QUANTUM INFORMATION INEQUALITIES VIA TRACIAL POSITIVE LINEAR MAPS

A. DADKHAH AND M. S. MOSLEHIAN

Abstract. We present some generalizations of quantum information inequalities involving tracial positive linear maps between C^*-algebras. Among several results, we establish a noncommutative Heisenberg uncertainty relation. More precisely, we show that if $\Phi : \mathcal{A} \to \mathcal{B}$ is a tracial positive linear map between C^*-algebras, $\rho \in \mathcal{A}$ is a Φ-density element and A, B are self-adjoint operators of \mathcal{A} such that $\mathrm{sp}(-i\rho^{\frac{1}{2}}[A, B]\rho^{\frac{1}{2}}) \subseteq [m, M]$ for some scalers $0 < m < M$, then under some conditions

$$V_{\rho, \Phi}(A)V_{\rho, \Phi}(B) \geq \frac{1}{2\sqrt{K_{m, M}(\rho[A, B])}}|\Phi(\rho[A, B])|,$$

where $K_{m, M}(\rho[A, B])$ is the Kantorovich constant of the operator $-i\rho^{\frac{1}{2}}[A, B]\rho^{\frac{1}{2}}$ and $V_{\rho, \Phi}(X)$ is the generalized variance of X.

In addition, we use some arguments differing from the scalar theory to present some inequalities related to the generalized correlation and the generalized Wigner–Yanase–Dyson skew information.

1. Introduction and preliminaries

In quantum measurement theory, the classical expectation value of an observable (self-adjoint operator) A in a quantum state (density operator) ρ is expressed by $\mathrm{Tr}(\rho A)$. Also, the classical variance for a quantum state ρ and an observable operator A is defined by $V_\rho(A) := \mathrm{Tr}(\rho A^2) - (\mathrm{Tr}(\rho A))^2$. The Heisenberg uncertainty relation asserts that

$$V_\rho(A)V_\rho(B) \geq \frac{1}{4}|\mathrm{Tr}(\rho[A, B])|^2$$

for a quantum state ρ and two observables A and B; see [6]. It gives a fundamental limit for the measurements of incompatible observables. A further strong result was given by Schrödinger [14] as

$$V_\rho(A)V_\rho(B) - |\mathrm{Re}(\mathrm{Cov}_\rho(A, B))|^2 \geq \frac{1}{4}|\mathrm{Tr}(\rho[A, B])|^2,$$

2010 Mathematics Subject Classification. 46L05, 47A63, 81P15.

Key words and phrases. Tracial positive linear map; trace; generalized covariance, generalized variance; generalized correlation; generalized Wigner–Yanase skew information; C^*-algebra.
where \([A, B] := AB - BA\) is the commutator of \(A, B\) and the classical covariance is defined by \(\text{Cov}_\rho(A) := \text{Tr}(\rho AB) - \text{Tr}(\rho A)\text{Tr}(\rho B)\).

Yanagi et al. [18] defined the one-parameter correlation and the one-parameter Wigner–Yanase skew information (is known as the Wigner–Yanase–Dyson skew information; cf. [17]) for operators \(A, B\), respectively, as follows
\[
\text{Corr}_\rho^\alpha(A, B) := \text{Tr}(\rho A^* B) - \text{Tr}(\rho^{1-\alpha} A^* \rho A B) \quad \text{and} \quad I_\rho^\alpha(A) := \text{Corr}_\rho^\alpha(A, A),
\]
where \(\alpha \in [0, 1]\). They showed a trace inequality representing the relation between these two quantities as
\[
\left| \text{Re}(\text{Corr}_\rho^\alpha(A, B)) \right|^2 \leq I_\rho^\alpha(A) I_\rho^\alpha(B). \tag{1.3}
\]
In the case that \(\alpha = \frac{1}{2}\), we get the classical notions of the correlation \(\text{Corr}_\rho(A, B)\) and the Wigner–Yanase skew information \(I_\rho(A)\). The classical Wigner–Yanase skew information represents a for non-commutativity between a quantum state \(\rho\) and an observable \(A\).

Luo [10] introduced the quantity \(U_\rho(A)\) as a measure of uncertainty by
\[
U_\rho(A) = \sqrt{V_\rho(A)^2 - (V_\rho(A) - I_\rho(A))^2}.
\]
He then showed a Heisenberg-type uncertainty relation on \(U_\rho(A)\) as
\[
U_\rho(A) U_\rho(B) \geq \frac{1}{4} |\text{Tr}(\rho [A, B])|^2. \tag{1.4}
\]
These inequalities was studied and extended by a number of mathematicians. For further information we refer interested readers to [3, 5, 7, 16].

Let \(\mathbb{B}(\mathcal{H})\) denote the \(C^*\)-algebra of all bounded linear operators on a complex Hilbert space \((\mathcal{H}, \langle \cdot, \cdot \rangle)\) with the unit \(I\). If \(\mathcal{H} = \mathbb{C}^n\), we identify \(\mathbb{B}(\mathbb{C}^n)\) with the matrix algebra of \(n \times n\) complex matrices \(M_n(\mathbb{C})\). We consider the usual Löwner order \(\leq\) on the real space of self-adjoint operators. Throughout the paper, a capital letter means an operator in \(\mathbb{B}(\mathcal{H})\). An operator \(A\) is said to be strictly positive (denoted by \(A > 0\)) if it is a positive invertible operator. According to the Gelfand–Naimark–Segal theorem, every \(C^*\)-algebra can be regarded as a \(C^*\)-subalgebra of \(\mathbb{B}(\mathcal{H})\) for some Hilbert space \(\mathcal{H}\). We use \(\mathcal{A}, \mathcal{B}, \cdots\) to denote \(C^*\)-algebras. We denote by \(\text{Re}(A)\) and \(\text{Im}(A)\) the real and imaginary parts of \(A\), respectively, so we may consider elements of \(\mathcal{A}\) as Hilbert space operators. The geometric mean is defined by \(A_B^\sharp = A^\frac{1}{2} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^\frac{1}{2} A^\frac{1}{2}\) for operators \(A > 0\) and \(B \geq 0\). A \(W^*\)-algebra is a \(*\)-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. The \(C^*\)-algebra of complex valued continuous functions on the compact Hausdorff
space \(\Omega \) is denoted by \(C(\Omega) \).

A linear map \(\Phi : A \to B \) between \(C^* \)-algebras is said to be \(*\)-linear if \(\Phi(A^*) = \Phi(A)^* \). It is positive if \(\Phi(A) \geq 0 \) whenever \(A \geq 0 \). It is called strictly positive if \(A > 0 \), then \(\Phi(A) > 0 \). We say that \(\Phi \) is unital if \(A, B \) are unital and \(\Phi \) preserves the unit. A linear map \(\Phi \) is called \(n \)-positive if the map \(\Phi_n : M_n(A) \to M_n(B) \) defined by \(\Phi_n([a_{ij}]) = [\Phi(a_{ij})] \) is positive, where \(M_n(A) \) stands for the \(C^* \)-algebra of \(n \times n \) matrices with entries in \(A \). A map \(\Phi \) is said to be completely positive if it is \(n \)-positive for every \(n \in \mathbb{N} \). According to [15, Theorem 1.2.4] if the range of the positive linear map \(\Phi \) is commutative, then \(\Phi \) is completely positive. It is known (see, e.g., [4]) that if \(\Phi \) is a unital positive linear map, then

\[
\Phi(A^\sharp B) \leq \Phi(A)^\sharp \Phi(B). \tag{1.5}
\]

A map \(\Phi \) is called tracial if \(\Phi(AB) = \Phi(BA) \). The usual trace on the trace class operators acting on a Hilbert space is a tracial positive linear functional. For a given closed two sided ideal \(\mathcal{I} \) of a \(C^* \)-algebra \(A \), the existence of a tracial positive linear map \(\Phi : A \to A \) satisfying \(\Phi(\Phi(A)) = \Phi(A) \) and \(\Phi(A) - A \in \mathcal{I} \) is equivalent to the commutativity of the quotient \(A/\mathcal{I} \); see [2] for more examples and implications of the definition. For a tracial positive linear map \(\Phi \), a positive operator \(\rho \in A \) is said to be \(\Phi \)-density if \(\Phi(\rho) = I \). A unital \(C^* \)-algebra \(B \) is said to be injective whenever for every unital \(C^* \)-algebra \(A \) and for every self-adjoint subspace \(S \) of \(A \), each unital completely positive linear map from \(S \) into \(B \), can be extended to a completely positive linear map from \(A \) into \(B \). Our investigation is based on the following definition.

