Suicidality Associated With Deep Brain Stimulation in Extrapyramidal Diseases: A Critical Review and Hypotheses on Neuroanatomical and Neuroimmune Mechanisms

Alessandra Costanza¹,², Michalina Radomska³, Guido Bondolfi¹,⁴, Francesco Zenga⁵, Andrea Amerio⁶,⁷, Andrea Aguglia⁶,⁷, Gianluca Serafini⁶,⁷, Mario Amore⁶,⁷, Isabella Berardelli⁹, Maurizio Pompili⁹ and Khoa D. Nguyen¹⁰,¹¹,¹²

¹Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland, ²Department of Psychiatry, ASO Sant'Erasmo Hospital, Alessandria, Italy, ³Faculty of Psychology, University of Geneva (UNIGE), Geneva, Switzerland, ⁴Department of Psychiatry, Service of Liaison Psychiatry and Crisis Intervention (SPLIC), Geneva University Hospitals (HUG), Geneva, Switzerland, ⁵Department of Neurosurgery, University and City of Health and Science Hospital, Turin, Italy, ⁶Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy, ⁷Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy, ⁸Mood Disorders Program, Tufts Medical Center, Boston, MA, United States, ⁹Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy, ¹⁰Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States, ¹¹Tranquis Therapeutics, Palo Alto, CA, United States, ¹²Hong Kong University of Science and Technology, Hong Kong, China

Deep brain stimulation (DBS) is a very well-established and effective treatment for patients with extrapyramidal diseases. Despite its generally favorable clinical efficacy, some undesirable outcomes associated with DBS have been reported. Among such complications are incidences of suicidal ideation (SI) and behavior (SB) in patients undergoing this neurosurgical procedure. However, causal associations between DBS and increased suicide risk are not demonstrated and they constitute a debated issue. In light of these observations, the main objective of this work is to provide a comprehensive and unbiased overview of the literature on suicide risk in patients who received subthalamic nucleus (STN) and internal part of globus pallidum (GPI) DBS treatment. Additionally, putative mechanisms that might be involved in the development of SI and SB in these patients as well as caveats associated with these hypotheses are introduced. Finally, we briefly propose some clinical implications, including therapeutic strategies addressing these potential disease mechanisms. While a mechanistic connection between DBS and suicidality remains a controversial topic that requires further investigation, it is of critical importance to consider suicide risk as an integral component of candidate selection and post-operative care in DBS.

Keywords: deep brain stimulation, suicide, neuroinflammation, extrapyramidal diseases, suicidal ideation (SI), suicidal behavior (SB), suicide attempt (SA), Parkinson’s disease
Deep brain stimulation (DBS) has emerged as an effective therapy for patients with extrapyramidal disorders, particularly those with drug-refractory advanced Parkinson's disease (PD). This neurosurgical procedure requires the implantation of electrodes to deliver electrical pulses from a neurostimulator into specific brain regions. Depending on various stimulatory parameters such as intensity (mA), desired frequency (Hz), and pulse duration (µs), DBS can differentially modulate neuronal activities to achieve desired therapeutic outcomes. Introduced more than two decades ago, this approach has been frequently employed to target the subthalamic nucleus (STN) and the internal globus pallidum (GPI) in PD (Pollak et al., 1993; Limousin et al., 1998). While STN has been the preferred DBS target with a greater impact on post-operative medication withdrawal (Moro et al., 2010; St George et al., 2015), GPI appears to be more programmable (easier to precisely target specific areas while avoiding off-targeting effects) due to its larger volume (Au et al., 2020). GPI DBS seems to have a more powerful anti-dyskinesia effect in comparison to STN DBS (Munhoz et al., 2014). Differences in efficacy between STN and GPI DBS have also been observed in studies of advanced PD with a particular emphasis on tremor, where the former provided enhanced motor improvement during the off-drug phase (Odekerken et al., 2016) and the latter resulted in less dyskinesia during the post-operative on-medication period (Tsuboi et al., 2020; Zhang et al., 2020).

To date, DBS is the neurological treatment of choice for drug-refractory PD with proven efficacy (Thobois et al., 2002; Herzog et al., 2003; Benabid et al., 2009; Schuepbach et al., 2013; Lezcano et al., 2016). The most profound effects of DBS are in the areas of rigidity (75% improvement) and akinesia (50% improvement), allowing a marked reduction in dopaminergic therapies, and consequently, avoiding motor and non-motor complications (Benabid et al., 2009). While the generally high precision and efficacy of DBS represents a clinical success, its mechanism of action remains elusive (Denys et al., 2012; Chiken and Nambu, 2016; Herrington et al., 2016) with possible involvement in the modulation of primarily glutamatergic (STN-DBS) and GABAergic (GPI-DBS) neuronal circuits (Dostrovsky et al., 2000; Jakobs et al., 2019).

Some adverse outcomes in patients receiving this therapy have been reported. Notably, suicidal ideation (SI) and behavior (SB), including suicide attempts (SA) and completed suicides, have been observed but causation associations between DBS and increased suicide risk have not been established. Therefore, the primary goal of this work is to provide a concise and unbiased overview of studies on suicidality in patients receiving STN and GPI DBS. Additionally, putative mechanisms that might be involved in the development of suicidality in these patients as well as caveats associated with these hypotheses are introduced. Finally, we propose some clinical implications, including therapeutic strategies addressing these potential disease mechanisms to avoid the risk of suicidality in patients receiving DBS, with a particular emphasis on patient selection and neuropsychiatric post-operative care.

