Running head: Formation of a new gene in maize

Corresponding author:
Nabil Elrouby
Max Planck Institute for Plant Breeding Research
Carl-von-Linne Weg 10
Cologne, 50829, Germany
elrouby@mpiz-koeln.mpg.de
Tel. +49 15253147118
Fax. +49 221 5062207

Genetics, Genomics, and Molecular Evolution
Bs1, a new chimeric gene formed by retrotransposon-mediated exon shuffling in maize

Nabil Elrouby¹² and Thomas E. Bureau

Department of Biology, McGill University
1205 Dr. Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
This work was supported by grants to T.E.B. from the National Sciences and Engineering Research Council of Canada.

1 Current address:
2 Corresponding author

Nabil Elrouby
Max Planck Institute for Plant Breeding Research
Carl-von-Linne Weg 10
Cologne, 50829, Germany
elrouby@mpiz-koeln.mpg.de
Tel. +49 15253147118
Fax. +49 221 5062207

Running head: Formation of a new gene in maize

Keywords: BsI, gene transduction, retroelement, maize, chimeric gene
ABSTRACT

Transposons are major components of all eukaryotic genomes. Although traditionally regarded as causes of detrimental mutations, recent evidence suggests that transposons may play a role in host gene diversification and evolution. For example, host gene transduction by retroelements has been suggested to be both common and to have the potential to create new chimeric genes by the shuffling of existing sequences. We have previously shown that the maize retrotransposon Bs1 has transduced sequences from three different host genes. Here, we provide evidence that these transduction events led to the generation of a chimeric new gene that is both transcribed and translated. Expression of Bs1 is tightly controlled and occurs during a narrow developmental window in early ear development. Although all Bs1-associated transduction events took place before Zea speciation, a full uninterrupted open reading frame (ORF1) encoding the BS1 protein may have arisen in domesticated maize or in the diverse populations of its progenitor Zea mays subspecies parviglumis. We discuss potential functions based on domain conservation and evidence for functional constraints between the transduced sequences and their host gene counterparts.
INTRODUCTION

Transposons are ubiquitous and fundamental components of prokaryotic and eukaryotic genomes. For example, they make up to 85%, 45%, 40% and 12% of the maize, human, rice, and Arabidopsis genomes, respectively (International Human Genome Sequencing Consortium, 2001; Arabidopsis Genome Initiative, 2000; Goff et al., 2002; Yu et al., 2002; Schnable et al., 2009). Some recent studies suggest that over evolutionary time scales, transposons have contributed to the evolution of genes and genomes by providing means for gene and genome diversification (Kazazian, 2004). For example, an analysis of the human genome sequence reveals more than 1000 predicted and known proteins to contain sequences derived from transposons, especially long interspersed nuclear elements (LINEs) of the L1 family and short interspersed nuclear elements (SINEs) such as Alu elements (Li et al., 2001). In addition, some mobility-related proteins may have evolved to contribute a cellular function. For example, Drosophila telomeres are composed of the telomere-specific retroposons HeT-A and TART (for a review, see Pardue et al., 1996), the RAG1 and RAG2 proteins required for V(D)J recombination and the maturation of B and T cells are derived from an ancient DNA transposon (Hiom et al., 1998; for a review, see Roth and Craig, 1998), and Syncytin, a protein involved in placental morphogenesis, is encoded by the envelope gene of the human endogenous retrovirus HERV-W (Mi et al., 2000). In plants, the transposase genes of Mutator-like elements (MULEs) may have provided ancestral sequences for two genes involved in red light signaling (FAR1 and FHY1) (Hudson et al., 2003; Lin et al., 2007) as well as the MUG1 gene family (Cowan et al., 2005).
Other mechanisms, however, all based on transposon activity, have also been implicated. For example, “gene acquisition” by DNA transposons and “gene transduction” by retroelements have the potential to mediate gene diversification and the emergence of novel cellular functions (Goodier et al., 2000). Whereas gene acquisition by DNA transposons is likely to be mediated by recombination, gene transduction occurs by readthrough transcription of retroelements (Goodier et al., 2000; Bennetzen 2005). Gene acquisition by MULEs in rice (Jiang et al., 2004; Juretic et al., 2005; Hanada et al., 2009) and Arabidopsis (Hoen et al., 2006) reveals that MULEs acquired gene fragments and duplicated or amplified them into gene families. A recent study suggests that 22% of MULE-generated duplications are transcribed in rice (Hanada et al., 2009), whereas the only case of an Arabidopsis duplicate that is transcribed (KI) behaves like the associated transposase gene suggesting that the function of KI may be selfish rather than cellular (Hoen et al., 2006).

Like MULE-mediated gene acquisition in plants, cellular gene transduction by retroelements seems to be a common feature during LINE-1 (L1) retrotransposition in human (Goodier et al., 2000). However, only transduction by infectious retroviruses has been shown to generate hybrid open reading frames (ORFs) that could modulate cell function, although in this case expression of the hybrid ORF leads to neoplastic transformation (Cooper, 1995). Thus, the significance of cellular gene transduction for gene diversification in the absence of a disease phenotype remains to be determined. A recent study suggests that the rate of chimeric gene formation by retroposition is 50-fold higher among grass genomes than in primates and that retroposition has kept grass genomes in constant flux of new chimeric retrogenes (Wang et al., 2006). In addition to
transposon activity, several other mechanisms contribute to the origination of new genes including exon shuffling caused by illegitimate recombination and retroposition, gene duplication, retroposition of a gene transcript, lateral gene transfer, gene fusion, and \textit{de novo} formation of new genes from previously non-coding sequences (reviewed in Long et al., 2003). In tomato, a recent mutation fused exons from the gene encoding the β subunit of PPI-dependent phosphofructokinase (PFP) with those of the homeobox gene \textit{LeT6} leading to elevated levels and an altered pattern of expression of the latter (Chen et al., 1997). This mutation (called Mouse ear) arose spontaneously in an isogenic tomato cultivar and leads to excessively proliferated leaves, consistent with the altered expression pattern of \textit{LeT6} (Rick and Harrison, 1959; Chen et al., 1997) and suggesting that the emergence of new gene variants may lead to phenotypic differences. Another tomato gene, \textit{SUN}, was duplicated together with 24.7 kilobase of flanking sequences through gene transduction by the retrotransposon \textit{Rider} (Xiao et al., 2008). This duplication event brought \textit{SUN} into a new genomic context that increased its expression, leading to an elongated fruit shape. The identification of young genes such as these provides tools to study the origin and evolution of new genes since many details on the origin of a gene are lost over long periods of time (Long et al., 2003).

We and others have previously reported the first case, outside of oncogenic retroviruses, of a retrotransposon that has transduced host cellular sequences (Bureau et al., 1994; Jin and Bennetzen, 1994; Palmegren, 1994; Elrouby and Bureau, 2001). The maize LTR-retrotransposon \textit{Bs1} has transduced sequences from three different maize cellular genes, namely, proton-dependent membrane ATPase (\textit{c-pma}), xylan endohydrolase (\textit{c-xe}), and β-1,3-glucanase (\textit{c-bg}) (where “c” corresponds to the cellular
genes whereas their retroelement-associated counterparts are designated r-pma, r-xe, and r-bg; Elrouby and Bureau, 2001). The transduction events generated a hybrid ORF (ORF1, 740 amino acids) that contains sequences corresponding to the Bs1 gag domain fused to the transduced sequences. Here, we report that the Bs1-associated transduction events and subsequent mutations led to the emergence of a novel gene by the shuffling of existing sequences. We show that Bs1 is both transcribed and translated in reproductive tissues, and specifically in ears. The BS1 protein is not detected in extracts obtained from sterile ears, suggesting that Bs1 expression may be associated with normal reproductive development in maize. Characterization of Bs1 from several maize landraces and inbred lines as well as from the wild relatives of maize, the teosintes, reveals that different large and small deletions/insertions mediated the formation of one uninterrupted ORF (ORF1) following the initial transduction events. A sequence highly related to maize ORF1 is first seen in Zea mays subspecies parviglumis, which has been shown by independent lines of evidence to be the progenitor of domesticated maize (Zea mays subspecies mays) (Doebley, 2004). Collectively, the Bs1-associated transduction events generated a novel chimeric gene whose function, if any at this point of its evolution, may be involved in reproductive development.

