Consistency of the plug-in functional predictor of the Ornstein-Uhlenbeck process in Hilbert and Banach spaces

Javier Álvarez-Liébana1, Denis Bosq2 and M. Dolores Ruiz-Medina1

21st June 2017

1 Department of Statistics and O. R., University of Granada, Spain.
2 LSTA, Université Pierre et Marie Curie-Paris 6, Paris, France.
E-mail: javialvaliebana@ugr.es

Summary

New results on functional prediction of the Ornstein-Uhlenbeck process in an autoregressive Hilbert-valued and Banach-valued frameworks are derived. Specifically, consistency of the maximum likelihood estimator of the autocorrelation operator, and of the associated plug-in predictor is obtained in both frameworks.

Key words: Autoregressive Hilbertian processes; Banach-valued autoregressive processes; consistency; maximum likelihood parameter estimator; Ornstein-Uhlenbeck process.

1 Introduction

This paper derives new results in the context of linear processes in function spaces. An extensive literature has been developed in this context, in the last few decades (see, for example, Bosq (2000); Ferraty and Vieu (2006); Ramsay and Silverman (2005), among others). In particular, the problem of functional prediction of linear processes in Hilbert and Banach spaces has been widely addressed. We refer to the reader to the papers by: Bensmain and Mourid (2003); Bosq (1996) Bosq (2002) Bosq (2004); Bosq (2007); Dedecker and Merlevède (2003); Dehling and Sharipov (2005); Glendinning and Fleet (2007); Guillais (2000); Guillais (2001); Kargin and Onatski (2008); Labbas and Mourid (2003); Marion and Pumo (2004). Mas (2002); Mas (2004); Mas (2007); Mas and Menneteau (2003); Mas and Pumo (2007); Menneteau (2005); Mourid (2002); Mourid (2004); Mokhtari and Mourid (2002); Pumo (1998); Rachedi (2004); Rachedi (2005); Rachedi and Mourid (2003); Ruiz-Medina (2012); Turbillon, Marion and Pumo (2007); Turbillon et. al (2008), and the references therein. In the above-mentioned papers, different projection methodologies have been adopted in the derivation of the main asymptotic properties of the formulated functional parameter estimators and predictors. Particularly, Bosq (2000) and Bosq and Blanke (2007) apply Functional Principal Component Analysis; Antoniadis, Paparoditis and Sapatinas (2006) and Antoniadis and Sapatinas (2003) consider wavelet bases; Laukaitis, Vasilecas and Laukaitis (2009) propose wavelet estimation methods.
Applications of these functional estimation results can be found in the papers by: Antoniadis and Sapatinas (2003); Damon and Guillais (2002); Hormann and Kokoszka (2011); Laukaitis (2008); Ruiz-Medina and Salmern (2009), among others.

We pay attention here to the problem of functional prediction of the Ornstein-Uhlenbeck (O.U.) process (see, for example, Uhlenbeck and Ornstein (1930), and Wang and Uhlenbeck (1945), for its introduction and properties). See also Doob (1942) for the classical definition of O.U. process from the Langevin (linear) stochastic differential equation. We can find in Kutoyants (2004) and Liptser and Shiraev (2001) an explicit expression of the maximum likelihood estimator (MLE) of the scale parameter θ, characterizing its covariance function. Its strong consistency is proved, for instance, in Kleptsyna and Le Breton (2002).

We formulate here the O.U. process as an Autoregressive Hilbertian process of order one (ARH(1) process), and as an Autoregressive Banach -valued process of order one (ARB(1) process). Consistency of the MLE of θ is applied to prove consistency of the corresponding MLE of the autocorrelation operator of the O.U. process. We adopt the methodology applied in Bosq (1991), since our interest relies on forecasting the values of the O.U. process over an entire time interval. Specifically, considering the O.U. process $\{\xi_t\}_{t \in \mathbb{R}}$, on the basic probability space (Ω, \mathcal{A}, P), we can define

$$X_n(t) = \xi_{nh+t}, \quad 0 \leq t \leq h, \; n \in \mathbb{Z},$$

satisfying

$$X_n(t) = \xi_{nh+t} = \int_{-\infty}^{nh+t} e^{-\theta(s)} dW_s = \rho_\theta(X_{n-1})(t) + \varepsilon_n(t), \quad n \in \mathbb{Z},$$

with

$$\rho_\theta(x)(t) = e^{-\theta t} x(h), \quad \rho_\theta(X_{n-1})(t) = e^{-\theta t} \int_{-\infty}^{nh} e^{-\theta(s)} dW_s, \quad \varepsilon_n(t) = \int_{nh}^{nh+t} e^{-\theta(s)} dW_s,$$

for $0 \leq t \leq h$. Thus, $X = (X_n, \; n \in \mathbb{Z})$ satisfies the ARH(1) equation (2) (see also equation (5) below for its general definition). The real separable Hilbert space H is given by $H = L^2([0,h] \setminus \beta_{[0,h]} \cup \delta_{(h)})$, where $\beta_{[0,h]}$ is the Borel σ-algebra generated by the subintervals in $[0,h]$, λ is the Lebesgue measure, and $\delta_{(h)}(s) = \delta(s-h)$ is the Dirac measure at point h. The associated norm

$$\|f\|_{H=L^2([0,h] \setminus \beta_{[0,h]} \cup \delta_{(h)})} = \sqrt{\int_0^h f^2(t) dt + f^2(h)}$$

establishes the equivalent classes of functions given by the relationship $f \sim_{\lambda + \delta_{(h)}} g$ if and only if
\[(\lambda + \delta(h)) (\{t : f(t) \neq g(t)\}) = 0, \text{ with} \]
\[(\lambda + \delta(h)) (\{t : f(t) \neq g(t)\}) = 0 \iff \lambda (\{t : f(t) \neq g(t)\}) = 0 \text{ and } f(h) = g(h), \quad (4)\]

where, as before, \(\delta(h)\) is the Dirac measure. We will prove, in Lemma 1 below, that \(X = (X_n, n \in \mathbb{Z})\), constructed in (1) from the O.U. process, satisfying equations (2)–(3), is the unique stationary solution to equation (2), in the space \(H = L^2([0, h], \beta_{[0, h]}, \lambda + \delta(h))\), admitting a MAH(\(\infty\)) representation. Similarly, in Lemma 4 below, we will prove that \(X = (X_n, n \in \mathbb{Z})\), constructed in (1) from the O.U. process, satisfying equations (2)–(3), is the unique stationary solution to equation (2), admitting a MAB(\(\infty\)) representation, in the space \(B = C([0, h])\), the Banach space of continuous functions, whose support is the interval \([0, h]\), with the supremum norm.

The main results of this paper provide the almost surely convergence to \(\rho\theta\) of the MLE \(\hat{\rho}_\theta\) of \(\rho\theta\), in the norm of \(L(H)\), the space of bounded linear operators in the Hilbert space \(H\) (respectively, in the norm of \(L(B)\), the space of bounded linear operators in the Banach space \(B\)). The convergence in probability of the associated plug-in ARH(1) and ARB(1) predictors, i.e., the convergence in probability of \(\hat{\rho}_\theta(X_{n-1})\) to \(\rho_\theta(X_{n-1})\) in \(H\) and \(B\), respectively, is proved as well.

The outline of this paper is as follows. In Section 2 the main results of this paper are obtained. Specifically, Section 2.1 provides the definition of O.U. process as an ARH(1) process. Strong consistency in \(L(H)\) of the estimator of the autocorrelation operator is derived in Section 2.2. Consistency in \(H\) of the associated plug-in ARH(1) predictor is then established in Section 2.3. The corresponding results in Banach spaces are given in Section 2.4. For illustration purposes, a simulation study is undertaken in Section 3. Final comments can be found in Section 4. (The basic preliminary elements applied in the proof of the main results of this paper and the proof of Lemma 1 can be found in the supplementary material).

