Can albumin administration relieve lung injury in trauma/hemorrhagic shock?

Zuo-Bing Chen, Zi-Wei Wang, Chen-Yan Ding, Jian-Hua Yan, Yuan Gao, Yun Zhang, Lin-Mei Ni, Yong-Qing Zhou

Zuo-Bing Chen, Zi-Wei Wang, Chen-Yan Ding, Jian-Hua Yan, Yuan Gao, Yun Zhang, Lin-Mei Ni, Yong-Qing Zhou, Department of Emergency Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China

Supported by the Traditional Chinese Medicine Research Foundation, Zhejiang Province, China 2005C072

Correspondence to: Yong-Qing Zhou, MD, Department of Emergency Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China. chenzuobing@hotmail.com

Telephone: +86-571-87236303 Fax: +86-571-87236677

Received: 2006-09-05 Accepted: 2006-09-25

Abstract

AIM: To study the effect of albumin administration on lung injury in trauma/hemorrhagic shock (T/HS).

METHODS: Sixty experimental animals were randomly divided into three groups: rats undergoing laparotomy without shock (T/SS); rats with T/HS and resuscitation with blood plus twice the volume of shed blood as Ringer’s lactate (RL), and rats with T/HS and resuscitation with blood plus additional 3 mL of 50 g/L human albumin. Expression of polymorphonuclear neutrophil (PMN) CD11b/CD18, intercellular adhesion molecule-1 (ICAM-1) of jugular vein blood and the severity of lung injuries (determined mainly by measuring activity of lung tissue myeloperoxidase (MPO) and lung injury score (LIS)) were measured after a 3-h recovery period.

RESULTS: All three groups showed a significant difference in the expressions of CD11b/CD18, ICAM-1, and severity of lung injury. The expressions of CD11b/CD18 in T/SS group, T/HS + RL group, T/HS + albumin group were 17.76% ± 2.11%, 31.25% ± 3.48%, 20.36% ± 3.21%, respectively (F = 6.25, P < 0.05). The expressions of ICAM-1 (U/mL) in T/SS group, T/HS + RL group, T/HS + albumin group were 258.76 ± 98.23, 356.23 ± 65.6, 301.01 ± 63.21, respectively (F = 5.86, P < 0.05). The expressions of MPO (U/g) in T/SS group, T/HS + RL group, T/HS + albumin group were 2.53 ± 0.11, 4.63 ± 1.31, 4.26 ± 1.12, respectively (F = 6.26, P < 0.05). Moreover, LIS in T/HS + RL group, T/HS + albumin group was 2.62 ± 0.23, 1.25 ± 0.24, respectively. The expressions of CD11b/CD18, ICAM-1 and MPO in T/HS + RL group were significantly increased compared to T/SS group (P = 0.025, P = 0.036, P = 0.028, respectively). However, administration of 3 mL of 50 g/L albumin significantly down-regulated the expressions of CD11b/CD18, ICAM-1 and lung injury index (MPO and LIS) when compared with the T/HS + RL rats (P = 0.035, P = 0.046, P = 0.038, P = 0.012, respectively).

CONCLUSION: The infusion of albumin during resuscitation period can protect lung from injury and decrease the expressions of CD11b/CD18, ICAM-1 in T/HS rats.

© 2006 The WJG Press. All rights reserved.

Key words: Albumin; CD11b/CD18; Intercellular adhesion molecule-1; Lung injury; Trauma/hemorrhagic shock

Chen ZB, WangZW, DingC, YanJH, GaoY, ZhangY, NiLM, ZhouYQ. Can albumin administration relieve lung injury in trauma/hemorrhagic shock? World J Gastroenterol 2006; 12(42): 6884-6888

http://www.wjgnet.com/1007-9327/12/6884.asp

INTRODUCTION

Previous studies have shown that there is obvious pulmonary microvascular injury at the early stage of trauma/hemorrhagic shock (T/HS)[1]. The polymorphonuclear neutrophils (PMNs) accumulated in lung are closely correlated with lung injury[2]. Endothelial cells can control and regulate the adhesion, recruitment and migration of white blood cells (WBC) through expressing adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), and ICAM-1 plays an important role in the process of conducting WBC firmly adherent to endothelial cells[3]. Colloid versus crystalloid resuscitation in the acute trauma remains a controversial subject[4]. Although several studies have proved the relative benefits of albumin resuscitation, no consensus has been reached by now[5]. More recently, the immunomodulatory effects of various resuscitation solutions have begun to be revaluated[6].

