Polygenic risk scores across the extended psychosis spectrum

Smigielski, Lukasz ; Papiol, Sergi ; Theodoridou, Anastasia ; Heekeren, Karsten ; Gerstenberg, Miriam ; Wotrub, Diana ; Buechler, Roman ; Hoffmann, Per ; Herms, Stefan ; Adorjan, Kristina ; Anderson-Schmidt, Heike ; Budde, Monika ; Comes, Ashley L ; Gade, Katrin ; Heilbronner, Maria ; Heilbronner, Urs ; Kalman, Janos L ; Klöhn-Saghatolislam, Farahnaz ; Reich-Erkelenz, Daniela ; Schaupp, Sabrina K ; Schulte, Eva C ; Senner, Fanny ; Anghelescu, Ion-George ; Arolt, Volker ; Baune, Bernhard T ; Dannlowski, Udo ; Dietrich, Detlef E ; Fallgatter, Andreas J ; Figge, Christian ; Jäger, Markus ; Walitza, Susanne ; Grünblatt, Edna

Abstract: As early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context, polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric Genomics Consortium, third release). Eight well-phenotyped groups (n = 1580; 56% males) were assessed: control (n = 305), lower (n = 117) and higher (n = 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n = 120), BD type-I (n = 359), BD type-II (n = 96), schizoaffective disorder (n = 86), and SZ groups (n = 384). PRS differences were investigated for binary traits and the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk and clinical groups (Nagelkerke’s pseudo-R²: 1.3-7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk groups, but not between at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRS, but not BD-PRS, were positively associated with transdiagnostic symptomology. Overall, PRSs support the continuum model across the psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic accuracy of PRSs in mental healthcare.

DOI: https://doi.org/10.1038/s41398-021-01720-0
Smigielski, Lukasz; Papiol, Sergi; Theodoridou, Anastasia; Hecker, Karsten; Gerstenberg, Miriam; Wotruba, Diana; Buechler, Roman; Hoffmann, Per; Herms, Stefan; Adorjan, Kristina; Anderson-Schmidt, Heike; Budde, Monika; Comes, Ashley L; Gade, Katrin; Heilbronner, Maria; Heilbronner, Urs; Kalman, Janos L; Klöhn-Saghatolislam, Farahnaz; Reich-Erkeletz, Daniela; Schaupp, Sabrina K; Schulte, Eva C; Senner, Fanny; Anghelascu, Ion-George; Arolt, Volker; Baune, Bernhard T; Dannlowski, Udo; Dietrich, Detlef E; Fallgater, Andreas J; Figge, Christian; Jäger, Markus; Walitza, Susanne; Grünblatt, Edna (2021). Polygenic risk scores across the extended psychosis spectrum. Translational Psychiatry, 11:600. DOI: https://doi.org/10.1038/s41398-021-01720-0
Polygenic risk scores across the extended psychosis spectrum

As early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context, polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric Genomics Consortium, third release). Eight well-phenotyped groups (n = 1580; 56% males) were assessed: control (n = 305), lower (n = 117) and higher (n = 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n = 120), BD type-I (n = 359), BD type-II (n = 96), schizoaffective disorder (n = 86), and SZ groups (n = 384). PRS differences were investigated for binary traits and the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk and clinical groups (Nagelkerke’s pseudo-R^2: 1.3–7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk groups, but not at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRS, but not BD-PRS, were positively associated with transdiagnostic symptomatology. Overall, PRSs support the continuum model across the psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic accuracy of PRSs in mental healthcare.

Translational Psychiatry (2021)11:600; https://doi.org/10.1038/s41398-021-01720-0

INTRODUCTION

Psychosis is a mental condition characterized by disturbed contact with reality, affecting cognition, feelings, and behavior. It manifests primarily as sensory experiences in the absence of physical stimuli (hallucinations) and holding bizarre, irrational, or false beliefs (delusions) [1]. While psychotic symptoms are associated with different medical conditions, they typically occur in schizophrenia (SZ), a prototypical psychotic disorder, and as a frequent characteristic in bipolar disorder (BD). Notably, SZ and BD are highly heritable, with heritability estimates of 60–80% [2] and substantially overlapping genetic architectures [3–5]. Psychotic symptoms in SZ and BD also show clinical responses to antipsychotic medication [6]. Despite extensive research, the etiology of psychotic disorders remains unclear, with multiple putative determinants and risk-conferring factors [7]. Within this complex scenario of poly-causation, genetic burdens may predispose certain individuals to developing clinical syndromes in critical life periods [8]. Addressing the heterogeneity of SZ and BD genetics results, a recent investigation assessed the contribution of common variants to disease susceptibility [9]. In addition, the availability of large datasets enabled by high-throughput screening and genomic advances have facilitated the development of polygenic risk scores (PRSs). PRSs cumulatively estimate genome-wide effects of common variants on disease susceptibility and genetic contributions for schizophrenia (SNPs) [10]. In the context of psychosis research, the value of PRSs has been substantiated across numerous applications, including their capacity to differentiate between cases and controls [11, 12] and to predict longitudinal illness courses, diagnostic subtype shifts [13], and responses to antipsychotic medication [14, 15].
Overt psychosis in SZ is often preceded by early signs and mild symptoms developing 2–5 years before a formal diagnosis [16]. Newer diagnostic manuals, such as Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition [17] and International Classification of Diseases, Eleventh Revision [18] incorporate dimensional aspects. A growing body of evidence also supports a continuum-like or extended psychosis spectrum model (cf. categorical approaches) of increasing symptom severity and persistence [19, 20]. These findings are corroborated by the modulating effect of PRS for SZ (SZ-PRS) on well-established neurocognitive intermediate phenotypes, such as prefrontal dysregulation in connection to working memory load, which has been observed in both SZ patients and healthy persons [21]. The polygenic burden indexed by SZ-PRS was also shown to be associated with cognitive–emotional, behavioral, and social impairments, known antecedents of SZ, across the developmental trajectory in large population-based cohorts [22]. Additionally, separate and joint PRSs for SZ and BD (BD-PRS) have proven useful in dissecting BD subtypes [23] and predicting progression to BD and psychotic disorders from a diagnosis of unipolar disorder [24].

