How Can We Identify Very High-Risk Heterozygous Familial Hypercholesterolemia?

Yu Kataoka¹, Sayaka Funabashi², Takahito Doi¹, ³, ⁴ and Mariko Harada-Shiba⁵

¹ Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Osaka, Japan
² Department of Cardiology, Kyorin University School of Medicine, Tokyo, Japan.
³ Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
⁴ Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
⁵ Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Centre, Osaka, Japan

Introduction

Heterozygous familial hypercholesterolemia (HeFH) is a genetic disorder that elevates low-density lipoprotein cholesterol and increases the risk of premature atherosclerotic cardiovascular disease (ASCVD). However, despite their atherogenic lipid profiles, the cardiovascular risk of HeFH varies in each individual. Their variety of phenotypic features suggests the need for better risk stratification to optimize their therapeutic management. The current review summarizes three potential approaches, including (1) definition of familial hypercholesterolemia (FH)-related risk scores, (2) genetic analysis, and (3) biomarkers. The International Atherosclerosis Society has recently proposed a definition of severe FH to identify very high-risk HeFH subjects according to their clinical characteristics. Furthermore, published studies have shown the association of FH-related genetic phenotypes with ASCVD, which indicates the genetic analysis’s potential to evaluate individual cardiovascular risks. Biomarkers reflecting disease activity have been considered to predict the formation of atherosclerosis and the occurrence of ASCVD in HeFH subjects. Incorporating these risk stratifications will be expected to allocate adequate intensity of lipid-lowering therapies in HeFH subjects, which ultimately improves cardiovascular outcomes.

Key words: Heterozygous familial hypercholesterolemia, Atherosclerotic cardiovascular disease, Risk score, Severe FH, Gene mutation, Biomarker

Abbreviations: ApoB=apolipoprotein B, ASCVD=atherosclerotic cardiovascular disease, CAD=coronary artery disease, CI=confidence interval, CVD=cardiovascular disease, FH=familial hypercholesterolemia, HDL=high-density lipoprotein, HDL-C=high-density lipoprotein cholesterol, HeFH=heterozygous familial hypercholesterolemia, HR=hazard ratio, IAS=international atherosclerosis society, IVUS=intravascular ultraspund, LDL-C=low-density lipoprotein cholesterol, LDLR=low-density lipoprotein receptor, Lp(a)=lipoprotein a, OR=odds ratio, PCSK9=proprotein convertase subtilisin/kexin type 9

Heterozygous familial hypercholesterolemia (HeFH) is a genetic disorder that elevates low-density lipoprotein cholesterol (LDL-C) significantly. Specific gene mutations, including low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), reportedly induce abnormal metabolism of low-density lipoprotein (LDL), which leads to a greater amount of LDL particles in circulation from birth. This HeFH-related pathophysiology increases the risk of premature atherosclerotic cardiovascular disease (ASCVD), worsening their clinical outcomes. However, despite a high cumulative burden of LDL-C, cardiovascular risk varies in each individual with
According to a large body of clinical evidence about atherogenic risk factors, several ASCVD risk calculations have been already established, which included the Framingham Risk Score\(^{15}\), the Pooled Cohort Equation\(^{16}\), and the European Systematic Coronary Risk Evaluation (SCORE)\(^{17}\). However, this suggests a variety of phenotypic features in HeFH and the need to establish better risk stratification for optimization of therapeutic management according to their future ASCVD risks. The current review summarizes several potential approaches to identify patients with HeFH with an increased cardiovascular risk.

Table 1. Clinical Risk Stratification Approaches in HeFH Patients

Authors	Subjects	Parameters for risk stratification	ASCVD risk prediction ability
Pérez-Calahorra, et al.\(^{19}\)	1732 HeFH subjects	Definition of severe FH is summarized in Fig. 1.	Univariate analysis demonstrated the association of severe FH with the presence of cardiovascular disease (OR = 3.016, 95%CI = 3.136-4.257, \(p < 0.001\)). However, after adjusting traditional risk factors, this relationship did not meet statistical significance (\(p = 0.27\)).
Humphries, et al.\(^{20}\)	2929 HeFH subjects		A significantly higher standardized mortality ratio for coronary heart disease was observed in severe FH [220 (184-261) vs. 144 (98-203), \(p = 0.007\)].
Funabashi, et al.\(^{21}\)	380 HeFH subjects without ASCVD		The mean observational period was 7.4 years. Severe FH predicted a 7.76-fold greater risk for experiencing ASCVD (= cardiac death, non-fatal MI, stroke, peripheral artery disease) (HR = 9.29, 95%CI = 3.68-31.2, \(p < 0.001\)). In addition, severe FH was associated with subsequent ASCVD after the occurrence of the 1st events (HR = 10.6, 95%CI = 3.96-28.5, \(p < 0.001\)).
Montreal-FH-SCORE	670 HeFH with LDLR gene variants	Sex, age, HDL-C, hypertension, smoking	Age (\(\beta = 0.75\)), HDL-C (\(\beta = -0.27\)), male gender (\(\beta = 0.25\)), hypertension (\(\beta = 0.19\)) and smoking (\(\beta = 0.12\)) independently predicted CVD. The AUC of Montreal-FH-SCORE incorporating these variables for CVD was 0.84 (95%CI = 0.808-0.872, \(p < 0.0001\)). In particular, its value \(> 20\) was associated with 10.3-fold higher risk of future CVD events compared to that \(< 20\) (95%CI = 6.7-15.7, \(p < 0.0001\)).
SAFEHEART Risk Equation	2404 HeFH patients	Age, male sex, history of previous ASCVD, high blood pressure, increased BMI, active smoking, and LDL-C and Lp(a) levels	The mean observational period was 5.5 years. Age, male sex, history of previous ASCVD, high blood pressure, increased BMI, active smoking, and LDL-C and Lp(a) levels are independent predictors of future occurrence of ASCVD. By using these variables, the Harrell C index was 0.85. In FH subjects without a history of ASCVD, the Harrell C index was 0.81, which was better than Framingham Risk Equation (0.78) and ACC/AHA ASCVD Pooled Cohort Risk Equations (0.8) (\(p = 0.045\)).
FH-Risk-Score	3381 HeFH patients without ASCVD	Sex, age, HDL-C, LDL-C, hypertension, smoking and Lp(a) level	A higher FH-Risk-Score was associated with worse 10-year ASCVD-free survival (5.52, 95%CI = 3.94-7.73, \(p < 0.0001\)), 10-year MACE-free survival (4.64, 95%CI = 2.66-8.11, \(p < 0.0001\)) and 30-year survival due to cardiac cause-death (10.73, 95%CI = 2.51-45.79, \(p = 0.0014\)).

