Inventory study of plants collection in the Medicinal Thematic Garden, Cibodas Botanic Gardens

M Nikmatullah1,3, D I Junaei1, J R Witoño2 and R. Hendrian2

1Cibodas Botanic Gardens, Research Centre for Plant Conservation and Botanical Garden Indonesian Institute of Sciences (LIPI), Jl. Kebun Raya Cibodas, Cipanas, Cianjur, West Java 43253, Indonesia
2Bogor Botanic Gardens, Research Centre for Plant Conservation and Botanical Garden Indonesian Institute of Sciences, Jl. Ir. H. Juanda 13 Bogor, West Java 16122, Indonesia

E-mail: muhamadnikmatullah@gmail.com

Abstract. CBG’s plant collection managed and displayed in the garden based on the taxonomic classification system and thematic system. Plant collection that managed as a thematic system displayed and managed as a thematic garden. The aim of this study is to conduct an inventory study of CBG medicinal thematic garden collections and to do a literature study about the potential medicinal use of plant collection in CBG medicinal thematic gardens. Data collected through surveyed, checked and validated in the information system of CBG plants data collection from CBG Registration Unit. Recorded medicinal use of surveyed plant collection was identified by the literature study. Data were analyzed descriptively. The result of the study showed that there were 26 species from 23 genera and 22 families of medicinal plant species in CBG medicinal thematic garden. Based on ICD-10-WHO, CBG medicinal plant collections can treat 14 ICD-10-WHO diseases. From these 14 diseases, eight diseases can be treated by five CBG medicinal plant collections. These species were utilized as a medicinal plant by using part of the plant (root, leaves, bark, flowers, fruit, seeds, sap) or the whole plant through pounded or boiled processing, and mixed it with other ingredients.

Keywords: Cibodas Botanic Gardens, inventory, Medicinal Thematic Garden, plants collection

1. Introduction

Many novel diseases have emerged and threatened human health. New medicine can potentially be sourced from various plant chemical compounds. Medicinal plants are important to treat various diseases and most of these diseases can be treated with traditional medicine [1]. Medicinal plants are plants that contain hundreds until thousands of chemical compound [2]. Medicinal plants are plants that contain active substances that contain particular nutrition that have medicinal efficacy to heal diseases [3]. Medicinal plants contain nutritious substances that can cure disease [4] and contain active ingredients which considered as potential ingredients for synthetic medicine [5]. About 80% of the world population is relying on plants and its extract for their health [6]. Despite the important role of medicinal plants for public health, over-utilization of the medicinal plants can lead to plant extinction if not sustainably utilized. Thus, plant conservation (including ex-situ conservation) of medicinal plants is urgently needed.

3 To whom any correspondence should be addressed (muhamadnikmatullah@gmail.com)
Cibodas Botanic Gardens - Indonesian Institute of Sciences LIPI (CBG) conducts plant ex-situ conservation of native highland plants species in the gardens. CBG maintains these conserved plant species as garden plant collections. These plant collections were managed, documented, organized, and displayed based on the taxonomical classification system, bioregion, thematic, or a combination of all of those systems. Apart from plant conservation, CBG also conducts other four taskforces: research, education, tourism, and ecosystem services. According to Jackson and Sutherland botanic garden’s collection in the world was documented scientifically through the management of the thematic system, taxonomical classification system, or geography system [7]. CBG’s plant’s collection was managed based on the taxonomy classification system and thematic system. The taxonomy classification system arranged CBG plants collection based on taxon, while a thematic system based on specific theme, function and consider aesthetic values. The aim of this study is to conduct an inventory study of CBG medicinal thematic garden collections and to do a literature study about the potential medicinal use of plant collection in CBG medicinal thematic gardens. This study expected to provide information of potential medicinal use of plant collection in the CBG’s medicinal thematic gardens.