As early recognition of psychosis may mitigate its negative individual and societal impacts, recent research has emphasized the importance of early detection and intervention [25]. The concepts of both schizotypy (trait-like psychosis proneness) and at-risk mental state (imminent, basic symptom criteria) have substantially informed preventive research [26, 27]. Nevertheless, the role of schizotypy in the developmental psychopathology of psychosis remains debated [26, 28], and most individuals at high risk do not transition to a diagnostic entity even years after an initial clinical presentation [29]. The molecular and genetic foundation of a broad psychosis spectrum is unclear, yet its exploration may reveal biological common denominators. In this context, the ultimate objectives of PRS analyses include the accurate prediction of disease onset and determination of tailored treatment strategies [10]. However, studies aimed at identifying associations between PRS and quantitative psychotic symptom manifestations have yielded both significant [30, 31] and inconsistent findings [32]. Notably, one study identified a linear relationship only when both cases and controls were pooled [33], underscoring the value of the continuum model. Inconsistencies may also have arisen from possible temporal symptom fluctuations and/or differences in operationalization among the clinical instruments employed. Furthermore, recent genome-wide association studies (GWASs) based on increasing discovery sample sizes and refined algorithms have contributed to the improved PRS power [34], which itself is sufficient motivation for new predictive studies.

This work investigates the associations and between-group differences of PRS computed for SZ and BD across the extended psychosis spectrum. In an early study utilizing PRS [35], SZ-PRS and BD-PRS were significantly associated with SZ and BD diagnostic spectrums. When split into separate diagnoses, SZ-PRS was associated with SZ, schizoaffective disorder (SZA), psychosis not otherwise specified, and BD type I, while BD-PRS was associated with BD type I and BD type II. However, no significant differences between any portion of the spectrum or specific groups were found after controlling for multiple comparisons (Tukey method). In contrast, the present investigation expands the phenotypic poles of normatively diagnosed disorder groups (SZ, BD type I, BD type II, SZA) and controls into the subclinical categories of high risk for developing psychosis, as well as schizotypy. If individuals across these groups differentially share genetic liability, a smooth gradient and severity-related differences in PRS should be observed. Moreover, in a transdiagnostic manner, this work examines the relationship between PRS and a well-validated continuous symptom measure, the Positive and Negative Syndrome Scale (PANSS) [36], using quantile regression modeling [37].
Statistical analysis: PRSs across groups

An analysis of variance (ANOVA) was conducted to assess between-group differences in SZ-PRS and BD-PRS (with group as predictor and PRS as outcome variable), using subject age, sex, and first five genetic ancestry principal components (PCs) to account for population stratification. Pairwise comparisons were corrected for analysis using a Bonferroni correction for 28 tests performed (i.e., the number of pair combinations for each PRS). Additionally, to assess the associations with group/diagnosis and variance explained by PRS, block-wise binary logistic regressions with healthy controls were conducted. For each PRS, two statistical models with case/control status as outcome were compared, one testing the covariates alone (i.e., age, sex, and the ancestry-specific PCs as a baseline model) and the other testing the covariates with the added PRS (full model). We report the R^2 value as the difference in Nagelkerke's pseudo-R^2 [58] between these two nested models as an indicator of explained variance. As these comparisons were against the control condition, no further correction was applied in these non-independent tests.

Statistical analysis: association between PRSs and symptoms

To examine the effects of PRS predicting the symptom PANSS scores (Positive Symptoms, Negative Symptoms, General Psychopathology, and Total Score) across low, medium, and high symptom score distributions, quantile regressions using three tau (τ) values (0.25, 0.50, 0.75) and accounting for age, sex, and the five ancestry-specific PCs were conducted. The quantiles indicate that 25%, 50%, and 75% of the scores, respectively, fall below each corresponding point in the distribution of scores. Quantile regression [37] was chosen over a transformation because of the effect of symptom data. This statistical approach estimates the effects at different locations in the criterion distribution with or without normality assumptions being met, where relying on the mean as a measure of centrality under an ordinary least squares model might be less informative or inappropriate [59]. Statistical analyses were performed using the R statistical computing environment (version 4.0.5). Nominal significance was assessed at an $\alpha < 0.05$ threshold.

RESULTS

Study sample

After QC, 1580 samples (883 males; ages 12–78 years) from the initial pool of 1752 genotyped samples, with complete information for study group, sex, and age, were available for analysis, including 6,600,214 genetic markers. PANSS data were accessible for 1134 individuals (622 males). The characteristics and symptom scores of participants are summarized in Table 1. Within the at-risk group, the following numbers of individuals met the partial (overlapping) criteria: 120 (HR or UHR), 111 (HR), 70 (UHR), 50 (HR without UHR), 86 (risk for BD).

Between-group differences

ANOVA revealed significant among-group differences for both SZ-PRS ($F_{9,1565} = 9.30, p = 2.52 \times 10^{-11}$) and BD-PRS ($F_{9,1565} = 11.71, p = 1.37 \times 10^{-14}$). Out of 28 pairwise Bonferroni-corrected tests for SZ-PRS and for BD-PRS, 9 and 12 were significant, respectively. Figure 1 depicts the mean standardized PRS, density plots, and 95% confidence intervals (CIs) with comparison arrows between groups. Notably, the controls differed from the SZ and SZA groups in SZ-PRS and from the BD I, BD II, SZA, and at-risk groups in BD-PRS. Very similar results were observed for the lower schizotypy group. Additionally, the high schizotypy group differed from most
clinical groups and the at-risk group, while the latter was not distinguishable from any clinical diagnoses. Tables 2 and S2 (Supplementary Information) provide detailed statistics for this analysis.

