ON COINCIDENCE OF CLASSES OF FUNCTIONS DEFINED BY
A GENERALISED MODULUS OF SMOOTHNESS AND THE
APPROPRIATE INVERSE THEOREM

FATON M. BERISHA

Abstract. We give the theorem of coincidence of a class of functions defined
by a generalised modulus of smoothness with a class of functions defined by
the order of the best approximation by algebraic polynomials. We also prove
the appropriate inverse theorem in approximation theory.

0. In [4], an asymmetric operator of generalised translation was introduced, by
means of it the generalised modulus of continuity was defined, and the theorem of
coincidence of a class of functions defined by that modulus with a class of functions
with given order of the best approximation by algebraic polynomials was proved.

In our paper the analogous results are obtained for a generalised modulus of
smoothness of order r. In addition, in the present paper we prove a theorem inverse
to the Jackson’s theorem related to that modulus of smoothness.

1. By L_p we denote the set of functions f measurable on the segment $[-1, 1]$ such
that for $1 \leq p < \infty$
\[\|f\|_p = \left(\int_{-1}^{1} |f(x)|^p \, dx \right)^{1/p} < \infty, \]
and for $p = \infty$
\[\|f\|_\infty = \text{ess sup}_{-1 \leq x \leq 1} |f(x)| < \infty. \]

Denote by $L_{p,\alpha}$ the set of functions f such that $f(x)(1 - x^2)\alpha \in L_p$, and put
\[\|f\|_{p,\alpha} = \|f(x)(1 - x^2)^\alpha\|_p. \]

By $E_n(f)_{p,\alpha}$ we denote the best approximation of the function $f \in L_{p,\alpha}$ by
algebraic polynomials of degree not greater than $n - 1$, in $L_{p,\alpha}$ metrics, i.e.
\[E_n(f)_{p,\alpha} = \inf_{P_n \in \mathcal{P}_n} \|f - P_n\|_{p,\alpha}, \]
where \mathcal{P}_n is the set of algebraic polynomials of degree not greater than $n - 1$.

By $E'(p, \alpha, \lambda)$ we denote the class of functions $f \in L_{p,\alpha}$ satisfying the condition
\[E_n(f)_{p,\alpha} \leq Cn^{-\lambda}, \]
where $\lambda > 0$ and C is a constant not depending on n.

1991 Mathematics Subject Classification. Primary 41A35, Secondary 41A50, 42A16.
Key words and phrases. Generalised modulus of smoothness, asymmetric operator of gen-
eralised translation, coincidence of classes, best approximations by algebraic polynomials.
For a function f we define the operator of generalised translation $\hat{T}_t (f, x)$ by

$$\hat{T}_t (f, x) = \frac{1}{\pi (1 - x^2)} \int_0^\pi \left(1 - \left(x \cos t - \sqrt{1 - x^2} \sin t \cos \varphi \right)^2 \right. $$

$$\left. - 2 \sin^2 t \sin^2 \varphi + 4 \left(1 - x^2 \right) \sin^2 t \sin^2 \varphi \right)$$

$$\times f \left(x \cos t - \sqrt{1 - x^2} \sin t \cos \varphi \right) d\varphi.$$

By means of that operator of generalised translation we define the generalised difference of order r by

$$\Delta_t^1 (f, x) = \Delta_t (f, x) = \hat{T}_t (f, x) - f(x),$$

$$\Delta_t^{r+1} (f, x) = \Delta_t \left(\Delta_t^{r-1} (f, x), x \right) \quad (r = 2, 3, \ldots),$$

and the generalised modulus of smoothness of order r by

$$\dot{\omega}_t (f, \delta)_{p, \alpha} = \sup_{|t| \leq \delta} \| \Delta_t^{r+1} (f, x) \|_{p, \alpha} \quad (r = 1, 2, \ldots).$$

Denote by $H(p, \alpha, r, \lambda)$ the class of functions $f \in L_{p, \alpha}$ satisfying the condition

$$\dot{\omega}_t (f, \delta)_{p, \alpha} \leq C \delta^\lambda,$$

where $\lambda > 0$ and C is a constant not depending on δ.

2. Put $y = \cos t, z = \cos \varphi$ in the operator $\hat{T}_t (f, x)$, we denote it by $T_y (f, x)$ and rewrite it in the form

$$T_y (f, x) = \frac{1}{\pi (1 - x^2)} \int_{-1}^1 \left(1 - R^2 \right) \left(1 - y^2 \right) \left(1 - z^2 \right)$$

$$+ 4 \left(1 - x^2 \right) \left(1 - y^2 \right) \left(1 - z^2 \right) \ f(R) \frac{dz}{\sqrt{1 - z^2}},$$

where $R = xy - z \sqrt{1 - x^2} \sqrt{1 - y^2}$.

We define the operator of generalised translation of order r by

$$T_y^r (f, x) = T_y (f, x),$$

$$T_{y_1, \ldots, y_r} (f, x) = T_{y_r} \left(T_{y_1, \ldots, y_{r-1}} (f, x), x \right) \quad (r = 2, 3, \ldots).$$

By $P_{\nu}^{(\alpha, \beta)} (x) \ (\nu = 0, 1, \ldots)$ we denote the Jacobi’s polynomials, i.e. algebraic polynomials of degree ν orthogonal with the weight function $(1 - x)^\alpha (1 + x)^\beta$ on the segment $[-1, 1]$ and normed by the condition $P_0^{(\alpha, \beta)} (1) = 1 \ (\nu = 0, 1, \ldots)$.

