Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase

David A. Huskey¹, Gilberto Curlango-Rivera¹, and Martha C. Hawes¹,²

PREMISE OF THE STUDY: Lead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface.

METHODS AND RESULTS: Corn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles.

CONCLUSIONS: RA is an efficient tool to monitor Pb–root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.

KEY WORDS: border cells; extracellular DNA (exDNA) trapping; lead (Pb); rhodizonic acid (RA).

“One can find in various texts the statement that the root-cap cells of plants die and are sloughed off, and it is probably the general opinion among botanists that the root-cap cells are either dead when they are sloughed off or that they die soon after…That the root-cap cells, when sloughed off, are not necessarily dead or short-lived but may persist for many days, seems to be substantiated by various observations made by the writer with a number of different plants. In view of the increasing attention being devoted to the subject of root excretions, it seems desirable to make record of these incidental observations.”

(Knudson, 1919)
and plant systems (Buchanan et al., 2006; McCormick et al., 2010; Tran et al., 2016; Park et al., 2019).

Metals have also been implicated as signals that trigger trap formation. In humans, aluminum induces neutrophil exDNA traps (Munks et al., 2010; Stephen et al., 2017). The responses of border cells from cotton, ferns, cereals, and legume plants to metals such as aluminum, copper, lead (Pb), cadmium, mercury, arsenic, and iron have been documented (reviewed in Hawes et al., 2016b). Snap bean border cell mucilage rapidly expands to form extracellular traps in a dosage-dependent manner in response to aluminum. Aluminum uptake into the root tip is inhibited by the presence of border cells (Brigham et al., 2001). A similar result was observed in cotton and rice border cells in response to copper (Miyasaka and Hawes, 2001; Curalango-Rivera et al., 2013; Peng et al., 2016). The role of exDNA has not been examined in this defense response in plants. Accumulation of Pb on “root cap slime,” the mucilage layer covering the root cap surface, was observed previously, but the role of border cells was not evaluated (Sobotik et al., 1998). We recently documented that corn and pea border cell extracellular trap dimensions increase within minutes in response to Pb, that significant levels of Pb are removed from suspension by border cells, and that the chemistry of Pb is altered by interaction with border cells (Huskey et al., 2018). When border cells are present on root tips immersed into Pb, the particles accumulate on the surface of the border cells and no root growth inhibition occurs. In contrast, when the border cells are removed by agitation in water before root immersion into Pb, significant growth inhibition is evident within 24 h.

Given the dynamics and magnitude of the trapping response, a tool that facilitates real-time visualization of the process could help define how Pb is distributed in and on plant tissues within minutes of exposure. Rhodizonic acid (RA) was developed as a tool to detect the presence of Pb in plant tissue (Glater and Hernandez, 1972). Upon contact, a scarlet precipitate forms with the color intensity proportional to the amount of Pb. RA is used as a tool to detect Pb (Fig. 1A) when visualized using a Zeiss SV8 stereo microscope (Carl Zeiss, Oberkochen, Germany). Images were captured with a Leica DFC290 HD digital camera (Leica Camera, Wetzlar, Germany) with Leica LAS software version 4.0.0 (Leica Microsystems, Heerbrugg, Switzerland). After exposure of the root tip to RA for 10 sec, trapping of Pb by border cells surrounding the same root tip was revealed by bright red staining characteristic of RA (Fig. 1B). When immersed into sdH₂O and stained with RA in the absence of Pb, whole root tips (Fig. 1C) and their individual border cells (Fig. 1D) exhibit a pale yellow coloration in the surrounding mucilage. The RA stain is yellow when no Pb is present and does not exhibit the characteristic scarlet color.

