Efficiency functionals for the Lévy flight foraging hypothesis

Serena Dipierro1 · Giovanni Giacomin1 · Enrico Valdinoci1

Received: 20 May 2021 / Revised: 20 June 2022 / Accepted: 18 July 2022 /
Published online: 17 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We consider a forager diffusing via a fractional heat equation and we introduce several efficiency functionals whose optimality is discussed in relation to the Lévy exponent of the evolution equation. Several biological scenarios, such as a target close to the forager, a sparse environment, a target located away from the forager and two targets are specifically taken into account. The optimal strategies of each of these configurations are here analyzed explicitly also with the aid of some special functions of classical flavor and the results are confronted with the existing paradigms of the Lévy foraging hypothesis. Interestingly, one discovers bifurcation phenomena in which a sudden switch occurs between an optimal (but somehow unreliable) Lévy foraging pattern of inverse square law type and a less ideal (but somehow more secure) classical Brownian motion strategy. Additionally, optimal foraging strategies can be detected in the vicinity of the Brownian one even in cases in which the Brownian one is pessimizing an efficiency functional.

Keywords Foraging strategies · Lévy flights · Anomalous diffusion · Fractional Laplacian

Mathematics Subject Classification 46N60 · 92B05 · 49J20 · 45K05 · 35B05 · 35K05

Serena Dipierro
serena.dipierro@uwa.edu.au

Giovanni Giacomin
giovanni.giacomin.1@studenti.unipd.it

Enrico Valdinoci
enrico.valdinoci@uwa.edu.au

1 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA6009, Australia
1 Introduction

Foraging theory (see e.g. Stephens and Krebs 1986) is a fascinating, important and cross-disciplinary topic of investigation that gathers together researchers from different areas (such as biologists, ethologists, physicists, statisticians, computer scientists, mathematicians, etc.). It is commonly accepted that the broad variety of environmental and biological situations in nature and the Darwinistic evolution through natural selection have led over time to highly efficient foraging strategies see e.g. Bartumeus et al. (2005) (it is however under an intense debate whether Lévy type patterns in animal searches are an evolutionary stable and well consolidated outcome (Humphries et al. 2012) or they are produced by innate composite correlated random walks (Benhamou 2007; Reynolds 2014); under investigation is also the role of particular distribution of resources for the emergence of foraging patterns, see e.g. Boyer et al. (2006); it is also debatable that natural selection alone can always optimize a specific parameter in complex environments, see e.g. Gray 1987; Pierce and Ollason 1987).

In general, the precise determination of optimal foraging strategies depends in a very complex way on a large number of parameters (such as the density and mobility of the preys and of the searchers and the mutable environmental conditions); furthermore, the collection and analysis of empirical data are typically challenging tasks, also open to controversial interpretations due to the use of different mathematical models or even due to spurious information (see e.g. Edwards et al. 2007).

A rather consolidated attempt to understand and classify different foraging strategies according to the evolution of the distribution of the searchers lies in the so-called Lévy flight foraging hypothesis. Namely, rather than diffusing in analogy to the classical Brownian motion, empirical evidence has often backed the hypothesis that animals move according to a scale-free fractal-like pattern similar to the one produced by long-jump random walks of Lévy type, possibly to avoid being trapped in a search of food confined in a narrow region beyond sensory range and to reduce the chances of intensively revisiting immediate surrounding areas in environments of scarce resources (see e.g. Sims et al. 2008; Humphries et al. 2010, 2012, 2013 for empirical evidence for such biological Lévy flights). Phenomena related to Lévy flights are attracting increasing interest and they seem to possess some kind of universality, occurring also in situations different from animal foraging and including, among the others, human settlements and travels, see Bertrand et al. (2005), Brockmann et al. (2006), Brown et al. (2007), González et al. (2008), Raichlen et al. (2014), Reynolds et al. (2018)) and also Garg and Kello (2021) for related virtual reconstructions. Lévy patterns also emerge in dynamical models as a non-Gaussian transport related to chaos, see e.g. Afanasiev et al. (1991) and Shlesinger et al. (1993).

Several studies have exploited tools from mathematical analysis and statistical mechanics to validate the hypothesis that Lévy flights confer a significant advantage for foragers, see Viswanathan et al. (1999), Bartumeus et al. (2002), Viswanathan et al. (2001) and Raposo et al. (2009). Typically, to confirm the Lévy flights optimality, structural assumptions on the environment, on the searcher and on the target are taken, such as: the foraging should be of non-destructive type (that is, once a target
has been foraged, it has to reappear infinitely fast); after foraging, the seeker starts a new flight “infinitely close” to the previous target; the searcher moves rapidly relative to the target; the target density is low; the forager does not keep memory of previous encounters; the forager has inadequate information on the area to patrol and on the target location, etc. Of course, all these characteristics provide a highly simplified representations of real foragers, yet conceptual simplifications (rather than trivializations) are often very advantageous to advance and consolidate the knowledge on a complex topic. As a matter of fact, due to the difficulty of the analytical setting (and also to mimic situations of biological interest), to develop a mathematical theory of foraging related to the Lévy flight hypothesis it is often necessary to introduce additional parameters (such as a “direct vision distance” of the predator, see page 912 in Viswanathan et al. (1999)) and approximations (see e.g. equations (2) and (5) in Viswanathan et al. (1999)). In general, in spite of several quite strong and convincing attempts to completely deduce the Lévy flight foraging hypothesis from prime principles, several important details have generated debate, see e.g. Palyulin et al. (2014), Levernier et al. (2020), Buldyrev et al. (2021), Levernier et al. (2021) and also James et al. (2011) for a review of several controversial aspects of the Lévy foraging hypothesis.

In this paper, we consider the optimal foraging strategies in several situations of biological interest, such as:

• the case in which a single target is located in the proximity of the forager’s burrow,
• the case in which targets are sparsely distributed,
• the case in which a single target is located far away from the forager’s burrow,
• the case in which there are two targets, one close and one far from the forager’s burrow.

The optimal strategies of each of these configurations will be analyzed in light of new efficiency functionals relying also on methods from mathematical analysis and with the aid of some classical special functions.

A few comments are in order to highlight some of the main structural differences between our approach and the rather abundant existing literature on optimal animal foraging. On the one hand, the models considered here share with the existing literature several common treats, such as the assumption that the forager has no memory about the targets previously hit and that the pray has no awareness of the strategy and the movement of the predator. On the other hand, our models present significant differences with the existing literature for at least the following features:

• the forager does not restart its strategy after hitting each single target (instead, the seeker diffuses according to a Lévy type of diffusive equation, and this feature happens to be consistent with the setting of some of the existing literature, see equation (1) in Palyulin et al. (2014); similar, but different, space-fractional equations in biological environment have also been considered in view of the Caputo derivative, see equation (2.1) in Vallaeyes et al. (2017)),
• no additional parameter related to direct vision is taken into account, no a-priori bound on step lengths is imposed, no truncation of the power law distribution is assumed (with the advantage of not endowing the problem with auxiliary and
sometimes arbitrary parameters; as a counterpart of these technical and conceptual simplifications, the diffusions corresponding to infinite mean displacements are ruled out as infinite overshooting and this feature happens to be consistent with the setting of some of the existing literature, see e.g. the discussion after formula (2) in Palyulin et al. (2014),

- we will take into account time averages of foraging success (though some integrals over time were previously considered, such as in the cumulative probability in equation (6) of Palyulin et al. (2014), we will specialize our analysis in detecting different optimal strategies according to the different time scales involved in the seeking process, rather than simply considering the foraging outcome at a given time),
- we will analyze in detail the role played by possibly different normalizing constants appearing when linking probabilistic models to analytical ones (typically, these constants depend\(^1\) on the fractional exponent \(s\), hence they may play a significant role when the objective is to optimize in \(s\) and, in general, they cannot be light-heartedly disregarded),
- we will find solutions in closed form, relying only on elementary special functions (and, since these functions, such as the Euler Gamma Function and the Riemann Zeta Function, are widely studied and already carefully implemented in all mathematical softwares, in our approach no expensive or advanced numerical simulations are needed),
- we introduce a number of new efficiency functionals whose optimization can be explicitly discussed (these functionals are inspired by, but somewhat different from, the mean first passage time adopted in Viswanathan et al. (1999)—in this way, we also avoid any overlap with some controversial details in the contemporary literature such as in Levernier et al. (2020, 2021), Buldyrev et al. (2021)).

Though the arguments developed here essentially carry over to the multi-dimensional case, for the sake of simplicity (and following a consolidated tradition in mathematical biology, see e.g. Buldyrev et al. 2001; Palyulin et al. 2014), we stick here to dimension 1. The multi-dimensional case will be treated separately in a subsequent work, also taking into account new sets of structural parameters according to the geometry of the space and of the diffusive process.

Also, we focus here on the case of stationary targets (the case of mobile preys possibly with different velocities will be accounted for in a forthcoming work).

\(^1\) In terms of optimization strategies, we think it would have been beneficial, for instance, to discuss more extensively the possible dependences on \(\mu\) (corresponding to \(1 + 2s\) here) in the right hand sides of equation (5) in Viswanathan et al. (1999) and equation (11) in Raposo et al. (2009), as well as the constant \(C\) in equation (4) of Viswanathan et al. (2000). The explanation for the pseudo mean squared displacements in the right hand side of equation (10) of Raposo et al. (2009) could have also benefitted from further details on the possible dependence of \(\delta\) and \(\alpha\) (the latter corresponding to \(2s\) here).
The results obtained will detect the optimal exponent \(s \) corresponding to the most efficient foraging strategy (according to the different possible efficiency functionals). Several interesting patterns will arise. Quite often, optimal strategies are obtained in nature either by Lévy flights modeled on the inverse square law, or by the classical Brownian motion, or by some intermediate fractional values. In our discussion, all these three patterns will clearly arise and suitable bifurcation of optimal strategies will occur in dependence of the environmental parameters.

For instance, varying the time in which the search occurs or the sparseness of the targets, the optimality of the inverse square law may be lost in favor of a classical Gaussian strategy (or viceversa), and in some cases optimal values are found arbitrarily close to pessimal ones (and, conversely, pessimal values arbitrarily close to optimal ones). We think that this is a very interesting phenomenon, underlying the fact that the theoretical optimality of the strategy by itself might be not the main information to take into account for efficient search algorithms, since less ideal strategies might produce more consistent results and prove themselves to be more reliable and viable in concrete situations.

In some circumstances, we will also detect optimal fractional values of intermediate type between the inverse square law and the Gaussian. In all cases, we will develop explicit (and somewhat “elegant”) representations of the efficiency functional that we introduce, thus allowing simple and effective analytic manipulations. As a byproduct, many of the environmental bifurcation parameters will be computed exactly.

The rest of the paper is organized as follows. In the forthcoming Sect. 2, we introduce our mathematical setting adopted in this paper, modeled on a forager randomly...
diffusing through a nonlocal heat equation and immobile targets with different types of distributions (see also the Notation Table for the list of the main mathematical objects and notations utilized in this paper). The different biological scenarios corresponding to these distributions of resources will be discussed in Sect. 3, where several efficient functionals will be optimized with respect to the diffusion exponent. The results obtained will be also compared with the existing literature related to the Lévy foraging hypothesis.

2 Mathematical setting

We introduce now the formal mathematical setting we work with. The setting is modeled on the fractional heat equation and goes as follows.

Let $\kappa > 0$, $s \in (0, 1)$ and $u(x, t)$ be the solution of

$$
\begin{cases}
\partial_t u = -\kappa^{2s} (-\Delta)^s u & \text{in } \mathbb{R} \times (0, +\infty), \\
u(x, 0) = \delta_0(x).
\end{cases}
$$

(1)

By taking the Fourier Transform of this relation,

$$
\begin{cases}
\partial_t \widehat{u} = -|2\pi \kappa \xi|^{2s} \widehat{u} & \text{in } \mathbb{R} \times (0, +\infty), \\
\widehat{u}(x, 0) = 1.
\end{cases}
$$

Therefore

$$\widehat{u}(\xi, t) = \exp \left(-|2\pi \kappa \xi|^{2s} t\right), \quad \text{and} \quad u(x, t) = \mathcal{F}^{-1} \left(\exp \left(-|2\pi \kappa \xi|^{2s} t\right) \right).$$

(2)

It is possible that the similarity (and the difference) between the expression for \widehat{u} in (2) and the standard Gaussian (corresponding to $s = 1$) were one of the inspiring motivations for Lévy’s approach to the Central Limit Theorem in presence of infinite moments, see equation (7) in Shlesinger et al. (1993).

We observe that, by scaling,

$$u(x, t) = \int_{\mathbb{R}} \exp \left(-|2\pi \kappa \xi|^{2s} t + 2\pi i x \xi\right) d\xi$$

$$= \frac{1}{t^{\frac{1}{2s}}} \int_{\mathbb{R}} \exp \left(-|2\pi \kappa \eta|^{2s} + 2\pi it^{-\frac{1}{2s}} x \eta\right) d\eta$$

$$= \frac{1}{t^{\frac{1}{2s}}} \mathcal{F}^{-1} \left(\exp \left(-|2\pi \kappa \xi|^{2s}\right) \right) \left(\frac{x}{t^{\frac{1}{2s}}} \right)$$

$$= \frac{1}{t^{\frac{1}{2s}}} u \left(\frac{x}{t^{\frac{1}{2s}}}, 1 \right).$$

(3)

2 In several occurrences in the existing literature, the Lévy exponent in biological contexts is denoted by μ. With respect to our notation, it holds that $\mu = 1 + 2s$.
In addition (see e.g. formula (2.30) in Abatangelo and Valdinoci (2019)),

$$0 \leq u(x, t) \leq \frac{C_{s, \kappa}}{1 + |x|^{1 + 2s}},$$

(4)

for some $C_{s, \kappa} > 0$ depending only on s and κ.

