ON THE MOTIVE OF CODIMENSION 2 LINEAR SECTIONS OF \(\text{Gr}(3, 6) \)

ROBERT LATERVEER

ABSTRACT. We consider Fano sevenfolds \(Y \) obtained by intersecting the Grassmannian \(\text{Gr}(3, 6) \) with a codimension 2 linear subspace (with respect to the Plücker embedding). We prove that the motive of \(Y \) is Kimura finite-dimensional. We also prove the generalized Hodge conjecture for all powers of \(Y \).

1. INTRODUCTION

Given a smooth projective variety \(Y \) over \(\mathbb{C} \), let \(A_i(Y) := \text{CH}_i(Y)_\mathbb{Q} \) denote the Chow groups of \(Y \) (i.e. the groups of \(i \)-dimensional algebraic cycles on \(Y \) with \(\mathbb{Q} \)-coefficients, modulo rational equivalence). Let \(A_i^{\text{hom}}(Y) \subset A_i(Y) \) denote the subgroup of homologically trivial cycles.

The famous Bloch–Beilinson conjectures [10], [33] predict that the Hodge level of the cohomology of \(Y \) should have an influence on the size of the Chow groups of \(Y \). In particular, there is the following conjecture:

Conjecture 1.1. Let \(Y \) be a smooth projective variety of Hodge coniveau \(\geq c \) (i.e. the Hodge numbers \(h^{p,q}(Y) \) vanish provided \(p + q \geq 2c \) and \(p < c \)). Then

\[
A_i^{\text{hom}}(Y) = 0 \quad \forall \ i < c .
\]

(This is known as the “generalized Bloch conjecture”; for motivation and background cf. [33, Section 1.2] or [10].)

Let \(\text{Gr}(3, 6) \) be the Grassmannian of 3-dimensional linear subspaces of a fixed 6-dimensional vector space. In this note, we consider smooth complete intersections

\[
Y = \text{Gr}(3, 6) \cap H_1 \cap H_2 \subset \mathbb{P}^{19}
\]

of the Grassmannian with 2 Plücker hyperplanes \(H_1, H_2 \). This \(Y \) is a 7-dimensional Fano variety of Hodge coniveau 3 (i.e. \(h^{p,7-p}(Y) = 0 \) for \(p < 3 \)). The Hodge theory of \(Y \) has been studied by Donagi in his thesis [6]. The derived category of \(Y \) has been studied by Deliu [5] (this derived category is not yet well-understood, because HPD for \(\text{Gr}(3, 6) \) is still conjectural, cf. Remarks 2.3 and 5.1 below).

Our main result is that Conjecture 1.1 is verified in this case:

Theorem (=Theorem 3.1). Let

\[
Y := \text{Gr}(3, 6) \cap H_1 \cap H_2 \subset \mathbb{P}^{19}
\]

2010 Mathematics Subject Classification. Primary 14C15, 14C25, 14C30.

Key words and phrases. Algebraic cycles, Chow groups, motive, Bloch-Beilinson conjectures, Kimura finite-dimensionality, generalized Hodge conjecture.
be a smooth dimensionally transverse intersection, where the H_j are Plücker hyperplanes. Then

$$A_i^{\text{hom}}(Y) = 0 \quad \forall i \neq 3.$$

In particular, Y has finite-dimensional motive (in the sense of [14]).

The argument proving Theorem 3.1 uses instances of the Franchetta property (cf. subsection 2.3 below). This is similar to, and inspired by, the seminal work of Voisin on Conjecture [11, 31, 32]. Theorem 3.1 has the following consequence:

Corollary (=Corollary 4.1). Let Y be as in Theorem 3.1. The generalized Hodge conjecture is true for all powers of Y.

The argument of Corollary 4.1 is as follows: there is a certain elliptic curve C naturally associated to Y (this C is called the Segre curve in honour of C. Segre who studied this curve more than a century ago [26]). An equivalent formulation of Theorem 3.1 is the relation of Chow motives

$$h(Y) \cong h(C)(-3) \oplus \bigoplus_1(\ast) \quad \text{in } M_{\text{rat}}.$$

Thus, to prove the generalized Hodge conjecture for powers of Y one is reduced to powers of C, for which the generalized Hodge conjecture is known.

Another application of Theorem 3.1 concerns Voevodsky’s conjecture on smash-equivalence (Corollary 4.3).