Case–control status

SZ-PRS was significantly associated with the case–control status in the binary regression for the SZ (odds ratio (OR) = 1.62, 95% CI = 1.37–1.93, \(p = 6.88 \times 10^{-9} \)), SZA (OR = 1.82, 95% CI = 1.38–2.45, \(p = 2.04 \times 10^{-5} \)), BD I (OR = 1.27, 95% CI = 1.07–1.51, \(p = 0.006 \)), and RISK (OR = 1.57, 95% CI = 1.14–2.20, \(p = 0.006 \)) groups with the controls (change in Nagelkerke’s pseudo-\(R^2 \), 1.3–6.1%). BD-PRS was also significantly associated with the case–control status for contrasts involving the BD I (OR = 1.80, 95% CI = 1.51–2.16, \(p = 2.53 \times 10^{-9} \)), BD II (OR = 1.65, 95% CI = 1.26–2.18, \(p = 1.98 \times 10^{-6} \)), SZA (OR = 1.96, 95% CI = 1.46–2.67, \(p = 3.41 \times 10^{-6} \)), SZ (OR = 1.26, 95% CI = 1.10–1.46, \(p = 0.011 \)), and RISK (OR = 2.19, 95% CI = 1.53–3.20, \(p = 8.21 \times 10^{-9} \)) groups and the control group, resulting in a slightly higher Nagelkerke’s pseudo-\(R^2 \) change range, 4.0–7.7% (Fig. 2 and Table S3 [Supplementary Information]).

PRSs and symptoms

SZ-PRS was found to be a significant predictor of PANSS Total Score at the 25th (\(t = 3.86, p = 1.18 \times 10^{-4} \)), 50th (\(t = 3.19, p = 0.001 \)), and 75th (\(t = 2.64, p = 0.008 \)) percentiles. Significant effects were also found for Positive Symptoms at the 50th (\(t = 4.86, p = 1.35 \times 10^{-6} \)) and 75th (\(t = 2.50, p = 0.013 \)) percentiles and for General Psychopathology at the 25th (\(t = 3.41, p = 6.70 \times 10^{-4} \)) and 50th (\(t = 2.27, p = 0.023 \)) percentiles, while Negative Symptoms were significant only at the 50th percentile (\(t = 2.64, p = 0.008 \)). In contrast, no significant effects were observed for BD-PRS across any of the PANSS measures. Figure 3 and Table S4 (Supplementary Information) report further details for this analysis.

DISCUSSION

This work investigated the polygenic burden in four healthy/subclinical groups and four clinical groups. It aimed to quantify the associations and between-group differences of SZ-PRS and BD-PRS and their possible relationship with symptomatic presentation. Both PRSs were differentially useful in elucidating the genome-wide architecture across the extended psychosis spectrum. Overall, the gradient of genetic risk proximity observed across groups is commensurate with the continuum model [35]. SZ-PRS and BD-PRS performed most robustly for the extremes of the psychosis spectrum, i.e., in distinguishing SZ and BD cases from controls, respectively, corroborating previous findings [11, 12].
Table 2. Main results of the analysis of variance using polygenic risk score (PRS) for schizophrenia (SZ-PRS) and bipolar disorder (BD-PRS) across the eight studied groups (Table S2 provides the full list of pairwise tests).

Measure	ANOVA	Means (z-score)	Significant post hoc tests									
	Sum of squares	df	Mean square	F	p	Group	Mean	SD	Pairwise contrast	Beta	SE	Adjusted p
SZ-PRS	61.01	7	8.716	9.300	2.52×10^{-11}	CTRL	-0.214	0.988	CTRL–SZA	-0.537	0.121	2.53×10^{-4}
						SCHIZ L	-0.222	0.947	CTRL–SZ	-0.474	0.076	1.65×10^{-8}
						SCHIZ H	-0.323	1.018	SCHIZ L–SZA	-0.534	0.146	0.007
						RISK	0.055	0.88	SCHIZ L–SZ	-0.471	0.109	4.50×10^{-4}
						BD I	0.036	0.986	SCHIZ H–BD I	-0.388	0.112	0.015
						BD II	-0.07	0.977	SCHIZ H–SZA	-0.683	0.146	9.18×10^{-5}
						SZA	0.253	0.958	SCHIZ H–SZ	-0.621	0.110	5.73×10^{-7}
						SZ	0.243	1.012	BD I–SZ	-0.233	0.072	0.034
						SCHIZ H	0.230	0.905	CTRL–SZA	-0.572	0.12	0.004
	Residuals	1466.67	1565	0.937								
BD-PRS	76.51	7	10.930	11.709	1.37×10^{-14}	CTRL	-0.268	0.943	CTRL–RISK	-0.412	0.113	0.007
						SCHIZ L	-0.222	0.993	CTRL–BD I	-0.558	0.078	2.86×10^{-11}
						SCHIZ H	-0.181	0.905	CTRL–BD II	-0.461	0.115	0.002
						RISK	0.230	0.905	CTRL–SZA	-0.572	0.12	5.99×10^{-5}
						BD I	0.276	0.984	SCHIZ L–RISK	-0.404	0.128	0.045
						BD II	0.206	0.96	SCHIZ L–BD I	-0.550	0.111	2.11×10^{-5}
						SZA	0.213	0.971	SCHIZ L–BD II	-0.453	0.140	0.033
						SZ	-0.095	1.041	SCHIZ L–SZA	-0.565	0.145	0.003
	Residuals	1460.92	1565	0.933								

Note: The analyses accounted for age, sex, and the first five genetic ancestry principal components, and statistical significance is indicated by Bonferroni-adjusted p values.

