Title	A primitive derivation and logarithmic differential forms of Coxeter arrangements
Author(s)	Abe, Takuro; Terao, Hiroaki
Citation	Hokkaido University Preprint Series in Mathematics, 929, 1-21
Issue Date	2008-10-1
DOI	10.14943/84077
Doc URL	http://hdl.handle.net/2115/69737
Type	bulletin (article)
File Information	pre929.pdf
Hokkaido University Collection of Scholarly and Academic Papers	HUSCAP
A primitive derivation and logarithmic
differential forms of Coxeter arrangements

Takuro Abe* and Hiroaki Terao†

October 20, 2008

Abstract

Let W be a finite irreducible real reflection group, which is a Coxeter group. We explicitly construct a basis for the module of differential 1-forms with logarithmic poles along the Coxeter arrangement by using a primitive derivation. As a consequence, we extend the Hodge filtration, indexed by nonnegative integers, into a filtration indexed by all integers. This filtration coincides with the filtration by the order of poles. The results are translated into the derivation case.

1 Introduction and main results

Let V be a Euclidean space of dimension ℓ. Let W be a finite irreducible reflection group (a Coxeter group) acting on V. The Coxeter arrangement $\mathcal{A} = \mathcal{A}(W)$ corresponding to W is the set of reflecting hyperplanes. We use [5] as a general reference for arrangements. For each $H \in \mathcal{A}$, choose a linear form $\alpha_H \in V^*$ such that $H = \ker(\alpha_H)$. Their product $Q := \prod_{H \in \mathcal{A}} \alpha_H$, which lies in the symmetric algebra $S := \text{Sym}(V^*)$, is a defining polynomial for \mathcal{A}. Let $F := \mathcal{S}(0)$ be the quotient field of \mathcal{S}. Let Ω_S and Ω_F denote the \mathcal{S}-module of regular 1-forms on V and the F-vector space of rational 1-forms on V respectively. The action of W on V induces the canonical actions of W on V^*, S, F, Ω_S and Ω_F, which enable us to consider their W-invariant parts. Especially let $R = \mathcal{S}^W$ denote the invariant subring of \mathcal{S}.

*Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-cho, Saky-Ku, Kyoto 606-8502, Japan. email:abetaku@math.kyoto-u.ac.jp.
†Department of Mathematics, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan. email:terao@math.sci.hokudai.ac.jp.
In [16], Ziegler introduced the S-module of logarithmic 1-forms with poles of order $m (m \in \mathbb{Z}_{\geq 0})$ along \mathcal{A} by
\[
\Omega(\mathcal{A}, m) := \{ \omega \in \Omega_F \mid Q^m \omega$ and $(Q/\alpha_H)^m (d\alpha_H \wedge \omega)$ are both regular for all $H \in \mathcal{A} \}.
\]
Note $\Omega(\mathcal{A}, 0) = \Omega_{S}$. Define the total module of logarithmic 1-forms by
\[
\Omega(\mathcal{A}, \infty) := \bigcup_{m \geq 0} \Omega(\mathcal{A}, m).
\]
In this article we study the total module $\Omega(\mathcal{A}, \infty)$ of logarithmic 1-forms and its W-invariant part $\Omega(\mathcal{A}, \infty)^W$ by introducing a geometrically-defined filtration indexed by \mathbb{Z}.

Let $P_1, \ldots, P_\ell \in R$ be algebraically independent homogeneous polynomials with $\deg P_1 \leq \cdots \leq \deg P_\ell$, which are called basic invariants, such that $R = \mathbb{R}[P_1, \ldots, P_\ell]$ [3, V.5.3, Theorem 3]. Define the primitive derivation $D := \partial/\partial P_k : F \to F$. Let $T := \{ f \in R \mid Df = 0 \} = \mathbb{R}[P_1, P_2, \ldots, P_{\ell-1}]$. Consider the T-linear connection (covariant derivative)
\[
\nabla_D : \Omega_F \to \Omega_F
\]
characterized by $\nabla_D(f \omega) = (Df) \omega + f(\nabla_D \omega)$ ($f \in F, \omega \in \Omega_F$) and $\nabla_D(d\alpha) = 0$ ($\alpha \in V^*$).

In Section 2, using the primitive derivation D, we explicitly construct logarithmic 1-forms
\[
\omega^{(m)}_1, \omega^{(m)}_2, \ldots, \omega^{(m)}_{\ell}
\]
for each $m \in \mathbb{Z}$ satisfying $\nabla_D \omega^{(2k+1)}_j = \omega^{(2k-1)}_j$ ($k \in \mathbb{Z}, 1 \leq j \leq \ell$). The 1-forms $\omega^{(m)}_1, \omega^{(m)}_2, \ldots, \omega^{(m)}_{\ell}$ form a basis for the S-module $\Omega(\mathcal{A}, -m)$ when $m \leq 0$. Thus it is natural to define $\Omega(\mathcal{A}, -m)$ to be the S-module spanned by $\{ \omega^{(m)}_1, \omega^{(m)}_2, \ldots, \omega^{(m)}_{\ell} \}$ for all $m \in \mathbb{Z}$.

The following two main theorems will be proved in Section 2:

Theorem 1.1

1. The R-module $\Omega(\mathcal{A}, 2k - 1)^W$ is free with a basis \mathcal{B}_{-k} for $k \in \mathbb{Z}$.
2. The T-module $\Omega(\mathcal{A}, 2k - 1)^W$ is free with a basis $\bigcup_{p \geq -k} \mathcal{B}_p$ for $k \in \mathbb{Z}$.
3. $\mathcal{B} := \bigcup_{k \in \mathbb{Z}} \mathcal{B}_k$ is a basis for $\Omega(\mathcal{A}, \infty)^W$ as a T-module.

Theorem 1.2

1. The ∇_D induces a T-linear automorphism $\nabla_D : \Omega(\mathcal{A}, \infty)^W \cong \Omega(\mathcal{A}, \infty)^W$.
2. Define $\mathcal{F}_0 := \bigoplus_{j=1}^\ell T(dP_j), \mathcal{F}_k := \nabla_D^{k} \mathcal{F}_0$ and $\mathcal{F}_{-k} := (\nabla_D^{-1})^{k} \mathcal{F}_0$ ($k > 0$). Then $\Omega(\mathcal{A}, \infty)^W = \bigoplus_{k \in \mathbb{Z}} \mathcal{F}_k$.
3. $\Omega(\mathcal{A}, 2k - 1)^W = \mathcal{J}^{(-k)}$, where $\mathcal{J}^{(-k)} := \bigoplus_{p \geq -k} \mathcal{F}_p$ for $k \in \mathbb{Z}$.
Let us briefly discuss our results in connection with earlier researches. Let \(\text{Der}_F \) denote the \(F \)-vector space of \(\mathbb{R} \)-linear derivations of \(F \) to itself. It is dual to \(\Omega_F \). The inner product \(I : V \times V \to \mathbb{R} \) induces \(I^* : V^* \times V^* \to \mathbb{R} \), which is canonically extended to a nondegenerate \(F \)-bilinear form \(I^* : \Omega_F \times \Omega_F \to F \). Define an \(F \)-linear isomorphism

\[
I^* : \Omega_F \to \text{Der}_F
\]

by \(I^*(\omega)(f) := I^*(\omega, df) \) (\(f \in F \)). Let \(\mathcal{G}_k := I^*(\mathcal{F}_{k-1}) \) and \(\mathcal{H}^{(k)} := I^*(\mathcal{J}^{(k-1)}) \) for \(k \in \mathbb{Z} \). Thanks to Theorem 1.2, we have commutative diagrams

\[
\cdots \xrightarrow{\nabla_D} \mathcal{F}_1 \xrightarrow{\nabla_D} \mathcal{F}_0 \xrightarrow{\nabla_D} \mathcal{F}_{-1} \xrightarrow{\nabla_D} \mathcal{F}_{-2} \xrightarrow{\nabla_D} \mathcal{F}_{-3} \xrightarrow{\nabla_D} \mathcal{F}_{-4} \xrightarrow{\nabla_D} \cdots
\]