Trauma/hemorrhagic shock (T/HS) may lead to splanchnic ischemia-reperfusion and to gut barrier failure[7]. This sequence of events gets the gut into an inflammatory cytokine-secreting organ, which contributes to the pathogenesis of shock-induced lung injury[8]. Lung injury generally results when mediators released by systemic...
inflammatory processes up-regulate PMN interactions with endothelial cells (ECs). Endothelial cells play an important role in regulating cells of blood vessel walls in response to injury. ICAM-1 is expressed on endothelial cells and is responsive to numerous inflammatory mediators. It mediates both leukocyte adhesion and migration through the endothelium into tissues. Shock and trauma-induced neutrophil activation have been implicated in the pathogenesis of the adult respiratory distress syndrome (ARDS) and, as a contributory factor, in the development of the multiple organ dysfunction syndrome (MODS). In the study of trauma/hemorrhagic shock-induced organ failure, lung often serves as an ideal model of dysfunction.

Lung injury following T/HS is a well-accepted phenomenon; the exact mechanisms of injury are not yet defined. Albumin, a broadly binding protein, has been characterized as a scavenger in addition to being an anti-apoptotic agent and an antioxidant. A recent study showed that albumin protected endothelial cells in vitro from the injury by hematin. We hypothesize that albumin would protect against lung injury induced by activation of PMN in our T/HS model.

MATERIALS AND METHODS

Experiment design
The aim of this experiment was to determine the protective effects of albumin on lung injury in a T/HS model. Rats were randomly divided into three groups: rats undergoing laparotomy without shock (T/SS), rats with T/HS and resuscitation with blood plus 50 g/L human albumin (Aventis Behring GmbH, Germany), Rats of the albumin group received 3 mL of 50 g/L human albumin (150 mg of albumin) in addition to their shed blood. In a 400-g rat, with a circulating blood volume of about 24 mL, this dose is 6 g/L, approximating the distribution of a 25-g dose of albumin in the approximately 4 L blood volume of a 60-kg man. Polymorphonuclear neutrophil (PMN) CD11b/CD18, ICAM-1 in jugular vein blood and the severity of lung injuries [determined by myeloperoxidase (MPO) and lung injury score (LIS)] were measured after a 3-h recovery period.

Subjects
Sixty adults Sprague-Dawley (SD) rats, weighing 300-350 g, were used after a minimum acclimatization period of 7 d. These animals were randomly divided into three groups according to aforementioned experimental design. The animals were allowed free access to food and water. The animals and their diet were provided by the Laboratory Animal Center, Collage of Medicine, Zhejiang University. The animals were maintained in accordance with the guideline of the National Guide for the Care and Use of Laboratory Animals, and the experiment was approved by Local Ethical Committee of the College of Medicine, Zhejiang University.

T/HS model
As described above, rats were anesthetized using intraperitoneal sodium pentobarbital (50 mg/kg). A heparinized polyethylene catheter (PE-50) was introduced into the femoral artery for measuring the arterial pressure. A right jugular vein catheter was similarly inserted for blood withdrawal and resuscitation. Laparotomy (trauma) was performed to the animals through a 5-cm midline incision with two-layer closure using 3-0 silk in a running suture. The T/HS rats were subjected to T/HS (90 min at a mean artery pressure of 30 mmHg) by withdrawing blood through the jugular vein catheter in a heparinized syringe until the pressure reached 30 mmHg. The blood pressure was maintained for 90 min by withdrawing or re-infusing the shed blood. At the end of the 90-min shock period, the HS rats were resuscitated by their shed blood (average 18 mL). The RL group received an additional crystalloid (average 18 mL) and the albumin group received an additional 3 mL of 50 g/L albumin. Sham (T/SS) animal underwent vascular cannulation and laparotomy, but had no blood withdrawn and received no resuscitation. The animals’ body temperature during the experimental period was maintained at about 37°C by using a heating pad.

Assay of blood CD11b/CD18 and ICAM-1
After the 3-h resuscitation period, each 1 mL of blood sample from the jugular vein was taken and treated with anti-coagulant EDTA.Na2. The 100-μL blood sample was put into a tube with size of 12 mm × 75 mm and then 10 μL of either anti-rat CD11b or CD18 fluorescent-labeled monoclonal antibody (BD Pharmingen) was added into the tube. The samples were gently vortexed for 10 min and then placed into a dark place for 40 min. And then the red blood cells of the sample were lysed and the sample was fixed with Coahem.Q-PREP equipment (Couletr Company, USA) for 15 min on ice. After being treated with centrifugation and washed for 3 times, PMN cells obtained were analyzed for detection of adhesion molecule expression using flow cytometer (ESPLL-XL, BECKMAN, USA) according to the manufacturer’s recommendation. The amounts of these neutrophils labeled with monoclonal antibody among each 10000 neutrophils were counted and the percentage was evaluated.

