DATA NOTE

The genome sequence of the blue-rayed limpet, *Patella pellucida* Linnaeus, 1758 [version 1; peer review: 3 approved]

Mara K.N. Lawniczak¹, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Wellcome Sanger Institute, Cambridge, UK

Abstract

We present a genome assembly from an individual *Patella pellucida* (the blue-rayed limpet; Mollusca; Gastropoda; Patellidae). The genome sequence is 712 megabases in span. The majority of the assembly (99.85%) is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome was assembled and is 14.9 kilobases in length.

Keywords
Patella pellucida, blue-rayed limpet, genome sequence, chromosomal, Mollusca

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status

1	2	3
view	view	view

version 1

`04 Apr 2022`

[1. Masa-aki Yoshida](https://doi.org/10.12688/wellcomeopenres.17825.1), Shimane University, Matsue, Japan

[2. Coen Adema](https://doi.org/10.12688/wellcomeopenres.17825.1), University of New Mexico, Albuquerque, USA

[3. Marco Gerdol](https://doi.org/10.12688/wellcomeopenres.17825.1), University of Trieste, Trieste, Italy

Any reports and responses or comments on the article can be found at the end of the article.
Species taxonomy
Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Patellogastropoda; Patelloidea; Patellidae; Patella; Patella pellucida Linnaeus, 1758 (NCBI:txid88005).

Background
The blue-rayed limpet is a subtidal species, typically found on macroalgae (Sá-Pinto et al., 2005). Its range extends from Norway to Portugal ("Handbook of the Marine Fauna of North-West Europe", 2017). The scientific name reflects the dish-like shape (Patella) of the translucent (pellucida) shell and the common name describes the striking dashed stripes of iridescent blue down its shell. The underlying features that result in these iridescent blue rays have recently been described (Li et al., 2015). These authors speculate that the stripes are present to mimic toxic gastropods and ward off predators though this does not appear to have been tested yet. The blue-rayed limpet is a broadcast spawner, releasing one egg at a time that is externally fertilised. Individuals are thought to have a typical lifespan of about a year, with only a small portion of individuals continuing on into a second year ("Blue-Rayed Limpet (Patella Pellucida)", 2019).

Genome sequence report
The genome was sequenced from a single P. pellucida (Figure 1) collected from Farland Point, Great Cumbrae, North Ayrshire, UK (latitude 55.74629, longitude -4.911721). A total of 31-fold coverage in Pacific Biosciences single-molecule long reads and 55-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly correction corrected 309 missing/misjoins and removed 29 haplotypic duplications, reducing the assembly size by 1.72% and the scaffold number by 71.56%, and increasing the scaffold N50 by 162.71%.

The final assembly has a total length of 712 Mb in 62 sequence scaffolds with a scaffold N50 of 87.2 Mb (Table 1). Of the assembly sequence, 99.85% was assigned to 9 chromosomal-level scaffolds (numbered by sequence length) (Figure 2–Figure 5; Table 2). Chromosome 2 contains a large inversion between sister chromatids at approximately 15.43–87.97 Mb. The inversion spans the majority of the 91.75 Mb chromosome. The assembly has a BUSCO v5.1.2 (Manni et al., 2021) completeness of 87.6% (single 86.7%, duplicated 0.8%) using the mollusca_odb10 reference set (n=5295). However, we believe that this relatively low BUSCO score is a result of limitations with the current mollusca_odb10 genest. Using the metazoa_odb10 reference set (n=954), the assembly has a completeness of 97.5% (single 96.9%, duplicated 0.6%), which we believe is evidence of high completeness. This value also compares favourably with the 91.5% completeness value obtained by (Kang et al., 2020) for the transcriptome of related limpet, Patella vulgata, using the metazoa_odb reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
Sample acquisition and nucleic acid extraction
A total of three P. pellucida specimens (xgPatPell1, xgPatPell2, xgPatPell3) were collected from Farland Point, Great Cumbrae, North Ayrshire, UK (latitude 55.74629, longitude -4.911721) by Mara Lawniczak, Wellcome Sanger Institute, by hand from a sheltered rocky shore and boulder cove (old red sandstone bedrock; boulders sandstone and diorite from local dykes). The samples were identified by the same individual and snap-frozen on dry ice.

