A Review of Anode Material for Lithium Ion Batteries

Pradeep.N¹, Dr. E. Sivasenthil², Dr. B. Janarthanan³, Dr. S. Sharmila⁴

¹²³⁴ Department of Physics, Karpagam Academy of Higher Education, Eachanari (PO) Coimbatore 641021, Tamil Nadu, India.
E-mail: n79pradeep@gmail.com, sivasenthil.e@kahedu.edu.in,

Abstract— In this study an attempt has been made to review the use of anode material for Li ion batteries, with a special focus on Cobalt Ferrite. The review includes a discussion of historical background, review of Cobalt Ferrite and some yesteryear anode materials.
Keywords: Cobalt Ferrite, Lithiation, Delithiation, Morphological properties, structural properties, transition metal oxides.

1. Introduction
As more and more energy sources are getting depleted year by year, the world is craving for newer types of renewable energy sources. The clamour for making mother earth greener is echoing everywhere. Due to the rising CO2 levels, earth is in dire need of cleaner energy sources. Alternative sources are badly needed for countering the ever-threatening increase in pollution levels. Transport vehicles are contributing immensely to the woes. The struggle for replacing the existing fuel items with LIBs will continue. Though they are being used widely, these ecofriendly batteries are facing numerous challenges. The materials for making LIBs, of which the electrode materials are playing a vital role, are increasing the electrochemical performance of the aforementioned.

In the past graphite was the electrode material, especially the anode. But, it had a lot of drawbacks such as a low theoretical capacity of 372mAh/g, low cyclability, poor electro chemical performance and volume strain. The search for suitable anode materials latched on to transition metal oxides, like Cobalt Ferrite, which minimizes the crippling afflictions to an extent. It is also well known for its magnetic hardness with high coercivity. It shows moderate structural stability [61].

With the advent of CFO, things have changed drastically as they are of low cost and of greener background. These are spinel ferrites nanoparticles with general formula AFe2O4 [where A=Mn, Co, Ni, etc.].

CFO has a remarkable chemical stability and mechanical hardness. The Cobalt Ferrite was picked due to its high theoretical capacity of 916mAh/g against the 372mAh/g of graphite [53]. The redox conversion reaction of CFO contributed to lithium storage mechanism. In spite of all its advantages, it suffered from poor electrical conductivity, electrode pulverization, poor cyclic stability and poor rate capability.

The ongoing study aims at furthering the performance of spinel based CoFe2O4. The abrupt volume changes during lithiation / de-lithiation process have to be minimized. To enhance the electrochemical performance of transition metal oxides like CFO, an attempt has been made to use transition metals in it. Studies have proven that this addition makes CFO more electrochemically active. But, not many studies have been made in this regard. The doping of CFO with transition metals like Vanadium and Zirconium is little. This offers better structural stability and high reversible capacity [80].
2. Historical Background

Batteries of the past had a Mesopotamian origin. It was Italian physicist Alessandro Volta who invented the first battery in 1800. He prepared it from stalked discs of Copper and Zinc. In primary batteries the reverse reaction was not possible. It was John Goodenough who brought a new dimension into the manufacture of batteries, when he invented Lithium ion batteries. In this type of batteries Li ions move from one electrode to another. The credit for the popularity of Li ion batteries goes to Sony after the 1990s. Then Goodenough modified Li ion batteries. The working of Li ion batteries depended on their electrodes. So, there was a hunt for suitable anode materials. Search was on for high theoretical capacity, stable crystal structure and high conductivity.

Silicon anodes with high theoretical capacity were used as anodes. They suffered volume expansion, and the materials like titanium oxide and lithium titanate that were used had the peculiarities of low volume expansion with stable crystal structure. But, the theoretical capacities were low. To eliminate the aforementioned problems transition metal oxides have gathered attention.

3. Working of Li ion batteries

The three main components of a battery are anode, which is negative electrode, Electrolyte and cathode, which is positive electrode. The process during the charging is the generation of cations like Li+ or anions like OH-, and their movement across the electrodes. These cations or anions stick on to, or are assimilated by, the electrodes. The Lithium ions reach the cathodes and anodes in either charging or discharging cycles. The electrolyte conducts Li ions between anode and cathode. The generation of electrons in the external circuit is due to the transport of Li+ ions through the electrolyte. During charging and discharging electrons are generated.

The three methods used to make anode in Li ion batteries are intercalation-based method, conversion reaction-based method and alloying reaction-based method. In the intercalation-based method Li ions are electrochemically intercalated into the space between the layers of materials. It has a lot of advantages with high discharge/charge efficiency. The major drawback of this method is the occurrence of some irreversible reactions during the lithiation process, which causes the cathodic decomposition of a number of constituents of the electrolyte. Similarly, if graphite is used, low capacity is a major problem. So, the hunt is on for other carbonaceous materials to obtain a better performance.

The conversion reaction-based materials is for mainly faradic reaction. The theoretical capacity of conversion reaction is remarkably high. The major shortcomings are pulverization and electric isolation. But to improve the volume change, high surface area structures are employed (like mesoporous materials). The alloying reaction-based method consists of making alloys of Silicon, Germanium and Tin with lithium. These alloying reaction-based materials are most famous for their high specific capacity. Reducing volume expansion is the main step here. For this, reducing the size of the metal particle size is an option.

