A Minireview on Chemical Constituents and Bioactivities of *Lindera glauca*

Si-Wei Wang,† a Ji-Min Liu,† a Jing-Tian Gao, a Ji-Song Mo, a Xing Wang, a Xin Chen,* b and He-Zhong Jiang* a

†School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 613100, China

‡Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610014, China

Email: jiangzh10@sina.com (H. J.), xinchencd@yeah.net (X. C.)

‡These authors have contributed equally to this work.

Abstract *Lindera glauca* (Sieb. et Zucc.) Bl is Chinese herbal medicine known as Niu-jin tree or Leigongzi. Alkaloids, flavonoids, terpenes, volatile oils, etc., are found in *L. glauca*, exhibiting some pharmacological activities such as anti-bacterial, anti-influenza virus, anti-fungal, antioxidant activities, an effect on bronchial and intestinal smooth muscle, and so on. Herein, we summarized chemical compositions and physiological activities of *L. glauca* for future research.

Keywords *Lindera glauca*, chemical constituents, bioactivities

Introduction

Lindera glauca (Sieb. et Zucc.) Bl, belonging to the genus *Lindera* (Lauraceae), is a deciduous shrub or small tree. It grows in roadsides, forest margins, hills below 900 meters altitude, distributed in China, Indochina, Korea, Japan and other places.[5] Modern pharmacological research shows that its roots, branchlets, leaves and fruits can be used medicinally.[5] Based on the above effects, most research on its chemical constituents and bioactivities have been increasingly comprehensive. In this paper, we reviewed chemical composition and structures of *L. glauca*.

Chemical constituents of *L. glauca*

The chemical compositions of the roots, leaves and fruits of *L. glauca* mainly include alkaloids, flavonoids, terpenes, volatile oils, and other compounds. Essentially, it is consistent with the components of *Lindera*.[3]

Alkaloid constituents

The alkaloids are the primary compositions in *L. glauca*, in particular isoquinoline alkaloids and aporphine alkaloids (Figure 1).

In 1984, Kozuka et al. isolated two aporphine alkaloids and two tetrahydroisoquinoline alkaloids from *L. glauca*, named laurotetanine (1), N-methyllaurotetanine (2), (+)-retriculine (3), and (+)-norcinnamolaurine (4).[4] In 2001, Chang et al. first isolated 28 compounds from *L. glauca*, including seven alkaloids, (+)-3-chloro-N-formylnornantenine (5), (+)-N-formyl-nornantenine (6), (+)-baldine (7), (+)-norbaldine (8), (+)-nor-4-baldine (9), lycicamine (10), tetrahydroberberine (11), in which (+)-3-chloro-N-formylnornantenine (5) is a new compound.[5] Then, six amides, named *N*-cis-sinapoyltyramine (12), *N*-trans-sinapoyltyramine (13), *N*-cis-feruloyltyramine (14), *N*-trans-feruloyltyramine (15) and *N*-p-coumaroyltyramine (16), squamolone (17), two morphinandienones, (+)-*N*-methyl-flavimantian (18) and pallidine (19), three aporphines, (+)-isobaldine (20), (+)-norisocorydine (21) and (+)-laetanine (22), were isolated and identified, in which compound 12 is a new compound.[6] In 2016, Ting et al. isolated magnocurarine (23) from *L. glauca* root for the first time.[7] Liang et al.
separated laurolitsine (24), (+)-flavinantine (25) and norpredicentrine (26) from *L. glauca*.[8]

Flavonoids

Flavonoids are also one of the main components of *L. glauca* (Figure 2).

![Figure 2](image-url) The structures of flavonoid compounds isolated from *L. glauca*.

Four flavonoids, kaempferol (27), kaempferol-3-O-arabinoside (28), quercetin (29) and quercetin-3-O-rhamnoside (30), were obtained from the methanol extract of *L. glauca* by Chang *et al.*[9] Eight flavonoids were isolated by Huha *et al.* from *L. glauca* and identified as lindeglaucone (31), lindeglaucol (32), cinnamtannin B1 (35), cinnamtannin D1 (37), and procyanidin A1 (38); their antioxidant activities were analyzed.[9] Park has reported several catechinic acids, such as (+)-catechin (39), (-)-epicatechin (40), epigallocatechin (41), 5,3'-di-O-methyl-(-)-epicatechin (42) and 2R,3R,5,6,7,4'-pentahydroxylavanonol (43). These isolated compounds were tested against HRV1B, CVB3, and PR8-infected Vero cells for their antiviral activities.[10] Liang *et al.* isolated procyanidin B2 (44) and epicatechin-(2β-O-7,4β-8)-entcatechin-(4β-8)-epicatechin (45) from *L. glauca*.[8]

