Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions

František Štampach
jointly with Petr Siegl

Stockholm University

Workshop on Operator Theory, Complex Analysis, and Applications 2016
June 21-24
Contents

1 Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I - Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case

5 Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$
Jacobi operators associated with complex semi-infinite Jacobi matrix

To the semi-infinite Jacobi matrix

\[
J = \begin{pmatrix}
 b_1 & a_1 \\
 a_1 & b_2 & a_2 \\
 a_2 & b_3 & a_3 \\
 & & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

where \(b_n \in \mathbb{C} \) and \(a_n \in \mathbb{C} \setminus \{0\} \), we associate two operators \(J_{\text{min}} \) and \(J_{\text{max}} \) acting on \(\ell^2(\mathbb{N}) \).
Jacobi operators associated with complex semi-infinite Jacobi matrix

To the semi-infinite Jacobi matrix

\[
\mathcal{J} = \begin{pmatrix}
 b_1 & a_1 & & \\
 a_1 & b_2 & a_2 & \\
 & a_2 & b_3 & a_3 \\
 & & \ddots & \ddots & \ddots \\
\end{pmatrix}
\]

where \(b_n \in \mathbb{C} \) and \(a_n \in \mathbb{C} \setminus \{0\} \), we associate two operators \(J_{\text{min}} \) and \(J_{\text{max}} \) acting on \(\ell^2(\mathbb{N}) \).

- \(J_{\text{min}} \) is the operator closure of \(J_0 \), an operator defined on \(\text{span}\{e_n \mid n \in \mathbb{N}\} \) by
 \[
 J_0 e_n := a_{n-1} e_{n-1} + b_n e_n + a_n e_{n+1}, \quad \forall n \in \mathbb{N}, \ (a_0 := 0).
 \]
To the semi-infinite Jacobi matrix

\[
\mathcal{J} = \begin{pmatrix}
 b_1 & a_1 \\
 a_1 & b_2 & a_2 \\
 a_2 & b_3 & a_3 \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

where \(b_n \in \mathbb{C} \) and \(a_n \in \mathbb{C} \setminus \{0\} \), we associate two operators \(J_{\min} \) and \(J_{\max} \) acting on \(\ell^2(\mathbb{N}) \).

\(J_{\min} \) is the operator closure of \(J_0 \), an operator defined on \(\text{span}\{e_n \mid n \in \mathbb{N}\} \) by

\[
J_0 e_n := a_{n-1} e_{n-1} + b_n e_n + a_n e_{n+1}, \quad \forall n \in \mathbb{N}, \ (a_0 := 0).
\]

\(J_{\max} \) acts as \(J_{\max} x := \mathcal{J} \cdot x \) (formal matrix product) on vectors from

\[
\text{Dom } J_{\max} = \{ x \in \ell^2(\mathbb{N}) \mid \mathcal{J} \cdot x \in \ell^2(\mathbb{N}) \}.
\]
Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

\[
J = \begin{pmatrix}
 b_1 & a_1 & & & \\
 a_1 & b_2 & a_2 & & \\
 & a_2 & b_3 & a_3 & \\
 & & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

where \(b_n \in \mathbb{C} \) and \(a_n \in \mathbb{C} \setminus \{0\} \), we associate two operators \(J_{\text{min}} \) and \(J_{\text{max}} \) acting on \(\ell^2(\mathbb{N}) \).

- \(J_{\text{min}} \) is the operator closure of \(J_0 \), an operator defined on \(\text{span}\{e_n \mid n \in \mathbb{N}\} \) by

\[
J_0 e_n := a_{n-1} e_{n-1} + b_n e_n + a_n e_{n+1}, \quad \forall n \in \mathbb{N}, \; (a_0 := 0).
\]

- \(J_{\text{max}} \) acts as \(J_{\text{max}} x := J \cdot x \) (formal matrix product) on vectors from

\[
\text{Dom} \; J_{\text{max}} = \{ x \in \ell^2(\mathbb{N}) \mid J \cdot x \in \ell^2(\mathbb{N}) \}.
\]

- Both operators \(J_{\text{min}} \) and \(J_{\text{max}} \) are closed and densely defined.
Jacobi operators associated with complex semi-infinite Jacobi matrix

To the semi-infinite Jacobi matrix

$$
\mathcal{J} = \begin{pmatrix}
 b_1 & a_1 \\
 a_1 & b_2 & a_2 \\
 a_2 & b_3 & a_3 \\
 & \ddots & \ddots & \ddots
\end{pmatrix}
$$

where $b_n \in \mathbb{C}$ and $a_n \in \mathbb{C} \setminus \{0\}$, we associate two operators J_{min} and J_{max} acting on $\ell^2(\mathbb{N})$.

J_{min} is the operator closure of J_0, an operator defined on $\text{span}\{e_n \mid n \in \mathbb{N}\}$ by

$$
J_0 e_n := a_{n-1} e_{n-1} + b_n e_n + a_n e_{n+1}, \quad \forall n \in \mathbb{N}, \ (a_0 := 0).
$$

J_{max} acts as $J_{\text{max}} x := \mathcal{J} \cdot x$ (formal matrix product) on vectors from

$$
\text{Dom} \ J_{\text{max}} = \{ x \in \ell^2(\mathbb{N}) \mid \mathcal{J} \cdot x \in \ell^2(\mathbb{N}) \}.
$$

Both operators J_{min} and J_{max} are closed and densely defined. They are related as

$$
J_{\text{max}}^* = C J_{\text{min}} C \quad \text{and} \quad J_{\text{min}}^* = C J_{\text{max}} C
$$

where C is the complex conjugation operator, $(Cx)_n = \overline{x_n}$.

