Hepatocyte Growth Factor Induces Proliferation and Differentiation of Multipotent and Erythroid Hemopoietic Progenitors

F. Galimi,* G. P. Bagnara,† L. Bonsi,‡ E. Cottone,* A. Follenzi,* A. Simeone,§ and P. M. Comoglio*

* Institute for Cancer Research and Treatment (I.R.C.C.) and Department of Biomedical Sciences, University of Torino Medical School, 10126 Torino; † Institute of Histology, University of Bologna Medical School, 40126 Bologna; and § International Institute of Genetics and Biophysics, 80125 Napoli, Italy

Abstract. Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.

Hepatocyte growth factor (HGF)¹ (Nakamura et al., 1989; Miyazawa et al., 1989), also known as scatter factor (Naldini et al., 1991a; Wiedner et al., 1991), has the unique feature of combining mitogenic and motogenic activities on its target cells. HGF is mitogenic for hepatocytes (Michalopoulos, 1990) and other epithelial cells, such as kidney tubular epithelium, melanocytes, and keratinocytes (Kan et al., 1991; Rubin et al., 1991; Halaban et al., 1992; Matsumoto et al., 1991). In these cells, HGF also promotes "scattering" (Stoker et al., 1987; Gherardi et al., 1989; Weidner et al., 1990, 1991; Naldini et al., 1991a) and matrix invasion (Weidner et al., 1990; Naldini et al., 1991a), and it has chemotactic properties (Mornimato et al., 1991; Giordano et al., 1993). The factor stimulates extracellular matrix degradation by enhancing the synthesis of enzymes involved in extracellular matrix proteolysis (Pepper et al., 1992; Boccaccio et al., 1994). HGF acts as a morphogen during neuroectodermal development in vivo (Stern et al., 1990), and it induces three-dimensional organization of epithelial cells in vitro (Montesano et al., 1991). The factor also promotes the progression of carcinoma cells toward malignant invasive phenotypes (Weidner et al., 1990).

The HGF molecule shares several structural similarities with plasminogen and other proteins of the blood coagulation cascade. These similarities include four characteristic "kringle" domains at the amino terminus, a zymogen activation site, and a carboxy-terminal serine protease-like domain (Miyazawa et al., 1989; Nakamura et al., 1989; Sottrup-Jensen et al., 1978). HGF is secreted by cells of mesodermal origin as an inactive single chain precursor (pro-HGF), which is converted to the active form in the extracellular environment by urokinase and/or a thrombin-activated serum protease (Naldini et al., 1992; Miyazawa et al., 1991; Shimomura et al., 1993). Mature HGF is a disulfide-linked heterodimer of a 60-kD α chain and a 32-kD β chain (Nakamura et al., 1989; Gohda et al., 1991). The receptor for HGF is the tyrosine kinase encoded by the MET protooncogene (Naldini et al., 1991a; Bot-
et al., 1993), and it is often overexpressed in epithelial can-
cers (Prat et al., 1991a; Di Renzo et al., 1991). We have
recently shown that the pleiotropic action of
HGF is caused by ligand-induced autophosphorylation of
two tyrosines in the receptor tail (Y1348, Y1356) generating a
nonconventional docking site capable of activating multiple
cytoplasmic signal transducers (Ponzetto et al., 1994).

The HGF receptor is expressed in adult epithelial tissues,
including liver, intestine and kidney (Prat et al., 1991a; Di
Renzo et al., 1991). It has been reported to be expressed in
early stages of development of epithelial organs (Sonnenberg
et al., 1993), and it is often overexpressed in epithelial can-
cers (Prat et al., 1991a; Di Renzo et al., 1991). We have
shown that the receptor is also expressed in endothelial cells,
and that HGF is a potent angiogenic factor both in vitro and
in vivo (Bussolino et al., 1992; Grant et al., 1993). We re-
cently cloned the promoter region of the HGF receptor gene
(c-MET). Interestingly, a GATA-1 consensus sequence was
found within 300 bp upstream from the transcription start
site (Gambardotta et al., 1994). The GATA motif is known
to identify genes preferentially expressed during erythroid
differentiation (Martin et al., 1989). This finding prompted
us to investigate the expression of the HGF receptor in
hemopoietic cell lineages and the possible role of HGF in hu-
man hemopoiesis.

Hemopoietic cell lineages derive from pluripotent progen-
itors through committed precursors, characterized by the ex-
pression of receptors for specific factors. Recently, it has
been suggested that some growth factors of nonhemopoietic
origin may be involved in controlling proliferation and self-
renewal of early and committed hemopoietic precursors
(Correa and Axelrad, 1991). In this work, we show that HGF
selectively stimulates growth and differentiation of multipot-
ent and erythroid progenitors.

