Impact of competitive foods in public schools on child nutrition: effects on adolescent obesity in the United States an integrative systematic literature review

Kirsten E. Sildén

Department of Public Health, Lund University, Ängelholm, Sweden

ABSTRACT

Background: The United States (US) is currently facing a public health crisis due to the percentage of obesity in adolescents. The Center for Disease Control (CDC) stated the risks for children due to obesity are many. Adolescents obtain a large portion of their daily caloric intake at school; therefore, what foods/drinks they are consuming is so serious.

Objective: To identify and analyze literature on the effects of competitive foods in public schools on adolescent weight, or Body Mass Index (BMI), and possible impacts they may have on adolescent obesity in the United States.

Methods: An integrative systematic review of literature was conducted. The literature was collected in CINAHL, MEDLINE and EMBASE databases. Refined keyword search is further detailed in the report. Year restrictions were 2006–2017 from peer-reviewed journals and published in English, including adolescents 13–18 years old in the US. Criteria for inclusion targeted at least one of (1) sugar-sweetened beverages (SSB), (2) competitive foods, (3) commercial foods, (4) vending machines, (5) à la carte venues, and (6) school stores, examining their associations with weight measurements, using either weight or BMI, or caloric intake analysis.

Results: A total of 164 articles were detected and assessed, for a final analysis of 34 full text articles. Twenty-six articles met the inclusion criteria. Common aspects of interest involved BMI/Obesity/Weight (73%), (58%) examined Calorie density or consumption, (77%) discussed the Availability of competitive foods in schools, (54%) included Analysis of competitive food, beverage and nutrition policies, and (69%) addressed Other effects.

Conclusion: This review discovered substantial evidence that competitive foods are highly available in schools, however, lacking in robust evidence proving causality in increasing BMI or weight. There is strong corroboration in the research revealing that Other effects are factors worthy of studying further. Additional longitudinal and higher-quality research needs to be performed.

CONTACT Kirsten E. Sildén danielsilden@outlook.com Public Health, Majsgatan 2, 262 53 Ängelholm, Sweden

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
soft drinks and junk foods are sold, are more likely to be obese [29].

Influences in an eating environment may directly affect food intake that could lead to overeating as well as increased risks of obesity [30]. The concern of the obesity pandemic is enough to warrant significant changes in how the US addresses issues such as ‘population-wide education, training, and motivation concerning obesity’ [31, p. 620]. Further, it is worthy to examine Foods of Minimal Nutritional Value (FMNV), which are the food choices most often available in venues of competitive food sources (a la carte, vending, and school stores) [32]. Current research also proposes that some types of carbohydrates, particularly fructose, might play a significant role in increased adiposity [33].

Hennessy et al. [26] concluded that competitive food and beverage laws within schools deserve to gain more attention as we look to addressing the obesity epidemic currently facing our nation. According to a review performed by Jaime & Lock [34, p. 52], ‘there are currently few studies which have measured the impact of school food policies on BMI’. Although adolescent obesity has been researched and discussed extensively, to my knowledge, research examining the association between availability of competitive foods in school settings and adolescent weight (BMI) has not been systematically reviewed.

The purpose of this integrative systematic literature review is to make known the literature on research which has addressed commercial foods in schools and adolescent weight (BMI), and synthesize the data to explore recommendations for further research, increase the potential for stronger health policies, and hopefully provide insight into how to better protect our youth and combat the health crisis of obesity which America is currently facing. The main aim of this thesis is to summarize the research on the effects of competitive foods in public schools on adolescent weight (BMI), and possible impact it may have on adolescent obesity in the US, by asking ‘In what ways are the weight (BMI) of adolescents impacted by competitive foods in schools?’

Methods

To accomplish this aim, this integrative systematic review will attempt to classify quantitative peer-reviewed studies on nutrition policies in public schools which specifically address (1) competitive foods in schools and (2) the impact competitive food sources may have on adolescent weight (BMI). The methodology used in this study is an integrative systematic literature review. Data were collected through a systematic literature search.

This review will attempt to identify school-based nutrition policies of school settings which allow for competitive foods [1,32,35]. The participants in the primary studies that will be included in this integrative systematic review will be schools (public and private) in the US (Middle and High Schools) whose student population is between 13 and 18 years of age. In this review, competitive foods, often FMNV, include foods which offer less than 5% of the Reference Daily Intake (RDI) for eight selected nutrients in each serving [36], and will include SSB’s, commercial foods, vending machines, a la carte venues, and school stores.

Quantitative studies that have examined school-based nutrition policies which include or allow for competitive foods in school settings and discuss weight (BMI) and/or ways in which weight (BMI) is impacted by competitive foods in schools, were considered.

Literature search

Cumulative Index to Nursing & Allied Health Literature (CINAHL); MEDLINE; and EMBASE databases were searched. Additional sources were examined, including bibliographies of applicable articles and relevant literature reviews, per the Methodological Expectations of Cochrane Intervention Reviews (MECIR), which advises to ‘check reference lists in included studies and any relevant systematic reviews identified’ [37, p. 16].

The screening process included scanning titles and brief abstracts initially, then full abstracts for relevance per inclusion criteria. The criteria for inclusion were: (1) peer-reviewed journals; (2) published 2006–2017; (3) English; (4) 13–18 years of age in middle or high schools; and (5) in the US. Criteria for inclusion also included at least one of the following measures: SSB’s, competitive foods, commercial foods, vending machines, a la carte venues, school stores, and their associations with weight (BMI) for adolescents in school settings. This included either actual BMI calculation, and/or caloric intake analysis. Only peer-reviewed journal articles were indexed in MEDLINE, CINHAL, and EMBASE databases. Keywords used in the review are listed in Tables 1 and 2.

A search was performed in EMBASE of six aspects, resulting in 66 articles. A quick-screening through the brief abstract of articles was completed, which resulted in 39 possible articles (66 - 27 = 39). Similarly, a search was performed in EBSCO which allowed the combination of both MEDLINE and CINAHL databases to be searched simultaneously, resulting in 125 articles. Combining EMBASE results (39) with those from MEDLINE and CINAHL (39 + 125 = 164), gave a total of 164, prior to checking for duplicates (164-75 duplicates = 89).
Table 1. MEDLINE and CINAHL Prescreened Combined Search.

Search Terms	Keywords	Number of articles
S3	School OR schools	3,155,522
S2	USA OR US OR US of America	1,885,884
S3	‘food’ OR ‘food preferences’ OR ‘food habits’ OR ‘health behavior’ OR ‘feeding behavior’ OR ‘child nutrition’	1,114,267
S4	‘weight gain’ OR ‘overweight’ OR ‘BMI’ OR ‘Body Mass Index’ OR ‘Body Composition’ OR ‘Obesity’ OR ‘Adolescent Obesity’ OR ‘Pediatric Obesity’ OR ‘body weight’	927,091
S5	‘nutrition policy’ OR ‘health promotion’ OR ‘health policy’ OR ‘school health policy’	442,801
S6	‘food services’ OR ‘competitive food’ OR ‘competitive foods’ OR ‘commercial food’ OR ‘beverages’ OR ‘carbohydrated beverages’ OR ‘sugar-sweetened beverages’ OR ‘vending machines’ OR ‘food dispensers’ OR ‘food dispensers, automatic’ OR ‘foods of minimal nutritional value’ OR ‘FMNV’	91,114
S7	S1 AND S2 AND S3 AND S4 AND S5 AND S6	366
S1 AND S2 AND S3 AND S4 AND S5 AND S6	articles from all three databases (EMBASE, MEDLINE, and CINAHL) was performed, 24 articles were accepted, prior to quality check. Bibliographies were scrutinized to determine if anything more needed to be included, based on MECIR, and (10) additional articles were included (24 + 10 = 34). Additionally, according to the MECIR, a PRISMA flow chart and a table of “Characteristics of excluded studies” will need to be completed in the final review.’ [37, p. 13] (see Figure 1).	

Table 2. EMBASE Prescreened Database Search.