LITERATURE OVERVIEW

While comprehensive data on SI and SB rates of subjects with a co-morbid neurological condition or physical illness are often limited (Ostertag et al., 2019; Costanza et al., 2020d), clinical evidence of suicidality possibly associated with DBS treatment for PD subjects was first documented in a series of case reports (Doshi et al., 2002; Balash et al., 2007; Rodrigues et al., 2010). Additionally, analyses of initial cohorts of PD patients undergoing STN and GPI DBS in the early 2000s observed a notable rate of suicidality (1.5–4.6% for complete suicides, 0–6.1% for SA, and 12.5–16.6% for SI) despite the interventional success concerning motor symptom improvement (Berney et al., 2002; Houeto et al., 2002; Krack et al., 2003; Burkhard et al., 2004; Funkiewiez et al., 2004; Table 1). This phenomenon was particularly interesting because unlike other neurological conditions with well-established increases in suicide risk, such as multiple sclerosis and epilepsy (Costanza et al., 2015; 2020a), subjects with PD have a markedly lower risk in comparison to that of the general population (Li et al., 2018). Suicidality in patients with STN and GPI DBS was also reported in larger studies from 2006 to 2019 (Table 1), but with more varying frequencies of SI and SB compared to previous cohorts and it remained unclear whether this phenomenon was mechanistically related to DBS. This assertion was in particular challenged by two meta-analyses in a combined total of more than 10,000 subjects with extrapyramidal diseases, which yielded a substantially lower rate of suicide associated with DBS (~0.1–0.32%; Kleiner-Fisman et al., 2006; Appleby et al., 2007; Table 2). Conversely, a vast international multicenter study reported a 0.45% rate of suicide in more than 5,000 PD patients receiving DBS; interestingly, it was demonstrated that after adjustment for other demographic factors, the standardized mortality rate of DBS subjects appeared to be higher than that of the general population, especially in the first year after a DBS surgical procedure (Voon et al., 2008). While the incidences of SI and SB in patients who underwent DBS seemed to be significantly decreasing, probably due to improvement in candidate selection and postoperative follow-up (see paragraph 4), the debate was revived in 2019, when in a large retrospective case-controlled study by Giannini et al. (2019) in 534 PD patients who underwent bilateral STN DBS between 1993 and 2016, completed suicide and SA percentages were 0.75% and 4.11%, respectively. The observed suicide rate in the first postoperative year was higher than the expected National Observatory on Suicide Risks rate adjusted for age and sex and this rate remained similar over the second and third postoperative years (Giannini et al., 2019; Table 1). Two recent meta-analyses revealed increased rates of SI and SB (Xu et al., 2021), particularly in patients who underwent DBS compared to the general population (Du et al., 2020; Table 2). Two recent systematic reviews reaffirm the relevance of the problem of suicidality in DBS while insisting on the heterogeneity of the results and the extreme complexity in interpreting them (Berardelli et al., 2019; Zarzyci and Domitrz, 2020), while a third is more incisive in excluding any causal associations between DBS and suicidality (Shepard et al., 2019).
References	Disease and sample size, N	Study design	Completed suicide, N (%)	SA N (%)	SI N (%)	Assessments methods
STN DBS						
Doshi et al. (2002)	PD 3	Case series	0	1 (33.3%)	N/A	UPDRS, clinical evaluation
Berney et al. (2002)	PD 24	Prospective (6-months follow-up)	0	0	3 (12.5%)	CAPSIT-PD, UPDRS HDRS, MADRS
Houeto et al. (2002)	PD 24	Retrospective	1 (4.6%)	0	4 (16.6%)	UPDRS, M.I.N.I., IOWA, SAS
Krack et al. (2003)	PD 49	Prospective (5-year follow-up)	1 (2%)	3 (6.1%)	N/A	UPDRS, Mattis DRS, Frontal-lobe function
Funkiewiez et al. (2004)	PD 77	Prospective (3-year follow-up)	1 (1.5%)	4 (5.7%)	N/A	Clinical records review, UPDRS, BDI, Mattis DRS, other neuropsychological scales
Smeding et al. (2006)	PD 99 cases, 39 controls	Case-control	0 cases 0 controls	1 (1%)	N/A	Neurological, psychiatric, and neuropsychological battery
Balash et al. (2007)	PD 2	Case series	0	2 (100%)		Clinical evaluation
Soulas et al. (2008)	PD 200	Retrospective (9-year follow-up)	2 (1%)	4 (2%)	N/A	Clinical records review
Voon et al. (2008)	PD S311	Retrospective 75 Worldwide centers survey	24 (0.45%)	48 (0.9%)	N/A	Neurological, psychiatric, and neuropsychological batteries
Porat et al. (2009)	PD 22	Prospective (1-year follow-up)	1 (4.5%)	1 (4.5%)	7 (31.8%)	Neurobehavioral Rating Scale, BPRS, BDI, Neuropsychiatric Inventory, Dopamine Derangement, Work/Social Adjustment Scale
Rodrigues et al. (2010)	PD 3	Cases series	0	3 (100%)	N/A	UPDRS, LEDD, BDI
Soulas et al. (2011)	PD 41	Prospective (1-year follow-up)	1 (2.4%)	0	N/A	UPDRS, BDI, STAI, QoL
Umemura et al. (2011)	PD 180	Retrospective (7-year follow-up)	0	2 (1.1%)	N/A	UPDRS, clinical files review
Lhomme et al. (2012)	PD 63	Prospective	N/A	2 (3%)	N/A	M.I.N.I., Ardouin Scale
Berretzen et al. (2014)	ET 46	Prospective	1 (2%)	0	N/A	Ad hoc questionnaires
Giannini et al. (2019)	PD S34	Retrospective Case-control (9-year follow-up)	4 (0.75%)	22 (4.11%)	N/A	Clinical files review UPDRS part III, LEDD, Mattis DRS, Frontal Score, BDI
STN and GPI DBS						
Burkhard et al. (2004)	EMD 140	Retrospective (9-year follow-up)	6 (4.3%)	0	N/A	Clinical records review
Bernal-Pacheco et al. (2013)	PD 113	Cases series	0	0%	10 (11.5%)	BDI, behavioral features
Rocha et al. (2014)	PD 184	Prospective (50-month mean follow-up)	1 (0.5%)	0	0	UPDRS parts I-II, BDI, GDI
Boel et al. (2016)	PD 128	Prospective multicenter (3-year follow-up)	0	0	Low	M.I.N.I., MDRS, YMRS, HADS, NESDA
Buhmann et al. (2017)	EMD 123*	Retrospective (3.5-year follow-up)	1 (0.8%)	N/A	N/A	UPDRS, review of clinical files
GPI DBS						
Forkel et al. (2006)	DT 16	Retrospective (9-year follow-up)	2 (12.5%)	0	N/A	Dystonia scales, clinical files review
STN-GPI DBS vs. BMT and STN vs. GPI DBS						
Weintraub et al. (2013)	PD Phase I: 121	Randomized trial (6-month follow-up)	0%	0%	Phased I: 1.9 STN-GPI DBS, 0, 9% BMT, Phase II: 1.5% in STN DBS vs. 0.7% in GPI DBS	UPDRS part I