It would be interesting to understand more generally the Chow groups of linear sections (of codimension $r > 2$) of $\text{Gr}(3, 6)$, cf. Remark 5.1.

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite type over \mathbb{C}. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we denote by $A_j(Y) := CH_j(Y)_\mathbb{Q}$ the Chow group of j-dimensional cycles on Y with \mathbb{Q}-coefficients; for Y smooth of dimension n the notations $A_j(Y)$ and $A^{n-j}(Y)$ are used interchangeably. The notations $A_i^{\text{hom}}(Y)$ and $A_i^{\text{AJ}}(X)$ will be used to indicate the subgroup of homologically trivial (resp. Abel–Jacobi trivial) cycles.

The contravariant category of Chow motives (i.e., pure motives with respect to rational equivalence as in [25], [22]) will be denoted M_{rat}.

2. Preliminaries

2.1. Codimension 1 linear sections. As a warm-up for the codimension 2 case, let us first consider codimension 1 linear sections of $\text{Gr}(3, 6)$.

Theorem 2.1 (Donagi [6]). Let

$$Y := \text{Gr}(3, 6) \cap H \subset \mathbb{P}^{19}.$$

be a smooth dimensionally transverse intersection, where H is a Plücker hyperplane. The interesting Hodge numbers of Y are

$$h^{p,8-p}(Y) = \begin{cases} 4 & \text{if } p = 4, \\ 0 & \text{otherwise}. \end{cases}$$

Proof. This is contained in [6, Section 3.4].

Remark 2.2. Let $Y = \text{Gr}(3,6) \cap H$ be a hypersurface as in Theorem 2.1. As the Hodge coniveau of Y is 4, Conjecture 1.1 (combined with the Bloch–Srinivas argument [4, 17]) predicts that

$$A_i^{\text{hom}}(Y) = 0 \quad \forall \ i.$$

In this case, this is readily verified using a construction of Donagi’s [6]: we choose a hyperplane $P_5 \subset V_6$, and we consider the incidence variety

$$\widetilde{\text{Gr}} := \left\{ (A, \ell) \in \text{Gr}(3,V_6) \times \text{Gr}(2,P_5) \mid \ell \subset A \right\} \subset \text{Gr}(3,V_6) \times \text{Gr}(2,P_5).$$

The first projection $\widetilde{\text{Gr}} \to \text{Gr}(3,V_6)$ is birational (it is actually a blow-up with center the locus $\sigma_{111}(P)$ of subspaces contained in P). The second projection

$$\Pi: \widetilde{\text{Gr}} \to \text{Gr}(2,P_5)$$

is a \mathbb{P}^3-fibration. We now consider the morphism

$$\Pi_Y: \widetilde{Y} \to \text{Gr}(2,P_5),$$

obtained by restricting Π to the strict transform \widetilde{Y} of Y in $\widetilde{\text{Gr}}$. As explained in [6, Section 3.4], for P_5 generic with respect to Y, the morphism Π_Y is a \mathbb{P}^2-fibration over $\text{Gr}(2,P_5) \setminus S$, and a \mathbb{P}^3-fibration over S, where $S \subset \text{Gr}(2,P_5)$ is a closed subvariety isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. Applying the Chow-theoretic version of Cayley’s trick [11, Theorem 3.1] to this set-up, we find that $A_i(\widetilde{Y})$ is a direct sum of Chow groups of $\text{Gr}(2,5)$ and of S, hence \widetilde{Y} has trivial Chow groups. It follows that Y also has trivial Chow groups, i.e. the prediction (1) is verified. (Another proof of (1) is given in [19, Theorem 3.2].)

Remark 2.3. Let $Y = \text{Gr}(3,6) \cap H$ be a hypersurface as in Theorem 2.1. The theory of homological projective duality [15, 16, 27] suggests that the derived category of Y should admit a full exceptional collection. The construction of the HPD dual of $\text{Gr}(3,6)$ appears to be an open problem (cf. [5, Conjecture 21], where a non-commutative resolution of the double cover of \mathbb{P}^{10} branched along a certain quartic hypersurface is suggested as a candidate). Nevertheless, it seems likely the existence of a full exceptional collection for Y can be proven by looking at the above construction and applying a categorical version of Cayley’s trick ([12, Theorem 2.6] or [3, Proposition 47]).

