Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

Hansen, Justine Y; Shafiei, Golia; Markello, Ross D; Smart, Kelly; Cox, Sylvia M L; Nørgaard, Martin; Beliveau, Vincent; Wu, Yanjun; Gallezot, Jean-Dominique; Aumont, Étienne; Servaes, Stijn; Scala, Stephanie G; DuBois, Jonathan M; Wainstein, Gabriel; Bezgin, Gleb; Funck, Thomas; Schmitz, Taylor W; Spreng, R Nathan; Galovic, Marian; Koepp, Matthias J; Duncan, John S; Coles, Jonathan P; Fryer, Tim D; Aigbirhio, Franklin I; McGinnity, Colm J; Hammers, Alexander; Soucy, Jean-Paul; Baillet, Sylvain; Guimond, Synthia; Hietala, Jarmo; Bedard, Marc-André; Leyton, Marco; Kobayashi, Eliane; Rosa-Neto, Pedro; Ganz, Melanie; Knudsen, Gitte M; Palomero-Gallagher, Nicola; Shine, James M; Carson, Richard E; Tuominen, Lauri; Dagher, Alain; Misic, Bratislav

Published in:
Nature Neuroscience

DOI:
10.1038/s41593-022-01186-3

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox, S. M. L., Nørgaard, M., Beliveau, V., Wu, Y., Gallezot, J-D., Aumont, É., Servaes, S., Scala, S. G., DuBois, J. M., Wainstein, G., Bezgin, G., Funck, T., Schmitz, T. W., Spreng, R. N., Galovic, M., ... Misic, B. (2022). Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nature Neuroscience, 25, 1569–1581. https://doi.org/10.1038/s41593-022-01186-3

Download date: 01. Dec. 2024
Neurotransmitter receptors are heterogeneously distributed across the neocortex and respond to the binding of a neurotransmitter. By modulating the excitability and firing rate of the cell, neurotransmitter receptors effectively mediate the transfer and propagation of electrical impulses. As such, neurotransmitter receptors drive synaptic plasticity, modify neural states and ultimately shape network-wide communication. These receptors are diverse in their structure and function: receptors may be ionotropic or metabotropic, may be...
Results

A comprehensive cortical profile of neurotransmitter receptor densities was constructed by collating PET images from a total of 19 different neurotransmitter receptors, transporters and receptor-binding sites across nine different neurotransmitter systems, including dopamine, norepinephrine, serotonin, acetylcholine, glutamate, GABA, histamine, cannabinoid and opioid (Fig. 1). All PET images were acquired in healthy participants (see Table 1 for a complete list of receptors and transporters, corresponding PET tracers, ages and number of participants). A group-average tracer map was constructed across participants within each study. To mitigate variation in image acquisition and pre-processing, and to ease biological interpretability, all PET tracer maps were parcellated into the same 100 cortical regions and z-scored. Note that, although the data include both cortical and subcortical data, we restricted our analyses to the cortex. In total, we present tracer maps available at https://github.com/netneurolab/hansen_receptors. We use multiple imaging modalities to comprehensively situate cortical neurotransmitter receptor densities within micro-scale and macro-scale neural architectures. Using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI, we show that neurotransmitter receptor densities follow the organizational principles of the brain’s structural and functional connectomes. Moreover, we found that neurotransmitter receptor densities shape magnetoencephalography (MEG)-derived oscillatory neural dynamics. To determine how neurotransmitter receptor distributions affect cognition and disease, we mapped receptor densities to meta-analytic (Neurosynth-derived) functional activations, where we uncovered a spatially co-varying axis of neuromodulators and mood-related processes. Next, we linked receptor distributions to ENIGMA-derived patterns of cortical atrophy across 13 neurological, psychiatric and neurodevelopmental disorders, uncovering specific receptor–disorder links. We validated our findings and extended the scope of the investigation to additional receptors using an independently collected autoradiography neurotransmitter receptor dataset. Altogether, we demonstrate that, across spatial and temporal scales, chemoarchitecture consistently plays a key role in brain function.

Fig. 1 | PET images of neurotransmitter receptors and transporters. PET tracer images were collated and averaged to produce mean receptor distribution maps of 19 different neurotransmitter receptors and transporters across nine different neurotransmitter systems and a combined total of more than 1,200 healthy participants.
Receptor distributions reflect structural and functional organization
To quantify the potential for two brain regions to be similarly modulated by endogenous or exogenous input, we computed the correlation of receptor/transporter fingerprints between pairs of brain regions (Fig. 2a). Hereafter, we refer to this quantity as ‘receptor similarity’, analogous to other commonly used measures of inter-regional attribute similarity, including anatomical covariance, morphometric similarity, gene coexpression, temporal profile similarity and microstructural similarity. Receptor similarity is approximately normally distributed (Fig. 2b) and decreases exponentially with Euclidean distance, supporting the notion that proximal neural elements share similar microarchitecture (Fig. 2c; refs. 13,19). We confirm that no single receptor or transporter exerts undue influence on the receptor similarity matrix (see the ‘Sensitivity and robustness analyses’ section).

Receptor similarity addresses the between-region similarity of receptor fingerprints. To complement this, we calculated the first principal component of receptor density, which represents a regional quantification of receptor similarity (Fig. 2d). This gradient separates insular and cingulate cortex from somatomotor and posterior parietal regions and resembles the macaque principal receptor expression gradient16. The first principal component differentiates laminar classes, suggesting that the receptor expression strongly depends on lamination (Fig. 2e; one-way ANOVA F = 15.82, P = 1.95 × 10−5; ref. 10). Additionally, we found a significant correlation between the receptor gradient and synapse density, consistent with the finding that the macaque receptor gradient increases with the number of dendritic spines (Fig. 2f; Pearson’s r(98) = 0.44, Psys = 0.0003, confidence interval (CI) = [0.26, 0.58], two-tailed). For completeness, we stratified receptors by biological mechanisms (excitatory/inhibitory, ionotropic/metabotropic and Gs-/Gi/Gq-coupled metabotropic pathways) and neurotransmitter protein structure (monoamine/non-monoamine) to provide additional insight about the underlying biological pathways (Fig. 2g).

Using group-consensus structural and resting-state functional connectomes from the Human Connectome Project (HCP), we show that neurotransmitter receptor organization reflects structural and functional connectivity. Specifically, we found that receptor similarity is greater between pairs of brain regions that are structurally connected, suggesting that anatomically connected areas are likely to be co-modulated (Fig. 3a). To ensure that the observed relationship between structural connections and receptor similarity is not due to spatial proximity or network topography, we assessed significance against density-, degree- and edge length-preserving surrogate structural connectivity matrices (P = 0.0001, 10,000 repetitions27). Additionally, we found that receptor similarity is significantly correlated with structural connectivity, after regressing Euclidean distance from both matrices (Pearson’s r(4948) = 0.23, P = 7.1 × 10−41; CI = [0.20, 0.26], two-sided). In other words, we observed that brain regions with similar receptor and transporter composition show greater functional co-activation. Collectively, these results demonstrate that receptor profiles are systematically aligned with patterns of structural and functional connectivity above and beyond spatial proximity, consistent with the notion that receptor profiles guide inter-regional signaling.

Because neurotransmitter receptor and transporter distributions are organized according to structural and functional architectures, we next asked whether receptor/transporter distributions might augment the coupling between brain structure and function. To quantify structure–function coupling, we relied on the communicability of the weighted structural connectome (see results using alternative methods in Supplementary Fig. 1). Communicability represents a form of centralized diffusive communication on the structural connectome and has been previously shown to mediate the link between brain structure and function27. Structure–function coupling at every brain region is defined as the adjusted R² of a simple linear regression model that fits regional communicability to regional functional connectivity. We then included regional receptor similarity as an independent variable, to assess how receptor information changes structure–function coupling. Significance was assessed against a null distribution of adjusted R² from a model that adds a rotated regional receptor similarity vector (10,000 repetitions, one-sided, false discovery rate (FDR)-corrected). Next, we cross-validated each regression model using a distance-dependent method that was previously developed in-house (Supplementary Fig. 2; see Methods for details28). We found that including receptor profiles as an input variable alongside brain structure significantly improves the prediction of regional functional connectivity in unimodal areas and the paracentral lobule (Fig. 3c).

Receptor profiles shape oscillatory neural dynamics
Given that neurotransmitter receptors modulate the firing rates of neurons and, therefore, population activity, we sought to relate the cortical patterning of neurotransmitter receptors to neural oscillations. We used MEG power spectra across six canonical frequency bands from the HCP29,30. We fit a multiple linear regression model that predicts the cortical power distribution of each frequency band from neurotransmitter receptor and transporter densities. We then cross-validated the model using a distance-dependent method (Supplementary Fig. 3). In addition to the cross-validation, we assessed the significance of each model against a spin-permuted null model (10,000 repetitions) and found that all models except high-gamma are significant after FDR correction (Psys < 0.05, one-sided). We found a close fit between receptor densities and MEG-derived power (0.78 ≤ R² ≤ 0.94; Fig. 4a), suggesting that overlapping spatial topographies of multiple neurotransmitter systems may ultimately manifest as coherent oscillatory patterns.

