Composite Pairings in Chirally Stabilized Critical Fluids

P. Azaria and P. Lecheminant

1 Laboratoire de Physique Théorique des Liquides, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France
2 Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95301 Cergy-Pontoise Cedex, France

(Received:)

PACS No: 75.10.Jm, 75.40.Gb

We study a one-dimensional electron gas in a special antiferromagnetic environment made by two spin-1/2 Heisenberg chains and the one-dimensional two-channel Kondo-Heisenberg lattice away from half-filling. These models flow to an intermediate fixed point which belongs to the universality class of chirally stabilized liquids. Using a Toulouse point approach, the universal properties of the models are determined as well as the identification of the leading instabilities. It is shown that these models exhibit a non-Fermi liquid behavior with strong enhanced composite pairing correlations.

The concept of odd-frequency superconducting ordering was conceived by Berezinskii [1] who considered spin-triplet odd-frequency pairing as an alternate of the conventional theory \(^3\text{He}\) pairing. The possibility of such unusual pairing was revived nearly one decade ago by Balatsky and Abrahams [2] in the context of singlet superconductors and by Emery and Kivelson [3] in the two-channel Kondo problem with the emphasis laid on the composite nature of the order parameter for odd-frequency pairing.

One of the most important difficulty in finding some specific lattice models for realization of odd-frequency pairing stems from the fact that it requires a controlled analysis in the strong coupling regime. Such an approach is possible in some extreme limits as in one dimension where non-perturbative techniques are available. Strong odd-frequency singlet pair correlations were, in particular, identified within the bosonization approach [4] of the one-dimensional single channel Kondo lattice in an anisotropic limit [5]. Another candidate is the one dimensional single channel Kondo-Heisenberg lattice (KHL) which consists of a one dimensional electron gas (1DEG) interacting with an antiferromagnetic Heisenberg spin-1/2 chain by a Kondo coupling. Away from half filling, this model has a spin gap [6] and is thus expected to exhibit enhanced pairing correlations. In particular, it has been shown recently [7] that the dominant instabilities are of a composite nature in a certain regime of the parameters. In this letter, we shall study two different generalization of the one dimensional KHL with two channels which have no spin gap but exhibit dominant unconventional pairing instabilities. A first generalization is to consider a 1DEG coupled by a Kondo coupling to two non-interacting antiferromagnetic Heisenberg spin-1/2 chains. This model belongs to the more general class of Luttinger liquids in active environments introduced in the context of the striped physics [10, 11]. A second generalization consists of conduction electrons with a two-fold orbital degeneracy interacting with a periodic array of localized spins i.e. the two-channel KHL. It has been shown in Ref. [3] that these two models away from half filling exhibit a critical phase governed by a fixed point which belongs to the class of chirally stabilized fluids [12, 13]. In this work, we shall compute correlation functions of physical observables by means of a Toulouse point solution and characterize the dominant instabilities of both models which turn out to be of a composite nature. Very recently, the one dimensional N-channel KHL has been investigated by Andrei and Origonac [14] using a conformal field theory (CFT) approach. These authors found that the leading instability is of a composite pairing type when \(N \leq 4\) [15]. In this respect, the exact solution at the Toulouse point provides an independent and physically transparent approach for the particular 2-channel KHL.

The models. The first model (referred in the following as a 1DEG in a special active environment) consists of a 1DEG away from half filling coupled symmetrically by a Kondo coupling (\(J_K > 0\)) with two non-interacting antiferromagnetic (\(J_H > 0\)) spin-1/2 Heisenberg chains:

\[
\mathcal{H}_1 = -t \sum_i \left(c_i^\dagger \sigma_{i+1}^\sigma + \text{H.c.} \right) + J_K \sum_{\sigma=1}^2 \sum_i \mathbf{S}_{i\sigma} \cdot \mathbf{S}_{i\sigma}
\]

\[
+ J_H \sum_{\sigma=1}^2 \sum_i \mathbf{S}_{i\sigma} \cdot \mathbf{S}_{i\sigma+1}.
\]

