Operator identities corresponding to inverse problems

B. Fritzsche, B. Kirstein, I.Ya. Roitberg, A.L. Sakhnovich

Abstract
The structured operators and corresponding operator identities, which appear in inverse problems for the self-adjoint and skew-self-adjoint Dirac systems with rectangular potentials, are studied in detail. In particular, it is shown that operators with the close to displacement kernels are included in this class. A special case of positive and factorizable operators is dealt with separately.

MSC(2010): 45H05, 47G10, 34L40, 47A68.
Keywords: Dirac system, inverse problem, operator identity, structured operator, operator factorization.

1 Introduction

An operator S with a difference kernel was used by M.G. Krein to solve the inverse spectral problem for the self-adjoint Dirac-type system in his classical work [20], see also [4, 6, 18, 21, 34] and references therein. Following papers [28, 30] on the method of operator identities and its applications to inverse spectral problems for canonical systems, various other systems were treated in the same way using other operators satisfying somewhat different operator identities (see, e.g., [9, 11, 23, 25, 26, 32, 33]).

In particular, in this paper we study operators, which are necessary to recover the self-adjoint Dirac system

$$\frac{d}{dx}y(x,z) = i(zj + jV(x))y(x,z), \quad x \geq 0; \quad j := \begin{bmatrix} I_{m_1} & 0 \\ 0 & -I_{m_2} \end{bmatrix},$$

(1.1)
where I_{m_i} is the $m_i \times m_i$ identity matrix, $V = \{V_{i,j}\}_{i,j=1}^2$, $V_{11} = 0$, $V_{22} = 0$, $V_{12} = V_{21}^* = v$, and the $m_1 \times m_2$ block $v(x)$ of $V(x)$ is called the potential. The skew-self-adjoint analog of system (1.1) has the form

$$
\frac{d}{dx} y(x, z) = (izj + jV(x)) y(x, z), \quad x \geq 0.
$$

Equation (1.2)

Systems (1.1) and (1.2) are auxiliary linear systems for various important integrable coupled, multicomponent, and matrix wave equations (see, e.g., [1–3, 37] and references therein).

The direct problem for system (1.1) was treated in [8], and the existence of the $m_2 \times m_1$ non-expansive Weyl function was proved. To solve the inverse problem and recover system (1.1) from its Weyl function, the study of operators S, which satisfy operator identities of the form

$$
AS - SA^* = i\Pi j\Pi^*, \quad A, S \in B(L^2_{m_2}(0, l)), \quad A = -i \int_0^x \cdot dt;
$$

is required. Here \mathbb{C} stands for the complex plain, $B(H_1, H_2)$ denotes the class of bounded linear operators acting from the space H_1 into the space H_2, $B(H)$ is the class of bounded linear operators, which map H into itself, and $\Phi_1(x)$ is an $m_2 \times m_1$ matrix function. The notation I will be used for the identity operator.

The related operator identities, which appear in the case of skew-self-adjoint system (1.2), have the form (see [10, 23] for the case that $m_1 = m_2$)

$$
i(AS - SA^*) = \Pi\Pi^*, \quad A, S \in B(L^2_{m_2}(0, l)), \quad A = -i \int_0^x \cdot dt,
$$

where Π is given by formulas (1.4) and (1.5).

What are often referred to as structured operators (that satisfy operator identities) are also of independent interest. For applications of structured operators to probability theory and other domains see [7, 14, 16, 31, 35, 36] and various references therein. In particular, we show that, for the case that $\Phi_1(x)$ is continuously differentiable, the operators S satisfying (1.3) have
close to displacement kernels. Operators with close to displacement kernels were considered in [17] (see also [13, Section 2.4] and references therein) in connection with slightly non-homogenious processes and an algebra generated by Toeplitz operators. We also derive explicit inversion formulas for our operators. Explicit inversion formulas for convolution integral operators on a finite interval are presented in [12].