Search Terms	Keywords	Results
#1 EMBASE aspect #1 obesity terms 2017–03–022017–03–021193364	‘weight gain’/exp OR ‘weight gain’/exp OR ‘overweight’/exp OR ‘overweight’/exp OR ‘BMI’/exp OR ‘BMI’/exp OR ‘body mass index’/exp OR ‘body mass index’/exp OR ‘body composition’/exp OR ‘body composition’/exp OR ‘obesity’/exp OR ‘obesity’/exp OR ‘adolescent obesity’/exp OR ‘adolescent obesity’/exp OR ‘pediatric obesity’/exp OR ‘pediatric obesity’/exp OR ‘body weight’/exp OR ‘body weight’	1,193,364
#2 EMBASE aspect #1 obesity terms 2017–03–022017–03–021748981	AND (adolescent)/lim AND ‘childhood obesity’/de AND ‘adolescent disease’/de AND (abdominal obesity)/de OR ‘obesity’/de AND (2010–py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py) AND ‘Article’/it	15
#3 EMBASE aspect #2039 food/#39; terms 2017–03–022017–03–021748981	‘food’/exp OR ‘food’/exp OR ‘food preferences’/exp OR ‘food preferences’/exp OR ‘food habits’/exp OR ‘food habits’/exp OR ‘food habits’/exp OR ‘health behavior’/exp OR ‘health behavior’/exp OR ‘feeding behavior’/exp OR ‘feeding behavior’/exp OR ‘child nutrition’/exp OR ‘child nutrition’/exp	1,748,981
#4 and #3 EMBASE aspect #2039 food/#39; terms 2017–03–022017–03–023896	AND (obesity)/de AND (adolescent)/lim AND ‘childhood obesity’/de AND ‘adolescent disease’/de AND (abdominal obesity)/de OR ‘obesity’/de AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py) AND ‘Article’/it AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py)	3,896
#5 and #6 EMBASE aspect #2039 food/#39; terms 2017–03–022017–03–021761	AND (obesity)/de AND ‘Article’/it AND (adolescent)/lim AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py)	1,761
#7 EMBASE aspect #4 #2039 school/#39; terms 2017–03–022017–03–027472654	‘school’/exp OR ‘school’/exp OR ‘schools’/exp OR ‘schools’/exp	4,72
#8 and #7 EMBASE aspect #4 #2039 school/#39; terms 2017–03–022017–03–028174	AND (obesity)/de AND (adolescent)/lim AND ‘Article’/it AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py)	8,174
#9 EMBASE aspect #5 #2039 nutrition policy/#39; terms 2017–03–022017–03–02361924	‘nutrition policy’/exp OR ‘nutrition policy’/exp OR ‘health promotion’/exp OR ‘health promotion’/exp OR ‘health policy’/exp OR ‘health policy’/exp OR ‘school health policy’	316,924
#10 and #9 EMBASE aspect #5 #2039 nutrition policy/#39; terms 2017–03–022017–03–021187	AND (obesity)/de AND (adolescent)/lim AND ‘Article’/it AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py)	1,187
#11 EMBASE aspect #6 #2039 competitive food/#39; terms 2017–03–022017–03–0279682	‘food services’/exp OR ‘food services’/exp OR ‘competitive food’/exp OR ‘competitive food’/exp OR ‘commercial food’/exp OR ‘commercial food’/exp OR ‘beverages’/exp OR ‘beverages’/exp OR ‘carbohydrated beverages’/exp OR ‘carbohydrated beverages’/exp OR ‘sugar-sweetened beverages’/exp OR ‘vending machines’/exp OR ‘food dispensers’/exp OR ‘food dispensers’/exp OR ‘food dispensers, automatic’/exp OR ‘food dispensers, automatic’/exp OR ‘foods of minimal nutritional value’/exp OR ‘FMNV’	279,682
#12 and #11 EMBASE aspect #6 #2039 competitive food/#39; terms 2017–03–022017–03–02652	AND (obesity)/de AND (adolescent)/lim AND ‘Article’/it AND (2006:py OR 2007:py OR 2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py)	652
Aspects #1–#6 combined with limitations	Search with limitations: Disease (obesity), Age (adolescent), Publication types (article), Publication years (2006–2017)	39

Screening of abstracts

After the initial abstract screening of the 89 potentially qualified articles from all three databases (EMBASE, MEDLINE, and CINAHL) was performed, 24 articles were accepted, prior to quality check. Bibliographies were scrutinized to determine if anything more needed to be included, based on MECIR, and (10) additional articles were included (24 + 10 = 34). Additionally, according to the MECIR, a PRISMA flow chart and a table of “Characteristics of excluded studies” will need to be completed in the final review.’ [37, p. 13] (see Figure 1).

Data extraction

Further in-depth examination using a data extraction method, inspired by Urzi [38] (see Appendix 1), was utilized in narrowing down the search further,
probing if the participants, settings, and interventions, are pertinent to the Key Question [39].

A pilot test of the data-extraction instrument was conducted by two reviewers, and deemed appropriate. Due to conflict in time and feasibility, the remaining 33 articles were tested by one reviewer. After utilizing the data-extraction system, and cross checking that probative information was addressed, (8) more articles were excluded with reasons (see Table 3). This left 26 articles which met inclusion criteria. Intra-rater reliability was insured through re-analysis of all data.

Once the screening was completed using the data analysis extraction form (see Appendix 1), the remaining 26 articles were examined more thoroughly via a more comprehensive reading of the 26 articles searching for pertinent aspects within each article which addressed the key question and criteria. The information discovery resulted in varying outcomes based on the criteria.

Analysis

This paper confines itself to summarizing the results in an integrative analysis as the heterogeneity of the studies investigated in this review are not suitable for a meta-analysis. Haidich [40] states that systematic reviews may not need to contain a meta-analysis as there may be occasions where it is not possible or even appropriate.

Table 3. Excluded Articles with Reasons.

References	Reasons for Exclusion from Review
Cisse-Egboanye et al. [32]	Study identified the types of foods sold in vending machines and school stores in schools, discussed the availability and consumption associated with student purchase, but does not address weight/BMI/caloric intake.
Gordon et al. [66]	Discusses availability of competitive foods in schools, school meal programs, in the prevalence of overweight and obesity. Does not address calories, BMI, or overall weight differences due to competitive foods in schools directly. Consumption, and availability, not weight.
Hawkes et al. [67]	Evaluates district policies addressing student wellness, developed an approach to determine best changes in policy to access to health food/drink in school cafeteria lunches. Does not address weight/BMI/caloric intake.
Kristensen et al. [68]	Discusses SSB taxes and impact on BMI in adolescents, but does not directly address this in school settings specifically. Discusses junk food in school vending machines and school stores and school nutrition policies, however does not address weight/BMI/caloric intake specifically. Consumption, not weight.
Kubik et al. [20]	Discusses perceptions of weight and diet with regards to consumption of snack foods sold in schools, but actual weight, BMI, or calories were not measured or evaluated. Consumption, not weight.
Schwartz et al. [69]	Primary purpose was to examine purchasing behaviors with school policy. Calculated purchasing behavior and dietary consumption, but did not address the research question on weight/BMI/caloric intake.
Thompson et al. [70]	Discusses school food environments, healthier school policies, and consumption and choice making of competitive foods. Does not address weight/BMI/caloric intake specifically. Consumption, not weight.
Wordell et al. [71]	
Results

The following summary of data aims to answer the objective of what impacts there are upon child weight (BMI), and/or caloric intake related to obesity when competitive foods are sold in schools, and it is the purpose of this thesis to investigate and identify any recommendations for further research as well as promote the strengthening of public health policy.

Assessment of study quality

Based on the model presented by Ackley et al. [41], seven levels of evidence were described. Each study was evaluated based on this model, and breaking down the levels of evidence reveals that seven studies (27%) were of Evidence Level III, which include non-randomized, well-designed controlled trials; and 19 studies (73%) were Level IV, well-designed case-control or cohort studies, including cross-sectional designs. According to Detsky et al. [42], who evaluated quality strength of criteria for assigning grades of evidence, seven studies (27%) were Moderate quality, with 19 studies (73%) being of Low Quality (see Appendix 2).

Eligible articles

The final analysis included 26 articles. The most common study designs, cross-sectional designs, were composed of 19 (73%) studies, followed by six (23%) quasi-experimental designs, and finally, one (4%) experimental study. Four interventions were accepted into the review [43–46]. The range of dates included were 2006–2017, to try to capture the most recent literature available at the time this review was completed.

All studies included adolescent age group 13–18, including Middle and High School students. Some studies included ages 6–12, and data were then extrapolated which focused on the age of inclusion for this review. The size of sample varied anywhere between 186 students involved in a high school intervention [45], to US student population age 10–17 across 50 states in the US [47].

Synthesized presentation of research

The research synthesized is presented in Table 4, which summarizes the aspects examined most frequently within the studies. Based on Whittemore and Knafl [48], regarding methodology within integrative literature reviews, the first step in data analysis should be data reduction.

The themes most frequently appearing in the studies included were those examining elements of BMI/Weight/Obesity, Calorie (Kcal) Consumption, Availability of Competitive Foods in Schools, Strength of Policy, and Other Effects: SES/Race/Ethnicity/Sex. Appendix 2 breaks down the literature components which were significant in the summary of each article accepted for this review. The breakdown consists of aim and objective, design of study, methods and data used in each study, evaluation measures, and level of evidence.

