Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and Susceptibility for Cervical Lesions: A Meta-Analysis

Shuyu Long1, Xingliang Yang2, Xiaojiao Liu, Pei Yang1

1 Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China, 2 Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China

Abstract

Background: The association between the methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and the susceptibility to cervical lesions was unclear. This study was designed to investigate their precise association using a large-scale meta-analysis.

Methods: The previous 16 studies were identified by searching PubMed, Embase and CBM databases. The crude odds ratios and their corresponding 95% confidence intervals (CIs) were used to estimate the association between the MTHFR C677T/A1298C polymorphisms and the susceptibility to the cervical lesions. The subgroup analyses were made on the following: pathological history, geographic region, ethnicity, source of controls and source of DNA for genotyping.

Results: Neither of the polymorphisms had a significant association with the susceptibility to the cervical lesions in all genetic models. Similar results were found in the subgroup analyses. No association was found between the MTHFR C677T polymorphism and the cervical lesions in the Asia or the America populations though a significant inverse association was found in the Europe population (additive model: \(P = 0.006, OR = 0.83, 95\% CI = 0.72–0.95 \); CT vs. CC: \(P = 0.05, OR = 0.83, 95\% CI = 0.69–1.00 \); TT vs. CC: \(P = 0.05, OR = 0.73, 95\% CI = 0.53–1.00 \)). Interestingly, women with the MTHFR A1298C polymorphisms had a marginally increased susceptibility to invasive cancer (ICC) when compared with no carriers but no statistically significant difference in the dominant model (\(P = 0.06, OR = 1.21, 95\% CI = 0.99–1.49 \)) and AC vs. AA (\(P = 0.09, OR = 1.21, 95\% CI = 0.97–1.51 \)).

Conclusions: The MTHFR C677T and A1298C polymorphisms may not increase the susceptibility to cervical lesions. However, the meta-analysis reveals a negative association between the MTHFR C677T polymorphisms and the cervical lesions, especially in the European populations. The marginal association between the MTHFR A1298C polymorphisms and the susceptibility to cervical cancer requires a further study.

Introduction

Cervical cancer is the third most frequently encountered cancer and the fourth leading cause of the women’s cancer death in the world, accounting for 9% (529,800) of the total newly-diagnosed cancer cases and 8% (275,100) of the total cancer deaths among females in 2008 [1]. However, cervical cancer is considered a preventable disease because of its relatively long period of precancerous lesions, including cervical intraepithelial neoplasia (CIN). The virological, molecular, clinical and epidemiological studies have provided evidence that cervical cancer is in fact a sequel to a long-term unresolved infection of certain genotypes of the Human Papilloma Virus (HPV) [2,3]. High-risk HPVs are known to infect cervical epithelium, with a subset of these being associated with preneoplastic lesions that can progress to cervical cancer. Nevertheless, despite the extremely high rate of infection by these viruses, the rate of cervical cancer, even in the prescreening area, has been less than one tenth that of exposure [4,5]. Thus, other factors are important for cervical lesion development and progression such as a long-term use of hormonal contraceptives, multiparity, smoking, and some nutritional factors [6–8].

Association between micronutrient depletion, particularly folate deficiency, and cervical lesions has been studied for a long time. Folate deficiency, as a potential risk for cervical cancer, was first reported by some cytopathologists in the 1960s, who had found that the cervical epithelial cells from folate-deficient women had some similarity to the dysplastic cervical cells in cytology [9]. Later on, Whitehead et al. demonstrated that macrocytic changes in the cervical cells of the oral contraceptive users could be reversed with folic acid supplementation [10]. However, conflicting results still
MTHFR Polymorphisms and Cervical Lesion Risk

Search Strategy and Selection Criteria

The computer-based search strategy was comprehensively used to find eligible studies for this meta-analysis. Two investigators (Long, Yang) searched in the PubMed and Emase independently from inception to July 22, 2012, for the studies on the association between the MTHFR C677T polymorphism (rs1801133) and A1298C polymorphism (rs1801131) and the cervical lesions. Following Medical Subject Heading (MeSH) terms and/or text words were used in our search, such as for methylenetetrahydrofolate reductase (“MTHFR” or “methylene tetrahydrofolate reductase”) or Methylene tetrahydrofolate Reductase AND (NADPH2) with terms for genetic variations (“polymorphism” or “variation” or “mutation” or “Single Nucleotide Polymorphism” or Polymorphism, Single Nucleotide” or “SNPs”) and terms for cervical lesions: (“Uterine Cervical Cancer” or “Neoplasms, Cervix” or “Neoplasms, Cervical” or “Cervix Neoplasms” or “Cervix Cancer” or “Cervical Neoplasms” or “Cervical Cancer” or “Cervical Neoplasms” or “Neoplasia, Cervical” or “Intraepithelial Neoplasia, Cervical” or “Cervical Intraepithelial Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Intraepithelial Neoplasia, Cervical” or “Cervical Intraepithelial Neoplasia”). Meanwhile, China Biological Medicine Database (CBM) was also searched for the eligible studies. Full articles published in English or Chinese were considered to be eligible for our study. In addition, reference list of the original research articles and reviews were also manually searched.

The eligible studies must meet the following inclusion criteria: (1) Exploration of associations between the MTHFR genetic polymorphisms (including C677T or A1298C or both) and the susceptibility to cervical cancer or SIL; (2) A case-control study; (3) Provision of information on genotype frequencies of the MTHFR C677T and/or A1298C polymorphism(s) or sufficient data for the calculation. The exclusion criteria were as follows: (1) A review, case report, editorial, or comment; (2) A duplicated study; (3) Laboratory molecular or animal studies. If studies contained overlapping cases and/or controls, the largest study with extractable data was preferred.

Because the data included in this study was taken from literatures, written consent given by the patients and ethical approval acquired by certain committee were not needed in our meta-analysis.

