Atripla®/anti-TB combination in TB/HIV patients. Drug in focus

Hadija H Semvua* and Gibson S Kibiki

Abstract

Background: Co-administration of anti-tuberculosis and antiretroviral therapy is often inevitable in high-burden countries where tuberculosis is the most common opportunistic infection associated with HIV/AIDS. Concurrent use of rifampicin and several antiretroviral drugs is complicated by pharmacokinetic drug-drug interaction.

Method: Pubmed and Google search following the key words tuberculosis, HIV, emtricitabine, tenofovir efavirenz, interaction were used to find relevant information on each drug of the fixed dose combination Atripla®

Results: Information on generic name, trade name, pharmacokinetic parameter, metabolism and the pharmacokinetic interaction with Anti-TB drugs of emtricitabine, tenofovir, and efavirenz was obtained.

Conclusion: Fixed dose combination of emtricitabine/tenofovir/efavirenz (ATRIPLA®) which has been approved by Food and Drug Administration shows promising results as far as safety and efficacy is concerned in TB/HIV co-infection patients, hence can be considered effective and safe antiretroviral drug in TB/HIV management for adult and children above 3 years of age.

Keywords: Tuberculosis, HIV, Emtricitabine, Tenofovir, Efavirenz, Interaction

Background

Human immunodeficiency virus (HIV) and tuberculosis (TB) are overlapping epidemics that cause an immense burden of disease. Sub-Sahara Africa is a region most affected by both diseases including Tanzania [1]. Literatures show that more than 75% of TB patients have also HIV, and possibly more than half of worldwide patients infected with HIV will also develop TB [2,3]. Furthermore TB contributed to 27% of all AIDS diagnoses [4]. For TB the currently used combination drug regimens produce cure rates that exceed 95%, given good patient adherence during the multiple months’ treatment period [5]. Also for HIV many regimens are available; however optimal treatment regimens for TB/HIV co-infection are not yet clearly defined.

As therapy for HIV disease becomes more available, physicians need to know how to treat these two diseases effectively while minimizing the risk of drug interactions and maintaining the shortest possible duration of treatment for TB. Current treatment of mycobacterium tuberculosis in most resource limited settings is comprised of a four-drug initial anti-tuberculosis regimen for 2 months (rifampicin, isoniazid, pyrazinamide and ethambutol), followed by two-drugs continuation phase of anti-tuberculosis regimen for 4 months (rifampicin and isoniazid). For TB/HIV co-infected patients the guidelines which exist [6] have shown many challenges.

Combining drug therapies for dual infection TB and HIV is made complex by alterations in the activity of the hepatic Cytochrome P450 (CYP) system, high pill burdens, shared drug toxicities, drug-drug and drug-disease interactions, immune reconstitution inflammatory syndrome, co-morbid diseases and drug resistance in both bacillus and virus [7,8]. The CYP isoform enzymes are responsible for many interactions [9] (especially those involving rifampicin and isoniazid) during drug biotransformation (metabolism) in the liver and/or intestine, due to it is enzyme induction effect.

Presentation of the hypothesis

Adherence to a complex regimen is often a significant barrier to treatment success. Following the current guideline where a patient has to take 4-fixed dose
combination for TB and the complex triple combination therapy selected for HIV treatment. The consequence of many pills reduce compliance and hence adherence to the treatment regimen leading to suboptimal TB and HIV treatment, hence increasing the possibility of drug resistance and shared drug toxicities [10]. These toxicities may necessitate therapy discontinuation, which exacerbates immune suppression and predisposes to other opportunistic infections.

