Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Research

If you build it, will they come? Is test site availability a root cause of geographic disparities in COVID-19 testing?

B. Hendricks a, b, *, B.S. Price b, c, T. Dotson b, W. Kimble b, S. Davis b, M. Khodaverdi b, A. Halasz d, G.S. Smith a, b, S. Hodder b

a School of Public Health, West Virginia University, Morgantown, WV 26506, USA
b West Virginia Clinical and Translational Sciences Institute, Morgantown, WV 26506, USA
c John Chambers School of Business, West Virginia University, Morgantown, WV 26506, USA
d Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Article info
Article history:
Received 8 June 2022
Received in revised form
24 August 2022
Accepted 13 September 2022
Available online 20 September 2022

Keywords:
COVID-19
Test uptake
Underserved states
Geographically weighted regression

Abstract
Objectives: The purpose of this study was to examine the relationship between test site availability and testing rate within the context of social determinants of health.

Study design: A retrospective ecological investigation was conducted using statewide COVID-19 testing data between March 2020 and December 2021.

Methods: Ordinary least squares and geographically weighted regression were used to estimate state and ZIP code level associations between testing rate and testing sites per capita, adjusting for neighbourhood-level confounders.

Results: The findings indicate that site availability is positively associated with the ZIP code level testing rate and that this association is amplified in communities of greater economic deprivation. In addition, economic deprivation is a key factor for consideration when examining ethnic differences in testing in medically underserved states.

Conclusion: The study findings could be used to guide the delivery of testing facilities in resource-constrained states.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Royal Society for Public Health. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The United States has faced unprecedented challenges to its public health infrastructure over the last 3 years. The COVID-19 pandemic has caused and continues to cause large-scale impacts on households, communities and governments. To date, hundreds of millions of people have received COVID-19 testing within the United States alone. Modalities and delivery of testing vary between communities but typically relate to (1) presentation of a symptomatic patient or (2) population-level disease and preventive screening. During the early phase of the pandemic, before COVID-19 vaccines, testing led to the implementation of control measures such as mask wearing and social distancing. After rollout of the vaccine, testing reduced by one-third across the United States. However, the reduction in testing was short lived, as utilisation of available testing services increased with the detection and surges in positive cases of the COVID-19 Delta variant in April and August 2021, respectively. The high number of positive cases remained constant through to the end of 2021 for states such as Virginia, and official reports of the Omicron variant were detected in December 2021.

Testing inequities have received considerable research focus over the last 2 years. Studies highlight disparities in the rate of COVID-19 testing within communities of colour, urban and rural gradients, the level of food insecurity and economic deprivation. Given that the objective of many studies is to identify areas of low testing (i.e. prevalence of testing), it is no surprise that most studies focus on future resource allocation as the primary end point. Few studies have examined whether the addition of more testing resources (i.e. adding new testing sites) actually results in an increase in the testing rate within underserved communities. Uncertainty regarding the effects of test site availability on testing rate is a critical limitation to the current COVID-19 literature. Successful
population-scale testing regimens rely on the use of testing sites, which can vary based on public trust and organisational and social factors, which can vary over space and time.15

West Virginia is an ideal location to explore the impact of test site availability on testing rate within medically underserved communities. Past research in the state has identified disparities in testing and positivity of tests for COVID-19 at the census tract level, with higher testing uptake seen in the Black/African American population, urban residents and within communities that were more food secure.16 The present study builds on previous studies by examining whether geographic differences in test sites per capita contribute to disparities in the testing rate among medically underserved communities. Importantly, this research examines how neighbourhood-level factors, such as area deprivation and rural minority populations, influence the relationship between testing rate and test sites per capita. The results will provide an understanding of how social determinants of health impact test site utilisation. In addition, the findings will address the limited research on testing uptake and can be used to optimise the delivery of resources to slow the spread of the COVID-19.

