Progress in the Mechanism and Kinetics of Fenton Reaction

Abstract
Fenton reaction which is involved in Fe²⁺ and H₂O₂ was observed by H.J.H. Fenton over 120 years ago, can decomposed organic compounds into H₂O and CO₂ by the production of oxidizing species. This reaction has been widely used in wastewater treatment, remediation of groundwater. However the mechanism of this reaction is still in discussion. Here, recent studies on the mechanism and kinetics of fenton reaction are summarized and discussed; suggestions are given in research in this field.

Keywords: Fenton reaction; Mechanism; Kinetics; Wastewater; Treatment; Oxidizing species

Overview
The oxidative degradation of organic matter by H₂O₂ in the role of Fe²⁺ under acidic conditions was first discovered by H.J. Fenton in 1894, and then applied to the oxidation of tartaric acid, of which the catalytic system was called the Fenton reagent, and the reaction called the Fenton method [1]. Early research on the Fenton reaction was mainly focused on organic synthesis, enzymatic reactions and the cell damage mechanism [2]. It was noted that in the presence of a catalyst, H₂O₂ can be efficiently decomposed to generate oxidative active substances with strong oxidizing power, and degrade a variety of organic compounds into CO₂, H₂O and other small molecules. In 1964, Canadian researcher H.R. Eisenhaner applied it to the degradation of organic matter in wastewater [3], and after that more and more researchers carried out in-depth studies on its use in the degradation of organic pollutants [4-6]. Thus a series type of Fenton reagents was developed, such as light/Fenton reagent [7], ultraviolte-visible light/H₂O₂/ferric oxalate [8], microwave/Fenton reagent [9], and ultrasound/Fenton reagent [10]. The mechanism of Fenton reaction and the intermediate species are still under controversial discussion although the Fenton reagent has been researched by many researchers as a powerful oxidant in wastewater treatment, biological systems and natural water. Two different mechanisms, namely radical and non-radical mechanism have been developed from last century. The first and most popular theory, known as the Haber-Weiss mechanism involves the formation of •OH radical in the process of H₂O₂ reduction [11], from the 1930s, the radical mechanism has been questioned by several studies suggesting that the reaction between H₂O₂ and Fe(II) produces the ferryl iron species, which is the active intermediate species [12].

Hydroxyl Free Radical Mechanism

Reaction mechanism
The hydroxyl radical mechanism was first proposed by Haber and Willstatter in 1932 [13], which revealed the existence and role of free radicals in the reaction system, and regarded the essence of the reaction as •OH generated by a catalytic during the chain reaction between Fe²⁺ and H₂O₂. Throughout the reaction process, the chain initiation phase consists of a series of single electron transfer reactions between Fe²⁺ and H₂O₂, • OH and H₂O₂, •OOH and H₂O (reaction 1-4), and the generated oxygen free radicals induce the chain growth process (• OH, •OOH). Based on this theory, many scientists conducted extensive research. George [14] detected the presence of O₂• in the study of the KO₂·H₂O₂ system, noted that the dissolved oxygen in the system significantly inhibits the decomposition of H₂O₂ and proposed that during the study of the mechanism, the role of dissolved oxygen in the Fenton system cannot be ignored [15,16]. Thereafter, Barb [17] and Weiss [18] introduced O₂• into the reaction system, and amended the reaction mechanism, that is, the dissolved oxygen in the system is related to the generation and reduction process of Fe²⁺, and proposed the reaction (5). Regarding the oxygen generation in reaction (5), Barb & Baxendale [19,20] studied the generation mechanism and kinetic characteristics of oxygen in the...
Fenton system and finalized the radical mechanism for the Fenton reaction, with the conclusion that the reaction of the system is composed of the following seven elementary reactions (reaction 1,5,6-10) [21].