Definition 1.1. Let \(\Phi : A \to B \) be a tracial positive linear map and \(\rho \) be a \(\Phi \)-density operator. Then

\[
\text{Cov}_{\rho,\Phi}(A, B) := \Phi(\rho A^* B) - \Phi(\rho A^*)\Phi(\rho B) \quad \text{and} \quad V_{\rho,\Phi}(A) := \text{Cov}_{\rho,\Phi}(A, A),
\]

are called the generalized covariance and the generalized variance \(A, B \), respectively. Further, the generalized correlation and the generalized Wigner–Yanase–Dyson skew information of two operators \(A, B \) are defined by

\[
\text{Corr}_{\rho,\Phi}^\alpha(A, B) := \Phi(\rho A^* B) - \Phi(\rho^{1-\alpha} A^* \rho^\alpha B) \quad \text{and} \quad I_{\rho,\Phi}^\alpha(A) := \text{Corr}_{\rho,\Phi}^\alpha(A, A),
\]

respectively.

It is known that for every tracial positive linear map, the matrix

\[
\begin{bmatrix}
V_{\rho,\Phi}(A) & \text{Cov}_{\rho,\Phi}(B, A) \\
\text{Cov}_{\rho,\Phi}(A, B) & V_{\rho,\Phi}(B)
\end{bmatrix}
\]
is positive, which is equivalent to
\[V_{\rho,\Phi}(A) \geq \text{Cov}_{\rho,\Phi}(B,A)(V_{\rho,\Phi}(B))^{-1}\text{Cov}_{\rho,\Phi}(A,B), \] (1.6)
which is called the variance-covariance inequality; see [13, 12] for technical discussions.

If \(A \) is a \(C^* \)-algebra and \(B \) is a \(C^* \)-subalgebra of \(A \), then a conditional expectation \(\mathcal{E} : A \rightarrow B \) is a positive contractive linear map such that \(\mathcal{E}(BAC) = B\mathcal{E}(A)C \) for every \(A \in A \) and all \(B, C \in B \).

If \((\mathcal{X}, \langle \cdot, \cdot \rangle) \) is a semi-inner product module over a \(C^* \)-algebra \(A \), then the Cauchy–Schwarz inequality for \(x, y \in \mathcal{X} \) asserts that (see [9, 1])
\[\langle x, y \rangle \langle y, x \rangle \leq \| \langle y, y \rangle \| \langle x, x \rangle. \]
If \(\langle y, y \rangle \in Z(A) \), where \(Z(A) \) is the center of the \(C^* \)-algebra \(A \), then the latter inequality turns into (see [8])
\[\langle x, y \rangle \langle y, x \rangle \leq \langle y, y \rangle \langle x, x \rangle. \] (1.7)

In Section 1, we use some techniques in the non-commutative setting to give some generalizations of inequalities (1.2) and (1.1) for tracial positive linear maps between \(C^* \)-algebras. More precisely, for a tracial positive linear map \(\Phi \) between \(C^* \)-algebras under certain conditions we show that
\[V_{\rho,\Phi}(A) \|V_{\rho,\Phi}(B) \geq \frac{1}{2\sqrt{K_{m,M}(\rho[A,B])}} |\Phi(\rho[A,B])| \]
for every self adjoint operators \(A, B \). Section 2 deals with generalizations of inequalities (1.3) and (1.4) for conditional expectation maps. Among other things, we prove that
\[0 \leq I^\alpha_{\rho,\Phi}(A) \leq I_{\rho,\Phi}(A) \leq V_{\rho,\Phi}(A). \]
for every self-adjoint operator \(A \). In addition, we generalize some significant inequalities for trace in the quantum mechanical systems to inequalities for tracial positive linear maps between \(C^* \)-algebras. We indeed use some arguments differing from the classical theory to present some inequalities related to the generalized correlation and the generalized Wigner–Yanase–Dyson skew information.

2. Inequalities for Generalized Covariance and Variance

We start this section by giving a generalization of inequality (1.2). In fact we prove inequality (1.2) for a tracial positive linear map between \(C^* \)-algebras under some mild conditions. We need the following notions slightly differing from the notions defined in Definition 1.1.
Definition 2.1. For a tracial positive linear map Φ from a C^*-algebra A into a C^*-algebra B and positive operator $\rho \in A$ and for operators $A, B \in A$ we set

$$\text{Cov}_{\rho, \Phi}'(A, B) = \Phi(\rho A^* B) - \Phi(\rho A^*) \Phi(\rho)^{-1} \Phi(\rho B)$$

and

$$V_{\rho, \Phi}'(A) = \text{Cov}_{\rho, \Phi}'(A, A).$$

To achieve our result we need the following lemma.

Lemma 2.2. [2, Lemma 2.1] Let $A \succ 0, B \succeq 0$ be two operators in A. Then the block matrix

$$\begin{bmatrix} A & X \\ X^* & B \end{bmatrix}$$

is positive if and only if $B \succeq X^* A^{-1} X$.

We are ready to prove our first result.

Theorem 2.3. Let $\Phi : A \to B$ be a tracial positive linear map between C^*-algebras and $\rho \in A$ be a positive operator such that $\Phi(\rho) > 0$. If $\Phi(A)$ is a commutative subspace of B, then

$$V_{\rho, \Phi}'(A) V_{\rho, \Phi}'(B) - |\text{Re}(\text{Cov}_{\rho, \Phi}'(A, B))|^2 \geq \frac{1}{4} |\Phi(\rho[A, B])|^2$$

for all self-adjoint operators A, B. In particular,

$$V_{\rho, \Phi}'(A) V_{\rho, \Phi}'(B) \geq \frac{1}{4} |\Phi(\rho[A, B])|^2.$$

Proof. A simple calculation shows that

$$\text{Cov}_{\rho, \Phi}'(A, B) - \text{Cov}_{\rho, \Phi}'(B, A) = \Phi(\rho AB) - \Phi(\rho A) \Phi(\rho)^{-1} \Phi(\rho B)$$

$$= -\Phi(\rho BA) + \Phi(\rho B) \Phi(\rho)^{-1} \Phi(\rho A)$$

$$= \Phi(\rho[A, B]) \quad \text{(since, } \Phi(A) \text{ is commutative})$$

and

$$\text{Cov}_{\rho, \Psi}'(A, B) + \text{Cov}_{\rho, \Phi}'(B, A) = \text{Cov}_{\rho, \Psi}'(A, B) + (\text{Cov}_{\rho, \Phi}'(A, B))^*$$

$$= 2\text{Re}(\text{Cov}_{\rho, \Phi}'(A, B)).$$

Summing both sides of the above inequalities, we get

$$2\text{Cov}_{\rho, \Phi}'(A, B) = \Phi(\rho[A, B]) + 2\text{Re}(\text{Cov}_{\rho, \Phi}'(A, B)).$$

