An analytic study of the Wiedemann–Franz law and the thermoelectric figure of merit

Aakash Yadav¹, PC Deshmukh¹, Ken Roberts², NM Jisrawi³,⁴ and SR Valluri¹,³

¹ Indian Institute of Technology (IIT), Tirupati, India
² Department of Physics and Astronomy, University of Western Ontario (UWO), London, ON, Canada
³ Department of Management, Economics, and Mathematics, Kings University College, UWO, London, ON, Canada
⁴ Centre for Advanced Materials Research, Sharjah, United Arab Emirates

E-mail: valluri@uwo.ca

Keywords: thermoelectric figure of merit, Lambert W function, Fermi–Dirac integrals, Wiedemann–Franz law

Abstract

Advances in optimizing thermoelectric material efficiency have seen parallel activities in theoretical and computational studies. In the current work, we calculate the exact Fermi–Dirac integrals to enable the generalization of the Wiedemann–Franz law (WF) in order to enhance the dimensionless thermoelectric figure of merit \(ZT = \frac{\alpha^2 \sigma}{\kappa}\). This is done by optimizing the Seebeck coefficient \(\alpha\), the electrical conductivity \(\sigma\), and the thermal conductivity \(\kappa\) in terms of the Lambert \(W\), and the generalized Lambert \(W\) functions (offset log). In the calculation of the thermal conductivity \(\kappa\), we include both electronic and phononic contributions. The solutions provide insight into the relevant parameter space including the physical significance of complex solutions and their dependance on the scattering parameter \(r\) and the reduced chemical potential \(\mu^*\).

1. Introduction

Though a 19th century science, thermoelectricity has seen a revival of late due to the perceived dangers of fossil fuels and global warming. Thermoelectric (TE) materials continue to generate interest despite the fact that the phenomena have been known since the 19th century [1–3]. The renewed interest has been stimulated by concern over the effects of fossil fuels as major contributors to global warming as well as the advancement in materials properties for energy generation and conversion [4]. Thermoelectric materials can generate power using the Seebeck effect or refrigerate using the Peltier effect. They are capable of converting heat flow directly into electrical energy or vice-versa [5]. Efforts are focused on the enhancement of the material efficiencies by optimizing the TE figure of merit. A recent review by Morelli has identified three material families that are the focus of the ZT enhancement research: Phonon-glass-electron crystal (PGEC), bulk nano-structured materials, and crystals with large anharmonicity [6]. The PGEC class of materials use the concept of minimum thermal conductivity via a phonon-type mechanism to achieve a figure of merit as high as 1.5 in n-type skutterudites [7]. In the early 1990s, Hicks and Dresselhaus [8–10] studied the 1-D and 2-D confinement leading to a positive effect for nano-structured materials generally known as LAST (Lead-Antimony-Silver-Telluride) materials. Figures of merit as high as 2.2 were reached in doped samples. The third class of materials which has seen intense investigations of late are based on lowering thermal conductivity in materials with large anharmonicity in the crystal structure and a large Gruneisen coefficient \(\gamma\) [11]. A value of \(\gamma = 0\) describes the harmonic lattice with a large thermal conductivity. Tetrahedrites are such a family of compounds that contain so-called lone electron pairs which enhance anharmonicity with distinctly coordinated Cu atoms. This leads to lower thermal conductivity and a ZT of about 0.9 [12–15]. In a recent review by He and Tritt [16] they charted a roadmap for the search for efficient thermoelectric materials. They identified lattice, charge, orbital, and spin degrees of freedom to be underlying physical parameters for the mechanisms of ZT enhancement [17]. The mechanisms themselves were identified as defect-enabled [18].
In addition to intensive activity in enhancing material properties, theoretical understanding has kept pace and resulted in a widely accepted formalism based on Fermi–Dirac statistics that computes the figure of merit in terms of Fermi–Dirac integrals and relates efficiency to the TE figure of merit $ZT$ [19, 20]. The polylogarithm functions [21], the Lambert W function [22], and its generalization have created a renaissance in the solutions of diverse problems that include applications to thermoelectric materials [22, 23]. Notably, the Wiedemann–Franz law played an important role in thermoelectric material research [24].

This work provides a generalization of the Wiedemann–Franz law (WF). In section 2, we derive corrections to the WF law based on the widely-used Fermi–Dirac integrals describing the thermoelectric properties of semiconducting materials [5] and demonstrate how the corrections vary with the scattering parameter $r$, and the reduced chemical potential $\mu^\ast = E_F/kT$, where $E_F$ is the Fermi energy. In section 3, we extremize the expression for thermal conductivity (in the form of the polylogarithmic functions) with respect to the reduced chemical potential $\mu^\ast$, and the temperature $T$. In section 4, we provide insight into the mathematical expressions resulting from the extremization of the electrical conductivity with respect to temperature and relate that to maximizing the figure of merit. In section 5, we reexamine the phonon contribution to thermal conductivity and in section 6, we present our conclusions.

2. The Wiedemann–Franz law

The Wiedemann–Franz Law (1853) states that the ratio of the electronic contribution of the thermal conductivity $\kappa$ to the electrical conductivity $\sigma$ of a metal is proportional to the temperature $T$ based on a semiclassical treatment of the electron gas [11, 24].

$$\frac{\kappa}{\sigma} = L_0 T$$

(1)

where $L_0$ is a constant called the Lorenz number is given by:

$$L_0 = \frac{k^2}{e^2} \frac{\pi^2}{3}$$

$$L_0 = 2.44 \times 10^{-8} \text{ W} \text{ K}^{-2}$$

(2)

Here $k$ is the Boltzmann constant and $e$ is the electronic charge. For over 150 years, the Wiedemann–Franz law has proven to be roughly stable amongst the multitude of metallic systems that have been studied [25]. But recent experiments over a couple of decades show that there are several limitations to the law, the value of Lorenz number $L$ is not the same for every material and the law does not hold for intermediate temperatures. Experiments have shown that the value of Lorenz number, $L$, while roughly constant, is not exactly the same for all materials [26]. In the realm of space physics, Bespalov and Savina [27] have shown that the turbulent plasma conductivity along with the anomalous thermal conductivity of the medium result in the generalization of the WF law. In many high purity metals, both the electrical and thermal conductivities rise as the temperature is decreased. In certain materials (such as silver or aluminum), however, the value of $L_0$ may also decrease with temperature. In the purest samples of silver and at very low temperatures, $L$ can drop by as much as a factor of 10 [27].

