Chloroquine (CQ) can induce cell death in a subset of cancer cell lines, and some melanoma cell lines are quite susceptible. Although it is well known that CQ impairs lysosomal function and can serve as an autophagy inhibitor, the molecular target of CQ and the subsequent cascade of events that lead to cell death are not fully understood. Recent evidence indicates that in melanoma cell lines, CQ induces apoptosis by preventing degradation of the pro-apoptotic BH3-only protein p53-upregulated modulator of apoptosis. This finding adds to the unfolding story of CQ’s mechanism of action as a cancer therapeutic agent.

A brief history of CQ’s use in human disease
CQ is one of the most widely used and successful human drugs in the history of medicine. Since it was first synthesized in 1934 and its implementation as the first effective malaria prophylactic in 1947, it is estimated that hundreds of millions of humans have benefited from CQ and its derivatives. Once widespread resistance emerged in malaria strains, CQ and its better tolerated derivative hydroxychloroquine (HCQ) were repositioned to treat rheumatic diseases (Jensen and Mehlhorn, 2009). A brief history of CQ’s use in human disease continues to unfold with the many indications. Possible explanations for the lack of efficacy in late-stage trials include the lack of a dose escalation component to earlier phase studies and lack of mechanism-based pharmacodynamic end points that would determine whether the relevant molecular targets had been affected.

More recently, higher doses of CQ derivatives have been tested as anticancer agents. Initial studies in cancer capitalized on the knowledge that CQ derivatives accumulate within and impair lysosomal function, likely blocking multiple cellular processes, including autophagy. Autophagy is a multistep catabolic process that consists of sequestration of damaged organelles and proteins in autophagic vesicles, followed by fusion with lysosomes, leading to the degradation of autophagic vesicle contents and recycling of sugars, amino acids, and lipids. Although it is clear that autophagy has pro-death and pro-survival roles in different contexts, there is increasing evidence that in advanced cancer, autophagy improves the fitness of cancer cells, as it serves to rid the struggling cancer cells of damaged organelles, recycle basic building blocks, and provide an internal source of energy. There is some evidence that basal levels of autophagy are increased in solid tumors (Lazova et al., 2012), as they cope with the metabolic stress of limited resources within the tumor microenvironment and unbridled growth fueled by oncogenes. Certain cancers such as melanoma can have very high levels of autophagy (Lazova et al., 2012). Melanoma may be intrinsically prone to high autophagy levels, as much of the machinery involved in melanogenesis are components of autophagy, rendering most melanocytes professionally autophagic. Cancer therapies induce autophagy, further
Clinical Implications

- Chloroquine (CQ) derivatives have been used to treat a number of diseases, but a dose-dependent mechanism of action may explain why they are effective for some disorders and not for others.
- A subset of melanoma cell lines undergo cell death in response to CQ, but the molecular target and mechanism of action of CQ-induced cell death are still not fully understood.
- PUMA-dependent cell death following CQ treatment could provide a rationale for selecting patients for CQ-based therapies based on PUMA expression and following the effectiveness of novel CQ derivatives designed for cancer therapy by measuring PUMA modulation in tumors.

providing a rationale for combining anticancer agents with autophagy inhibitors (Amaravadi et al., 2011). Therefore, substantial effort has been devoted to developing strategies to therapeutically target autophagy in cancer cells. However, to date, the CQ derivatives CQ and HCQ, and a novel dimeric CQ Lys05 (McAfee et al., 2012) are the only pharmacological compounds known to modulate autophagy and elicit cell death in animal models, and therefore they are the only clinically viable autophagy inhibitors. Clinical trials of combinations involving HCQ are underway, and one of the most striking findings has been early signs of unique activity in patients with advanced melanoma compared with other solid tumors when treated with the mTOR inhibitor temsirolimus and HCQ (Amaravadi et al., 2011). This initial activity, and the activity demonstrated in numerous preclinical studies, has renewed interest in understanding CQ’s mechanism of antitumor activity.

