Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field

Zhongjie Yu 1,2, Qi Li 3, Jing Wang 4, Yali Yu 1, Yin Wang 1, Qihui Zhou 1,5* and Peifeng Li 1*

Abstract

The unique physicochemical characteristics of nanoparticles have recently gained increasing attention in a diverse set of applications, particularly in the biomedical field. However, concerns about the potential toxicological effects of nanoparticles remain, as they have a higher tendency to generate excessive amounts of reactive oxygen species (ROS). Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis. This review aims to give a summary of the mechanisms and responsible for ROS generation by nanoparticles at the cellular level and provide insights into the mechanics of ROS-mediated biotoxicity. We summarize the literature on nanoparticle toxicity and suggest strategies to optimize nanoparticles for biomedical applications.

Keywords: Reactive oxygen species, Nanoparticles, Oxidative stress, Biotoxicity

Introduction

Nanoparticles (NPs) are a class of novel synthetic particles with dimensions < 100 nm. Depending on their shape and size, the distinct physical and chemical characteristics give NPs different functions. NPs are widely used in many consumer products, including textiles, cosmetics, water purification, and food packaging [1, 2]. They are also used in the engineering of photocatalysts, energy, and optoelectronics [3–6].

In particular, NPs have become a favored material in biomedical materials and are widely used in biosensors, siRNAs delivery, targeted gene knockdown, drug delivery, and in bio-filling medical materials [7–11]. Further uses of NPs are still being discovered. For example, Duan et al. [12] showed that Fe3O4-polyethylene glycol-polyamide-amine-matrix metalloproteinase2@ chlorin e6 (Fe3O4-PEG-G5-MMP2@Ce6) nanoprobes significantly inhibited gastric tumor growth. In another case, pDNA-polyethylenimine CeO nanoparticles (pDNA-PEI-CeO NPs) could induce more fibrosarcoma cell apoptosis [13]. Furthermore, hollow silica-Fe-polyethylene glycol-human epidermal growth factor receptor 2 nanoparticles (HS-Fe-PEG-HER2 NPs) could selectively bind tumor cells and were used as imaging agents to distinguish normal tissue from cancerous cells [14]. Finally, silver nanoparticles (Ag NPs) serve as antibacterials, which efficiently combat resistant bacterial biofilm-associated infections [15].

Despite the potential for positive applications of NPs in various fields, an increasing number of studies have indicated their adverse effects on organisms [16, 17] and cells following NP exposure [18, 19]. The toxic potential of NPs is dependent on their size and shape, which determined their propensity to induce the generation of reactive oxygen species (ROS) [20, 21]. The excess generation ROS may induce an array of physiopathologic outcomes, including genotoxicity, apoptosis, necrosis, inflammation, fibrosis, metaplasia, hypertrophy, and carcinogenesis [18, 22, 23]. The toxicity of NPs has also
been shown to enhance the expression of pro-inflammatory cytokines and activate inflammatory cells, such as macrophages, which further increase the generation of ROS [23, 24]. The increased generation of ROS following exposure to NPs has been also shown to induce the modulation of cellular functions, with fatal results in some cases [17, 23, 25]. In this review, we discuss the main mechanisms underlying the ROS bursts induced by NPs, analyze the primary reasons for the cytotoxicity of NPs, and summarize the potential pathogenic effects of NPs. Our present review provides overwhelming evidence that the over-production of ROS is the major cause of the biotoxicity of NPs. Therefore, novel research should aim to reduce the cytotoxicity of NPs by designing NPs which induce low ROS production.

The Application of NPs in the Biomedical Field

NPs have been used in a variety of medical applications, and several novel NPs exhibit properties which are promising for their use in novel biomedical materials. As summarized in Table 1, Nano-C60 can be used as an anticancer agent, which inhibits cancer cell proliferation, both in vivo and in vitro [26]. ZnO NPs have been used as fillers in orthopedic and dental implants [38]. TiO2 can be used as antibacterial agents, in air and water purification, and for dental prostheses [52–54]. Davaeifar et al. reported that a phycocyanin-ZnO nanorod could protect the cell by decreasing endogenous ROS generation [68]. Pacurari et al. pointed out that SWCNTs could be applied as a clinical diagnostic agent and as bioengineering materials [88]. Beyond that, numerous NPs can be used as antimicrobial agents, which kill bacteria by inducing ROS bursts (Table 1).

The Mechanisms of Increased ROS Induced by NPs in Cells

ROS are chemically reactive particles that contain oxygen, including hydrogen peroxide (H2O2), reactive superoxide anion radicals (O2•−), and hydroxyl radicals (•OH) [92, 93]. ROS are predominantly generated in organelles such as the endoplasmic reticulum (ER), in peroxisomes, and most notably in the mitochondria [94]. During oxidative phosphorylation, oxygen is used for the synthesis of water by the addition of electrons through the mitochondrial electron transport chain (ETC). Some of these electrons are accepted by molecular oxygen to form O2, which can further transform H2O2 and •OH [93].

In a physiological context, ROS are produced as a natural response to the normal metabolism of oxygen [95] and serve a vital role in various cellular signaling pathways [96, 97]. Dröge and Holmstrom et al. reported that ROS could activate numerous signaling cascades, including the epidermal growth factor (EGF) receptor, the mitogen-activated protein kinase (MAPK) cascades, the transcription factor activator protein-1 (AP-1), and the nuclear factor-KB (NF-KB), and further participated in the process of mammalian growth, proliferation, and differentiation [98, 99]. Further studies showed that ROS also regulated wound repair [100], survival after hypoxia [101], intracellular pH homeostasis [102], and innate immunity [103].

Nevertheless, following exposure to NPs, the intracellular generation of ROS may sharply increase by inducing ROS bursts in cells [20] (Table 1). The main mechanistic explanations for ROS bursts are that metal ions released by NPs promote ROS overexpression by impairing mitochondrial respiration [30, 104].