Materials and Methods

Recombinant HGF

Full-length HGF cDNA was cloned from human liver mRNA (Naldini
et al., 1992a), and it was inserted as a BamHI-EcoRI fragment into the
baculovirus transfer vector PVPI393 (Invitrogen, San Diego, CA). The
recombinant vector was cotransfected with the Bsu-digested BacPak5 viral
dNA (Clontech Laboratories, Palo Alto, CA) into Spodoptera frugiperda
insect cells (S99) by the lipofection procedure. Positive viral clones isolated
by dot-blot hybridization, and plaque assays were used for large-scale infec-
tion. HGF was obtained from culture supernatant of S99-infected cells 72 h
after infection, by affinity chromatography on a heparin-Sepharose FPLC
column (Bio Rad Laboratories, Hercules, CA) eluted with a linear 0.5–
1.8 M NaCl gradient. The unprocessed recombinant HGF was desalted by
Coomassie blue staining and comparison with a standard curve obtained with increasing amounts of bovine se-
rum albumin.

HGF Labeling and Immunoprecipitation

Pure HGF was radiolabeled as previously described (Naldini et al., 1992). The radiolabeled factor was immunoprecipitated, as described elsewhere
(Naldini et al., 1992), with anti-HGF monoclonal antibodies.

Scatter Assay

The dissociation assay on MDCK cells was performed as previously de-
scribed (Stoker et al., 1987; Weidner et al., 1990). Cells were seeded at
low density in six-well plates and exposed to HGF in fresh medium over-
night. The scattering effect was monitored by light microscopy. 1 U of activ-
ity was defined as the lowest amount of factor per milliliter that clearly dis-
sociated MDCK cells.

Thymidine Incorporation

Primary cultures of rat hepatocytes were prepared as described (Zarnegar
et al., 1991) and seeded on collagens (Boehringer Mannheim Biochemicals,
Indianapolis, IN)-coated six-well cell culture cluster (Costar Corp., Cam-
bridge, MA) in M199 medium (Sigma Immunochemicals, St. Louis, MO)
supplemented with 100 ng/ml insulin. Medium was changed after 4 h, and the
cultures were used within 48 h. The factors were added at the indicated concentrations for 24 h, then [6-3H]thymidine (28 Ci/mmol, 1 pCi/ml)
was added in fresh medium, and the cultures were further incubated for 16 h. Cell growth was evaluated by [3H]thymidine incorporation into TCA-
precipitable material.

Recombinant Growth Factors

Human recombinant multipotent GM-CSF and human recombinant IL-3
were kindly supplied by Sandz (Wien, Austria) and stored at −70°C for
no more than 3 mo before use. Human recombinant stem cell factor was
provided by Amgen Biologics (Thousand Oaks, California).

CD34+ Cell Separation

Bone marrow, fetal umbilical cord blood, and adult peripheral blood sam-
ples were obtained from volunteers after informed consent. Heparinized
samples of bone marrow, cord blood, or peripheral blood were diluted with
an equal volume of PBS, and were separated by Ficoll-Hypaque 1077 SD
(Pharmacia Fine Chemicals, Piscataway, NJ) density gradient centrifuga-
tion at 350 g for 30 min. Light-density mononuclear cells were collected,
washed twice in PBS, and resuspended in Iscove modified Dulbecco's
medium (IMDM) (Gibco BRL, Gaithersburg, MD) supplemented with 5%
FCS (Biological Industries, Kibbutz Beit Haemek, Israel). Mononuclear
adherent cells were then removed by a two-step incubation of 30 min each
in plastic flasks at 37°C.

Mononuclear nonadherent cells (MNAC) were incubated with neur-
aminidase-treated sheep erythrocytes for 15 min at 37°C, centrifuged, and
incubated for 45 min at 4°C. T lymphocyte–depleted MNAC were separated
by Ficoll-Hypaque 1077 SD (Pharmacia) density gradient centrifugation.

T lymphocyte–depleted MNAC were then incubated for 45 min at 4°C with
the following antibodies: anti-CD3, anti-CD4, anti-CD8, anti-CD1c, anti-CD19, anti-CD57; most of the remaining B and T lymphocytes, mono-
cytes, and granulocytes were thus removed by incubation for 45 min at 4°C
with immunomagnetic beads coated with anti-mouse IgG (M-450 Dy-
abeads; Dynal, Inc., Great Neck, NY), subsequently collected by a mag-
net (MPC-1 Dynabeads; Dynal).

A positive selection of the CD34+ cells was then performed: cells were
incubated with an antibody anti-CD34 (My-10; Becton-Dickinson Im-
munocytometry Systems, Mountain View, CA) for 45 min at 4°C, then for
45 min at 4°C with immunomagnetic beads coated with anti-mouse IgG:
a 4:1 bead/cell ratio was found to provide the best recovery. CD34+ cells
bound to the beads were then collected by a magnet (MPC-1 Dynabeads;}

The Journal of Cell Biology, Volume 127, 1994 1744

1744
Galimi et al. Hepatocyte Growth Factor Is a Hemopoietic Factor

Dyval, and were resuspended in IMDM supplemented with 10% FCS. An overnight incubation at 37°C was then performed; to allow CD34+ cell detachment, the beads were subjected to shearing forces by repeated flushing through a Pasteur pipette. Further details about the negative/positive double selection procedure used have been published previously (Bagnara et al., 1991).

