Analysis of changes in morphological characteristics of leaves and stems in some sweet potato cultivars (*Ipomoea batatas* L.) from Simalungun and Dairi highlands planting in the lowlands

M Irwan, Rosmayati*, D S Hanafiah, N Rahmawati and D Bakti

Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Indonesia

E-mail: *rosmayati@usu.ac.id

Abstract. Sweet potatoes can grow in the lowlands and highlands. The ability of sweet potatoes to grow outside their provenance is determined by their ability to adapt to new environments that can be seen from changes in agronomic character. This research aimed to analyse the changes in the morphological character of leaves and stems in some sweet potato cultivars from the Simalungun and Dairi Highlands planted in the lowlands. The experiment was conducted from April to August 2018 in the experimental garden in Cengkeh Turi Village, Binjai. The experiment was arranged in a randomized block design with one factor, namely the sweet potato plant genotype consisting of 5 genotypes from different accessions (accession of Saribu Dolok Simalungun, accession of Kesemak Simalungun, accession of Batang Beruh Dairi, accession of Binjai and variety of Beta-1). The results showed that cultivars of sweet potato G5 (Seribu Dolok), G6 (Kampung Kesemak) and G10 (Batang Beruh) originating from the highlands of Simalungun and Dairi as well as Beta-1 have leaf and character if planted in the lowlands. The three cultivars from the highlands were able to grow well in the lowlands while in the accession of a thousand land did not have differences in morphology.

1. **Introduction**

Sweet potato (*Ipomoea batatas* L.) originated from Central America; European explorers began to introduce this plant in early 1500 to Africa and India, spread to China in 1594, then to Taiwan and Japan in 1594 and its spread throughout Asia including Indonesia [1]. In 2015 Indonesia was the third producer of sweet potato in the world with a total production of 160.53 tons/ha. However, the development of planting area in Indonesia during 1995 to 2016 had decreased by 2.95% per year due to the conversion of agricultural land [2].

The growth of plants including sweet potatoes is influenced by the environment and the ability of plants to adapt. Sweet potatoes have good adaptability that allowed these plants to grow in any soil condition and without fertilization, but the temperature significantly affected the production of tubers in sweet potatoes. The optimum temperature for sweet potato tuber formation is 24°C, the low temperature at high locations causes tubers not to form well [3]. Metabolic processes and hormonal activity influence this difference in growth. Hormones affect the response in plants, such as the growth of roots, stems, shoots and flowering.
The response depends on the species, plant parts, developmental phase, hormone concentration, interactions between hormones, and various environmental factors. Auxin, cytokines and gibberellins can also promote cell extension and division [4].

Agronomic characterization of individual genotypes is an important step in plant breeding programs because it is an action strategy to assemble new cultivars formed through knowledge of agronomic characteristics [5].

The aim was to analyse the changes in the character of leaves and stems in some sweet potato cultivars from Simalungun and Dairi highland, planted in lowland environments as initial data to determine the adaptability of the sweet potato cultivars in a different environment from the place of its origin.

2. Materials and methods

The experiment was arranged in a randomized block design with one factor, namely the sweet potato plant genotype consisting of 5 genotypes from different accessions (accession of Saribu Dolok Simalungun, accession of Kesemak Simalungun, accession of Batang Beruh Dairi, accession of Binjai and varieties of Beta-1) with four replications. Sweet potato accession of Binjai (lowland) and Beta-1 national superior varieties are comparative genotypes. Planting materials were taken from different areas of origin that were planted in the lowlands with an altitude of 35 m above sea level. Plant maintenance included fertilizing, watering, pest, diseases and weeds control. The study of morphological characters in sweet potato leaves and stems was observed at 90 days of plant age, namely the ability to convolute, stem type, stem diameter, stem length, dominant stem colour, stem secondary colour, stem hair, general leaf shape, lobe type, number of lobes, middle lobe shape, leaf size, leaf colour, old leaf colour, shoot colour, leaf stalk length and leaf stalk colour.

3. Results and Discussion

The research results shown in Tables 1, 2 and 3 indicated that the three sweet potato cultivars could grow well in the lowlands. The visual observation data of the three sweet potatoes types showed the growth of some changes in morphological characters in the sweet potato leaves and stems.

