Grothendieck’s Classification of Holomorphic Bundles over the Riemann Sphere

Andean Medjedovic

Abstract

In this paper we look at Grothendieck’s work on classifying holomorphic bundles over \(\mathbb{P}^1(\mathbb{C}) \). The paper is divided into 4 parts. The first and second part we build up the necessary background to talk about vector bundles, sheaves, cohomology, etc. The main result of the 3\(^{rd}\) chapter is the classification of holomorphic vector bundles over \(\mathbb{P}^1(\mathbb{C}) \). In the 4\(^{th}\) chapter we introduce principal \(G \)-bundles and some of the theory behind them and finish off by proving Grothendieck’s theorem in full generality. The goal is a (mostly) self-contained proof of Grothendieck’s result accessible to someone who has taken differential geometry.
Table of Contents

1 Complex Manifolds and Vector Bundles .. 1
 1.1 Complex Manifolds ... 1
 1.2 Vector Bundles .. 2

2 Sheaves And Cohomology ... 5
 2.1 Sheaves .. 5
 2.2 Cech Cohomology ... 6

3 Line Bundles over \(\mathbb{P}^1(\mathbb{C}) \) and Grothendieck’s Theorem for Vector Bundles .. 8
 3.1 The degree map .. 8
 3.2 The Classification of Vector Bundles .. 9

4 Principal Bundles ... 12
 4.1 Preliminaries .. 12
 4.2 Grothendieck’s Theorem ... 15

5 Acknowledgments .. 16
Chapter 1

Complex Manifolds and Vector Bundles

1.1 Complex Manifolds

Definition 1 (Complex Manifold). We say a manifold M is a complex manifold if each of the charts, ϕ_α, map from an open subset U_α to an open subset of $V_\alpha \subset \mathbb{C}^n$ and the transition maps $\phi_{\alpha\beta} = \phi_\beta \circ \phi_\alpha^{-1}$ are biholomorphisms (bijective holomorphisms with a holomorphic inverse) as maps from $\phi_\alpha(U_\alpha \cap U_\beta)$ to $\phi_\beta(U_\alpha \cap U_\beta)$.

We say that the (complex) dimension of the manifold over \mathbb{C} is n. A Riemannian surface is a manifold in the special case that the dimension is 1.

Definition 2 (Projective Spaces). We define the n dimensional projective space over \mathbb{C}, $\mathbb{P}(\mathbb{C})^n$, as the set of equivalence classes of non-zero vectors in $v \in \mathbb{C}^{n+1}$ under the equivalence $v \sim \lambda v$ for $\lambda \in \mathbb{C}$.

Proposition 1. The n dimensional projective space is indeed an n-dimensional complex manifold.

Proof. Let $[z_1, \cdots, z_{n+1}]$ ($z_i \in \mathbb{C}$, not all zero) be the equivalence class corresponding to $(z_1, \cdots, z_{n+1}) \in \mathbb{C}^{n+1}$. Let U_i be the set of equivalence classes with z_i non-zero. Then U_i cover $\mathbb{P}(\mathbb{C})^n$. Let $\phi_i : U_i \to \mathbb{C}^n$ by $[z_1, \cdots, z_{n+1}] \mapsto (\frac{z_1}{z_i}, \cdots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \cdots, \frac{z_{n+1}}{z_i})$.

One immediately sees that ϕ_i is well defined and if $z_i, z_j \neq 0$ then $\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a biholomorphism. \qed
Theorem 1. A holomorphic function, f, on a compact Riemann surface is constant.

Proof. We have that $|f(p)|$ is maximal for some p. Take a chart around p to a neighbourhood of 0. Then the composition of f with the chart is maximal at 0, contradicting the maximum modulus principle.

The Riemann sphere is defined to be the Riemann surface $\mathbb{P}^1(\mathbb{C})$.

1.2 Vector Bundles

Let M be a manifold, we say a (real) vector bundle V over M is pair of a manifold and projection map (V, π) with $\pi : V \to M$ so that for every $p \in M$, $\pi^{-1}(p)$ is a \mathbb{R}-vector space we have that there is some open U around p, and a homeomorphism φ_U with $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{R}^k$. We say that the rank of the vector bundle V (over \mathbb{R}) is k.