The standard treatment of the generalized WF law is based on the Fermi–Dirac distribution of electrons and holes in semiconductor materials [5]. Plugging in the equations for $\kappa$ and $\sigma$ in terms of Fermi–Dirac integrals as shown in equation (5) below, it becomes apparent that the Lorenz number $L_0$ is not a constant. Instead, it converges to $\left(\frac{k}{e}\right)^2 \frac{\pi^2}{3}$ for higher values of the reduced chemical potential $\mu^\ast$, irrespective of the value of the scattering parameter $r$:

$$\sigma = \frac{16\pi m e^2 l_0 (kT)^{r+1} E}{3h^3}$$

(3)

$$\kappa_\ell = \frac{16\pi ml_0 k^2 (r+2)^{r+2}}{3h^3} \left[ (r+3)E_{r+2} - \frac{(r+2)^2 E_{r+1}}{(r+1)E_r} \right]$$

(4)

Use of the relationship connecting the Fermi integral $F_\ell$ to the Polylogarithm functions $Li_{r+1}(z)$ [28] where $z = -e^{\mu^\ast}$, we get,

$$F_\ell (\mu^\ast) = -\Gamma (r+1) Li_{r+1} (-e^{\mu^\ast})$$

(5)
This result leads to a generalized expression for the Lorenz number in the form:

\[
L = \left( \frac{k}{\varepsilon} \right)^2 A(r, \mu^*)
\]  

where the function \( A(r, \mu^*) \) can be expressed more concisely in terms of polylogarithms.

\[
A(r, \mu^*) = \frac{(r + 2)(r + 3)L_{r+2}^2 - (r + 2)^2L_{r+2}^1}{L_{r+1}^2}
\]

where the argument \( z \) in the Polylog functions is henceforth omitted.

The function \( A(r, \mu^*) \) is plotted in figure 1 against \( \mu^* \) for several indices. The plot shows that the expression converges to the semi-classical value of the WF law for the Lorenz number. The expression for \( A(r, \mu^*) \) converges for a wide range of \( \mu^* \) as illustrated in the figure for values of \( r > -2.0 \). For positive values of \( \mu^* \), evaluation of the first and second derivatives have shown that there are no local maxima but there are inflection points signifying critical values in the range \(-1 < r < 5.0 \). For negative values of \( r \), \( A(r, \mu^*) \) exhibits maxima. The important question of whether materials with negative \( r \) exist and the ranges over which they do will be discussed in a future study.

Fermi–Dirac integrals play an important role in the study of semiconductors and appear frequently in the treatment of thermal properties. The corrections to the WF law are embodied in the detailed expressions of the Fermi–Dirac integrals derived below in terms of polylogs.

The Fermi–Dirac integral of index \( n \) is defined as:

\[
E_n(\mu^*) = \int_0^\infty \frac{x^n}{e^{x-\mu^*} + 1} dx
\]

where \( \mu^* \) is the reduced chemical potential and \( x \) is the electron energy in units of \( k_B T \). Computer algebras like Mathematica can compute this expression in closed form for \( \text{Re}(n) > -1 \) in terms of polylogs as \( E_n(\mu^*) = -\Gamma(n + 1)L_{n+1}(-e^{\mu^*}) \). The physical details of the restrictions on the values of \( r \) and \( \mu^* \), however, make the actual detailed calculations of the integrals included in the expression for \( A(r, \mu^*) \) a useful exercise. We will leave the detailed calculation to the appendices but will note the outline of the calculation here. We start by splitting the integral into two parts separated by some physical value of \( \mu^* \). Simplification of (8) above gives:

\[
\int_0^\infty \frac{x^n}{e^{x-\mu^*} + 1} dx = \int_\mu^* x^n(1 + e^{x-\mu^*} - e^{x-\mu^*}) dx + \int_{\mu^*}^\infty \frac{x^n}{e^{x-\mu^*} + 1} dx
\]
The first term above can be written as:
\[
\int_0^\mu \frac{x^n(1 + e^{-x^{\mu^*}} - e^{-x^{\mu^*}})}{e^{x^{\mu^*} + 1}} \, dx = \int_0^\mu x^n \, dx - \int_0^\mu \frac{x^n e^{x^{\mu^*}}}{e^{x^{\mu^*} + 1}} \, dx
\] (10)

Using the transformation \( x - \mu^* = z \),
\[
\int_0^\mu x^n e^{x^{\mu^*}} \, dx = -\int_{\mu^*}^0 e^z (\mu^n + z)^n \, dz = -\int_{\mu^*}^0 e^z \mu^n \left(1 + \frac{z}{\mu^*}\right)^n \, dz
\] (11)

Using the binomial expansion for \( z/\mu^* < 1 \), we get
\[
\mu^* \ln (1 + e^z) \int_{\mu^*}^0 + \int_{\mu^*}^0 z e^n z \mu^{-n-1} \, dz + \int_{\mu^*}^0 z^2 e^{n(n-1)} z \mu^{-n-2} \, dz + ...
\] (12)

Finally, from equations (10) and (13) we get the expression:
\[
F_0(\mu^*) = \frac{\mu^{n+1}}{n+1} + \mu^n \ln (1 + e^{-\mu^*}) - \mu^n \ln 2
\]
\[
+ n\mu^{n-1} \left[ \mu^n \ln (1 + e^{-\mu^*}) + Li_2(-e^{-\mu^*}) - \frac{\pi^2}{2} \right] + ...
\] (14)

That leaves the second part of the integral in (9) namely \( \int_{\mu^*}^\infty \frac{x^n}{e^{x^{\mu^*} + 1}} \, dx \) which will be calculated in detail in the appendix and will be shown to be small.

