Review

Acinetobacter baumannii Antibiotic Resistance Mechanisms

Ioannis Kyriakidis 1,2,*, Eleni Vasileiou 1, Zoi Dorothea Pana 3 and Athanasios Tragiannidis 1,3

1 Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; eleni.vasileiou@yahoo.com (E.V.); atragian@auth.gr (A.T.)
2 Laboratory of Cytogenetics and Molecular Genetics, Department of Biology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
3 School of Medicine, European University, 1516 Nicosia, Cyprus; z.pana@euc.ac.cy

* Correspondence: kyriakidis@auth.gr

Abstract: Acinetobacter baumannii is a Gram-negative ESQAPE microorganism that poses a threat to public health by causing severe and invasive (mostly nosocomial) infections linked with high mortality rates. During the last years, this pathogen displayed multidrug resistance (MDR), mainly due to extensive antibiotic abuse and poor stewardship. MDR isolates are associated with medical history of long hospitalization stays, presence of catheters, and mechanical ventilation, while immunocompromised and severely ill hosts predispose to invasive infections. Next-generation sequencing techniques have revolutionized diagnosis of severe A. baumannii infections, contributing to timely diagnosis and personalized therapeutic regimens according to the identification of the respective resistance genes. The aim of this review is to describe in detail all current knowledge on the genetic background of A. baumannii resistance mechanisms in humans as regards beta-lactams (penicillins, cephalosporins, carbapenems, monobactams, and beta-lactamase inhibitors), aminoglycosides, tetracyclines, fluoroquinolones, macrolides, lincosamides, streptogramin antibiotics, polymyxins, and others (ampicillins, oxazolidinones, rifamycins, fosfomycin, diaminopyrimidine, sulfonamides, glycopeptide, and lipopeptide antibiotics). Mechanisms of antimicrobial resistance refer mainly to regulation of antibiotic transportation through bacterial membranes, alteration of the antibiotic target site, and enzymatic modifications resulting in antibiotic neutralization. Virulence factors that may affect antibiotic susceptibility profiles and confer drug resistance are also being discussed. Reports from cases of A. baumannii coinfection with SARS-CoV-2 during the COVID-19 pandemic in terms of resistance profiles and MDR genes have been investigated.

Keywords: Acinetobacter baumannii; antibiotic; resistance; antimicrobial; multidrug resistant; extensive drug resistant; pandrug resistant; next-generation sequencing; CRAB

1. Introduction

Antimicrobial or antibiotic resistance (AMR) has emerged as a substantial and triggering phenomenon with increasing costs for healthcare systems worldwide. In recent years it has been related to significant morbidity, mortality, and increased cost due to both prolonged length of hospitalization and treatment. Although in the last decades, there are new antimicrobial agents in our armamentarium, resistance seems to be an expanding problem with geometric evolution. Data from multicenter studies in the last decades have demonstrated that both community-acquired and nosocomial AMR are increasing alongside the increased number of older patients with primary or secondary immunodeficiencies [1,2].

Acinetobacter baumannii belongs to the Moraxellaceae family and is a Gram-negative bacterium that predominantly causes nosocomial infections. These infections are diverse and may include hospital-acquired and ventilator-associated pneumonia (HAP, VAP), urinary tract infections, meningitis, bacteremia, and gastrointestinal and skin/wound infections [3–7].
A. baumannii is one of the ESKAPE organisms (*Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *A. baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* spp.), that pose a global threat to human health and a therapeutic challenge due to emerging and constantly increasing resistance. Carbapenem resistant *A. baumannii* (CRAB) was ranked in 2018 by WHO as number one priority for antibiotic research and development. Carbapenem was chosen as a marker, because carbapenem resistance is usually associated with a broad range of co-resistance to other antibiotic classes [8].

The overall prevalence of multidrug-resistant strains in patients with *A. baumannii* HAP and VAP is estimated to be 79.9%, ranging from 56.5% in Argentina and 61.8% in Taiwan to 100% in Central America, Pakistan, Lebanon, Qatar, and Croatia, while its overall mortality can be as high as 56.2% [9]. The patterns of carbapenem resistance differ throughout Europe and also within the countries of the Arab League. Increased incidence of carbapenem resistant *A. baumannii* isolates has been observed in Northern and Eastern Europe as well as in the Levant countries of the Arab League (Iraq, Jordan, Lebanon, Palestinian territories, and Syria) [10,11].

Carbapenems were the preferred treatment of multidrug resistant (MDR) *A. baumannii* infections, but their prior use has led to increased incidence of carbapenem resistance during the last years [12]. Polymyxins are now widely used as the antibiotics of choice for MDR *A. baumannii* infections, although they were initially avoided due to systemic toxicities (nephrotoxicity and neurotoxicity) [13,14]. Extensive drug resistant (XDR) *A. baumannii* is called an isolate resistant to three or more classes of antimicrobials (penicillins and cephalosporins—including inhibitor combinations, fluoroquinolones, and aminoglycosides, resistant to carbapenems in most of cases), while pandrug resistant (PDR) *A. baumannii* is an XDR isolate resistant to polymyxins and tigecycline. Lately, extensively drug-resistant isolates have been led to the discovery of novel antimicrobials and the introduction of new treatment approaches [15,16].

Mechanisms of antibiotic resistance can be categorized into three groups. First, resistance can be achieved by reducing membrane permeability or increasing efflux of the antibiotic and thus preventing access to the target. Second, bacteria can protect the antibiotic target through genetic mutation or post-translational modification, and last, antibiotics can be directly inactivated by hydrolysis or modification [17]. The mechanisms of *A. baumannii* antibiotic resistance based on this classification are summarized in Figure 1. One of the most important weapons in the armoury of *Acinetobacter* is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, insertion sequences are considered one of the key forces shaping bacterial genomes and ultimately evolution [1,2]. Additionally, *A. baumannii* can form biofilms and thus prolong its survival on medical devices, such as ventilators in intensive care units (ICUs) [18]. However, the relationship between biofilm formation and antibiotic resistance still remains unclear [19,20]. In the present review, we report data on *A. baumannii* mechanisms of resistance to different classes of antibiotics and future perspectives for early identification of resistant genes.
Figure 1. Mechanisms of antibiotic resistance in A. baumannii. Antibiotic resistance can be conferred through three main mechanisms, i.e., control of antibiotic transportation through membranes (reduction of porin permeability or increased efflux), modification of antibiotic targets, and enzymatic inactivation of the antibiotics. A = aminoglycosides; B = beta-lactams; C = chloramphenicol; F = fosfomycin; L = lincomycin; M = macrolides; MATE = multidrug and toxic compound extrusion; MFS = major facilitator superfamily; O = oxazolidinones; P = polymyxins; PBP = penicillin binding protein; Q = fluoroquinolones; R = rifamycins; RND = resistance-nodulation-division; S = diaminopyrimidines and sulfonamides; SMR = small multidrug resistance family; T = tetracyclines.

2. Resistance to Beta-Lactams

Beta-lactams comprise of penicillins, cephalosporins, carbapenems, monobactams, and beta-lactam inhibitors. Beta-lactam antibiotics are structurally similar to the d-Ala-d-Ala moiety of peptidoglycan, where penicillin-binding proteins bind, and thus they inhibit the transpeptidation, which is the last step in peptidoglycan synthesis [21]. A. baumannii is nowadays intrinsically resistant to penicillins and cephalosporins [22]. Resistance to beta-lactam antibiotics can be conferred through all the aforementioned mechanisms, which is inactivation by hydrolysis, increase of efflux, decrease of influx, and protection of the antibiotic target.

2.1. Beta-Lactamases

Beta-lactamases are enzymes that catalyze the hydrolysis of beta-lactam antibiotics and can be divided into four classes based on sequence motifs and differences in hydrolytic mechanism [23,24].

2.1.1. Class A

Class A beta-lactamases mediate resistance to penicillin, cephalosporins, monobactams, and carbapenems. These lactamases may have narrow spectrum, or they can acquire extended spectrum antibiotic activity through point mutations. Narrow spectrum lactamases are active, mostly against penicillins, and can be inhibited by clavulanic acid [25], while extended spectrum beta-lactamases (ESBLs) can hydrolyze extended spectrum cephalosporins, like ceftazidime, ceftriaxone, cefotaxime, as well as aztreonam [26]. In addition, they are broadly distributed among Gram-negative bacteria with the help of plasmids and other mobile genetic elements [24]. Periodic surveillance of ESBL producing strains and detection of the respective genes (for example blatem-92, blashv, blages-11, blages-14, blaper-1, blaper-7, and blaveb-1) can be of use in the clinical setting [27–31].
Other notable members of this class are the extended spectrum cefotaximases (CTX-M) and the Klebsiella pneumoniae carbapenemases (KPC) [32,33].

2.1.2. Class B

Class B or metallo-beta-lactamases (MBLs) are encoded by mobile DNA (plasmids, integrons) and catalyze the hydrolysis of virtually all beta-lactamases (including carbapenems), but not monobactams, conferring multidrug-resistance. These enzymes require either zinc or another heavy metal for the catalysis and are further classified in three subclasses (B1, B2, and B3) based on sequence diversity and differences in the structure of their active sites. Moreover, four types of MBLs have been described in A. baumannii, namely IMP, VIM, NDM, and SIM [34]. The detection of MBL-producing organisms with the help of phenotypic methods, such as double disc synergy test, MBL E-test, and combined disk test, has been challenging [35,36]; however, molecular methods and in particular next generation sequencing are going to shed some light on their detection [37–39]. Phenotypic methods are not sensitive enough and thus do not detect all MBL producing strains [36]. With the help of PCR, blaVIM-1 was detected in 14.3% of A. baumannii isolates characterized as MBL negative by E-test, highlighting the importance of introducing molecular methods into every-day practice in order to detect these hidden MBLs [40]. Recently, López et al. demonstrated that the expression of NDM lactamases does not compromise bacterial growth and is favored over other MBLs due to the lack of fitness cost leading to its worldwide dissemination among Gram-negative bacteria [41].

2.1.3. Class C

Class C beta-lactamases are chromosomally encoded cephalosporinases (acinetobacter-derived cephalosporinase, ADC), inherent to all A. baumannii. Overexpression of these lactamases can be induced by the insertion of ISAb1 and ISAb125 sequences upstream of the encoding gene blaADC (formerly known as blaAmpC), which appear to be stronger promoters than the intrinsic promoter [42–46]. Insertions sequences (IS) are short transposable elements that are repeated multiple times throughout the genome, and thus are difficult to detect. An open-source bioinformatics pipeline (panISa) that utilizes whole genome sequencing (WGS) data as input has been recently developed in order to overcome this problem [47]. Several ADC variants have been described, many of which exhibit extended spectrum antibiotic resistance [48,49]. For example, ADC-30 provides resistance not only to cephalosporins, but also to carbapenems and sulbactam [50,51]. Finally, phosphoproteomic analysis revealed that dephosphorylation of ADC may lead to imipenem resistance in clinical isolates [52].

2.1.4. Class D

Class D beta-lactamases, also called oxicillinases (OXA) or carbapenem-hydrolyzing class D beta-lactamases (CHDLs), can inactivate all beta-lactams (mainly OXA-10 family) and comprise the main mechanism of carbapenem resistance. These enzymes are serine-dependent just like Class A and C beta-lactamases [53]. In addition, class D beta-lactamases usually cannot be inhibited by clavulanic acid, sulbactam, and tazobactam [54]. There are several blaOXA genes, including blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58, blaOXA-143, and blaOXA-235. The genes encoding these enzymes can be found on both the chromosome as well as the plasmids. Moreover, Wong et al. have recently confirmed that carbapenem resistance in clinical isolates of A. baumannii is mediated by over-expression of either OXA-23 or OXA-51 through insertion of ISAb1 in their promoter region [55]. With the help of molecular techniques (PCR, sequencing), reservoirs of carbapenemase-producing A. baumannii have been isolated from companion animals and pigeons, highlighting as a result the importance of global surveillance [56,57].
2.2. Outer Membrane Proteins

Antibiotic resistance due to beta-lactamases can be significantly enhanced when they collaborate with outer membrane proteins (OMPs). The low permeability outer membrane protein A (OmpA, 40 kDa) is the main non-specific porin in *A. baumannii* and has mainly a structural role [58,59]. It is speculated that OmpA takes part in the transport of antibiotics out of the periplasmatic space [60]. On the contrary, Iyer et al. demonstrated that OmpA selectively enables the uptake of small molecules like sulbactam, imipenem, and ETX2514 [61]. In mutant strains lacking OmpA (ΔompA and OmpA-like domain deletion), instability of the outer membrane and increased susceptibility to antibiotics (including penicillins and cephalosporins) has been observed [58,60,62]. Finally, Zhong et al. have recently shown that OmpA C-terminal domain is also responsible for anchoring beta-lactamases (Oxa23, GES-11) in the periplasmatic space, which may further explain the increased susceptibility in case of OmpA loss [63].

Mussi et al. have vigorously studied the carbapenem-associated outer membrane protein (CarO, 29 kDa) in carbapenem sensitive and resistant *A. baumannii* [64–67]. They have demonstrated that CarO serves as an uptake channel for L-ornithine and possibly carbapenems [66]. In carbapenem-resistant clinical isolates of *A. baumannii* insertion, elements can disrupt the expression of the chromosomal CarO gene and lead to complete loss of CarO [65,68,69]. In addition, CarO gene mutations can induce significant structural modifications in CarO and thus reduce outer membrane permeability and eventually cause drug resistance [70]. However, there are also studies that question the role of CarO in carbapenem resistance and suggest that other porin-mediated mechanisms might exist [71–74].

Srinivasan et al. studied the physiological functions of another OMP, AbuO, and demonstrated its role in multidrug resistance. AbuO is involved in the active efflux of multiple antibiotics, including ceftriaxone and meropenem [75]. Moreover, decreased expression of a different 33-36 kDa OMP is associated with carbapenem resistance [76,77]. Lastly, there have been contradicting studies regarding the involvement of the outer membrane carboxylate channel (Occ; formerly OprD) family in carbapenem resistance [78,79].

2.3. Efflux Pumps

Increased expression of efflux pumps contributes synergistically with beta-lactamases to antibiotic resistance [80]. Overexpression of AdeABC efflux pump is associated with *A. baumannii* carbapenem and cephalosporin resistance [81–83]. The AdeABC is a three-component efflux pump, member of the resistance–nodulation–division (RND) family. AdeB component expels antibiotics out of the cell, while AdeA is a membrane fusion protein and AdeC an outer membrane protein [84]. The substrates of AdeB can be diverse; they can range from hydrophilic to hydrophobic and can be either positively charged or neutral [83]. The expression of this efflux pump is regulated by the AdeRS two-component system. Point mutations in the adeRS operon can lead to increased expression of the pump and consequently to antibiotic resistance [85,86]. It has been shown that other efflux pumps AdeIJK and AbeM may also contribute to imipenem and cephalosporin resistance [87,88].

2.4. Penicillin-Binding Proteins

Penicillin-binding proteins (PBP) are enzymes that catalyze the polymerization of peptidoglycan and are responsible for its insertion into the cell wall [89]. Beta-lactams bind to PBPs because they mimic their substrate. Inhibition of PBPs by beta-lactams then leads to an imbalance in cell wall metabolism and as a result to cell death [90].

The role of this resistance mechanism appears to be less significant but cannot be ignored. Although mutations in hot spot regions have been observed in PBP genes, the corresponding changes in amino acid sequences were not directly related to beta-lactam resistance [91]. However, Gehrelin et al. attributed imipenem resistance in a clone of *A. baumannii* strain No. 4852/88 to complex PBP alterations [92]. Moreover, Yun et al. reported increased expression of PBPs in a MDR *A. baumannii* strain (MIC of imipenem
>128 µg/mL) as a response to imipenem exposure [93]. On the other hand, Fernández-Cuenca et al. observed reduced expression of a 73 kDa PBP [94] and Vashist et al. PBP alterations in carbapenem resistant A. baumannii [95]. Siroy et al. have also showed decreased expression of PBPIb in a clinical MDR isolate [96]. Finally, PBP3 mutants have been associated with resistance to meropenem, sulbactam, and cefiderocol [82,94–96].

