Enhanced recovery after surgery (ERAS) is a multimodal and multidisciplinary approach to maintaining physiologic function and improving recovery for surgical patients. The ERAS protocol is based on a range of empirical evidence, and consensus ERAS guidelines for various surgical procedures have been published. The elements of the ERAS protocol include minimal preoperative fasting and carbohydrate treatment instead of overnight fasting; no routine use of preoperative bowel preparation; minimally invasive surgical techniques; standard anesthetic protocol; optimal fluid management rather than generous intravenous fluid administration; prevention and treatment of postoperative nausea and vomiting; active prevention of perioperative hypothermia; multimodal approaches to controlling postoperative pain; and early oral intake and mobilization. Implementation of ERAS shortened hospital stays by 30% to 50% and reduced postoperative complications by 50%. A recent study reported that, when patient compliance with the colorectal ERAS protocol was over 70%, 5-year mortality fell by 42% compared with when compliance was below 70%. Auditing process compliance and patient outcomes are key measures for assisting clinicians implementing the ERAS program. As a perioperativist, an anesthesiologist can play a crucial role in implementing the ERAS program and contribute to protocol establishment, auditing, team education, and team leadership. While the ERAS protocol was first implemented for colorectal surgery, as a result of its efficacy, it is now being used in nearly all major surgical specialties.

Keywords: Enhanced recovery after surgery; Fast-track surgery.
ERAS의 개념

ERAS 프로그램은 수술 자극에 대한 신체의 스트레스 반응을 줄여 수술 후 회복을 향상시키기 위한 '근거중심'의 개별 의료행위들을 환자의 수술 전, 중, 후의 치료 및 관리에 참여하는 여러 의료진으로 구성된 '다학제팀(multidisciplinary team)'이 '다중적(multimodal)'으로 제공한다는 수술 후 회복 향상 프로그램의 새로운 개념이다. ERAS 프로그램이 태동할 당시에는 'fast-track surgery'라는 용어를 혼용하였지만 핵심적 목표는 회복의 속도가 아니라 질이다. ERAS 프로그램의 시행은 수술 중, 후 카테콜아민(catecholamine) 분비 및 염증반응으로 증가하는 인슐린 저항성(insulin resistance)을 감소시킴으로써 세포기능 저하를 막고 근육량 및 근력의 손실을 완화하는 한편 주술기 대사적 항상성의 교란을 완화한다[7].

초기의 ERAS 컨센서스 가이드라인(consensus guideline)은 ERAS에 관심이 있던 유럽 외과 의사들이 2001년 결성한 'ERAS Study group'에 의해 대장절제술에 대한 주술기 관리 프로토콜이 2005년 발표되었고, 이어서 대장장칭절제술에 대한 주술기 관리 프로토콜이 2009년 발표되었다[8,9]. 이후 ERAS Study group 의사들에 의해 이들 프로토콜의 효용성을 검증하는 결과도 발표되었다[10]. ERAS Society가 설립된 2010년 이후에는 대장장칭절제술, 직장절제술에 대한 ERAS 프로토콜이 2012년 발표되었고, 체외장장칭절제술(pancreaticoduodenectomy), 방광절제술(cystectomy), 위장절제술(gastrectomy), 부인과 암수술(gynecologic oncology surgery), 위장관 수술에 대한 마취(анаesthesia for gastrointestinal surgery), 비만수술(bariatric surgery), 간절제(liver resection), 두경부 암수술(head and neck cancer surgery) 및 유방재건술(breast reconstruction)에 대한 ERAS 가이드라인이 이어서 발표되었으며, 고관절 및 손관절 향복술(hip and knee replacement), 패절제술(lung resection), 식도절제술(esophageal resection) 등 수술에 대한 ERAS 가이드라인이 개발 중에 있다[11-23]. Table 1은 대장절제술에 대한 ERAS 컨센서스 가이드라인이다[11].

ERAS 프로그램 하에서는 왜와 같은 근거중심의 프로토콜이 단계별 의료진에 의해서 다중적으로 시행된다. 수술환자 관리 및 치료의 어려운 점은 환자가 수술 전, 중, 후에 외래, 입원병동, 수술실, 화복실, 경우에 따라 중환자실 등을 거치는 동안 각 파트의 의료진으로부터 치료 및 관리를 받게 되므로 앞선 파트에서 향후에 필요한 의료행위에 영향을 미칠 수 있음을 불구하고 통합적인 치료 및 관리가 어렵다. 예를 들어, 외과 의사가 수술 전에 창자 세척(mechanical bowel preparation)을 철저히 하고 하루 전부터 금식을 시켰다면 마취통증의학과 의사는 수술실에서 마취유도 직후 탈수된 환자 상태로 인해 심한 저혈압을 경험할 가능성이 높아진다. 전통적인 방식은 이러한 수술적 치료 과정에서 발생하는 합병증이나 다른 문제점을 각 파트의 의료진들이 개별적으로 해결한다면 ERAS 프로그램에서는 각 파트의 다양한 의료진들이 의료대장의 의료과정에서 제공되는 각각의 의료행위가 유기적으로 결과에 영향을 미친다는 생각 하에 환자 치료 및 관리에 동원되는 모든 의료진들이 정기적인 회의와 같은 활발한 의사소통을 통해 통합적으로 해결하고자 노력한다.

ERAS 프로그램 전체의 운영(ERAS clinical leader)은 외과 의사 혹은 외과 의사와 마취통증의학과 의사가 관리하는 것이 일반적이다[24]. ERAS 코디네이터(coordinator)는 전체 ERAS 팀의 실질적인 운영자로 ERAS 프로토콜을 각 파트의 의료진이 정기적으로 따를 수 있도록 도와주고 각 파트로부터의 피드백을 운영진에 전달하며 각 의료진 간의 의사소통이 원활하도록 노력할 뿐 아니라 프로토콜의 개별 항목들이 얼마나 잘 준수되고 있는지를 감시(audit)하기 위해 대부분의 경우 간호사 혹은 의사 보조자(physician assistant)가 맡게 된다. ERAS 팀 의료진은 의사, 간호사 등 의료인뿐만 아니라 영양사, 물리치료사, 직업치료사 등 다양한 직종의 의료진을 포함한다.

