PROTOCOL DE ÎN.Radăcinare EX-VITRO A PORTALTOILOR DE FISTIC ÎN CONDIȚII FOTOMIXTROFICE ȘI FOTOAUTOTROFICE

A COMPREHENSIVE DESCRIPTION OF EX-VITRO ROOTING OF PISTACHIO ROOTSTOCKS GROWN IN PHOTOMIXOTROPHIC AND PHOTOAUTOTROPHIC CONDITION

Mohammad Javad Mahmoudi Meimand, Mohammad Hossein Shamshir, Khalil Malekzadeh, Mohammad Reza Dehghani

1,2 Department of Horticulture, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
3,4 Department of Genetics and Crop production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

*corresponding author: Mmeimand@ut.ac.ir

Abstract

As a basic principle, ex-vitro rhizogenesis increases the micropropagation efficiency of Micro propagation in any plant from both biological and economic viewpoints. In the current study, we surveyed the effects of number of air exchanges along with sucrose concentration on in-vitro rooting of two pistachio rootstocks consisting of UCB1 and Qazvini versus ex-vitro rooting. Based on our findings for the UCB1 rootstock, microshoot ex-vitro rooting reached the highest percentage (63.70%) after six weeks' treatment with indole butyric acid (IBA) (5000 ppm) and free naphthalene acetic acid (NAA), while for Qazvini rootstock treated with NAA (6000 ppm) along with IBA (5000 ppm), rooting achieved 35.06%. Photomixotrophic resulted from decreasing sucrose concentration from 30 to 15 (g L⁻¹) in corporation with ventilation condition increased UCB1 rooting (67.89%) as well as plant survival (58.34%). For Qazvini rootstock, maximum sucrose concentration (30 g L⁻¹) improved rooting parameters. For in-vitro rooting experiment, rooting percentage of UCB1 plantlets as well as the main and lateral produced roots were higher in media supplemented with (1 mg l⁻¹) IBA, free NAA, and BA. Regarding Qazvini rootstock, the highest in-vitro rooting percentage (43.75%) and root length were associated with the media supplemented with BA (0.5 mg l⁻¹), IBA (2 mg l⁻¹), and NAA (2 mg l⁻¹). As a result, for both the studied rootstocks, better rooting parameters were observed in the ex-vitro rooted microshoots than in-vitro rooted.

Cuvinte cheie: înrădăcinare ex-vitro, faza de înrădăcinare, micropropagare, fistic.

Keywords: ex-vitro rhizogenesis, rooting phase, micropropagation, pistachio.

