SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies

Zheng Zheng1⋆, Huiyuan Wang2, Junqiang Ge1, Shude Mao1,3,4, Cheng Li3,5, Ran Li1, Houjun Mo3,6, Daniel Goddard7, Kevin Bundy8, Hongyu Li1, Preethi Nair9, Lihuai Lin10, R. J. Long1,4, Rogério Riffel11,12, Daniel Thomas7, Karen Masters7, Dmitry Bizyaev13,14, Joel R. Brownstein15, Kai Zhang16, David R. Law17, Niv Drory18, Alexandre Roman Lopes19, Olena Malanushenko13

1National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012, China
2Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China
3Tsinghua University, Beijing 100084, China
4Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
5Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
6Department of Astronomy, University of Massachusetts Amherst, MA 01003, USA
7Institute of Cosmology and Quantum Gravity, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK
8Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
9The University of Alabama, Tuscaloosa, AL 35487, USA
10Institute of Astronomy & Astrophysics, Academia Sinica, Taipei 10617, Taiwan
11Departamento de Astronomia, Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS, Brazil
12Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena, Chile

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M_*, NUV−r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M_* and NUV−r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.

Key words: galaxies: abundances – galaxies: statistics – galaxies: structure – galaxies: evolution – galaxies: formation – galaxies: stellar content

1 INTRODUCTION

Galaxies are complex systems and their structures are expected to be affected by many different processes. Observa-
tions have shown that the stellar age and metallicity gradients of galaxies are correlated with the overall properties of galaxies, such as total stellar mass, broad band colour, and stellar velocity dispersion (e.g. Mehler et al. 2003; Spera et al. 2009; Koleva et al. 2009; Rawle et al. 2010; Kuntschner et al. 2010; La Barbera et al. 2012; González Delgado et al. 2015). Theoretically, internal processes such as supernova feedback (e.g. Kawata & Gibson 2003) and migration of stars (e.g. Sellwood & Binney 2002; Roskar et al. 2008) have been proposed to interpret the observed gradients. In the hierarchical galaxy formation scenario, galaxies are formed in dark matter haloes and could experience many mergers during their formation history. Galaxy properties could therefore be affected also by galaxy environments and merger history. Previous studies have also showed that galaxy properties related to mass and star formation history, e.g. total stellar mass (Kauffmann et al. 2004; Li et al. 2006), colour (Blanton et al. 2005; Li et al. 2006), D4000 (the break at 4000 Å, Kauffmann et al. 2004; Li et al. 2006) and morphology (Dressler 1980), are strongly dependent on environment. Structure related parameters, such as concentration, surface brightness and Sérsic indices, at given total stellar mass and colour, are however, nearly independent of environment (Kauffmann et al. 2004; Blanton et al. 2005; Li et al. 2006; Blanton & Moustakas 2009).

There have been a lot of studies about relationships between galaxy properties and local density environment using various kinds of environment indicators, such as group environment (Yang et al. 2007), nearest neighbour distance (Park et al. 2007), and number counts of neighbouring galaxies (Kauffmann et al. 2004; Blanton & Moustakas 2009). Most previous local density environment indicators are derived using galaxies, which may be a biased tracer of the underlying mass distribution. There have also been studies about the dependence of galaxy overall properties on large scale structure (LSS) environments (e.g. Lee & Li 2008).

It is natural to ask whether the distribution of star formation history related parameters, such as stellar age and metallicity, depends on galaxy environments. On one hand, there are many numerical simulations studying the effects of mergers on stellar population distributions (e.g. Di Matteo et al. 2009; Pipino et al. 2010). Generally speaking, monolithic collapse models (Pipino et al. 2010) usually produce relatively large metallicity gradients, whilst mergers tend to make the profiles flatter (Di Matteo et al. 2009). However, secular evolution mechanisms such as stellar migrations (e.g. Roskar et al. 2008; Sánchez-Blázquez et al. 2009; Minchev et al. 2012) could also have large effects on stellar population distributions. On the other hand, there have been more and more resolved spectroscopic studies of stellar population distributions in galaxies, (e.g. Yoachim et al. 2010; Sánchez-Blázquez et al. 2014a,b; González Delgado et al. 2015; Morelli et al. 2015), but most of them have sample sizes of fewer than a few tens and none of them have explored the environmental dependence. Some photometric studies (e.g. Zheng et al. 2015; Tortora et al. 2010; Tortora & Napolitano 2012) and some spectroscopic studies using special techniques (Roig et al. 2015) have large samples but their results are affected either by the age-metallicity degeneracy or by poor spatial resolution.

Thanks to the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at APO (MaNGA, Bundy et al. 2015) project, we are able to measure integrated field unit (IFU) spectra of 10,000 galaxies and answer the question posed in the last paragraph. Here in this paper, we use a method (Wang et al. 2009, 2012) based on reconstructed density field, instead of neighbouring galaxies, to derive the LSS environment information, and explore LSS environmental dependence of the stellar age and metallicity gradients. To do this, we use IFU spectra of more than 1000 galaxies from the MaNGA MPL-4 data release. In another two companion MaNGA papers by Goddard et al. (2016a,b, submitted), the dependence on galaxy properties and local density environment based on neighbour counts is considered.

The outline of the paper is as follows: we describe the data and galaxy sample in Section 2; we briefly introduce the methods for determining the LSS environment and stellar population parameters in Section 3; we then present our results in Section 4, and discuss the results in Section 5; and finally we summarize our conclusions in Section 6.

2 DATA AND SAMPLE

MaNGA (Bundy et al. 2015; Yan et al. 2016b) is an IFU survey targeting about 10,000 nearby galaxies selected from the SDSS. The wavelength coverage is between 3600 Å and
Environmental dependence of age and metallicity gradients

Figure 2. SDSS 3-colour images and 2D maps of STARLIGHT derived parameters of 5 example galaxies. From left to right: SDSS 3-colour image, luminosity-weighted age ($\log(\tau_L/\text{Gyr})$) map, mass-weighted age ($\log(\tau_M/\text{Gyr})$) map, luminosity-weighted metallicity ([Z/H]_L) map, and mass-weighted metallicity ([Z/H]_M) map. The purple hexagons on the 3-colour images show the fields of view of MaNGA observations. From top to bottom: A face-on spiral galaxy (MaNGA plate-IFU identifier: 8135-12701), an elliptical galaxy (8162-6101), a face-on spiral galaxy with a bar (8549-3703), and an irregular galaxy (8549-1901). These five galaxies are observed using 127, 91, 61, 37 and 19 fibres (from top to bottom) respectively. Note that low signal-to-noise spaxels are removed from the 2D maps.

MaNGA observations. From top to bottom: A face-on spiral galaxy (MaNGA plate-IFU identifier: 8135-12701), an elliptical galaxy (8162-6101), a face-on spiral galaxy with a bar (8549-3703), and an irregular galaxy (8549-1901). These five galaxies are observed using 127, 91, 61, 37 and 19 fibres (from top to bottom) respectively. Note that low signal-to-noise spaxels are removed from the 2D maps.