In Table 1 are summarized the genes and the respective proteins that are involved in beta-lactam resistance retrieved from the pathogen detection microbial browser for identification of genetic and genomic elements (MicroBIGG-E), a database housed by National Center for Biotechnology Information (NCBI) [97].

Mechanism of Resistance	Element Name	Resistance	Element Symbol (Gene)	Protein Products
Class A beta-lactamases	class A broad-spectrum beta-lactamase TEM-1		blaTEM-1	WP_000027057.1 and others
	class A extended-spectrum beta-lactamase SHV-5		blaSHV-5	WP_011117369.1 and others
	class A extended-spectrum beta-lactamase SHV-12		blaSHV-12	WP_029904004.1 and others
	carbapenem-hydrolyzing class A beta-lactamase GES-5		blaGES-5	WP_012658785.1
	class A extended-spectrum beta-lactamase GES-11		blaGES-11	WP_00211000.1 and others
	class A beta-lactamase GES-12		blaGES-12	WP_063860500.1 and others
	inhibitor-resistant class A extended-spectrum beta-lactamase PER-1		blaPER-1	WP_001100753.1 and others
	class A extended-spectrum beta-lactamase PER-7		blaPER-7	WP_032495440.1 and others
	class A extended-spectrum beta-lactamase VEB-1		blaVEB-1	WP_000706731.1 and others
	class A extended-spectrum beta-lactamase CTX-M-15		blaCTX-M-15	WP_00239590.1 and others
	class A extended-spectrum beta-lactamase CTX-M-55		blaCTX-M-55	WP_015387340.1
	class A extended-spectrum beta-lactamase CTX-M-115		blaCTX-M-115	WP_03589532.1
	carbapenem-hydrolyzing class A beta-lactamase KPC-2		blaKPC-2	WP_004199234.1 and others
Class B metallo-beta-lactamases	subclass B1 metallo-beta-lactamase NDM-1		blaNDM-1	WP_004201164.1 and others
	subclass B1 metallo-beta-lactamase IMP-1		blaIMP-1	WP_003159548.1
	subclass B1 metallo-beta-lactamase IMP-4		blaIMP-4	WP_015306105.1
	subclass B1 metallo-beta-lactamase IMP-14		blaIMP-14	WP_039819983.1
	subclass B1 metallo-beta-lactamase IMP-16		blaIMP-16	WP_063860576.1
Table 1. Cont.

Mechanism of Resistance	Element Name	Resistance	Element Symbol (Gene)	Protein Products
Class C beta-lactamases	class C extended-spectrum beta-lactamase ADC-11		blaADC-11	WP_001211205.1
	class C beta-lactamase ADC-25		blaADC-25	WP_001211217.1
	class C extended-spectrum beta-lactamase ADC-26		blaADC-26	WP_001211238.1
	class C extended-spectrum beta-lactamase ADC-30		blaADC-30	WP_001211218.1
	cefepime-hydrolyzing class C extended-spectrum beta-lactamase ADC-33		blaADC-33	WP_001211220.1
	class C extended-spectrum beta-lactamase ADC-52		blaADC-52	WP_001211232.1
	cefepime-hydrolyzing class C extended-spectrum beta-lactamase ADC-56		blaADC-56	WP_031973850.1
	class C extended-spectrum beta-lactamase ADC-73		blaADC-73	WP_001211219.1
	class C extended-spectrum beta-lactamase ADC-74		blaADC-74	WP_001211203.1
	class C extended-spectrum beta-lactamase ADC-76		blaADC-76	WP_001211237.1
	class C extended-spectrum beta-lactamase ADC-79		blaADC-79	WP_00159760.1
	class C extended-spectrum beta-lactamase ADC-80		blaADC-80	WP_029424536.1
	class C extended-spectrum beta-lactamase ADC-82		blaADC-82	WP_001211216.1
	class C beta-lactamase ADC-152		blaADC-152	WP_001211233.1
	class C beta-lactamase ADC-156		blaADC-156	WP_024436624.1
	class C beta-lactamase ADC-162		blaADC-162	WP_031980335.1
	class C beta-lactamase ADC-176		blaADC-176	WP_00159761.1
	class C beta-lactamase ADC-182		blaADC-182	WP_057691114.1
	class C beta-lactamase ADC-212		blaADC-212	WP_031975357.1
	class C beta-lactamase ADC-222		blaADC-222	WP_031960999.1

- class C beta-lactamase ADC-11
- class C beta-lactamase ADC-25
- class C extended-spectrum beta-lactamase ADC-26
- class C extended-spectrum beta-lactamase ADC-30
- cefepime-hydrolyzing class C extended-spectrum beta-lactamase ADC-33
- class C extended-spectrum beta-lactamase ADC-52
- cefepime-hydrolyzing class C extended-spectrum beta-lactamase ADC-56
- class C extended-spectrum beta-lactamase ADC-73
- class C extended-spectrum beta-lactamase ADC-74
- class C extended-spectrum beta-lactamase ADC-76
- class C extended-spectrum beta-lactamase ADC-79
- class C extended-spectrum beta-lactamase ADC-80
- class C extended-spectrum beta-lactamase ADC-82
- class C beta-lactamase ADC-152
- class C beta-lactamase ADC-156
- class C beta-lactamase ADC-162
- class C beta-lactamase ADC-176
- class C beta-lactamase ADC-182
- class C beta-lactamase ADC-212
- class C beta-lactamase ADC-222
| Mechanism of Resistance | Element Name | Resistance | Element Symbol (Gene) | Protein Products |
|--------------------------|--------------|------------|-----------------------|------------------|
| Class D beta-lactamases (oxicillinases) | carbapenem-hydrolyzing class D beta-lactamase OXA-23 | CAR | blaOXA-23 | WP_001046004.1 and others |
| | OXA-23 family carbapenem-hydrolyzing class D beta-lactamase OXA-239 | | blaOXA-239 | WP_063862190.1 and others |
| | carbapenem-hydrolyzing class D beta-lactamase OXA-24 | CAR | blaOXA-24 | WP_012754353.1 and others |
| | OXA-24 family carbapenem-hydrolyzing class D beta-lactamase OXA-72 | | blaOXA-72 | WP_000713530.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-51 | | blaOXA-51 | WP_002033109.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-64 | | blaOXA-64 | WP_001021788.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-65 | | blaOXA-65 | WP_001021782.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-66 | | blaOXA-66 | WP_001021792.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-68 | | blaOXA-68 | WP_001021775.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-69 | | blaOXA-69 | WP_001021779.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-71 | | blaOXA-71 | WP_001021785.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-82 | | blaOXA-82 | WP_001021793.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-90 | | blaOXA-90 | WP_001021781.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-91 | | blaOXA-91 | WP_001021776.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-94 | | blaOXA-94 | WP_029424390.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-95 | | blaOXA-95 | WP_031960432.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-98 | | blaOXA-98 | WP_001021777.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-100 | | blaOXA-100 | WP_001021795.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-104 | | blaOXA-104 | WP_024433915.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-120 | | blaOXA-120 | WP_004738885.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-223 | | blaOXA-223 | WP_001022758.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-259 | | blaOXA-259 | WP_001021784.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-371 | | blaOXA-371 | WP_063862738.1 and others |
| | OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-402 | | blaOXA-402 | WP_001021789.1 and others |
Table 1. Cont.

Mechanism of Resistance	Element Name	Resistance	Element Symbol (Gene)	Protein Products
carbapenem-hydrolyzing class D beta-lactamase OXA-58	CAR	blaOXA-58	WP_0002002480.1 and others	
OXA-58 family carbapenem-hydrolyzing class D beta-lactamase OXA-96	CAR	blaOXA-96	WP_063864543.1	
OXA-134 family carbapenem-hydrolyzing class D beta-lactamase OXA-235	CAR	blaOXA-235	WP_00085409.1 and others	
OXA-134 family carbapenem-hydrolyzing class D beta-lactamase OXA-237	CAR	blaOXA-237	WP_000854010.1 and others	
carbapenem-hydrolyzing class D beta-lactamase OXA-143	CAR	blaOXA-143	WP_063861042.1	
OXA-143 family carbapenem-hydrolyzing class D beta-lactamase OXA-253	CAR	blaOXA-253	WP_032495764.1	
Multidrug efflux RND transporter AdeABC outer membrane channel subunit AdeC	adeC	WP_000047249.1 and others		
Acinetobacter baumannii efflux resistant AdeR	adeR_A91V	WP_039198290.1 and others		
Acinetobacter baumannii efflux resistant AdeR	adeR_P56S	WP_088753133.1 and others		
Acinetobacter baumannii efflux resistant AdeR	adeR_P116L	WP_111853508.1 and others		
Acinetobacter baumannii efflux resistant AdeS	adeS_G336S, adeS_N125K	WP_031975145.1, WP_057691178.1 and others		
Acinetobacter baumannii efflux resistant AdeS	adeS_H189Y	WP_119491814.1, WP_000837466.1, WP_046882653.1		
Penicillin-binding proteins	Acinetobacter baumannii carbapenem resistant FtsI	CAR	ftsI_A515V	WP_000227939.1 and others (penicillin-binding protein PBP3)

CEPH = cephalosporins; CAR = carbapenems.

3. Resistance to Aminoglycosides

According to MicroBIGG-E, resistance to aminoglycosides (AG) in *A. baumannii* can result through three distinct mechanisms (Table 2) [97]: aminoglycoside-modifying enzymes (AMEs) that weaken AG binding capacity, target site alteration by 16S rRNA methyltransferases, and limited AG uptake subsequent to loss of permeability or overactivity of efflux pumps. AMEs are further categorized as acetyl-, adenyl-, and phospho-transferases, depending on the site of AG modification (primarily by N-acetylation, O-nucleotidylation, and O-phosphorylation, respectively). *A. baumannii* displays intrinsic resistance to many antibiotics, while it seems to have acquired resistance to AGs in 19% to 31% of cases [98]. AGs are protein synthesis inhibitors that exert their action after crossing bacterial cell wall and by disturbing peptide elongation at the 30S ribosomal subunit. Genes conferring resistance can be transported by means of integrons, gene cassettes, transposons, and conjugated elements. Beyond the molecular level, and at cellular level, AG resistance genes can be transferred by means of mobilizable or conjugative plasmids, natural transformation,
or transduction [99]. More specifically, AG resistance genes can be located in: (i) plasmid: aac(3)-Ia, aac(3)-Iva, AAC(6')-Ia family, aac(6')-Ib, aac(6')-Ib-cr, aac(6')-Ic, ant(2')-Ia, ant(3')-Ia, ant(3')-Ib, ant(3')-Ic, aadA1, aadA2, aadA5, aadA13, and arrA; (ii) integron: aac(3)-Ia, AAC(6')-Ia family, aac(6')-Ib, aac(6')-Ib-cr, aac(6')-Ic, ant(2')-Ia, ant(3')-Ia, aadA1, aadA2, aadA5, aadA13, and aadA16; (iii) transposon: aac(3)-Ia, AAC(6')-Ia family, aac(6')-Ib, aac(6')-Ib-cr, aac(6')-Ic, ant(2')-Ia, ant(3')-Ia, aadA1, aadA2, aadA5, aadA11, aadA13, and aadA16; (iv) integrative conjugative element: aph(6)-Id, and arrA; (v) chromosome: aac(2')-Ib, and ant(3')-Ia, ant(3')-Ib, aadA1, aadA5, aph(3')-Ia, aph(3')-Ib, aph(3')-Ic, and arrA; (vi) chromosomal genomic island: aph(6)-Id [100].

Table 2. Mechanisms of A. baumannii resistance to aminoglycosides.

Element Name and Symbol	Resistance	Gene	Protein Products
Aminoglycoside 2'-N-acetyltransferase	GEN, TOB, DIB, NET	aac(2')-Ib	WP_001159732.1
Aminoglycoside 3-N-acetyltransferase	GEN	aac(3)	WP_195206917.1
AAC(3)-I family aminoglycoside 3-N-acetyltransferase	GEN	aac(3)-I	HAV661328.1, WP_06957335.1
Aminoglycoside N-acetyltransferase AAC(3)-Ia	AST, GEN, SIS	aac(3)-Ia	WP_002089464.1, and others
Aminoglycoside N-acetyltransferase AAC(3)-IId	GEN	aac(3)-IId	WP_000557454.1, WP_126562472.1
Aminoglycoside N-acetyltransferase AAC(3)-Ile	GEN	aac(3)-Ile	WP_000557452.1, WP_002069388.1, WP_053107705.1, WP_095530619.1, and others
Aminoglycoside N-acetyltransferase AAC(3)-Iva	APR, GEN, TOB	aac(3)-Iva	WP_00119912.1
Aminoglycoside 6'-N-acetyltransferase	all	aac(6')	HAV4276337.1
Aminoglycoside N-acetyltransferase AAC(6')-31	all	aac(6')-31	WP_044424439.1
Aminoglycoside 6'-N-acetyltransferase AAC(6')-33	all	aac(6')-33	WP_015059044.1
AAC(6')-Ia family aminoglycoside 6'-N-acetyltransferase	AMI, KAN, TOB, putatively against all	aac(6')	EGY2236991.1, EGY5968849.1, WP_088756823.1, WP_088774065.1, WP_149076846.1
AAC(6')-Ia family aminoglycoside 6'-N-acetyltransferase AacA16	all	aacA16	WP_001109644.1
Aminoglycoside 6'-N-acetyltransferase AacA34	all	aacA34	WP_052288580.1
AAC(6')-Ia family aminoglycoside 6'-N-acetyltransferase AacA43	KAN, TOB	aacA43	WP_024437351.1
Aminoglycoside N-acetyltransferase AAC(6')-Ia	AMI, KAN, TOB, putatively against all	aac(6')-Ia or aacA57-2	WP_000960976.1
Aminoglycoside 6'-N-acetyltransferase AAC(6')-Ib	AMI, DIB, GEN, ISE, KAN, NET, SIS, TOB	aac(6')-Ib	WP_063840280.1, and others
Element Name and Symbol	Resistance	Gene	Protein Products
-------------------------	------------	------	-----------------
Aminoglycoside N-acetyltransferase AAC(6')-Ib'	GEN	aac(6')-Ib'	WP_014454105.1
AAC(6')-Ighjrstuvwx family aminoglycoside N-acetyltransferase	AMI, KAN, TOB	aac(6')-I	WP_169109636.1, WP_159965588.1, WP_005288246.1, WP_005243483.1
Aminoglycoside N-acetyltransferase AAC(6')-Ib3	AMI, KAN, TOB	aac(6')-Ib3	WP_032488579.1
Aminoglycoside N-acetyltransferase AAC(6')-Ib4	GEN	aac(6')-Ib4	WP_003159191.1
aminoglycoside N-acetyltransferase AAC(6')-Ih	AMI, KAN, TOB	aac(6')-Ih	WP_016541245.1
Aminoglycoside N-acetyltransferase AAC(6')-Il	AMI, KAN, TOB	aac(6')-Il	WP_156193962.1
AAC(6')-II family aminoglycoside 6'-N-acetyltransferase AacA35	GEN, KAN, TOB	aacA35	WP_024437054.1
Aminoglycoside N-acetyltransferase AAC(6')-Iic	GEN, KAN, TOB	aac(6')-Iic	WP_149959345.1, WP_149938250.1
Fluoroquinolone-acetylating aminoglycoside 6'-N-acetyltransferase AAC(6')-lb-cr	AMI, KAN, TOB, QUI	aac(6')-lb-cr	WP_185936887.1
Fluoroquinolone-acetylating aminoglycoside 6'-N-acetyltransferase AAC(6')-lb-cr5	AMI, KAN, TOB, QUI	aac(6')-lb-cr5	WP_063840321.1
Aminoglycoside nucleotidyltransferase ANT(2")-Ia	DIB, GEN, KAN, SIS, TOB	[102] ant(2")-Ia	WP_000381802.1, and others
ANT(3")-I family aminoglycoside nucleotidyltransferase	STR, SPE	ant(3")	WP_038350223.1
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA	STR, SPE	ant(3")-Ia	WP_001205725.1
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA1	STR	aadA1	WP_001206316.1, and others
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA2	STR	aadA2	WP_001206356.1, WP_001261740.1, and others
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA5	STR	aadA5	WP_000503573.1, WP_000503574.1
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA11	STR	aadA11	WP_048608579.1, HAV4466908.1
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA13	STR	aadA13	WP_001424636.1
ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA16	STR	aadA16	WP_001749984.1, WP_185936919.1
ANT(3")-II family aminoglycoside nucleotidyltransferase	STR, SPE	ant(3")-II	WP_005240470.1
Table 2. Cont.