3. Extrema of the thermal conductivity

Minimizing electronic thermal conductivity is one of the possible pathways to increasing the figure of merit of the thermoelectric material. This task is achieved in two steps in subsequent sections 3.1 and 3.2 for its dependence on \( \mu^* \) and then on \( T \).

3.1. Extrema of the thermal conductivity with respect to reduced chemical potential

Following Molli et al [21] and taking the first derivative of the expression for \( \sigma \) as a function of \( \mu^* \) gives the following condition for the extremum,
\[
[\Gamma(r + 4) - 2\Gamma(r + 3)] Li_{r+1}^2 Li_{r+2} - (r + 2)\Gamma(r + 3) Li_r Li_{r+3}^2 = 0
\] (15)

Rearranging gives:
\[
Li_{r+2}\Gamma(r + 3) \{ [(r + 3) - 2] Li_{r+1}^2 - (r + 2) Li_r Li_{r+2} \} = 0
\] (16)

and we get the two conditions, \( Li_{r+2} = 0 \) and \( (r + 1) Li_r Li_{r+2} = 0 \)

Using series expansion for the polylogarithmic function gives for \( r \geq 0 \),
\[
Li_r(z) = \sum_{k=1}^{+\infty} \frac{z^k}{k^r} = z + \frac{z^2}{2^r} + \frac{z^3}{3^r} + ...
\] (17)

Case 1: | \( z \) | < 1

For the approximation | \( z \) | < 1 which holds when \( \mu^* < 0 \), up to the order of \( z^2 \), one gets:
\[
(r + 1) \left( z + \frac{z^2}{2^{r+1}} \right)^2 - (r + 2) \left( z + \frac{z^2}{2^r} \right) \left( z + \frac{z^2}{2^{r+2}} \right) = 0
\] (18)

expanding and keeping terms up to \( z^2 \) one gets:
\[
(r + 1) \left( 1 + \frac{z}{2} + \frac{z^2}{2^{2r+2}} \right) - (r + 2) \left( 1 + \frac{z}{2^r} + \frac{z}{2^{2r+2}} \right) = 0
\] (19)

Further simplification yields,
\[
\frac{z^2}{2^{r+2}} + \frac{z}{2^r} + \frac{rz}{2^{r+2}} + \frac{z}{2^{r+2}} = -1
\] (20)
Figure 2. Minimizing the thermal conductivity for negative values of $\mu^*$ produces the characteristic equation in (27). The figure shows that under these conditions, $\mu^*$ can be written in terms of the Lambert W function. Only real values of $\mu^*$ are significant with the imaginary part having nonzero values below $r = -8.52$ corresponding to the start of the principal branch of the Lambert W function.

\[
\frac{z^2}{2^{r+2}} + \frac{z}{2} \left(1 + \frac{r}{4} + \frac{1}{2} \right) = -1
\]  

Equation (23) is quadratic in $e^\mu$ and can easily be solved to give:

\[
\mu^* = \ln \left( \frac{r/2 + 3 \pm \sqrt{r^2 - 16r + 12 + 36}}{2} \right)
\]

Case II: $|z| \ll 1$

\[
e^{\mu^*} \left[ -1 - \mu^* + r + 6 \right] = 2^{r+2}
\]

\[
e^{\mu^* - (r+5)} \left[ \mu^* - (r + 5) \right] = -2^{r+2}e^{-(r+5)}
\]

\[
\mu^* - (r + 5) = W(-2^{r+2}e^{-(r+5)})
\]

The expression for $\mu^*$ in (27) is illustrated in figure 2 below. In this figure we plot the real and imaginary parts of the expression. The imaginary part is zero above the value of $r$ corresponding to the beginning of the principal branch of the Lambert W function. For the argument of W above, that value is $r = \frac{4 - 2\ln 2}{\ln 2 - 1} \approx -8.52$. It is of interest to note that for negative values of $r$ ($r = -3/2$, $-1$, $-1/2$), the Fermi–Dirac integrals have been tabulated by Blakemore [29]. Representation of F-D integrals in terms of polylogarithmic functions allows easy computation using computer algebras. The physical significance of the parameter $r$ in the context of thermoelectrics is the subject of further investigations.

### 3.2. Extrema of the thermal conductivity with respect to temperature

We have the expression for thermal conductivity $\lambda$ in terms of polylogarithms:

\[
\lambda_e = \frac{16\pi ml_i K (KT)^{r+2}}{3h^3} \times \left\{ -\Gamma(r + 4) Li_{r+3}(-e^{\mu^*}) + (r + 2) \Gamma(r + 3) \frac{[Li_{r+2}(z) - e^{\mu^*})]^2}{Li_{r+1}(z)} \right\}
\]

Differentiating and simplifying the above equation yields

\[
\frac{d\lambda}{dT} = (r + 2) \left\{ -(r + 3) Li_{r+5}(z) + (r + 2) \frac{Li_{r+2}(z)}{Li_{r+2}(z)} \right\}
\]

\[
- \mu^* Li_{r+2}(z) \left\{ -(r + 3) + (r + 2) \left[ 2 - \frac{Li_r(z) Li_{r+1}(z)}{Li_{r+1}(z)} \right] \right\} = 0
\]

\[
Li_i(z) = \sum_{k=1}^{+\infty} \frac{z^k}{k^i}
\]
Using the approximation \(|z| < 1\), valid for \(\mu^* < 0\) and simplifying we get terms to \(O(z^2)\):

\[
\frac{z^2}{2^{r+2}}\left[-(r+2 + \mu^*) + (r+2)(r + 2 - \mu^*)\frac{1}{4} - (r+2)(r+3)\frac{1}{2} - \mu^*\right] + \frac{z}{2^r}
\]

\[
\left[-(r+2 + \mu^*) - (r+2)(r+3)\frac{1}{8} - \frac{\mu^*}{4}\right] = (r+2 + \mu^*)
\]

(31)

Case I: \(|z| < 1\)

Expansion of \(z\) in terms of \(\mu^*\), and setting

\[
A = 2(r + 2)(r + 9) + 13, B = r + 2, C = (r + 2)(r + 5),
\]

