Characterization of the exopolysaccharide biosynthesis pathway in Myxococcus xanthus

Pérez-Burgos, M., García-Romero, I., Jung, J., Schander, E., Valvano, M. A., & Søgaard-Andersen, L. (2020). Characterization of the exopolysaccharide biosynthesis pathway in Myxococcus xanthus. Journal of Bacteriology, [JB00335-20R1]. https://doi.org/10.1128/jb.00335-20

Published in:
Journal of Bacteriology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 American Society for Microbiology. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:26. Oct. 2023
Characterization of the exopolysaccharide biosynthesis pathway in
Myxococcus xanthus

María Pérez-Burgosa, Inmaculada García-Romerob, Jana Junga, Eugenia Schandera,
Miguel A. Valvanob, and Lotte Søgaard-Andersena,\#

aMax Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany

bWellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom

Running title: Exopolysaccharide biosynthesis in M. xanthus

#Address correspondence to Lotte Søgaard-Andersen, sogaard@mpi-marburg.mpg.de
Abstract

Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e. coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. Exopolysaccharide (EPS) is a structural component of both biofilms and is also important for type IV pili-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed Wzx_EPS, and MXAN_7442, renamed Wzy_EPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. Also, in this pathway, EpsV (MXAN_7421) is the polysaccharide co-polymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pili-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pili formation and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pili extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of a polysaccharide.

Importance

Exopolysaccharide (EPS) has important functions in the social life cycle of *M. xanthus*; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and show that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pili-dependent motility and a conditional defect in development. Also, these analysis suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pili formation.
Introduction

Bacteria often exist in biofilms, which are surface-associated communities where cells are embedded in a self-produced extracellular matrix (ECM) (Stoodley et al., 2002). Typically, the ECM is composed of proteins, extracellular DNA (eDNA) and exopolysaccharide (EPS) (Flemming et al., 2016). EPS serve several functions in a biofilm including structural roles, hydration, adhesion to substrates, cohesion between cells and protection against antibacterials, grazing and bacteriophages (Flemming et al., 2007, Flemming & Wingender, 2010, Flemming et al., 2016).

The Gram-negative delta-proteobacterium *Myxococcus xanthus* is a model organism to study social behaviors in bacteria. Depending on their nutritional status, *M. xanthus* cells organize into two morphologically distinct biofilms (Konovalova et al., 2010, Zhang et al., 2012). In the presence of nutrients, cells grow, divide and move across surfaces by means of two motility systems to generate EPS-embedded colonies in which cells at the colony edge spread outwards in a highly coordinated fashion (Schumacher & Søgaard-Andersen, 2017, Zhang et al., 2012, Hu et al., 2013). Under nutrient limitations, growth ceases and cells alter their motility behavior and begin to aggregate. The aggregation culminates in the formation of mounds of cells inside which the rod-shaped cells differentiate into environmentally resistant spores leading to the formation of mature fruiting bodies (Konovalova et al., 2010, Zhang et al., 2012). EPS also makes up a substantial part of individual fruiting bodies (Lu et al., 2005, Shimkets, 1986, Lux et al., 2004).

The two motility systems of *M. xanthus* are important for formation of both biofilms (Hodgkin & Kaiser, 1979). One motility system depends on type IV pili (T4P), which are highly dynamic filaments that undergo cycles of extension, surface adhesion and retraction. Retractions generate a force sufficient to pull a cell forward (Craig et al., 2019). The second system is for gliding motility and depends on the Agl/Glt complexes (Zhang et al., 2012, Schumacher & Søgaard-Andersen, 2017). Generally, T4P-dependent motility involves movement of groups of cells while gliding motility involves the movement of individual cells (Shi & Zusman, 1993, Hodgkin & Kaiser, 1979).

Besides its role as a structural component of spreading colonies and fruiting bodies, EPS in *M. xanthus* is also important for T4P-dependent motility (Li et al., 2003, Lu et al., 2005) and fruiting body formation (Lu et al., 2005, Shimkets, 1986, Arnold & Shimkets, 1988, Yang et al., 1998, Bellenger et al., 2002). It has been proposed that EPS stimulates T4P-dependent motility by stimulating retraction of T4P (Li et al., 2003, Hu et al., 2011). Most insights into the function of EPS in *M. xanthus* have been obtained from analyses of regulatory mutants with altered levels of EPS synthesis. Among these mutants, the best studied include those of the Dif chemosensory system and the SgmT/DigR two component system. The Dif system is a...
key regulator of EPS synthesis; analyses of dif (previously dsp (Lancero et al., 2002))
mutants have shown that decreased EPS accumulation (Yang et al., 2000, Bellenger et al.,
2002, Black et al., 2015) causes defects in T4P-dependent motility and fruiting body
formation (Yang et al., 1998, Bellenger et al., 2002). While the phosphotransfer reactions
within the Dif system have been described in detail (Black et al., 2015, Black et al., 2010), it
is unknown how the Dif system stimulates EPS synthesis. Similarly, mutants of the
SgmT/DigR system in which DigR is a DNA-binding response regulator have increased EPS
accumulation, reduced T4P-dependent motility and a defect in fruiting body formation
(Overgaard et al., 2006, Petters et al., 2012). Transcriptome analyses support that this
inhibitory effect is not caused by a direct effect on the expression of genes for EPS synthesis
(Petters et al., 2012). Compared to the several identified regulators of EPS synthesis,
relatively little is known about EPS biosynthesis. Here, we focused on the identification of
proteins directly involved in EPS biosynthesis.

Synthesis of bacterial cell surface polysaccharides can occur via three different pathways,
the Wzx/Wzy, the ABC-transporter or the synthase-dependent pathway (Schmid et al., 2015,
Whitfield & Trent, 2014) (Fig. 1A). In the Wzx/Wzy and ABC-transporter dependent
pathways, synthesis generally starts with the transfer of a sugar-1-P from a UDP-sugar to an
undecaprenyl phosphate (Und-P) molecule in the inner leaflet of the inner membrane (IM) to
form an Und-PP-sugar molecule (Valvano et al., 2011). The priming enzymes are broadly
classified in two groups, polyisoprenyl-phosphate hexose-1-phosphate transferases (PHPTs)
or polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferases (PNPTs)
(Valvano, 2011). Subsequently, the polysaccharide chain is elongated by the action of
specific glycosyltransferases (GTs) and this depends on the specific pathway. In the
Wzx/Wzy-dependent pathway, GTs synthesize the repeat unit of the polysaccharide on the
cytoplasmic side of the IM; each unit is then translocated across the IM by the Wzx flippase
and polymerized by the Wzy polymerase into a longer chain. Chain length is generally
controlled by a Wzz protein, which belongs to the polysaccharide co-polymerase (PCP)
family and results in the formation of polysaccharides with a range of lengths (Reid &
Szymanski, 2010, Morona et al., 2000). By contrast, in the ABC-transporter dependent
pathway, the full-length polysaccharide chain is synthetized on the cytoplasmic side of the
IM, and is then translocated across the IM by an ABC transporter (Cuthbertson et al., 2010).
In the synthase-dependent pathway, synthesis and translocation across the IM take place
simultaneously by a multifunctional synthase protein complex in the IM (Whitney & Howell,
2013). In the Wzx/Wzy and ABC-transporter dependent pathways, the polysaccharide
molecule reaches the cell surface by translocation through an outer membrane (OM)
polysaccharide export (OPX) protein and in the synthase-dependent pathway translocation
occurs via an outer membrane β-barrel protein (Schmid et al., 2015, Whitney & Howell, 2013).

The eps locus in M. xanthus was identified by transposon mutagenesis and shown to encode homologs of proteins involved in polysaccharide synthesis (Lu et al., 2005). Moreover, several eps genes were identified as essential for EPS biosynthesis (Lu et al., 2005, Berleman et al., 2011, Zhou & Nan, 2017, Black et al., 2015, Lancero et al., 2004). Here, we searched the re-annotated eps locus and the remaining M. xanthus genome for homologs of proteins for polysaccharide biosynthesis. We report that the eps locus encodes a complete Wzx/Wzy-dependent pathway for EPS synthesis. In-frame deletions in the corresponding genes specifically resulted in EPS biosynthesis defects without interfering with LPS O-antigen and spore coat polysaccharide biosynthesis. Phenotypic analysis of these mutants including complementation experiments demonstrated that they have a defect in T4P-dependent motility and conditional defects in development. In addition, we identify a polysaccharide biosynthesis gene cluster of unknown function that together with an orphan gene encoding an OPX protein also encode a complete Wzx/Wzy-dependent pathway for synthesis of a polysaccharide of unknown function.
Results

Identification of homologs of proteins of Wzx/Wzy-dependent pathways for polysaccharide biosynthesis and export

To identify genes for EPS biosynthesis, we searched the M. xanthus genome for homologs (see Materials and Methods) of the membrane components of the three biosynthesis pathways (Fig. 1A). We identified homologs encoding predicted proteins of the Wzx/Wzy and ABC-transporter pathways but none corresponding to a synthase-dependent pathway (Fig. 1B). Several of these homologs were previously shown to be important for LPS synthesis or spore coat polysaccharide biosynthesis (Pérez-Burgos et al., 2019, Guo et al., 1996, Holkenbrink et al., 2014, Müller et al., 2012, Pérez-Burgos et al., 2020) (Fig. 1B). Notably, none of these proteins are required for EPS biosynthesis. The MraY homolog (MXAN_5607), which belongs to the PNPT family and is involved in PG synthesis, was not considered here.