František Štampach (Stockholm University)

Complex Jacobi Matrix associated with JEF

June 21-24
Proper case and spectrum of Jacobi operator

- Any closed operator A having $\text{span}\{e_n \mid n \in \mathbb{N}\} \subset \text{Dom}(A)$ and defined by the matrix product satisfies $J_{\text{min}} \subset A \subset J_{\text{max}}$.

- In general $J_{\text{min}} \neq J_{\text{max}}$. If $J_{\text{min}} = J_{\text{max}}$, the matrix J is called proper and the operator $J := J_{\text{min}} \equiv J_{\text{max}}$ the Jacobi operator associated with J.

- Let $J_{\text{min}} = J_{\text{max}} =: J$. Then $J^* = CJC$. As a consequence, $\sigma_r(J) = \emptyset$.

- We have the decomposition: $\sigma(J) = \sigma_p(J) \cup \sigma_c(J) = \sigma_p(J) \cup \sigma_{\text{ess}}(J)$, where the essential spectrum has the simple characterization: $\sigma_{\text{ess}}(J) = \{z \in \mathbb{C} \mid \text{Ran}(J - z) \text{ is not closed}\}$.

František Štampach (Stockholm University)
Proper case and spectrum of Jacobi operator

- Any closed operator A having $\text{span}\{e_n \mid n \in \mathbb{N}\} \subset \text{Dom}(A)$ and defined by the matrix product satisfies $J_{\text{min}} \subset A \subset J_{\text{max}}$.

- In general $J_{\text{min}} \neq J_{\text{max}}$. If $J_{\text{min}} = J_{\text{max}}$, the matrix J is called \textit{proper} and the operator $J := J_{\text{min}} \equiv J_{\text{max}}$ the \textit{Jacobi operator} associated with J.

Let $J_{\text{min}} = J_{\text{max}} := J$. Then $J^* = CJC$. As a consequence, $\sigma_r(J) = \emptyset$.

We have the decomposition:

$$
\sigma(J) = \sigma_p(J) \cup \sigma_c(J) = \sigma_p(J) \cup \sigma_{\text{ess}}(J)
$$

where the essential spectrum has the simple characterization:

$$
\sigma_{\text{ess}}(J) = \left\{ z \in \mathbb{C} \mid \text{Ran}(J - z) \text{ is not closed} \right\}
$$
Proper case and spectrum of Jacobi operator

- Any closed operator A having $\text{span}\{e_n \mid n \in \mathbb{N}\} \subset \text{Dom}(A)$ and defined by the matrix product satisfies $J_{\min} \subset A \subset J_{\max}$.

- In general $J_{\min} \neq J_{\max}$. If $J_{\min} = J_{\max}$, the matrix J is called *proper* and the operator $J := J_{\min} \equiv J_{\max}$ the *Jacobi operator* associated with J.

- Let $J_{\min} = J_{\max} =: J$. Then

$$J^* = CJC.$$
Proper case and spectrum of Jacobi operator

- Any closed operator A having $\text{span}\{e_n \mid n \in \mathbb{N}\} \subset \text{Dom}(A)$ and defined by the matrix product satisfies $J_{\text{min}} \subset A \subset J_{\text{max}}$.

- In general $J_{\text{min}} \neq J_{\text{max}}$. If $J_{\text{min}} = J_{\text{max}}$, the matrix J is called proper and the operator $J := J_{\text{min}} \equiv J_{\text{max}}$ the Jacobi operator associated with J.

- Let $J_{\text{min}} = J_{\text{max}} =: J$. Then

 $$J^* = CJC.$$

 As a consequence,

 $$\sigma_r(J) = \emptyset.$$
Proper case and spectrum of Jacobi operator

- Any closed operator \(A \) having \(\text{span}\{e_n \mid n \in \mathbb{N}\} \subset \text{Dom}(A) \) and defined by the matrix product satisfies \(J_{\text{min}} \subset A \subset J_{\text{max}} \).

- In general \(J_{\text{min}} \neq J_{\text{max}} \). If \(J_{\text{min}} = J_{\text{max}} \), the matrix \(J \) is called \textit{proper} and the operator \(J := J_{\text{min}} \equiv J_{\text{max}} \) the \textit{Jacobi operator} associated with \(J \).

- Let \(J_{\text{min}} = J_{\text{max}} =: J \). Then

\[
J^* = CJC.
\]

As a consequence,

\[
\sigma_r(J) = \emptyset.
\]

- We have the decomposition:

\[
\sigma(J) = \sigma_p(J) \cup \sigma_c(J) = \sigma_p(J) \cup \sigma_{\text{ess}}(J)
\]
Proper case and spectrum of Jacobi operator

Any closed operator A having $\text{span}\{e_n | n \in \mathbb{N}\} \subset \text{Dom}(A)$ and defined by the matrix product satisfies $J_{\min} \subset A \subset J_{\max}$.