\(D = (r + 2)(r + 12) + 16\), we get

\[
e^{\mu^*}
\]

\[
\left[\mu^* + \left(\frac{A}{D}\right)\mu^* + \left(\frac{C}{D}\right)\right] = -(B + \mu^*)\frac{2^{2r+5}}{D}
\]

(32)

\[
e^{\mu^*}\left[\frac{(\mu^* - t_1)(\mu^* - t_2)}{(\mu^* + B)}\right] = -\frac{2^{2r+2}}{D}
\]

(33)

where \(t_1\) and \(t_2\) are the factors of the quadratic expression in \(\mu^*\). The solution to equation (33) can be written as a generalized Lambert W function \([30, 31]\),

\[
\mu^* = W(t_1, t_2; -B; \frac{2^{2r+2}}{D})
\]

(34)

Case II: \(|z| \ll 1\)

If we keep only terms of order \(\mu^*\), equation (32) reduces to:

\[
e^{\mu^*}\left(\frac{\mu^* + \frac{C}{A}}{\mu^* + B}\right) = -\frac{2^{2r+5}}{A}
\]

(35)

The solution in this case can also be obtained by use of the the generalized Lambert W function as:

\[
\mu^* = W\left(-\frac{C}{A}, -B; \frac{2^{2r+5}}{A}\right)
\]

(36)

4. Extrema of the electrical conductivity with respect to temperature

We have the following expression for the electrical conductivity \(\sigma\)

\[
\sigma = \frac{16\pi me^2l_0(KT)^{r+1}(r+1)E}{5h^3}
\]

(37a)

\[
r\Gamma(r) = \Gamma(r+1)
\]

(37b)

\[
\sigma = \frac{16\pi me^2l_0(KT)^{r+1}(r+1)\Gamma(r+1)L_i(z)}{5h^3}
\]

(38a)

Setting

\[
c = -16\pi me^2l_0K^{r+1}(r+1)\Gamma(r+1)
\]

(38b)

and differentiation of \(\sigma\) gives with respect to \(T\),

\[
\frac{d\sigma}{dT} = cT^r[-\mu^*L_i(z) + (r+1)L_i(z)] = 0
\]

(39)

Thereby,

\[
-\mu^*\sum_{k=1}^{\infty} \frac{z^k}{k^r} + (r + 1)\sum_{k=1}^{\infty} \frac{z^k}{k^{r+1}} = 0
\]

(40)

Case I: \(|z| < 1\)

For terms to cubic order in \(|z| < 1\) we get

\[
-\mu^*\left(z^2 + \frac{z^3}{2} + \frac{z^4}{3}\right) + (r + 1)\left(z + \frac{z^2}{2^r+1} + \frac{z^3}{3^r+1}\right) = 0
\]

(41a)

\[
\left[\frac{1}{2^r}(-\mu^* + \frac{r + 1}{2}) + \frac{z}{3^r}(-\mu^* + \frac{r + 1}{3}) + \frac{z^2}{4^r}(-\mu^* + \frac{r + 1}{4})\right] = \mu^* - (r + 1)
\]

(41b)
\[ e^{\mu} \left[ \frac{1}{2}(-\mu^* + \frac{a}{2}) - \frac{e^{\mu^*}}{3^r}(-\mu^* + \frac{a}{3}) + \frac{e^{2\mu^*}}{4^r}(-\mu^* + \frac{a}{4}) \right] = a - \mu^* \]  
(42)

where \( a = r + 1 \). Or using a series approximation for the exponential function,

\[ e^{\mu^*} \left[ \frac{1}{2}(-\mu^* + \frac{a}{2}) - \frac{(1 + \mu^*)(-\mu^* + \frac{a}{3})}{3^r} + \frac{(1 + 2\mu)(-\mu^* + \frac{a}{4})}{4^r} \right] = a - \mu^* \]
(43)

\[ e^{\mu^*} (A - \mu^* B + \mu^* C) = a - \mu^* \]
(44a)

where,

\[ A = \frac{a}{2^{r+1}} - \frac{a}{3^{r+1}} + \frac{a}{4^{r+1}} \]
(44b)

\[ B = \frac{1}{2^r} + \frac{\frac{a}{3} - 1}{3^r} + \frac{1 - \frac{a}{2}}{4^r} \]
(44c)

\[ C = \frac{1}{3^r} - \frac{2}{4^r} \]
(44d)

Neglecting \( \mu^* \),

\[ e^{\mu^*} (A - \mu^* B) = a - \mu^* \]
(45a)

\[ e^{\mu^*} \left[ \frac{\mu^* B - A}{\mu^* - (a)} \right] = 1 \]
(45b)

\[ e^{\mu^*} \left[ \frac{\mu^* - A}{\mu^* - (a)} \right] = \frac{1}{B} \]
(45c)

\( \mu^* = W \left( \frac{A}{B}, a, \frac{1}{B} \right) \)
(45d)

If \( \mu^* \) is not neglected one ends up with:

\[ e^{\mu^*} (A - \mu^* B + \mu^* C) = a - \mu^* \]
(46)

Let \( t_1 \) and \( t_2 \) be the roots of the quadratic equation

\[ e^{\mu^*} [(\mu^* - t_1)(\mu^* - t_2)] = -\frac{\mu^* - a}{C} \]
(47)

The solution can be obtained by use of the generalized offset logarithmic function

\[ \mu^* = W \left( h_1, t_1, r + 1, -\frac{1}{C} \right) \]
(48)

where,

\[ h_1 = \frac{B}{C} + \frac{\sqrt{B^2 - 4AC}}{C} \]
(49)

\[ t_2 = \frac{B}{C} - \frac{\sqrt{B^2 - 4AC}}{C} \]
(50)

Case II: \(|z| \ll 1\)

Retaining terms up to quadratic order, we have for \(|z| \ll 1\), valid for \( \mu^* < 0 \), we get:

\( -\mu^* \left( z + \frac{z^2}{2^r} \right) + (r + 1) \left( z + \frac{z^2}{2^{r+1}} \right) = 0 \)  
(51a)

which simplifies to

\[ -\mu^* \left( 1 + \frac{z}{2^r} \right) + (r + 1) \left( 1 + \frac{z}{2^{r+1}} \right) = 0 \]
(51b)

Since \( z = -e^{\mu^*} \), further simplification gives:

\[ (r + 1 - \mu^*) + \left[ \mu^* - \frac{(r + 1)}{2} \right] \frac{e^{\mu^*}}{2^r} = 0 \]
(52a)
Rearrangement of the above equation (52b) enables a solution by using the offset logarithmic function with $\mu^*$ given by:

$$
\mu^* = G_k \left( 2^{r+1}, r + 1, \frac{r + 1}{2} \right)
$$

where $G_k$ is the generalized Lambert W function.