1. Introduction

Pistachio (Pistacia vera L.) is the most commercial nut fruit, especially grown in the central parts of Iran. Pistachio is well-adapted to arid and semi-arid regions under dry and saline soil conditions; so, it has been known as a unique tree for regions such as central part of Iran (Mahmoudi and Odivi, 2009). Every method and technique, which could increase propagation rate and new plantlet adoption of fruit trees, can be helpful for pistachios new orchard development. Mass propagation of plant propagules by in-vitro culture techniques is a primary example of commercial usage of plant micropropagation technology (Benmahioul, 2009, 2012). Moreover, the tissue cultural technique for rapid clonal propagation of pistachios has a long history and was first introduced by Barghchi (1982). Despite all the advances in pistachio in vitro culture (Barghchi, 1982, 1985; Bustamante-Garcia, 1984; Martinelli et al., 1988; Abousalim, 1991; Onay et al., 1995; Onay, 1996; Onay 2003 a and b; Benmahioul et al., 2009, 2012 a, b, Tilkat, 2013; Akdemir et al., 2014, Benmahioul, 2015, 2016), previous studies have reported some major problem in rooting phase of pistachio plantlets (Chatibi et al., 1995; Benmahioul et al., 2009). Previous studies have indicated that root initiation of pistachio depends on different auxin types and concentrations. It has already been acknowledged that for root induction of pistachio, intermediate stability form of auxins such as IBA is more effective than higher stability form such as NAA and lower stability form such as Indole-3-acetic acid (IAA)one (Barghchi and Alderson, 1989 and 1996; Parfitt and Almehdı, 1994; Onay, 2004). Also, Tilkat et al. (2013) stated that in vitro rooting of adult Pistachio increased by washing the basal-cut-ends in sterile distilled water and dipping the basal-cut-ends in the IBA hormone. For woody plant species with high phenolic compound, such as pistachio low rooting hormones content as well as cofactors, which can cause many problems for rooting and acclimatizing phase. In such condition, micro shoots can successfully root in the ex-vitro condition (Annapurna and
Rathore, 2010). Why *ex-vitro* rooting? *Ex-vitro* rooting means that rooting phase of plant micropropagation is fulfilled in out-door condition (Benmahioul et al., 2012). It has been well-documented; so, a highly superior rooting system as well as a higher number of roots could be achieved in *ex-vitro* rooted plantlet than *in-vitro* condition (McClelland et al., 1990). On the other hand, *ex-vitro* rooted plantlets have been more survived in the out-door condition than *in-vitro* rooted ones (Saaju, 2005; Annapurna and Rathore, 2010; Liu et al., 2010; Huang et al., 2011; Benmahioul et al., 2012). Based on these studies, *ex-vitro* rooting technique has been successfully used for various plant species (Kim et al., 1998; Bhatia et al., 2002; Romano et al., 2002; Martin, 2003a and b). As a basic principle, it has been demonstrated that *ex-vitro* rooting could increase the plants micropropagation efficiency from both biological and economic viewpoints (Borkowska, 2001). Benmahioul et al. (2012) introduced *ex-vitro* rooting as an efficient method for pistachio propagation and reported that maximum of *ex-vitro* rooting had been obtained after shoot explants had been treated with (2% IBA) in *Pistacia vera* L. therefore, the current study was conducted to optimize the efficient micropropagation method for *Pistacia vera* rootstocks. We especially focused on the effects of ventilation level and sucrose concentration on *ex-vitro* rooting of the developed micro shoots under photoautotrophic condition. Photoautotrophic tissue culture has been defined as micropropagation without sugar source in which the growth of cultures is completely dependent upon photosynthesis and inorganic nutrient uptake (Hassankhah et al., 2014). Cui et al. (2000) indicated that Increasing number of air exchanges had caused significant *in-vitro* plant shoot and root growth versus no air exchanges; so, there was no need to maintain high sugar concentration in the culture medium under proper culture ventilation. Consequently, unventilated condition could cause some physiological disorders, including inability to photosynthesize, open stomata, and lack of a cuticle layer (Kozai et al., 2002). Ventilation can create better conditions for plantlets growth by increasing leafy wax layer, stomatal functions, as well as acclimatization to out-door condition (Sutter, 1988; Shackel et al., 1990, Zobayed et al., 2000). Furthermore, Cui et al (2000) reported that *in-vitro* *Rehmannia glutinosa* plantlets, root weights had increased by adding sucrose (30 g L⁻¹) to the media, while reducing shoot length. They also stated that *ex-vitro* survival of the plantlets had not been influenced by media sucrose concentration. Similar results have been reported by Reuther et al. (1991). For example, Hassankhah et al. (2014) proved that in addition to ventilation treatment, different levels of sucrose had significant effects on growth characteristics of walnut micro shoots. Their findings demonstrated that percentage of rooted plants and root length could increase with raising sucrose level. Hence, this study evaluated the effects of photoautotrophic condition on *ex-vitro* rooting of pistachio (*Qazvini* and UCB1 rootstocks).

2. Material and methods

2.1. Plant Material, Vessels and Culture Media

For the *in-vitro* proliferation step, UCB1 and Qazvini nodal stem segments were used as explants. For multiple shoot induction, explants, especially rootstocks, which had been already optimized and supplemented with BA (1.5 mg L⁻¹), IBA (0.1 mg L⁻¹), 0, 10, 15 and 30 (g L⁻¹) of sucrose and solidified with Agar (7 g L⁻¹) were sub-cultured in the MS medium (Murashige and Skoog, 1962) for 5 weeks. pH of the medium was adjusted to 5.7 before autoclaving (for 20 min at 121 °C). Moreover, the effects of ventilation, filter container vessels with a 50 (µm) microporous polypropylene membrane (Paradise Co), full ventilation (FV), half ventilation capacity (HV), and without aid ventilation (NV), with changing filter mode were compared. The number of air exchanges was estimated near 0 (control), 22 per hour for (HV) and 44 for full ventilation.

2.2. In-Vitro Rooting

In the *in-vitro* root induction phase, regenerated shoots (2-3 cm) were first excised and transferred onto rooting media with the same vegetative parameters (length, diameter, and leaf number). The root induction was then evaluated by using 1/2 MS medium supplemented with sucrose (30 g L⁻¹) and solidified with agar (7 g L⁻¹) with different concentration of NAA (0, 1, 2 mg L⁻¹), IBA (0, 1, 2 mg L⁻¹), and BA (0, 0.25, 0.5 mg L⁻¹). Later, samples were kept in the dark at 24±1°C for one week (Driver and Kuniyuki, 1984). After six weeks, the root percentage, root length, and number of main and lateral roots were examined under randomized block factorial design.