RESULTS

Bs1 ORF1 is expressed in reproductive organs

We have previously identified an expressed sequence tag (EST) that shares identity with the Bs1 3’LTR and a part of the internal sequence (Elrouby and Bureau, 2001). This EST was isolated from mixed stages of anther and pollen suggesting that Bs1 may be
expressed in the germ line. To properly assess the $Bs1$ expression pattern, we performed reverse transcriptase-polymerase chain reaction (RT-PCR) with RNA extracted from different tissue types (Fig. 1) in two maize ($Zea mays$ subspecies $mays$) inbred lines, W22 and Ohio43. As seen in figure 1, $Bs1$ is specifically expressed in stage R1 or early stage R2 ears (when silk starts to be visible outside the husks; Hanway and Ritchie, 1984) and tassels of both inbred lines (Fig. 1A, lanes 2-5 and 7-8) but not in any of the vegetative tissues tested (husks, root, one-week old seedling, two-week old seedling leaf, mature leaf) (Fig. 1A, lanes 6 and 9-12).

Since the $Bs1$ chimeric sequence was generated by retroelement-mediated gene transduction, it is devoid of any introns (Elrouby and Bureau, 2001). It is thus important to confirm that the RT-PCR products obtained were truly amplified from cDNA rather than contaminating genomic DNA. First, when reverse transcriptase was omitted from the reaction no amplification products were obtained at all (Fig. 1A, lanes 13-15). Second we used the same cDNA to amplify transcripts of an intron-containing gene. For this purpose we used the gene coding for the auxin binding protein 1 ($Abp1$) (Elrouby and Bureau, 2000). $Abp1$ primers anchored in exons 3 and 5 yield an RT-PCR product consistent with amplification from cDNA only (Fig. 1B, lanes 2-8). The same primer pair amplified a genomic fragment containing the intervening introns when genomic DNA was used instead as a template (Fig. 1B, lane 9). Third, the fact that no $Bs1$ amplification products were obtained in vegetative tissues (Fig. 1A, lanes 6 and 9-12) whereas the same tissues supported amplification from $Abp1$ transcripts (Fig. 1B, lanes 4-8) suggests that the $Bs1$ amplification products obtained in reproductive tissues were derived from reverse transcribed $Bs1$ mRNA expressed differentially in these tissues.
Bs1 ORF1 is translated

To determine whether the *Bs1* transcript is translated, we raised polyclonal antibodies against ORF1. In ORF1, both r-*xe* and r-*pma* but not r-*bg* maintained the reading frame of their cellular gene counterparts (Elrouby and Bureau, 2001). To avoid cross-reactivity against cellular proteins encoded by c-*xe* and c-*pma*, only the sequence encoding the N-terminal 301 amino acids of ORF1 was used to raise the antibodies (anti-BS301). This sequence spans the *Bs1* gag and r-*bg* domains (Elrouby and Bureau, 2001). Another antibody was raised against a synthetic peptide spanning residues 196 to 215 (anti-BS196). Both antisera recognize the BS1 protein expressed in *E. coli* (Fig. 2 panel A, e.g. shown for anti-BS196 antiserum), and a polypeptide of ~100 kDa in extracts from maize young ears but not from sterile ears (see below) or leaves (Fig. 2 panel B). The size of this polypeptide is consistent with a translational product encoded by *Bs1* ORF1. Additionally, the ~100 KDa protein is not recognized by pre-immune sera (Fig. 2 panel C) and is competed out when the antiserum is pre-incubated with the BS1 synthetic peptide (Fig. 2, panel D). We conclude that the ~100 KDa polypeptide we see in maize ear extracts is most likely encoded by *Bs1* ORF1.

We performed immunoblot analyses using the anti-BS1 antibodies to test *Bs1* expression in different maize tissues. *Bs1* is translated primarily in young ears and to a much lesser extent in young tassels and mature embryos (Fig. 2, panel E, lanes 5, 6 and 9, respectively). In tassels, two bands of approximately 97 and 100 KDa are sometimes seen (Fig. 2, panel E, lane 6). The nature of the smaller band is unclear. *In vitro* translation experiments have previously indicated that, in addition to ORF1, a longer
polypeptide predicted for the frameshift fusion of ORF1 and ORF2 can be generated (Jin and Bennetzen, 1989). We do not see any evidence of such a fusion in plant extracts.

Bs1 expression is associated with normal reproductive development

As a consequence of altered light and temperature conditions due to growth at elevated latitude, maize plants occasionally undergo normal vegetative development but produce sterile ears (Fig. 3A). These ears have a vegetative appearance, are stunted, light green in color, with aborted kernels that look like elevated swellings from the main axis of the cob, and arrested silk. When proteins prepared from these ears were tested by immunoblot analysis, we could not detect the Bs1 ORF1 polypeptide (Fig. 3B, lane 7). Furthermore, we could not detect the ORF1 polypeptide in proteins extracted from post-pollen tassel (Fig. 3B, lane 4). Instead, the anti-BS1 antibodies detected several bands, all of which are smaller than that expected of the ORF1 polypeptide. Since the sum of the intensities of these bands is more than that seen in young tassel extracts (Fig. 3B, lane 3), they are unlikely to be degradation products. Thus, the nature of these bands remains to be determined. However, it is possible that they may correspond to shorter Bs1 translational products resulting from in-frame initiations at several internal ATG codons (ORF1 contains 20 internal methionines, data not shown). Immunoblots of protein extracts from both sterile ears and post-pollen tassels and probed with anti-ubiquitin antisera (Fig. 3C) suggest that both tissues contain a normal suite of proteins and that general protein degradation is not the case, as indicated by the presence of high molecular weight ubiquitinated proteins and free ubiquitin (Fig. 3C).
Structure and evolution of Bs1 in maize and the teosintes

In order to study the structure and sequence evolution of Bs1 ORF1, we cloned and characterized Bs1 from domesticated maize (Zea mays ssp. mays) and the teosintes (Z. luxurians, Z. diploperennis, Z. mays ssp. mexicana, Z. mays ssp. huehuetenangensis, Z. mays ssp. parviglumis). In these taxa, Bs1 copy number ranges from 1 to 5 (Johns et al., 1985; Elrouby and Bureau, 2001). To amplify all potential copies, the sense and antisense primers were, respectively, anchored in the retroelement primer-binding site and polypurine tract, both of which are expected to be conserved. The number of copies isolated from the different taxa reflects expected copy numbers. We isolated five maize (inbred line W22) Bs1 copies (My1-5), two from luxurians (L14, L15), three from diploperennis (D12, D13, D18), four from mexicana (Mx6, Mx16, Mx23, Mx24), three from huehuetenangensis (H8, H10, H25) and one from parviglumis (P22) (Fig. 4, Table 1). Although an intact ORF1 is only observed in two maize Bs1 copies (see below), all Bs1 copies contain all three transduced genes suggesting that the transduction events took place before the speciation of the genus Zea.