Here, \(c_i^\sigma\) is the conduction electron operator at site \(i\) with spin \(\sigma = \uparrow, \downarrow\), \(\mathbf{S}_{i\sigma} = c_i^\dagger \sigma, \sigma_{i\beta} c_{i\beta} / 2\) (\(\sigma\) being the Pauli matrices) stands for the electron spin operator at site \(i\) whereas the localized spin operator at site \(i\) on the chain of index \(a = 1, 2\) is denoted by \(\mathbf{S}_{ai}\). In the limit \(J_K \ll t, J_H\), the low energy behavior of the model can be determined using the continuum limit of the electron operator in terms of right and left moving fermion fields: \(c_{i\sigma} \rightarrow R_{\sigma} e^{ik_{F}x} + L_{\sigma} e^{-ik_{F}x}, x = ia_0\) (\(k_{F}\) being the Fermi momentum and \(a_0\) the lattice spacing). The continuum description of the conduction spin density operator \(\mathbf{S}_{i}\) can then be expressed in terms of a spin current \(\mathbf{J}_{i\sigma R,L}\) belonging to

\[
\mathcal{H}_1 = -t \sum_i \left(c_i^\dagger \sigma_{i+1}^\sigma + \text{H.c.} \right) + J_K \sum_{\sigma=1}^2 \sum_i \mathbf{S}_{i\sigma} \cdot \mathbf{S}_{i\sigma}
\]

\[
+ J_H \sum_{\sigma=1}^2 \sum_i \mathbf{S}_{i\sigma} \cdot \mathbf{S}_{i\sigma+1}.
\]

Here, \(c_i^\sigma\) is the conduction electron operator at site \(i\) with spin \(\sigma = \uparrow, \downarrow\), \(\mathbf{S}_{i\sigma} = c_i^\dagger \sigma, \sigma_{i\beta} c_{i\beta} / 2\) (\(\sigma\) being the Pauli matrices) stands for the electron spin operator at site \(i\) whereas the localized spin operator at site \(i\) on the chain of index \(a = 1, 2\) is denoted by \(\mathbf{S}_{ai}\). In the limit \(J_K \ll t, J_H\), the low energy behavior of the model can be determined using the continuum limit of the electron operator in terms of right and left moving fermion fields: \(c_{i\sigma} \rightarrow R_{\sigma} e^{ik_{F}x} + L_{\sigma} e^{-ik_{F}x}, x = ia_0\) (\(k_{F}\) being the Fermi momentum and \(a_0\) the lattice spacing). The continuum description of the conduction spin density operator \(\mathbf{S}_{i}\) can then be expressed in terms of a spin current \(\mathbf{J}_{i\sigma R,L}\) belonging to...
the SU(2)\(_1\) Kac-Moody (KM) algebra \(\mathfrak{h}\) and a bosonic field \(\Phi_a = \Phi_{aR} + \Phi_{aL}\) that accounts for the charge degrees of freedom: \(S_a \to J_{aR} + J_{aL} + \cos(2k_F x + \sqrt{27} \Phi_a) n_a n_0\) being the staggered magnetization. In the same way, the spin densities of the surface chains are represented as (see Refs. \([13,15]\)):

\[
S_a(x) = J_a(x) + (-1)^{x/a_0} n_a(x) \quad \text{where} \quad J_a = J_{aR} + J_{aL} \quad \text{and} \quad n_a \text{ respectively the uniform and staggered parts of the magnetization.}
\]

The chiral spin currents \(J_{aR,L}\) belong also to the SU(2)\(_1\) KM algebra. With this low energy description, the Hamiltonian density of the lattice model \(\mathfrak{h}\) for incommensurate filling reads as follows in the continuum limit:

\[
\mathcal{H}_1 \approx \frac{\nu_F}{2} \left((\partial_x \Phi_a)^2 + (\partial_x \Theta_a)^2 \right) + \frac{2 \pi \nu_H}{3} (J_{aR}^2 + J_{aL}^2) + 2 \sum_{a=1}^2 (J_{aR}^2 + J_{aL}^2) + g (J_{0R} \cdot J_L + J_{0L} \cdot J_R)
\]

where we have neglected all oscillatory, marginal irrelevant contributions as well as current-current interactions of the same chirality. As shown in Ref. \([13]\) at the strong coupling fixed point, these latter interactions only lead to renormalization of velocities and logarithmic corrections.

