Androgen-dependent alternative mRNA isoform expression in prostate cancer cells [version 1; referees: 2 approved]

Jennifer Munkley, Teresa M. Maia, Nekane Ibarluzea, Karen E. Livermore, Daniel Vodak, Ingrid Ehrmann, Katherine James, Prabhakar Rajan, Nuno L. Barbosa-Morais, David J. Elliott

Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
VIB Proteomics Core, Albert Baertsoenkaai 3, Ghent, 9000, Belgium
Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain
Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Valencia, 46010, Spain
Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Interdisciplinary Computing and Complex BioSystems Research Group, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
Life and Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK

Abstract

Background: Androgen steroid hormones are key drivers of prostate cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional changes in prostate cancer cells. Yet to what extent androgens control alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown.

Methods: Here we have used RNA-Seq data to globally identify alternative mRNA isoform expression under androgen control in prostate cancer cells, and profiled the expression of these mRNA isoforms in clinical tissue.

Results: Our data indicate androgens primarily switch mRNA isoforms through alternative promoter selection. We detected 73 androgen regulated alternative transcription events, including utilisation of 56 androgen-dependent alternative promoters, 13 androgen-regulated alternative splicing events, and selection of 4 androgen-regulated alternative 3′ mRNA ends. 64 of these events are novel to this study, and 26 involve previously unannotated isoforms. We validated androgen dependent regulation of 17 alternative isoforms by quantitative PCR in an independent sample set. Some of the identified mRNA isoforms are in genes already implicated in prostate cancer (including LIG4, FDFT1 and RELAXIN), or in genes important in other cancers (e.g. NUP93 and MAT2A). Importantly, analysis of transcriptome data from 497 tumour samples in the TGCA prostate adenocarcinoma (PRAD) cohort identified 13 mRNA isoforms (including TPD52, TACC2 and NDUFS3) that are differentially regulated in localised prostate cancer relative to normal tissue, and 3 (OSBPL1A, CLK3 and TSC22D3) which change significantly with Gleason grade and tumour stage.

Conclusions: Our findings dramatically increase the number of known androgen regulated isoforms in prostate cancer, and indicate a highly complex...
androgen regulated isoforms in prostate cancer, and indicate a highly complex response to androgens in prostate cancer cells that could be clinically important.

Keywords
Androgens, AR, prostate cancer, alternative splicing, alternative promoters, alternative 3' ends, transcription, mRNA isoforms
Introduction

A single human gene can potentially yield a diverse array of alternative mRNA isoforms, thereby expanding both the repertoire of gene products and subsequently the number of alternative proteins produced. mRNAs with different exon combinations are transcribed from most (up to 90%) human genes, and can generate variants that differ in regulatory untranslated regions, or encode proteins with different sub-cellular localisations and functions.1,3 Altered splicing patterns have been suggested as a new hallmark of cancer cells4-8, and in prostate cancer there is emerging evidence that expression of specific mRNA isoforms derived from cancer-relevant genes may contribute to disease progression9-11.

Androgen steroid hormones and the androgen receptor (AR) play a key role in the development and progression of prostate cancer, with alternative splicing enabling cancer cells to produce constitutively active ARs11-13. The AR belongs to the nuclear receptor superfamily of transcription factors, and is essential for prostate cancer cell survival, proliferation and invasion14-16. Classically, androgen binding promotes AR dimerization and its translocation to the nucleus, where it acts as either a transcriptional activator or a transcriptional repressor to dictate prostate specific gene expression patterns17-23. The major focus for prostate cancer therapeutics has been to reduce androgen levels through androgen deprivation therapy (ADT), either with inhibitors of androgen synthesis (for example, abiraterone) or with antagonists that prevent androgen binding to the AR (such as bicalutamide or enzalutamide)24. Although ADT is usually initially effective, most patients ultimately develop lethal castrate resistant disease for which there are limited treatment options11,12.

Androgens and other steroid hormones have also been associated with alternative splicing. Recent RNA-sequencing-based analysis of the androgen response of prostate cancer cells grown in vitro and within patients following ADT identified a set of 700 genes whose transcription is regulated by the AR in prostate cancer cells25. However, in addition to regulating transcriptional levels, steroid hormone receptors can control exon content of mRNA26-29. In prostate cancer androgens can modulate the expression of mRNA isoforms via pre-mRNA processing and promoter selection30. The AR can recruit the RNA binding proteins Sam68 and p68 as cofactors to influence alternative splicing of specific genes, and studies using minigenes driven from steroid responsive promoters indicate that the AR can affect both the transcriptional activity and alternative splicing of a subset of target genes31,32. Other steroid hormones also coordinate both transcription and splicing decisions33. The thyroid hormone receptor (TR) is known to play a role in coordinating the regulation of transcription and alternative splicing34, and the oestrogen receptor (ER) can both regulate alternative promoter selection and induce alternative splicing of specific gene sets that can influence breast cancer cell behaviour11,35-37.

In previous work we used exon level microarray analysis to identify 7 androgen dependent changes in mRNA isoform expression38. However, to what extent androgen-regulated mRNA isoforms are expressed in clinical prostate cancer is unclear. To address this, here we have used RNA-Sequencing data to globally profile alternative isoform expression in prostate cancer cells exposed to androgens, and correlated the results with transcriptomic data from clinical tissue. Our findings increase the number of known AR regulated mRNA isoforms by 10 fold and imply that pre-mRNA processing is an important mechanism through which androgens regulate gene expression in prostate cancer.

Methods

Cell culture

Cell culture was as described previously25,39. All cells were grown at 37°C in 5% CO\textsubscript{2}. LNCaP cells (CRL-1740, ATCC) were maintained in RPMI-1640 with L-Glutamine (PAW Laboratories, R15-802) supplemented with 10% Fetal Bovine Serum (FBS) (PAW Laboratories, A15-101). For androgen treatment of cells, medium was supplemented with 10% dextran charcoal stripped FBS (PAW Laboratories, A15-119) to produce a steroid-deplete medium. Following culture for 72 hours, 10 nM synthetic androgen analogue methyltrienolone (R1881) (Perkin-Elmer, NLP00505SMG) was either added (Androgen +) or absent (Steroid deplete) for the times indicated.

RNA-seq analysis

RNA-seq transcript expression analysis of previously generated data25 was performed according to the Tuxedo protocol40. All reads were first mapped to human transcriptome/genome (build hg19) with TopHat41/Bowtie42, followed by per-sample transcript assembly with Cufflinks43. The mapped data was processed with Cuffmerge, Cuffdiff and Cuffcompare, followed by extraction of significantly differentially expressed genes/isoforms; expression changes between cells grown with androgen and cells grown without androgens were assessed. Reference files for the human genome (UCSC build hg19) were downloaded from the Cufflinks pages: (UCSC-hg19 package from June 2012 was used.). The software versions used for the analysis were: TopHat v1.4.1, SAM tools Version: 0.1.18 (r982:295), bowtie version 0.12.8 (64-bit) and cufflinks v1.3.0 (linked against Boost version 104000). The Tuxedo protocol40 was carried out as follows: For steps 1–5, no parameters (except for paths to input/output files) were altered. In step 15, additional switches -s, -R, and -C were used when running cuffcompare. Steps 16–18 (extraction of significant results) were performed on the command line.

RNA extraction, RT–PCR and real-time PCR

Cells were harvested and total RNA extracted using TRIzol (Invitrogen, 15596-026) according to manufacturer’s instructions. RNA was treated with DNase 1 (Ambion, AM2222) and cDNA was generated by reverse transcription of 500ng of total RNA using the Superscript VILO cDNA synthesis kit (Invitrogen, 11754-050). Alternative events were analysed by either reverse transcriptase PCR or real-time PCR. Exon profiles were monitored and quantified using the Qiagen capillary electrophoresis system (Qiagen) and percentage inclusion was calculated as described previously46. Real time PCR was performed in triplicate on cDNA using SYBR® Green PCR Master Mix
Global identification of androgen-dependent mRNA isoform production in prostate cancer cells predicts a major role for alternative promoter utilisation

We analysed previously published RNA-Seq data from LNCaP cells\(^9\) to globally profile how frequently androgens drive production of alternative mRNA isoforms in prostate cancer cells. This analysis identified a group of 73 androgen regulated alternative mRNA isoforms, which could be validated by visualisation on the UCSC Genome Browser\(^9\) (Table 1). 64 AR regulated mRNA isoforms were novel to this study. Experimental validation in an independent RNA sample set using RT-PCR confirmed 17/17 of these alternative events at the mRNA level (Supplementary Figure 1). 73% of genes (53/73) with identified alternative androgen regulated mRNA isoforms also changed their overall expression levels in response to androgens (Table 2). Some of the androgen regulated alternative events are in genes are already implicated in either prostate cancer or other cancer types (summarised in Table 3). However, Gene Ontology analysis of these 73 genes did not identify any significantly enriched biological processes.

The 73 identified mRNA isoforms were generated via androgen-regulated utilisation of 56 alternative promoters, 4 alternative 3’ ends and 13 alternative splicing events (Figure 1A).
Table 1. Details of the 73 androgen regulated mRNA isoforms identified in prostate cancer cells.