10300 Å with a spectral resolution $R\sim$2000 (Drory et al. 2015). The sizes of the IFUs vary for different galaxies from 12″ for a 19-fibre IFU to 32″ for a 127-fibre IFU (Drory et al. 2015; Law et al. 2015). The MaNGA internal data release MPL-4 sample (equivalent to SDSS DR13 public release, Albareti et al. 2016) has a redshift range 0.01 < z < 0.15 with a peak around $z = 0.03$. Figure 1 shows the distributions of NUV − r colour and $g − r$ colour versus the total stellar mass M_* of our sample galaxies. The M_*, NUV − r colour, $g − r$ colour, redshift and n are obtained from the NASA Sloan Atlas catalogue. The total stellar masses are derived from the fit to the SDSS five-band photometry with K-corrections (Blanton & Roweis 2007; Blanton et al. 2011) using the Bruzual & Charlot (2003) initial mass function (IMF). The Sérsic indices are derived using 2D Sérsic fits to the r-band SDSS images. A few example galaxies observed with different IFU bundle sizes are shown in Fig. 2. Detailed descriptions about the derivation of stellar population parameters shown in this figure can be found in Section 3.2.

The MaNGA sample is composed of primary sample, colour-enhanced sample and secondary sample. The main MaNGA sample galaxies are selected to lie within a redshift range, $z_{min} < z < z_{max}$, that depends on the absolute i-band magnitude (M_i) in the case of the primary and secondary samples, and on M_r and the NUV − r colour in the case of the colour-enhanced sample. The values of z_{min} and z_{max} are chosen so that both the number density of galaxies and the angular size distribution, matched to the IFU sizes, are roughly independent of M_i (or M_r and NUV − r for the colour-enhanced sample). This results in lower and narrower
redshift ranges for less luminous galaxies and higher and wider redshift ranges for more massive galaxies. At a given M_i (or M_i and NUV - r colour for the colour-enhanced sample) the sample is effectively volume limited, so that all galaxies with $z_{\text{min}} < z < z_{\text{max}}$ are targeted independently of their other properties. Two thirds of the MaNGA sample (the primary sample + the colour-enhanced sample) are covered by IFU observations up to 1.5 effective radii (R_e) and the other third of the sample (the secondary sample) are covered up to 2.5 R_e. (Yan et al. 2016b, Wake et al. in prep.). Each target is observed using three dithers (Law et al. 2015) and the observed data are reduced by the MaNGA data reduction pipeline (DRP; Law et al. 2016; Yan et al. 2016a). The current version of the DRP is 1.2.1 and the final products of the DRP are datacubes with a pixel size of 0.5" as well as row stacked spectra.

Our sample galaxies are taken from the MaNGA internal data release MPL-4 comprising 1351 unique galaxies. Of these, 1144 galaxies have large scale environment information (see Section 3 for details). Furthermore, we remove 39 galaxies that either are too small for gradients to be derived or have multiple galaxies in the field of view. Our final sample contains 1105 galaxies, of which 538 have Sérsic indices $n < 2.5$ (disk-like) and 567 have $n \geq 2.5$ (elliptical-like). Note that the Sérsic index n is not an ideal indicator of galaxy morphology: some disk galaxies may have $n \geq 2.5$ while some elliptical galaxies may have $n < 2.5$. Broad band colours, such as NUV - r (e.g. Schiminovich et al. 2007), may help separate passive and star-forming galaxies and we will analyze the impact of the NUV - r colour in the following sections.

3 METHOD

We measure the density field around each MaNGA galaxy and classify its environment into one of four categories: cluster, filament, sheet, or void. We measure its stellar age and metallicity at different parts of the galaxy using full spectral fitting method and then measure gradients and zero points of the age and metallicity radial profiles. Finally we compare the measured the gradients and zero-points of galaxies in different environments. We discuss each of these in turn.

3.1 Environment

In this paper, we consider two environment indicators: the local mass density and the type of large scale structure (LSS). The environment data are taken from the ELUCID project (Wang et al. 2016), which aims to perform constrained simulations of the local universe that can provide an optimal way to utilize and explain the abundant observational data. This project uses the halo-domain method developed by Wang et al. (2009) to reconstruct the cosmic density field in the local universe from the SDSS DR7 galaxy group catalogue (Yang et al. 2007). As shown in Wang et al. (2016), the reconstructed density field matches well the distributions of both the galaxies and groups. The local mass density environment indicator of a galaxy is the density at the position of the galaxy smoothed by a Gaussian kernel with a smoothing scale of 1Mpc/h. Since the density field is reconstructed in real space, we have to correct for redshift distortions in the distribution of galaxies. The Kasier effect is corrected by using the method developed in Wang et al. (2012). To correct for the finger of god effect, we first cross-match our galaxy sample with the galaxy catalogue used to construct the group catalogue. We then use the group centre to represent the galaxy position in deriving the density field. We refer the reader to Wang et al. (2016) for the details of the reconstruction methods.

The morphology of the LSS is very complex. Recently, much effort has been given to developing methods to classify the cosmic web (e.g. Hahn et al. 2007; Hoffman et al. 2012). Here we adopt a dynamical classification method developed by Hahn et al. (2007), which uses the eigenvalues of the tidal tensor to determine the type of the local structure in a cosmic web. The tidal tensor, T_{ij}, is defined as

$$T_{ij} = \partial_i \partial_j \phi,$$

where, ϕ is the peculiar gravitational potential and can be calculated from the reconstructed density field shown above. Following Hahn et al. (2007), we smoothed the density field with a Gaussian kernel with a smoothing scale of 2Mpc/h. We then diagonalize the tidal tensor T_{ij} and derive the eigenvalues T_1, T_2, and T_3, which corresponds to the major, intermediate and minor axes of the tidal field. The LSS environment is classified into four categories following the definition by Hahn et al. (2007): cluster has three positive eigenvalues ($T_1 > 0$, $T_2 > 0$, $T_3 > 0$, fixed points); filament has two positive and one negative eigenvalues ($T_1 > 0$, $T_2 > 0$, $T_3 < 0$, two-dimensional stable manifold); sheet has one positive and two negative eigenvalues ($T_1 > 0$, $T_2 < 0$, $T_3 < 0$, one-dimensional stable manifold); and void has three negative eigenvalues ($T_1 < 0$, $T_2 < 0$, $T_3 < 0$, unstable orbits). The method has been shown to very effectively classify the large scale structures of local Universe (see Wang et al. 2016).