\[
\begin{align*}
 \text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{HO}^\cdot \quad (1) \\
 \text{HO}^- + \text{H}_2\text{O}_2 & \rightarrow \text{H}_2\text{O} + \text{HO}_2^- \quad (2) \\
 \text{H}_2\text{O}_2 + \text{HO}_2^- & \rightarrow \text{H}_2\text{O} + \text{O}_2 + \text{HO}^\cdot \quad (3) \\
 \text{Fe}^{2+} + \text{HO}^\cdot & \rightarrow \text{Fe}^{3+} + \text{OH}^- \quad (4) \\
 \text{Fe}^{3+} + \text{O}_2^- & \rightarrow \text{Fe}^{2+} + \text{O}_2 \quad (5) \\
 \text{HO}^- + \text{H}_2\text{O}_2 & \rightarrow \text{H}_2\text{O} + \text{H}^+ + \text{O}_2^\cdot \quad (6) \\
 \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{2+} + \text{HO}_2^- + \text{H}^+ \quad (7) \\
 \text{H}_2\text{O}_2 + \text{H}^+ + \text{O}_2^- & \rightarrow \text{H}_2\text{O} + \text{O}_2 + \text{HO}^\cdot \quad (8) \\
 \text{Fe}^{2+} + \text{HO}^\cdot + \text{H}^+ & \rightarrow \text{Fe}^{3+} + \text{H}_2\text{O} \quad (9) \\
 \text{HO}^- + \text{HO}^\cdot & \rightarrow \text{H}_2\text{O}_2 \quad (10)
\end{align*}
\]

As understanding deepened on the Fe\(^{2+}/\text{Fe}^{3+}\) hydroxylate and ion forms \((\text{Fe(H}_2\text{O})_2)_{3+}/\text{Fe(H}_2\text{O})_2\text{O}/\text{Fe(H}_2\text{O})_2(\text{OH})_2/\text{FeOH}^2+/\text{Fe(OH)}^4+\), and with the wide use of dynamics, marking and spectroscopy [22-24], extensive research on the ion forms of \text{Fe}^{2+}/\text{Fe}^{3+} in the system were also carried out, and it was concluded that the dissociation and electron transfer of the association product are simultaneous processes, and produce a variety of free radicals with strong oxidation. Based on the current understanding of the complication process of high concentration \text{H}_2\text{O}_2/\text{H}_2\text{O} systems, Jones et al. [25] introduced the product of \text{Fe}^{2+}/\text{Fe}^{3+}/\text{Fe}^{4+}/\text{Fe}^{5+}/\text{Fe}^{6+} hydrolysis/complex/association into the Fenton elementary reaction, and believed that, the association degree of \text{H}_2\text{O}_2 and \text{Fe}^{3+}/\text{Fe}^{2+} is determined by the concentration of \text{H}_2\text{O}_2, which means that at low concentrations, the three substances can generate associatively \[\text{Fe}^{2+}/\text{Fe}^{3+}/(\text{H}_2\text{O})_2\] in the aqueous solution, and at high concentrations, they can generate bimolecular and even multi molecular association products \[(\text{Fe}^{2+}/\text{Fe}^{3+}/\text{H}_2\text{O})_n\] (n≥2). At present, the more consistent view on the understanding of \text{Fe}^{2+} and \text{H}_2\text{O}_2 is that the associated \text{Fe}^{3+} can further associate with \text{H}_2\text{O}_2 through the transfer of its inner electrons, to generate a compound with single-ended linear or ring configuration (reaction 11-12).

Study of the system shows that:

1. \text{Fe}^{3+} can significantly affect the dissociation rate of \text{H}_2\text{O}_2 with the action of its dissociative products, which may be with iron-oxide intermediate \text{Fe}^{3+}\text{H}_2\text{O}; or \text{Fe}^{3+}_3 [26-29];

2. The decomposition rate of \text{H}_2\text{O}_2 to produce \text{O}_2 is related to the types of complexes [30-32];

3. The intermediates in \text{H}_2\text{O}_2 decomposition include \text{Fe}^{3+}(\text{H}_2\text{O})_2\text{O}_2\text{H} and \text{Fe}^{2+}(\text{H}_2\text{O})_2(\text{H}_2\text{O})\text{O}_2\text{H}; with the former product as the main type in high concentration [33].

