A non-renormalizable neutrino mass model with $S_3 \otimes Z_2$ symmetry

J. D. García-Aguilar1, and Juan Carlos Gómez-Izquierdo1

1Centro de Estudios Científicos y Tecnológicos No 16, Instituto Politécnico Nacional, Pachuca: Ciudad del Conocimiento y la Cultura, Carretera Pachuca Actopan km 1+500, San Agustín Tlaxiaca, Hidalgo, México.

(Dated: October 26, 2021)

The lepton sector is studied within a flavored non-renormalizable model where the $S_3 \otimes Z_2$ flavor symmetry drives the Yukawa couplings. In this framework, the effective neutrino mass, that comes from the type II see-saw mechanism, as well as the charged lepton mass matrices are hierarchical and these have (under a benchmark in the charged sector) a kind of Fritzsch textures that accommodate the mixing angles in good agreement with the last experimental data. The model favors the normal hierarchy, this also predicts consistent values for the CP-violating phase and the $|m_{ee}|$ effective Majorana neutrino mass rate. Along with this, the branching ratio for the lepton flavor violation process, $\mu \rightarrow e\gamma$, is well below the current bound.

I. INTRODUCTION

In spite of the fact that Standard Model (SM) works almost perfectly, it fails to explain the neutrino experimental data, dark matter, baryon asymmetry of the universe and so forth [1]. Speaking about the mixings, the lepton sector exhibits a peculiar pattern which is totally different to the quark sector where the mixing matrix is almost diagonal and this puzzle remains unsolved.

In this line of thought, hierarchical quark mass matrices as the nearest neighbor interaction (NNI) textures [2–5] and those that possess the generalized Fritzsch textures [6], fit quite well the CKM matrix [7, 8]. In the lepton sector, according to the experimental data, the PMNS matrix [9, 10] has large values in its entries which can be understood by the presence of a symmetry behind the neutrino mass matrix. Currently, we can find in the literature elegant proposals (and their respective breaking) as the $\mu \leftrightarrow \tau$ symmetry [11–18], $\mu \leftrightarrow \tau$ reflection symmetry [19–26], Tri-Bimaximal [27, 32], Cobimaximal mixing matrices [33, 43]. Moreover, hierarchical mass matrices as the Fritzsch [44] and the generalized Fritzsch textures [6] also accommodate quite well the PMNS mixing matrix.

From the model building point of view, the flavor symmetries [45–48] have been useful to get desirable textures in the fermion mass matrices, and therefore, the well known mixing patterns. For example, the S_3 non-abelian group that has been explored exhaustively in different frameworks [49, 50]. In the mentioned literature there are few models
where the Fritzsch textures have been implemented. Hence, the main purpose that we pursue is to realize those textures by means the S_3 flavor symmetry, however, we obtain a modified Fritzsch textures which are different to previous studies.

Due to the last neutrino oscillations data seem to favor the normal hierarchy \[100\], in this paper, we construct a non-renormalizable lepton model in the type II see-saw scenario where the $S_3 \otimes Z_2$ flavor symmetry drives the Yukawa couplings. We stress that the scalar sector of the mentioned model keeps intact so that flavons are included to generate the mixings. In this work, the effective neutrino as well as the charged lepton mass matrices are hierarchical and these have (under a benchmark in the charged sector) a kind of Fritzsch textures that accommodate the mixing angles in good agreement with the last experimental data. The model predicts consistent values for the CP-violating phase and the $|m_{ee}|$ effective Majorana neutrino mass rate. Along with this, the branching ratio for the lepton flavor violation process, $\mu \rightarrow e\gamma$, is well below the current bound.

The plan of the paper is as follows: the framework, the matter content of the model and the fermion mass matrices are described in detail in section II; in the section III, the PMNS mixing matrix is obtained and relevant features are remarked. An analytical study is carried out on the mixing angles to find the parameter space that accommodates the observables, this together with a numerical study in section IV. In section V, we give some model predictions and relevant conclusions are shown in section VI.

II. THE FRAMEWORK

The current framework is a scalar extension of the SM so that the usual matter content under the gauge group $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ is considered. Explicitly, the fields are

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \sim (3, 2, 1), \quad d_R \sim (3, 1, -2) \quad u_R \sim (3, 1, 4)$$

$$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \sim (1, 2, -1), \quad e_R \sim (1, 1, -2). \quad (1)$$

Additionally, in the scalar sector we have the following fields

$$H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix} \sim (1, 2, 1), \quad \Delta = \begin{pmatrix} \Delta^+ \\ \Delta^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ \\ \Delta^0 \end{pmatrix} \sim (1, 3, 2). \quad (2)$$

Having introduced the matter content, the Yukawa mass term is given by

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} Y^\nu \bar{L}(i\sigma_2)\Delta (L)^c - V(H, \Delta) + h.c. \quad (3)$$

Although the quark and scalar fields have been mentioned, the quark mixings and the scalar potential analysis will leave out in this work. We have to point out that scalar potential analysis is crucial to get a viable model but the full study is a working progress.

Speaking about the flavor symmetry, we will use the S_3 due to the three dimensional real representation can be decomposed as: $3_S = 2 \oplus 1_S$ or $3_A = 2 \oplus 1_A$. This structure seems to work quite well for obtaining hierarchical mass matrices. Along with this, the Z_2 discrete symmetry can be used to forbid some Yukawa couplings, in our work this is needed to prohibit the renormalizable terms.
A. The model

As we already commented, in the present model, the scalar sector contains one Higgs doublet \((H)\) and one triplet \((\Delta)\) so that some flavons will be added to the matter content in order to generate the mass textures that provide the mixings. Then, the matter fields transform in a non trivial way. Hence, the assignation under the \(S_3 \otimes Z_2\) is shown in the following table.

Matter	\(L_1\)	\(L_3\)	\(e_{1R}\)	\(e_{3R}\)	\(\phi_1\)	\(\phi_3\)	\(\Delta\)	\(H\)
\(S_3\)	2	1\(_S\)	2	1\(_S\)	2	1\(_S\)	1\(_S\)	1\(_S\)
\(Z_2\)	1	1	1	-1	-1	-1	-1	-1

TABLE I. Matter content for the lepton sector. \(I = 1, 2\)

As one can notice, due to the \(Z_2\) symmetry there are no-renormalizable Yukawa mass term, then, at the next leading order in the cutoff scale we have

\[
-\mathcal{L}_Y = \frac{y_1^v}{\Lambda} \left[L_1 H (\phi_1 e_{2R} + \phi_2 e_{1R}) + L_2 H (\phi_1 e_{1R} - \phi_2 e_{2R}) \right] + \frac{y_3^v}{\Lambda} \left[L_1 H \phi_3 e_{1R} + L_2 H \phi_3 e_{2R} \right] + \frac{y_5^v}{\Lambda} \left[L_1 H \phi_1 + L_2 H \phi_2 \right] e_{3R}
\]

\[
+ \frac{y_2^v}{\Lambda} \left[L_1 \phi_1 e_{1R} + H \phi_2 e_{2R} \right] + \frac{y_3^v}{\Lambda} \bar{L}_3 H \phi_3 e_{3R} + \frac{y_5^v}{\Lambda} \left[\bar{L}_1 \Delta (\phi_1 L_2 + \phi_2 L_1) + \bar{L}_2 \Delta (\phi_1 L_1 - \phi_2 L_2) \right]
\]

\[
+ \frac{y_2^v}{\Lambda} \left[\bar{L}_1 \Delta \phi_3 L_1 + \bar{L}_2 \Delta \phi_3 L_2 \right] + \frac{y_3^v}{\Lambda} \left[\bar{L}_1 \Delta \phi_3 + \bar{L}_2 \Delta \phi_2 \right] L_3 + \frac{y_5^v}{\Lambda} \bar{L}_3 \Delta \phi_3 L_3 + h.c. \quad (4)
\]

