EXACT EXPONENTIAL BOUNDS FOR THE RANDOM FIELD MAXIMUM DISTRIBUTION VIA THE MAJORING MEASURES (GENERIC CHAINING)

BY OSTROVSKY E., ROGOVER E.

Department of Mathematics and Statistics, Bar-Ilan University, 59200, Ramat Gan, Israel.

E-mail: galo@list.ru

Department of Mathematics and Statistics, Bar-Ilan University, 59200, Ramat Gan, Israel.

E-mail: rogovee@gmail.com

In this paper non-asymptotic exact exponential estimates are derived for the tail of maximums distribution of random field in the terms of majoring measures or, equally, generic chaining.

Key words: Majoring measures, generic chaining, random fields, exponential estimations, entropy, moment, Banach spaces of random variables, tail of distribution.

Mathematics Subject Classification (2000): primary 60G17; secondary 60E07; 60G70.

1. Introduction. Notations. Statement of problem.

Let \((\Omega, F, \mathbb{P})\) be a probability space, \(\Omega = \{\omega\}\), \(T = \{t\}\) be arbitrary set, \(\xi(t), t \in T\) be centered: \(E\xi(t) = 0\) separable random field (or process). For arbitrary subset \(S \subset T\) we denote

\[
Q(S, u) = P(\sup_{t \in S} \xi(t) > u), \quad u \geq 2. \tag{1}
\]

\[
Q_+(S, u) = P(\sup_{t \in S} |\xi(t)| > u), \quad u \geq 2. \tag{2}
\]

Our aim is obtaining an exponentially exact as \(u \to \infty\) estimation for the probability \(Q(u) \overset{\text{def}}{=} Q(T, u)\) in the terms of majoring measures or equally in the terms of generic chaining.

Definitions and some important results about \(E\sup_{t \in T} \xi(t)\) in the terms of majoring measures see, for example, in [2], [3], [6], p. 309 - 330, [10], [11], [12], [13]. In the so-called entropy terms this problem was considered in [3], [4]. See also [8].

Note that the majoring measures method is more general in comparison to the entropy technique ([6], p. 309 - 330, [10], [12]).

2. Auxiliary facts. In order to formulate our result, we need to introduce some addition notations and conditions. Let \(\phi = \phi(\lambda), \lambda \in (-\lambda_0, \lambda_0), \lambda_0 = const \in (0, \infty]\) be some even strong convex which takes positive values for positive arguments twice
continuous differentiable function, such that
\[\phi(0) = 0, \quad \phi'/(0) > 0, \quad \lim_{\lambda \to \lambda_0} \phi(\lambda)/\lambda = \infty. \] (3)

We denote the set of all these function as \(\Phi; \Phi = \{ \phi(\cdot) \} \).

We say that the centered random variable (r.v) \(\xi = \xi(\omega) \) belongs to the space \(B(\phi) \), if there exists some non-negative constant \(\tau \geq 0 \) such that
\[\forall \lambda \in (-\lambda_0, \lambda_0) \Rightarrow E \exp(\lambda \xi) \leq \exp[\phi(\lambda \tau)]. \] (4)
The minimal value \(\tau \) satisfying (4) is called a \(B(\phi) \) norm of the variable \(\xi \), write
\[||\xi||_{B(\phi)} = \inf\{\tau, \tau > 0 : \forall \lambda \Rightarrow E \exp(\lambda \xi) \leq \exp(\phi(\lambda \tau))\}. \]

This spaces are very convenient for the investigation of the r.v. having a exponential decreasing tail of distribution, for instance, for investigation of the limit theorem, the exponential bounds of distribution for sums of random variables, non-asymptotical properties, problem of continuous of random fields, study of Central Limit Theorem in the Banach space etc.

The space \(B(\phi) \) with respect to the norm \(|| \cdot ||_{B(\phi)} \) and ordinary operations is a Banach space which is isomorphic to the subspace consisted on all the centered variables of Orlichs space \((\Omega, F, P), N(\cdot) \) with \(N \) – function
\[N(u) = \exp(\phi^*(u)) - 1, \quad \phi^*(u) = \sup_{\lambda} (\lambda u - \phi(\lambda)). \]
The transform \(\phi \to \phi^* \) is called Young-Fenchel transform. The proof of considered assertion used the properties of saddle-point method and theorem of Fenchel-Moraux:
\[\phi^{**} = \phi. \]

The next facts about the \(B(\phi) \) spaces are proved in [4], [8, p. 19-40]:

1. \(\xi \in B(\phi) \Leftrightarrow E\xi = 0, \text{ and } \exists C = const > 0, \)
\[U(\xi, x) \leq \exp(-\phi^*(Cx)), x \geq 0, \]
where \(U(\xi, x) \) denotes in this article the tail of distribution of the r.v. \(\xi \):
\[U(\xi, x) = \max (P(\xi > x), P(\xi < -x)), x \geq 0, \]
and this estimation is in general case asymptotically exact.

Here and further \(C, C_j, C(i) \) will denote the non-essentially positive finite ”constructive” constants.

More exactly, if \(\lambda_0 = \infty \), then the following implication holds:
\[\lim_{\lambda \to \infty} \phi^{-1}(\log E \exp(\lambda \xi))/\lambda = K \in (0, \infty) \]
if and only if
\[
\lim_{x \to \infty} (\phi^*)^{-1}(|\log U(\xi, x)|)/x = 1/K.
\]
Here and further \(f^{-1}(\cdot)\) denotes the inverse function to the function \(f\) on the left-side half-line \((C, \infty)\).

