Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization

Jun Suzuki and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{suzuki.jun, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper tackles the reduction of redundant repeating generation that is often observed in RNN-based encoder-decoder models. Our basic idea is to jointly estimate the upper-bound frequency of each target vocabulary in the encoder and control the output words based on the estimation in the decoder. Our method shows significant improvement over a strong RNN-based encoder-decoder baseline and achieved its best results on an abstractive summarization benchmark.

1 Introduction

The RNN-based encoder-decoder (EncDec) approach has recently been providing significant progress in various natural language generation (NLG) tasks, i.e., machine translation (MT) Sutskever et al. (2014); Cho et al. (2014) and abstractive summarization (ABS) Rush et al. (2015). Since a scheme in this approach can be interpreted as a conditional language model, it is suitable for NLG tasks. However, one potential weakness is that it sometimes repeatedly generates the same phrase (or word).

This issue has been discussed in the neural MT (NMT) literature as a part of a coverage problem Tu et al. (2016); Mi et al. (2016). Such repeating generation behavior can become more severe in some NLG tasks than in MT. The very short ABS task in DUC-2003 and 2004 Over et al. (2007) is a typical example because it requires the generation of a summary in a pre-defined limited output space, such as ten words or 75 bytes. Thus, the repeated output consumes precious limited output space. Unfortunately, the coverage approach cannot be directly applied to ABS tasks since they require us to optimally find salient ideas from the input in a lossy compression manner, and thus the summary (output) length hardly depends on the input length; an MT task is mainly loss-less generation and nearly one-to-one correspondence between input and output Nallapati et al. (2016a).

From this background, this paper tackles this issue and proposes a method to overcome it in ABS tasks. The basic idea of our method is to jointly estimate the upper-bound frequency of each target vocabulary that can occur in a summary during the encoding process and exploit the estimation to control the output words in each decoding step. We refer to our additional component as a word-frequency estimation (WFE) sub-model. The WFE sub-model explicitly manages how many times each word has been generated so far and might be generated in the future during the decoding process. Thus, we expect to decisively prohibit excessive generation. Finally, we evaluate the effectiveness of our method on well-studied ABS benchmark data provided by Rush et al. Rush et al. (2015), and evaluated in Chopra et al. (2016); Nallapati et al. (2016b); Kikuchi et al. (2016); Takase et al. (2016); Ayana et al. (2016); Gulcehre et al. (2016).

2 Baseline RNN-based EncDec Model

The baseline of our proposal is an RNN-based EncDec model with an attention mechanism Luong et al. (2015). In fact, this model has already been used as a strong baseline for ABS tasks Chopra et al. (2016); Kikuchi et al. (2016) as well as in the NMT literature. More specifically, as a case study we employ a 2-layer bidirectional LSTM encoder and a 2-layer LSTM decoder with a global attention Bahdanau et al. (2014). We omit a detailed review of the descriptions due to space limitations. The following are the necessary parts for explaining our proposed method.

This is a draft version of EACL-2017
Input: $H^i = (h^i_t)_{t=1}^T$ \Comment{list of hidden states generated by encoder}
Initialize: $s \leftarrow 0$ \Comment{cumulative log-likelihood}
$Y \leftarrow \text{BOS}'$ \Comment{Y: list of generated words}
$H^i \leftarrow H^i$ \Comment{H^i: hidden states to process decoder}
1: $h \leftarrow (s, Y, H^i)$ \Comment{triplet of (minimal) info for decoding process}
2: $Q_x \leftarrow \text{push}(Q_a, h)$ \Comment{set initial triplet h to priority queue Q_a}
3: $Q_a \leftarrow \{ \}$ \Comment{prepare queue to store complete sentences}
4: Repeat
5: $O \leftarrow \{ \}$ \Comment{prepare empty list}
6: Repeat
7: $h \leftarrow \text{pop}(Q_a)$ \Comment{pop a candidate history}
8: $\tilde{O} \leftarrow \text{calcLL}(h)$ \Comment{see Eq. 2}
9: $O \leftarrow \text{append}(O, \tilde{O})$ \Comment{append likelihood vector}
10: Until $Q_a = \{ \}$ \Comment{repeat until Q_a is empty}
11: $\{(\hat{m}, \hat{k})\}_{k=1}^{K-C} \leftarrow \text{findKBest}(O)$ \Comment{until Q_a is empty}
12: $(h^i_2)_{x=t}^{K-C} \leftarrow \text{makeTriplet}((\hat{m}, \hat{k})_{k=1}^{K-C})$ \Comment{until Q_a is empty}
13: $Q' \leftarrow \text{selectTopK}(Q_x, h, \{(\hat{m}, \hat{k})\}_{k=1}^{K-C})$ \Comment{until Q_a is empty}
14: $(Q_x, Q_c) \leftarrow \text{sepComp}(Q')$ \Comment{separate Q' into Q_x or Q_c}
15: Until $Q_a = \{ \}$ \Comment{finish if Q_a is empty}
Output: Q_c