Except for the parviglumis and four maize copies, all other Bs1 copies contain in-frame premature stop codons when compared with maize ORF1 (Jin and Bennetzen, 1989; copies My2, My4 and Oh43, this study). The stop codons terminate the coding sequence at codons number 6 (Mx16), 12 (L14, L15, D13), 26 (D13, H8, H10), 206 (L14, L15), 210 (D13), 257 and 373 (Mx6, Mx23, Mx24), 430 (D12, D18), 520 and 688 (D13), 624 (My1), or 738 (L14, L15, D13) (Fig. 4, Table 1). Likewise, all teosinte and three of the maize Bs1 copies sustain insertions/deletions (indels) that disrupt the Bs1 coding potential (Fig. 4, Table 1). The teosinte Bs1 copies contain, in addition to 1-3 bp indels,
larger indels such as those starting at codon 138 (21 bp, in D12, D18), codon 171 (8 bp, in D13), codon 194 (69 bp, in L14, L15, D13), codon 473 (91 bp, in Mx16), codon 490-510 (60 bp, in D12, D18), codon 561 (183/187 bp, in L14, L15, D13), and codon 679-689 (30 bp, in L14, L15). It is interesting to note that the 183/187-bp insertion seen in both luxurians copies and in D13 corresponds to the 183-bp of c-pma that is later deleted in maize r-pma to form mature ORF1 (Bureau et al., 1994; Jin and Bennetzen, 1994; Palmgren, 1994; Elrouby and Bureau, 2001). Also, the 1-bp indel at codon 88 is conserved in all but three teosinte Bs1 copies, and the 2-bp indel at codon 736 is conserved in all teosinte copies as well as one copy from maize (My3). Another 1-bp indel that disrupts codon 185 is conserved in all perennial teosinte Bs1 copies, at least one copy from each annual teosinte (Mx16, H10, P22), and one copy from maize (My3).

With the exception of one huehuetenangensis copy (H25), Bs1 copies isolated from the annual teosintes contain only simple (1-3 bp) indels (Fig. 4, Table 1). In H25, a large 696-bp deletion eliminates approximately two-thirds of the r-pma and all of the env regions and is likely to have occurred later after all transductions took place. In parviglumis, P22 contains a 1-bp deletion at codon number 185 as well as a 2-bp deletion at codon number 736.

In maize (Z. mays ssp mays inbred line W22), five Bs1 copies were isolated (Fig. 4, Table 1), only two of them potentially encode an intact ORF1. The remaining three (My1, My3, and My5) contain the same 1-bp deletion located at codon number 345 (also present in D18, Mx23 and H10). In addition, My3 contains the same 1-bp deletion present in all perennial Bs1 copies as well as in Mx16, H10 and P22 (disrupting codon number 185) and the 2-bp deletion disrupting codon number 736 in all perennial and
annual teosinte copies. We also isolated \textit{Bs1} sequences from a number of maize exotic landraces and inbred lines and identified copies similar to maize (W22) and \textit{parviglumis Bs1} (data not shown). The two maize \textit{Bs1} copies that potentially encode intact ORF1 (My2 and My4) differ only by nucleotide substitutions (98% identical on the nucleotide level and 96% identical on the amino acid level). My4 is more similar to the published \textit{Bs1} sequence (isolated from \textit{Z. mays} ssp \textit{mays} inbred line 1s2p; Jin and Bennetzen, 1989). We also isolated a full-length \textit{Bs1} cDNA from another maize inbred line (\textit{Z. mays} ssp \textit{mays} Ohio43). As in the case of My2 and My4, the Ohio43 cDNA potentially encodes an intact ORF1 (Fig. 4).

\textbf{Patterns of nucleotide sequence evolution}

The determination of the ratio of the nonsynonymous (leading to amino acid replacements) substitution rate per nonsynonymous sites and synonymous (leading to silent changes) substitution rate per synonymous sites (dN/dS) has been used extensively to infer the nature of selection operating on genes of interest (Yang, 2002). An excess of nonsynonymous over synonymous substitutions is an indication of positive selection whereas a low dN/dS ratio is indicative of purifying selection (Yang, 2002). We calculated the dN/dS ratio for \textit{Bs1} ORF1 using the CODEML program of PAML (Methods). Except for H25, all sequences described above were used in this analysis. H25 was eliminated because it contains a large (696 bp) deletion that is likely to skew the analysis. We obtained a dN/dS ratio not significantly different from 1 (0.89), possibly suggesting that, within the genus \textit{Zea}, ORF1 is under neutral genetic drift. Since maize \textit{Bs1} sequences containing an intact ORF1 clustered in one clade (data not shown), we
used CODEML to calculate a different dN/dS value for this cluster and assessed whether it is significantly different from that of the rest of the sequences. Likelihood ratio estimates suggest no significant difference ($p = 0.59$, one degree of freedom). Pairwise comparisons of the maize and *parviglumis* *Bs1* sequences, however, reveal dN/dS ratios of 0.60, 0.59, and 0.56 for *Bs1*(1s2p)/P22, My4/P22, and My2/P22, respectively (Table 2). When the *Bs1* copies that encode intact ORF1 were compared, we obtained ratios slightly higher than 1 when *Bs1*(1s2p) or My4 were compared to My2 (1.2 or 1.17, respectively) but lower than 1 (0.50) when *Bs1*(1s2p) and My4 were compared to each other (Table 2). This confirms our earlier findings that My4 is more similar to the published *Bs1* sequence (isolated from 1s2p) than it is to My2, and suggests that there may be two slightly different copies of *Bs1* (1s2p/My4-type and My2-type) that are evolving differently.

We also used dN/dS ratio estimates to study the substitution patterns between the transduced genes and their parental host genes. We have previously reported that integration of both c-*pma* and c-*xe* but not c-*bg* occurred in a manner that preserved their open reading frames in *Bs1* ORF1 (Elrouby and Bureau, 2001). We tested whether substitution patterns were also constrained to keep the cellular gene’s amino acid composition (Table 3). The dN/dS ratios for c-*pma*/r-*pma*, c-*xe*/r-*xe*, and c-*bg*/r-*bg* were 0.29, 0.18, and 0.91, respectively, suggesting that r-*pma* and r-*xe* are likely under pressure to maintain their cellular gene amino acid sequence. A high value for c-*bg*/r-*bg* is consistent with the random integration of r-*bg* and very similar to the value we determined for ORF1 comparisons (0.89), suggesting that r-*bg* and c-*bg* diverged at the same rate ORF1 diverged at within the genus *Zea*.

DISCUSSION

Gene transduction by retroelements occurs frequently during the retrotransposition of L1 elements in human (Moran et al., 1999; Goodier et al., 2000). Approximately 23% of human L1 elements seem to have transduced host sequences. With ~400,000 L1 elements, transduction events like these have enlarged the diploid human genome by as much as 19 Mb, or 0.6% (Goodier et al., 2000). L1-mediated gene transduction has also been shown to occur in an experimental system involving a human cell culture and proposed to have the potential as a mechanism for the evolution of new genes by shuffling of already existing sequences (Moran et al., 1999; Goodier et al., 2000). In addition, the human PMCHL1 gene was created by retrotransposition of an antisense MCH mRNA coupled with the de novo creation of splice sites (Courseaux and Nahon, 2001). A computational survey of the rice genome identified 1235 retrogenes and 27 of these are located within LTR retrotransposons (Wang et al., 2006). Additionally, 380 of these retrogenes contain chimeric protein coding sequences. Combined with an exceptionally high rate of chimeric gene formation by retroposition in grass genomes, gene transduction by retroelements is likely to contribute to the phenotypic diversity of grasses. In maize, Bs1 remains the best studied LTR-retrotransposon with clear evidence for multiple gene transduction events (Elrouby and Bureau, 2001). In this study, we provide evidence that these transduction events may have resulted in the formation of a chimeric new gene. Whereas all transduction events took place before the speciation of the genus Zea, the formation of ORF1 may have happened in domesticated maize or in the diverse populations of its progenitor Z. mays ssp parviglumis suggesting a possible recent emergence of this new gene.
The birth of a new gene

