Comment on “Freezing by heating in a driven mesoscopic system”

Leo Radzihovsky and Noel A. Clark
Department of Physics, University of Colorado, Boulder, CO 80309
(Dated: March 22, 2022)

In a recent Letter Helbing et al. [1] found a fascinating fluctuation-induced ordering, which they dubbed “freezing by heating”, in a nonequilibrium model system of particles confined to a 2d narrow strip and driven to move in opposite directions: counter flowing chains of particles jam up and crystallize when sufficiently large noise is introduced into the system. In this Comment we point out that this kind of fluctuation-induced ordering is not an intrinsically nonequilibrium effect, and that it can be expected to occur in a variety of equilibrium systems, with reentrant order appearing as a function of temperature. We argue that this is a consequence of a familiar Helfrich-like interaction that had been used to understand a variety of phenomena ranging from the lamellar phase of fluctuating membranes to magnetization curves of a vortex liquid state of type II superconductors.

We demonstrate the mechanism behind reentrant melting with an equilibrium model of 2d colloids subjected to a 1d periodic potential, that received considerable attention recently due to the experimental discovery of isothermal melting that is reentrant as a function of strength of the periodic potential (produced by two interfering laser beams) [2], the so-called reentrant “laser-induced melting” (RLIM).

Since at all T the orientational symmetry and translational symmetry along y are explicitly broken by the 1d periodic potential with troughs running along x and spacing $a = 2\pi/q$, the only remaining feature distinguishing a crystal from the modulated liquid is the spontaneous translational order along the troughs, characterized by quasi-long ranged u_x phonon correlations and a finite shear modulus μ_{xy}.

The mechanism behind RLIM can be understood as follows. Just above melting temperature $T_m(V_q)$, the dominant effect of increasing a weak periodic potential V_q is to suppress thermal fluctuations, thereby leading to Lifshitz freezing [3]. In contrast, for large V_q, the suppression of the out-of-trough u_y fluctuations has the dominant effect of reducing the inter-row interactions, thereby decoupling the particles in the neighboring rows, reducing the effective shear modulus $\mu_{xy}(T, V_q)$, and leading to RLIM [4].

Since it is clearly the ratio T/V_q that determines the extent of the fluctuation-driven inter-row interaction, it follows that at large fixed V_q increasing T will increase the inter-row interaction and the modulus $\mu_{xy}(T, V_q)$. Because T_m is typically a monotonically increasing function of the shear modulus, thermal enhancement of shear modulus implies an equilibrium analog of the “freezing by heating” transition discovered by Helbing, et al. [1].

Above qualitative argument can be formalized by an explicit calculation. Although T dependence of both the bulk and the shear modulus maybe important and can be studied in full detail [5], in order to illustrate the effect, it is sufficient to focus on the effective shear modulus $\mu_{xy}(T, V_q)$. Clearly this modulus is proportional to the interaction potential between nearest particles in adjacent rows, typically of Debye-screened form $U_D \approx e^{-(a+u_x)/\xi}$ (though only its short-range nature is important), where ξ is the screening length. Since phonon fluctuations u_y transverse to the troughs are “optical” (i.e., “massive”, as opposed to the acoustic u_x phonon) we can average over fast u_y fluctuations obtaining an effective shear modulus $\mu_{xy}(T, V_q) \approx \mu_0 e^{(u_x^2)/2\xi^2} \approx \mu_0 e^{T/V_q}$ that clearly increases with T. We can then compute $\langle u_x^2 \rangle \approx T/\mu_{xy}(T, V_q) \approx T e^{-T/V_q}/\mu_0$ and use Lindemann criterion $\langle u_x^2 \rangle = L^2$ to estimate $T_m(V_q)$. This clearly gives two roots for T_m, with the lower corresponding to the conventional melting and the upper to the freezing by heating (see figure). At sufficiently high T, we expect above elastic calculation to become inaccurate and for the fluctuation enhancement of $\mu_{xy}(T, V_q)$ to saturate, leading to re-melting into a modulated liquid.

While extending above analysis to the nonequilibrium case studied by Helbing, et al. [1] remains an interesting and challenging problem, we believe that fluctuation-driven reentrant freezing mechanism described above is also at play in their system.

Support by the NSF MRSEC DMR-0213918 and the Packard Foundation (LR).

References:

[1] D. Helbing, et al., Phys. Rev. Lett. 84, 1240 (2000).
[2] Q.-H. Wei et al., Phys. Rev. Lett. 81, 2606 (1998).
[3] A. Chowdhury et al., Phys. Rev. Lett. 55, 833 (1985).
[4] L. Radzihovsky, et al., Phys. Rev. E 63, 31503 (2001).
[5] Qualitative increase of $\mu_{xy}(T)$ with T holds beyond this harmonic approximation.