G-TORSORS OVER A DEDEKIND SCHEME

MICHAEL BROSHI

ABSTRACT. We prove the equivalence of three “points of view” of the notion of a G-torsor when the base scheme is a Dedekind scheme. As an application, we show that the fibered category of G-torsors on a curve over a field k is representable by an Artin stack locally of finite presentation over k.

1. Introduction

Let us first fix some notation. We fix a Dedekind scheme X (the base scheme), that is, a scheme that has a finite affine cover by the spectra of Dedekind domains. Unless stated otherwise, any unadorned product is assumed to be over X, and for two X-schemes Y and T we often write Y × T = Y × T. If Y is a scheme over X, we use the “functor of points notation” and write y ∈ Y to denote a morphism y : T → Y of schemes over X. In the same spirit, if V is a locally free OX-module of finite rank, we denote also by V the functor V : R → V ⊗ R, which is represented by Spec (SymV∗). Here, V∗ = HomO (V, OX) denotes the dual of V. For any Y, if M is an OY-module and N ⊂ M is an OY-submodule, we say N is locally split if N is Zariski locally on Y a direct summand of M.

We fix G a flat algebraic group over X, by which we mean a flat, affine group scheme of finite type over X. Unless specified otherwise, by simply a representation of G, we mean a finite rank, locally free OX-module V with a linear G-action. If V is a representation of G, we denote by V0 the same underlying OX-module with the trivial G-action. If Y is an X-scheme, a GY-torsor is a scheme P faithfully flat and affine over Y, provided with a right G-action such that the following two conditions hold.

(i) The map P → Y is GY-invariant.
(ii) The natural map

P × G → P ×Y P; (p, g) ↦ (p, pg)

is an isomorphism.

A map P → P′ of GY-torsors is a GY-equivariant map of Y-schemes. A trivial GY-torsor is a GY-torsor P → Y that is isomorphic as a GY-torsor to the projection map Y × G → Y. Given this terminology, condition (ii) is equivalent to:

(ii′) The map P → Y is locally trivial in the fppf topology.

Let RepG denote the category of G-representations on locally free OX-modules of finite rank. For a scheme Y over X, denote by BunY the category of vector bundles of finite rank over Y. For any representation V of G, we denote by t(V) some finite iteration of the operations ⊗, ∧i, Symi, ⊕, and (·)∗. We call such an iteration a tensorial construction. If V is a vector bundle on X, and L ⊂ V is a

Date: April 14, 2010.
locally split line bundle, we denote by $\text{Aut}(V, L)$ the representable functor whose T-points are automorphisms f of $V \otimes \mathcal{O}_T$ such that $f(L \otimes \mathcal{O}_T) = L \otimes \mathcal{O}_T$. We now state our main theorem.

Theorem 1.1. There is a representation V of G, a tensorial construction $t(V)$, and a locally split line bundle $L \subset t(V)$, such that $G = \text{Aut}(V, L)$. Fix such a tensorial construction and pair (V, L). For any X-scheme Y, there are natural equivalences of the following groupoids that are functorial in Y:

(i) the groupoid of G_Y-torsors, and
(ii) the groupoid of pairs $(\mathcal{E}, \mathcal{L})$ consisting of a vector bundle \mathcal{E} on Y equipped with a locally split line bundle $\mathcal{L} \subset t(\mathcal{E})$ that is fppf locally isomorphic as a pair to (V, L).

Furthermore, if Y is faithfully flat over X, (i) and (ii) are equivalent to
(iii) the groupoid of faithful tensor functors $F : \text{Rep} G \to \text{Bun}_Y$ that preserve monomorphisms.

Proof. We prove the theorem in separate pieces. The existence of V, $t(V)$ and $L \subset t(V)$ is Theorem 1.3. The equivalence (i) \iff (iii) is given by Theorem 1.4 and the equivalence (i) \iff (ii) is given by Theorem 1.6. We remark that composing the equivalences given in those two theorems, the implication (iii) \implies (ii) has a simple description. Namely, given a functor $F : \text{Rep} G \to \text{Bun}_Y$, we get a pair as in (ii) by $F \mapsto (F(V), F(L))$. □

Let us briefly elucidate item (ii). Suppose that we can write $G = \text{Aut}(V, L)$. For an X-scheme Y, we define a G_Y-twist of (V, L) (or simply G-twist), to be a pair $(\mathcal{E}, \mathcal{L})$ consisting of a locally free sheaf \mathcal{E} on Y provided with a locally split line bundle $\mathcal{L} \subset t(\mathcal{E})$ that is fppf locally isomorphic as a pair to (V, L). That is, there is an fppf cover $Y' \to Y$ and an isomorphism $f : \mathcal{E}_{Y'} \simto V_{Y'}$ that induces $f(\mathcal{L}_{Y'}) = L_{Y'}$. In particular, such a bundle \mathcal{E} must have $\text{rk} \mathcal{E} = \text{rk} V$. A map of G-twists $f : (\mathcal{E}, \mathcal{L}) \to (\mathcal{E}', \mathcal{L}')$ is a map of vector bundles $f : \mathcal{E} \to \mathcal{E}'$ such that $f(\mathcal{L}) = \mathcal{L}'$. Allowing only isomorphisms, we arrive at the following proposition.

