Title
Parvalbumin increases in the medial and lateral geniculate nuclei of aged rhesus macaques.

Permalink
https://escholarship.org/uc/item/1qc3j7gm

Journal
Frontiers in aging neuroscience, 5(NOV)

ISSN
1663-4365

Authors
Gray, Daniel T
Rudolph, Megan L
Engle, James R
et al.

Publication Date
2013

DOI
10.3389/fnagi.2013.00069

Peer reviewed
Parvalbumin increases in the medial and lateral geniculate nuclei of aged rhesus macaques

Daniel T. Gray, Megan L. Rudolph, James R. Engle and Gregg H. Recanzone

1 Center for Neuroscience, University of California at Davis, Davis, CA, USA
2 Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
3 Department of Neurobiology, Physiology and Behavior, University of California at Davis, Davis, CA, USA

Subcortical auditory structures in the macaque auditory system increase their densities of neurons expressing the calcium binding protein parvalbumin (PV) with age. However, it is unknown whether these increases occur in the thalamic division of the auditory system, the medial geniculate nucleus (MGN). Furthermore, it is also unclear whether these age-related changes are specific to the macaque auditory system or are generalized to other sensory systems. To address these questions, the PV immunoreactivity of the medial and lateral geniculate nuclei (LGN) from seven rhesus macaques ranging in age from 15 to 35 was assessed. Densities of PV expressing neurons in the three subdivisions of the MGN and the six layers of the LGN were calculated separately using unbiased stereological sampling techniques. We found that the ventral and magnocellular subdivisions of the MGN and all six layers of the LGN increased their expressions of PV with age, although increases in the MGN were greater in magnitude than in the LGN. Together, these results suggest that the MGN shows age-related increases in PV expression as it is seen throughout the macaque ascending auditory system, and that the analogous region of the visual system shows smaller increases. We conclude that, while there are some similarities between sensory systems, the age-related neurochemical changes seen throughout the macaque auditory system cannot be fully generalized to other sensory systems.

Keywords: parvalbumin, thalamus, medial geniculate, lateral geniculate, monkey, geriatric

INTRODUCTION

Parvalbumin (PV) immunoreactivity is a well-established neurochemical marker of subsets of neurons in several sensory systems of the mammalian brain (Demeulemeester et al., 1989; Celio, 1990; Hof et al., 1999; Jones, 2003; David et al., 2007). PV and other calcium binding proteins have calcium-buffering capacities, and several types of cortical interneurons are classified by their chemical signatures to these molecules (Carter et al., 1996). Intracellular calcium affects numerous calcium dependent biochemical pathways, most of which alter the physiological environment of the cell. These calcium-buffering proteins therefore indirectly regulate intracellular processes through their control of free calcium levels (Valles et al., 2012). Furthermore, neurotransmitter release is calcium dependent (Yang et al., 2011), and these molecules likely affect this process to some degree as well. A coarse sense of changes in the intracellular environment and signaling capabilities of neurons can be attained by using histological markers for calcium binding proteins as chemical probes, and noting changes in their expression under different conditions, in this case natural aging.

The relative density of PV+ neurons can be altered as a function of aging in some sensory systems, and also in animals given peripheral insults mimicking the effects of aging. The majority of these observations come from rodent models (O’Neill et al., 1997; Zettel et al., 1997; Idrižbegovic et al., 2003, 2004, 2006; Ouda et al., 2008; Hatano et al., 2009; Ouda et al., 2012), but recently the rhesus macaque has emerged as another model to study these age-related changes. The macaque auditory and visual systems contain PV+ neurons at subcortical and cortical levels, and both systems show changes in PV immunoreactivity with natural aging or conditions associated with aging (Blümcke et al., 1991; Glorzer et al., 1998). For example, within the auditory system, presbycusis (age-related hearing loss) in the macaque monkey is correlated with increases in the numbers of PV labeled neurons in the superior olivary complex (SOC) and the inferior colliculus (IC; Gray et al., 2013a; unpublished observations), but not in the cochlear nucleus (CN; Gray et al., 2013b), and it remains unknown whether these changes occur in the macaque MGN or not. In the visual system, binocular and/or monocular enucleation of adult rhesus monkeys results with decreases in PV immunoreactivity in the neuropil of the LGN and primary visual cortex (Blümcke et al., 1994), and similar decreases have been noted in glaucoma patients (Yacel et al., 2000). The functional consequences of these changes remain unclear, but they are thought to play a role in compensating for the deficits in natural processing that are associated with age.

