On steady-state currents through nano-devices: a scattering-states numerical renormalization group approach to open quantum systems

Frithjof B. Anders

1 Institut für Theoretische Physik, Universität Bremen, P.O. Box 330 440, D-28334 Bremen, Germany

(Dated: June 13, 2008)

We propose a numerical renormalization group (NRG) approach to steady-state currents through nano-devices. A discretization of the scattering-states continuum ensures the correct boundary condition for an open quantum system. We introduce two degenerate Wilson chains for current carrying left and right-moving electrons reflecting time-reversal symmetry in the absence of a finite bias V. We employ the time-dependent NRG to evolve the known steady-state density operator for a non-interacting junction into the density operator of the fully interacting nano-device at finite bias. We calculate the differential conductance as function of V,T and the external magnetic field.

PACS numbers: 73.21.La, 73.63.Rt, 72.15.Qm

Introduction: The description of quantum systems out of equilibrium is one the fundamental challenges in theoretical physics. Even a simple non-equilibrium situation, the current transport through an interacting junction at finite bias is not fully understood. The Coulomb blockade[1] and advent of the experimental realizations of the Kondo effect in such devices[2, 3] requires a many-body description at low temperatures.

While the equilibrium dynamics is well understood[4], the non-equilibrium steady-state has been mainly investigated using perturbative approaches[5, 6, 7, 8] based on Keldysh theory[9], the Toulouse point[10] and the flow equation[11]. Landauer-Büttiker type approaches[12] treat the charging effect only on a mean-field level by mapping the strongly interacting quantum problem onto a model of non-interacting fictitious particles, unsuitable to describe the Coulomb-blockade physics[1]. In weak coupling and high temperature, the ac and dc-transport through molecular wires can be addressed by a quantum master equation for the reduced density matrix of the junction[13]. All those approaches have only a limited validity of their parameter regimes. Recently, Han proposed an alternative perturbative method[14] based on Hershfield’s steady-state density operator[15, 16, 17, 18]. Based on similar ideas, a scattering-states Bethe-ansatz approach to an interacting spinless quantum dot has been implemented[19] for finite bias.

We present a numerical renormalization group approach[1] to open quantum systems based on scattering states[15]. It combines (i) Wilson chains for single-particle scattering states proposed below, (ii) Hershfield's steady-state density operator[15] for a non-interacting junctions at finite bias and (iii) the time-dependent NRG (TD-NRG)[20, 21, 22]. Our scattering-states basis will be also useful for Quantum Monte Carlo and density matrix renormalization group (DMRG) approaches[23].

With our non-perturbative method, steady-state currents through interacting nano-devices can be obtained accurately for arbitrary temperatures, magnetic fields and interaction strength.

Dissipative steady-state currents only occur in open quantum system in which the system size L has been sent to $L \to \infty$ before $t \to \infty$. Transient currents can be calculated on a finite-size tight-binding chain within the TD-NRG as well as the time-dependent DMRG[23, 24]. However, such transient currents vanish for $t \to \infty$ or even reverse their sign[24] in those approaches, a consequence of the non-interchangeable limit $t \to \infty$ and $L \to \infty$[18]. We circumvent this problem by discretizing a single-particle scattering states basis. Therefore, those states remain current carrying and a faithful representation of an open quantum system.

Theory: Interacting quantum dots (QD), molecular junctions or other nano-devices are modelled by the interacting region \mathcal{H}_{imp}, a set of non-interacting reservoirs \mathcal{H}_B and a coupling between both sub-system \mathcal{H}_I: $\mathcal{H} = \mathcal{H}_{\text{imp}} + \mathcal{H}_B + \mathcal{H}_I$. Throughout this paper, we restrict ourselves to a junction with a single spin-degenerate orbital d with energy E_d, subject to an external magnetic field H and an on-site Coulomb repulsion U. The orbital is coupled to a left (L) and a right (R) lead via the tunneling matrix elements $V_{\alpha=L,R}$ and \mathcal{H} given by

\begin{equation}
\mathcal{H} = \sum_{\sigma=L,R} \int d\epsilon \epsilon \hat{c}_{\sigma}^{\dagger} c_{\sigma} + \sum_{\sigma=\pm} \left[E_d + \frac{U}{2} \sigma H \right] \hat{n}_{\sigma}^d + \frac{U}{2} \left(\sum_{\sigma} \hat{n}_{\sigma}^d - 1 \right)^2 + \sum_{\alpha} V_{\alpha} \int d\epsilon \sqrt{\rho(\epsilon)} \{ \hat{c}_{\sigma}^{\dagger} c_{\alpha} + c_{\alpha}^{\dagger} \hat{c}_{\sigma} \}.
\end{equation}

Here $\hat{n}_{\sigma}^d = \hat{n}_{\sigma}^d - 1$, and $\epsilon \hat{c}_{\sigma}^{\dagger} \hat{c}_{\sigma}$ creates a conduction electron in the lead α of energy ϵ and density of states $\rho(\epsilon)$.