2.3. Ex-Vitro Rooting

The *ex-vitro* rhizogenesis included two different experiments, first, determining the best hormone concentration; second, surveying the effects of ventilation and sucrose on *ex-vitro* rooting. For *ex-vitro* rooting, the remnants of the culture medium in basal part of plantlets were rinsed off with water. Furthermore, for applying treatments, the basal ends of micro shoots were dipped in an already prepared rooting solution for 20 seconds. Different concentration of NAA (0, 3000, and 6000 ppm) and IBA (0, 2500, and 5000 ppm) were tested on *ex-vitro* rooting of pistachio rootstocks. After that, the micro shoots were inserted into Plastic mugs containing a peat-perlite-vermiculite (80–15– 5%) mixture (Benmahioul et
al., 2012) and covered by plastic caps and maintained in a growth chamber. Six weeks later, survival percentage of ex-vitro rooted microshoots, rooting percentage, root length, and total number of main and lateral roots were assayed. The best treatments were considered for the next experiment. In the second rooting experiment, we also assessed the influence of different ventilation levels and sucrose concentrations during proliferation phase on ex-vitro rooting of micro shoots. To evaluate the effect of natural ventilated vessels, including full ventilation (FV), half ventilation (HV), without aid ventilation (NV), and different sucrose concentrations (0, 10, 15, and 30 g L−1) on pistachio varieties (Qazvini and 'UCB1 plantlets rooting ex-vitro), micro shoots were treated with two rooting protocols. UCB1 ex-vitro microshoots were treated with NAA (0 ppm) and IBA (5000 ppm), while Qazvini ex-vitro microshoots were treated with NAA (6000 ppm) and IBA (5000 ppm). The experiments were done based on a factorial design with four replicates. Data were also analyzed with the aid of analysis of variance (ANOVA) and means were compared using the Duncan’s test (P≤ 0.05). It should be also noted that before comparing the media, the resulting percentages were transformed into angular values. The analysis was performed using SAS 9.

3. Results

3.1. Ex-vitro rooting

The Effects of Different Hormones Type and concentration

Under ex-vitro conditions, the first adventitious roots of UCB1 and Qazvini microshoots appeared after nearly three weeks and four weeks, respectively. In the first ex-vitro rooting experiment, microshoots of each pistachio (UCB1 and Qazvini rootstock) issued from no ventilated, supplemented proliferation medium with 30 (g L−1) responded differently to rooting treatment as shown by their rooting percentage, root length, and main as well as lateral number of roots (Table 1). For UCB1 rootstock, microshoot ex-vitro rooting percentage reached the highest level (63.7 %) after six weeks treatment with NAA (0 ppm) and IBA (5000 ppm) (T3) followed by T6 (NAA (3000 ppm) and IBA (5000 ppm)). Moreover, it was observed that by decreasing IBA dosage up to (2500 ppm), significantly fewer plants rooted there was seen fewer rooted plants (40.03%). NAA also showed negative effect on UCB1 rootstock, its microshoot ex-vitro rooting so that fewer rooted plants were seen by increasing NAA dosage from 0 to 6000 (ppm). Unlike UCB1, the Qazvini rootstock and its microshoot ex-vitro rooting were affected positively by NAA so that the highest percentage of rooted plants (35.06%) was associated with increasing NAA dosage up to 6000 ppm incorporated with IBA (5000 ppm) and there seen no rooted microshoot dipped into NAA. Additionally, according to the obtained results, for UCB1 rootstock, the best treatments on microshoots, with respect to the main and lateral root production as well as root length (cm) was related to NAA (0 ppm) and IBA (5000 ppm) (T3). On the other hand, for Qazvini rootstock, T9 (NAA (6000 ppm) and IBA (5000 ppm) was the best treatment, which produced roots twice as great as T6 (1.5; Table 1, Fig. 1).

Ventilation and Sucrose Concentration Effects

Based on findings, in the second rooting experiment, all rooting parameters decreased in photoautotrophic (sucrose elimination) condition (Table 2). There were also variable results related to rooting parameters in response to sucrose concentration in two different rootstocks. Results showed that for UCB1 rootstock, percentage of rooted plants and plants survival increased in photomixotrophic condition by decreasing sucrose concentration up to 15 (g L−1). The highest main and lateral root production as well as root length were also seen in the maximum sucrose concentration (30 g L−1) (Table 2). On the contrary, Sucrose concentration didn’t have any significant effects on Qazvini rootstock rooting and plant survival percentage; however, rooting percentage, root length, and plant survival raised in the media containing the maximum sucrose concentration (30 g/L-1) compared to the other media (0, 10 and 15 g/l) (Table 2). Moreover, the effect of ventilation levels on the rooting parameters in the ex-vitro condition was smaller than sucrose; however, the ventilated treatments showed higher rooting percentage, root length, root number, and plant survival rate compared with the control. In the ex-vitro rooting parameters, there was also no significant difference between two different ventilation levels (half and full ventilation) (Table 3). For Qazvini rootstock, the percentage of rooted plants increased with higher ventilation level (P≥ 0.05). The interaction effect of ventilation and sucrose on ex-vitro rooting of different pistachio rootstocks is also reported in (Table 4). Further, different treatments showed significantly varied average rooting percentages (P≥ 0.05). The mean rooting percentage was the highest (75%) for full ventilation and media supplemented with (15 g L−1) sucrose. The mean survival plant was also the highest (69.99%) in full ventilation and media supplemented with (10 g L−1) sucrose (Table 4). In addition, results of the present study showed that the ex-vitro rooting of pistachio in Qazvini rootstock was the same in full ventilated supplemented with (15 and 30 g L−1) sucrose as well as half ventilated supplemented with (30 g L−1) sucrose (Table 4). Besides, plant survival in Qazvini rootstock was not affect by treatments (Table 4).
3.2. In-Vitro Rooting