ERAS의 역사

1994년 Engelman 등[25]은 관상동맥우회술(coronary artery bypass surgery) 환자의 입원기간을 단축하기 위해 당시까지의 근거중심 주술기 관리 행위들을 묶어 이른바 'Fast Track'을 실시하여 수술 후 중환자실 입원기간을 20% 감소시켰다는 보고를 하였다. 다음 해에 덴마크의 외과 의사인 Kehlet 그룹은 8명의 S자결장절제술(sigmoid resection) 환자들을 경막외진통(epidural analgesia)로 수술 후 조기 경구영양 및 거동(early oral nutrition and mobilization)으로 수술 후 2일 만에 퇴원시킨 예를 보고하였고 이는 외과 의사 인과 치료와 본래의 임상 결과를 보고하였는데, 경막외진통은 수술 후 동종을 조절하고 운동성

www.anesth-pain-med.org

373
Table 1. Guidelines for Perioperative Care in Elective Colonic Surgery: Enhanced Recovery after Surgery (ERAS®) Society Recommendations

Element	Recommendation
Preadmission	
Preoperative information, education and counselling	Patients should routinely receive dedicated preoperative counselling.
Preoperative optimization	Preoperative medical optimization is necessary before surgery. Smoking and alcohol consumption (alcohol abusers) should be stopped four weeks before surgery.
Preoperative fasting and carbohydrate treatment	Clear fluids should be allowed up to 2 h and solids up to 6 h prior to induction of anesthesia. Preoperative oral carbohydrate treatment should be used routinely. In diabetic patients carbohydrate treatment can be given along with the diabetic medication.
Pre-anesthetic medication	Mechanical bowel preparation should not be used routinely in colonic surgery.
Prophylaxis against thromboembolism	Patients should wear well-fitting compression stockings, have intermittent pneumatic compression, and receive pharmacological prophylaxis with LMWH. Extended prophylaxis for 28 days should be given to patients with colorectal cancer.
Antimicrobial prophylaxis and skin preparation	Routine prophylaxis using intravenous antibiotics should be given 30–60 min before initiating surgery. Additional doses should be given during prolonged operations according to half-life of the drug used. Preparation with chlorhexidine-alcohol should be used.
Intraoperative	
Laparoscopy and modifications of surgical access	Laparoscopic surgery for colonic resections is recommended if the expertise is available.
Standard anesthetic protocol	A standard anesthetic protocol allowing rapid awakening should be given. The anesthetist should control fluid therapy, analgesia and hemodynamic changes to reduce the metabolic stress response. Open surgery: mid-thoracic epidural blocks using local anesthetics and low-dose opioids. Laparoscopic surgery: spinal analgesia or morphine PCA is an alternative to epidural anesthesia.
Perioperative fluid management	Patients should receive intraoperative fluids (colloids and crystalloids) guided by flow measurements to optimize cardiac output. Vasopressors should be considered for intra- and postoperative management of epidural-induced hypotension provided the patient is normovolemic. The enteral route for fluid postoperatively should be used as early as possible and intravenous fluids should be discontinued as soon as is practicable.
PONV	A multimodal approach to PONV prophylaxis should be adopted in all patients with ≥ 2 risk factors undergoing major colorectal surgery. If PONV is present, treatment should be given using a multimodal approach.
Preventing intraoperative hypothermia	Intraoperative maintenance of normothermia with a suitable warming device and warmed intravenous fluids should be used routinely to keep body temperature > 36°C.
Drainage of peritoneal cavity after colonic anastomosis	Routine drainage is discouraged because it is an unsupported intervention that is likely to impair mobilization.
Nasogastric intubation	Postoperative nasogastric tubes should not be used routinely. Nasogastric tubes inserted during surgery should be removed before reversal of anesthesia.
Postoperative	
Postoperative analgesia	Open surgery: TEA using low-dose local anesthetic and opioids. Laparoscopic surgery: an alternative to TEA is a carefully administered spinal analgesia with a low-dose, long-acting opioid.
Prevention of postoperative ileus	Mid-thoracic epidural analgesia and laparoscopic surgery should be utilized in colonic surgery if possible. Fluid overload and nasogastric decompression should be avoided. Chewing gum can be recommended, whereas oral magnesium and alvimopan may be included.
Perioperative nutritional care	Patients should be screened for nutritional status and if at risk of under-nutrition given active nutritional support. Perioperative fasting should be minimized. Postoperatively patients should be encouraged to take normal food as soon as lucid after surgery. ONS may be used to supplement total intake.
올 항상시키는 한편 장폐색을 줄여주는는데 효과적인 방법으로 이용되었다[26,27]. 이 시기에 위와 같이 수술환자의 수술 후 입원기간을 줄이려는 시도뿐 아니라 대사적 관점에서 수술 자극에 대한 신체의 스트레스 반응을 줄이고 대사적 항상성을 유지하려는 연구도 진행되었는데 글루타민(glutamine)과 같은 특정 아미노산이 주술기 영양에 미치는 영향이 아리란가 탄수화물 음료의 수술 전 섭취에 대한 연구가 발표되었다[28,29].