2 Prediction of O.U. process in Hilbert and Banach spaces

In this section, we consider \(H\) to be a real separable Hilbert space. Recall that a zero-mean ARH(1) process \(X = (X_n, n \in \mathbb{Z})\), on the basic probability space \((\Omega, \mathcal{A}, P)\), satisfies (see Bosq (2000))

\[X_n = \rho(X_{n-1}) + \varepsilon_n, \quad n \in \mathbb{Z}, \quad (5)\]

where \(\rho\) denotes the autocorrelation operator of process \(X\). Here, \(\varepsilon = (\varepsilon_n, n \in \mathbb{Z})\) is assumed to be a strong-white noise, i.e., \(\varepsilon\) is a Hilbert-valued zero-mean stationary process, with independent and identically distributed components in time, and with \(\sigma^2 = E\|\varepsilon_n\|_H^2 < \infty\), for all \(n \in \mathbb{Z}\).
2.1 O.U. process as ARH(1) process

As commented in the Introduction, equations (1)–(3) provide the definition of O.U. process as an ARH(1) process, with $H = L^2 \left([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)} \right)$. The norm in the space $H = L^2 \left([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)} \right)$ of $\rho_\theta(x)$, with ρ_θ introduced in (3) and $x \in H$, is given by

$$\| \rho_\theta(x) \|^2_H = \int_0^h |\rho_\theta(x)(t)|^2 d\left(\lambda + \delta_{(h)}\right)(t) = \int_0^h |\rho_\theta(x)(t)|^2 dt + |\rho_\theta(x)(h)|^2,$$

(6)

for each h strictly positive. The following lemma provides, for each $k \geq 1$, the exact value of the norm of ρ_θ^k, in the space of bounded linear operators on $L^2 \left([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)} \right)$. As a direct consequence, the existence of k_0 such that $\| \rho_\theta^k \|_{\mathcal{L}(H)} < 1$, for $k \geq k_0$, is also derived for $\theta > 0$.

Lemma 1 Let us consider, for $n \in \mathbb{Z}$, X_n satisfying equations (1)–(3). For each $k \geq 1$, the norm of ρ_θ^k is given by

$$\| \rho_\theta^k \|_{\mathcal{L}(H)} = \sqrt{e^{-2\theta(k-1)h} + e^{-2\theta(2\theta - 1)h} \frac{1}{2\theta}} = e^{-\theta(k-1)h}\| \rho_\theta \|_{\mathcal{L}(H)}.$$

(7)

Furthermore, for $k \geq k_0 = \left[\frac{1}{2\theta} + 1\right]^+,$

$$\| \rho_\theta^k \|_{\mathcal{L}(H)} < 1,$$

(8)

where $[t]^+$ denotes the closest upper integer of t, for every $t \in \mathbb{R}_+.$

The proof of this lemma can be found in the supplementary material.

Remark 1 From equation (8), applying Theorem 3.1. in Bosq (2000), p. 74. Lemma 1 implies that $X = \{X_n, n \in \mathbb{Z}\}$, constructed in (1) from O.U. process, defines the unique stationary solution to equation (2) in the space $H = L^2 \left([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)} \right)$, admitting the MAH(\infty) representation

$$X_n = \sum_{k=0}^{+\infty} \rho_\theta^k(x_{n-k}), \quad n \in \mathbb{Z}, \ \rho_\theta \in \mathcal{L}(H).$$

(9)

Remark 2 Note that, for all $x \in H$, and $k \geq 2$, $\| \rho_\theta^k \|_{\mathcal{L}(H)} \leq \left[\| \rho_\theta \|_{\mathcal{L}(H)}\right]^k$.

2.2 Functional parameter estimation and consistency

We now prove strong consistency of the estimator $\rho_{\hat{\theta}_n}$ of operator ρ_θ in $\mathcal{L}(H)$, with, as before, $H = L^2 \left([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)} \right)$, and $\hat{\theta}_n$ denoting the MLE of θ, based on the observation of O.U. process on the interval $[0, T]$, with $T = nh$. Note that, from equation (3), for all $x \in H$, and for a given sample size n, $\rho_{\hat{\theta}_n}(x) = e^{-\hat{\theta}_n t}(x(h)$, where the MLE of θ is given, for $T = nh$, by

$$\hat{\theta}_T = \frac{1 + \frac{\xi^2}{4} - \frac{\xi^2}{4} + \frac{\xi^2}{4} T}{2 \int_0^T \xi^2 dt}, \quad T > 0,$$

(10)
with ξ_t, $t \in [0, T]$, being the observed values of the O.U. process over the interval $[0, T]$. Thus, $\rho_{\tilde{\theta}_n}$ is introduced in an abstract way, since it can only be explicitly computed, for each particular function $x \in H$ considered. However, the norm $\|\rho_{\theta} - \rho_{\tilde{\theta}_n}\|_{\mathcal{L}(H)}$ is explicitly computed in equation (13) below.

The following results will be applied in the proof of Proposition 1.

Lemma 2 If $t \in [0, +\infty)$, it holds that $|e^{-ut} - e^{-vt}| \leq |u - v|t$, for any $u, v \geq 0$.

The proof of this lemma is given in the supplementary material.

Theorem 1 (see Kleptsyna and Le Breton (2002), Proposition 2.2, p. 4, and Kutoyants (2004), p. 63 and p. 117). The MLE of θ defined in equation (10) is strongly consistent, i.e.,

$$\lim_{T \to \infty} \hat{\theta}_T = \theta \text{ almost surely.}$$

(11)

The proof follows from Ibragimov-Khasminskii’s Theorem.

Proposition 1 Let H be the space $L^2([0, h], \beta_{[0, h]}, \lambda + \delta_{(h)})$. Then, the estimator $\rho_{\tilde{\theta}_n}$ of operator ρ_{θ}, based on the MLE $\hat{\theta}_n$ of θ, is strongly consistent in $\mathcal{L}(H)$, i.e.,

$$\|\rho_{\theta} - \rho_{\tilde{\theta}_n}\|_{\mathcal{L}(H)} \to^{a.s.} 0.$$ (12)

Proof. The following straightforward almost surely identities are obtained:

$$\|\rho_{\theta} - \rho_{\tilde{\theta}_n}\|_{\mathcal{L}(H)} = \sup_{x \in H} \left\{ \frac{\left\| \left(\rho_{\theta} - \rho_{\tilde{\theta}_n} \right)(x) \right\|_H}{\|x\|_H} \right\} = \sup_{x \in H} \left\{ \int_0^h \left| \left(\rho_{\theta} - \rho_{\tilde{\theta}_n} \right)(x)(t) \right|^2 d \left(\lambda + \delta_{(h)} \right)(t) \right\}^{1/2}$$

$$= \sup_{x \in H} \left\{ x^2(h) \int_0^h \left(e^{-\theta t} - e^{-\tilde{\theta}_n t} \right)^2 dt + \left(e^{-\theta h} - e^{-\tilde{\theta}_n h} \right)^2 \right\}^{1/2}$$

$$= \sqrt{\int_0^h \left(e^{-\theta t} - e^{-\tilde{\theta}_n t} \right)^2 dt + \left(e^{-\theta h} - e^{-\tilde{\theta}_n h} \right)^2},$$ (13)

where the last identity is obtained in a similar way to equation (7) in Lemma 1 (see also equations (26)–(30) in the supplementary material).
From Lemma 2 and equation (13), for \(n \) sufficiently large, we have

\[
\|\rho_0 - \rho_{\hat{\theta}_n}\|_{L(H)} \leq \sqrt{\int_0^h t^2|\theta - \hat{\theta}_n|^2 dt} + h^2|\theta - \hat{\theta}_n|^2 = |\theta - \hat{\theta}_n|\sqrt{\int_0^h t^2 dt} + h^2
\]

\[
= |\theta - \hat{\theta}_n|h\sqrt{\frac{h}{3}} + 1 \quad \text{almost surely.} \tag{14}
\]

The strong-consistency of \(\rho_{\hat{\theta}_n} \) in \(L(H) \) directly follows from Theorem 1 and equation (14).

\[\blacksquare\]

Remark 3 From Proposition 2.3(i) in Kleptsyna and Le Breton (2002), p. 5 (see also Theorem 2 below), the MLE \(\hat{\theta}_T \) of \(\theta \) satisfies

\[
E\left[(\theta - \hat{\theta}_T)^2 \right] = \mathcal{O}\left(\frac{2\theta}{T} \right), \quad T \to \infty. \tag{15}
\]

In addition, from equation (14), considering \(T = nh, h > 0 \),

\[
E\left[\|\rho_0 - \rho_{\hat{\theta}_n}\|^2_{L(H)} \right] \leq E\left[|\theta - \hat{\theta}_n|^2 \right] h^2\left(\frac{h}{3} + 1 \right). \tag{16}
\]

Equations (15) and (16) lead to

\[
E\left[\|\rho_0 - \rho_{\hat{\theta}_n}\|^2_{L(H)} \right] \leq G(\theta, \hat{\theta}_n, h),
\]

with \(G(\theta, \hat{\theta}_n, h) = \mathcal{O}\left(\frac{2\theta}{nh} \right), \quad n \to \infty \). Therefore, the functional parameter estimator \(\rho_{\hat{\theta}_n} \) of \(\rho_0 \) is \(\sqrt{n} \)-consistent.

