Plasma-screening effects on the electronic structure of multiply charged Al ions using Debye and ionsphere models

1Madhulita Das*, 2B. K. Sahoo† and 3Sourav Pal
1National Institute of Technology, Rourkela, Odisha - 769008, India
2Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad - 380009, India and
3Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India

We analyze atomic structures of plasma embedded aluminum (Al) atom and its ions in the weakly and strongly coupling regimes. The plasma screening effects in these atomic systems are accounted for using the Debye and ion sphere (IS) potentials for the weakly coupled and strongly coupling plasmas, respectively. Within the Debye model, special attention is given to investigate the spherical and non-spherical plasma-screening effects considering in the electron-electron interaction potential. The relativistic coupled-cluster (RCC) method has been employed to describe the relativistic and electronic correlation effects in the above atomic systems. The variation in the ionization potentials (IPs) and excitation energies (EEs) of the plasma embedded Al ions are presented. It is found that the atomic systems exhibit more stability when the exact screening effects are taken into account. It is also showed that in the presence of strongly coupled plasma environment, the highly ionized Al ions show blue and red shifts in the spectral lines of the transitions between the states with same and different principal quantum numbers, respectively. Comparison among the results obtained from the Debye and IS models are also carried out considering similar plasma conditions.

PACS numbers:

I. INTRODUCTION

Electronic structures of atomic systems immersed in hot and dense plasma environment may be remarkably different from their corresponding isolated candidates. Accurate estimation of the electronic structures of atoms or ions is one of the active fields of research in the recent years for their wide range of applications [1,2]. The plasma may contain different charged species as well as free electrons. These charged particles can screen the atomic potential of the embedded atomic systems resulting deviations in the structures of the systems from their corresponding isolated systems. First principle calculations of electronic structures of the plasma embedded atomic systems are extremely strenuous due to complexity involved in the description of the Coulomb potentials. Thus, to describe their structures conveniently, model atomic potentials are used which account for the plasma screening effects. The plasma environment can be classified into weakly and strongly coupled plasma depending on the strength of its coupling constant \( \Gamma \), which is the ratio of the Coulomb potential energy to the thermal energy. For weakly coupled plasma (\( \Gamma \ll 1 \); i.e. low density and high temperature), the screening effect can be appropriately described using the Debye model [3]. However, in the strongly coupled plasma (\( \Gamma \gg 1 \) implying high density and low temperature) ion-sphere (IS) potential model [4] is the best suited model for accounting the plasma screening effects. Both the Debye and ion-sphere models have been successfully employed several times earlier to describe the electronic properties of different plasma embedded atomic systems [5-11]. The effect of nuclear charge screening by plasma free electrons is reciprocated in form of ionization potential depression (IPD) or continuum lowering [12-15]. Other crucial spectral properties of atomic systems that are of immense interest are excitation energies (EEs), spectral line shifts, line broadenings, energy level crossings etc. Accurate knowledge of these quantities is essential in describing equation of state of plasma [16], finding out opacity of an element in the astrophysical plasma [17, 18], in understanding dynamics of atomic systems in the laser cooling and trapping of ions [19], inertial confinement fusion studies [20] etc.