DNA was extracted at the Tree of Life laboratory, Wellcome Sanger Institute. The xgPatPell1 sample was weighed and dissected on dry ice with the shell removed. Whole organism tissue was cryogenically disrupted to a fine powder using a Covaris cryoPREP Automated Dry Pulveriser, receiving multiple impacts. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200 ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a MegaBaker 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

Figure 1. Image of the xgPatPell1, 2, and 3 specimens along with four others not used in long read, long range, or RNAseq data generation for this species' genome.
Project accession data	
Assembly identifier	xgPatPell1.1
Species	Patella pellucida
Specimen	xgPatPell1 (genome assembly); xgPatPell2 (Hi-C); xgPatPell3 (RNA-Seq)
NCBI taxonomy ID	NCBI:txid88005
BioProject	PRJEB45187
BioSample ID	SAMEA7522851
Isolate information	Whole organisms

Raw data accessions	
Pacific Biosciences SEQUEL II	ERR6412040
10X Genomics Illumina	ERR6054924-ERR6054927
Hi-C Illumina	ERR6054928
PolyA RNA-Seq Illumina	ERR6054929

Genome assembly	
Assembly accession	GCA_917208275.1
Accession of alternate haplotype	GCA_917208175.1
Span (Mb)	712
Number of contigs	495
Contig N50 length (Mb)	3.2
Number of scaffolds	62
Scaffold N50 length (Mb)	87.2
Longest scaffold (Mb)	95.0
BUSCO* genome score	C:87.6%(S:86.7%,D:0.8%),F:5.2%,M:7.3%,n:5295

*BUSCO scores based on the mollusca_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/xgPatPell1.1/dataset/CAKJPN01/busc.

RNA was extracted from whole organism tissue of xgPatPell3 in the Tree of Life Laboratory at the WSI using TRIzol, according to the manufacturer’s instructions. RNA was then eluted in 50 μl RNase-free water and its concentration RNA assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing

Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated from whole organism tissue of xgPatPell2 using the Arima v2.0 kit and sequenced on a HiSeq X instrument.

Genome assembly

Assembly was carried out with HiCanu (Nurk et al., 2020). Haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA (Ghurye et al., 2019). The mitochondrial genome was assembled with MitoHiFi (Uliano-Silva et al., 2021), which performed annotation using MitoFinder (Allio et al., 2020). The assembly was checked for contamination and corrected using the gEVAL.
Figure 2. Genome assembly of *Patella pellucida*, xgPatPell1.1: metrics. The BlobToolKit Snaiplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 712,072,003 bp assembly. The distribution of chromosome lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (95,029,513 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (87,163,620 and 59,729,618 bp), respectively. The pale grey spiral shows the cumulative chromosome count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the mollusca_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/xgPatPell1.1/dataset/CAKJPN01/snail.
system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation (Howe et al., 2021) was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretext. The genome was analysed within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.
Figure 4. Genome assembly of *Patella pellucida*, xgPatPell1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/xgPatPell1.1/dataset/CAKJPN01/cumulative.

Ethics/compliance issues

The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this.
Figure 5. Genome assembly of *Patella pellucida*, xgPatPell1.1: Hi-C contact map. Hi-C contact map of the xgPatPell1.1 assembly, visualised in HiGlass. Chromosomes are shown in size order from left to right and top to bottom.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Patella pellucida*, xgPatPell1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OU795036.1	1	95.03	36.1
OU795037.1	2	91.75	36.3
OU795038.1	3	87.35	36.4
OU795039.1	4	87.16	36.1
OU795040.1	5	79.17	36.3
OU795041.1	6	75.62	36.4
OU795042.1	7	74.06	36.3
OU795043.1	8	59.73	36.5
OU795044.1	9	59.22	36.7
OU795045.1	MT	0.01	32.3
-	Unplaced	2.95	37.3
document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability

European Nucleotide Archive: Patella pellucida (blue-rayed limpet). Accession number PRJEB45187; https://identifiers.org/ena.embl/PRJEB45187.

