Efficacy of biochar in the management of *Fusarium verticillioides* Sacc. causing ear rot in *Zea mays* L.

A.O. Akanmua,*, A.A. Sobowalea, M.A. Abialab, O.J. Olawuyia, A.C. Odebodea

a Department of Botany, University of Ibadan, Ibadan, Nigeria

b Department of Biological Sciences, Mountain Top University, Prayer City, Nigeria

A R T I C L E I N F O

Article history:
Received 23 May 2019
Received in revised form 13 May 2020
Accepted 15 May 2020

Keywords:
Fusarium disease management
Poultry waste biochar
Sawdust biochar
Ear rot
Fungicide

A B S T R A C T

Maize ear rot caused by *Fusarium verticillioides* (Fv) is a major disease associated with reduced grain yield and ear quality. The use of biochar in management of ear rot has not been established. Efficacy of biochar against the disease was therefore investigated. Efficacy of biochars produced from poultry faecal waste (Bpw) and sawdust (Bsd) against pathogenic *Fusarium verticillioides* (Fv) causing ear rot in maize was determined using biochar treatment combinations (Bpw, Bsd, Bpw+Bsd, Bpw+Bv, Bsd+Bv, Bpw+Bsd+Fv, and control) as soil amendments. Additional treatments consisted of fungicide (Cibaplu), poultry faecal waste (Pw), sawdust (Sd), Bpw+Fungicide, Bsd+Fungicide, Bpw+Bsd+Fungicide, Fungicide + Fv, and Sd. The Bpw and Pw at 1.2 and 3 kg/m² each, Bsd and Sd (0.50, 1.00 and 1.50 kg/m²) and fungicide (0.25, 0.50 and 1.00 g/L) were applied. Inoculation of pathogenic *F. verticillioides* strain was conducted at 7th week after planting and ear rot severity assessed at harvest. Residual effects of treatments were examined in the second season. Data gathered were subjected to ANOVA at \(\alpha = 0.05 \).

Maize treated with Sd, Bpw and Bpw+Fungicide scored 1–3% severity; Bpw+Bsd, Bsd+Fungicide, Bpw+Sd, Bsd+Fv, Bsd+Bsd+Fungicide, Bpw+Bf, Bsd+sd+Fv and Fungicide + Fv scored 4–10%. Severity rating for control and Pw was 11–25% while Fv was 26–50%. Poultry faecal waste and Bpw based treatments recorded significant impact on growth characters across varying concentrations compared to other treatments. Poultry faecal waste biochar and sawdust biochar were effective in the management of Fusarium ear rot of maize and could be used as soil amendments.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Maize is the most important cereal crop and staple food for about 1.2 billion people [1,2] and occupies a third of the cultivated area in sub-Saharan Africa [3]. The cereal which accounts for over 30% lower-house income, contributes 60% of dietary calories and 50% of protein intake is currently under a continuous threat of food security, largely due to the ear rot caused by *Fusarium verticillioides* [1,4].

Fusarium verticillioides is the most common cause of ear and kernel rot of maize considered as field fungi invading more than 50% of maize grains before harvest [5]. The pathogen has been found associated with reduced grain yield quality and with adverse implication on food security across the world. More so, tolerable limits of fumonisins in grain are often exceeded in *Fusarium verticillioides* contaminated maize [6,7]. Hence, leading to serious health impairments in animals and human [8], several measures ranging from cultural to the use of chemical had been employed in the control of ear rot caused by *F. verticillioides* [9], but excessive and inappropriate use of chemical pesticides in maize cultivation had raised serious concern about health and environmental hazards which further results in setback such as; increased cost, handling hazards and pesticide residues in food [10]. Thus, effective management of Fusarium ear rot has been a serious challenge across the world. As many disease control methods could not mitigate effect of the pathogenic *F. verticillioides* in the subsequent seasons.

The quest for improved grain yield, disease and toxin-free had become imperative for profitable maize production [11,12]. More so, with the increasing population and rise in demand for safe and quality maize, agriculture is under intense pressure to produce more food with less environmental impact and increased resource efficiency [13]. The need to proffer an environmental friendly alternative to the use of fungicide in managing the menace of *F. verticillioides* in maize production therefore necessitated the investigation of biochar.

Biochar has been explored in mitigating greenhouse gas emission, enhancement of soil health and plant yield [14,15]. It
had also been reported as effective in suppressing diseases caused by some air and soil borne plant pathogens [16]. However, its prospect in plant disease management has not been fully explored, and to the best of our knowledge, this is the first study of the efficacy of biochar in managing F. verticillioides causing ear rot in maize. This study therefore, investigated the potential of biochar as soil amendment in the sustainable management of Fusarium verticillioides causing ear rot in maize.

2. Materials and methods

2.1. Study location and sources of materials used

The field experiment was carried out at the experimental plots of Teaching and Research Farm, University of Ibadan, between August and November, 2015 and repeated on the residual effect of biochar from April to July, 2016. Maize variety DMR LSR Y used was obtained from the Institute of Agricultural Research and Training (IAR & T), Apata, Ibadan while the pathogenic Fusarium verticillioides strain AKR 05 documented by Olowe et al. [17] was obtained from the culture collections of Plant Pathology Laboratory, Department of Botany, University of Ibadan, Ibadan, Nigeria.

Poultry faecal wastes (Pw) were collected from the dumping site of layers’ wastes at the poultry section of Teaching and Research Farm, University of Ibadan, Ibadan and sawdust (Sd) was obtained from commercial saw millers at Bodija, Ibadan, Oyo State, Nigeria. The two biochar materials were sun dried to reach the moisture level of about 15%. They were separated from other materials (i.e. small stones, plastics, grass, branch etc) while the clustered ones were broken by hand to meet size of 4–5 cm in order to achieve uniform heating during combustion.