\[
\cdots \xrightarrow{\nabla_D} \mathcal{G}_2 \xrightarrow{\nabla_D} \mathcal{G}_1 \xrightarrow{\nabla_D} \mathcal{G}_0 \xrightarrow{\nabla_D} \mathcal{G}_{-1} \xrightarrow{\nabla_D} \mathcal{G}_{-2} \xrightarrow{\nabla_D} \mathcal{G}_{-3} \xrightarrow{\nabla_D} \cdots,
\]

\[
\cdots \xrightarrow{\nabla_D} \mathcal{J}(1) \xrightarrow{\nabla_D} \mathcal{J}(0) \xrightarrow{\nabla_D} \mathcal{J}(-1) \xrightarrow{\nabla_D} \mathcal{J}(-2) \xrightarrow{\nabla_D} \mathcal{J}(-3) \xrightarrow{\nabla_D} \mathcal{J}(-4) \xrightarrow{\nabla_D} \cdots
\]

\[
\cdots \xrightarrow{\nabla_D} \mathcal{H}(2) \xrightarrow{\nabla_D} \mathcal{H}(1) \xrightarrow{\nabla_D} \mathcal{H}(0) \xrightarrow{\nabla_D} \mathcal{H}(-1) \xrightarrow{\nabla_D} \mathcal{H}(-2) \xrightarrow{\nabla_D} \mathcal{H}(-3) \xrightarrow{\nabla_D} \cdots.
\]

in which every \(\nabla_D \) is a \(T \)-linear isomorphism. The objects in the left halves of the diagrams were introduced by K. Saito who called the decomposition \(\text{Der}_R = \bigoplus_{k \geq 0} \mathcal{G}_k \) the Hodge decomposition and the filtration \(\text{Der}_R = \mathcal{H}^{(0)} \supset \mathcal{H}^{(1)} \supset \cdots \) the Hodge filtration in his groundbreaking work [7, 8]. They are the key to define the flat structure on the orbit space \(V/W \). The flat structure is also called the Frobenius manifold structure from the view point of topological field theory [4].

Our main theorems 1.1 and 1.2 are naturally translated by \(I^* \) into the corresponding results concerning the \(\mathcal{G}_k \)'s and the \(\mathcal{H}^{(k)} \)'s in Section 3. So we extend the Hodge decomposition and Hodge filtration, indexed by nonnegative integers, to the ones indexed by all integers. The Hodge filtration \(\text{Der}_R = \mathcal{H}^{(0)} \supset \mathcal{H}^{(1)} \supset \cdots \) was proved to be equal to the contact-order filtration [13]. On the other hand, Theorem 1.2 (3) asserts that the filtration \(\cdots \supset \mathcal{J}^{(-1)} \supset \mathcal{J}^{(0)} = \Omega_R \), indexed by nonpositive integers, coincides with the pole-order filtration of the \(W \)-invariant part \(\Omega(\mathcal{A}, \infty)^W \) of the total module \(\Omega(\mathcal{A}, \infty) \) of logarithmic 1-forms. This direction of researches is related with a generalized multiplicity \(m : \mathcal{A} \to \mathbb{Z} \) and the associated logarithmic module \(D\Omega(\mathcal{A}, m) \) introduced in [1].

In Section 4, we will give explicit relations of our bases to the bases obtained in [11], [15] and [2].
2 Construction of a basis for $\Omega(\mathcal{A}, \infty)$

Let x_1, \ldots, x_ℓ denote a basis for V^* and P_1, \ldots, P_ℓ homogeneous basic invariants with $\deg P_1 \leq \cdots \leq \deg P_\ell : S^W = R = \mathbb{R}[P_1, \ldots, P_\ell]$. Let $x := [x_1, \ldots, x_\ell]$ and $P := [P_1, \ldots, P_\ell]$ be the corresponding row vectors. Define $A := [I^*(x_i, x_j)]_{1 \leq i, j \leq \ell} \in \text{GL}_\ell(\mathbb{R})$ and $G := [I^*(dP_i, dP_j)]_{1 \leq i, j \leq \ell} \in M_{\ell, \ell}(R)$. Then $G = J(P)^T AJ(P)$, where $J(P) := \left[\frac{\partial P_i}{\partial x_j} \right]_{1 \leq i, j \leq \ell}$ is the Jacobian matrix. It is well-known (e.g., [3, V.5.5, Prop. 6]) that $\det J(P) = Q$, where $\hat{=}$ stands for the equality up to a nonzero constant multiple. Let Der_R be the R-module of R-linear derivations of R to itself: $\text{Der}_R = \bigoplus_{i=1}^r R (\partial/\partial P_i)$.

Recall the primitive derivation $D = \partial/\partial P_\ell \in \text{Der}_R$ and $T = \ker(D : R \to R) = \mathbb{R}[P_1, \ldots, P_{\ell-1}]$. We will use the notation $D[M] := [D(m_{ij})]_{1 \leq i, j \leq \ell}$ for a matrix $M = [m_{ij}]_{1 \leq i, j \leq \ell} \in M_{\ell, \ell}(F)$. The next Proposition is due to K. Saito [7, (5.1)] [4, Corollary 4.1]:

Proposition 2.1

$D[G] \in \text{GL}_\ell(T)$, that is, $D^2[G] = 0$ and $\det D[G] \in \mathbb{R}^\times$.

Now let us give a key definition of this article, which generalizes the matrices introduced in [11, Lemma 3.3].

Definition 2.2

The matrices $B = B^{(1)}$ and $B^{(k)} (k \in \mathbb{Z})$ are defined by

$$B := J(P)^T AD[J(P)], \quad B^{(k)} := kB + (k - 1)B^T.$$

In particular, $D[G] = B + B^T = B^{(k+1)} - B^{(k)}$ for all $k \in \mathbb{Z}$.

Lemma 2.3

$B^{(k)} \in \text{GL}_\ell(T)$ for all $k \in \mathbb{Z}$, that is, $D \left[B^{(k)} \right] = 0$ and $\det B^{(k)} \in \mathbb{R}^\times$.

Proof. If $k \geq 1$, then the statement is proved in [11, 3.3 and 3.6] and [13, Lemma 2]. Suppose $k \leq 0$. Since

$$B^{(1-k)} = (1 - k)B + (-k)B^T = -(kB + (k - 1)B^T)^T = -(B^{(k)})^T,$$

we obtain $B^{(k)} = -(B^{(1-k)})^T \in \text{GL}_\ell(T)$ because $1 - k \geq 1$. \hfill \square

The following Lemma is in [11, pp. 670, Lemma 3.4 (iii)]:

Lemma 2.4

(1) $\det J(D^k[x]) = Q^{-2k}$, where $J(D^k[x]) := [\partial D^k(x_j)/\partial x_i]_{1 \leq i, j \leq \ell}$ $(k \geq 1)$.

(2) $D[J(P)] = -J(D[x])J(P)$ and thus $\det D[J(P)] = Q^{-1}$.
Definition 2.5
Define \(\{R_k\}_{k \in \mathbb{Z}} \subset M_{\ell, \ell}(F) \) by
\[
R_{1-2k} = D^k[J(P)] \quad (k \geq 0),
\]
\[
R_{2k-1} = (-1)^k J(D^k[x])^{-1} D[J(P)] \quad (k \geq 1),
\]
\[
R_{2k} = (-1)^k J(D^k[x])^{-1} \quad (k \geq 0),
\]
\[
R_{-2k} = D^{k+1}[J(P)] D[J(P)]^{-1} \quad (k \geq 0).
\]

In particular, \(R_1 = J(P), \) \(R_0 = I_\ell \) and \(R_{-1} = D[J(P)] \).

The following Proposition is fundamental.

Proposition 2.6
For \(k \in \mathbb{Z} \), we have
1. \(\det R_k = Q^k \),
2. \(R_{2k} = R_{2k-1} D[J(P)]^{-1} = R_{2k-1} B^{-1} J(P)^T A \),
3. \(R_{2k+1} = R_{2k} J(P)(B^{(k+1)})^{-1} B \),
4. \(R_{2k+1} = R_{2k-1} B^{-1} G(B^{(k+1)})^{-1} B \), and
5. \(D[R_{2k+1}] = R_{2k-1} \).