It is also useful to recall that, according to formula (6) of Pólya (1923),

$$\lim_{x \to \pm \infty} |x|^{1 + 2s} u(x, t) = 2 \lim_{x \to \pm \infty} |x|^{1 + 2s} \int_0^\infty e^{-(2\pi \kappa \xi)^2 s t} \cos(2\pi x \xi) d\xi = \frac{1}{\pi \kappa t} \lim_{x \to \pm \infty} |x|^{1 + 2s} \int_0^\infty e^{-x^2 s} \cos \left(\frac{x \vartheta}{\kappa t} \right) d\vartheta$$

$$= \frac{\kappa^{2s}}{\pi} \Gamma(1 + 2s) \sin(\pi s),$$

(5)

where the substitutions $\vartheta := 2\pi \kappa \xi t^{1/2s}$ and $y := \frac{x}{\kappa t^{1/2}}$ have been used.

3 Description of the optimal strategies in different frameworks

We introduce here the notion of value functional related to the foraging success that we aim at optimizing with respect to the parameter s.

Given a distribution of targets $p(x, t)$, the foraging success functional will be taken as proportional to the encounters between seekers and preys over time and therefore, given $T > 0$, it takes the form

$$\int\int_{\mathbb{R} \times (0, T)} p(x, t) u(x, t) \, dx \, dt.$$

(6)

We will compare this quantity, which is advantageous for the forager, with several quantities of interest which instead provide a penalization for the seeker’s strategy. These terms will be time (thus, we will consider the amount of targets met over the time span T), a renormalization of time that takes into account, in some sense, the trajectory performed at a discrete level by a corresponding Lévy walker (as presented in (7) below), and the average distance from the origin (that is the distance of the forager “from home”, as discussed in (8) below).

To present the renormalization of time, we let $s \in \left(\frac{1}{2}, 1 \right)$ and we recall (see e.g. formula (4.6) in Abatangelo and Valdinoci (2019)) that the mean excursion for each time step of a discrete Lévy walker is proportional to the spacial step by a factor of the form...
\[\sum_{j=1}^{+\infty} \frac{1}{j^{2s}} = \frac{\zeta(2s)}{\zeta(1 + 2s)}. \]

Though one cannot really consider this as the distance traveled by the Lévy walker in the unit of time (due to the nonlinear dependence between space and time variables in long-jump random processes), it is suggestive to consider a possible renormalization of time of the form

\[\bar{\ell}(s, T) := \frac{T \zeta(2s)}{\zeta(1 + 2s)}. \] (7)

As for the distance between the forager and its burrow (located at the origin), we consider the average displacement for \(s \in \left(\frac{1}{2}, 1\right) \) given by

\[\ell(s, T) := \iint_{\mathbb{R} \times (0, T)} |x| u(x, t) \, dx \, dt. \] (8)

We observe that this is a natural quantity to take into consideration as a penalization for long excursions to account for the forager’s need to return to home. Related (but different) displacement functions were taken into account in equation (1) of Garg and Kello (2021). A variant of this approach (that will be accounted for in a forthcoming work) consists in considering pseudo mean displacements as in equation (10) of Raposo et al. (2009), possibly also including different normalization constants.

We also recall that the quantity in (8) can be computed by using the Fourier Transform for generalized functions (see Section 3.3 in Chapter II of Gel’fand and Shilov (1964) for the main results on this topic and Section 3.9 in Chapter I of Gel’fand and Shilov (1964) for the setting of the notation related to generalized functions). Indeed, from\(^3\) equation (2) on page 194 of Gel’fand and Shilov (1964) we know that

\[\mathcal{F}(|x|) = -\frac{1}{2\pi^2 |\xi|^2} \]

and therefore, by Plancherel Theorem, (2) and the substitution \(y := (2\pi \kappa \xi)^{2s} t \),

\[\iint_{\mathbb{R} \times (0, T)} |x| u(x, t) \, dx \, dt = \iint_{\mathbb{R} \times (0, T)} |x| (u(x, t) - \delta_0(x)) \, dx \, dt \]
\[= -\frac{1}{2\pi^2} \iint_{\mathbb{R} \times (0, T)} \hat{u}(\xi, t) - 1 |\xi|^2 d\xi \, dt \]

\(^3\) We stress that the notation of Gel’fand and Shilov (1964) for the Fourier Transform chooses a different normalization than the one here, by defining

\[\mathcal{F} f(\xi) := \int_{\mathbb{R}} f(x)e^{ix\xi} \, dx = \mathcal{F} f \left(\frac{-\xi}{2\pi} \right), \]

see formula (1) on page 153 in Gel’fand and Shilov (1964).
\[
\ell(s, T) = -\frac{2\kappa}{\pi} \frac{T^{\frac{1+2s}{2}}}{(1+2s)} \int_0^\infty \frac{(e^{-y} - 1)y^{-\frac{1}{2s}} - 1}{dy} dy.
\]

In this way we obtain that
\[
\ell(s, T) = -\frac{2\kappa}{\pi} \frac{T^{\frac{1+2s}{2}}}{(1+2s)} \int_0^\infty \frac{(e^{-y} - 1)y^{-\frac{1}{2s}} - 1}{dy} dy.
\]

One of the main goals of this paper is to consider, as efficiency functional for the forager, the ratio between (6) and either the time \(T\), or the quantity in (7), or that in (8). We stress that while \(T\) is obviously well defined\(^4\) for all \(s \in (0, 1)\), the quantities in (7) and (8) are finite only when \(s \in (\frac{1}{2}, 1)\) (formally, they can be defined to be equal to +∞ when \(s \in (0, \frac{1}{2})\)). The reduction of the analysis of foraging strategies in the range \(s \in (\frac{1}{2}, 1)\) has been also performed elsewhere in the literature, see e.g. the discussion after formula (2) in Palyulin et al. (2014) or formula (35) in Afanasiev et al. (1991) (it is however interesting to pursue also different approaches to incorporate conveniently modified situations in which the average jump distance is infinite, but possibly incorporating waiting times between subsequent jumps, see e.g. Montroll and Weiss (1965); Shlesinger et al. (1982, 1987) and pages 34–35 in Shlesinger et al. (1993)).

We will also distinguish two cases of interest according to the diffusion coefficient \(\kappa\) in (1). Namely, we will consider the standard case in which \(\kappa = 1\) (this is a classical normalization choice, see e.g. formula (1) in Palyulin et al. (2014)), as well as the case in which \(\kappa\) depends on \(s\) via the relation
\[
\kappa = \left(-\frac{\cos(\pi s)\Gamma(-2s)}{\zeta(1+2s)} \right)^{\frac{1}{2s}} := \kappa_s.
\]
This form of the diffusion coefficient is the one emerging in the formal passage to the continuous limit of a random Lévy walker in the discrete lattice $h\mathbb{Z}$ for time steps $\tau = h^{2s}$, since, in this setting,

\[
\frac{u(x, t + \tau) - u(x, t)}{\tau} = \left(\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{|k|^{1+2s}} \right)^{-1} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{u(x + hk, t) - u(x, t)}{h^{2s}|k|^{1+2s}}
\]

\[
= \left(2 \sum_{k=1}^{+\infty} \frac{1}{k^{1+2s}} \right)^{-1} \sum_{k=1}^{+\infty} \frac{u(x + hk, t) + u(x - hk, t) - 2u(x, t)}{h^{2s}k^{1+2s}}
\]

\[
\approx \frac{1}{2\zeta(1 + 2s)} \int_{0}^{+\infty} \frac{u(x + y, t) + u(x - y, t) - 2u(x, t)}{y^{1+2s}} \, dy,
\]

where we have approximated a Riemann sum with the corresponding integral. Thus setting $v_{y,t}(x) := u(x + y, t)$, and noticing that

\[
\hat{v}_{y,t}(\xi) = \int_{\mathbb{R}} u(x + y, t)e^{-2\pi i y \xi} \, dx = e^{2\pi i y \xi} \int_{\mathbb{R}} u(z, t)e^{-2\pi i z \xi} \, dz = e^{2\pi i y \xi} \hat{u}(\xi, t),
\]

we see that, in the formal limit,

\[
\partial_t u(x, t) = \frac{1}{2\zeta(1 + 2s)} \mathcal{F}^{-1} \left(\int_{0}^{+\infty} \frac{e^{2\pi i y \xi} + e^{-2\pi i y \xi} - 2}{y^{1+2s}} \, dy \, \hat{u}(\xi, t) \right)
\]

\[
= -\frac{1}{\zeta(1 + 2s)} \mathcal{F}^{-1} \left(\int_{0}^{+\infty} \frac{1 - \cos(2\pi y \xi)}{y^{1+2s}} \, dy \, \hat{u}(\xi, t) \right)
\]

\[
= -\frac{(2\pi)^{2s}}{\zeta(1 + 2s)} \int_{0}^{+\infty} \frac{1 - \cos z}{z^{1+2s}} \, dz \, \mathcal{F}^{-1} \left(|\xi|^{2s} \hat{u}(\xi, t) \right)
\]

\[
= \frac{\cos(\pi s)\Gamma(-2s)}{\zeta(1 + 2s)} \mathcal{F}^{-1} \left(|2\pi \xi|^{2s} \hat{u}(\xi, t) \right)
\]

\[
= \frac{\cos(\pi s)\Gamma(-2s)}{\zeta(1 + 2s)} (-\Delta)^s u(x, t)
\]

see e.g. the appendix in Coclite et al. (2022)[15] for the computation of the latter constant (which is negative), and this justifies (10).

Moreover, using the functional equation (40.5) in Rademacher (1973) (and, as customary, adopting the notation that extends the Riemann Zeta Function by analytic continuation), we can simplify the expression for κ_s in (10) and get

\[
\kappa_s = \frac{1}{2\pi} \left(-\frac{1}{2\zeta(-2s)} \right)^{\frac{1}{2}}.
\]
3.1 Single prey at the origin

We now consider the case of a single target located at the origin. In this case, the distribution of prey can be written as

\[p_0(x) = \delta_0(x). \]

We observe that, by (2),

\[
\int_{\mathbb{R}} p_0(x) u(x, t) \, dx = u(0, t) = \mathcal{F}^{-1}(\hat{u}(. , t))(0, t) = \int_{\mathbb{R}} \exp\left(-|2\pi \kappa \xi|^2 s t \right) d\xi
\]

\[= 2 \int_0^{+\infty} \exp\left(- (2\pi \kappa \xi)^{2s} t \right) d\xi. \tag{12} \]

Also, making use of the change of variable \(\vartheta := (2\pi \kappa \xi)^{2s} t \), we see that

\[
2 \int_0^{+\infty} \exp\left(- (2\pi \kappa \xi)^{2s} t \right) d\xi = \frac{1}{2\pi \kappa s t^{\frac{1}{2s}}} \int_0^{+\infty} \vartheta^{-\frac{1}{2s}} e^{-\vartheta} d\vartheta
\]

\[= \frac{1}{2\pi \kappa s t^{\frac{1}{2s}}} \Gamma\left(\frac{1}{2s}\right). \tag{13} \]

Thus, in the notation of (6), using (12) and (13), the foraging success functional for a single target located at the origin takes the form, for \(s \in \left(\frac{1}{2}, 1\right) \),

\[
\Phi_0(s; \kappa, T) := \int_{\mathbb{R} \times (0, T)} p_0(x) u(x, t) \, dx \, dt = \int_0^T \frac{1}{2\pi \kappa s t^{\frac{1}{2s}}} \Gamma\left(\frac{1}{2s}\right) \, dt
\]

\[= \frac{T^{\frac{2s-1}{2s}}}{\pi \kappa (2s - 1)} \Gamma\left(\frac{1}{2s}\right), \tag{14} \]

and takes value equal to \(+\infty\) when \(s \in \left(0, \frac{1}{2}\right] \). Hence, recalling (7), (9) and (11), we consider the utility functionals defined for \(s \in \left(\frac{1}{2}, 1\right) \) given by

\[
\mathcal{E}_1(s; T) := \frac{\Phi_0(s; 1, T)}{T} = \frac{1}{\pi T^{\frac{1}{2s}} (2s - 1)} \Gamma\left(\frac{1}{2s}\right), \]

\[
\mathcal{E}_2(s; T) := \frac{\Phi_0(s; \kappa s, T)}{T} = \frac{2 \left(-2\xi (-2s)\right)^{\frac{1}{2s}}}{T^{\frac{1}{2s}} (2s - 1)} \Gamma\left(\frac{1}{2s}\right), \]

\[
\mathcal{E}_3(s; T) := \frac{\Phi_0(s; 1, T)}{\ell(s, T)} = \frac{\xi (1 + 2s)}{\pi T^{\frac{1}{2s}} (2s - 1) \xi (2s)} \Gamma\left(\frac{1}{2s}\right), \]

\[
\mathcal{E}_4(s; T) := \frac{\Phi_0(s; \kappa s, T)}{\ell(s, T)} = \frac{\xi (1 + 2s) 2 \left(-2\xi (-2s)\right)^{\frac{1}{2s}}}{T^{\frac{1}{2s}} (2s - 1) \xi (2s)} \Gamma\left(\frac{1}{2s}\right). \]
\[\mathcal{E}_5(s; T) := \frac{\Phi_0(s; 1, T)}{\ell(s, T)} = \frac{(1 + 2s) \Gamma \left(\frac{1}{2s} \right)}{4s (2s - 1) T^2 \Gamma \left(\frac{2s - 1}{2s} \right)} \]

and
\[\mathcal{E}_6(s; T) := \frac{\Phi_0(s; \kappa_s, T)}{\ell(s, T)} = \frac{\pi^2 \left(-2\zeta(-2s) \right)^{\frac{1}{2}} (1 + 2s) \Gamma \left(\frac{1}{s} \right)}{s (2s - 1) T^\frac{1}{2} \Gamma \left(\frac{2s - 1}{2s} \right)} \]

(15)

We observe that
\[\lim_{s \searrow \frac{1}{2}} \mathcal{E}_1(s; T) = +\infty, \]
therefore, for every \(T > 0 \).

the supremum of the utility functional \(\left(\frac{1}{2}, 1 \right) \mapsto \mathcal{E}_1(s; T) \) is uniquely attained at \(s = \frac{1}{2} \).