ASCVD=atherosclerotic cardiovascular disease, BMI=body mass index, CI=confidence interval, CVD=cardiovascular disease, FH=familial hypercholesterolemia, HeFH=heterozygous familial hypercholesterolemia, HDL-C=high-density lipoprotein cholesterol, LDL-C=low-density lipoprotein cholesterol, LDLR=low-density lipoprotein receptor, Lp(a)=lipoprotein a, MACE=major cardiovascular event, OR=odds ratio

Table 1. Clinical Risk Stratification Approaches in HeFH Patients

Authors	Subjects	Parameters for risk stratification	ASCVD risk prediction ability
Pérez-Calahorra, et al.\(^{19}\)	1732 HeFH subjects	Definition of severe FH is summarized in Fig. 1.	Univariate analysis demonstrated the association of severe FH with the presence of cardiovascular disease (OR = 3.016, 95%CI = 3.136-4.257, \(p < 0.001\)). However, after adjusting traditional risk factors, this relationship did not meet statistical significance (\(p = 0.27\)).
Humphries, et al.\(^{20}\)	2929 HeFH subjects		A significantly higher standardized mortality ratio for coronary heart disease was observed in severe FH [220 (184-261) vs. 144 (98-203), \(p = 0.007\)].
Funabashi, et al.\(^{21}\)	380 HeFH subjects without ASCVD		The mean observational period was 7.4 years. Severe FH predicted a 7.76-fold greater risk for experiencing ASCVD (= cardiac death, non-fatal MI, stroke, peripheral artery disease) (HR = 9.29, 95%CI = 3.68-31.2, \(p < 0.001\)). In addition, severe FH was associated with subsequent ASCVD after the occurrence of the 1st events (HR = 10.6, 95%CI = 3.96-28.5, \(p < 0.001\)).
Montreal-FH-SCORE	670 HeFH with LDLR gene variants	Sex, age, HDL-C, hypertension, smoking	Age (\(\beta = 0.75\)), HDL-C (\(\beta = -0.27\)), male gender (\(\beta = 0.25\)), hypertension (\(\beta = 0.19\)) and smoking (\(\beta = 0.12\)) independently predicted CVD. The AUC of Montreal-FH-SCORE incorporating these variables for CVD was 0.84 (95%CI = 0.808-0.872, \(p < 0.0001\)). In particular, its value \(> 20\) was associated with 10.3-fold higher risk of future CVD events compared to that \(< 20\) (95%CI = 6.7-15.7, \(p < 0.0001\)).
SAFEHEART Risk Equation	2404 HeFH patients	Age, male sex, history of previous ASCVD, high blood pressure, increased BMI, active smoking, and LDL-C and Lp(a) levels	The mean observational period was 5.5 years. Age, male sex, history of previous ASCVD, high blood pressure, increased BMI, active smoking, and LDL-C and Lp(a) levels are independent predictors of future occurrence of ASCVD. By using these variables, the Harrell C index was 0.85. In FH subjects without a history of ASCVD, the Harrell C index was 0.81, which was better than Framingham Risk Equation (0.78) and ACC/AHA ASCVD Pooled Cohort Risk Equations (0.8) (\(p = 0.045\)).
FH-Risk-Score	3381 HeFH patients without ASCVD	Sex, age, HDL-C, LDL-C, hypertension, smoking and Lp(a) level	A higher FH-Risk-Score was associated with worse 10-year ASCVD-free survival (5.52, 95%CI = 3.94-7.73, \(p < 0.0001\)), 10-year MACE-free survival (4.64, 95%CI = 2.66-8.11, \(p < 0.0001\)) and 30-year survival due to cardiac cause-death (10.73, 95%CI = 2.51-45.79, \(p = 0.0014\)).

ASCVD=atherosclerotic cardiovascular disease, BMI=body mass index, CI=confidence interval, CVD=cardiovascular disease, FH=familial hypercholesterolemia, HeFH=heterozygous familial hypercholesterolemia, HDL-C=high-density lipoprotein cholesterol, LDL-C=low-density lipoprotein cholesterol, LDLR=low-density lipoprotein receptor, Lp(a)=lipoprotein a, MACE=major cardiovascular event, OR=odds ratio

Risk Stratification Approach Using Clinical Characteristics of HeFH (Table 1)

According to a large body of clinical evidence about atherogenic risk factors, several ASCVD risk calculations have been already established, which included the Framingham Risk Score\(^{15}\), the Pooled Cohort Equation\(^{16}\), and the European Systematic Coronary Risk Evaluation (SCORE)\(^{17}\). However,
these risk calculators were not developed in patients with FH, and therefore lead to the underestimation of the familial hypercholesterolemia (FH)-related ASCVD risk. A better risk stratification approach which adequately validated in patients with FH is warranted in the clinical settings. The followings are clinically applicable tools for cardiovascular risk estimation in FH.

(a) International Atherosclerosis Society (IAS)-Proposed Severe FH

Published studies of HefH have reported clinical risk factors associated with their ASCVD. By incorporating this evidence, the IAS has recently proposed a definition of severe FH. This definition includes three different approaches based on the clinical status of patients with HefH. As shown in Fig. 1, in subjects with HefH without any history of ASCVD, severe FH is defined according to untreated LDL-C level and the number of severe FH-related risk factors. If patients with HefH have a subclinical coronary atherosclerotic feature on computed tomography imaging, its degree of coronary artery calcification or coronary artery stenosis characteristics guide to diagnosing severe FH. Patients with HefH who already have a history of ASCVD are also defined as severe FH. ASCVD includes a history of myocardial infarction, angina pectoris, coronary revascularization, non-embolic ischemic stroke, transitory ischemic attack, and intermittent claudication (Fig. 1).

Pérez-Calahorra et al. conducted a cross-sectional analysis investigating the association of severe FH with cardiovascular disease. Univariate analysis identified that severe FH was associated with the presence of cardiovascular disease [odds ratio (OR)=3.016, 95% confidence interval (CI)=3.136–4.257, p<0.001].

One recent study investigated whether IAS-defined severe FH could predict cardiac mortality. This study analyzed 2929 definite or possible subjects with HefH diagnosed by Simon Broome criteria. The frequency of severe FH was 67.7% (1982/2929). Severe FH subjects more likely had coronary heart disease, accompanied by atherosclerotic risk factors, including obesity and smoking. Additionally, they exhibited 64% higher mortality of coronary heart disease compared to nonsevere ones (p=0.007). While this study suggests the potential usefulness of severe FH definition to predict future cardiac mortality, this analysis includes patients with HefH with ASCVD and without ASCVD.

We recently analyzed 380 Japanese patients with HefH defined by the Japan Atherosclerosis Society to elucidate their cardiovascular outcomes. This analysis included only patients with HefH without any history of ASCVD, which indicated that this analysis focused on whether the definition of severe FH could identify patients with high risk in the
The area under the Montreal-FH-SCORE curve incorporating these CVD variables was 0.84 (95% CI 0.808–0.872, \(p\leq 0.0001\)). Its value, \(\geq 20\), was particularly associated with a 10.3-fold higher risk of future cardiovascular disease (CVD) events compared to that \(< 20\) (95% CI 6.7–15.7, \(p\leq 0.0001\)).