2 Operator identity: the case of self-adjoint Dirac system

We fix some $0 < l < \infty$ and consider an operator $S \in B(L^2_{m_2}(0, l))$:

$$(S f)(x) = (I_{m_2} - \Phi_1(0)\Phi_1(0)^*) f(x) - \int_0^l s(x, t)f(t)dt,$$

$$s(x, t) := \int_0^{\min(x, t)} \Phi'_1(x - \zeta)\Phi'_1(t - \zeta)^*d\zeta + \begin{cases} \Phi'_1(x - t)\Phi_1(0)^*, & x > t; \\ \Phi_1(0)\Phi'_1(t - x)^*, & t > x. \end{cases}$$

(2.1)

(2.2)

As mentioned in the Introduction, for the case that $\Phi_1(x)$ is continuously differentiable, the kernel s of the form (2.2) is called a ”close to displacement” kernel [13, 17].

Proposition 2.1 Let $\Phi_1(x)$ be an $m_2 \times m_1$ matrix function, which is boundedly differentiable on the interval $[0, l]$. Then the operator S, which is given by (2.1) and (2.2), satisfies the operator identity [13], where $\Pi := \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix}$ is expressed via formulas (1.4) and (1.5).

To proceed with the proof we need Proposition 3.2 from [10], the formulation and proof of which are valid also for rectangular matrix functions k and \tilde{k} (though it is not stated in [10] directly). We rewrite Proposition 3.2:

Lemma 2.2 [10] Let $\Phi(x)$ and $\tilde{\Phi}(x)$ be, respectively, $m_2 \times m_1$ and $m_1 \times m_2$ matrix functions, which are boundedly differentiable on the interval $[0, l]$ and satisfy equalities $\Phi(0) = 0$, $\tilde{\Phi}(0) = 0$. Then the operator S, which is given by

$$Sf = -\frac{1}{2} \int_0^l \int_{\frac{x + t}{2}}^{x + t} \Phi'(\frac{\xi + x - t}{2})\tilde{\Phi}'(\frac{\xi + t - x}{2})d\xi f(t)dt,$$

(2.3)
satisfies the operator identity

\[AS - SA^* = i\Phi(x) \int_0^l \hat{\Phi}(t) \cdot dt. \] (2.4)

The scalar subcase \(m_2 = 1 \) of Lemma 2.2 was earlier dealt with in \[19\].

Proof of Proposition 2.1 Rewrite (2.1) as

\[S = \sum_{i=1}^{4} S_i, \quad (S_1 f)(x) = (I_{m_2} - \Phi_1(0)\Phi_1(0)^*) f(x), \] (2.5)

\[S_2 = - \int_0^x \Phi_1'(x - t)\Phi_1(0)^* \cdot dt, \quad S_3 = - \int_x^l \Phi_1(0)\Phi_1'(t - x)^* \cdot dt, \]

\[S_4 = - \int_0^l \int_0^{\min(x,t)} \Phi_1(x - \zeta)\Phi_1'(t - \zeta)^* d\zeta \cdot dt. \]

It is immediately clear that

\[AS_1 - S_1 A^* = i(\Phi_1(0)\Phi_1(0)^* - I_{m_2}) \int_0^l \cdot dt. \] (2.6)

By changing of order of integration and integrating by parts we easily get

\[AS_2 - S_2 A^* = i(\Phi_1(x) - \Phi_1(0))\Phi_1(0)^* \int_0^l \cdot dt, \] (2.7)

\[AS_3 - S_3 A^* = i\Phi_1(0) \int_0^l (\Phi_1(t) - \Phi_1(0))^* \cdot dt. \] (2.8)

