Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation

Mien-Cheng Chen¹*, Jen-Ping Chang², Yu-Sheng Lin³, Kuo-Li Pan³, Wan-Chun Ho¹, Wen-Hao Liu¹, Tzu-Hao Chang⁴, Yao-Kuang Huang⁵, Chih-Yuan Fang¹ and Chien-Jen Chen¹

Abstract

Background: Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored.

Methods: This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria.

Results: Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease. Notably, only ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR pathway were significantly differentially expressed in the MR patients compared to patients with aortic valve disease and normal controls.

Conclusions: Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.

Keywords: Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.

Background

Mitral regurgitation (MR) is an important cause of heart failure secondary to valvular heart disease [1]. Structural remodeling associated with atrial enlargement developed in the left atrial myocardium of MR patients with heart failure [2–4]. Differential gene expression related to the left atrial structural remodeling of MR has been reported in the pig MR model [5]. Interestingly, gene ontology and pathway enrichment analysis of the differentially expressed genes in that study showed that peroxisome proliferator-activated receptor (PPAR) signaling pathway was identified in the KEGG pathway. However, specific genes of the PPAR signaling pathway that were differentially expressed in the left atrial myocardium of MR patients have never been explored.

The PPARs are ligand activated transcription factors that regulate genes important in cell differentiation, various metabolic processes, especially lipid and glucose homeostasis, insulin sensitivity, control of inflammatory...
processes and vascular integrity [6]. The family of PPARs comprises three isoforms: PPARα, PPARβ/δ and PPARγ [7]. PPARα is expressed mainly in metabolically active tissues, such as heart, liver, and skeletal muscle [6], and plays important physiologic roles in fatty acid oxidation and fatty acid metabolism.

In this study, we aim to explore the key element genes of the PPAR signaling pathway that were differentially expressed in the left atrial myocardium of MR patients vs. normal controls. The left atrial myocardium of patients with severe aortic valve disease was also used as a reference for gene analysis. The results from this study may identify specific genes of the PPAR signaling pathway that might be responsible for the atrial structural remodeling associated with atrial enlargement and progression of heart failure in patients with MR.

Methods

Patient population

This study enrolled 15 severe non-ischemic MR patients with heart failure and sinus rhythm (age 57 ± 9 years) and 7 patients with severe degenerative aortic valve disease and heart failure in sinus rhythm (age 60 ± 11 years; aortic stenosis in 1, aortic regurgitation in 4, combined aortic stenoregurgitation in 2). Exclusion factors include previous myocardial infarction, febrile disorder, infectious or inflammatory disease, autoimmune disease, malignancy, acute or chronic viral hepatitis or use of immunosuppressive drugs. Informed consent was obtained from each study patient, and the study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the institution’s human research committee (102-2219C).

Specimen storage

Atrial tissues of MR patients and aortic valve disease patients were sampled from the left atrial free wall during surgery. After excision, some atrial tissues were immediately frozen in liquid nitrogen. Additionally, some atrial tissues were placed into a Tissue Tek® container which was then filled with Tissue Tek® optimum cutting temperature compound (Sakura® Finetek, CA, USA) and these samples were frozen in liquid nitrogen for later histochemical study.

PCR assay and data processing

RNAs were extracted from the myocardial tissue using a RiboPureTM kit (Ambion, Grand Island, NY, USA) according to the manufacturer’s protocol. RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies Inc, Santa Clara, CA, USA). PPAR pathway related resources were obtained using information from website (https://www.qiagen.com/tw/shop/genes-and-pathways/pathway-details/?pwid=367). A total of 84 genes of the PPAR signaling pathway were examined by RT2 profiler PCR array (Qiagen, CA, USA) according to the manufacturer’s directions. Ribosomal protein, large, P0 (RPLP0) gene served as the endogenous control. Fold-change values greater than one indicated a positive- or an up-regulation, and fold-change values less than one indicated a negative or down-regulation.

