Method of Determining Characteristic Values of Average and Maximum Wind Pressure from the Carpathians Zoning Trans Carpathian Region

Roman Kinasz ¹, Yaroslav Huk ²

¹ AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. Mickiewicza 30, 30-059 Krakow, Poland & Lviv Polytechnic National University, Ukraine
² Uzhhorod National University, Pidhirna st., 46, 88000 Uzhgorod, Ukraine
rkinash@agh.edu.pl

Abstract. Based on observations of climate parameters in 1955-2005, respectively 9 weather stations using 8 directions between the initial eight weather stations and Playa ultimate meteorological station by the average and maximum characteristic values of wind pressure in July and January to the highest peak of the Carpathians - Hoverla. For 4 directions between the initial weather stations altitude coefficients and formulas using parameters atmospheric pressure, the average outdoor temperature (in January and July) calculated comparative characteristic values of summer and winter average and maximum wind pressure for 9 peaks of the Carpathians.

1. Introduction
Taking account of the wind load is important when designing wind power stations, calculating structures of high-rise buildings and edifices, preparing general layouts of settlements and so on. The wind load is of a complex physical and probabilistic nature; it depends upon physical and geographical features of the area, in particular, on the geographical altitude.

The territory of the former USSR was divided into 7 zones (from 24 m/s to 47 m/s). Ukraine belonged to zone 3 with an average wind speed of 29 m/s [18]. According to the Ukrainian National Building Code DBN V.1.2-2: 2006 [17], the territory of Ukraine is now divided into five wind zones: 1st – 400 Pa, 2nd – 450 Pa, 3rd – 500 Pa, 4th – 550 Pa, 5th – 600 Pa. The map of zoning of the Ukrainian territory according to the average wind pressure is shown in Figure 1. The Transcarpathian Region is classified as wind zones 1 and 2.

2. Analysis of recent research sources and publications
Starting from the 80-ies, probabilistic researches of the wind load [11 - 16] have been conducted in Ukraine, the main result of which is the development of the national norms of loads [17] relying on the modern scientific basis in conjunction with the European norms Eurocode. The concept of the characteristic value of the wind pressure Wo has been introduced into these standards, which is equal to the average (static) component of the wind pressure at an altitude of 10 meters above the ground, which can be exceeded on average once every 50 years and is determined in accordance with the existing rules according to the map of the zoning of Ukraine.
The characteristic value of the wind pressure \(W_0 \) is calculated by the formula:

\[
W_0 = 0.61 V^2,
\]

where \(V \) is the appropriate wind speed, m/s.

Unlike the previous norms [18], according to which Ukraine was divided into three wind zones, the regulatory document [17] divides now the territory of Ukraine into five zones with the corresponding characteristic values of wind pressure: 1st – 400 Pa; 2nd – 450 Pa; 3rd – 500 Pa; 4th – 550 Pa; 5th – 600 Pa.

Identification of the aspects of the problem, which have not been solved earlier.

According to the norms [17], the Transcarpathian Region belongs to the 1st and 2nd wind zones, which does not have any probabilistic substantiation. Most of the territory of the Region was designated as a mountainous region, for which the estimated dependence of wind pressure applies depending on the geographic altitude that is allowed to be detailed subject to available meteorological data. At the beginning of the twenty-first century, there were no reliable data about the detailed description of the wind conditions for the mountainous part of the Transcarpathian Region.

The aim of the study is to work out the detailed wind zoning of the Transcarpathian Region, taking into account the geographical and climatic characteristics of this mountainous region.

3. Methods and research results

In order to calculate the wind parameters we have used: diagram 23 of directions between 9 weather stations and 18 intermediate stations (Figure 2), the data of observations of climate parameters in 1955-2005 at 9 weather stations in the Transcarpathian Region (Table 1).
Figure 2. Weather and intermediate (transitional) stations with appropriate directions
Designations: 1 - Transcarpathian Region; 2 – directions for determining the normative parameters of building climatology; 3 – weather stations; 4 – intermediate stations; 5 – scale 1:700000, 1 cm = 7 km