Since $\Phi(\rho[A, B])^* = -\Phi(\rho[A, B])$ and $2\text{Re}(\text{Cov}_{\rho, \Phi}'(A, B))$ is self-adjoint, it follows from the commutativity of $\Phi(A)$ that

$$|\text{Cov}_{\rho, \Phi}'(A, B)|^2 = |\text{Re}(\text{Cov}_{\rho, \Phi}'(A, B))|^2 + \frac{1}{4} |\Phi(\rho[A, B])|^2. \quad (2.1)$$
Moreover,
\[
\begin{bmatrix}
\frac{1}{2} A^* A \rho \frac{1}{2} & \frac{1}{2} A^* B \rho \frac{1}{2} & \frac{1}{2} A^* \rho \frac{1}{2} \\
\frac{1}{2} B^* A \rho \frac{1}{2} & \frac{1}{2} B^* B \rho \frac{1}{2} & \frac{1}{2} B^* \rho \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
\rho \frac{1}{2} A^* & 0 & 0 \\
0 & \rho B^* & 0 \\
0 & 0 & \rho \frac{1}{2}
\end{bmatrix}
\geq 0.
\]

It follows from the complete positivity (and indeed the 3-positivity) and the \(\text{tracial property of } \Phi\) that
\[
\begin{bmatrix}
\Phi(\rho A^* A) & \Phi(\rho A^* B) & \Phi(\rho A^*) \\
\Phi(\rho B^* A) & \Phi(\rho B^* B) & \Phi(\rho B^*) \n\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A) & \Phi(\rho B) & \Phi(\rho)
\end{bmatrix}

\geq 0.
\]

Hence, by applying Lemma 2.2, we have
\[
\begin{bmatrix}
\Phi(\rho A^* A) & \Phi(\rho A^* B) \\
\Phi(\rho B^* A) & \Phi(\rho B^* B)
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A)^* & 0 \\
\Phi(\rho B)^* & 0
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho) & 0 \\
0 & \Phi(\rho)
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A) & \Phi(\rho B)
\end{bmatrix}

\geq 0,
\]

whence
\[
\begin{bmatrix}
\Phi(\rho A^* A) & \Phi(\rho A^* B) \\
\Phi(\rho B^* A) & \Phi(\rho B^* B)
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A)^* \Phi(\rho) & \Phi(\rho A) \Phi(\rho B) \\
\Phi(\rho B)^* \Phi(\rho) & \Phi(\rho B) \Phi(\rho B)
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A)^* & 0 \\
\Phi(\rho B)^* & 0
\end{bmatrix}

\begin{bmatrix}
\Phi(\rho A) & \Phi(\rho B)
\end{bmatrix}

\geq 0.
\]

It follows from Lemma 2.2 that
\[
V'_{\rho, \Phi}(A) \geq \text{Cov}'_{\rho, \Phi}(A, B)^* \left(V'_{\rho, \Phi}(B)\right)^{-1} \text{Cov}'_{\rho, \Phi}(A, B).
\]

Applying the commutativity \(\Phi(A)\), we get
\[
V'_{\rho, \Phi}(A) V'_{\rho, \Phi}(B) \geq |\text{Cov}'_{\rho, \Phi}(A, B)|^2.
\]

Consequently, if \(A, B\) are self-adjoint operators, then
\[
\left(\Phi(\rho A^2) - \Phi(\rho A)^2 \Phi(\rho)^{-1}\right) \left(\Phi(\rho B^2) - \Phi(\rho B)^2 \Phi(\rho)^{-1}\right)

\geq \left|\text{Re}(\text{Cov}'_{\rho, \Phi}(A, B))\right|^2 + \frac{1}{4} \left|\Phi(\rho [A, B])\right|^2

\text{(by equality (2.1))}.
\]

□
Corollary 2.4. Let $\Phi : \mathcal{A} \rightarrow \mathcal{B}$ be a tracial positive linear map between C^*-algebras and $\rho \in \mathcal{A}$ be a Φ-density operator. If $\Phi(\mathcal{A})$ is a commutative subspace of \mathcal{B}, then
\[
V_{\rho,\Phi}(A)V_{\rho,\Phi}(B) - |\text{Re}(\text{Cov}_{\rho,\Phi}(\rho, A, B))|^2 \geq \frac{1}{4} |\Phi([A, B])|^2
\]
for all self-adjoint operators A, B.

Proof. Obviously, if ρ is a Φ-density operator, then $\Phi(\rho)^{-1} = I$. Now Theorem 2.3 yields the required inequality. \qed

Let \mathcal{A} be a C^*-algebra and \mathcal{B} be a C^*-subalgebra of \mathcal{A}. If $\mathcal{E} : \mathcal{A} \rightarrow \mathcal{B}$ is a tracial conditional expectation, then
\[
B\mathcal{E}(A) = \mathcal{E}(BA) = \mathcal{E}(AB) = \mathcal{E}(A)B
\]
for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Using this fact we give the following corollary.

Corollary 2.5. Let \mathcal{A} be a C^*-algebra and \mathcal{B} be a C^*-subalgebra of \mathcal{A}. If $\mathcal{E} : \mathcal{A} \rightarrow \mathcal{B}$ is a tracial conditional expectation, then
\[
V_{\rho,\mathcal{E}}(A)V_{\rho,\mathcal{E}}(B) - |\text{Re}(\text{Cov}_{\rho,\mathcal{E}}(\rho, A, B))|^2 \geq \frac{1}{4} |\mathcal{E}(\rho[A, B])|^2
\]
for all self-adjoint operators $A, B \in \mathcal{A}$ and each \mathcal{E}-density operator $\rho \in \mathcal{A}$.

Now we give a version of Heisenberg’s uncertainty relation, in the case that \mathcal{B} is not a commutative C^*-algebra. To get this result we need some lemmas.

Lemma 2.6 (Choi–Tsui). [2, pp. 59-60] Let \mathcal{A}, \mathcal{B} be C^*-algebras such that either one of them is W^*-algebra or \mathcal{B} is an injective C^*-algebra. Let $\Phi : \mathcal{A} \rightarrow \mathcal{B}$ be a tracial positive linear map. Then there exist a commutative C^*-algebra $C(X)$ and tracial positive linear maps $\phi_1 : \mathcal{A} \rightarrow C(X)$ and $\phi_2 : C(X) \rightarrow \mathcal{B}$ such that $\Phi = \phi_2 \circ \phi_1$. Moreover, in the case that Φ is unital, then ϕ_1 and ϕ_2 can be chosen to be unital. In particular, Φ is completely positive.

Lemma 2.7. (Kadison’s inequality) [4, Chapter 1] If $\Phi : \mathcal{A} \rightarrow \mathcal{B}$ is a unital 2-positive linear map between unital C^*-algebras, then
\[
\Phi(|A|^2) \geq |\Phi(A)|^2
\]
for every $A \in \mathcal{A}$.