(16)

We recall that the value \(s = \frac{1}{2} \) occurs often in optimal foraging problems, as an ideal balance between intensive search and longer (hence energetically more expensive) movements, both in terms of real world data (such as for Atlantic cods, see e.g. Figure 1d in Sims et al. (2008), jackals, see e.g. Atkinson et al. (2002), wandering albatrosses, see e.g. Figure 1 in Humphries et al. (2013), deers, see e.g. Figure 2(a) in Mårell et al. (2002), bees, see Reynolds et al. (2007), fruit flies, see Reynolds and Frye (2007), and also Amazonian farmers searching for nuts, see Figure 3(b.09) in Reynolds et al. (2018), etc.) and of theoretical optimization (see Viswanathan et al. 1999; Buldyrev et al. 2001). Interestingly, it also occurs in patterns generated by human ecology (such as distances between campsites, see Figure 1 in Brown et al. (2007)). With respect to these data, the statement in (16) can be seen as a confirmation of the most common paradigm in the Lévy foraging hypothesis. On the other hand, the qualitative behaviour of \(\mathcal{E}_1(s; T) \) changes dramatically for large intervals of time: indeed, as hinted by Fig. 1 (that plots \(\mathcal{E}_1(\cdot; T) \) for \(T \in \{1, 10, 10^2, 10^3, 10^4, 10^5\} \)), we have that

for large \(T \), the utility functional \(\left(\frac{1}{2}, 1 \right) \mapsto \mathcal{E}_1(s; T) \)

has a unique minimum at some point \(s_T \) such that
\[\lim_{T \to +\infty} s_T = \frac{1}{2} \quad \text{and} \quad \lim_{T \to +\infty} \mathcal{E}_1(s_T; T) = 0. \]

(17)

This is an interesting phenomenon, showing that the optimality at \(s = \frac{1}{2} \) may become “unstable” and depends on the time span in which the phenomenon is observed, allowing a sudden switch between the optimal (but somehow unreliable) Lévy foraging pattern and the less ideal (but somehow more secure) classical Brownian motion strategy.
It is suggestive to compare this phenomenon to other occurrences in which Lévy flights with $s = \frac{1}{2}$ should theoretically provide the optimal seeking strategy but they coexist with another possible notion of foraging optimization related to Brownian walks, see e.g. the end of page 9 in Buldyrev et al. (2001).

A heuristic explanation for the statement in (17) can be given in terms of the behaviour of the function u (with $\kappa = 1$) at the origin and at infinity in dependence of the parameter s. Indeed, while the usual paradigm is to relate small values of s to long excursions of the traveller, this general notion has sometimes to be revised according to the specific mathematical model taken into account in the diffusive strategy of the forager, since, on the one hand, solutions of Eq. (1) corresponding to lower values of s do present a fatter tail distribution, but, on the other hand, due to the loss of the regularizing effect of the diffusive operator for small s, they also present a more prominent mass at the origin: see e.g. Fig. 2 in which one can compare solutions at time $t = 1$ cor-

Fig. 1 Plot of $\left(\frac{1}{2}, 1\right) \ni s \mapsto E_1(s; T)$ for $T = 10^j$, $j \in \{0, \ldots, 5\}$
Fig. 2 Plot of $x \mapsto u(x, 1)$ with $\kappa = 1$ corresponding to $s = \frac{1}{2}$ (in magenta) and to $s = 1$ (in blue)

responding to $s = \frac{1}{2}$ and $s = 1$. Thus, the balance of these two apparently contrasting features may provide advantageous foragers’ strategies for small values of s also in presence of proximate preys (not due to the long range excursion induced by the fat tail of the distribution, but rather due to the distribution peak at the origin produced by the less regularizing effect of a lower order operator). With respect to this observation, in view of the scaling properties of the equation (see (3)), the prominent role of the peak at the origin occurs for small times, while it becomes less significant for larger times. This somehow explains why the Lévy flights corresponding to $s = \frac{1}{2}$ are, in principle, more favorable than the classical Brownian motion, but this effect may become less relevant and rather insecure for very long time spans. It is suggestive to investigate whether the interplay between optimal but unstable strategies with suboptimal but safer ones may play a role in the appearance in nature of composite correlated random walks and in the biological approximation of Lévy walks as an innate composite correlated random walks, see Benhamou (2007) and Reynolds (2014).

It is also interesting to compare with biological situations in which a predominance of classical random walks coexists with patterns close to a theoretical optimum of $s = \frac{1}{2}$, see e.g. Figure 4 in Hays et al. (2012).

We stress that the phenomenon described in (17) relies on the ideal assumption that the target is modelled as a “material point” (thus any arbitrarily small diffusion of the forager misses the resource) and is a byproduct of a memory-less search strategy (see e.g. Gautestad and Mysterud (2013) for a discussion of memory-enhanced foraging strategies).

The statement in (17) can be checked analytically as detailed in Appendix A.1.
Efficiency functionals for the Lévy flight... Page 15 of 50

We also have that

$$\lim_{s \downarrow \frac{1}{2}} \mathcal{E}_2(s; T) = +\infty$$

and, in view of the divergence of the Gamma Functions at negative integers,

$$\lim_{s \uparrow 1} \mathcal{E}_2(s; T) = 0.$$

These equations show that, for every $T > 0$

the supremum of the utility functional $\left(\frac{1}{2}, 1 \right)$

$\mapsto \mathcal{E}_2(s; T)$ is uniquely attained at $s = \frac{1}{2}$

and the infimum is uniquely attained at $s = 1$,

(18)

which in turn suggests a very strong advantage for the Lévy strategy compared to the Poisson one. On the other hand, for long time spans, the pattern in (18) shows a significant instability, as sketched in Fig. 3, which depicts the map $\mathcal{E}_2(\cdot; T)$ for
Fig. 4 Plot of $\left(\frac{1}{2}, 1\right) \ni s \mapsto E_5(s; T)$ for $T \in \{1.1, 1.2, 1.3, 1.5, 5, 10\}$

$T \in \{10, 10^4, 10^8, 10^{16}\}$. As a result,

for large T, the utility functional $\left(\frac{1}{2}, 1\right) \mapsto E_2(s; T)$

has a local minimum at some point s_T such that

$$\lim_{T \to +\infty} s_T = \frac{1}{2} \quad \text{and} \quad \lim_{T \to +\infty} E_2(s_T; T) = 0,$$

and a local maximum at some point S_T such that $\lim_{T \to +\infty} S_T = 1$.

The statement in (19) can be checked analytically as detailed in Appendix A.2.

Interesting patterns having a theoretical (but unstable for large time) optimum at $s = \frac{1}{2}$ with a stabilizing option at $s = 1$ are exhibited by the utility functionals E_5 and E_6:
see Fig. 4 for the sketch of $\mathcal{E}_5(\cdot; T)$ (notice the pattern change between $T = 1.1$ and $T = 1.5$ and the development of an interior maximum at $T = 1.3$) and Fig. 5 for the sketch of $\mathcal{E}_6(\cdot; T)$. We also stress that, for a given T, the values of \mathcal{E}_5 and \mathcal{E}_6 remain finite (differently from the cases of \mathcal{E}_1 and \mathcal{E}_2).

The cases of the utility functionals \mathcal{E}_3 and \mathcal{E}_4 are instead surprisingly different. Indeed, Fig. 6 hints that \mathcal{E}_3 is monotone decreasing with a supremum at $s = 1$ when $T \leq 1.5$, but then its monotonicity behavior changes when $T \geq 1.6$ and develops a supremum at $s = 1$ when $T \geq 1.7$. In this case, even the theoretical optimality at $s = 1$ is lost for large times and additionally the switch between Lévy and Poisson optimal strategy occurs with a rather abrupt transition with respect to the parameter T.

The functional \mathcal{E}_4 exhibits a different and interesting pattern, as highlighted in Fig. 7: in this case the system shows a sudden change of optimality occurring between $T = 2$ and $T = 3$: it appears indeed that the Lévy foraging for $s = 1$ is optimal when $T \leq 2$, but when $T \geq 3$ a new optimal strategy for a different fractional exponent s arises (with this new optimal exponent moving towards $s = 1$ as T becomes large).

As a matter of fact, we can detect analytically this bifurcation phenomenon and find an explicit value for the critical T by the following analytic argument. We use the notation $\epsilon := 2s - 1$ according to which we have that

$$(2s - 1)\zeta(2s) = \epsilon\zeta(1 + \epsilon) = 1 + \gamma\epsilon + o(\epsilon)$$

and therefore

$$\mathcal{E}_4(s; T) = \frac{2 (\zeta(2 + \epsilon) (\zeta(-\epsilon - 1))}{T^{1+\epsilon}} \frac{1}{\Gamma(1 + \epsilon)} = \frac{2 (\zeta(2) + \zeta'(2)\epsilon + o(\epsilon))}{T}\left(1 - 2\zeta(-1) + 2\zeta'(-1)\epsilon + o(\epsilon)\right)$$

$$= \frac{2}{\zeta(2) + \zeta'(2)\epsilon + o(\epsilon)} \left(\frac{1}{6} + \ln 6\right) + \zeta'(1) + o(\epsilon) = \frac{\pi^2}{18} T + 2\epsilon \left(\frac{\pi^2}{36} T\ln T + \frac{\pi^2}{36} T\ln 6 + \frac{\pi^2}{36} T\zeta'(1) + \frac{\zeta'(2)}{6 T}\right) + o(\epsilon)$$

This yields that

$$\frac{9T}{\pi^2} \frac{d\mathcal{E}_4}{ds} \left(\frac{1}{2}; T\right) = \ln T + \ln 6 + 12\zeta'(-1) + \frac{6}{\pi^2} \zeta'(2)$$

and this quantity is positive (respectively, negative) when $T > T_*$ (respectively, when $T < T_*$), where

$$T_* := \exp\left(-\ln 6 - 12\zeta'(-1) - \frac{6}{\pi^2} \zeta'(2)\right) = 2.145248182\ldots$$

and, as a result, when $T > T_*$ the inverse square law $s = \frac{1}{2}$ cannot maximize \mathcal{E}_4 and values of s even slightly larger than $\frac{1}{2}$ provide greater values of such an efficiency functional.
Fig. 5 Plot of \(\left(\frac{1}{2}, 1 \right) \ni s \mapsto E_6(s; T) \) for \(T \in \{1, 1.5, 2, 5, 10, 10^3, 10^9, 10^{13}\} \)
3.2 Preys on a sparse lattice

Now we take into consideration a set of targets displayed in the lattice $\lambda \mathbb{Z}$, for some $\lambda > 0$, and we consider the asymptotics related to large values of λ, corresponding to the case of sparse preys. To this end, we consider the target distribution

$$p(x) := \sum_{k \in \mathbb{Z}} \delta_{\lambda k}(x).$$

We observe that

$$\int_{\mathbb{R}} p(x)u(x, t) \, dx = \sum_{k \in \mathbb{Z}} u(\lambda k, t) = \sum_{k \in \mathbb{Z}} u_{\lambda}(k, t)$$

(20)
Fig. 7 Plot of \((\frac{1}{2}, 1) \ni s \mapsto \mathcal{E}_4(s; T)\) for \(T \in \{0.1, 1, 2, 3, 5, 10, 100, 1000\}\)
where

\[u_\lambda(x, t) := u(\lambda x, t). \]

By (3) and (4),

\[
(1 + |x|^{1+2s}) |u_\lambda(x, t)| = (1 + |x|^{1+2s}) |u(\lambda x, t)| = \frac{1 + |x|^{1+2s}}{t^{\frac{1}{2s}}} u \left(\frac{\lambda x}{t^{\frac{1}{2s}}}, 1 \right)
\leq \frac{C (1 + |x|^{1+2s})}{t^{\frac{1}{2s}}} \left(1 + \frac{|\lambda x|}{t^{\frac{1}{2s}}} \right)^{1+2s} \leq C_{s, \lambda, t},
\]

for some \(C_{s, \lambda, t} \in (0, +\infty) \).

Moreover, by (2),

\[
\hat{u}_\lambda(\xi, t) = \int_{\mathbb{R}} u(\lambda x, t) e^{-2\pi i x \xi} \, dx = \frac{1}{\lambda} \int_{\mathbb{R}} u(y, t) e^{-2\pi i \frac{\lambda}{\lambda} y \xi} \, dy
\]

\[= \frac{1}{\lambda} \hat{u} \left(\frac{\xi}{\lambda}, t \right) = \frac{1}{\lambda} \exp \left(-\frac{|2\pi \kappa \xi|^{2s} t}{\lambda^{2s}} \right), \]

and accordingly

\[
(1 + |\xi|^{1+2s}) |\hat{u}_\lambda(\xi, t)| = \frac{1 + |\xi|^{1+2s}}{\lambda} \exp \left(-\frac{|2\pi \kappa \xi|^{2s} t}{\lambda^{2s}} \right) \leq \tilde{C}_{s, \lambda, t},
\]

for some \(\tilde{C}_{s, \lambda, t} \in (0, +\infty) \).