Denote by $a_n (f)$ the Fourier–Jacobi coefficients of a function f, integrable with the weight function $(1 - x^2)^2$ on the segment $[-1, 1]$, with respect to the system of Jacobi polynomials $\left\{ P_n^{(\alpha, \beta)} (x) \right\}_{n=0}^\infty$: i.e.,

$$a_n (f) = \int_{-1}^1 f(x) P_n^{(\alpha, \beta)} (x) (1 - x^2)^2 \ dx \quad (n = 0, 1, \ldots).$$

We define the following operators, having an auxiliary role later on

$$T_{1, y} (f, x) = \frac{1}{\pi (1 - x^2)} \int_{-1}^1 \left(1 - R^2 \right) \left(1 - y^2 \right) \left(1 - z^2 \right) \ f(R) \frac{dz}{\sqrt{1 - z^2}},$$

$$T_{2, y} (f, x) = \frac{8}{3\pi} \int_{-1}^1 (1 - z^2)^2 \ f(R) \frac{dz}{\sqrt{1 - z^2}}.$$
where \(R = xy - z\sqrt{1 - x^2} \sqrt{1 - y^2} \), and the corresponding operators of order \(r \)
\[T_{k,y}^r (f, x) = T_{k,y} (f, x), \]
\[T_{k,y_1,\ldots,y_r}^r (f, x) = T_{k,y_r} \left(T_{k,y_1,\ldots,y_{r-1}}^{r-1} (f, x) \right) \quad (r = 2, 3, \ldots) \]
for \(k, 1, 2 \).

3.

Lemma 3.1. Let \(P_n(x) \) be an algebraic polynomial of degree not greater than \(n - 1 \), \(1 \leq p \leq \infty \), \(\alpha > -\frac{1}{p} \) and \(\rho \geq 0 \). Then the following inequalities hold true
\[\|P_n(x)\|_{p,\alpha} \leq C_1 n \|P_n\|_{p,\alpha}, \]
\[\|P_n\|_{p,\alpha} \leq C_2 n^{2\rho} \|P_n\|_{p,\alpha+\rho}, \]
where the constants \(C_1 \) and \(C_2 \) do not depend on \(n \).

Lemma is proved in [2].

Lemma 3.2. The operators \(T_{1,y} \) and \(T_{2,y} \) have the following properties
\[T_{1,y} \left(P_{\nu}^{(2,2),x} \right) = P_{\nu}^{(2,2)}(x) P_{\nu+2}^{(0,0)}(y), \]
\[T_{2,y} \left(P_{\nu}^{(2,2),x} \right) = P_{\nu}^{(2,2)}(x) P_{\nu}^{(2,2)}(y) \]
for \(\nu = 0, 1, \ldots \).

Lemma 3.2 is proved in [3].

Lemma 3.3. Let \(g(x)T_{k,y}^0 (f, x) \in L_{1,2} \) for every \(y \). Then for \(k = 1, 2 \) the following equality holds true
\[\int_{-1}^1 f(x)T_{k,y}^0 (g, x) (1 - x^2)^2 \, dx = \int_{-1}^1 g(x)T_{k,y}^0 (f, x) (1 - x^2)^2 \, dx. \]

Proof. Let \(k = 1 \) and
\[I_1 = \int_{-1}^1 f(x)T_{1,y}^0 (g, x) (1 - x^2)^2 \, dx \]
\[= \frac{1}{\pi} \int_{-1}^1 \int_{-1}^1 f(x)g(R) (1 - R^2 - 2 (1 - y^2) (1 - z^2)) (1 - x^2) \frac{dz \, dx}{\sqrt{1 - z^2}}, \]
where \(R = xy - z\sqrt{1 - x^2} \sqrt{1 - y^2} \). Performing change of variables in the double integral by the formulas
\[x = Ry + V \sqrt{1 - R^2} \sqrt{1 - y^2}, \]
\[z = -\frac{R \sqrt{1 - y^2} - V y \sqrt{1 - R^2}}{\sqrt{1 - \left(Ry + V \sqrt{1 - R^2} \sqrt{1 - y^2} \right)^2}}, \]
we get
\[I_1 = \frac{1}{\pi} \int_{-1}^1 \int_{1}^1 (1 - R^2) f \left(Ry + V \sqrt{1 - R^2} \sqrt{1 - y^2} \right) g(R) \]
\[\times \left(1 - \left(Ry + V \sqrt{1 - R^2} \sqrt{1 - y^2} \right)^2 - 2 (1 - y^2) (1 - V^2) \right) \frac{dV \, dR}{\sqrt{1 - V^2}} \]
\[= \int_{-1}^1 g(R)T_{1,y}^0 (f, R) (1 - R^2)^2 \, dR, \]
which proves the equality of the lemma for \(k = 1 \).
Let \(k = 2 \) and
\[
I_2 = \int_{-1}^{1} f(x) T_{2,y} (g, x) \left(1 - x^2 \right)^2 \, dx \\
= \frac{8}{3\pi} \int_{-1}^{1} \int_{-1}^{1} f(x) g(R) \left(1 - x^2 \right)^2 \left(1 - z^2 \right)^2 \, dz \, dx \, \sqrt{1 - z^2}.
\]
Performing change of variables in that double integral by the formulas \((3.1)\) we get
\[
I_2 = \frac{8}{3\pi} \int_{-1}^{1} \int_{-1}^{1} f(x) \left(Ry + V \sqrt{1 - R^2} \sqrt{1 - y^2} \right) g(R) \left(1 - R^2 \right)^2 \times \left(1 - V^2 \right)^2 \, dV \, dR = \int_{-1}^{1} g(R) T_{2,y} (f, R) \left(1 - R^2 \right)^2 \, dR.
\]
Lemma \((3.3)\) is proved. \(\square\)

Corollary 3.1. If \(f \in L_{1,2} \), then for every natural number \(r \) we have \(T_{k,y} (f, x) \in L_{1,2} \) \((k = 1, 2)\).

Proof. Put \(g(x) \equiv 1 \) on \([-1, 1]\), considering that by Lemma \((3.2)\) (see \([1, \text{vol. II, p. 180}]\))
\[
T_{1,y} (1, x) = T_{1,y} \left(P_{0}^{(2,2)}, x \right) = P_{0}^{(2,2)}(x) P_{2}^{(0,0)}(y) = \frac{3}{2} y^2 - \frac{1}{2},
\]
we have \(f(x) T_{k,y} (1, x) \in L_{1,2} \) \((k = 1, 2)\). Hence, applying Lemma \((3.3)\) we derive
\[
\int_{-1}^{1} T_{k,y} (f, x) \left(1 - x^2 \right)^2 \, dx = \int_{-1}^{1} f(x) T_{k,y} (1, x) \left(1 - x^2 \right)^2 \, dx \quad \text{for } k = 1, 2.
\]
Therefrom it follows that \(T_{k,y} (f, x) \in L_{1,2} \). Now the corollary is proved by induction. \(\square\)

Lemma 3.4. Let \(f \in L_{1,2} \). For every natural number \(n \) the following equality holds true
\[
\int_{-1}^{1} T_{1,y} (f, x) P_{n}^{(1,1)} (y) \, dy = \sum_{m=0}^{n-2} a_m (f) \gamma_m (x),
\]
where \(\gamma_m (x) \) is an algebraic polynomial of degree not greater than \(n-2 \), and \(\gamma_m (x) \equiv 0 \) for \(n = 0 \) or \(n = 1 \).

