Abstract

It is required that the clinical screening of metabolic disorders in newborns meet International Organization for Standardization 15189-2012 approval. The new tandem mass spectrometry (MS/MS) based screening system and its companion reagent should be independently authenticated before their implementation in clinical diagnosis laboratories.

Linearity, stability, accuracy, and precision evaluations were carried out to verify the performance of the Waters ACQUITY TQD MS/MS system with the NeoBase non-derivatized MS/MS PerkinElmer kit for detecting amino acids and acylcarnitine in newborns with metabolic disorders.

Statistically, the correlation coefficient (R^2) of 0.9982 to 0.9999 indicates good linearity. The measurements at the beginning and end of the reagent storage procedure were taken for stability verification. No significant difference was detected between the 2 periods. The amino acid exhibited a degree of bias in the range of 0% to 14.17%, with acylcarnitine’s being was in the range of 0% to 14.84%; they consequently passed the quality assessment requirements for clinical laboratories of the China National Centre. The amino acids’ within-run, between-run, and day-to-day run precision were 1.19% to 7.68%, 1.63% to 5.01%, and 4.77% to 12.48%, respectively, while the total imprecision was 5.55% to 13.33%. Acylcarnitine’s within-run, between-run, and day-to-day run precision was 1.2% to 8.43%, 0.19% to 9.60%, and 2.33% to 10.74%, respectively, while it’s total imprecision was 6.57% to 13.99%. The manufacturer declared that the total imprecision of the tests, using Multiple Reaction Monitoring, should be less than or equal to 25% of the coefficient of variation for the kit’s high and low-quality control levels.

The performance of the non-derivatized MS/MS screening system in detecting the amino acids and acylcarnitines passed the test’s requirements. It was maintained in accordance with the routine clinical chemical detection system.

Abbreviations: CV = coefficient of variation, IMD = inherited metabolic diseases, ISO = International Organization for Standardization, MRM = multiple reaction monitoring, MS = mass spectrometry, RSD = relative standard deviation, SD = standard deviation.

Keywords: accuracy, acylcarnitines, amino acids, linearity, precision, stability, tandem mass spectrometry

1. Introduction

Inherited metabolic diseases (IMD), also known as inborn errors of metabolism, refers to the enzymes, receptors, and cell membrane dysfunctions involved in and caused by genetic defects.[1] These diseases lead to the blockage of metabolic pathways, and an accumulation of intermediate or bypass products or a lack of terminal products, resulting in a variety of clinical symptoms. IMDs often remain undetected due to a frequent lack of clear symptoms during the early stages of neonatal development; symptoms are more commonly apparent during childhood, and may be progressively aggravated as the IMDs cause irreversible damage to the nervous system or even death. Consequently, it is often too late, by the time that clinical symptoms appear, to provide optimal treatment, such that the diseases lead to moderate-to-severe neuropsychological dysfunction, mental retardation, and even mortality.[2] Thus, newborn disease screening or screening for congenital and inherited diseases causing serious harm in neonates can lead to their early diagnosis, avoiding or reducing the harm they cause through prevention and treatment.[3,4] The practice of screening for neonatal diseases began in the 1960s and has been employed for years to justify screening programs.[5,6] China has been developing such programs since the 1980s.

Tandem mass spectrometry (MS/MS) has been employed to extensively screen for numerous genetic metabolic neonatal diseases.[2,7] Recent advances in laboratory technology practices using MS/MS involving the application of single dried blood spot samples to filter paper have enhanced the identification of IMDs in
newborns.[8] Due to the broad spectrum of diseases it covers, along with its specificity, ease of sample preparation, and high throughput,[2] MS/MS technology has led to the development in many countries of multisorder newborn screening programs for 3 major types of genetic metabolic diseases, namely, amino acid disorders,[9,10] organic acido
demias,[11] and fatty acid oxidation defects.[1,7]

According to the special guide for the International Laboratory Organization (ISO) ISO15189-2012, the “Quality and Ability Requirements for Medical Laboratories”[11] and the “Newborn Screening by Tandem Mass Spectrometry”[12] provided by the Clinical and Laboratory Standards Institute, USA, MS/MS and its
companion reagents require independent verification by the user to
certify whether the detection system meets the laboratory’s
intended use. However, until now, few reports have been
conducted on the comprehensive verification of related instru-
ments and reagents used by other laboratories.[13,14] Even in the
reported literature, local laboratory test samples were used. There
remains, on the one hand, some doubt as to the reliability of the
data obtained by the unverified equipment. Furthermore, a
certain time is required to collect samples for use in clinical
evaluations. A standardized method for universal laboratory use
is difficult to establish.