2. Materials and methods

2.1. Study area
The study area was located on medicinal thematic gardens, Cibodas Botanical Garden, Cianjur District, West Java, Indonesia. CBG located on the feet of Mount Gede-Pangrango at elevation range from 1.250 to 1.425 m above sea level. The total area of CBG is 84.99 hectares. Medicinal thematic garden located at vak IX.A (figure 1) and the total area is 0.3 hectares.

![Figure 1. Study area of Medicinal Thematic Gardens of Cibodas Botanic Gardens](image)

2.2. Methodology
The inventory study and data collection were conducted on registered medicinal thematic garden collections, which have collection registration number in the Registration Unit. After specimen surveyed, we checked and validated it in the CBG collection information system from CBG Registration Unit. Each recorded medicinal use of surveyed plant collection was identified by literature study from
relevant resources, such as *Medicinal Plants in Papua Guinea* (Switzerland: WHO Press) and *Pharmaceutical Biology*. Data that collected from literature includes: the information about scientific name, plant part used for medicinal purposes based on International Statistical Classification of Diseases and Related Health Problem (ICD-10-WHO) [8] by WHO, main use for medicinal purposes, and chemical compounds contained. The correct scientific names were checked and validated in the relevant plant database [9]. After surveyed medicinal plant collection correctly identified, we analyzed it using descriptive approaches.

3. Results and discussion

Based on inventory result, we found 26 medicinal plants species collection in CBG’s medicinal thematic gardens. These medicinal plant species are consist of 23 genus and 22 families. Each species have more than one medicinal use. The summary of the surveyed medicinal plant species is presented in table 1 and species with the most efficacy to treat diseases presented in table 2.

There are 45 diseases can be treated by 26 registered plant of CBG medicinal thematic garden. These 45 diseases can be classified into 14 out of 22 diseases based on ICD-10-WHO [8]. There are eight diseases that can be treated by five medicinal plants with the most efficacy. These eight diseases were common diseases that, often occur in local society. These five medicinal plants collection contain antioxidants, that provide, benefits for body health. The antioxidant can increase body protection from free radical and chronic diseases [10]. Human body needs antioxidants to protect it from free radicals that may continuously damage cells.

The plant collection of CBG medicinal thematic gardens has no efficacy for eight ICD-10-WHO diseases. These diseases are: diseases of the ear and mastoid process, certain conditions originating in the perinatal period, congenital malformations, deformations and chromosomal abnormalities, symptoms, signs and abnormal clinical and laboratory findings, injury, poisoning and certain other consequences of external causes, external causes of morbidity and mortality, factors influencing health status and contact with health services, and codes for special purposes. These diseases are, not common diseases in local society. Based on the literature study conducted, these eight ICD-10-WHO diseases can be treated by medicinal plants. The ear and mastoid process diseases can be treated using *Teucrium polium* L. (for an ear infection and earache [11]). *Bunium persicum* (Boiss.) B. Fedtsch. have efficacy to treat children earache [12]. The diseases of injury, poisoning and certain other consequences of external causes can be treated using *Litsea glutinosa* (to treat bruises and sprain [13]). *Arnebia euchroma* (Royle) I.M.Johnst. and *Alkanna tinctoria* Taush are potential medicinal plants to treat burn [14] [15]. External causes of morbidity and mortality can be treated using *Epipremnum pinnatum* (L.) Engl. and *Bauhinia integrifolia* Roxb. (to treat venomous snake bite [13]). Diseases of codes for special purposes can be treated using *Doratoxylon apetalum* (Poir.) Radlk (to treat zika virus [16]). Furthermore, we recommend CBG to collect those plant species as CBG medicinal thematic gardens to fill the efficacy-gap of ICD-10-WHO diseases that still can be treated by CBG medicinal thematic garden collections.

