ON A FORMULA FOR THE PI-EXponent OF LIE ALGEBRAS

A. S. GORDIENKO

Abstract. We prove that one of the conditions in M. V. Zaicev’s formula for the PI-exponent and in its natural generalization for the Hopf PI-exponent, can be weakened. Using the modification of the formula, we prove that if a finite dimensional semisimple Lie algebra acts by derivations on a finite dimensional Lie algebra over a field of characteristic 0, then the differential PI-exponent coincides with the ordinary one. Analogously, the exponent of polynomial G-identities of a finite dimensional Lie algebra with a rational action of a connected reductive affine algebraic group G by automorphisms, coincides with the ordinary PI-exponent. In addition, we provide a simple formula for the Hopf PI-exponent and prove the existence of the Hopf PI-exponent itself for H-module Lie algebras whose solvable radical is nilpotent, assuming only the H-invariance of the radical, i.e. under weaker assumptions on the H-action, than in the general case. As a consequence, we show that the analog of Amitsur’s conjecture holds for G-codimensions of all finite dimensional Lie G-algebras whose solvable radical is nilpotent, for an arbitrary group G.

1. Introduction

The intensive study of polynomial identities and their numeric invariants revealed the strong connection of the invariants with the structure of an algebra [2, 7, 8, 20]. If an algebra is endowed with a grading, an action of a Lie algebra by derivations, an action of a group by automorphisms and anti-automorphisms, or an action of a Hopf algebra, it is natural to consider graded, differential, G- or H-identities [3, 4, 5, 17].

In 2002, M. V. Zaicev [20] proved a formula for the PI-exponent of finite dimensional Lie algebras over an algebraically closed field of characteristic 0. It can be shown [9, 11, 12] that, under some assumptions, the natural generalization of the formula (see Subsection 3.2) holds for the exponent of graded, differential, G-, and H-identities too. In Subsection 3.3 we prove that one of the conditions can be weakened, which makes the formula easier to apply.

In [12], the authors showed that if a connected reductive affine algebraic group G acts on a finite dimensional associative algebra A rationally by automorphisms, then the exponent of G-identities coincides with the ordinary PI-exponent of A. Also, if a finite dimensional semisimple Lie algebra acts on a finite dimensional associative algebra by derivations, then the differential PI-exponent coincides with the ordinary one. Using the modification of M. V. Zaicev’s formula, we prove the analogous results for finite dimensional Lie algebras (Theorems 4 and 5 in Section 4).

In Section 5 we consider finite dimensional H-module Lie algebras L such that the solvable radical of L is nilpotent and H-invariant. We prove the analog of Amitsur’s conjecture for such algebras L and provide a simple formula for the Hopf PI-exponent of L.

2010 Mathematics Subject Classification. Primary 17B01; Secondary 17B10, 17B40, 16T05, 20C30, 14L17.

Key words and phrases. Lie algebra, polynomial identity, derivation, Hopf algebra, H-module algebra, codimension, cocharacter, Young diagram, affine algebraic group.

Supported by Fonds Wetenschappelijk Onderzoek — Vlaanderen Pegasus Marie Curie post doctoral fellowship (Belgium).
2. Polynomial H-identities and their codimensions

Let H be a Hopf algebra over a field F. An algebra A over F is an H-module algebra or an algebra with an H-action, if A is endowed with a homomorphism $H \to \text{End}_F(A)$ such that $h(ab) = (h(1)a)(h(2)b)$ for all $h \in H$, $a, b \in A$. Here we use Sweedler’s notation $\Delta h = h(1) \otimes h(2)$ where Δ is the comultiplication in H.

Example 1. If M is an H-module, then $\text{End}_F(M)$ is an associative H-module algebra where $(h \psi)(v) = h(1)\psi((Sh(2))v)$ for all $h \in H$, $\psi \in \text{End}_F(M)$, and $v \in M$. (Here S is the antipode of H.)

We refer the reader to [11, 16, 18, 19] for an account of Hopf algebras and algebras with Hopf algebra actions.

Let $F\{X\}$ be the free nonassociative algebra over the set $X := \{x_1, x_2, x_3, \ldots\}$. Then $F\{X\} = \bigoplus_{n=1}^{\infty} F\{X\}(n)$ where $F\{X\}(n)$ is the linear span of all monomials of total degree n. Let H be a Hopf algebra over a field F. Consider the algebra

$$F\{X|H\} := \bigoplus_{n=1}^{\infty} H^{\otimes n} \otimes F\{X\}(n)$$

with the multiplication $$(u_1 \otimes w_1)(u_2 \otimes w_2) := (u_1 \otimes u_2) \otimes w_1 w_2$$ for all $u_1 \in H^{\otimes j}$, $u_2 \in H^{\otimes k}$, $w_1 \in F\{X\}(j)$, $w_2 \in F\{X\}(k)$. We use the notation

$$x_{i_1}^{h_{i_1}}x_{i_2}^{h_{i_2}} \ldots x_{i_n}^{h_{i_n}} := (h_1 \otimes h_2 \otimes \ldots \otimes h_n) \otimes x_{i_1}x_{i_2} \ldots x_{i_n}$$

(the arrangements of brackets on x_{i_j} and on $x_{i_j}^{h_{i_j}}$ are the same). Here $h_1 \otimes h_2 \otimes \ldots \otimes h_n \in H^{\otimes n}$, $x_{i_1}x_{i_2} \ldots x_{i_n} \in F\{X\}(n)$.

Note that if $(\gamma\beta)_{\beta \in \Lambda}$ is a basis in H, then $F\{X|H\}$ is isomorphic to the absolutely free nonassociative algebra over F with free formal generators $x_i^{\gamma\beta}$, $\beta \in \Lambda$, $i \in \mathbb{N}$.

Define on $F\{X|H\}$ the structure of a left H-module by

$$h\left(x_{i_1}^{h_{i_1}}x_{i_2}^{h_{i_2}} \ldots x_{i_n}^{h_{i_n}}\right) = x_{i_1}^{h(1)h_{i_1}}x_{i_2}^{h(2)h_{i_2}} \ldots x_{i_n}^{h(n)h_{i_n}},$$

where $h(1) \otimes h(2) \otimes \ldots \otimes h(n)$ is the image of h under the comultiplication Δ applied $(n - 1)$ times, $h \in H$. Then $F\{X|H\}$ is the absolutely free H-module nonassociative algebra on X, i.e. for each map $\psi: X \to A$ where A is an H-module algebra, there exists a unique homomorphism $\tilde{\psi}: F\{X|H\} \to A$ of algebras and H-modules, such that $\tilde{\psi}|_X = \psi$. Here we identify X with the set $\{x_i^j \mid j \in \mathbb{N}\} \subset F\{X|H\}$.

Consider the H-invariant ideal I in $F\{X|H\}$ generated by the set

$$\{u(vw) + v(wu) + w(vu) \mid u, v, w \in F\{X|H\}\} \cup \{u^2 \mid u \in F\{X|H\}\}. \quad (1)$$

Then $L(X|H) := F\{X|H\}/I$ is the free H-module Lie algebra on X, i.e. for any H-module Lie algebra L and a map $\psi: X \to L$, there exists a unique homomorphism $\tilde{\psi}: L(X|H) \to L$ of algebras and H-modules such that $\tilde{\psi}|_X = \psi$. We refer to the elements of $L(X|H)$ as H-polynomials and use the commutator notation for the multiplication.

Remark. If H is cocommutative and $\text{char } F \neq 2$, then $L(X|H)$ is the ordinary free Lie algebra with free generators x_i^{β}, $\beta \in \Lambda$, $i \in \mathbb{N}$ where $(\gamma\beta)_{\beta \in \Lambda}$ is a basis in H, since the ordinary ideal of $F\{X|H\}$ generated by $\{1\}$ is already H-invariant. However, if $h(1) \otimes h(2) \neq h(2) \otimes h(1)$ for some $h \in H$, we still have

$$[x_i^{h(1)}, x_j^{h(2)}] = h[x_i, x_j] = -h[x_j, x_i] = -[x_j^{h(1)}, x_i^{h(2)}] = [x_j^{h(2)}, x_i^{h(1)}]$$

in $L(X|H)$ for all $i, j \in \mathbb{N}$, i.e. in the case $h(1) \otimes h(2) \neq h(2) \otimes h(1)$ the algebra $L(X|H)$ is not free as an ordinary Lie algebra.
Let L be an H-module Lie algebra for some Hopf algebra H over a field F. An H-polynomial $f \in L(X|H)$ is a H-identity of L if $\psi(f) = 0$ for all homomorphisms $\psi : L(X|H) \to L$ of algebras and H-modules. In other words, $f(x_1, x_2, \ldots, x_n)$ is a polynomial H-identity of L if and only if $f(a_1, a_2, \ldots, a_n) = 0$ for any $a_i \in L$. In this case we write $f \equiv 0$. The set $\text{Id}^H(L)$ of all polynomial H-identities of L is an H-invariant ideal of $L(X|H)$.