2.2. Codimension 2 linear sections.

Theorem 2.4 (Donagi [6]). Let

$$Y := \text{Gr}(3,6) \cap H_1 \cap H_2 \subset \mathbb{P}^{19}$$

be a smooth dimensionally transverse intersection, where H is a Plücker hyperplane. The interesting Hodge numbers of Y are

$$h^{p,8-p}(Y) = \begin{cases} 4 & \text{if } p = 4, \\ 0 & \text{otherwise}. \end{cases}$$

Proof. This is contained in [6, Section 3.4].

Remark 2.2. Let $Y = \text{Gr}(3,6) \cap H$ be a hypersurface as in Theorem 2.1. As the Hodge coniveau of Y is 4, Conjecture 1.1 (combined with the Bloch–Srinivas argument [4, 17]) predicts that

$$A_i^{\text{hom}}(Y) = 0 \quad \forall \ i.$$
be a smooth dimensionally transverse intersection, where the H_j are Plücker hyperplanes. The Hodge diamond of Y is

\[
\begin{array}{ccccccc}
 & & & 1 & & & \\
 & & 0 & & 0 & & \\
 & 0 & & 1 & & 0 & \\
0 & 0 & & 0 & & 0 & 0 \\
0 & 0 & & 2 & & 0 & 0 \\
0 & 0 & & 0 & & 0 & 0 & 0 \\
0 & 0 & & 3 & & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & & 0 & & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 2 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
 & & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
 & & & 1 & & &
\end{array}
\]

Proof. This is contained in [6, Section 3.4]. (Alternatively, one could apply [7] to find the Hodge number $h^{4,3}(Y)$.) \Box

Corollary 2.5. Let $Y := \text{Gr}(3, 6) \cap H_1 \cap H_2$ be as in Theorem 2.4. There exist an elliptic curve C and a correspondence $\Gamma \in A^4(C \times Y)$ inducing an isomorphism

$$
\Gamma_* : H^1(C, \mathbb{Q}) \cong H^7(Y, \mathbb{Q}).
$$

Proof. Let $J^4(Y)$ denote the intermediate Jacobian. Because the Hodge coniveau of $H^7(Y, \mathbb{Q})$ is 3, $J^4(Y)$ is an abelian variety. Because $h^{4,3}(Y) = 1$, the dimension of $J^4(Y)$ is 1, i.e. $J^4(Y)$ is an elliptic curve. As explained for instance in [21, Proof of Lemma 3], the general theory of abelian varieties guarantees the existence of an elliptic curve C and a correspondence $\Gamma \in A^4(C \times Y)$ such that there is a commutative diagram

$$
\begin{array}{ccc}
A_\text{hom}^1(C) & \xrightarrow{\Gamma_*} & A_\text{hom}^4(Y) \\
\downarrow AJ & & \downarrow AJ \\
C \cong J^1(C) & \xrightarrow{\Gamma_*} & J^4(Y) \\
\end{array}
$$

Here AJ is the Abel–Jacobi map, and $J^1(C)$ is the Jacobian of C. The left arrow is an isomorphism, and the lower horizontal arrow is an isogeny of elliptic curves. It follows that Γ induces an isomorphism

$$
\Gamma_* : H^{0,1}(C) \cong H^{3,4}(Y),
$$

and hence (taking the complex conjugate) also

$$
\Gamma_* : H^{1,0}(C) \cong H^{4,3}(Y).
$$
Invoking the Hodge decomposition $H^7(Y, \mathbb{C}) = H^{4,3}(Y) \oplus H^{3,4}(Y)$ (and likewise $H^1(C, \mathbb{C}) = H^{1,0}(C) \oplus H^{0,1}(C)$), we find that Γ induces an isomorphism

$$\Gamma_* : H^1(C, \mathbb{C}) \overset{\cong}{\rightarrow} H^7(Y, \mathbb{C}).$$

□

Remark 2.6. It is shown by Donagi [6] that one can actually find a geometric incarnation of the elliptic curve C of Corollary 2.5. There is a certain elliptic curve in $\text{Gr}(3, 6)$ naturally associated to the pencil of hyperplanes defining Y, this is called the Segre curve in [6, Section 3.3] (in honour of C. Segre who had already studied this curve [26]). Donagi proves [6, Theorem 3.8] that there is a natural isomorphism (with a geometric interpretation) from the Segre elliptic curve to the intermediate Jacobian $\mathcal{J}^4(Y)$.