In view of this estimate and (21), for a given \(t > 0 \) we can use the Poisson Summation Formula on \(u_\lambda \) (see e.g. formula (4.4.2) and Theorem 4.4.2 in Pinsky 2002) and, in light of (20), conclude that

\[
\int_{\mathbb{R}} p(x) u(x, t) \, dx = \sum_{k \in \mathbb{Z}} u_\lambda(k) = \sum_{k \in \mathbb{Z}} \hat{u}_\lambda(k) = \frac{1}{\lambda} \sum_{k \in \mathbb{Z}} \exp \left(-\frac{|2\pi k|^{2s} t}{\lambda^{2s}} \right).
\]

For large \(\lambda \), we can consider the latter term as a Riemann sum, therefore, using polar coordinates,

\[
\int_{\mathbb{R}} p(x) u(x, t) \, dx \simeq \int_{\mathbb{R}} \exp \left(-|2\pi \rho|^{2s} t \right) \, d\rho = 2 \int_{0}^{+\infty} \exp \left(-(2\pi \rho)^{2s} t \right) \, d\rho.
\]

Thus, recalling (6), (13) and (14), we can consider, for large \(\lambda \), the foraging success functional

\[
\Phi(s) := \iint_{\mathbb{R} \times (0, T)} p(x) u(x, t) \, dx \, dt \simeq \frac{1}{2\pi s} \Gamma \left(\frac{1}{2s} \right) \int_{0}^{T} \frac{dt}{t^{\frac{1}{2s}}}.
\]
\[
\frac{T^{2s-1}}{2\pi (2s - 1)} \Gamma \left(\frac{1}{2s} \right) = \Phi_0(s; 1, T).
\]

The case of a sparse distribution of targets is therefore reduced to that of a single prey at the origin and, since the optimizers discussed in Sect. 3.1 were isolated and nondegenerate, the analysis provided in Sect. 3.1 for a single prey gives asymptotic information to the case of sparsely distributed targets when \(\lambda \) is sufficiently large.

3.3 Remote single prey

Now we consider the case of a single target located far away from the initial position of the seeker. For this, given \(L > 0 \), let

\[
p_L(x) := \delta_L(x).
\]

For \(T > 0 \), in view of (6), we consider the foraging success functional

\[
\Phi_{L, T}(s; \kappa) := \int_0^T \int_{\mathbb{R} \times (0, T)} p_L(x) u(x, t) \, dx \, dt = \int_0^T u(L, t) \, dt
\]

By (5), for large \(L \),

\[
L^{1+2s} \Phi_{L, T}(s; \kappa) \approx \int_0^T \frac{\kappa^{2s} t \Gamma(1+2s) \sin(\pi s)}{\pi} \, dt = \frac{\kappa^{2s} T^2 \Gamma(1+2s) \sin(\pi s)}{2\pi}.
\]

Thus, in the lines of (15), we set

\[
\Phi_{L, T}(s; \kappa) := \frac{\kappa^{2s} T^2 \Gamma(1+2s) \sin(\pi s)}{2\pi L^{1+2s}},
\]

we notice that

\[
\Phi_{L, T}(s; \kappa) \simeq \tilde{\Phi}_{L, T}(s; \kappa)
\]

for large \(L \), and we discuss the optimization of the utility functionals\(^5\)

\[
G_1(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; 1)}{T} = \frac{T \Gamma(1+2s) \sin(\pi s)}{2\pi L^{1+2s}},
\]

\[
G_2(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; \kappa s)}{T} = -\frac{T \Gamma(-2s) \Gamma(1+2s) \sin(2\pi s)}{4\pi L^{1+2s} \xi(1+2s)} = \frac{T}{4L^{1+2s} \xi(1+2s)}.
\]

\(^5\) The final expressions for \(G_2 \) and \(G_4 \) are due to Euler’s reflection formula

\[
\Gamma(1 - z)\Gamma(z) = \frac{\pi}{\sin(\pi z)} \quad \text{for all } z \in \mathbb{R} \setminus \mathbb{Z}.
\]
\[G_3(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; 1)}{\ell(s, T)} = \frac{T \left(1 + 2s\right) \Gamma(1 + 2s) \sin(\pi s)}{2\pi L^{1+2s} \zeta(2s)}, \]

\[G_4(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; \kappa_x)}{\ell(s, T)} = -\frac{T \Gamma(-2s) \Gamma(1 + 2s) \sin(2\pi s)}{4\pi L^{1+2s} \zeta(2s)} \]

\[= \frac{T}{4L^{1+2s} \zeta(2s)}, \quad G_5(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; 1)}{\ell(s, T)} \]

\[= \frac{T^{\frac{s-1}{2\pi}} \Gamma(2 + 2s) \sin(\pi s)}{8L^{1+2s} \Gamma \left(\frac{2s-1}{2s}\right)} \]

and \[G_6(s; L, T) := \frac{\tilde{\Phi}_{L, T}(s; \kappa_x)}{\ell(s, T)} \]

\[= \left(\frac{-1}{2L^{1+2s} \pi^{2s} \zeta(-2s)}\right)^{\frac{s-1}{2s}} \frac{T^{\frac{s-1}{2\pi}} \Gamma(2 + 2s) \sin(\pi s)}{8L^{1+2s} \Gamma \left(\frac{2s-1}{2s}\right)}. \]

\[(23)\]

We point out that the final time \(T \) does not play any role in the optimization in \(s \) of the value functionals \(G_1, G_2, G_3 \) and \(G_4 \) in (23). We also stress that the biological meaning of the efficiency functionals in (23) only occurs for large values of \(L > 0 \), due to the asymptotics in (22), nevertheless it is interesting to study those functionals for all values of \(L \) also to detect bifurcation phenomena with respect to this parameter that depend only on the final analytic formulation and not on their initial construction.

We also observe that, differently from the functionals in (15), the ones defined in (23) can be continuously extended in \(\left(0, \frac{1}{2}\right] \). Nevertheless, among them only \(G_1 \) and \(G_2 \) admit non negative values for \(s \in \left(0, \frac{1}{2}\right] \). Since the functionals in (23) lose their physical meaning for negative values, when studying the optimal search strategy we will take into account the fractional parameter \(s \) in the whole interval \((0, 1)\) only when studying \(G_1 \) and \(G_2 \).

A plot of \(G_1 \) is given in Fig. 8, where one can appreciate that for small values of \(L \) the optimal exponent is close (but not equal) to 1 (consistently with the idea that if the prey is close to the starting point of the predator the best seeking strategy is close to that of local type), while for large values of \(L \) the maximum is provided by a value of \(s \) close to zero. This is in agreement with the idea that if the prey is far away from the forager’s starting position, then the optimal search strategy has a strong nonlocal component. More precisely, we have that

if \(L \) is large enough, the optimal foraging strategy for \(G_1(s; L, T) \) is uniquely attained at some \(s_L \) such that \(\lim_{L \to +\infty} s_L = 0. \)

\[(24)\]

This can be proved analytically, see Appendix A.3. From the plots provided in Fig. 8, we see that \(s = 0 \) is a global minimum for \(G_1 \). Nevertheless, as stated in (24), for \(L \) large enough \(G_1 \) admits a unique maximum \(s_L \in (0, 1) \) such that \(s_L \searrow 0 \) for \(L \to +\infty \). Thus, the global maximum \(s_L \) approaches the global minimum \(s = 0 \) as \(L \) gets larger and larger. We can summarize this phenomenon, by saying that the optimal search
strategy for G_1 is unstable. Namely, a slight deviation from the optimal value s_L can lead to very small values for G_1.

The functionals that we take into account to model the environmental scenario of a remote single prey are obtained using the approximation provided in (22). For this reason, we cannot rule out a priori that the aforementioned instability result is a consequence of this approximation and instead it does occur if we consider the original functional

$$\frac{\Phi_{L,T}(s;1)}{T}. \quad (25)$$

In a forthcoming paper, see Dipierro et al. (forthcoming), we will address this problem and we will show that this instability result does hold true also for the non approximated efficiency functional in (25), provided that L is large enough. We will also show that this unstable behaviour is true in a multidimensional framework.
The functional G_2 also shows an interesting bifurcation diagram plotted in Fig. 9: also in this framework preys located close to the origin favor local diffusive strategies (optimized in this case for $s = 1$) and when L becomes larger an larger the optimal exponent moves to the left till becomes $s = 0$. Analogously to the functional $G_1(s; L, T)$, we can show that

$$\text{if } L \text{ is large enough, the optimal foraging strategy for } G_2(s; L, T) \text{ is uniquely attained at some } s_L \text{ such that } \lim_{L \to +\infty} s_L = 0.$$ \hfill (26)

The claim in (24) is proved analytically in Appendix A.4. Note that also in this case we have the same instability of the optimal search strategy that we already observed for G_1.
The similarities and differences between Figs. 8 and 9 highlight how different normalization choices in the model can affect optimal strategies: note indeed that the only difference between G_1 and G_2 lies in the way the diffusion coefficient κ is modeled on the basis of the underlying random process. The sensitivity of the optimization strategies with respect to these normalizing constants seems to be not investigated in the current literature and it produces in Figs. 8 and 9 a different outcome on the optimality of the Gaussian exponent $s = 1$; this interesting difference is induced by the analytical observation that $G_1(1; L, T) = 0 < G_2(1; L, T)$.

As for the functional G_3, plots for different values of L are given in Fig. 10. Interestingly, on the one hand, both the inverse square law $s = \frac{1}{2}$ and the Gaussian law $s = 1$ are minima for the functional for every T and L; on the other hand, for very sparse targets (corresponding to large values of L),

Fig. 10 Plot of $\left(\frac{1}{2}, 1\right) \ni s \mapsto G_3(s; L, T)$ for $T = 1$ and $L = 10^j$, $j \in \{0, \ldots, 5\}$
the optimal foraging strategy for $G_3(s; L, T)$ is uniquely attained at some s_L

such that $\lim_{L \to +\infty} s_L = \frac{1}{2}$. \hfill (27)

This can also be proved analytically, see Appendix A.5.

The graph of the functional G_4 is instead plotted in Fig. 11: notice that for $L \leq 1.7$ this functional is increasing and attains its maximum for the Gaussian strategy $s = 1$, but for $L \geq 2$ the functional G_4 develops an interior maximum. More precisely, as proved analytically in Appendix A.6, setting

$$L^* := \exp \left(-\frac{\zeta'(2)}{\zeta(2)} \right) = 1.768198 \ldots$$ \hfill (28)
we have that

if $L \leq L^*$ the optimal foraging strategy for $G_4(s; L, T)$ is uniquely attained at $s = 1,$

while if $L > L^*$ the optimal foraging strategy for $G_4(s; L, T)$ is uniquely attained

at some $s_L \in \left(\frac{1}{2}, 1 \right)$ such that $\lim_{L \to +\infty} s_L = \frac{1}{2}.$

(29)

Therefore, for larger and larger values of $L > L^*, \text{ the optimal strategy for } G_4 \text{ is getting}

closer and closer to the inverse power law distribution induced by $s = \frac{1}{2}.$

The cases of G_5 and G_6 are quite sophisticated, since their optimization strategies depend both on the final time T and on the scantness of the targets modeled by $L.$

In the special situation in which $L = T^{\frac{2r-1}{2s(1+2s)}}$ these value functionals do not depend

on L and T and they are plotted in Figs. 12 and 13, respectively.

In particular, it appears that when $L = T^{\frac{2r-1}{2s(1+2s)}}$ the functional G_5 is maximized

in proximity of $s = 0.80261 \ldots$ and G_6 in proximity of $s = 0.861187 \ldots ;$ in spite of the rather arbitrary choice relating T and L in Figs. 12 and 13, it is suggestive to compare these optimal intermediate values between the inverse square power law distribution and the Gaussian one with the ones observed experimentally for some blue sharks (see e.g. Figure 1b in Humphries et al. (2010) which would correspond to $s = 0.73$), basking sharks and bigeye tunas (see e.g. Figures 1b and 1c in Sims et al. (2008) which would correspond to $s = 0.7$). See also the red curves in Figures 2, 4 and 6 of Palyulin et al. (2014) (which corresponds to $s \approx 0.75$). It is also interesting to compare these values with the simulation data of some swarm dynamics (corresponding to $s = 0.745,$ see Figure 3 in Reynolds and Ouellette (2016)). Of course,
we are not aiming here at precisely reconstructing the quantitative results arising in specific real-world experiments, but we think it is an interesting feature that even the very simplified situation that we describe may lead to optimal values of s which are somewhat intermediate between $s = \frac{1}{2}$ and $s = 1$.