These days many laboratory experiments are being performed in this regard. Recently, aluminum (Al I) and its different multi-charged ions have been considered for the laboratory plasma experiments. In the Linac Coherent Light Source (LCLS) and Free-Electron-Laser (FEL) experiments, Al is used as a common target material. John et al [21] had characterized the absorption spectroscopy of cold and dense Al plasma using a pulsed soft X-ray continuum back-lighting source. In their experiment, they characterized the L-shell spectra of Al IV and Al V at the plasma temperature and electron density of 12 eV and \( 0.6 \times 10^{21} \text{ cm}^{-3} \), respectively. Similarly, Tijerina et al [22] had used a wide field spectrograph to analyze the behavior of the laser-produced Al-plasma by measuring the line widths of the singly (Al II) and doubly (Al III) ionized Al. Ciobanu et al [23] had also studied the spectroscopy of Al plasma by using the second (532 nm) harmonic of a Q-switched pulsed Nd-YAG laser and had observed many line intensities. In other works, Hoarty et al. [24] and Ciricosta et al. [25] experimentally studied the influence of hot and dense plasma
The primary interest of the present work is to carry out an \textit{ab initio} investigation of electronic structures of Al and some of its ions in both weakly and strongly coupled plasma environment. In most of the previous studies the electronic structures of Al plasma have been investigated using many-body methods which account for the electron correlation effects inefficiently. Accurate calculations in the atomic systems with more than four electrons require a many-body method that is capable of including electron correlation effects rigorously. Again, the relativistic effects in these ions are usually large. In this work, we employ a relativistic coupled-cluster (RCC) method to carry out the theoretical investigations in the considered atomic systems. The RCC method is an all order perturbative method that obeys the size extensivity and size consistent behavior \cite{33,34}. In weakly coupled plasma, we consider the Debye-screened potential instead of the usual atomic potential in the RCC method to describe the change in the spectroscopic properties of the plasma embedded Al ions. In the approach in which, the screening effect is taken into account only through the nuclear potential is referred to as the spherical Debye (SD) potential approximation. However, plasma free electrons may also play an important role in the screening of bound electron-electron interaction term in the potential. The approach in which both nuclear and electronic charge screenings are considered explicitly is denoted as non-spherical Debye (NSD) potential approximation. Owing to the complexity in the consideration of the NSD potential approximation in a perturbative approach, this is rarely applied in the investigation of electronic structure of the plasma embedded atomic systems. The SD potential approximation may provide reasonably accurate results in the H-like, He-like and Li-like atomic systems, where there are not many electrons present. However, it has been found that considering of NSD potential approximation can lead to very interesting results in the evaluations of the orbital energies and transition probabilities in the plasma embedded atomic systems \cite{37,38}. Recently, Gutierrez \textit{et al} \cite{37} had also shown that NSD potential gives rise large collision strengths compared to the SD potential approximation. In this work, we intend to make a comparative analysis of results considering both the SD and NSD potentials through our RCC method. Similarly, the effect of the strongly coupled plasma environment on the atomic structure of Al ions is being investigated by considering the IS potential in the RCC method. Again, we consider few cases with the given experimental conditions of plasma and investigate IPDs and EEs of the Al III and Al XI ions in both the NSD potential approximation of the Debye model and the IS model to make a comparative analysis of the results obtained from these models.

The paper is organized as follows: In Sec. \textbf{III} we introduce the screening models that are considered in the calculations for the description of the atomic spectra and Sec. \textbf{IV} describes the RCC method briefly. In Sec. \textbf{V} we present our results and compare with other available data. These results are finally summarized in Sec. \textbf{VI}. Unless stated otherwise, we have used atomic units (a.u.) through out the paper.

\section{II. Plasma Models}

We describe below the salient features of the models those have been adopted to account the screening effects in the considered Al systems. We also give explicitly the expression for the two-body screening Debye potential in the multipole expansion form. Formulas to estimate the Debye length for the Debye potential and radius for the IS model are also given.

\subsection{A. Debye Model}

In the weakly coupled plasma, screened potential experienced by an electron located at \(r_i\) in an atomic system due to the presence of other free electrons inside the
When the exact effective potential given by Eq. (1) is taken then we refer to the approach as NSD potential approximation. For the comprehensive understanding, we consider both the cases to make a comparative study.

Again the nuclear potential \( V_{\text{nuc}}(r_i) \) is often estimated for the spectroscopy study of the plasma embedded atomic systems by considering the nucleus as a point-like object. In this case, it yields

\[
V_{\text{nuc}}(r_i) = -\frac{Z}{r_i}.
\]