The medial (MGN) and lateral (LGN) geniculate nuclei are the principle thalamic divisions of the auditory and visual systems, respectively. The extraction of basic spatial and spectral information occurs upstream from the thalami in both systems, therefore sensory information arriving to both of these nuclei contains similar information (i.e., what the stimulus is and where the stimulus...
Table 1 | Demographics and information on the monkeys used.

Age (months)	Human age (years)	Gender	Thickness (μm)	Auditory training	Group
147	11.5	Male	25	No	Middle-aged
243	20	Female	50	Yes	Middle-aged
245	20	Female	40	No	Middle-aged
267	22.5	Female	50	No	Aged
276	23	Female	50	No	Aged
306	25	Male	50	Yes	Aged
427	35	Female	25	No	Aged

METHODS

The MGN and LGN from seven rhesus macaques ranging from 15 to 35 years of age (roughly equivalent to 37 to 107 human years of age; see Davis and Leathers, 1985) were quantified to determine the densities of PV expressing neurons using unbiased stereological sampling techniques. Table 1 describes the demographic information of all animals used in this analysis. No animal had a history of loud noise exposure, ear trauma, or ototoxic drug treatment. No monkeys had obvious visual impairments or ocular abnormalities, although this was not rigorously tested. All monkeys were maintained on ad libitum food and water with the exception of one (25 year old) who was briefly water regulated during training on auditory discrimination tasks. All procedures adhered to the National Institute of Health’s guidelines, and were approved by the UC Davis Institutional Animal Care and Use Committee.

HISTOLOGICAL PROCESSING AND ANTIBODY CHARACTERIZATION

Histological processing for PV immunohistochemistry has been previously described in detail (Gray et al., 2013a). Briefly, animals were euthanized with an overdose of sodium pentobarbital (60 mg/kg, i.v.), and transcardially perfused with a solution of 4% paraformaldehyde, 0.1% glutaraldehyde (for cross-linking of macromolecules), and saline in 0.1% phosphate buffer (pH 7.4; fix 1), and a mixture of 4% paraformaldehyde and 30% sucrose for complete cryoprotection. All seven brains were cut transversely at thicknesses ranging from 25–50 μm. The tissue was stored in 0.1 phosphate buffer until tissue processing (Hackett et al., 2001; de la Mothe et al., 2006a,b; Padberg et al., 2009), which occurred within 2 months of euthanasia. Sections were alternately stained for PV immunohistochemistry and Nissl.

Parvalbumin immunohistochemistry followed a modified protocol of the ABC method (ABC kit, Vector Labs), and visualized with the 3, 3′-diaminobenzidine (DAB) and hydrogen peroxide reaction. The sections were blocked overnight (12 h) in 3% normal horse serum and 0.25% Triton X, followed by a 4 h incubation in the primary PV antibody (anti-PV in mouse, 1:4000; Sigma-Aldrich). Following several washes in 0.1% phosphate buffer the sections were incubated for 1 h in the secondary antibody (Biotinylated Anti-Mouse IgG, 1:250; Vector Labs). After several more rinses in phosphate buffer, the sections were placed in a peroxidase substrate solution for the DAB reaction until the desired intensity, yielding good label with minimal background staining, was achieved (3–8 min). The Sigma immunopure™ Kit (Product Code ISO-1), and a double diffusion immunosay using Mouse Monoclonal Antibody Isotyping Reagents (Product Code ISO-2) confirmed isotype specificity of the anti-PV...
antibody as frog leg PV. Exclusion of the primary antibody yielded only weak background staining with no punctate signal in any animal, indicating that all positive signals resulted from the PV antibody, and not extraneous label. The information for all antibodies and chemicals used in this procedure is summarized in Table 2.

DATA ANALYSIS
Standard light microscopy and unbiased stereological sampling techniques were used to estimate the PV+ cell density of the MGN and LGN. These nuclei were sampled by two observers blind to the identity and age of the animals. A 0.5 mm² grid was digitally overlaid on a 40× image of the tissue. This high magnification was chosen to ensure that the counting grid fell entirely within the boundaries of the layers of the LGN to avoid biases arising from differences in counting area. Differences in tissue thickness can bias cell counts such that thinner sections yield overestimations (Abercrombie and Johnson, 1946). Therefore we applied an optical fractionation approach in our density estimations. This procedure uses an optical dissector with optimal guard spaces on either side of the z-plane to scan the depth of the tissue. Thus, fragmented cells at the edges of the tissue play a negligible part in the density calculation (West et al., 1991; Mounton, 2002). Estimated PV+ neurons (En) were calculated as follows:

\[E_n = N_v \times \frac{V_{ref}}{n \times V_{dis}} \]

