A Novel Negative Pressure, Face-Mounted Antechamber to Minimize Aerosolization of Particles During Endoscopic Skull Base Surgery

BACKGROUND: The COVID-19 pandemic has revealed deficiencies in the adequacy of personal protective equipment (PPE) for healthcare workers. Endoscopic endonasal skull base surgery is thought to be among the highest-risk aerosol-generating procedures for surgeons and operating room personnel.

OBJECTIVE: To validate the efficacy and clinical feasibility of a novel surgical device.

METHODS: A low-cost, modifiable, and easily producible negative pressure, face-mounted antechamber was developed utilizing 3D printing and silicone molding. Efficacy was evaluated using an optical particle sizer to quantify aerosols generated during both cadaver and intraoperative human use with high-speed drilling.

RESULTS: Particle counts in the cadaver showed that drilling led to a 2.49-fold increase in particles 0.3 to 5 μm (P = .001) and that the chamber was effective at reducing particles to levels not significantly different than baseline. In humans, drilling led to a 37-fold increase in particles 0.3 to 5 μm (P < .001), and the chamber was effective at reducing particles to a level not significantly different than baseline. Use of the antechamber in 6 complex cases did not interfere with the ability to perform surgery. Patients did not report any facial discomfort after surgery related to antechamber use.

CONCLUSION: The use of a negative pressure facial antechamber can effectively reduce aerosolization from endoscopic drilling without disturbing the flow of the operation. The antechamber, in conjunction with appropriate PPE, will be useful during the COVID-19 pandemic, as well as during flu season and any future viral outbreaks.

KEY WORDS: COVID-19, SARS-CoV-2, Endoscopic skull base surgery, Endoscopic endonasal surgery, Aerosol-generating procedure, Negative pressure, Antechamber
be produced via 3D printing within a few hours, and its efficacy at reducing aerosols has been validated in laboratory studies using an ovine rib model with optical particle counting and high-speed videography/shadowography. In this paper, we extend our validation of this device utilizing particle counting in a cadaver model, as well as particle counting and surgeon assessment in a small group of patients undergoing ESBS.

METHODS

The antechamber (provisional patent EFS ID 39386708, application #63021722 submitted on May 8, 2020) was originally modeled after a biological safety cabinet in a portable format that could be adapted for use in the operating room. The design process and specifications of the antechamber are extensively detailed in our prior publication. Negative pressure is achieved by attaching the assembly to a suction source, and the flexible silicone rim features a cutout for the endotracheal tube to minimize disruption of the negative pressure seal (Figures 1 and 2). The device is attached to the face using elastic hooks, which are secured against a Mayfield headrest.

Iterative changes were made in the design of the antechamber based on surgeon feedback. The first version featured a triangular cutout in the acrylic shield at the level of the nares. The second version improved upon this with a rectangular cutout situated further inferiorly and covered by a silicone diaphragm to maximize aerosol containment. The third prototype included a rounded top to the diaphragm to accommodate larger noses found in acromegaly and a tapered design with a lower profile near the chin to bring instruments closer to the face and nares (Figures 1 and 2). Vertical slits were created in the diaphragm with a surgical blade at the start of surgery to allow for passage of instruments. These were widened during the course of surgery as needed.

Efficacy of the device was assessed utilizing an optical particle sizer (OPS) (AeroTrak 9306, TSI Incorporated; Shoreview, Minnesota) to quantify the production of particles during endonasal surgery under various conditions. This assay was modeled after previously published methods and performed first in a human cadaver and then in the operating room after obtaining Institutional Review Board approval. In the cadaver model, a complete sphenoethmoidectomy, bilateral middle turbinatectomy, and posterior septectomy were performed in a fixed, latex-injected human cadaver head. Next, the rostrum of the sphenoid was drilled under controlled conditions utilizing a 4-mm cutting burr at 75 000 rpm. The isokinetic inlet of the OPS was placed approximately 15 cm away from the head, and particle counts were collected every 30 s. Counts were obtained in absence of drilling (baseline), during drilling without the antechamber, and during drilling with the antechamber, with and without the silicone diaphragm. Drilling
commenced for 30 s, with a 2-min washout period between measurements, which were repeated in triplicate. For data analysis, particles were stratified by size: 0.3 to 5 \(\mu \)m and > 5 \(\mu \)m.