To identify independent variables (receptors/transporters) that contribute most to the fit, we applied dominance analysis, a technique that assigns a proportion of the final R² to each independent variable to the statistically significant models31. Dominance was normalized by the total fit of the model (R²adj), such that dominance is comparable across models (Fig. 4b). We found that, compared to other receptors, the spatial distribution of MOR (opioid), H₁ (histamine) and α₂β₂ make a large contribution to the fit between receptors and lower-frequency (theta and alpha) as well as low-gamma power bands32,33. Interestingly, we found a prominence of ionotropic receptors when we replicated the analysis in the autoradiography dataset (see the ‘Replication using autoradiography’ section and Supplementary Fig. 4). Additionally, when we stratified dominance by receptor classes, we found that inhibitory, non-monoamine and Gi-coupled receptors are more dominant than excitatory, monoamine and Gs-/Gq-coupled receptors, respectively (Supplementary Fig. 5a).
Mapping receptors to cognitive function

Previously, we showed that receptor and transporter distributions follow the structural and functional organization of the brain and that receptors are closely linked to neural dynamics. In this and the next subsections, we investigate how the spatial distribution of neurotransmitter receptors and transporters correspond to cognitive processes and disease vulnerability.

We used Neurosynth to derive 123 meta-analytic task activation maps, which represent the probability that specific brain regions are activated during multiple cognitive tasks. We applied partial least squares (PLS) analysis to identify a multivariate mapping between neurotransmitter receptors/transporters and functional activation maps.

PLS analysis extracted a significant latent variable relating receptor transporter densities to functional activation across the brain ($P_{\text{spin}} = 0.010$, one-tailed). The latent variable represents the dominant spatial pattern of receptor distributions (receptor weights) and functional activations (cognitive weights) that together capture 54% of the covariance between the two datasets (Fig. 5a).

Projecting the receptor density (functional activation) matrix back onto the receptor (cognitive) weights reflects how well a brain area exhibits the receptor and cognitive weighted pattern, which we refer to as ‘receptor scores’ and ‘cognitive scores’, respectively (Fig. 5b,c). The receptor and cognitive score patterns reveal a sensory-fugal spatial gradient, separating limbic, paralimbic and insular cortices from visual and somatosensory cortices. We then cross-validated the correlation between receptor and cognitive scores using a distance-dependent method (Fig. 5d, mean out-of-sample Pearson’s $r(98) = 0.54$, $P_{\text{spin}} = 0.046$, one-sided). This result demonstrates a link between receptor distributions and cognitive specialization that is perhaps mediated by laminar differentiation and synaptic hierarchies.

To identify the receptors and cognitive processes that contribute most to the spatial pattern in Fig. 5b,c, we correlated each variable with the score pattern (Fig. 5e–f; for all stable term loadings, see Supplementary Fig. 6). This results in a ‘loading’ for each receptor and cognitive process, where positively loaded receptors co-vary with positively loaded cognitive processes in positively scored brain cortices. We then cross-validated the correlation between receptor and cognitive scores using a distance-dependent method (Fig. 5d, mean out-of-sample Pearson’s $r(98) = 0.54$, $P_{\text{spin}} = 0.046$, one-sided). This result demonstrates a link between receptor distributions and cognitive specialization that is perhaps mediated by laminar differentiation and synaptic hierarchies.

Table 1 | Neurotransmitter receptors and transporters included in analyses. BP_{ND}, non-displaceable binding potential; V_{T}, tracer distribution volume; B_{max}, density (pmol ml\(^{-1}\)) converted from binding potential (5-HT) or distributional volume (GABA) using autoradiography-derived densities; SUVR, standard uptake value ratio. Values in parentheses (under n) indicate the number of females. Neurotransmitter receptor maps without citations refer to previously unpublished data. In those cases, contact information for the study principal investigator (PI) is provided in Supplementary Table 3.

Receptor/transporter	Neurotransmitter	Tracer	Measure	n	Age	References
D_{1}	Dopamine	[\text{C}]SCH23390	BP_{ND}	13 (7)	33±13	Kaller et al.\(^{56}\)
D_{2}	Dopamine	[\text{C}]FLB-457	BP_{ND}	37 (20)	48.4±16.9	Smith et al.\(^{60}\)
D_{2}	Dopamine	[\text{C}]FLB-457	BP_{ND}	55 (29)	32.5±9.7	Sandiego et al.\(^{53}\)
DAT\(^{+}\)	Dopamine	[\text{[3F]}]-FP-CIT	SUVR	174 (65)	61±11	Dukart et al.\(^{74}\)
NET\(^{+}\)	Norepinephrine	[\text{C}]MR8	BP_{ND}	77 (27)	33.4±9.2	Ding et al.\(^{61–68}\)
5-HT\(_{1A}\)	Serotonin	[\text{C}]WAY-100635	BP_{ND}	35 (17)	26.3±5.2	Savli et al.\(^{60}\)
5-HT\(_{1B}\)	Serotonin	[\text{C}]943	BP_{ND}	65 (16)	33.7±9.7	Gallezot et al.\(^{70–72}\)
5-HT\(_{1D}\)	Serotonin	[\text{C}]943	BP_{ND}	23 (8)	28.7±7.0	Savli et al.\(^{60}\)
5-HT\(_{2A}\)	Serotonin	[\text{C}]Cimbi-36	B_{max}	29 (14)	22.6±2.7	Beliveau et al.\(^{3}\)
5-HT\(_{3}\)	Serotonin	[\text{C}]SB207145	B_{max}	59 (18)	25.9±5.3	Beliveau et al.\(^{3}\)
5-HT\(_{6}\)	Serotonin	[\text{C}]GSK215083	BP_{ND}	30 (0)	36.6±9.0	Radhakrishnan et al.\(^{72}\)
5-HT\(_{7}\)	Serotonin	[\text{C}]DAS8	B_{max}	100 (71)	25.1±5.8	Beliveau et al.\(^{3}\)
α_{2}β_{2}	Acetylcholine	[\text{[F]}]Flubatine	V_{T}	30 (10)	33.5±10.7	Hillmer et al.\(^{70–72}\)
M_{1}	Acetylcholine	[\text{[3S]}]N3172176	BP_{ND}	24 (11)	40.5±11.7	Naganawa et al.\(^{61}\)
VACHT\(^{+}\)	Acetylcholine	[\text{[F]}]FEOBV	SUVR	4 (1)	37±10.2	Pt: Tuominen, L. & Guimond, S.
VACHT\(^{+}\)	Acetylcholine	[\text{[F]}]FEOBV	SUVR	18 (13)	66.8±6.8	Aghourian et al.\(^{92}\)
VACHT\(^{+}\)	Acetylcholine	[\text{[F]}]FEOBV	SUVR	5 (1)	68.3±3.1	Bedard et al.\(^{83}\)
VACHT\(^{+}\)	Acetylcholine	[\text{[F]}]FEOBV	SUVR	3 (3)	66.6±0.94	Pt: Schmitz, T. W. & Spreng, R. N.
NMDA	Glutamate	[\text{[F]}]GE-179	V_{T}	29 (8)	40.9±12.7	Galovic et al.\(^{44–46}\)
mGluR\(_{2}\)	Glutamate	[\text{C}]ABP688	BP_{ND}	73 (48)	19.9±3.04	Smart et al.\(^{27}\)
mGluR\(_{5}\)	Glutamate	[\text{C}]ABP688	BP_{ND}	22 (10)	67.9±9.6	Pt: Rosa-Neto, P. & Kobayashi, E.
GABA_{A,B}	GABA	[\text{C}]Flumazenil	B_{max}	16 (9)	26.6±8.8	Nergaard et al.\(^{6}\)
H_{3}	Histamine	[\text{C}]GSK189254	V_{T}	8 (1)	31.7±9.0	Gallezot et al.\(^{48}\)
CB\(_{1}\)	Cannabinoid	[\text{C}]OMAR	V_{T}	77 (28)	30.0±8.9	Normandin et al.\(^{89–92}\)
MOR	Opioid	[\text{C}]Carfentanil	BP_{ND}	204 (72)	32.3±10.8	Kantonen et al.\(^{53}\)

Resource https://doi.org/10.1038/s41593-022-01186-3
regions and vice versa for negative loadings. Interestingly, we found that almost all receptors/transporters have positive loading, with metabotropic dopaminergic and serotonergic receptors having the greatest loadings (Fig. 5e and Supplementary Fig. 5b). The cognitive processes with large positive loadings are enriched for emotional and affective processes such as ‘emotion’, ‘fear’ and ‘valence’. This suggests that the combination of serotonergic and dopaminergic receptor distributions co-vary with mood-related functional activation in insular and limbic regions, consistent with the role of serotonin and dopamine neurotransmitter systems in mood processing and mood disorders\(^7\). On the other hand, we found that only NET has stable negative loading and that it spatially co-varies with functions such as ‘fixation’, ‘planning’ and ‘skill’ in primarily unimodal regions. This is consistent with the notion that norepinephrine systems are involved in integrative functions that require coordination across segregated brain regions\(^8\). Collectively, these results demonstrate a direct link between cortex-wide molecular receptor distributions and functional specialization.

