COOL WHITE DWARFS IDENTIFIED IN THE SECOND DATA RELEASE OF THE UKIRT INFRARED DEEP SKY SURVEY

N. Lodieu1, S. K. Leggett2, P. Bergeron3, and A. Nitta2

1 Instituto de Astrofísica de Canarias, C/ Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain
2 Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720, USA
3 Département de Physique, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada

Received 2008 June 18; accepted 2008 October 21; published 2009 February 24

ABSTRACT

We have paired the second data release of the Large Area Survey of the UKIRT Infrared Deep Sky Survey with the fifth data release of the Sloan Digital Sky Survey to identify 10 cool white dwarf candidates, from their photometry and astrometry. Of these 10, one was previously known to be a very cool white dwarf. We have obtained optical spectroscopy for seven of the candidates using the GMOS-N spectrograph on Gemini North, and have confirmed all seven as white dwarfs. Our photometry and astrometry indicate that the remaining two objects are also white dwarfs. The model analysis of the photometry and available spectroscopy shows that the seven confirmed new white dwarfs, and the two new likely white dwarfs, have effective temperatures in the range of $T_{\text{eff}} = 5400$–6600 K. Our analysis of the previously known white dwarf confirms that it is cool, with $T_{\text{eff}} = 3800$ K. The cooling age for this dwarf is 8.7 Gyr, while that for the nine ~ 6000 K white dwarfs is 1.8–3.6 Gyr. We are unable to determine the masses of the white dwarfs from the existing data, and therefore we cannot constrain the total ages of the white dwarfs. The large cooling age for the coolest white dwarf in the sample, combined with its low estimated tangential velocity, suggests that it is an old remnant of the thin disk, or a member of the thick disk of the Galaxy, with an age of 10–11 Gyr. The warmer white dwarfs appear to have velocities typical of the thick disk or even halo; these may be very old remnants of low-mass stars, or they may be relatively young thin-disk objects with unusually high space motion.

Key words: infrared: stars – surveys – techniques: photometric – techniques: spectroscopic – white dwarfs

Online-only material: color figures

1. INTRODUCTION

White dwarfs are the end stage of stellar evolution for the vast majority of stars—all stars less massive than 8 M_\odot end their lives as cooling white dwarfs. The coolest white dwarfs can therefore constrain the age of the Galactic disk, or even of the halo, if such objects can be found. Most white dwarfs consist of a C/O core with an outer envelope composed of helium and/or hydrogen, with occasional traces of metals. The ratio of the number of hydrogen-rich to helium-rich white dwarfs is a function of T_{eff}, and the chemical evolution of white dwarf atmospheres is complex (e.g., Bergeron et al. 2001; Tremblay & Bergeron 2008). The mass and composition of both the core and the atmosphere controls the cooling rate of the white dwarf. Bergeron et al. (2001) use atmospheric and evolutionary models to analyze a sample of white dwarfs with measured trigonometric parallaxes to show that the coolest of these white dwarfs, with $T_{\text{eff}} \sim 4000$–4500 K, are 9–10 Gyr old if they have a thick hydrogen atmosphere, and 8–9 Gyr old if they have a helium-rich atmosphere. These ages are consistent with the age of the local Galactic disk (e.g., Leggett et al. 1998).

Several groups are trying to find even cooler and older white dwarfs in order to confirm the age of the disk, and to investigate the ages of older Galactic components. The Hubble Space Telescope has enabled the detection of white dwarf cooling sequences in clusters; Hansen et al. (2007) have recently identified hydrogen-rich white dwarfs with cooling ages of 11 Gyr at the truncation of the white dwarf sequence in the 11.5 Gyr old globular cluster NGC 6397. Oppenheimer et al. (2001) identified a sample of high-velocity white dwarfs, which was inferred to be a halo population by their kinematics. However, Reid et al. (2001) suggest that the majority of this sample has kinematics consistent with thick disk membership, and an analysis of the sample by Bergeron et al. (2005) found that the white dwarfs were relatively warm, implying relatively short cooling ages. The age of the Oppenheimer et al. (2001) sample remains a matter of debate (e.g., Ducourant et al. 2007 and references therein).

Very cool white dwarfs are unambiguously old, as their total age is dominated by the large cooling time. Such white dwarfs have been found in the Sloan Digital Sky Survey (SDSS; York et al. 2000), Kilic et al. (2006) use the SDSS and US Naval Observatory catalog (USNO-B; Monet et al. 2003) to identify cool white dwarfs using a reduced proper motion (RPM) diagram. The RPM is defined as

$$H_{\text{mag}} = \text{mag} + (5 \times \log(\mu)) + 5,$$

where the proper motion μ is measured in arcsec yr$^{-1}$. Here, the apparent magnitude (mag) and μ are used as a proxy for absolute magnitude for a sample with similar kinematics (see e.g., Jones 1972).

Kilic et al. (2006) have spectroscopically confirmed several white dwarfs with 15.7 < r < 19.7 using the RPM diagram, including 16 with T_{eff} around 4000 K or cooler. The RPM diagram was also used by Carollo et al. (2006) to identify cool white dwarf candidates in the Guide Star Catalog II (GCS-II) database, of which 24, with 15 < R_F < 20, were confirmed by spectroscopy to be previously unknown white dwarfs. Hall et al. (2008) recently identified an $r = 18.8$ halo white dwarf candidate in the SDSS from its spectrum and high proper motion. Vidrih et al. (2007) also used the RPM diagram to identify over 1000 cool white dwarf candidates in a deeply imaged SDSS region known as Stripe 82, including 24 candidates that may be cooler than 4000 K, and 34 halo white dwarf candidates. These
candidates, which have $18 < r < 22$, are yet to be confirmed spectroscopically.