Lemma \((3.4)\) is proved in \([1]\).

Lemma 3.5. Let \(q \) and \(m \) given natural numbers and let \(f \in L_{1,2} \). For every natural numbers \(l \) and \(r \) \((l \leq r)\) the function
\[
Q^{(l)}_1 (x) = \int_{0}^{\pi} \cdots \int_{0}^{\pi} T_{1,\cos t_1, \ldots, \cos t_l} (f, x) \prod_{s=1}^{r} \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s \, dt_1 \cdots dt_r
\]
is an algebraic polynomial of degree not greater than \((q+2)(m-1)\).

Proof. Since
\[
A_s = \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} = \sum_{k=0}^{(q+2)(m-1)} a_k \cos kt_s = \sum_{k=0}^{(q+2)(m-1)} b_k (\cos t_s)^k,
\]
it follows that
\[A_0 \sin^2 t_s = \sum_{k=0}^{(q+2)(m-1)} b_k (\cos t_s)^k (1 - \cos^2 t_s) = \sum_{k=0}^{(q+2)(m-1)+2} c_k (\cos t_s)^k \]
\[= \sum_{k=0}^{(q+2)(m-1)+2} \alpha_k \beta_k^{(1)}(\cos t_s) \quad (s = 1, 2, \ldots, r). \]

Hence we have
\[Q^{(l)}_1(x) = \sum_{k=0}^{(q+2)(m-1)+2} \alpha_k \int_0^\pi \ldots \int_0^\pi \prod_{s=1 \atop s \neq l}^r \left(\frac{\sin t_s}{\sin t_{s/2}} \right)^{2q+4} \]
\[\times \sin^3 t_s \, dt_1 \ldots dt_{l-1} \, dt_{l+1} \ldots dt_r \int_0^\pi T^{l-1}_{1, \cos t_1, \ldots, \cos t_l} (f, x) P^{(1)}_k(\cos t_l) \sin t_l \, dt_l. \]

Let
\[\varphi_{l, k}(x) = \int_0^\pi T^{l-1}_{1, \cos t_1, \ldots, \cos t_l} (f, x) P^{(1)}_k(\cos t_l) \sin t_l \, dt_l. \]

Substituting \(y = \cos t_l \) we obtain
\[\varphi_{l, k}(x) = \int_{-1}^1 T_{1, y} \left(T^{l-1}_{1, \cos t_1, \ldots, \cos t_{l-1}} (f, x), y \right) P^{(1)}_k(y) \, dy. \]

Using Lemma 3.3 we get
\[\varphi_{l, k}(x) = \sum_{m=0}^{k-2} \gamma_m(x) \int_{-1}^1 T^{l-2}_{1, \cos t_1, \ldots, \cos t_{l-2}} (f, R) P^{(2)}_m(R) (1 - R^2)^2 \, dR. \]

Considering Corollary 3.1 we have that \(T^{l-1}_{1, \cos t_1, \ldots, \cos t_{l-1}} (f, R) \in L_{1, 2} \). Applying \(l - 1 \) times Lemma 3.3 and Lemma 3.2 we obtain
\[\varphi_{l, k}(x) = \sum_{m=0}^{k-2} \gamma_m(x) \int_{-1}^1 T^{l-2}_{1, \cos t_1, \ldots, \cos t_{l-2}} (f, R) T^{(2)}_m(R) \left(P^{(2)}_m(R) \right) \]
\[\times \left(1 - R^2 \right)^2 dR = \sum_{m=0}^{k-2} \gamma_m(x) P^{(0)}_{m+2}(\cos t_{l-1}) \]
\[\times \int_{-1}^1 T^{l-2}_{1, \cos t_1, \ldots, \cos t_{l-2}} (f, R) P^{(2)}_m(R) (1 - R^2)^2 \, dR \]
\[= \sum_{m=0}^{k-2} \gamma_m(x) P^{(0)}_{m+2}(\cos t_1) \ldots P^{(0)}_{m+2}(\cos t_{l-1}) \]
\[\times \int_{-1}^1 f(R) P^{(2)}_m(R) (1 - R^2)^2 \, dR = \sum_{m=0}^{k-2} \gamma_m(x) a_m(f) \prod_{s=1}^{l-1} P^{(0)}_{m+2}(\cos t_s), \]

where \(a_m(f) \) is the Fourier–Jacobi coefficient of the function \(f \) with respect to the system \(\left\{ P^{(2)}_{m+2}(x) \right\}_{m=0}^\infty \). Substituting \(\varphi_{l, k}(x) \) in the expression for \(Q^{(l)}_1(x) \) we get
\[Q^{(l)}_1(x) = \sum_{k=0}^{(q+2)(m-1)+2} \alpha_k \sum_{m=0}^{k-2} \beta_m \gamma_m(x). \]

Since \(\gamma_m(x) \) is an algebraic polynomial of degree not greater than \(k - 2 \) for \(k \geq 2 \) and \(\gamma_m(x) \equiv 0 \) for \(k = 0 \) and \(k = 1 \), then the last equality yields that \(Q^{(l)}_1(x) \) is an algebraic polynomial of degree not greater than \((q + 2)(m - 1) \).

Lemma 3.3 is proved. \(\square \)
Lemma 3.6. Let \(q \) and \(m \) given natural numbers. Let \(f \in L_{1,2} \). For every natural numbers \(l \) and \(r \) \((l \leq r)\) the function
\[
Q_2^{(l)}(x) = \int_0^\pi \cdots \int_0^\pi T_{2,\cos t_1, \ldots, \cos t_l}(f, x) \prod_{s=1}^r \left(\frac{\sin mt_s}{\sin \frac{\pi}{2}} \right)^{2q+4} \sin^5 t_s \, dt_1 \ldots dt_r
\]
is an algebraic polynomial of degree not greater than \((q+2)(m-1)\).