Proof. (2) is immediate from Definition 2.5 because \(B^{-1} J(P)^T A = D[J(P)]^{-1} \).

(4) Let \(k \geq 1 \). Recall the original definition of \(B^{(k)} \) in [11, Lemma 3.3] given by
\[
B^{(k+1)} = -J(P)^T A J(D^{k+1}[x]) J(D^k[x])^{-1} J(P).
\]

Compute
\[
R_{2k-1} R_{2k+1}^{-1} = -D[J(P)]^{-1} J(D^k[x]) J(D^{k+1}[x])^{-1} D[J(P)]
\]
\[
= -D[J(P)]^{-1} A^{-1} J(P)^T J(P)^T A J(P) J(P)^{-1}
\]
\[
J(D^k[x]) J(D^{k+1}[x])^{-1} A^{-1} J(P)^T J(P)^T A D[J(P)]
\]
\[
= B^{-1} G(B^{(k+1)})^{-1} B.
\]

Next we will show that
\[
D^{k+1}[J(P)] = D^k[J(P)] B^{-1} B^{(1-k)} G^{-1} B
\]
for \(k \geq 0 \) by an induction on \(k \). When \(k = 0 \) we have
\[
J(P) B^{-1} B^{(1)} G^{-1} B = J(P) J(P)^{-1} A^{-1} J(P)^{-T} J(P)^T A D[J(P)] = D[J(P)].
\]

Next assume \(k > 0 \). Compute
\[
D^{k+1}[J(P)] = D[D^k[J(P)]] = D[D^{k-1}[J(P)] B^{-1} B^{(2-k)} G^{-1} B]
\]
\[
= D^k[J(P)] B^{-1} B^{(2-k)} G^{-1} B + D^{k-1}[J(P)] B^{-1} B^{(2-k)} D[G^{-1}] B
\]
\[
= D^k[J(P)] B^{-1} \{B^{(2-k)} - D[G]\} G^{-1} B
\]
\[
= D^k[J(P)] B^{-1} B^{(1-k)} G^{-1} B,
\]
where, in the above, we used the induction hypothesis
\[D^k[J(P)] = D^{k-1}[J(P)]B^{-1}B^{(2-k)}G^{-1}B, \]
a general formula
\[D[G^{-1}] = -G^{-1}D[G]G^{-1} \]
and
\[D[G] = B + B^T = B^{(2-k)} - B^{(1-k)}. \]
This implies \(R_{2k-1} = R_{2k+1}B^{-1}B^{(1-k)}G^{-1}B \) which proves (4).

(3) follows from (2) and (4) because \(G = J(P)^T AJ(P) \).

(1) Since \(\det B^{(k)} \in \mathbb{R}^\times \), \(\det J(D^k[x]) \equiv Q^{-2k} \) and \(\det D[J(P)] \equiv Q^{-1} \) by Lemma 2.3 and Lemma 2.4, (1) is proved.

(5) follows from the following computation:
\[
D[R_{2k+1}]B^{-1} = D[R_{2k+1}B^{-1}] = D[R_2B^{-1}G(B^{(k+1)})^{-1}]
\]
\[
= \{ D[R_2B^{-1}G + R_2B^{-1}D[G])(B^{(k+1)})^{-1} \}
\]
\[
= \{ R_2B^{-1}G + R_2B^{-1}(B^{(k+1)} - B^{(k)})\}B^{(k+1)}^{-1}
\]
\[
= R_{2k+1}B^{-1}
\]

Definition 2.7
For \(m \in \mathbb{Z} \) define \(\omega_1^{(m)}, \ldots, \omega_\ell^{(m)} \in \Omega_F \) by
\[
[\omega_1^{(m)}, \ldots, \omega_\ell^{(m)}] := [dx_1, \ldots, dx_\ell]R_m.
\]
When \(m = 2k + 1 \ (k \in \mathbb{Z}) \), let
\[
B_k := \{ \omega_1^{(2k+1)}, \ldots, \omega_\ell^{(2k+1)} \}.
\]

For example, \(\omega_j^{(1)} = dP_j \) for \(1 \leq j \leq \ell \) and \(B_0 = \{ dP_1, \ldots, dP_\ell \} \) because
\[
[\omega_1^{(1)}, \ldots, \omega_\ell^{(1)}] = [dx_1, \ldots, dx_\ell]J(P) = [dP_1, \ldots, dP_\ell].
\]

Proposition 2.8
The subset
\[
\mathcal{B} := \bigcup_{k \in \mathbb{Z}} B_k = \{ \omega_j^{(2k+1)} \mid 1 \leq j \leq \ell, \ k \in \mathbb{Z} \}
\]
of \(\Omega_F \) is linearly independent over \(T \).
Proof. Assume
\[\sum_{k \in \mathbb{Z}} [\omega^{(2k+1)}_1, \ldots, \omega^{(2k+1)}_\ell] g^{(2k+1)} = 0 \]
with \(g^{(2k+1)} = [g_1^{(2k+1)}, \ldots, g_\ell^{(2k+1)}]^T \in T^T, k \in \mathbb{Z} \) such that there exist integers \(d \) and \(e \) such that \(d \geq e, g^{(2d+1)} \neq 0, g^{(2e+1)} \neq 0 \) and \(g^{(2k+1)} = 0 \) for all \(k > d \) and \(k < e \). Then
\[0 = \sum_{k=e}^{d} [dx_1, \ldots, dx_\ell] R_{2k+1} g^{(2k+1)} \]
implies that
\[0 = \sum_{k=e}^{d} R_{2k+1} g^{(2k+1)}. \]
By Proposition 2.6 (4), there exist \((\ell \times \ell)\)-matrices \(H_{2k+1} \) \((e \leq k \leq d)\) such that
\[R_{2k+1} = R_{2e+1} H_{2k+1} \]
and \(H_{2k+1} \) can be expressed as a product of \((k - e)\) copies of \(G \) and matrices belonging to \(\text{GL}_\ell(T) \). Since \(\det(R_{2e+1}) \neq 0 \) by Proposition 2.6 (1),
\[0 = \sum_{k=e}^{d} H_{2k+1} g^{(2k+1)}. \]
Note \(D^{d-e}[H_{2k+1}] = 0 \) \((k < d)\) by Proposition 2.1 and Lemma 2.3. Applying \(D^{d-e} \) to the above, we thus obtain
\[D^{d-e}[H_{2d+1}] g^{(2d+1)} = 0. \]
Since the matrix \(D^{d-e}[H_{2d+1}] \), which is a product of \((d - e)\) copies of \(D[G] \) and matrices in \(\text{GL}_\ell(T) \), is nondegenerate, we get \(g^{(2d+1)} = 0 \), which is a contradiction. \(\square \)

Proposition 2.9
\[\nabla_D \omega^{(2k+1)}_j = \omega^{(2k-1)}_j \quad (k \in \mathbb{Z}, 1 \leq j \leq \ell). \]

Proof. By Proposition 2.6 (5) we have
\[\left[\nabla_D \omega^{(2k+1)}_1, \ldots, \nabla_D \omega^{(2k+1)}_\ell \right] = [dx_1, \ldots, dx_\ell] D[R_{2k+1}] \]
\[= [dx_1, \ldots, dx_\ell] R_{2k-1} = \left[\omega^{(2k-1)}_1, \ldots, \omega^{(2k-1)}_\ell \right]. \quad \square \]
Recall

\[
\Omega(A, \infty) : = \bigcup_{m \geq 0} \Omega(A, m)
= \{ \omega \in \Omega_F \mid Q^m \omega \in \Omega_S \text{ for some } m > 0 \text{ and }
\quad d\alpha_H \wedge \omega \text{ is regular at generic points on } H
\quad \text{for each } H \in \mathcal{A} \}.
\]

Lemma 2.10
\[\nabla D(\Omega(A, m)^W) \subseteq \Omega(A, m+2)^W \text{ for } m > 0.\]