There are many medicinal plants in CBG medicinal thematic gardens that are not registered yet (without collection number registration). Botanic gardens have responsibility for species identity and origin documentation data and plant collection management based on scientific standards, so that it will have sufficient conservation value [17]. Botanical garden infrastructure development should not only consider aesthetics value but also consider the conservation aspect of the plant garden collections. Thus, garden plant collection data and quality is as important aesthetic aspects and infrastructure development of a thematic garden.
Table 1. List of medicinal plant species in the medicinal thematic garden, its treated diseases based on ICD-10-WHO, and bioactive chemical contained

Scientific Name	Families	Origin	Main use	Plant part used	Chemical compound(s)	Reference
Alnus japonica (Thunb.) Steud.	Betulaceae	Formosa, North East	im, dr, ds, tv, mr, mu, ct, bd, at, ca, ar, di bd	leaves, bark, and sap	[18]	
Alstonia scholaris	Apocynaceae	Australia, America, and Africa			diurilheptanoid and flavonoids	[19]
Ardisia paucera Mez	Primulaceae	Lampong	mr	leaves	alkald, terpenoid and flavonoid	[20]
Bennettia horsfeldii	Pandaceae	Jambi	not mentioned		not mentioned	[21]
Carallia brasiliensis (Lour.) Merr.	Rhizophoraceae	Central Sulawesi	wn, ic, ou, it, st	bark	not mentioned	[22]
Cleidson javanica Blume	Euphorbiaceae	East Java	cd, sb	leaves and bark	not mentioned	[23]
Elaeagnus conferta Roxb.	Gnetaceae	West Java	bi, mi, ct, bd, at, ca, ar, di	leaves and fruit	Fruit contain Ca, Fe, Mn, P, and protein	[24] [25]
Elaeocarpus stipularis Blume	Lauraceae	East Java	wn	leaves	all part plant	[26]
Endiandra macrophylla (Blume) Boerl.	Lauraceae	West Java			alkaloids, amides, lignans, neolignans, flavonoids, chalcones, terpenoids, and steroids	not mentioned
Euonymus indicus B.Heyne ex Wall.	Celastraceae	Jambi	it, pk	bark, leaves, fruit and seeds	xanthon and flavonoids	[27]
Garcinia parviflora Benth.	Clusiaceae	Aceh	bi, mr, im, mi, ct, bd, at, ca, ar, di	bark, leaves, fruit and seed	saponins, tannins, fenol gnetosides e and gnetin	[28]
Gnetum gnemonoides Bron.	Gnetaceae	South Sulawesi	bi, mi, ct, bd, at, ca, ar, di	leaves and fruit	alkaloid, flavonoid, saponin, and tannin	[29] [30]
Mangifera laurina Blume	Anacardiaceae	Aceh	mi, ct, bd, at, ca, ar, di	bark, leaves, and fruit	not mentioned	[31] [32]
Mischocarpus pentapetalus (Roxb.) Radd.	Moraceae	Sapindaceae		Stem (wood)	not mentioned	
Oreopha cornicosa (Blume) Miq.	Celastraceae	Jambi			not mentioned	
Oreopha hexandra Blume	Anonaceae	Aceh	ip	bark	not mentioned	
Santhia laevigata Blume	Burseraceae	Aceh	ip	leaves and fruits	not mentioned	
Saurasia pendula Blume	Actinidiaceae	Java	as, ht	leaves	not mentioned	
Smilax brevifolia Blume	Smilacaceae	Aceh		root and leaves	saponin, and terpenoids	
Stemonorpus scorpioides Becc.	Stemonuraceae	Aceh	ed	bark and leaves	not mentioned	[33] [34]
Stemonorpus grandifolius Becc.	Stemonuraceae	Aceh	ed	bark and leaves	not mentioned	[35] [36]
Smilax cynanica L.	Smilacaceae	Aceh		root, leaves, and all of plant	not mentioned	[37]
Syzygium cf. dicocophorum* (Koerd. & Vealton) Amshoff	Myrtaceae	Lampong		leaves and bark	glycosides, alkaldos, tannins, terpenoids and sterol	
Syzygium cf. malaccense* (L.) Merr. & L.M.Perry	Myrtaceae	West Java and Kerinci Sehat National Park		leaves and bark	theasisin, glukosida, asam ellagat, kaemerol, alkald, jambosine, and glycode jambolin antibiotik	
Talinum paniculatum (Jacq.) Gaertn.	Myrtaceae	Lampong		leaves	saponin, alkaloid, flavonoid, and tannin	[46] [47]
Toona sureni (Blume) Merr.	Meliaceae	Jambi	dr, kd, ds, ge, rp	bark and leaves	tanned substance, sap, bitter substance, and essential oil	[48] [49]