(c) SAFEHEART Risk Equation

The aforementioned Montreal-FH-SCORE was validated in a retrospective cohort only. It is not fully validated in a prospective cohort. Pérez de Isla et al. established the SAFEHEART Risk Equation using a prospective FH registry\(^{23}\)). This study included 2404 patients with HeFH, and the mean observational period was 5.5 years. Age, male sex, history of previous ASCVD, high blood pressure, increased body mass index, active smoking, and LDL-C and lipoprotein a (Lp(a)) levels are independent predictors of future occurrence of ASCVD. By using these variables, the Harrell C index was 0.85. In subjects with FH without a history of ASCVD, the Harrell C index was 0.81, which was better than Framingham Risk Equation (0.78) and American College of Cardiology/American Heart Association ASCVD Pooled Cohort Risk Equations (0.8) (\(p=0.045\)).

(d) FH-Risk-SCORE

One limitation in the SAFEHEART Risk Equation is that this cohort included FH patients in primary and secondary prevention settings. Another limitation is that the SAFEHEART included only Spanish individuals with FH and no other ethnicities. The FH-Risk SCORE was developed using a large...
multinational prospective cohort of patients with FH without any history of ASCVD20. This risk score includes sex, age, HDL-C, LDL-C, hypertension, smoking, and Lp(a) level. A higher FH-Risk-SCORE was associated with worse 10-year ASCVD-free survival (5.52, 95% CI=3.94–7.73, \(p<0.0001\)), 10-year event-free survival (4.64, 95% CI=2.66–8.11, \(p<0.0001\)), and 30-year survival due to cardiac cause-death (10.73, 95% CI=2.51–45.79, \(p=0.0014\)).

While these risk stratifications could be integrated into our clinical practice of HeFH, future investigation is needed to determine whether clinical management according to these risk stratifications could improve HeFH outcomes.

Predictive Ability of FH Causative Gene Mutation Analysis for ASCVD risks (Table 2)

Evaluation of causative gene mutations in subjects with HeFH is an important approach to understanding the mechanism causing their abnormal lipid metabolism29. Given that an elevated LDL-C level caused by genetic mutation has been considered as a driver to promote atherosclerosis of HeFH, genetic risk evaluation is expected as another important approach to evaluate FH-related ASCVD risks.

(a) Gene Mutations and Cardiovascular Outcomes

Evidence suggests the association of FH gene mutations with ASCVD. Khera et al. investigated three causative gene mutations \([LDLR, apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9)]\) in 26025 subjects from 7 case-control studies and 5 prospective cohort studies25. In this analysis, 6.7% of subjects exhibited LDL-C level \(\geq 190\text{mg/dL}\). Of these, FH mutation appeared in 1.7% of them. Additionally, the presence of FH mutation was associated with an increased risk of coronary artery disease (CAD). In detail, compared to those with LDL-C <130 mg/dL but not FH mutation, subjects with LDL-C \(\geq 190\text{mg/dL}\) alone confer a 6.0-fold greater likelihood of experiencing CAD (95% CI=5.2–6.9, \(p<0.0001\)). This CAD risk was substantially elevated in those with both LDL-C \(\geq 190\text{mg/dL}\) and FH mutation (OR=22.3, 95% CI=10.7–53.2, \(p<0.0001\)). These findings highlight that FH genetic mutations could evaluate the risk of ASCVD.

Our recent analysis has focused on cardiovascular outcomes in subjects with HeFH with both \(LDLR\) and \(PCSK9\) gene variants \((LDLR/PCSK9\) gene variants)26. In this study, including 232 Japanese subjects with HeFH, 6.0% (=13/232) exhibited \(LDLR/PCSK9\) gene variants, followed by \(LDLR\) and \(PCSK9\) in 78.9% and 15.1%, respectively. During the observational period (53 +/- 17 years), \(LDLR/PCSK9\) gene variants were associated with an increased risk of nonfatal myocardial infarction (HR=4.26, 95% CI=1.66–11.0, \(p=0.003\)) (Fig. 3). Of particular interest, the occurrence of myocardial infarction rose to 86% in male patients with \(LDLR/PCSK9\) gene variants. Another study also reported an elevated LDL-C level in double heterozygous subjects with HeFH \((LDLR/APOB\text{ or }LDLR/PCSK9)^{27}\) (Fig. 4).

Detailed characteristics of \(PCSK9\) gene variants were evaluated by another study in 269 clinically diagnosed Japanese patients with HeFH28. This study detected 11 \(PCSK9\) gene variants. In those without \(LDLR\) gene variant, LDL-C level and the frequency of CAD were comparable in those with any \(PCSK9\) gene variant \((PCSK9\text{V4I, L21_22insL/A53V, and E32K})\). By contrast, in subjects with HeFH with \(LDLR\) gene variant, the concomitance of \(PCSK9\text{V4I gene variant} significantly increased LDL-C level \((p=0.0036)\) and risk of CAD \((p=0.048)\). These observations indicate that elevation of cardiovascular risk accelerates according to the concomitance of both \(LDLR\) and \(PCSK9\) gene variants, specifically \(PCSK9\text{V4I, in subjects with HeFH.}

Detailed and complete genetic variations are valuable by whole-genome sequencing. Recent studies reported the association of monogenic and polygenic mutations with ASCVD risks29, 30. This study investigated 2081 patients with early-onset myocardial infarction from 4 racial subgroups hospitalized in the United States29. Whole-genome sequencing was conducted to evaluate monogenic and polygenic mutations. The average age of early-onset myocardial infarction was 48 years old. The prevalence of Caucasian, African-American, Hispanic, and Asian subjects was 75%, 16%, 8%, and 2%, respectively. The genomes of 2081 subjects were compared with those of 3761 control subjects. FH mutation \((LDLR, APOB, or PCSK9)\) was identified in 1.7% of subjects (0.6% in control subjects). All of these are \(LDLR\), and there were no patients with \(APOB\) or \(PCSK9\) gene variants. This FH mutation was associated with a 3.76-fold elevated risk of early-onset myocardial infarction (95% CI=2.12–6.82, \(p<0.0001)\) on logistic regression model analysis. The polygenic score was calculated, and then the top 5% high polygenic score was analyzed as a carrier group. In this analysis, 17.3% of subjects exhibited a high polygenic score (5.0% in the control group), and it predicted an increased risk of early-onset myocardial infarction (3.73, 95% CI=3.06–4.56, \(p<0.0001\)). A high polygenic score was particularly associated with a 5.1-
Table 2. Genetic Risk Stratification Approaches in HeFH Patients