Gene	Event type	Position (hg19)	RefSeq	Position (hg19)	RefSeq	Change with androgens	PCR Validation	Predicted to change protein?	Isoform 1 ID	Isoform 2 ID	Comparable?								
LIG4	Alternative	chr13:108859792-108807016	NM_001098268.1	chr13:108859792-108807130	NM_002312.3	Induction of promoter 2	Yes (Qiagen)	No (5' UTR)	uc001vqr.2	uc001vqr.2	Yes								
TACC2	Alternative	chr10:123748689-124014060	NM_005862.3	chr10:123748554-124014060	NM_001291879.1	Repression of promoter 1	Yes (Qiagen)	Yes	uc001vqr.2	uc001vqr.2	Yes								
TPDS2	Alternative	chr8:80947103-81083894	NM_001287144.1	chr8:80947103-810993066	NM_001025252.2	Induction of promoter 2	Yes (Qiagen)	Yes	uc003ybr.1	uc003ybr.1	Yes								
NUP93	Alternative	chr16:56764017-5687861	NM_014669.4	chr16:56815704-5687861	NM_001242795.1	Induction of promoter 1	Yes (SYBR)	Yes	uc002ekb.2	uc002ekb.2	Yes								
RL1	Alternative	chr5:5334932-5339873	NM_006911.3	chr5:5335270-5339396	Not annotated	Repression of promoter 1	Yes (Qiagen)	Yes (change from non-coding)	uc003zb.1	Not annotated	No								
AP2S1	Alternative	chr19:47341415-47354252	NM_00501076.1	chr19:47341415-47335347	NM_001301076.1	Induction of promoter 2	Yes (SYBR)	Yes	uc002pul.1	Not annotated	No								
RL2	Alternative	chr9:5299866-5304611	NM_005059.3	chr9:5299860-5304222	Not annotated	Repression of promoter 1	Yes (Qiagen)	Yes (from non-coding)	uc003zi.1	Not annotated	No								
PIK3R1	Alternative	chr5:67511584-67597649	NM_181523.2	chr5:67584252-67597649	NM_181524.1	Repression of promoter 2	Yes (SYBR)	Yes	uc003va.2	uc003vjc.2	Yes								
MAPRE2	Alternative	chr18:32556892-32723432	NM_001943826.2	chr18:32561324-326723432	NM_014266.8	Switch to promoter 2	Yes (Qiagen)	Yes	uc010xgb.1	uc009vyl.2	Yes								
NDUFAF4	Alternative	chr6:97337817-97345767	NM_014165.3	chr6:9733727-97345368	Not annotated	Repression of promoter 2	Yes (Qiagen)	Yes (change from non-coding)	uc003pov.2	Not annotated	No								
DCXR	Alternative	chr17:79993757-79995573	NM_002686.3	chr17:79993757-79995217	Not annotated	Repression of promoter 2	Yes (Qiagen)	Yes	uc002kdq.2	Not annotated	No								
PEX10	Alternative	chr1:2336241-2344010	NM_006217.3	Not annotated	Not annotated	Switch to promoter 2	Yes (Qiagen)	Yes	uc001ajh.2	Not annotated	No								
SNAPC2	Alternative	chr19:7985194-7988136	NM_003083.3	chr19:7985687-7988136	NR_003701.7	Switch to promoter 2	Yes (SYBR)	Yes (change from non-coding)	uc002miv.1	uc002miv.1	Yes								
ATP6V0D1	Alternative	chr16:674731917-67475898	NM_004691.4	chr16:67471931-67475338	Not annotated	Repression of promoter 2	Yes	uc002ete.1	Not annotated	No									
ARRC1	Alternative	chr9:140500092-140508912	NM_001317968.1	chr9:140506874-140509793	Not annotated	Induction of promoter 2	Yes (change from non-coding)	Yes (SYBR)	uc004cnp.1	Not annotated	No								
DENND1A	Alternative	chr9:126141933-126692417	NM_0020946.1	chr9:126143408-126586780	Not annotated	Repression of promoter 2	Yes	uc004bnz.1	Not annotated	No									
Gene	Isoform 1	Isoform 2	Predicted to change protein	PCR Validation	Change with antigens	TCGA PRAD	Isoform 2 ID												
---------	-----------	-----------	----------------------------	----------------	----------------------	-----------	--------------												
KILH3	chr16:84964217-84964226	NM_024731.3	Yes	annotated	uc002bff.1	F1000Research 2018, 7:1189 Last updated: 18 SEP 2018	uc003bjq.1												
RAB3I	chr11:51646781-51646799	NM_001271686.1	Yes	annotated	NM_001073070-155555592	Not annotated	uc000wiv.2												
ACER3	chr17:21742011-21742021	NM_0191682.1	Yes	annotated	NM_001099659.2	uc002ayg.3	uc000ayg.1												
CEBPLA	chr11:75351917-75352021	NM_0020697.3	Yes	annotated	NM_0010803.4	uc002kve.2	uc003gvu.3												
TRIM16	chr19:19710685-19710694	NM_0000670.3	Yes	annotated	NM_002ayy.1	uc000ayy.3	uc000ayy.2												
VSIG3L	chr19:55555592-55555593	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
SEPT5	chr17:1970685-1970694	NM_0000542.3	Yes	annotated	NM_00014963.3	uc002ayg.3	uc000ayg.1												
HNNGCR	chr7:7467306-7467306	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
RHDH3	chr9:19555592-19555593	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
GFRIN2	chr10:1496346-1496347	NM_0000542.3	Yes	annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
CIK3	chr15:74900713-74900714	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
TRAPD6	chr15:74900713-74900714	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
CDIP1	chr18:3919080-3919081	NM_00109789.2	No	Not annotated	uc001ayg.1	uc002ayg.3	uc000ayg.1												
YIF1B	chr18:3919080-3919081	NM_00109789.2	No	Not annotated	uc001ayg.1	uc002ayg.3	uc000ayg.1												
LINK2	chr22:31069560-31069561	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
TSC22D3	chr18:3919080-3919081	NM_00109789.2	No	Not annotated	uc001ayg.1	uc002ayg.3	uc000ayg.1												
ALDH1A3	chr15:10149871-10149872	NM_00109789.2	No	Not annotated	uc001ayg.1	uc002ayg.3	uc000ayg.1												
TRABD2	chr22:31069560-31069561	NM_00288.5	No	Not annotated	NM_001014957.1	uc002ayg.3	uc000ayg.1												
Gene	Event type	Position (hg19)	RefSeq	Isoform 1 ID	Isoform 2 ID	TCGA PRAD	Isoform 1 D	Isoform 2 D	Comparable?	Predicted to change protein?	Change with antitgens	PCR Validation	Induction of promoter 1	Induction of promoter 2	RefSeq	Isoform 2	Induction of promoter 1	Induction of promoter 2	
--------	------------------------	-----------------	-----------	--------------	--------------	-----------	-------------	-------------	-------------	-----------------------------	----------------------	-----------------	--------------------------	--------------------------	---------	----------	--------------------------	--------------------------	
GMFB	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
MLSTB	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
TLE3	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
UBA1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
TMGC1B	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
FDF1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
GRPB1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
NCAPD3	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
KLC2	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
RAPP1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
TMEM79	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
NHA1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
ZNF32	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
C10orf3	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
UBEZ3	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
KRT8	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
ELOVL1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
ROG1	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
SQRF3B	Alternative promoter	chr1:54943134-	NM_001124.2	uc011cet.1	uc002asn.2	u0719849w1	u000557p2	u000557p2	No	No (5' UTR)	Switch to promoter 2	No	Yes	No	No	No	No	Not annotated	annotated
Gene	Event type	Position (hg19)	RefSeq	Change with androgens	PCR Validation	Predicted to change protein?	Isoform 1 ID	Isoform 2 ID	Comparable?										
------------	---------------------------------	----------------	---------------	-----------------------	----------------	-------------------------------	--------------	--------------	-------------										
MAT2A	Alternative 3' end	chr2:85766101-	NM_005911.5	Repression of isoform 2	Yes (Qiavel)	Yes	uc002spr.2	uc010ysr.1	Yes										
		8577240																	
CNNM2	Alternative 3' end	chr10:104678075-	NM_199077.2	Induction of isoform 1	Yes (SYBR)	Yes	uc001kwl.2	uc001kwn.2	Yes										
		104687375																	
TMEM125	Alternative 3' end	chr1:43735698-	NM_144626.2	Induction of isoform 1		Yes	uc001cir.2		No										
		43736343																	
CBWD2	Alternative 3' end	chr1:114195268-	NM_172003.3	Induction of isoform 2		Yes	uc002jju.2	Not annotated	No										
		114253781																	
NDUF3	Alternative exon	chr1:21:44313378-	NM_001001503.1	Switch to isoform 2 (exon excluded)	Yes	uc002zcm.2	uc002zcn.2	Yes											
		44329773																	
ZNF678	Alternative exon	chr1:227751220-	NM_178549.3	Switch to isoform 2 (exon excluded)	Yes	uc009xet.1	Not annotated	No											
		227850164																	
ZNF121	Alternative exon	chr19:9676404-	NM_001308269.1	Switch to isoform 2 (exon excluded)	Yes	uc010xikq.1	uc010xikp.1	Yes											
		9695209																	
SPATC1L	Alternative exon	chr21:47581062-	NM_032261.4	Induction of isoform 2 (exon included)	Yes	uc002zii.2	Not annotated	No											
		47604373																	
MOCOS	Alternative exon	chr18:33767480-	NM_017947.2	Switch to isoform 2 (exon excluded)	Yes	uc002kqg.3	Not annotated	No											
		33848685																	
RBM45	Alternative exon	chr1:2:17897715-	NM_152945.3	Switch to isoform 2 (exon included)	Yes	uc002ulv.2	Not annotated	No											
		178994382																	
MIPEP	Alternative exon	chr13:24304328-	NM_006932.3	Repression of isoform 2 (exon excluded)	Yes	uc001uox.3	Not annotated	No											
		24463587																	
BBS4	Alternative exon	chr15:72978520-	NM_001320665.1	Induction of isoform 2 (exon included)	Yes	uc002avb.2	Not annotated	No											
		73030187																	
FAM195A	Alternative exon	chr16:691804-	NM_138418.3	Switch to isoform 1 (exon excluded)	Yes	uc002cic.1	uc002cie.2	Yes											
		6968474																	
LINC01133	Alternative exon	chr1:159931008-	ENST0000043364.6	Induction of isoform 1 (exon excluded)	Both non-	Not annotated	uc001fuu.2	No											
		159948851			coding														
SS18	Alternative exon	chr1:18:23596217-	NM_000107559.2	Switch to isoform 2 (exon excluded)	Yes	uc002kwn.2	uc002kvn.2	Yes											
		23670611																	
RHOC	Alternative exon	chr1:113343947-	ENST0000369636.8	Switch to isoform 2 (exon excluded)	No (5' UTR)	uc009wjk.1	uc001ecr.1	Yes											
		113249757																	
ZNF226	Retained intron	chr19:44669215-	NM_001319088.1	Switch to isoform 1 (intron included)	Yes	uc002oyo.2	uc002oyn.2	Yes											
		44681838																	
Table 2. Quantitative changes in gene expression in response to androgens for the 73 genes with AR regulated alternative mRNA isoforms.

LNCaP RNA-Seq (+/- androgens for 24 hours)	Reciprocal RNA-Seq (also change in 7 patients following ADT)				
No change	Upregulated	Downregulated	No change	Upregulated	Downregulated
RNL2	LIG4	NUP93	LIG4	TPD52	None
DENND1A	TACC2	PIK3R1	TACC2	AP2S1	
RAB3IL1	RLN1	MAPRE2	NUP93	DCXR	
OSBP1L1A	AP2S1	NDUFAF4	RLN1	PEX10	
TRIM16	DCXR	ACER3	RLN2	HMGCR	
Sep-05	PEX10	GPRIN2	PIK3R1	ALDH1A3	
RDH113	SNAPC2	TLE3	MAPRE2	FDT1	
ZFAND6	ATP6V0D1	TNRC6B	NDUFAF4	GREB1	
CDIP1	ARRD1C1	SORBS3	SNAPC2	NCAPD3	
LIMK2	KLHL36	ZNF121	ATP6V0D1	RAP1GAP	
TSC22D3	VSG10L	LINC01133	ARRD1C1	TMEM79	
GMFB	HMGCR	DENND1A	KRT8		
MLST8	CLK3	KLHL36	ELOVL1		
znf32	RHN1	RAB3IL1	TMEM125		
C1QTNF3	YIF1B	ACER3			
UBE2D3	PAK1IP1	OSBP1L1A			
MAT2A	ALDH1A3	TRIM16			
CBWD2	TRABD	VSG10L			
ZNF678	LIMCH1	SEPT5			
MOCOS	UBA1	RDH13			
	FDT1	GPRIN2			
	GREB1	CLK3			
	NCAPD3	RHN1			
	SLC36A4	ZFAND6			
	KLC2	CDIP1			
	RAP1GAP	YIF1B			
	TMEM79	LIMK2			
	NR4A1	TSC22D3			
	KRT8	TRABD			
	ELOVL1	LIMCH1			
	RCAN1	GMFB			
	CNNM2	MLST8			
	TMEM125	TLE3			
	NDUVF3	UBA1			
	SPATC1L	TNRC6B			
	RBM45	SLC36A4			
	MIPEP	KLC2			
	BBS4	NR4A1			
	FAM195A	znf32			
	SS18	C1QTNF3			
Of the 56 androgen regulated alternative promoters that were identified, 23 alternative promoters were induced by androgens (including LIG4, Figure 1B), 26 promoters were repressed by androgens, and for 7 genes there was a switch in usage from one promoter to another (Table 1). The alternative splicing events that were under androgen control included 12 alternative exons and one androgen-regulated intron retention (Table 1). 10 of these are novel to this study, including exclusion of an alternative exon in ZNF678 (Figure 1C). Of the alternative exons, six genes contained switches in previously unannotated protein-coding exons in response to androgen-exposure. We also identified four androgen regulated alternative mRNA 3’ end isoform switches, including a switch in the 3’ end of the mRNA transcript for the MAT2A gene (Figure 1D).