TB/HIV co-infection simultaneous treatment have shown pharmacokinetic interactions produced with mainly rifampicin [(a cornerstone in TB treatment) and the non nucleoside reverse transcriptase inhibitors (NNRTIs)]. Enzyme inducer decreases elimination halve life of nevirapine [11]. When rifampicin and nevirapine are given together there is an observed 31% to 58% decrease in plasma levels of nevirapine due to rifampicin induction effect [12-15]. Available literatures explain that rifampicin combination with efavirenz there is reduction of serum levels of 13-33% [16], however no virological failure reported to be significant [17]. HIV-infected patients achieve somewhat lower concentrations of the orally administered first-line anti-tubercular drugs [18,19]. The effect of rifampicin on the concentrations of Protease Inhibitors (PI) is well elaborated in a study of Moreno et al. [20].

Immune reconstitution inflammatory syndrome (IRIS), which is due to dysregulated immune recovery [21], occurs in severely immune-suppressed HIV patients normally 1 to 4 weeks after ART initiation [22,23]. In tuberculosis-related IRIS which is an inflammatory reaction is directed towards mycobacterial antigens [24], resulting in worsening pulmonary infiltrates. Risk factors for TB-IRIS include low baseline CD4 count, high baseline viral load, short duration between TB and ART initiation and disseminated tuberculosis [22,25], making difficult to determine the optimal time to initiate ART in severely immune-suppressed TB patients [26,27].

Immune reconstitution is based on the patient’s ability to respond to treatment. For the most part, in patients with CD4 counts of 200-350 cells/mm³ who start treatment, their immune systems still have the ability to be activated to produce more CD4 cells [28]. In contrast, in patients with low CD4 counts (< 100 cells/mm³), it may be more difficult to activate their immune systems to produce many CD4 cells because of existing damage from the virus.

In the management of TB/HIV co-infection directly observed therapy and other adherence promoting strategies should be used in all patients with HIV-related TB [29]. Whenever possible, the care for HIV-related TB should be provided by or in consultation with experts in management of both TB and HIV. The care for persons with HIV-related TB should include close attention to the possibility of TB treatment failure, antiretroviral treatment failure, paradoxical reactions, side effects for all drugs used, and drug toxicities associated with increased serum concentrations of rifampicin.

Due to these accompanied complications, selecting an appropriate antiretroviral therapeutic regimen is warranted. This involves addressing multiple interdependent issues, including patient adherence, pharmacokinetic properties of the drugs (including food effects and drug-drug interactions), drug resistance, and overlapping adverse effects. On 12 July 2006 Bristol-Myers Squibb and Gilead Sciences announced that the US Food and Drug Administration (FDA) had cleared Atripla®, their fixed-dose combination tablet. Atripla® is a complete regimen in a single, fixed-dose combination tablet that contains: efavirenz 600 mg, emtricitabine 200 mg and tenofovir disoproxil fumarate 300 mg. It is a novel co formulation drugs from two different classes, simplifying administration and increasing adherence too [30].

Testing the hypothesis

A new formulation combining fixed doses of the nucleoside reverse transcriptase inhibitors emtricitabine (200 mg) and tenofovir disoproxil fumarate (tenofovir DF; 300 mg) with the non-nucleoside reverse transcriptase inhibitor efavirenz (600 mg) represents the first once-daily, one-tablet antiretroviral regimen. Co-formulated efavirenz/emtricitabine/tenofovir DF demonstrated excellent potency, tolerability and favorable safety profile [31].

Co administration of co-formulated efavirenz/emtricitabine/tenofovir DF with rifampicin based TB regimen clinical trials is going on in TB/HIV patients of Tanzania, therefore is important to have knowledge of each individual drug. Also a once-daily regimen of efavirenz, emtricitabine and tenofovir DF (administered as individual agents) was superior to once-daily efavirenz plus twice-daily co formulated lamivudine/zidovudine in terms of virological suppression, immunological recovery and adverse events [32]. Individually, these agents have long half-life that allow for once-daily dosing.