In general $J_{\min} \neq J_{\max}$. If $J_{\min} = J_{\max}$, the matrix J is called \textit{proper} and the operator $J := J_{\min} \equiv J_{\max}$ the \textit{Jacobi operator} associated with J.

Let $J_{\min} = J_{\max} =: J$. Then

$$J^* = CJC.$$

As a consequence,

$$\sigma_r(J) = \emptyset.$$

We have the decomposition:

$$\sigma(J) = \sigma_p(J) \cup \sigma_c(J) = \sigma_p(J) \cup \sigma_{\text{ess}}(J)$$

where the essential spectrum has the simple characterization:

$$\sigma_{\text{ess}}(J) = \{ z \in \mathbb{C} | \text{Ran}(J - z) \text{ is not closed} \}.$$
Contents

1 Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I - Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case

5 Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$
The Jacobi matrix associated with Jacobian elliptic functions

For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$J = \begin{pmatrix}
0 & 1 & 2\alpha \\
1 & 0 & 3 \\
2\alpha & 0 & 4\alpha \\
3 & 0 & \\
& \ddots & \ddots & \ddots
\end{pmatrix}$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.
For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$J = \begin{pmatrix}
0 & 1 & 2\alpha \\
1 & 0 & 2\alpha \\
2\alpha & 0 & 3 \\
3 & 0 & 4\alpha \\
& \ddots & \ddots & \ddots
\end{pmatrix}$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.

The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.

We will restrict with α to the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha| > 1$ are very similar to those for $|\alpha| < 1$.
For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$J = \begin{pmatrix}
0 & 1 & 2\alpha \\
1 & 0 & 3 \\
2\alpha & 0 & 4\alpha \\
3 & 0 & \ddots \\
& \ddots & \ddots \\
& & & \ddots
\end{pmatrix}$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.

The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.

We will restrict with α to the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha| > 1$ are very similar to those for $|\alpha| < 1$.
Contents

1. Complex Jacobi matrices - generalities
2. The Jacobi matrix associated with Jacobian elliptic functions
3. Intermezzo I - Jacobian elliptic functions
4. Spectral analysis - the self-adjoint case
5. Spectral analysis - the non-self-adjoint case
6. Intermezzo II - extremal properties of $|\text{sn}(uK(m) | m)|$
Jacobian elliptic functions

For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$u = \int_{0}^{\varphi} \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}}$$

measures the arc length of an ellipse.
For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$ u = \int_0^\varphi \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}} $$

measures the arc length of an ellipse.

Its inverse $\varphi(u) = \text{am}(u, \alpha)$ is known as the amplitude.
Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)
 \begin{equation}
 u = \int_0^\varphi \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}}
 \end{equation}
 measures the arc length of an ellipse.
- Its inverse $\varphi(u) = \text{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:
 \begin{align*}
 \text{sn}(u, \alpha) &= \sin \text{am}(u, \alpha), \\
 \text{cn}(u, \alpha) &= \cos \text{am}(u, \alpha), \\
 \text{dn}(u, \alpha) &= \sqrt{1 - \alpha^2 \sin^2 \text{am}(u, \alpha)}.
 \end{align*}
Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

 \[u = \int_0^\varphi \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}} \]

 measures the arc length of an ellipse.

- Its inverse $\varphi(u) = \text{am}(u, \alpha)$ is known as the amplitude.

- The (copolar) triplet of JEF:

 \[
 \begin{align*}
 \text{sn}(u, \alpha) &= \sin \text{am}(u, \alpha), \\
 \text{cn}(u, \alpha) &= \cos \text{am}(u, \alpha), \\
 \text{dn}(u, \alpha) &= \sqrt{1 - \alpha^2 \sin^2 \text{am}(u, \alpha)}.
 \end{align*}
 \]

- Complete elliptic integral of the first kind:

 \[K(\alpha) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}}. \]
Jacobian elliptic functions

For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$u = \int_{0}^{\varphi} \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}}$$

measures the arc length of an ellipse.

Its inverse $\varphi(u) = \text{am}(u, \alpha)$ is known as the amplitude.

The (copolar) triplet of JEF:

$$\text{sn}(u, \alpha) = \sin \text{am}(u, \alpha),$$
$$\text{cn}(u, \alpha) = \cos \text{am}(u, \alpha),$$
$$\text{dn}(u, \alpha) = \sqrt{1 - \alpha^2 \sin^2 \text{am}(u, \alpha)}.$$

Complete elliptic integral of the first kind:

$$K(\alpha) = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - \alpha^2 \sin^2 \theta}}.$$

JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α (with u fixed). While K is analytic in the cut-plane $\mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty))$.
Jacobian elliptic functions - plotting
Contents