Denote by V^H_n the space of all multilinear H-polynomials in x_1, \ldots, x_n, $n \in \mathbb{N}$, i.e.

$$V^H_n = \langle [x^h_1, x^h_2], \ldots, [x^h_n] \rangle_{H} \quad h_i \in H, \sigma \in S_n \rangle_F \subset L(X|H).$$

(All long commutators in the article are left-normed, although this is not important in this particular case in virtue of the Jacobi identity.) The number $c^H_n(L) := \text{dim} \left(\frac{V^H_n}{\text{Id}^H_n(L)} \right)$ is called the nth codimension of polynomial H-identities or the nth H-codimension of L.

The analog of Amitsur’s conjecture for H-codimensions of L can be formulated as follows.

Conjecture. There exists $\text{Plexp}^H(L) := \lim_{n \to \infty} \sqrt[n]{c^H_n(L)} \in \mathbb{Z}_+$.

We call $\text{Plexp}^H(L)$ the Hopf PI-exponent of L.

Here we list three important particular cases:

Example 2. Every algebra L is an H-module algebra for $H = F$. In this case the H-action is trivial and we get ordinary polynomial identities and their codimensions. (See the original definition e.g. in [2].) We write $c_n(L) := c^F_n(L)$, $\text{Id}(L) := \text{Id}^F(L)$, $V_n(L) := V^F_n(L)$, $\text{Plexp}(L) = \text{Plexp}^F(L)$.

Example 3. If $H = FG$ where FG is the group algebra of a group G, then an H-module algebra L is an algebra with a G-action by automorphisms. In this case we get polynomial G-identities and G-codimensions. We write $c^G_n(L) := c^{FG}_n(L)$, $\text{Id}^G(L) := \text{Id}^{FG}(L)$, $V^G_n(L) := V^{FG}_n(L)$, $\text{Plexp}^G(L) = \text{Plexp}^{FG}(L)$. Note that one can consider G-actions not only by automorphisms, but by anti-automorphisms too and define polynomial G-identities and G-codimensions in this case as well. (See e.g. [11] Section 1.2.)

Example 4. If $H = U(\mathfrak{g})$ where $U(\mathfrak{g})$ is the universal enveloping algebra of a Lie algebra \mathfrak{g}, then an H-module algebra is an algebra with a \mathfrak{g}-action by derivations. The corresponding H-identities are called differential identities or polynomial identities with derivations.

3. Two Formulas for the Hopf PI-Exponent

3.1. H-nice Lie algebras. The analog of Amitsur’s conjecture was proved [11] for a wide class of H-module Lie algebras that we call H-nice (see the definition below). The class of H-nice algebras includes finite dimensional semisimple H-module Lie algebras, finite dimensional H-module Lie algebras for finite dimensional semisimple Hopf algebras H, finite dimensional Lie algebras with a rational action of a reductive affine algebraic group by automorphisms, and finite dimensional Lie algebras graded by an Abelian group (see [11]).

Let L be a finite dimensional H-module Lie algebra where H is a Hopf algebra over an algebraically closed field F of characteristic 0. We say that L is H-nice if either L is semisimple or the following conditions hold:

1. the nilpotent radical N and the solvable radical R of L are H-invariant;
2. (Levi decomposition) there exists an H-invariant maximal semisimple subalgebra $B \subseteq L$ such that $L = B \oplus R$ (direct sum of H-modules);
3. (Wedderburn — Mal’cev decompositions) for any H-submodule $W \subseteq L$ and associative H-module subalgebra $A_1 \subseteq \text{End}_F(W)$, the Jacobson radical $J(A_1)$ is H-invariant and there exists an H-invariant maximal semisimple associative subalgebra $\bar{A}_1 \subseteq A_1$ such that $A_1 = \bar{A}_1 \oplus J(A_1)$ (direct sum of H-submodules);
(4) for any H-invariant Lie subalgebra $L_0 \subseteq \mathfrak{gl}(L)$ such that L_0 is an H-module algebra and L is a completely reducible L_0-module disregarding H-action, L is a completely reducible (H, L_0)-module.

3.2. Original formula. Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Fix some Levi decomposition $L = B \oplus R$ (direct sum of H-submodules).

Consider H-invariant ideals $I_1, I_2, \ldots, I_r, J_1, J_2, \ldots, J_r, r \in \mathbb{Z}_+$, of the algebra L such that $J_k \subseteq I_k$, satisfying the conditions

1. I_k/J_k is an irreducible (H, L)-module;
2. for any H-invariant B-submodules T_k such that $I_k = J_k \oplus T_k$, there exist numbers $q_i > 0$ such that

$$[[T_{1 \text{q}_1}, L, \ldots, L], [T_{2 \text{q}_2}, L, \ldots, L], \ldots, [T_{r \text{q}_r}, L, \ldots, L]] \neq 0.$$

Let M be an L-module. Denote by $\text{Ann} M$ its annihilator in L. Let

$$d(L, H) := \max \left(\dim \frac{L}{\text{Ann}(I_1/J_1) \cap \cdots \cap \text{Ann}(I_r/J_r)} \right)$$

where the maximum is found among all $r \in \mathbb{Z}_+$ and all $I_1, \ldots, I_r, J_1, \ldots, J_r$ satisfying Conditions 1–2.

In [11] Theorem 9, see also Section 1.8] the following theorem is proved:

Theorem 1. Let L be a non-nilpotent H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then there exist constants $C_1, C_2 > 0, r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} d^n \leq c_n^H (L) \leq C_2 n^{r_2} d^n \text{ for all } n \in \mathbb{N}.$$

Here $d := d(L, H)$.

In particular, there exists $\text{PExp}^H(L) = d(L, H) \in \mathbb{Z}_+$.

3.3. Modification. Let L be an H-nice Lie algebra. By [11] Lemma 10], $L = B \oplus S \oplus N$ for some H-submodule $S \subseteq R$ such that $[B, S] = 0$. Consider the associative subalgebra A_0 in $\text{End}_F(L)$ generated by $\text{ad} S$. Note that A_0 is an H-module algebra since S is H-invariant. By Condition 3 of Subsection 3.1 $A_0 = \tilde{A}_0 \oplus J(A_0)$ (direct sum of H-submodules) where \tilde{A}_0 is a maximal semisimple subalgebra of A_0. (If L is semisimple, $A_0 = \tilde{A}_0 = 0$.)

Lemma 1. $\tilde{A}_0 = Fe_1 \oplus \cdots \oplus Fe_q$ (direct sum of ideals) for some idempotents $e_i \in A_0$.

Proof. Since R is solvable, by Lie’s theorem, there exists a basis of L such that the matrices of all operators $\text{ad} a, a \in R$, are upper triangular. Denote the corresponding isomorphism $\text{End}_F(L) \to M_s(F)$ of algebras by ψ where $s := \dim L$. Since $\psi(\text{ad} R) \subseteq UT_s(F)$, we have $\psi(A_0) \subseteq UT_s(F)$ where $UT_s(F)$ is the associative algebra of upper triangular $s \times s$ matrices. However,

$$UT_s(F) = Fe_{11} \oplus Fe_{22} \oplus \cdots \oplus Fe_{ss} \oplus \tilde{N}$$

where

$$\tilde{N} := \langle e_{ij} \mid 1 \leq i < j \leq s \rangle_F$$

is a nilpotent ideal. Since ψ is an isomorphism, there is no subalgebras in A_0 isomorphic to $M_s^2(F)$, and $\tilde{A}_0 = Fe_1 \oplus \cdots \oplus Fe_q$ (direct sum of ideals) for some idempotents $e_i \in A_0$.