The metal ions released by NPs have been shown to mix into redox cycling and chemocatalysis via the Fenton reaction [H2O2 + Fe2+ → Fe3+ + HO• + •OH] or Fenton-like reaction [Ag+ + H2O2 + H+ = Ag• + + HO• + H2O] [23, 105, 106]. The dissociated metal ion (i.e., Ag•) also causes cellular enzyme deactivation, membrane structure disruption [31, 107], disturbed electron-shuttling process [108], depleted redox potential levels, reduced mitochondrial membrane potentials (MMP) [109], and further enhances the accumulation of intracellular ROS. NPs have been also reported to promote the intracellular ROS accumulation by disturbing the electron transfer process [32, 110], increasing the NADP+/NADPH ratio [30], and interfering mitochondrial function [18]. NPs further interfere with the expression of oxidative stress-related genes, such as soxS, soxR, oxyR, and ahypC [58]; antioxidant genes, like sod1 and gpx I[111, 112]; and the NADPH production-related gene met9 [30]. The instability in the expression of oxidative and antioxidant genes caused by NPs accelerates intracellular ROS accumulation.

Interestingly, increased ROS production has been strongly associated with particular sizes and shapes of NPs [113, 114]. For example, TiO2 NPs contributed to intracellular ROS generation, which led to nucleic acid and protein damage [10]. Liao et al. found that 10 nm TiO2 NPs had higher genotoxicity than other sizes tested and therefore could induce more ROS generation [115]. In another case, Se NPs promoted the production of ROS in cells, and the yield of intracellular ROS was highly associated with the diameter of Se NPs. In this case, a diameter of 81 nm induced more ROS production than other sizes tested [113]. Cho et al. further showed that the shape of NPs strongly affected their capacity to induce ROS production. Day flower-mimicking metallic nanoparticles (D-NP) lead to a significantly higher production of ROS than night flower-mimicking metallic nanoparticles (N-NP), resulting in an enhanced cell killing effect [114] (Fig. 1).

NPs can induce intracellular ROS bursts at a very low concentration (shown in Table 1), for example, Nano-C60 at 1 μg/mL can significantly increase cell apoptosis.
No.	Type of NPs	Potential applications	ROS	Dose	Molecule mechanism of biotoxicity	References
1	Nano-C60	Antibacterial agents, Anticancer agents.	↑	1 μg/mL	Necrosis, apoptosis, autophagy, DNA fragmentation, cell membrane damage.	[26–28]
2	Carbon-based nanodots	Antibacterial agents.	↑	> 1 mg/mL	Oxidize the phospholipids, destroy the membranes.	[29]
3	Ag	Antibacterial agents.	↑	150 μg/mL	Intracellular oxidation, membrane potential variation, membrane permeability disruption, DNA damage, genomic instability, cell cycle arrest, cellular contents release, inactivate proteins, autophagy, disturb electron transfer process.	[30–36]
4	Gold-silver nanocage	Antibacterial agents.	↑	2.5 μg/mL	Destruction of cell membrane, apoptosis.	[37]
5	ZnO	Wastewater purification, antibacterial agents, antitumor agents, fillers in orthopedic, and dental implants.	↑	20 μg/mL	Disintegration the cell membrane, inhibition enzyme activity, inhibition DNA synthesis, DNA damage, interruption of energy transduction, mitochondrial damage, apoptosis, intracellular outflow, mitotic arrest, carcinogetic.	[38–45]
6	Gold	Anticancer agents, antibacterial agents.	↑	20 μM	Collapse membrane potential, inhibit ATPase activities, inhibit the subunit of ribosome.	[46, 47]
7	MgO	Antibacterial agents, anticancer agents.	↑	100 mg/mL	Lipid peroxidation, apoptosis.	[48, 49]
8	Fe3O4	Antibacterial agents.	↑	32 μg/mL	DNA cleavage.	[50]
9	CdSe	Antibacterial agents.	↑	10 μg/mL	Inhibition proliferation.	[51]
10	TiO2	Antimicrobial agents, air and water purification, dental prosthesis.	↑	10 μg/mL	Loss respiratory activity, interfere oxidative phosphorylation, DNA lesions, mitochondrial dysfunction, carcinogeticity.	[52–57]
11	Al2O3	Antibacterial agents, cross-linker.	↑	0.16 mg/mL	DNA damage, mutagenesis.	[58, 59]
12	VO2	Antimicrobial agents.	↑	2.5 μg/mL	Mitochondrial dysfunction apoptosis.	[60, 61]
13	V2O5	Antimicrobial agents.	↑	20 mg/L	Interruption mitochondrial function.	[62, 63]
14	PCAE	Antimicrobial agents.	↑	30 μg/mL	Membrane damages.	[64]
15	Co-ZnO	Antimicrobial agents.	↑	20 μg/mL	Low toxicity.	[65]
16	Hybrid Gold/Polymer	Antimicrobial agents.	Unknown	Unknown	No cytotoxicity.	[66]
17	Ag-Fe NPs	Antimicrobial agents.	↑	100 mg/L	LDH release, disruption membrane integrity.	[67]
18	Phycocyanin-ZnO nanorod	Protect cell.	↓	50 μg/mL	Decrease in ROS production.	[68]
19	Ag/lyz-Mt	Antimicrobial agents, water disinfection.	↑	160 μg/mL	Damage cell membrane.	[69]
20	PEGylated ZnO	Antimicrobial agents, biological labeling.	↑	45 ppm	Low cytotoxicity.	[70]
21	CdS NPs	Antimicrobial agents.	↑	4 μg/mL	Inhibition proper cell septum formation, change morphology, fragment nuclei.	[71]
22	CdTe	Antimicrobial agents.	↑	0.4 mg/L	Morphological damages, apoptosis, genotoxicity.	[72]
23	ZnO@APTMS/Cu QDs	Antimicrobial agents.	↑	1.4 × 10^{-4} M	Inhibition proliferation.	[73]
24	CuO	Antimicrobial agents.	↑	5 mg/L	Increase cell permeability, lipid peroxidation, DNA damage, morphological alterations, mitochondrial dysfunction, interruption ATP synthesis.	[74–76]
25	Mn3O4	Antioxidant.	↓	20 ng/μL	Protect biomolecules against ROS.	[77]
Table 1 NPs played their biologic role by inducing ROS burst in cells (Continued)