Androgen regulated events control the production of alternative protein isoforms, non-coding RNAs and alternative 5’ UTRs

48/73 (66%) of the androgen regulated alternative events detected in response to androgen stimulation are predicted to change the amino acid sequence of the resulting protein (Table 1). Some of these are already known to have a well characterised role in prostate cancer progression, including an alternative promoter in the oncogene TPD52 that produces a protein isoform called PrLZ (Figure 2A)46–49. Others are not so well characterised. Using western blotting we could detect a novel shorter protein isoform corresponding to androgen-driven selection of an alternative promoter in the TACC2 gene (Figure 2B); and exclusion of a cassette exon in the NDUFV3 gene, which we show also produces a novel shorter protein isoform (Figure 2C). We also detected a switch in the 3’ end of the mRNA transcript for the MAT2A gene, which is predicted to produce a protein isoform with a shorter C-terminal domain (Figure 1D); and induction of an alternative 3’ isoform of CNNM2, which is predicted to be missing a conserved CBS domain (Table 1 and Supplementary Figure 1).

11 of the remaining identified androgen-regulated alternative events change the expression of mRNAs from coding to non-coding or untranslated (not predicted to produce a protein) (Table 1). These included promoter switches for the RLN1 and RLN2 genes which encode peptide hormones that may be important in prostate cancer50–55. Androgens drive a promoter switch in both RLN1 and RLN2 to produce predicted non-coding or untranslated mRNA isoforms, reducing expression of protein-coding RLN1 and RLN2 mRNA isoforms. To
Gene name	Function	Clinical importance and roles in other cancer types	Clinical importance and roles in prostate cancer	
TACC2 Transforming Acidic Coiled-Coil Containing Protein 2	centrosome- and microtubule-interacting protein	Growth and prognosis of breast cancer⁵⁶	Castration-resistant growth of prostate cancer⁵⁷	
LIG4	DNA ligase with role in DNA repair	Prognostic marker in nasopharyngeal cancer⁵⁴ Upregulated in colorectal cancer with role in wnt signalling⁴⁹	Predictor of poor prognosis⁶⁰	
RLN1 and RLN2 (Relaxin1 and 2)	Endocrine hormones (part of insulin gene superfamily)	Breast cancer invasiveness^{51,52} Metastasis of human osteosarcoma⁵³ Thyroid cancer oncogenesis^{4,65}	Well characterised role in the development and progression of prostate cancer^{70,71}	
TPD52 (Tumor Protein D52)	Role in proliferation and exo- and endocytic pathways	Well characterised role in numerous cancer types^{40,45-49}	Known AR target, overexpressed and amplified in prostate cancer⁷⁰ Oncogene in prostate cancer⁷¹ Neuroendocrine transdifferentiation of prostate cancer⁷² Isoform produced by alternative promoter known as PrLZ and already linked to prostate cancer^{47-49,73-74}	
FDFT1 (Farnesyl-Diphosphate Farnesyltransferase 1)	squalene synthase	Role in lung cancer metastasis⁷⁵	Linked to prostate cancer risk and aggressiveness⁷⁶	
TLE3 (Transducin Like Enhancer Of Split 3)	Negative regulator of Wnt/β-catenin signaling	Predictive marker for response to therapy in ovarian and breast cancer^{77,78} Represses colon cancer proliferation⁷⁹	Upregulated in prostate tumours⁸⁰ and linked to wnt signalling in castrate resistant disease⁷¹	
CNNM2 (Cyclin & CBS Domain Divalent Metal Cation Transport Mediator 2)	Magnesium transporter	Proposed oncogenic role via increasing magnesium uptake⁸²	Unknown	
NUP93	Nucleoprotein protein – role in apoptosis	Driver mutation linked to breast cancer⁸³	Unknown	
MAT2A Methionine adenosyltransferase II	Biosynthesis of S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines and glutathione.	Upregulated in liver and colon cancer, potential drug target^{84,85} Tumour suppressor in kidney carcinogenesis⁸⁶ Role in other cancer types⁸⁷	Upregulated in prostate cancer and linked to cell migration via miR-34a and miR-34b^{87,88}	
PIK3R1	PI3K regulatory subunit	Underexpressed in breast cancer⁸⁹ High mutation frequency in endometrial cancer⁹⁰	Controlled by androgens and repressed in prostate cancer cells¹¹	
SNAPC2 (Small Nuclear RNA Activating Complex Polypeptide 2)	Subunit of the snRNA-activating protein complex. Necessary for RNA polymerase II and III dependent small-nuclear RNA gene transcription	Epigenetic silencing is prognostic in glioblastoma⁹¹	Unknown	
ZNF678 (Zinc Finger Protein 678)	Potential role in transcriptional regulation	Unknown	Unknown	
Gene name	Function	Clinical importance and roles in other cancer types	Clinical importance and roles in prostate cancer	
-----------	----------	---	---	
NDUFV3 (NADH:Ubiquinone Oxidoreductase Subunit V3)	Subunit of part of the mitochondrial respiratory chain	Unknown	Androgen regulated alternative splice isoform previously identified by our exon array study³⁹	
OSBPL1A (Oxysterol Binding Protein Like 1A)	Intracellular lipid receptor	Alternative promoter use in colorectal cancer²⁵	Unknown	
RDH13 (Retinol Dehydrogenase 13)	Role in retinoic acid production and protection against oxidative stress	Unknown	Unknown	
ZNF121 (Zinc Finger Protein 121)	Potential role in transcriptional regulation	Interacts with MYC. Upregulated in breast cancer³¹	Unknown	
SLC36A4.1 (Solute Carrier Family 36 Member 4)	Amino acid transporter	Unknown	Unknown	
RCAN1 (Regulator of Calcineurin 1)	Inhibits calcineurin-dependent signaling pathways	Inhibits NF-κB and suppresses lymphoma growth in mice²⁶. Role in cancer cell migration²⁶	Unknown	
DCXR (Dicarbonyl & l-xylulose reductase)	Role in the uronate cycle of glucose metabolism	Low expression indicates poor prognosis for hepatocellular carcinoma²⁶. Role in cell adhesion^{27,28}	Upregulated and potential biomarker in prostate cancer²⁹	
NDUFAF4 (NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 4)	Role in the mitochondrial respiratory chain	Unknown	Unknown	
MAPRE2 (Microtubule Associated Protein RP/EB Family Member 2)	Microtubule-associated protein that is necessary for spindle symmetry during mitosis	Role in the invasion of pancreatic cancer cells¹⁰⁰	Unknown	
PEX10 (Peroxisomal Biogenesis Factor 10)	Involved in import of peroxisomal matrix proteins	Unknown	Unknown	
AP2S1 (Adaptor Related Protein Complex 2 Sigma 1 Subunit)	Function in protein transport across membranes	Unknown	Unknown	
LINC01133 (long non-coding RNA)	Long non-coding RNA	Poor prognosis in colorectal cancer¹⁰¹. Upregulated and linked to poor prognosis in lung cancer¹⁰²	Unknown	
ZNF226 (Zinc Finger Protein 226)	Potential role in transcriptional regulation	Unknown	Unknown	
CDIP1 (Cell death inducing p53 target 1)	p53 apoptotic effector	Regulates TNF-alpha-mediated apoptosis	Sensitivity to TNFα-induced apoptosis in cancer cells³¹	Unknown
Figure 1. Global identification of androgen-dependent mRNA isoform production in prostate cancer cells predicts a major role for alternative promoter utilisation. (A) Analysis of RNAseq data from LNCaP cells grown with (A+) or without androgens (R1881) (steroid deplete, SD) for 24 hours identified 73 androgen regulated alternative mRNA isoforms. The 73 alternative events were generated via androgen-regulated utilisation of 56 alternative promoters, 4 alternative 3’ ends and 13 alternative splicing events. (B) Androgens drive a promoter switch in the LIG4 gene, which produces an mRNA isoform with an alternative 5’UTR. Visualisation of our LNCaP cell RNA-seq reads for the LIG4 gene on the UCSC genome browser identified a switch from promoter 1 to alternative promoter 2 in cells grown in the presence of androgens. Promoter 2 is predicted to produce a different 5’UTR without influencing the protein sequence (left panel). Quantitative PCR using primers specific to each promoter indicate that in response to androgens there is repression of promoter 1 and induction of promoter 2 (right panel). (C) Androgens drive alternative splicing of the ZNF678 gene. Visualisation of our LNCaP cell RNA-seq reads for the ZNF678 gene on the UCSC genome browser identified a switch to inclusion of a cassette exon in the presence of androgens. Inclusion of the alternative cassette exon in the ZNF678 gene is predicted to induce a switch to an alternative non-coding mRNA isoform (left panel). Quantitative PCR using primers in flanking exons confirmed increased inclusion of the alternative exon in LNCaP cells exposed to androgens (right panel). (D) Androgens promote selection of an alternative 3’ end for the MAT2A gene. Visualisation of our LNCaP cell RNA-seq reads for the MAT2A gene on the UCSC genome browser indicates a switch to reduced usage of an alternative 3’ end in the presence of androgens (left panel). Quantitative PCR using primers specific to each isoform confirmed down-regulation of an alternative 3’ end (p<0.01). Alternative 3’ ends for the MAT2A gene are predicted to produce proteins with different amino acid sequences and to influence a known Pfam domain (right panel).
Figure 2. Androgen regulated mRNA isoform switches control alternative protein isoforms and non-coding RNAs. (A) Androgens induce an alternative promoter in the oncogene *TPDS2* that produces an isoform called PrLZ. Visualisation of our LNCaP cell RNA-seq reads for the *TPDS2* gene on the UCSC genome browser identified a switch from promoter 1 to alternative promoter 2 in cells grown in the presence of androgens. Promoter 2 is known to produce an alternative protein isoform of *TPDS2* known as PrLZ (left panel). Quantitative PCR using primers specific to each promoter indicate an induction of the PrLZ isoform in response to androgens (middle panel). PrLZ has an alternative N-terminal amino acid sequence which results in an alternative protein isoform and disrupts a known Pfam domain (right panel). (B) Androgens induce an alternative promoter in the TACC2 gene that produces a novel alternative protein isoform. Visualisation of our LNCaP cell RNA-seq reads for the TACC2 gene on the UCSC genome browser identified a switch from promoter 1 to alternative promoter 2 in cells grown in the presence of androgens. Promoter 2 is predicted to produce an alternative shorter protein isoform of TACC2 (isoform 2) (left panel). Quantitative PCR using primers specific to each promoter indicate a switch from isoform 1 to isoform 2 in response to androgens (middle panel). Detection of TACC2 protein in LNCaP by western blotting (cells were grown with or without androgens for 24 or 48 hours). Tubulin was used as a loading control. Exposure to androgens for 48 hours induces expression of the alternative TACC2 protein isoform (right panel). (C) Androgens drive alternative splicing of the *NDUFV3* gene. Visualisation of our LNCaP cell RNA-seq reads for the *NDUFV3* gene on the UCSC genome browser identified a switch to exclusion of a cassette exon in the presence of androgens (left panel). Quantitative PCR using primers in flanking exons confirmed less inclusion of the alternative exon in LNCaP cells exposed to androgens (middle panel). Exclusion of the alternative cassette exon is predicted to produce an alternative protein isoform. Detection of NDUFV3 protein in LNCaP cells using western blotting (right panel). (D) Androgens suppress an alternative promoter in the *RLN2* gene, which produces a shorter non-coding mRNA isoform. Visualisation of our LNCaP cell RNA-seq reads for the *RLN2* gene on the UCSC genome browser identified a switch from promoter 1 to alternative promoter 2 in cells grown in the presence of androgens. Promoter 2 is predicted to produce an untranslatable non-coding mRNA isoform (left panel). Quantitative PCR using primers specific to each promoter indicated a significant switch in promoter usage in response to androgens (middle panel). Detection of RLN2 protein in LNCaP by western blotting (cells were grown with or without androgens for 48 hours). Actin was used as a loading control. As seen previously, androgens suppress RLN2 protein levels.