Since $[B, S] = 0$ and e_i are polynomials in $\text{ad} a, a \in S$, we have $[\text{ad} B, \tilde{A}_0] = 0$. The semisimplicity of B implies $(\text{ad} B) \cap \tilde{A}_0 = \{0\}$. Now we treat $(\text{ad} B) \oplus \tilde{A}_0$ as an H-module Lie algebra.

Lemma 2. L is a completely reducible $(\text{ad} B) \oplus \tilde{A}_0$- and $(H, (\text{ad} B) \oplus \tilde{A}_0)$-module.
Proof. If L is semisimple, then $L = B_1 \oplus \ldots \oplus B_s$ (direct sum of H-invariant ideals) for some H-simple Lie algebras B_i (see \cite[Theorem 6]{10}), and L is a completely reducible $(H, (ad B) \oplus \tilde{A}_0)$-module.

Suppose now that L satisfies Conditions 1-4 of Subsection 3.1. Note that e_i are commuting diagonalizable operators on L. Hence they have a common basis of eigenvectors, and $L = \bigoplus_j W_j$ where W_j are the intersections of eigenspaces of e_i. Each e_i commutes with the operators from $ad B$. Thus W_j are $(ad B)$-submodules. Recall that B is semisimple. Therefore, W_j is the direct sum of irreducible $(ad B)$-submodules. Since e_i act on each W_j as scalar operators, L is the direct sum of irreducible $(ad B) \oplus \tilde{A}_0$-submodules. Now Condition 3 of Subsection 3.1 implies the lemma.

We replace Condition 2 of Subsection 3.2 with Condition 2' below:

(2') there exist H-invariant $(ad B) \oplus \tilde{A}_0$-submodules $T_k, I_k = J_k \oplus T_k$, and numbers $q_i \geq 0$ such that

\[[T_1, L, \ldots, L], [T_2, L, \ldots, L], \ldots, [T_r, L, \ldots, L] \neq 0. \]

Define

\[d'(L, H) := \max \left(\frac{\dim L}{\dim(\text{Ann}(I_1/J_1) \cap \cdots \cap \text{Ann}(I_r/J_r))} \right) \]

where the maximum is found among all $r \in \mathbb{Z}_+$ and all $I_1, \ldots, I_r, J_1, \ldots, J_r$ satisfying Conditions 1 and 2'.

Theorem 2. Let L be an H-nice Lie algebra over an algebraically closed field F of characteristic 0. Then $\text{PExp}^H(L) = d'(L, H)$.

Proof. Clearly, $d'(L, H) \geq d(L, H) = \text{PExp}^H(L)$ since, by Lemma 2, L is a completely reducible $(H, (ad B) \oplus \tilde{A}_0)$-module and we can always choose H-invariant $(ad B) \oplus \tilde{A}_0$-submodules T_k such that $I_k = J_k \oplus T_k$.

If L is semisimple, then \cite[Example 7]{11} implies $d'(L, H) = d(L, H)$. Hence we may assume that L satisfies Conditions 1-4 of Subsection 3.1.

We prove that there exist $r \in \mathbb{R}, C > 0$ such that $c_n^H(L) \geq C n^*(d'(L, H))^n$ for all $n \in \mathbb{N}$. We take H-invariant ideals I_1, \ldots, I_r and J_1, \ldots, J_r satisfying Conditions 1 and 2' such that

\[\dim \frac{L}{\text{Ann}(I_1/J_1) \cap \cdots \cap \text{Ann}(I_r/J_r)} = d'(L, H). \]

Then we choose H-invariant $(ad B) \oplus \tilde{A}_0$-submodules $\tilde{T}_k, I_k = J_k \oplus \tilde{T}_k$, such that

\[[\tilde{T}_1, L, \ldots, L], [\tilde{T}_2, L, \ldots, L], \ldots, [\tilde{T}_r, L, \ldots, L] \neq 0 \]

for some numbers $q_i \geq 0$. Now we repeat the arguments of \cite[Section 6]{11} with the following changes. (We use the notation from \cite[Section 6]{11}.) Instead of using Lemma 15, we choose $c_{ij} \in \tilde{A}_0$ and $d_{ij} \in J(A_0)$ such that each $ad a_{ij} = c_{ij} + d_{ij}$. Note that, by the second part of the proof of \cite[Lemma 5]{11} for $W = S$ and $M = L$, we have $J(A_0) \subseteq J(A)$ where A is the associative subalgebra of $\text{End}_F(L)$ generated by the operators from H and $ad L$. Hence $d_{ij} \in J(A)$. Moreover, \tilde{T}_k that we have chosen by Condition 2', are H-invariant B-submodules, and we use them in \cite[Lemma 17]{11}. The rest of the proof is the same as in \cite[Section 6]{11}. Finally, we have $\text{PExp}^H(L) \geq d'(L, H)$, and the theorem is proved.

4. Lie G-algebras and Lie algebras with derivations

In \cite[Theorem 7]{12}, the authors proved the existence of the differential PI-exponent for finite dimensional Lie algebras with an action of a finite dimensional semisimple Lie algebra
by derivations. Here we prove that the differential PI-exponent coincides with the ordinary one.

Theorem 3. Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0. Suppose a Lie algebra \mathfrak{g} is acting on L by derivations, and L is an $U(\mathfrak{g})$-nice algebra. Then $\Pi_{\exp}(L) = \Pi_{\exp}U(\mathfrak{g})(L)$.

Remark. If a reductive affine algebraic group G is rationally acting on L by automorphisms, then L is an FG-nice algebra [11 Example 6]. Hence if G is connected and \mathfrak{g} is the Lie algebra of G, then by [15 Theorems 13.1 and 13.2], L is an $U(\mathfrak{g})$-nice algebra. In particular, a finite dimensional Lie algebra L with an action of a finite dimensional semisimple Lie algebra \mathfrak{g} by derivations is always an $U(\mathfrak{g})$-nice algebra, since there exists a simply connected semisimple affine algebraic group G rationally acting on L by automorphisms, such that \mathfrak{g} is the Lie algebra of G and the \mathfrak{g}-action is the differential of the G-action (see e.g. [13 Chapter XVIII, Theorem 5.1] and [12 Theorem 3]).

Proof of Theorem 3 By Theorems 1 and 2, there exist $\Pi_{\exp}(L) = d'(L,F)$ and $\Pi_{\exp}U(\mathfrak{g})(L) = d'(L,U(\mathfrak{g}))$. If we treat differential and ordinary multilinear Lie polynomials as multilinear functions on L, we obtain $c_{n}(L) = c_{n}(U(\mathfrak{g})(L))$ for all $n \in \mathbb{N}$. Hence $\Pi_{\exp}(L) \leq \Pi_{\exp}U(\mathfrak{g})(L)$.

Suppose \mathfrak{g}-invariant ideals $I_1, I_2, \ldots, I_r, J_1, J_2, \ldots, J_r$, $r \in \mathbb{Z}_{+}$, of the algebra L such that $J_k \subseteq I_k$, satisfy Conditions 1 and 2' for $H = U(\mathfrak{g})$. By Condition 2', there exist \mathfrak{g}-invariant (ad B) $\oplus \tilde{A}_0$-submodules T_k, $I_k = J_k \oplus T_k$, and numbers $q_i \geq 0$ such that

$$[[T_{1i_1}, L, \ldots, L], [T_{2j_2}, L, \ldots, L], \ldots, [T_{ri_r}, L, \ldots, L]] \neq 0.$$

By Lemma 2, L is a completely reducible (ad B) $\oplus \tilde{A}_0$-module. Hence $T_k = T_{k_1} \oplus T_{k_2} \oplus \ldots \oplus T_{k_{n_k}}$ for some irreducible (ad B) $\oplus \tilde{A}_0$-submodules T_{k_j}. Therefore, we can choose $1 \leq j_k \leq n_k$ such that

$$[[T_{1j_1}, L, \ldots, L], [T_{2j_2}, L, \ldots, L], \ldots, [T_{rij_r}, L, \ldots, L]] \neq 0.$$

Let $\tilde{I}_k = T_{k_{j_k}} \oplus J_k$.