Several findings suggest that $Bs1$ has evolved as a new gene. First, it is both transcribed and translated. This is remarkable since gene transduction and integration of the transduced sequences into the retroelement genome is theoretically a random process. In $Bs1$, none of the transduced sequences were full-length ORFs i.e. only fragments of the three genes were incorporated into the $Bs1$ genome (Elrouby and Bureau, 2001). Moreover, in the case of r-xe, a part of the transduced sequence is noncoding in c-xe (5’ untranslated region) and r-bg was integrated into $Bs1$ without maintaining the c-bg translational frame. $Bs1$ transductions were also associated with numerous mutations including two major deletions. The first deletion removed 385 bp in r-xe compared to its cellular gene counterpart (c-xe). This deletion eliminated 44 bp from the first exon, all of the intervening intron, and 82 bp of the second exon (Elrouby and Bureau, 2001). The second deletion removed 183 bp in r-pma when compared to c-pma and hence eliminated most of exon 6 (Bureau et al., 1994; Jin and Bennetzen, 1994). Additionally, single point mutations account for a large number of amino acid changes and the transduced sequences considerably diverged from their cellular gene counterparts (sequence identities are 81%, 86%, and 88% for r-bg/c-bg, r-xe/c-xe, and r-pma/c-pma, respectively) (Elrouby and Bureau, 2001). Despite all these mutations, one long uninterrupted ORF (ORF1) formed in maize and is both transcribed and translated. The size of the protein product observed in our immunoblot analyses is consistent with a translational product of ORF1.

Second, analysis of $Bs1$ sequence in maize and its wild relatives, the teosintes, suggests a process that guided the emergence of this new gene. $Bs1$ is likely to be a Zea-
specific element. DNA hybridization experiments using DNA from a variety of mono-
and dicotyledonous plants reveal its presence only in Zea species (Johns et al., 1985).
Similarly, no BsI sequences were found in closely related grasses (rice, sorghum, barley)
since BLAST searches only identified short regions of similarity with cellular gene
orthologs of the transduced genes (data not shown). In BsI copies from the different Zea
species, several deletions/insertions were identified, mainly in the teosintes, and
obviously led to the formation of one long uninterrupted ORF (ORF1) in maize. For
example, we have previously noticed that, compared to c-pma, r-pma in maize BsI
contained a deletion of 183 bp (Bureau et al., 1994; Elrouby and Bureau, 2001). In this
study, we identified teosinte BsI copies (in Z. luxurians and Z. diploperennis) that still
contain this 183 bp sequence. This further supports our hypothesis that c-pma was the
last of the three genes to be transduced (Elrouby and Bureau, 2001). More importantly, it
indicates that all three BsI transductions took place before the speciation of the genus Zea
and that the formation of mature ORF1 most probably took place in the diverse
populations of Z. mays ssp parviglumis (the progenitor of maize) or during the
domestication of maize. In addition, several deletions/insertions are conserved (identified
in the same position) among the different taxa studied. In particular, the 1-bp deletion at
codon 88 is seen in almost all teosinte copies but not in maize inbred lines or
parviglumis. Likewise, the 2-bp deletion at codon 736 is found in all teosinte sequences
as well as in one maize sequence, and the 1-bp deletion at codon 185 was identified in
one maize and eight teosinte copies (see results, Fig. 4 and Table 1). It is likely that
simple insertions at these positions were instrumental to the formation of ORF1.
Third, when the dN/dS ratio, a strict measure of selection, was calculated for teosinte Bs1 copies, a value not significantly different from 1 was obtained throughout the length of a re-constructed ORF1. This rules out purifying selection, and suggests that in the genus Zea ORF1 is under neutral drift, a result to be expected for pseudogenes (all teosinte Bs1 copies). However, when potentially “functional” copies of Bs1 obtained from maize inbred lines were compared with their presumed parental copy (from parviglumis), we obtained dN/dS ratios significantly lower than 1, suggesting potential functional constraints on Bs1 ORF1 in domesticated maize. This is also confirmed by the finding that the dN/dS ratio of Bs1(1s2p) and My4, two copies isolated from two different inbred lines, is also lower than 1. Interestingly, the two potentially functional copies identified in maize seem to diverge slightly in sequence and this is reflected in a slightly increased number of nonsynonymous over synonymous changes. This was evident from the fact that the two copies diverge more at the amino acid level than at the nucleotide level and also from a dN/dS ratio that is higher than 1.

Fourth, Bs1 is expressed only during a specific developmental window. This is evident again both on the transcript and the protein levels and both spatially and temporally. The Bs1 transcript is detected primarily in young ears and to a lesser extent in young tassels but not in any of the vegetative tissues tested. The BS1 protein mirrors its transcript localization, however, whereas it was detected in abundant levels in young ears, it was barely detectable in young tassels. Bs1 expression is also temporally regulated. Immunoblot analysis with protein extracts from young ears (stage R1 or early stage R2, when silk starts to be visible outside the husks; Hanway and Ritchie, 1984), whole mature kernels, mature embryos, endosperm, and pericarp reveals that the BS1
protein is detected only in young ears (Fig. 2). Embryos show very low expression levels suggesting that, in young ears, \textit{Bs1} is probably expressed in ovules and young developing embryos and that expression is either downregulated or shut down during later stages. This tight expression pattern suggests that \textit{Bs1} may have evolved as a new gene and may be involved in early aspects of maize reproduction and/or kernel development.

Fifth, \textit{Bs1} expression seems to correlate with normal reproductive development. The BS1 protein was undetectable in sterile ears collected from plants that developed abnormally, probably due to unfavorable growth conditions. These plants grew normal vegetative structures but produced very few pollen and sterile ears. Specifically, the ears were vegetative in appearance i.e. light green in color with kernels replaced with structures that look like elevated swellings from the main axis of the cob. The cob axis itself was enlarged (in diameter) and constituted most of the mass of the ear. The average length of the cob was 30%-50% of the length of an R1-R2 stage ear. Silk was arrested early and appeared only when husks were manually removed. These ears arrested at this stage and did not develop further. Whereas the BS1 protein was not detected in protein extracts prepared from these ears, high molecular weight ubiquitinated proteins as well as free Ubiquitin (Fig. 3C) were unaffected, suggesting that general protein degradation is not the case and that \textit{Bs1} is expressed only during normal ear development. It remains to be determined whether normal reproductive development requires or is necessary for \textit{Bs1} expression.
Recent birth

Our results suggest that the Bs1 transduction events occurred before the speciation of the genus Zea. We identified the transduced sequences in all Bs1 copies isolated from all five teosinte species tested (Fig. 4). However, all the teosinte copies of Bs1 contain either deletions, insertions or premature stop codons that disrupt the ORF1 reading frame. Although this is very clear for perennial (Z. luxurians and Z. diploperennis) and two of the annual (Z. mays ssp mexicana and Z. mays ssp huehuetenangensis) teosintes, Bs1 in Z. mays ssp parviglumis has a structure more similar to that of domesticated maize (Z. mays ssp mays). The Bs1 sequence in Z. mays ssp parviglumis differs from maize Bs1 by only several nucleotide substitutions and three simple deletions. The first deletion is located at codon position 185 (relative to ORF1 reading frame) and is 1 bp long. The second deletion is located at position 736 and is 2 bp in length. The third deletion is also 2 bp in length but is located downstream of ORF1 (in the hypothetical ORF2). A single nucleotide insertion at codon position 185 would restore the ORF1 reading frame and produce an ORF (94% identical to maize ORF1, 904 amino acids in length) that terminates 7 bp upstream of the hypothetical ORF2 stop codon (Fig. 4). Although we can not rule out the presence of such an ORF in Z. mays ssp parviglumis, we sequenced two more independent PCR products and confirmed the presence of the deletion at position 185. Additionally, this 1-bp deletion was also identified in eight other Bs1 sequences isolated from perennial and annual teosintes as well as domesticated maize (see results section) ruling out that it may be an amplification error and suggesting that it descends from an ancestral Bs1 copy. Although it is possible that one or more Bs1 copies may have escaped PCR amplification in the taxa used in this study, it is unlikely that this copy
encodes an intact ORF1. Given the high degree of sequence similarity between Bs1 copies that contain an intact ORF1 or an ORF1 that contains only simple (1 or 2 bp) indels, amplification would probably miss copies of considerable structural differences rather than copies that are more similar to maize Bs1. This is confirmed by the fact that all maize five Bs1 copies were cloned, the number of copies cloned from the teosintes corresponds to copy number estimates previously reported (Johns et al., 1985; Elrouby and Bureau, 2001), and that some internal primers (anchored in maize ORF1) failed to amplify any Bs1 sequences from the teosintes.