2.2. Preparation of poultry faecal waste biochar

A modified biochar kiln was developed according to the model of 55 gallon drum reported by Major [18]. The kiln was sealed after loading and combustion with fire wood was maintained at average temperature of 485 °C, monitored at 30 min interval by the use of infra-red pyrometer designed to measure temperature from; −50 °C to 1500 °C. Yield was harvested when dense smoky black colour chars was observed after 9 h of continuous heating. The yield was cooled by spraying water thoroughly over surface of the kiln and left till the second day before opening.

2.3. Production of sawdust biochar

Sawdust biochar was prepared according to the modified method of biochar stove described by Major [18].

2.3.1. Elemental analysis of biochar and feedstocks

Laboratory analysis of the feedstocks (poultry faecal waste and sawdust) and biochars produced were conducted. The elemental C and N, were determined using C, N, S elemental analyser (Vario El III) and P, K, Ca, Mg and Na using acid digestion [19], followed by the use of Inductively Coupled Plasmas-Atomic Emission Spectrometer (ICP-AES, Perkin Elmer). Cation exchange capacity (CEC) was analysed using Barium acetate method [20]. The pH was measured using pH electrodes and conductivity (EC) with the use of a conductivity meter at ratio sample: water at 1:10. Ash content [21] was determined by ignition of known weight of samples at 600 °C until all carbon was removed. The final calculation was based on the percentage of ash from the original compound.

2.4. Field layout and experimental design

The field used for the experiment was situated on plane topography. It was harrowed, ploughed and re-ploughed two weeks later. Field size 25m × 30m mapped out was sub divided into 144 min. plots of 1.2m × 1.2m each. Thus, a total of 16 min. plots were arranged along the length and 9 along the width of the main plot, while the space of 100 cm was observed in between the columns and across the rows. A total of 16 treatments were set up at three concentration levels and three replications as;

T1 = Pw + Fv
T2 = Bsd + Fv
T3 = Pw + Bsd + Fv
T4 = Fungicide + Fv
T5 = Fv alone
T6 = Pw alone
T7 = Bsd alone
T8 = Pw + Bsd
T9 = Fungicide alone
T10 = Pw + Fungicide
T11 = Bsd + Fungicide
T12 = Pw + Bsd + Fungicide
T13 = Control (Untreated maize)
T14 = Pw alone
T15 = Sd alone
T16 = Pw + Sd

Where; Pw = Poultry faecal waste biochar, Bsd= Sawdust biochar, Fv= Fusarium verticillioides, Pw = Poultry faecal waste, Sd = Sawdust.

The experiment was laid out in a randomized complete block design (RCBD). On each respective mini plots, Pbw was applied at the rate of; 1, 2 and 3 kg/m2 according to the ratio used by Mukherjee and Lal [22], while Bsd was applied at 0.5, 1 and 1.5 kg/m2. In cases of combined treatments, 1/2 or 1/3 strength of each
component was applied with respect to the number of components involved. Similar application rate was employed for treatments involving the feedstocks, poultry faecal waste (Pw) and sawdust (Sd).

2.5. Seed sterilization and planting

Maize seeds were soaked in 5 % Sodium hypochlorite solution (NaOCl) for 3 min and rinsed in two times with sterile distilled water, then air dried in the laminar flow for 2 h according to the method described by Anderegg and Guthrie [23]. Three viable seeds were planted 2–3 cm deep into the soil but thinned to one plant per pot at 2 weeks after planting (WAP).

2.6. Inoculum quantification and inoculation

The mycelial growths of seven day old cultures of *F. verticillioides* strain AKR 05 were flooded with 2 mL sterile distilled water and gently brushed with glass rod into sterile conical flask. The solution was sieved with double folded sterile cheese cloth to allow the passage of fungal spores only. The spore suspension was then counted using haematocytometer and adjusted with sterile distilled water to 1×10^7 spores/ ml for each strain of *F. verticillioides*. The pathogen suspension (2 mL) was inoculated in the respective treatments through the silk channel at full silk stage of the maize development (7th week after planting) using sterile syringe and needle according to the procedure described by Cardwell et al. [24]. The growing cobs were covered with sterile polythene bag immediately after inoculation to avoid multiple infections and as well to allow the build-up of humidity that would enhance the disease initiation process.

2.7. Application of fungicide

Fungicide (Ciplasus) containing active ingredients; Imidacloprid 10 % + Metalaxyl 10 % + Carbendazin 10 % was applied to the respective treatment a week and third week after pathogen inoculation (8th and 10th WAP) by spraying all plants in each block from the foliar part to the root zone. The fungicide was mixed and applied on the respective treatments at three concentration levels; 0.25, 0.50 and 1.00 g/mL.

2.8. Establishment of second season evaluation

The field experiment was repeated with the same maize variety. This was conducted without fresh application of biochar and feedstock treatments. However, the pathogen inoculations and fungicide spraying were duly observed on the respective treatment at the appropriate time as was carried out in the first evaluation.

3. Disease assessment

3.1. Disease incidence rating

The experiment set up was observed for ear rot disease development having symptoms such as; powdery or cottony-pink mould growth on the infected kernel. The percentage incidence of infected ear was estimated as described by Michel et al. [25]:

$$\% \text{ incidence} = \frac{n}{N} \times 100$$

Where n = number of harvested ear showing disease symptoms.

N = Total Number of ear.