1990년대에 유럽에서 ERAS 임상연구를 이끈 의사들이 모여 2001년 ERAS Study group이 결성되었다. 이들은 근거중심의 프로토콜을 개발하는 한편, 수술결과를 지배하는 것은 수술 자체가 아닌 수술기 전에 추가된 요소이며, 수술 후의 치료 및 관리라는 개념을 임상결과를 바탕으로 주장하였고 유럽에서 주술기 관리의 근거중심이 아닌 관행적으로 시행되어 기관마다 편차가 있음을 밝혀내었다[8,9,30,31]. ERAS Study group의 활발한 활동에 더불어 ERAS의 개념은 전세계적으로 확산되었으나 실제로 ERAS 프로그램을 도입하는 경우는 매우 제한적이었다. 따라서 연구, 교육뿐 아니라 ERAS 프로그램의 도입을 전제적으로 확산하기 위하여 ERAS Society(http://www.erassociety.org)가 설립되었다. 이후 ERAS Society는 여러 수술 분야에서 주술기 관리의 컨센서스 가이드라인을 발표하였고 전세계 병원에서 ERAS 프로그램의 도입을 촉진하는 활동을 하고 있다.

ERAS의 구성 항목

ERAS 프로그램은 근거중심 주술기 의료행위의 집합체이다. 따라서 하나하나의 의료행위로 구성된다는 본 장에서는 최초의 ERAS 컨센서스 가이드라인인 대장결제술의 ERAS 프로토콜을 중심으로 특히, 마취통증의학과 의사의 입장에서 잘 이해해야 할 주요한 구성 항목에 대해 논의하고자 한다.

항목	추천
수술 전 금식 및 탄수화물 치료	Minimal preoperative fasting and carbohydrate treatment
정규수술에서 폐흡인을 예방하기 위해 수술 전 금식하는 관행은 표준적인 주술기 관리 지침으로 자리 잡아 왔으나 적절하지 않다[32]. 22개의 무작위대조시험(randomized controlled trial)을 메타분석한 결과, 자정 이후 금식한 환자에서 수술 전 2시간까지 맑은 음료(clear fluid)을 섭취한 환자보다 위 내용물이 적거나 위액의 산도(acidity)가 낮지 않았다[33]. 오히려 2.5%의 탄수화물 음료를 수술 전 2시간까지 섭취하는 것은 수술 전 갈증, 배고픔, 불안 등을 줄여주고 수술 후 인슐린 저항성의 증가를 줄여주고 수술 후 단백질 분해 및 근력의 소실를 완화시켜준다[33–36].	
일상적인 수술 전 창자세척의 불필요성	No routine preoperative bowel preparation
수술 전 창자세척의 시행은 환자를 탈수 상태로 만들 뿐 아니라 대장수술 후 장폐색의 위험을 높일 수 있다[37]. 18개의 무작위대조시험(randomized controlled trial, RCT)을 메타분석한 결과, 창자세척을 한 환자나 안 한 환자에서 대장결제술 후 문합 부위 누출(anastomotic leakage), 사망률, 재수술률, 감염률 등이 차이가 없었다[38]. 오히려 창자세척이 만모직의 보존과 창자세척의 시행은 근거에 없다[11,12].	

수술 후 회복 향상 프로그램: 마취통증의학과 의사의 관점

항목	추천
요금	Routine transurethral bladder drainage for 1–2 days is recommended. The bladder catheter can be removed regardless of the usage or duration of thoracic epidural analgesia.
혈당	Hyperglycemia is a risk factor for complications and should therefore be avoided. Several interventions in the ERAS protocol affect insulin action/resistance, thereby improving glycemic control with no risk of causing hypoglycemia. For ward-based patients, insulin should be used judiciously to maintain blood glucose as low as is feasible with the available resources.
일행동	Prolonged immobilization increases the risk of pneumonia, insulin resistance and muscle weakness. Patients should therefore be mobilized.

Modified from the guideline at http://www.erassociety.org, LMWH: low molecular weight heparin, PCA: patient-controlled analgesia, PONV: postoperative nausea and vomiting, TEA: thoracic epidural analgesia, ONS: oral nutritional support.
및 입원기간을 감소시키는 한편, 종양학적 결과(oncologic outcome)는 개복 수술과 비슷하다[3,39,40]. 네덜란드의 9개 병원에서 시행된 다기관 임상연구에서 복강경 대장절제술을 받은 환자는 개복 대장절제술을 받은 환자에 비해 입원기간이 2일 짧았는데 다변량 회귀분석(multivariate regression analysis) 결과 입원기간 및 수술 후 합병증을 감소시킨 유일한 독립인자는 복강경 수술이었다[3].

표준 마취 프로토콜(Standard anesthetic protocol)

마취 중 사용하는 마취유도제, 근이완제, 아편양제제 등은 작용시간이 짧은 것으로 사용해야 한다. Bispectral index (BIS)는 40에서 60 사이로 유지하는 것이 바람직하고 특히 노인 환자에서는 BIS 45 이하의 값은 마취가 심각하지 않다[41,42]. 복강경 수술에서 깊은 근이완이 수술에 도움이 되는지에 대해서는 논란의 여지가 있다[19].

적절한 수액 요법(Optimal fluid management)

적절한 수액 관리는 ERAS 프로토콜 중 매우 중요한 부분이다. 수액 관리는 반드시 수술 전, 중, 후를 연계해서 고려해야 하는데 전 단계에서의 적절하지 못한 관리는 다음 단계에 영향을 미치고 이는 수술 결과에 영향을 미칠 수 있기 때문이다.

수술 전 수액 관리에서 중점을 두어야 할 것은 환자가 수술실에 가능한 적절한 수분 균형 상태(euvolemia)를 도달하게 하는 것이다. 이를 위해 앞서 언급했듯이 금식 시간을 최대한 줄이고 무조건적인 창자세척 시행을 지양해야 한다. 수술 중 수액 관리의 중점은 과다한 체액과 염분의 축적을 방지하는 것이다. 이를 위해 개별화된 수액 관리가 필요하다. 환자의 동반질환이 경미하고 수술 위험도가 낮은 경우에는 ‘zero-balance’의 수액 관리를 하고 환자의 동반질환이 심하고 수술위험도가 높은 경우에는 ‘goal-directed fluid therapy’가 추천된다[43,44]. 수액의 종류로는 생리염수(normal saline)의 과도한 사용을 피하고 생리정형 용액(balanced solution)을 사용하는 것이 바람직하다[19]. 경막외진통으로 인한 저체온은 적절한 수분 균형 상태를 만드는 데 사용할 수 있는 소변량의 감소는 임상적으로 유의한 신장 손상(acute kidney injury)을 유발하지 않는 것으로 보고되었다[48].