1 Complex Jacobi matrices - generalities
2 The Jacobi matrix associated with Jacobian elliptic functions
3 Intermezzo I - Jacobian elliptic functions
4 Spectral analysis - the self-adjoint case
5 Spectral analysis - the non-self-adjoint case
6 Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$
Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$\langle e_1, J(\alpha)^{2n+1} e_1 \rangle = 0 \quad \text{and} \quad \langle e_1, J(\alpha)^{2n} e_1 \rangle = C_{2n}(\alpha)$$
We start with the identities

\[\langle e_1, J(\alpha)^{2n+1} e_1 \rangle = 0 \quad \text{and} \quad \langle e_1, J(\alpha)^{2n} e_1 \rangle = C_{2n}(\alpha) \]

where \(C_{2n} \) are polynomials that can be defined via the generating function formula:

\[
\text{cn}(z, \alpha) = \sum_{n=0}^{\infty} \frac{(-1)^n C_{2n}(\alpha)}{(2n)!} z^{2n}.
\]
Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$\langle e_1, J(\alpha)^{2n+1} e_1 \rangle = 0 \quad \text{and} \quad \langle e_1, J(\alpha)^{2n} e_1 \rangle = C_{2n}(\alpha)$$

where C_{2n} are polynomials that can be defined via the generating function formula:

$$c_n(z, \alpha) = \sum_{n=0}^{\infty} \frac{(-1)^n C_{2n}(\alpha)}{(2n)!} z^{2n}. $$

- Hence we may write

$$c_n(z, \alpha) = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \langle e_1, J(\alpha)^n e_1 \rangle = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \int_{\mathbb{R}} x^n d\mu(x) = \int_{\mathbb{R}} e^{ixz} d\mu(x).$$

where we denote $\mu(\cdot) := \langle e_1, E_J(\cdot)e_1 \rangle$.
Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$\langle e_1, J(\alpha)^{2n+1}e_1 \rangle = 0 \quad \text{and} \quad \langle e_1, J(\alpha)^{2n}e_1 \rangle = C_{2n}(\alpha)$$

where C_{2n} are polynomials that can be defined via the generating function formula:

$$c_n(z, \alpha) = \sum_{n=0}^{\infty} \frac{(-1)^n C_{2n}(\alpha)}{(2n)!} z^{2n}.$$

- Hence we may write

$$c_n(z, \alpha) = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \langle e_1, J(\alpha)^n e_1 \rangle = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \int_{\mathbb{R}} x^n d\mu(x) = \int_{\mathbb{R}} e^{ixz} d\mu(x).$$

where we denote $\mu(\cdot) := \langle e_1, EJ(\cdot)e_1 \rangle$.

- We get

$$\mathcal{F}[\mu](z) = c_n(z, \alpha).$$
Spectral analysis of $J(\alpha)$ in the self-adjoint case

We start with the identities

$$\langle e_1, J(\alpha)^{2n+1}e_1 \rangle = 0 \quad \text{and} \quad \langle e_1, J(\alpha)^{2n}e_1 \rangle = C_{2n}(\alpha)$$

where C_{2n} are polynomials that can be defined via the generating function formula:

$$cn(z, \alpha) = \sum_{n=0}^{\infty} \frac{(-1)^n C_{2n}(\alpha)}{(2n)!} z^{2n}.$$

Hence we may write

$$cn(z, \alpha) = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \langle e_1, J(\alpha)^n e_1 \rangle = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} \int_{\mathbb{R}} x^n d\mu(x) = \int_{\mathbb{R}} e^{ixz} d\mu(x).$$

where we denote $\mu(\cdot) := \langle e_1, E_J(\cdot) e_1 \rangle$.

We get

$$F[\mu](z) = cn(z, \alpha).$$

Consequently, by applying the inverse Fourier transform to the function $cn(z; \alpha)$, one may recover the spectral measure μ!
Spectral analysis of $J(\alpha)$ for $\alpha \in (-1, 1)$

For $\alpha \in (-1, 1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t) = \frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \left[\delta \left(t - \frac{(2n + 1)\pi}{2K} \right) + \delta \left(t + \frac{(2n + 1)\pi}{2K} \right) \right]
$$

where the nome $q = q(\alpha)$ ($|q| < 1$).
Spectral analysis - the self-adjoint case

Spectral analysis of \(J(\alpha) \) for \(\alpha \in (-1, 1) \)

For \(\alpha \in (-1, 1) \), the evaluation of the inverse Fourier transform yields

\[
\mu(t) = \frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \left[\delta \left(t - \frac{(2n + 1)\pi}{2K} \right) + \delta \left(t + \frac{(2n + 1)\pi}{2K} \right) \right]
\]

where the nome \(q = q(\alpha) \) (\(|q| < 1\)).

Hence the measure \(\mu \) is discrete supported by the set

\[
\text{supp} \mu = \frac{\pi}{2K} (2\mathbb{Z} + 1).
\]
Spectral analysis of $J(\alpha)$ for $\alpha \in (-1, 1)$

- For $\alpha \in (-1, 1)$, the evaluation of the inverse Fourier transform yields

 $$\mu(t) = \frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \left[\delta \left(t - \frac{(2n + 1)\pi}{2K} \right) + \delta \left(t + \frac{(2n + 1)\pi}{2K} \right) \right]$$

 where the nome $q = q(\alpha)$ ($|q| < 1$).

- Hence the measure μ is discrete supported by the set

 $$\text{supp} \mu = \frac{\pi}{2K} (2\mathbb{Z} + 1).$$

- This implies that, for $\alpha \in (-1, 1)$, the spectrum of $J(\alpha)$ is discrete and

 $$\sigma(J(\alpha)) = \sigma_p(J(\alpha)) = \frac{\pi}{2K} (2\mathbb{Z} + 1).$$
Spectral analysis of $J(\alpha)$ for $\alpha \in (-1, 1)$

- For $\alpha \in (-1, 1)$, the evaluation of the inverse Fourier transform yields
 \[
 \mu(t) = \frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \left[\delta \left(t - \frac{(2n + 1)\pi}{2K} \right) + \delta \left(t + \frac{(2n + 1)\pi}{2K} \right) \right]
 \]
 where the nome $q = q(\alpha)$ ($|q| < 1$).