2.3 Consistency of the plug-in ARH(1) predictor

Let us consider the plug-in ARH(1) predictor \(\hat{X}_n \), constructed from the MLE \(\rho_{\hat{\theta}_n} \) of \(\rho_0 \) in Proposition 1 given by

\[
\hat{X}_n(t) = \rho_{\hat{\theta}_n}(X_{n-1})(t) = e^{-\hat{\theta}_nt}X_{n-1}(h), \quad 0 \leq t \leq h, \quad n \in \mathbb{Z}. \tag{17}
\]

Corollary 1 below provides the consistency of \(\hat{X}_n \), given in equation (17), from Proposition 1 by applying the following lemma and theorem.

Lemma 3 Let \(\{Z_n\}_{n \in \mathbb{Z}} \) be a sequence of random variables such that \(Z_n \sim N\left(0, \frac{\theta}{2h}\right) \), with \(\theta > 0 \), and let \(\{Y_n\}_{n \in \mathbb{Z}} \) be another sequence of random variables such that \(\sqrt{\ln(n)}Y_n \to^p 0, \quad n \to \infty \). Then, \(Y_n|Z_n| \to^p 0, \quad n \to \infty \), where, as usual, \(\to^p \) indicates convergence in probability.

The proof of this lemma can be found in the supplementary material.
Theorem 2 Let $\hat{\theta}_T$ be the MLE of θ defined in equation (10), with $\theta > 0$. Hence,

$$E \left[\left(\theta - \hat{\theta}_T \right)^2 \right] = O \left(\frac{2\theta}{T} \right), \; T \to \infty. \quad (18)$$

In particular,

$$\lim_{T \to \infty} E \left[\left(\theta - \hat{\theta}_T \right)^2 \right] = 0. \quad (19)$$

The proof of this result is given in in Proposition 2.3(i) in Kleptsyna and Le Breton (2002), p. 5.

Corollary 1 Let $H = L^2 ([0, h], \beta_{[0,h]}, \lambda + \delta_{(h)}, \beta)$ be the Hilbert space introduced above. Then, the plug-in $ARH(1)$ predictor (17) of O.U. process is consistent in H, i.e.,

$$\| \left(\rho_\theta - \rho_{\hat{\theta}_n} \right) \left(X_{n-1} \right) \|_H \to^p 0. \quad (20)$$

Proof. By definition,

$$\| \left(\rho_\theta - \rho_{\hat{\theta}_n} \right) \left(X_{n-1} \right) \|_H = |X_{n-1}(h)| \sqrt{\int_0^h \left(e^{-\theta t} - e^{-\hat{\theta}_n t} \right)^2 dt + \left(e^{-\theta h} - e^{-\hat{\theta}_n h} \right)^2}. \quad (21)$$

From equations (13)–(14) and (21), we then obtain, for n sufficiently large,

$$\| \left(\rho_\theta - \rho_{\hat{\theta}_n} \right) \left(X_{n-1} \right) \|_H \leq |X_{n-1}(h)| \| \theta - \hat{\theta}_n \|_H \sqrt{\frac{h}{3} + 1} \quad \text{a.s.} \quad (22)$$

Let us set $\{ Y_n \}_{n \in \mathbb{Z}} = \left\{ |\theta - \hat{\theta}_n| h \sqrt{\frac{h}{3} + 1} \right\}_{n \in \mathbb{Z}}$ and $\{ Z_n \}_{n \in \mathbb{Z}} = \{ X_{n-1}(h) \}_{n \in \mathbb{Z}}$, with $X_{n-1} \sim \mathcal{N}(0, \frac{h}{3})$, for every $n \in \mathbb{Z}$. From Theorem 1, $Y_n \to^{a.s.} 0$, $n \to \infty$. Hence, to apply Lemma 3, we need to prove that

$$\sqrt{\ln(n)} Y_n \to^p 0, \; n \to \infty. \quad (23)$$

From Chebyshev’s inequality and Theorem 2, we get, for all $\varepsilon > 0$,

$$P \left(|\theta - \hat{\theta}_n| \sqrt{\ln(n)} h \sqrt{\frac{h}{3} + 1} \geq \varepsilon \right) \leq \frac{h^2 \left(\frac{h}{3} + 1 \right) \ln(n) E \left[|\theta - \hat{\theta}_n|^2 \right]}{\varepsilon^2} \to^{n \to +\infty} 0. \quad (24)$$

Therefore, from Lemma 3 we obtain the convergence in probability of $\| \left(\rho_\theta - \rho_{\hat{\theta}_n} \right) \left(X_{n-1} \right) \|_H$ to zero. \hfill \hfill \hfill \hfill \hfill

2.4 Prediction of O.U. process in $B = C ([0, h])$

As before, let B be now the Banach space of continuous functions, whose support is the interval $[0, h]$, with the supremum norm, denoted as $C ([0, h])$. The following lemma states that $\| \rho_\theta \|_{L(B)} \leq 1$, for
θ > 0, and for every $k \geq 1$, with $L(B)$ being the space of bounded linear operators on the Banach space $B = C([0, h])$, and ρ_θ being introduced in equation (3). Consequently, considering condition (c$_1$) in Bosq (2000), p. 74, with $a = 2$, $b = 1/2$ and $j = 1$, from Lemma 3.1 and Theorem 3.1, in Bosq (2000), pp. 74–75, constructed in (1) from O.U. process, defines the unique stationary solution to equation (2), in the Banach space $B = C([0, h])$, admitting a MAB(∞) representation.

Lemma 4 Let ρ_θ introduced in (3), defined on $B = C([0, h])$. Then, for $k \geq 1$, \[\| \rho_\theta^k \|_{L(B)} \leq 1, \] with $\theta > 0$.

Proof. From \[\rho_\theta^k(x)(t) = e^{-\theta t} e^{-\theta(k-1)h} x(h), \] for each $k \geq 1$ and $\theta > 0$, we have

\[
\| \rho_\theta^k \|_{L(B)} = \sup_{x \in B} \left\{ \frac{\| \rho_\theta^k(x) \|_B}{\| x \|_B} \right\} = \sup_{x \in B} \frac{\sup_{0 \leq t \leq h} \exp(-\theta t) \exp(-\theta(k-1)h) x(h)}{\sup_{0 \leq t \leq h} |x(t)|} = \sup_{x \in B} \frac{\sup_{0 \leq t \leq h} \exp(-\theta t)}{\sup_{0 \leq t \leq h} |x(h)|} \leq \sup_{x \in B} \exp(-\theta t) = 1. \tag{25}
\]

We now check strong consistency of the MLE $\hat{\rho}_n$ of ρ_θ in $L(B)$. From (25),

\[
\| \rho_\theta - \hat{\rho}_n \|_{L(B)} \leq \sup_{0 \leq t \leq h} |e^{-\theta t} - e^{-\hat{\theta}_n t}|, \quad \text{a.s.} \tag{26}
\]

From Lemma 2 for n sufficiently large, we then have

\[
\| \rho_\theta - \hat{\rho}_n \|_{L(B)} \leq h|\theta - \hat{\theta}_n|, \quad \text{a.s.} \tag{27}
\]

Theorem 1 then leads to the desired result on strong consistency of the estimator $\hat{\rho}_n$ of ρ_θ in $L(B)$. Furthermore, from Theorem 2, in a similar way to Remark 3, \sqrt{n}-consistency of $\hat{\rho}_n$ in $L(B)$ also follows from equations (18) and (27).

Similarly to Corollary 1, in the following result, the consistency, in the Banach space $B = C([0, h])$, of the plug-in predictor (17) is obtained.

Corollary 2 The ARB(1) plug-in predictor (17) of a zero-mean O.U. process is consistent in $B =
\[C([0,h]), \text{i.e., as } n \to \infty, \]
\[\| (\rho_\theta - \rho_{\hat \theta_n}) (X_{n-1}) \|_B \to^p 0. \]

(28)

Proof. From Lemma 2, for \(n \) sufficiently large, and for each \(h > 0 \),
\[\| (\rho_\theta - \rho_{\hat \theta_n}) (X_{n-1}) \|_B = \sup_{0 \leq t \leq h} |e^{-\theta t} - e^{-\hat \theta_n t}| |X_{n-1} (h)| \leq h|\theta - \hat \theta_n||X_{n-1} (h)|, \text{ a.s.} \]

(29)

As derived in the proof of Corollary 1, from Theorem 2, the random sequence \(\{Y_n\}_{n \in \mathbb{Z}} = \{h|\theta - \hat \theta_n|\}_{n \in \mathbb{Z}} \) is such that
\[\sqrt{\ln(n)} Y_n \leq \frac{h}{3} + \sqrt{\ln(n)} Y_n \to^p 0, \text{ } n \to \infty. \]

Moreover, \(\{Z_n\}_{n \in \mathbb{Z}} = \{X_{n-1} (h)\}_{n \in \mathbb{Z}} \) is such that
\(X_{n-1} (h) \sim \mathcal{N}(0, \frac{\theta}{h^2}) \). Lemma 3 then leads, as \(n \to \infty \), to the desired convergence result from equation (29)
\[\| (\rho_\theta - \rho_{\hat \theta_n}) (X_{n-1}) \|_B \leq Y_n |Z_n| \to^p 0. \]

(30)

3 Simulations

In this section, a simulation study is undertaken to illustrate the asymptotic results presented in this paper about the MLE \(\hat \theta_n \) of \(\theta \), and the consistency of the ML functional parameter estimators of the autocorrelation operator, and the associated plug-in predictors, in the ARH(1) and ARB(1) frameworks.