The function \(\phi(\cdot)\) may be constructive introduced by the formula
\[
\phi(\lambda) = \phi_0(\lambda) \overset{df}{=} \log \sup_{t \in T} \mathbb{E} \exp(\lambda \xi(t)),
\]
if obviously the family of the centered r.v. \(\{\xi(t), t \in T\}\) satisfies the *uniform* Kramers condition:
\[
\exists \mu \in (0, \infty), \sup_{t \in T} U(\xi(t), x) \leq \exp(-\mu x), \quad x \geq 0.
\]

In this case, i.e. in the case the choice the function \(\phi(\cdot)\) by the formula (5), we will call the function \(\phi(\lambda) = \phi_0(\lambda)\) a natural function.

2. We define \(\psi(p) = p/\phi^{-1}(p), \quad p \geq 2\). Let us introduce a new norm (the so-called moment norm) on the set of r.v. defined in our probability space by the following way: the space \(G(\psi)\) consist, by definition, on all the centered r.v. with finite norm
\[
||\xi||_{G(\psi)} \overset{df}{=} \sup_{p \geq 2} |\xi|_p/\psi(p), \quad |\xi|_p = \mathbb{E}^{1/p}|\xi|^p.
\]

It is proved that the spaces \(B(\phi)\) and \(G(\psi)\) coincides: \(B(\phi) = G(\psi)\) (set equality) and both the norm \(|| \cdot ||_{B(\phi)}\) and \(|| \cdot ||\) are equivalent: \(\exists C_1 = C_1(\phi), C_2 = C_2(\phi) = const \in (0, \infty), \forall \xi \in B(\phi)\)
\[
||\xi||_{G(\psi)} \leq C_1 ||\xi||_{B(\phi)} \leq C_2 ||\xi||_{G(\psi)}.
\]

3. The definition (6) is correct still for the non-centered random variables \(\xi\). If for some non-zero r.v. \(\xi\) we have \(||\xi||_{G(\psi)} < \infty\), then for all positive values \(u\)
\[
\mathbb{P}(||\xi|| > u) \leq \exp(-u/(C_3 ||\xi||_{G(\psi)})).
\]
and conversely if a r.v. \(\xi\) satisfies (7), then \(||\xi||_{G(\psi)} < \infty\).

We suppose in this article that there exists a function \(\phi \in \Phi\) such that \(\forall t \in T \Rightarrow \xi(t) \in B(\phi)\) and
\[
\sup_{t} [||\xi(t)||_{B(\phi)}] < \infty,
\]
or equally \(\mathbb{E}\xi(t) = 0, \quad t \in T,\) and for all non-negative values \(x\)
\[
\sup_{t} \max [\mathbb{P}(\xi(t) > x), \mathbb{P}(\xi(t) < -x)] \leq \exp(-\phi^*(x)).
\]

Note that if for some \(C = const \in (0, \infty)\)
\[
Q_+(T, u) \leq \exp(-\phi^*(Cu)),
\]
then the condition (8) is satisfied (the necessity of the condition (8)).

M. Talagrand [10] [13], W. Bednorz [2], X. Fernique [3] etc. write instead our function \(\exp (-\phi^*(x)) \) some Youngs function \(\Psi(x) \) and used as a rule a function

\[\Psi(x) = \exp(-x^2/2) \]

(the so-called subgaussian case).

Without loss of generality we can and will suppose

\[\sup_{t \in T} ||\xi(t)||B(\phi) = 1, \]

(this condition is satisfied automatically in the case of natural choosing of the function \(\phi: \phi(\lambda) = \phi_0(\lambda) \)) and that the metric space \((T,d)\) relatively the so-called natural distance (more exactly, semi-distance)

\[d(t,s) \overset{\text{def}}{=} ||\xi(t) - \xi(s)||B(\phi) \]

is complete.

Recall that the semi-distance \(d = d(t,s) \), \(s,t \in T \) is, by definition, non-negative symmetrical numerical function, \(d(t,t) = 0 \), \(t \in T \), satisfying the triangle inequality, but the equality \(d(t,s) = 0 \) does not means (in general case) that \(s = t \).

For example, if \(\xi(t) \) is a centered Gaussian field with covariation function

\[D(t,s) = \text{Var}[\xi(t) - \xi(s)] = \sqrt{D(t,t) - 2D(t,s) + D(s,s)}. \]

There are many examples of martingales, e.g., in the article [7], \((\xi(n), F(n))\), \(T = \{1, 2, 3, \ldots, n, \ldots\} \) satisfying the following modification \((8a)\) of the condition (8):

\[\sup_n U(\xi(n)/\sigma(n), x) \leq \exp[-\phi^*(x)], \quad (8a), \]

in particular, there are many examples with

\[\phi^*(x) \sim x^r L^{1/r}(x)/r, \quad x \to \infty; \quad r = \text{const} \geq 1, \quad (9) \]

where as usually \(f(x) \sim g(x), \quad x \to \infty \) denotes

\[\lim_{x \to \infty} f(x)/g(x) = 1; \]

and with

\[n^\beta L_1(n) \leq \sigma(n) \leq n^\beta L_2(n), \quad \beta = \text{const} > 0, \quad (10) \]

\(L_1(x), L_2(x), L(x) \) are some positive continuous slowly varying as \(x \to \infty \) functions,

\[\sigma(n) = \sqrt{\text{Var}(\xi(n))}. \]

