Higher Order Gradients of Monogenic Functions

Luca Baracco · Stefano Pinton

Received: 21 April 2021 / Accepted: 20 October 2021 / Published online: 8 December 2021
© Mathematica Josephina, Inc. 2021

Abstract
Given a monogenic function on the quaternionic algebra \mathbb{H}, the Clifford algebra \mathbb{R}_n or the octonionic algebra \mathcal{O} we prove that $|\nabla^m f|^\alpha$ is subharmonic for some $\alpha > 0$ where $\nabla^m f$ is the mth order gradient of f. We find also the optimal value of α. This is a generalization of a result of Calderon and Zygmund.

Keywords Quaternions · Clifford algebras · Octonions · Subharmonic functions · Hartogs separate regularity

Mathematics Subject Classification Primary 33C55; Secondary 33C50 · 42C05

1 Introduction and Main Results

In this paper, we are interested in the study of some properties of Fueter regular functions of a quaternionic or octonionic variable and monogenic functions in Clifford algebras. Fueter’s functions and monogenic functions are important examples of the attempt to generalize holomorphic functions to the more general setting of non-commutative algebras. These types of functions are defined as the solutions of two partial differential equations involving the so-called Weyl’s ($\bar{\partial}$) and Dirac’s (D) operators. The difference between the two is that in $\bar{\partial}$ also the derivative with respect to the real part is taken. Apart from that, they are similar and their solutions have properties which are analogous to those of harmonic functions. In fact, since these operators factorize the Laplacian, it turns out that regular and monogenic functions have harmonic components (see [6]). Often we will refer to these two classes of functions as...
monogenic. We are interested in the subharmonicity of the norm of the generalized gradient of monogenic functions. Subharmonicity is a useful property and is important for instance when looking for estimates. A classical example of this kind of application is in the proof of Hartogs theorem on separate holomorphic functions, where subharmonicity of $|\partial^n f|^\alpha$ is used for every α and all order n of differentiation (see [2] and the references therein). Such property is true only for harmonic functions in two variables and for holomorphic functions. It is easy to see that this is no longer true already for harmonic functions in more than two variables. Nonetheless, it was proved in [11] that for a harmonic function f in \mathbb{R}^n the power of the gradient $|\nabla f|^\alpha$ is subharmonic for $\alpha \geq \frac{n-2}{n-1}$. At a later time, this result was extended to higher order gradients proving that $|\nabla^m f|^\alpha$ is subharmonic for $\alpha \geq \frac{n-2}{n-1} + m - 2$ and that such lower bound is optimal, see [4]. For regular functions in [12] it is proved that $|f|^\alpha$ is subharmonic for $\alpha \geq \frac{2}{3}$ and in [9] the same result holds in the octonions for $\alpha \geq \frac{6}{7}$. In this note we want to extend the technique of [4] to higher order gradients of monogenic functions on quaternions, Clifford algebras and octonions. Our results are the following:

Theorem 1.1 Let $\Omega \subset \mathbb{H}$ be an open set and $f : \Omega \to \mathbb{H}$ be a monogenic function. Then, for every positive integer m we have

$$|\nabla^m f|^\alpha \text{ is subharmonic for } \alpha \geq \frac{2}{m+3}. \tag{1.1}$$

Let e_1, \ldots, e_n be the canonical basis of \mathbb{R}^n. We shall indicate by \mathbb{R}_n the Clifford algebra generated by these vectors.

Theorem 1.2 Let $\Omega \subset \mathbb{R}^n$ and let $f : \Omega \to \mathbb{R}^n$ be a monogenic function. For all $m \in \mathbb{N}$ we have

$$|\nabla^m f(x)|^\alpha \text{ is subharmonic } \tag{1.2}$$

for $\alpha \geq \frac{n-2}{n+m-1}$

Theorem 1.3 Let $\Omega \subset \mathbb{O}$ and let $f : \Omega \to \mathbb{O}$ be a monogenic function. For all $m \in \mathbb{N}$ we have

$$|\nabla^m f(x)|^\alpha \text{ is subharmonic }$$

for $\alpha \geq \frac{6}{7+m}$.

In Theorems 1.1 and 1.2 we shall use the orthogonal basis of regular/monogenic polynomials introduced by Sommen (see [6]) while in Theorem 1.3 we adapt this technique to the non-associative algebra \mathbb{O}.

2 Quaternions and Fueter Regular Functions

We begin by recalling some notations. Let \mathbb{H} be the algebra of quaternions. Naturally, \mathbb{H} is isomorphic to \mathbb{R}^4 and a quaternion x can either be expressed in terms of coordinates
(x_0, x_1, x_2, x_3) or as a sum of real numbers multiplied by some imaginary units like
x = x_0 + x_1 i + x_2 j + x_3 k. In this last case the computation rules are as follows:
i^2 = j^2 = k^2 = -1, i \cdot j = - j \cdot i = k, j \cdot k = - k \cdot j = i, k \cdot i = - i \cdot k = j.
We shall denote the i-th component by (x)_i = x_i.
We define the usual conjugation \(\overline{ \cdot } : H \mapsto H \) as
\[x = x_0 + x_1 i + x_2 j + x_3 k = x_0 - x_1 i - x_2 j - x_3 k \]
and employ it to define a real scalar product and a norm on \(H \) in the following way
\[(x, y) = (\overline{y}x)_0, \quad |x| = (x, x)^{\frac{1}{2}}. \]
We introduce the Cauchy–Fueter operators:
\[\bar{\partial} := \partial_{x_0} + i \partial_{x_1} + j \partial_{x_2} + k \partial_{x_3}, \quad \partial = \partial_{x_0} - i \partial_{x_1} - j \partial_{x_2} - k \partial_{x_3} \]
and the Dirac operator
\[D := i \partial_{x_1} + j \partial_{x_2} + k \partial_{x_3}. \]
Let \(\Omega \) be an open subset of \(H \) and let \(f : \Omega \to H \) be a \(C^1 \) function.

Definition 2.1 We shall say that \(f \) is left Fueter regular if
\[\bar{\partial} f = \partial_{x_0} f + i \cdot \partial_{x_1} f + j \cdot \partial_{x_2} f + k \cdot \partial_{x_3} f = 0 \quad (2.1) \]
Most of the properties of Fueter regular functions come from the fact that \(\bar{\partial} \) appears
as a factor in the factorization of the Laplace operator,
\[\Delta(f) = \bar{\partial} \partial f = \partial \bar{\partial} f \quad (2.2) \]
in particular Fueter regular functions have harmonic components. Following the same
convention as in [4] for a natural number \(m \), let \(\beta = (\beta_1, \ldots, \beta_m) \in \{0, 1, 2, 3\}^m \) be
a \(m \)-tuple and let
\[\partial^\beta f := \partial_{x_{\beta_1}} \ldots \partial_{x_{\beta_m}} f, \quad (2.3) \]
m is said to be the length of \(\beta \) and is denoted by \(|\beta| \). If \(f \) is regular, it is easy to see
that \(\partial^\beta f \) is regular too. We shall indicate with \(\nabla^m f \) the set of all \(m \) derivatives of \(f \)
and set
\[|\nabla^m f|^2 := \sum_{|\beta|=m} |\partial^\beta f|^2. \quad (2.4) \]
To prove Theorem 1.1 we follow the proof of [4] with some modifications. The key
tool is the following lemma, and for the sake of completeness we give a short proof
(see [4, pp. 212 and 213]).
Lemma 2.2 Let $\phi : [0, \infty) \to \mathbb{R}$ be a C^2 concave, increasing function and $U_j : \mathbb{R}^n \to \mathbb{R}$ be harmonic functions for $j = 1, \ldots, l$ (here l is an arbitrary positive integer). Let

$$u := \sum_{j=1}^l |U_j|^2$$

and U the vector valued function $U = (U_1, \ldots, U_l)^T$.

We have $M := \sup_{\Omega_1} \left\{ \frac{|\nabla u|^2}{2u \Delta(u)} \right\} \leq 1$ where $\Omega_1 := \{ x \in \mathbb{R}^n : U(x) \neq 0, \sum_{j=1}^l |\nabla U_j(x)| \neq 0 \}$ and moreover if

$$2Mt\phi''(t) + \phi'(t) \geq 0 \quad \text{for all} \quad t \geq 0$$

then $\phi(u)$ is subharmonic.