No.	Type of NPs	Potential applications	ROS	Dose	Molecule mechanism of biotoxicity	References
26	PEGylated nanoceria	Antioxidant.	↓	10 μM	Cell protection, radical scavenger.	[78]
27	CeO₂	Against oxidative damage.	↓	2.5 μg/mL	Suppressed ROS production, protect cells, and tissues.	[79]
28	AuNPs-rGO-NC	Anticancer agents, antimicrobial agents.	↑	50 μg/mL	Reduction cell activity,	[80]
29	CONPs	Anticancer agents.	↑	10 μM	DNA damage.	[81]
30	Graphene	Cancer theotherapy, bioimaging, biosensing.	↑	25 μg/mL	DNA damage, mutagenesis.	[82, 83]
31	Fe₃O₄	Antibacterial agents.	↑	80 μg/mL	DNA damage.	[84]
32	NiO	Antibacterial agents.	↑	10 mg/L	DNA damage.	[85, 86]
33	PtAuNRs	Anticancer agents.	↓	OD at 0.5	Induce hyperthermia.	[87]
34	SWCNTs	Clinical diagnostic agent, bioengineered research.	↑	50 μg/cm²	DNA damage.	[88]
35	bsCdS	Anticancer agents.	↑	15 μg/mL	Apoptosis, depletion ATP, DNA damage.	[89]
36	Ag@OTV	Against H1N1 infection.	↓	Unknown	Less cytotoxicity.	[90]
37	PATA3-C4@CuS	Antibacterial agents.	↑	5.5 μg/mL	Less cytotoxicity.	[91]

Fig. 1 The production of ROS induced by NPs in surrounding solution and cells [32]. The electrons generated from NPs could enter into cells and disturb the functions of respiratory chain, then enhance the intracellular ROS production. Electrons also could react with O₂ directly and increased the generation of extracellular ROS.
by inducing oxidative stress [26, 27]. Notably, most NPs have a dose-dependent effect, as has been reported for VO₂ NPs [60, 61] and CuO NPs [74, 75].

Catastrophic Consequences of NPs on Cells by Increased ROS Production

NPs which enter the cell often have adverse effects on it. The most supported explanation for the cytotoxicity of NPs is that oxidative stress is induced by a ROS burst. ROS bursts caused by NPs have resulted in the oxidative modification of biomacromolecules, in the damage of cellular structures, in the developing drug resistance, in gene mutation, and in carcinogenesis [116, 117]. Furthermore, ROS bursts have altered the normal physiological functions of cells, as in is the case with trigger inflammation, which ultimately blocks cell functions and damages the organism [23, 118, 119]. Generally, NPs are first adsorbed on the cell surface, and then passed through the membrane into the cell, where they induce ROS generation [36]. Due to its strong oxidative potential, ROS is highly stressful to cell [46] and attacks nearly all types of biomolecules in the cell, including carbohydrates, nucleic acids, unsaturated fatty acids, proteins and amino acids, and vitamins [36, 120, 121] (Fig. 2).

ROS Results in Lipid Peroxidate and Membrane Structure Damage

Lipids, especially unsaturated fatty acids, are important intracellular macromolecules, which play key roles in the structure and functioning of the cell membrane. NPs are strongly attracted to the cell membrane, where they can generate ROS and lead to outer membrane lipid peroxidation. The altered fatty acid content of the cell membrane may result in increased cell permeability, which results in the uncontrolled transport of NPs from the extracellular environment into the cytoplasm, where cellular damage may progress further [76, 122]. Intracellular NPs induce the next round of ROS bursts. Overburdened ROS lead to the rupturing of the membranes of organelles, the leakage of the organelles’ contents [52, 123], the inactivation of cell receptors [124], the release of lactate dehydrogenase (LDH), and further irreversible cell damage [125].

ROS Attacks Proteins and Results in Functional Inactivation

ROS attacks the hydrophobic residues of amino acids, contributing to the breakage of peptide bonds and interfering with the function of these proteins [126–128]. Carbonylation is another feature of proteins subjected to oxidative damage [129]. Carbonylated proteins form aggregates that are chemically irreversible and cannot be degraded via proteasomes, leading to the permanent loss of function in these proteins [130, 131]. Gurunathan et al. [132] showed that PtNPs could enhance the generation of ROS and increase carbonylated protein levels, which inhibited osteosarcoma proliferation and contributed to apoptosis. In one case, combustion and friction-derived nanoparticles (CFDNPs) had accumulated in the brain of young adults with Alzheimer’s disease, which
likely promoted ROS generation, resulting in protein misfolding, aggregation, and fibrillation [133]. Furthermore, Pelgrift et al. showed that Mg NPs may inhibit gene transcription or damage proteins directly [10].

ROS-Induced Gene Mutation

Nucleic acids, including DNA and RNA, are essential to cell function, growth, and development, and their component nucleotides are vulnerable targets of ROS [134–136]. Due to their low redox potential, ROS can directly react with nucleobases and modify them [137]. For example, ROS could oxidize guanine to 8-oxo-7,8 dihydroguanin (8-oxoG) [138] and adenine to 1,2-dihydro-2-oxoadenine (2-oxoA) [139]. These base modifications lead to DNA damage [140]. Because of their genotoxic potential and their capacity to induce ROS formation [141], NPs significantly induce single- and double-strand DNA breakages [142, 143], chromosome damage, and aneuploid genic events [144].

The increased production of ROS is the main cause of gene miscoding, aneuploidy, polyploidy, and the activation of mutagenesis in cells exposed to NPs [145–148]. Among the nucleotide pools, guanine is the most vulnerable and is easily oxidized to 8-oxoG by ROS [149]. The increased level of 8-oxo-dG in DNA results in the mismatch of DNA bases [150]. Similarly, the incorporation of A8-oxoG causes an increased rate of G:C > T:A deleterious transversion mutations [151, 152]. The ratio of G:C > T:A transversion to G: C > A:T transition mutation has also been used as an index to quantify the oxidative DNA damage [153].

The generation of ROS induced by NPs resulted in the accumulation of DNA damage, which drives the development of mutagenicity [154], oncogenesis [155], multidrug resistance [156, 157], aging, and immune escape [158]. Jin et al. showed that the overproduction of ROS dramatically increased mutagenesis of DNA-binding transcriptional regulator genes, which resulted in an expedited antibiotic efflux [159], which in turn promotes the multiple-antibiotic resistance of bacteria [34]. Giannoni et al. reported that mitochondrial DNA mutations occurred with increasing intracellular ROS and further damaged the activity of ETC complex I and resulted in mitochondrial dysfunction [160, 161].

DNA damage induced by NPs has been shown to inhibit amino acid synthesis, replication [162], and cause the aberrant accumulation of p53 [163] and Rab51 proteins [82, 142]. DNA damage may also delay or fully arrest the cell [164]. Cells with damaged DNA lose the capacity for growth and proliferation [165] and may eventually result in cell death [166] (Fig. 3).

