The deprotonated dibenzoylethane (DBM) molecule is known to react with many metal ions to form chelate complexes. The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with $U_{eq}(H) = 1.2U_{eq}(C)$. Owing to poor agreement, the (1 0 0) reflection was omitted from the final cycles of refinement.

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with $U_{eq}(H) = 1.2U_{eq}(C)$. Owing to poor agreement, the (1 0 0) reflection was omitted from the final cycles of refinement.

Comment

The deprotonated dibenzoylethane (DBM) molecule is known to react with many metal ions to form chelate complexes.
The molecular structure is shown in the figure (70% displacement ellipsoids) and shows the tin atom to be coordinated by four oxygen atoms, derived from two chelating ligands, as well as benzyl-C and chloride atoms. The benzyl-C and chloride atoms are mutually cis and trans to the Cl1 atom. The remaining Sn—O bond lengths are experimentally distinct with the shortest Sn—O1 bond [2.071(2) Å] having the O1 atom trans to the benzyl-C atom. The longest Sn—O4 bond [2.122(2) Å] sees the O4 atom trans to the Cl1 atom. The remaining Sn—O2 [2.108(2) Å] and Sn—O3 [2.102(2) Å] bonds are experimentally equivalent. These systematic variations follow the expected trends [11]. There is evidence that the disparity in the Sn—O bond lengths is due to the presence of a benzylidene(benzoylmethane)chloridoditin compound as the predominant product, where one chlorine and a benzyl group of the organotin precursor have been substituted by two DBM molecules.

The molecular structure is shown in the figure (70% displacement ellipsoids) and shows the tin atom to be coordinated by four oxygen atoms, derived from two chelating DBM anions, as well as benzyl-C and chloride atoms. The benzyl-C and chloride atoms are mutually cis and trans to the Cl1 atom. The remaining Sn—O bond lengths are experimentally distinct with the shortest Sn—O1 bond [2.071(2) Å] having the O1 atom trans to the benzyl-C atom. The longest Sn—O4 bond [2.122(2) Å] sees the O4 atom trans to the Cl1 atom. The remaining Sn—O2 [2.108(2) Å] and Sn—O3 [2.102(2) Å] bonds are experimentally equivalent. These systematic variations follow the expected trends [11]. There is evidence that the disparity in the Sn—O bond lengths is due to the presence of a benzylidene(benzoylmethane)chloridoditin compound as the predominant product, where one chlorine and a benzyl group of the organotin precursor have been substituted by two DBM molecules.

The molecular structure is shown in the figure (70% displacement ellipsoids) and shows the tin atom to be coordinated by four oxygen atoms, derived from two chelating DBM anions, as well as benzyl-C and chloride atoms. The benzyl-C and chloride atoms are mutually cis and trans to the Cl1 atom. The remaining Sn—O bond lengths are experimentally distinct with the shortest Sn—O1 bond [2.071(2) Å] having the O1 atom trans to the benzyl-C atom. The longest Sn—O4 bond [2.122(2) Å] sees the O4 atom trans to the Cl1 atom. The remaining Sn—O2 [2.108(2) Å] and Sn—O3 [2.102(2) Å] bonds are experimentally equivalent. These systematic variations follow the expected trends [11]. There is evidence that the disparity in the Sn—O bond lengths is due to the presence of a benzylidene(benzoylmethane)chloridoditin compound as the predominant product, where one chlorine and a benzyl group of the organotin precursor have been substituted by two DBM molecules.

The molecular structure is shown in the figure (70% displacement ellipsoids) and shows the tin atom to be coordinated by four oxygen atoms, derived from two chelating DBM anions, as well as benzyl-C and chloride atoms. The benzyl-C and chloride atoms are mutually cis and trans to the Cl1 atom. The remaining Sn—O bond lengths are experimentally distinct with the shortest Sn—O1 bond [2.071(2) Å] having the O1 atom trans to the benzyl-C atom. The longest Sn—O4 bond [2.122(2) Å] sees the O4 atom trans to the Cl1 atom. The remaining Sn—O2 [2.108(2) Å] and Sn—O3 [2.102(2) Å] bonds are experimentally equivalent. These systematic variations follow the expected trends [11]. There is evidence that the disparity in the Sn—O bond lengths is due to the presence of a benzylidene(benzoylmethane)chloridoditin compound as the predominant product, where one chlorine and a benzyl group of the organotin precursor have been substituted by two DBM molecules.