Element Name and Symbol	Resistance	Gene	Protein Products
Aminoglycoside nucleotidyltransferase ANT(3")-IIa	STR, SPE	ant(3")-IIa	WP_001279062.1, WP_001279061.1, WP_001112625.1, and others
Aminoglycoside nucleotidyltransferase ANT(3")-IIC	STR, SPE	ant(3")-IIC	WP_005281276.1
Aminoglycoside phosphotransferases			
APH(3') family aminoglycoside O-phosphotransferase		aph(3')	WP_196077463.1
Aminoglycoside O-phosphotransferase APH(3')-Ia	GEN, KAN, NEO, PAR, LIV, RIB [102]	aph(3')-Ia	WP_000018326.1, and others
Aminoglycoside O-phosphotransferase APH(3')-Ila	KAN	aph(3')-II	WP_000262467.1
Aminoglycoside O-phosphotransferase APH(3')-VIa	KAN	aph(3')-VI	WP_014386410.1, and others
Aminoglycoside O-phosphotransferase APH(3')-VIb	KAN	aph(3')-VIb	WP_000422633.1, WP_000422632.1, and others
Aminoglycoside O-phosphotransferase APH(3')-Vla	HYG	aph(4)-Ia	WP_185216783.1
Aminoglycoside O-phosphotransferase APH(4)-Ia		aph(6)-Id	WP_000480968.1, and others
ArmA family 16S rRNA methylase genes		armA	WP_000359966.1, and others
16S rRNA (guanine(1405)-N(7))-methyltransferase		rmtB and rmtB1	WP_012372818.1
RmtE family 16S rRNA (guanine(1405)-N(7))-methyltransferase		rmtE	WP_120494548.1
Efflux pump overactivity			
Multidrug efflux MPS transporter AmvA		amvA	WP_001170321.1, and others
Multidrug efflux RND transporter AdeABC outer membrane channel subunit AdeC	Putatively against all	adeC	WP_000047249.1, and others
Multidrug efflux RND transporter periplasmic adaptor subunit AdeD		adeD	WP_002119008.1, WP_039254548.1
Multidrug efflux RND transporter permease subunit AdeE		adeE	WP_002118518.1, WP_039254549.1
AME genes *aph(3')-Vla, aph(3')-Vlb*, and *aph(3')-VI* seem to be significantly more prevalent among amikacin and kanamycin resistant isolates, while isolates harboring *aac(6')-Ian, aac(6')-Ib, aac(6')-Ib3, aac(6')-I*, and *aac(6')-Il* genes exhibit resistance against amikacin, kanamycin, and tobramycin [81,87]. Conversely, resistance to gentamicin should not be taken for granted in the presence of the above genes, while it is mainly mediated by 16S rRNA methylation (*armA* gene), 3-N- and 6'-N-acetylation of gentamycin, and by 2”-O-nucleotidylation (*ant(2”)-Ia* gene; correlated originally with resistance to kanamycin and tobramycin [97,103]. Unlike amikacin, gentamicin, and tobramycin that lack 3'-hydroxyl, groups usually retain activity in the presence of O-phospotransferases due to their inability to accept phosphate [104]. Resistance to AGs is increasing, and target site alteration seems to play a pivotal role with *armA* and *rmtB1* genes to be detected with plentiful of coexisting resistance genes [99].

Although AMEs remain the principal procedure by which *A. baumannii* evades elimination by AGs, efflux is also an emerging problem with AG use. Seven different gene products (Table 2) result in effective efflux of AGs, including pumps, permeases, periplasmic adaptors, and two component systems (TCSs) [105]. Of note, gentamicin and netilmicin are effectively cleared by AdeABC and AbeM pumps, but efflux is significantly weaker as regards more hydrophilic AGs, like amikacin and kanamycin [106]. Changes in membrane lipids and porin expression are only minor mechanisms of AG resistance and are still under investigation [99]. Recent case reports have indicated the usefulness of next-generation sequencing (NGS) in the prompt diagnosis and appropriate treatment of *A. baumannii* infections by early identification of resistance genes [107].

4. Resistance to Tetracyclines

Tetracycline antibiotics bind to the 30S ribosomal subunit and thereby inhibit protein synthesis by deterring the start of translation [108]. Resistance to tetracycline antibiotics is attributed to three main mechanisms: (i) efflux dependent on ATP, (ii) inactivation of tetracyclines by enzymes, and (iii) ribosomal protection proteins (RPPs) [109]. Table 3 describes resistance mechanisms that are unique for this antibiotic group.

Table 2. Cont.

Element Name and Symbol	Resistance	Gene	Protein Products
Efflux system DNA-binding response regulator transcription factor AdeR	adeR	WP_03202707.1, EGY8404952.1, WP_0020752724.1	
Two-component sensor histidine kinase AdeS two-component sensor histidine kinase	adeS	WP_031975145.1, and others	
Multidrug efflux SMR transporter EmrE	emrE	WP_109847152.1	

AMI = amikacin; APR = apramycin; AST = astromycin; DIB = dibekacin; DNA = deoxyribonucleic acid; GEN = gentamicin; HYG = hygromycin; ISE = isepamicin; KAN = kanamycin; LIV = lividomycin; MFS = major facilitator superfamily; NEO = neomycin; NET = netilmicin; PAR = paromomycin; QUI = quinolone; RIB = ribostamycin; RNA = ribonucleic acid; RND = resistance/nodulation/cell division family; SIS = sisomicin; SMR = small multidrug resistance family; SPE = spectinomycin; STR = streptomycin; TOB = tobramycin; † = Identified via NCBI Identical Protein Groups, but with no respective mention in MicroBIGG-E.
Table 3. Cont.

Element name and symbol	Resistance	Gene	Protein products
Tetracycline efflux MFS transporter Tet(C)	TET [112]	tet(C)	WP_000841448.1
Tetracycline efflux MFS transporter Tet(D)	TET [113]	tet(D)	WP_024436252.1
Tetracycline efflux MFS transporter Tet(G)	DOX, MIN, TET	tet(G)	WP_001257840.1
Tetracycline efflux MFS transporter Tet(H)	OXY, TET [114]	tet(H)	WP_006248867.1
Tetracycline resistance ribosomal protection protein Tet(M)	TET, MIN	tet(M)	WP_000691727.1
Tetracycline-inactivating monooxygenase Tet(X)	all	tet(X)	WP_024160783.1, and others

*DOX = doxycycline; MFS = major facilitator superfamily; MIN = minocycline; OXY = oxytetracycline; TET = tetracycline; TIG = tigecycline; * = only when RND-pumps AdeABC and AdeIJK are present.

Two types of efflux pumps that require energy are responsible for tetracycline resistance in *A. baumannii*. The resistance/nodulation/cell division (RND) family-type pumps are constitutive non-specific pumps originating from *adeA, adeB*, and *adeC* genes, which encode periplasmic adaptor subunits, permease subunits, and outer membrane pump elements, respectively [83]. RND pumps, and predominantly AdeABC, can effectively eliminate tetracyclines, while correspondingly, they mediate a substantial elevation of minimum inhibitory concentrations (MICs) for tigecycline, minocycline, and tetracycline [106]. RND pump AdeIJK seems to have a minor role in tetracycline resistance against *A. baumannii*, but it can act synergistically with other overexpressed efflux pumps (like AdeABC and AcrAB-ToIC) and result in tigecycline resistance [115]. The second category refers to tetracycline major facilitator superfamily (MFS) efflux pumps: TetA and TetB [116]. TetA seems to lead efflux of tigecycline into the periplasm, and subsequently, RND pumps drive to elimination through the outer membrane [117].

TetM/TetW/TetO/TetS family tetracycline resistance RPPs abolish the inhibitory effect of tetracycline on protein synthesis by a non-covalent modification of the ribosomes [118]. Though rare, resistance to minocycline in *A. baumannii* has been attributed to ribosomal protection and *tetM* gene. The latter gene product mediates tetracycline release from its ribosomal binding site by a GTP-dependent mechanism, enabling the continuation of translation despite the presence of tetracycline [119].

Recent transcriptomic studies have shown that *A. baumannii* can swiftly become resistant to tigecycline [120]. Tigecycline has been a powerful tool against *A. baumannii* in the clinician’s armamentarium until recently, when various plasmid-mediated *tet(X)* gene variants emerged. Tet(X3), Tet(X4), and Tet(X5) are monooxygenases that can inactivate all tetracyclines even tigecycline and the recently authorized eravacycline and omadacycline [121,122].

5. Resistance to Fluoroquinolones

Quinolones are bactericidal with a broad spectrum that are characterized by a bicyclic core formation bearing resemblance to 4-quinolone. Quinolone antibiotics are mostly fluoroquinolones displaying efficacy against both Gram-negative and Gram-positive pathogens [123]. Regarding their mechanism of action, quinolone antibiotics interrupt DNA replication by averting bacterial DNA from loosening and being cloned. Quinolones exert their action by inhibiting the ligase activity of the type II topoisomerases, DNA gyrase, and topoisomerase IV, which normally induce supercoiling in collaboration with DNA nucleases. Disrupting ligase activity, bacteria remain with double-stranded DNA breaks and thus are led to cell death. Notably, quinolones primarily affect gyrase activity, while toxicity against topoisomerase IV is secondary (i.e., there is no proof of sole *parC* mutations without concomitant alterations in *gyrA*) [123]. Quinolone resistance occurs via three different mechanisms: (i) target mutations in gyrase and topoisomerase IV, which weaken the respective quinolone–enzyme interactions; (ii) plasmid-borne resistance mediated by
Qnr proteins, the AMEs AAC(6′)-Ib-cr and AAC(6′)-Ib-cr5, and by plasmid-encoded efflux pumps; and (iii) chromosome-derived resistance resulted by either low expression of porins or overexpression of chromosome-encoded efflux pumps [123–125]. A recent review reported resistance of *A. baumannii* to fluoroquinolones between 50% and 73% of cases, while the respective resistance in developing countries during the last years displayed a marked increase reaching 75% to 97.7% [98,126]. Table 4 lists all recorded quinolone-specific resistance mechanisms for *A. baumannii*.

| Table 4. Quinolone-specific mechanisms of *A. baumannii* resistance. |
|---------------------------------|-----------------|-----------------|-----------------|
| **Element Name and Symbol** | **Resistance** | **Gene** | **Protein Products** |
| Fluoroquinolone-acetylating aminoglycoside 6′-N-acetyltransferase AAC(6′)-Ib-cr | CIP, NOR | *aac(6′)-Ib-cr* | WP_185936887.1 |
| Fluoroquinolone-acetylating aminoglycoside 6′-N-acetyltransferase AAC(6′)-Ib-cr5 | CIP, NOR | *aac(6′)-Ib-cr5* | WP_063840321.1 |
| *A. baumannii* quinolone resistant GyrA (DNA gyrase subunit A) | CIP, LEV | *gyrA_S81L* | WP_000116444.1, and others |
| *A. baumannii* quinolone resistant ParC (DNA topoisomerase IV subunit A) | CIP, LEV | *parC_E88K* | WP_000202265.1, and others |
| *A. baumannii* quinolone resistant ParC (DNA topoisomerase IV subunit A) | CIP, LEV | *parC_S84F* | WP_000202250.1, and others |
| *A. baumannii* quinolone resistant ParC (DNA topoisomerase IV subunit A) | CIP, LEV | *parC_S84L* | WP_000202252.1, and others |
| QnrA family quinolone resistance pentapeptide repeat protein | CIP | *qnrA* | HAV5951840.1 |
| QnrB family quinolone resistance pentapeptide repeat protein | CIP | *qnrB* | WP_185936934.1 |
| Quinolone resistance pentapeptide repeat protein QnrB19 | CIP | *qnrB19* | WP_012954666.1 |
| QnrS family quinolone resistance pentapeptide repeat protein | CIP, * | *qnrS* | WP_147508156.1 |

CIP = ciprofloxacin; LEV = levofloxacin; NOR = norfloxacin; * = resistance to CIP, LEV, NOR, and enrofloxacin in the presence of rmtB [127].

Quinolone resistance occurring secondary to overactive RND pumps has been long documented and is quite common [128]. Mutations in the TCS elements regarding both regulator (AdeR, primarily with polymorphisms D20N, A91V, A136V, and P116L) and sensor (AdeS, mainly due to polymorphisms G30D, A94V, G103D, G186V, and T153M) of AdeABC pump result in higher fluoroquinolone efflux. Mutations in *adeR* and *adeS* seem to trigger overexpression of the AdeABC efflux system (especially of the permease subunit *adeB* gene) and are associated with resistance to ciprofloxacin, norfloxacin, and ofloxacin [128]. Beyond AdeABC, efflux systems AdeJK and AdeFGH are also utilized by *A. baumannii* to remove fluoroquinolones from the cell and result in high MICs. In addition, contribution of the multidrug and toxic compound extrusion (MATE) transporters AbeM and AbeS to *A. baumannii* resistance against quinolones is disputable. AbeM pump primarily affects the hydrophilic fluoroquinolones, norfloxacin and ciprofloxacin, rather than the hydrophobic ones (such as ofloxacin). In general, these non-RND efflux pumps confer low-level resistance to fluoroquinolones, even though some studies suggest otherwise [124,129].

Quinolone resistance-determining regions (QRDRs) refer mainly to alteration of target sites in gyrase (Ser83Leu, Gly81Asp, and Ser81Leu mutations preventing quinolones from binding its alpha-subunit) and topoisomerase IV (mutations Ser80Leu, Glu84Lys, and Gly78Cys, and Ser84Leu in its subunit C). Although a single point mutation in DNA gyrase is usually not enough for resistance to fluoroquinolones in *A. baumannii* (maybe only
against levofloxacin; single parC mutations link with ciprofloxacin resistance), concurrent mutations within QDRR regions of the gyrA and parC genes are linked with significantly higher level of quinolone resistance [130,131]. Alterations in gyrB and parE genes are of minor significance [126].

Plasmid-mediated quinolone resistance (PMQR) has been recently identified as a clinical problem against A. baumannii infections, but generally confers still low-level (≤10-fold) resistance [123,132]. Qnr genes qnrA1 (the first PMQR gene to be identified), qnrB, qnrB19, and qnrS encode members of the pentapeptide-repeat protein family (homologous to McbG and MfpA proteins), which originally inhibit gyrase action through competition with DNA for binding, leading to a decrease of DNA binding with topoisomerase and thus protecting enzyme–DNA complexes from the action of quinolones [97,132]. Due to the aforementioned DNA homology, these pentapeptide repeat-containing Qnr proteins can also interact with gyrase and topoisomerase IV and prevent quinolones from cleavage, leading eventually to aggregation and subsequent accumulation of double-stranded DNA breaks that would be, in this case, lethal to A. baumannii [133]. PMQR by AMEs AAC(6′)-Ib-cr and AAC(6′)-Ib-cr5 is attributed practically to mutant variants of 6′ amino-glycoside acetyltransferase-Ib gene (“-cr” implying ciprofloxacin resistance; W102R and D179Y mutations) that encode enzymes acetylating the C7 unsubstituted nitrogen in the piperrazine ring of norfloxacin and ciprofloxacin [134]. The third category of plasmid-borne quinolone resistance refers to efflux pumps, but no such case has been documented for A. baumannii so far. QepA (quinolone efflux pumps A1 and A2; contributing to resistance to norfloxacin, enrofloxacin, levofloxacin, and ciprofloxacin among rmtB-positive E. Coli) and OqxAB (quinoxaline-di-N-oxide olaquindox) are the first described pumps of this category [127,133].