Table 1. Changes of morphological character sweet potato genotype 5 accession Silimakuta, Seribu Dolok village, Simalungun

No	Parameters	In the Lowlands	In the Highlands
1	Twinning	Moderately twinning	Slightly twinning
2	Plant type	Extremely spreading (>250 cm)	Spreading (151-250 cm)
3	Vine internode diameter	Intermediate (7-9 mm)	Thick (10-12 mm)
4	Vine internode length	Short (3-5 cm)	Intermediate (6-9 cm)
5	Predominant vine color	Mostly purple	Green base
6	Secondary vine color	Green tip	Purple spots
7	Vine tip pubescent	Moderate	Moderate
8	General outline of the leaf	Triangular	Lobed
9	Leaf lobes type	Very slight	Deep
10	Leaf lobes number	3	6
11	Shape of central leaf lobe	Semi-Elliptic	Triangular
12	Mature leaf size	Medium (8-15 cm)	Large (16-25 cm)
13	Abaxial leaf vein pigmentation	All veins mostly or totally purple	Purple spots in several veins
14	Mature leaf color	Mostly purple	Green
15	Immature leaf color	Green with purple edge	Slightly purple
16	Petiole length	Short (10-20 cm)	Intermediate (21-30 cm)
17	Petiole pigmentation	Totally or mostly purple	Green with purple near leaf
Table 2. Changes of morphological character sweet potato genotype 6 accession Silimakuta, Kampung Kesemak village, Simalungun

No	Parameters	In the Lowlands	In the Highlands
1	Twinning	Slightly Twinning	Slightly Twinning
2	Plant type	Spreading (151-250 cm)	Extremely spreading (>250 cm)
3	Vine internode diameter	Thin (4-6 mm)	Intermediate (7-9 mm)
4	Vine internode length	Short (3-5 cm)	Intermediate (6-9 cm)
5	Predominant vine color	Mostly dark purple	Purple base
6	Secondary vine color	Green with mostly dark purple	Green spots
7	Vine tip pubescent	Heavy	Sparse
8	General outline of the leaf	Lobed	Lobed
9	Leaf lobes type	Moderate	Deep
10	Leaf lobes number	5	5
11	Shape of central leaf lobe	Semi-Elliptic	Triangular
12	Mature leaf size	Medium (5-8 cm)	Large (16-25 cm)
13	Abaxial leaf vein pigmentation	All veins mostly or totally purple	Green
14	Mature leaf color	Green	Green
15	Immature leaf color	Mostly purple	Slightly purple
16	Petiole length	Short (10-20 cm)	Intermediate (21-30 cm)
17	Petiole pigmentation	Green with purple stripes	Green

Table 3. Changes of morphological character sweet potato genotype 10 accession Sidikalang, Batang Beruh village, Dairi

No	Parameters	In the Lowlands	In the Highlands
1	Twinning	Non-Twinning	Non-Twinning
2	Plant type	Spreading (151-250 cm)	Semi-erect (75-150 cm)
3	Vine internode diameter	Thin (4-6 mm)	Thin (4-6 mm)
4	Vine internode length	Short (3-5 cm)	Intermediate (6-9 cm)
5	Predominant vine color	Mostly dark purple	Green base
6	Secondary vine color	Green tip	Absent
7	Vine tip pubescent	Moderate	Sparse
8	General outline of the leaf	Hastate	Lobed
9	Leaf lobes type	Moderate	Deep
10	Leaf lobes number	5	6
11	Shape of central leaf lobe	Semi-Elliptic	Semi-Elliptic
12	Mature leaf size	Medium (8-15 cm)	Small (<8 cm)
13	Abaxial leaf vein pigmentation	All veins mostly or totally purple	Purple spots in several veins
14	Mature leaf color	Yellow-green	Green
15	Immature leaf color	Mostly purple	Purple both surfaces
16	Petiole length	Short (10-20 cm)	Short (10-20 cm)
17	Petiole pigmentation	Some petioles purple, others	Green with purple at both ends
Table 4. Morphological character of sweet potato Tanah Seribu accession genotype, Binjai Selatan, Binjai

No	Parameters	In the Lowlands
1	Twinning	Non-Twinning
2	Plant type	Spreading (151-250 cm)
3	Vine internode diameter	Thin (4-6 mm)
4	Vine internode length	Intermediate (6-9 cm)
5	Predominant vine color	Green with many purple spots
6	Secondary vine color	Green base
7	Vine tip pubescent	Moderate
8	General outline of the leaf	Triangular
9	Leaf lobes type	Very slight
10	Leaf lobes number	5
11	Shape of central leaf lobe	Triangular
12	Mature leaf size	Small (<8 cm)
13	Abaxial leaf vein pigmentation	Green
14	Mature leaf color	Green
15	Immature leaf color	Green with purple edge
16	Petiole length	Short (10-20 cm)
17	Petiole pigmentation	Green with purple stripes