The major anode materials used are

Graphite, nanostructured carbonaceous materials, metal oxides, metal nitrides, metal sulphides, metal phosphides, silicon, Germanium, Tin, Phosphorous, Antomony, Indium, etc.

preparation Techniques

Co-precipitation is a phenomenon, where a solute that would normally remain dissolved in a solution precipitates out on a carrier that forces it to bind together, rather than remain dispersed. Co-precipitation is a process in which the required cations from common medium are co-precipitated, usually as hydroxides, oxalates or titrates. These precipitates are calcined at appropriate temperatures to yield the final powder. Co-precipitation results in atomic scale mixing, and hence the calcining temperature required for the formation of the final product in low, which leads to a low particle size. Also, the precipitation process requires us to control the concentration of the solution PH, temperature and the stirring speed of the mixture in order to obtain the product with the required properties.
Characterization Techniques,

1. The structural analysis, chemical composition and the morphology of the samples can be studied by XRD.
2. Thermal gravimetry analysis.
3. Chemical composition can be investigated by X-ray photoelectron spectroscopy.
4. The morphology and structure samples can be investigated by Field Emission Scanning Electron Microscopy.

A Review of Cobalt ferrite

A review of cobalt ferrite has been carried out for the precise inference quoted by various researchers all over the world including the technique of preparation and characterization.