The reannotated eps locus consists of two gene clusters (MXAN_7515-7422 and MXAN_7441-7451) that encode all the proteins of a complete Wzx/Wzy-dependent pathway (Fig. 2A, Table S1). Specifically, these two gene clusters encode homologs of a PHPT (EpsZ/MXAN_7415), a Wzx flippase (MXAN_7416), a Wzy polymerase (MXAN_7442, previously SgnF (Youderian & Hartzell, 2006)), a PCP protein (EpsV/MXAN_7421) and an OPX protein (EpsY/MXAN_7417) as well as five GTs (EpsU/MXAN_7422, EpsH/MXAN_7441, EpsE/MXAN_7445, EpsD/MXAN_7448, EpsA/MXAN_7451) and a serine O-acetyltransferase (EpsC/MXAN_7449). Previous genetic analyses using transposon insertions, plasmid insertions or in-frame deletion mutants demonstrated that genes in both clusters are important for EPS synthesis (Black et al., 2015, Lu et al., 2005, Berleman et al., 2011, Zhou & Nan, 2017) (Fig. 2A). Also, genes in both clusters were previously shown to be important for T4P-dependent motility without directly testing for EPS synthesis (Youderian & Hartzell, 2006) (Fig. 2A). The two gene clusters are separated by 13 genes encoding proteins predicted not to be directly involved in polysaccharide synthesis (Fig. 2A and Table S1). Consistently, genetic analyses for some of these genes confirmed that they are not important for EPS synthesis (Lu et al., 2005) except for MXAN_7440 (Nla24/EpsI), which encodes a c-di-GMP binding NtrC-like transcriptional regulator (Lancero et al., 2004, Skotnicka et al., 2016) that is phosphorylated by the histidine kinase MXAN_7439 (Willett et al., 2013).

In a bioinformatics approach searching for orthologs of the proteins encoded by the entire eps locus in all fully sequenced Myxococcales genomes using a reciprocal best BlastP hit method as in (Pérez-Burgos et al., 2020), we found that the two gene clusters encoding proteins for polysaccharide synthesis are largely conserved in closely related Cystobacterineae (Fig. 2B). Importantly, in several of these genomes, the two clusters are
present in a single uninterrupted gene cluster (Fig. 2B). Interestingly, in *M. macrosporus* and *M. fulvus*, the two gene clusters are separated by a set of genes that are conserved between these two organisms but not homologous to the genes separating the two clusters in *M. xanthus*. Together, based on previous gene genetic analyses and because genes for polysaccharide biosynthesis are often clustered (Rehm, 2010), our data support that the two separated gene clusters in the *M. xanthus eps* locus encode for a Wzx/Wzy-dependent pathway for EPS synthesis.

We also identified a second locus encoding homologs of a Wzx/Wzy pathway (Fig. 3A; Table S2). Specifically, this locus encodes homologs of a PNPT (MXAN_1043), a Wzx flippase (MXAN_1035), a Wzy polymerase (MXAN_1052), a Wzc chain length regulator (MXAN_1025 or BtkB (Kimura *et al.*, 2012)) of the PCP-2 family as well as 10 GTs (MXAN_1026, MXAN_1027, MXAN_1030, MXAN_1031, MXAN_1032, MXAN_1033, MXAN_1036, MXAN_1037, MXAN_1042) and two acetyltransferases (MXAN_1041 and MXAN_1049). Finally, we identified a gene encoding an OPX protein (MXAN_1915) that is not part of a gene cluster encoding proteins involved in polysaccharide synthesis (Fig. 3B, Table S2). Using bioinformatics, as described above, we found that the large gene cluster as well as MXAN_1915 are conserved in closely related Cystobacterineae (Fig. 3C). Importantly, the MXAN_1915 ortholog of *Sandaracinus amylolyticus* is encoded in a cluster with homologs of MXAN_1025, MXAN_1043 and MXAN_1052. Because the MXAN_1025-1052 locus does not encode an OPX homolog, these observation support that MXAN_1915 could function together with the proteins encoded by this locus and together they would make up a complete Wzx/Wzy-dependent pathway for biosynthesis of a polysaccharide. Based on these analyses, we hypothesized that the proteins encoded by the *eps* locus and the proteins encoded by the MXAN_1025-1052/1915 loci make up two independent and dedicated pathways for polysaccharide synthesis.

The *eps* locus is essential for EPS biosynthesis

To test for the importance of genes of the *eps* locus and the MXAN_1025-1052/1915 loci for EPS synthesis, we generated ten in-frame deletions in genes encoding the five conserved core components of Wzx/Wzy-dependent pathways (i.e. the genes for the PH/NPT, Wzx, Wzy, PCP and OPX). Subsequently, we used plate-based colorimetric assays with either Congo red or Trypan blue to assess EPS biosynthesis. As a negative control, we used a Δ*diffE* mutant, which has a defect in EPS synthesis (Yang *et al.*, 1998).

All five mutations in the *eps* locus abolished EPS synthesis (Fig. 2C). Importantly, the EPS synthesis defects of these five Δ*eps* mutants were complemented by ectopic expression of the relevant full-length gene from a plasmid integrated in a single copy at the Mx8 attB site.
(Fig. 2C). By contrast, in case of the five in-frame deletions in the genes of the MXAN_1025 -1052_1915 loci, only the ΔMXAN_1035 mutant, which lacks a Wzx flippase homolog (Fig. 2A-C) caused a significant decrease in EPS synthesis. Based on several arguments, we do not think that MXAN_1035 is directly involved in EPS synthesis but rather that the ΔMXAN_1035 mutation results in titration of Und-P. First, mutation of MXAN_7416, which encodes a Wzx flippase homolog in the eps locus, completely blocked EPS synthesis (Fig. 2A-C) supporting that MXAN_7416 is the flippase involved in EPS biosynthesis. Second, as mentioned, enzymes of the same polysaccharide biosynthesis and export pathway are typically encoded in the same locus (Rehm, 2010); however, the three other mutations in the MXAN_1025-1052 locus did not have a significant effect on EPS biosynthesis (Fig. 3D).

Third, blocking translocation of a specific sugar unit across the IM can cause sequestration of Und-P and, thereby, result in pleiotropic effects on the synthesis of other polysaccharides (Valvano, 2008, Burrows & Lam, 1999, Jorgenson & Young, 2016, Jorgenson et al., 2016, Ranjit & Young, 2016). Consistently, a ΔMXAN_1035 mutation was previously shown to cause a reduction in glycerol-induced sporulation (see below) likely by interfering with spore coat polysaccharide biosynthesis (Holkenbrink et al., 2014); however, MXAN_3260 (ExoM) was recently shown to be the flippase involved in spore coat polysaccharide synthesis (Pérez-Burgos et al., 2020). Together, these considerations support that it is unlikely that MXAN_1035 is part of the EPS biosynthesis machinery. In total, our results suggest that the eps locus encodes homologs of a Wzx/Wzy-dependent pathway for EPS biosynthesis. Therefore, we renamed MXAN_7416 and MXAN_7442 to WzxEPS and WzyEPS. From here on, we focused on the five core components of the Wzx/Wzy-dependent pathway for EPS synthesis.

Lack of EPS biosynthetic proteins does not affect spore coat polysaccharide, LPS synthesis or cell morphology

In addition to EPS, M. xanthus synthetizes O-antigen LPS (Fink & Zissler, 1989) and a spore coat polysaccharide (Kottel et al., 1975). As mentioned, because blocking synthesis of one polysaccharide can affect synthesis of other polysaccharide including peptidoglycan (PG) by sequestration of Und-P through accumulation of Und-PP intermediates, we determined whether lack of the EPS biosynthetic proteins affects spore coat polysaccharide, LPS or PG synthesis.

Synthesis of the spore coat polysaccharide is essential for sporulation in M. xanthus (Licking et al., 2000, Müller et al., 2012). To evaluate whether the Δeps mutants synthetized spore coat polysaccharide, we analyzed sporulation independently of starvation. For this, we profited from an assay in which sporulation occurs rapidly and synchronously and is induced chemically by the addition of glycerol at a high concentration (0.5 M) to cells growing in
nutrient-rich broth (Dworkin & Gibson, 1964). In response to adding glycerol, cells of WT and all eps five in-frame deletion mutants rounded up during the first 4 h and turned into phase-bright resistant spores by 24 h (Fig. 4A). Cells of the ΔexoE mutant, which lacks the PHPT for initiating spore coat polysaccharide biosynthesis and were used as a negative control (Holkenbrink et al., 2014, Pérez-Burgos et al., 2020), remained rod-shaped and did not form phase-bright spores. Interestingly, the sporulation efficiency of all five Δeps mutants was increased compared to WT (Fig. 4A). Because the spores formed by WT under high concentrations of glycerol adhere to glass surfaces and each other forming large aggregates while the spores formed by the Δeps mutants do not, we speculate that the ease of harvesting the EPS-spores rather than the eps mutations per se results in an apparent increase in the overall sporulation efficiency. We conclude that lack of the EPS biosynthetic proteins does not cause a sporulation defect, in agreement with previous observations that mutation of epsV did not affect glycerol-induced sporulation (Holkenbrink et al., 2014).

LPS in total cell extracts was detected by Emerald staining and the ΔwbaP mutant, which lacks the PHPT for O-antigen biosynthesis, served as a negative control (Pérez-Burgos et al., 2019). A fast running lipid-A core band and polymeric LPS O-antigen bands were detected in LPS preparations of WT and the five Δeps mutants, while only the lipid-A core band was detected in the ΔwbaP mutant (Fig. 4B). The ΔwzxEPS mutant accumulated lower levels of LPS O-antigen (Fig. 4B). O-antigen in M. xanthus is synthesized via an ABC transporter-dependent pathway and lack of the Wzm/Wzt ABC transporter blocks LPS O-antigen synthesis (Pérez-Burgos et al., 2019, Guo et al., 1996), suggesting that the WzxEPS is not directly involved in O-antigen synthesis. Therefore, we speculate that the reduced O-antigen level in the ΔwzxEPS mutant could be caused by sequestration of Und-PP-linked EPS polymers unable to be translocated across the membrane, which reduced the available pool of Und-P for O-antigen synthesis.

Interference with PG synthesis during growth in M. xanthus causes morphological defects (Treuner-Lange et al., 2015, Treuner-Lange et al., 2013, Schumacher et al., 2017). Therefore, we used cell morphology as a proxy for PG synthesis to test whether lack of the EPS biosynthetic proteins interferes with PG synthesis during growth. Because, cell morphology and cell length of the five Δeps mutants were similar to that of WT cells, we conclude that PG synthesis was not affected in the Δeps mutants (Fig.4A (0 h) and 4C). Therefore, the proteins for EPS biosynthesis are not important for spore coat polysaccharide, LPS synthesis and PG synthesis, supporting that these proteins make up a pathway dedicated to EPS synthesis.
MXAN_7415 has Gal-1-P transferase activity

EpsZ is the predicted PHPT of the EPS biosynthesis pathway. Similar to WcaJ_Ec from *E. coli* and WbaP_se from *Salmonella enterica* (Saldías et al., 2008, Furlong et al., 2015, Pérez-Burgos et al., 2020), we identified a PF13727 (CoA_binding_3) domain, a C-terminal PF02397 (Bac_transf) domain and five transmembrane regions in EpsZ (Fig. 5A), all features of PHPT proteins. The fifth TMH of WcaJ_Ec does not fully span the IM and this results in the cytoplasmic localization of the C-terminal catalytic domain. This depends on residue P291 that causes a helix-break-helix in the structure and forms part of a DX_{12}P motif conserved among PHPTs (Furlong et al., 2015). Because EpsZ contains the DX_{12}P motif and all the conserved essential residues important for catalytic activity that have been identified in the C-terminal catalytic region of WbaP (Patel et al., 2010) (Fig. 5B, Fig S1), we suggest that EpsZ is a PHPT with a membrane topology similar to that of WcaJ.

