DIASTEREOSELECTIVE APPROACH TO cis-4-METHYL/THIOL-PIPECOLIC ESTERS BASED ON RCM REACTION AND CONJUGATE MICHAEL ADDITION

Araceli Zárate, Laura Orea, Jorge R. Juárez, Alejandro Castro, Angel Mendoza, Dino Gnecco, and Joel L. Terán

1Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
2Departamento de Investigación y Posgrado, Universidad Politécnica de Tlaxcala, Tepeyanco, Mexico

GRAPHICAL ABSTRACT

Abstract A synthetic route for the access to enantiopure cis-4-methyl/thiol-pipecolic esters is presented. It is based on the ring-closing metathesis reaction to build the α,β-unsaturated piperidin-2-one derived from (S)-(−)-phenylethylamine, followed by either diastereoselective conjugate addition of methylorganocuprate allowing access to cis-4-methyl pipecolic ester or by tandem diastereoselective hydrosulforization–thionization reaction providing access to cis-4-thiol pipecolic ethyl esters.

Keywords Diastereoselective Michael addition; hydrosulforization; pipecolic esters; ring-closing metathesis

INTRODUCTION

Cyclic α-amino acids are present in many biologically important compounds.[1] Specifically, 4-substituted pipecolic acids (4-substituted piperidine-2-carboxylic acid) and their derivatives are key fragments of compounds of pharmacological interest.
For example, argatroban, an important anticoagulant, is a small molecule direct thrombin inhibitor. Sulfur-containing amino acids include pulcherrimine, from the ovaries of the sea urchin Hemicentrotus pulcherrimus. Consequently, enantiopure 4-substituted-pipecolic esters, their acids, and their salts are, in general, important synthetic intermediates (Scheme 1).

In this sense, approaches toward the synthesis of racemic or cis-trans-4-substituted mixture are known, and several methodologies to the synthesis of trans-4-substituted pipecolic acids and processes for the synthesis of cis-4-substituted pipecolic acid have been also disclosed.

In this article, we describe a diastereoselective synthetic route to cis-4-methyl/thiol pipecolic ethyl esters based on the ring-closing metathesis reaction followed by either diastereoespecific conjugate addition of methylorganocuprate or by tandem diastereospecific hydrosulfurization/thionization reaction. Interestingly, the presence of the ester function located at C-6 on the piperidine ring directs the nucleophilic attack on the Michael addition reaction.

DISCUSSION

The separable diastereomeric mixture of the \(\alpha,\beta \)-unsaturated piperidin-2-ones \(7a + 7b \) in six steps was prepared. First, \((S)-(-)-\)phenylethylamine was treated with ethyl 2-bromoacetate, giving the corresponding chiral glycine \(2 \), which was treated with di-\text{tert}-butyl dicarbonate, affording the N-Boc protected glycine \(3 \). Next, the compound \(3 \) was reacted with lithium diisopropylamide (LDA) and allyl iodide at \(-78 \, ^\circ C \) providing the unseparable diastereomeric mixture of alkylated adducts \(4(a+b) \), which was reacted with trifluoroacetic acid (TFA) to deliver the deprotected diastereomeric mixture \(5(a+b) \). These compounds were condensed with acryloyl chloride affording the unsaturated mixture \(6(a+b) \). Finally, \(6(a+b) \) were subjected to a ring-closing metathesis reaction giving access to \(\alpha,\beta \)-unsaturated diastereomeric mixture of \(7a + 7b \) in 70:30 dr, determined by \(^1H \) NMR from the crude reaction mixture (Scheme 2).