Because of (2.5)-(2.7), it remains to show that

\[AS_4 - S_4 A^* = i(\Phi_1(x) - \Phi_1(0)) \int_0^l (\Phi_1(t) - \Phi_1(0))^* \cdot dt \] (2.9)

to prove (1.3). Finally, after substitution

\[\xi = x + t - 2\zeta, \quad \Phi(x) = \Phi_1(x) - \Phi_1(0), \quad \hat{\Phi}(t) = (\Phi_1(t) - \Phi_1(0))^*, \]

it follows that operator \(S \) in Lemma 2.2 equals \(S_4 \), and formula (2.4) yields (2.9). Thus, (1.3) is proved. \(\square \)

The useful proposition below is a special case of Theorem 3.1 in \[27\] (and a simple generalization of a subcase of scalar Theorem 1.3 \[31\] p. 11]).
Proposition 2.3 Suppose an operator \(T \in B(L^2_{m_2}(0, l)) \) satisfies the operator identity

\[
TA - A^*T = i \int_0^t Q(x, t) \cdot dt, \quad Q(x, t) = Q_1(x)Q_2(t),
\]

(2.10)

where \(Q, Q_1, \) and \(Q_2 \) are \(m_2 \times m_2, m_2 \times p, \) and \(p \times m_2 \) (\(p > 0 \)) matrix-functions, respectively. Then \(T \) has the form

\[
Tf = \frac{d}{dx} \int_0^t \frac{\partial}{\partial t} \Upsilon(x, t) f(t) dt,
\]

(2.11)

where \(\Upsilon \) is absolutely continuous in \(t \) and

\[
\Upsilon(x, t) := -\frac{1}{2} \int_{x+t}^{2l-x-t} Q_1 \left(\frac{\xi + x - t}{2} \right) Q_2 \left(\frac{\xi - x + t}{2} \right) d\xi.
\]

(2.12)

In fact, even the scalar version of Proposition 2.3 could be used to show the uniqueness of the solution \(S \) of (1.3).

Corollary 2.4 The operator \(S = 0 \) is the unique operator \(S \in B(L^2_{m_2}(0, l)) \), which satisfies the operator identity \(AS - SA^* = 0 \).

Proof. We prove by contradiction. Let \(S_0 \neq 0 \) \((S_0 \in B(L^2_{m_2}(0, l)))\) satisfy the identity \(AS_0 - S_0A^* = 0 \). From definition of \(A \) in (1.3), we have

\[
UAU = A^*, \quad UA^*U = A \quad \text{for} \quad (Uf)(x) := f(l - x).
\]

(2.13)

It follows directly from the identity \(AS_0 - S_0A^* = 0 \) and equality (2.13) that

\[
T_0A - A^*T_0 = 0 \quad \text{for} \quad T_0 := US_0U \neq 0,
\]

(2.14)

where \(T_0 \in B(L^2_{m_2}(0, l)) \). Then, Proposition 2.3 and formula (2.14) imply \(T_0 = 0 \) and we arrive at a contradiction. \(\square \)

Proposition 2.1 and Corollary 2.4 yield the following result.

Theorem 2.5 Let \(\Phi_1(x) \) be an \(m_2 \times m_1 \) matrix function, which is boundedly differentiable on the interval \([0, l] \). Then the operator \(S \), which is given by (2.1) and (2.2), is the unique solution of the operator identity (1.3), where \(\Pi = [\Phi_1 \Phi_2] \) is expressed via formulas (1.4) and (1.5).

Note that the operator \(S^* \) satisfies (1.3) (or (1.6)) together with \(S \), and so \(S = S^* \) is immediate from the uniqueness of the solution of the corresponding operator identity.
3 Operator identity: the case of skew-self-adjoint Dirac system

Let
\[S = 2I - \hat{S}, \quad A\hat{S} - \hat{S}A^* = i\Pi j\Pi^*. \] (3.1)

In view of (1.5) and (1.6) we have
\[i(A - A^*) = \Phi_2\Phi_2^*. \] (3.2)

Therefore, the first equality in (3.1) yields equivalence between the second equality in (3.1) and identity (1.6). In other words, we can rewrite Theorem 2.5 in the following way.