Methods

Data management

ZIP code level testing data were obtained from the West Virginia Department of Health and Human Resources from March 2020 (when the first case of COVID-19 was detected in the state) to December 2021. Data contained unique patient identifiers, polymerase chain reaction (PCR) test results, the date test was performed, ZIP code of testing site and patient ZIP code of residence. Inconclusive tests were excluded from the analysis. The remaining testing data were aggregated so that each row of data represented a unique person who tested either positive or negative by month and ZIP code. Patients who were tested multiple times within a month and ZIP code were regarded as negative if all tests were negative and as positive if at least one test within the month indicated positivity. PCR testing data were joined to an Environmental Systems Research Institute, Inc. (ESRI) USA Zip Code Points shapefile containing 2019 estimated population data within ZIP codes.17 Testing rate and unique testing sites per 1000 persons were estimated for each ZIP code using the US census population estimates contained within the ESRI USA ZIP codes shapefile. This study was approved by the West Virginia University Institutional Review Board (protocol # 2204554630).

Testing data were linked to five-digit ZIP code Area Deprivation Index (ADI) state-level rankings and 2019 census tract-level estimates of Black/African American population percentages. ADI rankings ranged from 1 to 10, with higher scores indicating higher disadvantage for a ZIP code relative to other ZIP codes in West Virginia.18 The percentage of a ZIP code population identifying as Black/African American was obtained through intersecting the ZIP code level testing data with 2019 census tract-level estimates of Black/African American population percentages.19 Covariates also included three continuous-by-continuous interaction terms, as follows: (1) testing sites per 1000 persons by ADI ranking; (2) testing sites per 1000 persons by Black/African American percentage of the population; and (3) Black/African American percentage of the population by ADI ranking. The outcome of this study was the log-transformed ZIP code–level testing rate.

Statistical analyses

Separate multivariable ordinary least squares (OLS) and geographically weighted regression (GWR) analyses were performed for each month from March 2020 to December 2021 (n = 22 months). OLS regression was used to identify statewide estimates, although GWR was incorporated to identify local differences in testing rate by testing sites per capita and adjusted for the Black/African American percentage of the population and ADI. Mathematical specification for OLS and GWR is presented in equation 1. For OLS, $i = 1 \ldots n$, y_i is the model outcome at the i^{th} ZIP code, β_0 is the regression intercept, β_{x_1} is the regression coefficient for the k^{th} covariate, x_{k0} is the observed value for the k^{th} covariate, P is the number of regression terms, and e_i is the random error term for the i^{th} ZIP code.20

\[
\text{OLS: } y_i = \beta_0 + \beta_{x_1} x_{10} + e_i
\]

Importantly, GWR was only conducted for 4 of 22 total months of the study. This was done to limit bias from multiple testing21 while also highlighting the effects of testing sites per capita on testing rate at key time intervals across the study period. The four key months were (1) March 2020 (first COVID-19 case detected in West Virginia); (2) November 2020 (increased COVID-19 testing efforts and resources); (3) August 2021 (COVID-19 Delta variant surge); and (4) December 2021 (first COVID-19 Omicron variant positive patient detected).22 The spatial window for GWR analyses was selected using an adaptive bandwidth and cross-validation scores in the ‘spgwr’ R package.23 The resulting GWR coefficients representing the effect of sites per 1000 people on the testing rate were mapped at the ZIP code level. Shading of points was determined based on the coefficient values as well as their corresponding t-values. t-values were used to determine if the local GWR coefficient was statistically significant at the 0.05 level. This approach aligns with previous research noting the importance of providing t-values side by side with local coefficients for proper interpretation of GWR results.24

Temporal trends were explored between the testing rate and model covariates by month using scatterplots. Scatterplots included y-axes to display variation in OLS coefficient and its corresponding t-value and month on the x-axes. The extent to which interaction effects influenced first-order effects for covariates were visualised by creating categorical ‘bins’ for ZIP code–level ADI ranking and Black/African American percentage of the population based on one standard deviation distance from the statewide average for each variable. For example, ZIP codes with an ADI ranking or Black/African American percentage of the population one standard deviation above the state average were categorised as ‘high’. Alternatively, ZIP codes with an ADI ranking or Black/African American percentage of the population one standard deviation below the state average were ‘low’. All others were categorised as ‘medium’.