The in-vitro rooting percentage, main and lateral produced root of UCB1 plantlets were higher in media supplemented with (1 mg l⁻¹) IBA, free NAA, and BA (Table 5). The mean rooting percentage was also at the highest level (66.7%) for media supplemented with (1 mg l⁻¹) IBA, free NAA, and BA. Moreover, the root length of UCB1 plantlets was higher with (1 mg l⁻¹) IBA, (1 mg l⁻¹) NAA, and free BA media; so, we can claim that NAA increased root length in the UCB1 plantlets (Table 5). Rooted plantlet on media with (2 mg l⁻¹) IBA, (2 mg l⁻¹) NAA, and free BA further showed more plant survival. On the other side, For Qazvini root-stock, the highest rooting percentage (43.75%) and root length (1.12 Cm) were associated with the media supplemented with BA (0.5 mg/ l⁻¹), IBA (2 mg/ l⁻¹) and NAA (2 mg/ l⁻¹). Main root number was higher for treatment with (0.25 mg l⁻¹) BA, (2 mg l⁻¹) and IBA (2 mg l⁻¹) NAA; however, the number of lateral roots was more for the media supplemented with BA (0.5 mg l⁻¹), IBA (2 mg l⁻¹), and NAA (2 mg l⁻¹) (Table 5, Fig. 2). Therefore, we can declare that higher BA concentrations resulted in fewer main roots.

4. Discussions

Rooting percentage, survival rates of plantlets, as well as other rooting-related factors have been introduced as the main secondary plant growth parameters (Benmahioul et al., 2012). Ex-vitro rooting has been applied to improve rooting parameters, facilitate production method, and reduce micropropagation costs (McClelland et al., 1990; Borkowska, 2001; Annapurna and Rathore, 2010; Benmahioul et al., 2012). One of the main benefits of ex-vitro rooting is that there is no rooting stage under sterile conditions and rooting and compatibility happen simultaneously (Benmahioul et al., 2012). It has also been well-acknowledged that for woody plant species with low endogenous rooting hormones and many other problems for rooting and acclimatizing, micro shoots can successfully root in the ex-vitro condition (Annapurna and Rathore, 2010). Results of the current study on pistachio rootstocks also confirmed those found by Annapurna and Rathore (2010). The ex-vitro rooting technique has been successfully employed for various plant species by several researchers (Kim et al., 1998; Bhatia et al., 2002; Romano et al., 2002; Martin, 2003). The present research work also showed that treatment with 5000 ppm IBA yielded the best results in terms of ex-vitro rooting percentage, root length, number of main and lateral roots, as well as plant survival in UCB1 rootstock. Similar findings have been reported regarding the positive effects of IBA on ex-vitro root induction among other plant species (Yu and Reed, 1995; Kim et al., 1998; Xu et al., 2008). In line with this study's results, it has been demonstrated that for root induction of pistachio, intermediate stability form of auxins such as (IBA) was more effective than other auxin forms (Barghchi and Alderson, 1989, 1996; Parfitt and Almehdi, 1994; Onay, 2004). In a similar work, Tilkat et al. (2013) revealed that in-vitro rooting of adult pistachio had increased by dipping of the basal-cut-ends in the IBA hormone. However, we noticed that the highest microshoot ex-vitro rooting percentage (35.06%) of Qazvini rootstock was associated to increasing NAA dosage up to (6000 ppm), incorporated with IBA (5000 ppm). Similar result has been reported by Pruski et al. (2000), who declared that the top ex-vitro rooting percentage of Prunus virginiana and Prunus pensylvanica was obtained by NAA in corporation with IBA. Furthermore, unlike the present study's result for Qazvini rootstock, Bhatia et al. (2002) proved that the use of two or more auxins types could reduce the rooting percentage. In a similar study on Pistacia vera L. Benmahioul et al. (2012) verified that maximum of ex-vitro rooting had been obtained after treating shoot explants with IBA 2%. In the current experiment, the percentage of Qazvini microshoot rooting was not influenced by media sucrose concentration in proliferation phase; however, increasing sucrose concentration up to (30 g L⁻¹) improved ex-vitro rooting (41.68%) compared with less sucrose dosage. Similar results have been stated by Hassankhah et al (2014) for walnut microshoots indicating that Root length and percentage of rooted plants were higher in the media containing high sucrose dosage. Similar results have been stated by Hassankhah et al. (2014) for walnut microshoots increasing sucrose concentration up to (30 g L⁻¹); however, microshoot rooting was not influenced by media sucrose concentration in proliferation phase; however, by ventilation treatment, rooting percentage, root length, root number, and plant survival rate were higher compared with the control. As a result, we can state that for Qazvini rootstock, the percentage of rooted plants increased with the raising the ventilation level. Reuther et al. (1992) and Hassankhah et al. (2014) reported similar results about ventilation effects on microshoots rooting phase. Additionally, the present study's results are in agreement with Cui et al. (2000), which indicated that Increasing number of air exchanges resulted in a significant root growth. Therefore, ventilation can create better conditions for plantlets growth by increasing leafy wax layer, stomatal functions, as well as acclimatization to out-door condition (Sutter, 1988; Shackel et al., 1990, Zobayed et al., 2000; Cui et al., 2000). Similarly, our results showed increasing acclimatization to out-door condition in ventilated microshoots. We also achieved findings.
completely in agreement with some studies, such as Saiju’s (2005), Annapurna and Rathore (2010), Liu et al. (2010), Huang et al. (2011), and Benmahioul et al. (2012), who proved that more ex-vitro rooted plantlets could have survived in the outdoor condition than in-vitro rooted ones. Pistachio plantlets obtained by ex-vitro rooting have a well-developed root system and better subsequent growth in the future (Benmahioul et al., 2009, 2012). Our results confirmed the finding obtained by Benmahioul et al. (2009) and (2012) stating that plantlets grown in ex-vitro rhizogenesis have better root system, especially more main and lateral root number.