(Continued)
TABLE 1 | Continued

References	Disease and sample size, n	Study design	Completed suicide, N (%)	SUA N (%)	SA N (%)
Witt et al. (2008)	PD 78 DBS, 127 BMT	Randomized multicenter	1 (1.3%) DBS	N/A	N/A
Strutt et al. (2012)	PD 17 DBS, 22 BMT	Prospective	0 (0%) DBS	0 (0%) BMT	0 (0%)
Deuschl et al. (2013)	PD 124 DBS, 127 BMT	Randomized trial (2-year follow-up)	2 (1.6%) DBS	0 (0%)	0 (0%)
Lhommée et al. (2018)	PD 210 DBS, 127 BMT	Case-control (2-year follow-up)	2 (1.6%) DBS, 5 (4%) BMT	0 (0%)	5 (4%)
BDQ, MADRS, BDI, ADL Scale					
STN DBS vs. BMT					

Besides studies that focus on DBS at the STN or the STN and GPi, an examination of suicidality in patients receiving only GPi DBS treatment has been scarcely reported. In this regard, complete suicides (12.5%) were documented in a small cohort of patients with dystonia (Foncke et al., 2006). A comparative analysis of SI incidence in PD patients receiving DBS at two different neurological targets (GPi vs. STN) showed a markedly lower rate in the GPi group (Weintraub et al., 2013; Table 1). It was postulated that GPi DBS might be protective against the development of depression or SI and SB because it is comparable to STN DBS concerning motor outcomes but does not require postoperative reduction of dopaminergic medications as is usually the case for STN DBS (Weintraub et al., 2013). Moreover, GPi DBS might provide better protection against the development of depression or SI and SB as this treatment seemed to result in greater relief from psychiatric symptoms (Liu et al., 2014; Negida et al., 2018). A meta-analysis found that stimulating STN and GPi were equally effective at improving motor symptoms and dyskinesias; however, there would be has been discrepancy as to whether the cognitive, behavioral, and mood symptoms were affected differently between the two targets (Combs et al., 2015). This issue needs further research (Combs et al., 2015).

Greater SI and SB incidences in case-control studies among PD patients treated with DBS compared to PD patients treated with best medical treatment (BMT) were reported (0–5% for complete suicides, 0–3% for SA, and 0–3% for SI; Witt et al., 2008; Strutt et al., 2012; Deuschl et al., 2013; Weintraub et al., 2013; Lhommée et al., 2018). However, these studies do not yield uniform results. In the cohort of Lhommée et al. (2018), it was shown that there was a two-fold increase in complete suicides (1.6% vs. 0.8%) in patients with DBS compared to patients who received BMT, but SA and SI were less frequent in former patients than in latter (3% vs. 4%; Table 1).

To date, the topic of suicidality and DBS remains controversial due to differences in clinical assessment methods, study types, sample sizes, and patient characteristics. Nevertheless, these reports highlight possibly DBS-associated suicidality as an important phenomenon that deserves further examination and clinical attention.

HYPOTHESES ON MECHANISMS FOR SUICIDALITY ASSOCIATED WITH DBS

Neuroanatomical Circuit Dysfunctions

While many neurobiological factors have been associated with suicide (Hawton and van Heeringen, 2009; Turecki et al., 2012; Costanza et al., 2014; van Heeringen and Mann, 2014; Costanza et al., 2020), little is known about the neuro-etiology of this phenomenon in the context of DBS. The primary hypothesis on putative neurobiological mechanisms of suicide after DBS revolves around the anatomical regions that might be undesirably targeted by this treatment, notably those structurally adjacent or functionally related to STN or GPi (14; Figure 1). Specifically, STN stimulation can modulate dopamine release from the substantia nigra pars compacta (SNc) in animal
TABLE 2 | Meta-analysis on suicidality in patients who underwent DBS.

References	Disease and sample size	Study design	Completed suicides	SA	SI
Kleiner-Fisman et al. (2006)	PD 971	Meta-analysis (1993–2004)	0.1%	0.7%	N/A
Appleby et al. (2007)	EMD 10399	Meta-analysis (1996–2005)	0.16–0.32%	0.3–0.7%*	0.3–0.7%*
Du et al. (2020)	PD	Meta-analysis (1990–2019)			
Xu et al. (2021)	PD	Meta-analysis (all eligible studies till 2019)	1%	1%	4%

DBS, Deep Brain Stimulation; EMD, extrapyramidal movement disorder; N/A, unavailable; PD, Parkinson’s Disease; SA, suicidal attempt; SI, suicidal ideation. *SA and SI considered together as “suicidality”.

FIGURE 1 | Putative neuroanatomical mechanisms of suicide associated with deep brain stimulation (DBS). Off-target stimulation of brain regions connected with anterior cingulate cortex (ACC, amygdala) or adjacent to (SNc) the suicide risk in patients who received subthalamic nucleus (STN) might cause induction of neurological pathways associated with suicide. Activation of the ACC might cause a disturbance in GABAergic and glutamatergic signaling. Activation of the amygdala might result in behavioral abnormalities. Activation of SNc and dorsal striatum circuit can result in dopaminergic dysfunction. These neurobiological changes might translate into elevated psychosocial distress and potentiate suicidal ideation (SI) and suicidal behavior (SB).

DBS, Deep Brain Stimulation; SA, suicidal attempt; SI, suicidal ideation. *SA and SI considered together as “suicidality”.

studies (Shimo and Wichmann, 2009). In light of the critical involvement of dysfunctional dopaminergic signaling in PD patients, DBS might further disrupt the dopaminergic system, potentiating SI or SB. Mechanistically, since dopamine has been shown to drive impulse control disorders (Ahlskog, 2011), the dysregulated release of this neurotransmitter might consequently increase the risk of SI (Costanza et al., 2014). In fact, dysregulated activation of dopamine signaling, particularly in the dorsal striatum (the main target of SNc dopaminergic projections), has been linked to suicide (Fitzgerald et al., 2017). Consistent with this report, a recent study has demonstrated a correlation between reduced dopamine transporter availability and increased hopelessness scores in all bilateral striatal areas of subjects with major depressive disorders (MDD; Pettoruso et al., 2020). Last but not least, it is also worth noting that a rapid post-DBS reduction in dopamine therapy might cause a general hypodopaminergic state in the brain and the unmasking of depression and SI in PD patients (Berardelli et al., 2019).