We claim that \tilde{I}_k is an ideal in L and Ann(\tilde{I}_k/J_k) = Ann(I_k/J_k) for all $1 \leq k \leq r$. Denote by L_0, B_0, R_0, \mathfrak{g}_0, respectively, the images of L, B, R, \mathfrak{g} in $\mathfrak{gl}(I_k/J_k)$. Note that B_0 and R_0 are, respectively, semisimple and solvable. Hence $L_0 = B_0 \oplus R_0$ (direct sum of \mathfrak{g}-submodules) where \mathfrak{g}-action on $\mathfrak{gl}(I_k/J_k)$ is induced from the \mathfrak{g}-action on I_k/J_k and corresponds to the adjoint action of \mathfrak{g}_0 on $\mathfrak{gl}(I_k/J_k)$. In particular, R_0 is a solvable ideal of $(L_0 + \mathfrak{g}_0)$ and B_0 is an ideal of $(B_0 + \mathfrak{g}_0)$. Note that I_k/J_k is an irreducible $(L_0 + \mathfrak{g}_0)$-module. By E. Cartan’s theorem [13 Proposition 1.4.11], $L_0 + \mathfrak{g}_0 = B_1 \oplus R_1$ (direct sum of ideals) where B_1 is semisimple and R_1 is either zero or equal to the center $Z(\mathfrak{gl}(I_k/J_k))$ consisting of scalar operators. Considering the resulting projection $(L_0 + \mathfrak{g}_0) \rightarrow R_1$, we obtain $B_0 \subseteq B_1$. Since $R_0 \subseteq R_1$ consists of scalar operators, B_0 is an ideal of $(L_0 + \mathfrak{g}_0)$ and B_1.

Since \tilde{I}_k/J_k is an irreducible (ad B) $\oplus \tilde{A}_0$-module and \tilde{A}_0 is acting on I_k/J_k by scalar operators, \tilde{I}_k/J_k is an irreducible B_0- and L-module. In particular, \tilde{I}_k is an ideal.

If Ann(\tilde{I}_k/J_k) \neq Ann(I_k/J_k), then $a \tilde{I}_k/J_k = 0$ for some $a \in L_0 \cong L$/Ann(I_k/J_k), $a \neq 0$. Let $\varphi: L_0 \rightarrow \mathfrak{gl}(\tilde{I}_k/J_k)$ be the corresponding action and $a = b + c$ where $b \in B_0$, $c \in R_0$. Then $\varphi(b) = -\varphi(c)$ is a scalar operator on I_k/J_k. Hence $\varphi(b)$ belongs to the center of the semisimple algebra $\varphi(B_0)$. Thus $\varphi(b) = \varphi(c) = 0$, $b \neq 0$. Recall that B_1 is a semisimple algebra. Therefore $B_1 = B_0 \oplus B_2$ (direct sum of ideals) for some B_2. Since R_1 consists of
scalar operators, I_k/J_k is an irreducible B_1-module and we have
\[I_k/J_k = \sum_{\alpha \in B_2, \alpha \in \mathbb{Z}_+} a_1 \ldots a_\alpha \tilde{I}_k/J_k. \]

Now $[b, B_2] = 0$ and $bI_k/J_k = 0$ implies $bI_k/J_k = 0$ and $b = 0$. We get a contradiction. Hence
\[\text{Ann}(\tilde{I}_k/J_k) = \text{Ann}(I_k/J_k). \]

Note that $\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_r, J_1, J_2, \ldots, J_r$ satisfy Conditions 1 and 2 for $H = F$, i.e. for the case of ordinary polynomial identities. Moreover,
\[\dim \frac{L}{\text{Ann}(I_1/J_1) \cap \cdots \cap \text{Ann}(I_r/J_r)} = \dim \frac{L}{\text{Ann}(\tilde{I}_1/\tilde{J}_1) \cap \cdots \cap \text{Ann}(\tilde{I}_r/\tilde{J}_r)}. \]

Hence $\text{PExp}^U(\theta)(L) = \text{PExp}(L)$. □

Analog for associative algebras of Theorems 4 and 5 below were proved in [12 Theorems 15 and 16].

Theorem 4. Let L be a finite dimensional Lie algebra over a field F of characteristic 0. Suppose a finite dimensional semisimple Lie algebra g acts on L by derivations. Then $\text{PExp}^U(\theta)(L) = \text{PExp}(L)$.

Proof. H-codimensions do not change upon an extension of the base field. The proof is analogous to the cases of ordinary codimensions of associative [3, Theorem 4.1.9] and Lie algebras [20 Section 2]. Thus without loss of generality we may assume F to be algebraically closed. Now we use Theorem 3 and the remark after it. □

Remark. Theorem 4 implies similar asymptotic behavior of ordinary and differential codimensions, however the codimensions themselves may be different. Consider the adjoint action of $\mathfrak{sl}_2(F)$ on itself. Then $c_1(\mathfrak{sl}_2(F)) = 1 < c_1^U(\mathfrak{sl}_2(F))$ since $x_1^{e_{11}}x_2^{e_{22}}$ and $x_1^{e_{12}}$ are linearly independent modulo $\text{Id}_n^U(\mathfrak{sl}_2(F))$.

Theorem 5. Let L be a finite dimensional Lie algebra over an algebraically closed field F of characteristic 0. Suppose a connected reductive affine algebraic group G is rationally acting on L by automorphisms. Then $\text{PExp}^G(L) = \text{PExp}(L)$.

Proof. Note that the Lie algebra g of the group G is acting on L by derivations. By [12 Lemma 5], $c_n^U(g)(L) = c_n^G(L)$ for all $n \in \mathbb{N}$. Hence Theorem 3 implies $\text{PExp}^G(L) = \text{PExp}(L)$. □

Remark. In Theorem 5 one could consider the case when G is acting by anti-automorphisms too. However, in this case $G = G_0 \cup G_1$, $G_0 \cap G_1 = \emptyset$, where the elements of G_0 are acting on L by automorphisms and the elements of G_1 are acting by anti-automorphisms. Since G_0 and G_1 are defined by polynomial equations, they are closed subsets in G. Recall that G is connected. Therefore $G_1 = \emptyset$ and G must act by automorphisms only.

5. Lie algebras with $R = N$

5.1. **Formulation of the theorem.** If the solvable radical of an H-module Lie algebra L is nilpotent, we do not require from L to satisfy Conditions 2–4 in the definition of an H-nice algebra (see Subsection 5.1). Moreover, the formula for the Hopf PI-exponent is simpler, than in the general case (Subsections 5.2 and 5.3).

Theorem 6. Let L be a finite dimensional non-nilpotent H-module Lie algebra where H is a Hopf algebra over a field F of characteristic 0. Suppose that the solvable radical of L...
coincides with the nilpotent radical N of L and N is an H-submodule. Then there exist constants $d \in \mathbb{N}$, $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} d^n \leq c_n^H(L) \leq C_2 n^{r_2} d^n \text{ for all } n \in \mathbb{N}.$$

Moreover, if F is algebraically closed, the constant d is defined as follows. Let

$$L/N = B_1 \oplus \ldots \oplus B_q \text{ (direct sum of } H\text{-invariant ideals})$$

where B_i are H-simple Lie algebras and let $\pi : L/N \to L$ be any homomorphism of algebras (not necessarily H-linear) such that $\pi \varphi = \text{id}_{L/N}$ where $\pi : L \to L/N$ is the natural projection. Then

$$d = \max \left(B_{i_1} + B_{i_2} + \ldots + B_{i_r} \mid r \geq 1, \left[\left(\prod_{q_1} H \varphi(B_{i_1}), \ldots, L \right), \ldots, \left[\left(\prod_{q_r} H \varphi(B_{i_r}), \ldots, L \right) \right] \right] \neq 0 \text{ for some } q_i \geq 0 \right). \quad (2)$$

Remark. If L is nilpotent, i.e. $[x_1, \ldots, x_p] \equiv 0$ for some $p \in \mathbb{N}$, then $V_n \subseteq \text{Id}^H(L)$ and $c_n^H(L) = 0$ for all $n \geq p$.

Theorem 6 will be proved at the end of Subsection 5.3.

Corollary. The analog of Amitsur’s conjecture holds for such codimensions.

Remark. The existence of a decomposition $L/N = B_1 \oplus \ldots \oplus B_q$ (direct sum of H-invariant ideals) where B_i are H-simple Lie algebras, follows from [10, Theorem 6]. The existence of the map φ follows from the ordinary Levi theorem.

Remark. Note that by [12, Lemma 9], every differential simple algebra is simple. By [12, Lemma 10], a G-simple algebra is simple for a rational action of a connected affine algebraic group G. Therefore, Theorem 6 yields another proof of Theorems 4 and 5 for the case $R = N$ since in the conditions of the latter theorems there exists an H-invariant Levi decomposition and we can choose φ to be a homomorphism of H-modules.