Increased Production of ROS Induces Cell Damage and Disease Occurrence

NP cytotoxicity is associated with oxidative stress, endogenous ROS production, and the depletion of the intracellular antioxidant pools. The increased oxidative stress leads to oxidative damage to biomacromolecules, which further affects the normal functioning of the cell and contributes to the occurrence and development of various diseases [167].

NPs induce membrane damage and enhance the transport of NPs into the cytoplasm. NPs concentrate in lysosomes, mitochondria, and the nucleus, which results in catastrophic consequences for the cell [168, 169]. It has been reported that NPs can reduce adenosine triphosphate (ATP) generation [89], deplete glutathione, induce protein mistranslation [170], rupture lysosomes [171], and inhibit the ribosomal subunit from binding transfer RNA (tRNA). These cellular events indicate a collapse of the fundamental biological process in the cell and lead to a significant decrease in cell viability [47]. Singh and Scherz-Shouval et al. reported that NPs could disturb cytoskeletal functions by inducing ROS generation and activate the process of autophagic and apoptosis in cells [89].

NPs enter the body via different routes, for instance through the skin, lungs, or intestinal tract (Fig. 4a) and can have a wide variety of toxicological effects and induce biological responses such as inflammation and immune responses [172–174]. In one case, exposure of cells to silica NPs caused macrophages to secrete a large amounts of interleukin-1β (IL-1β), which ultimately resulted in cell death [175]. Gao and colleagues reported that pulmonary inflammation was considerably higher in mice after exposure to carbon nanotubes, which could activate alveolar macrophages and induce a strong inflammatory response [176]. In another study, guinea pigs exposed to ZnO NPs suffered pulmonary damage, which leads to a decrease in total lung capacity and vital capacity [177–179].

ZnO NPs also induced severe injuries in the alveolar epithelial barrier and caused inflammation in the human lungs [180]. In another case, NPs absorbed into the intestines caused the inflammation and degradation of the intestinal mucosa [181]. Shubayev et al. noted that Mg NPs enhanced the migration of macrophages to the nervous system by degrading the blood-brain and blood-nerve barriers in an MMP-dependent manner [182]. Furthermore, mice which inhaled carbon nanotubes exhibited immunosuppression and repressed antibody response in naive spleen cells [183]. Finally, Cd NPs caused a severe decrease in blood monocyte viability, ultimately resulting in immunodeficiency [184].

In addition to the above pathologies, the highly variable level of ROS has been identified as the main cause of the development of numerous human diseases. Tretyakova and Liou et al. showed that oxidized DNA tends to form DNA-protein conjugates, which accumulate in the heart and brain and contribute to the occurrence of cancer, aging-related diseases, and chronic
Fig. 3 Cellular events induced by NPs. ① NPs contribute to the destruction of the cell membrane and to lipid peroxidation. ② The lysosomal membrane is destroyed by NPs and results in the release of their contents. ③ The mitochondrial membrane is damaged by NPs, leading to content release. NPs reduce the generation of ATP and increase the production of ROS. ④ The ROS induced by NPs results in the mistranslation of RNA. ⑤ NPs prevent the binding of tRNA to the ribosome. ⑥ The ROS induced by NPs result in the polymerization of proteins and DNA. ⑦ The ROS induced by NPs lead to DNA mutations. ⑧ The nuclear membrane is destroyed by NPs, resulting in the release of its contents.

Fig. 4 NP entrance into and damage of organs. a NPs could enter into the organisms through the oral cavity, nasal cavity, respiratory tract, kidneys, and intestinal tract. b NPs could spread by systemic circulation and accumulate in the kidneys, liver, heart, brain, intestinal tract, and lungs, leading to organ dysfunction. (This figure was created in BioRender.com).
inflammation [185, 186]. Andersen [187] concluded that diabetes, as well as cardiovascular and neurodegenerative diseases, were highly related to the imbalance of ROS. Additionally, Pérez-Rosés et al. showed that increased ROS promoted Alzheimer’s and Parkinson’s disease development [188].

It has been further reported that NPs promote the apoptosis of breast cancer cells [35] and destroy malignant tissues and pathogens by promoting the generation of ROS [189, 190]. However, ROS has also been found to induce the proliferation of both normal and cancerous cells, stimulating mutations, and initiating carcinogenesis in normal cells and multidrug resistance in cancerous cells [191, 192]. Handy et al. found that fish exposed to carbon nanotubes exhibited granulomas in their lungs and tumors in their livers with extended exposure times [193]. Some NPs have caused multiple organ failure, primarily affecting the heart, lung, kidneys, and liver. TiO₂ NPs have been shown to promote reduced body weight, spleen lesions, blood clotting in the respiratory system, necrosis and fibrosis in liver cells, and in alveolar septal incrassation [194, 195]. In one study, NPs also prevented stem cell differentiation, which aggravated organ damage [196]. Further research has also reported that NPs decreased sperm quality [197] and that exposure of sperm to carbon NPs influenced their ability to fertilize eggs and impaired the development of the embryos in purple sea urchins [198]. Mounting evidence shows the toxicological effects of NPs on microorganisms, algae, nematode, plants, animals, and humans specifically [22, 199, 200] (Fig. 4b).

The New Type of NPs with Fewer or No Cytotoxicity

NPs possess a range of biomedical properties that make them valuable (e.g., as antibacterial and anticancer agents [26–28]). Their main mode of action is their ability to increase the production of ROS in cells; however, this property also makes these particles toxic, by causing gene mutation, apoptosis, and even carcinogenesis [45, 49, 58]. Consequently, there is an urgent need to develop new NPs which retain their required properties without leading to excessive ROS production. Recent studies have reported on novel types of NPs which could remove intracellular ROS. These types fall into two classes: (1) NPs which can scavenge ROS [77] and (2) NPs which are coated with additional materials to decrease their cytotoxicity [87].

