During the past 25 years, takotsubo syndrome (TS) has emerged as an important form of acute myocardial injury characterized by a distinctive regional left ventricular (LV) contraction abnormality, often with marked reduction of the LV ejection fraction, and typically completely reversible. At presentation, TS is often indistinguishable from acute coronary syndrome, yet its occurrence is independent of epicardial coronary artery obstruction.\(^1\)–\(^4\) Other features include a predilection for older women and an association with antecedent stressful event acting as the TS trigger. During the early experience with this condition, these triggering events were largely related to emotional trauma.\(^5\)–\(^10\) As experience has expanded, a greater association with physical stressors has emerged.\(^11\)–\(^13\) The increased association with a physical trigger likely reflects greater awareness of secondary TS complicating acute illness. Within the realm of physical triggers, a number of reports have documented pharmacological agents as TS triggers, including cocaine, nortriptyline, venlafaxine, albuterol, flecainide, epinephrine, duloxetine, and a number of chemotherapeutic agents.\(^14\) In this article, we examine the association of chemotherapeutic agents with TS.

Clinical Features and Outcomes of Patients with Chemotherapy-induced Takotsubo Syndrome

Katelyn Storey, BA, and Scott W Sharkey, MD

Minneapolis Heart Institute and Foundation, Minneapolis, MN

Abstract

Chemotherapy treatment of malignancy accounts for 1–2% of takotsubo syndrome (TS) triggers. Women comprise 60–70% of patients with chemotherapy-associated TS, a distinctly lower prevalence than the 90% female prevalence in TS overall. Fluorouracil is the most commonly reported TS-triggering chemotherapeutic agent, although this must be interpreted in the context of the frequency of worldwide use of this agent. The onset of TS relative to chemotherapy initiation is quite variable, ranging from the initial administration to subsequent chemotherapy cycles several weeks beyond initiation. Limited information suggests chemotherapy can be safely reinitiated once the patient has recovered from the initial TS event. Having a TS event in the setting of chemotherapy treatment for malignancy is associated with substantial mortality.

Keywords

Takotsubo syndrome, chemotherapy, cardio-oncology

Disclosure: Funding: Minneapolis Heart Institute Foundation, Minneapolis, MN, US. Received: 19 March 2019 Accepted: 18 June 2019 Citation: US Cardiology Review 2019;13(2):74–82. DOI: https://doi.org/10.15420/usc.2019.10.1

A 2008–2014 analysis from a tertiary cancer center noted 30 patients (average age 65 ± 9 years, 73% female) with cancer and TS. Among these patients, cancer treatment was identified as the TS trigger in 17 (57%), dominated by surgical procedures in 10 (33%), with chemotherapy as the apparent trigger in only 5 (17%) patients.\(^17\)

The International Takotsubo Registry (1,750 patients) noted malignancy in only 1.3% of 630 patients (8 individuals) with physical TS triggers, although details regarding use of chemotherapy were not provided.\(^18\) Therefore, examining the association of chemotherapy with TS is limited by the relatively small number of patients and the lack of detail surrounding these events.

The International Takotsubo Registry (1,750 patients) noted malignancy in only 1.3% of 630 patients (8 individuals) with physical TS triggers, although details regarding use of chemotherapy were not provided.\(^18\) Therefore, examining the association of chemotherapy with TS is limited by the relatively small number of patients and the lack of detail surrounding these events.
Methods
A computer-assisted search of the electronic database MEDLINE (1996–January 2019) was conducted. References were also examined for relevant articles, including review papers. The main search terms were: “takotsubo cardiomyopathy”, “takotsubo syndrome”, “chemotherapy”, “stress cardiomyopathy”, “apical ballooning syndrome”, and “cancer”. Published case reports of TS and chemotherapy were chosen. We excluded studies in which cancer itself (not chemotherapy) was reported as the primary physical stressor.

Results
From 2007 to 2018, we identified 36 unique patients with chemotherapy-associated TS (female patients 19 [61%], average age 64 ± 13 years, range 24–85 years; Table 2). ST-elevation was the most frequent initial ECG finding, present in 56% of reports providing this detail, and the average initial ejection fraction was 28 ± 12%. The onset of TS relative to initiation of chemotherapy was highly variable, ranging from the initial administration to subsequent chemotherapy cycles several weeks beyond initiation. In some cases, the temporal delay between chemotherapy administration and TS onset was lengthy, raising the question of whether the chemotherapeutic agent was actually the TS trigger.