Proof. As shown in Lemma 3.5
\[
A_l = \left(\frac{\sin \frac{mt_s}{s+1}}{\sin \frac{\pi}{2}} \right)^{2q+4} = \sum_{k=0}^{(q+2)(m-1)} b_k(\cos t_s)^k
\]
Hence
\[
Q_2^{(l)}(x) = \sum_{k=0}^{(q+2)(m-1)} \beta_k \int_0^\pi \cdots \int_0^\pi \prod_{s \neq l} \left(\frac{\sin \frac{mt_s}{s+1}}{\sin \frac{\pi}{2}} \right)^{2q+4} \times \sin^5 t_s \, dt_1 \ldots dt_{l-1} \, dt_{l+1} \ldots dt_r \int_0^\pi T_{2,\cos t_1, \ldots, \cos t_l}(f, x) P_k^{(2,2)}(\cos t_l) \sin^5 t_l \, dt_l.
\]
Let
\[
\psi_{l,k}(x) = \int_0^\pi T_{2,\cos t_1, \ldots, \cos t_l}(f, x) P_k^{(2,2)}(\cos t_l) \sin^5 t_l \, dt_l
\]
Substituting \(y = \cos t_l \) we obtain
\[
\psi_{l,k}(x) = \int_{-1}^1 T_{2,y} \left(T_{2,\cos t_1, \ldots, \cos t_{l-1}}(f, x), x \right) P_k^{(2,2)}(y) (1 - y^2)^2 \, dy.
\]
Since operator \(T_{2,y}(f, x) \) is symmetrical on \(x \) and \(y \), i.e. for every function \(g \) holds \(T_{2,y}(g, x) = T_{2,x}(g, y) \), we have
\[
\psi_{l,k}(x) = \int_{-1}^1 T_{2,x} \left(T_{2,\cos t_1, \ldots, \cos t_{l-1}}(f, y), y \right) P_k^{(2,2)}(y) (1 - y^2)^2 \, dy.
\]
Since Corollary 3.1 yields \(T_{2,\cos t_1, \ldots, \cos t_{l-1}}(f, y) \in L_{1,2} \), applying Lemma 3.3 we obtain
\[
\psi_{l,k}(x) = \int_{-1}^1 T_{2,\cos t_1, \ldots, \cos t_{l-1}}(f, y) T_{2,x} \left(P_k^{(2,2)}, y \right) (1 - y^2)^2 \, dy.
\]
Considering the property of the operator \(T_{2,x} \) from Lemma 3.2 we get
\[
\psi_{l,k}(x) = P_k^{(2,2)}(x) \int_{-1}^1 T_{2,\cos t_1, \ldots, \cos t_{l-1}}(f, y) P_k^{(2,2)}(y) (1 - y^2)^2 \, dy.
\]
Applying \(l-1 \) times Lemma 3.3 and Lemma 3.2 we obtain
\[
\psi_{l,k}(x) = P_k^{(2,2)}(x) P_k^{(2,2)}(\cos t_1) \ldots P_k^{(2,2)}(\cos t_{l-1}) \times \int_{-1}^1 f(y) P_k^{(2,2)}(y) (1 - y^2)^2 \, dy = P_k^{(2,2)}(x) a_k(f) \prod_{s=1}^{l-1} P_k^{(2,2)}(\cos t_s).
\]
where \(a_k(f) \) is the Fourier–Jacobi coefficient of the function \(f \) with respect to the system \(\{ P^{(2,2)}_k(x) \}_{k=0}^{\infty} \). Substituting \(\psi_{l,k}(x) \) in the expression for \(Q^{(l)}_2(x) \) we get

\[
Q^{(l)}_2(x) = \sum_{k=0}^{(q+2)(m-1)} \delta_k P^{(2,2)}_k(x).
\]

Since \(P^{(2,2)}_k(x) \) is an algebraic polynomial of degree not greater than \(k \), the last equality implies that \(Q^{(l)}_2(x) \) is an algebraic polynomial of degree not greater than \((q+2)(m-1) \).

Lemma is proved.

Lemma 3.7. Operator \(T_y \) has the following properties

1. The operator \(T_y(f,x) \) is linear on \(f \);
2. \(T_1(f,x) = f(x) \);
3. \(T_y \left(P^{(2,2)}_n(x) \right) = P^{(2,2)}_n(x) R_n(y) \) \((n = 0, 1, \ldots)\),
 where \(R_n(y) = P^{(0,0)}_{n+2}(y) + \frac{3}{2} (1 - y^2) P^{(2,2)}_n(y) \);
4. \(T_y(1,x) = 1 \);
5. \(a_k \left(T_y(f,x) \right) = R_k(y) a_k(f) \) \((k = 0, 1, \ldots)\).

Lemma 3.7 is proved in [4].

Corollary 3.2. If \(P_n(x) \) is an algebraic polynomial of degree not greater than \(n-1 \), then for every natural number \(r \), for fixed \(y_1, y_2, \ldots, y_r \), functions \(T^{y_1,\ldots,y_r}_n(P_n,x) \) and \(\Delta^{y_1,\ldots,y_r}_n(P_n,x) \) are algebraic polynomials on \(x \) of degree not greater than \(n-1 \).

Lemma 3.8. If \(-1 \leq x \leq 1, -1 \leq z \leq 1, 0 \leq t \leq \pi \) and \(R = xy + z\sqrt{1-x^2} \times \sqrt{1-y^2} \), then \(-1 \leq R \leq 1 \) and

\[
\left(x\sqrt{1-y^2} + yz\sqrt{1-x^2} \right)^2 \leq (1 - R^2),
\]

\[
\left(\sqrt{1-x^2y} + xz\sqrt{1-y^2} \right)^2 \leq (1 - R^2),
\]

\[
(1 - x^2)(1 - z^2) \leq (1 - R^2),
\]

\[
(1 - y^2)(1 - z^2) \leq (1 - R^2).
\]

Lemma 3.8 is proved in [4] and [3].