Emtricitabine emtriva® a cytosine analogue is the newest of the nucleoside reverse transcriptase inhibitor (NRTI) drugs. It was well tolerated in clinical trials where most adverse events were consistent with the NRTI class. Moreover, emtricitabine based regimens were as well tolerated as those with lamivudine [33]. Emtricitabine has no currently known phase I (glucuronidation) or phase II (cytochrome P450 and others) interactions [34]. It may be taken with or without food [35]. Emtricitabine displays dose-proportional pharmacokinetics. Bioavailability is not affected by food intake. Mean steady-state Cmax, Tmax and AUC values were 1.7 mg/L, 2 h, and 10 mg/Lh respectively in 6 patients with
Efavirenz Sustiva® is a NNRTI which is principally metabolized by cytochrome P450, more precisely isoenzymes CYP2B6 and CYP3A4. No active metabolites are formed. Efavirenz has a long terminal half-life of 40-55 h after multiple dosing. Neuropsychiatric symptoms are the common side effects observed. Fumaz et al. [40], in a randomized, prospective, two-arm controlled study compared quality of life and neuropsychiatric side effects in patients receiving an efavirenz-containing regimen versus a group whose treatment did not include efavirenz. They found that the group receiving an efavirenz-containing regimen reported a better quality of life, particularly because their regimen was easier. They found, however, that 13% of their patients reported “character change”. Meals of normal composition have no appreciable effect on the pharmacokinetics of efavirenz. Bioavailability is increased following a high fat meal. Time to peak plasma concentration is 3-5 h. Steady state concentrations are achieved after 6-7 days. Mean steady state C_{max}, C_{min} and AUC$_{(0-24\ h)}$ were 4.1 mg/L, 1.8 mg/L and 58.1 h*mg/L respectively after multiple dosing of 600 mg efavirenz once daily.

Several pharmacokinetic studies have been conducted showing the interaction of rifampicin with efavirenz. Lopez-Cortez et al. [16] in Spain did on 24 patients with concomitant infections of HIV and tuberculosis. It was nonblinded study where group A ($n=16$) received antituberculosis drugs without rifampicin but with added efavirenz 600 mg/day ARV regimen. The patients were then switched to a standard antituberculosis regimen containing rifampicin with efavirenz 600 mg/day (group A1; $n=8$) or efavirenz 800 mg/day (group A2; $n=8$). The result showed that levels of AUC, C_{max}, and C_{min} of efavirenz decreased respectively by 24%, 25%, and 22%, after addition of rifampicin to the efavirenz of 600 mg/day group. Significant association of body weight, dose of efavirenz and its pharmacokinetic parameters was observed and the dose increase to 800 mg/day when efavirenz is used with rifampicin was recommended.

Manosuthi et al. [17,41] conducted a non-blinded randomized clinical trial to Thai patients and they were given rifampicin for more than 1 month with regimen containing efavirenz 600 mg/day ($n=42$), or efavirenz 800 mg/day ($n=42$). The plasma concentrations of efavirenz were determined for both groups 12 h after drug administration and on day 14. Both groups had 12-h efavirenz concentrations (C_{12}) of same value (median 3.0 mg/L vs 3.3 mg/L); but the upper C_{12} levels were higher in the group receiving efavirenz at the dosage of 800 mg/day (21.3 mg/L) in comparison with the group on 600 mg/day (12.2 mg/L). The study concluded that efavirenz with a dose of 600 mg/day is adequate for the majority of HIV-infected patients in Thailand (as their body weight is around 50 kg) but more studied should be performed to other ethnic groups. This is in line with a recent study by Orrell [42] which showed that 600 mg dose of efavirenz is adequate.

Another study was conducted aiming at determining the effects of higher body weights and differing ethnicities on exposure to efavirenz. 9 patients with body weights of over 50 kg were enrolled in the study [43]. The patients received an antiretroviral regimen containing efavirenz 800 mg/day and antituberculosis therapy containing rifampicin. Plasma concentrations of

efavirenz were monitored for 2 years. All patients had sub-therapeutic trough concentrations of efavirenz (median 11.7 mg/L; range 5.37–19.6 mg/L). The expected therapeutic range of trough concentrations of efavirenz were between 1.2 and 4.0 mg/L. Seven out of the 9 patients with HIV/TB co-infection had toxicity (6 of them black and 1 caucasian). Around 20% of ethnic Black Africans possess homologous G516T alleles versus 3% of Caucasians [44]. This CYP2B6 polymorphism is associated with exposure to higher concentrations of efavirenz.