To have a more realistic potential, we use the standard Fermi-charge distribution to describe the finite size of the nucleus. In this case, we have

\[
V_{\text{nuc}}(r_i) = -\frac{Z}{N r_i} \times \left\{ \begin{array}{ll}
\frac{1}{6} \left( \frac{4}{3} \frac{a^2 \pi^2}{b^2} + \frac{2a^2}{b^2} P_{2} + \frac{2}{3} a^2 (S_3 - P_3^+) \right) & \text{for } r_i \leq b \\
\frac{1}{6} \left( 1 + \frac{a^2}{b^2} - \frac{2a^2 r_i^2}{b^2} + \frac{6a^2}{b^2} (S_3 - P_3^+) \right) & \text{for } r_i > b,
\end{array} \right.
\]

where the factors are

\[
N' = 1 + \frac{a^2 \pi^2}{b^2} + \frac{6a^2}{b^3} S_3
\]

with \( S_k = \sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{b^l} e^{-bl/a} \)

and \( P_{k} = \sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{b^l} e^{\pm l(r-b)/a} \).

TABLE I: Calculated ionization potentials (IPs) and excitation energies (EEs) of Al I, Al III, Al IX and Al XI using the CCS D method. These values are compared with the available values in the NIST database [39]. All the quantities are given in cm\(^{-1}\).

| State | Present | NIST |
|-------|---------|------|-------|---------|------|-------|---------|------|-------|---------|------|
| 3P\(_{1/2}\) | 47777.96 | 48278.48 | 3S\(_{1/2}\) | 229311.73 | 229445.7 | 2P\(_{1/2}\) | 2664482.59 | 2663340 | 2S\(_{1/2}\) | 3565617.36 | 3565010 |

\[
V_{\text{eff}}(r_i) = e^{-r_i/D} V_{\text{nuc}}(r_i) + \sum_{j<i}^{N} \frac{e^{-r_{ij}/D}}{r_{ij}}.
\]

(1)

for the Boltzmann constant \( k_B \) and the nuclear charge \( Z \).

The Debye potential is a long-range potential where vanishing boundary conditions are satisfied at infinity. Owing to the complicated derivation of the two-body screening potential and difficulties to perform their calculations, most of the earlier works, that were dealt with the lighter atomic systems, had incorporated the Debye screenings only in the electron-nucleus potential. In our calculations, we refer to this SD potential approximation. In this approach Eq. (1) is given by

\[
V_{\text{eff}}(r_i) = e^{-r_i/D} V_{\text{nuc}}(r_i) + \sum_{j<i}^{N} \frac{1}{r_{ij}}.
\]

(3)

Since the considered Al ions have more than four electrons, it is anticipated that the two-body correlation effects can be significant. So it is imperative to account for the screening effects in the two-body interaction term. When the exact effective potential given by Eq. (1) is taken then we refer to the approach as NSD potential approximation.
with the appropriate values of the root mean square radius of the nucleus $r_{\text{rms}}$, which is estimated using the empirical formula

$$r_{\text{rms}} = 0.836A^{1/3} + 0.570$$

in fm for the atomic mass $A$.

The two-body screened potential is expressed as

$$V_{ee}(r_i, r_j) = \sum_{j \geq i} \frac{1}{r_{ij}} e^{-r_{ij}/D}$$

where

$$D = \frac{I_{l+\frac{1}{2}}(r_{<}/D) K_{l+\frac{1}{2}}(r_{>}/D)}{\sum_{m=-l}^{l} Y_{lm}^*(\theta, \phi) Y_{lm}(\theta, \phi)},$$

where $I_{l+\frac{1}{2}}$ and $K_{l+\frac{1}{2}}$ are the modified Bessel functions of the first and second kind, respectively. $r_{<} = \min(r_i, r_j)$, and $Y_{lm}(\theta, \phi)$ is the spherical harmonics of rank $l$. The above potential is solved in the similar way as the Coulomb potential $1/r_{ij}$ is being evaluated in a common atomic structure calculations.