In Eq. \(\mathcal{H}_2\), \(\Theta_a = \Phi_{aR} - \Phi_{aL}\) is the dual charge field, \(v_F\) the Fermi velocity, \(v_H\) the spin velocity of the magnetic environment, and \(g \approx J_K a_0 > 0\) is the interfering coupling constant; \(J_{aR,L} = J_{1R,L} + J_{2R,L}\) is a SU(2)\(_2\) KM current being the sum of two SU(2)\(_1\) KM currents.

The second model considered in this: the one-dimensional two-channel KHL:

\[
\mathcal{H}_2 = -t \sum_i \sum_{a=1}^2 \left(\chi_{\alpha a} c_{i+1 \alpha} + H.c. \right) + J_H \sum_i S_{0i} \cdot S_{0i+1} + J_K \sum_{\alpha=1}^2 \sum_i S_{\alpha i} \cdot S_{0i}
\]

where now the electron operator \(c_{i \alpha}\) has a channel index \(a = 1, 2\) and interacts by a Kondo coupling \(J_K > 0\) with a periodic array of localized spins \(S_{0i}\). Away from half filling, the continuum limit of the Hamiltonian \(\mathfrak{h}\) proceeds in the same way as in the first model and with the same degree of approximations than in Eq. \(\mathcal{H}_2\), one has:

\[
\mathcal{H}_2 \approx \frac{\nu_F}{2} \sum_{a=1}^2 \left((\partial_x \Phi_a)^2 + (\partial_x \Theta_a)^2 \right) + \frac{2 \pi \nu_H}{3} (J_{0R}^2 + J_{0L}^2) + 2 \sum_{a=1}^2 (J_{aR}^2 + J_{aL}^2) + g (J_{0R} \cdot J_L + J_{0L} \cdot J_R)
\]

where \(\Phi_{ac}\) is a bosonic field (\(\Theta_{ac}\) being the dual field) associated with charge fluctuations in the \(a\)th channel. The chiral SU(2)\(_1\) currents \(J_{aR,L}\) correspond to the chiral uniform part of the electron spin density whereas \(J_{aR,L}\) are the chiral SU(2)\(_1\) currents of the local moments.

Toulouse point solution. The next step of the approach is to use the representation of two SU(2)\(_1\) currents in terms of four Majorana fermions \(\xi^0\) and \(\xi\) \(\mathfrak{h}\) for the continuum limit solution captures the physical and universal properties of the models including the SU(2) case. The details of the approach can be found in Refs. \([13,14]\) and we shall now briefly review it to fix the notations. The starting point of the Toulouse solution is the Abelian bosonization of all SU(2)\(_1\) currents \(J_{aR,L} \equiv 0, 1, 2\) in terms of massless bosonic fields \(\varphi\) \(\mathfrak{h}\): \(J_{aR,L}^2 = (L/\sqrt{2}) \eta_x \varphi_{aR,L}\), \(J_{aR,L} = (1/2 \pi a_0) \epsilon_{1L}^a \sqrt{2} \varphi_{aR,L}^a\). Introducing the symmetric combination of the fields: \(\varphi^+ = (\varphi_1 + \varphi_2)/\sqrt{2}\), the SU(2)\(_2\) current \(I\) writes: \(I_{0R,L} = (L/\sqrt{2}) \eta_x \varphi_{0R,L}\), \(I_{0R,L} = (L/\sqrt{2}) \eta_x \varphi_{0R,L}\). A fermionic zero-mode operator \(\kappa\) has been introduced to ensure the proper anticommutation relations. The following canonical transformation is then performed:

\[
\varphi_0 = \sqrt{2} \Phi_2 - \Phi_1, \quad \varphi^+ = \sqrt{2} \Phi_1 - \Phi_2
\]

\[
\varphi_0 = \sqrt{2} \Theta_2 + \Theta_1, \quad \varphi^+ = \sqrt{2} \Theta_1 + \Theta_2
\]

where \(\varphi_0\) and \(\varphi^+\) (respectively \(\Theta_1\) and \(\Theta_2\)) are the dual
fields associated with φ_0 and $\varphi_+ \text{ (respectively } \bar{\Phi}_1 \text{ and } \bar{\Phi}_2)$, for a special positive value (Toulouse point) of g_{11} ($g_{11} = 4\pi (v_0 + v_1)/3$), the arguments of the interacting terms become those of free fermions so that they can be renormalized further with the introduction of a \[\bar{\eta} \] with: \[H = \frac{u_1}{2} [\langle \partial_x \Phi_1 \rangle^2 + \langle \partial_x \Theta_1 \rangle^2] - \frac{u_1}{2} [\langle \xi_R \partial_x \xi_R - \xi_L \partial_x \xi_L \rangle - \langle \eta \partial_x \eta \rangle - \langle \eta \partial_x \eta \rangle] + im \left[\xi_R^2 \eta - \eta \xi_L^2 \right] \tag{7} \]

where $m = g_{12}/2\pi a_0$, $u_1 = (2v_1 - v_0)/3$, and $u_2 = (2v_0 - v_1)/3$. The Toulouse solution is stable provided $c = 3/2$. The remaining part of the Hamiltonian describes a spectral gap m and describes hybridization of the Majorana \[\xi^2 \text{ and } \eta \] fermions with different chiralities. Adding the contribution of the excitations that do not participate in the interaction, the total central charge in the IR of the 1DEG in a special active environment (respectively the two-channel KHL) is $c = 3$ (respectively $c = 4$). Apart from the charge degrees of freedom, the elementary excitations of the models in the IR are of different nature: The magnetic excitations are spinons defined as \[\sqrt{\pi/2} \text{ kinks of the bosonic field } \Phi_1 \text{ describing an effective S=1/2 Heisenberg chain and nonmagnetic singlet excitations associated with the two massless Majorana fermions } \xi^0, \zeta \text{ (critical Ising degrees of freedom) referred as pseudocharge degrees of freedom in Refs. [13][23]. These } Z_2 \text{ excitations play a crucial role in the nontrivial IR physical properties of the models as we shall see now.} \]

Physical properties of the 1DEG in a special active environment. The Green’s function for the right-left moving fermions can be computed using the bosonic representation: \[\langle R, L \rangle = \langle \kappa \rangle e^{i \tau_3 \pi/4} e^{i \sqrt{3} \varphi_{R,L}} \] where $\tau_{\pm \pm} = \pm 1, \varphi_{R,L} = (\Phi_{R,L} + \tau_\sigma \varphi_{R,L})/\sqrt{3}$, and κ_σ are Klein-factors to insure the correct anticommutation relations between fermions of different spin index [13]. Using the Toulouse basis \[\bar{\Phi}_1 \text{ and } \bar{\Phi}_2 \] one then obtains at the IR fixed point the estimate:

\[\langle R_{\sigma} (x, \tau) R_{\sigma'}^\dagger (0, 0) \rangle \sim \delta_{\sigma, \sigma'} \left(\frac{v_F \tau - ix}{2} \right)^{1/2} \left(\frac{u_1 \tau + ix}{2} \right)^{1/2} \left(\frac{u_2 \tau - ix}{2} \right)^{1/2} \tag{8} \]

which means that the system displays non-Fermi liquid properties; the left-moving Green’s function is obtained from Eq. (8) by the substitution: $i \rightarrow -i$. The most interesting physical quantities are the correlation functions of the various possible order parameters. The spin-spin correlation functions have been computed in Ref. [13] and the slowest ones are the staggered parts that decay as $x^{-3/2}$. Using the previous Abelian bosonization of the chiral fermions and the Toulouse basis \[\bar{\Phi}_1 \text{ and } \bar{\Phi}_2 \] we find in the electronic sector the following representation for the charge density wave (CDW), spin density wave (SDW), singlet (SS) and triplet (ST) superconducting order parameters in terms of the different critical fields at the IR fixed point:

\[O_{CDW} = L_x \sigma_R \propto e^{i \sqrt{2} \pi \Phi_1} \cos (\sqrt{2} \pi \Phi_1) \xi_R \xi_L \]

\[O_{SDW} = L_x \sigma_{\alpha\beta} R_{\beta} \propto e^{i \sqrt{2} \pi \Phi_1} \xi_R \xi_L \]

\[O_{SS} = -i L_\alpha (\sigma^u_{\alpha \beta}) R_{\beta} \propto e^{-i \sqrt{2} \pi \Phi_1} \xi_R \xi_L \]

\[O_{TS} = -i L_\alpha (\bar{\sigma}^u_{\alpha \beta}) R_{\beta} \propto e^{-i \sqrt{2} \pi \Phi_1} \xi_R \xi_L \]

(9)

All these conventional order parameters have thus the same scaling dimension (2) and the corresponding pair correlation functions decay as x^{-3} i.e. much faster than in the one dimensional metals. One should notice that the Z_2 pseudocharge excitations contribute in [34] through the density energy operator $i \kappa \xi_R \xi_L$. In a critical Ising model, there are other primary fields (order and disorder parameters) that have a smaller scaling dimension (1/8) which are highly nonlocal in terms of the original Majorana fermion [35]. This leads us to investigate the possibility that the ground state might be characterized by composite order parameters: staggered odd-frequency singlet pairing (c-SP) and staggered composite CDW (c-CDW). At the IR fixed point, we find the following correlation functions corresponding to the composite order parameters:

\[O_{c-SP} = \bar{O}_{TS} \cdot (n_1 + n_2) \sim e^{-i \sqrt{2} \pi \Phi_1} \mu_0 \mu_4 \]

\[O_{c-CDW} = \bar{O}_{SDW} \cdot (n_1 + n_2) \sim e^{i \sqrt{2} \pi \Phi_1} \mu_0 \mu_4 \]

(10)

where μ_0, μ_4 (respectively σ_0, σ_4) are the Ising disorder (respectively order) parameters associated with the Majorana fermions ξ^0, ζ.

From Eq. (10), we deduce the leading asymptotics of the correlation function corresponding to the composite order parameters:

\[\langle O_{\text{composite}} (x, \tau) O_{\text{composite}}^\dagger (0, 0) \rangle \sim \frac{1}{(v_F \tau^2 + x^2)^{1/2} \left(\frac{v_F^2 \tau^2 + x^2}{2} \right)^{1/8} \left(\frac{u_1 \tau + ix}{2} \right)^{1/2} \left(\frac{u_2 \tau - ix}{2} \right)^{1/2}} \tag{11} \]

so that the composite order parameters induce the dominant instabilities and have enhanced long-range coherence. These fluctuations can be made even more enhanced upon switching on a very small ferromagnetic ($g_{12} < 0$) exchange interaction between the spin chains: $O_{12} = g_{12} S_1 \cdot S_2$. Indeed, at the IR fixed point, this perturbation mostly affects the pseudoscalar sector leaving
intact the magnetic one: $O_{12} \approx g_{12} \xi_R \xi_L$. The Majorana fermion ξ acquires a positive mass i.e. its associated Ising model is in the disorder phase: $(\mu_0) \neq 0$ and the Z_2 symmetry with respect to the interchange of the two chains is now broken. All other degrees of freedom remain critical so that the pair correlation of the conventional order parameters O_{12} still decay as x^{-4} whereas from Eq. (10) one immediately observes that the composite ones decay now as $x^{-5/4}$ instead of $x^{-3/2}$ at $g_{12} = 0$.