Theorem 1.2. The groupoid of G_Y-torsors is equivalent to the groupoid of G_Y-twists of (V, L). This equivalence is functorial in Y.

Proof. Given a G_Y-torsor P, we form the associated vector bundle $P \times^G V = (P \times V)/((p, v) \sim (pg^{-1}, gv))$. Forming $P \times^G t(V)$, we get an induced line bundle L' from L. To construct a quasi-inverse, suppose we are given a G_Y-twist $(\mathcal{E}, \mathcal{L})$ of (V, L). Then, the fppf sheaf $T \mapsto \text{Isom}_{\mathcal{E}_T}((\mathcal{E}_T, \mathcal{L}_T), (V_T, L_T))$ is representable by a G_Y-torsor. It is clear that these constructions are functorial in Y. □

We remark that the idea of confining oneself to locally free, finite rank representations of G (rather than all quasicoherent sheaves with G-action) over Dedekind schemes is already present in Saavedra’s book on Tannakian categories. Nonetheless, the equivalence of (i) and (iii) in Theorem 1.1 is only proven when the base is a field (cf. [10, II.4.2.2]). It is not known to the author whether one can replace “monomorphism” with “exact” in the statement of Theorem 1.1 (iii) (they are of course equivalent over a field).

Acknowledgements: I would like to thank Madhav Nori for useful discussions, and Torsten Wedhorn and Philipp Gross for their helpful correspondence. This paper was part of the work for my PhD thesis, and I am deeply grateful to my
advisor, Mark Kisin, for his help and support along the way. I am indebted to Brian Conrad who generously read earlier drafts, and gave numerous comments and suggestions.

2. Application to the moduli of G-torsors

Before proceeding with the proof of Theorem 1.1, we give an application to the representability of the stack of G-torsors over a curve. For this section only, let k be a field, and assume that X is a connected, regular, proper curve over k. In particular, X is a Dedekind scheme. Again for this section only, for a k-scheme T, we write $X_T = X \times_{\text{Spec} \, k} T$. We assume for this section that G has connected generic fibre. Let GTor_X denote the fibered category that assigns to a k-scheme T the groupoid of $G_X T$-torsors. The goal of this section is to prove the following theorem. We are grateful to Brian Conrad for pointing out this application of Theorem 1.1.

Theorem 2.1. The fibered category GTor_X is an Artin stack, locally of finite presentation over k.

We recall the following definition from [9, 3.3.3], a key input into the proof of the theorem, although the reader can take the statements of the subsequent theorem and lemmas as a black box. Let S be a scheme and T a scheme locally of finite presentation over S. For a point $s \in S$, denote by (\tilde{S}, \tilde{s}) a henselization of the pair (S, s). Let $\tilde{T} = T \times_S \tilde{S}$. We say that T is **pure along** $T \otimes k(\tilde{x})$ if for each element $\tilde{t} \in \bigcup_{x \in S} \text{Ass} (T \otimes k(\tilde{x}))$, the closure of \tilde{t} in \tilde{T} meets $\tilde{T} \otimes k(\tilde{s})$. We say that T is **S-pure** if it is pure along each $s \in S$.

The reason why we introduce this notion is that pure maps have “flattening stratifications.” More precisely, we have the following theorem.

Theorem 2.2. Suppose that $T \to S$ is pure. Then there is a monomorphism $Z \hookrightarrow S$ that is locally of finite presentation such that for any S-scheme S', $T \times_S S' \to S'$ is flat if and only if $S' \to S$ factors through Z.

Proof. This is Theorem 4.3.1 from Part I of [9].

Lemma 2.3. With G and X as above, G is X-pure.

Proof. Let $\xi \in X$ be the generic point of X. By assumption G_ξ is connected, so it is in fact geometrically irreducible by [1, VI, A 2.4]. In particular, G_ξ is irreducible, and so G is irreducible since G is flat over X. Furthermore, the only associated prime of G is its generic point. Indeed, if G had an embedded component Z, G_ξ would have infinitely many embedded components over the algebraic closure \bar{k} by taking translates of $Z \otimes \bar{k}$. The result then follows from [9, I 3.3.4(iii)].

Lemma 2.4. The property that T is S-pure is local for the fppf topology. That is, if $T \times_S S' \to S'$ is S'-pure if and only if T is S-pure.