**B. Ion Sphere Model**

In the strongly coupled plasma, the effective potential of the plasma embedded atomic system is given by

$$V_{\text{eff}}^\text{IS}(r_i) = \frac{(Z - N)}{2R} \left[ 3 - \left(\frac{r_i}{R}\right)^2 \right],$$

where $Z$, $N$ and $R$ represent for the nuclear charge, the charge state of the ion and the ion sphere radius, respectively. Here $R$ is related to the ion density $n_{\text{ion}}$ as

$$R = \left(\frac{3}{4\pi n_{\text{ion}}}\right)^{1/3}.$$
Note that though it appears in the above expressions as if the plasma temperature dependency is absent, but effects due to plasma temperature are taken into account in determining the free electron distribution while deriving the expression for the above radius $D_{\text{eff}}$. Unlike the case of Debye model, a finite boundary condition $|\psi(r)|_{|r|=0}$ is imposed in the IS model $[11]$. This boundary condition indirectly brings in the effect of the external plasma confinement due to the neighboring ions.

### III. METHOD OF CALCULATIONS

To carry out the atomic wave function calculations in the considered Al-species, we use the Hamiltonian in the SD model given by

$$H = \sum_{i=1}^{N} \left[ c \mathbf{\alpha}_i \cdot \mathbf{p}_i + (\beta - 1)c^2 + e^{-r_i/D}V_{\text{nuc}}(r_i) \right]$$

$$+ \frac{1}{2} \sum_{i,j} \frac{1}{r_{ij}},$$

in the NSD model given by

$$H = \sum_{i=1}^{N} \left[ c \mathbf{\alpha}_i \cdot \mathbf{p}_i + (\beta - 1)c^2 + e^{-r_i/D}V_{\text{nuc}}(r_i) \right]$$

$$+ \frac{1}{2} \sum_{i,j} \frac{e^{-r_{ij}/D}}{r_{ij}},$$

and in the IS model given by

$$H = \sum_{i=1}^{N} \left[ c \mathbf{\alpha}_i \cdot \mathbf{p}_i + (\beta - 1)c^2 + V_{\text{IS}}^{\text{eff}}(r_i) \right]$$

$$+ \frac{1}{2} \sum_{i,j} \frac{1}{r_{ij}},$$

where $\mathbf{\alpha}$ and $\beta$ are the Dirac matrices and $c$ is the velocity of light.

The wave functions of the states of the considered atomic systems are evaluated by classifying the orbitals into a closed core and a valence orbital. In this approach, the wave functions are expressed in the RCC ansatz as

$$|\Psi_v\rangle = e^T \{1 + S_v\} |\Phi_v\rangle = e^T \{1 + S_v\} a_{v|\Phi_v\rangle},$$

where $T$ and $S_v$ are the RCC excitation operators that excite electrons from the core and core along with the valence orbitals to the virtual space respectively. Here $|\Phi_v\rangle$ and $|\Psi_v\rangle$ are the Dirac-Hartree-Fock (DHF) wave functions of the closed-core and the closed-core with the valence orbital, respectively. In this work, we have considered only the single and double excitations, denoted by the subscripts 1 and 2 respectively, in the RCC calculations (known as CCSD method) by expressing

$$T = T_1 + T_2 \quad \text{and} \quad S_v = S_{1v} + S_{2v}.$$

The amplitudes of these operators are evaluated using the equations

$$\langle \Phi_v^* | H_N | \Phi_v\rangle = 0$$

and

$$\langle \Phi_v^* | (H_N - \Delta E_v)S_v | \Phi_v\rangle = -\langle \Phi_v^* | H_N | \Phi_v\rangle,$$

where $|\Phi_v\rangle$ and $|\Phi_v^*\rangle$ are the excited state configurations, here up to doubles, with respect to the $|\Phi_v\rangle$ and $|\Phi_v^*\rangle$ DHF wave functions respectively and $H_N = (H_N e^T)_l$ with subscript $l$ represents for the linked terms only. In the above expression, $\Delta E_v$ is the attachment energy of the electron in the valence orbital $v$. In the $ab\ initio$ approach, the $\Delta E_v$ value is determined using the expression

$$\Delta E_v = \langle \Phi_v^* | H_N \{1 + S_v\} | \Phi_v\rangle.$$

As can be seen, both Eqs. (18) and (19) are needed to be solved simultaneously. Hence, Eq. (18) is also non-linear in $S_v$ operator though it does not appear to be so.
IV. RESULTS AND DISCUSSION