3.1 Estimation of scale parameter \(\theta \)

For simulation of the sample-paths of O.U. process, an extension of the Euler method, the Euler-Murayama method (see Kloeden and Platen (1992)) is applied, from the Langevin stochastic differential equation satisfied by the O.U. process \(\{\xi_t, \text{ } t \in [0,T]\} \)
\[d\xi_t = -\theta \xi_t + dW_t, \quad \theta > 0, \quad t \in [0,T], \quad \xi_0 = x_0. \]

(31)

Thus, let \(0 = t_0 < t_1 < t_2 < \cdots < t_n = T \) be a partition of real interval \([0,T]\). Then, (31) can be discretized as
\[\hat \xi_{t_{i+1}} = \hat \xi_{t_i} - \theta \hat \xi_i + \Delta W_i, \quad \hat \xi_0 = \xi_0 = 0, \]

(32)

where \(\{\Delta W_i\}_{i=0,\ldots,n-1} \) are i.i.d. Wiener increments, i.e., \(\Delta W_i \sim \mathcal{N}(0, \Delta t) = \sqrt{\Delta t} \mathcal{N}(0, 1) \). In the following, we take \(\Delta t = 0.02 \) as discretization step size, considering \(N = 1000 \) simulations of the O.U. process. In particular, Figure 1 shows some realizations of the discrete version of the solution to (31) generated from (32).
Let us first illustrate the asymptotic normal distribution of \(\hat{\theta}_T \), i.e., for \(T \) sufficiently large, we can consider \(\hat{\theta}_T \sim \mathcal{N}(\theta, \frac{\theta}{T}) \) (see Theorem 1 in the supplementary material).

From equation (10), we take

\[
\hat{\theta}_T = -\frac{\int_0^T \xi_t d\xi_t}{\int_0^T \xi_t^2 dt}
\]

(see also equation (9) in the supplementary material), to compute the following approximation of the MLE \(\hat{\theta}_T \) of \(\theta \), for each one of the \(N = 1000 \) simulations performed of the O.U. process on \([0, T]\), and for each one of the six values of parameter \(\theta \) considered:

\[
\hat{\theta}_T \simeq \frac{- \sum_{i=0}^{n-1} \xi_{t_i,s}(\theta) \left(\xi_{t_{i+1},s}(\theta) - \xi_{t_i,s}(\theta) \right)}{\sum_{i=0}^{n-1} \xi_{t_i,s}(\theta) \Delta t}, \quad t_0 = 0, \ t_n = T, \ \Delta t = 0.02, \ s = 1, \ldots, N,
\]

(33)

where \(\xi_{t_i,s}(\theta) \) represents the \(s \)-th discrete generation of the O.U. process, evaluated at time \(t_i \), with covariance scale parameter \(\theta \), for \(\theta = 0.1, 0.4, 0.7, 1, 2, 5 \). Table 1 displays the empirical probabilities of the error \(\hat{\theta}_T - \theta \) to be within the band \(\pm 3\sqrt{\frac{\theta}{T}} \), from \(N = 1000 \) discrete simulations of the O.U. process, considering different sample sizes \(T = 12000 + 1000(l - 1), \ l = 1, \ldots, 7 \), and the values \(\theta = 0.1, 0.4, 0.7, 1, 2, 5 \). Figure 2 displays the cases \(\theta = 0.1 \) (at the left-hand side) and \(\theta = 5 \) (at the right-hand side). It can be observed that, for each one of the sample sizes considered, \(T = 12000 + 1000(l - 1), \ l = 1, \ldots, 7 \), approximately a 99% of the realizations of \(\hat{\theta}_T - \theta \) lie within the band \(\pm 3\sqrt{\frac{\theta}{T}} \), which supports the asymptotic Gaussian distribution.
Figure 2: The values of $\hat{\theta}_T - \theta$, based on $N = 1000$ simulations of the O.U. process over the interval $[0, T]$, for $T = 12000 + (l - 1)1000$, $l = 1, \ldots, 7$, are represented against the confidence bands given by $+3\sigma = 3\sqrt{\frac{2\theta}{T}}$ (upper dotted line) and $-3\sigma = -3\sqrt{\frac{2\theta}{T}}$ (lower dotted line), for $\theta = 0.1$ (at the left-hand side) and $\theta = 5$ (at the right-hand side).

$T \setminus \theta$	0.1	0.4	0.7	1	2	5
12000	0.9983	1	0.993	0.998	1	0.9983
13000	0.9967	0.9983	0.993	1	0.995	1
14000	0.9967	0.997	1	0.996	1	0.998
15000	0.9983	0.997	0.993	1	0.998	1
16000	0.9967	0.995	0.997	1	1	
17000	0.9933	0.993	1	0.996	0.995	1
18000	0.9967	0.996	0.995	1	1	0.998

Table 1: Empirical probabilities of the error of the MLE of θ to lie within the band $\pm 3\sigma = \pm 3\sqrt{\frac{2\theta}{T}}$, for different sample sizes T, and values of parameter θ.

Regarding asymptotic efficiency, stated in Theorem 2, from $N = 1000$ simulations of the O.U. process over the interval $[0, T]$, for $T = 50 + 250(l - 1)$, $l = 1, \ldots, 25$, the corresponding empirical mean square errors $EMSE_{N,T}(\theta) = \frac{1}{N} \sum_{s=1}^{N} \left(\theta - \hat{\theta}_T(\omega_s) \right)^2$, $N = 1000$, $T = 50 + 250(l - 1)$, $l = 1, \ldots, 25$ (abbreviated as EMSE), considering the cases $\theta = 0.1, 0.4, 0.7, 1$, are displayed in Figure 3. Here, $\hat{\theta}_T(\omega_s), \omega_s \in \Omega, s = 1, \ldots, N$, represent the respective approximated values (33) of the MLE of θ, computed from $\xi_{t_i,s}, s = 1, \ldots, N, t_i \in [0,T], i = 1, \ldots, n$. It can be observed, from the results displayed in Figure 3, that Theorem 2 holds for T sufficiently large.
3.2 Consistency of $\hat{\rho}_T = \hat{\rho}_n$ in $\mathcal{L}(H)$ and $\mathcal{L}(B)$

The strong-consistency of $\hat{\rho}_n$ in $\mathcal{L}(H)$ is derived in Proposition 1 from the following almost surely upper bound

$$\|\rho_\theta - \hat{\rho}_n\|_{\mathcal{L}(H)}^2 \leq |\theta - \hat{\theta}_n| h \sqrt{\frac{h}{3}} + 1. \quad (34)$$

Here, from $N = 1000$ simulations of the O.U. process on the interval $[0, T]$, with $T = nh = n = 200000 + (l - 1)200000$ ($h = 1$), for $l = 1, \ldots, 5$, the corresponding values of $\hat{\theta}_T - \theta = \hat{\theta}_n - \theta$ are computed, considering the cases $\theta = 0.4, 0.7, 1$. Table 2 shows the empirical probability of $\hat{\theta}_T - \theta$ to lie within the band $\pm 3\sqrt{\frac{h}{3}}$, for each one of sample sizes $T = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, and cases $\theta = 0.4, 0.7, 1$, considered. It can be observed that for the sample sizes studied, in the case of $\theta = 1$, the empirical probabilities are equal to one. Thus, the almost surely convergence to zero of the upper bound (34) holds, with approximated convergence rate $\sqrt{T} = \sqrt{n}$. Note that, for the other two cases, $\theta = 0.4$ and $\theta = 0.7$, the empirical probabilities are also very close to one (see also Table 1 for smaller sample sizes, where we can also observe the empirical probabilities very close to one for the same band). In particular, Figure 4 displays the cases $\theta = 0.4$ (at the left-hand side) and $\theta = 1$ (at the right-hand side).
$T \backslash \theta$	0.4	0.7	1
200000	1	1	1
400000	1	1	1
600000	0.9988	1	1
800000	0.9988	0.9988	1
1000000	0.9977	1	1

Table 2: Empirical probability of $\hat{\theta}_T - \theta$ to be within the band $\pm 3\sigma = \pm 3\sqrt{\frac{2\theta}{T}}$, from $N = 1000$ simulations of O.U. process over the interval $[0, T]$, with $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, considering the cases $\theta = 0.4, 0.7, 1$.