test whether prostate cancer cells turn off gene expression by switching between utilisation of promoters that generate coding and noncoding mRNAs, we analysed RLN2 protein levels. Consistent with our hypothesis and a previous study, RLN2 protein production was negatively regulated by androgens in parallel to the switch to the non-coding mRNA isoform (Figure 2D).

14 of the identified androgen-dependent mRNA isoforms lead to result in coding mRNAs with altered 5′ untranslated regions (5′ UTR) with no impact on the coding sequence. These include a promoter switch in the *LIG4* gene (Figure 1B).

Differential expression of androgen-dependent mRNA isoforms in prostate adenocarcinoma versus normal tissue

To investigate potential links between androgen-dependent mRNA isoforms and tumourigenesis, we analysed the expression of 41 androgen-regulated mRNA isoforms in clinical prostate adenocarcinoma and normal prostate tissues. This analysis utilised transcriptomic data from 497 tumour samples and 52 normal samples in the PRAD TCGA cohort. The remaining isoform pairs identified within our dataset have not been previously annotated by UCSC, therefore it was not possible to include them in our comparison. A description of the cohort used is summarised in Table 4.

33 of the 42 mRNA isoform pairs exhibited significant differences in the expression of at least one of the isoforms, or in the isoform expression ratio between tumour and normal tissues (Table 5). 13 of those tumour-specific alterations mimicked the effect of androgen stimulation in LNCaP cells; the changes were in form of alternative promoters for TACC2, TPDS2, NUP93, PIK3R1, RDH13, ZFAND6, CDIP1, YIF1B, LIMP2, and FDFT1; an alternative 3′ end in CNNM2; and alternative exons in

Features	Total Cases
Cohort	497 patients
Tumour	497
Normal	52 (w/tumour matched sample available)
Gleason grade	
6	50
7	287
8	67
9	140
10	4
Tumour stage	
T2a	14
T2b	10
T2c	192
T3a	173
T3b	140
T4	12
Gleason grade (alternative gleason grade grouping)	
1 (primary + secondary score ≤ 6)	50
2 (3 + 4)	171
3 (4 + 3)	123
4 (4 + 4)	93
5 (primary + secondary score ≥ 9)	111

All tumours were hormone naive (not subject to ADT) at the time of sample collection.
Gene	Event type	Change with androgens (LNCaP)	log2FC	Av. Exp. (TPM)	PSI	Consistency of change in tumours											
LIG4	Alternative promoter	Induction of promoter 2	-0.81	4.31E-02	1.28	Opposite											
TAC2	Alternative promoter	Induction of promoter 2	0.90	2.22	0.16	Consistent											
TDO2	Alternative promoter	Induction of promoter 2	-0.34	0.17	1.87	Consistent											
NUP93	Alternative promoter	Induction of promoter 1	0.25	39.20	0.31	Consistent											
RLN1	Alternative promoter	Induction of promoter 2	-0.45	133.50	0.06	Consistent											
AP2S1	Alternative promoter	Induction of promoter 2	0.48	22.24E-05	--	Not assessed											
RLN2	Alternative promoter	Induction of promoter 1	0.48	191.44	--	Not assessed											
PK3R1	Alternative promoter	Induction of promoter 2	-1.79	1.75	-1.79	Opposite											
MAPRE2	Alternative promoter	Switch to promoter 2	0.48	33.90	0.31	Consistent											
NDUFAF1	Alternative promoter	Switch to promoter 2	0.48	1.52	0.34	Inconclusive											
DCRR	Alternative promoter	Repression of promoter 1	0.92	7.15	1.26	Consistent											
PEX10	Alternative promoter	Repression of promoter 1	0.92	75.56	1.26	Consistent											
SNAPIPC2	Alternative promoter	Repression of promoter 1	0.38	0.12	1.26	Consistent											
ATPLF0D1	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
ARD1C	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
DENND1A	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
KLI1	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
RAB8A1	Alternative promoter	Repression of promoter 1	0.34	0.34	0.12	Consistent											
ACP3	Alternative promoter	Repression of promoter 1	0.92	0.92	0.12	Consistent											
CSRPLA	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
TRIM16	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
VAG1L	Alternative promoter	Repression of promoter 1	0.46	0.46	0.12	Consistent											
Gene	SEPT5	HMGCR	RDH13	GRIN2	CL3K	RHH1	ZFAND6	CDP1	YIF1B	LIMK2	TSC2D3	ALDH1A3	LIMCH1	TFABD	GABP	GMFB	F1000Research 2018, 7:1189 Last updated: 18 SEP 2018
---------	-------	-------	-------	-------	------	------	--------	------	-------	-------	--------	---------	--------	-------	------	-----	-------
PSI	3.86	1.09	1.47	1.47	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Av. PSI	3.86	1.09	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Consistency of change in Av. PSI	Opposite																
FDR	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Gene	Event type	Change with androgens (LNCap)	log2FC	FDR	Consistency of change in tumours												
----------	---------------------	-------------------------------	---------	-------	----------------------------------												
C1QTNF3	Alternative promoter	Induction of promoter 1	0.30	0.50	--												
UBE2D3	Alternative promoter	Switch to promoter 2	-0.50	-0.13	--												
KRT8	Alternative promoter	Repression of promoter 1	-0.10	0.10	--												
ELOVL1	Alternative promoter	Repression of isoform 1	-0.36	-0.21	--												
SOX9	Alternative promoter	Induction of isoform 2	0.21	0.21	--												
CACNA1D2	Alternative promoter	Induction of isoform 1	0.00	0.00	--												
CACNA1D2	Alternative promoter	Switch to isoform 2	0.00	0.00	--												
NDUFA3	Alternative exon	Repression of isoform 1	0.00	0.00	--												
ZNF121	Alternative exon	Switch to isoform 2 (exon 1)	0.00	0.00	--												
SPAC5L	Alternative exon	Repression of isoform 1 (exon	0.00	0.00	--												
ZNF226	Alternative exon	Switch to isoform 1 (exon 1)	0.00	0.00	--												
MIPEP	Alternative exon	Switch to isoform 1 (exon 1)	0.00	0.00	--												
BBS4	Alternative promoter	Switch to isoform 2 (exon 2)	0.00	0.00	--												
FAM19A	Alternative promoter	Switch to isoform 1 (exon 2)	0.00	0.00	--												
LINC01133	Alternative promoter	Switch to isoform 1 (exon 2)	0.00	0.00	--												
SS18	Alternative promoter	Switch to isoform 1 (exon 2)	0.00	0.00	--												
RHOC	Alternative promoter	Switch to isoform 1 (exon 2)	0.00	0.00	--												
ZNF226	Alternative promoter	Switch to isoform 1 (exon 2)	0.00	0.00	--												

Page 18 of 33
NDUFS3 and SS18 (Figure 3, Table 5 & Supplementary Figure 2). Two of the alternative promoters (ZFAND6 and CDIP1) are predicted to introduce a change in the 5'UTR, whereas all the others are predicted to alter the resulting protein isoform. A number of mRNA isoforms that were androgen responsive in LNCaP cells showed tumour specific alterations opposite to the effect of androgen stimulation. These were LIG4, MAPRE2, OSBPL1A, SEPT5, NRE41, and RCAN1 (all predicted to alter the resulting protein isoform except LIG4). For the remaining 14 mRNA isoform pairs, the data was inconclusive according to the consistency conditions listed in the methods section (Table 5).

Changes in androgen-dependent mRNA isoform expression during tumour progression

We next investigated whether the identified androgen-dependent mRNA isoforms are differentially expressed during prostate cancer progression by correlating the expression levels of each isoform with Gleason scores and prostate tumour grades within the PRAD TCGA cohort (Figure 4 & Figure 5, Table 6 & Table 7 and Supplementary Figure 3 & Supplementary Figure 4). For 6 of the alternative mRNA isoforms responsive to androgens (made from alternative promoters in LIG4, OSBPL1A, CLK3, TSC22D3 & ZNF32 and utilising an alternative exon in ZNF121), the expression changed significantly with Gleason score and showed specific alterations consistent with the effect of androgen stimulation. Conversely, 9 alternative isoforms (which were androgen responsive in LNCaP cells) showed tumour specific alterations opposite to the effect of androgen stimulation (including an alternative promoters in NUP93 and the alternative 3’ end of MAT2A). 3 androgen regulated mRNA isoforms (OSBPL1A, CLK3 and TSC22D3) change significantly with both Gleason grade and tumour stage.

