{-6} (85.6 \times 10^{-6})$ without resonances (with resonances in VMD2 version). To cut out
the $c\bar{c}$-resonance contribution, we also applied the "charmonia veto" as is usually done in experimental analyses [11,13]. Then our prediction for the total branching becomes $BR = 1.01 \times 10^{-6}$ (1.03×10^{-6}) for the SM calculation without resonances (with resonances in VMD2 model).

All asymmetries are calculated in the whole region of invariant masses. The polarization asymmetry $A^{(2)}_1$ (and $A_5 = \frac{1}{3}(1 - f_L)A^{(2)}_1$) takes sizable values only at large m_{ee}. Account of resonances changes $A^{(2)}_1$ mainly in the vicinity of the resonances, i.e. at $m_{ee} \approx m_{\gamma\gamma}$. The asymmetries A_5 and A_8 take big values in the whole region of q^2, and resonances noticeably contribute, especially to A_8. An interesting feature of these asymmetries is their crossing zero at some q^2_0. This zero point, $q^2_0 \sim 1.5$ GeV2, turns out to be almost independent of the presence of resonances, and this property makes these asymmetries convenient observables for experimental study, similarly to the forward-backward asymmetry A_{FB}.

Some of the asymmetries are very small in the SM without resonances, in particular, $A_9 \equiv 0$, $A_4 \sim 10^{-4}$ and $A_8 \sim 10^{-3}$; inclusion of the resonances changes behavior of these asymmetries considerably.

Our calculations are compared with recent data [12,13] for q^2-dependence of the differential branching ratio, longitudinal polarization fraction of K^*, forward-backward asymmetry A_{FB} and transverse asymmetry $A^{(2)}_T$. On the whole, results of calculation are in reasonable agreement with the data.

We also compared predictions of our method with other existing in the literature method of including the $c\bar{c}$ resonances through a modification of the Wilson coefficient $C^{eff}_{V,\gamma\gamma}$ [17]. Our calculation shows that a few observables (differential branching ratio, forward-backward asymmetry and asymmetry A_{FB}) are independent of the calculation method, if the parameters $|k_\psi|$ in Eq. (63) are equal to: 0.894 for J/ψ, 0.841 for $\psi(2S)$ and 0.8765 for the higher $c\bar{c}$ resonances. The phase of k_ψ is chosen zero. These values are considerably smaller that the values used in [4,10,17].

At the same time there exist asymmetries, predictions for which are substantially different in these two methods, namely, $A^{(2)}_T$, A_5 are different in the vicinity of resonances J/ψ and $\psi(2S)$, while A_4, A_6, A_9 are different in the whole region of invariant masses. Thus measurement of the latter asymmetries may also be useful for selecting a more adequate method of including the long-distance resonance contribution to the $B^0_d \to K^{*0} (\to K^- \pi^+) \ell^+ \ell^-$ decay.

Calculations performed in the present work may be useful for experiments aiming at search of effects of the NP in the decay $B^0_d \to K^{*0} (\to K^- \pi^+) \ell^+ \ell^-$.

Appendix A: Matrix element and form factors

1. **Matrix element**

The effective Hamiltonian for the quark-level transition $b \to s e^+ e^-$ within the SM is well-known and can be taken, e.g., from Ref. [1]. It is expressed in terms of the local operators \mathcal{O}_i and Wilson coefficients C_i, where $i = 1, \ldots, 6, 7\gamma_1, 8g, 9V, 10A$.

The matrix element of this effective Hamiltonian for the nonresonant decay $B^0_d(p) \to K^{*0}(k, e) e^+(q_+ c) e^-(q_-)$ can be written, in the so-called naive factorization [1], as

$$\mathcal{M}_{NR} = \frac{G_F \alpha_{em}}{\sqrt{2} \pi} V_{ts} V_{tb} \left(\langle K^{*0}(k, e) \bar{s} \gamma_\mu P_L b | \bar{B}^0_d(p) \rangle \times (C_{eff}_V \bar{u}(q_-) \gamma^\mu v(q_+) + C_{10A} \bar{u}(q_-) \gamma^\mu \gamma_5 v(q_+) - \frac{2}{q^2} m_b \mu (k, \epsilon) \bar{K}^{*0}(k, e) \bar{s} i \sigma_{\mu\nu} q'' (C_{eff}_V P_R) + C_{eff}_V P_L) | \bar{B}^0_d(p) \rangle \bar{u}(q_-) \gamma^\nu v(q_+) \right). \quad (A1)$$