As result of this, the lepton mass matrices are given as

\[
M_e = \begin{pmatrix}
 a_e + b_e' & b_e & c_e \\
 b_e & a_e - b_e' & c_e' \\
 f_e & f_e' & g_e
\end{pmatrix}, \quad M_\nu = \begin{pmatrix}
 a_\nu + b_\nu' & b_\nu & c_\nu \\
 b_\nu & a_\nu - b_\nu' & c_\nu' \\
 c_\nu & c_\nu' & g_\nu
\end{pmatrix} \quad (5)
\]

with

\[
a_e = y_1^v \frac{\langle \phi_1 \rangle}{\Lambda}, \quad b_e' = y_1^v \frac{\langle \phi_2 \rangle}{\Lambda}, \quad b_e = y_1^v \frac{\langle \phi_1 \rangle}{\Lambda}, \quad c_e = y_3^v \frac{\langle \phi_1 \rangle}{\Lambda};
\]

\[
c_e' = y_3^v \frac{\langle \phi_3 \rangle}{\Lambda}, \quad f_e = y_4^v \frac{\langle \phi_1 \rangle}{\Lambda}, \quad f_e' = y_4^v \frac{\langle \phi_2 \rangle}{\Lambda}, \quad g_e = y_5^v \frac{\langle \phi_3 \rangle}{\Lambda};
\]

\[
a_\nu = y_2^v \Delta \frac{\langle \phi_3 \rangle}{\Lambda}, \quad b_\nu' = y_1^v \Delta \frac{\langle \phi_2 \rangle}{\Lambda}, \quad b_\nu = y_1^v \Delta \frac{\langle \phi_1 \rangle}{\Lambda};
\]

\[
c_\nu = y_3^v \Delta \frac{\langle \phi_3 \rangle}{\Lambda}, \quad c_\nu' = y_3^v \Delta \frac{\langle \phi_2 \rangle}{\Lambda}, \quad g_\nu = y_5^v \Delta \frac{\langle \phi_3 \rangle}{\Lambda}. \quad (6)
\]

Here, \(v\) and \(v_\Delta\) stand for the vacuum expectation values (vev’s) of the Higgs doublet and triplet, respectively. In order to reduce the free parameters in the lepton mass matrices, we assume the following vev’s pattern for the flavon doublet and singlet of \(S_3\), respectively: \(\langle \phi \rangle = v_\phi (1,0)\) and \(\langle \phi_3 \rangle = v_{\phi_3}\). At the same time, we set the magnitudes of the vev’s as follows: \(v_\phi \sim \lambda \Lambda\) and \(v_{\phi_3} \sim \lambda \Lambda\) where \(\lambda = 0.225\) is the Wolfenstein parameter. Before finishing this section, we would like to remark that the flavor symmetry is broken by the vev’s of the flavons and the cutoff \(\Lambda\) scale satisfies the hierarchy \(\Lambda \gg v \gg v_\Delta\). Therefore, the main role that the flavons play is to provide the mixings as was already commented.

\[\text{[1]}\] In fact, one might consider two different vev’s alignments: (a) \(\langle \phi \rangle = v_\phi (0,1)\) and \(\langle \phi_3 \rangle = v_{\phi_3}\) but this does not provide the right mixings; (b) \(\langle \phi \rangle = v_\phi (1,1)\) and \(\langle \phi_3 \rangle = v_{\phi_3}\), in this case, the free parameters increase.
III. PMNS MIXING MATRIX

Due to the alignment, the mass matrices read as

\[
M_e = \begin{pmatrix}
 a_e & b_e & c_e \\
 b_e & a_e & 0 \\
 f_e & 0 & g_e
\end{pmatrix}, \quad M_\nu = \begin{pmatrix}
 a_\nu & b_\nu & c_\nu \\
 b_\nu & a_\nu & 0 \\
 c_\nu & 0 & g_\nu
\end{pmatrix}.
\] (7)

As one can notice, if \(a_e(a_\nu)\) was zero, the charged lepton (neutrino) mass matrix would possess implicitly the NNI (Fritzsch) textures. In general, the charged lepton mass matrix has five complex free parameters, then, in order to reduce a little bit more the free parameters we will adopt the benchmark \(c_e \approx f_e\). As a result, the lepton mass matrices have the Fritzsch textures but the entry \(a_{(\nu,e)}\) will modify slightly those textures, as we will show next.

The mixing matrices that take place in the PMNS matrix are obtained as follows: \(M_e\) and \(M_\nu\) are diagonalized respectively by \(U_{e(L,R)}\) and \(U_\nu\) such that \(U_{e(L,R)}^\dagger M_e U_{e(R)} = \hat{M}_e\) and \(U_\nu^\dagger M_\nu U_\nu^* = \hat{M}_\nu\) with \(\hat{M}_{(e,\nu)} = \text{Diag.}(m_{(e,1)}, m_{(\mu,2)}, m_{(\tau,3)})\) being the physical lepton masses. Then, we make the following rotation \(U_{e(L,R)} = S_{12} u_{e(L,R)}\) and \(U_\nu = S_{12} u_\nu\) so that one obtains \(u_{e(L)}^\dagger m_e u_{e(R)} = \hat{M}_e\) and \(u_\nu^\dagger m_\nu u_\nu^* = \hat{M}_\nu\) where \(m_{(e,\nu)}\) and \(S_{12}\) are given respectively as

\[
m_\ell = \begin{pmatrix}
 a_\ell & b_\ell & 0 \\
 b_\ell & a_\ell & c_\ell \\
 0 & c_\ell & g_\ell
\end{pmatrix}, \quad S_{12} = \begin{pmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1
\end{pmatrix},
\] (9)

where \(\ell = \nu, e\).

We can observe that both mass matrices can be written as

\[
m_\ell = a_\ell 1_{3 \times 3} + \begin{pmatrix}
 0 & b_\ell & 0 \\
 b_\ell & 0 & c_\ell \\
 0 & c_\ell & g_\ell - a_\ell
\end{pmatrix}.
\] (10)

As one can realize, the second mass matrix has the Fritzsch texture but the there is a shift due to the \(a_\ell\) parameter. Consequently, we expect a deviation to the Fritzsch prediction on the mixings. Let us diagonalize the mass matrix, \(m_\ell\), where the CP violating phases are factorized as \(m_\ell = P_\ell \tilde{m}_\ell P_\ell\). Explicitly, we obtain

\[
P_\ell = \begin{pmatrix}
 e^{i\eta_1} & 0 & 0 \\
 0 & e^{i\eta_2} & 0 \\
 0 & 0 & e^{i\eta_3}
\end{pmatrix}, \quad \tilde{m}_\ell = \begin{pmatrix}
 |a_\ell| & |b_\ell| & 0 \\
 |b_\ell| & |a_\ell| & |c_\ell| \\
 0 & |c_\ell| & |g_\ell|
\end{pmatrix}
\] (11)

with the following condition on the CP phases

\[
\eta_1 = \frac{\text{arg}(a_\ell)}{2}, \quad \eta_2 = \frac{\text{arg}(a_\ell)}{2}, \quad \eta_3 = \frac{\text{arg}(g_\ell)}{2}, \quad \eta_{\ell_1} + \eta_{\ell_2} = \text{arg}(b_\ell), \quad \eta_{\ell_2} + \eta_{\ell_3} = \text{arg}(c_\ell).
\] (12)

As is well known, the Fritzsch textures are given by

\[
M = \begin{pmatrix}
 0 & A & 0 \\
 A^* & 0 & B \\
 0 & B^* & C
\end{pmatrix}.
\] (8)
As a result of factorizing the CP violating phases, we have that \(\mathbf{u}_{eL} = \mathbf{P}_e \mathbf{O}_e \), \(\mathbf{u}_{eR} = \mathbf{P}_e^\dagger \mathbf{O}_e \) and \(\mathbf{u}_\nu = \mathbf{P}_\nu \mathbf{O}_\nu \). Let us obtain the orthogonal matrix that diagonalizes the real symmetric mass matrix, \(\mathbf{m}_e \).

Here, we will consider two cases: the normal and inverted hierarchy in the neutrino masses.

1. Normal Hierarchy (NH)

For this case, the diagonalization procedure is valid for charged lepton and the active neutrinos. Then considering the mass matrix, \(\mathbf{m}_e \), we can fix three free parameters in terms of the physical masses and unfixed one free parameter, \(|a_\ell| \). This is,

\[
\begin{align*}
|g_\ell| &= m_{\ell_1} - |m_{\ell_2}| + m_{\ell_1} - 2|a_\ell| \\
|b_\ell| &= \sqrt{\frac{(m_{\ell_3} - |a_\ell|)(|m_{\ell_2}| + |a_\ell|)(m_{\ell_1} - |a_\ell|)}{m_{\ell_3} - |m_{\ell_2}| + m_{\ell_1} - 3|a_\ell|}} \\
|c_\ell| &= \sqrt{\frac{(m_{\ell_3} + m_{\ell_2} - 2|a_\ell|)(|m_{\ell_2}| - |m_{\ell_1}| - 2|a_\ell|)(|m_{\ell_2}| - m_{\ell_1} + 2|a_\ell|)}{m_{\ell_3} - |m_{\ell_2}| + m_{\ell_1} - 3|a_\ell|}}
\end{align*}
\]