\[
\begin{align*}
 \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \leftrightharpoons \text{Fe(H}_2\text{O})_2^{2+} \quad (11) \\
 \text{FeOH}^2+ + \text{H}_2\text{O}_2 & \leftrightharpoons \text{Fe(OH)(H}_2\text{O})_2^+ \quad (12)
\end{align*}
\]

There still remain controversies on the understanding of the association system of \text{Fe}^{2+} and \text{H}_2\text{O}_2, and currently the following evidence can confirm indirectly that the association process of \text{Fe}^{2+} and \text{H}_2\text{O}_2 is achieved by the transfer of inner electrons:

1. \text{Fe}^{2+} must provide more than one complex site in complex with a macrocyclic ligand, and in such conditions thermodynamically unstable \text{H}_2\text{O}_2 will be produced when outer electrons are transferred, so from the perspective of thermodynamics, the mechanism of inner electron transfer sounds more feasible [34-36];

2. The modeling analysis on kinetics shows it reasonable to generate the product of \text{Fe}^{2+}. \text{H}_2\text{O}_2 by inner electron transfer at pH>4 [37,38];

3. It can be concluded that \text{Fe} \((\text{H}_2\text{O})_2^{2+}\) is more stable than \text{Fe} \((\text{H}_2\text{O})_2\text{O}, \text{Fe(OH)}^{2+}, \text{and Fe(H}_2\text{O})_2^{2-}\) in the gas phase by analysis of charge stripping mass spectrometry combined with the as \text{initio} method [39].

Kinetics

The Fenton system may cover more complex reactions, and now researchers focus on its kinetics study in order to understand properly the role of various factors in it, further clarify its reaction mechanism, evaluate the impact of water quality factors on the reaction process, and provide valuable references for its practical application. Gallard et al. [40] established an equation of Fe (II) reaction rate (equation 13), and systematically studied the effect of pH on the system, hypothesizing that pH mainly affects the reaction rate of Fe(II) with \text{H}_2\text{O}_2 and the ionized form of \text{HO}^\cdot/\text{O}_2^-, and thus established the following three equations (equations 14-16) to simulate the degradation process of organic compounds via this system. The results showed that at low pH (pH <3), the simulation predictions coincided with the experimental results, but as the pH value increased, the predicted concentration of organic compounds was higher than the experimental value, therefore the authors speculated that there might be other possible reaction pathways and mechanisms in the conditions of high pH. Based on the good consistency of this model with the actual situation at pH less than 3, Gallard et al. [41] further simulated the kinetics of \text{Fe}^{2+} and \text{H}_2\text{O}_2 and concluded that during the reaction of Fe (III) with \text{H}_2\text{O}_2, they formed a complex first and then this complex decomposed to \text{Fe}^{2+} and \text{H}_2\text{O}• (reaction 17-20), and accordingly proposed a more elaborate kinetic model (equations 21-25). By using the model, they simulated the catalytic decomposition reaction of Fe (III) on \text{H}_2\text{O}_2 at pH less than 3. The results showed that the pH value and the concentration ratio of Fe (III) to \text{H}_2\text{O}_2 can affect the decomposition process of \text{H}_2\text{O}_2 significantly, as the pH increases, the decomposition rate of \text{H}_2\text{O}_2 increases accordingly. When \(1 ≤ C_{\text{H}_2\text{O}_2}/C_{\text{Fe}^{3+}} ≤ 50\), the decomposition rate of \text{H}_2\text{O}_2 is proportional to it; when \(50 ≤ C_{\text{H}_2\text{O}_2}/C_{\text{Fe}^{3+}} ≤ 500\), the decomposition rate of \text{H}_2\text{O}_2 is unaffected substantially; when \(C_{\text{H}_2\text{O}_2}/C_{\text{Fe}^{3+}} >500\) the decomposition rate of \text{H}_2\text{O}_2 is inversely proportional to it, and the actual degradation process of waste water proved that the model basically agrees with the experimental results [42].
Other relevant reports were also published on the impact of other ions in the system on its reaction kinetics. Based on the elementary reactions of the classical Fenton system, the De Laat research group [43] established a decomposition kinetics model of H_2O_2 in the presence of SO_4^{2-} by the complexation reaction of SO_4^{2-} and Fe^{3+}, and concluded that at higher concentrations of SO_4^{2-}, SO_4^{2-} and Fe^{3+} formed a complex with very low activity and hindered the complication of Fe^{3+} and H_2O_2 resulting in a decline in efficiency of the Fenton system. Walling et al. [44] studied the effect of Cu^{2+} on the oxidation of organic compounds in the Fenton system. The results showed that the presence of Cu^{2+} will change the next reaction pathway of organic free radicals generated. When the system is free of Cu^{2+}, there are three possible reaction pathways for the oxidation of organic compounds into organic radicals ($R \cdot$), the first is that Fe^{3+} is oxidized by $R \cdot$ into Fe^{2+}, the second is that Fe^{3+} is reduced into Fe^{2+}, the third is that there are mutual polymerizations between radicals. When Cu^{2+} is introduced into the system, it can react with $R \cdot$ and reduce its concentration in the system, thereby changing the reaction progress.