Proof We begin by observing that

$$\Delta(\phi(u)) = \phi''(u)|\nabla u|^2 + \phi'(u)\Delta(u).$$

Since

$$\Delta(u) = 2 \sum_{j=1}^l |\nabla U_j|^2 + 2 \sum_{j=1}^l U_j \Delta(U_j) = 2 \sum_{j=1}^l |\nabla U_j|^2 = 2 \sum_{i=1}^n |\partial_{x_i} U|^2$$

and

$$|\nabla u|^2 = 4 \sum_{i=1}^n \left(\sum_{j=1}^l U_j \partial_{x_i} (U_j) \right)^2 = 4 \sum_{i=1}^n (U, \partial_{x_i} U)^2$$

we see that whenever $U(x) = 0$, then $\Delta(\phi(u(x))) = \phi'(u(x))\Delta(u(x)) \geq 0$, and whenever $\nabla(U(x)) = 0$, then $\Delta(\phi(u(x))) = 0$. Here, we denoted by $| \cdot |^2$ and (\cdot, \cdot) the modulus and the standard scalar product in \mathbb{R}^l. If $U(x) \neq 0$ and $\Delta(\phi(u(x))) \neq 0$ then

$$\frac{|\nabla u|^2}{2u \Delta(u)} = \frac{4 \sum_{i=1}^n (U, \partial_{x_i} U)^2}{4|U|^2 \sum_{i=1}^n |\partial_{x_i} U|^2} \leq 1$$

which implies that $M \leq 1$. Moreover,

$$\Delta(\phi(u)) = \Delta(u) \left(2\phi''(u) \frac{|\nabla u|^2}{2u \Delta(u)} + \phi'(u) \right) \geq \Delta(u) \left(2Mt\phi''(u) + \phi'(u) \right) \geq 0$$

which implies that $\phi(u)$ is subharmonic. \hfill \blacksquare
Remark 2.3 The previous lemma holds when

$$2Mt\phi''(t) + \phi'(t) = 0$$

in particular for $$\phi(t) = Ct^{1-\frac{1}{M}}$$.

We will apply the previous lemma for $$u = |\nabla^m f|^2$$ and $$\phi(t) = t^{1-\frac{1}{M}}$$ (note that in our case the index $$j$$ of the Lemma 2.2 will take into account the multi-index $$\beta$$ of the derivatives of order $$m$$ of $$f$$ and the fact that $$f$$ takes values in $$\mathbb{H}$$). Our Theorem 1.1 follows if we prove that $$M \leq \frac{m+3}{2(m+2)}$$. This is our next goal.

Proposition 2.4 Let $$f: \Omega \to \mathbb{H}$$, where $$\Omega$$ is an open domain of $$\mathbb{H}$$, be a Fueter-regular function and let $$m$$ be a natural number. Let $$u$$ be

$$u = |\nabla^m f|^2 = \sum_{|\beta|=m} (\partial^\beta f, \partial^\beta f)$$ \hspace{1cm} (2.5)

then, when defined, we have

$$\frac{|\nabla u|^2}{2u \Delta u} \leq \frac{(m + 3)}{2(m + 2)}$$ \hspace{1cm} (2.6)

The proof needs the following lemmas from [4] adapted to this particular case and it is postponed at the end of this section. If $$r > 0$$, by $$\mathbb{B}^n_r$$ we mean the ball centered at $$0$$ of radius $$r$$ in a vector space of dimension $$n$$, and by $$d\lambda_n$$ we mean the standard Lebesgue measure of dimension $$n$$. When $$r = 1$$ we will omit the index $$r$$ in $$\mathbb{B}^n_1$$ sometimes and when no confusion arises, we will also omit the dimension of the ball at the exponent. We will use the same convention for the sphere, that we denote by $$\mathbb{S}^{n-1}_r$$.

Lemma 2.5 Let $$U: \mathbb{H} \to \mathbb{H}$$ be a quaternionic valued function $$U = U_0 + iU_1 + jU_2 + kU_3$$ whose components $$U_l$$ are harmonic for $$l = 0, \ldots, 3$$. Assume that $$U$$ is homogeneous of degree $$m$$. Then:

1. There is constant $$C_m$$ depending only on $$m$$ such that

$$\sum_{|\beta|=m} |\partial^\beta U(0)|^2 = C_m \int_{\mathbb{B}_1^4} |U|^2 \, d\lambda_4;$$

2. If $$V$$ is another homogeneous quaternionic valued function with harmonic components, then

$$\sum_{|\beta|=m} (\partial^\beta U(0), \partial^\beta V(0)) = C_m \int_{\mathbb{B}_1^4} (U, V) \, d\lambda_4.$$

Proof By Lemma 1 in [4] we have the first identity for all components $$U_i$$ for $$i = 0, \ldots, 3$$. Taking the sum we have the conclusion. Similarly for the second identity. □
Before giving the proof of Proposition 2.4 we give the definition of the space of Fueter-regular homogeneous polynomials, and moreover, we make some preliminary considerations on the Taylor series of a Fueter-regular function \(f \).

Definition 2.6 For \(m \in \mathbb{N} \) we define the space of \(\mathbb{H} \)-valued homogeneous polynomials of degree \(m \)

\[
P^m(\mathbb{H}, \mathbb{H}) := \{ f(q) = \sum_{|\alpha|=m} c_\alpha x_0^{\alpha_0} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \in \mathbb{H}, \alpha = (\alpha_0, \ldots, \alpha_3) \in \mathbb{N}^4 \},
\]

and the corresponding space of Fueter regular polynomials

\[
M^m(\mathbb{H}, \mathbb{H}) := \{ f \in P^m(\mathbb{H}, \mathbb{H}) | \overline{\partial} f = 0 \}.
\]

By the definition of \(u \) we have that the terms on the left side of (2.6) are given by

\[
|\nabla u|^2 = \sum_{i=0}^{3} (\partial_i u)^2 = \sum_{i=0}^{3} \left(\sum_{|\beta|=m} 2(\partial^\beta \partial_i f, \partial^\beta f) \right)^2
\]

and

\[
\Delta u = \sum_{i=0}^{3} \partial_i^2 \sum_{|\beta|=m} (\partial^\beta f, \partial^\beta f) = 2 \sum_{|\beta|=m, i=0, \ldots, 3} (\partial^\beta \partial_i f, \partial^\beta \partial_i f) \tag{2.7}
\]

where the first identity follows from the fact that each \(\partial^\beta f \) is regular and hence harmonic. Now, using Lemma 2.5 we want to express the terms in (2.5) and (2.7) as integrals over the unit ball. It is not restrictive, after a translation, to assume that the point under consideration is 0 and we start by considering (2.5) and (2.7) at 0. Since only the derivatives of order \(m \) and \(m + 1 \) of \(f \) are needed, we consider the Taylor series at 0 of \(f \) which is of the form

\[
f(x) = \sum_{m=0}^{\infty} f_m(x),
\]

where, \(f_m \) are Fueter-regular homogeneous polynomials of degree \(m \). We see that (2.5) and (2.7) become, respectively,

\[
|\nabla u(0)|^2 = \sum_{i=0}^{3} \left(\sum_{|\beta|=m} 2(\partial^\beta \partial_i f_{m+1}, \partial^\beta f_m) \right)^2 \tag{0}
\]

\[
= 4c_m^2 \sum_{i=0}^{3} \left(\int_{\mathbb{B}_1} (\partial_i f_{m+1}, f_m)(x) \, d\lambda_4 \right)^2 \tag{2.8}
\]
and

\[
\Delta u(0) = 2 \sum_{i=0}^{3} \sum_{|\beta|=m} (\partial^\beta_i f_{m+1}, \partial^\beta_i f_{m+1})(0)
\]

\[
= 2C_m \int_{B_1} |\partial_i f_{m+1}(x)|^2 \, d\lambda_4
\]

while

\[
u(0) = \sum_{|\beta|=m} |\partial^\beta f_m(0)|^2 = C_m \int_{B_1} |f_m(x)|^2 \, d\lambda_4.
\]

To prove Proposition 2.4 we need to estimate

\[\frac{\|\nabla u(0)\|^2}{\Sigma u(0) \Delta u(0)}\]

that is equal to

\[
\sum_{i=0}^{3} \left(\int_{B_1} (\partial_i f_{m+1}, f_m)(x) \, d\lambda_4 \right)^2
\]

\[
\left(\int_{B_1} |f_m(x)|^2 \, d\lambda_4 \right) \left(\sum_{i=0}^{3} \int_{B_1} |\partial_i f_{m+1}(x)|^2 \, d\lambda_4 \right).
\]

Clearly, we need to compute the supremum of (2.11) for \(f_m \in M^m(\mathbb{H}, \mathbb{H}) \) and \(f_{m+1} \in M^{m+1}(\mathbb{H}, \mathbb{H}) \). Note that the vector spaces \(M^m(\mathbb{H}, \mathbb{H}) \) for \(m \in \mathbb{N} \) are finite dimensional, and we endow them of the norm induced by \(L^2(B_1) \).