Summary of aspects

The following is the summary of the five aspects most frequently used in the 26 articles for this review.

BMI/obesity/weight

Nineteen out of the 26 articles included in the review addressed competitive foods in schools based on BMI/Obesity/Weight as indicators. While the studies were diverse, several examined the associations between competitive food sources in the schools and adolescents weight [16,49,50]. Some studies explored the prevalence of childhood overweight trends before and after policies were implemented, as well as implementation and adherence to nutrition laws in schools [3,26,51–54], while others examined the interaction on junk food sold in schools along with genetic components to weight [14]. Wiecha et al. [55], debated whether there was an association between BMI and grade level with intake of SSB’s.

Several studies discussed the prevalence of competitive food and beverages in schools and causality towards increase in BMI and weight for adolescents [23,43,56]. A study analysis by Mendoza et al. [57], and Smith & Holloman [45], explored reductions in Kcal consumption by decreasing the energy density in foods and SSB’s sold in schools and possible associations with long-term weight loss and maintenance. Fox et al. [58] discussed reductions in daily Kcalories from consumption of energy-dense foods and beverages in school with possible associations to weight of adolescents. Nanney et al. [47] details the varying levels of obesity across the country in various states and regions and any relevance it has on nutrition, physical activity, and education policies within schools. Fletcher et al. [59] examined the effects of soft drink taxes on weight among children, change in BMI, obesity prevalence, or soft drink calorie consumption.

Kcalories consumed or measured

Articles which discussed weight through consumption of Kilocalories or Kilocalorie density were in 58% or 15 of the articles reviewed. Interventions assessed by Hartstein et al. [44], evaluated mean daily nutrient sales per student, per item in competitive food venues such as a la carte and snack bars in schools. Cradock et al. [43], measured data on consumption of SSB’s by high school students before and after policy change implementation, noting the mean per capita daily calorie consumption for students who...
consume SSB’s. Snelling et al. [46], compared the NSLP and competitive food offerings and purchases in students in 3 high schools, and Smith & Holloman [45], examined the impact of SSB consumption among adolescents in high school settings and the Kcalorie implications it held.

Similarly, other studies which scrutinized adolescent Kcalorie consumption of SSB’s in school settings were also performed [55,60,61], including a pilot simulation by Levy & Friend [62], who assessed SSB Kcalories consumed inside and outside of school settings, and the possible effects on an SSB tax. Kakarala et al. [56], explored the mean energy intake from competitive food sources other than a la carte in schoolchildren. Briefel et al. [63], set out to test the hypothesis that children would compensate for eating fewer SSB’s and low-nutrient, energy dense foods at school by consuming more of these items outside of school. Other cross-sectional analyzes examined data on Kcalorie consumption of competitive foods in schools before and after policy implementation or beverage tax imposed [51,57,59]. Fox et al. [49,58], examined associations between adolescent’s weight status and school food environments, and amount of Kcalories consumed by students from low-nutrient, energy-dense foods attained in school.

Availability of competitive foods in schools
There were 20 articles (77%) which addressed the aspect of availability of competitive foods in schools and how that related to Kcalorie consumption or weight in adolescents. Studies which
correlated associations between availability, consumption patterns, and student’s BMI-related outcomes were performed by [14,26,49,50,59,60]. Whereas other studies considered the associations between a variety of competitive food sources (vending machines, a la carte, school store, snack bars) in schools with consumption of low nutrient, energy-dense foods [23,55,56,58,63].

Briefel et al. [61], and several others [3,43,52,54,62], explored change in consumption and weight status when policy interventions restricted the sale of SSB’s and and competitive food offerings on school grounds. Snelling et al. [46], sought to compare the NSLP with competitive food offerings and the impact availability and type of competitive foods had on adolescent consumption and purchasing behaviors. Nanney et al. [47], examined cross-sectional associations to discover if youth obesity prevalence and comprehensive school-based obesity prevention policies were linked. Smith & Holloman [45], analyzed the purchasing patterns of SSB consumption when restrictions on availability were implemented in school settings.

Analysis of policy
Fourteen studies (54%) discussed elements involving competitive food and beverage, nutrition, and physical education policies. Addressing over-weight prevalence before and after initiation of competitive food and beverage policies was observed in a number of studies [51,53,57]. Studies examined comparisons between states with competitive food and beverage policies in place versus those states with less stringent or no policies in place [3,14,26,43,63,64].

Evaluating different competitive food and beverage policies within schools around the country and their association with adolescent obesity were also examined [47,62] and, Nanney et al. [47], and Riis et al. [52], add analysis on physical education policies in addition to school nutrition policies. Taber et al [54], analyzed state school meal laws and their associations with weight status in adolescents. Fletcher et al. [59], and Levy & Friend [62], also considered effects on adding SSB taxes to predict daily Kcalorie reductions in adolescents.

Other effects: SES/race/ethnicity/sex
Eighteen articles (69%) addressed the element of other effects, including Socio Economic Status (SES), Race, Ethnicity, and Sex as factors of interest to the studies. Fourteen (78%) of the 18 articles which addressed other effects examined the potential impact of being in an ethnic minority group [3,16,23,26,43,4,53–55,57,61,63].

Eleven (61%) of the 18 articles were addressing SES in some capacity as being an interesting variable in the study [3,16,26,43,50,53,54,56,57,60,64]. Association with sex/gender was examined in nine (50%) out of the 18 articles when looking at other effects [14,16,23,26,43,45,51,57,63].

Discussion
After examining all 26 articles which met all criteria for this review, it was clear that adolescent obesity is a serious public health concern. The studies analyzed and performed within this review attempted to quantify where the problems lay, with a main assumption being that since adolescents spend an average of six or more hours per day and 180 days out of each year in school settings, the school environment might hold an inimitable influence upon the diets and eating behaviors of US schoolchildren [49].

One consistent concern was the pervasiveness of competitive foods, considered FMNV in US schools [14]. Thus far, there has been scant evidence to support the associations between school food environments with eating behaviors and weight/BMI of adolescents [49]. It is with a unified consensus therefore, that all studies in this review attempted to dissect this hypothesis, with varying results. Therefore, as ‘a final step of the data analysis in an integrative review…the synthesis of important elements or conclusions of each subgroup’ …is gathered. ‘into an integrated summation of the topic or phenomenon,’ [48, p.551], which is represented in the following text.

Positive association between competitive food and beverage policies and BMI/weight
Cradock et al. [43], found that the decline in consumption of SSB’s after the policy change in Boston Public Schools relates to approximately 45 Kcals per day, where a 45 Kcal/day reduction could potentially cut the 25% to 40% of total excess Kcalories. According to Briefel et al. [60], among students who consumed SSB’s at school, their energy intake over their entire day was approximately 229 Kcal higher than students who did not consume SSB’s at school. According to Wiecha et al. [55], the number of items purchased at school vending machines is directly associated with SSB intake and purchase.

Fox et al. [58], discovered that in middle schools and high schools, students got 171 and 219 Kcalories from low-nutrient, energy-dense competitive foods. Fox et al. [58], discovered at the middle school level, the availability of low-nutrient, energy-dense foods in vending machines in or near the foodservice area was positively associated with a higher BMI z score. And Hartstein et al. [44] noted that two Texas schools in their study showed a reduction in Kcal density from 277 to 216, however, other reductions were modest (1 to 12 Kcal per item sold). California students exposed
to more stringent school nutrition policies consumed a lower proportion of their Kcalories at school, indeed, consumed less for every measure examined, compared with students in other states [64].

Results revealed that energy density significantly declined to 2.1 + 0.78 Kcal/g in the middle school study by Mendoza et al. [57]. Nanney et al. [47] found that Food Service and Nutrition (FSN) policy groupings with the strongest associations to youth obesity are policies which pertained to competitive foods and food service standards. After adjusting for factors, nutrition policies addressing competitive foods in other venues, food service director qualifications, and BMI screening remained positively and significantly related to the odds of obesity in children, as revealed by Riis et al. [52].

Levy and Friend [62], postulated that a $0.01 tax per ounce is predicted to reduce SSB consumption by 40.3–54.2 Kcal/day. Taber et al. [54], found that the unadjusted frequency of obesity was 11% higher in students who received free/reduced price lunches at school compared with students who did not purchase lunch at school. Adolescent students gained 0.44 fewer BMI units when they were exposed to specific, consistent, required competitive food laws from 2003 to 2006 than students who were not exposed to the same requirements, according to Taber et al [3].

According to Smith & Holloman [45], students who participated in their intervention reduced both their daily consumption of SSB’s as well as the number of days per week they consumed these beverages (1 serving = 150 Kcal/day). Similarly, an intervention by Snelling et al. [46], discovered that competitive food menus tend to offer foods which lack in nutrients and have higher energy densities. Kakarala et al. [56] found that the total sugar intake was higher among students who consumed competitive food/beverages when excluding a la carte items.