(13)

where we have taken \(m_{\ell_2} = -|m_{\ell_2}| \) in order to get real parameters. In addition, there is a constraint for the unfixed free parameter \(m_{\ell_3} > |m_{\ell_2}| > m_{\ell_1} > |a_\ell| > 0 \). After a lengthy task, we obtain the orthogonal real matrix

\[
\mathbf{O}_\ell = \begin{pmatrix}
\sqrt{(m_{\ell_2} + a_\ell)(1 - a_\ell)\mathcal{M}_2} & -\sqrt{(m_{\ell_2} + a_\ell)(1 - a_\ell)\mathcal{M}_1} & \sqrt{(m_{\ell_2} + a_\ell)(m_{\ell_1} - a_\ell)\mathcal{M}_1} \\
\sqrt{(m_{\ell_2} + a_\ell)\mathcal{M}_2} & \sqrt{(m_{\ell_2} - a_\ell)\mathcal{M}_1} & \sqrt{(m_{\ell_2} - a_\ell)\mathcal{M}_1} \\
\sqrt{(m_{\ell_2} - a_\ell)\mathcal{M}_1} & \sqrt{(m_{\ell_2} + a_\ell)\mathcal{M}_1} & \sqrt{(1 - a_\ell)\mathcal{M}_1}
\end{pmatrix}
\]

(14)

with

\[
\begin{align*}
\mathcal{M}_1 &= 1 + \hat{m}_{\ell_1} - 2\hat{a}_\ell, \quad \mathcal{M}_2 = 1 - \hat{m}_{\ell_2} - 2\hat{a}_\ell, \quad \mathcal{M}_3 = \hat{m}_{\ell_3} - \hat{m}_{\ell_1} + 2\hat{a}_\ell, \\
\mathcal{D}_1 &= (1 - \hat{m}_{\ell_1})(\hat{m}_{\ell_2} + \hat{m}_{\ell_1})D, \quad \mathcal{D}_2 = (1 + \hat{m}_{\ell_2})(\hat{m}_{\ell_2} + \hat{m}_{\ell_1})D, \quad \mathcal{D}_3 = (1 + \hat{m}_{\ell_2})(1 - \hat{m}_{\ell_1})D,
\end{align*}
\]

(15)

where \(\hat{m}_{\ell_2} = |m_{\ell_2}|/m_{\ell_1} \), \(\hat{m}_{\ell_1} = m_{\ell_1}/m_{\ell_3} \) and \(\hat{a}_\ell = |a_\ell|/m_{\ell_1} \). As we observed, for simplicity, the mixing matrix elements have been normalized by the heaviest mass. Therefore, the constraint is replaced by \(1 > \hat{m}_{\ell_2} > \hat{m}_{\ell_1} > \hat{a}_\ell > 0 \).

2. Inverted Hierarchy (IH)

For this ordering, we obtain the fixed free parameters

\[
\begin{align*}
|d_\nu| &= m_2 - |m_1| + m_3 - 2|a_\nu| \\
|b_\nu| &= \sqrt{\frac{(m_4 - |a_\nu|)(|m_1| + |a_\nu|)(m_2 - |a_\nu|)}{m_2 - |m_1| + m_3 - 3|a_\nu|}} \\
|c_\nu| &= \sqrt{\frac{(|m_1| - m_3 + 2|a_\nu|)(m_2 + m_3 - 2|a_\nu|)(m_2 - |m_1| - 2|a_\nu|)}{m_2 - |m_1| + m_3 - 3|a_\nu|}}
\end{align*}
\]

(16)

where we have taken \(m_1 = -|m_1| \) for getting the real parameters. Therefore, the orthogonal real matrix is given by

\[
\mathbf{O}_\nu = \begin{pmatrix}
-\sqrt{\frac{(1 - \hat{a}_\nu)(\hat{m}_3 - \hat{a}_\nu)\mathcal{N}_2}{\mathcal{D}_2}} & \sqrt{\frac{\hat{m}_1 + \hat{a}_\nu)(\hat{m}_3 - \hat{a}_\nu)\mathcal{N}_1}{\mathcal{D}_2}} & \sqrt{\frac{(1 - \hat{a}_\nu)(\hat{m}_1 + \hat{a}_\nu)\mathcal{N}_3}{\mathcal{D}_2}} \\
\sqrt{\frac{\hat{m}_1 + \hat{a}_\nu)\mathcal{N}_1\mathcal{D}_2}{\mathcal{D}_2}} & \sqrt{\frac{(1 - \hat{a}_\nu)\mathcal{N}_1\mathcal{D}_2}{\mathcal{D}_2}} & \sqrt{\frac{(1 - \hat{a}_\nu)(\hat{m}_1 + \hat{a}_\nu)\mathcal{N}_3}{\mathcal{D}_2}} \\
\sqrt{\frac{\hat{m}_1 + \hat{a}_\nu)\mathcal{N}_3\mathcal{D}_2}{\mathcal{D}_2}} & \sqrt{\frac{(1 - \hat{a}_\nu)\mathcal{N}_2\mathcal{D}_2}{\mathcal{D}_2}} & -\sqrt{\frac{(\hat{m}_3 - \hat{a}_\nu)\mathcal{N}_1\mathcal{D}_2}{\mathcal{D}_2}}
\end{pmatrix}
\]

(17)
where

\[N_1 = \tilde{m}_1 - \tilde{m}_3 + 2\tilde{a}_\nu, \quad N_2 = 1 + \tilde{m}_3 - 2\tilde{a}_\nu, \quad N_3 = 1 - \tilde{m}_1 - 2\tilde{a}_\nu; \]
\[D_\nu = 1 - \tilde{m}_1 + \tilde{m}_3 - 3\tilde{a}_\nu; \]
\[D_{\nu_1} = (1 + \tilde{m}_1)(\tilde{m}_1 + \tilde{m}_3)D_\nu, \quad D_{\nu_2} = (1 + \tilde{m}_1)(1 - \tilde{m}_3)D_\nu, \quad D_{\nu_3} = (1 - \tilde{m}_3)(\tilde{m}_1 + \tilde{m}_3)D_\nu, \]

(18)

where \(\tilde{m}_1 = |m_1|/m_2, \tilde{m}_3 = m_3/m_2 \) and \(\tilde{a}_\nu = |a_\nu|/m_2 \). In this parametrization, there is a constraint among the neutrino masses and the free parameter \(\tilde{a}_\nu \), this is \(1 > \tilde{m}_1 > \tilde{m}_3 > \tilde{a}_\nu > 0 \).

Hence, we end up having the PMNS mixing matrix \(V^i = U^{i}_{\nu L}U^{i}_{\nu R} = O^{i}_{\nu}P_{\nu}O^{i}_{\nu} \) with \(i = NH, IH \). In addition, \(P_{\nu} = P^{i}_{\nu}P_{\nu} \equiv \text{Diag}(1,1,e^{i\eta_\nu}) \) with \(\eta_\nu = \eta_{\beta\delta} - \eta_\tau \). Thus, we can compare our expression with the standard parametrization of the PMNS mixing matrix such that the reactor, atmospheric and solar angles are well determined by

\[\sin \theta_{13} = |(V^i)_{13}| = |(O_{\nu})_{11}(O^{i}_{\nu})_{13} + (O_{\nu})_{21}(O^{i}_{\nu})_{23} + (O_{\nu})_{31}(O^{i}_{\nu})_{33}e^{i\eta_\nu}|, \]
\[\sin \theta_{23} = \sqrt{1 - \sin^2 \theta_{13}} = |(O_{\nu})_{12}(O^{i}_{\nu})_{13} + (O_{\nu})_{22}(O^{i}_{\nu})_{23} + (O_{\nu})_{32}(O^{i}_{\nu})_{33}e^{i\eta_\nu}|, \]
\[\sin \theta_{12} = \sqrt{1 - \sin^2 \theta_{13}} = |(O_{\nu})_{11}(O^{i}_{\nu})_{12} + (O_{\nu})_{21}(O^{i}_{\nu})_{22} + (O_{\nu})_{31}(O^{i}_{\nu})_{32}e^{i\eta_\nu}|. \]

(19)

In the PMNS matrix there are three free parameters namely: \(|a_e|, |a_\nu| \) and one CP violating phase \(\eta_\nu \), in Eq. [19]. In fact, due to of lacking information on the absolute neutrino masses, the lightest one may be considered as an extra free parameter.

On the other hand, we would like to point out a little comment on the Majorana phases for each hierarchy. We have considered the CP parities for the complex neutrino masses which means that these can be either 0 or \(\pi \). Thus, for the normal and inverted ordering we have \((m_3, m_2, m_1) = (+, -, +) \) and \((m_3, m_2, m_1) = (+, +, -) \), respectively. Those CP parities values ensure that the fixed parameters given in Eq. [13] and Eq. [16] are reals.