Cell Cultures

The colony assay for erythroid burst-forming units (BFU-E) and for multipotent granulocyte-erythroid-monocyte-megakaryocyte colony-forming units (CFU-GEMM) was performed according to Iscove et al. (1974). Cord blood, bone marrow, or peripheral blood CD34+ cells were plated in 24-well cell culture clusters (Costar) at a density of 2.5 × 105 cells/well, in a medium containing IMDM, 30% FCS, 2 × 10−4 M hemin, 5 × 10−3 β-mercaptoethanol and 0.9% methylcellulose. The cells were stimulated with the following growth factors alone or in combination: Epo, 2 pg/ml; IL-3, 2 ng/ml; granulocyte-macrophage colony-stimulating factor (GM-CSF), 50 ng/ml; stem cell factor (SCF), 20 ng/ml; pro-HGF, 2, 10, or 40 ng/ml. Colonies scored positive only when they appeared dark red and contained more than four aggregates.

The assay for the 14-d granulocyte-monocyte colony-forming units was performed as previously described (Iscove et al., 1971). Cord blood, bone marrow, or peripheral blood CD34+ cells were plated in 24-well cell culture clusters (Costar) at a density of 2.5 × 105 cells/well in a medium containing IMDM, 20% FCS, 0.3% Noble agar (Difco Laboratories Inc., Detroit, MI), and the following growth factors alone or in combination: IL-3, 2 ng/ml; GM-CSF, 50 ng/ml; SCF, 20 ng/ml; pro-HGF, 2, 10, or 40 ng/ml.

For the megakaryocyte colony-forming unit assay, plasma clot assay was performed according to Vainchenker et al. (1979). Cord blood, bone marrow, or peripheral blood CD34+ cells were plated in 24-well cell culture clusters (Costar) at a density of 2.5 × 105 cells/well in a medium containing IMDM, 20 mg/ml 1-asperagine (Sigma), 3.4 μg/ml CaCl2, 10% bovine plasma citrated (Gibco BRL), 1% detoxified BSA (fraction V Chon; Sigma), 10% of a preselected batch of heat-inactivated, pooled human AB serum, and the following growth factors alone or in combination: IL-3, 2 ng/ml; GM-CSF, 50 ng/ml; SCF, 20 ng/ml; pro-HGF, 2, 10, or 40 ng/ml. After 12 d of incubation, the plasma clot was fixed in situ with methanol-acetone 1:3 for 20 min, washed with PBS, and air dried. Fixed plates were stored at −20°C until immunofluorescence staining was performed; megakaryocyte colony-forming unit colonies were scored as aggregates of 3−100 cells intensively fluorescent to monoclonal antibody CD41 (Immunotech, Marseille, France) directed against the IIb/IIIa glycoprotein complex. Binding was shown by fluorescence-conjugated goat anti-mouse Ig (Becton-Dickinson Immunocytometry Systems, Mountain View, CA).

Flow Cytometry Analysis

Cells were stained for flow cytometry analysis using phycoerythrin-conjugated anti-CD34 (Becton-Dickinson), unconjugated monoclonal antibodies DO-24 (anti-Met; Prat et al., 1991b), and SR-1 (anti-Kir; Briddel et al., 1992), kindly provided by V. Broudy (University of Washington Medical School, Seattle, WA). Detection of unconjugated antibodies was facilitated using fluorescein-tagged goat anti-mouse Ig (Becton-Dickinson). Each analysis included 10,000 events collected in list mode on a FACScan® flow cytometer (Becton-Dickinson) and analyzed using FACS® sort 3.0 software. The instrument was gated on the basis of forward and 90° angle scatter to eliminate debris and aggregates. For two-color analysis, 10,000 events were acquired gating on red fluorescence. Controls included cells stained with the second antibody alone or with a monoclonal antibody directed against the intracellular domain of the HGF receptor (DQ13; Prat et al., 1991b).

Mice

C57/B16 mice were mated between 9 and 10 p.m. Day 0.5 postcoitus was assumed to begin on the middle of the day of vaginal pluggling. Pregnant female mice were killed by cervical dislocation, and embryos were staged according to Theiler et al. (1989), collected in ice-cold PBS under a dissecting microscope (SV11; Carl Zeiss, Inc., Thornwood, NY), and fixed in 4% paraformaldehyde overnight.

