Review

Genus *Stachys*: A Review of Traditional Uses, Phytochemistry and Bioactivity

Ekaterina-Michaela Tomou, Christina Barda and Helen Skaltsa *

Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; ktomou@pharm.uoa.gr (E.-M.T.); cbarda@pharm.uoa.gr (C.B.)
* Correspondence: skaltsa@pharm.uoa.gr; Tel.: +30-2107274593

Received: 11 August 2020; Accepted: 25 September 2020; Published: 29 September 2020

Abstract: Background: The genus *Stachys* L. (Lamiaceae) includes about 300 species as annual or perennial herbs or small shrubs, spread in temperate regions of Mediterranean, Asia, America and southern Africa. Several species of this genus are extensively used in various traditional medicines. They are consumed as herbal preparations for the treatment of stress, skin inflammations, gastrointestinal disorders, asthma and genital tumors. Previous studies have investigated the chemical constituents and the biological activities of these species. Thus, the present review compiles literature data on ethnomedicine, phytochemistry, pharmacological activities, clinical studies and the toxicity of genus *Stachys*. Methods: Comprehensive research of previously published literature was performed for studies on the traditional uses, bioactive compounds and pharmacological properties of the genus *Stachys*, using databases with different key search words. Results: This survey documented 59 *Stachys* species and 10 subspecies for their phytochemical profiles, including 254 chemical compounds and reported 19 species and 4 subspecies for their pharmacological properties. Furthermore, 25 species and 6 subspecies were found for their traditional uses. Conclusions: The present review highlights that *Stachys* spp. consist an important source of bioactive phytochemicals and exemplifies the uncharted territory of this genus for new research studies.

Keywords: *Stachys* L.; traditional uses; pharmacological activities; phytochemicals; bioactive compounds

1. Introduction

The genus *Stachys* L., a large member of the Lamiaceae family, comprises more than 300 species, dispersing in temperate and tropical regions of Mediterranean, Asia, America and southern Africa [1–3]. Up to now, the most established and comprehensive classification of the genus is introduced by Bhattacharjee (1980), categorizing into two subgenera *Betonica* L. and *Stachys* L. [2,3]. The subgenus *Stachys* includes 19 sections, while the subgenus *Betonica* comprises 2 sections [1]. However, the two subgenera present important botanical and phytochemical differences which differentiate them [1,4,5].

Stachys species grow as annual or perennial herbs or small shrubs with simple petiolate or sessile leaves. The number of verticillate ranges from four to many-flowered, usually forming a terminal spike-like inflorescence. Calyx tubes are tubular-campanulate, 5 or 10 veined, regular or weakly bilabiate with five subequal teeth. Corolla has a narrow tube, 2-lipped; upper lip flat or hooded and generally hairy, while the lower lip is 3-lobed and glabrous to hairy. The nutlets are oblong to ovoid, rounded at apex [6].

The genus name derived from the Greek word «σταχύς» (stachys), referring to the type of the inflorescence which is characterized as “spike of corn” and resembles to the inflorescences of the
species of genus *Triticum* L. (Gramineae). In ancient times, the name “stachys” referred mainly to the species *Stachys germanica* L. whose inflorescence is like an ear and is covered with off-white trichome [7]. The Latin name of the genus is trifarium (=tomentose) [8].

Historically, Dioscorides mentioned the species *S. germanica* L. with the name “stachys” [9]. However, in late Byzantine era, 'Nikolaos Myrepsos' included some species of the genus *Stachys* (S. *germanica* L., *S. officinalis* (L.) Travis, *S. alopecuros* (L.) Benth.) in his medical manuscript “Dynameron”. Precisely, *S. officinalis* and *S. alopecuros* were probably included in 11 recipes, under the names vetoniki, drosiovotanon, lauriole, kakambri, while *S. germanica* was added in 1 recipe referred as stachys [10].

Many species of the genus are extensively used in traditional medicine of several countries, having various names. For instance, the species *S. recta*, known as yellow woundwort, is called as “erba della paura” (=“herb that keeps away fear”) in Italy, attributing to the anxiolytic properties of its herbal tea, while *S. lavandulifolia* Vahl is called as “Chaaye Koohi” in Iran [11–13]. In addition, herbal preparations of *Stachys* spp. are widely consumed in folk medicine to treat a broad array of disorders and diseases, including stress, skin inflammations, stomach disorders and genital tumors [3,14,15]. Specially, the herbal teas of these plants, known as “mountain tea”, are used for skin and stomach disorders [12,16]. The latter common name could lead to a misinterpretation since the herbal remedies of any *Sideritis* species are globally known with the same name.

In the international literature, *Stachys* species have been broadly studied through several phytochemical and pharmacological investigations, justifying their ethnopharmacological uses. Of special pharmacological interest are considered the anti-inflammatory, antioxidant, analgesic, renoprotective, anxiolytic and antidepressant activity [3,17–19]. The range of the therapeutic properties attributed to these species have been associated to their phytochemical content. Therefore, genus *Stachys* has received much attention for the screening of its bioactive secondary metabolites from different plant parts. In general, more than 200 compounds have been isolated from this genus, belonging to the following important chemical groups; terpenes (e.g., triterpenes, diterpenes, iridoids), polyphenols (e.g., flavone derivatives, phenylethanoid glucosides, lignans), phenolic acids and essential oils [3,5,14,20–22].

Consequently, plants of genus *Stachys* are considered a great source of phytochemicals with therapeutic and economic applications. Given the increasing demand for natural products, many *Stachys* species have been cultivated for uses in traditional medicine, in food market, in cosmetic industry and for ornamental reasons [21,22]. Despite the widely uses of the specific species and the large amount of research studies, there has been no recent comprehensive review including all the latest data of the specific genus and its contribution in medicine. Up to now, the available reviews are centered to the phytochemical profile and biological activities of *Stachys* spp. in correlation to chemotaxonomy approach [3,21–23]. Thus, this review summarizes the current state of knowledge on the traditional uses, phytochemistry, pharmacological activities, clinical studies and toxicity of the genus *Stachys* L.

2. Materials and Methods

A comprehensive search on previous studies was conducted on scientific databases such as PubMed, Scopus, Google scholar and Reaxys, including the years 1969–2020. The search terms “Stachys”, “Stachys compounds”, “Stachys phytochemicals”, “Stachys pharmacological” and “Stachys traditional uses” were used for data collection. Searches were performed for other potential studies by manual screening references in the identified studies. In total, 161 publications describing the traditional uses, bioactive compounds, pharmacological properties and the toxicity of the genus *Stachys* were included, excluding articles focuses on taxonomy, botany and agronomy. The traditional medicinal uses of *Stachys* species were reported in Table 1, while the isolated specialized products were categorized by species in Tables 2–15, with the attempt of the discrimination between publications describing metabolites’ isolation (including NMR data) or identification/screening (by means of HPLC, LC-MS, etc.). The chemical structures of the bioactive compounds were showed in Tables 16–29. The reported biological activities of extracts/compounds of the last five years were
mentioned by Stachys species in Table 30. The general characteristics of the analyzed studies in the current review are showed in Table 31. According to recent publications which support the division of the genus Stachys based on Bhattacharjee (1980), the classification in the present review is formed on this latter study. The species name and their synonyms are quoted as reporting in databases “Plant list” or “Euro + Med” or “IPNI” [24–26].

3. Traditional Medicinal Uses of Genus Stachys

Several Stachys spp. have been used in various ethnomedicines for thousands of years. A plethora studies mentioned their diverse traditional medicinal uses. In the current review, a detailed description of the available data of the traditional uses of Stachys spp. is shown in Table 1, reporting 25 species and 6 subspecies of this genus. A careful overview of the specific table reveals that the ethnomedicinal use of Stachys spp. is particularly in the area covering Mediterranean Iran. Most of the species are consumed as herbal teas for the treatment of infections, common cold, gastrointestinal disorders, inflammation, skin disorders/wounds, asthma and anxiety.

The species S. affinis is widely used in Chinese traditional medicine for several uses such as common cold, heart disease, pain relief, antioxidant activity, ischemic brain injury, dementia and gastrointestinal related diseases [27–30]. Another species applied in Chinese folk medicine is S. geobombycis, known as DongChongXiaCao, which is recommended as tonic and interestingly, this species is also used in Europe and Japan [22].

In Iran, several species are applied as traditional therapeutic agents in various conditions, including S. acerosa [31], S. fruticulosa [32], S. byzantina (known in Farsi as “lamb’s ear” or “lamb’s tongue” or “sonbolehe noghrehi” or “zabanehe bare”) [33–35], S. inflata (local names; “poulk” or “Ghol-e-Argavan”) [31,36,37], S. lavandulifolia (known as “Chaaye Koohi”) [12,13,31,38–44], S. pilifera [31,45], S. schtschegleevii [32,34,46], S. sylvatica [47] and S. turcomanica [34]. Of considerable interest, S. sylvatica (common name “hedge woundwort”) is recommended for the treatment of women with polycystic ovary syndrome (PCOS) [47].

Furthermore, in Turkish folk medicine, the species S. cretica subsp. Anatolica, S. cretica subsp. mersinaea, S. iberica subsp. georgica, S. iberica subsp. stenostachya, S. kurdiaca, S. lavandulifolia and S. oblqua are used mainly to treat colds, cough, stomach ache and as antipyretic agents, while S. sylvatica is applied in cardiac disorders [22,48–50].

In Italy, the infusions of the leaves of S. annua and S. recta are used to wash the face to reveal headache [51], whereas the aerial parts of the subspecies S. annua subsp. annua, known as “stregonan annual” or “erba strega”, are consumed as anti-catararrhal, febrifuge, tonic and vulnerary [52]. The decoction of the aerial parts of S. recta is also consumed as purgative and for bad luck/spirit [53,54]. Interestingly, S. annua and S. arvensis, as well as the subspecies S. recta subsp. recta are applied against evil eye [11,51,52,55]. Moreover, in an area of central Italy, the species S. officinalis is used as oily extract to treat wounds and to dye wood yellow [29,54]. To be mentioned that S. recta is listed in the European Pharmacopeia, as well as S. officinalis is mentioned in Anthroposophic Pharmaceutical Codex (APC) [22]. However, Gören (2011) reported that some species (e.g., S. annua, S. recta and S. sylvatica) have been mentioned to be poisonous [22].

In North Greece, the infusion and decoction of S. iva are consumed against common cold and gastrointestinal disorders [56]. In addition, Fazio et al. (1994) reported different formulations of the Greek species S. mucronata applied in Greek tradition medicine. Precisely, the decoction of this species is consumed as an antirheumatic and antineuralgic agent, as well as the juice of fresh leaves is applied in wounds and ulcers. Moreover, the infusion of fresh leaves has antidiarrohoic effect, while the infusion of roots is purgative [57].

In addition to traditional medicinal uses, some species of genus Stachys are also consumed as edible plants, vegetables and food additives like the tubers of S. affinis (known as Chinese artichoke/chorogi; China/Japan) in China and Japan [22,27], the aerial parts of S. lavandulifolia in Iran [31], or the S. palustris in Poland [22,58]. The latter species is also included in the diet in Sweden, Ukraine and Great Britain [22]. Moreover, the dried powder of S. palustris is used as an additive for bread in Europe, thus it is known as “mayday flour” [22].
The infusion of the aerial parts of *Stachys* sp. LAM is used as traditional remedy for colic, gases and swollen stomach in Peru [22,59]. It is noteworthy to mention that a few species have been used in veterinary such as *S. germanica* and *S. officinalis* [30,54].

Table 1. *Stachys* species with reported traditional medicinal uses.

Species	Geographical Origin of the Reported Traditional Use	Traditional Medicinal Use	Preparation and/or Administration/Parts of the Plant	Ref.
S. acerosa Boiss.	Iran	Common cold	Decoction	[31]
	China	Infections, colds, heart diseases, tuberculosis, pneumonia	Edible food (tubers)	[27,28]
S. affinis Bunge (≡*S. sieboldii* Miq.)	China	Common cold, heart diseases, for pain relief, as antioxidant, to treat ischemic brain injury, dementia, various gastrointestinal related diseases	-	[29]
S. annua (L.) L	Italy	Headache	Infusion of leaves; also, external use to wash face	[51]
S. annua (L.) L subsp. annua	Italy	Anti-catarrhal, febrifuge, tonic, vulnerary, against evil eye	Aerial parts	[52]
S. arvensis (L.) L	-	Against evil eye	-	[55]
S. balansae Boiss. & Kotschy	-	Hypotonic diseases, cardiac neuroses	Liquid and alcoholic extracts	[23]
S. byzantina K. Koch.	-	Anti-inflammatory, antitumor, anticancer, antispasmodic, sedative and diuretic agent, and in the treatment of digestive disorders, wounds, infections, asthma, rheumatic and inflammatory disorders, dysentery, epilepsy, common cold and neuropathy	-	[33]
	Iran	Infected wounds, cutting	Decoction, Demulcent (Leaves)	[34,35]
Species	Country	Use	Part Used	
---------------------------------	------------------	------------------------------	----------------------------------	
S. cretica subsp. *anatolica*	Turkey	Colds, stomach ailments	Infusion, decoction, internal	
S. cretica L. subsp. *mersinaea* (Boiss.) Rech. f.	Turkey	Colds, stomach ailments	Infusion, decoction, internal	
S. fruticulosa M. Bieb.	Iran	Anti-inflammatory	Aerial parts	
S. geobombycis C.Y.Wu	China, Japan and Europe	Tonic	-	
S. germanica L.	-	Gastrodynia, for painful menstruation	-	
S. glutinosa L.	-	Skin disorders (Veterinary use)	-	
S. iberica subsp. *gerogica* Rech. f.	Turkey	Colds, antipyretic	Decoction, internal	
S. iberica subsp. *stenostachya* (Boiss.) Rech. f.	Turkey	Colds, antipyretic, stomach ache	Decoction, internal	
S. inflata Benth.	Iran	Infections, asthmatic, rheumatic, inflammatory disorders	Extracts of aerial parts (non flowering stems)	
S. iva Griseb.	Greece	Common cold and gastrointestinal disorders	Decoction, infusion	
S. kurdica Boiss & Hohen var. *kurdica*	Turkey	Cold, stomach-ache	Decoction of branches/flowers Drink one glass of the plant on an empty stomach in the morning	
S. lavandulifolia Vahl.	Iran	Treat pain and inflammation	Boiled extracts of the aerial parts	
	Iran	Sedative, gastrotonic and spasmodalytic properties, treatment of some gastrointestinal disorders, colds and flu	Herbal tea of flowering aerial parts	
	Iran	Headache, renal calculus common cold, sedative flavoring agent, abdominal pain	Decoction of aerial parts, Food additive (aerial parts)	
Country	Medication	Preparation	Reference	
---------------	-------------------------------	------------------------------------	-----------	
Turkey	Antipyretic, cough	Decoction, internal	[49]	
Iran	Painful and inflammatory	Boiled extracts of aerial parts	[41]	
Iran	Anxiolytic influence	Herbal tea	[38–44]	
Iran	Antirheumatic and antineuralgic remedy	Decoction for massage		
Iran	Washed with the decoction and covered with a poultice of fresh leaves for cicatrization			
S. mucronata Sieb.	For wounds and ulcers	Herbal tea	[57]	
Greece	Antidiarrhoic agent	Infusion of fresh leaves		
S. obliqua Waldst. & Kit.	Cold, stomach ailments, fever and cough	Herb, infusion, decoction	[22]	
S. officinalis (L.) Trevisan (=S. betonica Benth.; Betonica officinalis L.)	Skin disorders, antibacterial purposes, against headache, nervous tension, anxiety, menopausal problems, as a tobacco snuff	Tea of dried leaves	[22]	
Serbia, Egypt, Montenegro				
Italy	Dye wool yellow	Plant	[51]	
Italy	Wounds, in the sores of pack animals	Oily extract of flowers	[54]	
-	Disinfectant, anti-spasmodic and for treatment of wounds	-	[17,61]	
S. palustris L.	Wounds, additive in food	Antiseptic, to relieve gout, to stop haemorrhage	-	[58]
-	Antiseptic, to relieve gout, to stop haemorrhage			
S. parviflora Benth. (=Phlomidoschema parviflorum (Benth.) Vved.)	Cramps, arthralgia, epilepsy, falling sickness, dracunculiasis	-	[63,64]	
S. pilifera Benth.	Toothache, edible, analgesic, edema, expectorant, tussive	Decoction of aerial parts	[31]	
Country	Condition	Plant Part	Effect	Reference
-------------	----------------------------------	------------------	---	-----------
Iran	Asthma, rheumatoid arthritis and infections	-	[45]	
Anatolia	Antibacterial and healing effects	Tea of the whole part	[21]	
Anatolia	Sedative, antispasmodic, diuretic and emmenagogic properties	Tea of the leaves	[21]	
S. pumila Banks & Sol.	Bronchitis, asthma, stomach pain and gall and liver disorders	-	[65]	
Europe	Anxiolytic properties	Herbal tea, Oral administration	[11]	
Italy	Headache	Infusion of leaves to wash face	[51]	
Italy	Bad influence/spirit	Decoction	[53]	
Italy	Depurative	Decoction of the aerial parts	[54]	
S. recta L.	Tootache and other pain	Aerial parts applied in body parts		
S. recta L. subsp. recta	against anxiety, pain and toothache	Decoction of flowering tops for bath or to wash face, hands and wrists for 3 days	[53]	
Iran	Antiinflammatory	Aerial parts	[32,34]	
S. schtschegleevii Sosn. ex Grossh.	Infectious diseases of the respiratory tract (for colds and sinusitis), for asthma, rheumatism and other inflammatory disorders	-	[46]	
S. sieboldii Miq. (=S. affinis Bunge)	Cold and against infections, promoting blood circulation	Dried whole plant	[30]	
-	Disinfectant, antispasmodic and for treatment of wounds	-	[17]	
S. sylvatica L.	Diuretic, digestive, emmenagogue, antispasmodic, anti-inflammatory, sedative, tonic properties and for the treatment of women with PCOS	-	[47]	
Turkey	Cardiac disorders	Infusion of aerial parts	[48]	
S. tibetica Vatke
India
For fever, cough, phobias and various mental disorder
Whole plant is boiled and made into a decoction. Drink one teacup decoction twice a day to treat fever for 5–7 days
[66]

S. turcomanica Trautv.
Iran
Foot inflammation, toothache, bronchitis and common cold
Infusion, Demulcent, Vapor (Whole plant)
[34]

4. Chemical Composition

Various non-volatile chemical constituents have been reported from different species of genus *Stachys*, categorizing into important chemical groups including fatty acids, alkaloids (e.g., stachydrine, turiaine), triterpenes, phytosterols, phytoecdysteroids, diterpenes, iridoids, flavonoids, phenylpropanoid glucosides, acetophenones, phenolic acids, megastigmanes and polysaccharides [3,20,21,23,67]. The present survey was focused on all the above groups, excluded fatty acids and alkaloids due to the limited available studies. This section summarizes the phytochemicals from the genus *Stachys* which are mainly responsible for its pharmacological benefits, presented in Tables 2–15. To be mentioned that large number of phytochemicals were mainly discovered from the aerial parts, leaves and a few were found in stems and roots.

Table 2. Flavones isolated from *Stachys* spp.

Species	Plant Parts	Compound	Ref	
S. aegyptiaca Pers.	Aerial parts	Apigenin (1), Apigenin 7-O-β-D-glucoside (cosmoside) (2), Apigenin 7-O-[6‴-O-acetyl]-allosyl-(1→2)-β-D-glucoside (3), Apigenin 6,8-di-C-glucoside (Vicenin-2) (10), Isoscutellarein 7-O-allosyl-(1→2)-β-D-glucoside (13), Isoscutellarein-7-O-[6‴-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucoside (15), Luteolin (34), Luteolin-7-O-[6‴-O-acetyl]-allosyl-(1→2)-β-D-glucoside (39), 6,8 Di-C-β-D-glucopyranosyl luteolin (Lucenin-2) (40), Chrysoeriol (42) Chrysoeriol 7-O-β-D-glucoside (43), Hypolaetin 7-O-[6‴-O-acetyl]-allosyl-(1→2)-[3‴-O-acetyl]-β-D-glucoside (54),		[68]
Medicines 2020, 7, 63	9 of 77			
--------------------------	----------			
Apigenin 7-O-diglucoside (not determined), Luteolin 7-O-diglucoside (not determined)				
Aerial parts	Apigenin-7-(3''-E-p-coumaroyl)-β-D-glucoside (4), Apigenin 7-(6''-p-coumaroyl)-β-D-glucoside (6)			
Aerial parts	Isoscultellarein (11), 3',4'-Dimethyl-luteolin-7-O-β-D-glucoside (41)			
S. inflata Beth.	Isoscultellarein 8-O-(6''-trans-p-coumaroyl)-β-D-glucoside (18)			
S. schtschegleevii Sosn. ex Grossh.	Scutellarein 7-O-β-D-mannopyranosyl-(1→2)-β-D-glucoside (stachyflaside) (31)			
Stems	Isoscultellarein (11), 4'-Methyl-isoscultellarein (12), Scutellarein (29)			
Apigenin 7-O-β-D-glucoside (2), Apigenin 7-(6''-E-p-coumaroyl)-β-D-glucopyranoside (6), 3'-Hydroxy-isoscultellarein-7-O-[6''-O-acetyl]-β-D-glucopyranoside (14). Chrysoeriol 7-(6''-E-p-coumaroyl)-β-D-glucopyranoside (47)				
Section Campanistrum				
S. arvensis (L.) L.	Aerial parts	8-Hydroxyflavone-allosylglucosides (not determined)		
S. ocymastrum (L.) Briq. (=S. hirta L.)	Aerial parts	8-Hydroxyflavone-allosylglucosides (not determined)		
Aerial parts	Apigenin (1), Apigenin 7-(6''-E-p-coumaroyl)-β-D-glucopyranoside (6), Isoscultellarein 7-O-allosyl-(1→2)-glucopyranoside (13), Luteolin (34)			
S. candida Bory & Chaubard	Aerial parts	Chrysoeriol (42), Chrysoeriol 7-(3''-E-p-coumaroyl)-β-D-glucopyranoside (46)		
Aerial parts	Apigenin 7-O-β-D-glucopyranoside (2), Isoscultellarein 7-O-{6''-O-acetyl}-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), Isoscultellarein 7-O-{6''-O-acetyl}-allosyl-(1→2)-[6''-O-acetyl]-glucopyranoside (17), 4'-Methyl-isoscultellarein 7-O-β-D-[6''-O-acetyl]-allosyl-(1→2)-β-D-glucopyranoside (21)			
Medicines 2020, 7, 63

Species	Aerial parts	Leases
S. corsica Pers.	8-Hydroxyflavone-allosylglucosides (not determined)	Apigenin (1), Apigenin 7-O-acetyl-glucoside (2), Apigenin 7-(6"-E-p-coumaroyl)-β-D-glucopyranoside (6)
S. iva Griseb.	Apigenin (1), Isoscutellarein 7-O-[6"-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4′-Methyl-isoscutellarein 7-O-[6"-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), Isoscutellarein 7-O-[6"-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (17), 4′-Methyl-isoscutellarein 7-O-β-D-[6"-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4′-Methyl-hypolaetin-7-O-[6"-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)	
S. cretica subsp. smyrnacea Rech. f.		Apigenin (1)
S. germanica L.	Hypolaetin 7-allosyl-(1→2)-glucoside monoacetyl, Isoscutellarein 7-allosyl-(1→2)-	

Chrysoeriol 7-O-β-D-glucopyranoside (43), Chrysoeriol 7-(3"-E-p-coumaroyl)-β-D-glucopyranoside (46), 4′-Methyl-hypolaetin-7-O-[6"-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
Species	Part	Chemical Constituents
S. heraclea All.	Aerial parts	Apigenin 7-O-glucoside (2), Apigenin 7-(3”-O-acetyl)-D-glucopyranoside (15), Isoscullarein 7-O-{[6”-O-acetyl]-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (8), Apigenin 7-O-(3”-O-acetyl)-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (15), Isoscullarein 4’-methyl ether 7-O-[6”-O-acetyl]-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (21), 4’-Methyl-hypolaetin-7-O-[6”-O-acetyl]-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (56)
S. lanata Crantz. (= *S. germanica* L. subsp. *germanica*)	Aerial parts	Apigenin 7-O-β-D-glucopyranoside (2), Apigenin 7-(3”-Z-p-coumaroyl)-β-D-glucopyranoside (8), Apigenin 7-(6”-Z-p-coumaroyl)-β-D-glucopyranoside (7), Apigenin 7-O-(3”-6”-di-O-E-p-coumaroyl)-β-D-glucopyranoside (Anisofolin A) (8), Isoscullarein 7-O-[6”-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), Isoscullarein 4’-methyl ether 7-O-[6”-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4’-Methyl-hypolaetin-7-O-[6”-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
S. spectabilis Choisy ex DC.	Epigeal parts	Isostachylflaside (25), Spectabiflaside (28), Scullarein 7-O-β-D-mannopyranosyl-(1→2)-β-D-glucopyranoside (stachyflaside) (31)
S. thirkei K. Koch.	Whole plant*	Apigenin (1)
S. tmolea Boiss.	Aerial parts*	Apigenin (1), Apigenin-7-O-glucoside (2)
S. tymphaea Hausskn. (= *S. germanica* subsp. *tymphaea* (Hausskn.) R. Bhattacharjee)	Flowering aerial parts	Isoscullarein 7-O-[6”-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4’-Methyl-isoscullarein 7-O-β-D-[6”-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4’-Methyl-hypolaetin-7-O-[6”-O-acetyl]-allopyranosyl-(1→2)-[6”-O-acetyl]-glucopyranoside (58)

Section Fragilicaulis

Species	Part	Chemical Constituents
S. subnuda Montbret & Aucher ex Benth	Aerial parts	Isoscullarein 7-O-allosyl-(1→2)-glucoside (13), Isoscullarein 7-O-glucoside (2)
S. angustifolia	Medicines 2020, 7, 63	
----------------	----------------------	
2020, 7, 63	L.) L.	
S. atherocalyx	C. Koch	
S. annua (L.)	L.	