Mapping receptors and transporters to disease vulnerability

Neurotransmitter receptors and transporters are implicated in multiple diseases and disorders. Identifying the neurotransmitter receptors/transporters that correspond to specific disorders is important for developing new therapeutic drugs. We, therefore, sought to relate neurotransmitter receptors and transporters to patterns of cortical abnormality across a range of neurological, developmental and psychiatric disorders. We used datasets from the ENIGMA consortium for 13 disorders, including 22q11.2 deletion syndrome, attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), idiopathic generalized epilepsy (IGE), right and left temporal lobe epilepsy, depression, obsessive-compulsive disorder (OCD), schizophrenia, bipolar disorder (BD), obesity, schizotypy and Parkinson’s disease (PD). We then fit a multiple regression model that predicts each disorder’s cortical abnormality pattern from receptor and transporter distributions (Fig. 6). We assessed the significance of each model fit against an FDR-corrected one-sided spatial autocorrelation-preserving null model and evaluated each model using distance-dependent
cross-validation (Supplementary Fig. 7). Figure 6a shows how receptor distributions map onto cortical abnormality patterns across multiple disorders. We found that some disorders are more heavily influenced by receptor distribution than others ($0.23 < R^2_{adj} < 0.77$). IGE and schizotypy show low and non-significant correspondence with receptor distributions, whereas ADHD, autism and temporal lobe epilepsies show greater correspondence with receptor distributions. The dominance analysis in Fig. 6b shows the contribution of each input variable to the fit of the model, normalized by the total fit (adjusted R^2). Interestingly, we found that serotonin transporter (S-HTT) distributions contribute more to OCD, schizophrenia and BD profiles than any other receptors. Furthermore, the mu-opioid receptor is the strongest contributor of ADHD cortical abnormalities, consistent with findings from animal models. We also note that, in some cases, the analyses do not necessarily recover the expected relationships. For instance, in PD, the dopamine receptors are not implicated, likely because the analysis was restricted to cortex only. Additionally, serotonin receptors do not make large contributions to depression, possibly because changes in cortical thickness do not directly measure the primary pathophysiology associated with some brain diseases. Although this analysis points to mappings between receptors and disorder profiles, we found no significant differential contribution of receptor classes to disorder profiles (Supplementary Fig. 5c). Our results present an initial step toward a comprehensive ‘look-up table’ that relates neurotransmitter systems to multiple brain disorders.

Replication using autoradiography

In the present report, we comprehensively situate neurotransmitter receptor and transporter densities within the brain’s structural and functional architecture. However, estimates for neurotransmitter receptor densities are acquired from PET imaging alone, and the way in which densities are quantified varies across radioligands, image acquisition protocols and pre-processing. Autoradiography is an alternative technique to measure receptor density and captures local densities at a defined number of postmortem brain sections. Due to the high cost and labor intensity of acquiring autoradiographs, there does not yet exist a complete autoradiography three-dimensional (3D) cross-cortex atlas of receptors.

Nonetheless, we repeated the analyses in an autoradiography dataset of 15 neurotransmitter receptors across 44 cytoarchitectonically defined cortical areas, from three postmortem brains. This set of 15 neurotransmitter receptors consists of a diverse set of ionotropic...
and metabotropic receptors, including excitatory glutamate, acetylcholine and norepinephrine receptors (see Supplementary Table 1 for a complete list of receptors). Notably, eight of the 15 receptors in the autoradiography dataset are not included in the PET dataset, which precludes direct comparisons between the two datasets. Receptor similarity is shown in Supplementary Fig. 8a. Despite the alternate set of neurotransmitter receptors, we found that autoradiography-derived receptor similarity is significantly correlated with PET-derived receptor similarity (Pearson’s $r(1033) = 0.38, P = 6.7 \times 10^{-36}, CI = [0.33, 0.44]$; Supplementary Fig. 8a) and decays exponentially with Euclidean distance. Additionally, autoradiography-derived and PET-derived receptor gradients are correlated (Pearson’s $r(44) = 0.51, P_{\text{perm}} = 0.0001, CI = [0.26, 0.70]$, two-sided). Next, we found that autoradiography-derived receptor densities follow similar architectural patterns as the PET-derived receptor densities. Receptor similarity is non-significantly greater between structurally connected brain regions ($P = 0.19$) and significantly correlated with structural connectivity (Pearson’s $r(329) = 0.39, P = 1.4 \times 10^{-15}, CI = [0.30, 0.48]$; Supplementary Fig. 8d). It is also significantly greater in regions within the same intrinsic network ($P_{\text{spin}} = 0.03$) and is significantly correlated with functional connectivity (Pearson’s $r(1033) = 0.21, P = 1.1 \times 10^{-13}, CI = [0.16, 0.28]$; Supplementary Fig. 8e). As before, receptor information augments structure–function coupling in visual, paracentral and somatomotor regions (Supplementary Fig. 8f).

Finally, we show correlations of receptor density distribution between every pair of receptors in Supplementary Fig. 8g.

Because the autoradiography dataset has a more diverse set of ionotropic and metabotropic receptors, we also asked whether we would observe a prominence of ionotropic receptors for MEG oscillations. When we fit the 15 autoradiography neurotransmitter receptors to MEG power, we found that AMPA, NMDA, GABAα and $\alpha_1\beta_2$—all ionotropic receptors—are most dominant (Supplementary Fig. 4). This confirms that the fast oscillatory dynamics captured by MEG are closely related to the fluctuations in neural activity modulated by ionotropic neurotransmitter receptors.

Finally, we repeated analyses mapping receptor densities to cognitive functional activation and disease vulnerability. We found a similar topographic gradient linking autoradiography-derived receptor densities to Neurosynth-derived functional activations (Supplementary Fig. 9a). Indeed, PET-derived and autoradiography-derived receptor and cognitive scores are correlated (Supplementary Fig. 8b; Pearson’s $r = -0.50, P_{\text{perm}} = 0.0002, CI = [-0.69, -0.26]$ for receptor scores; Pearson’s $r = -0.75, P_{\text{perm}} = 0.0001, CI = [-0.86, -0.60]$ for cognitive scores). We also found consistencies regarding the loadings of receptors (Supplementary Fig. 9c) and cognitive processes (Supplementary Fig. 9d). Next, when we mapped autoradiography-derived receptor densities to cortical abnormality patterns of multiple disorders, we found prominent associations with receptors that were not included in the PET dataset, including a relationship between the ionotropic glutamate receptor kainate and depression (Supplementary Fig. 10).

Sensitivity and robustness analyses
Finally, to ensure that results are not influenced by specific methodological choices, we repeated analyses using different parcellation resolutions and different receptor subsets, and we compared alternative PET tracers to the chosen PET tracers in the present report. Due to the low spatial resolution of PET tracer binding, we opted to present our main results using a coarse resolution of 100 cortical regions. However, when using a parcellation resolution of 200 and 400 cortical regions, we found that the mean receptor density and receptor similarity remains consistent (Supplementary Fig. 11). We next asked whether any single receptor or transporter disproportionately influences receptor similarity. To test this, we iteratively removed a single receptor/transporter from the dataset and recomputed the receptor similarity matrix. These 19 different receptor similarity matrices are all highly correlated with the original similarity matrix (Pearson’s $r(4948) > 0.98$), confirming that the correspondence between regional receptor profiles is not driven by a single neurotransmitter receptor/transporter.