Proof. This is Corollary 3.3.7 of Part I of [9].

Remark 2.5. For the proof of Lemma 2.3, we only need to assume that X is a connected Dedekind scheme. By [9 I 3.3.5], it follows that in this situation \mathcal{O}_X is a locally free \mathcal{O}_X-module.
Proof of Theorem 2.1. By Theorem 1.1, we can find a representation of G on a rank n vector bundle V, a tensorial construction $t(V)$ and a locally split line bundle $L \subset t(V)$ such that $G \xrightarrow{\sim} \text{Aut}(V, L)$. Furthermore, the choice of (V, L) respects base change in the sense that for any X-scheme Y, this identification pulls back to $G_Y \xrightarrow{\sim} \text{Aut}(V_Y, L_Y)$. We now fix such a pair (V, L). Then G_{Tot} is isomorphic to the fibered category that assigns to a k-scheme T the groupoid of G_{X_T}-twists of (V, L). Let Bun_X^n denote the stack of rank n vector bundles over X (where n is the rank of V). That is, to each k-scheme T, $\text{Bun}_X^n(T)$ is the groupoid of rank n vector bundles over $X_T = X \times_k T$. Then Bun_X^n is an Artin stack, locally of finite presentation over k.

Let $\mathcal{E}^{\text{univ}}$ denote the universal rank n vector bundle on $X \times \text{Bun}_X^n$. Let \mathcal{D} denote the relative quot scheme over Bun_X^n classifying all rank 1, locally split subbundles of $t(\mathcal{E}^{\text{univ}})$ (where t is the same tensorial construction as that defining G). That is, for a scheme T over Bun_X^n, $\mathcal{D}(T)$ is the groupoid of locally split line bundles $\mathcal{L}_{X_T} \subset t(\mathcal{E}^{\text{univ}})_{X_T} = t(\mathcal{E}^{\text{univ}}_{X_T})$ on X_T. By [6, 2.2.4], $\mathcal{D} \to \text{Bun}_X^n$ is representable and locally of finite presentation. Let $\mathcal{L}^{\text{univ}} \subset t(\mathcal{E}^{\text{univ}})$ denote the universal line bundle on $X_{\mathcal{D}}$. Finally, over $X_{\mathcal{D}}$, define the fibered category \mathcal{F}, where for an $X_{\mathcal{D}}$-scheme Y, by $\mathcal{F}(Y) = \text{Isom}((V_Y, L_Y), (\mathcal{E}^{\text{univ}}_Y, \mathcal{L}^{\text{univ}}_Y))$. Then \mathcal{F} is representable, in fact affine, and locally of finite presentation over $X_{\mathcal{D}}$.

For any scheme T and any map $f : T \to \mathcal{D}$, we have an induced map $X_T \to X_{\mathcal{D}}$. We denote the pullback of \mathcal{F} along this latter map by $f^* \mathcal{F}$. The map $X_T \to X_{\mathcal{D}}$ gives rise to a pair $(W, M) = (f^* \mathcal{E}^{\text{univ}}_{X_{\mathcal{D}}}, f^* \mathcal{E}^{\text{univ}}_{X_{\mathcal{D}}})$. We claim that (W, M) is a G_{X_T}-twist of (V, L) if and only if the projection $f^* \mathcal{F} \to X_T$ is flat. Note that the map $f^* \mathcal{F} \to \mathcal{F}$ gives an isomorphism $(\mathcal{E}^{\text{univ}}_{X_{\mathcal{D}}}, \mathcal{L}^{\text{univ}}_{X_{\mathcal{D}}}) \cong (V_{X_{\mathcal{D}}}, L_{X_{\mathcal{D}}})$. Thus, if $f^* \mathcal{F} \to X_T$ is flat, then it gives the desired fpqc cover of X_T. Conversely, if (W, M) is a G_{X_T}-twist of (V, L), then $f^* \mathcal{F}$ is a $G_{X_{\mathcal{D}}}$-torsor, so flat. Furthermore, since G is X-pure, it also follows that $f^* \mathcal{F}$ is X_T-pure when it is flat.

Let $Q \to \mathcal{D}$ and $I \to \mathcal{F}$ be presentations. It suffices to show that there is an algebraic space Z locally of finite presentation over Q such that $f : T \to Q$ factors through Z if and only if $f^* I \to X_T$ is flat and pure (with notation as above). We first represent the purity condition. By [8, 3.3.8] purity is an open condition. That is, there is an open immersion $U' \hookrightarrow X_Q$ such that $X_T \to X_Q$ factors through U' if and only if $f^* I$ is pure over X_T. To get an open subspace of Q representing the purity condition, we take the (closed) image of the closed complement of U' under $X_Q \to Q$ and let U be complement of that image. It then follows that $T \to Q$ factors through U if and only if $f^* I$ is pure over X_T.