Lemma 3.9. Let given numbers \(p \) and \(\alpha \) be such that \(1 \leq p \leq \infty \);

\[
\frac{1}{2} < \alpha \leq 1 \quad \text{for } p = 1,
\]

\[
1 - \frac{1}{2p} < \alpha < 3 - \frac{1}{2p} \quad \text{for } 1 < p < \infty,
\]

\[
1 \leq \alpha \leq \frac{3}{2} \quad \text{for } p = \infty.
\]

Let \(f \in L_{p,\alpha} \). The following inequality holds true

\[
\|T_y(f,x)\|_{p,\alpha} \leq C \|f\|_{p,\alpha},
\]

where the constant \(C \) does not depend on \(f \) and \(y \).

Lemma 3.9 is also proved in [4].
Corollary 3.3. Let given numbers \(p \) and \(\alpha \) be such that \(1 \leq p \leq \infty \);
\[
\begin{align*}
\frac{1}{2} &< \alpha \leq 1 \quad \text{for } p = 1, \\
1 - \frac{1}{2p} &< \alpha < \frac{3}{2} - \frac{1}{2p} \quad \text{for } 1 < p < \infty, \\
1 &\leq \alpha < \frac{3}{2} \quad \text{for } p = \infty.
\end{align*}
\]
Let \(f \in L_{p,\alpha} \). The following inequality holds true
\[
\|T_{y_1,\ldots,y_r}^r (f,x)\|_{p,\alpha} \leq C \|f\|_{p,\alpha},
\]
where the constant \(C \) does not depend on \(f \) and \(y_j (j = 1, 2, \ldots, r) \).

The corollary is proved by applying \(r \) times Lemma 3.9 taking into consideration Corollary 3.1 (see [4]).

4. Theorem 4.1. Let \(q, m \) and \(r \) given natural numbers and let \(f \in L_{1,2} \). The function
\[
Q(x) = \frac{1}{(\gamma_m)^r} \int_0^\pi \cdots \int_0^\pi (\Delta_{t_1,\ldots,t_r}^r (f,x) - (-1)^r f(x))
\times \prod_{s=1}^r \left(\frac{\sin \frac{m}{2} t_s}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \cdots dt_r,
\]
is an algebraic polynomial of degree not greater than \((q + 2)(m - 1)\).

Proof. To prove the theorem it is sufficient to show that for every \(l = 1, 2, \ldots, r \) the function
\[
Q^{(l)}(x) = \frac{1}{(\gamma_m)^r} \int_0^\pi \cdots \int_0^\pi T_{\cos t_1,\ldots,\cos t_l}^l (f,x) \prod_{s=1}^r \left(\frac{\sin \frac{m}{2} t_s}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \cdots dt_r
\]
is an algebraic polynomial of degree not greater than \((q + 2)(m - 1)\).

It is obvious that the function \(Q^{(l)}(x) \) can be written in the form
\[
Q^{(l)}(x) = \frac{1}{(\gamma_m)^r} \left(Q_1^{(l)}(x) + \frac{3}{2} Q_2^{(l)}(x) \right),
\]
where \(Q_1^{(l)}(x) \) and \(Q_2^{(l)}(x) \) are the functions from Lemmas 3.5 and 3.6 respectively. But, then Lemmas 3.5 and 3.6 yield that \(Q^{(l)}(x) \) is an algebraic polynomial of degree not greater than \((q + 2)(m - 1)\).

Theorem is proved. \(\square \)

Theorem 4.2. Let given numbers \(p, \alpha, r \) and \(\lambda \) be such that \(1 \leq p \leq \infty \), \(\lambda > 0 \), \(r \in \mathbb{N} \);
\[
\begin{align*}
\alpha &\leq 2 \quad \text{for } p = 1, \\
\alpha &< 3 - \frac{1}{p} \quad \text{for } 1 < p \leq \infty.
\end{align*}
\]
Let \(f \in L_{p,\alpha} \) and
\[
\hat{\omega}_r(f,\delta)_{p,\alpha} \leq M \delta^{\lambda}.
\]
Then
\[E_n(f)_{p,\alpha} \leq CMn^{-\lambda}, \]
where the constant \(C \) does not depend on \(f, M \) and \(n \).

Proof. It can easily be proved that under the conditions of the theorem, if \(f \in L_{p,\alpha} \), then \(f \in L_{1,2} \).

We choose a natural number \(q \) such that \(2q > \lambda \), and for each natural number \(n \) we choose the natural number \(m \) satisfying the condition
\[
(4.1) \quad \frac{n - 1}{q + 2} < m \leq \frac{n - 1}{q + 2} + 1.
\]

For those \(q \) and \(m \) polynomial \(Q(x) \) defined in Theorem 4.1 is an algebraic polynomial of degree not greater than \(n - 1 \). Hence
\[
E_n(f)_{p,\alpha} \leq \| f(x) - (-1)^{r+1}Q(x) \|_{p,\alpha}
\]
\[
= \left\| \frac{1}{(\gamma_m)^{\gamma}} \int_0^\pi \cdots \int_0^\pi \Delta_{t_1,\ldots,t_r}^r (f, x) \times \prod_{s=1}^r \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \ldots dt_r \right\|_{p,\alpha}.
\]

Applying the generalised inequality of Minkowski we obtain
\[
E_n(f)_{p,\alpha} \leq \frac{1}{(\gamma_m)^{\gamma}} \int_0^\pi \cdots \int_0^\pi \| \Delta_{t_1,\ldots,t_r}^r (f, x) \|_{p,\alpha}
\]
\[
\times \prod_{s=1}^r \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \ldots dt_r
\]
\[
\leq \frac{1}{(\gamma_m)^{\gamma}} \int_0^\pi \cdots \int_0^\pi \mathcal{\hat{\omega}}_r \left(f, \sum_{j=1}^r t_j \right) \prod_{s=1}^r \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \ldots dt_r.
\]