We also tested whether participant age affects the reported results. However, only mean age of individuals included in each tracer map was available. Therefore, we fit a linear model between the mean age of scanned participants contributing to each receptor/transporter tracer map and the z-scored receptor/transporter density, for each
a. Using PLS analysis, we found a significant latent variable that accounts for 54% of the covariation between receptor distributions and Neurosynth-derived cognitive functional terms ('cognitive scores') and neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. The overlapping topographic distributions of these receptors ultimately manifest as patterns of cognitive specialization and disease vulnerability.

b. The PLS model was cross-validated using a method that stratifies the training set (yellow points) and test set (gray points) based on the distance between each node to a source node (red point), and the procedure is repeated such that each brain region is assigned as the source node once (100 repetitions). The significance of the mean out-of-sample test set correlation was assessed against a null distribution of mean correlation constructed by rotating the receptor density matrix before the PLS analysis (see Methods for details).

c. Receptor loadings are computed as the correlation (Pearson's r) between each receptor's distribution across the cortex and the PLS-derived scores and can be interpreted as the contribution of each receptor to the latent variable. Similarly, cognitive loadings are computed as the correlation (Pearson's r) between each term's functional activation across brain regions and the PLS-derived scores and can be interpreted as the cognitive processes that contribute most to the latent variable. Here, only the 25% most positively and negatively loaded cognitive processes are shown. For all stable cognitive loadings, see Supplementary Fig. 6, and, for all 123 cognitive processes included in the analysis, see Supplementary Table 2. Bounds of the box plots in a and d represent the 1st (25%) and 3rd (75%) quartiles; the center line represents the median; whiskers represent the non-outlier minima and maxima of the distribution; and open circles represent outliers.

d. A key question in neuroscience remains how the brain's structural architecture gives rise to its function. The relationship between whole-brain structure and function has been viewed through the lens of 'connectomics', in which the brain's structural or functional architectures are represented by regional nodes interconnected by structural and functional links. The key assumption of this model is that nodes are homogenous, effectively abstracting away important microarchitectural differences between regions. The present work is part of an emerging effort to annotate the connectome with molecular, cellular and laminar attributes. Indeed, recent work has incorporated microarray gene transcription, cell types, myelination, laminar differentiation and intrinsic dynamics into structural and functional models of the brain.

e. Receptors with high cognitive loadings are associated with regions involved in spatial attention, visual attention, motor control, and emotion regulation. A comprehensive cortical map of neurotransmitter receptor systems shows changes in receptor availability with age.

f. Neurotransmitter receptors and transporters are an important molecular annotation for bridging brain structure to brain function. Despite this, a comprehensive cortical map of neurotransmitter receptors has remained elusive due to numerous methodological and data-sharing challenges (but see the ongoing PET-BIDS effort as well as the OpenNeuroPET initiative at https://openneuropet.github.io/ (refs. 10,11)). The present study is an ongoing Open Science grassroots effort to assemble harmonized high-resolution normative images of receptors and transporters that can be used to annotate connectomic models.
of the brain. This work builds on previous initiatives to map receptor densities using autoradiography, which has discovered prominent gradients of receptor expression in both human and macaque brains. Notably, we found consistent results between autoradiography and PET datasets, which is encouraging because the PET dataset consists of a different group of receptors and transporters and has the added advantage of providing in vivo whole-brain data in large samples of healthy young participants.

We found a prominent link between receptor distribution and both brain structure and function, which supports the idea that the emergent functional architecture strongly depends on the underlying chemoarchitecture. Interestingly, we found that the canonical electrophysiological frequency bands can be captured by the overlapping topographies of multiple receptors, consistent with the notion that receptors influence function by tuning gain and synchrony between neuronal populations. Because receptors are correlated with multiple features of brain structure and function, a natural next question is how receptor distributions relate to psychological processes. We found a multivariate mapping between receptor profiles and cognitive activations. Interestingly, although individual receptors have been associated with specific functions (for example, D1 and selective attention), our findings suggest that the combined spatial distribution of serotonergic and dopaminergic receptors underlie patterns of cognitive activation related to affect. Altogether, these results offer clues about how multiple neurotransmitter systems collectively influence cognitive functions and present novel hypotheses that future causal studies can test.

Finally, we discovered a robust spatial concordance between multiple receptor maps and cortical abnormality profiles across a wide range of brain disorders. A key step toward developing therapies for specific syndromes is to reliably map them onto underlying neural systems. This goal is challenging because psychiatric and neurological nosology is built around clinical features rather than neurobiological mechanisms. Our results complement some previously established associations between disorders and neurotransmitter systems and also reveal new associations. For instance, we found that the serotonin transporter is the strongest contributor to schizophrenia and BD, consistent with
profiles will help to identify novel targets for pharmacotherapy. This and receptor density have been reported to be significantly lower in our analyses in an autoradiography dataset, eight of the 15 receptors spatial autocorrelation-preserving null models to account for the protocols recommended for each individual radioligand56,57. To mitigate the need to fully understand how regional variations in receptor systems work together. The present report builds on the theories generated by previous neurochemical and pharmacological causal studies, and it is encouraging to see consistent results at the level of the whole brain, across multiple neurotransmitter systems and using different imaging modalities. Furthermore, the comprehensive approach of this study showcases novel associations that may not have been considered before. This large-scale characterization of receptor systems should be validated in, and will hopefully inspire, future causal studies, driving the cycle of discovery. Altogether, our data and analyses provide a framework that allows us to test predictions from the wider literature and consolidate knowledge about neurotransmitter systems.

Some potential avenues for future complementary research are to study how receptor architecture changes in healthy aging, across the sexes, and how they map onto subcortical structures. Indeed, dopamine D1 and D2 receptor availability is commonly acknowledged to decrease with age in the subcortex;39 serotonin transporter and receptor density have been reported to be significantly lower in older adults;54,55; and GABA, density is expected to be higher in older adults.56 Likewise, previously published literature has reported greater whole-brain glutamate receptor densities in men,58 greater kappa-opioid receptor density in men,59 and greater mu-opioid receptor density in women.60 Finally, multiple neurotransmitter projection systems originate in the subcortex, and neurodegenerative disease progression has been linked with abnormal subcortical receptor expression.61 Ultimately, future research is necessary to characterize multi-system receptor distributions across age and sex and within subcortical structures.

The present work should be considered alongside some important methodological considerations. First, main analyses were conducted using PET images, which detect tracer uptake at a low spatial resolution and without laminar specificity. Although results were replicated using an autoradiography dataset, and in a finer parcellation resolution, a comprehensive atlas of laminar-resolved receptor density measurements is necessary to fully understand how regional variations in receptor densities affect brain structure and function.11,12 Second, PET tracer maps were acquired around the world, in different participants, on different scanners and using specific image acquisition and processing protocols recommended for each individual radioligand.63–65 To mitigate this challenge, we normalized the spatial distributions and focused on analyses related to the relative spatial topographies of receptors as opposed to the absolute values. Third, the linear models used in the present analyses assume independence between observations and linear relationships between receptors; we, therefore, employed spatial autocorrelation-preserving null models to account for the spatial dependencies between regions throughout the report. Fourth, analyses were restricted to the cortex, obscuring the contributions of subcortical neuromodulatory systems. Fifth, although we repeated our analyses in an autoradiography dataset, eight of the 15 receptors included in the autoradiography dataset are not included in the PET datasets, and, therefore, a direct comparison between datasets was not possible. Altogether, a 3D whole-brain comprehensive neurotransmitter receptor density dataset constructed using autoradiographs would be a valuable complement to the present work.

In summary, we assembled a normative 3D atlas of neurotransmitter receptors in the human brain. We systematically mapped receptors to connectivity, dynamics, cognitive specialization and disease vulnerability. Our work uncovers a fundamental organizational feature of the brain and provides new direction for a multi-scale systems-level understanding of brain structure and function.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41593-022-01186-3.

References

1. Shine, J. M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 23, 572–583 (2019).
2. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).
3. Van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).
4. Zilles, K., Bacha-Trams, M., Palomero-Gallagher, N., Amunts, K. & Friederici, A. D. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63, 79–89 (2015).
5. Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. USA 117, 9566–9576 (2020).
6. Zilles, K. & Palomero-Gallagher, N. Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front. Neuroanat. 11, 78 (2017).
7. Dukart, J. et al. JuSpace: a tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum. Brain Mapp. 42, 555–566 (2021).
8. Nørgaard, M. et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine binding site of GABAA receptors. Neuroimage 232, 117878 (2021).
9. Beliveau, V. et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).
10. Knudsen, G. M. et al. Guidelines for the content and format of PET brain data in publications and archives: a consensus paper. J. Cereb. Blood Flow Metab. 40, 1576–1585 (2020).
11. Norgaard, M. et al. PET-BIDS, an extension to the brain imaging data structure for positron emission tomography. Sci. Data 9, 65 (2022). https://www.nature.com/articles/s41597-022-01164-1
12. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
13. Evans, A. C. Networks of anatomical covariance. Neuroimage 80, 489–504 (2013).
14. Seiditz, J. et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018).
15. Arnatkeviciute, A., Fulcher, B., Bellgrove, M. & Fornito, A. Where the genome meets the connectome: understanding how genes shape human brain connectivity. Neuroimage 244, 118570 (2021).
16. Shafiei, G. et al. Topographic gradients of intrinsic dynamics across neocortex. eLife 9, e62116 (2020).
17. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).
62. Silfvenius, M. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. *JAMA Psychiatry* 72, 316–324 (2015).