Results

The results from the OLS models are summarised for each month (n = 22) from March 2020 (month 3) to December 2021 (month 24) in Fig. 1. The red line is the regression coefficient, the solid blue line is the corresponding t-value, and the dotted blue line is the threshold for statistical significance at the 95% confidence level (CI). The threshold was set at 1.96, given the large (n = 469) degrees of freedom in OLS regression analyses. Months where the solid blue line crosses above or below the dotted blue line indicate months where there was a statistically significant positive or negative effect, respectively, for that covariate on the testing rate. Overall, testing sites per 1000 persons and Black/African American
percentage of the population have statistically positive effects on the testing rate across all months in the study. In contrast, ADI state-level ranking has a statistically significant negative effect on testing across all months. Interpretation of these results should be done with caution, given the statistically significant interaction effects in the OLS models. ADI ranking had a statistically significant positive interaction effect on the relationship between testing sites per 1000 persons and testing rate for all months (i.e. as ADI state ranking increased, the positive effect that the number of testing sites per 1000 has on the testing rate increases). However, Black/African American percentage of the population had a statistically significant negative interaction effect on the relationship between test sites per 1000 persons and the testing rates for all months, with the exception of months 10 and 14 (i.e. as the Black/African American percentage of the population increased, the positive effect of testing sites per capita on testing rate decreased). This result is complicated, as there is a statistically significant negative interaction effect for Black/African American percentage of the population on the relationship between ADI and the testing rate (i.e. as ADI increases, the positive effect that Black/African American percentage of the population has on testing is offset).

Mapped results from the GWR analyses for the four key months are shown in Fig. 2. ZIP codes where test sites per 1000 persons had no significant local effect on testing rate are shown as grey dots. ZIP codes where test sites per 1000 persons had a statistically significant local effect are displayed using a blue to red gradient, where lower effects are indicated in blue and higher effects are in red. It is important to note that any ZIP code with blue or red shading showed a statistically significant positive effect between the number of testing sites and the testing rate. The blue to red gradient is used to display the extent of the significant effect over time. Spatial trends within these 4 months suggest that the effect of sites per 1000 persons on the testing rate was highest in the northern and north-eastern regions of West Virginia, particularly during August and December 2021, when new COVID-19 variants were detected or surging.

Discussion

This study provides an empirical foundation to investigate the effect of test site availability on testing rate for COVID-19. Importantly, the impact of higher availability of testing sites on the testing rate was examined from a health disparities perspective during four key months of the pandemic for West Virginia. The findings indicated clear geographical differences in the extent to which test site availability impacts the testing rate across the state as a whole and within communities at the ZIP code level. Furthermore, the results suggest that the positive effects of site availability on the testing rate are influenced by neighbourhood-level social determinants of health. This is a critical finding within the context of the four key time intervals of the pandemic (March 2020, November 2020, August 2021 and December 2021), as it provides an opportunity to understand the impact of public health services during surges in cases and when new variants are detected.

Previous research in West Virginia has identified census tracts with higher Black/African American percentage of the population as a significant predictor for lower COVID-19 testing. The present study results from March 2020 and December 2021 are in line with this conclusion, showing that the impact for sites per capita on testing is lower among communities with a higher Black/African American percentage of the population. However, caution must be taken in the interpretation of these results, as this was not true for
In August 2021, a surge in testing was associated with the detection of the SARS-CoV-2 Delta variant, which was more transmissible and virulent than previous SARS-CoV-2 variants. As such, a possible explanation is that during times of low testing, overall test uptake was lower among communities that also happened to have a higher Black/African American percentage of the population; thus, this does not infer that testing is lowest among Black/African American communities. The results from this study also showed a positive linear relationship between Black/African American percentage of the population and the testing rate, indicating an increase in testing among communities with a higher Black/African American percentage of the population. Therefore, this study suggests that the negative interaction effect identified between Black/African American percentage of the population and test sites per capita could be a result of the fact that the communities themselves had a lower testing rate. This potential theory was tested (results not shown), and it was found that the relationship between Black/African American percentage of the population and testing rate was modified by community deprivation. This is an important result, as the negative linear relationship between ADI and testing rate mitigated the positive effect that Black/African American percentage of the population had on the testing rate.