\[
\frac{d[\text{Fe}(\text{II})]}{dt} = -k_{\text{Fe}(\text{II}),\text{H}_2\text{O}_2}[\text{Fe}(\text{II})] + k_{\text{Fe}(\text{II}),\text{H}_2\text{O}_2}[\text{Fe}(\text{III})][\text{H}_2\text{O}_2] + k_{\text{Fe}(\text{II}),\text{O}_2^-}[\text{Fe}(\text{II})][\text{O}_2^-] \quad (13)
\]

\[
\frac{d[\text{H}_2\text{O}_2]}{dt} = \left[\frac{[\text{H}^+]}{[\text{H}^+]} \right] \frac{10^{-pK_a}}{[\text{H}_2\text{O}_2]}
\quad (14)
\]

\[
\frac{d[\text{O}_2^-]}{dt} = \left[\frac{[\text{H}^+]}{[\text{H}^+]} \right] \frac{10^{-pK_a}}{[\text{H}_2\text{O}_2]}
\quad (15)
\]

\[
k_{\text{Fe}(\text{II}),\text{H}_2\text{O}_2} = k_{\text{Fe}(\text{II}),\text{H}_2\text{O}_2}[\text{Fe}(\text{II})][\text{H}_2\text{O}_2] + k_{\text{Fe}(\text{OH})}[\text{Fe}(\text{II})] \quad (16)
\]

To meet the needs of practical applications, the studies on kinetic models of this system were reported increasingly for degradation of specific organic pollutants. Chen et al. [45] studied the phenol degradation process via this system and presented the corresponding degradation path, with improvement on the degradation mechanism of aromatic compounds and the practicability of the Fenton system. The author believed that the phenol is first attacked by $\cdot\text{OH}$ to generate the radical of dihydroxy cyclohexadiene (DHCD\cdot), after that DHCD\cdot will be dehydrogenized into hydroquinone (HQ). HQ with strong reduction ability can react quickly with Fe^{3+} to produce semiquinone radical (SQ\cdot), and SQ\cdot will continue to reduce Fe^{3+} into benzoquinone (BQ), at last BQ will be reduced into SQ\cdot by DHCD\cdot. In the above process, the quinone is an intermediate which will accelerate the circulation of
Fe2+/Fe3+ and promote the generation of Fe3+. The whole process is shown as an autocatalytic process (Figure 1). The Duisterberg research group [46] investigated the autocatalytic process of the oxidation on the hydroxy acid by the Fenton system. Based on the Pignatello research model, they revised and added some reactions, adjusted the rate constants of radical reactions, and established a kinetic model of the oxidation on the hydroxy acid by the Fenton system. The results also proved the role of quinone intermediates in the catalytic degradation process of aromatic compounds (Figure 1).

Figure 1: Quinone intermediates electron transfer in the process of phenol oxidation.