Where,

\[N_v = \sum Q \left(n \times V_{dis} \right) \]

With \(N_v \) representing the points counted within the grid, \(V_{ref} \) is the volume calculated by the Cavalieri principle, \(Q \) is the cells counted, \(n \) is the number of dissectors, and \(V_{dis} \) represents the volume of each dissector. Since \(N_v \) and \(V_{ref} \) refer to a common volume, these calculations control for volume changes in the cell counts.

To ensure constancy in the counting criteria, the two observers counted non-geniculate sections until they reached a 95% agreement for 20 consecutive sections. A paired t-test of the estimates used for analysis revealed that the two observers did not differ (p > 0.4). Positively stained soma were defined as possessing a punctate cellular morphology containing positive label, and neurons were counted only if they fell entirely within the grid or if they touched two sides (top and right) of the grid. Several control analyses in previous studies using this same tissue and staining protocol ensured the observer’s ability to reliably distinguish labeled neurons from background staining of the neuropil (Gray et al., 2013a).

The density of the sample was calculated by dividing the estimated cell count by the estimated volume (\(E_n / V_{ref} \)).

Statistical analysis was accomplished in three steps. First, the animals were grouped into middle-aged and aged groups using 21.66 years (corresponding to 65 human years; Davis and Leathers, 1985) as the cutoff. While each animal provided multiple measures for analysis, only the first measure from each animal was used for statistical comparisons. A repeated measures ANOVA was used to determine if significant differences existed between groups. If this test was significant, a Tukey’s HSD post hoc test was performed. The data were then transformed using a log function to normalize the distribution before further comparisons were made.

Table 2 | Information on the antibodies and chemicals used for immunohistochemical and histochemical reactions.

Antibody/chemical	Immunogen structure	Manufacturer/Log #/other information
Parvalbumin	Monoclonal anti-parvalbumin clone	PARV-19 hybridoma Sigma-Aldrich, P-3088; monoclonal; raised in mouse
Parvalbumin	Biotinilated anti-Mouse IgG Mouse IgG	Vector Labs, BA-2000; made in horse
Parvalbumin	Normal horse serum	N/A Vector Labs, S-2000
Parvalbumin	SG-substrate kit	N/A Vector Labs SK-4700

FIGURE 1 | Representative Nissl stains of the sensory thalamus. (A) Transverse Nissl stained section showing the anatomical proximity of the medial and lateral geniculate nuclei. (B) The three subdivisions of the MGN, the ventral (vMGN), dorsal (dMGN), and magnocellular (mMGN). MGN, defined according to previous conventions (Jones, 2003). All MGN sections were partitioned in this manner for stereological quantifications. The left sides of these images correspond to the medial aspect and the top to the dorsal aspect of the sections. Scale bar = 500 μm.
Gray et al. Parvalbumin increases in macaque geniculate

of cell densities for each nucleus subdivision, the dataset was limited to three (middle-aged) and four (aged) animals. We therefore used relatively strict criteria to assess statistical significance in all of our analyses, and all \(r \)-values and \(p \)-values > 0.01 are reported as calculated. First, comparisons between groups were made using an unpaired \(t \)-test, with an alpha level of 0.01. Second, we used a linear regression model to understand the relationship of these densities as a function of age. In these calculations, the Pearson product moment correlation was found along with the \(p \)-value. We considered statistically significant trends to be those with \(r \)-values greater than 0.7 coupled with an alpha level of 0.01 or smaller. Finally, all age-density relationships underwent a Monte Carlo analysis. This analysis first calculates the \(r \)-values of the existing relationship, and then randomly re-assigns the age and density values before calculating the new \(r \)-value of the random relationship. This re-assignment is done 1000 times, and the \(p \)-value is the percentage of random relationships that give an \(r \)-value greater than or equal to the observed \(r \)-value. Therefore the Monte Carlo provides the probability that the observed relationship is due to chance. A \(p \)-value of 0.05 (i.e., a regression coefficient was greater than 950/1000 coefficients generated by chance) was used as the significance cutoff in this procedure. Relationships were only considered significant if they passed our criteria for both the regression analysis and the Monte Carlo analysis.