As previously reported (Huskey et al., 2018), the border cell capsule (mucilage layer surrounding individual border cells) expanded within minutes after exposure to Pb. After incubation of border cells with Pb for 60 min, accumulation of Pb particles around border cells (blue arrows) was revealed immediately following RA staining (Fig. 2A–D). Pb particles were trapped by the expanded mucilage in as little as 1 min, with increased trapping during longer exposure (data not shown). Trapping occurred only with living border cells; a single dead cell with collapsed internal structures and showing no cytoplasmic streaming (Fig. 2C) exhibited no RA staining. At higher magnification (Fig. 2D), individual Pb particles were evident within the traps. The magnitude of the trapping response over time was revealed by incubating a whole root tip in Pb(OH)₂. After 60 min of incubation in Pb, border cells were gently transferred from the root tip to a microscope slide for visualization, without damaging the cell structure or viability (as in Curalango et al., 2013). Immediately after the application of RA, intensely stained diverse mucilage strands were revealed (Fig. 3A–D) surrounding the dispersed border cells (blue arrows).

METHODS AND RESULTS

Plant material

Golden Bantam corn seeds (Victory Seed Company, Molalla, Oregon, USA) were surface sterilized for 5 min in a 95% ethanol solution, followed by 10 min in 4% sodium hypochlorite. Surface-sterilized seeds were then rinsed six times with sterile deionized water (sdH₂O) 17.3 MΩ/cm e- Pure (Barnstead/Thermolyne, Dubuque, Iowa, USA) and left to imbibe the water for 1 h. Imbibed seeds were placed on 1% water agar (Sigma-Aldrich, St. Louis, Missouri, USA) Petri plates overlaid with sterile germination paper (Anchor Paper Company, St. Paul, Minnesota, USA) and incubated at 26°C for 48–72 h. Seedlings with a radicle length of approximately 25 mm showing no signs of microbial contamination or necrosis were selected. Border cells were collected as described by Huskey et al. (2018).

Preparation of RA staining solution

Five milligrams of RA disodium salt powder (Beantown Chemical, Hudson, New Hampshire, USA) were mixed thoroughly with 1 mL of sdH₂O in a 2-mL microfuge tube (some powder remains undissolved after shaking). One milliliter 0.2 M acetic acid was transferred to the mixture, shaken thoroughly, then centrifuged at 5000 rpm for 15 sec to pellet the undissolved powder and provide a particle-free supernatant as the working solution in a clean centrifuge tube. Staining solution was prepared fresh prior to use.

Within 5 min of immersion of intact root tips into the Pb solution, expansion of border cells and mucilage surrounding root tips was evident (Fig. 1A) when visualized using a Zeiss SV8 stereo microscope (Carl Zeiss, Oberkochen, Germany). Images were captured with a Leica DFC290 HD digital camera (Leica Camera, Wetzlar, Germany) with Leica LAS software version 4.0.0 (Leica Microsystems, Heerbrugg, Switzerland). After exposure of the root tip to RA for 10 sec, trapping of Pb by border cells surrounding the same root tip was revealed by bright red staining characteristic of RA (Fig. 1B). When immersed into sdH₂O and stained with RA in the absence of Pb, whole root tips (Fig. 1C) and their individual border cells (Fig. 1D) exhibit a pale yellow coloration in the surrounding mucilage. The RA stain is yellow when no Pb is present and does not exhibit the characteristic scarlet color.

As previously reported (Huskey et al., 2018), the border cell capsule (mucilage layer surrounding individual border cells) expanded within minutes after exposure to Pb. After incubation of border cells with Pb for 60 min, accumulation of Pb particles around border cells (blue arrows) was revealed immediately following RA staining (Fig. 2A–D). Pb particles were trapped by the expanded mucilage in as little as 1 min, with increased trapping during longer exposure (data not shown). Trapping occurred only with living border cells; a single dead cell with collapsed internal structures and showing no cytoplasmic streaming (Fig. 2C) exhibited no RA staining. At higher magnification (Fig. 2D), individual Pb particles were evident within the traps. The magnitude of the trapping response over time was revealed by incubating a whole root tip in Pb(OH)₂. After 60 min of incubation in Pb, border cells were gently transferred from the root tip to a microscope slide for visualization, without damaging the cell structure or viability (as in Curalango et al., 2013). Immediately after the application of RA, intensely stained diverse mucilage strands were revealed (Fig. 3A–D) surrounding the dispersed border cells (blue arrows).

