Gamma-Aminobutyric Acid (GABA) Attenuates Ischemia Reperfusion-Induced Alterations in Intestinal Immunity

Atsuhito Kubota, a Masaki Kobayashi, a,b Sota Sarashina, a Reiko Takeno, a Genki Yasuda, a Katsuya Narumi, a Ayako Furugen, a Natsuko Takahashi-Suzuki, c and Ken Iseki* a,b,c

**Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University; Kita-12-jo, Nishi-5-chome, Kita-ku, Sapporo 060–0812, Japan; b Department of Pharmacy, Hokkaido University Hospital; Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060–8648, Japan; and c Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science; 4–1 Maeda-7-jo, 15-chome, Teine-ku, Sapporo 006–8585, Japan.

Received May 5, 2018; accepted September 24, 2018

The aims of this study were to determine the effects of gamma-aminobutyric acid (GABA) on immunoglobulin A (IgA) secretion from Peyer’s patch (PP) cells; to assess rat alpha-defensin-5 (RD-5) expression in the rat small intestine; and to determine the effect of GABA on intestinal ischemia reperfusion (I/R) injury-induced intestinal innate immunity. We found that GABA caused an increase in IgA secretion in the presence and absence of lipopolysaccharide (LPS). Moreover, GABA also significantly increased the mRNA levels of RD-5 and superoxide dismutase (Sod) 1, 3. Intestinal I/R was induced by a 30-min occlusion of the superior mesenteric artery followed by a reperfusion for 60-min. This led to a significant decrease in IgA secretion, and mRNA levels of RD-5 and Sod 1-3 in the ileum. On the other hand, administration of GABA before I/R induction had a significant protective effect against oxidative injury and attenuated the effects on intestinal immunity.

Key words gamma-aminobutyric acid; defensin; immunoglobulin A; intestinal ischemia–reperfusion; superoxide dismutase

MATERIALS AND METHODS

Chemicals GABA was purchased from Tokyo Chemical Industry (Tokyo, Japan). Lipopolysaccharide (LPS) from *Escherichia coli* O111 (produced by phenol extraction) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). All other reagents were of the highest grade available to us, and used without further purification.

Animals Male Wistar rats were obtained from Hokudo (Sapporo, Japan). Rats (weighing 190–220 g and aged 7 weeks) were housed in plastic cages under standard laboratory conditions of constant temperature (23±2°C) with a 12:12-h light–dark cycle, with *ad libitum* access to water and food (standard rodent chow diet). All animal experiments were conducted in accordance with the guidelines of the Care and Use of Laboratory Animals of Hokkaido University. The dosage of GABA was 1–30 mg/kg body weight. GABA was dissolved in water and 1 mL/kg was injected orally by sonde. All animals were euthanized 24 h after GABA administration.

Peyer’s Patch (PP) Cell Preparation and Determination of IgA Levels PP cell preparation and determination of IgA levels were performed as previously described.

© 2018 The Pharmaceutical Society of Japan
Intestinal Ischemia–Reperfusion The rats were divided into 3 groups (sham-operated group, I/R group and I/R+GABA group). Intestinal ischemia–reperfusion were performed as previously described.18)

Quantitative Real-Time PCR Quantitative real-time PCR was performed using a LightCycler 480 II System (Roche Diagnostics GmbH, Mannheim, Germany) with a KAPA SYBR Green Fast qPCR kit (KAPA Biosystems, Boston, MA, U.S.A.) as previously described.17) PCR was performed using primers for rat RD-5 and Sods with the following conditions: 40 cycles at 95°C for 3 s, 95°C for 10 s, 58°C for 20 s, and 72°C for 1 s. Primer sequences are shown in Supplementary Table 1. Levels of PCR products were normalized to the internal reference gene, beta-actin.

Histological Examination Samples of the ileum were taken after reperfusion, and the internal portion was washed with phosphate buffered saline (PBS) \textsuperscript{ (−) . The tissue was immediately fixed in 10% buffered formalin. Fixed tissue was embedded in paraffin and sectioned. Slides were stained with hematoxylin and eosin to evaluate intestinal morphology and observed under a light microscope for classification.

Statistical Analysis Statistical significance was performed using Student’s \textit{t}-test and Tukey’s test or Dunnett’s test for \textit{post hoc} analysis. Differences were considered statistically significant at \(p < 0.05 \).