Explanation: am: antihelminitic; ar: atherosclerosis; as: asthma; at: arthritis; bi: bacterial infectious; bc: blood circulation system disorder; bd: brain dysfunction; ca: cancer; ct: constipation; db: diabetes; dr: diarrhea; ds: dysentery; ed: edema; fv: fever; ft: flatulence; fa: fluor alba; ge: gastroent-eritis; hd: headache; ht: hypertension; hg: hypoglycemic; im: inflammation; it: inflammation of throat; ip: ingredients of postpartum; ic: itch; kd: kidney disorders; lt: laxative; mi: myocardial infarction; mr: malaria; nv: nerves; ou: oral ulcer; pk: pedikulous; rp: repellent; rt: rheumatism; rb: rubella; st: stomatitis; sb: scabies; sp: syphilis; sr: stress; tn: tonic; uc: ulcer; ut: uterine tumor; un: urinaria; wn: wound
Scientific Name	Main use	Diseases (based on ICD-10-WHO)	a	b	d	e	f	g	i	m
Alnus japonica (Thunb.) Steud.	im	v								
	dr	v								
	ds	v								
	fv	v								
	mr	v								
	mi	v								
	ct	v								
	bd	v								
	at	v								
	ca	v								
	ar	v								
	di	v								
Garcinia parviflora Benth.	bi	v								
	mr	v								
	im	v								
	mi	v								
	ct	v								
	bd	v								
	at	v								
	ca	v								
	ar	v								
	di	v								
Gnetum gnemonoides Brongn.	bi	v								
	mi	v								
	ct	v								
	bd	v								
	at	v								
	ca	v								
	ar	v								
	di	v								
Syzygium cf. discophorum (Koord. & Valeton) Amshoff	db	v	v							
	hg	v	v							
	ct	v								
	nv	v								
	sr	v								
	im	v								
	mi	v								
	ct	v								
	bd	v								
	at	v								
	ca	v								
	ar	v								
	di	v								
Talinum paniculatum (Jacq.) Gaertn.	im	v								
	mi	v								
	ct	v								
	bd	v								
	at	v								
	ca	v								
	ar	v								
	di	v								

Explanation: a: certain infectious and parasitic diseases; b: neoplasms; d: endocrine, nutritional and metabolic diseases; e: mental and behavioural disorders; f: diseases of the nervous system; g: diseases of the eye and adnexa; i: diseases of the circulatory system; m: diseases of the musculoskeletal system and connective tissue
Medicinal plants of CBG medicinal thematic garden collection were utilized by using part of the plant, namely root, leaves, stem, bark, flowers, fruit, seeds, sap or the whole plant through pounded or boiled processing, and mixed it with other ingredients. Most of plant collections in CBG medicinal thematic garden used as medicinal plant by using its leaves. Thus, the use if these species to treat diseases will not significantly decrease its population because the medicinal plant will not be significantly damaged. Leaves also easy to grow back, so that the use of its leaves will not become treat to medicinal plant extinction. The utilization of leaves to treat diseases also founded on the Maybrat society [52] and Dayak Iban [53]. A detail list of CBG medicinal thematic gardens plant species (attachment 1) can be accessed at https://bit.ly/2LZZmlx

4. Conclusion
There are 26 medicinal plant species in the CBG medicinal thematic gardens that, consist of 23 genus and 22 families. Based on 10th revision of ICD-10-WHO, CBG medicinal plants collections can treat 14 ICD-10-WHO diseases. From these 14 diseases, eight diseases can be treated by five CBG medicinal plant collections in medicinal thematic garden. These species were utilised as medicinal plant by using part of the plant or the whole plant.

