A Polynomial Time Algorithm for Almost Optimal Vertex Fault Tolerant Spanners

Udit Agarwal
udit@utexas.edu
University of Texas at Austin
Austin, Texas

February 27, 2020

Abstract

We present the first polynomial time algorithm for the \(f \) vertex fault tolerant spanner problem, which achieves almost optimal spanner size. Our algorithm for constructing \(f \) vertex fault tolerant spanner takes \(O(k \cdot n \cdot m^2 \cdot W) \) time, where \(W \) is the maximum edge weight, and constructs a spanner of size \(O(n^{1+1/k} f^{1-1/k} \cdot (\log n)^{1-1/k}) \). Our spanner has almost optimal size and is at most a \(\log n \) factor away from the upper bound on the worst-case size. Prior to this work, no other polynomial time algorithm was known for constructing \(f \) vertex fault tolerant spanner with optimal size.

Our algorithm is based on first greedily constructing a hitting set for the collection of paths of weight at most \(k \cdot w(u,v) \) between the endpoints \(u \) and \(v \) of an edge \((u,v)\) and then using this set to decide whether the edge \((u,v)\) needs to be added to the growing spanner.

1 Introduction

In this paper we study an efficient construction of \(f \) vertex fault tolerant vertex spanners in the sequential model. A spanner \(H \) is a subgraph of a graph \(G = (V,E) \) such that it preserves distances between all pairs \((u,v)\) by a factor of at most \(k \), i.e. \(d_H(u,v) \leq k \cdot d_G(u,v) \). However a subgraph \(H \) is called a \(f \) vertex fault tolerant spanner of \(G \) if for any set of at most \(f \) vertices, \(F \subset V \), the resulting subgraph \(H \setminus F \) is a \(k \)-spanner of \(G \setminus F \).

Spanners were first introduced by Peleg and Schäffer [13] and Peleg and Ullman [14], and has been extensively studied over the years (e.g. [1, 3, 6, 10, 11, 15]). In practice, spanners are mostly used in applications in the area of distributed computing. However distributed systems are prone to failures, and thus we would like a spanner for such a system to be robust to these failures, giving rise to the need for constructing fault-tolerant spanners.

This notion of fault-tolerant spanners was first introduced by Levcopoulos, Narasimhan, and Smid [12] and has been intensively studied over the years as well [5, 7, 9]. A naive way for constructing an \(f \)-fault tolerant spanner is to construct it greedily by going over the edges in increasing order of their weight. Recently Bodwin and Patel [5] showed that such an approach gives an optimal bound on the worst-case size of such spanners. This improves on the bound achieved in [4] which was the first such result based on the greedy algorithm and all prior work on fault tolerant spanners uses more involved constructions with comparatively simpler analysis (e.g. [2, 7, 8]).
However the running time of the above described greedy approach is exponential in f (also mentioned in [3]) and in [4] the authors also mentions that it would be interesting to improve this exponential dependence on f, or perhaps to find a different fast algorithm achieving the existential bounds shown in the paper. In this paper we partly solve the problem by providing a polynomial time algorithm for constructing f vertex fault tolerant spanners, with runtime polynomially dependent on the maximum edge weight, W.

2 Overview of the Algorithm

We first start with a brief overview of the naive greedy algorithm for constructing f vertex fault tolerant spanners, which is described below.

Algorithm 1 Greedy-VFT
Input: $G = (V, E); k; f$
1: $H \leftarrow \emptyset$
2: for each $(u, v) \in E$ in order of non-decreasing edge weights do
3: if there exists $F \subset V$ of size at most f such that $\text{dist}_{H \setminus F}(u, v) > k \cdot w(u, v)$ then
4: add (u, v) to H
5: end if
6: end for

The correctness of the above described algorithm is quite straightforward. However its running time is exponential in the parameter f since a naive implementation of the if loop in Steps 3-5 by going over all possible subsets F of V of size at most f and then checking the weight of the shortest path from u to v in the resulting graph $H\setminus F$, takes $\Omega(n^f)$ time (also noted in [3]). In this paper we present an alternate greedy algorithm for constructing f vertex fault tolerant vertex spanners with polynomial running time. The running time of our algorithm is independent of the parameter f.