63. Sandiego, C. M. et al. The effect of treatment with guanfacine, an alpha2 adrenergic agonist, on dopaminergic tone in tobacco smokers. an [11C]FLB457 PET study. *Neuropsychopharmacology* 43, 1052–1058 (2018).

64. Dukart, J. et al. Cerebral blood flow predicts differential neurotransmitter activity. *Sci. Rep.*, 40374 (2018).

65. Ding, Y.-S. et al. PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S,S)-[11C]O-methylreboxetine and HRRT. *Synapse* 64, 30–38 (2010).

66. Chiang-shan, R. L. et al. Decreased norepinephrine transporter availability in obesity: positron emission tomography imaging with (S,S)-[11C]O-methylreboxetine. *Neuroimage* 86, 306–310 (2014).

67. Sanchez-Rangel, E. et al. Norepinephrine transporter availability in brown fat is reduced in obesity: a human PET study with [11C]MRB. *Int. J. Obes.* (Lond.) 44, 964–967 (2020).

68. Belfort-DeAguiar, R. et al. Noradrenergic activity in the healthy human brain. A mechanism supporting the defense against hypoglycemia. *J. Clin. Endocrinol. Metab.* 103, 2244–2252 (2018).

69. Savli, M. et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. *Neuroimage* 63, 447–459 (2012).

70. Gallozo, J.-D. et al. Kinetic modeling of the serotonin 5-HT_{2A} receptor radioligand [11C]P943 in humans. *J. Cereb. Blood Flow Metab.* 30, 196–210 (2010).

71. Murrough, J. W. et al. Reduced ventral striatal/ventral pallidal serotonin_{1B} receptor binding potential in major depressive disorder. *Psychopharmacology* 213, 547–553 (2011).

72. Murrough, J. W. et al. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. *Arch. Gen. Psychiatry* 68, 892–900 (2011).

73. Matuskey, D. et al. Reductions in brain 5-HT_{1A} receptor availability in primarily cocaine-dependent humans. *Biol. Psychiatry* 76, 816–822 (2014).

74. Pitterneg, C. et al. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1B receptor binding. *J. Affect. Disord.* 196, 87–96 (2016).

75. Saricicek, A. et al. Test–retest reliability of the novel 5-HT_{1A} receptor PET radioligand [11C]OMAR: assessment of kinetic analysis methods, test–retest reproducibility, and gender differences. *J. Cereb. Blood Flow Metab.* 35, 1313–1322 (2015).

76. Gallezot, J.-D. et al. Determination of receptor occupancy in the presence of mass dose: [11C]GSK189254 PET imaging of histamine H3 receptor occupancy by PF-03654746. *J. Cereb. Blood Flow Metab.* 37, 1095–1107 (2017).

77. Normandin, M. D. et al. Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test–retest reproducibility, and gender differences. *J. Cereb. Blood Flow Metab.* 35, 1313–1322 (2015).

78. D’Souza, D. C. et al. Rapid changes in cannabinoid 1 receptor availability in cannabis-dependent male subjects after abstinence from cannabis. *Biol. Psychiatry Cogn. Neurosci. Neuroimaging* 1, 60–67 (2016).

79. Ranganathan, M. et al. Reduced brain cannabinoid receptor availability in schizophrenia. *Biol. Psychiatry* 79, 997–1005 (2016).

80. Neumeister, A. et al. Positron emission tomography shows elevated cannabinoid CB1 receptor binding in men with alcohol dependence. *Alcohol. Clin. Exp. Res.* 36, 2104–2109 (2012).

81. Kantonen, T. et al. Interindividual variability and lateralization of μ-opioid receptors in the human brain. *Neuroimage* 217, 116922 (2020).
1Montréal Neurological Institute, McGill University, Montréal, QC, Canada. 2Yale PET Center, Yale School of Medicine, New Haven, CT, USA. 3Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA. 4Department of Psychiatry, McGill University, Montréal, QC, Canada. 5Department of Psychology, Center for Reproducible Neuroscience, Stanford University, Stanford, CA, USA. 6Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. 7Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria. 8Cognitive Pharmacology Research Unit, UQAM, Montréal, QC, Canada. 9McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada. 10Biogen Inc., Cambridge, MA, USA. 11Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia. 12Department of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. 13Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada. 14Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland. 15Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK. 16MRU Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK. 17Department of Medicine, Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. 18Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. 19King's College London and Guy's and St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK. 20Department of Psychiatry, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. 21Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada. 22Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland. 23Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 24C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

E-mail: bratislav.music@mcgill.ca
Methods

All code and data used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors. Volumetric PET images are included in neumaps (https://github.com/netneurolab/neumaps) where they can be easily converted between template spaces.

PET data acquisition

Volumetric PET images were collected for 19 different neurotransmitter receptors and transporters across multiple studies. To protect patient confidentiality, individual participant maps were averaged within studies before being shared. Details of each study, the associated receptor/transporter, tracer, number of healthy participants, age and reference with full methodological details can be found in Table 1. A more extensive table can be found in the supplementary material (Supplementary Table 3), which additionally includes the PET camera, number of males and females, PET modeling method, reference region, scan length, modeling notes and additional references, if applicable. In all cases, only healthy participants were scanned (n = 1,238; 718 males and 520 females). Images were acquired using best practice imaging protocols recommended for each radiogand. Altogether, the images are an estimate proportional to receptor densities, and we, therefore, refer to the measured value (that is, binding potential and tracer distribution volume) simply as density. Note that the NMDA receptor tracer ([18F]GE-179) binds to (that is, active) NMDA receptors. PET images were all registered to the MNI-ICBM 152 non-linear 2009 (version c, asymmetric) template and then parcellated to 100, 200 and 400 regions according to the Schaefer atlas. Receptors and transporters with more than one mean image of the same tracer (that is, 5-HT2, mGluR5 and VACHt) were combined using a weighted average after confirming that the images are highly correlated to one another (Supplementary Fig. 13a). Finally, each tracer map corresponding to each receptor/transporter was z-scored across regions and concatenated into a final region by receptor matrix of relative densities.

In some cases, more than one tracer map was available for the same neurotransmitter receptor/transporter. We show the comparisons between tracers in Supplementary Fig. 13b for the following neurotransmitter receptors/transporters: 5-HT1b/c, 5-HT2, 5-HT2, 5-HT2, 5-HT2, 5-HT2, 5-HT2, 5-HT2, 5-HT2, 5-HT2 and 5-HT2. Here, we make some specific notes: (1) 5-HT1a and 5-HT1b involve comparisons between the same tracers (DASB and flumazenil, respectively); but one map is converted to density using autoradiography data (see ref. and ref.) and the other is not; (2) raclopride is a popular D2 tracer but has unreliable binding in the cortex and is, therefore, an inappropriate tracer to use for mapping D2 densities in the cortex, but we show its comparison to FLB457 and another D2 tracer, fallypride, for completeness; and (3) the chosen carbantinil (MOR) map was collated across carfentanil images in the PET Turku Centre database because our alternative map is a partly overlapping subset of participants, we did not combine the tracers into a single mean map.

Synapse density in the cortex was measured in 76 healthy adults (45 males, 48.9 ± 18.4 years of age) by administering [11C]JUCB-J, a PET tracer that binds to the synaptic vesicle glycoprotein 2A (SV2A). Data were collected on an HRRT PET camera for 90 minutes after injection. Non-displaceable binding potential (BP_{N}) was modeled using SRTM2, with the centrum semiovale as reference and k’ fixed to 0.027 (population value). This group-averaged map was first presented in ref. 103.

Autoradiography receptor data acquisition

Receptor autoradiography data were originally acquired as described in ref. 103. Fifteen neurotransmitter receptor densities across 44 cytologically defined areas were collected in three postmortem brains (age range: 72–77 years, two males). See Supplementary Table 1 for a complete list of receptors included in the autoradiography dataset; see Supplementary Table 2 in ref. 103 for the originally reported receptor densities; and see https://github.com/AGoulos/receptor_principles for machine-readable Python numpy files of receptor densities. To best compare PET data analyses with the autoradiography dataset, a region-to-region mapping was manually created between the 44 available cortical areas in the autoradiography dataset and the 50 left hemisphere cortical Schaefer-100 regions. Four regions in the Schaefer atlas did not have a suitable mapping to the autoradiography atlas. As such, the 44-region autoradiography atlas was converted to 46 Schaefer left hemisphere regions. Finally, receptor densities were concatenated and z-scored to create a single map of receptor densities across the cortex.