Low-temperature hydrogen-rich white dwarf atmospheres are at high pressures, and show strong pressure-induced molecular hydrogen (H_2) opacity. This opacity has a broad absorption feature around 2 μm, which affects the H and K near-infrared bands, centered near 1.65 and 2.2 μm, respectively. When T_{eff} decreases below 4000 K, the opacity also impacts the red (0.8 μm) and far-red (1.1 μm) colors (Borysow 2002). Harris et al. (2001) and Gates et al. (2004) used this feature to identify and confirm six extremely cool white dwarfs, with $18.9 < r < 19.6$, by their unusual SDSS colors. Harris et al. (2008) extend this study and present an additional seven cool white dwarfs with $18.7 < r < 20.4$ found in the SDSS by their colors. Rowell et al. (2008) in a similar way identified an $R_F = 17.8$ ultracool white dwarf in the SuperCOSMOS Sky Survey (Hambly et al. 2001) from its BRI colors.

Although an analysis of white dwarfs with such cold and high-pressure atmospheres is difficult (e.g., Bergeron & Leggett 2002), it is important to add to the still small sample of cool and old white dwarfs. Not only do these objects impart information about the history of the Galaxy, but also they improve our understanding of the physics of such atmospheres, which is of general significance, for example for modeling cool high-pressure planetary and brown dwarf atmospheres.

In this paper, we present the results of a search of the UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007) for cool white dwarfs. We identified our sample by pairing the optical photometry given in the SDSS data release number 5 (DR5; Adelman-McCarthy et al. 2007) with the infrared photometry in data release number 2 of the large area survey (LAS) of UKIDSS (DR2; Warren et al. 2007b). Both techniques described above were utilized—candidates were selected using the RPM diagram as well as color, selecting for the presence of H_2 opacity. The following sections describe the LAS (Section 2), the sample selection (Section 3), the results of our spectroscopic follow-up (Section 4), and model analysis (Section 5), and a discussion of these results (Section 6). We show that we have discovered faint and cool white dwarfs with $19.5 \leq r \leq 20.6$ and $5400 \leq T_{\text{eff}} (K) \leq 6600$.

2. THE UKIDSS LARGE AREA SURVEY

The UKIDSS (Lawrence et al. 2007) is a large-scale infrared survey conducted with the UK InfraRed Telescope (UKIRT) Wide Field Camera (WFCAM; Casali et al. 2007). WFCAM uses filters following the Mauna Kea Observatories specification (Tokunaga et al. 2002), and the UKIDSS photometric system is described by Hewett et al. (2006). Observations began in 2005 May. The data and catalogs generated by the automatic pipeline processing can be retrieved through the WFCAM Science Archive (WSA; Hambly et al. 2008).

All data are pipeline-processed by the Cambridge Astronomical Survey Unit (CASU; Irwin et al. 2009, in preparation) following a standard procedure for infrared images. An extensive description of each step involved in the processing of the WFCAM data is available on the CASU webpage. Summaries of the data reduction can also be found in Lawrence et al. (2007); Dye et al. (2006); and Warren et al. (2007a).

The UKIDSS actually consists of five survey components, each of which is LAS. The LAS is the subsurvey most likely to contain faint and rare sources of the local Galaxy, such as the cool white dwarfs and brown dwarfs. The LAS aims to survey 4000 square degrees in $YJHK$ with a second epoch at J, to reach $J \sim 20$ mag. The 5σ photometric depths of the second data release of the LAS are $Y = 20.2$, $J = 19.6$, $H = 18.8$, and $K = 18.2$ mag (Warren et al. 2007b). The area surveyed by the LAS was designed to overlap with the SDSS, divided into three blocks. The equatorial block with right ascension 23 to 0 hr and declination between -1.5 and $+1.5$ deg overlaps SDSS stripes 9–16. The southern block covers 8–14 hours and (approximately) -3 to $+15$ deg, and includes SDSS stripe 82. Finally, the northern block (available in upcoming data releases) will provide an overlap with SDSS stripes 26–33. This information is detailed in Lawrence et al. (2007); Dye et al. (2006); and Warren et al. (2007a).

A significant amount of multiband photometric data has already been released worldwide: the early data release (EDR; Dye et al. 2006) and data release number 1 (DR1; Warren et al. 2007a). In addition, a second data release was made available to the ESO community in 2007 March (DR2; Warren et al. 2007b), a third in 2007 December (DR3), and a fourth in 2008 July. The sources presented here were selected in 2007 July from LAS DR2, which included 282 deg2 of $YJHK$ data.

3. SAMPLE SELECTION

We have used structured query language (SQL) and the WF-CAM science archive to carry out a cross-correlation of the UKIDSS LAS DR2 and SDSS DR5 databases. We have restricted our queries of the LAS database to detections classified as point sources (“mergedClass” parameter equal to -1) and to good detections only (“ppErrBits” < 256) to avoid cross talk and other artefacts. Similar queries were used to find brown dwarfs in the field and in open clusters (Lodieu et al. 2007b, 2007c, 2007a); additional examples and details can be found in Hambly et al. (2008). The query imposed a detection in all of YJH and, included color cuts as well as a lower limit on the proper motion, as described below. Sources were matched by requiring the presence of a “primary” SDSS source within 2′ of the LAS coordinates. Increasing the search radius to 5′ picked up either no additional source, or additional sources that were clearly matched to other UKIDSS sources. The query returned coordinates, photometry, and errors from both surveys, as well as the proper motion (Tables 1 and 2).

The proper motion was computed from the difference in the LAS DR2 and SDSS DR5 coordinates. The WFCAM astrometry is tied to the 2MASS point source catalog and has a systematic accuracy of < 0.1 rms (Dye et al. 2006). Figure 1 shows the size of the scatter in the difference between the SDSS DR5 and LAS DR2 astrometry, as a function of J-band brightness. For the sources considered here, with $18.7 \leq J \leq 19.5$, the typical uncertainty is 0.025 to 0.04. The LAS and SDSS epochs differ by 2–7 years for all our candidates, and 2–4 years for our confirmed white dwarfs. Hence, our lower limit to proper motion of 0.1 arcsec yr$^{-1}$ can be measured to $> 5\sigma$. We note that the proper motion measured for the brightest white dwarf in our sample, using the SDSS DR2 and USNO-B catalogs, is in good agreement with our value—the WFCAM data gives (μ_α, μ_δ) of

5 A classification code where a point source has a value of -1 and a galaxy $+1$. A full description is available at http://surveys.roe.ac.uk/wsa/www/gloss_y.html#lassource_mergedclass.

