Associations between soil-transmitted helminthiasis and viral, bacterial, and protozoal enteroinfections: a cross-sectional study in rural Laos

Anna N. Chard, Emory University
Kelly K. Baker, University of Iowa
Kevin Tsai, University of Iowa
Karen Levy, Emory University
Jeticia R. Sistrunk, Emory University
Howard Chang, Emory University
Matthew Freeman, Emory University

Journal Title: Parasites and Vectors
Volume: Volume 12, Number 1
Publisher: BMC (part of Springer Nature) | 2019-05-07, Pages 216-216
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/s13071-019-3471-2
Permanent URL: https://pid.emory.edu/ark:/25593/tqkdp

Final published version: http://dx.doi.org/10.1186/s13071-019-3471-2

Copyright information:
© 2019 The Author(s).

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed August 6, 2024 11:20 PM EDT
Associations between soil-transmitted helminthiasis and viral, bacterial, and protozoal enteroinfections: a cross-sectional study in rural Laos

Anna N. Chard1, Kelly K. Baker2, Kevin Tsai2, Karen Levy1, Jeticia R. Sistrunk1, Howard H. Chang3 and Matthew C. Freeman1*

Abstract

Background: Humans are susceptible to over 1400 pathogens. Co-infection by multiple pathogens is common, and can result in a range of neutral, facilitative, or antagonistic interactions within the host. Soil-transmitted helminths (STH) are powerful immunomodulators, but evidence of the effect of STH infection on the direction and magnitude of concurrent enteric microparasite infections is mixed.

Methods: We collected fecal samples from 891 randomly selected children and adults in rural Laos. Samples were analyzed for 5 STH species, 6 viruses, 9 bacteria, and 5 protozoa using a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. We utilized logistic regression, controlling for demographics and household water, sanitation, and hygiene access, to examine the effect of STH infection on concurrent viral, bacterial, and protozoal infection.

Results: We found that STH infection was associated with lower odds of concurrent viral infection [odds ratio (OR): 0.48, 95% confidence interval (CI): 0.28–0.83], but higher odds of concurrent bacterial infections (OR: 1.81, 95% CI: 1.06–3.07) and concurrent protozoal infections (OR: 1.50, 95% CI: 0.95–2.37). Trends were consistent across STH species.

Conclusions: The impact of STH on odds of concurrent microparasite co-infection may differ by microparasite taxa, whereby STH infection was negatively associated with viral infections but positively associated with bacterial and protozoal infections. Results suggest that efforts to reduce STH through preventive chemotherapy could have a spillover effect on microparasite infections, though the extent of this impact requires additional study. The associations between STH and concurrent microparasite infection may reflect a reverse effect due to the cross-sectional study design. Additional research is needed to elucidate the exact mechanism of the immunomodulatory effects of STH on concurrent enteric microparasite infection.

Keywords: Soil-transmitted helminths (STH), Microparasite, Enteric disease, Co-infection Water, sanitation, hygiene (WASH), qPCR

*Correspondence: matthew.freeman@emory.edu
1 Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
Full list of author information is available at the end of the article

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Humans are susceptible to over 1400 known parasite species, including viruses, bacteria, protozoa, helminths and fungi [1]. Co-infection by multiple pathogens is common and is often considered the rule rather than the exception among populations living in socially and economically marginalized communities, rural areas, and tropical or subtropical climate zones [2]. Co-infections result in a range of neutral, facilitative, or antagonistic interactions [3, 4]. These interactions have important implications for host susceptibility to infection, disease severity [3, 4], and treatment efficacy [5–7].

Soil-transmitted helminth (STH) infections are one of the most ubiquitous human infections, affecting over one billion people worldwide [8, 9]. It is estimated that STH co-infections occur in over 800 million people [10]. However, interactions between STH and microparasites (defined here as a virus, bacteria, or protozoa) within the human host and the impacts of these interactions on human health are poorly understood [11].

Helminths are powerful immunomodulators [12, 13] and can affect microparasite infections via at least two distinct immune mechanisms. First, helminths usually induce a type 2 (Th2) immune response, including elevations in cytokines such as interleukin 4 (IL-4), IL-5, and IL-13, as well as development of Th2 helper T cells [11, 14, 15]. Microparasites generally induce a type 1 (Th1) immune response, which elevates cytokines IL-12, IL-17, IL-23, interferon-γ (IFN-γ) and tumor necrosis factor (TNF)-α [11, 14]. The Th2 cytokines downregulate the Th1 cytokines that enable hosts to fight microparasite infection, resulting in a dampened immune response [14]. Secondly, to protect themselves from host immunity, helminths, like microparasites, suppress both Th1 and Th2 responses by enhancing regulatory T cell (T_{reg}) activity, which causes the release of regulatory cytokines such as IL-10 and transforming growth factor (TGF)-β, and leads to reduced immune responses against microparasite infection [15]. Helminths may also interact with microparasites via shared resources [13, 16, 17] by, for example, reducing the surface area availability for microparasite attachment or by monopolizing a cell type necessary for microparasite replication [18]. Such disparate responses may lead to within-host interactions by altering host susceptibility to infection [11, 19], altering the virulence of co-infecting pathogens [11, 19], and affecting the host’s ability to clear co-infecting pathogens [19, 20].