Structural and functional data acquisition

Following the procedure described in refs. 109,110, we obtained structural and functional MRI data for 326 unrelated participants (age range: 22–35 years, 145 males) from the HCP (S900 release). All four resting-state functional MRI scans (two scans (R/L and L/R phase-encoding directions) on day 1 and two scans (R/L and L/R phase-encoding directions) on day 2, each about 15 minutes long; TR = 720 ms), as well as diffusion-weighted imaging (DWI) data were available for all participants. All the structural and functional MRI data were pre-processed using HCP minimal pre-processing pipelines. We provide a brief description of data pre-processing below, whereas detailed information regarding data pre-processing and pre-processing is available elsewhere.

Structural network reconstruction

DWI data were pre-processed using the MRtrix3 package (https://www.mrtrix.org/). More specifically, fiber orientation distributions were generated using the multi-shell, multi-tissue constrained spherical deconvolution algorithm from MRtrix. White matter edges were then reconstructed using probabilistic streamline tractography based on the generated fiber orientation distributions. The tract weights were then optimized by estimating an appropriate cross-section multiplier for each streamline following the procedure proposed by ref. 112, and a connectivity matrix was built for each participant using the 100-region Schaefer parcellation. A group consensus binary network was constructed using a method that preserves the density and edge-length distributions of the individual connectomes. Edges in the group consensus network were assigned weights by averaging the log-transformed streamline count of non-zero edges across participants. Edge weights were then scaled to values between 0 and 1.

Functional network reconstruction

All 3T functional MRI time series were corrected for gradient non-linearity, head motion using a rigid body transformation and geometric distortions using scan pairs with opposite phase encoding directions (R/L and L/R)113. Further pre-processing steps include co-registration of the corrected images to the Tiw structural MR images, brain extraction, normalization of whole brain intensity, high-pass filtering (>2,000s full width at half maximum (FWHM); to correct for scanner drifts) and removing additional noise using the ICA-FIX process. The pre-processed time-series were then parcellated to 100 cortical brain regions according to the Schaefer atlas. The parcellated time series were used to construct functional connectivity matrices as a Pearson correlation coefficient between pairs of regional time series for each of the four scans of each participant. A group-average functional connectivity matrix was constructed as the mean functional connectivity across all individuals and scans.

Structure–function coupling

Structure–function coupling at every brain region is defined as the adjusted R² of a simple linear regression model that fits regional communicability (that is, the communicability between a brain region to every other brain region) to regional functional connectivity (that is,
the functional connectivity between a brain region and every other brain region). Communicability is defined as the weighted average of all walks and paths between two brain regions and represents diffusive communication. Additionally, communicability has been previously demonstrated as an important bridge between brain structure and function. In the receptor-informed model, receptor similarity between the region of interest and every other region was included as an additional independent variable. The significance of the receptor-informed structure–function coupling was assessed against a null distribution of adjusted R² from a model that adds a rotated regional receptor similarity vector (10,000 repetitions). This ensures that the increase in R² when receptor information is included in the model is robust against the addition of a random variable with identical spatial autocorrelation.

MEG power
Six-minute resting-state eyes-open magnetoencephalography (MEG) time series were acquired from the HCP (S1200 release) for 33 unrelated participants (age range: 22–35 years, 17 males). Complete MEG acquisition protocols can be found in the HCP S1200 Release Manual. For each participant, we computed the power spectrum at the vertex level across six different frequency bands: delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), low gamma (30–59 Hz) and high gamma (60–90 Hz), using the open-source software Brainstorm. The pre-processing was performed by applying notch filters at 60, 120, 180, 240 and 300 Hz and was followed by a high-pass filter at 0.3 Hz to remove slow wave and DC offset artifacts. Pre-processed sensor-level data were used to obtain a source estimation on HCP’s fsLR4k cortex surface for each participant. Head models were computed using overlapping spheres, and the data and noise covariance matrices were estimated from the resting-state MEG and noise recordings. Brainstorm’s linearly constrained minimum variance (LCMV) beamformers method was applied to obtain the source activity for each participant. Welch’s method was then applied to estimate power spectrum density (PSD) for the source-level data, using overlapping windows of length 4 seconds with 50% overlap. Average power at each frequency band was then calculated for each vertex (that is, source). Source-level power data were then parcellated into 100 cortical regions for each frequency band.

ENIGMA cortical abnormality maps
The ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) consortium is a data-sharing initiative that relies on standardized image acquisition and processing pipelines, such that disorder maps are comparable. Patterns of cortical abnormality were collected for 13 neurological, neuropsychological, and psychiatric disorders from the ENIGMA consortium and the Enigma toolbox, including: 22q11.2 deletion syndrome, ADHD, ASD, idiopathic generalized epilepsy, right and left temporal lobe epilepsy, depression, OCD, schizophrenia, BD, obesity, schizotypy and PD. Although most disorders show decreases in cortical thickness, some (for example, 22q, ASD and schizotypy) also show regional increases in cortical thickness. We, therefore, refer to the disorder profiles as ‘cortical abnormalities’. All cortical abnormality maps were collected from adult patients (except for ASD for which only an age-aggregated (2–64 years) map was available), following identical processing protocols, for a total of over 21,000 scanned patients against almost 26,000 controls. The values for each map are z-scored effect sizes (Cohen’s d) of cortical thickness in patient populations versus healthy controls. Note that the native and only representation of ENIGMA datasets is the Desikan–Killiany atlas (68 cortical regions). For visualization purposes, data are inverted such that larger values represent greater cortical thinning. Imaging and processing protocols can be found at https://enigma.ini.usc.edu/protocols/.

Dominance analysis
Dominance analysis seeks to determine the relative contribution (‘dominance’ of each independent variable to the overall fit (adjusted R²)) of the multiple linear regression model. This is done by fitting the same regression model on every combination of input variables (2p – 1 submodels for a model with p input variables). Total dominance is defined as the average of the relative increase in R² when adding a single input variable of interest to a submodel, across all 2p – 1 submodels. The sum of the dominance of all input variables is equal to the total adjusted R² of the complete model, making total dominance an intuitive method that partitions the total effect size across predictors. Therefore, unlike other methods of assessing predictor importance, such as methods based on regression coefficients or univariate correlations, dominance analysis accounts for predictor–predictor interactions and is interpretable. Dominance was then normalized by the total fit (R²) of the model, to make dominance fully comparable both within and across models.

Cognitive meta-analytic activation
Probabilistic measures of the association between voxels and cognitive processes were obtained from Neurosynth, a meta-analytic tool that synthesizes results from more than 15,000 published functional MRI studies by searching for high-frequency keywords (such as ‘pain’ and ‘attention’) that are published alongside functional MRI voxel coordinates. The pre-processing and source-level data were used to obtain a source estimation on HCP’s fsLR4k cortex surface for each participant. Head models were computed using overlapping spheres, and the data and noise covariance matrices were estimated from the resting-state MEG and noise recordings. Brainstorm’s linearly constrained minimum variance (LCMV) beamformers method was applied to obtain the source activity for each participant. Welch’s method was then applied to estimate power spectrum density (PSD) for the source-level data, using overlapping windows of length 4 seconds with 50% overlap. Average power at each frequency band was then calculated for each vertex (that is, source). Source-level power data were then parcellated into 100 cortical regions for each frequency band.

Partial least squares analysis
Partial least squares (PLS) analysis was used to relate neurotransmitter receptor distributions to functional activation. PLS is an unsupervised multivariate statistical technique that decomposes the two datasets into orthogonal sets of latent variables with maximum covariance. The latent variables consist of receptor weights, cognitive weights and a singular value that represents the covariance between receptor distributions and functional activations that is explained by the latent variable. Receptor and cognitive scores are computed by projecting the original data onto the respective weights, such that each brain region is assigned a receptor and cognitive score. Finally, receptor loadings are computed as the Pearson’s correlation between receptor densities and receptor scores and vice versa for cognitive loadings. Note that PLS analysis does not (1) speak to causal relationships between receptors and cognition, (2) make specific univariate receptor–cognition associations and (3) preclude the existence of additional relationships between receptors and cognitive function. The significance of the latent variable was assessed on the singular value, against the spin-test (see the ‘Null models’ section). In the present report, only the first latent variable was significant; the remaining latent variables were not analyzed further.
Finally, the correlation between receptor and cognitive scores was cross-validated (see the ‘Distance-dependent cross-validation’ section). The empirical correlation between receptor and cognitive scores across all brain regions was $r(98) = 0.70$; the mean training set correlation was $r(98) = 0.71$; and the mean test set correlation was $r(98) = 0.54$ and $P_{\text{spin}} = 0.046$, one-sided.