Panikkanvalappil and colleagues showed that Pt NPs inhibit the double-strand breakage of DNA by degrading ROS [201]. In another case, Mn₃O₄ NPs modulated cellular redox resulting in the protection of biomacromolecules against oxidative stress [77]. Furthermore, the CeO₂ NP is a novel agent that protects cells and tissues against oxidative damage with its free radical-scavenging capacity [79, 202]. H₂O₂ is the main by-product of NP-cell interactions. H₂O₂ destroys important biomolecules including proteins, lipids, and nucleic acids. However, when cells were treated with specialized MNPs coated with mercapto-proionic acid (MPA-NPs) or aminated silica (SiO₂-MNPs), such damage was not observed [203, 204]. Similarly, GO coated with polyvinylpyrrolidone (PVP) has fewer toxic effects on dendritic cell (DCs), T-lymphocytes, and macrophages than without this coating. PVP-GO has been shown to reduce the apoptosis of T-lymphocytes and even increase the activity of macrophages [205]. Pt-coated AuNRs (PtAuNRs) retain the efficacy of traditional gold nanorods (AuNR) and can trigger cell death of desired cells while scavenging the ROS, thereby protecting healthy, untreated cells from the indirect death induced by ROS production [87].

Conclusions and Outlook

NPs that possess unique physicochemical properties (e.g., ultra-small size, large surface area to mass ratio, and high reactivity) make them highly desirable in different applications. Engineered NPs for commercial purposes have been rapidly increasing. For that reason, the biosafety of NPs has gained more attention in the public. In this review, we summarized the mechanisms and responsible for ROS formation by NPs at the cellular level as well as recent advances of ROS-related NP toxicity in the biomedical field and highlighted the emerging field of cell-friendly NPs. The generation of ROS induced by NPs associated with their size, morphology, surface area, and component. In addition, ROS has bio-multifunctional in cell biology and biomedicine as well as the key mediator of cellular signaling, including cell apoptosis, viability, and differentiation.

However, to improve the biosafety of NPs and accelerate their use in the biomedical field, some bottlenecks need to be overcome and much work is still required. First, it is expected that high-throughput methods (HTMs) are designed to efficiently detect the biotoxicity of NPs in vitro and in vivo. HTMs could save time and resources, combine multiple parameters on a single system, and minimize methodological or systematic errors. It also would offer a deep understanding of the relationship between NP properties and cell responses, which could help us identify the optimal condition.

Second, the molecular and cellular mechanisms related to the biotoxicity of NP-induced ROS are still unclear. There is a demand to further explore the mechanisms associated with the formation of ROS by NPs, which would provide more information to modify the chemico-physico features of NPs to control the ROS generation. This could help researchers develop novel strategies to reduce the hazards of engineered NPs for accelerating
their clinical and commercial translation in the biomedically filed.

Finally, due to their structural characteristics, NPs may enter the body freely via multiple routes, and the accumulation of NPs in the body can induce inflammation and immune responses, which result in cell injury or death, organ dysfunction, and ultimately stimulate the occurrence of numerous diseases, such as Alzheimer’s, Parkinson’s, liver inflammation, and dysembryoplasia. These issues have become more pressing with the widespread use of NPs.

Abbreviations

- OH: Hydroxyl radical
- 2-oxoA: 1,2-Dihydro-2-oxoadenine
- 8-oxoG: 8-oxo-7,8 dihydroguanine
- NADP+/NADPH: Nicotinamide adenine dinucleotide phosphate oxidized/reduced
- Fe3O4-PEG-GS-MIP2@C6s: Fe3O4-polyethylene glycol-polyamide-amine-matrix metalloproteinase@ chlorin e6
- H2O2: Hydrogen peroxide
- HS-MPP: Metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-molecular diagnostics

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 31900957, 31671447, 31400041, 91849209), Shandong Provincial Natural Science Foundation (Grant No. ZR2019Q007), China Postdoctoral Science Foundation (Grant No. 2019M652326), Innovation and Technology Program for the Excellent Youth Scholars of Higher Education of Shandong Province (Grant No. 2019KED15), and the Scientific Research Foundation of Qingdao University (Grant No. DC1900009689).

Authors’ Contributions

Project administration, Zhongjie Yu and Peifeng Li; writing—original draft preparation, Zhongjie Yu, Qi Li, Jing Wang, and Yin Wang; writing—review and editing, Zhongjie Yu and Qihui Zhou; funding acquisition, Qihui Zhou, Yin Wang, and Peifeng Li. The authors have read and agreed to the published final version of the manuscript.

Funding

This review was supported by Prof. Yin Wang, Qihui Zhou, and Peifeng Li.

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Competing Interests

The authors declare that they have no competing interests.

Author details

1Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao City, Qingdao, China. 2Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao City, Qingdao, China. 3School of Basic Medicine, Qingdao University, Qingdao, China. 4School of Basic Medicine, Qingdao University, Qingdao, China. 5School of Basic Medicine, Qingdao University, Qingdao, China. 6School of Basic Medicine, Qingdao University, Qingdao, China. 7School of Basic Medicine, Qingdao University, Qingdao, China. 8School of Basic Medicine, Qingdao University, Qingdao, China. 9School of Basic Medicine, Qingdao University, Qingdao, China.

References

1. Tang B, Wang J, Xu S, Afin T, Xu W, Sun L, Xungai W (2011) Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci 356:513–518
2. Chaloupka K, Malam Y (2010) AM. S. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588
3. Haiping T, Zhizhen Y, Zhu L, He H, Bingliu Z, Yang Z, Mingli Z, Zhixiang Y (2008) Synthesis of radial ZnO nanostructures by a simple thermal evaporation method. Phys E 40:507–511
4. Ghansari MS, Vafae M (2008) Sol–gel derived zinc oxide buffer layer for use in random laser media. Mater Lett 62:1754–1756
5. Lee S-H, Deshpane R, Benhammou D, Parilla PA, Mahan AH, Dillon AC (2009) Metal oxide nanoparticles for advanced energy applications. Thin Solid Films 517:3591–3595
6. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458
7. Luo X, Morin A, Killard A, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 18:319–326
8. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291
9. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2194–205
10. PelgriFF, RI, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815
11. Mirkin CA, Thaxton CS, Rosi NL (2004) Nanostructures in biodefense and molecular diagnostics. Expert Rev Mol Diagn 4:749–751
12. Duan M, Xia F, Li T, Shapter JG, Yang S, Li Y, Gao G, Cui D (2019) Matrix metallopeptinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MNP2@C6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale. 11:18426–18435
13. Hasanazladel D, Daroudi M, Ramezanian N, Zamani P, Aghaee-Bakhhtiari SH, Noumohammadi E, Kazemi CR (2019) Polyethyleneimine-associated cerium oxide nanoparticles: a novel promising gene delivery vector. Life Sci 232:116661
14. Li X, Xia S, Zhou W, Ji R, Zhan W (2019) Targeted Fe-doped silica nanoparticles as a novel ultrasound-magnetic resonance dual-mode imaging contrast agent for HER2-positive breast cancer. Int J Nanomedicine 14:2397–2413
15. Siemer S, Wetmiller D, Barz M, Eckrich J, Wunsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C, Docter D, Knauer SK, Stauber RH, Stieth S (2019) Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: implications for the design of improved nanoantibiotics. Biomaterials. 192:551–559
16. Song MF, Li YS, Kasai H, Kawai K, 2019. Metal nanoparticles-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 395:257–268
17. Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Metal nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 395:257–268
18. Ghansari MS, Vafae M (2008) Sol–gel derived zinc oxide buffer layer for use in random laser media. Mater Lett 62:1754–1756
19. Lee S-H, Deshpane R, Benhammou D, Parilla PA, Mahan AH, Dillon AC (2009) Metal oxide nanoparticles for advanced energy applications. Thin Solid Films 517:3591–3595
20. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458
21. Luo X, Morin A, Killard A, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 18:319–326
22. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291

