DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering

Chiara Milanese1,10, Cíntia R. Bombardieri1,10, Sara Sepe1, Sander Barnhoorn1, César Payán-Goméz1,2, Donatella Caruso3, Matteo Audano3, Silvia Pedretti3, Wilbert P. Vermeij4, Renata M.C. Brandt1, Akos Gyenis1,5, Mirjam M. Wamelink6, Annelieke S. de Wit1, Roel C. Janssens1, René Leen7, André B.P. van Kuilenburg7, Nico Mitro3, Jan H.J. Hoeijmakers1,4,5,8 & Pier G. Mastroberardino1,9*

Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.
Although DNA is at the hierarchical apex of virtually all biological systems and its accurate preservation is therefore essential for life, DNA, however, is constantly exposed to exogenous and endogenous physicochemical threats that can modify its nucleotides. Unless promptly resolved, these alterations corrupt genome fidelity and compromise normal physiology promoting either cancer or aging and its related diseases. The cell has therefore developed an intricate network of mechanisms designed to maintain genome integrity, which comprises pathways specialized in correcting distinctive classes of DNA lesions.

Nucleotide Excision Repair (NER) eliminates base pair-disrupting lesions. It involves more than 30 genes and progresses along two converging branches; global genome NER (GG-NER) operates genome-wide, while transcription-coupled repair (TCR) removes only lesions blocking elongating RNA polymerase II (RNAPII) to rescue transcription. Defects in GG-NER therefore lead to the accumulation of base pair-disrupting lesions in the whole genome, with the notable exception of transcribed regions, in which DNA damage is removed by still functional TCR. Correction of the transcribed strand in GG-NER defective organisms allows cell survival even in the presence of high DNA damage load. Upon replication, however, accumulated lesions are bypassed by trans-lesion polymerases, which are more error-prone and thus increase the onset of mutations and hence cancer. On the other hand, TCR deficiencies cause transcription arrest because of unrepaired damage, which in turn induces premature cell death and expression defects accelerating aging. These effects are particularly pronounced in those organs and tissues that strongly depend on TCR, for instance post-mitotic tissues, which cannot dilute accumulating DNA damage by DNA replication (segmental progeria). When GG-NER and TCR defects are combined—as in the case of mutations in the multi-functional NER protein ERCC1, which also causes deficiencies in cross-link repair—the aging process is further accelerated and extended to additional organs and tissues. Consistently, in mouse models, expression of only a truncated Ercc1 allele (Ercc1Δ/−) causes impaired NER and cross-link repair, increased DNA damage, and a wide-spread progeroid phenotype that includes prominent liver, kidney, and neuronal aging. Overall, Ercc1Δ/− mutants exhibit an exceptionally wide spectrum of natural aging features in a strongly accelerated fashion, recapitulate the corresponding human progeroid XFR-1 syndrome, and prove a causative nexus between DNA damage accumulation and aging-associated multimorbidity.

DNA damage accumulation instigates a cellular response aimed at attenuating growth and activating protective mechanisms. Current knowledge of this adaptive, or ‘survival’ response mainly derives from gene expression experiments in repair-deficient models, indicating that metabolic redesign is central to adaptation and suggesting that glucose catabolism is suppressed in DNA repair deficient mice. Gene expression studies have also shown parallel up-regulation of genes involved in oxido-reductive (redox) homeostasis, consistently with a key role of reactive species (RS) in generating endogenous DNA damage.

Gene expression, however, remains an insufficient indicator of enzymes’ levels and activities, and of metabolic fluxes, which are extensively regulated by allosteric mechanisms. High concentrations of global modulators—e.g. ATP, the main energy carrier—favor their interaction with target enzymes to induce structural rearrangements that cause functional (de)activation and therefore feedback loop control. Allosteric regulation allows robust and swift modulation of the metabolic fluxes and therefore critically contributes to the acute response to stress. On these premises, the important elements emerged from previous studies based on gene expression analysis in DNA repair deficient mice are necessarily incomplete and need to be complemented by biochemical analyses to resolve the mechanisms coupling metabolic reprogramming to DNA damage accumulation and the adaptive response.

An eventual role of ATP levels, and therefore of the cellular energetic status, and of the connected allosteric modulation of metabolism in response to DNA damage has never been described. Yet, the following biochemical concepts suggest that ATP-mediated regulation might, at least in principle, act on and respond to DNA damage accumulation to contribute to the adaptive response: from the energetic standpoint, macromolecular synthesis is a highly demanding process and it is therefore conceivable that reduced transcription and consequent translational levels may impact the cellular bioenergetics balance with direct consequences on metabolism. Hence it is possible that genomic instability and continued transcription-arrest affect the cellular bioenergetics balance and metabolism contributing to activation of the adaptive response.

In this work we describe a molecular process coupling detection of transcription stalling to metabolic rearrangements operated by ATP-mediated allosteric mechanisms to potentiate cellular defenses to stress. Overall, we provide evidence for a mechanism governing the adaptive response elicited by sustained block of transcription caused by defective DNA repair.

Results

Defective NER causes progressive decline of transcription. TCR amends DNA lesions that arrest RNAPII elongation and defective repair in Ercc1Δ/− mice—which feature severe repair defects that also include TCR—might predictably compromise transcription. To test this hypothesis in vivo, we determined global transcription levels in mice at different ages by measuring incorporation of intra-peritoneally injected 5-ethynyluridine (EU), a uridine analog detectable with fluorescent azides using a copper (I)-catalyzed cycloaddition reaction (“click” chemistry). EU incorporation, reflecting overall transcriptional output, was significantly and progressively reduced in Ercc1Δ/− livers (Fig. 1a); it transitioned from ~70% of matched controls at 4 weeks—when polyploidization, a distinctive hepatic sign of natural aging that is also associated with of Ercc1 deficiency, is already apparent—to ~20% at 16 weeks, to finally reach a remarkably low level of 10% at 20 weeks. At this age, many Ercc1Δ/− animals are moribund and some have already succumbed. Transcription reduction in Ercc1Δ/− was confirmed in freshly isolated hepatocytes and in organotypic liver slices from adult mice (age 16 weeks) (Fig. 1b), ruling out the possibility that the difference in signal was due to different EU penetration or uptake into livers of control and experimental groups. Because NER also repairs lesions in the ribosomal genes, we measured EU intensities in the nucleolus versus the rest of the nucleus to examine whether RNA Pol I, RNA Pol II, or both are involved in this transcriptional collapse. We found that reduction of EU signal in mutant animals is comparable in the two sub-compartment (Supplementary Fig. 1), consistently with a genome-wide operating process. These studies also disclosed striking heterogeneity in levels of nascent RNA synthesis among hepatocytes of Ercc1Δ/− mice, in sharp contrast with the observations in wild-type controls: while in mutant livers some cells displayed levels of RNA synthesis comparable to wild-type animals—thus indicating that EU-incorporation per se is unaffected—other neighboring hepatocytes exhibited very low RNA synthesis. Moreover, EU incorporation in vivo indicates that in Ercc1Δ/− heterogeneity changes in time and is more pronounced in young animals. Such high and time-dependent variability is consistent with a stochastic pattern in the underlying cause, such as that expected from DNA damage accumulation.
Transcription decline was independently substantiated by determining the expression of long and short genes as inferred from liver transcriptomic data. Indeed, the expression profile of Ercc1Δ+ livers (16-weeks old) was relatively enriched in transcripts from short genes and significantly depleted in transcripts of long genes (Fig. 1c, Supplementary Table 1).

