Large subgraphs without complete bipartite graphs

David Conlon∗ Jacob Fox † Benny Sudakov ‡

Abstract
In this note, we answer the following question of Foucaud, Krivelevich and Perarnau. What is the size of the largest $K_{r,s}$-free subgraph one can guarantee in every graph G with m edges? We also discuss the analogous problem for hypergraphs.

1 Introduction
Motivated by the classical Turán problem, Foucaud, Krivelevich and Perarnau [3] proposed to study the size of the largest H-free subgraph one can always find in every graph G with m edges. Denote this function by $f(m, H)$. It is easy to determine $f(m, H)$ asymptotically if H is not bipartite. In [3], the authors studied this problem when forbidding all even cycles in the subgraph up to length $2k$ and obtained estimates that are tight up to a logarithmic factor. They also asked to determine $f(m, H)$ when H is a complete bipartite graph. The goal of this note is to resolve this question.

2 Complete bipartite graphs
Let $K_{r,s}$ be the complete bipartite graph with parts of order r and s, where $2 \leq r \leq s$. The following theorem gives a lower bound on $f(m, K_{r,s}).$

Theorem 2.1. Every graph G with m edges contains a $K_{r,r}$-free subgraph of size at least $\frac{1}{4}m^{\frac{r+1}{2r}}$.

To prove this theorem we need an upper bound on the maximum number of copies of $K_{r,r}$ which one can find in a graph with m edges. The problem of maximizing the number of copies of a fixed graph H was solved by Alon [1] for all graphs and by Friedgut and Kahn [4] for all hypergraphs. For our purposes the following easy estimate will suffice.

Lemma 2.2. Every graph G with m edges contains at most $2m^r$ copies of $K_{r,r}$.

Proof. Note that every copy of $K_{r,r}$ in G contains a matching of size r. Clearly the number of such matchings in G is at most $\binom{m}{r}$. Also note that every matching in G of size r can appear in at most $2^r \binom{m}{r} \leq 2m^r$. □

Using this lemma, together with a simple probabilistic argument, one can prove a lower bound on $f(m, K_{r,s}).$

∗Mathematical Institute, Oxford OX2 6GG, UK. Email: david.conlon@maths.ox.ac.uk.
†Department of Mathematics, MIT, Cambridge, MA 02139-4307. Email: fox@math.mit.edu.
‡Department of Mathematics, ETH, 8092 Zurich, Switzerland and Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: benjamin.sudakov@math.ethz.ch.
Proof of Theorem 2.1. Let G be a graph with m edges. Consider a random subgraph G' of G, obtained by choosing every edge randomly and independently with probability $p = \frac{1}{2} m^{-1/(r+1)}$. Then the expected number of edges in G' is mp. Also, by Lemma 2.2, the expected number of copies of $K_{r,r}$ in G' is at most $2p^2 m^r$. Delete one edge from every copy of $K_{r,r}$ contained in G'. This gives a $K_{r,r}$-free subgraph of G, which by linearity of expectation, has at least

$$pm - 2p^2 m^r \geq \frac{1}{2} m^\frac{r}{r+1} - \frac{1}{8} m^\frac{r}{r+1} \geq \frac{1}{4} m^\frac{r}{r+1}$$

edges on average. Hence, there exists a choice of G' which produces a $K_{r,r}$-free subgraph of G of size at least $\frac{1}{4} m^\frac{r}{r+1}$. □

Next we show that this gives an estimate on $f(m, K_{r,s})$ which is tight up to a constant factor depending on s by taking G to be an appropriately chosen complete bipartite graph with m edges.

Theorem 2.3. Let $2 \leq r \leq s$ and let G be a complete bipartite graph with parts U and W, where $|U| = m^{1/(r+1)}$ and $|W| = m^r/(r+1)$. Then G has m edges and the largest $K_{r,s}$-free subgraph of G has at most $sm^r/(r+1)$ edges.

Proof. The proof is a simple application of the counting argument of Kővári-Sós-Turán [5]. Let G' be a $K_{r,s}$-free subgraph of G and let $d = e(G')/|W|$ be the average degree of vertices of G' in W. If $d \geq s$, then, by convexity,

$$\sum_{w \in W} \binom{d_{G'}(w)}{r} \geq |W| \binom{d}{r} \geq \binom{s}{r} m^r/(r+1) \geq sm^r/(r+1)/r!.$$

On the other hand, since G' is $K_{r,s}$-free we have that

$$\sum_{w \in W} \binom{d_{G'}(w)}{r} < s \binom{|U|}{r} \leq s|U|^r/r! = sm^r/(r+1)/r!.$$

This contradiction completes the proof of the theorem. □

Remarks.

- Since $K_{2,2}$ is also a 4-cycle, our result improves by a logarithmic factor an estimate obtained by Foucaud, Krivelevich and Perarnau [3].

- Since the Turán number for $K_{r,s}$ is not known in general, it is somewhat surprising that one can prove a tight bound on the size of the largest $K_{r,s}$-free subgraph in graphs with m edges.

3 Hypergraphs

The results presented in the previous section can be extended to k-uniform hypergraphs, which, for brevity, we call k-graphs. Given a fixed k-graph H, let $f(m,H)$ denote the size of the largest H-free subgraph one can always find in every k-graph G with m edges. Let $K_{r_1,...,r}$ denote the complete k-partite k-graph with parts of size r.