This Hamiltonian is commonly used to model ultrasmall quantum dots[2, 3]. In the absence of the local Coulomb repulsion $H_I = U(\sum_{\alpha} \hat{n}_{\sigma}^d - 1)^2/2$, the single particle problem is diagonalized exactly in the continuum limit[14, 15, 16, 17, 25, 26] by the scattering states
These chains are almost identical to standard Wilson chains consist only of purely real tight-binding parameters. Diagonalizing the proposed scattering-states Wilson chains yields a faithful representation of the steady-state density operator $\hat{\rho}_0$ for arbitrary bias.

The current operator expanded in scattering states $\gamma_{i\sigma\alpha}$ acquires an additional energy dependence via the scattering-phase shift Φ_α. In our model $\tilde{\Gamma}$, however, the current remains connected to the spectral function $A_d(\omega)$ of the retarded non-equilibrium Green function $\tilde{G}(\omega)$ in such a scattering-states formulation even for finite $U \tilde{\Gamma}$.

In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias. The \tilde{Y}_0 operator accounts for the occupation of the left and right-moving scattering states, and μ_α for the different chemical potentials of the leads.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias.

Steady-state NRG: In order to apply the NRG to such an open quantum systems, the scattering states $\gamma_{i\sigma\alpha}$ are discretized on a logarithmic energy mesh using the NRG discretization parameter Λ. In contrary to a closed system, however, each of these single-particle states carries a finite current. Even for asymmetric coupling, the spectra of the right and left-movers remains symmetric, and the total current vanishes always at zero bias. The \tilde{Y}_0 operator accounts for the occupation of the left and right-moving scattering states, and μ_α for the different chemical potentials of the leads.
for in the vicinity of the two chemical potentials remains increasing bias due to redistribution of spectral weight the applied bias. The Kondo resonance is destroyed with lost) of single-particle excitation energy proportional to U junction is plotted for $R = 1000$. The insets show the evolution of the Kondo-resonance. Parameters: $U = 8$, $\epsilon_f = -4$ and $T \to 0$.

this algorithm embedding the calculation of equilibrium spectral functions [20, 30] are published in Ref. [22].

Results: All energies are measured in units of $\Gamma = \pi \bar{V}^2 \rho(0)$; a constant band width [4] of $\rho(\omega) = 1/(2D) \Theta(D - |\omega|)$ was used with $D/\Gamma = 10$. The number of retained NRG states was $N_s = 2200$; a $\Lambda = 4$ was chosen. The model lacks channel conservation: only the total charge and z-component of the spin served as quantum numbers. We defined $R = \Gamma_L/\Gamma_R$ and always kept $\Gamma = \Gamma_L + \Gamma_R$ constant. The two chemical potentials μ_α were set to $\mu_L = -r_L^2 V$ and $\mu_R = r_L^2 V$ as function of the external source-drain voltage V consistent with a serial resistor model.

The non-equilibrium spectral function for a symmetric junction is plotted for $U = 8$ and different bias V in Fig. 2(a). Multiple backscattering events cause gain (or lost) of single-particle excitation energy proportional to the applied bias. The Kondo resonance is destroyed with increasing bias due to redistribution of spectral weight towards higher energies. An onset of two weak peaks in the vicinity of the two chemical potentials remains for $|V| > \Gamma$ [16]. For large $R \gg 1$ such backscattering processes are suppressed. The spectral function remains bias-independent. The Kondo resonance remains pinned to $\mu_L \to 0$ as depicted in Fig. 2(b), and we recover the tunneling regime.

The differential conductance is plotted for different asymmetry ratios R in Fig. 3(a) using the same parameters as in Fig. 2. With increasing R, the non-equilibrium spectral function is less broadened and, therefore, $G(V)$ decreases for large bias voltage. Asymptotically, G approaches the equilibrium t-matrix which is the exact result for $R \to \infty$ and $T \to 0$.

The effect of an external magnetic field onto the differential conductance is shown in Fig. 3(b). An increasing magnetic field splits the zero-bias anomaly which is further suppressed by the finite bias in a symmetric junction. This field dependence has been used in experiments [2] as hallmark for the Kondo physics at low temperatures.