Our algorithm is still based on the greedy approach and it goes over the edges in non-decreasing order of weights. However we use an entirely different method than the one described in Algorithm 1 to decide whether the edge (u, v) needs to be added to the growing spanner H. Our method constructs a greedy hitting set for the collection of paths from u to v in H of weight at most $k \cdot w(u, v)$ and then decide whether to add (u, v) to H or not based on the size of this hitting set. Note that we do not list all paths from u to v in H since it will require exponential time. Instead for each vertex x, our algorithm computes a count of the number of paths from u to v that passes through x and has weight at most $k \cdot w(u, v)$. This allows us to compute a desired hitting set for the collection of paths from u to v without explicitly listing these paths. This is described in detail in Section 3.

3 Main Contributions

Polynomial Time Greedy Algorithm for Computing f vertex fault tolerant Spanner. Prior to this work, all greedy approaches for constructing f vertex fault tolerant spanners require exponential time [4,5]. This is the first work that presents a polynomial time algorithm for constructing f vertex fault tolerant spanners for integer edge weights.
Construction of Hitting Set for a collection of paths without explicitly listing the paths. Our algorithm for constructing \(f \) vertex fault tolerant spanners requires constructing a hitting set for the collection of paths from \(u \) to \(v \) of weight at most \(k \cdot w(u, v) \) in the growing spanner \(H \) before deciding whether to add the edge \((u, v)\) to \(H \). However since explicitly listing all paths from \(u \) to \(v \) may require exponential time, we present an alternate way for constructing the hitting set by computing for each node \(x \), the number of paths from \(u \) to \(v \) that passes through \(x \).

4 Description of the Algorithm

In this Section we give a detailed description of our algorithm for constructing \(f \) vertex fault tolerant spanners. As noted in Section 2, our algorithm is also based on the greedy approach and it goes over the edges \((u, v)\) in non-decreasing order of weight. Algorithm 2 gives the pseudocode of our algorithm.

Algorithm 2 POLY-VFT
\[
\begin{align*}
\text{Input: } & G = (V, E); \ k; \ f \\
1: & H \leftarrow \phi \\
2: & \text{for each } (u, v) \in E \text{ in order of non-decreasing edge weights do} \\
3: & \quad \text{Let } C \text{ be the collection of paths from } u \text{ to } v \text{ of weight at most } k \cdot w(u, v) \text{ (we do not explicitly compute } C). \ \\
4: & \quad \text{Construct hitting set } Q \text{ for the collection } C \text{ using Algorithm 3 described in Section 5} \\
5: & \quad \text{if } |Q| \leq f \cdot \log n \text{ then} \\
6: & \quad \quad \text{add } (u, v) \text{ to } H \\
7: & \quad \text{end if} \\
8: & \text{end for}
\end{align*}
\]

We now give a step by step description of Algorithm 2. The algorithm goes over all the edges \((u, v)\) in the non-decreasing order of weights in the for loop in Steps 2-8. In each iteration of the for loop, the algorithm first construct a hitting set \(Q \) for the collection of paths from \(u \) to \(v \) of weight at most \(k \cdot w(u, v) \) using the greedy hitting set algorithm described in Section 5. Then in Steps 5-7, the algorithm adds the edge \((u, v)\) to the growing spanner \(H \) if the size of the hitting set \(Q \) is at most \(f \cdot \log n \).

4.1 Correctness

We now establish the correctness of Algorithm 2. We start with establishing that \(H \) is indeed a \(f \) vertex fault tolerant spanner (Lemma 4.1). We then establish the polynomial running time of Algorithm 2 (Lemma 4.2). We conclude with establishing a bound on the size of \(H \) (Lemmas 4.4-4.7).

Lemma 4.1. The subgraph \(H \) constructed by Algorithm 2 is a \(f \) vertex fault tolerant spanner.

Proof. Let \(H' \) be a \(f \) vertex fault tolerant spanner for the graph \(G \) and let \(H \) be the subgraph constructed by Algorithm 2. Let \((u, v)\) be a minimum weight edge that belongs to the set \(H' \setminus H \). Let \(C \) be the collection of paths from \(u \) to \(v \) in \(H \) of weight at most \(k \cdot w(u, v) \). Since \((u, v)\) was
not added to H in Steps 5-7, it implies that Q has size more than $f \cdot \log n$. From Lemma 5.1, any optimal set F that hits every path in the collection C should have size greater than $\frac{|Q|}{\log n} > f$. Thus there will always exist at least one path from u to v in H of weight at most $k \cdot w(u,v)$, irrespective of the set F of nodes that is removed from the graph such that $|F| \leq f$.