Theorem 3.1 Let \(\Phi_1(x) \) be an \(m_2 \times m_1 \) matrix function, which is boundedly differentiable on the interval \([0, l]\). Then the operator \(S \), which is given by
\[(Sf)(x) = (I_{m_2} + \Phi_1(0)\Phi_1(0)^*)f(x) + \int_0^l s(x, t)f(t)dt \] (3.3)
and (2.2), is the unique solution of the operator identity (1.6), where \(\Pi \) is expressed via formulas (1.4) and (1.5).

The case of positive operators \(S \) is of interest, as these are operators that appear in inverse (and many other) problems.

Proposition 3.2 The operators \(S \) considered in Theorem 3.1 are always strictly positive. Furthermore, the inequality \(S \geq I \) holds.

Proof. It suffices to show that the inequalities \(S_\varepsilon \geq 0 \), where \(S_\varepsilon \) is given by
\[(S_\varepsilon f)(x) = (\varepsilon I_{m_2} + \Phi_1(0)\Phi_1(0)^*)f(x) + \int_0^l s(x, t)f(t)dt, \] (3.4)
hold for all \(0 < \varepsilon < 1 \). For that purpose we note that \(S_\varepsilon = S - (1 - \varepsilon)I \). Therefore identities (1.6) and (3.2) lead us to the formula
\[i(A S_\varepsilon - S_\varepsilon A^*) = \Phi_1\Phi_1^* + \varepsilon\Phi_2\Phi_2^* \geq 0, \] (3.5)
that is, the operator A^\ast is S_ε-dissipative.

Next, we will use several statements from [5], where earlier results (results on operators in the space Π_ε from [21,22]) are developed for the case that we are interested in. Because of [5, statement 9°] we see that $A^\ast \ker S_\varepsilon \subseteq \ker S_\varepsilon$. Since the integral part of S_ε is a compact operator, we derive that $\ker S_\varepsilon$ is finite-dimensional. However, A^\ast does not have eigenvectors and finite-dimensional invariant subspaces. Therefore, we get $\ker S_\varepsilon = 0$, and so S_ε admits the representation

$$S_\varepsilon = -KJK, \quad K > 0, \quad J = P_1 - P_2 \quad (P_\ell, K, K^{-1} \in B(L_{m_2}^2(0, l))). \tag{3.6}$$

where P_1 and P_2 are orthoprojectors, $P_1 + P_2 = I$. Furthermore, since $\varepsilon > 0$ and the integral part of S_ε is a compact operator, we see that P_1 is a finite-dimensional orthoprojector. In other words, J determines some space Π_ε, where $\varpi < \infty$ is the dimension of $\text{Im} P_1$. According to (3.5) and (3.6) the operator $-KA^\ast K^{-1}$ is J-dissipative. From [5, Theorem 1] we see that there is a ϖ-dimensional invariant subspace of $-KA^\ast K^{-1}$ (i.e., there is a ϖ-dimensional invariant subspace of A^\ast), which leads us to $\varpi = 0$ and $J = -I$. Now, the inequality $S_\varepsilon \geq 0$ follows directly from the first relation in (3.6).

4 Families of positive operators

In this section we consider different values of l simultaneously, and so the operator $S \in B(L_{m_2}^2(0, l))$, which is given by (2.1), will be denoted by S_l with index "l" below (correspondingly, A will be denoted by A_l, and Π by Π_l).