Existence of a wide variability in efavirenz concentrations among black Africans was observed in the study of Friedland et al. [45]. This study indicated that inter-subject variability in efavirenz concentrations was greater when the drug was administered with rifampicin (coefficient of variation [CV] 157%) compared with the inter-subject variability after discontinuation of rifampicin (58%), with much of consistent intra-subject variation over time (CV 24%). However, Cmin was not significantly different during versus post TB therapy.

Regarding metabolism studies have shown that CYP2B6 genetic polymorphisms influence very much efavirenz elimination [46-48]. CYP2B6 polymorphisms have been associated with altered PK of efavirenz in HIV-infected adults and children [49-51] resulting in a higher efavirenz exposure and an increase in central nervous system side effect [44,46]. CYP2B6 patients are poor metabolizer of the drug and dose reduction has been proposed to people with this genotype [52,53]. Of note: is the high prevalence of efavirenz related CYP2B6 polymorphisms in patients of African region which represent the majority of the HIV-infected population in the world [54-58]. This indicates the need for prospective clinical studies to evaluate the utility of dose adjustments in these populations.

Use of efavirenz in children
The use of efavirenz as a component of first-line antiretroviral therapy in adult and children above 3 years has been accepted worldwide [59], however safety and efficacy of efavirenz in children less than 3 years of age has not been performed [60-63] and the data on the efavirenz exposure in mothers and their breastfed infants is also limited [64].

Despite the report that efavirenz is highly effective and well tolerated in the majority of pediatric patients [65], efavirenz plasma concentrations have been reported to be suboptimal in a large proportion of children and adolescents dosed according to current pediatric guidelines [60,61] Also interindividual variability has been observed in paediatric population [66].

Recently data on population pharmacokinetics (PK) of efavirenz in children predicts sub-therapeutic efavirenz exposure in a significant proportion on children with the currently recommended efavirenz dose [61,67]. Authors in ARROW study which was done recently in Uganda and Zimbabwe [68] suggested the use of higher paediatric efavirenz doses, as per WHO 2010 recommendations, however they concluded that children with toxic level of efavirenz concentration may be increased. Also efavirenz pharmacokinetics was shown to demonstrate significant age effects with apparent clearance much greater in young infants than older children. High efavirenz dose requirements and pharmacokinetic variability in infants will require additional pharmacokinetic studies to determine appropriate efavirenz dosing strategies. Therefore priorities should be made to access the developmental changes of efavirenz exposure in children and adolescents and application of therapeutic drug monitoring to the settings where the facility is available.

Implication of the hypothesis
HAART regimens have contained very high pill burdens, complex dosing schedules, and specific food requirements. The management of HIV-related tuberculosis disease seems to be complex although the treatment of TB in persons with HIV is essentially the same as for patients without HIV. A major concern in treating TB in HIV-infected persons is the interaction of rifampin with certain antiretroviral agents, PIs and NNRTIs [69,70]. Rifabutin, which has fewer drug interactions, may be used as an alternative to rifampicin but is expensive and not available in resource limited area.