Here, $P_{LR} = (1 \pm \gamma_5)/2$ denote chiral projectors, and $\bar{m}_b(\mu)$ [\bar{m}_s(\mu)] is the running bottom (strange) quark mass in the MS scheme at the scale μ. Moreover, $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_\mu, \gamma_\nu]$, $q_\mu = (q_+ + q_-)_\mu$, $C_{eff}_V = C_{7\gamma} - (4C_3 - C_9)/9 - (4C_4 - C_8)/3$, $C_{eff}_V = C_{9V} + Y(q^2)$, where $Y(q^2)$ is given in Ref. [20]. Note that in the framework of the SM $\bar{m}_b(\mu) C_{eff}_V = \bar{m}_s(\mu) C_{eff}_V$.

The "barred" coefficients \bar{C}_i (for $i = 1, \ldots, 6$) are defined as certain linear combinations of the C_i, such that the \bar{C}_i coincide at leading logarithmic order with the Wilson coefficients in the standard basis [28]. The coefficients C_i are calculated at the scale $\mu = m_b$, in a perturbative expansion in powers of $\alpha_s(m_W)$, and are then evolved down to scales $\mu \sim m_b$, using the renormalization group equations.

The \overline{MS} masses $\bar{m}_b(\mu)$ and $\bar{m}_s(\mu)$ are calculated according to Refs. [29,30] and are given in Table III.

2. **Form factors of $B \to K^*$ transition**

The hadronic part of the matrix element in Eq. (A1) describing the $B \to K^{*0} e^+ e^-$ transition can be parametrized in terms of $B \to K^*$ form factors, which usually are defined as

$$\langle \bar{K}^{*0}(k, e) | \bar{s} \gamma_\mu b | \bar{B}(p) \rangle = \frac{2 V(q^2)}{m_B + m_{K^*}} \varepsilon_{\mu\alpha\beta} \epsilon^{\nu\rho} k^\alpha k^\beta,$$

$$\langle \bar{K}^{*0}(k, e) | \bar{s} \gamma_\mu \gamma_5 b | \bar{B}(p) \rangle = i \epsilon_\mu (m_B + m_{K^*}) A_1(q^2)$$

$$-i (\epsilon^* \cdot p)(p + k)_\mu \frac{A_2(q^2)}{m_B + m_{K^*}}$$

$$\times (A_3(q^2) - A_0(q^2)). \quad (A2)$$

$$-i (\epsilon^* \cdot p) \frac{2 m_{K^*}}{q^2}$$

$$\times (A_3(q^2) - A_0(q^2)). \quad (A3)$$
TABLE V: The parameters $r_{1,2}$, m_{K}^{2}, and m_{fit}^{2} describing the q^{2} dependence of the $B \to K^{*}$ form factors in the LCSR approach and $T_{3}(q^{2}) = \frac{m_{B}^{2} - m_{K^{*}}^{2}}{q^{2}} \left(\bar{T}_{3}(q^{2}) - T_{2}(q^{2}) \right)$. The fit equations to be used are given in the last column.

r_{1}	r_{2}	m_{K}^{2}, GeV2	m_{fit}^{2}, GeV2	Fit eq.	
V	0.923	0.511	(5.32)2	49.40	A6
A_{1}	0.290			40.38	A3
A_{2}	-0.084	0.342		52.00	A7
A_{0}	1.364	-0.090	(5.28)2	36.78	A6
T_{1}	0.823	-0.491	(5.32)2	46.31	A6
T_{2}	0.333			41.41	A8
\bar{T}_{3}	-0.036	0.368		48.10	A7

with

\[
A_{3}(q^{2}) = \frac{m_{B} + m_{K^{*}}}{2m_{K^{*}}}A_{1}(q^{2}) - \frac{m_{B} - m_{K^{*}}}{2m_{K^{*}}}A_{2}(q^{2}),
\]

\[
A_{0}(0) = A_{3}(0);
\]

\[
\langle K^{*}(k,\epsilon)| \bar{s}\sigma_{\mu\nu}q^{\nu}|B(p) \rangle = i\frac{2}{9} T_{1}(q^{2}) \varepsilon_{\mu\nu\alpha\beta} \epsilon_{\nu}^{*} P^{\alpha} k^{\beta},
\]