Proof. Choose \(H \in \mathcal{A} \) arbitrarily and fix it. Pick an orthonormal basis \(\alpha_H = x_1, x_2, \ldots, x_\ell \) for \(V^* \). Let \(s = s_H \in W \) be the orthogonal reflection through \(H \). Then \(s(x_1) = -x_1, s(x_i) = x_i \) (\(i \geq 2 \)), \(s(Q) = -Q \). Let

\[
\omega = \sum_{i=1}^{\ell} (f_i/Q^m)dx_i \in \Omega(A, m)^W
\]

with each \(f_i \in S \). Then

\[
\nabla D \omega = \sum_{i=1}^{\ell} D(f_i/Q^m)dx_i
\]

is \(W \)-invariant with poles of order \(m+2 \) at most. The 2-form

\[
(Q/x_1)^m dx_1 \wedge \omega = \sum_{i=2}^{\ell} (f_i/x_1^m)dx_1 \wedge dx_i
\]

is regular because \(\omega \in \Omega(A, m)^W \). Let \(i \geq 2 \). Then \(f_i \in x_1^m S \). This implies that \(g_i := Q^{m+2}D(f_i/Q^m) \in x_1^{m+1}S \). It is enough to show \(g_i \in x_1^{m+2}S \) because

\[
(Q/x_1)^{m+2} dx_1 \wedge \nabla D \omega = \sum_{i=2}^{\ell} (g_i/x_1^{m+2})dx_1 \wedge dx_i.
\]

When \(m \) is odd, we have \(s(g_i) = s(Q^{m+2}D(f_i/Q^m)) = -g_i \). Thus \(g_i \in x_1^{m+2}S \). When \(m \) is even, we have \(s(g_i) = s(Q^{m+2}D(f_i/Q^m)) = g_i \). Thus \(g_i \in x_1^{m+2}S \).

Lemma 2.11
\[\mathcal{B}_{-k} \subset \Omega(A, 2k-1)^W \text{ for } k \geq 1.\]
Proof. We will show by an induction on \(k \). Fix \(1 \leq j \leq \ell \). Recall \(\omega_j^{(-1)} = \nabla_D dP_j \) by Proposition 2.9. Since \(dP_j \in \Omega(\mathcal{A},0)^W \), we have \(\nabla_D dP_j \in \Omega(\mathcal{A},2)^W \) by Lemma 2.10. On the other hand, \(\nabla_D dP_j \) has poles of order one at most because \(dP_j \) is regular. Thus \(\omega_j^{(-1)} \in \Omega(\mathcal{A},1)^W \). The induction proceeds by Proposition 2.9 and Lemma 2.10.

We extend the definition of \(\Omega(\mathcal{A},m) \) to the case when \(m \) is a negative integer:

\[
\Omega(\mathcal{A}, m) := \bigoplus_{j=1}^{\ell} S \omega_j^{(-m)} \quad (m < 0).
\]

Theorem 2.12

\(\Omega(\mathcal{A},m) \) is a free \(S \)-module with a basis \(\omega_1^{(-m)}, \omega_2^{(-m)}, \ldots, \omega_\ell^{(-m)} \) for \(m \in \mathbb{Z} \).

Proof. Case 1. When \(m < 0 \) this is nothing but the definition.

Case 2. Let \(m = 2k - 1 \) with \(k \geq 1 \). Recall \(\mathcal{B}_{-k} \subset \Omega(\mathcal{A},2k-1)^W \) from Lemma 2.10 and \(R_{1-2k} = Q^{1-2k} \) by Proposition 2.6 (1). Thus we have

\[
\omega_1^{(-2k+1)} \wedge \omega_2^{(-2k+1)} \wedge \cdots \wedge \omega_\ell^{(-2k+1)} = (\det R_{1-2k}) dx_1 \wedge dx_2 \wedge \cdots \wedge dx_\ell = Q^{1-2k}(dx_1 \wedge dx_2 \wedge \cdots \wedge dx_\ell).
\]

This shows that \(\mathcal{B}_{-k} \) is an \(S \)-basis for \(\Omega(\mathcal{A},2k-1) \) by Saito-Ziegler’s criterion [16, Theorem 11].

Case 3. Let \(m = 2k \) with \(k \geq 0 \). When \(k = 0 \), the assertion is obvious because \(\omega_j^{(0)} = dx_j \) and \(\Omega(\mathcal{A},0) = \Omega_S \). Let \(k \geq 1 \). By Proposition 2.6 (2) we have

\[
\begin{bmatrix}
\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)}
\end{bmatrix} = [dx_1, \ldots, dx_\ell] R_{-2k} = [dx_1, \ldots, dx_\ell] R_{-2k-1} B^{-1} J(\mathbf{P})^T A = \begin{bmatrix}
\omega_1^{(-2k-1)}, \ldots, \omega_\ell^{(-2k-1)}
\end{bmatrix} B^{-1} J(\mathbf{P})^T A.
\]

This implies that \(\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)} \) lie in \(\Omega(\mathcal{A},2k+1) \) by Lemma 2.11. By Proposition 2.6 (3) we have

\[
Q^{2k} R_{-2k} = Q^{2k-1} R_{-2k+1} B^{-1} B^{(-k+1)} Q J(\mathbf{P})^{-1}.
\]

Since both \(Q^{2k-1} R_{-2k+1} \) and \(Q J(\mathbf{P})^{-1} \) belong to \(M_{k,k}(S) \), so does \(Q^{2k} R_{-2k} \).

In other words, the differential forms \(\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)} \) have poles of order at most \(2k \) along \(\mathcal{A} \). Since it is easy to see that \(\Omega(\mathcal{A},2k) = \Omega(\mathcal{A},2k+1) \cap (1/Q^{2k}) \Omega_S \), we know that \(\omega_j^{(-2k)} \) belongs to \(\Omega(\mathcal{A},2k) \) for each \(j \). We can apply Saito-Ziegler’s criterion [16, Theorem 11] to conclude that \(\{\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)}\} \)
is a basis for $\Omega(A, 2k)$ over S because $\det R_{-2k} = Q^{-2k}$ by Proposition 2.6 (1).

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1.

(1) It is enough to show that B_{-k} spans $\Omega(A, 2k - 1)^W$ over R. Express an arbitrary element $\omega \in \Omega(A, 2k - 1)^W$ as

$$\omega = \sum_{j=1}^{\ell} f_j \omega_j^{(-2k+1)}$$

with each $f_j \in S$. For any $s \in W$, get

$$0 = \omega - s(\omega) = \sum_{j=1}^{\ell} [f_j - s(f_j)] \omega_j^{(-2k+1)}.$$

Since B_{-k} is linearly independent over F, we obtain $f_j \in S^W = R$.

(2) Let $d_j := \deg P_j$ and $m_j := d_j - 1$ for $1 \leq j \leq \ell$. Let $h := d_\ell$ denote the Coxeter number. Define the degree of a homogeneous rational 1-form by

$$\deg(\sum_{i=1}^{\ell} f_i \, dx_i) = d \iff f_i = 0 \text{ or } \deg f_i = d \quad (1 \leq i \leq \ell).$$

Then

$$\deg \omega_j^{(2k+1)} = m_j + kh.$$

Recall that B is linearly independent over T by Proposition 2.8. Let M_{-k} denote the free T-module spanned by $\bigcup_{p \geq -k} B_p$. Recall that $\Omega(A, 2k - 1)^W$ is a free R-module with a basis B_{-k} by (1). If $p \geq -k$, then $R_{2p+1} = R_{-2k+1}H$ with a certain matrix $H \in M_\ell(R)$ because of Proposition 2.6 (3). This implies that $M_{-k} \subseteq \Omega(A, 2k - 1)^W$. Use a Poincaré series argument to prove that they are equal:

$$\text{Poin}(M_{-k}, t) = (1 - t^{d_1})^{-1} \ldots (1 - t^{d_{\ell-1}})^{-1} \sum_{p \geq -k} (t^{m_1+ph} + \ldots + t^{m_{\ell}+ph})$$

$$= (1 - t^{d_1})^{-1} \ldots (1 - t^{d_{\ell}})^{-1} (t^{m_1-kh} + \ldots + t^{m_{\ell}-kh})$$

$$= \text{Poin}(\Omega(A, 2k - 1)^W, t).$$

Therefore $M_{-k} = \Omega(A, 2k - 1)^W$.