3.2. Disease severity

The ear rot severity was determined by estimating the percentage proportion of the length of each infected ear to their total length. These were further scored on a scale of 1–7, according to the method described by Reid et al. [26]. Where $1 = 0 \%$ infection, $2 = 1–3 \%, 3 = 4–10 \%, 4 = 11–25 \%, 5 = 26–50 \%, 6 = 51–75 \%$ and $7 = >75 \%$ of the kernels exhibiting visible symptoms of infection such as rot and mycelial or visually mouldy growths.

3.3. Meteorological data

Weather reports of rainfall (Fig. 1), relative humidity (Fig. 2) and temperature (Fig. 3) covering the period of field planting were obtained from Nigeria Meteorological Services, Ibadan, Oyo State, Nigeria.

3.4. Measurement of growth and disease characters, and field management

Data on the growth parameters were recorded at 4th, 8th and 12th weeks after planting (WAP). Disease incidence and severity were recorded on the harvested cobs at the 12th week after planting (WAP). Agronomic practices such as field monitoring,
boundary clearing and manual weeding at 3rd, 6th and 9th week after planting were observed.

3.5. Data analysis

All the data obtained in this study were analyzed using Statistical Analysis System, SAS version 9.1 [27] software and
Table 2

Treatments	Concentration 1 kg/m²	Concentration 2 kg/m²	Concentration 3 kg/m²
	Plant height (cm)	Plant width (cm)	Plant girth (cm)
	No of leaves	No of leaves	No of leaves
Bwp + Fv			
Bsd + Fungicide	21.17±0.13abc	20.64±0.13ab	19.80±0.13bc
Bpw = Sawdust biochar	21.14±0.12abc	20.63±0.12ab	19.81±0.13bc
Fv only	21.14±0.14abc	20.63±0.14ab	19.81±0.14bc

Means with the different letters across the column are significantly different from one another.

subjected to the analysis of variance, while means were separated at 5% confidence interval, using Duncan multiple range test (DMRT).

4. Results

The physicochemical analysis of the two types of biochar and their feedstocks showed results of the elemental compositions of carbon, nitrogen, phosphorus, potassium, calcium, magnesium, sodium, ash and pH in their order of significant (p < 0.05) as; poultry faecal waste biochar (Bwp) > poultry faecal waste (Pw) > Sawdust biochar (Bsd) > Sawdust. Physicochemical properties of soil samples from the experimental plots showed the soil as slightly acidic and sandy loamy (Table 1).

At 4th week after planting, prior to pathogen and fungicide applications, treatments that received biochar and feedstock application at 1 kg/m² showed the highest plant height in (Bwp + Bsd (+Fv) = 23.38 cm), other treatments were not significantly different from one another except in Bsd alone, Pw + Sawdust and F. verticillioides only which were not statistically different from the control (18.64 cm) experiment. The most significant stem girth was observed in Bwp + Bsd (1.44 cm), while no significant difference occurred in number of leaves among the treatments. Bwp + Fv (61.24 cm) and Fungicide alone (not yet applied) (5.12 cm) produced the most significant (p < 0.05) results in the leaf length and width respectively. At 2 kg/m² biochar concentration, treatments with Poultry waste (Pw) only recorded the most significant growth across the parameters measured. Also, at 3 kg/m² concentration, treatment Bsd (+Fv) showed the most significant growth in plant height, stem, girth and number of leaves. Leaf length and width were most predominant in Sawdust treated soils (Table 2).

At 8th week after planting (WAP), having inoculated the pathogen and fungicide application at the 7th WAP, results at 1 kg/m² concentrations showed Bwp + Fungicide with the most significant plant height (141.82 cm), stem girth (1.80 cm) and leaf width (15.57 cm), Sawdust treatment produced the most significant value for leaf length while no significant difference occurred in number of leaves among the treatments. At 2 kg/m², poultry waste significantly increased the plant height (146.49 cm) and leaf width (8.66 cm), with number of leaves significantly enhanced by Bwp + Fv (11.00 cm) while stem girth showed no significant difference across all the treatments. Concentration 3 kg/m² of biochar application produced treatments Bsd + Fv as the best support of the growth characters (Table 3).

The results of growth parameters obtained at 12th week after planting on 1 kg/m² biochar concentration showed no significant differences in the stem girth and number of leaves among all the treatments. The treatments; Bsd + Fv (152.66 cm), Sawdust only (150.54 cm), Bp + Bsd + Fungicide (149.50 cm), Pw + Sawdust (148.28 cm) and Bwp + Bsd (147.18 cm) produced a more significantly higher plant height results that other treatments. Bwp + Fv (72.00 cm) and Bsd + Fungicide (72.02 cm) recorded highest leaf length while the most significant growth of leaf width was shown in Bwp + Fv (8.40 cm), Bsd + Fungicide (8.14 cm), Bp + Bsd + Fungicide (7.90 cm), Pw (7.93 cm) and Sawdust only (8.21 cm) (Table 4).

Maize treated with poultry faecal waste (Pw), followed by those with biochar alone, then biochar and F. verticillioides were the order of significance (p < 0.05) recorded in the plant height, number of leaves and leaf area. The combined poultry faecal waste and sawdust (Pw + Sd) showed higher significance (p < 0.05) in the stem girth, while results of other treatments were not significantly different from the control (Table 5).