PHPTs generally utilize UDP-glucose (UDP-Glc) or UDP-galactose (UDP-Gal) as substrates to transfer Glc-1-P or Gal-1-P, respectively to Und-P (Lukose et al., 2017, Valvano, 2011). Therefore, following the same strategy as previously reported (Patel et al., 2012, Pérez-Burgos et al., 2019, Pérez-Burgos et al., 2020), we tested whether EpsZ could functionally replace WcaJ_Ec or WbaP_se, which catalyse the transfer of Glc-1-P and Gal-1-P to Und-P, respectively. To this end, epsZ was cloned into pBADNTF resulting in plasmid pMP146, which encodes EpsZ with an N-terminal FLAG-tag (FLAG_EpsZ) to facilitate detection by immunoblot and under the control of an arabinose inducible promoter.

WcaJ_Ec initiates colanic acid biosynthesis, which results in a strong glossy and mucoid phenotype of *wcaJ_Ec*^+^ cells containing the plasmid pWQ499 encoding the positive regulator RcsA (Furlong et al., 2015). An *E. coli ΔwcaJ_Ec* (pWQ499) mutant is complemented with the plasmid pLA3 in the presence of arabinose (Furlong et al., 2015), which encodes FLAG_WcaJ_Ec under the control of the arabinose inducible promoter (Fig. 5C). By contrast, no complementation was observed by FLAG_EpsZ or the empty pBADNTF vector in the presence of arabinose (Fig. 5C), suggesting that EpsZ does not have Glc-1-P transferase activity.

WbaP_se initiates O-antigen synthesis in *S. enterica* and the O-antigen synthesis defect of a ΔwbaP_se mutant can be partially corrected by complementation with the plasmid pJD132, which encodes the *E. coli* O9:K30 WbaP_se homolog (WbaP_EcO9K36), and with the plasmid pSM13, which encodes WbaP_se (Saldías et al., 2008) (Fig. 5D, left panel). The differences in the O-antigen profile between the different complementation strains are likely due to different processing of the O-antigen as previously reported (Saldías et al., 2008). Expression of FLAG_EpsZ in the ΔwbaP_se mutant in the presence of arabinose provoked a change of the LPS profile (Fig. 5D, left panel), while the empty pBADNTF vector did not affect the LPS profile. Because the effect of FLAG_EpsZ on the O-antigen profile of the ΔwbaP_se mutant was relatively...
modest by silver staining, we repeated these experiments using *Salmonella* O-antigen rabbit antibodies. As shown in Fig. 5D, right panel, also in this analysis, FLAG-EpsZ complemented the ΔwbaPse mutant in the presence of arabinose. To test for accumulation of FLAG-EpsZ in the *E. coli* and *S. enterica* strains when grown in the presence of arabinose, we performed immunoblots using α-FLAG antibodies (Fig. 5E). EpsZ accumulated in both strains predominantly in the monomeric form. By contrast, FLAG-WcaJEc showed the characteristic oligomeric and monomeric bands as previously reported for PHPTs (Saldías et al., 2008).

We conclude from these experiments that WbaPmx can transfer Gal-1-P onto Und-P.

EPS or EPS biosynthetic proteins is important for T4P-dependent motility and T4P formation

Next, we tested the five Δeps mutants for motility defects. To this end, cells were spotted on 0.5% and 1.5% agar, respectively (Shi & Zusman, 1993). On 0.5% agar, WT cells formed the long flares characteristic of T4P-dependent motility while on 1.5% agar, WT displayed the single cells at the colony edge characteristic of gliding motility. The ΔpilA mutant, which lacks the major pilin subunit and does not assemble T4P (Wu & Kaiser, 1997), and the ΔaglQ mutant, which lacks a component of the gliding motility machinery (Sun et al., 2011, Nan et al., 2013), were used as negative controls for T4P-dependent and gliding motility, respectively. As expected, the Δeps mutants had a T4P-dependent motility defect forming colonies with shorter flares than WT as did the ΔaglQ mutant (Fig. 6A). The motility defects of the Δeps mutants were complemented by ectopic expression of the relevant genes (Fig. 6A).

On 1.5% agar, the Δeps mutants displayed the single cell motility characteristic of gliding motility but the ΔaglQ mutant did not (Fig. 6A). Also, the total colony expansion was reduced similarly to the ΔpilA mutant. The parental colony expansion was restored in the five complementation strains (Fig. 6A). Because the ΔaglQ mutant made shorter flares on 0.5% agar and had no single cell motility on 1.5% agar, the ΔpilA mutant made no flares on 0.5% agar and had reduced colony expansion on 1.5% agar, while the five Δeps mutants generated shorter flares on 0.5% agar and still had single cell motility on 1.5% agar, we conclude that lack of any single one of the five EPS biosynthetic proteins cause a defect in T4P-dependent motility but not in gliding motility.

To understand the mechanism underlying the defect in T4P-dependent motility in the Δeps mutants, we determined the level of T4P formation using a shear-off assay in which T4P are sheared off the cell surface and then the level of PilA assessed by immunoblotting. The PilA level in the sheared fraction was strongly reduced in all five Δeps mutants while the total cellular level of PilA was generally similar to that in WT suggesting that these mutants have fewer T4P than WT cells (Fig. 6B). Because a reduced level of T4P can result from an extension defect or hyper-retraction, we deleted the pilT gene encoding the PilT retraction
ATPase (Jakovljevic et al., 2008) in the five Δeps mutants and then repeated the shearing assay. All five strains with the additional ΔpilT mutation assembled T4P at a higher level than the pilT strains, but at a significantly lower level than the ΔpilT strain (Fig. 6C). Thus, the five Δeps mutants have a defect in T4P extension. Of note, the observation that the Δeps pilT+ strains make fewer T4P than the Δeps ΔpilT strain (Fig. 6C) shows that T4P still retract in the absence of the EPS biosynthetic machinery and/or EPS. These observations are in stark contrast to the observations for the ΔdifA mutant, which lacks the MCP component of the Dif system and is strongly reduced in EPS synthesis (Yang et al., 2000). This mutant was reported to make T4P at WT levels (Yang et al., 2000) or to be hyper-piliated (Li et al., 2003) and EPS was reported to stimulate T4P retractions in this mutant (Li et al., 2003, Hu et al., 2011). We conclude that lack of an EPS biosynthetic protein and/or EPS causes a reduction in T4P extension but the fewer T4P made can still retract.

To analyze whether the reduced T4P formation in the Δeps mutants was caused by reduced synthesis of one or more of the 10 core proteins of the T4P machine (Craig et al., 2019, Chang et al., 2016) or the Tgl pilotin (Nudleman et al., 2006), we determined their accumulation level in the five eps mutants. All 11 proteins were detected at WT levels in the Δeps mutants (Fig. 6D). We conclude that the EPS biosynthetic machinery and/or EPS is important for T4P extension and, therefore, T4P-dependent motility.

Cell-cell cohesion has been suggested to depend on EPS (Shimkets, 1986, Dana & Shimkets, 1993, Arnold & Shimkets, 1988). To evaluate whether the Δeps mutants were affected in cell-cell cohesion and agglutination, we transferred exponentially growing cells to a cuvette and measured the change in cell density over time. WT cells agglutinated and sedimented during the course of the experiment, causing a decrease in the absorbance (Fig. 7). The ΩdifE and mutant was used as a negative control and did not agglutinate over time (Yang et al., 2000). None of the five Δeps in-frame deletion strains agglutinated (Fig. 7) and the agglutination defect was complemented in the complementation strains (Fig. 7).

EPS or the Eps biosynthetic machinery is conditionally important for fruiting body formation. Next, we tested the five Δeps mutants for development. On TPM agar and in submerged culture, WT cells had aggregated to form darkened mounds at 24 h of starvation. (Fig. 8). On TPM agar, the Δeps mutants showed a delay in aggregation but eventually formed larger and less compact fruiting bodies and sporulated with an efficiency similar to that of WT (Fig. 8). Under submerged conditions, the Δeps mutants did not aggregate to form fruiting bodies sporulation as expected from the cell-cell cohesion and agglutination defects and were significantly reduced in sporulation. The developmental defects of the five Δeps mutants were restored by ectopic expression of the corresponding gene (Fig. 8).
Discussion

Here, we focused on elucidating key steps of EPS biosynthesis, and determined functional consequences of loss of EPS and/or the EPS biosynthetic machinery. The EPS structure is unknown; however, chemical analyses support that it contains at least N-acetyl-glucosamine (GlcNAc), Glc and Gal while data for other monosaccharides vary depending on the analysis (Behmlander & Dworkin, 1994, Sutherland & Thomson, 1975).

Using bioinformatics, we identified the genes for all the components of a Wzx/Wzy pathway in the eps locus. Our experimental results support a model in which these genes encode the EPS biosynthesis machinery (Fig. 9A) and that synthesis of the EPS repeat unit is initiated by the PHPT homolog EpsZ (MXAN_7415). We demonstrate in heterologous expression experiments that EpsZ is functionally similar to the Gal-1-P transferase WbaP_{Se}, suggesting that Gal is the first sugar of the EPS repeat unit. The eps locus encodes five GTs and inactivation of each of these five genes (Lu <i>et al.</i>, 2005, Berleman <i>et al.</i>, 2011, Youderian & Hartzell, 2006) causes a loss of EPS synthesis or T4P-dependent motility (Fig. 2A).