In a similar fashion, we can argue about the rest of the edges in the set $H' \setminus H$. Thus H is a f vertex fault tolerant spanner.

We now establish the polynomial runtime of Algorithm 2.

Lemma 4.2. Algorithm 2 constructs the spanner H in $O(k \cdot n \cdot m^2 \cdot W)$ time, where W is the maximum integer edge weight.

Proof. The for loop in Steps 2-8 runs for total m iterations. And each iteration of the for loop takes $O(k \cdot n \cdot m \cdot W)$ running time, since Step 4 takes $O(k \cdot n \cdot m \cdot W)$ time by Lemma 5.2 and Steps 5-7 take $O(1)$ time.

We finally conclude that Algorithm 2 constructs an almost optimal size f vertex fault tolerant spanner by establishing that H has almost optimal size. Our proof is based on the proof given in [5] to establish the upper bound on the worst-case size of a f vertex fault tolerant spanner. We describe the complete proof here for completeness.

4.1.1 Bound on size of H

We start with the following definition of a blocking set, described in [5].

Definition 4.3 (Blocking Set [5]). Given a graph $G = (V, E)$, a k-blocking set for G is a set $B \subseteq V \times E$ such that:

(a) every $(v, e) \in B$ has $v \notin e$, and

(b) for every cycle C in G on $\leq k$ edges, there exists $(v, e) \in B$ such that $v, e \in C$.

We now give a upper bound on the size of the blocking set B of the spanner H constructed by Algorithm 2. The proof is similar to the proof of Lemma 3 in [5].

Lemma 4.4. The spanner H returned by Algorithm 2 with parameters k, f has a $(k + 1)$-blocking set of size at most $(f \log n) \cdot |E(H)|$.

Proof. For each edge $e = (u, v) \in H$, let Q_e be the hitting set constructed in Step 4 for the collection of paths from u to v of weight at most $k \cdot w(u,v)$, when (u,v) was added to H. Let $B = \{(x, e) | e \in E(H), x \in Q_e\}$. Clearly $|B| \leq f \cdot \log n \cdot |E(H)|$ since an edge e is added to H in Steps 5-7 only if $|Q_e| \leq f \cdot \log n$.

We now show that B is a $(k + 1)$-blocking set. Let C be a cycle in H with at most $k + 1$ edges and let (u, v) be the edge which was added the last to the spanner H among all the edges in C. Since the path from u to v through the cycle C has length at most k, the weight of this path is at most $k \cdot w(u,v)$ (since (u, v) has the largest weight in C) and thus this path must be in the collection C. Since Q_e is a hitting set for the paths in C, there exists $x \in Q$ that also belongs to $C \setminus \{u, v\}$ and by construction of B, $(x, e) \in B$. This shows that B is indeed a $(k + 1)$-blocking set.
We adapt the following lemma from [5] (Lemma 4) to establish an upper bound on the size of spanner \(H \) (Theorem 4.6).

Lemma 4.5 ([5]). Let \(H \) be any graph on \(n \) nodes and \(m \) edges, let \(f = o(n) \) be a parameter and let \(f' = f \cdot \log n \), and suppose \(H \) has a \((k+1)\)-blocking set \(B \) of size \(|B| \leq f' \cdot |E(H)|\). Then \(H \) has a subgraph on \(O(n/f') \) nodes, \(\Omega(m/f'^2) \) edges, and girth \(> k + 1 \).

The following theorem along with Corollary 4.7 from [5] establishes an upper bound on the worst-case size of \(H \).

Theorem 4.6 ([5]). Let \(b(n,k) \) be the maximum possible number of edges in a graph on \(n \) nodes and girth \(> k \). Then any graph \(H \) on \(n \) nodes returned by Algorithm 2 with parameters \(f', k \) satisfies

\[
|E(H)| = O\left(f'^2 \cdot b\left(\frac{n}{f'}, k + 1\right)\right)
\]

Corollary 4.7 ([5]). For any graph \(H \) on \(n \) nodes returned by Algorithm 2 with parameters \(f', 2k-1 \), we have

\[
|E(H)| = O(n^{1+1/k} f'^{-1/k})
\]

And since \(f' = f \cdot \log n \), we have \(|E(H)| = O(n^{1+1/k} \cdot f'^{1-1/k} \cdot (\log n)^{1-1/k})\).

5 Hitting Set Algorithm

In this section we describe an algorithm to implement Step 4 of Algorithm 2. The goal is to construct a small hitting set for the collection \(C \) of paths from vertex \(u \) to \(v \) of weight at most \(k \cdot w(u, v) \). Note that we do not explicitly construct this collection \(C \) since it may require exponential time.