Section Olisia

Compound	Reference
Stachyflaside (31)	[72]
Diacetylstachyflaside (not determined),	
Diacetylspectabiflaside (not determined),	[88]
Spectabiflaside (28)	
5,8,4′-Trihydroxy-3′-methoxy-7-O- (β-D-glucopyranosyl-2′-O-β-D-mannopyranosyl)-flavone (Spectabiflaside) (28), Acetylsectabiflaside (not determined),	[89]
Acetyl-isostachyflaside (26), Diacetyl-isostachyflaside (27),	[90]
Spectabiflaside (28)	
Isoscutellarein 7-O-[6″′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4′-Methyl-isoscutellarein 7-O-β-D-[6″′-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4′-Methyl-isoscutellarein 7-O-[6″′-O-acetyl]-allopyranosyl(1→2)-[6″-O-acetyl]-glucopyranoside (56)	[91]

Compound	Reference
Isoscutellarein 7-O-[6″′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4′-Methyl-isoscutellarein 7-O-β-D-[6″′-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21)	[92]

Compound	Reference
4′-Methyl-isoscutellarein (12), 7-O-β-D-glucopyranosyl-5,6-dihydroxy-4′-methoxyflavone (Stachannin A) (32), 4′-Methoxy-scultellarein-7-[O-β-D-mannopyranosyl-(1→2)-β-D-glucopyranoside] (Stachannoside B) (33)	[93]

Compound	Reference	
Isoscutellarein 7-O-[6″′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15),	[94]	
Species/Lineage	Location	Chemical Components
----------------	------------------	---
S. annua (L.) L. subsp. annua	Aerial parts	4′-Methyl-isoscullarein-7-O-β-D-[6′′-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4′-Methyl-hypolaetin-7-O- [6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
	Subterranean organs	4′-O-Methyl-isoscullarein-7-O-[6′′-O-acetyl]allopyranosyl-(1→2)-glucopyranoside (Annnuositde) (23)
S. beckeana Dörfler & Hayek	Flowering aerial parts	Isoscullarein 7-O-[6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4′-Methyl-hypolaetin-7-O-[6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
S. bombycina Boiss.	Aerial parts	Apigenin 7-(6′′-E-p-coumaroyl)-β-D-glucopyranoside (6), Stachyspinoside (44)
S. parolinii Vis.	Leaves	Isoscullarein 7-O-[6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4′-Methyl-hypolaetin-7-O-[6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
S. leucoglossa Griseb.	Leaves	Isoscullarein 7-O-[6′′-O-acetyl]-alloxy(1→2)-[6′′-O-acetyl]-glucoside (17), 4′-Methyl-isoscullarein 7-O-β-D-[6′′-O-acetyl]-allopyranosyl-(1→2)-β-D-glucopyranoside (21), 4′-Methyl-hypolaetin-7-O-[6′′-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56)
S. neglecta Klok. ex Kossko (=S. annua (L.) L.)		Apigenin (1)
Apigenin 7-O-β-D-glucoside (2),

Luteolin (34), Luteolin 7-O-β-D-

Aerial parts

Leaves

Compound	Formula
Apigenin 7-(3′-E-p-coumaroyl)-β-D-glucopyranoside (4), Apigenin 7-	7-O-[6′′-O-acetyl]-allosyl(1→2)-β-D-glucopyranoside (13), Apigenin 7-
6′′-E-p-coumaroyl)-β-D-glucopyranoside (6), Isoscutellarein	7-O-[allosyl(1→2)]-glucopyranoside (13), Isoscutellarein 7-O-[6′′-O-acetyl]-β-D-allosyl(1→2)-β-D-glucopyranoside (15), Isoscutellarein 7-O-[6′′-O-acetyl]-allosyl(1→2)-6′′-O-acetyl]-glucopyranoside (17), 4′-Methylisoscutellarein 7-O-[allosyl(1→2)]-glucopyranoside (19), 4′-Methyl-isoscutellarein 7-O-β-D-[6′′-O-acetyl]-allopyanosyl(1→2)-β-D-glucopyranoside (20), 4′-Methyl-isoscutellarein 7-O-β-D-[6′′-O-acetyl]-allopyanosyl(1→2)-β-D-glucopyranoside (21), 4′-Methyl-isoscutellarein 7-O-[6′′-O-acetyl]-allosyl(1→2)-6′′-O-acetyl]-glucopyranoside (24), Hypolaetin 7-O-allosyl(1→2)-glucopyranoside (50), 4′-Methyl-hypolaetin 7-O-allosyl(1→2)-glucopyranoside (55), 4′-Methyl-hypolaetin 7-O-[6′′-O-acetyl]-allosyl(1→2)-[6′′-O-acetyl]-glucopyranoside (57), 4′-Methyl-hypolaetin 7-O-[6′′-O-acetyl]-allosyl(1→2)-6′′-O-acetyl]-glucopyranoside (58)

S. labiosa Bertol. (=S. recta subsp. labiosa (Bertol.) Briq.)

Leaves

Compound	Formula	
Isoscutellarein 7-O-β-D-[6′′-O-acetyl]-allopyanosyl(1→2)-β-D-glucopyranoside (15), 4′-Methyl-isoscutellarein 7-O-β-D-[6′′-O-acetyl]-allopyanosyl(1→2)-β-D-glucopyranoside (21), 4′-Methyl-hypolaetin 7-O-β-D-[6′′-O-acetyl]-glucopyranoside (23)	[92]	
Species	Parts	Compounds
-------------------------------	--------------	---
S. subcrenata Vis. (=S. recta L. subsp. subcrenata (Vis.) Briq.)	Leaves	Isosculetellarein 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (15), 4''-Methylisosculetellarein 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (21), 4''-Methylhypolaetin 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (56)
S. baldaccii (Maly) Hand. - Mazz. (=S. recta L. subsp. baldaccii (K. Maly) Hayek)	Leaves⁺	Isosculetellarein 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (15), 4''-Methylisosculetellarein 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (21)
S. spinosa L.	Aerial parts	Chrysoeriol 7-0-[6''''-O-acetyl]-alosyl(1→2)-glucoside (Stachyspinoside) (44)
	Aerial parts	Chrysoeriol 7-0-[6''''-O-acetyl]-alosyl(1→2)-glucoside (Isostachyspinoside) (45)
S. tetragona Boiss. & Hayek	Leaves⁺	Isosculetellarein 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (15), 4''-Methylisosculetellarein 7-0-β-D-[6''''-O-acetyl]-alopyranosyl(1→2)-β-D-glucopyranoside (21)
	Aerial parts	Isosculetellarein 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (15), Isosculetellarein 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-[6''''-O-acetyl]-β-D-glucopyranoside (17)
Section Swainsoniana		Isosculetellarein 7-0-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (13), Isosculetellarein 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (15), Isosculetellarein 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-[6''''-O-acetyl]-β-D-glucopyranoside (17), 4''-Methylisosculetellarein 7-0-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (19), Hypolaetin 7-0-[6''''-O-acetyl]-β-D-allopyranosyl(1→2)-β-D-glucopyranoside (51),

⁺ Leaves of aerial parts
Species	Type	Location	Flavonoids
S. decumbens Pers. (=S. mollissima Willd.)	Aerial parts	Leaves	Hypolaetin 7-O-[6""-O-acetyl]-β-D-allopyranosyl-(1→2)-[6""-O-acetyl]-β-D glucopyranoside (53), 4"-Methyl-hypolaetin-7-O-[6""-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (56), 4"-Methyl-hypolaetin 7-O-[6""-O-acetyl]-β-D-allopyranosyl-(1→2)-[6""-O-acetyl]-β-D glucopyranoside (58)
S. menthifolia Vis. (=S. grandiflora Host.)	Leaves	Aerial parts	8-Hydroxyflavone-allosylglucosides (not determined)
S. swainsonii Benth. subsp. swainsonii	Aerial parts		Apigenin (1), Apigenin 7-O-β-D-glucopyranoside (2), Luteolin 7-O-β-D-glucopyranoside (37), Chrysoeriol (42), Chrysoeriol 7-O-β-D-glucopyranoside (43), Stachyspinoside (44)
S. swainsonii subsp. argolica (Boiss.) Phitos and Damboldt	Aerial parts		Apigenin (1), Luteolin 7-O-β-D-glucopyranoside (37), Chrysoeriol (42), Chrysoeriol 7-O-β-D-glucopyranoside (43), Chrysoeriol 7-(6"-E-p-coumaroyl)-β-D-glucopyranoside (47)
S. swainsonii subsp. melangavica D. Persson	Aerial parts		Apigenin (1), Apigenin 7-O-β-D-glucopyranoside (2), Luteolin 7-O-β-D-glucopyranoside (37), Chrysoeriol 7-O-β-D-glucopyranoside (43), Stachyspinoside (44)
S. swainsonii subsp. scyronica (Boiss.) Phitos and Damboldt	Aerial parts		Apigenin (1), Apigenin 7-O-β-D-glucopyranoside (2), Luteolin 7-O-β-D-glucopyranoside (37), Chrysoeriol 7-O-β-D-glucopyranoside (43), Stachyspinoside (44)
S. ionica Halácsy	Aerial parts		Apigenin (1), Apigenin 7-(6"-E-p-coumaroyl)-β-D-glucopyranoside (6), Isoscultellarein 7-O-[6""-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15), 4"-Methyl-isoscultellarein 7-O-β-D-[6""-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (21)
Section Stachys			
-----------------	-----------------	-----------------	
S. sieboldii Miq. (=S. affinis Bunge)	Aerial parts	Isoscutellarein 7-O-[6"'-O-acetyl]-β-D-allosyl-(1→2)-β-D-glucoside (15), 4'-Methyl-isoscutellarein 7-O-[6"'-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucoside (21)	
S. mialhesii Noé	Aerial parts	Apigenin 7-(6"'-E-p-coumaroyl)-β-D-glucopyranoside (6), Isoscutellarein 7-O-[6"'-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside (15)	
S. palustris L.		5-(glucuroglucosyl)-7-methoxybaicalein (Palustrin) (63), 5-(glucuronosyl)-7-methoxybaicalein (Palustrinoside) (64)	
	Leaves²	Vicenin-2 (10), Apigenin 7-O-p-coumaroyl-β-D-glucopyranoside (not determined)	
	Aerial parts²	8-Hydroxyflavone-allosyl-glucosides (not determined)	
S. sylvatica L.	Leaves²	Chrysoeriol 7-O-acetylallosylglucoside (not determined), Apigenin 7-O-p-coumaroyl-β-D-glucopyranoside (not determined)	
S. plumosa Griseb.	Leaves²	Apigenin-7-O-β-D-glucoside (2), Luteolin 7-O-β-D-glucoside (37), Chrysoeriol 7-O-acetylallosylglucoside (not determined), Isoscutellarein 7-O-acetyl-allopyranosyl-β-D-glucoside (not determined), Apigenin 7-O-p-coumaroyl-β-D-glucopyranoside (not determined)	

Section Zietenia		
S. lavandulifolia Vahl.	Aerial parts	Apigenin (1), Hydroxygenkwanin (Luteolin 7-Methyl ether) (35), Chrysoeriol (42)
S. tibetica Vatke	Roots	Apigenin 7-O-β-D-glucoside (2)

Subgenus Betonica	Section Betonica		
S. alopecuros (L.) Benth.	Aerial parts	p-coumaroyl-glucosides (not determined)²	
		Isoscutellarein 7-O-glucoside (11a), Luteolin 7-O-glucuronide (36), Luteolin 7-O-glucoside (37), Chrysoeriol 7-O-glucoside (43), Hypolaetin 7-O-glucoside (49), Hypolaetin 7-O-glucuronide (49a), Selgin 7-O-glucoside (59), Tricin 7-O-glucuronide (60),	
Species	Plant Parts	Compound	Ref
--------------------------	-------------------	--	-----
S. foliosa Reg. (=*S. betoniciflora* Rupe.; *Betonica foliosa* Rupe.)	Aerial parts	Four flavonoids (not determined)	[105]
S. monieri (Gouan) P.W. Ball. (=*S. officinalis* (L.) Trevis subsp. *officinalis*)	Aerial parts	p-coumaroyl-glucosides (not determined) ^4	[75]
	Aerial parts	Apigenin (1), 5, 6, 4’-trihydroxyflavone-7-O-β-D-glucoside (30)	
S. officinalis (L.) Trevis (=*Betonica officinalis* L.)	Leaves ^3	Luteolin 6-C-glucoside (isoorientin) (38), Tricin 7-O-glucuronide (60), Tricin 7-O-glucoside (61), Tricetin 3’,4’,5’-trimethyl-7-O-glucoside (62), Apigenin 7-O-p-coumaroyl glucopyranoside (not determined)	[5]
	Aerial parts	p-coumaroyl-glucosides (not determined) ^4	[75]
Section Macrostachya			
S. scardica Griseb. (=*Betonica scardica* Griseb.)	Leaves ^3	Selgin 7-O-glucoside (59), Tricin 7-O-glucuronide (60), Tricin 7-O-glucoside (61), Tricetin 3’,4’,5’-trimethyl-7-O-glucoside (isolation) (62), Apigenin 7-O-p-coumaroyl glucopyranoside (not determined)	[5]

#identified compounds by means of HPLC, LC-MS, etc.

Table 3. Poly-methylated flavonoids from *Stachys* spp.

Species	Plant Parts	Compound	Ref
S. aegyptiaca Pers.	Aerial parts	Xanthomicrol (69), Sideritiflavone (70), 5-Hydroxy-6,7,8,3’,4’-pentamethoxyflavone (75), 5,4’-Dihydroxy - 6,7,8,3’-	[68]
Medicine Name	Compounds		
-------------------------------------	---		
Medicines 2020, 7, 63	tetramethoxyflavone (76), 5,5,4'-Trihydroxy-3,6,7,8-tetramethoxyflavone (82), Calicopterin (83), Chrysosplenetin (84), 5-Hydroxy-3,6,7,8,4'-pentamethoxyflavone (88), 5,4'-Dihydroxy - 3,6,7,8,3'-pentamethoxyflavone (89)		
Aerial parts	5,7,3'-Trihydroxy-6,4'-dimethoxyflavone (67), 5,7,3'-Trihydroxy-6,8,4'-trimethoxyflavone (68)		
Xanthomicrol (69), Eupatilin-7-methyl ether (73), Calicopterin (83), 5-Hydroxy-3,6,7,4'-tetramethoxy flavone (85), 5,8-Dihydroxy-3,6,7,4'-tetramethoxy flavone (86), 5-Hydroxy-auranetin (88), 4'-Hydroxy-3,5,7,3'-tetramethoxy flavone (90)			
S. schtschegleevii Sosn. ex Grossh.	Stems Cirsimaritin (66), Xanthomicrol (69)		
Section Aucheriana	Xanthomicrol (69), Sideritiflavone (70), 8-Methoxycirsilineol (71), Eupatilin (72a)		
S. glutinosa L.			
Section Candida	Xanthomicrol (69), Calycoperin (83)		
S. candida Bory & Chaubard			
Section Swainsoniana	Eupatorin (72), Penduletin (81), 5-hydroxyauranetin (88)		
S. swainsonii Benth. subsp. swainsonii	Aerial parts Eupatorin (72), 5-Hydroxyauranetin (88)		
S. swainsonii subsp. argolica (Boiss.) Phitos and Damboldt	Aerial parts Xanthomicrol (69), Eupatorin (72), Salvigenin (74)		
S. swainsonii subsp. melangavica D. Persson
Aerial parts
Eupatorin (72), 5-Hydroxyauranetin (88)
[102]

S. swainsonii subsp. scyronica (Boiss.) Phitos and Damboldt
Aerial parts
Eupatorin (72), Penduletin (81), 5-hydroxyauranetin (88)
[102]

S. ionica Halácsy
Aerial parts
Xanthomicrol (69), Salvigenin (74), Chrysospleninetin (84), 5-Hydroxy-3,6,7,4′-tetramethoxyflavone (85), Casticin (87)
[20]

S. lavandulifolia Vahl.
Aerial parts
Velutin (Luteolin 7,3′-dimethyl ether) (65), Viscosine (5,7,4′-trihydroxy-3,6-dimethoxyflavone (78), Kumatakenin (Kaempferol 3,7-dimethyl ether) (79), Pachypodol (Quercetin 3,7,3′-trimethyl ether) (80), Penduletin (81), Chrysospleninetin (84),
[13]

Subgenus Betonica

Section Betonica

S. officinalis (L.) Trevis = (Betonica officinalis L.)
Aerial parts
5,4′-Dihydroxy-7,3′,5′-trimethoxyflavone (77)
[20]

| Table 4. Flavonols from Stachys spp. |
|------------------|------------------|------------------|---|
| Species | Plant parts | Compound | Ref |
| S. cretica subsp. smyrnaca Rech. f. | Aerial parts | Kaempferol (91) | [81] |
| S. tetragona Boiss. & Hayek | Aerial parts | Kaempferol (91) | [100] |
| S. swainsonii Benth. subsp. swainsonii | Aerial parts | Isorhamnetin (92) | [99] |
| S. swainsonii subsp. argolica (Boiss.) Phitos and Damboldt | Aerial parts | Isorhamnetin (92) | [99] |
Table 5. Flavanones from *Stachys* spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
S. aegyptiaca Pers.	Aerial parts	Naringenin *(96)*	[69]
Section Ambleia			
S. cretica subsp. smyrnea* Rech. f.	Aerial parts	Hesperidin *(97)*	[81]
Section Eriostomum			
S. swainsonii Benth. subsp. *swainsonii*	Aerial parts	Eriodictyol *(95)*	[102]
Section Swainsoniana			
S. swainsonii subsp. *argolica* (Boiss.) Phitos and Damboldt	Aerial parts	Eriodictyol *(95)*	[102]
S. swainsonii subsp. *melangavica* D. Persson	Aerial parts	Eriodictyol *(95)*	[102]
S. swainsonii subsp. *scyronica* (Boiss.) Phitos and Damboldt	Aerial parts	Eriodictyol *(95)*	[102]

S. *palustris* L. Leaves* identified compounds by means of HPLC, LC-MS, etc.

Quercetin-3-O-rutinoside *(93)*, Isorhamnetin-3-O-rutinoside *(94)*
Table 6. Biflavonoid from *Stachys* spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
S. aegyptiaca Pers.	Aerial Parts	Diapigenin-7-O-(6”-trans,6”-cis-p, p’-dihydroxy-µ-truxinyl)glucoside (stachysetin) (98)	[69]
S. lanata Crantz. (=*S. germanica* L. subsp. *germanica*)	Aerial parts	Stachysetin (98)	[82]
Section Candida			
S. iva Griseb.	Flowering aerial parts	Stachysetin (98)	[56]

Table 7. Phenolic derivatives from *Stachys* spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
S. candida Bory & Chaubard	Aerial parts	Chlorogenic acid (103)	[78]
S. iva Griseb	Flowering aerial parts	Chlorogenic acid (103)	[56]
Section Eriostomum			
S. cretica subsp. *smyrnaea* Rech. f.	Aerial parts	Chlorogenic acid (103)	[81]
S. cretica subsp. *vacillans* Rech. f.	Aerial parts	Vanillic acid (100), Syringic acid (101), Chlorogenic acid (103)	[105]
S. cretica subsp. *mersinsae* (Boiss.) Rech. f.	Aerial parts	Chlorogenic acid (103)	[108]
S. lanata Crantz. (=*S. germanica* L. subsp. *germanica*)	Roots	Chlorogenic acid (103)	[82]
S. tmolea Boiss	Aerial parts	4-Hydroxybenzoic acid (99), Chlorogenic acid (103)	[85]
S. thirkei K. Koch	Aerial parts	Chlorogenic acid (103)	[84]
S. germanica L. subsp. *salvifolia* (Ten.) Gams.	Aerial parts	Arbutin (107)	[109]
Section Olisia			
S. atherocalyx C. Koch.		Neochlorogenic acid (105), p-Coumaric	[110]

Table 8. Acetophenone glucosides from *Stachys* spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
S. lanata Crantz. (=*S. germanica* L. subsp. *germanica*)	Roots	Androsin (109), Neolloydosin (110), Glucoacetosyringone (111)	[82]

Table 9. Lignans from *Stachys* spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
S. mialhesii Noé	Aerial Parts	(+)-Sesamin (112), (+)-Paulownin (113)	[103]
S. tetragona Boiss. & Heldr.	Aerial parts	(7S-8R)-Urolignoside (114)	[100]
Table 10. Phenylethanoid glucosides from *Stachys* spp.