6 A value describing the quality of the detection. More details on this parameter are available at http://surveys.roe.ac.uk/wsa/www/gloss_y.html#lassource_ypperrbits.

7 Cross-talk artefacts are due to the presence of a nearby bright star.
using Bergeron et al. (1995) model colors only, for J we selected objects fainter than 18.8; we identified objects as faint as $J=14.0$; the upper limit on J is set by the requirements of a blue $J-H$ color and a detection at H. We selected objects fainter than the 5σ H detection limit of 18.8; we identified objects as faint as $H = 19.7$ although that results in highly uncertain H magnitudes, as discussed below.

This query was designed to pick up neutral to red stellar sources in $g-r$, with blue near-infrared colors indicating pressure-induced H_2 opacity in the near-infrared. Very red sources ($g - i > 1.8$) were excluded as these are likely to be subdwarfs for the reduced proper motion values considered here ($H_p > 20$, see e.g., Figure 1 of Kilic et al. 2006). Thus, our search is designed to find cool sources with high-pressure hydrogen-rich atmospheres. The query returned 586 objects.

The sample size was reduced by requiring a proper motion larger than 0.1 yr$^{-1}$ (corresponding to a $> 5\sigma$ detection on the total motion, as described above). Our sample has $g = 20-21$, hence this proper motion selection implies reduced proper motions $H_p > 20$, appropriate for discovering previously unrecognized white dwarfs in the old disk and halo (see Figure 1 of Kilic et al. 2006). The proper motion cut reduced the sample to 10 objects. Of these 10 objects, seven were accessible over the allocated telescope time period and had no spectra, one had already been identified and observed by Kilic et al. (2006), and

Table 1

Short Name	R.A.	Decl.	Epoch	μ yr$^{-1}$	RPM
	HH:MM:SS.SS	DD:MM:SS.SS	YYYY:MM:DD	(R.A., Decl.)	H_p
ULAS J0049−00a	00:49:00.53	−00:39:41.2	20050902	−0.120,−0.034	20.36
ULAS J0142−00a	01:42:21.79	+00:35:50.9	20051126	+0.050,+0.092	20.36
ULAS J0226−00a	02:26:26.53	−00:39:34.9	20050926	−0.049,−0.098	20.85
ULAS J0302−00a	03:02:21.35	+00:55:57.0	20051007	+0.118,−0.031	21.33
ULAS J1522−08a	15:22:29.87	+08:12:13.9	20060703	+0.033,−0.099	21.04
ULAS J1528−06a	15:28:07.15	+06:04:59.4	20050528	−0.061,+0.083	20.94
ULAS J1554−08a	15:54:31.37	+08:02:48.5	20060723	−0.081,−0.113	20.91
SDSS J2242+00b	22:42:06.23	+00:48:22.4	20051007	+0.142,−0.084	20.76
ULAS J2331−00a	23:31:47.60	−00:48:50.0	20050828	+0.137,+0.003	21.16
ULAS J2339−00a	23:39:41.65	−00:43:06.4	20050828	+0.099,+0.029	20.49

Notes. Typical uncertainty in proper motion is 1 mas yr$^{-1}$.

aConfirmed as a white dwarf spectroscopically in this work.

bUnconfirmed as a white dwarf.

cDiscovered in SDSS by Kilic et al. (2006), and confirmed spectroscopically by those authors. Our proper motion determination is in agreement with their estimate.

Table 2

Short Name	u (err)	g (err)	r (err)	i (err)	z (err)	Y (err)	J (err)	H (err)
ULAS J0049−00a	20.78(0.11)	19.87(0.02)	19.52(0.02)	19.42(0.02)	19.50(0.09)	19.05(0.08)	18.72(0.11)	18.82(0.27)
ULAS J0142+00a	20.96(0.09)	20.26(0.02)	19.86(0.02)	19.68(0.03)	19.68(0.08)	19.21(0.08)	18.75(0.09)	18.94(0.21)
ULAS J0226−00a	21.83(0.22)	20.66(0.03)	20.14(0.02)	20.03(0.03)	19.97(0.09)	19.36(0.10)	18.98(0.14)	19.08(0.23)
ULAS J0302+00a	21.66(0.18)	20.90(0.03)	20.48(0.03)	20.27(0.04)	20.23(0.13)	19.60(0.11)	19.28(0.16)	19.42(0.30)
ULAS J1522+08a	22.44(0.39)	20.95(0.04)	20.48(0.03)	20.19(0.04)	19.86(0.08)	19.55(0.11)	19.19(0.12)	19.31(0.24)
ULAS J1526+08b	21.96(0.22)	20.88(0.03)	20.57(0.03)	20.37(0.04)	20.48(0.14)	19.78(0.10)	19.52(0.15)	19.71(0.31)
ULAS J1554+08b	21.15(0.09)	20.20(0.02)	19.88(0.02)	19.77(0.02)	19.86(0.08)	19.18(0.07)	18.75(0.09)	18.96(0.17)
SDSS J2242+00b	22.26(0.25)	19.66(0.01)	18.65(0.01)	18.28(0.01)	18.16(0.02)	17.71(0.02)	18.02(0.05)	18.59(0.15)
ULAS J2331−00a	21.47(0.19)	20.48(0.03)	20.15(0.03)	20.06(0.04)	19.87(0.12)	19.55(0.11)	19.23(0.15)	19.43(0.29)
ULAS J2339−00a	21.33(0.18)	20.40(0.03)	20.17(0.03)	20.05(0.04)	19.94(0.12)	19.48(0.09)	19.24(0.13)	19.39(0.27)

Notes. None of the sources were detected at K, implying $K > 18.2$ mag. SDSS DR6 (Adelman-McCarthy et al. 2008) and LAS DR3 photometry are given although our candidates were selected from LAS DR2 and SDSS DR5. SDSS $ugriz$ magnitudes are on the AB system (Fukugita et al. 1996), while LAS $YJHK$ are on the Vega system (Hewett et al. 2006).

aConfirmed as a white dwarf spectroscopically in this work.

bUnconfirmed as a white dwarf.

cDiscovered in SDSS by Kilic et al. (2006) and confirmed spectroscopically by those authors.
two others were inaccessible. Table 1 lists the astrometry and reduced proper motion for all 10 candidates, and Table 2 gives their SDSS and LAS photometry from the latest releases, i.e., SDSS DR6 and LAS DR3.