The expression of serum ICAM-1 in the venous blood was detected using a special Regent Box (Jianqing Company, Nanjing, China) with ELISA methods following manufacturer’s instructions.

Assay of MPO and LIS
After the 3-h resuscitation period with aforementioned different methods, rats were killed immediately, and the right lobe lung was taken. One part of lung tissue was frozen, homogenized and processed for detection of MPO with special Regent-Box (Jiancheng Bio-Technology Company, Nanjing, China) according to the manufacturer’s recommendation. One unit of MPO activity represents the amount of enzyme that will reduce 1 μmol/L peroxide per minute. The other part of lung tissue was fixed by...
Table 1 Comparisons of the expressions of CD11b/CD18, ICAM-1, MPO, and LIS among the three groups (mean ± SD)

Group (n)	CD11b/CD18 (%)	ICAM-1 (U/mL)	MPO (U/g)	LIS
T/SS (20)	17.76 ± 2.11	258.76 ± 98.23	2.53 ± 0.11	-
T/HS + RL (20)	31.25 ± 3.48	356.23 ± 65.6	4.63 ± 1.31	2.62 ± 0.23
T/HS + albumin (20)	20.36 ± 3.21	301.01 ± 63.21	4.26 ± 1.12	1.25 ± 0.24
F	6.25'	5.86'	6.26'	-

ICAM-1: Intercellular adhesion molecule-1; MPO: Myeloperoxidase; LIS: Lung injury score. 'p < 0.05 vs T/SS group; 'p < 0.05 vs T/HS + RL group; 'p < 0.05 comparison among the three groups (ANOVA).

The present study showed that PMNs infiltrated and aggregated in the lung after trauma/hemorrhagic shock (T/HS) [17]. Up-regulation of CD11b/CD18 on PMNs and ICAM-1 in endothelial cells are the molecular basis of PMNs adhering to the endothelium [18]. Trauma/ hemorrhagic shock is associated with the generation of reactive oxygen species, which may contribute to delayed multiple organ system failure and death [19]. It has been shown the phenomenon of neutrophil activation is often accompanied with T/HS. In addition, the activated neutrophil may play an important role in the pathogenesis of lung injury or multiple organ dysfunction (MOD), multiple organ failure (MOF) in T/HS [20]. The activation of neutrophil and lung injury are often chosen as ideal quantifiable indices to assess the severity of trauma in an animal model and patients. In this study, CD11b/CD18 was chosen as the marker of PMN activation; MPO and LIS were chosen as the markers of lung injury [21].

The integrins CD11b/CD18 have been found to be involved in monocyte adhesion to endothelial cells and transendothelial migration [22,23], release of hydrogen peroxide [24,25], and oxidative activity [26]. ICAM-1 is expressed on endothelial cells and is responsive to numerous inflammatory mediators [27]. It mediates both leukocyte adhesion and migration through the endothelium into tissues [28].

The potential advantages and disadvantages of colloids during resuscitation in T/HS have been long debated [29]. Some animal experiments showed that albumin was linked with increased mortality, but which did not accord with some clinical findings that albumin could decrease mortality in the trauma population [30]. However, a more recent study has demonstrated that early albumin infusion during resuscitation period may decrease neutrophil activation in animal model [31]. Some studies indicated that resuscitation with 250 g/L albumin significantly reduced transpulmonary protein flux, bronchoalveolar lavage fluid neutrophil counts, and the degree of histopathological injury compared to resuscitation with Ringer’s lactate [32].

The exact mechanism by which albumin does benefit to alleviate lung injury and down-regulate CD11b/CD18 expression is still uncertain. In addition to colloid oncotic effects during resuscitation period, a variety of other properties of albumin have been described [33]. Albumin has been shown to have antioxidant properties and proven to inhibit apoptosis in certain cell lines [34]. As a broad binding protein, albumin may bind and neutralize toxic factors and inflammatory mediators, including cytokines, eicosanoids, oxidants, platelet-activating factors, complement fragments, and endotoxin [34,35]. And many of these mediators can prime or activate neutrophils and endothelial cells and cause lung injury directly or indirectly. Although the exact function and identity of the toxic factors in T/HS lymph/plasma remain unknown, it is clearly that albumin has a neutralizing effect [36].