We investigated whether strong overall transcription decline was attributable to reduced RNA polymerase II (RPB1) and
therefore evaluated its expression at mRNA and protein level, as well as its phosphorylation status in Ercc1Δ−/− mice of different ages. Immunoblot analysis did not reveal a drop in RNA pol II largest subunit, RPBI (Fig.1d–RPBI tot). Analysis of mRNA levels also failed to indicate a down-regulation of RNA pol II subunits (Supplementary Table 2). To gather further insights on transcription, we investigated RNA pol II phosphorylation on Ser2 and Ser5 in its C-terminal repeat domain, which respectively reflect transcription elongation and initiation 20. Immunoblot analysis did not detect a decline in time in Ser2 or Ser5 phosphorylation in Ercc1 liver extracts; in fact, there is a even moderate increase in Ser5 phosphorylation (see Fig. 1d). We also explored whether transcription decline in Ercc1Δ−/− is associated with increased ubiquitination of RNA Pol II, which—despite involvement of non-conventional signaling functions of ubiquitinylation in genome integrity maintenance has been shown to target the enzyme to degradation as a consequence of DNA damage12,23. Immunoblot analysis following immunoprecipitation of ubiquitinated proteins, however, failed to reveal any signal for RNA pol II (Fig. 1e), in agreement with our observation that total RNA pol II levels in Ercc1Δ−/− livers were unaffected. General ubiquitination increased only in 20-week old Ercc1Δ−/− mice (Supplementary Fig. 2). Collectively these data clearly rule out a decrease of RNA Pol II in Ercc1Δ−/− mice that can explain the dramatic decline in transcriptional output. The finding that the level of elongating, Ser2-phosphorylated RNA Pol II at 16 and 20 weeks is unaffected while transcriptional output is collapsing (Fig. 1a) suggests that these elongating RNA Pol II molecules are non-productive, in line with the concept that they may be stalled because of accumulating, unrepaired DNA lesions.

Decreased transcription leads to elevated ATP pool. Transcription is a high energy-demanding process and reduced transcription likely also diminishes translation, which is even more energy-consuming. Hence reduced transcription may impact the overall cellular energy status. We initially probed energy parameters by monitoring the activity of the major cellular ATP generator, mitochondria, in cells where transcription was chemically blocked and found that 6 h treatment with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) suppresses mitochondrially blocked and found that 6 h treatment with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) suppresses mitochondrially blocked and found that 6 h treatment with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) suppresses mitochondrially blocked and found that 6 h treatment with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) suppresses mitochondrial ATP levels. In line with these observations in vitro, severely reduced transcription in Ercc1Δ−/− livers (16-week old, Fig. 1a) is paralleled by higher intracellular concentration of ATP and ATP/ADP ratio (Fig. 2c, d); as expected, phosphorylation of AMPK, which responds to ATP deficit rather than its surplus, is unchanged in NER mutants (Supplementary Fig. 4A, B). The ATP surplus in Ercc1Δ−/− mice, however, is not caused by potentiation of the major biochemical pathways producing ATP: mitochondrial respiration and glycolysis. Analysis of freshly isolated primary hepatocytes, in fact, revealed that mitochondrial basal respiration was comparable in Ercc1Δ−/− and controls. In addition, measures of oxygen consumption rates show that mitochondria from Ercc1Δ−/− specimens present features such as diminished reserve capacity (i.e. induced by the uncoupler FCCP) and rotenone-sensitive respiration—which is principally attributable to complex I—that rather point to bioenergetics deficits (Fig. 2e, f).

Additionally, in Ercc1Δ−/− liver glycolysis is reduced in both basal conditions and under stimulation with glucose (Fig. 2g). Consistently, Ercc1Δ−/− mice display reduced mRNA levels of pyruvate dehydrogenase beta subunit (Pdhb), which converts the end-product of glycolysis pyruvate into acetyl-CoenzymeA (acetyl-CoA) for the Krebs’ cycle. Further suppression at the level of Kreb’s cycle entry point is indicated by reduced mRNA levels of cytoplasmic Acetyl-Coenzyme A Synthetase (Acss2), which is also involved in the production of acetyl-CoenzymeA, and of ATP-citrate synthase (Acly), which catalyzes the condensation of oxaloacetate and Acetyl-CoenzymeA to generate citrate (Supplementary Tables 3,4). Collectively, these data strengthen the concept that increased ATP levels are the consequence of decreased consumption rather than enhanced production.

Analysis of glycolytic function, however, also reveals that maximal capacity after administration of ATP synthase inhibitor oligomycin—which completely redirects ATP production on glucose metabolism—is retained in Ercc1Δ−/− liver (Fig. 2g). This evidence suggests that the molecular machinery for glucose catalysis is present in Ercc1Δ−/− mutants but, unless stimulated by drastic conditions (i.e. oligomycin administration), its function is suppressed. Importantly, the rapid completion of the glycolysis assay (<1 h) excludes that these differences are caused by altered transcription. In fact, steady state mRNA levels of key glycolytic enzymes are unchanged in Ercc1Δ−/− mice (Fig. 2h, Supplementary Table 4). Collectively, these elements suggest allosteric modulation as alternative regulatory mechanism.

ATP alterations cause redesign of carbohydrate fluxes. Besides its cardinal role in bioenergetics, ATP functions as a potent allosteric regulator. For instance, in circumstances of energetic surplus, high ATP levels inhibit the master regulator of glycolysis, phosphofructokinase (PFK), via a negative feedback loop preventing superfluous glucose catalysis24,25. We therefore speculated that abnormally elevated ATP levels—as those induced by transcription stalling—might elicit similar metabolic rearrangements. First, we tested the effects of chemical inhibition of transcription on PFK activity in cell cultures and found that, in DRB-treated samples, increased ATP levels (shown in Fig. 2a) are paralleled by significantly decreased PFK activity (Fig. 3b), consistently with reduced basal glycolysis in Ercc1Δ−/− livers (described in Fig. 2g). Decreased PFK activity, and thus inhibition of glycolysis, may in turn favor glucose catalysis through the alternative pentose phosphate pathway (PPP), which branches from the glycolytic pathway itself (Fig. 3a, Supplementary Table 5). To investigate whether allosteric inhibition of PFK activates the PPP switch, human primary fibroblasts were treated with the PFK allosteric modulator citrate27, which is internalized via specific membrane transporters expressed in this cell type (Supplementary Fig. 5A). Citrate treatment caused reduction of both PFK activity and downstream glycolysis (Fig. 3b, d) paralleled by increased activity of glucose-6-phosphate dehydrogenase (G6PD) (Fig. 3c) i.e. the entry-step for glucose in the PPP. These elements support the notion that PFK inhibition favors glucose re-routing to the PPP through the G6PD node.

Hence, we evaluated the possibility that elevated ATP levels in livers of 16-week old Ercc1Δ−/− mice might be also associated with glucose re-routing through the PPP. Indeed, Ercc1Δ−/− liver extracts exhibit both reduced PFK and increased G6PD activity (Fig. 3e), which is in turn associated with significantly augmented levels of PPP metabolic intermediates (Fig. 3f). Metabolites tracing with [1−13C]glucose further confirmed potentiation of the PPP in Ercc1Δ−/− (Fig. 3g). Observations in Ercc1Δ−/− in vivo therefore recapitulate the paradigm of citrate-induced glucose rerouting in cell cultures. Importantly, transcriptomic analysis...
failed to detect any differentially regulated genes in the PPP, therefore supporting that glucose rerouting occurs through an allosteric mechanism (Supplementary Table 5).