In Situ Hybridization

In situ hybridization was carried out as described (Wilkinson and Green, 1990; Wilkinson, 1992), with minor modifications. Both paraffin-embedded and cryostat sections were analyzed. Dissected embryos were prefixed in 0.1 M sodium phosphate buffer (pH 7.3), 4% paraformaldehyde at 4°C overnight, and embedded in Tissue-Tek™ (Miles Laboratories Inc., Elkhart, IN). 8-μm thick cryosections were transferred onto gelatin/chromium III potassium sulphate-subbed slides and dried at room temperature. Before hybridization, slides were postfixed. The probes used were antisense strands corresponding to nucleotides 2199−2718 for murine c-Met, as well as the entire coding sequence for HGF. Transcription reactions with T7 or Sp6 polymerase (Ribobrope Kit; Promega Biotec, Madison, WI) were carried out in the presence of [35]S)CTP (Amersham Corp., Arlington Heights, IL). The template was then degraded with RNase-free DNase (Pharmacia), and the labeled RNA was purified through a Sephadex G-50 column and progressively degraded by random alkaline hydrolysis to improve access to RNA in situ. The probes were dissolved at a working concentration of 1 × 105 cpm/ml in the hybridization mix; 30 ml of the appropriate probe was added to each slide. Hybridization was carried out overnight at 55°C. The slides were then washed under stringent conditions (65°C, 2× SSC; 50% formamide) and treated with RNase. Autoradiography was performed with Kodak NT/B2 emulsion. Exposure times were between 15 and 25 d.

Negative controls included the c-MET and the HGF sense strands, and probes for the homeotic genes Otx1, Otx2, En1, and En2 (Simeone et al., 1992), which were tested on sections adjacent to those hybridized with the specific antisense strands to determine the basal background of the hemopoietic cells. These probes never gave a detectable signal.

Results

Production of Human Recombinant HGF in Insect Cells

Since purity is mandatory to assess the properties of a growth factor in biological assays, we produced human HGF in insect cells by means of a recombinant baculovirus. Insect cells can be grown in serum-free medium, thus the recombinant protein can be recovered devoid of serum-derived, biologically active contaminants. Moreover, because of the phylogenetic distance between insects and humans, the possible interference of other contaminating molecules produced by insect cells is negligible.

The full-length human HGF cDNA (Naldini et al., 1991a) was inserted into the baculovirus genome by a transfer vector, as described in Materials and Methods. Sf9 insect cells infected with the recombinant virus released the human protein in the culture medium as single-chain unprocessed pro-HGF. The protein was purified from spent medium by heparin affinity chromatography. No contaminants could be detected in SDS-PAGE by Coomassie blue staining. The baculovirus pro-HGF migrated with the apparent molecular mass of 125 kD, under reducing or nonreducing conditions, respectively (Fig. 1a). The observed shift is caused by the reduction of intrachain disulfide bonds (Gohda et al., 1988).

We have previously shown that also mammalian cells secrete HGF in the extracellular environment as an inactive single-chain precursor. Pro-HGF is converted into the mature two-chain biologically active form upon proteolytic cleavage by urokinase or a Factor XII-like serum protease (Naldini et al., 1992; Miyazawa et al., 1993; Shimomura et al., 1993). Since the biological assays used in this study were performed in the presence of serum (see above), we tested whether the baculovirus pro-HGF could be processed after incubation for 2 h with 10% FCS. Under these conditions, the 125I-labeled precursor was fully processed, generating the two-chain mature form (Fig. 1b).

The biological activity of the recombinant baculovirus HGF was assessed in two different biological assays, and...
Biochemical and biological properties of human recombinant HGF, produced in the baculovirus expression system. (a) Under nonreducing conditions (lane 1), pro-HGF shows an apparent molecular mass of ~60 kD. Under reducing conditions (lane 2), the band shifts to a molecular mass of 90 kD. No contaminants can be detected in the preparation by SDS-PAGE and Coomassie blue staining. (b) Maturation of pro-HGF. Immunoprecipitation and SDS-PAGE analysis of 125I-labeled unprocessed pro-HGF (lane 1). In vitro processing of pro-HGF was obtained by a 2-h incubation with fetal calf serum (10%); under these conditions, pro-HGF is cleaved, and it generates the 60-kD α chain and the 32-kD β chain (lane 2). (c) Mitogenic activity of HGF measured by [3H]thymidine incorporation assay on primary rat hepatocytes. (d) “Scatter” of MDCK cells cultured in standard medium (top) or after an 18-h incubation with pro-HGF (10 ng/ml).

HGF Stimulates Erythroid and Multipotent Hemopoietic Progenitors In Vitro

The effect of HGF on the growth and differentiation of hemopoietic progenitors was studied in colony formation assays. CD34+ hemopoietic progenitors (Civin et al., 1984) were purified from adult bone marrow, fetal umbilical cord blood, or adult peripheral blood, as described in Materials and Methods. The recovered cells were morphologically unidentifiable blast elements on May-Grunwald-Giemsa staining, slightly contaminated by promyelocytes. Flow cytometry analysis indicated that the percentage of CD34+ cells in the selected cell preparations varied between a minimum of 30% (when the starting material was bone marrow) and a maximum of 50% (when the starting material was umbilical cord blood). Contamination by CD4+, CD2+, CD16+, or CD19+ cells was constantly <1%.