Table 5. Changes of morphological character sweet potato of varieties Beta 1 Malang, East Java, Indonesia

Parameters	Beta 1 (in the lowlands)	Beta 1
1 Twinning	Slightly Twinning	Slightly Twinning
2 Plant type	Spreading (151-250 cm)	Spreading (151-250 cm)
3 Vine internode diameter	Very thin (<4 mm)	Thin
4 Vine internode length	Very short (<3 cm)	Short
5 Predominant vine color	Green with few purple spots	Green
6 Secondary vine color	Purple Base	Purple nodes
7 Vine tip pubescent	Sparse	Sparse
8 General outline of the leaf	Lobed	Triangular
9 Leaf lobes type	Moderate	No lateral lobes
10 Leaf lobes number	(4-5)	1
11 Shape of central leaf lobe	Semi-Elliptic	Toothed
12 Mature leaf size	Small (<8 cm)	Medium
13 Abaxial leaf vein pigmentation	All veins mostly or totally purple	All veins mostly purple
14 Mature leaf color	Green	Green
15 Immature leaf color	Purple Both Surface	Green with purple edge
16 Petiole length	Very short (<10 cm)	Intermediate
17 Petiole pigmentation	Green	Green with purple at both ends

Local sweet potato germplasm is an important genetic material for genetic recombination material and study material for environmental and genotype interaction, especially those related to soil chemical and climate changes in local or regional regions. Local sweet potatoes are related to the growing environment. Ex-situ conservation efforts will help prevent extinction. Ex-situ germplasm collection utilization can be
used as study material for local cultivar germplasm accession responses to environmental changes. Christopher [6] claimed that plant genotypes in different environments would show different expressions. Unpredictable environmental influences such as climate and soil chemistry are challenges in forming genotypes that are tolerant to environmental change.

The results of the three sweet potato cultivars have good adaptability. Sweet potatoes from Simalungun and Dairi show significant growth rates. The Tanah Seribu genotype of sweet potato crop yields is better to be planted in lowlands because of the appropriate conduction temperature. However, Beta-1 plants do not show suitable growth in the lowlands in terms of leaves and stems. Based on the research results of Rosmayati and Bakti [7], it was stated that sweet potato cultivars from the highlands had growth that was able to increase production based on the morphology of leaves and stems. This condition was in accordance with Gajanayake [8] statement, that the altitude of the place would affect soil conditions and climate. At high altitudes, the temperature will be lower so that it can damage and affect the tubers produced by sweet potatoes in both quality and quantity.

Furthermore, Rukmana [9] stated that lowlands usually have low rainfall (<1,500 mm/year), low humidity levels (30-40%) and high air temperatures (> 25 °C). Lowland soil conditions are generally crumb, loose, tend to clay until sandy clay and clump with low to moderate levels of organic matter and low productivity levels. While highlands have high rainfall (> 1,500 mm/year), high humidity levels (65-70%) and low air temperatures (<25 °C), the soil conditions are crumbs, loose, dusty clay and high levels of organic matter with moderate to high productivity.

The intensity of light in the highlands is higher than the intensity of light in the lowlands. The quality, intensity, and duration of radiation that affect plants have a great influence on various plant physiological processes. Light affects the formation of chlorophyll, photosynthesis, phototropism, and photoperiodic. The effect of light increases the work of enzymes to produce metabolic substances for chlorophyll formation. Meanwhile, in the photosynthesis process, light intensity affects the rate of photosynthesis during a bright reaction. Thus, light indirectly controls the growth and development of plants, because photosynthesis results in the form of carbohydrates are used for the formation of plant organs. The development of plant forms is also influenced by light (photo morphogenesis) [10]. Nai'em [11] stated that the factors that cause variations between plants due to genetic differences, growing environmental differences and the interaction between the two. In sweet potato plants, there is a high interaction between genotypes and environment to root growth [12]. Genotypes respond to environmental changes with adaptation mechanisms so that the environment is optimal for plant growth. All genotypes are spread in all environments, but the planting environment is only in certain environments [13]. Furthermore, Ching (2000) stated that sweet potatoes grown in the middle plains could increase the number and weight of roots [14].