Clinical feasibility and efficacy of the antechamber were then assessed in 6 endoscopic endonasal skull base procedures. All surgeries were scheduled electively and approved by a panel tasked with balancing clinical necessity against the risks of SARS-CoV-2 exposure. Preoperative workup includes screening for COVID-19 symptoms, nasopharyngeal swab testing (if possible, twice within 72 h of surgery), and a temperature check the morning of surgery. None of the patients in this series reported symptoms or had a positive test result prior to surgery. Despite these precautions, full PPE was implemented, including N95 masks and face shields, given the possibility of a false negative test.

The operative setup for endoscopic skull base surgery at our institution has previously been described and includes fixation of the head in pins on a Mayfield head holder, slight flexion of the neck and extension of the head ("sniffing position") and rotation of the head with the chin toward the surgeon, dynamic endoscopy during the approach to the skull base, static endoscopy with an endoscope holder and irrigation sheath for intracranial work, and line-of-sight intraoperative navigation utilizing the Brainlab system (Munich, Germany). Particle counts were collected during endoscopic drilling with a 15\(^\circ\), 4-mm coarse diamond skull base burr for the latter 3 cases. Readings were taken every 30 s to 1 min, and the isokinetic inlet of the OPS was placed as close to the surgical field as possible without breaking sterility. Drilling was deliberately performed in absence of an intranasal suction to maximize the aerosols propagated and potentially captured by the OPS. Electronic medical records were accessed retrospectively to collect demographic details, operative time, and pathological diagnosis. Patients were also contacted by telephone or directly during office visits between 1 to 2 wk after surgery and queried about potential complications related to use of the antechamber, including facial deformity or discomfort.

Express consent was obtained from patients for intraoperative photography and use of the images for research purposes, along with consent to participate in the study and standard surgical consent. Statistical analysis, including Kruskal-Wallis 1-way analysis of variance with post hoc Mann-Whitney pairwise comparison, was performed using SPSS 26 (IBM, Armonk, New York).

RESULTS

Cadaver Studies

Kruskal-Wallis testing revealed a statistically significant difference \((P = .05) \) in the median number of particles 0.3 to 5 \(\mu \)m between the experimental conditions (Figure 3). Drilling of the sphenoid bone resulted in a statistically significant 2.49-fold...
TABLE 1. Median Particle Counts During Cadaver Drilling Under Experimental Conditions

Condition	N	Median concentration (particles/m³)	P value	Median concentration (particles/m³)	P value
Baseline	20	305 634		13 028	
Without antechamber	3	760 563	.001a	11 268	.763
Antechamber with diaphragm	3	300 000	1.000	11 268	.196
Antechamber without diaphragm	3	304 225	.514	7042	.094

*aStatistically significant change compared to baseline.
Mann-Whitney pairwise testing performed for each condition compared to baseline.

Human Studies

Based on its efficacy in the cadaver model, the antechamber was utilized for ESBS in 6 live patient cases. Table 2 summarizes pertinent clinical details and operative data. None of the 4 surgeons reported significant disruptions by the antechamber in their ability to perform surgery, and none of the patients reported any complications related to use of the device. Summary data from intraoperative particle counts are displayed in Table 3 and Figure 4. There was a statistically significant (P < .001) difference in median particle counts between baseline and various drilling conditions. Compared to baseline, endoscopic drilling with the face uncovered led to a 37-fold increase in the number of particles 0.3-5 μm (P < .001). Use of the antechamber led to a return in the number of detected particles down to levels not significantly different from baseline counts, both with and without the use of the diaphragm (P = .13 and .37). For particles >5 μm, compared to baseline, endoscopic drilling with the face uncovered led to a 1.6-fold increase in the number of particles (P = .03). Use of the antechamber was associated with a decrease in the number of detected particles down to baseline (P = .67) with the diaphragm and to levels significantly lower than baseline without the use of the diaphragm (P = .007).

DISCUSSION

The COVID-19 pandemic has exposed the heretofore underappreciated risks of viral aerosolization during ESBS, not to
mention other AGPs including intubation, tracheotomy, and sinus surgery. In this paper, we provide additional laboratory and, finally, clinical validation for a device that can be utilized to effectively reduce the aerosolization of particles during ESBS with high-speed drilling. This study furthers our initial publication on the device’s conception and laboratory validation. Its universal implementation, in conjunction with appropriate PPE, could have a dramatic impact on iatrogenic contagion of healthcare workers during highly aerosolizing procedures not solely during viral pandemics but also during seasonal influenza outbreaks.