Method of preparation of cobalt ferrite	Reference no.	Raw materials and solvent	Characterization technique	Inferences
Urea assisted auto combustion synthesis	[53]	Cobalt nitrate, iron nitrate, deionized water and urea	XRD,FE-SEM	The threshold limit of lower stoichiometry in cobalt ferrite that leads to impressive electrochemical performance.
Co-precipitation	[55]	FeCl₃·6H₂O CoCl₂·6H₂O Oleic acid Y₂O₃,Tb₂O₇,cetyl trimethyl ammonium bromide, aqueous ammonia, HNO₃, Urea, NaOH, Ethanol, Deionized water	XRD,TEM,VSM	Peaks from XRD are broad and sharp showing cobalt ferrite in low crystallizatio. The luminescent intensity and luminescence color has changed due to ferromagnetic cobalt ferrite core introduction.
Simple hydrothermal method	[84]	Ammonium iron sulphate hexa hydrate, cobalt (II) sulphate heptahydrate and Nickel sulphate hexa hydrate, glucose	XRD,SEM,XPS	XRD result shows that all the peak positions have no shifting with Ni doping.
Hydrothermal method	[67]	FeCl₃,KNO₃,ZnC₄H₆O₇.4H₂O,CoC₄H₂O₂,2H₂O,acetone	XRD,SEM,HRTEM	At 1694 and 1928mA/g
Method	Ref.	Materials	Characterization Methods	Notes
-------------------------	------	---	---------------------------	--
Thermal decomposition	[87]	Cobalt acetate (Co(C₂H₃O₂)₂.4H₂O) Iron Sulphate (Fe(NO₃)₃.9H₂O,Citric acid)	XRD,FESEM,VSM	For each of the magnetic parameters there is visible size dependency.
Sol-gel process	[37]	Nitrate salts of Co and Nickel, citric acid,	XRD,SEM,FT-MIR	High electrochemical performance was attained for samples annealed at high temperature.
Co-precipitation	[80]	CoCl₂ and FeCl₃.6H₂O,Acqueous solution of NaOH	XRD,SEM,XPS	According to result pure spinel structure is formed and active electrochemical performance was found.
Co-precipitation	[46]	First a solution was prepared by dissolving 5.40 g of active cathode material from LIB in 30ml/L of HNO₃ and H₂O.hexahydrateferric chloride P.A, ammonium hydroxide P.A, ammonium acetate solution.	TGA,XRD,SEM	XRD confirmed the formation of CoFe₂O₄.Inth e study cobalt was recycled fromspinel lithium ion batteries.
Simple hydrothermal method	[95]	Graphene oxide, iron chloride, cobalt acetyl acetonate, ascorbic acid, hydrazine hydrate, ethanol, deionized water, carbon black, polyvinylidene fluoride, N-methyl-Z-pyrrolidene, copper foils	XRD pattern of Goad GS_CFO, Raman spectra, SEM	The prepared nanocomposites used to get the homogenous CFO NPs on the graphene nanosheets.
Mechanochemical method	[48]	Cathode material For lithium cobalt oxides, LiOH.H₂O and Co(OH)$_2$ For spinel lithium manganese oxide, From(MnO$_2$,Mn$_2$O,MnO) and		The synthesis process was enhanced by mechano-chemical
Process / Method	Solution / Reaction / Reagents	Analysis Methods / Results		
--	---	--		
Chemical vapour deposition	Solution containing iron (III) acetyl acetonate, cobalt acetate, methanol. The film electrodes of cobalt ferrite were deposited by AACVD on to fluorine doped SnO₂.	XRD, Raman spectroscopic analysis and SEM. The formed cobalt ferrite is pseudo-capacitive and highly conducting.		
Through novel aqueous method	An aqueous solution of 0.1 M betaine mixed with 0.1 NaOH,CoCl₂.6H₂O and FeCl₃. H₂O, deionized water, NaOH, ethanol	XRD, HRTEM, SEM, TGA-DSC and EDX. Successfully prepared octahedral shaped cobalt ferrite NPs.		
Electrophoretic method	Pure iodine, Acetone, citric acid, ammonia, ethanol, Fe(NO₃)₃.9H₂O, Co(NO₃).9H₂O, sulphuric acid and nitric acid	XRD, FE-SEM, DLS (Dynamic light scattering analysis). On carbon fibres cobalt ferrite NPs were deposited.		
Calcining the precursor material	CoCl₂.6H₂O, FeCl₂.4H₂O, FeCl₃.6H₂O, NaOH, deionized water, anhydrous ethanol and HNO₃	XRD, XPS (Oxygen bridge), Raman spectroscopy, HRTEM and EDS. The interfacial interaction had huge impact on product.		
Reverse micelles method	Two different reverse micelles containing aqueous solution of metal chlorides and NaOH solution	XRD, SEM and SPES. It was revealed that huge agglomerates of primary particles were present. This is a suitable method to synthesize anode materials.		
Controlled hydrothermal synthesis and thermal decompositio n treatment	FeCl₃.6H₂O, CoCl₂.6H₂O, C₆H₈O₆, Co(NH₂)₂, deionized water	XRD, SEM, TEN, and XPS. Cobalt ferrite microsphere show high discharge capacity and good cyclic performance.		
Calcination and thermal treatment	LiCoO₂ was separated from anode material, chemical grade iron oxide was added for the synthesis of ferrite.	XRD and VSM. Coercivity and saturation magnetization values of made Composite enhanced with		
Method	Reaction Components	Characterization Techniques	Notes	
---	--	-------------------------------	--	
Sol-gel synthesis	AAO templates, Fe(NO₃)₃.₉H₂O, Co(NO₃)₂.₆H₂O, citric acid, deionized water and ammonia	XRD, FTIR, FESEM, and SAED	Single phase cobalt ferrite nanowire arrays are synthesized.	
Hydrothermal process	Ferric (III) nitrate nanohydrate Fe(NO₃)₃.₉H₂O, cobaltic (II) nitrate hexahydrate CO(NO₃)₂.₆H₂O and sodium borohydride NaBH₄	XRD, Raman spectra, TEM, SEM and XPS	The characterizations revealed formation of GO/SmFe₅O₁₂/CoFe₂O₄ ternary nanocomposites.	
Microwave assisted combustion method	Ferric nitrate, cobalt nitrate, anhydrous ethanol and water	XRD, SEM, CV and EIS	Developed a new HRP biosensor based on entrapment on HRD in cobalt ferrite NPs-chitosan nanocomposite for finding out H₂O₂.	
Water-gas shift reaction	Cobalt(II) chloride, Ferrous (II) chloride, deionized water, NaOH and ethanol	SEM, FE-SEM, EDX, XPS and FTIR	Bimetallic Co-Fe oxide has designed which has more conductivity and transport thereby high charge storage.	
Sol-gel auto combustion method	Iron nitrate, cobalt nitrate, citric acid, ammonia, methanol, acetone	XRD, FE-SEM	XRD shows CFO films grown under different working oxygen pressure.	
Electro deposition	Al foil, ethanol, H₂SO₄, phosphoric acid, chromic acid	XRD, FE-SEM and HRTEM	Having diameters of about 20nm cobalt ferrite-arrays were made.	
Template-electro deposition	Al foil, ammonia, CoSO₄, H₂O, FeSO₄.₇H₂O	SEM, TEM and XRD	Successfully prepared cobalt ferrite	
method	formula/ingredients	techniques	nanowire arrays with AAO templates	