Data Extraction

According to the inclusion and exclusion criteria, extraction from each study was conducted independently by two authors (Long, Yang) and the consensus was achieved for all the data, which were as follows: the first author’s name, year of publication, source of controls, source of DNA for genotyping, country, ethnicity, goodness-in-fitness of Hardy-Weinberg Equilibrium (HWE) in the control group, histological stage of cervical lesions, numbers of cases/patients and controls, and distribution of genotypes in the case and control groups. The patients were recruited into the study regardless of whether they had a first-degree relative with cervical lesions. The controls were recruited regardless of whether they had other diseases, e.g., hysterectomy. For studies with inadequate information, authors of those studies were contacted for further information by E-mail if possible.

These inconclusive results may due to limited sample size, because any single study may be underpowered to detect the precise effects. In addition, there also may be the causes of different characteristics among studies, such as ethnicity, pathological history, sources of controls, and source of DNA for genotyping. Therefore, we have done a meta-analysis on association between MTHFR polymorphisms and cervical lesions using data obtained from the published case-control genetic studies. Our aim was to identify whether the MTHFR polymorphisms affect the susceptibility to SIL or cervical cancer by means of a large-scale meta-analysis. Furthermore, we wanted to summarize the effect size of the polymorphism associated with the susceptibility to the cervical lesions.

Materials and Methods

Search Strategy and Selection Criteria

The computer-based search strategy was comprehensively used to find eligible studies for this meta-analysis. Two investigators (Long, Yang) searched in the PubMed and Emase independently from inception to July 22, 2012, for the studies on the association between the MTHFR C677T polymorphism (rs1801133) and A1298C polymorphism (rs1801131) and the cervical lesions. Following Medical Subject Heading (MeSH) terms and/or text words were used in our search, such as for methylenetetrahydrofolate reductase (“MTHFR” or “methylene tetrahydrofolate reductase”) or Methylene tetrahydrofolate Reductase AND (NADPH2) with terms for genetic variations (“polymorphism” or “variation” or “mutation” or “Single Nucleotide Polymorphism” or Polymorphism, Single Nucleotide” or “SNPs”) and terms for cervical lesions: (“Uterine Cervical Cancer” or “Neoplasms, Cervix” or “Neoplasms, Cervical” or “Cervix Neoplasms” or “Cervix Cancer” or “Cervical Neoplasms” or “Cervical Cancer” or “Cervical Neoplasms” or “Neoplasia, Cervical” or “Intraepithelial Neoplasia, Cervical” or “Cervical Intraepithelial Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Intraepithelial Neoplasia, Cervical” or “Cervical Intraepithelial Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Cervical Neoplasms” or “Cervical Intraepithelial Neoplasia” or “Intraepithelial Neoplasia, Cervical” or “Cervical Intraepithelial Neoplasms”). Meanwhile, China Biological Medicine Database (CBM) was also searched for the eligible studies. Full articles published in English or Chinese were considered to be eligible for our study. In addition, reference list of the original research articles and reviews were also manually searched.

The eligible studies must meet the following inclusion criteria: (1) Exploration of associations between the MTHFR genetic polymorphisms (including C677T or A1298C or both) and the susceptibility to cervical cancer or SIL; (2) A case-control study; (3) Provision of information on genotype frequencies of the MTHFR C677T and/or A1298C polymorphism(s) or sufficient data for the calculation. The exclusion criteria were as follows: (1) A review, case report, editorial, or comment; (2) A duplicated study; (3) Laboratory molecular or animal studies. If studies contained overlapping cases and/or controls, the largest study with extractable data was preferred.

Because the data included in this study was taken from literatures, written consent given by the patients and ethical approval acquired by certain committee were not needed in our meta-analysis.

Data Extraction

According to the inclusion and exclusion criteria, extraction from each study was conducted independently by two authors (Long, Yang) and the consensus was achieved for all the data, which were as follows: the first author’s name, year of publication, source of controls, source of DNA for genotyping, country, ethnicity, goodness-in-fitness of Hardy-Weinberg Equilibrium (HWE) in the control group, histological stage of cervical lesions, numbers of cases/patients and controls, and distribution of genotypes in the case and control groups. The patients were recruited into the study regardless of whether they had a first-degree relative with cervical lesions. The controls were recruited regardless of whether they had other diseases, e.g., hysterectomy. For studies with inadequate information, authors of those studies were contacted for further information by E-mail if possible.

These inconclusive results may due to limited sample size, because any single study may be underpowered to detect the precise effects. In addition, there also may be the causes of different characteristics among studies, such as ethnicity, pathological history, sources of controls, and source of DNA for genotyping. Therefore, we have done a meta-analysis on association between MTHFR polymorphisms and cervical lesions using data obtained from the published case-control genetic studies. Our aim was to identify whether the MTHFR polymorphisms affect the susceptibility to SIL or cervical cancer by means of a large-scale meta-analysis. Furthermore, we wanted to summarize the effect size of the polymorphism associated with the susceptibility to the cervical lesions.
Statistical Analysis