The diastereomeric mixture of \(7(a+b) \) was separated, and then \(7a \) and \(7b \) were crystallized. The absolute configuration at C-6 was determined by X-ray diffraction analysis as \((R)\) and \((S)\) respectively (Fig. 1).
With the \(\alpha,\beta \)-unsaturated piperidin-2-one in our hands, we started to explore the conjugate addition of methylcuprate to the \(\alpha,\beta \)-unsaturated lactam 7a. In this sense, Hanessian\[^10\] reported that the conjugate addition of organocuprates to \(N \)-Boc unsaturated lactams delivers a mixture of cis and trans diastereoisomers. After testing various reaction conditions, the best result was obtained by the use of chlorotrimethylsilane (TMSCl), which accelerates copper-mediated conjugate addition reaction in THF.\[^{11}\] This procedure afforded the desired 4-methyl piperidin-2-one 8a as a major diastereoisomer (determined direct from the \(^1H\) NMR spectra of the crude reaction mixture), in 80% yield. The analysis of two-dimensional nuclear Overhauser spectroscopy (2D-NOESY) experiments of lactam 8a indicates that both substituents are cis-oriented for the lactam ring (Scheme 3). It is worth noting that Antoni et al.\[^{12}\] reported a highly diastereoselective conjugate addition of methylorganocuprate to enantiopure \(N \)-Boc pipecolic \(\alpha,\beta \)-unsaturated esters; however, in this case only the trans-4-methyl pipecolic ester was obtained.

Then, compound 7b (minor diastereoisomer) was treated with methylcuprate following the optimized conditions described. 4-Methyl piperidin-2-one 8b was obtained in 80% yield. The relative configuration at C-4 as (S) was confirmed from the X-ray analysis diffraction of compound 8b (Fig. 2).\[^{13}\]

Next, diastereoisomers 8a and 8b were treated with \(\text{BH}_3 \text{SMe}_2 \) giving the corresponding piperidines 9a and 9b in 95% yield, which were subject to hydrogenolysis.

Scheme 2. Reagents and conditions: (i) ethyl 2-bromoacetate, \(\text{K}_2\text{CO}_3 \) (2 eq), \(\text{CH}_2\text{CN} \), rt, 1.45 h, 90%. (ii) \((\text{Boc})_2\text{O}\) (1.5 eq), \(\text{H}_2\text{O} \), rt, 5 h, 98%. (iii) \(\text{LDA} \) (1.5 eq), THF, \(-78^\circ\)C, 3 h, then allyl iodide, \(-20^\circ\)C 8 h. (iv) TFA (5 eq), \(\text{CH}_2\text{Cl}_2 \), rt, 2 h. (v) Acryloyl chloride, \(\text{K}_2\text{CO}_3 \) (2 eq), \(\text{CH}_2\text{Cl}_2/\text{H}_2\text{O} \) 70% after three steps. (vi) Grubbs’s second-generation (5 mol%), \(\text{CH}_2\text{Cl}_2 \), rt, 6 h, quantitative.

Figure 1. X-ray ORTEP diagram of compounds 7a and 7b.
in the presence of di-tert-butyl dicarbonate to give the N-Boc-protected piperidines 10a and 10b. The comparison of its optical rotation confirmed that 10a and 10b are enantiomers and as a correlation compound 8a have the (R) configuration at C-4 (Scheme 4).

We then oriented our attention to the reactivity of 7a (major diastereoisomer) toward Lawesson’s reagent (LR), taking into account our previous report. When compound 7a was treated with 0.5 equivalents of LR in boiling toluene, the expected unsaturated thioamide 11a was obtained in 70% yield. Interestingly, the treatment of 7a with an equimolar amount of LR gave a mixture of compound 11a and the unexpected 4-mercapto-substituted thioamide 12a as a single diastereoisomer. The use of 2 equivalents of LR resulted in exclusive formation of compound 12a in 73% yield. Finally, compound 7b showed the same behavior toward LR (Scheme 5).

Scheme 4. Reagents and conditions: (i) BH$_3$SMe$_2$, THF, 25°C, 95%. (ii) H$_2$, (Boc)$_2$O, Pd(OH)$_2$, AcOEt, 25°C, 90%.
Compounds 12a and 12b were crystallized and the absolute configuration at C-4 was determined by x-ray analysis diffraction as (R) for 12a and (S) for 12b, and the presence of the thiol function was also confirmed (Fig. 3).[15]

To obtain the corresponding piperolic ethyl ester, compound 12b was treated with BH₃ SMe₂, affording the desired reduced compound 13b in 95% yield. Debenzylation of 13b was performed under Birch conditions to give the desired piperidine 14b in 43% yield (Scheme 6).