Metabolic redesign culminates reductive redox stress. Glucose rerouting from glycolysis to the PPP constitutes a rapid metabolic strategy to counteract oxidant stress. This pathway provides reducing equivalents in the form of NADPH, the upstream driving force to maintain redox homeostasis via the glutathione (GSH) and thioredoxins (Trxs) based thiol-disulfide circuits (Fig. 4a)\(^2^8\). Accordingly, our previous findings in hepatocytes and fibroblasts—showing that persistent chemical inhibition of transcription (4 h) leads to increased intracellular levels of ATP, diminished PFK activity, and decreased glycolysis (Figs. 2a, 3b, Supplementary Fig. 3)—are paralleled by concomitant reduced redox state (Fig. 4b). These were general effects, genuinely attributable to decreased transcription, because three inhibitors acting through different mechanisms—alpha-amanitin, Actinomycin D, and DRB—elicited the same effects on glycolysis and redox homeostasis.

In vivo, in livers of 16-week old *Ercc1\(^{-/-}\)* mice, the increased flux of carbohydrate through the PPP mice is paralleled by a significant reduction of the NADP\(^+/\)/NADPH redox couple...
Manipulation of ATP levels elicit metabolic redesign. Collectively, our findings identify a mechanism coupling defects in NER and TCR, and transcription decline to abnormal redox reduction stress via ATP surplus and metabolic redesign. Additionally, chemical inhibition of transcription in vitro recapitulates the findings in TCR-defective mouse mutants.

To further explore this model, we manipulated the crucial driving factor in the process, i.e., intracellular ATP concentration in mouse primary fibroblasts, by administration of nucleosides, i.e., adenosine or a mix of the four nucleosides adenosine, uridine, cytidine, and guanosine (AUGC, Fig. 5a). After uptake, nucleosides promote synthesis of nucleic acid precursors via the salvage pathways, which is energetically favored over expensive de novo synthesis. ATP expenditure is therefore reduced with consequent increase of ATP intracellular levels. We used PFK and G6PD activity, as well as redox balance as metabolic readout measures.

Two days treatment of primary fibroblasts with adenosine, or with the combination of the four nucleosides, elevated ATP/ADP ratios (Fig. 5a) and reduced PFK activity (Fig. 5b), even though we failed to detect significant differences in G6PD in these conditions (not shown). These effects were more pronounced in the treatment with adenosine alone, which was therefore used in subsequent experiments. As expected, adenosine treatment inhibited glycolysis (Fig. 5c) and shifted thiol-disulfide equilibria towards a reduced state (Fig. 5d). Metabolic reprogramming was not due to down-regulation of glycolytic enzymes at transcriptional level or by decreased bioavailability of glucose, as evidenced by unaltered expression levels of key glucose transporters (Fig. 5e).

Alterations in glucose metabolism, including impaired glycolysis, characterize a subgroup of metabolic inborn errors that often manifest at very early life stages. We therefore questioned whether the defects associated with Ercc1 mutation manifest in very young individuals. We measured transcription levels, ATP concentration, PFK and G6PD activity, NADP+/NADPH ratio, and thiol/disulfide redox state also in young Ercc1Δ−/− mice. Four-week-old animals failed to exhibit alterations in these hallmarks (Supplementary Fig. 7A-F, H) despite an increase in transcription of redox genes (Supplementary Fig. 7G) and the decrease in transcription output reported in this study (Fig. 1a). Reduction of transcription at 4 weeks, however, was less pronounced than at later time points (Fig. 1a). These data indicate that detected metabolic changes are progressive in time and appear later in life, during aging, lending support to the possibility that the phenomena observed in Ercc1Δ−/− mice are caused by time-dependent accumulation of cellular alterations, possibly DNA damage.

Altogether, these elements suggest that a persistent diminishment in transcription output redesigns glucose metabolism and augments the reductive capacity of the cell, and propose a further connection between defective DNA repair, metabolism, and aging.
through the PPP to produce excess reducing equivalents in the form of NADPH were general consequences of defective TCR augmented by a GG-NER defect rather than other repair defects due to a very severe mutation caused by a deoxyctydine deletion in the codon coding for the Arg45 in the NER gene XPG, that causes a C-terminal truncation in the protein 39–41. The severe clinical outcome combines xeroderma pigmentosum and Cockayne syndrome (XP/CS) symptoms, similar to the Xpg−/− mouse model used above42.

Previous studies have already demonstrated increased ATP levels in CS primary fibroblasts43; here, we show that XP/CS primary fibroblasts also exhibit reduced PFK activity (Fig. 7a) paralleled by decreased glycolysis (Fig. 7b, c) and alterations in the thiol-disulfide redox equilibria toward a reducing state (Fig. 7d). G6PD activity showed a consistent trend, however did not reach statistical significance (Fig. 7e). These findings demonstrate the general nature of our findings.

Metabolic reprogramming in the TCR disease Cockayne syndrome. To determine the relevance of our findings for human diseases, we investigated segmental progeroid syndromes caused by GG-NER/TCR defects, specifically in primary fibroblasts from a patient (96RD235) suffering profound GG-NER/TCR defects due to a very severe mutation caused by a deoxyctydine deletion in the codon coding for the Arg45 in the NER gene XPG, that causes a C-terminal truncation in the protein 39–41. The severe clinical outcome combines xeroderma pigmentosum and Cockayne syndrome (XP/CS) symptoms, similar to the Xpg−/− mouse model used above42.

Previous studies have already demonstrated increased ATP levels in CS primary fibroblasts43; here, we show that XP/CS primary fibroblasts also exhibit reduced PFK activity (Fig. 7a) paralleled by decreased glycolysis (Fig. 7b, c) and alterations in the thiol-disulfide redox equilibria toward a reducing state (Fig. 7d). G6PD activity showed a consistent trend, however did not reach statistical significance (Fig. 7e). These findings demonstrate the general nature of our findings.