IV. RESULTS

A. Analytical study

In order to try of figuring out the allowed region for free parameters, let us make a brief analytical study on the mixing angles formulas. To do so, we have to keep in mind that for the normal and inverted hierarchy, two neutrino masses can be fixed in terms of the squared mass scales and the lightest neutrino mass. This is,

\[m_3 = \sqrt{\Delta m^2_{31} + m_1^2}, \quad |m_2| = \sqrt{\Delta m^2_{21} + m_1^2}, \quad \text{Normal Hierarchy} \]
\[m_2 = \sqrt{\Delta m^2_{31} + \Delta m^2_{21} + m_3^2}, \quad |m_1| = \sqrt{\Delta m^2_{31} + m_3^2}, \quad \text{Inverted Hierarchy} \]

(20)

In addition, the experimental data, that will be used in this analytical and numerical study, is given in the table [II].

In the current analysis, central values will be used for the normalized masses and there is a hierarchy among those, this is, \(\tilde{m}_\mu > \tilde{m}_e/\tilde{m}_\mu > \tilde{m}_e, \tilde{m}_2 > \tilde{m}_1/\tilde{m}_2 > \tilde{m}_1 \) (for normal ordering) and \(\tilde{m}_1 > \tilde{m}_3/\tilde{m}_1 \geq \tilde{m}_3 \) (for inverted ordering); actually, for the last hierarchy we have \(m_2 \approx m_1(1 + \Delta m^2_{31}/2m_1^2) \), then \(\tilde{m}_3 \approx \tilde{m}_3/\tilde{m}_1 \). Consequently, we get the following values \(\tilde{m}_e \approx 2.9 \times 10^{-4}, \tilde{m}_e/\tilde{m}_\mu \approx 4.8 \times 10^{-3} \) and \(\tilde{m}_\mu \approx 5.9 \times 10^{-2} \). At the same time, for the neutrinos one obtains

- Normal Hierarchy

\[\tilde{m}_1 \approx 2 \times 10^{-2}, \quad \frac{\tilde{m}_1}{\tilde{m}_2} \approx 0.115, \quad \tilde{m}_2 \approx 0.173. \]

(21)
with $m_1 \approx 0.001$ for the lightest mass.

- Inverted Hierarchy

\[
\begin{align*}
\tilde{m}_3 &\approx 0.195; & \tilde{m}_2 &\approx 0.198, & \tilde{m}_1 &\approx 1
\end{align*}
\]

with $m_3 \approx 0.01$.

Notice that particular values for the lightest neutrino mass have been considered for the normal and inverted hierarchy. Thus, we will obtain approximately the matrices O_e and O_ν for the normal and inverted ordering, then the mixing angles must be calculated in analytical way for different scenarios.

Normal Hierarchy: ($1 > m_{\ell_2} > m_{\ell_1} > \tilde{a}_{\ell} > 0$).

- Case I: $\tilde{a}_{\ell} \approx 0$. In this limit, the Fritzsch textures are recovered and the orthogonal matrix is given by

\[
O_\ell \approx \begin{pmatrix}
\sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})}{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})+m_{\ell_2}m_{\ell_1}+m_{\ell_2}m_{\ell_1}}}

\sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})}{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})+m_{\ell_2}m_{\ell_1}+m_{\ell_2}m_{\ell_1}}}

\sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}(1-m_{\ell_2})}{m_{\ell_2}(1-m_{\ell_2})+m_{\ell_2}+m_{\ell_2}}}
& \sqrt{\frac{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})}{m_{\ell_2}m_{\ell_1}(m_{\ell_2}-m_{\ell_1})+m_{\ell_2}m_{\ell_1}+m_{\ell_2}m_{\ell_1}}}
\end{pmatrix}
\]

- Case II: $\tilde{a}_{\ell} \approx \tilde{m}_{\ell_1}$.

\[
O_\ell \approx \begin{pmatrix}
1
& 0
& 0

0
& \sqrt{\frac{m_{\ell_1}}{1+m_{\ell_1}}}
& \sqrt{\frac{m_{\ell_2}+m_{\ell_1}}{1+m_{\ell_2}}}

0
& \sqrt{\frac{m_{\ell_1}+m_{\ell_1}}{1+m_{\ell_1}}}
& \sqrt{\frac{m_{\ell_2}}{1+m_{\ell_2}}}
\end{pmatrix}
\]

Inverted Hierarchy: ($1 > m_1 > m_3 > \tilde{a}_\nu > 0$).

- Case I: $\tilde{a}_\nu \approx 0$.

\[
O_\nu \approx \begin{pmatrix}
\sqrt{\frac{m_1(m_1+m_3)}{m_1(m_1+m_3)+m_1+m_3}}
& \sqrt{\frac{m_1m_3(1-m_3)}{m_1m_3(1-m_3)+m_1+m_3}}
& \sqrt{\frac{m_1(1-m_1)}{m_1(1-m_1)+m_1+m_3}}

\sqrt{\frac{m_1(m_1+m_3)}{m_1(m_1+m_3)+m_1+m_3}}
& \sqrt{\frac{m_1m_3(1-m_3)}{m_1m_3(1-m_3)+m_1+m_3}}
& \sqrt{\frac{m_1(1-m_1)}{m_1(1-m_1)+m_1+m_3}}

\sqrt{\frac{m_1(m_1+m_3)}{m_1(m_1+m_3)+m_1+m_3}}
& \sqrt{\frac{m_1m_3(1-m_3)}{m_1m_3(1-m_3)+m_1+m_3}}
& \sqrt{\frac{m_1(1-m_1)}{m_1(1-m_1)+m_1+m_3}}
\end{pmatrix}
\]
Case II: \(\tilde{a}_\nu \approx \tilde{m}_3 \).

\[
O_\nu \approx \begin{pmatrix}
0 & 0 & 1 \\
\sqrt{\frac{1-\tilde{m}_3}{1+\tilde{m}_3}} & \sqrt{\frac{\tilde{m}_1+\tilde{m}_3}{1+\tilde{m}_3}} & 0 \\
-\sqrt{\frac{\tilde{m}_1+\tilde{m}_3}{1+\tilde{m}_3}} & \sqrt{\frac{1-\tilde{m}_3}{1+\tilde{m}_3}} & 0
\end{pmatrix}.
\]

(26)

Having obtained the above approximated matrices, then we can obtain the mixing angles for different scenarios and some combinations:

1. Normal hierarchy

- Scenario A: If \(O_e \) and \(O_\nu \) were like Eqn. (23), then the mixing angles would be

\[
\sin \theta_{13} \approx |\tilde{m}_2\sqrt{\tilde{m}_1 \left(1 - \frac{\tilde{m}_1}{\tilde{m}_2} \right)} + \sqrt{\tilde{m}_e^2 \tilde{m}_2 - \tilde{m}_e \sqrt{1 - \tilde{m}_2} e^{i\eta_\nu}}|;
\]

\[
\sin \theta_{23} \approx |\frac{-\sqrt{\tilde{m}_e^2 \tilde{m}_2 - \tilde{m}_e \sqrt{1 - \tilde{m}_2} e^{i\eta_\nu}}}{\sqrt{1 - \sin^2 \theta_{13}}}|;
\]

\[
\sin \theta_{12} \approx |\frac{\sqrt{\tilde{m}_1^2 (1 - \frac{\tilde{m}_1}{\tilde{m}_2})}}{\sqrt{1 - \sin^2 \theta_{13}}}|.
\]

where the notable hierarchy in the charged lepton has been taken into account. In the above expressions, the reactor, atmospheric and solar angles are controlled by the ratio \(\sqrt{\tilde{m}_e^2/\tilde{m}_\mu} \approx 0.069, \sqrt{\tilde{m}_2} \approx 0.41 \) and \(\sqrt{\tilde{m}_1/\tilde{m}_2} \approx 0.34 \), respectively. In order to enhance the angle values, the phase \(\eta_\nu \) must be near to \(\pi \). In this way, we have that \(\sin \theta_{13} \approx 0.06, \sin \theta_{23} \approx 0.6 \) and \(\sin \theta_{12} \approx 0.25 \). As result of this, the reactor and solar angle are not in the allowed experimental region with the neutrino masses values given in Eq. (21).

- Scenario B. If \(O_e \) and \(O_\nu \) were like Eqn. (24), then one would get

\[
\sin \theta_{13} \approx 0;
\]

\[
\sin \theta_{23} \approx |\frac{1 - \tilde{m}_e}{1 + \tilde{m}_\mu} \sqrt{\tilde{m}_2 + \tilde{m}_1} - \sqrt{\tilde{m}_\mu + \tilde{m}_e} \sqrt{\tilde{m}_2 (1 - \tilde{m}_2)} e^{i\eta_\nu}|;
\]

\[
\sin \theta_{12} \approx 0.
\]

(28)

So that this case is completely discarded.