Corollary. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0 with an action of a group G by automorphisms and anti-automorphisms. Suppose that the solvable radical of L coincides with the nilpotent radical N of L. Then there exist constants $d \in \mathbb{N}$, $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} d^n \leq c_n^U(L) \leq C_2 n^{r_2} d^n \text{ for all } n \in \mathbb{N}.$$

Proof. By [11, Lemma 28], we may assume that G is acting by automorphisms only. Now we notice that radicals are invariant under all automorphisms. Hence we may apply Theorem 6.

Corollary. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0 with an action of a Lie algebra \mathfrak{g} by derivations. Suppose that the solvable radical of L coincides with the nilpotent radical N of L. Then there exist constants $d \in \mathbb{N}$, $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} d^n \leq c_n^{U(\mathfrak{g})}(L) \leq C_2 n^{r_2} d^n \text{ for all } n \in \mathbb{N}.$$

Proof. By [16, Chapter III, Section 6, Theorem 7], the radical is invariant under all derivations. Hence we may apply Theorem 6.

The algebra in the example below has no G-invariant Levi decomposition (see [10, Example 12]), however it satisfies the analog of Amitsur’s conjecture.
Example 5 (Yuri Bahturin). Let F be a field of characteristic 0 and let

$$L = \left\{ \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \right| C \in \mathfrak{sl}_m(F), D \in M_m(F) \right\} \subseteq \mathfrak{sl}_2m(F), \quad m \geq 2.$$

Consider $\varphi \in \text{Aut}(L)$ where

$$\varphi \left(\begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} C & C + D \\ 0 & 0 \end{pmatrix}.$$

Then L is a Lie algebra with an action of the group $G = \langle \varphi \rangle \cong \mathbb{Z}$ by automorphisms and there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} (m^2 - 1)^n \leq c_n^U(L) \leq C_2 n^{r_2} (m^2 - 1)^n \quad \text{for all } n \in \mathbb{N}.$$

Proof. G-codimensions do not change upon an extension of the base field. The proof is analogous to the cases of ordinary codimensions of associative [8, Theorem 4.1.9] and Lie algebras [20, Section 2]. Moreover, upon an extension of F, L remains the algebra of the same type. Thus without loss of generality we may assume F to be algebraically closed.

Note that

$$N = \left\{ \begin{pmatrix} 0 & D \\ 0 & 0 \end{pmatrix} \right| D \in M_m(F) \right\}$$

is the solvable (and nilpotent) radical of L and $L/N \cong \mathfrak{sl}_m(F)$ is a simple Lie algebra. Hence $\text{Pexp}^U(L) = \dim \mathfrak{sl}_m(F) = m^2 - 1$ by Theorem 6.

The algebra in the example below has no L-invariant Levi decomposition (see [10, Example 13]), however it satisfies the analog of Amitsur’s conjecture.

Example 6. Let L be the Lie algebra from Example 5. Consider the adjoint action of L on itself by derivations. Then there exist constants $C_1, C_2 > 0$, $r_1, r_2 \in \mathbb{R}$ such that

$$C_1 n^{r_1} (m^2 - 1)^n \leq c_n^U(L) \leq C_2 n^{r_2} (m^2 - 1)^n \quad \text{for all } n \in \mathbb{N}.$$

Proof. Again, without loss of generality we may assume F to be algebraically closed. Since $L/N \cong \mathfrak{sl}_m(F)$ is a simple Lie algebra, $\text{Pexp}^U(L) = \dim \mathfrak{sl}_m(F) = m^2 - 1$ by Theorem 6.

5.2. S_n-cocharacters and upper bound. One of the main tools in the investigation of polynomial identities is provided by the representation theory of symmetric groups.

Let L be an H-module Lie algebra over a field F of characteristic 0. The symmetric group S_n acts on the spaces V_n^H by permuting the variables. Irreducible FS_n-modules are described by partitions $\lambda = (\lambda_1, \ldots, \lambda_s) \vdash n$ and their Young diagrams D_λ. The character $\chi_n^H(L)$ of the FS_n-module V_n^H is called the nth cocharacter of polynomial H-identities of L. We can rewrite $\chi_n^H(L)$ as a sum

$$\chi_n^H(L) = \sum_{\lambda \vdash n} m(L, H, \lambda) \chi(\lambda)$$

of irreducible characters $\chi(\lambda)$. Let $e_{T\lambda} = a_{T\lambda} b_{T\lambda}$ and $e_{T\lambda}^* = b_{T\lambda} a_{T\lambda}$ where $a_{T\lambda} = \sum_{\pi \in R_{T\lambda}} \pi$ and $b_{T\lambda} = \sum_{\sigma \in C_{T\lambda}} \text{sign } \sigma \sigma$, be Young symmetrizers corresponding to a Young tableau $T\lambda$. Then $M(\lambda) = FSe_{T\lambda} \cong FSe_{T\lambda}^*$ is an irreducible FS_n-module corresponding to a partition $\lambda \vdash n$. We refer the reader to [2, 7, 8] for an account of S_n-representations and their applications to polynomial identities.

In the next two lemmas we consider a finite dimensional H-module Lie algebra L with an H-invariant nilpotent ideal N where H is a Hopf algebra over a field F of characteristic 0 and $N^p = 0$ for some $p \in \mathbb{N}$. Fix a decomposition $L/N = B_1 \oplus \ldots \oplus B_q$ where B_i are some
subspaces. Let $\kappa: L/N \rightarrow L$ be an F-linear map such that $\pi \kappa = \text{id}_{L/N}$ where $\pi: L \rightarrow L/N$ is the natural projection. Define the number d by (2).

Lemma 3. Let $n \in \mathbb{N}$ and $\lambda = (\lambda_1, \ldots, \lambda_s) \vdash n$. Then if $\sum_{k=d}^{s} \lambda_k \geq p$, we have $m(L, H, \lambda) = 0$.

Proof. It is sufficient to prove that $e_{T_{\lambda}}^* f \in \text{Id}^H(L)$ for all $f \in V_n$ and for all Young tableaux T_{λ} corresponding to λ.

Fix a basis in L that is a union of bases of $\kappa(B_1), \ldots, \kappa(B_q)$ and N. Since $e_{T_{\lambda}}^* f$ is multilinear, it is sufficient to prove that $e_{T_{\lambda}}^* f$ vanishes under all evaluations on basis elements. Fix some substitution of basis elements and choose 1 $\leq i_1, \ldots, i_r \leq q$ such that all the elements substituted belong to $\kappa(B_{i_1}) \oplus \cdots \oplus \kappa(B_{i_r}) \oplus N$, and for each j we have an element being substituted from $\kappa(B_{i_j})$. Then we may assume that $\dim(B_{i_1} \oplus \cdots \oplus B_{i_r}) \leq d$, since otherwise $e_{T_{\lambda}}^* f$ is zero by the definition of d. Note that $e_{T_{\lambda}}^* f = b_{T_{\lambda}} a_{T_{\lambda}}$ and $b_{T_{\lambda}}$ alternates the variables of each column of T_{λ}. Hence if $e_{T_{\lambda}}^* f$ does not vanish, this implies that different basis elements are substituted for the variables of each column. Therefore, at least $\sum_{k=d+1}^{s} \lambda_k \geq p$ elements must be taken from N. Since $N^p = 0$, we have $e_{T_{\lambda}}^* f \in \text{Id}^H(L)$.

Lemma 4. If $d > 0$, then there exist constants $C_2 > 0$, $r_2 \in \mathbb{R}$ such that $c_n^H(L) \leq C_2 n^{r_2} d^n$ for all $n \in \mathbb{N}$. In the case $d = 0$, the algebra L is nilpotent.

Proof. Lemma 3 and 8 Lemmas 6.2.4, 6.2.5] imply

$$\sum_{m(L, H, \lambda) \neq 0} \dim M(\lambda) \leq C_3 n^{r_3} d^n$$

for some constants $C_3, r_3 > 0$. Together with [11, Theorem 12] this inequality yields the upper bound. \square

5.3. Lower bound. Lemma 5 below is a version of [11, Lemma 20] adapted for our case.

Lemma 5. Suppose that F is an algebraically closed field of characteristic 0 and let L, N, κ, B_1, and d be the same as in Theorem 0. If $d > 0$, then there exists a number $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$ there exist disjoint subsets $X_1, \ldots, X_{2k} \subseteq \{x_1, \ldots, x_n\}$, $k := [\frac{n-n_0}{2d}]$, $|X_1| = \ldots = |X_{2k}| = d$ and a polynomial $f \in V_n^H \setminus \text{Id}^H(L)$ alternating in the variables of each set X_j.