The high degree of sequence and structural similarity between the parviglumis and maize Bs1 copies makes it difficult to infer on the time of emergence of ORF1. It is tempting to suggest that ORF1 formed at or immediately after the domestication of maize since copies of Bs1 with intact ORF1 were only identified in domesticated maize. However, populations of Z. mays ssp parviglumis exhibit a very high degree of diversity, and maize has maintained a substantial proportion (60-70%) of this diversity (Tenaillon et al., 2001; reviewed in Tian et al., 2009). Given our small sample size we are not able to discern whether ORF1 formed in maize or in its progenitor populations. This may require a more detailed examination of Bs1 sequence in a large number of parviglumis and maize populations.

The notion that ORF1 may have acquired, or is in the process of acquiring, a function is extraordinary given how recently this must have taken place. Based on recent archaeological and molecular data, maize (Z. mays ssp mays) was domesticated from its progenitor teosinte (Z. mays ssp parviglumis) approximately 6,250 years ago (Riperno and Flannery, 2001; Matsuoka et al., 2002), although evidence derived from
microsatellite analyses estimates the upper limit of the time of divergence of the two subspecies at 9,188 years ago (Matsuoka et al., 2002). Although it has been suggested that most domesticated crops are the products of multiple independent domestications, analysis of 99 microsatellite loci in a large maize and teosinte population suggests a single domestication for maize that is likely to have occurred in the central Balsas River Valley in Mexico (Matsuoka et al., 2002). In archaeological maize samples, analysis of three genes involved in the control of plant architecture, storage protein synthesis, and starch production (and hence were major players during domestication) revealed that alleles of the three genes typical of contemporary maize were present in Mexican maize by 4,400 years ago, yet, allelic selection at one of these genes may have not been completed by as recently as 2,000 years ago (Jaenicke-Despres et al., 2003). As mentioned earlier, maize Bs1 is most similar (based on structure and the degree of sequence identity) to parviglumis Bs1. It is conceivable that the parviglumis allele passed on to maize during domestication approximately 9,000 years ago and that this was followed by two simple insertions that created the ORF1 reading frame. The finding of intermediates containing intact codon 185 or intact codon 736 among maize exotic landraces supports this idea. Alternatively, ORF1 or an ORF1-related fusion of ORF1 and the hypothetical ORF2 may have arisen in parviglumis followed by selection during domestication to maintain ORF1 in post-domestication maize. The domestication of maize is thought to have involved strong selective sweeps that are likely to reduce genetic diversity in genes and genomic regions important during domestication (Vigouroux et al., 2002). The absence of teosinte-type Bs1 copies (with large indels and premature stop codons) among maize inbred lines is consistent with this idea.
Strong selection for traits that improved agronomic performance, palatability or nutritional value was instrumental for the domestication of crop plants (Vigouroux et al., 2002). In maize, the ear received much of the attention. The morphological differences between the maize and teosinte ears suggest that traits unique to maize confer a selective disadvantage for surviving in the wild and more suitability as a cultivated crop. For example, maize has a rigid enlarged polystichous (multi-ranked) rachis with tenaciously attached grains that require human intervention for dispersal and propagation whereas the teosinte ear is distichous (two-ranked) with a thin rachis that naturally disarticulates aiding in seed dispersal. Teosinte grains are also protected inside fruitcases formed by invaginated rachis and lower glume. As discussed before, we suggest that Bs1 ORF1 is expressed in the ear (especially young developing ears) and its expression correlates with normal reproductive development. It is possible that Bs1 ORF1 contributes some of the traits that farmers favored during domestication (see a discussion of potential functions below). Alternatively, Bs1 ORF1 may have hitchhiked with some of the genes contributing these traits.

Potential function

It is likely that both r-xe and r-pma contribute properties to the BS1 protein similar to those of their parental cellular proteins. This is based on several observations. First, both r-xe and r-pma integrated in ORF1 in a nonrandom manner that maintained the same reading frame of their cellular gene counterparts (Jin and Bennetzen, 1994; Elrouby and Bureau, 2001). Second, dN/dS ratio estimates reveal potential functional constraints between r-xe and r-pma and their cellular gene counterparts (results). Third, conserved
domain analysis revealed that \(r-xe \) corresponds to the sequence encoding the xylan endohydrolase signal peptide (Banik et al., 1996; Elrouby and Bureau, 2001, data not shown) that potentially targets the enzyme to cell wall xylans, and that \(r-pma \) encodes a slightly truncated ATP-binding and hydrolysis domain characteristic of membrane and vacuolar proton-dependent ATPases (Jin and Bennetzen, 1994; Michelet and Boutry, 1995; Elrouby and Bureau, 2001, data not shown).

Several scenarios are possible for a potential function for \(Bs1 \) ORF1. For example, ORF1 may contribute a novel function that may or may not require the \(r-xe \) and/or \(r-pma \) domains, although amino acid and domain conservation would argue for a function that utilizes one or the two domains. Alternatively, ORF1 may alter already existing functions e.g. those encoded by \(c-xe \) and/or \(c-pma \). In this case, \(Bs1 \) may down-regulate \(c-xe \) and/or \(c-pma \) functions in the ear. This is conceivable both at the transcript and the protein levels. \(Bs1 \) transcripts share a high degree of sequence identity with those of \(c-xe \) and \(c-pma \) and may thus mediate their down-regulation by post-transcriptional gene silencing. The ORF1 protein may also compete with proteins encoded by \(c-xe \) and/or \(c-pma \) for xylan binding (for \(c-xe \)) and/or localization to the membrane or the cell wall (for \(c-pma \) and \(c-xe \), respectively). One of the main differences between the maize and the teosinte ear is cob size (both in length and diameter). The maize cob is much larger in size and is multi-ranked (polystichous) with tenaciously attached grains that require human intervention for dispersal and propagation (or harvest), traits that are suitable for a field crop. Xylans constitute more than 60% of cell wall polysaccharides in the maize cob (Ebringerova et al., 1997). In the teosinte ear, on the other hand, grains attach to a thin rachis that is mostly cellulose in nature. Reduction of xylan endohydrolase activity
in the maize ear could result in a larger xylan content and cob size, traits that might have appealed to farmers during domestication. Elucidating the exact function of Bs1 will require the generation of Bs1 null alleles or knockdown lines as well as detailed molecular and biochemical characterization.

Retroelement-mediated gene transduction has been previously proposed as a general mechanism to generate new genes with the potential to modulate host cellular functions. In this report, we show that gene transduction events mediated by the maize LTR-retrotransposon Bs1 led to the formation of a chimeric new gene whose function may be implicated during reproductive development. Given the high frequency with which gene transduction takes place (Moran et al., 1999, Wang et al., 2006) and the frequent occurrence in genomes (Goodier et al., 2000; Wang et al., 2006), other cases similar to Bs1 are likely to be identified and the full extent of how chimeric genes produced by retroposition may contribute to genetic and phenotypic diversity be elucidated.