Based on this situation, the laboratory used amino acid and
acylcarnitine interstitial blood test samples from the Inspection Testing Centre of China’s National Institute of Health and Family Planning Commission as an evaluation sample for the
detection of neonatal genetic metabolic disease. Amino acid and
acylcarnitine screening systems consisting of ACQUITY TQD
MS/MS from Waters and its supporting reagents, the NeoBase
derivatized MS/MS kit from PerkinElmer Inc, MA, were
validated according to the most current standards. The verification criteria included linear range, reagent stability,
accuracy, and precision. These verification indices were all
dicators included in the interstitial sample quality assessments
performed by the clinical inspection center.

2. Material and methods

2.1. Samples

This study was approved by the Hospital Ethics Review Board and
the approval number is Bath 2018, No. 072. Filter paper dried
blood spot specimens were used to evaluate all of the programs.
Quality assessment samples of amino acid and acycarnitine by
MS/MS were employed by the Inspection Testing Centre of the
China National Institute of Health and Family Planning for the
screening of neonatal genetic metabolic diseases.

2.2. Instruments and reagents

The MS/MS system of the Waters Corporation (Massachusetts)
includes an MS/MS ACQUITY TQD, a high-performance liquid
chromatography (1525) and a 2777 compact sample manager
(2777C). The reagents were from the non-derivatized assay kit
(PerkinElmer) for a variety of amino acids, and acycarnitine and
succinylacetone screening. The microplate incubated shaker Mb100-
4a was from Allsheng Instruments Co, Ltd (Hangzhou, China).

2.3. Linearity evaluation

According to the linearity evaluation of the CLSI EP6-A
quantitative measurement procedures and compared with the
quality control blood spot sample from the Clinical Inspection Centre (2017), L was used for the first amino acid concentration,
while acylcarnitine was employed in the second concentration
spot as L and the fifth concentration as H. The scheme followed is
as follows in Table 1.

A 75 µL sample was transferred each time from the U- to the V-
plate, covered by an aluminum foil film, and then assessed by the
machine. From the response intensity ratio of the sample to the
internal standard as the abscissa, X, and the corresponding
solution concentration ratio as the ordinate, Y, the regression
equations were obtained.

2.4. Stability test

In order to measure the consistency between the 2 working
solutions of newly prepared reagent and the stable ending
reagent, samples of each concentration were repeatedly measured at least 6 times to calculate their average value. The newly
prepared and stable ending working fluids were measured in the
same analytical run so as to minimize instrumental imprecision.
The consistency of the average values between the 2 groups was
applied by the T test. The test results were analyzed by SPSS
statistic software (IBM, New York) using the T test.

2.5. Accuracy evaluation

The accuracy of the MS/MS system was evaluated in 2017 by the
Department of Health in a quality assessment using the
ventricular blood spot sample. The results were calculated
according to the scoring standards for external quality assess-
ments.

2.6. Precision evaluation

2.6.1. The relative standard deviation (RSD) of the within-
run. Three sets of samples, each at high, medium and low
concentrations, were appraised according to the proposed
analytical method. The samples were measured sequentially,
each in its own analytical run, after the instrument was turned on.
The standard deviation (SD) and RSD values of each concentra-
tion sample were calculated.

2.6.2. The RSD of the between-run. Three sets of samples, each at high, medium and low concentrations, were assessed according to the proposed analytical method. Three such experiments were completed within 1 business day. The SD and RSD values of each concentration sample were calculated.

2.6.3. The RSD of the day-to-day run. The same batch of
reagents and calibrators were used to perform 2 experiments in 1
business day. Each sample was measured twice in each

Concentration gradient	Optimum ratio
1	201711 (L)
2	0.833L + 0.167H
3	0.667L + 0.333H
4	0.500L + 0.500H
5	0.333L + 0.667H
6	0.167L + 0.833H
7	201715 (H)
experiment, to a total of 5 business days. Further analysis was performed to find the mean coefficient of variation (CV) with no significant difference being found between any 2 or more results.