5. References
[1] Yaseen G, Ahmad M, Sultana S, Alharrasi A S, Hussain J, Zafar M and Rehman S 2015 Ethnobotany of Medicinal Plant in the Thar Desert (Sindh) Pakistan Journal of Ethnopharmacology 163 43-59
[2] Wardiah, Hasanuddin and Mutmainnah 2015 Etbotani Medis Masyarakat Kemukiman Pulo Breueh Selatan Kecamatan Pulo Aceh Kabupaten Aceh Besar Jurnal Edubio Tropika 3 1--50
[3] Wijayakusuma H M H 2008 Ramuan Lengkap Herbal Taklukan Penyakit (Jakarta: Pustaka Bund) p 323
[4] Fellows L E 1991 Pharmaceuticals from Traditional Medical Plants and Others: Future Prospects International Journal of Ayurvedic & Herbal Medicine 6 2139-2144
[5] Pribadi E R 2009 Pasokan dan Permintaan Tanaman Obat Indonesia serta Arah Penelitian dan Pengembangannya Jurnal Perspektif 8 52-64
[6] Williams L A D 2006 Ethnomedicine West Indian Medical Journal 55 215-216
[7] Peter W J and Sutherland L A 2013 Encyclopedia of Biodiversity Simon Levin (San Diego, USA: Elsevier Science Publishing Co Inc)
[8] WHO 2016 International Statistical Classification of Diseases and Related Health Problems 10th Revision (Switzerland: WHO Press) pp 1075
[9] The Plant List 2013 Version 1.1. Published on the Internet http://www.theplantlist.org/ (accessed 1st January).
[10] Sri W, Erna P S and Subagus W 2011 Free Radical Scavenging Activity of (Alsophila glauca J.Sm) Majalah Obat Tradisional 16 156-160
[11] Amiri M S and Joharchi M R 2013 Ethnobotanical Investigation of Traditional Medicinal Plants Commercialized in The Markets of Mashhad, Iran Avicenna J Phytomed 3 254-71
[12] Safa O, Soltanipoor M A, Rastegar S, Kazemi M, Nourbakhsh Dehkordi K and Ghannadi A 2012 an Ethnobotanical Survey on Hormozgan Province, Iran Avicenna J Phytomed 3 64-81
[13] Suba M D, Arriola A H and Alejandro G J D 2019 a Checklist and Conservation Status of the Medicinal Plants of Mount Ararat National Park, Pampanga, Philippines Biodiversitas 20 1034-1041
[14] Pirbalouti A G, Yousefi M, Nazari H, Karimi I and Koohpayeh A 2009 Evaluation of Burn Healing Properties of Arnebia euchroma and Malva sylvestris Electron J Biol. 5 62-66
[15] Karayannopoulou M, Tsioli V, Loukopoulos P, Anagnostou T L, Giannakas N, Savvas I, Papazoglou L G and Kaldrymidou E 2011 Evaluation of the Effectiveness of an Ointment
Based on Alkannins/Shikonins on Second Intention Wound Healing in the Dog. Can J Vet Res. 75 42-48

[16] Haddad J G, Koishi A C, Gaudry A, dos Santos C N D, Viranaicken W, Desprès P and El Kalamouni C 2019 *Doratoxylon apetalum*, an Indigenous Medicinal Plant from Mascarene Islands, Is a Potent Inhibitor of Zika and Dengue Virus Infection in Human Cells Int. J. Mol. Sci. 20 1-13

[17] BGCI 2012 *International Agenda for Botanic Gardens In Conservation: 2nd Edition*. Botanic Gardens Conservation International Richmod, UK

[18] Kuroyanagi M, Shimomae M, Nagashima Y, Muto N, Okuda T, Kawahara N, Nakane T and Sano T 2005 New Diarylheptanoids from *Alnus Japonica* and Their Antioxidative Activity Chem. Pharm. Bull. 53 1519-1523

