Synthesis, and biological evaluation of stilbene derivatives coupled to NO donors as potential antidiabetic agents

Bing Wang,1,2,3,4 Teng Liu,1,2,3,4 Zhongyu Wu,1,2,3,4 Lei Zhang,1,2,3,4 Jie Sun,1,2,3,4* and Xiaojing Wang1,2,3,4*

1 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China
2 Institute of MateriaMedica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
3 Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
4 Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China

*Corresponding authors: E-Mail:
E-Mail: sunjie310@126.com (J. Sun)
E-Mail: xiaojing6@gmail.com (X. Wang)

Supporting Information

Contents

IR(KBr) of compounds 3a-7c ...2
HPLC spectra of compounds 3a-7c ..6
Mass spectrum of compounds 3a-7c ...10
1H NMR(600 MHz, DMSO-d6) of compounds 3a-7c15
13C NMR(150 MHz, DMSO-d6) of compounds 3a-7c19
IR(KBr) of compounds 3a-7c

3a

3b

3c
HPLC spectra of compounds 3a-7c

Specify methods used:
Instrument: Agilent 1100;
Column: Agilent SB-C18, 30 x 2.1 mm, 3.5 um;
Detector: DAD detector, 254 nm;
Flow rate: 1 ml / min
Mobile phase: methanol: water (0.1% glacial acetic acid); gradient elution
Injection volume: 5 ul
Temperature: 25 ° C
Spectra without purity table means that the purity is close to 100%.

3a

#	Meas. Ret. Time	Main Peak	Peak Height	Main Peak Area	Main Peak Area %
1	5.084	1.126	3.856	0.262	
2	5.241	245.901	1454.061	99.737	

3b
	Meas. Ret.	Time (min)	Main Peak Height (mAU)	Main Peak Area (mAU)	Main Peak Area %
1	4.661	0.570	2.222	0.973	
2	5.087	0.830	3.364	1.472	
3	5.709	44.707	222.807	97.554	

3c

VWD1 A, Wavelength=254 nm (YQQ16/M-400.D)

	Meas. Ret.	Time (min)	Main Peak Height (mAU)	Main Peak Area (mAU)	Main Peak Area %
1	4.662	0.570	2.222	0.973	
2	5.087	0.830	3.364	1.472	
3	5.971	44.707	222.807	97.554	

3d

VWD1 A, Wavelength=254 nm (YQQ16/14L.D)
This means that the purity is close to 100%.

This means that the purity is close to 100%.
This means that the purity is close to 100%.

7c

#	Meas. Ret.	Time	Main Peak Height	Main Peak Area	Main Peak Area %
1	3.506	0.486	5.667	1.667	
2	3.392	0.196	1.271	0.373	
3	4.397	0.536	5.568	1.638	
4	4.552	0.504	2.979	0.876	
5	5.082	0.474	2.570	0.756	
6	5.708	63.319	321.843	94.688	
Mass spectrum of compounds 3a-7c

3a

+MS, 5.4min (#220)

3b

+MS2(346.0), 5.4min (#221)

3c

+MS, 6.0min (#244)
1H NMR (600 MHz, DMSO-d$_6$) of compounds 3a-7c
13C NMR (150 MHz, DMSO-d_6) of compounds 3a-7c