Our database search did not pick up any of the other recently identified cool white dwarfs described in Section 1, because either the sources were outside the LAS DR2 sky area or the color criteria (usually the blue near-infrared colors) were not met. For example, only three out of the 112 white dwarfs reported by Kilic et al. (2006) are detected in YJH and lie within the LAS DR2 area, and only one of those met our color criteria. Other sources, which are not in our sky area, include those of Gates et al. (2004); Hall et al. (2008); Rowell et al. (2008); and most of the Carollo et al. (2006) and Harris et al. (2008) sources. Those with inappropriate colors include the Harris et al. (2001) source that is not detected at H, two Carollo et al. sources; and two sources from Harris et al. (2008), one of which is not detected at H and the other of which has $J - H > 0$. Of the 13 faint disk and halo candidates identified by Vidrih et al. (2007) that are detected at all of YJH, only one has $J - H < -0.1$, and that is the Kilic et al. white dwarf recovered in our search.

Figure 2 shows $g - r:r - i$ and $i - J:J - H$ color–color plots demonstrating the location of all 586 preliminary candidates, as well the 10 final white dwarf candidates, and a main sequence drawn from a sample of SDSS + LAS sources with small photometric errors. Also shown are modeled colors from Holberg & Bergeron (2006; see also Section 5.1 below), and some of the recently published cool white dwarfs (or white dwarf candidates) described above. Our color selections are indicated. While the gri selection picks up both warm to cool stars and white dwarfs, the cut $J - H < -0.1$ should eliminate all but the hydrogen-rich white dwarfs with $T_{\text{eff}} < 4000$ K, according to the models. An important caveat is that selecting candidates that are faint and blue in the near-infrared produces sources that are very faint at H, and so the errors in $J - H$ are significant (see Figure 2 and Table 2). The uncertainties in the fainter half of the sample with $H > 19.0$ may also be underestimated; extrapolation of the uncertainties for the brighter sources suggests that these should have $\sigma H \sim 0.5$ mag compared to 0.3 mag. We address this further in the data analysis presented in Section 5.

Figure 3 shows the $H_g:g - i$ RPM diagram for our sample, and other white dwarfs taken from the literature, as described in the caption. The expected locations of the white dwarf cooling curves for the disk and halo are indicated in the plot. Our confirmed white dwarfs lie at the lower end of the white dwarf sequence and have $H_g > 20.35$. The objects selected by our color and proper motion cuts do not form a complete sample in H_g space. Faint objects with proper motion less than 0.1 yr$^{-1}$ also lie in the region defined by $H_g > 20.35$; however, targets with $r > 20.5$ were impractical for follow-up in the allocated telescope time, and some targets were unreachable. Our sampling of the 586 SDSS + LAS targets with $H_g > 20.35$ is 90% complete for the sources with $r < 20.3$, but only 25% complete for those with $20.3 < r < 20.5$.

Table 3

Short Name	SDSS r AB	Total Exp seconds	Dates YYYMMDD
ULAS J0049--00	19.56	600	20080109
ULAS J0142+00	19.86	2400	20090109
ULAS J0226--00	20.14	4200	20080109
ULAS J0302+00	20.48	6000	20080103, 20080110
ULAS J1522+08	20.48	6000	20080304
ULAS J2331--00	20.15	4200	20080103
ULAS J2339--00	20.17	4200	20080110

4. SPECTROSCOPIC OBSERVATIONS

Ten hours of Gemini North observing time was granted to this project through program GN-2007B-DD-6. Table 3 gives the total on-source exposure time for the seven targets, and the dates on which they were observed. We obtained long-slit spectroscopy with the GMOS-N instrument (Hook et al. 2004) during dark photometric and non-photometric conditions. The 1′′ slit was used with the R150 grating providing a resolution of ~17 nm, for the typical delivered seeing of 0.7 FWHM. We blocked a second-order contamination from wavelengths shorter than ~450 nm by using the G0305 filter. The wavelength coverage obtained was 460–950 nm; however, detector fringing affected the spectra longwards of 820 nm. For this initial investigation of the SDSS + LAS candidate list, we chose a wide wavelength coverage, and thus low resolution with good coverage of the red. The wide wavelength coverage ensured that we could confidently identify subdwarfs or other non-white dwarf contaminants, and the extension to the red allowed detection of far-red pressure-induced H$_2$ effects, should any be present.

Flatfielding and wavelength calibration were achieved using lamps in the on-telescope calibration unit. The standard star HZ 44 was used to determine the instrument’s response curve, and flux calibrate the spectra. The data were reduced using routines supplied in the IRAF Gemini package.

Figure 4 shows the GMOS spectra obtained by us, as well as the spectrum obtained at the Hobby–Eberly Telescope by Kilic et al. (2006) for SDSS J2242+00. For reference, spectra of an F dwarf and F subdwarf are also shown (taken from the spectral atlas of Le Borgne et al. 2003). Six of our seven objects show hydrogen lines pressure-broadened by the high gravities
typical of white dwarfs, and no other features, while the seventh is featureless. Hence, all seven of our observed candidates are confirmed to be white dwarfs.