3.1. Methodology of studying the wind parameters
In order to calculate the wind speed and pressure and compare the calculations [6-8, 12], the formulas of high-altitude factors were used: a) the maximum wind speed difference divided by the difference of the absolute marks of stations 1, 2 of direction 1 - 2; b) wind pressure difference divided by the difference of absolute marks of stations 1, 2 of direction 1-2. In order to calculate the atmospheric pressure: the atmospheric pressure difference divided by the difference of absolute marks at stations 1, 2 of direction 1-2.

a) General formulas of high-altitude factors are as follows:

\[Z_X = Z_1 \pm K_{Z1-2} \cdot \Delta H_{X-Z}, \] \hspace{1cm} (2)

\[\Delta H_{1-2} = H_2 - H_1, \] \hspace{1cm} (3)

\[K_{Z1-2} = \frac{Z_2 - Z_1}{H_2 - H_1}, \] \hspace{1cm} (4)

\[\Delta H_{X-Z} = H_X - H_Z, \] \hspace{1cm} (5)

or for controlling:

\[Z_X = Z_2 - K_{Z1-2} \cdot H_{Z-X}, \] \hspace{1cm} (6)
where: \(Z_X, Z_1, Z_2 \) are parameters (summer, winter) at stations \(X, 1, 2 \), namely:

- \(W_0 \) is characteristic values of wind pressures HPa;
- \(V \) is the wind speed, m/s;
- \(P_{atm} \) is winter and summer atmospheric pressure at stations \(X, 1, 2 \) HPa;
- \(K_{Z,1-2} \) is an altitude factor of wind and atmospheric parameters between weather stations 1, 2;
- \(H_X, H_1, H_2 \) are the height of stations \(X, 1, 2 \) above the Baltic Sea level, m.

Table 1. Results of the observations of climate parameters in 1955-2005 at 9 weather stations in the Transcarpathian Region

No	Name of the weather station	The height above the Baltic Sea level, H, m	Wind speed - numerator m/s, wind pressure - denominator, Pa	Atmospheric pressure, HPa	The average air temperature, °C											
		Wind speed - numerator m/s, wind pressure - denominator, Pa	Average	Maximal	July	January										
1	Berehove 113		2.9	5.1	2.5	3.8	24	351	20	244	1000.5	1005.0	+20.2	-2.7		
2	Uzhhorod 114.6		3.3	6.6	3.6	7.9	26	412	24	351	1000.3	1004.8	+19.9	-2.8		
3	Khust 166		2.2	2.95	1.8	1.98	20	244	20	244	995.6	1000.0	+19.2	-4.3		
4	V.Bereznyi 209		2.5	3.8	2.1	2.7	20	244	25	381	990.5	995.1	+18.1	-4.1		
5	Rakhiv 438		1.5	1.4	8.7	46.2	30	549	20	244	968.2	972.5	+17.0	-4.3		
6	Mizhhiria 456		2.1	2.7	2.5	3.8	35	747	24	351	966.4	970.7	+16.4	-5.0		
7	Nyzhni Vorota 500		2.4	3.5	3.9	9.3	21	269	20	244	962.0	966.3	+16.2	-4.6		
8	Nyzhnii Studeniy 615		2.2	2.95	3.3	6.6	18	198	24	351	950.5	954.8	+15.2	-5.8		
9	Plai 1330		7.0	29.8	8.7	46.2	40	976	40	976	867.1	861.2	+11.1	-6.3		

3.2 The results of the studies of wind parameters

Table 2 shows the results of calculations of summer and winter maximum characteristic values of wind pressure in four directions using high-altitude factors, calculated on the basis of parameters of atmospheric pressure, average ambient air temperatures in July and January obtained from observations at nine weather stations in the Transcarpathian Region in 1955 - 2005. Table 3 shows the results of calculations according to high-altitude factors and 23 directions between 9 weather stations and 18 intermediate stations of maximum wind speeds and characteristic values of wind pressure (summer and winter) for 46 settlements, peaks and passes in the Transcarpathian Region.
Table 2 - Results of calculations of the characteristic values of maximum summer and winter wind pressures for 9 Carpathian peaks according to high-altitude factors