--------------------------------	--	---	--------------------------------------	
Sol-gel template approach	Pure salt (MTX), graphite, H$_3$PO$_4$, NaOH, K$_2$S$_2$O$_3$, P$_2$O$_5$, KMnO$_4$, Ammonium hydroxide, Co(NO$_3$)$_3$, H$_2$O, Fe(NO$_3$)$_3$, 9H$_2$O, NaBH$_4$, 1-hexylionic-3-methylimidazolium hexafluorophosphate	SEM, TEM, XRD, FTIR, and cyclic voltammogram	Ordered cobalt ferrite nanowires with diameter 100 nm has been successfully fabricated.	
[94]				
Solvothermal method	Cobalt nitrate, iron nitrate, citric acid, ethylene glycol.	XRD, E-SEM, TEM and VSM	Cobalt ferrite-G nanocomposite as MSPE adsorbent coupled with suitable detection techniques will be convenient reliable for analysis of trace SAs.	
[14]	graphite powder, H$_2$O$_2$, H$_2$SO$_4$, FeCl$_3$, 6H$_2$O, CoCl$_2$, 6H$_2$O, KMNO$_4$, sodium nitrate.	SEM, FT-IR, XRD and VSM		
[41]				
Electro catalysis	Pyridine, benzene, H-ncc, unhydrogen ethanol, iron nitrate nonhydrate, cobalt nitrate hexa hydrate	XRD, SEM, TEM	Spinel cobalt ferrite NPs were successfully immobilized as hNCCNC.	
[17]	Cobalt, nickel, manganese and iron single oxides	XRD, cyclic voltammogram and SEM.	The oxide powders are stable with partial replacement of Fe by Ni and Mn in cobalt ferrite brings electrodes with high surface area.	
Thermal	PVA,	XRD, TEM, SEM and		
[25]				
Technique	Reagents	Characterizations	Additional Information	
-----------------------------------	--	---	--	
Decomposition	H₂C₂O₄, FeSO₄·7H₂O, Distilled water, CoSO₄·6H₂O	FT-IR	Precursor and cobalt ferrite superstructures have been showed to have catalytic activity.	
Electrochemical oxidation	CoSO₄·7H₂O, FeSO₄·7H₂O, KOH, Copper and Titanium and fluorine doped in tin oxide, HCl	Atomic absorption spectroscopy	Cobalt ferrite thin films have been successfully deposited on various conducting substrates	
Vacuum arc evaporation	Molybdenum rod, cobalt ferrite cylinder, α-Fe₂O₃, SiO₂/Si.	XRD, VSM	The resultant product showed strong in place anisotropy.	
Pulsed–laser deposition technique	Cobalt ferrite thin film were deposited on Si with a PLD system.	XRD, VSM, AFM, TEM	Oxygen ions in the films increase exchange interaction between magnetic ions.	
Sol-gel template method	Aluminium foil, H₂SO₄, Ammonia, H₃PO₄, CuSO₄, FeCl₃, Co(OAc)₂	XRD, TEM	Samples do not any preferential magnetic orientation	
Solvothermal method	FeCl₃·6H₂O, CoCl₂·6H₂O, Aniline, Ammonium persulfate, Ethylene alcohol, Ammonia.	XRD, IR, FT-IR, TEM, TG	Fabricated PANI-CF with cobalt ferrite component	
Hydrothermal process	Ferric chloride, cobalt chloride, ethanol.	FE-SEM, XPS	Unique microstructures of cobalt ferrite synthesized	
Sol-gel template method	Fe(NO₃)₃, Co(NO₃)₂, Distilled water ammonia, HgCl₂ solution	TEM, select area electron diffraction(SAED)	Nanotubes are roughly parallel to each other orderly and uniformly	
Method	Reference	Materials	Techniques	Notes
--	-----------	--	------------------	--
Micro wave assisted combustion method	[81]	Ferric nitrate, cobalt nitrate, urea (fuel)	XRD, SEM, CV, EIS	A new hydrogen peroxide based on HRP immobilized into cobalt ferrite – chitosan has been prepared.
Electrophoretic deposition	[93]	Cobalt ferrite, diethyl glycol, ethanol, TiO2, alkyl phosphate, Ester, zirconia spheres.	EDXS, SEM, XRB	Ferroelectric bilayers were produced.
Simple chemical reduction method	[45]	Aniline, KOH, Ammonium, persulfate, graphene oxide, KMnO4, ethanol, water.	XRD, HR-SEM, FT-IR	Novel catalysts of reduced graphene oxide with polyaniline and cobalt ferrite has prepared.
Electrospinning method (sol-gel)	[73]	Polyacrylonitrile, Poly(methy1methacrylate), Cobalt acetylacetonate, ferric acetylacetonate, N,N-dimethyl formaldehyde.	SEM, TEM, XRD, GA LVANOSTATIC CYCLING	The unique structure of cobalt ferrite with carbon improves the electrochemical performance.
Hydrothermal	[35]	oleic acid, Co(NO_3)_2·6H_2O, FeCl_3·4H_2O, Urea, Ammonia.	XRD, FESEM, TEM, XPS	The concentration of oleic acid affects morphology of cobalt ferrite.
PLD method	[10]	Metallic cobalt powder, iron powder, platinum, DMC, ethylene carbonate.	XRD, SEM, XPS	The spinel cobalt ferrite exhibited polycrystalline cubic structure.
Electrosprining technique	[67]	Acetic acid, methyl alchohol, iron (III) Nitrate nonhydrate, cobaltous acetate, Tetra acetate.	XRD, SEM, TGA, XP S, ICP-AES	Showed high specific area
Co-precipitation	[27]	FeCl_3·6H_2O, CoCl_2·6H_2O.	XRD, TEM	The magnetic hysteresys
Method	Compounds	Techniques	Comments	
--	---	-------------------------------------	---	
Hydrothermal method [39]	FeCl$_3$.6H$_2$O, CoCl$_2$.6H$_2$O, Acetone, Ethanol, Isopropanol, Diethylene glycol, Acetyl acetone, NaOH	EDX, TEM, FE-SEM, HRTEM	Increased absorption in both uv and visible region was observed for cobalt ferrite-sensitized TiO$_2$.	
Electrophoretic deposition (sol-gel and chemical co-precipitation) [91]	Ba(CH$_3$COO)$_2$.3H$_2$O, Ti(C$_4$H$_9$)O$_4$, FeCl$_3$.6H$_2$O, CoCl$_2$.6H$_2$O, NaOH	XRD, TEM	The obtained bilayer had a dense structure with no phase diffusion.	
Thermal decomposition [25]	FeSO$_4$, COSO$_4$, Ethylene Glycol.	TEM, HRTEM, VSM, DTA, TG	Saturation magnetization increases with increasing calcination temperature.	
Conventional ceramic method [7]	CO$_3$O$_4$, Fe$_2$O$_3$, Nb$_2$O$_5$	XRD, SEM, FEG-SEM, EDS	Nb was not taken in to spinel structure to any significant degree.	
Alkaline co-precipitation followed by hydrothermal decomposition [18]	Cobalt hydroxide, iron Hydroxide, Toluene, PMMA, NaOH	SEM	Magnetic phoretic deposition of functionalized cobalt ferrite NPs in AAO template.	
Electrospinning (sol-gel) [30]	Co(NO$_3$)$_2$.6H$_2$O, Fe(NO$_3$)$_3$.3H$_2$O, Citric acid, N, N-Dimethyl Formamide, Tetrahydrofuran.	SEM, FT-IR, XRD, EXAFS	The obtained structure changed from amorphous structure to crystalline on increasing calcination temperature.	
Electrospinning technique and subsequent annealing [67]	Polyvinylpyrrolidone (PVP), N, N-Dimethyl Formamide, iron (III)acetylacetonate, Co(NO$_3$)$_2$.6H$_2$O.	SEM, TEM, XPS	Showed improved electrochemical performance.	
4. Results and Discussion