In conclusion, an efficient method for the diastereoselective synthesis of cis-4-methyl/thiol-pipelicolic ethyl esters from (S)-phenylethylamine has been developed. The stereochemical outcome showed that the conjugate addition occurs from the same side of the ester function located at C-6 on the piperidine ring. Expansion of the protocol scope and application of this methodology to the total synthesis are currently under way in our group.

EXPERIMENTAL

(R)-Ethyl-1,2,3,6-tetrahydro-6-oxo-1-((S)-1-phenylethyl)pyridine-2-carboxylate, 7a

[α]D²⁰ = +18.45 (c 1.0, CH₂Cl₂); bp = 96–98 °C. IR (film) 2964, 2924, 1738, 1659, 1429, 1018, 809, 707, 536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, J = 7.2 Hz, 3H), 1.45 (d, J = 7.2 Hz, 3H), 2.50 (AB, J = 1.6, 6.0, 2.3, 2.9, 7.0, 18.1 Hz, 2H), 3.86
(S)-Ethyl-1,2,3,6-tetrahydro-6-oxo-1-((S)-1-phenylethyl)pyridine-2-carboxylate, 7b

$[\alpha]_{D}^{20} = -55.73$ (c 1.0, CH$_2$Cl$_2$); bp = 58–60°C; IR (film) 2978, 2932, 1744, 1665, 1609, 1433, 1390, 1084, 1033, 813, 702 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$) δ 0.93 (t, $J = 7.1$ Hz, 3H), 1.55 (d, $J = 7.1$ Hz, 3H), 2.60 (ddd, $J = 1.0$, 6.1, 18.1 Hz, 1H), 2.72 (m, 1H), 3.54 (m, 1H), 3.70 (m, 1H), 4.11 (d, $J = 7.4$ Hz, 1H), 6.03 (dd, $J = 3.0$, 9.8 Hz, 1H), 6.06 (q, $J = 7.1$ Hz, 1H), 6.29 (m, 1H), 7.26 (m, 5H); 13C NMR (125 MHz, CDCl$_3$) δ 13.7, 17.3, 28.7, 50.4, 52.6, 61.0, 126.7–138.2, 163.5, 170.9. HRMS (FAB): calcd. for C$_{17}$H$_{23}$NO$_3$: 289.1678. Found: 289.1680.

General Procedure for Conjugate Michael Addition of Organocuprate

Methyl lithium (0.5 M in Et$_2$O, 5 eq) was added to a suspension of CuBr SMe$_2$ (5 eq) in Et$_2$O at -15°C. The resulting yellow suspension was stirred for 45 min at -15°C, and then 7a (0.100 g, 0.183 mmol, 1 eq) in 6 mL of Et$_2$O and TMSCl (0.148 mL, 0.585 mmol, 3.2 equiv) were successively added. The mixture was warmed to 0°C and stirred for 18 h. After quenching at 0°C with saturated NH$_4$Cl, a few drops of saturated NH$_4$OH were added until the aqueous layer remained colorless. The organic layer was separated, dried over anhydrous MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography to afford the expected product 8a as a white solid in 80% yield.