3.4 Prey at the origin and remote prey

We now consider the case of two targets, one located “at home” at the origin and another far away at a given distance $L > 0$. This corresponds to a prey distribution of the form

$$p_{0,L}(x) := \delta_0(x) + \delta_L(x).$$

Since the foraging success functional in (6) is linear with respect to the target distribution, the analysis of this case reduces to the superposition of the value functionals introduced in (15) and (23): thus, in the above notation, we define

$$\mathcal{H}_j(s; L, T) := \mathcal{E}_j(s; T) + \mathcal{G}_j(s; L, T) \quad \text{for } j \in \{1, \ldots, 6\}$$

and we find that

$$\mathcal{H}_1(s; L, T) = \frac{1}{\pi T^{\frac{1}{2s} - 1}} \Gamma\left(\frac{1}{2s}\right) + \frac{T \Gamma(1 + 2s) \sin(\pi s)}{2\pi L^{1+2s}}.$$
Fig. 14 Plot of \((\frac{1}{2}, 1) \ni s \mapsto \mathcal{H}_j(s; L, T)\) for \(T = 1 = L\) and \(j \in \{1, \ldots, 6\}\)

\[
\mathcal{H}_2(s; L, T) = \frac{2 \left(-2\zeta(-2s) \right)^{\frac{1}{2s}}}{T^{\frac{1}{2s}} (2s - 1)} \Gamma \left(\frac{1}{2s} \right) + \frac{T}{4L^{1+2s} \zeta(1+2s)},
\]

\[
\mathcal{H}_3(s; L, T) = \frac{\zeta(1+2s)}{\pi T^{\frac{1}{2s}} (2s - 1) \zeta(2s)} \Gamma \left(\frac{1}{2s} \right) + \frac{T \zeta(1+2s) \Gamma(1+2s) \sin(\pi s)}{2\pi L^{1+2s} \zeta(2s)},
\]

\[
\mathcal{H}_4(s; L, T) = \frac{\zeta(1+2s)2 \left(-2\zeta(-2s) \right)^{\frac{3}{2s}}}{T^{\frac{1}{2s}} (2s - 1) \zeta(2s)} \Gamma \left(\frac{1}{2s} \right) + \frac{T}{4L^{1+2s} \zeta(2s)},
\]

\[
\mathcal{H}_5(s; L, T) = \frac{(1+2s) \Gamma \left(\frac{1}{2s} \right)}{4s (2s - 1) T^{\frac{1}{2s}} \Gamma \left(\frac{2s-1}{2s} \right)} + \frac{T^{\frac{2s-1}{2s}} \Gamma(2+2s) \sin(\pi s)}{8L^{1+2s} \Gamma \left(\frac{2s-1}{2s} \right)}
\]
and \(\mathcal{H}_6(s; L, T) = \frac{\pi^2}{s} \left(-2\zeta(-2s) \right)^{\frac{1}{2}} \left(1 + 2s \right) \Gamma \left(\frac{1}{2s} \right) \Gamma \left(\frac{2s - 1}{2s} \right) \left(\frac{2s - 1}{2s} \right) \Gamma(2 + 2s) \sin(\pi s) \right) \frac{T^{\frac{2s - 1}{2s}} G(\frac{2s - 1}{2s})}{8L^{1+2s}} \). \]

We point out that in all the above value functionals, the second term becomes predominant for large values of \(T \), hence the long time analysis for \(\mathcal{H}_j \) boils down to the one developed for \(\mathcal{G}_j \) in Sect. 3.3 (this is consistent with the idea that for long times the forager has drifted away from its initial location). Similarly, small values of \(T \) reduce the analysis of \(\mathcal{H}_j \) to the one developed for \(\mathcal{E}_j \) in Sect. 3.1 (consistently with the ansatz that for small times the forager will exploit the targets in the vicinity of its burrow).

Instead, when \(T = 1 \) both the terms in \(\mathcal{H}_j \) contribute to the optimization of \(\mathcal{H}_j \) and the corresponding plots (when also \(L = 1 \)) are given in Fig. 14, showing an optimal foraging strategy corresponding to \(s = \frac{1}{2} \) in these specific situations.

Acknowledgements SD and EV are members of AustMS. Supported by the Australian Laureate Fellowship FL190100081 “Minimal surfaces, free boundaries and partial differential equations” and by the Australian Research Council DECRA DE180100957 “PDEs, free boundaries and applications”.

A Appendices

A.1 Analytical verification of (17)

Let

\[c(s; T) := \frac{1}{2\pi T^{\frac{1}{2s}} (2s - 1)^2 s^2} \Gamma \left(\frac{1}{2s} \right) \]

and notice that

\[\frac{d}{ds} c(s; T) = \left(\ln T \frac{4}{2s^2} - \frac{2}{s} \right) c(s; T) - \frac{1}{4\pi T^{\frac{1}{2s}} (2s - 1)^2 s^4} \Gamma'(\frac{1}{2s}) \]

Moreover, by (15),

\[\mathcal{E}_1(s; T) = 2s^2(2s - 1) c(s; T) \]

and therefore

\[\frac{d}{ds} \mathcal{E}_1(s; T) = \left(4s(2s - 1) + 4s^2 \right) c(s; T) + 2s^2(2s - 1) \frac{d}{ds} c(s; T) \]

\[= \left(2s - 1 \ln T - 4s^2 - (2s - 1) \psi \left(\frac{1}{2s} \right) \right) c(s; T). \]
Now we define
\[Z(x) := \sum_{k=1}^{\infty} \left(\frac{1}{k+x} - \frac{1}{k} \right) \quad (35) \]
and (see Chapter 10 in Bonnar 2017) we find that
\[\psi(x) = -\gamma - \frac{1}{x} - \sum_{k=1}^{\infty} \left(\frac{1}{k+x} - \frac{1}{k} \right) = -\gamma - \frac{1}{x} - Z(x). \quad (36) \]

Accordingly, we can rewrite Eq. (34) as
\[\frac{d}{ds} E_1(s; T) = \left((2s-1) \ln T + (2s-1)\gamma - 2s + (2s-1) Z \left(\frac{1}{2s} \right) \right) c(s; T). \quad (37) \]
Moreover, since \(s \in \left(\frac{1}{2}, 1 \right) \), we have that \(\frac{1}{2s} \in \left(\frac{1}{2}, 1 \right) \) and therefore, for each \(k \geq 1, \)
\[\frac{1}{k+\frac{1}{2s}} - \frac{1}{k} \geq \frac{1}{k+1} - \frac{1}{k} = -\frac{1}{k(k+1)} \geq -\frac{1}{k^2}. \]

As a result,
\[-1 < -\frac{\pi^2}{12} = -\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^2} \leq \frac{1}{2} Z \left(\frac{1}{2s} \right) \leq 0. \quad (38) \]

We now define the function
\[f(s) := \left((2s-1) \ln T + (2s-1)\gamma - 2s - 2(2s-1) \right) c(s; T) \quad (39) \]
and we deduce from (37) and (38) that
\[f(s) \leq \frac{d}{ds} E_1(s; T). \quad (40) \]

For \(T \) large enough such that \(\ln T + \gamma \geq 3 \), let
\[\bar{s}_T := \frac{1}{2} \left(\frac{\ln T + \gamma - 2}{\ln T + \gamma - 3} \right) \quad (41) \]
and observe that
\[f(s) \geq 0 \text{ if and only if } s \in (\bar{s}_T, 1). \quad (42) \]
Recalling (15), we observe that
\[\lim_{s \to \frac{1}{2}} E_1(s, T) = +\infty. \]
This limit together with (42) and (40) imply that

\[\text{the map } \left(\frac{1}{2}, 1 \right) \ni s \mapsto \mathcal{E}_1(s; T) \text{ attains its minimum somewhere in the interval } \left(\frac{1}{2}, s_T \right). \]

(43)

Furthermore, by (32) and (34),

\[
\frac{d^2}{ds^2} \mathcal{E}_1(s; T) = \left(2 \ln T - 8s - 2\psi \left(\frac{1}{2s} \right) + \frac{2s - 1}{2s^2} \psi' \left(\frac{1}{2s} \right) \right) c(s; T) \\
+ \left((2s - 1) \ln T - 4s^2 - (2s - 1)\psi \left(\frac{1}{2s} \right) \right) \frac{d}{ds} c(s; T) \\
= \left[\left(2 \ln T - 8s - 2\psi \left(\frac{1}{2s} \right) + \frac{2s - 1}{2s^2} \psi' \left(\frac{1}{2s} \right) \right) \right. \\
\left. + \left((2s - 1) \ln T - 4s^2 - (2s - 1)\psi \left(\frac{1}{2s} \right) \right) \right] c(s; T) \\
\geq \left[\frac{(2s - 1) \ln^2 T}{2s^2} - \left(4 + \frac{2(2s - 1)}{s} + \frac{2s - 1}{s^2} \psi' \left(\frac{1}{2s} \right) \right) \ln T + \frac{16s^2}{2s - 1} - C \right] c(s; T)
\]

for some \(C > 0 \) independent on \(T \).

Hence, setting \(A := \frac{\sqrt{2s - 1} \ln T}{\sqrt{2s}} \) and \(B := \frac{4s}{\sqrt{2s - 1}} \), and noticing that

\[4\sqrt{2} \ln T = 2AB \leq A^2 + B^2 = \frac{(2s - 1) \ln^2 T}{2s^2} + \frac{16s^2}{2s - 1}, \]

we conclude that

\[
\frac{d^2}{ds^2} \mathcal{E}_1(s; T) \geq \left[\left(4\sqrt{2} - 4 - \frac{2(2s - 1)}{s} \right) - \frac{2s - 1}{s^2} \psi' \left(\frac{1}{2s} \right) \right] \ln T - C \right] c(s; T).
\]

(44)

Now, recalling (36) and (38),

\[
4\sqrt{2} - 4 - \frac{2(2s - 1)}{s} - \frac{2s - 1}{s^2} \psi' \left(\frac{1}{2s} \right) \\
= 4\sqrt{2} - 4 - \frac{2(2s - 1)}{s} + \frac{2s - 1}{s^2} \left(\gamma + 2s + Z \left(\frac{1}{2s} \right) \right) \\
= 4\sqrt{2} - 4 + \frac{2s - 1}{s^2} \left(\gamma + Z \left(\frac{1}{2s} \right) \right) \\
\geq 4\sqrt{2} - 4 - \frac{2s - 1}{s^2} (2 - \gamma)
\]
\[\geq 4\sqrt{2} - 4 - 2 + \gamma, \]

which is strictly positive.

This observation and (44) entail that \(\mathcal{E}_1 \) is strictly convex for large \(T \), and consequently, the minimum in (43) is attained at a unique point that we denote by \(s_T \). Since

\[\lim_{T \to \infty} s_T = \frac{1}{2}, \]

we thus obtain from (43) that

\[\lim_{T \to \infty} s_T = \frac{1}{2}, \]

which concludes the analytical proof of (17).

A.2 Analytical verification of (19)

We point out that

\[\lim_{s \downarrow \frac{1}{2}} \mathcal{E}_2(s; T) = +\infty, \quad (45) \]

since the denominator in the definition of \(\mathcal{E}_2 \) in (15) vanishes. Moreover, since the Riemann Zeta Function vanishes at the negative even integers (different from \(-1\)), we note that \(\zeta(-2) = 0 \), whence

\[\lim_{s \uparrow 1} \mathcal{E}_2(s; T) = 0. \quad (46) \]

Also, in light of (15), we can rewrite \(\mathcal{E}_2(s; T) \) as

\[\mathcal{E}_2(s; T) = 2\pi \left(h(s) \right)^{-1} \mathcal{E}_1(s, T), \]

where we have defined \(h(s) := -2\zeta(-2s) > 0 \) for each \(s \in (1/2, 1) \).

We remark\(^6\) that, if \(s \in (1/2, 1) \),

\[h(s) = 2^{1-2s} \pi^{-2s-1} \sin(\pi s) \Gamma(1+2s) \zeta(1+2s) \in \left(0, \frac{\Gamma(3) \zeta(2)}{\pi^2} \right) = \left(0, \frac{1}{3} \right) \]

and therefore

\[\ln(h(s)) \leq \ln \frac{1}{3} < 0. \quad (47) \]

\(^6\) Here we are using the Riemann’s Functional Equation

\[\zeta(z) = 2^z \pi^{-z-1} \sin \left(\frac{\pi z}{2} \right) \Gamma(1-z) \zeta(1-z). \]
Also,
\[
h'(s) = 2^{1-2s} \pi^{-2s-1} \Gamma(1 + 2s) \left[2 \sin(\pi s) \zeta'(1 + 2s) + \zeta(1 + 2s) \left(\pi \cos(\pi s) + 2 \sin(\pi s) (\psi(1 + 2s) - \ln 2 - \ln \pi) \right) \right]. \tag{48}
\]

We recall that
\[
\psi(1 + 2s) - \ln 2 - \ln \pi \leq \psi(3) - \ln 2 - \ln \pi = -0.9150927 \ldots
\]
and therefore we infer from (48) that
\[
h'(s) \leq 2^{1-2s} \pi^{-2s-1} \Gamma(1 + 2s) \left[2 \sin(\pi s) \zeta'(1 + 2s) + \pi \zeta(1 + 2s) \cos(\pi s) \right] \leq 2^{1-2s} \pi^{-2s} \Gamma(1 + 2s) \zeta(1 + 2s) \cos(\pi s).
\]

Since the latter term is nonpositive for \(s \in \left[\frac{1}{2}, 1 \right] \), and actually strictly negative when \(s \in (\frac{1}{2}, 1] \), the observations above yield that \(h' < 0 \) in \((\frac{1}{2}, 1) \) and more precisely, for all \(s \in (\frac{1}{2}, 1) \),
\[
-C_1 < h'(s) < -C_2,
\]
where \(C_1 \) and \(C_2 \) are positive constants.