Research and development of Cobalt Ferrite-based anode material for the Li ion batteries provide us with the knowledge of their electrochemical, structural and morphological properties. Rechargeable lithium ion batteries have wide applications in portable electronic market. They have high energy density and high specific capacities. As most of the transition metals suffer poor electronic conduction, they need to be modified. The surface area of nanostructured electrode materials raises the risk of secondary reactions involving electrolytic decomposition between electrode and electrolyte. Anode materials with both theoretical capacity and a relatively stable structure are urgently required.

5. Conclusion

The paper includes the importance and the prospects of anode materials for lithium ion batteries in the present era. It contains the history behind the advent of Li–ion batteries. The various materials required and the techniques also assume importance. The paper delineates the techniques employed to study the structural, morphological and electrochemical properties.

6. Compliance with Ethical Standards

Conflict of interest: the authors declare that they have no conflict of interest.

7. References

[1]. Abbas Afkhamia Hosein Khoshsafara, Hasan Bagherib, Tayyebeh Madrakian, Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids bygraphene–CoFe2O4 nanocomposite modified carbon paste electrode. (2014).

[2]. Abbas Afkhami, Fatemeh Gomar, Tayyebeh Madrakian. CoFe2O4 nanoparticles modified carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine p. 263-271, (2016).

[3]. Anna S. Andersson, Beata Kalska, Lennart Ha¨ggstro, John O. Thomasa. Lithium extraction / insertion in LiFePO4: an X-ray diffraction and 4Mo¨ssbauer spectroscopy study (2000).

[4]. U.P.M. Ashik, Shinji Kudo and Jun-ichiro Hayashi An Overview of Metal Oxide Nanostructures.

[5]. M. Bahgat, F.E. Farghaly, S.M. Abdel Basir, O.A. Fouad, Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries 117-121,(2006).

[6]. Z. Bazhan, F.E. Ghodsi, J. Mazloom, The surface wettability and improved electrochemical performance of nanostructured CoFe3–xO4 thin film (2017).

[7]. F. E. Carvalho, L. V. Lemos , A. C. C. Migliano, J. P. B. Machado, R. C. Pullar, Structural and complex electromagnetic properties of cobalt ferrite (CoFe2O4) with an addition of niobium pentoxide 1-22, (2017).

[8]. Jingyi Chen, Yao Wanga, Yuan Deng, Highly ordered CoFe2O4 nanowires array prepared via a modified sol–gel templated approach and its optical and magnetic properties, 65-69, (2012).

[9]. Ho-Ming Cheng , Fu-Ming Wang , Jinn P. Chua , Effect of Lorentz force on the electrochemical performance of lithium-ion batteries, (2017).

[10]. Yan-Qiu Chu, Zheng-Wen Fu, Qi-Zong Qin, Cobalt ferrite thin films as anode material for lithium ion batteries, (2004).
[12]. Na Dong, Ming Zhong, Peng Fei, Ziqiang Lei, Bitao Su, Magnetic and electrochemical properties of PANI-CoFe2O4 nanocomposites synthesized via a novel one-step solvothermal method, 1-21, (2015).

[13]. Tansel S, enera, Emine Kayhan, Melike Sevim, Onder Metin. Monodisperse CoFe2O4 nanoparticles supported on Vulcan XC-72: High performance electrode materials for lithium-air and lithium-ion batteries, (2015).

[14]. Ali A. Ensafi, Fatemeh Rezaloo, Behzad Rezaei, CoFe2O4 /reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for 1determination of methotrexate, 45-50, (2017).

[15]. Hao Fan, Lijun Yang, Yu Wang, Xiali Zhang, Qingsong Wub, Renchao Che, Meng Liu, Qiang Wua, Xizhang Wanga, Zheng Hua, Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages 1365, 1372, (2017).

[16]. Simple fabrication of strongly coupled cobalt ferrite/ carbon nanotube composite based on deoxygenation for improving lithium storage Hai Fu, Zhong-jie Du, Wei Zou, Hang-quan Li, Chen Zhang., (2013).

[17]. Pietro Galizia, Ioana Veronica Ciuchi, Davide Gardini, Carlo Baldisserri, Carmen Galassi, Bilayer thick structures based on CoFe2O4/TiO2composite andniobium-doped PZT obtained by electrophoretic deposition 1-18, (2015).

[18]. M. Isabel Godinho, M. Alice Catarino a, M.I. da Silva Pereira ,1, M.H. Mendonc, F.M. Costa, Effect of the partial replacement of Fe by Ni and/or Mn on the electrocatalytic activity for oxygen evolution of the CoFe2O4 spinel oxide electrode 4307-4314, (2002).

