Sequencing data of cell-free DNA fragments in living-related liver transplantation for inborn errors of metabolism

Xiaofan Zhu a,1, Hoi Ioi Ng b,1, Liming Xuan c, Yan Long b, Yan Mao c, Yu Shi b, Liying Sun b, Bo Liang c, d, Fernando Scaglia e, f, g, Zhijun Zhu b,2, Kwong Wai Choy a, g, *, 2

a Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
b Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
c Basecare Medical Device Co., Ltd., 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China
d State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
e Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
f Texas Children’s Hospital, Houston, TX, USA
g The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China

A R T I C L E I N F O
Article history:
Received 15 March 2019
Received in revised form 16 January 2020
Accepted 17 January 2020
Available online 25 January 2020

Keywords:
Graft derived cell-free DNA
Fragment size

A B S T R A C T
Graft derived cell-free DNA was recently reported as a non-invasive biomarker to detect graft damage or rejection after liver transplantation. There are a number of methods for quantification of Gcf-DNA,3 including quantitative-PCR, digital droplet PCR and massively parallel sequencing (next generation sequencing). Here we present the NGS4 data and fragment size distribution of cell-free DNA in the plasma of patients with inborn errors of metabolism who underwent living-related liver transplantation. For
Living-related liver transplantation for inborn errors of metabolism: more insights please see Analysis of fragment size distribution of cell-free DNA: a potential noninvasive marker to monitor graft damage in living-related liver transplantation for inborn errors of metabolism. [1]. © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Blood specimens from 11 patients with inborn errors of metabolism (IEM) who underwent living-related liver transplantation were collected at six specific time-points (d0, d1, d7, d14, d30, and d60). All the blood samples were drawn in the morning of the given days. This article shows the sequencing data and fragment size profile of cell-free DNA in the plasma of the transplant recipients. The total sequencing reads and reads aligned to Y-chromosome of each patient are summarized in Table 1. Each plasma DNA sample has generated 5.22 ± 1.02 million (mean ± SD) sequencing reads.

Analysis of the sequencing read lengths showed that cell-free DNA fragments were routinely present in the circulating plasma with a peak size around 165 base pairs (bp) before operation. Moreover, the size became shorter at post-operative day 1 and returned to a normal size when measured at day 7 or day 14. Despite this finding, there was a noticeable profile difference among participating subjects in the overall size distribution of their cfDNA (Fig. 1). We observed that cell-free DNA fragments in the plasma after liver transplantation were composed of different groups of fragments. These groups have different size ranges and Graft-derived cell-free DNA is present mainly in the shorter fragments.
Case	Sex	Donor	Sex-mismatched	Time-pointa	Reads aligned to chromosome Y	Reads in all chromosomes
					Total 105-145bp >145bp	Total 105-145bp >145bp
1	M	Mother	d0	9108	1604	6981
	M	Mother	d1	1160	268	799
	M	Mother	d7	1797	406	1075
	M	Mother	d14	7105	653	6136
	M	Mother	d30	7186	798	5991
	M	Mother	d60	6305	822	5050
2	F	Father	d0	NA	NA	NA
	F	Father	d1	6763	1894	4375
	F	Father	d7	3884	699	2890
	F	Father	d14	1751	245	1408
	F	Father	d30	346	49	259
3	M	Father	d0	5382	790	4209
	M	Father	d1	5651	1508	3705
	M	Father	d7	5443	858	4157
	M	Father	d14	4758	644	3925
	M	Father	d30	5918	754	4811
4	F	Mother	d0	93	23	56
	F	Mother	d1	101	29	48
	F	Mother	d7	72	7	46
	F	Mother	d14	82	10	63
	F	Mother	d30	107	14	69
	F	Mother	d60	86	14	52
5	F	Father	d0	124	19	89
	F	Father	d1	5166	1380	3415
	F	Father	d7	2946	488	2235
	F	Father	d14	1866	241	1518
	F	Father	d30	255	35	187
6	M	Mother	d0	4626	556	3752
	M	Mother	d1	1929	295	1468
	M	Mother	d7	4413	718	3297
	M	Mother	d14	5534	621	4668
	M	Mother	d30	4947	672	4008
	M	Mother	d60	5878	778	4705
7	F	Mother	d0	62	7	39
	F	Mother	d1	84	16	54
	F	Mother	d7	78	10	46
	F	Mother	d14	124	11	97
	F	Mother	d30	71	12	50
8	M	Mother	d0	5523	661	4449
	M	Mother	d1	3796	854	2502
	M	Mother	d7	4986	626	3945
	M	Mother	d14	6149	694	5095
	M	Mother	d30	7337	796	6161
	M	Mother	d60	7469	1134	5812
9	M	Mother	d0	7467	791	6156
	M	Mother	d1	2990	711	1968
	M	Mother	d7	4894	801	3773
	M	Mother	d14	5705	661	4770
	M	Mother	d30	6088	688	5073
	M	Mother	d60	7945	1059	6336
10	M	Mother	d0	7224	844	5882
	M	Mother	d1	1438	357	970
	M	Mother	d7	6117	697	5141
	M	Mother	d14	6517	749	5433

continued on next page
transplantation were composed of a group with a shorter fragment size (105-145bp) and another group with a longer fragment size (160-170bp) (Fig. 1). An overlap between graft-derived cell-free DNA and recipient-derived cell-free DNA was observed in the intermediate fragment size of 145–160bp. Based on the size distribution of cell-free DNA fragments, the sequencing reads were categorized into two groups (105-145bp, >145bp) (Table 1), which were subsequently used for S/L-Frag calculation [1]. Sequencing reads from Y-chromosome in the sex-matched pairs were used for Gcf-DNA quantification [1].