The most significant plant heights was recorded at 1 kg/m² (89.30 cm), the leaf area increased with increasing concentrations while no significant difference was recorded across the levels in...
Treatments	Plant height (cm)	Stem girth (cm)	No of leaves	Leaf length (cm)	Leaf width (cm)	Stem girth (cm)	No of leaves	Leaf length (cm)	Leaf width (cm)	Stem girth (cm)	No of leaves	Leaf length (cm)	Leaf width (cm)	
Bpw + Fv	128.20ab	1.35a	8.00a	72.00a	8.40a	139.38ab	1.58abc	9.56a	73.03a	7.65b	123.42def	1.48d	8.33d	68.58b-d
Bsd + Fv	152.66a	1.60a	9.00a	68.98b	7.65b	118.41cl	1.52d	9.31abc	62.12b	7.07b	143.82ab	1.87d	9.17a	77.14ab
Bpw + Bsd + Fv	126.86ab	1.59a	9.19a	64.21abc	7.39a	113.85abc	1.57abc	8.22c	59.92bc	7.27b	140.13bcd	1.87bc	9.17a-d	77.14ab
Fungicide + Fv	139.78ab	1.50a	9.44a	62.63abc	8.02a	131.66bc	1.79b	8.33bc	65.78abc	7.50b	150.30a	1.56abc	9.83abc	80.80a
Bpw alone	139.53ab	1.47a	9.44a	63.46abc	7.50a	132.64ab	1.84a	9.29abc	68.44a	8.40b	123.85cd	1.51d	9.17a-d	85.65a
Bsd alone	137.23ab	1.59a	9.50a	65.39abc	7.70a	127.41bc	1.66abc	9.29abc	68.36abc	7.66b	133.62cd	1.79a	9.83abc	70.03cd
Bpw + Bsd	147.18a	1.55a	9.50a	55.33abc	7.60a	131.34bc	1.65abc	9.44abc	69.46a	7.93b	129.93c	1.64cd	8.50c	77.87ab
Fungicide alone	145.33ab	1.47a	9.33a	66.67abc	7.57a	124.24bc	1.45c	9.25abc	58.41abc	7.05b	133.80cd	1.53d	9.33a-d	87.41bc
Bpw + Fungicide	139.7ab	1.69a	9.29a	54.37abc	7.19b	113.45d	1.49b	8.38abc	63.60abc	7.44b	117.07def	1.62d	8.17a	57.52f
Bsd + Fungicide	149.50a	1.50a	9.06a	64.24abc	7.90a	136.81bc	1.67abc	9.78a	67.67a	7.20b	129.27bc	1.59d	9.33a-d	59.00ef
Control (Untreated)	117.88b	1.41a	8.33a	50.74abc	6.26b	131.87bcd	1.52c	9.31abc	64.26abc	7.47b	157.43a	1.88a	10.17a	81.78a
Poultry fecal waste (Pw)	146.75a	1.70a	15.13a	63.67abc	7.93a	135.91a	1.81a	9.22abc	63.58abc	8.10b	151.45d	1.88a	10.17a	81.78a
Sawdust only	150.54a	1.63a	9.25a	69.34ab	8.21a	123.53bc	1.53abc	9.22abc	62.71ab	14.23a	121.14ef	1.48d	8.38d	61.08abcdef
Fv only	149.29a	1.46a	9.00a	65.57abc	7.43b	140.97ab	1.65abc	8.89abc	72.26a	7.97b	131.56de	2.18a	10.50a	61.05def

Bpw = Poultry waste biochar, Bsd = Sawdust biochar, Fv = Fusarium verticillioides, Pw = Poultry fecal waste.

Means with the different letters across the column are significantly (p < 0.05) different from one another.
Table 5
Pooled growth performance of maize after receiving different treatments of biochar, biochar feedstocks, fungicide and F. verticillioides (Mean of two years).

Treatments	Variables	Plant heights (cm)	Number of leaves	Stem girth (cm)	Leaf area (cm²)
Fv treatments	Bpw + Fv	91.01bcd	9.20bc	5.14b	344.37abc
	Bsd + Fv	89.32bcde	9.34bc	5.18b	343.96abc
	Bpw + Bsd + Fv	89.51bcde	9.01bcd	4.77b	314.46abc
	Fungicide + Fv	91.70bc	8.86bcd	5.35a	335.94abc
Biochar alone	Bpw alone	92.02b	9.31bc	5.30b	349.96ab
	Bsd alone	85.16def	8.96bcd	9.20a	314.55abc
	Bpw + Bsd	91.59bc	9.38b	5.14b	330.43abc
Biochar + Fungicide	Bpw + Fungicide	85.21cdfe	8.87bcde	4.69b	359.30a
	Bsd + Fungicide	84.95def	8.56de	4.66b	300.11bc
	Bpw + Bsd + Fungicide	87.24bdef	9.12bcd	4.96b	317.87abc
Controls	Fungicide alone	85.41cdef	9.00bcd	4.79b	330.43abc
	Fv only	78.56g	8.42e	4.15b	228.44d
Feedstock	Poultry faecal waste (Pw)	98.65a	9.88a	5.26b	344.44abc
	Sawdust (So)	83.80f	8.76cd	4.76b	350.44ab
	Pw + Sd	90.31bde	8.97bcde	11.79a	318.48abc

Bpw = Poultry faecal waste biochar, Bsd = Sawdust biochar, Fv= Fusarium verticillioides, WAP = Week After Planting.
Means with different letter are significantly (p < 0.05) different across the column.

Table 6
Pooled effect of varying biochar and feedstock concentrations on maize growth (mean of two seasons).

Concentration	Plant heights (cm)	Number of leaves	Stem girth (cm)	Leaf area (cm²)
1 kg/m²	89.30a	8.99a	5.54a	310.04b
2 kg/m²	87.65ab	9.14a	4.96a	331.59a
3 kg/m²	85.52b	8.97a	6.23a	327.95ab
Error Means Square	641.36	4.89	237.8	37328.3

Means with different letter are significantly (p < 0.05) different across the column.