In this section, we present results obtained for IPs and EEs of Al ions obtained using the RCC method separately for Debye and ion sphere potentials. A detailed comparative analysis have been made for the results from both the SD and NSD potential approximations. In order to verify accuracies in our results obtained employing the RCC method, we compare the IPs and EEs of the isolated Al atom and its ions with the listed values of National Institute of Science and Technology (NIST) database in Table I. This is done except for the EEs of the $3P_{3/2}$ and $4P_{3/2}$ states of Al IX, where the NIST data are not available. We also determine the fine structure splittings (FSs) from these values and present them in the same table. We observe good agreement between the calculated and the experimental results except among the FS transitions. This may be due to the fact that higher order relativistic correlations are expected to contribute to these transitions substantially. Agreement among the EEs of the other transitions is an indication that the determined IPs, EEs and FSs of the plasma embedded Al-systems can also be of similar accuracies by taking confidence on the validity of the considered models.

A. Results from the Debye model

We perform the calculations of IPs by varying $D$ value, that corresponds to different plasma density ($n_i$) and plasma temperature ($T$), in the Debye model. As described, the plasma screening effects are included using both the SD potential and NSD potential approximations. A comparison among the results from these two approximations can demonstrate role of plasma screening through the electron-electron correlation effects in the considered systems. To examine this, we vary the $D$ value from 5.0 a.u. to 100 a.u. in Al I, from 3 a.u. to 100 a.u. in Al III, from 0.6 a.u. to 13.6 a.u. in Al IX, and from 0.5 a.u. to 13.6 a.u. in Al XI. In Fig. 2, we observe the first EE (in cm$^{-1}$) of (i) Al I, (ii) Al III, (iii) Al IX and (iv) Al XI with the Debye screening length $D$ (in a.u.).
we show changes in IPs with the $D$ values in Al I, Al III, Al IX and Al XI for both the SD and NSD potential approximations. As expected, the IPs decrease smoothly with decrease in the $D$ value in all the systems; this is one of the unique properties of the plasma embedded atomic systems [12-15]. One can clearly observe from these plots that, the differences in IPs between the SD and NSD potential approximations are large in Al I and gradually it gets reduced when Al is more ionized. In Al I, the results from both the approximations are differing substantially implying it is imperative to include electron correlation effects accurately in the many-electron systems. It can also be noticed from the results that the differences in Al I and Al III are slightly larger for the intermediate range of $D$. This may be because of the fact that with the increase of screening effect, the electrons become more relaxed at the intermediate values of $D$. When the $D$ value is increased further, the electrons start seeing stronger plasma screening effects through the nuclear potential. Hence, for the large $D$ values the differences between the IPs gradually decrease in both the SD and NSD potential approximations. To get a quantitative realization of variation of IPs with the $D$ values, we quote IPs of all the considered ions for some selective values of $D$ in Table I using both the SD and NSD potential approximations. Differences between the results from both the approximations have been given as $\Delta IP$ in the same table.

From Fig. 1 we obtain the IPDs to be 2.52 eV, 19.85 eV, 233.41 eV, and 368.95 eV at the $D$ values 10 a.u, 3 a.u, 0.8 a.u and 0.5 a.u. for Al I, Al III, Al IX and Al XI, respectively, in the NSD potential approximation.

To understand the variation in the excitation energies of plasma embedded ions, we also investigate variation in the first excited state energies of the Al I, Al III, Al IX and Al XI ions, with the Debye length. In Fig. 2 we have plotted them against the $D$ values considering both the SD and NSD potential approximations. One can infer from this figure that the EEs of the excited states in the plasma embedded Al systems decrease with decreasing values of $D$ except in the Al XI ion. We find the situation is quite different in the Al XI ion, where the EE of the $2P_{1/2}$ state increases with the increasing screening strength. However at very high screening region, this EE starts decreasing at some critical $D$ value in the SD approximation. This behavior was also seen in the hydrogen-like ions [5] and lithium-like ions [12] in the Debye model studies. Where as in the NSD potential approximation, this behavior disappears. Therefore, it implies that the use of NSD potential in the Debye model reduces the electron-electron screening effects that are overestimated in the SD model approximation in the systems