CD34+ cells were cultured in the presence of HGF alone, or in combination with other growth factors. No colonies were observed when the factor was added alone. However, in the presence of standard concentrations of erythropoietin (2 ng/ml), HGF dramatically increased the number of colonies derived from the BFU-E precursors (Fig. 2). HGF also stimulated the growth of colonies derived from multipotent CFU-GEMM progenitors. The number of colonies was comparable to that obtained by combining known hemopoietic factors such as GM-CSF and IL-3 (Bot et al., 1988; Gasson, 1991; McNiece et al., 1991; Miyajima et al., 1993). It should be noted, however, that the HGF effect was restricted to the stimulation of CFU-GEMM and BFU-E. Neither granulo-monocytic nor megakaryocytic colonies were ever observed in response to HGF.

The response to HGF was dose-dependent and could be observed at concentrations of HGF as low as 5 pM both in erythroid and multipotent colonies (Fig. 3). The HGF action was also studied on CD34+ fetal hemopoietic progenitors enriched from human umbilical cords blood. It is known that this population contains a percentage of primitive stem cells higher than the population purified from adult bone marrow or peripheral blood (Broxmeyer et al., 1992; Lu et al., 1993). As observed in the case of adult hemopoietic progenitors, HGF stimulated both BFU-E- and CFU-GEMM–derived colonies (data not shown).
HGF Synergizes with SCF in Stimulating Multipotent Hemopoietic Progenitors

In the presence of both HGF and SCF, a significant increase in the number of CFU-GEMM-derived colonies was observed (Fig. 4). Interestingly, fewer erythroid colonies could be seen compared to those developed in the cultures stimulated by HGF alone. This suggests that the combination of HGF and SCF preferentially affects proliferation of multipotent progenitors. The erythroid colonies grown in the presence of both growth factors were extremely large, and they showed a high hemoglobin content. The size of CFU-GEMM-derived colonies grown in these conditions was also increased and, within each colony, the erythroid lineage was predominant (Fig. 5).

In these assays, HGF did not synergize with GM-CSF and IL-3, either tested individually or in combination (data not shown).

The HGF Receptor Is Expressed in a Subpopulation of Adult Hemopoietic Progenitors (CD34⁺)

The presence of HGF receptor at the surface of hemopoietic progenitors was studied by flow cytometry analysis of bone marrow and peripheral blood mononuclear cells. Monoclonal antibodies directed against extracellular epitopes of the HGF receptor β chain were used. A small but clearly identifiable subpopulation of bone marrow cells stained positive for the HGF receptor (Table I). About half of the cells expressing the HGF receptor also coexpressed the CD34 marker and could, thus, be identified as hemopoietic progenitors (Civin et al., 1984).

As described above, HGF synergized with the SCF in stimulating the growth and differentiation of CFU-GEMM-derived colonies. In line with this observation, a subpopulation of cells coexpressing the HGF and the SCF receptors was identified using a monoclonal antibody against extracellular epitopes of the SCF-R (c-Kit) protein.
Figure 5. Synergistic effect of HGF and SCF in promoting erythroid differentiation under the conditions described in the legends of Figs. 2 and 4. (a) BFU-E-derived colony developed in the presence of HGF (5 ng/ml); (b) BFU-E-derived colony grown in the presence of HGF (same concentration) and SCF (20 ng/ml). (c) CFU-GEMM-derived colony in the presence of HGF and SCF, as in b. Among the mixed lineages, the erythroid elements are predominant.
Hepatocyte Growth Factor Is a Hemopoietic Factor and its Receptor Are Expressed during the Embryonal Development of Hemopoietic Cells

The expression of the HGF receptor was studied in embryonal hemopoietic cells by in situ hybridization of histological sections of mouse embryos. Using an antisense MET probe, the HGF receptor mRNA could be clearly detected in megaloblastic cells located within the cavity of the developing heart and aorta from 10 to 10.5 d postcoitum (dpc) (Fig. 6, a' and c). Specific mRNA could also be detected in the hepato/biliary primordium, which at this stage contains hemopoietic precursors (Fig. 6 b). In this developing organ, both epithelial cells and erythroid islands stained positive. Hemopoietic cells showed a higher level of HGF receptor mRNA, compared to the level of expression observed in the surrounding hepatocytes. From 11 dpc, the hemopoietic embryonal liver also expresses HGF mRNA (Fig. 7). The resolution of in situ hybridization with 35S-labeled probes does not allow positive assignment of hybridization signals to single cells (Sonnenberg et al., 1993). However, although we were not able to identify the subpopulation of cells that express the HGF mRNA in the hepato/biliary primordium, the presence of these elements in close proximity and within the islands of erythroid progenitors suggests juxtacrine interactions.