Theorem 3.1. Every k-graph G with m edges contains a $K_{r_1,...,r}$-free subgraph of size at least $\frac{1}{4} m^{q-1}$, where $q = \frac{k}{r_1-1}$.
Proof. Let \(G \) be a \(k \)-graph with \(m \) edges. Every copy of \(K_{r,...,r}^{(k)} \) in \(G \) contains a matching of size \(r \) and the number of such matchings is at most \(\binom{m}{r} \). On the other hand, every matching in \(G \) of size \(r \) can appear in at most \((k!)^r \) copies of \(K_{r,...,r} \). This implies that the total number of such copies is at most \((k!)^r \binom{m}{r} \).

Consider a random subgraph \(G' \) of \(G \), obtained by choosing every edge randomly and independently with probability \(p = \frac{1}{2}m^{-1/q} \). Then the expected number of edges in \(G' \) is \(mp \) and the expected number of copies of \(K_{r,...,r}^{(k)} \) in \(G' \) is at most \((k!)^r p^k \binom{m}{r} \). Delete one edge from every copy of \(K_{r,...,r}^{(k)} \) contained in \(G' \). This gives a \(K_{r,...,r}^{(k)} \)-free subgraph of \(G \) with at least

\[
pm - (k!)^r p^k \binom{m}{r} \geq \frac{1}{4} m \frac{a - 1}{q}
\]

expected edges. Hence, there exists a choice of \(G' \) which produces a \(K_{r,...,r}^{(k)} \)-free subgraph of \(G \) of this size. \(\square \)

We can again see that this estimate is tight up to a constant factor depending on \(r \).

Theorem 3.2. Let \(2 \leq r, k, q = \frac{r^k - 1}{r - 1} \) and let \(G \) be a complete \(k \)-partite \(k \)-graph with parts \(U_i, 1 \leq i \leq k \), such that \(|U_i| = m^{r^{i-1}/q} \). Then \(G \) has \(m \) edges and the largest \(K_{r,...,r}^{(k)} \)-free subgraph of \(G \) has at most \(rm^{(q-1)/q} \) edges.

The proof of this theorem uses a similar counting argument to the graph case but is more involved. It follows from the following statement, which one can prove by induction. This technique has its origins in a paper of Erdős [2].

Proposition 3.3. Let \(G \) be a \(k \)-partite \(k \)-graph with parts \(U_i, 1 \leq i \leq k \), such that \(|U_i| = n^{r^{i-1}} \) and with a sum of \(|U_i| \) edges and \(a \geq r \). Then \(G \) contains at least \(\binom{a}{r} \prod_{i \leq k-1} \binom{|U_i|}{r} \) copies of \(K_{r,...,r}^{(k)} \).

Proof. We prove this by induction on \(k \). The base case \(k = 1 \) is trivial, by properly interpreting empty products as one.

Now suppose we know the statement for \(k - 1 \). For every vertex \(x \in U_k \), denote by \(G_x \) the \((k-1)\)-partite \((k-1)\)-graph which is the link of vertex \(x \) (i.e., the collection of all subsets of size \(k - 1 \) which together with \(x \) form an edge of \(G \)). Let \(a_x \prod_{i \leq k-2} |U_i| \) be the number of edges in \(G_x \). By definition, \(\sum_x a_x = a |U_k| = an^{r^k} \). By the induction hypothesis, each \(G_x \) contains at least \(\binom{a_x}{r} \prod_{i \leq k-2} \binom{|U_i|}{r} \) copies of \(K_{r,...,r}^{(k-1)} \). By convexity, the total number of such copies added over all \(G_x \) is at least

\[
\binom{a}{r} n^{r^k} \prod_{i \leq k-2} \left(\frac{|U_i|}{r} \right) = \binom{a}{r} |U_{k-1}| \prod_{i \leq k-2} \left(\frac{|U_i|}{r} \right) \geq r! \binom{a}{r} \prod_{i \leq k-1} \left(\frac{|U_i|}{r} \right)
\]

For every subset \(S \) which intersects each \(U_i \) with \(i \leq k - 1 \) in exactly \(r \) vertices, denote by \(d(S) \) the number of vertices \(x \in U_k \) such that \(x \) forms an edge of \(G \) together with every subset of \(S \) of size \(k - 1 \) which contain one vertex from each \(U_i \). By the above discussion, we have that \(\sum_S d(S) \geq a \prod_{i \leq k-1} \left(\frac{|U_i|}{r} \right) \), that is, at least the number of all copies of \(K_{r,...,r}^{(k-1)} \) in all \(G_x \). On the other hand, by the definition of \(d(S) \), the number of copies of \(K_{r,...,r}^{(k)} \) in \(G \) equals \(\sum_S (d(S)) \). Since the total number of sets \(S \) is \(\prod_{i \leq k-1} \left(\frac{|U_i|}{r} \right) \), the result now follows by convexity. \(\square \)

Acknowledgment. We would like to thank M. Krivelevich for bringing this problem to our attention and for sharing with us preprint [3].
References

[1] N. Alon, On the number of subgraphs of prescribed type of graphs with a given number of edges, *Israel J. Math.* **38** (1981), 116–130.

[2] P. Erdős, On extremal problems of graphs and generalized graphs, *Israel J. Math.* **2** (1964), 183–190.

[3] F. Foucaud, M. Krivelevich and G. Perarnau, Large subgraphs without short cycles, preprint.

[4] E. Freidgut and J. Kahn, On the number of copies of one hypergraph in another, *Israel J. Math.* **105** (1998), 251–256.

[5] T. Kővári, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, *Colloq. Math.* **3** (1954), 50–57.