In Fig. 3(c), the NRG conductance for $U = 5$ is compared to the result of Ref. [16]. Both curves agree for low bias. The NRG result shows a weaker decay of the zero-bias anomaly with increasing bias with a less pronounce maximum at large bias. The symmetrized equilibrium t-matrix [4] is added for comparison as dashed line.

The more generic case of an asymmetric junction with respect with a relatively large local Coulomb repulsion is plotted in Fig. 3. The differential conductance reflects the lack of symmetry under source-drain voltage reversal. As depicted, the zero-bias peak vanishes with increasing
temperature.

Conclusion: A powerful new approach to the steady-state currents through nano-devices has been presented. We have introduced a NRG method based on scattering states to incorporate the correct steady state boundary condition of current carrying systems. The steady-state density operator of a non-interacting junction is evolved into the one of the interacting nano-device using the TD-NRG. We have established an accurate solution for the strong-coupling regime and calculated steady-state currents for arbitrary ratios R at finite bias. The tunneling regime is included as an exact limit. Our approach does not suffer from any current reflection inherent to numerical simulations of closed quantum systems. We have concentrated on the low-temperature properties of the nano-device, since the combination of arbitrary bias, large Coulomb repulsion and finite magnetic field remains the most difficult regime for all perturbative methods. However, the NRG is equally suitable to calculate the crossover from the low to the high-temperature regime as demonstrated in Fig. 4. An experimental hallmark for Kondo physics, the splitting of the zero-bias Kondo peak with increasing magnetic field, is correctly described by our approach for arbitrary temperature, bias and field strength.

This theory can be extended to more complicated multi-orbital models. Eq. (5) must be modified and requires more complex correlation functions. Since single-particle scattering states can always be obtained exactly, the construction of the Wilson chain parameters is straightforward using the corresponding expansion of the local degrees of freedom and combining it with the transformation used for non-constant density of states.[4]

I acknowledge stimulating discussions with N. Andrei, J. Bauer, G. Czycholl, Th. Costi, M. Jarrell, H. Monien, A. Millis, J. Kroha, J. Han for providing the data of Ref. [16], Th. Pruschke, A. Schiller, P. Schmitteckert, K. Schoenhammer, A. Weichselbaum, G. Uhrig and the KITP for its hospitality, at which some of the work has been carried out. I also thank T. Novotny for pointing out Ref. [17]. This research was supported in parts by the DFG project AN 275/6-1 and by the National Science Foundation under Grant No. PHY05-51164. We acknowledge supercomputer support by the NIC, Forschungszentrum Jülich P.No. HHB000.

\[R = 10, \epsilon_f = -1.5 \text{ and } U = 12. \]

FIG. 4: (color online) The differential conductance G as function of the bias voltage for different temperatures. Parameters $R = 10$, $\epsilon_f = -1.5$ and $U = 12$.

1. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
2. D. Goldhaber-Gordon, et al. Nature 391, 156 (1998).
3. W. G. van der Wiel, et al. Science 289, 2105 (2000).
4. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
5. N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).
6. J. König and H. Schoeller, Phys. Rev. Lett. 81, 3511 (1998).
7. A. Rosch, J. Paaeke, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 90, 076804 (2003).
8. R. Gezzi, T. Pruschke, and V. Meden, Phys. Rev. B 75, 045324 (2007).
9. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
10. A. Schiller and S. Hershfield, Phys. Rev. B 51, 12896 (1995).
11. S. Kehrein, Phys. Rev. Lett. 95, 056602 (2005).
12. G. Cuniberti, G. Fagas, and K. Richter, eds., *Introducing Molecular Electronics*, vol. 680 of Lecture Notes in Physics (Springer, Berlin and Heidelberg, 2005).
13. S. Welack, M. Schreiber, and U. Kleinekathoefer, J. Chem. Phys. 124, 044712 (2006).
14. J. E. Han, Phys. Rev. B 73, 125319 (2006).
15. S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993).
16. J. E. Han and R. J. Heary, Phys. Rev. Lett. 99, 236808 (2007).
17. A. Oguri, Phys. Rev. B 75, 035302 (2007).
18. B. Doyon and N. Andrei, Phys. Rev. B 73, 245326 (2006).
19. P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 (2006).
20. F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005).
21. F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 (2006).
22. F. B. Anders, J. Phys.: Condens. Matter 20, 195216 (2008).
23. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
24. P. Schmitteckert, Phys. Rev. B 70, 121302(R) (2004).
25. E. Lebanon, A. Schiller, and F. B. Anders, Phys. Rev. B 68, 155301 (2003).
26. T. Enss, et al. Phys. Rev. B 71, 155401 (2005).
27. A. Costi, Phys. Rev. B 55, 3003 (1997).
28. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
29. R. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B 74, 245114 (2006).
30. A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402 (2007).