3.2 Stellar population analysis

We bin the MaNGA datacube of a galaxy using the Voronoi binning method (Cappellari & Copin. 2003) so that each binned spectrum has a signal-to-noise ratio (SNR) equal to ~ 20 (determined in the 5800-6400Å wavelength range). Spaxels with SNR ≤ 5 or dominated by sky lines are removed before binning. We fit the Voronoi binned spectra using the STARLIGHT code (Cid Fernandes et al. 2005) using 150 bases from the model of Bruzual & Charlot (2003) with the STELIB stellar library (Le Borgne et al. 2003) and using a Chabrier (2003) IMF to obtain the stellar population parameters. The STARLIGHT bases are single stellar population (SSP) templates defined using a grid of ages and metallicities. There are 25 ages (0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.014, 0.025, 0.04, 0.055, 0.102, 0.161, 0.286, 0.509, 0.905, 1.278, 1.434, 2.5, 4.25, 6.25, 7.5, 10, 13, 15, 18 Gyr) and 6 metallicities (0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05). We use the 3710-8000Å part of the de-redshifted spectra in the STARLIGHT fitting because the
We calculate the luminosity-weighted age using

\[\tau_L = \frac{\sum_j x_j \tau_j}{\sum_j x_j}, \]

where \(\tau_j \) is the age value of the \(j \)-th base and \(x_j \) is the light fraction of the \(j \)-th base. Similarly, we calculate the luminosity-weighted metallicity using

\[Z_L = \frac{\sum_j x_j Z_j}{\sum_j x_j}, \]

where \(Z_j \) is the metallicity value of the \(j \)-th base. We calculate the mass-weighted age and metallicity using

\[\tau_M = \frac{\sum_j M_j \tau_j}{\sum_j M_j}, \]

and

\[Z_M = \frac{\sum_j M_j Z_j}{\sum_j M_j}, \]

where \(M_j \) is the current mass fraction of the \(j \)-th base.

Note that this is different from some earlier studies, e.g. González Delgado et al. (2015), who use \(\log(\tau) \) and \(\log(Z) \) before weighting. We use this definition because it is physically more intuitive. Also, the weighting formalism used by González Delgado et al. (2015) may give more weight to younger and metal poorer stellar populations.

After fitting the whole datacube, we create maps of the stellar population parameters, such as stellar age and metallicity. We radially bin these maps into elliptical annuli with widths of 0.1 effective radius (\(R_e \)) and ellipticity of the galaxy are obtained by fitting Multi-Gaussian Expansion (MGE) models (Cappellari et al. 2013) to the galaxy’s r-band image. Finally, we derive the stellar population radial profiles using the median values of each annulus.

4 RESULTS

In this paper we focus on the distributions of stellar age and metallicity because they are the two most important stellar population parameters. We use logarithmic values of age \(\log(\tau) \) and metallicity \(\log(Z/H) \) in the remainder of this paper. Five example galaxies observed with different IFU bundle sizes are shown in Fig. 2. We can see from these plots that distributions of stellar population parameters could roughly be fitted by concentric elliptical contours. Also, galaxy centres are generally older and more metal rich than the outer regions.

Bulges usually have a steep increase in age and metallicity towards the centre of a galaxy and they may have different formation histories from disks (Spiniello et al. 2015). We focus on the “bulk” part of the galaxy, i.e. the more extended disk part. Therefore, we exclude bulges in studying the relationship between age and metallicity gradients and environments. According to Zheng et al. (2015), disk galaxies usually have bulge sizes about 0.3 \(R_90 \) (\(R_90 \) being the radius that contains 90% of the total r-band flux) or 5 times the effective radius \(R_e \). Therefore, we measure the gradients between 0.5 \(R_e \) and 1.5 \(R_e \) because all MaNGA galaxies are fully covered by the IFUs up to 1.5 \(R_e \). We have examined the effect on our results if bulges are included and find that there is no significant change to our conclusions except that we would have larger scatter in the gradients. We fit the data points within our radial region with a straight line.
Figure 4. Co-added luminosity-weighted age profiles. The galaxies are split into 6 groups based on mass and morphology. Low mass (left column) is $\log(M_*/M_\odot) \leq 9.5$, intermediate mass (middle column) is $9.5 < \log(M_*/M_\odot) \leq 10.5$, high mass (right column) is $\log(M_*/M_\odot) > 10.5$; disk (top row) is $n < 2.5$, and elliptical (bottom row) is $n \geq 2.5$. The radial profiles are plotted with gray lines. The black dots with error bars show the median value and 1σ dispersion of the black lines; the green dots show the median value of intermediate-mass disk galaxies and are the same in all panels. Each panel also shows the gradient of the median profile in the inner region (within $0 - 1 R_e$) and in the outer region (within $0.5 - 1.5 R_e$).

Figure 5. Co-added mass-weighted age profiles. The symbols are the same as in Fig. 4.

defined as

$$\log(\tau(R/R_e)) = \log(\tau(0)) + k_\tau R/R_e, \quad (6)$$

for the stellar age profile, and

$$\log([Z/H](R/R_e)) = \log([Z/H](0)) + k_Z R/R_e, \quad (7)$$

for the stellar metallicity profile, where R/R_e is the radius in units of the effective radius R_e, and k_τ and k_Z are age and metallicity gradients in units of dex/R_e. Line fitting is performed using the robust linear regression method implemented in the IDL procedure ROBUST

\textsc{LINEFIT}, which can identify and remove bad data during the fitting. One example of the fitting is shown in Fig. 3. The gradient uncertainty is estimated using a Monte Carlo method, and is typically ~ 0.1 dex/R_e.

We present both the gradients and the fitted values at the effective radii, and explore their correlations with different galaxy properties and environments in the following sections.

Figure 6. Co-added luminosity-weighted metallicity profiles. The symbols are the same as in Fig. 4.

Figure 7. Co-added mass-weighted metallicity profiles. The symbols are the same as in Fig. 4.
Environmental dependence of age and metallicity gradients

4.1 Radial profiles

Before discussing the profile fitting results, we show the overall behavior of the age and metallicity radial profiles by plotting the co-added radial profiles (Fig. 4 - 7). We classify our galaxies using stellar mass M_* and Sérsic index n. We divide our sample into three mass bins: low-mass ($\log(M_*/M_\odot) \leq 9.5$), intermediate-mass ($9.5 < \log(M_*/M_\odot) \leq 10.5$) and high-mass ($\log(M_*/M_\odot) > 10.5$). We further divide the galaxy sample into more disk-like ($n < 2.5$) and more elliptical-like ($n \geq 2.5$) galaxies. In each figure, we show the radial profiles for these different kinds of galaxies in black and the median value of these radial profiles in red dots. In order to guide the eye, we also plot the radial profiles of intermediate-mass disk galaxies in gray and their median values in green dots in each panel.

In general, the mass-weighted age profiles are very flat. The luminosity-weighted age profiles are less flat and sometimes show a ‘U’ shape curve with the minimum value located around $1 - 1.5 R_e$. The median luminosity-weighted age profiles of the elliptical galaxies are about 0.1 dex older than those of the disk galaxies, and there is almost no dependence on M_*. The switch over in the low-mass elliptical panel (lower-left panel) of Fig. 4 may be due to small sample size. The individual galaxies with down-turn age profiles towards the centre of the galaxies might be caused by recent star formation (Ge et al. in prep.; Lin et al. in prep.)

Most metallicity profiles have a decreasing trend with increasing radius. For disk galaxies, metallicity decreases more rapidly with increasing radius than that for more massive galaxies. As a result, high-mass disk galaxies have a steeper (more negative) gradient and low-mass disk galaxies have a shallower (close to zero) gradient. Elliptical galaxies are generally more metal rich than disk galaxies, but their gradients look similar at all three mass bins.