Lemma 2.7 If \(M \) is the following

\[
M := \sup_{0 \neq f_m \in M^m \atop 0 \neq f_{m+1} \in M^{m+1}} \left\{ \frac{\sum_{i=0}^{3} \left(\int_{B_1} (\partial_i f_{m+1}, f_m)(x) \, d\lambda_4 \right)^2}{\left(\int_{B_1} |f_m(x)|^2 \, d\lambda_4 \right) \left(\sum_{i=0}^{3} \int_{B_1} |\partial_i f_{m+1}(x)|^2 \, d\lambda_4 \right)} \right\}
\]

we also have

\[
M = \max_{0 \neq f_{m+1} \in M^{m+1}} \left\{ \frac{1}{2(m+3)(m+1)} \frac{\|\partial_0 f_{m+1}\|^2}{\|f_{m+1}\|^2} \right\}.
\]

Proof Starting from Eq. (2.12) it is not restrictive to assume that

\[
\int_{B_1} |f_m(x)|^2 \, d\lambda_4 = 1 \quad \text{and} \quad \sum_{i=0}^{3} \int_{B_1} |\partial_i f_{m+1}(x)|^2 \, d\lambda_4 = 1
\]
and so we have

\[
M = \sup_{f_m \in \mathcal{M}^m \| f_m \| = 1} \left\{ \sum_{i=0}^{3} \left(\int_{B_1} (\partial_i f_{m+1}, f_m) (x) \, d\lambda_4 \right)^2 \right\}. \quad (2.15)
\]

Since \(f_{m+1} \) and \(f_m \) are in two finite dimensional spaces we first fix \(f_{m+1} \) and calculate the maximum value

\[
m(f_{m+1}) := \sup_{\| f_m \| = 1} \left\{ \sum_{i=0, \ldots, 3} \left(\int_{B_4} (\partial_i f_{m+1}, f_m) \, d\lambda_4 \right)^2 \right\}
\]

The maximum will be attained on an element \(f_m \) such that:

\[
\text{for } h \in \mathcal{M}^m \text{ with } \int_{B} (f_m, h) \, d\lambda_4 = 0 \text{ we have } \\
\sum_{i=0}^{3} \left(\int_{B_4} (\partial_i f_{m+1}, f_m) \, d\lambda_4 \right) \int_{B} (\partial_i f_{m+1}, h) \, d\lambda_4 = 0
\]

it follows that

\[
\sum \xi_i \partial_i f_{m+1} = \Lambda f_m
\]

for some \(\Lambda \in \mathbb{R} \). This \(\Lambda \) is exactly \(m(f_{m+1}) \). By taking the \(L^2 \)-product of (2.17) with \(f_m \) we have

\[
\int_{B} \left(\sum \xi_i \partial_i f_{m+1}, f_m \right) \, d\lambda = \sum_{i=0}^{3} \xi_i^2 = \Lambda = m(f_{m+1})
\]

and by squaring (2.17)

\[
\sum_{i, j=0, \ldots, 3} \xi_i \xi_j \int_{B} (\partial_i f_{m+1}, \partial_j f_{m+1}) \, d\lambda_4 = m^2(f_{m+1}).
\]

Let \(X = \frac{1}{m(f_{m+1})} \sum_i \xi_i \partial_i \). Clearly, \(X \) is a unitary derivative, and we have that

\[
\int_{B} \left| X f_{m+1} \right|^2 \, d\lambda_4 = m(f_{m+1}).
\]
It turns out that $m(f_{m+1})$ is actually the maximum of the following

$$
\max_{\sum_{i=0}^{3} \zeta_i = 1, h,k=0,...,3} \zeta_h \zeta_k (\partial_h f_{m+1}, \partial_k f_{m+1}) = \max_{|\zeta| = 1} \mathcal{A}(\zeta, \zeta). \quad (2.18)
$$

where $\mathcal{A} = (a_{hk})_{h,k=0,...,3}$ is the 4×4 matrix whose entries are

$$
a_{hk} = \int_{\mathbb{B}} (\partial_h f_{m+1}, \partial_k f_{m+1}) \, d\lambda_4.
$$

In fact since \mathcal{A} is symmetric the solution of (2.18) is the largest eigenvalue of \mathcal{A}, say Λ_1, and it is attained at the corresponding eigenvector ζ_{Λ_1}. Therefore, by choosing $f_{m+1} = \frac{1}{\Lambda_1} \sum_{i=0}^{3} (\zeta_{\Lambda_1})_i \partial_i f_{m+1}$ we see that it satisfies (2.16), hence $\Lambda_1 = m(f_{m+1})$.

By choosing a suitable $\xi \in \mathbb{H}$ and considering $\tilde{f}_{m+1}(q) := f_{m+1}(cq)$ we can assume that $X = \partial_0$. Finally, we have

$$
M = \max_{f_{m+1} \in \mathcal{M}^{m+1}} m(f_{m+1}) = \max_{\sum_{i=0}^{3} \|\partial_i f_{m+1}\|^2 = 1} \{\|\partial_0 f_{m+1}\|^2\}. \quad (2.19)
$$

We note that the condition $\sum_{i=0}^{3} \|\partial_i f_{m+1}\|^2 = 1$ can be expressed in terms of $\|f_{m+1}\|$.

If u and v are two homogeneous harmonic polynomials of degree $m + 1$ we have:

$$
\sum_{i=0}^{3} \int_{\mathbb{B}} (\partial_i u, \partial_i v) \, d\lambda_4 = \int_{\mathbb{S}} u \partial_v v \, d\Sigma = (m + 1) \int_{\mathbb{S}} u v \, d\Sigma = 2(m + 1)(m + 3) \int_{\mathbb{B}} u v \lambda_4. \quad (2.20)
$$

If we apply (2.20) to the components of f_{m+1} we have that

$$
\sum_{i=0}^{3} \|\partial_i f_{m+1}\|^2 = 2(m + 1)(m + 3) \|f_{m+1}\|^2. \quad (2.21)
$$

Therefore, by plugging this into formula (2.19) we get our conclusion. \qed

Remark 2.8 The maximum problem

$$
\max_{f_{m+1} \in \mathcal{M}^{m+1}} \left\{ \frac{1}{2(m + 3)(m + 1)} \frac{\|\partial_0 f_{m+1}\|^2}{\|f_{m+1}\|^2} \right\}
$$

is a hard one, but it simplifies a lot if we can find an orthogonal decomposition $\mathcal{M}^{m+1}(\mathbb{H}, \mathbb{H}) = \bigoplus_{\mu} G_{\mu}$ with the property that $\partial_0 (G_{\mu})$ are still orthogonal to each other and such that $\frac{\|\partial_0 \tilde{g}_{\mu}\|^2}{\|\tilde{g}_{\mu}\|^2}$ is constant for $\tilde{g}_{\mu} \in G_{\mu}$ for fixed μ. In fact in this way
the maximum reduces to

$$\max_\mu \left\{ \frac{1}{2(m + 3)(m + 1)} \left\| \partial_0 \tilde{g}_\mu \right\|^2 \right\}$$

(2.22)

The difficult part is to find such orthogonal decomposition of $\mathcal{M}^{m+1}(\mathbb{H}, \mathbb{H})$. In analogy with harmonic functions, the spirit of the next step is to express the elements in $\mathcal{M}^{m+1}(\mathbb{H}, \mathbb{H})$ by using their restriction to the imaginary space ($\simeq \mathbb{R}^3$). This is possible by using the Cauchy–Kowalevski extension operator (which will be denoted by $\tilde{\cdot}$). After that, we exploit the Fischer decomposition of polynomials into monogenic functions. To this end, we follow [6] and consider the monogenic functions which annihilate the Dirac operator D in \mathbb{R}^3, where we shall identify $\mathbb{R}^3 = \{ x \in \mathbb{H} | x_0 = 0 \}$ and indicate its elements with $\underline{x} = x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$.

Definition 2.9 We define

$$\mathcal{M}^m(\mathbb{R}^3, \mathbb{H}) = \left\{ f \in \mathcal{P}^m(\mathbb{R}^3, \mathbb{H}) \text{ such that } Df = 0 \right\}$$

We have the following

Theorem 2.10 (Fischer decomposition)

$$\mathcal{P}^m(\mathbb{R}^3, \mathbb{H}) = \bigoplus_{j=0}^{m} \mathcal{M}^{m-j}(\mathbb{R}^3, \mathbb{H})$$

Note that this decomposition is orthogonal with respect to the $L^2(\mathbb{B}^3)$ product in the unit ball of \mathbb{R}^3 (see Proposition 2.11 below and [6]). We apply this decomposition to the restriction of $f_{m+1}|_{\mathbb{R}^3}$ and get $f_{m+1}(\underline{x}) = \sum_{j=0}^{m+1} \underline{x}^j g_{m+1-j}(\underline{x})$. We recall that given a polynomial $p(\underline{x})$ on \mathbb{R}^3 with values in \mathbb{H} the Fueter regular extension \tilde{p} to \mathbb{H} is given by the Cauchy–Kowalevski operator $\exp(-x_0 D)$ p namely

$$\tilde{p}(\underline{x}) = \sum_{k=0}^{+\infty} \left(\frac{(-x_0 D)^k}{k!} \right) p(\underline{x}).$$

(2.23)