Meta-analysis was performed and reported as described previously [36,37]. Crude ORs with 95% CIs were computed to assess the strength of the correlation between the MTHFR C677T/A1298C polymorphisms and the susceptibility to cervical lesions. The pooled ORs were performed for the dominant model (AA+AA vs. AA), recessive model (AA vs. Aa+AA) and additive model (A vs. a). Moreover, the pooled estimates were also calculated for the pair-wise comparisons (allele Aa vs. AA, and allele aa vs. AA). The above-mentioned A and a represented the major and the minor allele respectively. Taking consideration of possible between-study heterogeneity, a statistical test for heterogeneity was performed by the \(\chi^2 \) test or Fisher exact test when appropriate. \(P<0.10 \) or \(I^2 >50\% \) indicated an obvious of the between-study heterogeneity, and OR (95% CI) was calculated by the random-effects model using the DerSimonian and Laird method; otherwise, the fixed-effects model was used by the Mantel-Haenszel method [38,39]. Subgroup analyses were mainly conducted using the corresponding pathological history (ICC, SIL), geographic region (Asia, Europe, United States), ethnicity (Asian, Caucasian, mixed), source of controls (healthy persons, hospital patients and 4 studies from both). 9 studies were performed in Asia; 4 studies performed in Europe; 3 studies performed in America. 5 studies talked about ICC; 3 studies talked about SIL and 8 studies talked about both. For A1298C, all 5 studies performed in Asian; 4 studies recruited controls from healthy persons and 1 study from both healthy persons and hospital patients. I study talked about ICC and 4 studies talked about both ICC and SIL. 14 of the studies presented NS (not significant) were conformed to Hardy Weinberg-Equilibrium (HWE) expectations (\(P>0.05 \)). However, two of the studies [27,35] presented NA (not available) were because we could not perform the HWE test for the subjects (either cases or controls) in those studies, for only the total number of the combined genotypes (CT/TT vs. CC or AC/CC vs. AA) were available. Therefore, this study was included in the analysis on the dominant model, not on other genetic models. Furthermore, the allele and genotype frequencies, at which the MTHFR C677T and the A1298C polymorphisms occurred in case and controls in each of the studies, were also summarized (Table 1, Table 2).

Quantitative Synthesis

Association between the MTHFR C677T polymorphisms and cervical lesions. As for the C677T polymorphism, no association was found between the polymorphism and the susceptibility to cervical lesions in all the genetic models (Table 3, dominant model: OR = 0.99, 95% CI = 0.78–1.26, Figure 2A; recessive model: OR = 1.05, 95% CI = 0.80–1.38; additive model: OR = 0.97, 95% CI = 0.80–1.18; CT vs. CC: OR = 0.97, 95% CI = 0.78–1.20, Figure 2B; TT vs. CC: OR = 1.06, 95% CI = 0.76–1.48, Figure 2C). The heterogeneity was significant in all the genetic models (\(P<0.05 \)) and the random-effects model was used in the meta-analysis. The subgroup analysis of the C677T polymorphisms in the histological stages of the cervical lesions also revealed that the polymorphism was not associated with the risk of ICC or SIL in all the genetic models (Table 3). Although the subgroup analysis of C677T in the geographic regions revealed that no association was found between the C677T polymorphism and the cervical lesions in either the Asia or the America populations, the Europe population showed a significant inverse association in some genetic models (additive model: \(P = 0.006 \), OR = 0.83, 95% CI = 0.72–0.95; CT vs. CC: \(P = 0.05 \), OR = 0.83, 95% CI = 0.69–1.00; TT vs. CC: \(P = 0.05 \), OR = 0.73, 95% CI = 0.53–1.00). The heterogeneity was significantly reduced in the Europe populations in the recessive, additive, C/T vs. C/C, and T/T vs. C/C models. In the sensitivity analysis, the overall association between the MTHFR C677T genotype and the cervical lesions was unchanged after an exclusion of the individual study, including two studies [27,35], which lacked enough data to calculate if it conformed to HWE among the control group. Similar results were found in the sensitivity analyses on the association between the MTHFR C677T genotype and ICC or SIL, indicating that our results were statistically robust. No obvious publication bias was detected according to the shapes of the funnel plots for the C677T polymorphism in all the genetic models (Figure 3). Consistent results of the Egger’s and the Begg’s tests were also obtained in all the genetic models (Table 3). Moreover, neither the funnel plots nor the Begg’s or Egger’s test detected any obvious evidence for the publication bias in the subgroup analyses on all the genetic models (data not shown).

Association between the MTHFR A1298C polymorphisms and cervical lesions. As for the A1298C polymorphism, no association was found between the polymorphism and the cervical lesions in all the genetic models (Table 4, dominant model: OR = 1.21, 95% CI = 0.87–1.690, Figure 4A; recessive model: OR = 0.81, 95% CI = 0.54–1.23; additive model: OR = 0.98, 95% CI = 0.85–1.14; AG vs. AA: OR = 1.02, 95% CI = 0.85–1.24, Figure 4B; CC vs. AA: OR = 0.80, 95% CI = 0.52–1.24, Figure 4C). The heterogeneity was significant in the dominant
Figure 1. Flow diagram of the study selection process.
doi:10.1371/journal.pone.0052381.g001
Table 1. Characteristics of the included case-control studies on the MTHFR C677T polymorphism in cervical lesions.