Species	Plant Parts	Compound	Ref		
Subgenus Stachys					
S. schtschegleevii Sosn. ex Grossh.	Stems	Acteoside (118), Betunyoside F (128)	[74]		
Section Ambleia					
S. candida Bory & Chaubard	Aerial parts	Acteoside (118)	[78]		
S. iva Griseb.	Flowering aerial parts	Acteoside (118), Leucosceposide A (131), Lavandulifolioside (129)	[56]		
Section Candida					
Section Eriostomum					
S. byzantina K. Koch	Aerial parts	Verbascoside (118), 2′-O-Arabinosyl verbascoside (122), Aeschynanthoside C (133)	[33]		
S. cretica L. subsp. *vacillans* Rech. f.	Aerial parts	Verbascoside (118)	[112]		
S. germanica L. subsp. *salviifolia* (Zen.) Gams	Aerial parts	Verbascoside (118)	[109]		
		Leonoside B (134), Martynoside (135)	[82]		
S. lanata Crantz (=*S. germanica* L. subsp. *germanica*)	Roots	Rhodioloside (115), Verbascoside (116), Verbascoside (118), Isoacteoside (119), Darendoside B (120), Campneoside II (121), 2-Phenylethyl-D-xylopyranosyl-(1→6)-D-glucopyranoside (117), Campneoside I (136)	[82]		
S. tymphaea Hausskn. (=*S. germanica* subsp. *tymphaea* (Hausskn.) R. Bhattacharjee)	Flowering aerial parts	Verbascoside (118), Stachysoside A (129)	[86]		
Section Olisia					
S. recta L.	Aerial parts	Acteoside (118), Isoacteoside (119), β-OH-Acteoside (121), Betunyoside E (127),	[14]		
		Betunyoside I (136), Forsythoside B (137), β-OH-Forsythoside B methyl ether (138)			
Species	Type	Parts	Compounds	Reference	
---------	------	-------	-----------	-----------	
S. tetragona Boiss. & Heldr.	Aerial		Acteoside (118), Betonioside F (128), Leucosceptoside A (131), Stachysoside D (134), Forsythoside B (137), Lamiophloside A (141)	[100]	
S. affinis Bunge (=*S. sieboldii* Miq.)	Tubers		Acteoside (118), Leucosceptoside A (131), Martynoside (135)	[27]	
S. riederi Cham.	Whole plants		Acteoside (118), Campneoside II (121), Lavandulifolioside (129), Leonoside A (139)	[114]	
S. lavandulifolia Vahl	Aerial		Verbascoside (118), Lavandulofolioside A (129)		[115]
		Aerial	Lavandulofolioside B (130), Leucosceptoside A (131)		[12]
		Aerial	Acteoside (118)		[116]
Subgenus Betonica					
Section Betonica					
S. macrantha (C. Koch.) Stearn (=*Betonica grandiflora* Willd.)	Aerial		Verbascoside (118), Leucosceptoside A (131), Martynoside (135), Lavandulifolioside (129)		[117]
S. officinalis (L.) Trevis. (=*Betonica officinalis* L.)	Aerial		Acteoside (118), Acteoside isomer (isoacteoside) (119), Campneoside II (121), Betonyosides A-F (123–128), Leucosceptoside B (132), Forsythoside B (137)		[118]
S. alopecuros (L.) Benth	Flowering aerial		Verbascoside (118)		[119]

Former *Stachys* species
S. parviflora Benth.
(=Phlomidoschema parviflorum (Benth.) Vved.)
Whole plant
Parvifloroside A (142),
Parvifloroside B (143)
[120]

#identified compounds by means of HPLC, LC-MS, etc.

Table 11. Phenylpropanoid glucosides from Stachys spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
Section Eriostomum			
S. lanata Crantz. (=S. germanica L. subsp. germanica)	Roots	Coniferin (144), Syringin (145)	[82]

Table 12. Iridoids from Stachys spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
Section Ambleia			
S. inflata Benth.	Aerial parts	Ajugol (146), Ajugoside (147)	[121]
Section Aucheriana			
S. glutinosa L.	Aerial parts	Harpagide (148), Acetylharpagide (150), Monomelittoside (165), Melittoside (166), Allobetonicoside (161), 5-Allosyloxy-aucubin (167)	[122]
Section Campanistrum			
S. ocymastrum (L.) Briq. (=S. hirta L.)	Leaves	6β-Acetoxypolamiide (172), 6β-Hydroxyypolamiide (173), Ipolamiide (174), Ipolamiidoside (175), Lamiide (176)	[123]
Section Candida			
S. iva Griseb.	Flowering Aerial parts	Harpagide (148), 8-Acetylharpagide (150), 8-Epi-loganic acid (157), Gardoside (160), 8-Epi-loganin (159), Monomelittoside (165), Melittoside (166)	[56]
Section Corsica			
Species	Parts/Components	Complexes/Compounds	References
---------------------------------	--	--	------------
S. corsica Pers.		Harpagide (148), Acetylharpagide (150)	[79]
Section Eriostomum			
S. alpina L.	Stems, Leaves	Ajugoside (147), Harpagide (148), Acetylharpagide (150), Harpagoside (154), Aucubin (164), Catalpol (163)	[124]
S. balansae Boiss. & Kotschy		Ajugol (146), Ajugoside (147)	[125]
S. germanica L.	Leaf, Inflorescence	Ajugoside (147), Harpagide (148), Acetylharpagide (150), Harpagoside (154), Aucubin (164), Catalpol (163)	[124]
S. spectabilis Choisy ex DC.		Ajugol (146), Ajugoside (147), Harpagide (148)	[125]
S. byzantina K. Koch.	Aerial parts	Ajugoside (147), Harpagide (148), Acetylharpagide (150), Harpagoside (154), Aucubin (164), Catalpol (163)	[124]
S. germanica L. subsp. salviifolia (Zen.) Gams	Flowering Aerial parts	Harpagide (148)	[86]
S. lanata Crantz. (=S. germanica L. subsp. germanica)	Aerial parts	Ajugol (146), Harpagide (148), 7-Hydroxyharpagide (149), 5-Allosyloxy-aucubin (167)	[109]
S. tymphaea Hausskn. (=S. germanica subsp. tymphaea (Hausskn.) R. Bhattcharjee)	Roots	Stachysosides E (168), G (170), H (171)	[82]
	Aerial parts	Stachysosides E (168), F (169)	[82]
		Harpagide (148)	[86]

Section Olisia
Species	Components	References
S. angustifolia M. Bieb.	Ajugoside (147), Acetylharpagide (150), Harpagide (148), Melittoside (166)	[92]
S. annua (L.) L.	Ajugoside (147), Acetylharpagide (150), Melittoside (166)	[92]
S. atherocalyx C. Koch.	Ajugol (146), Harpagide (148), Acetylharpagide (150), Melittoside (166)	[92,125]
S. beckeana Dörfl. & Hayek	Harpagide (148), Ajugol (146), Acetylharpagide (150), Melittoside (166)	[92]
S. iberica M. Bieb.	Ajugol (146), Ajugoside (147), Harpagide (148), Acetylharpagide (150)	[121]
S. recta L.	Ajugol (146), Harpagide (148), Acetylharpagide (150), Melittoside (166)	[92]
Leaves	8-Acetylharpagide (150), Melittoside (166)	[14]
S. baldaccii (Maly) Hand-Mazz (=*S. recta* L. subsp. *baldaccii* (K. Maly) Hayek)	Ajugol (146), Ajugoside (147), Harpagide (148), Acetylharpagide (150), Melittoside (166)	[92]
Aerial parts	Harpagoside (154), Catalpol (163), Aucubin (164)	[124]
S. subcrenata Vis. (=*S. recta* subsp. *subcrenata*)	Ajugol (146), Harpagide (148), Acetylharpagide (150), Melittoside (166)	[92]
S. labiosa Bertol.	Ajugol (146), Harpagide (148)	[92]
Species	Constituents	
--	---	
S. leucoglossa Griseb.	Acetylharpagide (150), Melittoside (166)	
S. spinosa L.	Aerial parts Ajugol (146), Harpagide (148), 7-O-Acetyl-8-epi-loganic acid (158)	
S. tetragona Boiss. & Heldr.	Aerial parts Ajugol (146), Harpagide (148), Acetylharpagide (150), Melittoside (166)	
S. affinis Bunge (= S. sieboldii Miq.)	Tubers Harpagide (148), Acetylharpagide (150), Melittoside (166), 5-Allosyloxyaucubin (167)	
S. palustris L.	Aerial parts Ajugoside (147), Harpagide (148), Acetylharpagide (150), Harpagoside (154), Catalpol (163), Aucubin (164)	
S. sylvatica L.	Aerial parts³ Ajugoside (147), Harpagide (148), Acetylharpagide (150), Harpagoside (154), Catalpol (163), Aucubin (164)	
S. anisochila Vis. & Pancic	Acetylharpagide (150), Melittoside (166)	
S. ionica Halácsy	8-epi-loganic acid (157), Gardoside (160)	
S. menthifolia Vis. (= S. grandiflora Host.)	Aerial parts³ Ajugol (146), Harpagide (148), Melittoside (166)	
Section Zietenia	Aerial parts⁴	
-----------------	--------------	
S. lavandulifolia Vahl.	Acetylharpagide (150), Melittoside (166)	

| Aerial parts³ | [124] |

Section Betonica	Aerial parts
S. alopecuros (L.) Benth subsp. divulsa (Ten.) Grande	Acetylharpagide (150), Harpagide (148), 4′-O-β-D-galactopyranosyl-teuhircoside (162)

| Flowering aerial parts | [119] |

| S. foliosa Rupr. (=S. betoniciflora Rupr.; Betonica foliosa Rupr.) | Acetylharpagide (150), Harpagide (148), 8-O-Acetyl-harpagide (150), 6-O-Acetylmioporoside (155) |

| Flowering aerial parts | [126] |

| S. betonicaeflora Rupr. | Acetylharpagide (150), Reptoside (153), Macranthoside [=8-O-β-D-cinnamoyl-harpagide] (156), Allobetonicoside (161) |

| Aerial parts | [117] |

| S. macrantha (C. Koch.) Stern (=Betonica grandiflora Steph. ex Willd.) | Acetylharpagide (150), Reptoside (153), Macranthoside [=8-O-β-D-cinnamoyl-harpagide] (156), Allobetonicoside (161) |

| Aerial parts | [127] |

| S. officinalis (L.) Trevis. (=Betonica officinalis L.) | Acetylharpagide (150), Reptoside (153), 6-O-Acetylmioporoside (155) |
Species	Plant Parts	Compound	Ref
Subgenus Stachys			
section Ambleia	Aerial parts	Stachysolone (177), 11a,18-Dihydroxy-<i>ent</i>-kaur-16-ene (210)	[130]
S. aegyptiaca Pers.	Aerial parts	Stachaegyptin A-C (190–192), Roseostachenone (184), Stachysolone (177), 7,13-Diacetyl-stachysolone (180)	[106]
	Aerial parts	Stachaegyptins D, E (193, 194)	[132]
	Aerial parts	Stachaegyptins A (190), F-H (195–197), Stachysperoxide (189)	[133]

#identified compounds identified compounds by means of HPLC, LC-MS, etc; **endemic species of Chile.

Table 13. Diterpenes from <i>Stachys</i> spp.
Species	Parts	Compounds	Reference
S. inflata Benth.	Aerial parts	Annuanone (181), Stachylone (182), Stachone (183)	[134]
		Section Aucheriana	
S. glutinosa L.	Aerial parts	Roseostachenone (184), 3α,4α-Epoxyroseostachenol (188)	[107]
S. balansae Boiss. & Kotschy	Aerial parts	Annuanone (181), Stachylone (182)	[134]
		Section Eriostomum	
S. lanata Crantz. (=*S. germanica* L. subsp. germanica)		*Ent*-3α-acetoxy-kaur-16-en-19-oic acid	[135]
		Ent-3α,19-dihydroxy-kaur-16-ene	
		Ent-3α-hydroxy-kaur-16-en-19-oic acid	
		Section Mucronata	
S. mucronata Sieb.	Aerial parts	Ribenone [=3β-hydroxy-13-epi-ent- manoyl oxide] (198), Ribenol [=3-keto-13-epi-ent- manoyl oxide] (199)	[57]
		Section Olisia	
S. annua (L.) L.		Stachysolone (177)	[136,137]
		S. atherocalyx C. Koch.	
		Annuanone (181), Stachylone (182), Stachone (183)	[138]
S. distans Benth	Aerial parts	(+)-6-Deoxyandalusol (201)	[139]
		S. iberica M. Bieb.	
		Annuanone (181), Stachylone (182), Stachone (183)	[134]
S. recta L.	Aerial parts	7,13-Diacetate stachysolone (180), 7-Acetate stachysolone (178), 13-Acetate stachysolone (179)	[140]
		Section Roseostachys	
S. rosea Boiss.	Aerial parts	Roseostachenone (184), Roseostachone	[141]
Section Stachys

Species	Plant Parts	Compound	Ref
S. mialhesii Noé	Aerial parts	Horminone (211)	[103]
S. palustris L.		Annuanone (181)	[134]
S. sylvatica L.		Stachysic acid (204)	[142]

Section Swainsoniana

Species	Plant Parts	Compound	Ref	
S. ionica Halácsy	Aerial parts	(+)-6-Deoxyandalusol (201)	[139]	
S. plumosa Griseb.	Aerial parts	(+)-6-Deoxyandalusol (201), 13-Epi-jabugodiol (202), (+)-Plumosol (203)		

Section Zietenia

Species	Plant Parts	Compound	Ref
S. lavandulifolia Vahl.	Aerial parts	Stachysolone (177)	[116]

Subgenus Betonica

Species	Plant Parts	Compound	Ref
S. officinalis (L.) Trevis. (=Betonica officinalis L.)		Betolide (214)	[145]
		Betonicolide (215), Betonicosides A-D (216–219)	
S. scardica (Griseb.) Hayek (=Betonica scardica Griseb.)	Roots	Betolide (214)	[143]

Former Stachys species

Species	Plant Parts	Compound	Ref
S. parvisflora Benth. (=Phlomidoschema parvisflorum (Benth.) Vved.)	Whole plant	Stachyrosane 1 (212), Stachyrosane 2 (213)	[133]

Table 14. Triterpene derivatives, Phytosterols and Phytoecdysteroids from Stachys spp.

Species	Plant Parts	Compound	Ref
Subgenus Stachys			
Section Eriostomum			
S. byzantina K. Koch	Aerial parts	Stigmasterol (220),	[17]
Species	Plant Parts	Compound	Ref
--------------------------	----------------------	---	-----
Subgenus Stachys			
Section Eriostomum			
S. byzantina K. Koch.	Aerial parts	Stachyssaponin A (229), Stachyssaponin B (230)	[63]
Subgenus Betonica			
Section Betonica			
S. alopecuros (L.) Benth. subsp. *divulsa* (Ten.) Grande	Flowering aerial parts	3-O-β-Sitosterol-glucoside (222)	[119]
Former Stachys species			
S. parviflora Benth. (=*Phlomidoschema parviflorum* (Benth.) Vved.)	Aerial parts	Stachyssaponin A (229), Stachyssaponin B (230)	[63]

Table 15. Megastigmane derivatives from *Stachys* spp.
The genus *Stachys* consists a rich source of flavonoids. Accumulating studies have reported the several types of flavonoids occurring in *Stachys* spp., including flavones (Tables 2 and 16), polymethylated flavones (Tables 3 and 17), flavonols (Tables 4 and 18), flavanones (Tables 5 and 19) and one biflavonoid (Tables 6 and 20).

Regarding the flavone derivatives (Tables 2 and 16), 18 flavone 7-O-acetylasparaginylglucosides were mentioned in the most species of subgenus *Stachys* (31 species). The flavone 7-O-glucosides were also found in many species through the two subgenera. Marin et al. (2004) reported that tricetin 3’,4’,5’-trimethyl-7-O-glucoside (62) consists a chemotaxonomic marker for the subgenus *Betonica* [5]. Precisely, selgin 7-O-glucoside (59), tricin 7-O-glucoside (61) and tricetin 3’,4’,5’-trimethyl-7-O-glucoside (62) were identified from the leaves of three species of the latter subgenus; *S. alopecuroides* (section *Betonica*), *S. officinalis* (section *Betonica*) and *S. scardica* (section *Macrostachya*) [5]. Furthermore, derivatives of apigenin p-coumaroyl glucosides and chrysoeriol p-coumaroyl glucosides were reported in *Stachys* species, though some p-coumaroyl glucosides (not determined) were also identified [5,75]. To be mentioned that chrysoeriol 7-O-glucoside (43), chrysoeriol p-coumaroyl glucosides (46,47) and chrysoeriol 7-O-[6”-O-acetyl-allosyl]-[1→2]-glucoside (stachyspinoside) (44) were mainly isolated from wild Greek taxa of the subgenus *Stachys* [3,77,98,99,102], apart from the Greek species *S. ionica* [20], *S. tetragona* [100] and the cultivated species *S. iva* [56]. Nazemiyeh et al. (2006) investigated the phytochemical profile of the stems of *S. schtschegleevii*, reporting four flavonoids, among them were also two p-coumaroyl derivatives of apigenin and chrysoeriol [102]. Moreover, flavone 7-O-mannosylglucosides were reported from the two species *S. atherocalyx* (section *Eriostemon*) and *S. spectabilis* (section *Olisia*) [72,89,90]. Few flavone C-glucosides were mentioned in the species *S. aegyptiaca* (subg. *Stachys*; sect. *Ambleia*), *S. officinalis* (subg. *Betonica*; sect. *Betonica*), and *S. scardica* (subg. *Betonica*; sect. *Macrostachya*) [5,68,104]. Žičenkon (1970) reported the existence of two derivatives of methoxybaicalein, namely palustrin (63) and palustrinoside (64), from the species *S. palustris* of subgenus *Stachys* (section *Stachys*) [104]. Notably, the subterranean organs of *S. annua* were investigated and the isolation of two flavone derivatives was reported, namely 4’-O-methyl-isocutellarein (12) and 4’-O-methyl-isocutellarein-7-O-(6”-O-acetyl)alloprenosyl-(1→2)-glucopyranoside (21) [95].

Furthermore, our survey revealed the presence of poly-methylated flavones in the genus *Stachys* (Tables 3 and 17). Precisely, six species and four subspecies from subgenus *Stachys*, as well as one species from subgenus *Betonica*, are found to contain poly-methylated flavones. The most common representative was xanthomicrol (69) which was mentioned in six *Stachys* species and subspecies of different sections from the subgenus *Stachys* [20,68,74,77,78,102,107]. In the stems of the species *S. schtschegleevii*, apart from xanthomicrol (69), was also found cirsimarin (66) [74].

A few studies mentioned the existence of flavonols in *Stachys* spp. (Tables 4 and 18), mainly in species occurred in Greece. Afoyenidi and colleagues (2018) isolated kaempferol (91) from the n-butanol residue of the aerial parts of *S. tetragona* [100], which was also identified in the aerial parts of *S. cretica* subsp. *smyrnoides* [81]. Moreover,isorhamnetin (92) was isolated from the methanol extract of the aerial parts of *S. swainsonii* subsp. *swainsonii* and *S. swainsonii* subsp. *argolica* [102]. A study conducted by Marin et al. (2004) identified the presence of quercetin 3-O-rutinoside (93) and isorhamnetin 3-O-glucoside (94) from the aerial parts of *S. palustris* [5].
In addition, three flavanones were isolated from three species of the genus *Stachys* (Tables 5 and 19). Eriodictyol (95) was mentioned in *S. cretica* [108] and in one subspecies of *S. swainsonii* [102], while naringenin (96) was isolated from the aerial parts of the species *S. aegyptiaca* [104]. A flavanone rutinoside, known as hesperidin (97), was identified as one of the major compounds of the aerial parts of *S. cretica* subsp. *smyrnae* [81]. Of great interest is the isolation of a rare diflavone ester of μ-truxinic acid, namely stachysetin (98). It is well-known that diglycoside flavone esters of dicarboxylic acids are rare compounds in plant kingdom. Stachysetin was firstly isolated from the ethanol extract (70% v/v) of the aerial parts of *S. aegyptiaca* [69]. Then, Murata and co-workers (2008) reported it in the methanol residue (80% v/v) of the aerial parts of *S. lanata* [82]. In a current study carried out by Pritsas et al. (2020), stachysetin was isolated from the methanol: aqueous (5:1) extract from the flowering aerial parts of the cultivated *S. iva* (Tables 6 and 20) [56]. Up to now, there is no report of this secondary metabolite in the species of the subgenus *Betonica*. The presence of this rare natural compound in the sections *Ambleia*, *Eriostomum* and Candida of the subgenus *Stachys* might be considered as a chemotaxonomic marker among the two subgenera and of the genus *Stachys*.

![Chemical structures of flavones isolated from *Stachys* spp.](Image)
	H	H	OH	C-glc	H	OH	H
D-glucoside (Anisofolin A) (8)							
Apigenin 8-C-glucoside (9)	H	H	OH	C-glc	H	OH	H
Apigenin 6,8-di-C-glucoside (Vicenin-2) (10)	H	C-glc	OH	C-glc	H	OH	H
Isoscutellarein (11)	H	H	OH	OH	H	OH	H
Isoscutellarein 7-O-glucoside (11a)	H	H	O-glc	OH	H	OH	H
4’-Methyl-isoscutellarein (12)	H	H	OH	OH	H	OCH₃	H
Isoscutellarein 7-O-allosyl-(1→2)-glucoside (13)	H	H	O-allosyl-(1→2)-glc	OH	H	OH	H
3’-Hydroxy-isoscutellarein-7-O-[6”-O-acetyl]-β-D-glucoside (14)	H	H	O-[6”-O-acetyl]-glc	OH	OH	OH	H
Isoscutellarein 7-O-[6”-O-acetyl]-β-D-glucoside (15)	H	H	O-[6”-O-acetyl]-αllosyl-(1→2)-β-D-glucoside	OH	H	OH	H
Isoscutellarein 7-O-β-D-allosyl-(1→2)-[6”-O-acetyl]-β-D-glucoside (16)	H	H	O-[6”-O-acetyl]-αllosyl-(1→2)-[6”-O-acetyl]-glc	OH	H	OH	H
Isoscutellarein 7-O-[6”-O-acetyl]-β-D-allosyl-(1→2)-[6”-O-acetyl]-β-D-glucoside (17)	H	H	O-[6”-O-acetyl]-αllosyl-(1→2)-[6”-O-acetyl]-glc	OH	H	OH	H
Isoscutellarein 8-O-(6”-trans-p-coumaroyl)-β-D-glucoside (18)	H	H	OH	O-(6”-trans-p-coumaroyl)-glc	H	OH	H
4’-Methyl-isoscutellarein 7-O-β-D-allosyl-(1→2)-β-D-glucoside (19)	H	H	O-allosyl-(1→2)-glc	OH	H	OCH₃	H
**4’-Methyl-isoscutellarein 7-O-β-D-allosyl-(1→2)-[6”-O-							
Compound	H	H	OH	OH	H	OCH₃	H
---	----	----	----	----	----	------	----
Acetyl-β-D-glucoside (20)							
4′-Methyl-isoscutellarein 7-O-β-D-[6′′′-O-acetyl]-alloxyl-(1→2)-β-D-glucoside (21)	H	H	OH	OH	H	OCH₃	H
4′-Methyl-isoscutellarein 7-O-[2′′-O-acetyl]-β-D-allocyl-(1→2)-β-D-glucoside (22)	H	H					
4′-Methyl-isoscutellarein 7-O-β-D-[6′′′-O-acetyl]-alloxyl-(1→2)-β-D-glucoside (annuoside) (23)	H	H					
4′-Methyl-isoscutellarein 7-O-[6′′′-O-acetyl]-alloxyl-(1→2)-[6′′′-O-acetyl]-glucoside (24)	H	H					
Isostachyflaside (25)	H	H					
Acetyl-isostachyflaside (26)	H	H					
Di-acetyl-isostachyflaside (27)	H	H					
Spectabiflaside (28)	H	H	O-mannosyl-(1→2)-glc	OH	OCH₃	OH	H
Scutellarein (29)	H	OH					
Scutellarein 7-O-β-D-glucoside	H	OH					
Compound	Structure						
----------	-----------						
[5,6, 4\(^{-}\)-trihydroxyflavone -7-O-\(\beta\)-D-glucoside] (30)							
Scutellarein 7-O-\(\beta\)-D-mannnosyl-(1→2)-\(\beta\)-D-glucoside (stachyflaside) (31)	H OH O-mannosyl-(1→2)-glc H H OH H						
7-O-\(\beta\)-D-glucopyranosyl-5,6-dihydroxy-4'-methoxyflavone (Stachannin A) (32)	H OH O-glc H H OCH\(_3\) H						
4'-Methoxy-scutellarein 7-[O-\(\beta\)-D-mannosyl-(1→2)-\(\beta\)-D-glucoside (Stachannoside B) (33)	H OH O-mannosyl-(1→2)-glc H H OCH\(_3\) H						
Luteolin (34)	H H OH H OH OH H						
Luteolin 7-methyl ether (35)	H H OCH\(_3\) H OH OH H						
Luteolin 7-O-\(\beta\)-D-glucuronide (36)	H H O-glcA H OH OH H						
Luteolin 7-O-\(\beta\)-D-glucoside (37)	H H O-glc H OH OH H						
Luteolin 6-C-glucoside (isorientin) (38)	H -C-glc OH H OH OH H						
Luteolin 7-O-[6""-O-acetyl]-allosyl-(1→2)-glucoside (39)	H H O-[6""-O-acetyl]-allosyl-(1→2)-glc H OH OH H						
6,8 Di-C-\(\beta\)-D-glucopyranosyl luteolin (Lucenin-2) (40)	H C-glc OH C-glc OH OH H						
3',4'-Dimethyl-luteolin-7-O-\(\beta\)-D-glucoside (41)	H H O-glc H OCH\(_3\) OCH\(_3\) H						
Chrysoeriol (42)	H H OH H OCH\(_3\) OH H						
Chrysoeriol 7-O-\(\beta\)-D-glucoside (43)	H H O-glc H OCH\(_3\) OH H						
Chrysoeriol 7-O-[6""-O-acetyl]-\(\beta\)-D-allosyl-(1→2)-glucoside	H H O-[6""-O-acetyl]-allosyl-(1→2)-glc H OCH\(_3\) OH H						
Compound	Structure						
----------	-----------						
Chrysoeriol 7-O-[6”-O-acetyl]-β-D-allosyl-(1→2)-glucoside (Isostachyspinoside) (44)	H H	O-[6”-O-acetyl]-allosyl-(1→2)-glc	H OCH₃ OH H				
Chrysoeriol 7-(3”-E-p-coumaroyl)-β-D-glucoside (46)	H H	O-(3”-E-p-coumaroyl)-glc	H OCH₃ OH H				
Chrysoeriol 7-(6”-E-p-coumaroyl)-β-D-glucoside (47)	H H	O-(6”-E-p-coumaroyl)-glc	H OCH₃ OH H				
Hypolaetin (48)	H H	OH	OH OH OH H				
Hypolaetin-7-O-glucoside (49)	H H	O-glc	OH OH OH H				
Hypolaetin-7-O-glucuronide (49a)	H H	O-glcA	OH OH OH H				
Hypolaetin 7-O-allosyl-(1→2)-glucoside (50)	H H	O-allosyl-(1→2)-glc	OH OH OH H				
Hypolaetin 7-O-[6”-O-acetyl]-β-D-allosyl-(1→2)-β-D-glucoside (51)	H H	O-[6”-O-acetyl]-allosyl-(1→2)-glc	OH OH OH H				
Hypolaetin 7-O-[6”-O-acetyl]-allosyl-(1→2)glucoside (52)	H H	O-[6”-O-acetyl]-allosyl-(1→2)-glc	OH OH OH H				
Hypolaetin 7-O-[6”-O-acetyl]-allosyl-(1→2)-[6”-O-acetyl]-glucoside (53)	H H	O-[6”-O-acetyl]-allosyl-(1→2)-[6”-O-acetyl]-glc	OH OH OH H				
Hypolaetin 7-O-[6”-O-acetyl]-allosyl-(1→2)-[3”-O-acetyl]-glucoside (54)	H H	O-[6”-O-acetyl]-allosyl-(1→2)-[3”-O-acetyl]-glc	OH OH OH H				
4’-Methyl-hypolaetin-7-O-allosyl-(1→2)-glucoside (55)	H H	O-allosyl-(1→2)-glc	OH OH OCH₃ H				
4’-Methyl-hypolaetin-7-O-[6”-O-acetyl]-β-D-allopyranosyl-	H H	O-[6”-O-acetyl]-allosyl-(1→2)-glc	OH OH OCH₃ H				
Formula	R	Comment					
------------------------------	---------------	--------------------------------					
(1→2)-β-D-glucopyranoside							
4′-Methylhypolaetin-7-O-[6″-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside		(56)					
H H	O-[6″-O-acetyl]-alloxy-(1→2)-glc	OH OH OCH₃ H					
4′-Methylhypolaetin-7-O-[6″-O-acetyl]-alloxy-(1→2)-[6″-O-acetyl]-glucoside	H H	O-[6″-O-acetyl]-alloxy-(1→2)-[6″-O-acetyl]-glc	OH OH OCH₃ H				
Selgin 7-O-glucoside (59)	H H	O-glc	H OCH₃ OH OH				
Tricin 7-O-glucuronide (60)	H H	O-glcA	H OCH₃ OH OCH₃				
Tricin 7-O-glucoside (61)	H H	O-glc	H OCH₃ OH OCH₃				
Tricetin 3′,4′,5′-trimethyl-7-O-glucoside (62)	H H	O-glc	H OCH₃ OCH₃ OCH₃				
Palustrin (63)	H OH	OCH₃	H H H H				
Palustrinoside (64)	H OH	OCH₃	H H H H				