(2R,4R)-Ethyl-4-methyl-6-oxo-1-((S)-1-phenylethyl)piperidine-2-carboxylate, 8a

$[\alpha]_{D}^{20} = -15.1$ (c 1.0, CH$_2$Cl$_2$). IR (film) 2950, 2938, 1741, 1654, 1434, 1198, 1029, 922, 732, 691 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (d, $J = 6.4$ Hz, 3H), 1.26 (t, $J = 7.1$ Hz, 3H), 1.45 (d, $J = 7.2$ Hz, 3H), 1.51 (m, 1H), 1.97 (m, 2H), 2.15 (dd, $J = 12$, 15.6 Hz, 1H), 2.50 (ddd, $J = 1.8$, 4.4, 15.6 Hz, 1H), 3.74 (dd, $J = 4$, 8.7 Hz, 1H), 4.16 (q, $J = 7.1$ Hz, 2H), 5.98 (q, $J = 7.1$ Hz, 1H), 7.29 (m, 5H); 13C NMR (100 MHz, CDCl$_3$) δ 14.0, 15.7, 21.7, 26.2, 34.1, 40.4, 50.7, 53.4, 61.4, 127.3–128.4, 133.9, 140.1, 172.2, 173.4. HRMS (FAB): calcd. for C$_{17}$H$_{23}$NO$_3$: 289.1678. Found: 289.1680.

Scheme 6. Reagents and conditions: (i) BH$_3$ SMe$_2$, THF, 25°C, 95%. (ii) Na/NH$_3$, -78°C, 43%.
(2S,4S)-Ethyl-4-methyl-6-oxo-1-((S)-1-phenylethyl)piperidine-2-carboxylate, 8b. \[\delta^1H_{D} = -152 \text{ (c 1.0, CH}_2\text{Cl}_2); \text{ bp} = 68-70^\circ\text{C. IR (film) 2949, 2935, 1742, 1436, 1187, 1029, 733, 701 cm}^{-1}; 1^H \text{ NMR (400 MHz, CDCl}_3\text{)} \delta 0.96 (d, J = 6.6 Hz, 3H), 1.0 (t, J = 7.1 Hz, 3H), 1.48 (m, 1H), 1.54 (d, J = 7.1 Hz, 3H), 1.94 (m, 1H), 2.15 (dd, J = 12.1, 15.8 Hz, 1H), 2.26 (m, 1H), 2.48 (ddd, J = 2.0, 4.5, 15.8 Hz, 1H), 3.60 (m, 2H), 4.08 (dd, J = 5.4, 8.6 Hz, 1H), 5.8 (q, J = 7.1 Hz, 1H), 7.25 (m, 5H); 13C NMR (100 MHz, CDCl}_3\text{)} \delta 13.7, 16.1, 21.4, 26.3, 34.7, 40.8, 51.7, 54.7, 61.0, 127.5-128.5, 139.2, 171.8, 172.3. HRMS (FAB): Calcd. for C\textsubscript{17}H\textsubscript{23}NO\textsubscript{3}: 289.1678. Found: 289.1681.

General Procedure for Thionation of \(\alpha,\beta\)-Unsaturated Lactams 7a and 7b

Lawesson’s reagent (1.024 mmol, 2.0 eq) was added to a solution of 7a (0.140 g, 0.512 mmol, 1.0 eq) in 10 mL of dry toluene. The resulting mixture was stirred for 4 h at reflux temperature and then concentrated under reduced pressure. The residue was purified by column chromatography using 80:20 petroleum ether/AcOEt as the eluent to give the compound 12a as a white solid in 60\% yield.

(2R,4R)-Ethyl-4-mercapto-1-((S)-1-phenylethyl)-6-thioxopiperidine-2-carboxylate, 12a. \[\delta^1H_{D} = -207.4 \text{ (c 1.0, CH}_2\text{Cl}_2\text{)}; \text{ IR (film) 2976, 2926, 1740, 1465, 1311, 1197, 1085, 1023, 801, 700 cm}^{-1}; 1^H \text{ NMR (500 MHz, CDCl}_3\text{)} \delta 1.31 (t, J = 7.1 Hz, 3H), 1.54 (d, J = 7.1 Hz, 3H), 1.84 (d, J = 6.5 Hz, 1H), 2.12 (m, 2H), 2.81 (dd, J = 11.6, 15.8 Hz, 1H), 3.15 (m, 1H), 3.64 (dd, J = 5.5, 15.7 Hz, 1H), 3.98 (dd, J = 2.7, 7.4 Hz, 1H), 4.25, (m, 2H), 7.13 (q, J = 7.1 Hz, 1H), 7.34 (m, 5H); 13C NMR (125 MHz, CDCl}_3\text{)} \delta 14.0, 14.4, 29.4, 36.3, 52.4, 55.3, 58.1, 62.4, 127.0-128.8, 138.4, 170.3, 201.0. HRMS (FAB): calcd. for C\textsubscript{16}H\textsubscript{21}NO\textsubscript{2}S\textsubscript{2}: 323.1014. Found: 323.1016.