수술 후 오심 및 구토 예방 및 치료(Preventing and treating postoperative nausea and vomiting)

ERAS 프로토콜은 적극적인 수술 후 오심 및 구토(postoperative nausea and vomiting, PONV) 예방을 포함한다. PONV 발생 위험인자는 여성, 멀미나 PONV의 과거력, 비흡연자, 수술 후 아편제의 사용 중 1, 2개의 위험인자가 있는 경우는 두 가지의 항구토제(antiemetic)를 사용하고 3, 4개의 위험인자가 있는 경우에는 두 세 가지의 항구토제를 사용하고 전장액마취(total intravenous anesthesia)를 하는 것이 추천된다[19,49]. 또한, 부위마취와 비스테로이드성 항염제(non-steroidal anti-inflammatory drug, NSAID)를 포함하여 아편제의 사용을 줄임으로써 다중적으로 PONV를 예방할 수 있는 것이 바람직하다.

수술 중 저체온 발생에 대한 적극적인 예방(Active prevention of intraoperative hypothermia)

중심체온(core temperature)이 36°C 이하인 수술기 저체온은 수술 및 마취 중후 흔히 발생한다. 의도하지 않은 저체온을 예방하는 것은 창상감염(wound infection), 심혈관계 합병증, 출혈량 및 수혈량을 줄이고 면역 기능을 향상시킬 수 있다[50,51]. 따라서, 공기 예열 시스템(forced air warming system), 온수매트(circulating water mattress), 혹은 가온된 수액(warmed intravenous fluid) 등으로 적극적인 가온(active warming)을 하는 것이 중요하다[19].

수술 후 통증 조절을 위한 다중 접근 방식(Multimodal approach to control postoperative pain)

수술 후 통증은 심근허혈(myocardial ischemia) 및 정맥혈전색전증(venous thromboembolism)의 위험성을 높이고 무기폐(atelectasis), 폐렴의 발생률을 증가시키며 수술 후 장운동의 회복을 지연시키고 인슐린 저항성을 증가시키며 수술 후 감염의 위험성을 높인다[18]. 수술 후 통증은 다양한 원인에 기인하여 그 치료도 다중적으로 접근해야 하는데 이때 적절한 통증조절이 치료의 목표이다. 수술 후에 의료진이 환자를 적절히 관리하고 수술 후 통증 조절에 적절한 항구토제를 사용하고, 수술 후 지속적인 통증 관리를 하면 극히 빠르게 복용시킬 수 있는 소변량의 경증과와 유의한 신장 손상(acute kidney injury)을 예방하기에 도움이 된다[48].

개복 대장결절절제술을 주로 대상으로 하였던 초기의 ERAS 프로그램에서 흉추 경막외진통은 적절한 통증조절을 가능하게 할 뿐 아니라 인슐린 저항성을 낮추고 장운동의 회복을 촉진시킨다[52,53].
키는 핵심적인 진통방법이었다[54,55]. 하지만 최근 복부수술은 복강경하 수술이 주가 되었고 복강경하 수술에 있어서 경막 외진통의 유용성은 논란의 여지가 있다[56]. 따라서 척수강내 진통(spinal analgesia), 배가로근 판 신경차단술(transversus abdominis plane block) 등과 같은 안전하고 유용한 부위마취 기법을 다양하게 활용함과 동시에 아세타미노펜(acetaminophen), NSAID, 가바페틴 유사체(gabapentinoid), 트라마돌(tramadol), 정맥투여용 리도카인(intravenous lidocaine) 등과 같은 약제를 수술 전, 중, 후에 다중적으로 배치하여 투여하는 것이 추천된다[52]. 주술기 NSAID의 투여가 수술 후 출혈 위험을 높이고 문합 부위 누출(anastomotic leakage)의 위험을 증가시킨다는 우려가 있었으나 메타분석 결과 NSAID의 투여에 의한 수술 후 출혈 위험은 낮다고 밝혀졌고, 문합 부위 누출 위험에 대해서는 연구가 필요하다[57,58].

수술 후 장 기능 장애를 조절하기 위한 다중 접근 방식(Multimodal approach to control postoperative bowel dysfunction)

수술 후 장기능의 저하는 장수술 후 필연적인 결과이며 장기능의 회복이 늦어지면 경구섭취와 회복이 지연된다. 흉추 경막외진통과 복강경 수술은 장운동의 회복을 촉진시키는 것으로 알려져 있으며 과도한 수액의 투여는 수술 후 장운동의 회복을 지연시킨다[3,55,59]. 환자에게 검을 씹도록 하는 것(chewing gum)은 장운동 회복을 촉진시키고 마그네슘 경구섭취와 μ-오피오이드 수용체(μ-opioid receptor antagonist)인 알비모판(alvimopan)은 장운동 회복에 도움이 될 수 있다[60–62].

혈당 조절(Control of glucose level)

수술 중후에는 수술 자극에 의한 시상하부-뇌하수체-부신 피질 축(hypothalamic-pituitary-adrenal axis), 교감신경 홍분, 염증성 사이토카인(proinflammatory cytokine)의 분비 등에 의해 인슐린 저항성이 증가되고 이로 인해 수술 중후 고혈당(highglycemia)이 흔하다[81]. 수술 중후 고혈당은 혈당중 및 사망률의 증가와 연관이 있을 수 있다. 이에 대해 음성할 수 있는 치료가 제안되었다[82]. 수술 중후 혈당은 혈당중 및 사망률의 증가와 연관이 있을 수 있는데, 이는 수술 후 그 후 지속적으로 치료를 하지 않을 경우 두통이 발생하고, 혈당이 높은 경우 두통이 더 많이 발생한다[83]. 수술 후 혈당은 혈당증 및 사망률의 증가와 연관이 있을 수 있는데, 이는 수술 후 그 후 지속적으로 치료를 하지 않을 경우 두통이 발생하고, 혈당이 높은 경우 두통이 더 많이 발생한다[84].

