The Interplay of Aging, Aortic Stiffness and Blood Viscosity in Atherogenesis

Gregory D. Sloop, Joseph J. Weidman, Linda M. Shecterle, John A. St. Cyr

INTRODUCTION
Aging is inevitable and with aging there is the progressive loss of the ability to maintain homeostasis, which is subsequently reflected in cellular dysfunction and if not corrected will lead to our demise. Our cardiovascular system clearly plays a leading role in this process. One result of the loss of homeostasis in the cardiovascular system is thrombosis and development of atherosclerotic plaques. Increased aortic stiffness is generally recognized to be an early step in the development of atherosclerotic cardiovascular, including cerebrovascular, disease, the leading cause of deaths worldwide[1]. According to the 2013 guidelines issued by the European Society of Hypertension and the European Society of Cardiology, determining pulse wave velocity, the “gold standard” surrogate marker for aortic stiffness, should be considered in any clinical evaluation of a hypertensive patient[2]. By setting the stage for thrombosis and atherogenesis, progressive aortic stiffening is an important factor in aging, which will ultimately limit lifespan. This editorial will present pertinent evidence for a central role for progressive aortic stiffening as variables, contributing to atherosclerosis. Major risk factors for accelerated atherogenesis which are associated with increased aortic stiffness include age, gender, dyslipidemia, hypertension[2], cigarette smoking[3] and diabetes mellitus[4]. All major risk factors for atherogenesis are associated with increased blood viscosity[5]. Because all of these risk factors accelerate the development of morphologically similar lesions, we favor an atherogenic process which explains the increased risk associated with all major risk factors, not just hypercholesterolemia and intimal lipid accumulation (Figure 1).

INCREASED AORTIC STIFFNESS IS A CONSEQUENCE OF AGING
It is estimated that homeothermic mammals have an allotment of
In a perfectly stiff aorta, blood flow would only occur during systole.

Figure 1 The pathways by which increased arterial stiffness and increased blood viscosity accelerate atherogenesis. All risk factors create larger areas of low shear, which increase the likelihood for development of mural or parietal thrombi, which, upon organization, develop into atherosclerotic plaques.

approximately 1×10^8 heartbeats in a lifetime.[6] Thus, the mighty whale, with a resting heart rate of 30 to 35 beats per minute, has a life expectancy of roughly 50 years, but the rat, with a heart rate of 370 beats per minute, is expected to live only 3 to 3.5 years. Theoretically, it is unlikely that pump failure alone is solely responsible for limiting lifespan in aging individuals. Gerstenblith et al. have proposed that cardiac contractile function is maintained with aging, at least in humans.[7] Alternatively, the inverse relationship between heart rate and life span suggests that a higher heart rate can cause material or structural fatigue, which will enhance severe failure more quickly. The importance of aortic stiffening in aging and cardiovascular disease is seen in a disease of premature aging, Hutchinson-Gilford progeria syndrome. Patients die at an average age of thirteen, and ninety percent of deaths are due to myocardial infarction and stroke, even though their serum cholesterol, LDL, HDL and C-reactive protein levels are similar to age-matched controls.[8] In one study, progeria patients with an average age of seven had the aortic stiffness expected in a 60-69 year old.[9] Those data suggest an important role for aortic stiffening in cardiovascular disease and longevity. The material which fails, causing progressive aortic stiffening, is probably the structural protein elastin. Turnover of elastin is essentially minimal, and synthesis of this molecule ceases at the end of puberty. Indeed, the intimal and medial layers of arteries in patients with Hutchinson Gilford Progeria syndrome are often fibrotic and stiff probably relating to breaks in elastin fibers and the depletion of smooth muscle cells. This is particularly evident at aortic branches and areas immediately distal to atherosclerotic plaques.[10] Accelerated loss of aortic compliance is a possible explanation for the U-shaped dose response curve for the benefits of exercise. Increased cardiovascular mortality has been previously reported in association with strenuous exercise.[11,12] Although there are no data on the fatiguing properties of elastin, extrapolation from natural rubber may be enlightening. With cyclical 10% stretch, similar to that experienced by our aorta and proximal large diameter arteries in our youth, rubber has been shown to fracture after 8×10^5 cycles. At 3% stretch, fracture is expected after 3×10^6 cycles. After the fracturing of elastin, our aortic wall stress is manifested by the interplay with collagen molecules.[13]