Terpenoids and volatile oil

The terpenoid components of *L. glauca* contain monoterpenes, sesquiterpenes, triterpenes, *etc.* A significant component of *L. glauca* is essential oil, which has a large array of physiological functions (Figure 3). Pseudoguaianelactones A—C (46—48) were separated from the root of *L. glauca*, which have significant anti-inflammatory activity.[11] In 1972, Komaea *et al.* separated three essential oil named 1,8-cineole (49), caryophyllene (50), bornyl acetate (51), respectively.[12] In 1982, Liu *et al.* isolated and identified 13 components from the fruits[13] and 34 components from the leaves of *L. glauca*, revealing that ocimene was the main component of the essential oil in the fruits of *L. glauca*.[14]

![Figure 3](image-url) The structures of terpenoid and volatile oil compounds isolated from *L. glauca*.
In 2012, Wan et al. extracted 36 volatile oil from L. glauca by steam distillation and identified by GC-MS. Among the 36 components identified, the main components are ocimene (52), β-caryophyllene (53), citral (54) and linalool (55).

In 2013, You et al. extracted 60 volatile oil from the fruit of L. glauca and identified the chemical components by GC-MS, including β-myrcene (56), D-limonene (57), eucalyptol, linalool, citronellal (58), citral (59), and β-caryophyllene. Among them, citral had the highest content with antibacterial and anti-inflammatory effects; limonene showed antibacterial, expectorant, antilusive and antiasthmatic effects; β-caryophyllene exhibited a strong antibacterial effect. These components are the main active components of the volatile oil of L. glauca fruit. The volatiles of L. glauca fruits with different maturities were isolated by hydro-distillation method and analyzed by GC-MS, comprising β-ocimene, α-pinene (60) and β-caryophyllene.

Other compounds

In addition to the above compounds, butanolides, lignans, diarylpropanoic and phenylpropionic acids have been reported in L. glauca (Figure 4).

Seki and his team identified two new methoxybutanolides compounds from the roots and stems of L. glauca, named (3S,2E)-2-(11-dodecenyldiene)-3-methoxy-4-methyl-enebutanolid (61) and (3S,2E)-2-(11-dodecenyldiene)-3-methoxy-4-methylenebutanolide (62). Then, they isolated ten new butanolides compounds, linderanolid A—E (63—67) and isolinderanolid A—E (68—72).

Chang and his team identified a butanolide (akolactone A, 73), a p-quione (2,6-dimethoxy-p-quione, 74), with six benzenoids, methylparaben (75), p-hydroxybenzoic acid (76), vanillic acid (77), syringic acid (78), 3,4,5-trimethoxybenzoic acid (79), and 3-(3,4-dihydroxyphenyl) propionic acid (80), and six steroid compounds, β-sitosterol (81), β-sitostenone (82), stigmasta-4,22-dien-3-one (83), 6β-hydroxy-β-sitostenone (84), 6β-hydroxystigmastane (85), and β-sitosteryl-D-glucoside (86), from L. glauca.

Suha et al. isolated three new lignans derivatives, named linderanoides A—C (87—89), and five known lignans from the solvent site of Ethyl acetate, in which 87 was selectively toxic to A498 cells. Parka et al. isolated and identified a new lignan, (−)-9-O-E-feruloyl-lyoniresinol (90). A new cerebroside, glaucerubeside (91), was isolated and identified from the branches of L. glauca by Jae-Yu et al. Park et al. found two new diarylpropanoic (2S)-3′,4′,4′-dihydroxy-2′,3′,6′-trimethoxy-1,3-diarylpropan-2-ol (92) and 4′,4′-dihydroxy-3′,6′-dimethoxy-2′-O-β-D-glucopyranosyl-1,3-diarylpropan-2-one (93). Huh extracted three new diarylpropanoids from the L. glauca, named Lindeglaucol (94), Lindeglaucone (95), and Lindeglaucoside (96).

Bioactivities

L. glauca is a traditional Chinese medicinal plant with a variety of pharmacological activities such as anti-bacterial, anti-inflammatory, antioxidative effect, and so on.