[19]. Abdelkrim Hannour, Didier Vincent, Faouzi Kahlouche, Ardaches Tchangoulian, Sophie Neveu, Vincent Dupuis, Self-biased cobalt ferrite nanocomposites formic wave micro applications 29-33, (2014).

[20]. Jinhui Hao, Wenshu Yang, Zhe Zhang, Baoping Lu, Bailin Zhang, Jilin Tang, Facile Synthesis of 3D Hierarchical Flower-like Co3-xFexO4 ferrite on Nickel Foam as High-Performance Electrodes for Supercapacitors 13-18, (2015).

[21]. Z.H. Hua, R.S. Chena, C.L. Li, S.G. Yang , M. Lua, B.X. Gu, Y.W. Dua, CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization, (2007).

[22]. Zhenghe Huaa, Pan Yang, Hongbo Huanga, Jianguo Wan, Zhong-Zhen Yu, Shaoguang Yang, Mu Lua, Benxi Guaa, Yewei Dua, Sol–gel template synthesis and characterization of magneto electric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes , (2008).

[23]. Zheng Huang, Bo Chi, Li Jian, Sun Youyi, Yaqing Liu, CoFe2O4@multi-walled carbon nanotubes integrated composite with nano sized architecture as a cathode material for high performance rechargeable lithium-oxygen battery, (2016).

[24]. Bin Huang, Zhefei Pana, Xiangyu Sua, Liang Ana, Recycling of lithium-ion batteries: Recent advances and perspectives, (2018).

[25]. Guangbin Ji, Shaolong Tang, BaoLong Xu, Benxi Gua, Youwei Dua, Synthesis of CoFe2O4 nanowire arrays by sol–gel template method 484-489, (2003).

[26]. Zhigang Jia, Daping Ren, Rongsun Zhu, Synthesis, characterization and magnetic properties of CoFe2O4 nanorods 368-371, (2012).

[27]. Zhigang Jia, Lulu Yang, Qiuze Wang, Jianhong Liua, Mingfu Ye, Rongsun Zhub, Synthesis of hierarchical CoFe2O4 nanorod-assembled superstructures and its catalytic application 116-124, (2014).

[28]. Gang Jian,QuyunFu,DongxiangZhou , Particles size effects of single domain CoFe2O4 on suspensions stability 671-676, (2012).
[29]. Gang Jian, Dongxiang Zhou, Junyou Yang, Hui Shao, Fei Xueh, Qiuyun Fu, Microstructure and multiferroic properties of BaTiO3/CoFe2O4 films on Al2O3/Pt substrates fabricated by electrophoretic deposition, (2008).

[30]. Young-Wan Ju, Jae-Hyun Park, Hong-Ryun Jung, Sung-June Choa, Wan-Jin Lee, Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning 7-12, (2008).

[31]. Young-Wan Ju, Jae-Hyun Park, Hong-Ryun Jung, Sung-June Choa, Wan-Jin Lee, Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning, (2008).

[32]. Elham Kamali Heidari, Ata Kamyabi-Go, Mahmoud Heydarzadeh Sohi, Abolghasem Ataie, Electrode Materials for Lithium Ion Batteries: A Review, (2018).

[33]. Kebede K. Kefeni, Titus A.M. Msagati, Bhekie. Mamba, Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device, (2017).

[34]. Strong in-plane magnetican isotropyin(111)-oriented CoFe2O4 thin film M. Khodaei, S.A.Seyyed Ebrahimi, Yong Jun Park, JongMokOk, Jun Sung Kim, Junwoo Son, SungGiBaik, (2013).

[35]. H. El Rhaleb, E. Benamar, M. Rami, J.P. Roger, A. Hakam, and A. Ennaoui, Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis, Applied Surface Science, (2013).

[36]. Shubra Lalwani, Ram Bhagat Marichi, Monu Mishra, Govind Gupta, Gurmeet Singh, Raj Kishore Sharma, Edge enriched cobalt ferrite nanorods for symmetric/asymmetric supercapacitive charge storage p.708-717, (2018).

[37]. P.M. Lambert Structural and magnetic properties of lithium-intercalated cobalt bulk-doped y-Fe2O3, (1991).

[38]. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries p.379-387, (2007).

[39]. Seungwon Leea, Jung-Soo Kangb, Kam Tong Leungb, Wondoo Lec, Dongyun Kime, Seungyoon Hanc, Wonjun Yooc, Hee Jung Yoona, Kyusuk Nama, Youngku Sohna, Unique multi-phase Co/Fe/CoFe2O4 by water–gas shift reaction, CO oxidation and enhanced supercapacitor performances, (2016).

[40]. Bing-Xin Lei, Wei Sun, Zhen-Fan Sun, Synthesis of visible-light absorbing CoFe2O4 sensitized TiO2 nanotube arrays electrode with enhanced photoelectrochemical performance, (2013).

[41]. Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries, (2010)

[42]. Songmei Li, Bo Wang, Jianhua Liu, Mei YuKey, In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries, (2010).

[43]. Yazhen Li, Xuewen Wu, Zhaoqian Li, Shuxian Zhong, Weiping Wang, Aijun Wang, Jianrong Chen, Fabrication of CoFe2O4-graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples p.1-20, (2015).