Other effects are significant

Briefel et al. [61], discovered when accounting for other effects such as age and race/ethnicity, non-Hispanic whites would save more total Kcalories than Hispanic middle school students (234 Kcal/day vs. 184 Kcal/day). Briefel et al. [63], also found that being non-Hispanic African American was associated with greater caloric intake of sweetened beverages in high school, by 42 Kcal, and that being Hispanic or non-Hispanic African American was associated with a 47 and 70 Kcal greater intake from low-nutrient, energy-dense foods, than for non-Hispanic whites, and females consumed 46 Kcal less from low-nutrient, energy-dense foods.

Bauhoff et al. [51], also discovered that there was a consistent decrease of soda consumption for females, when SSB reductions were put into place. Wiecha et al. [55], discovered that boys drank significantly more SSB’s than girls did, and that SSB intakes were higher among Hispanics vs non-Hispanics, and African Americans vs non-African Americans. Similarly, Hennessy et al. [26] noted in their study that adolescents who were overweight/obese were more often younger, have younger parents, non-Hispanic black or Hispanic, male, less vigorously active, have a TV in their bedroom, not live in a 2-parent family, and reside in a poor household. Park et al. [23] determined that in the proportions of students buying lunch from vending machines, non-Hispanic black race/ethnicity, Hispanic ethnicity, older age, and smoking were significantly higher.

Relative to other groups, fifth-grade girls in Los Angeles experienced the largest change in overweight trends, however, in the rest of California, the lower rate of increase in overweight was significant among fifth-grade boys and seventh graders [53]. In the study analyzed by Taber et al. [64], they also found that the California sample had a greater proportion of Hispanic students (76.6%) than other states that were in the sample (14.7%). However, the results were very similar when restricting the analysis to Hispanic students on consumption of caloric content of competitive foods.

Mendoza et al. [57], determined that the reduction in energy density was significantly moderated by SES, and that low-SES schools had a higher proportion of males (66%), and Hispanic students. According to Taber et al.’s [3] breakdown, it showed how states that had no 2003 laws had a relatively low proportion of students who were non-Hispanic black (9.0%) and low proportion of students in the lowest SES quintile (15.7%). However, they found that states with weak 2003 laws had a relatively high proportion of students who were Hispanic (28.0%), and who were in the lowest SES quintile (23.8%). Yet, Kakarala et al. [56] determined that competitive food use did not differ significantly between adolescents who qualified for subsidized school meals and those who did not, signifying that the cost of vended items was most likely priced so that children of any income level could buy them.

No strong effect between school food environments on BMI/weight found overall

Anderson and Butcher [14], found a strong literature base which revealed robust correlations regarding a genetic component to weight, suggesting in their study that while school food policies have no affect on most students’ weight, policies that increase access to junk foods and SSB’s in school could be a contributing factor for those with a genetic susceptibility to weight gain. Similarly, Bauhoff et al. [51], determined there were positive effect results for obese students considering they might be more apt to purchase and consume in-school, therefore being more influenced by any nutrition policies. However, no significant
statistical results regarding most student’s weights and any competitive food policies were found.

Van Hook and Altman [16], also suggest that weight during early adolescence is strongly shaped by how heavy these adolescents were in their younger years.

Fletcher et al. [59, p. 1064], discovered that ‘neither vending machine restrictions nor soft drink taxes will lead to noticeable weight reduction in children’, noting that according to their analysis, adolescents consumed just as many soft drinks in schools with vending machine restrictions as in schools without restrictions. And Hartstein et al. [44], determined that when all schools in their intervention were included, there were no significant change in number of Kilocalories sold per student between week 1 and week 6.

Briefel et al. [61], found positive results for SSB consumption in out-of-school settings versus in-school settings, suggesting that while reducing SSB consumption in schools can be beneficial (8 Kcal/day), a greater benefit would come from reducing SSB consumption outside of school settings (145 Kcal/day). And Park et al. [23], discovered no significant association in daily mean SSB consumption from vending machine on BMI status among middle school students in the US.

Nanney et al. [47], found that there was no significant correlation between Weight Assessment (WA) policies and youth obesity prevalence. Results from the analysis by Terry-McElrath et al. [50], showed that, after inclusion of the percentage of high school students eligible for free or reduced-price lunch (FRPL), all associations between student overweight and obesity and school food environment were not significant.

Van Hook & Altman [16], similarly discovered that their results demonstrated how changes in competitive foods sales in schools were not associated with changes in children’s percentile BMI. The negative relationship between obesity prevalence and school meal environment polices in high schools was constant across cross-sectional and policy change analyzes, as was determined by Riis et al. [52]. Based on the findings from Fox et al. [49], no associations between school food environments and practices, BMI z scores, or the likelihood of obesity were significant among high-school students.

Measuring variables

A variety of different measuring variables were examined and used in each article (see Appendix 2), with some of the more common variables including 13 articles (50%) examining BMI/weight association with exposures to competitive food and beverage policies in schools, six studies (23%) compared students in school districts to those in a control group or other district. Seventeen (65%) of the 26 studies utilized questionnaires, checklists, or menu data for comparative analysis to BMI/weight/Kcal consumption, and 11 articles (42%) looked at outcome measures of per capita total Kcal consumed per day as a measuring variable. Similarly, 11 (42%) of the 26 articles analyzed in this review used comparisons within student’s eating patterns as a particularly interesting measuring variable.

Method of analysis

Each article included in this review used one of four categories of analysis; Factor Analysis, Associations, Comparisons, and Descriptive Analysis (see Table 5). Seven (27%) of the 26 studies used Factor Analysis, whereas 11 (42%) of the articles applied an Association Analysis. Eleven studies (42%) employed Comparative Analysis, and lastly, most (16, or 62%) studies relied on Descriptive Analysis.

Limitations in the literature

According to this review of literature, with 26 articles included in the final analysis, each presented their limitations with regards to robustness in research. Nineteen articles (73%) were based on cross-sectional study design, which can be important in determining correlational findings, however, are not able to imply causality. It is also important to note that fifteen of the articles (58%) were based on self-reported data, while common in these types of research studies on diet and BMI/weight, could potentially alter prevalence within the data due to under or over-reporting of food and beverage consumption and purchase recall or weight/height measurements.

Five of the articles (19%) in this review mentioned that the data they were utilizing was as current as was possible to obtain, however, was still outdated and newer more vigorous research was needed. Two articles (8%) discussed the limitations in data during the pre-intervention and post-intervention phases, which would have benefited the results. Limited data collection across a variety of elements within studies was brought up in 17 of the 26 articles (65%), with most acknowledging the lack of ability to test for every factor possible to attain the strongest most unbiased results. And finally, five of the articles (19%) stated that their results were not necessarily applicable to other children, either older or in a different setting.

Methodological limitations

There were several limitations with this integrative systematic review, one being that most of the literature available are cross-sectional studies, which are unable to define causality. Another limitation might be that only three databases were searched, therefore
data was only obtained from CINAHL, MEDLINE, and EMBASE, and other literature is potentially available which was not found in this review. Generalizability is scattered, with some studies being relevant over the entire adolescent age range, and others merely pertinent to middle school, or high school aged students only. Finally, due to feasibility and time, double measures of cross-checking the data and inclusion criteria was unavailable. A pilot was done with two reviewers, yet only one researcher could complete the rest of the data extraction and analysis for this review. However, intra-rater reliability was ensured through research re-analyzation of all selected data.

Conclusions

The results were inconclusive, with many studies unable to definitively prove that competitive food sources in the schools are causal towards BMI/weight of adolescents, and much of the literature revealing that there was indeed, no direct association between competitive foods in schools and BMI/weight. There were studies which did discover associations between weight and competitive foods sold in schools, but they were limited and did not have robust results.

Stronger policies overseeing competitive foods in schools proved to help in some significant ways, revealing that monitoring the sales and availability of FMNV in schools can only benefit students, considering how only a few Kcalories per day can make a difference long term. The most common theme throughout the literature was how even small fluctuations can create large changes in society, with easy access and availability towards unhealthy foods in schools impacting adolescents in a profound way, therefore, there needs to be an awareness and forethought regarding the future of our youth. It is apparent from the literature that policy makers need to pay extra attention to the more vulnerable groups such as those with a genetic susceptibility, lower socio-economic status, as well as examining more closely minority groups, and gender differences.

