Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate

Pasquale Palumbo1,2,*, Marco Vanoni1,3,*, Valerio Cusimano1,2, Stefano Busti1,3, Francesca Marano1,3, Costanzo Manes2,4 & Lilia Alberghina1,3

In budding yeast, overcoming of a critical size to enter S phase and the mitosis/mating switch—two central cell fate events—take place in the G1 phase of the cell cycle. Here we present a mathematical model of the basic molecular mechanism controlling the G1/S transition, whose major regulatory feature is multisite phosphorylation of nuclear Whi5. Cln3–Cdk1, whose nuclear amount is proportional to cell size, and then Cln1,2–Cdk1, randomly phosphorylate both decoy and functional Whi5 sites. Full phosphorylation of functional sites releases Whi5 inhibitory activity, activating G1/S transcription. Simulation analysis shows that this mechanism ensures coherent release of Whi5 inhibitory action and accounts for many experimentally observed properties of mitotically growing or conjugating G1 cells. Cell cycle progression and transcriptional analyses of a Whi5 phosphomimetic mutant verify the model prediction that coherent transcription of the G1/S regulon and ensuing G1/S transition requires full phosphorylation of Whi5 functional sites.
T

he ability of G1 cells to select specific cell fates in response to external and internal cues is crucial for life, in both lower and higher eukaryotes. In the presence of nutrients—and in the absence of the complementary mating factors—haploid G1 cells of the budding yeast *Saccharomyces cerevisiae*—a widely used model for the study of the eukaryotic cell cycle—grow to the critical cell size required to enter S phase and are committed to proliferation. The complementary mating factor induces haploid G1 cells to undergo cell cycle arrest, differentiate and conjugate producing diploid cells. Nutrient-limiting conditions lead to growth arrest and entry into stationary phase.

Several features of critical cell size control have been reported. The average cell size of yeast populations increases with ploidy and higher eukaryotes. In the presence of nutrients—and in varying environmental conditions—including pheromone effects on cell cycle-related events—that were not considered in model design and parameter optimization, thereby providing a new unifying, comprehensive, molecular mechanism for the core critical cell size control and for the mitosis/mating switch.

Results

Outline of the model of the G1/S transition. In our model (Fig. 1a; Supplementary Notes 1–10), synthesis of the upstream cyclin Cln3 links cell growth—modeled according to ref. 30—to molecular events promoting the G1/S transition. Cln3 synthesis is exquisitely sensitive to alterations in growth rate and ribosomal content and its average concentration is higher in fast growing cells. Conflicting evidences regarding the precise pattern of Cln3 protein accumulation during the G1 phase have been reported. Our simulations show that the G1/S transition kinetics are quite insensitive to the specific pattern of Cln3 accumulation (Supplementary Figs 1–2), while they are dependent on average Cln3 concentration at the end of G1. In early G1, the chaperone Ydj1 facilitates import of Cln3 in the nucleus where it binds the catalytic kinase subunit Cdk1 (ref. 27): the nuclear amount of Cln3–Cdk1 is therefore larger in larger cells and smaller in smaller cells. Coherent transcriptional activation of the G1/S regulon leads to synchronous expression of hundreds of gene products, orderly driving the G1/S transition that starts the pathway towards mitosis. It is driven by two heterodimeric transcription factors, SBF (composed by the co-activator Swi6 and the DNA binding protein Swi4) and MFB (composed by Swi6 and Mbp1 (ref. 37)) and inhibited by the transcriptional repressor Whi5 that regulates the G1/S transition in both mitotic and mating factor-treated cells through inhibition of several hundreds of SBF molecules.

Multisite phosphorylation of a regulatory protein is an effective molecular device able to produce a coherent response in the specific function controlled by the same protein, when the function involves hundreds of identical molecular players—which may be fine-tuned in different experimental conditions—is:

1. **CLN1, CLN2, CLB5, CLB6**
2. **CLB1, CLB2, CLB3, CLB4**
3. **CLN1, CLN2, CLN3, CLN5, CLN7**
4. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4**
5. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6**
6. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7**
7. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8**
8. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8, CLB9**
9. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8, CLB9, CLB10**
10. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8, CLB9, CLB10, CLB11**
11. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8, CLB9, CLB10, CLB11, CLB12**
12. **CLN1, CLN2, CLN3, CLN5, CLN7, CLB1, CLB2, CLB3, CLB4, CLB5, CLB6, CLB7, CLB8, CLB9, CLB10, CLB11, CLB12, CLB13**

The order of transcription of the genes encoding the more relevant cycle regulatory proteins—which may be fine-tuned in different experimental conditions—is:
and then NRM1 (ref. 36). A positive-feedback loop that involves CLN1 and CLN2 transcription ultimately commits yeast cells to S phase, while phosphorylated Whi5 is released from SBF and exported from the nucleus. MBF is repressed by a product of the same regulon, Nrm1, which terminates the transcription of the regulon as cells progress towards S phase.