Chromosome-derived resistance to fluoroquinolones associates either with low influx rhythm by downregulated or dysfunctional porins, or with efflux pumps that are overactive. In fact, porins are virulence factors of Gram-negative bacteria that regulate cellular permeability through the outer membrane and are merely linked with carbapenem resistance (e.g., in Pseudomonas aeruginosa isolates with low OprD expression). Porin genes like ompA, omp25, omp33, oprD, oprW, dcap-like, and carO have been implicated in this resistance mechanism. Low relative expression of Omp25 and CarO porins seems to correlate with resistant A. baumannii strains, but resistance to quinolones has not been justified [111,135]. In the case of fluoroquinolones, chromosome-encoded efflux pumps (described in Table 2) and porin alterations alone do not seem to render significant clinical resistance to A. baumannii [123,129].

6. Resistance to Macrolides—Lincosamides—Streptogramin Antibiotics

Macrolide antibiotics are of little use in A. baumannii infections. Azithromycin, but no other macrolide, seems to inhibit mucin production, suggesting efficacy against ventilator-associated pneumonia. Azithromycin for nosocomial pneumonia due to A. baumannii for pediatric and adult patients in intensive care units (ICUs) is used in combination with other antibiotics. In the latter case, azithromycin’s mechanism of action differentiates from its established way of action: inhibiting translation and protein biosynthesis by attaching to the 50S subunit); suppression of ERK/JNK pathway phosphorylation (between extracellular signal-regulated kinases and c-Jun N-terminal kinases) and nuclear translocation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) [136]. According to MicroBIGG-E database, resistance to macrolides in A. baumannii is attributed to (i) three 23S rRNA (adenine(2058)-N(6))-methyltransferases, encoded by erm(B), erm(C), and erm(F) genes), (ii) ABC-F type ribosomal protection protein Msr(E) or msr(E), and (iii) two macrolide 2′-phosphotransferases encoded by mph(A) and mph(E) [97]. The first two classes lead to resistance by modification of the target site, while the third class results in macrolide inactivation. In particular, Mph(A) and Mph(E) seem to confer resistance to erythromycin, clarithromycin, azithromycin, and oleandomycin, but only in the presence of specific regulatory proteins [137].
Additional literature search revealed several references to efflux pumps involved in macrolide resistance in *A. baumannii* infections. WGS confirmed recently the potential role of multidrug efflux MFS transporter AmvA (encoded by *amvA*) in erythromycin resistance [138,139]. Another WGS study identified transferable genetic elements in macrolide-resistant *A. baumannii* strains encoding the proton motive macrolide efflux MFS transporter and ribosomal protection protein mef(E)/mel (originally found in resistant streptococci) in an operon of MEGA-element (a DNA fragment named after the macrolide efflux genetic assembly). Unlike other mechanisms discussed above, MefE pumps do not result in higher MICs for lincosamides or streptogramins [140–142]. The tripartite MacA–MacB–TolC transporter in *A. baumannii* intersects inner and outer membranes so as to actively extrude macrolides. Main components of this transmembrane machine are the ATPase MacB, belonging to the ABC superfamily, and the membrane fusion protein MacA, conferring synergistically resistance to azithromycin and roxithromycin [143]. In addition, detection of the SMR family transporter AbeS (homologue of *E. Coli* EmrE) links with erythromycin resistance [144]. Another pump involved in macrolide-resistant *A. baumannii* is AdeABC efflux pump, regulated by base substitutions in the *adeRS* operon. Conversely, inactivation of the latter operon negatively affects biofilm formation and prompts decreased expression of AdeABC [145].

Lincosamides compounds lincomycin, clindamycin, and pirlimycin are of limited use as single antimicrobial agents in *A. baumannii* infections. Their mechanism of action resembles that of macrolides, by binding the ribosomal 50S subunit and specifically its 23S portion to a site corresponding to the peptidyl–transferase center. Consequently, plasmid- and transposon-derived 23S rRNA methyltransferases belonging to the *erm* family (erythromycin ribosome methylase) elicit combined resistance to macrolides, lincosamides, and streptogramins B (i.e., MLSB phenotype) [146]. Although resistance to lincosamides can occur through ribosomal modification, efflux, and drug inactivation, reports from *A. baumannii* strains are limited to efflux pumps. RND efflux pumps AdeABC, AdeFGH, and AdeIJK have been documented to significantly increase MICs of all lincosamides in several *A. baumannii* isolates [129,147–149]. Far from pumps, WGS revealed the link between ABC transporter Msr(E) and macrolide phosphotransferase mph(E) with MLSB phenotype [150–152].

7. Resistance to Polymyxins

As mentioned before, Gram-negative bacteria, such as *A. baumannii*, bear a semi-permeable outer membrane for insertion of essential elements and clearance of toxic compounds. Lipopolysaccharides (LPSs) reside on the outer surface and contain a negatively charged hydrophobic lipid A, which in turn interacts with the cationic non-ribosomal lipopeptides of polymyxins B and E (widely known as colistin). This interaction results in destabilization of the outer membrane, uptake of the polymyxins into the periplasm, and increased permeability by disrupting the integrity of both outer and inner membranes. Although the detailed mechanism of action is unknown, the hydrophobic tail of polymyxins seems to be crucial for the induction of membrane damage, suggesting a detergent-like mode of action [153].

Mechanisms of resistance to polymyxins in *A. baumannii* include (i) drug target alteration by LPS lipid A modification subsequent to mutations in the *pmrCAB* operon and *mcr* genes; (ii) mutations of *lpxA*, *lpxC*, and *lpxD* genes -encoding acyltransferases essential to lipid A biosynthesis and associated with lipid A deficiency; (iii) *lpsB*, *lptD*, and *vacJ* expression associated with permeability defects and osmotic resistance of the outer membrane, subsequently leading to markedly elevated MICs for polymyxins; (iv) insufficient concentration of cofactors constitutional for LPS formation, like biotin, which are essential for susceptibility to polymyxins; and (v) efflux pumps [153–156].

Operon *pmrCAB* includes *pmrC* gene encoding a phosphoethanolamine (PEA) transferase, along with *pmrA* and *pmrB* that encode the PmrA/PmrB TCS. Mutations in the latter TCS (and especially of *pmrA*) induce the overexpression of *pmrC*. PEA residue addition to
the 4′-phosphate group site of lipid A hepta-acylated form is the most commonly reported modification in polymyxin-resistant *A. baumannii*, resulting in removal of negative charges and thus lowering the affinity of LPS to this drug class. The addition of 4-amino-L-arabinose and/or galactosamine to the phosphate groups of lipid A and to residues within the core oligosaccharide acts similarly. Likewise, PmrA/PmrB TCS can lead to polymyxin resistance by upregulating the transcription of NaxD deacetylase and therefore by modifying LPS lipid A by means of the deacetylated β-galactosamine. In addition, mutations in *miaA* gene (encoding the posttranscriptional regulator tRNA dimethylallyl diphosphate transferase) seem to act synergistically with mutations in *pmrA* towards producing polymyxin-resistant phenotypes [157,158]. In the same context, mutations in the *pmrC* paralogues *eptA-1* and *eptA-2* have been associated with increased expression and colistin resistance [153,159].

Other PEA transferases that affiliate with polymyxin-resistance are encoded by *mcr-1*, *mcr-4*, and *mcr-4.3* genes. Noteworthily, resistance emerging from MCR PEA transferases that was thought to be originally chromosomal (and therefore limiting its rapid distribution and dissemination) has been recently reported to be also carried by plasmids [160–162].

Biotin, which is essentially involved in fatty acid synthesis, contributes in a dose-dependent manner to LPS synthesis. Deletions in *lpsB*, a gene encoding a glycosyltransferase involved in biotin synthesis, have been associated with colistin resistance [163].

A recent WGS study on colistin-resistant isolates of *A. baumannii* identified linkage with *vacJ*, *zndP*, *pldA*, *ttg2C*, and *pheS* genes. *VacJ* is linked with the Vps-VacJ ABC transporter system, which is in charge of preserving LPS and phospholipids at the outer and inner leaflet of the outer membrane respectively. Correspondingly, *PldA* is designated to remove phospholipids in the outer leaflet of the outer membrane, while *ZndP* is a zinc-dependent peptidase A, upstream of *PldA*, that also has a pivotal role in the outer membrane processing. *Ttg2C* is an efflux ABC transporter upregulated in response to phenol exposure (an organic solvent that solubilizes the cell wall, acting equivalently with polymyxins). Moreover, mutations in *pheS* that encodes phenylalanine-tRNA ligase subunit alpha seem to play a role in colistin resistance [164]. Beyond the two aforementioned ABC transporters, and as stated before in text, overexpressed RND efflux pump MexAB-OprM correlates with colistin resistance [156,165].

8. Resistance to Others

8.1. Resistance to Amphenicols—Oxazolidinones

A. baumannii usually acquires resistance to amphenicols through five distinct mechanisms: (i) chloramphenicol O-acetyltransferases: type A-1, type A-2 CatII, type B-2 CatB11, type B-3 CatB3, and type B-3 CatB8 encoded by catA1, catA2, catB11, catB3, and catB8 genes, respectively; (ii) bifunctional type B-3 chloramphenicol O-acetyltransferase CatB8/aminoglycoside N-acetyltransferase AAC(6′)-Ib or catB8/aac(6′)-Ib′ found in *A. pitii*; (iii) chloramphenicol efflux MFS transporters: CmlA/FloR family (cml), CmlA family (cmlA), CmlA1, CmlA5, CmlA6, and CmlB1; (iv) chloramphenicol/florfenicol efflux MFS transporters FloR and FloR2; and (v) multidrug efflux pumps [97]. All the above mechanisms confer resistance to chloramphenicol; the second class confers combined resistance to both chloramphenicol and gentamicin, while the fourth class confers resistance to chloramphenicol and florfenicol [166]. Specifically, the presence of *cmlA5* induces resistance to chloramphenicol and thiampenicol, while *craA* identification associates with loss of susceptibility to chloramphenicol, thiampenicol, and florfenicol. Of note, single-component MFS family chloramphenicol/H+ antiporter *CraA* (a homologue of *E. Coli* MdfA and MdtM pumps) can act in synergy with RND AdeABC, AdeFGH, and AdeIJK transporters towards the amphenicol resistance phenotype, particularly when chloramphenicol acetyltransferases are absent [167]. In the same context, MDR *A. baumannii* strain 5075 (Ab5075) chloramphenicol resistance has been linked with efflux by an inner membrane permease encoded by *ABUW_0982* gene [168]. Moreover, a recent study identified 8 MDR *A. baumannii* isolates bearing *tet(X5)* in plasmids and two isolates with *tet(X6)*
in their chromosomes that displayed resistance to tigecycline, tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole, and florfenicol [169].

Although decreased membrane permeability has been mainly attributed to carbapenem-resistance in A. baumannii, low expression of porin OmpA has been associated with chloramphenicol, aztreonam, and nalidixic acid resistance [60]. Another gene, abrp, encoding a C13 family peptidase has been linked with decreased cell membrane permeability, faster cell growth rate, and decreased susceptibility to chloramphenicol, tetracycline, minocycline, doxycycline, tigecycline, and fosfomycin [170]. Conversely, overexpression of global regulator SoxR led to increased susceptibility to chloramphenicol, by downregulating abeS, abeM, adeJ, and adeG, although adeB and craA expression remained intact [171]. Additionally, deletion of valine–glycine repeat G (vgrG gene), a component of the Type VI Secretion System (T6SS), which is considered as a crucial virulence factor of A. baumannii, led to reduced resistance to chloramphenicol [172].

Rather bizarre combinations of colistin with anti-Gram-positive antibiotics, like the oxazolidinone linezolid, have demonstrated efficacy and have been utilized in cases of MDR A. baumannii [173]. Protein biosynthesis inhibition is mediated by different mechanisms as regards oxazolidinones, chloramphenicol, and lincosamides, but their target sites on the 23S ribosomal RNA subunit may be overlapping. The most prevalent mechanisms for linezolid resistance are multidrug efflux pumps, base substitutions in domain V of the ribosomal RNA 23S (conferring resistance to oxazolidinones, macrolides, lincosamides, streptogramins, phenicols, pleuromutilins, and glycopeptide antibiotics), and/or the presence of a transmissible Cfr(B) 23S ribosomal RNA methyltransferase (conferring resistance to oxazolidinones, streptogramins, phenicols, and lincosamides). Interestingly, plenty of microorganisms carry multiple gene copies that encode the 23S rRNA subunit, while the observed linezolid resistance corresponds to the ratio of wild type to mutant 23S rRNA [156,174]. According to the Comprehensive Antibiotic Resistance Database (CARD), resistance to linezolid can also occur by mutations in the 50S ribosomal subunit P-site (which attaches the peptidyl-tRNA to the developing polypeptide chain), by the MFS antibiotic efflux pump LmrS (capable of extruding oxazolidinones, macrolides, phenicols, aminoglycosides, and diaminopyrimidine antibiotics), ClcD (a cfr-like 23S ribosomal RNA methyltransferase linked with resistance to oxazolidinones, lincosamides, streptogramins, phenicols, and pleuromutilins), and ABC-F ATP-binding cassette ribosomal protection protein encoded by poxtA (conferring resistance to oxazolidinones, tetracyclines, macrolide antibiotic, lincosamides, streptogramins, phenicols, and pleuromutilins) [156].

8.2. Resistance to Glycopeptide and Lipopeptide Antibiotics

Zeocin is a formulation of phleomycin D1, a glycopeptide antibiotic of the bleomycin family. Resistance to zeocin is linked with phleomycin/bleomycin binding protein Ble-Sh (ble-Sh gene), while resistance to bleomycin is usually conferred by the binding protein Ble-MBL (metallo-beta-lactamase-associated ble gene) [175–177].

The outer membrane of Gram-negative bacteria is impenetrable to large glycopeptide molecules, and therefore A. baumannii displays intrinsic resistance to vancomycin. However, VanD-type vancomycin resistance histidine kinase VanS (vanS-D gene) has been reported in A. baumannii infection [97]. Contrariwise, colistin combination with glycopeptides (vancomycin, teicoplanin, and telavancin) and lipopeptides (like daptomycin) has been successfully employed in MDR A. baumannii infections [178]. Studies on glycopeptide- and lipopeptide-resistant A. baumannii isolates are lacking.

8.3. Resistance to Rifamycins

Resistance to rifampin (also known as rifabin) in A. baumannii infections has been linked with mutations in the rpoB gene, which encodes rifamycin sensitive beta-subunit of RNA polymerase and averts RNA elongation just after adding the first nucleotides. Beyond rifampin, RpoB associates with resistance to all rifamycins (rifabutin, rifaximin, and rifapentine) [179]. Enzymatic modification by rifampin ADP-ribosyltransferases Arr, Arr-2,
Arr-3, and Arr-4 impel to inactivation of rifamycins’ 23-OH position using NAD+ [97,180]. As mentioned above in text, RND multidrug efflux pumps AdeIJK and AcrAB-TolC are also potential mechanisms of rifamycin-resistant isolates [156]. Conversely, fluE gene encodes an outer membrane protein transporter that is involved with iron acquisition and is upregulated in low iron conditions and seems to associate with increased susceptibility to rifabutin (200-fold more potent than rifampin). The previous finding was confirmed by successful in vivo treatment of extreme drug resistant A. baumannii with rifabutin/colistin combination [181].