We can extend this definition to holomorphic vector bundles over a complex manifold in the following way:

Definition 3. Let M be a complex manifold, we say a pair (E, π) over M with rank k is a holomorphic vector bundle if for every $p \in M$, $\pi^{-1}(p)$ is a \mathbb{C}-vector space and there is an open subset U of M with a biholomorphism $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}^k$. Equivalently, we can require the transition maps to \mathbb{C} be linear isomorphisms:

$$\text{proj}(\varphi_U \circ \varphi_V^{-1})(U \cap V) : \mathbb{C}^l \to \mathbb{C}^l$$

Furthermore, we say a vector bundle is a line bundle if it has rank 1 and we say a (complex) vector bundle E is trivial if it is isomorphic to $\mathbb{C}^k \times M$. Note that, locally, every bundle is trivial.

Definition 4. A section of a vector bundle V is a continuous map $\sigma : M \to V$ so that $\pi \circ \sigma = 1_M$. The vector space of all sections on V over M is denoted by $\Gamma(M, V)$. If the vector bundle E is holomorphic and the map σ is holomorphic we say it is a holomorphic section and denote the corresponding vector space $H^0(M, \mathcal{O}(E))$.

The reason we use this notation will become clear later on.

Proposition 2. Let E_1 and E_2 be 2 holomorphic vector bundles over a complex manifold M of rank k,l. Then we can define the vector bundles E_1^*, $\det(E_1)$, $E_1 \oplus E_2$, and $E_1 \otimes E_2$.

2
Proof. Let U, V be sufficiently small open sets around p. Let ϕ_1, ϕ_2 be 2 corresponding charts for E_1 and similarly φ_1, φ_2 for E_2. Let T_{12} and T_{12} be the linear transition maps for E_1 and E_2. Then we define the transition charts for $E_1^*, \det(E_1), E_1 \oplus E_2,$ and $E_1 \otimes E_2$:

- T_{12}^*
- $\det(T_{12})$
- $T_{12} \oplus T_{12}$
- $T_{12} \otimes T_{12}$

These are then invertible and linear and the vector bundles have rank $k, 1, k + l,$ and kl respectively.

Definition 5. Let E_1 and E_2 be 2 holomorphic vector bundles over a complex manifold M. Suppose we have an invertible map f so that the following diagram commutes and the restriction, $f|_{\pi^{-1}(p)} : \pi^{-1}(p) \to \pi^{-2}(p)$ is linear.

\[
\begin{array}{ccc}
E_1 & \xrightarrow{f} & E_2 \\
\pi_1 & \downarrow & \pi_2 \\
M & &
\end{array}
\]

We say that E_1 and E_2 are isomorphic. Similarly, if there is an injection from E_1 to E_2 then we say E_1 is a subbundle of E_2.

Theorem 2. Let M be a complex manifold and consider a short exact sequence of vector bundles over M:

\[
0 \to E_1 \xrightarrow{p} E \xrightarrow{q} E_2 \to 0
\]

This sequence splits, that is, $E \cong E_1 \oplus E_2$.

Proof. We first construct an inner product over E.

Let U_α cover M with E trivial over each U_α. Let ρ_α be a corresponding partition of unity. We can choose an inner product $\langle \cdot, \cdot \rangle_\alpha$ on each $E|_{U_\alpha}$. Extend each inner product to be 0 outside $E|_{U_\alpha}$. Now consider the inner product given by:

\[
\langle \cdot, \cdot \rangle = \sum_\alpha \rho_\alpha \langle \cdot, \cdot \rangle_\alpha
\]
This is defined on all of E.

Under this inner product we can write $E = (p(E_1))^\perp \oplus (p(E_1))$. Note that $p(E_1) \cong E_1$ by injectivity. We also have the restriction of $q|_{(\ker q)^\perp}$ from $(\ker q)^\perp \to E_2$ is surjective (by exactness) and injective as $q(x) = q(y)$ means $x - y \in \ker(q)$. But $E_2 \cong (\ker q)^\perp = (p(E_1))^\perp$ and so the sequence splits.

Lemma 1. Let L be a line bundle on a complex manifold M. Then L is trivial if and only if there is some nowhere 0 section on L.

Proof. Suppose L is the trivial bundle. Let $x \in M$. Then the section sending $x \mapsto (x,1)$ is nowhere 0.

Suppose we have a nowhere section σ, sending $x \mapsto (x,\sigma(x))$. Then consider the isomorphism $f : M \times \mathbb{C} \to L$ by $(x,c) \mapsto (x,c\sigma(x))$. \hfill \square

Lemma 2. Let S be a Riemann surface and let E be a vector bundle. Then $E \cong E' \oplus I_{\text{rank}E-1}$ for some line bundle E'.