\[
\langle K^{*}(k,\epsilon)| \bar{s}\sigma_{\mu\nu}q^{\nu}|B(p) \rangle = T_{2}(q^{2}) (\epsilon_{\nu}^{*} P^{\mu} q - (\epsilon^{*} \cdot q) P_{\mu}) + T_{3}(q^{2}) (\epsilon^{*} \cdot q)(q_{\mu} - \frac{q^{2}}{P \cdot q} P_{\mu}),
\]

with $T_{1}(0) = T_{2}(0)$. In the above equations, $q = p - k$, $P = p + k$, $P^{2} = m_{B}^{2}$, $k^{2} = m_{K^{*}}^{2}$, ϵ^{*} is the polarization vector of the K^{*} meson, $\epsilon^{*} \cdot k = 0$, and $\varepsilon_{0123} = 1$.

The q^{2} dependence of the $B \to K^{*}$ form factors given in Table V is parametrized as

\[
F(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B}^{2}} + \frac{r_{2}}{1 - q^{2}/m_{fit}^{2}},
\]

\[
F(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{fit}^{2}} + \frac{r_{2}}{(1 - q^{2}/m_{fit}^{2})^{2}},
\]

\[
F(q^{2}) = \frac{r_{2}}{1 - q^{2}/m_{fit}^{2}},
\]

where the fit parameters $r_{1,2}$, m_{K}^{2}, and m_{fit}^{2} are shown in Table V.

Appendix B: Amplitudes of $B \to K^{*}V$ decays

An important ingredient of the resonant contribution is amplitude of the decay of B meson into two vector mesons, $B(p) \to V_{1}(q, \epsilon_{1}) + V_{2}(k, \epsilon_{2})$, with on-mass-shell meson V_{2} ($k^{2} = m_{2}^{2}$) and off-mass-shell meson V_{1} ($q^{2} \neq m_{1}^{2}$).

For the case of two on-mass-shell final mesons one can write the amplitude in the form

\[
\mathcal{M} = \frac{G_{F} m_{B}^{3}}{\sqrt{2}} |V_{CKM}| \left(S_{1} g_{\mu\nu} + \frac{S_{2}}{m_{B}^{2}} p_{\mu} p_{\nu} \right) - i \frac{S_{3}}{m_{B}^{2}} \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} k^{\beta} \epsilon_{\nu}^{*} \epsilon_{\beta}^{*},
\]

in terms of three invariant amplitudes S_{1}, S_{2} and S_{3}, V_{CKM} is a CKM factor. The quantities S_{1}, S_{2} and S_{3} may be complex and involve two types of phases, CP-conserving strong phases and CP-violating weak phases.

General, the invariant amplitudes are a sum of several interfering amplitudes, S_{1ij}, S_{2ij} and S_{3ij}, respectively. Then the phase structure of S_{1}, S_{2} and S_{3} is:

\[
S_{k} = \sum_{j} \left| S_{kj} \right| e^{i\varphi_{kj}} e^{i\delta_{kj}} \quad (k = 1, 2, 3),
\]

where φ_{ij}, φ_{2j}, and φ_{3j} are the CP-violating weak phases and δ_{ij}, δ_{2j}, and δ_{3j} are the CP-conserving strong phases.

Using CPT invariance, we can represent the matrix element for the charge-conjugate decay $B(p) \to \bar{V}_{1}(q, \epsilon_{1}) \bar{V}_{2}(k, \epsilon_{2})$ as

\[
\overline{\mathcal{M}} = \frac{G_{F} m_{B}^{3}}{\sqrt{2}} |V_{CKM}| \left(\bar{S}_{1} g_{\mu\nu} + \frac{\bar{S}_{2}}{m_{B}^{2}} p_{\mu} p_{\nu} \right) + i \frac{\bar{S}_{3}}{m_{B}^{2}} \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} k^{\beta} \bar{\epsilon}_{\nu}^{*} \epsilon_{\beta}^{*},
\]

where \bar{S}_{1}, \bar{S}_{2}, and \bar{S}_{3} can be derived from S_{1}, S_{2}, and S_{3} by reversing the sign of the CP-violating phase. Note that if the $B \to V_{1} V_{2}$ decay is invariant under the CP symmetry, then $\bar{S}_{1} = S_{1}$, $\bar{S}_{2} = S_{2}$, and $\bar{S}_{3} = S_{3}$. On the other hand, if all CP-conserving phases of invariant amplitudes are equal to zero, then $\bar{S}_{1} = S_{1}^{*}$, $\bar{S}_{2} = S_{2}^{*}$, and $\bar{S}_{3} = S_{3}^{*}$.