3. Results and discussions

The linearity evaluation was carried out according to the CLSI EP6-A quantitative measurement method. The correlation coefficient (R^2) was 0.9992 to 0.9999, indicating that the linearity was good. The results are shown in Tables 2 and 3. The verification determined that the linear ranges of the testing items provided by the manufacturer were too high to cover the horizontal ranges of the daily test specimens. For example, the linear range of C0 as declared by the manufacturer was 51 to 165.70 μmol/L. The lowest level of C0 in our laboratory specimen was 1.07 μmol/L, which was lower than the limit for the linear range. Similar results were found in the other testing items. During this verification, we expanded the linear range of all the indicators to make them conform better to the daily testing requirements as shown in Tables 2 and 3.

A significant difference was found to exist between the 2 groups of data if $P < .05$. As shown in Tables 4 and 5 below, there was no significant difference between the results measured at the beginning and end of the kit storage period. The stability period of the reagents in the kit as declared by the manufacturer was 4 weeks. This study verified that the reagents passed the stability index.

The first dried blood spots specimens for the inter-laboratory quality assessments conducted in 2017 were tested in this research and the degree of bias calculated, as shown in Tables 6 and 7 below. The results were calculated according to the scoring standard of external quality assessment at the Ministry of Health. The passing rate was 100%, indicating that all indices underwent accuracy evaluation.

The precision evaluation results were expressed as % CV. The within-run precision of the amino acid index was 1.19% to 7.68%, while the between-run precision was 1.63% to 5.01% and the day-to-day run was 4.77% to 12.48%. The total imprecision of the amino acid was 5.53% to 13.33%. The within-run precision of the acylcarnitine index was 1.2% to 8.43%, the between-run was 0.19% to 9.60% and the day-to-day run was 2.33% to 10.74%. The total imprecision of acylcarnitine was 6.57% to 13.99%.

Table 2	Results of the linearity evaluation of the amino acids.		
Index	**Linear equation**	**Correlation coefficient (R^2)**	**Linear range**
Alanine (ALA)	$y = 0.8973x - 0.0687$	0.9994	194.08–863.82
Arginine (ARG)	$y = 0.8477x - 0.0019$	0.9982	7.01–31.54
Citrulline (CIT)	$y = 1.0429x - 0.0240$	0.9903	50.42–392.08
Leucine (LEU)	$y = 1.0295x - 0.0870$	0.9998	162.34–707.81
Methionine (MET)	$y = 1.0329x - 0.0351$	0.9985	20.41–370.33
Phenylalanine (PHE)	$y = 0.9189x - 0.0285$	0.9998	39.60–559.26
Tyrosine (TYR)	$y = 0.8976x - 0.0387$	0.9998	55.66–928.05
Valine (VAL)	$y = 0.8976x - 0.0519$	0.9997	111.51–831.66

Table 3	Results of linear evaluation of acylcarnitine.		
Index	**Linear equation**	**Correlation coefficient (R^2)**	**Linear range**
Free carnitine (C0)	$y = 0.9402x + 0.004$	0.9998	1.9–253.17
Acetylcarnitine (C2)	$y = 0.8072x + 0.1712$	0.9998	1.1–165.70
Propionylcarnitine (C3)	$y = 0.9174x - 0.0025$	0.9996	0.03–19.50
Butyrylcarnitine (C4)	$y = 0.9002x + 0.0294$	0.9999	0.03–18.72
Hydroxybutyrylcarnitine (C4OH)	$y = 0.8857x + 0.0039$	0.9987	0.05–3.81
Isovalerlcarnitine (C5)	$y = 0.8571x + 0.0106$	0.9995	0.03–4.75
Glutaryl carnitine (C5DC)	$y = 0.973x + 0.0115$	0.9995	0.03–4.37
Hexanoylcarnitine (C6)	$y = 0.903x + 0.006$	0.9992	0.01–2.71
Octanoylcarnitine (C8)	$y = 0.9072x + 0.002$	0.9996	0.02–2.77
Decanoylcarnitine (C10)	$y = 0.8971x + 0.0096$	0.9999	0.01–5.75
Laurylcarnitine (C12)	$y = 0.9147x + 0.0003$	0.9999	0.08–6.59
Myristoylcarnitine (C14)	$y = 0.7183x + 0.0284$	0.9982	0.07–8.29
Palmitoylcarnitine (C16)	$y = 0.8539x + 0.0666$	0.9999	0.21–51.82
Octadecanoylcarnitine (C18)	$y = 0.9259x + 0.005$	0.9999	0.74–3.39

Table 4	Stability evaluation results for the amino acids.		
Index	**Low**	**Medium**	**High**
ALA	0.129	0.191	0.802
ARG	0.974	0.069	0.563
CIT	0.083	0.078	0.727
LEU	0.091	0.245	0.966
MET	0.233	0.163	0.909
PHE	0.008	0.164	0.036
TYR	0.314	0.331	0.775
VAL	0.714	0.144	0.650

 Ala = alanine, ARG = arginine, CIT = citrulline, LEU = leucine, MET = methionine, PHE = phenylalanine, TYR = tyrosine, VAL = valine.
Table 5
Stability evaluation results for acylcarnitine.