5. Conclusions

In conclusion, the results of this study indicated that although having a small effect, using ventilated vessels could provide better plantlet survival condition than unventilated or common vessels. Moreover, photomixotrophic resulted from decreasing sucrose concentration from 30 to 15 (g L⁻¹) in corporation with ventilation condition increased UCB1 rooting percentage as well as plant survival. For Qazvini rootstock, on the other hand, maximum sucrose concentration (30 g L⁻¹) showed better rooting parameters. Also, for both studied rootstocks, we observed better rooting parameters in the ex-vitro rooted microshoots than in-vitro rooted; so, we propose ex-vitro rooting method for efficient and cost-effective pistachio micropropagation. ted resistance alleles were about 59% for Rvi2 and Rvi8, 36% for Rvi4, 13.5% for Rvi5 and 77% for Rvi6.

Acknowledgements

The authors wish to acknowledge the financial support of Vali-e-Asr University of Rafsanjan, Kerman province, Iran.

References

1. Abousalim A. El Mahboul B. Walali L.D., 1991. La multiplication in-vitro de Pistacia vera L., Rev Res Amelior Prod Agr Milieu Aride. 3, 73–79.
2. Akdemir H. Suzerer V. Onay A. Tilkat E. Ersali Y. Ozden Ciftci Y., 2014. Micropropagation of the pistachio and its rootstocks by temporary immersion system, Plant Cell Tiss Organ Cult. 117, 65–76.
3. Annapurna D. Rathore T.S., 2010. Direct adventitious shoot induction and plant regeneration of Embelia ribes Burm F, Plant Cell Tissue Organ Cult. 101, 269–277.
4. Barghchi M. 1986. In vitro micropropagation of pistachio rootstocks. Proc Inter Plant Prop Soc, 35: 334–337.
5. Barghchi M, 1982. In vitro propagation of Pistacia species. PhD Thesis, Nottingham University.
6. Barghchi M., 1985. In vitro culture of mature commercial varieties of Pistacia vera L., Proc Int Plant Prop Soc. 35, 331-335.
7. Barghchi M. Alderson P.G., 1989. Pistachio (Pistacia vera L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, 5: 68–98. Barghchi M, Alderson PG (1982) In vitro propagation of Pistacia vera L. and commercial varieties of ‘Ohadi’ and “Kalleghochi”, Journal of horticultural science. 60, 423-430.
8. Barghchi M. Alderson P.G., 1996. The control of shoot tip necrosis in Pistacia vera L. in vitro, Plant Growth Regulation. 20, 31-35.
9. Benmahioul B. Kaid-Harche M. Dorion N. Daguin F., 2009. In-vitro embryo germination and proliferation of pistachio (Pistacia vera L.), Sci Hortic. 122(3), 479–483.
10. Benmahioul B. Kaid-Harche M. Dorion N. Daguin F., 2012. Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.), Plant Cell Tiss Organ Cult. 108, 353–358.
11. Benmahioul B. Kaid-Harche M. Daguin F., 2015. Cryopreservation of Pistacia vera embryonic axes, Journal of Forest Science. 61, 182–187.
12. Benmahioul B. Kaid-Harche M. Daguin F., 2016. In vitro regeneration of Pistacia vera L. from nodal explants, Journal of Forest Science. 62, 198–203.
13. Bhatia N.P. Bhatia P. Ashwath N., 2002. Ex-vitro rooting of micropropagated shoots of Stackhousia tryoni, Biol Plant. 45, 441–444.
14. Borkowska B, 2001. Morphological and physiological characteristics of micropropagated strawberry rooted in-vitro or ex-vitro, Sci Hort. 89,195–206.
15. Bustamante-Garcia M.A., 1984. Micropropagation and Rejuvenation of Pistacia species and the mechanism by which light influences root initiation. PhD Thesis, University of California, Davis, USA.
16. Chattibi A. Chouk M.E. Ben Abdallah F. Zemni H. Ghorbel A., 1995. Rooting improvement of Pistacia vera L. cv. Mateur by in-vitro culture of apices and cuttings, Acta Hort. 419, 213–220.
17. Cui Y. Hahn E. Kozai T. Paek K., 2000. Number of Air Exchanges, Sucrose Concentration, Photosynthetic Photon Flux, and Differences in Photoperiod and Dark Period Temperatures Affect Growth of Rehmannia glutinosa Plantlets in Vitro, Plant Cell Tissue Organ Cult. 62, 219-226.