Another important brain region that is affected by DBS at the STN is the amygdala, which regulates emotions and aggressive behaviors (Accolla et al., 2016). Since abnormalities in functions and structure of this brain region have been associated with SA in subjects with neuropsychiatric diseases (Spoletini et al., 2011; Wang et al., 2020), possibly off-target stimulation of the amygdala might drive suicide risk in DBS subjects. Increased functional connectivity at this neuroanatomical region has been linked to increased SI and SA in patients with MDD (Kang et al., 2017; Alarcón et al., 2019). Association between the self and death in an exploratory study of the neurobiological origins of SI has also been attributed to amygdala activation (Wei et al., 2018; Ballard et al., 2020). Mechanistically, activation of the amygdala can exacerbate dopaminergic dysfunction (Lai and Chang, 2019) and consequently potentiating suicide risk as described above. Enhanced amygdala connectivity has also been linked to excessive glutamatergic-induced neuro-excitotoxicity and increased suicide risk (Sequeira et al., 2009; Cabrera et al., 2019; Ousdal et al., 2019).

It was also hypothesized that DBS-induced modulation of connections between the STN and the prefrontal cortex areas and mid-brain serotonin neurons may be implicated in mood-related changes and subsequent increased suicide risk (Temel et al., 2005).

Similarly, STN connectivity with frontal cortical regions such as the anterior cingulate cortex (ACC) is highly relevant in the context of suicide (Brunenberg et al., 2012). The ACC is a complex cortical region that modulates emotional behaviors and abnormalities in its function are the basis of the development of several mood disorders (Drevets et al., 2008). In suicidal subjects, ACC functional activity was enhanced (Minzenberg et al., 2016). ACC activation also results in increases in glutamate/GABA expression (Zhao et al., 2018; Lewis et al., 2020). As a result of this, bystander-stimulation of the ACC during DBS therapy might drive these neurotransmitter disturbances,
Macrophages, to both of these phenomena (neuroinflammatory responses, orchestrated by microglia and associated with DBS stems from emerging evidence that links Aberrant Immunological Activation suicidality have yet to be formally demonstrated.

Therefore, definitive proofs for the involvement of the amygdala and/or ACC off-targeting in the development of DBS-associated suicidality have yet to be formally demonstrated.

Aberrant Immunological Activation

The speculative involvement of the immune system in suicide associated with DBS stems from emerging evidence that links neuroinflammatory responses, orchestrated by microgliosis and macrophages, to both of these phenomena (Figure 2).

Microglia mature from a yolk sac progenitor and take residence in the nervous tissues while macrophages originate from the bone marrow and could be recruited to other tissues in various pathological contexts (Thion and Garel, 2020). Despite their ontological differences, the primary function of these innate immune cells is to patrol the body during homeostatic development to support tissue debris clearance (Butovsky and Weiner, 2018; Kierdorf et al., 2019; Tay et al., 2019). However, these cells are also able to respond to pathogens, noxious environmental insults, and surgical implants. Upon recognition of these foreign stimuli, microglia and macrophages elicit a robust inflammatory reaction, characterized by the release of cytokines and chemokines to amplify and sustain this response. While the intended function of this reactive inflammation is to protect the body from invading micro-organisms, its maladaptation could result in unresolved tissue damage and ensuing pathology.

Microglial reactivity in DBS has been observed in animal studies. For instance, STN implantation of stainless-steel electrodes triggered a localized microglial activation and sustained memory impairment (Hirshler et al., 2010). Similarly, cortical implants also resulted in chronic gliosis of microglial and astrocytic origins (Griffith and Humphrey, 2006; Rosskothen-Kuhl et al., 2018). Consistent with these observations, another study revealed a more elaborated spatial and temporal neuroinflammatory cascade, characterized by neuronal and progenitor cell loss, axonal and myelin reassembly, microglia and astrocyte reactivity, and pericyte deficiency-driven blood-brain barrier disruption, both acutely and chronically around implanted devices (Wellman et al., 2019). Interestingly, the density of neural tissues and the implanted probes as well as the size and fixation method of the implants play an important role in determining the extent of microglia and astrocyte reaction with regions with high-density probes exhibiting more pronounced neuroinflammation (Thelin et al., 2011; Lind et al., 2012) while the numbers of implanted devices did not appear to affect glial cell scarring (Lind et al., 2013). Furthermore, infiltrating macrophages have recently been shown to be the primary orchestrators of neuroinflammatory reaction to cortical implanted electrodes (Ravikumar et al., 2014). In this study, the authors highlight the hallmark accumulation of infiltrating macrophages at the implant sites and the positive correlation between their density and neuronal damage. Therefore, macrophages and microglia might cooperate to induce a biphasic neuroinflammatory and degenerative response to a chronically implanted device (Potter et al., 2012; Giordano et al., 2020). Corroborating evidence from studies on post-mortem brain tissues in humans also confirmed these preclinical findings. In a pediatric status dystonicus case study, evidence of gliosis and multinucleated giant cells (macrophage aggregates) was observed along the trajectories of the implanted electrodes (Kronenbuerger et al., 2015). Larger case series in PD patients also revealed extensive gliosis and macrophage accumulation in the majority of subjects undergoing DBS (Vedam-Mai et al., 2018). Notably, gliosis is associated with septicemia in deceased subjects (Kronenbuerger et al., 2015) but does not correlate with the duration of the DBS regimen (Vedam-Mai et al., 2018). Along with studies in animals, these findings suggest that neuroinflammation occurs during DBS and might represent a reaction against implanted neuroelectrodes, rather than against the DBS treatment itself (Amorim et al., 2015; Hadar et al., 2017; Lopez-Cuina et al., 2018).