Authors	Subjects	Evaluated genetic variants (LDLR, APOB and PCSK9)	Findings
Khera, et al.	26025 FH subjects	three causative gene mutations	6.7% of subjects exhibited LDL-C level >= 190mg/dl. Of these, FH mutation was observed in 1.7% of them. In addition, the presence of FH mutation was associated with an increased risk of CAD. In detail, compared to those with LDL-C < 130mg/dl but not FH mutation, subjects with LDL-C > 190mg/dl alone confer 6.0-fold greater likelihood experiencing CAD (95%CI = 5.2-6.9, p < 0.001). In those with both LDL-C > 190mg/dl and FH mutation, this CAD risk substantially elevated (OR = 22.3, 95%CI = 10.7-53.2, p < 0.001).
Doi, et al.	232 HeFH subjects	causative gene mutations (LDLR, PCSK9 and LDLRAP1)	LDLR/PCSK9 gene variants were observed in 6% of study subjects. HeFH subjects with this gene variant more likely exhibited a higher LDL-C level compared to that in subjects with LDLR (316 +/- 75 mg/dl vs. 273 +/- 72 mg/dl, p = 0.04). During the observational period (53 +/- 17 years), a greater frequency of non-fatal MI was observed in HeFH subjects with LDLR/PCSK9 compared to those with LDLR (p = 0.02). Even after adjusting clinical characteristics, the presence of LDLR/PCSK9 gene variants still predicted an increased risk of non-fatal MI (HR = 6.08, 95%CI = 2.29-16.1, p < 0.001 vs. LDLR alone).
Sjouke, et al.	56 HeFH subjects and 18 unaffected relatives	LDLR/APOB and LDLR/PCSK9 gene variants	This study included 28 double heterozygotes (23 LDLR/APOB and 5 LDLR/PCSK9 mutation carriers). A higher LDL-C level was observed in double heterozygotes compared to heterozygous HeFH subjects and unaffected relatives (324 +/- 108 vs. 216 +/- 85, 96 +/- 42 mg/dl, p < 0.01), whereas homozygous/compound heterozygous LDLR mutation carriers (502 +/- 197 mg/dl, p < 0.001) had a higher LDL-C level compared to that in double heterozygotes.
Khera, et al.	2081 patients with early-onset MI and 3761 control subjects	FH mutation (LDLR, APOB or PCSK9)	The averaged age of early-onset myocardial infarction was 48 years old. The prevalence of white, black, Hispanic and Asian subjects was 75, 16, 8 and 2%, respectively. The genomes of 2081 subjects were compared with those of 3761 control subjects. FH mutation (LDLR, APOB or PCSK9) was identified in 1.7% of subjects (0.6% in control subjects). All of these are LDLR, and there was no patients with APOB or PCSK9 gene variants. On logistic regression model analysis, this FH mutation was associated with a 3.76-fold elevated risks of early-onset myocardial infarction (95%CI = 2.12-6.82, p < 0.0001). Polygenic score was calculated and then top 5% high polygenic score was analyzed as carrier group. In this analysis, 17.3% of subjects exhibited high polygenic score (5.0% in control group), and it predicted an increased risk of early-onset MI (3.73, 95%CI = 3.06-4.56, p = 0.0001). In particular, a high polygenic score was associated with a 5.1-fold increased risk in white subjects compared to a 2.0-3.4, and 3.3-fold risks in black, Hispanic and Asian subjects, respectively. 0.2% of subjects had both FH mutation and a high polygenic score. Their mean LDL-C level was 235 mg/dL, compared to 202 mg/dl in FH mutation alone and 130 mg/dL in high polygenic score alone and 122 mg/dL in those without any genetic features.
D’Erasmo, et al.	370 clinically-diagnosed FH subjects	LDLR, APOE, APOE, PCSK9, LDLRAP1, STAP1 and LIPA genes were analyzed. Pathogenicity was evaluated according to the American College of Medical Genetics classification. A weighted LDL-C-raising polygenic risk score was calculated by 6SNPs (rs4299376, rs1367117, rs6511720, rs629301, rs7412, rs429358). Polygenic risk score > 0.69 was defined as polygenic hypercholesterolemia.	56.5% of study subjects (n = 209) were classified as monogenic FH. In the remaining subjects (n = 161), polygenic hypercholesterolemia was observed in 89 patients (55.3% = 89/161). Monogenic FH more likely had a higher untreated LDL-C level compared to polygenic ones (258.5 vs. 213.8 mg/dl, p < 0.001). There was a trend toward a greater degree of coronary artery calcification in monogenic FH [14.5 (0-161.6) vs. 0 (0-31.8), p = 0.05].
prevention settings of HeFH. In the SAFEHEART study analyzing 1960 FH and 957 non-FH subjects, an increased Lp(a) level appeared in HeFH subjects with ASCVD. Furthermore, Lp(a) level was an independent predictor for ASCVD in HeFH subjects. Of note, Lp(a) > 50 mg/dL with LDLR negative mutation was associated with the greatest cardiovascular risk. The SAFEHEART study also reported another analysis of 2927 family members from 755 subjects with HeFH. During over 5 years' follow-up, FH subjects experienced a 2.47-fold greater risk for ASCVD or death. Furthermore, in subjects

Biomarkers and ASCVD in HeFH Subjects (Table 3)

(a) Lp(a)

Lp(a) is consisted of apolipoprotein B100 covalently bound to the glycoprotein apolipoprotein(a). A growing body of evidence suggests the association of Lp(a) with ASCVD in primary and secondary

Fig. 3. Cardiovascular Outcomes in HeFH Subjects with Both LDLR and PCSK9 Gene Variants

LDLR=low-density lipoprotein receptor, PCSK9=proprotein convertase subxilisin/kexin type 9

Fig. 4. The Incidence of MACE in Association with Gender and LDLR/PCSK9 Gene Variants

LDLR=low-density lipoprotein receptor, MACE=major cardiovascular events, PCSK9=proprotein convertase subxilisin/kexin type 9

fold increased risk in white subjects compared to a 2.0-, 3.4-, and 3.3-fold risk in African-American, Hispanic, and Asian subjects, respectively.
Table 3. Biomarkers Associated with ASCVD Risks in HeFH Subjects