The model includes cytoplasm, endoplasmic reticulum and nuclear sub-cellular compartments. Ordinary Differential Equations (ODEs) based on the mass–action law, modified when required to account for nonlinear behaviour (for example, for Cln3–Ydj1 diffusion into the nucleus, Cln3-dependent Far1 degradation, Sic1 phosphorylation and so on), describe synthesis, degradation, activity and sub-cellular localization of proteins and protein complexes. Coherent regulon activation depends on multisite phosphorylation of Whi5, SBF and MBF, catalysed by Cln–Cdk1 complexes. A discrete stochastic module calculates the probability distributions of the different phosphorylation states of the DNA-bound SBF (SBF–Whi5 complex) and MBF transcriptional activators and turns on G1/S transcription accordingly. The model computes percentage of the activated genes of the regulon, and dedicated ODEs compute synthesis of Cln1, Cln2, Cln5, Cln6 and Nrm1. G1 ends when 50% of Sic1—the inhibitor the Cln–Cdk1 complexes—has left the nucleus following phosphorylation by Cln1,2,3,– and Cln6,–Cdk1 complexes.

The mathematical model—constructed using a previously reported model as a stepping stone—is described in Supplementary Tables 1–10. Supplementary Tables 1–7 report initial conditions and input parameters. Supplementary Fig. 3 reports simulations of various molecular players in an average newborn daughter cell. In small elitiated cells, the simulated kinetics of translocation of Whi5 from the nucleus—an emergent property of the network—shows close agreement with experimental findings (Fig. 1b) 29.

Multisite Whi5 phosphorylation controls the G1/S transition. A convincing test of the usefulness of a mathematical model describing a complex biological process is given by its ability, expressed through simulation analysis, to quantitatively account for different experimental data sets and to offer new insights on how the distinctive functional features of a given biological process emerge from the interactions within its underlying molecular network.

Experimental evidence indicates that Whi5 release requires the phosphorylation by Cdk1 of a relatively small number (4) of functional phosphorylation sites within a larger pool (12) of phosphosites. We thus asked how the properties of cell cycle regulation change by altering the ratio between functional and decoy sites, fixing the total number of sites to 12. As the number of functional sites increases from 1 to 3, the coherence of Whi5 exclusion from the nucleus and of the activation of the G1/S regulon genes markedly increases (Fig. 1c,d), as indicated by their Hill coefficients, whose values more than double (Fig. 1e; Supplementary Fig. 4; Supplementary Movie 1). The length of the T1 period (Fig. 1f) substantially increases. The 3/12, 4/12 and 5/12 configurations had very similar parameters. A further increase in the number of functional phosphorylation sites (up to the 12/12 configuration) does not substantially modify the Hill coefficient nor further lengths T1 (Fig. 1e,f). The fraction of activated genes for different phosphorylation configurations of Whi5 are reported in Supplementary Fig. 5, where the ratio of functional/total phosphorylation sites is kept fixed at 1/3.

These outputs are unaffected by the specific pattern of Cln3 accumulation (Supplementary Figs 1–2).

Another functional property of the G1/S transition, the significant reduction in cell size variability observed at the entrance into S phase, appears affected by Whi5 multisite phosphorylation. Simulation of the G1/S transition for a cohort of newborn daughter cells with the p0 size distribution reported in Fig. 1g was performed with a varying number of functional Whi5 sites to obtain the distribution of the critical cell size Pl (Fig. 1h, case 4/12). Starting with a coefficient of variation (CV) of 15% at P0, Pl variability decreases by increasing the number of functional sites of Whi5 from 1 to 4 and remains constant thereafter (see Fig. 1i and Supplementary Fig. 6). These findings, together with previous genetic and structural evidences, indicate that the 4/12 configuration for Whi5 phosphorylation is likely to be the wild-type one.