Figure 1: Algorithm for a K-best beam search decoding typically used in EncDec approach.

Let $X = (x_j)_{j=1}^{I}$ and $Y = (y_j)_{j=1}^{I}$ be input and output sequences, respectively, where x_j and y_j are one-hot vectors, which correspond to the i-th word in the input and the j-th word in the output. Let V^i denote the vocabulary (set of words) of output. For simplification, this paper uses the following four notation rules:

1. $(x_j)_{j=1}^{I}$ is a short notation for representing a list of (column) vectors, i.e., $(x_1, \ldots, x_I) = (x_j)_{j=1}^{I}$.
2. $\nu(a, D)$ represents a D-dimensional (column) vector whose elements are all a, i.e., $\nu(1, 3) = (1, 1, 1)$.\top
3. $x[i]$ represents the i-th element of x, i.e., $x = (0.1, 0.2, 0.3) \top$, then $x[2] = 0.2$.
4. $M = |V^i|$ and, m always denotes the index of output vocabulary, namely, $m \in \{1, \ldots, M\}$, and $o[m]$ represents the score of the m-th word in V^i, where $o \in \mathbb{R}^M$.

Encoder: Let $\Omega^p(\cdot)$ denote the overall process of our 2-layer bidirectional LSTM encoder. The encoder receives input X and returns a list of final hidden states $H^s = (h^s_t)_{t=1}^{I}$:

$$H^s = \Omega^p(X). \quad (1)$$

Decoder: We employ a K-best beam-search decoder to find the (approximated) best output Y given input X. Figure 1 shows a typical K-best beam search algorithm used in the decoder of EncDec approach. We define the (minimal) required information h shown in Figure 1 for the j-th decoding process is the following triplet, $h = (s_{j-1}, Y_{j-1}, H_{j-1}^i)$, where s_{j-1} is the cumulative log-likelihood from step 0 to $j - 1$, Y_{j-1} is a (candidate of) output word sequence generated so far from step 0 to $j - 1$, that is, $Y_{j-1} = (y_0, \ldots, y_{j-1})$ and H_{j-1}^i is the all the hidden states for calculating the j-th decoding process. Then, the function calcLL in Line 8 can be written as follows:

$$\bar{\alpha}_j = \nu(s_{j-1}, M) + \log (\text{Softmax}(\alpha_j))$$

$$\alpha_j = \Omega^p (H^s, H_{j-1}^i, y_{j-1}), \quad (2)$$

where $\text{Softmax} (\cdot)$ is the softmax function for a given vector and $\Omega^p (\cdot)$ represents the overall process of a single decoding step.

Moreover, O in Line 11 is a $(M \times (K - C))$-matrix, where C is the number of complete sentences in Q_c. The (m, k)-element of O represents a likelihood of the m-th word, namely $\bar{\alpha}_j[m]$, that is calculated using the k-th candidate in Q_a at the $(j - 1)$-th step. In Line 12, the function makeTriplet constructs a set of triplets based on the information of index (\hat{m}, \hat{k}). Then, in Line 13, the function selectTopK selects the top-K candidates from union of a set of generated triplets at current step $\{(\hat{m}, \hat{k})\}_{k=1}^{K-C}$ and a set of triplets of complete sentences in Q_c. Finally, the function sepComp in Line 13 divides a set of triplets Q' in two distinct sets whether they are complete sentences, Q_c, or not, Q_a. If the elements in Q' are all complete sentences, namely, $Q_c = Q'$ and $Q_a = \{ \}$, then the algorithm stops according to the evaluation of Line 15.