The helicity amplitudes in terms of three invariant amplitudes, S_{1}, S_{2}, and S_{3} are:

\[
H_{\lambda} = \left(S_{1} g_{\mu\nu} + \frac{S_{2}}{m_{B}^{2}} p_{\mu} p_{\nu} \right) - i \frac{S_{3}}{m_{B}^{2}} \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} k^{\beta} \epsilon_{\nu}^{*} \epsilon_{\beta}^{*}(\lambda).
\]

From the decomposition Eq. (B4), one finds the following relations between the helicity amplitudes and the invariant amplitudes S_{1}, S_{2}, S_{3}:

\[
H_{0} = -\frac{1}{2m_{1} m_{2}} \left((1 - \hat{m}_{1}^{2} - \hat{m}_{2}^{2}) S_{1} + \frac{S_{2}}{2} \lambda(1, \hat{m}_{1}, \hat{m}_{2}) \right),
\]

\[
H_{\pm} = S_{1} \pm \frac{S_{3}}{2} \sqrt{\lambda(1, \hat{m}_{1}^{2}, \hat{m}_{2}^{2})}.
\]
with \(\lambda(\bar{m}_V^2, m_V^2) \equiv (1 - \bar{m}_V^2)^2 - 2\bar{m}_V^2(1 + \bar{m}_V^2) + \bar{m}_V^4 \) and \(\bar{m}_{(2)} = m_{(2)}/m_B \).

Note that the polarized decay amplitudes can be expressed in several different but equivalent bases. For example, the helicity amplitudes can be related to the spin amplitudes in the transversity basis \((A_0, A_\parallel, A_\perp) \) defined in terms of the linear polarization of the vector mesons via:

\[
A_0 = H_0, \quad A_\parallel = \frac{H_+ + H_-}{\sqrt{2}}, \quad A_\perp = \frac{H_+ - H_-}{\sqrt{2}},
\]

where

\[
A_0, A_\parallel, A_\perp \text{ are related to } S_1, S_2 \text{ and } S_3 \text{ of Eq. (B1) via}
\]

\[
A_0 = -\frac{1}{2\bar{m}_1 \bar{m}_2} \left((1 - \bar{m}_1^2 - \bar{m}_2^2) S_1 + \bar{S}_2 \lambda(\bar{m}_1, \bar{m}_2) \right),
\]

\[
A_\parallel = \sqrt{2} S_1, \quad A_\perp = \sqrt{\frac{\lambda(\bar{m}_1^2, \bar{m}_2^2)}{2}} S_3.
\]

The amplitude \(\bar{A}_\lambda (\lambda = 0, \parallel, \perp) \) are related to the invariant amplitudes of the \(B \to \bar{V}_1 \bar{V}_2 \) decay by the formulas

\[
\bar{A}_0 = -\frac{1}{2\bar{m}_1 \bar{m}_2} \left((1 - \bar{m}_1^2 - \bar{m}_2^2) S_1 + \bar{S}_2 \lambda(\bar{m}_1, \bar{m}_2) \right),
\]

\[
\bar{A}_\parallel = \sqrt{2} S_1, \quad \bar{A}_\perp = -\sqrt{\frac{\lambda(\bar{m}_1^2, \bar{m}_2^2)}{2}} S_3.
\]

If the \(B \to V_1 V_2 \) decay is invariant under \(CP \) transformation, then \(A_0 = A_0, A_\parallel = A_\parallel, \) and \(A_\perp = -A_\perp \).