Choice of cell fate determined by mating factor. G1 arrest is a major pre-requisite for conjugation between haploid yeast cells of opposite mating types. Far1, the Cln–Cdk1 inhibitor presented in the model in Fig. 1a, plays a key role in this arrest. To describe cell mating, we added a module (Fig. 2a) that recapitulates the factor-dependent cell cycle-related events by abruptly changing the relevant parameters when the mating factor is added, following a recently described mathematical formalism (see Supplementary Note 11 and Supplementary Table 8 for parameter definitions).

The mating/mitosis switch is very sensitive to the level of nuclear Whi5 at the time of factor addition: when the fraction of removed Whi5 (δ) is low (around 10–30%), there is a very high probability of cell cycle arrest, while when it is high (over 50%), the probability of cell cycle arrest drops close to zero. Simulation with the standard (4/12) configuration for Whi5 phosphorylation and standard values for parameters neatly predicts the experimental behaviour (Fig. 2b), since the addition of factor when δ = 0.1 yielded cell cycle arrest, whereas pheromone addition when δ = 0.5 allows the cell cycle to proceed unperturbed towards mitosis.

Populations of daughter cells were exposed to virtual factor addition at different times after birth, their G1/S transition was simulated with the extended model (4/12 Whi5 configuration) and their cell fate was recorded as cell cycle arrest or entrance into S phase. The pattern of arrested cells as a function of parameter δ is a good predictor of factor-induced arrest, with little overlap between the two subpopulations of arrested and committed cells as shown for experimental data (Fig. 2c,d). The insets report the probability of arrest, computed from the distribution of arrested cells, the shaded region indicating the 95% confidence intervals based on 10,000 bootstrapping iterations. Our simulations refer to daughter cells only: almost 40% of them result committed, in good agreement with the 40% experimental value, but lower than the value observed in the experimental mixed (daughter/parent) population (Fig. 2d right, see also Fig. 2f in ref. 5). The pattern of arrest for different Whi5 phosphorylation configurations was very similar, with a mild increasing trend for the Hill coefficient and the median point when the number of functional sites rises from 1/12 to 4/12. (Fig. 2e; Supplementary Fig. 7). Simulation results further indicate that the parameter δ is a better predictor of factor-induced arrest than the normalized volume or the time spent in G1, in agreement with experimental findings (Fig. 2c,d,f–i).

The mating response presents hysteresis: cells pre-treated with a brief pulse of saturating factor arrest cell cycle when treated with a suboptimal factor concentration, which alone is normally ineffective. Hysteresis was reproduced by our model (Fig. 2j, 4/12 configuration). Consistently with experimental results, CLN3 deletion reinforced hysteresis, in keeping with the notion that Cln3–Cdk1 is the major kinase involved in the recovery from factor treatment and thus a privileged target of...
Far1 inhibitory action. Hysteresis was also detected in simulations performed with the 1/12 configuration for Whi5 phosphorylation, but full arrest required a higher concentration of virtual α-factor (note different abscissa scale in Fig. 2j,k. See also Supplementary Fig. 8). In summary, the extended model captures the major distinctive features of α-factor-induced cell cycle arrest.
G₁ duration in daughters born with different size. Newborn daughter cells show large size variability. Smaller cells delay entry into S phase, suggesting a deterministic requirement for a critical cell size in the execution of the G₁/S transition. Statistical analysis suggested that an efficient sizer operates in smaller daughter cells, whereas in larger ones a timer appears to be active, size-independent molecular noise providing the largest quantitative contribution to G₁ variability.

To account for these data, we simulated a population of daughter cells (Fig. 3a, red dots) with different birth size \(P(0) \) and found that it superimposes quite well with experimental findings (blue dots) in a plot of \(\lambda T_{G₁} \) (where \(\lambda \) is the rate of exponential growth) versus \(\ln[P(0)] \). The blue line in Fig. 3b (standard value curve) plots the \(\lambda T_{G₁} \) value obtained from simulations of about 20 single cells sharing the same model parameters, and having a different \(P(0) \), selected at even intervals in the same range covered by the population of newborn cells shown in Fig. 3a. The red line corresponds to the average value of 50 simulations for each \(P(0) \) value, with parameters allowed to vary according to a log-normal distribution, with a 12% variability of the distribution. The 75% quantile region (grey area), indicates that variability is larger for smaller cells and that larger cells converge to a constant \(\lambda T_{G₁} \) value. The large variability in \(\lambda T_{G₁} \) of smaller cells is not directly due to cell size, but is strongly related to the low amount of Cln3 present. In fact a cell population with the same initial cell size distribution as the growth rate in daughter cells (Fig. 3a, red dots) with different birth size \(P(0) \) allows to estimate \(\lambda T_{G₁} \) from any \(P(0) \) value, providing an input–output relationship (resembling numerical results achievable by simulations from the model in Fig. 1a), which cannot be derived through an analytical approach.