We now compute the derivative with respect to \(s \) of \(E_2(s; T) \) and get
\[
\frac{d}{ds} E_2(s; T) = 2\pi \left[\frac{d}{ds} E_1(s, T)(h(s))^{\frac{1}{\gamma}} + E_1(s, T)(h(s))^{\frac{1}{\gamma}} \left(-\frac{1}{2s^2} \ln(h(s)) + \frac{1}{2s} h'(s) \right) \right].
\]

Hence, from Eqs. (33) and (37) we deduce that
\[
\frac{d}{ds} E_2(s; T) = 2\pi c(s; T)(h(s))^\frac{1-\gamma}{\gamma} \left(P(s, T) h(s) - (2s-1) \ln(h(s)) h(s) + s(2s-1) h'(s) \right). \tag{50}
\]
where
\[
P(s, T) := (2s - 1) \ln T + (2s - 1) \gamma - 2s + (2s - 1) Z \left(\frac{1}{2s} \right)
\]
and \(c \) and \(Z \) are as defined in (31) and (35), respectively.

Now, using (38) and (39), we observe that
\[
P(s, T) = (2s - 1) \ln T + (2s - 1) \gamma - 2s + (2s - 1) Z \left(\frac{1}{2s} \right) = (2s - 1) \ln T + (2s - 1) \gamma - 2s - 2(2s - 1) + (2s - 1) \left(2 + Z \left(\frac{1}{2s} \right) \right) \geq (2s - 1) \ln T + (2s - 1) \gamma - 2s - 2(2s - 1) = \frac{f(s)}{c(s; T)}.
\]
As a consequence, owing also to (47), (49) and (50) we find that
\[
\frac{d}{ds}\mathcal{E}_2(s; T) \geq 2\pi c(s; T) (h(s))^{\frac{1-2s}{2s}} \left(\frac{f(s) h(s)}{c(s; T)} + s(2s - 1) h'(s) \right) - s(2s - 1) C_1.
\] (51)

Consequently, by (42) and the fact that \(h(s)\) is decreasing, we get that for all \(s \in (\overline{s}_T, \frac{3}{4})\),
\[
2\pi c(s; T) h(s)^{\frac{1-2s}{2s}} \left(\frac{f(s) h(3/4)}{c(s; T)} - s(2s - 1) C_1 \right) \leq \frac{d}{ds}\mathcal{E}_2(s; T)
\] (52)
where \(\overline{s}_T\) is as defined in (41). Now we set
\[
\hat{s}_T := \overline{s}_T + \frac{1}{2} \left(\frac{s(2s - 1) C_1}{h(3/4)(\ln T - 3 + \gamma)} \right) = \frac{1}{2} \left(\frac{\ln T - 2 + \gamma + s(2s - 1) C_1 / h(3/4)}{\ln T - 3 + \gamma} \right).
\]

Hence, recalling again (39) and assuming \(T\) conveniently large, for all \(s \in (\hat{s}_T, \frac{3}{4})\),
\[
\frac{f(s) h(3/4)}{c(s; T)} - s(2s - 1) C_1
\]
\[
= h(3/4) \left(2s - 1 \ln T + (2s - 1) \gamma - 2s - 2(2s - 1) \right) - s(2s - 1) C_1
\]
\[
= 2s h(3/4) \left(\ln T + \gamma - 3 \right) + h(3/4) \left(-\ln T - \gamma + 2 \right) - s(2s - 1) C_1
\]
\[
> 2\hat{s}_T h(3/4) \left(\ln T + \gamma - 3 \right) + h(3/4) \left(-\ln T - \gamma + 2 \right) - s(2s - 1) C_1
\]
\[
= 0.
\]

Plugging this information into (52) we find that, for large \(T\), the function \(\left(\frac{1}{2}, 1\right) \ni s \mapsto \mathcal{E}_2(s; T)\) is strictly increasing in \((\hat{s}_T, \frac{3}{4})\) and in view of (45) we obtain that this function possesses a local minimum \(s_T \in \left(\frac{1}{2}, \hat{s}_T\right]\) and (recalling also (46)) a local maximum \(S_T \in \left[\frac{3}{4}, 1\right]\). Since \(\hat{s}_T\) converges to \(\frac{1}{2}\) as \(T \to +\infty\), we also obtain that \(s_T \to \frac{1}{2}\) as \(T \to +\infty\).

Accordingly, to complete the proof of (19), it only remains to check that \(S_T \to 1\) as \(T \to +\infty\). To this end, we note that, by (39) and (51),
\[
0 = \frac{1}{2\pi c(S_T; T) h(S_T)^{\frac{1-2s}{2s}}} \frac{d}{ds}\mathcal{E}_2(S_T; T) \geq h(S_T) \left(\frac{f(S_T) h(S_T)}{c(S_T; T)} - S_T(2S_T - 1) C_1 \right)
\]
\[
= h(S_T) \left((2S_T - 1) \ln T + (2S_T - 1) \gamma - 2S_T - 2(2S_T - 1) \right) - S_T(2S_T - 1) C_1
\]
\[
\geq h(S_T) \left(\frac{\ln T}{2} - C_2 - C_3 h(S_T) \right).
\]
for some constants $C_2, C_3 > 0$.

For this reason,

$$\lim_{T \to +\infty} \frac{C_2}{h(S_T)} + C_3 \geq \lim_{T \to +\infty} \frac{\ln T}{2} = +\infty,$$

whence

$$0 = \lim_{T \to +\infty} h(S_T) = \lim_{T \to +\infty} -2\xi(-2s_T).$$

Since the only zero of the Riemann Zeta Function in $[-2, -1]$ occurs at -2, we thereby infer that $-2s_T \to -2$, and thus $s_T \to 1$, as $T \to +\infty$. With this, we have concluded the analytical verification of (19).

A.3 Analytical verification of (24)

We compute that

$$\frac{d}{ds} G_1(s; L, T) = \frac{T}{2\pi} \left[\frac{2\Gamma(1 + 2s) \sin(\pi s) + \pi \Gamma(1 + 2s) \cos(\pi s) - 2\Gamma(1 + 2s) \sin(\pi s) \ln L}{L^{1+2s}} \right],$$

$$= \frac{T\Gamma(1 + 2s)}{\pi L^{1+2s}} \left[\sin(\pi s) \left(\psi(1 + 2s) - \ln L \right) + \frac{\pi}{2} \cos(\pi s) \right].$$

For L large enough, we define

$$s_L^{(-)} := \frac{1}{8 \ln L}$$

and we notice that

$$\lim_{L \to +\infty} s_L^{(-)} = 0. \quad (53)$$

Also, if L is sufficiently large, using (36) (and noticing that $Z(1 + 2s) < 0$), we obtain that

$$\frac{\pi L^{1+2s}}{T\Gamma(1 + 2s)} \frac{d}{ds} G_1(s; L, T) > \sin(\pi s) \left(-\gamma - \frac{1}{1 + 2s} - \ln L \right) + \frac{\pi}{2} \cos(\pi s)$$

$$\geq -2 \sin(\pi s) \ln L + \frac{\pi}{2} \cos(\pi s)$$

$$\geq -2\pi s \ln L + \frac{\pi}{4}$$

$$\geq 0,$$

for all $s \in \left(0, s_L^{(-)} \right]$.

Analogously, we define

$$s_L^{(+)} := \frac{2}{3(\ln L - \psi(3))}, \quad (54)$$
and note that also in this case we have that

$$\lim_{L \to +\infty} s_L^{(+)} = 0.$$ \hspace{1cm} (55)

Now, we notice that if L is sufficiently large and $s \in \left[\frac{1}{2}, 1\right)$,

$$\frac{\pi L^{1+2s}}{T \Gamma(1+2s)} \frac{d}{ds} G_1(s; L, T) \leq -\frac{\sin(\pi s)}{2} \ln L + \frac{\pi}{2} \cos(\pi s) < 0.$$

If instead $s \in \left[s_L^{(+)}, \frac{1}{2}\right)$,

$$\frac{\pi L^{1+2s}}{T \Gamma(1+2s)} \frac{d}{ds} G_1(s; L, T) < \sin(\pi s) \left(\psi(3) - \ln L\right) + \frac{\pi}{2} \cos(\pi s)
\leq -\sin(\pi s) \left(\ln L - \psi(3)\right) + \frac{\pi}{2}
\leq -\sin \left(\pi s_L^{(+)}\right) \left(\ln L - \psi(3)\right) + \frac{\pi}{2}
\leq -\frac{3\pi s_L^{(+)}}{4} \left(\ln L - \psi(3)\right) + \frac{\pi}{2}
\leq 0.$$

In conclusion, if L is large enough and $s \in \left[s_L^{(+)}, 1\right)$ we have that

$$\frac{d}{ds} G_1(s; L, T) < 0.$$

Therefore, from these considerations we conclude that

there exists at least one critical point for $G_1(s; L, T)$

and all the critical points of $G_1(s; L, T)$ are located in $\left(s_L^{(-)}, s_L^{(+)}\right)$. \hspace{1cm} (56)

Now, we show that if L is large enough, then

$$\frac{d}{ds} G_1(s; L, T)$$

is strictly decreasing in $\left(s_L^{(-)}, s_L^{(+)}\right)$. \hspace{1cm} (57)
To prove it, if L is large enough, we observe that

$$
\frac{d^2}{ds^2} G_1(s; L, T)
= \frac{2T \Gamma(1 + 2s)}{\pi L^{1+2s}} \left(\sin(\pi s) \left(\psi(1 + 2s) - \ln L \right) + \frac{\pi}{2} \cos(\pi s) \right) \left(\psi(1 + 2s) - \ln L \right)
+ \frac{T \Gamma(1 + 2s)}{\pi L^{1+2s}} \left(\pi \cos(\pi s) \left(\psi(1 + 2s) - \ln L \right) + 2 \sin(\pi s) \psi'(1 + 2s) - \frac{\pi^2}{2} \sin(\pi s) \right)
\leq \frac{2T \Gamma(1 + 2s)}{L^{1+2s}} \left(s \left(\psi(1 + 2s) - \ln L - \pi \right) + 1 \right) \left(\psi(1 + 2s) - \ln L \right)
+ \frac{2T \Gamma(1 + 2s)}{\pi L^{1+2s}} \sin(\pi s) \psi'(1 + 2s).
$$

Now we observe that if $s \in \left(s_{L}^{(-)}, s_{L}^{(+)} \right)$ then

$$
s \left(\ln L - \psi(1 + 2s) + \pi \right) - 1 \leq \frac{2}{3(\ln L - \psi(3))} \left(\ln L - \psi(1 + 2s) + \pi \right) - 1
= \frac{2}{3} - \frac{2(\psi(3) - \psi(1 + 2s) + \pi)}{3(\ln L - \psi(3))} - 1
= -\frac{1}{3} + \frac{2(\psi(3) - \psi(1 + 2s) + \pi)}{3(\ln L - \psi(3))}
\leq -\frac{1}{6},
$$

as long as L is taken sufficiently large.

Moreover, since $\psi(1 + 2s)$ is increasing for $s \in (0, 1)$, if L is sufficiently large, we have that, for all $s \in \left(s_{L}^{(-)}, s_{L}^{(+)} \right)$,

$$
\sin(\pi s) \psi'(1 + 2s) \leq \pi s \psi'(1 + 2s) \leq \pi s_{L}^{(+)} \psi'(1 + 2s).
$$

Thus, using these pieces of information, we conclude that, if L is large enough, for every $s \in \left(s_{L}^{(-)}, s_{L}^{(+)} \right)$,

$$
\frac{d^2}{ds^2} G_1(s; L, T) \leq -\frac{T \Gamma(1 + 2s)}{3L^{1+2s}} \left(\ln L - \psi(1 + 2s) \right) + \frac{2T \Gamma(1 + 2s)}{L^{1+2s}} s_{L}^{(+)} \psi'(1 + 2s)
= -\frac{T \Gamma(1 + 2s)}{3L^{1+2s}} \left(\ln L - \psi(1 + 2s) - 6s_{L}^{(+)} \psi'(1 + 2s) \right)
= -\frac{T \Gamma(1 + 2s)}{3L^{1+2s}} \left(\ln L - \psi(1 + 2s) - \frac{4\psi'(1 + 2s)}{\ln L - \psi(3)} \right)
< 0.
$$
This establishes the claim in (57).
Now, the claim in (24) follows from (56), (57) and the limits in (53) and (55).

A.4 Analytical verification of (26)

We compute that
\[
\frac{d}{ds} G_2(s; L, T) = -\frac{T}{4} \left[\frac{2 \ln L}{L^{1+2s} \xi(1+2s)} + \frac{2 \zeta'(1+2s)}{L^{1+2s} \zeta^2(1+2s)} \right]
\]
\[
= -\frac{T}{2 L^{1+2s} \xi(1+2s)} \left[\ln L + \frac{\zeta'(1+2s)}{\zeta(1+2s)} \right].
\]

The Riemann zeta function \(\zeta \) is a meromorphic function with pole at \(z = 1 \). We also recall that near \(z = 1 \) the derivative of the Riemann Zeta Function has the Laurent expansion
\[
\frac{\zeta'(z)}{\zeta(z)} = -\frac{1}{z-1} + \gamma + O(z-1), \quad (58)
\]
see e.g. page 481 in Choudhury (1995). This leads to the expression
\[
\frac{\zeta'(1+2s)}{\zeta(1+2s)} = -\frac{1}{2s} + \gamma + O(2s) \quad (59)
\]
and to the existence of some constant \(C \in \mathbb{R} \) such that
\[
\frac{\zeta'(1+2s)}{\zeta(1+2s)} \geq -\frac{1}{2s} + \gamma + Cs, \quad (60)
\]
for all \(s \in (0, 1) \). We point out that we can assume without loss of generality that \(C \in (-\infty, 0] \).