RESULTS AND DISCUSSION To investigate the innate intestinal immuno-stimulatory activity of GABA, we first evaluated the levels of IgA secretion from rat PP cells. We found that GABA increased IgA secretion with and without LPS, in a concentration-dependent manner (Fig. 1A), and had no effect on cell viability (Supplementary Fig. 1A). This shows that GABA activates natural immunity in the small intestine. Next, we measured mRNA levels of RD-5 in the rat ileum in response to GABA (30 mg/kg) and found that RD-5 expression was significantly increased (Fig. 1B) compared to that in the jejunum (Supplementary Fig. 1B). It has been reported that Paneth cells, which are the primary producers of RD-5, are present in higher concentrations in the ileum than in the jejunum.
numbers in the ileum than in the jejunum. Thus, our results correlate with the occurrence of a higher number of Paneth cells in the ileum.

It has been reported that GABA prevents oxidative stress-induced damage. We previously reported that oxidative stress causes a significant decrease in the mRNA levels of human α-defensin 5 (HD-5) in Caco-2 cells, which serve as a model of human intestinal epithelial cells. We therefore hypothesize that the mechanism by which GABA induces these changes is related to the activity of antioxidant enzymes, such as SOD. To test this, we assessed the expression levels of $Sods$ in the rat intestine. We found that the mRNA levels of $Sods\,1$ and 3 were significantly increased in response to treatment with 30 mg/kg GABA (Fig. 1C). These results correlate with IgA production and RD-5 mRNA levels. On the other hand, we examined the effect of another factor such as Toll-like receptor (TLR) 2, 4, tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β). GABA had no effect on TLR2, 4, TNF-α and TGF-β mRNA level (Supplementary Table 2). Since GABA induced the secretion of IgA as well as changes in the expression levels of mRNA in RD-5 and Sods, we speculate that GABA attenuates oxidative stress-induced alterations in innate immunity.

Intestinal I/R occurs in a number of clinical settings, including small intestine transplant, intestinal surgery, circulatory shock, and strangulation ileus. It has been shown that the small intestine is highly sensitive to I/R injury. Reactive oxygen species (ROS) play an important role in acute intestinal I/R injury. ROS induce membrane lipid peroxidation, which is accompanied by a loss of intestinal barrier function. We previously reported that intestinal I/R injury causes an increase in malondialdehyde levels. Therefore, in the present study, we used a rat model of I/R. IgA secretion from rat PP cells and RD-5 mRNA levels in the rat ileum were significantly decreased compared with the sham-operated group (Figs. 2A, B). Moreover, $Sods$ mRNA levels were also significantly decreased in the rat ileum (Fig. 2C). These results suggest that the ROS-induced reduction in innate immunity is associated with mRNA levels of $Sods$ in the rat’s small intestine.

Finally, we investigated the effect of GABA on I/R-induced injury and innate immunity. In addition to our findings that GABA suppresses I/R, induces IgA secretion, and affects $RD-5$ mRNA levels (Figs. 2A, B), we also found that pretreatment with GABA prevents damage to the crypt (Fig. 3). There were no significant differences in the mRNA levels of $Sods$ between the I/R plus GABA treatment group and the sham-operated group (Fig. 2C). These results are consistent with a previous report showing that GABA reduces hepatic I/R injury-mediated oxidative stress.
epithelium. GABA content has an antioxidant capacity.

Next, we examined direct effect of GABA on I/R-induced IgA secretion in cultured rat PP cells. Intestinal concentration of orally administered GABA was predicted according to the previous report. Based on these results, we selected 5 mM GABA concentration in vitro study. A direct treatment of 5 mM GABA in PP cells significantly increased IgA secretion. Although I/R significantly reduced IgA secretion, there were no significant differences in IgA secretion between I/R plus 5 mM GABA treatment group and the sham-operated group (data not shown). We therefore suggest that the protective effect of GABA on I/R-induced injury can be caused by inducing an antioxidant enzyme such as SODs and a direct immuno-stimulatory activity. The results of this study provide further scientific evidence of the value of GABA in treating oxidative injury and attenuating alterations in intestinal immunity.

In conclusion, we focused on the protective effect of GABA on intestinal I/R-induced alterations in innate immunity. We showed that GABA, an antioxidant, significantly reduced oxidative injury and relieved the effects of I/R on innate immunity.

Acknowledgments This study was supported in part by a Grant from the Mishima Kaiun Memorial Foundation Research Grant and Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant number 16K08388). This study was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), and funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) under “Support Program for Implementation of New Equipment Sharing System.”

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials.