Figure 4: The values of $\hat{\theta}_T - \theta$ are represented, corresponding to $N = 1000$ simulations of O.U. process over the interval $[0, T]$, with $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, considering the cases $\theta = 0.4$ (at the left-hand side), and $\theta = 1$ (at right-hand side). The upper dotted line is $+3\sqrt{\frac{2\theta}{T}}$ and the lower dotted line is $-3\sqrt{\frac{2\theta}{T}}$.

It can be observed from Table 2 that a better performance is obtained for the largest values of θ, which corresponds to the weakest dependent case. Furthermore, from the upper bound (27), the strong consistency of $\rho_{\hat{\theta}_n}$ in $\mathcal{L}(B)$, with, as before, $B = C([0, h])$, is also illustrated from the results displayed in Table 2 and Figure 4.

3.3 Consistency of the ARH(1) and ARB(1) plug-in predictors for the O.U. process

Let us now consider the derived upper bounds (22) and (29) in Corollaries 1 and 2 for the ARH(1) and ARB(1) predictors, respectively. From the generation of $N = 1000$ discrete realizations of the O.U. process over the interval $[0, T]$, for $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, the upper bounds (22) and (29) are evaluated, for the cases $\theta = 0.4, 0.7, 1$. The following empirical probabilities for $\varepsilon_2 = 0.008$,

$$\hat{P}_{\theta, N}^H(T) = 1 - \hat{P}\left(\left|X_{n-1}(h)\right| \leq \left|\theta - \hat{\theta}_n\right| h \sqrt{\frac{h}{3} + 1} > \varepsilon\right) \quad (35)$$

$N = 1000$, $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, $\theta = 0.4, 0.7, 1$,

$$\hat{P}_{\theta, N}^B(T) = 1 - \hat{P}\left(\left|X_{n-1}(h)\right| \leq \left|\theta - \hat{\theta}_n\right| h > \varepsilon\right) \quad (36)$$

$N = 1000$, $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, $\theta = 0.4, 0.7, 1$.

13
Figure 5: The values of $|X_{n-1}(h)||\theta - \hat{\theta}_n|h \sqrt{n} + 1$ (top) and $|X_{n-1}(h)||\theta - \hat{\theta}_n|h$ (bottom) are represented, based on $N = 1000$ generations of O.U. process over the interval $[0, T]$, for $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, against $\varepsilon = 0.008$ (horizontal dotted line), considering $\theta = 0.4$ (at the left-hand side) and $\theta = 1$ (at the right-hand side)

are reflected in Table 3, for the Hilbert-valued (see (22)) and Banach-valued (see (29)) frameworks (see also Figure 5). It can be observed that the empirical probabilities are equal to one in both frameworks for the largest sample sizes, in any of the cases considered.

T	θ	Hilbert-valued case	Banach-valued case
	0.4	0.7	1
200000	0.9800	0.9800	0.9800
400000	0.9953	0.9953	0.9953
600000	0.9988	0.9977	0.9988
800000	1	0.9988	0.9988
1000000	1	1	1

Table 3: Empirical probabilities (35) and (36), based on $N = 1000$ simulations of the O.U. process over the interval $[0, T]$, for $T = n = 200000 + (l - 1)200000$, $l = 1, \ldots, 5$, considering the cases $\theta = 0.4, 0.7, 1$, and $\varepsilon_2 = 0.008$.

The strong-consistency of the MLE of θ and of the autocorrelation operator of the O.U. process, in Banach and Hilbert spaces, has been first illustrated. The almost surely rate of convergence to zero is shown as well. The numerical results on the consistency of the associated ARH(1) and ARB(1) plug-in predictors then follow, from the computation of the corresponding empirical probabilities for the derived upper bounds. Note that the numerical results displayed in Section 3 are obtained under generation of sample sizes ranging from 12000 up to a million of time instants, considering 1000 repetitions for each one of such sample sizes. In all these simulations performed, the discretization step size considered has
been $\Delta t = 0.02$.

4 Final comments

The problem of functional prediction of the O.U. process could be of interest in several applied fields. For example, in finance, in the context of Vasicek model (see Vasicek (1977)) the results derived allow to predict the curve representing the interest rate over a temporal interval, in a consistent way. Note that, in this context, the ML estimate computed for parameter θ provides a consistent approximation of the speed reversion, which univocally determines the proposed functional predictor of the interest rate.

Summarizing, this paper addresses the problem of functional prediction of the O.U. process from ARH(1) and ARB(1) perspectives. Specifically, considering the O.U. process as an ARH(1) and an ARB(1) process, new results on strong consistency (almost surely convergence to the true parameter value), in the spaces $L(H)$ and $L(B)$ of the MLE of its autocorrelation operator are derived. Consistency results (convergence in probability to the true value) of the associated plug-in predictors are obtained as well. The numerical results shown, in addition, the normality and the asymptotic efficiency of the MLE of the scale parameter θ of the covariance function of the O.U. process.

Acknowledgements

This work has been supported in part by projects MTM2012-32674 (co-funded by European Regional Development Funds), and MTM2015–71839–P of the DGI, MINECO.

References

[1] Antoniadis, A., Paparoditis, E. and Sapatinas, T. (2006). A functional wavelet-kernel approach for time series prediction, *J. R. Stat. Soc. Ser. B Stat. Methodol.* **68** 837–857.

[2] Antoniadis, A. and Sapatinas, T. (2003). Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes, *J. Multivariate Anal.* **87** 133–158.

[3] Bensmain, N. and Mourid, T. (2001). Estimateur "sieve" de l’opérateur d’un processus ARH(1). *C. R. Acad. Sci. Paris Sér. I Math.* **332** 1015–1018.

[4] Bosq, D. (1991). *Modelization, nonparametric estimation and prediction for continuous time processes. Nonparametric functional estimation and related topics* (Spetses, 1990) **335** NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Kluwer Acad. Publ. Dordrecht 509–529.

[5] Bosq, D. (1996). Limit theorems for Banach-valued autoregressive processes. Applications to real continuous time processes. *Bull. Belg. Math. Soc. Simon Stevin* **3** 537–555.
[6] Bosq, D. (2000). *Linear Processes in Function Spaces*. Springer-Verlag, New York.

[7] Bosq, D. (2002). Estimation of mean and covariance operator of autoregressive processes in Banach spaces. *Stat. Inference Stoch. Process.* 5 287–306.

[8] Bosq, D. (2004). Standard Hilbert moving averages. *Ann. I.S.U.P.* 48 17–28.

[9] Bosq, D. (2007). General linear processes in Hilbert spaces and prediction, *J. Stat. Plann. Inference* 137 879–894.

[10] Bosq, D. and Blanke, D. (2007). *Inference and Predictions in Large Dimensions*. John Wiley, Chichester.

[11] Damon, J. and Guillas, S. (2002). The inclusion of exogenous variables in functional autoregressive ozone forecasting. *Environmetrics* 13 759–774.

[12] Dedecker, J. and Merlevede, F. The conditional central limit theorem in Hilbert spaces. *Stochastic processes and their applications* 108, 2003, pp. 229–262.

[13] Dehling, H. and Sharipov, O. S. (2005). Estimation of mean and covariance operator for Banach space valued autoregressive processes with dependent innovations. *Stat. Inference Stoch. Process.* 8 137–149.

[14] Doob, J. L. (1942). The Brownian movement and stochastic equations. *Annals of Mathematics* 43 319–337.

[15] Ferraty, F. and Vieu, P. (2006). *Nonparametric Functional Data Analysis*. Springer Series in Statistics, Springer, New York.

[16] Glendinning, R. and Fleet, S. (2007). Classifying functional time series. *Signal Process.* 87 79–100.

[17] Guillas, S. (2000). Noncausality and functional discretization, limit theorems for an ARHX(1) process. *C. R. Acad. Sci. Paris* 331 Série I 91–94.

[18] Guillas, S. (2001). Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes. *Statist. Probab. Lett.* 55 281–291.

[19] Hormann, S. and Kokoszka, P. (2011). Consistency of the mean and the principal components of spatially distributed functional data. *Recent advances in functional data analysis and related topics*. Contrib. Statist. Physica-Verlag/Springer, Heidelberg, pp. 169–175.

[20] Kargin, V. and Onatski, A. (2008). Curve forecasting by functional autoregression. *J. Multivariate Anal.* 99 2508–2526.

[21] Kleptsyna, M.L. and Le Breton, A. (2002). Statistical analysis of the fractional Ornstein-Uhlenbeck type process. *Statistical Inference for Stochastic Processes* 5 229–248.

[22] Kloeden, P. E. and Platen, E. (1992). *Numerical Solution of Stochastic Differential Equations*. Springer, Berlin
[23] KUTOYANTS, Y. (2004). *Statistical Inference for Ergodic Diffusion Processes*. Springer Series in Statistics, London.