Adjusted p: Bonferroni adjusted p value, beta: beta coefficient, df: degrees of freedom, SE: standard error, BD I: bipolar I disorder, BD II: bipolar II disorder, CTRL: controls, RISK: at-risk state for psychosis, SCHIZ L: lower schizotypy, SCHIZ H: higher schizotypy, SZA: schizoaffective disorder, SZ: schizophrenia.

Trend toward statistical significance.
A. Polygenic risk score for schizophrenia

B. Polygenic risk score for bipolar disorder

Besides, given the significant effects for both PRSs, the existence of shared risk loci for SZ may be inferred from our results relative to this phenotype. Indeed, SZA seems genetically intermediate to BD I and SZ, with evidence from twin studies identifying the same genetic risk factors across SZA, SZ, and manic episodes [60]. Furthermore, similar results were observed for both controls and the low schizotypy group, while the at-risk group seems best positioned close to the clinical spectrum. Moreover, significant associations were seen for both BD type-I (characterized by manic episodes often alternating with depressive episodes) and BD type-II (characterized by hypomania and depression) using BD-PRS, but only for BD type-I using SZ-PRS. While we analyzed roughly four times more BD I than BD II cases, this effect is probably best explained by the putative partial genetic independence within these two BD subtypes [61]. Our findings align with prior reports confirming the ability of PRSs to accurately differentiate subtypes along diagnostic spectra, such as between SZ and other psychotic disorders [11], BD with and without psychotic features [62], and BD with manic and depressive psychosis [63].

Notably, BD-PRS values were higher, conveying a higher polygenic burden, in the at-risk group compared to controls, but not different from those of clinical groups. BD-PRS also explained a significant portion of variance in the binary logistic regression for at-risk status, an effect observed at a somewhat weaker level for SZ-PRS. These findings highlight the inherent genetic vulnerability of this subclinical group. To the best of our knowledge, there has been only one published report of a PRS analysis of a sizeable population of individuals at high risk for psychosis. Perkins et al. [64] recently demonstrated that SZ-PRSs were significantly elevated in individuals transitioning to a psychotic disorder diagnosis within a 2-year interval, compared to unaffected controls, but not in those not transitioning to a clinical diagnosis. Interestingly, our results were significant even without differentiating individuals according to their conversion status. Another key difference is the detection of effects using BD-PRS in our work. In particular, beyond the well-established high clinical risk criteria [29], we also assessed subtle subclinical hypomanic symptoms. A large majority of at-risk individuals (72%) met a cut-off value of ≥14 in the HCL-32 as a secondary measure and tentative risk criterion for BD [38]. This aligns with the common difficulties in unambiguously distinguishing SZ from BD, especially in early disorder onset [65], often continuing as diagnostic instability [66].

Given the large residual variance beyond the currently captured polygenic burden, gene × environment interactions are biologically plausible mechanisms as course specifiers for symptom development [67]. Such an interaction between BD-PRS and childhood trauma predisposing individuals to more severe disorders has indeed been shown recently [68]. As genetic risk is not modifiable, future research should thus also concentrate on psychosocial prevention of mental illness [69].

Our results inform the discussion of psychosis risk enrichment in at-risk individuals [70]. A meta-analysis has estimated a 36% transition rate within 3 years from clinical presentation in such individuals [71]. In the sample included in this study, which was a prospective investigation [38], over the same time window, the transition rate into F20 (schizophrenia), F23 (brief psychotic disorder), and BD diagnoses reached 15%. Currently, risk identification and predictors of exacerbation are primarily based on symptoms, thus lacking proper scalability [72]. In contrast to family history as a proxy for genetic risk, PRS offers a scalable quantitative metric for potential use in clinical contexts conditional on empirical validation [73]. Notably, the severity of psychopathology or clinical deterioration in the psychosis spectrum is often linked to neurocognitive deficits [74] and both SZ-PRS and BD-PRS have repeatedly been linked to cognition [75, 76]. In a differential analysis, most SZ risk alleles were associated with poorer cognition, while most BD risk alleles were linked to better cognition [77]. Accordingly, moderate neurocognitive impairments typically observed in the at-risk state [78], compared to severe impairments in SZ, align with our finding that genetic liability in this group was best characterized by risk variants covered by BD-GWAS. Downstream in the pathway towards symptom development, neurobiological mechanisms influenced by genetic variation [79] might be even more directly associated with emerging cognitive-perceptual disturbances [80]. These brain-based mechanisms may involve altered salience processing, neural coding of prediction error, and precision signaling [81]. Indeed, recent studies combining PRSs with brain imaging parameters have revealed new insights into the genetic determination of brain function and structure in psychosis spectrum [82, 83].