![FIG. 3: Variation of ionization potential (IP) in the Al III ion the with ion sphere radius $R$ (in a.u.). Inset plots are shown for the Al IX and Al XI ions.](image)

![FIG. 4: Variation of EE of the $3P_{1/2}$ state in the Al III ion with the IS radius $R$ (a.u.).](image)

![FIG. 5: Variation of EE of the $3S_{1/2}$ state in the Al IX ion with the IS radius $R$ (a.u.).](image)
having many electrons. Thus, it demonstrates importance of accounting the plasma screening effects through the two-body interaction term in the many-electron systems accurately. Another aspect can be observed from the analysis of EEs in the considered systems is that the differences between the EEs obtained using the SD and NSD potential approximations are larger than their IPs, as seen in Figs. 1 and 2. This means that the screening effects affect the ground and the excited states differently.

B. Results from IS model

Here, we proceed presenting results from the IS model by carrying out the calculations using the RCC method. These results are supposed to explain the systems in the strong coupling plasma environment. In Fig. 3, we have plotted the IPs of the Al III, Al IX and Al XI ions with different IS radii. In this model, the IS radius is varied from 4 a.u. to 11.3 a.u., 3 a.u. to 10 a.u. and 4.48 a.u. to 19.32 a.u. in the Al III, Al IX and Al XI ions, respectively. From the plot we can see that the IP's decrease monotonically with decreasing the ion sphere radius $R$. The decaying trends in the plots mean growing instability in the system with the rise of ion density in the strong plasma environment. Similar pattern was also observed by Sil et al. [13] for the plasma embedded Al$^{11+}$ ion in the same IS model analysis.

In the same spirit as of Debye model, we have also investigated the trends in the EEs of the first excited states of all the considered atomic systems in the IS model by varying $R$. The variation of the EE of the $3P_{1/2}$ state in the Al III ion with IS radius shows very peculiar result as shown in Fig. 4. Initially, the EEs of the $3P$ states decrease with decreasing value of IS radius, then they suddenly rise at certain critical values of $R$. Similar trends are also seen in the higher excited states of the Al III ion.

In Figs. 5 and 6, we have plotted the variation of EEs in the Al IX and Al XI ions, respectively. From Fig. 5, we find that in the Al IX ion EE of the $3S_{1/2}$ state decreases with decreasing value of IS radius. Whereas in the Al XI ion, EE of the $2P_{3/2}$ state increases with decreasing radius of IS. From these findings in the high density plasma, we conclude that for low ionized systems, like Al III, the transition spectra are initially red shifted and towards very high density region, it becomes blue shifted. In contrast, the highly ionized ions, such as Al IX and Al XI, show blue shift in the spectral lines in the transitions between the states having same principal quantum numbers and red shifted in the transitions involving states with different principal quantum numbers.

C. Debye versus IS model results

Though it is well known that Debye model describes well the weakly coupled plasma and IS model describes appropriately the strongly coupled plasma, we just wanted to investigate validity of both the models in the similar plasma conditions. For this purpose, we have calculated the IPDs of the Al III and Al XI ions under the same experimental plasma conditions using both the Debye model and IS model at the intermediate plasma coupling. Under the experimental condition

![Excitation Energy (eV)](image)
with the ion density $n_i = 0.2 \times 10^{21}/\text{cc}$ and the temperature $20$ eV (which correspond to $D = 11.36$ a.u. and $R = 20$ a.u.), the obtained IPDs of the Al III ion are $6.6$ eV and $5.8$ eV in the Debye and IS models, respectively. Similarly, with the experimental plasma condition [14] with $n_i = 0.4 \times 10^{21}/\text{cc}$ and $T = 58 \pm 4$ eV (corresponding to $D = 13.6$ a.u. and $R = 16$ a.u.), the IPD of Al XI are found to be $21.60$ eV and $24.3$ eV in the Debye and IS models, respectively. We have also estimated EEs of many low-lying excited states of the Al III and Al XI ions using these two models under the above experimental conditions and given them in Table III for the comparison purpose. We find a quite good agreement in the results from both the models in Al III and Al XI, while results from Debye model are relatively larger. The above plasma coupling strengths under the experimental conditions ($n_i = 0.2 \times 10^{21}/\text{cc}, T = 20$ eV) and ($n_i = 0.4 \times 10^{21}/\text{cc}, T = 58 \pm 4$ eV) are about 2.8, and 1.2, receptively, they are in the intermediate range of classifying as either weakly coupled plasma (i.e. $\Gamma \ll 1$) or strongly coupled plasma (i.e. $\Gamma \geq 10$). So, one would expect in this intermediate region, both the models need to give comparatively the similar results. We anticipate that results obtained using the IS model are more valid here as the plasma couplings corresponding to the above plasma conditions are larger than 1, where Debye model may not be able to describe the systems appropriately.