[24] LABBAS, A. and MOURID, T. (2003). Estimation et prédiction d’un processus autorégressif Banach. *Ann. I.S.U.P.* **47** 19–38.

[25] LAUKAITIS, A. (2008). Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes. *Eur. J. Oper. Res.* **185** 1607–1614.

[26] LAUKAITIS, A., VASILECAS, O. and LAUKAITIS R. (2009). Estimation of the autoregressive operator by wavelet packets. *Statist. Probab. Lett.* **79** 38–43.

[27] LIPTSER, R. S. and SHIRAEV, A. N. (2001). *Statistics of Random Processes I, II*. Springer, New York.

[28] MARION, J.-M. and PUMO, B. (2004). Comparison of ARH(1) and ARHD(1) models on physiological data. *Ann. I.S.U.P.* **48** 29–38.

[29] MAS, A. (2002). Weak convergence for the covariance operators of a Hilbertian linear process. *Stochastic Process. Appl.* **99** 117–135.

[30] MAS, A. (2004). Consistance du prédicteur dans le modèle ARH(1) : le cas compact. *Ann. I.S.U.P.* **48** 39–48.

[31] MAS, A. (2007). Weak convergence in the functional autoregressive model. *J. Multivariate Anal.* **98** 1231–1261.

[32] MAS, A. and MENNTEAU, L. (2003). Large and moderate deviations for infinite-dimensional autoregressive processes. *J. Multivariate Anal.* **87** 241–260.

[33] MAS, A. and PUMO, B. (2007). The ARHD model. *J. Stat. Plann. Inference* **137** 538–553.

[34] MENNTEAU, L. (2005). Some laws of the iterated logarithm in Hilbertian autoregressive models. *J. Multivariate Anal.* **92** 405–425.

[35] MOHTIARI, F. and MOURID, T. (2002). Prédiction des processus à temps continu autorégressifs via les espaces à noyau reproduisant. *C. R. Math. Acad. Sci. Paris* **334** 65–70.

[36] MOURID, T. (2002). Estimation and prediction of functional autoregressive processes. *Statistics* **36** 125–138.

[37] MOURID, T. (2004). Processus autorégressifs hilbertiens à coefficients aléatoires. *Ann. I.S.U.P.* **48** 79–85.

[38] PUMO, B. (1998). Prediction of continuous time processes by $C_{[0,1]}$-valued autoregressive process. *Stat. Inference Stoch. Process.* **1** 297–309.

[39] RACHEDI, F. (2004). Vitesse de convergence de l’estimateur crible d’un ARB(1). *Ann. I.S.U.P.* **48** 87–96.

[40] RACHEDI, F. (2005) Vitesse de convergence en norme p-intégrale et normalité asymptotique de l’estimateur crible de l’opérateur d’un ARB(1). *C. R. Math. Acad. Sci. Paris* **341** 369–374.
[41] Rachedi, F. and Mourid, T. (2003). Estimateur crible de l’opérateur d’un processus ARB(1). *C. R. Math. Acad. Sci. Paris* **336** 605–610.

[42] Ramsay J.O. and Silverman, B.W. (2005). *Functional Data Analysis. Springer Series in Statistics*. Springer, New York.

[43] Ruiz-Medina, M. D. (2012). Spatial functional prediction from spatial autorregresive Hilbertian processes. *Environmetrics* **23** 119–128.

[44] Ruiz-Medina, M. D. and Salmerón, R. (2009). Functional maximum-likelihood estimation of ARH(p) models. *Stochastic Environmental Research and Risk Assessment* **24** 131–146.

[45] Turbillon, C., Bosq, D., Marion, J. -M. and Pumo, B. (2008). Moving averages in Hilbert spaces, *C. R., Math., Acad. Sci. Paris* **346** 347– 350.

[46] Turbillon, C., Marion, J. -M. and Pumo, B. (2007). *Estimation of the moving-average operator in a Hilbert space*. In Recent advances in stochastic modeling and data analysis. World Sci. Publ., Hackensack, NJ, pp. 597–604.

[47] Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of Brownian motion. *Physical Review* **36** 823–841.

[48] Vasicek, O. (1977). An equilibrium characterization of the term structure. *J.Financial Economics* **5** 177–188.

[49] Wang, M. C. and G. E. Uhlenbeck (1945). On the theory of Brownian motion II. *Reviews of Modern Physics* **17** 323–342.
Supplementary Material: Consistency of the plug-in functional predictor of the Ornstein-Uhlenbeck process in Hilbert and Banach spaces

Javier Álvarez-Liébana\(^1\), Denis Bosq\(^2\) and M. Dolores Ruiz-Medina\(^1\)

21st June 2017

\(^1\) Department of Statistics and O. R., University of Granada, Spain.
\(^2\) LSTA, Université Pierre et Marie Curie-Paris 6, Paris, France.
E-mail: javialvaliebana@ugr.es

Summary

The definition and properties of O.U. process are given here, as well as the proof of Lemma 1.

Key words: Autoregressive Hilbertian processes; Banach-valued autoregressive processes; consistency; maximum likelihood parameter estimator; Ornstein-Uhlenbeck process.

1 Ornstein-Uhlenbeck process

Let \(\xi(\omega) = \{\xi_t(\omega)\}_{t \in \mathbb{R}}, \omega \in \Omega\), be a real-valued sample-path continuous stochastic process defined on the basic probability space \((\Omega, \Sigma, \mathbb{P})\), with index set the real line \(\mathbb{R}\). As demonstrated in Doob (1942), process \(\xi\) is an O.U. process if it provides the Gaussian solution to the following stochastic linear Langevin differential equation:

\[
d\xi_t = \theta (\mu - \xi_t) \, dt + \sigma dW_t, \quad \theta, \sigma > 0, \quad t \in \mathbb{R},
\]

where \(W = \{W_t\}_{t \in \mathbb{R}}\) is a standard bilateral Wiener process, i.e., \(W_t = W^{(1)}_t \chi_{\mathbb{R}^+}(t) + W^{(2)}_t \chi_{\mathbb{R}^-}(t)\), with \(W^{(1)}_t\) and \(W^{(2)}_t\) being independent standard Wiener processes, and \(\chi_{\mathbb{R}^+}\) and \(\chi_{\mathbb{R}^-}\) respectively denoting the indicator functions over the positive and negative real line. Applying, in equation (1), the method of separation of variables, considering \(f(\xi_t, t) = \xi_t e^{\theta t}\), we obtain

\[
\xi_t = \mu + \int_{-\infty}^t \sigma e^{-\theta(t-s)} dW_s, \quad \theta, \sigma > 0, \quad t \in \mathbb{R},
\]

where the integral is understood in the Itô sense (see Ash and Gardner (1976) and Sobczyk (1991) for more details). Particularizing to \(\xi = \{\xi_t\}_{t \in \mathbb{R}^+}\), the O.U. process is transformed into

\[
\xi_t = \xi_0 e^{-\theta t} + \mu (1 - e^{-\theta t}) + \int_0^t \sigma e^{-\theta(t-s)} dW_s, \quad \theta, \sigma > 0, \quad t \in \mathbb{R}^+.
\]
It is well-known that the solution $\xi = \{\xi_t\}_{t \in \mathbb{R}}$ to the stochastic differential equation

$$d\xi_t = \mu(\xi_t, t)\,dt + \sqrt{D(\xi_t, t)}\,dW_t, \quad t \in \mathbb{R},$$

(4)

has marginal probability density function $f(x, t)$, satisfying the following Fokker-Planck scalar equation (see, for example, Kadanoff (2000)):

$$\frac{\partial}{\partial t} f(x, t) = -\frac{\partial}{\partial x} [\mu(x, t) f(x, t)] + \frac{1}{2} \frac{\partial^2}{\partial x^2} [D(x, t) f(x, t)], \quad t \in \mathbb{R}.$$

(5)

In the case of O.U. process, the stationary solution ($\frac{\partial}{\partial t} f(x, t) = 0$), under $f(x, x_0) = \delta(x - x_0)$, adopts the form

$$f(x, t) = \sqrt{\frac{\theta}{\pi \sigma^2}} e^{-\frac{\theta}{\sigma^2}(x - \mu)^2}, \quad \theta, \sigma > 0, \quad t \in \mathbb{R},$$