It was the definitive goal of this study to explore the literature currently available to answer the question of what ways competitive foods in school settings impacted adolescents BMI/weight. The hope was to bring to light the importance of how school environments are a strong influence and possibly a factor in the epidemic of adolescent obesity in America today. This literature review attempted to analyze the existing data systematically, thoroughly, and without bias. It is the opinion of this review that this was achieved. The literature which was examined, as well as the results of the studies analyzed, could very well be generalized to other countries other than just the US. Replicability of this study is ensured, and detailed throughout this review. Adolescent obesity is a growing epidemic worldwide, and a call for stronger research is imperative for this global public health problem.

Acknowledgments

I would like to thank my thesis advisor Dr. Lina Magnussen of the School of Public Health at Lund University for her oversight and assistance.
Author contributions

Kirsten Sildén was the principal researcher, writer, and editor of the study for all drafts of the paper.

Disclosure statement

No potential conflict of interest was reported by the author.

Ethics and consent

This review is comprised of articles which included established ethical clearance procured for the research, or if that was not apparent, the informed consent process was described clearly within the article thus implying that the statement of ethical consent need not be published directly, merely accompanying the submission of the article to prove the ethical quality. Therefore, this review examined and included articles if it was clear that the studies were performed in an ethical manner.

Funding information

None.

Paper Context

Obesity affects more than one-third of adolescents (age 13–18) in the Unites States. The economic burden and health implications are staggering. This review compiled the most recent research and examined competitive foods sold in schools to see if they are a contributing factor on adolescent obesity. This review can inform policy makers, educators, parents, and community about the obesity crisis facing our youth and the need for more rigorous research and policies to help fight it.

ORCID

Kirsten E. Sildén http://orcid.org/0000-0003-4116-977X

References

[1] Rosenkotter E, Loman DG. Self-efficacy and self-reported dietary behaviors in adolescents at an urban school with no competitive foods. J Sch Nurs. 2015;31 (5):345–352.
[2] Rodriguez G, Moreno LA, Blay MG, et al. Body composition in adolescents: measurements and metabolic aspects. Ijo. 2004;28:554–558.
[3] Taber DR, Chiquire JF, Perna FM, et al. Weight status among adolescents in states that govern competitive food nutrition content. Pediatrics. 2012;130:437–444.
[4] DeBarr K. Health educators as problem solvers/policy advocates: taking on childhood obesity. Calif J Health Promot. 2006;4:134–140.
[5] Larson N, Story M. Are ‘competitive foods’ sold at school making our children fat? Health Affairs. 2010;29:430–435.
[6] Long MW, Luedicke J, Dorsey M, et al. Impact of connecticut legislation incentivizing elimination of unhealthy competitive foods on national school lunch program participation. Am J Public Health. 2013;103:59–66.
[7] Graff SK. First amendment implications of restricting food and beverage marketing in schools. Ann Am Acad Pol Soc Sci. 2008;615:158–177.
[8] Story M, French S. Food advertising and marketing directed at children and adolescents in the US. Int J Behav Nutr Phys Act. 2004;1:3.
[9] BI D, Mg M, Kennedy PF. Marketing foods and beverages in schools: the effect of school food policy on students overweight measures. Ama. 2010;29:204–218.
[10] Rossen LM. Restricting unhealthful food advertising to children and the first amendment. Prev Chronic Dis. 2012;9:1–2.
[11] Harris JL, Graff SK. Protecting children from harmful food marketing: options for local government to make a difference. Prev Chronic Dis. 2011;8:1–7.
[12] Calvert SL. Children as consumers: advertising and marketing. Future Child. 2008;18:205–234.
[13] Sharma LL, Teret SP, Brownell KD. The food industry and self-regulation: standards to promote success and to avoid public health failures. Am J Public Health. 2010;100:240–246.
[14] Anderson P, Butcher K. ‘Reading, writing, and refreshments are school finances contributing to children’s obesity? J Hum Resour. 2006;41:1–36.
[15] Price J, Murman J, Moore B. Soft drink vending machines in schools: a clear and present danger. J Health Educ. 2006;37:306–314.
[16] Van Hook J, Altman CE. Competitive food sales in schools and childhood obesity: a longitudinal study. Sociol Educ. 2012;85:23–39.
[17] Cunningham SA, Zavodny M. Does the sale of sweetened beverages at school affect children’s weight? Soc Sci Med. 2011;73:1332–1339.
[18] Fox S, Meinene A, Pesik M, et al. Competitive food initiatives in schools and overweight in children: a review of the evidence. Wis Med J. 2005;104:38–43.
[19] Rovner AJ, Nansel TR, Wang J, et al. Food sold in school vending machines is associated with overall student diet-ary intake. J Adolesc Health. 2010;48:13–19.
[20] Kubik MY, Wall M, Shen L, et al. State but not district nutrition policies are associated with less junk food in vending machines and school stores in US public schools. J Acad Nutr Diet. 2010;110:1043–1048.
[21] Terry-McElrath YM, Hood NE, Colabianchi N, et al. Profits, commercial food supplier involvement, and school vending machine snack food availability: implications for the implementing the new competitive foods rule. J Sch Health. 2014;84:451–458.
[22] Brownell KD, Warner KE. The perils of ignoring history: big tobacco played dirty and millions died. how similar is big good? Milbank Q. 2009;87:259–294.
[23] Park S, Sappenfield WM, Huang Y, et al. The impact of the availability of school vending machines on eating behavior during lunch: the youth physical activity and nutrition survey. J Am Diet Assoc. 2010;110:1532–1536.
[24] Woodward-Lopez G, Gosliner W, Samuels SE, et al. Lessons learned from evaluations of California’s statewide school nutrition standards. Am J Public Health. 2010;100:2137–2145.
[25] Bullock SL, Craypo L, Clark SE, et al. Food and beverage environment analysis and monitoring system: a reliability study in the school food and beverage environment. J Am Diet Assoc. 2010;110:1084–1088.
[26] Hennessy E, Oh A, Agurs-Collins T, et al. State-level school competitive food and beverage laws are
associated with children’s weight status. J Sch Health. 2014;84:609–616.

[27] Obri-Vachaspati P, Turner L, Chaloupka FJ. Alliance for a healthier generation’s competitive beverage and food guidelines: do elementary school administrators know about them and do they report implementing them? J Sch Health. 2012;82:469–477.

[28] Merlo CL, Olsen EO, Galic M, et al. The relationship between state policies for competitive foods and school nutrition practices in the USA. Prev Chronic Dis. 2014;11:130216.

[29] Cvjetan B, Utter J, Robinson E, et al. The social environment of schools and adolescent nutrition: associations between the school nutrition climate and adolescents’ eating behaviors and body mass index. J Sch Health. 2014;94:677–682.

[30] Privitera GJ, Zuraikat FM. Proximity of foods in a competitive food environment influences consumption of a low calorie and a high calorie food. Appetite. 2014;76:175–179.

[31] Tillotson JE. America’s obesity: conflicting public policies, industrial economic development, and unintended human consequences. Annu Rev Nutr. 2004;24:617–643.

[32] Cisse-Egbuonye N, Liles S, Schmitz KE, et al. Availability of vending machines and school stores in California schools. J Sch Health. 2016;86:48–53.

[33] Riera-Crichton D, Tefft N. Macronutrients and obesity: revisiting the calories in, calories out framework. Econ Hum Biol. 2014;14:33–49.

[34] Jaime PC, Lock K. Do school based food and nutrition policies improve diet and reduce obesity? Prev Med. 2009;48:45–53.

[35] Molnar A, Garcia DR, Boninger F, et al. Marketing of foods of minimal nutritional value to children in schools. Prev Med. 2008;47:504–507.

[36] Fleischhacker S. Food fight: the battle over redefining competitive foods. J Sch Health. 2007;77:147–152.

[37] Higgins JPT, Lasserson T, Chandler J, et al. Methodological expectations of cochrane intervention reviews. London: Cochrane; 2016. p. 1–68.

[38] Souza MT, Silva MD, Carvalho R. Integrative review: what is it? how to do it? Einstein (São Paulo). 2010 cited 2017 Mar 9;8:102–106.

[39] Treadwell JR, Singh S, Talati R, et al. A framework for “best evidence” approaches in systematic reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); Methods/Approaches; 2011.

[40] Haidich AB. Meta-analysis in medical research. Hippokratia. 2010;14:29.

[41] Ackley BJ, Swan BA, LadwigG et al. Evidence-based nursing care guidelines: medical-surgical interventions. Elsevier Health Sciences. 2007. Available from: https://www.amsn.org/sites/default/files/documents/practice-resources/evidence-based-practice/Evidence_Based_Practice_Module_1.pdf

[42] Detsky AS, Naylor CD, O’Rourke K, et al. Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol. 1992;45:255–265.