Understanding the impact of pathogen co-infection on human health is difficult due to the diversity of co-infecting species and their numerous possible interactions [16]. Even though many humans typically harbor multiple pathogens [15], most studies of co-infection measure interactions between pairs of parasites [16]. In this study, we examine co-infection between five STH species and 20 microparasites, including six viruses, nine bacteria, and five protozoa in human hosts. To identify trends in pathogen interaction, we evaluate interspecific associations between STH and enteric microparasite infection at the at the taxa level (e.g. viruses, bacteria, and protozoa).

Methods
Study setting and design
This cross-sectional study was nested within the Water, Sanitation, and Hygiene for Health and Education in Lao Primary Schools (WASH HELPS) study, a longitudinal cluster-randomized trial evaluating a comprehensive school-based water, sanitation, and hygiene (WASH) intervention in 100 schools in Saravane Province, Lao People’s Democratic Republic (Lao PDR; Laos). Detailed methods of the parent study are described elsewhere [21]. The WASH HELPS study is registered at clinicaltrials.gov (NCT02342860).

Of the 100 schools participating in the WASH HELPS study, 50 (25 intervention and 25 comparison) were selected using stratified random sampling based on district size and WASH HELPS study intervention status. In each school-hosting village (there is only one school per village), we randomly selected 25 households. Households were eligible for inclusion if they had a child attending the primary school participating in the WASH HELPS study, and that pupil had a sibling <5 years-old living in the household. At each household, the female head of household was surveyed on household demographics, asset and animal ownership, recent illness among household members, and WASH access and behaviors. Structured observations of WASH facilities were made when available.

In conjunction with the household survey, we collected stool samples from the pupil, the pupil’s parent/caregiver (preference was given to female parent/caregiver), and the pupil’s sibling <5 years-old (if there were multiple siblings, preference was given to youngest sibling). To collect the stool samples, the female parent/caregiver was given three pre-labeled, resealable plastic bags each containing a plastic spoon. Caregivers were given diapers to collect stool from infants, when applicable. Written and pictorial instructions for stool collection were printed on the plastic bag, and participants were also provided verbal instructions. Participants were instructed to collect their first morning stool, and were informed that the field team would return to the household the following morning to collect all samples. If households did not return all three stool samples on the first day, participants were reminded of the stool collection procedures, provided new bags and spoons if needed, and a second return visit was made the following day. Stool samples...
were transported with a cold chain to the field laboratory within two hours of collection.

Upon collection, all samples were tested for STH using the Kato-Katz method [22]. For this sub-study, stool samples from a subset of 297 households were randomly selected for additional enteropathogen analysis via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Households were eligible for inclusion in this sub-study only if all three subjects in the household (adult, school-aged child, and child < 5 years-old) returned their stool sample on the same day. Households were randomly selected, proportional to district size, village size, and WASH HELPS intervention status, from households participating in the household survey and STH testing by Kato-Katz.

All data were collected between February-April 2017 (dry season), prior to annual school-based preventative chemotherapy (PC) for STH. The time frame corresponded with the final round of data collection and conclusion of the WASH HELPS study [21].

Laboratory analysis
Following analysis for STH via Kato-Katz, 200 mg of stool was aliquoted into a DNA/RNA Shield Collection and Lysis Tube (Zymo Research, Irvine, CA, USA) containing a lysis buffer and bead beating system, and beaten for 20 min using a Disrupter Genie vortexer (Scientific Industries, Bohemia, NY, USA) [23]. One field control was processed each day using DNA/RNA-free water to evaluate the possibility of false positives from contamination in the field laboratory during sampling. Samples were kept frozen at −20 °C until transported to a laboratory at Emory University, where they were subsequently stored at −80 °C until extraction.

Total nucleic acid was extracted from samples using the ZymoBIOMICS DNA/RNA Mini Kit (Zymo Research, Irvine, CA, USA), according to manufacturer instructions. Samples were spiked with bacterophage MS2 (ZeptoMetrix, Buffalo, NY, USA), an external control, to monitor extraction and amplification efficiency [23]. One extraction blank was included per batch to exclude the possibility of false positives from contamination during extraction. Extractions were stored at −80 °C until transported on dry ice to the University of Iowa for qRT-PCR analysis.

We created a custom TaqMan Array Card (TAC) (Thermo Fisher, Carlsbad, CA, USA) with compartmentalized, probe-based qPCR assays for 25 enteropathogens, including: five STH (Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, Strongyloides stercoralis and Trichuris trichiura); six viruses (astrovirus, adenovirus, norovirus GI, norovirus GII, rotavirus, sapovirus); nine bacteria (Aeromonas spp., Campylobacter jejuni, Clostridium difficile, enteroaggregative Escherichia coli (EAEC), enterohemorrhagic E. coli (EHEC), atypical or typical enteropathogenic E. coli (EPEC), heat-labile (LT) or heat-stable (ST) enterotoxigenic E. coli (ETEC), Salmonella enterica and Shigella spp./Enteroinvasive E. coli (IEC); and five protozoa (Cryptosporidium spp., Cryptosporidium hominis, Cryptosporidium parvum, Entamoeba histolytica and Giardia intestinalis) [24, 25]. The TAC included probes for the MS2 external control, as well as an 18S rRNA internal control. The TAC primer and probe sequences are listed in Additional file 1: Table S1.