No	Name of the peaks	The altitude above the Baltic Sea level, m	Numerator – summer, denominator - winter	The proposed regulatory parameters			
			a) according to the high-altitude factors of the difference of maximum wind speeds in July and January divided by the difference of absolute heights of stations 1,2, HPa	Maximum wind pressures, HPA	Maximum wind speeds, m/s		
			b) according to the high-altitude factors of the difference of maximum summer and winter wind pressures divided by the difference of absolute heights at stations 1, 2, HPA	1.397/1.86	47.85/55.20		
			c) according to the high-altitude factors of the difference of maximum summer and winter wind pressures divided by the difference of atmospheric pressures at stations 1, 2, HPA	1.397/1.86	47.82/54.46		
1.	Hoverla	2061	1.397/1.86	1.37/1.82	1.32/1.82	1.32/1.74	46.54/28.47
2.	Petros	2020	1.397/1.86	1.37/1.82	1.37/1.82	1.37/1.82	46.13/52.96
3.	Pip Ivan	1936	1.397/1.86	1.37/1.82	1.37/1.82	1.32/1.74	46.54/28.47
4.	Svyulia, Tovsta	1818	1.397/1.86	1.37/1.82	1.37/1.82	1.32/1.74	46.13/52.96
5.	Ungariaaska	1707	1.397/1.86	1.37/1.82	1.37/1.82	1.32/1.74	46.13/52.96
6.	Velykyi Verkh	1598	1.397/1.86	1.37/1.82	1.37/1.82	1.32/1.74	46.13/52.96
7.	Polynyna Rivna	1470	1.397/1.86	1.37/1.82	1.37/1.82	1.32/1.74	46.13/52.96

Based upon the data of Tables 1, 2 and 3, graphs were drawn, showing changes in the maximum wind speed in July and January (Figure 1) and the characteristic wind pressure in July and January (Figure 2) depending on the location of the weather stations and the Carpathian peaks above the Baltic Sea level. The graphs clearly illustrate almost a linear dependence of the speed and pressure of the wind on the geographic altitude starting from the altitude of 600 m.
Table 3. Results of calculations of the maximum wind speeds and maximum wind pressure characteristic values in July and January for intermediate stations, individual settlements, peaks and passes based on 23 directions, high-altitude factors and data of observations at 9 weather stations in the Transcarpathian Region in 1955-2005

№	Names of intermediate stations, settlements, peaks and passes	The altitude above the Baltic Sea level, m	Longitude, grades, min.	Latitude, grades, min.	The maximum wind speed, m/s – numerator, characteristic value of wind pressure, kPa - denominator
1	Chop	100.0	22°18'	48°21'	23.71/340, 19.61/230
2	Batiovo	102.5	22°23'	48°22'	23.71/340, 19.61/230
3	Mukacheve	116.5	22°44'	48°26'	24.08/350, 20.11/240
4	Velyja Palad	120.0	22°53'	47°59'	24.04/350, 20.09/240
5	Vynohradove	127.4	23°02'	48°08'	24.09/350, 20.2/250
6	Dovhe	166.0	23°16'	48°21'	24.69/370, 20.87/270
7	Irshava	141.5	23°02'	48°18'	24.37/360, 20.47/260
8	Perechyn	142.0	22°28'	48°44'	25.71/400, 22.84/310
9	Bushyno	195.8	23°19'	48°02'	20.62/240, 20.42/250
10	Svaliava	203.5	23°00'	48°32'	23.88/350, 20.09/240
11	Tiachiv	210.0	23°34'	48°00'	20.92/270, 20.62/260
12	Bedevlia, Teresva	225.2	23°39'	48°02'	21.23/270, 20.83/260
13	Poliana	242.0	22°58'	48°36'	23.07/320, 20.07/240
14	Dibrova	250.0	23°51'	48°00'	21.75/280, 21.17/270
15	Velykyi Bychkiv	290.9	24°00'	47°58'	22.60/310, 21.74/290
16	Mountain Hlyboka	301.1	22°24'	48°32'	28.18/480, 25.73/400
17	Dubove	363.7	23°53'	48°10'	23.74/340, 23.23/330
18	Kobyletska Poliana	387.3	24°05'	48°03'	24.10/350, 23.54/330
19	Vilshany	420.0	23°37'	48°20'	25.41/390, 23.60/340
20	Volovets	472.9	23°12'	48°42'	21.22/270, 20.01/240
21	Ust-Chorna	502.0	23°56'	48°19'	26.10/420, 25.79/400
22	Kvasy	513.0	24°09'	47°55'	30.84/590, 21.68/290
23	Mountain Svaliavka	525.0	22°49'	43°40'	29.56/530, 21.01/380
24	Bohdan	525.0	24°21'	48°02'	30.98/590, 21.95/290
25	Bukovets	550.0	22°57'	48°54'	22.14/300, 21.20/270
26	Mountain Chorna Hora (Vynohradiv)	565.0	23°03'	48°09'	26.86/440, 26.86/440
27	Lopukhiv	615.0	23°58'	48°22'	28.09/480, 27.39/460
28	Yasinia	636.6	24°22'	48°16'	32.23/630, 24.45/360
29	Pass Pshelench-Beskyd	790.0	22°42'	49°05'	33.39/680, 29.21/520
30	Mountain Prapor	819.0	22°29'	48°59'	33.80/700, 29.67/540
31	Pass Serednio-Veretskyi	839.0	23°09'	48°48'	28.76/500, 28.16/480
32	Mountain Darvaika	883.0	23°45'	48°28'	34.99/740, 29.98/540
33	Mountain Khmeliv	887.0	24°67'	47°55'	35.04/750, 30.07/550
34	Vyshhivskiyi Pass	930.0	23°37'	48°42'	30.84/580, 30.36/560
35	Yablunetskyi Pass	931.0	24°26'	48°18'	35.53/770, 31.05/590
36	Mountain Makovytssia	978.0	22°36'	48°39'	36.10/790, 32.20/630
37	Pass Beskyd	981.0	23°20'	48°45'	32.01/630, 31.59/610
38	Mountain	1017.0	22°57'	48°29'	35.72/780, 34.90/740
39	Mountain Dakhmaniv	1225.0	23°55'	48°21'	38.82/920, 37.65/860
40	Mountain Verkhni Debri	1237.0	24°28'	48°15'	38.80/918, 37.50/858
Figure 3. The graph of changes in maximum wind speed, depending on the location of the weather stations and peaks of the Ukrainian Carpathians above the Baltic Sea level: 1 – July; 2 – January