[43] Cradock AL, McHugh A, Mont-Ferguson H, et al. Effect of school district policy change on consumption of sugar-sweetened beverages among high school students, Boston, Massachusetts, 2004–2005. Prev Chronic Dis. 2011;8:A74.

[44] Hartstein J, Cullen KW, Reynolds KD, et al. Impact of portion-size control for school a la carte items: changes in kilocalories and macronutrients purchased by middle school students. J Am Diet Assoc Journal. 2008;108:140–144.

[45] Smith LH, Holoman C. Piloting “Sodabriety”: a school-based intervention to impact sugar-sweetened beverage consumption in rural Appalachian high schools. J Sch Health. 2014;84:177–184.

[46] Snelling AM, Korba C, Burkey A. The national school lunch and competitive food offerings and purchasing behaviors of high school students. J Sch Health. 2007;77:701–705.

[47] Nanney MS, Nelson T, Wall M, et al. State school nutrition and physical activity policy environments and youth obesity. Am J Prev Med. 2010;38:9–16.

[48] Whitemore R, Knaff K. The integrative review: updated methodology. J Adv Nurs. 2005;52:546–553.

[49] Fox MK, Dodd AH, Wilson A, et al. Association between school food environment and practices and body mass index of US Public School Children. J Acad Nutr Diet. 2009a;109:108–S117.

[50] Terry-McElrath YM, O’Malley PM, Delva J, et al. The school food environment and student body mass index and food consumption: 2004 to 2007 national data. J Adolesc Health. 2009;3:45–56.

[51] Bauhoff S. The effect of school district nutrition policies on dietary intake and overweight: A synthetic control approach. Econ Hum Biol. 2014;12:45–55.

[52] Riss J, Grason H, Stobino D, et al. State school policies and youth obesity. Matern Child Health J. 2012;16:S111–S118.

[53] Sanchez-Vaznaugh EV, Sanchez BN, Baek J, et al. Competitive food and beverage policies: are they influencing childhood overweight trends? Health Aff. 2010;29:3436–3446.

[54] Taber DR, Chriqui JF, Powell L, et al. Association between state laws governing school meal nutrition content and student weight status. JAMA Pediatr. 2013;167:513–519.

[55] Wiecha JL, Finkelstein D, Troped PJ, et al. School vending machine use and fast-food restaurant use are associated with sugar-sweetened beverage intake in youth. J Am Diet Assoc. 2006;106:1624–1630.

[56] Kakarala M, Keast DR, Hoerst S. School children’s consumption of competitive foods and beverages, excluding a la carte. J Sch Health. 2010;80:429–435.

[57] Mendoza JS, Watson K, Cullen KW. Change in dietary energy density after implementation of the Texas public school nutrition policy. J Am Diet Assoc. 2010;110:434–440.

[58] Fox MK, Gordon A, Nogales R, et al. Availability and consumption of competitive foods in US public schools. J Am Diet Assoc. 2009b;109:S57–66.

[59] Fletcher J, Fisvold D, Tefft N. Taxing soft drinks and restricting access to vending machines to curb child obesity. Health Aff. 2010;29:1059–1066.

[60] Briefel RR, Wilson A, Gleason P. Consumption of low-nutrient, energy-dense foods and beverages at school, home, and other locations among school lunch participants and non-participants. J Am Diet Assoc. 2009a;109:S79–90.

[61] Briefel RR, Wilson A, Cabili C, et al. Reducing calories and added sugars by improving children’s beverage choices. J Am Diet Assoc. 2013;113:269–275.
Levy DT, Friend KB. Simulation modeling of policies directed at youth sugar-sweetened beverage consumption. Am J Community Psychol. 2013;51:299–313.

Briefel RR, Crepinsek MK, Cabili C, et al. School food environments and practices affect dietary behaviors of US public school children. J Am Diet Assoc. 2009b;109:S91–S107.

Taber DR, Chriqui JF, Chaloupka FJ. Differences in nutrient intake associated with state laws regarding fat, sugar, and caloric content of competitive foods. Arch Pediatr Adolesc Med. 2012b;166:452–458.

Ursi ES. Prevenção de lesões de pele no perioperatório: revisão integrativa da literatura [dissertation]. Ribeirão Preto: Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto. 2005.

Gordon AR, Cohen R, Crepinsek MK, et al. The third school nutrition dietary assessment study: background and study design. J Am Diet Assoc. 2009;109:S20–30.

Hawkes AP, Weinberg SL, Janusz R, et al. An innovative method of measuring changes in access to healthful foods in school lunch programs: findings from a pilot evaluation. PLoS ONE. 2016;11:1.

Kristensen AH, Flottemesch TJ, Maciosek MV, et al. Reducing childhood obesity through U.S. federal policy: a microsimulation analysis. Am J Prev Med. 2014;47:604–612.

Schwartz MB, Novak SA, Fiore SS. The impact of removing snacks of low nutritional value from middle schools. Health Educ Behav. 2009;36:999–1011.

Thompson OM, Yaroch AL, Moser RP, et al. School vending machine purchasing behavior: results from the 2005 youthstyles survey. J Sch Health. 2010;80:225–232.

Wordell D, Daratha K, Mandal B, et al. Changes in a middle school food environment affect food behavior and food choices. J Acad Nutr Diet. 2012;112:137–141.

Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:7.

Appendices

Appendix 1. Sample of Variables for Data Collection Table (inspired by Ursi [65]; Souza et al [38]).

1. Identification	United States
Title of the Article	
Title of the Journal	
Authors	
Country	English
Language	
Year of publication	

2. Type of publication
Nursing publication
Medical publication
Publication in another area of health? Which area?

2. Methodological characteristics of the study
1. Objective or investigation question/AIM:
2. Sample

3. Research
1. Quantitative approach
2. Experimental design
3. Quasi-experimental design
4. Non-experimental design

4. Selection
1. Random
2. Convenience
3. Other

5. Size (n)
6. Initial
7. Final

8. Characteristics
9. Age
10. Sex: M () F ()

11. Race
12. Inclusion/Exclusion criteria of subjects:
13. Independent variable:
14. Dependent variable:
15. Control group: yes () no ();
16. Measurement instrument yes () no ();
17. Duration of the study:
18. Methods employed to measure the intervention:
19. Evidence level and Quality based on:

Ackley et al. [41]
Detsky et al. [42]
Appendix 2. Summary of the 26 articles in this Review.

Reference	Aim/ Objective	Design	Methods/ Data
Anderson & Butcher [14]	“We examine whether schools under financial pressure tend to adopt potentially unhealthful food policies and whether students’ Body Mass Index (BMI) is higher where they are more likely to be exposed to these food policies.”	Non-experimental design: Observational; cross sectional	1. Grades 1–12. 2. 451 public middle and high schools. 3. Two-sample methodology. We use school food policy information from the representative sample of public schools surveyed in the SHPPS to create our proxy variable. 4. Three different policies: junk food availability in schools, whether schools have “pouring rights” contracts, and whether soda and snack food advertisements are allowed at schools or school events. 5. Statistical analysis; ‘our approach uses an auxiliary regression to predict exposure to a food policy, which is unobservable in the data. Standard errors were adjusted for arbitrary correlation within the state.’
Bauhoff, S. [51]	“This paper evaluates the impact of an early nutrition policy, Los Angeles Unified School District's food-and-beverage standards of 2004, using two large datasets on food intake and physical measures.”	Non-experimental design: Observational: cohort and cross-sectional	1. 12–13 and 14–15. 2. Middle school (206,718), High School (198,262). 3. ‘A data-driven approach was used to construct a “synthetic” control group that closely resembles the treatment unit in the pre-intervention period. Then generated the synthetic control group as a preprocessing step and then estimate a two-period difference-in-difference with additional individual and school level controls. The synthetic districts are constructed in three steps that were applied separately for the two datasets because of their different geographic coverage.’ 4. ‘Estimate the treatment effect using these four cohort and cross-section synthetic control groups, one for each the PFT and CHKS data, and for the cohort and cross-section samples. Since the Los Angeles beverage policy starts in January 2004, data were compared from Spring 2003 and Spring 2005.’ 5. Descriptive Statistical Analysis used.
Briefel et al. [60]	“To describe patterns of consumption of ‘empty calories’—low-nutrient, energy-dense foods, including sugar-sweetened beverages—by eating location among National School Lunch Program (NSLP) participants and nonparticipants.”	Non-experimental design: Observational; Cross-sectional	1. Grades 1–12. 2. 2,314 children, including 1,386 NSLP participants. 3. Twenty-four–hour dietary recalls, child surveys, and parent surveys were collected for each selected child. 4. One 24-hour recall was collected for each child and a second day’s intake on a subsample using the USDA Automated Multiple Pass Method software. 5. Descriptive Statistical Analysis used. ‘Comparisons, using t tests, of the proportion of children consuming low-nutrient, energy dense foods and beverages, mean daily energy and energy from low-nutrient, energy-dense foods, and energy density by NSLP participation status.’
Briefel et al. [63]	“To estimate the effects of school food environments and practices, characterized by access to competitive foods and beverages, school lunches, and nutrition promotion, on children’s consumption of sugar-sweetened beverages, low-nutrient energy-dense foods, and fruits/vegetables at school.”	Non-experimental design: Cross-sectional	1. 287 schools (in 94 districts) with child-level dietary recall data; 2,314 children, grades 1–12. 2. Children aged 6 to 18 year. 3. ‘Based on the questionnaire, checklist, and menu data, we created 20 binary variables that indicated the presence of a healthful school food policy, practice, or environmental characteristic and grouped them into three domains: wellness policies and nutrition promotion practices of the district or school, competitive foods and beverages and related school practices, and characteristics of USDA lunches offered and practices related to school meals.’ 4. Food and nutrient consumption for this analysis was based on a single 24-hour dietary recall collected using the USDA Automated Multiple Pars Method software. 5. ‘Ordinary least squares regression was used to identify the association between school food environments and practices and dietary outcomes, controlling for other school and child/family characteristics. To examine whether school food environments and practices were associated with children’s dietary outcomes at school, binary and multivariate analyses were conducted. Descriptive analysis was conducted to estimate the prevalence of individual school food policies and practices by school type and boys’ and girls’ consumption of beverages, low-nutrient, energy-dense foods, and fruits and vegetables. Multivariate analysis was conducted to identify the relationship between school food environments and practices and dietary outcomes.’