Our algorithm follows a greedy approach to construct the hitting set \(Q \). It proceeds in iterations: in each iteration, it first uses a dynamic programming procedure to compute, for each vertex \(x \), the number of paths from \(u \) to \(v \) that pass through \(x \) in \(C \) (call this value \(\text{count}_x \)). It then picks the vertex \(y \), that has the maximum count value, in set \(Q \) (paths through \(y \) are not considered in the collection \(C \) in future iterations). Algorithm 3 gives the pseudocode of our hitting set algorithm.

Algorithm 3 Hitting-Set Construction

Input: \(G = (V,E); \ k, u, v \)

1: \(Q \leftarrow \emptyset \)
2: Compute \(\text{count}_x \) values for each \(x \in V \) using the algorithm described in Section 5.1
3: while there exists \(x \in V \) with \(\text{count}_x > 0 \) do
4: \(y \) be the node with max \(\text{count} \) value.
5: add \(y \) to \(Q \).
6: Re-compute \(\text{count}_x \) values for each \(x \in V \) using the algorithm described in Section 5.1
7: end while

The correctness of Algorithm 3 is quite straightforward. Lemma 5.1 establishes a relationship between the size of an optimal hitting set and the constructed set \(Q \) and Lemma 5.2 establishes the running time of the algorithm.
Lemma 5.1 ((Folklore)). A hitting set Q constructed by a greedy algorithm has size at most $\log n \cdot \text{OPT}$, where OPT is the size of an optimal solution.

Lemma 5.2. Algorithm 3 runs in $O(k \cdot n \cdot m \cdot W)$ time.

Proof. Step 2 takes $O(k \cdot m \cdot W)$ time (Corollary 5.5). Each iteration of the while loop in Steps 3-7 takes $O(k \cdot m \cdot W)$ time since Step 5 takes $O(1)$ time and Step 6 takes $O(k \cdot m \cdot W)$ time. The lemma follows since the while loop runs for at most n iterations.

5.1 Computing count_x values

In this section we describe a dynamic programming algorithm to compute count_x values for each vertex x, where count_x is the number of paths in the collection \mathcal{C} that passes through x (excluding the paths that are already covered by the already computed hitting set Q). Here we are given the endpoints u and v of all the paths in this collection \mathcal{C}.

Our algorithm follows a three-phase strategy: first for each $x \in V$, we compute the number of paths starting from u and ending at x of weight wt, where $1 \leq wt \leq k \cdot w(u, v)$ and then similarly we compute for each $x \in V$, the number of paths starting at x and ending at v of weight wt for $1 \leq wt \leq k \cdot w(u, v)$. We then combine these values to obtain the count_x values for each $x \in V$.

Let $\text{count}_{u, x, wt}$ refers to the number of paths in the collection \mathcal{C} (excluding the paths covered by the already computed vertices in Q) that starts from u and ends at x and has weight wt. Similarly let $\text{count}_{x, v, wt}$ refers to the number of paths in the collection \mathcal{C} (excluding the paths covered by the already computed vertices in Q) that starts from x and ends at v and has weight wt.

5.1.1 Computing $\text{count}_{u, x, wt}$ values

We follow a dynamic programming approach to compute $\text{count}_{u, x, wt}$ values for each $x \in V$ and $1 \leq wt \leq k \cdot w(u, v)$. Algorithm 4 describes the pseudocode of our algorithm.

Algorithm 4 \text{COMPUTE-\text{count}_{u, x, wt}}

Input: $G = (V, E); k; u, v, Q$: current vertices in hitting set
1: for each $(u, x) \in E$ do
2: \hspace{1em} $\text{count}_{u, x, w(u, x)} \leftarrow 1$
3: end for
4: for $1 \leq wt \leq k \cdot w(u, v)$ do
5: \hspace{1em} for each $(x, y) \in E$ do
6: \hspace{2em} if $\text{count}_{u, x, wt} > 0$ then
7: \hspace{3em} $\text{count}_{u, y, wt + w(x, y)} \leftarrow \text{count}_{u, x, wt} + \text{count}_{u, y, wt + w(x, y)}$
8: \hspace{2em} end if
9: \hspace{1em} end for
10: end for

The correctness of the above algorithm is quite straightforward. We now establish the running time of the above algorithm.
Lemma 5.3. Algorithm 4 computes \(\text{count}_{u,x,wt} \) values for each \(x \in V, 1 \leq wt \leq k \cdot w(u,v) \) in \(O(k \cdot m \cdot W) \) time.