TAC preparation was prepared based on the protocol described by Liu et al. [24]. Ag-Path-ID One-Step RT-PCR kit (Thermo Fisher, Waltham, MA) was used as the master mix reagent for the TAC analysis. Bovine serum albumin (BSA) was also applied into the TAC master-mix to prevent the possibility of PCR inhibition that may arise in nucleic acids extracted from stools [26, 27]. For each sample, 40 µl of DNA/RNA extract of equal volumes of DNA and RNA was mixed with 50 µl of 2× RT-buffer, 4 µl of 25× AgPath enzyme, 5.4 µl of nucleic acid-free water, and 0.6 µl of 50 mg/ml BSA to a total volume of 100 µl. All TAC runs were completed in a ViiA7 instrument with QuantStudio 7 software (Thermo Fisher, Waltham, MA), and the cycling conditions were as follows: holding stages of 45 °C for 20 min and 95 °C for 10 min, followed by 45 cycles of 95 °C for 15 s and 60 °C for 1 min.

TAC data were manually read by two independent researchers. True amplification was validated by inspecting the multicomponent plot for increases in fluorescence for the FAM-based gene-specific probe. Conflicting results were resolved by a third independent researcher. Samples were considered positive only when the corresponding field and extraction blanks were negative, otherwise the data were considered invalid [25].

Measures
Adult participants reported the age and sex of themselves, their primary school-aged child, and their child under five years-old. The following variables were reported by the female head of household: household ethnicity, in which households of non-Lao-Tai ethnicity were considered ethnic minorities; the number of household members, which was derived by listing and counting all people currently living in the household full time; animal ownership, which was defined as owning any cows, goats, sheep, poultry (chickens or ducks), or pigs; and the main source of household drinking water, which was further classified as improved/unimproved according to the World Health Organization/United Nations International
Children’s Fund (WHO/UNICEF) Joint Monitoring Programme (JMP) standard definitions [28].

The following variables were reported by enumerators using structured observation: the presence of a household toilet, which was further classified as improved/unimproved according to WHO/UNICEF JMP standard definitions [28]; and the presence of a household basic handwashing facility, classified according to WHO/JMP standard definitions as having soap and water [28]. Socioeconomic status was determined through a series of questions and observations about household construction materials (roof, floor, and walls), ownership of a mobile phone, and presence of electricity. These variables were chosen based on those used in the Demographic and Health Surveys for measures of wealth in Laos [29]. We used principal components analysis to derive one single wealth metric from all of the wealth assets combined [30].

Escherichia coli pathotypes were classified according to the following gene targets: EAEC (aatA and/or aaiC), EHEC (eae with stx1 and/or stx2, and without bfpA), typical EPEC (bfpA with or without eae), atypical EPEC (eae without bfpA, stx1, or stx2), ETEC (eltB for heat-labile toxin [LT] and estA with or without eltB for heat-stable toxin [ST]) [31]. The number of microparasite infections was derived by summing all positive pathogens (range: zero to 20). We chose to use the ipaH gene target to be consistent with approaches used in other recent enteric disease studies of under-five children. However, ipaH occurs in Shigella spp. and EIEC, and does not validate the presence of the large virulence plasmid of other virulence genes that are unique to Shigella spp.

Statistical analysis

All data were analyzed using Stata Statistical Software: Release 15 (StataCorpLP, College Station, TX, USA).

We estimated the odds of concurrent microparasite infection using three separate logistic regression models for viral, bacterial and protozoal infection outcomes. For the primary analysis, the main exposure of interest was any STH infection, as determined by qRT-PCR detection. Secondary analyses examined specific STH species (i.e. hookworm, A. lumbricoides, T. trichiura or S. stercoralis) as main predictors. We controlled for the presence of the non-outcome microparasite taxa (e.g. the model of the association between STH and viral infection also controlled for concurrent bacterial and protozoal infection), as well as the following covariates determined a priori based on biological plausibility of affecting odds of both outcomes and STH infection: age group (i.e. adult, school-aged child, child<5 years-old), sex, socioeconomic status, ethnic minority status, household population size, improved household toilet, improved household drinking water source, basic household handwashing facility, household animal ownership, and whether the school in the village was a beneficiary of a UNICEF WASH in Schools intervention. Random intercepts were included at the village and household levels to account for clustering.

The associations between STH infection or STH species and the number of concurrent microparasite infections were determined using separate Poisson regression models and are reported as beta coefficients representing the change in number of microparasite infections among subjects with STH (or specific STH species) infection compared to those without. Models included random intercepts at the village and household levels, and included the same covariates as the logistic regression models.

All models were assessed for effect modification by age group. All analyses were evaluated for statistical significance at P<0.05.

Results

We collected a total of 2269 fecal samples from the same number of participants. Of these, 891 participants from 297 households were eligible for inclusion in this study because all three participants in the selected household (adult, school-aged child, and child <5 years-old) returned their stool sample on the same day. Data from 746 participants were included in the analysis [n=1 excluded due to insufficient sample amount for nucleic acid extraction; n=144 excluded due to suspected field (n=66) or laboratory (n=78) contamination of one or more target pathogens]. The study population is described in Table 1.