Based on our results, the beneficial effect of albumin infusion occurred during the resuscitation period in T/HS. The results showed that up-regulated expression of PMN CD11b/CD18, ICAM-1 and the lung injury induced by T/ HS could be alleviated by the infusion of albumin during resuscitation period. On the other hand, considering the ability of albumin to bind and neutralize the toxic factors,
our study further supports the hypothesis of organ injury induced by some factors released or produced by the post-ischemic intestine through mesenteric lymph pathway in T/HS[13].

REFERENCES
1. Thom SR. Leukocytes in carbon monoxide-mediated brain oxidative injury. Toxicol Appl Pharmacol 1993; 123: 234-247
2. Matsuwo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, Kogure K. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 1994; 25: 1469-1475
3. Akopov SE, Simonian NA, Grigorian GS. Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 1996; 27: 1739-1743
4. Lerouet D, Beray-Berthat V, Palmier B, Plotkine M, Margail L. Changes in oxidative stress, INOS activity and neutrophil infiltration in severe transient focal cerebral ischemia in rats. Brain Res 2002; 958: 166-177
5. Zhang H, Voglis S, Kim CH, Slutsky AS. Effects of albumin and Ringer’s lactate on production of lung cytokines and hydrogen peroxide after resuscitated hemorrhage and endotoxemia in rats. Crit Care Med 2003; 31: 1515-1522
6. Paes-da-Silva F, Gonzalez AP, Tiberici E. Effects of fluid resuscitation on mesenteric microvascular blood flow and lymphatic activity after severe hemorrhagic shock in rats. Shock 2003; 19: 553-562
7. Walley KR, McDonald TE, Wang Y, Dai S, Russell JA. Albumin resuscitation increases cardiomyocyte contractility and decreases nitric oxide synthase II expression in rat endotoxemia. Crit Care Med 2003; 31: 187-194
8. Deitch EA. Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care 2001; 7: 92-98
9. Farber A, Connors JP, Friedlander RM, Wagner RJ, Powell RJ, Cronenwett JL. A specific inhibitor of apoptosis decreases tissue injury after intestinal ischemia-reperfusion in mice. J Vasc Surg 1999; 30: 752-760
10. Adams CA Jr, Sambol JT, Xu DZ, Lu Q, Granger DN, Deitch EA. Hemorrhagic shock induced up-regulation of P-selectin expression is mediated by factors in mesenteric lymph and blunted by mesenteric lymph duct interruption. J Trauma 2001; 51: 625-631; discussion 631-632
11. Sambol JT, Xu DZ, Adams CA, Magnotti LJ, Deitch EA. Mesenteric lymph duct ligation provides long term protection against hemorrhagic shock-induced lung injury. Shock 2000; 14: 416-419; discussion 419-420
12. Hammerman C, Goldschmidt D, Caplan MS, Kaplan M, Schimmel MS, Eidelman AJ, Branski D, Hochman A. Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastroenterol Nutr 1999; 29: 69-74
13. Dayal SD, Hauser CJ, Feketeova E, Fekete Z, Adams JM, Lu Q, Xu DZ, Zaat S, Deitch EA. Shock mesenteric lymph-induced rat polymorphonuclear neutrophil activation and endothelial cell injury is mediated by aqueous factors. J Trauma 2002; 52: 1048-1055; discussion 1055
14. Kentner R, Safar P, Behringer W, Wu X, Kagan VE, Tyrina YY, Henchir M, La M, Hisa CJ, Fisherman SA. Early antioxidant therapy with Tempol during hemorrhagic shock increases survival in rats. J Trauma 2002; 53: 968-977
15. Alderson P, Bunn F, Lefebvre C, Li WP, Li L, Roberts I, Schierhout G. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev 2002; (1): CD001208
16. Roth J, Goebeler M, Ludwig S, Wagner L, Kilian K, Sorg C, Harms E, Schulze-Osthoff K, Koch H. Homocysteine inhibits tumor necrosis factor-induced activation of endothelial via modulation of nuclear factor-kappa b activity. Biochim Biophys Acta 2001; 1540: 154-165
17. Wang J, Dudman NP, Wilcken DE. Effects of homocysteine and related compounds on prostacyclin production by cultured human vascular endothelial cells. Thromb Haemost 1993; 70: 1047-1052
18. Dudman NP, Temple SE, Guo XW, Fu W, Perry MA. Homocysteine enhances neutrophil-endothelial interactions in both cultured human cells and rats In vivo. Circ Res 1999; 84: 409-416