Similar to DBS, microglia and macrophages have been implicated in a stress-diathesis paradigm of SI and SB (Bahrakhoob and Kolla, 2020). It is postulated that suicide results from a complex interplay between psychosocial and biological stressors during which biological stimuli, i.e., macrophage and microglial mediated-neuroinflammation, act to aggravate the non-biological determinants of suicide. In support of this hypothesis, microgliosis was observed in post-mortem brain tissues of suicide subjects (Steiner et al., 2008; Schnieder et al., 2014; Torres-Platas et al., 2014; Cabrera et al., 2019). Markers of macrophage-mediated systemic inflammation, such as IL-1, IL-6, and TNF-α...
CLINICAL IMPLICATIONS

The selection of the candidate patient to undergo DBS is the most effective means of avoiding psychiatric complications, including suicidality development, following operation (Lang and Widner, 2002; Rodriguez et al., 2007; Pollak, 2013; Boel et al., 2016). In this regard, the presence of a multidisciplinary team consisting of a neurologist, a psychiatrist, and a psychologist is of critical importance for a comprehensive evaluation of the patient’s suitability for DBS treatment. Eligibility guidelines for DBS include patients diagnosed with extrapyramidal diseases that are either refractory to conventional medications (i.e., inconsistent or marginal responses to medical treatments that result in fluctuating motor symptoms and/or dyskinesia) or chronically/severely suffering from medication-related side effects. Besides these inclusion criteria, disabling and active psychiatric disturbances, history of SI/SB, past diagnoses of unipolar/bipolar affective or psychotic disorders represent contraindications to DBS. Furthermore, even in the absence of major psychiatric disturbances, attention must be paid to symptoms of emotional lability, apathy, impulsivity, and irritability/anger. In these situations, the patients must be fully treated for such minor psychiatric issues to proceed with DBS operation, if DBS treatment is considered necessary. It’s also worth noting that the physicians should inform the patients about the potential development of psychiatric disturbance after DBS surgery even if they had no previous history of these symptoms. Other exclusion criteria for DBS include the presence of moderate/severe cognitive impairment as well as other medical comorbidities. DBS therapy is also not recommended when insufficient motivation or unrealistic expectations are expressed by the patient or their family members. The patients should be fully aware that DBS treatment might require series of surgical and medication adjustments and thus, patience and significant time commitment are required. Lastly, the patients should be realistic about the efficacy of this treatment as it is not the ultimate cure for extrapyramidal diseases and only results in meaningful therapeutic outcomes (Lang and Widner, 2002; Rodriguez et al., 2007; Pollak, 2013; Boel et al., 2016).

After the DBS, a consistent post-operative follow-up with a multidisciplinary team of physicians, particularly in the first few years after DBS surgery, is recommended (Lang and Widner, 2002; Rodriguez et al., 2007; Pollak, 2013; Boel et al., 2016). During such routines, detailed clinical interviews with the patients and their caregivers should be conducted. To assess the progression of extrapyramidal diseases and various parameters the patients’ psychiatric/psychological conditions, standardized assessment scales, including the United Parkinson’s Disease Rating Scale (UPDRS; Poewe, 2009), the Montgomery–Åsberg Depression Rating Scale (MADRS; Williams and Kobak, 2008), the Columbia-Suicide Severity Rating Scale (C-SSRS; Posner et al., 2011), the Ardouin Scale of Behavioral in Parkinson’s Disease (ASBP; Ricci et al., 2015) for psychiatric assessment related to hypodopaminergic (as apathy) and hyperdopaminergic (as dysregulated impulse control) and non-motor fluctuations, and the Austin CEP Interview for expectation assessment (adapted from the field of surgical epilepsy; Wilson et al., 1999), could be employed. Additionally, since increased or de novo cognitive impairment after DBS surgery could influence psychiatric complications, comprehensive neurocognitive assessment should also be included as an integral part of postoperative follow-up. Collectively, the findings from these assessments provide a comprehensive snapshot of the post-operative state of the patients, which could be compared with their pre-operative status so that appropriate interventions could be devised.
Psychiatric post-operative care involves both psychopharmacological adjustments and psychotherapeutic interventions, such as the recommended cognitive-behavioral therapies (CBT). Psychotherapeutic interventions, which are particularly relevant in the context of suicide prevention (Costanza et al., 2020k, 2021), could also address other specific features of PD patients receiving DBS, such as frustration due to “disproportionate or unrealistic expectations” related to DBS (Wrench et al., 2004), and the occurrence of a scenario named “burden of normality” (often detected in patients whose chronic and disabling disease could be rapidly and drastically improved; thus paradoxically exposing them to difficulties in restoring normal life; Wilson et al., 2001, 2004; Gilbert, 2012). In this regard, the two constructs of demoralization and Meaning in Life (MiL) have recently received clinical attention as psychotherapeutic targets for these PD patients, similarly to those who experienced a severe somatic disease and underwent a disjointed “before” and an “after” existential experience (Costanza et al., 2019, 2020c,f). These two constructs are intimately associated with each other as loss of MiL is one of the constituting components of demoralization (Chytas et al., 2019; Costanza et al., 2020e). Furthermore, MiL and demoralization are two important resilience and risk factors, respectively, for the development of suicidality (Costanza et al., 2020b,g,h). Other promising psychotherapeutic targets include the two dimensions of Interpersonal Theory of Suicide (IPTS), such as the feeling of “perceived burdensomeness” and “thwarted belongingness” (Baertschi et al., 2017, 2018a,b). The interpersonal nature of IPTS, in particular, can address psychoeducational needs for both patients and their family members/care-givers (Costanza et al., 2018).

Besides these interventions, strategies aiming at correcting neuroanatomical and neuroimmunological dysfunctions could be devised to address the possible involvement of these pathways in the development of suicidality in patients receiving DBS. For instance, given the acute reduction in dopamine therapy in DBS patients after undergoing this treatment, dosing could be adjusted accordingly to avoid undesirable effects of a DBS induced-hypodopaminergic state (Berardelli et al., 2019). Targeting ACC functional connectivity defects that are associated with suicide might also be specifically achieved with the emerging use of ketamine and esketamine (Chen et al., 2019a,b). Additionally, strategies to suppress neuroinflammation have also been attempted. Specifically, experimental studies have revolved around the development of surgical innovations to mitigate the response of the immune system to the DBS implants. As such, different materials, surface structure, shapes, size, density, and fixation methods of the implant devices might be critical to minimize microglial reactivity (Thelin et al., 2011; Lind et al., 2012, 2013; Eles et al., 2017; Golabchi et al., 2019). Furthermore, adjunct treatment with anti-inflammatory agents systemically (Yuan et al., 2019) or locally properties (Zhong and Bellamkonda, 2007; Gutowski et al., 2015; Liu et al., 2017) also presents an attractive therapeutic roadmap.