Proof. The inner for loop in Steps 5-9 takes \(O(m) \) time per iteration of the outer for loop. The lemma follows since the outer for loop runs for \(k \cdot W \) iterations. \qed

5.1.2 Computing \(\text{count}_{x,v,wt} \) values

Similar to the algorithm described in the previous section, we can compute \(\text{count}_{x,v,wt} \) values using a dynamic programming approach in \(O(k \cdot m \cdot W) \) time. This leads to the following lemma.

Lemma 5.4. For each \(x \in V, 1 \leq wt \leq k \cdot w(u,v) \), the \(\text{count}_{x,v,wt} \) values can be computed in \(O(k \cdot m \cdot W) \) time.

5.1.3 Computing \(\text{count}_{x} \) values

In this section we describe a simple algorithm to combine the \(\text{count}_{x} \) values using the \(\text{count}_{u,x,wt} \) and \(\text{count}_{x,v,wt} \) values computed in the previous sections.

Let \(\text{sum}_{u,x,wt} \) denote the sum of \(\text{count}_{u,x,wt} \) values for \(1 \leq wt' \leq wt \). We can compute these values for each \(x \in V, 1 \leq wt \leq k \cdot w(u,v) \), in \(O(k \cdot n \cdot W) \) time. Then for each \(x \in V \), \(\text{count}_{x} \) is the sum of \(\text{sum}_{u,x,wt} \) and \(\text{count}_{x,v,wt} \) for each \(1 \leq wt \leq k \cdot w(u,v) - 1 \). This can be done in additional \(O(k \cdot W) \) time per \(x \in V \). This leads to the following lemma.

Lemma 5.5. Given \(\text{count}_{u,x,wt} \) and \(\text{count}_{x,v,wt} \) values, for each \(x \in V \) \(\text{count}_{x} \) values can be computed in additional \(O(k \cdot n \cdot W) \) time.

The following corollary follows from Lemmas 5.3, 5.4, 5.5.

Corollary 5.6. For given endpoints \(u \) and \(v \), the \(\text{count}_{x} \) values for each \(x \in V \) can be computed in \(O(k \cdot m \cdot W) \) time.

6 Conclusion

In this paper we present a first polynomial time algorithm for computing \(f \) vertex fault tolerant spanners of almost optimal size. The size of our spanner is at most a \(\log n \) factor away from the known optimal bound \[5\].

References

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. *Discrete & Computational Geometry*, 9(1):81–100, 1993.

[2] G. Ausiello, A. Ribichini, P. G. Franciosa, and G. F. Italiano. Computing graph spanners in small memory: fault-tolerance and streaming. *Discrete Mathematics, Algorithms and Applications*, 2(04):591–605, 2010.
[3] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and \((\alpha, \beta)\)-spanners. *ACM Transactions on Algorithms (TALG)*, 7(1):1–26, 2010.

[4] G. Bodwin, M. Dinitz, M. Parter, and V. V. Williams. Optimal vertex fault tolerant spanners (for fixed stretch). In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1884–1900. SIAM, 2018.

[5] G. Bodwin and S. Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing*, pages 541–543, 2019.

[6] S. Chechik. New additive spanners. In *Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms*, pages 498–512. SIAM, 2013.

[7] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault tolerant spanners for general graphs. *SIAM Journal on Computing*, 39(7):3403–3423, 2010.

[8] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. *Discrete & Computational Geometry*, 32(2):207–230, 2004.

[9] M. Dinitz and R. Krauthgamer. Fault-tolerant spanners: better and simpler. In *Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing*, pages 169–178, 2011.

[10] M. Elkin and D. Peleg. \((1+\tilde{\alpha},\beta)\)-spanner constructions for general graphs. *SIAM Journal on Computing*, 33(3):608–631, 2004.

[11] A. Filtser and S. Solomon. The greedy spanner is existentially optimal. In *Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing*, pages 9–17, 2016.

[12] C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing fault-tolerant geometric spanners. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 186–195, 1998.

[13] D. Peleg and A. A. Schäffer. Graph spanners. *Journal of graph theory*, 13(1):99–116, 1989.

[14] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. *SIAM Journal on Computing*, 18(4):740–747, 1989.

[15] M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In *Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pages 802–809, 2006.