RESULTS

To understand the age-related changes in PV expression within the MGN and LGN, serial sections from seven rhesus macaques ranging in age from 15 to 35 years were prepared (Table 1). The MGN and LGN both had positively stained neurons in all animals, and showed relatively little background staining of the neuropil. Figure 1A shows a Nissl stained section of both geniculate nuclei, and demonstrates the anatomical proximity of these two nuclei in the thalamus. The three principle subdivisions of the MGN,
the vMGN, dMGN, and mMGN, were defined according to conventions of Jones (2003). The borders of these three subdivisions were not as readily apparent as the six layers of the LGN, making the delineation of these regions difficult. To ensure that all counts came entirely from within each subdivision we segregated every section analogously based on the conventions mentioned above (Figure 1B), and placed our counting grids away from these borders into regions that were unambiguously defined within a particular subdivision. The dMGN showed few neurons with PV staining, although those that did were clearly stained, an observation previously noted (Jones, 2003). The densities of PV+ stained cells, as measured by the number of positively stained neurons within a given volume of tissue (see Methods), were much greater in the other subdivisions of the MGN as well as in all six layers of the LGN.

Visual inspection of the MGN revealed different patterns of age-related changes in PV expression in the three subdivisions. The density of PV+ cells was clearly increased in the vMGN and mMGN as a function of age, whereas changes in the dMGN were much less apparent (Figure 2). Quantifications of PV+ cell densities within these subdivisions revealed that our qualitative observations were accurate. A regression analysis of these densities as a function of age revealed that the number of PV+ neurons positively correlated with age \((r = 0.83, p < 0.01; \text{Figure 3A})\), whereas the PV densities of the mMGN and dMGN trended but did not significantly correlate with age by our criteria \((r = 0.75, p = 0.027; r = 0.76, p = 0.021; \text{mMGN and dMGN respectively; Figure 3A})\).

Grouping the monkeys into middle aged and old age groups (see Methods) revealed that both the vMGN and dMGN significantly increased their densities of PV+ neurons \((\text{unpaired } t\text{-tests}, p < 0.01; \text{Figure 3B})\), but PV+ neuron density in the dMGN remained constant \((\text{unpaired } t\text{-test}; p = 0.20; \text{Figure 3B})\).

In the LGN there appeared to be an increased density of PV+ neurons as a function of age in all six layers. Figure 4 shows representative photomicrographs of magnocellular and parvocellular layers from a young and an old animal, and the age-related increases in the densities of PV+ neurons are apparent in both layers. Regression analysis \((\text{Figure 5A})\) of our stereological calculations revealed that both the magnocellular and parvocellular layers had increased density of PV+ neurons with age \((r = 0.95, p < 0.01; r = 0.96, p < 0.01; \text{magnocellular and parvocellular, respectively})\).

Individually, each layer increased its expression with age \((\text{all } r > 0.8; \text{all } p < 0.01; \text{data not shown})\), except layer five which showed strong trends \((r = 0.75, p = 0.051)\). Comparisons between the middle-aged and aged groups revealed an age-related increase in PV density across all layers \((\text{all } p < 0.01; \text{Figure 5B})\).

The preceding analysis showed that most MGN subdivisions had higher PV+ densities compared to those from middle aged macaques. However, since there was a higher density of PV+ neurons in the LGN compared to the MGN in the middle aged animals \((\text{compared Figures 3B–5B})\), it is not clear if the relative differences in densities as a function of age were the same between the different subdivisions of these two thalamic nuclei. In order to determine if this was the case, we normalized the differences in the aged monkeys by taking the ratio of the old PV densities to the middle aged PV densities. Figure 6 shows the results of this analysis in the three subdivisions of the MGN and the magnocellular and parvocellular layers of the LGN. The increases in the vMGN and mMGN were much greater in magnitude than the changes in the magnocellular and parvocellular layers of the LGN. These results show that the age-related increases in PV density differ between the auditory and visual systems. Furthermore, these results suggest that the age-related effect is not due to general differences of the aging nervous system (differences in vascularization, permeability of the individual cells to the histochemical processes, or differences in immunoreactivity as a function of age), but rather the changes are specific for the different subdivisions of the MGN and LGN.