Reaction mechanism of ferric Ion

The mechanism of ferric ion was first proposed by Bary & Gorin [12] in 1932, in which they believed the reaction pathway to generate Fe (IV) might be in the Fenton system and the relevant process were as follows (reaction 26,27):

\[
\begin{align*}
\text{Fe(II)} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe(IV)} + \text{H}_2\text{O} \\
\text{Fe(IV)} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe(II)} + \text{H}_2\text{O} \\
\text{Fe(II)} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe(IV)} + \text{H}_2\text{O} \\
\text{Fe(IV)} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe(II)} + \text{H}_2\text{O} + \text{O}_2
\end{align*}
\]

After that, more and more experiments proved that under certain conditions the Fenton system can produce ferric ions with oxidization properties. In the 1940s, George [47] and Abel [48] questioned the hydroxyl free radical mechanism successively and argued that this system may exist other oxidizing substances, such as ferric ions. Kremer [49] questioned the form of ferric ions in solution in the hydroxyl free radical mechanism. According to this mechanism, the iron is in the form of ferrous and ferric ions in the system, and it was speculated that at low concentrations of hydrogen peroxide, the reaction (28) is less likely to occur, and most of the hydroxyl radicals generated in the reaction (29) will react with ferrous ions to produce ferric ions, and then the ferric ions will continue to react with hydroxyl radicals according to the reaction (30). If the reaction does occur in the system, it proves that Fe3+ and hydroxyl radicals cannot exist alone in the system, both will be further reacted into FeOH2+, the protonated form of FeO2+ (FeO2++H+—FeO2+), which also suggests the possible presence of ferric ions from the other side.

\[
\begin{align*}
\text{OH}^\cdot + \text{H}_2\text{O}_2 & \rightarrow \text{HO}_2 \quad (28) \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{OH}^\cdot \quad (29) \\
\text{Fe}^{3+} + \text{OH}^\cdot & \rightarrow \text{FeOH}^{2+} \quad (30)
\end{align*}
\]

In the last two decades, studies have focused a lot of attention on the oxidation of organic pollutants by the Fenton reagent under neutral conditions, and regarding the reactive mechanism under neutral conditions, many researchers have also carried out extensive investigation of the generation and reaction mechanism of ferric ions. During the study on the oxidation process of H\textsubscript{2}O\textsubscript{2} on cytochrome C catalyzed by the complex of Fe (II) and EDTA, Koppenol et al. [50] found that the reaction characteristics of this process are completely different from those of the oxidation process hydroxyl radicals produced by pulse radiolysis on cytochrome C, and they also concluded that the intermediate with oxidation activity may be present as ferric ions. O Pestovsky et al. [51] excluded the possibility of tetravalent iron existence under the conditions of pH ≤3 by use of different principles on the respective reactions of (CH\textsubscript{3})\textsubscript{3}O to tetraivalent iron and hydroxyl radicals. But under the conditions of pH greater than 3, more and more evidence has proved the existence of tetravalent iron in the system. Stephan et al. [52] studied the oxidation process of As3+ in natural water by the Fenton reagent, and found that under conditions of pH=3.5-7.5, the hydroxyl radical scavenger propanol and formate, do not have a significant impact on the oxidation reaction, so they believe that there are other reactive oxidizing substances in this system and presume it is ferric ion. Laurent et al. [53] simulated the conversion conditions of Fe2+ and Fe3+ ions during the Fenton reaction within the droplets in clouds under two different mechanism conditions, and found that both mechanisms can explain well the process of iron conversion. They also believe that during the reaction the concentration of ferric ions is higher than that of hydroxyl radicals in four orders of magnitude, so that the ferric ion dominates in the reaction. Rahhal et al. [54] found some phenomena against the nature of hydroxyl radicals in the catalytic decomposition process of H\textsubscript{2}O\textsubscript{2} by the complex of Fe (II) and diethyl pentaacetic acid that is the active oxidative intermediate produced in the experiment can be inhibited by t-butanol, so they presumed that the active oxidative intermediate in the system is ferric ion. During the study on the role of NO in oxidation of organic compounds by the Fenton reagent, Sharpe et al. [55] noted that in the reaction, Fe2+ and hydrogen peroxide will first produce two different ferric ions: FeO2+ and FeOH2+, then they will hydrolyze or directly break bonds into hydroxyl radicals, but also pointed out that in the reaction no product generated by hydroxyl radicals and tracer was observed. Walling et al. [56] believe that in this system metal ions will first form a complex with H\textsubscript{2}O\textsubscript{2}, the nature of which will decide the following reaction mechanisms: (1) if single electron transfer occurs in the complex of Fe and H\textsubscript{2}O\textsubscript{2}, Fe will lose an electron, and produce hydroxyl radicals and the reaction will proceed as the
hydroxyl free radical mechanism; (2) if double electron transfer occurs in the complex generated, Fe will lose two electrons, and form strong oxidizing ions with higher valence, then the reaction will proceed as ferric ion mechanism; (3) if the generated complex itself has strong oxidation, the complex in the whole system is the main active oxide intermediate, but this theory has not yet been confirmed experimentally and theoretically.