It is known ([4], [8], p. 22 - 25) that (9) is equivalent in the case \(r > 1 \) (under some simple assumption) to the following equality:

\[\lambda \to \infty \Rightarrow \phi(\lambda) \sim \lambda^s L^{-1/s}(\lambda^s)/s, \quad s = r/(r-1). \]
Let us introduce for any subset $V, V \subset T$ the so-called entropy $H(V, d, \epsilon) = H(V, \epsilon)$ as a logarithm of a minimal quantity $N(V, d, \epsilon) = N(V, \epsilon) = N$ of a balls $S(V, t, \epsilon), \ t \in V$:

$$S(V, t, \epsilon) \overset{\text{def}}{=} \{s, s \in V, \ d(s, t) \leq \epsilon\},$$

which cover the set V:

$$N = \min\{M : \exists\{t_i\}, i = 1, 2, \ldots, M, \ t_i \in V, \ V \subset \bigcup_{i=1}^{M} S(V, t_i, \epsilon)\},$$

and we denote also

$$H(V, d, \epsilon) = \log N; \ S(t_0, \epsilon) \overset{\text{def}}{=} S(T, t_0, \epsilon), \ H(d, \epsilon) \overset{\text{def}}{=} H(T, d, \epsilon).$$

It follows from Hausdorf’s theorem that $\forall \epsilon > 0 \Rightarrow H(V, d, \epsilon) < \infty$ iff the metric space (V, d) is precompact set, i.e. is the bounded set with compact closure.

Now we recall, modify and rewrite some definition of generic chaining theory, belonging to X.Fernique [3] and M.Talagrand [10] - [13]. Let the ball $S(t_0, \epsilon) = S(t_0, \delta), \ t_0 \in T, \ \delta \in (0, 1]$ be a given. The sequence R of finite subsets of $S(t_0, \delta)$ $T_m, m = 0, 1, 2, \ldots, T_m \subset S(t_0, \delta), R = \{T_m\}$ such that $T_0 = \{t_0\}$; here and further a symbol $|V|$ will denote the number of elements of a finite set V: $|V| = \text{card}(V)$, and such that the set $\bigcup_{n=0}^{\infty} T_n$ is dense in T with respect to the semi-distance d, is called generic chaining of $S(t_0, \delta)$. The set of all generic chaining we will denote W:

$$W = W(S(t_0, \delta)) = W(t_0, \delta) \overset{\text{def}}{=} \{R\}.$$

For any element $t \in S(t_0, \delta)$ we denote arbitrary, but fixed (non-random) element $\pi_n(t)$ of a subset of $T_n : \pi_n(t) \in T_n$ such that

$$d(t, \pi_n(t)) = \min_{s \in T_n} d(t, s). \ (11)$$

Let $\gamma = \{\gamma_n\}, \ n = 1, 2, \ldots$ be arbitrary fixed non-random sequence of a positive numbers such that

$$\sum_{n=1}^{\infty} 1/\gamma_n = 1, \ \gamma_1 \geq 3; \ (12)$$

for example, $1/\gamma_n = \rho^{n-1}(1-\rho), \ \rho = \text{const} \in (2/3, 1)$. Let us introduce the following important function

$$L(t_0, \delta, R, \gamma) = L(t_0, \delta, R) = \sup_{t \in B(t_0, \delta)} \sum_{m=1}^{\infty} d(\pi_m(t), \pi_{m-1}(t))/\gamma_m. \ (13)$$

We will consider only the so-called admissible random fields (in the terms of M.Talagran) $\xi(\cdot)$, i.e. which satisfied the following conditions.

Let us denote

$$K(\xi, \phi, \delta) = K(\delta) = \inf_{R \in A} \inf_{\gamma} \sup_{t_0 \in T} L(t_0, \delta, R, \gamma),$$

if the set A is not empty, and $K(\delta) = +\infty$ in the other case.
The following conclusions will be interest only in the case if for some function \(\phi(\cdot) \in \Phi \), for example for the natural function \(\phi_0(\cdot) \)

\[
\lim_{\delta \to 0^+} K(\xi, \phi, \delta) = 0. \tag{14}
\]

We will suppose moreover that the condition (14), which will called the uniform generic chaining condition, write: \(\xi(\cdot), \phi \in UA \), is satisfied.

Let us introduce also the events \(D, E(n), n \geq 1 \) as follow: \(E(n) = E(u; n, t_0, \delta, R) = \)

\[
\cup_{t \in S(t_0, \delta)} [\xi(\pi_n(t)) - \xi(\pi_{n-1}(t)) > u d(\pi_n(t), \pi_{n-1}(t))/\gamma_n] =
\]

\[
\cup_{t \in T_{n-1}} [\xi(\pi_n(t)) - \xi(\pi_{n-1}(t)) > u d(\pi_n(t), \pi_{n-1}(t))/\gamma_n] =
\]

\[
\{ \omega : \max_{t \in T_{n-1}} \frac{\xi(\pi_{n-1}(t)) - \xi(\pi_n(t))}{d(\pi_{n-1}(t), \pi_n(t))} > \frac{u}{\gamma_n} \},
\]

if we define \(0/0 = 0 \) (in the case if \(d(\pi_{n-1}(t), \pi_n(t)) = 0 \));

\[
D = D(u; t_0, \delta, R) = \cup_{n=1}^{\infty} E(u; n, t_0, \gamma, R).
\]