Quantitative determination of RNAs by real-time RT-PCR

The RNA samples were quantified using a spectrophotometer. First-strand cDNAs were synthesized with reverse transcriptase and oligo (dT) primers. Real-time quantitative PCR was performed on the ABI Prism 7500 FAST sequence detection system (Applied Biosystems, CA, USA), using SYBR Green PCR Master Mix (Qiagen, CA, USA). The results were normalized against RPLP0 gene expression (the endogenous control). The selected genes (mRNAs) and primer sequences are presented in Table 1. The Primer3 Input (version 0.4.0) (http://bioinfo.ut.ee/primer3-0.4.0/) was used to design the primers. Quantitative RT-PCR values were presented in ΔCq units.

Western blotting

Protein concentrations of atrial myocardial tissues were determined by the Bradford method (Bio-Rad) according to the supplier’s instructions. The HeLa cell lysate (Santa Cruz, Texas, USA) served as positive control. 20 μg protein extracts were electrophoresed on a 12 % acrylamide SDS-PAGE gel and immunoblotted onto PVDF membranes. The membranes were blocked for 1 h in PBST containing 5 % w/v nonfat dry milk. The primary antibodies, including anti-ACADM and ECH1 (Abcam, Cambridge, USA), were used to react with the blots at room temperature for 2 h. Immunoreactivity was revealed with horseradish peroxidase-conjugated secondary antibody. All specific values of proteins evaluated were standardized to GAPDH (GeneTex, CA, USA).

Oil red O staining

Left atrial tissues were sliced into 8-μm sections, stained with Oil red O to visualize lipid accumulation (ScyTek Laboratories, Utah, USA) according to the manufacturer’s directions. Sections were mounted and visualized using an Olympus BX51 microscope. The Oil red O stained area per myocyte was analyzed by Cellsens Dimension (Olympus, Japan) with at least 100 randomly chosen myocytes per each sample.

Statistical analysis

Data are presented as mean ± SD (baseline characteristics) or SEM (gene, proteins, and Oil red O staining expressions). Categorical variables were compared using
Chi square test or Fisher exact test as appropriate. Continuous variables among 3 groups were analyzed by the Kruskal–Wallis Test, and continuous variables between 2 groups were analyzed by the Mann–Whitney Test. Statistical analysis was performed using commercial statistical software (IBM SPSS Statistics 22). A P value of <0.05 was considered statistically significant.

Results

Baseline characteristics of patients studied

Table 2 lists the clinical characteristics of the MR patients with heart failure and patients with aortic valve disease and heart failure. There was no significantly difference in heart failure status between MR patients with heart failure and patients with aortic valve disease and heart failure. The two groups did not significantly differ in age, prevalence of hypertension and diabetes mellitus, and use of β-blockers and calcium channel blockers.

The left atrial size was significantly larger in the MR patients with heart failure than patients with aortic valve disease and heart failure ($P < 0.05$). The MR patients with heart failure and patients with aortic valve disease and heart failure did not significantly differ in left ventricular size and ejection fraction.

Gene expression profiling analysis of the PPAR signaling pathway through PCR assay in the left atrium of MR patients with heart failure vs. normal controls

To determine the effect of MR and heart failure on the gene expression of PPAR signaling pathway, we compared the expression profile by PCR assay in the left atria of MR patients with heart failure (n = 5) to normal controls (n = 3; 76-year-old Caucasian female, 24-year-old Caucasian male and 27-year-old Caucasian male, purchased from BioChain, Newark, CA, USA). Differentially expressed genes were filtered using criteria of a fold-change in expression level more than 2 or less than 0.5 and P value <0.1 in the left atria of MR patients with heart failure compared to normal controls. A total of 23 differentially expressed genes of PPAR signaling pathway were identified.