Proof. Without loss of generality, we may assume that $d = \dim(B_1 \oplus B_2 \oplus \cdots \oplus B_r)$ where $[[H \kappa(B_1), a_{i_1}, a_{i_2}], [H \kappa(B_2), a_{21}, a_{22}], \ldots, [H \kappa(B_r), a_{r1}, a_{r2}]] \neq 0$ for some $q_i \geq 0$ and $a_{kj} \in L$. Since N is nilpotent, we can increase q_i adding to $\{a_{ij}\}$ sufficiently many elements of N such that

$$[[\gamma_1 \kappa(b_1), a_{i_1}, a_{i_2}], [\gamma_2 \kappa(b_2), a_{21}, a_{22}], \ldots, [\gamma_r \kappa(b_r), a_{r1}, a_{r2}]] \neq 0$$

for some $q_i \geq 0$, $b_i \in B_i$, $\gamma_i \in H$, however

$$[[\hat{b}_1, a_{11}, a_{12}], [\hat{b}_2, a_{21}, a_{22}], \ldots, [\hat{b}_r, a_{r1}, a_{r2}]] = 0$$

for all $t_i \geq 0$, $\hat{b}_i \in [H \kappa(B_i), L, \ldots, L]$ such that $b_j \in [H \kappa(B_j), L, \ldots, L]$ for at least one j.

Recall that κ is a homomorphism of algebras. Moreover $\pi(h \kappa(a) - \kappa(ha)) = 0$ implies $h \kappa(a) - \kappa(ha) \in N$ for all $a \in L$ and $h \in H$. Hence, by (2), if we replace $\kappa(b_i)$ in

$$[[\gamma_1 \kappa(b_1), a_{i_1}, a_{i_2}], [\gamma_2 \kappa(b_2), a_{21}, a_{22}], \ldots, [\gamma_r \kappa(b_r), a_{r1}, a_{r2}]]$$

with the commutator of $\kappa(b_i)$ and an expression involving κ, the map κ will behave like a homomorphism of H-modules. We will exploit this property further.
In virtue of [11] Theorem 11, there exist constants \(m_i \in \mathbb{Z}_+ \) such that for any \(k \) there exist multilinear associative \(H \)-polynomials \(f_i \), of degree \((2kd_i + m_i) \), \(d_i := \dim B_i \), alternating in the variables from disjoint sets \(X_i^{(j)}, 1 \leq \ell \leq 2k \), \(|X_i^{(j)}| = d_i \), such that each \(f_i \) does not vanish under some evaluation in \((ad B_i)\).

Since \(B_i \) is an irreducible \((H, \text{ad } B_i)\)-module, by the Density Theorem, \(\text{End}_F(B_i) \) is generated by the operators from \(H \) and \(\text{ad } B_i \). Note that \(\text{End}_F(B_i) \cong M_{d_i}(F) \). Thus every matrix unit \(e^{(i)}_{j \ell} \in M_{d_i}(F) \) can be represented as a polynomial in operators from \(H \) and \(\text{ad } B_i \). Choose such polynomials for all \(i \) and all matrix units. Denote by \(m_0 \) the maximal degree of those polynomials.

Let \(n_0 := r(2m_0 + 1) + \sum_{i=1}^{r}(m_i + q_i) \). Now we choose \(f_i \) for \(k = \left\lfloor \frac{n - m_0}{2d} \right\rfloor \). In addition, we choose \(\tilde{f}_i \) for \(\tilde{k} = \left[\frac{n - 2kd - m_1}{2d} \right] + 1 \) and \(B_i \) using [11] Theorem 11 once again. The polynomials \(f_i \) will deliver us the required alternations. However, the total degree of the product may be less than \(n \). We will use \(\tilde{f}_i \) to increase the number of variables and obtain a polynomial of degree \(n \).

By [11] Theorem 11, there exist \(\bar{x}_{11}, \ldots, \bar{x}_{i,2kd_i+m_i} \in B_i \) such that

\[
f_i(ad \bar{x}_{11}, \ldots, ad \bar{x}_{i,2kd_i+m_i}) \neq 0,
\]

and \(\bar{x}_1, \ldots, \bar{x}_{2kd_1+m_1} \in B_1 \) such that \(\tilde{f}_1(ad \bar{x}_1, \ldots, ad \bar{x}_{2kd_1+m_1}) \neq 0 \). Hence

\[
e_{\ell \ell, i}(ad \bar{x}_1, \ldots, ad \bar{x}_{i,2kd_i+m_i})e_{s,s_i}^{(i)} \neq 0
\]

and

\[
e_{\ell \ell}^{(i)} \tilde{f}_1(ad \bar{x}_1, \ldots, ad \bar{x}_{2kd_1+m_1})e_{s,s}^{(i)} \neq 0
\]

for some matrix units \(e_{\ell \ell, i}, e_{s,s_i}^{(i)} \in \text{End}_F(B_i), 1 \leq \ell, s_i \leq d_i, e_{\ell \ell}^{(i)}, e_{s,s}^{(i)} \in \text{End}_F(B_1), 1 \leq \ell, s \leq d_1 \). Thus

\[
\sum_{\ell=1}^{d_1} e_{\ell \ell}^{(i)} f_1(ad \bar{x}_1, \ldots, ad \bar{x}_{i,2kd_i+m_i}) e_{s,s}^{(i)}
\]

is a nonzero scalar operator in \(\text{End}_F(B_1) \).

Hence

\[
[\gamma_1 \times \left(\sum_{\ell=1}^{d_1} e_{\ell \ell}^{(i)} f_1(ad \bar{x}_1, \ldots, ad \bar{x}_{i,2kd_i+m_1}) e_{s,s}^{(i)} \tilde{f}_1(ad \bar{x}_1, \ldots, ad \bar{x}_{2kd_1+m_1}) e_{s,s}^{(i)} b_1 \right), a_{11}, \ldots, a_{1 q_1}],
\]

\[
[\gamma_2 \times \left(\sum_{\ell=1}^{d_2} e_{\ell \ell}^{(2)} f_2(ad \bar{x}_1, \ldots, ad \bar{x}_{i,2kd_2+m_2}) e_{s,s}^{(2)} b_2 \right), a_{21}, \ldots, a_{2 q_2}],
\]

\[
[\gamma_r \times \left(\sum_{\ell=1}^{d_r} e_{\ell \ell}^{(r)} f_r(ad \bar{x}_1, \ldots, ad \bar{x}_{i,2kd_r+m_r}) e_{s,s}^{(r)} b_r \right), a_{r1}, \ldots, a_{r q_r}],
\]

\(\neq 0 \).

Now we rewrite \(e_{ij}^{(i)} \) as polynomials in elements of \(\text{ad } B_i \) and \(H \). Using linearity of the expression in \(e_{ij}^{(i)} \), we can replace \(e_{ij}^{(i)} \) with the products of elements from \(\text{ad } B_i \) and \(H \), and the expression will not vanish for some choice of the products. By the definition of an \(H \)-module algebra, \(h(ad a)b = \text{ad}(h(a))\text{ad}(b) \) for all \(h \in H \) and \(a, b \in L \). Hence we can move all elements from \(H \) to the right. As we have mentioned, \(\times \) is a homomorphism of algebras and, by (3), behaves like a homomorphism of \(H \)-modules. Hence we get

\[
a_0 := \left[\gamma_1 \left[\bar{y}_{11}, [\bar{y}_{12}, \ldots [\bar{y}_{1 a_1},
\right.
\]