Aortic capacitance allows our cardiac output to be distributed over the entire cardiac cycle. If cardiac output remains constant, conservation of mass dictates that increasing aortic stiffness requires a subsequent increase in peak systolic blood velocity. Thus, aortic capacitance serves to cause a slower, more even, and constant blood flow, i.e., the “windkessel” function.[14,15] The increased blood velocity caused by increased aortic stiffness increases Reynolds number, which indicates the likelihood of developing flow separation in areas of changing vascular geometry. In these areas of flow separation, a sluggish blood flow state can arise. This produces an increased residence time for blood to interact with the vascular wall, particularly at “stagnation points.” The principle is the same as in the development of eddy currents around a stationary rock in a rapidly flowing stream (Figures 2, 3).

The adverse effect of vascular stiffness on blood flow was demonstrated by Ku and Giddens using a glass model of the carotid bifurcation.[16] They found that following prolonged pulsatile flow through the use of their developed model that debris accumulated against the outer wall of the carotid sinus because there was insufficient flow to disperse it. Their observation suggests that increased arterial stiffness creates a “residence time” for blood longer
than one cardiac cycle, perhaps even of indefinite duration, a situation promoting thrombus formation. As noted by the 19th century German pathologist Virchow, stasis of blood leads to thrombosis. Areas of stasis are predisposed to thrombosis because of the accumulation of activated clotting factors, decreased influx of antifibrinolytic molecules, and decreased flow-mediated expression of anti-platelet molecules such as nitric oxide and prostacyclin by the endothelium. Thrombi in arteries tend to remain localized to a single vessel wall because the rapid flow effect against the opposing vessel wall prevents thrombus formation. Thus, the formed thrombi are referred to as parietal or mural thrombi.

Atherosclerotic Plaques Are Organized Mural Thrombi

The location of the debris accumulation in the previously described bifurcation model coincides with the pathological location of carotid atherosclerotic plaques in vivo. Duguid showed in the 20th century that atherosclerotic plaques are organized mural thrombi.

The parietal location of arterial thrombi explains why atherosclerotic plaques are eccentric, not circumferential. In contrast, the slower uniform flow in veins allows thrombi to become occlusive, as seen in deep vein thrombosis.

In the process of organization, blood vessels grow into a thrombus, exudate, or necrotic tissue. Neovascularization allows the influx of fibroblasts which synthesize collagen, resulting in fibrosis or scarring. Duguid’s hypothesis is supported by the high prevalence of atherosclerotic plaques in Dacron arteriovenous shunts used for dialysis access. These shunts create a hemodynamic environment in which blood flow is so rapid that it creates a palpable thrill. Because of the inanimate nature of these shunts, there is a very limited ability to respond to injury. Further, they lack a tunica media as a source for smooth muscle migration into the intima. Migration of smooth muscle in response to intimal injury is a tenet of previous atherogenesis theory. Instead, thrombi are colonized by circulating stem cells which initiate the organization process and undergoing differentiation can result in the formation of an atherosclerotic plaque.
occurs in diastole because of systolic contraction. The augmented
in the descending aorta is probably augmented diastolic flow in the
model. However, the major significance of increased retrograde flow
cycle, as suggested by the results using the Ku and Giddens’ glass
an area of flow separation could persist throughout the entire cardiac
circulation antegrade flow occurs throughout the cardiac cycle. This
augments diastolic flow in the carotid system. In the carotid arterial
Aging and increased aortic stiffness increase diastolic retrograde
plaques are composed of large amounts of collagen, which further
surface area was covered by atherosclerotic plaque
plaque in black males aged 15 to 19. By age 30 to 34, 7.6% of the
prevalence of atherosclerotic plaques in the abdominal aorta. In the
with aging in the distal thoracic aorta correlates with the increasing
flow in the lower thoracic aorta beginning at age 23 in one study. By
age 37, retrograde flow was absent[24]. The loss of retrograde flow
with aging in the distal thoracic aorta correlates with the increasing
prevalence of atherosclerotic plaques in the abdominal aorta. In the
Pathobiological Determinants of Atherosclerosis in Youth Study, 0.1%
of the abdominal aortic surface area was covered by atherosclerotic
plaque in black males aged 15 to 19. By age 30 to 34, 7.6% of the
surface area was covered by atherosclerotic plaque[25]. Atherosclerotic
plaques are composed of large amounts of collagen, which further
contributes to aortic stiffening.