V. CONCLUDING REMARKS

In this work, we have investigated the electronic structures of Al atom and some of its ions both in the weakly and strongly coupling plasma environments considering the Debye and ion-sphere models, respectively. Further, we have investigated differences in the results considering the plasma screening effects in the electron-electron repulsion with the spherical potential and non-spherical potential approximations within the Debye model to estimate ionization potential depressions and excitation energies of the considered systems. We find significant differences in the results in the systems having more electrons. It also predicts more stability in the atomic systems when the exact screening effects are taken into account. A similar analysis has also been carried out to analyze structures of the Al ions in the strongly coupled plasma using the ion sphere model. In this model, we find the highly ionized ions show blue shifts in the transitions among the states with same principal quantum numbers, else red shifts with the decreasing values of ion sphere radius. Out of keenness, we have also applied both the Debye and ion-sphere models to carry out calculations of the ionization potential depressions and excitation energies in the Al III and Al XI ions considering the plasma conditions that fall in the intermediate coupling plasma strengths. We find from this investigation that the ionization potential depressions for the Al III and Al XI ions obtained using both the plasma models reasonably agree each other, but Debye model predicts higher values.

Acknowledgment

M. Das thanks CSIR for financial support. A part of the computations were carried out using Vikram-100 HPC cluster at Physical Research Laboratory, Ahmedabad.