Our work builds on recent research demonstrating that use of a high-speed drill corresponded to the greatest elaboration of aerosols. To mitigate viral transmission risk, some have proposed the application of povidone-iodine to decrease the viral load in the nasal cavity and nasopharynx and the use of negative pressure rooms to limit spread in the hospital setting. Other devices that have been developed include intubation covers or boxes and modified surgical and N95 masks with a flexible port to allow passage of an endoscope. These share the strategy of physically shielding the healthcare provider from the aerosols generated during intubation or endoscopy. Our antechamber, in contrast, is a compact, portable solution that actively removes virus-containing aerosols from circulation and, thereby, also reduces the risk of secondary transmission, including fomite transmission. Furthermore, as demonstrated in our clinical cases, it is feasible for use during surgery and does not interfere with line-of-sight image guidance systems or surgical instrumentation. Its design consists of components that are easily reproducible, modifiable, and affordable, translating to rapid implementation, adaptability, and cost savings. A similar device in publication requires additional components, including a laparoscopic trocar, which may limit the reach of certain instruments and has not been validated in live patient use. Finally, placement of a suction device in the nasal cavity or in the nasopharynx has been shown in Vitro to be an effective mitigation strategy for aerosols generated during endonasal surgery. However, this strategy is prone to failure if the suction is not actively maintained in appropriate position, specifically away from tissue that could potentially occlude the tip.

The antechamber was effective in Vitro and in Vivo at reducing the number of aerosolized particles, particularly in the sub-5-μm range. Interestingly, the open-face instrument port did not correspond to a greater number of particles detected, suggesting that negative pressure, in the strict sense, is not responsible for the effectiveness of the antechamber. This is supported by intraoperative measurements demonstrating negative flow within the antechamber in absence of measurable negative pressure. Active diversion of particles out of the antechamber may be chiefly responsible for the reduction in particles detected externally, similar to the mode of action of biosafety cabinets. Based on our data, aerosols elaborated during endoscopic drilling were primarily between 0.3 and 5 μm, and use of the antechamber led to a reduction of particles detected in this size range. The predominance of particles generated and detected within the sub-5-μm range may explain the seemingly disparate results for particles >5 μm between the cadaver and live patients. Other possible explanations include differences between the sterile environment of the operating room and the comparatively particulate-rich setting of cadaver dissection lab, as reflected in the dramatic discrepancy in baseline counts, as well as inherent variability in aerosolization potential of formalin-fixed vs live tissue. Overall, endoscopic drilling appeared to generate few particles >5 μm, which simply may have limited our ability to detect meaningful differences in this range.

The instrument used to quantify particle size and number in our study has a reported detection range spanning particles 0.3 to 25 μm in size. The SARS-CoV-2 virus measures 0.07 to 0.09 μm, raising the theoretical possibility that particles smaller than the minimum threshold for detection in our study could have been generated and leaked by the antechamber. However, the primary mode of transmission for SARS-CoV-2 and other respiratory viruses is via droplets and aerosols. Indeed, one study detected SARS-CoV-2 RNA copies in both aerosols in 2 size ranges (0.25-1 μm and >2.5 μm). Another estimated the minimum aerosol size for conveying the virus to range from 0.4 to 42 μm, with size inversely proportional to aerosol suspension time. Moreover, efficacy of our device in reducing aerosols smaller than 5 to 10 μm could have implications for mitigating the transmission risk for influenza, which may be propagated in...
aerosols <2.5 μm,22 as well as future pandemic viruses as yet unencountered.

Limitations

Because of the quantitative nature of our study and presumably COVID-negative cohort, we are unable to verify that particles generated during ESBS and measured by the OPS are in fact capable of transmitting SARS-CoV-2. Another limitation of our research is the inclusion of a small number of patients. Although we did not encounter any ergonomic or practical barriers to use of the device in our 6 cases, utilizing the chamber in a larger number of patients and clinical contexts will more rigorously reveal any deficiencies in design and opportunities for improvement. As noted in our methods, the device was not tested during dynamic endoscopy with 2 surgeons operating simultaneously.

CONCLUSION

ESBS in the time of COVID-19 can be performed more safely with strategies to eliminate aerosols that may spread SARS-CoV-2. We demonstrate efficacy and clinical feasibility of a portable, negative pressure antechamber designed to decrease viral propagation at the source during AGPs. This novel device is not intended to obviate the need for PPE, but rather represents an additional line of defense for surgeons and healthcare providers during the current pandemic. Universal use of this device may also reduce transmission of influenza or other heretofore undescribed viruses.

Funding

This study did not receive any funding or financial support.

Disclosures

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this article.

REFERENCES

1. Patel ZM, Fernandez-Miranda J, Hwang PH, et al. Letter: precautions for endoscopic transnasal skull base surgery during the COVID-19 pandemic. *Neurosurgery*. 2020;87(1):E66-E67.

2. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. *N Engl J Med*. 2020;382(12):1177-1179.

3. Vukkadala N, Qian ZJ, Holsinger FC, Patel ZM, Rosenthal E. COVID-19 and the otolaryngologist: preliminary evidence-based review. *Laryngoscope*. 2020;130(11):2537-2543.

4. Thamboo A, Lea J, Sommer DD, et al. Clinical evidence based review and recommendations of aerosol generating medical procedures in otolaryngology – head and neck surgery during the COVID-19 pandemic. *J Otolaryngol Head Neck Surg*. 2020;49(1):28.

5. Mick P, Murphy R. Aerosol-generating otolaryngology procedures and the need for enhanced PPE during the COVID-19 pandemic: a literature review. *J Otolaryngol Head Neck Surg*. 2020;49(1):28.

6. Lo YT, Yang Teo NW, Ang BT. Editorial. Endonasal neurosurgery during the COVID-19 pandemic: the Singapore perspective. *J Neurosurg*. 2020;133(1):26-28.

7. Patel ZM. Reflections and new developments within the COVID-19 pandemic. *Int Forum Allergy Rhinol*. 2020;10(5):587-588.

8. Castelnuovo P, Turri-Zanoni M, Karligiokis A, et al. Skull-base surgery during the COVID-19 pandemic: the Italian Skull Base Society recommendations. *Int Forum Allergy Rhinol*. 2020;10(8):963-967.

9. Patel ZM, Fernandez-Miranda J, Hwang PH, et al. In reply: precautions for endoscopic transanal skull base surgery during the COVID-19 pandemic. *Neurosurgery*. 2020;87(2):E162-E163.

10. Workman AD, Welling DB, Carter BS, et al. Endonasal instrumentation and aerosolization risk in the era of COVID-19: simulation, literature review, and proposed mitigation strategies. *Int Forum Allergy Rhinol*. 2020;10(7):798-805.

11. Begley JL, Lavery KE, Nickson CP, Brewer DJ. The aerosol box for intubation in coronavirus disease 2019 patients: an in-situ simulation crossover study. *Anaesthesia*. 2020;75(8):1014-1021.

12. Chen C, Shen N, Li X, Zhang Q, Hei Z. New device and technique to protect intubation operators against COVID-19. *Intensive Care Med*. 2020;46(8):1627-1629.

13. Lee M, Rivera-Rosario HT, Bewley GP, et al. Development and validation of a face-mounted, negative-pressure antechamber for endonasal surgery. *J Neurosurg Skull Base*. 2021;82(S 02):S65-S270.

14. Workman AD, Jafari A, Welling DB, et al. Airborne aerosol generation during endonasal procedures in the era of COVID-19: risks and recommendations. *Otolaryngol Head Neck Surg*. 2020;163(3):465-470.

15. Husain Q, Kim MH, Hussain I, et al. Endoscopic endonasal approaches to the craniovertebral junction: the Otolaryngologist’s perspective. *World J Otorhinolaryngol*. 2020;2(2):94-99.

16. Mady LJ, Kubik MW, Badour K, Snyderman CH, Rowan NR. Consideration of povidone-iodine as a public health intervention for COVID-19: utilization as “Personal Protective Equipment” for frontline providers exposed in high-risk head and neck and skull base oncology care. *Otol Oncol*. 2020;10:104724.

17. Rameau A, Young VN, Amin MR, Sulica L. Flexible laryngoscopy and COVID-19. *Otolaryngol Head Neck Surg*. 2020;162(6):813-815.

18. Helman SN, Soriano RM, Tomov ML, et al. Ventilated upper airway endoscopic endonasal procedure mask: surgical safety in the COVID-19 era. *Oper Neurosurg*. 2020;19(3):271-280.

19. Dharmarajan H, Freiser ME, Sim E, et al. Droplet and aerosol generation with endonasal procedures in the era of COVID-19: risks and recommendations. *Otolaryngol Head Neck Surg*. 2021;164(2):285-293.

20. Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. *Nature*. 2020;582(7813):557-560.

21. Lee BU. Minimum sizes of respiratory particles carrying SARS-CoV-2 and the minimum size of respiratory particles carrying SARS-CoV-2. *J Occup Environ Hyg*. 2020;13(7):443-449.

22. Lindsley WG, Pearce TA, Hudnall JB, et al. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. *J Occup Environ Hyg*. 2020;13(7):443-449.

Acknowledgments

We thank Abtin Tabaee for his assistance obtaining intraoperative particle counts.