(2S,4S)-Ethyl-4-mercapto-1-((S)-1-phenylethyl)-6-thioxopiperidine-2-carboxylate, 12b. \[\delta^1H_{D} = -348.9 \text{ (c 1.0, CH}_2\text{Cl}_2\text{)}; \text{ IR (film) 2975, 2930, 1736, 1466, 1313, 1199, 1073, 910, 730, 691 cm}^{-1}; 1^H \text{ NMR (500 MHz, CDCl}_3\text{)} \delta 0.98 (t, J = 7.1 Hz, 3H), 1.52 (d, J = 7.0 Hz, 3H), 1.81 (d, J = 6.6 Hz, 1H), 2.15 (ddd, J = 2.3, 5.9, 14.7 Hz, 1H), 2.56 (m, 1H), 2.96 (dd, J = 11.3, 15.6 Hz, 1H), 3.18 (m, 1H), 3.63 (ddd, J = 0.8, 5.6, 15.6 Hz, 1H), 3.73, (m, 2H), 4.2 (dd, J = 2.3, 8.3 Hz, 1H), 7.14 (q, J = 7.1 Hz, 1H), 7.30 (m, 5H); 13C NMR (125 MHz, CDCl}_3\text{)} \delta 13.7, 14.4, 29.7, 37.2, 52.3, 55.3, 58.1, 61.7, 128.2-128.9, 136.8, 169.4, 200.7. HRMS (FAB): Calcd. for C\textsubscript{16}H\textsubscript{21}NO\textsubscript{2}S\textsubscript{2}: 323.1014. Found: 323.1017.

FUNDING

We are grateful to CONACyT (Project 154104) for financial support, and A. Z. thanks CONACyT for the postdoctoral scholarship (165517).

SUPPORTING INFORMATION

Full experimental details and 1H and 13C NMR spectra for this article can be accessed on the publisher’s website.
REFERENCES

1. (a) Yasuda, M.; Ueda, M.; Muramatsu, H.; Mihara, M.; Esaci, N. Enzymatic synthesis of cyclic amino acids by N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. Tetrahedron: Asymmetry 2006, 17, 1775–1779; (b) Osipov, S. N.; Dixneuf, P. Ring-closing metathesis in the synthesis of cyclic α-amino acids. Russ. J. Org. Chem. 2003, 39, 1211–1220; (c) Pohlman, M.; Kazmaier, U. Efficient stereoselective syntheses of cyclic amino acids via Michael-induced ring-closing reactions. Org. Lett. 2003, 5, 2631–2633; (d) Park, K.-H.; Kurt, M. J. Cyclic amino acid derivatives. Tetrahedron 2002, 58, 8629–8659; (e) Buñuel, E.; Jimenez, A.; Diaz-de-Villegas, M. D.; Cativiela, C. A chiral oxazolone derived from D-glyceraldehyde as an intermediate in the synthesis of enantiomerically pure cyclic amino acids. Targets Heterocycl. Syst. 2001, 5, 79–111.

2. Nisio, M. D.; Middeldorp, S.; Bu “ller, H. R. Direct thrombin inhibitors. N. Engl. J. Med 2005, 353, 1028–1040.

3. Murata, Y.; Sata, N. U. Isolation and structure of pulcherrimine, a novel bitter-tasting amino acid, from the sea urchin (Hemicentrotus pulcherrimus) ovaries. J. Agric. Food. Chem. 2000, 48, 5557–5560.