8.4. Resistance to Fosfomycin

Intrinsic fosfomycin resistance in A. baumannii occurs predominantly as a result of two mechanisms: (i) fosfomycin efflux MFS transporter AbaF encoded (abaF gene); (ii) fosfomycin resistance glutathione transferases FosLL, FosA3, and FosA3/FosA4 family (encoded by fos, fosA3, and fosA, respectively), and FosB1/FosB3 family fosfomycin resistance bacillithiol transferase (encoded by fosB) [97,182]. Disruption of abaF has displayed an increase in fosfomycin susceptibility and a decrease in biofilm formation and virulence, suggesting a major role for this pump [183]. Of note, FosA impels the binding of glutathione to Fosfomycin C1 and thereby renders it inactive, while FosB opens enzymatically the epoxide ring of Fosfomycin after employing either bacillithiol or L-cysteine [156].

Fosfomycin sensitive pyruvyl transferase MurA has been recently proposed as a potential drug target for MDR A. baumannii. This transferase, which has no counterparts in eukaryotes, catalyzes the pathway of peptidoglycan biosynthesis and is indispensable for cell integrity, while it is highly sensitive to inhibition from fosfomycin [184].

8.5. Resistance to Diaminopyrimidines—Sulfonamides

Antifolate antibiotics exert their action by inhibiting purine metabolism, and thereby DNA and RNA synthesis. Trimethoprim is a dihydrofolate reductase (DHFR) inhibitor (blocking tetrahydrofolate acid formation by dihydrofolic acid, an essential step of folate biosynthesis, which in turn is involved in the generation of many nucleotides and amino acids), while sulfonamides are known dihydropteroate synthase (DHPS) inhibitors (halting the conversion of para-aminobenzoate or PABA to dihydropteroate; including sulfamethoxazole, commonly used in combination with trimethoprim, and sulfonamides) [185]. Resistance against diaminopyrimidines in A. baumannii infections is mainly conferred by trimethoprim-resistant dihydrofolate reductases DfrA1, DfrA5, DfrA7, DfrA10, DfrA12, DfrA14, DfrA16, DfrA17, DfrA19, DfrA20, DfrA27, and DfrB1 (encoded by dfrA1, dfrA5, dfrA7, dfrA10, dfrA12, dfrA14, dfrA16, dfrA17, dfrA19, dfrA20, dfrA27, and dfrB1, respectively) [97]. A recent study of A. baumannii in turkey and chicken raw meat revealed that prevalence of dfrA was as high as 71% [186]. The latter antibiotic resistance gene seems to be a typical part of cassettes belonging to class I integron [187]. RND efflux pump MexAB-OprM consists of MexA (the membrane fusion protein), MexB (the carrier located in the inner membrane), and OprM (the transporter positioned in the outer membrane). MexAB-OprM associates with lack of susceptibility to most antibiotics, including trimethoprim and even colistin, when expressed in high levels [156,165]. As mentioned above in text, efflux pumps AdeIJK and LmrS confer resistance to trimethoprim [148]. Another pump, the RND plasmid-borne OqxAB, links with resistance to trimethoprim, quinolones, tetracyclines, glycolcycline, and nitrofurans [188,189].

In general, A. baumannii is intrinsically resistant to sulfonamides in approximately 71.3% of isolates [98]. Resistance, in these cases, is being materialized through two main mechanisms: (i) sulfonamide-resistant dihydropteroate synthases encoded by sul1 and sul2, and (ii) RND efflux pump MexAB-OprM with or without MexR mutations [156,190].

9. SARS-CoV-2 and Resistant A. baumannii Coinfections

During the COVID-19 pandemic, coinfection with A. baumannii secondary to SARS-CoV-2 infections has been reported multiple times in literature. An isolate with OXA-23 has
been responsible for an outbreak in COVID-19 ICUs of a tertiary Japanese hospital [191]. Incidence of secondary infections (mainly lower respiratory tract infections) attributed to *A. baumannii* has been reported to be as high as 1% of hospitalized COVID-19 patients in an Italian hospital [192]. The same incidence (1%) has been reported by an early study in hospitalized patients from Wuhan, China [193]. A concurrent study from Wuhan reported *A. baumannii* coinfection in one out of 69 hospitalized patients (1.4%) with COVID-19 [194]. In addition, a recent study from a French ICU calculated coinfection with *A. baumannii* at 1.1% (1 out of 92; susceptible to third generation cephalosporins) in severe SARS-CoV-2 pneumonia patients [195]. Higher incidence of MDR *A. baumannii* coinfection has been documented in a study from Egypt (2.7%; seven out of 260 COVID-19 hospitalized patients; susceptible only to tigecycline and fluoroquinolones; bearing resistance genes NDM-1, TEM, and CTX-M) [196]. A recent study in hospitalized COVID-19 patients from Spain showed that coinfection with *A. baumannii* was apparent in 2.4% of hospitalized patients (17 out of 712; 16 out of these 17 patients in ICU) and it has been the strongest determinant of mortality with OR 9.329 (95% CI: 2.289 to 38.02; p = 0.002; higher than sex, bacteremia, and number of comorbidities) [197]. A study from an Iranian ICU reported coinfection with MDR *A. baumannii* in 17 out of 19 COVID-19 patients (89.5%; no MBL-producing strain; 52% resistance rate to colistin), while all these patients died [198]. *A. baumannii* was detected in 20% of samples acquired from COVID-19 patients in an ICU from Beijing, China. All of these cases were identified during late ICU admission [199]. Of interest, a recent study from a Mexican ICU assigned to COVID-19 patients revealed clonal dispersion of MDR AdeABCRS+ *A. baumannii* that was only susceptible to gentamicin, nitrofurans, and phenicols [200]. Steroids and long ICU stays, but not MDR infections, have been associated with higher mortality in an Italian retrospective analysis of 32 COVID-19 ICU patients. In the latter cohort, four patients have been coinfected with MDR *A. baumannii* (12.5%) [201]. CRAB outbreaks in COVID-19 patients seem to be effectively treated with a pre-optimized two-phage cocktail [202]. This finding is important, because OXA-23 CRAB infections have become a serious threat against SARS-CoV-2 infected patients in ICUs [203].

10. Conclusions

As justified above in text, *A. baumannii* may acquire antibiotic resistance through several distinct mechanisms: by altering the antibiotic target site, by controlling the passage of antibiotics through its membranes, and by enzymatic modification of antibiotics, rendering them neutralized. Secondary to innate mechanisms of antibiotic resistance that are de facto conferred by genes, *A. baumannii* may facilitate antibiotic resistance through various mechanisms linked with its virulence: outer membrane proteins (like porins), cell envelope factors (like LPS and the capsule around its bacterial surface), specific enzymes (like phospholipases C and D, and glycan-specific adamalysin-like protease CpaA), quorum sensing, and biofilm formation (BfmRS TCS regulating Csu pili, Csu expression regulated by the GacSA TCS, biofilm-associated proteins BapAb, synthesis of the exopolysaccharide poly-β-1,6-N-acetylglucosamine PNAG, acyl-homoserine lactones through AbaR receptor, and Abal autoinducer synthase), by attaining twitching motility via type IV pili, micronutrient acquisition systems (like siderophores and iron transporters FecA and Fecl, ZnuABC transporter, and ZigA GTPase incorporating a zinc-scavenging system, resistance-associated macrophage protein NRAMP for manganese transportation), type II (with CpaA and lipases LipA and LipH as effectors), and type VI protein secretion systems [1].

Utilization of next-generation sequencing techniques has helped clinicians to decipher the molecular mechanisms of antibiotic resistance in PDR isolates of *A. baumannii*, and WGS has emerged as a powerful tool in the clinician’s armamentarium. In the future, application of WGS and other NGS techniques at diagnosis could provide useful insights on the microbiologic behavior and virulence of each case of critical *A. baumannii* infection. Apart from timely diagnosis, detailed mapping of the genetic background of each isolate could provide useful information as regards antibiotic treatment (in terms of precision medicine) and identification of novel therapeutic targets [102,107,204].
Of special note is the contribution of molecular methods, such as PCR and NGS, to the prompt identification of MDR \textit{A. baumannii} epidemics. Specifically, the detection of integrase genes (\texttt{intI1}, \texttt{intI2}) is significantly associated with the epidemic character of \textit{A. baumannii} as well as antibiotic resistance to multiple antimicrobials \cite{205-207}. In the Netherlands, integrons are found in 43\% of MDR and 85.7\% of XDR \textit{A. baumannii} strains \cite{208}, while in China and Iran, the prevalence of integrase genes in total \textit{A. baumannii} isolates is higher and reaches 69.6\% and 94.3\%, respectively \cite{209,210}. This correlation of integrase presence and antibiotic resistance highlights the importance of regular surveillance in order to prevent outbreaks of hospital acquired MDR \textit{A. baumannii} infections.

Except from specific clinical scenarios, MDR isolates are usually treated successfully with synergistic therapeutic combinations with either beta-lactamase inhibitor sulbactam or colistin, while last-line schemes involve combination of colistin with rifampin or polymyxin B with tigecycline. In the first case, we aim for inhibiting bacterial DNA-dependent RNA polymerase along with disruption of the bacterial membranes, while in the latter case, we aim for inhibiting bacterial protein biosynthesis (by attaching to the 30S rRNA subunit) in combination with loss of the bacterial membranes’ integrity. Of course, tigecycline remains the first choice for MDR strains isolated in the setting of the ICU, while phages (like Bϕ-C62) are an alternative against increased antibiotic resistance in MDR isolates \cite{98,211}. Clinical experience has confirmed efficacy of trimethoprim/sulfamethoxazole against carbapenem-resistant isolates, while isolates resistant to both carbapenems and sulbactam are preferred to be treated with either minocycline or doxycycline \cite{98,211}. XDR and PDR strains remain a serious clinical problem and identification of resistance mechanisms of this staggering microbe will elucidate pathogenetic mechanisms and propose new therapeutic targets and agents.

Author Contributions: Conceptualization: I.K.; methodology: I.K. and E.V.; software: I.K. and E.V.; validation: E.V. and A.T.; formal analysis: I.K., E.V., Z.D.P. and A.T.; investigation: I.K. and E.V.; resources: A.T.; data curation: A.T.; writing—original draft preparation: I.K. and E.V.; writing—review and editing: I.K., E.V., Z.D.P. and A.T.; visualization: I.K.; supervision: A.T. and Z.D.P.; project administration: I.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ayoub Moubareck, C.; Hammoudi Halat, D. Insights into \textit{Acinetobacter baumannii}: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. \textit{Antibiotics} \textbf{2020}, \textit{9}, 119. [CrossRef]

2. Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of \textit{acinetobacter baumannii}. \textit{Microorganisms} \textbf{2020}, \textit{8}, 935. [CrossRef]

3. Peleg, A.Y.; Seifert, H.; Paterson, D.L. \textit{Acinetobacter baumannii}: Emergence of a successful pathogen. \textit{Clin. Microbiol. Rev.} \textbf{2008}, \textit{21}, 538–582. [CrossRef]

4. Levy-Blitchstein, S.; Roca, I.; Plasencia-Rebata, S.; Vicente-Taboada, W.; Velásquez-Pomar, J.; Muñoz, L.; Moreno-Morales, J.; Pons, M.J.; Del Valle-Mendoza, J.; Vila, J. Emergence and spread of carbapenem-resistant \textit{Acinetobacter baumannii} international clones II and III in Lima, Peru article. \textit{Emerg. Microbes Infect.} \textbf{2018}, \textit{7}, 119. [CrossRef]

5. Nasr, P. Genetics, epidemiology, and clinical manifestations of multidrug-resistant \textit{Acinetobacter baumannii}. \textit{J. Hosp. Infect.} \textbf{2020}, \textit{104}, 4–11. [CrossRef] [PubMed]

6. Doi, Y.; Murray, G.L.; Peleg, A.Y. \textit{Acinetobacter baumannii}: Evolution of antimicrobial resistance-treatment options. \textit{Semin. Respir. Crit. Care Med.} \textbf{2015}, \textit{36}, 85–98. [CrossRef]

7. Kyriakidis, I.; Palabougouki, M.; Vasilievou, E.; Tragiannidis, A.; Stamou, M.; Moudiou, T.; Vyzantiadis, T.; Gombakis, N.; Hatzilianou, M. Candidemia complicating biliary atresia in an infant with hemoglobinopathy. \textit{Turk. Pediatr. Ars.} \textbf{2019}, \textit{54}, 129–132. [CrossRef] [PubMed]

8. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluymans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. \textit{Lancet Infect. Dis.} \textbf{2018}, \textit{18}, 318–327. [CrossRef]

9. Mohd Sazlly Lim, S.; Zainal Abidin, A.; Liew, S.M.; Roberts, J.A.; Sime, F.B. The global prevalence of multidrug-resistance among \textit{Acinetobacter baumannii} causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. \textit{J. Infect.} \textbf{2019}, \textit{79}, 593–600. [CrossRef] [PubMed]
10. European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020.

11. Moghnieh, R.A.; Kanafani, Z.A.; Tabaja, H.Z.; Sharara, S.L.; Awad, L.S.; Kanji, S.S. Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. Lancet Infect. Dis. 2018, 18, e379–e394. [CrossRef]

12. NORDMANN, P.; POIREL, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [CrossRef]

13. Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [CrossRef] [PubMed]

14. Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis. 2019, 32, 69–76. [CrossRef] [PubMed]

15. Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [CrossRef]

16. Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [CrossRef]

17. Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [CrossRef] [PubMed]

18. Pakharukova, N.; Tuttilla, M.; Paavilainen, S.; Malmi, H.; Parilova, O.; Teneberg, S.; Knight, S.D.; Zavaliov, A.V. Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl. Acad. Sci. USA 2018, 115, 5558–5563. [CrossRef]

19. Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation. Molecules 2019, 24, 1849. [CrossRef]

20. Krzyścia, P.; Chmielarczyk, A.; Pobiega, M.; Romaniszyn, D.; Wójkowska-Mach, J. Acinetobacter baumannii isolated from hospital-acquired infection: Biofilm production and drug susceptibility. APMIS 2017, 125, 1017–1026. [CrossRef]

21. Green, D.W. The bacterial cell wall as a source of antibacterial targets. Expert. Opin. Ther. Targets 2002, 6, 1–19. [CrossRef]

22. Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii in pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [CrossRef] [PubMed]

23. PXK. coli, C. jejuni, H. pylori, and S. typhi: Genotype-phenotype correlation. J. Med. Microbiol. 2009, 58, 539–538. [CrossRef]

24. Poirel, L.; Corvec, S.; Rapoport, M.; Mugnier, P.; Petroni, A.; Pasteran, F.; Faccione, D.; Galas, M.; Druegeon, H.; Cattoir, V. et al. Identification of the Novel Narrow-Spectrum β-Lactamase SCO-1 in Acinetobacter baumannii from Argentina. Antimicrob. Agents Chemother. 2007, 51, 2179–2184. [CrossRef]

25. Poirel, L.; Corvec, S.; Rapoport, M.; Mugnier, P.; Petroni, A.; Pasteran, F.; Faccione, D.; Galas, M.; Druegeon, H.; Cattoir, V. et al. Identification of the Novel Narrow-Spectrum β-Lactamase SCO-1 in Acinetobacter baumannii from Argentina. Antimicrob. Agents Chemother. 2007, 51, 2179–2184. [CrossRef]

26. Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended spectrum beta-lactamases: Definition, classification and epidemiology. Curr. Issues Mol. Biol. 2015, 17, 11–22. [CrossRef]

27. Smiline, A.S.G.; Vijayashree, J.P.; Paramasivam, A. Molecular characterization of plasmid-encoded blaTEM, blaSHV and blaCTX-M among extended spectrum β-lactamases [ESBLs] producing Acinetobacter baumannii. Br. J. Biomed. Sci. 2018, 75, 200–202. [CrossRef]

28. Bottini, R.A.; Nordmann, P.; Potron, A.; Lecuyer, H.; Zahar, J.R.; Poirel, L. Carbapenem-hydrolyzing GES-type extended-spectrum β-lactamase Inhibitors. Antimicrob. Agents Chemother. 2011, 55, 349–354. [CrossRef]