Authors	Subjects	Outcomes	Findings
Alonso, et al.	1960 HeFH and 957 non-FH from SAFEHEART	CVD (=MI, angina pectoris, revascularization, ischemic stroke or TIA, PAD, abdominal aortic aneurism)	FH with CVD more likely had a higher Lp(a) level compared those without CVD (43.4 vs. 21.3), The Cox proportional hazards model demonstrated independent predictors of CVD which included Lp(a) (OR = 1.008, p < 0.0001), The mean values for cholesterol efflux capacity 0.88. 0.841, p = 0.002. Adding Lp(a) to the Cox model improved C-statistic to 0.796 (95%CI = 0.751-0.841, p = 0.001), net reclassification (24.2%, 95%CI = 1.4%-43.6%, p = 0.041) and integrated discrimination (5.4%, 95%CI = 2.2%-12.8%, p = 0.037).
Cao, et al.	393 HeFH subjects	CVE (=fatal and non-fatal myocardial infarction, fatal and non-fatal stroke, post-discharge coronary revascularization and cardiac death)	During the observational period (36.5 months), HeFH subjects with a higher Lp(a) was associated with a significantly lower event-free survival (p = 0.004) (HR = 2.03 (1.28-3.21), p = 0.002). Adding Lp(a) to the Cox model improved C-statistic to 0.796 (95%CI = 0.751-0.841, p = 0.001), net reclassification (24.2%, 95%CI = 1.4%-43.6%, p = 0.041) and integrated discrimination (5.4%, 95%CI = 2.2%-12.8%, p = 0.037).
Ellis, et al.	Family members (n = 2927) from 755 HeFH cases in SAFEHEART	CVD (=MI, angina pectoris, revascularization, ischemic stroke or TIA, PAD, abdominal aortic aneurism)	Through the cascade screening (n = 2927), 18.5, and 6.6% of them exhibited Lp(a) 50-99 mg/dl and > 100 mg/dl, respectively. Adjusting for clinical characteristics, patients with elevated Lp(a) alone (HR = 3.17, p = 0.02) and FH alone (HR = 2.47, p = 0.03) conferred an elevated risk for CVD compared to those without any these features.
Pérez de Isla, et al.	5022 subjects from SAFEHEART (FH: n = 3712, non-affected relatives: n = 1310)	Severe aortic valve stenosis requiring surgical aortic valve replacement	The frequency of AVR due to severe AS was 1.48 and 0.27% in HeFH and non-affected relatives, respectively (OR = 5.71, 95%CI = 1.78-18.4, p = 0.003) during 7.48-year follow-up period. Cox regression analysis identified Lp(a) level as an independent predictor for AVR (HR = 1.013, 95%CI = 1.009-1.018, p < 0.001), in addition to age (HR = 1.089, 95%CI = 1.063-1.12, p < 0.001), a history of ASCVD (HR = 16.89, 95%CI = 6.93-41.23, p < 0.001), hypertension (HR = 7.48, 95%CI = 3.95-14.2, p < 0.001) and LDL-C-years (HR = 1.013, 95%CI = 1.009-1.016, p < 0.001).
Naito, et al.	399 HeFH subjects from FAME study	CAD, cerebral infarction and PAD	Japanese HeFH patients with an elevated Lp(a) level more likely harboured a greater risk of future cardiovascular events (p = 0.02 for trend).
Zawacki, et al.	129 HeFH pediatric patients	ASCVD (=myocardial infarction, percutaneous coronary intervention, coronary artery bypass surgery, cerebrovascular accident, peripheral vascular disease)	HeFH pediatric patients with a family history of early-onset ASCVD had an elevated Lp(a) level compared to those with late-onset ASCVD (OR = 1.97, 95% CI = 1.16-12.25, p = 0.027), whereas they did not necessarily had an elevated LDL-C (OR = 0.45, 95%CI = 0.11-1.80, p = 0.26).
Alonso, et al.	161 molecularly defined FH	CAC score	After adjusting age, sex, BMI, glyceremia, statin intensity, smoking and high blood pressure. Lp(a) (β = 0.158, p = 0.03) and PCSK9 (β = 0.179, p = 0.02) were independent predictors for positive CAC scores, these markers predicted a positive CAC score in HeFH subjects.
HDL			The mean values for cholesterol efflux capacity 0.88±0.14. A lower cholesterol efflux capacity was observed in HeFH subjects with ASCVD. Logistic regression analysis demonstrated cholesterol efflux capacity as an independent predictor for ASCVD (p = 0.02).
CRP			The presence of CVD was associated with a higher CRP level in HeFH patients (2.26mg/l vs. 1.55 mg/l, p < 0.001).
Mohrschladt, et al.	337 FH patients	CVD	The degree of CRP reduction with these statins was associated with slowing progression of intima media thickness.
Wissen, et al.	325 FH patients	Intima media thickness of carotid artery	Atorvastatin 80mg and simvastatin 40mg decreased CRP level. The degree of CRP reduction with these statins was associated with slowing progression of intima media thickness.
Kataoka, et al.	138 HeFH subjects	Atheroma volume on intravascular ultrasound	Mature PCSK9 level was associated with percent atheroma volume (r = 0.78, p = 0.003), whereas vessel volume did not change across any mature PCSK9 levels (r = 0.85, p = 0.78). As a consequence, smaller lumen volume was observed in association with mature PCSK9 level (r = 0.65, p = 0.009). By contrast, furin-cleaved (r = 0.12, p = 0.45) and total PCSK9 (r = 0.37, p = 0.25) levels did not associate with percent atheroma volume. Multivariate analysis revealed that mature PCSK9 level independently contributed to percent atheroma volume (odds ratio: 1.45, 95% confidence interval: 1.11-1.67, p = 0.01).

ASCVD = atherosclerotic cardiovascular disease, BMI = body mass index, CAC = coronary artery calcification, CAD = coronary artery disease, CRP = C-reactive protein, CVD = cardiovascular disease, FH = familial hypercholesterolemia, HDL-C = high-density lipoprotein cholesterol, HeFH = heterozygous familial hypercholesterolemia, Lp(a) = lipoprotein a, PAD = peripheral artery disease, PCSK9 = proprotein convertase subxilisin/kexin type 9
with HeFH with an elevated Lp(a) level, their cardiovascular risk was greatest (HR=4.40, 95% CI=1.92–10.07, p<0.001), independent of conventional risk factors. A recent study provided additional evidence about Lp(a) association with aortic valve stenosis in subjects with HeFH\(^\text{36}\). The frequency of aortic valve stenosis requiring surgical procedure was 1.48% in subjects with HeFH compared to 0.27% in non-FH ones (OR=5.71, 95% CI=1.78–18.4, p=0.003) during a 7.4-year follow-up period. Moreover, an increased Lp(a) level independently predicted the need for a surgical procedure of aortic valve stenosis in patients with HeFH. The FAME study reported whether Lp(a) as an important contributor to atherosclerosis, underscored biomarkers reflecting inflammation as a potential tool for future cardiovascular risk stratification\(^\text{47, 48}\). Several studies have reported the association of CRP levels with ASCVD. Mohrschladt, et al. revealed an elevated CRP levels in subjects with HeFH with premature cardiovascular disease (2.26 vs. 1.55 mg/dL, p<0.001)\(^\text{49}\). In another analysis with carotid ultrasound evaluation and serial CRP measurement, change in CRP levels was associated with the progression rate of carotid atherosclerosis\(^\text{50}\).

(c) C-Reactive Protein (CRP)

Accumulating evidence highlights inflammation as an important contributor to atherosclerosis, underscoring biomarkers reflecting inflammation as a potential tool for future cardiovascular risk stratification\(^\text{47, 48}\). Several studies have reported the association of CRP levels with ASCVD. Mohrschladt, et al. revealed an elevated CRP levels in subjects with HeFH with premature cardiovascular disease (2.26 vs. 1.55 mg/dL, p<0.001)\(^\text{49}\). In another analysis with carotid ultrasound evaluation and serial CRP measurement, change in CRP levels was associated with the progression rate of carotid atherosclerosis\(^\text{50}\).