5. Minimization of the lattice thermal conductivity

Following the approach developed by Cahill et al [32], we develop the conditions for minimum lattice thermal conductivity by extremizing the integrand of the following expression:

$$
T_{\text{min}} = \left( \frac{\pi}{6} \right)^{1/3} k n^{2/3} \sum_i v_i \left( \frac{T}{\theta_i} \right)^2 \int_0^n \frac{x^i e^x}{(e^x - 1)^2} dx
$$

where $n$ is the number density of atoms, $v_i$ is the sound velocity and $\theta_i$ is the Debye temperature for the $i$th polarization mode. Let us call this integrand $F(x)$. This function, plotted in figure 3, is now maximized by equating the first derivative to zero:

$$
F(x) = \frac{x^i e^x}{(e^x - 1)^2}
$$

$$
F'(x) = \frac{3x^i e^x + x^i e^x}{(e^x - 1)^2} + \frac{x^i e^x (-2)e^x}{(e^x - 1)^2} = 0
$$

Further simplification results in the expression

$$
e^{x_i} \frac{(3 - x)}{(3 + x)} = 1
$$

Numerical solutions of (56) exist and the positive real value is 2.57568 which gives the maximum of equation (55). Exact solutions to the above equation can be obtained by use of the Offset Logarithm function.

We will now compute the integral in (54) by setting $\theta_i / T = x_i$. The result can be obtaining by integrating by parts and then summing over the three degrees of freedom. For each degree, the expression can be written as

$$
I_i = \int_0^{x_i} \frac{y^2 e^y}{(e^y - 1)^2} dy = 6x_i L_1(e^{x_i}) - 6L_3(e^{x_i}) + x_i \left( \frac{e^{x_i} x_i}{1 - e^{x_i}} + 3 \log(1 - e^{x_i}) \right) + 6 \zeta(3)
$$
The expression in (54) can finally be written as:

$$
\kappa_{i,\text{min}} = \left(\frac{\pi}{6}\right)^{1/3}kn^{2/3}\sum_{i} \frac{y_i}{x_i^2}I_i
$$

(58)

The preliminary analysis presented here shows that $\kappa_{\text{min}}$ is a function of $T/\theta_D$ in terms of polylogarithms. Further analysis is needed to determine the characteristics of the above expression representing $\kappa_{\text{min}}$ as a function of temperature (in units of $\theta_D$). It should be noted that $\ln(1 - e^x) < 0$ for $x \geq 0$ giving complex values.

6. Conclusions

We derived a generalization of the Wiedemann–Franz Law using the exact Fermi–Dirac integral expressions. The generalization shows that non-negligible corrections are possible. It is clear that negative values of the index $r$ of the polylog functions in the expression for the Lorenz number should be explored. The details of optimizing the figure of merit allowed us to explore the parameter space more carefully. Based on the results of optimizing the electronic thermal conductivity, we note that the chemical potential is strongly dependent on the polylog index $r$. Here again large negative values are possible. We also note that the imaginary part of the chemical potential is small compared to the real part and drops down to zero exactly at $r = -8.52$, which occurs at the start of the principal branch of the Lambert W function. The stability and transport coefficients of the Lorenz number across different metals pose a challenge to attaining a high $ZT$ value.

In the review by He and Tritt [16] the role of defects in symmetry breaking and the effect thereof on material properties and the figure of merit is emphasized. Certain values of the scattering parameter $r$ are related to defect creating mechanisms. For example, $r = 3/2$ and $r = 0$ are associated with impurity scattering and charge-neutral impurity scattering, respectively [16, 33]. It is important to emphasize that the optimization problems studied in the current paper provide a wider range of parameter space. In particular, relating $r$ to the reduced chemical potential $\mu'$ needs to be connected to material properties and the underlying mechanisms that will eventually help in finding the optimum $ZT$. It is worth mentioning that the works of Poudel et al. [34] and Zhao et al. [20] have observed that a $ZT$ enhancement comes mainly from a reduction of the lattice thermal conductivity $\kappa_{\text{min}}$ and anomalously high Grüneisen parameters [20]. Also, Ouerdane et al. have emphasized the importance of the study of electronic systems that undergo phase transitions and the role of fluctuating Cooper pairs. [35] This work extends the range of possible $r$ values to be probed to negative values. Modulation doping [16, 36] is certainly a possibility where materials like SiGe can be embedded by nanoparticles [37] but other thermoelectric materials can be modified to affect changes in $r$ pushing it towards negative values.

Minimizing thermal conductivity seems to be the most effective path to enhancing the figure of merit. Thermal conductivity has both lattice and electronic contributions. We analyzed both contributions and the minimization shows important restrictions on the resulting complex solutions. The imaginary contributions have been found to be small and drop to negligible value as the argument of the Lambert W function function in the solutions approaches the value of $-1/e$.

Calculation of the extrema of the electrical and thermal conductivities leads to characteristic equations which give further insight into the ranges of $r$ and $\mu'$ that favor an optimized figure of merit. We hope that this study will stimulate experimental work directed at the chemistry and physics of materials to enhance thermoelectric efficiency. Further analytic work will concentrate on analyzing the the properties of the equations derived here and relating them to material properties. This combined analytical and numerical work will be the subject of a separate study.