We denote also

\[
Z_n = Z_n(u; t_0, \delta, \gamma, R) = P[E(u; n, t_0, \gamma, R)],
\]

\[
Y(u) = Y(u; t_0, \delta, R) = P[D(u; t_0, \delta, R)].
\]

It is evident that

\[
Z_n \leq |T_n| |T_{n-1}| \exp (-\phi^*(u/\gamma_n)),
\]

\[
Y(u) \leq \sum_{n=1}^{\infty} |T_n| |T_{n-1}| \exp (-\phi^*(u/\gamma_n)) \overset{\text{def}}{=} X(u; t_0, \delta, \gamma, R), \tag{15}
\]

since

\[
P[\xi(\pi_n(t)) - \xi(\pi_{n-1}(t)) > u d(\pi_n(t), \pi_{n-1}(t))] \leq \exp (-\phi^*(u)), \ u > 0.
\]

The random field \(\xi(t) \) and the function \(\phi(\cdot) \) satisfies, by definition, the uniform generic chaining condition, and write \(\xi(\cdot) \in A \), or more simple: there exists the set of generic chaining \(R \) (depending on the \(\xi(\cdot) \)) belonging to \(A \), \(R \in A \), if for all \(\delta \in (0, 1) \) and for arbitrary ball \(S(t_0, \delta) \) there exists (for some sequence \(\{\gamma\} \)) a generic chaining \(R \) in \(S(t_0, \delta) \) for which

\[
Y(u; t_0, \delta, \gamma, R) \leq \exp (-\phi^*(u/2)), \tag{16}
\]
if, for example,

\[X(u; t_0, \delta, \gamma, R) \leq \exp \left(-\phi^* \left(\frac{u}{2} \right) \right). \]

\[(16a) \]

The existence of such a generic chaining it follows from our next assumptions.

Lemma 1. We have under the conditions (14) and (16) (or (16a)) for all the values \(\delta \in (0, 1) \):

\[
\sup_{t_0 \in T} \mathbb{P} \left[\sup_{t \in S(t_0, \delta)} (\xi(t) - \xi(t_0)) > u K(\delta) \right] \leq \exp \left(-\phi^* \left(\frac{u}{2} \right) \right).
\]

Proof. The proof of this assertion is alike to the original proof of Talagran ([10], [12, chapter 1, pp. 9 - 14]) for the probability \(Q(u) = Q(T; u) \) estimation. Namely, let \(t_0 \) be arbitrary element of \(T \), \(\delta \in (0, 1] \). Let also \(R = \{T_0, T_1, T_2, \ldots\} \), \(R \in W \) be arbitrary chaining into the ball \(S(t_0, \delta) \). We rewrite the Talagran's decomposition ([12], chapter 1, p. 10) for the ball \(S(t_0, \delta) \):

\[
\xi(t) - \xi(t_0) = \sum_{n=1}^{\infty} [\xi(\pi_n(t)) - \xi(\pi_{n-1}(t))].
\]

Recall that \(\pi_0(t) = t_0 \) and that \(\forall t \in T \)

\[
\lim_{n \to \infty} \pi_n(t) = t, \quad \lim_{n \to \infty} \xi(\pi_n(t)) = \xi(t)
\]

in the sense of convergence in probability.

We get analogously to the works [10], [11] and taking into account the inclusion \(R \in A \):

\[
G(u; t_0, \delta) \overset{\text{def}}{=} \mathbb{P} \left(\sup_{t \in S(t_0, \delta)} (\xi(t) - \xi(t_0)) > u K(\delta) \right) \leq Y(u; t_0, \delta, \gamma, R) \leq \exp \left(-\phi^* \left(\frac{u}{2} \right) \right).
\]

\[(17) \]

Note that it follows from conclusion of Lemma 1 the continuity of \(\xi(t) \) with probability one in the semi-distance \(d \):

\[
\mathbb{P}(\xi(\cdot) \in C(T, d)) = 1;
\]

\(C(T, d) \) denotes as usually the space of all continuous with respect to the semi-distance \(d \) functions \(f : T \to R \).

The conditions (14) and (16) is equivalent to the so-called condition of the uniform convergence of the majoring integral, see [10], [11].

3. Main result. Let us denote for \(h \in \left(0, \sup_{\delta \in (0, 1)} K(\delta) \right) \overset{\text{def}}{=} (0, K_0) \)

\[
K^{-1}(h) = \inf \{\delta, \delta \in (0, 1), \ K(\delta) \geq h\},
\]

\[
\Delta(C, u) = \Delta_\phi(u) = K^{-1} \left[0.5 \ C / (u \ \phi^* (u)/du) \right],
\]

\[
\Delta_\phi(u) = K^{-1} \left[0.5 \ C / (u \ \phi^* (u)/du) \right],
\]
where d/du denotes the right derivative; it is obvious that the derivative $d\phi^*(u)/du$ there exists, is continuous and the function $u \to \Delta(u)$ tends monotonically to zero as $u \to \infty$. Therefore, for arbitrary constant $C \in [1, \infty)$ there is a positive value $u_0 = u_0(C)$, for which $u \geq u_0 \Rightarrow \Delta(C, u) \leq 0.5K_0$.

Theorem 1. Suppose for any function $\phi(\cdot) \in \Phi$

$$\lim_{\delta \to 0^+} K(\xi(\cdot), \phi, \delta) = 0$$

and suppose the condition (16), or, more generally, (16a) is also satisfied.