Proof. We note that if the rank of E is at least 2 then there is a section σ that is non-zero everywhere by perturbing a section (not identically 0) locally around its zeroes.

Take the line bundle parametrized by σ, $L \cong I_1$. We can then split E as:

$$0 \to I_1 \to E \to E_1$$

Is short exact for some E_1. We then do the same for E_1, inductively, so $E \cong E' \oplus I_{\text{rank}E-1}$. \hfill \square

Once we have the notion of a degree of a line bundle we will be able to show 2 line bundles are isomorphic if and only if their degree is the same. This, combined with the above, gives us that $E_1 \cong E_2$ if and only if they have the same rank and same degree.
Chapter 2

Sheaves And Cohomology

2.1 Sheaves

Definition 6. Let \(X \) be a topological space. For every open \(U \subseteq X \) we associate an abelian group \(\mathcal{F}(U) \) so that:

1. \(\mathcal{F}(\emptyset) = 0 \)
2. If \(V \subseteq U \) there is a group morphism \(\rho_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V) \)
3. \(\rho_{U,U} = 1 \)
4. If \(W \subseteq V \subseteq U \) then \(\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V} \)

We say that \(\mathcal{F} \) is a presheaf. We can write \(\rho_{U,V}(f) \) as \(f|_V^U \).

Definition 7. Let \(\mathcal{F} \) be a presheaf on \(X \). Let \(U \) be open with open cover \(\{U_i\} \). \(\mathcal{F} \) is a sheaf if we have:

1. If \(s \in \mathcal{F}(U) \) with \(\rho_{U,U_i}(s) = 0 \) for all \(i \), then \(s = 0 \)
2. If \(s_i \in \mathcal{F}(U_i) \) with (for any \(i, j \)):
 \[
 \rho_{U_i \cap U_j}(s_i) = \rho_{U_i \cap U_j}(s_j)
 \]
 then there is \(s \in \mathcal{F}(U) \) so that \(\rho_{U,U_i}(s) = s_i \)
Proposition 3. Let $k \in \mathbb{Z}$. Let E be a vector bundle over a complex manifold M. Let X be a Riemann surface with $x \in X$ and L be a line bundle over X. Then the following are sheaves:

- $\mathcal{O}(E)$ where to each $U \subset M$ we associate the abelian group (under pointwise multiplication) $H^0(E, U)$ with the maps $\rho_{U,V}$ being restrictions.
- \mathcal{O}_M, where to each $U \subset M$ we associate the abelian group of holomorphic functions $f : U \to \mathbb{C}$
- \mathcal{O}_M^*, where to each $U \subset M$ we associate the abelian group of holomorphic functions $f : U \to \mathbb{C}^*$
- $\mathcal{O}_X(-kx)$, where to each $U \subset X$ we associate the abelian group of holomorphic functions $f : U \to \mathbb{C}$ that vanish at x with multiplicity k,
- $\mathcal{O}_X(kx)$ where to each $U \subset X$ we associate the abelian group of holomorphic functions $f : U \to \mathbb{C}$ that that have a pole of order k at x.
- $L(-x)$, where U is associated to the holomorphic sections of $L|_U$, vanishing at x.
- \mathbb{C}_x, the skyscraper sheave, with U associated to \mathbb{C} if $x \in U$ and 0, otherwise.

2.2 Cech Cohomology

Let $\mathcal{U} = \{U_\alpha\}$ cover a complex manifold X (for α in some index set I) and let \mathcal{F} be a sheaf on X.

Definition 8. Let

$$C^i = \prod_{\alpha_1, \ldots, \alpha_i \in I} \mathcal{F}(\cap_{k=1}^i U_{\alpha_k})$$

Let $d_i : C^i \to C^{i+1}$ via (taking the product of the maps over the indices):

$$f_{\{\alpha_1, \ldots, \alpha_i\}} \mapsto \sum_{k} (-1)^k f_{\cap_{j \neq k} U_{\alpha_j}}$$

This gives rise to the ech complex:

$$C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} \ldots$$
Exercise 1. One can see this forms a complex by verifying that $d_{i+1} \circ d_i = 0$

Definition 9. We define the p^{th} ech cohomology group by taking the quotient group:

$$H^p(X, \mathcal{U}, \mathcal{F}) = \frac{\ker(d_p)}{\operatorname{Im}(d_{p+1})}$$

One may wonder to what extent does the cohomology depend on the open cover. It turns out that by a result due to Leray, beyond the scope of this paper, we can choose sufficiently refined coverings so the cohomology doesn’t change.