Acknowledgments

Pranawa Deshmukh acknowledges the Shastri Indo Canadian Institute (SICI) for the award of an Indo-Canada collaborative research grant for this project. S R Valluri acknowledges the Natural Sciences Engineering Research Council (NSERC) for a Discovery Grant during the course of which this work was performed. He would also like to thank Dr K N Satyanarayana, the director of IIT Tirupati, for the gracious hospitality during his visit to the Institute where part of this research was performed. We would like to thank Mahmoud Sharawy for reviewing the manuscript and preparing all the figures. We also would like to thank the anonymous reviewers for their thorough critique and constructive suggestion on the manuscript.
Appendix A

To compute the last term in equation (9) in section (2), let us call the integral represented in that term \( I \), where:

\[
I = \int_{\mu}^{\infty} \frac{x^n}{e^{x-\mu^s} + 1} \, dx = \int_{\mu}^{\infty} \frac{x^n e^{-(x-\mu^s)}}{1 + e^{-(x-\mu^s)}} \, dx = \int_{\mu}^{\infty} x^n e^{-(x-\mu^s)} \{1 + e^{-(x-\mu^s)}\}^{-1} \, dx
\] (59)

A binomial expansion allows \( I \) to be written as:

\[
I = \int_{\mu}^{\infty} x^n e^{-(x-\mu^s)} \{1 + -e^{-(x-\mu^s)} + e^{-2(x-\mu^s)} - e^{-3(x-\mu^s)} + e^{-4(x-\mu^s)} - e^{-5(x-\mu^s)} + \ldots + (-1)^m e^{-m(x-\mu^s)} + \ldots\} \, dx
\] (60)

\[
= \int_{\mu}^{\infty} \{x^n e^{-(x-\mu^s)} - x^n e^{-2(x-\mu^s)} + x^n e^{-3(x-\mu^s)} - x^n e^{-4(x-\mu^s)} + \ldots\} \, dx
\] (61)

Let us now define \( I_{n,m} \) and integrate by parts,

\[
I_{n,m} = \int_{\mu}^{\infty} \{x^n e^{-m(x-\mu^s)}\} \, dx = \frac{x^n e^{-m(x-\mu^s)}}{-m} \bigg|_{\mu}^{\infty} + \frac{n}{m} \int_{\mu}^{\infty} \{e^{-m(x-\mu^s)}\} \, dx
\] (62)

Where \( m = 1, 2, 3, \ldots \).

Now, the definite integral \( I_{n,m} \) can be written in the reduction form:

\[
I_{n,m} = \frac{1}{m} \mu^m + \frac{n}{m} I_{n-1,m}
\] (63)

where,

\[
I_{n-1,m} = \int_{\mu}^{\infty} \{x^{n-1} e^{-m(x-\mu^s)}\} \, dx = \frac{x^n e^{-m(x-\mu^s)}}{-m} \bigg|_{\mu}^{\infty} + \frac{n(n-1)}{m} I_{n-2,m}
\] (64)

Therefore,

\[
I_{n,m} = \frac{1}{m} \mu^m + \frac{n}{m} \left\{ \frac{1}{m} \mu^m + \frac{n}{m} \left\{ \frac{n}{m} \mu^m + \frac{n(n-1)}{m^2} \mu^{m-1} + \frac{n(n-1)(n-2)}{m^3} \mu^{m-2} + \ldots \right\} \right\}
\] (65)

\[
= \frac{\mu^m}{m} + \frac{n}{m^2} \mu^{m-1} + \frac{n(n-1)}{m^3} \mu^{m-2} + \frac{n(n-1)(n-2)}{m^4} \mu^{m-3} + \ldots
\] (66)

\[
I_{n,1} = (\mu^m) \left\{ 1 + \frac{n}{\mu^m} + \frac{n(n-1)}{4} \mu^{-1} + \frac{n(n-1)(n-2)}{8} \mu^{-2} + \ldots \right\}
\] (67)

\[
I_{n,2} = \frac{(\mu^m)}{2} \left\{ 1 + \frac{n}{2\mu^m} + \frac{n(n-1)}{4} \mu^{-2} + \frac{n(n-1)(n-2)}{8} \mu^{-3} + \ldots \right\}
\] (68)

\[
I_{n,3} = \frac{(\mu^m)}{3} \left\{ 1 + \frac{n}{3\mu^m} + \frac{n(n-1)}{9} \mu^{-3} + \frac{n(n-1)(n-2)}{27} \mu^{-4} + \ldots \right\}
\] (69)

As \( m \) becomes larger, \( I_{n,m} \) decreases for a given \( n \). The expression for the integral (7) becomes:

\[
I = \int_{\mu}^{\infty} \frac{x^n}{e^{x-\mu^s} + 1} \, dx = I_{n,1} - I_{n,2} + I_{n,3} - I_{n,4} + \ldots
\] (71)

Where

\[
I_{n,1} = (\mu^m) \left\{ 1 + \frac{n}{\mu^m} + \frac{n(n-1)}{4} \mu^{-2} + \frac{n(n-1)(n-2)}{8} \mu^{-3} + \ldots \right\}
\] (72)

and

\[
I_{m,n} = \frac{1}{m} (\mu^m)^n + \frac{n}{m} I_{n-1,m}
\] (73)

where \( m = 2, 3, 4, \ldots \) are given in equation (3).

The expressions in (3) are substituted in equation (14) to derive the expression for \( F_n(\mu^s) \).
Let
\[ x - \mu^* = z \Rightarrow z = -\mu^* \text{ when } x = 0 \]
\[ x = \mu^* + z \Rightarrow z = 0 \text{ when } x = \mu^* \]
\[ x^n = (\mu^*)^n \left(1 + \frac{z}{\mu^*}\right)^n \]

Using the transformation \( x - \mu^* = z \), the second term in equation (9) can be rewritten as:
\[ -\int_0^\mu \frac{x^n e^{-x - \mu^*}}{1 + e^{x - \mu^*}} dx = -\int_0^{\mu^*} e^z \frac{\mu^* n}{1 + e^z} \left(1 + \frac{z}{\mu^*}\right)^n dz \] (74)

Using the Binomial expansion for \(|z| \ll 1\) and keeping terms up to second order in \(z\), we have:
\[ = -\int_0^{\mu^*} (\mu^*)^n - \frac{e^z}{1 + e^z} \left[1 + \frac{n z}{\mu^*} + \frac{n(n - 1)}{2} \frac{z^2}{\mu^{2*}} + \ldots\right] dz \] (75)