Distance-dependent cross-validation

The robustness of each multilinear model was assessed by cross-validating the model by using a distance-dependent method. Specifically, this method was applied to every multilinear regression model (Figs. 3c, 4 and 6) and the PLS model (Fig. 5). For each brain region (source node), we selected the 75% closest regions as the training set and the remaining 25% of brain regions as the test set, for a total of 100 repetitions in the Schaefer atlas and 68 repetitions in the Desikan–Killiany atlas. This stratification procedure minimizes the dependence among the two sets due to spatial autocorrelation. In the case of multilinear regression models, the model was fit on the training set, and the predicted test set output variable (regional functional connectivity, MEG power or disorder maps) was correlated to the empirical test set values. The distribution of Pearson’s correlations between predicted and empirical variables across all repetitions (that is, all brain regions) can be found in Supplementary Fig. 2 (structure–function coupling). Supplementary Fig. 3 (MEG power) and Supplementary Fig. 7 (disorder maps).

In the case of the PLS analysis, the model was fit on the training set, and the weights were projected onto the test set to calculate predicted receptor and cognitive scores. Training and test sets were defined as described above, and the procedure was repeated for each brain region as the source node (100 repetitions). The correlation between receptor and cognitive score was separately calculated in the training and test set. The significance of the mean out-of-sample correlation was assessed against a permuted null model, constructed by repeating the cross-validation on spatial autocorrelation-preserving permutations of the functional association matrix (1,000 repetitions; Fig. 5d).

Null models

Spatial autocorrelation-preserving permutation tests were used to assess statistical significance of associations across brain regions, termed ‘spin tests’ [94,95,96]. We created a surface-based representation of the parcellation on the FreeSurfer fsaverage surface via files from the Connectome Mapper toolkit https://github.com/LTS5/cmp. We used the spherical projection of the fsaverage surface to define spatial coordinates for each parcel by selecting the coordinates of the vertex closest to the center of the mass of each parcel. These parcel coordinates were then randomly rotated, and original parcels were reassigned the value of the closest rotated parcel (10,000 repetitions). Parcels for which the medial wall was closest were assigned the value of the next most proximal parcel instead. The procedure was performed at the parcel resolution rather than the vertex resolution to avoid upsampling the data and to each hemisphere separately. Note that the spin test was not applied to autodiography data because of missing samples. A permutation test was applied instead.

A second null model was used to test whether receptor similarity is greater in connected regions than unconnected regions. This model generates a null structural connectome that preserves the density, edge length and degree distributions of the empirical structural connectome [97,98]. In brief, edges were binned according to Euclidean distance. Within each bin, pairs of edges were selected at random and swapped. This procedure was then repeated 10,000 times. To compute a P value, the mean receptor similarity of unconnected edges was subtracted from the mean receptor similarity of connected edges, and this difference was compared to a null distribution of differences computed on the rewired networks.

Reporting Summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors. Volumetric PET images, including receptor images and synaptic density, are included in neuromaps (https://github.com/netneurolab/neuromaps) where they can be converted between template spaces. Autoradiography data are available in Supplementary Table 2 of ref. [99]. The HCP dataset, including diffusion-weighted MRI, functional MRI and MEG, is available at https://db.humanconnectome.org. Neurosynth data are available at https://neurosynth.org. The ENIGMA datasets are available through the ENIGMA consortium and the ENIGMA Toolbox (https://github.com/MICA-MNI/ENIGMA). Parcellation atlases, including the Schaefer-100 and Desikan–Killiany atlas, were obtained from netneurotools (https://github.com/netneurolab/netneurotools).

Code availability

All code used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors.

References

94. Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods (2022). https://www.nature.com/articles/s41592-022-01625-w
95. Schoenberger, M. et al. In vivo [F]JGE-179 brain signal does not show NMDA-specific modulation with drug challenges in rodents and nonhuman primates. ACS Chem. Neurosci. 9, 298–305 (2018).
96. Talbot, P. S. et al. Extended characterisation of the serotonin 2A (5-HT$_{2A}$) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test–retest reproducibility, and vulnerability to endogenous 5-HT tone. Neuroimage 59, 271–285 (2012).
97. Laurikainen, H. et al. Sex difference in brain CB1 receptor availability in man. Neuroimage 184, 834–842 (2019).
98. Jaworska, N. et al. Extra-striatal D$_{2/3}$ receptor availability in youth at risk for addiction. Neuropsychopharmacology 45, 1498–1500 (2020).
99. Alakurtti, K. et al. Long-term test–retest reliability of striatal and extrastriatal dopamine D$_{2/3}$ receptor binding: study with $[^{11}$C]raclopride and high-resolution PET. J. Cereb. Blood Flow Metab. 35, 1199–1205 (2015).
100. Sasaki, T. et al. Quantification of dopamine transporter in human brain using pet with $[^{18}$F]-FE-PE2I. J. Nucl. Med. 53, 1065–1073 (2012).
101. Turtonen, O. et al. Adult attachment system links with brain mu opioid receptor availability in vivo. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 360–369 (2021).
102. Hesse, S. et al. Central noradrenaline transporter availability in highly obese, non-depressed individuals. Eur. J. Nucl. Med. Mol. Imaging 44, 1056–1064 (2017).
103. Dagher, A. & Palomero-Gallagher, N. Mapping dopamine with positron emission tomography: a note of caution. Neuroimage 207, 116203 (2020).
104. Finnema, S. J. et al. Kinetic evaluation and test–retest reproducibility of $[^{11}$C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J.Cereb. Blood Flow Metab. 38, 2041–2052 (2018).
105. Hansen, J. Y. et al. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat. Commun. 13, 4682 (2022).
de Wael, R. V. et al. Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. *Proc. Natl Acad. Sci. USA* **115**, 10154–10159 (2018).

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. *Neuroimage* **80**, 105–124 (2013).

Tournier, J.-D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. *Neuroimage* **202**, 116137 (2019).

Dhollander, T., Raffelt, D. & Connelly, A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Workshop on Breaking the Barriers of Diffusion MRI. https://www.researchgate.net/publication/307863133_Unsupervised_3-tissue_response_function_estimation_from_single-shell_or_multi-shell_diffusion_MR_data_without_a_co-registered_T1_image (ISMRM, 2016).

Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. *Neuroimage* **103**, 411–426 (2014).

Tournier, J.-D., Calamante, F. & Connelly, A. Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. *Proc. Int. Soc. Magn. Res. Med.* https://cds.ismrm.org/protected/10MProceedings/PDFfiles/1670_4298.pdf (2010).

Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. *Neuroimage* **119**, 338–351 (2015).

Betzel, R. F., Griffis, A., Hagmann, P. & Mišić, B. Distance-dependent consensus thresholds for generating group-representative structural brain networks. *Netw. Neurosci.* **3**, 475–496 (2019).

Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. *Neuroimage* **90**, 449–468 (2014).

Estrada, E. & Hatano, N. Communicability in complex networks. *Phys. Rev. E Stat. Nonlin. Soft Matter Phys.* **77**, 036111 (2008).

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. *Comput. Intell. Neurosci.* **2011**, 679716 (2011).

Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. *Transl. Psychiatry* **10**, 100 (2020).

Larivière, S. et al. The ENIGMA Toolbox: cross-disorder integration and multiscale neural contextualization of multisite neuroimaging datasets. *Nat. Methods* **18**, 698–700 (2021). https://www.nature.com/articles/s41592-021-01186-4

Sun, D. et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: convergence with idiopathic psychosis and effects of deletion size. *Mol. Psychiatry* **25**, 1822–1834 (2020).

Hoogman, M. et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. *Am. J. Psychiatry* **176**, 531–542 (2019).

Van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD working group. *Am. J. Psychiatry* **175**, 359–369 (2018).

Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. *Brain* **141**, 391–408 (2018).

Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. *Mol. Psychiatry* **22**, 900–909 (2017).

Boedhoe, P. S. et al. Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA obsessive-compulsive disorder working group. *Am. J. Psychiatry* **175**, 453–462 (2018).

Van Erp, T. G. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. *Biol. Psychiatry* **84**, 644–654 (2018).

Hibar, D. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. *Mol. Psychiatry* **23**, 932–942 (2018).

Opel, N. et al. Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders. *Mol. Psychiatry* **26**, 4839–4852 (2021).

Kirschnier, M. et al. Cortical and subcortical neuroanatomical signatures of schizotypy in 3,004 individuals assessed in a worldwide ENIGMA study. *Mol. Psychiatry* **27**, 1167–1176 (2021).

Laansma, M. A. et al. International multicenter analysis of brain structure across clinical stages of Parkinson’s disease. *Mov. Disord.* **36**, 2583–2594 (2021).

Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage* **31**, 968–980 (2006).

Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. *Front. Neuroinform.* **5**, 17 (2011).

Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdhi, H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. *Neuroimage* **56**, 455–471 (2011).

Vasa, F. & Misic, B. Null models in network neuroscience. *Nat. Rev. Neurosci.* **23**, 493–504 (2022).

Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. *Nat. Methods* **18**, 698–700 (2021).