Pharmacokinetic data which are present indicate that rifampicin can be combined with efavirenz [16,17], or nevirapine, [14] although for TB/HIV co-infected patients who got 600 mg rifampicin, adverse events were reported to be higher in nevirapine based regimen compared to efavirenz based regimen [71]. Non-boosted PIs cannot be administered with rifampicin because of considerable decreases in plasma concentrations of PIs, which may cause sub-therapeutic concentrations except ritonavir[72,73]. Ritonavir is a strong inhibitor of CYP3A4 and P-glycoprotein, and when it is low dose is combined with other PIs an important increase in their plasma concentrations is achieved, however this is not a solution as substantial decreases in plasma concentrations of indinavir,[74] lopinavir [75] and atazanavir [76] have been observed when co-administered with rifampicin, even when small doses of ritonavir are given. Another promising PI is saquinavir although in a study of Ribera et al. [77] a decrease of 40%, 35% and 49% in the median saquinavir AU_{C_{0–24}}, C_{max} and C_{trough}, respectively, were observed.

In vitro study reveals the benefit from the use of combination therapy achieved with Atripla in terms of the emtricitabine and tenofovir intracellular drug
concentration [78]. However in this study patients were HIV positive only hence more data are needed from TB/HIV co-infected patient.

HIV fusion inhibitors represent a novel class of antiretroviral drugs and enfuvirtide is the first drug within this class to be approved [79]. When combined with active ARV drugs, different studies reported findings of substantial improvements in virological, immunological and clinical outcomes [80-83]. It has little potential for drug-drug interactions as far as coadministration with TB drugs is concerned [79,84,85]. The major limitation of this drug is the twice daily dosing which may interfere with the treatment adherence. Injection-site reactions occurred almost universally in its recipients, although did not necessitate stopping treatment.

Co-formulated atripla® (emtricitabine/tenofovir/efavirenz) have demonstrated excellent potency, tolerability and favorable safety profile. The drug is now available in most of the limited-resources countries. The drug is given once per day simplifying administration and increasing adherence too, hence may be recommended as a way to jointly treat these two diseases.

List of abbreviations
ARV: Antiretroviral therapy; CYP: Cytochrome 450 system; FDA: Food and drug administration; HAART: Highly active antiretroviral therapy; HIV: Human immunodeficiency virus; IRS: Immune reconstitution inflammatory syndrome; NNRTIs: Nonnucleoside reverse transcriptase inhibitors; NRTIs: Nucleoside reverse transcriptase inhibitors; PIs: Protease inhibitors; TB: Tuberculosis.

Acknowledgements
The authors gratefully acknowledge the Kiliimanjaro Clinical Research Institute for Internet facility.

Authors’ contributions
GK gave an idea based on the fact that a phase II clinical trial is going on in our institute where TB/HIV co-infected patients are given Atripla® in combination with 4FDC tuberculosis drugs, so knowing the detail of the drug involved is important. HS contributed in writing the manuscript. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 6 September 2011 Accepted: 24 November 2011 Published: 24 November 2011