5. MODELING THE OBSERVED COLORS AND SPECTRA

5.1. Description of the Models and Fitting Technique

The model atmospheres used in this analysis are described at length in Bergeron et al. (1995, with updates given in Bergeron et al. 2001, 2005). These models are in local thermodynamic equilibrium. They allow energy transport by convection and can be calculated with arbitrary amounts of hydrogen and helium. Synthetic colors are obtained using the procedure outlined in Holberg & Bergeron (2006) based on the Vega fluxes taken from Bohlin & Gilliland (2004).

The method used to fit the photometric data is similar to that described in Bergeron et al. (2001), which we briefly summarize here. We first transform the magnitudes at each bandpass into observed average fluxes f^m_λ using the following equation

$$m = -2.5 \log f^m_\lambda + c_m,$$

where the values of the constants c_m for the infrared $YJHK$ photometry are obtained using the transmission functions from Hewett et al. (2006) and the Vega fluxes discussed above; we obtain $c_Y = -23.10069$, $c_J = -23.81578$, $c_H = -24.84612$, and $c_K = -26.00940$. For the optical $ugriz$ photometry, we simply rely on the definition of the AB magnitude system (see, e.g., Equation (3) of Holberg & Bergeron 2006). Small corrections to the SDSS $ugriz$ (not to gr) magnitudes have been applied and included in the modeling following the work by Eisenstein et al. (2006). The resulting energy distributions are then fitted with the model Eddington fluxes H^m_λ properly averaged over the appropriate filter bandpasses (for the ugriz system, we use the transmission functions discussed in Holberg & Bergeron 2006 and references therein). The average observed and model fluxes are related by the equation

$$f^m_\lambda = 4\pi (R/D)^2 H^m_\lambda,$$

where R/D is the ratio of the radius of the star to its distance from Earth. Our fitting procedure relies on the nonlinear least-squares method of Levenberg–Marquardt, which is based on a steepest descent method. The value of χ^2 is taken as the sum over all bandpasses of the difference between both sides of Equation (3), properly weighted by the corresponding observational uncertainty.

Figure 2. Color–color plots for our seven new confirmed white dwarfs (red squares), one recovered Kilic et al. (2006) white dwarf (the red triangle), two candidate white dwarfs (red diamonds), and other white dwarfs taken from the literature (green symbols; triangles, Kilic et al. 2006; diamond, Harris et al. 2001; squares, Carollo et al. 2006; circles, Vidrih et al. 2007; downward triangle, Hall et al. 2008). Model sequences with $\log g = 8$ (see Section 5.1) are shown for hydrogen (solid lines) and helium (dashed lines) atmospheres; T_{eff} decreases from left to right, looping back to the left for the hydrogen sequence in the $i-J:J-H$ plot. Blue dots indicate $\Delta T_{\text{eff}} = 250$ K. Color cuts used to select our sample are indicated by the red lines. Typical error bars are shown. Also shown is the location of the main sequence (small black dots) and the sample selected on color alone, before the proper motion cut was applied (larger black dots). gri are on the AB system, JH on the Vega system.

Figure 3. Reduced g-band proper motion as a function of $g-i$ for our sample of white dwarfs (red symbols), and others taken from the literature (green symbols); symbols are the same as in Figure 2. Confirmed subdwarfs from Kilic et al. (2006) are shown as open triangles. The main sequence and our initial candidate selection based on color alone are also shown as small and large black dots, respectively. Red lines indicate the region included by our color and proper motion cuts. White dwarf cooling curves for different tangential velocities are shown as solid lines. The 30 km s^{-1} curve marks the expected location of disk white dwarfs, and the 150 km s^{-1} curve represents the halo white dwarfs.
uncertainties. Since our models do not include the red wing opacity from Lyα calculated by Kowalski & Saumon (2006), we neglect here the u bandpass in our fitting procedure since this opacity may be important in the ultraviolet region. We also neglect the H-band data due to the large uncertainties in these data. For one of our white dwarfs, ULAS J1522+08, the (faint) z-band magnitude appeared discrepant, compared to both other wavelengths and to the models, and was ignored.

We consider only T_{eff} and the solid angle $\pi (R/D)^2$ free parameters. The uncertainties of T_{eff} and the solid angle are obtained directly from the covariance matrix of the fit. Since the distance to each object in our sample is not known, we assume a value of $\log g = 8.0$ in the following analysis. White dwarfs have been shown to have a very strongly peaked mass and surface gravity distribution (e.g., Bergeron et al. 1992; Liebert et al. 2005; Kepler et al. 2007). DA white dwarfs have a mean mass of $0.6 \pm 0.1 \, M_\odot$, while DBs are slightly more massive with $0.7 \pm 0.1 \, M_\odot$; these ranges infer a likely range in gravity for our sample of $7.7 \leq \log g \leq 8.3$.

Figures 5–7 show the model fits to the observational data, assuming $\log g = 8.0$. For most of the sample, relatively warm temperatures are derived of $T_{\text{eff}} \approx 6000 \, K$; for these the uncertainty in T_{eff} due to the photometric scatter is around 180 K (Figures 5 and 6). Experiments including the H-band data in the fits, both with the nominal photometric uncertainty and with twice the nominal uncertainty (as might be expected for the faintest objects, based on an extrapolation of the S/N of the brighter objects), gave differences in derived temperature of only $\sim 30 \, K$; hence, the uncertainty in T_{eff} is dominated by the photometric scatter. (Fits to the spectral energy distributions with $\Delta T_{\text{eff}} = 400 \, K$, i.e., around twice the error derived from the scatter, produce synthetic fluxes that fall well outside the error bars for the z, Y and J datapoints.) All the H-band datapoints appear faint because of our selection for objects with apparently blue $J - H$ color. The faint magnitudes and associated large photometric errors have scattered relatively warm white dwarfs into our target selection.

The previously known dwarf SDSS J2242+00 recovered in our selection, however, is a low-temperature white dwarf. This object is much cooler than the rest of the sample, and we show below we can produce a good fit with $T_{\text{eff}} = 3820 \pm 100 \, K$ (Figure 7). For this object both the u and g photometry was ignored due to the missing Lyα opacity, which has a larger impact at lower temperatures (e.g., Figure 4 of Kowalski & Saumon 2006).