CQ’s mechanism of action

At concentrations greater than 10 \(\mu \text{M} \), numerous extralysosomal candidate targets for CQ, which may or may not be related to autophagy, have been reported. These include DNA, glycogen synthase kinase 3 beta (Taha et al., 2008), NADH quinone oxidoreductase 2 (Graves et al., 2002), aldehyde dehydrogenase 1 (Graves et al., 2002), and chemokine receptor 4 (Kim et al., 2012). Therefore, similar to most drugs that have utility in medicine, CQ may have multiple molecular targets and therefore multiple mechanisms of action, all of which may be dose-dependent.

Human pharmacokinetic studies conducted in patients with rheumatoid arthritis (Munster et al., 2002) and preliminary data from HCQ trials in cancer patients have demonstrated that low micromolar concentrations of HCQ (<10 \(\mu \text{M} \)) are achieved with the highest clinically tolerable doses of HCQ. At these concentrations, HCQ may not bind sufficiently to modulate the targets mentioned, but as there is abundant evidence that CQ derivatives accumulate within the lysosomes (McAfee et al., 2012), there is a possibility that autophagy will be blocked to some extent at clinically tolerated doses.

Putting aside the possibility of a dose-dependent molecular target, it is clear that a subset of human cancer cell lines undergo cell death in vitro when treated with single-agent CQ derivatives. The mechanism of cell death that follows CQ treatment is another “black box”. It is clear that CQ treatment of cancer cells can block autophagy, producing a burst of reactive oxygen species, followed by DNA damage and activation of DNA damage response–induced apoptosis. Studies have implicated multiple redox-dependent genes as having roles in the fate of CQ-treated cells (Bray et al., 2012). Although these studies have established a potential cascade of events through multiple genes that may have roles in cell death, the molecular underpinnings of CQ-induced cell death are still not clear.

Enhancing PUMA’s ability to kill

In this issue, Lakhter et al. (2013) report the effects of high-dose CQ (50 \(\mu \text{M} \)) on a panel of melanoma and non-melanoma cells. The investigators find that specific melanoma cell lines undergo CQ-induced apoptosis much more readily than normal cells or a sampling of colon, lung, or breast cancer cell lines. CQ was found to stabilize PUMA levels post-translationally, and CQ-associated PUMA stabilization requires an intact BH3 domain. Other lysosomal autophagy inhibitors did not stabilize PUMA to the extent that CQ did. Finally, knockdown of PUMA-abrogated CQ-associated cytotoxicity implicates PUMA stabilization as at least one important part of CQ’s antitumor mechanism of action.

This work raises a number of questions: how is PUMA, a protein typically bound to the mitochondria, modulated by CQ, a compound that accumulates significantly in lysosomes? Could this be a lysosome-independent effect of CQ? Could it be owing to binding and inhibition of some of the other targets mentioned above, which are all extralysosomal? While included in the study by Lakhter et al. (2013), other inhibitors of lysosomal or autophagic function, including bafilomycin, lysosomal protease inhibitors, and a proximal inhibitor of autophagy, did not stabilize PUMA levels; CQ-induced PUMA stabilization could still be primarily a secondary consequence of lysosomal inhibition. For example, CQ may somehow be more effective than lysosomal deacidification with bafilomycin or lysosomal protease inhibition by blocking autophagic vesicle–lysosome fusion, (somehow) leading to the stabilization of PUMA. It is unclear whether other pro-apoptotic BH3-only proteins, such as NOXA, are also stabilized by CQ. Future studies will focus on identifying the protein complexes responsible for BH3 domain-dependent PUMA degradation and whether CQ binds to these proteins. Finally, additional studies are needed to determine whether lower concentrations of CQ, such as those achieved in preclinical models and human trials, can also induce a PUMA-dependent cell death.

Nevertheless, this study is important because it shows a clear effect of CQ on PUMA protein degradation, a novel
mechanism of action of CQ in human cancer cell lines in which PUMA is not chromosomally deleted and p53-dependent induction of PUMA is intact. If this mechanism is confirmed, measurement of PUMA expression before treatment could identify patients who might be susceptible to CQ-based therapies, and serial measurement of PUMA in tumor tissue could serve as a biomarker of CQ efficacy. Further dissection of the molecular mechanism by which CQ stabilizes PUMA could yield new targets for other therapeutics. As more and more evidence supports the testing of lysosomal autophagy inhibitors in cancer, the puzzling pieces of CQ’s mechanism of action should be put together, hopefully avoiding the fate that CQ derivatives had in other diseases.