Therefore, we suggest that these five GTs add monosaccharides to build the repeat unit, which is then translocated across the IM by the Wzx_{EPS} flippase (MXAN_7416). The repeat units are polymerized by the Wzy_{EPS} polymerase (MXAN_7442) with the help of the PCP protein EpsV (MXAN_7421) to make the EPS polysaccharide. In the last step, the EPS polymer is transported to the surface through the OPX protein EpsY (MXAN_7417). EpsC (MXAN_7449) is a serine O-acetyltransferase homolog, which is important but not essential for EPS synthesis (Lu <i>et al.</i>, 2005). As previously suggested for a paralog encoded by exoN (Pérez-Burgos <i>et al.</i>, 2020), which is important for spore coat polysaccharide synthesis, MXAN_7449 could be involved in O-acetylation of precursors for EPS synthesis. Finally, the predicted glycosyl hydrolase EpsB (MXAN_7450) is also important but not essential for EPS synthesis (Lu <i>et al.</i>, 2005) and its biochemical function remains to be characterized. Overall, our genetic and functional analyses support that the EPS biosynthesis machinery is exclusively dedicated to EPS biosynthesis and not involved in LPS O-antigen or spore coat polysaccharide biosynthesis.

We also identified two additional loci, which together encode a complete Wzx/Wzy-dependent pathway (Fig. 9B). Our genetic analysis suggests the proteins of this pathway are not involved in EPS biosynthesis, spore coat polysaccharide and LPS-O-antigen synthesis (unpublished data), indicating a novel function. Islam <i>et al.</i> (Islam <i>et al.</i>, 2020) have suggested these gene clusters encode a biosynthetic machinery for synthesis of a biosurfactant but further studies are required for its complete characterization.

Genetic analyses of the five core components of the EPS biosynthesis machinery showed that lack of any of these proteins caused a defect not only in EPS synthesis but also in T4P-
dependent motility, cell-cell cohesion, and a conditional defect in fruiting body formation. Superficially, these defects are similar to those reported for dif mutants with an EPS- phenotype, which are the best studied mutants with decreased EPS synthesis. However, more detailed comparisons reveal important differences. First, dif mutants with an EPS- phenotype have a defect in T4P-dependent motility (Yang et al., 1998, Bellenger et al., 2002); however, a difA mutant makes T4P at WT levels (Yang et al., 2000) or is hyper-piliated (Li et al., 2003). Moreover, it was suggested that EPS stimulates T4P retractions in this mutant because addition of EPS causes reduced piliation (Li et al., 2003, Hu et al., 2011). By contrast, we observed that the five Δeps mutants analyzed here are hypo-piliated. Also, further deletion of the gene for the PilT retraction ATPase resulted in an increased level of surface piliation suggesting that T4P in the five Δeps pilT+ mutants can still be retracted. Consistently, T4P-dependent motility was not completely abolished in the five Δeps mutants. These observations suggest that EPS, or alternatively components of the EPS biosynthetic machinery, is important for T4P formation. Altogether, these comparisons support that the dif EPS- mutations, which are regulatory mutants, and the Δeps mutations described here, which are biosynthetic mutants, both interfere with T4P-dependent motility but the underlying mechanisms are different.

Second, dif mutants with an EPS- phenotype neither develop to form spore-filled fruiting bodies on TPM or CF agar nor under submerged conditions (Yang et al., 1998, Bellenger et al., 2002, Skotnicka et al., 2016). By contrast, the five Δeps mutants described here develop with only a slight delay on TPM agar but not under submerged conditions. We speculate that this developmental defect is caused by lack of cell-cell cohesion and agglutination in the five Δeps mutants. Whether these phenotypic differences are caused by the differences in T4P levels and functionality in the two types of mutants remains to be investigated.

Previously, it was reported that the T4P machinery functions upstream of the Dif pathway to stimulate EPS synthesis (Black et al., 2006, Moak et al., 2015, Wallace et al., 2014, Black et al., 2017). How the T4P machinery interfaces with the Dif system is unknown. Similarly, it is unknown how the Dif system stimulates EPS biosynthesis. Here, we show that mutations in the Wzx/Wzy-dependent pathway for EPS synthesis cause a defect in T4P extension. It will be an important future goal to disentangle how dif and eps mutants at the molecular level affect T4P formation, function and development, as well as how T4P function affects EPS synthesis.
Acknowledgement
The authors thank A. Treuner-Lange for construction of pMAT150. This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Council) within the framework of the SFB987 “Microbial Diversity in Environmental Signal Response” as well as by the Max Planck Society.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability
The data that support the findings of this study are available from the corresponding author upon request.
Materials and Methods

Strains and cell growth. All *M. xanthus* strains are derivatives of the wild type DK1622 (Kaiser, 1979). Strains, plasmids and oligonucleotides used in this work are listed in Table 1, Table 2, and Table S3, respectively. *M. xanthus* was grown at 32°C in 1% CTT (1% (w/v) Bacto Casitone, 10 mM Tris-HCl pH 8.0, 1 mM K$_2$HPO$_4$/KH$_2$PO$_4$ pH 7.6 and 8 mM MgSO$_4$) liquid medium or on 1.5% agar supplemented with 1% CTT and kanamycin (50 µg ml$^{-1}$) or oxytetracycline (10 µg ml$^{-1}$), as appropriate (Hodgkin & Kaiser, 1977). In-frame deletions were generated as described (Shi et al., 2008), and plasmids for complementation experiments were integrated in a single copy by site specific recombination into the Mx8 attB site. In-frame deletions and plasmid integrations were verified by PCR. Plasmids were propagated in *E. coli* Mach1 and DH5α.

E. coli and *S. enterica* serovar Typhimurium strains were grown at 37°C in Luria-Bertani (LB) medium (10 mg tryptone ml$^{-1}$, 5 mg yeast extract ml$^{-1}$; 5 mg NaCl ml$^{-1}$) supplemented, when required, with ampicillin, tetracycline, kanamycin or chloramphenicol at final concentrations of 100, 20, 40 and 30 µg ml$^{-1}$, respectively. Plasmids for heterologous complementation were introduced into MSS2 and XBF1 strains (Table 1) by electroporation (Dower et al., 1988).

Detection of EPS accumulation. Exponentially growing cells were harvested, (3 min, 6000 g at RT), and resuspended in 1% CTT to a calculated density of 7 × 109 cells ml$^{-1}$. 20 µl aliquots of the cell suspensions were placed on 0.5% agar plates supplemented with 0.5% CTT and 10 or 20 µg ml$^{-1}$ of Trypan blue or Congo red, respectively. Plates were incubated at 32°C and documented at 24 h.

Glycerol-induced sporulation assay. Sporulation in response to 0.5 M glycerol was performed as described (Müller et al., 2010) with a slightly modified protocol. Briefly, cells were cultivated in 10 ml of CTT medium, at a cell density of 3 × 108 cells ml$^{-1}$, glycerol was added to a final concentration of 0.5 M. At 0, 4 and 24 h after glycerol addition, cell morphology was observed by placing 5 µl of cells on a 1.5% agar TPM pad on a slide. Cells were immediately covered with a coverslip and imaged with DMI6000B microscope and a Hamamatsu Flash 4.0 Camera (Leica). To determine the resistance to heat and sonication of spores formed, cells from 5 ml of the culture after 24 h incubation were harvested (10 min, 4150 g, RT), resuspended in 1 ml sterile water, incubated at 50°C for 2 h, and then sonicated with 30 pulses, pulse 50%, amplitude 75% with a UP200St sonifier and microtip (Hielscher). Sporulation levels were determined as the number of sonication- and heat-resistant spores relative to WT using a Helber bacterial counting chamber (Hawksley, UK). 5 µl of the treated samples were placed on a 1.5 % agar TPM pad on a slide, covered with a coverslip and imaged.
LPS extraction and detection. LPS was extracted from *M. xanthus* and visualized by Emerald staining as described (Pérez-Burgos *et al.*, 2019). LPS from *S. enterica* and *E. coli* was extracted and visualized by silver staining as described (Marolda *et al.*, 2006, Pérez-Burgos *et al.*, 2019). For *S. enterica*, O-antigen was detected by immunoblot using rabbit *Salmonella* O antiserum group B (Difco, Beckton Dickinson ref. number 229481) (1:500) and the secondary antibody IRDye 800CW goat α-rabbit immunoglobulin G (1:10000) (LI-COR) (Pérez-Burgos *et al.*, 2019).

Cell length determination. 5 µl aliquots of exponentially growing cell suspensions were spotted on glass placed on a metal frame, covered with 1.5% agar supplemented with TPM and imaged using a DMI8 Inverted microscope and DFC9000 GT camera (Leica) (Schumacher & Søgaard-Andersen, 2018). Cell length was determined and visualized as described (Pérez-Burgos *et al.*, 2019). Statistical analyses were performed using SigmaPlot v14. All data sets were tested for a normal distribution using a Shapiro-Wilk test and for all data sets without a normal distribution, the Mann-Whitney test was applied to test for significant differences.

Motility assays. Exponentially growing cultures of *M. xanthus* were harvested (6000 g, room temperature (RT)) and resuspended in 1% CTT to a calculated density of 7 × 10⁹ cells ml⁻¹. 5 µl aliquots of cell suspensions were spotted on 0.5% and 1.5% agar supplemented with 0.5% CTT. The plates were incubated at 32°C for 24 h and cells were visualized using a M205FA Stereomicroscope (Leica) and imaged using a Hamamatsu ORCA-flash V2 Digital CMOS camera (Hamamatsu Photonics). Pictures were analyzed using Metamorph® v 7.5 (Molecular Devices).

Detection of colanic acid biosynthesis. *E. coli ΔwcaJ* strains were grown on LB plates with antibiotics and with or without 0.2 % (w/v) arabinose at 37°C overnight. Incubation was extended to 24-48 h at RT to visualize the mucoid phenotype (Furlong *et al.* 2015).