- Scenario C: If \(O_\nu \) and \(O_e \) were like Eqs. (23) and (24) respectively, then the mixing angles would be

\[
\sin \theta_{13} \approx |\sqrt{\frac{\tilde{m}_1^2 (1 - \frac{\tilde{m}_1}{\tilde{m}_2})}}{\sqrt{1 - \sin^2 \theta_{13}}}|;
\]

\[
\sin \theta_{23} \approx |\frac{\sqrt{\tilde{m}_e^2 \tilde{m}_2 - \tilde{m}_e \sqrt{1 - \tilde{m}_2} e^{i\eta_\nu}}}{\sqrt{1 - \sin^2 \theta_{13}}}|;
\]

\[
\sin \theta_{12} \approx |\sqrt{\frac{\tilde{m}_1 (1 - \frac{\tilde{m}_1}{\tilde{m}_2})}{\sqrt{1 - \sin^2 \theta_{13}}}}|.
\]

(29)

As one can notice, the reactor angle is tiny in comparison to the scenario A, the atmospheric and solar angle are handled by the \(\sqrt{\tilde{m}_2^2} \approx 0.41 \) and \(\sqrt{\tilde{m}_1/\tilde{m}_2} \approx 0.34 \); the atmospheric angle value can be increased by allowing that the phase \(\eta_\nu \) must be \(\pi \). Therefore, we obtain \(\sin \theta_{13} \approx 0.016, \sin \theta_{23} \approx 0.58 \) and \(\sin \theta_{12} \approx 0.32 \).
• Scenario D: If \mathbf{O}_ν and \mathbf{O}_e were like Eq. (24) and Eq. (23) respectively, then one would obtain

$$
\sin \theta_{13} \approx \left| \sqrt{\frac{\tilde{m}_e}{\tilde{m}_\mu}} \sqrt{\frac{\tilde{m}_2 + \tilde{m}_1}{1 + \tilde{m}_2}} - \sqrt{\frac{\tilde{m}_e}{\tilde{m}_\mu}} \sqrt{\frac{1 - \tilde{m}_1}{1 + \tilde{m}_2}} e^{i\eta_\nu} \right|; \\
\sin \theta_{23} \approx \left| \sqrt{\frac{\tilde{m}_2 + \tilde{m}_1}{1 + \tilde{m}_2}} - \sqrt{\frac{\tilde{m}_\mu}{1 + \tilde{m}_2}} e^{i\eta_\nu} \right| \sqrt{1 - \sin^2 \theta_{13}}; \\
\sin \theta_{12} \approx \left| \sqrt{\frac{\tilde{m}_e}{\tilde{m}_\mu}} \sqrt{\frac{1 - \tilde{m}_1}{1 + \tilde{m}_2}} - \sqrt{\frac{\tilde{m}_\mu}{1 + \tilde{m}_2}} \sqrt{\tilde{m}_2 + \tilde{m}_1} e^{i\eta_\nu} \right| \sqrt{1 - \sin^2 \theta_{13}} \right|
$$

(30)

In this scenario, the reactor angle is smaller (larger) than scenario A (C); the solar angle is smaller than the scenarios A and C so that this case is ruled out.

2. Inverted hierarchy

• Scenario E: If the charged lepton and the neutrino mixing matrices were like Eq. (23) and Eq. (25), then the observables would be

$$
\sin \theta_{13} \approx \sqrt{\tilde{m}_e}; \\
\sin \theta_{23} \approx \sqrt{\tilde{m}_\mu}; \\
\sin \theta_{12} \approx \frac{1}{\sqrt{2}} \left(1 + \sqrt{\frac{\tilde{m}_e}{\tilde{m}_\mu}} \right).
$$

(31)

This scenario is discarded since that the reactor and atmospheric angles are tiny.

• Scenario F: If the charged lepton and the neutrino mixing matrices were like Eq. (24) and Eq. (25), then the observable would be

$$
\sin \theta_{13} \approx 0; \\
\sin \theta_{23} \approx \sqrt{\frac{\tilde{m}_\mu + \tilde{m}_e}{1 + \tilde{m}_e}}; \\
\sin \theta_{12} \approx \frac{1}{\sqrt{2}}.
$$

(32)

Analogously to the previous case, this scenario is ruled out by the predictions on the reactor and atmospheric angles which come out being small.

• Scenario G: \mathbf{O}_ν and \mathbf{O}_e given by Eqs. (26) and (23), respectively, then

$$
\sin \theta_{13} \approx 1; \\
\sin \theta_{23} > 1; \\
\sin \theta_{12} > 1.
$$

(33)

• Scenario H: \mathbf{O}_ν and \mathbf{O}_e given by Eqs. (26) and (24), respectively, then

$$
\sin \theta_{13} \approx 1; \\
\sin \theta_{23} > 1; \\
\sin \theta_{12} > 1.
$$

(34)
The last two scenarios are completely ruled out due to the reactor angle is close to 1.

As consequence of this analytical study, speaking roughly there are two scenarios (A and C) which seem to provide allowed values for the observables. Let us add that one would expect changes in the mentioned scenarios when the lightest neutrino mass varies in its allowed region.

B. Numerical study

The numerical analysis consists of scattered plots to constrain the allowed region for each free parameters. Then, we will be working with the following expressions

\[
\begin{align*}
\sin^2 \theta_{13} &= \sin^2 \theta_{13} (|a_e|, |a_\nu|, \eta_\nu, m_j) \\
\sin^2 \theta_{23} &= \sin^2 \theta_{23} (|a_e|, |a_\nu|, \eta_\nu, m_j) \\
\sin^2 \theta_{12} &= \sin^2 \theta_{12} (|a_e|, |a_\nu|, \eta_\nu, m_j)
\end{align*}
\]

(35)

where \(m_j\) with \(j = 1,3\) stands for the lightest neutrino mass for normal and inverted hierarchy, respectively.

In the scattered plots, we will vary the free parameters in such a way those satisfy their respective constraints. For the lightest neutrino mass, in the normal (inverted) case, we have \(1 > \tilde{m}_2 > \tilde{m}_1 > \tilde{a}_\nu > 0 \) (\(1 > \tilde{m}_1 > \tilde{m}_3 > \tilde{a}_\nu > 0\)); along with this, for each hierarchy, the lightest mass varies in the region \(0 - 0.9\) eV, the effective phase \(2\pi \geq \eta_\nu \geq 0\) and the charged lepton parameter \(1 > \tilde{m}_\mu > \tilde{m}_e > \tilde{a}_e > 0\). Then, we demand that our theoretical expressions satisfy the experimental bounds up to \(3\sigma\), this allows us to scan the allowed regions for the free parameters that fit quite well the experimental results. Finally, as a model prediction, the \(\delta_{CP}\) CP-violating phase and the effective Majorana neutrino mass are fitted.

\[\text{FIG. 1. From left to right: the reactor, solar, atmospheric angles and CP phase versus the lightest neutrino mass. The thick line stands for 3 \sigma of C. L.}\]

In the Fig. [1], we observe that there is a region \((0.01 - 0.014\) eV) for the lightest neutrino mass where the observables are in great according to the experimental results.
FIG. 2. From left to right: the reactor, solar, atmospheric angles and CP phase versus the $|a_\nu|$ parameter. The thick line stands for 3 σ of C. L.

According to the Fig. (2), the a_ν (\tilde{a}_ν) prefers small values for fitting the mixing angles. This means the Fritzsch textures are favored but a small deviation is necessary to accommodate the observables up to 3 σ.

FIG. 3. From left to right: the reactor, solar, atmospheric angles and CP phase versus the $|b_e|$ parameter. The thick line stands for 3 σ of C. L.

In the charged lepton sector, the a_e (\tilde{a}_e) parameter region is close to the electron mass as can be seen in Fig. (3), this is, $a_e \approx m_e$, so that the observables are well accommodated in the scenario C. Let us focus in the η_ν phase which lies in a region around π value, the full region is shown in the Fig. (4).
FIG. 4. From left to right: the reactor, solar, atmospheric angles and CP phase versus the effective phase, η_ν, parameter. The thick line stands for 3 σ of C. L.

To summarize, a set of free parameters has been found in which the reactor, solar and the atmospheric angles can accommodate quite well but this latter lies in the allowed low region (3 σ). In addition, the model predicts large values for the Dirac CP-violating phase which is close to the up region according to the experimental data.

V. MODEL PREDICTIONS

A. Effective Majorana neutrino mass rate

Going back to the comment about CP parities for the complex neutrino masses, we want to perform the effective Majorana mass of the electron neutrino, which is defined by

$$|m_{ee}| = |m_1 V_{e1}^2 + m_2 V_{e2}^2 + m_3 V_{e3}^2|,$$

(36)

where m_i and V_{ei} ($i = 1, 2, 3$) are the complex neutrino masses and PMNS matrix elements. As it is well known, the lowest upper bound on $|m_{ee}| < 0.22$ eV was provided by GERDA phase-I data [102] and this value has been significantly reduced by GERDA phase-II data [103].