- Hence the measure μ is discrete supported by the set
 \[
 \text{supp} \mu = \frac{\pi}{2K} (2\mathbb{Z} + 1).
 \]

- This implies that, for $\alpha \in (-1, 1)$, the spectrum of $J(\alpha)$ is discrete and
 \[
 \sigma(J(\alpha)) = \sigma_p(J(\alpha)) = \frac{\pi}{2K} (2\mathbb{Z} + 1).
 \]

- In addition, we can also compute the Weyl m-function $m(z; \alpha) := \langle e_1, (J(\alpha) - z)^{-1} e_1 \rangle$, since
 \[
 m(z, \alpha) = iL[\text{cn}(t, \alpha)](-iz), \quad \text{for } \Re z > 0.
 \]
Spectral analysis of $J(\alpha)$ for $\alpha \in (-1, 1)$

- For $\alpha \in (-1, 1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t) = \frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \left[\delta \left(t - \frac{(2n+1)\pi}{2K} \right) + \delta \left(t + \frac{(2n+1)\pi}{2K} \right) \right]
$$

where the nome $q = q(\alpha)$ ($|q| < 1$).

- Hence the measure μ is discrete supported by the set

$$
\text{supp } \mu = \frac{\pi}{2K} (2\mathbb{Z} + 1).
$$

- This implies that, for $\alpha \in (-1, 1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha)) = \sigma_p(J(\alpha)) = \frac{\pi}{2K} (2\mathbb{Z} + 1).
$$

- In addition, we can also compute the Weyl m-function

$$
m(z, \alpha) := \langle e_1, (J(\alpha) - z)^{-1} e_1 \rangle,$$

since

$$
m(z, \alpha) = iL[\text{cn}(t, \alpha)](-iz), \quad \text{for } \Re z > 0.
$$

- It results in the formula

$$
m(z, \alpha) = \frac{2\pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \frac{1}{\frac{(2n+1)^2\pi^2}{4K^2} - z^2}.
$$
Spectral analysis of $J(\alpha)$ for $\alpha = \pm 1$

- Recall that

$$\mathcal{F}[\mu](z) = \text{cn}(z, \pm 1) = \frac{1}{\cosh(z)}.$$
Spectral analysis of $J(\alpha)$ for $\alpha = \pm 1$

- Recall that
 \[\mathcal{F}[\mu](z) = \text{cn}(z, \pm 1) = \frac{1}{\cosh(z)}. \]

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals
 \[\frac{d\mu}{dt} = \frac{1}{2 \cosh(\pi t/2)}, \quad \forall t \in \mathbb{R}. \]
Spectral analysis of $J(\alpha)$ for $\alpha = \pm 1$

- Recall that
 $$\mathcal{F}[\mu](z) = \text{cn}(z, \pm 1) = \frac{1}{\cosh(z)}.$$

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals
 $$\frac{d\mu}{dt} = \frac{1}{2 \cosh(\pi t/2)}, \quad \forall t \in \mathbb{R}.$$

- This implies that the spectrum of $J(\pm 1)$ is purely absolutely continuous and
 $$\sigma(J(\pm 1)) = \sigma_{ac}(J(\pm 1)) = \mathbb{R}.$$
Spectrum of $J(\alpha)$ in the self-adjoint case - animation
Contents

1. Complex Jacobi matrices - generalities
2. The Jacobi matrix associated with Jacobian elliptic functions
3. Intermezzo I - Jacobian elliptic functions
4. Spectral analysis - the self-adjoint case
5. Spectral analysis - the non-self-adjoint case
6. Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$
Spectral analysis of $J(\alpha)$ for $|\alpha| < 1$

- For $|\alpha| < 1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
Spectral analysis of $J(\alpha)$ for $|\alpha| < 1$

- For $|\alpha| < 1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha| < 1$.

In addition, by an analyticity argument it can be shown the formula for the Weyl m-function $m(z,\alpha) = \frac{2\pi z^{\alpha}}{K_\infty} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2(n+1)}} \frac{1}{2\pi^2 K^2 - z^2}$. remains true for all $z \in \rho(J(\alpha))$ and $|\alpha| < 1$.

It implies (in the non-self-adjoint case, too!) that $\sigma(J(\alpha)) = \frac{\pi}{2} K(2Z + 1)$. and all the eigenvalues are simple.
Spectral analysis of $J(\alpha)$ for $|\alpha| < 1$

- For $|\alpha| < 1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha| < 1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$m(z, \alpha) = \frac{2\pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \frac{1}{\frac{(2n+1)^2}{4K^2} - z^2}.$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha| < 1$.
Spectral analysis of $J(\alpha)$ for $|\alpha| < 1$

- For $|\alpha| < 1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha| < 1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$m(z, \alpha) = \frac{2\pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1/2}}{1 + q^{2n+1}} \frac{1}{\frac{(2n+1)^2 \pi^2}{4K^2} - z^2}.$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha| < 1$.
- It implies (in the non-self-adjoint case, too!) that

$$\sigma(J(\alpha)) = \frac{\pi}{2K} (2N + 1).$$

and all the eigenvalues are simple.
Eigenvectors of $J(\alpha)$ for $|\alpha| < 1$