At least one STH was present in 61.3% of participants (Table 2); hookworm was the most prevalent STH infection (43.6%). Of the microparasites, bacterial infections were the most common (86.8%), followed by protozoal infections (72.8%), then viral infections (33.2%). Prevalence of individual microparasites are described in Table 2. EAEC was the most common bacterial infection (47.3%), Giardia was the most common protozoal infection (68.9%), and rotavirus was the most common viral infection (24.1%). Kato-Katz results are presented in Additional file 2: Figure S1.

Associations between STH infection and viral, bacterial, and protozoal infection are described in Table 3. Age was not a significant effect modifier for any primary or secondary outcomes, so we present unstratified results. STH infections were associated with lower odds of concurrent viral infection; this trend was consistent across all STH species and was statistically significant for any STH infection [odds ratio (OR) = 0.48, 95% confidence interval (CI): 0.28–0.83] and S. stercoralis (OR = 0.52, 95% CI: 0.28–0.83] and...
0.29–0.95). STH infections were associated with higher odds of concurrent bacterial infection. This trend was statistically significant for any STH infection (OR = 1.81, 95% CI: 1.06–3.07) and *T. trichiura* (OR = 5.97, 95% CI: 2.05–17.40). STH infections were associated with higher odds of concurrent protozoal infection; this trend was consistent across all STH species and was statistically significant for hookworm (OR = 1.78, 95% CI: 1.11–2.84).

STH infections were associated with a higher number of total concurrent microparasite infections (Table 3). This trend was consistent across all STH species, and was statistically significant for any STH infection (change in number of microparasite infections among subjects with STH infection compared to those without (β = 0.11, 95% CI: 0.01–0.21) and *T. trichiura* (β = 0.18, 95% CI: 0.03–0.33).

Discussion

Within-host interactions between helminths and micro-parasites can affect a range of factors, including whether a pathogen can establish itself in a host, rate of growth and replication within a host, rate of clearance from the host, and severity of disease [19]. Evidence supporting whether such co-infections result in beneficial, harmful, or neutral interactions is mixed [3, 4, 18], and the mechanisms by which helminths and micro-parasites interact are not clearly established [11, 18]. Most studies of co-infection have examined interactions between two species [16], often utilizing *in vitro* or animal models and/or employing helminths and micro-parasites that are not commonly found in humans [12, 32–37]. Our approach addresses the limitations of these previous studies by taking a macro approach to co-infection in humans. Rather than examining pairwise associations between pathogens, we enhance our generalizability by examining the associations between STH and microparasite taxa. Additionally, we control for the presence of other pathogen taxa beyond those of immediate interest, which is more realistic for low-income settings where humans harbor multiple infections that may have antagonistic or synergistic interactive effects [2–4]. Our analysis revealed a clear trend in which STH infection was associated with reduced odds of concurrent viral infection and increased odds of concurrent bacterial infection. STH infection was also associated with increased odds of protozoal infection, although this association was statistically significant only for the most prevalent STH, hookworm.

Our results are consistent with previous research reporting that helminths impair host immunity to concurrent enteric bacterial infection [7, 37, 38]. Helminth infection causes intestinal barrier dysfunction and increased “leakiness” of the intestinal epithelium [37, 39], which is one mechanism by which STH infection may increase odds of concurrent bacterial infection. For many enterobacteria to infect a host, the pathogen must exit the intestinal lumen and cross the epithelial barrier to invade cells in the small and large intestine [37, 40]. Intestinal epithelial cells are critical for gut homeostasis because they form physical and chemical barriers that protect the intestinal epithelium from invading pathogens [40]. For example, the Ly6/Plaur domain-containing 8 (Lypd8) protein, which is a physical barrier found in the uppermost epithelial layer of the large intestine, inhibits invasion of the colonic epithelia by bacteria in the genera *Escherichia*, *Proteus* and *Helicobacter* [41]. Antimicrobial peptides (AMPs) are chemical barriers found in the small intestine that include defensin proteins, which cause cell disruption.
and protect against pathogenic bacterial invasions such as \textit{S. typhimurium} \cite{40, 42}. Therefore, the enhanced permeability of the intestinal barrier due to helminth infection may facilitate the penetration of bacterial endotoxins \cite{39, 43}. Further, hosts rely on their innate immune system to respond to such attacks through activation of Toll-like receptors, secretion of chemoattractant molecules and cytokines, and recruitment of cells such as neutrophils, monocytes, dendritic cells and lymphocytes \cite{37}. However, helminths can modulate this innate immune response to bacterial enteropathogens by stimulating regulatory cytokines (such