Anti-bacterial, anti-influenza virus and anti-fungal activities

Liu et al. examined the bioactivity of the essential oil extracted from the leaves of L. glauca. It has anti-influenza virus activity in chicken embryos and titer of 1 : 80, antibacterial activity against Pneumococcus/Staphylococcus albicans, Neisseria cattarrhalis/Bacillus anthracis/Pseudomonas aeruginosa/Bowie Freund/Dysentery sonnei, and antifungal properties against Cryptococcus neoforms and Candida albicans. Yu et al. reported that the extracts of L. glauca had...
antibacterial activity, and they were more selective on Gram-positive bacteria and mold than on Gram-negative bacteria and yeast.[22]

Antioxidation

Zhang et al. found that the leaves of *L. glauca* could effectively clean free radicals and have certain antioxidant activity *in vitro*. The free radical scavenging rate is equal to 67.92% of vitamin C when the concentration is 30 times. When the concentration is 40 times that of butyl hydroxyanisole, the free radical scavenging rate is 58.60%.[21]

Improvement of the inflammatory response in spinal cord injury area

Cheng disclosed that the transplantation of bone marrow combined with *L. glauca* leaf extract could successfully heal damaged areas of spinal cord, which was attributed to the decrease in inflammatory reaction induced by the necrosis factor of the tumor.[23]

Anti-tumor cell proliferation activity

Liu et al. found that the alkaloids in *L. glauca*, N-methylaurtetanine, laur odorantiane, and (+)-boldine, had a significant effect on the proliferation of four human tumor cells: HT-29, SGC-7901, SMMC-7721 and A549. Among them, N-methylaurtetanine had strong inhibitory activity on the proliferation of HT-29 and SGC-7901 cells, with IC50 values of 8.68 ± 0.38 μg/mL, 18.32 ± 2.64 μg/mL, respectively.[22]

Inhibitory activities *in vitro* and *in vivo* on glucosidase

Cao et al. observed that the fractions of *L. glauca* could inhibit the activity of glucosidase *in vitro* and *in vivo*. The IC50 values of petroleum ether, ethyl acetate and n-butanol for inhibiting yeast α-glucosidase are 229.70, 259.10, 165.80 μg/mL, respectively; only the ethyl acetate part can inhibit the α-glucosidase activity of rat small intestine with IC50 = 418.17 μg/mL.[24]

Relaxation of bronchial and intestinal smooth muscle activity

Liu et al. found that the essential oil of *L. glauca* leaves had sedative and hypnotic effects, relaxation of bronchial and intestinal smooth muscle, etc.[14]

Conclusion and Perspective

As traditional Chinese medicine, *L. glauca* is distributed widely with long medicinal history. The chemical constituents of *L. glauca* include alkaloids, flavonoids, terpenes volatile oils, and other compounds. The studies on *L. glauca* demonstrated that it has a spectrum of pharmacological effects. At present, the research on *L. glauca* is mostly focused on the components and functions of alkaloids, and its other components and bioactivities need to be further studied.

Acknowledgement

This work was co-supported by the research project of the Fund of Science and Technology Agency of Chengdu (Nos. 2019-YF09-00049-SN, 2020-RK00-00181-ZF), the Open Project Program of Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy (No. FZBC2020002), the Funds of Sichuan Science and Technology Program (Nos. 2021YFY0041, 2021YF0064, 2020YJ0222, 2020YF0061, and 2021ZHFP0032), the Fundamental Research Funds for the Central Universities (2682020ZT85), the Key Project of Sichuan Traditional Chinese Medicine Administration-Development (No. 2018HJZX024), and the 14th Personalized Experimental Project (Nos. GX2020160023, GX2020160024 and GX2020160025).

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Li, X. W. *Flora Reipublicae Popularis Sinicae*, Beijing, 1982, pp. 393–394.

[2] Jia, M. R.; Li, X. W. *Essentials of Chinese National Medical Records*, Berlin, Germany, 2005, pp. 375–376.

[3] Zhang, C. F.; Wang, Z. T. Research progress on medicinal plants of the genus Lindera. *J. Shenyang Pharm. Univ.* 2000, 17, 230–234.

[4] Mutsuo, K.; Akira, I.; Takao, K.; Tokunosuke, S. Aporphine Alkaloids from *Parabenzoin praecox*. *Chem. Pharm. Bull.* 1984, 32, 5055–5058.

[5] Chang, Y. C.; Chang, F. R.; Wu, Y. C. J. The Constituents of *Lindera glauca*. *J. Chin. Chem. Soc.* 2000, 47, 373–380.

[6] Chang, Y. C.; Chang, F. R.; Wu, Y. C. J. Alkoids from *Lindera glauca*. *J. Chin. Chem. Soc.* 2001, 48, 811–815.

[7] Liu, T.; Li, W. Y.; Liu, X. W.; Qi, C. M.; Yuan, Z. H. Study on the Chemical Constituents and Alkaloids of *Lindera glauca* root Inhibiting Tumor Cell Proliferation. *J. Chin. Med. Mater.* 2016, 39, 1789–1792.