Table 7
Pooled effect of planting seasons on the growth of maize plants (mean of two seasons).

Planting season	Plant heights (cm)	Number of leaves	Stem girth (cm)	Leaf area (cm²)
Aug. - Nov., 2015	88.51a	8.88b	5.16a	321.53a
April - July, 2016	86.49b	9.18a	5.99a	324.86a
Error Means Square	641.36	4.89	237.8	37328.3

Means with different letter are significantly (p < 0.05) different across the column.

Table 8
Pooled effect of time (WAP) on the growth of maize plants (mean of two seasons).

Period (WAP)	Plant heights (cm)	Number of leaves	Stem girth (cm)	Leaf area (cm²)
4	20.19c	7.59c	4.07c	184.05c
8	117.35b	10.41a	5.99b	439.56a
12	126.94a	9.10b	7.07a	345.97b
Error Means Square	641.36	4.89	237.8	37328.3

Means with different letter are significantly (p < 0.05) different across the column.
WAP = Week After Planting.

The number of leaves and stem girths (Table 6). The first planting season favoured increasing plant heights as the number of leaves was significantly increased in the second evaluation, although stem girth and leaf area showed no significant difference in the two seasons of planting (Table 7). Also, plant height and stem girth recorded increasing significance with respect to time (WAP) while the most significant growths were recorded in the number of leaves and leaf area at 8th WAP (Table 8).

At 1 kg/m² biochar and feedstock concentration, the treatments of Bpw alone, Bpw + Fungicide, and Pw + Sawdust zero ear rot incidence, while other treatments showed infection rates below the control experiment (50 %), except Bpw + Fv (50 %), Fungicide + Fv (55.56 %), and Fv only (100 %). Treatment of Bpw alone recorded zero infection at 2 kg/m² while Bpw + Fv (44.44 %), Bsd + Fv (44.44 %) and Fungicide + Fv (33.33 %) presented infection rate higher than that of control (22.22 %) with Poultry faecal waste (78.78 %) and Fv (88.89 %) treatments shown as the most diseased. At concentration 3 kg/m², no disease incidence was recorded in Bpw + Bsd, Bsd + Fungicide, Sawdust and Pw + Sawdust. Treatments; Bsd + Fv (33.33 %), Bpw + Bsd + Fv (44.44 %) and Fv only (66.67 %) recorded incidence rate that is higher than that of control (25 %) (Table 9).

In line with the Reid disease severity scale employed, at 1 kg/m² biochar and feedstock concentration, soil treatments with Bpw alone, Bpw + Fungicide and sawdust showed infection rate at 0%. Other treatments produced disease severity rate (4–25 %) that are
Table 9

Treatment	1 kg/m² Concentration	2 kg/m² Concentration	3 kg/m² Concentration						
	Harvested ear / block	Diseased ear / block	Ear rot incidence	Harvested ear / block	Diseased ear / block	Ear rot incidence	Harvested ear / block	Diseased ear / block	Ear rot incidence
Bpw + Fv	6.00d	3.00e	50.00	9.00a	4.00c	44.44	6.00d	1.00b	16.67
Bsd + Fv	6.00d	2.00e	33.33	9.00a	4.00c	44.44	9.00a	3.00b	33.33
Bpw + Bsd + Fv	9.00a	3.00d	33.33	9.00a	2.00e	22.22	9.00a	4.00c	44.44
Fungicide + Fv	9.00a	5.00b	55.56	6.00c	0.00g	0.00	9.00a	0.00e	0.00
Bpw alone	9.00a	2.00e	22.22	9.00a	2.00e	22.22	4.00f	0.00e	0.00
Bsd alone	7.00d	3.00d	42.86	9.00a	2.00e	22.22	8.00b	1.00b	12.50
Fungicide alone	9.00a	2.00e	22.22	9.00a	2.00e	22.22	8.00b	2.00c	25.00
Bpw + Fungicide	7.00c	0.00g	0.00	8.00b	2.00e	25.00	7.00c	1.00b	14.29
Bsd + Fungicide	5.00e	2.00e	40.00	9.00a	3.00d	33.33	9.00a	0.00e	0.00
Bpw + Bsd + Fungicide	9.00a	3.00d	33.33	9.00a	3.00d	33.33	5.00e	1.00b	20.00
Control	8.00b	4.00c	50.00	9.00a	2.00e	22.22	8.00b	2.00c	25.00
Poultry feacal waste (Pw)	9.00a	3.00d	33.33	9.00a	7.00b	78.78	2.00g	0.30e	6.67
Sawdust	9.00a	1.00f	11.11	6.00c	1.00f	16.67	6.00d	0.00e	0.00
Pw + Sawdust	5.00e	0.00g	0.00	9.00a	7.00b	77.78	7.00c	1.00b	14.29
Fv only	9.00a	9.00a	100.00	9.00a	8.00a	88.89	6.00d	4.00a	66.67
EMS	7.51	2.22	3.75	9.60	2.93	3.00	6.51	0.71	

Means with different letter are significantly (p < 0.05) different across the column.