\[
(f_1(ad \times(\bar{x}_{11}), \ldots, ad \times(\bar{x}_{i,2kd_i+m_i}))) h_1(\bar{w}_{11}, [\bar{w}_{12}, \ldots, [\bar{w}_{r \theta_1},
\]
\[(f_1(\text{ad } \kappa(\bar{x}_1), \ldots, \text{ad } \kappa(\bar{x}_{2kd_1+m_1})))^h[w_1, [\bar{w}_2, \ldots, [\bar{w}_g, \kappa(h'_b)]], \ldots, a_{1n}, \ldots, a_{1q}],\]
\[
\begin{bmatrix}
\gamma_2 \tilde{y}_{21}, \tilde{y}_{22}, \ldots \tilde{y}_{2a_2},
\end{bmatrix}
\]
\[(f_2(\text{ad } \kappa(\bar{x}_{21}), \ldots, \text{ad } \kappa(\bar{x}_{2,2kd_2+m_2})))^{h_2}[\bar{w}_{21}, \bar{w}_{22}, \ldots, [\bar{w}_{2g_2}, \kappa(h'_b)], \ldots, a_{21}, \ldots, a_{2q}], \ldots,\]
\[
\begin{bmatrix}
\gamma_2 \bar{y}_{21}, \bar{y}_{22}, \ldots \bar{y}_{2a_2},
\end{bmatrix}
\]
\[(f_r(\text{ad } \kappa(\bar{x}_r), \ldots, \text{ad } \kappa(\bar{x}_{r,2kd_r+m_r})))^{h_r}[\bar{w}_{r1}, \bar{w}_{r2}, \ldots, [\bar{w}_{r\theta_r}, \kappa(h'_b)], \ldots, a_{r1}, \ldots, a_{rql}],\]
\[
\begin{bmatrix}
\gamma_r \bar{y}_{r1}, \bar{y}_{r2}, \ldots \bar{y}_{r\alpha_r},
\end{bmatrix}
\]
for some \(0 \leq \alpha_i, \theta_i, \tilde{\theta} \leq m_0, \ h_i, h'_i, \tilde{h} \in H, \ y_{ij}, \bar{y}_{ij} \in \kappa(B_i), \ w_j \in \kappa(B_1)\).

We assume that each \(f_i\) is a polynomial in \(x_{1i}, \ldots, x_{2kd_i+m_i}\) and \(\tilde{f}_i\) is a polynomial in \(x_{1i}, \ldots, x_{2kd_i+m_i}\). Denote \(X_\ell := \bigcup_{i=1}^r X^{(i)}_\ell\) where \(f_i\) is alternating in the variables of each \(X^{(i)}_\ell\). Let \(\text{Alt}_\ell\) be the operator of alternation in the variables from \(X_\ell\).

Consider
\[
\hat{f} := \text{Alt}_1 \text{Alt}_2 \ldots \text{Alt}_{2k} \begin{bmatrix}
\gamma_1[y_{11}, y_{12}, \ldots, y_{1a_1}],
\end{bmatrix}
\]
\[
(f_1(\text{ad } x_{11}, \ldots, \text{ad } x_{1,2kd_1+m_1}))^{h_1}[w_{11}, [w_{12}, \ldots, [w_{1\theta_1}, z_1]], \ldots, u_{11}, \ldots, u_{1q}],
\]
\[
\begin{bmatrix}
\gamma_2[y_{21}, y_{22}, \ldots, y_{2a_2}],
\end{bmatrix}
\]
\[(f_2(\text{ad } x_{21}, \ldots, \text{ad } x_{2,2kd_2+m_2}))^{h_2}[w_{21}, [w_{22}, \ldots, [w_{2g_2}, z_2]], \ldots, u_{21}, \ldots, u_{2q}], \ldots,\]
\[
\begin{bmatrix}
\gamma_2[y_{21}, y_{22}, \ldots, y_{2a_2}],
\end{bmatrix}
\]
\[(f_r(\text{ad } x_{r1}, \ldots, \text{ad } x_{r,2kd_r+m_r}))^{h_r}[w_{r1}, [w_{r2}, \ldots, [w_{r\theta_r}, z_r]], \ldots, u_{r1}, \ldots, u_{rql}],\]
\[
\begin{bmatrix}
\gamma_r[y_{r1}, y_{r2}, \ldots, y_{r\alpha_r}],
\end{bmatrix}
\]
Then the value of \(\hat{f}\) under the substitution \(z_i = \kappa(h'_b), u_{id} = a_{id}, x_{id} = \kappa(\bar{x}_{id}), x_i = \kappa(\bar{x}_i), y_{id} = \bar{y}_{id}, w_{id} = w_{id}, w_i = \bar{w}_i\) equals \((d_1)^{2k} \ldots (d_r)^{2k} a_0 \neq 0\) since \(f_i\) are alternating in the variables of each \(X^{(i)}_\ell, [B_i, B_\ell] = 0\) for \(i \neq \ell\), and \(\kappa\) is a homomorphism of algebras.

Hence
\[
f_0 := \text{Alt}_1 \text{Alt}_2 \ldots \text{Alt}_{2k} \begin{bmatrix}
\gamma_1[y_{11}, y_{12}, \ldots, y_{1a_1}],
\end{bmatrix}
\]
\[(f_1(\text{ad } x_{11}, \ldots, \text{ad } x_{1,2kd_1+m_1}))^{h_1}[w_{11}, [w_{12}, \ldots, [w_{1\theta_1}, z_1]], \ldots, u_{11}, \ldots, u_{1q}],\]
\[
\begin{bmatrix}
\gamma_2[y_{21}, y_{22}, \ldots, y_{2a_2}],
\end{bmatrix}
\]
\[(f_2(\text{ad } x_{21}, \ldots, \text{ad } x_{2,2kd_2+m_2}))^{h_2}[w_{21}, [w_{22}, \ldots, [w_{2g_2}, z_2]], \ldots, u_{21}, \ldots, u_{2q}], \ldots,\]
\[
\begin{bmatrix}
\gamma_2[y_{21}, y_{22}, \ldots, y_{2a_2}],
\end{bmatrix}
\]
\[(f_r(\text{ad } x_{r1}, \ldots, \text{ad } x_{r,2kd_r+m_r}))^{h_r}[w_{r1}, [w_{r2}, \ldots, [w_{r\theta_r}, z_r]], \ldots, u_{r1}, \ldots, u_{rql}],\]
\[
\begin{bmatrix}
\gamma_r[y_{r1}, y_{r2}, \ldots, y_{r\alpha_r}],
\end{bmatrix}
\]
does not vanish under the substitution
\[
z_i = \kappa(h'_b) \text{ for } 2 \leq i \leq r; \ u_{id} = a_{id}, x_{id} = \kappa(\bar{x}_{id}), \ y_{id} = \bar{y}_{id}, w_{id} = \bar{w}_{id}.
\]

Note that \(f_0 \in V_n^H, \ n := 2kd_r, \sum_{i=1}^r (m_i + q_i + \alpha_i + \theta_i) \leq n. \) If \(n = \bar{n}\), then we take \(f := f_0\).

Suppose \(n > \bar{n}\). Note that \((\tilde{f}_1(\text{ad } \kappa(\bar{x}_1), \ldots, \text{ad } \kappa(\bar{x}_{2kd_1+m_1}))^{h_1}[\bar{w}_1, [\bar{w}_2, \ldots, [\bar{w}_g, \kappa(h'_b)], \ldots,\]
\[
\begin{bmatrix}
\gamma_2 \bar{y}_{21}, \bar{y}_{22}, \ldots \bar{y}_{2a_2},
\end{bmatrix}
\]
is a linear combination of long commutators. Each of these commutators contains at least $2kd_i + m_1 + 1 > n - \tilde{n} + 1$ elements of L. Hence f_0 does not vanish under a substitution $z_i = [v_1, \ldots, v_{n-\tilde{n}}, \ldots]$ for some $0 \geq n - \tilde{n}$, $v_i \in L$; $z_i = \alpha(h'_ib)$ for $2 \leq i \leq r$; $u_{id} = a_{id}$, $x_{id} = \alpha(x_{id})$, $y_{id} = \tilde{y}_{id}$, $w_{id} = \tilde{w}_{id}$. Therefore,

$$f := \text{Alt}_1 \text{Alt}_2 \ldots \text{Alt}_k \left[\gamma_1 [y_{11}, [y_{12}, \ldots, y_{1\alpha_1}],
ight.$$\n
$$(f_1(ad x_{11}, \ldots, ad x_{12kd_1 + m_1}))^{k_1}[w_{11}, [w_{12}, \ldots, w_{1\theta_1}],

[[v_1, [v_2, \ldots, [v_{n-\tilde{n}}, z_1], \ldots]], u_{11}, \ldots, u_{1q_1}],