MATERIALS AND METHODS

Plant material

The teosinte germplasm was a gift from Dr. John Doebley (University of Wisconsin, Madison, Wisconsin, USA). Zea luxurians (accession G-38), Z. diploperennis (accession 2549), Z. mays ssp huehuetenangensis (accession G-120), Z. mays ssp mexicana (accession 178) and Z. mays ssp parviglumis (Chilpancingo, Guerrero, Mexico) were previously described (Wang et al., 1999; White and Doebley, 1999). Zea mays ssp mays landraces Nal-Tel (accession YUC 7), Zapalote Chico (accession OAX 70), Conico (accession PUE 32), Gordo (CHH 160), Assiniboine (accession P1213793) and Serrano
(accession GUA 14), and inbred lines (W22, W23, A188, Oh43, K55) were obtained from Dr. Brandon Gaut (University of California, Irvine, California USA) and the North Central Regional Plant Introduction Station (Iowa State University, Ames, Iowa, USA) and were previously described (Tenaillon et al., 2001).

Polymerase Chain Reaction (PCR) amplification, Reverse Transcriptase (RT)-PCR, plasmid cloning and sequencing

The *Bs1* sequence in maize and the teosintes was amplified using primer Bs-296S (5’-GCTAACAATTGGTATCAAAAGG-3’) and primer Bs-3202A (5’-GTTAGCAACCCAATACCAGTG-3’). The thermocycle was as follows: 95 °C for 1 minute, 55 °C for 2 minutes, 72 °C for 2 minutes (40 cycles). To achieve fidelity, we used a mixture of a high-fidelity DNA polymerase (Pwo, Roche Diagnostics, GmbH, Mannheim, Germany) and AmpliGold Taq DNA polymerase (Perkin Elmer, Boston, Massachusetts, USA) in a 1:10 ratio as recommended by the supplier.

For RT-PCR, total RNA was isolated as before (Elrouby and Bureau, 2000), and treated with RQ1 RNase-free DNase (Promega corporation, Madison, Wisconsin, USA) to eliminate any contaminating genomic DNA. mRNA was then purified using the Qiagen Oligotex mRNA mini kit (Qiagen, Mississauga, Ontario, Canada). For first strand cDNA synthesis, approximately 50 ng of mRNA was incubated with an oligo (dT) primer and 200 units of Superscript II reverse transcriptase (Invitrogen, Carlsbad, California, USA) as recommended by the supplier, or with 1 μl of water (as a negative control for cDNA synthesis). To amplify the *Bs1* cDNA shown in figure 1, the following primers were used: Bs-1881S (5’-GCCAGTGGGCTGAGGAGG-3’) and Bs-3202A. Full-length *Bs1* cDNA was amplified from *Z. mays* ssp *mays* (cv Ohio43) using primers
Bs-296S and Bs-3202A. To amplify the Abp1 cDNA and genomic controls, we used primer Abp-3442S (5’-CAATAAGTCCAGGTCAAAGGACGCCAATC-3’) and Abp-5490A (5’-GGAAACACTTGTGACCTAGAG-3’) (Elrouby and Bureau, 2000). All PCR and RT-PCR products were cloned into pCR2.1 using the TA cloning kit (Invitrogen, Carlsbad, California, USA) and sequenced as before (Elrouby and Bureau, 2001).

Antibody production, protein extraction and immunoblot analyses

The sequence coding for the N-terminal 301 amino acids of Bs1 ORF1 was amplified (as described above) using primer Bs-338S (5’-GGGGGATCCGAGCCCACCCTGCAGTCC-3’) and primer Bs-1237A (5’-GGGAAGCTTTCATGCGCGGCTAAGCCAGC-3’). Primer Bs-338S starts at the second codon of ORF1 and contains an engineered BamHI site at its 5’end, whereas primer Bs-1237A contains an engineered termination codon (TGA) followed by a HindIII site at its 5’end. The PCR product was cloned into pCR2.1 and sequenced (as described above). The insert in pCR2.1 was then subcloned into the BamHI-HindIII sites of the bacterial expression vector pQE30 (Qiagen, Mississauga, Ontario, Canada) to generate a translational fusion with six N-terminal histidine (6x His) residues. The expression of recombinant pQE30, in E. coli (XL1-Blue) cells, was then induced using 200 μM IPTG for 5 hours at 37 °C. Purification of the 6x His-tagged BS1 protein on Ni-NTA was performed according to the manufacturer’s (Qiagen) instructions. This BS1 antigen was called BS301 and used to raise anti-BS301 antibodies as described below. We also raised a second antibody against a synthetic peptide. The peptide CAETQRQGPRQARRQCRLRV spanning residues 196 to 215 of ORF1 was synthesized.
and coupled to a carrier protein (Keyhole limpet hemacyanin) at the Sheldon Biotechnology Centre of McGill University (Montreal, Quebec, Canada). This antigen was called BS196. Anti-BS1 antibodies were raised in rabbits at Pocono Rabbit Farm and Laboratory (Canadensis, Pennsylvania, USA) by injecting 100 μg purified protein or coupled peptide mixed with Complete Freund’s Adjuvant intradermally, followed by three booster injections of 50 μg purified protein mixed with Incomplete Freund’s Adjuvant.

For immunoblot analyses, total protein extracts were prepared from the different tissue types as follows. Plant material was frozen in liquid nitrogen, ground to a fine powder and then extracted in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA and 0.1% Triton-X100. The suspension was centrifuged at 3000 xg for 10 minutes to pellet tissue debris, the supernatant was recovered and concentrated using CentriPreps YM-10 (Millipore Corporation, Bedford, Massachusetts, USA), and a protease inhibitor cocktail (Complete, Mini; Roche Diagnostics, GmbH, Mannheim, Germany) was added as recommended by the supplier. Protein concentration was estimated using the Bio-Rad protein assay reagent (Bio-Rad Laboratories, Hercules, California, USA). Fifty μg total proteins were separated on 10% sodium dodecyl sulphate (SDS)-polyacrylamide gels and blotted onto nitrocellulose membranes (Bio-Rad Laboratories, Hercules, California, USA) using standard methods. Blots were rinsed briefly in 1X phosphate buffered saline (PBS) and then incubated for two hours at room temperature in 1X PBS and 5% (W/V) low fat dry milk, with agitation. Anti-BS1 (1:1000 dilution) or anti-Ubiquitin (1:100 dilution; Upstate/Millipore, USA) antibody was then added and the blots were allowed to agitate for two more hours. The blots were then washed twice (10 minutes each) in 1X PBS.
PBS/5% milk and a secondary antibody (goat anti-rabbit IgG-alkaline phosphatase conjugate; Sigma, Saint Louis, Missouri, USA) was added according to the supplier’s instructions. After incubation for two hours, the blots were washed as before and the signal was visualized by the addition of a solution of 5-Bromo-4-chloro-3-indolyl phosphate/Nitroblue Tetrazolium (BCIP/NBT) (Sigma) as recommended by the supplier. For peptide competition, the anti-BS1 antibody was incubated with the BS1 peptide (10 μg/ml in PBS) shaking for two hours at 4 °C and then used for immunoblot analysis.

Nucleotide and amino acid sequence analysis

To infer on *Bs1* structure in maize and the teosintes, multiple sequence alignments were generated using ClustalW (Higgins et al., 1994) with minor manual editing. To determine the ratio of nucleotide substitutions at nonsynonymous and synonymous sites (*dN/dS*), we used the CODEML program of the Phylogenetic Analysis by Maximum Likelihood (PAML) suite of programs (Goldman and Yang, 1994; version 4.2a, January 2009). To obtain intact ORFs for all sequences, stop codons and codons with simple deletions (1-3 bp) were replaced by question marks, insertions were manually removed and larger deletions (30 bp in one case and 60 bp in another) were replaced by a reconstructed consensus sequence (based on the remaining sequences). Maximum parsimony trees were generated using the PHYLIP suite of programs. CODEML default parameters (codon Freq = 2, clock = 0) were used to estimate omega for all branches (model = 0, NSsites = 0) using branch lengths of the tree generated by PHYLIP or independent of branch length. We also allowed CODEML to estimate different values for omega for the clade that contains intact ORF1 sequences and the rest of *Bs1* copies (model = 2, NSSites = 0) and used likelihood ratio test statistics (chi-square with one
degree of freedom) to assess whether the difference is significant. For pairwise comparisons, we used runmode = -2.