The antimetabolite class of drugs (5-fluorouracil, capecitabine and cytarabine) represented the agents most commonly reported as TS triggers (Table 2). A variety of other chemotherapeutic classes were also represented, including tyrosine kinase inhibitors (sunitinib, axitinib, and pazopanib), HER2 monoclonal antibodies (trastuzumab and pertuzumab), angiogenesis inhibitors (bevacizumab), CD20 monoclonal antibodies (rituximab), microtubule-targeting drugs (paclitaxel and combretastatin), and anthracyclines (doxorubicin and daunorubicin). The TS event was associated with the use of a single chemotherapeutic agent in 69% of patients. Among patients with chemotherapy-associated TS, the most frequent malignancies were colorectal (n=10, 28%), leukemia (n=4, 11%), lymphoma (n=3, 8%), and renal (n=3, 8%).

Additional Considerations
Chemotherapeutic agents have a long-established reputation for cardiotoxicity, including left ventricular dysfunction and heart failure, acute myocardial ischemia and infarction, thromboembolism, hypertension, and arrhythmia. Several of these drugs (e.g., fluorouracil, capecitabine, paclitaxel, docetaxel, bevacizumab, erlotinib, and sorafenib) have been associated with an acute MI-like syndrome that may be difficult to distinguish from a TS event.

Acute Myocarditis Mimicking Takotsubo Syndrome
Recently, immune checkpoint inhibitors have been associated with acute myocarditis characterized by onset of new cardiovascular symptoms, troponin elevation, and abnormal ECG, typically within days to weeks of treatment initiation. Acute myocarditis and TS share clinical features, including presentation, ischemic ECG changes, troponin release, and absent acute coronary artery obstruction. In rare circumstances, acute myocarditis may result in a TS-like regional LV contraction abnormality, in which case it may be challenging to distinguish the two conditions.

In this setting, cardiac MRI may be useful because TS is characterized by myocardial edema in a transmural distribution (T2-weighted imaging) without late gadolinium enhancement.

Drug	Typical Use	Medicare Claims in 2016 (n)
Methotrexate	Multiple	2,480,000
Anastrozole	Breast cancer	1,370,000
Tamoxifen	Breast cancer	475,000
Hydroxyurea	Multiple	381,000
Fluorouracil	Multiple	380,000
Revlimid® (lenalidomide)	Multiple	239,000
Xtandi® (enzalutamide)	Prostate cancer	101,000
Imbruvica® (ibrutinib)	Multiple	101,000
Zyntiga® (abiraterone)	Prostate cancer	96,800
Ibrance® (palbociclib)	Breast cancer	95,400
Gleevec® (imatinib mesylate)	Chronic myeloid leukemia	76,500
Cyclophosphamide	Multiple	9,565
Rituxan® (rituximab)	Non-Hodgkin lymphoma	4,867
Avastin® (bevacizumab)	Colorectal cancer	4,594
Velcade® (bortezomib)	Multiple myeloma and mantle cell lymphoma	2,734
Carboplatin	Multiple	2,487
Herceptin® (trastuzumab)	Breast and gastric cancer	2,450
Paclitaxel	Multiple	1,666

Acute Coronary Syndrome Mimicking Takotsubo Syndrome
The apical LV ballooning phenotype is not pathognomonic of TS and urgent coronary angiography is necessary to exclude an unstable coronary obstruction that would require revascularization. In particular, TS-like apical ballooning may be the consequence of acute myocardial ischemia in the setting of proximal stenosis involving the left anterior descending (LAD) coronary artery, which extends beyond the LV apex to supply the inferior wall (‘wrap around’ LAD). In uncertain situations, such as late presentation, suspected coronary embolism, or when coronary angiographic findings are equivocal, CMR is useful because late gadolinium enhancement is rarely evident in TS, but frequently present in a vascular distribution in patients with ischemic injury from coronary artery obstruction.

Outcomes
In the largest study to date, all-cause in-hospital mortality was substantially greater among chemotherapy-treated patients with versus without a TS event (18.3% versus 3.2% respectively; p<0.001). Advanced age (>85 years), sepsis, fluid-electrolyte disorders, respiratory failure, and cardiogenic shock were univariate predictors of in-hospital mortality in patients with chemotherapy-associated TS. Metastatic cancer was present in only 17%. There is limited information regarding the safety of continuing or reintititating chemotherapy after a TS event. A study involving a small number of patients (n=30) noted the majority of patients were able to resume chemotherapy cancer treatment after normalization of LV ejection fraction (generally within 3 weeks of the TS event), without TS recurrence.