4. (a) Beaulieu, P. L.; Lavallée, P.; Abraham, Anderson, P. C.; Boucher, C.; Bousquet, Y.; Duceppe, J.-S.; Gillard, J.; Gorys, V.; Grand-Maitre, C.; Grenier, L.; Guindon, Y.; Guse, I.; Plamondon, L.; Soucy, F.; Valois, S.; Wernic, D.; Yoakim, C. Practical, stereoselective synthesis of palinavir, a potent HIV protease inhibitor. J. Org. Chem. 1997, 62, 3440–3448; (b) Cossy, J.; Belotti, D. Direct diastereoselective synthesis of (+)-cis- and (±)-trans-4-methylpipecolic acid and derivatives. Tetrahedron Lett. 2001, 42, 2119–2120.

5. (a) Bailey, P. D.; Wilson, R. D.; Brown, G. R. Enantio- and diastereoselective synthesis of pipecolic acid derivatives using the aza-Diels–Alder reaction of imines with dienes. J. Chem. Soc., Perkin Trans. 1 1991, 1337–1340; (b) Bailey, P. D.; Brown, G. R.; Korber, P.; Reed, A.; Wilson, R. D. Asymmetric synthesis of pipecolic acid derivatives using the aza-Diels–Alder reaction. Tetrahedron: Asymmetry 1991, 2, 1263–1282; (c) Rutjes, F. P. J. T.; Veerman, J. J. N.; Meester, W. J. N.; Hiemstra, H.; Shoemaker, H. E. Synthesis of enantiopure, functionalized pipecolic acid via amino-acid-derived N-acyliminium ions. Eur. J. Org. Chem. 1999, 1127–1135; (d) Keenan, T. P.; Yaeger, D.; Holt, D. A. Synthesis of chiral non-racemic 4-trans-substituted pipecolic acid derivatives. Tetrahedron: Asymmetry 1999, 10, 4331–4341; (e) Agami, C.; Comesse, S.; Kaddouri-Puchot, C. An efficient access to enantioselectively functionalized pipecolic acid via amino-acid-derived N-acyliminium ions. Eur. J. Org. Chem. 1999, 4431–4445; (f) Agami, C.; Bisaro, F.; Comesse, S.; Guesné, S.; Kaddouri-Puchot, C.; Morgentin, R. Asymmetric syntheses of enantiopure 4-substituted pipecolic acid derivatives. Eur. J. Org. Chem. 2001, 2385–2389; (g) Alegret, C.; Santacana, F.; Riera, A. Enantioselective synthesis of trans-methylpipecolic acid. J. Org. Chem. 2007, 72, 7688–7692.

6. (a) Hays, S. J.; Malone, T. C.; Johnson, G. Synthesis of cis-4-(phosphonooxy)-2-piperidinecarboxylic acid, an N-methyl-D-aspartate antagonist. J. Org. Chem. 1991, 56, 4084–4086; (b) Golubev, A.; Sewald, N.; Burger, K. An efficient approach to the family of 4-substituted pipecolic acids: Syntheses of 4-oxo-, cis-4-hydroxy-, and trans-4-hydroxy-L-pipecolic acids from L-aspartic acid. Tetrahedron Lett. 1995, 36, 2037–2040; (c) Gillard, J.; Abraham, Anderson, P. C.; Beaulieu, P. L.; Bogri, T.; Bousquet, Y.; Grenier, L.; Guse, I.; Lavallée, P.; Preparation of (2S,4R)-4-hydroxy-pipecolic acid and derivatives. J. Org. Chem. 1996, 61, 2226–2231; (d) Hanessian, S.; Riber, L.; Marin, J. Diastereoselective synthesis of functionally diverse substituted pipecolic acids. Synlett 2009, 1, 71–74.