Table 1 Primer sequences for real-time PCR

Gene name	Forward primer	Reverse primer
ACAA2	TGC GTT TGT GAA CCA AGC	CAT GCT GAT CTG TTA ATG ATA CCC
ACADM	AGG AGC CAT TGA TGT GTC G	CTG CTT TGG TCT TTA TAC CAG CTA
APOA1	CCT TGG GAA AAC AGC TAA ACC	CCA GAA CTC CTG GGT CAT CAC A
CPT1A	ACA ACA AAA GCC CCT GAC TG	AGG GCA GAG AGA GCT ACA TCC
CPT1B	GCT GAA GGT TGG AGA AAT GC	CTT CAT GCC TGT GAG CTG
CPT2	TCA CGG ACA CTT GTG TGC TC	GAG CTC AGG CAA GAT GAT CC
ECH1	GTC CTG TGC CCA GGA TTC T	CTG TGC TCT CCG ATG ACC T
EHHADH	CCT CGG CTG TCA CTA TAG GAT T	AGA AGC TGG TCT CTT GC
EFDH	CCC CGG ATA AGG ACA AG A	CAT CTC CTT CTT CAA ACC
FABP3	CTG GGC ACC TGG AAG CTA	TGG TAG CAA AAC CCA CAC C
PPARA	CGG CAA TGG ACC ATG TAA C	CAG CTC TAG CAT GCC TCT TT
HMGC2	GGG TCC CGT CTA AAG GTG T	ACC AGC TAA GAG TGG GAT CTT AAA
KLF10	AGC CAA CCA CTC TCA ACT TC	CTT TTT TGG CCT TTT AAG GAT AAT C
MMP9	GAA CCA ATC TCA CGG ACA AGG	GGC ACC CGA GTG TAA CCA TA
PPARGC1B	TGT TTC ATC AGT ATG CTC TGC AC	CAA ATT TGG GCA GTT GGA TT
SLC27A1	TGC CGA GAG TGG AAC ACA C	AAA AGG AGC TGG ACC CTA CA
SLC27A6	GGG CTT TTT GTT GTA ATG CT	AAA TTT CTT CTT TAA CAC ACA AGT GG
SMARCD3	CTT CTG CTC ATG TGC TAC TA	GCC TGC ACA ATG GAT GAG
SORBS1	GAC GTC ATG ATG ATA AAG AGA TGA G	GAG GAA CCT CTT TTA GGT GCT GAA
PLTP	CTG CCG GGA AAC CTT CAA	GTG GTA GAG GAC AGG GCA GA
MLYCD	TTT CAC GTG GCA CTG ACT	GGA TGC TGC TCT ATG ACC GT
RLPL0	GCC ACC ATT ACA ATG CTC AG	GAA GGG GGA GAT GGT GAC C

ACAA2 acetyl-CoA acyltransferase 2, ACADM acyl-CoA dehydrogenase, C-4 to C-12 straight chain, APOA1 Apolipoprotein A-1, CPT1A carnitine palmitoyltransferase 1A (liver), CPT2 carnitine palmitoyltransferase 1B (muscle), ECH1 enoyl CoA hydratase 1, peroxisomal, EHHADH enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase, EFDH electron-transferring-flavoprotein dehydrogenase, FABP3 fatty acid binding protein 3, gene and heart (mammmary-derived growth inhibitor), PPARA peroxisome proliferator-activated receptor alpha, HMGC2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial), KLF10 Kruppel-like factor 10, MMP9 Matrix metalloproteinase 9, PPARGC1B peroxisome proliferator-activated receptor gamma, coactivator 1 beta, SLC27A1 Solute carrier family 27 (fatty acid transporter), SLC27A6 Solute carrier family 27 (fatty acid transporter), SMARCD3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3, SORBS1 sorbin and SH3 domain containing 1, PLTP phospholipid transfer protein, MLYCD malonyl-CoA decarboxylase, RLPL0 ribosomal protein, large, P0
were identified to be differentially expressed in the left atrial tissues of MR patients with heart failure compared to normal controls (Table 3). Therefore, we focused on deciphering and experimental validation of these 23 genes in the following section in order to identify some of the differentially expressed genes of the PPAR signaling pathway that might be responsible for the structural remodeling of left atra in the MR patients [2–4].

Quantitative PCR validation of differentially expressed mRNAs of the PPAR signaling pathway in the left atria among MR patients with heart failure, patients with aortic valve disease and heart failure, and normal controls

The left atrial myocardium of patients with severe aortic valve disease and heart failure was also used as a reference for gene analysis of the PPAR signaling pathway.