CONCLUSION

In summary, while it remains elusive whether and to what extent neuroanatomical and/or immunological mechanisms contribute to suicide associated with DBS, this phenomenon represents an unmet medical need. Besides the novel therapeutic insights stemming from these mechanistic postulates and in line with the current shift in healthcare toward predictive/precision medicine rather than secondary preventative methods (Amerio et al., 2020), more consensual and multi-disciplinary guidelines (including neurosurgical, psychiatric, and psychological interventions) both for DBS candidate selection and for post-operative follow-up of patients undergoing DBS are of critical importance.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AC, MR, AAm, AAg, and FZ contributed to the conception of the work, researched the literature, and drafted the primary manuscript. GS, MA, GB, IB, and MP contributed to the conception of the work, carefully revised the manuscript, and provided the intellectual impetus. KDN supervised all steps of the work, revised, finalized, and edited the final version of the manuscript. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We are deeply grateful to Prof. Luc Mallet and his team (Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France) for bringing us, thanks to the vast experience of their center, closer to this topic.

REFERENCES

Accolla, E. A., Herrojo Ruiz, M., Horn, A., Schneider, G. H., Schmitz-Hübsch, T., Draganski, B., et al. (2016). Brain networks modulated by subthalamic nucleus deep brain stimulation. *Brain* 139, 2503–2515. doi: 10.1093/brain/aww182

Ahlskog, J. E. (2011). Pathological behaviors provoked by dopamine agonist therapy of Parkinson’s disease. *Physiol. Behav.* 104, 168–172. doi: 10.1016/j.physbeh.2011.04.055

Alarcón, G., Sauder, M., Teoh, J. Y., Forbes, E. E., and Quevedo, K. (2019). Amygdala functional connectivity during self-face processing in depressed adolescents with recent suicide attempt. *J. Am. Acad. Child Adolesc. Psychiatry* 58, 221–231. doi: 10.1016/j.jaac.2018.06.036

Amerio, A., Sibilla, F., Pescini, R., Ciprandi, R., Casciario, R., Grimaldi Filololo, P., et al. (2020). Mental health and cystic fibrosis: time to move from secondary prevention to predictive medicine. *Pediatr. Pulmonol.* 55, 2204–2206. doi: 10.1002/ppul.24928

Amorim, B. O., Covolan, L., Ferreira, E., Brito, J. G., Nunes, D. P., de Morais, D. G., et al. (2015). Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats. *J. Neuroinflammation* 12:162. doi: 10.1186/s12974-015-0384-7
Suicidality: Putative Mechanisms in DBS

Costanza et al. (2020). Microglial dysregulation and suicide: a path toward new therapies. *Neuropsychopharmacology*, 56, 78-86. doi: 10.1038/s41386-019-0408-y

Costanza, A., Chytas, V., Piguet, V., Cederaschi, C., and Bondolfi, G. (2019). Antidepressant and suicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. *J. Affect. Disord.* 239, 15-20. doi: 10.1016/j.jad.2019.08.022

Costanza, A., Amerio, A., Aguglia, A., Escelissor, A., Serafini, G., Berardelli, I., et al. (2020a). When sick brain and hopelessness meet: some aspects of suicide in the neurological patient. *CNS Neurol. Disord. Drug Targets* 19, 257-263. doi: 10.2174/18715273196661101130804

Costanza, A., Amerio, A., Aguglia, A., Serafini, G., and Amore, M. (2020b). Meaning in life and demoralization constructs in light of the interpersonal theory of suicide: a trans-theoretical hypothesis for a cross-sectional study. *Psychol. Res. Behav. Manag.* 13, 855-858. doi: 10.2147/PRBM.S279829

Costanza, A., Amerio, A., Odone, A., Berardelli, I., Weber, K., and et al. (2020c). Suicide prevention from a public health perspective. What makes life meaningful? The opinion of some suicidal patients. *Acta Biomed.* 91, 128-134. doi: 10.23750/abm.v91i3.9417

Costanza, A., Amerio, A., Radomskas, M., Ambrosetti, J., Di Marco, S., Pretali, M., et al. (2020d). Suicide assessment of the elderly with physical illness in the emergency department. *Front. Psychiatry* 11:558974. doi: 10.3389/fpsyt.2020.558974

Costanza, A., Berardelli, I., Richard-Lepouriel, H., Weber, K., Berardelli, I., and et al. (2020e). Demoralization and its relationship with depression and hopelessness in suicidal patients attending an emergency department. *Int. J. Environ. Res. Public Health* 17:2232. doi: 10.3390/ijerph17072232

Costanza, A., Amerio, A., Odone, A., Berardelli, I., Richard-Lepouriel, H., and Weber, K. (2020f). Suicide prevention from a public health perspective. What makes life meaningful? The opinion of some suicidal patients. *Acta Biomed.* 91, 128-134. doi: 10.23750/abm.v91i3.9417

Costanza, A., Amerio, A., Radomskas, M., Ambrosetti, J., Di Marco, S., Pretali, M., et al. (2020d). Suicide assessment of the elderly with physical illness in the emergency department. *Front. Psychiatry* 11:558974. doi: 10.3389/fpsyt.2020.558974
Costanza et al. Suicidality Putative Mechanisms in DBS 11

Lai, C.-W., and Chang, C.-H. (2019). Adaptive anxious states and down-regulation of dopamine activity under amygdala activation in rats. Behav. Brain Res. 361, 1–6. doi: 10.1016/j.brbneur.2018.12.049

Lang, A. E., and Widner, H. (2002). Deep brain stimulation for Parkinson’s disease: patient selection and evaluation. Mov. Disord. 17, S94–S101. doi: 10.1002/mds.10149

Lehrer, S., and Rheinsteiner, P. H. (2019). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce suicidal ideation and depression. Discov. Med. 28, 205–212.