29. Poirel, L.; Corvec, S.; Rapoport, M.; Mugnier, P.; Petroni, A.; Pasteran, F.; Faccione, D.; Galas, M.; Druegeon, H.; Cattoir, V. et al. Identification of the Novel Narrow-Spectrum β-Lactamase SCO-1 in Acinetobacter baumannii from Argentina. Antimicrob. Agents Chemother. 2007, 51, 2179–2184. [CrossRef]

30. Bonnin, R.A.; Potron, A.; Lecuyer, H.; Neri, R.; Nordmann, P. PER-7, an extended-spectrum β-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 2424–2427. [CrossRef] [PubMed]

31. Poirel, L.; Menuteau, O.; Agoli, N.; Cattoen, C.; Nordmann, P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J. Clin. Microbiol. 2003, 41, 3542–3547. [CrossRef]

32. Walthier-Rasmussen, J.; Heiby, N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can. J. Microbiol. 2004, 50, 137–165. [CrossRef]

33. Martinez, T.; Martinez, I.; Vaquez, G.J.; Aquino, E.E.; Robledo, I.E. Genetic environment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomic insights into its drug resistance. J. Med. Microbiol. 2016, 65, 784–792. [CrossRef]

34. Cornaglia, G.; Giamarello, H.; Rossollini, G.M. Metallo-β-lactamasas: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 11, 381–393. [CrossRef]

35. Shivaprasad, A.; Antony, B.; Shenoy, P. Comparative evaluation of four phenotypic tests for detection of Metallo-β-lactamase and Carbapenemase production in Acinetobacter baumannii. J. Clin. Diagn. Res. 2014, 8, 5–8. [CrossRef]

36. Ikonomidis, A.; Ntokou, E.; Maniatis, A.N.; Tsakris, A.; Pournaras, S. Hidden VIM-1 metallo-β-lactamase phenotypes among Acinetobacter baumannii clinical isolates. J. Clin. Microbiol. 2008, 46, 346–349. [CrossRef]

37. Moula, Z.; Babazadeh, A.; Islamdost, Z.; Shokri, M.; Ebrahimpour, S. Phenotypic and genotypic detection of metallo-beta-lactamases in Carbapenem-resistant Acinetobacter baumannii. Curr. J. Intern. Med. 2010, 11, 171–176. [CrossRef]
38. Chatterjee, S.; Datta, S.; Roy, S.; Ramanan, L.; Saha, A.; Viswanathan, R.; Som, T.; Basu, S. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: Focus on NDM-1 and its linkage to ISAba1.25. Front. Microbiol. 2016, 7, 1126. [CrossRef]

39. Amin, M.; Navidifar, T.; Shooshtari, F.S.; Goodarzi, H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect. Drug Resist. 2019, 12, 1171–1180. [CrossRef]

40. El-Ageery, S.M.; Al-Hazmi, S.S. Microbiological and molecular detection of VIM-1 metallo beta lactamase-producing Acinetobacter baumannii. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 965–970. [PubMed]

41. Lopes, B.S.; Amyes, S.G.B. Role of ISAba1 and ISAba125 in governing the expression of bla ADC in clinically relevant Acinetobacter baumannii. J. Antimicrob. Chemother. 2013, 68, 244–245. [CrossRef]

42. Couchoud, C.; Bertrand, X.; Valot, B.; Hocquet, D. Deciphering the role of insertion sequences in the evolution of bacterial antibiotics. Rev. Fr. Med. Microbiol. 1999, 12, 1103–1108. [CrossRef] [PubMed]

43. Rodrigues-Martinez, J.M.; Poirel, L.; Nordmann, P. Genetic and functional variability of AmpC-type β-lactamases from Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4930–4933. [CrossRef]

44. Taj, G.B.; Adams-Haduch, J.M.; Taracila, M.; Bonomo, R.A.; Wang, H.N.; Döi, Y. Extended-spectrum AmpC cephalosporinase in Acinetobacter baumannii: ADC-56 confers resistance to ceftazidime. Antimicrob. Agents Chemother. 2011, 55, 4922–4925. [CrossRef] [PubMed]

45. Ingri, B.; Upadhyay, S.; Hazarika, M.; Khyriem, A.B.; Hazarika, A. Distribution of carbapenem resistant Acinetobacter baumannii with blaADC-30 and induction of ADC-30 in response to beta-lactam antibiotics. Res. Microb. 2020, 128, 133–138. [CrossRef]

46. Lai, J.H.; Yang, J.T.; Chern, J.; Chen, T.L.; Wu, W.L.; Liao, J.H.; Tsai, S.F.; Liang, S.Y.; Chou, C.C.; Wu, S.H. Comparative phosphoproteomics reveals the role of AmpC β-lactamase phosphorylation in the clinical imipenem-resistant strain Acinetobacter baumannii SK17. Mol. Cell Proteom. 2016, 15, 12–25. [CrossRef]

47. Antunes, N.T.; Fisher, J.F. Acquired class D β-Lactamases. Antibiotics 2014, 3, 398–434. [CrossRef]

48. Lai, J.H.; Yang, J.T.; Chern, J.; Chen, T.L.; Wu, W.L.; Liao, J.H.; Tsai, S.F.; Liang, S.Y.; Chou, C.C.; Wu, S.H. Comparative phosphoproteomics reveals the role of AmpC β-lactamase phosphorylation in the clinical imipenem-resistant strain Acinetobacter baumannii SK17. Mol. Cell Proteom. 2016, 15, 12–25. [CrossRef]

49. Morakhi, H.; Loucif, L.; Gacemi-Kirane, D.; Rolain, J.M. Molecular characterisation of carbapenemases in urban pigeon droppings in France and Algeria. J. Glob. Antimicrob. Resist. 2017, 9, 103–110. [CrossRef]

50. Sugawara, E.; Nikaido, H. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J. Bacteriol. 2012, 194, 4089–4096. [CrossRef]

51. Jothyisri, K.; Deepak, V.; Rajeswari, M.R. Purification and characterization of a major 40 kDa outer membrane protein of Acinetobacter baumannii. FEBS Lett. 1995, 375, 57–60. [CrossRef]

52. Smari, Y.; Fábrega, A.; Roca, I.; Sánchez-Escainas, V.; Vila, J.; Pachón, J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [CrossRef] [PubMed]

53. Iyer, R.; Moussa, S.H.; Durand-Revill, T.F.; Tommasi, R.; Miller, A. Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect. Dis. 2018, 4, 373–381. [CrossRef]

54. Kwon, H.I.; Kim, S.; Oh, M.H.; Na, S.H.; Kim, Y.J.; Jeon, Y.H.; Lee, J.C. Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J. Antimicrob. Chemother. 2017, 72, 3012–3015. [CrossRef]

55. Zhong, X.; Wu, X.; Schwepp, D.K.; Chavez, J.D.; Mathay, M.; Eng, J.K.; Keller, A.; Bruce, J.E. In Vivo Cross-Linking MS Reveals Conservation in OmpA Linkage to Different Classes of β-Lactamase Enzymes. J Am. Soc. Mass Spectrom. 2020, 31, 190–195. [CrossRef]
Pathogens 2021, 10, 373

25 of 31

64. Limansky, A.S.; Mussi, M.A.; Viale, A.M. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. *J. Clin. Microbiol.* 2002, 40, 4776–4778. [CrossRef] [PubMed]

65. Mussi, M.A.; Limansky, A.S.; Viale, A.M. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of *Acinetobacter baumannii*: Natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. *Antimicrob. Agents Chemother.* 2005, 49, 1432–1440. [CrossRef]

66. Mussi, M.A.; Relling, V.M.; Limansky, A.S.; Viale, A.M. CarO, an *Acinetobacter baumannii* outer membrane protein involved in carbapenem resistance, is essential for l-ornithine uptake. *FEBS Lett.* 2007, 581, 5573–5578. [CrossRef] [PubMed]

67. Mussi, M.A.; Limansky, A.S.; Relling, V.; Ravasi, P.; Arakaki, A.; Actis, L.A.; Viale, A.M. Horizontal gene transfer and assortative recombination within the *Acinetobacter baumannii* clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. *J. Bacteriol.* 2011, 193, 4736–4748. [CrossRef]

68. Jeong, H.W.; Cheong, H.J.; Kim, W.J.; Kim, M.J.; Song, K.J.; Song, J.W.; Kim, H.S.; Roh, K.H. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in *Acinetobacter baumannii* is associated with decreased imipenem susceptibility. *Microb. Drug Resist.* 2009, 15, 151–158. [CrossRef]

69. Khorsi, K.; Messai, Y.; Hamidi, M.; Bakour, R. ISAbA36 inserted into the outer membrane protein gene carO and associated with the carabemagen gene blaOXA-24-like in *Acinetobacter baumannii*. *J. Glob. Antimicrob. Resist.* 2018, 15, 107–108. [CrossRef]

70. Zhu, L.J.; Chen, X.Y.; Hou, P.F. Mutation of CarO participates in drug resistance in imipenem-resistant *Acinetobacter baumannii*. *J. Clin. Lab. Anal.* 2019, 33, e22976. [CrossRef] [PubMed]

71. Zahn, M.; D'Agostino, T.; Eren, E.; Baslé, A.; Ceccarelli, M.; Van Berg, B.D. Small-molecule transport by CarO, an abundant eight-stranded β-barrel outer membrane protein from *Acinetobacter baumannii*. *J. Mol. Biol.* 2015, 427, 2329–2339. [CrossRef] [PubMed]

72. Fonseca, E.L.; Scheidegger, E.; Freitas, F.S.; Cipriano, R.; Vicente, A.C.P. Carbapenem-resistant *Acinetobacter baumannii* from Brazil: Role of carO alleles expression and blaOXA-23 gene. *BMC Microbiol.* 2013, 13, 1–7. [CrossRef] [PubMed]

73. Catel-Ferreira, M.; Coadou, G.; Molle, V.; Mugnier, P.; Nordmann, P.; Siroy, A.; Jouenne, T.; Dé, E. Structure-function relationships of CarO, the carbapenem-resistance-associated outer membrane protein of *Acinetobacter baumannii*. *J. Antimicrob. Chemother.* 2011, 66, 2053–2056. [CrossRef]

74. Siroy, A.; Molle, V.; Lemaître-Guillier, C.; Vallenet, D.; Pestel-Caron, M.; Cozzone, A.J.; Jouenne, T.; Dé, E. Channel formation by CarO, the 29-kilodalton outer membrane protein of *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2005, 49, 4876–4883. [CrossRef] [PubMed]

75. Srinivasan, V.B.; Vaidyanathan, V.; Rajamohan, G. AbuO, a tolC-like outer membrane protein of *Acinetobacter baumannii*, is involved in antimicrobial and oxidative stress resistance. *Antimicrob. Agents Chemother.* 2015, 59, 1236–1245. [CrossRef]

76. Clark, R.B. Imipenem resistance among *Acinetobacter baumannii*: Association with reduced expression of a 33-36 kDa outer membrane protein. *J. Antimicrob. Chemother.* 1996, 38, 245–251. [CrossRef] [PubMed]

77. Tomás, M.D.M.; Beceiro, A.; Pérez, A.; Velasco, D.; Moure, R.; Villanueva, R.; Martínez-Beltrán, J.; Bou, G. Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2005, 49, 5172–5175. [CrossRef]

78. Zahn, M.; Bhamidimarri, S.P.; Baslé, A.; Winterhalter, M.; Van Den Berg, B. Structural Insights into Outer Membrane Permeability of *Acinetobacter baumannii*. *Structure.* 2016, 24, 221–231. [CrossRef]

79. Catel-Ferreira, M.; Nehmé, R.; Molle, V.; Aranda, J.; Bouffartigues, E.; Chevalier, S.; Bou, G.; Jouenne, T.; Dé, E. Deciphering the function of the outer membrane protein OprH homologue of *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2012, 56, 3826–3832. [CrossRef]

80. Cecchin, T.; Yoon, E.J.; Charretier, Y.; Bardet, C.; Beaulieu, C.; Lacoux, X.; Docquier, J.D.; Lemoine, J.; Courvalin, P.; Grillot-Courvalin, C.; et al. Deciphering multifactorial resistance phenotypes in *Acinetobacter baumannii* by genomics and targeted label-free proteomics. *Mol. Cellul Proteom.* 2018, 17, 442–456. [CrossRef]

81. Huang, L.; Sun, L.; Xu, G.; Xia, T. Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of *Acinetobacter baumannii* in a Chinese hospital. *Diagn. Microbiol. Infect. Dis.* 2008, 62, 326–332. [CrossRef]

82. Hawkey, J.; Ascher, D.B.; Judd, L.M.; Wick, R.R.; Kostoulas, X.; Cleland, H.; Spelman, D.W.; Padiglione, A.; Peleg, A.Y.; Holt, K.E. Evolution of carbapenem resistance in *Acinetobacter baumannii* during a prolonged infection. *Microb. Genom.* 2018, 4, e00165. [CrossRef]

83. Magnet, S.; Courvalin, P.; Lambert, T. Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in *Acinetobacter baumannii* Strain BM4454. *Antimicrob. Agents Chemother.* 2001, 45, 3375–3380. [CrossRef]

84. Vila, J.; Marti, S.; Sánchez-Céspedes, J. Porins, efflux pumps and multidrug resistance in *Acinetobacter baumannii*. *J. Antimicrob. Chemother.* 2007, 59, 1210–1215. [CrossRef]

85. Marchand, I.; Marchand, J.; Damier-piolle, L.; Damier-piolle, L.; Courvalin, P.; Courvalin, P.; Lambert, T.; Lambert, T. Expression of the RND-type efflux pump AdeABC in *Acinetobacter baumannii* is regulated by the AdeRS two-component system. *Antimicrob. Agents Chemother.* 2004, 48, 3298–3304. [CrossRef]

86. Leus, I.V.; Weeks, J.W.; Bonifay, V.; Smith, L.; Richardson, S.; Zgurskaya, H.I. Substrate specificities and efflux efficiencies of RND efflux pumps of *Acinetobacter baumannii*. *J. Bacteriol.* 2018, 200, e0049–18. [CrossRef]

87. Hou, P.F.; Chen, X.Y.; Yan, G.F.; Wang, Y.P.; Ying, C.M. Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of *Acinetobacter baumannii*. *Chemotherapy* 2012, 58, 152–158. [CrossRef]
Pathogens 2021, 10, 373

88. Yoon, E.J.; Chabane, Y.N.; Goussard, S.; Snesrud, E.; Courvalin, P.; Dè, E.; Grillot-Courvalin, C. Contribution of resistance-nodule-cell division dexitox systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 2015, 6, e00309-15. [CrossRef] [PubMed]

89. Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [CrossRef]

90. Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [CrossRef] [PubMed]

91. Vashist, J.; Tiwari, V.; Das, R.; Kapil, A.; Rajeswari, M.R. Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 5907–5913. [CrossRef] [PubMed]

92. Gehrlein, M.; Leying, H.; Cullmann, W.; Wendt, S.; Opferkuch, W. Imipenem resistance in Acinetobacter baumannii is due to altered penicillin-binding proteins. Chemotherapy 1991, 37, 405–412. [CrossRef]

93. Yun, S.H.; Choi, C.W.; Kwon, S.O.; Park, G.W.; Cho, K.; Kim, J.Y.; Yoo, J.S.; Lee, J.C.; Choi, J.S.; et al. Quantitative proteomic analysis of cell wall and plasma membrane fractions from multidrug-resistant Acinetobacter baumannii. J. Proteome Res. 2011, 10, 459–469. [CrossRef]

94. Fernández-Cuenca, F.; Martínez-Martinez, L.; Conejo, M.C.; Ayala, J.A.; Perea, E.J.; Pascual, A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 2003, 51, 565–574. [CrossRef] [PubMed]

95. De Silva, P.M.; Kumar, A. Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Front. Microbiol. 2019, 10, 49. [CrossRef] [PubMed]

96. Wang, H.; Wang, J.; Yu, P.; Ge, P.; Jiang, Y.; Xu, R.; Chen, R.; Liu, X. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. Int. J. Mol. Med. 2017, 39, 364–372. [CrossRef] [PubMed]

97. Pathogen Detection Microbial Browser for Identification of Genetic and Genomic Elements (MicroBIGG-E)—Pathogen Detection—NCBI. Available online: https://www.ncbi.nlm.nih.gov/pathogens/microbigg/# (accessed on 5 March 2021).