R=O-glcA-gluc (2→1)

R=O-glcA

glc: glucose, glcA: glucuronide.
Name	R₁	R₂	R₃	R₄	R₅	R₆	R₇
Velutin (luteolin 7,3'-dimethyl ether) (65)	H	H	OCH₃	H	OCH₃	OH	H
Cinemarin (66)							
5,7,3'-Trihydroxy-6,4'-dimethoxyflavone (67)	H	OCH₃	OCH₃	H	H	OH	H
5,7,3'-Trihydroxy-6,8,4'-trimethoxyflavone (68)	H	OCH₃	OCH₃	OH	OCH₃	OCH₃	H
Xanthomicrol (69)							
Sideritil flavone (70)	H	OCH₃	OCH₃	OCH₃	OCH₃	OH	H
8-Methoxycirsilineol (71)	H	OCH₃	OCH₃	OCH₃	OCH₃	OH	H
Eupatorin (72)							
Eupatilin (72a)							
Eupatilin-7-methyl ether (73)	H	OCH₃	OCH₃	H	OCH₃	OCH₃	H
Salvigenin (74)							
5-Hydroxy-6,7,8,3',4'-pentamethoxyflavone (75)	H	OCH₃	OCH₃	OCH₃	OCH₃	OCH₃	H
5, 4'-Dihydroxy - 6,7,8,3'-tetramethoxyflavone (76)	H	OCH₃	OCH₃	OCH₃	OCH₃	OH	H
5, 4'-Dihydroxy-7,3',5'-trimethoxyflavone (77)	H	H	OCH₃	H	OCH₃	OH	OCH₃
Viscosine (5,7,4'-trihydroxy-3,6'-dimethoxyflavone) (78)							
Kumatakenin (kaempferol 3,7-dimethyl ether) (79)	OCH₃	H	OCH₃	H	H	OH	H
Pachypodol (quercetin 3,7,3'-trimethyl ether) (80)	OCH₃	H	OCH₃	H	OCH₃	OH	H
Penduletin (81)	OCH₃	OCH₃	OCH₃	H	H	OH	H
5,3',4'-Trihydroxy-3,6,7,8-tetramethoxyflavone (82)	OCH₃	OCH₃	OCH₃	OCH₃	OH	OH	H
Calicopterin (83)	OCH₃	OCH₃	OCH₃	OCH₃	H	OH	H
Chrysosplenitin (84)	OCH₃	OCH₃	OCH₃	H	OCH₃	OH	H
5-Hydroxy-3,6,7,4'-tetramethoxyflavone (85)	OCH₃	OCH₃	OCH₃	H	H	OCH₃	H
5,8-Dihydroxy-3,6,7,4'-tetramethoxyflavone (86)	OCH₃	OCH₃	OCH₃	OH	H	OCH₃	H
Casticin (87)	OCH₃	OCH₃	OCH₃	H	OH	OCH₃	H
5-Hydroxy-3,6,7,8,4'-pentamethoxyflavone (88) (5-hydroxyauranetin)	OCH₃	OCH₃	OCH₃	H	OCH₃	H	H
5,4'-Dihydroxy-3,6,7,8,3'-pentamethoxyflavone (89)	OCH₃	OCH₃	OCH₃	OCH₃	OH	H	H

Table 17. Chemical structures of poly-methylated flavonoids from *Stachys* spp.

R=OCH₃

4'-Hydroxy-3,5,7,3'-tetramethoxyflavone (90) OCH₃| H | OCH₃| H | OCH₃| OH | H
Table 18. Chemical structures of flavonols from Stachys spp.

Name	R₁	R₂	R₃	R₄
Kaempferol (91)	OH	OH	H	OH
Isohamnetin (92)	OH	OH	OCH₃	OH
Quercetin 3-O-rutinoside (93)	O-rut	OH	OH	OH
Isohamnetin 3-O-rutinoside (94)	O-rut	OH	OCH₃	OH

rut: rutinoside.

Table 19. Chemical structures of flavanones from Stachys spp.

Name	R	R₁	R₂
Eriodictyol (95)	OH	OH	OH
Naringenin (96)	H	OH	OH
Hesperidin (97)	OH	OCH₃	O-rut

rut: rutinoside.

Table 20. Chemical structure of biflavonoid from Stachys spp.

| Stachysetin (98) |

4.2. Phenolic Derivatives; Acetophenone Derivatives

Regarding the phenolic derivatives of genus Stachys (Tables 7 and 21), mainly chlorogenic acid (103) was appeared in nine Stachys species; S. candida [78], S. iva [56], S. cretica (S. cretica subsp. smyrnæa [81], S. cretica subsp. mersinæa [108], S. cretica subsp. vacillans [112]), S. lanata [82], S. tmolea [85], S. thirkei [84], S. recta [14], S. palustris [104] and S. officinalis [111]. The isomers of chlorogenic acid
(102, 104, 105) also reported in S. atherocalyx [110], S. recta [14] and S. palustris [23,104]. Caffeic (108) and p-coumaric (106) acids were found in two Stachys spp. [104,110]. Moreover, Kirkan (2019) identified vanillic (100) and syringic (101) acids from the aerial parts of S. cretica subsp. vacillans [112]. Though, 4-hydroxybenzoic acid (99) was reported from S. tmolea [85]. Arbutin (107) was also identified in the aerial parts of S. germanica subsp. salviifolia [109]. One study also reported the presence of acetophenone derivatives from the roots of S. lanata, namely androsin (109), neolloydosin (110) and glucoacetosyringone (111) (Tables 8 and 22) [82]. The isolation of the latter compounds might be attributed to the different investigated plant parts (roots).

Table 21. Chemical structures of phenolic derivatives from Stachys spp.

Chemical Structure	Description	R1	R2	R3
![4-Hydroxybenzoic acid](image)	4-Hydroxybenzoic acid R=H, R1=H, R2=H (99)			
![Vanillic acid](image)	Vanillic acid R=H, R1=H, R2=OCH3 (100)			
![Syringic acid](image)	Syringic acid R=H, R1=OCH3, R2=OCH3 (101)			
![1-Caffeoylquinic acid](image)	1-Caffeoylquinic acid R1=caffeoyl-, R2=R3=R4=H (102)			
![3-Caffeoylquinic acid](image)	3-Caffeoylquinic acid (Chlorogenic acid) R1=H, R2=caffeoyl-, R3=R4=H (103)			
![4-Caffeoylquinic acid](image)	4-Caffeoylquinic acid (Cryptochlorogenic acid) R1=R2=H, R3=caffeoyl-, R4=H (104)			
![5-Caffeoylquinic acid](image)	5-Caffeoylquinic acid (Neohlorogenic acid) R1=R2=R3=H, R4=caffeoyl- (105)			

Glc: glucose.

Table 22. Chemical structures of acetophenone glucosides from Stachys spp.

Chemical Structure	Description	R1	R2	R3
![Androsin](image)	Androsin R=R1=H (109)			
![Neolloydosin](image)	Neolloydosin R=R1=Xyl (110)			
![Glucoacetosyringone](image)	Glucoacetosyringone R=OCH3, R1=H (111)			

Xyl: xylose.

4.3. Lignans

Lignans are types of polyphenols with diverse structures. Although these bioactive compounds were presented in Lamiaceae family [149], a few studies reported their existence in plants of genus Stachys. Specifically, three lignans categorizing into two furanofuran-type derivatives (sesamin and paulownin) and one benzofuran-type lignan (urolignoside) were reported in two species of the subgenus Stachys (Tables 9 and 23). Laggoune et al. (2016) isolated sesamin (112) and paulownin (113)
from the aerial parts of *S. mialhesii* [103], while urolignoside (114) was isolated from the aerial parts of *S. tetragona* [100]. Given that up to now there is no study reported the presence of lignans in the subgenus *Betonica*, the identification of lignans might be considered as a chemotaxonomic difference between the two subgenera *Stachys* and *Betonica*.

Table 23. Chemical structures of lignans from *Stachys* spp.

Chemical Structure	Description
![Sesamin](image)	R=H (112)
![Paulownin](image)	R=OH (113)
![Urolignoside](image)	(7S-8R)-Urolignoside (114)

4.4. Phenylethanoid Glucosides; Phenylpropanoid Glucosides

The present review unveiled 29 phenylethanoid glucosides in 17 *Stachys* species (Tables 10 and 24). Acteoside or verbascoside (118) was the most abundant found in 16 *Stachys* spp. of all sections through this survey. Additional phenylethanoid glucosides isolated and identified from this genus includes martynoside, leucosceptoside A and lavandulifoliosides. Lavandulifolioside A (or stachysonide A) (129) was firstly isolated from the methanol extract of the aerial parts of *S. lavandulifolia* in 1988 [115], while in 2011 Delazar et al. (2011) isolated lavandulifolioside B (130) from the same plant, for the first time [12]. Moreover, three phenylethanoid glucosides were reported from the aerial parts of *S. byzantina* (section Eriostomum), including verbascoside (118), 2’-O-arabinosyl verbascoside (122) and aescylnanthosides C (133) [35]. Among them, the first and the last compound has been isolated only from the specific species. A survey conducted by Murata and co-workers (2008) reported ten phenylethanoid glucosides from different plant parts [82]. In the aforementioned study, leonoside B (or stachysoside D) (134) and martynoside (135) were mentioned from the aerial parts of *S. lanata*, while from the roots of the specific species were reported eight phenylethanoid glucosides, namely rhodioloside (115), verbascoside (116), 2-phenylethyl-D-xylopyranosyl-(1→6)-D-glucopyranoside (117), verbascoside (118), isoacteoside (119), darendoside B (120), campneoside II (121) and campneoside I (136). It is remarkable to point out that compounds 115, 117 and 120 haven’t been reported in other *Stachys* species. This might be attributed to the fact that the plant material was roots. Another study carried out by Karioti et al. (2010) focused on the phenolic compounds from the aerial parts of *S. recta*, and reported many phenylethanoid glucosides from its aerial parts, including acteoside (118), isoacteoside (119), β-OH-acteoside (121), betunyoside E (127), campneoside I (136), forsythisoside B (137), β-OH-forsythoside B methyl ether (138) [14]. Furthermore, lamiophloside A (141) was isolated with some other phenylethanoid glucosides from the aerial parts of *S. tetragona* [100]. Of great interest is that our survey revealed that this constituent is mentioned only in the specific species. Two rare phenylethanoid glucosides, par fibrlosides A-B (142–143) were isolated from the whole plant of *S. parviflora* [120]. These two compounds are characterised by the presence of a third saccharide (rhamnose) linked to the proton H-2’ of glucose, comparing to others common phenylethanoid glucosides where the connection of the third saccharide is in proton H-3’ of glucose. Of great interest is that *S. parviflora* is now considered as the monotypic genus *Phlomidoschema* (only *P. parviflorum* (Benth.) Vved.) [2]. Furthermore, leonoside A (or stachysonide B) (139) was isolated with other three phenylethanoid glucosides from the whole plant of *S. riederi* [114]. To be mentioned that phenylethanoid glucosides were reported in both subgenera of genus *Stachys*.

Apart from phenylethanoid glucosides, Murata et al. (2008) mentioned two phenylpropanoid glucosides in the roots of *S. lanata* (subg. *Stachys*; sect. Eriostomum), coniferin (144) and syringin (145)
Medicines 2020, 7, 63

(Tables 11 and 25) [82]. It is worth to mention that the isolation of phenylpropanoid glucosides only from the specific plant, might be assigned to the different studied plant material (roots).

Table 24. Chemical structures of phenylethanoid glucosides from Stachys spp.

Name	R₁	R₂	R₃	R₄	R₅	R₆	R
Rhodioloside (Salidroside) (115)	H	H	H	H	H	OH	H
Verbasoside (decaffeoyl-acteoside) (116)	H	H	Rha	H	OH	OH	H
2-Phenylethyl-D-xylopyranosyl-(1–6)-D-glucopyranoside (117)	Xyl	H	H	H	H	H	H
Acteoside (Verbascoside) (118)	H	Caf	Rha	H	OH	OH	H
Isoacteoside (119)	Caf	H	Rha	H	OH	OH	H
Darendoside B (deacetyl-martynoside) (120)	H	H	Rha	H	OH	OCH₃	H
β-OH-Aceotside (Campneoside II) (121)	H	Caf	Rha	OH	OH	OH	H
2'-O-Arabinosyl verbascoside (122)	H	Caf	Rha	H	OH	OH	Ara
Betonyoside A (123)	H	Fer	Rha	OH	OH	OH	H
Betonyoside B/C (isomers) (124/125)	Fer	H	Rha	OH	OH	OH	H
Betonyoside D (126)	Api	Cis-fer	Rha	H	OH	OCH₃	H
Betonyoside E (127)	Api	Fer	Rha	OH	OH	OH	H
Betonyoside F (128)	H	Caf	Rha-Api	H	OH	OH	H
Lavandulifolioside A (Stachysoside A) (129)	H	Caf	Rha-Ara	H	OH	OH	H
Lavandulifolioside B (130)	H	4'-methyl-Fer	Rha-Ara	H	OCH₃	OH	H

![Caffeic acid](image1.png)

![Ferulic acid](image2.png)
Leucosceptoside A (131) H Fer Rha H OH OH H
Leucosceptoside B (132) Api Fer Rha H OH OCH₃ H
Aeschynanthoside C (133) H Fer Xyl H OH OCH₃ H

Leonoside B (Stachyoside D) (134) H Fer Rha-Ara H OH OCH₃ H
Martynoside (135) H Fer Rha H OH OCH₃ H
Campneposide I (136) H Caf Rha OCH₃ OH OH H
Forsythoside B (137) Api Caf Rha H OH OH H
β-OH-Forsythoside B methyl ether (138) Api Caf Rha OCH₃ OH OH H

Leonoside A (Stachyoside B) (139) H Fer Rha-Ara H OH OH H
*Lamioside C (140) H Fer Rha-Ara H OH OH H
Lamiophloside A (141) Api Fer Rha H OCH₃ OH H
Parvifloroside A (142) H Caf H H OH OH Rha
Parvifloroside B (143) Caf H H H OH OH Rha

| Caf: Caffeic acid, Fer: Ferulic acid, Api: Apioside, Rha: Rhamnoside, Ara: Arabinoside, Xyl: Xyloside, *: might be synonym of Leonoside B. |

Table 25. Chemical structures of phenylpropanoid glucosides from *Stachys* spp.

![Chemical structure of Coniferin (R=H) and Syringin (R=OCH₃)](image)

4.5. Iridoids

Iridoids are among the major chemical compounds found in genus *Stachys*. According to Tundis et al. (2014), iridoids are considered as good chemotaxonomic markers of this genus [3]. Accumulating phytochemical studies have reported diverse types of iridoids [3]. The present review summarises all these studies, exemplifying 38 *Stachys* species which their iridoid cargo has been investigated (Tables 12 and 26). Harpagide (148; 31 species) and its acetyl derivative; 8 acetyl-harpagide (150; 28 species) are of common occurrence in genus *Stachys* and might be considered as characteristic iridoids of these plants. Furthermore, ajugol (146; 18 species), ajugoside (147; 18 species), melittoside (166; 17 species), monomelittoside (165; 4 species) and 5-allosyloxy-aucubin or 5-O-allopyranosyl-monomelittoside (167; 4 species/1 subsp.) were also mentioned in various species. Allobetonicoside (161) was firstly isolated from the aerial parts of *S. officinalis* [127] and then from the aerial parts of *S. glutinosa* [122] and of *S. macrantha* [117]. The latter study also mentioned the isolation of cinnamoyl-harpagide derivative, macranthoside (156), for the first time. To be mentioned that Jeker et al. (1989) also isolated 6-O-acetylmioporoside (155) from the aerial parts of *S. officinalis* [127]. In
addition, two species revealed the presence of 8-epi-loganic acid (157), 8-epi-loganin (159) and gardoside (160) [20,56], as well as 7-O-acetyl-8-epi-loganic acid (158) was only mentioned from the aerial parts of S. spinosa [98]. Of note, Iannuzzi et al. (2019) isolated from the leaves of S. ocymastrum (syn. S. hirta L.) five iridoids which haven’t been documented in other species, namely 6β-acetoxyipolamiide (172) 6β-hydroxyipolamiide (173), ipolamiide (174), ipolamiidoside (175) and lamiide (176) [123]. A study conducted by Háznagy-Radnai (2006) examined the phytochemical profiles of Stachys spp. growing in Hungary, reporting the iridoid content of ten taxa [124]. Murata and co-workers (2008) isolated five new esters of monomelittoside from the aerial parts and roots of S. lanata [82]. In particular, stachysosides E (168), G-H (170–171) were found in roots, while stachysosides E (168) and F (169) were discovered from the aerial parts of the specific species. It is important to be mentioned the detection of a new iridoid diglycoside, 4′-O-β-D-galactopyranosyl-teuhirocside (162), which was isolated from the flowering aerial parts of S. alopecuros subsp. divulsa [119]. Muñoz et al. (2001) reported the presence of 5-desoxy-harpagide (151) and 5-desoxy-8-acetyl-harpagide (152) from the aerial parts of S. grandidentata [129]. Notably, this review unveiled some differences in iridoids among subgenera Stachys and Betonica. Firstly, it was observed that there is no report for the presence of monomelittoside or melittoside derivatives in the subgenus Betonica. Secondly, reptoside (153) was found in two species of subgenus Betonica (S. macrantha and S. officinalis) and not in the plants of subgenus Stachys.

Table 26. Chemical structures of iridoids from Stachys spp.

Name	R	R1	R2	R3	R4
Ajugol (146)	H	OH	H	H	H
Ajugoside (147)	H	OH	Ac	H	H
Harpagide (148)	H	OH	H	OH	H
7-Hydroxyharpagide (149)	H	OH	Ac	OH	H
8-Acetylharpagide (Acetylharpagide)	H	OH	Ac	OH	H
(150)					
5-Desoxyharpagide (151)	OH	OH	H	H	H
5-Desoxy-8-acetylharpagide (152)	OH	OH	Ac	H	H
Reptoside (153)	H	H	Ac	OH	H
Harpagoside (154)	H	OH	Cinnamoyl-	OH	H
6-O-Acetylmioirosoporoside (155)	AcO	H	H	H	H
Macranthoside (156)	H	OH	3,4-dimethoxy cinnamoyl-	OH	H

8-epi-loganic acid R=R′=H (157)

7-O-Acetyl-8-epi-loganic acid R=Ac, R′=H (158)

8-epi-loganin R=H, R′=CH₃ (159)
Gardoside (160)

Allobetonicoside R=Allose, R1=Glc (161)

4′-O-β-D-galactopyranosyl-teuhricoside R=H, R1=Glc-Gal (162)

Catalpol (163)

Aucubin R=H (164)

Monomelittoside R=OH (165)

Melittoside R=O-Glc (166)

5-O-Allopyranosyl-monomelittoside;
5-Allosyloxy-aucubin
R=O-Alo (167)

Name	R₁	R₂	R₃
Stachysoside E	H	p-(E)-coumaroyl-	H
Stachysoside F	H	p-(Z)-coumaroyl-	H
Stachysoside G	H	H	p-(E)-coumaroyl-
Stachysoside H	p-(E)-coumaroyl-	H	H
4.6. Diterpenes

A landmark study for diterpenes of genus Stachys is the review article of Piozzi and Bruno (2011), including all the reported diterpenoids from roots and aerial parts of Stachys spp [21]. Up to now, several types of diterpenes have been mentioned, comprising types of neo-clerodane, labdane, rosane and ent-kaurene skeleton (Tables 13 and 27). The most common type is the neo-clerodane skeleton derivate, as they were found in various species. S. aegyptiaca has thoroughly studied for its phytochemical profile. A study conducted by Hegazy et al. (2017) reported the discovery of three new neo-clerodane diterpenoids from the aerial parts of the aforementioned plant, namely stachaegyptins A-C (190–192) [106]. One year later, two new compounds were mentioned; stachaegyptins D-E (193–194) [131], while in a current work stachaegyptins F-H were isolated (195–197) [133]. Moreover, stachysperoxide (189) was isolated from the S. aegyptiaca [132]. These stachaegyptin derivatives and stachysperoxide reported only in the species S. aegyptiaca and might be a characteristic chemical compound of the specific plant of the section Ambleia. Derkach (1998) mentioned the compounds annuanone (cis-clerodane type) (181), stachylone (182) and stachone (183) in five species of the subgenus Stachys; S. atherocalyx, S. inflata, S. iberica and S. sylvatica [134]. Other neo-clerodane type diterpenes which were found in many species are rooseostachene (184), rooseostachon (185), rooseostachon (186) and rooseotetrol (187). Ruiu and co-workers (2015) explored the aerial parts of S. glutinosa, isolating rooseostachenone and the new neo-clerodane diterpene, 3α,4α-epoxyrooseostachon (188) [107]. Furthermore, labdane type derivatives were occurred in the genus Stachys. Fazio et al. (1994) investigated the aerial parts of S. mucronata and isolated three labdane skeleton compounds; ribenone (198), ribenol (199) and 13-epi-sclareol (200) [57]. The latter compound has also been found in S. rosea [141]. Paternostro et al. (2000) studied the aerial parts of S. plumosa, determining the following labdane type derivatives (+)-6-deoxyyandalsulos (201), 13-epi-jugabodiol (202) and (+)-plumosol (203) [144]. The compound (+)-6-deoxyyandalsulos were also found in S. distans and S. ionica [139]. Some ent-kaurene derivatives were reported in S. aegyptiaca [130], S. lanata [135] and S. sylvatica [142]. Moreover, one abietane diterpenoid, horninone (211), was isolated from the aerial parts of S. mialhesii [103]. It is noteworthy to be underlay the presence of two rare rosane type diterpenes in the aerial parts of S. parviflora, namely stachyrosanes 1 (212) and 2 (213) [134]. In addition, six diterpene lactone derivatives, i.e., betolide (214), betonicolide (215) and betonicosides A-D (216–219) were found in the species S. officinalis [143,145] and S. scardica [143] of the subgenus Betonica.