References
1. Hames AD, Zachariah R, Lawn SD: Providing HIV care for co-infected tuberculosis patients: a perspective from sub-Saharan Africa. Int J Tuberc Lung Dis 2009, 13:6-16.
2. Bowen EF, Rice PS, Cooke NT, Whitfield RJ, Rayner CF: HIV seroprevalence by anonymous testing in patients with Mycobacterium tuberculosis and in tuberculosis contacts. Lancet 2000, 356:1486-1489.
3. Mimangan GI, Fawa WW: The double burden of HIV infection and tuberculosis in sub-Saharan Africa. N Engl J Med 1997, 337:849-851.
4. Rose AM, Sinka K, Watson JM, Mortimer JY, Charlett A: "An estimate of the contribution of HIV infection to the recent rise in tuberculosis in England and Wales: should all tuberculosis patients be routinely HIV tested?". Thorax 2002, 57:442-445.
5. Budha RNageshwar, Lee ERichard, Meibohm Bernd: Biopharmaceutics, pharmacokinetics pharmacodynamics of antituberculous drugs. Curr Med Chem 2008, 15(8).
6. Updated guidelines for the use of rifampicins for the treatment of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors, [http://www.cdc.gov/hctb/tb_hiv_drugs/toc.htm], accessed June 25th 2009.
7. Rattan A, et al: Multi-drug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis 1998, 4:195-209.
8. Turner DJ, Wainberg MA: HIV transmission and primary drug resistance. AIDS Rev 2006, 8:17-23.
9. Niemi Mikko, Backman TJanne, Fromm FMartin, et al: Pharmacokinetic interactions with Rifampcin: clinical relevance. Clin Pharmacokinet 2003, 42:819-850.
10. Dean GL, Edwards SC, Ives NJ, Mathews G, Fox EF, Navaratne L, Fisher M, Taylor GP, Miller R, Taylor CB, de Ruiter A, Pozniak AL: Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS 2002, 16:75-83.
11. Pepper DJ, Meinjes GA, McIlerson H, Wilkinson RJ: Combined therapy for tuberculosis and HIV-1: the challenge for drug discovery. Drug Discov Today 2007, 12:980-989.
12. Robinson , et al: Pharmacokinetic interactions between nevirapine and rifampin. World AIDS conference Geneva Switzerland 1998.
13. Olliva J, Moreno S, Sanz J, et al: Co-administration of rifampin and nevirapine in HIV-infected patients with TB. AIDS 2003, 17:637-638.
14. Ribera E, Pou L, Lopez RM, et al: Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acac Immune Defic Syndr 2001, 28:450-453.
15. Cohen K, van CG, Boulle A, et al: Effect of rifampin-based antitubercular Therapy on nevirapine plasma concentrations in South African adults with HIV-associated tuberculosis. J Antimicrob Chemother 2008, 61(2):389-393.
16. Lopez-Cortes LF, Ruiz-Velardus R, Viciana P, et al: Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 2002, 41:681-690.
17. Manosuthi W, Sungkanuparph S, Thakkinstian A, et al: Efavirenz levels and 24-week efficacy in HIV-infected patients with tuberculosis receiving highly active antiretroviral therapy and rifampicin. AIDS 2005, 19:1481-1486.
18. Gurunithy P, Ramachandran G, Hemanth Kumar AK, et al: Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents chemother 2004, 48:4473-4475.
19. McIlerson H, Wash P, Burger A, Norman J, Folb PI, Smith P: Determinants of rifampicin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother 2006, 50:1170-73.
20. Moreno, et al: Antiretroviral therapy in AIDS patients with tuberculosis. AIDS Rev 2006, 8:115-124.
21. French MA, et al: Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med 2000, 1:107-115.
22. Breton G, et al: Determinants of immune reconstitution inflammatory syndrome in HIV Type 1-infected patients with tuberculosis after initiation of antiretroviral therapy. Clin Infect Dis 2004, 39:1709-1712.
23. Nair A, et al: Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med 1998, 158:157-161.
24. Bourgatt A, et al: Explosion of tuberculosis-specific Th1-responses induce immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS 2006, 21:F1-F7.
25. Shielburne SA, et al: Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 2005, 19:399-406.
26. Dean GL, et al: Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS 2002, 16:75-83.
27. Burman WL, et al: Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 2001, 40:327-341.
28. Pacenti FJ: An update and review of antiretroviral therapy. Pharmacotherapy 2006, 26:111-1133.
29. Fredland G, Abdool KS, Abdool KQ, Laloo U, Jack C, Gandhi N, El Sadr W. Utility of tuberculosis directly observed therapy programs as sites for access to and provision of antiretroviral therapy in resource-limited countries. Clin Infect Dis 2004, 38(Suppl 5):S421-S428.

30. Long MC, King IR, Acosta EP. Pharmacological aspects of new antiretroviral drugs. Curr HIV/AIDS Rep 2005, 2:63-72.

31. Coicochea M, Bess B. Efavirenz/emtricitabine/tenofovir disoproxil fumarate fixed dose combination, first line therapy for all. Expert Opin Pharmacother 2007, 8:371-382.

32. Frampton JE, Croom KF. Efavirenz/emtricitabine/tenofovir disoproxil fumarate: triple combination tablet. Drugs 2006, 66:1501-1512.