(6)

which corresponds to the probability density function of a Gaussian distribution with mean μ and variance σ^2, i.e., which corresponds to the probability density function of a random variable X such that $X \sim \mathcal{N}(\mu, \sigma^2)$. From (2), the mean and covariance functions of O.U. process (see, for instance, Uhlenbeck and Ornstein (1930) and Doob (1942)) can be computed as follows:

$$\mu(\xi_t) = E[\xi_t] = \mu + \sigma E\left[\int_0^t e^{-\theta(t-s)}dW_s\right] = \mu, \quad t \in \mathbb{R},$$

$$C(\xi_s, \xi_t) = \text{Cov}[\xi_s, \xi_t] = E[(\xi_s - \mu)(\xi_t - \mu)] = \sigma^2 e^{-\theta(t+s)} E\left[\int_0^t e^{\theta u}dW_u \int_0^s e^{\theta v}dW_v\right]$$

$$= \sigma^2 e^{-\theta(t+s)} \int_{-\infty}^{\infty} e^{2\theta u} \chi_{[-\infty, t]}(u) \chi_{[s, \infty]}(u) du = \sigma^2 e^{-\theta(t+s)} \int_{-\infty}^{\min(s, t)} e^{2\theta u} du$$

$$= \frac{\sigma^2}{2\theta} e^{-\theta(t+s)} e^{2\theta \min(s, t)} + \frac{\sigma^2}{2\theta} e^{-\theta(t-s)} e^{2\theta \min(s, t)}, \quad t, s \in \mathbb{R},$$

(7)

where $\text{Cov}[X, Y]$ denotes the covariance between random variables X and Y. Additionally, from (3), we obtain the following identities:

$$E[\xi_t] = \mu e^{-\theta t} + \mu (1 - e^{-\theta t}) = \mu, \quad E[\xi_t | \xi_0 = c] = \mu + e^{-\theta t} (c - \mu), \quad t \in \mathbb{R}^+,$$

$$\text{Cov}[\xi_s, \xi_t | \xi_0 = c] = \frac{\sigma^2}{2\theta} e^{-\theta(t-s)} + \frac{\sigma^2}{2\theta} e^{-\theta(s+t)} (c^2 - 2c\mu + \mu^2) e^{-\theta(s+t)}, \quad t, s \in \mathbb{R}^+,$$

(8)

where c is a constant. In the subsequent development, we will consider $\mu = 0$ and $\sigma = 1$.

2
2 Maximum likelihood estimation of the covariance scale parameter θ

The MLE of θ in (7) is given by (see Graczyk and Jakubowski (2006), Kutoyants (2004), p. 63, and Liptser and Shiryaev (2001), p. 265)

$$\hat{\theta}_T = \frac{-\int_0^T \xi_t d\xi_t}{\int_0^T \xi_t^2 dt} = \frac{\theta \int_0^T \xi_t^2 dt - \int_0^T \xi_t dW_t}{\int_0^T \xi_t^2 dt} = \theta - \frac{\int_0^T \xi_t dW_t}{\int_0^T \xi_t^2 dt}, \quad \theta, T > 0. \quad (9)$$

Thus, equation (9) becomes

$$\hat{\theta}_T = 1 + \frac{\xi_0^2 - \xi_T^2}{\int_0^T \xi_t^2 dt}, \quad T > 0. \quad (10)$$

We will assume that T is large enough such that $\hat{\theta}_T > 0$ almost surely. It is well-known that the MLE $\hat{\theta}_T$ of θ is strongly consistent (see details in Kleptsyna and Le Breton (2002), Proposition 2.2, p. 4, and Kutoyants (2004), p. 63 and p. 117).

Theorem 1 The following limit in distribution sense holds for the MLE $\hat{\theta}_T$ of θ, given in equation (10):

$$\lim_{T \to \infty} \sqrt{T} \left(\hat{\theta}_T - \theta \right) = -\sqrt{T} \frac{\int_0^T \xi_t dW_t}{\int_0^T \xi_t^2 dt} = Z, \quad \text{with} \quad Z \sim N(0, 2\theta). \quad (11)$$

Theorem 1.1 and Corollary 1.1 in Jiang (2012), p. 2, lead to the following almost surely identities (see also Bosq (2000), Theorem 2.10, p. 54, and Ledoux and Talagrand (1991), pp. 196–203, in relation to the law of the iterated logarithm)

$$\limsup_{T \to +\infty} \frac{\hat{\theta}_T - \theta}{\sqrt{\frac{4\theta}{\log\log(T)}}} = 1 \quad \text{a.s.}, \quad (12)$$

$$-\liminf_{T \to +\infty} \frac{\hat{\theta}_T - \theta}{\sqrt{\frac{4\theta}{\log\log(T)}}} = 1 \quad \text{a.s.}, \quad (13)$$

$$|\theta - \tilde{\theta}_T| = O\left(\sqrt{\frac{4\theta \log\log(T)}{T}}\right) \quad \text{a.s.} \quad (14)$$

3 Preliminary inequalities and results

In this section we recall some inequalities and well-known convergence results on random variables, as well as basic deterministic inequalities, that have been applied in the derivation of the main results of
paper Consistency of the plug-in functional predictor of the Ornstein-Uhlenbeck process in Hilbert and Banach spaces

Lemma 1 Let X be a zero-mean normal distributed random variable, i.e., $X \sim \mathcal{N}(0, \sigma^2)$, with $\sigma > 0$. Then,

$$
P(|X| \geq x) \leq e^{-\frac{x^2}{2\sigma^2}}, \forall x \geq 0.
$$

(15)

Proof. Let X' be such that $X' \sim \mathcal{N}(0, 1)$. Then,

$$
P(|X'| \geq x) = 2F_{X'}(-x) = \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt, \forall x \geq 0.
$$

(16)

Let us set

$$
g(x) = e^{-\frac{x^2}{2}} - \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt, \quad g(0) = 0, \quad \lim_{x \to \infty} g(x) = 0,
$$

$$
g'(x) = -xe^{-\frac{x^2}{2}} + \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} = -\frac{x}{\sqrt{\frac{2}{\pi}}} e^{-\frac{x^2}{2}}.
$$

(17)

Function g is monotone increasing over $\left(0, \sqrt{\frac{2}{\pi}}\right)$, and g is monotone decreasing over $\left(\sqrt{\frac{2}{\pi}}, \infty\right)$.

From equations (16) and (17),

$$
P(|X'| \geq x) \leq e^{-\frac{x^2}{2}}, \forall x \geq 0.
$$

Now, consider $X' = \frac{X}{\sigma}$, with $X \sim \mathcal{N}(0, \sigma^2)$, then,

$$
P(|X| \geq x) \leq e^{-\frac{x^2}{2\sigma^2}}, \forall x \geq 0.
$$

(18)

Lemma 2 Let $\{Z_n\}_{n \in \mathbb{Z}}$ be a sequence of random variables such that $Z_n \sim \mathcal{N}(0, \frac{1}{n^2})$, with $\theta > 0$, and let $\{Y_n\}_{n \in \mathbb{Z}}$ be another sequence of random variables such that $\sqrt{\ln(n)}Y_n \to^p 0$, $n \to \infty$. Then, $Y_n|Z_n| \to^p 0$, $n \to \infty$, where, as usual, \to^p indicates convergence in probability.

Proof. Considering the indicator function $\chi(\cdot)$, it holds

$$
Y_n|Z_n| = Y_n|Z_n|\chi(|Z_n| < a_n) + Y_n|Z_n|\chi(|Z_n| \geq a_n) \leq Y_n|Z_n|\chi(|Z_n| \geq a_n),
$$

(19)

where $\{a_n\}_{n \in \mathbb{Z}}$ is a sequence of positive numbers such that the event $\{Y_n|Z_n|\chi(|Z_n| \geq a_n)\}$ is equivalent
to \{ |Z_n| \geq a_n \}. From (19) and Lemma 1, if we take \(a_n \geq \frac{\varepsilon}{c_2} \), for all \(n \in \mathbb{Z} \), we get
\[
\mathcal{P}(Y_n|Z_n| \geq \varepsilon) \leq \mathcal{P}\left(Y_{na_n} \geq \frac{\varepsilon}{2} \right) + \mathcal{P}(|Z_n| \geq a_n) \leq \mathcal{P}\left(Y_{na_n} \geq \frac{\varepsilon}{2} \right) + e^{-\theta a_n^2}, \forall \varepsilon > 0.
\] (20)

For \(a_n = e^{\sqrt{\ln(n)}} > \frac{\varepsilon}{c_2} \), with \(\frac{1}{\sqrt{\theta}} < c < +\infty \),
\[
\sum_{n \in \mathbb{Z}} \mathcal{P}(|Z_n| \geq a_n) \leq \sum_{n \in \mathbb{Z}} e^{-\theta a_n^2} = \sum_{n \in \mathbb{Z}} \frac{1}{n^{\theta \varepsilon^2}} < +\infty,
\] (21)
which implies that \(\lim_{n \to \infty} \mathcal{P}(|Z_n| \geq a_n) = 0 \) in equation (20). On the other hand, since \(\sqrt{\ln(n)}Y_n \to^{p} 0 \), for every \(\varepsilon > 0 \),
\[
0 = \lim_{n \to \infty} \mathcal{P}\left(\sqrt{\ln(n)}Y_n \geq \frac{\varepsilon}{2} \right) = \lim_{n \to \infty} \mathcal{P}\left(Y_{a_n/c} \geq \frac{\varepsilon}{2} \right).
\] (22)
Thus, \(Y_n|Z_n| \to^{p} 0 \).

\[\boxdot \]

Lemma 3 If \(t \in [0, +\infty) \), it holds that \(|e^{-xt} - e^{-yt}| \leq |x - y|t \), for any \(x, y \geq 0 \).