This work also reveals a possible irregularity within the continuum model at the genomic level, suggesting that schizotypy may have less genetic architecture with severe psychotic disorders than formerly thought. This tentative interpretation can be inferred from the lack of significant differences between the high and low schizotypy groups and between either schizotypy group or controls. Notably, in absolute terms, the high schizotypy group had the most negative mean SZ-PRS among all groups and marginally lower SZ-PRS and BD-PRS compared to the at-risk group (trend level). In the binary logistic regressions, neither high nor low schizotypy was significantly associated with either of the two PRSs. It should be emphasized that this sample in our study was composed of healthy participants by excluding individuals...
with clinical diagnoses. Drawing participants without restriction from a general population could lead to different results. Previously, findings indicating high overlaps between schizotypy and SZ have been made for single candidate genes [84, 85]. Our observation aligns with a recent study by Nenadić et al. reporting no association between SZ-PRS, BD-PRS, or MDD-PRS and symptom SPQ scores in non-clinical subjects [28]. Similarly, another PRS study identified a counter-intuitive negative relationship between SZ-PRS and schizotypal dimensions [86]. These studies challenge the key role of genetic predisposition and emphasize environmental stress as a moderator of schizotypy-related phenotypic expression [86], further informing the discussion on competition versus synergism of genetic–environmental influences [87]. Thus, schizotypy may be better positioned as a qualitatively distinct taxon-like cluster rather than along a unidimensional liability scale [88]. Furthermore, the possibility of “benign” schizotypy [89] supported by some brain-based endophenotype findings [90, 91] suggests that some protective mechanisms may impede a psychotic decomposition of schizotypal traits. While this claim merits further investigation, our results encourage a local reappraisal of the genetic continuum model for schizotypy.

Our findings also contribute to the ongoing discussion of the symptom- and function-level correlates of PRS in support of the continuum model. To the best of our knowledge, this study is the largest to investigate relations between PRS and the gold standard PANSS and is also unique in its transdiagnostic approach. We observed significant associations with SZ-PRS across all symptom measures. However, we were unable to detect any effect whatsoever using BD-PRS, suggesting its lack of specificity in this application and/or its limited power. Previous studies varied in their capacity to find associations with continuous symptom measures. These earlier results included no significant effects [32], links with negative symptoms [92], general psychopathology [30], and a mixture of positive, negative, and cognitive trait dimensions [93]. It has been suggested that a higher SZ-PRS typically predisposes individuals to a general vulnerability [94]. Our results from 1134 data points extend this conclusion based on the observed effect for overall symptomology (PANSS total score) across all three quantiles examined. Still, the strongest effect was identified at the high quantile for specific and more severe positive symptoms, a hallmark of psychosis. Overall, the distribution-dependent effects, especially as linked to different symptom facets and their interactions with environmental factors, may be a source of interesting findings in the field [68, 95].

This study has two particularly promising clinical applications of PRSs in the context of psychotic disorders and their antecedents: as potential support or a stratification tool in early diagnostic decision-making; in informing pre-emptive or full treatment strategies. Substantial clinical and research-based evidence demonstrates the utility of early interventions in reducing the highly debilitating character of psychotic disorders [96]. Indeed, long periods of untreated illness are among the most negative predictors of outcome, progression into chronic forms, and total time spent disabled [97]. Variation in help-seeking behavior may also delay presentation to healthcare specialists [98]. This further motivates the search for objective methods of early detection, which may be as easy as genotyping a blood sample and performing an analysis with a sufficiently large training dataset. For example, integrating PRS with other risk-conveying variables has been shown to improve the prediction of psychosis [64]. Proposals for refining this approach have been incorporated into current pilot projects aiming to create poly-risk scores that consider idiosyncratic combinations of risk and protective factors [99]. PRS-based approaches might also guide drug targeting [100] or explain resistance to pharmacotherapy [15]. For example, PRSs have been shown to be associated with responses to
antipsychotic medication [14] and lithium [101]. Such PRS-informed bio-typing may identify patients who will benefit more from one pharmacological treatment among alternatives.

We acknowledge some limitations of this work. The numbers of participants varied substantially among groups. Inclusion of more polarized schizotypy groups (i.e., more extreme phenotypes) might also have been better suited to the goals of this study. The cross-sectional nature of these findings implies the possibility of a progression across the phenotypic spectrum, development of comorbidities, or dampening of genetic liability later in life. Indeed, the at-risk group had the lowest mean age. We also did not consider the role of medication. Finally, as GWASs exclude rare variants, we only investigated the effects of common variants with population frequencies of 1% or more. There are also more general limitations to polygenic risk profiling discussed in the current scientific debate on PRS, which has included articles covering its potential clinical utility [10] and bioethics [102], with some expressly critical tones [103]. Notably, provided the ancestral differences in linkage disequilibrium and polymorphisms, the predictive accuracy of PRS is currently constrained to individuals of European descent, owing to the lack of statistically powerful GWASs of psychiatric disorders and traits from ethnically diverse populations [104]. While PRS is certainly not immediately ready for routine clinical application, this study highlights the value of PRS for SZ and BD in elucidating the genetic architecture of psychosis and identifying vulnerable individuals who may benefit from early attention and monitoring. Future research should focus on possible differential developmental trajectories and factors precipitating or mitigating pre-existing genetic liability.

DATA AVAILABILITY
PsyCourse data are available according to a mutually agreed memorandum of understanding. Other data and analysis code are available upon reasonable request.