In the case that A is a positive operator of \mathcal{A} satisfying $0 < mI \leq A \leq M I$ for some scalers $m < M$, by [4, Theorem 1.32], the reverse inequality
\[
\Phi(A^2) \leq \frac{(M + m)^2}{4Mm} \Phi(A)^2
\]
Lemma 2.8. Let $\Phi : \mathcal{A} \to \mathcal{B}$ be a unital 2-positive linear map between unital C^*-algebras. If A is an operator of \mathcal{A} satisfying $\text{sp}(A) \subseteq [m, M] \cup [-M, -m]$ for some scalers $0 < m < M$, then

$$|\Phi(A)| \leq \sqrt{\frac{(M + m)^2}{4Mm}} \Phi(|A|).$$

(2.4)

Proof. Using Lemma 2.7 and inequality (2.3), we get

$$|\Phi(A)|^2 \leq \Phi(|A|^2) \leq \frac{(M + m)^2}{4Mm} (\Phi(|A|))^2.$$

Taking square roots of both sides of the latter inequality we obtain inequality (2.4). \(\square\)

In this paper, we denote $\frac{(M + m)^2}{4Mm}$ for an operator $m \leq A \leq M$ by $K_{M,m}(A)$, which is called the Kantorovich constant of A.

The next theorem gives a Heisenberg’s type uncertainty relation for tracial positive linear maps between C^*-algebras.

Theorem 2.9. Let \mathcal{A}, \mathcal{B} be unital C^*-algebras and Ω be a compact Hausdorff space. Let $\phi_1 : \mathcal{A} \to C(\Omega)$ be a unital tracial positive linear map and $\phi_2 : C(\Omega) \to \mathcal{B}$ be a unital positive linear map and $\Phi := \phi_2 \circ \phi_1$. If $\rho \in \mathcal{A}$ is a Φ-density operator and A, B are self-adjoint operators of A such that $\text{sp}(-i\rho^\frac{1}{2}[A, B]\rho^\frac{1}{2}) \subseteq [m, M]$ for some scalers $0 < m < M$, then

$$V_{\rho, \Phi}(A)^2 V_{\rho, \Phi}(B) \geq \frac{1}{2\sqrt{K_{m,M}(\rho[A, B])}} |\Phi(\rho[A, B])|,$$

(2.5)

where $K_{m,M}(\rho[A, B])$ is the Kantorovich constant of the operator $-i\rho^\frac{1}{2}[A, B]\rho^\frac{1}{2}$.

Proof. By a continuity argument we can assume that $\rho > 0$. Due to $0 < mI \leq -i\rho^\frac{1}{2}[A, B]\rho^\frac{1}{2} \leq MI$ and ϕ_1 is unital and tracial positive linear, we infer that $mI \leq -i\phi_1(\rho[A, B]) \leq MI$. It follows that

$$mI \leq |\phi_1(\rho[A, B])| \leq MI.$$

(2.6)

Using the fact that ϕ_1 is a unital positive linear map (and so strictly positive) and applying Theorem 2.3 for ϕ_1 we get

$$(\phi_1(\rho A^2) - \phi_1(\rho A)^2\phi_1(\rho)^{-1}) (\phi_1(\rho B^2) - \phi_1(\rho B)^2\phi_1(\rho)^{-1}) \geq \frac{1}{4} |\phi_1(\rho[A, B])|^2.$$

Applying the commutativity of range of ϕ_1 we get

$$(\phi_1(\rho A^2) - \phi_1(\rho A)^2\phi_1(\rho)^{-1}) \# (\phi_1(\rho B^2) - \phi_1(\rho B)^2\phi_1(\rho)^{-1}) \geq \frac{1}{2} |\phi_1(\rho[A, B])|.$$

(2.7)
Using the fact that \((\phi_2 \circ \phi_1)(\rho) = I\), we can write

\[
(\Phi(\rho A^2) - \Phi(\rho A)^2) \sharp (\Phi(\rho B^2) - \Phi(\rho B)^2)
= ((\phi_2 \circ \phi_1)(\rho A^2) - (\phi_2 \circ \phi_1)(\rho A)^2) \\
\quad \sharp ((\phi_2 \circ \phi_1)(\rho B^2) - (\phi_2 \circ \phi_1)(\rho B)^2)
= ((\phi_2 \circ \phi_1)(\rho A^2) - (\phi_2 \circ \phi_1)(\rho A)(\phi_2 \circ \phi_1)(\rho)(\phi_2 \circ \phi_1)(\rho A)) \\
\quad \sharp ((\phi_2 \circ \phi_1)(\rho B^2) - (\phi_2 \circ \phi_1)(\rho B)(\phi_2 \circ \phi_1)(\rho)(\phi_2 \circ \phi_1)(\rho B)).
\]

We claim that

\[
((\phi_2 \circ \phi_1)(\rho A^2) - (\phi_2 \circ \phi_1)(\rho A)(\phi_2 \circ \phi_1)(\rho)(\phi_2 \circ \phi_1)(\rho A)) \\
\quad \sharp ((\phi_2 \circ \phi_1)(\rho B^2) - (\phi_2 \circ \phi_1)(\rho B)(\phi_2 \circ \phi_1)(\rho)(\phi_2 \circ \phi_1)(\rho B)) \\
\geq \phi_2(\phi_1(\rho A^2) - \phi_1(\rho A)^2\phi_1(\rho)^{-1}) \sharp \phi_2(\phi_1(\rho B^2) - \phi_1(\rho B)^2\phi_1(\rho)^{-1}).
\]

Since the range of \(\phi_1\) is commutative, to prove our claim, it is enough to show that

\[
\phi_2(\phi_1(\rho X)\phi_1(\rho)^{-1})(\rho X) \geq (\phi_2 \circ \phi_1)(\rho X)(\phi_2 \circ \phi_1)(\rho)(\phi_2 \circ \phi_1)(\rho X) \quad (2.8)
\]

for every self-adjoint operator \(X \in \mathcal{A}\) and \((\phi_2 \circ \phi_1)\)-density operator \(\rho \in \mathcal{A}\). Clearly, matrix

\[
\begin{pmatrix}
\phi_1(\rho X)\phi_1(\rho)^{-1}\phi_1(\rho X) & \phi_1(\rho X) \\
\phi_1(\rho X) & \phi_1(\rho)
\end{pmatrix}
\]

is positive. Since \(\Phi_2\) is completely positive (and so 2-positive), we get

\[
\begin{pmatrix}
\phi_2(\phi_1(\rho X)\phi_1(\rho)^{-1}\phi_1(\rho X)) & (\phi_2 \circ \phi_1)(\rho X) \\
(\phi_2 \circ \phi_1)(\rho X) & (\phi_2 \circ \phi_1)(\rho)
\end{pmatrix} \geq 0,
\]
which ensures the validity of inequality (2.8). Therefore,

\[V_{\rho,\Phi}(A) \sharp V_{\rho,\Phi}(B) = (\Phi(\rho A^2) - \Phi(\rho A)^2) \leq (\Phi(\rho B^2) - \Phi(\rho B)^2) \]

\[= ((\phi_2 \circ \phi_1)(\rho A^2) - (\phi_2 \circ \phi_1)(\rho A)^2) \]

\[\sharp ((\phi_2 \circ \phi_1)(\rho B^2) - (\phi_2 \circ \phi_1)(\rho B)^2) \]

\[= (\phi_2(\phi_1(\rho A^2) - \phi_1(\rho A)^2 \phi_1(\rho)^{-1}) \)

\[\sharp (\phi_2(\phi_1(\rho B^2) - \phi_1(\rho B)^2 \phi_1(\rho)^{-1}) \)

(2.9)

(by inequality (2.8))

\[\geq \frac{1}{2} \phi_2(|\phi_1(\rho[A,B])|) \]

(by inequality (2.7))

\[\geq \frac{1}{2 \sqrt{K_{m,M}(\rho[A,B])}} |\phi_2 \circ \phi_1(\rho[A,B])| \]

(by inequality (2.4))

\[= \frac{1}{2 \sqrt{K_{m,M}(\rho[A,B])}} |\Phi(\rho[A,B])| \]

Applying Lemma 2.6, we immediately get the following corollary.