5.2. Surface Gravity, Composition, and Temperature

Since the energy distributions are not particularly sensitive to $\log g$ in the temperature range considered here, our assumption of $\log g = 8.0$ for all objects will not affect our T_{eff} estimates. For instance, a variation of ± 0.5 dex in $\log g$ yields differences in effective temperature of $\pm 15 \, K$ on average. This is much smaller than the uncertainty due to the photometric variations.

The effect of the presence of helium on the predicted energy distributions and spectra of DA stars in this temperature range is discussed in detail in Bergeron et al. (1997; see their Section 5.4 and Figures 23 and 24). Note that He i lines become spectroscopically invisible for $T_{\text{eff}} < 10000 \, K$, and so we would not detect helium features in our sample. While an atmospheric composition of $N(\text{He})/N(\text{H}) = 1$ will not affect the energy distribution, and thus the temperature estimates significantly for
Figure 5. Plots demonstrating the model fits to five of the white dwarfs in our sample, as identified in the legends. The error bars in the left panels represent SDSS and LAS photometry; SDSS u (and z for ULAS J1522+08), and LAS H, have been ignored in the fits (dashed error bars). Circles represent the models fluxes averaged over the filter bandpass; filled circles are pure-hydrogen models, and open circles are pure-helium models. A surface gravity log $g = 8.0$ is assumed, and the derived T_{eff} for each composition is shown. The right panels show the observed spectrum around the Hβ (top) and Hα (bottom) lines, with the modeled pure-hydrogen atmosphere line profiles. The ULAS J0302+00 has a featureless spectrum, and is therefore helium-rich; the remaining sources are hydrogen-rich.

$T_{\text{eff}} \approx 6000$ K, the Hα line profiles are predicted to be much more shallow than in the pure hydrogen models. Hence, the sharpness of the Hα absorption profiles reported here for six of the white dwarfs implies that these objects have hydrogen-rich atmospheres. The differences in T_{eff} that would be derived for the pure-helium fit range from 20 K to 120 K for these white dwarfs with $5400 < T_{\text{eff}} < 6600$ K (Figures 5 and 6). For the seventh white dwarf, ULAS J0302+00, the lack of hydrogen features similarly constrains the atmosphere to be helium-rich. In this case, however, the difference in temperature between the two composition fits is only 20 K (Figure 5).

Neither pure-hydrogen nor pure-helium atmospheres produced a good fit to the energy distribution of the very cool white dwarf SDSS J2242+00, discovered by Kilic et al. (2006). Instead, a good fit was found using a model with almost identical amounts of hydrogen and helium (Figure 7). In this case, the featureless spectrum does not constrain the composition, as hydrogen lines would not be present at such a low temperature.

For the two white dwarf candidates without spectra, ULAS J1528+06 and ULAS J1554+08, Figure 6 shows that, if white dwarfs, these objects are relatively warm with $6060 \leq T_{\text{eff}} \leq 6330$ K. The faintness of the sources, combined with their significant proper motion, suggests that these objects are indeed evolved white dwarf remnants.

Table 4 lists the derived atmospheric properties of the 10 white dwarfs discovered or recovered in our search of DR2 of the UKIDSS LAS. Using the composition and temperature, and assuming that these stars have the canonical white dwarf mass of $0.6 M_\odot$, we can use the synthetic colors of Holberg & Bergeron (2006; an extension of Bergeron et al. 1995) and the evolutionary...
Figure 6. Similar to Figure 5, for the remaining white dwarfs in our sample. For ULAS J1528+06 and ULAS J1554+08, no spectra exist and only modeled Hβ and Hα spectra are shown. For SDSS J2242+00, both the pure-hydrogen and pure-helium fits to the photometry are poor; the modeled pure-hydrogen spectra shown are featureless as no absorption lines would be detected at 4610 K (a better fit to this object is shown in Figure 7).

Figure 7. Model fits to SDSS J2242+00; this mixed-composition atmosphere fit is superior to the single composition fits shown in Figure 6.
sequences of Fontaine et al. (2001) to derive both a cooling age and distance, and hence tangential velocity. These values are also given in Table 4, together with the uncertainty in T_{eff}—due to photometric scatter—as well as that in the implied cooling age, distance, and velocity—all of which are primarily due to the uncertainty in gravity (or mass). We discuss the implications of these findings below.

6. DISCUSSION

Nine of the sample of 10 white dwarfs found in our search have $5400 < T_{\text{eff}} < 6600$ K. The evolutionary models imply that their cooling ages are 1.8–3.6 Gyr if they are 0.6 M_\odot white dwarfs, and around 2 Gyr older or 1 Gyr younger if they are more or less massive (see Section 5.1 and Table 4). The range in gravity used here of $\log g = 8.7$–9.3 corresponds to a range in mass of $0.50 M_\odot$–$3.0 M_\odot$. Recent studies of the initial-final mass relation (Catalán et al. 2008, Kalirai et al. 2008) suggest that low-mass stars can produce relatively high-mass white dwarf remnants. Specifically, a 1.0 M_\odot star will produce a 0.50 M_\odot white dwarf, and a 2.0 M_\odot star will produce a 0.60 M_\odot white dwarf. As the main-sequence lifetimes of such stars are 10–2 Gyr, it is impossible to constrain the total age of our nine 6000 K white dwarfs; if they have the canonical white dwarf mass, the total age is 5 Gyr; however, if they are even slightly less massive, they may be much older.

The tenth source, SDSS J2242+00, discovered by Kilic et al. (2006) is brighter, closer and cooler than the other objects in the sample. The evolutionary models give it a cooling age of 8.7 Gyr. Hence, SDSS J2242+00 is clearly old with a total age > 9 Gyr.

The models and data allow us to estimate distances and tangential velocities for the white dwarfs in our sample (Table 4). Bergeron et al. (1997; their Figure 34) and Holberg et al. (2008) show that distances determined using absolute model fluxes, with model parameters determined either from spectroscopy or photometry, agree well with those measured trigonometrically.

