Abstract

In this paper, we propose a textual clue approach to help metaphor detection, in order to improve the semantic processing of this figure. The previous works in the domain studied the semantic regularities only, overlooking an obvious set of regularities. A corpus-based analysis shows the existence of surface regularities related to metaphors. These clues can be characterized by syntactic structures and lexical markers. We present an object oriented model for representing the textual clues that were found. This representation is designed to help the choice of a semantic processing, in terms of possible non-literal meanings. A prototype implementing this model is currently under development, within an incremental approach. It is ready used to evaluate the clues relevance.

In conclusion, we will discuss how the model can help choosing the adequate semantic analysis to process at the sentence level or disambiguating multiple meaning representations, providing probabilities for non-literal meanings.

2 Classical methods: a brief overview

The classical NLU points of view of metaphor have pointed out the multiple kinds of relations between what is called the source and the target of the metaphor, but rarely discuss the problem of detecting the figure that bears the metaphor. For our purpose, we choose to present these approaches in two main groups, depending on how they initiate the semantic processing.

The previous works led to a classification introduced by Dan Fass (Fass, 1991). In the comparison view, the metaphor corresponds to an analogy between the structures representing the source and the target of the figure, as in Gentner’s works (Gentner, 1988) and their implementation (Falkenhainer et al., 1989). The interaction view, as in Hobbs (Hobbs, 1991), points at the novelty brought by the metaphor. Fass also distinguishes a selection restrictions violations view presenting the metaphor as a kind of anomaly. We would argue that the two previous views already considered metaphor as a kind of anomaly. Indeed, the semantic analysis proposed for dealing with metaphors were processed depending on the results of another, say a “classical” one².

1This work takes part in a research project sponsored by the AUPELF-UREF (Francophone Agency For Education and Research)
Thereby, detecting a metaphor meant detecting an anomaly in the meaning representation issued from such a classical analysis.

Fass proposed a method for discriminating literal meanings, metaphors, metonymies and "anomalies," merging different points of view (Fass, 1991). In this approach, multiple semantic analysis can be processed, resulting in possibly multiple meaning representations. In (Prince and Sabah, 1992), a method to overcome similar kinds of ambiguities reveal the difficulties encountered if no previous detection is made. James Martin's approach (Martin, 1992), called the conventional view by Fass, is based on Lakoff's theory on cognitive metaphors (Lakoff and Johnson, 1980). It requires a specific knowledge representation base and also results in multiple representation meanings. Detecting a metaphor is meaningless here, and conventional metaphoric meanings can be viewed as polysemies. Martin revealed at least that the heuristic of the ill-formness of meaningless here, and conventional metaphoric meanings can be viewed as polysemies. Martin revealed at least that the heuristic of the ill-formness of meaning representations issued from classical analysis is not sufficient at all to deal with all the possible metaphors.

In our point of view, all the previous approaches were founded. The main remaining problem, however, is to choose an adequate processing when confronted with a metaphor, and thus, to detect the metaphors before trying to build their meaning representation. This can be partially solved using textual clues.

3 Textual clues: object oriented description

If the classical views of the metaphor overlook the textual clues, in other domains, especially those concerning explanation, they have been wisely reintroduced. In (Pery-Woodley, 1990), Pery-Woodley shows the existence of such clues related to the explanatory discourse. They can help in generating explanations in natural language as well as in modelling the student in an intelligent tutoring system (Daniel et al., 1992). A corpus of 26 explanatory texts in French, of about 200 words each, has been collected under a shared research project between psychologists and computer scientists, in order to study metaphors and analogies in teaching. The analysis we made showed the existence of textual clues in relation with metaphoric contexts and analogies (e.g. "like", "such as", "illustrated by"). They can be characterized by syntactic regularities (e.g. the comparative is used in structures such as "less than", "more than"; the identification is made through attributes or appositions, ...). They also involve lexical markers (e.g. "literally", "illustrating", "metaphorically"). These properties, already found in the previous works, can help detecting the clues themselves. Studying the relation between the syntactic regularities and the lexical markers, one can observe that the first build the ground where to find the second. We thus propose an object-oriented model for representing these clues. A generic textual clue can thereby be described by the two following attributes:

- the Surface Syntactic Pattern representing the syntactic regularity, with a label on the item where to find the lexical marker
- the Lexical Marker itself

Typically, the word "metaphor" itself can be used as a lexical marker in expressions such as "to extend the conventional metaphor, pruning such a tree means to generalize". On the other hand, "metaphor" will not be a marker if used as the subject of the sentence, like in this one. Thus, describing the syntactic regularities surrounding a lexical marker improves its relevance as a marker. We propose to represent this relevance for probabilistic purposes. Each clue that was found is currently evaluated on a large corpus (about 450,000 words). The frequencies of use of the lexical markers in metaphoric contexts are represented in the relevance attribute (see example below).