Received:

18 March 2020 Accepted: 10 May 2020 Published online: 20 May 2020
repair and inflammation following exposure to silver nanoparticles in human cells. Genome integrity 3:2
23. Niel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science. 311:622–627
24. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Al (2007) B. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409
25. Sayes CM, Gobin AM, Amsun KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials. 26: 7587–7595
26. Zhang Q, Yang W, Man N, Zheng F, Shen Y, Sun K, Li Y, Long-Ping W (2009) Autophagy-mediated chemosensitization in cancer cells by fullerenene C60 nanocrystal. Autophagy 5:1107–1117
27. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerenne derivatives: an attractive tool for biological applications. Eur J Med Chem 38:919–923
28. Isakovcic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dricmanic M, Harhaij L, Racicovic N, Nikolic Z, Trajkovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerenes. Toxicological sciences: an official journal of the Society of Toxicology 91: 173–183
29. Park SY, Lee CY, An HR, Kim H, Lee YC, Park EC, Chun HS, Yang HY, Choi SH, Kim HS, Kang KS, Park HG, Kim JP, Choi Y, Lee JH (2017) Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale. 99210–9217
30. Lee AR, Lee SJ, Lee M, Nam M, Lee S, Choi S, Choi J, Lee HJ, Kim DU, Hoe KI (2018) Editor’s highlight: genome-wide screening of target genes against silver nanoparticles in fission yeast. Toxicological sciences: an official journal of the Society of Toxicology. 161:171–185
31. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KLJR, JJ. (2008) Induction and toxicity mechanism. Nano Lett 7:219–223
32. Wang G, Jin W, Qasim AM, Gao A, Peng X, Li W, Feng H, Chu PK (2009) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials. 26:7587–7595
33. Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S, Tomankova K, Horakova J, Hananova M, Malina L, Soukupova J, Hradilova S
34. Li T, Li F, Xiang W, Yi Y, Chen Y, Cheng L, Liu Z, Xu H (2016) Selenium-containing amphilbes reduced and stabilized gold nanoparticles: kill cancer cells via reactive oxygen species. ACS Appl Mater Interfaces 8: 22106–22112
35. Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X (2012) The molecular mechanism of action of bacteraicidal gold nanoparticles on Escherichia coli. Biomaterials. 33:2327–2333
36. Dixaj SM, Lotfipour F, Barzaghar-Jalali M, Zarrintan MH, Adibkhia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284
37. Krishnamoorthy K, Moon JY, Hyn HB, Cho SK, Kim SJ (2012) Mechanist investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22:4616–4620
38. Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Khan MS, Ansari FA, Alam MZ, Ahmed MA, Khan MS, Baig MH, Khan JMI, Shahzad SA, Arshad M, Al-Alyousef A, Ahmad I (2018) Low temperature synthesis of superparamagnetic iron oxides (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Front Microbiol 9:2567
39. Kauffer FA, Merlin C, Balan L, Schneider R (2014) Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots. J Hazard Mater 268:246–255
40. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfram EJ, WA. (1999) Bacterial activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65: 4094–4098
41. Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virology. 23:295–301
42. Skocaj M, Filipic M, Perkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–247
43. Botelho MC, Costa C, Silva S, Costa S, Dhawan A, Oliveira PA, Teixeira JP (2014) Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 68:59–64
44. Huang S, Chueh PJ, Lin YY, Shih TS, Chuang SM (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2, long-term exposure. Toxicol App Pharmacol 241: 182–194
45. Freyre-Fonseca V, Delgado-Buenrostro NL, Gutierrez-Cirlos EB, Calderon-Torres CM, Cabellero-Avelar T, Sanchez-Perez Y, Pinzon E, Torres I, Molina-Lijon E, Zautera C, Pedraza-Chaverri J, Garcia-Cuellar CM, Chirino YI (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett 202:111–119
46. Zhang Y, Gu AZ, Xie S, Li X, Cot T, Li D, Chen J (2018) Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis. Environ Int 121:1162–1171
47. Xu B, Liu Y, Yuan J, Wang P, Wang Q (2018) Synthesis, characterization, and antifogging application of polymer/Al2O3 nanocomposite hydrogels with high strength and self-healing capacity. Polymers. 10
48. Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X (2016) Oxidative stress-mediated selective antimicrobial ability of nano-V02 against Gram-positive bacteria for environmental and biomedical applications. Nanoscale. 8:11907–11923
49. WS XI, H Tang, YY Liu, CY Liu, YF Gao, A Cao, YF Liu, Z Chen, HF Wang. Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. Journal of applied toxicology. JAT. 19:7
50. Raj S, Kumar S, Chatterjee K (2016) Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity. Mater Sci Eng C. 62:567–573
51. Wang D, Zhao L, Ma H, Zhang H, Guo L-H (2017) Quantitative analysis of reactive oxygen species generated on metal oxide nanoparticles and
their bacteria toxicity: the role of superoxide radicals. Environ Sci Technol 51:10137–10145
64. Park SC, Kim NH, Yang W, Nah JW, Jang MK, Lee D (2016) Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents. Journal of controlled release: official Journal of the Controlled Release Society 221:37–47
65. Igbal G, Faisal S, Khan S, Shams DF, Nadhrman A (2019) Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles. J Photochem Photobiol B 192:141–146
66. Wang C, Cui Q, Wang X, Li L (2016) Preparation of hybrid gold/polymer nanocomposites and their application in a controlled antibacterial assay. ACS Appl Mater Interfaces 8:29101–29109
67. Yazdanbakhsh AR, Rafiee M, Daraei H, Amoozegar MA (2019) Responses of flocculated activated sludge to bimetallic Ag-Fe nanoparticles toxicity: performance, activity enzymatic, and bacterial community shift. J Hazard Mater 366:114–123
68. Davaeifar S, Modarresi MH, Mohammad M, Hashemini E, Shafei M, Maleki H, Vali H, Zahirii HS, Noghahi KA (2019) Synthesizing, caracterizing, and toxicity evaluating of phycocyanin-ZnO nanorod composites: a back to nature approaches. Colloids Surf B: Biointerfaces 175:221–230
69. Jiang J, Zhang C, Zeng GW, Gong JL, Chang YN, Song B, Deng CH, Liu HY (2016) The disinfection performance and mechanisms of Aglyozyme nanoparticles supported with montmorillonite clay. J Hazard Mater 317:416–429
70. Hu SH, Lin YF, Huang S, Lern KW, Nguyen DH, Lee DS (2013) Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. Nanotechnology, 24:475102