Proposition

Let $0 < |\alpha| < 1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$v_{2k+1}^{(N)} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \, \text{cn} \left(\frac{Ks}{\pi}, \alpha \right) \, \text{sn}^{2k} \left(\frac{Ks}{\pi}, \alpha \right) \, ds$$

and

$$v_{2k+2}^{(N)} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \, \text{dn} \left(\frac{Ks}{\pi}, \alpha \right) \, \text{sn}^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) \, ds,$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2K}(2N + 1)$.
Eigenvectors of $J(\alpha)$ for $|\alpha| < 1$

Proposition

Let $0 < |\alpha| < 1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$v_{2k+1}^{(N)} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \text{cn} \left(\frac{Ks}{\pi}, \alpha \right) \text{sn}^{2k} \left(\frac{Ks}{\pi}, \alpha \right) ds$$

and

$$v_{2k+2}^{(N)} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \text{dn} \left(\frac{Ks}{\pi}, \alpha \right) \text{sn}^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) ds,$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2K}(2N + 1)$.

In addition, the set $\{v^{(N)} \mid N \in \mathbb{Z}\}$ is complete in $\ell^2(\mathbb{N})$.
Eigenvectors of $J(\alpha)$ for $|\alpha| < 1$

Proposition

Let $0 < |\alpha| < 1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$v_{2k+1}^{(N)} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \cn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k} \left(\frac{Ks}{\pi}, \alpha \right) \, ds$$

and

$$v_{2k+2}^{(N)} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \dn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) \, ds,$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2K}(2N + 1)$.

In addition, the set $\{v^{(N)} \mid N \in \mathbb{Z}\}$ is complete in $\ell^2(\mathbb{N})$.

Interesting open problems:

1. $\|v^{(N)}\| = ?$ or $\|v^{(N)}\| \sim ?$ for $N \to \pm\infty$.
2. Is $\{v^{(N)} \mid N \in \mathbb{Z}\}$ the Riesz basis of $\ell^2(\mathbb{N})$?
Eigenvectors of $J(\alpha)$ for $|\alpha| < 1$

Proposition

Let $0 < |\alpha| < 1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

\[
v^{(N)}_{2k+1} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \cncn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k} \left(\frac{Ks}{\pi}, \alpha \right) \, ds
\]
and

\[
v^{(N)}_{2k+2} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \dncn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) \, ds,
\]

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2K}(2N+1)$.

In addition, the set $\{v^{(N)} \mid N \in \mathbb{Z}\}$ is complete in $\ell^2(\mathbb{N})$.

Interesting open problems:

1. $\|v^{(N)}\| = ?$
Proposition

Let $0 < |\alpha| < 1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$v_{2k+1}^{(N)} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \cn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k} \left(\frac{Ks}{\pi}, \alpha \right) ds$$

and

$$v_{2k+2}^{(N)} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \dn \left(\frac{Ks}{\pi}, \alpha \right) \sn^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) ds,$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2K}(2N + 1)$.

In addition, the set $\{v^{(N)} \mid N \in \mathbb{Z}\}$ is complete in $\ell^2(\mathbb{N})$.

Interesting open problems:

1. $\|v^{(N)}\| = ?$ or $\|v^{(N)}\| \sim ?$ for $N \to \pm\infty$.

František Štampach (Stockholm University)
Eigenvectors of \(J(\alpha) \) for \(|\alpha| < 1 \)

Proposition

Let \(0 < |\alpha| < 1 \) and \(N \in \mathbb{Z} \), then the vector \(v^{(N)} \) given by formulas

\[
v^{(N)}_{2k+1} = i(-1)^k \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \text{cn} \left(\frac{Ks}{\pi}, \alpha \right) \text{sn}^{2k} \left(\frac{Ks}{\pi}, \alpha \right) ds
\]

and

\[
v^{(N)}_{2k+2} = (-1)^{k+1} \alpha^k \int_0^{2\pi} e^{-i(N+1/2)s} \text{dn} \left(\frac{Ks}{\pi}, \alpha \right) \text{sn}^{2k+1} \left(\frac{Ks}{\pi}, \alpha \right) ds,
\]

for \(k \geq 0 \), is the eigenvector of \(J(\alpha) \) corresponding to the eigenvalue \(\frac{\pi}{2K} (2N + 1) \).

In addition, the set \(\{v^{(N)} \mid N \in \mathbb{Z}\} \) is complete in \(\ell^2(\mathbb{N}) \).

Interesting open problems:

1. \(\|v^{(N)}\| = ? \) or \(\|v^{(N)}\| \sim ? \) for \(N \to \pm\infty \).

2. Is \(\{v^{(N)} \mid N \in \mathbb{Z}\} \) the Riesz basis of \(\ell^2(\mathbb{N}) \)?
Spectral analysis - the non-self-adjoint case

Spectrum of $J(\alpha)$ in the non-self-adjoint case - animation
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$

Proposition

If $|\alpha| = 1$, $\alpha \neq \pm 1$, then

$$\sigma(J(\alpha)) = \sigma_{ess}(J(\alpha)) = \mathbb{C}.$$
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$

Proposition

If $|\alpha| = 1$, $\alpha \neq \pm 1$, then

$$\sigma(J(\alpha)) = \sigma_{ess}(J(\alpha)) = \mathbb{C}.$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.

Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$

Proposition

If $|\alpha| = 1$, $\alpha \neq \pm 1$, then

$$\sigma(J(\alpha)) = \sigma_{ess}(J(\alpha)) = \mathbb{C}. $$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in (0, 1)$ define sequence $u(a)$ by putting

$$u_n(a) := a^n u_n,$$

where
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$

Proposition

If $|\alpha| = 1$, $\alpha \neq \pm 1$, then

$$\sigma(J(\alpha)) = \sigma_{ess}(J(\alpha)) = \mathbb{C}. $$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in (0, 1)$ define sequence $u(a)$ by putting

$$u_n(a) := a^n u_n,$$

where

$$u_{2k+1} := i(-1)^k \alpha^k e^{iKz} \int_0^{2K} e^{-izt} cn(t, \alpha) sn^{2k}(t, \alpha)dt$$

and

$$u_{2k+2} := (-1)^{k+1} \alpha^k e^{iKz} \int_0^{2K} e^{-izt} dn(t, \alpha) sn^{2k+1}(t, \alpha)dt.$$
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$

Proposition

If $|\alpha| = 1$, $\alpha \neq \pm 1$, then

$$\sigma(J(\alpha)) = \sigma_{\text{ess}}(J(\alpha)) = \mathbb{C}.$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in (0, 1)$ define sequence $u(a)$ by putting

$$u_n(a) := a^n u_n,$$

where

$$u_{2k+1} := i(-1)^k \alpha^k e^{iKz} \int_0^{2K} e^{-izt} \cn(t, \alpha) \sn^{2k}(t, \alpha) dt$$

and

$$u_{2k+2} := (-1)^{k+1} \alpha^k e^{iKz} \int_0^{2K} e^{-izt} \dn(t, \alpha) \sn^{2k+1}(t, \alpha) dt.$$

- Then one can verify, indeed, that

$$\lim_{a \to 1^-} \frac{\| (J(\alpha) - z) u(a) \|}{\| u(a) \|} = 0, \quad \text{and} \quad \text{w-\lim}_{a \to 1^-} u(a) = 0.$$
Spectral analysis of \(J(\alpha) \) for \(|\alpha| = 1\) - cont.

Essential for the verification of the “singular property” of the family \(u(a) = a^n u_n \) are two main ingredients:
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$ - cont.

Essential for the verification of the “singular property” of the family $u(a) = a^n u_n$ are two main ingredients:

1. Vector u is “almost formal eigenvector”:

$$J(\alpha)u = zu - 2\cos(Kz)e_1.$$
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$ - cont.

Essential for the verification of the "singular property" of the family $u(a) = a^n u_n$ are two main ingredients:

1. Vector u is "almost formal eigenvector":

 $$J(\alpha)u = zu - 2\cos(Kz)e_1.$$

2. Asymptotic behavior of the integrals

 $$\int_0^{2K} e^{-izt} \left\{ \frac{\text{cn}(t, \alpha)}{\text{dn}(t, \alpha)} \right\} \text{sn}^k(t, \alpha) dt, \quad \text{as } k \to \infty.$$
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$ - cont.

Essential for the verification of the “singular property” of the family $u(a) = a^n u_n$ are two main ingredients:

1. Vector u is “almost formal eigenvector”:

\[J(\alpha)u = zu - 2 \cos(Kz)e_1. \]

2. Asymptotic behavior of the integrals

\[\int_{0}^{2K} e^{-izt} \left\{ \frac{\text{cn}(t, \alpha)}{\text{dn}(t, \alpha)} \right\} \text{sn}^k(t, \alpha) dt, \quad \text{as } k \to \infty. \]

The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$ - cont.

Essential for the verification of the “singular property” of the family $u(a) = a^n u_n$ are two main ingredients:

1. Vector u is “almost formal eigenvector”:

$$J(\alpha) u = zu - 2 \cos(Kz)e_1.$$

2. Asymptotic behavior of the integrals

$$\int_0^{2K} e^{-izt} \left\{ \begin{array}{c} \text{cn}(t, \alpha) \\ \text{dn}(t, \alpha) \end{array} \right\} \text{sn}^k(t, \alpha) dt, \quad \text{as } k \to \infty.$$

- The asymptotic formulas (ingredient 2.) can be obtained by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$u \to |\text{sn}(uK(\alpha), \alpha)|$$

in $(0, 2)$ for $|\alpha| = 1$, $\alpha \neq \pm 1$.
Spectral analysis of $J(\alpha)$ for $|\alpha| = 1$ - cont.

Essential for the verification of the “singular property” of the family $u(a) = a^n u_n$ are two main ingredients:

1. Vector u is “almost formal eigenvector”:

$$J(\alpha)u = zu - 2\cos(Kz)e_1.$$

2. Asymptotic behavior of the integrals

$$\int_0^{2K} e^{-izt} \left\{ \frac{\text{cn}(t, \alpha)}{\text{dn}(t, \alpha)} \right\} \text{sn}^k(t, \alpha) dt, \quad \text{as } k \to \infty.$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$u \to |\text{sn}(uK(\alpha), \alpha)|$$

in $(0, 2)$ for $|\alpha| = 1, \alpha \neq \pm 1$.