Age gradients are usually steeper in the central region ($0 < R < R_e$) than in the outer region ($0.5 R_e < R < 1.5 R_e$), with the exception that the median luminosity-weighted age profile for low-mass ellipticals has a more positive gradient in the centre than in the outer region. However, metallicity profiles in the central regions are usually shallower than in the outer regions.

We note that the radial profiles of individual galaxies could deviate from the general behaviors described above.

4.2 Dependence on the large scale structure (LSS) environment

The LSS environment dependence is the focus of our study. Since stellar mass and colour are known to be correlated with environments (Kauffmann et al. 2004; Blanton & Moustakas 2009), we need to include these parameters in the study. Thus, before showing the LSS environmental dependence, we plot the distributions of two important overall galaxy properties, i.e. stellar mass M_* and NUV $- r$ colour, in different LSS environments (Fig. 8). Note that red galaxies have a much larger portion in denser environments and this is consistent with Lee & Li (2008); Blanton & Moustakas (2009); Thomas et al. (2010).

In the following two subsections we explore the LSS environment dependence of both gradients and zero points, i.e. the fitted values at the effective radius R_e.

4.2.1 Gradients versus LSS environment

We first examine the correlation between the stellar population gradients and the LSS environments. Here we plot the age and metallicity gradients versus M_*, (Fig. 9) and NUV $- r$ colour (Fig. 10) for different environments. Both age and metallicity gradients are close to zero and slightly negative. They appear to correlate weakly with M_* and NUV $- r$ colour although the correlations changes in different panels of the plots and the scatters are large. The distributions of gradients appear slightly different in different LSS environments, but the difference could be dominated by M_*, although the scatters are large for these plots. We also show gradients of all the galaxies in our sample in the rightest columns of Figs. 9 and 10.

In order to examine the environmental dependence more clearly, we plot the median gradients and the errors of the median values (instead of 1σ scatter) in each mass bin and NUV $- r$ colour bin in Fig. 11. For low-mass and blue galaxies, there is slight environmental dependence, but differences in different environments are mostly within uncertainties.4

4 Note different bins have different number of galaxies and small error bar is usually dominated by large galaxy number in that bin.
Figure 9. Age and metallicity gradients in units of dex/R_e versus total stellar mass M_* for galaxies in different environments. Red dots are for elliptical galaxies ($n \geq 2.5$) and blue dots are for disk galaxies ($n < 2.5$). The big black dots with error bars show the median value and 1σ scatter of gradients in the three mass bins: $\log (M_*/M_\odot) \leq 9.5$, $9.5 < \log (M_*/M_\odot) \leq 10.5$, and $\log (M_*/M_\odot) > 10.5$. The right column show gradients of all galaxies in our sample using finer mass bins to explore trends with M_*.

Figure 10. Age and metallicity gradients in units of dex/R_e versus $NUV - r$ for galaxies in different environments. The right column show gradients of all galaxies in our sample. Red dots are for elliptical galaxies ($n \geq 2.5$) and blue dots are for disk galaxies ($n < 2.5$). The big black dots with error bars show the median value and 1σ scatter of gradients in the three colour bins: $NUV - r \leq 3$, $3 < NUV - r \leq 5$, and $NUV - r > 5$. The right column show gradients of all galaxies in our sample and using finer colour bins to explore trends with $NUV - r$ colour.
Environmental dependence of age and metallicity gradients

4.2.2 Values at R_e versus LSS environment

An important and also complementary quantity from our line fitting is the fitted age and metallicity values at R_e. These are similar quantities to the central values derived using spectra from single central fibres (e.g. Kauffmann et al. 2004). We plot these values in a similar way to Figs. 9 - 10 and the results are shown in Figs. 12 - 13. Ages at R_e for both elliptical and disk galaxies are highly correlated with both M_* and $NUV - r$ colour. The metallicity at R_e is also correlated with M_* and $NUV - r$ colour for disk galaxies. For elliptical galaxies, however, $[Z/H](R_e)$ have similar values.

The LSS environment dependence is more obvious in Fig. 14, in which we plot the median values in each mass and colour bin. Low-mass and blue galaxies seem to have some correlations with environment: they have younger ages and lower metallicities in low density regions. Intermediate-mass and high-mass galaxies do not appear to show this trend. This implies that the LSS environment plays a greater role for smaller galaxies. For massive galaxies, stellar mass plays a dominant role so it matters less where they are located. However, we note that mass-weighted ages of low-mass galaxies and both luminosity and mass-weighted ages of blue galaxies do not show the correlation mentioned above.

4.3 Dependence on local densities

The other important environment indicator is the local density. We calculate the average local mass density within 1 Mpc of each individual galaxy based on the reconstructed density field (Wang et al. 2009, 2014). This is a similar environment indicator to the one used by our companion paper Goddard et al. (submitted) and some previous studies (e.g. Kauffmann et al. 2004).

We present the age and metallicity gradients versus the local density in Fig. 15. Galaxies are colour-coded in M_*, and the mass bins are as defined in Section 4.1. Similar to the LSS environment results, some gradients show a weak trend along different local density environments. For example, low mass galaxies (top-left panel of Fig. 15) show an increase of luminosity-weighted age gradient towards dense regions, however the amplitude of variations is comparable to the errors.

We also plot the median values of fitted age and metallicity at the effective radius R_e versus local densities in Fig. 16. The fitted values at R_e show an obvious trend along different local densities. Galaxies have younger ages and lower metallicities in low local density regions. This trend is more obvious for low-mass and blue galaxies and is consistent with the result of previous studies (e.g. Kauffmann et al. 2004; Lin et al. 2014). Again, as in Section 4.2.2, mass-weighted ages of low-mass galaxies and both luminosity and mass-weighted ages of blue galaxies do not show the correlation mentioned above.

5 DISCUSSION

5.1 Comparison with other studies

5.1.1 Gradients

There have been many theoretical predictions for stellar population distributions using different galaxy formation and evolution models. Generally speaking, monolithic collapse models (e.g. Pipino et al. 2010) predict steep metallicity gradients for elliptical galaxies, with a typical slope of about $-0.3\text{dex/}\text{dex}$. Mergers and stellar migrations would make this gradient much flatter (Roskar et al. 2008; Sánchez-Blázquez et al. 2009; Di Matteo et al. 2009; Minchev et al. 2012).

There have also been many observational studies on age and metallicity gradients for both disk and elliptical galaxies. Almost all of them found slightly negative gradients (Roig et al. 2015; Morelli et al. 2015; Sánchez-Blázquez et al. 2014a; González Delgado et al. 2015), which is consistent with the inside-out galaxy formation scenario. Many previous analyses used a logarithmic definition of gradients, defined as

$$\log(\tau(\log(R/R_e))) = \log(\tau(0)) + k_{\tau,\log} \log(R/R_e),$$

where τ is the characteristic time and $k_{\tau,\log}$ is a constant.
Figure 12. The fitted age and metallicity values at the effective radius R_e. Symbols are the same as Fig. 9.