Therefore, if we define
\[
s_L^{(+)} := \frac{1}{2 \left(\ln L + \gamma + C \right)},
\]
we obtain that
\[
\frac{2 L^{1+2s} \xi(1+2s)}{T} \frac{d}{ds} G_2(s; L, T) = -\left[\ln L + \frac{\zeta'(1+2s)}{\zeta(1+2s)} \right]
\]
\[
\leq -\left(\ln L - \frac{1}{2s} + \gamma + Cs \right) \quad \leq 0,
\]
\[
\leq 0,
\]
for all \(s \in \left[s_L^{(+)}, 1 \right) \).

We notice also that
\[
\lim_{L \to +\infty} s_L^{(+)} = 0. \tag{62}
\]

Analogously, thanks to the expansion in (59), we obtain the existence of some \(\tilde{C} \in \mathbb{R} \) such that
\[
\frac{\xi'(1 + 2s)}{\xi(1 + 2s)} \leq -\frac{1}{2s} + \gamma + \tilde{C}s, \tag{63}
\]
for all \(s \in (0, 1) \). Without loss of generality, we can suppose that \(\tilde{C} \in [0, +\infty) \).

Thus, if we define
\[
\frac{1}{2(\ln L + \gamma + \tilde{C})},
\]
we deduce that
\[
\frac{2L^{1+2s}}{T} \frac{d}{ds} G_2(s; L, T) = -\left[\ln L + \frac{\xi'(1 + 2s)}{\xi(1 + 2s)} \right] \geq -\left(\ln L - \frac{1}{2s} + \gamma + \tilde{C}s \right), \tag{64}
\]
\[
> -\left(\ln L - \frac{1}{2s} + \gamma + \tilde{C} \right) \geq 0,
\]
for all \(s \in \left(0, s_L^{(-)} \right) \).

We also observe that
\[
\lim_{L \to +\infty} s_L^{(-)} = 0. \tag{65}
\]

From (61) and (64) we deduce that
\[
\text{there exists at least one critical point for } G_2(s; L, T)
\]
and all the critical points of \(G_2(s; L, T) \) are located in \(\left(s_L^{(-)}, s_L^{(+)} \right) \). \tag{66}

We now show that, for all \(L \) large enough,
\[
\frac{d}{ds} G_2(s; L, T) \text{ is strictly decreasing in } \left(s_L^{(-)}, s_L^{(+)} \right). \tag{67}
\]

To prove it, using (63) we estimate the derivative
\[
\frac{d^2}{ds^2} G_2(s; L, T) = \frac{T}{\xi(1 + 2s)L^{1+2s}} \left[\ln L + \frac{\xi'(1 + 2s)}{\xi(1 + 2s)} \right]^2 \tag{68}
\]
\[
- \frac{T}{\xi(1 + 2s)L^{1+2s}} \left[\frac{\xi''(1 + 2s)}{\xi(1 + 2s)} - \frac{(\xi'(1 + 2s))^2}{\xi^2(1 + 2s)} \right].
\]
Now we notice that
\[
\left| \ln L + \frac{\zeta'(1 + 2s)}{\zeta(1 + 2s)} \right| \leq \ln L - \frac{1}{2s} + \gamma + \max\{\tilde{C}, -C\} s, \tag{69}
\]
thanks to (60) and (63).

Moreover, by the definitions of \(s_L^{(-)} \) and \(s_L^{(+)} \), we have that
\[
\frac{1}{2(\ln L + \gamma + \tilde{C})} < s < \frac{1}{2(\ln L + \gamma + C)},
\]
which gives that
\[
\left| \ln L - \frac{1}{2s} + \gamma \right| \leq \max\{\tilde{C}, -C\}.
\]

From this and (69), we deduce that
\[
\left| \ln L + \frac{\zeta'(1 + 2s)}{\zeta(1 + 2s)} \right| \leq \max\{\tilde{C}, -C\}(1 + s). \tag{70}
\]

Additionally, differentiating the Laurent expansion in (58),
\[
\frac{\zeta''(z)}{\zeta(z)} - \left(\frac{\zeta'(z)}{\zeta(z)} \right)^2 = \frac{d}{dz} \left(\frac{\zeta'(z)}{\zeta(z)} \right) = \frac{1}{(z - 1)^2} + O(1), \tag{71}
\]
which leads to the existence of some constant \(\hat{C} \in \mathbb{R} \) such that
\[
\frac{\zeta''(1 + 2s)}{\zeta(1 + 2s)} - \left(\frac{\zeta'(1 + 2s)}{\zeta(1 + 2s)} \right)^2 \geq \frac{1}{(2s)^2} + \hat{C}, \tag{72}
\]
for all \(s \in (0, 1) \).

Using (70) and (72) into (68), we conclude that
\[
\frac{d^2}{ds^2} G_2(s; L, T) \leq \frac{T}{\zeta(1 + 2s)L^{1+2s}} \left[(\max\{\tilde{C}, -C\})^2(1 + s)^2 - \frac{1}{(2s)^2} - \hat{C} \right]
\leq \frac{T}{\zeta(1 + 2s)L^{1+2s}} \left[(\max\{\tilde{C}, -C\})^2 \left(1 + \frac{1}{2(\ln L + \gamma + C)} \right)^2 - \left(\ln L + \gamma + C \right)^2 - \hat{C} \right],
\]
for all \(s \in (s_L^{(-)}, s_L^{(+)}). \)

Thus, if \(L \) is sufficiently large, we obtain (67).

Therefore, claim (26) follows from (66), (67) and the limits in (62) and (65).
A.5 Analytical verification of (27)

We observe that
\[
P(s; L, T) := \frac{\pi L^{1+2s} \xi(2s)}{T \Gamma(1+2s)} \frac{d}{ds} G_3(s; L, T)
= \xi(1+2s) \left(-\ln L \sin(\pi s) + \frac{\pi}{2} \cos(\pi s) + \sin(\pi s)\psi(1+2s)\right)
+ \sin(\pi s)\xi'(1+2s) - \frac{\xi(1+2s) \sin(\pi s)\xi'(2s)}{\xi(2s)}
\]
and the positivity of the derivative of \(G_3 \) is equivalent to the positivity of \(P \).

Let also
\[
Q(s) := \xi(1+2s) \left(\frac{\pi}{2} \cos(\pi s) + \sin(\pi s)\psi(1+2s)\right) + \sin(\pi s)\xi'(1+2s)
\]
and note that \(\sup_{s \in \left(\frac{1}{2}, 1\right]} |Q(s)| \leq C \) for some \(C > 0 \); in addition,
\[
P(s; L, T) = -\xi(1+2s) \ln L \sin(\pi s) - \frac{\xi(1+2s) \sin(\pi s)\xi'(2s)}{\xi(2s)} + Q(s)
\]
\[
= -\xi(1+2s) \sin(\pi s) \left(\ln L + \frac{\xi'(2s)}{\xi(2s)} \right) + Q(s)
\]
\[
= -\xi(1+2s) \sin(\pi s) \left(\ln L - \frac{1}{2s - 1} \right) + \tilde{Q}(s),
\]
where
\[
\tilde{Q}(s) := Q(s) - \xi(1+2s) \sin(\pi s) \left(\frac{\xi'(2s)}{\xi(2s)} + \frac{1}{2s - 1} \right).
\]
We stress that \(\sup_{s \in \left(\frac{1}{2}, 1\right]} |\tilde{Q}(s)| \leq \tilde{C} \) for some \(\tilde{C} > 0 \), thanks to (58).

Let now
\[
\varepsilon_L := \frac{1}{\sqrt{\ln L}} \quad \text{and} \quad s_L^{(\pm)} := \frac{1}{2} + \frac{1 \pm \varepsilon_L}{2 \ln L}.
\]
We notice that
\[
\lim_{L \to +\infty} \varepsilon_L = 0 \quad \text{and} \quad \lim_{L \to +\infty} s_L^{(\pm)} = \frac{1}{2}.
\]
(73)

Also, when \(s \in \left(\frac{1}{2}, s_L^{(-)}\right] \), we have that
\[
2s - 1 \leq 2s_L^{(-)} - 1 = \frac{1 - \varepsilon_L}{\ln L}.
\]
and, as a result, for large L,

$$
\mathcal{P}(s; L, T) \geq \zeta(1 + 2s) \sin(\pi s) \left(-\ln L + \frac{\ln L}{1 - \varepsilon_L} \right) - \tilde{C}
$$

$$
= \frac{\varepsilon_L \ln L \zeta(1 + 2s) \sin(\pi s)}{1 - \varepsilon_L} - \tilde{C}
$$

$$
\geq \frac{\sqrt{\ln L} \zeta(1 + 2s) \sin(\pi s)}{2} - \tilde{C}
$$

$$
\geq \frac{\sqrt{\ln L} \zeta(3)}{4} - \tilde{C}
$$

$$
> 0.
$$

Instead, when $s \in \left[s_L^{(+)} + 1 \right)$,

$$
2s - 1 \geq 2s_L^{(+)} - 1 = \frac{1 + \varepsilon_L}{\ln L},
$$

which entails that

$$
\mathcal{P}(s; L, T) \leq \zeta(1 + 2s) \sin(\pi s) \left(-\ln L + \frac{\ln L}{1 + \varepsilon_L} \right) + \tilde{Q}(s)
$$

$$
\leq -\frac{\varepsilon_L \ln L \zeta(1 + 2s) \sin(\pi s)}{1 + \varepsilon_L} + \tilde{Q}(s) + C_1 \sin(\pi s)
$$

$$
\leq -\frac{\sqrt{\ln L} \zeta(3) \sin(\pi s)}{1 + \varepsilon_L} + \frac{\pi}{2} \cos(\pi s) \zeta(1 + 2s) + C_2 \sin(\pi s)
$$

$$
= -\sin(\pi s) \left(\frac{\sqrt{\ln L} \zeta(3)}{1 + \varepsilon_L} - C_2 \right) + \frac{\pi}{2} \cos(\pi s) \zeta(1 + 2s)
$$

$$
\leq -\sin(\pi s) \left(\frac{\sqrt{\ln L} \zeta(3)}{2} - C_2 \right) + \frac{\pi}{2} \cos(\pi s) \zeta(1 + 2s)
$$

$$
< 0,
$$

where C_1 and C_2 are suitable positive constants.

From these considerations, it follows that there exists at least one zero for \mathcal{P} and all the zeros of \mathcal{P} are located in $\left(s_L^{(-)}, s_L^{(+)} \right)$. As a consequence,

there exists at least a critical point for G_3

and all the critical points of G_3 are located in $\left(s_L^{(-)}, s_L^{(+)} \right)$. (74)

We now show that

\mathcal{P} is strictly decreasing in $\left(s_L^{(-)}, s_L^{(+)} \right)$. (75)
For this, we calculate that

\[
\frac{d}{ds} \mathcal{P}(s; L, T) = \ln L \left(-2 \sin(\pi s)\zeta'(1 + 2s) - \pi \zeta(1 + 2s) \cos(\pi s) \right) \\
+ \pi \cos(\pi s) \left[2\zeta'(1 + 2s) + \zeta(1 + 2s) \left(\psi(1 + 2s) - \frac{\zeta'(2s)}{\zeta(2s)} \right) \right] \\
+ 2 \sin(\pi s) \left[\zeta''(1 + 2s) + \zeta'(1 + 2s) \left(\psi(1 + 2s) - \frac{\zeta'(2s)}{\zeta(2s)} \right) \right] \\
+ \zeta(1 + 2s) \left(-\frac{\zeta''(2s)}{\zeta(2s)} + \left(\frac{\zeta'(2s)}{\zeta(2s)} \right)^2 + \psi'(1 + 2s) - \pi^2 \right) \right]
\leq \ln L \left(-2 \sin(\pi s)\zeta'(1 + 2s) - \pi \zeta(1 + 2s) \cos(\pi s) \right) \\
- \pi \cos(\pi s) \frac{\zeta'(2s)}{\zeta(2s)} - 2 \sin(\pi s) \frac{\zeta'(2s)}{\zeta(2s)} - \frac{\zeta(1 + 2s)}{(2s - 1)^2} + C_3
\]

for some constant \(C_3 > 0 \).

Plugging (71) into (76) we find that

\[
\frac{d}{ds} \mathcal{P}(s; L, T) \leq \ln L \left(-2 \sin(\pi s)\zeta'(1 + 2s) - \pi \zeta(1 + 2s) \cos(\pi s) \right) \\
- \pi \cos(\pi s) \frac{\zeta'(2s)}{\zeta(2s)} - 2 \sin(\pi s) \frac{\zeta'(2s)}{\zeta(2s)} - \frac{\zeta(1 + 2s)}{(2s - 1)^2} + C_4
\]

for some constant \(C_4 > 0 \). Thus, since \(\zeta' \leq 0 \),

\[
\frac{d}{ds} \mathcal{P}(s; L, T) \leq \ln L \left(-2 \sin(\pi s)\zeta'(1 + 2s) - \pi \zeta(1 + 2s) \cos(\pi s) \right) \\
- \frac{2\zeta'(2s)}{\zeta(2s)} - \frac{\zeta(1 + 2s)}{(2s - 1)^2} + C_4 \\
\leq \ln L \left(-2 \sin(\pi s)\zeta'(1 + 2s) - \pi \zeta(1 + 2s) \cos(\pi s) \right) \\
+ \frac{2}{2s - 1} - \frac{\zeta(1 + 2s)}{(2s - 1)^2} + C_5
\]

for some \(C_5 > 0 \), where (58) has been used once again.