In our model, the \(T_{₂} \) period, which begins when 50% of Whi5 has been exported from the nucleus, terminates when 50% of nuclear Sic1 is exported from the nucleus. We analysed the impact of \(CLN2 \) dosage—simulated by the appropriate alteration of SBF/MBF dependent synthesis—on \(T_{₂} \) length. Using the same approach utilized in Fig. 3b, we show that \(T_{₂} \) length and its variability are insensitive to \(CLN2 \) dosage (Fig. 3f). D. Talia et al. experimentally decomposed the overall noise in G₁ length into a size-dependent and a size-independent part. Table 1 compares the simulated noise (see Supplementary Note 16) with the experimental one. The overall and decomposed values for G₁ noise compared quite well for wild-type cells and Cln3-overexpressing cells, with the general tendency of the simulated cells to be less noisy than their real counterparts. Our model rationalizes the observed size variability and newly links it quantitatively to the variability of the G₁ phase duration.

The observation that increasing the number of SBF-binding sites in a cell delays budding and increases the critical cell size, as if a genomic binding site participates to the sensing mechanism, was considered connected to the relation between critical cell size and ploidy. Simulation of our model in the presence of an increased number of SBF-binding sites (and hence of bound Whi5) reproduces the experimentally observed increase in cell size (red and black lines, Fig. 3g). Consistently with the notion that Cln3–Cdk1 activity is the major limiting factor in the G₁/S transition, an increase in Cln3 quenched the effects of the increased availability of SBF-binding sites (compare the red and black lines in Fig. 3h), as experimentally reported. Thus, multisite phosphorylation of SBF-bound Whi5 fully explains the findings that were interpreted to indicate titration of SBF-binding sites by Cln3 (ref. 28).

Linear growth rate and critical cell size. Ferrezuelo et al. recently proposed a theory of critical cell size control that drastically departs from the sensing and setting theories. They noticed that experimentally determined values of \(V_s \) (the cell volume at the end of \(T_{₁} \), that is, when 50% of Whi5 has been translocated out of the nucleus) are proportional to the linear growth rate in \(T_{₁} \), called \(\alpha \). On these basis they proposed that ‘the critical cell size is set at a single-cell level by linear growth rate’ (see also Supplementary Fig. 9). In the following, we test whether the experimental findings reported in ref. 29 could find an alternative interpretation in our model.

Hence we considered a standard daughter cell population similar to that shown in Fig. 3a. Figure 4a reports the plot of computed \(\alpha T_{₁} \) versus \(V_s \) values, which have been used to construct the corresponding \(V_s \) (volume at the end of \(T_{₁} \), proportional to critical cell size) versus \(\alpha \) plot (black dots) in Fig. 4b. Simulated data of cells growing according to an exponential growth kinetics well approximate experimental data taken from ref. 29. The linear relationship between \(V_s \) and \(\alpha \) can also be obtained by analytical approaches (Fig. 4c; see also Supplementary Notes 17–18 and Supplementary Fig. 10), starting from the best-fitting hyperbola shown in Fig. 3e. In conclusion, the observed linear relation between \(V_s \) and \(\alpha \) does not have as unique possible interpretation the one proposed in ref. 29 and hence it is not necessary to hold that it is the linear growth rate that determines the critical cell size.