Discussion
The current body of information regarding chemotherapy-triggered TS reveals a patient profile that differs from that of the larger TS.
Cardiomyopathies

The frequency of reports noting 5-fluorouracil as a TS trigger is curious. This drug is on the WHO’s list of essential medicines for cancer; therefore, fluorouracil likely represents one of the most commonly used chemotherapy agents worldwide. Consequently, the frequency of fluorouracil-related TS may be driven by exposure of a greater number of patients to this agent (Table 1). Alternatively, fluorouracil may have pharmacological properties that can trigger a TS event. For example, there is evidence that fluorouracil is an arterial vasconstrictor, and coronary microvascular vasconstriction is proposed as a mechanism in TS pathophysiology.

Conclusion
Chemotherapy treatment of malignancy is a relatively common TS trigger, with a significantly greater proportion of men than is typically observed with TS. Fluorouracil is the most commonly reported chemotherapeutic agent, although this must be interpreted in the context of the frequency of worldwide use of this agent. Whether certain chemotherapeutic agents are more likely to trigger TS is unresolved. Based on limited information, chemotherapy can be safely reinitiated, with careful observation, once the patient has recovered from the initial TS event. A TS event in the setting of chemotherapy treatment of malignancy is associated with substantial mortality.
lymphocytic myocarditis mimicking Takotsubo cardiomyopathy. Eur Heart Fail 2009;11:428–31. https://doi.org/10.1093/eurjhf/hfp088; PMID: 19193625.

50. Eitel I, Schuler G, Thiele H. Myocarditis mimicking Takotsubo cardiomyopathy or Takotsubo cardiomyopathy with secondary inflammation? Eur Heart Fail 2009;11:809. author reply 810. https://doi.org/10.1093/eurjhf/hfp089; PMID: 19605454.

51. Ghafi R, Wittstein IS, Prasad A, et al. International expert consensus document on Takotsubo syndrome (part II): diagnostic workup, outcome, and management. Eur Heart J 2018;39:2047–62. https://doi.org/10.1093/eurheartj/ehy577; PMID: 29850820.

52. Chao T, Lindsay J, Collins S, et al. Can acute occlusion of the left anterior descending coronary artery produce a typical ‘takotsubo’ left ventricular contraction pattern? Am J Cardiol 2009;104:202–4. https://doi.org/10.1016/j.amjcard.2009.03.018; PMID: 19536347.

53. Eitel I, von Kobbe C, Brenkenhoff F, Bernhardt P, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 2011;306:277–86. https://doi.org/10.1001/jama.2011.1992; PMID: 21771988.

54. Giza DE, Lopez-Mattei I, Vejpongsa P, et al. Stress-induced cardiomyopathy in cancer patients. Am J Cardiol 2017;120:2284–8. https://doi.org/10.1016/j.amjcard.2017.09.009; PMID: 29096885.

55. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat databases [research data 1973–2015]. DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission. Bethesda, MD: National Cancer Institute. Available at: https://seer.cancer.gov/data-software/documentation/seerstat/ (accessed 9 July 2019).

56. Murugiah K, Wang Y, Desai NR, et al. Trends in short- and long-term outcomes for takotsubo cardiomyopathy among medicare fee-for-service beneficiaries, 2007 to 2012. JACC Heart Fail 2016;4:197–205. https://doi.org/10.1016/j.jchf.2015.09.013; PMID: 26746377.

57. Robertson J, Barr R, Shulman LN, et al. Essential medicines for cancer: WHO recommendations and national priorities. Bull World Health Organ 2016;94:735. https://doi.org/10.2471/BLT.15.163998; PMID: 27843163.