Immunoblot analysis. Immunoblots were carried out as described (Sambrook & Russell, 2001). For *M. xanthus* immunoblots, rabbit polyclonal α-PilA (dilution: 1:2000), α-PilB (dilution: 1:2000) (Jakovljevic *et al.*, 2008), α-PilC (dilution: 1:2000) (Bulyha *et al.*, 2009), α-PilM (dilution: 1:3000) (Bulyha *et al.*, 2009), α-PilN (dilution: 1:2000) (Friedrich *et al.*, 2014), α-PilO (dilution: 1:2000) (Friedrich *et al.*, 2014), α-PilP (dilution: 1:2000) (Friedrich *et al.*, 2014), α-PilT (dilution: 1:3000) (Jakovljevic *et al.*, 2008), α-Tgl (dilution: 1:2000) (Friedrich *et al.*, 2014), α-TsaP (dilution: 1:2000) (Siewering *et al.*, 2014), α-PilQ (dilution: 1:5000) (Bulyha *et al.*, 2009) were used together with a horseradish-conjugated goat anti-rabbit immunoglobulin G (Sigma) as secondary antibody. Blots were developed using Luminata crescendo Western HRP Substrate (Millipore) on a LAS-4000 imager (Fujifilm).
For *E. coli* and *S. enterica* strains, FLAG-tagged membrane proteins were isolated and detected by immunoblot analysis, as previously described, using α-FLAG M2 monoclonal antibody (Sigma) (1:10000) and a secondary antibody, IRDye 800CW Goat α-Mouse IgG (H+L), 0.5 mg (LI-COR) (1:10000) (Pérez-Burgos et al., 2019).

T4P shear off assay. T4P were sheared from cells that had been grown for three days on 1.5% agar plates supplemented with 1% CTT at 32°C as described, except that precipitation of sheared T4P was done using TCA as described (Koontz, 2014), and analyzed by immunoblotting with α-PilA antibodies as described previously (Wu & Kaiser, 1997). Blots were developed as indicated.

Cell agglutination assay. Cell agglutination was performed as described previously (Wu et al., 1997) with a slightly modified protocol. Briefly, 1 ml of exponentially growing cells in 1% CTT was transferred to a cuvette and cell density was measured at the indicated time points.

Development. Exponentially growing *M. xanthus* cultures were harvested (3 min, 6000 g at RT), and resuspended in MC7 buffer (10 mM MOPS pH 7.0, 1 mM CaCl2) to a calculated density of 7 × 10^9 cells ml^{-1}. 10 μl aliquots of cells were placed on TPM agar (10 mM Tris-HCl pH 7.6, 1 mM K_2HPO_4/KH_2PO_4 pH 7.6, 8 mM MgSO_4), and 50 μl aliquots were mixed with 350 μl of MC7 buffer and placed in a 24-well polystyrene plate (Falcon) for development in submerged culture. Cells were visualized at the indicated time points using a M205FA Stereomicroscope (Leica) and imaged using a Hamamatsu ORCA-flash V2 Digital CMOS camera (Hamamatsu Photonics), and a DMI8 Inverted microscope and DFC9000 GT camera (Leica). Images were analyzed as previously described. After 120 h, cells were collected and incubated at 50°C for 2 h, and then sonicated as described. Sporulation levels were determined as the number of sonication- and heat-resistant spores relative to WT.

Bioinformatics. The KEGG SSDB (Sequence Similarity Database) (Kanehisa & Goto, 2000) database was used to identify homologs of PHPT (PF02397- Bacterial Sugar Transferase), PNPT (PF00953- Glycosyl transferase family 4) (Lehrman, 1994), Wzx (PF01943-Polysacc_synt and PF13440-Polysacc_synt_3), Wzy_C (PF04932-Wzy_C), PCP (PF02706-Wzz) and OPX (PF02563-Poly_export) as in (Pérez-Burgos et al., 2020, Beczała et al., 2015, Dong et al., 2006). For the ABC-transporter dependent pathway we used (PF01061- ABC2_membrane) for the permease and, (PF00005- ABC_tran) and (PF14524-Wzt_C) for the ATPase as in (Pérez-Burgos et al., 2019) together with an analysis of the genetic neighborhood to search for glycan related proteins. BlastP was used to identify homologs of the synthase dependent pathway using previously identified components (Whitney & Howell, 2013). KEGG SSDB was also used to identify EPS homolog proteins in other Myxococcales using a reciprocal best BlastP hit method. UniProt (The-UniProt-Consortium, 2019), KEGG (Kanehisa & Goto, 2000) and the Carbohydrate Active Enzymes (CAZy) databases were used to identify homologs of Wzr, Wzx, Wzy and PilQ of the LPS biosynthesis pathway as in (Wu et al., 1997). Bioinformatics was also used to identify homologs of the ABC transporter dependent pathway using previously identified components.
(CAZY) (http://www.cazy.org/) (Lombard *et al.*, 2014) databases were used to assign functions to proteins (Fig. 1B, 2A, 3A-B; Table S1 and S2). SMART (smart.embl-heidelberg.de) (Letunic *et al.*, 2015) and Pfam v31.0 and v32.0 (pfam.xfam.org) (Finn *et al.*, 2016) were used to identify protein domains. Membrane topology was assessed by TMHMM v2.0 (Sonnhammer *et al.*, 1998) and two-dimensional topology was graphically shown using TOPO2 (Johns). Clustal Omega (Chojnacki *et al.*, 2017) was used to align protein sequences. The phylogenetic tree was prepared as in (Pérez-Burgos *et al.*, 2020) in MEGA7 (Kumar *et al.*, 2016) using the Neighbor-Joining method (Saitou & Nei, 1987). Bootstrap values (500 replicates) are shown next to the branches (Felsenstein, 1985).
References

Arnold, J.W., and Shimkets, L.J. (1988) Cell surface properties correlated with cohesion in *Myxococcus xanthus*. *J. Bacteriol.* **170**: 5771-5777.

Beczala, A., Ovchinnikova, O.G., Datta, N., Mattinen, L., Knapska, K., Radziejewska-Lebrecht, J., Holst, O., and Skurnik, M. (2015) Structure and genetic basis of *Yersinia similis* serotype O:9 O-specific polysaccharide. *Innate Immun* **21**: 3-16.

Behmlander, R.M., and Dworkin, M. (1994) Biochemical and structural analyses of the extracellular matrix fibrils of *Myxococcus xanthus*. *J. Bacteriol.* **176**: 6295-6303.

Beczala, A., Ovchinnikova, O.G., Datta, N., Mattinen, L., Knapska, K., Radziejewska-Lebrecht, J., Holst, O., and Skurnik, M. (2015) Structure and genetic basis of *Yersinia similis* serotype O:9 O-specific polysaccharide. *Innate Immun* **21**: 3-16.

Behmlander, R.M., and Dworkin, M. (1994) Biochemical and structural analyses of the extracellular matrix fibrils of *Myxococcus xanthus*. *J. Bacteriol.* **176**: 6295-6303.

Bellenger, K., Ma, X., Shi, W., and Yang, Z. (2002) A CheW homologue is required for *Myxococcus xanthus* fruiting body development, social gliding motility, and fibril biogenesis. *J. Bacteriol.* **184**: 5654-5660.

Berleman, J.E., Vicente, J.J., Davis, A.E., Jiang, S.Y., Seo, Y.E., and Zusman, D.R. (2011) FrzS regulates social motility in *Myxococcus xanthus* by controlling exopolysaccharide production. *PLoS ONE* **6**: e23920.

Black, W.P., Schubot, F.D., Li, Z., and Yang, Z. (2010) Phosphorylation and dephosphorylation among Dif chemosensory proteins essential for exopolysaccharide regulation in *Myxococcus xanthus*. *J. Bacteriol.* **192**: 4267-4274.

Black, W.P., Wang, L., Davis, M.Y., and Yang, Z. (2015) The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in *Myxococcus xanthus*. *Sci. Rep.* **5**: 17831.

Black, W.P., Wang, L.L., Jing, X., Saldana, R.C., Li, F., Scharf, B.E., Schubot, F.D., and Yang, Z.M. (2017) The type IV pilus assembly ATPase PilB functions as a signaling protein to regulate exopolysaccharide production in *Myxococcus xanthus*. *Sci. Rep.* **7**.

Black, W.P., Xu, Q., and Yang, Z. (2006) Type IV pili function upstream of the Dif chemotaxis pathway in *Myxococcus xanthus* EPS regulation. *Mol. Microbiol.* **61**: 447-456.

Bulyha, I., Schmidt, C., Lenz, P., Jakovljevic, V., Hone, A., Maier, B., Hoppert, M., and Søgaard-Andersen, L. (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. *Mol Microbiol* **74**: 691-706.
Burrows, L.L., and Lam, J.S. (1999) Effect of wzx (rfbX) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5. J Bacteriol 181: 973-980.

Chang, Y.W., Rettberg, L.A., Treuner-Lange, A., Iwasa, J., Søgaard-Andersen, L., and Jensen, G.J. (2016) Architecture of the type IVa pilus machine. Science 351: aad2001.

Chojnacki, S., Cowley, A., Lee, J., Foix, A., and Lopez, R. (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45: W550-W553.

Craig, L., Forest, K.T., and Maier, B. (2019) Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 17: 429-440.

Cuthbertson, L., Kos, V., and Whitfield, C. (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 74: 341-362.

Dana, J.R., and Shimkets, L.J. (1993) Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J. Bacteriol. 175: 3636-3647.

Dong, C., Beis, K., Nesper, J., Brunkan-Lamontagne, A.L., Clarke, B.R., Whitfield, C., and Naismith, J.H. (2006) Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444: 226-229.

Dower, W.J., Miller, J.F., and Ragsdale, C.W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127-6145.

Dworkin, M., and Gibson, S.M. (1964) A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243-244.

Felsenstein, J. (1985) Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39: 783-791.

Fink, J.M., and Zissler, J.F. (1989) Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2028-2032.

Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., and Bateman, A. (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44: D279-285.

Flemming, H.C., Neu, T.R., and Wozniak, D.J. (2007) The EPS matrix: the "house of biofilm cells". J Bacteriol 189: 7945-7947.
Flemming, H.C., and Wingender, J. (2010) The biofilm matrix. *Nat Rev Microbiol* **8**: 623-633.

Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., and Kjelleberg, S. (2016) Biofilms: an emergent form of bacterial life. *Nat Rev Microbiol* **14**: 563-575.

Friedrich, C., Bulyha, I., and Søgaard-Andersen, L. (2014) Outside-in assembly pathway of the type IV pilus system in *Myxococcus xanthus*. *J Bacteriol* **196**: 378-390.

Furlong, S.E., Ford, A., Albarnez-Rodriguez, L., and Valvano, M.A. (2015) Topological analysis of the *Escherichia coli* WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family. *Sci Rep* **5**: 9178.

Guo, D., Bowden, M.G., Pershad, R., and Kaplan, H.B. (1996) The *Myxococcus xanthus* *rfbABC* operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. *J. Bacteriol.* **178**: 1631-1639.

