Supplement of

Population-specific responses in physiological rates of *Emiliania huxleyi* to a broad CO$_2$ range

Yong Zhang et al.

Correspondence to: Yong Zhang (zhangyong1983@xmu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1. Sea surface temperature (SST) at the Azores, Bergen and Canary Islands.

Location	Mean monthly SST range (°C)	Min. monthly SST (°C)	Max. monthly SST (°C)	References
Azores	15.6 – 22.3	12.6	32.9	Wisshak et al., 2010
Bergen	6.0 – 16.0	– 2	16.6	Samuelsen, 1970
				Locarnini et al., 2006
Canary Islands	18.0 – 23.5	17.5	24.8	Santana-Casiano et al., 2007
Table S2. Number of base pairs (bp) in the examined loci (marked with asterisk) in the alleles of individual genotypes. The numbers of base pairs in all examined loci are different, which indicates different genotypes within population. NA indicates that no alleles could be obtained.

Genotype	P02E09	P02B12	P02F11	EHMS37	EHMS15					
A23	97	97	207	207	101	105	281	283	206	210
A22	99	99	209	211	103	105	197	197	206	206
A21	97	101	207	209	101	137	269	273	206	210
A19	99	101	207	207	103	131	273	283	206	206
A13	95	97	213	223	127	129	297	301	206	206
A10	99	101	207	207	127	127	241	273	206	206
B95	95	99	209	209	101	101	201	205	206	210
B63	97	97	207	207	101	103	203	209	206	210
B62	97	99	207	207	101	103	205	211	206	210
B51	95	97	207	207	101	103	205	205	206	210
B41	97	101	207	207	101	101	201	211	206	210
B17	97	101	207	207	101	103	205	205	NA	NA
C98	104	124	209	211	111	135	233	287	95	95
C91	86	142	219	219	131	141	207	209	89	135
C90	104	106	268	268	125	135	NA	NA	139	189
C41	104	106	268	268	125	135	NA	NA	139	189
C35	96	96	215	219	131	131	245	245	NA	NA
Table S3. Calculated optimum pCO$_2$, maximum value (V_{max}) and relative sensitivity (rs, %) of POC and PIC quotas of each *E. huxleyi* strain.

Strain	POC quota	PIC quota				
	optimum pCO$_2$	V_{max} (pg C cell$^{-1}$)	rs	optimum pCO$_2$	V_{max} (pg C cell$^{-1}$)	rs
A23	788 (µatm)	10.75 (pg C cell$^{-1}$)	0.34	266 (µatm)	11.33 (pg C cell$^{-1}$)	0.25
A22	657 (µatm)	14.12 (pg C cell$^{-1}$)	0.23	706 (µatm)	10.17 (pg C cell$^{-1}$)	0.44
A21	873 (µatm)	13.05 (pg C cell$^{-1}$)	0.35	306 (µatm)	12.92 (pg C cell$^{-1}$)	0.90
A19	644 (µatm)	13.43 (pg C cell$^{-1}$)	0.41	528 (µatm)	15.41 (pg C cell$^{-1}$)	0.59
A13	860 (µatm)	9.69 (pg C cell$^{-1}$)	0.52	505 (µatm)	11.09 (pg C cell$^{-1}$)	0.53
A10	568 (µatm)	11.22 (pg C cell$^{-1}$)	0.46	345 (µatm)	9.20 (pg C cell$^{-1}$)	0.17
B95	925 (µatm)	10.86 (pg C cell$^{-1}$)	0.10	549 (µatm)	7.33 (pg C cell$^{-1}$)	0.25
B63	715 (µatm)	13.39 (pg C cell$^{-1}$)	0.17	630 (µatm)	10.38 (pg C cell$^{-1}$)	0.36
B62	1639 (µatm)	14.06 (pg C cell$^{-1}$)	0.05	486 (µatm)	10.96 (pg C cell$^{-1}$)	0.35
B51	635 (µatm)	13.01 (pg C cell$^{-1}$)	0.30	470 (µatm)	9.28 (pg C cell$^{-1}$)	0.39
B41	930 (µatm)	14.73 (pg C cell$^{-1}$)	0.30	517 (µatm)	7.62 (pg C cell$^{-1}$)	0.29
B17	812 (µatm)	11.69 (pg C cell$^{-1}$)	0.31	635 (µatm)	9.80 (pg C cell$^{-1}$)	0.37
C98	685 (µatm)	8.47 (pg C cell$^{-1}$)	0.46	459 (µatm)	6.30 (pg C cell$^{-1}$)	0.20
C91	410 (µatm)	5.20 (pg C cell$^{-1}$)	0.69	184 (µatm)	11.97 (pg C cell$^{-1}$)	0.30
C90	600 (µatm)	8.76 (pg C cell$^{-1}$)	0.28	284 (µatm)	8.90 (pg C cell$^{-1}$)	0.46
C41	675 (µatm)	7.71 (pg C cell$^{-1}$)	0.37	623 (µatm)	11.16 (pg C cell$^{-1}$)	0.20
C35	720 (µatm)	8.89 (pg C cell$^{-1}$)	0.39	538 (µatm)	12.47 (pg C cell$^{-1}$)	0.26
Each strain was incubated for 4 to 6 days at 11 CO₂ levels ranging from 115 to 3070 μatm with no replicate. At the end of the incubations, growth, POC and PIC production rates were measured.