First author [reference]	Year	Source of control	Source of DNA	Country	Ethnicity	HWE	Histology	Sample size	Case control	C T CC CT TT CT TT CT TT
Prasad [20]	2011	Mixed	Blood	India	Asian	NS	ICC	62	125	119 5 57 5 0 5 240 10 116 8 1 9
Mostowska [21]	2011	Healthy persons	Blood	Poland	Caucasian	NS	ICC	124	168	194 77 56 59 9 68 219 117 69 81 18 99
Tong [26]	2011	Healthy persons	Blood	Korea	Asian	NS	LSIL	159	427	186 132 52 82 25 107 502 352 152 198 77 275
							HSIL	160	427	182 138 54 74 32 106 502 352 152 198 77 275
							ICC	146	427	171 121 53 65 28 93 502 352 152 198 77 275
Shekari [32]	2008	Healthy persons	Blood	India	Asian	NS	HSIL	200	200	368 128 57 28 5 30 318 82 125 68 7 75
							ICC	164	231	273 55 113 47 4 51 387 75 161 65 5 70
Nandan [27]	2008	Healthy persons	Blood	India	Asian	NS	NA	80	77	NA
							ICC	62	77	NA
							NA	80	355	134 26 59 16 5 21 562 148 223 116 16 132
							HSIL	264	592	362 166 121 120 23 143 808 376 273 262 57 319
							ICC	363	592	944 328 357 230 49 279 808 376 273 262 57 319
							ICC	79	74	86 72 27 32 20 52 92 56 30 32 12 44
							HSIL	40	454	42 38 10 22 8 30 527 381 153 221 80 301
							ICC	40	454	176 454 190 162 50 90 36 126 527 381 153 221 80 301
							ICC	39	231	67 11 28 11 0 11 387 75 161 65 5 70
							HSIL	40	454	176 454 190 162 50 90 36 126 527 381 153 221 80 301
							LSIL	39	231	67 11 28 11 0 11 387 75 161 65 5 70
							ICC	40	454	176 454 190 162 50 90 36 126 527 381 153 221 80 301
Lambrinou [24]	2003	Healthy persons	Tissue or cell	Greece	Caucasian	NS	LSIL	53	91	68 38 20 28 5 33 121 61 42 37 12 49
							HCIL	64	91	83 45 27 29 8 37 121 61 42 37 12 49
							ICC	21	91	30 12 11 8 2 10 121 61 42 37 12 49
							HSIL	150	179	213 87 73 67 10 77 261 97 93 75 11 86
							ICC	25	31	25 25 6 13 6 19 44 18 16 12 3 15
							HSIL	39	31	45 33 11 23 5 28 44 18 16 12 3 15
Agodi [35]	2010	Healthy persons	Cell	Italy	Caucasian	NS	SIL	123	66	NA NA NA NA NA 5 NA NA NA NA NA
							ICC	157	382	229 85 77 5 80 530 234 182 166 34 200
Yang [25]	2011	Mixed	Blood	China	Asian	NS	SIL	38	382	60 16 23 14 1 15 530 234 182 166 34 200
							ICC	157	382	229 85 77 5 80 530 234 182 166 34 200
Ma [31]	2006	Hospital patients	Blood	China	Asian	NS	ICC	111	111	93 129 20 53 38 91 126 96 33 60 18 78

Abbreviations: HWE, Hardy-Weinberg Equilibrium; NA, not available; NS, not significant; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; ICC, invasive cervical cancer; SIL, squamous intra-epithelial lesion.

doi:10.1371/journal.pone.0052381.t001
Table 2. Characteristics of the included case-control studies on the MTHFR A1298C polymorphism in cervical lesions.

First author	Source of control	Year	Control	Case	Source of DNA	Country	Ethnicity	HWE	Histology	Sample size
Tong [26]	Healthy persons	2011	Blood	Korea	Asian NS	NS	NA	NA	SIL	160 428
									HSIL	273 428
									ICC	235 428
Kohaar [22]	Healthy persons	2010	Tissue or cell	India	Asian NS	NS	NA	NA	HSIL	39 231
									ICC	199 231
									NA	14 NA
									NA	66 NA
									NA	37 NA
									NA	40 NA
Nandan [27]	Healthy persons	2008	Blood	India	Asian NS	NS	NA	NA	NS	80 77
									NA	22 NA
									NA	42 NA
									NA	37 NA
									NA	25 NA
Kang [23]	Healthy persons	2005	Blood	Korea	Asian NS	NS	NA	NA	NA	62 77
									NA	22 55
									NA	22 24
									NA	14 14
									NA	36 14
Yang [25]	Healthy persons	2011	Blood	China	Asian NS	NS	NA	NA	NS	38 382
									NA	38 382
									NA	24 24
									NA	24 24
									NA	24 24
									NA	133 133

Abbreviations: HWE: Hardy-Weinberg Equilibrium; NS, not significant; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; ICC, invasive cervical cancer; SIL, squamous intra-epithelial lesion.

Discussion

As we know, HPV infection may be necessary but is not sufficient to cause cervical cancer. Other factors may play some important roles in this cancer development. For example, the nutritional factors may affect the persistence of HPV infection and thereby influence progression of early precancerous lesions to invasive cancer. Specifically, folate plays a key role in DNA synthesis, repair, and methylation, and this forms the basis of mechanistic explanations for a putative role for folate in cancer prevention. However, the effect of folate in these processes may be modulated by the genotype for the common C677T or A1298C variants of MTHFR, the homozygosity of which is associated with a lower level of the enzyme activity, lower plasma and red blood cell folate, and elevated plasma homocysteine [42,43]. Several studies investigated the association between the MTHFR polymorphisms and the preinvasive cervical lesions or cervical cancer, but the results were not consistent. Thus, our meta-analysis could better evaluate association between the MTHFR C677T/A1298C polymorphisms and susceptibility to cervical lesions. Our findings demonstrate that there was no association between them. To our knowledge, this is the first meta-analysis on association between the MTHFR C677T/A1298C polymorphisms and susceptibility to cervical lesions, and the largest-scale meta-analysis examining the risk of cervical cancer.

As for the MTHFR C677T, most evidence points to decrease in the susceptibility to colorectal cancer and an increase in the susceptibility to esophagus and gastric cancer [44–48], but the effect on the cervical cancer susceptibility was not consistent. In our meta-analysis, no statistically significant difference was found in the frequency of the MTHFR C677T polymorphism in the patients with cervical lesions when compared with the controls. This finding was consistent with that of one previous meta-analysis [49]. However, 9 new studies [20–22,25–27,32,33,35] have been published since 2006 and all recruited in our study dramatically increased the case number of cervical lesion and controls with genetic information, which indicated that our results could be more reliable. In addition, multiple subgroup analyses made our
A