The molecular structure is shown in the figure (70% displacement ellipsoids) and shows the tin atom to be coordinated by four oxygen atoms, derived from two chelating DBM anions, as well as benzyl-C and chloride atoms. The benzyl-C and chloride atoms are mutually cis and trans to the Cl1 atom. The remaining Sn—O bond lengths are experimentally distinct with the shortest Sn—O1 bond [2.071(2) Å] having the O1 atom trans to the benzyl-C atom. The longest Sn—O4 bond [2.122(2) Å] sees the O4 atom trans to the Cl1 atom. The remaining Sn—O2 [2.108(2) Å] and Sn—O3 [2.102(2) Å] bonds are experimentally equivalent. These systematic variations follow the expected trends [11]. There is evidence that the disparity in the Sn—O bond lengths is due to the presence of a benzylidene(benzoylmethane)chloridoditin compound as the predominant product, where one chlorine and a benzyl group of the organotin precursor have been substituted by two DBM molecules.
The six-membered chelate rings are non-planar and are best described as having envelope conformations. Thus, for the O1-DBM ligand, the tin atom lies 0.547(3) Å out of the plane defined by the remaining five atoms of the six-membered ring, which have a r.m.s. deviation of 0.035 Å; the comparable values for the O3-DBM ligand are 0.343(4) and 0.030 Å, respectively. The dihedral angle between the planar regions of the chelate rings is 72.30(8)°, indicating an almost orthogonal relationship. Finally, the dihedral angles between the planar region of the O1-chelate ring and the pendant C4- and C10-phenyl rings are 26.73(16) and 31.74(14)°, respectively, and the dihedral angle between the outer rings is 30.51(14)°. The equivalent angles for the O3-chelate and the C19- and C25-rings are 31.24(9), 27.44(16) and 27.44(16)°, respectively.

In the crystal, supramolecular chains along the a axis are sustained by phenyl-C—H⋯O1 [C27—H27⋯O1; H27⋯O1 = 2.51 Å, C27⋯O1 = 3.428(4) Å with angle at H27 = 169° for symmetry operation (i) 1−x, −y, −z] and benzyl-phenyl-C—H⋯π(phenyl) [C36—H36⋯Cg(C10—C15); H36⋯Cg(C10—C15) = 2.63 Å, C36⋯Cg(C10—C15) = 3.503(4) Å and angle at H36 = 157°] interactions. The chains assemble into a three-dimensional architecture with no directional interactions between them.

According to a search of the Cambridge Structural Database [12], there are no examples of mixed organo/halotin(acetylacetonate)$_2$ structures related to the title structure in the crystallographic literature. However, there is a related diorganotin(III)$_2$ molecule, e.g. for $R=n$-Bu [9]. In the same way, there is also a related Sn(DBM)$_2$Cl$_2$ molecule [13]. In the former, the n-butyl groups are trans and in the latter, the chloride atoms are cis.

Acknowledgements: Sunway University is thanked for supporting studies in organotin chemistry.

References

1. Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA (2008).
2. Sheldrick, G. M.: SADABS. University of Göttingen, Germany (1996).
3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
5. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
6. Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. di- and tribenzyltin chlorides. J. Am. Chem. Soc. 83 (1961) 538–541.
7. Shimomatsu, T.; Tabushi, M.; Tarumoto, T.: Dibenzoylmethane as a chelating reagent in solvent extraction and spectroscopic determination. Bull. Inst. Chem. Res. Kyoto Univ. 40 (1963) 388–399.
8. Bancroft, G. M.; Davies, B. W.; Payne, N. C.; Sham, T. K.: Preparation and spectroscopic studies of five-co-ordinate β-diketonatotri(organo)tin compounds. Crystal structure of (1,3-diphenylpropane-1,3-dionato)-triphenyltin(IV). J. Chem. Soc. Dalton Trans. (1975) 973–978.
9. Poli, G.; Cheer, C. J.; Nelson, W. H.: The crystal and molecular structure of bis(1,3-diphenylpropane-1,3-dionato)-di-n-butyltin(IV). J. Organomet. Chem. 306 (1986) 347–354.
10. Thy, C. K.; Lo, K. M.; Ng, S. W.: Dichloridobis(1,3-phenylpropane-1,3-dionato-κ2O,O)tin(IV) toluene hemisolvate. Acta Crystallogr. E66 (2010) m992.
11. Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of chlorido-4-fluorobenzylbis[2-methylquinolin-8-olato-κ2N,W,O]tin(IV), C$_{27}$H$_{29}$ClF$_{2}$O$_4$Sn. Z. Kristallogr. NCS 234 (2019) 823–825.
12. Groom, C. R.; Allen, F. H.: The cambridge structural database in retrospect and prospect. Angew. Chem. Int. Ed. 53 (2014) 662–671.
13. Searle, D.; Smith, P. J.; Bell, N. A.; March, L. A.; Nowell, I. W.; Donaldson, J. D.: Structural, infrared and Mössbauer studies of octahedral cis-dichlorobis(diketonate)tin(IV) complexes having anti-tumour activity. J. Organomet. Chem. 162 (1989) 143–149.