Treatment with nucleases

Two microliters of Ambion DNase I (2 U/μL; Thermo Fisher Scientific, Waltham, Massachusetts, USA), DNase II (30 U/μL; Worthington Biochemical Company, Lakewood, New Jersey, USA), or S1 nuclease (222 U/μL; Worthington Biochemical Company) were mixed with 50 μL 1 mM Pb(OH)₂ (pH 5.5), and a root tip was immersed into the nuclease–Pb treatment solution. After 60 min of incubation, 25 μL of the suspension containing border cells and the nuclease–Pb treatment solution were gently removed and mixed with 10 μL of RA and visualized immediately with an Olympus BX60F5 compound microscope (Olympus Corporation, Tokyo, Japan). Efficacy of all
FIGURE 1. Use of rhodizonic acid (RA) to detect lead (Pb) trapping by border cells. (A) Border cells (blue arrows) surrounding a corn root tip immersed for 5 min in 1 mM Pb(OH)₂. (B) The same root tip, 10 sec after dipping into RA staining solution for 10 sec, and transferring into sterile deionized water (sdH₂O) for viewing. (C) Corn root tip immersed in Pb-free sdH₂O for 5 min, then stained for 10 sec with RA. (D) Border cells from (C). Scale bars: A–C = 1 mm, D = 50 μm.

FIGURE 2. Corn border cell extracellular mucilage layer (blue arrows) in response to lead (Pb) solution. (A–C) Small clusters of border cells show bright staining of Pb at 200× magnification. Dead border cell (green arrow) did not produce a mucilage response and thus did not trap any Pb particles. (D) Diffuse mucilage staining and individual Pb particulates are evident at 400× magnification. Scale bars: A–C = 50 μm, D = 25 μm.
three nuclease activities was confirmed by digestion of calf thymus DNA and gel electrophoresis with and without 1 mM Pb(OH)₂ (data not shown).

Mucilage structures that developed after 1 h in Pb followed by RA staining (Fig. 4A) were compared with mucilage samples incubated in Pb containing DNase II (Fig. 4B), DNase I (Fig. 4C), or S1 nuclease (Fig. 4D). Obvious dispersal of the mucilage traps occurred in response to all three nucleases. In addition, border cells incubated in Pb alone for 1 h, then treated with 2 μL of DNase II for 20 min and stained with RA revealed less Pb trapping than border cell samples incubated in Pb alone (Fig. 4E, F). Obvious dispersal of the mucilage traps occurred in response to all three nucleases, and the order of treatment application (Pb and nuclease simultaneously, or Pb followed by nuclease treatment) did not affect the reversal of trapping. This indicates that Pb trapping is reversible, even after adequate time for robust trap formation.

These results suggest that exDNA is essential to the Pb trapping process. An alternative hypothesis is that the nucleases alter the chemistry of RA and prevent reaction with Pb. Direct tests did not support the premise that nucleases interfere with the ability of Pb to react with RA. When Pb alone was mixed with RA under the same conditions, red staining of Pb particles occurred throughout the suspension (Fig. 5A). No differences were observed when DNase II was included (Fig. 5B), and similar results occurred with DNase I and S1 nuclease (not shown).

CONCLUSIONS

The use of plants to accumulate and remove heavy metals from contaminated sites by harvesting the aboveground parts is called phytoremediation (Pilon-Smits, 2005; Kersten et al., 2017). Previous efforts to utilize plants in the uptake and removal of Pb have had limited success; among 450 plant species known as metal hyperaccumulators, Pb accumulators are rare (Fahr et al., 2013). Brassicaceae species, which are Pb accumulators, do not produce and deliver viable border cells (Niemira et al., 1996). Based on our results, it is reasonable to propose that border cells modulate uptake of Pb upon contact in the underground environment, and thereby prevent the effectiveness of plants as tools for Pb remediation (Clemens and Ma, 2016). Studies have revealed that Pb is abundant on the root surface and rhizosphere, but not the internal tissues, of rice and other plants (Lin et al., 2004). The magnitude and speed with which Pb is revealed by RA to associate with border cells is consistent with previous observations that border cell traps block uptake into the root tip (Huskey et al., 2018). This trapping mechanism could be used in the sequestration of toxic metals to stabilize soils and to prevent the leaching of contaminants into groundwater systems.