Hodgkin, J., and Kaiser, D. (1977) Cell-to-cell stimulation of movement in nonmotile mutants of *Myxococcus*. *Proc Natl Acad Sci U S A* **74**: 2938-2942.

Hodgkin, J., and Kaiser, D. (1979) Genetics of gliding motility in *Myxococcus xanthus* (Myxobacterales) - Two gene systems control movement. *Mol Gen Genet* **171**: 177-191.

Holkenbrink, C., Hoiczyk, E., Kahnt, J., and Higgs, P.I. (2014) Synthesis and assembly of a novel glycan layer in *Myxococcus xanthus* spores. *J. Biol. Chem.* **289**: 32364-32378.

Hu, W., Hossain, M., Lux, R., Wang, J., Yang, Z., Li, Y., and Shi, W. (2011) Exopolysaccharide-independent social motility of *Myxococcus xanthus*. *PLoS ONE* **6**: e16102.

Hu, W., Lux, R., and Shi, W. (2013) Analysis of exopolysaccharides in *Myxococcus xanthus* using confocal laser scanning microscopy. *Methods Mol. Biol.* **966**: 121-131.

Islam, S.T., Alvarez, I.V., Saïdi, F., Giuseppi, A., Vinogradov, E., Morrone, C., Brasseur, G., Sharma, G., Benarouche, A., Bridot, J.-L., Racivoularamin, G., Cagna, A., Gauthier, C., Singer, M., Fierobe, H.-P., Mignot, T., and Mauriello, E.M.F. (2020) Modulation of bacterial multicellularity via spatiotemporal polysaccharide secretion. *bioRxiv*: 2020.2002.2020.957654.

Jakobczak, B., Keilberg, D., Wuichet, K., and Søgaard-Andersen, L. (2015) Contact- and protein transfer-dependent stimulation of assembly of the gliding motility machinery in *Myxococcus xanthus*. *PLoS Genet* **11**: e1005341.
Jakovljevic, V., Leonardy, S., Hoppert, M., and Søgaard-Andersen, L. (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in *Myxococcus xanthus*. *J Bacteriol* **190**: 2411-2421.

Johns, S.J., TOPO2, Transmembrane protein display software (http://www.sacs.ucsf.edu/TOPO2/). In., pp.

Jorgenson, M.A., Kannan, S., Laubacher, M.E., and Young, K.D. (2016) Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in *Escherichia coli* by competing for undecaprenyl phosphate. *Mol Microbiol* **100**: 1-14.

Jorgenson, M.A., and Young, K.D. (2016) Interrupting biosynthesis of O antigen or the lipopolysaccharide core produces morphological defects in *Escherichia coli* by sequestering undecaprenyl phosphate. *J Bacteriol* **198**: 3070-3079.

Julien, B., Kaiser, A.D., and Garza, A. (2000) Spatial control of cell differentiation in *Myxococcus xanthus*. *Proc Natl Acad Sci U S A* **97**: 9098-9103.

Kaiser, D. (1979) Social gliding is correlated with the presence of pili in *Myxococcus xanthus*. *Proc Natl Acad Sci U S A* **76**: 5952-5956.

Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **28**: 27-30.

Kimura, Y., Kato, T., and Mori, Y. (2012) Function analysis of a bacterial tyrosine kinase, BtkB, in *Myxococcus xanthus*. *FEMS Microbiol Lett* **336**: 45-51.

Konovalova, A., Petters, T., and Søgaard-Andersen, L. (2010) Extracellular biology of *Myxococcus xanthus*. *FEMS Microbiol. Rev.* **34**: 89-106.

Koontz, L. (2014) TCA precipitation. *Methods Enzymol* **541**: 3-10.

Kottel, R.H., Bacon, K., Clutter, D., and White, D. (1975) Coats from *Myxococcus xanthus*: characterization and synthesis during myxospore differentiation. *J. Bacteriol*. **124**: 550-557.

Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* **33**: 1870-1874.
Lancero, H., Brofft, J.E., Downard, J., Birren, B.W., Nusbaum, C., Naylor, J., Shi, W., and Shimkets, L.J. (2002) Mapping of *Myxococcus xanthus* social motility *dsp* mutations to the *dif* genes. *J Bacteriol* **184**: 1462-1465.

Lancero, H., Caberoy, N.B., Castaneda, S., Li, Y.N., Lu, A., Dutton, D., Duan, X.Y., Kaplan, H.B., Shi, W.Y., and Garza, A.G. (2004) Characterization of a *Myxococcus xanthus* mutant that is defective for adventurous motility and social motility. *Microbiology-Sgm* **150**: 4085-4093.

Lehrman, M.A. (1994) A family of UDP-GlcNAc/MurNAc: polyisoprenol-P GlcNAc/MurNAc-1-P transferases. *Glycobiology* **4**: 768-771.

Letunic, I., Doerks, T., and Bork, P. (2015) SMART: recent updates, new developments and status in 2015. *Nucleic Acids Res.* **43**: D257-260.

Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D., and Shi, W. (2003) Extracellular polysaccharides mediate pilus retraction during social motility of *Myxococcus xanthus*. *Proc. Natl. Acad. Sci. USA* **100**: 5443-5448.

Licking, E., Gorski, L., and Kaiser, D. (2000) A common step for changing cell shape in fruiting body and starvation-independent sporulation in *Myxococcus xanthus*. *J Bacteriol* **182**: 3553-3558.

Lombard, V., Ramulu, H.G., Drula, E., Coutinho, P.M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* **42**: D490-D495.

Lu, A., Cho, K., Black, W.P., Duan, X.Y., Lux, R., Yang, Z., Kaplan, H.B., Zusman, D.R., and Shi, W. (2005) Exopolysaccharide biosynthesis genes required for social motility in *Myxococcus xanthus*. *Mol. Microbiol.* **55**: 206-220.

Lukose, V., Walvoort, M.T., and Imperiali, B. (2017) Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. *Glycobiology* **27**: 820-833.

Lux, R., Li, Y., Lu, A., and Shi, W. (2004) Detailed three-dimensional analysis of structural features of *Myxococcus xanthus* fruiting bodies using confocal laser scanning microscopy. *Biofilms* **1**.

Marolda, C.L., Lahiry, P., Vines, E., Saldias, S., and Valvano, M.A. (2006) Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. *Methods Mol Biol* **347**: 237-252.
Marolda, C.L., Vicarioli, J., and Valvano, M.A. (2004) Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology **150**: 4095-4105.

Moak, P.L., Black, W.P., Wallace, R.A., Li, Z., and Yang, Z. (2015) The Hsp70-like StkA functions between T4P and Dif signaling proteins as a negative regulator of exopolysaccharide in *Myxococcus xanthus*. PeerJ **3**: e747.

Morona, R., Van Den Bosch, L., and Daniels, C. (2000) Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology **146 (Pt 1)**: 1-4.

Müller, F.D., Schink, C.W., Hoiczyk, E., Cserti, E., and Higgs, P.I. (2012) Spore formation in *Myxococcus xanthus* is tied to cytoskeleton functions and polysaccharide spore coat deposition. *Mol. Microbiol.* **83**: 486-505.

Müller, F.D., Treuner-Lange, A., Heider, J., Huntley, S.M., and Higgs, P.I. (2010) Global transcriptome analysis of spore formation in *Myxococcus xanthus* reveals a locus necessary for cell differentiation. *BMC Genomics* **11**: 264.

Nan, B., Bandaria, J.N., Moghtaderi, A., Sun, I.-H., Yildiz, A., and Zusman, D.R. (2013) Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. *Proc Natl Acad Sci U S A* **110**: E1508-E1513.

Nudleman, E., Wall, D., and Kaiser, D. (2006) Polar assembly of the type IV pilus secretin in *Myxococcus xanthus*. *Mol. Microbiol.* **60**: 16-29.

Overgaard, M., Wegener-Feldbrugge, S., and Søgaard-Andersen, L. (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in *Myxococcus xanthus*. *J Bacteriol* **188**: 4384-4394.

Patel, K.B., Furlong, S.E., and Valvano, M.A. (2010) Functional analysis of the C-terminal domain of the WbaP protein that mediates initiation of O antigen synthesis in *Salmonella enterica*. *Glycobiology* **20**: 1389-1401.

Patel, K.B., Toh, E., Fernandez, X.B., Hanuszkiewicz, A., Hardy, G.G., Brun, Y.V., Bernards, M.A., and Valvano, M.A. (2012) Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of *Escherichia coli* and *Caulobacter crescentus*. *J Bacteriol* **194**: 2646-2657.

Pérez-Burgos, M., García-Romero, I., Jung, J., Valvano, M.A., and Søgaard-Andersen, L. (2019) Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme
and the O-antigen ligase in *Myxococcus xanthus*: Critical role of LPS O-antigen in motility and development. *Mol. Microbiol.* 112: 1178-1198.

Pérez-Burgos, M., García-Romero, I., Valvano, M.A., and Søgaard-Andersen, L. (2020) Identification of the Wzx flippase, Wzy polymerase and sugar-modifying enzymes for spore coat polysaccharide biosynthesis in *Myxococcus xanthus*. *Mol. Microbiol.*

Petters, T., Zhang, X., Nesper, J., Treuner-Lange, A., Gomez-Santos, N., Hoppert, M., Jenal, U., and Søgaard-Andersen, L. (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in *Myxococcus xanthus*. *Mol. Microbiol.* 84: 147-165.

Ranjit, D.K., and Young, K.D. (2016) Colanic acid intermediates prevent de novo shape recovery of *Escherichia coli* spheroplasts, calling into question biological roles previously attributed to colanic acid. *J Bacteriol* 198: 1230-1240.

Rehm, B.H. (2010) Bacterial polymers: biosynthesis, modifications and applications. *Nat Rev Microbiol* 8: 578-592.

Reid, A.N., and Szymanski, C.M., (2010) Biosynthesis and assembly of capsular polysaccharides. In: Microbial Glycobiology. P.J.B. Otto Holst, Mark von Itzstein, Anthony P. Moran (ed). Academic Press, pp. 351-373.

Rodriguez-Soto, J.P., and Kaiser, D. (1997) Identification and localization of the Tgl protein, which is required for *Myxococcus xanthus* social motility. *J Bacteriol* 179: 4372-4381.