(d) PCSK9

PCSK9 is a protease that combines LDLR. Then, it induces to degrade LDLR, which elevates circulating LDL particles\(^\text{51, 52}\). Several observational studies analyzed the relationship of circulating PCSK9 levels with future cardiovascular events in healthy subjects or patients without FH\(^\text{53-56}\). This relationship is not fully evaluated in patients with FH. Pathophysiologically, it circulates as two subtypes—mature and furin-cleaved forms; these subtypes differ in their properties to modulate LDLR. While mature PCSK9 can degrade LDLR, furin-cleaved form has been shown to have no activity modulating LDLR\(^\text{57, 58}\). Our recently developed ELISA has enabled measuring these two PCSK9 concentrations quantitatively, and we found out that mature PCSK9 is a more dominant one in the circulation of FH\(^\text{59}\). This finding could account for an elevated LDL-C level and potential contribution to atherosclerosis in patients with FH. The association of mature and furin-cleaved PCSK9 with coronary atherosclerosis was investigated by employing intravascular ultrasound (IVUS) in 138 patients with HeFH\(^\text{60}\). In this analysis, average mature and furin-cleaved PCSK9 levels were 294.2 \(\pm\) 111.9 and 80.0 \(\pm\) 82.4 ng/ml, respectively. Intravascular imaging analysis indicated a greater amount of coronary atheroma associated with a higher level of mature PCSK9 (r=0.65, p=0.009). By contrast, there was no relationship between furin-cleaved PCSK9 level and coronary atherosclerosis (r=0.12, p=0.45).
61612 subjects with FH\(^{(6)}\). This large-scale study will provide additional evidence about the risk stratification of HeFH in the future. Further investigation will be needed whether clinical management according to risk stratification tools could improve cardiovascular outcomes in subjects with HeFH.

Funding Sources

None.

Disclosures

Yu Kataoka has received research support from Nipro and Abbott, and honoraria from Nipro, Abbott, Kowa, Amgen, Sanofi, Astellas, Takeda and Daiichi-Sankyo.

References

1) Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, Wiegman A, Santos RD, Watts GF, Parhofer KG, Hovingh GK, Kovanen PT, Boileau C, Averna M, Borén J, Bruckert E, Catapano AL, Kuivenhoven JA, Pajukanta P, Ray K, Stalenhoef AF, Stroes E, Taskinen MR, Tybjærg-Hansen A; European Atherosclerosis Society Consensus Panel: Familial hypercholesterolaemia is underdiagnosed and
undertreated in the general popu-
lation: guidance for consensus
clinicians to prevent coronary heart disease: consensus
statement of the European Atherosclerosis Society. Eur
Heart J, 2013; 34: 3478-3490a
2) Langsted A, Kamstrup PR, Benn M, Tybjaerg-Hansen A,
Nordestgaard BG: High lipoprotein(a) as a possible cause
of clinical familial hyper-
cholesterolemia: a prospective
cohort study. Lancet Diabetes Endocrinol, 2016; 4: 577-
587
3) Brown MS, Goldstein JL: A receptor-mediated pathway
for cholesterol homeostasis. Science, 1986; 232: 34-47
4) Hopkins PN, Toth PP, Ballantyne CM, Rader DJ:
Familial hypercholesterolemas: prevalence, genetics,
diagnosis and screening recommendations from the
National Lipid Association Expert Panel on Familial
Hypercholesterolemia. J Clin Lipidol, 2011; 5: S9-S17
5) Gidding SS, Champagne MA, de Ferrari SD, Defesche J,
Ito MK, Knowles JW, McCrindle B, Raa F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS;
American Heart Association Atherosclerosis,
Hypertension, and Obesity in Young Committee on
Council on Cardiovascular Disease in Young, Council on
Cardiovascular and Stroke Nursing, Council on
Functional Genomics and Translational Biology, and
Council on Lifestyle and Cardiometabolic Health: The
agenda for familial hypercholesterolemia: a scientific
statement from the American Heart Association.
Circulation, 2015; 132: 2167-2192
6) Ogura M, Harada-Shiba M, Masuda D, Arii H, Bujo H,
Ishibashi S, Daida H, Koga N, Okawa S, Yamashita S
and FAME study group: Factors Associated with Carotid
Atherosclerosis and Achilles Tendon Thickness in Japanese
Patients with Familial Hypercholesterolemia: A
Subanalysis of the Familial Hypercholesterolemia Expert
Forum (FAME) Study. J Atheroscler Thromb, 2022; 29:
906-922
7) Sturm AC, Knowles JW, Gidding SS, Ahmad ZS, Ahmed
CD, Ballantyne CM, Baum SJ, Bourbon M, Carrière A,
Cuchel M, de Ferrari SD, Defesche JC, Freiburger T,
Hershberger RE, Hovingh GK, Karayiannis P, Kastelein JJP,
Kindt I, Lane SR, Leigh SE, Linton MF, Mata P, Neal
WA, Nordestgaard BG, Santos RD, Harada-Shiba M,
Sijbrands EJ, Smitz JO, Yamashita S, Wilemon KA,
Ledbetter DH, Rader DJ; Convened by the Familial
Hypercholesterolemia Foundation: Clinical Genetic
Testing for Familial Hypercholesterolemia: JACC
Scientific Expert Panel. J Am Coll Cardiol, 2018; 72:
662-680
8) Tada H, Hori M, Matsuki K, Ogura M, Nohara A,
Kawashiri MA, Harada-Shiba M: Achilles Tendon
Thickness Assessed by X-ray Predicting a Pathogenic
Mutuation in Familial Hypercholesterolemia Gene. J
Atheroscler Thromb, 2022; 29: 816-824
9) Harada-Shiba M, Ako J, Hirayama A, Nakamura M,
Nohara A, Sato K, Murakami Y, Koshida R, Ozaki A,
Arai H: Familial Hypercholesterolemia in Patients with
Acute Coronary Syndrome: Genetic Insights from
EXPLORE-J. J Atheroscler Thromb, 2021; in press. doi:
https://doi.org/10.5551/jat.62989
10) Slack J: Risks of ischaemic heart-disease in familial
hyperlipoproteinemia states. Lancet, 1969; 2: 1380-1382
11) Benn M, Watts GF, Tybjærg-Hansen A, Nordestgaard
BG: Corrigendum to "Familial Hy-
percholesterolemia in the Danish General Population: Prevalence, Coronary Artery Disease, and Cholesterol-Lowering Medication". J Clin Endocrinol Metab, 2014; 99: 4758-4759
12) Stone NJ, Levy RI, Fredrickson DS, Verter J: Coronary
disease in 116 kindred with familial type II
hyperlipoproteinemia. Circulation, 1974; 49: 476-488
13) Sniderman AD, Tsimikas S, Fazio S: The severe
hypercholesterolemia phenotype: clinical diagnosis,
management, and emerging therapies. J Am Coll Cardiol,
2014; 63: 1935-1947
14) Neefjes LA, Ten Kate GJ, Alexia R, Nieman K, Galembo-
Boers AJ, Langendongk JG, Weustink AC, Mollet NR,
Sijbrands EJ, Krestin GP, de Feyter PJ; Accelerated
subclinical coronary atherosclerosis in patients with
familialhypercholesterolemia. Atherosclerosis, 2011; 219:
721-727
15) Iadecola C, Parikh NS: Framingham General
Cardiovascular Risk Score and Cognitive Impairment:
The Power of Foresight. J Am Coll Cardiol, 2020; 75:
2535-2537
16) Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S,
D'Agostino RB Sr, Gibbons R, Greenland P, Lackland
DT, Levy D, O'Donnell CJ, Robinson JG, Schwartz JS,
Shero ST, Smith SC Jr, Sorlie P, Stone NJ, Wilson PW;
American College of Cardiology/American Heart
Association Task Force on Practice Guidelines. 2013
ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart
Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2014; 63: 2935-2959
17) Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A,
De Backer G, De Bacquer D, Ducimetière P, Jousselhaphi P,
Keil U, Njølstad I, Oganov RG, Thomsen T, Tunstall-
Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L,
Graham IM; SCORE project group: Estimation of ten-
year risk of fatal cardiovascular disease in Europe: The
SCORE project. Eur Heart J, 2003; 24: 987-1003
18) Santos RD, Gidding SS, Hegele RA, Cuchel MA, Barter
PJ, Watts GF, Baum SJ, Catapano AL, Chapman MJ,
Defesche JC, Folco E, Freiburger T, Genest J, Hovingh
GK, Harada-Shiba M, Humphries SE, Jackson AS, Mata
P, Moriarty PM, Raal FJ, Al-Rasadi K, Ray KK, Reiner Z,
Sijbrands EJ, Yamashita S; International Atherosclerosis
Society Severe Familial Hypercholesterolemia Panel:
Defining severe familial hypercholesterolaemia and the
implications for clinical management: a consensus
statement from the International Atherosclerosis Society
Severe Familial Hypercholesterolemia Panel. Lancet
Diabetes Endocrinol, 2016; 4: 850-861
19) Pérez-Calahorra S, Sánchez-Hernández RM, Plana N,
Marco-Benedí V, Pedro-Botet J, Almagro F, Brea A,
Ascaso JF, Lahoz C, Civeira F; Dyslipidemia Registry of
Spanish Arteriosclerosis Society: Value of the Definition
of Severe Familial Hypercholesterolemia for Stratification of Heterozygous Patients. Am J Cardiol, 2017; 119:
742-748
20) Humphries SE, Cooper JA, Capps N, Durrington PN,
Jones B, McDowell IFW, Soran H, Neil AHF; Simon
Broome Familial Hyperlipidaemia Register Group:
Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. Atherosclerosis, 2019; 281: 207-212