Fig. 3 Potentiation of the pentose phosphate pathway (PPP) in Ercc1−/− mice. a Schematic of the glycolysis and PPP interconnected pathways. Some sugar phosphates are generated in both pathways and are highlighted by the same color boxes (description of abbreviations in Supplementary table 6). Enzymes’ names are in blue font. Red arrows indicate molecules that were increased in Ercc1−/− liver extracts. b, c The PFK inhibitor citrate and the transcription inhibitor DRB down-regulate PFK enzymatic activity—the glycolysis rate limiting step—and potentiate the G6PD activity in primary fibroblasts. n ≥ 3, data were collected from three independent experiments. d The PFK inhibitor citrate induces reduction in the glycolytic flux, measured as ECAR in extracellular flux analysis (left trace). Treatment with citrate for 6 h is sufficient to reduce glycolysis to 77.2% of its original value (right graph). n ≥ 4; data were collected from two independent experiments. e PFK and G6PD enzymatic activities are respectively significantly reduced and increased in 16-week old Ercc1−/− mice (n ≥ 4 per group). f Sugar-phosphate quantitative metabolomics indicates an increase in vivo of several metabolites involved in the PPP. Box and whiskers represents data from n ≥ 4 16 weeks old mice per group. g Metabolic tracing experiments indicate augmented flux of carbohydrates through the PPP. Cells were incubated with [1,2,3C]Glucose (2 mM) for 6 h prior to HPLC-coupled mass spectrometry analysis. The schematic (bottom panel) illustrates how the different measurable isotopes are generated from [1,2,3C]Glucose; the red dot represents the phosphate group. n = 10 independent biological replicates extracted from n = 3 mice per group. Error bars indicate mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001; one way ANOVA followed by Dunnett’s test in b, c or Student’s t-test in e–g. Original data are provided as a Source Data file.
Fig. 4 Effects of genomic instability on redox homeostasis. a Schematic showing the glutaredoxin and thioredoxin major redox circuits. PPP-generated NADPH provides the electrons required to maintain the circuits in a reduced state. b Chemical inhibition of transcription in primary fibroblasts leads to reduction of the thiol/disulfide redox couple. n ≥ 150, 4 mice per group. Data were collected from three independent experiments. c–e Liver extracts of 16 weeks old Ercc1A−/− show significant reduction of the redox state in the NADP+/NADPH, GSSG/GSH, and thiol/disulfide redox couples. n ≥ 4 per group. f Increased mRNA levels in redox-controlling genes, including genes involved in GSH metabolism, in livers from 16 weeks old Ercc1A−/− mice do not show sensitivity to treatments (100% of survival, lines are overlapping in WT). g Liver extracts of 16-week old Ercc1A−/− mice show to de redox couples. h Annexin V/propidium iodide cell death assay and FACS analysis reveal decreased sensitivity of WT Ercc1A−/− mice to the antioxidant N-acetylcysteine, but not to the pro-oxidant rotenone, n = 4 per group. i Unchanged ROS production measured with CM-H2DCFDA in freshly isolated hepatocytes from 16-week old Ercc1A−/− mice. j Graph in H represents the densitometric analysis of the bands. k Survival curve showing increased sensitivity of Ercc1A−/− mice to the antioxidant N-acetylcysteine, but not to the pro-oxidant rotenone, n = 4 per group. Error bars indicate mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, one way ANOVA by Dunnet's test in b and f, Student's t-test in c–j. Original data and images are provided as Source Data file.
findings confirm the principal observations in the mouse repair mutants and extend them to the corresponding human disorder.

Discussion

In this study we demonstrate a progressive dramatic decrement of transcription in NER/TCR-defective mouse models. Although, ERCC1 and other NER/TCR factors have also been associated with transcription regulation, we favor the idea that rather than being caused by anomalies in or lack of specific transcription factors—the collapse of RNA synthesis observed in the liver of Ercc1 and Xpg mutant mice is the consequence of compromised repair function (and consequently DNA damage). This possibility is supported by multiple arguments: first, the drastic and progressive decline of overall transcriptional output (up to 90%) (Fig. 1a) is difficult to reconcile with anomalies in or lack of specific transcription factors. First, the drastic and progressive decline of overall transcriptional output (up to 90%) (Fig. 1a) is difficult to reconcile with anomalies in or lack of specific transcription factors.

Fig. 5 Exogenous treatment with nucleosides in cell cultures reproduces the main features observed in Ercc1-/- deficient animals. a Two days exposure of mouse fibroblasts to exogenous adenosine (50 nM–A) or to a mixture of the four nucleosides (50 nM–AUCG) results in significant increase of ATP levels and ATP/ADP ratio. n = 7 from three independent experiments. b-d Nucleosides administration results in decreased PFK activity, diminished glycolysis measured as ECAR in extracellular flux analysis, and reduction in the thiol/disulfide redox couple measured by monitoring the emission of reduced and oxidized cysteines labeled with maleimide-conjugated fluorophores. n = 3 in B, n ≥ 150 in D from three independent experiments. Line graphs in C represent real time glycolysis changes in basal condition and upon stimulation with glucose and oligomycin; n = 10. Data were collected from three independent experiments. e Quantitative PCR indicates that expression of genes coding for glucose transporters and glycolysis rate-limiting enzymes remains unaltered after nucleosides administration. n ≥ 8, data were collected from 2 independent experiments. Error bars indicate mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001 one way ANOVA followed by Dunnet’s test in a, b and d or Student’s t-test in c, e. Original data are provided as Source Data file.
specific transcription factor. These molecules, in fact, control expression of a specific subset of genes and defects in a specific factor would affect expression of its target genes, with immediate rather than progressive consequences, the latter occurring over a timespan of months. Second, here and in a previous study\(^\text{17}\) we reported that transcription decline is gene length-dependent (Fig. 1c); hitherto, no transcription factor has been described that regulates genes based on gene size, at least to our best knowledge. Third, the gene length effect is accurately recapitulated in a dose-dependent fashion when cultured cells are exposed to transcription-blocking UV damage, and is exaggerated and permanent in TCR mutants\(^\text{15}\). Fourth, our observation that unaltered levels of elongating Ser2-phosphorylated RNA Pol II in aged Ercc1 liver (Fig. 1d) are paralleled by drastic reduction in total ATP levels in the form of NADPH (Fig. 7f). Thus, we provide evidence for an adaptive mechanism that couples defects in TCR and consequent transcription stalling with redesign of glucose metabolism and activation of antioxidant defenses. The process can be framed as part of the ‘survival response’ that we described at transcriptional level previously\(^\text{4,49,50}\) in this study, we extend these findings demonstrating that metabolic reprogramming depends on ATP-dependent allosteric mechanisms and we therefore reveal a faster cellular response to DNA damage. In fact, unchanged levels of glycolytic enzymes mRNA and the rapid time-course of cell survival response in the well-documented transcriptional response. Elevated ATP effects) indicate that the process is independent of and precedes the PPP and ultimately favors production of reducing equivalents key glycolytic enzyme PFK to promote glucose rerouting through the PPP and ultimately favors production of reducing equivalents in the form of NADPH. In this study, we demonstrate that metabolic reprogramming depends on ATP-dependent allosteric mechanisms and we therefore reveal a faster cellular response to DNA damage. In fact, unchanged levels of glycolytic enzymes mRNA and the rapid time-course of cell culture experiments (i.e., insufficient to observe transcription effects) indicate that the process is independent of and precedes the well-documented transcriptional response. Elevated ATP levels in NER-deficient primary human cell have been previously described in other independent studies\(^\text{13}\). The consequences of altered levels of this potent allosteric modulator on metabolism and its link with transcriptional stress, DNA damage, and the antioxidant response, however, have to our best knowledge never been described. Obviously, additional ATP based mechanisms independent from allosteric modulation may participate in the adaptive cellular response, possibly by reshaping the transcriptional landscape. In bacteria, for instance, it has been demonstrated that both high and low intracellular ATP concentrations...
affect macromolecular synthesis11,51 and that some promoters are directly activated by ATP11,52. These mechanisms, however, have not been investigated in comparable detail in eukaryotic systems\textemdash at least to our best knowledge\textemdash and further studies will be necessary to elucidate how intracellular ATP concentration regulates the transcriptome.

Of note, we provide evidence that chemical inhibition of RNA pol II recapitulates the features observed in NER mutants; however, additional studies will have to address also the contribution of both RNA pol I to the observed metabolic changes, given that TC-repair can amend lesions in ribosomal DNA16.

Increasing evidence highlights the relevance of metabolism modulation and of the response to DNA damage in the complex process of aging;53,54 however, whether and possibly how they are related has remained largely elusive. Metabolic reprogramming to favor the PPP over glycolysis in DNA repair deficient systems may be framed as part of the survival response previously described in segmental progeria4,7,50. Glucose metabolism, in fact,
plays a major role in the aging process and has a profound influence on lifespan, as indicated by the relevance of IGF-1/insulin signaling for longevity. Moreover, reduction of glucose metabolism—and of glycolysis in particular—have been proposed as mimetics of dietary restriction, the most efficient form of intervention to delay aging, even most prominently in DNA repair deficient accelerated aging mutants.