Figure 13. The fitted age and metallicity values at the effective radius R_e. Symbols are the same as Fig. 10.
Figure 14. Median values of fitted age and metallicity at the effective radius R_e in each mass (left panels) and $NUV - r$ colour (right panels) bin. Symbols are the same as Fig. 11.

Figure 15. Median gradients and their errors in each mass bin (left panels) and $NUV - r$ bin (right panels). The symbols are now colour-coded in local densities: blue squares show galaxies in low-density ($d_l \leq 2$) regions, green triangles show galaxies in intermediate-density ($2 < d_l \leq 10$) regions, and red dots show galaxies in high-density ($d_l > 10$) regions, where the local density, d_l, is the average mass density within 1 Mpc of the target galaxy and is in units of average cosmic mean density, i.e. $7.16 \times 10^{10} M_\odot/h/(\text{Mpc}/h)^3$ assuming WMAP5 cosmology. The mass-bins and colour-bins are the same as Fig. 11.

Figure 16. Median values of fitted age and metallicity at the effective radius R_e versus local densities. Symbols are the same as Fig. 15 for the stellar age profile, and

$$[Z/H](\log(R/R_e)) = [Z/H](0) + k_{Z,\lg} \log(R/R_e).$$

We have also computed gradients using this definition to better compare with previous results. Note that this definition works better for larger radial ranges and gives more weight to the inner regions. We compile the gradients estimated by several recent studies as well as our own results in Table 1. Results calculated using eqs. 6-7 have units of dex/R_e, and results calculated using eqs. 8-9 have units of dex/dex.

Rawle et al. (2010) derived stellar population distributions for 25 early type cluster galaxies using spectral index information. They found that the mean stellar metallicity gradient for their sample galaxies is -0.13 ± 0.04 dex/dex and the mean age gradient is -0.02 ± 0.06 dex/dex.

Kuntschner et al. (2010) using a similar spectral index analysis method, studied 48 early type galaxies from the SAURON5 sample and found a mean metallicity gradient value of -0.25 ± 0.11 dex/dex for old ellipticals and -0.28 ± 0.12 dex/dex for young ellipticals, and a mean age gradient value of 0.02 ± 0.13 dex/dex for old galaxies and 0.28 ± 0.16 dex/dex for young ellipticals.

Sánchez-Blázquez et al. (2014a) using the full spectral fitting method studied 62 disk galaxies from the CALIFA6 sample and found a mean metallicity gradient value of -0.087 ± 0.008 dex/R_e. They further claim that there is no metallicity gradient - M_* correlation.

5 Spectroscopic Areal Unit for Research on Optical Nebulae (Bacon et al. 2001)

6 Calar Alto Legacy Integral Field Area (Sánchez et al. 2012)
More recently, González Delgado et al. (2015) studied about 300 CALIFA galaxies with various morphologies and found $\nabla [Z/H]_{M} = -0.1 \pm 0.15$ dex/dex for the inner regions (within 1 R_e) of elliptical and S0 galaxies and a shallower metallicity slope in the 1-3 R_e region. They also found that the metallicity gradients are almost constant for S0 and E (and very massive) galaxies but that there is a weak correlation between metallicity gradient and stellar mass (and morphological types) for disk galaxies. The metallicity gradients become steeper at higher stellar masses with the $\nabla [Z/H]_{M}$ ranging from -0.4 to 0.4 dex/R_e.

In this paper, we found $\nabla [Z/H]_{M} = -0.31 \pm 0.04$ dex/dex (or -0.14 ± 0.02 dex/R_e) for disk galaxies and $\nabla [Z/H]_{M} = -0.19 \pm 0.03$ dex/dex (or -0.09 ± 0.01 dex/R_e) for elliptical galaxies. We also found $\nabla \tau_M = -0.18 \pm 0.03$ dex/dex (or -0.08 ± 0.02 dex/R_e) for disk galaxies and $\nabla \tau_M = -0.13 \pm 0.02$ dex/dex (or -0.05 ± 0.01 dex/R_e) for elliptical galaxies. Note these mean values and uncertainties are calculated using the MaNGA primary and secondary sample galaxies only because other galaxies do not have a well defined volume weight. We apply a volume weight correction according to the MaNGA sample selection paper Wake et al. (in prep.). These mean values are consistent with all previous studies.

We found weak or no correlation between the gradients and M_*, which is consistent with Sánchez-Blázquez et al. (2014a) but slightly different from González Delgado et al. (2015). Our metallicity gradients are shallower than predictions from most of monolithic collapse models by Pipino et al. (2010). Many previous studies (e.g. Tortora et al. 2010; González Delgado et al. 2015) found that colours and metallicity gradients in spiral galaxies are steeper than in elliptical galaxies. Roediger et al. (2011) also found a similar trend using galaxies in the Virgo cluster. We also found age and metallicity gradients are steeper in disk galaxies than in ellipticals, consistent with these studies.

To provide a more direct comparison, we also compute the gradients within 0 – 1 R_e and plot the them versus the total stellar mass on top of CALIFA results (González Delgado et al. 2015) in Fig. 17. The CALIFA results shown here are derived using values at R_e subtracting values at the centre, which is slightly different from our linear fitting. The mass-weighted metallicities (lower panels of Fig. 17) are consistent with each other. The luminosity-weighted age (top panels of Fig. 17), on the other hand, has about 0.2 dex difference. This difference could be due to their different definition of luminosity-weighted age, as their definition tends to put more weight on younger stellar populations (see Section 3.2).

Some previous studies (e.g. Spolaor et al. 2010; Kuntschner et al. 2010; Tortora et al. 2010; La Barbera et al. 2010) have found metallicity gradients for elliptical galaxies have a minimum around $M_*=10^{9.3}M_\odot$. We also seem to see a minimum median metallicity gradient around this stellar mass in Fig. 9 (row 3, the rightmost column). However, this trend in Fig. 9 is a combination of spirals and ellipticals with gradients derived within 0.5-1.5R_e. In Fig. 17, neither results from CALIFA (González Delgado et al. 2015) nor our results show this trend.

Also, many studies found that younger elliptical galaxies have more negative metallicity gradients and more positive age gradients than older ones (e.g. Hopkins et al. 2009; Sánchez-Blázquez et al. 2009; Tortora et al. 2010; Rawle et al. 2010). Here we plot the central age versus ages and metallicity gradients for elliptical galaxies from our sample in Fig. 18. The lower-right panel of Fig. 18 shows a weak increasing trend with central age, which is qualitatively consistent with previous results. However, the scatters are large. Other panels do not show this trend.