19. Fekte Z, Hauser CJ, Adams JM, Adams CA Jr, Forsythe RM, Hasko G, Xu DZ, Livingston DH, Deitch EA. Injury-enhanced calcium mobilization in circulating rat neutrophils models human PMN responses. Shock 2001; 16: 15-20
20. Miner TJ, Tavaf-Motamen H, Stojadinovic A, Shea-Donohue T. Ischemia-reperfusion protects the rat small intestine against subsequent injury. J Surg Res 1999; 82: 1-10
21. Johnson JL, Moore EE, Hiester AA, Tamura DY, Zallen G, Silliman CC. Disparities in the respiratory burst between human and rat neutrophils. J Leukoc Biol 1999; 65: 211-216
22. Pascual JL, Ferri LE, Seely AJ, Campisi G, Chaudhury P, Giannias B, Evans DC, Razek T, Michel RP, Christou NV. Hypertonic saline resuscitation of hemorrhagic shock diminishes neutrophil rolling and adherence to endothelium and reduces in vivo vascular leakage. Anaesth Analg 2002: 236: 634-642
23. Powers KA, Kapus A, Khadaroo RG, Papia G, Rotstein OD. 25% Albumin modulates adhesive interactions between neutrophils and the endothelium following shock/ resuscitation. Surgery 2002; 132: 391-398
24. Illig I, Rachinsky M, Artru AA, Alonchin A, Kapuler V, Tarnapolski A, Shapira Y. The effect of treatment with albumin, hetastarch, or hypertonic saline on neurological status and brain edema in a rat model of closed head trauma combined with uncontrolled hemorrhage and concurrent resuscitation in rats. Anesth Analg 2001; 92: 669-675
25. Powers KA, Kapus A, Khadaroo RG, He R, Marshall JC, Lindsay TF, Rotstein OD. Twenty-five percent albumin prevents lung injury following shock/resuscitation. Crit Care Med 2003; 31: 2355-2363
26. Groeneveld BD. Albumin and artificial colloids in fluid management: where does the clinical evidence of their utility stand? Crit Care 2000; 4: Suppl 2: S16-S20
27. Pulimood TB, Park GR. Debate: Albumin administration should be avoided in the critically ill. Crit Care 2000; 4: 151-155
28. Gonzalez RJ, Moore EE, Ciesla DJ, Meng X, Biffi WL, Silliman CC. Post-hemorrhagic shock mesenteric lymphoids prime neutrophils for enhanced cytotoxicity via phospholipase A2. Shock 2001; 16: 218-222
29. Meerschaert J, Powers KA, Kapus A, Khadaroo RG, He R, Marshall JC, Tarnapolski A, Shapira Y. The effect of treatment with albumin, hetastarch, or hypertonic saline on neurological status and brain edema in a rat model of closed head trauma combined with uncontrolled hemorrhage and concurrent resuscitation in rats. Anesth Analg 2001; 92: 669-675
30. Fowler MB. The adhesion molecules used by monocytes for migration across endothelium included CD11a/CD18, CD11b/CD18, and VLA-4 on monocytes and ICAM-1, VCAM-1, and other ligands on endothelium. Immunol 1995; 154: 4099-4112
31. Beehuizen H, Corsel-Van Tilburg AJ, Blokkland I, Van Furth R. Characterization of the adherence of human monocytes to cytokine-stimulated human macrovascular endothelial cells. Immunology 1991; 74: 661-669
32. Owen CA, Campbell EJ, Stockley RA. Monocyte adherence to fibronectin: role of CD11a/CD18 integrins and relationship to other monocyte functions. J Leukoc Biol 1992; 51: 400-408
33. Watts JA, Maiorano PC. Trace amounts of albumin protect against ischemia and reperfusion injury in isolated rat hearts. Mol Cell Cardiol 1999; 31: 1633-1662
34. Modelska K, Mathaya MA, Brown LA, Deutch E, Lu LN, Pittet JF. Inhibition of beta-adrenergic-dependent alveolar epithelial clearance by oxidant mechanisms after hemorrhagic shock. Am J Physiol 1999; 276: L844-L857
35. Nathan C, Srinival S, Deitch E, Sanchez E, Kabbash L, Asch A, Gallit J, Wright SD. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989; 109: 1341-1349
36. Grau V, Stehling O, Garn H, Steiinger B. Accumulating

www.wignet.com
monocytes in the vasculature of rat renal allografts: phenotype, cytokine, inducible no synthase, and tissue factor mRNA expression. Transplantation 2001; 71: 37-46

36 Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188-199

37 Chen ZB, Zheng SS, Yuan G, Ding CY, Zhang Y, Zhao XH, Ni LM. Effects of intestinal lymph on expression of neutrophil adhesion factors and lung injury after trauma-induced shock. World J Gastroenterol 2004; 10: 3221-3224

S- Editor Wang GP L- Editor Kumar M E- Editor Ma WH