Remark 2.7. Let $Y := \text{Gr}(3, 6) \cap H_1 \cap H_2$ be as in Theorem 2.4. To understand the Chow groups of Y, it is natural to try and apply the method of Remark 2.2. That is, one would like to consider the morphism

$$\Pi_Y : \tilde{Y} \rightarrow \text{Gr}(2, 5)$$

obtained by restricting the morphism $\Pi : \tilde{\text{Gr}} \rightarrow \text{Gr}(2, 5)$ (of Remark 2.2) to the strict transform \tilde{Y} of Y in $\tilde{\text{Gr}}$. Unfortunately, this approach runs into trouble: the locus $S \subset \text{Gr}(2, 5)$ (where the fibers of Π_Y have larger dimension) is now a quadric surface bundle with some singular fibers, and it seems difficult to handle the Chow groups of S.

For this reason, I have preferred to use the “spread” method (which means considering the universal family of sections Y) to prove Theorem 3.1.

Remark 2.8. Let $Y := \text{Gr}(3, 6) \cap H_1 \cap H_2$ be as in Theorem 2.4. Homological projective duality predicts that there is a semi-orthogonal decomposition

$$\mathcal{D}^b(Y) = \langle \mathcal{D}^b(C), A_1, \ldots, A_r \rangle,$$

where C is the Segre elliptic curve and the A_j are exceptional objects. As mentioned in Remark 2.3, a conjectural candidate for the HPD dual of $\text{Gr}(3, 6)$ is identified in [5, Conjecture 21].

2.3. The Franchetta property.

Definition 2.9. Let $\mathcal{Y} \rightarrow B$ be a smooth projective morphism, where \mathcal{Y}, B are smooth quasi-projective varieties. We say that $\mathcal{Y} \rightarrow B$ has the Franchetta property in codimension j if the following holds: for every $\Gamma \in A^j(\mathcal{Y})$ such that the restriction $\Gamma|_{Y_b}$ is homologically trivial for the very general $b \in B$, the restriction $\Gamma|_{Y_b}$ is rationally trivial, i.e. $\Gamma|_{Y_b}$ is zero in $A^j(Y_b)$ for all $b \in B$.

We say that $\mathcal{Y} \rightarrow B$ has the Franchetta property if $\mathcal{Y} \rightarrow B$ has the Franchetta property in codimension j for all j.

This property is studied in [23], [2], [8], [9].

Definition 2.10. Given a family $\mathcal{Y} \rightarrow B$ as above, with $Y := Y_b$ a fiber, we write

$$GDA_B^j(Y) := \text{Im} \left(A^j(\mathcal{Y}) \rightarrow A^j(Y) \right)$$
for the subgroup of \textit{generically defined cycles}. In a context where it is clear to which family we are referring, the index \(B \) will often be suppressed from the notation.

With this notation, the Franchetta property amounts to saying that \(GDA_B(Y) \) injects into cohomology, under the cycle class map.

2.4. A Franchetta-type result.

\textbf{Proposition 2.11.} Let \(M \) be a smooth projective variety with \(A^\text{hyp}_1(M) = 0 \). Let \(L_1, \ldots, L_r \to M \) be very ample line bundles, and let \(\mathcal{Y} \to B \) be the universal family of smooth dimensionally transverse complete intersections of type

\[Y = M \cap H_1 \cap \cdots \cap H_r, \quad H_j \in |L_j|. \]

Assume the fibers \(Y = Y_b \) have \(H^{\text{tr}}_{Y}(Y, \mathbb{Q}) \neq 0 \). There is an inclusion

\[\ker \left(GDA_B(Y \times Y) \to H^2_{\text{tr}}(Y \times Y, \mathbb{Q}) \right) \subset \left((p_1)^*GDA_B(Y), (p_2)^*GDA_B(Y) \right), \]

where \(p_1, p_2 \) denote the projection from \(Y \times Y \) to first resp. second factor.