In the context of chemotaxonomic significance, it could be observed that species of subgenus Stachys product mainly neo-clerodane and labdane type derivatives, while the plants of subgenus Betonica biosynthesized diterpene lactone derivatives. Thus, the latter derivatives might be recognised as characteristic chemotaxonomic markers of subgenus Betonica. Another important chemotaxonomic point is reported by Piozzi et al. (2002), mentioning that (+)-6-deoxyyandalsulos has been determined only in three Stachys species of eastern part of the Mediterranean region [139].

Table 27. Diterpenes from Stachys spp.
Name	R₁	R₂
Stachysolone (177) | H | H
7-Monoacetyl-stachysolone (178) | Ac | H
13-Monoacetyl-stachysolone (179) | H | Ac
7,13-Diacetyl-stachysolone (180) | Ac | Ac

Annuanone (181)
Stachylone (182)
Stachone (183)
Roseostachenone (184)
Roseostachone (185)
Roseostachenol (186)
Roseotetrol (187)
3α,4α-Epoxyroseostachenol (188)
Stachysperoxide (189)
Medicines 2020, 7, 63

Stachaegyptin A (190)

Stachaegyptin B (191)

Stachaegyptin C (192)

Stachaegyptin D (193)

Stachaegyptin E (194)

Stachaegyptin F (195)

Stachaegyptin G (196)

Stachaegyptin H (197)

Ribenone R=O (198)

Ribenol R=αOH,βH(199)

13-Epi-sclareol (200)
(+)-6-Deoxyandalusol (201)

13-Epi-jabugodiol (202)

(+)-Plumosol (203)

Table: Name, R, R', R1, R2, R3

Name	R	R'	R1	R2	R3
Stachysic acid (204)	COOH	CH₃	H	OAc	H
6β-hydroxy-ent-kaur-16-ene (205)	CH₃	CH₃	H	OH	H
6β,18-dihydroxy-ent-kaur-16-ene (206)	CH₂OH	CH₃	H	OH	H
Ent-3α-acetoxy-kaur-16-en-19-oic acid (207)	CH₃	COOH	OAc	H	H
3α,19-Dihydroxy-ent-kaur-16-ene (208)	CH₃	CH₂OH	OH	H	H
Ent-3α-hydroxy-kaur-16-en-19-oic acid (209)	CH₃	COOH	OH	H	H
11α,18-Dihydroxy-ent-kaur-16-ene (210)	CH₂OH	CH₃	H	H	OH

Horminone (211)

Stachyrosane 2 (213)
4.7. Triterpene Derivatives, Phytosterols and Phytoecdysteroids

Triterpene derivatives and phytosterols are major secondary metabolites of Lamiaceae family. In genus Stachys, five phytosterol derivatives (220–224) were found in S. byzantina [17,35], S. annua [95], S. spinosa [99], S. tetragona [100], S. palustris [146] and S. alopecuros subsp. discolumbia [119] (Tables 14 and 28). Furthermore, the triterpenoids; ursolic (226) and oleanolic (227) acids were only reported from the section Olisia (subg. Stachys) [95,99,100]. Kotsos et al. (2007) isolated an oleanolic lactone derivative (228) of the aerial parts of S. spinosa [99]. It is noteworthy to be mentioned the presence of saponin derivatives in genus Stachys (Tables 14 and 28). The first saponins isolated from this genus were from the water extract of the whole plant of S. rieleri, including 8 stachyssaponins (I–VIII, 231–238) [147]. Afterwards, stachyssaponins A-B (229–230) were found from the methanol extract of the aerial parts of S. parviflora [63].

Few Stachys spp. include phytoecdysteroids (Tables 14 and 28). Ramazanov and co-workers (2016) isolated five phytoecdysteroids from S. hissarica [67], namely 20-hydroxyecdysone (239), polipodin B (240), integristeron A (241), 2-desoxy-20-hydroxyecdysone (242) and 2-desoxyecdysterin (243).

Table 28. Triterpene derivatives, Phytosterols and Phytoecdysteroids from Stachys spp.
Lawsaritol (223)

Stigmastan-3,5-dien-7-one (224)

α-Amyrin R=CH₃ (225)

Ursolic acid R=COOH (226)

Oleanolic acid (227)

12α-hydroxy-oleanolic lactone (228)

Stachyssaponin A (229) R=Glc-Rha, R₁=H, R₂=Glc-Ara, R₃=H, R₄=OH

Stachyssaponin B (230) R=Glc, R₁=Ara, R₂=H, R₃=Glc, R₄=H

Stachyssaponin I R=OГlc-Ara, R₁=Ara (231)

Stachyssaponin II R=OГlc-Ara, R₁=Ara-Rha (232)

Stachyssaponin III R=OГlc-Xyl, R₁=Ara-Rha (233)

Stachyssaponin IV R=OГlc-Ara, R₁=Ara-Rha-Xyl (234)

Stachyssaponin V R=OГlc-Ara, R₁=Ara-Rha-Xyl-3Ac (235)

Stachyssaponin VI R=OГlc-Ara, R₁=Ara-Rha-Xyl-4Ac (236)

Stachyssaponin VII R=OГlc-Ara, R₁=Ara-Rha-(3Гlc)-Xyl (237)

Stachyssaponin VIII R=OГlc-Xyl, R₁=Ara-Rha-Xyl (238)
20-Hydroxyecdysone (239) $R_1=R_2=R_3=R_5=H$, $R_4=\text{OH}$, $R_6=\text{CH}_3$

Polipodin B (240) $R_1=R_2=R_3=\text{H}$, $R_4=R_5=\text{OH}$, $R_6=\text{CH}_3$

Integristeron A (241) $R_2=R_3=R_5=H$, $R_1=R_4=\text{OH}$, $R_6=\text{CH}_3$

2-Desoxy-20-hydroxyecdysone (242) $R_1=\text{OH}$, $R_2=\text{H}$

2-Desoxyecdysone (243) $R_1=R_2=\text{H}$

Glc: Glucose, Xyl: Xylose, Rha: Rhamnose, Ara: Arabinose.

4.8. Other Chemical Categories

Notable among the above-mentioned classes of compounds are the megastigmane derivatives from Stachys spp. (Tables 15 and 29). Takeda and colleagues (1997) isolated from the aerial parts of S. byzantina five bioactive compounds from this group, including byzantionosides A-B (244,245), icariside B2 (246), (6R, 9R)- and (6R, 9S)-3-oxo-α-ionol glucosides (247) and blumeol C glucoside (248) [148]. Furthermore, vomifoliol (249) and dehydrovomifoliol (250) were reported from the aerial parts of S. lanata, while citroside A (251) was isolated from the roots of this species [82]. This study also mentioned the presence of sugar ester (cistanoside F) from the roots of S. lanata [82]. At this point, we should note that few studies reported some oligosaccharides from Stachys spp. [3]. For instance, stachyose is a tetrasaccharide which consists one of the most common oligosaccharides in genus Stachys and shows beneficial effects for the gastrointestinal system as it can be directly consumed [3,23,119,150]. Precisely, the species S. sieboldii is a major source of this constituent [27,151,152]. Stachyose is an oligosaccharide, which can be directly consumed for the benefit of gastrointestinal system [150]. Furthermore, Yin and colleagues (2006) mentioned that the bitter taste of some Stachys species, such as S. annua and S. balansae, might be attributed to their bitter diterpene derivatives, like stachylone [22,151].

Table 29. Chemical structures of megastigmane derivatives from Stachys spp.

![Chemical structures of megastigmane derivatives from Stachys spp.](image-url)
5. Pharmacological Activities

This section includes the most interesting pharmacological data of the last five years (from 2015 to 2020). Many studies exemplified the great antimicrobial, antioxidant and cytotoxic effects of the essential oils of these plants [3,15]. Tundis et al. (2014) described in detail the biological studies (in vitro and in vivo) of the essential oils, extracts and compounds [3]. Thus, in the present review, we focused on the current available pharmacological researches of the extracts and isolated compounds from Stachys spp. as they are presented in Table 30.

Table 30. Pharmacological activities of Stachys spp.

Species	Extract or Compound	Activity^a	Ref	
S. aegyptiaca Pers.	Stachysolon diacetate (180)	Cytotoxicity HepG2 cell line IC₅₀: 59.5 µM	[132]	
	Ethyl acetate fraction	Antioxidant DPPH IC₅₀: 0.85 ± 0.04 µg/mL Superoxide radical scavenging activity: 38.63–61.41%	[28]	
S. affinis Bunge (=*S. sieboldii* Miq.)	Ethanol	Cytotoxicity K562 cell line; SH-SY5Y cell line; Caco-2 cell line: n.a.	[27]	
		Anti-ROS K562 cell line; SH-SY5Y cell line; Caco-2 cell line EC₅₀: 0.0023 mg/mL; 0.05 mg/mL; 0.026 mg/mL		
S. byzantina K. Koch.	Methanol	Antioxidant Phosphomolybdenum (mmol TEs/g extract): 1.49 ± 0.12	[153]	
		ABTS (mg TEs/g extract): 143.85 ± 0.47 Nitric oxide (mmol TEs/g extract): 1.84 ± 0.02		
	Water	CUPRAC (mg TEs/g extract): 134.73 ± 10.37		
		DPPH (mg TEs/g extract): 125.26 ± 1.47 Superoxide anion (mg TEs/g extract): 50.68 ± 2.05		
		FRAP (mg TEs/g extract): 98.73 ± 2.14		
Extract	Chelating effect (mg EDTAEs/g extract):	Anti-Alzheimer’s	Anti-tyrosinase	Anti-diabetic
----------	--------------------------------------	------------------	----------------	--------------
Ethyl acetate	16.69 ± 0.96	AChE inhibition (mg GALAEs/g extract): 2.03 ± 0.15	Tyrosinase inhibition (mg KAEs/g extract): 3.32 ± 0.54	α-Amylase inhibition (mmol ACEs/g extract): 0.31 ± 0.01
		BChE inhibition (mg GALAEs/g extract): 4.09 ± 0.04		α-Glucosidase inhibition (mmol ACEs/g extract): 1.95 ± 0.20
		Anti-tyrosinase	Tyrosinase inhibition (mg KAEs/g extract): 2.45 ± 0.05	
		α-Amylase inhibition (mg GALAEs/g extract): 2.08 ± 0.01		
		BChE inhibition (mg GALAEs/g extract): 4.09 ± 0.04		
		Anti-diabetic		
		α-Amylase inhibition (mmol ACEs/g extract): 0.31 ± 0.01		
		α-Glucosidase inhibition (mmol ACEs/g extract): 1.95 ± 0.20		

Antioxidant

Solvent	Ferrous ion chelating (mg EDTAEs/g dp): 4.82 ± 0.04	Phosphomolybdenum (mg TEs/g dp): 71.94 ± 4.56	DPPH (mg TEs/g dp): 9.10 ± 0.04	ABTS (mg TEs/g dp): 17.36 ± 0.07	CUPRAC (mg TEs/g dp): 14.67 ± 0.02	FRAP (mg TEs/g dp): 12.98 ± 0.11
Methanol						
Ethyl acetate						

S. cretica L. subsp. smyrnaea Rech. f.

Solvent	Anti-Alzheimer’s AChE inhibition (µg GALAEs/g dp): 343.78 ± 10.79	Anti-tyrosinase Tyrosinase inhibition (mg KAEs/g extract): 2.45 ± 0.05	Anti-diabetic α-Amylase inhibition (mg ACEs/g dp): 61.47 ± 0.05	α-Glucosidase inhibition (mg ACEs/g dp): 47.84 ± 0.78
Methanol				
Ethyl acetate				

S. cretica L. subsp. mersinaea (Boiss,) Rech. f.

Solvent	Anti-Alzheimer’s AChE inhibition (mg GALAEs/g extract): 2.03 ± 0.15						
Methanol							
Ethyl acetate							
S. cretica L. subsp. vacillans Rech. f.	Methanol	Water	Antioxidant	\(\text{DPPH}: 191.47 \pm 5.77 \)	\(\text{ABTS}: 213.93 \pm 21.83 \)	\(\text{CUPRAC}: 579.23 \pm 13.99 \)	\(\text{FRAP}: 254.40 \pm 8.58 \)
---------------------------------------	---------	-------	-------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------
Ethyl acetate	Tyrosinase inhibition (mg KAEs/g extract): 16.58 ± 0.31		Anti-tyrosinase				
Ethyl acetate	\(\alpha \)-Amylase inhibition (mg ACES/g extract): 396.50 ± 4.63	Methanol	Anti-diabetic				
Methanol	\(\alpha \)-Glucosidase inhibition (mg ACES/g extract): 734.47 ± 4.32						
S. ehrenbergii Boiss.	Methanol	ABTS (IC\(_{50}\): 52 ± 7.5 mg/mL)	Anti-oxidant				
Methanol	Cytotoxicity (A549 cell line IC\(_{50}\): 420 ± 104 µg/mL)						
S. glutinosa L.	Dichloromethane; Xanthomicro (69)	Chloroform; n-Butanol	Opioid Receptors binding affinity (in silico)	K\(_i\) for MOR = 10.3 µg/mL, K\(_i\) for DOR = 9.0 µg/mL; K\(_i\) for MOR = 0.83 µM, K\(_i\) for DOR = 3.6 µM			
S. guyoniana Noë ex Batt.	n-Butanol; Chloroform	Chloroform; n-Butanol	Antinociceptive (in vivo)				
S. hissarica Regel	-	Ethyl acetate; Chloroform	Wound Healing (in vivo)				
S. iberica var. densipilosa R.	Ethyl acetate; Chloroform	Antioxidant		\(\text{ABTS (mg TEs/g extract): 138.16 \pm 0.49,} \)			
Bhattacharjee							
Water

Medicines 2020, 7, 63
Nitric oxide (mmol TEs/g extract): 1.81 ± 0.01
Superoxide anion (mg TEs/g extract): 41.31 ± 1.64
CUPRAC (mg TEs/g extract): 111.47 ± 4.67
DPPH (mg TEs/g extract): 82.52 ± 1.62
FRAP (mg TEs/g extract): 89.15 ± 0.82
Chelating effect (mg EDTAEs/g extract): 9.24 ± 0.87

Anti-Alzheimer’s

- AChE inhibition (mg GALAEs/g extract): 2.16 ± 0.01
- BChE inhibition (mg GALAEs/g extract): 4.20 ± 0.01

Anti-tyrosinase

Tyrosinase inhibition (mg KAES/g extract): 16.59 ± 0.33

Anti-diabetic

- α-Amylase inhibition (mmol ACEs/g extract): 0.34 ± 0.02
- α-Glucosidase inhibition (mmol ACEs/g extract): 6.17 ± 0.51

Anti-diabetic (in silico)

- Dipeptidyl peptidase IV, peroxisome proliferator-active receptor gamma, aldose reductase, glycogen kinase, pancreatic alpha amylase precursor

S. iva Griseb.

Stachysetin (98)

n-Butanol; Isoscetellarein-7-O-[6″″-O-acetyl]-β-D-allopyranosyl-(1→2)-β-D-glucoside (15)
Anti-diabetic (in silico)
DPPH IC$_{50}$: 0.047 ± 0.0048 mg/mL; 0.066 ± 0.002 mg/mL

S. mialhesii Noé

Acute toxicity (in vivo)
Not toxic (10 g/kg of extract)

Antinociceptive (in vivo)

- n-Butanol
 - Inhibition of the writhing response induced by acetic acid (dose: 10,000; 5000 mg/kg) 77.11%, 58.22%

Antiinflammatory (in vivo)

- Carrageenan-induced paw edema (dose: 5000 mg/kg) 52.03%
- Ulcerogenic (in vivo)
 - n.a.

S. mucronata Sieb.

n-Butanol fraction

Methanol Soxhlet extract; Arbutin (107),
Anti-radical

S. lavandulifolia Vahl.

Methanol Soxhlet extract; Arbutin (107),
Anti-oxidant

DPPH IC$_{50}$: 25.0 ± 1.1 μg/mL; 62.5 ± 0.9 μg/mL
Medicine	ABTS IC₅₀	FRAP (µM Fe(II)/g)	β-carotene IC₅₀	Ethanol
Methanol Soxhlet extract; Arbutin (107)	19.9 µg/mL; 45.7 µg/mL	44.5 ± 1.0; 12.2 ± 0.6	29.3 µg/mL (30 min), 60.3 µg/mL (60 min); 33.0 µg/mL (30 min), 34.6 µg/mL (60 min)	Ethanol

Anti-tyrosinase
Tyrosinase inhibition IC₅₀: 33.4 ± 0.8 µg/mL

Hexane	Anti-Alzheimer’s	AChE inhibition IC₅₀: 13.7 ± 1.2 µg/mL	BChE inhibition IC₅₀: 143.9 µg/mL

Dichloromethane	Cytotoxicity	Brine Shrimp lethality test: 121.8 ± 5.6 µg/mL
Chloroform	Apigenin (I); Chrysosplenatin (84)	MRC-5 cell line IC₅₀: 35.67 µg/mL; MDA-MB-231 cell line IC₅₀: 88.23 µg/mL, HT-29 cell line IC₅₀: 116.50 µg/mL

S. officinalis (L.) Trevis (=Betonica officinalis L.)
Acetone	Genotoxicity
Methanol	[13]

S. ocymastrum (L.) Briq. (=S. hirta L.)
6β-Acetoxyipolamiide (172); 6β-Hydroxyipolamii de (173); Ipolamiide (174); Ipolamididoside (175)	Antiangiogenic (in vivo)

S. parviflora Benth. (=Phlomidoschema parviflorum (Benth.) Vved.)
Methanol	Antioxidant
DDPH IC₅₀: 76.87 ± 0.57 µg/mL	BCB IC₅₀: 188.47 ± 0.76 µg/mL

S. pilifera Benth.
Terpenoid fraction	Cytotoxicity
HT29 cell line IC₅₀: 46.44 µg/mL	

S. pilifera Benth.
70% Methanol Alkaloid fraction	Antiproliferative
Caspase-8 increased 99%	Caspase-9 increased 85.38%
70% Ethanol	Hepatoprotective (in vivo)

[64] [123] [13] [157] [45] [158]
(Root powder) Antioxidant (*in vivo*)

Hepatoprotective (*in vivo*) [159]

Hydroalcoholic Antioxidant (*in vivo*)

Renoprotective (*in vivo*) [19]

Water Neuroprotective (*in vivo*) [152]

S. riederi var. *japonica* (Miq.) H. Hara

80% Ethanol Antioxidant/Cytoprotective

UVA-irradiated human dermal fibroblasts (HDFs)

Cytotoxicity

HDFs: l.a./n.a [160]

S. sieboldii Miq. (=*S. affinis* Bunge)

n-Hexane fraction Antioxidant

ROS inhibition: 63%

Increased GSH levels [29]

MeOH; *n*-BuOH; water fractions Inhibited oxidative DNA damage > 90%

(Root powder) Anti-obesity (*in vivo*)

Anti-dyslipidemic (*in vivo*) [159]

20% Ethanol Memory protective (*in vivo*) [161]

S. sylvatica L.

Hydroalcoholic Polycystic ovary syndrome (*in vivo*) (500 mg/kg) (mIU/ml),

FSH 5.95 ± 0.02 mIU/ml,

LH 6.48 ± 0.09 mIU/ml,

Estrogen 0.9 ± 0.07 mIU/ml,

LH/FSH 6.48/5.59 mIU/ml [47]

Antioxidant

β-carotene IC₅₀: 47.79 ± 0.59 µg/mL

DPPH IC₅₀: 49.31 ± 0.38 µg/mL

ABTS IC₅₀: 13.34 ± 0.02 µg/mL

CUPRAC absorbance%: 1.88 ± 0.02

Anticholinesterase

Acetone AChE inhibition IC₅₀: 52.46 ± 1.26%

BChE inhibition IC₅₀: 75.04 ± 1.91%

Cytotoxicity

Methanol A549 and L929 Fibroblast cells (100 mg/mL): n.a.

Antimicrobial

Inhibition zone diameter: *S. aureus* (11 mm), *S. pyogenes* (10 mm), *E. coli* (10 mm), *P. aeruginosa* (n.a.), *C. albicans*: n.a.; *S. aureus* (10 mm), *S. pyogenes* (10 mm), *E. coli* (10 mm), *P. aeruginosa* (n.a.), *C. albicans*: n.a.

MIC values: 250 ± 0.6 µg/mL, 300 ± 0.4 µg/mL, 250 ± 0.3 µg/mL, n.a., n.a.; 300 ± 0.1 µg/mL, 250 ± 0.2 µg/mL, 250 ± 0.4 µg/mL, n.a., n.a.