[19] WHO 2009 *Medicinal Plants in Papua Guinea* (Switzerland: WHO Press) pp 313

[20] Hafid A F, Pulingsari N, Lestari N S, Tumewu L, Rahman A and Widyawaruyanti A 2016 Skrining Aktivitas Antimalaria beberapa Tanaman Indonesia Hasil Eksplorasi dari Hutan Raya Cangar, Batumalang, Jawa Timur Jurnal Farmasi dan Ilmu Kefarmasian Indonesia 3 6-11

[21] Milliken W 2015 *Plants for Malaria, Plants for Fever Medicinal Species Latin America – a Bibliographic Survey* (Kew: Royal Botanic Gardens, Kew) pp 88

[22] Abraham A and Thomas T 2013 Comparative Assessment on Antibacterial Activity of Bark of *Carallia brachiata* (Lour.) Murr Prepared in Single and Gradient Extraction Methods Int. J. Curr. Microbiol. App.Sci 2 160-163

[23] Plant of Southeast Asia 2009 Published on the Internet; http://www.asianplant.net

[24] Wu C, Dai R, Bai J, Chen Y, Yu Y, Meng W and Deng Y 2011 Effect of *Elaeagnus Conferta* Roxb (Elaeagnaceae) Dry Fruit on the Activities of Hepatic Alcohol Dehydrogenase and Aldehyde Dehydrogenase in Mice Trop. J. Pharm Res. 10 761-766

[25] Useful Tropical Plants 2014 Published on the Internet; http://tropical.theferns.info/

[26] IPB Biodiversitas Informatics (IPBiotics) 2014 Published on the Internet; http://ipbiotics.apps.cs.ipb.ac.id

[27] Lenta B N, Chouna J R, Nkeng-Efouet P A and Sewald N 2015 Endriandric Acid Derivatives and Other Constituents of Plants from the Genera *Beilschmedia* and *Endriandra* (Lauraceae) Biomolecules 5 910-942

[28] Popescu I, Caudullo G and de Rigo D 2016 *Euonymus europaeus* in Europe: Distribution, Habitat, Usage and Threats European Atlas of Forest Tree Species 92

[29] Salama S M, Abdulla M A, Atrashdi A S, Ismail S, Alkiyumi S S and Golbabapour S 2013 Hepatoprotective Effect of Ethanolic Extract of Curcuma Longa on Thiocetamide Induced Liver Cirrhosis in Rats J. Biochem. Mol. Toxicol 21 336-339

[30] Ramadhani I M, Lestari F and Yuniarani U 2015 *Pengaruh Ekstrak Etanol Kulit Buah Asam Kandis Garcinia Parvifolia* (Miq.) Sebagai Hepatoprotektor pada Tikus Wistar Jantan yang diinduksi Isoniazid Rifampisin (Bandung: Prosiding Penelitian SpeSIAUnisha) p 274-279

[31] Syamsudin, Kumala S and Sutaryo B 2007 Screening of Some Extracts from *Garcinia Parvifolia* Miq. (Guttiferae) for Antiplasmodial, Antioxidant, Cytotoxic, and Antibacterial Activities Asian J. Plant Sci. 6 972-976

[32] Dewi C, Utami R and Riyadi P N H 2012 Antioxidant and Antimicrobial Activity of Melinjo Extract (Gnetum gnemon L.) Jurnal Teknologi Hasil Pertanian 5 74-81

[33] Lukmandaru G, Vembrianto K and Gazidy A A 2012 Aktivitas Antioksidan Ekstrak Metanol Kayu Mangifera indica L., Mangifera foetida Lour, dan Mangifera odorata Griff. Jurnal Ilmu Kebunatan 6 18-29

[34] Izzuddin M Q and Azrianiegsih R 2015 Inventarisasi Tumbuhan Obat di Kampung Adat Urug, Desa Urug, Kecamatan Sukajaya, Kabupaten Bogor *Natural B*. 3 81-92