98. Fernández-Cuenca, F.; Martínez-Martinez, L.; Conejo, M.C.; Ayala, J.A.; Vila, J.; Martínez-Martinez, L. Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 5907–5913. [CrossRef] [PubMed]

99. Fernández-Cuenca, F.; Martínez-Martinez, L.; Conejo, M.C.; Ayala, J.A.; Perea, E.J.; Pascual, A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 2003, 51, 565–574. [CrossRef] [PubMed]

100. Ramírez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resist. Updat. 2010, 13, 151–171. [CrossRef]

101. Ainsa, J.A.; Martin, C.; Giequiel, B.; Gomez-Lus, R. Characterization of the chromosomal aminoglycoside 2'-N-acetyltransferase gene from Mycobacterium fortuitum. Antimicrob. Agents Chemother. 1996, 40, 2350–2355. [CrossRef]

102. Wang, H.; Wang, J.; Yu, P.; Ge, P.; Jiang, Y.; Xu, R.; Chen, R.; Liu, X. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. Int. J. Mol. Med. 2017, 39, 364–372. [CrossRef] [PubMed]

103. Vázquez-López, R.; Solano-Gálvez, S.G.; Vignon-Whaley, J.J.; Vaamonde, J.A.A.; Alonzo, L.A.P.; Reséndiz, A.R.; Álvarez, M.M.; López, E.N.V.; Franyuti-Kelly, G.; Álvarez-Hernández, D.A.; et al. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics 2020, 9, 205. [CrossRef] [PubMed]

104. Garneau-Tsodikova, S.; Labby, J.K. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm 2016, 7, 11–27. [CrossRef]

105. Sheikhalizadeh, V.; Hasani, A.; Rezaee, M.A.; Rahmati-Yamchi, M.; Hasani, A.; Ghotaslou, R.; Goli, H.R. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J. Infect. Chemother. 2017, 23, 74–79. [CrossRef]

106. Jana, S.; Deb, J.K. Molecular understanding of aminoglycoside action and resistance. Appl. Microbiol. Biotechnol. 2006, 70, 140–150. [CrossRef]

107. De Silva, P.M.; Kumar, A. Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Front. Microbiol. 2019, 10, 49. [CrossRef] [PubMed]

108. Xu, C.; Bilya, S.R.; Xu, W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019, 30, 100549. [CrossRef]

109. Xu, A.; Zhu, H.; Gao, B.; Weng, H.; Ding, Z.; Li, M.; Weng, X.; He, G. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: A case report. BMC Infect. Dis. 2020, 20, 45. [CrossRef]

110. Chukwudi, C.U. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [CrossRef] [PubMed]

111. Warburton, P.J.; Amodeo, N.; Roberts, A.P. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J. Antimicrob. Chemother. 2016, 71, 3333–3339. [CrossRef] [PubMed]

112. Hua, Y.; Pan, C.; Zhu, L.; Liu, Z.; Xu, Q.; Wang, H.; Yu, Y. Complete genome sequence of Acinetobacter baumannii A1296 (ST1469) with a small plasmid harbouring the tet(39) tetracycline resistance gene. J. Glob. Antimicrob. Resist. 2017, 11, 105–107. [CrossRef] [PubMed]

113. Rumbo, C.; Gato, E.; López, M.; Ruiz De Alegria, C.; Fernández-Cuenca, F.; Martínez-Martinez, L.; Vila, J.; Pachón, J.; Cisneros, J.M.; Rodríguez-Baño, J.; et al. Contribution of efflux pumps, porins, and β-lactamas to multidrug resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 5247–5257. [CrossRef] [PubMed]

114. Nikolakopoulou, T.L.; Giannoutsou, E.P.; Karabatsou, A.A.; Karagouni, A.D. Prevalence of tetracycline resistance genes in Greek seawater habitats. J. Microbiol. 2008, 46, 633–640. [CrossRef] [PubMed]
113. Lin, L.; Wang, S.F.; Yang, T.Y.; Hung, W.C.; Chan, M.Y.; Tseng, S.P. Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. *Sci. Rep.* 2017, 7, 15515. [CrossRef] [PubMed]

114. Miranda, C.D.; Kehrenberg, C.; Ulep, C.; Schwarz, S.; Roberts, M.C. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. *Antimicrob. Agents Chemother.* 2003, 47, 883–888. [CrossRef]

115. Yuhua, Y.; Ziyun, Y.; Yongbo, Z.; Fuqiang, L.; Qinghua, Z. Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of *Acinetobacter baumannii* and *Klebsiella pneumoniae*. *Rev. Soc. Bras. Med. Trop.* 2016, 49, 165–171. [CrossRef] [PubMed]

116. Huys, G.; Cnockaert, M.; Vaneechoutte, M.; Woodford, N.; Nemec, A.; Dijkshoorn, L.; Swings, J. Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant *Acinetobacter baumannii* strains from different European hospitals. *Res. Microbiol.* 2005, 156, 348–355. [CrossRef] [PubMed]

117. Foong, W.E.; Wilhelm, J.; Tam, H.K.; Pos, K.M. Tigecycline efflux in *Acinetobacter baumannii* is mediated by TetA in synergy with RND-type efflux transporters. *J. Antimicrob. Chemother.* 2020, 75, 1135–1139. [CrossRef]

118. Dönhöfer, A.; Franckenberg, S.; Wickle, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. Structural basis for TetM-mediated tetracycline resistance. *Proc. Natl. Acad. Sci. USA* 2012, 109, 16900–16905. [CrossRef]

119. Dünhiöfer, A.; Franckenberg, S.; Wickles, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. Structural basis for TetM-mediated tetracycline resistance. *Proc. Natl. Acad. Sci. USA* 2012, 109, 16900–16905. [CrossRef]

120. Ribera, A.; Ruiz, J.; Vila, J. Presence of the tet M determinant in a clinical isolate of *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2003, 47, 2310–2312. [CrossRef] [PubMed]

121. Li, L.; Hassan, K.A.; Tetu, S.G.; Naidu, V.; Pokhrel, A.; Cain, A.K.; Paulsen, I.T. The Transcriptomic Signature of Tigecycline in *Acinetobacter baumannii*. *Front. Microbiol.* 2020, 11, 565438. [CrossRef]

122. He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Ly, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of Plasmid-Mediated High-Level Tigecycline Resistance Genes in Animals and Humans. *Nat. Microbiol.* 2019, 4, 1450–1456. [CrossRef]

123. Wang, L.; Liu, D.; Ly, Y.; Cui, L.; Li, Y.; Li, T.; Song, H.; Hao, Y.; Shen, J.; Wang, Y.; et al. Novel Plasmid-Mediated tet(X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical *Acinetobacter baumannii* Isolate. *Antimicrob. Agents Chemother.* 2020, 64, e01326-19. [CrossRef]

124. Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. *Biochemistry* 2014, 53, 1565–1574. [CrossRef]

125. Su, X.Z.; Chen, J.; Mizushima, T.; Kuroda, T.; Tsuichiyi, T. AbeM, an H+-coupled *Acinetobacter baumannii* multidrug efflux pump belonging to the MATE family of transporters. *Antimicrob. Agents Chemother.* 2005, 49, 4362–4364. [CrossRef]

126. Perez, F.; Hujer, A.M.; Hujer, K.M.; Decker, B.K.; Raiser, P.N.; Bonomo, R.A. Global challenge of multidrug-resistant *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* 2007, 51, 3471–3484. [CrossRef] [PubMed]

127. Zaki, M.E.S.; Abou ElKheir, N.; Mofreh, M. Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of *Acinetobacter baumannii* Resistant to Fluoroquinolone. *Open Microbiol. J.* 2018, 12, 116–122. [CrossRef] [PubMed]

128. Liu, J.H.; Deng, Y.T.; Zeng, Z.L.; Gao, J.H.; Chen, L.; Arakawa, Y.; Chen, Z.L. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA methylase RmtB-producing *Escherichia coli* isolates from pigs. *Antimicrob. Agents Chemother.* 2008, 52, 2992–2993. [CrossRef]

129. Lari, A.R.; Ardebili, A.; Hashemi, A. Ader-adases mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant *Acinetobacter baumannii* clinical isolates. *Indian J. Med. Res.* 2018, 147, 413–421. [CrossRef] [PubMed]

130. Coyne, S.; Courvalin, P.; Perichon, B. Efflux-mediated antibiotic resistance in *Acinetobacter* spp. *Antimicrob. Agents Chemother.* 2011, 55, 947–953. [CrossRef] [PubMed]

131. Ardebili, A.; Lari, A.R.; Beheshi, M.; Lari, E.R. Association between mutations in gyrA and parC genes of *Acinetobacter baumannii* clinical isolates and ciprofloxacin resistance. *Iran. J. Basic Med. Sci* 2015, 28, 291–296. [CrossRef]

132. D’Souza, R.; Pinto, N.A.; Le Phuong, N.; Higgins, P.G.; Vu, T.N.; Byun, J.H.; Cho, Y.L.; Choi, J.R.; Yong, D. Phenotypic and genotypic characterization of *Acinetobacter* spp. panel strains: A cornerstone to facilitate antimicrobial development. *Front. Microbiol.* 2019, 10, 559. [CrossRef]

133. Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. *Lancet Infect. Dis.* 2006, 6, 629–640. [CrossRef]

134. Xiong, X.; Bromley, E.H.C.; Oelschlaeger, P.; Woolfson, D.N.; Spencer, J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: Conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium. *Nucleic Acids Res.* 2011, 39, 3917–3927. [CrossRef] [PubMed]

135. Robicsek, A.; Strahilevitz, J.; Jacoby, G.A.; Macielag, M.; Abbanat, D.; Chi, H.P.; Bush, K.; Hooper, D.C. Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase. *Nat. Med.* 2006, 12, 83–88. [CrossRef] [PubMed]

136. Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of *Acinetobacter baumannii*: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. *Front. Cell Infect. Microbiol.* 2017, 7, 55. [CrossRef]

137. Yamada, K.; Morinaga, Y.; Yanagihara, K.; Kaku, N.; Harada, Y.; Uno, N.; Nakamura, S.; Imamura, Y.; Hasegawa, H.; Miyazaki, T.; et al. Azithromycin inhibits MUC5AC induction via multidrug-resistant *Acinetobacter baumannii* in human airway epithelial cells. *Pulm. Pharmacol. Ther.* 2014, 28, 165–170. [CrossRef] [PubMed]

138. Cheng, Y.; Yang, S.; Jia, M.; Zhao, L.; Hou, C.; You, X.; Zhao, J.; Chen, A. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. *Anal. Bioanal. Chem.* 2016, 408, 1623–1631. [CrossRef] [PubMed]
138. Chopjitt, P.; Kerdsin, A.; Takeuchi, D.; Hatrongjit, R.; Boueroy, P.; Akeda, Y.; Tomonko, K.; Hamada, S. Whole genome analysis of extensively drug-resistant Acinetobacter baumannii clinical isolates in Thailand. Infect. Disord Drug Targets 2020, 20. [CrossRef] [PubMed]

139. Rajamohan, G.; Srinivasan, V.B.; Gebreyes, W.A. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65, 1919–1925. [CrossRef]

140. Lean, S.S.; Yeo, C.C.; Suhaili, Z.; Thong, K.L. Whole-genome analysis of an extensively drug-resistant clinical isolate of Acinetobacter baumannii AC12: Insights into the mechanisms of resistance of an ST195 clone from Malaysia. Int. J. Antimicrob. Agents 2015, 45, 178–182. [CrossRef]

141. Schroeder, M.R.; Lohsen, S.; Chancey, S.T.; Stephens, D.S. High-Level Macrolide Resistance Due to the Mega Element [mef(E)/mel]

142. Munita, J.; Arias, C. Mechanisms of Antibiotic Resistance. Microbiol. Spectr.

143. Chin, C.Y.; Gregg, K.A.; Napier, B.A.; Ernst, R.K.; Weiss, D.S. A PmrB-regulated deacetylase required for lipid A modification and biofilm formation, and virulence in a strain-specific manner. mBio 2016, 7, e00430-16. [CrossRef] [PubMed]

144. Leclercq, R. Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. Clin. Infect. Dis. 2002, 34, 482–492. [CrossRef] [PubMed]

145. Cortez-Cordova, J.; Kumar, A. Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2011, 37, 420–424. [CrossRef] [PubMed]

146. Damier-Piolle, L.; Magnet, S.; Brémont, S.; Lambert, T.; Courvalin, P. AdeJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2008, 52, 557–562. [CrossRef]

147. Le, K. Prediction of putative resistance islands in a carbapenem-resistant Acinetobacter baumannii global clone 2 clinical isolate. Ann. Lab. Med. 2016, 36, 320–324. [CrossRef] [PubMed]

148. Luke, N.R.; Sauberan, S.L.; Russo, T.A.; Beanan, J.M.; Olson, R.; Loehfelm, T.W.; Cox, A.D.; St. Michael, F.; Vinogradov, E.V.; Campanari, A.A. Identification and characterization of a glycosyltransferase involved in core biosynthesis. Infect. Immun. 2016, 84, 1663–1676. [CrossRef] [PubMed]

149. Sun, B.; Liu, H.; Jiang, Y.; Shao, L.; Yang, S.; Chen, D. New Mutations Involved in Colistin Resistance of Acinetobacter baumannii strains in a tertiary level hospital. PLoS ONE 2020, 15, e0231829. [CrossRef]

150. Moffatt, J.H.; Harper, M.; Boyce, J.D. Mechanisms of Polymyxin Resistance. Adv. Exp. Med. Biol. 2019, 1145, 55–71. [CrossRef]

151. Bojkovic, J.; Richie, D.L.; Six, D.A.; Rath, C.M.; Sawyer, W.S.; Hu, Q.; Dean, C.R. Characterization of an AlpB locustine deamination system in Acinetobacter baumannii. Insect. Immun. 2018, 27, 98–109. [CrossRef] [PubMed]

152. Luke, N.R.; Sauberan, S.L.; Russo, T.A.; Beanan, J.M.; Olson, R.; Loehfelm, T.W.; Cox, A.D.; St. Michael, F.; Vinogradov, E.V.; Campagnari, A.A. Identification and characterization of a glycosyltransferase involved in core biosynthesis. Infect. Immun. 2020, 88, 5571–5579. [CrossRef] [PubMed]

153. Sun, B.; Liu, H.; Jiang, Y.; Shao, L.; Yang, S.; Chen, D. New Mutations Involved in Colistin Resistance of Acinetobacter baumannii strains in a tertiary level hospital. PLoS ONE 2020, 15, e0231829. [CrossRef] [PubMed]

154. Gerson, S.; Betts, J.W.; Lucaßen, K.; Nodari, C.S.; Wille, J.; Josten, M.; Göttig, S.; Nowak, J.; Stefanik, D.; Roca, I.; et al. Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence In Vivo. Antimicrob. Agents Chemother. 2019, 63, e01587-19. [CrossRef] [PubMed]

155. Leclercq, R. Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. Clin. Infect. Dis. 2002, 34, 482–492. [CrossRef] [PubMed]

156. L López-Durán, P.A.; Fonseca-Coronado, S.; Lozano-Trenado, L.M.; Araujo-Betanzos, S.; Rugerio-Trujillo, D.A.; Vaughan, G.; Saldaña-Rivera, E. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary hospital. PLoS ONE 2020, 15, e0231829. [CrossRef]

157. Chopjitt, P.; Kerdsin, A.; Takeuchi, D.; Hatrongjit, R.; Boueroy, P.; Akeda, Y.; Tomonko, K.; Hamada, S. Whole genome analysis of extensively drug-resistant Acinetobacter baumannii clinical isolates in Thailand. Infect. Disord Drug Targets 2020, 20. [CrossRef] [PubMed]