\textit{Proof.} This is essentially Voisin’s “spread” result \cite[Proposition 1.6]{32} (cf. also \cite[Proposition 5.1]{20} for a reformulation of Voisin’s result). We give a different proof based on \cite{8}. Let \(B := \mathbb{P}H^0(M, L_1 \oplus \cdots \oplus L_r) \) (so \(B \subset B \) is a Zariski open), and let us consider the projection

\[\pi: \mathcal{Y} \times_B \mathcal{Y} \to M \times M. \]

Using the very ampleness assumption, one finds that \(\pi \) is a \(\mathbb{P}^s \)-bundle over \((M \times M) \setminus \Delta_M\), and a \(\mathbb{P}^t \)-bundle over the diagonal \(\Delta_M \). That is, \(\pi \) is what is termed a \textit{stratified projective bundle} in \cite{8}. As such, \cite[Proposition 5.2]{8} implies the equality

\[GDA_B(Y \times Y) = \text{Im} \left(A^*(M \times M) \to A^*(Y \times Y) \right) + \Delta_n GDA_B(Y), \]

where \(\Delta: Y \to Y \times Y \) is the inclusion along the diagonal. The assumption \(A^\text{hyp}_1(M) = 0 \) implies that \(M \) has the Chow–Künneth property, i.e. \(A^*(M \times M) \) is isomorphic to \(A^*(M) \otimes A^*(M) \) (this follows from \cite[Proposition 4.22]{33}). Base-point freeness of the \(L_j \) implies that

\[GDA_B(Y) = \text{Im} \left(A^*(M) \to A^*(Y) \right). \]

The equality \eqref{2} thus reduces to

\[GDA_B(Y \times Y) = \left((p_1)^*GDA_B(Y), (p_2)^*GDA_B(Y), \Delta_Y \right) \]

(where \(p_1, p_2 \) denote the projection from \(S \times S \) to first resp. second factor). The assumption that \(Y \) has non-zero transcendental cohomology implies that the class of the diagonal \(\Delta_Y \) is not decomposable in cohomology (indeed, decomposable correspondences act as zero on the transcendental cohomology). It follows that

\[\text{Im} \left(GDA_B(Y \times Y) \to H^2_{\text{tr}}(Y \times Y, \mathbb{Q}) \right) = \text{Im} \left(\text{Dec}^2(Y \times Y) \to H^2_{\text{tr}}(Y \times Y, \mathbb{Q}) \right) \oplus \mathbb{Q}[\Delta_Y], \]
where we use the shorthand

$$\text{Dec}^j(Y \times Y) := \left((p_1)^*GDA_B^*(Y), (p_2)^*GDA_B^*(Y) \right) \cap A^j(Y \times Y)$$

for the decomposable cycles. We now see that if $\Gamma \in GDA_{\dim Y}(Y \times Y)$ is homologically trivial, then Γ does not involve the diagonal and so $\Gamma \in \text{Dec}_{\dim Y}(Y \times Y)$. This proves the proposition. \(\square\)

Remark 2.12. Proposition 2.11 has the following consequence: if the family $Y \rightarrow B$ has the Franchetta property, then $Y \times_B Y \rightarrow B$ has the Franchetta property in codimension $\dim Y$.

2.5. A Chow–K"unneth decomposition.

Lemma 2.13. Let M be a smooth projective variety with $A^*_{\text{hom}}(Y) = 0$. Let $Y \subset M$ be a smooth complete intersection as in Proposition 2.11 of dimension $\dim Y = d$. The variety Y has a self-dual Chow–K"unneth decomposition $\{\pi_Y^j\}$ with the property that

$$h^j(Y) := (Y, \pi_Y^j, 0) = \oplus \mathbb{I}(*) \text{ in } M_{\text{rat}} \quad \forall \ j \neq d.$$

Moreover, this decomposition is generically defined: writing $Y \rightarrow B$ for the universal family (of complete intersections of the type of Y), there exist relative projectors $\pi_Y^j \in A^d(Y \times_B Y)$ such that $\pi_Y^j = \pi_Y^j|_b$ (where $Y = Y_b$ for $b \in B$).

Proof. This is a standard construction, one can look for instance at [24] (in case d is odd, which will be the case in this note, the “variable motive” $h(Y)^{\text{var}}$ of [24] Theorem 4.4 coincides with $h^d(Y)$). \(\square\)

3. Main result

Theorem 3.1. Let

$$Y := \text{Gr}(3, 6) \cap H_1 \cap H_2 \subset \mathbb{P}^{19}$$

be a smooth dimensionally transverse intersection with 2 hyperplanes H_1, H_2 (with respect to the Pl"ucker embedding). Let C be the Segre curve associated to Y. There is an isomorphism of motives

$$h(Y) \cong h(C)(-3) \oplus \bigoplus \mathbb{I}(*) \text{ in } M_{\text{rat}}.$$