Note 1. Our use of the notation $H^0(X, \mathcal{O}(E))$ before is justified as $\ker d_0 = H^0(X, \mathcal{O}(E))$

Lemma 3 (Induced Long Exact Sequences). Suppose we have a short exact sequence of sheaves:

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0$$

That is, for any open set U, the functors at U to the category of abelian groups form a short exact sequence.

Then there is an induced long exact sequence of cohomology groups:

$$0 \rightarrow H^0(X, \mathcal{E}) \rightarrow H^0(X, \mathcal{F}) \rightarrow H^0(X, \mathcal{G}) \rightarrow H^1(X, \mathcal{E}) \cdots$$

Proof. The proof is an easy but tedious application of Snake lemma twice. We will not, however, prove it here. \qed
Chapter 3

Line Bundles over \(\mathbb{P}^1(\mathbb{C}) \) and Grothendieck’s Theorem for Vector Bundles

3.1 The degree map

For the rest of the paper we can fix \(p \in X \). We now turn our attention over to line bundles over \(\mathbb{P}^1(\mathbb{C}) \). We proved earlier in the paper that any vector bundle \(E \) over \(X \) can be written as \(L \oplus I_m \) where \(L \) is a line bundle. When are 2 line bundles isomorphic?

We leave the following proposition as an exercise.

Proposition 4. Let \(E, F, G, H \) be vector bundles. If

\[
0 \to E \to F \to G \to 0
\]

is short exact then:

\[
0 \to E \otimes H \to F \otimes H \to G \otimes H \to 0
\]

Is short exact as well. Furthermore, if \(H^1(X, G^* \otimes E) = 0 \), then \(F \cong E \otimes G \).

Definition 10. Consider the short exact sequence:

\[
0 \to \mathcal{O}_X(\mathbb{Z}) \to \mathcal{O}_X \xrightarrow{2\pi i f} \mathcal{O}_X(\mathbb{C}^*) \to 0
\]
And the induced long exact sequence:

\[\cdots H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X^*) \xrightarrow{\text{deg}} H^2(X, \mathcal{O}_X(\mathbb{Z})) \to H^2(X, \mathcal{O}_X) \cdots \]

The degree map is then defined to be \(\text{deg} \).

Lemma 4. The degree map is a bijection.

Proof. By Leray \(H^1(X, \mathcal{O}_X) \cong 0 \) and by a theorem of Grothendieck’s \(H^2(X, \mathcal{O}_X) \cong 0 \). By exactness, the degree map is a bijection.

Furthermore, by Poincaré duality, \(H^2(X, \mathcal{O}_X(\mathbb{Z})) \cong H_0(X, \mathcal{O}_X(\mathbb{Z})) \cong \mathbb{Z} \).

3.2 The Classification of Vector Bundles

Proposition 5. \(H^1(X, \mathcal{O}_X^*) \) is the set of line bundles on \(X \) (up to isomorphism).

Proof. Let \(L \) be a line bundle. Choose a cover fine enough so that \(L \) is trivial on each intersection. Let \(\phi_j^{-1} \circ \phi_i \) be the transitions, then \(\ker d_1 \) is precisely the set of \(\phi_j^{-1} \circ \phi_i \), as \((\phi_j^{-1} \circ \phi_i)^{-1} = \phi_i^{-1} \circ \phi_j \). Let \(\varphi_i \) be another trivialization of \(L \). Then \(\varphi_i^{-1} \circ \varphi_j^{-1} \circ \phi_j \circ f \cdot g \) where \(f, g \) are biholomorphic maps on \(U_i \cap U_j \). Note that \(\text{Im}(d_0) \) is the set of maps that can be written as \(fg^{-1} \) for some \(f : U_i \to \mathbb{C}^* \), \(g : U_j \to \mathbb{C}^* \). So up to \(\text{Im}(d_0) \), line bundles are unique elements of \(\ker d_1 \). The conclusion follows.

Proposition 6. \(H^1(X, \mathbb{C}_p) = 0 \).