Antioxidant

DPPH (mg TEs/g dp): 50.88 ± 1.55

ABTS (mg TEs/g dp): 44.39 ± 3.24

CUPRAC (mg TEs/g dp): 87.57 ± 0.83

FRAP (mg TEs/g dp): 51.80 ± 2.17
5.1. Antioxidant Activity/Cytoprotective

Tundis et al. (2015) evaluated five extracts (n-hexane, dichloromethane, methanol, methanol with Soxhlet apparatus and ethanol 70% extract) from the aerial parts of S. lavandulifolia for their antioxidant activity, using β-carotene bleaching test, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 1,1-Diphenyl-2-picrylhydrazyl (DPPH), and Ferric Reducing Antioxidant Power (FRAP) assays [116]. The most polar extracts, ethanol 70% and methanol extracts, showed the highest radical scavenging activity against ABTS radical (IC₅₀ values of 19.9 and 22.8 µg/mL, respectively), whereas the methanol extract Soxhlet apparatus was the most active in the DPPH method (IC₅₀ of 25.0 µg/mL). In the β-carotene bleaching test, the methanol and ethanol extract demonstrated the stronger activity after 30 minutes of incubation (IC₅₀ = 29.3 and 33.0 µg/mL, respectively) and the IC₅₀ values were of 60.3 and 34.6 µg/mL, respectively after 60 minutes of incubation. Moreover, they studied the antioxidant activity of bioactive secondary metabolites; arbutin (107), acteoside (118), monomelittoside (165), melittoside (166), 5-alkoxyloxy-acubin (167), and stachyosolone (177), reporting that in both DPPH and ABTS assays the most active compounds was arbutin (107) with IC₅₀ values of 62.5 and 45.7 µg/mL, respectively [116]. Another work investigated the antioxidant activity of three extracts of S. guyoniana, through β-carotene–linoleic acid, DPPH, ABTS, CUPric Reducing Antioxidant Capacity (CUPRAC) and metal chelating assays [155]. The chloroform extract had the highest antioxidant activity (IC₅₀ = 2.3 ± 1.27 µg/mL) in β-carotene–linoleic acid and in ABTS method (IC₅₀ = 7.29 ± 0.23 µg/mL). The n-butanol extract showed the better antioxidant capacity in DPPH test (IC₅₀ = 2.91 ± 0.14 µg/mL) compared to other extracts and to the reference compound α-tocopherol (IC₅₀ = 7.31 ± 0.17 µg/mL), as well as it demonstrated highest activity in CUPRAC method (Aₐ,50 = 0.15 ± 0.05 µg/mL) and in metal cheating assay (inhibition at 100 µg/mL: 48%). In addition, Laggoune et al. (2016) demonstrated the great antioxidant properties in vivo of S. mialhesii [103]. Particularly, the n-butanol extract of the specific plant showed IC₅₀ value of 0.047 mg/mL in DPPH assay, while the IC₅₀ value of the isolated compound isoscutellarein-7-O-[6”-O-acetyl]-β-D-allopyranoxy-(1 → 2)-β-D-glucoside (15) was 0.066 mg/mL and the reference compound quercetin was 0.012 mg/mL. Notably, they also mentioned that the extract (up to 10 g/kg) did not show any toxicity in mice during 24 h after administration. In addition, the antioxidant activity of three subspecies of S. cretica (i.e., S. cretica subsp. mersinaeae; S. cretica subsp. smyrneae; S. cretica subsp. vacillans) were investigated in different works [81,108,112]. The antioxidant capacity of the methanol extract of S. parviflora was measured, exhibiting an IC₅₀ value of 76.87 ± 0.57 µg/mL (DPPH method) and of 188.47 ± 0.76 µg/mL (β-carotene bleaching test; BCB), while the standard compound, butylated hydroxytoluene (BHT), had stronger activity in both tests (DPPH test: IC₅₀ = 1.23 ± 0.02 µg/mL; BCB test: 34.31 ± 0.40 µg/mL) [64]. Guo et al. (2018) examined the antioxidant activity of five fractions from the 70% ethanol extract of tubers of S. affinis by DPPH assay and superoxide radical scavenging activity [28]. The ethyl acetate fraction showed extremely high antioxidant activity in DPPH method (IC₅₀ = 0.85 ± 0.04 µg/mL) with α-tocopherol as positive control (IC₅₀ = 18.68 ± 0.51 µg/mL). They reported that this great antioxidant activity was attributed to the high content in phenolics and flavonoids of this fraction and confirmed the use of this plant as a natural antioxidant. Another work studied the antioxidant activity of the extracts and fractions of the same Stachys species on reactive oxygen species (ROS) production induced by H₂O₂ in HT-1080 cells [29]. In particular, the n-hexane fraction decreased H₂O₂-induced ROS and oxidative stress-induced DNA damage, as well as it increased glutathione (GSH) production. The species S. mucronata demonstrated strong anti-radical activity due to the high content in polyphenols [156]. A recent study conducted by Aminfar et al. (2019) described a chemometric-based approach in order to classify S. lanata by Gas Chromatography-Mass Spectrometry (GC-MS) fingerprints and to correlate their
chemical constituents with their antioxidant capacity [35]. They identified eight antioxidant markers which could also serve as volatile markers. In addition, Elfalleh and co-workers (2019) demonstrated the differences of the antioxidant properties of the extracts of S. tmolea, reporting that water extract exhibited highest activity than methanol extract, using DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum and ferrous ion chelating methods [85]. A survey conducted by Hwang et al. (2019) demonstrated that the ethanol extract of S. rieder var. japonica exhibited antioxidant effects on ultraviolet A (UVA)-irradiated human dermal fibroblasts (HDFs), through suppression of ROS generation [160]. The antioxidant activity of the methanol extract of the Lebanese species S. ehrenbergii was measured by ABTS radical cation decolorization assay and the methanol extract showed an IC₅₀ value of 52 ± 7.5 mg/mL [154]. Furthermore, the chemical profile and some biological activities of three herbal teas in Anatolia were examined [84]. Among them, the methanol extract of S. thirkei showed strongest antioxidant capacity, through β-carotene (IC₅₀ = 47.79 ± 0.59 µg/mL), DPPH (IC₅₀ = 49.31 ± 0.38 µg/mL), ABTS (IC₅₀ = 13.34 ± 0.02 µg/mL) and CUPRAC (absorbance%: 1.88 ± 0.02 µg/mL) assays. Sadeghi et al. (2020) assessed the the antioxidant properties of hydroalcoholic extract of S. pilifera on nephrotoxicity induced with cisplatin (CP) in vivo (in rats), showing that the specific extract restored the antioxidant capacity, as well as it had renoprotective activity [19].

5.2. Cytotoxicity and Antiproliferative Activity

Venditti et al. (2017) investigated the cytotoxic activity and the anti-reactive oxygen species activity of the ethanol extract from tubers of the Chinese artichoke (S. affinis) [27]. Regarding the cytotoxicity, the specific extract didn’t demonstrate any activity in K562, SH-SY5Y and Caco-2 cell lines, even at the highest concentrations (1.0 mg/mL). The cytotoxic activity of extracts and isolated flavonoids from the aerial parts of S. lavandulifolia were studied by Delnavazi et al. (2018) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [13]. The dichloromethane extract showed the highest cytotoxic activity in brine shrimp lethality test (BSLT) (LD₅₀ = 121.8 ± 5.6 µg/mL), while as a positive control was used podophyllotoxin (LD₅₀ = 3.1 ± 0.6 µg/mL). Afterwards, they explored the cytotoxic activity of isolated flavonoids in three cancer cell lines (MDA-MB-231, HT-29 and MRC-5), using as reference compound tamoxifen. All the nine isolated flavonoids moderated the cytotoxicity activated on the studied cell lines. However, chrysopleninetin (84) was reported as the most active compound in the first two cell lines. In MRC-5 cell line, apigenin (1) exhibited the greatest activity. It is remarkable to point out that the specific study also mentioned the selective activity against cancer cells, reporting that chrysopleninetin (84), kemtakaken (79) and viscosine (78) exhibited higher selective toxicity against MDA-MB-231 cell line than tamoxifen. At this point, we should underline that the great cytotoxic activity of these compounds is attributed to their substitutions with (poly)-methylated groups which increase this effect. Another study evaluated the methanol extract, the alkaloid and the terpenoid fractions of S. pilifera for their cytotoxic and antiproliferative activity in vitro (HT-29 cell line), indicating great results [45]. The terpenoid fraction was found to have the best cytotoxic activity compared to the other fractions and as reference compound was used cisplatin. Moreover, they investigated the antiproliferative activity, studying the effects on the activity of caspase-8 and caspase-9, Nuclear factor-κB (NF-κB) and Nitric Oxide (NO), reporting that the extract/fractions increased the activity of caspase-8/9 and decreased NF-κB and subsequently NO level. Of note, they compared their results with previous data of cytotoxic activity in vitro of other Stachys species such as S. acerosa, S. benthamiana, S. floridana, S. lavandulifolia, S. obtusicrena, S. persica, S. pubescens and S. spectabilis. Three isolated compounds from the extract (CH₄Cl:MeOH 1:1) of the aerial parts of S. aegyptiaca were investigated for the cytotoxic activity in HepG2 cell line, using MTT assay [132]. Precisely, the IC₅₀ values of stachaeugyptin D (193), stachysolmon monoacetate (178) and stachysolmon diacetate (180) were 94.7, 63.4 and 59.5 μM, respectively, with stachysolmon diacetate being the most active. In another study, the cytotoxic effect of the ethanol extract of S. rieder var. japonica on UVA-irradiated HDFs was evaluated at different concentrations for 48 h by MTT assay, showing no or little cytotoxicity [160]. Shakeri et al. (2019) mentioned that the methanol extract of S. parvislora demonstrated no cytotoxic activity toward the cancer cell lines, namely A2780, HCT, and B16F10 in all tested concentrations (>100 µg/mL) [64].
Moreover, the genotoxic activity of the extracts from four different plants were investigated by Slapšytė and colleagues (2019) [157]. They reported that all the plant extracts induced DNA damage, using the comet assay, whereas the extract of *S. officinalis* induced the increase of sister chromatid exchange value. The methanol extract of the Lebanese species *S. ehrenbergii* was investigated for its antioxidant and cytotoxic activity [154]. The cytotoxicity was examined by MTT assay where the methanol extract showed the highest cytotoxicity (IC$_{50}$ = 420 ± 104 µg/mL) at a concentration of 3000 mg/mL.

5.3. Polycystic Ovary Syndrome (PCOS)

In Iran, *S. sylvatica* is used for the treatment of women with polycystic ovary syndrome (PCOS). A current study carried out by Alizadeh et al. (2020) evaluated the hydroalcoholic extract of this plant in a rat model of PCOS [47]. It was observed that the extract at the dose of 500 mg/kg increased gonadotropins FSH and LH (5.95 ± 0.02 mIU/mL; 6.48 ± 0.09 mIU/mL) and reduced the level of estrogen (0.9 ± 0.07 mIU/mL) compared to the PCOS group (FSH level: 1.69 ± 0.08 mIU/mL; LH level: 6.29 ± 0.04 mIU/mL; estrogen level: 1.42 ± 0.05 mIU/mL), causing the ratio of LH/FSH to be close to 1:1 (6.48/5.59). According to the literature, this ratio LH/FSH is almost 1:1 in normal cases, while in PCOS women is higher e.g., 2:1 or 3:1. They also mentioned that these great results of the extract of *S. sylvatica* could be correlated to the flavonoid content of the plant. Previous studies showed that flavonoids could decrease the level of estrogen and could also act as GABA receptor agonists, regulating gonadotropins. Given that women with PCOS showed high concentrations of inflammation factors, they assumed that the extract could act as anti-inflammatory and antioxidant agent as flavonoids and iridoids demonstrated antioxidant and anti-inflammatory properties.

5.4. Anticholinesterase and Anti-Alzheimer’s Activity/Neuroprotective Activity

The aqueous extract from the tubers of *S. sieboldii* ("chorogi") was studied *in vivo* in mice model for its neuroprotective potential [152]. Specifically, the study examined the effects of chorogi’s extract on cerebral ischemia and scopolamine-induced memory impairment, using as positive control the extract of *Gingko biloba*, proving that *S. sieboldii* improves the learning and memory dysfunction correlated with ischemic brain injury. Another work examined the cholinesterase inhibitory activity of *S. lavandulifolia* extracts and isolated compounds [116]. Specifically, the most active extract against anticholinesterase (AChE) was the n-hexane extract with an IC$_{50}$ value of 13.7 µg/mL. However, the dichloromethane extract was the most effective against butyrylcholinesterase (BChE) (IC$_{50}$ = 143.9 µg/mL) where its major constituent, stachysolone (177), inhibited the activity of this enzyme with a percentage of inhibition of 50% at 0.06 mg/mL. Among the studied polar extracts, the methanol extract exhibited a selective inhibitory activity against AChE with an IC$_{50}$ value of 211.4 µg/mL and the isolated compounds, arbutin (107) and 5-allosyloxy-aucubin (167), showed a percentage of inhibition of 50 and 23.1% at 0.06 mg/mL, respectively, against AChE. Notably, the other constituents of this species were inactive at the maximum concentration tested of 0.25 mg/mL. Ferhat et al. (2016) examined the AChE activity of n-butanol, the ethyl acetate and the chloroform extracts of the aerial parts of *S. guyoniana*, demonstrating that the n-butanol extract (IC$_{50}$ = 5.78 ± 0.01 µg/mL) was a little less active than the used standard drug against Alzheimer’s disease; galantamine (IC$_{50}$ = 5.01 ± 0.10 µg/mL). Furthermore, they exhibited that this extract inhibited the BChE, having an IC$_{50}$ value of 39.1 ± 1.41 µg/mL which was better than the standard (IC$_{50}$ = 39.10 ± 1.41 µg/mL) [155]. Moreover, the anti-Alzheimer’s activity of two subspecies of *S. cretica* (*S. cretica* subsp. *smyrnae*; *S. cretica* subsp. *mersinae*) were evaluated in different works [81,108]. In addition, the potential effects of 20% ethanol extract of *S. sieboldii* was evaluated against oxidative stress induced by H$_2$O$_2$ in SK-N-SH cells and memory enhancement in ICR mice [161]. This study showed that the daily intake of the extract (dose: 500 mg/kg) through dietary supplementation produced memory enhancing effects in animals. Recently, Ertas and Yener (2020) reported that the acetone extract of *S. thirkei* demonstrated good activity against AChE and BChE with a percentage of inhibition of 52.46 ± 1.26% and 75.04 ± 1.91%, respectively [84].
5.5. Anti-tyrosinase Activity

The anti-tyrosinase activity of the ethanol and methanol Soxhlet apparatus extracts of the aerial parts of *S. lavandulifolia* exhibited the best activity with IC₅₀ values of 33.4 ± 0.8 and 42.8 ± 1.1 µg/mL [116]. They underlay that the specific extracts were characterized by the phenolic compounds, acteoside (118) and arbutin (107), which are recognised as tyrosinase inhibitors. Moreover, they evaluated the anti-tyrosinase activity of the isolated iridoids among which monomelittoside (165) and melittoside (166) showed IC₅₀ values of 119.6 ± 2.2 and 163.1 ± 3.1 µg/mL respectively, while 5-allosyloxy-aucubin (167) inhibited the enzyme with a percentage of 22.4% at a concentration of 200 µg/mL. In addition, current works investigated the anti-tyrosinase activity of three subspecies of *S. cretica* (*S. cretica* subsp. *smyrnaea*; *S. cretica* subsp. *mersinaea*; *S. cretica* subsp. *vacillans*), reporting that the ethyl acetate extract was the most effective in the first two subspecies (2.45 mg KAEs/g; 16 mg KAEs/g, respectively) [81,108]. Though, the methanol extract of *S. cretica* subsp. *vacillans* had the higher activity against tyrosinase (314.04 ± 2.05 mg KAe/g extract) [112].

5.6. Anti-diabetic Activity

Bahadori et al. (2018) evaluated the anti-diabetic activity of the extracts of *S. cretica* subsp. *smyrnaea* [81]. Specifically, the methanol extract demonstrated strong anti-diabetic activity against α-amylase (61.4 mg ACEs/g dry plant) and α-glucosidase (47.8 mg ACEs/g dry plant), following by ethyl acetate extract. They assumed that the above good properties were attributed to the phenolic constituents of the methanol extract since the anti-glucosidase activity is associated with caffeic acid, trans-cinnamic acid, and vanillin, whereas the amylase inhibitory activity is related to kaempferol and p-hydroxybenzoic acid. A year later, the anti-diabetic activity of the extracts of *S. cretica* subsp. *mersinaea* was studied, reporting that the ethyl acetate extract had best activity against α-amylase (396.50 mgACEs/g), while the methanol extract exerted strong activity against α-glucosidase (734 mg ACEs/g) [108]. Furthermore, the α-amylase inhibition of the methanol and water extract of *S. cretica* subsp. *vacillans* was evaluated, with the methanol extract exhibited stronger activity (433.99 ± 5.10 mg ACE/g extract) [112]. Currently, Pritzas et al. (2020) studied the anti-diabetic activity in *silico* of 17 isolated compounds from the cultivated *S. iva*, mentioning that stachysetin (98) interacted with five out of ten proteins implicated in diabetes [56]. This is the only study reported a pharmacological activity of this rare compound.

5.7. Antimicrobial Activity

Regarding the antibacterial activity, the *n*-butanol extract of *S. guyoniana* showed strong activity against *Staphylococcus aureus* (MIC = 32 ± 0.90 µg/mL) and *Enterobacter aerogenes* (MIC = 32 ± 0.70 µg/mL), while it was not active against *Pseudomonas aeruginosa* and *Morganella morganii* [155]. The ethyl acetate extract demonstrated the best inhibition against *Escherichia coli* (MIC = 64 ± 0.60 µg/mL), whereas it didn’t show any activity against *P. aeruginosa* and *M. morganii*. Shakeri et al. (2019) reported the antimicrobial activity of the methanol extract of the aerial parts of *S. parviflora* which exerted the highest activity against the Gram-positive bacterium, *Bacillus cereus*, with a MIC of 0.12 mg/mL [64]. Furthermore, the antimicrobial activity of extracts of *S. thirkei* against different microorganisms were studied according to inhibition zone diameter and MIC value [84]. The acetone and methanol extract demonstrated good activity against *S. aureus*, *Streptococcus pyogenes* and *E. coli*. Intriguingly, *S. thirkei*’s extracts were not active against *P. aeruginosa* (Gram-negative bacterium) and *Candida albicans* (yeast).

5.8. Hepatoprotective

The hepatoprotective property of the ethanol extract of *S. pilifera* was studied in carbon tetrachloride (CCl₄)-induced hepatotoxicity in rats and indicated that this extract could act as hepatoprotective agent [158]. They assumed that this property might be also related to the strong antioxidant activity of the species. Later, Mansourian et al. (2019) exhibited the hepatoprotective and antioxidant activity of hydroalcoholic extract of *S. pilifera* on hepatotoxicity induced by
acetaminophen (APAP) in male rats [159]. Precisely, the extract reduced hepatotoxicity by decreasing liver function markers/enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and protein carbonyl (PCO) compared to the APAP group. It also diminished the oxidative stress through inhibiting protein oxidation and inducing the activity of glutathione peroxidase (GPX) enzyme. So, they assumed that this great activity was attributed to the antioxidant activity of this plant.

5.9. Others

Ruui et al. (2015) investigated the phytochemical profile of the dichloromethane extract of S. glutinosa and studied the binding affinity to µ and δ opioid receptors (MOR and DOR) [107]. The extract showed an interesting binding affinity for MOR (Ki values of 10.3 µg/mL) and DOR (Ki values of 9.0 µg/mL), while xanthomicrol (69) demonstrated the strongest opioid binding affinity to both opioid receptors (Ki for MOR = 0.83 µM, Ki for DOR = 3.6 µM) with the highest MOR selectivity with a ratio (DOR/Ki (MOR) = 4.4. Notably, they reported that the existence of a further hydroxy group at the 3’ position like in sideritoflavone (70) reduced the binding affinity for MOR (Ki = 18.5 µM), whereas the replacement of this group with a methoxy moiety, as in 8-methoxycirsilineol (71), eliminated the affinity for MOR (Ki > 50 µM). Furthermore, they evaluated the antinociceptive activity of xanthomicrol in an animal model (in mice) of acute pain (tail-flick test). In another study, the n-butanol extract of S. mialhesii exhibited significant anti-inflammatory activity in vivo, reducing the weight of edema: 52.03% induced by carrageenan in the rat’s paw, whereas indomethacin (dose: 5 mg/kg; decrease 83.36%) was used as a reference drug [103]. In the same study, the n-butanol extract exerted antinociceptive effect at dose-dependent manner. Ramazanov et al. (2016) evaluated the wound healing activity of the extract of S. hissarica on rats, showing that the extract improved the healing process of linear skin wounds at an oral dose of 10 mg/kg [67]. Of note, the wound healing activity of the extract was more effective than the known drug methyluracil (2,4-dioxo-6-methyl-1,2,3,4-tetrahydropyrimidine), especially in case of alloxan induced diabetic animals. A study carried out by Lannuzzi et al. (2019) studied the antiangiogenic activity in two in vivo models (zebrafish embryos and chick chorioallantoic membrane assays) of the isolated compounds of the leaf extract of S. ocymastrum. The isolated compounds with the best antiangiogenic activity in both assays were β-hydroxyipolamiide (173) and ipolamiide (174) [123]. Recently, Lee et al. (2020) studied the anti-obesity and anti-dyslipidemic property of the roots powder of S. sieboldii in rats, following a high-fat and high-cholesterol diet (HFC) [159]. This powder demonstrated the anti-adipogenic and lipid-lowering effects through enhancing lipid metabolism.

Taken together all the above pharmacological studies, we could observe that these findings confirmed most of the traditional medicinal uses of Stachys spp. However, the present review unveiled that there are still species pharmacologically uncharted.

6. Clinical Studies

Through our literature survey, four clinical studies for the species S. lavandulifolia were revealed. The first clinical study carried out by Rahzani et al. (2013) reported the effects of the aqueous extract of the specific plant (dose; infusion from 3 g aerial parts of plant, twice daily) on the oxidative stress in 26 healthy humans, underlying that the participants demonstrated a significant reduction in oxidative stress [162]. In parallel, another randomized clinical trial (33 women) examined the effects of S. lavandulifolia and medroxyprogesterone acetate (MPA) in abnormal uterine bleeding (AUB) in PCOS [163]. This study exemplified that the infusion of the aerial parts of wood betony (dose; 5 g of plant in 100 mL boiling water; duration 3 months) showed a reduction of AUB, recommending its consumption for the treatment of AUB related to PCOS. They also mentioned that this result might be attributed to the flavonoid content of the plant and mainly to apigenin. In addition, Monji et al. (2018) evaluated on a clinical trial the therapeutic effects of standardized formulation of S. lavandulifolia on primary dysmenorrhea, indicating that the standardized capsules of plant’s extract could diminish the menstrual pain, and might be recommended as an auxiliary therapy or an alternative remedy to nonsteroidal antiinflammatory drugs (NSAIDs) with fewer side effects in
primary dysmenorrhea [164]. Recently, a double-blind randomized clinical study mentioned the analgesic activity of the herbal tea of *S. lavandulifolia* (10 g in 200 cc of boiling water) in 50 patients with migraine [165], showing the capability of this herbal tisane to decrease and also improve the pain intensity in these patients. In addition, Ashiani et al. (2019) considered that the therapeutic properties of this plant associated with its rich phytochemical profile which include iridoids, flavonoids and phenylethanoid glucosides [165].

To sum up, the above clinical studies confirm the ethnomedicinal uses of *S. lavandulifolia* as a traditional medicine. Although these promising results, more clinical studies should be performed for obtaining data for diverse *Stachys* spp. As a future prospective, further studies should strengthen the research of bioavailability, dosage, toxicity and potential drug interactions in order to endorse the observed pharmacological activities of these plants.

7. Toxicity

S. lavandulifolia is popularly claimed as an abortifacient agent by Iranian women. The effect of its hydroalcoholic extract on fertility was investigated, revealing that the extract had a dose dependent abortifacient activity. Thus, its use during pregnancy may cause abortion and consequently, the plant should be considered as contraindicated or be used with caution [166]. In addition, the nephrotoxicity of the same extract was studied on male Wistar rats and a mild degeneration of renal tubular epithelial cell after one month was observed, while in the second month the histologic lesions were significantly more. However, further studies need to evaluate renal complications of this plant in human [167]. Moreover, the acute and subchronic toxicological evaluation of *S. lavandulifolia* aqueous extract in rats indicated that the high dose (2 g/kg) did not produce any symptoms of toxicity and there was no significant difference in body weights between the control and treatment groups of the animals [168].

8. Conclusions

In the present review, we attempted to describe in detail all the current knowledge and research advances of genus *Stachys*, focusing on pointing the significance of this genus as herbal supplement and medicine.

Taken together with all the analyzed studies in the current review, we categorized the used literature data into four categories according to their general characteristics; ethnobotanical (no of used studies: 48), phytochemical (no of used studies: 91), pharmacological (no of in vitro studies: 22, no of in vivo studies: 8 and 2 in silico study), clinical studies (no of used studies: 4) and reviews (no of used studies: 4). The general characteristics of the analyzed studies in the current review are showed in Table 31.