La Barbera et al. (2005) studied colour gradients of 1700 early-type galaxies in 159 galaxy clusters and found that colour gradients strongly depend on cluster richness. More recently, Tamura et al. (2000) and Tamura & Ohta (2000, 2003) studied colour gradients of early-type galaxies in clusters and less dense environments and found that the colour gradients do not depend on environment. Tortora, et. al. (2011) studied stellar population gradients for a sample of group and cluster galaxies from numerical simulations and found that for low-mass galaxies, age gradients of cluster galaxies are higher (more positive) than those of group galaxies whilst metallicity gradients of cluster galaxies are lower (more negative) than those of group galaxies. The sit-

![Figure 17. Comparison of inner gradients (between 0 – 1 R_e) between this paper and CALIFA analyses (González Delgado et al. 2015, using GME models). Upper panels show the luminosity-weighted age gradient and lower panels show the mass-weighted metallicity gradient. Left panels show late-type galaxies and right panels show early type galaxies. Late type is defined as $n < 2.5$ for our galaxies and Hubble type > 0 for CALIFA galaxies; and early type is defined as $n \geq 2.5$ for our galaxies and Hubble type ≤ 0 for CALIFA galaxies. Gray squares are our results for individual galaxies, and sky blue points are CALIFA results for individual galaxies. Big black squares and big blue dots with error bars are the median values of each mass bins with standard errors of the median.](image-url)
environment measured by close neighbours, and another companion MaNGA paper studying stellar population gradients versus galaxy properties (Goddard et al. 2016b). The two companion papers use different methods from this paper: they use different software (FIREFLY, Wilkinson et al. 2015) and different stellar population models (Maraston & Strömberg 2011) to derive stellar age and metallicity gradients. These differences result in slightly more positive mass-weighted age gradients than ours (see details in Goddard et al. 2016b). Also, they only use the MaNGA Primary sample, which has 721 galaxies and focus on 0-1.5 Re region of each galaxy. Despite these differences, their results are similar to ours, i.e. stellar age and metallicity gradients do not have an obvious correlation with local density environment (Goddard et al. 2016a).

Figure 18. Central ages versus gradients for elliptical galaxies. Left panel show the luminosity-weighted parameters and right panels show the mass-weighted parameters. Black dots show individual galaxies and the big red dots with error bars show median values with 1σ scatter of each central age bin.

5.1.2 Values at Re

There have been many studies about the environmental dependence of overall galactic properties. Although overall galactic properties are different from values at Re, they should be correlated given that age and metallicity gradients are shallow for most galaxies. For example, Lee & Li (2008) studied overall galactic properties in different LSS environments and found that at fixed luminosity (9.4 < log(M*/M⊙) < 10), galaxies in sheet and void environments have lower D(4000) values than those in cluster environment. This implies that galaxies in void and sheet environments have younger luminosity-weighted ages and is consistent with our results shown in Fig. 14. The difference is that we further found that galaxies with smaller stellar masses are more affected by LSS environments. Kauffmann et al. (2004) studied correlations between galaxy properties and local density environments and found that D(4000) depends strongly on local density and that the dependence is strongest for low mass galaxies. This is also consistent with our findings shown in Fig. 16. Mass-weighted ages are more affected by low mass stars and therefore show smaller differences. Possible mechanisms causing the differences could be harassment (e.g. Moore et al. 1998), strangulation (e.g. Balogh et al. 2000; Peng et al. 2015), or gas stripping (e.g. Gunn & Gott 1972), which could suppress recent star formation in low mass galaxies in dense environments. We defer further investigation of environmental affects to a future paper, which will use a larger galaxy sample and include halo merger history information from Wang et al. (2016).

5.2 Implications

Fig. 11 shows that age and metallicity gradients have weak or no dependence on LSS. There may be some environmental dependence for low-mass and blue galaxies (e.g. the last row of Fig. 11). The differences in different LSS environments however, are within a 2σ error. A larger galaxy sample is needed to confirm or disprove this environmental dependence. For high-mass and red galaxies, there are no obvious dependences on LSS environments.

This implies that the galaxy stellar population structure is more affected by previous mergers or by internal processes such as radial migrations. The former could be checked by examining the correlation between stellar population gradients and galaxy merger histories. We are currently determining the merger histories for the dark haloes of all MaNGA galaxies following Wang et al. (2014), as mentioned in Section 3.1, and will present the results in a future paper. The importance of internal process is becoming more and more recognized. In particular, more recent studies (Roškar et al. 2008; Sánchez-Blázquez et al. 2009; Minchev et al. 2012; Zheng et al. 2015) show that stellar radial migration plays an important role in shaping disk galaxies. The co-added metallicity profiles (Fig. 6 and 7) show an upturn in the region > 1.5 Re, while the luminosity-weighted age profiles of disk galaxies (upper row of Fig. 4) show a ‘U’ shape with the minimum located around 1–1.5 Re. This is similar to the results found by Zheng et al. (2015) using multi-band photometric data of 700 disk galaxies (see also Bakos et al. 2008; Azzollini et al. 2008; Radburn-Smith et al. 2012; Yoachim et al. 2012; Herrmann et al. 2013;...
Marino et al. 2016; Ruiz-Lara et al. 2016, etc.), and may be a signature of stellar radial migration as seen in numerical simulations by Roškar et al. (2008). The ‘U’ shaped age profile is not found in elliptical galaxies (see Figs. 4-5 and González Delgado et al. 2015). This might be because ellipticals do not have structures like bars or spiral arms, which are crucial for stellar radial migration models proposed in the literature (Sellwood & Binney 2002). However, there could also be other explanations (e.g. Sánchez-Blázquez et al. 2009; Ruiz-Lara et al. 2016). We have initiated a further project to study the ‘U’ shaped age profile using MaNGA data.

6 CONCLUSIONS

We have studied the stellar age and metallicity distributions of 1005 galaxies from the MaNGA MPL-4 internal data release (equivalent to SDSS DR13 public release, Albareti et al. 2016). We have derived the age and metallicities by applying the STARLIGHT package to MaNGA IFU spectra. We have obtained the age and metallicity gradients of each galaxy by fitting a straight line to their age and metallicity profiles over 0.5-1.5R_e for elliptical galaxies; 0.1-1.5R_e for disk galaxies and 0.5-1.5R_e, and have explored their correlations with total stellar mass M_*, NUV – r colour and two different environment indicators using the large scale tidal field and the local density.

We found the mean age and metallicity gradients are close to zero but slightly negative: mean metallicity gradient \(\frac{\Delta Z}{\Delta H} = -0.14 \pm 0.02 \text{dex}/R_e \) for disk galaxies and \(\frac{\Delta Z}{\Delta H} = -0.09 \pm 0.01 \text{dex}/R_e \) for elliptical galaxies; mean age gradient \(\frac{\Delta \tau}{\Delta R} = -0.08 \pm 0.02 \text{dex}/R_e \) for disk galaxies and \(\frac{\Delta \tau}{\Delta R} = -0.05 \pm 0.01 \text{dex}/R_e \) for elliptical galaxies. This is consistent with the inside-out formation scenario. The zero but slightly negative gradient is seen as an average over many galaxies however, gradients for individual galaxies can be positive, negative or zero.

We found that both the age and metallicity gradients have weak or no dependence on either the large scale structure (LSS) or the local density environment in the context of our current galaxy sample.

As a complementary investigation, we have also studied correlations between age and metallicity values at the effective radii, and galaxy overall properties as well as environments. Age and metallicity are highly correlated with stellar mass M_*, NUV – r colour and LSS environment and the local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.