Saitou, N., and Nei, M. (1987) The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. *Mol Biol Evol* 4: 406-425.

Saldías, M.S., Patel, K., Marolda, C.L., Bittner, M., Contreras, I., and Valvano, M.A. (2008) Distinct functional domains of the *Salmonella enterica* WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit. *Microbiology* 154: 440-453.

Sambrook, J., and Russell, D.W., (2001) *Molecular cloning : a laboratory manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Schäffer, C., Wugeditsch, T., Messner, P., and Whitfield, C. (2002) Functional expression of enterobacterial O-polysaccharide biosynthesis enzymes in *Bacillus subtilis*. *Appl Environ Microbiol* 68: 4722-4730.
Schmid, J., Sieber, V., and Rehm, B. (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. *Front. Microbiol.* 6.

Schumacher, D., Bergeler, S., Harms, A., Vonck, J., Huncke-Vogt, S., Frey, E., and Søgaard-Andersen, L. (2017) The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. *Dev Cell* 41: 299-314 e213.

Schumacher, D., and Søgaard-Andersen, L. (2017) Regulation of cell polarity in motility and cell division in *Myxococcus xanthus*. *Annu. Rev. Microbiol.* 71: 61-78.

Schumacher, D., and Søgaard-Andersen, L. (2018) Fluorescence live-cell imaging of the complete vegetative cell cycle of the slow-growing social bacterium *Myxococcus xanthus*. *J. Vis. Exp.* e57860.

Shi, W., and Zusman, D.R. (1993) The two motility systems of *Myxococcus xanthus* show different selective advantages on various surfaces. *Proc Natl Acad Sci U S A* 90: 3378-3382.

Shi, X., Wegener-Feldbrugge, S., Huntley, S., Hamann, N., Hedderich, R., and Søgaard-Andersen, L. (2008) Bioinformatics and experimental analysis of proteins of two-component systems in *Myxococcus xanthus*. *J Bacteriol* 190: 613-624.

Shimkets, L.J. (1986) Role of cell cohesion in *Myxococcus xanthus* fruiting body formation. *J. Bacteriol.* 166: 842-848.

Siewering, K., Jain, S., Friedrich, C., Webber-Birungi, M.T., Semchonok, D.A., Binzen, I., Wagner, A., Huntley, S., Kahnt, J., Klingl, A., Boekema, E.J., Søgaard-Andersen, L., and van der Does, C. (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. *Proc Natl Acad Sci U S A* 111: E953-961.

Skotnicka, D., Smaldone, G.T., Petters, T., Trampari, E., Liang, J., Kaever, V., Malone, J.G., Singer, M., and Søgaard-Andersen, L. (2016) A minimal threshold of c-di-GMP is essential for fruiting body formation and sporulation in *Myxococcus xanthus*. *PLoS Genet* 12: e1006080.

Sonnhammer, E.L., von Heijne, G., and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. *Proc Int Conf Intell Syst Mol Biol* 6: 175-182.

Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. (2002) Biofilms as complex differentiated communities. *Annu Rev Microbiol* 56: 187-209.
Sun, M., Wartel, M., Cascales, E., Shaevitz, J.W., and Mignot, T. (2011) Motor-driven intracellular transport powers bacterial gliding motility. *Proc Natl Acad Sci U S A* **108**: 7559-7564.

Sutherland, I.W., and Thomson, S. (1975) Comparison of polysaccharides produced by *Myxococcus* strains. *J. Gen. Microbiol.* **89**: 124-132.

The-UniProt-Consortium (2019) UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res* **47**: D506-515.

Treuner-Lange, A., Aguiluz, K., van der Does, C., Gomez-Santos, N., Harms, A., Schumacher, D., Lenz, P., Hoppert, M., Kahnt, J., Muñoz-Dorado, J., and Søgaard-Andersen, L. (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in *Myxococcus xanthus*. *Mol Microbiol* **87**: 235-253.

Treuner-Lange, A., Macia, E., Guzzo, M., Hot, E., Faure, L.M., Jakobczak, B., Espinosa, L., Alcor, D., Ducret, A., Keilberg, D., Castaing, J.P., Lacas Gervais, S., Franco, M., Søgaard-Andersen, L., and Mignot, T. (2015) The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. *J Cell Biol* **210**: 243-256.

Valvano, M.A. (2008) Undecaprenyl phosphate recycling comes out of age. *Mol Microbiol* **67**: 232-235.

Valvano, M.A. (2011) Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. *Biochemistry (Mosc)* **76**: 729-735.

Valvano, M.A., Furlong, S.E., and Patel, K.B., (2011) Genetics, biosynthesis and assembly of O-antigen. In: Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis and interaction with host cells. Y.A. Knirel & M.A. Valvano (eds). Vienna: Springer Vienna, pp. 275-310.

Wall, D., Kolenbrander, P.E., and Kaiser, D. (1999) The *Myxococcus xanthus pilQ (sglA)* gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. *J Bacteriol* **181**: 24-33.

Wall, D., Wu, S.S., and Kaiser, D. (1998) Contact stimulation of Tgl and type IV pili in *Myxococcus xanthus*. *J Bacteriol* **180**: 759-761.

Wallace, R.A., Black, W.P., Yang, X., and Yang, Z. (2014) A CRISPR with roles in *Myxococcus xanthus* development and exopolysaccharide production. *J. Bacteriol*. **196**: 4036-4043.
Whitfield, C., and Trent, M.S. (2014) Biosynthesis and export of bacterial lipopolysaccharides. *Annu. Rev. Biochem.* **83**: 99-128.

Whitney, J.C., and Howell, P.L. (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. *Trends Microbiol.* **21**: 63-72.

Willett, J.W., Tiwari, N., Muller, S., Hummels, K.R., Houtman, J.C., Fuentes, E.J., and Kirby, J.R. (2013) Specificity residues determine binding affinity for two-component signal transduction systems. *mBio* **4**: e00420-00413.

Wu, S.S., and Kaiser, D. (1997) Regulation of expression of the *pilA* gene in *Myxococcus xanthus*. *J Bacteriol* **179**: 7748-7758.

Wu, S.S., Wu, J., and Kaiser, D. (1997) The *Myxococcus xanthus pilT* locus is required for social gliding motility although pili are still produced. *Mol Microbiol* **23**: 109-121.

Yang, Z., Geng, Y., Xu, D., Kaplan, H.B., and Shi, W. (1998) A new set of chemotaxis homologues is essential for *Myxococcus xanthus* social motility. *Mol Microbiol* **30**: 1123-1130.

Yang, Z., Ma, X., Tong, L., Kaplan, H.B., Shimkets, L.J., and Shi, W. (2000) *Myxococcus xanthus dif* genes are required for biogenesis of cell surface fibrils essential for social gliding motility. *J. Bacteriol.* **182**: 5793-5798.

Youderian, P., and Hartzell, P.L. (2006) Transposon insertions of magellan-4 that impair social gliding motility in *Myxococcus xanthus*. *Genetics* **172**: 1397-1410.

Zhang, Y., Ducret, A., Shaevitz, J., and Mignot, T. (2012) From individual cell motility to collective behaviors: insights from a prokaryote, *Myxococcus xanthus*. *FEMS Microbiol Rev* **36**: 149-164.

Zhou, T., and Nan, B. (2017) Exopolysaccharides promote *Myxococcus xanthus* social motility by inhibiting cellular reversals. *Mol. Microbiol.* **103**: 729-743.
Figures legends

Figure 1. Identification of homologs of polysaccharide biosynthesis proteins in *M. xanthus*.

(A) Schematic of the three pathways for polysaccharide biosynthesis in Gram-negative bacteria.

(B) Bioinformatics-based identification of homologs of polysaccharide biosynthesis proteins in *M. xanthus*. Color code as in (A). Note that WaaL is the LPS O-antigen ligase (Pérez-Burgos *et al.*, 2019) while the remaining three proteins with a Wzy_C domain are predicted polymerases.

Figure 2. Bioinformatics and genetic analysis of the *eps* locus.

(A) *eps* locus in *M. xanthus*. Genes are drawn to scale and MXAN number or gene name is indicated (Table S1). The color code indicates predicted functions as indicated in the key and are used throughout. Black, grey and white arrow heads indicate mutations previously reported to cause a defect in EPS synthesis (black) (Black *et al.*, 2015, Lu *et al.*, 2005, Lancero *et al.*, 2004, Berleman *et al.*, 2011), a defect in T4P-dependent motility but with no test of EPS synthesis (Youderian & Hartzell, 2006)(grey) and no effect on EPS synthesis (Lu *et al.*, 2005).

(B) Taxonomic distribution and synteny of *eps* genes in Myxococcales with fully sequenced genomes. A reciprocal best BlastP hit method was used to identify orthologs. 16S rRNA tree of Myxococcales with fully sequenced genomes (left). Genome size, family and suborder classification are indicated (right). To evaluate gene proximity and cluster conservation, 10 genes were considered as the maximum distance for a gene to be in a cluster. Genes found in the same cluster (within a distance of <10 genes) are marked with the same color (i.e. blue, green and dark grey). Light grey indicates a conserved gene that is found somewhere else on the genome (>10 genes away from a cluster); a cross indicates no homolog found.

(C) Determination of EPS synthesis. 20 μl aliquots of cell suspensions of strains of the indicated genotypes at 7 × 10⁹ cells ml⁻¹ were spotted on 0.5% agar supplemented with 0.5% CTT and Congo red or Trypan blue and incubated 24 h. In the complementation strains, the complementing gene was expressed ectopically from the native (epsZ, wzx_{EPS} and wzy_{EPS}) or the *pilA* promoter on a plasmid integrated in a single copy at the Mx8 attB site. The Ω_{diff} mutant served as a negative control.

Figure 3. Bioinformatics and genetic analysis of the MXAN_1025-1052/1915 loci.

(A, B) MXAN_1025-1052 and _1915 loci in *M. xanthus*. Genes are drawn to scale and MXAN number or gene name is indicated (Table S2). The color code indicates predicted functions
as indicated in the key and are used throughout. Myxococcales with fully sequenced genomes. A reciprocal best BlastP hit method was used to identify orthologs. 16S rRNA tree of Myxococcales with fully sequenced genomes (left). Genome size, family and suborder classification are indicated (right). To evaluate gene proximity and cluster conservation, 10 genes were considered as the maximum distance for a gene to be in a cluster. Genes found in the same cluster (within a distance of <10 genes) are marked with the same color (i.e. cyan, magenta, and dark and middle dark grey). Light grey indicates a conserved gene that is found somewhere else on the genome (>10 genes away from a cluster); a cross indicates no homolog found.