Summary and Outlook

Currently, in the actual study, since hydroxyl radicals are easily observed in the electron spin resonance (ESR) spectrum, and the reaction kinetics may also be described by the oxidation of hydroxyl radicals, most researchers prefer the hydroxyl free radical mechanism, but in the presence of complexing agents or in some neutral systems, the hydroxyl free radical mechanism alone does not adequately explain some of the special phenomena in the experiment. In the above conditions, more and more researchers began to favor the ferric ion mechanism. Actually, the Fenton system is used widely in chemical, biological and environmental systems, and it is unlikely that this is with the same mechanism all the time. Sometimes two mechanisms may co-exist in different systems, or some kind of mechanism may be dominant, depending on the specific nature of the system. Further research on the reaction mechanism of the system should focus on direct evidence for the existence of an active intermediate by use of the latest online analysis and detection combined with tracking tools and techniques. On this basis, the next work should focus on the catalytic activity and the degradation efficiency of H$_2$O$_2$ to research the impact of other assistive technology (photocatalyst/ultrasonic/ultraviolet, etc.) on the active intermediate in the system, and to provide theoretical guidance for the efficient industrial application of this technology.

Acknowledgement

This research project was supported by the Fundamental Research Funds for the Central Universities under Grant 15CX02102A and Shandong Provincial Natural Science Foundation, China under Grant 2013ZRE28029.

Conflict of Interest

None.