The two-channel KHL case. The determination of the ground-state physical properties of the two-channel KHL proceeds in the same way as in the previous model. We first use the Abelian bosonisation of the right-left moving fermions: $(R, L)_{a\sigma} = (\kappa_{a\sigma}/\sqrt{2\pi g_{a\sigma}}) e^{i\tau_{a\sigma}}(\cos \frac{x}{\sqrt{2\pi g_{a\sigma}}})$ where $F_{\alpha R,L} = (\Phi_{\alpha R,L} + \tau_y F_{\alpha R,L})/\sqrt{2}$, and $\kappa_{a\sigma}$ are some Klein-factors [19]. The Green’s functions of the chiral fermions have a similar structure than in Eq. (8) apart from they fall now with the distance with a power $5/4$. The leading asymptotics of the correlation function of the localized spins have been computed in Ref. [13] and in particular the staggered part decays as x^{-3}. Using the Toulouse basis (6) and introducing the charge and relative charge bosonic fields $\Phi_{\pm R,L} = (\Phi_{1-R,L} \pm \Phi_{2-R,L})/\sqrt{2}$, the order parameters for the electronic degrees of freedom can also be expressed in terms of the critical fields at the IR fixed point. We find the following correspondence for the conventional order parameters:

\begin{align*}
O_{CDW} &= L^\dagger_{\alpha} R_{a\sigma} \sim e^{i\sqrt{2\pi} F_{\pm R,L}} \cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R \\
\tilde{O}_{SDW} &= L^\dagger_{\alpha} \sigma R_{a\beta} \sim e^{i\sqrt{2\pi} F_{\pm R,L}} \left[\cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R, \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R, - \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R \right] \\
O_{SS} &= -iL_{\alpha} (\sigma y)_{\alpha R} R_{\beta} \sim e^{-i\sqrt{2\pi} F_{\pm R,L}} \cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R \\
\tilde{O}_{TS} &= -iL_{\alpha} (\sigma y)_{\alpha R} R_{\beta} \sim e^{-i\sqrt{2\pi} F_{\pm R,L}} \left[- \cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R, \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R, \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) \xi_R \right]
\end{align*}

where $\xi_R = \mu_0 \mu_4 \cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) + i\sigma_0 \sigma_4 \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right)$ and ξ_R is obtained from J_{IR} by replacing $\Phi_{\pm R,L}$ by its dual field $\Theta_{\pm R,L}$. The scaling dimension of all these conventional order parameters is $5/4$ and their corresponding pair correlation functions decay thus as $x^{-5/2}$ i.e. have no enhanced long-range coherence. Notice, however, that this decay is much slower than in the 1DEG in a special active environment case. Similarly, we find the following description at the IR fixed point for the staggered composite order parameters:

\begin{align*}
O_{-SP} &= \tilde{O}_{TS} \cdot \mathbf{n}_0 \sim e^{-i\sqrt{2\pi} F_{\pm R,L}} \xi_R \\
O_{-CDW} &= \tilde{O}_{SDW} \cdot \mathbf{n}_0 \sim e^{i\sqrt{2\pi} F_{\pm R,L}} \\
(\mu_0 \mu_4 \cos \left(\sqrt{2\pi} \Phi_{\pm R,L} \right) + 3i\sigma_0 \sigma_4 \sin \left(\sqrt{2\pi} \Phi_{\pm R,L} \right))
\end{align*}

so that the scaling dimension of these operators is $3/4$ and the pair correlation function of the composite order parameters is still given by Eq. (11). The dominant instabilities of the two-channel KHL are thus of a composite nature as in the 1DEG in a special active environment. Finally, one should note that the scaling dimensions of the physical observables of the two-channel KHL obtained by the Toulouse point solution coincide with those of the recent CFT approach [19]. In this respect, we stress that, in contrast with the latter approach, the Toulouse point solution enables us to take into account the inherent velocities anisotropy in the problem.

In summary, we have shown that the two generalizations of the one dimensional KHL considered in this letter exhibit a nontrivial non-Fermi liquid low-temperature phase belonging to the class of chirally stabilized fluids with strong enhanced staggered composite pairing correlations.