In particular, Y has finite-dimensional motive (in the sense of [14]), and

$$A^i_{\text{AJ}}(Y) = 0 \quad \forall i.$$

Proof. Let $Y \rightarrow B$ denote the universal family of smooth dimensionally transverse intersections as in the theorem, where B is a Zariski open in

$$\bar{B} := \mathbb{P} H^0(\text{Gr}(3, 6), \mathcal{O}_{\text{Gr}(3, 6)}(1)^{\oplus 2}).$$

Proposition 2.11 applies to this set-up (with $M = \text{Gr}(3, 6)$), and gives an inclusion

$$\ker \left(GDA_B^*(Y \times Y) \rightarrow H^{14}(Y \times Y, \mathbb{Q}) \right) \subset \left< (p_1)^*GDA_B^*(Y), (p_2)^*GDA_B^*(Y) \right>.$$
Let us construct an interesting cycle in $GDA_B^4(Y \times Y)$ to which we can apply (4). For any $Y = Y_b$ with $b \in B$, Corollary 2.5 gives us a smooth curve $C = C_b$ and a cycle $\Gamma \in A^4(C \times Y)$ inducing a surjection

$$\Gamma_*: H^1(C, \mathbb{Q}) \twoheadrightarrow H^7(Y, \mathbb{Q}).$$

Writing $C \to B$ for the universal family of Segre curves, the cycle Γ naturally exists relatively, i.e. $\Gamma \in GDA_B^4(F \times Y)$. Since both C and Y verify the standard conjectures, the right-inverse to Γ_* is correspondence-induced, i.e. there exists $\Psi \in A^4(Y \times C)$ such that

$$(\Gamma \circ \Psi)_* = id: H^7(Y, \mathbb{Q}) \to H^7(Y, \mathbb{Q}).$$

(This follows as in [28, Proof of Proposition 1.1]).

We now involve the (generically defined) Chow–Künneth decomposition $\pi^j_Y \in A^7(Y \times Y)$ given by Lemma 2.13. The above means that for $Y = Y_b$ for any $b \in B$, there is vanishing

$$(\Delta Y - \Gamma \circ \Psi) \circ \pi^7_Y = 0 \text{ in } H^{14}(Y \times Y, \mathbb{Q}).$$

Applying Voisin’s Hilbert schemes argument [31, Proposition 3.7], [33, Proposition 4.25] (cf. also [18, Proposition 2.10] for the precise form used here), we can assume that Ψ is also generically defined, and hence

$$(\Delta Y - \Gamma \circ \Psi) \circ \pi^7_Y \in GDA^7(Y \times Y).$$

Now looking at (4), we learn that this cycle is decomposable, i.e.

$$(\Delta Y - \Gamma \circ \Psi) \circ \pi^7_Y \in \langle (p_1)^*GDA^*(Y), (p_2)^*GDA^*(Y) \rangle.$$

That is, for any $Y = Y_b$ with $b \in B$ we can write

$$(\Delta Y - \Gamma \circ \Psi) \circ \pi^7_Y = \gamma \text{ in } A^7(Y \times Y),$$

with $\gamma \in A^*(Y) \otimes A^*(Y)$. Since the $\pi^j_Y, j \neq 7$ of Lemma 2.13 are also decomposable (i.e. they are in $A^*(Y) \otimes A^*(Y)$), this implies that we can write

$$(\Delta Y - \Gamma \circ \Psi) = \gamma' \text{ in } A^7(Y \times Y),$$

with $\gamma' \in A^*(Y) \otimes A^*(Y)$. Being decomposable, γ' does not act on Abel–Jacobi trivial cycles, and so

$$A^i_{AJ}(Y) \xrightarrow{\Psi_*} A^i_{AJ}(C) \xrightarrow{\Gamma_*} A^i_{AJ}(Y)$$

is the identity. But C being a curve, the group in the middle vanishes for all i. This proves the vanishing

$$A^i_{AJ}(Y) = 0$$

for all $Y = Y_b$. The Kimura finite-dimensionality of Y also follows, since submotives of sums of motives of curves are finite-dimensional.

We have now proven that there is a split injection

$$h^7(Y) \hookrightarrow h^1(C)(-3) \text{ in } M_{rat}.$$
Since the motive $h^1(C)$ is indecomposable and $h^7(Y)$ is non-zero, this injection is actually an isomorphism

$$h^7(Y) \cong h^1(C)(-3) \text{ in } \mathcal{M}_{\text{rat}}.$$

Combining (5) with the equalities

$$h(Y) = h^7(Y) \oplus 1 \oplus 1(-1) \oplus 1(-2)^{\oplus 2} \oplus 1(-3)^{\oplus 3} \oplus 1(-4)^{\oplus 3} \oplus 1(-5)^{\oplus 2} \oplus 1(-6) \oplus 1(-7),$$

$$h(C) = h^1(C) \oplus 1 \oplus 1(-1) \text{ in } \mathcal{M}_{\text{rat}}$$

(cf. Lemma 2.13), this gives the isomorphism (3).