In the previous section, we found a set of values for the free parameters (see Fig. 1-4) which fit the mixing angles. As a result, those values were used to find the regions for the effective Majorana mass of the electron neutrino, as shown in the Fig. (5). For this observable, two scattered plots have been only shown since that parameters m_1 and a_ν are more restrictive for the allowed region.
FIG. 5. From left to right: $|m_{ee}|$ versus m_1 and $|a_\nu|$ parameters, respectively. These scattered plots correspond to the normal ordering where the CP parities for the complex neutrino masses are $(m_3, m_2, m_1) = (+, -, +)$.

B. Lepton violation process: $\mu \rightarrow e\gamma$

In this section, we have calculated the branching ratio for the lepton flavor violation process $\mu \rightarrow e\gamma$ [104, 105] that is mediated by the doubly (Δ^{++}) and singly (Δ^+) charged scalars that come from the Higgs triplet (see Eq.(2)). The branching ratio [104] is given by

$$
BR(\mu \rightarrow e\gamma) \approx 4.5 \times 10^{-3} \left(\frac{1}{\sqrt{2} v_{\Delta^+}} \right)^4 \left| \left(V^* M^\dagger \hat{M} \nu V^T \right)_{e\mu} \right|^2 \left(\frac{200 GeV}{m_{\Delta^{++}}} \right)^4
$$

(37)

where $m_{\Delta^+} = m_{\Delta^{++}} \equiv m_\Delta$ has been assumed in the previous result. Besides, V stands for the PMNS mixing matrix.

The branching ratio depends on the PMNS mixing parameters, the single and doubly charged scalars; along with this, the vev of the Higgs triplet takes place. In here, we use the following regions $80 GeV < m_\Delta$ and $v_\Delta < 5 GeV$ [106]; the PMNS mixing parameters have been already constrained in the previous section, to be more explicit, we use the following regions: $0.01 eV < m_1 < 0.014 eV$, $0.35 MeV < |a_e| < m_e$, $0.004 eV < |a_\nu| < 0.006 eV$ and $\pi < \eta_\nu < 6\pi/5$.

FIG. 6. From left to right: $BR(\mu \rightarrow e\gamma)$ versus the v_Δ and m_Δ parameter. The thick line stands for 3σ of C. L.

In the Fig. [6], the predicted region is shown for the branching ratio as function of the vev of the Higgs triplet and the mass of the singly and doubly charged scalars. Our model predicted a region, $BR(\mu \rightarrow e\gamma) \approx 10^{-40}$, that is too much below of the experimental bound $BR(\mu \rightarrow e\gamma) \approx 4.2 \times 10^{-13}$.
VI. CONCLUSIONS

We have built an economical non-renormalizable lepton model for getting the mixings where the type II see-saw mechanism is responsible to explain tiny neutrino masses. Under a particular benchmark, in the charged lepton sector, the mass matrices have the Fritzsch textures with a shift parameter which makes different to the previous studies. Our main finding is: a set of values for the relevant parameters was found to be consistent (up to 3 σ) with the last experimental data on lepton observables for the normal neutrino mass ordering.

To finish, we would like to add that the $S_3 \otimes Z_2$ symmetry is an excellent candidate to be the flavor symmetry at low energy. However, one has to look for the best framework where the flavor symmetry solve the majority of open questions on the flavor problem and related issues. In this direction, the quark mixings and the scalar potential analysis will be included to have a complete study but this is a working progress.

ACKNOWLEDGEMENTS

García-Aguilar appreciates the facilities given by the IPN through the SIP project number 20211170. JCGI thanks Valentina A. and A. Emiliano Gómez Nabor for sharing great moments and experiences during this long time. This work was partially supported by Project 20211423 and PAPIIT IN109321.

Appendix A: S_3 flavour symmetry

The non-Abelian group S_3 is the permutation group of three objects \[15\] and this has three irreducible representations: two 1-dimensional, 1_S and 1_A, and one 2-dimensional representation, 2. We list the multiplication rules among them:

\begin{align*}
1_S \otimes 1_S &= 1_S, & 1_S \otimes 1_S &= 1_S, & 1_S \otimes 1_A &= 1_A \\
1_A \otimes 1_A &= 1_S, & 1_S \otimes 2 &= 2, & 1_A \otimes 2 &= 2 \\
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} &= \begin{pmatrix} a_1 b_1 + a_2 b_2 \\ (a_1 b_2 - a_2 b_1) \end{pmatrix} 1_A + \begin{pmatrix} a_1 b_1 + a_2 b_1 \\ a_1 b_1 - a_2 b_2 \end{pmatrix} 2.
\end{align*}

(A1)

[1] A. Masiero, S. K. Vempati and O. Vives, Flavour physics and grand unification, 0711.2903 (2005), arXiv:0711.2903 [hep-ph]
[2] G. C. Branco, L. Lavoura and F. Mota, Nearest Neighbor Interactions and the Physical Content of Fritzsch Mass Matrices, Phys. Rev. D39 (1989) 3443
[3] G. C. Branco and J. I. Silva-Marcos, NonHermitian Yukawa couplings?, Phys. Lett. B331 (1994) 390–394
[4] K. Harayama and N. Okamura, Exact parametrization of the mass matrices and the KM matrix, Phys.Lett. B387 (1996) 614–622 arXiv:hep-ph/9605215 [hep-ph]
[5] K. Harayama, N. Okamura, A. Sanda and Z.-Z. Xing, Getting at the quark mass matrices, Prog.Theor.Phys. 97 (1997) 781–790 arXiv:hep-ph/9607461 [hep-ph]
[6] H. Fritzsch, Neutrino Masses and Flavor Mixing, Mod. Phys. Lett. A30 (2015) 16 1530012 arXiv:1503.01857 [hep-ph]
[7] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys.Rev.Lett. 10 (1963) 531–533.

[8] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652–657.

[9] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog.Theor.Phys. 28 (1962) 870–880.

[10] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984–988, [Zh. Eksp. Teor. Fiz.53,1717(1967)].

[11] T. Fukuyama and H. Nishiura, Mass matrix of Majorana neutrinos (1997), arXiv:hep-ph/9702253 [hep-ph].

[12] C. Lam, A 2 – 3 symmetry in neutrino oscillations, Phys.Lett. B507 (2001) 214–218, arXiv:hep-ph/0104116 [hep-ph].

[13] R. N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys.Rev. D60 (1999) 013002, arXiv:hep-ph/9809415 [hep-ph].

[14] Z.-z. Xing and Z.-h. Zhao, A review of \(\mu-\tau\) flavor symmetry in neutrino physics, Rept. Prog. Phys. 79 (2016) 7076201, arXiv:1512.04207 [hep-ph].

[15] W. Grimus and L. Lavoura, A Discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B572 (2003) 189–195, arXiv:hep-ph/0305046 [hep-ph].

[16] Y. Koide, Universal texture of quark and lepton mass matrices with an extended flavor \(2 < \rightarrow > 3\) symmetry, Phys.Rev. D69 (2004) 093001, arXiv:hep-ph/0312207 [hep-ph].

[17] P. Chen, G.-J. Ding, F. Gonzalez-Canales and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D94 (2016) 3 033002, arXiv:1604.03510 [hep-ph].

[18] Z.-h. Zhao, Modifications to the neutrino mixing given by the mu-tau reflection symmetry (2018), arXiv:1803.04603 [hep-ph].

[19] P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Physics Letters B 530 (2002) 174 167 – 173, ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/S037026930201369.

[20] Z. zhong Xing, Nearly tri-bimaximal neutrino mixing and \{CP\} violation, Physics Letters B 533 (2002) 172 85 – 93, ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/S0370269302016490.

[21] G. Altarelli, F. Feruglio and L. Merlo, Tri-Bimaximal Neutrino Mixing and Discrete Flavour Symmetries, Fortsch. Phys. 81 (2013) 507–534, arXiv:1205.5133 [hep-ph].

[22] M. H. Rahat, P. Ramond and B. Xu, Asymmetric tribimaximal texture, Phys. Rev. D98 (2018) 5 055030, arXiv:1805.10684 [hep-ph].
[31] M. J. Pérez et al., *Stitching an asymmetric texture with T13 × Z5 family symmetry*, Phys. Rev. D **100** (2019) 7 075008, [arXiv:1907.10698 [hep-ph]].

[32] M. H. Rahat, *Leptogenesis from the Asymmetric Texture* (2020), [arXiv:2008.04204 [hep-ph]].

[33] K. Fukuura, T. Miura, E. Takasugi and M. Yoshimura, *Maximal CP violation, large mixings of neutrinos and democratic type neutrino mass matrix*, Phys. Rev. D **61** (2000) 073002, [arXiv:hep-ph/9909415].