7. For stereoselective alkylation of glycine enolate, see (a) Dellaria, J. F.; Santarsiero, B. D. Enantioselective synthesis of α-amino acid derivatives via the stereoselective alkylation of a homochiral glycine enolate synthon. J. Org. Chem. 1989, 54, 3916–3926; (b) Panek, J. S.;
Masse, C. E. An improved synthesis of (4S,5S)-2-phenyl-4-(methoxycarbonyl)-5-isopropyl oxazoline from (S)-phenylglycinol. *J. Org. Chem.* 1998, 63, 2382–2384; (c) Yamazaki, T.; Kawashita, S.; Kitazume, T.; Kubota, T. Diastereoselective alkylation of glycines by assistance of intramolecular potassium–fluorine interactions. *Chem. Eur. J.* 2009, 15, 11461–11464; (d) Rodrı́guez-Garnica, C.; López-Ruiz, H.; Rojas-Lima, S.; Álvarez-Hernández, A.; Tapia-Benavides, R.; Garı́a-López, M. C. Diastereoselective alkylation of chiral glycinate derivatives containing the α-phenylethyl group. *J. Mex. Chem. Soc.* 2011, 55, 148–153.

8. For the construction of α,β-unsaturated piperidin-2-ones via RCM, see (a) Rudjes, F. P. J.; Schoemaker, H. E. Ruthenium-catalyzed ring closing olefin metathesis of non-natural α-amino acids. *Tetrahedron Lett.* 1997, 38, 677–680; Agami, C.; Couty, F.; Rabasso, N. Synthesis of (–)-β conhydride and analogues using N-Boc-2-acyl oxazolidine methodology and ring-closing metathesis. *Tetrahedron Lett.* 2000, 41, 4113–4116; (b) Hoffmann, T.; Waibel, R.; Gmeiner, P. A general approach to dehydro-Freidinger lactams: Ex-chiral pool synthesis and spectroscopic evaluation as potential reverse turn inducers. *J. Org. Chem.* 2003, 68, 62–69; (c) Ma, S.; Ni, B. Unexpected dramatic substituent effect for tuning the selectivity in the double ring-closing metathesis reaction of N-containing tetraenes: An efficient synthesis of bicyclic izidine alkaloids skeletons. *Org. Lett.* 2002, 4, 639–641; (d) Gille, S.; Ferry, A.; Billard, T.; Langlois, B. R. Synthesis of α-trifluoromethylated nitrogen heterocycles. *J. Org. Chem.* 2003, 68, 8932–8935; (e) Danieli, B.; Lesma, G.; Passerella, D.; Sacchetti, A.; Silvani, A.; Virdis, A. Total enantioselective synthesis of (–)-cysitine. *Org. Lett.* 2004, 6, 493–496; (f) Ma, S.; Ni, B. Double ring-closing metathesis reaction of nitrogen-containing tetraenes: Efficient construction of bicyclic alkylol skeletons and synthetic application to four stereoisomers of lupinine and their derivatives. *Chem. Eur. J.* 2004, 10, 3286–3300; (g) Ma, S.; Ni, B.; Liang, Z. Highly selective synthesis of bicyclic quinolizidine alkaloids and their analogues via double RCM reaction of N-alkynyl-N-(1,α)-alkadienyl acrylamides. *J. Org. Chem.* 2004, 69, 6305–6309; (h) Krelaus, R.; Westermann, B. Preparation of peptide-like bicyclic lactams via a sequential Ugi reaction-olefin metathesis approach. *Tetrahedron Lett.* 2004, 45, 5987–5990; (i) Wijdeven, M. A.; Botman, P. N. M.; Wijtmans, R.; Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaaw, R. H. Total synthesis of (+)-epiquinamide. *Org. Lett.* 2005, 7, 4005–4008; (j) De Matteis, V.; van Delft, F. L.; Tiebes, J.; Rutjes, F. P. J. T. A ring-closing metathesis pathway to fluorovinyl-containing nitrogen heterocycles. *Eur. J. Org. Chem.* 2006, 1166–1176; (k) Xiao, D.; Wang, C.; Palani, A.; Reichard, G.; Aslanian, R.; Shih, N.-Y.; Buevich, A. Two complementary, diversity-driven asymmetric syntheses of a 2,2-disubstituted piperidine NK1 antagonist. *Tetrahedron: Asymmetry* 2006, 17, 2596–2598; (l) Lesma, G.; Danieli, B.; Sacchetti, A.; Silvani, A. An efficient enantioselective approach to cyclic β-amino acid derivatives via olefin metathesis reactions. *J. Org. Chem.* 2006, 71, 3317–3320; (m) Cardona, W.; Quiñones, W.; Robledo, S.; Vélez, I. D.; Murga, J.; García-Fontanet, J.; Carda, M.; Cardona, D.; Echeverri, F. Antiparasitic and antimycobacterial activity of passifloricin analogues. *Tetrahedron* 2006, 62, 4086–4092; (n) Niida, A.; Mizumoto, M.; Narumi, T.; Inokuchi, E.; Oishi, S.; Ohno, H.; Otaka, A.; Kitaura, K.; Fujii, N. Synthesis of (Z)-alkene and (E)-fluoroketene-containing diketopiperazine mimetics utilizing organocopper-mediated reduction–acylation and diastereoselectivity examination using DFT calculations. *J. Org. Chem.* 2006, 71, 4118–4129.