[44]. Xianguo Liu, Niandu Wu, Caiyun Cui, Pingping Zhou, Yuping Sun, Enhanced rate capability and cycling stability of core/shell structured CoFe2O4/onion-like C nanocapsules for lithium-ion battery anodes, (2015).

[45]. Karuppannan Mohanraju, Vasudevan Sreejith, Ramaiyan Ananth, Louis Cindrella, Enhanced Electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on Graphene for fuel cell applications p1-32, (2014).
1. M.N. Moura, R.V. Barrada, J.R. Almeida, T.F.M. Moreira, M.A. Schettino, J.C.C. Freitas, S.A.D. Ferreira, M.F.F. Lelis, M.B.I.G. Freitas. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries p.339-347, (2017).

2. Masahiko Naoe, Nobuhiro Matsushita. Deposition of single-layer CoFe2O4 and multilayer CoFe2O4/ce-Fe2O3 with large 4’reM and high He using vacuum arc evaporation p.216-218, (1996).

3. L.J. Ning, Y.P. Wua, S.B. Fang, E. Rahm, R. Holze. Materials prepared for lithium ion batteries by mechanochemical methods, (2004).

4. J. Ordoñez, E.J. Gago, A. Girard. Processes and technologies for there cycling and recovery of spent lithium-ion batteries 377-378, (2016).

5. S.J. Patil, A.C. Lokhande, J.S. Park, J.H. Kim, Y.B. Kim, B.C. Choi, S.H. Park, S.H. Jung, D.W. Lee. Towards high performance unique microstructures of Co9S8//CoFe2O4 for asymmetric supercapacitor 1-34 (2017).

6. Pirouzfar, S.A. Seyyed Ebrahimi. Optimization of sol–gel synthesis of CoFe2O4 nanowires using template assisted vacuum suction method, p.1-19, (2014).

7. Wen Qia, Pei Lib, Ying Wua, Hong Zenga, Liting Houa, Chunjiang Kuanga, PeiYaob, Shaoxiong Zhou. Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery.

8. Alok Kumar Rai, Trang Vu Thii, Jihyeon Gim, Vinod Mathew, Jaekook Kim, Co1_xFe2pxO4 (x ¼ 0.1, 0.2) anode materials for rechargeable lithium-ion batteries, (2014).

9. D. A. J. Rand. Battery systems for electric vehicles - a state-of-the-art review, (1979).

10. Shuhua Ren, Xiangyu Zhao, Ruiyong Chen, Maximilian Fichtner. A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries, (2014).

11. Xiaozhen Ren, Xiaodong Chen, Hong Ding, Hua Yang. Luminescent and magnetic properties of CoFe2O4@SiO2@Y2O3:Tb3+ nanocomposites with the core–shell, (2015).

12. Jagdeep S. Sagua, K.G.U. Wijayanthaa, Asif A. Tahirb. The Pseudocapacitive Nature of CoFe2O4 Thin Films p.870-878, (2017).

13. H. Salimkhani, A. MotieiDizaji, E. Hashemi, P. Palmeha, G. Sabeghi, S. Salimkhani. Magnetic and microwave absorptive properties of electrophoretically deposited nano-CoFe2O4 as a3Dstructureoncarbon fibers, (2016).

14. S.D. Sartale, C.D. Lokhande. Electrochemical synthesis of nanocrystalline CoFe2O4 thin films and their characterization 467-477, (2002).

15. Wei Shena, Biying Rena, Sizhu Wu, Wei Wanga, Xiaofeng Zhoud. Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: Composition control for superior broadband microwave absorption performance, (2018).

16. M.K. Shobana. Electrical and structural studies of lithium doped cobalt ferrite 1040-1043, (2015).

17. R.N. Singha, N.K. Singha, J.P. Singha, G. Balajit, N.S. Gajbhiyeb. Effect of partial substitution of Cr on electrocatalytic properties of CoFe2O4 towards O2-evolution in alkaline medium, (2006).

18. Xin Sun, Xiaoyi Zhu, Xianfeng Yang, Jin Sun, Yanzhi Xia, Dongjiang Yang. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries, (2017).

19. Sweety Supriya, Sunil Kumar and Manoranjan Kar. CFO-Graphene nano composite for High Performance Electrode Material, (2017).
[67]. R. Valdez, A. Olivas, D.B. Grotjahn, E. Barrios, N. Arjona, R. Anta’no, M.T. Oropesa-Guzman, Effect of betaine in the successful synthesis of CoFe2O4 containing octahedron nanoparticles for electrocatalytic water oxidation, (2017).

[68]. A 57Fe Mössbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries Candela Vidal-Abarca, Pedro Lavela, José L. Tirado, , (2011).

[69]. Jing Wang, Tong Deng, Yulong Lin, Caiqiu Yang, Wenzhong Zhana. Synthesis and characterization of CoFe2O4 magnetic particles prepared by o-precipitation method: Effect of mixture procedures of initial solution, (2008).

[70]. Nana Wang, Huayun Xu, Liang Chen, Xin Gu, Jian Yang, Yitai Qian. A general approach for MFe2O4 (M ¼ Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries, (2014).

[71]. Lingyan Wang, Linhai Zhuo, Chao Zhang, Fengyu Zhao. Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries, (2015).

[72]. Heng-guo Wang, Dapeng Liu, Yanhui Li, Qian Duan. Single-spinneret electrospinning fabrication of CoFe2O4 nanotubes as high-performance anode materials for lithium-ion batteries, (2016).