Type of data	No of studies*	Years of publication
Ethnobotanical	48	since 1914
Phytochemical	91	since 1968
Pharmacological	22 (in vitro)	since 2015
	8 (in vivo)	
	2 (in silico)	
Clinical studies	4	since 2013
Reviews	4	since 1994

N.B. It could be found more than one type of data in the same article

Several *Stachys* spp. have been used as traditional herbal medicines for thousands of years. Therefore, accumulating studies have been performed in order to explore the chemical compounds and the pharmacological properties of these species to validate their claimed ethnomedicinal properties. However, the present review data shows that there are still species phytochemically and pharmacologically unexplored. This comprehensive survey could serve as useful tool for scientists...
searching uncharted and interesting species to study, as well as it could be an informative guide for researchers aimed to identify leads for developing novel drugs. Although many pharmacological studies have demonstrated the great properties of these plants, only the clinical effects of one species have been investigated. As a result, further studies should be performed to validate the clinical efficiency of several Stachys spp. and if there is any potential toxicity. To be mentioned that there are still yet much to be done on the detailed documentation (safety and efficacy data) of genus Stachys in order to be developed an official monograph as a traditional use or well-established use plants.

Author Contributions: Conceptualization and supervision: H.S.; writing—original draft preparation: E.-M.T. & C.B.; writing—review and editing: all authors.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhattacharjee, R. Taxonomic studies in Stachys II. A new infragenic classification of Stachys L. [1980]. *Notes Roy. Bot. Gard. Edinburgh* **2008**, *38*, 65–96.
2. Salmaki, Y.; Heubi, G.; Weigend, M. Towards a new classification of tribe Stachydeae (Lamiaceae): Naming clades using molecular evidence. *Bot. J. Linn. Soc.* **2019**, *190*, 345–358, doi:10.1093/botlinnean/boz021.
3. Tundis, R.; Peruzzi, L.; Menichini, F. Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. *Phytochemistry* **2014**, *102*, 7–39, doi:10.1016/j.phytochem.2014.01.023.
4. Koeva-Todorovska, J. *The genus Stachys L. and the genus Betonica L. Flora of PR Bulgaria*; BAS Publishing House: Sofia, Bulgaria, 1979; Volume 9, pp. 388–416.
5. Marin, P.; Grayer, R.; Grujić-Jovanovic, S.; Kite, G.; Veitch, N. Glycosides of tricetin methyl ethers as chemosystematic markers in *Stachys* subgenus Betonica. *Phytochemistry* **2004**, *65*, 1247–1253.
6. Strid, A.; Tan, K. *Mountain Flora of Greece*. II Edinburgh: Edinburgh University Press, Edinburgh 1991; Volume 2, pp. 97-107.
7. Carnoy, A. *Dictionnaire étymologique des noms grecs de plantes*; Bibliothèque du Muséon: Louvain, Paris, 1959; pp. 70.
8. André, J. Lexique des termes de botanique en latin. In *Etudes et Commentaires*; Librairie C., Ed.; Klincksieck: Paris, France, 1956; pp. 79.
9. Gennadios, P. *Lexicon Phytologicum*; Athens, Greek, 1914; pp.912. (in Greek)
10. Valiakos, E.; Marselos, M.; Sukellaridis, N.; Constantinidis, T.; Skaltsa, H. Ethnopharmacological approach to the herbal medicines of the “Antidotes” in Nikolaos Myrepsos’ Dynameron. *J. Ethnopharmacol.* **2015**, *163*, 68–82, doi:10.1016/j.jep.2015.01.005.
11. Camangi, F.; Stefani, A. Le piante nella magia e nella superstizione: Alcuni esempi di pratiche popolari in Toscana. Rivista di Preistoria, Etnografia e Storia natural, 2003, 1, 1–5.
12. Delazar, A.; Delnavazi, M.R.; Nahar, L.; Moghadam, S.B.; Moharab, M.; Gupta, A.; Williams, A.S.; Rahman, M.M.; Sarker, S.D.; Mojarrab, M. Lavandulifolioside B: A new phenylethanoid glycoside from the aerial parts of *Stachys lavandulifolia* Vahl. *Nat. Prod. Res.* **2011**, *25*, 8–16, doi:10.1080/14786411003754330.
13. Delnavazi, M.-R.; Saiyarsarai, P.; Jafari-Nodooshan, S.; Khanavi, M.; Tavakoli, S.; Hadavinia, H.; Yassa, N. Cytotoxic flavonoids from the aerial parts of *Stachys lavandulifolia* Vahl. *Pharm. Sci.* **2018**, *24*, 332–339, doi:10.15171/ps.2018.47.
14. Karioti, A.; Bolognesi, L.; Vinci, F.F.; Bilia, A.R. Analysis of the constituents of aqueous preparations of *Stachys recta* by HPLC–DAD and HPLC–ESI-MS. *J. Pharm. Biomed. Anal.* **2010**, *53*, 15–23, doi:10.1016/j.jpba.2010.03.002.
15. Gören, A.C.; Piozzi, F.; Akçıç, E.; Kılıç, T.; Çarkipc, S.; Mozoğlu, E.; Setzer, W.N. Essential oil composition of twenty-two *Stachys* species (mountain tea) and their biological activities. *Phytochem. Lett.* **2011**, *4*, 448–453, doi:10.1016/j.phytol.2011.04.013.
16. Öztürk, M.; Duru, M.E.; Ayoğmuş-Öztürk, F.; Harmandar, M.; Mahlç, M.; Kolak, U.; Ulubelen, A. GC-MS analysis and antimicrobial activity of essential oil of *Stachys cretica* subsp. *smyrnaea*. *Nat. Prod. Commun.* **2009**, *4*, 109–114, doi:10.1177/1934578x0900400124.
17. Khanavi, M.; Sharifzadeh, M.; Hadjiajhoondi, A.; Shafiee, A. Phytochemical investigation and anti-inflammatory activity of aerial parts of *Stachys byzantina* C. Koch. *J. Ethnopharmacol.* 2005, 97, 463–468, doi:10.1016/j.jep.2004.11.037.

18. Jahani, R.; Khaledyan, D.; Jahani, A.; Jamshidi, E.; Kamalinejad, M.; Khoramjouy, M.; Faizi, M. Evaluation and comparison of the antidepressant-like activity of *Artemisia dracunculus* and *Stachys lavandulifolia* ethanolic extracts: An in vivo study. *Res. Pharm. Sci.* 2019, 14, 544, doi:10.4103/1735-5362.272563.

19. Sadeghi, H.; Mansourian, M.; Kokhdan, E.P.; Salehpour, Z.; Sadati, I.; Abbasszadeh-Goudarzi, K.; Asfaram, A.; Doustimotlagh, A.H. Antioxidant and protective effect of *Stachys pilifera* Bentham against nephrotoxicity induced by cisplatin in rats. *J. Food Biochem.* 2020, 44, e13190, doi:10.1111/jfb.13190.

20. Meremeti, A.; Karioti, A.; Skaltsa, H.; Heilmann, J.; Sticher, O. Secondary metabolites from *Stachys ioniaca*. *Biochem. Syst. Ecol.* 2004, 32, 139–151, doi:10.1016/s0305-1978(03)00161-3.

21. Piozzi, F.; Bruno, M. Diterpenoids from roots and aerial parts of the genus *Stachys*. *Rec. Nat. Prod.* 2011, 5, 1–11.

22. Gören, A.C. Use of *Stachys* species (Mountain tea) as herbal tea and food. *Rec. Nat. Prod.* 2014, 8, 71–82.

23. Kartsev, V.G.; Stepanichenko, N.N.; Auelbekov, S.A. Chemical composition and pharmacological properties of plants of the genus *Stachys*. *Chem. Nat. Compd.* 1994, 30, 645–654, doi:10.1007/bf00630595.

24. Plant list. (2013). Available online: http://www.theplantlist.org/tpl1.1/record/kew-195205 (accessed 4 August 2020).

25. The Euro + Med Plantbase. The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/EuroPlusMed/query.asp (accessed on 4 August 2020).

26. International Plant Name Index (IPNI). Available online: https://www.ipni.org/n/459647-1 (accessed on 4 August 2020).

27. Venditti, A.; Frezza, C.; Celona, D.; Bianco, A.; Serafini, M.; Gianfaglione, K.; Fiorini, D.; Ferraro, S.; Maggi, F.; Lizzi, A.R.; Celenza, G. Polar constituents, protection against reactive oxygen species, and nutritional value of Chinese artichoke (*Stachys affinis* Bungo). *Food Chem.* 2017, 221, 473–481, doi:10.1016/j.foodchem.2016.10.096.

28. Guo, H.; Saravanakumar, K.; Wang, M.-H. Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of *Stachys affinis*. *Biocatal. Agric. Biotechnol.* 2018, 15, 235–239, doi:10.1016/j.bcab.2018.06.009.

29. Lee, J.W.; Wu, W.; Lim, S.Y. Effect of extracts from *Stachys sieboldii* Miq. on cellular reactive oxygen species and glutathione production and genomic DNA oxidation. *Asian Pac. J. Trop. Biomed.* 2018, 8, 485, doi:10.1016/s0378-1119(94)90153-9.

30. Huong, W.; Gao, X.; Zhang, Y.; Jin, C.; Wang, X. The complete chloroplast genome sequence of *Stachys sieboldii* Miquel. (Labiatae), a kind of vegetable crop and Chinese medicinal material plant. *Mitochondrial DNA Part B* 2020, 5, 1832–1833, doi:10.1080/23802359.2020.1751006.

31. Asghari, G.; Akbari, M.; Asadi-Samani, M. Phytochemical analysis of some plants from Lamiaceae family frequently used in folk medicine in Aligudarz region of Lorestan province. *Marmara Pharm. J.* 2017, 21, 506, doi:10.12991/marup.311815.

32. Lotfi-pour, F.; Nazemiyeh, H.; Fathi-Azad, F.; Garaei, N.; Arami, S.; Talat, S.; Sadeghpour, F.; Hasanpour, R. Evaluation of antibacterial activities of some medicinal plants from North-West Iran. *Iran. J. Basic Med. Sci.* 2008, 11, 80–85.

33. Asnaashari, S.; Delazar, A.; Alipour, S.; Nahar, L.; Williams, A.; Pasdaran, A.; Mojarab, M.; Azad, F.; Sarker, S.D. Chemical composition, free-radical-scavenging and insecticidal activities of the aerial parts of *Stachys byzantina*. *Arch. Biol. Sci.* 2010, 62, 653–662, doi:10.2298/abs1003653sa.

34. Naghibi, F.; Mosaddeghe, M.; Motamed, M.M.; Ghorbani, A. Labiatae family in folk medicine in Iran: From ethnombotany to pharmacology. *Iran. J. Pharm. Res.* 2005, 2, 63–79.

35. Aminfar, P.; Aftabhi, M.; Parastar, H. Gas chromatographic fingerprint analysis of secondary metabolites of *Stachys lanata* (*Stachys byzantine* C. Koch) combined with antioxidant activity modelling using multivariate chemometric methods. *J. Chromatogr. A* 2019, 1602, 432–440, doi:10.1016/j.chroma.2019.06.002.

36. Maleki, N.; Garjani, A.; Nazemiyeh, H.; Nilpouroushan, N.; Sadat, A.E.; Allameh, Z.; Hasannia, N. Potent anti-inflammatory activities of hydroalcoholic extract from aerial parts of *Stachys inflata* on rats. *J. Ethnopharmacol.* 2001, 75, 213–218, doi:10.1016/s0378-8741(01)00194-5.
37. Lazarević, J.; Palić, R.; Radulović, N.S.; Ristic, N.; Stojanovic, G. Chemical composition and screening of the antimicrobial and anti-oxidative activity of extracts of Stachys species. J. Serb. Chem. Soc. 2010, 75, 1347–1359, doi:10.2298/jsc100601117l.

38. Amin, G. Popular medicinal plants of Iran, Iranian Research Institute of medicinal plants. Tehran 1991, 80, 1–66 (in Persian).

39. Rabbani, M.; Sajjadi, S.E.; Zarei, H. Anxiolytic effects of Stachys lavandulifolia Vahl on the elevated plus-maze model of anxiety in mice. J. Ethnopharmacol. 2003, 89, 271–276, doi:10.1016/j.jep.2003.09.008.

40. Rabbani, M.; Sajjadi, S.-E.; Karimi-Firoozjai, M.; Ghannadian, M. Bioactivity guided isolation of apigenin from Stachys lavandulifolia Vahl. in mice with anxiolytic effects. J. Herbmed Pharmacol. 2018, 7, 74–78, doi:10.15171/jhp.2018.13.

41. Hajhashemi, V.; Ghannadi, A.; Sedighifar, S. Analgesic and anti-inflammatory properties of the hydroalcoholic, polyphenolic and boiled extracts of Stachys lavandulifolia. Res. Pharm. Sci. 2007, 2, 92–98.

42. Aratsalehi, F.; Rahimmalek, M.; Ehtemam, M.H. Phytochemical and morphological variation of Stachys lavandulifolia Vahl. populations as affected by genotype × year interaction. Ind. Crop. Prod. 2018, 112, 342–352, doi:10.1016/j.indcrop.2017.12.025.

43. Veisi, H.; Kazemi, S.; Mohammadi, P.; Safarimehr, P.; Hemmati, S. Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron 2019, 157, 232–240, doi:10.1016/j.poly.2018.10.014.

44. Fooladvand, Z.; Fazeli-nasab, B. Antibacterial activities of Stachys lavandulifolia Vahl. extract against eight bacteria. J. Herb. Drugs 2014, 5, 13–18.

45. Kokhdan, E.P.; Sadeghi, H.; Ghafoori, H.; Sadeghi, H.; Danaei, N.; Javadian, H.; Aghamaali, M.R. Cytotoxic effect of methanolic extract, alkaloid and terpenoid fractions of Stachys pilifera against HT-29 cell line. Res. Pharm. Sci. 2018, 13, 404–412, doi:10.4103/1735-5362.236833.

46. Maleki, F.; Valilou, M.M.S. Poulik plant (Stachys chschegleevii) and its antibacterial specifications. Asian J. Res. Bot. 2019, 2, 1–13.

47. Alizadeh, F.; Ramezani, M.; Piravar, Z. Effects of Stachys sylvatica hydroalcoholic extract on the ovary and hypophysis-gonadal axis in a rat with polycystic ovary syndrome. Middle East. Fertil. Soc. J. 2020, 25, 1–7, doi:10.1186/s43043-020-0015-9.

48. Polat, R.; Cakilcioglu, U.; Kaltaioglu, K.; Ulusan, M.D.; Turkmen, Z. An ethnobotanical study on medicinal plants in Espiye and its surrounding (Giresun-Turkey). J. Ethnopharmacol. 2015, 163, 1–11, doi:10.1016/j.jep.2015.01.008.

49. Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc. Behav. Sci. 2011, 19, 756–777, doi:10.1016/j.sbspro.2011.05.195.

50. Mucemre, M.; Behcet, L.; Cakilcioglu, U.; Cakilcioglu, U. Ethnobotanical study on medicinal plants in villages of Catak (Van-Turkey). J. Ethnopharmacol. 2015, 166, 361–374, doi:10.1016/j.jep.2015.03.040.

51. Lucchetti, L.; Zitti, S.; Taffetani, F. Ethnobotanical uses in the Ancona district (Marche region, Central Italy). J. Ethnobiol. Ethnomedicine 2019, 15, 1–33, doi:10.1186/s13002-019-0288-1.

52. Venditti, A.; Bianco, A.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Damiano, S.; Papa, F.; Vittori, S.; Bini, L.M.; Giuliani, C.; et al. Phytochemical analysis, biological activity, and secretory structures of Stachys annua (L.) L. subsp. annua (Lamiaceae) from Central Italy. Chem. Biodivers. 2015, 12, 1172–1183.

53. Cornara, L.; La Rocca, A.; Marsili, S.; Mariotti, M.G. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J. Ethnopharmacol. 2009, 125, 16–30, doi:10.1016/j.jep.2009.06.021.

54. Cornara, L.; La Rocca, A.; Terrizzano, L.; Dente, F.; Mariotti, M.G. Ethnobotanical and phytomedical knowledge in the North-Western Ligurian Alps. J. Ethnopharmacol. 2014, 155, 463–484, doi:10.1016/j.jep.2014.05.046.

55. Mulas, M. Traditional uses of labiatae in the mediterranean area. Acta Hortic. 2006, 723, 25–32, doi:10.17660/actahortic.2006.723.1.

56. Prittas, A.; Tomou, E.-M.; Tsitsiogianni, E.; Papaemmanouil, C.D.; Diamantis, D.A.; Chatzopoulos, P.; Tsakos, A.G.; Skaltsa, H. Valorisation of stachysetin from cultivated Stachysiva Griseb. as anti-diabetic agent: A multi-spectroscopic and molecular docking approach. J. Biomol. Struct. Dyn. 2020, 1–15, doi:10.1080/07391102.2020.1799864.

57. Fazio, C.; Passannanti, S.; Paternostro, M.; Arnold, N. Diterpenoids from Stachys mucronata. Planta Med. 1994, 60, 499, doi:10.1055/s-2006-959557.
58. Łuczaj, Ł.; Svanberg, I.; Köhler, P. Marsh woundwort, *Stachys palustris* L. (Lamiaceae): An overlooked food plant. *Genet. Resour. Crop. Evol.* 2011, 58, 783–793, doi:10.1007/s10722-011-9710-9.

59. Monigatti, M.; Bussmann, R.W.; Weckerle, C.S. Medicinal plant use in two Andean communities located at different altitudes in the Bolívar Province, Peru. *J. Ethnopharmacol.* 2013, 145, 450–464, doi:10.1016/j.jep.2012.10.066.

60. Duarte, M.C.T.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.G.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. *J. Ethnopharmacol.* 2005, 97, 305–311, doi:10.1016/j.jep.2004.11.016.

61. Gruenwald, J.; Brendleer, T.; Jaenicke, T. *PDR for Herbal Medicines*; Medical Economics Company: Montvale, NJ, USA, 2000; pp. 832.

62. Rustaiyan, A.; Masoudi, S.; Ameri, N.; Samiee, K.; Monfared, A. Volatile constituents of *Ballota aucheri* boiss., *Stachys benthamiana* boiss. and *Perovskia abrotanoides* karel. Growing wild in Iran. *J. Essent. Oil Res.* 2006, 18, 218–221, doi:10.1080/10412905.2006.9699070.

63. Ahmad, V.U.; Arshad, S.; Bader, S.; Iqbal, S.; Khan, A.; Khan, S.S.; Hussain, J.; Tareen, R.B.; Ahmed, A. New terpenoids from *Stachys parviflora* Benth. *Magn. Reson. Chem.* 2008, 46, 986–987, doi:10.1002/mrc.2277.

64. Shakeri, A.; D’Urso, G.; Taghzadeh, S.F.; Piacente, S.; Norouzi, S.; Soheili, V.; Asili, J.; Salarbashi, D. LC-ESI/LTQOrbitrap/MS/MS and GC–MS profiling of *Stachys parviflora* L. and evaluation of its biological activities. *J. Pharm. Biomed. Anal.* 2019, 168, 209–216, doi:10.1016/j.jpba.2019.02.018.

65. Kepekçi, R.A.; Polat, S.; Çoşkun, G.; Celik, A.; Bozkurt, A.S.; Yumrutaş, Önder; Pehlivan, M. Preliminary characterization of phenolic acid composition and hepatoprotective effect of *Stachys punila*. *J. Food Biochem.* 2016, 41, 12286, doi:10.1111/jfbc.12286.

66. Kumar, D.; Bhat, Z.A. Apigenin 7-glucoside from *Stachys tibetica* Vatke and its anxiolytic effect in rats. *Phytomedicine* 2014, 21, 1010–1014, doi:10.1016/j.phymed.2013.12.001.

67. Ramazanov, N.S.; Bobayev, I.D.; Yusuopova, U.Y.; Aliyeva, N.K.; Egamova, F.R.; Yuldasheva, N.Y.; Syrov, V.N. Phytocysterostrains-containing extract from *Stachys hissarica* plant and its wound-healing activity. *Nat. Prod. Res.* 2016, 31, 593–597, doi:10.1080/14786419.2016.1205058.

68. El-Ansari, M.A.; Abdalla, M.F.; Saleh, N.A.M.; Barron, D.; Le Quere, J.L. Flavonoid constituents of *Stachys aegyptiaca*. *Phytochemistry* 1991, 30, 1169–1173, doi:10.1016/0031-1872(91)90017-Y.

69. El-Ansari, M.A.; Nawwar, M.A.; Saleh, N.A.M. *Stachys setinata*, a diapigenin-7-glucoside-p, p′-dihydroxy-truxinate from *Stachys aegyptiaca*. *Phytochemistry* 1995, 40, 1543–1548.

70. El-Desoky, S.K.; Hawas, W.U.; Sharaf, M. A new flavone glycoside from *Stachys aegyptiaca*. *Chem. Nat. Compd.* 2007, 43, 542–543.

71. Sharaf, M. *Isoscutellarein 8-O-(6′-trans-p-coumaroyl)-β-D-glucoside from Stachys aegyptiaca*. *Fitoterapia* 1998, 69, 355–357.

72. Komissarenko, N.F.; Sheremet, I.P.; Derkach, A.I.; Pakaln, D.A. *Stachysflaside from Stachys inflata* and *St. atherocalyx*. *Chem. Nat. Compd.* 1976, 12, 88, doi:10.1007/bf00570203.

73. Komissarenko, N.F.; Derkach, A.I.; Sheremet, I.P.; Kovalev, I.P.; Gordienko, V.G.; Pakaln, D.A. *Flavonoids of Stachys inflata*. *Chem. Nat. Compd.* 1978, 14, 445–446, doi:10.1007/bf00565262.

74. Nazemiyeh, H.; Shoeb, M.; Movahhedin, N.; Kumarasamy, Y.; Talebpour, A.; Delazar, A.; Lutfun, N.; Sarker, S. Phenolic compounds and their glycosides from *Stachys schtscheglevii* (Lamiaceae). *Biochem. Syst. Ecol.* 2006, 34, 721–723.

75. Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F.; Tomás-Lorente, F. Flavonoid p-coumaroylglucosides and 8-hydroxyflavone allosylglucosides in some labiatae. *Phytochemistry* 1992, 31, 3097–3102, doi:10.1016/0031-1872(92)83452-5.

76. Lakhal, H.; Boudiar, T.; Kabouche, A.; Laggoune, S.; Kabouche, Z.; Toçu, G. Antioxidant activity and flavonoids of *Stachys ocyclus*. *Chem. Nat. Compd.* 2011, 46, 964–965, doi:10.1007/s10600-011-9797-4.

77. Skaltsa, H.; Bermejo, P.; Lazari, D.; Silván, A.M.; Skaltsounis, A.-L.; Sanz, A.; Abad, M.J. Inhibition of prostaglandin E2 and leukotriene C4 in mouse peritoneal macrophages and thromboxane B2 production in human platelets by flavonoids from *Stachys chrysantha* and *Stachys candida*. *Biol. Pharm. Bull.* 2000, 23, 47–53, doi:10.1248/bpb.23.47.

78. Michaïlidou, A.-M. Phytochemical study of *Stachys candida* Bory & Chaub., M.Sc. Thesis, Athens, Greece, 2018.

79. Serrilli, A.; Ramunno, A.; Piccioni, F.; Serafini, M.; Ballero, M. Flavonoids and iridoids from *Stachys corsica*. *Nat. Prod. Res.* 2005, 19, 561–565, doi:10.1080/14786410410001721977.
80. Demirtaş, I.; Gecibesler, I.H.; Yaglioglu, A.S.; Yaglioglu, A.S. Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys byzantina. Phytochem. Lett. 2013, 6, 209–214, doi:10.1016/j.phytol.2013.02.001.

81. Bahadori, M.B.; Kirkan, B.; Sarikurcu, C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melasma. Ind. Crop. Prod. 2019, 127, 82–87, doi:10.1016/j.indcrop.2018.10.066.

82. Murata, T.; Endo, Y.; Miyase, T.; Yoshizaki, F. Iridoid glycoside constituents of Stachys lanata. J. Nat. Prod. 2008, 71, 1768–1770, doi:10.1021/n8001805.

83. Derkach, A.I.; Komissarenko, N.F.; Gordienko, V.G.; Sheremet, I.P.; Kovalev, I.P.; Pakaln, D.A. Flavonoids of Stachys spectabilis. Chem. Nat. Compd. 1980, 16, 128–130, doi:10.1007/bf00638769.