Thus, replacing Q by U, we may assume that $I \to X_Q$ is pure. In this case, by Theorem 2.2 there is a representable monomorphism $Z' \to X_Q$ such that $Y : Y \to X_Q$ factors through Z' if and only if $Y \times_{X_Q} Y \to Y$ is flat. We now want to represent the condition on Q-schemes T that $X_T \to X_Q$ factors through Z'. These are exactly the T-points of the restriction of scalars $\text{Res}_{X_Q}^X(Z')$, which we denote Z. By [8, 1.5], since $X_Q \to Q$ is a proper, flat, and locally finitely presented map of algebraic spaces, and $Z' \to X_Q$ is separated, locally of finite presentation with finite diagonal, Z is represented by an algebraic space, locally of finite presentation over Q. \qed
3. Algebraic groups over Dedekind schemes

With notation as in the introduction, let G be a flat algebraic group scheme over X. Recall that this means that G is a flat affine group scheme of finite type over X. If $f : G \to X$ denote the structure morphism, we will abuse notation and denote the \mathcal{O}_X-bialgebra $f^*(\mathcal{O}_G)$ simply by \mathcal{O}_G. Let $\Delta : \mathcal{O}_G \to \mathcal{O}_G \otimes \mathcal{O}_G$ denote the comultiplication map and $\epsilon : \mathcal{O}_G \to \mathcal{O}_X$ the counit. Throughout, if V is an \mathcal{O}_G-comodule, we denote by V_0 the underlying \mathcal{O}_X-module of V with the trivial G-action. Unless noted otherwise, we reserve the term representation for the case where V is a finite rank vector bundle on X. As above, if $W \subset V$ is Zariski locally a direct summand as an \mathcal{O}_X-module, we will call the inclusion locally split. If W and V are \mathcal{O}_G-comodules, that the inclusion $W \subset V$ is locally split does not imply in general that $W \subset V$ is locally a direct summand as an \mathcal{O}_G-comodule. Our presentation follows [13, Chap. 3] and [2, Chap. 5], generalizing to our current situation.

Lemma 3.1. Let V be a flat quasicoherent \mathcal{O}_G-comodule. Then V is the union of \mathcal{O}_G-comodules that are locally free \mathcal{O}_X-modules of finite rank.

Proof. For X affine, this is the Corollary to Proposition 1.2 in [11]. We quickly sketch the proof in the nonaffine case as the details are the same as in *ibid*. Since X is noetherian, by [1] 9.4.9 any quasicoherent sheaf is the limit of its coherent subsheaves. Since a coherent \mathcal{O}_X-submodule of V is a vector bundle, it suffices to show that for any coherent submodule $W \subset V$, W is contained in a coherent \mathcal{O}_G-subcomodule of V. Let $\rho : V \to V \otimes \mathcal{O}_G$ denote the comodule map. Since $\rho(W)$ is coherent, there is a coherent submodule $W' \subset V$ such that $\rho(W) \subset W' \otimes \mathcal{O}_G$. Define an \mathcal{O}_X-module E where for any open affine $U \subset X$, $E(U) = \{v \in V(U) \mid \rho(v) \in (W' \otimes G)(U)\}$. Then $E \subset W'$, so it is coherent, and one can show that E is a \mathcal{O}_G-comodule. \square

Theorem 3.2. There is a representation V of G such that the map $G \to GL(V)$ is a closed embedding.

Proof. Consider the regular representation $\Delta : \mathcal{O}_G \to (\mathcal{O}_G)_0 \otimes \mathcal{O}_G$. By Lemma 3.1, there is a Δ-stable, finite rank vector bundle, $V \subset \mathcal{O}_G$, that locally contains the algebra generators of \mathcal{O}_G. Thus, we have a map of \mathcal{O}_G-comodules $\Delta : V \to V_0 \otimes \mathcal{O}_G$. If we tensor this comodule map with V_0^*, we get the sequence of comodule maps

$$V \otimes V_0^* \to V_0 \otimes V_0^* \otimes \mathcal{O}_G \to \mathcal{O}_G,$$

where the second map is induced by the natural evaluation map $V_0 \otimes V_0^* \to \mathcal{O}_X$. The composite of these two maps extends to a surjective map of \mathcal{O}_X-algebras $\text{Sym}(V \otimes V_0^*) \to \mathcal{O}_G$. Recall that $\mathcal{O}_{GL(V)} = \text{Sym}(V \otimes V_0^*)[1/\det]$. Since G is a group scheme, the above surjection in turn extends to the desired surjection $\mathcal{O}_{GL(V)} \to \mathcal{O}_G$. \square

For the remainder of the section, we will fix such a representation V of G.