REFERENCES
1. Strain E, Lofwall M, Jaffe J. Kaplan and Sadock’s comprehensive textbook of psychiatry. Philadelphia, PA: Lippincott Williams and Wilkins; 2009.
2. Pepper E, Cardno AG. Genetics of schizophrenia and other psychotic disorders. Curr Psychiatry Rev. 2014;10:133–42.
3. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaaq8757.
4. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373:234–9.
5. Muntané G, Farre X, Bosch E, Martorell I, Navarro A, Villa E. The shared genetic architecture of schizophrenia, bipolar disorder and lifespan. Hum Genet. 2021;140:441–55.
6. Singh J, Chen G, Canuso CM. Antipsychotics in the treatment of bipolar disorder. Handb Exp Pharmacol. 2012;187–212.
7. Rudra J, Ramella-Cravaro V, Ioannidis JPA, Reichenberg A, Phihophtathsanee N, Amir T, et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry. 2018;17:49–66.
8. Zwicker A, Denovan-Wright EM, Uher R. Gene-environment interplay in the etiology of psychosis. Psychol Med. 2018;48:1925–36.
9. Kavanagh DH, Tansey KE, O’Donovan MC, Owen MJ. Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry. 2015;20:72–6.
10. Torkamani A, Wineinger NE, Topol EO. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581–90.
11. Vassos E, Di Forti M, Coleman J, Jeybe C, Prata D, Euesden J, et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol Psychiatry. 2017;81:470–7.
12. Calafato MS, Thygesen JH, Ranlund S, Zaratouldi E, Cahn W, Crespo-Facorro B, et al. Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. Br J Psychiatry. 2018;213:535–41.
13. Jonas KG, Lencz T, Li K, Malhotra AK, Perlman G, Fochtmann LJ, et al. Schizophrenia polygenic risk score and 20-year course of illness in psychotic disorders. Transl Psychiatry. 2019;9:300.
14. Zhang JP, Robinson D, Yu J, Gallego J, Fleischhacker WW, Kahn RS, et al. Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis. Am J Psychiatry. 2018;176:21–28.
15. Frank J, Lang M, Witt S, Strohmaier J, Rujescu D, Cichon S, et al. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol Psychiatry. 2015;20:150–1.
16. Woodbury KA, Shapiro DI, Bryant C, Seidman LJ. Progress and future directions in research on the psychosis prodrome: a review for clinicians. Harv Rev Psychiatry. 2016;24:87.
17. Narrow WE, Kuhl EA. Dimensional approaches to psychiatric diagnosis in DSM-5. J Mental Health Pol Econ. 2011;14:197–200.
18. Gaebel W, Stricker J, Kerst A. Changes from ICD-10 to ICD-11 and future directions in psychiatric classification. Dialog Clin Neurosci. 2020;22:7.
19. Van Os, J, Linscott RJ, Myin-Germeyns I, Delespaul P, Krabbendam L. A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–perseverance–impairment model of psychotic disorder. Psychol Med. 2009;39:179–95.
20. Wang D, Peng X, Pelletier-Baldelli A, Orlov N, Farabaugh A, Nar S, et al. Altered temporal, but intact spatial, features of transient network dynamics in psychosis. Mol Psychiatry. 2021;26:2493–503.
21. Kauppi K, Westbye LT, Tesli M, Bettella F, Brandt CL, Mattingland S, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull. 2015;41:736–43.
22. Rigin L, Collishaw S, Richards A, Thapar AK, Maughan B, O’Donovan MC, et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry. 2017;4:57–62.
23. Coombs BJ, Markota M, Mann JJ, Colby C, Stahl E, Talati A, et al. Dissecting clinical heterogeneity of bipolar disorder using multiple polygenic risk scores. Transl Psychiatry. 2020;10:1–8.
24. Mulsíner KL, Krebs MD, Alibhaná C, Villaljalmssson B, Agerbo E, Zandi PP, et al. Polygenic risk and progression to bipolar or psychotic disorders among individuals diagnosed with unipolar depression in early life. Am J Psychiatry. 2020;177:936–43.
25. Schultz-Lutter F, Michel C, Schmidt SJ, Schimmelmann BG, Maric NP, Salokangas R, et al. EPA guidance on the early detection of clinical high risk states of psychoses. Eur Psychiatry. 2015;30:405–16.
26. Vekba Ravi, Meliz E, Badoud D, Conus P, Flückiger R, Schultz-Lutter F. Developing psychosis and its risk states through the lens of schizotypy. Schizophr Bull. 2015;41:5396–407.
27. Barrantes-Vidal N, de la Fuente TN, L. Smigielski et al. Such PRS-first-episode psychosis. PLoS ONE. 2014;9:e94398.
28. Durka EM, Vorstman JA, Rippke S, Kahn RS. Schizophrenia Psychiatric Genomic Consortium, Ophoff RA. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: a polygenic risk score analysis. PLoS ONE. 2012;7:e37852.
29. Fusar-Poli P, Borgwardt S, Bechdolf A, Amir T, et al. Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects. Psychol Med. 2020;1–10. [Epub ahead of print].
30. Sengupta SM, MacDonald K, Fathali S, Iaposz, M, Leppäluoto L, et al. Polygenic Risk Score associated with specific symptom dimensions in first-episode psychosis. Schizophr Res. 2017;181:116–21.
31. Santoro ML, Ota V, de Jong S, Noto C, Spinodola LM, Talarico F, et al. Polygenic risk score analyses of symptoms and treatment response in an antipsychotic-naive first episode of psychosis cohort. Transl psychiatry. 2018;8:1–8.
32. Sieradzka D, Power RA, Freeman D, Cardno AG, McGuire P, Plomin R, et al. Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence? PLoS ONE.2014;9:e94398.
33. Derks EM, Vorstman JA, Rippke S, Kahn RS, Schizophrenia Psychiatric Genomic Consortium, Ophoff RA. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: a polygenic risk score analysis. PLoS ONE. 2012;7:e37852.
34. Ni G, Zeng J, Revez JA, Wang Y, Zheng Z, Ge T, et al. A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts. Biol Psychiatry. 2021;90:611–20.
35. Tesli M, Espehøj T, Bettella F, Mattingland S, Aas M, Melle I, et al. Polygenic risk score and the psychosis continuum model. Acta Psychiatr Scand. 2014;130:311–7.
36. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.
37. Koerner R, Chermozhukov V, He X, Peng L. Handbook of quantile regression. London: Chapman and Hall/CRC; 2017.
38. Theodoridou A, Heekeren K, Dvorsky D, Metzler S, Franscini M, Haker H, et al. Early recognition of high risk of bipolar disorder and psychosis: an overview of the ZInEP “early recognition” study. Front Public Health. 2014;2:166.
39. Unutterer S, Wyss TA, Wotruba D, Adjac-Gross V, Haker H, Rössler W. Psychotic-like experiences at the healthy end of the psychosis continuum. Front Psychol. 2017;8:775.