Acknowledgements

We would to thank Ilkka Kronholm and Asis Hallab for assistance with PAML, and Dr. Daniel Schoen for critical reading of our manuscript. This work was supported by grants to T.E.B. from the National Sciences and Engineering Research Council of Canada.
Table 1. Sequence analysis of *Bs1* genes in maize and the teosites.

Codon disrupted^a	Nature of disruption (size bp)	*Bs1* sequence^b
6	Stop	Mx16
12	Stop	L14, L15, D13
16	Indel (1)	H10
26	Stop	D13, H8, H10
40	Indel (2)	L14, L15
62, 63	Indel (2)	L14, D13
79	Indel (1)	L14, L15
88	Indel (1)	L14, L15, D13, D18, H25, H10, Mx6, Mx16, Mx23, Mx24
138	Indel (21)	D12, D18
171	Indel (8)	D13
185	Indel (1)	L14, L15, D12, D13, D18, H10, Mx16, P22, My3
194	Indel (69)	L14, L15, D13
206	Stop	L14, L15
210	Stop	D13
234	Indel (1)	Mx23
257	Stop	Mx6, Mx23, Mx24
286	Indel (1)	L14, L15
339	Indel (1)	D13
344	Indel (1)	D13
345	Indel (1)	D18, H10, Mx23, My1, My3, My5
373	Stop	Mx6, Mx23, Mx24
430	Stop	D12, D18
435	Indel (3)	Mx16
471	Indel (1)	H25
473	Indel (91)	Mx16
490-510	Indel (60)	D12, D18
520	Stop	D13
526	Indel (1)	H8
548	Indel (1)	H10
561	Indel (187/183)	L14, L15, D13
619	Indel (2)	D18
624	Stop	My1
679-689	Indel (30)	L14, L15
688	Stop	D13
736	Indel (2)	L14, L15, D12, D13, D18, H10, Mx6, Mx16, Mx23, Mx24, P22, My3
736, 737	Indel (3)	H8
Codon disrupted^a	Nature of disruption (size bp)	BsI sequence^b
---------------------------	-------------------------------	------------------------
738	Stop	L14, L15, D13
Downstream of ORF1	Indel (12)	L14, L15, D12, D13, D18
Downstream of ORF1	Indel (2/1)	L14, L15, D12, D18, P22
Downstream of ORF1	Indel (59)	My1, My3

^a Codon numbers are based on BsI ORF1 in *Z. mays mays*.

^b BsI copies were cloned from *Zea luxurians* (L), *Z. diploperennis* (D), *Z. mays ssp mexicana* (Mx), *Z. mays ssp huehuetenangensis* (H), *Z. mays ssp parviglumis* (P) and *Z. mays ssp mays* (My). A 696 bp deletion found in H25 is not represented here.
Table 2. dN/dS values of pairwise comparisons of potentially functional $Bs1$ copies and their parental teosinte copy.

	Bs1(1s2p)	My4	My2	P22
Bs1(1s2p)	-			
My4	0.50	-		
My2	1.21	1.17	-	
P22	0.60	0.59	0.56	-
Table 3. dN/dS values of pairwise comparisons of transduced sequences and their parental maize cellular gene counterparts.

	r-pma	r-xe	r-bg
c-pma	0.29		
c-xe		0.18	
c-bg			0.91
Figure 1. **Bs1 is expressed in reproductive tissues.** (A) RT-PCR analysis of *Bs1* mRNA extracted from *Zea mays* subspecies *mays*. Lanes 1 and 16 contain a molecular weight marker, lanes 2 to 8 contain young ear (stage R1 or early stage R2, when silk starts to be visible outside the husks; Hanway and Ritchie 1984) (W22), young ear (Ohio 43), young tassel (W22), young tassel (Ohio 43), husks (Ohio 43), silk-free ear (Ohio 43), and silk (Ohio 43), respectively. Lanes 9 to 12 contain Ohio 43 root, one-week old seedling, two-week old seedling leaf, and mature leaf, respectively. Lanes 13 to 15 contain controls in which reverse transcriptase was omitted during first strand cDNA synthesis; lane 13 contains young ear (Ohio 43), lane 14 contains young ear (W22), and lane 15 contains young tassel (Ohio 43), respectively. (B) RT-PCR analysis of *Abp1* mRNA extracted from *Zea mays* subspecies *mays* (Ohio 43) using the primer pair shown in the schematic below (represented by arrow heads). Lane 1 contains a molecular weight marker and lanes 2 to 8 contain young ear, young tassel, root, seedling leaf, 8-week old leaf, silk, and husks, respectively. Lane 9 contains PCR amplification product using the same primer pair used for RT-PCR but with genomic DNA a template. (C) Schematic depiction of the *Abp1* gene showing primers (arrows) used in B. The primers used to amplify the *Bs1* transcript are indicated by arrows on top of the *Bs1* structure depicted in figure 4.

Figure 2. **Bs1 is translated.** Immunoblot analysis using total bacterial (panel A) or plant (panels B-E) extracts. In panel A, extracts from a bacterial strain containing a plasmid expressing the N-terminal 301 amino acids (lane 1) or the empty plasmid (lane 2) were probed with anti-BS1 antisera. In panels B-D, extracts from young ears, sterile ears, or
leaves (lanes 1-3, respectively) were probed with the anti-BS1 antisera (B), pre-immune serum (C), or anti-BS1 antisera that had been incubated with a BS1 synthetic peptide (D). In panel E, proteins extracted from mature leaf, two-week old seedling leaf, one-week old seedling, silk, young ear, young tassel, endosperm, pericarp, and embryo (lanes 1-9, respectively), were probed with anti-BS1 antibody. In all panels, the left-most lane contains a molecular weight marker. Sizes are in kilodaltons.

Figure 3. **Bs1 is involved during normal reproductive development.** (A) A photograph of normal (right) and sterile maize ears (left). (B) Immunoblot analysis using anti-BS1 antibody and proteins extracted from leaf, normal young tassel, post-pollen tassel, leaf, normal young ear and sterile ear (lanes 2-7, respectively). (C) Immunoblot analysis using anti-ubiquitin antibody and protein extracts as in B. The bracket indicates high molecular weight ubiquitinated proteins and the arrow indicates free Ubiquitin. Lane 1 contains a molecular weight marker. Sizes are in kilodaltons.

Figure 4. **Structure and evolution of Bs1 in maize and the teosintes.** Top, The Bs1 structure showing the three transduced genes (r-bg, r-xe, and r-pma), the gag and env domains and the retroelement long terminal repeats (LTR). ORF1 and the hypothetical ORF2 are shown below. Primers used for RT-PCR are indicated by the arrows. Bottom, The different Bs1 copies in maize and the teosintes are represented by horizontal lines, deletions and insertions and their sizes in basepairs by triangles, and stop codons by asterisks.
LITERATURE CITED

Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815

Banik M, Garrett TPJ, Fincher GB (1996) Molecular cloning of cDNAs encoding 1,4-β-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare). Plant Mol. Biol. 31: 1163-1172

Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15: 621-627

Bureau TE, White SE, Wessler SR (1994) Transduction of a cellular gene by a plant retroelement. Cell 77: 479-480.