One apparent consequence of rerouting metabolism from glycolysis through the PPP is to mount a first-line defense against oxidation, which is critical to counteract stress including genomic stress caused by oxidative DNA damage. The nexus between activation of the PPP shunt and DNA damage is not unprecedented. For instance, glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the first reaction in the PPP, protects against endogenous DNA damage. Increased activation of G6PD can be mediated by the DNA damage response protein ATM, which is a primary sensor for double-strand breaks, to stimulate the PPP pathway, synthesis of nucleotides, and antioxidant response. In this case, however, PPP activation proceeds through Hsp27-mediated G6PD stabilization.

An additional link between the PPP and ATM stems from observations in rheumatoid arthritis patients, who display deranged DNA repair in T-cells. Here, an excessively reduced redox environment prevents ATM activation, which in turn allows T-cells bypassing the G2/M checkpoint. The latter results in augmented proliferation and consequent enrichment of the pro-inflammatory pool population. Accordingly, administration of pro-oxidants in rheumatoid arthritis counterbalances the abnormally reductive redox environment, restores redox signaling, and suppresses synovial inflammation. These independent results from our and other laboratories consistently point to a key role of the PPP in the response to DNA damage, demonstrating that multiple pathways converge on its potentiation to compensate for genomic stress. Unlike previous evidence, however, our study reveals a mechanism based on allosteric regulation, a biochemical strategy allowing highly rapid adaptation of cellular function against stress.

Augmented redox-buffering capacity is intrinsic to longevity and is a prerogative of long-lived species. The increased availability of redox-sensitive thiol groups, which we found in GG-NER/TCR-deficient mice, is fundamental to counterbalance oxidative stress. In this work we have shown that short-lived, pro-geroid NER-deficient mice display an abnormally reduced redox state; albeit surprising and counterintuitive given the notion that oxidation increases with age and that longevity—instead of a short lifespan—is associated with enhanced redox-buffering. However, our findings are in line with previous reports showing higher sensitivity of fibroblasts from patients with severe DNA repair defects to the thiol-reducing agent dithiothreitol (DTT). While this feature could be caused by effects not directly related to reducing stress—for instance DTT mediated ER stress and consequent failure to properly fold proteins—it certainly establishes a nexus between reductive stress and defective DNA repair.

To explain this apparent paradox, we propose the model depicted in Fig. 7f. Our data demonstrate that accumulation of transcription-blocking lesions triggers an acute antioxidant response driven by metabolic redesign and indicate that evolution selected mechanisms where DNA damage sensing and antioxidant capacity potentiation are intrinsically coupled. This concept is consistent with the dominant idea that, in normal conditions, pro-oxidant species are a principal source of DNA damage. In GG-NER/TCR-deficient mice, however, DNA damage accumulation is not caused by increased oxidative stress, but is rather due to compromised repair. Thus, the intrinsic antioxidant response in this case is not paralleled by increased reactive species and it culminates in an overall reduced redox state, as we have shown in repair-deficient liver samples (Fig. 4e). Of note, abnormal reductive environment—which is deleterious and has been associated with hyperactivation of the PPP in some forms of cardiomyopathies and in the autoimmune syndrome rheumatoid arthritis—might also be implicated in the pathogenesis of diseases caused by GG-NER/TCR defects (i.e. CS and XP) and its role in the progression of these disorders should be explored further. Furthermore, future investigations should determine whether chemotherapeutic agents acting through mechanisms involving transcription block—for instance platinum-based anti-neoplastic—involutarily potentiate the PPP and antioxidant defenses in cancer cells, therefore diminishing the efficacy of the treatment. Finally, our findings suggest that trials with antioxidants might not be recommended for DNA repair deficient progeroid patients and further research is certainly required to determine the validity of such strategies in these diseases.

Multiple lines of evidence support a causative role for DNA damage accumulation and TCR defects in natural aging and associated morbidities, for instance Parkinson’s and Alzheimer’s disease. Moreover, we found perturbations in transcription to be intrinsic to the aging process from both a qualitative and quantitative standpoint; transcriptional output decreases in natural aging applications in natural aging and studies at single cell level demonstrated an age-related increase in variance and background noise in gene expression. Our findings therefore strengthen the parallels between accelerated and natural aging, confirm the validity of the repair mutants, and highlight declining transcription as a novel important parameter in the aging process. Future studies are warranted to determine in greater detail the contribution of transcription decline to natural aging and physiological deterioration. In conclusion, our study provides mechanistic insights about the metabolic consequences of DNA damage accumulation and paves the road for future investigations in multiple fields of biomedical sciences.

Methods

Reagents. All reagents were purchased by Sigma-Aldrich unless otherwise specified.

Animals. The generation and characterization of TC-NER deficient Ercc1<−/−> and Xpg<−/−> mice has been previously described. Mice were generated in an FVB.C57BL/6 J (50:50) genetic background and wild type littermates were used as controls. Animals were kept on a regular diet and housed at the Animal Resource Center (Erasmus University Medical Center), which operates in compliance with the Animal Welfare Act of the Dutch government, following the "Guide for the Care and Use of Laboratory Animals" as its standard. This study was approved by the Erasmus University Medical Center ethical committee for animal welfare. Mutant mice and respective controls (males and females) were used at the age of 4, 16, and 20 weeks old for Ercc1<−/−> and 14 weeks old for Xpg<−/−>.

Primary hepatocytes isolation. Primary hepatocytes were isolated from mice 4 to 16 and 20 weeks old from the collagenase perfusion method, with modifications. Briefly, liver was perfused via cannulation of the abdominal vena cava with washing buffer (HBSS modified with 10 mM HEPES and 5 mM NaHCO₃) at 37 °C at a flow rate of 7 ml/min. After 10 min, the buffer was switched to the perfusion solution (HBSS, 10 mM HEPES, 16 mM NaHCO₃, 150 μM collagenase type IV (Sigma) and 5 mM CaCl₂) and the liver was perfused for 14 min. The liver was then excised, minced and dissociated tissue was filtered using a 70 μm sterile filter in washing medium (DMEM containing 10% FBS, 1% Pen/Strep, 0.5 U/mL insulin, 20 ng/mL murine IGF, 7 ng/mL glucagon and 7.5 μg hydrocortisone). Parenchymal cells were purified by centrifugation (500 g, at 4 °C for 10 min) using Percoll (GE Healthcare) in 1:1 dilution with wash medium. Viability, which was typically around 90%, was determined by using Trypan Blue exclusion. Isolated liver cells were then seeded on previously Cell-Tak (22.4 μg/ml, 354240, BD Biosciences) coated plates or coverslips, and maintained in DMEM containing 10% FBS, 1% Pen/Strep.

Nascent RNA synthesis detection in primary cells and tissues. Quantification of nascent RNA synthesis was performed with Ethylene uridine (EU) taking advantage of the copper (I)-catalyzed cyclodiaddition reaction between azides and
terminal alkyne, as described in a previous study12. The experiments were performed using the Click-IT Nascent RNA capture kit (C10365, Invitrogen). To test the effect of specific probe sets, 3 mM CuSO\textsubscript{4} was dissected into the culture medium for 2 h. Cells were then washed twice with PBS, and then blocked with 3% BSA in PBS for 30 min. The reaction was then performed according to the manufacturer’s instructions.