Since $f_{m+1}(\underline{x}) = f_{m+1|_{\mathbb{R}^3}}(\underline{x})$, we have

$$f_{m+1}(\underline{x}) = \sum_{j=0}^{m+1} \underline{x}^j \tilde{g}_{m+1-j}(\underline{x})$$

(2.24)

which is the decomposition we are looking for. To obtain the regular extension of the terms of type $\underline{x}^j \tilde{g}_{m+1-j}(\underline{x})$ described in the Fischer decomposition we need to
compute the D operator on terms of the kind $\tilde{x}^s f(x)$, $f \in \mathcal{M}^k(\mathbb{R}^3, \mathbb{H})$. It is easy to check (see for instance [3]) that

$$D\tilde{x}^s = \begin{cases} -sx^{s-1} & \text{if } s \text{ is even} \\ -(s+2)x^{s-1} & \text{if } s \text{ is odd} \end{cases}$$

therefore if g_k is a homogeneous monogenic polynomial of degree k we have

$$D\tilde{x}^s g_k(x) = \begin{cases} -sx^{s-1}g_k(x) & \text{if } s \text{ is even} \\ -(s+2+2k)x^{s-1}g_k(x) & \text{if } s \text{ is odd} \end{cases} \quad (2.25)$$

Putting Eqs. (2.23) and (2.25) together

$$\tilde{x}^s g_k(x) = \left(\sum_{j=0}^{s} c_{s,k,\nu} x^{s-j} \right) g_k(x). \quad (2.26)$$

where $c_{s,k,\nu}$ are real constants. We are now able to prove that the decomposition in (2.24) and its ∂_0-ervative are indeed orthogonal decompositions.

Proposition 2.11 Let $f \in \mathcal{M}^k(\mathbb{R}^3, \mathbb{H})$ and $g \in \mathcal{M}^h(\mathbb{R}^3, \mathbb{H})$ be two homogeneous monogenic polynomials of degree h and k. We have

$$\int_{\mathbb{B}^3} \tilde{g} \tilde{x} f \, d\lambda_3 = 0. \quad (2.27)$$

Moreover if $h \neq k$

$$\int_{\mathbb{B}^4} \left(\tilde{x}^m \tilde{g}(x) \right) \left(\tilde{x}^n \tilde{f}(x) \right) \, d\lambda_4 = 0 \quad \text{for } m, n \in \mathbb{N}. \quad (2.27)$$

Proof To prove the first part of the proposition we begin by observing that

$$\int_{\mathbb{B}^3} \tilde{g} \tilde{x} f \, d\lambda_3 = \frac{1}{h + k + 4} \int_{\mathbb{S}^2} \tilde{g} \tilde{x} f \, d\Sigma. \quad (2.28)$$

This last integral, by the divergence formula, is equal to

$$\int_{\mathbb{B}^3} (Dg f + \tilde{g} Df) \, d\lambda_3 = 0. \quad (2.29)$$
For the second part we start decomposing the integral into slices and applying the first part of the proposition

\[
\int_{\mathbb{R}^4} \left(\bar{x}^n g(x) \right) \left(\bar{x}^m f(x) \right) \, d\lambda_4 = \int_{-1}^{1} \left(\int_{\mathbb{R}^3} \bar{x}^n g(x) \left(\bar{x}^m f(x) \right) \, d\lambda_3 \right) \, dx_0
\]

\[
= \int_{-1}^{1} \left(\int_{\mathbb{R}^3} \bar{g}(x) \left(p(x_0, x) f(x) \right) \, d\lambda_3 \right) \, dx_0
\]

\[
(2.30)
\]

where \(p \) is a polynomial, with real coefficients, in \(x_0 \) and \(x \) obtained after replacing the extensions \(\tilde{\cdot} \) with their expression as in (2.26). Note that in the inner integral the terms are of type

\[
c(x_0) \int_{\mathbb{R}^3} \bar{g}(x) x^j f(x) \, d\lambda_3
\]

If \(j \) is even then \(x^j = (-1)^j |x|^j \) and integrating on spherical shells the integral is 0 because \(f \) and \(g \) have different degree. If \(j \) is odd, then on spherical shells the integral is 0 by Eqs. (2.28) and (2.29).

\[\square\]

Corollary 2.12 Let \(m, s_1, s_2 \) be positive integers such that \(0 \leq s_1 < s_2 \leq m \). If \(f \in \mathcal{M}^{m-s_1}(\mathbb{R}^3, \mathbb{H}) \) and \(g \in \mathcal{M}^{m-s_2}(\mathbb{R}^3, \mathbb{H}) \) then \(\tilde{x}^{s_1} f(x) \) and \(\tilde{x}^{s_2} g(x) \) are orthogonal in \(L^2(\mathbb{H}) \), moreover \(\partial_0 \tilde{x}^{s_1} f(x) \) and \(\partial_0 \tilde{x}^{s_2} g(x) \) are orthogonal in \(L^2(\mathbb{H}) \).

Proof The orthogonality of \(\tilde{x}^{s_1} f(x) \) and \(\tilde{x}^{s_2} g(x) \) follows from Proposition 2.11 by taking the real part of the integral in Eq. (2.27), while the orthogonality of \(\partial_0 \tilde{x}^{s_1} f(x) \) and \(\partial_0 \tilde{x}^{s_2} g(x) \) follows by noticing that

\[
\left(\partial_0 \tilde{x}^{s_2} g(x) \right) \partial_0 \tilde{x}^{s_1} f(x) = \bar{g}(x) p(x_0, x) f(x)
\]

where \(p \) is a polynomial and therefore the same computations as in (2.30) apply. \[\square\]

Remark 2.13 Following the proof of Proposition 2.11 it is possible to prove directly with similar computations the orthogonality of \(\tilde{x}^{s_1} f(x) \) and \(\tilde{x}^{s_2} g(x) \) i.e.

\[
\int_{\mathbb{R}^4} \left(\tilde{x}^{s_2} g(x), \tilde{x}^{s_1} f(x) \right) \, d\lambda_4 = 0 \quad \text{for} \ s_1, s_2 \in \mathbb{N}
\]

To compute the maximum in (2.22) we first give the following
Proposition 2.14 Let $f \in M^k(\mathbb{R}^3, \mathbb{H})$ be a non-zero monogenic polynomial. We have

$$\frac{\|\partial_0 \tilde{x}^s f(x)\|^2}{\|\tilde{x}^s f(x)\|^2} = \frac{(2k + s + 2)(k + s + 2)s}{k + s + 1}.$$

Proof We first need a better form for (2.26). To this end we follow [6], we put $r^2 = x_0^2 + |x|^2$ and note that the term between brackets in (2.26) is a homogeneous polynomial of degree s in x_0 and x. The terms with an even power of x can be expressed as polynomial functions of $r^2 - x_0^2$ and, therefore, we have that

$$\tilde{x}^s f(x) = r^s \left(A \left(\frac{x_0}{r} \right) + B \left(\frac{x_0}{r} \right) \frac{x}{r} \right) f(x).$$

(2.31)

By imposing the condition $\tilde{\partial} \tilde{x}^s f(x) = 0$ we find that A and B must have the following form:

$$\tilde{x}^s f(x) = d_{k,s} r^s \left(C^{k+1}_s \left(\frac{x_0}{r} \right) + \frac{x}{r} \frac{2k + 2}{s + 2k + 2} C^{k+2}_{s-1} \left(\frac{x_0}{r} \right) \right) f(x)$$

where C^μ_n is the Gegenbauer’s polynomial defined by the relations

$$\frac{1}{(1 - 2xt + x^2)^\mu} = \sum_{n=0}^{+\infty} C^\mu_n(t)x^n.$$

and $d_{k,s}$ are some constants of which we will not keep track because they will cancel in the quotient. (for the details of the computations we refer to [6] where basically we have the same calculations done for the Clifford algebra generated by 3 vectors). We have

$$\frac{\|\tilde{x}^s f(x)\|^2}{d_{k,s}^2}$$

$$= \int_\mathbb{B} r^{2s} \left(\left(C^{k+1}_s \left(\frac{x_0}{r} \right) \right)^2 + \frac{|x|}{r} \frac{2k + 2}{s + 2k + 2} C^{k+2}_{s-1} \left(\frac{x_0}{r} \right)^2 \right) |f(x)|^2 d\lambda_4$$

$$+ (1 - x_0^2) \left(\frac{2k + 2}{s + 2k + 2} C^{k+2}_{s-1}(x_0) \right)^2 |f(x)|^2 d\Sigma$$

$$= \int_0^1 \left(\int_{\mathbb{S}^2} \left(C^{k+1}_s(x_0) \right)^2 + (1 - x_0^2) \left(C^{k+1}_s(x_0) \right)^2 \right) |f(x)|^2 d\Sigma \right) r^{2s+2k+3} dr$$

$$= \frac{1}{2(s + k + 2)} \int_{1-x_0^2}^1 \left(\int_{\sqrt{1-x_0^2} \mathbb{S}^2} \left(C^{k+1}_s(x_0) \right)^2 + (1 - x_0^2) \right)$$
We recall that

\[
\begin{align*}
\frac{1}{2(s + k + 2)} & \left(\frac{s}{r} \right)^{2k+1} \left(\frac{x_0}{r} \right)^{k+1} \\
& \times \left(\frac{1}{(s + 2k + 2)(s + 1)!} \right) \int_{s \Sigma_2} |f(x)|^2 d \Sigma_2 \\
\end{align*}
\]

and the last line of (2.32) becomes

\[
\frac{1}{2(s + k + 2)} \frac{2^{-2k} \pi \Gamma(s + 2k + 2)}{(s)! \Gamma(k + 1)^2} \left(\frac{1}{(2k + s + 2)} \right) \int_{s \Sigma_2} |f(x)|^2 d \Sigma_2. \quad (2.34)
\]