71. Hossain ST, Mukherjee SK (2013) Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and Hela cells. J Hazard Mater 260: 1073–1082
72. Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha AS, Tino A, Rogach AL, Tortiglione C (2012) Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biocatalysis. 33:1991–2000
73. Moussa H, Merlin C, Dezanet C, Balan L, Medjahi G, Ben-Attia M, Schneider R (2016) Trace amounts of Cu(2)(+) ions influence ROS production and cytotoxicity of ZnO quantum dots. J Hazard Mater 304:352–362
74. Gallo A, Manfria L, Boni R, Rotini A, Migliore L, Tosti E (2018) Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through revealing the route of induced oxidative stress. Environ Int 118:325–333
75. Buffet PE, Richard M, Caups F, Vergnoux A, Perrein-Ettajani H, Luna-Acosta Thomas-Guyon H, Reip P, Dybowska A, Berhanu D, Valsami-Jones E, Gallo A, Manfria L, Boni R, Rotini A, Migliore L, Tosti E (2018) Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through revealing the route of induced oxidative stress. Environ Int 118:325–333
76. Appelrot G, Leliouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. 8:3326
77. Singh N, Savanur MA, Srivastava S, DSiv, Pavgimovs D, Nakamoto A, Aoka F, Amiard JC, Amiard-Triquet C, Guibolliol M, Risso-De Faverey C, Thomas-Guyon H, Reip P, Dybowska A, Berhanu D, Valsami-Jones E, Mouneyrac C (2013) A mesocosm study of fate and effects of CuO nanoparticles against Escherichia coli and Hela cells. J Hazard Mater 260: 1073–1082
78. Karlsson HL, Cronholm P, Gustafsson J, Lennart M (2008) Copper oxide nanoparticles: highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732
79. Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticles affect genome stability in Allium cepa (L.) Plant physiology and biochemistry. PRR 121:206–215
80. Angel Ezhilarasi A, Judith Vijaya J, Kaviyarasu K, John Kennedy L, Ramalingam R, Al-Lohedan HA (2018) Green synthesis of NIO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B 180:359–50
81. Aioub M, Parikanavarapalli SR, El-Sayed MA (2017) Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmic photothermal therapy. ACS Nano 11:579–586
82. Kadiyala NK, Mandal BK, Ranjan S, Dargupta N (2018) Bioinspired gold nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B 180:359–50
83. Wang D, Zhu L, Chen JF, Dai L (2015) Can graphene quantum dots cause DNA damage in cells? Nanoscale. 7:9894–9901
84. Karlsson HL, Cronholm P, Gustafsson J, Lennart M (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732
85. Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticles affect genome stability in Allium cepa (L.) Plant physiology and biochemistry. PRR 121:206–215
86. Angel Ezhilarasi A, Judith Vijaya J, Kaviyarasu K, John Kennedy L, Ramalingam R, Al-Lohedan HA (2018) Green synthesis of NIO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B 180:359–50
131. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Amici A, Levine RL, Tsai L, Stadtman ER (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem 264:3431–3446
132. Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2019) Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials (Basel) 9:1089
133. Calderon-Garciduenas L, Reynoso-Robles R, Gonzalez-Maciel A (2019) Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson’s diseases. Environ Res 176:108574
134. Inlay JA, S. (1988) DNA damage and oxygen radical toxicity. Science. 240: 1302–1309
135. Maki HSM (1992) MuT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 355:273–275
136. Demples B, Harrison L (1994) Repair of oxidative damage to DNA:enzymology and biology. Annu Rev Biochem 63:915–948
137. Belfland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by mutagen. Mutat Res 531:37–80
138. Neely WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19:491–505
139. Nunoshita T, Obata F, Boss AC, Okawa S, Mori T, Kawanishi S, Yamamoto K (1999) Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J Biol Chem 274: 34832–34837
140. Compossoor A, Saha K, Ghoth PS, Macarthy DJ, Miranda OR, Zhu ZL, Arcaro KB, Rotello VM (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small. 6: 2246–2249
141. Proquin H, Rodriguez-Ibarra C, Moonen C, Urrutia Ortega IM, Briedé JJ, de Kok TM, van Loveren H, Chirio Y (2018) Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis. 33:267–268
142. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49:399–405
143. Kawanishi S, Hiraku Y, Murata M, Shingi O (2002) The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32:822–832
144. Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gliolland D, Valsamis Jones E, Migliore L (2014) Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine 9:2191–2204
145. Levine AS, Sun L, Tan R, Gao Y, Yang L, Chen H, Teng Y, Lan L (2017) The oxidative DNA damage response: a review of research undertaken with T细表形与 masking students at the University of Pittsburgh. Sci China Life Sci 60:1077–1080
146. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517
147. Kirsch-Volders M, van Haanhout A, De Boeck M, Ite D (2002) Importance of detecting numerical versus structural chromosome aberrations. Mutat Res 504:137–148
148. Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 88:1515–1531
149. Belyenke P, Ye JD, Porter CB, Cohen NR, Loubitz MA, Ferrante T, Jain S, Korny BJ, Schwarz EG, Walker GC, Collins JJ (2015) Bacterial antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep 13:968–980
150. Bridge G, Rashid S, Martin SA (2014) DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment. Cancers. 6: 1597–1614
151. Aivin S, Zvi L (2002) Efficiency, specificity and DNA polymerase-dependence of translation replication across the oxidative DNA lesion 8-oxoguanine in human cells. Mutat Res 510:81–90
152. Fott JJ, Devadoss BS, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bacterial antibiotics. Science. 336:315–319
153. Wang ZY, Xiong M, Fu LY, Zhang HY (2013) Oxidative DNA damage is important to the evolution of antibiotic resistance: evidence of mutation bias and its medicinal implications. J Biomol Struct Dyn 31:729–741
154. Dufour EK, Kumaravel T, Nohyne GJ, Kirkland D, Toutain H (2006) Clastogenesis, photo-clastogenesis or pseudo-photo-clastogenesis: genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res 607: 215–224
155. Rusyn I, Asakura S, Pachkowskii B, Bradford BU, Denisienko MF, Peters JM, Holland SM, Reddy JR, Cunningham ML, Swenberg JA (2004) Expression of...
base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxysome proliferators. Cancer Res 64:1050–1057