4. TWO CONSEQUENCES

Corollary 4.1. Let Y be as in Theorem 3.1. Then the generalized Hodge conjecture is true for Y^m for all $m \in \mathbb{N}$.

Proof. The isomorphism of motives of Theorem 3.1 implies there is an isomorphism of Hodge structures

$$H^j(Y^m, \mathbb{Q}) \cong H^{j-6m}(C^m, \mathbb{Q})(-3m) \oplus \bigoplus H^*(C^{m-1}, \mathbb{Q})(\ast) \oplus \cdots \oplus \bigoplus \mathbb{Q}(\ast).$$

Since this isomorphism is also compatible with the coniveau filtration [28, Proposition 1.2], one is reduced to proving the generalized Hodge conjecture for powers of C. This is known thanks to work of Abdulali [1, Section 8.1] (cf. also [29, Corollary 3.13]).

Remark 4.2. Corollary 4.1 does not really use the full force of Theorem 3.1: to prove Corollary 4.1 it suffices to have an isomorphism of homological motives linking Y and C; such an isomorphism follows readily from Corollary 2.5.

For the next consequence, we recall that a cycle $a \in A^i(Y)$ is called smash-nilpotent if a^N is zero in $A^{Ni}(Y^N)$ for some $N \in \mathbb{N}$. Two cycles are smash-equivalent if their difference is smash-nilpotent. Voevodsky has conjectured that smash-equivalence coincides with numerical equivalence for all smooth projective varieties [30]. Using Theorem 3.1, we verify this in some cases:

Corollary 4.3. Let Y be as in Theorem 3.1. Then smash-equivalence and numerical equivalence coincide on Y^m for $m \leq 3$.

Proof. The isomorphism of motives of Theorem 3.1 implies there is an isomorphism of Chow groups

$$A^j(Y^m) \cong A^{j-3m}(C^m) \oplus \bigoplus A^*(C^{m-1}) \oplus \cdots \oplus \bigoplus \mathbb{Q},$$

respecting any adequate equivalence relation. The result follows, since smash-equivalence and numerical equivalence coincide (for zero-cycles and divisors [30] and hence) for all surfaces, and for abelian threefolds [13].
5. AND BEYOND?

Remark 5.1. What can one say about the Chow groups (or Chow motive) of smooth dimension-
ally transverse intersections

\[Y := \text{Gr}(3, 6) \cap H_1 \cap \cdots \cap H_r \subseteq \mathbb{P}^{19} \]

for arbitrary \(r \)? The conjectural HPD picture drawn in [5, Section 5.3] suggests the following prediction: for \(r \leq 5 \), there is an isomorphism of motives

\[
\text{h}(Y) \oplus \bigoplus \mathbb{I}(\ast) \cong \text{h}(X)(r-5) \oplus \bigoplus \mathbb{I}(\ast) \quad \text{in } M_{\text{rat}},
\]

where \(X \) is a double cover of \(\mathbb{P}^{r-1} \) branched along a certain smooth quartic hypersurface. (For \(r > 5 \), \(X \) should be a certain resolution of singularities of a double cover of \(\mathbb{P}^{r-1} \) branched along a singular quartic.)

To prove this isomorphism for \(r > 2 \) using the method of this note, one is essentially reduced to proving this isomorphism holds modulo homological equivalence and is generically defined.

Acknowledgments. Thanks to the referee for helpful comments. Thanks to Mama-san of the izakaya in Schiltigheim.

References

[1] S. Abdulali, Tate twists of Hodge structures arising from abelian varieties, in: Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic (M. Kerr and G. Pearlstein, eds.), London Math. Society Lecture Note Series 427, Cambridge University Press 2016, pp. 292—307.

[2] N. Bergeron and Z. Li, Tautological classes on moduli space of hyperkähler manifolds, Duke Math. J., arXiv:1703.04733.

[3] M. Bernardara, E. Fatighenti and L. Manivel, Nested varieties of K3 type, arXiv:1912.03144.

