Seawater signatures in the supracrystal Lewisian Complex, Scotland

J. Parnell1, A.J. Boyce2 and T. Næraa3

1School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom; 2Scottish Universities Environmental Research Centre, Rankine Avenue, Glasgow G75 0QF, United Kingdom and 3Department of Geology, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden

Abstract
Marble in the supracrustal rocks of the Lewisian Complex, Tiree, includes chlorine-bearing amphiboles, chlorine-rich apatite, sulphur-rich scapolite, albite and phlogopite, all of which are regarded as evidence for evaporites in other metamorphosed sequences. Titanite yields U–Pb ages of ~1.6 Ga, i.e. late Laxfordian, which excludes a younger imprint of sodium metasomatism. Traces of anhydrite, and isotopically heavy pyrite, also indicate deposition from seawater. Elsewhere in the Hebrides, tourmaline in Lewisian Complex marbles may represent seafloor exhalative deposits. Combined, the evidence suggests Lewisian Complex supracrustal marbles formed in an evaporative environment, like other Palaeoproterozoic successions across the North Atlantic region.

1. Introduction
The Lewisian Complex of northern Britain has been very extensively studied for over 200 years (MacCulloch, 1819; Peach et al., 1907; Park & Turner, 1987; Mendum et al. 2009). The complex consists particularly of tonalitic gneisses of Archaean age, derived from an igneous protolith. In common with Precambrian basement elsewhere in the North Atlantic region, together with a uniformity of facies assemblage across the region, the Lewisian Complex also includes local supracrustal successions of metasediment (Fig. 1). The supracrustal successions contain a range of chemical sediments, including graphitic schists, ironstones and marbles, which where dated (Whitehouse & Bridgwater, 2001; Park, 2002) are mid-Palaeoproterozoic (~1.9–2.0 Ga). Across the region, from North America to Russia (Fig. 1; Table S1 in the Supplementary Material available online at https://doi.org/10.1017/S0016756822000474), these successions have evidence of former evaporites in the form of surviving sulphate minerals, metamorphic minerals with a signature of evaporitic seawater, and sulphur isotope data. To date, however, no such evidence is reported from Britain. Here we report evidence for signatures that would be consistent with evaporitic facies in the Lewisian Complex of Scotland. The uniformity of facies assemblage across the region, together with a setting related to an accretionary plate boundary (Park, 2002), implies that evaporitic facies were marine rather than lacustrine.

2. Geological setting and methods
Samples were collected from supracrustal rocks in the Lewisian Complex on the island of Tiree (Fig. 2). The supracrustal rocks on Tiree include garnet schists, graphitic schists, sandstones, ironstones and marbles (Westbrook, 1972; Whitehouse & Russell, 1997). The best exposed sections are at Vaul (National Grid Reference NM 048490), Balephetrish (NM 014473) and Gott (NM 044459). They are metamorphosed to amphibolite facies and sheared, but they preserve detrital mineralogy. Estimated P–T conditions are 10.5 ± 1.5 kbar and 810 ± 50 °C (Cartwright, 1992).

Mineral phenocrysts are especially abundant in the Tiree marbles (Fig. 3). The inclusions were investigated using scanning electron microscopy, conducted in the ACEMAC facility at the University of Aberdeen.

The mineralogy of the Lewisian Complex elsewhere in Scotland is affected by sodium metasomatism which also affected the Neoproterozoic Moine Supergroup (Sutton & Watson, 1951; May et al. 1993). An imprint by Neoproterozoic or younger fluids would exclude interpretations of a Lewisian protolith, and must be tested. Accordingly, the assemblage of mineral phenocrysts was dated using U–Pb analysis of titanite crystals. U–Pb isotope analyses were done using the laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) laboratory at Lund University, where a Teledyne Photon Machines G2 laser is coupled to a Bruker Aurora Elite quadrupole ICP-MS. The laser is equipped with a HelEx two-volume sample cell with an energy meter. Instrument tuning, using NIST612, was aimed at obtaining high and stable signal counts on lead isotopes, on low oxide production (below 0.5 % monitoring 238U/238U16O and 232Th/232Th16O).
and on Th/U ratios around 1. Standard-sample-standard bracketing incorporated the natural titanite MKED1 (Spandler et al. 2016) as primary reference material, and natural titanite ONT2 (Spencer et al. 2013) as a secondary standard. Each analysis was made with 300 shots at 10 Hz with a fluence of 1.5 J cm$^{-2}$. Baseline compositions were measured for 30 s before each measurement, and subtraction was done with a step-forward approach. Common Pb was monitored by measuring 202Hg and mass 204 (204Hg + 204Pb). Baseline levels on mass 204 were c. 440 cps with a standard error (SE) around 20 cps (5–6 %). Data reduction was done with iolite using the X_U_Pb_Geochron4 DSR (Paton et al. 2010, 2011), and the common Pb correction was done using the VizualAge DRS (Petrus & Kamber, 2012). Plotting and final age calculations were done with Isoplot(R); intercept ages are based on ‘model 1’ calculations, and errors confidence levels are 95 % with overdispersion (Vermeesch, 2018).

For sulphur isotope analysis, pyrite samples were combusted with excess Cu$_2$O at 1075 °C in order to liberate the SO$_2$ gas under vacuum conditions. Liberated SO$_2$ gases were analysed on a VG Isotech SIRA II mass spectrometer, with standard corrections applied to raw δ^{34}S values to produce true δ^{34}S. The standards employed were the international standard NBS-123, IAEA-S-3 and SUERC standard CP-1.

3. Criteria

Several criteria have been proposed for the identification of replaced evaporites in Precambrian successions (Warren, 2016). The criteria are based particularly on the chemistry of mineral phenocrysts that developed during metamorphism up to hundreds of millions of years after sedimentation (Moine et al. 1981; Warren, 2016; Hammerli & Rubenach, 2018). The evidence is most convincing where there are multiple positive criteria. The most direct evidence is:

(i) The survival of evaporite minerals anhydrite, gypsum or halite.
(ii) Pseudomorphs of evaporite minerals, most distinctively gypsum and halite (e.g. Ririe, 1989; Zentmyer et al. 2011).

Evidence for former evaporites also includes the growth of specific minerals containing chlorine or boron derived from seawater:

(iii) Phlogopite mica, which contains a high magnesium content and traces of chlorine (Schreyer et al. 1980; Moine et al. 1981).
(iv) Minerals indicative of sodium metasomatism, including albite and especially scapolite, which contains traces of sulphur and/or chlorine (Mora & Valley, 1989). High sulphur levels in particular reflect assimilation of sulphate evaporites (Morrisey & Tomkins 2020; Zeng et al. 2020), while high chlorine levels are also measured in scapolite from skarn deposits (Mora & Valley, 1989).
(v) Tourmaline, which is the major reservoir of boron in metasubcrortic rocks (Henry et al. 2008; Riehl & Cabral, 2018). Tourmaline is often restricted to beds containing scapolite assumed to be derived from saline fluids (Mora & Valley, 1989).

Corroborative evidence includes:

(vi) Chlorine-rich apatite, which could be derived from a magmatic source or seawater, and which is positive evidence where a magmatic input is lacking (Mao et al. 2016).
(vii) Sulphur isotope compositions of pyrite, which are comparable to the heavy composition of evaporites/seawater rather than the near-zero composition of magmatic sulphur (Golani et al. 2002; Johnston et al. 2006).
(viii) High-salinity fluids, especially in ore deposits that formed during or shortly after sedimentation (e.g. Conliffe et al. 2013).

4. Results

Mineral phenocrysts in the Tiree marbles (Figs 3 and 4) are dominated by pyroxenes (enstatite, diopside), amphiboles (tremolite), olivine (forsterite), micas and feldspars, and also scapolite, titanite (spathne), apatite, epidote, pyrite and quartz.
Minerals present in trace amounts include the sulphates anhydrite and barite. Anhydrite occurs as crystal fragments up to 15 μm size, in a calcite-rich groundmass. Barite occurs as a disseminated overprint on phenocrysts of pyroxene and amphibole. Measurements of the sulphur isotope composition of five pyrite crystals in marble at Gott yielded closely clustered values of 11.7, 11.7, 11.7, 11.9 and 12.3 ‰ (Fig. 5).

Sodium metasomatism is represented by replacive albite and scapolite. Scapolite has been recognized in the Tiree marble since the first petrographic studies (Coomaraswamy, 1903; Hallimond, 1947), and the Lewisian supracrustal rocks are conspicuously richer in scapolite than other rocks in Britain (Flett, 1907). The anion chemistry of scapolite includes variable combinations of −Cl, −F, −S and −OH, where proportions of −Cl and −S are interpreted to suggest...
relative contributions from replaced halite and gypsum (Warren, 2016). Sulphur and chlorine were measured up to 2.30 % and 0.93 % respectively in the scapolite (Table S2, in the Supplementary Material available online at https://doi.org/10.1017/S0016756822000474). The higher sulphur contents occur in scapolite with the lower chlorine contents, as expected when both contribute to the same atomic sum. The marble at Gott, and to a lesser extent in other Tiree marble, is partially altered to masses of albite.

Phlogopite occurs pervasively through the supracrustal marbles on Tiree and in other Scottish localities. The phlogopite

Fig. 3. (Colour online) Phenocryst-bearing marble, Palaeoproterozoic, Tiree. (a) Gott, rich in olivine (arrowed), pyroxenes, amphiboles, K-feldspar and streaks of graphite; (b) Balephetrish, rich in pyroxenes (arrowed) and amphiboles. Pink colour due to talc groundmass.

Fig. 4. (Colour online) Backscattered electron images of mineral phases in marble, Gott, Tiree. (a) Multi-phase phenocryst pf pyroxene (light grey, P) with potassium feldspar (grey, K) and titanite (bright, T), all coated with veneer of quartz (black, Q). (b) Abundant small barite (bright, B) within potassium feldspar and pyroxene. (c) Two crystals of titanite (T) within calcite, and abundant small pyrite (bright). (d) Crystal of anhydrite (A), showing characteristic cubic cleavage.
consistently contains 0.15 to 0.25 wt % chlorine. Apatite crystals are chlorine-bearing, up to 2.8 wt % where measured (Table S3, in the Supplementary Material available online at https://doi.org/10.1017/S0016756822000474). The marble is not spatially related to any magmatic deposits. Tourmaline is not recorded in Tiree marble, but it does occur in marbles in several other Lewisian supracrustal outcrops in Harris (Coward et al. 1969), Iona (Rock, 1987) and Gairloch – Loch Maree (Robertson et al. 1949).

Analyses for dating of the titanite in marble from Gott, Tiree, were made in situ on 13 titanite grains in polished rock slabs (Fig. 4), ranging in size from c. 100 × 50 μm to 700 × 200 μm. A total of 30 spots were analysed; the largest grain was targeted with seven analyses. No age differences are observed between the different grains. All analysed domains are common-Pb (PbC)-rich, with seven analyses. No age differences are observed between the different domains. This indicates that the applied PbC works well, and age data are therefore obtained from the PbC data. Desecting all reverse discordant analyses yields an upper intercept at 330 ± 157 Ma and an upper intercept at 1593 ± 7 Ma (n = 30; MSWD = 5.4). This indicates that the applied PbC works well, and age data are therefore obtained from the PbC data. Desecting all reverse discordant analyses yields an upper intercept at 1593 ± 11 Ma (n = 17; MSWD = 3.0) (Fig. 6), and selecting only 100 % discordant analyses yields a Concordia age of 1586 ± 7 (n = 4; MSWD = 2.2). The best age estimate for the titanite crystallization is 1593 ± 11 Ma (MSWD = 3.0).

5. Discussion

5.1 Sulphates and sulphides

The anhydrite in Tiree is the first recorded in the Lewisian Complex. In Palaeoproterozoic supracrustal successions in the North Atlantic region, anhydrite is preserved in Greenland (Horn et al. 2019), Sweden (Martinsson et al. 2016) and Russia (Serdyuchenko, 1975). Together with well-preserved pseudomorphs after gypsum in many regions including Sweden (Lager, 2001) and Canada (Bell & Jackson, 1974; Zentmyer et al. 2011; Hodgskiss et al. 2019), there is extensive evidence for sulphate-bearing seawater, at ~2.0–1.9 Ga. In several cases, sulphur isotope data are available and are strongly positive, in accord with an evaporative origin for the anhydrite. The occurrence of anhydrite in the Lewisian Complex is therefore not anomalous, and rather is consistent with the global picture of widespread evaporites in the Palaeoproterozoic. Evidence for pseudomorphs in Tiree may be obscured by shearing focused on the metasediments.

The temporal relationship between anhydrite and barite cannot be proven, but the overprinting pattern of the barite suggests that it is most likely to be later, in which case the barite sulphur could have been remobilized from the anhydrite and precursor gypsum. In the Hudson Bay region, pseudomorphs of ~2.0 Ga gypsum are similarly overprinted by barite (Hodgskiss et al. 2019).

The sulphur-bearing scapolite from Tiree suggests derivation from a sulphate-rich sedimentary environment (Morrissey & Tomkins 2020; Zeng et al. 2020). Several other Palaeoproterozoic successions contain scapolite attributed to metamorphism of evaporites, but only one of five data sets has a sulphur content as high as the range for the Tiree scapolite (Table S2, in the Supplementary Material available online at https://doi.org/10.1017/S0016756822000474).

Globally, sulphide deposits of the mid-Palaeoproterozoic that have been characterized by sulphur isotopic composition fall into two main groups. Volcanic massive sulphides derived from magmatic-hydrothermal fluids have a composition of ~0 ‰, while sulphides attributed to derivation from seawater sulphate have a heavy (positive δ34S) composition. This could include volcanic massive sulphides in which the hydrothermal fluids were recycled from seawater rather than purely magmatic. Mid-Palaeoproterozoic (1.9–1.8 Ga) diagenetic pyrite is characterized by positive δ34S values, reflecting derivation from seawater with a relatively limited sulphate content, notwithstanding the occurrence of sulphate evaporites (Scott et al. 2014). In the North Atlantic region, Palaeoproterozoic volcanic massive sulphides and diagenetic sulphidic shales have distinct compositions (Fig. 5). Sulphur isotope data from sulphides in the Lewisian supracrustal inliers have hitherto been limited to the volcanic massive sulphide deposit at Kerry Road, Gairloch, are tightly grouped...
around 0 ‰ and probably represent fluids of magmatic-hydrothermal origin (Drummond et al. 2020). In contrast, the pyrite measured here from the Tiree marble is markedly positive (mean 11.9 ‰), comparable to those of mid-Palaeoproterozoic sulphides attributed to an origin in seawater (Fig. 5).

5.2 Phenocryst assemblage

The phenocryst assemblage in the Tiree marble is found in many other Lewisian Complex marbles of northern Scotland, from South Harris to Scardroy (Fig. 2). A core assemblage of pyroxene, amphibole, olivine, mica, titanite, epidote and quartz phenocrysts is consistent across the region (Rock, 1987). The uniformity implies that the marble-hosted phenocrysts represent the metamorphic overprint on the original mineralogy, rather than local effects.

The ~1600 Ma dates for the Tiree titanite record mineral growth in the Palaeoproterozoic–Mesoproterozoic, and show no contribution from the much younger episodes of sodium metasomatism found elsewhere in northern Scotland. The sodium, chlorine and sulphur recorded in the mineral assemblage can therefore be confidently attributed to the chemistry of the depositional environment of the marble in the Palaeoproterozoic.

The titanite dates are comparable with the younger ages determined for reworking of the Lewisian Complex. They show no evidence of the 2500–2000 Ma reworking ages (Crowley et al. 2015) determined for Archaean gneisses in the bulk of the Lewisian Complex. The age is also younger than the ~1.8–1.7 Ga date ascribed to the main phase of Laxfordian deformation and metamorphism that widely affects the Lewisian Complex in NW Scotland (Goodenough et al. 2013). However, there is increasing evidence for an event in Scotland in the range 1.6–1.55 Ga, described by some workers as ‘Late Laxfordian’. This includes a ~1.6 Ga ‘cooling’ date for hornblende in a shear zone (Sherlock et al. 2008), a 1.55 Ga Re–Os date for copper mineralization (Holdsworth et al. 2020), a major magnetizing event 1.7 to 1.5 Ga (Piper, 1992) and a 1.6–1.4 Ga age for cooling of granite on the Stanton Banks west of Tiree (Scanlon & Daly, 2001). Holdsworth et al. (2020) point out that an event of this age in Scotland links activity in Canada and Scandinavia at the time, which saw the later stages of the Labradorian and Gothian orogenies respectively.

5.3 Chlorine-bearing phases

Apatite in the Tiree marble commonly contains above 1 wt % chlorine, and up to 2.8 wt % (Table S3, in the Supplementary Material available online at https://doi.org/10.1017/S0016756822000474). These contents are higher than those in many other marbles (Table S3), or apatite in granites and iron deposits which mostly contain <0.5 % (Ishihara & Moriyama, 2015). The Tiree apatite is thus considered to be chlorine-rich. This would be consistent with a seawater origin for the apatite, and there are no associated magmatic rocks which might indicate an alternative origin. However, phosphatic rocks were widespread globally at c. 1.9 Ga (Papineau, 2010), and we regard the chlorine-rich apatite as supporting rather than critical evidence.

The chlorine content of the phlogopite in the marble is not exceptional, but is comparable with the content in micas from other suspected metamorphosed evaporites (Moine et al. 1981;
also hosts exhalative sulphide mineralization and iron formation (Mora & Valley, 1989; Opletal et al. 2007). The role of micas as a residence for seawater-derived chlorine is in their relative abundance rather than the content per mineral.

The assemblage of chlorine-bearing mineral phases, in particular scapolite and phlogopite, is typical of metamorphosed evaporites (Moiné et al. 1981; Mora & Valley, 1989; Warren, 2016). The combination of scapolite and phlogopite is encountered in several Palaeoproterozoic supracrustal successions in the North Atlantic region, including in Bergslagen, Sweden (Oen & Lustenhouver, 1992), Finland (Reinikainen, 2001) and Baffin Island, Canada (Belley et al., 2017), and in each case has been interpreted as evidence of former evaporites. It would therefore be consistent to interpret the Lewisian Complex geochemistry as further evidence of Palaeoproterozoic evaporite deposition.

Saline fluids from chlorine-bearing mineral phases are important for transport of metals and creation of ore deposits (Yardley & Graham, 2002; Riehl & Cabral, 2018; Morrissey & Tomkins, 2020). Coeval supracrustal rocks in adjacent Greenland and Scandinavia contain ore deposits in which evaporites are implicated as a source of mineralizing fluids (Frietsch et al. 1997; Horn et al. 2019). Metalliferous ores and mineral showings in the Lewisian supracrustals (Coats et al. 1997; Drummond et al. 2020; Parnell et al. 2021) suggest that there may also be potential deposits in Scotland, to which evaporite-derived fluids could have contributed.

5.4 Sodium metasomatism and tourmaline

The albite in Tiree marbles is further evidence of sodium metasomatism. The albite is part of the mineral assemblage which dates to the latest Palaeoproterozoic, which distinguishes it from episodes of sodium metasomatism in other parts of northern Scotland, which affect Mesoproterozoic and Neoproterozoic metasediments (Sutton & Watson, 1951; May et al. 1993; Van de Kamp & Leake, 1997), and which must be of younger age. Albition occurs in Palaeoproterozoic rocks contiguous to Scotland, in Greenland and Scandinavia. This albition in the North Atlantic region is argued to be derived from evaporites or seawater (Kalsbeek, 1992; Frietsch et al. 1997; Gleeson & Smith, 2009), and there is not a clear alternative in Scotland that would preclude a similar origin.

The lack of recorded tourmaline in the Tiree marble may reflect the relatively quiescent nature of Palaeoproterozoic sedimentation there. While tourmaline is increasingly recognized as evidence for metamorphosed evaporite sequences, in many cases the environments included exhalative brines on the sea floor (e.g. Oen & Lustenhouver, 1992; Jiang et al. 1997). Where tourmaline is reported most abundantly in the Scottish marbles, at Loch Maree (Robertson et al. 1994), the marbles occur in a section that also hosts exhalative sulphide mineralization and iron formation (Drummond et al. 2020). The tourmaline in Lewisian marble thus conforms to evidence in other successions for an association with meta-exhalites. Tourmaline-bearing metasediments across the North Atlantic region (Fig. 1; Table S1 in the Supplementary Material) are of regional NaCl metasomatism in northern Fennoscandia. Ore Geology Reviews 12, 1–34.

References

Bell RT and Jackson GO (1974) Aphebian halite and sulphate indications in the Belcher Group, Northwest Territories. Canadian Journal of Earth Sciences 11, 722–8.

Belley PM, Dzikowski TJ, Fagan A, Cempírek J, Groat LA, Mortensen JK, Fayek M, Giuliani G, Fallick AE and Gertzbein P (2017) Origin of scapolite-hosted sapphire (corundum) near Kimmirut, Baffin Island, Nunavut, Canada. The Canadian Mineralogist 55, 669–99.

Cartwright I (1992) Archaean granulite facies metamorphism of the Lewisian of Tiree, Inner Hebrides, north-west Scotland. Journal of Metamorphic Geology 10, 727–44.

Chown EH (1987) Tourmalinites in the Aphebian Mistassini Group, Quebec. Canadian Journal of Earth Sciences 24, 826–30.

Coats JS, Shaw MH, Gunn AG, Rollin KE and Fortey NJ (1997) Mineral exploration in Lewisian supracrustal and basic rocks of the Scottish Highlands and Islands. British Geological Survey Mineral Reconnaissance Programme Report 146.

Coniliffe J, Wilton DHC, Blamey NJF and Archibald SM (2013) Palaeoproterozoic Mississippian Valley type Pb-Zn mineralization in the Ramah Group, Northern Labrador: stable isotope, fluid inclusion and quantitative fluid inclusion gas analyses. Chemical Geology 362, 211–23.

Coomaraswamy AK (1903) Observations on the Tiree marble, with notes on others from Iona. Quarterly Journal of the Geological Society, London 59, 91–104.

Coward MP, Francis PW, Graham RH, Myers JS and Watson J (1969) Remnants of an early metasedimentary assemblage in the Lewisian Complex of the Outer Hebrides. Proceedings of the Geologists Association 80, 387–408.

Crowley OG, Key R and Noble SR (2015) High-precision U-Pb dating of composite zircon from the Lewisian Gneiss Complex of Scotland using an incremental CA-ID-TIMS approach. Gondwana Research 27, 1381–91.

Drummond DA, Cloutier J, Boyce AJ and Prave AR (2020) Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland. Ore Geology Reviews 124, 103623.

Flett JS (1907) The scapolite-bearing rocks of Scotland. In Summary of Progress of the Geological Survey of Great Britain, for 1906, 116–31. Edinburgh: His Majesty’s Stationery Office.

Frietsch R, Tuisu P, Martinsson O and Perdahl JA (1997) Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-CI metasomatism in northern Fennoscandia. Ore Geology Reviews 12, 1–34.
Seawater signatures in the supracrustal Lewisian Complex

Gleeson SA and Smith MP (2009) The sources and evolution of mineralising fluids in iron oxide–copper–gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochimica et Cosmochimica Acta 73, 5658–72.

Golani PR, Pandit MK, Sial AN, Fallick AE, Ferreira VP and Roy AB (2002) B-Na rich Palaeoproterozoic Aravalli metasediments of evaporitic association, NW India: a new repository of gold mineralization. Precambrian Research 116, 183–98.

Goodenough KM, Crowley QG, Krabbendam M and Parry SF (2013) New U-Pb age constraints for the Laxford Shear Zone, NW Scotland: evidence for tectono-magmatic processes associated with the formation of a Palaeoproterozoic supercontinent. Precambrian Research 233, 1–19.

Hallinmond AF (1947) Pyroxenes, amphibole, and mica from the Tirie marble. Mineralogical Magazine 28, 230–43.

Hammreli J and Rubenach M (2018) The role of halogens during regional and contact metamorphism. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes (eds DE Harlov and L Aranovich), Extraterrestrial Geochemical Processes pp. 649–712. Cham: Springer Geochemistry.

Hellingwerf RH, Gatedal K, Gallagher V and Baker JH (2011) Halogen-rich scapolite and biotite: implications for metamorphic fluid-rock interaction. American Mineralogist 74, 721–37.

Morrissie LJ and Tomkins AG (2020) Evaporite-bearing orogenic belts produce ligand-rich and diverse metamorphic fluids. Geochimica et Cosmochimica Acta 275, 163–87.

Oen IS and Lustenhouwer WJ (1992) CI-rich biotite, CI-K hornblende, and CI-rich scapolite in meta-exhalites: Nora, Berglagen, Sweden. Economic Geology 87, 1638–48.

Opletal V, Houzar S and Leichmann J (2007) Muscovite-plagioclase layers in dolomite marble near Prosetín (Orelnice Unit, Moravicum): concordant injections of aplite or metaevaporites? Acta Musei Moraviae, Scientiae Geologicae 92, 131–42 (in Czech).

Papineau D (2010) Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology 10, 165–81.

Park RG (2002) The Lewsian Geology of Gairloch, NW Scotland. Geological Society of London, Memoir 26.

Park RG and Tarney J (eds) (1997) Evolution of the Lewsian and Comparable Precambrian High-Graide Terrains. Geological Society of London, Special Publication no. 27.

Parnell J, Mitchie R, Heptinstall E and Still JS (2021) Niobium mineralization of sedimentary carbonates, Lewisian Complex, UK. Applied Earth Science. doi:10.1080/25726838.2021.1902729.

Paton C, Hellstrom J, Paul B, Woodhead J and Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18. doi:10.1039/c1ja10172b.

Paton C, Woodhead J, Hellstrom J, Hergt J, Greig A and Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. Geochemistry, Geophysics, Geosystems 11, Q0A06. doi:10.1029/2009GC002618.

Peach BN, Horne J, Gunn W, Clough CT, Hinman LW and Teall JHH (1907) The Geological Structure of the NW Highlands of Scotland. Memoirs, Geological Survey of Great Britain. Edinburgh: His Majesty’s Stationery Office.

Petrus JA and Kamber BS (2012) VisualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research 36, 247–70.

Piper JDA (1992) Post-Laxfordian magnetic imprint in the Lewsian metamorphic complex and strike-slip motion in the Minches, NW Scotland. Journal of the Geological Society. London 149, 127–37.

Reinikainen J (2001) Petrogenesis of Palaeoproterozoic marbles in the Svecofennian domain, Finland. Geological Survey of Finland Report of Investigation 154.

Ricketts BD (1978) Authigenic tourmaline from the Middle Precambrian Belcher Group, Northwest Territories, Canada. Bulletin of Canadian Petroleum Geology 26, 543–50.

Riehl W and Cabral AR (2018) Meta-evaporite in the Carajás Mineral Province, northern Brazil. Mineralium Deposita 53, 895–902.

Ririe GT (1989) Evaporites and strata-bound tungsten mineralization. Geology 17, 139–43.

Robertson T, Simpson JB and Anderson JGC (1949) The Limestones of Scotland. Memoir of the Geological Survey, Special Reports on the Mineral Resources of Great Britain, XXXV. Edinburgh: His Majesty’s Stationery Office.

Rock NMS (1987) The geochemistry of Lewsian marbles. In Evolution of the Lewsian and Comparable Precambrian High-Graide Terrains (eds RG Park and J Tarney), pp. 109–126. Geological Society of London, Special Publication no. 27.

Scanlon R and Daly JS (2001) The Stanton Banks: a previously unrecognised Palaeoproterozoic terrane in the North Atlantic region. Irish Journal of Earth Sciences 119, 128–9.

Schreyer W, Abraham K and Kulke H (1980) Natural sodium phosphogip with potassium phosphogip and sodian alunin talc in a
metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology 74, 223–33.

Scott C, Wing BA, Bekker A, Planavsky NJ, Medvedev P, Bates SM, Yun M and Lyons TW (2014) Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth and Planetary Science Letters 389, 95–104.

Serdyuchenko DP (1975) Some Precambrian scapolite-bearing rocks evolved from evaporites. Lithos 8, 1–7.

Sherlock SC, Jones KA and Park RG (2008) Grenville-age pseudotachylite in the Lewisian: laserprobe 40Ar/39Ar ages from the Gairloch region of Scotland (UK). Journal of the Geological Society 165, 73–83.

Spandler C, Hammerli J, Sha P, Hilbert-Wolf H, Hu Y, Roberts E and Schmitz M (2016) MKED1: a new titanite standard for in situ analyses of Sm-Nd isotopes and U-Pb geochronology. Chemical Geology 425, 110–26.

Spencer KJ, Haker BR, Kyander-Clark ARC, Andersen TB, Cottle JM, Stearns MA, Poletti JE and Seward GGE (2013) Campaign-style titanite U–Pb dating by laser-ablation ICP: implications for crustal flow, phase transformations and titanite closure. Chemical Geology 341, 84–101.

Sutton J and Watson J (1951) The supposed Lewisian inlier of Scardroy, central Ross-shire, and its relations with the surrounding Moine rocks. Quarterly Journal of the Geological Society 108, 99–126.

Thomassen B (1992) The gold and base metal potential of the Lower Proterozoic Karrat Group, West Greenland. Rapport Grønlands Geologiske Undersøgelse 155, 57–66.

Van de Kamp PC and Leake BE (1997) Mineralogy, geochemistry, provenance and sodium metasamotism of Torridonian rift basin clastic rocks, NW Scotland. Scottish Journal of Geology 33, 105–124.

Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Frontiers in Geoscience 9, 1479–93.

Warren JK (2016) Evaporites: A Geological Compendium, 2nd edn. Heidelberg: Springer.

Westbrook GK (1972) Structure and metamorphism of the Lewisian of east Tiree, Inner Hebrides. Scottish Journal of Geology 8, 13–30.

Whitehouse MJ and Bridgewater D (2001) Geochronological constraints on Paleoproterozoic crustal evolution and regional correlations of the northern Outer Hebridean Lewisian complex, Scotland. Precambrian Research 105, 227–45.

Whitehouse MJ and Russell J (1997) Isotope systematics of Precambrian marbles from the Lewisian complex of north-west Scotland: implications for Pb-Pb dating of metamorphosed carbonates. Chemical Geology 136, 295–307.

Yardley BWD and Graham JT (2002) The origins of salinity in metamorphic fluids. Geofluids 2, 249–56.

Zeng LP, Zhao XF, Hammerli J, Fan TWT and Spandler C (2020) Tracking fluid sources for skarn formation using scapolite geochemistry: an example from the Jinshandian iron skarn deposit, Eastern China. Mineralium Deposita 55, 1029–46.

Zentmyer RA, Pufahl PK, James NP and Hiatt EE (2011) Dolomitization on an evaporitic Paleoproterozoic ramp: widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology 238, 116–31.