40. Budde M, Anderson-Schmidt H, Gade K, Reich-Erkenzl Deck D, Adorjan K, Kalman J, et al. A longitudinal approach to biological psychiatric research: the PsyCourse study. Am J Med Genet B Neuropsychiatr Genet. 2019;180:89–102.

41. Grünblatt E, Marinova Z, Roth A, Gardini E, Ball J, Geissler J, et al. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J Psychiatr Res. 2018;96:209–17.

42. Hauser TU, Iannaccone R, Dolan RJ, Ball J, Hattenschwiler J, Drechsler R, et al. Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychol Med. 2017;47:1246–58.

43. Schultz-Lutter F, Addington J, Ruhmann S, Klosterkötter J. Schizophrenia proneness instrument, adult version (SPI-A). Rome: Giovanni Fioriti; 2007.

44. Schultz-Lutter, F & Koch, E Schizophrenia Proneness Instrument: child and youth version (SPI-CY). Rome: Fioriti; 2010.

45. McElwan T, Miller T, Woods S, Rosen J, Hoffman R, Davidson L. Structured interview for prodromal syndromes. New Haven, CT: PRIME Research Clinic, Yale School of Medicine; 2001.

46. Angst J, Adolfsson R, Benazzi F, Gamma A, Hantouche E, Meyer TD, et al. The HCL-32: towards a self-assessment tool for hypomanic symptoms in outpatients. J Affect Disord. 2005;88:217–33.

47. Raine A. The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr Bull. 1991;17:555–64.

48. Oestreich LK, Misran NG, Ford JM, Roach BJ, Mathalon DH, Whitt JD. Subnormal sensory attention and self-generated speech in schizophrenia: electrophysiological evidence for a ‘continuum of psychosis’. J Physiol Psychol. 2015;57:131–8.

49. Fernandez-Cruz AL, Ali OM, Asare G, Whyte MS, Walpola I, Segal J, et al. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69:220–9.

50. Oliver D, Reilly TJ, Baccaredda Boy O, Petros N, Davies C, Borgwardt S, et al. What causes the onset of psychosis in individuals at clinical high risk? A meta-analysis of risk and protective factors. Schizophr Bull. 2020;46:110–20.

51. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.

52. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for genome-wide association studies. Nat Genet. 2009:e100529.

53. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

54. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529.

55. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

56. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

57. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

58. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

59. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

60. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

61. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

62. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

63. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

64. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

65. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

66. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

67. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

68. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

69. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

70. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

71. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

72. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

73. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

74. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

75. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

76. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

77. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

78. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

79. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

80. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

81. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

82. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

83. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

84. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

85. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

86. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

87. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

88. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

89. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

90. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

91. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.

92. Consortium GP. A global reference for human genetic variation. Nature. 2010;467:28–32.
93. Pain O, Dudbridge F, Cardno AG, Freeman D, Lu Y, Lundstrom S, et al. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. Am J Med Genet Part B Neuropsychiatr Genet. 2018;177:416–25.

94. Kendler KS. The schizophrenia polygenic risk score: to what does it predispose in adolescence? JAMA Psychiatry. 2016;73:193–4.

95. Nelemans SA, Boks M, Lin B, Oldehinkel T, van Leeu P, Branje S, et al. Polygenic risk for major depression interacts with parental criticism in predicting adolescent depressive symptom development. J Youth Adolescence. 2021;50:159–76.

96. Kaur T, Cadenhead KS. Treatment implications of the schizophrenia prodrome. Curr Top Behav Neurosci. 2010;4:97–121.

97. Penttilä M, Jääskeläinen E, Hirvonen N, Isohanni M, Miettunen J. Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2020;215:88–94.

98. Murphy J, Shavelin M, Houston J, Adamson G. A population based analysis of subclinical psychosis and help-seeking behavior. Schizophr Bull. 2012;38:360–7.

99. Oliver D, Uhler R, Fusan-Poli P. Psychosis polyrisk score (PPS) for the detection of individuals at-risk and the prediction of their outcomes. Front Psychiatry. 2019;10:174.

100. Gibson G. On the utilization of polygenic risk scores for therapeutic targeting. PLoS Genet 2019;15:e1008060.

101. Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Cearns M, et al. Association of Palk AC, Dalvie S, De Vries J, Martin AR, Stein DJ. Potential use of clinical signatures in the Longitudinal Course of Psychosis; SCHU 1603/4-1, 5-1, 7-1; SFB/uniFB02/16-1). The genotyping for the PsyCourse Study was in part funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1; SFB-TRR58, Project C09) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17). FD received support from the BONFOR Programme of the University of Bonn, Germany. AJF has received a grant from the Else Kröner-Fresenius-Stiftung (2019_A127). UH was supported by European Union’s Horizon 2020 Research and Innovation Programme (PSY-PGx, grant agreement No 945151). ECS is supported by the Munich Clinician Scientist Program (MCSP). SW’s research has been supported by the Swiss National Science Foundation (SNF), several EU FP7s, HSM High Specialized Medicine of the Canton Zurich, Switzerland, Bfarm Germany, the Hartmann Müller Foundation, the Olga Mayenfisch Foundation, and the Gertrud Thalmann Foundation. PD MEW was supported by the Clinician Scientist Programme of the Medical Faculty of Ulm University. JW is supported by an Illidio Pinho professorship and ibiMED (UID/BIM/04501/2013), at the University of Aveiro. SHW was funded by the German Research Foundation (DFG, grant FOR2107, WI 3439/3-2 and grant GRK 2350). Study design, data collection, analysis, interpretation, and preparation of the manuscript were conducted independently from the funding sources.