The LAS sample of white dwarfs can probe to fainter SDSS magnitudes, and hence greater distances than, for example, the Kilic et al. (2006) sample. Kilic et al. required good detections in USNO-B in order to determine reliable proper motions, and hence was limited to $g < 20$ mag (Monet et al. 2003). The LAS sample goes one magnitude fainter and includes sources with $19.7 < g < 21.0$ mag. The cool white dwarf, SDSS J2242+00, is at a distance of 40 pc, while the warmer LAS sample lies at 140–200 pc distance. Because of the large distances, the implied tangential velocities for the LAS sample are also much higher than that of the SDSS white dwarf: 70–120 km s$^{-1}$ compared to 30 km s$^{-1}$. Allowing for a range in gravity, the LAS white dwarfs may be 30 pc closer or more distant, which translates into a range of velocities of 60–140 km s$^{-1}$ (Table 4). The sense of the gravity effect is that more massive white dwarfs will have a longer cooling age and be closer and slower, and vice versa. Even allowing for a generous range in mass for our LAS white dwarf sample, their distances and motions remain large. Parallax determination will be difficult for these white dwarfs.

The galaxy simulations of Robin et al. (2003) and Haywood et al. (1997) predict scale heights, velocity dispersions, and ages for the thin and thick disk and stellar halo (or spheroid) components of our Galaxy. The ages of these three components are 0–10 Gyr, 11 Gyr, and 14 Gyr, respectively; the $U/V/W$ dispersions are $20–40$ km s$^{-1}$ for thin disk stars older than 3 Gyr, 40–70 km s$^{-1}$ for the thick disk, and 80–130 km s$^{-1}$ for the halo. The scale heights are 100–160 pc for the thin disk, and 800 pc for the thick disk.

The high velocities of the $T_{\text{eff}} \sim 6000$ K LAS white dwarfs are suggestive of thick disk or even halo membership. Given the short cooling age, this implies that they would then be remnants of thick disk or halo late-F or G stars. Alternatively, they may be younger thin disk remnants with high velocities, such as described in Bergeron (2003). Conversely, SDSS J2242+00 appears to be old and nearby, with a low space motion. The velocities could be consistent with a thick disk membership if
there is a significant radial component. A parallax for this white dwarf would be helpful for further analysis.

Although our $J - H$ selection was designed to pick up $T_{\text{eff}} < 4000$ K sources (Figure 2), only one was found, together with significantly warmer sources. Pushing the LAS to its limits led to large uncertainties in the H magnitude, and hence warmer white dwarfs were scattered into our catalog selection. The volume probed by Kilic et al. (2006) in their search of 3320 deg2 of the second data release of the SDSS, to $g \approx 20$ mag, is approximately three times larger than the volume probed here (the LAS DR2 area is around a factor of 12 smaller, while we reached a depth $\sim 1.6 \times$ larger). Kilic et al. found seven white dwarfs with $T_{\text{eff}} < 4000$ K; hence we might have expected to find two cool white dwarfs, as opposed to the one found. Our color selections could have excluded some very cool white dwarfs—see, for example, the location of the possible halo white dwarf (Hall et al. 2008) in Figure 2, which is redder than both our $g - r$ and $J - H$ upper limits. Hall et al. state that this white dwarf is redder than predicted by any current model, indicating the complexity of the physics of these atmospheres. Having performed this initial search and demonstrated the validity of the technique, we will now refine our color selections and apply them to more recent and larger LAS data releases. We expect to discover more of these elusive remnants of the early history of the Galaxy.

7. CONCLUSIONS

We have searched 280 deg2 of the second data release of the UKIDSS large area survey for cool white dwarfs. Candidates were identified by pairing the database with the fifth data release of the SDSS, and searching for high proper motion stars with neutral optical colors and blue near-infrared colors. A 100% success rate was found when we obtained optical spectroscopy of seven candidates; we also recovered a previously known cool white dwarf found in the SDSS database; we suggest that the remaining two stars in the sample are also white dwarfs.

The newly identified white dwarfs are relatively warm with $T_{\text{eff}} \approx 6000$ K. Of the seven with spectroscopy, six have hydrogen-rich atmospheres and the seventh has a helium-rich atmosphere. Their cooling age is around 2.5 Gyr. The previously known SDSS white dwarf is cool, with a mixed composition atmosphere and $T_{\text{eff}} = 3800$ K; the cooling age is correspondingly larger at 9 Gyr. Our data do not allow us to constrain surface gravity or mass for our sample, and we cannot determine total age. The cooling age and an estimated tangential velocity of the coolest object suggests that it is an old member of the disk of the Galaxy, with an age of 10–11 Gyr. The warmer white dwarfs have smaller cooling ages and higher estimated velocities—they may be remnants of low-mass stars, and therefore 11 Gyr-old members of the thick disk, or they may be ~ 5 Gyr-old thin disk remnants with high velocities.

We will expand this sample with continued larger-area data releases of the UKIDSS LAS. Based on the results presented here, we will refine our color selection, and in the next data release we should find several cool—and therefore necessarily old—white dwarf remnants of early star formation in the thick disk or even of the halo of the Galaxy.