Lemma 3.3. Let W be a finite rank vector bundle on X, and suppose $U \subset W$ is a locally split, rank d subbundle. Let $L = \bigwedge^d U \subset \bigwedge^d W$. Let $g \in GL(W)$. Then $gL = L \iff gU = U$.

Proof. The statement is local on X, so we suppose that $X = \text{Spec } A$ for a Dedekind domain, A, and that $U \subset W$ is a direct summand. The direction \Leftarrow is immediate by functoriality, so we assume now that $gL = L$. First, note that for any A-algebra B,

$$U \otimes B = \{ \omega \in W \otimes B \mid \omega \wedge (L \otimes B) = 0 \}.$$

If $g \in GL(W \otimes B)$ and $u \in U \otimes B$, then

$$gu \wedge (L \otimes B) = g(u \wedge g^{-1}(L \otimes B)) = g(u \wedge L \otimes B) = 0.$$

It follows from the previous remark that $gu \in U \otimes B$, as desired. \hfill \Box

Lemma 3.4. Let W be a representation of G and $U' \subset W$ a subrepresentation. Let \mathcal{K}_X denote the fraction field of \mathcal{O}_X, and let $U = (U' \otimes \mathcal{K}_X) \cap W \subset W \otimes \mathcal{K}_X$. Then, U is a locally split subrepresentation of W.

Proof. That $U \subset W$ is locally split is straightforward, so it suffices to show that it is G-stable. Let $\rho : W \to W \otimes \mathcal{O}_G$ denote the comodule map. We wish to show that $\rho(U) \subset U \otimes \mathcal{O}_G$. We can check this on stalks, so we may assume that $X = \text{Spec } A$, where A is a DVR with uniformizer π. In this case W and U' are both free, say of ranks n and d, respectively. By the elementary divisors theorem, we can choose a basis $\{e_1, \ldots, e_n\}$ of W so that $\{\pi^r e_1, \ldots, \pi^r e_d\}$ is a basis for U'. Then, U is the A-submodule of W with basis $\{e_1, \ldots, e_d\}$. Let $e_i \in \{e_1, \ldots, e_d\}$. Write

$$\rho(e_i) = \sum_{j=1}^n e_j \otimes x_{ij}.$$

Since U' is G-stable, we can also write

$$\rho(\pi^r e_i) = \sum_{j=1}^d e_j \otimes y_{ij}.$$

Thus, we have that

$$\sum_{j=1}^d e_j \otimes (\pi^r x_{ij} - y_{ij}) + \sum_{j=d+1}^n e_j \otimes \pi^r x_{ij} = 0.$$

Since $\{e_1 \otimes 1, \ldots, e_n \otimes 1\}$ forms an \mathcal{O}_G-basis for $W \otimes \mathcal{O}_G$, we conclude in particular that $\pi^r x_{ij} = 0$ for $d + 1 \leq j \leq n$. Since \mathcal{O}_G is flat, hence torsion-free, this then implies that $x_{ij} = 0$ for $d + 1 \leq j \leq n$. Thus, $\rho(e_i) \in U \otimes \mathcal{O}_G$ for $1 \leq i \leq d$, as desired. \hfill \Box

Theorem 3.5. There is a representation of $GL(V)$ on a tensorial construction $t(V)$, and a locally split line bundle $L \subset t(V)$ such that

$$G = \{ g \in GL(V) \mid gL = L \}.$$

Proof. As above, write $\mathcal{O}_{GL(V)} = \text{Sym} (V \otimes V_0^*)[1/\det]$. Then, we can write

$$\mathcal{O}_{GL(V)} = \lim_{\longrightarrow \atop i} \left(\bigoplus_{m \geq 0} \text{Sym}^m (V \otimes V_0^*) \cdot \det^{-1} \right).$$

(3.1)

Identifying G as a closed subgroup of $GL(V)$, G is defined by a coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_{GL(V)}$. We first construct a tensorial construction $t(V)$. Choose
a finite open affine cover \(\{ X_i \} \) of \(X \). On each \(X_i \), \(\mathcal{F} | X_i \) is finitely generated in \(\mathcal{O}_{GL(V)} | X_i \) as an \(\mathcal{O}_{X_i} \)-algebra. Hence, by taking integers \(M \) and \(N \) sufficiently large, we can ensure that the algebra generators of \(\mathcal{F} \) on each \(X_i \) are contained in

\[
t'(V) = \bigoplus_{m=0}^M \text{Sym}^m (V \otimes V_0^*) \cdot \det^{-N}.
\]

Let \(U' = I \cap t(V) \). Let \(G' = \{ g \in GL(V) \mid gU' = U' \} \). We claim that \(G = G' \).