Corollary 2.10. Let \(\mathcal{A}, \mathcal{B} \) be \(C^* \)-algebras such that either one of them is \(W^* \)-algebra or \(\mathcal{B} \) is an injective \(C^* \)-algebra. Let \(\Phi : \mathcal{A} \rightarrow \mathcal{B} \) be a tracial positive linear map and \(\rho \in \mathcal{A} \) be a \(\Phi \)-density operator and \(A, B \) are self-adjoint operators in \(\mathcal{A} \) such that \(\text{sp}(-ip^{\frac{1}{2}}[A,B]\rho^{\frac{1}{2}}) \subseteq [m, M] \) for some scalars \(0 < m < M \), then

\[V_{\rho,\Phi}(A) \sharp V_{\rho,\Phi}(B) \geq \frac{1}{2 \sqrt{K_{m,M}(\rho[A,B])}} |\Phi(\rho[A,B])| , \]

where \(K_{[m,M]}(\rho[A,B]) \) is the Kantorovich constant of the operator \(-ip^{\frac{1}{2}}[A,B]\rho^{\frac{1}{2}}\).

If \(\phi_1 := \text{Tr} \) is the usual trace and \(\phi_2 \) is the identity map on \(\mathbb{C} \), then it immediately follows from inequality (2.9) that

\[V_{\rho}(A) \sharp V_{\rho}(B) \frac{1}{2} \geq \frac{1}{2} |\text{Tr}(\rho[A,B])| . \]
So we get the following result.

Corollary 2.11. For every self-adjoint operators A, B and each density operator ρ it holds that

$$V_\rho(A)V_\rho(B) \geq \frac{1}{4} |\text{Tr}(\rho[A, B])|^2.$$

Remark 2.12. Let \mathcal{A} and \mathcal{B} be unital C^*-algebras. By readout the proof of Theorem 2.3, Theorem 2.9 and Corollary 2.4, if we put $\rho := I$, then we can replace the condition “tracial positive linear map” with “unital positive linear map”.

3. Inequalities for Generalized Correlation and Wigner–Yanase Skew Information

We aim to give generalizations of inequality (1.3) and inequality (1.4). In addition we generalize some inequalities related to classical Wigner–Yanase–Dyson skew information to tracial positive linear map. As mentioned in the introduction, in the case that $\alpha = \frac{1}{2}$ we denote $I^\alpha_{\rho, \Phi}$ by $I_{\rho, \Phi}$. In some cases we prove our result by assuming that ρ is only a positive operator. To get these generalizations we need some lemmas. The technique of the first lemma is classic.

Lemma 3.1. Let \mathcal{A} and \mathcal{B} be C^*-algebras. If $\Phi : \mathcal{A} \rightarrow \mathcal{B}$ is a tracial positive linear map, then

$$I^\alpha_{\rho, \Phi}(A) = \Phi(\rho A^2) - \Phi(\rho^{1-\alpha} A^\alpha A) \geq 0 \quad (\alpha \in [0, 1]) \quad (3.1)$$

for every self-adjoint operator $A \in \mathcal{A}$ and each positive operator $\rho \in \mathcal{A}$.

Proof. Put $\Delta = \{\alpha \in [0, 1] : \Phi(\rho A^2) \geq \Phi(\rho^\alpha A^{1-\alpha} A)\}$. Clearly $\{0, 1\} \subseteq \Delta$ and the set Δ is closed, since the map $\alpha \rightarrow \Phi(\rho^\alpha A^{1-\alpha} A)$ is norm continuous. Therefore, to prove $[0, 1] \subseteq \Delta$ it is enough to show that $\alpha, \beta \in \Delta$ implies $\frac{\alpha + \beta}{2} \in \Delta$.

It follows from the tracial positivity of Φ that

$$0 \leq \Phi \left((\rho^{\frac{1-\alpha}{2}} A^{\rho^\alpha} - \rho^{\frac{1-\beta}{2}} A^{\rho^\beta})^* (\rho^{\frac{1-\alpha}{2}} A^{\rho^\alpha} - \rho^{\frac{1-\beta}{2}} A^{\rho^\beta}) \right)$$

$$= \Phi \left((\rho^{\frac{1-\alpha}{2}} A^{\rho^\alpha} - \rho^{\frac{1-\beta}{2}} A^{\rho^\beta}) (\rho^{\frac{1-\alpha}{2}} A^{\rho^\alpha} - \rho^{\frac{1-\beta}{2}} A^{\rho^\beta}) \right)$$

$$= \Phi \left(\rho^{\frac{1-\alpha}{2}} A^{\rho^{1-\alpha} A} - \rho^{\frac{1-\beta}{2}} A^{\rho^{1-\alpha} A} - \rho^{\frac{1-\alpha}{2}} A^{\rho^{1-\alpha} A} + \rho^{\frac{1-\beta}{2}} A^{\rho^{1-\alpha} A} - \rho^{\frac{1-\alpha}{2}} A^{\rho^{1-\alpha} A} + \rho^{\frac{1-\beta}{2}} A^{\rho^{1-\alpha} A} \right)$$

$$= \Phi(\rho^{\alpha} A^{1-\alpha} A) - \Phi(\rho^{\frac{1-\alpha}{2}} A^{\rho^{1-\alpha} A}) - \Phi(\rho^{\frac{1-\beta}{2}} A^{\rho^{1-\alpha} A}) + \Phi(\rho^{\alpha} A^{1-\beta} A)$$

Hence,

$$\Phi(\rho^{\alpha} A^{1-\alpha} A) + \Phi(\rho^{\beta} A^{1-\beta} A) \geq 2\Phi(\rho^{\frac{1-\alpha}{2}} A^{\rho^{1-\alpha} A}), \quad (3.2)$$
since $\alpha, \beta \in \Delta$, we infer
\[
\Phi(\rho A^2) \geq \Phi(\rho^{\alpha+\beta} A^{1-\alpha-\beta}),
\]
which implies that $\frac{\alpha+\beta}{2} \in \Delta$. \qed

Remark 3.2. Inequality (3.2) shows that the map $\alpha \rightarrow \Phi(\rho^\alpha A^{1-\alpha} A)$ is convex. In addition, we have
\[
I_{\rho, \alpha}^\alpha(A) \leq I_{\rho, \Phi}(A) \quad (\alpha \in \mathbb{R}) \tag{3.3}
\]
for every self-adjoint operator A and each positive operator ρ. Indeed, using the positivity and the tracial property of Φ, we get
\[
0 \leq \Phi\left((\rho^{\frac{1}{2}} A^{\frac{1}{2}} - \rho^{\frac{1-\alpha}{2}} A^{\frac{1-\alpha}{2}})(\rho^{\frac{1-\alpha}{2}} A^{\frac{1-\alpha}{2}} - \rho^{\frac{1}{2}} A^{\frac{1}{2}})\right)
= 2\Phi(\rho^\alpha A^{1-\alpha} A) - 2\Phi(\rho^{\frac{1}{2}} A^{\frac{1}{2}} A).
\]
Therefore $\Phi(\rho^\alpha A^{1-\alpha} A) \geq \Phi(\rho^{\frac{1}{2}} A^{\frac{1}{2}} A)$ and so
\[
I_{\rho, \Phi}(A) = \Phi(\rho A^2) - \Phi(\rho^\alpha A^{1-\alpha} A) \leq \Phi(\rho A^2) - \Phi(\rho^{\frac{1}{2}} A^{\frac{1}{2}} A) = I_{\rho, \Phi}(A).
\]

Let Φ be a tracial positive linear map between C^* algebras. It follows from Lemma 3.1 that $I_{\rho, \Phi}(A) \geq 0$ for every self-adjoint operator A, but it is not true in general when A is an arbitrary operator. Hence even if Φ is a tracial positive functional, then $\text{Corr}_{\rho, \Phi}^\alpha(\cdot, \cdot)$ cannot induce a complex valued semi-inner product and we cannot use the Cauchy–Schwarz inequality; see [18, Remark IV.2].