조기 거동(Early mobilization)

수술 후 조기 거동은 복합정책을 감소시키고 인슐린 저항성 응 보위습관과 동시에 수술 직후 근력의 향상이지만 장기적으로 긍정적인 효과는 보이지 않았다[67,68]. 하지만 수술 후 오랜 침대타월(prolonged bed rest)은 기능적 회복을 지연시킨다[69]. 수술 후 이로 인해 도달하는 요인으로는 부적절한 통증 조절, 지속적인 수액투여 및 도노란 거치, 및 수술 전 혈압 이상으로 인한 기계적 부담이 있다[3].

ERAS의 시행

진료의 관행을 바꾸는 것은 쉽지 않다. 일반적으로 특정 의료행위에 대한 임상적 근거가 발표된 후 임상 현장에서 실제로 시행되기까지는 상당한 시간이 필요하다. 대장절제수술에 대한 ERAS 프로토콜은 2005년부터 발표되어 2009년, 2012년에 걸쳐 개정되었으나 아직까지도 ERAS 프로토콜이 전세계적으로 널리 시행된다고 할 수 없다[8,9,11]. ERAS Society는 전세계적으로 ERAS 프로토콜이 시행될 수 있도록 돕고 있다. 이를 위해 ERAS Interactive Audit System을 개발하였고 이는 ERAS Society가 운영하는 'ERAS Implementation Programs'의 일부이다(http://www.erassociety.org). 이 가시 시스템(audit system)은 현재 프랑스, 독일, 노르웨이, 포르투갈, 스페인, 네덜란드, 영국, 스웨덴, 네덜란드, 미국, 멕시코, 브라질, 콜롬비아, 아르헨티나, 카리브, 뉴질랜드, 이스라엘, 스페인, 남아프리카공화국의 병원에서 사용되고 있다.

ERAS 프로그램을 시행하는 데 있어서 지속적인 수술중의 감시(audit)는 필수적이다. 네덜란드의 33개 병원에서 10개월 간 대장수술환자에 대해 ERAS 시행 프로그램을 실시한 후 평균 입원기간은 9–10일에서 6일로 줄어들었다[70]. 이후 계속적으로 ERAS 프로그램을 시행한 결과 대부분의 병원에서 입원기간은 다시 늘어났는데 그 원인은 지속적인 수술중의 감시가 없는 상태에서 ERAS 프로토콜에 대한 순응도(compliance)가 떨어졌기 때문이었다[71]. 연구 결과에 의하면 ERAS 프로토콜에 대한 순응도에 따라 수술 후 혈당중, 재입원율. 입원기간의 아날리스화 시고의 유의한 차이가 발생하며 ERAS 프로토콜이 시행하기 위한 핵심 도구라 할 수 있겠다[5,6,10].

성공적인 ERAS 프로토콜 시행을 위한 요소로는 의료진의 진료 관행 변화에 대한 긍정적 자세, 다학제팀의 구성 및 팀원 간의 효율적인 소통과 협업, 병원 경영진의 지원, 처방 및 환자 관리의 표준화, 그리고 프로토콜 수술중의 지속적 감시 등이 있다[72,73]. 반면, 성공적인 ERAS 프로토콜 시행의 장애물로는 의료진의 진료 관행 변화에 대한 부정적인 자세, 의료진의 부족,
의료진간 소통 및 협업의 어려움 등이 있다.

ERAS 시행의 결과

ERAS 프로그램의 시행은 수술 후 혈장병, 입원기간, 의료비용 등 단기적인 결과에 영향을 미치나, ERAS 프로그램 하에서 대장항문 절제술을 받는 환자들에 대한 연구에서 나타났다. ERAS 프로그램의 실시는 수술 후 합병증, 입원기간, 의료비용 등 단기적인 결과에 영향을 끼치며, 사망률과 같은 장기적인 결과에도 영향을 미친다. 특히, RCT 연구결과에 따르면 ERAS 프로토콜의 적용은 수술 후 합병증의 발생률을 50%까지 낮혔다[4]. 한 기관에서 대장항문 절제술을 받는 900명 이상의 환자들에서 ERAS 프로토콜의 순응도가 높을수록 병원비용, 입원기간, 재입원율 등 단기 결과에 영향을 끼치고, 사망률과 같은 장기 결과에도 영향을 미친다[10]. 7개국 13개 병원에서 시행한 2,300명의 연구에서 ERAS 프로토콜의 순응도가 높을수록, 입원기간, 재수술, 재입원, 사망 등의 결과가 개선되었다[5]. 또한, 7개국 13개 병원에서 시행한 2,300명의 연구에서 ERAS 프로토콜의 적용은 수술 후 합병증의 발생률을 50%까지 낮혔다[4].

ERAS 시행에서의 경제적 성과

ERAS 프로그램의 경제적 성과는 그 결과가 엇갈린다. 네덜란드의 9개 병원에서 시행한 다기관 임상연구에서는 ERAS 프로토콜의 실시가 입원비용을 감소시키지 못한 반면, 캐나다 알버타 지역의 6개 병원에서 시행한 900명의 연구에서 ERAS 프로토콜의 시행으로 입원기간이 단축될 수 있다는 결과가 보고되었다[74,75]. 건강한 환자들은 대장결절절제술 후 24시간 안에 퇴원하는 것이 가능하다는 결과를 보고하였다[76].