Next, introduce an orthoprojector P_r $(r \leq l)$ from $L_{m_2}^2(0, l)$ on $L_{m_2}^2(0, r)$ such that

$$(P_r f)(x) = f(x) \quad (0 < x < r), \quad f \in L_{m_2}^2(0, l). \tag{4.1}$$

Clearly, for $\widehat{l} < l$ we have

$$A_{\widehat{l}} = P_{\widehat{l}} A P_{\widehat{l}}^*, \quad S_{\widehat{l}} = P_{\widehat{l}} S_{l} P_{\widehat{l}}^*. \tag{4.2}$$

The case of positive operators S_l, which satisfy (1.3) (as well as positive operators S, which satisfy (1.0) and were dealt with in Section 3), is of
special interest. Such operators are invertible and admit the factorization
\[S_{l}^{-1} = E_{\Phi_{l}} E_{\Phi_{l}}, \quad E_{\Phi_{l}} = I + \int_{0}^{x} E_{\Phi}(x, t) \cdot dt \in B(L_{m_{2}}^{m_{2}}(0, l)). \quad (4.3) \]

More precisely, the following statements hold.

Proposition 4.1 Let \(\Phi_{1}(x) \) be an \(m_{2} \times m_{1} \) matrix function, which is boundedly differentiable on the interval \([0, l]\) and satisfies the inequality
\[(I_{m_{2}} - \Phi_{1}(0)\Phi_{1}(0)^*) > 0. \quad (4.4) \]
Furthermore, let operators \(S_{r} \) of the form \((2.1) \), where \(s \) is expressed via \((2.2) \), be boundedly invertible for all \(0 < r \leq l \). Then the operators \(S_{r} \) are strictly positive (i.e., \(S_{r} > 0 \)).

Proof. Since \((4.4) \) holds and operators \(S_{r} \) are given by \((2.1) \), where \(l \) is substituted by \(r \), we have \(S_{r} > 0 \) for small values of \(r \). We proceed by negation and suppose that some operators \(S_{r} \) are not strictly positive. Then there is a value \(0 < r_{0} < l \) such that \(S_{r_{0}} > 0 \) and the inequality does not hold for all \(r > r_{0} \). This is impossible, since the inequality \(S_{r_{0}} > 0 \) and formula \((4.4) \) imply \(S_{r_{0} + \varepsilon} > 0 \) for small values of \(\varepsilon \). \(\square \)

Theorem 4.2 Let the matrix function \(\Phi_{1}(x) \) and operators \(S_{l} \), which are expressed via \(\Phi_{1} \) in \((2.1) \), be such that \(\Phi_{1} \) is boundedly differentiable on each finite interval \([0, l]\) and satisfies equality \(\Phi_{1}(0) = 0 \), while the operators \(S_{l} \) are boundedly invertible for all \(0 < l < \infty \). Then the operators \(S_{l}^{-1} \) admit factorizations \((4.3) \), where \(E_{\Phi}(x, t) \) is continuous with respect to \(x, t \) and does not depend on \(l \). Furthermore, all the factorizations \((4.3) \) with continuous \(E_{\Phi}(x, t) \) are unique.

Proof. Since \(\Phi_{1}(0) = 0 \), formula \((2.1) \) takes the form
\[S_{l} = I - \int_{0}^{t} s(x, t) \cdot dt, \quad s(x, t) = \int_{0}^{\min(x, t)} \Phi_{1}(x - \zeta)\Phi_{1}'(t - \zeta)^* d\zeta. \quad (4.5) \]
Because of \((4.5) \) we see that the kernel \(s(x, t) \) of \(S_{l} \) is continuous. Hence, we can apply the factorization "result 2" from [15, pp. 185-186]. It follows
that operators S^{-1}_l admit upper-lower triangular factorizations, where the kernels of the corresponding triangular operators are continuous. Taking into account the equality $S_l = S^*_l$ (i.e., $S^{-1}_l = (S^{-1}_l)^*$), we use formulas (7.8) and (7.9) from [15, p. 186] to show that the upper triangular factor of S^{-1}_l is adjoint to the lower triangular factor, that is, formula (4.3) holds. Moreover, formulas (7.8) and (7.9) from [15, p. 186] imply that $E_{\Phi}(x, t)$ in (4.3) does not depend on l. The uniqueness of the factorization (4.3) is immediate from the uniqueness of the upper-lower triangular factorization of I which, in turn, easily follows from the relations for kernels of the factors yielded by the factorization formula for I. □

Acknowledgement. The work of I.Ya. Roitberg was supported by the German Research Foundation (DFG) under grant no. KI 760/3-1 and the work of A.L. Sakhnovich was supported by the Austrian Science Fund (FWF) under Grant no. Y330.