We are grateful to the referee for comments which significantly improved the paper. We thank M. Kilic for sending us the electronic form of his published spectrum. S.K.L. and A.N. are supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership. P.B. is a Cottrell Scholar of Research Corporation and he is supported by the NSERC Canada and by the Fund FQRNT (Québec). This research has made use of the Simbad database of NASA’s Astrophysics Data System Bibliographic Services (ADS). The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based on observations obtained at the Gemini Observatory (program GN-2007B-DD-6), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

Facilities: UKIRT (WFCAM), UKIDSS LAS DR2 & DR3 Sloan (SDSS DR5 & DR6), Gemini:Gillett (GMOS-N)

REFERENCES

Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Adelman-McCarthy, J. K., et al. 2008, ApJS, 175, 297
Bergeron, P. 2003, ApJ, 586, 201
Bergeron, P., & Leggett, S. K. 2002, ApJ, 580, 1070
Bergeron, P., Leggett, S. K., & Ruiz, M.-T. 2001, ApJS, 133, 413
Bergeron, P., Ruiz, M.-T., Hamuy, M., Leggett, S. K., Currie, M. J., Lajoie, C.-P., & Dufour, P. 2005, ApJ, 625, 838
Bergeron, P., Ruiz, M.-T., & Leggett, S. K. 1997, ApJS, 108, 339
Bergeron, P., Saffer, R. A., & Liebert, J. 1992, ApJ, 394, 228
Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, PASP, 107, 1047
Bohlin, R. C., & Gilliland, R. L. 2004, AJ, 127, 3508
Borysow, A. 2002, A&A, 390, 779
Carollo, D., et al. 2006, A&A, 448, 579
Casali, M., et al. 2007, A&A, 467, 777
Catalán, S., Isern, J., García-Berro, E., & Ribas, I. 2008, MNRAS, 387, 1693
Ducourant, C., Teixeira, R., Hamby, N. C., Oppenheimer, B. R., Hawkins, M. R. S., Rapaport, M., Modolo, J., & Liccioni, J. F. 2007, A&A, 470, 387
Dye, S., et al. 2006, MNRAS, 372, 1227
Eisenstein, D. J., et al. 2006, ApJS, 167, 40
Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Gates, E., et al. 2004, ApJ, 612, L129
Hall, P. B., Kowalski, P. M., Harris, H. C., Awai, A., Leggett, S. K., Kilic, M., Anderson, S. F., & Gates, E. 2008, AJ, 136, 76
Hamby, N. C., et al. 2001, MNRAS, 326, 1279
Hamby, N. C., et al. 2008, MNRAS, 384, 637
Hansen, R. M. S., et al. 2007, ApJ, 671, 380
Harris, H. C., et al. 2001, ApJ, 549, L109
Lodieu, N., Dobbie, P. D., Deacon, N. R., Hodgkin, S. T., Hambly, N. C., & Jameson, R. F. 2007a, MNRAS, 380, 712
Lodieu, N., Hambly, N. C., Jameson, R. F., Hodgkin, S. T., Carraro, G., & Kendall, T. R. 2007b, MNRAS, 374, 372
Lodieu, N., et al. 2007c, MNRAS, 379, 1423
Monet, D. G., et al. 2003, AJ, 125, 984
Oppenheimer, B. R., Hambly, N. C., Digby, A. P., Hodgkin, S. T., & Saumon, D. 2001, Science, 292, 698
Reid, I. N., Sahu, K. C., & Hawley, S. L. 2001, ApJ, 559, 942
Robin, A. C., Reyné, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Rowell, N. R., Kilic, M., & Hambly, N. C. 2008, MNRAS, 385, L23
Tokunaga, A. T., Simons, D. A., & Vacca, W. D. 2002, PASP, 114, 180
Tremblay, P.-E., & Bergeron, P. 2008, ApJ, 672, 1144
Vidrih, S., et al. 2007, MNRAS, 382, 515
Warren, S. J., et al. 2007a, MNRAS, 375, 213
Warren, S. J., et al. 2007b, arXiv:astro-ph/0703037
York, D. G., et al. 2000, AJ, 120, 1579

Harris, H. C., et al. 2008, ApJ, 679, 697
Haywood, M., Robin, A. C., & Crézé, P. 1997, A&A, 320, 440
Hewett, P. C., Warren, S. J., Leggett, S. K., & Hodgkin, S. T. 2006, MNRAS, 367, 454
Holberg, J. B., & Bergeron, P. 2006, AJ, 132, 1221
Holberg, J. B., Bergeron, P., & Gianninas, A. 2008, AJ, 135, 1239
Hook, I., Jørgensen, I., Allington-Smith, J. R., Davies, R. L., Metcalfe, N., Murowinski, R. G., & Crampton, D. 2004, PASP, 116, 425
Jones, E. M. 1972, ApJ, 177, 245
Kalirai, J. S., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2008, ApJ, 676, 594
Kepler, S. O., et al. 2007, MNRAS, 375, 1315
Kilic, M., et al. 2006, AJ, 131, 582
Kowalski, P. M., & Saumon, D. 2006, ApJ, 651, 137
Lawrence, A., et al. 2007, MNRAS, 379, 1599
Le Borgne, J.-F., et al. 2003, A&A, 402, 433
Leggett, S. K., Ruiz, M. T., & Bergeron, P. 1998, ApJ, 497, 294
Liebert, J., Bergeron, P., & Holberg, J. B. 2005, ApJS, 156, 47

Lodieu, N., et al. 2007a, MNRAS, 380, 712
Lodieu, N., Hambly, N. C., Jameson, R. F., Hodgkin, S. T., Carraro, G., & Kendall, T. R. 2007b, MNRAS, 374, 372
Lodieu, N., et al. 2007c, MNRAS, 379, 1423
Monet, D. G., et al. 2003, AJ, 125, 984
Oppenheimer, B. R., Hambly, N. C., Digby, A. P., Hodgkin, S. T., & Saumon, D. 2001, Science, 292, 698
Reid, I. N., Sahu, K. C., & Hawley, S. L. 2001, ApJ, 559, 942
Robin, A. C., Reyné, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Rowell, N. R., Kilic, M., & Hambly, N. C. 2008, MNRAS, 385, L23
Tokunaga, A. T., Simons, D. A., & Vacca, W. D. 2002, PASP, 114, 180
Tremblay, P.-E., & Bergeron, P. 2008, ApJ, 672, 1144
Vidrih, S., et al. 2007, MNRAS, 382, 515
Warren, S. J., et al. 2007a, MNRAS, 375, 213
Warren, S. J., et al. 2007b, arXiv:astro-ph/0703037
York, D. G., et al. 2000, AJ, 120, 1579