In conclusion, internal processes in galaxy evolution history appear to play a major role in shaping galaxies, especially the high-mass and red galaxies.

ACKNOWLEDGEMENTS

We thank Claudia Maraston and Brice Ménard for helpful discussions and suggestions. We also thank the referee for very helpful suggestions.

This work is supported by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences (ZZ), and the Strategic Priority Research Program “The Emergence of Cosmological Structures” of the Chinese Academy of Sciences, Grant No. XDB09000000 (SM, CL, and RJL). SM is also supported by NSFC (grant No. 11333003, 11390372). CL is also supported by National Key Basic Research Program of China (No. 2015CB857004), NSFC (grant No. 11173045, 11233005, 11325314, 11320101002). HW is supported by NSFC (11522324, 11421303). KB is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan and by JSPS KAKENHI Grant Number 15K17603. DG acknowledges support from an STFC studentship. DB acknowledges support from grant RSF 14-50-00043. RR thanks to CNPq and FAPERGS for financial support.

This work makes use of data from SDSS-IV. Funding for SDSS-IV has been provided by the Alfred P. Sloan Foundation and Participating Institutions. Additional funding towards SDSS-IV has been provided by the U.S. Department of Energy Office of Science. SDSS-IV acknowledges support and resources from the Centre for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

REFERENCES

Albareti, F., et al., 2016, arXiv:1608.02013

Azzollini, R., et al. 2008, ApJ, 679, L69

Bacon, R., et al., 2001, MNRAS, 326, 23

Balogh, M., et al. 2000, ApJ, 540, 113

Bakos, J., et al. 2008, ApJ, 683, L103

Blanton, M., et al., 2005, ApJ, 629, 143

Blanton, M. & Roweis, S. 2007, AJ, 133, 734

Blanton, M., & Moustakas, J. 2009, ARA&A, 47, 159

Blanton, M., et al., 2011, AJ, 142, 11

Braine, G., & Charlot, S. 2003, MNRAS, 344, 1000

Bundy, K., et al. 2015, ApJ, 798, 7

Calzetti, D., et al. 2000, ApJ, 533, 682

Cappellari, M., & Copin, Y. 2003, MNRAS, 342, 345

Cappellari, M., et al. 2013, MNRAS, 432, 1709

Z. Zheng et al.
apply volume weight correction according to the MaNGA sample selection paper Wake et al. (in prep.).

We calculated the mean value and uncertainties listed in this table because other galaxies do not have a well-defined volume weight. We apply volume weight correction according to the MaNGA sample selection paper Wake et al. (in prep.).

Galaxy type	Number	$\nabla \log(r)$	$\nabla [Z/H]$	Units	Radial range	Comments	Ref.
Disk	422	-0.08 ± 0.02	-0.14 ± 0.02	dex/R_e	$0.5-1.5R_e$	MW	This paper
Elliptical	463	-0.05 ± 0.01	-0.09 ± 0.01	dex/dex	$0.5-1.5R_e$	This paper	
Disk	422	-0.18 ± 0.03	-0.31 ± 0.04	dex/dex	$2'' - 1R_e$	young	K10
Elliptical	463	-0.13 ± 0.02	-0.19 ± 0.03	dex/dex	$0.5-1.5R_e$	cluster	R10
Early type	25	-0.02 ± 0.06	-0.13 ± 0.04	dex/dex	$0.5-1.5R_e$	MW	SB14
Early type	48	0.02 ± 0.13	-0.25 ± 0.11	dex/dex	$0.5-1.5R_e$	MW	GD15
Disk	62	0.000 ± 0.006	-0.087 ± 0.008	dex/R_e	$r_{e0} - 1R_e$	MW	SB14
All type	300	-0.4 ± 0.4	-0.1 ± 0.15	dex/R_e	$0-1R_e$	MW	G
Disk	216	0.07 ± 0.07	-0.102 ± 0.07	dex/R_e	$0.5-1.5R_e$	MW	G

Chabrier, G. 2003, PASP, 115, 763
Cid Fernandes, R., et al. 2005, MNRAS, 358, 363
Di Matteo, P., et al., 2009, A&A, 499, 427
Dressler, A. 1980, ApJ, 236, 351
Drory, N., et al. 2015, AJ, 149, 77
Gunn, J. & Gott, J. Richard 1972, ApJ, 176, 1
Fitzpatrick, P. & Graves, G. 2015, MNRAS, 1383, 1397
González Delgado, R., et al. 2015, A&A, 581, A103
Hahn, O., et al. 2007, MNRAS, 375, 489
Herrmann, K., et al. 2013, AJ, 146, 104
Hoffman, Y., et al. 2012, MNRAS, 425, 2049
Hopkins, P., et al. 2009, ApJ, 691, 1424
Kauffmann, G., et al. 2004, MNRAS, 353, 713
Kawata, D. & Gibson, B. 2003, MNRAS, 340, 908
Koleva, M., et al. 2009, MNRAS, 396, 2133
Kuntschner, H., et al. 2010, MNRAS, 408, 97
Kroupa, P. 2001, MNRAS, 322, 231
La Barbera, F., et al. 2005, ApJ, 626, L19
La Barbera, F., et al. 2010, AJ, 140, 1528
La Barbera, F., et al. 2012, MNRAS, 426, 2300
Law, D., et al. 2015, AJ, 150, 19
Law, D., et al. 2016, arXiv:1607.08619 (Accepted for publication in AJ)
Le Borgne, J., et al. 2003, A&A, 402, 433
Lee, J. & Lee, C. 2008, arXiv:0803.1759
Li, C., et al. 2006, MNRAS, 368, 21
Lin, L., et al. 2014, ApJ, 782, 33
Maraston, C., & Strömbäck, G. 2011, MNRAS, 418, 2785
Marino, R., et al. 2016, A&A, 585, 47
Mehlert, D., et al. 2003, A&A, 407, 423
Minchev, I., et al. 2012, A&A, 548, A126
Moore, B., et al. 1998, ApJ, 495, 139
Morelli, L., et al. 2015, MNRAS, 452, 1128
Nair, P., & Abraham, R. 2010, ApJS, 186, 427
Park, C., et al. 2007, ApJ, 658, 898
Pasquali, A., et al. 2010, MNRAS, 407, 937
Peng, Y., et al. 2015, Nature, 521, 192
Pipino, A., et al. 2010, MNRAS, 407, 1347
Radburn-Smith, D., et al. 2012, ApJ, 753, 138
Rawle, T., et al. 2020, MNRAS, 401, 852
Roediger, J., et al. 2011, MNRAS, 416, 1983
Roig, B., Blanton, M., Yan, R. 2015, ApJ, 808, 26
Roskar, R., et al. 2008, ApJ, 675, L65
Ruiz-Lara, T., et al. 2016, MNRAS, 456L, 35
Schiminovich, D., et al. 2007, ApJS, 173, 315
Sánchez, S. F., et al. 2012, A&A, 538, A8
Sánchez-Blázquez, P., et al. 2006, MNRAS, 371, 763
Sánchez-Blázquez, P., et al. 2006, A&A, 457, 809
Sánchez-Blázquez, P., et al. 2009, MNRAS, 398, 591
Sánchez-Blázquez, P., et al. 2014, A&A, 570, A6
Sánchez-Blázquez, P., et al. 2014, MNRAS, 437, 1534
Sellwood, J. A. & Binney, J. J. 2002, MNRAS, 336, 785
Spinello, C., et al. 2015, MNRAS, 452, 99
Spolaor, M., et al. 2009, ApJ, 691, L138
Spolaor, M., et al. 2010, MNRAS, 408, 272
Tamura, N., et al. 2000, ApJ, 119, 2134
Tamura, N. & Ohta, K. 2000, ApJ, 120, 533
Tamura, N. & Ohta, K. 2003, ApJ, 126, 596
Thomas, D., et al. 2010, MNRAS, 404, 1775
Tortora, C., et al. 2010, MNRAS, 407, 144
Tortora, C., et al. 2011, MNRAS, 411, 627
van den Bosch, F., et al. 2008, MNRAS, 387, 79
Wang, H., et al. 2009, MNRAS, 394, 398
Wang, H., et al. 2012, MNRAS, 420, 1809
Wang, H., et al. 2014, ApJ, 794, 94
Wang, H., et al. 2016, arXiv:1608.01763
Wilkinson, D., et al. 2015, MNRAS, 449, 328
Yan, R., et al. 2016, AJ, 151, 8
Yan, R., et al. 2016, arXiv:1607.08613 (accepted for publication in AJ)
Yang, X., et al. 2007, ApJ, 671, 153
Yoachim, P., Roskar, & Debattista, V. 2010, ApJ, 716, L4
Yoachim, P., Roskar, & Debattista, V. 2012, ApJ, 752, 97
Zheng, Z., et al. 2015, ApJ, 800, 120