ERAS의 미래

ERAS 프로그램은 대장결장절제술에서 시작하였고 대장결장절제술을 중심으로 발전해 왔다. 하지만, 그의 역할은 계속 확대되어 왔다. ERAS 프로그램에서의 막판적 변화는 ERAS 프로그램이 더이상 단기적인 수술 후 결과만으로는 충분하지 않다는 것을 의미한다. ERAS 프로그램의 성공적인 시행을 위해, ERAS 프로그램은 수술 후 합병증, 입원기간, 의료비용 등 단기적인 결과에 영향을 미치며, 사망률과 같은 장기적인 결과에도 영향을 미친다. 특히, RCT 연구결과에 따르면 ERAS 프로토콜의 적용은 수술 후 합병증의 발생률을 50%까지 낮혔다[4].
제술, 식도절제술 등 수술에 대한 ERAS 컨센서스 프로토콜은 개발 중이며, 방광절제술, 위절제술, 부인과 암수술, 간절제, 슬관절 및 고관절 치환술, 배과절제술, 식도절제술 등 수술의 ERAS 프로그램 시행 결과는 보고되었다[79–85]. ERAS 프로그램의 적용이 다양한 수술 분야에서 결과를 향상시키는 것으로 보고됨에 따라 향후에는 더욱 많은 수술 분야에서 ERAS 가이드라인이 만들어질 것이며, 컨센서스 가이드라인이 발표될 것이고, 시행결과가 보고될 것이다. 수술에 따라 다양한 ERAS 가이드라인은 수술 전 전신 상태의 최적화, 금식의 최소화 및 탄수화물 음료의 섭취, 최소 침습 수술(minimally invasive surgery), 수술 중후적절한 수액 투여, 다중적이고 적극적인 통증 조절, 이른 경구섭취와 가동 등 많은 부분을 공유하기 때문에 새로운 수술에 있어서 가이드라인의 수립 및 실행의 확산 속도는 매우 빨라질 것으로 예상된다.

결 론

ERAS 프로그램의 시행은 수술환자의 주술기 치료 및 관리에 대한 패러다임의 변화를 요구한다. 관행적으로 시행되어 왔던 수술환자 관리의 개별 의료행위들을 근거중심의 행위로 바꾸는 것뿐만 아니라 대학적적인 접근, 치료 및 관리의 연속성, ERAS 항목 수행도의 지속적 감시, 데이터에 기반한 결과의 평가 및 프로토콜 개선 등이 필요하다. 결과적으로 ERAS 프로그램의 시행은 수술환자의 회복을 빠르게 하고 회복의 질을 높여 입원기간 및 수술과 관련된 의료비를 줄이는 한편 수술 합병증을 줄이고 사망률을 낮춘다.

의료기술이 발전하고 고령 인구가 증가함에 따라 어느 나라를 막론하고 의료비는 해마다 상승하는 반면 이에 대한 사회적 재원은 한정적이다. 이에 따라 최근 여러 나라에서는 의료비 저감방안을 마련하기 위해 의료행위 양에 대한 보상뿐만 아니라 의료행위 질에 대한 보상’을 중요하게 여기고 있다고 보고하였다[86]. 우리나라도 2005년부터 각종 의료행위에 대해 적정성 평가를 시행해 오고 있고 평가 결과에 따라 의료질 평가지원금이 차등 지급되고 있다. ERAS 프로그램의 시행은 의료비를 증가시키지 않거나 줄이면서 수술환자의 주요 결과를 향상시켜주기 위한 방법으로 기대된다.

REFERENCES

1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372: 139-44.
2. Basse L, Raskov HH, Hjort Jakobsen D, Sonne E, Billesbolle P, Hendel HW, et al. Accelerated postoperative recovery pro-
Hubner M, et al. Guidelines for perioperative care after radical cystectomy for bladder cancer: enhanced recovery after surgery (ERAS®) society recommendations. Clin Nutr 2013; 32: 879-87.

15. Mortensen K, Nilsson M, Slim K, Schäfer M, Mariette C, Braga M, et al. Consensus guidelines for enhanced recovery after gastrectomy: enhanced recovery after surgery (ERAS®) society recommendations. Br J Surg 2014; 101: 1209-29.

16. Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, et al. Guidelines for pre- and intra-operative care in gynecologic/oncology surgery: enhanced recovery after surgery (ERAS®) society recommendations—Part I. Gynecol Oncol 2016; 140: 313-22.

17. Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, et al. Guidelines for postoperative care in gynecologic/oncology surgery: enhanced recovery after surgery (ERAS®) society recommendations—Part II. Gynecol Oncol 2016; 140: 323-32.

18. Scott MJ, Baldini G, Fearon KC, Feldheiser A, Feldman LS, Gan TJ, et al. Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 1: pathophysiological considerations. Acta Anaesthesiol Scand 2015; 59: 1212-31.

19. Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS, et al. Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand 2016; 60: 289-334.

20. Thorell A, MacCormick AD, Awad S, Reynolds N, Roulin D, Demartines N, et al. Guidelines for perioperative care in bariatric surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg 2016; 40: 2065-83.

21. Melloul E, Hübler M, Scott M, Snowden C, Prentis J, Dejong CH, et al. Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg 2016; 40: 2425-40.

22. Dort JC, Farwell DG, Findlay M, Huber GE, Kerr P, Shea-Budgell MA, et al. Optimal perioperative care in major head and neck cancer surgery with free flap reconstruction: a consensus review and recommendations from the enhanced recovery after surgery community. JAMA Otolaryngol Head Neck Surg 2017; 143: 292-303.

23. Temple-Oberle C, Shea-Budgell MA, Tan M, Semple JL, Schrag C, Barreto M, et al. Consensus review of optimal perioperative care in breast reconstruction: enhanced recovery after surgery (ERAS) society recommendations. Plast Reconstr Surg 2017; 139: 1056-71.e

24. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg 2017; 152: 292-8.