(3) Thanks to Proposition 2.8, it is enough to prove that B spans $\Omega(A, \infty)^W$ over T. Let $\omega \in \Omega(A, \infty)$. Then $\omega \in \Omega(A, 2k - 1)^W$ for some $k \geq 1$. By
(2) and (3) we conclude that \(\omega \) is a linear combination of \(\bigcup_{p \geq -k} B_p \) with coefficients in \(T \). This shows that \(B \) spans \(\Omega(A, \infty) \) over \(T \). \qed

Proof of Theorem 1.2 (1). By Lemma 2.9,

\[
\nabla_D : \Omega(A, \infty)^W \rightarrow \Omega(A, \infty)^W
\]

induces a bijection \(\nabla_D : B \rightarrow B \). Apply Theorem 1.1 (3) to prove that \(\nabla_D \) is a \(T \)-isomorphism. \qed

Let \(\nabla^{-1}_D : \Omega(A, \infty) \rightarrow \Omega(A, \infty) \) denote the inverse \(T \)-isomorphism.

Definition 2.13

For \(k \in \mathbb{Z} \), define

\[
\mathcal{F}_0 := \bigoplus_{j=1}^{\ell} T (dP_j), \quad \mathcal{F}_k := \nabla^k_D(\mathcal{F}_0) \ (k > 0), \quad \mathcal{F}_{-k} := (\nabla^{-1}_D)^k(\mathcal{F}_0) \ (k > 0).
\]

Thus \(\nabla_D \) induces a \(T \)-isomorphism \(\nabla_D : \mathcal{F}_k \sim \mathcal{F}_{k-1} \) for each \(k \in \mathbb{Z} \). Since \(\nabla_D \) induces a bijection \(\nabla_D : B_k \rightarrow B_{k-1} \) by Lemma 2.9, each \(\mathcal{F}_k \) is a free \(T \)-module of rank \(\ell \) with a basis \(B_k = \{ \omega_j^{(2k+1)} \mid 1 \leq j \leq \ell \} \).

Proof of Theorem 1.2 (2) and (3).

(2) By Theorem 1.1 (3), \(B = \bigcup_{k \in \mathbb{Z}} B_k \) is a basis for \(\Omega(A, \infty)^W \) as a \(T \)-module. On the other hand, each \(\mathcal{F}_k \) has a basis \(B_k \) over \(T \) for each \(k \in \mathbb{Z} \).

(3) By Theorem 1.1 (2), \(\mathcal{J}^{(-k)} = \Omega(A, 2k - 1)^W \). \qed

Example 2.14

Let \(A \) be the \(B_2 \) type arrangement defined by \(Q = xy(x + y)(x - y) \) corresponding to the Coxeter group of type \(B_2 \). Then \(P_1 = (x^2 + y^2)/2, \ P_2 = (x^4 + y^4)/4 \) are basic invariants. Then \(T = \mathbb{R}[P_1] \) and \(R = \mathbb{R}[P_1, P_2] \). Let

\[
\omega = (x^4 + y^4)(\frac{dx}{x} + \frac{dy}{y}) \in \Omega(A, 1)^W.
\]

The unique decomposition of \(\omega \) corresponding to the decomposition \(\Omega(A, 1)^W = \mathcal{J}^{(-1)} = \mathcal{F}_{-1} \oplus \mathcal{F}_0 \oplus \mathcal{F}_1 \oplus \ldots \) is explicitly given by:

\[
\omega = -8P_1^3\omega_1^{(-1)} + (8/3)P_1^2\omega_2^{(-1)} - 4P_1\omega_1^{(1)} + 2\omega_2^{(1)} \in \mathcal{F}_{-1} \oplus \mathcal{F}_0
\]

by an easy calculation.
Corollary 2.15
The $\nabla_{D} : \Omega(A, \infty)^{W} \to \Omega(A, \infty)^{W}$ induces an T-isomorphism

$$\nabla_{D} : \Omega(A, 2k - 1)^{W} = \mathcal{J}^{(-k)} \xrightarrow{\sim} \mathcal{J}^{(-k-1)} = \Omega(A, 2k + 1)^{W}. $$

Concerning the strictly increasing filtration

$$\ldots \Omega(A, 2k - 1) \subset \Omega(A, 2k) \subset \Omega(A, 2k + 1) \subset \ldots ,$$

the following Proposition asserts the W-invariant parts of $\Omega(A, 2k - 1)$ and $\Omega(A, 2k)$ are equal.

Proposition 2.16
$\Omega(A, 2k)^{W} = \Omega(A, 2k - 1)^{W} = \mathcal{J}^{(-k)}$ for $k \in \mathbb{Z}$. In particular, $\Omega_{R} = \Omega_{S}^{W} = \Omega(A, -1)^{W}$.

Proof. It is obvious that $\Omega(A, 2k - 1) \subseteq \Omega(A, 2k)$ because $R^{-2k+1} = R^{-2k}J(P)(B^{(1-k)})^{-1}B$ by Proposition 2.6 (3). Thus $\Omega(A, 2k - 1)^{W} \subseteq \Omega(A, 2k)^{W}$.

Let $\omega = \sum_{j=1}^{\ell} f_{j} \omega_{j}^{(-2k)} \in \Omega(A, 2k)^{W}$ with $f_{j} \in S$. Since

$$(\text{Eq})_{k} \quad \left[\omega_{1}^{(-2k)}, \ldots, \omega_{\ell}^{(-2k)}\right] = \left[\omega_{1}^{(-2k-1)}, \ldots, \omega_{\ell}^{(-2k-1)}\right] D[J(P)]^{-1}$$

by Proposition 2.6 (2), we may express

$$\omega = \sum_{j=1}^{\ell} f_{j} \omega_{j}^{(-2k)} = \sum_{j=1}^{\ell} f_{j} \left(\sum_{i=1}^{\ell} h_{ij} \omega_{i}^{(-2k-1)} \right) = \sum_{i=1}^{\ell} \left(\sum_{j=1}^{\ell} h_{ij} f_{j} \right) \omega_{i}^{(-2k-1)},$$

where h_{ij} is the (i, j)-entry of $D[J(P)]^{-1}$. Note that $\omega \in \Omega(A, 2k + 1)^{W}$ and that $\Omega(A, 2k + 1)^{W}$ has a basis $\{\omega_{1}^{(-2k-1)}, \omega_{2}^{(-2k-1)}, \ldots, \omega_{\ell}^{(-2k-1)}\}$ over R.

Then we know that $\sum_{j=1}^{\ell} h_{ij} f_{j}$ is W-invariant for $1 \leq i \leq \ell$. Applying $(\text{Eq})_{0}$ we have

$$\omega' := \sum_{j=1}^{\ell} f_{j} dx_{j} = \sum_{j=1}^{\ell} f_{j} \omega_{j}^{(0)} = \sum_{j=1}^{\ell} f_{j} \sum_{i=1}^{\ell} h_{ij} \omega_{i}^{(-1)} = \sum_{i=1}^{\ell} \left(\sum_{j=1}^{\ell} h_{ij} f_{j} \right) \omega_{i}^{(-1)} \in \Omega_{S}^{W}.$$

Recall $\Omega_{S}^{W} = \Omega_{R} = \bigoplus_{i=1}^{\ell} R(dP_{i})$ by [9]. Thus there exist $g_{i} \in R$ $(1 \leq i \leq \ell)$ such that

$$\omega' = \sum_{i=1}^{\ell} g_{i} dP_{i} = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{\ell} g_{i} \left(\partial P_{i} / \partial x_{j} \right) \right) dx_{j}.$$
This implies
\[f_j = \sum_{i=1}^{\ell} g_i \left(\partial P_i / \partial x_j \right) \quad (1 \leq i \leq \ell). \]