Study or Subgroup	Experimental Events	Control Events	Total	Weight	M-H Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Agodi 2010	5	123	11	66	0.21 [0.07, 0.64]	
Goodman 2001	77	150	86	179	1.14 [0.74, 1.76]	
Kang 2005	52	79	44	74	1.31 [0.68, 2.53]	
Kohaar 2010	62	203	70	231	1.01 [0.67, 1.52]	
Lambropoulos 2003	80	138	49	91	1.16 [0.69, 2.01]	
Ma 2006	91	111	78	111	1.93 [1.02, 3.62]	
Mostowska 2011	68	124	99	168	0.85 [0.53, 1.35]	
Nandan 2008	72	142	24	77	2.27 [1.27, 4.07]	
Pyathilake 2000	47	64	30	62	2.95 [1.40, 6.22]	
Pyathilake 2007	21	80	132	355	0.60 [0.35, 1.03]	
Prasad 2011	5	62	9	125	1.13 [0.36, 3.53]	
Shukari 2008	30	200	75	200	0.29 [0.19, 0.49]	
Sull 2004	329	482	301	454	1.26 [0.95, 1.66]	
Tong 2011	306	455	275	427	1.06 [0.81, 1.40]	
Yang 2011	95	196	200	382	0.86 [0.61, 1.22]	
Zoodsma 2005	422	900	319	502	0.76 [0.61, 0.93]	

Total (95% CI) 3498 3594 100.0% 0.99 [0.78, 1.26]

Heterogeneity: Tau² = 0.16, Chi² = 66.97, df = 15 (P < 0.00001), I² = 78%

Test for overall effect: Z = 0.06 (P = 0.95)

B

Study or Subgroup	Experimental Events	Control Events	Total	Weight	M-H Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Goodman 2001	67	140	75	168	1.14 [0.73, 1.78]	
Kang 2005	32	59	32	62	1.11 [0.54, 2.27]	
Kohaar 2010	58	199	85	226	1.02 [0.67, 1.55]	
Lambropoulos 2003	65	123	37	79	1.27 [0.72, 2.24]	
Ma 2006	53	73	60	93	1.46 [0.75, 2.84]	
Mostowska 2011	59	115	81	150	0.90 [0.55, 1.48]	
Pyathilake 2000	36	53	24	56	2.82 [1.29, 6.18]	
Pyathilake 2007	16	75	116	339	0.52 [0.29, 0.95]	
Prasad 2011	5	62	9	124	1.27 [0.40, 4.08]	
Shukari 2008	28	198	68	193	0.30 [0.18, 0.50]	
Sull 2004	227	360	221	374	1.16 [0.88, 1.59]	
Tong 2011	221	380	198	350	1.07 [0.80, 1.43]	
Yang 2011	89	189	166	348	0.98 [0.68, 1.39]	
Zoodsma 2005	350	828	262	535	0.76 [0.61, 0.95]	

Total (95% CI) 2854 3097 100.0% 0.97 [0.78, 1.20]

Heterogeneity: Tau² = 0.10, Chi² = 41.92, df = 13 (P < 0.0001), I² = 69%

Test for overall effect: Z = 0.32 (P = 0.75)

C

Study or Subgroup	Experimental Events	Control Events	Total	Weight	M-H Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Goodman 2001	10	83	11	104	1.16 [0.47, 2.88]	
Kang 2005	20	47	12	42	1.85 [0.76, 4.49]	
Kohaar 2010	4	145	5	166	0.91 [0.24, 3.47]	
Lambropoulos 2003	15	73	12	54	0.91 [0.38, 2.13]	
Ma 2006	38	58	18	51	3.48 [1.58, 7.67]	
Mostowska 2011	9	65	18	87	0.62 [0.26, 1.48]	
Pyathilake 2000	11	28	6	38	3.45 [1.09, 10.96]	
Pyathilake 2007	5	64	16	239	1.18 [0.42, 3.36]	
Prasad 2011	0	57	1	117	0.68 [0.03, 16.84]	
Shukari 2008	2	172	7	132	0.21 [0.04, 1.03]	
Sull 2004	102	236	80	233	1.47 [1.01, 2.13]	
Tong 2011	85	244	77	229	1.06 [0.72, 1.54]	
Yang 2011	8	106	34	216	0.32 [0.13, 0.79]	
Zoodsma 2005	72	550	57	330	0.72 [0.49, 1.06]	

Total (95% CI) 1927 2038 100.0% 1.06 [0.76, 1.48]

Heterogeneity: Tau² = 0.20, Chi² = 33.71, df = 13 (P = 0.001), I² = 61%

Test for overall effect: Z = 0.35 (P = 0.73)
Figure 2. Forest plot describing the association between the C677T polymorphism and the risk of cervical lesions. (A) Meta-analysis in a random-effects model for CT+TT vs. CC (dominant model). (B) Meta-analysis in a random-effects model for CT vs. CC. (C) Meta-analysis in a random-effects model for TT vs. CC. Each study is shown by the point estimate of the OR (the size of the square is proportional to the weight of each study) and 95% CI for the OR (extending lines).