The decay width is expresses as follows:

\[
\Gamma(B \to V_1 V_2) = \frac{m_B}{6\pi} \lambda(\lambda^2)^{\frac{1}{2}} \left(\frac{G_F m_B^2 |V_{ts}|}{\sqrt{2}} \right)^2 \times (|A_0|^2 + |A_\parallel|^2 + |A_\perp|^2)^2.
\]

The matrix element for the \(B^0 \to K^{*0} V \) decay, where \(V = \rho^0, \omega, \phi, J/\psi(1S), \psi(2S) \ldots \) mesons, we can represent as

\[
\mathcal{M} = \frac{G_F m_B^2 |V_{ts}|^2}{\sqrt{2}} \left(S^V_{1} g_{\mu \nu} + \frac{S^V_{2}}{m_B^2} p_\mu p_\nu \right) - \frac{S^V_{2}}{m_B^2} \varepsilon_{\mu \nu \alpha \beta} q^\alpha k^\beta \epsilon_{\nu \alpha}^* \epsilon_{\beta}^*.
\]

Next, we define the normalized amplitudes:

\[
h_\lambda = \frac{A_\lambda}{\sqrt{\sum_{\lambda'} |A_{\lambda'}|^2}}, \quad \sum_{\lambda} |h_\lambda|^2 = 1 \quad (\lambda, \lambda' = 0, \parallel, \perp).
\]

By putting \(m_1 = m_V, \ m_2 = m_K \) and using \(\text{Eq. (B9), (B11)} \), we obtain the relation between the amplitudes \(h_\lambda \) and \(A_\lambda \) of the process under study \(B_0^0 \to K^{*0} V \) for any vector meson \(V = \rho^0, \omega, \phi, J/\psi(1S), \psi(2S), \ldots \):

\[
h_\lambda = \frac{G_F m_B^2 |V_{ts}|^2}{4\sqrt{2}} \sqrt{\frac{m_B \tau_B}{\pi BR(B^0 \to K^{*0} V)}} \times \lambda^{1/4}(\bar{m}_V^2, \bar{m}_K^2, A_V^\lambda),
\]

where \(BR(\ldots) \) is the branching ratio of \(B_0^0 \to K^{*0} V \) decay and \(\tau_B \) is the lifetime of a \(B \) meson.

Solving Eqs. (B17) we find the scalars \(S_1, S_2 \) and \(S_3 \), and then extend the helicity amplitudes \(A_\lambda \) off the mass shell of the meson \(V \), i.e. for \(q^2 \neq m_V^2 \). We introduce the phases \(\delta_\lambda = \arg(h_\lambda^\lambda), \delta_\lambda^V = \arg(S^V_\lambda) \), where \(\lambda = 1, 2, 3 \).

Then we have

\[
|S^V_1| = \frac{|A_V^1|}{\sqrt{2}}, \quad |S^V_3| = \frac{1}{\sqrt{2}} \sqrt{\frac{2}{\lambda(\bar{m}_V^2, \bar{m}_K^2)}} |A^V_3|, \]

\[
|S^V_2| = \frac{\sqrt{2}}{\lambda(\bar{m}_V^2, \bar{m}_K^2)} \left(8\bar{m}_V^2 \bar{m}_K^2 |A^V_0|^2 + (1 - \bar{m}_V^2 - \bar{m}_K^2)^2 |A^V_1|^2 \right. \]

\[
\left. + 4\sqrt{2} \bar{m}_V \bar{m}_K (1 - \bar{m}_V^2 - \bar{m}_K^2) |A^V_3|^2 \right) \times |A^V_0||A^V_1| \left| \cos(\delta^V_2 - \delta^V_0) \right|^{1/2},
\]

\[
\sin(\delta^V_2 - \delta^V_0) = -\frac{2}{|S^V_2| \lambda(\bar{m}_V^2, \bar{m}_K^2)} \times (1 - \bar{m}_V^2 - \bar{m}_K^2) |A^V_1| \sin(\delta^V_2 - \delta^V_0),
\]

\[
\cos(\delta^V_2 - \delta^V_0) = -\frac{2}{|S^V_2| \lambda(\bar{m}_V^2, \bar{m}_K^2)} \left((1 - \bar{m}_V^2 - \bar{m}_K^2) |A^V_1| \cos(\delta^V_2 - \delta^V_0) \right. \]

\[
\left. + 2\sqrt{2} \bar{m}_V \bar{m}_K |A^V_3| \right), \quad \delta^V_1 \equiv \delta^V_2 \left(\text{mod } 2\pi \right), \quad \delta^V_3 \equiv \delta^V_2 \left(\text{mod } 2\pi \right). \]