Since \(\partial_0(r) = \frac{s}{r} \) and \(\partial_0 \left(\frac{s}{r} \right) = \frac{r^2 - x_0^2}{r^3} \) we have that

\[
\begin{align*}
\frac{\partial_0 x^k f(x)}{d k, s} &= r^{s-1} \left(s \frac{x_0}{r} C^k_{s-1} \left(\frac{x_0}{r} \right) + \left(C^k_{s-1} \left(\frac{x_0}{r} \right) \right) (1 - \left(\frac{x_0}{r} \right)^2) \\
& \quad + \frac{x}{r} \frac{2k + 2}{s + 2k + 2} \left((s - 1) \frac{x_0}{r} C^k_{s-1} \right) + C^k_{s-1} \left(\frac{x_0}{r} \right) \left(1 - \left(\frac{x_0}{r} \right)^2 \right) \right) f(x). \quad (2.35)
\end{align*}
\]

Since the Gegenbauer polynomials satisfy the equation

\[
(1 - t^2) C^\mu_s(t) + st C^\mu_s(t) = (s + 2 \mu - 1) C^\mu_{s-1}(t) \quad (2.36)
\]

by plugging into (2.35) we have

\[
\begin{align*}
\frac{\partial_0 x^k f(x)}{d k, s} &= r^{s-1} (s + 2k + 1) \left(C^k_{s-1} \left(\frac{x_0}{r} \right) + \frac{x}{r} \frac{(2k + 2)}{s + 2k + 1} C^k_{s-1} \left(\frac{x_0}{r} \right) \right) f(x). \quad (2.37)
\end{align*}
\]

Now, we repeat the computations that we have done in (2.32) and get

\[
\frac{\| \partial_0 x^k f(x) \|^2}{d^2 k, s} = \frac{(s + 2k + 1) 2^{-2k} \pi \Gamma(s + 2k + 1)}{2(s + k + 1)(s - 1)! \Gamma(k + 1)^2} \int_{s \Sigma_2} |f(x)|^2 d \Sigma_2.
\]
Finally, we have that
\[
\frac{\| \partial_0 \tilde{x} f(x) \|^2}{\| x^s f(x) \|^2} = \frac{(2k + s + 2)(k + s + 2)s}{k + s + 1}.
\]

\[\square\]

Proof of Proposition 2.4 We have
\[
\frac{|\nabla u|^2}{2u \Delta u} \leq \max_{f_{m+1} \in \mathcal{M}^{m+1}} \left\{ \frac{1}{2(m+3)(m+1)} \frac{\| \partial_0 f_{m+1} \|^2}{\| f_{m+1} \|^2} \right\}
\]

\[
\max_{0 \leq \mu \leq m+1} \left\{ \frac{1}{2(m+3)(m+1)} \frac{\| \partial_0 \tilde{x}^\mu g_{m+1-\mu}(x) \|^2}{\| \tilde{x}^\mu g_{m+1-\mu}(x) \|^2} \right\}
\]

(2.38)

Applying Proposition 2.14 to the ratio \(\frac{\| \partial_0 \tilde{x}^\mu g_{m+1-\mu}(x) \|^2}{\| \tilde{x}^\mu g_{m+1-\mu}(x) \|^2} \), where \(k = m + 1 - \mu \) and \(s = \mu \), we have that the last maximum in (2.38) is attained for \(\mu = m + 1 \) and its value is \(\frac{m+3}{2(m+2)} \).

\[\square\]

Proof of Theorem 1.1 The conclusion follows immediately by applying Lemma 2.2 and Proposition 2.4.

\[\square\]

3 Subharmonicity of Higher Gradients of Monogenic Functions on Clifford Algebras

In this section, we will follow the previous computations for monogenic functions in the case of Clifford algebras. Let \(\mathbb{R}^n \) be the standard vector space of dimension \(n \) and \(e_1, \ldots, e_n \) be the canonical basis. We shall indicate by \(\mathbb{R}_n \) the Clifford algebra generated by these vectors. Every element \(a \in \mathbb{R}_n \) can be written as

\[
a = \sum_{A \subset \{1, \ldots, n\}} a_A e_A
\]

where \(a_A \in \mathbb{R} \) and \(e_A = e_{i_1} \cdots e_{i_k} \) with \(A = \{i_1 < \cdots < i_k\} \) and by convention \(e_\emptyset = 1 \). We call \(a_\emptyset \) the real part of \(a \). We recall that \(\mathbb{R}_n \) is endowed with a non-degenerate scalar product with respect to which the powers \(e_A \) form an orthonormal system. This scalar product is defined in terms of an involution which generalizes the conjugation in \(\mathbb{R}_n \) namely we define on the elements of the canonical basis:

\[
\overline{e_A} := (-1)^k e_A^\ast
\]
where $\mathbf{e}^* = \mathbf{e}_k \cdots \mathbf{e}_{i_1}$ and extend this definition by linearity to the full \mathbb{R}_n. The scalar product between two elements \mathbf{a} and \mathbf{b} is

$$(\mathbf{a}, \mathbf{b}) = (\overline{\mathbf{b}} \mathbf{a})_\emptyset$$

and moreover $|\mathbf{a}|^2 = (\mathbf{a}, \mathbf{a}) = \sum_a a^2_A$. We identify \mathbb{R}^n inside \mathbb{R}^n by $x = (x_1, \ldots, x_n) = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$.

Definition 3.1 Let Ω be an open subset of \mathbb{R}^n and let $f : \Omega \to \mathbb{R}^n$ be a C^1 function. We say that f is monogenic if

$$D_\mathbf{n} f(x) = (\mathbf{e}_1 \partial_1 + \cdots + \mathbf{e}_n \partial_n)f = 0$$

Definition 3.2 We define $\mathcal{P}_k(\mathbb{R}^n, \mathbb{R}^n)$ as the space of homogeneous polynomials of degree k with values in \mathbb{R}^n. Similarly, we define $\mathcal{M}_k(\mathbb{R}^n, \mathbb{R}^n) = \{ f \in \mathcal{P}_k(\mathbb{R}^n, \mathbb{R}^n) \mid D_\mathbf{n} f = 0 \}$

Let $\beta = (i_1, \ldots, i_m)$ be a multi-index, where $i_j \in \{1, \ldots, n\} \forall j$, and define $\partial^\beta f(x) = \partial_1^{i_1} \cdots \partial_m^{i_m} f(x)$.

Definition 3.3 Let f as before and m a positive integer. We define the m-th gradient $\nabla^m f$ as the set of all derivatives $\partial^\beta f(x)$ for all β with length m and set

$$u = |\nabla^m f|^2 = \sum_{|\beta|=m} |\partial^\beta f|^2$$

We want to find precisely for which α we have that u^α is subharmonic. We follow the same proof of the preceding section. In particular, if f_m, f_{m+1} are monogenic homogeneous polynomials of degree m and $m+1$ we look for the maximum M :

$$M := \max_{f_m \in \mathcal{M}_m(\mathbb{R}^n, \mathbb{R}^n), f_{m+1} \in \mathcal{M}_{m+1}(\mathbb{R}^n, \mathbb{R}^n)} \frac{\sum_{i=1}^n \left(f_{B_1}(\partial_i f_{m+1}, f_m)(x) d\lambda_4 \right)^2}{\left(f_{B_1} | f_m(x) |^2 d\lambda_4 \right) \left(\sum_{i=1}^n \int_{B_1} |\partial_i f_{m+1}(x)|^2 d\lambda_4 \right)}.$$

(3.2)

It is similar, as in the previous paragraph, to see that such maximum is equivalent to

$$M = \max_{\substack{f_{m+1} \in \mathcal{M}(\mathbb{R}^n, \mathbb{R}_n) \\sum_{i=1}^n \|\partial_i f_{m+1}\|^2 = 1 \\sum_{h,k=1}^n \|\partial_h f_{m+1} \cdot \partial_k f_{m+1}\| = 1}} \left\{ \sum_{h,k=1}^n \zeta_h \zeta_k (\partial_h f_{m+1}, \partial_k f_{m+1}) \right\}.$$

(3.3)