Since
\[\left[\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)} \right] J(P) = \left[\omega_1^{(-2k+1)}, \ldots, \omega_\ell^{(-2k+1)} \right] B^{-1} B^{(1-k)} \]

by Proposition 2.6 (3), one has
\[\omega = \sum_{j=1}^{\ell} f_j \omega_j^{(-2k)} = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{\ell} g_i \left(\partial P_i / \partial x_j \right) \right) \omega_j^{(-2k)} \]
\[= \sum_{i=1}^{\ell} g_i \left(\sum_{j=1}^{\ell} \left(\partial P_i / \partial x_j \right) \omega_j^{(-2k)} \right) \in \bigoplus_{i=1}^{\ell} R \omega_i^{(-2k+1)} = \Omega(A, 2k - 1)^W. \]

This proves \(\Omega(A, 2k)^W \subseteq \Omega(A, 2k - 1)^W. \)

3 The case of derivations

Denote \(\partial / \partial x_i \) and \(\partial / \partial P_i \) simply by \(\partial_{x_i} \) and \(\partial_{P_i} \) respectively. Then
\[\text{Der}_S = \bigoplus_{j=1}^{\ell} S \partial_{x_j}, \quad \text{Der}_R = \bigoplus_{j=1}^{\ell} R \partial_{P_j}, \quad \text{Der}_F = \bigoplus_{j=1}^{\ell} F \partial_{x_j}. \]

In this section we translate the results in the previous section by the \(F \)-isomorphism
\[I^* : \Omega_F \rightarrow \text{Der}_F \]
defined by \(I^*(\omega)(f) = I^*(\omega, df) \) for \(f \in F \) and \(\omega \in \Omega_F \). Explicitly we can express
\[I^* \left(\sum_{j=1}^{\ell} f_j \, dx_j \right) = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{\ell} I^*(dx_i, dx_j) f_i \right) \partial_{x_j} \]
for \(f_j \in F \) \((1 \leq j \leq \ell) \).

Definition 3.1

Define \(\eta_j^{(m)} := I^*(\omega_j^{(m)}) \) for \(m \in \mathbb{Z}, \ 1 \leq j \leq \ell. \)

Then
\[\left[\eta_1^{(m)}, \ldots, \eta_\ell^{(m)} \right] = [\partial_{x_1}, \ldots, \partial_{x_\ell}] AR_m. \]
In particular,
\[[\eta_1^{(1)}, \ldots, \eta_\ell^{(1)}] = [\partial x_1, \ldots, \partial x_\ell] AJ(P) = [I^*(dP_1), \ldots, I^*(dP_\ell)], \]
\[[\eta_1^{(-1)}, \ldots, \eta_\ell^{(-1)}] = [\partial x_1, \ldots, \partial x_\ell] AD[J(P)] = [\partial p_1, \ldots, \partial p_\ell] B. \]

Definition 3.2

Define
\[D(A, m) := \{ \theta \in \text{Der}_S \mid \theta(H) \in S \cdot \alpha_H^m \text{ for all } H \in A \} \]
for \(m \geq 0 \) which is the \(S \)-module of logarithmic derivations along \(A \) of contact order \(m \). When \(m < 0 \) define
\[D(A, m) := \bigoplus_{1 \leq j \leq \ell} S \eta_j^{(m)}. \]
Lastly define
\[D(A, -\infty) := \bigcup_{m \in \mathbb{Z}} D(A, m). \]

Theorem 3.3

\(D(A, m) \) is a free \(S \)-module with a basis \(\eta_1^{(m)}, \eta_2^{(m)}, \ldots, \eta_\ell^{(m)} \) for \(m \in \mathbb{Z} \).

Proof. Case 1. When \(m < 0 \) this is nothing but the definition.

Case 2. Let \(m \geq 0 \). For a canonical contraction \(\langle \ , \ \rangle : \text{Der}_F \times \Omega_F \rightarrow F \), define the \((\ell \times \ell)\)-matrix
\[Y_m := [\langle \omega_i^{(-m)}, \eta_j^{(m)} \rangle]_{1 \leq i,j \leq \ell} = R_{-m} AR_m \]
for \(m \geq 0 \). Since the two \(S \)-modules \(\Omega(A, m) \) and \(D(A, m) \) are dual each other (see [16]) , it is enough to show that \(\det Y_m \in \text{GL}_\ell(S) \). It follows from the following Proposition 3.6.

Corollary 3.4

\(I^*(\Omega(A, m)) = D(A, -m) \) for \(m \in \mathbb{Z} \) and \(I^*(\Omega(A, \infty)) = D(A, -\infty) \).

Corollary 3.5

\(\Omega(A, -m) = \{ \omega \in \Omega_S \mid I^*(\omega, d\alpha_H) \in S \cdot \alpha_H^m \text{ for any } H \in A \} \) for \(m > 0 \).

Proposition 3.6

1. \(Y_{2k-1} = (-1)^{k+1}B^T(B^{(k)})^{-1}B \in \text{GL}_\ell(T) \) for \(k \in \mathbb{Z} \),
2. \(Y_{2k} = (-1)^kA \in \text{GL}_\ell(\mathbb{R}) \) for \(k \in \mathbb{Z} \).
Proof.
(1) Case 1.1. Let \(m = 2k - 1 \) with \(k \geq 1 \). We prove by an induction on \(k \). When \(k = 1 \),
\[
Y_1 = R^T_1AR_1 = D[J(P)]^T AJ(P) = B^T \in \text{GL}_\ell(T).
\]
Assume that \(k > 1 \) and prove by induction. By using Proposition 2.6 (5) and (4), we obtain
\[
Y_{2k-1} = R^T_{1-2k}AR_{2k-1} = D[R_{3-2k}]^T AR_{2k-3} B^{-1} G(B^{(k)})^{-1} B
\]
\[
= \{D[R^T_{3-2k}AR_{2k-3}] - R^T_{3-2k} D[AR_{2k-3}]\} B^{-1} G(B^{(k)})^{-1} B
\]
\[
= -R^T_{3-2k}AR_{2k-5} B^{-1} G(B^{(k-1)})^{-1} BB^{-1} B^{(k-1)}(B^{(k)})^{-1} B
\]
\[
= -R^T_{3-2k}AR_{2k-3} B^{-1} (B^{(k-1)})^{-1} B
\]
\[
= (-1)^{k+1} B^T (B^{(k-1)})^{-1} BB^{-1} B^{(k-1)}(B^{(k)})^{-1} B
\]
\[
= (-1)^{k+1} B^T (B^{(k)})^{-1} B.
\]
Case 1.2. Next assume that \(m = 2k - 1 \) with \(k \leq 0 \). Recall that
\[
(B^{(1-k)})^T = -kB + (1-k)B^T = -B^{(k)}.
\]
Then
\[
R^T_{1-2k}AR_{2k-1} = (R^T_{2k-1}AR_{1-2k})^T = ((-1)^k B^T (B^{(1-k)})^{-1} B)^T
\]
\[
= (-1)^{k+1} B^T (B^{(k)})^{-1} B.
\]
(2) Apply (1), Proposition 2.6 (2) and (3) to compute
\[
R^T_{1-2k}AR_{2k} = J(P)^{-T} (B^{(1-k)})^T B^T R^T_{2k-1}AR_{2k-1} B^{-1} J(P)^T A
\]
\[
= J(P)^{-T} (B^{(1-k)})^T B^T Y_{2k-1} B^{-1} J(P)^T A = (-1)^k A. \quad \square
\]
Remark. Corollaries 3.4 and 3.5 show that the definitions of \(D(A, m) \) and \(\Omega(A, m) \) for \(m \in \mathbb{Z}_{<0} \) are equivalent to those of \(D\Omega(A, m) \) and \(\Omega D(A, m) \) in [1].