33. Bang LM, Scott LJ. Efavirenz: an antiretroviral agent for HIV infection. Drugs 2003, 63:241-242.

34. Saag MS. Efavirenz, a new antiretroviral agent with activity against HIV-1 and hepatitis B virus. Clin Infect Dis 2006, 42:126-131.

35. Emtriva package insert, Gilead Sciences.

36. Emtricitabine: an antiretroviral agent for HIV infection. Emtricitabine, a new antiretroviral agent with activity against HIV-1-infected individuals. Clin Pharmacol Ther 2009, 85:485-494.

37. Nkutia C, Roshammar D, Chiguta E. et al High prevalence of the CYP2B6 516G-> T6 variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol 2008, 64:357-365.

38. Wang J, Sonnerborg A, Rane A, et al Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics 2006, 16:191-198.

39. Ngamis M, Mugusi S, Minzi O, Sasi P, Riedel KD, Suda A, Ueda J, Janabi M, Mugusi F, Haefeli WE, Bentsen L, Burhenne J, Akilii E. Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin Pharmacol Ther 2011, 90:406-413.

40. Uttayamakul S, Likanonsakul S, Manosuthi W, Wchuchinda N, Kalambaheti T, Nakayama EE, Shioda T, Khusmith S. Effects of CYP2B6 G516T polymorphisms on plasma efavirenz and nevirapine levels when co-administered with rifampicin in HIV/TB co-infected Thai adults. AIDS 2010, 7:8.

41. Kwara A, Larney M, Sagee KW, Xenekefu K, Fenu E, Oliver-Commy J, Boima V, Sagee A, Boamah I, Greenblatt DJ, Court MH. Pharmacogenetics of efavirenz when co-administered with rifampicin in TB/HIV co-infected patients: pharmacogenetic effect of CYP2B6 variation. J Clin Pharmacol 2008, 48:1092-1040.

42. Schipperth HJ, Bekker V, et al. Once daily highly active antiretroviral therapy for HIV-1 infected children: safety and efficacy of an efavirenz containing regimen. Pediatrics 2007, 119:705-715.

43. van Hentig N, Koenigs C, Elanjilak S, et al. Need for therapeutic drug monitoring in HIV-1 infected children receiving efavirenz doses according to international guidelines. Eur J Pediatr Res. 2006, 11:377-380.

44. Reh Y, Nuttall L, Egbers C, et al. High prevalence of subtherapeutic plasma concentrations of efavirenz. J Acquir Immune Defic Syndr 2007, 45:133-136.

45. SaiToh A, Fletcher CV, Brundage R, et al. Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6/G516T polymorphism. J Acquir Immune Defic Syndr 2007, 45:280-285.

46. Fletcher CV, Brundage RC, Fenton T, et al. Pharmacokinetics and pharmacodynamics of efavirenz and nevirapine in HIV-infected children participating in an area-under-the-curve controlled trial. Clin Pharmacol Ther 2008, 83:300-306.

47. Schneider S, Petter A, Gras A, et al. Efavirenz in human breast milk, mothers', and newboms' plasma. J Acquir Immune Defic Syndr 2008, 48:550-554.

48. Teglas JP, Quartier P, Treuyler JM, et al. Tolerance of efavirenz in children. AIDS 2001, 15:241-243.

49. Viljoen M, Gous H, Kruger HS, Riddick A, Meyers TM, Rheeder M. Efavirenz plasma concentrations at 1, 3, and 6 months post-antiretroviral therapy initiation in HIV type 1-infected South African children. AIDS Res Hum Retroviruses 2010, 26:613-619.

50. Hirt D, Ureni S, Olivier M, et al. Are recommended dose of efavirenz optimal in young West African HIV-Infected children? (ANRS 12103). Antimicrob Agents Chemother 2011. *Important report on suboptimal efavirenz exposure in African children.