18. Driver J.A. Kuniyuki A.H., 1984. In-vitro propagation of paradox walnut rootstock, HortScience. 19, 506-509.

19. Hassankhah A, Vahdati K. Lotfi M. Mirmasoumi M. Preece J. Assareh M.H., 2014. Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated persian walnut plants, IJHST. 1, 111–120.

20. Huang P.L. Liao L.J. Tsai C.C. Liu Z.H., 2011. Micropropagation of bromeliad Aechmea fasciata via floral organ segments effects on acclimatization on plantlet growth, Plant Cell Tissue Organ Cult. 105, 73–78.

21. Kim M.S. Klopfenstein N.B. Cregg B.M., 1998. In-vitro and ex-vitro rooting of micropropagated shoots using three green ash (Fraxinus pennsylvanica) clones, New For. 16, 43–57.

22. Kozai T. Koyama Y. Watanabe I., 2002. Multiplication of Potato Plantlets in Vitro with Sugar-Free Medium under High Photosynthetic Photon Flux, Acta. Hort. 230,121-128.

23. Liu C. Callow P. Hancock J.F. Song G., 2010. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars, Plant Cell Tissue Organ Cult. 103,137–144.

24. Mahmoudi Meymand M.J. Ghanbari Odivi A., 2013. New approach for cultivation pistachio trees, Pub by nushe publisher. ISBN:978-600-6376-18-8.

25. Martin K.P., 2003a. Rapid axillary bud proliferation and ex-vitro rooting of Eupatorium triplinerve, Biol Plant. 47, 589–591.

26. Martin K.P., 2003b. Rapid in-vitro multiplication and ex-vitro rooting of Rotula aquatica Lour., a rare rheophytic woody medicinal plant, Plant Cell Rep. 21, 415–420.

27. Martinelli A., 1988. Use of in vitro techniques for selection and cloning of different Pistacia species, Acta Hort. 227, 331-333.

28. McClelland M.T. Smith M.A. Carothers Z.B., 1990. The effects of in-vitro and ex-vitro root initiation on subsequent microcutting root quality in three woody plants, Plant Cell Tissue Organ Cult. 23,115–123.

29. Murashige T. Skoog F., 1962. A revised medium for rapid growth and bioassays with tabacco tissue cultures, Physiol Plant. 15, 473–479.

30. Onay A. Jeffree C.E. Yeoman M.M., 1995. Somatic embryogenesis in cultured immature kernels of pistachio, Pistacia vera L., Plant Cell Rep. 15, 192-195.

31. Onay A., 1996. In vitro organogenesis and embryogenesis of Pistachio, Pistacia vera, L. PhD Thesis, University of Edinburgh, UK.

32. Onay A., 2003a. Micropropagation of Pistachio. In Jain S.M. and Ishii K. (eds.), Micropropagation of Woody Trees and Fruits, Kluwer Academic Publishers. 565-588.

33. Onay A. Pirinc V. Isikalan C. Adiyaman F. Tilkat E. Basaran D., 2003b. In vivo and in vitro micrografting of pistachio, Pistacia vera L. Cv. “Siirt”, Turk. J. Biol. 27, 95-100.

34. Onay A. Pirinc V. Yildirim H. Basaran D. 2004. In vitro micrografting of mature pistachio (Pistacia vera var. Siirt), Plant Cell, Tissue and Organ Culture. 77, 215–219.