Androgen exposure further drives a smaller number of alternative splicing events suggesting that the AR could contribute to altered patterns of splicing in prostate cancer cells. Tumour progression is believed to be associated with a coordinated change in splicing patterns which is regulated by several factors including signalling molecules1. We also identified 4 AR regulated alternative mRNA 3’ end isoform switches. This is the first time that regulation of 3’ mRNA end processing has been shown to be controlled by androgens. The selection of alternative 3’ ends can produce mRNA isoforms differing in the length of their 3’ UTRs (which can lead to the inclusion or exclusion of regulatory elements and influence gene expression), or in their C-terminal coding region (which can contribute to proteome diversity). Defective 3’ mRNA processing of numerous genes has been linked to an oncogenic phenotype15-19 and the 3’ mRNA end profiles of samples from multiple cancer types significantly differ from those of healthy tissue samples15,19-21.

Based on the findings presented in this study, we propose that activated AR has the ability to coordinate both transcriptional activity and mRNA isoform decisions through the recruitment of co-regulators to specific promoters. The genomic action of the AR is influenced by a large number of collaborating transcription factors22-24. Specifically, Sam68 and p68 have been shown to modulate AR dependent alternative splicing of specific genes and are significantly overexpressed in prostate cancer21,22. In future work it will be important to define the role of specific AR co-regulators in AR mediated isoform selection.

Some of the androgen dependent mRNA isoforms identified here are predicted to yield protein isoforms that may be clinically important, or to switch off protein production via generation of noncoding mRNA isoforms. Although the functional significance of the alternative mRNA isoforms identified in this study is yet largely unexplored, as is their role in the cellular response to androgens, the presented results emphasize the importance of analysing gene regulation and function at the mRNA isoform level.
Figure 3. Differential expression of androgen dependent mRNA isoforms in prostate cancer versus normal tissue within the PRAD TCGA cohort for TPDS2, TACC2, NDUVF3 and CNNM2. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of isoforms 1 (left panel) and 2 (central panel), and of their expression ratio in PSI (right panel) in normal and tumour samples. The mean log2 fold-change (logFC) in expression between tumour and normal samples and the associated FDR-adjusted p-value for the moderated t-statistic of differential expression are shown for both isoforms (left and central panels). The mean difference in PSI (deltaPSI) between tumour and normal samples and the associated FDR-adjusted p-value for the Mann-Whitney U test of differential splicing are shown (right panel).
Figure 4. Differential alternative mRNA isoform expression in the TGCA PRAD cohort across different Gleason grades for OSBPL1A, CLK3, TSC22D and ZNF121. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of Isoforms 1 (left panel) and 2 (central panel), and of their expression ratio (right panel) by Gleason grade. Their respective Spearman's correlation coefficient (Rho) with grade and associated FDR-adjusted p-value are shown.
Figure 5. Differential alternative mRNA isoform expression in the TGCA PRAD cohort across different tumour stages for OSBPL1A, CLK3 and TSC22D3. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of Isoforms 1 (left panel) and 2 (central panel), and of their expression ratio (right panel) by tumour stage. Their respective Spearman’s correlation coefficient (Rho) with stage and associated FDR-adjusted p-value are shown.
Table 6. Summarised results of the correlation analysis of androgen-regulated isoforms expression with Gleason score in the TCGA PRAD cohort.

Gene	Event type	Change with androgens (LNCap)	Isoform 1					Consistency of change with Gleason	
LIG4	Alternative promoter	Induction of promoter 2	0.07	1.92E-01	0.09	1.07E-01	-0.18	4.21E-04	Consistent -
TACC2	Alternative promoter	Repression of promoter 1	-0.08	1.55E-01	0.01	9.26E-01	-0.08	1.88E-01	Inconclusive
TP5D2	Alternative promoter	Induction of promoter 2	0.00	9.51E-01	0.02	7.73E-01	0.00	9.46E-01	Inconclusive
NUP93	Alternative promoter	Induction of promoter 1	-0.18	7.92E-04	-0.07	1.81E-01	0.04	4.75E-01	Opposite
RLN1	Alternative promoter	Repression of promoter 2	-0.16	1.98E-03	--	--	--	--	Not assessed
AP2S1	Alternative promoter	Induction of promoter 2	-0.01	8.72E-01	--	--	--	--	Not assessed
RLN2	Alternative promoter	Induction of promoter 1	-0.10	6.03E-02	--	--	--	--	Not assessed
PIK3R1	Alternative promoter	Repression of promoter 2	-0.07	2.51E-01	0.09	1.20E-01	-0.17	1.29E-03	Inconclusive
MAPRE2	Alternative promoter	Switch to promoter 2	-0.07	1.92E-01	-0.06	2.73E-01	0.06	3.23E-01	Inconclusive
NDUFAF4	Alternative promoter	Repression of promoter 2	0.00	9.79E-01	--	--	--	--	Not assessed
DCXR	Alternative promoter	Repression of promoter 2	-0.29	4.07E-09	--	--	--	--	Not assessed
PEX10	Alternative promoter	Switch to promoter 2	0.08	1.50E-01	--	--	--	--	Not assessed
SNAC2C	Alternative promoter	Switch to promoter 2	0.15	5.48E-03	-0.18	3.55E-04	0.21	5.13E-05	Opposite
ATP6V0D1	Alternative promoter	Repression of promoter 2	-0.11	3.43E-02	--	--	--	--	Not assessed
ARRD1C	Alternative promoter	Induction of promoter 2	0.12	2.00E-02	--	--	--	--	Not assessed
DENND1A	Alternative promoter	Repression of promoter 2	-0.02	8.10E-01	--	--	--	--	Not assessed
KHL3L	Alternative promoter	Induction of promoter 2	-0.13	1.67E-02	--	--	--	--	Not assessed
RAB3L1	Alternative promoter	Repression of promoter 2	0.06	3.17E-01	0.32	9.13E-12	-0.02	7.15E-01	Opposite
ACER3	Alternative promoter	Repression of promoter 2	0.16	3.79E-03	--	--	--	--	Not assessed
OSBP1A	Alternative promoter	Induction of promoter 2	0.05	4.00E-01	0.13	1.58E-02	-0.07	2.33E-01	Consistent
TRIM16	Alternative promoter	Induction of promoter 2	0.10	6.06E-02	--	--	--	--	Not assessed
VSIG10L	Alternative promoter	Induction of promoter 1	-0.16	1.98E-03	--	--	--	--	Not assessed
SEPT5	Alternative promoter	Repression of promoter 2	0.17	1.12E-03	0.12	1.93E-02	-0.04	4.91E-01	Opposite
HMGCR	Alternative promoter	Repression of promoter 1	0.03	6.56E-01	-0.05	4.54E-01	0.07	2.33E-01	Inconclusive
RDH13	Alternative promoter	Induction of promoter 1	0.03	7.01E-01	0.08	1.20E-01	-0.10	1.00E-01	Inconclusive
GPRIN2	Alternative promoter	Repression of promoter 2	--	--	-0.01	8.93E-01	--	--	Not assessed
CLK3	Alternative promoter	Repression of promoter 1	-0.13	1.58E-02	-0.05	3.98E-01	0.07	2.33E-01	Consistent
RNH1	Alternative promoter	Induction of promoter 1	0.05	4.41E-01	0.07	1.83E-01	-0.01	9.23E-01	Inconclusive
ZFAND6	Alternative promoter	Repression of promoter 2	0.07	1.87E-01	0.05	3.82E-01	-0.03	6.36E-01	Inconclusive
CDIP1	Alternative promoter	Repression of promoter 2	0.02	8.10E-01	0.03	6.81E-01	-0.01	9.23E-01	Inconclusive
YIF1B	Alternative promoter	Switch to promoter 2	0.02	8.10E-01	-0.04	5.42E-01	0.05	4.39E-01	Inconclusive
LIMK2	Alternative promoter	Switch to promoter 2	-0.02	8.10E-01	-0.03	6.30E-01	0.00	9.49E-01	Inconclusive
TSC22D3	Alternative promoter	Repression of promoter 1	-0.15	5.15E-03	-0.01	9.26E-01	-0.09	1.14E-01	Consistent
ALDH1A3	Alternative promoter	Repression of promoter 1	-0.12	2.00E-02	--	--	--	--	Not assessed
TRABD	Alternative promoter	Switch to promoter 2	0.14	8.04E-03	-0.04	5.43E-01	0.05	4.39E-01	Inconclusive
LIMCH1	Alternative promoter	Repression of promoter 2	0.05	4.34E-01	--	--	--	--	Not assessed
GMFB	Alternative promoter	Induction of promoter 2	0.08	1.55E-01	--	--	--	--	Not assessed
MLST8	Alternative promoter	Switch to promoter 1	0.19	5.32E-04	0.19	2.05E-04	0.07	2.14E-01	Inconclusive
TLE3	Alternative promoter	Induction of promoter 2	0.05	4.28E-01	-0.10	7.19E-02	0.07	2.33E-01	Inconclusive
Gene	Event type	Change with androgens (LNCap)	Isoform 1	Isoform 2	PSI	Consistency of change with Gleason			
----------	------------------	-------------------------------	-----------	-----------	--------------	-----------------------------------			
UBA1	Alternative promoter	Repression of promoter 1	0.09	8.99E-02	0.03	5.95E-01	0.01	8.68E-01	Inconclusive
TNRC6B	Alternative promoter	Repression of promoter 2	-0.05	4.00E-01	-0.09	1.19E-01	0.09	1.11E-01	Inconclusive
FDF1	Alternative promoter	Repression of promoter 2	-0.02	7.41E-01	0.07	2.07E-01	-0.07	2.14E-01	Inconclusive
GREB1	Alternative promoter	Induction of promoter 2	-0.05	4.41E-01	-0.14	5.45E-03	0.04	4.60E-01	Opposite
NCAPO3	Alternative promoter	Induction of promoter 2	-0.23	3.61E-06	--	--	--	--	Not assessed
SLC36A4	Alternative promoter	Induction of promoter 2	0.12	1.88E-02	--	--	--	--	Not assessed
KLC2	Alternative promoter	Repression of promoter 1	-0.02	8.10E-01	0.13	1.58E-02	-0.04	4.60E-01	Inconclusive
RAP1GAP	Alternative promoter	Repression of promoter 1	0.01	8.79E-01	--	--	--	--	Not assessed
TMEM79	Alternative promoter	Repression of promoter 1	-0.04	4.70E-01	0.15	3.46E-03	-0.09	1.11E-01	Inconclusive
NR4A1	Alternative promoter	Induction of promoter 2	0.10	5.44E-02	0.00	9.79E-01	0.10	7.40E-02	Inconclusive
ZNF32	Alternative promoter	Repression of promoter 2	-0.22	1.32E-05	-0.22	1.11E-05	-0.09	1.31E-01	Consistent
C1QTNF3	Alternative promoter	Induction of promoter 1	0.08	1.58E-01	--	--	--	--	Not assessed
UBE2D3	Alternative promoter	Switch to promoter 2	0.18	7.24E-04	0.08	1.27E-01	-0.02	7.15E-01	Inconclusive
KRT8	Alternative promoter	Repression of promoter 1	-0.05	3.81E-01	-0.16	2.07E-03	0.01	8.68E-01	Inconclusive
ELOVL1	Alternative promoter	Induction of promoter 2	0.18	7.24E-04	--	--	--	--	Not assessed
RCAN1	Alternative promoter	Induction of promoter 2	0.10	5.31E-02	-0.01	8.70E-01	0.12	3.69E-02	Inconclusive
SORBS3	Alternative promoter	Induction of promoter 2	0.12	2.21E-02	--	--	--	--	Not assessed
MAT2A	Alternative 3' end	Repression of isoform 2	0.04	5.39E-01	0.27	3.68E-08	-0.33	8.82E-13	Opposite
CNNM2	Alternative 3' end	Induction of isoform 1	-0.06	3.30E-01	0.03	5.87E-01	-0.08	2.04E-01	Inconclusive
TMEM125	Alternative 3' end	Induction of isoform 1	--	--	-0.19	2.05E-04	--	--	Not assessed
CBWD2	Alternative 3' end	Induction of isoform 2	0.13	1.37E-02	--	--	--	--	Not assessed
NDUV3	Alternative exon	Switch to isoform 2 (exon excluded)	0.14	8.04E-03	-0.07	2.48E-01	0.13	2.23E-02	Opposite
ZNF678	Alternative exon	Switch to isoform 2 (exon excluded)	-0.07	1.87E-01	--	--	--	--	Not assessed
ZNF121	Alternative exon	Switch to isoform 2 (exon excluded)	-0.13	1.63E-02	0.08	1.20E-01	-0.14	1.27E-02	Consistent
SPATC1L	Alternative exon	Induction of isoform 2 (exon included)	-0.13	1.58E-02	--	--	--	--	Not assessed
MOCOS	Alternative exon	Switch to isoform 2 (exon included)	-0.01	8.72E-01	--	--	--	--	Not assessed
RBM45	Alternative exon	Switch to isoform 2 (exon included)	0.12	2.45E-02	--	--	--	--	Not assessed
MIPEP	Alternative exon	Repression of isoform 2 (exon included)	-0.14	9.92E-03	--	--	--	--	Not assessed
BBS4	Alternative exon	Induction of isoform 2 (exon included)	-0.08	1.87E-01	--	--	--	--	Not assessed
FAM195A	Alternative exon	Switch to isoform 1 (exon included)	0.04	5.43E-01	0.14	5.35E-03	-0.18	4.65E-04	Opposite
LINC01133	Alternative exon	Induction of isoform 1 (exon included)	--	--	-0.02	7.51E-01	--	--	Not assessed
SS18	Alternative exon	Switch to isoform 2 (exon included)	0.04	4.86E-01	-0.06	2.51E-01	0.07	2.33E-01	Inconclusive
RHOC	Alternative exon	Switch to isoform 2 (exon included)	0.29	4.07E-09	0.15	4.24E-03	0.21	3.63E-05	Opposite
ZNF226	Retained intron	Switch to isoform 1 (intron included)	0.01	8.67E-01	-0.10	7.49E-02	0.11	6.74E-02	Inconclusive
Table 7. Summarised results of the correlation analysis of androgen-regulated isoforms expression with tumour stage in the TCGA PRAD cohort (related to Figure 4 and Supplementary Figure 5).