158. Bojkovic, J.; Richie, D.L.; Six, D.A.; Rath, C.M.; Sawyer, W.S.; Hu, Q.; Dean, C.R. Characterization of an AlpB locustine deamination system in Acinetobacter baumannii. Insect. Immun. 2018, 27, 98–109. [CrossRef] [PubMed]

159. Bojkovic, J.; Richie, D.L.; Six, D.A.; Rath, C.M.; Sawyer, W.S.; Hu, Q.; Dean, C.R. Characterization of an AlpB locustine deamination system in Acinetobacter baumannii. Insect. Immun. 2018, 27, 98–109. [CrossRef] [PubMed]

160. Sun, B.; Liu, H.; Jiang, Y.; Shao, L.; Yang, S.; Chen, D. New Mutations Involved in Colistin Resistance of Acinetobacter baumannii strains in a tertiary level hospital. PLoS ONE 2020, 15, e0231829. [CrossRef] [PubMed]

161. Moffatt, J.H.; Harper, M.; Boyce, J.D. Mechanisms of Polymyxin Resistance. Adv. Exp. Med. Biol. 2019, 1145, 55–71. [CrossRef]

162. Hameed, F.; Khan, M.A.; Muhammad, H.; Sarwar, T.; Bilal, H.; Rehman, T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Res. Soc. Bras. Med. Trop. 2019, 52, e20190237. [CrossRef]

163. Martins-Sorensen, N.; Nesrud, E.; Xavier, D.E.; Cacci, L.C.; Iavarone, A.T.; McGann, P.; Riley, L.W.; Moreira, B.M. A novel plasmid-encoded mcr-4 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J. Antimicrob. Chemother. 2020, 75, 60–64. [CrossRef]

164. Hameed, F.; Khan, M.A.; Muhammad, H.; Sarwar, T.; Bilal, H.; Rehman, T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Res. Soc. Bras. Med. Trop. 2019, 52, e20190237. [CrossRef]

165. Hood, M.I.; Becker, K.W.; Roux, C.M.; Dunman, P.M.; Skaar, E.P. Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect. Immun. 2013, 81, 542–551. [CrossRef]
164. Nhu, N.T.K.; Riordan, D.W.; Nhu, T.D.H.; Thanh, D.P.; Thwaites, G.; Lan, N.P.H.; Wren, B.W.; Baker, S.; Stabler, R.A. The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications. *Sci. Rep.* 2016, 6, 28291. [CrossRef]

165. Paul, D.; Mallick, S.; Das, S.; Saha, S.; Ghosh, A.K.; Mandal, S.M. Colistin Induced Assortment of Antimicrobial Resistance in a Clinical Isolate of *Acinetobacter baumannii* SD01. *Infect. Disord. Drug Targets* 2019, 20, 501–505. [CrossRef]

166. Traglia, G.; Chiem, K.; Quinn, B.; Fernandez, J.S.; Montañà, S.; Almuzara, M.; Mussi, M.A.; Tilmansky, M.E.; Iriarte, A.; Centrón, D.; et al. Genome sequence analysis of an extensively drug-resistant *Acinetobacter baumannii* indigo-pigmented strain depicts evidence of increase genome plasticity. *Sci. Rep.* 2018, 8, 16961. [CrossRef] [PubMed]

167. Foong, W.E.; Tam, H.K.; Crames, J.J.; Averhoff, B.; Pos, K.M. The chloramphenicol/H+ antipporter CraA of *Acinetobacter baumannii* AYE reveals a broad substrate specificity. *J. Antimicrob. Chemother.* 2019, 74, 1192–1201. [CrossRef] [PubMed]

168. Karalewitz, A.P.A.; Millera, S.I. Multidrug-resistant *Acinetobacter baumannii* chloramphenicol resistance requires an inner membrane permease. *Antimicrob. Agents Chemother.* 2018, 62, e00513-18. [CrossRef]

169. Chen, C.; Cui, C.Y.; Wu, X.T.; Fang, L.X.; He, Q.; He, B.; Long, T.F.; Liao, X.P.; Chen, L.; Liu, Y.H.; et al. Spread of tet(X5) and tet(X6) genes in multidrug-resistant *Acinetobacter baumannii* strains of animal origin. *Vet. Microbiol.* 2021, 253, 108954. [CrossRef] [PubMed]

170. Li, X.; Quan, J.; Yang, Y.; Ji, J.; Liu, L.; Fu, Y.; Hua, X.; Chen, Y.; Pi, B.; Jiang, Y.; et al. Abrp, a new gene, confers reduced susceptibility to tetracycline, chloramphenicol and fosfomycin classes in *Acinetobacter baumannii*. *Eur. J. Clin. Microbiol. Infect. Dis.* 2016, 35, 1371–1375. [CrossRef] [PubMed]

171. Li, H.; Wang, Q.; Wang, R.; Zhang, Y.; Wang, X.; Wang, H. Global regulator SoxR is a negative regulator of efflux pump expression and affects antibiotic resistance and fitness in *Acinetobacter baumannii*. *Med. Baltim.* 2017, 96, e7188. [CrossRef] [PubMed]

172. Wang, J.; Zhou, Z.; He, F.; Ruan, Z.; Jiang, Y.; Hua, X.; Yu, Y. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of *Acinetobacter baumannii* ATCC 19606. *PLoS ONE* 2018, 13, e0192288. [CrossRef]

173. Ma, X.L.; Guo, Y.Z.; Wu, Y.M.; Gong, W.T.; Sun, J.; Huang, Z. In vivo bactericidal effect of colistin–linezolid combination in a murine model of MDR and XDR *Acinetobacter baumannii* pneumonia. *Sci. Rep.* 2020, 10, 17518. [CrossRef]

174. Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. *J. Antimicrob. Chemother.* 2013, 68, 4–11. [CrossRef]

175. Wareth, G.; Linde, J.; Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical *Acinetobacter baumannii* isolates from Germany and Vietnam. *Int. J. Antimicrob. Agents* 2020, 56, 106127. [CrossRef]

176. Ducas-Mowchun, K.; De Silva, P.M.; Crisostomo, L.; Fernando, D.M.; Chao, T.C.; Pelka, P.; Schweizer, H.P.; Kumar, A. Next generation of Tn7-based single-copy insertion elements for use in multi- and pan-drug-resistant strains of *Acinetobacter baumannii*. *Appl. Environ. Microbiol.* 2019, 85, e00066-19. [CrossRef] [PubMed]

177. Luna, B.M.; Ullaq, A.; Yan, J.; Pantapalangkoor, P.; Nielsen, T.B.; Davies, B.W.; Actis, L.A.; Spellberg, B. Selectable Markers for Use in Genetic Manipulation of Extensively Drug-Resistant (XDR) *Acinetobacter baumannii* HUMC1. *mSphere* 2017, 2, e00140-17. [CrossRef] [PubMed]

178. Claeyes, K.C.; Fiorvento, A.D.; Rybak, M.J. A Review of Novel Combinations of Colistin and Lipopeptide or Glycopeptide Antibiotics for the Treatment of Multidrug-Resistant *Acinetobacter baumannii*. *Infekt. Ther.* 2014, 3, 69–81. [CrossRef]

179. Rolain, J.M.; Diene, S.M.; Kempf, M.; Gimenez, G.; Robert, C.; Raoult, D. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant *Acinetobacter baumannii* isolate from Marseille, France. *Antimicrob. Agents Chemother.* 2013, 57, 592–596. [CrossRef] [PubMed]

180. Giannouli, M.; Di Popolo, A.; Durante-Mangoni, E.; Bernardo, M.; Cuccurullo, S.; Amato, G.; Tripathi, M.F.; Triassi, M.; Utili, R.; Zarrilli, R. Molecular epidemiology and mechanisms of rifampicin resistance in *Acinetobacter baumannii* isolates from Italy. *Int. J. Antimicrob. Agents* 2012, 39, 58–63. [CrossRef]

181. Luna, B.; Trebosc, V.; Lee, B.; Bakowski, M.; Ullaq, A.; Yan, J.; Lu, P.; Cheng, J.; Nielsen, T.; Lim, J.; et al. A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant *Acinetobacter baumannii* ATCC 19606. *J. Antimicrob. Chemother.* 2019, 74, 1371–1375. [CrossRef] [PubMed]

182. Chen, C.; Cui, C.Y.; Wu, X.T.; Fang, L.X.; He, Q.; He, B.; Long, T.F.; Liao, X.P.; Chen, L.; Liu, Y.H.; et al. Spread of tet(X5) and tet(X6) genes in multidrug-resistant *Acinetobacter baumannii* strains of animal origin. *Vet. Microbiol.* 2021, 253, 108954. [CrossRef] [PubMed]

183. Sharma, A.; Sharma, R.; Bhattacharyya, T.; Bhando, T.; Pathania, R. Fosfomycin resistance in *Acinetobacter baumannii* is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbAf. *J. Antimicrob. Chemother.* 2017, 72, 68–74. [CrossRef]

184. Sonkar, A.; Shukla, H.; Shukla, R.; Kalita, J.; Pandey, T.; Tripathi, T. UDP-N-Acetylc glucosamine enolpyruvyl transferase (MurA) of *Acinetobacter baumannii* (AbMurA): Structural and functional properties. *Int. J. Biol. Macromol.* 2017, 97, 106–114. [CrossRef]

185. Sánchez-Osuna, M.; Cortés, P.; Llagostera, M.; Barbé, J.; Erill, I. Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim. *Microb. Genom.* 2020, 6, mgno000440. [CrossRef] [PubMed]

186. Ghaffoori Kanaan, M.H.; Al-Shadeedi, S.M.J.; Al-Massody, A.J.; Ghasemian, A. Drug resistance and virulence traits of *Acinetobacter baumannii* from Turkey and chicken raw meat. *Comp. Immunol. Microbiol. Infect. Dis.* 2020, 70, 101451. [CrossRef] [PubMed]

187. Huang, C.; Long, Q.; Qian, K.; Fu, T.; Zhang, Z.; Liao, P.; Xie, J. Resistance and integron characterization of *Acinetobacter baumannii* in a teaching hospital in Chongqing, China. *New Microbes New Infect.* 2015, 8, 103–108. [CrossRef] [PubMed]
188. Hong, B.K.; Wang, M.; Chi, H.P.; Kim, E.C.; Jacoby, G.A.; Hooper, D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 3582–3584. [CrossRef]

189. Osei Sekyere, J.; Reta, M.A. Genomic and Resistance Epidemiology of Gram-Negative Bacteria in Africa: A Systematic Review and Phylogenomic Analyses from a One Health Perspective. mSystems 2020, 5, e00897-20. [CrossRef] [PubMed]

190. Girija, A.S.S.; Vijayashree Priyadharshini, J.; Paramasivam, A. Plasmid-encoded resistance to trimethoprim/sulfamethoxazole mediated by dfrA1, dfrA5, sul1 and sul2 among Acinetobacter baumannii isolated from urine samples of patients with severe urinary tract infection. J. Glob. Antimicrob. Resist. 2019, 17, 145–146. [CrossRef]

191. Duployez, C.; Guern, R.L.; Milliere, L.; Caplan, M.; Loizez, C.; Ledoux, G.; Jaille, E.; Favory, R.; Mathieu, D.; Wallet, F. An outbreak can hide another. Jpn. J. Infect. Dis. 2019, 138, 17–27. [CrossRef]

192. Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [CrossRef]

193. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [CrossRef]

194. Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. J. Clin. Microbiol. 2020, 58, 1075–1082. [CrossRef] [PubMed]

195. Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Longuet Flandre, P.; Dubert, M.; Cally, R.; Logre, E.; Fraiss, T.; mail@enfmed32.org. Increase in Hospital-Acquired Carbapenem-Resistant Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New York, New York, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1827–1831. [CrossRef] [PubMed]

196. Ramadan, H.K.-A.; Mahmoud, M.A.; Aburahma, M.Z.; Elkhawaga, A.A.; El-Mokhtar, M.A.; Sayed, I.M.; Hosni, A.; Hassany, S.M.; Hegazy, M.; Zayed, M.M.; et al. Acinetobacter baumannii: Study of multidrug-resistant Acinetobacter baumannii isolated from nosocomial infections. J. Glob. Antimicrob. Resist. 2020, 29, 40–48. [CrossRef] [PubMed]

197. Nebreda-Mayoral, T.; Miguel-García, A.; Puente-Fuertes, L.; Cantón-Benito, E.; Martínez-García, A.M.; Muñoz-Martín, A.B.; Orduña-Domingo, A. Infección bacteriana/fúngica en pacientes con COVID-19 ingresados en un hospital de tercer nivel de Castilla y León, España. Enferm. Infecc. Microbiol. Clin. 2020, 3. [CrossRef]

198. Wu, N.; Dai, J.; Guo, M.; Li, J.; Zhou, X.; Li, F.; Gao, Y.; Qu, H.; Lu, H.; Jin, J.; et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection of four critical COVID-19 patients. Emerg. Microbes Infect. 2021, 1–31. [CrossRef] [PubMed]

199. Perez, S.; Innes, G.K.; Walters, M.S.; Mehr, J.; Arias, J.; Greeley, R.; Chew, D. Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1827–1831. [CrossRef] [PubMed]

200. Fitzpatrick, M.A.; Ozer, E.A.; Hauser, A.R. Utility of Whole-Genome Sequencing in Characterizing Acinetobacter Epidemiology and Analyzing Hospital Outbreaks. J. Clin. Microbiol. 2016, 54, 593–612. [CrossRef]

201. Koeleman, J.G.M.; Stoor, J.; Van Der Bijl, M.W.; Vandenbroucke-Grauls, C.M.J.E.; Savelkoul, P.H.M. Identification of Epidemic Strains of Acinetobacter baumannii Gene PCR. J. Clin. Microbiol. 2001, 39, 8–13. [CrossRef]

202. Wu, T.-L.; Ma, L.; Chang, J.-C.; Su, L.-H.; Chu, C.; Leu, H.-S.; Siu, L.K. Variable Resistance Patterns of Integron-Associated Acinetobacter baumannii Isolates in a Surgical Intensive Care Unit. Microb. Drug Resist. 2004, 10, 292–299. [CrossRef] [PubMed]

203. Turton, J.F.; Kaufmann, M.E.; Glover, J.; Coelho, J.M.; Warner, M.; Pike, R.; Pitt, T.L. Detection and Typing of Epidemics in Epidemic Strains of Acinetobacter baumannii Found in the United Kingdom. J. Clin. Microbiol. 2005, 43, 3074–3082. [CrossRef] [PubMed]

204. Gaur, A.; Prakash, P.; Anupurba, S.; Mohapatra, T.M. Possible role of integrase gene polymerase chain reaction as an epidemiological marker: Study of multidrug-resistant Acinetobacter baumannii isolated from nosocomial infections. Int. J. Antimicrob. Agents 2007, 29, 446–450. [CrossRef]

205. Chen, J.; Li, H.; Yang, J.; Zhan, R.; Chen, A.; Yan, Y. Prevalence and Characterization of Integrons in Multidrug Resistant Acinetobacter baumannii in Eastern China: A Multiple-Hospital Study. Int. J. Env. Res. Public Health 2015, 12, 10093–10105. [CrossRef]
210. Deylam Salehi, M.; Ferdosi-Shahandashti, E.; Yahyapour, Y.; Khafri, S.; Pournajaf, A.; Rajabnia, R. Integron-Mediated Antibiotic Resistance in \textit{Acinetobacter baumannii} Isolated from Intensive Care Unit Patients, Babol, North of Iran. \textit{Biomed. Res. Int.} \textbf{2017}, \textit{2017}, 7157923. [CrossRef] [PubMed]

211. Nepka, M.; Perivolioti, E.; Kraniotaki, E.; Politi, L.; Tsakris, A.; Pournaras, S. In Vitro Bactericidal Activity of Trimethoprim-Sulfamethoxazole Alone and in Combination with Colistin against Carbapenem-Resistant \textit{Acinetobacter baumannii} Clinical Isolates. \textit{Antimicrob. Agents Chemother.} \textbf{2016}, \textit{60}, 6903–6906. [CrossRef]