156. Koptjeva M, Falinski R, Nowicki MO, Stoklosa T, Majterek T, Niedorowska-Skorza M, Blasik J, Skorski T (2006) BCRA1/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 108:319–327

157. Pelciano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy. 7:97–110

158. Smith KC (1992) Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res 277:139–162

159. Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J (2018) Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int 120:421–430

160. Giannoni E, Fiaschi T, Ramponi G, Chiarugi P (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene. 28:2074–2086

161. Martin LJ (2008) DNA damage and repair: relevance to mechanisms of human disease. Adv Drug Deliv Rev 60:2148–2167

162. Huh AJ, Kwon YJ (2011) ‘Nanotoxicities’: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release: official journal of the Controlled Release Society 156:128–149

163. Setyawati MI, Yuan X, Xie J, Leong DT (2014) The influence of lysosomal recognition by nanotube surface chemistry modification partially alleviates genotoxicity. Chem Res Toxicol 25:1512–1521

164. Li JJ, Yung LY, Hartono D, Bay BH, Zou L, Ong CN (2010) Gold nanoparticles and liver cells through food. Sci Total Environ 702:134700

165. Smith KC (1992) Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res 277:139–162

166. Ghosh M, Sinha S, Jothirajamajum M, Jana A, Nag A, Mukherjee A (2016) Cyto-genotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 97:286–296

167. Li J, Song Y, Vogt RD, Liu Y, Luo J, Li T (2019) Bioavailability and cytotoxicity of cerium-(IV), copper-(II), and zinc oxide nanoparticles to human intestinal and liver cells through food. Sci Total Environ 702:134700

168. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 5:2067–2076

169. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

170. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 20:138–142

171. Lam HF, Conner MW, Rosen G, Sridhar V, Sridhar MN, Carney D, Zhang Q, Mu Q, Bai Y, Li L, Zhou H, Butler ER, Powell TB, Snyder SE, Jiang G, Bing Y (2011) Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates Nf-κB activation and reduces its immunotoxicity. ACS Nano 5:4581–4591

172. Lam HF, Chen LC, Ainsworth D, Peoples S, Amrld MO (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:3333–341

173. Conner MW, Flood WH, Rogers AE, Fitzgerald S, Amrld MO (1985) Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicol Appl Pharmacol 78:29–38

174. Conner MW, Flood WH, Rogers AE, Amrld MO (1988) Lung injury in guinea pigs caused by multiple exposures to ultrafine zinc oxide: changes in pulmonary lavage fluid. J Toxicol Environ Health 25:57–69

175. Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182:1398–1409

176. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynhus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

177. Subayev VI, Pisacan TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

178. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456

179. Bruneau A, Fortier M, Gagne F, Gagnon C, Turcotte P, Tayabali A, Davis TA, Auffret M, Fournier M (2015) In vitro immunotoxicology of quantum dots and comparison with dissolved cadmium and tellurium. Environ Toxicol 30:9–25

180. Treytakova NY, Groehler A, Ji S (2015) DNA-protein cross-links: formation, structural identities, and biological outcomes. Acc Chem Res 48:1631–1644

181. Liu GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

182. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):518–525

183. Perez-Roses R, Risco E, Vila R, Penalver P, Canigueral S (2016) Biological and nonbiological antioxidant activity of some essential oils. J Agric Food Chem 64:4716–4724

184. Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96:161–8

185. Agostinis P, Berg K, Cengel KA, Foster TH, Giotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juuzenene K, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Pelleite J, Wilson BC, Golaf J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

186. Mahalingaiah PK, Singh KP (2014) Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 9:e88731

187. Gill JG, Piskounova E, Morrison SJ (2016) Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol 81:163–175

188. Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk. 1:925–194

189. Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. Journal of applied toxicology : JAT 29:330–337

190. Hong J, Wang L, Zhao X, Yu K, Sheng L, Xu B, Liu D, Zhu Y, Long Y, Hong F (2014) Th2 factors may be involved in TiO(2) NP-induced hepatic inflammation. J Agric Food Chem 62:6871–6878

191. Park MW, Anmenna W, Salvati A, Lesnik A, Elsaesser A, Barnes C, McKerr G, Howard CV, Lynch J, Dawson KA, Piersma AH, de Jong WH (2009) Developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–116

192. Kadar E, Tarann GA, Jha AN, Al-Sibai SN (2011) Stabilization of engineered zero-valent nickel in Na-acrylic copolymer enhances spermicotoxicity. Environ Sci Technol 45:3245–325

193. Mesarić T, Sepić K, Drobnic D, Makovec D, Fajnari M, Morgana S, Falugi C, Gambardella C (2015) Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). Aquat Toxicol 163:158–166

194. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

195. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chromoshere. 81:1253–1262

196. Panikkanvalappil SR, Mahmoud MA, Mackey MA, El-Sayed MA (2013) Surface-enhanced Raman spectroscopy for real-time monitoring of reactive
oxygen species-induced DNA damage and its prevention by platinum nanoparticles. ACS Nano 7:7524–7533

202. Tarnuzzer RW, Colon J, Patil S, Sudipta S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

203. Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueno MC, Perez-de-Luque A, Maycock C, Fevereiro P, Oliva A, Fernandez-Pacheco R, Ibarra MR, de la Fuente JM, Marquina C, Rubiales D, Prats E (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110

204. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

205. Zhi X, Fang H, Bao C, Shen G, Zhang J, Wang K, Guo S, Wan T, Cui D (2013) The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials. 34:5254–5261

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.