21) Funabashi S, Kataoka Y, Hori M, Ogura M, Nakaoku Y, Nishimura K, Doi T, Nishikawa R, Tsuda K, Noguchi T, Harada-Shiba M: Substantially Elevated Atherosclerotic Risks in Japanese Severely Familial Hypercholesterolemia Defined by the International Atherosclerosis Society. JACC Asia, 2021; 1: 245-255

22) Paquette M, Brisson D, Dufour R, Khouré É, Gaudet D, Baass A: Cardiovascular disease in familial hypercholesterolemia: Validation and refinement of the Montreal-FH-SCORE. J Clin Lipidol, 2017; 11: 1161-1167

23) Pérez de Isla L, Alonso R, Mata N, Fernández-Pérez C, Muñiz O, Díaz-Díaz JL, Saltijeral A, Fuentes-Jiménez F, de Andrés R, Zambón D, Piedecausa M, Cepeda JM, Mauri M, Galiana J, Brea Á, Sanchez Muñoz-Torrero JF, Padró T, Argueso R, Miramontes-González JP, Badimón L, Santos RD, Watts GF, Mata P: Predicting Cardiovascular Events in Familial Hypercholesterolemia: The SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation, 2017; 135: 2133-2144

24) Paquette M, Bernard S, Cariou B, Hegele RA, Genest J, Trinder M, Brunham LR, Béliard S, Baass A: Familial Hypercholesterolemia-Risk-Score: A New Score Predicting Cardiovascular Events and Cardiovascular Mortality in Familial Hypercholesterolemia. Arterioscler Thromb Vasc Biol, 2021; 41: 2632-2640

25) Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, Morrison AC, Brody JA, Gupta N, Nomura A, Kessler T, Duga S, Bis JC, van Duijn CM, Cupples LA, Psaty B, Rader DJ, Danesh J, Schunkert H, McPherson R, Farrall M, Watkins H, Lander E, Wilson JG, Correa A, Boerwinkle E, Merlini PA, Aridissino D, Salehdeen D, Gabriel S, Kathiresan S: Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J Am Coll Cardiol, 2016; 67: 2578-2589

26) Doi T, Hori M, Harada-Shiba M, Kataoka Y, Onozuka D, Nishimura K, Nishikawa T, Tsuda K, Ogura M, Son C, Miyamoto Y, Noguchi T, Shimokawa H, Yasuda S: Patients With LDLR and PCSK9 Gene Variants Experienced Higher Incidence of Cardiovascular Outcomes in Heterozygous Familial Hypercholesterolemia. J Am Heart Assoc, 2021; 10: e018263

27) Sjouke B, Defesche JC, Hartgers ML, Wiegman A, Roeters van Lennep JE, Kastelein JJ, Hovingh GK: Double-heterozygous autosomal dominant hypercholesterolemia: Clinical characterization of an underreported disease. J Clin Lipidol, 2016; 10: 1462-1469

28) Ohita N, Hori M, Takahashi A, Ogura M, Makino H, Tamanaha T, Fujiyama H, Miyamoto Y, Harada-Shiba M: Proprotein convertase subtilisin/kexin 9 V4I variant with LDLR mutations modifies the phenotype of familial hypercholesterolemia. J Clin Lipidol, 2016; 10: 547-555

29) Khera AV, Chaffin M, Zekvad SM, Collins RL, Roselli C, Natarajan P, Lichtman JH, D’Onofrio G, Mattera J, Dreyer R, SpertiJS, Taylor KD, Psaty BM, Rich SS, Post W, Gupta N, Gabriel S, Lander E, Ida Chen YD, Tarkowski ME, Rotter JL, Krumholz HM, Kathiresan S: Whole-Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction. Circulation, 2019; 139: 1593-1602

30) D’Erasmo L, Minicucci I, Di Costanzo A, Pigna G, Commodari D, Cefi F, Montali A, Brancato F, Stanca I, Nicolucci A, Ascione A, Galea N, Carbone I, Francone M, Maranghi M, Arca M: Clinical Implications of Monogenic Versus Polygenic Hypercholesterolemia: Long-Term Response to Treatment, Coronary Atherosclerosis Burden, and Cardiovascular Events. J Am Heart Assoc, 2021; 10: e018932

31) Nordestgaard BG, Chapman MJ, Ray K, Borjé N, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgozoglu L, Tybjærg-Hansen A: European Atherosclerosis Society Consensus Panel: Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J, 2010; 31: 2844-2853

32) Tsimikas S: A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol, 2017; 69: 602-711