Table 10

Treatment	1 kg/m² Concentration	2 kg/m² Concentration	3 kg/m² Concentration
	Ear length (cm)	Diseased length (cm)	Ear rot severity (%)
Bpw + Fv	13.67c	2.75b	7.41c
Bsd + Fv	10.92b/cd	3.25a/b	5.47c/d
Bpw + Bsd + Fv	14.65ab	1.23b	2.96c/d
Fungicide + Fv	15.28ab	4.40ab	16.98bc
Bpw alone	16.49a	3.50ab	15.43ac
Bsd alone	14.73ab	3.35ab	15.87bc
Bpw + Bsd	10.80bcde	3.17ab	16.27ab
Fungicide alone	15.03ab	2.75b	3.83cd
Bpw + Fungicide	12.44a/d	0.00c	13.81a/d
Bsd + Fungicide	8.37d	3.75ab	14.79a/d
Bpw + Bsd + Fungicide	12.49a/d	3.35ab	12.58a/d
Control	11.48a/d	8.00a	25.03d
Poultry feacal waste (Pw)	15.43ab	5.77ab	13.07bcd
Sawdust	16.11a	4.60a	2.47cd
Pw + Sawdust	8.74c	0.00c	16.37a
Fv only	12.10a/d	6.05a/b	14.73a/d
Error Mean Square	15.80	14.90	180.67

Means with different letter are significantly (p < 0.05) different across the column.

Bpw = Poultry feacal waste biochar, Bsd = Sawdust biochar, Pw = Poultry feacal waste, Sd = Sawdust, Fv = Fusarium verticillioides.

The results show that the treatment of maize plants with higher concentrations of Bpw + Fv (37%) and Bsd + Fv (37%) had a significantly lower rate of infection compared to the control (32.4%). The significant difference in ear rot severity was also observed in Po. The treatments applied produced results with lowered ear rot occurrences compared to control (32.4%), except in Fungicide + Fv (37%) and Poultry feacal waste (42.6%) (Fig. 4).

The most significant ear rot severity recorded in the pooled analysis showed plants treated with F. verticillioides (39.1%) and poultry feacal waste (15.9%) with higher severity percentage than the control experiment (11.6%). Other treatments showed results that are significantly lower than control (Plates 1 and 2; Fig. 5).

Variations recorded in the growth and disease characters of maize plants caused by biochar, feedstock and fungicide treatments in the management of ear rot disease as shown in principal component analysis (PCA). The first and second PCAs accounted for 88.54% and 9.62% total variation respectively. The first quadrat showed F. verticillioides treatment as related to ear rot incidence and severity. The second quadrat showed that plant height and leaf area was mostly enhanced by the treatments; Pw, Bp + Fv, Bs + Fv,
and Fungicide + Fv, while other treatments in the third and fourth quadrant supported the increase in the number of leaves and stem girth (Fig. 6).

5. Discussion

The improved growth performances recorded in the biochar treated plants in relation to control and *Fusarium verticillioides* treatments affirmed the report on the ability of biochar to enhance plant growth and productivity [28–31]. Plants' response to varying biochar levels was rarely significant but consistent growths were recorded with respect to time [32]. More so, the ability of biochar treated soil to maintain its integrity till the second season when it even lead to increased number of leaves can be related to the aromatic structure which made biochar chemically and biologically more stable compared with the organic matter from which it was made [33,34].

The high incidence of ear rot recorded in *F. verticillioides* inoculated maize plants substantiated the claim of ear rot of maize being a continuous threat to food safety and security [35,36]. At all concentration levels evaluated, biochar, feedstock and fungicide showed good management of *F. verticillioides* infection when compared to the results obtained in untreated (control) and *F. verticillioides* treated plants. Thus, effectiveness of individual and combined biochar treatments in suppressing the virulence of ear rot incidence and severity is found in support of the role of biochar.
in controlling pollution and plant diseases [32,37,38]. The mechanism for the success of biochar has been linked to its ability to influence soil microbial populations and communities to influence an increase in beneficial microorganisms that directly protect against soil pathogens by; producing antibiotics, out-competing the pathogens, or grazing on the pathogens [37]. Also, the performance of fungicide in mitigating the effect of *F. verticillioides* was not significantly different from those of biochar treatments, and efficacy of these treatments in managing ear rot was further proved with their results which were better than those of control experiment. The efficacy and popular choice of fungicide in plant disease control could be associated with its role as abiotic
inducers. Fungicide induces plant to develop enhanced resistance to pathogen infection, since it acts at various points in the signalling pathways involved in disease resistance [39,40].

Biochar was also found as an effective soil treatment in managing the resident pathogens, as uninoculated biochar treatments did not produced any disease occurrence in the treatments; Bwp alone, Bsd alone and Bsd + Fungicide at 3 kg/m² concentration. This result validates the claim that biochar induces plant systemic resistance responses against disease micro-organisms [41,42]. Since individual effect of biochar and fungicide was effective against pathogenic *F. verticillioides* and activities of resident pathogens, the disease incidence and severity were rather observed to be slightly pronounced contrary to expectations of the combined effect to completely eradicated occurrence of any disease. This phenomenon could possibly be explained with the report of Cabrera et al. [43] that biochar addition may negatively impact the efficacy of soil-applied pest products, including fungicides, insecticides, and herbicides. This is due to the high adsorption affinity and capacity that many biochars exhibit towards numerous organic compounds. Furthermore, strong adsorption of pesticides on applied biochar can result in pesticide inactivation such that greater pesticide amounts may be needed to obtain the same level of protection against pests [44,45].

Despite poultry faecal waste (Pw) enhancement of maize growths, its high disease occurrence in relation to the control treatment has been associated with the presence of resident microbes which serves a potential source of pathogenic microorganisms [46]. Whereas, sawdust (Sd) treatment was effective in managing resident pathogens in the soil. The efficacy of sawdust as antimicrobial agent can be attributed to the antimicrobial properties shared by the parent materials: *Gmelina arborea* [47,48], *Khaya senegalensis* [49], *Irvingia gabonensis* [50] and *Cordia* sp. [51,52].