First, note that

\[
G = \{ g \in GL(V) \mid g\mathcal{F} = \mathcal{F} \}.
\]

In particular, \(G \subseteq G' \). On the other hand, if \(g \in G'(B) \), then by definition the induced map \((1 \otimes g) \circ \Delta : U' \to \mathcal{O}_{GL(V)} \otimes B \) factors through \(U' \otimes B \). However, since \((1 \otimes g) \circ \Delta \) is an \(\mathcal{O}_X \)-algebra map, it follows that \(\mathcal{F} \to \mathcal{O}_{GL(V)} \otimes B \) factors through \(\mathcal{F} \otimes B \). That is, \(G' \subseteq G \), thus \(G = G' \).

Let \(\mathcal{K}_X \) be the fraction field of \(\mathcal{O}_X \), and let \(U = (U' \otimes \mathcal{K}_X) \cap t'(V) \). By Lemma 3.4, \(U \) is \(G \)-stable and locally split in \(t(V) \). It is clear that we still have that \(G = \{ g \in GL(V) \mid gU = U \} \). Finally, we consider \(L = \bigwedge^d U \subset \bigwedge^d t'(V) = t(V) \). By Lemma 3.3, we have that \(G = \{ g \in GL(V) \mid gL = L \} \), as claimed.

4. FUNCTIONAL VIEWPOINT

As usual, \(G \) denotes a flat algebraic group over a Dedekind scheme \(X \). In this section, we fix a faithfully flat \(X \)-scheme \(Y \) and let \(P \) be a \(G_Y \)-torsor. We write \(\text{Rep} G \) for the category of representations of \(G \) on finite rank, locally free \(\mathcal{O}_X \)-modules. Then, \(\text{Rep} G \) is an \(\mathcal{O}_X \)-linear, rigid tensor category. Here, rigid means that \(\text{Rep} G \) has internal homs. Of course, unless \(\mathcal{O}_X \) is a field, this will not be an abelian category. Let \(\text{Bun}_Y \) denote the category of finite rank vector bundles on \(Y \) (not to be confused with \(\text{Bun}_Y \) in [2]).

Lemma 4.1. Denote by \(F_P : \text{Rep} G \to \text{Bun}_Y \) the functor given by \(V \mapsto P \times^G V \). Then \(F_P \) is a faithful tensor functor that preserves monomorphisms.

Proof. Each of the properties can be checked fppf locally, so we can assume \(P = G \times Y \) is the trivial \(G_Y \)-torsor. In that case, \(P \times^G V = Y \times V \), and the claimed properties are evident since \(Y \) is assumed to be faithfully flat over \(X \).

Thus, \(F_P \) is a faithful tensor functor that preserves monomorphisms. We now prove the converse is true. Let \(F : \text{Rep} G \to \text{Bun}_Y \) be a faithful tensor functor that preserves monomorphisms. We show that \(F \cong F_P \) for a uniquely defined \(G_Y \)-torsor \(P \). We denote by \(\text{Rep}' G \) the category of representations of \(G \) on flat quasicoherent \(\mathcal{O}_X \)-modules. Denote by \(\text{QCoh}_Y \) the category of quasicoherent \(\mathcal{O}_Y \)-modules. We use Nori’s construction in [2 II], and closely follow the presentation in *ibid*.

Lemma 4.2. The functor \(F \) extends uniquely to a faithful tensor functor \(F : \text{Rep}' G \to \text{QCoh}_Y \) that preserves monomorphisms. Furthermore, if \(V \neq 0 \), \(F(V) \) is faithfully flat.

Proof. To extend \(F \), let \(V \) be a flat, quasicoherent \(\mathcal{O}_X \)-module, and define

\[
F(V) = \lim F(W),
\]

where the direct limit is over all coherent \(G \)-stable subsheaves \(W \subset V \) (as in the proof of Lemma 3.1). We remark that this is a filtered direct limit. Since filtered
direct limits are exact and commute with tensor, $F(V)$ is flat, and the extended functor is a tensor functor that preserves monomorphisms. So, it remains to show that for $V \neq 0$, $F(V)$ is faithful.

By [5, 2.2.1], $F(V)$ is faithfully flat if and only if it is flat and has the property that $F(V) \otimes M = 0$ implies $M = 0$, for any quasicoherent \mathcal{O}_X-module M. So, let M be a quasicoherent \mathcal{O}_X-module such that $F(V) \otimes M = 0$. Then

$$0 = M \otimes F(V) = M \otimes \lim (F(W)) = \lim (M \otimes F(W)).$$

Since F preserves monomorphisms, the transition maps in the direct limit are injective. This implies that $M = 0$. \qed

If T is a flat affine X-scheme with G-action, \mathcal{O}_T is a quasicoherent \mathcal{O}_X-algebra and \mathcal{O}_G-comodule. In this case, since F is a tensor functor, $F(\mathcal{O}_T)$ is a quasicoherent \mathcal{O}_Y-algebra. We are thus justified in abusing notation by writing $F(T)$ for $\text{Spec} F(\mathcal{O}_T)$. In particular, we define $\mathcal{P} = F(G) = \text{Spec} F(\mathcal{O}_G)$.