The next lemma helps us to give a positive definite version of the generalized correlation.

Lemma 3.3. Let $\Phi : \mathcal{A} \rightarrow \mathcal{B}$ be a tracial positive linear map and $\rho \in \mathcal{A}$ be a positive operator. Then
\[
I_{\rho, \Phi}(A) + I_{\rho, \Phi}(A^*) \geq 0
\]
for every $A \in \mathcal{A}$.

Proof. We define $\tilde{\Phi} : M_2(\mathcal{A}) \rightarrow B$ by $\tilde{\Phi}\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) = \frac{1}{2}\Phi(A + D)$. It is obvious that $\tilde{\Phi}$ is a tracial positive linear map. Take $\tilde{A} = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}$ and $\tilde{\rho} = \begin{bmatrix} \rho & 0 \\ 0 & \rho \end{bmatrix}$. Clearly \tilde{A} is a self-adjoint operator in $M_2(\mathcal{A})$ and $\tilde{\rho}$ is a Φ-density operator.
Using Lemma 3.1 for \(\tilde{\Phi} \), we get

\[
\frac{1}{2} (\Phi(\rho A^* A) + \Phi(\rho A A^*)) = \tilde{\Phi} \left(\begin{bmatrix} \rho & 0 \\ 0 & \rho \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A^* \end{bmatrix} \right)
\]

\[
= \tilde{\Phi}(\tilde{\rho} A^2)
\]

\[
\geq \tilde{\Phi}(\tilde{\rho}^{1-\alpha} \tilde{\rho} \tilde{A}^{\alpha} \tilde{A})
\]

(by Lemma 3.1)

\[
= \tilde{\Phi} \left(\begin{bmatrix} \rho^{1-\alpha} & 0 \\ 0 & \rho^{1-\alpha} \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A^* \end{bmatrix} \right)
\]

\[
= \frac{1}{2} (\Phi(\rho^{1-\alpha} A^* \rho^\alpha A) + \Phi(\rho^{1-\alpha} A \rho^\alpha A^*)).
\]

Hence,

\[
I^\alpha_{\rho, \Phi}(A) + I^\alpha_{\rho, \Phi}(A^*) = \Phi(\rho A^* A) + \Phi(\rho A A^*)
\]

\[
-\Phi(\rho^{1-\alpha} A^* \rho^\alpha A) - \Phi(\rho^{1-\alpha} A \rho^\alpha A^*) \geq 0.
\]

\[\square\]

Definition 3.4. Let \(\Phi : \mathcal{A} \to \mathcal{B} \) be a tracial positive linear map and \(\rho \in \mathcal{A} \) be a \(\Phi \)-density operator. Then for every operators \(A, B \in \mathcal{A} \), we set

\[
\text{Corr}^\alpha_{\rho, \Phi}(A, B) := \frac{1}{2} \left(\text{Corr}^\alpha_{\rho, \Phi}(A, B) + \text{Corr}^\alpha_{\rho, \Phi}(B^*, A^*) \right)
\]

and \(I^\alpha_{\rho, \Phi}(A) := \text{Corr}^\alpha_{\rho, \Phi}(A, A) \).

It is easy to check that \(\text{Corr}^\alpha_{\rho, \Phi}(A, B) \) has the following properties:

(i) \(\text{Corr}^\alpha_{\rho, \Phi}(A, A) \geq 0 \), for every \(A \in \mathcal{A} \), (by Lemma 3.3),

(ii) \(\text{Corr}^\alpha_{\rho, \Phi}(A, B + \lambda C) = \text{Corr}^\alpha_{\rho, \Phi}(A, B) + \lambda \text{Corr}^\alpha_{\rho, \Phi}(A, C) \), for all \(A, B \in \mathcal{A} \) and every \(\lambda \in \mathbb{C} \),

(iii) \(\text{Corr}^\alpha_{\rho, \Phi}(A, B)^* = \text{Corr}^\alpha_{\rho, \Phi}(B, A) \).

Next we give a generalization of inequality (1.3).

Theorem 3.5. Let \(\mathcal{A} \) be a \(\mathcal{C}^* \)-algebra and \(\mathcal{B} \) be \(\mathcal{C}^* \)-subalgebra of \(\mathcal{A} \). If \(\mathcal{E} : \mathcal{A} \to \mathcal{B} \) is a tracial conditional expectation, then

\[
|\text{Re} (\text{Corr}^\alpha_{\rho, \mathcal{E}}(A, B))|^2 \leq I^\alpha_{\rho, \mathcal{E}}(A) I^\alpha_{\rho, \mathcal{E}}(B)
\]

for all self-adjoint operators \(A, B \in \mathcal{A} \) and each \(\mathcal{E} \)-density operator \(\rho \in \mathcal{A} \).
Proof. Define the map \(\langle \cdot, \cdot \rangle : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B} \) by \(\langle A, B \rangle = \text{Corr}_{\rho, \xi}^\alpha(A, B) \). If \(A, B \in \mathcal{A} \) and \(C \in \mathcal{B} \), then

\[
\langle A, BC \rangle = \text{Corr}_{\rho, \xi}^\alpha(A, BC)
\]

\[
= \frac{1}{2} \left(\text{Corr}_{\rho, \xi}^\alpha(A, BC) + \text{Corr}_{\rho, \xi}^\alpha(C^*B^*, A^*) \right)
\]

\[
= \frac{1}{2} \left(\mathcal{E}(\rho A^* BC) - \mathcal{E}(\rho^{1-\alpha} A^* \rho^\alpha BC) + \mathcal{E}(\rho BCA^*) - \mathcal{E}(\rho^{1-\alpha} BC \rho^\alpha A^*) \right)
\]

\[
= \frac{1}{2} \left(\mathcal{E}(\rho A^* BC) - \mathcal{E}(\rho^{1-\alpha} A^* \rho^\alpha BC) + \mathcal{E}(CA^* \rho B) - \mathcal{E}(C \rho^\alpha A^* \rho^{1-\alpha} B) \right)
\]

(since \(\mathcal{E} \) is tracial)

\[
= \frac{1}{2} \left(\mathcal{E}(\rho A^* B)C - \mathcal{E}(\rho^{1-\alpha} A^* \rho^\alpha B)C + \mathcal{E}(\rho BA^*)C - \mathcal{E}(\rho^{1-\alpha} B \rho^\alpha A^*)C \right)
\]

(since \(\mathcal{E} \) is a conditional expectation and by equality (2.2))

\[
= \text{Corr}_{\rho, \xi}^\alpha(A, B)C
\]

\[
= \langle A, B \rangle C.
\]