Consider the \(T \)-linear connection (covariant derivative)
\[
\nabla_D : \text{Der}_F \to \text{Der}_F
\]
characterized by \(\nabla_D(fX) = (Df)X + f(\nabla_D X) \) and \(\nabla_D(\partial_{e_j}) = 0 \) for \(f \in F \), \(X \in \text{Der}_F \) and \(1 \leq j \leq \ell \). Then it is easy to see the diagram
\[
\begin{array}{ccc}
\Omega_F & \xrightarrow{\nabla_D} & \Omega_F \\
\downarrow & & \downarrow \\
\text{Der}_F & \xrightarrow{\nabla_D} & \text{Der}_F
\end{array}
\]
is commutative. In fact

\[
\nabla_D \circ I^* \left(\sum_{j=1}^{\ell} f_j \, dx_j \right) = \nabla_D \left[\sum_{j=1}^{\ell} \left(\sum_{i=1}^{\ell} I^*(dx_i, dx_j) f_i \right) \, \partial x_j \right]
\]

\[
= \sum_{j=1}^{\ell} \left(\sum_{i=1}^{\ell} I^*(dx_i, dx_j) D(f_i) \right) \partial x_j
\]

\[
= I^* \left(\sum_{j=1}^{\ell} D(f_j) \, dx_j \right) = I^* \circ \nabla_D \left(\sum_{j=1}^{\ell} f_j \, dx_j \right).
\]

Define \(C_k := I^*(B_{k-1}) = \{ \eta_1^{(2k-1)}, \eta_2^{(2k-1)}, \ldots, \eta_\ell^{(2k-1)} \} \) for each \(k \in \mathbb{Z} \). The following Theorems 3.7 and 3.9 can be proved by translating Theorems 1.1 and 1.2 through \(\nabla_D \).

Theorem 3.7

1. The \(R \)-module \(D(A, 2k-1)W \) is free with a basis \(C_k \) for \(k \in \mathbb{Z} \).
2. The \(T \)-module \(D(A, 2k-1)W \) is free with a basis \(\bigcup_{p \geq k} C_p \) for \(k \in \mathbb{Z} \).
3. \(C := \bigcup_{k \in \mathbb{Z}} C_k \) is a basis for \(D(A, -\infty)W \) as a \(T \)-module.

Definition 3.8

Define

\[
G_k := I^*(\mathcal{F}_{k-1}), \quad \mathcal{H}^{(k)} := I^*(\mathcal{F}^{(k-1)}) \quad (k \in \mathbb{Z}, \ 1 \leq j \leq \ell).
\]

Then

\[
G_k = \bigoplus_{1 \leq j \leq \ell} T \eta_j^{(2k-1)}, \quad \mathcal{H}^{(k)} = \bigoplus_{p \geq k} G_p.
\]

The \(\nabla_D \) induces \(T \)-isomorphisms

\[
\nabla_D : G_{k+1} \rightarrow G_k, \quad \nabla_D : D(A, 2k+1)W \rightarrow D(A, 2k-1)W.
\]

In particular,

\[
G_0 = \bigoplus_{j=1}^{\ell} T \partial P_j, \quad \text{and} \quad \mathcal{H}^{(0)} = \bigoplus_{j=1}^{\ell} R \partial P_j = \text{Der}_R.
\]

Theorem 3.9

1. The \(\nabla_D \) induces a \(T \)-linear automorphism \(\nabla_D : D(A, -\infty)W \rightarrow D(A, -\infty)W \).
2. \(D(A, -\infty)W = \bigoplus_{k \in \mathbb{Z}} G_k \).
3. \(D(A, 2k-1)W = \mathcal{H}^{(k)} = \bigoplus_{p \geq k} G_p \) (\(k \in \mathbb{Z} \)).
Remark. The construction of a basis $\eta^{(1)}_1, \ldots, \eta^{(1)}_\ell$ for $D(\mathcal{A}, 1)$ is due to K. Saito [6]. A basis for $D(\mathcal{A}, 2)$ was constructed in [10]. In [11] $D(\mathcal{A}, m)$ was found to be a free S-module for all $m \geq 0$ whenever \mathcal{A} is a Coxeter arrangement. Note that it is re-proved in Theorem 3.3 in this article. In [8] K. Saito called the decreasing filtration $\text{Der}_R = H^{(0)} \supset H^{(1)} \supset \ldots$ and the decomposition $\text{Der}_R = D(\mathcal{A}, -1)^W = H^{(0)} = \bigoplus_{p \geq 0} \mathcal{G}_p$ the Hodge filtration and the Hodge decomposition respectively. They are essential to define the flat structure (or equivalently the Frobenius manifold structure in topological field theory) on the orbit space V/W. Note that Theorem 3.9 (3), when $k \geq 0$, is the main theorem of [13].

4 Relation among bases for logarithmic forms and derivations

In the previous section we constructed a basis $\{\omega^{(m)}_j\}$ for $\Omega(\mathcal{A}, m)$ and a basis $\{\eta^{(m)}_j\}$ for $D(\mathcal{A}, m)$ for $m \in \mathbb{Z}$. In this section we briefly describe their relations to other bases constructed in the earlier works [11], [15], and [2]. In [11], the following bases for $D(\mathcal{A}, 2k+1)$ and $D(\mathcal{A}, 2k)$ are given:

$$[\xi^{(2k+1)}_1, \ldots, \xi^{(2k+1)}_\ell] := \{\partial_{x_1}, \ldots, \partial_{x_\ell}\}AJ(D^k[x])^{-1}J(P),$$
$$[\xi^{(2k)}_1, \ldots, \xi^{(2k)}_\ell] := \{\partial_{x_1}, \ldots, \partial_{x_\ell}\}AJ(D^k[x])^{-1}.$$

The two bases $\{\eta^{(m)}_j\}$ and $\{\xi^{(m)}_j\}$ are related as follows:

Proposition 4.1

For $k \in \mathbb{Z}_{\geq 0},$

$$[\xi^{(2k+1)}_1, \ldots, \xi^{(2k+1)}_\ell] = (-1)^k[r^{(2k+1)}_1, \ldots, r^{(2k+1)}_\ell]B^{-1}B^{(k+1)},$$
$$[\xi^{(2k)}_1, \ldots, \xi^{(2k)}_\ell] = (-1)^k[r^{(2k)}_1, \ldots, r^{(2k)}_\ell].$$

Proof. The second formula is immediate from Definition 2.5. The following computation proves the first formula:

$$J(D^k[x])^{-1}J(P) = (-1)^{k+1}R_{2k+1}D[J(P)]^{-1}J(D^{k+1}[x])J(D^k[x])^{-1}J(P),$$
$$= (-1)^kR_{2k+1}D[J(P)]^{-1}A^{-1}J(P)^{-1}T B^{(k+1)}$$
$$= (-1)^kR_{2k+1}B^{-1}B^{(k+1)}. \square$$
In [15], the following bases are given:

\[
\begin{align*}
\nabla I \big(dP^1 \big) \nabla_{D}^{-k} \theta_E, & \ldots, \nabla I \big(dP^\ell \big) \nabla_{D}^{-k} \theta_E \quad \text{for } D(A, 2k + 1), \\
\nabla_{\partial x_1} \nabla_{D}^{-k} \theta_E, & \ldots, \nabla_{\partial x_\ell} \nabla_{D}^{-k} \theta_E \quad \text{for } D(A, 2k).
\end{align*}
\]

Here \(\theta_E \) is the Euler derivation. Their relations to \(\{ \eta^{(m)}_j \} \) are given as follows:

Proposition 4.2

Let \(k \in \mathbb{Z}_{\geq 0} \). Then

\[
\begin{align*}
\nabla I \big(dP^1 \big) \nabla_{D}^{-k} \theta_E, & \ldots, \nabla I \big(dP^\ell \big) \nabla_{D}^{-k} \theta_E = [\eta^{(2k+1)}_1, \ldots, \eta^{(2k+1)}_\ell] B^{-1} B^{(k+1)}, \\
\nabla_{\partial x_1} \nabla_{D}^{-k} \theta_E, & \ldots, \nabla_{\partial x_\ell} \nabla_{D}^{-k} \theta_E = [\eta^{(2k)}_1, \ldots, \eta^{(2k)}_\ell] A^{-1}.
\end{align*}
\]