33) Alonso R, Andres E, Mata N, Fuentes-Jiménez F, Badimón L, López-Miranda J, Padró T, Muñiz O, Díaz-Díaz JL, Mauri M, Ordovás JM, Mata P; SAFEHEART Investigators: Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J Am Coll Cardiol, 2014; 63: 1982-1989

34) Cao YX, Jin JL, Guo YL, Sun D, Liu HH, Wu NQ, Xu RX, Zhu CG, Liu G, Dong Q, Sun J, Li JJ: Baseline and on-statin treatment lipoprotein(a) levels for predicting cardiovascular events in patients with familial hypercholesterolemia. Atherosclerosis, 2019; 291: 27-33

35) Ellis KL, Pérez de Isla L, Alonso R, Fuentes F, Watts GF, Mata P: Value of Measuring Lipoprotein(a) During Cascade Testing for Familial Hypercholesterolemia. J Am Coll Cardiol, 2019; 73: 1029-1039

36) Pérez de Isla L, Watts GF, Alonso R, Díaz-Díaz JL, Muñiz-Grijalvo O, Zambón D, Fuentes F, de Andrés R, Padró T, López-Miranda J, Mata P: Lipoprotein(a), LDL-cholesterol, and hypertension: predictors of the need for aortic valve replacement in familial hypercholesterolemia. Eur Heart J, 2021; 42: 2201-2211

37) Naito R, Daida H, Masuda D, Harada-Shiba M, Arai H, Bujo H, Ishibashi S, Koga N, Oikawa S, Yamashita S; FAME Study Group: Relation of Serum Lipoprotein(a) Levels to Lipoprotein and Apolipoprotein Profiles and Atherosclerotic Diseases in Japanese Patients with Familial Hypercholesterolemia Expert Forum (FAME) Study. J Atheroscler Thromb, 2021; in press. doi: https://doi.org/10.5551/jat.63019

38) Zawacki AW, Dodge A, Woo KM, Ralph JC, Peterson AL: In pediatric familial hypercholesterolemia, lipoprotein(a) is more predictive than LDL-C for early onset of cardiovascular disease in family members. J Clin
Leander K, Mälarstig A, Van’t Hooft FM, Hyde C, Shimada YJ, Cannon CP: PCSK9 (Proprotein convertase subtilisin/kexin type 9) inhibitors: past, present, and the future. Eur Heart J, 2015; 36: 2415-2424

Sahay K, Sohela B, Samdarshi B, Prasad S: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: past, present, and the future. J Lipid Res, 2021; 62: 100130

Bellanger N, Orsoni A, Julia Z, Fournier N, Frisdal E, Hogue JC, Lamarche B, Gaudet D, Larivière M, Tremblay AJ, Bergeron J, Lemieux I, Després JP, Couture P: Relationship between cholesteryl ester transfer protein and LDL heterogeneity in familial hypercholesterolemia. J Lipid Res, 2004; 45: 1077-1083

Bennett AM, Kastelein JJP: Differential hs-CRP reduction in patients with familial hypercholesterolemia treated with aggressive or conventional statin therapy. Atherosclerosis, 2002; 165: 361-366

Wissen S, Trip MD, Smilde TJ, Graaf J, Stalenhoef AFH, Kastelein JJP: Differential hs-CRP reduction in patients with familial hypercholesterolemia treated with aggressive or conventional statin therapy. Atherosclerosis, 2002; 165: 361-366

Mohrschladt MF, Maat MP, Westendorp RG, Smelt AH: C-reactive protein in patients with familial hypercholesterolemia: no effect of simvastatin therapy. Atherosclerosis, 2001; 157: 491-494

Wissen S, Trip MD, Smilde TJ, Graaf J, Stalenhoef AFH, Kastelein JJP: Differential hs-CRP reduction in patients with familial hypercholesterolemia treated with aggressive or conventional statin therapy. Atherosclerosis, 2002; 165: 361-366

51) Seidah NG: The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res, 2021; 62: 100130

52) Shimada YJ, Cannon CP: PCSK9 (Proprotein convertase subtilisin/kexin type 9) inhibitors: past, present, and the future. Eur Heart J, 2015; 36: 2415-2424

53) Leander K, Målarstig A, Van’t Hooft FM, Hyde C, Hellénius ML, Troutt JS, Konrad RJ, Öhrvik J, Hamsten A, de Faire U: Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Predicts Future Risk of Cardiovascular Events Independently of Established Risk Factors. Circulation, 2016; 133: 1230-1239

54) Gencer B, Montecucco F, Nanchen D, Carbone F, Klingenberg R, Vuilleumier N, Aghimandi S, Heg D, Räber L, Auer R, Jüni P, Windecker S, Lüscher TF, Matter CM, Rodondi N, Mach F: Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur Heart J, 2016; 37: 546-553

55) Zhu YM, Anderson TJ, Sikdar K, Fung M, McQueen MH, Lonn EM, Verma S: Association of proprotein convertase subtilisin/kexin type 9 (PCSK9) with cardiovascular risk in primary prevention. Arterioscler Thromb Vasc Biol, 2015; 35: 2254-2225

56) Kataoka Y, Harada-Shiba M, Hori M, Watanabe M, Kokubo Y, Noguchi T, Yasuda S, Miyamoto Y: Circulating Furin-cleaved Proprotein Convertase Subtilisin/Kexin Type 9 Concentration Predicts Future Coronary Events in Japanese Subjects. JACC Asia, 2021; Nov 23

57) Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, Seidah NG, Prat A: In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem, 2011; 286: 4257-4263

58) Han B, Eacho PI, Knierman MD, Troutt JS, Konrad RJ, Yu X, Schroeder KM: Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res, 2014; 55: 1505-1514

59) Hori M, Ishihara M, Yuasa Y, Makino H, Yanagi K, Tamanaha T, Kishimoto I, Kujiraoka T, Hattori H, Harada-Shiba M: Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Lipid Res, 2015; 100: E41-E49

60) Kataoka Y, Harada-Shiba M, Nakao K, Nakashima T, Kawakami S, Fujino M, Kanaya T, Nagai T, Tahara Y, Asaumi Y, Hori M, Ogura M, Goto Y, Noguchi T, Yasuda S: Mature proprotein convertase subtilisin/kexin type 9, coronary atheroma burden, and vessel remodeling in heterozygous familial hypercholesterolemia. J Clin Lipidol, 2017; 11: 413-421

61) Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O, Lavoie A, Uno K, Tuzcu EM, Nissen SE: Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol, 2010; 55: 2399-2407

62) Yamashita S, Masuda D, Harada-Shiba M, Araih B, Bujo H, Ishibashi S, Daida H, Koga N, Oikawa S and FAME Study group: Effectiveness and Safety of Lipid-Lowering Drug Treatments in Japanese Patients with Familial Hypercholesterolemia: Familial Hypercholesterolemia Expert Forum (FAME) Study. J Atheroscler Thromb, 2022; 29: 608-638

63) EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC): Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet, 2021; 398: 1713-1725