35. Parfitt D.E. Almehdi A.A., 1994. Use of high CO2 atmosphere and medium modifications for the successful micropropagation of pistachio, Scientia Horticulturae. 56, 312-329.

36. Pruski K.W. Lewis T. Astatkie T. Nowak J., 2000. Micropropagation of Chokecherry and Pincherry cultivars, Plant Cell Tissue Organ Cult. 63, 91–100.

37. Reuther G., 1991. Stimulation of the photoautotrophy of in vitro plants, Acta Horticulturae. 300, 59-75.

38. Romano A. Barros S. Martins-Louca M.A., 2002. Micropropagation of the Mediterranean tree Ceratonia silique, Plant Cell Tissue Organ Cult. 68, 35–41.

39. Saiju H.K. 2005. Tree tissue culture and ex-vitro sand rooting for reforestation. In: Suzuki K, Ishii K, Sakurai S, Sasaki S (eds) Plantation technology in tropical forest science, Springer, Berlin. pp 151–154.

40. Shackel K. Novello V. Sutter E., 1990. Stomatal function and cuticular conductance in whole tissue-cultured apple shoots, J. Am. Soc. Hortic. Sci. 115, 468–472.

41. Sutter E., 1988. Stomatal and cuticular water loss from apple, cherry, and sweetgum plants after removal from in vitro culture. J. Am. Soc. Hortic. Sci. 113, 234–238.

42. Tilkat E. Súzerer V. Akdemir H. Tilkat E.A. Ozden Ciftci Y. Onay A., 2013. A rapid and effective protocol for surface sterilization and in vitro culture initiation of adult male pistachio (Pistacia vera L. cv. “Atlı”), Academia Journal of Scientific Research. 1(8), 134-141.

43. Xu J. Wang Y. Zhang Y. Chai T., 2008. Rapid in-vitro multiplication and ex-vitro rooting of Malus zumi (Matsumura) Rehd, Acta Physiol Plant. 30,129–132.

44. Yu Z.L. Reed B.M., 1995. A micropropagation system for hazelnuts (Coylus species), HortScience. 30,120–123.
Tables and Figures

Fig 1. Acclimatized *ex-vitro* rooted Qazvini and UCB1 rootstocks after 1 month. UCB1 microshoot treated with IBA 5000 ppm (A) and Qazvini microshoot treated with IBA 5000 and NAA 3000 ppm (B)

Fig 2. Qazvini, *in-vitro* rooting, media supplemented with (0.5 mg l⁻¹) BA, (2 mg l⁻¹) and IBA (2 mg l⁻¹) NAA (A). UCB1 plantlet *in-vitro* rooting media supplemented with (1 mg l⁻¹) IBA, (1 mg l⁻¹) NAA and (1 mg l⁻¹) BA (B). UCB1 *in-vitro* rooting, media with (1 mg l⁻¹) IBA, (1 mg l⁻¹) NAA and free BA (C); UCB1 *in-vitro* rooting media supplemented with (1 mg l⁻¹) IBA and free NAA and BA (D)
Table 1. Effect of different NAA (0, 3000 and 6000 ppm) and IBA concentration (0, 2500 and 5000 ppm) on UCB1 and Qazvini plantlets rooting *ex-vitro*, grown in no ventilated condition (NV) supplemented with sucrose concentration (30 g L⁻¹)

Treatments	Rooting Percent	Roots length (cm)	Main roots number	Lateral roots number				
	NAA (ppm)	IBA (ppm)	UCB1	Qazvini	UCB1	Qazvini	UCB1	Qazvini
T1	0	0	0	0	0	0	0	0
T2	2500	0	40.03b	2.8	0	3.5	0	2.5
T3	5000	0	63.7 a	4.4	0	6.9 a	0	6.75 a
T4	3000	0	0	0	0	0	0	0
T5	2500	0	40.03b	2.27cd	0	3.25 b	0	2 c
T6	5000	31.26 a	58.73 a	1.61 b	3.4 ab	1.5 b	5.75 a	2 b
T7	6000	17.53ab	17.53c	2.78 ab	4.77 a	3.83 a	6.16 a	4.83 a
T8	5000	35.06 a	15.73c	2.75 a	1.42 d	3 a	1.25 c	3.25 a

Analysis of variance

Means followed by the same letters in columns are not significantly different (P≥0.01)

Table 2. Effect of different sucrose concentration (0, 10, 15 and 30 g L⁻¹) on pistachio varieties Qazvini and UCB1 plantlets rooting *in vitro*

Treatments / Sucrose (g L⁻¹)	Rooting Percent	Roots length (cm)	Main roots number	Lateral roots number	Survival %			
	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1
0	33.79 a	49.57b	2.41 c	3.73 b	2.25 b	4.91 b	2.41 b	12.16 c
10	38.37 a	59.12b	2.7 b	4.76 a	3.41 a	6 a	3.08 a	13.16 b
15	40.03 a	67.89a	2.88 ab	4.77 a	3.83 a	6.16 a	3.41 a	13.5 b
30	41.68 a	66.2ab	3.02 a	5.02 a	3.58 a	6.41 a	3.33 a	15 a