9. Crystal structure was deposited at the Cambridge Crystallographic Data Centre, deposit numbers CCDC 943457 for compound 7a and CCDC 943456 for compound 7b.

10. (a) Hanessian, S.; van Otterlo, W. A. L.; Nilsson, I.; Bauer, U. Stereocontrolled synthesis of a prototype library of enantiopure 2,4-disubstituted 4-aryl-6-piperidinones and piperidines. *Tetrahedron Lett.* 2002, 43, 1995–1998; (b) Hanessian, S.; Gauchet, C.;
Charron, G.; Marin, J.; Nakache, P. Design and synthesis of diversely substituted azacyclic inhibitors of endothelin converting enzyme. *J. Org. Chem.* 2006, *71*, 2760–2770.

11. (a) Corey, E. J.; Boaz, N. W. The reactions of combined organocuprate-chlorotrimethylsilane reagents with conjugate carbonyl compounds. *Tetrahedron Lett.* 1985, *26*, 6019–6022; (b) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. Me3SiCl accelerated conjugate addition of stoichiometric organocupper reagents. *Tetrahedron Lett.* 1986, *27*, 4029–4032; (c) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I. Chlorosilane-accelerated conjugate addition of catalytic and stoichiometric organocupper reagents. *Tetrahedron* 1989, *45*, 349–362; (d) Deiters, A.; Petterson, M.; Martin, S. F. General strategy for the syntheses of corynanthe, tacaman, and oxindole alkaloids. *J. Org. Chem.* 2006, *71*, 6547–6561; (e) Oueslati, F.; Perrio, C.; Dupas, G.; Barré, L. Diastereoselective conjugate addition of organocuprates to 3,4-dimethyl-5,6-dihydro-2(1H)-pyridinones: A concise synthesis of trans-3,4-dimethyl-4-phenylpiperidines. *Org. Lett.* 2007, *9*, 153–156; (f) Guo, F.; Dhakal, R. C.; Dieter, K. R. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridines with Grignard reagents in the absence of Cu(I) salts. *J. Org. Chem.* 2013, *78*, 8451–8464.

12. Riera, A.; Comely, A.; Ginesta, X. Preparation of trans-(2R)-4-substituted piperolic acids and esters. WO PCT Int. Appl. 2011039290/A1 20110407, April 7, 2012.

13. Crystal structure was deposited at the Cambridge Crystallographic Data Centre, deposit number CCDC 943454.

14. Romero, N.; Gnecco, D.; Terán, J.; Juárez, J.; Galindo, A. Reactivity of (1′S)-1-(1′-phenyl-ethyl)-4-hydroxy-piperidin-2-one with Lawesson’s reagent. *J. Sulf. Chem.* 2007, *28*, 239.

15. Crystal structure was deposited at the Cambridge Crystallographic Data Centre, deposit numbers CCDC 943458 for compound 12a and CCDC 943455 for compound 12b.