References

[1] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

[2] Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. In: London Mathematical Society Lecture Note Series, vol. 302. Cambridge University Press, Cambridge (2004)

[3] Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. In: SIAM Stud. Appl. Math., vol. 4. Philadelphia (1981)

[4] Alpay, D., Gohberg, I., Kaashoek, M.A., Lerer, L., Sakhnovich, A.: Krein systems and canonical systems on a finite interval: accelerants with a jump discontinuity at the origin and continuous potentials. Integr. Equ. Oper. Theory 68:1, 115–150 (2010)
[5] Azizov, T.Ja.: Dissipative operators in a Hilbert space with an indefinite metric. Math. USSR, Izv. 7, 639–660 (1973)

[6] Carroll, R.: Some remarks on orthogonal polynomials and transmutation methods. Boll. Unione Mat. Ital. B (6) 5:2, 465–486 (1986)

[7] Dubovoj, V.K., Fritzsche, B., Kirstein, B.: Matricial version of the classical Schur problem. In: Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 129. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1992)

[8] Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Weyl theory and explicit solutions of direct and inverse problems for a Dirac system with rectangular matrix potential. arXiv: 1105.2013 (2011)

[9] Fritzsche, B., Kirstein, B., Sakhnovich, A.L.: On a new class of structured matrices related to the discrete skew-self-adjoint Dirac systems. ELA 17, 473–486 (2008)

[10] Fritzsche, B., Kirstein, B., Sakhnovich, A.L.: Ssenseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system. Integr. Equ. Oper. Theory 66, 231–251 (2010)

[11] Fritzsche, B., Kirstein, B., Sakhnovich, A.L.: Weyl Functions of Generalized Dirac Systems: Integral Representation, the Inverse Problem and Discrete Interpolation. J. Anal. Math., to appear.

[12] Gohberg, I., Kaashoek, M.A., van Schagen, F.: On inversion of convolution integral operators on a finite interval. In: Operator Theory Adv. Appl., vol 147, 277–285. Birkhäuser, Basel (2004)

[13] Gohberg, I., Koltracht, I.: Numerical solution of integral equations, fast algorithms and Krein–Sobolev equations. Numer. Math. 47, 237–288 (1985)
[14] Gohberg, I., Krein, M.G.: Systems of integral equations on a half
line with kernels depending on the difference of arguments. Amer.
Math. Soc. Transl. (2) 14, 217-287 (1960)

[15] Gohberg, I., Krein, M.G.: Theory and applications of Volterra op-
erators in Hilbert space. In: Transl. of math. monographs, vol. 24.
Amer. Math. Soc., Providence, R. I. (1970)

[16] Kac, M.: On some connections between probability theory and dif-
erential and integral equations. In: Proc. Berkeley Sympos. Math.
Statist. Probability, 189–215 (1951)

[17] Kailath, T., Levy, B., Ljung, L., Morf, M.: The factorization and
representation of operators in the algebra generated by Toeplitz
operators. SIAM J. Appl. Math. 37, 467–484 (1979)

[18] Killip R., Simon, B.: Sum rules and spectral measures of Schrödinger
operators with L^2 potentials. Ann. of Math. (2) 170:2, 739–782
(2009)

[19] I. Koltracht, B. Kon, and L. Lerer, Inversion of structured operators,
Integr. Equ. Oper. Theory 20 (1994), 410–480.