[8] Chen, L.; Zeng, P.; Zeng, J. F.; Pan, J. F.; Chen, Q. H.; Chen, Y. L.; Wu, G. M.; Zhang, Z. H. Isolation and Structural Identification of the Chemical Constituents from the root of *Lindera glauca*. *J. Jiangsu Univ.* 2016, 26, 422–436.

[9] Huha, G. W.; Parka, J. H.; Kangb, J. H.; Jeongb, T. S.; Kangc, H. C.; Baeka, N. I. Flavonoids from *Lindera glauca* Blume as low-density lipoprotein oxidation inhibitors. *Nat. Prod. Res.* 2014, 28, 831–834.

[10] Parka, S. J.; Songb, J. H.; Nhimc, N. X.; Kob, H. J.; Kima, S. H. The chemical constituents from twigs of *Lindera glauca* (Siebold & Zucc.) Blume and their antiviral activities. *Phytochem. Lett.* 2018, 25, 74–80.

[11] Ruan, Q. F.; S. Q.; Jiang, S. Q.; Zheng, X. Y.; Tang, Y. Q.; Yang, B.; Yi, T.; Jin, C.; Cui, H.; Zhao, Z. X. Pseudoguaianalenacetone A-C: Three Unusual Sesquiterpenoids with Anti-inflammatory Activities from *Lindera glauca* by Inhibiting LPS-induced Expression of iNOS and COX-2. *Chem. Commun.* 2020, 56, 1517.

[12] Komae, H.; Hayashi, N. Terpenes from *Lindera glauca*. *Phytochemistry* 1972, 11, 853.

[13] Liu, L. D.; Chen, J. D.; Lan, S. G. Study on the chemical constituents of the fruit of *Lindera glauca* and its application test. *Acta Bot. Sin.* 1982, 24, 252–258.

[14] Liu, L. D.; Gu, J. W.; Chen, J. D. Studies on the chemical constituents of the leaf of *Lindera glauca* (SIEB ET ZUCC) BL and their uses. *Jiangxi Sci.* 1992, 10, 38–44.

[15] Wan, S. K.; Dong, G. P.; Zhang, L. S. Study on the Chemical Constituents of Volatile Oil of *Lindera glauca*. *Lishizhen Med Mater Med Res.* 2012, 23, 1470–1471.

[16] You, Y. M.; Yan, S. Y. GC-MS Analysis of the Chemical Constituents of Volatile Oil from the Fruit of *Lindera glauca*. *Food Res. Int.* 2013, 5, 1005–6521.

[17] Seki, K.; Sasaki, T.; Haga, K.; Kaneko, R. Two methoxybutanolides from *Lindera glauca*. *Phytochemistry* 1994, 36, 949.

[18] Seki, K.; Sasaki, T.; Wano, S.; Haga, K.; Kaneko, R. Linderanolides from *Lindera glauca*. *Phytochemistry* 2018, 149, 215–222.
and isolindermolides, ten butanolides from Lindera glauca. Phytochemistry 1995, 40, 1175–1181.
[19] Yu, J. S.; Moon, E.; Kim, K. H. A new cerebroside from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. Bioorg. Chem. 2017, 74, 122–125.
[20] Huh, G. W.; Park, J. H.; Shrestha, S.; Lee, Y. H.; Ahn, E. M.; Kang, H. C.; Kim, Y. B.; Baek, N. I. New diarylpropanoids from Lindera glauca Bl. Heartwood. Holzforschung 2012, 66, 585–590.
[21] Zhang, J. S.; Kong, L.; Lei, J. P.; Ma, C. Y.; Jiang, H. Z. Study on Antioxidant Effect of Sichuan Lindera glauca Leaf. Chin. Med. J. Res. Prac. 2015, 29, 29–33.
[22] Yu, D. Q.; Yang, W.; Zuo, C. Y.; Wu, C. J.; Xiong, Z. Z. Study on Antibacterial Activity and Antibacterial Spectrum of Lindera glauca Extract. J. Mod. Med. Health 2019, 35, 1931–1937 (in Chinese).
[23] Cheng, J. P.; Li, H.; Li, X. J. Bone marrow mesenchymal stem cell transplantation combined with Lindera glauca leaf extract can improve inflammation in the area of spinal cord injury. Chin. J. Tissue Eng. Res. 2019, 23, 1975–1981 (in Chinese).
[24] Cao, N. F.; Wu, X. H.; Kang, W. Y. Study on Inhibition of Lindera glauca on α-Glycosidase Activity in Vitro and in Vivo. Fine Chem. 2010, 27, 546–548 (in Chinese).

Received May 15, 2021
Accepted June 13, 2021