Table 1 (continued)

Case	Sex Donor	Sex-mismatched	Time-pointa	Reads aligned to chromosome Y	Reads in all chromosomes
				Total 105-145bp >145bp Total 105-145bp >145bp	
M	Mother Y	d30		5560 641 4594	4,743,502 587,815 3,654,160
M	Mother Y	d60		7571 960 6017	7,094,356 923,938 5,205,815
11 M	Father N	d0		5840 855 4556	4,714,376 692,469 3,416,575
M	Father N	d1		6688 1423 4764	5,322,285 1,025,954 3,620,193
M	Father N	d7		7048 1236 5317	5,990,017 925,345 4,071,872
M	Father N	d14		7867 758 6721	6,097,298 605,475 4,902,337
M	Father N	d30		7554 1051 6080	6,102,619 840,679 4,621,985
M	Father N	d60		7763 1002 6253	6,335,392 782,798 4,843,640

a d0 = operation day, sampling before operation; d1 = 1 day after operation; d7 = 7 days after operation; d14 = 14 days after operation; d30 = 30 days after operation; d60 = 60 days after operation.

Fig. 1. Size distribution of cell-free DNA in the plasma of liver transplantation patients with inborn errors of metabolism (IEM) before and after operation. Each line represents the size distribution of cell-free DNA in the plasma at different dates, with d0 and d1-60 indicating pre-operation and 1–60 days post-operation, respectively.
2. Experimental design, materials and methods

2.1. Sample preparation and sequencing

Five milliliters of EDTA blood specimens were collected from 11 patients with IEMs, including Ornithine Transcarbamylase Deficiency (OTCD), Propionic Acidemia (PA), Carbamoyl Phosphate Synthetase 1 Deficiency (CPS1D), Primary Hyperoxaluria (PH), N-acetyl Glutamic-acid Synthase Deficiency (NAGSD), Ethylmalonic Encephalopathy (EE) and Methylmalonic Acidemia (MMA), at 6 specific time-points after living-related liver transplantation (i.e. day 0, day 1, day 7, day 14, day 30 and day 60). All of the procedures and informed consent were approved by the Department of Ethics Committee at the Beijing Friendship Hospital of the Capital Medical University (Beijing, China) (approval document number: 2017-P2-080-02). All the legal guardians have provided written informed consent before living donor liver transplantation. Cell-free plasma was separated from the blood samples via two centrifugations (4°C at 2500×g for 10 minutes and 4°C at 15,500×g for 10 minutes). The resultant plasma was stored at −80°C until further analysis. DNA fragment from 600 μL of cell-free plasma was extracted by using Circulating Nucleic Acid Kit (Qiagen, Germany) [1]. The libraries were constructed by Ion Plus Fragment Library Kit (Life Technologies, USA) on the Ion Proton platform and then quantified using a Qubit Fluorometer. Subsequently, the selected libraries were pooled together with different barcodes and sequenced using an Ion Proton system (Life Technologies).

2.2. Sequencing data analysis

All sequencing data were aligned to the human genome reference sequences (version: NCBI Build37/hg19) using TMAP software (version 4.6.11). Unique reads whose mapping quality scores (MAPQs) were greater than 10 and whose lengths were longer than 35 bp were used in subsequent analyses [2]. In the sex-mismatched pairs, the proportion of reads from Y-chromosome (% chrY) was calculated and then used to determine the male DNA concentration in plasma.

2.3. Fragment size analysis

The reads mapped to hg19 were converted from Binary Alignment/Map (BAM) format to Browser Extensible Data (BED) format by using BEDTools software, and the length of each read was calculated by subtracting the start of the read from its end in the BED file. The size distribution of cell-free DNA in the recipient plasma was analyzed by calculating the percentage of read counts with each fragment size (ranging from 100 to 200bp) in total read counts. The sequencing reads were then grouped by their lengths, read counts of shorter fragments (105-145bp) and longer fragments (160-170bp) were used for further study on the S/L-Frag calculation in the research paper [1].

Acknowledgements

Capital Special Program for Health Research and Development (No.2016-1-2021) and Beijing Municipal Administration of Hospitals Ascent Plan (Code: DFL20150101).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105183.
References

[1] H.I. Ng, et al., Analysis of fragment size distribution of cell-free DNA: a potential noninvasive marker to monitor graft damage in liver transplantation for inborn errors of metabolism, Mol. Genet. Metabol. 127 (1) (2019) 45–50.

[2] T. Wang, et al., An optimized method for accurate fetal sex prediction and sex chromosome aneuploidy detection in non-invasive prenatal testing, PloS One 11 (2016), e0159648.