Plants adapted to respond the unfavourable external conditions by starting changes in enzymes/hormones to changes in body morphology. This change does not occur instantaneously, the plant continues to develop to make itself last for a long time. Plant adaptation varies depending on domestication where the plant is cultivated, generally, plant adaptation is in response to the short length of sun irradiation intensity and temperature. The intensity of the sun and the temperature depends on the height of the area, the higher the place the sun's intensity and the temperature decreased.

4. Conclusions
Sweet potato cultivars G5, G6 and G10 originating from the highlands in Simalungun and Dairi showed some differences in the character of leaves and stemmed when planted in the lowlands. The three cultivars from the highlands were able to grow well in the lowlands which showed that the three sweet potato cultivars had excellent adaptability. Tanah Seribu genotype of sweet potato plants shows better results for planting in the lowlands due to suitable temperature conditions. However, Beta 1 plants do not show suitable growth in the lowlands in terms of leaves and stem characters.

References
[1] Mohanraj R and Sivasankar S 2014 Sweet Potato (Ipomoea batatas [L.] Lam) - A Valuable Medicinal Food: A Review J Med Food 17 7 pp 733-41
[2] Supardan M D, Rahman A, Djafar F, Ruslan, Nurlaila and Busthan M 2014 Strengthening Innovation Ability and Mastery of Natural Resource Based Technology in the Framework of Supporting Import Substitution Industry Development (Aceh, Industrial Research and Standardization Center for Banda Aceh)

[3] Aldow A M 2017 Factors Affecting Sweet Potato Production in Crop–Livestock Farming Systems in Ethiopia (Norwegian: Norwegian University of Life Sciences)

[4] Raharjeng A R P 2015 Effect of Abiotic Factors on Kinship Relationship of Sansevieria trifasciata L. Plant Journal of Biota 1 1 pp 33-41

[5] Pablo F V, Godoy D R Z, de Almeida L C F and Castoldi R 2016 Agronomic characterization of sweet potato accessions Comunicata Scientiae 8 1 pp 116-25

[6] Christopher N, Terkimbi V and Ochigbo A E 2014 Genotype-Environment Interaction for Plant Development and Some Yield Components in Common Bean (Phaseolus vulgaris L.) during the 2012 Wet Season Greener Journal of Plant Breeding and Crop Science 2 1 pp 001-8

[7] Rosmayati and Bakti D 2018 Identification and phylogenetic analysis of local yellow and orange sweet potatoes genotypes in Sumatera Utara IOP Conf. Ser.: Earth Environ. Sci. 122 012048

[8] Gajanayake B, Raja K R and Mark W S 2015 Quantifying Growth and Developmental Responses of Sweet potato to Mid-and Late-Season Temperature Journal Agronomy 107 5 pp 1854-62

[9] Rukmana R 1997 Cultivated Sweet Potatoes and Post-Harvest (Yogyakarta: Kanisius)

[10] Rahmawati I 2009 Response of Sansevieria spp Growth to Lead Metal (Pb) from 2-stroke Motor Vehicle Smoke (Yogyakarta: UGM)

[11] Na’iem M 2004 Genetic diversity, tree breeding and forest productivity improvement in Indonesia. Speech inauguration of Professor in the Faculty of Forestry (Yogyakarta: Gajah Mada University)

[12] Idebola P O, Shegro A, Laurie S M, Zulu L N and Pillay M 2013 Genotype x environment interaction and yield stability estimate of some sweet potato [Ipomoea batatas (L.) Lam] breeding lines in South Africa Global Journal of Plant Breeding and Genetics 5 9 pp 182-6

[13] Waluyo B, Karuniawan A, Ruswandi D end Istifadah N 2017 Response to the Accession of Loca Sweet Potatoes Collected Ex-Sit on Environmental Change Suboptimal Land Technology Innovation for the Development of Various Peanuts and Bulbs to Support the Achievement of Food Sovereignty Proc. of the National Seminar on Research Results of Various Nuts and Bulbs Crops 2016

[14] Ching A 2000 The effect of transplant container cell shape on vegetative growth and root yield of sweet potato Acta Hort. 516 pp 163–6

Acknowledgments
This research is part of the USU 2018 TALENTA research scheme supported by the University of Sumatera Utara with a contract number 2590 / UN5.1.R / PPM / 2018, 16 March 2018. The author would like to thank for the financial support and facilities for the implementation of this research.