3 Word Frequency Estimation

This section describes our proposed method, which roughly consists of two parts:

1. a sub-model that estimates the upper-bound frequencies of the target vocabulary words in the output, and

2. architecture for controlling the output words in the decoder using estimations.

3.1 Definition

Let \tilde{a} denote a vector representation of the frequency estimation. \odot denotes element-wise prod-
uct. \(\hat{a} \) is calculated by:

\[
\hat{a} = \tilde{r} \odot \tilde{g}
\]

\[
\tilde{r} = \text{ReLU}(r), \quad \tilde{g} = \text{Sigmoid}(g), \quad (3)
\]

where \(\text{Sigmoid}(\cdot) \) and \(\text{ReLU}(\cdot) \) represent the element-wise sigmoid and ReLU Glorot et al. (2011), respectively. Thus, \(\tilde{r} \in [0, +\infty]^M \), \(\tilde{g} \in [0, 1]^M \), and \(\hat{a} \in [0, +\infty]^M \).

We incorporate two separated components, \(\tilde{r} \) and \(\tilde{g} \), to improve the frequency fitting. The purpose of \(\tilde{g} \) is to distinguish whether the target words occur or not, regardless of their frequency. Thus, \(\tilde{g} \) can be interpreted as a gate function that resembles estimating the fertility in the coverage Tu et al. (2016) and a switch probability in the copy mechanism Gulcehre et al. (2016). These ideas originated from such gated recurrent networks as LSTM Hochreiter and Schmidhuber (1997) and GRU Chung et al. (2014). Then, \(\tilde{r} \) can much focus on to model frequency equal to or larger than 1. This separation can be expected since \(\tilde{r}[m] \) has no influence if \(\tilde{g}[m] = 0 \).

3.2 Effective usage

The technical challenge of our method is effectively leveraging WFE \(\hat{a} \). Among several possible choices, we selected it as prior knowledge in the decoder. To do so, we re-define \(\tilde{o}_j \) in Eq. 2 as:

\[
\tilde{o}_j = v(s_{j-1}, M) + \log(\text{Softmax}(o_j)) + \tilde{a}_j.
\]

The difference is the additional term of \(\tilde{a}_j \), which is an adjusted likelihood for the \(j \)-th step originally calculated from \(\hat{a} \). We define \(\tilde{a}_j \) as:

\[
\tilde{a}_j = \log(\text{ClipReLU}_1(\tilde{r}_j) \odot \tilde{g}).
\] \((4) \)

\(\text{ClipReLU}_1(\cdot) \) is a function that receives a vector and performs an element-wise calculation: \(x'[m] = \max(0, \min(1, x[m])) \) for all \(m \) if it receives \(x \). We define the relation between \(\tilde{r}_j \) in Eq. 4 and \(\tilde{r} \) in Eq. 3 as follows:

\[
\tilde{r}_j = \begin{cases}
\tilde{r} & \text{if } j = 1 \\
\tilde{r}_{j-1} - \tilde{y}_{j-1} & \text{otherwise}
\end{cases}.
\] \((5) \)

Eq. 5 is updated from \(\tilde{r}_{j-1} \) to \(\tilde{r}_j \) with the estimated output of previous step \(\tilde{y}_{j-1} \). Since \(\tilde{y}_{j} \in \{0, 1\}^M \) for all \(j \), all of the elements in \(\tilde{r}_j \) are monotonically non-increasing. If \(\tilde{r}_j'[m] \leq 0 \) at \(j' \), then \(\tilde{o}_{j'}[m] = -\infty \) regardless of \(\tilde{o}[m] \). This means that the \(m \)-th word will never be selected any more at step \(j' \leq j \) for all \(j \). Thus, the interpretation of \(\tilde{r}_j \) is that it directly manages the upper-bound frequency of each target word that can occur in the current and future decoding time steps. As a result, decoding with our method never generates words that exceed the estimation \(\tilde{r} \), and thus we expect to reduce the redundant repeating generation.

Note here that our method never requires \(\tilde{r}_j[m] \leq 0 \) (or \(\tilde{r}_j[m] = 0 \)) for all \(m \) at the last decoding time step \(j \), as is generally required in the coverage Tu et al. (2016); Mi et al. (2016); Wu et al. (2016). This is why we say upper-bound frequency estimation, not just (exact) frequency.