Discussion

Hemopoietic cell growth and differentiation is under the control of a complex network of cytokines, which act on their target cells via specific receptors (Metcalf, 1984; Clark and Kamen, 1987). Among these receptors, some are transmembrane tyrosine kinases expressed by different hemopoietic lineages. The macropage colony-stimulating factor receptor kinase, encoded by the c-FMS protooncogene, is involved in monocyte differentiation (Stanley et al., 1983; Sherr, 1990). The receptor for SCF, encoded by the c-kit gene, is critical for early hemopoiesis and mast cell differentiation (Besmer et al., 1991; Chabot et al., 1988; Broxmeyer et al., 1992). Some new members of the receptor tyrosine kinase superfamily (FLT-1, FLT-3, FLT-4, and FLK-1) have recently been identified in hemopoietic cells (Rosnet et al., 1991; Shibuya et al., 1990; Matthews et al., 1991; Aprelikova et al., 1992).

Two transmembrane tyrosine kinases encoded by genes related to the c-MET protooncogene are known to be involved in hemopoiesis. (a) The v-sea oncogene, originally isolated from a strain of avian erythroblastosis virus, causes erythroblastosis and anemias in chickens (Smith et al., 1989). (b) The recently cloned MRK (MET-related kinase) gene is expressed in early erythroid progenitors and in differentiated hemopoietic cell lineages (Yee et al., 1993; Tamagnone et al., 1993; Stacker et al., 1993). The c-MET protooncogene encodes the tyrosine kinase receptor for HGF (Naldini et al., 1991a, 1991b; Bottaro et al., 1991). The expression of this gene has been considered, so far, mainly restricted to epithelial tissues (Prat et al., 1991a; Di Renzo et al., 1991). We recently identified in the c-MET promoter, among other consensus sequences for transcription factors, a GATA consensus motif (Gambarrotta et al., 1994). The GATA-I transcription factor is the first characterized member of a multigene family considered to be of major importance in the establishment and maintenance of the erythroid phenotype (Martin et al., 1989). In this work, we demonstrate that the HGF receptor is indeed expressed in the adult by hemopoietic progenitors, as well as in the embryo by erythroblast ancestors (megaloblasts). We also show that HGF, traditionally regarded as a non-hemopoietic growth factor, is a potent stimulator of the proliferation and differentiation of the erythroid lineage. This action is lineage specific because it does not affect either granulo-monocytic or megakaryocytic lineage precursors. Several lines of evidence suggest that HGF action on hemopoietic cells is direct. (a) In the adult, HGF receptor is expressed by a fraction of CD34+ hemopoietic progenitors. (b) In the embryo, HGF receptor mRNA is expressed by primordial erythrocytes (megaloblasts), both in peripheral blood and in hemopoietic liver. (c) The HGF and the SCF receptors are coexpressed in a subpopulation of progenitors, in agreement with the synergistic effect of the two ligands. (d) HGF stimulates only erythroid and multipotent progenitors. Granulo-monocytic colony formation would be expected in the case of an HGF-induced secretion of cytokines (e.g., IL-3 or GM-CSF; Gasson, 1991; Miyajima et al., 1993). However, the direct action of HGF on hemopoietic progenitors does not exclude, in principle, a possible additional indirect effect in vivo mediated by cells of the bone marrow stroma responsive to the growth factor. Notably, endothelial cells express the HGF receptor and respond to HGF (Bussolino et al., 1992; Grant et al., 1993).

The HGF receptor expression in both endothelial and erythroid cells consistent with their common ontogenetic origin, both lineages deriving from the same ancestors in yolk-sac blood islands (see Gilbert, 1988). The HGF receptor mRNA has actually been found in the hemopoietic tissue of extra-embryonal mesoderm (Simeone et al., manuscript in preparation).

Erythropoiesis is a complex process in which a specific genetic program is primed (commitment) and executed (maturation). Although much is known about maturation, most of the molecular events occurring during the commitment phase are still obscure (for a review see Takeshita and Benz, 1991). Growth and differentiation of erythroid precursor are regulated by humoral factors and by largely uncharacterized cell-cell interactions with bone marrow stroma, the so-called hemopoietic microenvironment (Metcalf, 1987). Erythropoietin has long been considered the major factor required for erythropoiesis (Koury and Bondurant, 1990), other factors being far less specific (IL-3, GM-CSF, TGF-β; Gasson, 1991; Miyajima et al., 1993; Sporn and Roberts, 1992). HGF represents a novel example of a humoral factor specifically active on erythropoiesis.