In the principal component analysis conducted, PC 1 which accounted for highest variation (88.54 %) afforded the delineation of growth parameters with respect to efficacy of applied treatments while the negative contribution to ear rot incidence and severity further ascertained the impact of biochar and fungicide treatments in reducing the virulence and disease caused by *F. verticillioides*. While the strong association existing between ear rot incidence and severity has been established [53,54], the contribu-

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.btre.2020.e00474.

References

[1] ITTA, Maize. International Institute of Tropical Agriculture (ITTA), Oyo State, Nigeria, 2009 Available from: https://www.google.com/search?q=https://p2.fw.govt.ita.org/t2%Fwwww.itta.org%F2fmai2exteit%F2&oe=utf-8 (Last accessed: 27/07/2016).

[2] H. Macauley, Cereal crops: rice, maize, millet, sorghum, wheat, Feeding Africa: An Action Plan for African Agricultural Transformation, (2015), pp. 1–36.

[3] M.J. Blackie, Maize, food self-sufficiency and policy in east and southern Africa, Food Policy 15 (5) (1990) 383–394.

[4] A. Picot, V. Atanasasova-Penichon, S. Pons, G. Marchegay, C. Barreau, L. Pinson-Gadas, J. Roulleau, F. Daveau, D. Caron, F. Richard-Forget, Maize kernel antioxidants and their potential involvement in fusarium ear rot resistance, J. Agric. Food Chem. 61 (14) (2013) 3389–3395.

[5] E. Robledo-Robledo, Strategies for the prevention and control of fungi and mycotoxins in Central and South America, in: B.R. Champ, E. Higley, A.D. Hocking, J.I. Pht (Eds.), Fungi and Mycotoxins in Stored Products. Proceedings of an International Conference, Bangkok, Thailand, 23–26 April 1991, 1991, pp. 39–46.

[6] C.G. Afolabi, Fusarium Stalk and Ear Rot of Maize (Zea mays L.) and Mycotoxin Contamination of Grains in Nigeria A PhD thesis submitted to the Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Nigeria, 2007.

[7] P. Vincelli, G. Parker, Fumonisins, Vomitoxin, and Other Mycotoxins in Corn Produced by Fusarium Fungi. Kentucky Cooperative Extension Service Serve Available from: http://www2.ca.uky.edu/age/pubBsd/td/id121/jid121.htm (Last accessed: 22/12/2016), (2012).

[8] D. Ferrigo, A. Raiola, R. Causin, *Fusarium* toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21 (2016) 5.

[9] D.W. Brown, R.A.E. Butchko, M. Busman, R.H. Proctor, The *Fusarium verticillioides* FUM gene cluster encodes a Zn(II)Cys6 protein that affects FUM gene expression and fumonisin production, EuKaryot. Cell 6 (7) (2007) 1210–1218.

[10] T. Adomako, B. Ampadu, The impact of agricultural practices on environmental sustainability in Ghana: a review, J. Sustain. Dev. 8 (8) (2015).

[11] Y. Selma, Z.O. Galdén, Review: fumonisins, Trihetocereheces and zearalenone in cereals, Int. J. Mol. Sci. 9 (2008) 2062–2090.

[12] F. Gong, X. Wu, H. Zhang, Y. Chen, W. Wang, Making better maize plants for sustainable grain production in a changing climate, Front. Plant Sci. 6 (835) (2015) Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=459352&tool=pmcentrez&rendertype=abstract (Last accessed 03/10/2016).

[13] C.J. Chartyres, A. Noble, Sustainable intensification: overcoming land and water constraints on food production, Food Secur. 7 (2) (2015) 235–245.

[14] S. Khan, C. Chao, M. Waqas, H.P.H. Arp, Y. Zhu, Sewage sludge biochar influence upon rice (Oryza sativa l) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil, Environ. Sci. Technol. 47 (15) (2013) 8624–8632.

[15] J. Harter, K. Krause, S. Schuetterl, R. Ruser, M. Fromme, T. Scholten, A. Kappler, S. Behrens, Linking *N*2O emissions from biochar-amended soil to the structure and function of the N-Cycling microbial community, ISMEJ. 8 (3) (2014) 660–674.

[16] G. Bonanomi, F. Ippolito, F. Scala, A “Black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases, J. Plant Pathol. 97 (2) (2015) 223–234.

[17] O.M. Olowe, A.C. Odeboe, O.J. Olawuyo, A.A. Sobowale, Molecular variability of *Fusarium verticillioides* (Sac.) in maize from three agro-ecological zones of Southwest Nigeria, Am. J. Mol. Biol. 7 (2017) 30–40, doi:http://dx.doi.org/10.4236/ajmb.2017.71003.

[18] J. Major, Biochar for Soil Quality Improvement, Climate Change Mitigation and More. A Literature Review Available from: http://biochar-thungic.org/assets/pdf/BiocharSoilFertility.pdf (Last accessed: 06/09/2016), (2011).

[19] C.R. Campbell, C.O. Plank, Sample preparation, in: C.O. Plank (Ed.), *Plant Analysis Reference Procedures* for the Southern Region of the United States, Southern Cooperative Series Bulletin 368. The Georgia Agricultural Experiment Stations. College of Agriculture and Environmental Science, The University of Georgia, USA, 1992.

[20] Y. Harada, A. Inoko, The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity, Soil Sci. Plant Nutr. 26 (1) (1980) 127–134.

[21] AGMC, Official Methods of Analysis, 15th edition, Association of Official Analytical Chemists, Washington, DC, 1995.

[22] A. Mukherjee, R. Lal, Biochar impacts on soil physical properties and greenhouse gas emissions, Agronomy 3 (2013) 313–339, doi:http://dx.doi.org/10.3390/agronomy3020313.