(Continued)
Appendix 2. (Continued).

Reference	Aim/ Objective	Design	Methods/ Data
Briefel et al. [61]	"The objective of this study was to estimate the mean calories from added sugars potentially saved by healthier beverage selections at both home and school. The study tested the hypothesis that calories saved would be greater for SSB’s than flavored milks, and that away-from-school savings would be greater than at-school savings.”	Non-experimental design: cross-sectional	1. Definition of the subjects 2. Size of the sample 3. Methodology 4. Measuring variables 5. Method of analysis
Cradock et al. [43]	“The Boston Public Schools passed a policy restricting sale of sugar-sweetened beverages in Boston schools in June 2004. The objective of this study was to determine whether high school students’ consumption of sugar-sweetened beverages declined after this new policy was implemented.”	Quasi-experimental design:	Kcal Level IV: Low Quality
Fletcher et al. [59]	"In this paper, we outline important concepts related to these policies. We present new empirical evidence of the likely effectiveness of school vending machine restrictions and increasing taxes on soft drinks on reducing obesity rates in children. We conclude by discussing how the effectiveness of these policies might be increased.”	Non-experimental design: Observational; Cross Sectional	Kcal Level III: Mod. Quality

Eval. Meas.	Wt.	BMI	Kcal	Quality	Detsky et al. [41]
1. Definition of the subjects				41	
2. Size of the sample				41	
3. Methodology				41	
4. Measuring variables				41	
5. Method of analysis				41	

In this paper, we outline important concepts related to these policies. We present new empirical evidence of the likely effectiveness of school vending machine restrictions and increasing taxes on soft drinks on reducing obesity rates in children. We conclude by discussing how the effectiveness of these policies might be increased.
Appendix 2. (Continued).

Reference	Aim/ Objective	Design	Methods/ Data		
Fox et al. [49]	“To examine the association between school food environments and practices and children’s body mass index (BMI; calculated as kg/m²). In this article, we examine associations between school food environments and practices and children’s weight status, as measured using BMI.”	Non-experimental	1. Grades 1–12. 2. 287 schools and 2,228 children. 3. 287 schools (in 94 school food authorities) in which site visits were completed to inventory competitive food sources and collect child-level data, and 2,228 children who had valid height and weight data; Foodservice managers completed a menu survey that provided information about the foods offered in school meals each day during a specified “target week.” 4. Students and parents completed brief interviews that collected data on sociodemographic characteristics of the child’s household, as well as information about the child’s level of physical activity, the amount of time the child spent watching television or videos, using the computer, or playing video games, recent dieting behavior, and parental perceptions about how the child’s usual food intake and activity level compared to other children of the same age and sex. Sampled children were measured and weighed. 5. Descriptive Statistical Analysis used. ‘Ordinary least squares regression was used to estimate the associations between school food environments and practices and BMI z scores and logistic regression was used to estimate associations between school food environments and practices and the likelihood of obesity.’	Kcal	Level IV/ Low Quality
Hartstein et al. [44]	“Document whether a 6-week snack bar/a la carte line intervention improved kilocalories, macronutrients, and food offerings purchased per student and per item sold (nutrient density) compared to baseline.”	Non-Experimental design: Observational; cross-sectional	1. Students grades 6–8. 2. 6,248 students. 3. Reducing all reg. chips serv. size bags to < 1.5 oz., increase lower-fat chip offerings by 25%; offer bottled water in a 20-oz. size, and limit all sweetened beverages to < 12 oz. 4. To assess if nutrient density of items sold was improved by the intervention, kilocalories, fat, and % fat from items sold per day were divided by the total number of items sold that day. 5. Statistical analyzes used. ‘Mixed models, accounting for the clustering of observations within schools, were used to analyze changes between baseline and week 6 for two models.’	Kcal	Level IV/ Low Quality

Level of Evidence

Eval. Meas. Wt. BMI Kcal	Quality Detsky et al. [42]
BMI	Level IV/ Low Quality
This study attempted to determine whether state laws regulating low nutrient, high energy-dense foods and beverages sold outside of the reimbursable school meals program (referred to as "competitive foods") are associated with children’s weight status.

Non-experimental design: Observational; cross-sectional

1. Grades 1–12.
2. 2309 students.
3. Competitive foods/beverages use, excluding a la carte items, was examined using the third School Nutrition Dietary Assessment Study (SNDA III), a nationally representative sample of 2309 schoolchildren in grades 1 to 12. Trained interviewers administered questionnaires to obtain 24-hour food recall data on a school day. All students of middle schools and high schools self-reported their dietary intakes.
4. (SNDA III). Data on food source, Competitive foods/beverages use, dietary interview data were collected, reported food items to food composition data; gender (male, female), ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), income eligibility for NSLP/SBP (eligible for free meals, eligible for reduce-price meals, not eligible), and participation in NSLP/SBP.
5. Descriptive statistical analysis used. Analysis of variance techniques were employed to test significance of differences between groups while controlling for covariates.

In this paper, we develop a simulation model of the pathways of policy effects of school-based access to nutrition, school-based education and SSB tax policies on the consumption of SSB’s by youth, and the resulting effects on caloric intake. The model will embody a systematic approach that considers the effect of various school nutrition policies on the number of SSB calories consumed inside and outside of school, and how changes in SSB consumption affect the consumption of other foods (more specifically, their associated caloric intake).

Experimental design: Virtual experiment

1. Review of literature and policies.
2. None provided.
3. We reviewed the literature on the direct effects of school nutrition policies on SSB consumption, the effect of price on SSB consumption (with a focus on youth), the effects of reduced consumption of SSB’s in school on the consumption of other foods in school (UNEDs or otherwise), the effects of SSB consumption in school on the consumption of SSB’s and other foods outside of school, and the effects of SSB consumption on caloric intake (both through direct reductions in the amount consumed and the effect on the consumption of other foods).’
4. We apply those estimates where feasible in our current modeling approach and incorporate new studies conducted since that review. We limit the analysis to the effect of SSB policies on overall caloric intake.’
5. Statistical Descriptive Analysis used.
Level of Evidence