Hence, considering the conditions of the theorem we have (see [1, p. 31])
\[
E_n(f)_{p,\alpha} \leq \frac{M}{(\gamma_m)^{\gamma}} \int_0^\pi \cdots \int_0^\pi \left(\sum_{j=1}^r t_j \right)^\lambda
\]
\[
\times \prod_{s=1}^r \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \ldots dt_r
\]
\[
\leq C_1M \sum_{j=1}^r \frac{1}{(\gamma_m)^{\gamma}} \int_0^\pi \cdots \int_0^\pi t_j^\lambda \prod_{s=1}^r \left(\frac{\sin \frac{mt_s}{2}}{\sin \frac{t_s}{2}} \right)^{2q+4} \sin^3 t_s dt_1 \ldots dt_r.
\]

Applying the standard evaluation of the Jackson’s kernel, considering inequality (4.1), we obtain
\[
E_n(f)_{p,\alpha} \leq C_2Mm^{-\lambda} \leq C_3Mn^{-\lambda}.
\]

Theorem 4.2 is proved. \(\square \)
Theorem 4.3. Let given numbers p, α, r and λ be such that $1 \leq p \leq \infty$, $r \in \mathbb{N}$, $0 < \lambda < 2r$;

\[
\frac{1}{2} < \alpha \leq 1 \quad \text{for } p = 1,
\]

\[
1 - \frac{1}{2p} < \alpha < \frac{3}{2} - \frac{1}{2p} \quad \text{for } 1 < p < \infty,
\]

\[
1 \leq \alpha < \frac{3}{2} \quad \text{for } p = \infty.
\]

If $f \in L_{p,\alpha}$ and

\[
E_n(f)_{p,\alpha} \leq \frac{M}{n^\alpha},
\]

then

\[
\hat{\omega}_r(f,\delta)_{p,\alpha} \leq CM\delta^\lambda,
\]

where the constant C does not depend on f, M and δ.

Proof. Let $P_n(x)$ be the polynomial of degree not greater than $n - 1$ such that

\[
\|f - P_n\|_{p,\alpha} = E_n(f)_{p,\alpha} \quad (n = 1, 2, \ldots).
\]

We construct the polynomials $Q_k(x)$ by

\[
Q_k(x) = P_{2^k}(x) - P_{2^k-1}(x) \quad (k = 1, 2, \ldots)
\]

and $Q_0(x) = P_1(x)$. Since for $k \geq 1$ we have

\[
\|Q_k\|_{p,\alpha} = \|P_{2^k} - P_{2^k-1}\|_{p,\alpha} \leq \|P_{2^k} - f\|_{p,\alpha} + \|f - P_{2^k-1}\|_{p,\alpha}
\]

\[
= E_{2^k}(f)_{p,\alpha} + E_{2^{k-1}}(f)_{p,\alpha},
\]

then under the conditions of the theorem it follows that

\[
\|Q_k\|_{p,\alpha} \leq C_1M2^{-k\lambda}.
\]

It is obvious that without lost in generality we may assume that $t_s \neq 0$ $(s = 1, 2, \ldots, r)$. For $0 < |t_s| < \delta$ $(s = 1, 2, \ldots, r)$ we estimate

\[
I = \|\Delta^r_{t_1,\ldots,t_r} (f, x)\|_{p,\alpha}.
\]

For every natural number N, considering that linearity of the operator $\hat{T}_{t_1} (f, x)$ implies the linearity of the operator $\hat{T}^r_{t_1,\ldots,t_r} (f, x)$, i.e. the linearity of the difference $\Delta^r_{t_1,\ldots,t_r} (f, x)$, we have

\[
I \leq \|\Delta^r_{t_1,\ldots,t_r} (f - P_{2^N}, x)\|_{p,\alpha} + \|\Delta^r_{t_1,\ldots,t_r} (P_{2^N}, x)\|_{p,\alpha}.
\]

Since $P_{2^N}(x) = \sum_{k=0}^N Q_k(x)$, we get

\[
I \leq \|\Delta^r_{t_1,\ldots,t_r} (f - P_{2^N}, x)\|_{p,\alpha} + \sum_{k=1}^N \|\Delta^r_{t_1,\ldots,t_r} (Q_k, x)\|_{p,\alpha}.
\]

Applying Corollary 3.3 we have

\[
I \leq C_2E_{2^N}(f)_{p,\alpha} + \sum_{k=1}^N I_k.
\]

Let N be chosen so that

\[
\frac{\pi}{2^N} < \delta \leq \frac{\pi}{2^{N-1}}.
\]

We prove that the following inequality holds true

\[
I_k \leq C_3M\delta^\lambda 2^{k(2r-\lambda)}.
\]
Let
\[\psi_k(x) = \Delta^r_{1,\ldots,t_r}(Q_k, x). \]

It can be proved that
\begin{equation}
\psi_k(x) = \frac{1}{2\pi(1-x^2)} \int_{t_0}^{t_r} \int_{-u}^{u} \int_{0}^{\pi} \left(A(v)(R_v')^2 \frac{d^2}{dR_v^2} \Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v)
- (A(v)R_v - 2A'(v)R_v') \frac{d}{dR_v} \Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v)
+ A''(v)\Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v) \right) \, d\varphi \, dv \, du,
\end{equation}

where \(R_v = x \cos \varphi - \sqrt{1-x^2} \cos \varphi \sin \varphi, \)
\[A(v) = 1 - R_v^2 - 2 \sin^2 v \sin^2 \varphi + 4 \left(1 - x^2 \right)^2 \sin^2 \varphi. \]

Applying estimates from Lemma 3.8 and performing change of variables \(z = \cos \varphi \) we obtain
\[|\psi_k(x)| \leq C_4 \frac{1}{1-x^2} \int_{t_0}^{t_r} \int_{-u}^{u} \int_{0}^{1} B(R_v) \frac{dz}{\sqrt{1-z^2}} \, dv \, du, \]

where
\[B(R_v) = (1 - R_v^2)^2 \left| \frac{d^2}{dR_v^2} \Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v) \right|
+ (1 - R_v^2) \left| \frac{d}{dR_v} \Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v) \right|
+ \left| \Delta_{1,\ldots,t_r-1}^{r-1}(Q_k, R_v) \right| = B_1(R_v) + B_2(R_v) + B_3(R_v). \]