Theorem 4.3. Let $P = F(G)$ be defined as in the previous paragraph. Then P is a G_Y-torsor.

Proof. By Lemma 4.2, P is faithfully flat over Y. We must define the right G-action on P. Let $P_0 = F(G_0)$, where G_0 is the underlying X-scheme of G with trivial (right) G-action. Since $\mathcal{O}_G|_0 \to \mathcal{O}_X$ has a section as an \mathcal{O}_G-comodule, P_0 is isomorphic to the trivial G_Y-torsor $G \times Y \to Y$. Thus, we have a G-action on P given by the composition

$$P \times G \xrightarrow{\sim} P \times_Y (G \times Y) \to P,$$

where the second map is induced from the \mathcal{O}_G-comodule map $\mathcal{O}_G \to \mathcal{O}_G \otimes (\mathcal{O}_G)_0$.

Finally, since $1 \otimes \Delta : \mathcal{O}_G \otimes \mathcal{O}_G \to \mathcal{O}_G \otimes (\mathcal{O}_G)_0$ is an isomorphism, the corresponding map induced by F, $P \times G \to P \times_Y P$ is an isomorphism. That is, P is a G_Y-torsor, as claimed. \qed

Theorem 4.4. Let Y be faithfully flat scheme over X. The functor from the category of G_Y-torsors to the category of monomorphism-preserving faithful tensor functors $F : \text{Rep} G \to \text{Bun}_Y$ given by

$$P \mapsto [F_P : V \mapsto P \times^G V]$$

is an equivalence of categories. The quasi-inverse is given by $F \mapsto F(G)$.

Proof. We must show that the two functors are quasi-inverses. Given a G_Y-torsor P, that $F_P(G)$ is naturally isomorphic to P follows directly from the definition of the fibre bundle associated to a G-scheme. To wit,

$$F_P(G) = P \times^G G = P \times G/\{(p, x) \sim (pg, g^{-1}x)\} = P.$$

Let $F : \text{Rep} G \to \text{Bun}_Y$ be given. Let $P = F(G)$. We must show that F_P is naturally equivalent to F. Let V be a representation of G. Applying F to $G \times V_0 \to V$ induces a map $P \times V \to F(V)$. We wish to show that this factors through a map $P \times^G V \to F(V)$.

Denote by \(\alpha : G \times G_0 \times V_0 \to G \times V_0 \) the \(G \)-map \((g, h, v) \mapsto (gh, h^{-1}v)\). Then it is immediate that the following diagram commutes.

\[
\begin{array}{ccc}
G \times G_0 \times V_0 & \xrightarrow{\pi_{1,3}} & G \times V_0 \\
\alpha \downarrow & & \downarrow \rho \\
G \times V_0 & \xrightarrow{\rho} & V
\end{array}
\]

From this it follows that we have an induced map \(\phi : P \times^G V \to F(V) \), which it remains to show is an isomorphism.

Since \(P \to X \) is faithfully flat, it suffices to show that \(\phi \) is an isomorphism after pulling back to \(P \). Then, one checks from the definitions that we have the following isomorphisms:

\[
P \times V \xrightarrow{\sim} (P \times G) \times_G V \xrightarrow{\sim} (P \times_X P) \times_G V \xrightarrow{\sim} P \times_X (P \times^G V).
\]

Thus, it remains to show that the induced map \(\psi : P \times V \to P \times_X F(V) \) is an isomorphism. Following the construction, one sees that \(\psi \) arises via \(F \) from the map of \(G \)-schemes \(G \times V_0 \to G \times V \) given by \((g, v) \mapsto (g, gv)\). Since this latter map is an isomorphism, it follows that \(\psi \) is, whence the result follows. \(\square \)

5. \(G \)-TORSORS OVER A PRINCIPAL IDEAL DOMAIN

In this final section, we restrict our attention to the case where \(X = \text{Spec} \, A \) for a principal ideal domain \(A \). Let \(K \) denote the fraction field of \(A \). We assume further that \(K \) has characteristic zero. Recall that as usual, we reserve the term representation for finite free representations of \(G \). Modifying techniques from [3, 1.3.1], we have the following corollary to Theorem 1.1.