Table I. Expression of HGF Receptor (HGF-R) in Human Hemopoietic Progenitors

Phenotype	Percent of Positive Cells
Unfractionated bone marrow	0.6 ± 0.1
HGF-R+/CD34+	0.3 ± 0.05
HGF-R+/CD34−	0.3 ± 0.1
BFU-E-derived colonies	0.4 ± 0.1
BFU-E-derived colonies	0.2 ± 0.1
Figure 6. In situ analysis of c-MET (HGF receptor gene) expression in 10.5-dpc mouse embryos. (a) Toluidine blue-stained sagittal section showing the branchial arches (ba) and the heart ventricle (hv) containing circulating megaloblastic cells (mb). (b) Toluidine blue-stained sagittal section of the hepato/biliary primordium (hb) adjacent to the heart ventricle (hv), including nests of megaloblastic hemopoietic cells (mb). (a'-b') Dark field of the same section shown in a and b, hybridized with the c-MET antisense probe. Both circulating megaloblasts and hemopoietic nests in the liver express a high level of HGF receptor mRNA. In the hepato/biliary primordium, the epithelial cells are also positive. (c) High magnification of a sagittal section through the embryonic aorta. HGF receptor mRNA is expressed only in the megaloblastic cells filling the lumen.
We observed a potent synergism between HGF and SCF. In the presence of both factors, multipotent colonies were significantly increased, compared to colonies grown in the presence of HGF alone, while erythroid colonies were notably decreased. This observation indicates that the combination of the two factors preferentially recruits early multipotent progenitors rather than erythroid precursors. SCF is a known stimulator of early hemopoietic progenitors (Williams and Lyman, 1992). HGF seems to affect hemopoietic cells in a window of differentiation, including the transition from multipotent progenitors to committed erythroid precursors. In our experimental conditions, HGF was not synergistic with known cytokines active on hemopoietic precursors, such as GM-CSF and IL-3. This observation, obtained in the human hemopoietic system, does not confirm a previous report of synergism among HGF, IL-3, and GM-CSF in promoting the growth of uncharacterized colonies from unfractionated murine bone marrow (Kmiecik et al., 1992). This discrepancy may be explained by species differences. Alternatively, since the mouse experiments were performed on total bone marrow cell suspensions (including lymphocytes and monocyte-macrophages), the HGF effect could have been indirect, mediated by production of hemopoietic cytokines by accessory cells.

The potent synergism between HGF and SCF gives interesting clues. (a) The HGF and SCF receptors are expressed in numerous and partially overlapping sets of target tissues, including epithelia, melanocytes, and hemopoietic cells (Kan et al., 1991; Rubin et al., 1991; Halaban et al., 1992; Matsumoto et al., 1991; Brizzi et al., 1991). (b) The HGF and SCF receptors are tyrosine kinases that transduce extracellular signals via complementary pathways. The cyto-
plasmic domain of the HGF receptor contains a multifunctional docking site that interacts with phospholipase-Cγ, pp60src, the GRB-2/Sos complex and, less efficiently, with PI3 kinase (Graziani et al., 1991; Ponzetto et al., 1994). The SCF receptor, on the other hand, binds very efficiently PI3 kinase when the interaction with other transducers is weak (Lev et al., 1991; Rottapel et al., 1991). (c) The two ligands, HGF and SCF, are associated to the cell surface: the SCF precursor is a transmembrane protein (Flanagan et al., 1991; Huang et al., 1992) and HGF is bound to cell surface heparan sulphate glycosaminoglycans (Naldini et al., 1992a). Both factors may thus play a role in the juxtacrine interactions, occurring in the hemopoietic microenvironment.

HGF is a paracrine growth factor that governs mesenchymal–epithelial interactions. It is produced by nonparenchymal cells of the liver, kidney, and lung, while parenchymal (epithelial) cells in these organs express high levels of HGF receptor (Noji et al., 1990). A similar expression pattern is found during development of epithelial organs, where the factor is secreted by mesenchymal cells and the receptor is expressed by adjacent epithelial cells (Sonnenberg et al., 1993). We now suggest that HGF is a paracrine mediator of stromal–hemopoietic cell interactions both during embryogenesis and adult life. This factor may, therefore, be one of the long-sought molecules mediating developmental signals between microenvironment and hemopoietic progenitors.

We thank Dr. C. Ponzetto for the mouse c-MET probe, Dr. G. Gaudino for the HGF probe, Dr. V. Broudy for kindly providing the anti-Kit antibody, Dr. M. Pratt for the anti-HGF antibody, and Dr. A. Bacigalupo and Dr. M. Geuna for performing the initial flow cytometry experiments.

This work was supported by grants from the Ministero della Sanita VI Progetto AIDS, the Associazione Italiana Ricerche sul Cancro (AIRC), the Italian National Research Council (CNR-ACRO) to P. M. Comoglio, and by grants from AIRC and CNR-ACRO to G. P. Bagnara. E. Cottone is an AIRC fellow.

Received for publication 7 April 1994 and in revised form 18 August 1994.

References

Aprilekova, O., K. Pajusola, J. Partanen, E. Armstrong, R. Altaito, S. K. Bailey, J. McMahon, J. Wasmuth, K. Huebner, and K. Altaito. 1992. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. *Cancer Res.* 52:746-748.