Aging and increased aortic stiffness increase diastolic retrograde
flow in the descending aorta[26]. This increased retrograde aortic flow
augments diastolic flow in the carotid system. In the carotid arterial
circulation antegrade flow occurs throughout the cardiac cycle. Conceivably, if this augmented diastolic flow was rapid enough, then
an area of flow separation could persist throughout the entire cardiac
cycle, as suggested by the results using the Ku and Giddens’ glass
model. However, the major significance of increased retrograde flow
in the descending aorta is probably augmented diastolic flow in the
 coronary arteries. The great majority of flow in the coronary arteries
occurs in diastole because of systolic contraction. The augmented
coronary flow caused by retrograde flow in the descending aorta
could increase Reynolds number and cause areas of flow separation.
The meager systolic flow in the coronary circulation increases the
likelihood of a residence time longer than a cardiac cycle. The
concave surface of the heart causes the coronary circulation to be
adverse from a hemodynamic standpoint when compared to a long
straight vessel.

INCREASED BLOOD VISCOSITY CREATES LARGER AREAS OF SLOWER FLOW

Increased aortic stiffness is a non-specific effector by which several
risk factors accelerate atherogenesis. The second non-specific
effector is increased blood viscosity. Blood is a non-Newtonian fluid,
meaning that its viscosity is inversely related to flow. Like ketchup,
blood becomes “thicker” or more viscous the slower it flows. Thus,
in the areas of flow separation created by increased aortic stiffening,
a situation of decreased flow can evolve which can lead to increased
viscosity, further slowing blood flow, and further increasing viscosity,
i.e. a vicious cycle.

One of the principal causes of the non-Newtonian behavior of
blood is erythrocyte aggregation. Erythrocytes are kept apart by
their electronegative surface charge, and are able to approach each
other only to within 7.9 nm of their glycocalyces[27]. Low-density
lipoprotein and fibrinogen, by virtue of their large diameter, are able
to span the minimum intercellular distance between two erythrocytes
and foster erythrocyte aggregation. In this way, these molecules
accentuate the non-Newtonian property of blood, creating larger
areas of slower blood flow in areas of low shear or slow blood
flow[28]. High-density lipoprotein competes with LDL for erythrocyte
binding. Because of its smaller particle diameter, it antagonizes
erythrocyte aggregation and decreases blood viscosity. Erythrocyte
aggregates are weak, and easily disrupted by blood flow. LDL and
fibrinogen increase the yield strength of erythrocyte aggregates, i.e.
the stress or force needed to permanently deform them[29,30]. This
will allow erythrocyte aggregations to enlarge, leading to larger areas of
stasis, triggering thrombus formation, a process recently reviewed by
Wagner et al[31]. Thus, a hemorheologic abnormality, increased blood
viscosity, interacts with a hemodynamic one, increased peak blood
velocity, as factors or variables contributing to the development or
progression of atherogenesis.

We have presented evidence, calling attention to anatomic and
physiological factors contributing to the formation and progression
of atherogenesis that can and most certainly play a role in creating
a situation for thrombus formation. We believe and hope that future
researchers will make a concerted effort to acknowledge this process
and to address these parameters or variables and their potential role
in the development and progression of atherogenesis. Encompassing
these factors, future therapeutic interventions may be developed to
aid in stabilizing existing cardiovascular disease with the ultimate
goal to lower the existing rates of morbidity and mortality, currently
found in this disease.

CONFLICT OF INTERESTS

There are no conflicts of interest with regard to the present study.

REFERENCES

1 Palatini P, Casiglia E, Gąsowski J, Głużek J, Jankowski P, Narkiewicz K, Saladini F, Stolarsz-Skrzypek K, Tikhonoff V, Van...
Sloop GD et al. Hemorheologic hemodynamic atherogenesis

Bortel L, Wojciechowska W, Kawecka-Jaszcz K. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag 2011; 7:725-39. doi: 10.2147/VHRM.S25270

2. ESH/ESC Task Force for the Management of Arterial Hypertension. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens.2013 Oct;31(10):1925-38. doi: 10.1097/HJH.0b013e328364ca4c.