Then for arbitrary constant $C \in (0, \infty)$ and for all the values $u \geq u_0(C)$

$$Q(u) \leq [\exp(C) + 1] N(T, d, C\Delta\phi(u)) \exp(-\phi^*(u)). \quad (18)$$

As a consequence:

$$Q_+(u) \leq 2 [\exp(C) + 1] N(T, d, C\Delta\phi(u)) \exp(-\phi^*(u)).$$

Proof. Step 1. Let C be arbitrary positive constant,

$$u \geq u_0(C), \delta_0 = \delta_0(u) \overset{\text{def}}{=} K^{-1}(0.5 C \Delta(u)),$$

We consider at first the probability

$$Q(W, u) = P \left(\sup_{t \in S(t_0, \delta_0)} \xi(t) > u \right),$$

$W = S(t_0, \delta_0)$. Denote $\beta = C \Delta(u), \alpha = 1 - \beta$; then $\alpha, \beta > 0, \alpha + \beta = 1$. We obtain:

$$Q(W, u) \leq P(\xi(t_0) > \alpha u) + P(\sup_{t \in W}(\xi(t) - \xi(t_0)) > \beta u) \overset{\text{def}}{=} I_1 + I_2.$$

For the first member is true the simple estimation:

$$I_1 \leq \exp(-\phi^*(\alpha u)).$$

As long as the function $x \to \phi^*(x)$ is convex and twice differentiable,

$$\phi^*(\alpha u) \geq \phi^*(u) - (\phi^*)'(u) C u \Delta(u) = \phi^*(u) - C;$$

therefore

$$I_1 \leq \exp(C) \exp(-\phi^*(u)).$$

Further, since

$$K(\delta_0) \leq 0.5 C \Delta(u),$$

we conclude using the inequality (17)

$$I_2 \leq \exp(-\phi^*(u)).$$
Summing, we receive:
\[Q(W, u) \leq C_1 \exp(-\phi^*(u)), \quad C_1 = 1 + \exp C. \]

Step 2. Let \(\epsilon = C \Delta(u) \) and \(\{ t_i \}, \ i = 1, 2, \ldots, N \), where \(N = N(T, d, \epsilon) \) be a centers of a balls \(B(T, d, \epsilon) \) forming a minimal (not necessary to be unique) \(\epsilon \) – net of \(T \) with respect to the semi-distance \(d \).

Since the probability \(Q(S, u) \) has a property
\[Q(S_1 \cup S_2, u) \leq Q(S_1, u) + Q(S_2, u), \quad S_1, S_2 \subset T, \]
we conclude:
\[Q(T, u) \leq \sum_{i=1}^{N} Q(S(t_i, C\Delta(u))). \]

The last probabilities was estimated in (18).

The low bounds for probabilities \(Q(T, u), \ Q_+(T, u) \) was obtained in ([8], 105 - 117); see also [9].

Corollary. We explain here the exponential exactness of the estimation of theorem 1.

In many practical cases (statistics, method Monte-Carlo etc.) the entropy \(N(T, d, C\Delta_\phi(u) \) satisfies the inequality: \(\forall \epsilon \in (0, 1/2) \ \exists U = U(\epsilon) \in (0, \infty) \ \Rightarrow \ \forall u \geq U(\epsilon) \)
\[N(T, d, C\Delta_\phi(u) \leq \exp(\phi^*(\epsilon u)), \]
for example,
\[N(T, d, C\Delta_\phi(u)) \leq C(u + 1)^\kappa, \quad \kappa \in (0, \infty), \ u \geq 0. \]

Therefore in this cases
\[Q(T, u) \leq C_1(\epsilon) \exp(-\phi^*((1 - \epsilon))u). \]

But there exists a random variable \(\xi, \ \xi \in B(\phi), \ ||\xi||B(\phi) = 1 \) for which for \(u \geq U(\epsilon) \)
\[P(\xi > u) \geq C_2(\epsilon) \exp(-\phi^*((1 + \epsilon))u). \]

4. Exponential bounds for the sums of random fields. Let \(\{ \xi_i(t) \}, \ i = 1, 2, \ldots \) be an independent copies of \(\xi(t), \)
\[\eta_n(t) = n^{-1/2} \sum_{i=1}^{n} \xi_i(t), \]
\[Q_n(S, u) = P\left(\sup_{t \in S} \eta_n(t) > u \right), \quad Q_n(u) = Q_n(T, u), \]
\[9 \]
\(Q_\infty(S, u) = \sup_n Q_n(S, u), \; Q_\infty(u) = Q_\infty(T, u). \)

We obtain in this section using (18) the exponentially exact as \(u \to \infty \) in the aforementioned sense uniform and non-uniform estimations for the probabilities \(Q_n(u), Q_\infty(T, u) \) again in the terms of generic chaining.

In the entropy terms this estimations are obtained in [1], [5].

Let us denote for \(\lambda \in (-\lambda_0, \lambda_0) \)
\[
\phi_n(\lambda) = n \phi(\lambda/\sqrt{n}), \; \zeta(\lambda) = \sup_n \phi_n(\lambda),
\]
and introduce some new semi-distances:
\[
d_n(t, s) = ||\xi(t) - \xi(s)||B(\phi_n), \quad r(t, s) = ||\xi(t) - \xi(s)||B(\zeta).
\]
As long as there exists a limit \(\lim_{n \to \infty} n \phi(\lambda/\sqrt{n}) = \sigma^2 \lambda^2 / 2, \; \sigma^2 = \text{const} \in (0, \infty), \)
we conclude that the function \(\zeta(\cdot) \) exists, is non-trivial and convex.