The expressions of APOA1 (4.65 ± 0.52 vs. 7.37 ± 0.81, \(P = 0.011 \)), ACADM (1.40 ± 0.09 vs. 3.38 ± 0.46, \(P = 0.006 \)), FABP3 (−2.83 ± 0.19 vs. −1.58 ± 0.32, \(P = 0.001 \)), ETFDH (2.41 ± 0.13 vs. 4.29 ± 0.21, \(P = 0.001 \)), ECH1 (0.25 ± 0.10 vs. 2.18 ± 0.17, \(P = 0.001 \)), CPT1B (3.65 ± 0.18 vs. 6.06 ± 0.22, \(P = 0.001 \)), CPT2 (3.75 ± 0.16 vs. 6.22 ± 0.29, \(P = 0.001 \)), SLC27A6 (3.29 ± 0.19 vs. 5.76 ± 0.71, \(P = 0.005 \)), ACAA2 (2.63 ± 0.11 vs. 4.25 ± 0.34, \(P = 0.001 \)), SMARCD3 (2.93 ± 0.11 vs. 4.33 ± 0.33, \(P = 0.002 \)), SORBS1 (6.08 ± 0.16 vs. 7.71 ± 0.66, \(P = 0.005 \)), EHHADH (4.65 ± 0.19 vs. 5.92 ± 0.43, \(P = 0.017 \)), SLC27A1 (3.83 ± 0.16 vs. 5.94 ± 0.37, \(P = 0.001 \)), PPARGC1B (4.61 ± 0.23 vs. 8.10 ± 0.71, \(P = 0.001 \)), PPARA (4.84 ± 0.17 vs. 6.80 ± 0.37, \(P = 0.001 \)) and CPT1A (5.60 ± 0.17 vs. 6.82 ± 0.33, \(P = 0.005 \)) in the left atria were significantly up-regulated in the MR patients with heart failure (n = 14) compared to normal controls (n = 6; 24-year-old Caucasian male, 27-year-old Caucasian male, 30-year-old Asian male, 60-year-old Caucasian female, 76-year-old Caucasian female and 77-year-old Caucasian male, purchased from BioChain, Newark, CA, USA). Whereas the expression of PLTP (4.22 ± 0.14 vs. 2.77 ± 0.48, \(P = 0.006 \)) in the left atria was significantly down-regulated in the MR patients with heart failure compared to normal controls.

The expressions of ETFDH (3.12 ± 0.36 vs. 4.29 ± 0.21, \(P = 0.037 \)), ECH1 (1.10 ± 0.24 vs. 2.18 ± 0.17, \(P = 0.010 \)),
CPT1B (3.76 ± 0.31 vs. 6.06 ± 0.22, *P* = 0.004), CPT2 (3.81 ± 0.19 vs. 6.22 ± 0.29, *P* = 0.004), SMARCD3 (2.84 ± 0.14 vs. 4.33 ± 0.33, *P* = 0.006), SORBS1 (6.08 ± 0.33 vs. 7.71 ± 0.66, *P* = 0.037), SLC27A1 (3.57 ± 0.27 vs. 5.94 ± 0.37, *P* = 0.004), PPARGC1B (4.34 ± 0.24 vs. 8.10 ± 0.71, *P* = 0.004) and PPARA (5.10 ± 0.31 vs. 6.80 ± 0.37, *P* = 0.010) in the left atria were significantly up-regulated in the patients with aortic valve disease and heart failure (n = 7) compared to normal controls (n = 6). Whereas the expression of PLTP (5.08 ± 0.15 vs. 2.77 ± 0.48, *P* = 0.006) in the left atria was significantly down-regulated in the patients with aortic valve disease and heart failure compared to normal controls.

The expressions of HMGCS2 (10.18 ± 0.52 vs. 12.35 ± 0.23, *P* = 0.011), ACADM (1.40 ± 0.09 vs. 2.18 ± 0.36, *P* = 0.039), FABP3 (−2.83 ± 0.19 vs. −1.92 ± 0.24, *P* = 0.011), MLYCD (11.96 ± 0.20 vs. 13.03 ± 0.20, *P* = 0.006), ECH1 (0.25 ± 0.10 vs. 1.10 ± 0.24, *P* = 0.008), ACA2 (2.63 ± 0.11 vs. 3.64 ± 0.22, *P* = 0.002), EHHADH (4.65 ± 0.19 vs. 5.49 ± 0.22, *P* = 0.014), CPT1A (5.60 ± 0.17 vs. 6.28 ± 0.13, *P* = 0.017) and PLTP (4.22 ± 0.14 vs. 5.08 ± 0.15, *P* = 0.004) in the left atria were significantly up-regulated in the MR patients with heart failure compared to patients with aortic valve disease and heart failure and normal controls (Fig. 1). However, MR patients with heart failure had significantly