We can now integrate to get:
\[ = -\left[(\mu^*)^n \ln(1 + e^z) \bigg|_{-\mu^*}^0 + n \int_{-\mu^*}^0 z (\mu^*)^{n-1} \frac{e^z}{1 + e^z} dz + \frac{n(n - 1)}{2} \int_{-\mu^*}^0 \frac{z^2 e^z (\mu^*)^{n-2}}{1 + e^z} dz + \ldots\right] \] (76)

\[ = -\left[(\mu^*)^n \ln(2) - (\mu^*)^n \ln(1 + e^{-\mu^*}) + (\mu^*)^n \ln(1 + e^{-\mu^*}) z|_{-\mu^*}^0 - \int_{-\mu^*}^0 \ln(1 + e^z) dz + \ldots\right] \] (77)

\[ = -[(\mu^*)^n \ln(2) - (\mu^*)^n \ln(1 + e^{-\mu^*}) + n(\mu^*)^n \ln(1 + e^{-\mu^*})] \] (78)

\[ = -[(\mu^*)^n \ln(2) - (\mu^*)^n \ln(1 + e^{-\mu^*}) + n(\mu^*)^n \ln(1 + e^{-\mu^*}) - (\mu^*)^n \ln(1 + e^z) dz + \ldots] \] (79)

For \( e^z < 1 \) and \(-\mu^* \leq z \leq 0\), and keeping terms up to \(O(z)\) accuracy, we expand in powers of \(z\):
\[ = -\left[(\mu^*)^n \ln(2) - (\mu^*)^n \ln(1 + e^{-\mu^*}) + n(\mu^*)^n \ln(1 + e^{-\mu^*}) + \left(n(\mu^*)^n \ln(1 + e^{-\mu^*}) - \frac{e^{-\mu^*}}{2} + \frac{e^{-3\mu^*}}{3} + \ldots\right) dz\right] \] (80)

\[ = -\left[(\mu^*)^n \ln(2 + (n - 1) \ln(1 + e^{-\mu^*})) - \mu^* n \left(1 - \frac{e^{-\mu^*}}{2} + \frac{e^{-3\mu^*}}{4} + \frac{1}{9} - \frac{e^{-5\mu^*}}{9} - \ldots\right)\right] \] (81)

\[ = -\mu^* n \ln 2 + (n - 1) \ln(1 + e^{-\mu^*}) - \left\{\frac{1}{2 \mu^*} - \frac{1}{2 \mu^*} + \frac{1}{3 \mu^*} - \frac{1}{4 \mu^*} + \ldots\right\} + \left\{\frac{e^{-\mu^*}}{2 \mu^*} - \frac{e^{-3\mu^*}}{2 \mu^*} + \frac{e^{-5\mu^*}}{3 \mu^*} + \ldots\right\} \] (82)

**Appendix B**

The term involving \( z^2 \) is given in the form:
\[ \int_{-\mu^*}^0 \frac{(z^2 e^z)}{(e^z + 1)} dz = \left[\mu^2 z (-\ln(e^{-\mu^*} + 1)) + 2 \mu^4 Li_2(-e^{-\mu^*}) + 2 Li_3(-e^{-\mu^*}) + \frac{3 \zeta(3)}{2}\right] \] (83)

for \( e^{\mu^*} > 0 \).

This result can be obtained by expanding the integrand in powers of \( e^z \ll 1\),
\[ -\left[n(n - 1)(\mu^*)^{n-2} \int_{-\mu^*}^0 \frac{z^2 e^z}{1 + e^z} dz\right] \] (84)

Consider just the integral in the above expression. Integration by parts and then expanding \(\ln(1 + e^z)\) in powers of \(e^z \ll 1\), we get:
\[ \int_{-\mu^*}^0 \frac{z^2 e^z}{1 + e^z} dz = z^2 \ln(1 + e^z)|_{-\mu^*}^0 - 2 \int_{-\mu^*}^0 z \ln(1 + e^z) dz \] (85)

\[ = -[(\mu^*)^2 \ln(1 + e^{-\mu^*}) - 2 \int_{-\mu^*}^0 z \left\{\frac{e^{-\mu^*}}{2} + \frac{e^{3\mu^*}}{3} - \frac{e^{4\mu^*}}{4} + \ldots\right\} dz \] (86)
\[-(\mu^a)^2 \ln(1 + e^{-\mu^a}) = 2 \left( \left( \frac{e^z}{1} - \frac{e^{2z}}{2} + \frac{e^{4z}}{4} \right) - \int_{-\mu^a}^{0} \left( \frac{e^z}{1} - \frac{e^{2z}}{2} + \frac{e^{4z}}{4} \right) \right) \]

equation (12) becomes:

\[-\frac{n(n - 1)(\mu^a)^{n-2}}{2} \left( -(\mu^a)^2 \ln(1 + e^{-\mu^a}) + 2\mu^a \left( \frac{e^{-\mu^a}}{1} - \frac{e^{-2\mu^a}}{2^2} + \frac{e^{-3\mu^a}}{3^2} - \frac{e^{-4\mu^a}}{4^2} \right) \right) + 2 \left( \left( \frac{e^z}{1} - \frac{e^{2z}}{2} + \frac{e^{4z}}{4} \right) \right) \]

Considering further now the second term \( z^2 \ln \) in \( \left( 1 + \frac{z}{\mu^a} \right)^n \) series. Therefore:

\[-\frac{n(n - 1)}{2} \left( (\mu^a)^n \ln(1 + e^{-\mu^a}) + 2(\mu^a)^{n-1} \left( \frac{e^{-\mu^a}}{1} - \frac{e^{-2\mu^a}}{2^2} + \frac{e^{-3\mu^a}}{3^2} - \frac{e^{-4\mu^a}}{4^2} \right) \right) + 2(\mu^a)^{n-2} \left( \sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} \left( -\frac{(e^{-\mu^a})^l}{l} \right) \right) \]