Proof. Let us first assume that \(x \geq y > 0 \). From Mean Value Theorem applied over \(e^z \), there exists \(0 < \alpha < 1 \) such that \(\frac{e^{z+h} - e^{z}}{h} = e^{z+\alpha h} \). Taking \(z = -xt \) and \(z+h = -yt \), we get the following inequalities:
\[
|e^{-xt} - e^{-yt}| = |x - y|te^{-xt + \alpha(x-y)t} = |x - y|te^{xt(\alpha - 1)}e^{-y\alpha t} \leq |x - y|t e^{-y\alpha t} \leq |x - y|t.
\] (23)

Similar inequalities are obtained for the case \(y \geq x > 0 \), by applying Mean Value Theorem over interval \([x, y]\) instead of \([y, x]\).

\[\boxdot \]

4 Proof of Lemma 1

The proof of Lemma 1, appearing in Section 1.1 of the paper *Consistency of the plug-in functional predictor of the Ornstein-Uhlenbeck process in Hilbert and Banach spaces*, is now provided.

Proof. Let us first consider the case \(k = 1 \), from
\[
\rho_{\theta}(x)(t) = e^{-\theta t}x(h), \quad \rho_{\theta}(X_{n-1})(t) = e^{-\theta t} \int_{-\infty}^{nh} e^{-\theta(s-\delta)} dW_s, \quad \varepsilon_n(t) = \int_{nh}^{nh+t} e^{-\theta(t+s-\delta)} dW_s,
\] (24)
and
\[
\|\rho_{\theta}(x)\|_H^2 = \int_{0}^{h} |\rho_{\theta}(x)(t)|^2 d(\lambda + \delta(h))(t) = \int_{0}^{h} |\rho_{\theta}(x)(t)|^2 dt + |\rho_{\theta}(x)(h)|^2,
\] (25)
we have

\[\| \rho_0 \|_{L(H)} = \sup_{x \in H} \left\{ \| \rho_0 (x) \|_H \right\} = \sup_{x \in H} \left\{ \sqrt{ \frac{ \left(\int_0^h e^{-2\theta t} dt + e^{-2\theta h} \right) x^2 (h) } { \int_0^h x^2 (t) dt + x^2 (h) } } \right\}. \tag{26} \]

Furthermore, trivially,

\[\| \rho_0 \|_{L(H)} = \sup_{x \in H} \sqrt{ \frac{ \left(\int_0^h e^{-2\theta t} dt + e^{-2\theta h} \right) x^2 (h) } { \int_0^h x^2 (t) dt + x^2 (h) } } \leq \sqrt{ \int_0^h e^{-2\theta t} dt + e^{-2\theta h} }. \tag{27} \]

Additionally, the function \(x_0 : [0, h] \to \mathbb{R} \), given by

\[x_0 (t) = \chi_{\mathcal{M}} (t), \quad h \in \mathcal{M} \subset [0, h], \quad \int_{\mathcal{M}} dt = 0, \tag{28} \]

with \(\chi_{\mathcal{M}} \), denoting the indicator function of set \(\mathcal{M} \), belongs to \(H = L^2 ([0, h], \beta_{[0, h]}, \lambda + \delta_{(h)}) \), since \(x_0^2 (h) = 1 \), \(\int_0^h x_0^2 (t) dt = 0 \), and \(\| x_0 \|_H^2 = \int_0^h x_0^2 (s) ds + x_0^2 (h) = 1 \). Thus, by definition of \(\| \rho_0 \|_{L(H)} \),

\[\frac{\| \rho_0 (x_0) \|_H}{\| x_0 \|_H} = \sqrt{ \int_0^h e^{-2\theta t} dt + e^{-2\theta h} } \leq \| \rho_0 \|_{L(H)} \tag{29} \]

Equations (26), (27) and (29) lead to

\[\| \rho_0 \|_{L(H)} = \sqrt{ \int_0^h e^{-2\theta t} dt + e^{-2\theta h} } = \sqrt{ \frac{1 + e^{-2\theta h} (2\theta - 1)}{2\theta} }. \tag{30} \]

We are now going to compute \(\| \rho_0^k \|_{L(H)} \), for \(k \geq 2 \). Since, for all \(x \in H \),

\[\rho_0^k (x) (t) = e^{-\theta t} e^{-\theta (k-1) h} x (h), \tag{31} \]

we obtain

\[\frac{\| \rho_0^k \|_{L(H)}}{\| x_0 \|_H} = \sqrt{ \frac{ \left(\int_0^h e^{-2\theta (k-1) h} \int_0^h e^{-2\theta t} dt + e^{-2\theta h} \right) x^2 (h) } { \int_0^h x^2 (t) dt + x^2 (h) } } \tag{32} \]

Considering function \(x_0 \) defined in equation (28), applying similar arguments to those given in the computation of \(\| \rho_0 \|_{L(H)} \), we have

\[\| \rho_0^k \|_{L(H)} = \sqrt{ \frac{1 + e^{-2\theta h} (2\theta - 1)}{2\theta} } = e^{-\theta (k-1) h} \| \rho_0 \|_{L(H)}. \tag{33} \]
Now, from equation (30),

\[\| \rho \theta \|_{L(H)} < 1 \Leftrightarrow 1 - e^{-2\theta h} < 2 \theta (1 - e^{-2\theta h}) \Leftrightarrow \theta > \frac{1}{2}. \tag{34} \]

Furthermore, for \(\theta \in (0, 1/2] \),

\[\| \rho \theta \|_{L(H)} = \sqrt{\alpha (\theta)} < \sqrt{1 + h}, \tag{35} \]

since \(\sqrt{\alpha (\theta)} \) is a monotonically decreasing function on \((0, 1/2] \), with \(\alpha (\theta) = 1 \) if \(\theta = \frac{1}{2} \) and \(\alpha (\theta) \to 1 + h \), when \(\theta \to 0 \). Hence, if \(\theta (k - 1) \geq 1 \),

\[\| \rho^{k} \theta \|_{L(H)} = e^{-\theta (k-1)h} \sqrt{\alpha (\theta)} \leq e^{-h} \sqrt{\alpha (\theta)} < \frac{\sqrt{1 + h}}{e^{h}} < 1, \quad h > 0, \tag{36} \]

which implies that \(\| \rho_{0}^{k_{0}} \|_{L(H)} < 1 \), when \(k_{0} \geq \frac{1}{\theta} + 1 \).

\[\blacksquare\]

References

[1] Ash, R. B. and Gardner, M. F. (1976). Topics in stochastic processes, Bulletin of the American Mathematical Society 82 817–820.

[2] Bosq, D. (2000). Linear Processes in Function Spaces. Springer-Verlag, New York.

[3] Doob, J. L. (1942). The Brownian movement and stochastic equations. Annals of Mathematics 43 319–337.

[4] Graczyk, P. and Jakubowski, T. (2006). Analysis of Ornstein-Uhlenbeck and Laguerre stochastic processes. Ecole CIMPA Familles orthogonales et semigroupes en analyse et probabilités

[http://math.univ-angers.fr/publications/prepub/fichiers/00229.pdf]

[5] Jiang, H. (2012). Berry-Esséen bounds and the law of the iterated logarithm for estimators fo para-

meters in an Ornstein-Uhlenbeck process with linear drift, Journal of Applied Probability 49 978–989.

[6] Kadanoff, L.P. (2000). Statistical Physics: Statics, Dynamics and Renormalization. World Scientific, Singapur.

[7] Kleptsyna, M.L. and Le Breton, A. (2002). Statistical analysis of the fractional Ornstein-

Uhlenbeck type process. Statistical Inference for Stochastic Processes 5 229–248.

[8] Kutoyants, Y. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, London.
[9] Ledoux, M. and Talagrand, M. (1991). *Probability in Banach spaces*. Springer-Verlag, Berlin.

[10] Liptser, R. S. and Shiryaev, A. N. (2001). *Statistics of Random Processes I, II*. Springer, New York.

[11] Sobczyk, K. (1991). *Stochastic Differential Equations, with Applications to Physics and Engineering*. Kluwer Academic Publishers, Dordrecht.

[12] Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of Brownian motion. *Physical Review* **36** 823–841.