3. Reference Values for Arterial Stiffness' Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J 2010;31(19):2338-50

4. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension 2003; 41(1):183-7

5. Turkbey EB, Redheuil A, Backlund J-Y, Small AC, Cleary PA et al. Diabetes Control And Complications Trial/Epidemiology Of Diabetes Interventions And Complications Research Group. Aortic distensibility in type 1 diabetes. Diabetes Care 2013; 36(8):2380-7

6. Sloop GD. A unifying theory of atherogenesis. Medical Hypotheses 1996; 47(4):321-5.

7. Zhang GQ, Zhang W. Heart rate, lifespan, and mortality risk. Ageing Research Reviews 2009; 8: 52-60

8. Gerstenblith G, Frederiksen J, Yin FCP, Fortuin NJ, Lakatta EG, Weisfeldt ML. Echocardiographic assessment of a normal adult aging population. Circulation 1977; 56(2): 273-278

9. Gordon LB, Harten IA, Lichtenstein AH. Reduced adiponectin and HDL cholesterol without elevated c-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford progeria syndrome. J Peds 2005; 146(3): 336-41

10. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Nat Acad Sci USA 2012; 109(41): 16666-71

11. Guasch E, Mont L. Exercise and the heart: unmasking Mr. Hyde. Heart 2014; 100: 999-100.

12. Hefferman KS. How healthy were the arteries of Phidippides? Clinical Cardiology 2012;35(2): 65-68.

13. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging. J Am Coll Card 2007; 50(1): 1-13

14. Sloop GD, Perret RS. Increased peak blood velocity in association with elevated blood pressure. Ultrasound Med Biol 2000; 26(9): 1387-91

15. Gosline J, Lillie M, Carrington E, Guerette P, Ortliepp C, Savage K. Elastic protein: biological roles and mechanical properties. In: Shewry PR, Tatham AS, Bailey AJ, eds. Elastomeric Proteins: Structure, Biomechanical Properties and Biological Roles. Cambridge University Press, 2003: 20.

16. Ku DN, Giddens DP. Pulsatile flow in a model carotid bifurcation. Atherosclerosis 1983; 3(1): 31-9.

17. Bagot CN, Arya R. Vichow and his triad: a question of attribution. Br J Haematol 2008; 143(2): 180-90

18. Zarins CK, Giddens DP, Bharadvaj BK, Sotturai VS, Mahon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Cire Res. 1983;53(4):502-14

19. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282(21): 2035-2042

20. Duguid JB. The thrombogenic hypothesis and its implications. Postgrad Med J 1960; 36: 226-9

21. Sloop GD, Fallon KB, Zieske AW. Atherosclerotic plaque-like lesions in synthetic arteriovenous grafts: implications for atherogenesis. Atherosclerosis 2002;160(1): 133-9.

22. Masataka S, Akio S, Atsushi K, Akhiro T, Seiji O, Takeshi T, Hisamaru H, Masatoshi M, Yasunobu H, Ryozo N. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8(4):403-9.

23. Sloop GD, Holsworth,Jr RE, Weidman JI, St Cyr JA. The role of chronic hyperviscosity in vascular disease. Ther Adv Cardiovasc Dis 2015; 9: 19-25

24. Sloop GD, Perret RS, Braheyn J, Oulmann M. A description of two morphologic patterns of aortic fatty streaks, and a hypothesis of their pathogenesis. Atherosclerosis 1998 141(1): 153-60

25. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman III, WP. et al. Prevalence and extent of atherosclerosis in adolescents and young adults. JAMA 1999; 281(8): 727-35

26. Hashimoto J, Ito S. Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta. Hypertension 2013; 62: 542-49

27. Sloop GD, Weidman JI, St. Cyr JA. The failure of cholesteryl ester transfer protein inhibitors: is it due to increased blood viscosity? Ther Adv Cardiovasc Dis 2015. doi: 10.1177/1753944714566427

28. Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci 1997; 92: 473-479

29. Niimi H, Sugihara M. Blood rheology near a stagnation point. Biorheology. 1982;19(1/2):129-36.

30. Moh JH, Cho YI, Cho DJ, Kim D, Banerjee RK. Influence of non-Newtonian viscosity of blood on microvascular impairment. Clin Hemorheol Microcirc. 2014;57(2):111-8. doi: 10.3233/CH-141822.

31. Wagner JC, P. Steffen, S. Svetina. Aggregation of red blood cells: from rouleaux to clot formation. Comptes Rendus Physique 2013; 14: 459–469.

Peer reviewer: Yanxia Ning, Ph.D, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23249, USA

© 2015 ACT. All rights reserved.

354