Table 3 Selected signature mRNA expression of the PPAR signaling pathway through PCR assay in the left atria of mitral regurgitation patients with heart failure vs. normal control

Symbol	Description	Fold change	*P* value
Lipid metabolism			
APOA1	Apolipoprotein A-I	21.724	0.005449
HMGCS2	3-hydroxy-3-methylglutaryl-CoA synthase 2	6.5229	0.083
ACADM	Acyl-CoA dehydrogenase, C-4 to C-12 straight chain	3.8861	0.031596
FABP3	Fatty acid binding protein 3, muscle and heart (mammary-derived growth inhibitor)	3.496	0.027634
ETFDH	Electron-transferring-flavoprotein dehydrogenase	3.4251	0.001157
MLYCD	Malonyl-CoA decarboxylase	3.372	0.000504
ECH1	Enoyl CoA hydratase 1, peroxisomal	3.2082	0.006862
CPT1B	Carnitine palmitoyltransferase 1B	3.1846	0.0363
CPT2	Carnitine palmitoyltransferase 2	3.1829	0.071083
SLC27A6	Solute carrier family 27 (fatty acid transporter), member 6	3.0759	0.099593
ACA2	Acetyl-CoA acyltransferase 2	2.9113	0.005252
EHHADH	Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase	2.8434	0.03971
SLC27A1	Solute carrier family 27 (fatty acid transporter), member 1	2.8389	0.00705
ACSL3	Acyl-CoA synthetase, long-chain family member 3	2.2958	0.028469
CPT1A	Carnitine palmitoyltransferase 1A	1.9237	0.023573
PLTP	Phospholipid transfer protein	0.2311	0.027612
Coactivator			
SMARCD3	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3	2.9058	0.037134
PPARGC1B	Peroxisome proliferator-activated receptor gamma, coactivator 1 beta	2.6275	0.080693
Signaling and stimulation of insulin			
SORBS1	Sorbin and SH3 domain containing 1	2.8643	0.03188
Transcription factor			
PPARA	Peroxisome proliferator-activated receptor alpha	2.2651	0.026418
KLF10	Kruppel-like factor 10	2.093	0.095046
Mediating protein–protein interactions			
FGR	Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog	0.121	0.077129
Adipocyte differentiation			
MMP9	Matrix metalloproteinase 9	0.0737	0.081105

Notably, only ACADM, FABP3, ECH1, ACA2, EHHADH, CPT1A and PLTP of the PPAR signaling pathway were differentially expressed in the left atria of MR patients with heart failure compared to patients with aortic valve disease and heart failure.
up-regulated PLTP expression in the left atria compared to patients with aortic valve disease and heart failure but had significantly down-regulated PLTP expression in the left atria compared to normal controls (Fig. 1).

The expression of fatty acid oxidation enzymes (ACADM, ECH1) in the left atria among MR patients with heart failure, patients with aortic valve disease and heart failure, and normal controls

The expressions of ACADM (2.49 ± 0.34 vs. 1.43 ± 0.09, \(P = 0.016 \)) and ECH1 (2.84 ± 0.30 vs. 1.70 ± 0.27, \(P = 0.034 \)) proteins in the left atria were significantly up-regulated in the MR patients with heart failure (\(n = 10 \)) compared to normal controls (\(n = 4 \); 49-year-old African American male, 60-year-old Caucasian female, purchased from BioChain, Newark, CA, USA and 35-year-old Asian female, purchased from G-bioscience, St Louis, MO, USA) (Fig. 2).

The expression of ACADM protein (1.81 ± 0.11 vs. 1.43 ± 0.09, \(P = 0.011 \)) in the left atria was significantly up-regulated in the patients with aortic valve disease and heart failure (\(n = 6 \)) compared to normal controls (\(n = 4 \)) (Fig. 2). The expression of ECH1 protein (2.07 ± 0.30 vs. 1.70 ± 0.27, \(P = 0.670 \)) in the left atria was up-regulated in the patients with aortic valve disease and heart failure (\(n = 6 \)) compared to normal controls (\(n = 4 \)), although the difference did not reach statistical significance.