[34] T. Miura, E. Takasugi and M. Yoshimura, *Large CP violation, large mixings of neutrinos and the Z(3) symmetry*, Phys. Rev. D **63** (2001) 013001, [arXiv:hep-ph/0003139].

[35] E. Ma, *The All purpose neutrino mass matrix*, Phys. Rev. D **66** (2002) 117301, [arXiv:hep-ph/0207352].

[36] P. Ferreira, W. Grimus, D. Jurciukonis and L. Lavoura, *Scotogenic model for co-bimaximal mixing*, JHEP **07** (2016) 010, [arXiv:1604.07777 [hep-ph]].

[37] E. Ma, *Soft A4 → Z3 symmetry breaking and cobimaximal neutrino mixing*, Phys. Lett. B **755** (2016) 348–350, [arXiv:1601.00138 [hep-ph]].

[38] E. Ma and G. Rajasekaran, *Cobimaximal neutrino mixing from A4 and its possible deviation*, EPL **119** (2017) 3 31001, [arXiv:1708.02208 [hep-ph]].

[39] E. Ma, *Cobimaximal neutrino mixing from S3 × Z2*, Phys. Lett. B **777** (2018) 332–334, [arXiv:1707.03352 [hep-ph]].

[40] W. Grimus and L. Lavoura, *Cobimaximal lepton mixing from soft symmetry breaking*, Phys. Lett. B **774** (2017) 325–331, [arXiv:1708.09809 [hep-ph]].

[41] A. E. Cárcamo Hernández, S. Kovalenko, J. W. F. Valle and C. Vaquera-Araujo, *Predictive Pati-Salam theory of fermion masses and mixing*, JHEP **07** (2017) 118, [arXiv:1705.06320 [hep-ph]].

[42] A. E. Cárcamo Hernández, J. W. F. Valle and C. A. Vaquera-Araujo, *Neutrino predictions from a left-right symmetric flavored extension of the standard model* (2018), [arXiv:1811.03018 [hep-ph]].

[43] A. Cárcamo Hernández and I. de Medeiros Varzielas, *∆(27) framework for cobimaximal neutrino mixing models*, Phys. Lett. B **806** (2020) 135491, [arXiv:2003.01134 [hep-ph]].

[44] H. Fritzsch, *Texture zero mass matrices and flavor mixing of quarks and leptons*, Mod. Phys. Lett. A **30** (2015) 28 1550138.

[45] H. Ishimori et al., *Non-Abelian Discrete Symmetries in Particle Physics*, Prog. Theor. Phys. Suppl. **183** (2010) 1–163, [arXiv:1003.3552 [hep-th]].

[46] W. Grimus and P. O. Ludl, *Finite flavour groups of fermions*, J. Phys. A **45** (2012) 233001, [arXiv:2003.01134 [hep-ph]].

[47] S. F. King and C. Luhn, *Neutrino Mass and Mixing with Discrete Symmetry*, Rept. Prog. Phys. **76** (2013) 056201, [arXiv:1301.1340 [hep-ph]].

[48] S. Pakvasa and H. Sugawara, *Discrete Symmetry and Cabibbo Angle*, Phys. Lett. **73B** (1978) 61–64.

[49] J. M. Gerard, *FERMION MASS SPECTRUM IN SU(2)-L x U(1)*, Z. Phys. C **18** (1983) 145.

[50] J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, *The Flavor symmetry*, Prog. Theor. Phys. **109** (2003) 795–807 [Erratum: Prog. Theor. Phys.114,287(2005)], [arXiv:hep-ph/0302196 [hep-ph]].

[51] J. Kubo, *Majorana phase in minimal S(3) invariant extension of the standard model*, Phys. Lett. B **578** (2004) 156–164 [Erratum: Phys. Lett.B619,387(2005)], [arXiv:hep-ph/0309167 [hep-ph]].

[52] T. Kobayashi, J. Kubo and H. Terao, *Exact S(3) symmetry solving the supersymmetric flavor problem*, Phys. Lett. B **568** (2003) 83–91, [arXiv:hep-ph/0303084 [hep-ph]].

[53] S.-L. Chen, M. Frigerio and E. Ma, *Large neutrino mixing and normal mass hierarchy: A discrete understanding*, Phys. Rev. **D70** (2004) 073008 [Erratum: Phys. Rev.D70,079905(2004)], [arXiv:hep-ph/0404084 [hep-ph]].

[54] J. Kubo et al., *A minimal S(3)-invariant extension of the standard model*, J. Phys. Conf. Ser. **18** (2005) 380–384.

[55] O. Felix, A. Mondragon, M. Mondragon and E. Peinado, *Neutrino masses and mixings in a minimal S(3)-invariant extension of the standard model*, AIP Conf. Proc. **917** (2007) 383–389, [arXiv:hep-ph/0610061].
A. E. Cárcamo Hernández, R. Martinez and J. Nisperuza, Novel Randall-Sundrum model with
A. E. Cárcamo Hernández, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S₃ flavor
symmetry.

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a two-
Higgs-doublet model with S₃. Phys. Rev. ⁹₃ (2016) ⁰₁⁰₆₀⁰₃, arXiv:1₅₉.₀₂₀₈₃ [hep-ph]

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S₃ flavor
symmetry, Phys. Rev. ⁹₄ (2016) ³ ⁰₃₃₀₁, arXiv:1₅₁₁.₀₇₄₂₀ [hep-ph

S. Gupta, C. S. Kim and P. Sharma, Radiative and seesaw threshold corrections to the S₃ symmetric neutrino mass
matrix, Phys. Lett. ⁴₇₄ (20₁₅) ₂₁₇–₂₂₂, arXiv:1₄₁₁.₅₅₄₂ [hep-ph]

E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with B – L gauge symmetry and S₃ flavor
symmetry, Phys. Lett. ⁴₇₁ (20₁₅) ₂₁₇–₂₂₂, arXiv:1₄₁₁.₅₅₄₂ [hep-ph]

S. Gupta, C. S. Kim and P. Sharma, Radiative and seesaw threshold corrections to the S₃ symmetric neutrino mass
matrix, Phys. Lett. ⁴₇₄ (20₁₅) ₂₁₇–₂₂₂, arXiv:1₄₁₁.₅₅₄₂ [hep-ph]

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a two-
Higgs-doublet model with S₃, Phys. Rev. ⁹₃ (20₁₆) ₁ ⁰₁₆₀₀₃, arXiv:1₅₉.₀₂₀₈₃ [hep-ph]

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S₃ flavor
symmetry, Phys. Rev. ⁹₄ (20₁₆) ³ ⁰₃₃₀₁, arXiv:1₅₁₁.₀₇₄₂₀ [hep-ph]

F. Gonzalez Canales et al., Neutrino mixing with broken S₃ symmetry, J. Phys. ³₃₈ (20₁₁) ₀₁₅₀₀₃, arXiv:1₀₅₃₀₀₁ [hep-ph]

D. Meloni, S. Morisi and E. Peinado, Fritzsch neutrino mass matrix from S₃ symmetry, Phys. Rev. ⁸₆ (20₁₂) ₀₉₃₀₀₅, arXiv:1₂₁₂.₆₃₆₂ [hep-ph]

F. Gonzalez Canales, A. Mondragon, U. S. Salazar and L. Velasco-Sevilla, S₃-flavour symmetry as realized in lepton flavour violating processes, Fortsch.Phys. ⁶₁ (20₁₃) ₅₉₇–₆₂₁, arXiv:1₂₁₀.₇₀₄₆ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The S₃ symmetry: Flavour and texture zeroes, J. Phys. Conf. Ser. ²₈₇ (20₁₁) ₀₁₂₀₀₅, arXiv:1₀₅₃₀₀₁ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The S₃ Flavour Symmetry: Neutrino Masses and Mixings, Fortsch.Phys. ₃₁ (20₁₃) ₅₄₆–₅₇₀, arXiv:1₂₀₅.₄₇₅₅ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The neutrino mixing angle theta(13) in an S(3) flavour symmetric model, J.Phys.Conf.Ser. ₃₈₇ (20₁₂) ₀₁₂₀₀₈.