Infections	Total (N = 746) n (%)	Child < 5 years (N = 249) n (%)	School-aged child (N = 247) n (%)	Adult (N = 250) n (%)
Any STH a	457 (61.3)	133 (53.4)	154 (62.4)	170 (68.0)
Hookworm	325 (43.6)	81 (32.5)	118 (47.8)	126 (50.4)
\textit{A. lumbricoides}	61 (8.2)	23 (9.2)	19 (7.7)	19 (7.6)
\textit{T. trichiura}	119 (16.0)	40 (16.1)	46 (18.6)	33 (13.2)
\textit{S. stercoralis}	154 (20.6)	38 (15.3)	45 (18.2)	71 (28.4)
Any virus b	248 (33.2)	90 (36.1)	78 (31.6)	80 (32.0)
Astrovirus	18 (2.4)	8 (3.2)	6 (2.4)	4 (2.0)
Adenovirus	6 (0.8)	0 (0.0)	4 (1.6)	2 (0.8)
Norovirus GI	8 (1.2)	1 (0.4)	4 (1.6)	3 (1.2)
Norovirus GII	55 (7.4)	21 (8.4)	15 (6.1)	19 (7.6)
Rotavirus	180 (24.1)	61 (24.5)	58 (23.5)	61 (24.4)
Sapovirus	11 (1.5)	8 (3.2)	3 (1.2)	0 (0)
Any bacteria c	640 (86.8)	216 (86.8)	206 (83.4)	218 (87.2)
\textit{Aeromonas}	224 (30.0)	54 (21.7)	70 (28.3)	100 (40.0)
Clostridium difficile	8 (1.1)	3 (1.2)	3 (1.2)	2 (0.8)
Campylobacter jejuni	163 (21.9)	69 (27.7)	55 (22.3)	39 (15.6)
EAEC	353 (47.3)	113 (45.4)	109 (44.1)	131 (52.4)
EHEC	91 (12.2)	21 (8.4)	29 (11.7)	41 (16.4)
EPEC	262 (35.1)	94 (37.8)	91 (36.8)	77 (30.8)
Typical	60 (8.1)	15 (6.0)	20 (8.1)	25 (10.0)
Atypical	202 (27.1)	79 (31.7)	71 (28.7)	52 (20.8)
ETEC	278 (37.3)	95 (38.2)	70 (28.3)	113 (45.2)
LT-ETEC	78 (10.5)	35 (14.1)	13 (5.3)	30 (12.0)
ST-ETEC	200 (26.8)	60 (24.1)	57 (23.1)	83 (33.2)
Shigella spp/EIEC	117 (15.7)	37 (14.9)	36 (14.6)	44 (17.6)
\textit{Salmonella enterica}	37 (5.0)	8 (3.2)	9 (3.6)	20 (8.0)
Any protozoa d	543 (72.8)	203 (81.5)	188 (76.1)	152 (60.8)
Cryptosporidum spp.	105 (14.1)	41 (16.5)	34 (13.8)	30 (12.0)
Cryptosporidum hominis	1 (0.1)	0 (0)	1 (0.4)	0 (0)
Cryptosporidum parvum	0 (0)	0 (0)	0 (0)	0 (0)
Entamoeba histolytica	1 (0.1)	1 (0.4)	0 (0)	0 (0)
Giardia intestinalis	514 (68.9)	195 (78.3)	179 (72.5)	140 (56.0)
Mean (standard deviation) number of microparasites	3.3 (1.7)	3.3 (1.5)	3.1 (1.7)	3.3 (1.8)

a Soil-transmitted helminth (STH) includes one or more of the following helminths: hookworm (\textit{N. americanus} and/or \textit{A. duodenale}), \textit{A. lumbricoides}, \textit{T. trichiura}, or \textit{S. stercoralis}

b Virus includes one or more of the following pathogens: astrovirus, adenovirus, norovirus GI, norovirus GII, rotavirus, or sapovirus

c Bacteria includes one or more of the following pathogens: \textit{Aeromonas}, \textit{C. difficile}, \textit{C. jejuni}, EAEC, EHEC, EPEC (typical or atypical), LT- or ST-ETEC, \textit{Shigella} spp./Enteroinvasive \textit{E. coli}, or \textit{Salmonella}

d Protozoa includes one or more of the following pathogens: non-hominus and non-parvum \textit{Cryptosporidium} spp., \textit{C. hominus}, \textit{C. parvum}, \textit{E. histolytica}, and \textit{G. intestinalis}

All data come from quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis
as IL-10), antagonizing proinflammatory factors that can lead to more severe intestinal inflammation (such as keratinocyte-derived chemokine and macrophage inflammatory protein 2), impeding clearance of pathogens, and reducing availability of pathogen-specific cytokines [11, 37, 43].

We also found that STH infection, specifically hookworm, was associated with increased odds of concurrent protozoal infection. Our results are consistent with previous research in Venezuela, which found that *Giardia* prevalence was significantly higher among children harboring an *A. lumbricoides* infection compared to those without [44]. We found that protozoal infections were driven largely by *Giardia*, as 94.7% of subjects with a protozoal infection had *Giardia*. One possible mechanism by which helminths may increase susceptibility to protozoa is through the proinflammatory cytokine IFN-γ [45, 46], which is antagonized by the cytokine IL-4 triggered by helminth infection [15]. Evidence suggests that IFN-γ is significantly higher among humans infected with *Giardia* and *E. histolytica*, suggesting this cytokine has a protective role in host defense [46–48]. However, helminths suppress IFN-γ, which may impede the host from mounting an effective immune response [18]. Additionally, intestinal barrier dysfunction and increased permeability of the intestinal lumen caused by helminth infection may be exacerbated by protozoal infection, thus facilitating the translocation of antigens and inducing a pro-inflammatory response within the intestine [46]. It is also possible that increased odds of STH infection given protozoal infection is reflecting the inverse association; in other words, that protozoal infection increases the odds of STH infection. *Giardia* is one of the earliest infections that children succumb to [31, 49], and can result in chronic infection [49, 50]. Like helminths, *Giardia* immunomodulates the host immune system and causes gut dysfunction [51, 52]. Thus, it is possible that chronic *Giardia* infection early in life may have preceded and enhanced susceptibility to STH infection.