To measure de novo transcription in mouse tissues, animals received an intraperitoneal injection (i.p.) of EU (1.063 g/kg, 50% in sterile PBS). Tissues were harvested 5 h after injection and were fixed in paraformaldehyde overnight, kept in 30% sucrose for additional 24 h, embedded in Tissue-Tek CRYO-OCT (1437565, Fisher Scientific) and cryostat-cut in 10 µm sections. For the staining, the sections were rinsed with PBS, incubated 30 min in PBS solution containing 3% BSA and then returned to room temperature with a solution containing 100 mM Tris, pH 8.5, 1 mM CuSO\textsubscript{4}, 25 µM tetrathiomolybdate-5-acid and 100 mM ascorbic acid for 30 min. The sections were then washed twice with PBS, 2 BSA, and finally stained with DAPI (10226726001, Sigma) or SYTOX Green (S7020, Invitrogen). Both cells and sections were imaged with a Leica TCS SP5 laser scanning confocal microscope. EU intensity was analyzed in at least 150 nuclei per line in a semi-automated fashion using constant thresholding parameters with the Metamorph software (Molecular Devices) or ImageJ software.

Bioinformatics. Microarray data AffymetrixTM mouse 430 V2.0 arrays have been obtained from 6 \textit{Ecret}\textsubscript{Δ}\text{CP}-livers and 6 wildtype 16 week old mice and have been used for this study. The data are available through the public repository ArrayExpress at accession code E-MEXP-1503. Detailed description about the samples collection, RNA extraction, cDNA synthesis, microarray hybridization and scanning is included in a previous report49. Expression intensities were summarized, log2 transformed and normalized using RMA as is implemented in R open statistical package (http://www.r-project.org/). Linear model from Gentleman implementation was used to calculate the fold change (FC), p value and false discovery rate (FDR) between \textit{Ecret}Δ\text{CP} wild and wild type samples.

To assess the relationship between gene length and fold change (FC), probeset in the AffymetrixTM array with multiple gene annotations were filtered out and BioMart54 was used to ask the gene length for the remaining probe sets. RNA isolation and qPCR

Intracellular nucleotide pool measurement by HPLC. The measures were performed as previously described74, with minor modifications. Briefly, liver was grinded in liquid nitrogen and treated with 0.4 M HClO\textsubscript{4}. After centrifugation the supernatant was neutralized with 5 M K\textsubscript{2}CO\textsubscript{3}. The pellet was used for protein determination and the supernatant was used to measure and quantify the nucleotide pool by HPLC analysis (Alliance 2996; Waters, Milford, MA) using a Partisphere SAX anion exchange column (4.6 × 125 mm; Whatman International Ltd., Maidstone, UK). The following gradient was used: 5 min with 100% buffer A (5 mM NH\textsubscript{4}H\textsubscript{2}PO\textsubscript{4}, pH 5); a 15-min linear gradient of 100% buffer A to 100% buffer B (300 mM NH\textsubscript{4}H\textsubscript{2}PO\textsubscript{4}, pH 5); 20 min with 100% buffer B; a 5-minute gradient to 100% buffer A; and equilibration at 500 µM for 5 min. The UV absorbance of the peaks was recorded at 260 nm.

RNA isolation and qPCR. Total RNA was isolated from liver or cells using Trizol (15596026, Invitrogen), according to the manufacturer’s protocol. First-strand complementary cDNA was synthesized from 1 µg RNA using SuperScript First-Strand cDNA Synthesis Kit (11904018, Invitrogen). qPCR was performed on a C1000 Thermal Cycler (Bio-Rad, Hercules, CA) with SYBR Green I (14385612, Invitrogen) and Platinum Taq polymerase (10966-083, Invitrogen). The primer sequences are shown in Supplementary Table 7. Primer efficiency and specificity have been confirmed. Data were analyzed using the second derivative maximum method: (E1 - gene of interest/ΔC\textsubscript{P} (C\textsubscript{DNP} of wt mice - C\textsubscript{DNP} of Ev31/− mice) gene of interest/ΔC\textsubscript{P} (C\textsubscript{DNP} of wt mice - C\textsubscript{DNP} of Ev31/− mice)).

Bioenergetics Assays. Oxygen consumption rates (OCR) and extracellular acidification rate (ECAR) were measured using a XF-24 Extracellular Flux Analyzer (Seahorse Bioscience), as previously described75–77. On the experimental day, medium was changed to unbuffered DMEM (XF Assay Medium–Glucone (BNK0063, Bio-Rad, Hercules, CA) supplemented with 2 mM glutamine, 5 mM glucose and 1 mM sodium pyruvate, and incubated 1 h at 37°C in the absence of CO\textsubscript{2}. Basal respiration was defined as the average OCR values at baseline; proton leakage was defined as mitochondrial respiration detected after oligomycin injection and maximal respiration was defined as OCR values after FCCP injection. Respiration dedicated to ATP production was calculated as difference between basal respiration and the respiration measured after oligomycin injection and the rotenone dependent respiration parameter—which accounts for mitochondrial complex I activity—was calculated as the difference of the maximal respiration value and the OCR values obtained after the rotenone injection.

Glycolysis was measured as extracellular acidification rate (ECAR), which reflects lactate production via glycolysis catabolism. On the experimental day, medium was charged to unbuffered DMEM (BASE: Medium–Glucone (BNK0063, Bio-Rad, Hercules, CA) supplemented with 2 mM glutamine, 1 mM sodium pyruvate, and incubated 1 h at 37°C in the absence of CO\textsubscript{2}. Medium and reagents acidity was adjusted to pH 7.4 on the day of the assay, according to manufacturer’s procedure. ECAR was measured in basal conditions, after stimulation with 11 mM glucose, then with 5 µM oligomycin, and finally inhibited with 100 µM 2-deoxyglucose (2-DG).

Sugar phosphate quantitative metabolomics. Sugar phosphates were quantified by LC–MS/MS, as previously described78. Briefly, metabolites were extracted in HBSS with 2% perchloric acid, and proteins were precipitated after neutralization with a phosphate buffer. The samples were subsequently supplemented with an internal isotope labeled standard 313C\textsubscript{2}-glucose-6P, separated on a water-acetonitrile in 10% gradient in isocratic mode using a RP-HPLC column (LC packing), and analyzed on an API3000 triple quadrupole mass spectrometer (AB/Sciex).

Enzymatic activity assays. PFK (MAK093 Sigma) and G6PD (ab102529, ABCAM) activity was measured with commercial kits according to the manufacturer’s instructions.

ATP measurement. ATP (MAK190, Sigma) was measured with commercial kit. Briefly, tissues were homogenized in ATP assay buffer and the high-molecular components were removed by size-exclusion filtration using Amicon Ultra 10 K columns (Millipore). Colorimetric assays were performed according to manufacturer’s instructions. ATP/ADP ratio was measured with the ADP/ATP Ratio Assay Kit (MAK133, Sigma) according to manufacturer’s instructions.

NDP/NADPH measurement. Tissues were homogenized in lysis buffer (0.1 M Tris–HCl pH 8.0, 0.01 M EDTA, 0.05% Triton X-100) and mixed with a sample volume of a phenolchlorormisonoxan (25:24:1) solution. After centrifugation, the upper phase was collected and passed onto Phase Lock gel tubes (3Prime) to remove any organic solvent. The high-molecular components were removed by size-exclusion filtration using Amicon Ultra 10 K columns (Millipore). Colorimetric assays were performed using the NADPA/NADPH QuantiFication Kit (JMK3-140 MBL) according manufacturer’s instructions.