\gamma_2 [y_{21}, [y_{22}, \ldots, y_{2\alpha_2}],

(f_2(ad x_{21}, \ldots, ad x_{22kd_2 + m_2}))^{k_2}[w_{21}, [w_{22}, \ldots, w_{2\theta_2}, z_2], \ldots], u_{21}, \ldots, u_{2q_2}],

\gamma_r [y_{r1}, [y_{r2}, \ldots, y_{r\alpha_r}],

(f_r(ad x_{r1}, \ldots, ad x_{r2kd_r + m_r}))^{k_r}[w_{r1}, [w_{r2}, \ldots, w_{r\theta_r}, z_r], \ldots], u_{r1}, \ldots, u_{rq_r}]]$$

does not vanish under the substitution $v_i = \tilde{v}_i$, $1 \leq \ell \leq n - \tilde{n}$,

$$z_i = [\tilde{v}_{n-\tilde{n}+1}, [\tilde{v}_{n-\tilde{n}+2}, \ldots, [\tilde{v}_b, \alpha(h'_ib)]], \ldots];$$

$$z_{i} = \alpha(h'_ib)$$

for $2 \leq i \leq r$; $u_{id} = a_{id}$, $x_{id} = \alpha(x_{id})$, $y_{id} = \tilde{y}_{id}$, $w_{id} = \tilde{w}_{id}$. Note that $f \in V_n^H$ and satisfies all the conditions of the lemma.

Lemma 6 is an analog of Lemma 21.

Lemma 6. Let k, n_0 be the numbers from Lemma 5. Then for every $n \geq n_0$ there exists a partition $\lambda = (\lambda_1, \ldots, \lambda_d) \vdash n$, $\lambda_i \geq 2k - p$ for every $1 \leq i \leq d$, with $m(L, H, \lambda) \neq 0$. Here $p \in \mathbb{N}$ is such a number that $N^p = 0$.

Proof. Consider the polynomial f from Lemma 5. It is sufficient to prove that $e_T^*f \notin \text{Id}^H(L)$ for some tableau T_λ of the desired shape λ. It is known that $FS_n = \bigoplus_{\lambda, T_\lambda} FS_n e_{T_\lambda}$, where the summation runs over the set of all standard tableaux T_λ, $\lambda \vdash n$. Thus $FS_n f = \sum_{\lambda, T_\lambda} FS_n e_{T_\lambda} f \nsubseteq \text{Id}^H(L)$ and $e_{T_\lambda}^* f \notin \text{Id}^H(L)$ for some $\lambda \vdash n$. We claim that λ is of the desired shape. It is sufficient to prove that $\lambda_d \geq 2k - p$, since $\lambda_i \geq \lambda_d$ for every $1 \leq i \leq d$. Each row of T_λ includes numbers of no more than one variable from each X_i, since $e_{T_\lambda}^* = b_{T_\lambda} a_{T_\lambda}$ and a_{T_λ} is symmetrizing the variables of each row. Thus $\sum_{i=1}^{d-1} \lambda_i \leq 2k(d - 1) + (n - 2kd) = n - 2k$. In virtue of Lemma 5, $\sum_{i=1}^{d} \lambda_i \geq n - p$. Therefore $\lambda_d \geq 2k - p$. \qed

Proof of Theorem 6. Let $K \supset F$ be an extension of the field F. Then

$$(L \otimes_F K) / (N \otimes_F K) \cong (L/N) \otimes_F K$$

is again a semisimple Lie algebra and $N \otimes_F K$ is still nilpotent. As we have already mentioned, H-codimensions do not change upon an extension of F. Hence we may assume F to be algebraically closed.

The Young diagram D_λ from Lemma 6 contains the rectangular subdiagram D_μ, $\mu = (2k - p, \ldots, 2k - p)$. The branching rule for S_n implies that if we consider the restriction of S_n-action on $M(\lambda)$ to S_{n-1}, then $M(\lambda)$ becomes the direct sum of all non-isomorphic FS_{n-1}-modules $M(\nu)$, $\nu \vdash (n - 1)$, where each D_ν is obtained from D_λ by deleting one box.
In particular, \(\dim M(\nu) \leq \dim M(\lambda) \). Applying the rule \((n - d(2k - p))\) times, we obtain \(\dim M(\mu) \leq \dim M(\lambda) \). By the hook formula,

\[
\dim M(\mu) = \frac{(d(2k - p))!}{\prod_{i,j} h_{ij}}
\]

where \(h_{ij} \) is the length of the hook with edge in \((i, j)\). By Stirling formula,

\[
c_n^H(L) \geq \dim M(\lambda) \geq \dim M(\mu) \geq \frac{(d(2k - p))!}{((2k - p + d)!)^d} \sim \frac{\sqrt{2\pi d(2k - p)}}{(2k - p + d)^{2k - p + d}} \sim C_4 k^{r_4} d^{2kd}
\]

for some constants \(C_4 > 0, r_4 \in \mathbb{Q} \), as \(k \to \infty \). Since \(k = \left[\frac{n - n_0}{2d} \right] \), this gives the lower bound. The upper bound has been proved in Lemma [H].

\[\square \]

Acknowledgements

This work started while I was an AARMS postdoctoral fellow at Memorial University of Newfoundland, whose faculty and staff I would like to thank for hospitality. I am grateful to Yuri Bahturin, who suggested that I study polynomial \(H \)-identities, and to Mikhail Zaicev, who suggested that I consider algebras without an \(H \)-invariant Levi decomposition. In addition, I appreciate Mikhail Kochetov for helpful discussions. Finally, I am grateful to the referee who found several misprints and gave some useful advices on how to improve the exposition.

References

[1] Abe, E. Hopf algebras. Cambridge University Press, Cambridge, 1980.
[2] Bakhturin, Yu. A. Identical relations in Lie algebras. VNU Science Press, Utrecht, 1987.
[3] Bahturin, Yu. A., Zaicev, M. V. Identities of graded algebras and codimension growth. Trans. Amer. Math. Soc. 356:10 (2004), 3939–3950.
[4] Bakhturin, Yu. A., Zaïtsev, M. V., Schgal, S. K. G-identities of non-associative algebras. Sbornik: Mathematics, 190:11 (1999), 1559–1570.
[5] Berele, A. Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra, 185 (1996), 869–885.
[6] Dăscălescu, S., Năstăsescu, C., Raianu, Ş. Hopf algebras: an introduction. New York, Marcel Dekker, Inc., 2001.
[7] Drensky, V. S. Free algebras and PI-algebras: graduate course in algebra. Singapore, Springer-Verlag, 2000.
[8] Giambruno, A., Zaicev, M. V. Polynomial identities and asymptotic methods. AMS Mathematical Surveys and Monographs Vol. 122, Providence, R.I., 2005.
[9] Gordienko, A. S. Graded polynomial identities, group actions, and exponential growth of Lie algebras. J. Algebra, 367 (2012), 26–53.
[10] Gordienko, A. S. Structure of \(H \)-(co)module Lie algebras. J. Lie Theory, 23:3 (2013), 669–689.
[11] Gordienko, A. S. Amitsur’s conjecture for polynomial \(H \)-identities of \(H \)-module Lie algebras. Tran. Amer. Math. Soc. (to appear)
[12] Gordienko, A. S., Kochetov, M. V. Derivations, gradings, actions of algebraic groups, and codimension growth of polynomial identities. Algebras and Representation Theory (to appear)
[13] Goto, M., Grosshans, F. Semisimple Lie algebras. Marcel Dekker, New York and Basel, 1978.
[14] Hochschild, G. Basic theory of algebraic groups and Lie algebras. Graduate texts in mathematics, 75, Springer-Verlag New York, 1981.
[15] Humphreys, J. E. Linear algebraic groups. New-York, Springer-Verlag, 1975.
[16] Jacobson, N. Lie algebras. New York–London, Interscience Publishers, 1962.
[17] Kharchenko, V. K. Differential identities of semiprime rings. Algebra and Logic, 18 (1979), 86–119.
[18] Montgomery, S. Hopf algebras and their actions on rings, CBMS Lecture Notes 82, Amer. Math. Soc., Providence, RI, 1993.
[19] Sweedler, M. Hopf algebras. W.A. Benjamin, inc., New York, 1969.
[20] Zaitsev, M. V. Integrality of exponents of growth of identities of finite-dimensional Lie algebras. Izv. Math., 66 (2002), 463–487.

VRIJE UNIVERSITEIT BRUSSEL, BELGIUM
E-mail address: alexey.gordienko@vub.ac.be