Index	Low	Medium	High
C0	0.088	0.606	0.276
C2	0.889	0.937	0.686
C5	0.184	0.898	0.307
C4OH	0.423	0.524	0.114
C4	0.184	0.680	0.332
C5	0.225	0.301	0.266
C5DC	0.184	0.837	0.585
C6	0.184	0.944	0.221
C8	0.184	0.501	0.541
C10	0	0.689	0.344
C12	0.225	0.913	0.145
C14	0.423	0.336	0.980
C16	0.118	0.804	0.154
C18	0.053	0.765	0.065

Table 6
Accuracy evaluation results for the amino acids.

Index	201,711	201,712	201,713	201,714	201,715	Score
ALA	0.65	−4.01	−4.12	−1.1	−10.11	100%
ARG	−13.27	−10.39	−14.17	−12.56	6.63	100%
CIT	3.07	0.72	−0.46	10.29	−3.29	100%
LEU	1.24	−1.35	−3.38	4.45	−7.45	100%
MET	6.9	4.32	0	4.91	−5.56	100%
PHE	7.9	−0.35	−3.38	3.54	−7.79	100%
TYR	6.83	−7.11	−7.84	−0.41	−11.56	100%
VAL	1.43	−2.14	−6.67	2.52	−9.13	100%

Table 7
Accuracy evaluation results for acylcarnitine.

Index	201,711	201,712	201,713	201,714	201,715	Score
C0	6.84	−5.16	9.04	−5.74	−12.33	100%
C2	11.45	−4.08	0.26	−11.77	−10.54	100%
C5	13.5	−1.6	11.08	0.27	−5.33	100%
C4	0	−0.65	10.21	0.34	−10.95	100%
C4OH	0	−7.23	0.56	−11.71	−13.91	100%
C5	0	0	7.56	0	−4.63	100%
C5DC	0	−13.22	0.82	−12.64	−11.45	100%
C6	0	0	10.95	−8.96	−8.86	100%
C8	0	−5.19	4.9	−8.92	−10.83	100%
C10	0	−3.81	8.26	−7.83	−10.96	100%
C12	0	−2.83	10.08	−6.88	−10.73	100%
C14	−12.22	−11.92	−11.59	−9.89	−7.62	100%
C16	0	−2.73	8.78	−7.36	−10.96	100%
C18	4.05	−5.91	2.12	−11.54	−14.84	100%

Table 8
Precision evaluation results for the amino acids (% CV).

Index	ALA	ARG	CIT	LEU	MET	PHE	TYR	VAL	
Low concentration	RSD of within-run	1.88	4.01	1.19	1.80	2.76	1.84	2.02	3.45
	RSD of between-run	2.11	5.56	4.59	3.31	5.01	3.82	2.20	4.97
	RSD of day-to-day run	4.77	6.51	5.66	5.15	5.16	4.93	5.95	4.84
	Total precision	5.55	11.23	8.03	6.59	9.55	6.95	8.11	7.67
Medium concentration	RSD of within-run	1.99	3.05	5.06	2.75	2.36	2.02	3.32	1.82
	RSD of between-run	1.64	3.05	3.60	2.64	3.34	3.30	1.63	3.15
	RSD of day-to-day run	7.95	4.99	6.84	5.40	12.48	12.55	9.36	5.85
	Total precision	11.21	7.72	10.22	5.07	13.33	12.97	10.32	8.39
High concentration	RSD of within-run	5.08	6.33	4.61	4.30	5.57	4.72	5.11	5.55
	RSD of between-run	1.72	2.27	2.29	2.33	2.04	1.74	2.54	2.59
	RSD of day-to-day run	8.60	7.97	6.23	8.91	8.92	8.25	7.28	8.35
	Total precision	10.51	10.79	8.36	10.35	10.96	9.84	9.16	10.64
4. Conclusions