58. Sharkey SW, Maron BJ, Kloner RA. The case for takotsubo cardiomyopathy (syndrome) as a variant of acute myocardial infarction. Circulation 2018;138:853–7. https://doi.org/10.1161/CIRCULATIONAHA.118.035747; PMID: 30354447.
Table 2: Takotsubo Syndrome and Chemotherapy

Authors	Study Type	Unique Patients	Age (Years)	Sex	Malignancy	Chemotherapy	ST-elevation EF	Triggering Circumstances	Outcome	Authors’ Conclusions
Voit et al. 2018	Case report	1	24	M	Acute myeloid leukemia	Daunorubicin and cytarabine	No	Chemotherapy	Echocardiography 3 weeks later revealed improvement of EF to 63%	Given the complete recovery of LVEF within 12 weeks of presentation, concluded consistent with TS
Grunwald et al. 2012	Case report, review	1	60	F	Stage III colon cancer	Fluorouracil, leucovorin, oxaliplatin	Yes	Chemotherapy, was 26 h into planned 46 h infusion when developed chest pain	At 16-month follow-up had not experienced any additional cardiac events. However, colon cancer recurred 5 months after the episode of TS	Contributes to growing literature on TS that occurs with fluorouracil, which is frequently administered for colorectal cancers
Goel et al. 2014	Case report	1	55	M	Acute myeloid leukemia	Cytarabine and daunorubicin	Yes	Day 6 of chemotherapy	20 days after event, patient had EF of 50% with mild anterolateral and anterobasal hypokinesia	Anthracycline agents may have especially cardiotoxic effects
Franco et al. 2008	Case report	2	76, 61	M	Colon cancer, metastatic non-small-cell lung cancer	Bevacizumab	Yes	Patient 1: 2 days PTA started receiving chemotherapy. Patient 2: at 3 weeks prior to admission, patient had received second chemotherapy dose	At approximately 1 month, echocardiography showed significant recovery of LV function	Bevacizumab is a novel chemotherapeutic agent that inhibits VEGF
Damodaran et al. 2014	Case report	1	55	F	Malignant melanoma	High-dose IL-2	No	Admitted for course two, cycle 1 of high-dose IL-2, T-wave inversions were seen on EKG after initiation	Complete resolution of LV function	First reported instance of TS with high-dose IL-2
Basselin et al. 2011	Case report	1	48	M	Colic adenocarcinoma	5-fluorouracil, oxaliplatin, calcium folinate (FOLFOX protocol)	Yes	Underwent first round of chemotherapy, ~24 h later, developed chest pain and EKG abnormalities; recurrence after third round of chemotherapy	4 months later, discovery of liver metastasis led to new chemotherapy regimen including irinotecan and bevacizumab under close monitoring. No recurrence of cardiac manifestations was subsequently noted	Interesting case because patient had recurrent TS after third round of chemotherapy which was the next dose of FOLFOX protocol
Malley and Watson 2016	Case report	1	73	F	Tonsillar stage IV B diffuse large B-cell lymphoma	Lomustine, cytarabine, cyclophosphamide, etoposide (LACE)	No	Underwent 7 days of chemotherapy prior to TS event	No adverse events in follow-up	First case of TS in a patient receiving LACE chemotherapy
Voit et al. 2018	Case report	1	24	M	Acute myeloid leukemia	Daunorubicin and cytarabine	No	Chemotherapy	Echocardiography 3 weeks later revealed improvement of EF to 63%	Given the complete recovery of LVEF within 12 weeks of presentation, concluded consistent with TS

(Continued)
Authors	Study Type	Unique Patients	Age (Years)	Sex	Malignancy	Chemotherapy	STElevation EF	Chemotherapy?	Cancer in combination of the EF-driven Rx?	TS + rest in the absence of EF-driven Rx?	Authors’ Conclusions
Coen et al. 2017	Case report	1	45	F	Locally advanced epidermoid carcinoma of the anal canal	5-fluorouracil and mitomycin C	Yes		Developed TS after receiving intra-arterial and intravenous polychemotherapy	EF normalized. Was not rechallenged with intra-arterial chemotherapy	TS is a rare and unpredictable event among oncologic patients. Patients under significant stress (physical or psychological) and those with cardiovascular risk factors complaining of cardiac symptoms should be carefully examined for signs of TS
Baumann et al. 2014	Case report	1	58	M	Acute myeloid leukemia	Cytarabine	No		After receiving intravenous cytarabine, developed severe dyspnea at rest, with cardiogenic shock after central venous catheter was removed	During 18 months of follow-up, no hospitalization or clinical signs of heart failure occurred	TS can occur in patients with acute myeloid leukemia under systemic chemotherapy, which possibly represents a triggering factor for TS development
Coli et al. 2015	Research letter/case report	1	67	F	Local advanced colon cancer	Oxaliplatin	Yes		At end of third session of oxaliplatin infusion, patient reported chest pain, dyspnea, jugular constriction	1 month later, MRI showed complete recovery of regional and global LV function. Patient restarted capecitabine monotherapy only, and did not experience any other adverse events	Represents the first description of TS induced by oxaliplatin during combined capecitabine and oxaliplatin regimen
Lees et al. 2018	Case report	1	63	F	Metastatic HER2-positive breast cancer	Dual anti-HER2 therapy (pertuzumab + trastuzumab in addition to nabpaclitaxel chemotherapy)	Yes		After completing third cycle of pertuzumab + trastuzumab, presented to ED with progressive dyspnea	Patient ultimately pursued comfort care and died in palliative care unit ~1 month later	First reported case of TS associated with pertuzumab + trastuzumab combination therapy. Given these agents are relatively novel, clinicians might consider TS as differential diagnosis upon severe cardiac presentation in these patients
Cardiomyopathies