The syntactic structures may also give information about the source and the target of the metaphor. For instance, in the sentence “Yesterday, at home, Peter threw himself on the dessert like a lion.”, the subject inherits the properties of speed and voracity of a lion attacking its victim. It is here possible to spot the source and the target of the metaphor using the syntactic properties of the comparison. Two attributes are added to textual clues related to metaphors, corresponding to the elements of the sentence bearing the source and the target.

Example of textual clue representations

type	metaphor-analogy
name	B.2.2.2

Comment: comparison involving the meaning of a marker, adjective, attribute of the object, object before the verb

Surface Syntactic Pattern (SSP): GN0 GN1 V1 Adv0 [prep] GN2
Lexical Marker (LM): pareil (meaning "similar")
Target GN1
Source GN2

Relevance (15/28)
- number of occurrences: 28
- conventional metaphors: 3
- new metaphors: 2
- metaphoric contexts: 12
- total: 15

Notations: GN and GV stand for nominal or verbal groups, Adv and Adv for adjectives and adverbs, and prep for prepositions.

The model has been partially implemented in a tool, STK, for detecting the textual clues related to
metaphors and adding specific marks when found.
In its current version, STK allows us to tokenize,
tag, and search for lexical markers on large corpora.
The tagger we use is the one developed by Eric
Brill (Brill, 1992) with a set of tags indicating the
grammatical categories as well as other information
such as the number and the gender for nouns and
adjectives. It is evaluated under GRACE protocol
for corpus-oriented tools assigning grammatical cat-
egories. It is currently used for the evaluation of
the textual clues that were found. The latter can
be easily retrieved using STK, avoiding lexical am-
biguities. They are then analyzed by hand, in order
to determine their relevance attribute. In the previ-
ous example of textual clue, the relevance values are
issued from this corpus-based analysis.

4 Conclusion, perspectives

Classical approaches to the metaphor in NLU re-
vealed multiple underlying processes. We there-
fore focussed our study on how to help detecting
metaphors in order to chose the most adequate se-
mantic processing. Textual clues can give informa-
tion about the figures that bear the metaphor, which
are easy to spot. Indeed, they can be found using
the results of syntactic parsing. We proposed an
object-oriented model to represent these clues and
their multiple properties.

If textual clues give information about possible
non-literal meanings, metaphors and analogies, one
may argue they do not allow for a robust detection.
Indeed, a textual clue is not sufficient to prove the
presence of such figures of speech. The relevance of
each clue can be used to help disambiguating mul-
tiple meaning representation when it occurs. This
must not be the only disambiguation tool, but when
no other is available, it provides NLU systems with
a probabilistic method.

Our future works will focus on the study of the
relation between the metaphors introduced by a clue
and others that are not conventional. The guideline
is that novel metaphors not introduced by a clue at
the sentence level may have been introduced previ-
ously in the text.

References

Brill, E. (1992). A simple rule-based part of speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, Trento.
ACL.

Daniel, M., Nicaud, L., Prince, V., and Pery-
Woodley, M. (1992). Apport du style Linguis-
tique la Modélisation Cognitive de l’Élève. Lecture Notes in Computer Sciences, 608:252–260.
Proceedings of the International Conference on In-
telligent Tutoring Systems (ITS-92), Montréal.

Falkenhainer, B., Forbus, K., and Gentner, D.
(1989). The Structure-Mapping Engine: Algorithm and Examples. Artificial Intelligence, 41:1–
63.

Fass, D. (1991). met : A Method for Discriminating
Metonymy and Metaphor by Computer. Computational Linguistics, 17(1):49–90.

Fass, D., Hinkelman, E., and Martin, J., editors.
Proceedings of the IJCAI Workshop on Compu-
tational Approaches to Non-Literal Language, Sydney, Australia. 1991.

Gentner, D. (1988). Analogical Inference and Ana-
logical Access, In: Analogica, chapter 3, pages
63–88. Edited by Prieditis A., Pitman Publishing,
London, Morgan Kaufmann Publishers, Inc.,
Los Altos, California.

Hobbs, J. (1991). Metaphor and abduction. In (Fass
et al.,), pages 52–61.

Lakoff, G. and Johnson, M. (1980). Metaphors we
live by. University of Chicago Press, Chicago,
U.S.A.

Martin, J. (1992). Computer Understanding of Con-
ventional Metaphoric Language. Cognitive Sci-
cence, 16:233–270.

Pery-Woodley, M. (1990). Textual clues for user
modeling in an intelligent tutoring system. Mas-
ter’s thesis, University of Manchester, England,
Great-Britain.

Prince, V. and Sabah, G. (1992). Coping with
Vague and Fuzzy Words: A Multi-Expert Natural
Language System which Overcomes Ambiguities.
In Acts of PRICAI’92, Seoul, Corea. September,
1992.

3GRACE stands for “Grammars and Resources for
Corpora Analysis and their Evaluation”. It is a national
research project for the development of tools for French
language processing.