doi:10.1371/journal.pone.0052381.g002

Genetic model	Number of study	Sample Size	Analysis	P (Publication bias test)	Test of Association			
		Case	Control	I² (%)	P	OR (95%CI)	Begg's test	Egger's test
Total								
Dominant model	16	3498	3594	0.00	0.95	0.99 (0.78, 1.26)	0.558	0.626
Recessive model	14	3233	3451	0.01	0.75	1.05 (0.80, 1.38)	0.827	0.956
Additive model	14	6177	6902	0.00	0.79	0.97 (0.80, 1.18)	1.000	0.659
CT vs. CC	14	2854	3097	0.00	0.75	0.97 (0.78, 1.20)	0.443	0.490
TT vs. CC	14	1927	2038	0.00	0.73	1.06 (0.76, 1.48)	0.913	0.614
Pathological type								
ICC								
Dominant model	12	2008	2932	0.00	0.62	0.94 (0.72, 1.21)	0.558	0.626
Dominant model*	11	1946	2855	0.00	0.44	0.90 (0.69, 1.18)	0.558	0.626
recessive model	11	1946	2855	0.00	0.96	1.01 (0.70, 1.45)	0.558	0.626
Additive model	11	3915	5710	0.00	0.51	0.92 (0.73, 1.17)	0.558	0.626
CT vs. CC	11	1731	2534	0.00	0.29	0.88 (0.69, 1.12)	0.558	0.626
TT vs. CC	11	1229	1657	0.00	0.84	0.96 (0.62, 1.47)	0.558	0.626
SIL								
Dominant model	11	1490	2916	0.00	0.54	1.09 (0.82, 1.45)	0.558	0.626
Dominant model*	9	1287	2773	0.04	0.51	1.08 (0.86, 1.35)	0.558	0.626
recessive model	9	1287	2773	0.04	0.51	1.08 (0.86, 1.35)	0.558	0.626
Additive model	9	2574	5546	0.08	0.59	1.04 (0.90, 1.21)	0.558	0.626
CT vs. CC	9	1123	2475	0.06	0.27	1.09 (0.94, 1.26)	0.558	0.626
TT vs. CC	9	698	1609	0.45	0.36	1.11 (0.88, 1.40)	0.558	0.626
Geographic area								
Asian								
Dominant model	9	1919	2081	0.00	0.71	1.07 (0.76, 1.49)	0.558	0.626
recessive model	8	1777	2004	0.00	0.74	1.08 (0.70, 1.66)	0.558	0.626
Additive model	8	3242	4008	0.00	0.82	0.97 (0.71, 1.31)	0.558	0.626
CT vs. CC	8	1520	1770	0.00	0.72	0.95 (0.70, 1.28)	0.558	0.626
TT vs. CC	8	1064	1186	0.00	0.77	1.08 (0.85, 1.30)	0.558	0.626
European								
Dominant model	4	1285	917	0.05	0.18	0.77 (0.52, 1.13)	0.558	0.626
recessive model	3	1162	851	0.00	0.89	0.79 (0.58, 1.07)	0.558	0.626
Additive model	3	2347	1702	0.00	0.42	0.83 (0.62, 0.95)	0.558	0.626
CT vs. CC	3	1066	764	0.24	0.05	0.83 (0.69, 1.00)	0.558	0.626
TT vs. CC	3	688	471	0.00	0.82	0.73 (0.53, 1.00)	0.558	0.626
USA								
Dominant model	3	294	596	0.00	0.62	1.22 (0.56, 2.65)	0.558	0.626
recessive model	3	294	596	0.00	0.72	1.39 (0.79, 2.45)	0.558	0.626
Additive model	3	588	1192	0.00	0.72	1.39 (0.79, 2.45)	0.558	0.626
CT vs. CC	3	268	563	0.00	0.72	1.39 (0.79, 2.45)	0.558	0.626
TT vs. CC	3	175	381	0.00	1.56	1.56 (0.88, 2.77)	0.558	0.626

Dominant model: CT+TT vs. CC; Recessive model: TT vs. CC; Additive model: T vs. C; R, Random-effects model; F, fixed-effects model; ICC, invasive cervical cancer; SIL, squamous intra-epithelial lesion; Dominant model*: one study [27] omitted; Dominant model: two studies [27,35] omitted.

doi:10.1371/journal.pone.0052381.t003

Table 3. Pooled Analysis on Association between the MTHFR C677T polymorphism and the cervical lesion risk.
meta-analysis more convincing too. We meta-analyzed the eligible case-control studies for C677T by geographic regions. No association was found between the C677T polymorphism and the cervical lesions in either in the Asian or in the American populations. However, a significant inverse association was found in the European population. Different genetic backgrounds or environmental conditions could explain the discrepancy. The meta-analysis also stratified by histological stages of cervical lesions showed that there was no association between the MTHFR C677T variants and cervical lesion development. To assess the effect of individual study on the overall meta-analysis estimate, we excluded one study at a time, and the exclusion of any single report did not change the significance of the final conclusion, which indicated that the outcomes were robust. Taken together, we could make a conclusion that cervical lesion were not primarily caused by genetically-determined enzymatic defects in the folate metabolic pathway, which might be different from the pathways supposed for colorectal or gastric carcinogenesis. The effect of those polymorphisms on the cervical cancer susceptibility seems to be further modulated by other cofactors such as infection with the HPV and smoking.

As for MTHFR A1298C, some studies reported a positive association with cervical lesions, which had only borderline significance [25]. More recent studies have revealed no association between the MTHFR A1298C and the cervical lesions [22,23,26,27]. Our meta-analysis confirmed that there is no

![Figure 3. Funnel plot analysis on the detection of the publication bias for the C677T polymorphism.](image)

![Figure 4. Forest plot describing the association between the A1298C polymorphism and the risk of cervical lesions.](image)
Table 4. Pooled Analysis on Association between the MTHFR A1298C polymorphism and the cervical lesion risk.

Genetic model	Number of study	Sample Size	Analysis Model	\(\tau^2 \) (%)	\(P_h \)	Test of Association	\(\tau \) (Publication bias test)			
		Case	Control	P	OR(95%CI)	Begg's test	Egger's test			
Total										
Dominant	5	1087	1202	R	68	0.26	1.21(0.87, 1.69)	0.462	0.290	
Recessive	4	945	1125	F	42	0.16	0.33(0.54, 1.23)	1.000	0.992	
Additive	4	1890	2250	F	0	0.81	0.82(0.85, 1.14)	1.000	0.587	
AC vs. AA	4	912	1066	F	0	0.81	0.80(0.85, 1.24)	1.000	0.930	
CC vs. AA	4	597	717	F	37	0.19	0.80(0.52, 1.24)	1.000	0.971	
Pathological type										
ICC										
Dominant	5	610	1202	F	0	0.63	0.06(0.99, 1.49)	1.000	0.81	
Recessive	4	548	1125	R	51	0.10	0.46(0.24, 1.93)	1.000	0.81	
Additive	4	1096	2250	F	0	1.00	0.43(0.90, 1.27)	1.000	0.81	
AC vs. AA	4	520	1066	F	0	0.62	0.09(0.97, 1.51)	1.000	0.81	
CC vs. AA	4	319	717	F	43	0.15	0.46(0.49, 1.38)	1.000	0.81	
SIL										
Dominant	4	477	1118	R	83	0.00	0.49(0.63, 2.60)	1.28(0.63, 2.60)	1.000	0.81
Recessive	3	397	1041	F	0	0.85	0.43(0.76, 1.44)	1.000	0.81	
Additive	3	794	2082	F	0	0.90	0.14(0.85, 1.06)	1.000	0.81	
AC vs. AA	3	382	983	F	0	0.75	0.25(0.85, 1.12)	1.000	0.81	
CC vs. AA	3	278	658	F	0	0.86	0.34(0.74, 1.38)	1.000	0.81	