Reference	Aim/ Objective	Design	Methods/ Data
Mendoza et al. [57]	"The study’s objective was to assess the impact of the Texas Public School Nutrition Policy on children’s energy density by using a pre- and post-policy evaluation. Specifically, the research objectives were to examine the changes in energy density after the policy, determine whether socioeconomic status moderated the impact of the policy on energy density, identify changes in the contribution of individual food groups to energy intake after the policy was implemented, and determine whether socioeconomic status mod. changes by individual food groups to energy intake."	Non-experimental design: Observational; Cross sectional	1. 6–8th grade students. 2. 2,616 students 2001–2002; 10,172 students 2005–2006. 3. 6–8th grade students completed anonymous lunch food records immediately after lunch in the cafeteria. On each school day during the week, research assistants selected either one or two tables of students at each lunch period and asked students to complete a food record for lunch consumption only. Lunch tables were selected starting at one side of the cafeteria and then on subsequent days, tables closer to the opposite side of the cafeteria were selected until all tables had been sampled. This process was then repeated throughout the entire school year, September through May. Research staff did not collect data on refusals. 4. Graphic data were collected in year 1. From the food records, data were entered into the Nutrition Data System to obtain average daily lunch intake of calories and the average gram weight of food at lunch. 5. Analysis of variance (ANOVA) was used to address the study objectives. Two-way ANOVAs, with year and (SES) as factors, were used to identify differences in energy density between academic years and school SES. To control for inflated type I errors caused by multiple testing, the Bonferroni correction was used and the significance level was set to 0.0167.
Nanney et al. [47]	"The primary aim of this paper was to develop a comprehensive evaluation approach to describe the policy environment related to school-based obesity prevention efforts in each of the 50 US states. A secondary aim was to examine the cross-sectional associations between current state policy environments and youth obesity prevalence."	Non-experimental design: cross sectional; This study used qualitative and quantitative methods	1. Ages 10–17. 2. US student populations 10–17 across 50 states in the US. 3. "Using 2006 (SHPPS) state data, qualitative and quantitative methods were used (2008–2009) to construct domains of state-level school obesity prevention policies and practices, establish the validity and reliability of the domain scales, and examine their associations with state-level obesity prevalence among youth aged 10–17 years from the 2003 National Survey of Children’s Health. 4. Using state-level data from SHPPS 2006, scaled scores were developed for all state-level obesity-related policies and practices, for areas of FSN, PAD, and WA. 5. Statistical Analysis. To manage the extensive SHPPS policy data set, investigators used principal component analysis (PCA) to create an initial set of policy clusters.
Park et al. [23]	"This cross-sectional study examined the prevalence of students buying snacks or beverages from school vending machines instead of buying school lunch and predictors of this behavior. The purpose of this study was to examine the prevalence and behavioral predictors of students in middle school who purchase items from school vending machines instead of purchasing a traditional cafeteria lunch."	Non-experimental design: Observational, cross sectional	1. Grades 6–8. 2. 4,322 students. 3. Students were asked, "During the previous five school days, how many days did you buy a snack or beverage from the vending machine instead of buying lunch?" 4. Analyses were based on the 2003 YPANS using a representative sample of 4,322 students in grades 6–8 in 73 Florida public middle schools. Student and school characteristics were examined. Data were weighted by sex, grade, and region to represent all Florida public middle school students in grades 6–8. Outcome measure was buying a snack or beverage from vending machines 2 or more days during the previous 5 days instead of buying lunch. 5. Statistical Analyses included Chi-Squared tests and logistic regression. Descriptive statistics were expressed as proportions. Chi-Squared tests were used to examine differences within categories. Odds ratios and 95% confidence intervals (CI) for risk factors for buying lunch from vending machines were calculated using multivariable logistic regression. Interactions between exposure variables were also examined.
Reference

Reference	Aim/Objective	Design	Methods/Data	
Riss et al. [32]	“The objective of this study was to examine relations between state-level school policies and childhood obesity for youth ages 10–17 years.”	Non-experimental design: Observational; Cross Sectional	1. Definition of the subjects 2. Size of the sample 3. Methodology 4. Measuring variables 5. Method of analysis	
Sanchez-Vaznaugh et al. [53]	“This is one of the first studies examining the postulated population-level influence of recently implemented policies aimed at sales of competitive foods and beverages in schools.”	Non-experimental design: Observational; cross-sectional	1. Students grade 5–12. 2. Children aged 10–17. 3. Wilcoxon signed rank sum tests were used to examine the extent of change in state nutrition and PE policies from 2003 to the most recent assessment (2006 for nutrition and 2007 for PE policies). Tests were also used to compare the comprehensiveness of the most recent nutrition and PE policy domain scores across school-type (ES, MS and HS). 4. 11 nutrition and 5 physical education (PE) domains were examined for elementary (ES), middle (MS), and high school (HS) children. 5. Bivariate logistic regression examined the relations of each independent variable, including individual, family and neighborhood factors, with the odds of being obese.	
Smith & Hollman [45]	“The purpose of the project was to examine school-based purchasing patterns of SSB and explore the impact of a school-based and student-led intervention aimed at limiting short-term and longer-term SSB consumption. To understand SSB consumption patterns, both daily servings and the numbers of days per week that SSB were consumed were examined.”	Quasi-Experimental design: piloted intervention	1. Grades 9–12. 2. Grades 10–12. 3. The piloted intervention consisted of the creation of a TAC at each of 2 high schools to design specific components of the intervention: a “Sodabriety” 30-day challenge. Each TAC consisted of 12 members overall: 2 teachers and at least 2 students from each grade in school (grades 9–12). To gather baseline data, pre-intervention an assessment of school vending machine beverage choices was completed. Data was collected at 3 time-points: pre-intervention, immediately post-intervention, and at 30 days’ post-intervention. Recruitment for the “Sodabriety” project occurred in 2 phases. (1) focused on recruitment of members to serve on each TAC; (2) focused on recruitment of students attending each school to participate. 4. Demographic survey. A Vending Machine Survey was designed and completed by study personnel prior to implementation of the intervention. A 10-item beverage survey was completed by each participant at 3 times: pre-intervention, immediately post-intervention, and 30 days’ post-intervention. Each participant was provided a beverage log to complete during the 30-day intervention. 5. Descriptive variables were collected by self-report during the pre-intervention data collection. Data were analyzed using both descriptive and inferential methods. Descriptive data were analyzed by calculating frequency, means, standard deviations, and ranges of values. Paired t tests were conducted.	
Reference	Aim/ Objective	Methods/ Data	Eval. Meas.	Level of Evidence
-----------------	---	---	-------------	-------------------
Snelling et al. [46]	“The aim of this study was to compare the NSLP and competitive food offerings with the food purchased at 3 public high schools, collectively.”	1. Definition of the subjects 2. Size of the sample 3. Methodology 4. Measuring variables 5. Method of analysis	Kcal	Mod. Quality
Taber et al. [64]	“To determine whether nutrient intake is healthier among high school students in California, which regulates the nutrition content of competitive foods sold in high schools, than among students in states with no such standards.”	1. High School students (grades 9–12). 2. 5249. 3. ‘Over a 4-week cycle, daily food purchases were gathered and the proportions of green, yellow, and red foods offered and purchased was compared. Competitive food items were coded according to nutrient information obtained from the food label. Purchasing data for both competitive and NSLP food items was collected each day by the food service staff at 3 public high schools.” 4. The food items were coded by a system based on the Stoplight Diet for analysis, placing food in 3 categories: green, yellow, or red. 5. Statistical Descriptive Analysis.	Kcal	Mod. Quality
Taber et al. [3]	“To determine if state laws regulating nutrition content of foods and beverages sold outside of federal school meal programs (‘competitive foods’) are associated with lower adolescent weight gain.”	Non-experimental design: Observational; quasi-experimental	Eval. Meas.	Kcal Level III: Mod. Quality
Taber et al. [54]	“To determine if state laws with stricter school meal nutrition standards are inversely associated with adolescent weight status, while controlling for unmeasured state-level confounders.”	Quasi-experimental design: longitudinal study	Eval. Meas.	Kcal Level III: Mod. Quality

Methods/ Data

Reference	Aim/ Objective	Design	Methods/ Data	Eval. Meas.
[50] Terry-McElrath et al.	"Identify trends in the availability of various food choices in USA middle and high schools from 2004 to 2007, and examines the potential associations between such food availability and students’ self-reported eating habits and body mass index (BMI)–related outcomes."	Non-experimental design: Observational; cross-sectional	1. Definition of the subjects 2. Size of the sample 3. Methodology 4. Measuring variables 5. Method of analysis	BMI Level IV Low Quality
[16] Van Hook & Altman	"We use longitudinal data to estimate the association between the introduction of competitive food sales in children’s schools and weight gain from fifth grade to eighth grade, and we exploit variation in the timing of the transition from elementary to middle school to estimate exposure to competitive foods in middle school environments. Second, we assess whether the estimated associations of competitive foods with weight gain vary significantly by gender, race/ethnicity, and family socioeconomic status (SES)."	Quasi-experimental design: a longitudinal research design		
[55] Wiecha et al.	"To examine associations between use of school vending machines and fast-food restaurants and youth intake of sugar-sweetened beverages."	Non-experimental design: Observational; cross-sectional analysis		

Note:

- **BMI Level IV:** Low Quality
- **BMI Level III:** Level IV; Mod. Quality
- **BMI Level III- Level IV; Mod. Quality**
- **BMI Level IV: Low Quality**

Reference:

- Ackley, et al. [41] Quality of Evidence
- Detsky et al. [42] Quality of Evidence
- Terry-McElrath et al. [50] Quality of Evidence
- Van Hook & Altman [16] Quality of Evidence
- Wiecha et al. [55] Quality of Evidence