Using this fact and Definition 3.4 we see that \((\mathcal{A}, \langle \cdot, \cdot \rangle) \) is a semi-inner product \(\mathcal{B} \)-module. Moreover, equality (2.2) shows that \(\text{ran}(Z) \subseteq \mathcal{Z}(\mathcal{B}) \). If \(A \) and \(B \) are self-adjoint operators in \(\mathcal{A} \), then we get

\[
\left| \text{Re}(\text{Corr}_{\rho, \xi}^\alpha(A, B)) \right|^2 = \left| \frac{1}{2} \left(\text{Corr}_{\rho, \xi}^\alpha(A, B) + \text{Corr}_{\rho, \xi}^\alpha(B, A) \right) \right|^2
\]

\[
= \left| \text{Corr}_{\rho, \xi}^\alpha(A, B) \right|^2
\]

\[
= \left| \langle A, B \rangle \right|^2
\]

\[
\leq \langle A, A \rangle \langle B, B \rangle \quad \text{(by inequality (1.7))}
\]

\[
= I_{\rho, \xi}^\alpha(A) I_{\rho, \xi}^\alpha(B) \quad \text{(since} \ A, B \text{are self-adjoint)}.\]

\[
\square
\]

Let \(A \) be a self-adjoint operator and \(\rho \) be a density operator. According to [11, Section III] we have \(I_\rho(A) \leq V_\rho(A) \). We give a generalization of this inequality for a tracial 2-positive linear map \(\Phi \) and a \(\Phi \)-density operator \(\rho \). It follows from Lemma 2.2 that the matrix

\[
\begin{bmatrix}
\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} & \rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} \\
\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} & \rho
\end{bmatrix}
\]

is positive. Since \(\Phi \) is 2-positive, we have

\[
\begin{bmatrix}
\Phi(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} A \rho^{\frac{1}{2}}) & \Phi(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} \\
\Phi(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}}) & \Phi(\rho)
\end{bmatrix} \geq 0.
\]
Therefore, by using Lemma 2.2 and applying the tracial property of Φ we get

$$
\Phi(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}}) \geq \Phi(\rho A) \Phi^{-1}(\rho A) = \Phi(\rho A)^2,
$$

which implies that $I_{\rho, \Phi}(A) \leq V_{\rho, \Phi}(A)$. Consequently, by using inequality (3.3), we reach $I^0_{\rho, \Phi}(A) \leq V_{\rho, \Phi}(A)$.

For a tracial positive linear map Φ and a self-adjoint operator A, we set

$$
J_{\rho, \Phi}(A) := 2V_{\rho, \Phi}(A) - I_{\rho, \Phi}(A) \quad \text{and} \quad U_{\rho, \Phi}(A) := I_{\rho, \Phi}(A) \hat{=} J_{\rho, \Phi}(A).
$$

Since $U_{\rho, \Phi}(A) \leq V_{\rho, \Phi}(A)$ (by the arithmetic-geometric mean inequality), the next theorem is a refinement of Theorem 2.9 in the case that Φ is a conditional expectation. To establish it, we model the classical techniques (see [10]) to the non commutative framework.

Theorem 3.6. Let \mathcal{A} be a C^*-algebra and \mathcal{B} be a C^*-subalgebra of \mathcal{A}. If $\mathcal{E} : \mathcal{A} \rightarrow \mathcal{B}$ is a tracial conditional expectation, then

$$
U_{\rho, \mathcal{E}}(A)U_{\rho, \mathcal{E}}(B) \geq \frac{1}{4}|\mathcal{E}(\rho[A, B])|^2
$$

for all self-adjoint operators $A, B \in \mathcal{A}$ and each \mathcal{E}-density operator $\rho \in \mathcal{A}$.

Proof. Consider self-adjoint operators $A_0 = A - \mathcal{E}(\rho A)$ and $B_0 = B - \mathcal{E}(\rho B)$. A simple calculation shows that

$$
I_{\rho, \mathcal{E}}(A) = \frac{1}{2} \mathcal{E}([\rho^{\frac{1}{2}}, A_0])^2 \quad \text{and} \quad J_{\rho, \mathcal{E}}(B) = \frac{1}{2} \mathcal{E}([\rho^{\frac{1}{2}}, B_0])^2,
$$

where $\{\rho^{\frac{1}{2}}, B\} = \rho^{\frac{1}{2}} B_0 + B_0 \rho^{\frac{1}{2}}$. Indeed,

\[
\mathcal{E}([i[\rho^{\frac{1}{2}}, A_0]])^2 = -\mathcal{E}(\rho^{\frac{1}{2}} A_0 \rho^{\frac{1}{2}} A_0 - \rho^{\frac{1}{2}} A_0^2 \rho^{\frac{1}{2}} A_0 - A_0 \rho^{\frac{1}{2}} A_0 \rho^{\frac{1}{2}} A_0 + A_0 \rho^{\frac{1}{2}} A_0 \rho^{\frac{1}{2}} A_0)
\]

\[
= 2\mathcal{E}(\rho A_0^2) - 2\mathcal{E}(\rho^{\frac{1}{2}} A_0 \rho^{\frac{1}{2}} A_0)
\]

(by the tracial property of \mathcal{E})

\[
= 2\mathcal{E}(\rho A - \mathcal{E}(\rho A))^2 - 2\mathcal{E}(\rho^{\frac{1}{2}} (A - \mathcal{E}(\rho A)) \rho^{\frac{1}{2}} (A - \mathcal{E}(\rho A)))
\]

\[
= 2\mathcal{E}(\rho A^2) - 2(\mathcal{E}(\rho A))^2 - 2\mathcal{E}(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} A) + 2(\mathcal{E}(\rho A))^2
\]

(since \mathcal{E} is a conditional expectation)

\[
= 2\mathcal{E}(\rho A^2) - 2\mathcal{E}(\rho^{\frac{1}{2}} A \rho^{\frac{1}{2}} A).
\]
Similarly, we can establish the other inequality in (3.6).

Let $Z \in \mathcal{B}$. Then

$$
\begin{align*}
\mathcal{E}
\left(iZ[\rho^\frac{1}{2}, A_0]\{\rho^\frac{1}{2}, B_0\}
ight. &
+ \left.i\{\rho^\frac{1}{2}, B_0\}[\rho^\frac{1}{2}, A_0]Z\right) \\
= & \quad Z\mathcal{E}
\left(i\left(\rho^\frac{1}{2}A_0\rho^\frac{1}{2}B_0 + \rho^\frac{1}{2}A_0 B_0 \rho^\frac{1}{2} - A_0 \rho^\frac{1}{2} \rho^\frac{1}{2} B_0
- A_0 \rho^\frac{1}{2} B_0 \rho^\frac{1}{2} + \rho^\frac{1}{2} B_0 \rho^\frac{1}{2} A_0
- \rho^\frac{1}{2} B_0 A_0 \rho^\frac{1}{2} + B_0 \rho^\frac{1}{2} \rho^\frac{1}{2} A_0 - B_0 \rho^\frac{1}{2} A_0 \rho^\frac{1}{2}\right)\right)
\quad \text{(by equality (2.2))} \\
= & \quad 2iZ\mathcal{E}(\rho[A_0, B_0]) \\
= & \quad 2iZ\mathcal{E}(\rho[A - \mathcal{E}(\rho A), B - \mathcal{E}(\rho B)]) \\
= & \quad 2iZ\mathcal{E}\left(\rho((A - \mathcal{E}(\rho A))(B - \mathcal{E}(\rho B))
- (B - \mathcal{E}(\rho B))(A - \mathcal{E}(\rho A)))\right) \\
= & \quad 2iZ\mathcal{E}\left(\rho(AB - A\mathcal{E}(\rho B) - \mathcal{E}(\rho A)B + \mathcal{E}(\rho A)\mathcal{E}(\rho B)
- BA + B\mathcal{E}(\rho A) + \mathcal{E}(\rho B)A - \mathcal{E}(\rho B)\mathcal{E}(\rho A))\right) \\
= & \quad 2iZ\left(\mathcal{E}(\rho AB) - \mathcal{E}(\rho A)\mathcal{E}(\rho B) - \mathcal{E}(\rho A)\mathcal{E}(\rho B)
+ \mathcal{E}(\rho)\mathcal{E}(\rho A)\mathcal{E}(\rho B) - \mathcal{E}(\rho BA) + \mathcal{E}(\rho B)\mathcal{E}(\rho A)
+ \mathcal{E}(\rho B)\mathcal{E}(\rho A) - \mathcal{E}(\rho)\mathcal{E}(\rho B)\mathcal{E}(\rho A)\right) \\
= & \quad 2iZ\mathcal{E}(\rho[A, B])
\quad \text{(by equality 2.2)}.
\end{align*}
$$