Gene	Event type	Change with androgens (LNCap)	Isoform 1 Rho	FDR	Isoform 2 Rho	FDR	PSI Consistency	Consistency of change with stage	
LIG4	Alternative promoter	Induction of promoter 2	-0.04	6.05E-01	0.02	6.82E-01	-0.09	1.82E-01	Inconclusive
TACC2	Alternative promoter	Repression of promoter 1	-0.08	1.74E-01	-0.05	4.47E-01	-0.04	5.65E-01	Inconclusive
TPD52	Alternative promoter	Induction of promoter 2	-0.02	7.85E-01	-0.02	6.82E-01	-0.02	7.95E-01	Inconclusive
NUP93	Alternative promoter	Induction of promoter 1	-0.12	3.95E-02	0.03	6.65E-01	-0.05	4.43E-01	Opposite
RLN1	Alternative promoter	Repression of promoter 2	-0.22	1.82E-05	--	--	--	--	Not assessed
AP2S1	Alternative promoter	Induction of promoter 2	-0.04	5.51E-01	--	--	--	--	Not assessed
RLN2	Alternative promoter	Induction of promoter 1	-0.16	5.68E-03	--	--	--	--	Not assessed
PIK3R1	Alternative promoter	Repression of promoter 2	-0.02	7.92E-01	0.11	5.92E-02	-0.14	3.27E-02	Opposite
MAPRE2	Alternative promoter	Switch to promoter 2	-0.02	7.56E-01	-0.02	6.82E-01	0.03	1.00E+00	Inconclusive
NDUFAF4	Alternative promoter	Repression of promoter 2	0.08	1.89E-01	--	--	--	--	Not assessed
DCXR	Alternative promoter	Repression of promoter 2	-0.30	6.32E-10	--	--	--	--	Not assessed
PEX10	Alternative promoter	Switch to promoter 2	0.10	9.95E-02	--	--	--	--	Not assessed
SNAPC2	Alternative promoter	Switch to promoter 2	0.16	4.77E-03	--	--	--	--	Not assessed
ATP6V0D1	Alternative promoter	Repression of promoter 2	-0.11	5.43E-02	--	--	--	--	Not assessed
ARRD1C	Alternative promoter	Induction of promoter 2	0.08	2.06E-01	--	--	--	--	Not assessed
DENND1A	Alternative promoter	Repression of promoter 2	-0.01	8.49E-01	--	--	--	--	Not assessed
KLH36	Alternative promoter	Induction of promoter 2	-0.10	1.04E-01	--	--	--	--	Not assessed
RAB3IL1	Alternative promoter	Repression of promoter 2	0.08	1.71E-01	0.33	4.58E-12	0.00	9.75E-01	Opposite
ACER3	Alternative promoter	Repression of promoter 2	0.16	4.77E-03	--	--	--	--	Not assessed
OSBPL1A	Alternative promoter	Induction of promoter 2	0.04	5.38E-01	0.13	1.59E-02	-0.07	2.88E-01	Consistent
TRIM16	Alternative promoter	Induction of promoter 2	0.06	3.95E-01	--	--	--	--	Not assessed
VSIG10L	Alternative promoter	Induction of promoter 1	-0.12	5.43E-02	--	--	--	--	Not assessed
SEPT5	Alternative promoter	Repression of promoter 2	0.11	7.96E-02	0.07	2.54E-01	-0.01	8.89E-01	Inconclusive
HMGCR	Alternative promoter	Repression of promoter 1	0.00	9.91E-01	-0.04	5.77E-01	0.04	6.25E-01	Inconclusive
RDH13	Alternative promoter	Induction of promoter 1	-0.03	7.33E-01	0.10	7.19E-02	-0.12	9.32E-02	Inconclusive
GPRIN2	Alternative promoter	Repression of promoter 2	--	--	0.03	6.48E-01	--	--	Not assessed
CLK3	Alternative promoter	Repression of promoter 1	-0.15	6.05E-03	0.02	7.76E-01	0.02	8.63E-01	Consistent
RNH1	Alternative promoter	Induction of promoter 1	-0.02	7.92E-01	0.10	6.12E-02	-0.08	2.28E-01	Inconclusive
ZFAND6	Alternative promoter	Repression of promoter 2	0.03	6.50E-01	0.04	5.78E-01	-0.04	6.05E-01	Inconclusive
CDIP1	Alternative promoter	Repression of promoter 2	0.10	1.04E-01	0.02	7.82E-01	0.06	3.78E-01	Inconclusive
YIF1B	Alternative promoter	Switch to promoter 2	-0.01	8.87E-01	-0.10	6.71E-02	0.06	3.97E-01	Inconclusive
LIMK2	Alternative promoter	Switch to promoter 2	0.00	9.67E-01	-0.05	4.72E-01	0.00	9.75E-01	Inconclusive
TSC22D3	Alternative promoter	Repression of promoter 1	-0.13	3.44E-02	-0.07	2.54E-01	-0.03	6.59E-01	Consistent
ALDH1A3	Alternative promoter	Repression of promoter 1	-0.18	7.69E-04	--	--	--	--	Not assessed
TRABD	Alternative promoter	Switch to promoter 2	0.06	3.95E-01	-0.03	6.48E-01	0.03	7.83E-01	Inconclusive
LIMCH1	Alternative promoter	Repression of promoter 2	0.02	7.85E-01	--	--	--	--	Not assessed
GMFB	Alternative promoter	Induction of promoter 2	0.07	2.57E-01	--	--	--	--	Not assessed
MLST8	Alternative promoter	Switch to promoter 1	0.10	8.19E-02	0.15	6.14E-03	0.02	7.83E-01	Inconclusive
TLE3	Alternative promoter	Induction of promoter 2	0.03	6.38E-01	-0.11	3.84E-02	0.04	5.65E-01	Opposite
UBA1	Alternative promoter	Repression of promoter 1	0.12	5.43E-02	0.00	9.72E-01	0.06	3.99E-01	Inconclusive
Gene	Event type	Change with androgens (LNCap)	Isoform 1	Isoform 2	PSI	Consistency of change with stage			
--------------	--------------------	-------------------------------	-----------	-----------	-----	----------------------------------			
TNRC6B	Alternative promoter	Repression of promoter 2	-0.04	6.31E-01	-0.03	6.48E-01	0.02	7.83E-01	Inconclusive
FDXT1	Alternative promoter	Repression of promoter 2	-0.05	4.82E-01	0.04	5.46E-01	-0.08	2.28E-01	Inconclusive
GREB1	Alternative promoter	Induction of promoter 2	-0.11	7.48E-02	-0.18	7.01E-04	0.01	8.96E-01	Inconclusive
NCAPD3	Alternative promoter	Induction of promoter 2	-0.23	1.82E-05	--	--	--	--	Not assessed
SLC36A4	Alternative promoter	Induction of promoter 2	0.07	2.59E-01	--	--	--	--	Not assessed
KLC2	Alternative promoter	Repression of promoter 1	-0.03	6.33E-01	0.13	1.81E-02	-0.08	2.78E-01	Inconclusive
RAP1GAP	Alternative promoter	Repression of promoter 1	0.02	7.85E-01	--	--	--	--	Not assessed
TMEM79	Alternative promoter	Repression of promoter 1	-0.08	1.71E-01	0.16	1.97E-03	-0.10	1.20E-01	Inconclusive
NR4A1	Alternative promoter	Induction of promoter 2	0.01	8.49E-01	-0.06	3.69E-01	0.08	2.62E-01	Inconclusive
ZNF32	Alternative promoter	Repression of promoter 2	-0.15	6.70E-03	0.02	7.34E-01	-0.08	2.33E-01	Inconclusive
C1QTNF3	Alternative promoter	Induction of promoter 1	0.03	6.74E-01	--	--	--	--	Not assessed
UBE2D3	Alternative promoter	Switch to promoter 2	0.20	2.96E-04	0.07	2.17E-01	-0.02	7.83E-01	Inconclusive
KRT8	Alternative promoter	Repression of promoter 1	-0.04	6.05E-01	-0.24	2.72E-06	0.04	6.05E-01	Inconclusive
ELOVL1	Alternative promoter	Induction of promoter 2	0.13	2.87E-02	--	--	--	--	Not assessed
RAN1	Alternative promoter	Induction of promoter 2	0.09	1.26E-01	-0.01	8.69E-01	0.10	1.20E-01	Inconclusive
SORBS3	Alternative promoter	Induction of promoter 2	0.11	7.96E-02	--	--	--	--	Not assessed
MAT2A	Alternative 3' end	Repression of isoform 2	0.01	9.35E-01	0.18	7.83E-04	-0.21	8.42E-05	Opposite
C1QTNF3	Alternative 3' end	Induction of isoform 1	0.05	3.95E-01	0.05	4.47E-01	-0.04	6.05E-01	Inconclusive
TMEM125	Alternative 3' end	Induction of isoform 1	--	--	0.16	2.80E-03	--	--	Not assessed
CBWD2	Alternative 3' end	Induction of isoform 2	0.08	1.74E-01	--	--	--	--	Not assessed
NDUVF3	Alternative exon	Switch to isoform 2 (exon excluded)	0.11	7.48E-02	-0.05	4.72E-01	0.11	1.00E-01	Inconclusive
ZNF678	Alternative exon	Switch to isoform 2 (exon excluded)	-0.02	7.43E-01	--	--	--	--	Not assessed
ZNF121	Alternative exon	Switch to isoform 2 (exon excluded)	-0.08	1.80E-01	0.03	6.48E-01	-0.09	1.82E-01	Inconclusive
SPATC1L	Alternative exon	Induction of isoform 2 (exon included)	-0.10	9.95E-02	--	--	--	--	Not assessed
MOCOS	Alternative exon	Switch to isoform 2 (exon included)	0.03	6.33E-01	--	--	--	--	Not assessed
RBM45	Alternative exon	Switch to isoform 2 (exon included)	0.08	1.71E-01	--	--	--	--	Not assessed
MIPEP	Alternative exon	Repression of isoform 2 (exon excluded)	-0.16	4.48E-03	--	--	--	--	Not assessed
BBS4	Alternative exon	Induction of isoform 2 (exon included)	-0.06	3.85E-01	--	--	--	--	Not assessed
FAM195A	Alternative exon	Switch to isoform 1 (exon included)	0.06	3.37E-01	0.10	6.85E-02	-0.10	1.20E-01	Inconclusive
LINCO1133	Alternative exon	Induction of isoform 1 (exon included)	0.06	5.68E-01	-0.04	5.46E-01	0.06	3.97E-01	Inconclusive
SS18	Alternative exon	Switch to isoform 2 (exon included)	0.15	6.05E-03	0.11	3.84E-02	0.11	1.00E-01	Inconclusive
RHOC	Alternative exon	Switch to isoform 2 (exon included)	-0.03	6.64E-01	-0.09	1.23E-01	0.07	3.35E-01	Inconclusive
ZNF226	Retained intron	Switch to isoform 1 (intron included)	-0.03	6.64E-01	-0.09	1.23E-01	0.07	3.35E-01	Inconclusive
Data availability
The RNASeq data from LNCaP cells has been published previously [1]. The RNAseq custom tracks are available in Supplementary File 1. To view these files please load them onto the UCSC website using the ‘My data’ tab and ‘custom tracks’. Then ‘Paste URLs or data’. The data is aligned to Feb 2009 (GRCh37/hg19).