CONFLICT OF INTEREST
The author states no conflict of interest.

REFERENCES
Amaravadi RK, Lippincott-Schwartz J, Yin XM et al. (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–66
Bray K, Mathew R, Lau A et al. (2012) Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7:e41831
Carter AF, Etian R (1974) Prevention of postoperative deep venous thrombosis in legs by orally administered hydroxychloroquine sulphate. Br Med J 3:94–9
Graves PR, Kwiec JL, Fadden P et al. (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 62:1364–72
Jensen M, Mehlhorn H (2009) Seventy-five years of resochin in the fight against malaria. Parasitol Res 105:609–27
Katz SJ, Russell AS (2011) Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action. Curr Opin Rheumatol 23:278–81
Khoury H, Trinkaus K, Zhang MJ et al. (2003) Hydroxychloroquine for the prevention of acute graft-versus-host disease after unrelated donor transplantation. Biol Blood Marrow Transplant 9:714–21
Kim J, Yip ML, Shen X et al. (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCRA in pancreatic cancer cells. PLoS One 7:e31004
Lakhter AJ, Sahu RP, Sun Y et al. (2013) Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain mediated PUMA degradation. J Invest Dermatol 133:2247–54
Lazova R, Camp RL, Klump V et al. (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18:370–9
McAllee Q, Zhang Z, Samanta A et al. (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109:8253–8
Munster T, Gibbs JP, Shen D et al. (2002) Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46:1460–9
Paton NJ, Goodall RL, Dunn DT et al. (2012) Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308:353–61
Taha MO, Bustani Y, Al-Ghussein MA et al. (2008) Pharmacophore modeling, quantitative structure-activity relationship analysis, and in silico screening reveal potent glycoconjugate synthase kinase-3beta inhibitory activities for cimetidine, hydroxychloroquine, and gemifloxacin. J Med Chem 51:2062–77

See related article on pg 2212

Skin-Specific Drug Delivery: A Rapid Solution to Skin Diseases?

Christian D. Sadik1 and Detlef Zillikens1

In this issue of the Journal of Investigative Dermatology, Kouno et al. achieve skin-specific drug delivery using an antibody to deliver substances in a highly specific manner to nontransformed cells. They make use of a nonpathogenic anti-desmoglein 3 autoantibody that had been derived from a patient with pemphigus vulgaris to deliver drugs to the surface of keratinocytes. This approach may turn out to be a new “magic bullet”, thereby revolutionizing the therapy of skin disease. The authors then used a conjugate of this antibody with a new drug entity, TNF-related apoptosis-inducing ligand, to demonstrate, as a proof of principle, that their approach has the potential to facilitate the treatment of both cancerous and inflammatory skin diseases.

Systemic immunosuppression—an avoidable risk?

Autoimmune diseases constitute a complex and diverse array of diseases, featuring either systemic or organ-specific inflammation. The latter is more common and is sometimes restricted to skin. However, therapeutic strategies in both systemic and organ-specific autoimmune diseases usually include the use of systemic immunosuppressive drugs. Systemic immunosuppression bears numerous unwanted consequences for patients, including increased risk of infection and malignancy. Furthermore, the drugs that are used may also be associated with other severe side effects, including diabetes, hypertension, and pneumonitis. With regard to these possible sequelae of systemic immunosuppression on one the hand and the organ restriction of inflammation on the other, the obvious question is how to circumvent these disadvantages of systemic immunosuppression. Tissue-specific drug delivery, restraining immunosuppression to disease-affected tissues, may be the “magic bullet” that solves this concern.

Tissue-specific drug delivery

Tissue-specific drug delivery aims at increasing the concentration of a drug in a specific target tissue compared with

1Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
Correspondence: Christian D. Sadik, Department of Dermatology, Allergy, and Venereology University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany. E-mail: Christian.Sadik@uksh.de

www.jidonline.org 2135