Figure 4. The graph of the change of the maximum wind pressure depending on the location of the weather stations and peaks of the Ukrainian Carpathians above the Baltic Sea level: 1 - July 2 – January
4. Conclusions

1. In the climatic environment, the parameters are interchangeable and interrelated. This has been proved by applying in the formulas the characteristic values of wind loads (summer and winter) and parameters: wind speed, atmospheric pressure, and ambient air temperatures in July and January, obtained according to the observations in 1955-2005 at 9 weather stations in the Transcarpathian Region.

2. The calculated characteristic values of maximum wind pressures depending on the height of location of the stations above the Baltic Sea level [8] range within the following limits:
 • Summer: 340 Pa (Chop – 100 m) - 1370 Pa (Hoverla)
 • Winter: 230 Pa (Chop – 100 m) - 1832 Pa (Hoverla).

3. Existing norms are ensured at the intermediate stations:
 • for the 1st wind zone (400 Pa):
 summer: Town of Perechyn – 142 m (400 Pa);
 winter: Mountain Hlyboka – 301.1 m (400 Pa);
 • for the 2nd wind zone (450 Pa):
 summer: Mountain Hlyboka – 301.1 m (480 Pa);
 winter: Pass Lopukhiv – 615 m (460 Pa).

4. Thus, it is not expedient to apply the existing norms from 615 to 2061 m (Hoverla) above the Baltic Sea level.

5. In order to fill the “white spots”, it is recommended to divide the area of the Transcarpathian Region into 9 wind zones according to the maximum winter wind pressure:
 Zone 1: 250 - 400 Pa; Zone 6: 600 - 800 Pa;
 Zone 2: 400 - 450 Pa; Zone 7: 800 - 1000 Pa;
 Zone 3: 450 - 500 Pa; Zone 8: 1000 - 1300 Pa;
 Zone 4: 500 - 550 Pa; Zone 9: 1300 - 1900 Pa;
 Zone 5: 550 - 600 Pa;

 and into 8 zones according to the maximum summer wind pressure:
 Zone 1: 250 - 400 Pa; Zone 5: 550 - 600 Pa;
 Zone 2: 400 - 450 Pa; Zone 6: 600 - 800 Pa;
 Zone 3: 450 - 500 Pa; Zone 7: 800 - 1000 Pa;
 Zone 4: 500 - 550 Pa; Zone 8: 1000 - 1300 Pa.