Proof. We want to show \(\ker(d_1) = 0 \) so it suffices to check that \(d_0(C_0) = 0 \). Take any refinement with only one open set, \(U_1 \) containing \(p \). Let \(c \in \mathcal{F}(U_1) \), then \(d_0(c) = 0 \).

We also need the following 2 lemmas:

Lemma 5. \(\dim H^0(X, \mathcal{O}(m)) = m + 1 \) if \(m \geq 0 \).

Proof. There are some charts \(\phi_0 \) on \(U_1 \) around 0 and some chart \(\phi_1 \) on \(U_2 \) so that \(U_1 \cap U_2 \neq \emptyset \) of that set so that the transition function is \(\frac{1}{z^m} \).

It follows that the image of any section under the charts must have Laurent expansion:

\[
\frac{1}{z^m} \sum_{k=0}^{m} \alpha_i z^i
\]
Note that if \(m < 0 \), we only have the 0 section.

Lemma 6. For any vector bundle \(E \) of rank \(k \) over \(X \) we can find some \(O(n) \) so that \(E \otimes O(n) \) has a holomorphic section that is not everywhere 0.

Proof. Let \(n > \dim H^1(X, E) \). We have a section \(\sigma \) that only vanishes at \(p \). This yields the following short exact sequence:

\[
0 \to E \to E \otimes O(n) \xrightarrow{\sigma(p)^n} \mathbb{C}^n_p \to 0
\]

This induces a long exact sequence with the sum of alternating dimensions being 0, so we now have

\[
\dim H^0(X, E \otimes O(n)) = \dim H^1(X, E \otimes O(n)) + \dim H^0(\mathbb{C}_p^{nk}) + \dim H^0(X, E) - \dim H^1(X, E)
\geq nk - \dim H^1(X, E).
\]

And so \(\dim H^0(X, E \otimes O(n)) \geq 1 \).

\[\square\]

Note that this implies we can let \(n \) be so that \(\dim H^0(X, E \otimes O(n - 1)) = 0 \) but \(\dim H^0(X, E \otimes O(n)) > 0 \) (as \(\dim H^0(X, E \otimes O(n - 1)) < \dim H^0(X, E \otimes O(n)) \)).

We are finally ready to prove Grothendieck’s classification of vector bundles.

Theorem 3 (Grothendieck). Let \(E \) be a rank \(k \) vector bundle over \(X \). Then:

\[
E \cong \bigoplus_{i=1}^{k} O(d_i)
\]

Proof. Let \(O(n) \) be as above for \(p \in X \), arbitrary. We can then take a holomorphic section \(\sigma \) that never vanishes (If it did vanish at \(p \) then \(\sigma \sigma_p^{-1} \in E \otimes O(m - 1) \) wouldn’t) and thus find a trivial subbundle, \(L \) of \(E \otimes O(n) \). We let \(Q \) be the quotient bundle of \(L \) and \(E \) and suppose by induction that it decomposes as \(Q = \bigoplus_{i=1}^{k-1} O(b_i) \).

Note by Riemann-Roch, \(\dim H^1(X, O(-1)) = 0 \).
So we have the following 2 exact sequences (after tensoring with $\mathcal{O}(-1)$):

$$0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O}(E \otimes \mathcal{O}(n - 1)) \rightarrow \mathcal{O}(Q(-1)) \rightarrow 0$$

$$0 \rightarrow H^0(X, \mathcal{O}(Q(-1))) \rightarrow 0$$

So $b_i \leq 0$.

Note by Riemann-Roch, $\dim H^1(X, \mathcal{O}(-b_i)) = 0$. We now calculate:

$$H^1(X, \mathcal{O}^*) = H^1(X, \bigoplus_{i=1}^{k-1} \mathcal{O}(-b_i)) = 0$$

Now consider again

$$0 \rightarrow L \rightarrow E \otimes \mathcal{O}(m) \xrightarrow{\alpha} Q \rightarrow 0$$

Tensoring by Q^*:

$$0 \rightarrow \mathcal{O}(Q^*) \rightarrow \mathcal{O}(\text{Hom}(Q, E \otimes \mathcal{O}(m))) \rightarrow \mathcal{O}(\text{Hom}(Q, Q)) \rightarrow 0$$

The induced cohomology has the following surjection:

$$H^0(X, \text{Hom}(Q, E \otimes \mathcal{O}(m))) \rightarrow H^0(X, \text{Hom}(Q, Q)) \rightarrow 0$$

Thus there is some $\beta : Q \rightarrow E \otimes \mathcal{O}(m)$ so that $\alpha \circ \beta = id_Q$, and by splitting lemma

$$E \otimes \mathcal{O}(m) \cong L \oplus Q.$$}

Tensoring

$$E \cong \mathcal{O}(-m) \oplus \bigoplus_{i=1}^{k-1} \mathcal{O}(-m + b_i),$$

as required.

\[\square\]
Chapter 4

Principal Bundles

4.1 Preliminaries

Let X be a Riemann Surface.