Lewis, C. P., Port, J. D., Blacker, C. J., Sonmez, A. I., Seewoo, B. J., Leffler, J. M., et al. (2020). Altered anterior cingulate glutamatergic metabolism in depressed adolescents with current suicidal ideation. Transl. Psychiatry 10:119. doi: 10.1038/s41398-020-0792-z

Leczno, E., Gómez-Esteban, J. C., Tijero, B., Bilbao, G., Lambarri, L., Rodríguez, O., et al. (2016). Long-term impact on quality of life of subthalamic nucleus stimulation in Parkinson’s disease. J. Neurol. 263, 895–906. doi: 10.1007/s00415-016-8077-4

Lhomée, E., Klinger, H., Thobois, S., Schmitt, E., Ardouni, C., Bichon, A., et al. (2012). Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135, 1463–1477. doi: 10.1093/brain/awt078

Lhomée, E., Wojtecki, L., Danielsen, N., Schouenborg, J., and Pettersson, L. M. (2014). The role of microglia in neurodegeneration: implications for neuroprotection. Front. Neurol. 5:0260. doi: 10.3389/fneur.2014.00065

Minzenberg, M. J., Lesh, T. A., Niendam, T. A., Cheng, Y., and Carter, C. S. (2014). Genetic association analysis of serotonin and signal transduction and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J. Neurol. 218, 155–160. doi: 10.1016/j.jns.2013.11.011

Rodriguez, R. L., Fernandez, H. H., Haq, I., and Okun, M. S. (2007). Pearls and pitfalls of deep brain stimulation. Mov. Disord. 22, 253–260.

Timmermann, L., et al. (2013). Neurostimulation for Parkinson’s disease. Mov. Disord. 28, 205–212. doi: 10.1002/mds.26223

Ostertag, L., Golay, P., Dorogi, Y., Brovelli, S., Bertran, M., Crome, I., et al. (2019). The implementation and first insights of the French-speaking Swiss programme for monitoring self-harm. Swiss Med. Wkly. 149:w20016. doi: 10.4141/smw.2019.20016

Ousdal, O. T., Milde, A. M., Craven, A. R., Ericson, L., Endestad, T., Melinder, A., et al. (2019). Prefrontal glutamate levels predict altered amygdala–prefrontal connectivity in traumatized youths. Psychol. Med. 49, 1822–1830. doi: 10.1017/S0033291718002519

Pettoruso, M., d’Andrea, G., Martinotti, G., Coccilliolo, F., Miuli, A., Di Muzio, L., et al. (2020). Hopelessness, dissociative symptoms, and suicide risk in major depressive disorder: clinical and biological correlates. Brain Sci. 10:ES19. doi: 10.3390/brainsci10080519

Poewe, W. (2009). Clinical measures of progression in Parkinson’s disease. Mov. Disord. 24, S671–S676. doi: 10.1002/mds.22600

Pollak, P. (2013). Deep brain stimulation for Parkinson’s disease—patient selection. Handb. Clin. Neurotol. 16, 97–105. doi: 10.1016/B978-0-444-53497-5.00009-7

Pollak, P., Benabid, A. L., Gross, C., Gao, D. M., Laurent, A., Benazzouz, A., et al. (1993). Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev. Neurol. 149, 175–176.

Pomplini, M., Gentile, G., Scassellati, C., Bonvicini, C., Innamorati, M., Erbuto, D., et al. (2017). Genetic association analysis of serotonin and signal transduction pathways in suicide attempters from an Italian sample of psychiatric patients. Neurosci. Lett. 656, 94–102. doi: 10.1016/j.neulet.2017.07.020

Porat, O., Cohen, O. S., Schwartz, R., and Hassin-Baer, S. (2009). Association of preoperative symptom profile with psychiatric symptoms following subthalamic nucleus stimulation in patients with Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 21, 398–405. doi: 10.1176/jnp.2009.21.4.398

Posner, K., Brown, G. K., Stanley, B., Brent, D. A., Yershova, K. V., Oquendo, M. A., et al. (2011). The Columbia–suicide severity rating scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am. J. Psychiatry 168, 1266–1277. doi: 10.1176/appi.ajp.2011.10111704

Potter, K. A., Buck, A. C., Self, W. K., and Capadona, J. R. (2012). Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurogenerative responses. J. Neurol.Eng. 9:46020. doi: 10.1016/j.jengr.2011.07.010

Ravikumar, M., Sunil, S., Black, J., Barkauskas, D. S., Haung, A. Y., Miller, R. H., et al. (2014). The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials 35, 8049–8064. doi: 10.1016/j.biomaterials.2014.05.084

Rieu, I., Martinez-Martin, P., Pereira, B., De Chazeron, I., Verhagen Metman, L., Jahnshahi, M., et al. (2015). International validation of a behavioral scale in Parkinson’s disease without dementia. Mov. Disord. 30, 705–713. doi: 10.1002/mds.26223

Rocha, S., Monteiro, A., Linhares, P., Chamadoira, C., Basto, M. A., Reis, C., et al. (2014). Long-term mortality analysis in Parkinson’s disease treated with deep brain stimulation. Parkinsons Dis. 2014:71041. doi: 10.1155/2014/71041

Rodrigues, A. M., Rosas, M. J., Gago, M. F., Sousa, C., Fonseca, R., Linhares, P., et al. (2010). Suicide attempts after subthalamic nucleus stimulation for Parkinson’s disease. Eur. Neurol. 63, 176–179. doi: 10.1159/000289097

Rodriguez, R. L., Fernandez, H. H., Haq, I., and Okun, M. S. (2007). Pearls in patient selection for deep brain stimulation. Neurologist 13, 253–260. doi: 10.1097/NRL.0b013e31805454d5

Roskosso-Kühn, N., Hüldebrandt, H., Birkenhärger, R., and Iltung, R. B. (2018). Astrocyte hypertrophy and microglia activation in the rat auditory midbrain is induced by electrical intracochlear stimulation. Front. Cell. Neurosci. 12:43. doi: 10.3389/fncel.2018.00043

Schiavone, N., Neri, M., Mihillia, E., Morgese, M. G., Cantatore, S., Bove, M., et al. (2016). The NADPH oxidase NOX2 as a novel biomarker for suicide: evidence from human post mortem brain samples. Transl. Psychiatry 6:813. doi: 10.1038/tp.2016.76

Schneider, T. F., Trencevski, L., Rosoklija, G., Stankov, A., Mann, J. J., Smiley, J., et al. (2014). Microglia of preferential white matter in suicide. J. Neuropathol. Exp. Neurol. 73, 880–890. doi: 10.1097/NEN.0000000000000107

Schuepbach, W. M. M., Rau, J., Knudsen, K., Volkmann, J., Krack, P., Timmermann, L., et al. (2013). Neurostimulation for Parkinson’s disease: three-year follow-up. Neurology 86, 755–761. doi: 10.1212/WNL.000000000002401
Costanza et al. Suicidality Putative Mechanisms in DBS

Thobois, S., Mertens, P., Guenot, M., Hermier, M., Mollion, H., Bouvard, M., et al. (2002). Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J. Neurol. 5, 529–534. doi: 10.1007/s004150200059

Torres-Platas, S. G., Cruceanu, C., Chen, G. G., Turecki, G., and Mechawar, N. (2014). Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 2, 50–59. doi: 10.1016/j.bbi.2014.05.007

Tsou, T., Lemos Melo Lobo Jofili Lopes, J., Moore, K., Patel, B., Legacy, J., Rajatiska, A., et al. (2020). Long-term clinical outcomes of bilateral GPi deep brain stimulation in advanced Parkinson’s disease: 5 years and beyond. J. Neurol. Sci. doi: 10.3171/2020.6.JNS200617. [Epub ahead of print].