[35] Chung P Y, Chung L Y, Ngeow Y F, Goh S H and Imiyabir Z 2004 Antimicrobial Activities of Malaysian Plant Species *Pharmaceutical Biology* 42 292-300
[36] India Biodiversity Portal 2016 Published on the Internet; https://indiabiodiversity.org
[37] Denny and Kalima T 2016 The Diversity of Medicinal Plant of Punggualas Peat Swamp Forest, Sebangau National Park, Central Kalimantan Bul. Plasma Nutfah 22 137-148
[38] Silalahi M, Nisyawati, Walujo E B and Mustaqim W 2018 Etnomedisin Tumbuhan Obat oleh Subetnis Batak Phakpak di Desa Surung Mersada, Kabupaten Phakpak Bharat, Sumatera Utara Jurnal Ilmu Dasar 19 77-92.
[39] Purity S A 2011 Valuasi Potensi Keanekaragaman Jenis Hasil Hutan Nonkayu (HHNK) Masyarakat Lokal Dayak Lundayeh dan Uma’Lung di Kabupaten Malinau Kalimantan Timur (Depok, ID: Universitas Indonesia) p 107 [Master Thesis]
[40] Padua L S de, Bunyapraphatsara N and Lemmens R H M J 1999 Medicinal and poisonous plants I (Leiden: Backhuys Publishers) pp 707
[41] Jena P K, Nayak B S, Dinda S C and Ellaiah P 2011 Investigation on Phytochemicals, Anthelmintic and Analgesic Activities of Smilax zeylanica Linn. Leafy Extracts Asian J. Chem. 23 4307-4310
[42] Sofiah S and Sulistyaningisih L D 2019 the Diversity of Smilax (Smilacaceae) in Besiq-Bermai and Bontang Forests, East Kalimantan, Indonesia Biodiversitas 20 379-387
[43] Afify A E M M, Fayed S A, Shalaby E A and El-Shemy H A 2011 Syzygium cumini (pomposia) Active Principles Exhibit Potent Anticancer and Antioxidant Activities African Journal of Pharmacy and Pharmacology 5 948-956
[44] Helmstädtler A 2008 Syzygium cumini (L.) skeels (Myrtaceae) Against Diabetes -125 Years of Research Die Pharmazie-An International Journal of Pharmaceutical Sciences 63 91-101
[45] Prince P and Venon M 1998 Effect of Syzygium cumini in Plasma Antioxidants on Alloxan-Induced Diabetes in Rats Journal of Clinical Biochemistry and Nutrition 25 81-86
[46] Swami S B, Thakor N S J, Patil M M and Haldankar P M 2012 Jamun (Syzygium cumini (L.)): a Review of its Food and Medicinal Uses Food and Nutrition Sciences 3 1100-1117
[47] Haryanto A 2012 Korelasi Antar Karakter Komponen Hasil pada Tanaman Jambu Bol (Syzygium malaccense L.) di Kecamatan Wedarijaksat Pati, Jawa Tengah (Surakarta, ID: Universitas Sebelas Maret) pp 44 [Bachelor Thesis]
[48] Lestario L N, Christian A E and Martono Y 2009 Aktivitas Antioksidan Daun Ginseng Jawa (Talinum paniculatum Gaertn) Agritech. 29 71-78
[49] Sumastuti R 1999 Efek Antiradang Infus Daun dan Akar Som Jawa (Talinum paniculatum Gaertn) pada Tikus Putih in vivo Warta Tumbuhan Obat Indonesia 5 15-17
[50] Hidayat S 2005 Ginseng, Multivitamin Alam Berkhasiat (Jakarta, ID: Penebar Swadaya) pp 21
[51] Departemen Kesehatan 2006 Inventaris Tanaman Obat Indonesia (Jakarta, ID: Badan Litbangkes) pp 196
[52] Howay M, Sinaga N I and Kesaulija E M 2003 Utilization of Plants as Traditional Medicines by Maybrat Tribe in Sorong Beccariana 5(1) 24-34
[53] Meliki, Linda R and Lovadi I 2013 Etnobotani Tumbuhan Obat oleh Suku Dayak Iban Desa Tanjung Sari, Kecamatan Ketungau Tengah, Kabupaten Sintang Jurnal Protobiont 2 129-135.