Theorem 2.

A. Suppose for some function \(\phi(\cdot) \in \Phi \)
\[
\lim_{\delta \to 0^+} K(\eta_n(\cdot), \phi_n, \delta) = 0.
\]

Then for arbitrary constant \(C \in (0, \infty) \) and for all the values \(u \geq u_0(C) \) the following inequality holds:
\[
Q_n(u) \leq [\exp(C) + 1] \; N(T, d_n, C\Delta_{\phi_n}(u)) \; \exp(-\phi_n^*(u)).
\]

B. Suppose for some function \(\phi(\cdot) \in \Phi \)
\[
\lim_{\delta \to 0^+} \sup_n K(\eta_n(\cdot), \zeta, \delta) = 0.
\]

Then for arbitrary constant \(C \in (0, \infty) \) and for all the values \(u \geq u_0(C) \)
\[
Q_\infty(u) \leq [\exp(C) + 1] \; N(T, r, C\Delta_{\zeta}(u)) \; \exp(-\zeta^*(u)).
\]

The conclusion of theorem 2 it follows trivially from the theorem 1 and the following elementary fact: if \(\theta \in B(\phi), \; \phi \in \Phi, \) and \(\theta(i) \) are independent copies of \(\theta, \)
\[
\nu_n \overset{\text{def}}{=} n^{-1/2} \sum_{i=1}^n \theta(i),
\]
then
\[
E \exp(\lambda \nu_n) \leq \exp(\phi_n(\lambda)).
\]

Note that under the conditions of theorem 2 **B** the sequence of the random fields \(\{\xi_i(t)\} \) satisfies the Central Limit Theorem (CLT) in the Banach space \(C(T, r) \) of all continuous in the semi-distance \(r \) functions \(f : T \to R. \)
Recall that the CLT in the considered space means that for all continuous bounded functional \(F : C(T, r) \to R \)

\[
\lim_{n \to \infty} E F(\eta_n(\cdot)) = F(\eta_\infty(\cdot))
\]
or equally that for all continuous functional \(F : C(T, r) \to R \)

\[
\lim_{n \to \infty} \text{Law}(F(\eta_n(\cdot))) = \text{Law}(F(\eta_\infty(\cdot))).
\]

Indeed, the convergence of the finite-dimensional distributions \(\{\eta_n(t)\} \) as \(n \to \infty \) to the finite-dimensional distributions of a Gaussian random centered continuous with probability one relative to the distance \(r \) field \(\eta_\infty(t) \) with covariance function

\[
E \eta_\infty(t) \eta_\infty(s) = E \xi_1(t) \xi_1(s)
\]
is evident; the tightness of the family of measures induced by the random fields \(\{\eta_n(t)\}, t \in T \) in the space \(C(T, r) \) it follows from the equality (15) for the random fields \(\eta_n(t) \).

Thus, we can write, e.g., for each positive values \(u \):

\[
\lim_{n \to \infty} \mathbf{P}(\sup_{t \in T} |\eta_n(t)| > u) \to \mathbf{P}(\sup_{t \in T} |\eta_\infty(t)| > u).
\]

The exponential estimation (and the exact asymptotic) for the last probability is known ([9], chapter 3).

The last equality play very important role in the Monte-Carlo method and in statistics ([9], chapter 4).

5. Examples. We will consider in this section a two examples random fields where a so-called entropy integral (some generalization of Dudley’s integral, see ([6], p. 310)

\[
I = \int_0^1 \psi^{-1}(\exp H(T, d, \epsilon)) \, d\epsilon, \quad \psi(x) = \exp(-\phi^*(x))
\]
diverges. We intend to obtain in these examples the exponential exact estimation for tail of maximum distribution using our methods.

The first example belongs to M.Talagrand [13].

A. Subgaussian random field. Let \(\{\epsilon(n)\}, n = 1, 2, \ldots \), i.e. \(T = Z_\epsilon \), be a sequence of independent symmetrically distributed subgaussian r.v.:

\[
\mathbf{P}(|\epsilon(i)| > x) = \exp(-x^2/2), \quad x \geq 0,
\]
and let \(u \geq 2, \)

\[
\xi(n) = \epsilon(n)/\sqrt{\log(n + e - 1)}.
\]

It follows from estimation of theorem 1 after the optimization over \(C \):

\[
Q(u) \leq \exp(-0.5 \, u^2 + C_0),
\]
where \(C_0 \) is some absolute constant, in the comparison to the real value of \(Q(u) \), for which

\[
\exp(-0.5\ u^2) + \exp\left(-(0.5 + C_2)u^2\right) \leq \exp(-0.5\ u^2) + \exp\left(-(0.5 + C_1)\ u^2\right),
\]

(asympotical exponential exactness).