Glutathione measurement. Total glutathione (GSH) and the ratio between reduced (GSH) and oxidized (GSSG) glutathione in liver were analyzed by using Glutathione (GSH/GSSG/Total) Assay kit (K264-100, Biovision). The assay is based on oxidation of GSH by the sulfhydril reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) to form 5′-thio-2-nitrobenzoic acid (TNB), which is yellow and thus measured spectrophotometrically at 412 nm. Briefly, liver tissues were homogenized in ice-cold glutathione assay buffer and mixed with 6 N perchloric acid (PCA) to precipitate proteins. After centrifugation (13,000 × g for 5 min), the supernatant was neutralized with half volume of 6 M KOH. Total GSH and GSSG/ GSH levels were determined according manufacturer’s procedure with a GLOMAX multi detection system spectrophotometer (Promega).

Determination of thiol- disulde redox equilibrium. Assays were performed as previously described, according to a procedure we refer to as redox immunohistochemistry (RHIC)29,36. Briefly, cells or freshly cut tissue sections (10 µm) from liver were fixed with 4% paraformaldehyde, 1 mM N-ethylmaleimide, 5 µM Alexa
Fluor 555-Maleimide, 0.05% Triton X-100 for 20 min. Quenching of unreacted thiol was achieved with 100 mM NEM. The samples were washed twice in PBS and then incubated for 20 min with 5 mM tris(2-carboxyethyl)phosphine (TCEP) in PBS. Samples were washed twice in PBS and the second labeling step was performed by incubating with 5 µM Alexa Fluor 488-Maleimide, 1 mM NEM for 20 min followed by two additional washing steps. Samples were acquired using a Leica SP5 laser scanning confocal microscope and analyzed using the MetaMorph software (Molecular Devices). The ratiometric di sulfide/thiol redox state was calculated as the Alexa488/Alexa555 ratio. Alternatively, oxidized and reduced cysteines were labeled with IRDye 800 maleimide (LI-COR biosciences) and Alexa Fluor 680-Maleimide, and proteins were extracted from the samples and resolved by SDS-PAGE. The gel was scanned with an Odyssey Platform (LI-COR Biosciences) and its Image Studio Lite software was used to analyze the fluorescent signal of oxidized and reduced cysteines29,30.

Flow cytometry. General ROS was measured with 5-(and 6)-chloromethyl-2′,7′-dichlorodihydro-fluoresceindiacetate, acetyl ester (CM-H₂DCFDA, C827, Molecular Probes), while mitochondrial superoxide production was detected with MitosOX Red (M36008, Invitrogen), according to manufacturer’s instructions. Annexin V/Propidium iodide (PI) staining was also performed according to the manufacturer’s guidelines. Briefly, cells were treated with diamine dissolved in cell media at the indicated concentrations. After 4 h, the cells were detached with trypsin, washed in ice-cold HBSS without Ca²⁺ and Mg²⁺ and suspended in 0.1 M Hepes (pH 7.4) 1.4 M NaCl, 25 mM CaCl₂, containing Propidium Iodide (PI; P4170, Sigma) or Annexin V (550474 BD Biosciences). Cells were incubated for 15 min at 4 °C in the dark and flow cytometry was immediately performed using FACSCARIA or FACScan (BD Biosciences), FlowJo Software (Tree Star Inc.) was used for data analysis.

Cell isolation. Isogenic primary mouse embryonic fibroblasts (MEF) lines were isolated from E13.5 embryos and cultured in low oxygen (3%). Human primary fibroblasts were cultured at 20% oxygen in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% Pen/strep. All participants or their legal caretakers gave written informed consent according to Erasmus MC institutional review board requirements.

Depending upon the specific experiment, cells were treated with 50 nM nucleosides (adenosine, uridine, cytidine and guanosine), 10 µg/ml α-amanitin (Sigma), 5 µg/ml actinomycin D or 50 µM 5,6-dichloro-1-F-D-ribofuranosylbenzimidazole (DRB) for the time frame indicated in the experiments.

Immunoblot procedures. Immunoblot analysis were performed according to the LI-COR Biosciences Guidelines; images have been acquired by the Odyssey Platform and analyzed by the Image Studio lite software (Li-COR Biosciences) and its Image Studio Lite software was used to analyze the Alexafluor signal of oxidized and reduced cysteines29,30.

In vivo drug treatments. N-acetylcysteine (NAC; AS5270, Sigma) and Rotenone (MP Biomedicals - 150154) have been administered to the mice in a concentration of 25 µL and 10 mg/L respectively, dissolved in mice drinking water starting from the age of 4 weeks. The solutions were freshly prepared and replenished every 3 days. The range of NAC doses was selected on the basis of previous literature27,28. As far as rotenone is concerned, we took as a starting point the work of Pan-Montojo and colleagues35, here, a dose of 5 mg/kg principally affected the gastrointestinal tract, therefore minimizing systemic toxicity. In total 5 mg/kg correspond to 0.125 mg for an average mouse with 25 grams body weight. Here, we decided to use a slightly lower dosage than what reported by Pan-Montojo and co-workers in light of the fragile phenotype of Erc1 mutants and of their general sensitivity. We therefore administered 10 mg/ml rotenone in drinking water, which approximately corresponds to 0.04 mg per mouse per day given that mice (including Erc1 mutants) drink ~4 mL of water daily (please see http://web.jhu.edu/animalcare/procedures/mouse.html).

Metabolic flux analysis. Isogenic primary mouse embryonic fibroblasts (MEF) derived from WT or Erc1C1 were kept in culture to reach confluency (1 × 10⁶ cells/cm²), then exposed to [1-14C]-Glucose 2 mM (Sigma-Aldrich, 453188) for 6 h. Cells were then washed twice with cold PBS and scraped with scrapers. Tubes were centrifuged at 1000 g for 10 °C and then frozen in liquid nitrogen. Cells were then harvested in 250 µL of ice-cold methanol/acetic acid 1:1 and spun at 20,000 x g for 5 min at 4 °C. Supernatant were then filtered through a regenerated cellulose filter, dried and resuspended in 100 µL of MeOH for subsequent analysis. The analysis was performed on an API-4000 triple quadrupole mass spectrometer (AB Sciex) coupled with a HPLC system (Agilent) and CTC PAL HTS autosampler (PAL System). The identity of all metabolites was confirmed using pure standards. Quantification of different metabolites was performed with a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using a cyano-phase LUNA column (50 mm × 4.6 mm, 5 µm; Phenomenex). Samples were analyzed by a 3 min run in negative ion mode. The mobile phases were phase A: H₂O and phase B: 2 mM ammonium acetate in MeOH. The gradient was 90% B for all the analyses with a flow rate of 500 µl/min. MultiQuant® software (version 3.0.2) was used for data analysis and peak review of chromatograms.

Statistical analysis. Experiments were performed at least in three independent biological and at least two independent technical replicates. All analyses were performed using Graph Pad Prism version 7.03 for Windows (GraphPad Software, La Jolla California USA). P values expressed as *P < 0.05; **P < 0.01; ***P < 0.001 were considered to be significant; in absence of indications, comparisons should be considered non-significant. For comparisons between two groups were calculated by unpaired two-tailed Student’s t tests and comparisons for more than two groups were calculated by one way ANOVA followed by Dunnett’s multiple comparison post-hoc test. Survival-curve statistical analysis was performed using the product-limit method of Kaplan and Meier (Log-rank Mantel-Cox test).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. A reporting summary for this Article is available as a Supplementary Information file. The datasets generated and/or analyzed in this study are available in the ArrayExpress repository, accession code E-MEXP-1503, https://www.ebi.ac.uk/arrayexpress/. Source data for the figures provided are available as a Source Data file. All relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request.