Proof. By [12, Theorem 1.2.] and [14] one has

\[
\begin{align*}
\nabla I \big(dP^1 \big) \nabla_{D}^{-k} \theta_E, & \ldots, \nabla I \big(dP^\ell \big) \nabla_{D}^{-k} \theta_E = (-1)^{k} [\xi^{(2k+1)}_1, \ldots, \xi^{(2k+1)}_\ell].
\end{align*}
\]

Combining with Proposition 4.1, we have the first relation. For the second one, compute

\[
\begin{align*}
\nabla_{\partial x_1} \nabla_{D}^{-k} \theta_E, & \ldots, \nabla_{\partial x_\ell} \nabla_{D}^{-k} \theta_E A J(P) = \nabla I \big(dP^1 \big) \nabla_{D}^{-k} \theta_E, \ldots, \nabla I \big(dP^\ell \big) \nabla_{D}^{-k} \theta_E \quad \\
& = [\eta^{(2k+1)}_1, \ldots, \eta^{(2k+1)}_\ell] B^{-1} B^{(k+1)} \\
& = [\eta^{(2k)}_1, \ldots, \eta^{(2k)}_\ell] J(P)
\end{align*}
\]

by Proposition 2.6 (3). \(\square \)

Next let us review the bases for \(\Omega(A, m) \) described in [2, Theorem 6]: Let \(k \in \mathbb{Z}_{\geq 0} \) and \(P_1 \) the smallest degree basic invariant. Then

\[
\{ \nabla_{\partial x_1} \nabla^k_{D} dP^1, \ldots, \nabla_{\partial x_\ell} \nabla^k_{D} dP^1 \}
\]
forms a basis for \(\Omega(A, 2k + 1) \) and

\[
\{ \nabla_{\partial x_1} \nabla^k_{D} dP^1, \ldots, \nabla_{\partial x_\ell} \nabla^k_{D} dP^1 \}
\]
forms a basis for \(\Omega(A, 2k) \).

Proposition 4.3

Let \(k \geq 0 \). Then

\[
\begin{align*}
\nabla_{\partial x_1} \nabla^k_{D} dP^1, & \ldots, \nabla_{\partial x_\ell} \nabla^k_{D} dP^1 = [\omega^{(-2k-1)}_1, \ldots, \omega^{(-2k-1)}_\ell] B^{-1}, \\
\nabla_{\partial x_1} \nabla^k_{D} dP^1, & \ldots, \nabla_{\partial x_\ell} \nabla^k_{D} dP^1 = [\omega^{(-2k)}_1, \ldots, \omega^{(-2k)}_\ell] A^{-1}.
\end{align*}
\]
Proof. First, note that $[\nabla_D, \nabla_{\partial P_i}]$ is W-invariant, hence in Der_R. Since the smallest degree of derivations in Der_R is $\deg \partial P_i$, it follows that $[\nabla_D, \nabla_{\partial P_i}] = 0$. In other words, $\nabla_{\partial P_i}$ and $\nabla_{\partial P_{i'}}$ commute for all i. Hence

$$[\nabla_{\partial P_1} \nabla_D^k dP_1, \ldots, \nabla_{\partial P_\ell} \nabla_D^k dP_1] = \nabla_D^k [\nabla_{\partial P_1} dP_1, \ldots, \nabla_{\partial P_\ell} dP_1].$$

Our proof is an induction on k. First assume that $k = 0$. Choose

$$P_1 = \frac{1}{2}[x_1, \ldots, x_\ell] A^{-1} [x_1, \ldots, x_\ell]^T,$$

and

$$dP_1 = [dx_1, \ldots, dx_\ell] A^{-1} [x_1, \ldots, x_\ell]^T.$$

Compute

$$[\nabla_{\partial P_1} dP_1, \ldots, \nabla_{\partial P_\ell} dP_1] = [\nabla_{\partial x_1} dP_1, \ldots, \nabla_{\partial x_\ell} dP_1] J(P)^{-T} B = [dx_1, \ldots, dx_\ell] A^{-1} J(P)^{-T} B = [dx_1, \ldots, dx_\ell] D[J(P)] = [\omega_1^{(-1)}, \ldots, \omega_\ell^{(-1)}].$$

For $k > 0$, apply ∇_D^k and use the commutativity. Then we have the first relation. For the second relation use Proposition 2.6 (2) to compute:

$$[\nabla_{\partial x_1} \nabla_D^k dP_1, \ldots, \nabla_{\partial x_\ell} \nabla_D^k dP_1] = [\nabla_{\partial P_1} \nabla_D^k dP_1, \ldots, \nabla_{\partial P_\ell} \nabla_D^k dP_1] J(P)^T = [\omega_1^{(-2k-1)}, \ldots, \omega_\ell^{(-2k-1)}] B^{-1} J(P)^T = [dx_1, \ldots, dx_\ell] R_{-2k-1} B^{-1} J(P)^T = [dx_1, \ldots, dx_\ell] R_{-2k} A^{-1} = [\omega_1^{(-2k)}, \ldots, \omega_\ell^{(-2k)}] A^{-1}.$$

Remark. If $k < 0$ in Propositions 4.2 and 4.3, then the derivations and 1-forms in the left hand sides are proved to form bases for the logarithmic modules $D\Omega(A, 2k + 1), D\Omega(A, 2k), \Omega D(A, 2k + 1)$ and $\Omega D(A, 2k)$ in [1]. By using the same arguments in the proofs above, we can show that Propositions 4.2 and 4.3 hold true for all integers k in the logarithmic modules $D\Omega(A, m)$ and $\Omega D(A, m)$ with $m : A \rightarrow \mathbb{Z}$.

References

[1] T. Abe, A generalized logarithmic module and duality of Coxeter multiarrangements. arXiv.0807.2552v1.
[2] T. Abe and M. Yoshinaga, Coxeter multiarrangements with quasi-constant multiplicities. arXiv:0708.3228.

[3] N. Bourbaki, *Groupes et Algèbres de Lie*. Chapitres 4,5 et 6, Hermann, Paris 1968

[4] B. Dubrovin, Geometry of 2D topological field theories. In: “Integrable systems and quantum groups” (ed. Francaviglia, M., Greco, S.), Lectures at C.I.M.E., 1993, LNM 1620, Springer, Berlin-Heidelberg-New York, 1996, pp. 120–348

[5] P. Orlik and H. Terao, *Arrangements of hyperplanes*. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992.

[6] K. Saito, On the uniformization of complements of discriminant loci. In: Conference Notes. Amer. Math. Soc. Summer Institute, Williamstown, 1975.

[7] K. Saito, On a linear structure of the quotient variety by a finite reflection group. *Publ. RIMS, Kyoto Univ.* 29 (1993), 535–579.

[8] K. Saito, Uniformization of the orbifold of a finite reflection group. *RIMS preprint* 1414 (2003).

[9] L. Solomon, Invariants of finite reflection groups. *Nagoya Math. J.* 22 (1963), 57–64

[10] L. Solomon and H. Terao, The double Coxeter arrangements. *Comment. Math. Helv.* 73 (1998), 237–258.

[11] H. Terao, Multiderivations of Coxeter arrangements. *Invent. Math.* 148 (2002), 659–674.

[12] H. Terao, Bases of the contact-order filtration of derivations of Coxeter arrangements. *Proc. Amer. Math. Soc.* 133 (2005), 2029–2034.

[13] H. Terao, The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements. *Manuscripta Math.* 118 (2005), 1–9.

[14] H. Terao, A correction to “Bases of the contact-order filtration of derivations of Coxeter arrangements”. *Proc. Amer. Math. Soc.* 136 (2008), 2639–2639.
[15] M. Yoshinaga, The primitive derivation and freeness of multi-Coxeter arrangements. *Proc. Japan Acad. Ser. A* 78 (2002), no. 7, 116–119.

[16] G. M. Ziegler, Multiarrangements of hyperplanes and their freeness. in *Singularities* (Iowa City, IA, 1986), 345–359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.