B. Exponential bounds of distribution in the LIL for martingales.

Assume here that the martingale \((\xi(n), F(n))\) satisfies the conditions (8a), (9) and (10). Let us choose

\[
v(n) = v_r(n) = \log(\log(n + 3))^{1/r},
\]

or equally

\[
v(n) = v_r(n) = \log(\log(\sigma(n) + 3))^{1/r},
\]

then we obtain after some calculation on the basis of theorem 1 under condition (16a) instead (16) and choosing the partition over the balls, more exactly, closed intervals \(R = \{[A(k), A(k + 1) - 1]\} = \{[A(k), B(k)]\} \) of a view:

\[
A(k) = Q^{k-1},
\]

where \(Q = \lfloor (1 + \epsilon)^k \rfloor \) for \(k \geq k_0 \), \(\epsilon = \text{const} > 0 \) and \([Z] \) denotes here the integer part of \(Z \); \(t_0 = A(k) \), \(\delta = B(k) - A(k) \) :

\[
P\left(\sup_n \frac{\xi(n)}{\sigma(n) v_r(n)} > u\right) \leq \exp\left[-C\ u^r\ L^{1/r}(u)\right], \ u > 2. \tag{20}
\]

In the considered case the entropy integral in general case, i.e. if

\[
\sup_n P\left(\frac{\xi(n)}{\sigma(n) v_r(n)} > u\right) \geq \exp\left[-C_0\ u^r\ L^{1/r}(u)\right], \ u > 2,
\]

divergent. In detail, suppose \(\exists n_0 = 1, 2, \ldots \Rightarrow \)

\[
P\left(\frac{\xi(n_0)}{\sigma(n_0)} > u\right) \geq \exp\left[-C_2\ u^r\ L^{1/r}(u)\right], \ u > 2,
\]

and let us introduce the random process (sequence)

\[
\chi(n) = \frac{\xi(n)}{\sigma(n) v_r(n)},
\]

and we must add to the set \(T \) the infinite point \(\{\infty\} \) and define for the completeness of the set \(T : \chi(\infty) = 0. \)

We have for the natural function \(\phi^*_r(\cdot) \) for the process \(\chi(n) : \)

\[
\phi_r(\lambda) \overset{\text{def}}{=} \log E \sup_n \exp(\lambda \chi(n))
\]
the "tail" inequality: \(x \geq 2 \Rightarrow \)

\[
C_1 x^r L^{1/r}(x) \leq \phi_r^*(x) \leq C_2 x^r L^{1/r}(x).
\]

The natural distance \(d_\chi(n, m) \) for the process \(\chi(n) \) is calculated by the formula

\[
d_\chi(n, m) = ||\chi(n) - \chi(m)|| B(\phi_r).
\]

Put \(m = \infty \); then we have for the amount \(N = N(T, d_\chi, \varepsilon) \) of optimal \(\varepsilon \)-net the inequality

\[
\varepsilon \geq d_\chi(n, \infty) \geq C/v_r(N).
\]

We find solving the last inequality relatively the variable \(N \):

\[
H(T, d_\chi, \varepsilon) \geq \exp(C(r) /\varepsilon^r), \, \varepsilon \in (0, 1/2].
\]

The inequality [20] is in general case exact: for all the values \(r = 2/d, \beta = d/2, \, d = 1, 2, \ldots \) there exists a polynomial martingale \((\xi(n), F(n))\) satisfying the conditions (9) and (10) with \(L_1(x) = L_2(x) = L(x) = 1 \) and such that

\[
P \left(\sup_n \frac{\xi(n)}{\sigma(n) v_r(n)} > u \right) \geq \exp [-C_3 u^r], \, u > 2, \quad (21a)
\]

and

\[
P \left[\lim_{n \to \infty} \frac{\xi(n)}{\sigma(n) v_r(n)} > 0 \right] > 0. \quad (21b)
\]

In detail, let us consider the Rademacher sequence \(\{\varepsilon(i)\}, \, i = 1, 2, \ldots \) i.e. where \(\{\varepsilon(i)\} \) are independent and \(P(\varepsilon(i) = 1) = P(\varepsilon(i) = -1) = 0.5 \).

It is known that that the r. v. \(\{\varepsilon(i)\} \) belongs to the \(B(\phi_2) \) space with the corresponding function

\[
\phi_2(\lambda) = 0.5 \lambda^2, \, \lambda \in (-\infty, \infty).
\]

Indeed,

\[
E(\exp(\lambda \varepsilon(i))) = \cosh(\lambda) \leq \exp(0.5\lambda^2).
\]

Let us denote for \(d = 1, 2, 3, \ldots \) \(\xi(n) = \xi_d(n) = \)

\[
\sum \sum \ldots \sum_{1 \leq i(1) < i(2) \ldots < i(d) \leq n} \varepsilon(i(1)) \varepsilon(i(2)) \varepsilon(i(3)) \ldots \varepsilon(i(d))
\]

under natural filtration \(F(n) = \sigma(\{\varepsilon(j), \, j \leq n\}) \).

It is easy to verify that \((\xi(n), F(n)) \) is a martingale and that

\[
0 < C_1 \leq \sigma^2(n) / n^d \leq C_2 < \infty.
\]

We will prove the following inequality:

\[
P \left(\lim_{n \to \infty} \frac{\xi(n)}{n \log (\log(n + 3))^{d/2}} > 0 \right) > 0.
\]
It is enough to consider only the case \(d = 2 \), i.e. when
\[
\xi(n) = \sum_{1 \leq i < j \leq n} \epsilon(i) \epsilon(j).
\]

We observe:
\[
2 \xi(n) = \left(\sum_{k=1}^{n} \epsilon(k) \right)^2 - \sum_{m=1}^{n} (\epsilon(m))^2 \overset{\text{def}}{=} \Sigma_1(n) - \Sigma_2(n).
\]

From the classical LIL on the form belonging to Hartman-Wintner it follows that there exist a finite non-trivial non-negative random variables \(\theta_1, \theta_2 \) for which
\[
|\Sigma_2(n)| \leq n + \theta_2 \sqrt{n \log \log(n + 3)}
\]
and
\[
\Sigma_1(n_m) \geq \theta_1 n_m \log(n_m + 3)
\]
for some (random) integer positive subsequence \(n_m, m \to \infty \).