Prostate adenocarcinoma cohort RNA-Seq data was downloaded from the Broad Institute TCGA Genome Analysis Center: Firehose 16/01/28 run [2].

Dataset 1: Real-time PCR raw Ct values 10.5256/f1000research.15604.d212873[3]

Dataset 2: Raw unedited western blot images 10.5256/f1000research.15604.d212874[4]

Competing interests
No competing interests were disclosed.

Grant information
This work was funded by Prostate Cancer UK [PG12-34, S13-020 and RIA16-ST2-011]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material
Supplementary Table 1: Details of primer sequences used. Click here to access the data.

Supplementary File 1: RNA-Seq reads custom tracks for visualisation on UCSC genome browser. Click here to access the data.

Supplementary Figure 1: PCR validation of 17 androgen regulated alternative events. Click here to access the data.

Supplementary Figure 2: Differential alternative mRNA isoform expression in the TGCA PRAD cohort. Normal vs. tumour (unpaired samples) analysis. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of Isoforms 1 (left panel) and 2 (central panel), and of their expression ratio in PSI (right panel) in normal and tumour samples. The mean log2 fold-change (logFC) in expression between tumour and normal samples and the associated FDR-adjusted p-value for the moderated t-statistic of differential expression are shown for both isoforms (left and central panels). The mean difference in PSI (deltaPSI) between tumour and normal samples and the associated FDR-adjusted p-value for the Mann-Whitney U test of differential splicing are shown (right panel). Click here to access the data.

Supplementary Figure 3: Differential alternative mRNA isoform expression in the TGCA PRAD cohort across different Gleason grades. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of Isoforms 1 (left panel) and 2 (central panel), and of their expression ratio (right panel) by Gleason grade. Their respective Spearman’s correlation coefficient (Rho) with grade and associated FDR-adjusted p-value are shown. Click here to access the data.

Supplementary Figure 4: Differential alternative mRNA isoform expression in the TGCA PRAD cohort across different tumour stages. Violin-boxplots of expression in transcripts per million mapped reads (TPM) of Isoforms 1 (left panel) and 2 (central panel), and of their expression ratio (right panel) by tumour stage. Their respective Spearman’s correlation coefficient (Rho) with stage and associated FDR-adjusted p-value are shown. Click here to access the data.

References
1. Johnson JM, Castle J, Garrett-Engele P, et al.: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003; 302(5653): 2141–4. PubMed Abstract | Publisher Full Text
2. Pan Q, Shai O, Lee LJ, et al.: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008; 40(12): 1413–5. PubMed Abstract | Publisher Full Text
inhibits cancer cell migration and invasion via targeting oncogenic TP53D2 in prostate cancer. FEBS Lett. 2014; 588(10): 1973–82.

72. Mortiz T, Venz S, Junker H, et al.: Isomorph 1 of TP53D2 (PC-1) promotes neuroendocrine differentiation in prostate cancer cells. Tumour Biol. 2016; 37(8): 10435–46.

73. Shang ZF, Wei Q, Yu L, et al.: Suppression of PC-1/PRDL2 sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget. 2016; 7(38): 62340–51.

74. Li L, Xie H, Liang L, et al.: Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Cancerogeneisis. 2013; 34(2): 257–67.

75. Yang YF, Yan YH, Liu YP, et al.: Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. Am J Respir Crit Care Med. 2014; 190(3): 679–87.

76. Fukuma Y, Matsui H, Koike H, et al.: Role of squalene synthase in prostate cancer risk and the biological aggressiveness of human prostate cancer. Prostate Cancer Prostatic Dis. 2012; 16(4): 339–45.

77. Susini T, Berti B, Carriere C, et al.: Tumour-suppressive effect of the C212–5.

78. 88. Tomasi ML, Cossu C, Spissu Y, et al.: MicroRNA-744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signalling. Oncotarget. 2017; 8(9): 14659–707.

79. Nakai K, Beckedorff FC, Baldini ML, et al.: Splice variants of TLE family genes and up-regulation of TLE3 isoform in prostate tumors. Biochem Biophys Res Commun. 2007; 364(4): 918–23.

80. Guan H, Liu C, Fang F, et al.: MicroRNA-744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signalling. Oncotarget. 2017; 8(9): 14659–707.

81. Lee JH, Zhao XM, Youn I, et al.: Integrative analysis of mutational and transcriptional profile reveals driver mutations of metastatic breast cancers. Cell Discov. 2016; 2: 16025.

82. Zhang W, Sirvina V, Chen X, et al.: Fluorinated N-4-diarylaminostilbene repress colon cancer by targeting the methionine S-adenosyltransferase 2A. ACS Chem Biol. 2013; 8(4): 796–803.

83. Frau M, Feo F, Pascale RM: Oligomeric Interaction of Phosphatase PRL-1 with the Magnesium Transporter TACCI. Biochem Biophys Res Commun. 2006; 343(4): 1211–20.

84. Zhao J, Liu H, Hou J, et al.: Tumor Protein D52 (TPD52) Inhibits Growth and Metastasis in Renal Cell Carcinoma Cells Through the PI3K/Akt Signalling Pathway. Oncol Rep. 2017; 38(3): 773–9.

85. Tackmayama K, Horiuchi K, Suzuki T, et al.: TACCC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer. Mol Endocrinol. 2012; 26(5): 748–61.

86. Kim DH, Oh SY, Kim SY, et al.: DNA ligase 4α is a prognostic marker in nasopharyngeal cancer patients treated with radiotherapy. Asian Pac J Cancer Prev. 2014; 15(24): 10995–8.

87. Teschke A, Kiewiet W, et al.: C212–5.

88. Jun S, Jung YS, Shin HN, et al.: LIG5 mediates Wnt-signalling-induced radioreistance. Nat Commun. 2016; 7: 10994.

89. Jun S, Jung YS, Shin HN, et al.: LIG5 mediates Wnt-signalling-induced radioreistance. Nat Commun. 2016; 7: 10994.

90. Grupp K, Roetter L, Kloth M, et al.: Expression of DNA ligase 4α is linked to poor prognosis and characterizes a subset of prostate cancers harboring TMPRSS2:ERG fusion and PTEN deletion. Oncol Rep. 2015; 34(3): 1211–20.

91. Cao WH, Liu HM, Liu X, et al.: Relaxin enhances in-vitro invasiveness of breast cancer cell lines by upregulation of S100A4/MMPs signaling. Eur Rev Med Pharmacol Sci. 2013; 17(5): 609–17.

92. Kim DH, Oh SY, Kim SY, et al.: DNA ligase 4α is a prognostic marker in nasopharyngeal cancer patients treated with radiotherapy. Asian Pac J Cancer Prev. 2014; 15(24): 10995–8.

93. Grupp K, Roetter L, Kloth M, et al.: Expression of DNA ligase 4α is linked to poor prognosis and characterizes a subset of prostate cancers harboring TMPRSS2:ERG fusion and PTEN deletion. Oncol Rep. 2015; 34(3): 1211–20.

94. Radestock Y, Willing C, Kohlen A, et al.: Relaxin enhances S100A4 and promotes growth of human thyroid carcinoma cell xenografts. Mol Cancer Res. 2010; 8(4): 494–506.

95. 96. Byrne JA, Frost S, Chen Y, et al.: Tumor protein d52 (TPD52) and cancer-oncogene understudy or studied oncogene? Tumour Biol. 2014; 35(8): 7369–82.