Authors	Study Type	Unique Patients	Age (Years)	Sex	Malignancy	Chemotherapy	ST-elevation EF	Triggering Circumstances	Outcome	Authors’ Conclusions	
Giza et al. 2017	Research article	5	41–77	N/A	64% either advanced malignancy or recurrent disease	3 patients after treatment with paclitaxel, 1 patient after bevacizumab and capectabine, and 1 patient after 5-fluorouracil	No	≤50%	Occurred during chemotherapy session	No in-hospital immediate mortality or cardiac-related mortality occurred	Compared with the general population, TS is more common in cancer patients
Kobayashi et al. 2009	Case report	1	62	F	Rectal adenocarcinoma	5-fluorouracil	Yes	28	4 weeks after start of chemotherapy, intermittent shortness of breath and slight chest pain developed, progressively worsened	N/A	The cause of heart failure in this patient (i.e., TS induced by multivessel coronary vasospasm including microcirculation disorders only during 5-fluorouracil administration) is notable
Geisler et al. 2015	Case report	1	83	F	Metastatic melanoma	Ipilimumab	Yes	50	Had received four standard doses of ipilimumab in the 3 weeks prior to admission	N/A	First reported case of TS in patient treated with ipilimumab. Post-marketing surveillance should capture cases of ipilimumab cardiac toxicity and physicians should be aware of this potential adverse event
Lim et al. 2013	Case report	1	66	F	Rectal adenocarcinoma	5-fluorouracil	No	30	Presented to ED after third week of chemotherapy, had been feeling unwell since the third day after this dose	Died 2 years later from complications of cancer	TS has been increasingly noted to occur in association with 5-fluorouracil. Oncologists and cardiologists need to recognize TS as a potential toxicity of this drug
van de Donk et al. 2009	Case report	1	73	M	Toxic multinodular goiter	Radioiodine therapy	Yes	25	At 4 weeks after radioiodine therapy, presented with rapidly progressive dyspnea and significant increase in free thyroxin	Echocardiography after just 4 days showed significant LVEF improvement to 57%	First report of TS provoked by thyrotoxicosis resulting from radiation thyroiditis induced by radioiodine. Suggest determination of thyroid function in all patients with TS
Numico et al. 2012	Case report	1	57	F	Clear-cell renal cancer	Sunitinib	Yes	15	During treatment with sunitinib at a dose of 12.5 mg/day for 4 weeks every 6 weeks	No sign of cardiomyopathy at 3-month evaluation	To their knowledge, only one other reported case exists of TS with sunitinib
Ovadia et al. 2014	Case report	1	71	F	Renal cell carcinoma	Axitinib	Yes	20	Within 24 h of administration of axitinib; patient developed chest pain and shortness of breath	EF 90% at 3 weeks after initial presentation	The presumed association between the initiation of axitinib therapy and TS deserves further prospective clinical observation