This completes the proof of inequality of (21b); the relation (21a) may be proved by means of more fine considerations.

More exactly, by means of considered method may be proved the following relation:
\[
\lim_{n \to \infty} \frac{\xi(n)}{(n \log \log(n + 3))^{d/2}} \overset{\text{a.e.}}{=} \frac{2^{d/2}}{d!}.
\]

Note that we use in the martingale case in order to estimate the variable \(Y(u; t_0, \delta, \gamma, R) \) inside from the generic chaining method some classical properties of martingales and \(B(\phi) \) spaces: Doob’s inequality, moment estimations, connection with \(G(\psi) \) norms in order to calculate the value \(Y(u; t_0, \delta, R) \).

Namely, let us denote \(E(k) = [A(k), B(k)] \). But we write instead the estimation (17) for the probability \(G(u; t_0, \delta) \) the following estimation: \(Y_k(u) \overset{\text{def}}{=} \)
\[
Y(u; t_0, \delta, \gamma, R) \leq P \left(\max_{n \in E(k)} \xi(n) > u \sigma(A(k)) \nu_r(A(k))/\sigma(B(k)) \right),
\]
as long as both the functions \(\sigma(\cdot) \) and \(\nu_r(\cdot) \) are monotonically increasing.

It follows from the Doob’s inequality
\[
| \max_{n \in E(k)} \xi_n |_p \leq C \sigma(B(k)) \cdot (p/\phi^{-1}(p)) \cdot (p/(p - 1)) \leq 2 C' \sigma(B(k)) \cdot (p/\phi^{-1}(p))
\]
as long as \(p \geq 2 \). Therefore
\[
Y_k(u) \leq \exp \left(-\phi^*(Cu \sigma(A(k)) \nu_r(A(k))/\sigma(B(k)) \right). \tag{22}
\]
The assertion (20) it follows from (22) after the summing over \(k \).
Moreover, if the martingale \((\xi(n), F(n))\) satisfies the conditions (8a), (9) and (10), then with probability one

\[
\lim_{n \to \infty} \frac{\xi(n)}{\sigma(n) \nu_r(n)} \leq 1,
\]

and the last inequality is exact, e.g., for the polynomial martingales [7].

Note that in this case the condition of "convergence of majoring integral" is not satisfied.
REFERENCES

1. Bagdasarova I.R. and Ostrovsky E.I. (1995). A nonuniform exponential estimations for large deviations in a Banach space. Theory Probab. Appl. 45, 638-642.

2. Bednorz W. (2006). A theorem on Majorizing Measures. Ann. Probab. 34, 1771-1781. MR1825156

3. Fernique X. (1975). Regularite des trajectoires des function aleatoires gaussiennes. Ecole de Probablite de Saint-Flour, IV 1974, Lecture Notes in Mathematics. 480, 1-96, Springer Verlag, Berlin.

4. Kozachenko Yu. V., Ostrovsky E.I. (1985). The Banach Spaces of random Variables of subgaussian type. Theory of Probab. and Math. Stat. (in Russian). Kiev, KSU, 32, 43 - 57.

5. Kurbanmuradov O., Sabelfeld K. (2007). Exponential bounds for the probability deviation of sums of random fields. Preprint. Weierstraß - Institut fur Angewandte Analysis und Stochastik (WIAS), ISSN 0946 8633, p. 1-16.

6. Ledoux M., Talagrand M. (1991) Probability in Banach Spaces. Springer, Berlin, MR 1102015.

7. Ostrovsky E. Bide-side exponential and moment inequalities for tail of distribution of Polynomial Martingales. Electronic publication, arXiv: math.PR/0406532 v.1 Jun. 2004.

8. Ostrovsky E.I. (1999). Exponential estimations for Random Fields and its applications (in Russian). Russia, OINPE.

9. Ostrovsky E.I. (2002). Exact exponential estimations for random field maximum distribution. Theory Probab. Appl. 45 v.3, 281 - 286.

10. Talagrand M. (1996). Majorizing measure: The generic chaining. Ann. Probab. 24, 1049 - 1103. MR1825156

11. Talagrand M. (2001). Majorizing Measures without Measures. Ann. Probab. 29, 411-417. MR1825156

12. Talagrand M. (2005). The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer, Berlin. MR2133757.

13. Talagrand M. (1990). Sample boundedness of stochastic processes under increment conditions. Ann. Probab. 18, 1 - 49.
DEPARTMENT OF MATHEMATICS

BAR-ILAN UNIVERSITY

RAMAT GAN, BEN GURION STREET, 2

ISRAEL 76521

E-MAIL: galo@list.ru

E-MAIL: rogovee@gmail.com
Ostrovsky E.
Address: Ostrovsky E., ISRAEL, 76521, Rehovot, Shkolnik street. 5/8. Tel. (972)-8- 945-16-13.
e-mail: Galo@list.ru

Rogover E.
Address: Rogover E., ISRAEL, 84105, Ramat Gan.
e-mail: rogovee@gmail.com