Dominant model: CC+AC vs. AA; Recessive model: CC vs. AC+AA; Additive model: C vs. A; R, Random-effects model; F, fixed-effects model; ICC, invasive cervical cancer; SIL, squamous intra-epithelial lesion.
doi:10.1371/journal.pone.0052381.t004

Figure 5. Influence analysis of the summary odds ratio coefficients on the association between the A1298C polymorphism and cervical cancer in dominant model. The results were computed by omitting each study (left column) in turn. Bars, 95% CIs.
doi:10.1371/journal.pone.0052381.g005
association between the A1298C polymorphism and cervical lesions, similar to that found by the subgroup analysis on the ethnic groups and the histological stages of cervical lesions. No association was found between the A1298C polymorphism and SILs, but the ICC showed a marginally positive association though with no statistically significant difference. This result suggested that a probably higher risk for cervical cancer was linked to the A1298C variants, implying their important role in later stages of cervical carcinogenesis but not in SILs. Sensitivity analyses revealed that the overall association between the MTHFR A1298C genotype and cervical lesions could be changed after excluding one study [27] which lacked sufficient data to calculate whether it conformed to HWE among or not in the control group. In contrast, the results were virtually unchanged after the exclusion of any other individual study. To sum up, it is possibly indicated that the study by Nandtan et al. could be the main source of the observed heterogeneity across the studies in this meta-analysis. Alternatively, the study may had limitations or because of other unknown factors.

To some extent, several limitations of this meta-analysis should be addressed. One limitation of the present study was that the sample size of A1298C mutation involved is not big enough. We need more original researches to make our conclusions more reliable and accurate. The studies on the A1298C variant had reported only 5 articles, and their participants were entirely Asians with no population variation in minor allele frequency. So, the subgroup meta-analysis on this gene polymorphism was not possible by race. Another limitation was that significant heterogeneity in the studies was mainly present in overall analyses and subgroup analyses. Though several possible sources of the between-study heterogeneity were investigated, including pathological history, geographic region, ethnicity, source of controls, and source of DNA for genotyping ethnicity (data not shown), none of them could sufficiently explain the heterogeneity. The effect estimates might depend on some unidentified sources of heterogeneity. Besides, part of the exposure information was still lacking in the available studies, e.g., HPV infection status, smoking status or nutritional status (particularly folate intake or level). Therefore, effects of environment exposure or lifestyle on association between MTHFR variants and cervical lesions could not be determined by this meta-analysis.

In summary, despite the above-mentioned limitations, the present study provides evidence that the MTHFR C677T and A1298C polymorphisms may not increase the susceptibility to cervical cancer development. However, our meta-analysis reveals a negative association between the MTHFR C677T mutations and cervical lesions, especially in the European populations. The marginal association between the MTHFR A1298C polymorphisms and the susceptibility for cervical cancer need to be further studied.

Supporting Information

Table S1 PRISMA checklist.

Author Contributions

Conceived and designed the experiments: SL XY PY. Performed the experiments: SL XY XL. Analyzed the data: SL XY XL. Contributed reagents/materials/analysis tools: SL XY XL. Wrote the paper: SL XY. Helped edit the manuscript: XL PY.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Bosch F, Lorincz A, Munoz N, Meijer C, Shah K (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55: 244–265.
3. Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.
4. Elfgren K, Kalantari M, Meberger B, Hagmar B, Dillner J (2000) A population-based five-year follow-up study of cervical human papillomavirus infection. Am J Obstet Gynecol 183: 561–567.
5. Inouga RP, Dasbach EJ, Eblash EH (2009) Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) disease: a critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis 9: 119–119.
6. Castellsague X, Muñoz N (2003) Cofactors in human papillomavirus carcinogenesis–role of parity, oral contraceptives, and tobacco smoking. JNCI Monographs 2003: 20–28.
7. Castellsague X, Bosch FX, Munoz N (2002) Environmental cofactors in HPV carcinogenesis. Virus Res 88: 191–199.
8. García-Closas R, Castellsague X, Bosch X, González CA (2005) The role of diet and nutrition in cervical carcinogenesis: a review of recent evidence. Int J Cancer 117: 629–637.
9. Van Niekerk W (1966) Cervical cytological abnormalities caused by folate acid deficiency. Acta Cytol 10: 67–73.
10. Whitehead N, Reymar F, Lendenbaum J (1973) Megaloblastic changes in the cervical epithelium: association of oral contraceptive therapy and reversal with folic acid. JAMA 226: 1421–1424.
11. Van Eenwyk J, Davis FG, Colman N (1992) Folate, vitamin C, and cervical intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 1: 119–124.
12. Butterworth JE, Hsieh KD, Macaluso M, Cole P, Sauberlich HE, et al. (1992) Folate deficiency and cervical dysplasia. JAMA 267: 528–533.
13. Potschmann N, Brinton LA, Laiming VA, Reeves WC, Brenes MM, et al. (1991) A case-control study of serum folate levels and invasive cervical cancer. Cancer Res 51: 4783–4787.
14. Seijo RL, Ines P, Abrahamsen M, Harris RB, Roe DJ, et al. (2002) Human papillomavirus persistence and nutrients involved in the methylation pathway among a cohort of young women. Cancer Epidemiol Biomarkers Prev 11: 353–359.
15. Pyszniak CJ, Henao OL, Macaluso M, Cornwell PE, Meleth S, et al. (2004) Folate is associated with the natural history of high-risk human papillomaviruses. Cancer Res 64: 8783–8793.
16. Pillai M, Chacko P, Kesari L, Jayaprakash P, Jayaram H, et al. (2003) Expression of folate receptors and heterogeneous nuclear ribonucleoprotein E1 in women with human papillomavirus mediated transformation of cervical tissue to cancer. J Clin Pathol 56: 569–574.
17. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, et al. (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 94: 3290–3295.
18. Yamada K, Chen Z, Rozen R, Matthews RG (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 98: 14653–14658.
19. van der Put NMJ, Gabreëls F, Stevens E, Smeitink JAM, Trijbels FJM, et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62: 1044–1051.
20. Prasad V, Wilkhoow H (2011) Association of the Functional Polymorphism C677T in the Methylenetetrahydrofolate Reductase Gene with Colorectal, Thyroid, Breast, ovarian, and Cervical Cancers. Oncology 54: 422–426.
21. Mostowska A, Myka M, Lianeri M, Roszak A, Jagodziński PP (2011) Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin Biochem 44: 596–600.
22. Kohaar I, Kumar J, Thakur N, Hussain S, Niyaz MK, et al. (2010) Homocysteine levels are associated with cervical cancer independent of methylene tetrahydrofolate reductase gene (MTHFR) polymorphisms in Indian population. Biomarkers 15: 61–68.