[23] J. Anderegg, J.W. Guthrie, Seedborne *Fusarium moniliforme* and seedling infection in hybrid sweet corn, Phytopathology 71 (1981) 1196–1198.

[24] R.W. Cardwell, J. Tuite, W.W. Carlton, Pathogenicity of Penicillium in corn ears, J. Phytopathol. 71 (1981) 175–180.

Author statement

All the authors have read and approve the submission of this corrected version.

This work has neither been published not presently under consideration in any other journal.

Declaration of Competing Interest

The authors declare no conflict of interest as regards this paper.
amended with biocarbons and other sorbents. J. Agric. Food Chem. 59 (2011) 12550–12560.

[44] E.R. Gruber, L. Tsechansky, J. Khansukov, Y. Oka, Sorption, volatilization and efficacy of the fumigant 1,3-dichloropropene in a biocarbon-amended soil. Soil Sci. Soc. Am. J. 75 (2011) 1365–1373.

[45] S.K. Nag, R.S. Kookana, L. Smith, E. Krull, L.M. Macdonald, C. Gill. Poor efficacy of herbicides in biocarbon-amended soils as affected by their chemistry and mode of action. Chemosphere 84 (2011) 1572–1577.

[46] D. Sunita, C.R. Sharma, S. Kamlesh, Microbiological biodiversity in poultry and paddow straw wastes in composting systems. Braz. J. Microbiol. 43 (1) (2012) São Paulo. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1518-35712012000100034 [Last accessed: 12/10/2017].

[47] M.U. Banu, G.M. Gururaja, M. Deepalk, T.S. Roopashree, S. Shashidhara. An overview on Phytochemistry and Pharmacological properties of Gmelina arborea, J. Nat. Prod. Plant Resour. 3 (4) (2013) 62–71.

[48] C.E.P.M. Offor, P.C. Aja, O. Ugwu, K.N. Aghaba. The effects of ethanol leaf-extract of Gmelina arborea on total protein and albumin concentrations in albino rats. Glob. J. Environ. Res. 9 (1) (2015) 1–4.

[49] F.A. Kuta, D.J. Tsaodo, S.A. Garba, A.N. Saidu, Antibacterial activity of the leaf and stem bark crude extracts of Khaya senegalensis, Med. Aromat. Plant Res. J. 3 (1) (2015) 9–15.

[50] O.O. Dosumu, O.O. Olawunyi, G.V. Awolola, O.O. Oyedeji, Nutritional composition and antimicrobial properties of three Nigerian coniments. Niger. Food J. 30 (1) (2012) 43–52.

[51] Pankaj B. Nariya, Nayan R. Bhalodia, V.J. Shukla, R.N. Acharya, Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts, Ayu 32 (Oct–Dec) (4) (2011) 585–589, doi: http://dx.doi.org/10.4103/0974-8550.96138 2011.

[52] Edurado F.F. Mattas, F.A. Ervânia, S.S.C.F.S. Beatriz, V.A.F. João, Anne Karyzia, Biological activities and chemical characterization of Cordia verbenacea DC. As tool to validate the ethnomedicalological usage, Evid. Based Complement. Altern. Med. 2013 (2013) 7, doi:http://dx.doi.org/10.1155/2013/164215 (2013). Article ID 164215.

[53] G.P. Munkvold, R.L. Hellmich, W.B. Showers, Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European Corn Borer resistance, Phytopathology 87 (1997) 1071–1077.

[54] B. Gibrina, A.N. Kaaya, G. Sseruwu, E. Adipala, S. Okanya. Incidence and severity of maize ear rots and factors responsible for their occurrence in Uganda, J. Appl. Sci. 7 (2007) 3780–3785, doi:http://dx.doi.org/10.3923/ jas.2007.3780.3785.

[55] M.A. Abala, O.O. Popoola, J.O. Oyelude, A.O. Akanmu, A.S. Killani, O. Osonubi, A.C. Odehode, A review: harnessing the potentials of vesicular arbuscular mycorrhizal (VAM) fungi to plant growth, Int. J. Pure Appl. Sci. Technol. 14 (2) (2013) 61–79.

[56] O.J. Olawuyi, A.C. Odehode, F.E. Babatunde, G.O. Taya, O.A. Akinbode, A.O. Akanmu, Performance of Glomus clarum and Tithonia diversifolia compost in improving growth and yield traits of tomato (Lycopersicum esculentum), Nigeria J. Biotechnol. 33 (4) (2017) 11–15.

[57] A.O. Akanmu, M.A. Abala, A.M. Akanmu, A.D. Adebaje, P.M. Mudiaga, A.C. Odehode. Plant extracts abated pathogenic fusarium species of millet seedlings, Arch. Phytopathol. Plant Prot. 46 (10) (2013) 1189–1205.

[58] M.A. Abala, J.O. Oyelude, A.C. Odehode, O.H. Isaiyuwu, A.O. Akanmu, Combined effects of Botanicals on mycelia growth of pathogenic fungi of maize (Zea mays L). Roman. J. Plant Prot. 8 (2014) 18–27.

[59] O.M. Olowe, A.C. Odehode, O.J. Olawuyi, A.O. Akanmu, Correlation Principal component analysis and tolerance of maize genotypes to drought and diseases in relation to grown traits, Am. J. Agric. Environ. Sci. 13 (11) (2013) 1554–1561.

[60] O.J. Olawuyi, O.B. Bello, C.V. Ntobe, A.O. Akanmu, Progress from selection of some maize cultivars’ response to drought in the derived savanna of Nigeria, Agrivist 37 (1) (2015) 8–17.