51. Filleske Q, et al. Pediatric under-dosing of efavirenz: a pharmacokinetic study in Uganda. Advance online edition JACDS 2011.

52. De Jong BC, Israelski DM, Corbett EL, et al. Clinical management of tuberculosis in the context of HIV infection. Annu Rev Med 2004, 55:283-301.

53. Pozniak AL, Miller R, Ormerod LP. The treatment of tuberculosis in HIV-infected persons. AIDS 1997, 11:435-445.

54. Manosuthi W, Mankantala W, Lueangvongkul A. et al. Standard dose efavirenz vs standard dose nevirapine in antiretroviral regimes among HIV-1 and tuberculosis co-infected patients who receive rifampicin. HIV Med 2008, 9:294-299.

55. Pozniak AL, Miller R, Ormerod LP. The treatment of tuberculosis in HIV-infected persons. AIDS 1999, 13:345-45.
73. Moreno S, Podzamczer D, Blazquez R, et al: Treatment of tuberculosis in HIV-infected patients: safety and antiretroviral efficacy of the concomitant use of ritonavir and rifampin. AIDS 2001, 15:1185-1187.

74. Justesen US, Andersen AB, Kiltergaard NA, et al: Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose ritonavir in HIV-infected patients. Clin Infect Dis 2004, 38:826-829.

75. La Porte CJ, Colliers EP, Bertz R, et al: Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 2004, 48:1553-60.

76. Burger DM, Agarwala S, Child M, et al: Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob Agents Chemother 2006, 50:3336-42.

77. Ribera E, Azuaje C, Lopez RM, et al: Pharmacokinetic interaction between rifampicin and the once-daily combination of saquinavir and low-dose ritonavir in HIV-infected patients with tuberculosis. J Antimicrob Chemother 2007, 59:690-697.

78. Bousquet L, Pruvost A, Guvut AC, et al: Combination of tenofovir and emtricitabine plus efavirenz in vitro modulation of ABC transporter and intracellular drug accumulation. Antimicrob agent Chemother 2009, 53:896-902.

79. Hardy H, Skolnik PR: Enfuvirtide, a new fusion inhibitor for therapy of humanimmunodeficiency virus infection. Pharmacotherapy 2004, 24:199-211.

80. Lalezari JP, Henry K, O’Hearn M, Montanet JS, Pilkero PJ, Trotter B, et al: Enfuvirtide, an HIV-1 fusion inhibitor, for drug resistant HIV infection in North and South America. N Engl J Med 2003, 348:2175-2185.

81. Lazzarin A, Clotet B, Cooper D, Reyness J, Arasteh K, Nelson M, et al: Efficacy of enfuvirtide in patients infected with drug resistance HIV-1 in Europe and Australia. N Engl J Med 2003, 348:2175-2185.

82. Nelson M, Arasteh K, Clotet B, Cooper DA, Henry K, Katlama C, et al: Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1 infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr 2005, 40:404-412.

83. Youle M, Staszewski S, Clotet B, Arribas JR, Blaxhult A, Carosi G, et al: Concomitant use of an active boosted protease inhibitor with enfuvirtide in treatment-experienced HIV-1 infected individuals: recent data and consensus recommendations. HIV Clin Trials 2006, 7:86-96.

84. Ruuxrungtham K, Boyd M, Bellibas SE, et al: Lack of interaction between enfuvirtide and ritonavir or ritonavir-boosted saquinavir in HIV-1-infected patients. J Clin Pharmacol 2004, 44:793-803.

85. Boyd MA, Zhang X, Dorr A, Ruuxrungtham K, et al: Lack of enzyme-inducing effect of rifampin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 2003, 43:1382-1391.

doi:10.1186/1756-0500-4-511

Cite this article as: Semvua and Kibiki: Atripla®/anti-TB combination in TB/HIV patients. Drug in focus. BMC Research Notes 2011 4:511.