Definition 1. A fiber bundle over X is a triple (E,F,π) with E and F being topologies so that:

- $\pi : E \to X$ is a surjection.
- For every $x \in X$ there is an open set $x \in U$ and a chart $\phi : \pi^{-1}(U) \to U \times F$ so that $\text{proj}_U \circ \phi(q) = \pi(q)$ for $q \in \pi^{-1}(U)$

We say that F is the fiber, E is the total space and π is the projection.

Definition 2. Let G be a group. A principal G-Bundle, P, is a fiber bundle with G as its fiber. We also require a continuous right G-action on P that is free and transitive.

We mainly concern ourselves with G being a Lie-group.

Definition 3. Let (P,π) be a principal G-bundle over X. Let ρ be a continuous action on the space of homeomorphisms of a topology F. Let ρ be the right action given by the $(p,f)g = (pg,\rho(g^{-1}f))$. We say the associated bundle is $(P \times_\rho F,\pi_\rho)$ where:

- $P \times_\rho F = P \times F/\sim$ where the equivalence classes are given by $[pg,f] = [p,\rho(g)f]$
• $\pi_p[p, f] = \pi(p)$

Definition 4. Let H be a subgroup of G. We say P has a reduction to H, if there is a non-zero section in $P \times_G G/H$.

Definition 5. Let ρ be a representation of G into $GL(V)$. We define $P \times_G \rho : P \times_G G \to P \times_G GL(V)$.

Definition 6. Let G be a connected compact Lie group. Let T be a maximal torus and N, its normalizer. Then we define the Weyl group to be N/T.

Definition 7. We say a Lie group is reductive if its Lie algebra is reductive. We say a Lie algebra is reductive if it can be written as a direct sum of a semi-simple algebra and its center.

From this point on we let G be a compact Lie group, let G_0 be the connected component at the identity and let \mathfrak{g} be its Lie-algebra. We let H, N, W and \mathfrak{h} be a Cartan subgroup, normalizer of a Cartan subgroup, Weyl group and the lie subalgebra of the Cartan subgroup. Let let ad be the adjoint representation of G.

Let P be a holomorphic principal G-bundle and $E = P \times_G ad$.

Finally, let $H^1(X, \mathcal{O}_X(G))$ be the set of holomorphic G-bundles over X.

Theorem 4 (Grothendieck’s Theorem for the Orthogonal Case). A vector bundle V has an orthogonal form if and only if it is isomorphic to its dual.

We do not prove this theorem within this paper.

Lemma 7. Suppose we have a holomorphic section s in E and there is a fiber E_a so that $s(a)$ is a regular element of the lie algebra of E_a. Then for any x, $s(x)$ is regular in E_x.

Proof. The coefficients of the polynomial defining $ads(x)$ must be constant as they are holomorphic functions, by compactness of X. Thus $s(x)$ is a regular element everywhere. \hfill \square

Lemma 8. Suppose we have a section s in E. Then we have a section in $P \times_G G/N$.

Proof. By the maximal torus theorem, any 2 Cartan subgroups are conjugate. The kernel of the action on any particular maximal torus T is $N(T)$. It follows that G/N is the set of Cartan subalgebras. The section given by sending $s(x)$ to its corresponding subalgebra gives a section in $P \times_G G/N$. \hfill \square

13
Lemma 9. Suppose we have a section in $P \times_G G/N$. Then we have a section in $P \times_G G/T$.

Proof. We first prove the Weyl group is discrete. For any torus T of rank n we have the following short exact sequence:

$$0 \to \mathbb{Z}^n \to \mathbb{R}^n \to T \to 0$$

It follows that $\text{Gal}(K^{\text{sep}}/K)(T) \subset \text{GL}_n(\mathbb{Z})$ which is discrete.