MNRAS 000, 1–16 (2016)
APPENDIX A: MORPHOLOGY AND CENTRAL/SATELLITE EFFECT

Different morphologies (disk versus elliptical) and different environments within a galaxy group (e.g. central versus satellite) may also affect the age and colour gradients. To test this, we have split our sample into subsamples of disk-like ($n < 2.5$) and elliptical-like ($n \geq 2.5$) galaxies, as well as central and satellite galaxies, and produce plots similar to Figs. 11 and 14. Note that some of the results shown here are not robust because the number of galaxies in each bin is small, typically much less than 30.

We present the morphology effect in the left panels of Figs. A1 and A2. It can be seen that ellipticals usually have weak gradients (closer to zero). They are also older and more metal rich than disk galaxies. However, the differences between different LSS environments are small and are mostly within the 1σ uncertainty.

Furthermore, we also performed the morphological classification using visual inspection. We visually inspected about 1000 galaxies from the MaNGA MPL-4 sample and classify them as late type (Sa, Sb, Sc, Sd, and Im) or early type (E and S0) based on the method described in Nair & Abraham (2010). The results using this classification scheme are presented in the right panels of Figs. A1 and A2. For our purpose, it is clear that the two morphological classification schemes (using Sérsic index or visual inspection) lead to very similar results (except for some bins with really small numbers of galaxies).

Sánchez-Blázquez et al. (2006b) studied the central regions of 98 early type galaxies and found that galaxies in low-density environments appear younger and more metal rich than their counterparts in high-density environments. This appears somewhat different from our results here: we find low-mass elliptical galaxies in sheet and void regions are both younger and metal poorer than their counterparts in clusters and filaments, and we see no difference for high-mass galaxies between different LSS environments. (Fig. A2). It should be noted, however, that the environment and metallicity estimators used here are different from those in Sánchez-Blázquez et al. (2006b). In addition, while they focused on the central parts of galaxies, our results are for regions near R_e.

We also use the central (the most massive galaxy within a galaxy group) and satellite information from the catalogue of Yang et al. (2007) to study the central v.s. satellite effect. The results are plotted in Fig. A3 and A4. Here again, no significant difference is seen between gradients of centrals and satellites. van den Bosch et al. (2008) studied colour and morphology differences between centrals and satellites and found that satellites are redder than centrals of the same stellar mass. Fitzpatrick & Graves (2015) found early type satellites are slightly (0.02 dex) older than early type centrals. Pasquali et al. (2010) conducted a more detailed study and found that satellites are older and metal richer than centrals of the same stellar mass, and that this difference increases with decreasing stellar mass. They also found that the differences are less in denser galaxy environments. We observed a similar trend for galaxies in cluster environments (Fig. A4). We found satellite galaxies in sheet and void environments are relatively younger and metal poorer compared to centrals in the same LSS environments. However, these differences shown in our plots are small by comparison with the error bars.

APPENDIX B: BEAM SMEAR EFFECT

One concern about deriving age and metallicity gradients from MaNGA data is that the gradients might be affected by beam smearing effects. One way to examine the effect of beam smearing is to plot our derived gradients versus angular sizes of the gradient-fitting region (Fig. B1). Ideally we would expect no correlation between gradients and angular sizes if any beam smearing effect is small. We can see from Fig. B1 that there is no obvious correlation between gradients and galaxy angular sizes. The weak trend of luminosity-weighted age gradients of MaNGA secondary sample galaxies is dominated by stellar mass. As we can see from Fig. B2 high-mass galaxies tend to have larger angular sizes. Therefore, beam smearing effects should not be a big problem for our purposes.

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Figure A1. Age and metallicity gradients in each mass and $NUV - r$ colour bin. Red dots show cluster environment (C), green triangles show filament environment (F), and blue squares show sheet and void environment (S+V). Filled symbols show late type/disk galaxies (LT/Disk) and open symbols show early type/elliptical galaxies (ET/Ell). Left panels show results using morphological classification based on Sérsic index n and right panels show results using morphological classification based on visual classification.

Figure A2. Median values of fitted age and metallicity at the effective radius R_e in each mass and $NUV - r$ colour bin. Panel arrangement and symbols are the same as Fig. A1.
Figure A3. Age and metallicity gradients in each mass (left panels) and NUV−r colour (right panels) bin. Red dots show cluster environment (C), green triangles show filament environment (F), and blue squares show sheet and void environment (S+V). Filled symbols show central galaxies (Cen) and open symbols show satellite galaxies (Sat).

Figure A4. Median values of fitted age and metallicity at the effective radius R_e in each mass (left panels) and NUV−r colour (right panels) bin. Symbols are the same as Fig. A3.

Figure B1. Age and metallicity gradients versus galaxy angular size Θ (= 1.5 R_e) in units of beam size (2.5′′). Black dots are for galaxies from the MaNGA primary+color-enhanced sample and red dots are for galaxies from the secondary sample. This diagram shows that the gradients do not depend on the galaxy angular size.

Figure B2. Galaxy overall properties M_* and NUV−r colour versus galaxy angular size Θ in units of beam size (2.5′′). Blue dots are for galaxies with S´ersic indices $n < 2.5$ (disk galaxies), and red dots are for galaxies with S´ersic indices $n \geq 2.5$ (elliptical galaxies).