Bagnara, G. P., G. Zauli, L. Vitale, P. Rosito, V. Vecchi, G. Paolucci, G. C. Bagnara, D. P. Bottaro, J. S. Rnhin, D. L. Faletto, A. M. L. Chan, T. E. Kmiecick, E. Bruno, J. E. Bran&, E. F. Srour, and R. A. Briddell. 1991. V. C. Broudy, E. Bottaro, D. P., J. McMahon, J. Wasmuth, K. Huebner, and K. Alitalo. 1992. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. *Cancer Res.* 52:746-748.

Bosch, P., T. J. D. J. M. H. J. L. Kinsella, P. J. Polverini, and E. M. Rosen. 1993. Scatter factor induces hepatocyte growth factor/scatter factor signal transduction in normal and neoplastic human tissue. *J. Biol. Chem.* 26:1008-1014.

Bottaro, D. P., J. S. Rubin, D. L. Faletto, A. M. L. Chan, T. E. Kmiecick, G. F. Vande Woude, and S. A. Aaronson. 1991. Identification of the hepatocyte growth factor receptor as the c-met protooncogene. *Science (Wash. DC).* 251:802-804.

Bridell, R. A., V. C. Broudy, E. Bruno, J. E. Brandt, E. F. Sour, and R. Hoffinan. 1992. Further phenotypic characterization of human hemopoi-

etogenic progenitor cells using a monoclonal antibody to the c-kit receptor. *Blood.* 79:3159-3167.

Brizi, M. F., G. C. Avanzi, and L. Pegoraro. 1991. Hemopoietic growth factor receptors. *Int. J. Cell Cloning.* 9:274-300.

Broxmeyer, H. E., G. H. Henage, S. Cooper, C. Ribeiro, V. Greaves, M. Yoder, J. Wagner, S. Vadhan-Raj, L. Benninger, P. Rubinstein et al. 1992. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. *Proc. Natl. Acad. Sci. USA.* 89:4109-4113.

Bruns, W. T., B. E. R. M. A. K. M. Yoder, W. White, C. Cook, and G. Moellmann. 1992. Met and hepatocyte growth factor signal transduction in normal and neoplastic human tissue. *J. Biol. Chem.* 266:20287-20290.

Graziani, A., D. Gramaglia, L. C. Canzler, and P. M. Comoglio. 1991. The tyrosine phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. *J. Biol. Chem.* 266:20287-20290.
and M. Stoker. 1990. Epithelial scatter factor and development of the chick embryonic axis. Development (Camb.). 110:1271–1284.

Stoker, M., E. Gherardi, M. Perryman, and J. Gray. 1987. Scatter Factor is a fibroblast-derived modulator of epithelial cell mobility. Nature (Lond.). 327:239–242.

Takeshita, K., and E. J. Benz. 1991. Gene expression during erythropoiesis. Int. J. Cell Cloning. 9:109–122.

Tamagnone, L., J. Partanen, E. Armstrong, J. Lasota, K. Ohgami, T. Tazukoki, S. LaForgia, K. Webster, and K. Alitalo. 1993. The human ryk cDNA sequence predicts a protein containing two putative transmembrane segments and a tyrosine kinase catalytic domain. Oncogene. 8:2009–2014.

Theiler, K. 1989. The House Mouse. Atlas of Embryonic Development. Springer-Verlag, Zurich. 321 pp.

Vainchenker, W., J. Bouquet, J. Guichard, and J. Breton-Gorius. 1979. Megakaryocyte colony formation from human bone marrow precursors. Blood. 59:940–945.

Weidner, K. M., J. Behrens, J. Vandekerckhove, and W. Birchmeier. 1990. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111:2097–2108.

Weidner, K. M., N. Arakaki, J. Vandekerckhove, S. Weingart, G. Hartmann, H. Rieder, C. Fonatsch, H. Tsubouchi, T. Hishida, Y. Daikuhara, and W. Bircheim. 1991. Evidence for the identity of human scatter factor and hepatocyte growth factor. Proc. Natl. Acad. Sci. USA. 88:7001–7005.

Wilkinson, D. G., and J. Green. 1990. In situ hybridization and threedimensional reconstruction of serial sections. In Postimplantation Mammalian Embryos: A Practical Approach. A. J. Copp and D. L. Cockroft, editors. IRL Press, Oxford. pp. 155–171.

Wilkinson, D. G. 1992. In Situ hybridization. A Practical Approach. IRL Press, Oxford.

Williams, D. E., and S. D. Lyman. 1992. Characterization of the gene-product of the Steel locus. Prog. Growth Factor Res. 3:235–242.

Yee, K., T. R. Bishop, C. Mather, and L. I. Zon. 1993. Isolation of a novel receptor tyrosine kinase cDNA expressed by developing erythroid progenitors. Blood. 82:1335–1343.

Zarnegar, R., M. C. De Frances, D. Kost, P. Lindroos, and G. K. Michalopoulos. 1991. Expression of hepatocyte growth factor mRNA in regenerating rat liver after partial hepatectomy. Biomed. Biophys. Res. Commun. 177:559–565.