Figure S1. A flow chart for the experimental processes.
Figure S2. Optimum curve responses of POC and PIC quotas of three *E. huxleyi* populations to a $p\text{CO}_2$ range from 120 µatm to 2630 µatm. Responses of POC quota (a) and PIC quota (b) to $p\text{CO}_2$. Responses of relative POC quota (c) and relative PIC quota (d) to $p\text{CO}_2$. For more detail information, see Figure 1.
Figure S3. Calculated optimum pCO$_2$, calculated maximum value and fitted relative sensitivity constant of POC and PIC quotas of each population. (a) optimum pCO$_2$ of POC quota; (b) optimum pCO$_2$ of PIC quota; (c) maximum POC quota; (d) maximum PIC quota; (e) relative sensitivity constant of POC quota; (f) relative sensitivity constant of PIC quota. For more detail information, see Figure 2.
Figure S4. Optimum curve responses of POC and PIC quotas of individual *E. huxleyi* strains in the Azores (left), Bergen (medium) and Canary Islands (right) populations to a CO₂ range from 115 µatm to 3070 µatm. POC quota of each strain as a function of *p*CO₂ within the Azores (a), Bergen (b) and Canary Islands (c) populations. PIC quota of each strain as a function of *p*CO₂ within the Azores (d), Bergen (e) and Canary Islands (f) populations. For more detail information, see Figure 3.
Figure S5. Increased growth rates of 17 *E. huxleyi* strains with increasing POC production rates (a) or POC quotas (b).
Figure S6. Responses of PIC : POC ratio of the Azores (square), Bergen (circular) and Canary Islands (diamond) populations to a CO2 range from 120 µatm to 2630 µatm.
Figure S7. Responses of PIC : POC ratio of individual *E. huxleyi* strains in the Azores (a), Bergen (b) and Canary Islands (c) populations to a CO$_2$ range from 115 µatm to 3070 µatm.
References

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E.: World ocean atlas 2005, V. 1: Temperature, in: NOAA Atlas NESDIS 61, edited by Levitus, S., U.S. Government Printing Office, 123–134, 2006.

Samuelsen, T. J.: The biology of six species of Anomura (Crustacea, Decapoda) from Raunefjorden, western Norway, Sarsia, 45, 25–52, 1970.

Santana-Casiano, J. M., González-Dávila, M., Rueda, M., Llinás, O., and González-Dávila, E.: The interannual variability of oceanic CO$_2$ parameters in the northeast Atlantic subtropical gyre at the ESTOC site, Glob. Biogeochem. Cycles, 21, GB1015, doi: 10.1029/2006GB002788, 2007.

Wisshak, M., Form, A., Jakobsen, J., and Freiwald, A.: Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores), Biogeosciences, 7, 2379–2396, doi: 10.5194/bg-7-2379-2010, 2010.