Hence,

$$
\begin{align*}
\mathcal{E}
\left(iZ[\rho^\frac{1}{2}, A_0]\{\rho^\frac{1}{2}, B_0\}
ight. &
+ \left.i\{\rho^\frac{1}{2}, B_0\}[\rho^\frac{1}{2}, A_0]Z\right) = 2iZ\mathcal{E}(\rho[A, B]). \quad \text{(3.7)}
\end{align*}
$$

Let $Z \in \mathcal{B}$ be a self-adjoint operator and $X = i[\rho^\frac{1}{2}, A_0]Z + \{\rho^\frac{1}{2}, B_0\}$. Then

$$
\begin{align*}
0 \leq \mathcal{E}(X^*X) & = \mathcal{E}\left((iZ[\rho^\frac{1}{2}, A_0] + \{\rho^\frac{1}{2}, B_0\})(i[\rho^\frac{1}{2}, A_0]Z + \{\rho^\frac{1}{2}, B_0\})\right) \\
& = \mathcal{E}\left(- Z[\rho^\frac{1}{2}, A_0][\rho^\frac{1}{2}, A_0]Z + iZ[\rho^\frac{1}{2}, A_0]\{\rho^\frac{1}{2}, B_0\}
+ i\{\rho^\frac{1}{2}, B_0\}[\rho^\frac{1}{2}, A_0]Z + \{\rho^\frac{1}{2}, B_0\}^2\right) \\
& = 2I_{\rho, \mathcal{E}(A)}Z^2
+ 2i\mathcal{E}(\rho[A, B])Z
+ 2J_{\rho, \mathcal{E}(B)} \\
& \quad \text{(by equality (3.6) and equality (3.7))}.
\end{align*}
$$
Without loss of the generality we can assume that $I_{\rho,\mathcal{E}}(A) > 0$. If we put $Z := -\frac{1}{2}I_{\rho,\mathcal{E}}(A)^{-1}\mathcal{E}(\rho[A,B])$, then we get
\[
-\frac{1}{4}I_{\rho,\mathcal{E}}(A)^{-1}\mathcal{E}(\rho[A,B])^2 + \frac{1}{2}I_{\rho,\mathcal{E}}(A)^{-1}\mathcal{E}(\rho[A,B])^2 + J_{\rho,\mathcal{E}}(B) \geq 0.
\]
or equivalently,
\[
I_{\rho,\mathcal{E}}(A)J_{\rho,\mathcal{E}}(B) \geq -\frac{1}{4}\mathcal{E}(\rho[A,B])^2 = \frac{1}{4}|\mathcal{E}(\rho[A,B])|^2,
\]since $\mathcal{E}(\rho[A,B])^* = -\mathcal{E}(\rho[A,B])$. It follows from the fact that for every $X \in \mathcal{A}$, $\mathcal{E}(X) \subseteq \mathcal{Z}(\mathcal{B})$ (equality (2.2)), we have
\[
U_{\rho,\mathcal{E}}(A)U_{\rho,\mathcal{E}}(B) = (I_{\rho,\mathcal{E}}(A)\delta J_{\rho,\mathcal{E}}(A))(J_{\rho,\mathcal{E}}(B)\delta J_{\rho,\mathcal{E}}(B))
\]
= $$(I_{\rho,\mathcal{E}}(A)J_{\rho,\mathcal{E}}(B))\frac{1}{2}(I_{\rho,\mathcal{E}}(B)J_{\rho,\mathcal{E}}(A))\frac{1}{2}
\]
(by the commutivity property in equality (2.2))
\[
\geq \frac{1}{4}|\mathcal{E}(\rho[A,B])|^2
\]
(by inequality (3.8)).

As a consequence we get the following result of Luo [10].

Corollary 3.7. [10, p. 2] If A, B are two self-adjoint operators, then
\[
U_{\rho}(A)U_{\rho}(B) \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^2.
\]

References

[1] J.M. Aldaz, S. Barza, M. Fujii and M. S. Moslehian, Advances in operator Cauchy-Schwarz inequalities and their reverses, Ann. Funct. Anal. 6 (2015), no. 3, 275–295.

[2] M. D. Choi and S. K. Tsui, Tracial positive linear maps of C^*-algebras, Proc. Amer. Math. Soc. 87 (1983), no. 1, 57–61.

[3] S. Friedland, V. Gheorghiu and G. Gour, Universal uncertainty relations, Phys. Rev. Lett. 111 (2013), 230401.

[4] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Self-adjoint Operators on a Hilbert Space, Element, Zagreb, Croatia, 2005.

[5] P. Gibilisco and T. Isola, How to distinguish quantum covariances using uncertainty relations, J. Math. Anal. Appl. 384 (2011), 670–676.

[6] W. Heisenberg, Über den anschaulichen Inhalt der quantum mechanischen Kinematik und Mechanik, Zeitschrift für Physik, 43 (1927), 172–198.

[7] C. K. Ko and H. J. Yoo, Uncertainty relation associated with a monotone pair skew information, J. Math. Anal. Appl. 383 (2011) 208–214.
[8] D. Ilišević and S. Varošanec, *On the Cauchy–Schwarz inequality and its reverse in semi-inner product C*-modules*, Banach J. Math. Anal. 1 (2007), 78–84.

[9] E. C. Lance, *Hilbert C*-Modules*, London Math. Soc. Lecture Note Series, Vol. 210, Cambridge Univ. Press, 1995.

[10] S. Luo, *Heisenberg uncertainty relation for mixed states*, Phys. Rev. A 72 (2005), 042110, pp.3.

[11] S. Luo and Q. Zhang, *On skew information*, IEEE Trans. Inf. Theo. 50 (2004), 1778–1782, and *Correction to “On skew information”*, IEEE Trans. Info. Theo. 51 (2005), p.4432.

[12] J. S. Matharu and M. S. Moslehian, *Gruss inequality for some types of positive linear maps*, J. Operator Theory 73 (2015), no. 1, 265–278.

[13] M. S. Moslehian and R. Rajić, *A Grüss inequality for n-positive linear maps*, Linear Algebra Appl. 433 (2010), 1555–1560.

[14] E. Schrödinger, *About Heisenberg uncertainty relation*, Proc. Russian Acad. Sci. Phys. Math. Section XIX (1930), p.293.

[15] E. Størmer, *Positive Linear Maps of Operator Algebras*, Springer-Verlag Berlin Heidelberg, 2013.

[16] G. Tóth and D. Petz, *Extremal Properties of the Variance and the Quantum Fisher Information*, Phys. Rev. A 87, (2013) 0323–24.

[17] E. H. Lieb, *Convex trace functions and the Wigner–Yanase–Dyson conjecture*, Adv. Math. 11 (1973), 267–288.

[18] K. Yanagi, S. Furuichi and K. Kuriyama, *A generalized skew information and uncertainty relation*, IEEE Trans. Info. Theo. 51 (2005), 4401–4404.

Department of Pure Mathematics, Center Of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

E-mail address: dadkhah61@yahoo.com
E-mail address: moslehian@um.ac.ir