Acknowledgements
The thesis was conducted within the framework of the regulation researches of AGH University of Science and Technology, Poland No 11.11.100.197.

References
[1] ASCE 7-93 1993 and Draft of ASCE 7-95, 1995, Minimum design loads for buildings and other structures. American Society of Civil Engineers, New York, 10 – 12.
[2] Andreeva G. K., Babichenko V. N., 1974, Nekotorye voprosy postroeniya klimaticheskih kart, Ukr NiGMI, Kyiv, Vol.131, 106 – 116. (in Russian)
[3] Babichenko V. N., 1991, Klimat Uzhgoroda, Leningrad, Gidrometeoizdat, 190.
[4] Budyko M. I., 1980, Klimat v proshlom i budushchem, Leningrad: Gidrometeoizdat, 351.
[5] Buchinskiy I. E., 1960, Klimat Ukrainy, Leningrad: Gidrometeoizdat, 130. (in Ukrainian)
[6] Guk M. I., Polovko I. K., Prihotko G. F., 1958, Klimat URSR, – Kyiv: R. shkola, 72 (in Ukraine).
[7] Guk Ya. S. 2006. – Viznachennya rekomendovanih normativnih parametriv tisku dlya naselennih
punktiv, okremih vershin i perevaliv Zakarpatskoyi oblasti, Naukovyi visnik UzhNU. Seriya: Fizyka, Uzhgorod, Vol. 19, 206 – 208. (in Ukrainian)

[8] Guk Ya. S. 2015, „Metodika viznachennya visot horizontaley na topografichnih kartah Zakarpatskoyi oblasti, shcho vidpovidayut maksimalnim zimovim i litnim vitrovim tiskam”, Zb. nauk. prats. Seriya: Galuzeve mashinobuduvannya, budivnitstvo, Poltava, Vol. 2 (44), 42 – 51. (in Ukrainian)

[9] DSTU NB V.1.1-21:2010. 2010, Zahist vid nebezpechnih geologicnih protsesiv, shkidlivih ekspluatsiynyh vpliviv, vid pozhezhi. Budivelna klimatologiya, Kyiv, Ukraine, 55. (in Ukrainian)

[10] Zakarpatska obl. 2006, Zagalnogeografichna karta (1:250 000), Kyiv: AGP, 1 list. (in Ukrainian)

[11] Kinash R. I., Burnaev O. M., 1998, Vitrove navantazhennya i vitroenergetichni resursi v Ukrayini, L'viv: Vidavnytstvo naukovo-tehnichnoyi literatury, Ukraine, 1152. (in Ukrainian)

[12] Kinash R. I., Guk Ya. S. 2006, Metodika viznachennya parametriv budivelnoyi klimatologiyi dlya naselenih puntkiv, vershin i perevaliv Zakarpatskoyi oblasti, Proceedings Problems of the Technical Meteorology (22 – 26 may, 2006), L'viv, Ukraine, 50 – 56. (in Ukrainian)

[13] Pashinskiy V. A., 1999, Atmosferni navantazhennya na budivelni konstruktsiyi, Kyiv, UkrNDIPSK, Ukraine, 185. (in Ukrainian)

[14] Pichugin S. F. 1997, “Veroyatnostnyy analiz vetrovoy zagruzki”, Izvestiya Vuzov. Stroitelstvo, No 12, 13 – 20. (in Russian)

[15] Pichugin S. F. 1997, “Probabilistic Analysis on Wind Load and Reliability of Structures”, Proceedings of the 2 EACWE. Vol. 2, Genova, Italy, 1883 – 1890.

[16] Pichugin S. F., Mahinko A. V., 2005, Vetrovaya nagruzka na stroitelnye konstruktii, Poltava, Izdatelstvo «ASMi», Ukraine, 342. (in Russian)

[17] DBN V.1.2-2:2006, 2006, Sistema zabezpechennya nadiynosti ta bezpeki budivelnen ob’ektiv. Navantazhennya i vplivi. Normi proektuvannya. – K.: Minbud Ukrayiny, Ukraine, 35.

[18] SNiP 2.01.07-85. 1985, Nagruzki i vozdeystviya. – Moskva, Stroyizdat, 35. (in Russian)

[19] SNiP 2.01.01.82. 1983, Stroitelnaya klimatologiya i geofizyka, Moskva,Stroyizdat, 136. (in Russian)