COMPETING INTERESTS
VA has received personal fees from Janssen Pharmaceuticals, AstraZeneca, Lundbeck, Sanofi, and Servier Laboratories. PF has received research support and honorarium for lectures or advisory activity from Abbott Laboratories, Boehringer Ingelheim, Janssen Pharmaceuticals, Essex Pharma, Lundbeck, Otsuka Pharmaceutical, Recordati, Richter Pharma, Servier Laboratories, and Takeda. CK has received personal fees from Aristo Pharmaceuticals, Janssen-Cilag, Eli Lilly and Company, MagVenture, Trømmsdorff GmbH, Lundbeck, Neuraxpharm, and Servier Laboratories. MMN has received personal fees from the Lundbeck Foundation, the Robert-Bosch-Stiftung, HMG Systems Engineering GmbH, and Shirle Deutschland GmbH. He receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. JR has received personal fees from Lundbeck and Otsuka Pharmaceutical. MS has received personal fees for being a member of the speaker’s bureau and advisory board from Aristo Pharmaceuticals, Janssen-Cilag, Lundbeck, Neuraxpharm, and Recordati. SW has received royalties from Thieme Hogrefe, Kohlhammer, Springer, and Beltz and lecture honoraria from Opgopharma in the past 5 years. JW has received grants from the German Research Foundation and personal fees from Abbott Laboratories, Boehringer Ingelheim, Immugenetics, Eli Lilly and Company, MSD Sharp & Dohme, Roche, Actelion, Amgen, Janssen-Cilag, Pfizer, and Med Update and has patents PCT/EP 2011001724 and PCT/EP 2015052945 issued. The other authors declare no biomedical financial interests or potential conflicts of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-021-01720-0.

Correspondence and requests for materials should be addressed to Lukasz Smigielski.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ACKNOWLEDGEMENTS
We greatly thank the study participants, interviewers, and the technical and administrative personnel, without whom this work would not have been possible.

AUTHOR CONTRIBUTIONS
LS and SP performed data analyses, EG, TGS and PF jointly provided supervision. EG, TGS, PF, SW, LR and LS provided support to the study design and analysis concept. PH and SH provided technical support for genotyping. TFMA supported data analysis and interpretation. Responsible for planning, site coordination, recruitment or data collection (in alphabetical order): KA, HA, S, iGA, VA, BB, MB, RB, TB, AL, DED, FD, UD, BE, AJF, AJF, C, LF, FN, AG, KG, MG, ISH, KH, MH, UH, GJ, MJ, CK, JLL, FK-S, FUL, MM, VN, ER, JR, MR, DR-E, CS, ECS, FS, MS, SKS, AT, MVH, DW, JW, MEW, SHW, JZ. Acquired funding: TGS, MR, MN, WR and SW. LS drafted the first manuscript version and all authors contributed to the critical revisions and approved the final manuscript.

FUNDING
This work was financially supported by the Zurich Program for Sustainable Development of Mental Health Services (ZInEP), the Donald C. Cooper-Fonds, and the German Research Foundation (DFG) (Project: Genotype-Phenotype Relationships and Neurobiology of the Longitudinal Course of Psychosis and Pathomechanisms and Signatures in the Longitudinal Course of Psychosis; SCHU 1603/4-1, 5-1, 7-1; FA241/16-1). The genotyping for the PsyCourse Study was in part funded by the German Federal Ministry of Education and Research (BFMB) through the Integrated Network IntergraMet (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the eMedProgram with grants awarded to TGS (01ZX1614K), MR (01ZX1614G), and MN (01ZX1614A). TGS received additional support from the German Federal Ministry of Education and Research (BFMB) within the framework of the BipLife network and the Dr. Lisa Oehler Foundation, Kassel (Germany). MEW received support from the German Federal Ministry of Education and Research (BFMB) within the framework of the ASD-Net (011E409C), AERIAL (01EE1406C), EMBED (01E1904), Synchris (01EW1810), TargetOxy (031L190A), and SysmedSUD (01ZX0190A) and the German Research Foundation (DFG, grant FOR2107, RI 908/11-2, and TRR 265/1). UD was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1; SFB-TRR58, Project C09) and the
1Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland. 2The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland. 3Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany. 4Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany. 5Department of Neuropsychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland. 6Department of Psychiatry and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland. 7Department of Biomedicine, Human Genomics Research Group, University Hospital and University of Basel, Basel, Switzerland. 8Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany. 9Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany. 10International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany. 11Department of Psychiatry and Psychotherapy, Mental Health Institute, Berlin, Germany. 12Institute for Translational Psychiatry, University of Münster, Münster, Germany. 13Department of Psychiatry, University of Tübingen, Tübingen, Germany. 14Center for Systems Neuroscience (ZSN), Hannover, Germany. 15Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany. 16Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany. 17Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany. 18Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany. 19Department of Psychiatry and Psychotherapy, Aeglesion Diakonieklinikum, Rotenburg, Germany. 20Department of Psychiatry, Klinikum Bremen-Ost, Bremen, Germany. 21Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 22Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria. 23Clinic for Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Graz, Graz, Austria. 24Clinic for Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Augsburg, Augsburg, Germany. 25Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany. 26Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany. 27German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. 28IBIMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal. 29Psychiatry/verband Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany. 30Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. 31Centre for Human Genetics, University of Marburg, Marburg, Germany. 32Department of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany. 33Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. 34Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany. 35Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil. 36Department of Neurology, University Medical Center of Zurich, Switzerland. 37Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, USA. 38Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 39These authors contributed equally: Lukasz Smigielski, Sergi Papiol, Peter Falkai, Thomas G. Schulze, Edna Grünblatt. 40email: lukasz.smigielski@uzh.ch