Figure 4. Phenotypic characterization of the Δeps mutants.
(A) Chemically induced sporulation. Sporulation was induced by addition of glycerol to a final concentration of 0.5 M. At 0, 4 and 24 h after glycerol addition, cell morphology was documented. In images labelled resistant spores, cells were exposed to sonic and heat treatment before microscopy. Sporulation frequency after sonic and heat treatment is indicated as the mean of three biological replicates relative to WT ± standard deviation. Scale bars, 5 μm. (B) Extracted LPS from the same number of cells was separated by SDS-PAGE and detected with Pro-Q Emerald 300. (C) Cell length measurements of the Δeps mutants. Cell length is shown in a violin plot, which indicates the probability density of the data at different cell length values. n = 500 combined from two biological replicates and mean and median values are represented by a continuous and dashed line, respectively. Samples were compared using a Mann-Whitney test; ns, not significant.

Figure 5. PHPT activity of MXAN_7415.
(A) Domain and TMH prediction of EpsZ (MXAN_7415) and WcaJ of E. coli (WcaJEc). Grey rectangles indicate TMH. Numbers indicate domain borders. (B) Topology predictions for EpsZ (MXAN_7415). Domains are indicated in blue and conserved amino acids important for structure or activity of the protein are marked with orange and red, respectively. Sequence alignment of EpsZ (MXAN_7415) with WbaPSe, is shown in Fig. S1. (C-E) Complementation of colanic acid synthesis and LPS O-antigen in E. coli K-12 W3110 (ΔwcaJEc) and S. enterica LT2 (ΔwbaPSe) mutants, respectively by plasmids encoding the indicated PHPT proteins. (C) The E. coli ΔwcaJEc mutant XBF1 containing pWQ499 (RcsA*) and the indicated complementing plasmids or vector control on LB plates was incubated overnight at 37°C with
10 μg ml⁻¹ tetracycline (to maintain pWQ499) and with or without arabinose (Ara) to induce gene expression. Incubation was extended to 24-48 h at room temperature to further increase colanic polysaccharide synthesis. (D) Complementation of S. enterica Typhimurium LT2 ΔwbaPṣe mutant containing the indicated plasmids. LPS samples were extracted, separated by electrophoresis on SDS–14% polyacrylamide gels and silver stained (left panel) or examined by immunoblotting using rabbit Salmonella O antiserum group B (right panel). Each lane corresponds to LPS extracted from 10⁸ cells. Cultures included addition of arabinose as indicated. (E) Immunoblot using α-FLAG monoclonal antibody to confirm expression of FLAGMXAN_7415 and FLAGWcaJ in the ΔwcaJ mutant, and the expression of FLAGMXAN_7415 in S. enterica. Note that WbaP expressed from pSM13 was not tested since it is not fused to a FLAG tag. * and ** denote the monomeric and oligomeric forms of the PHPT proteins, usually present under the gel conditions required to ensure their visualization.

Figure 6. Motility analyses of Δeps mutants. (A) Colony-based motility assay of Δeps mutants. T4P-dependent motility and gliding motility were tested on 0.5% and 1.5% agar, respectively. Images were recorded after 24 h. (B-C) T4P shear off assay. Immunoblot detection of the major pilin PilA in sheared T4P (top) and in total cell extract (middle), where the same number of cells grown on 1% CTT 1.5% agar was loaded per lane. The top and middle blots were probed with antibodies against PilA (calculated molecular mass 23.4 kDa). The middle blot was stripped and probed with antibodies against PilC (calculated molecular mass 45.2 kDa), as a loading control. (D) Immunoblot detection of proteins of the T4P machinery using α-PilA, -B, -C, -M, -N, -O, -P, -Q, -T, Tgl and TsaP antibodies. The same number of cells coming from exponentially growing liquid cultures was loaded per lane. As a negative control, cells containing a single in-frame deletion mutation in the relevant gene were used.

Figure 7. Analysis of Δeps mutants for cell-cell cohesion and agglutination. Cell agglutination assay. 1 ml of exponentially growing cells were transferred to a cuvette. Agglutination was monitored by measuring the decrease in absorbance at 550 nm at 3 h relative to the initial absorbance for each strain. The graph shows data from three biological replicates as mean ± standard deviation.

Figure 8. Development of Δeps mutants. Cells on TPM agar and under submerged conditions were followed during development. Images were recorded at the indicated time.
points. Sporulation efficiency after heat and sonic treatment is indicated as the mean ± standard deviation from at three biological replicates relative to WT. Scale bars: 1mm (left), 200 µm (right).

Figure 9. Wzx/Wzy-dependent pathways for EPS biosynthesis (A) and synthesis of an unknown polysaccharide (B). See text in Discussion for details.
Table 1. Strains used in this work

Strain	Genotype	Reference
M. xanthus		
DK1622	WT	(Kaiser, 1979)
DK8615	ΔpilQ	(Wall et al., 1999)
DK10405	Δtgl	(Rodriguez-Soto & Kaiser, 1997, Wall et al., 1998)
DK10409	ΔpilT	(Jakovljevic et al., 2008, Wu et al., 1997)
DK10410	ΔpilA	(Wu et al., 1997)
DK10416	ΔpilB	(Jakovljevic et al., 2008, Wu et al., 1997)
DK10417	ΔpilC	(Wu et al., 1997)
SW501	difE::Km\(^T\)	(Yang et al., 1998)
SA3001	ΔpilO	(Friedrich et al., 2014)
SA3002	ΔpilM	(Bulyha et al., 2009)
SA3005	ΔpilP	(Friedrich et al., 2014)
SA3044	ΔpilN	(Friedrich et al., 2014)
SA5923	ΔaglQ	(Jakobczak et al., 2015)
SA6011	ΔtsaP	(Siewering et al., 2014)
SA7450	ΔwbaP\(^{MX}\)	(Pérez-Burgos et al., 2019)
SA7495	ΔexoE	(Pérez-Burgos et al., 2019)
SA7400	ΔMXAN\(_{7415}\)	This study
SA7405	ΔMXAN\(_{7416}\)	This study
SA7406	ΔMXAN\(_{7421}\)	This study
SA7407	ΔMXAN\(_{7442}\)	This study
SA7408	ΔMXAN\(_{7417}\)	This study
SA7410	ΔMXAN\(_{7416}\)\ attB::pMP024 (P\(_{pil}\) MXAN\(_{7416}\))	This study
SA7411	ΔMXAN\(_{7415}\)\ attB::pMP021 (P\(_{pil}\) MXAN\(_{7415}\))	This study
SA7412	ΔMXAN\(_{7417}\)\ attB::pMP030 (P\(_{pil}\) MXAN\(_{7417}\))	This study
SA7413	ΔMXAN\(_{7421}\)\ attB::pMP032 (P\(_{pil}\) MXAN\(_{7421}\))	This study
SA7427	ΔMXAN\(_{7416}\) ΔpilT	This study
SA7433	ΔMXAN\(_{7415}\) ΔpilT	This study
SA7435	ΔMXAN\(_{7442}\) ΔpilT	This study
SA7444	ΔMXAN\(_{7417}\) ΔpilT	This study
SA7445	ΔMXAN\(_{7421}\) ΔpilT	This study
SA7451	ΔMXAN\(_{1025}\)	This study
SA7452	ΔMXAN\(_{1035}\)	This study
Table 2. Plasmids used in this work

Plasmid	Description	Reference
pBJ114	Km\(^r\) galK	(Julien et al., 2000)
pSWU30	Tet\(^r\)	(Wu & Kaiser, 1997)
pSW105	Km\(^r\), PpilA	(Jakovljevic et al., 2008)
pBADNTF	pBAD24 for N-terminal FLAG fusion and with arabinose inducible promoter, Amp\(^r\)	(Marolda et al., 2004)
pLA3	pBADNTF, wcaJ, Amp\(^r\)	(Furlong et al., 2015)
pSM13	pUC18, \(wbaP\) from \(S. enterica\) Ty2 containing a 1 bp deletion at position 583 and a 2 bp deletion at position 645. This causes a frame shift at WbaP I194 and frame restoration at Y215, Amp\(^r\)	(Saldías et al., 2008)
pJD132	pBluescript SK, \(wbaP\) and flanking sequences from \(E. coli\) O9:K30, Amp\(^r\)	(Schäffer et al., 2002)
pWQ499	pKV102 containing rcsAK30, Tet\(^r\)	C. Whitfield
pMAT150	pBJ114, in-frame deletion construct for \(piIT\) Km\(^r\)	Anke Treuner-Lange
pMP001	pBJ114, in-frame deletion construct for \(MXAN_7415\) Km\(^r\)	This study
pMP012	pBJ114, in-frame deletion construct for \(MXAN_7421\) Km\(^r\)	This study
pMP015	pBJ114, in-frame deletion construct for \(MXAN_7442\) Km\(^r\)	This study
pMP016	pBJ114, in-frame deletion construct for \(MXAN_7446\) Km\(^r\)	This study
pMP018	pBJ114, in-frame deletion construct for \(MXAN_7417\) Km\(^r\)	This study
pMP021	pSWU30, \(P_{nat}\) \(MXAN_7415\) Tet\(^r\)	This study
pMP024	pSWU30, \(P_{nat}\) \(MXAN_7416\) Tet\(^r\)	This study
pMP030	pSW105, \(MXAN_7417\) Km\(^r\)	This study
pMP032	pSW105, **MXAN_7421 Km**⁺	This study
--------	---------------------------------	------------
pMP091	pSWU30, **P_{nat} MXAN_7442 Tet**⁺	This study
pMP124	pBJ114, in-frame deletion construct for **MXAN_1043 Km**⁺	This study
pMP146	pBADNTF, **MXAN_7415 Amp**⁺	This study
pJJ1	pBJ114, in-frame deletion construct for **MXAN_1035 Km**⁺	This study
pJJ2	pBJ114, in-frame deletion construct for **MXAN_1025 Km**⁺	This study
pJJ3	pBJ114, in-frame deletion construct for **MXAN_1052 Km**⁺	This study
pJJ4	pBJ114, in-frame deletion construct for **MXAN_1915 Km**⁺	This study