For every fixed f_{m+1} in (3.3) the maximum is reached for some $\zeta \in \mathbb{R}^n$. Up to the choice of an element $s \in Spin(n)$ we can assume, by considering $sf_{m+1}(s^{-1}xs)$ that

\mathbb{C} Springer
\(\zeta = (0, \ldots, 1) \) or, in other words, that \(\partial \zeta = \partial_n \) (see [6, Section 1.12.2]). As was shown in (2.21) we have that

\[
\sum_{i=1}^{n} \| \partial_i f \|^2 = (m + 1)(2m + n + 2) \| f \|^2
\]

and

\[
M = \max_{f_{m+1} \in \mathcal{M}^{m+1}(\mathbb{R}^n, \mathbb{R}_n)} \left\{ \frac{1}{(2m + n + 2)(m + 1)} \frac{\| \partial_1 f_{m+1} \|^2}{\| f_{m+1} \|^2} \right\}. \tag{3.4}
\]

In order to compute \(M \) we need to find an orthogonal decomposition of \(\mathcal{M}^{m+1}(\mathbb{R}^n, \mathbb{R}_n) \) similar to that in Remark (2.8) (see (3.5)). To this end we exploit again the Fischer decomposition theorem. We consider the splitting \(\mathbb{R}^n = \mathbb{R}^{n-1} \oplus \mathbb{R} e_n \) and identify in this manner \(\mathbb{R}^{n-1} \) inside \(\mathbb{R}^n \). With this identification we take \(\mathcal{M}^k(\mathbb{R}^{n-1}, \mathbb{R}_n) \) to be the space of monogenic homogeneous polynomials in \(x_1, \ldots, x_{n-1} \) of degree \(k \) with values in \(\mathbb{R}_n \). Moreover, we shall indicate with \(x = x_1 e_1 + \cdots + x_n e_n \) a vector in \(\mathbb{R}^n \) and with \(\tilde{x} = x_1 e_1 + \cdots + x_{n-1} e_{n-1} \) a vector in \(\mathbb{R}^{n-1} \).

Theorem 3.4 (Fischer decomposition in \(\mathbb{R}^n \), [6]) We have the following decomposition

\[
\mathcal{P}^k(\mathbb{R}^{n-1}, \mathbb{R}_n) = \bigoplus_{j=0}^{k} \mathcal{M}^{k-j}(\mathbb{R}^{n-1}, \mathbb{R}_n).
\]

We note that this decomposition is orthogonal also in \(L^2(\mathbb{R}^{n-1}) \). As we did in the previous section starting from \(f_{m+1} \in \mathcal{M}^{m+1}(\mathbb{R}^n, \mathbb{R}_n) \) and using the Fischer decomposition to its restriction \(f_{m+1}|_{\mathbb{R}^{n-1}} \), we can first decompose \(f_{m+1}(x) = \sum_{s=0}^{m+1} \tilde{x}^s g_{m+1-s}(x) \) where \(g_{m+1-s} \in \mathcal{M}^{m+1-s}(\mathbb{R}^{n-1}, \mathbb{R}_n) \) and then we can regain \(f_{m+1}(x) \) considering its monogenic extension using the Cauchy–Kowalevski operator \(\exp(x_n e_n D_{n-1}) \):

\[
f_{m+1}(x) = \sum_{s=0}^{m+1} \tilde{x}^s g_{m+1-s}(x) \tag{3.5}
\]

where \(\tilde{x}^s g_{m+1-s}(x) = \exp(x_n e_n D_{n-1})(\tilde{x}^s g(x)) \).

Proof of Theorem 1.2 The proof goes as the one of Theorem 1.1, we only need to adapt Proposition 2.14. We consider elements of the type \(\tilde{x}^s f(x) \) where \(f \) is a monogenic homogeneous polynomial of degree \(k \) in \(\mathbb{R}^{n-1} \) (as in the decomposition (3.5)). It follows that

\[
\tilde{x}^s f(x) = \sum_{i=0}^{s} \left(c_{s,i,n} \tilde{x}^i \right) f(x)
\]

\[
= |x|^s \left(A \left(\frac{x_n}{|x|} \right) + B \left(\frac{x_n}{|x|} \right) e_n \right) f(x) \tag{3.6}
\]
where \(c_{s,i,n} \) are some convenient real constants. We look for an explicit formula for \(A \) and \(B \) and since \(D_n x^s f(x) = 0 \), following [6], we have that

\[
\hat{x}^s f(x) = d_{n,k,s} |x|^s \left(C_{s}^{\frac{n+k-1}{2}} \left(\frac{x_n}{|x|} \right) + \frac{n + 2k - 2}{n + 2k + s - 2} C_{s}^{\frac{n+k}{2}} \left(\frac{x_n}{|x|} \right) e_n \right) f(x)
\]

where \(d_{n,k,s} \) is a constant which depends only on \(n \), \(k \) and \(s \) (see also [10]). We compute next \(\| \hat{x}^s f(x) \|^2 \) and we have

\[
\frac{\| \hat{x}^s f(x) \|^2}{d_{n,k,s}^2} = \int_{\mathbb{S}^{n-1}} r^{2s} \left(\left(C_{s}^{\frac{n+k-1}{2}} \left(\frac{x_n}{|x|} \right) \right)^2 + \left(\frac{|x|}{|x|} \frac{n + 2k - 2}{n + 2k + s - 2} C_{s}^{\frac{n+k}{2}} \left(\frac{x_n}{|x|} \right) \right)^2 \right)^2 \times | f(x) |^2 \, d\lambda_n
\]

\[
= \int_{0}^{1} \left(\int_{\mathbb{S}^{n-1}} \left(\left(C_{s}^{\frac{n+k-1}{2}} \left(x_n \right) \right)^2 + (1 - x_n^2) \left(\frac{n + 2k - 2}{n + 2k + s - 2} C_{s}^{\frac{n+k}{2}} \left(x_n \right) \right)^2 \right) \right) \times r^{n+2s+2k-1} \, dr
\]

\[
= \frac{1}{n + 2s + 2k} \int_{-1}^{1} \left(\int_{\sqrt{1 - x_n^2}}^{\mathbb{S}^{n-2}} \left(\left(C_{s}^{\frac{n+k-1}{2}} \left(x_n \right) \right)^2 + (1 - x_n^2) \left(\frac{n + 2k - 2}{n + 2k + s - 2} C_{s}^{\frac{n+k}{2}} \left(x_n \right) \right)^2 \right) \right) \times | f(x) |^2 \, \frac{d\Sigma_{n-2}}{\sqrt{1 - x_n^2}} \, dx_n
\]

\[
= \frac{1}{n + 2s + 2k} \int_{-1}^{1} (1 - x_n^2)^{\frac{n}{2} + k - \frac{3}{2}} \left(\left(C_{s}^{\frac{n+k-1}{2}} \left(x_n \right) \right)^2 + (1 - x_n^2) \left(\frac{n + 2k - 2}{n + 2k + s - 2} C_{s}^{\frac{n+k}{2}} \left(x_n \right) \right)^2 \right) \, dx_n
\]

\[
\times \int_{\mathbb{S}^{n-2}} | f(x) |^2 \, d\Sigma_2.
\]

by (2.33) we have

\[
\frac{\| \hat{x}^s f(x) \|^2}{d_{n,k,s}^2} = \frac{2^{n} \pi (n + 2k + s - 2) \Gamma(n + 2k + s - 2)^{-1} \int_{\mathbb{S}^{n-2}} | f(x) |^2 \, d\Sigma_{n-2}}{s!(n + 2k + s - 2)(n + 2k + 2s) \Gamma(\frac{n}{2} + k - 1)^{-1} \int_{\mathbb{S}^{n-2}} | f(x) |^2 \, d\Sigma_{n-2}}
\]

(3.8)
Similarly for \(\partial_{n} \widetilde{x}^{s} f(x) \):

\[
\frac{\partial_{n} \widetilde{x}^{s} f(x)}{d_{n,k,s}} = |x|^{s-1} \left(sC_{s}^{n+k-1} \left(\frac{x_n}{|x|} \right) \frac{x_n}{|x|} + C_{s}^{n+k-1} \left(\frac{x_n}{|x|} \right) \left(1 - \left(\frac{x_n}{|x|} \right)^{2} \right) \right) + \frac{n + 2k - 2}{n + 2k + s - 2} \left(s - 1 \right) C_{s-1}^{n+k} \left(\frac{x_n}{|x|} \right) + C_{s-1}^{n+k} \left(\frac{x_n}{|x|} \right) \left(1 - \left(\frac{x_n}{|x|} \right)^{2} \right) \right) \sigma_{n,k,s} f(x) \quad (3.9)
\]

and by Eq. (2.36) we have

\[
\frac{\partial_{n} \widetilde{x}^{s} f(x)}{d_{n,k,s}} = (n + 2k + s - 3)|x|^{s-1} \left(C_{s-1}^{n+k-1} \left(\frac{x_n}{|x|} \right) \right) + \frac{n + 2k - 2}{n + 2k + s - 3} C_{s-2}^{n+k} \left(\frac{x_n}{|x|} \right) \frac{x}{|x|} e_{n} f(x). \quad (3.10)
\]