We next simulated the behaviour of two mutants with deletions in \(CLN3 \) and \(YDJ1 \) (Fig. 4d,e, respectively). Inactivation of Cln3 yields larger cells. The \(V_s \) versus \(\alpha \) plot obtained by a simulated \(cln3Δ \) population is in good agreement with the experimental one (compare Fig. 4d to experimental data in Fig. 4d of ref. 29). Experimental deletion of the \(YDJ1 \) gene results in a very disperse \(V_s \) versus \(\alpha \) plot that suggests the existence of two subpopulations with different growth rates contained within the red and blue ellipses in Fig. 4f. Gene-dosage experiments are...
Figure 2 | Choice of cell fate determined by mating factor. (a) Scheme of the molecular processes involved in alpha-factor-induced cell cycle arrest. (b) Time course of Whi5 localization after switching the parameters to the alpha-factor set at a different fraction of nuclear Whi5, obtained by the simulation of an average daughter cell. (c,d,f-i) Histograms for fractions of cells arrested in G1 phase (in red) or committed to S phase (in blue). (c,f,h) refer to 1,000 simulated cells (4/12 Whi5 phosphorylation configuration, see Supplementary Table 10 for the details); distributions are drawn with respect to the fraction of Whi5 removed from the nucleus at the time of alpha-factor administration (c), with respect to the normalized cell size (f) and with respect to the normalized time in G1 (h). The histograms in (c,f,h) achieved in simulations are compared with the histograms obtained from experimental data (d,g,i, respectively, redrawn from ref. 5). The insets in (c,d) show the probability of arrest in G1 phase versus fraction delta, with the grey region indicating the 95% confidence intervals based on 10,000 bootstrapping iterations. (e) Reports the probability of arrest curve for different Whi5 phosphorylation schemes: the legends report the median point (K) and the Hill coefficient (n) of the Hill functions best-fitting the fractions of arrested cells as coming from the histograms. (j,k) Duration of arrest in G1 phase versus the continuous baseline administration of alpha-factor according to the 4/12 (j) and 1/12 (k) phosphorylation configurations. Simulated data (continuous line) are compared with experimental data (markers, reference to ref. 48). A high concentration, 30 min long alpha-factor pulse was given when a very low fraction of Whi5 was removed from the nucleus (<2%). The maximum waiting time was set to 300 min according to ref. 48. See Supplementary Table 9 for the implementation details.
often accompanied by changes in growth rate and large transcriptional reprogramming6,9,31. Ydj1 interacts either physically or genetically with almost 500 unique genes or gene products and deletion of its encoding gene induces slow growth and reduced fitness and lifespan (www.yeastgenome.org; Supplementary Fig. 11). Accordingly, simulation of two subpopulations differing in growth rate is required to obtain a good fitting to experimental data (Fig. 4e).

Parameter-sensitivity analysis. The quantifiable outputs of a multiparameter model that aims—as our model does—to describe complex biochemical networks may not contain enough information to ensure assignment of a univocal value to each parameter in the parameter space. Application of a formal Bayesian approach52 is hindered (i) by the difficulties in achieving any a priori characterization of the probability density of parameters like time constants, kinetic coefficients and thresholds and (ii) by the observation that systems biology models share the sloppiness property53,54, with the term ‘sloppiness’ referring to ‘the highly anisotropic structure of parameter space, wherein the behaviour of models is highly sensitive to variation along a few stiff directions (combinations of model parameters) and more or less insensitive to variation along a large number of ‘sloppy’ directions55.

Figure 3 | G1 duration in daughters born with different size. (a) Correlation between λT_{G1} and $\ln(P(0))$, with $P(0)$ normalized to the average size at budding of the cell population. Experimental values (blue) from ref. 13, simulated data (red) refer to average and extra-small populations (see Supplementary Table 10 for the implementation details). A CV value of 20% was chosen for the initial protein distribution, given that the experimental sample to be compared with simulation results includes unusually small cells13. (Supplementary Table 10. The 75% quantile region is in grey. (b) Best-fitting hyperbola for the standard value curve of the cell population. Experimental values (blue) from ref. 13, simulated data (red) refer to average and extra-small populations (see Supplementary Table 10 for the implementation details). A CV value of 20% was chosen for the initial protein distribution, given that the experimental sample to be compared with simulation results includes unusually small cells13. (c) Correlation between λT_{G1} and $P(0)$. Twenty three cells differing only in their initial protein content were simulated (blue line). The red line refers to the average results of 50 separate cells in each initial condition, with parameters allowed to vary as described in Supplementary Table 10. The 75% quantile region is in grey. (d) Correlation between λT_{G1} and $P(0)$. Twenty three cells differing only in their initial protein content were simulated (blue line). The red line refers to the average results of 50 separate cells in each initial condition, with parameters allowed to vary as described in Supplementary Table 10. The 75% quantile region is in grey. (e) Best-fitting hyperbola for the standard value curve of λT_{G1}, (blue line, b) versus the initial protein content $P(0)$. (f) Correlation between λT_{Cln2} and the Cln2 production rate. Twenty three cells differing only in their Cln2 production rate were simulated (blue line). The red line refers to the average results of 50 separate cells in each initial condition, with parameters that were allowed to vary as described in Supplementary Table 10. The 75% quantile region is in grey. (g,h) Fraction of budded cells versus cell size. (g) compares budding kinetics for wild-type cells and cells including extra SBF-binding sites; (h) compares the same two curves for cells overexpressing Cln3. See Supplementary Table 10 for implementation details.
Using sensitivity analysis, we assessed how parameter variation affects four major outputs of the model: the length of Timer T_1 and T_2, the critical size P_s and the Hill coefficient (N) of the best Hill function fitting the G1/S regulon activation curve. Alteration of only two parameters (k_{20} and θ_{20}, which affect Whi5 phosphorylation) impacts on all four tested outputs (Fig. 5a,b).