REFERENCES

1) Deitch EA, Xu D, Qi L, Berg R. Elemental diet-induced immune suppression is caused by both bacterial and dietary factors. J. Parenter. Enteral. Nutr., 17, 332–336 (1993).
2) Mayer L. The role of the epithelium in mucosal immunity. Res. Immunol., 148, 498–504 (1997).
3) Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 9, 356–368 (2011).
4) Wu Z, Ericksen B, Tucker K, Lubkowski J, Lu W. Synthesis and characterization of human alpha-defensins 4–6. J. Pept. Res., 64, 118–125 (2004).
5) Gong Y, Zhang M, Cui L, Minuk GY. Sequence and chromosomal assignment of a human novel cDNA: similarity to gamma-amino-butyric acid transporter. Can. J. Physiol. Pharmacol., 79, 977–984 (2001).
6) Norikura T, Kojima-Yuasa A, Kennedy DO, Matsui-Yuasa I. Protective effect of gamma-amino-butyric acid (GABA) against cytotoxicity of ethanol in isolated rat hepatocytes involves modulations in cellular polyanamine levels. Amino Acids, 32, 419–423 (2007).
7) Xu JQ, Hu QP, Duan JL, Tian CR. Dynamic changes in gamma-amino-butyric acid and glutamate decarboxylase activity in oats (Avena sativa L.) during steeping and germination. J. Agric. Food Chem., 58, 9759–9763 (2010).
8) Andarg M, Hjerling-Perliler J, Moliner A, Lundgren TK, Castelobranco G, Nanou E, Pousas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charyn P, El Manira A, Ibáñez CF, Ernfors P. Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451, 460–464 (2008).
9) Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa A. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, R818–R826 (2011).
10) Kurt S, Crook JM, Ohl FW, Scheich H, Schulze H. Differential effects of iopropothiol in vivo application of the GABA A-antagonists bicuculline and gabazine in sensory cortex. Hear. Res., 212, 224–235 (2006).
11) Horii T, Gardner LB, Hata T, Chen F, Baine AM, Uemoto S, Nguyen JH. Pretreatment of liver grafts in vivo by γ-amino-butyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat. Ann. Transplant., 18, 299–313 (2013).
12) Ghosh N, Ghosh R, Mandal SC. Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic. Res., 45, 888–905 (2011).
13) Turan B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr. Pharm. Biotechnol., 11, 819–836 (2010).
14) Majid DS, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol., 34, 946–952 (2007).
15) Olivero David R, Bastida S, Schultz A, González Torres L, Gonzalez-Mahoez MJ, Sanchez-Manuz FJ, Benedi J. Fasting status and thermally oxidized sunflower oil ingestion affect the intestinal antioxidant enzyme activity and gene expression of male Wistar rats. J. Agric. Food Chem., 58, 2498–2504 (2010).
16) Takahashi N, Kobayashi M, Ogura J, Yamaguchi H, Sato T, Watanabe K, Iseki K. Immunoprotective effect of epigallocatechin-3-gallate on oral anticancer drug-induced α-defensin reduction in Caco-2 cells. Biol. Pharm. Bull., 37, 490–492 (2014).
17) Kubota A, Kobayashi M, Surashina S, Takeno R, Okamoto K, Namiki K, Furugen A, Suzuki Y, Takahashi N, Iseki K. Reishi mushroom *Ganoderma lucidum* modulates IgA production and alpha-defensin expression in the rat small intestine. *J. Ethnopharmacol.*, **214**, 240–243 (2018).

18) Itagaki S, Kurokawa T, Nakata C, Saito Y, Oikawa S, Kobayashi M, Hirano T, Iseki K. In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. *Food Chem.*, **114**, 466–471 (2009).

19) Becerril A, Castillo-Robles G, González-Hernández M, Villanueva I. Influence of high-calorie (cafeteria) diets on the population of Paneth cells in the small intestine of the rat. *Eur. J. Morphol.*, **42**, 201–207 (2005).

20) Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. *Annu. Rev. Physiol.*, **57**, 311–332 (1995).

21) Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM. Ischemic injury in the cat small intestine: role of superoxide radicals. *Gastroenterology*, **82**, 9–15 (1982).

22) Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. *Acta Paediatr.*, **85**, 1–4 (1996).

23) Sato Y, Kobayashi M, Itagaki S, Hirano T, Noda T, Mizuno S, Sugawara M, Iseki K. Protective effect of lutein after ischemia–reperfusion in the small intestine. *Food Chem.*, **127**, 893–898 (2011).

24) Li Y, Xiang YY, Lu WY, Liu C, Li J. A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion. *Am. J. Physiol. Gastrointest. Liver Physiol.*, **303**, G453–G460 (2012).

25) Nakagawa T, Yokozawa T, Kim HJ, Shibahara N. Protective effects of gamma-aminobutyric acid in rats with streptozotocin-induced diabetes. *J. Nutr. Sci. Vitaminol.*, **51**, 278–282 (2005).

26) McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. *J. Pharm. Pharmacol.*, **60**, 63–70 (2008).