The expressions of ACADM (2.49 ± 0.34 vs. 1.81 ± 0.11, \(P = 0.065 \)) and ECH1 (2.84 ± 0.30 vs. 2.07 ± 0.30, \(P = 0.129 \)) proteins in the left atria were up-regulated in the MR patients with heart failure (\(n = 10 \)) compared to patients with aortic valve disease and heart failure (\(n = 6 \)), although the difference did not reach statistical significance (Fig. 2).

Left atrial myocytes fat staining

The percentage of area stained with Oil red O (lipid droplets) per myocyte in the left atria was significantly higher in the MR patients with heart failure (\(n = 6 \)) compared to normal controls (\(n = 3 \); 49-year-old African American male, 76-year-old Caucasian female, and 77-year-old Caucasian male, purchased from BioChain, Newark, CA, USA) (21.76 ± 3.87 vs. 3.09 ± 0.70 %, \(P = 0.020 \)) (Fig. 3). The percentage of area stained with Oil red O (lipid droplets) per myocyte in the left atria was higher in the MR patients with heart failure (\(n = 6 \)) compared to patients with aortic valve disease and heart failure (\(n = 6 \)) (21.76 ± 3.87 vs. 8.75 ± 0.70 %, \(P = 0.050 \)).

Discussion

This study identifies and reports the altered gene expression pattern of the PPAR signaling pathway in the left atria among MR patients with heart failure, patients with aortic
valve disease and heart failure, and normal controls without valve disease and heart failure. Notably, seven genes (ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP) of the PPAR signaling pathway were differentially expressed in the left atria of MR patients compared to patients with aortic valve disease and normal controls. The PPAR transcriptional regulatory complex controls the expression of fatty acid utilization genes by binding to specific promoter DNA response elements with its heterodimeric partner, the retinoid X receptor, and interacting with PPARγ coactivator-1α to recruit other cofactors with histone acetylase activity to initiate gene transcription for fatty acid oxidation [8]. The myocardium utilizes primarily fatty acids for ATP production via mitochondrial fatty acid oxidation. However, altered expression of the fatty acid oxidation enzymes can impair mitochondrial metabolism and lead to pathologic remodeling of myocardium, probably through lipotoxicity, reactive oxidative stress overproduction, and ATP deficiency [9–11]. Our prior studies showed that altered mitochondrial function and reactive oxidative stress overproduction due to nox2 containing NADPH oxidase activity developed in the atria of MR patients with heart failure [12, 13]. Moreover, heart-specific overexpression of PPAR induced several target genes involved in fatty acid utilization and increased cardiac fatty acid uptake and oxidation [8]. In contrast, heart-specific overexpression of PPAR markedly diminished the expression of genes involved in glucose metabolism leading to impaired glucose uptake and utilization [8]. Of note, our prior study showed that glycogen accumulation increased in the atrial myocytes of MR patients [4]. Moreover, this study showed that lipid accumulation in the atrial myocytes was significantly increased in the MR patients with heart failure compared to normal controls.

Acyl-CoA dehydrogenase, C-4 to C-12 straight chain (ACADM) gene provides instructions for making an enzyme called medium-chain acyl-CoA dehydrogenase, which functions within mitochondria and is essential for fatty acid oxidation to metabolize medium-chain fatty acids [14].

Fatty-acid-binding protein 3, muscle and heart (FABP3), also known as heart-type FABP, is an intracellular lipid-binding protein for transporting fatty acids and other lipophilic substances from the cytoplasm to the nucleus and subsequently, PPAR regulation by fatty acid ligands [8, 15]. Glatz JF et al. [16] reported that FABP overexpression in skeletal muscle increased fatty acids transported into the muscle cell and consequently, fatty acid oxidation was increased. On the other hand, PPAR can regulate the expression of FABP3 [8].

Enoyl-CoA hydratase1 (ECH1), a mitochondrial β-oxidation enzyme, has been shown to play an important role for mitochondrial integrity and function [17]. The expression of ECH1 in tissue is associated with nitric oxide availability [18] and decreased production of nitric oxide by the mitochondrial form of nitric oxide synthase has been proposed as a cause of decreased mitochondrial biogenesis, resulting in impairment of cellular turnover, tissue regeneration and lipid metabolism [19].
Acetyl-CoA acyltransferase 2 (ACAA2) encoding protein catalyzes the last step of the mitochondrial fatty acid β-oxidation spiral. Additionally, ACAA2 has been demonstrated to have antiapoptotic effects, which provided a possible linkage between fatty acid metabolism and apoptosis of cells [20].

Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), regulated and mediated by PPARα, encodes a protein that is a l-bifunctional enzyme essential for the peroxisomal β-oxidation pathway to the breakdown of very long chain fatty acids and is indispensable for the production of medium-chain dicarboxylic acids [21].

Carnitine palmitoyltransferase 1 (CPT1) is one of the carnitine cycle enzymes that plays a role in the transportation of long-fatty acids into the mitochondria for β-oxidation that allows the body to process fats to provide energy during times of fasting and illness [22].

Phospholipid transfer protein (PLTP) is a widely expressed lipid transfer protein participating in lipoprotein metabolism in the plasma and tissues [23]. PLTP activity is a risk factor for coronary artery disease [24] and PLTP also plays a role in inflammation and oxidative stress [25].

Taken together, this study demonstrated that the altered expression of ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR signaling pathway in the left atria of MR patients compared to patients with aortic valve disease and normal controls should play a substantially role in the altered fatty acid metabolism (Fig. 3), glucose metabolism, energy utilization, and pathologic remodeling (hypertrophy, myolysis, glycogen accumulation, apoptosis, autophagy and inflammation) in the atria of MR patients, either partly through altered mitochondrial function, reactive oxidative stress overproduction, inflammation and apoptosis or partly as an adaptive response to volume overload of MR [3, 4, 12, 13, 26].

Study limitations

There are several limitations in this study. Firstly, the number of study subjects was relatively small. However, the quantitative real-time RT-PCR results were significant and consistent with PCR assay. Secondly, the functional roles of ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR signaling pathway on the regulation of atrial structural remodeling of MR patients were not specifically examined in this study.
Conclusions
Differentially expressed genes of the PPAR signaling pathway have been identified in the left atria of MR patients compared to patients with aortic valve disease and normal controls. Moreover, lipid accumulation in the atrial myocytes was significantly increased in the MR patients compared to normal controls. As the PPAR transcriptional regulatory complex controls the expression of fatty acid utilization genes in the myocardium, the results of this study provide rationale for metabolic therapy to remedy atrial structural remodeling associated with atrial enlargement and progression of heart failure in patients with MR.

Authors’ contributions
MCC designed the study, analysed data and wrote the paper. JPC and WCH performed experiments, analysed data and contributed to the paper. WHL and TH contributed data and contributed to the paper. YSL, KLP, CYF and CJC recruited patients, analysed data and contributed to the paper. All authors read and approved the final manuscript.

Author details
1 Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung 83301, Taiwan. 2 Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. 3 Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan. 4 Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan. 5 Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was supported by grants from the National Science Council, Taiwan (Grants NSC 102-2314-B-182A-107-MY2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Received: 8 December 2015 Accepted: 19 April 2016 Published online: 02 June 2016