Acknowledgements

We thank V. Bazinet, Z.-Q. Liu, F. Milisavl, L. Suarez, B. Vazquez-Rodriguez, M. Li and A. Luppi for their comments and suggestions on the manuscript. This research was undertaken thanks, in part, to funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative. B.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN no. 017-04267) and from the Canada Research Chairs Program. J.Y.H. acknowledges support from the Helmholz International BigBrain Analytics & Learning Laboratory, the Natural Sciences and Engineering Research Council of Canada and the Fonds de recherche de Québec. M.N. acknowledges support from the Independent Research Fund Denmark (DFF-0129-00004B). E.K. acknowledges support from the Savoy Foundation for Epilepsy, the American Epilepsy Society Early Career Physician Scientist Award and the Canadian Institutes of Health Research (CIHR) MOP-93614. J.P.C. was supported by a *British Journal of Anaesthesia*/Royal College of Anaesthetists grant from the National Institute of Academic Anaesthesia. Some of the PET receptor data included in this manuscript were supported by the Novo Nordisk Foundation grant OpenNeuroPET (0063277). Some of the PET receptor data included in this manuscript were supported by a Medical Research Council (MRC) PET Neuroscience programme grant (Training and Novel Probes Programme in PET Neurochemistry (MR/K02308X/1)) and from an MRC Developmental Pathway Funding Scheme grant (MR/L013215/1). PET receptor data collected in Cambridge were supported by the National Institute for Health and Care Research Cambridge Biomedical Research Centre (BRC-1215-20014). The funders had no

https://doi.org/10.1038/s41593-022-01186-3
role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author contributions
J.Y.H. and B.M. conceived the study and wrote the manuscript, with valuable revision from all authors. J.Y.H. performed the formal analysis, with contributions from G.S. and R.D.M. J.Y.H. interpreted the results, with contributions from G.S., R.D.M., N.P.-G., J.M.S., L.T., A.D. and B.M. K.S., S.M.L.C., M.N., V.B., Y.W., J.-D.G., E.A., S.S., S.G.S., J.M.D., G.B., T.F., T.W.S., R.N.S., M.G., M.J.K., J.S.D., J.P.C., T.D.F., F.I.A., C.J.M., A.H., J.-P.S., S.G., J.H., M.-A.B., M.L., E.K., P.R.-N., M.G., G.M.K., R.E.G. and L.T. provided data. B.M. was the project administrator.

Competing interests
J.M.D. is currently an employee of, and has financial interest in, Biogen, Inc. However, the work contributing to this manuscript is in no way related to his employment at Biogen. R.D.M. is currently employed by Octave Bioscience. However, the work contributing to this manuscript is in no way related to his employment at Octave Bioscience. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41593-022-01186-3.

Correspondence and requests for materials should be addressed to Bratislav Misic.

Peer review information Nature Neuroscience thanks Amy Kuceyeski, Trevor Robbins and Theodore Satterthwaite for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- enigmatoolbox v1.1.1 (https://github.com/MICA-MNI/ENIGMA) was used for fetching ENIGMA data.
- MEG data was processed using the open software toolbox Brainstorm v220420.
- HCP structural data was processed using MRtrix3 v3.0.0

Data analysis

- All code used to analyze data can be found at https://github.com/netneurolab/hansen_receptors. Data was analyzed using Python 3.8.10, MATLAB R2022a, netneurotools v0.2.3 and neuromaps v0.0.3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors. Volumetric PET images, including receptor images and synaptic density, are included in neuromaps (https://github.com/netneurolab/neuromaps) where they can be easily converted between template spaces. Autoradiography data is available in Supplementary Table 2 of Zilles & Palomero-Gallagher 2017, Frontiers in Neuroanatomy. The HCP dataset, including diffusion weighted MRI, fMRI, and MEG is available at https://db.humanconnectome.org/. Neurosynth data is available at https://neurosynth.org/. The ENIGMA datasets are
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences
☐ Behavioural & social sciences
☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

No sample size calculations were performed. We collated as many PET tracer images as possible to construct a comprehensive (19-receptor/transporter) atlas. HCP data was used because of the large number of subjects and the relatively equal male/female balance. For HCP data, only unrelated subjects were included. For PET data, only healthy subjects were included. The ENIGMA dataset was selected because of the large number of subjects in each meta-analysis and because it contains many brain maps for diseases/disorders/conditions that have been similarly processed such that comparison between datasets is possible.

Data exclusions

No data was excluded.

Replication

The analysis pipeline was conducted and replicated: (1) at the Schaefer-100 parcellation resolution, (2) at the Schaefer-200 parcellation resolution, (3) at the Schaefer-400 parcellation resolution, (4) using the 68-node Desikan-Killiany atlas alongside structural/functional connectomes from the Lausanne atlas. Furthermore, we recalculated the receptor similarity matrix in a leave-one-out fashion, and confirmed that no single receptor/transporter exerts undue influence on this similarity matrix (correlation between leave-one-out similarity matrix and original similarity matrix >0.98 for all receptors). Finally, analyses were repeated using autoradiography data for 15 receptors as opposed to PET data for 19 receptors/transporters.

Randomization

No randomization was performed as this study does not include experimental groups.

Blinding

Blinding is not relevant to this study because it does not include experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology and archaeology
☑	Animals and other organisms
☑	Human research participants
✔	Clinical data
✔	Dual use research of concern

Methods

n/a	Involved in the study
☑	ChIP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics	Demographic information for all PET subjects can be found in Table 1.
Recruitment	Only data from healthy control subjects were used in the analyses.
Ethics oversight	Each individual PET study was approved, details can be found in the references found in Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Magnetic resonance imaging

Experimental design

Design type	Resting-state fMRI and diffusion-weighted MRI
Design specifications	Following the procedure described in Vos De Wael et al., 2018, we obtained structural and functional magnetic resonance imaging (MRI) data for 326 unrelated participants (age range 22–35 years, 145 males) from the Human Connectome Project (HCP; S900 release). All four resting state fMRI scans (two scans (R/L and L/R phase encoding directions) on day 1 and two scans (R/L and L/R phase encoding directions) on day 2, each about 15 min long; TR=720 ms), as well as diffusion weighted imaging (DWI) data were available for all participants. All the structural and functional MRI data were pre-processed using HCP minimal pre-processing pipelines. Detailed information regarding data acquisition and pre-processing is available elsewhere (Van Essen et al., 2013, Glasser et al., 2013).
Behavioral performance measures	No behavioural measures were recorded during the fMRI runs.

Acquisition

Imaging type(s)	Functional and diffusion-weighted MRI
Field strength	3T
Sequence & imaging parameters	Multi-band sequence; functional images have a 2-mm isotropic signal resolution, structural modalities were acquired on a Siemens Skyra 3T scanner and included a T1-weighted MPRAGE sequence at an isotropic resolution of 0.7mm, and a T2-weighted SPACE at an isotropic resolution of 0.7mm. More details on imaging protocols and procedures are available at http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html.
Area of acquisition	Whole-brain
Diffusion MRI	Used (not used)

Preprocessing

Preprocessing software	We used the HCP data that was previously preprocessed. This preprocessing was done using FSL 5.0.6, FreeSurfer 5.3.0-HCP, and Connectome Workbench v1.1.1.
Normalization	Image processing includes correcting for gradient distortion caused by non-linearities, correcting for bias field distortions, and registering the images to a standard reference space.
Normalization template	fs_LR_32k surface mesh
Noise and artifact removal	FMRIB’s ICA-based X-noisefier (FIX) and global signal regression
Volume censoring	No volume censoring was performed.

Statistical modeling & inference

Model type and settings	Functional and structural connectomes were used for comparison with PET-derived receptor similarity.		
Effect(s) tested	We tested whether receptor similarity is greater when regions are connected (SC) or within the same intrinsic functional network (fMRI).		
Specify type of analysis:	Whole brain	ROI-based	Both
Statistic type for inference	(See Eklund et al. 2016)	NA	
Correction	NA		

Models & analysis

n/a	Involved in the study
☑️	Functional and/or effective connectivity
☑️	Graph analysis
☑️	Multivariate modeling or predictive analysis

Functional and/or effective connectivity

We used functional connectivity, which was constructed by correlated pairwise regional functional time series, and averaging this across subjects.

Graph analysis

We used structural connectivity (weighted) matrices. Structural connectivity between pairs of regions was...
Graph analysis

measured in terms of fiber density, defined as the number of streamlines between two regions, normalized by the average length of the streamlines and average surface area of the two regions. The goal of this normalization is to compensate for the bias toward longer fibers inherent in the tractography procedure, as well as differences in region size.

Multivariate modeling and predictive analysis

Regional vectors of functional and connectivity were used in a multilinear regression model which fit measures of structure (distance, path length, communicability) and receptor similarity to functional connectivity.