Helminths are generally thought to increase transmission, virulence and progression of microparasite infection, and reduce recovery [4, 15, 17], as supported by our results for bacterial and protozoal infections. However, some exceptions have been established in the literature [35, 53–55], and helminths are being explored as a possible curative tool for immune-mediated conditions such as allergies, asthma and ulcerative colitis [56–58]. We found that helminth infection was negatively associated with odds of concurrent viral infection, contradicting existing research indicating that helminths may limit both innate and adaptive immune responses to viral infection [36, 59]. However, it is possible that helminths are protective against viral infection because the Th2 immune response induced by helminth infection has anti-inflammatory and wound-healing properties [11, 15]. In the present study, viral infections were driven largely by rotavirus (60.5%
of subjects with a viral infection), followed by norovirus GII (22.2%). Rotavirus infection induces oxidative stress and inflammatory signaling; this pro-inflammatory signaling is necessary for virus replication, but is inhibited by anti-inflammatory treatment [60]. Norovirus infection also causes alterations of the gut mucosa, including mucosal inflammation [61]. When a microparasite such as rotavirus or norovirus induces inflammation-mediated damage, helminths may protect the host from damage by secreting IL-10 and TGF-β and decreasing the production of pro-inflammatory cytokines [62], which may be protective against the detrimental inflammatory Th1 response induced by viral microorganisms [11, 19, 35, 62].

Strengths and limitations
Strengths of this study include the random selection of participating villages and households. Also, pathogens in stool samples were detected and quantified using qPCR, which provides a higher sensitivity (98%) and specificity (100%) than conventional methods [24]. Further, the multi-target detection capacity of this method allowed us to examine 25 infectious pathogens [24], whereas most existing studies on pathogen co-infection have focused on pairs of agents [16]. Additionally, there is a dearth of clinical data on helminth co-infection, and most studies have relied on mouse models [35]. The predominant species involved in human STH and enteric microparasite infection is influenced by a range of factors, including age and WASH access [63, 64]. We examined human subjects from three distinct age groups, adults, school-aged children and children under five years-old, and controlled for potential confounding WASH and demographic variables to provide a more externally valid picture of STH and microparasite co-infection.

Our study is subject to a number of limitations. First, our data are cross-sectional so we do not know whether the STH or microparasite infection occurred first. However, STH are endemic in this population, our data were collected prior to annual primary school-based PC, there is no routine community-based PC in this population, and re-infection often occurs rapidly after PC [65]. Thus, it is likely that STH infections commonly preceded microparasite infections, particularly viral and bacterial infections which do not tend to be chronic. However, it is possible that some persistent protozoal infections (e.g. *Giardia*) preceded STH infection, and our results reflect an inverse association. Secondly, the high sensitivity of the TAC and other molecular assays may lead to the detection of prolonged shedding by attenuated pathogens and we cannot distinguish between symptomatic and asymptomatic infections [66]. However, even asymptomatic infections may lead to interactions within the host as well as other sequelae such as environmental enteropathy, malnutrition, and growth stunting [67–69]. Thirdly, evidence suggests that the outcomes of helminth-microparasite co-infection are context dependent and may depend on helminth infection intensity [19, 44]. Based on the Kato-Katz results from these samples, helminth infections were predominately of low infection intensity, so we were unable to stratify by infection intensity to evaluate differences in co-infection by infection intensity. Fourthly, we discarded 144 samples due to suspected contamination, which may have limited statistical power. Household toilet ownership and use of an improved water source were lower among participants whose samples were discarded. While these factors may be associated with the pathogen profile of the participants, contamination was a random event unassociated with the participants and would not confound the relationship between STH infection and odds of microparasite infection. Last, we did not measure cytokines, interferon, or other measures of immune response so we are unable to elucidate exact mechanisms of helminth-microparasite interaction.

Conclusions
The effects of helminth infection on odds of concurrent microparasite infection differed by microparasite taxa. We found that helminth infection was negatively associated with concurrent viral infection, but positively associated with concurrent bacterial and protozoal infections, after controlling for shared risk factors for infection. These results suggest that interventions to control STH, such as increasing community sanitation coverage to eliminate the environmental reservoir for STH, combined with PC with anti-helminthic drugs [70, 71], could have a spillover impact on bacterial and protozoal infections. Increased integration and collaboration between WASH and STH sectors is warranted [71]. Additional research is needed to elucidate the exact mechanism of immunomodulatory effects of STH on concurrent enteric microparasite infection.
Laos: Lao People’s Democratic Republic; Lypd8: Ly6/Plaur domain-containing 8 (protein); OR: odds ratio; PC: preventative chemotherapy; qRT-PCR: quantitative reverse transcription polymerase chain reaction; STH: soil-transmitted helminth; TAC: TaqMan Array Card; TGF: transforming growth factor; Th1: Type 1 (immune response); Th2: Type 2 (immune response); TNF: tumor necrosis factor; Treg: regulatory T cell; WASH: water, sanitation, and hygiene; WASH HELPS: Water, Sanitation, and Hygiene for Health and Education in Laotian Primary Schools; WHO/UNICEF: World Health Organization/United Nations International Children’s Fund.