Therefore using the generalised Minkowski’s inequality we get
\begin{equation}
I_k = \|\psi_k(x)\|_{p, \alpha} \leq C_4 \int_{t_0}^{t_r} \int_{-u}^{u} \int_{0}^{1} \left\| B(R_v) \right\|_{p, \alpha} \frac{dz}{\sqrt{1-z^2}} \, dv \, du.
\end{equation}

Let \(p = 1. \) Considering that \(\alpha \leq 1 \) we obtain
\[I_k \leq C_4 \int_{t_0}^{t_r} \int_{-u}^{u} \int_{0}^{1} \left\{ \int_{0}^{1} \left| B(R_v) \right|^p (1 - x^2)^{p(\alpha-1)} (1 - z^2)^{\alpha-1} \frac{dx \, dz}{\sqrt{1-z^2}} \right\}^{\frac{1}{p}} \, dv \, du. \]

Let \(1 < p < \infty. \) Applying the Hölder’s inequality in the inside integral in equation (4.5), considering that \(\alpha < \frac{3}{2} - \frac{1}{4p} \) we obtain
\begin{align*}
I_k &\leq C_4 \int_{t_0}^{t_r} \int_{-u}^{u} \int_{0}^{1} \left\{ \int_{0}^{1} \frac{\left| B(R_v) \right|^p (1 - x^2)^{p(\alpha-1)} (1 - z^2)^{\alpha-1} \, dx \, dz}{\sqrt{1-z^2}} \right\}^{\frac{1}{p}} \, dv \, du. \\
&\leq C_5 \int_{t_0}^{t_r} \int_{-u}^{u} \left\{ \int_{0}^{1} \frac{\left| B(R_v) \right|^p (1 - x^2)^{p(\alpha-1)} \, dx \, dz}{\sqrt{1-z^2}} \right\}^{\frac{1}{p}} \, dv \, du.
\end{align*}

Thus, under the conditions of the theorem, for \(1 \leq p < \infty \) we have
\begin{align*}
I_k &\leq C_6 \int_{t_0}^{t_r} \int_{-u}^{u} \left\{ \int_{0}^{1} \int_{0}^{1} \frac{\left| B(R_v) \right|^p (1 - x^2)^{p(\alpha-1)} \, dx \, dz}{\sqrt{1-z^2}} \right\}^{\frac{1}{p}} \, dv \, du.
\end{align*}
Performing the change of variables in double integral by the formulas
\[
R = x \cos v - z \sqrt{1 - x^2} \sin v,
\]
\[
V = \frac{x \sin v + z \sqrt{1 - x^2} \cos v}{\sqrt{1 - (x \cos v - z \sqrt{1 - x^2} \sin v)^2}},
\]
we obtain
\[
I_k \leq C_6 \int_0^{t_r} \int_{-u}^{u} \left\{ \int_{-1}^{1} \int_{-1}^{1} |B(R)|^p (1 - R^2)^{p(\alpha - 1)} \right. \\
\left. \times (1 - V^2)^{p(\alpha - 1) - \frac{d}{2}} dR dV \right\}^{\frac{1}{p}} du.
\]
Since, under the conditions of theorem \(\alpha > 1 - \frac{3}{2p} \), it follows that
\[
I_k \leq C_7 \int_0^{t_r} \int_{-u}^{u} \left\{ \int_{-1}^{1} \int_{-1}^{1} |B(R)|^p (1 - R^2)^{p(\alpha - 1)} dR \right\}^{\frac{1}{p}} du \\
\leq C_8 t_r^2 \|B(R)\|_{p, \alpha - 1}.
\]
Let now \(p = \infty \). Considering the estimates from Lemma 3.8 and that \(\alpha \geq 1 \), inequality (4.3) yields
\[
I_k \leq C_4 \int_0^{t_r} \int_{-u}^{u} \int_{-1}^{1} \text{ess sup}_{1-1 \leq x \leq 1} |B(R_u)| (1 - x^2)^{\alpha - 1} \frac{dz}{\sqrt{1 - z^2}} du \\
\leq C_4 \|B(x)\|_{\infty, \alpha - 1} \int_0^{t_r} \int_{-u}^{u} \int_{-1}^{1} (1 - z^2)^{-\alpha + \frac{3}{2}} dz du.
\]
Hence, considering that \(\alpha < \frac{3}{2} \) we get
\[
I_k \leq C_9 t_r^2 \|B(x)\|_{\infty, \alpha - 1}.
\]
Thus for all \(1 \leq p \leq \infty \) we proved that
\[
I_k \leq C_{10} t_r^2 \|B(x)\|_{p, \alpha - 1}.
\]
Applying Lemma 3.1 and Corollaries 3.2 and 3.3 under the conditions of the theorem we obtain
\[
I_k = \|\Delta_{t_1, \ldots, t_r} (Q_k, x)\|_{p, \alpha} \leq C_{10} t_r^2 \|B(x)\|_{p, \alpha - 1} \\
\leq C_{10} t_r^2 \left(\|B_1(x)\|_{p, \alpha - 1} + \|B_2(x)\|_{p, \alpha - 1} + \|B_3(x)\|_{p, \alpha - 1} \right) \\
\leq C_{10} t_r^2 \left(\left\| \frac{d^2}{dx^2} \Delta_{t_1, \ldots, t_r} (Q_k, x) \right\|_{p, \alpha + 1} \\
+ \left\| \frac{d}{dx} \Delta_{t_1, \ldots, t_r} (Q_k, x) \right\|_{p, \alpha} + \left\| \Delta_{t_1, \ldots, t_r} (Q_k, x) \right\|_{p, \alpha - 1} \right) \\
\leq C_{11} t_r^2 \|\Delta_{t_1, \ldots, t_r} (Q_k, x)\|_{p, \alpha}.
\]
Applying \(r \) times this inequality it follows that
\[
I_k \leq C_{12} t_1^2 \cdots t_r^2 \|Q_k\|_{p, \alpha}.
\]
Therefore we have
\[
I_k \leq C_{13} M 2^r \|Q_k\|_{p, \alpha}.
\]
Inequality (4.3) is proved.
Inequalities (4.3) and (4.2) yield
\[I \leq C_{14}M \left(\delta^\lambda + \delta^{2r} \sum_{k=1}^{N} \delta^{k(2r-\lambda)} \right) \leq C_{15}M \left(\delta^\lambda + \delta^{2r}2^{N(2r-\lambda)} \right) \leq C_{16}M \delta^\lambda. \]

Theorem 4.3 is completed. □

Now we formulate the theorem of coincidence of the class \(H(p, \alpha, r, \lambda) \) with the class \(E(p, \alpha, \lambda) \), and the inverse theorem.