A. G. Dias, A. C. B. Machado and C. C. Nishi, An S₃ Model for Lepton Mass Matrices with Nearly Minimal Texture, Phys. Rev. ⁸₆ (20₁₂) ₀₉₃₀₀₅, arXiv:1₂₁₂.₆₃₆₂ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The flavour symmetry S(3) and the neutrino mass matrix with two texture
 zeroes, J.Phys.Conf.Ser. ₃₇₈ (20₁₂) ₀₁₂₀₁₄

J. Kubo, Super Flavorsymmetry with Multiple Higgs Doublets, Fortsch.Phys. ₃₁ (20₁₃) ₅₉₇–₆₂₁, arXiv:1₂₁₀.₇₀₄₆ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The S₃ Flavour Symmetry: Neutrino Masses and Mixings, Fortsch.Phys. ₃₁ (20₁₃) ₅₴₆–₅₇₀, arXiv:1₂₀₅.₄₇₅₅ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The neutrino mixing angle theta(13) in an S(3) flavour symmetric model, J.Phys.Conf.Ser. ₃₈₇ (20₁₂) ₀₁₂₀₀₈

A. G. Dias, A. C. B. Machado and C. C. Nishi, An S₃ Model for Lepton Mass Matrices with Nearly Minimal Texture, Phys. Rev. ⁸₆ (20₁₂) ₀₉₃₀₀₅, arXiv:1₂₁₂.₆₃₆₂ [hep-ph]

F. Gonzalez Canales and A. Mondragon, The flavour symmetry S(3) and the neutrino mass matrix with two texture
 zeroes, J.Phys.Conf.Ser. ₃₇₈ (20₁₂) ₀₁₂₀₁₄

D. Meloni, S₃ as a flavour symmetry for quarks and leptons after the Daya Bay result on θ₁₃, JHEP ⁰₅ (20₁₂) ₁₂₄, arXiv:1₂₀₃.₃₁₂₆ [hep-ph]

F. G. Canales et al., Fermion mixing in an S₃ model with three Higgs doublets, J.Phys.Conf.Ser. ₃₄₇ (20₁₃) ₀₁₂₀₅₃

E. Ma and B. Melic, Updated S₃ model of quarks, Phys. Lett. B₇₂₅ (20₁₃) ₄₀₂–₄₀₆, arXiv:1₃₀₃.₆₉₂₈ [hep-ph]

F. González Canales et al., Quark sector of S3 models: classification and comparison with experimental data, Phys.Rev. D₈₈ (20₁₃) ⁰₉₃₀₀₅, arXiv:1₃₀₃.₆₉₂₈ [hep-ph]

A. E. Cárcamo Hernández, E. Cataño Mur and R. Martinez, Lepton masses and mixing in SU(3)C ⊗ SU(3)L ⊗ U(1)X
models with a S₃ flavor symmetry, Phys. Rev. D₉₀ (20₁₄) ⁰₇₃₀₀₁, arXiv:1₄₀₇.₅₂₁₇ [hep-ph]

A. E. Cárcamo Hernández, R. Martinez and J. Nisperuza, S₃ discrete group as a source of the quark mass and mixing
pattern in 331 models, Eur. Phys. J. C₇₅ (20₁₅) ₂ ₇₂, arXiv:1₄₀₁.₀₉₃₇ [hep-ph]

E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with B – L gauge symmetry and S₃ flavor
symmetry, Phys. Lett. B₇₄₁ (20₁₅) ₂₁₇–₂₂₂, arXiv:1₄₁₁.₅₅₄₂ [hep-ph]

S. Gupta, C. S. Kim and P. Sharma, Radiative and seesaw threshold corrections to the S₃ symmetric neutrino mass
matrix, Phys. Lett. B₇₄₀ (20₁₅) ₃₅₃–₃₅₈, arXiv:1₄₀₈.₀₁₇₂ [hep-ph]

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a two-
Higgs-doublet model with S₃, Phys. Rev. D₉₃ (20₁₆) ₁ ⁰₁₆₀₀₃, arXiv:1₅₉.₀₂₀₈₃ [hep-ph]

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and N. A. Neill, Novel Randall-Sundrum model with S₃ flavor
symmetry, Phys. Rev. D₉₄ (20₁₆) ³ ⁰₃₃₀₁, arXiv:1₅₁₁.₀₇₄₂₀ [hep-ph]

F. González Canales et al., Fermion mixing in an S₃ model with three Higgs doublets, J.Phys.Conf.Ser. ₃₄₇ (20₁₃) ₀₁₂₀₅₃
[80] A. E. Cárcamo Hernández, A novel and economical explanation for SM fermion masses and mixings, Eur. Phys. J. C76 (2016) 9 503, arXiv:1512.09092 [hep-ph].

[81] C. Arbeláez, A. E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J. C77 (2017) 6 422, arXiv:1602.03607 [hep-ph].

[82] A. E. Cárcamo Hernández, R. Martínez and F. Ochoa, Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S_3 flavor symmetry, Eur. Phys. J. C76 (2016) 11 634, arXiv:1309.6567 [hep-ph].

[83] A. E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiatively generated hierarchy of lepton and quark masses, JHEP 12 (2017) 125, arXiv:1611.09797 [hep-ph].

[84] D. Das and U. K. Dey, Analysis of an extended scalar sector with S_3 symmetry, Phys. Rev. D89 (2014) 9 095025, [Erratum: Phys. Rev. D91, no. 3, 039905 (2015)], arXiv:1404.2491 [hep-ph].

[85] D. Das, U. K. Dey and P. B. Pal, S_3 symmetry and the quark mixing matrix, Phys. Lett. B753 (2016) 315–318, arXiv:1507.06509 [hep-ph].

[86] S. Pramanick and A. Raychaudhuri, Neutrino mass model with S_3 symmetry and seesaw interplay, Phys. Rev. D94 (2016) 11 115028, arXiv:1609.06103 [hep-ph].

[88] A. A. Cruz and M. Mondragón, Neutrino masses, mixing, and leptogenesis in an S_3 model (2017), arXiv:1701.07929 [hep-ph].

[89] J. C. Gómez-Izquierdo, Non-minimal flavored $S_3 \otimes Z_2$ left-right symmetric model, Eur. Phys. J. C77 (2017) 8 551, arXiv:1701.01747 [hep-ph].

[90] E. A. García, J. C. Gómez-Izquierdo and F. González-Canales, Flavored non-minimal left-right symmetric model fermion masses and mixings, Eur. Phys. J. C78 (2018) 10 812, arXiv:1807.02727 [hep-ph].

[91] J. C. Gómez-Izquierdo and M. Mondragón, $B-L$ Model with S_3 symmetry: Nearest Neighbor Interaction Textures and Broken $\mu \leftrightarrow \tau$ Symmetry, Eur. Phys. J. C79 (2019) 3 285, arXiv:1804.08746 [hep-ph].

[92] S.-F. Ge, A. Kusenko and T. T. Yanagida, Large Leptonic Dirac CP Phase from Broken Democracy with Random Perturbations, [arXiv:1804.08746]

[93] D. Das and P. B. Pal, S_3 flavored left-right symmetric model of quarks, Phys. Rev. D98 (2018) 11 115001, arXiv:1808.02297 [hep-ph].

[94] Z.-Z. Xing and D. Zhang, Seesaw mirroring between light and heavy Majorana neutrinos with the help of the S_3 reflection symmetry, JHEP 03 (2019) 184, arXiv:1901.07912 [hep-ph].

[95] S. Pramanick, Scotogenic S_3 symmetric generation of realistic neutrino mixing, Phys. Rev. D100 (2019) 3 035009, arXiv:1904.07558 [hep-ph].

[96] A. Kunčinas, O. Ogreid, P. Osland and M. Rebelo, S_3 -inspired three-Higgs-doublet models: A class with a complex vacuum, Phys. Rev. D 101 (2020) 7 075052, arXiv:2001.01994 [hep-ph].

[97] V. Vien, H. Long and A. Cárcamo Hernández, $U(1)_{B-L}$ extension of the standard model with S_3 symmetry, Eur. Phys. J. C 80 (2020) 8 725.

[98] C. Espinosa, E. Garecés, M. Mondragón and H. Reyes-González, The S_3 Symmetric Model with a Dark Scalar, Phys. Lett. B 788 (2019) 185–191, arXiv:1804.01879 [hep-ph].

[99] C. Espinosa and M. Mondragón, Prospects of Indirect Detection for the Heavy S_3 Dark Doublet (2020), arXiv:2008.11792 [hep-ph].

[100] P. F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].

[101] P. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020 (2020) 8 083C01.

[102] M. Agostini et al. (GERDA), Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 12 122503, arXiv:1307.4720 [nucl-ex].
[103] M. Agostini et al., Background free search for neutrinoless double beta decay with GERDA Phase II, Nature544,47(2017), arXiv:1703.00570 [nucl-ex].

[104] A. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays tau — anti-l l and mu — e gamma in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010, arXiv:0904.3640 [hep-ph].

[105] M. Lindner, M. Platscher and F. S. Queiroz, A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation (2016), arXiv:1610.06587 [hep-ph].

[106] A. Cárcamo Hernández, J. C. Gómez-Izquierdo, S. Kovalenko and M. Mondragón, Δ (27) flavor singlet-triplet Higgs model for fermion masses and mixings, Nucl. Phys. B 946 (2019) 114688, arXiv:1810.01764 [hep-ph].