Turecki, G., Ernst, C., Jollant, F., Labonté, B., and Mechawar, N. (2012). The neurodevelopmental origins of suicidal behavior. Trends Neurosci. 35, 14–23. doi: 10.1016/j.tins.2011.11.008

Umemura, A., Oka, Y., Yamamoto, K., Okita, M., Matsuoka, N., and Yamada, K. (2011). Complications of subthalamic nucleus stimulation in Parkinson’s disease. Neurol. Med. Chir. 51, 749–755. doi: 10.2176/nmc.51.749

van Heeringen, K., and Mann, J. J. (2014). The neurobiology of suicide. Lancet Psychiatry 1, 63–72. doi: 10.1016/S2215-0366(14)00202-0

Vedam-Mai, V., Rodgers, C., Gureck, A., Vincent, M., Ippolito, G., Elkiouzi, A., et al. (2018). Deep Brain Stimulation associated gliosis: a post-mortem study. Parkinsonism Relat. Disord. 54, 51–55. doi: 10.1016/j.parkreldis.2018.04.009

Voon, V., Krack, P., Lang, A. E., Lozano, A. M., Dujardin, K., Schüpbach, M., et al. (2008). A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain 13, 2720–2728. doi: 10.1093/brain/awn124

Wang, L., Zhao, Y., Edmiston, E. K., Wonmer, F. Y., Zhang, R., Zhao, P., et al. (2020). Structural and functional abnormalities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts. Front. Psychiatry 10:923. doi: 10.3389/fspst.2019.00923

Wei, S., Chang, M., Zhang, R., Jiang, X., Wang, F., and Tang, Y. (2018). Amygdala functional connectivity in female patients with major depressive disorder with and without suicidal ideation. Ann. Gen. Psychiatry 17:37. doi: 10.1186/s12991-018-0208-0

Weintraub, D., Duda, J. E., Carlson, K., Luo, P., Saghari, O., Stern, M., et al. (2013). Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J. Neurol. Neurosurg. Psychiatry 84, 1113–1118. doi: 10.1136/jnnp-2012-304396

Wellman, S. M. L., Li, L., Xiaier, Y., McNamara, L., and Kozai, T. D. Y. (2019). Revealing spatial and temporal patterns of cell death, glial proliferation and blood-brain barrier dysfunction around implanted intracortical neural interfaces. Front. Neurosci. 13:493. doi: 10.3389/fnins.2019.00493

Williams, J., and Kobak, K. (2008). Development and reliability of a structured interview guide for the Montgomery-Åsberg Depression Rating Scale (SIGMA). Br. J. Psychiatry 192, 52–58. doi: 10.1192/bjp.bp.106.032532

Wilson, S. J., Bladin, P. F., and Saling, M. M. (2004). Paradoxical results in the cure of chronic illness: the “burden of normality” as exemplified following seizure surgery. Epilepsy Behav. 5, 13–21. doi: 10.1016/j.yebeh.2003.11.013

Wilson, S., Bladin, P., and Saling, M. (2001). The “burden of normality”: concepts of adjustment after surgery for seizures. J. Neurol. Neurosurg. Psychiatry 70, 649–656. doi: 10.1136/jnnp.70.5.649

Wilson, S. J., Saling, M., Lawrence, J. A., and Bladin, P. F. (1999). Outcome of temporal lobeectomy: expectations and the prediction of perceived success. Epilepsy Res. 36, 1–14. doi: 10.1016/S0920-1211(99)00016-9

Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsky, M. O., et al. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol. 7, 605–614. doi: 10.1016/S1474-4227(08)70114-5

Wrench, J., Wilson, S. J., and Bladin, P. F. (2004). Mood disturbance before and after seizure surgery: a comparison of temporal and extratemporal resections. Epilepsia 45, 534–543. doi: 10.1111/j.1528-1167.2004.08803.x

Xu, Y., Yang, B., Zhou, C., Gu, M., Long, J., Wang, F., et al. (2021). Suicide and suicide attempts after subthalamic nucleus stimulation in Parkinson’s disease: a systematic review and meta-analysis. Neurosci. Rev. 42, 267–274. doi: 10.1002/sre.20055-7
Yuan, Y., Wu, C., and Ling, E. A. (2019). Heterogeneity of microglia phenotypes: developmental, functional and some therapeutic considerations. *Curr. Pharm. Des.* 25, 2373–2393. doi: 10.2174/138161282566619072214248

Zarzycki, M. Z., and Domitrz, I. (2020). Stimulation-induced side effects after deep brain stimulation—a systematic review. *Acta Neuropsychiatr.* 32, 57–64. doi: 10.1017/neu.2019.35

Zhang, J., Li, J., Chen, F., Liu, X., Jiang, C., Hu, X., et al. (2020). STN versus GPi deep brain stimulation for dyskinesia improvement in advanced Parkinson’s disease: a meta-analysis of randomized controlled trials. *Clin. Neurol. Neurosurg.* 201:106450. doi: 10.1016/j.clineuro.2020.106450

Zhao, J., Verwer, R. W. H., Gao, S.-F., Qi, X.-R., Lucassen, P. J., Kessels, H. W., et al. (2018). Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. *J. Psychiatr. Res.* 102, 261–274. doi: 10.1016/j.jpsychires.2018.04.020

Zhong, Y., and Bellamkonda, R. V. (2007). Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. *Brain Res.* 1148, 15–27. doi: 10.1016/j.brainres.2007.02.024

Conflict of Interest: KN is the scientific founder of Tranquis Therapeutics, a neuroimmunology company that develops immunotherapies for neurological diseases.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Costanza, Radomska, Bondolfi, Zenga, Amerio, Aguglia, Serafini, Amore, Berardelli, Pompili and Nguyen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.