Analysis of variance

Means followed by the same letters in columns are not significantly different (P≥0.01)

Table 3. Effect of natural ventilated vessels, full ventilation (FV), half ventilation (HV), without aid ventilation (NV) on pistachio varieties Qazvini and UCB1 plantlets rooting *in vitro*

Treatments / Ventilation	Rooting Percent	Roots length (cm)	Main roots number	Lateral roots number	Survival %			
	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1
Full ventilation	42.51 a	62.46a	2.88 a	4.62 a	3.75 a	6.12 a	3.31 a	13.62 a
Half ventilation	40.03 a	62.16a	2.69 a	4.61 a	3.18 ab	6.18 a	2.93 a	13.81 a
No ventilation	32.86 b	57.49a	2.68 a	4.49 a	2.87 b	5.31 b	2.93 a	12.93 b

Analysis of variance

Means followed by the same letters in columns are not significantly different (P≥0.01)
Table 4. Effect of natural ventilated vessels, full ventilation (FV), half ventilation (HV), without aid ventilation (NV) and different sucrose concentration (0, 10, 15 and 30 g L⁻¹) on pistachio varieties Qazvini and UCB1 plantlets rooting *ex vitro*, treated with two rooting protocol. UCB1 *ex vitro* micropropagated shoots treated with NAA (0 ppm) and IBA (5000 ppm) and Qazvini *ex vitro* micropropagated shoots treated with NAA (6000 ppm) and IBA (5000 ppm)

Treatments	Rooting Percent	Roots length (cm)	Main roots number	Lateral roots number	Survival %	
	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1
Full ventilation	Sucrese (g L⁻¹)					
0	40 a 68 bc	2.57bc 3.81b	2.5bcd 5 cd	3 ab 12 f	37.5a	45 ab
10	40 a 69 b	2.8ab 4.76a	4.25a 6.25abc	3.25 a 13.5cde	37.5a	69.99a
15	45 a 75 a	3 a 4.79a	4.25a 6.5 ab	3.5 a 14ab	50 a	63.7ab
30	45 a 68 bc	3.12 a 5.11 a	4 a 6.75 a	3.5 a 11.5f	62.5a	48.75ab
Half ventilation						
0	35 ab 68 bc	2.33c 3.8b	2 d 5 cd	2 c 12.7def	37.5a	65.02a
10	40 a 67 bc	2.79ab 4.79a	3.5ab 6.75a	3 ab 13.5cde	37.5a	53.77ab
15	40 a 63 cd	2.83ab 4.87a	4 a 6.75a	3.5 a 13.7bode	50 a	48.75ab
30	45 a 58 d	2.84ab 4.98a	3.25abc 6.25abc	3.25 a 15.2 a	62.5a	57.52ab
No Ventilation						
0	26.29 b 68 bc	2.33c 3.6b	2.25cd 4.75 d	2.25 bc 11.7 f	37.5a	33.7ab
10	35ab 63 cd	2.52bc 4.75a	2.5bcd 5 cd	3 ab 12.5ef	37.5a	22.5b
15	35ab 60 d	2.75abc 4.65a	3.25abc 5.25bcd	3.25 a 12.7def	37.5a	62.53ab
30	35ab 48 e	3.1 a 4.98a	3.5ab 6.25abc	3.25 a 14.7abc	37.5a	65.02a

Analysis of variance

- **Means followed by the same letters in columns are not significantly different (P≤0.01)**

Table 5. Effect of different hormones concentration contain BA, NAA and IBA on pistachio varieties Qazvini and UCB1 plantlets rooting *in vitro*

Treatments	Rooting Percent	Roots length (cm)	Main roots number	Lateral roots number	Survival %	
	Qazvini	UCB1	Qazvini	UCB1	Qazvini	UCB1
BA	NAA IBA					
0	0 d 0 c	0 d 0 e	0 d 0 e	0 d 0 e	0 a d	
1	0 d 66.7a	0 d 4.2 b	0 c 5 a	0 d 7.2 a	0 a c	52.5a
2	0 d 60b	0 d 3.5 c	0 c 3.7 b	0 d 2. c	0 a 6d	56.25a
0.25	0 d 60.28b	0 d 5.4 a	0 c 3 c	0 d 3.2 b	0 a 49.8f	
1	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
2	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
0	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
1	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
2	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
0.50	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
1	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	
2	0 d 0 d	0 d 0 e	0 c 0 e	0 d 0 e	0 a 0 d	

Analysis of variance

- **Means followed by the same letters in columns are not significantly different (P≥0.01)**