25. Engelman RM, Rousou JA, Flack JE, 3rd, Deaton DW, Humphrey CB, Ellison LH, et al. Fast-track recovery of the coronary bypass patient. Ann Thorac Surg 1994; 58: 1742-6.

26. Bardram L, Funch-Jensen P, Jensen P, Crawford ME, Kehlet H. Recovery after laparoscopic colonic surgery with epidural analgesia, and early oral nutrition and mobilisation. Lancet 1995; 345: 763-4.

27. Kehlet H, Mogensen T. Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. Br J Surg 1999; 86: 227-30.

28. van der Hulst RR, van Kreekl BK, von Meyenfeldt MF; Brummer RJ, Arends JW, Deutz NE, et al. Glutamine and the preservation of gut integrity. Lancet 1993; 341: 1363-5.

29. Nygren J, Thorell A, Jacobsson H, Larsson S, Schnell PO, Hylén L, et al. Preoperative gastric emptying. Effects of anxiety and oral carbohydrate administration. Ann Surg 1995; 222: 728-34.

30. Nygren J, Hauser J, Kehlet H, Revhaug A, Lassen K, Dejong C, et al. A comparison in five European centres of case mix, clinical management and outcomes following either conventional or fast-track perioperative care in colorectal surgery. Clin Nutr 2005; 24: 455-61.

31. Lassen K, Hannemann P, Ljungqvist O, Fearon K, Dejong CH, von Meyenfeldt MF; et al. Patterns in current perioperative practice: survey of colorectal surgeons in five northern European countries. BMJ 2005; 330: 1420-1.

32. Malby JR. Fasting from midnight--the history behind the dogma. Best Pract Res Clin Anaesthesiol 2006; 20: 363-78.

33. Brady M, Kinn S, Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev 2003; (4): CD004423.

34. Hausel J, Nygren J, Lagerkraan M, Hellström PM, Hammarqvist F, Almström C, et al. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. Anesth Analg 2001; 93: 1344-50.

35. Nygren J, Soop M, Thorell A, Efendic S, Nair KS, Ljungqvist O. Preoperative oral carbohydrate administration reduces postoperative insulin resistance. Clin Nutr 1998; 17: 65-71.

36. Ljungqvist O. Modulating postoperative insulin resistance by preoperative carbohydrate loading. Best Pract Res Clin Anaesthesiol 2009; 23: 401-9.

37. Jung B, Lannerstad O, Pålman L, Arodell M, Unosson M, Nilsson E. Preoperative mechanical preparation of the colon: the patient’s experience. BMC Surg 2007; 7: 5.

38. Güenaga KF, Matos D, Wille-Jørgensen P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev 2011; (9): CD001544.

39. Kennedy GD, Heise C, Rajamanickam V, Harms B, Foley EF. Laparoscopy decreases postoperative complication rates after abdominal colectomy: results from the national surgical quality improvement program. Ann Surg 2009; 249: 596-601.
40. Clinical Outcomes of Surgical Therapy Study Group, Nelson H, Sargent DJ, Wieand HS, Fleshman J, Anvari M, et al. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004; 350: 2050-9.

41. Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafanca A, et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med 2011; 365: 591-600.

42. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 2005; 100: 4-10.

43. Brandstrup B, Svendsen PE, Rasmussen M, Bellhage B, Rødt SÅ, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth 2012; 109: 191-9.

44. Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to enhanced recovery after surgery (ERAS). Can J Anaesth 2015; 62: 158-68.

45. Holte K, Foss NB, Svensén C, Lund C, Madsen JL, Kehlet H. Epidural anesthesia, hypotension, and changes in intravascular volume. Anesthesiology 2004; 100: 281-6.

46. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg 2009; 13: 569-75.

47. Zhuang CL, Ye XZ, Zhang CJ, Dong QT, Chen BC, Yu Z. Early versus traditional postoperative oral feeding in patients undergoing elective colorectal surgery: a meta-analysis of randomized clinical trials. Dig Surg 2013; 30: 225-32.

48. Hübner M, Lovely JK, Huebner M, Slettedahl SW, Jacob AK, Larson DW. Intrathecal analgesia and restrictive perioperative fluid management within enhanced recovery pathway: hemodynamic implications. J Am Coll Surg 2013; 216: 1124-34.

49. Apfel CC, Korttla K, Abdalla M, Kerger H, Turan A, Vedder I, et al. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. N Engl J Med 2004; 350: 2441-51.

50. Esnaola NF; Cole DJ. Perioperative normothermia during major surgery: is it important? Adv Surg 2011; 45: 249-63.

51. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 2008; 108: 71-7.

52. Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: a review. JAMA Surg 2017; 152: 691-7.

53. Veenhof AA, Vlug MS, van der Pas MH, Sietses C, van der Peet DL, de Lange-de Klerk ES, et al. Surgical stress response and postoperative immune function after laparoscopy or open surgery with fast track or standard perioperative care: a randomized trial. Ann Surg 2012; 255: 216-21.

54. Carli F, Halliday D. Continuous epidural blockade arrests the postoperative decrease in muscle protein fractional synthetic rate in surgical patients. Anesthesiology 1997; 86: 1033-40.

55. Marret E, Remy C, Bonnet F. Postoperative Pain Forum Group. Meta-analysis of epidural analgesia versus parenteral opioid analgesia after colorectal surgery. Br J Surg 2007; 94: 665-73.

56. Hübner M, Blanc C, Roulin D, Winiker M, Gander S, Demartines N. Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway. Ann Surg 2015; 261: 648-53.

57. Goble RM, Hoang HL, Kachniarz B, Orgill DP. Ketorolac does not increase perioperative bleeding: a meta-analysis of randomized controlled trials. Plast Reconstr Surg 2014; 133: 74-55.

58. Tan M, Law LS, Gan TJ. Optimizing pain management to facilitate enhanced recovery after surgery pathways. Can J Anaesth 2015; 62: 203-18.

59. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einaev S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 2005; 103: 25-32.

60. Chan MK, Law WL. Use of chewing gum in reducing postoperative ileus after elective colorectal resection: a systematic review. Dis Colon Rectum 2007; 50: 2149-57.

61. Hansen CT, Sørensen M, Møller C, Ottesen B, Kehlet H. Effect of laxatives on gastrointestinal functional recovery in fast-track hysterectomy: a double-blind, placebo-controlled randomized study. Am J Obstet Gynecol 2007; 196: 311.e1-7.

62. Delaney CP, Wolff BG, Viscusi ER, Senagore AJ, Fort JG, Du W, et al. Alvimopan, for postoperative ileus following bowel resection: a pooled analysis of phase III studies. Annu Surg 2007; 245: 355-63.

63. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab 2002; 87: 978-82.

64. Ata A, Lee J, Bestle SL, Desemone J, Stain SC. Postoperative hyperglycemia and surgical site infection in general surgery patients. Arch Surg 2010; 145: 858-64.

65. Eshuis WJ, Hermanides J, van Dalen JW, van Samkar G, Busch OR, van Gulik TM, et al. Early postoperative hyperglycemia is associated with postoperative complications after pancreatoduodenectomy. Ann Surg 2011; 253: 739-44.

66. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283-97.

67. Henriksen MG, Jensen MB, Hansen HV, Jespersen TW, Hessov I. Enforced mobilization, early oral feeding, and balanced anal-
gesia improve convalescence after colorectal surgery. Nutrition 2002; 18: 147-52.

68. Houborg KB, Jensen MB, Hessov I, Laurberg S. Little effect of physical training on body composition and nutritional intake following colorectal surgery--a randomised placebo-controlled trial. Eur J Clin Nutr 2005; 59: 969-77.

69. Convertino VA. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. Med Sci Sports Exerc 1997; 29: 191-6.

70. Gillissen F, Hoef C, Maessen JM, Winkens B, Teeuwen JH, von Meyenburg MF et al. Structured synchronous implementation of an enhanced recovery program in elective colonic surgery in 33 hospitals in the Netherlands. World J Surg 2013; 37: 1082-93.

71. Gillissen F, Ament SM, Maessen JM, Dejong CH, Dirksen CD, van der Weijden T, et al. Sustainability of an enhanced recovery after surgery program (ERAS) in colonic surgery. World J Surg 2015; 39: 526-33.

72. Pearsall EA, Meghji Z, Pitzul KB, Aarts MA, McLeod RS, et al. A qualitative study to understand the barriers and enablers in implementing an enhanced recovery after surgery program. Ann Surg 2015; 261: 92-6.

73. Ament SM, Gillissen F, Moser A, Maessen JM, Dirksen CD, von Meyenburg MF, et al. Identification of promising strategies to sustain improvements in hospital practice: a qualitative case study. BMC Health Serv Res 2014; 14: 641.

74. Senagore AJ, Whalley D, Delaney CP, Mekhail N, Duepree HJ, Fazio VW. Epidural anesthesia-analgesia shortens length of stay after laparoscopic segmental colectomy for benign pathology. Surgery 2001; 129: 672-6.

75. Delaney CP, Fazio VW, Senagore AJ, Robinson B, Halverson AL, Remzi FH. ‘Fast track’ postoperative management protocol for patients with high co-morbidity undergoing complex abdominal and pelvic colorectal surgery. Br J Surg 2001; 88: 1533-8.

76. Levy BF, Smith MJ, Fawcett WJ, Rockall TA. 23-hour-stay laparoscopic colectomy. Dis Colon Rectum 2009; 52: 1239-43.

77. Nelson G, Kiyang LN, Crumley ET, Chuck A, Nguyen T, Faris P, et al. Implementation of enhanced recovery after surgery (ERAS) across a provincial healthcare system: the ERAS Alberta colorectal surgery experience. World J Surg 2016; 40: 1092-103.

78. Wu CL, Benson AR, Hobson DB, Roda CP, Demske R, Galante DJ, et al. Initiating an enhanced recovery pathway program: an anesthesiology department’s perspective. Jt Comm J Qual Patient Saf 2015; 41: 447-56.

79. Xu W, Daneshmand S, Bazargani ST, Cai I, Miranda G, Schuckman AK, et al. Postoperative pain management after radical cystectomy: comparing traditional versus enhanced recovery protocol pathway. J Urol 2015; 194: 1209-13.

80. Jeong O, Ryu SY, Park YK. Postoperative functional recovery after gastrectomy in patients undergoing enhanced recovery after surgery: a prospective assessment using standard discharge criteria. Medicine (Baltimore) 2016; 95:e3140.

81. Nelson G, Kalogera E, Dowdy SC. Enhanced recovery pathways in gynecologic oncology. Gynecol Oncol 2014; 135: 586-94.

82. Song W, Wang K, Zhang RJ, Dai QX, Zou SB. The enhanced recovery after surgery (ERAS) program in liver surgery: a meta-analysis of randomized controlled trials. Springerplus 2016; 5: 207.

83. Stowers MD, Manuopangai L, Hill AG, Gray JR, Coleman B, Munro JT. Enhanced recovery after surgery in elective hip and knee arthroplasty reduces length of hospital stay. ANZ J Surg 2016; 86: 475-9.

84. Madani A, Fiore MF Jr, Wang Y, Bejiani J, Sivakumaran L, Mata J, et al. An enhanced recovery pathway reduces duration of stay and complications after open pulmonary lobectomy. Surgery 2015; 158: 899-908.

85. Porteous GH, Neal JM, Slee A, Schmidt H, Low DE. A standardized anesthetic and surgical clinical pathway for esophageal resection: impact on length of stay and major outcomes. Reg Anesth Pain Med 2015; 40: 139-49.

86. Miller HD. From volume to value: better ways to pay for health care. Health Aff (Millwood) 2009; 28: 1418-28.