3.3 Calculation

Figure 2 shows the detailed procedure for calculating \(g \) and \(r \) in Eq. 3. For \(r \), we sum up all of the features of the input given by the encoder (Line 2) and estimate the frequency. In contrast, for \(g \), we expect Lines 5 and 6 to work as a kind of voting for both positive and negative directions since \(g \) needs just occurrence information, not frequency. For example, \(g \) may take large positive or negative values if a certain input word (feature) has a strong influence for occurring or not occurring specific target word(s) in the output. This idea is borrowed from the Max-pooling layer Goodfellow et al. (2013).

3.4 Parameter estimation (Training)

Given the training data, let \(\alpha^* \in \mathbb{P}^M \) be a vector representation of the true frequency of the target words given the input, where \(\mathbb{P} = \{0, 1, \ldots, +\infty\} \). Clearly \(\alpha^* \) can be obtained by counting the words in the corresponding output. We define loss function \(\Psi^\text{wfe} \) for estimating our
Table 1: Model and optimization configurations in our experiments. †: including special BOS, EOS, and UNK symbols. ⋆: as suggested in Wu et al. (2016)

Source vocabulary	Target vocabulary	Dim. of embedding D	Dim. of hidden state H
119,507	† 68,887	200	400

Encoder RNN unit: 2-layer bi-LSTM
Decoder RNN unit: 2-layer LSTM with attention

Optimizer: Adam (first 5 epoch) + SGD (remaining epoch) ⋆
Initial learning rate: 0.001 (Adam) / 0.01 (SGD)
Mini batch size: 256 (shuffled at each epoch)
Gradient clipping: 10 (Adam) / 5 (SGD)
Stopping criterion: max 15 epoch w/ early stopping

Other opt. options: Dropout = 0.3

WFE sub-model as follows:

$$
\Psi^{wfe}(X, a^*, W) = d \cdot v(1, M)
$$

$$
d = c_1 \max (v(0, M), \hat{a} - a^* - v(\epsilon, M)) + c_2 \max (v(0, M), a^* - \hat{a} - v(\epsilon, M)),
$$

where W represents the overall parameters. The form of $\Psi^{wfe}(\cdot)$ is closely related to that used in support vector regression (SVR) Smola and Schölkopf (2004). We allow estimation $\hat{a}[m]$ for all m to take a value in the range of $[a^*[m] - \epsilon, a^*[m] + \epsilon]$ with no penalty (the loss is zero). In our case, we select $\epsilon = 0.25$ since all the elements of a^* are an integer. The remaining 0.25 for both the positive and negative sides denotes the margin between every integer. We select $b = 2$ to penalize larger for more distant error, and $c_1 < c_2$, i.e., $c_1 = 0.2, c_2 = 1$, since we aim to obtain upper-bound estimation and to penalize the underestimation below the true frequency a^*.

Finally, we minimize Eq. 6 with a standard negative log-likelihood objective function to estimate the baseline EncDec model.

4 Experiments

We investigated the effectiveness of our method on ABS experiments, which were first performed by Rush et al., Rush et al. (2015). The data consist of approximately 3.8 million training, 400,000 validation and 400,000 test data, respectively. Generally, 1951 test data, randomly extracted from the test data section, are used for evaluation. Ad-

*The data can be created by the data construction scripts in the author’s code: https://github.com/facebook/NAMAS.

**As previously described Chopra et al. (2016) we removed the ill-formed (empty) data for Gigaword.

4.1 Main results: comparison with baseline

Table 2 shows the results of the baseline EncDec and our proposed EncDec+WFE. Note that the DUC-2004 data was evaluated by recall-based ROUGE scores, while the Gigaword data was evaluated by F-score-based ROUGE, respectively. For a validity confirmation of our EncDec baseline, we also performed OpenNMT tool. The results on Gigaword data with $B = 5$ were, 33.65, 16.12, and 31.37 for ROUGE-1(F), ROUGE-2(F) and ROUGE-L(F), respectively, which were almost similar results (but slightly lower) with our implementation. This supports that our baseline worked well as a strong baseline. Clearly, EncDec+WFE significantly outperformed the strong EncDec baseline by a wide margin on the ROUGE scores. Thus, we conclude that the WFE sub-model has a positive impact to gain the ABS performance since performance...
4.2 Comparison to current top systems

Table 3 lists the current top system results. Our method EncDec+WFE successfully achieved the current best scores on most evaluations. This result also supports the effectiveness of incorporating our WFE sub-model.