Our results suggest that trapping could be used as a new tool for phytoremediation by collecting roots ensheathed in trapped Pb, or by hydroponically passing contaminated water over roots. RA can potentially be used to define variables affecting Pb trap formation, quantity, and stability in response to soil type and other environmental variables. The surprising discovery that exDNA–DNase interactions are components of both mammalian and plant defense systems underscores the need for further research. DNA-specific binding to metals has been studied in detail (Zhou et al., 2017), and understanding how exDNA–metal traps form and function could yield key insights into plant, animal, and soil health. As previously established, nuclease degradation of exDNA in border cell traps results in hampered trapping capacity of both abiotic and biotic
FIGURE 4. Inhibition of lead (Pb) trapping by corn border cells (blue arrows) in response to extracellular DNA degradation by nucleases. (A) Control corn border cells incubated with Pb and stained with rhodizonic acid (RA) after 1 h. (B) Corn border cells incubated with Pb and DNase II for 1 h and stained with RA. (C) Corn border cells incubated with Pb and DNase I for 1 h and stained with RA. (D) Corn border cells incubated with Pb and S1 nuclease for 1 h and stained with RA. (E, F) Corn border cells incubated with Pb for 1 h, then with DNase II for 20 min and stained with RA. Scale bars: A = 300 μm, B–E = 200 μm, F = 100 μm.
stressors (Hawes et al., 2016a; Tran et al., 2016; Wen et al., 2017; Park et al., 2019). There is potential to improve agricultural pest management and remediation of contaminated sites through exploitation of this exDNA-based mechanism, perhaps by identifying specific DNA sequences that preferentially bind to metals and microbes. The use of RA for real-time detection of Pb in, on, and around living plant tissue is a tool that merits further investigation.

ACKNOWLEDGMENTS

Financial support was received from the U.S. National Science Foundation (grant no. PBI-1457092).

LITERATURE CITED

Brigham, L. A., H. H. Woo, F. Wen, and M. C. Hawes. 1998. Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiology 118(4): 1223–1231.

Brigham, L. A., M. C. Hawes, and S. C. Miyasaka. 2001. Avoidance of aluminum toxicity: Role of root border cells. In W. J. Horst, M. K. Schenk, A. Bürkert, et al. [eds.], Plant nutrition, 452–453. Developments in plant and soil sciences, vol. 92. Springer, Dordrecht, The Netherlands.

Brinkmann, V., U. Reichard, C. Goosmann, F. Beatrix, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535.

Buchanan, J. T., A. J. Simpson, R. K. Aziz, G. Y. Liu, S. A. Kristian, M. Kotb, J. Feramisco, and V. Nizet. 2006. DNase expression allows the pathogen Group B Streptococcus to escape killing in neutrophil extracellular traps. Current Biology 16: 396–400.

Clemens, S., and J. F. Ma. 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology 67: 489–512.

Curlango-Rivera, G., D. A. Huskey, A. Mostafa, J. O. Kessler, Z. Xiong, and M. C. Hawes. 2013. Intraspecies variation in cotton border cell production: Rhizosphere microbiome interactions. American Journal of Botany 100: 1706–1712.

Di Maio, V. J. M. 1998. Gunshot wounds: Practical aspects of firearms, ballistics, and forensic techniques, 2nd ed. CRC Press, Boca Raton, Florida, USA.

Fahr, M., L. Laplaze, N. Bendah, V. Hocher, M. E. Mzibri, D. Bogusz, and A. Smouni. 2013. Effect of lead on root growth. Frontiers in Plant Science 4: 175.

Glater, R. A. B., and L. Hernandez. 1972. Lead detection in living plant tissue using a new histochemical method. Journal of the Air Pollution Control Association 22: 463–467.