DISCUSSION

AGE-RELATED DIFFERENCES IN PV IMMUNOREACTIVITY IN THE CENTRAL AUDITORY SYSTEM

The primary objective of this study was to determine whether the macaque MGN increases its PV expression with age as seen in the SOC (Gray et al., 2013a), and IC (unpublished observations).
Our data did show a clear increase in PV expression with age in the macaque MGN, consistent with data from rodents (Ouda et al., 2008). With the addition of the present data, all subcortical auditory structures of both macaques and rodents have shown age-related changes in the expression of calcium-related proteins (references cited above for macaques; for rodents see O’Neill et al., 1997; Zettel et al., 1997; Idrizbegovic et al., 2003, 2004, 2006; Ouda et al., 2008, 2012). The current thalamic data in the macaque is consistent with what has been observed in the macaque SOC (Gray et al., 2013a) and IC (unpublished observations) in that not all subdivisions showed age-related changes. In the SOC, only the medial superior olive showed statistically significant increases, whereas the lateral superior olive only showed a trend toward increases, and the medial nucleus of the trapezoid body showed no changes. In the IC, the central nucleus and the peripheral cortex region showed age-related changes in PV+ density. Interestingly, the CN showed no such changes in PV+ density with age, although the density of neurons that stained positively for NADPH-diaphorase (NADPHd) did increase with age, and the density of PV+ cells was correlated with changes in ABR thresholds (Gray et al., 2013b). These combined results indicate that while calcium-associated proteins are differentially expressed throughout the ascending auditory system in the macaque, the first relay nuclei showing age-related influences on PV expression are the SOC and IC. Thus, these age-related effects appear to be restricted to a specific sub-pathway of the ascending auditory system in macaques. Why these particular sub-divisions are affected in this way by age while others are not is currently unclear. Other calcium dependent proteins, such as the nitric oxide synthase molecule NADPHd have also been shown to increase with age in macaque and rodent subcortical auditory structures (Yian et al., 1996; Soares-Mota et al., 2001) including the macaque CN (Gray et al., 2013b). Therefore other calcium binding- and/or dependent-proteins may increase their expressions in ascending auditory structures of aged macaques as seen in rodents, and are likely in some way compensating for the decreased neural output of the cochlea (Engle et al., 2013).

CHANGES IN THE MGN WERE MORE SPECIFIC THAN IN THE LGN

The second purpose of this study was to determine if these neurochemical changes of the aged auditory system were similar or different to those of the aged visual system. The thalamus is the ideal structure to make these direct comparisons as both nuclei can be visualized in the same anatomical section (Figure 1) and differences in histological processing are minimized. Similar to the MGN, all six layers of the LGN increased their expression of PV positive neurons with age. While the PV+ densities observed in the LGN were overall higher than those seen in the three subdivisions of the MGN, the increased densities as a function of age were relatively much higher in the MGN compared to the LGN. This implies that at least a part of the noted changes are specific to the area and/or sensory system, and not a general change.

The principle subdivisions of the MGN and each of the six layers of the LGN have distinct functional properties. The ascending auditory system can be segregated into two major parallel processing pathways that originate at the level of the CN, and segregate anatomically, chemically, and functionally in higher auditory regions (Jones, 2003). At the level of the MGN, these pathways are almost entirely segregated, and much of our understanding of the function of these dual pathways arose from thalamic and...
FIGURE 5 | Age-related changes in PV positive neuron density from the layers of the LGN. (A) Regression analyses of the estimated densities of PV+ labeled cells from the magnocellular (layers 1 and 2; gray squares) and parvocellular (layers 3 through 6; black diamonds) layers as a function of age showed significant correlations in all layers with the exception of layer 5. (B) Estimated densities of the six individual layers when the animals were combined into middle aged and old age groups revealed significant increases in all LGN layers. Asterisks indicate significance by an unpaired t-test at an alpha level of 0.01.

The layers of the LGN are also specific in their functional response properties, but not chemically specific to calcium binding proteins like the MGN. Magnocellular layers 1 and 2 and parvocellular layers 3 through 6 receive distinct input from the retina, and have differing response properties (for review see Gegenfurtner and Kiper, 2003). Despite these differences, all layers experienced similar age-related increases in PV immunoreactivity with age. Therefore the visual system showed less specificity than did the auditory system with regards to age-related increases in PV. Whether this pattern holds true elsewhere in the visual system as it does in the auditory system cannot be inferred from the present data. Also, it is plausible that another calcium binding protein would yield different patterns.