[20] Krein, M.G.: Continuous analogues of propositions on polynomials
orthogonal on the unit circle (Russian). Dokl. Akad. Nauk SSSR
105, 637–640 (1955)

[21] Krein, M.G., Langer, H.: Defect subspaces and generalized resol-
vents of an Hermitian operator in the space Π_n. Funct. Anal. Appl.
5, 136–146 (1971)

[22] Langer, H.: Zur Spektraltheorie J-selbstadjungierter Operatoren.
Math. Ann. 146, 60–85 (1962)

[23] Sakhnovich, A.L.: A nonlinear Schrödinger equation on the semi-
axis and a related inverse problem. Ukrain. Math. J. 42:3, 316-323
(1990)
[24] Sakhnovich, A.L.: Dirac type and canonical systems: spectral and Weyl-Titchmarsh functions, direct and inverse problems. Inverse Problems 18, 331–348 (2002)

[25] Sakhnovich, A.L.: Weyl functions, the inverse problem and special solutions for the system auxiliary to the nonlinear optics equation. Inverse Problems 24, 025026 (2008)

[26] Sakhnovich, A.L.: Construction of the solution of the inverse spectral problem for a system depending rationally on the spectral parameter, Borg-Marchenko-type theorem, and sine-Gordon equation. Integr. Equ. Oper. Theory 69, 567–600 (2011)

[27] Sakhnovich, A.L., Karelin, A.A., Seck-Tuoh-Mora, J., Perez-Lechuga, G., Gonzalez-Hernandez, M.: On explicit inversion of a subclass of operators with D-difference kernels and Weyl theory of the corresponding canonical systems. Positivity 14, 547–564 (2010)

[28] Sakhnovich, L.A.: An integral equation with a kernel dependent on the difference of the arguments. Mat. Issled. 8, 138–146 (1973)

[29] Sakhnovich, L.A.: Equations with a difference kernel on a finite interval. Russian Math. Surveys 35:4, 81–152 (1980)

[30] Sakhnovich, L.A.: Factorisation problems and operator identities, Russian Math. Surveys 41, 1–64 (1986)

[31] Sakhnovich, L.A.: Integral equations with difference kernels on finite intervals. In: Operator Theory Adv. Appl., vol. 84. Birkhäuser, Basel-Boston-Berlin (1996)

[32] Sakhnovich, L.A.: Interpolation theory and its applications. Kluwer, Dordrecht (1997)

[33] Sakhnovich, L.A.: Spectral theory of canonical differential systems. Method of operator identities. In: Operator Theory Adv. Appl., vol. 107. Birkhäuser, Basel-Boston (1999)
[34] Sakhnovich, L.A.: On Krein’s differential system and its generalization. Integr. Equ. Oper. Theory 55, 561–572 (2006)

[35] Sakhnovich, L.A.: Effective construction of a class of positive operators in Hilbert space, which do not admit triangular factorization. J. Funct. Anal., doi:10.1016/j.jfa.2010.11.009 (2010)

[36] Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series. With engineering applications. M. I. T. Press, Cambridge, Mass. (1966)

[37] Zaharov, V.E., Shabat, A.B.: On soliton interaction in stable media, JETP 64, 1627–1639 (1973)

B. Fritzsche,
Fakultät für Mathematik und Informatik,
Mathematisches Institut, Universität Leipzig,
Johanniskirche 26, D-04103 Leipzig, Germany,
e-mail: Bernd.Fritzsche@math.uni-leipzig.de

B. Kirstein,
Fakultät für Mathematik und Informatik,
Mathematisches Institut, Universität Leipzig,
Johanniskirche 26, D-04103 Leipzig, Germany,
e-mail: Bernd.Kirstein@math.uni-leipzig.de

I. Roitberg,
Fakultät für Mathematik und Informatik,
Mathematisches Institut, Universität Leipzig,
Johanniskirche 26, D-04103 Leipzig, Germany,
e-mail: i.roitberg@yahoo.com

A.L. Sakhnovich,
Fakultät für Mathematik, Universität Wien,
Nordbergstrasse 15, A-1090 Wien, Austria
e-mail: al_sakhnov@yahoo.com