It follows by applying the same computation as in (3.8) with \(s - 1 \) in place of \(s \) that

\[
\left\| \frac{\partial_{n} \widetilde{x}^{s} f(x)}{d_{n,k,s}} \right\|^{2} = \left(\frac{2^{4n-2k} \Gamma(n + 2k + s - 3)(n + 2k + s - 3)\pi}{(s - 1)! (n + 2k + 2s - 2) \Gamma(\frac{n}{2} + k - 1)^{2}} \right) \times \int_{S^{n-2}} |f(x)|^{2} d\Sigma_{n-2}. \quad (3.11)
\]

By taking the quotient between (3.8) and (3.11) we have

\[
\frac{\left\| \partial_{n} \widetilde{x}^{s} f(x) \right\|^{2}}{\left\| x^{s} f(x) \right\|^{2}} = \frac{s(n + 2s + 2k)(n + 2k + s - 2)}{n + 2k + 2s - 2}. \quad (3.12)
\]

Since \(k + s = m + 1 \), the maximum \(M \) is reached for \(s = m + 1 \) and by plugging into (3.4) we have

\[
M = \frac{n + m - 1}{n + 2m}. \quad (3.13)
\]

Finally, we have that \(|\nabla^{m} f|^{\alpha} \) is subharmonic for \(\alpha \geq \frac{2M-1}{M} = \frac{n-2}{n+m-1}. \)

4 Monogenic Functions on the Octonions

We consider the case of the octonions \(\mathbb{O} \). This algebra is built by the well known Cayley-Dickson construction. Starting from \(\mathbb{H} \) we consider on \(\mathbb{H}^{2} \) the following binary
operation \(\cdot : \mathbb{H}^2 \times \mathbb{H}^2 \to \mathbb{H}^2 \)

\[
(a, b) \cdot (c, d) = (ac - d\bar{b}, cb + \bar{ad})
\]

(4.1)

We define \(\mathcal{O} \) to be \(\mathbb{H}^2 \) equipped with the usual sum and with the product \(\cdot \) defined in (4.1). It turns out that \(\mathcal{O} \) with the norm inherited from \(\mathbb{H}^2 \) is a composition algebra, which means

\[
| (a, b) \cdot (c, d) |^2 = | (a, b) |^2 | (c, d) |^2.
\]

The dimension over \(\mathbb{R} \) of \(\mathcal{O} \) is 8 and a basis is given by \(e_0 = (1, 0), e_1 = (i, 0), \ldots, e_7 = (0, k) \). We note that \(e_j^2 = -1 \) for \(j > 0 \), \(e_0^2 = 1 \) and \(e_i e_j = -e_j e_i \) for \(i \neq j, i > 0 \) and \(j > 0 \). Clearly \(e_0 \) is the unity of \(\mathcal{O} \) and it is also denoted by 1. We have that \(\mathcal{O} \) splits naturally in two subspaces called the real and the imaginary part (here identified with \(\mathbb{R}^7 \))

\[
\mathcal{O} \cong \mathbb{R} e_0 \oplus \mathbb{R} e_1 \oplus \cdots \oplus \mathbb{R} e_7.
\]

For every \(x \in \mathcal{O} \) we write

\[
x = x_0 e_0 + \sum_{i=1}^7 x_i e_i = x_0 + (x)
\]

\(x_0 \) is called the real part of \(x \) and \(x \) the imaginary part of \(x \). We define the conjugate of an octonion \(x \) as \(\bar{x} = x_0 - x \). It is easy to check that \(\bar{xy} = \bar{y}x \) and that the bilinear map \(\langle x, y \rangle := (\bar{y}x)_0 \) defines a real scalar product on \(\mathcal{O} \) and such that \(\langle x, x \rangle = |x|^2 \). We define the Weyl operator

\[
\bar{\partial} = \sum_{i=0}^7 e_i \partial_i
\]

and the Dirac operator

\[
D = \partial_\bar{x} = \sum_{i=1}^7 e_i \partial_i.
\]

Remark 4.1 The product defined in (4.1) is not associative but the following hold:

\[
x(ax) = (xa)x, \quad (xx)a = x(xa), \quad \forall x, a \in \mathcal{O}
\]

(4.2)

\[
\bar{x}(xa) = |x|^2 a
\]

(4.3)

in particular it makes sense to consider the powers in \(\mathcal{O} \). Moreover the subalgebra generated by two octonions is associative. (see [5, p. 76])
We have
\[\partial \bar{\partial} = \bar{\partial} \partial = \Delta \]
and
\[D^2 = -\Delta_{x_1, \ldots, x_7}. \]

Definition 4.2 A C^1 function $f : \Omega \rightarrow \mathbb{O}$, where Ω is an open subset of \mathbb{O} (or \mathbb{R}^7) is monogenic if
\[\bar{\partial} f = 0 \quad (\text{resp.} \ D f = 0) \]

We introduce for a positive integer k the space of homogeneous polynomials of degree k on \mathbb{O} (or \mathbb{R}^7) $P^k(\mathbb{O}, \mathbb{O})$ (resp. $P^k(\mathbb{R}^7, \mathbb{O})$) and the corresponding space of monogenic polynomials $M^k(\mathbb{O}, \mathbb{O})$ (resp. $M(\mathbb{R}^7, \mathbb{O})$). Similarly for a multi-index $\beta \in \{0, \ldots, 7\}^k$ we introduce $\partial^\beta f = \partial_{\beta_1} \ldots \partial_{\beta_k} f$ and define $|\nabla^k f(x)|^2 := \sum_{|\beta|=k} |\partial^\beta f(x)|^2$. In order to prove that $|\nabla^m f|^\alpha$ is subharmonic we exploit again Lemma 2.2 and the following

Proposition 4.3 Let $f : \Omega \rightarrow \mathbb{O}$ be a monogenic function and let $u(x) = \sum_{|\beta|=m} |\partial^\beta f(x)|^2$. Then we have
\[\frac{|\nabla u|^2}{2u\Delta u} \leq \frac{m+7}{2(m+4)} \] (4.4)

Before getting to the proof of Proposition 4.3 we need some preliminaries:

Theorem 4.4 The following decompositions hold:
\[P^k(\mathbb{O}, \mathbb{O}) = \bigoplus_{j=0}^k \bar{x}^j M^{k-j}(\mathbb{O}, \mathbb{O}) \]
and similarly
\[P^k(\mathbb{R}^7, \mathbb{O}) = \bigoplus_{j=0}^k x^j M^{k-j}(\mathbb{R}^7, \mathbb{O}) \]

Proof We introduce on $P^k(\mathbb{O}, \mathbb{O})$ a scalar product. For $R_i(x) = \sum_{|\alpha|=k} a^i_\alpha x^\alpha$ for $i = 1, 2$ (here $\alpha = (\alpha_0, \ldots, \alpha_7) \in \mathbb{N}^8$ is a multiindex, $|\alpha| = \alpha_0 + \cdots + \alpha_7$ and $x^\alpha = x_0^{\alpha_0} \cdots x_7^{\alpha_7}$) we define
\(\langle R_1(x), R_2(x) \rangle := \left(\left(\sum_{|\alpha| = k} \bar{a}_a^1 \partial^{\alpha} \right) \left(\sum_{|\alpha| = k} a_a^2 x^{\alpha} \right) \right)_0 \) \hspace{1cm} (4.5)

\[\langle \bar{x} R_1(x), R_2(x) \rangle = \langle R_1(x), \bar{\partial} R_2(x) \rangle \]

Since \((a(bc))_0 = ((ab)c)_0\) for all \(a, b, c \in \mathcal{O}\) we have that for \(R_1 \in \mathcal{P}^{k-1}(\mathcal{O}, \mathcal{O})\)

\[\langle \bar{x} R_1(x), R_2(x) \rangle = \langle R_1(x), \bar{\partial} R_2(x) \rangle \]

from which follows \(\mathcal{M}^k(\mathcal{O}, \mathcal{O}) \subset \{ \bar{x} \mathcal{P}^{k-1}(\mathcal{O}, \mathcal{O}) \}^\perp\). For the opposite inclusion suppose that \(\bar{\partial} R_2 \neq 0\) and choose \(R_1 = \bar{\partial} R_2\). Then clearly \(\langle \bar{x} R_1, R_2 \rangle = \langle R_1, \bar{\partial} R_2 \rangle \neq 0\) hence \(R_2 \notin \{ \bar{x} \mathcal{P}^{k-1}(\mathcal{O}, \mathcal{O}) \}^\perp\). We have the splitting

\[\mathcal{P}^k = \mathcal{M}^k \oplus \bar{x} \mathcal{P}^{k-1} \] \hspace{1cm} (4.7)

and by repeating the same argument on \(\mathcal{P}^{k-1}\) we have the conclusion. The proof of the second decomposition is similar, with \(\bar{\partial}\) replaced by \(D\). \(\square\)