MRT Ayana et al. (2016) previously provided the best results. Note that its model structure is nearly identical to our baseline. On the contrary, MRT trained a model with a sequence-wise minimum risk estimation, while we trained all the models in our experiments with standard (point-wise) log-likelihood maximization. MRT essentially complements our method. We expect to further improve its performance by applying MRT for its training since recent progress of NMT has suggested leveraging a sequence-wise optimization technique for improving performance Wise-man and Rush (2016); Shen et al. (2016). We leave this as our future work.

4.3 Generation examples

Figure 3 shows actual generation examples. Based on our motivation, we specifically selected the redundant repeating output that occurred in the baseline EncDec. It is clear that EncDec+WFE successfully reduced them. This observation offers further evidence of the effectiveness of our method in quality.

4.4 Performance of the WFE sub-model

To evaluate the WFE sub-model alone, Table 4 shows the confusion matrix of the frequency estimation. We quantized \(\hat{a} \) by \(\lfloor \hat{a}/m \rfloor + 0.5 \) for all \(m \), where 0.5 was derived from the margin in \(\Psi_{\text{wfe}} \). Unfortunately, the result looks not so well. There seems to exist an enough room to improve the estimation. However, we emphasize that it already has an enough power to improve the overall quality as shown in Table 2 and Figure 3. We can expect to further gain the overall performance by improving the performance of the WFE sub-model.

5 Conclusion

This paper discussed the behavior of redundant repeating generation often observed in neural EncDec approaches. We proposed a method for reducing such redundancy by incorporating a sub-model that directly estimates and manages the frequency of each target vocabulary in the output. Experiments on ABS benchmark data showed the
effectiveness of our method, EncDec+WFE, for both improving automatic evaluation performance and reducing the actual redundancy. Our method is suitable for lossy compression tasks such as image caption generation tasks.

References

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information Processing Systems 27 (NIPS 2014), pages 3104–3112, 2014.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pages 1724–1734, 2014.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A Neural Attention Model for Abstractive Sentence Summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015), pages 379–389, 2015.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling Coverage for Neural Machine Translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 76–85, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1008.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheria. Coverage embedding models for neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 955–960, Austin, Texas, November 2016. Association for Computational Linguistics. URL https://aclweb.org/anthology/D16-1096.

Paul Over, Hoa Dang, and Donna Harman. DUC in context. Information Processing and Management, 43(6):1506–1520, 2007.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou. Sequence-to-sequence rnns for text summarization. CoRR, abs/1602.06023, 2016a. URL http://arxiv.org/abs/1602.06023.

Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive Sentence Summarization with Attentive Recurrent Neural Networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 93–98, San Diego, California, June 2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N16-1012.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 280–290, Berlin, Germany, August 2016b. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/K16-1028.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu Okumura. Controlling output length in neural encoder-decoders. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1328–1338, Austin, Texas, November 2016. Association for Computational Linguistics. URL https://aclweb.org/anthology/D16-1140.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao, and Masaaki Nagata. Neural headline generation on abstract meaning representation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1054–1059, Austin, Texas, November 2016. Association for Computational Linguistics. URL https://aclweb.org/anthology/D16-1112.

Ayana, Shiqi Shen, Zhiyuan Liu, and Maosong Sun. Neural headline generation with minimum risk training. CoRR, abs/1604.01904, 2016. URL http://arxiv.org/abs/1604.01904.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. Pointing the Unknown Words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL http://aclweb.org/anthology/D15-1166.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Networks. In Geoffrey J. Gordon and David B. Dunson, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), volume 15, pages 315–323. Journal of Machine Learning Research - Workshop and Conference Proceedings, 2011. URL http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Comput., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Junyoung Chung, Çağlar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.3555.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR, abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio. Maxout Networks. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1319–1327, 2013. URL http://jmlr.org/proceedings/papers/v28/goodfellow13.html.

Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199–222, 2004.

Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search optimization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1296–1306, Austin, Texas, November 2016. Association for Computational Linguistics. URL https://aclweb.org/anthology/D16-1137.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Minimum risk training for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1683–1692, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1159.