[1] M. S. Murillo and J. C. Weisheit, Phys. Rep. 302, 1 (1998).
[2] D. Salzman, Atomic Physics in Hot Plasma, Oxford Univ. Press, New York (1998).
[3] J. D. Lindl, P. Amendt, R. L. Berger, Phys. Plasmas, 11, 339 (2004).
[4] S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
[5] Y. Y. Qi, J. G. Wang and R. K. Janev, Phys. Rev. A, 78, 062511 (2008).
[6] B. Saha, P. K. Mukherjee, D. Bielinska-Waz, and J. Karwowski, J. Quant. Spectrosc. Radiat. Transf. 92, 1 (2005).
[7] Y. Y. Qi, Y. Wu, J. G. Wang, and Y. Z. Qu, Phys. Plasmas 16, 023502 (2009).
[8] B. Saha, P. K. Mukherjee, and G. H. F. Diercksen, Astron. Astrophys. 396, 337 (2002).
[9] S. Paul and Y. K. Ho, Phys. Plasmas 16, 063302 (2009).
[10] J. K. Saha, S. Bhattacharyya, T. K. Mukherjee, and P. K. Mukherjee, J. Phys. B 42, 245701 (2009).
[11] M. Das, M. Das, R. K. Chaudhuri, and S. Chattopadhyay, Phys. Rev. A 85 042506 (2012).
[12] D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).
[13] R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 1561 (1949).
[14] G. Ecker and W. Kröll, Phys. Fluids 6, 62 (1963).
[15] J. C. Stewart and K. D. Pyatt Jr., Astrophys. J. 144, 1203 (1966).
[16] K. Wang, Z. Shi, Y. Shi, J. Bai, J. Wu and S. Jia, Phys. Plasmas 22, 062709 (2015).
[17] J. E. Bailey et al., Phys. Plasmas 16, 058101 (2009).
[18] M. J. Seaton, Y. Yan, D. Mihalas, and A. K. Pradhan, Mon. Not. R. Astron. Soc. 266, 805 (1994).
[19] J. Eschner et al. J. Opt. Soc. Am. B 20, 1003 (2003).
[20] E. Storm, Fusion J. Energy 7, 131 (1988).
[21] J. C. Riordan and J. S. Pearlman, Appl. Phys. Lett. 39, 543 (1981).
[22] E. Pérez-Tijerina, J. Bohigas, and R. Machorro, Rev. Mex. Fis. 51, 153 (2005).
[23] S. S. Ciobanu, C. Negutu, M. Stafe, I. Vladoiu, V. Pais, V. Stancalie, and N.N. Puscas, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June 2008 ECA Vol.32D, P-5.144 (2008).
[24] D. J. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013).
[25] O. Cricicosta et al., Phys. Rev. Lett. 109, 065002 (2012).
[26] J. Zeng, F. Jin, J. Yuan, and Q. Lu, Phys. Rev. E 62, 7251 (2000).
[27] P. Feng, J. Gang, and Z. Zheng-He, Chin. Phys. Lett. 23, 3245 (2006).
[28] T. R. Preston, S. M. Vinko, O. Cricosta, H.-K. Chung, R. W. Lee, J. S. Wark, High Energy Density Phys. 9, 258 (2013).
[29] S. Kiyokawa, J. Atom. Molecular Phys. 2014, 431592 (2014).
[30] M. Nantel, G. Ma, S. Gu, C.Y. Cote, J. Itatani, and D. Umstadter, Phys. Rev. Lett. 80, 4442 (1998).
[31] K. Nazir, S.J. Rose, A. Djaoui, G.J. Tallents, M.G. Holden, P.A. Norreys, P. Fews, J. Zhang, and F. Failles, Appl. Phys. Lett. 69 3686 (1996).
[32] B. A. Hammel, C. J. Keane, M. D. Cable, D. R. Kania, J. D. Kilkenny, R. W. Lee, and R. Pasha, Phys. Rev. Lett. 70, 1263 (1993).
[33] A. Szabo and N. Ostuland, Modern Quantum Chemistry, Dover Publications, Inc., Mineola, New York, First edition (revised) (1996).
[34] I. Shavitt and R. J. Bartlett, Many-body methods in Chemistry and Physics, Cambridge University Press, Cambridge, UK (2009).
[35] O. Certk and P. Winkler, Int. J. Quant. Chem. 113 16 (2013).
[36] J.S. Yoon and Y.D. Jung, Phys. of Plasmas 3, 3291 (1996).
[37] F. A. Gutierrez and J. Diaz-Valdes, J. Phys. B: Atom. Mol. Phys. 27, 593 (1994).
[38] See [http://physics.nist.gov/PhysRefData/ASD].
[39] A. I. Akhiezer, I. A. Akhiezer, R. A. Polovin, A. G. Sitenko, K. N. Stepanov, Plasma Electrodynamics, Linear Response Theory, (Pergamon: Oxford), Vol. 1 (1975).
[40] G. Estevez and L. B. Bhuiyan, Am. J. Phys. 53, 450 (1985).
[41] B. F. Rozsynai, Phys. Rev. A 43, 3035 (1991).
[42] M. Das, B. K. Sahoo and S. Pal, J. Phys. B: At. Mol. Opt. Phys. 47, 175701 (2014).
[43] A. N. Sil, J. Anton, S. Fritzsche, P. K. Mukherjee, and B. Fricke, Eur. Phys. J. D 55, 645 (2009).
[44] G. Winhart, K. Eidmann, C. A. Iglesias, and A. Bar-Shalom, Phys. Rev. E 53, R1332 (1996).
[45] T. S. Perry, S. J. Davidson, F. J. D. Serduke, D. R. Bach, C. C. Smith, J. M. Foster, R. J. Doyas, R. A. Ward, C. A. Iglesias, F. J. Rogers, J. Jr. Abdallah, R. E. Stewart, J. D. Kilkenny, and R. W. Lee, Phys. Rev. Lett. 67, 3784 (1991).