84. Ertas, A.; Yener, I. A comprehensive study on chemical and biological profiles of three herbal teas in Anatolia; rosmarinic and chlorogenic acids. S. Afr. J. Bot. 2020, 130, 274–281, doi:10.1016/j.sajb.2020.01.008.

85. Elfalleh, W.; Kirkan, B.; Sarikurku, C. Antioxidant potential and phenolic composition of extracts from Stachys imolea: An endemic plant from Turkey. Ind. Crop. Prod. 2019, 127, 212–216, doi:10.1016/j.indcrop.2018.10.078.

86. Venditti, A.; Bianco, A.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Vitali, L.A.; Papa, F.; Vittori, S.; Petrelli, D.; et al. Characterization of secondary metabolites, biological activity and glandular trichomes of Stachys tymphaea hausskn. from the Monti Sibillini National Park (Central Apennines, Italy). Chem. Biodivers. 2014, 11, 245–261.

87. Sen, A.; Göğer, F.; Dogan, A.; Bitis, L. Two acylated isoscutellarein glucosides with anti-inflammatory and antioxidant activities isolated from endemic Stachys subnuda Montbret & Aucher ex Benth. Acta Chim. Slov. 2019, 66, 831–838, doi:10.17344/actasi.2018.4921.

88. Kostyuchenko, O.I.; Komissarenko, N.F.; Zinchenko, T.V.; Derkach, A.I. Diacetylstachyflaside from Stachys atherocalyx. Khim. Prir. Soedin. 1981, 3, 389–390.

89. Kostyuchenko, O.I.; Komissarenko, N.F.; Kovalev, I.P.; Derkach, A.I.; Gordienko, V.G. Acetylspectabiflaside and Acetylisostachyflaside from Stachys atherocalyx. Chem. Nat. Compd. 1982, 18, 170–172, doi:10.1007/bf00577186.

90. Kostyuchenko, O.I.; Komissarenko, N.F.; Zinchenko, T.V.; Derkach, A.I.; Gordienko, V.G. Diacetylisostachyflaside and acetylisostachyflaside from Stachys atherocalyx. Chem. Nat. Compd. 1982, 18, 235–236, doi:10.1007/bf00577210.

91. Lenherr, A.; Lahloub, M.F.; Sticher, O. Three flavonoid glucosides containing acetylated allose from Stachys recta. Phytochemistry 1984, 23, 2343–2345.

92. Lenherr, A.; Meier, B.; Sticher, O. Modern HPLC as a tool for chemotaxonomical investigations: Iridoid glucosides and acetylated flavonoids in the group of Stachys recta. Planta Med. 1984, 50, 403–409, doi:10.1055/s-9007-969749.

93. Sheremet, I.P.; Komissarenko, N.F. Flavonoid glucosides of Stachys annua. Khim. Prir. Soedin 1971, 5, 583.

94. Movsumov, I.S.; Yusifova, D.Y.; Suleimanov, T.A.; Mahiou, M.; Mahiou, M.A.; Mahiou, M.A. Biological active compounds from chamaenerion angustifolium and Stachys annua growing in Azerbaijan. Chem. Nat. Compd. 2016, 52, 324–325, doi:10.1007/s10600-016-1631-6.

95. Movsumov, I.S.; Garayev, E.A.; Baghdikian, B.; Majmudar, F.; Drobnik, G.; Ollivier, E.; Suleimanov, T.A.; Garayev, E.E. Flavonoids from Stachys annua growing in Azerbaijan. Chem. Nat. Compd. 2018, 54, 261–262, doi:10.1007/s10600-018-2318-y.

96. Delazar, A.; Celik, S.; Gökçü, R.S.; Unal, O.; Nahar, L.; Sarker, S.D. Two acylated flavonoid glycosides from Stachys bombycina, and their free radical scavenging activity. Die Pharm. 2005, 60, 878–880.

97. Zinchenko, T.V. Flavonoids of Stachys neglecta. Farm. Zhit. 1969, 24, 28804.

98. Kotsos, M.; Aligiannis, N.; Mitakou, S.; Skaltsounis, A.-L.; Charvala, C. Chemistry of plants from Crete: Stachyspinoside, a new flavonoid glycoside and iridoids from Stachys spinosa. Nat. Prod. Lett. 2001, 15, 377–386, doi:10.1080/1057563019041307.

99. Kotsos, M.P.; Aligiannis, N.; Mitakou, S. A new flavonoid diglycoside and triterpenoids from Stachys spinosa L. (Lamiaceae). Biochem. Syst. Ecol. 2007, 35, 381–385, doi:10.1016/j.bse.2006.11.002.

100. Afouzenidi, A.; Milošević-Iphantis, T.; Skaltsa, H. Secondary metabolites from Stachys tetragona Boiss. & Heldr. ex Boiss. and their chemotaxonomic significance. Biochem. Syst. Ecol. 2018, 81, 83–85, doi:10.1016/j.bse.2018.09.011.
101. Lenherr, A.; Mabry, T.J. Acetylated allose-containing flavonoid glucosides from
Stachys anisochila. Phytochemistry 1987, 26, 1185–1188, doi:10.1016/s0031-9422(00)82375-4.

102. Skaltsa, H.; Georgakopoulos, P.; Lazari, D.; Karioti, A.; Heilmann, J.; Sticher, O.; Constantinidis, T.
Flavonoids as chemotaxonomic markers in the polymorphic Stachys wainsonii (Lamiaceae). Biochem. Syst.
Ecol. 2007, 35, 317–320.

103. Laggouné, S.; Zeghib, A.; Kabouche, A.; Kabouche, Z.; Maklad, Y.A.; Leon, F.; Brouard, I.; Bermejo, J.;
Calliste, C.A.; Duroux, J.L. Components and antioxidant, anti-inflammatory, anti-ulcer and antinociceptive
activities of the endemic species Stachys mialhesii de Noé. Arab. J. Chem. 2016, 9, S191–S197.

104. Zinchenko, T.V. Phenolic compounds of Stachys palustris. Chem. Nat. Compd. 1973, 6, 261–262,
doi:10.1007/bf00941699.

105. Litvinenko, V.I.; Aronova, B.N. Phenolic compounds of Betonica foliosa. Chem. Nat. Compd. 1968, 4, 270,
doi:10.1007/bf00568542.

106. Hegazy, M.-E.F.; Hamed, A.R.; El-Kashoury, E.-S.A.; Shaheen, A.M.; Tawfik, W.A.; Paré, P.W.; Abdel-
Sattar, E.A. Stachaegyptin A–C: Neo clerodane diterpenes from Stachys aegyptiaca. Phytochem. Lett. 2017, 21,
151–156, doi:10.1016/j.phytol.2017.06.003.

107. Ruiu, S.; Anzani, N.; Orrù, A.; Floris, C.; Caboni, P.; Alcaro, S.; Maccioni, E.; Distinto, S.; Cottiglia, F.
Methoxyflavones from Stachys glutinosa with binding affinity to opioid receptors: In Silico, in vitro, and in
vivo studies. J. Nat. Prod. 2015, 78, 69–76.

108. Bahadori, M.B.; Kirkan, B.; Sarikurkcu, C.; Ceylan, O. Metabolite profiling and health benefits of
Stachys cretica subsp. mersinaea as a medicinal food. Ind. Crop. Prod. 2019, 131, 85–89,
doi:10.1016/j.indcrop.2019.01.038.

109. Venditti, A.; Serrilli, A.; Di Cecco, M.; Ciascchetti, G.; Andrisano, T.; Bianco, A. Phytochemical composition
of polar fraction of Stachys germanica L. subsp. salviifolia (Ten.) Gams, a typical plant of Majella National
Park. Nat. Prod. Res. 2013, 27, 190–193, doi:10.1080/14786419.2012.661732.

110. Litvinenko, V.I. Some Questions of the Chemistry and Taxonomy of the Labiatae Family, the Plant Resources of the
Ukraine, Their Isolation and Rational Use; Naukova Dumka: Kiev, Ukraine, 1973; pp. 128.

111. Šliumpaité, I.; Venskutonis, P.; Murkovic, M.; Ragažinskiénè, O. Antioxidant properties and phenolic
composition of wood betony (Betonica officinalis L., syn. Stachys officinalis L.). Ind. Crop. Prod. 2013, 50, 715–722,
doi:10.1016/j.indcrop.2013.08.024.

112. Kirkan, B. Antioxidant potential, enzyme inhibition activity, and phenolic profile of extracts from
Stachys cretica subsp. vacillans. Ind. Crop. Prod. 2019, 140, 111639, doi:10.1016/j.indcrop.2019.111639.

113. Nishimura, H.; Sasaki, H.; Inagaki, N.; Chin, M.; Mitsuhashi, H.; Masao, C.; Chen, Z. Nine phenethyl
alcohol glycosides from Stachys sieboldii. Phytochemistry 1991, 30, 965–969, doi:10.1016/0031-9422(91)85288-b.

114. Ikeda, T.; Miyase, T.; Ueno, A. Phenylethanol glycosides from Stachys riederi [in Japanese]. Nat. Med. 1994,
48, 32–38.

115. Başaran, A.A.; Calis, I.; Anklin, C.; Nishibe, S.; Sticher, O. Lavandulifolioside: A new phenylpropanoid
glycoside from Stachys lavandulifolia. Helv. Chim. Acta 1988, 71, 1483–1490, doi:10.1002/hclu.19880710612.

116. Tundis, R.; Bonesi, M.; Pugliese, A.; Nadjaì, F.; Menichini, F.; Loizzo, M.R. Tyrosinase, Acetyl- and Butyryl-
cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Rec.
Nat. Prod. 2015, 9, 81–93.

117. Calis, I.; Basaran, A.; Saracoglu, C.; Sticher, O. Iridoid and phenylethanol glycosides from Stachys
macrantha. Phytochemistry 1992, 31, 167–169.

118. Miyase, T.; Yamamoto, R.; Ueno, A. Phenylethanol glycosides from Stachys officinalis. Phytochemistry 1996,
43, 475–479, doi:10.1016/0031-9422(96)00322-6.

119. Venditti, A.; Bianco, A.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Vitali, L.A.; Petrelli, D.; Papa, F.;
Vittori, S.; et al. Phytochemical analysis, biological evaluation and 2 micromorphological study of
Stachys alopecuros (L.) Benth. subsp. divulsa (Ten.) Grande endemic to central Apennines, Italy. Fitoterapia
2013, 90, 94–103.

120. Ahmad, V.U.; Arshad, S.; Bader, S.; Ahmed, A.; Iqbal, S.; Tareen, R.B. New phenethyl alcohol glycosides
from Stachys parviflora. J. Asian Nat. Prod. Res. 2006, 8, 105–111, doi:10.1080/10286020500478708.

121. Komissarenko, N.F.; Derkach, A.I.; Sheremet, I.P.; Pakaln, D.A. Iridoids of Stachys inflata and St. iberica.
Khim. Prir. Soedin. 1979, 1, 99–100 CA: 91, 52707.
122. Serrilli, A.M.; Ramunno, A.; Piccioni, F.; Serafini, M.; Ballero, M.; Bianco, A. Monoterpenoids from Stachys glutinosa. L. Nat. Prod. Res. 2006, 20, 648–652, doi:10.1080/14786410600666635.

123. Iannuzzi, A.M.; Camero, C.M.; D’Ambola, M.; D’angelo, V.; Amira, S.; Bader, A.; Braca, A.; De Tommasi, N.; Germanò, M.P. Antiangiogenic Iridoids from Stachys ocsymastrum and Premna resinosa. Planta Med. 2019, 85, 1034–1039, doi:10.1055/a-0889-0412.

124. Házsnay-Radnai, E.; Csígle, S.; Janicsák, G.; Máté, I. Iridoids of Stachys species growing in Hungary. J. Planar Chromatogr. Mod. TLC 2006, 19, 187–190, doi:10.1556/jpc.19.2006.3.2.

125. Derkach, A.I.; Komissarenko, N.F.; Pakalin, D.A. Iridoids from some Stachys species. Rast Nye Resur. 1987, 23, 92–95.

126. Litvinenko, V.I.; Aronova, B.N. Iridoids of Betonica foliosa. Chem. Nat. Compd. 1968, 4, 269–270, doi:10.1007/bf00568584.

127. Jeker, M.; Sticher, O.; Calis, I.; Rüedi, P. Allobetonicoside and 6-O-Acetylmyporoside: Two new iridoid glycosides from Betonica officinalis. L. Helv. Chim. Acta 1989, 72, 1787–1791, doi:10.1002/hlca.19890720814.

128. Zinchenko, T.V. Stachys and Betonica iridoids. Farm. Zh. 1972, 27, 86–87.

129. Muñoz, O.; Peña, R.C.; Montenegro, G. Iridoids from Stachys grandiflora. Z. Für Nat. C 2001, 56, 902–903, doi:10.1515/znc-2001-9-1037.

130. Melek, F.R.; Radwan, A.S.; El Ansari, M.A.; El-Gindy, O.D.; Hilal, S.H.; Genenah, A.A. Diterpenes from Stachys aegyptiaca. Fitoterapia 1992, 63, 276.

131. Mohamed, A.E.-H.H.; Mohamed, N.S. A new trans-neo clerodane diterpene from Stachys aegyptiaca. Nat. Prod. Res. 2013, 28, 30–34, doi:10.1080/14786419.2013.830217.

132. Mohamed, T.A.; ElShamy, A.I.; Hamed, A.R.; Shams, K.A.; Hegazy, M.-E.F. Cytotoxic neo-clerodane diterpenoids from Stachys aegyptiaca. Phytochem. Lett. 2018, 28, 32–36, doi:10.1016/j.phytol.2018.09.005.

133. Hussen, T.A.; Mahmoud, A.A.; Mohamed, N.S.E.-D.; Shahat, A.A.; El-Seedi, H.R.; Hegazy, M.-E.F. New rare ent-clerodane diterpene peroxides from Egyptian Mountain Tea (Qourtom) and its chemosystem as herbal remedies and phytoneutrients agents. Molecules 2020, 25, 2172, doi:10.3390/molecules25092172.

134. Derkach, A.I. Biologically active substances of some species of the genus Stachys L. of the flora of the Ukraine. Rastit. Nye Resur. 1998, 34, 57–61.

135. Piozzi, F.; Savona, G.; Hanson, J.R. Kaurenoid diterpenes from Stachys lanata. Phytochemistry 1980, 19, 1237–1238, doi:10.1016/0031-9422(80)83095-0.

136. Orgiyans, T.M.; Popa, D.P. Diterpenoids from Stachys annua. Khim Prir Soedin. 1969, 5, 5–6, doi:10.1007/bf00564907.

137. Popa, D.P.; Orgiyans, T.M. The stereochemistry of stachysolone. Khim Prir Soedin. 1972, 8, 717–719, doi:10.1007/bf00564591.

138. Popa, D.P.; Orgiyans, T.M. Minor diterpenoids of Stachys annua. Chem. Nat. Compd. 1974, 10, 410, doi:10.1007/bf00563916.

139. Piozzi, F.; Paternostro, M.; Servettazz, O.; Arnold, N. Occurrence of (+)-6-desoxyandansol in Stachys ionica and Stachys diasans. Biochem. Syst. Ecol. 2002, 30, 887–889, doi:10.1016/s0305-1978(02)00022-4.

140. Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Diterpenes from Stachys recta. J. Nat. Prod. 1984, 47, 541–543, doi:10.1021/nl50003a027.

141. Fazio, C.; Paternostro, M.P.; Passannanti, S.; Piozzi, F. Further neo-clerodane diterpenoids from Stachys rosea. Phytochemistry 1994, 37, 501–503, doi:10.1016/0031-9422(94)85087-9.

142. Popa, D.P.; Pasechnik, G.S. Structure of stachysic acid—A new diterpenoid of the kauren series. Chem. Nat. Compd. 1974, 10, 454–457, doi:10.1007/bf00563805.

143. Bankova, V.; Koeva-Todorovska, J.; Stamboliyska, T.; Ignatova-Groceva, M.-D.; Todorova, D.; Popov, S. Polyphenols in Stachys and Betonica species (Lamiaceae). Z. Für Nat. C 1999, 54, 876–880, doi:10.1515/znc-1999-1104.

144. Paternostro, M.P.; Maggio, A.M.; Piozzi, F.; Servettazz, O. Lavdane diterpenes from Stachys plumose. J. Nat Prod. 2000, 63, 1166–1167.

145. Miyase, T.; Yamamoto, R.; Ueno, A. Betonicosides A–D and betonicolide, diterpenoids from the roots of Stachys officinalis. Chem. Pharm. Bull. 1996, 44, 1610–1613, doi:10.1248/cpb.44.1610.

146. Ross, S.A.; Zinchenko, T.V. Triterpenoids and steroids from Stachys palustris. Farm. Zh. 1975, 30, 91–92.

147. Yamamoto, R.; Miyase, T.; Ueno, A. Stachysaponins I–VIII, new oleane-type triterpene saponins from Stachys riederi. CHAMISSO. Chem. Pharm. Bull. 1994, 42, 1291–1296, doi:10.1248/cpb.42.1291.
148. Takeda, Y.; Zhang, H.-J.; Masuda, T.; Honda, G.; Otsuka, H.; Sezik, E.; Yesilada, E.; Sun, H. Megastigmaglucosides from *Stachys byzantina*. *Phytochemistry* 1997, 44, 1335–1337, doi:10.1016/s0031-9422(96)00751-0.

149. Rodríguez-Garcia, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodriguez, M.; Gaforio, JJ. Naturally lignan-rich foods: A dietary tool for health promotion? *Molecules* 2019, 24, 917, doi:10.3390/molecules24050917.

150. Sørensøen, M.; Penn, M.; El Mowafi, A.; Storebakken, T.; Chunfang, C.; Øverland, M.; Krogdahl, Å. Effect of stachyose, raffinose and soya-saponins supplementation on nutrient digestibility, digestive enzymes, gut morphology and growth performance in Atlantic salmon (*Salmo salar*, L). *Aquaculture* 2011, 314, 145–152, doi:10.1016/j.aquaculture.2011.02.013.

151. Yin, J.; Yang, G.; Wang, S.; Chen, Y. Purification and determination of stachyose in Chinese artichoke (*Stachys sieboldii* Miq.) by high-performance liquid chromatography with evaporative light scattering detection. *Talanta* 2006, 70, 208–212, doi:10.1016/j.talanta.2006.03.027.

152. Harada, S.; Tsujita, T.; Ono, A.; Miyagi, K.; Mori, T.; Tokuyama, S. *Stachys sieboldii* (Labiatae, Chorogii) protects against learning and memory dysfunction associated with ischemic brain injury. *J. Nutr. Sci. VitaminoL* 2015, 61, 167–174, doi:10.3177/jnsv.61.167.

153. Sarikurkcu, C.; Kocak, M.S.; Uren, M.C.; Calapoglu, M.; Tepe, A.S. Potential sources for the management of global health problems and oxidative stress: *Stachys byzantina* and *S. iberica* subsp. iberica var. densipilosa. *Eur. J. Integr. Med.* 2016, 8, 631–637, doi:10.1016/j.eujim.2016.04.010.

154. Abi-Rizk, A.; El Rayess, Y.; Iriti, M.; Tabet, E.; Mezher, R.; El Beyrouthy, M. Chemical composition, antitumor and antioxidant effects of four lebanese plants extracts on human pulmonary adenocarcinoma. *Nat. Prod. Res.* 2020, 1–4, doi:10.1080/17486419.2020.1737056.

155. Ferhat, M.; Erol, E.; Beladjila, K.A.; Çetintaş, Y.; Duru, M.E.; Öztürk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase and antibacterial activities of *Stachys guyoniana* and *Mentha aquatica*. *Pharm. Biol.* 2016, 54, 324–329, doi:10.1155/2016/1238488.

156. Grigorakis, S.; Makris, D.P. Characterisation of polyphenol-containing extracts from *Stachys mucronata* and evaluation of their antiradical activity. *Medicines* 2018, 5, 14, doi:10.3390/medicines5010014.

157. Slapšyte, G.; Dedonytė, V.; Adomėnienė, A.; Lazutka, J.R.; Kazlauskaitė, J.; Ragazinskienė, O.; Venskutonis, P.R. Genotoxic properties of *Betonica officinalis*, *Gratiola officinalis*, *Vincetoxicum latetum* and *Vincetoxicum hirundinaria* extracts. *Food Chem. Toxicol.* 2019, 134, 110815, doi:10.1016/j.fct.2019.110815.

158. Kokhdan, E.P.; Ahmadi, K.; Sadeghi, H.; Sadeghi, H.; Dadgary, F.; Danaei, N.; Aghamaali, M.R. Hepatoprotective effect of *Stachys pilifera* ethanol extract in carbon tetrachloride-induce hepatotoxicity in rats. *Pharm. Biol.* 2017, 55, 1389–1393, doi:10.1080/13880209.2017.1302484.

159. Lee, J.K.; Lee, J.; Kim, Y.-K.; Lee, Y.; Ha, J.-H. *Stachys sieboldii* Miq. root attenuates weight gain and dyslipidemia in rats on a high-fat and high-cholesterol diet. *Nutrients* 2020, 12, 2063, doi:10.3390/nu12072063.

160. Kwang, J.Y.; Yadav, A.K.; Jang, B.C.; Kim, Y.C. Antioxidant and cytoprotective effects of *Stachys riederi* var. *japonica* ethanol extract on UVA-irradiated human dermal fibroblasts. *Int. J. Mol. Med.* 2019, 43, 1497–1504.

161. Ravichandran, V.A.; Kim, M.; Han, S.K.; Cha, Y. *Stachys sieboldii* extract supplementation attenuates memory deficits by modulating BDNF-CREB and its downstream molecules, in animal models of memory impairment. *Nutrients* 2018, 10, 917, doi:10.3390/nu10070917.

162. Rahzani, K.; Malekirad, A.A.; Zeraatpishe, A.; Hosseini, N.; Seify, S.M.R.; Abdollahi, M. Anti-oxidative stress activity of *Stachys lavandulifolia* aqueous extract in human. *Cell J.* 2013, 14, 314–317.

163. Jalilian, N.; Modarresi, M.; Rezaei, M.; Ghaderi, L.; Bozorgmanesh, M. Phytotherapeutic management of polycystic ovary syndrome: Role of aerial parts of wood betony (*Stachys lavandulifolia*). *Phytother. Res.* 2013, 27, 1708–1713, doi:10.1002/ptr.4921.

164. Monji, F.; Hashemian, F.; Surmaghi, M.-H.S.; Mommmadzadeh, G.; Ghiyaei, S.; Soltanmohammadi, A. Therapeutic effects of standardized formulation of *Stachys lavandulifolia* vahl on primary dysmenorrhea: A randomized, double-blind, crossover, placebo-controlled pilot study. *J. Altern. Complement. Med.* 2018, 24, 1092–1098, doi:10.1089/acm.2017.0329.

165. Ashtiani, A.R.; Jaddid, A.; Hezave, A.; Safarabadi, M.; Pour, S.A.; Ghassami, K.; Mohammadbeigi, A. An analgesic effect of *Stachys lavandulifolia* in patients with migraine: A double-blind randomised clinical trial study. *Adv. Hum. Biol.* 2019, 9, 76, doi:10.4103/aibh.aibh_31_18.

166. Jafarzadeh, L.; Rafieian-Kopaei, M.; Samani, R.A.; Asgarí, A. The effect of hydroalcoholic extract of *Stachys lavandulifolia* vahl on pregnant mice. *EXCLI J.* 2012, 11, 357–362.
167. Taghikhani, M.; Nasri, H.; Asgari, A.; Afrough, H.; Namjoo, A.; Ansari-Samani, R.; Shahinfard, N.; Rafieian-Kopaei, M. The renal toxicity of hydroalcoholic extract of *Stachys lavandulifolia* vahl in Wistar rats. *Life Sci. J.* **2012**, *9*, 3025–3031.

168. Modarresi, M.; Hosseinzadeh, L.; Nematy, N.; Siavash-Haghighi, Z.; Ghanbari, K. Acute and subchronic toxicological evaluation of *Stachys lavandulifolia* aqueous extract in Wistar rats. *Res. Pharm. Sci.* **2015**, *9*, 165-