Theorem 5.1. Suppose that \(G \otimes K \) is reductive. Then, there is a representation \(V \) of \(G \), a tensorial construction \(t(V) \), and an element \(\omega \in t(V) \) such that \(G = \text{Aut}(V, \omega) \). Fixing such a pair \((V, \omega)\), the groupoid (i) in Theorem 1.1 is equivalent to

(ii') The groupoid of pairs \((\mathcal{E}, \nu)\) consisting of a finite rank vector bundle \(\mathcal{E} \) on \(Y \) and an element \(\nu \in t(\mathcal{E}) \) that is locally isomorphic as a pair to \((V, \omega)\).

Furthermore, if we assume that \(Y \) is faithfully flat over \(X \), then both of these groupoids are equivalent to (iii) in Theorem 1.1.

Proof. By Lemma 3.3 we know there is \(V \), a tensorial construction \(U = t(V) \), and a locally split line bundle \(L \subset U \) such that \(G = \text{Aut}(V, L) \). Consider \(L \otimes K \subset U \otimes K \). Since \(G \otimes K \) is reductive and \(\text{char} \, K = 0 \), \(L \otimes K \) is a direct summand of \(U \otimes K \) (as a \(G \)-representation). Thus, the dual, \((L \otimes K)^*\) can be realized as a subrepresentation of \((U \otimes K)^*\). Let \(L' = (L \otimes K)^* \cap U^* \).

By Lemma 3.4 we may assume that \(L' \subset U^* \) is a split submodule. Choose bases \(\{e_1, \ldots, e_n\} \) of \(U \) and \(\{f_1, \ldots, f_n\} \) of \(U^* \) such that \(l = e_1 \) is a generator for \(L \) and \(l' = f_1 \) is a generator for \(L' \). Let \(\omega = l \otimes l' \), a generator for \(L \otimes L' \subset W = U \otimes U^* \).

Consider the group

\[G' = \{ g \in GL(V) \mid g \omega = \omega \}. \]

First we show that \(G' \subseteq G \). Let \(\rho : L \to U \otimes \mathcal{O}_G \) and \(\rho' : L \to U^* \otimes \mathcal{O}_G \) be the restrictions to \(L \) and \(L' \) of the comodule maps for \(U \) and \(U' \). These induce
\[\sigma = \rho \otimes \rho' : L \otimes L' \to (U \otimes U^*) \otimes \mathcal{O}_G, \] which by assumption is the trivial representation \(\omega \rightarrow \omega \otimes 1. \) If we write \(\rho(l) = \sum e_i \otimes a_i \) and \(\rho(l') = \sum f_j \otimes b_j, \) then
\[e_1 \otimes f_1 \otimes 1 = \omega \otimes 1 = \sigma(\omega) = \sigma(l \otimes l') = \sum e_i \otimes f_j \otimes a_i b_j. \]
Comparing coefficients, we see that \(a_1 b_1 = 1 \) and \(a_i = b_j = 0 \) for all \(i, j \neq 1. \) That is, \(L \) is a submodule of \(U, \) hence \(G' \subseteq G. \)

Finally, to show the equality \(G = G', \) first note that by [3, 1.3.1], \(G \otimes K = G' \otimes K. \) That is, we have an inclusion \(G' \subseteq G \) that becomes an equality on the generic fiber. Since \(G \) is flat, this then implies that \(G' = G, \) as claimed.

References

[1] Schémas en groupes I-III, Lecture Notes in Mathematics, vol. 151–153, Springer-Verlag, 1970.
[2] Armand Borel, Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, 1991.
[3] Pierre Deligne and J.S. Milne, Tannakian categories, Hodge cycles, motives, and Shimura varieties, 1982.
[4] Alexander Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960).
[5] ———, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965).
[6] Max Lieblich, Remarks on the stack of coherent algebras, International Mathematics Research Notices (2006).
[7] Madhav Nori, On the representation of the fundamental group, Compositio Mathematica 33 (1976), no. 1, 29–41.
[8] Martin Olsson, Hom-stacks and restriction of scalars, Duke Mathematical Journal 134 (2006), no. 1.
[9] Michel Raynaud and Laurent Gruson, Critères de platitude et projectivité: Techniques de “platification” d’un module, Inventiones Mathematicae 13 (1971), 1–89.
[10] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, vol. 265, Springer-Verlag, 1972.
[11] Serre, Jean-Pierre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Institut des Hautes Études Scientifiques. Publications Mathématiques 34 (1968), 37–52.
[12] Christoph Sorger, Lectures on moduli of principal G-bundles over algebraic curves, School on Algebraic Geometry (Trieste, 1999), 2000, pp. 1–57.
[13] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, 1979.
[14] Torsten Wedhorn, On Tannakian duality over valuation rings, Journal of Algebra 282 (2004), no. 2, 575–609.

University of Notre Dame, 255 Hurley Hall, Notre Dame, IN 46556
E-mail address: mbroshi@nd.edu