Theorem 4.4. Let given numbers \(p, \alpha, r \) and \(\lambda \) be such that \(1 \leq p \leq \infty \), \(0 < \lambda < 2r \), \(r \in \mathbb{N} \);
\[
\frac{1}{2} < \alpha \leq 1 \quad \text{for } p = 1,
\]
\[
1 - \frac{1}{2p} < \alpha < \frac{3}{2} - \frac{1}{2p} \quad \text{for } 1 < p < \infty,
\]
\[
1 \leq \alpha < \frac{3}{2} \quad \text{for } p = \infty.
\]
The class \(H(p, \alpha, r, \lambda) \) coincides with the class \(E(p, \alpha, \lambda) \).

Theorem 4.4 is implied by Theorems 4.2 and 4.3 proved above.

Theorem 4.5. Let given numbers \(p, \alpha, r \) and \(\lambda \) be such that \(1 \leq p \leq \infty \), \(0 < \lambda < 2r \), \(r \in \mathbb{N} \);
\[
\frac{1}{2} < \alpha \leq 1 \quad \text{for } p = 1,
\]
\[
1 - \frac{1}{2p} < \alpha < \frac{3}{2} - \frac{1}{2p} \quad \text{for } 1 < p < \infty,
\]
\[
1 \leq \alpha < \frac{3}{2} \quad \text{for } p = \infty.
\]
If \(f \in L_{p, \alpha} \), then the following inequality holds
\[
\hat{\omega}_r \left(f, \frac{1}{n}, \frac{1}{n^r} \right)_{p, \alpha} \leq \frac{C_1}{n^{2r}} \sum_{\nu=1}^{n} \nu^{2r-1} E_{\nu} \{ f \}_{p, \alpha},
\]
where the constant \(C \) does not depend on \(f \) and \(n \).

Proof. Let \(P_n(x) \) be the polynomial of degree not greater than \(n - 1 \) such that
\[
\| f - P_n \|_{p, \alpha} = E_n(f)_{p, \alpha} \quad (n = 1, 2, \ldots),
\]
and
\[
Q_k(x) = P_{2^k}(x) - P_{2^{k-1}}(x) \quad (k = 1, 2, \ldots),
\]
\(Q_0(x) = P_1(x). \)
For given \(n \) we chose the natural number \(N \) such that
\[
\frac{n}{2} < 2^N \leq n + 1.
\]
By the proof of Theorem 4.3 it follows that

\[\hat{\omega}_r \left(f, \frac{1}{n} \right)_{p,\alpha} \leq C_2 \left(E_{2N} (f)_{p,\alpha} + \frac{1}{n^{2r}} \sum_{\mu=1}^{N} 2^{2\mu r} \|Q_k\|_{p,\alpha} \right) \]

\[\leq 2C_2 \left(E_{2N} (f)_{p,\alpha} + \frac{1}{n^{2r}} \sum_{\mu=1}^{N} 2^{2\mu r} \left(E_{2^\mu} (f)_{p,\alpha} + E_{2^{\mu-1}} (f)_{p,\alpha} \right) \right) \]

\[\leq 4C_2 \left(E_{2N} (f)_{p,\alpha} + \frac{1}{n^{2r}} \sum_{\mu=0}^{N-1} 2^{2(\mu+1)r} E_{2^\mu} (f)_{p,\alpha} \right) \]

\[\leq \frac{C_3}{n^{2r}} \sum_{\mu=0}^{N} 2^{2(\mu+1)r} E_{2^\mu} (f)_{p,\alpha} . \]

Considering that for \(\mu \geq 1 \) we have

\[\sum_{\nu=2^{r-1}}^{2^\mu-1} \nu^{2r-1} E_{\nu} (f)_{p,\alpha} \geq E_{2^\mu} (f)_{p,\alpha} 2^\mu - 1 \geq C_4 2^{2(\mu+1)r} E_{2^\mu} (f)_{p,\alpha} , \]

it follows that

\[\hat{\omega}_r \left(f, \frac{1}{n} \right)_{p,\alpha} \leq \frac{C_5}{n^{2r}} \left(2^{2r} E_1 (f)_{p,\alpha} + \sum_{\mu=1}^{N} \sum_{\nu=2^{r-1}}^{2^\mu-1} \nu^{2r-1} E_{\nu} (f)_{p,\alpha} \right) \]

\[\leq \frac{C_6}{n^{2r}} \sum_{\nu=1}^{N} \nu^{2r-1} E_{\nu} (f)_{p,\alpha} . \]

Theorem 4.5 is proved. □

References

1. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Higher transcendental functions*, Three volumes, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981, (Russian translation, Gosudarstv. Izdat. Inostrannoi Literatury, Moscow, 1969). MR 84h:33001

2. B. A. Halilova, *O nekotorykh otsenkakh dlya polinomov*, Izv. Akad. Nauk Azerbaizhana SSR Ser. Fiz.-Tekhn. Mat. Nauk (1974), no. 2, 46–55. MR 50 #4863

3. M. K. Potapov, *Ob uslovnykh sovpadenii nekotorykh klassov funktsii*, Trudy Sem. Petrovsk. (1981), no. 6, 223–238. MR 82f:46053

4. , *O sovpadenii klassov funktsii opredelyaemykh operatorom obobshchennogo sdviga ili poryadkom nailuchshego priblizheniya algebraicheskimi mnogochlenami*, Mat. Zametki 66 (1999), no. 2, 242–257. MR 2000k:41008

F. M. Berisha, Faculty of Mathematics and Sciences, University of Prishtina, Nëna Terezë 5, 10000 Prishtinë, Kosovë

E-mail address: faton.berisha@uni-pr.edu