The next term in the \( \left( 1 + \frac{z}{\mu^a} \right)^n \) series is

\[(\mu^a)^{n-3} \int_{-\mu^a}^{0} \frac{z^3 \ln(1 + e^{-\mu^a})}{1 + e^z} \, dz\]

\[(\mu^a)^{n-3} \frac{n(n - 1)(n - 2)}{31} \left[ e^z \ln(1 + e^z) \right]_{-\mu^a}^{0} - 3 \int_{-\mu^a}^{0} \frac{z^2 e^z}{1 + e^z} \, dz\]

**References**

[1] Pelletier J C 1834 Nouvelles experiences sur la caloricite des courants electriques [new experiments on the heat effects of electric currents] Annales de Chimie et de Physique (in French) 56 371–86

[2] Seebeck T J 1822 Magnetische polarisation der metalle und erze durch temperatur-difference [Magnetic Polarization of Metals and Ores by Temperature Differences] (Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (in German)) pp 265–373

[3] Thomson W 1857 On the dynamical theory of heat. V: thermo-electric currents Transactions of the Royal Society of Edinburgh 21 123–71

[4] Enescu D 2019 Thermoelectric energy harvesting: basic principles and applications Green Energy Advances ed D Enescu (Rijeka: IntechOpen) Ch 1

[5] Goldsmid J 2009 Introduction to Thermoelectricity (Berlin Heidelberg: Springer-Verlag)

[6] Morelli D T 2017 Springer Handbook of Electronic and Photonic Materials (United States of America: Springer)

[7] Morelli D T and Meisner G P 1995 Low temperature properties of the filled skutterudite ceful1b12 J. Appl. Phys. 77 3777–81

[8] Fleischmann H 1961 Wärmeleitfähigkeit, thermokraft und elektrische leitfähigkeit von halbleitenden mischkristallen der form Zeitschrift für Naturforschung A 16 (4) 765–80

[9] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M C 2004 Cubic agsbte2, agbte2-pbte and-snte systems Japan. J. Appl. Phys. 27 72–82

[10] Ashcroft N and Mermin N 1976 Solid State Physics (Philadelphia: W.B. Saunders Company) p 493 ch 25

[11] Heo J, Laurita G, Muir S, Subramanian M A and Kessler D A 2014 Enhanced thermoelectric performance of synthetic tetrahedrites Chem. Mater. 26 2047–51

[12] Liu T-H, Zhou J, Li M, Ding Z, Song Q, Liao B, Fu L and Chen G 2018 Electron mean-free-path filtering in dirac material for improved thermoelectric performance PNAS 115 879–84
[14] Lu X, Morelli D T, Xia Y, Zhou F, Ozolins V, Chi H, Zhou X and Uher C 2012 High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites Adv. Energy Mater. 3 342–8
[15] Lu X and Morelli D T 2013 Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite MRS Communications 3 129–33
[16] He J and Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 eaak9997
[17] Wang Y, Rogado N S, Cava R J and Ong N P 2003 Spin entropy as the likely source of enhanced thermopower in nascox2o4 Nature 423 425–8
[18] Li Z, Xiao C, Zhu H and Xie Y 2016 Defect chemistry for thermoelectric materials JACS 138 14810–9
[19] Dingle R B 1957 The Fermi–Dirac integrals Applied Scientific Research, section B 6 239–39
[20] Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals Nature 508 373–7
[21] Molli M, Venkataramaniah K and Valluri S R 2011 The polylogarithm and the Lambert W functions in thermoelectrics Can. J. Phys. 89 1171–8
[22] Valluri S R, Jeffrey D J and Corless R M 2000 Some applications of the LambertW function to physics Can. J. Phys. 78 823–31
[23] Corless R M, Gonnet G H, Hare D E G, Jeffrey D J and Knuth D E 1996 On the lambert w function Adv. Comput. Math. 5 329–59
[24] Kittel C 2004 Introduction to Solid State Physics 8th edn (New York: Wiley) Number 156
[25] Kaye G W C and Laby T H 1966 Tables of Physical and Chemical Constants and Some Mathematical Functions 15th edn (London: Longman)
[26] Wakeham N, Bangura A F, Xu X, Mercure J-F, Greenblatt M and Hussey N E 2011 Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor Nat. Commun. 2 596
[27] Bespalov P A and Savina O N 2007 Generalized Wiedemann–Franz law and temperature jump in space plasmas with ion-acoustic turbulence MNRAS 382 L63–66
[28] Olver F W J 2010 National institute of standards, and technology (US) NIST Handbook of Mathematical Functions (Cambridge: New York: Cambridge University Press)
[29] Blakemore J S 1987 Semiconductor Statistics (Oxford: Dover Publications)
[30] Maignan A and Scott T C 2016 Fleshing out the generalized LambertW function ACM Communications in Computer Algebra 50 45–60
[31] Roberts K, Valluri S R and Maignan A 2017 Offset logarithm function: properties and applications, researchgate project entry
[32] Cahill D G, Watson S K and Pohl R O 1992 Lower limit to the thermal conductivity of disordered crystals Phys. Rev. B 46 6131–40
[33] Nag B R 1980 Electron Transport in Compound Semiconductors (Berlin: Springer)
[34] Ma Y, Hao Q, Poudel B, Lan Y, Yu B, Wang D, Chen G and Ren Z 2008 Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks Nano Lett. 8 2580–4
[35] Ouerdane H, Varlamov A A, Kavokin A V, Goupil C and Vining C B 2015 Enhanced thermoelectric coupling near electronic phase transition: the role of fluctuation cooper pairs Phys. Rev. B 91 100501
[36] Zebzarjadi M, Liao B, Esfarjani K, Dresselhaus M and Chen G 2013 Enhancing the thermoelectric power factor by using invisible dopants Adv. Mater. 25 1577–82
[37] Zebzarjadi M, Joshi G, Zhu G, Yu B, Minnich A, Lan Y, Wang X, Dresselhaus M, Ren Z, Chen G and (Energy Frontier Research Centers (EFRC), and Solid-State Solar–Thermal Energy Conversion Center (S3TEC)) 2011 Power factor enhancement by modulation doping in bulk nanocomposites Nano Lett. 11 2225–30