This study verified the linearity, accuracy, and precision of Waters’ newborn screening MS/MS platform and the PerkinElmer NeoBase non-derivatized MS/MS kit reagent, with a linear correlation coefficient of 0.9985 to 0.9998. In this project, some of the performance parameters provided by the manufacturer, such as those for free carnitine, were found to have narrow linear range such that it was unable to cover the detection range of the daily sample concentration levels. This verification test expanded the linear range of all the indicators to better align with the scope of the daily testing, with the possibility for further expansion. A laboratory should establish a linear range according to the actual situation. In the accuracy evaluation, the amino acid bias was 0% to 14.17% while that for acylcarnitine was 0% to 22.22%. The bias range greatly differed for diverse items, with even high and low concentrations of the same indicator having irregular biases; this may be related to the stability of the internal standard. However, the results were calculated according to the scoring standard from the Ministry of Health’s external quality assessment, demonstrating that all indices underwent the accuracy evaluation.

In general, the precision evaluation for each index meant that the day-to-day run precision of the clinical chemical detection system was greater than that of the between-run precision, which itself was greater than that of the within-run batch. Each index was found to meet the performance parameters stated by the manufacturer.

In summary, this study revealed that the performance of the neonatal genetic metabolic disease screening system, which consists of Waters AQUITY TQD MS/MS and PerkinElmer non-derivatized amino acids and the acylcarnitine detection kit, meets the manufacturer’s declared parameters. This detection system can be managed in accordance with the relevant standards for conventional clinical chemistry testing systems.

Author contributions

Conceptualization: Wenbin Zhu, Yulan Zheng.
Data curation: Yao Chen.
Formal analysis: Yao Chen, Yinglin Zeng.
Funding acquisition: Weifen Chen.
Investigation: Weifen Chen.
Methodology: Wenbin Zhu, Weifen Chen, Hong Zhao.
Project administration: Qingying Lin.
Resources: Xiaolong Qiu, Qingying Lin, Yinglin Zeng.
Software: Xiaolong Qiu, Qingying Lin, Yinglin Zeng.
Supervision: Wenbin Zhu, Yulan Zheng.
Writing – original draft: Hong Zhao.

References

[1] El-Hattab AW. Inborn errors of metabolism. Clin Perinatol 2015;42:413–39.
[2] Morteza P, Fouzieh Z. Newborn screening for inherited metabolic disorders: news and views. J Res Med Sci 2013;18:801–8.
[3] Wilcken B. Expanded newborn screening: reducing harm, assessing benefit. J Inherit Metab Dis 2010;33(Suppl 2):S205–10.
[4] Waissbren SE. Expanded newborn screening: information and resources for the family physician. Am Fam Physician 2008;77:987–94.
[5] Dhondt JL. Expanded newborn screening: social and ethical issues. J Inherit Metab Dis 2010;33(Suppl 2):S211–7.
[6] Kerrush NJ, Robertson SP. Newborn screening: new developments, new dilemmas. J Med Ethics 2003;31:393–8.
[7] Chace DH, DiPerna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001;47:1166–82.
[8] Banta-Wright SA, Steiner RD. Tandem mass spectrometry in newborn screening: a primer for neonatal and perinatal nurses. J Perinat Neonatal Nurs 2004;18:41–60.
[9] Fletcher JM. Diagnosis and management support for an expanded newborn screening programme. Ann Acad Med Singapore 2008;37(12 Suppl):27–32.
[10] Yang C, Wei N, Li M, et al. Diagnosis and therapeutic monitoring of inborn errors of metabolism in 100,077 newborns from Jining city in China. BMC Pediatr 2018;18:110.
[11] Yildirimbegim G, Ustunluoglu N, Genc B, et al. Neonatal screening for organic acidurias in newborn babies: a comparison of tandem mass spectrometry and gas chromatography/mass spectrometry. Arch Dis Child Fetal Neonatal Ed 2004;89:F184–7.
[12] Clinical, Laboratory Standards Institute/Newborn Screening by Tandem Mass Spectrometry, Approved Guideline. Wayne, PA: CLSI; 2010.
[13] Chen P, Wang S, Chen L, et al. Evaluation of a new non-derivatized MS/MS kit in newborn screening program. Ann Transl Med 2017;5(Suppl 2):AB104.
[14] Lim TH, De Jesus VR, Meredith NK, et al. Proficiency testing outcomes of 3-hydroxyisovalerylcarnitine measurements by tandem mass spectrometry in newborn screening. Clinica Chimica Acta 2011;412:631–5.
[15] Clinical, Laboratory Standards Institute/Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline (EP6-A). Wayne, PA: CLSI; 2003.