Received: 21 October 2018; Accepted: 22 September 2019;
Published online: 25 October 2019

References
1. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).
2. Gillit, L. C. & Scharer, O. D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253–276 (2006).
3. Marteijn, J. A., Lams, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–484 (2014).
4. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).
5. Gregg, S. Q. et al. A mouse model of accelerated liver ageing caused by a defect in DNA repair. Aging Cell 10, 216–226 (2011).
6. Vermeij, W. P., Hoeijmakers, J. H. & Pothof, J. Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu. Rev. Pharmacol. Toxicol. 56, 427–445 (2016).
7. Garinis, G. A. et al. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat. Cell Biol. 11, 605–615 (2009).
8. Cadet, J., Douki, T. & Ravani, J. L. Oxidatively generated base damage to cellular DNA. Free Radic Biol. Med. 49, 9–21 (2010).
9. Watson, E., Yilmaz, L. S. & Walhout, A. J. Understanding metabolic regulation at a systems level: metabolite sensing, mathematical predictions, and model organisms. Annu. Rev. Genet. 49, 553–575 (2015).
10. Staton, C. A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek 39, 545–565 (1973).
11. Pontes, M. H., Sevostyanova, A. & Groisman, E. A. When Too Much ATP Is Bad for Protein Synthesis. J. Mol. Biol. 427, 2586–2594 (2015).
12. Jao, C. Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl Acad. Sci. USA 105, 15779–15784 (2008).
13. Chipchase, M. D., O’Neill, M. & Melton, D. W. Characterization of premature liver polyploidy in DNA repair (Ercc1)-deficient mice. Hepatology 38, 958–966 (2003).
14. Nieser, F., Chipchase M. D., Clarke A. R., Melton D. W. Nucleotide excision repair gene (ERCC1) deficiency causes G2 arrest in hepatocytes and a reduction in liver bmicucleation: the role of p53 and p21. FASEB J. 14, 1073–1082 (2000).
15. Weeda, G. et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–430 (1997).
16. Daniel, L. et al. Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. Proc. Natl Acad. Sci. USA 115, E6770–E6779 (2018).
17. Vermeij, W. P. et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537, 427–431 (2016).
18. Sauerbier, W. & Hercules, K. Gene and transcription unit mapping by radiation effects. Annu. Rev. Genet. 12, 329–363 (1978).
19. McKay, B. C. et al. Regulation of ultraviolet light-induced gene expression by gene size. Proc. Natl Acad. Sci. USA 101, 6582–6586 (2004).
20. Oggio, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).
21. Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11, 479 (2010).
22. Somes, B. P. et al. Multiple mechanisms confining RNA polymerase II ubiquitination to polyserases undergoing transcriptional arrest. Cell 121, 913–923 (2005).
23. McKay, C. E. et al. UV light-induced degradation of RNA polymerase II is dependent on the Cockayne syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485, 93–105 (2001).
24. Icard, P. & Lincet, H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim. Biophys. Acta 1826, 423–433 (2012).
25. Marinho-Carvalho, M. M., Costa-Mattos, P. V., Spitz, G. A., Zancan, P. & Sola-Penna, M. Calmodulin upregulates skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators. Biochim. Biophys. Acta 1794, 1175–1180 (2009).
26. Nelson D. L., Cox M. M., Lehninger A. L. Lehninger Principles of Biochemistry, 7th edn. W. H. Freeman (2005).
27. Tornheim, K., Andres, V. & Schultz, V. Modulation by citrate of glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 266, 15675–15678 (1991).
28. Ralser, M. et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6, 10 (2007).
29. Horowitz, M. P. et al. Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxid. Redox Signal. 15, 855–871 (2011).
30. Mastroberardino, P. G., Orr, A. L., Hu, X., Na, H. M. & Greenamyre, J. T. A FRET-based method to study protein thiol oxidation in histological preparations. Biol. Pharm. Toxicol. 45, 971–981 (2009).
31. Stadtman, E. R. & Levine, R. L. Protein oxidation. Ann. N. Y. Acad. Sci. 899, 191–208 (2000).
59. Shao, L., Goronzy, J. J. & Weyand, C. M. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. *EMBO Mol. Med.* **2**, 415–427 (2010).

60. Li, Y. et al. Deficient activity of the nuclease MRE11A Induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. *Immunity* **45**, 903–916 (2016).

61. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of age-related arthritis. *J. Clin. Invest.* **123**, 291–301 (2017).

62. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. *Sci. Transl. Med.* **8**, 331ra338 (2016).

63. Perez, V. I. et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. *Proc. Natl Acad. Sci. USA* **106**, 3059–3064 (2009).

64. Yap, L. P., Garcia, J. V., Han, D. & Cadenas, E. The energy-redox axis in aging and age-related neurodegeneration. *Adv. Drug Deliv. Rev.* **61**, 1283–1298 (2009).

65. Poulton, C. et al. Progressive cerebellar atrophy and polyneuropathy: expanding the spectrum of PNKP mutations. *Neurogenetics* **14**, 43–51 (2013).

66. Rajasekaran, N. S. et al. Human alpha B-crystallin mutation causes oxidative stress and protein aggregation cardiomyopathy in mice. *Cell* **130**, 427–439 (2007).

67. Moreira, P. I. et al. Nucleic acid oxidation in Alzheimer disease. *Free Radic. Biol. Med.* **44**, 1493–1505 (2008).

68. Sepe, S. et al. Inefficent DNA Repair is an aging-related modifier of Parkinson’s disease. *Cell Rep.* **15**, 1866–1875 (2016).

69. Sepe, S., Payan-Gomez C., Milanese C., Hoeijmakers J. H., Mastroberardino P. G. Nucleotide excision repair in chronic neurodegenerative diseases. *DNA Repair* **12**, 568–577 (2013).

70. Richardson, A. & Cheung, H. T. Current concepts: I. The relationship between age-related changes in gene expression, protein turnover, and the responsiveness of an organism to stimuli. *Life Sci.* **31**, 605–613 (1982).

71. Castle, T., Katz, A. & Richardson, A. Comparison of RNA synthesis by liver nuclei from rats of various ages. *Mech. Ageing Dev.* **8**, 383–395 (1978).

72. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. *Nature* **441**, 1011–1014 (2006).

73. Seglen, P. O. Preparation of isolated rat liver cells. *Methods Cell Biol.* **13**, 29–83 (1976).

74. Balzarini, J. et al. Introduction of a fluorine atom at C3 of 3-deazauridine shifts its antimetabolite activity from inhibition of CTP synthetase to inhibition of orotidylate decarboxylase, an early event in the de novo pyrimidine biosynthesis pathway. *J. Biol. Chem.* **287**, 30444–30454 (2012).

75. Milanese, C. et al. Activation of the DNA damage response in vivo in activation deficient PNKP mutants. *Cell Death Dis.* **9**, 818 (2018).

76. Milanese, C. et al. Mitochondrial complex I reversible S-nitrosation improves bioenergetics and is protective in Parkinson’s disease. *Antioxid. Redox Signal* **28**, 44–61 (2018).

77. Levine, R. L., Williams, J. A., Stadman, E. R. & Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. *Methods Enzymol.* **233**, 346–357 (1994).

78. Clark, J. et al. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. *PLoS ONE* **5**, e12333 (2010).

79. Reyes, R. C. et al. Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid. *Neurotherapeutics* **13**, 217–225 (2016).

80. Berman, A. E. et al. N-acetylcysteine prevents loss of dopaminergic neurons in the EAA1C/- mouse. *Ann. Neurol.* **69**, 509–520 (2011).

81. Pan-Montojo, F. et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. *PLoS ONE* **5**, e8762 (2010).