Chen J-J, Janssen B-J, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: Alterations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289-1304

Cooper GM (1995) In Oncogenes, 2nd edition, pp. 21-65, Jones and Bartlett publishers, Sudbury, Massachusetts

Courseaux A, Nahon J-L (2001) Birth of two chimeric genes in the hominidae lineage. Science 291: 1293-1297

Cowan RK, Hoen DR, Schoen DJ, Bureau TE (2005) Mustang is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol. 22: 2084-2089

Doebley J (2004) The genetics of maize evolution. Annu. Rev. Genet. 38: 37-59

Ebringerova A, Hromadkova Z, Hribalova V, Mason TJ (1997) Effect of ultrasound on immunogenic corn cob xylan. Ultrasoundics Sonochemistry 4: 311-315

Elrouby N, Bureau TE (2000) Molecular Characterization of the Abp1 5' flanking region in maize and the teosintes. Plant Physiol. 124: 369-377

Elrouby N, Bureau TE (2001) A novel hybrid ORF formed by multiple cellular gene transductions by a plant LTR-retroelement. J. Biol. Chem. 276: 41963-41968.

Goff SA, Ricke D, Lan TH, et al. (55 co-authors) (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100. (Please note that 55 includes all authors of the article)
Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11: 725-736

Goodier JL, Ostertag EM, Kazazian, HH Jr (2000) Transduction of 3’-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9: 653-657

Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N (2009) The functional role of Pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21: 25-38

Hanway JJ, Ritchie SW (1984) How a corn plant develops: Special Report No. 48, Iowa State University

Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680

Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94: 463-470

Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE (2006) Transposon-mediated gene expansion and diversification of a family of ULP-like genes. Mol. Biol. Evol. 23: 1254-1268

Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by phytochrome A-signaling pathway. Plant J. 34: 453-471

International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921

Jaenicke-Despres V, Buckler E, Smith BD, Gilbert MTP, Cooper A, Doebley J, Paabo, S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302: 1206-1208.

Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569-573

Jin Y-K, Bennetzen JL (1989) Structure and coding properties of Bs1, a maize retrovirus-like retrotransposon. Proc. Natl. Acad. Sci. USA 86: 6235-6239

Jin Y-K, Bennetzen JL (1994) Integration and nonrandom mutation of plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177-1186
Johns MA, Mottinger J, Freeling M (1985) A low copy number copia-like transposon in maize. EMBO J. 4: 1093-1102

Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 15: 1292-1297

Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626-1632.

Li W-H, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analysis of the human genome. Nature 409: 847-849

Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305

Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet. 4: 865-875

Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 99: 6080-6084

Mi S, Lee X, Li X-P, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang X-Y, Edouard P, Howes S, Keith JC Jr, McCoy J (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785-789

Michelet B, Boutry M (1995) The plasma membrane H⁺ -ATPase: A highly regulated enzyme with multiple physiological functions. Plant Physiol. 108: 1-6

Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283: 1530-1534

Palmgren MG (1994) Capturing of host DNA by a plant retroelement: Bs1 encodes plasma membrane H(+)-ATPase domains. Plant Mol. Biol. 25: 137-140

Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends in Genetics 12: 48-52

Rick, CM, Harrison, AL (1959) Inheritance of five new tomato seedling characters. J. Hered. 50: 91-98
Riperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc. Natl. Acad. Sci. USA 98: 2101-2103.

Roth DB, Craig NL (1998) V(D)J recombination: A transposase goes to work. Cell 94: 411-414

Schnable P, Ware D, Fulton R, et al. (157 co-authors) (2009) The B73 maize genome: Complexity, diversity, and dynamics. Science 326: 1112-1115. (Please note that 157 includes all authors of the article.)

Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. USA 98: 9161–9166.

Tian F, Stevens NM, Buckler ES IV (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc. Natl. Acad. Sci. USA 106: 9979-9986

Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc. Natl. Acad. Sci. USA 99: 9650-9655.

Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398: 236-239

Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong G K-S, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18: 1791-1802

White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153: 1455-1462

Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319: 1527-1530

Yang Z (2002) Inference of selection from multiple species alignments. Curr. Opin. Genet. Dev. 12: 688-694

Yu J, Hu S, Wang J, et al. (100 co-authors) (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296: 79-92. (Please note that 55 includes all authors of the article)
Figure 1. *Bs1* is expressed in reproductive tissues. (A) RT-PCR analysis of *Bs1* mRNA extracted from *Zea mays* subspecies *mays*. Lanes 1 and 16 contain a molecular weight marker, lanes 2 to 8 contain immature ear (stage R1 or early stage R2, when silk starts to be visible outside the husks; Hanway and Ritchie 1984) (W22), immature ear (Ohio 43), young tassel (W22), young tassel (Ohio 43), husks (Ohio 43), silk-free ear (Ohio 43), and silk (Ohio 43), respectively. Lanes 9 to 12 contain Ohio 43 root, one-week old seedling, two-week old seedling leaf, and mature leaf, respectively. Lanes 13 to 15 contain controls in which reverse transcriptase was omitted during first strand cDNA synthesis; lane 13 contains immature ear (Ohio 43), lane 14 contains immature ear (W22), and lane 15 contains young tassel (Ohio 43), respectively. (B) RT-PCR analysis of *Abp1* mRNA extracted from *Zea mays* subspecies *mays* (Ohio 43) using the primer pair shown in the schematic below (represented by arrow heads). Lane 1 contains a molecular weight marker and lanes 2 to 8 contain immature ear, young tassel, root, seedling leaf, 8-week old leaf, silk, and husks, respectively. Lane 9 contains PCR amplification product using the same primer pair used for RT-PCR but with genomic DNA a template. (C) Schematic depiction of the *Abp1* gene showing primers (arrows) used in B.
Figure 2. **Bs1 is translated.** Immunoblot analysis using total bacterial (panel A) or plant (panels B-E) extracts. In panel A, extracts from a bacterial strain containing a plasmid expressing the N-terminal 301 amino acids (lane 1) or the empty plasmid (lane 2) were probed with anti-Bs1 antisera. In panels B-D, extracts from immature ears, sterile ears, or leaves (lanes 1-3, respectively) were probed with the anti-Bs1 antisera (B), pre-immune serum (C), or anti-Bs1 antisera that had been incubated with a Bs1 synthetic peptide (D). In panel E, proteins extracted from mature leaf, two-week old seedling leaf, one-week old seedling, silk, immature ear, young tassel, endosperm, pericarp, and embryo (lanes 1-9, respectively), were probed with anti-Bs1 antibody. In all panels, the left-most lane contains a molecular weight marker. Sizes are in kilodaltons.
Figure 3. *Bs1* is involved during normal reproductive development. (A) A photograph of normal (right) and sterile maize ears (left). (B) Immunoblot analysis using anti-BS1 antibody and proteins extracted from leaf, normal young tassel, post-pollen tassel, leaf, normal immature ear and sterile ear (lanes 2-7, respectively). (C) Immunoblot analysis using anti-ubiquitin antibody and protein extracts as in B. The bracket indicates high molecular weight ubiquitinated proteins and the arrow indicates free Ubiquitin. Lane 1 contains a molecular weight marker. Sizes are in kilodaltons.
	ORF1	ORF2
L14	* 2Δ 2Δ 1Δ 1Δ 1Δ 69	187 30Δ 2Δ 12 2Δ
L15	* 2Δ 1Δ 1Δ 1Δ 69	183 30Δ 2Δ 12 2Δ
D13	* * 2Δ 1Δ 8 1Δ 69	* 183 * 2Δ 12
D12	* 21 1Δ	* * 60Δ
D18	21 1Δ 1Δ * 60Δ 2Δ	2Δ 12 1Δ
Mx16	1Δ 1Δ	3Δ 91
Mx23	1Δ 1Δ	2Δ
Mx24	1Δ *	2Δ
Mx6	1Δ *	2Δ
H25	1Δ	696 Δ
H10	1Δ* 1Δ 1Δ	2Δ
H8	* 1Δ	3Δ
P22	1Δ	2Δ 2Δ
My1	1Δ	* 59Δ
My2		
My3	1Δ 1Δ	2Δ 59Δ
My4		
My5		
Oh43		

Copyright © 2010 American Society of Plant Biologists. All rights reserved.