We then have the sequence:

$$0 \to P \times_G W \to P \times_G G/T \to P \times_G G/N \to 0$$

Since X is simply connected $P \times_G W$ is trivial and we have the desired.

Definition 8. We define the Killing form as:

$$B(x,y) = \text{tr}(\text{ad}(x)\text{ad}(y)) \text{ for } x,y \in \mathfrak{g}.$$

It has a few key properties that we will use. Namely:

- That the Killing form of a nilpotent algebra is everywhere 0.
- A Lie algebra is Semi-simple iff the Killing form is non-degenerate over the algebra
- 2 ideals of a Lie algebra have no intersections then they are orthogonal with respect to the Killing form.

Suppose G is a compact reductive Lie group. Writing $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}$ for the abelian and semi-simple parts respectively induces a decomposition of each of the fibers $E_x = E_x^1 \oplus E_x^s$. It suffices to show we can find a regular element in the semi-simple part.

Now let G be a compact semi-simple Lie group. Let E_k be the vector subfibers of E with meromorphic sections of degree at least k. Notice that $[E_i, E_j] \subset E_{i+j}$ by counting degrees. This implies that elements of E_1 are $ad_{\mathfrak{g}}$-nilpotent. Let the sub-algebra defined by E_1 be \mathfrak{g}_1 and we now have an orthogonal fiber E_0, by the Killing form. Let the orthogonal sub-algebra under the Killing form be \mathfrak{g}_0.

Lemma 10. There is a section in $P \times_G \text{ad}$ that is regular at some point.

Proof. Consider the Cartan subalgebras of \mathfrak{g}_0. Choose a regular element. Since \mathfrak{g}_0 is orthogonal to \mathfrak{g}_1, lift it to a global section.

We need 1 more lemma before we are finally ready to prove Grothendieck’s theorem.

Lemma 11. If G is a reductive connected Lie group. There is some finite subgroup, z, so that G/z is the product of an abelian and semisimple group.
4.2 Grothendieck’s Theorem

Theorem 5. Classification of Principle Bundles on $\mathbb{P}^1(\mathbb{C})$ Let G be a reductive connected Lie group. The map:

$$H^1(X, O_X(H))/W \to H^1(X, O_X(G))$$

Is a bijection.

Proof. We have seen the surjectivity of it above. Consider the commutative diagram:

$$
\begin{array}{ccc}
H^1(X, O_X(H)) & \longrightarrow & H^1(X, O_X(G)) \\
\downarrow & & \downarrow \\
H^1(X, O_X(H/z)) & \longrightarrow & H^1(X, O_X(G/z))
\end{array}
$$

Suppose $\alpha, \beta \in H^1(X, O_X(H))$ are mapped to the same image in $H^1(X, O_X(G))$. Looking at the diagram, it is clear that they must have the same image in $H^1(X, O_X(G/z))$ or $H^1(X, O_X(H/z))$. In the first, by 3rd isomorphism theorem we have that α and β are in the same equivalence class when taking the quotient with the Weyl group: $(N/z)/(H/z) = W$. In the second case we have a contradiction as $H^1(X, z) = 0$ by z being finite and X being connected inducing a bijection in the first cohomology groups $H^1(X, H)$ and $H^1(X, H/z)$.

\[\square\]
Chapter 5

Acknowledgments

We would like to thank Stephen New for his patience when explaining topics in differential geometry. He taught me all the Lie theory I know and suggested this topic as a capstone for the course in Compact Lie Theory.
Bibliography

[1] Daniel Appel. “Theory of Real Bundles on the Projective Line”. PhD thesis. UC Berkeley, 2017.

[2] V Balaji. “Lectures on principal bundles”. In: Moduli Spaces and Vector Bundles 359 (2009), p. 1.

[3] Sabin Cautis. “Vector bundles on Riemann surfaces”. In: Lecture notes, Columbia University (2005).

[4] Alexander Grothendieck. “Sur la classification des fibrés holomorphes sur la sphere de Riemann”. In: American Journal of Mathematics 79.1 (1957), pp. 121–138.

[5] Robin Hartshorne. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.

[6] Nigel J Hitchin, Graeme B Segal, and Richard Samuel Ward. Integrable systems: Twistors, loop groups, and Riemann surfaces. Vol. 4. OUP Oxford, 2013.

[7] Anthony W Knapp. Lie groups beyond an introduction. Vol. 140. Springer Science & Business Media, 2013.