A previous study also examined the impact of ADI on disparities in COVID-19 testing and positivity within West Virginia but found no significant effect on testing or positivity. On closer examination, the incidence rate ratio reported for ADI in this previous study was 1.31 (95% CI 0.99—1.75), indicating that for some census tracts, ADI had a weak negative effect and a strong positive effect on testing. In West Virginia, there are 484 census tracts and 851 ZIP codes (including PO Box addresses). One possible explanation for the differences in these results is that the use of the more detailed ZIP code—level data reduced variability in ADI, which was estimated as the mean of census block group data in the previous study. The significance of ADI as a predictor of COVID-19 risk has been established in many studies across the United States. The present study examined the impact of ADI on the use of testing resources, as opposed to COVID-19 risk, and found that testing sites per capita had a greater impact in communities of greater disadvantage. This is an important finding, as it informs decision-makers to direct limited resources to areas where they may have the highest impact on disease surveillance and control. Future studies should aim to understand how other social determinants of health impact the utilisation of testing resources for COVID-19 and other infectious diseases.

Some limitations of the present study should be noted. Perhaps most importantly, the trends identified are related to PCR testing data and do not include rapid antigen testing. This is a potentially important distinction, as higher or differing availability of rapid antigen results could bias the testing rate observed. In addition, the case definition for a positive COVID-19 test in the present study is prone to potential misclassification if samples were improperly handled or if patients were tested too early. That said, PCR testing data have been demonstrated to be more sensitive than rapid antigen testing and samples, with few exceptions, were delivered to the laboratories within 24 h of the time the swab was obtained.

Conclusions

This study addresses gaps in the COVID-19 literature surrounding the impact of test site availability on population-level
testing rates and explores how these relationships change when considering social determinants of health. The finding that higher test site availability increases testing uptake for areas of higher community deprivation could inform targeted testing regimens. The results provide critical information to inform future dissemination of testing resources within medically underserved and underrepresented rural groups. The current findings regarding higher Black/African American percentage of the population and lower uptake of testing reflect the challenges of delivering tests within underrepresented rural groups. This study found that it was not the Black/African American populations themselves that had lower testing, but that other neighbourhood-level factors, such as ADI, were partially responsible for the disparities observed.

Further research on health services delivery and use for testing for COVID-19 and other infectious diseases during the pandemic is warranted. For example, qualitative studies are ideally suited to better capture the lived experiences of community groups and may determine other factors involved in the trends identified among communities with a higher Black/African American percentage of the population, particularly when factoring in community deprivation. The effects of test sites per capita on testing rate differed dramatically across West Virginia. Overall, higher impacts were noted for northern and north-eastern West Virginia, particularly after the detection of new SARS-CoV-2 variants. Finally, the consistent positive relationship for interaction between ADI and sites per capita on testing is encouraging, particularly given that Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach. PLoS One 2021;16(1):e0259538.

First Omicron case identified in West Virginia. https://dhhw.wv.gov/News/2021/Pages/Additional-details-on-first-Omicron-case-identified-in-West-Virginia.aspx.

B. Hendricks, B.S. Price, T. Dotson et al. Public Health 216 (2023) 21-26.

Author statements

Ethical approval

This study was approved by the West Virginia University Institutional Review Board (protocol # 2204554630).

Funding

B.H., B.P., W.K., S.D., G.S.S. and S.H. were supported by grants NIH U01MD017491-01 and NIH NIGMS RADx-Up 3U54GM104942-06S1. In addition, B.H., B.P., T.D., W.K., S.D., M.K., A.H., G.S.S. and S.H. were supported by grant NIH NIGMS 2U54GM104942-02.