Acknowledgments

First and foremost, we acknowledge the participants of our study and thank them for their contributions. Thank you to Vansy Phethadavong and Deng Seng-daovong for their invaluable assistance with fieldwork logistics. We are grateful to the Indochina Research Laos team, especially Vanvilay Phommalath, Sorasin Sivorabouth, Amphyavane Momkheakhampong, Khamsook Phommavongsa, Chansada Souvanlasy, and Noulor Kayleng, and the enumerators Samphy Chanthanan, Thippachan Sisavan, Phouthady Manivany, and Salern Phomphone. We are also grateful to the teams from the Center for Malariology, Parasitology, and Entomology, especially Dr. Vornethalom Thongpasueth, Phousavan Sisuphon, Phou van Human Development and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, USA. ² Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA. ³ Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA. ¹ Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, USA.

Received: 27 November 2018 Accepted: 29 April 2019

Published online: 07 May 2019

Author details

1 Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.

References

1. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:983–9.
2. Steinmann P, Utzinger J, Du ZW, Zhou XN. Multiparasitism and a neglected reality on global, regional and local scale. Adv Parasitol. 2010;73:21–50.
3. Sebastiomek EW, Borer ET, Gross K, Kendig AE, Lacroix C, Mitchell CE, et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol Lett. 2015;18:401–15.
4. Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett. 2013;16:556–67.
5. Chiodini PL. Chemotherapy for patients with multiple parasitic infections. Parasitology. 2001;122(2):583–9.
6. Cooper PJ, Chico M, Sandovol C, Espinel I, Guevara A, Levine MM, et al. Human infection with Acanthocephalos lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-Hr. Infect Immun. 2001;69:1574–80.
7. Harris JB, Podolsky MJ, Bhuiyan TR, Chowdhury F, Khan AL, Lacroque RC, et al. Immunologic responses to Vibrio cholerae in patients co-infected with intestinal parasites in Bangladesh. PLoS Negl Trop Dis. 2009;3:e403.
8. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.
9. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasite Vector. 2014;7:37.
10. Hotez PJ, Podolsky MJ, Bhuiyan TR, Chowdhury F, Khan AL, Lacroque RC, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–27.
11. Salgame P, Yap GS, Gause WC. Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immune. 2013;14:1118–26.
12. Reynolds LA, Redpath SA, Yurist-Dutsch S, Gill N, Brown EM, van der Heijden J, et al. Enteric helminths promote Salmonella infection by altering the intestinal metabolome. J Infect Dis. 2017;215:1245–54.
13. Cox FE. Concomitant infections, parasites and immune responses. J Infect Dis. 2001;122:523–38.
14. Darmana B, Dittmer DP. What lies within: coinfections and immunity. Cell Host Microbe. 2014;16:145–7.
15. Ezerwa VQ, Julies AE. From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microorganisms. Integr Comp Biol. 2011;51:540–51.
16. Griffiths EC, Pedersen AB, Fenton A, Petchey OL. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc Biol Sci. 2014;281:20132286.
17. Griffiths EC, Pedersen AB, Fenton A, Petchey OL. The nature and consequences of coinfection in humans. J Infect. 2011;63:200–6.
18. Graham AL. Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci USA. 2008;105:566–70.
19. Fenton A. Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens. Parasitology. 2013;140:1119–32.
20. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–83.
21. Chard AN, Freeman MC. Design, intervention fidelity, and behavioral outcomes of a school-based water, sanitation, and hygiene cluster-randomized trial in Laos. Int J Environ Res Public Health. 2018;15:570.
22. Peters PA, El Alamy M, Warren KS, Mahmoud AA. Quick Kato smear for field quantification of Schistosoma mansoni eggs. Am J Trop Med Hyg. 1980;29:217–9.
23. Liu J, Gratz J, Amour C, Nshama R, Walongo T, Maro A, et al. Optimization of quantitative PCR methods for enteropathogen detection. PLoS ONE. 2016;11:e01538199.

24. Liu J, Gratz J, Amour C, Kibigi G, Becker S, Janaki L, et al. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013;51:1472–80.

25. Liu J, Kabir F, Mannhein J, Lertsethtakarn P, Begum S, Gratz J, et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet Infect Dis. 2014;14:716–24.

26. Okarinen S, Tauriainen S, Viskari H, Simell O, Knip M, Virtanen S, et al. PCR inhibition in stool samples in relation to age of infants. J Clin Virol. 2009;44:211–4.

27. Farell EM, Alexandre G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Res Notes. 2012;5:257.

28. WHO/UNICEF Joint Monitoring Programme. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva, Switzerland: World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), 2017; 2017.

29. Ministry of Health Lao PDR, Lao Statistics Bureau. Lao social indicator survey 2011–12: Vientiane: Ministry of Health Lao and Lao Statistics Bureau, 2012.

30. Vyas S, Kumarayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21:459–68.

31. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoea disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:209–22.

32. Chen CC, Louie S, McCormick BA, Walker WA, Shi HN. Helminth-primed dendritic cells alter the host response to enteric bacterial infection. J Immunol. 2006;176:472–83.

33. Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med. 2000;6:536–42.

34. Alcantara-Neves NM, Veiga RV, Figueiredo CA, Fiaccone RL, da Conceicao MJ, et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut. 2007;56:328–35.