	G1 noise for λT_{G1}	Noise due to size control	Size-independent noise
WT (exp)	0.55	0.31 (32%)	0.45 (68%)
WT (sim)	0.52	0.23 (19%)	0.47 (81%)
6 × Cln3 (exp)	0.44	0.25 (32%)	0.36 (68%)
6 × Cln3 (sim)	0.33	0.13 (15%)	0.31 (85%)
6 × Cln2 (exp)	0.48	0.30 (39%)	0.37 (61%)
6 × Cln2 (sim)	0.43	0.25 (35%)	0.34 (65%)
6 × Cln3, 6 × Cln2 (exp)	0.37	0.18 (24%)	0.32 (76%)
6 × Cln3, 6 × Cln2 (sim)	0.40	0.10 (6%)	0.39 (94%)

WT, wild type.

Decomposition of G1 variability in terms of deterministic size control and a residual that is attributable to molecular noise under the assumption that λT_{G1} can be decomposed into the sum of a suitable deterministic function of the initial protein content $f(P(0))$ plus a stochastic variable. The chosen function for $f(P(0))$ is the hyperbola described in Fig. 3e. The experimental data are from ref. 13.

Figure 4 | Linear growth rate and critical cell size. (a) Correlation between the product xT_1 and the initial volume V_i, 100 simulated cells. (b) Correlation between the volume at the end of T_1 (V_s) and the linear volume growth rate (α). Each black point represents one cell from a population of 100 daughter cells. All parameters were allowed to vary (log-normal distribution) with a 12% CV over their average values (see Supplementary Table 10 for details). Red points are experimental data from ref. 29. (c) Volume at the end of T_1 versus linear growth rate (α). The black line corresponds to the simulated data. The red line corresponds to the relationship of V_s versus α, which was determined by exploiting the best-fitting hyperbola of Fig. 3e between λT_{G1} and $P(0)$. (d) Correlation between the volume at the end of T_1 and the linear volume growth rate (α) for mutant cln3 (red) and WT cells (black circles, same data as in b). (e,f) Correlation between the volume at the end of T_1 and the linear volume growth rate (α) for mutant ydj1 (simulated data in e, experimental data in f). In e, clusters refer to cells simulated according to growth parameters providing an exponential growth rate of 0.0031 min$^{-1}$ (red cluster) or 0.0063 min$^{-1}$ (blue cluster). In f, the red cluster refers to cells of the experimental sample reported in ref. 29 that fall within the grid of Supplementary Fig. 10C. The blue cluster comprises the remaining cells.
The Timer lengths and the sharpness of the G₁/S regulon activation curve are nontrivially sensitive to a small set of parameters, in keeping with the sloppiness hypothesis (see also Supplementary Figs 12–15). Only the length of T₁, but not of T₂, shows some correlation with changes in the Hill coefficient N (Fig. 5c; Supplementary Fig. 16), notably so for parameters related to the Cln3, Ydj1, Far1 machinery and for some parameters related to G₁/S regulon activation (Fig. 5c, black and red points, respectively).