Competing interests

The authors have no conflicts to declare.

Acknowledgements

The authors would like to thank the West Virginia Department of Health and Human Resources for access to statewide COVID-19 testing data.

References

1. Fernandes N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. SSRN J 2020 Mar 24:24.

2. CDC COVID data tracker. https://covid.cdc.gov/covid-data-tracker/#cases_test ”per100k7day.

3. Mercer Tim R, Salit Marc. Testing at scale during the COVID-19 pandemic. Nat Rev Genet 2021;22(7):415–26.

4. Kwon Sohee, Josh Ami D, Lo Chun-Han, Drew David A, Nguyen Long H, Guo Chuan-Guo, et al. Association of social distancing and face mask use with risk of COVID-19. Nature Communications 2021;12(1):3737.

5. Alagoz Oguzhan, Sethi Ajay K, Patterson Brian W, Churpek Matthew, Saifdar Nasia, et al. Effect of timing of and adherence to social distancing measures on COVID-19 burden in the United States: A simulation modeling approach. Annals of internal medicine 2021;174(1):50–7.

6. Lyu Wei, George L. Wehby. Community Use of Face Masks and COVID-19: evidence from A Natural Experiment of State Mandates in the US: study examines impact on COVID-19 growth rates associated with state government mandates requiring face mask use in public. Health Aff 2020;39(8):1419–25.

7. JHU coronavirus resource center daily state by state testing trends. https://coronavirus.jhu.edu/testing/individual-states/usa.

8. Price Bradley S, Khodaverdi Maryam, Halasz Adam, Hendricks Brian, Kimble Wesley, Smith Gordon S, Hodder Sally L, et al. Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach. PLoS One 2021;16(1):e0259538.

9. First Omicron case identified in West Virginia. https://dhhw.wv.gov/News/2021/Pages/Additional-details-on-first-Omicron-case-identified-in-West-Virginia.aspx.

10. Bilal Usama, Tabb Loni P, Barber Sharrelle, Diez Roux Ana V, et al. Spatial inequities in COVID-19 testing, positivity, confirmed cases, and mortality in 3 US cities: an ecological study. Annals of internal medicine 2021;174(5):386.

11. Mody Aaloke, Pfeiluf Kristin, Bradley Cory, Fox Branson, Hlatshwayo Matfada G, Ross Will, et al. Understanding drivers of COVID-19 racial disparities: a population-level analysis of COVID-19 test uptake among black and white populations. Clin Infect Dis Off Publ Infect Dis Soc Am 2020;73:e921–31.

12. Kind AJH, Buckingham W. Making neighborhood disadvantage metrics accessible. Journal of racial and ethnic health disparities 2022;9(2):708–21.

13. Iyanda Ayodeji J, Adams Alyce S, Liu Vincent X, Soltesz Lauren, Chen Yi-Fen. Impact on COVID-19 growth rates associated with state government mandates requiring face mask use in public. Health Aff 2020;39(8):1419–25.

14. Cordes Jack, Castro Marcia C. Spatial analysis of COVID-19 clusters and contextual factors in New York City. Spat Spatiotemporal Epidemiol 2020;34:100355.

15. Perry Brea L, Aronson Brian, Railey Ashley F, Ludema Christina, et al. If you build it, will they come? Social, economic, and psychological determinants of COVID-19 testing decisions. PLoS one 2021;16(7):e0252658.

16. Hendricks Brian, Paul Rajib, Smith Cassie, Wen Sijin, Kimble Wes, Amjad Ayne, Atkins Amy, Hodder Sally, et al. Coronavirus testing disparities associated with community level deprivation, racial inequalities, and food insecurity in West Virginia. Annals of epidemiology 2021;59:44–9.

17. ESRI. USA zip code points. https://www.arcgis.com/home/item.html?id=1ea4a55df1134195dd5d9e967178d8f. [Accessed March 2022].