The genome sequence is released openly for reuse. The *P. pellucida* genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated with the RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.6125027.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.6125046.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

References

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. *Mol Ecol Resour.* 2020; 20(4): 892-905. PubMed Abstract | Publisher Full Text | Free Full Text

Blue-Rayed Limpet (*Patella Pellucida*). MarLIN - Marine Life Information Network, 2019. Publisher Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. *G3 (Bethesda).* 2020; 10(4): 1361-74. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL — a Web-Based Browser for Evaluating Genome Assemblies. *Bioinformatics.* 2016; 32(16): 2508-10. PubMed Abstract | Publisher Full Text | Free Full Text

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. *arXiv.* 2012. PubMed Abstract | Publisher Full Text | Free Full Text

Ghurye J, Rhee A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. *PLoS Comput Biol.* 2016; 12(6): e1005273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. *Bioinformatics.* 2020; 36(9).
Marco Gerdol
Department of Life Sciences, University of Trieste, Trieste, Italy

This genome report is a welcome addition to the growing amount of genomic resources available for the phylum Mollusca. In particular, the blue-rayed limpet is a common marine species of broad interest, and this is the first high quality genome to be generated for Patellogastropoda, many years after the publication of the Lottia gigantea genome, which has been a reference for the scientific community for a very long time, despite the limitations linked to its fragmentation and relatively poor quality.

The genome assembly has been carried out using gold-standard methodologies and I don't see any significant issue, as all the data reported is scientifically sound. I only have a minor comment concerning the brief mention of structural variation made by the authors, with a large inversion found in chromosome 2. Molluscan genome notoriously display high heterozygosity levels and structural variation might be much more widespread than originally thought, even though, in this specific case, all the metrics seem to suggest that the hemizygous portion of the genome was not particularly relevant (assembly size was only reduced by 1.72% after manual curation). I think a missing bit of information here is the heterozygosity rate calculated based on k-mer graphs, as this could be a useful additional information. Also, the authors may consider adding a k-mer spectrum analysis with Merqury (this is not essential, but could be worth).

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Coen Adema
Department of Biology, University of New Mexico, Albuquerque, NM, USA

Application of RNAseq, Pacbio and Hi-C to Patella lucida yields valuable addition to genome sequence data of molluscs. The analysis provides an indication of chromosome number in basal gastropods by showing hi-C pseudochromosomes. The discussion of the molluscan reference set for BUSCO is useful. Recommend to include rationale for selecting this particular species for genome sequencing. Useful to include taxonomy; i.e. was it strategically chosen as representative of basal or derived group to inform on molluscan biology? Is it a particular pest or food source? Is it randomly chosen as part of overall bio-inventory effort?

Fig 1, put numbers in figure to indicate actual specimen(s) used.

Include brief mention of outcome of mitogenome assembly. Was the mitogenome confirmed to be complete based on gene complement?

Mitogenome sequence accession record would have increased usability with annotation.

Clarify whether the inversion reported for sister chromatids of CHR2 is interpreted as assembly artefact or has biological relevance. Do termini of the inversion interrupt coding sequences or locate to intergenic regions.

Is the rationale for creating the dataset(s) clearly described?
No

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Molluscan immuno-genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 June 2022

https://doi.org/10.21956/wellcomeopenres.19735.r50657

© 2022 Yoshida M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Masa-aki Yoshida
Oki Marine Biological Station, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan

This paper by Lawniczak et al. combines data from PacBio, 10x, and Hi-C to decode the genome of *Patella pellucida* (the blue-rayed limpet) in sufficient quality to meet the criteria of the high quality genome report. By the Darwin Tree of Life's standard for publishing genome, this genome data was shown to make the data widely available to a variety of researchers. While the report is commendable for covering the necessary and sufficient content for a genome report, the following minor points should be corrected.

1. It is difficult to accept the top9 scaffolds as “chromosome”, although they are certainly long enough. It would be better to do linkage mapping and comparison with closely related chromosomes, or else to keep them as long scaffolds.

2. I agree that the mollusca_odb10 reference set gives assembly an unfairly low value. I think that the BUSCO score shown in Table 1 and Figure 1 should be that of metazoa_odb 10, which would be more appropriate for comparison with the current genome of many species.

3. It is not clear what is being compared to what in the following statement. "Chromosome 2 contains a large inversion between sister chromatids at approximately 15.43-87.97 Mb. The inversion spans the majority of the 91.75 Mb chromosome." Does this mean that there is a common sequence between chromosomes 1 and 2 that is causing the inversion? Or does it indicate an inversion between haplotypes? I think a more detailed explanation is needed.

4. The authors speculate that the stripes on the shell are present to mimic toxic gastropods. To what species is it supposed to mimic? It would be better to be specific so that later ones
can be verified.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Evolutionary genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.