References
1. Jung B, Gohlke-Bärwolf C, Tornos P, Tribouilloy C, Hall R, Butchart E. Vahanian A; working group on valvular heart disease. Recommendations on the management of the asymptomatic patient with valvular heart disease. Eur Heart J. 2002;23:1253–66.
2. Contadi D, Callegari S, Maestri R, Ferrara D, Mangieri D, Alinovi R, Mozzone P, Pinelli S, Goldoni M, Privitera YA, Bartoli V, Astorri E, Macchi E, Vaglio A, Benussi S, Alfieri O. Differential structural remodeling of the left-atrial posterior wall in patients affected by mitral regurgitation with or without persistent atrial fibrillation: a morphological and molecular study. J Cardiovasc Electrophysiol. 2012;23:721–9.
3. Chang JP, Chen MC, Lin YS, Liu WH, Chen CJ, Chen YL, Pan KL, Tsai TH, Chang HW. DNA repair in TUNEL-positive atrial cardiomyocytes of mitral and tricuspid valve diseases: potential mechanism for preserving cardiomyocytes. Int J Cardiol. 2011;146:44–50.
4. Chen MC, Chang JP, Huang SC, Chang HW, Chen CJ, Yang CH, Liu WH. Dedifferentiation of atrial cardiomyocytes in cardiac valve disease: unrelated to atrial fibrillation. Cardiovasc Pathol. 2008;17:156–65.
5. Chen MC, Chang JP, Chang TH, Hsu SD, Huang HD, Ho WC, Wang FS, Hsiao GC, Liu WH. Unraveling regulatory mechanisms of atrial remodeling of mitral regurgitation pigs by gene expression profiling analysis: role of type I angiotensin II receptor antagonist. Transl Res. 2015;165:599–620.
6. Grygiel-Górniak B, Peroxisosome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17.
7. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.
8. Finck BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 2007;73:269–77.
9. Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, Matern D, Bennett MJ, Rinaldo P; Strauss AW. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 2001;107:1403–9.
10. Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS, Vockley J, Hamm DA, Briv AE, Lindsey JR, Pinkert CA, O’Brien WE, Wood PA. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA. 1998;95:15592–7.
11. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herreño P, Saffitz JE, Schaffer JE. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107:813–22.
12. Chang JP, Chen MC, Liu WH, Lin YS, Huang YK, Pan KL, Ho WC, Fang CY, Chen CJ, Chen HC. Mitochondrial apoptotic pathway activation in the atria of heart failure patients due to mitral and tricuspid regurgitation. Exp Mol Pathol. 2015;99:65–73.
13. Chang JP, Chen MC, Liu WH, Yang CH, Chen CJ, Chen YL, Pan KL, Tsai TH, Chang HW. Atrial myocardial nos2 containing NADPH oxidase activity contribution to oxidative stress in mitral regurgitation: potential mechanism for atrial remodeling. Cardiovasc Pathol. 2011;20:99–106.
14. Maier EM, Liebl B, Rösinger W, Nennstiel-Ratzel U, Fingerhut R, Olmgemöller B, Busch U, Krone N, v Kries R, Roscher AA. Population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency. Hum Mutat. 2005;25:443–52.
15. Tsukahara R, Haniu H, Matsuya T, Tsukahara T. Heart-type fatty-acid-binding protein (FABP3) is a lysophosphatic acid-binding protein in human coronary artery endothelial cells. FEBS Open Bio. 2014;4:947–51.
16. Glätz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90:967–417.
17. Patkar RN, Ramos-Pampolina M, Gupta AP, Fan Y, Naqvil NI. Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol Microbiol. 2012;86:1345–63.
18. Razny U, Kiec-Wilk B, Waterl P, Polus A, Dyduck G, Solnica B, Malecki M, Tomaszewska R, Cooke JP, Dembinska-Kiec A. Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance. Cardiovasc Diabetol. 2011;10:68.
19. Nisoli E, Falcone S, Tonello C, Cozzi V, Palombi L, Fiorni M, Piccolto A, Brunelli S, Cardile A, Francomini M, Cantoni O, Carruba MO, Moncada S, Clementi E. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA. 2004;101:16507–12.
20. Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H. Acetyl-Coenzyme A:acetyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell line models. Biochim Biophys Acta. 2008;1786(6):873–80.
21. Houten SM, Denis S, Argmann CA, Ja Y, Ferdinandusse S, Reddy JK, Wanders RJ. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res. 2012;53:1296–303.
22. Ogawa E, Kanazawa M, Yamamoto S, Ohtsuka S, Ogawa O, Ohtake A, Takayanagi M, Kohno Y. Expression analysis of two mutations in carnitine palmitoyltransferase IA deficiency. J Hum Genet. 2002;47:342–7.
23. Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab. 2012;9:75.
24. Schiltt A, Bickel C, Thumma F, Blankenberg S, Rupprecht HJ, Meyer J, Jiang XC. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.
25. Schiltt A, Liu J, Yan D, Mondragon-Escorpizo M, Norin AY, Jiang XC. Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice. Biochim Biophys Acta. 2005;1733:187–91.
26. Chen MC, Chang JP, Wang YH, Yu WH, Ho WC, Chang HW. Autophagy as a mechanism for myolysis of cardiomyocytes in mitral regurgitation. Eur J Clin Invest. 2011;41:299–307.