As we did in the first and second section we need to find an orthogonal decomposition of \(\mathcal{M}^{m+1}(\mathcal{O}, \mathcal{O})\) similar to that described in Remark 2.8. Starting from a polynomial \(f \in \mathcal{P}^k(\mathbb{R}^7, \mathcal{O})\) the monogenic extension to \(\mathcal{O}\) is given by the Cauchy–Kowalevski extension operator:

\[\tilde{f}(x) = \sum_{i=0}^{\infty} (-1)^i \frac{x_0^i}{i!} D^i f(x). \]

Combining the Fischer decomposition and the Cauchy–Kowalevski extension we can decompose any \(f_{m+1} \in \mathcal{M}^{m+1}(\mathcal{O}, \mathcal{O})\) in the same way as we did in the previous sections

\[f_{m+1}(x) = \sum_{s=0}^{m+1} x^{s} \tilde{g}_{m+1-s}(x). \]

We observe that the orthogonality of this decomposition and of its \(\partial_{x_0}\)-derivative can be proved as we did in the Proposition 2.11 and Corollary 2.12 with foresight to use the real scalar product instead of the hermitian one (see Remark 2.13). This is because we need the associativity when we compute explicitly

\[\int_{B^8} (\bar{x}^n g(x), \bar{x}^m \tilde{f}(x))_0 \, dV \]

\(\square\) Springer
We need to compute $D(x^s f(x))$ with $f \in \mathcal{M}^k(\mathbb{R}^7, \mathbb{O})$. For this we need the following lemmas

Lemma 4.5 Let $f \in \mathcal{M}^k(\mathbb{R}^7, \mathbb{O})$ then

$$D(x f(x)) = -(2k + 7)f(x).$$

Proof We have

$$D(x f(x)) = \sum_{i=1}^{7} e_i \partial_i (x f(x)) = -7 f(x) + \sum_{i=1}^{7} e_i (x \partial_i f(x))$$

For evaluating the last term on the right side we observe that for $t \in \mathbb{O}$ we have

$$\langle e_i (x \partial_i f(x)), t \rangle = \langle x \partial_i f(x), -e_i t \rangle = -2 \langle x, e_i \rangle \langle \partial_i f(x), t \rangle + \langle x, e_i \partial_i f(x) \rangle$$

by the braid and exchange properties (see [5]). Taking the sum for $i = 1, \ldots, 7$ we have

$$\left(\sum_{i=1}^{7} e_i (x \partial_i f(x)), t \right) = \left(-2 \sum_{i=1}^{7} x \partial_i f(x) + x t, \mathbf{D} f(x) \right)$$

and since it holds for all t we have

$$\sum_{i=1}^{7} e_i (x \partial_i f(x)) = -2k f(x)$$

and this yields the conclusion. □

Lemma 4.6 Let $f \in \mathcal{M}^k(\mathbb{R}^7, \mathbb{O})$ and s a positive integer. The following holds

$$D(x^s f(x)) = \begin{cases}
-sx^{s-1} f(x) & \text{if } s \text{ is even} \\
-(s + 6 + 2k)x^{s-1} f(x) & \text{if } s \text{ is odd}
\end{cases}$$ (4.8)

Proof We begin with the case when $s = 2n + 1$. Thanks to Remark 4.1 we have that

$$D(x^{2n+1} f(x)) = (-1)^n D(|x|^{2n} x f(x))$$

$$= (-1)^n n |x|^{2n-2} x^2 f(x) + (-1)^n |x|^{2n} \sum_{i=1}^{7} e_i (e_i f(x))$$

 Springer
where the last line follows from Lemma 4.5. The case \(s \) even is similar.

We can now proceed as in the other cases

Proof of Proposition 4.3 By a similar argument we see that at a point, say 0, we have that

\[
\frac{\|\nabla u\|^2}{2u \Delta u}(0) = \frac{\sum_{i=0}^{7} (f_{m+1} \partial_i f_m)(x) d\lambda_8}{(\int_{B} |f_m(x)|^2 d\lambda_8)^2} \left(\sum_{i=0}^{7} \int_{B} |\partial_i f_m(x)|^2 d\lambda_8 \right).
\]

where \(f_m \) and \(f_{m+1} \) are the terms of degree \(m \) and \(m + 1 \) in the Taylor expansion of \(f \) at 0.

The proof reduces to prove that

\[
M = \max_{f_m \in \mathcal{M}^m(\mathcal{O}, \mathcal{O})} \left\{ \frac{1}{2(m+5)(m+1)} \left\| \partial_0 f_{m+1} \right\|^2 \right\}.
\]

By repeating the same argument as in Sect. 2, and using the fact that \(f(ux) \) is monogenic for all \(u \in \mathbb{O} \), we have

\[
M = \max_{f_{m+1} \in \mathcal{M}^{m+1}(\mathcal{O}, \mathcal{O})} \left\{ \frac{1}{2(m+5)(m+1)} \left\| \partial_0 f_{m+1} \right\|^2 \right\}. \tag{4.9}
\]

At this point we only need to find an orthogonal decomposition of \(\mathcal{M}^{m+1}(\mathcal{O}, \mathcal{O}) \) of the type described in Remark 2.8. We start by finding the monogenic extension to \(\mathbb{O} \) of \(\overline{x}^j f(x) \) where \(f \in \mathcal{M}^k(\mathbb{R}^7, \mathbb{O}) \). By Lemma 4.6 we have

\[
\overline{x}^j f(x) = \sum_{i=0}^{j} (c_{k,j,i} x_i^j x^{j-i}) f(x)
\]

for some real coefficients \(c_{k,j,i} \) which do not depend on \(f \). Let \(r^2 = |x|^2 \) and set \(\overline{x}^j f(x) = r^j (A(x_0^j r) + B(x_0^j r^2)) f(x) \) and by imposing \(\overline{\partial x}^j f(x) = 0 \) we found that the extension is given by

\[
\overline{x}^j f(x) = d_{k,j} |x|^j \left(C_{j}^{k+3} \left(\frac{x_0}{|x|} \right) + \frac{2k + 6}{2k + j + 6} C_{j-1}^{k+4} \left(\frac{x_0}{|x|} \right) \frac{x}{|x|} \right) f(x).
\]
The computations are exactly like the ones in Sect. 3 with \(n = 8 \). In the end we have \(M = \frac{m+7}{2(m+4)} \) which finishes the proof.

Proof of Theorem 1.3 Follows from Proposition 4.3 and Lemma 2.2.

Remark 4.7 In Theorems 1.1, 1.2 and 1.3 we saw that, according to the dimension \(n \) of the algebra where \(f \) takes its values, \(|\nabla^m f|^{\alpha_{0,m,n}} \) is subharmonic for \(\alpha_{0,m,n} = \frac{n-2}{n+m-1} \).

As observed in [4] Theorem 2, this is the best possible choice for the exponent \(\alpha_{0,m,n} \) indeed if \(\phi(|\nabla^m f|) \) is subharmonic for any monogenic or regular functions \(f \) and \(\phi \) is continuous then \(\phi(t) = \omega(t^{\alpha_{0,m,n}}) \) where \(\omega : \mathbb{R}_{\geq 0} \to \mathbb{R} \) is a convex increasing function. The proof of this fact follows without substantial modification the proof in [4].

Acknowledgements The authors wish to thank Professor Irene Sabadini for useful discussions and the anonymous referees for many useful suggestions which have improved the quality of our paper.

References

1. Baracco, L.: Extension of holomorphic functions from one side of a hypersurface. Canad. Math. Bull. **48**(4), 500–504 (2005)
2. Baracco, L., Fassina, M., Pinton, S.: An extension theorem for regular functions of two quaternionic variables. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2019.123573
3. Begehr, H.: Iterated integral operators in Clifford analysis. Z. Anal. Anwendungen **18**(2), 361–377 (1999)
4. Calderón, A.-P., Zygmund, A.: On higher gradients of harmonic functions. Studia Math. **24**, 211–226 (1964)
5. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A K Peters, Ltd., Natick, xii+159 pp (2003)
6. Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1992)
7. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, vol. 7, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)
8. Kauhanen, J., Orelma, H.: Cauchy–Riemann operators in octonionic analysis. Adv. Appl. Clifford Algebr. **28**(1), 14 (2018)
9. Kheyfits, A., Tepper, D.: Subharmonicity of powers of octonion-valued monogenic functions and some applications. Bull. Belg. Math. Soc. Simon Stevin **13**(4), 609–617 (2006)
10. Lávička, R.: Complete orthogonal appell systems for spherical monogenics. Complex Anal. Oper. Theory **6**, 477–489 (2012)
11. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^p \)-spaces. Acta Math. **103**, 25–62 (1960)
12. Stein, E.M., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Am. J. Math. **90**, 163–196 (1968)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.