References

1. Krzysztof Barbusinski (2009) Fenton reaction-controversy concerning the chemistry. Eco Engineering 16(3):347-358.
2. Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58(5): 1015-1021.
3. Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Management 13(5-7): 361-377.
4. Mark Daniel G, de Luna, James I, Colades, Chia-Chi Su, Ming-Chun Lu (2013) Comparison of dimethyl sulfoxide degradation by different Fenton processes. Chemical Engineering Journal 232(10): 418-424.
5. Ipek Gulkaya, Guermin A Surucu, Filiz B Dilek (2006) Importance of H$_2$O$_2$/Fe$^{3+}$ ratio in Fenton's treatment of a carpet dying wastewater. Journal of Hazardous Materials 136(3): 763-769.
6. TT Pham, SK Brar, RD Tyagi, RY Surampalli (2010) Optimization of Fenton oxidation pre-treatment for B. thuringiensis – Based production of value added products from wastewater sludge. J Environ Manage 91(8): 1657-1664.
7. Helen Barndok, Laura Blanco, Daphne Hermosilla, Ángeles Blanco (2016) Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. Chemical Engineering Journal 284(1): 112-121.
8. Stefano Giannakis, Cristina Ruales-Lonfat, Sami Rtimi, Sana Thabet, Pascale Cotton, et al. (2016) Castle fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH. Applied Catalysis B: Environmental 185(5):150-162.
9. Nannan Wang, Tong Zheng, Jing Jing, Wu-seng Long, Xiaojun Miao, et al. (2014) Pilot-scale treatment of p-Nitrophenol wastewater by microwave-enhanced Fenton oxidation process: Effects of system parameters and kinetics study. Journal of Hazardous Materials 239(3): 351-359.
10. Zhihui Xu, Yaqun Yu, Di Fang, Jiangyu Xu, Jianru Liang, et al. (2015) Microwave-ultrasound assisted synthesis of Bi-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrason Sonochem 27(11): 287-295.
11. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond. 147: 332-352.
12. Barj WC, Gorin MH (1932) Ferryl Ion, A Compound of Tetravalent Iron. J Am Chem Soc 54(5): 2124-2125.
13. Haber F, Weiss J (1932) Über die Katalyse des Hydperoxyls. Naturwissens chaften 20(51): 948-950.
14. George P (1947) Some experiments on the reactions of potassium superoxide in aqueous solutions. Discussions of the Faraday Society 2: 196-205.
15. Neuman EW (1934) Potassium Superoxide and the Three-Electron Bond. The Journal of Chemical Physics 2(1): 31-33.
16. Pauling L (1979) The discovery of the superoxide radical. Trends in Biochemical Sciences 4(11): N270-N271.
17. Barb WG, Basendehle JH, George P (1949) Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide. Nature 163(4148): 691-694.
18. Weiss J, Humphrey CW (1949) Reaction between Hydrogen Peroxide and Iron Salts. Nature 163(4140): 691.
19. Barb WG, Basendehle JH, George P (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part 1-The ferrous ion reaction. Transactions of the Faraday Society 47: 462-500.
20. Barb WG, Basendehle JH, George P (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part 1-The ferric ion reaction. Transactions of the Faraday Society 47: 591-616.
21. Rigg T, Taylor W, Weiss J (1954) The Rate Constant of the Reaction of Hydrogen Peroxide and Iron Salts. Nature 163(4140): 691.
22. Wells CF, Salam MA (1965) Hydrolysis of Ferrous Ions : a Kinetic Method for the Determination of the Fe(II) Species. Nature 205(4972): 690-692.
23. Wells CF, Salam MA (1968) The effect of pH on the kinetics of the reaction of iron (II) with hydrogen peroxide in perWorate media. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, China. p. 24-29.
Progress in the Mechanism and Kinetics of Fenton Reaction

24. Rabinowitch E, Stockmayer WH (1942) Association of Ferric Ions with Chloride, Bromide and Hydroxyl Ions (A Spectroscopic Study). Journal of the American Chemical Society 64(2): 335-347.

25. Jones P, Kitching R, Tobe ML (1959) Hydrogen peroxide + water mixtures. Part 4-Catalytic decomposition of hydrogen peroxide. Transactions of the Faraday Society 55: 79-90.

26. Kremer ML, Stein G (1959) The catalytic decomposition of hydrogen peroxide by ferric perchlorate. Transactions of the Faraday Society 55: 959-973.

27. Kremer ML (1962) Nature of intermediates in the catalytic decomposition of hydrogen peroxide by ferric ions. Transactions of the Faraday Society 58: 702-707.

28. Kremer ML (1963) Oxidation reduction step in catalytic decomposition of hydrogen peroxide by ferric ions [I]. Transactions of the Faraday Society 59: 2535-2542.

29. Kremer ML, Stein G (1977) Kinetics of the Fe^{3+}-ion-H_2O_2 reaction: Steady-state and terminal-state analysis. International Journal of Chemical Kinetics 9(2):179-184.

30. Walling C, Goosen A (1973) Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society 95(9): 2987-2991.

31. Walling C, Weil T (1974) The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. International Journal of Chemical Kinetics 6(4):507-516.

32. Walling C, Cleary M (1977) Oxygen evolution as a critical test of mechanism in the ferric-ion catalyzed decomposition of hydrogen peroxide. International Journal of Chemical Kinetics 9(4): 595-601.

33. Lewis T, Richards D, Salter D (1963) Peroxy-complexes of inorganic ions in hydrogen peroxide-water mixtures. Part 1. Decomposition by ferric ions. Journal of the Chemical Society 1963: 2434-2446.

34. Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Fette, Seifen, Anstrichm. 95(4):435-445.

35. Masarwa M, Cohen H, Meyerstein D (1988) Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they Fenton-like or not? 1. The case of Cu^{2+} and Cu^{+}: Journal of the American Chemical Society 110(13):4293-4297.