TABLE VI: Branching ratio \[24\], and decay amplitudes for \(B^0 \to K^{*0} \rho^0 \[23\], \(B^0 \to K^{*0} \omega \[23\] \) and \(B^0 \to K^{*0} \phi, B^0 \to K^{*0} J/\psi, B^0 \to K^{*0} \psi(2S) \[24\] \):
[1] M. Antonelli, D.M. Asner, D. Bauer et al., Phys. Rep. 494, 197 (2010).
[2] Y. Grossman and D. Pirjol, JHEP 06, 029 (2000).
[3] D. Melikhov, N. Nikitin, and S. Simula, Phys. Lett. B 442, 381 (1998); F. Krüger, L.M. Seghal, N. Sinha, and R. Sinha, Phys. Rev. D 61, 114028 (2000); Phys. Rev. D 63, 019901(E) (2001); C.S. Kim, Y.G. Kim, C.-D. Lu, and T. Morozumi, Phys. Rev. D 62, 034013 (2000).
[4] A. Ali, P. Ball, L.T. Handoko, and G. Hiller, Phys. Rev. D 61, 074024 (2000); A. Ali, E. Lunghi, C. Greub, and G. Hiller, ibid. D 66, 034002 (2002).
[5] F. Krüger and J. Matias, Phys. Rev. D 71, 094009 (2005).
[6] C. Bobeth, G. Hiller, and G. Piranishvili, JHEP 07, 106 (2008); U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece, ibid. 11, 032 (2008).
[7] W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, and M. Wick, JHEP 01, 019 (2009).
[8] U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece, JHEP 10, 056 (2010).
[9] P. Ball and R. Zwicky, Phys. Rev. D 71, 014029 (2005).
[10] F. De Fazio, T. Feldmann, and T. Hurth, Nucl. Phys. B 733, 1 (2006); Erratum-ibid. B 800, 405 (2008); JHEP 0802, 031 (2008).
[11] B. Aubert et al., (BABAR Collaboration), Phys. Rev. Lett. 102, 091803 (2009).
[12] J.-T. Wei et al., (Belle Collaboration), Phys. Rev. Lett. 103, 171801 (2009).
[13] T. Aaltonen et al., (CDF Collaboration), arXiv:1107.3753v1 [hep-ex]; T. Aaltonen et al., (CDF Collaboration), arXiv:1108.0695v1 [hep-ex].
[14] J. Lefrancois and M.H. Schune, LHCb-PUB-2009-008, 2009.
[15] A.Yu. Korchin and V.A. Kovalchuk, Phys. Rev. D 82, 034013 (2010).
[16] Z. Ligeti and M.B. Wise, Phys. Rev. D 53, 4937 (1996).
[17] N.G. Deshpande, J. Trampetic, and K. Panose, Phys. Rev. D 39, 1461 (1989); C.S. Lim, T. Morozumi, and A.I. Sanda, Phys. Lett. B 218, 343 (1989); A. Ali, T. Mannel, and T. Morozumi, ibid., B 273, 505 (1991); F. Krüger and L.M. Sehgal, ibid., B 380, 199 (1996).
[18] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[19] R.P. Feynman, Photon-hadron interactions, W.A. Benjamin, Inc. Reading, Massachusetts, 1972.
[20] F. Klingl, N. Kaiser, and W. Weise, Z. Phys. A 356, 193 (1996).
[21] H.B. O’Connell, B.C. Pearce, A.W. Thomas, and A.G. Williams, Prog. Nucl. Part. Phys. 39, 201 (1997).
[22] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B 321, 311, (1989).
[23] S. Eidelman, S. Ivashyn, A. Korchin, G. Pancheri, and O. Shekhovtsova, Eur. Phys. J. C 69, 103 (2010).
[24] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[25] C.H. Chen, arXiv:hep-ph/0601019v2.
[26] M. Beneke, Th. Feldmann, and D. Seidel, Nucl. Phys. B 612, 25 (2001).
[27] B. Aubert et al., (BABAR Collaboration), Phys. Rev. Lett. 98, 051801 (2007).
[28] G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[29] N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher, Z. Phys. C 48, 673 (1990).
[30] K.G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83, 4001 (1999); K. Melnikov and T. van Ritbergen, Phys. Lett. B 482, 99 (2000).
[31] G. Valencia, Phys. Rev. D 39, 3339 (1989).
[32] This means the narrow-width approximation for the \bar{K}^* propagator: $(k^2 - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*})^{-1} \approx -i \pi \delta(k^2 - m_{K^*}^2)$.
[33] The term $\propto q^\mu q^\nu /q^2$ in (37) does not contribute when contracted with the leptonic current.