(Continued)
Authors	Study Type	Unique Patients	Age (Years)	Sex	Malignancy	Chemotherapy	ST-elevation	EF	Triggering Circumstances
Shams et al.	2013 Case report	1	55	M	Adenocarcinoma of cecum	Capecitabine	Yes	15	Chest pain started ~ 28 h after beginning oral capecitabine therapy
Gianni et al.	2009 Case report	1	79	F	Colorectal cancer with metastatic involvement of liver	5-fluorouracil	Yes	34	Last chemotherapy had been administered 2 weeks prior to presentation
White et al.	2009 Case report	1	61	M	Renal cell carcinoma with pulmonary metastases	Pazopanib	Yes	80%	Had been receiving pazopanib for 8 weeks, at a dose of 800 mg daily
Khanji et al.	2013 Case report/letter	1	50	F	Breast cancer	Trastuzumab	No	N/A	During 11th infusion of trastuzumab, developed crushing chest pain and T-wave inversion
Smith and Auseon	2013 Case report	1	60	F	Gray-zone lymphoma	Rituximab	Yes	20%	During infusion of rituximab, ST-elevation seen on EKG (asymptomatic)
Stewart et al.	2010 Case report	1	81	F	Stage III colorectal cancer	5-fluorouracil	No	35	Acute onset of chest pain after 5-fluorouracil therapy
Bhakta et al.	2009 Case report, review	2	71, 78	F	Anaplastic thyroid carcinoma in both patients	Combretastatin	No	40%	Patient 1: 18 h after day 6 of combretastatin therapy, patient 2: after therapy, complained of nausea followed by left breast pressure

Authors' Conclusions
A case of capecitabine-induced global TS presenting with cardiogenic shock and STEMI
First report of TS secondary to chemotherapy with fluorouracil for colon cancer
Successful treatment with a beta-blocker in a case of TS complicated by severe LV outflow tract obstruction
Association of trastuzumab with TS has not been previously reported, and whether patients should be rechallenged with the drug is unclear
Although exact mechanisms behind cardiotoxic effects of chemotherapeutic agents remain unclear, there is an association with a small cohort of medications
Although vasospasm is a well-recognized side-effect of this class of chemotherapeutic agent, broader cardiotoxicity is commonly seen and an increased awareness of the range of toxicity is necessary if repeat toxicity is to be avoided
These patients are unique for several reasons because they did not have emotional stressors and remained asymptomatic. Patients who develop cardiac events following combretastatin should be closely monitored.

Table 2: Cont.
Authors	Study Type	Unique Patients	Age (Years)	Sex	Malignancy	Chemotherapy	ST-elevation EF	Triggering Circumstances	Outcome	Authors’ Conclusions
Ng et al. 2015	Case report	1	66	M	Chronic lymphocytic leukemia	Rituximab	Yes	Within 40 min of infusion, developed acute shortness of breath, spikes in temperature	No recurrence of cardiac symptoms	First case at the time of rituximab with TS, exceptional case because most TS and chemotherapy-linked reactions have occurred during initial infusions, but this patient had already completed treatments with rituximab
Ozturk et al. 2013	Case report	1	48	M	Metastatic gastric cancer	S-5-fluorouracil	No	At the 34th hour of the planned 46-h infusion, patient developed tachycardia followed by dyspnea	Repeat echocardiography 27 days later with EF = 50%. Died of complications from cancer 13.5 months later	TS appears to occur more frequently than was previously thought, especially in relation to chemotherapy. Need to increase awareness
Kim et al. 2008	Case report	2	67, 75	M, F	Patient 1: laryngeal squamous cell carcinoma Patient 2: colon cancer	Patient 1: cetuximab Patient 2: oxaliplatin and capecitabine	Patient 1: yes Patient 2: no	Patient 1: 3 days after single dose of cetuximab, while having MRI of brain, became acutely hypoxic, then developed pulseless electrical activity arrest. Patient 2: immediately following first chemotherapy session with new regimen experienced acute onset of severe dyspnea	Patient 1: repeat echocardiography 2 weeks later showed EF = 49% Patient 2: follow-up echocardiography 2 weeks later showed EF = 59%	The exact mechanism remains unclear and the possible link between chemotherapy and TS needs to be further examined
Fernandez et al. 2011	Case report, review	1	85	F		Rituximab, cyclophosphamide, liposomal doxorubicin, vincristine	Yes	Underwent first cycle of chemotherapy in an outpatient setting, 5 days later had chest pain, dizziness, diaphoresis	8 months later, echocardiography was completely normal	TS may represent as a form of cardiac dysfunction within the spectrum of chemotherapy-induced cardiac toxicity. Emphasize that rechallenging should only be considered if no other viable option

ED = emergency department; EF = ejection fraction; EKG = electrocardiography; HER2 = human epidermal growth factor receptor 2; IL = interleukin; N/A = not available; TS = takotsubo syndrome; VEGF = vascular endothelial growth factor.