36. Goldstein S, Meyerstein D. (1999) Comments on the mechanism of the "Fenton-like" reaction. Accouunts of chemical research 32(7): 547-550.

37. Gallard H, de Laat J, Legube B (1998) Influence du pH sur la vitesse d’oxydation de compose [prime or minute]s organiques par Fe^{3+}/H_2O_2 Me [prime or minute] canismes in [prime or minute] actionnons et mode [prime or minute] lisation. New Journal of Chemistry 22(3): 263-268.

38. Gallard H, De Laat J (2001) Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H_2O_2 and Fe(III)/H_2O_2. Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III). Chemosphere 42(4): 405-413.

39. Schroder D, Barsch S, Schwartz H (2000) Second Ionization Energies of Gaseous Iron Oxides and Hydroxides: The FeO_{H_2}O_4 Dications (m=1,2,3,4). The Journal of Physical Chemistry A 104(21): 5101-5110.

40. Gallard H, de Laat J, Legube B (1998) Effect of pH on the Oxidation Rate of Organic Compounds by Re^{3+}/H_2O_2: Mechanisms and simulation. New Journal of Chemistry 22(3): 263-268.

41. De Laat J, Gallard H (1999) Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling. Environmental Science & Technology 33(16): 2726-2732.

42. Gallard H (2000) Kinetic Modelling of Fe(III)/H_2O_2 Oxidation Reactions in Dilute Aqueous Solution using Atrazine as a Model Organic Compound. Water Research 34(12): 3107-3116.

43. De Laat J, Le TG (2005) Kinetics and Modeling of the Fe(III)/H_2O_2 System in the Presence of Sulfate in Aqueous Solutions. Environmental Science & Technology 39(6): 1811-1818.

44. Walling C, Kato S (1971) Oxidation of Alcohols by Fenton’s Reagent. Effect of Copper Ion. Journal of the American Chemical Society 93(17):4275-4281.

45. Chen R, Pignatello JJ (1997) Role of Quinone Intermediates as Electron Shuttles in Fenton and Photo assisted Fenton Oxidations of Aromatic Compounds. Environmental Science & Technology 31(8): 2399-2406.

46. Duesterberg CK, Waite TD (2007) Kinetic Modeling of the Oxidation of p-Hydroxybenzoic Acid by Fenton’s Reagent: Implications of the Role of Quinones in the Redox Cycling of Iron. Environmental Science & Technology 41(11): 4103-4110.

47. George P, Irvine DH (1952) Reaction of methymoglobin with hydrogen peroxide. Biochem 52(3):511-517.

48. Koppelen WH (2001) The Haber-Weiss cycle - 70 years later. Redox Report 6(4):229-234.

49. Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys. Chem. Chem Phys 1: 3595-3605.

50. Koppelen W (1985) The Reaction of Ferrous EDTA with Hydrogen Peroxide: Evidence Against Hydroxyl Radical Formation. Journal of Free Radicals in Biology and Medicine 1(4): 281-285.

51. Pestovskyy O, Stioan S, Bominan EL (2005) Aqueous Fe-IV=O: Spectroscopic identification and oxo-group exchange. Angewand Te Chermie-international Edition 44(42):6871-6874.

52. Stepman JH, Olivier L (2003) Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environmental Science and Technology 37(12):2734-2742.

53. Laurent D, Maud L, Nadine C (2005) Impact of radical versus non-radical pathway in the fenton chemistry in the iron redox cycle in clouds. Chemosphere 60(5): 718-724.

54. Rahhal S, Richter HW (1988) Reduction of Hydrogen Peroxide by the Ferrous Iron Chelate of Diethylentriamine-N,N,N’,N’-Pentaacetate. Journal of the American Chemical Society 110(10): 3126-3133.

55. MASharma, SJRobb,BJClark (2003) Nitric oxide and Fenton/Haber-Weiss chemistry: nitric oxide is a potent antioxidant at physiological concentrations. Neurochem 87(2): 386-394.

56. Walling C (1998) Intermediates in the Reactions of Fenton Type Reagents. Accounts of Chemical Research 31(4): 155-157.