[4] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, American Journal of Mathematics Vol. 105, No 5 (1983), 1235—1253.

[5] D. Deliu, Homological projective duality for \(\text{Gr}(3, 6) \), (2011) Publicly Accessible Penn Dissertations 316, http://repository.upenn.edu/edissertations/316.

[6] R. Donagi, On the geometry of Grassmannians, Duke Math. J. 44 no. 4 (1977), 795—837.

[7] E. Fatighenti and G. Mongardi, A note on a Griffiths-type ring for complete intersections in Grassmannians, arXiv:1801.09586.

[8] L. Fu, R. Laterveer and Ch. Vial, The generalized Franchetta conjecture for some hyper-Kähler varieties (with an appendix joint with M. Shen), Journal Math. Pures et Appliquées (9) 130 (2019), 1—35.

[9] L. Fu, R. Laterveer and Ch. Vial, The generalized Franchetta conjecture for some hyper-Kähler varieties, II, arXiv:2002.05490.

[10] U. Jannsen, Motivic sheaves and filtrations on Chow groups, in: Motives (U. Jannsen et alii, eds.), Proceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1.

[11] Q. Jiang, On the Chow theory of projectivization, arXiv:1910.06730v1.

[12] Q. Jiang and N. Leung, Derived category of projectivization and flops, arXiv:1811.12525.

[13] B. Kahn and R. Sebastian, Smash-nilpotent cycles on abelian 3-folds, Math. Res. Letters 16 (2009), 1007—1010.
ON THE MOTIVE OF CODIMENSION 2 LINEAR SECTIONS OF $\text{Gr}(3, 6)$

[14] S.-I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 no 1 (2005), 173—201,
[15] A. Kuznetsov, Homological projective duality for Grassmannians of lines, [math.AG/0610957],
[16] A. Kuznetsov, Homological projective duality, Publications Mathématiques de l'I.H.E.S. 105 no. 1 (2007), 157—220,
[17] R. Laterveer, Algebraic varieties with small Chow groups, Journal Math. Kyoto Univ. Vol. 38 no 4 (1998), 673—694,
[18] R. Laterveer, A family of cubic fourfolds with finite-dimensional motive, Journal of the Mathematical Society of Japan 70 no. 4 (2018), 1453—1473,
[19] R. Laterveer, On the Chow groups of Plücker hypersurfaces in Grassmannians, preprint,
[20] R. Laterveer, J. Nagel and C. Peters, On complete intersections in varieties with finite-dimensional motive, Quarterly Journal of Math. 70 no. 1 (2019), 71—104,
[21] J. Murre, Abel–Jacobi equivalence versus incidence equivalence for algebraic cycles of codimension 2, Topology 24 no. 3 (1985), 361—367,
[22] J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. University Lecture Series 61, Providence 2013,
[23] N. Pavic, J. Shen and Q. Yin, On O’Grady’s generalized Franchetta conjecture, Int. Math. Res. Notices (2016), 1—13,
[24] C. Peters, On a motivic interpretation of primitive, variable and fixed cohomology, Math. Nachrichten 292 no. 2 (2019), 402—408,
[25] T. Scholl, Classical motives, in: Motives (U. Jannsen et alii, eds.), AMS Proceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1,
[26] C. Segre, Sui complessi lineari di piani nello spazio a cinque dimensioni, Annali di Mat. 27 (1918), 75—123,
[27] R. Thomas, Notes on homological projective duality, in: Algebraic Geometry, Salt Lake City 2015 (T. de Fernex et al., eds.), AMS Proceedings of Symposia in Pure Math. Vol. 97 Part 1, 585—610,
[28] Ch. Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups, Proceedings of the LMS 106(2) (2013), 410—444,
[29] Ch. Vial, Generic cycles, Lefschetz representations and the generalized Hodge and Bloch conjectures for abelian varieties, [arXiv:1803.00857], to appear in Annali SNS Pisa,
[30] V. Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero, Internat. Math. Research Notices 4 (1995), 187—198,
[31] C. Voisin, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, Ann. Sci. Ecole Norm. Sup. 46 fascicule 3 (2013), 449—475,
[32] C. Voisin, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, II, J. Math. Sci. Univ. Tokyo 22 (2015), 491—517,
[33] C. Voisin, Chow Rings, Decomposition of the Diagonal, and the Topology of Families, Princeton University Press, Princeton and Oxford, 2014,