35. Ma’ayeh SY, Lu J, Peisalsmaki D, Homaeus C, Bergstrom Lind S, Grabherr M, et al. Characterization of the Giardia intestinals secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis. 2017;11:e0006120.

36. Abbate JL, Ezenwa VO, Guegan JF, Choisy M, Nacher M, Roche B. Disentangling complex parasite interactions: protection against cerebral malaria by one helminth species is jeopardized by co-infection with another. PLoS Negl Trop Dis. 2018;12:e0006483.

37. Weng M, Huntley D, Huang JF, Foye-Jackson O, Wang L, Sarkissian A, et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis. J Immunol. 2007;179:4721–31.

38. Farid AS, Jimi F, Inagaki-Ohara K, Horii Y. Increased intestinal endotoxin absorption during enteric nematode but not protozoal infections through a mast cell-mediated mechanism. Shock. 2008;29:709–16.

39. Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338.

40. Okumura R, Kurakawa T, Nakao T, Kayama H, Kinoishi M, Motooka D, et al. Lpyδ8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature. 2016;532:117–21.

41. Wilson CL, Quellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–7.

42. Jang JC, Chen G, Wang SH, Barnes MA, Chung JI, Camberis M, et al. Macrophage–derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden. PLoS Pathog. 2015;11:e1004579.

43. Hagel I, Cabrera M, Puccio F, Sautella C, Buvat E, Infante B, et al. Co-infection with Ascaris lumbricoides modulates protective immune responses against Giardia duodenalis in school Venezuelan rural children. Acta Trop. 2011;117:189–95.

44. Gurung P, Kanneganti TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell Mol Life Sci. 2016;73:3935–51.

45. Babaei Z, Malini N, Zia-Ali N, Sharifi I, Mohammadia MM, Kagnoff MF, et al. Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes Infect. 2016;18:687–95.

46. Guo X, Stroup SE, Houpt ER. Persistence of Enteramoeba histolytica infection in CB mice owes to intestinal IL-4 production and inhibition of protective IFN-gamma. Mucosal Immunol. 2008;1:139–46.

47. Sanchez-Guillem MDel C, Perez-Fuentes R, Salgado-Rosas H, Ruiz-Arreguiles A, Ackers J, Shi R, A, et al. Differentiation of Entamoeba histolytica/Entamoeba dispar by PCR and their correlation with humoral and cellular immunity in individuals with clinical variants of amoebiasis. Am J Trop Med Hyg. 2012;66:731–7.

48. Plattis-Millis JA, Baby S, Bodhidatta L, Gratz J, Haque R, Havit A, et al. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health. 2015;3:e564–75.

49. Wolfe MS. Giardiasis. JAMA. 1975;233:1362–5.

50. Pooray-Heghre D, Eppele H, Schenker T, Wenshahsche U, Ullrich R, Burchard GD, et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut. 2007;56:328–35.

51. Ma’ayeh SY, Lu J, Peisalsmaki D, Homaeus C, Bergstrom Lind S, Grabherr M, et al. Characterization of the Giardia intestinals secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis. 2011;5:e3457.

52. Elliott DE, Weinstock J. Helminthic therapy: using worms to treat immune-mediated disease. Adv Exp Med Biol. 2009;666:157–66.

53. Jia TW, Melville S, Utzinger J, King CH, Zhou XN. Soil-transmitted helminth infection reduces the incidence of murine cerebral malaria. Microbes Infect. 2010;12:635–42.

54. Alcantara-Neves NM, Veiga RV, Figureuedo RL, da Conceicao JS, et al. Effects of helminth co-infections on atopy, asthma and cytokine production in children living in a poor urban area in Latin America. BMC Res Notes. 2014;7:917.

55. Acker PJ, Manneh J, , Manneh J, et al. Development TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013;51:1472–80.

56. Babaei Z, Malihi N, Zia-Ali N, Sharifi I, Mohammadia MM, Kagnoff MF, et al. Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes Infect. 2016;18:687–95.

57. Guo X, Stroup SE, Houpt ER. Persistence of Enteramoeba histolytica infection in CB mice owes to intestinal IL-4 production and inhibition of protective IFN-gamma. Mucosal Immunol. 2008;1:139–46.
66. Becker SL, Chatigre JK, Gohou JP, Coulibaly JT, Leuppi R, Polman K, et al. Combined stool-based multiplex PCR and microscopy for enhanced pathogen detection in patients with persistent diarrhoea and asymptomatic controls from Cote d’Ivoire. Clin Microbiol Infect. 2015;21:591e1–10.
67. Campbell DI, Elia M, Lunn PG. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr. 2003;133:1332–8.
68. Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet. 2009;374:1032–5.
69. Lunn PG, Northrop-Clewes CA, Downes RM. Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet. 1991;338:907–10.
70. Coffeng LE, Vaz Nery S, Gray DJ, Bakker R, de Vlas SJ, Clements ACA. Predicted short and long-term impact of deworming and water, hygiene, and sanitation on transmission of soil-transmitted helminths. PLoS Negl Trop Dis. 2018;12:e0006758.
71. Freeman MC, Ogden S, Jacobson J, Abbott D, Addiss DG, Amnie AG, et al. Integration of water, sanitation, and hygiene for the prevention and control of neglected tropical diseases: a rationale for inter-sectoral collaboration. PLoS Negl Trop Dis. 2013;7:e2439.