Moreover, if \(s \in \left(\frac{1}{2}, s_L^{(+)} \right) \), then, for large \(L \),

\[
2s - 1 \leq \frac{1 + \varepsilon_L}{\ln L} \leq \frac{2}{\ln L}
\]
and therefore we deduce from (77) that

\[
\frac{d}{ds} \mathcal{P}(s; L, T) \leq \frac{C_6}{2s - 1} - \frac{\zeta(1 + 2s)}{(2s - 1)^2} \leq \frac{1}{2s - 1} \left(C_6 - \frac{\zeta(3)}{2s - 1} \right) \leq - \frac{1}{2s - 1} \left(\frac{\zeta(3)}{2s_L^{(+)}} - 1 \right) \leq - \frac{1}{2s - 1} \left(\frac{\zeta(3) \ln L}{2} - C_6 \right) < 0,
\]

which completes the proof of (75).

The desired claim in (27) now follows combining (74) and (75) with the second limit in (73).

A.6 Analytical verification of (29)

We start by computing the derivative of \(\mathcal{G}_4 \) with respect to \(s \), and we get that

\[
\frac{d}{ds} \mathcal{G}_4(s, T, L) = - \frac{T}{2L^{1+2s} \zeta(2s)} \left(\ln L + \frac{\zeta'(2s)}{\zeta(2s)} \right).
\] (78)

Now we observe that, for \(s \in \left(\frac{1}{2}, 1 \right) \), the function

\[
m(s) := \frac{\zeta'(2s)}{\zeta(2s)}
\]

is negative and strictly increasing. Furthermore, from (58) we infer that

\[
\lim_{s \downarrow 1/2} m(s) = - \infty.
\] (79)

Now, in light of (78),

\[
\frac{d}{ds} \mathcal{G}_4(s, T, L) > 0 \text{ if and only if } \ln L + m(s) < 0,
\]

and thus if and only if \(L < \exp(-m(s)) \).

Also, from (28) and the monotonicity of the function \(m \), for each \(L \leq L^* \) and \(s \in \left(\frac{1}{2}, 1 \right) \) we have that

\[
\exp(-m(s)) > \exp(-m(1)) = L^* \geq L,
\]

and therefore we deduce from (80) that

when \(L \leq L^* \) the supremum of \(\frac{1}{2}, 1 \) \(s \mapsto \mathcal{G}_4(s; L, T) \) is uniquely attained at \(s = 1 \).

\[
\mathcal{G}_4 \text{ Springer}
\]
If instead $L > L^\star$, using (79) we see that

$$\lim_{s \searrow 1/2} \exp(-m(s)) = +\infty > L$$

and

$$\lim_{s \nearrow 1} \exp(-m(s)) = \exp(-m(1)) = L^\star < L.$$

This and the strict monotonicity of m yield that for each $L > L^\star$ there exists a unique $s_L \in (\frac{1}{2}, 1)$ such that

$$\frac{d}{ds} G_4(s_L, L, T) = 0,$$

with $\frac{d}{ds} G_4(s, L, T) > 0$ if and only if $s \in (\frac{1}{2}, s_L)$, namely s_L is the unique maximum for $G_4(s, L, T)$ when $L > L^\star$.

From these observations and (81), in order to complete the analytical proof of (29), it is only left to show that

$$\lim_{L \rightarrow +\infty} s_L = \frac{1}{2}.$$ (83)

To this end, equations (78) and (82) give that

$$0 = \ln L + m(s_L),$$

which leads to

$$+\infty = \lim_{L \rightarrow +\infty} \ln L = -\lim_{L \rightarrow +\infty} m(s_L).$$ (84)

Since the only pole of $m(s)$ at $[\frac{1}{2}, 1]$ occurs in $s = \frac{1}{2}$, then we obtain (83), as desired.

Conclusions

In this article we have introduced several efficiency functionals accounting for different foraging strategies of a predator (for simplicity, in a one-dimensional environment). The foraging strategies rely on the possible adoption of a different Lévy exponent for the diffusion of the predator. The corresponding efficiency functionals thus compare, roughly speaking, the outcome of the forager’s hunt with the effort required to implement it and our objective was to understand, in different scenarios, which Lévy exponent optimizes, or pessimizes, a given efficiency functional for a given distribution of targets.

Several biological environments have been considered, such as the ones of a target close to the initial position of the predator, of a sparse distribution of targets, of a remotely located target, etc.

The optimal exponents correspond to different hunting strategies, driven by either classical or anomalous types of diffusion: specifically, one can compare the classical diffusion induced by Brownian motion and the one obtained by an inverse square law distribution. Our findings show that the theoretical optimality of an exponent has to be confronted with the practical reliability of the corresponding hunting strategy, since we
pointed out the occurrence of bifurcation phenomena depending on the environmental parameters in which a sudden switch takes place between a theoretically optimal exponent and a less ideal, but more secure, foraging procedure. In particular, optimal exponents can be located arbitrarily close to pessimal ones, making the practical choice of the hunting strategy a delicate balance between a striving for maximum success and a more conservative attitude to prioritize safety.

Cases of intermediate optimal exponents, balancing between purely Gaussian and Lévy distributions, have also been detected.

We kept our analysis as simple as possible, by removing additional parameters in the model such as the possibility of restarting the strategy after each hit and the distinction between random relocation and direct finite-range vision. Also, we did not introduce any additional a-priori bound on the length of the forager’s journey and no additional truncation on the power law distributions has been added into the model. Furthermore, the efficiency functionals did not account just for a single foraging success but rather for its time average.

In our computation, a significant role is also played by the possibly different normalization constants involved in probabilistic and analytical models. The results obtained present explicit solutions in closed form which utilize only elementary special functions (in particular, no expensive numerical simulations were needed and the results are not affected by truncations or discretizations).

References

Abatangelo N, Valdinoci E (2019) Getting acquainted with the fractional Laplacian. Contemporary research in elliptic PDEs and related topics. Springer INdAM series, vol 33. Springer, Cham, pp 1–105
Afanasiev VV, Sagdeev RZ, Zaslavsky GM (1991) Chaotic jets with multifractal space-time random walk. Chaos 1:143–159
Atkinson RPD, Rhodes CJ, Macdonald DW, Anderson RM (2002) Scale-free dynamics in the movement patterns of jackals. Oikos 98:134–140
Bartumeus F, Catalan J, Fulco UL, Lyra ML, Viswanathan GM (2002) Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys Rev Lett 88:097901
Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087
Benhamou S (2007) How many animals really do the Lévy walk? Ecology 88:1962–1969
Bertrand S, Burgos JM, Gerlotta F, Atiquipa J (2005) Lévy trajectories of Peruvian purse-seiners as an indicator of the spatial distribution of anchovy. ICES J Mar Sci 62:477–482
Bonnar J (2017) The gamma function. Treasure Trove of Mathematics, Danvers
Boyer D, Ramos-Fernández G, Miramontes O, Mateos JL, Cocho G, Larralde H, Ramos H, Rojas F (2006) Scale-free foraging by primates emerges from their interaction with a complex environment. Proc R Soc B 273:1743–1750
Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature 439:462–465
Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in Dobe Ju'/hoansi foraging patterns. Hum Ecol 35:129–138
Buldyrev SV, Havlin S, Kazakov AY, da Luz MG, Raposo EP, Stanley HE, Viswanathan GM (2001) Average time spent by Lévy flights and walks on an interval with absorbing boundaries. Phys Rev E 64(041108):1–11
Buldyrev SV, Raposo EP, Bartumeus F, Havlin S, Rusch FR, da Luz MGE, Viswanathan GM (2021) Comment on “Inverse square Lévy Walks are not optimal search strategies for $d \geq 2$”. Phys Rev Lett 126(048901):1–2
Choudhury BK (1995) The Riemann zeta-function and its derivatives. Proc R Soc Lond Ser A 450:477–499
Coclite GM, DiPierro S, Fanizza G, Maddalena F, Valdinoci E (2022) Dispersive effects in a scalar nonlocal wave equation inspired by peridynamics. Nonlinearity. arXiv:2105.01558

DiPierro S, Giacomin G, Valdinoci E, Analysis of the Lévy flight foraging hypothesis in \(\mathbb{R}^n \) and unreliability of the most rewarding strategies (Forthcoming)

Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1048

Garg K, Kello CT (2021) Efficient Lévy Walks in virtual human foraging. Sci Rep 11(5242):1–12

Gautestad AO, Mysterud A (2013) The Lévy flight foraging hypothesis: forgetting about memory may lead to false verification of Brownian motion. Mov Ecol 1:1–9

Gel’fand IM, Shilov GE (1964) Generalized functions. Properties and operations, vol 1. Academic Press, New York

González MC, Hidalgo CA, Barabási A-L (2008) Understanding individual human mobility patterns. Nature 453:779–782

Gray RD (1987) Faith and foraging: a critique of the “paradigm argument from design”. Foraging behavior. Springer, Boston

Hays GC, Bastian T, Doyle TK, Fossett S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MKS, Sims DW (2012) High activity and Lévy searches: jellyfish can search the water column like fish. Proc R Soc B 279:465–473

Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, Hays GC, Jones CS, Noble LR, Wearmouth VJ, Southall EJ, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–1069

Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW (2012) Foraging success of biological Lévy flights recorded in situ. Proc Nat Acad Sci USA 109:7169–7174

Humphries NE, Weimerskirch H, Sims DW (2013) A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods Ecol Evol 4:930–938

James A, Plank MJ, Edwards AM (2011) Assessing Lévy Walks as models of animal foraging. J R Soc Interface 8:1233–1247

Levandier N, Textor J, Bénichou O, Voituriez R (2020) Inverse square Lévy Walks are not optimal search strategies for \(d \geq 2 \). Phys Rev Lett 124(080601):1–5

Levandier N, Textor J, Bénichou O, Voituriez R (2021) Reply to “Comment on ‘Inverse square Lévy Walks are not optimal search strategies for \(d \geq 2 \)”’. Phys Rev Lett 126:048902

Márell A, Ball JP, Hofgaard A (2002) Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights. Can J Zool 80:854–865

Montroll EW, Weiss GH (1965) Random walks on lattices. II. J Math Phys 6:167–181

Paleylin VV, Chechkin AV, Metzler R (2014) Lévy flights do not always optimize random blind search for sparse targets. Proc Natl Acad Sci USA 111:2931–2936

Pierce GJ, Ollason JG (1987) Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49:111–118

Pinsky MA (2002) Introduction to Fourier analysis and wavelets. Brooks/Cole series in advanced mathematics. Brooks/Cole, Pacific Grove

Pólya G (1923) On the zeros of an integral function represented by Fourier’s integral. Messenger Math 52:185–188

Rademacher H (1973) Topics in analytic number theory. Die Grundlehren der mathematischen Wissenschaften, Band 169. Springer, New York

Raichlen DA, Wood BM, Gordon AD, Mabulla AZP, Marlowe FW, Pontzer H (2014) Evidence of Lévy Walk foraging patterns in human hunter-gatherers. Proc Natl Acad Sci USA 111:728–733

Raposo EP, Buldyrev SV, da Luz MGE, Viswanathan GM, Stanley HE (2009) Lévy flights and random walks. J Phys A 42(434003):1–23

Reynolds AM (2014) Mussels realize Weierstrassian Lévy walks as composite correlated random walks. Sci Rep 4(4409):1–5

Reynolds A, Ceccon E, Baldauf C, Medeiros TK, Miramontes O (2018) Lévy foraging patterns of rural humans. PLoS ONE 13(e0199099):1–16

Reynolds AM, Frye MA (2007) Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2(e354):1–9

Reynolds AM, Ouellette NT (2016) Swarm dynamics may give rise to Lévy flights. Sci Rep 6(30515):1–8
Reynolds AM, Smith AD, Menzel R, Greggers U, Reynolds DR, Riley JR (2007) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961
Shlesinger MF, Klafter J, Wong YM (1982) Random walks with infinite spatial and temporal moments. J Stat Phys 27:499–512
Shlesinger MF, West BJ, Klafter J (1987) Lévy dynamics of enhanced diffusion: application to turbulence. Phys Rev Lett 58:1100–1103
Shlesinger MF, Zaslavsky GM, Klafter J (1993) Strange kinetics. Nature 363:31–37
Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJA, Pitchford JW, James A, Ahmed MZ, Brierley AS, Hindell MA, Morritt D, Musyl MK, Righton D, Shepard ELC, Wearmouth VJ, Wilson RP, Witt MJ, Metcalfe JD (2008) Scaling laws of marine predator search behaviour. Nature 451:1098–1102
Stephens DW, Krebs JR (1986) Foraging theory. Monographs in behavior and ecology. Princeton University Press, Princeton
Vallaey V, Tyson RC, Lane WD, Deleersnijder E, Hanert E (2017) A Lévy flight diffusion model to predict transgenic pollen dispersal. J R Soc Interface 14(20160889):1–10
Viswanathan GM, Bartumeus F, Buldyrev SV, Catalan J, Fulco UL, Havlin S, da Luz MGE, Lyra ML, Raposo EP, Stanley HE (2000) Lévy flights in random searches. Physica A 282:1–12
Viswanathan GM, Bartumeus F, Buldyrev SV, Catalan J, Fulco UL, Havlin S, da Luz MGE, Lyra ML, Raposo EP, Stanley HE (2002) Lévy flight random searches in biological phenomena. Horizons in complex systems (Messina, 2001). Physica A 314:208–213
Viswanathan GM, Buldyrev SV, Havlin S, da Luz MG, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.