23. Kang S, Kim JW, Kang GH, Park NH, Song YS, et al. (2005) Polymorphism in folate-and methionine-metabolizing enzyme and aberrant CpG island hypermethylation in uterine cervical cancer. Gynecol Oncol 96: 173–180.

24. Lambropoulos A, Agorastos T, Foka Z, Chhrisafi S, Constantinidis T, et al. (2003) Methylene tetrahydrofolate reductase polymorphism C677T is not associated to the risk of cervical dysplasia. Cancer Lett 191: 187–191.

25. Yang F, Zhou Y, Jiang Y, Fan Y, Li J (2010) Study on the correlation between polymorphism of MTHFR gene and the pathogenesis of cervical cancer. J China Maternal Child Health 23: 4122–4124.

26. Tong S, Kim MK, Lee JK, Lee JM, Choi SW, et al. (2011) Common polymorphisms in methylene tetrahydrofolate reductase gene are associated with risk of cervical intraepithelial neoplasia and cervical cancer in women with low serum folate and vitamin B12. Cancer Causes Control 22: 63–72.

27. Nandan NK, Wajid S, Biswas S, Juneja SS, Rizvi M, et al. (2008) Allelic variations in 5, 10-methylene tetrahydrofolate reductase gene and susceptibility to cervical cancer in Indian women. Drug Metabolism Lett 2: 18–22.

28. Sull JW, Lee SH, Yi S, Lee JE, Park JS, et al. (2004) The effect of methylenetetrahydrofolate reductase polymorphism C677T on cervical cancer in Korean women. Gynecol Oncol 95: 557–563.

29. Goodman MT, McDuffie K, Hernandez B, Wilkins LR, Bertram CC, et al. (2001) Association of methylenetetrahydrofolate reductase polymorphism C677T and dietary folate with the risk of cervical dysplasia. Cancer Epidemiol Biomarkers Prev 10: 1275–1280.

30. Piayathilake C, Macaluso M, Johanning G, Whiteside M, Heimburger D, et al. (2003) Polymorphism in methylenetetrahydrofolate reductase polymorphism C677T and dietary folate, vitamin B12, and cervical dysplasia in a population-based nested case-control study. J Hum Genet 52: 73–85.

31. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.

32. Huang Y, Han S, Li Y, Mao Y, Xie Y (2007) Different roles of MTHFR C677T polymorphism in colorectal and cervical cancer: a meta-analysis. J Hum Genet 52: 73–85.

33. Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, et al. (2002) Methylenetetrahydrofolate reductase C677T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutrition 76: 180–186.

34. Xing G, Song Y, Zafarani M, Nabi N, Wang J, et al. (2011) Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677C>T polymorphism and risk of cervical intraepithelial lesions in Sicily. Int J Gynecol Cancer 20: 141–146.

35. Agodi A, Barchitta M, Cipresso R, Marzagalli R, La Rosa N, et al. (2010) Distribution of p53, GST, and MTHFR polymorphisms and risk of cervical intraepithelial lesions in Sicily. Int J Gynecol Cancer 20: 141–146.

36. Collin SM, Mencalle C, Zuccolo L, Levin S, Chen L, et al. (2009) Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev 18: 2528–2539.

37. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed.1000097.

38. Higgins J, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1556.

39. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.

40. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088–1101.

41. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.

42. Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, et al. (2002) Methylenetetrahydrofolate reductase C677T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutrition 76: 180–186.

43. Hubner RA, Houlston RS (2007) MTHFR C677T and colorectal cancer risk: A meta-analysis of 23 populations. Int J Cancer 120: 1027–1035.

44. Huang Y, Han S, Li Y, Mao Y, Xie Y (2007) Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet 52: 73–85.

45. Larson SC, Giovannucci E, Wolk A (2006) Folate Intake, MTHFR Polymorphisms, and Risk of Esophageal, Gastric, and Pancreatic Cancer: A Meta-analysis. Gastroenterology 131: 1271–1283.

46. Langenm S, Lin D, Matsuo K, Gao C, Takezaki T, et al. (2009) Review and pooled analysis of studies on MTHFR C677T polymorphism and esophageal cancer. Toxicol Lett 184: 73–80.

47. Zintzaras E (2006) Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet 51: 610–624.

48. Zacho J, Yazdanyar S, Bojesen SE, Tybjærg-Hansen A, Nordestgaard BG (2006) Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism on cervical intraepithelial neoplasia. Biomarkers Prev 10: 1275–1280.

49. Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, et al. (2002) Methylenetetrahydrofolate reductase C677T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutrition 76: 180–186.