Hamamoto, L., M. C. Hawes, and T. L. Rost. 2006. The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Annals of Botany 97(5): 917–923.

Hawes, M. C. 1990. Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? Plant and Soil 129: 19–27.

Hawes, M. C., L. A. Brigham, F. Wen, H. H. Woo, and Y. Zhu. 1998. Function of root border cells in plant health: Pioneers in the rhizosphere. Annual Review of Phytopathology 36: 311–327.

Hawes, M. C., G. Curlango-Rivera, Z. Xiong, and J. O. Kessler. 2012. Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’. Plant and Soil 355: 1–16.

Hawes, M. C., C. Allen, B. G. Turgeon, G. Curlango-Rivera, T. M. Tran, and Z. Xiong. 2016a. Root border cells and their role in plant defense. Annual Review of Phytopathology 54: 143–161.

Hawes, M. C., J. McLain, M. Ramirez-Andreota, G. Curlango-Rivera, Y. Flores-Lara, and L. Brigham. 2016b. Extracellular trapping of soil contaminants by root border cells: New insights into plant defense. Agronomy 6: 5.

Huskey, D. A., G. Curlango-Rivera, R. A. Root, F. Wen, M. K. Amistadi, J. Chorover, and M. C. Hawes. 2018. Trapping of lead (Pb) by corn and pea root border cells. Plant and Soil 430: 205–217.

Inoue, H., D. Fukuoka, Y. Tatai, H. Kamachi, M. Hayatsu, M. Ono, and S. Suzuki. 2013. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. Journal of Plant Research 126: 51–61.

Kersten, G., B. Majestic, and M. Quigley. 2017. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicology and Environmental Safety 137: 225–232.

Knudson, L. 1919. Viability of detached root–cap cells. American Journal of Botany 6(7): 309–310.

Lin, Q., Y. X. Chen, Y. F. He, and G. M. Tian. 2004. Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agriculture, Ecosystems and Environment 104: 605–613.

McCormick, A., L. Heesmann, J. Wagen, V. Marcos, D. Hartl, J. Loeffler, J. Heesmann, and F. Ebel. 2010. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infection 12: 928–930.
Miyasaka, S., and M. C. Hawes. 2001. Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiology 125: 1978–1987.

Munks, M. W., A. S. McKee, M. K. MacLeod, R. L. Powell, J. L. Degen, N. A. Reisdorph, J. W. Kappler, and P. Marrack. 2010. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116: 5191–5199.

Niemira, B. A., G. A. Safir, and M. C. Hawes. 1996. Arbuscular mycorrhizal colonization and border cell production: A possible correlation. Phytopathology 86: 563–565.

Peng, C., Y. Wang, L. Sun, C. Xu, L. Zhang, and J. Shi. 2016. Distribution and speciation of Cu in the root border cells of rice by STXM combined with NEXAFS. Bulletin of Environmental Contamination Toxicology 96: 418–414.

Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56: 15–39.

Park, H., W. Wang, G. Curlango-Rivera, Z. Xiong, Z. Lin, D. A. Huskey, M. C. Hawes, et al. 2019. DNase from a fungal phytopathogen is a virulence factor likely deployed as counter defense against host-secreted extracellular DNA. MBio 10(2): e02805–18.

Sobotik, M., V. B. Ivanov, N. V. Obroucheva, I. V. Seregin, M. L. Martin, O. V. Antipova, and H. Bergmann. 1998. Barrier role of root system in lead-exposed plants. Journal of Applied Botany 72: 144–147.

Stephen, J., H. E. Scales, R. A. Benson, D. Erben, P. Garside, and J. M. Brewer. 2017. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccines 2(1): 1.

Tupan, C. I., and R. Azrianingsih. 2016. Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux 9: 580–589.

Wen, F., G. Curlango-Rivera, D. A. Huskey, Z. Xiong, and M. C. Hawes. 2017. Visualization of extracellular DNA released during border cell separation from the root cap. American Journal of Botany 104(7): 970–978.

Zhou, W., R. Saran, and J. Liu. 2017. Metal sensing by DNA. Chemical Reviews 117: 8272–8325.