- It can be shown (not trivial!) that the function has unique global maximum at $u = 1$ for every $|\alpha| = 1, \alpha \neq \pm 1$.

František Štampach (Stockholm University)
Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$

Contents

1 Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I - Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case

5 Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\text{sn}(uK(m) \mid m)|$
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

All the necessary properties known when $m \in (0, 1)$
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

Transf. modulus m from the unit circle to $(0, 1)$
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

$\Im m > 0$, $m = e^{4i\theta}$ and $s = \text{sn}(uK(\cos^2 \theta) \mid \cos^2 \theta)$, $s_1 = \text{sn}(uK(\sin^2 \theta) \mid \sin^2 \theta)$, etc.

$\text{sn}^2(uK(m) \mid m) = \frac{1}{\sqrt{m}} \frac{c_1^2 + s^2 s_1^2 \cos^2 \theta - cc_1 + iss_1 dd_1}{c_1^2 + s^2 s_1^2 \cos^2 \theta + cc_1 - iss_1 dd_1}$,
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

$$|\text{sn}(uK(m) \mid m)| \leq 1 \quad \text{for all} \quad m \in \partial \mathbb{D} \quad \text{with the equality only for} \quad m = 1.$$
On the extremal properties of $|\text{sn}(uK(m) | m)|$

Maximum modulus...

$|\text{sn}(uK(m) | m)| \leq 1$ for all $m \in \mathbb{D}$ with the equality only for $m = 1$.
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

Another circle $\mathbb{D}_1 = \{ z \mid |z - 1| = 1 \}$
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

Another circle $D_1 = \{z \mid |z - 1| = 1\}$ and another transformation formula (not displayed) ...
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

$|\text{sn}(uK(m) \mid m)| < 1$ for all $m \in \partial \mathbb{D}_1$
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

In addition,

$$\lim_{\epsilon \to 0^+} |\text{sn}(uK(m \pm i\epsilon) \mid m \pm i\epsilon)| < 1$$

for all $m \geq 2$ and the function $m \mapsto \text{sn}(uK(m) \mid m)$ is bounded.
On the extremal properties of $| \text{sn}(uK(m) \mid m)|$

$| \text{sn}(uK(m) \mid m)| \leq 1$ for all $m \notin D_1 \setminus D$ with the equality only for $m = 1$.
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

If $0 < u \leq \frac{1}{2}$ the global maximum of $m \mapsto |\text{sn}(uK(m) \mid m)|$

is located at $m = 1$ with the value $= 1$.
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$

If $\frac{1}{2} < u < 1$, the global maximum of $m \mapsto |\text{sn}(uK(m) \mid m)|$ is located in $(1, 2)$ with the value > 1.
On the extremal properties of $|\text{sn}(uK(m) \mid m)|$ - main theorem

Theorem:
The following statements hold true.
On the extremal properties of $|\text{sn}(uK(m) | m)|$ - main theorem

Theorem:

The following statements hold true.

1. For all $u \in (0, 1)$ and $m \notin \{z \in \mathbb{C} \mid |z - 1| < 1 \land |z| > 1\}$, it holds

 $$|\text{sn}(K(m)u | m)| < 1.$$
The following statements hold true.

1. For all $u \in (0, 1)$ and $m \not\in \{ z \in \mathbb{C} \mid |z - 1| < 1 \land |z| > 1 \}$, it holds

 $$|\text{sn}(K(m)u \mid m)| < 1.$$

2. For $u \in (0, 1/2]$ the function $m \mapsto |\text{sn}(K(m)u \mid m)|$ has unique global maximum located at $m = 1$ with the value equal to 1, i.e.,

 $$|\text{sn}(K(1)u \mid 1)| = 1 \quad \text{and} \quad |\text{sn}(K(m)u \mid m)| < 1 \quad \text{for all } m \neq 1$$

 (where the value at $m = 1$ is to be understood as the respective limit).
Theorem:

The following statements hold true.

1. For all \(u \in (0, 1) \) and \(m \notin \{ z \in \mathbb{C} \mid |z - 1| < 1 \land |z| > 1 \} \), it holds
 \[
 |\text{sn}(K(m)u | m)| < 1.
 \]

2. For \(u \in (0, 1/2] \) the function \(m \mapsto |\text{sn}(K(m)u | m)| \) has unique global maximum located at \(m = 1 \) with the value equal to 1, i.e.,
 \[
 |\text{sn}(K(1)u | 1)| = 1 \quad \text{and} \quad |\text{sn}(K(m)u | m)| < 1 \quad \text{for all} \quad m \neq 1
 \]
 (where the value at \(m = 1 \) is to be understood as the respective limit).

3. For \(u \in (1/2, 1) \), the function \(m \mapsto |\text{sn}(K(m)u | m)| \) has a global maximum located in the interval \((1, 2)\) with the value exceeding 1, i.e.,
 \[
 \max_{m \in \mathbb{C}} |\text{sn}(K(m)u | m)| = |\text{sn}(K(m^*)u | m^*)| > 1 \quad \text{for some} \quad m^* \in (1, 2).
 \]
References:

1. P. Siegl, F. Š.: On extremal properties of Jacobian elliptic functions with complex modulus, Math. Anal. Appl. (2016), arXiv:1512.06089.

2. P. Siegl, F. Š.: Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions, arXiv:1603.01052.

Thank you!