[73]. Jianan Wang a, Guorui Yang a, Ling Wang, Wei Yan, Wei Wei. C@CoFe2O4 fiber-in-tube mesoporous nanostructure: Formation mechanism and high electrochemical performance as an anode for lithium-ion batteries, (2017).

[74]. John l. Warren. Research Opportunities in New Energy-related Materials, (1981).

[75]. Lijuan Wu, Qizhen Xiao, Zhaohui Li, Gangtie Lei, Ping Zhang, Li Wang. CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance 37, p.112-122, (2012).

[76]. Hui Xia, Dongdong Zhua, Yongsheng Fub, Xin Wangb CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. (2012)

[77]. Q.Q. Xiong, J.P. Tu, S.J. Shi, X.Y. Liu, X.L. Wang, C.D. Gu Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties, (2014).

[78]. Yan Xu, Jie Wei, Jinli Yao, Junli Fu, Desheng Xue. Synthesis of CoFe2O4 nanotube arrays through an improved sol–gel template approach 1403-1405, (2008).

[79]. Y. Xua, D.S. Xuea, D.Q. Gaoa, J.L. Fub, X.L. Fanb, D.W. Guoa, W.B. Suia. Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy, (2009).

[80]. Xiaohong Yang, Xiong Wang, Zude Zhang. Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method, (2005).

[81]. Hujiang Yang, Xiaoyu Shi, Xiaolong Pan, Sen Lin, Xiao Zhang, Yinxiao Du, Jun Liu, Dongyu Fan , Yonggang Wang, , Ming Lei. Defect locating: One-step to monodispersed CoFe2O4/rGO nanoparticles for oxygen reduction and oxygen evolution, (2010).

[82]. Hongxun Yang, Kaixuan Zhang, Yang Wang, Chao Yan, Shengling Lin. CoFe2O4 derived-from bi-metal organic frameworks wrapped with graphene nanosheets as advanced anode for high-performance lithium ion batteries, (2018).

[83]. Feyza S. Yardım, Mehmet Şenel, Abdülhadi Baykal. Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite, (2012).

[84]. Ying Zeng, Na Guo, Junjia Song, Yan Zhao, Haiyan Li, Xingjian Xu, Jiading Qiu, Hongwen Yu. Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity 556, p.253-259, (2017).

[85]. Ling Zhang, Jiwei Zhai, Weifeng Mo, Xi Yao. Electrical and dielectric behaviors of composite CoFe2O4–BaTiO3 thick films, (2009).
[86]. Xuan Zhao Yue Fu Jin Wang Yu jiao Xu Jing-Hua Tian Ruizhi Yang. Ni-doped CoFe2O4 Hollow Nanospheres as Efficient Bi-functional Catalysts. Author: Xuan Zhao Yue. (2016).

[87]. Jian-ping Zhou, Hong-cai He, Ce-Wen Nan. Effects of substrate temperature and oxygen pressure on the magnetic properties and structures of CoFe2O4 thin films prepared by pulsed-laser deposition. (2007).

[88]. Gang Jian, Yunxiang Hu, Yanan Zheng, Shuping Gong, Huan Liu. Electrophoretic deposition of multiferroic BaTiO3/CoFe2O4 bilayer films. Dongxiang Zhou. (2011).

[89]. Aslibeikin. Magnetic interactions and hysteresis loops study of Co/CoFe2O4 nanoparticles B. (2016)

[90]. Q.Q. Xiong, J.P. Tu, S.J. Shi, X.Y. Liu, X.L. Wang, C.D. Gu. Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties. p.153-159 (2016).

[91]. Wei Shena, Biying Rena, Sizhu Wuc, Wei Wang, Xiaofeng Zhoud. Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: Composition control for superior broad band microwave absorption performance. (2018).

[92]. Jian-ping Zhou, Hong-cai He, Ce-Wen Nan, Effects of substrate temperature and oxygen pressure on the magnetic properties and structures of CoFe2O4 thin films prepared by pulsed-laser deposition, (2007).

[93]. Gang Jian, Dongxiang Zhou, Junyou Yang, Hui Shao, Fei Xueb, Qiuyun Fub. Microstructure and multiferroic properties of BaTiO3/CoFe2O4 films on Al2O3/Pt substrates fabricated by electrophoretic deposition. p.153-159 (2013).

[94]. Yan Xu, Jie Wei, Jinli Yao, Junli Fu, Desheng Xue. Synthesis of CoFe2O4 nanotube arrays through an improved sol–gel template approach. Synthesis of CoFe2O4 nanotube arrays through an improved sol–gel template approach (2008)

[95]. Pietro Galizia, Ioana Veronica Ciuchi, Davide Gardini, Carlo Baldisserri, Carmen Galassi. Bilayer thick structures based on CoFe2O4/TiO2 composite andniobium-doped PZT obtained by electrophoretic deposition. (2015).

[96]. Electrophoretic deposition of multiferroic BaTiO3/CoFe2O4 bilayer films

[97]. Dongxiang Zhou, Gang Jian, Yunxiang Hu, Yanan Zheng, Shuping Gong, Huan Liu, (2011).

[98]. Wen Qia, Pei Lib, Ying Wua, Hong Zenga, Liting Houa, Chunjiang Kuanga, Pei Yaob, Shaoxiong Zhoua. Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery.