Objective: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a relatively novel class of oral medications for the treatment of type 2 diabetes mellitus (T2DM). Their use has increased recently due to their beneficial renal and cardiovascular outcomes, but they come with the rare risk of diabetic ketoacidosis (DKA) at normal or slightly elevated glucose values, termed euglycemic DKA (euDKA). Recently, carbohydrate-deprived, ketogenic diets have gained popularity due to benefits of weight loss and improved control of T2DM. We describe 2 patients with T2DM who developed euDKA caused by SGLT2 inhibitor use while on a ketogenic diet and provide a review of the literature.

Methods: We describe the hospital course, laboratory data, and treatment of 2 patients and provide a literature review.

Results: Both of our patients were found to have normal or mildly elevated serum glucose levels, with an elevated anion gap and ketosis, representative of euDKA. The first patient developed euDKA after only 1 dose of empagliflozin, while the second patient developed euDKA after only 1 week of being on a ketogenic diet while on an SGLT2 inhibitor.

Conclusion: While there have been a few reports of euDKA with SGLT2 inhibitors and ketogenic diets, many physicians prescribing these medications may not be aware of this association. Therefore, they must inform their patients to avoid a ketogenic diet if on an SGLT2 inhibitor. If a patient presents with symptoms of DKA and is eating a carbohydrate-free diet while taking an SGLT2 inhibitor, there should be a low threshold to screen for DKA.

© 2020 AACE. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Case 2 Presentation

A 34-year-old man with a past medical history of type 2 diabetes (T2DM) diagnosed 5 years prior to presentation, hypertension, hyperlipidemia, and obesity presented to the emergency department with 1 day of chest pain associated with shortness of breath. His home diabetes regimen included canagliflozin 25 mg daily, linagliptin 5 mg daily. The day prior to admission, he took his first and only dose of canagliflozin, an SGLT2 inhibitor. He had been on a low-carbohydrate diet for 2 months. On presentation, the patient’s plasma glucose level was 187 mg/dL, bicarbonate level was 11 mmol/L, anion gap level was 22 mmol/L, β-hydroxybutyrate level was 6.78 mmol/L, hemoglobin (Hb) A1C level was 13.6% (125 mmol/mol International Federation of Clinical Chemistry units), and her venous blood gas pH was 7.24. Cardiac causes of chest pain were ruled out, with negative troponins, normal electrocardiogram, and chest X-ray. Her laboratory results were consistent with euDKA. The patient was admitted to the intensive care unit and was placed on an insulin drip and dextrose drip per the hospital DKA protocol, requiring the insulin drip for 5 days prior to resolving her acidosis. The patient was discharged on glargine, lispro, and metformin. She was told to discontinue empagliflozin.

Discussion

The duration of treatment with an SGLT2 inhibitor before the onset of DKA varies in reports from 0.3 to 420 days. Interestingly, in both our patients, euDKA took 3 or more days to resolve. Studies have shown that euDKA generally takes twice as long to resolve as classic DKA, 92 hours versus 35 hours, respectively. The underlying etiology of this prolonged acidosis is still unclear. SGLT2 inhibitors have gained popularity because of their renal and cardiovascular benefits. These agents reduce the risk of major adverse cardiac outcomes by 11% in patients with a history of atherosclerotic cardiovascular disease, cardiovascular death or hospitalization for heart failure by 23%, and progression of renal disease by 45%. Other benefits include weight loss, increased high-density lipoprotein levels, and a small decrease in blood pressure. Adverse effects include renal and urinary tract infections, volume depletion, acute kidney injury, bone fractures, Fournier’s gangrene, lower extremity amputations, and DKA,3,6,10,11 SGLT2 inhibitors have been used off-label in patients with T1DM. SGLT2 inhibitor-associated DKA in T1DM has a rate of 5% to 12%, compared with <0.1% in T2DM. Another study determined that one third of all DKA cases may be attributed to T2DM.12 Precipitating factors leading to SGLT2 inhibitor-associated DKA include insulin reduction, omission, or deficiency along with surgery, alcohol abuse, exercise, and low-carbohydrate diets.13 SGLT2 inhibitors inhibit glucose reabsorption by proximal renal tubules and lead to a switch from glucose to lipid utilization, thereby increasing production of ketones in the liver by increasing glucagon and decreasing the insulin-glucagon ratio. This leads to ketogenesis, gluconeogenesis, and glycogenolysis.13 SGLT2 inhibitors may cause glucagon secretion by a direct effect on pancreatic α-cells and also reduce renal ketone body clearance.13,14 The near normal blood glucose levels seen in euDKA caused by SGLT2 inhibitors results from a balance between endogenous glucose production and renal glucose clearance. The pathophysiology of classic DKA is similar to that of euglycemic DKA, however the latter occurs with near normal or slightly elevated blood glucose levels, which often results in a delay in diagnosis. Similarly, with ketogenic diets there is an inadequate supply of carbohydrates, thus the body begins to burn fats for energy, which are then converted into fatty acids and ketones in the liver. In the 1920s ketogenic diets were used to treat drug-resistant childhood epilepsy. Since then, the diet has been studied in neurodegenerative diseases including Alzheimer’s and Parkinson’s disease because of its neuroprotective effects. Novel benefits of the ketogenic diet include better control of T2DM. In some reports, patients with T2DM experienced a 34% reduction of HbA1C, lower triglyceride levels, increased high-density lipoprotein levels, and weight loss in the first year of a low-carbohydrate diet compared with those on high-carbohydrate diets.15,16 Risks of ketogenic diets include nausea, vomiting, malnutrition, pancreatitis, hypoglycemia, osteopenia, nephrolithiasis, and cardiomyopathy.5

Table

Patient age (y)	Gender	Number of years patient had T2DM	Number of days on a low-carbohydrate diet before developing euDKA	Number of days patient took SGLT2 inhibitor before developing euDKA	Plasma blood glucose (mg/dL) on admission to the hospital for euDKA	HbA1C at the time of admission for euDKA	Number of days patient required insulin drip	Reference
32	Female	22	~3960	13	191	9.3% (78 mmol/mol IFCC)	Unknown	17
44	Male	16	Unknown	3-4	180	9.3% (78 mmol/mol)	Unknown	18
64	Female	Unknown	60	365	~185.59	7.5% (58 mmol/mol IFCC)	Unknown	19
73	Male	10	7	Unknown	Unknown	Unknown	Unknown	20
31	Female	Unknown	>5	14	139	Unknown	Unknown	21
34*	Male	Unknown	7	~60	251	8.2% (66 mmol/mol IFCC)	Unknown	3
47+	Female	~0.17	~60	1	187	HbA1C 13.6% (125 mmol/mol IFCC)	5	

Abbreviations: euDKA = euglycemic diabetic ketoacidosis; HbA1C = hemoglobin A1C; IFCC = International Federation of Clinical Chemistry and Laboratory Medicine; SGLT2 = sodium-glucose cotransporter-2; T2DM = type 2 diabetes mellitus.

* Patient case 1 and 2 from our report included for comparison.
To date, few cases have been reported of euDKA associated with SGLT2 inhibitor use and ketogenic diets in patients with T2DM. Table compares and contrasts cases reported in literature. To our knowledge, our case is the first report of euDKA occurring after just 1 dose of an SGLT2 inhibitor while on a ketogenic diet. Table indicates the number of days a patient received an SGLT2 inhibitor before developing euDKA, which ranged from 1 day (our study) to 365 days. It also shows the number of days a patient was on a low-carbohydrate diet before developing euDKA, which ranged from 7 to 3960 days. Additionally, both our patient cases demonstrate the prolonged need for insulin in such a setting (3 and 5 days). Many previously reported cases do not mention this. Of note, glutamic acid decarboxylase antibodies and islet antigen-2 antibodies were not assayed in either case. It is possible that these patients could have had a missed diagnosis of T1DM or latent autoimmune diabetes. A previous study showed that 22% of patients who presented with DKA were misdiagnosed with T2DM and T1DM or latent autoimmune diabetes. In addition, in patient case 2, the glucose level was 251 mg/dL, which was near the cutoff level for a diagnosis of euDKA, which is a glucose concentration of <250 mg/dL.

Patients should maintain an appropriate carbohydrate-controlled diet while taking an SGLT2 inhibitor, given the increased risk for DKA. To prevent SGLT2 inhibitor-associated DKA, these agents should be withheld in circumstances that may trigger DKA including infection, 3 days prior to surgery, excessive alcohol use, or dehydration.

Conclusion

Recently, the increased use of ketogenic diets has been accompanied by reports of patients admitted to the hospital for euDKA in the setting of SGLT2 inhibitor use while on a ketogenic diet. If a patient on an SGLT2 inhibitor and ketogenic diet presents with mildly elevated glucose levels, ketosis, and an elevated anion gap, euDKA should be suspected and included in the differential diagnosis. Patients taking SGLT2 inhibitors should be advised to avoid a ketogenic diet. If a patient develops euDKA in the setting of SGLT2 inhibitor use and a ketogenic diet, the SGLT2 inhibitor should be stopped and avoided in the future.

Disclosure

The authors have no multiplicity of interest to disclose.

References

1. Goldenberg RM, Berard LD, Cheng AYY, et al. SGLT2 Inhibitor–associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clin Ther. 2016;38(12):2654–2664.
2. Blau JE, Tellal SH, Taylor SI, Rother CI. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab Res Rev. 2017;33(8):e2924. https://doi.org/10.1002/dmrr.2924.
3. FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections 2015. https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious.
4. Invokana: highlights of prescribing information 2013 [updated 2013]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204042s0000it.pdf.
5. Wlodarek D. Role of ketogenic diets in neurodegenerative diseases [Alzheimer’s disease and Parkinson’s disease]. Nutrients. 2019;11(1):169.
6. FDA Drug Safety Communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR) 2017. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-confirms-increased-risk-leg-and-foot-amputations-diabetes-medicine. Accessed April 20, 2020.
7. Bonora BM, Avogaro A, Fadini GP. Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis: an updated review of the literature. Diabetes Obes Metab. 2018;20(1):25–33.
8. Safey MF, Butt A, Coffey B, et al. Prolonged acidosis is a feature of SGLT2-induced euglycaemic diabetic ketoacidosis. Endocrinol Diabetes Metab Case Rep. 2019;2019:19-0087.
9. Zelinker TA, Wivott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39.
10. Desouza SC, Patel P, Patel R, Patel P. Cardiometabolic effects of a new class of anti-diabetic agents. Clin Ther. 2015;37(6):1178–1194.
11. McGill JB, Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardioil. 2019;132(10):549–557.
12. Wang ZH, Kihl-Selestam E, Eriksson JW. Ketoacidosis occurs in both type 1 and type 2 diabetes—a population-based study from northern Sweden. Diabet Med. 2008;25(7):867–870.
13. Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5):e2886.
14. Bonner C, Keri-Conje J, Gmry V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nut Med. 2015;21:512–517.
15. Van Zaanen EJ, Fedorowicz Z, Kuijpers T, Pijl H. Effects of low-carbohydrate-compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. Am J Clin Nutr. 2018;108(2):300–331.
16. Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5(1):354.
17. Hayami T, Kato Y, Kamiya H, et al. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet. J Diabetes Investig. 2015;6(5):587–590.
18. Sood M, Simon B, Ryan KB, Zbrowor M. Euglycemic diabetic ketoacidosis with SGLT2 inhibitor use in a patient on the atkins diet: a unique presentation of a known side effect. AACE Clin Case Rep. 2018;4(2):e104–e107.
19. Sinha S, Gavaghan D, Yew S. Euglycemic ketoacidosis from an SGLT2 inhibitor exacerbated by a ketogenic diet. Med J Aust. 2020;212(1):e46.
20. Grammatiki M, Raptop E, Dina D, et al. Dapagliflozin and atkins diet in a patient with type 2 diabetes mellitus: a combination that should be avoided. Endocrine Abstracts. 2018;56:324.
21. Earle M, Ault B, Bonney C. Euglycemic diabetic ketoacidosis in concurrent very low-carbohydrate diet and sodium-glucose transporter-2 inhibitor use: a case report. Clin Pract Cases Emerg Med. 2020;4(2):185–188.