97. Byrne JA, Balline RL, Schoenberg Fejzo M, et al.: Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. Int J Cancer. 2005; 117(6): 1049–54.

98. Zhao Z, Lu H, Hou J, et al.: Tumor Protein D52 (TPD52) Inhibits Growth and Metastasis in Renal Cell Carcinoma Cells Through the PI3K/Akt Signalling Pathway. Oncol Rep. 2017; 38(5): 773–9.

99. Li J, Lui YJ, Liu H, et al.: The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One. 2017; 12(5): e0178515.

100. Rubin MA, Varambally S, Bercukin R, et al.: Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res. 2004; 64(11): 3814–22.

101. Goto Y, Nishikawa R, Kojima S, et al.: Tumour-suppressive microRNA-224
transcription start sites in colorectal cancer identified by genome-wide exon array analysis. BMC Genomics. 2011; 12: 509. PubMed Abstract | Publisher Full Text | Free Full Text

93. Luo A, Zhang X, Fu L, et al.: Zinc finger factor ZNF121 is a MYC-interacting protein functionality affecting MYC and cell proliferation in epithelial cells. J Genet Genomics. 2016; 43(12): 677–85. PubMed Abstract | Publisher Full Text

94. Liu C, Zheng L, Wang H, et al.: The RCAN1 inhibits NF-kB and suppresses lymphoma growth in mice. Cell Death Dis. 2015; 6(10): e1929. PubMed Abstract | Publisher Full Text | Free Full Text

95. Espinosa AV, Shinhoara M, Porchia LM, et al.: Regulator of calcineurin 1 modulates cancer cell migration in vitro. Clin Exp Metastasis. 2009; 26(6): 517–26. PubMed Abstract | Publisher Full Text | Free Full Text

96. Hang X, Wu Z, Chu K, et al.: Low expression of DCXR protein indicates a poor prognosis for hepatocellular carcinoma patients. Tumour Biol. 2016; 37(1): 15079–85. PubMed Abstract | Publisher Full Text

97. Ebert B, Kisiela M, Maser E: The microtubule-associated protein MAPRE2 is involved in perineural invasion of pancreatic cancer cells. J Genet Genomics. 2016; 43(10): e1929. PubMed Abstract | Publisher Full Text | Free Full Text

98. Cho-Vega JH, Vega F, Schwartz MR, et al.: Low expression of DCXR protein indicates a poor prognosis for hepatocellular carcinoma patients. Tumour Biol. 2016; 37(1): 15079–85. PubMed Abstract | Publisher Full Text

99. Takagaki Y, Seipelt RL, Peterson ML, et al.: The polyadenylation factor CSTF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996; 87(5): 341–52. PubMed Abstract | Publisher Full Text | Free Full Text

100. Mayr C, Bartel DP: Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009; 138(4): 673–84. PubMed Abstract | Publisher Full Text | Free Full Text

101. Lin Y, Li Z, Ozsolak F, et al.: An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res. 2012; 40(17): 8460–71. PubMed Abstract | Publisher Full Text | Free Full Text

102. Wang Q, Li W, Liu XS, et al.: Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2007; 16(12): 2615–22. PubMed Abstract | Publisher Full Text

103. Mogilner J, Maia TM, Ibarluzea N, et al.: Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood. 2007; 109(11): 4599–606. PubMed Abstract | Publisher Full Text | Free Full Text

104. Chen G, Wu J, Liu LM, et al.: Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res. 2013; 19(9): 2547–51. PubMed Abstract | Publisher Full Text | Free Full Text

105. Takagaki Y, Seipelt RL, Peterson ML, et al.: The polyadenylation factor CSTF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996; 87(5): 341–52. PubMed Abstract | Publisher Full Text | Free Full Text

106. Liu C, Zheng L, Wang H, et al.: The RCAN1 inhibits NF-kB and suppresses lymphoma growth in mice. Cell Death Dis. 2015; 6(10): e1929. PubMed Abstract | Publisher Full Text | Free Full Text

107. Brown-Endres L, Schoenfeld D, Tian F, et al.: Expression of dicyclobon-L-xylose reductase (DCXR) in human skin and melanocytic lesions: morphological studies supporting cell adhesion function of DCXR. J Cutan Pathol. 2007; 34(7): 535–42. PubMed Abstract | Publisher Full Text

108. Aibaishi J, Gillen S, DeOliveira T, et al.: Expression of dicyclobon-L-xylose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2007; 16(12): 2615–22. PubMed Abstract | Publisher Full Text

109. Zhang JH, Li AI, Wei Y: Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients. Eur Rev Med Pharmacol Sci. 2017; 21(9): 2103–7. PubMed Abstract

110. Zhang J, Zhu N, Chen X: A novel long noncoding RNA LINC01133 is upregulated in lung squamous cell cancer and predicts survival. Tumour Biol. 2015; 36(10): 7465–71. PubMed Abstract

111. Miyamoto S, Chiorini JA, Urcelay E, et al.: Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997; 25(13): 2547–61. PubMed Abstract | Publisher Full Text | Free Full Text

112. Takagaki Y, Seipelt RL, Peterson ML, et al.: The polyadenylation factor CSTF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996; 87(5): 341–52. PubMed Abstract | Publisher Full Text | Free Full Text

113. Edwards-Gilbert G, Veraldi KL, Micarelli C: Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997; 25(13): 2547–61. PubMed Abstract | Publisher Full Text | Free Full Text

114. Stacey SN, Sulem P, Jonassdottir A, et al.: A germine variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet. 2011; 43(11): 1098–103. PubMed Abstract | Publisher Full Text | Free Full Text

115. Liu C, Zheng L, Wang H, et al.: The RCAN1 inhibits NF-kB and suppresses lymphoma growth in mice. Cell Death Dis. 2015; 6(10): e1929. PubMed Abstract | Publisher Full Text | Free Full Text

116. Liu C, Zheng L, Wang H, et al.: The RCAN1 inhibits NF-kB and suppresses lymphoma growth in mice. Cell Death Dis. 2015; 6(10): e1929. PubMed Abstract | Publisher Full Text | Free Full Text

117. Lin Y, Li Z, Ozsolak F, et al.: An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res. 2012; 40(17): 8460–71. PubMed Abstract | Publisher Full Text | Free Full Text

118. Lin Y, Li Z, Ozsolak F, et al.: An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res. 2012; 40(17): 8460–71. PubMed Abstract | Publisher Full Text | Free Full Text

119. Lin Y, Li Z, Ozsolak F, et al.: An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res. 2012; 40(17): 8460–71. PubMed Abstract | Publisher Full Text | Free Full Text

120. Morris AR, Bos A, Diosdado B, et al.: Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res. 2013; 19(9): 2547–51. PubMed Abstract | Publisher Full Text | Free Full Text

121. Fu Y, Sun Y, Li Y, et al.: Differential genome-wide profiling of tandem 3’UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011; 21(5): 741–7. PubMed Abstract | Publisher Full Text | Free Full Text

122. Wang Q, Li W, Liu XS, et al.: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007; 27(3): 380–92. PubMed Abstract | Publisher Full Text | Free Full Text

123. Andreu-Vieyra C, Lai J, Berman BP, et al.: Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells. Mol Cell Biol. 2011; 31(23): 4648–62. PubMed Abstract | Publisher Full Text | Free Full Text

124. Zhao JC, Fong KW, Jin HJ: FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression. Oncogene. 2016; 35(33): 4335–44. PubMed Abstract | Publisher Full Text | Free Full Text

125. Munkley J, Maya TM, Ibarluzea N, et al.: Dataset 2 in: Androgen-dependent alternative mRNA isoform expression in prostate cancer cells. F1000Research 2018, 7:1189 Last updated: 18 SEP 2018 http://www.doi.org/10.5256/f1000research.15604.d212874
Open Peer Review

Current Referee Status: ✔ ✔

Version 1

Cyril F. Bourgeois
INSERM U1210, CNRS UMR 5239, Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon (ENS Lyon), University of Lyon, Lyon, France

This paper by Munkley and colleagues identifies in a comprehensive manner novel alternative mRNA isoforms regulated by androgens. Interestingly most isoforms result from a choice between alternative promoters, suggesting that regulation takes place mostly at the transcriptional level, but they identified also a few alternative cassette exons and 3' ends. They show experimental validation for 17 isoforms. Beside increasing the number of identified genes in the context of androgen-treated prostate cancer LNCaP cells, the authors analysed the expression of those new isoforms in a large cohort of prostate tumours. They found the expression of some of the mRNA isoforms is positively correlated in the androgen-treated cell and in cancer versus normal samples, and find further correlation with the tumour grade and stage for 3 alternative isoforms.

Overall this is an interesting work that clearly deserves to be published, as it reveals new potentially interesting target genes for prostate cancer. I have only a couple of comments/questions that may help to improve the strength of the manuscript.

Did the authors try to experimentally validate the regulation of alternative isoforms for the 3 most interesting genes, i.e. OSBPL1A, CLK3 and TSC22D3, which is correlated to tumour stage? As these new isoforms are predicted to alter the protein sequence, is it possible to discuss or predict what could be the impact of these modifications for these proteins, with regards to what is known about their function and/or in the context of prostate cancer?

Looking at the RNA-seq profiles for the validated examples, it seems to me that in some cases, especially for RLN1 and RLN2, regulation of promoter choice correspond also to changes in the 3 end of the transcript (the peak seems to be shifted to the 3' end). Such examples may have escaped the in silico prediction, but can you make any comment on this?

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes
Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Transcription and alternative splicing, transcriptomics

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Sebastian Oltean
Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, Exeter, UK

Prostate cancer (PCa) is still a significant health problem in UK and across the world. Though a small minority of patients progress to aggressive forms, the absolute number is quite significant due to the high incidence of PCa among men. Therefore, investigation of molecular mechanisms of PCa progression is very important and will hopefully unravel novel therapeutic targets.

Alternative splicing (AS) has been shown to occur in over 94% of genes in humans. It is therefore a crucial level of gene regulation and not surprisingly involved in virtually every physiological and pathological process. AS de-regulation has been implicated in many diseases, including cancer and in particular PCa, and interestingly, many times it has been shown to drive cancer pathology independently of transcription.

Since androgens are main players in PCa, the idea of analysing global changes in AS in response to androgens is very welcome to the field. The authors found 10 times more AS isoforms regulated by androgens than previously reported in data from cell culture, most of them occurring through alternative promoter mechanism. They have confirmed and validated part of these changes. They have also analysed the isoforms changes between adenocarcinoma and normal tissues as well as during progression through the Gleason stages of PCa.

This is a very well thought and executed study, with may informative results. I have a suggestion for the discussion part:

- one issue in global analysis of splice isoforms is which ones are causal (ie maintain and aggravate the phenotype) and which ones are just associated with the pathological progression; while a full...
answer to this would need experimental evidence on each individual splicing event, could the authors discuss 1-2 examples, if possible, where the changes at protein level (either sequence or expression level of a particular isoform) would hypothetically have a causal role

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: alternative splicing; prostate cancer; diabetes (renal complications)

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com