18. Smith John, Buckingham W. Making neighborhood disadvantage metrics accessible: the neighborhood atlas. N Engl J Med 2018;378:2456–8. [https://doi.org/10.1056/NEJMoa1802331].

19. U.S. Census Bureau “2019 West Virginia Tract level Race and Ethnicity” data. census.gov Accessed March 2022.

20. Wheeler DC, Paez A. Geographically weighted regression. In: Fischer M, Getis A, editors. Handbook of applied spatial analysis. Berlin, Heidelberg: Springer; 2010. https://doi.org/10.1007/978-3-642-03647-7_22.

21. Ranganathan Priya, Pramesh CS, Buysse Marc. Common pitfalls in statistical analysis: the perils of multiple testing. Perspect Clin Res 2016;7(2):106.

22. WV Office of the Governor. “West Virginia’s Response to COVID-19”. https://governor.wv.gov/Pages/WV-COVID-19-actions-and-executive-orders.aspx. [Accessed March 2022].

23. Bivand Roger, Yu Danlin. spgwr: geographically Weighted Regression. R package version 0.6-35. 2022. [https://CRAN.R-project.org/package=spgwr].

24. Matthews Stephen A, Yang Tse-Chuan. Mapping the results of local statistics: using geographically weighted regression. Demogr Res 2012;26:151.

25. https://governor.wv.gov/Pages/WV-COVID-19-actions-and-executive-orders.aspx.

26. Del Rio Carlos, Preeti N Malani, Omer Saad B. Confronting the delta variant of SARS-CoV-2, summer 2021. JAMA 2021;326(11):1001–2.

27. ESRI “USA zip code points”. https://www.arcgis.com/home/item.html?id=1ea4a55df1134195dd5d9e967178d8f. [Accessed March 2022].

28. ESRI USA census tract boundaries”. https://www.arcgis.com/home/item.html?id=ca713f86184a42d2e967b8c243689f6b. [Accessed February 2022].

29. Madhav Kc, Evrim oral, susanne strat-bourges, ariane L. Rung, and Gerald S. Peters. “The effect of area deprivation on COVID-19 risk in Louisiana. PLoS One 2020;15(12):e0243028.

30. Kitchen Christopher, Hatel Elham, Chang Hsien Yen, Weiner Jonathan P, Kharraz Hadi. Assessing the association between area deprivation index on
COVID-19 prevalence: a contrast between rural and urban US jurisdictions. *AIDS Public Health* 2021;8(3):519.

31. Adjei-Fremah Sarah, Lara Niara, Anwar Azreen, Garcia Daneila Chala, Hemakiathar Seyyedpooya, Blessing febirinachi Chineny, et al. The effects of race/ethnicity, age, and area deprivation index (ADI) on COVID-19 disease early dynamics: Washington, DC case study. *J Racial Ethn Health Disparities* 2022: 1–10.

32. Chu Victoria T, Schwartz Noah G, Donnelly Marisa AP, Chuey Meagan R, Soto Raymond, Yousaf Anna R, et al. Comparison of home antigen testing with RT-PCR and viral culture during the course of SARS-CoV-2 infection. *JAMA Intern Med* 2022;182(7):701–9.

33. Mihas Paul. Qualitative data analysis. In: *Oxford research encyclopedia of education*; 2019.

34. Rapport Frances, Clement Clare, Doel Marcus A, Hutchings Hayley A. Qualitative research and its methods in epilepsy: contributing to an understanding of patients’ lived experiences of the disease. *Epilepsy Behav* 2015;45:94–100.

35. Hesselink Gijs, Smits Merlijn, Doedens Mariel, Sharon MT Nijenhuis, van Ravel Denise, Harry van Goor, et al. Belt. “Environmental needs, barriers, and facilitators for optimal healing in the postoperative process: a qualitative study of patients’ lived experiences and perceptions. *HERD: Health Environments Research & Design Journal* 2020;13(3):125–39.