SENSORY DEPRIVATION MODELS NATURAL AGING BETTER THAN DEAFFERENTATION

To our knowledge this is the first study investigating the effects of natural aging on PV immunoreactivity in the macaque visual system, and the results show similar increases in PV expression as seen in the auditory system. Deafferentation studies in both systems yield opposite results from the data reported here. Following monocular or binocular enucleations, the visual system decreases its expression of PV+ neurons both thalamically and cortically (Blümcke et al., 1994), and ablation of the cochlea results in decreases in the expression of calcium binding proteins as well (Hatano et al., 2009). Interestingly, sensory deprivation studies in both systems result in either unaltered or increased expression of calcium binding proteins (Mize and Luo, 1992; Tigges and Tigges, 1993; Caicedo et al., 1997), suggesting that deafferentation and sensory deprivation affect these systems differently and in opposite directions. Our data suggests that the effect that natural aging has on the immunoreactivity of calcium binding proteins resembles the effects of sensory deprivation rather than deafferentation. This distinction is important because both sensory deprivation and deafferentation are often implemented to mimic the natural declines in peripheral processing abilities associated
with age. However, their effects on the nervous system are not analogous to the effects of natural aging, and must be considered accordingly.

ACKNOWLEDGMENTS
The authors would like to thank Xochi Navarro and Dina Jaurez-Salinas for their help with this project, and Rhonda Ortis-Robinson and Gay Martin for excellent animal care. Funded in part by NIA R21AG024372, R01AG034137 (Gregg H. Recanzone), and NICHD T32DC008072 (James R. Engle).

AUTHOR CONTRIBUTIONS
All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Daniel T. Gray, James R. Engle, Gregg H. Recanzone. Acquisition of data: Daniel T. Gray, Megan L. Rudolph, James R. Engle. Analysis and interpretation of data: Daniel T. Gray, Megan L. Rudolph, Gregg H. Recanzone. Drafting of the manuscript: Daniel T. Gray, Gregg H. Recanzone. Critical revision of the manuscript for important intellectual content: Daniel T. Gray, Megan L. Rudolph, Gregg H. Recanzone. Statistical analysis: Daniel T. Gray, Megan L. Rudolph. Obtained funding: James R. Engle, Gregg H. Recanzone. Administrative, technical, and material support: Daniel T. Gray, James R. Engle. Study supervision: Gregg H. Recanzone.

REFERENCES
Abercrombie, M., and Johnson, M. L. (1946). Quantitative histology of W allerian degeneration I. Nuclear population in rabbit sciatic nerve. J. Anat. 80, 37–55.
Admoni, H., Bruns, W., Tengchic, H., Huang, Z. I., and Scantman, M. (2012). A neural circuit for spatial summation in visual cortex. Nature 498, 235–238. doi: 10.1038/nature12329
Blümcke, I., Hof, P. R., and Morrison, J. H. (1991). Parvalbumin in the rat auditory thalamus. Soc. Neurosci. Abstr. 17, 396.
Blümcke, I., W eraga, E., Kasas, S., Hendrickson, A. E., and Celio, M. R. (1994). Continuous patterns of parvalbumin and calbindin D-28K immunoreactivity and excitation in the dorsal lateral geniculate nucleus and the istret cortex of adult macaque monkeys after monocular enucleation. J. Comp. Neurol. 378, 1–15. doi: 10.1002/(SICI)1096-9861(19970115)378:1<1::AID-CNE1>3.0.CO;2-8
Carder, R. K., Leclerc, S. S., and Hendry, S. H. (1996). Regulation of calcium-binding protein activity in the primary somatosensory cortex of the rhesus monkey. J. Neurosci. 16, 37–68. doi: 10.1523/JNEUROSCI.16-01-00376.1996
Caicedo, A., d’Aldin, C., Eybalin, M., and Puel, J. L. (1997). Temporary analogues to the effects of natural aging, and must be considered accordingly.

Gray et al. Parvalbumin increases in macaque geniculate nuclei...
Tang, A. H., Karson, M. A., Nagode, D. A., McIntosh, J. M., Uebele, V. N., Renger, J., Shapley, R., and Hawken, M. (2002). Neural mechanisms for color perception in the primary visual cortex. Curr. Opin. Neurobiol. 12, 426–429. doi: 10.1016/S0959-4388(02)00349-5

Robles, L., and Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. In: Principles and Practices of Unbiased Stereology. Baltimore: The Johns Hopkins University Press.

Moore, D. R. (1991). Anatomy and physiology of binaural hearing. Audiology 30, 125–134. doi: 10.3285/0068-900X-30.2.4

Mounton, P. R. (2002). "fnagi-05-00069" — 2013/11/7 — 13:47 — page 9 — #9