We then analysed the impact of the functional (4) to decoy (8) configuration of Whi5 on the coherence of the G₁/S transcription (quantified by N, the Hill coefficient for transcriptional activation) and on the timing delay, monitored as duration of T₁ period. The connection between N and T₁ is shown in Fig. 5d. Increasing the total number of sites (from 4 to 24) with a variable number of functional sites, there is a sizable increase of both N and T₁, till functional sites reach 4. Above this value, saturation is obtained. Increasing the total number of sites from 3 to 24 and keeping a constant ratio (1/3 as in 4/12 Whi5) between functional and total sites, the increase in total sites correlates with an increase of both T₁ length and Hill coefficient value.

The Whi5⁴E mutant anticipates entrance into S phase. To be fully accepted, a new model is required both to account for large sets of existing data and to make predictions qualitatively distinct from its predecessors, which need to be validated by new, independent sets of experimental findings.

Glutamate may mimic phosphoserine or phosphothreonine. A Whi5⁴E protein in which the four functional phosphosites have been mutated to glutamate should dissociate from SBF nearly as well as Whi5 in which the functional phosphosites have been phosphorylated by Cdk1. Since (pseudo)phosphorylation is constitutive and unregulated, yeast cells harbouring the mutated Whi5⁴E protein should exhibit a small (Whi) phenotype similar to the whi5A mutant. Our model further predicts that Whi5⁴E G₁ cell

Figure 5 | Parameter-sensitivity analysis. (a) Heat map describing the effect of parameter variation on the outputs of the G₁/S transition model. (b) Venn chart summarizing the parameters whose variation affects one or more outputs of the G₁/S transition model. (c,d) Correlation analysis of the changes in T₁ length as a function of the changes in the Hill coefficient N. Each point in c refers to a single-cell simulation in which one model parameter—colour-coded by functional class—was altered. The x and y axes are the relative output values, with the value of the standard parameter set to 1. The black dotted line represents the expected output for a 1-to-1 correlation. Each point in d refers to a single-cell simulation in which different Whi5 phosphorylation settings were considered. Coloured circles refer to simulation sets with a fixed total number of phosphorylation sites and a variable number of functional sites (indicated within the circle itself). Yellow boxes refer to simulation with fixed (1/3) ratio of functional/total phosphorylation sites. The total number of sites is indicated within the square.
Figure 6 | Whi54E mutant anticipates entrance into S phase. (a,b) Cell volume and protein distributions of wild type, whi5Δ and whi5ΔE cells exponentially growing in glucose-supplemented medium. Data representative from three independent experiments are shown. Predicted (c) and experimental (d) kinetics of cell cycle entry for wild type (black), whi5Δ (red) and whi5ΔE (blue) cells. Predicted (e-j) and experimental (k-p) transcriptional activation of selected genes of the G1/S regulon in wild type (black), whi5Δ (red) and whi5ΔE (blue) cells expressed as a function of cell size. Experimental data in k-p represent means ± s.d.’s (n = 3). Cell cycle entry and transcriptional activation are shown as a function of cell size; inserts in c, d show cell cycle entry expressed as a function of time (time 0 being reinoculation in fresh medium after elutriation). (j,p) summarize the time for which each gene anticipates the reaching of 50% expression in whi5Δ (red) and whi5ΔE (blue) mutants in comparison with wild type.
would anticipate the activation of the G1/S regulon, entering the S (budded) phase at a much smaller size than their wild-type counterparts (Fig. 6c-e). Since our model does not include events following the G1/S transition that down-regulate the G1/S regulon and lead to cell division, the fraction of budding cells remains high and transcription of genes of the G1/S phase steadily increases, except for CLB6, whose expression is downregulated by Nmn1.

We constructed a strain expressing the mutated Whi54E protein. The transcript levels of WHI54E and WHI5 were undistinguishable (Supplementary Fig. 17). Cell volume and cell protein distributions (Fig. 6a,b) confirmed that the whi54 mutant also behaves as wild type. When reinoculated in fresh glucose medium whi54, small G1 cells (isolated by elutriation) showed an anticipated entry in the budded, S phase (Fig. 6d) and an early activation of G1/S regulon (Fig. 6k-p) relative to wild-type cells. In keeping with model predictions, both cell cycle entry and gene expression kinetics of the whi54 mutant are intermediate between those of the wild type and of the whi5 mutant, being more similar to the latter.

Taken together these results validate the central notion of our model: dissociation of Whi5 from SBF is promoted by phosphorylation of its functional phosphoacceptor sites.

Discussion

The cell-fate decision given by the mitosis/mating switch and the connected critical cell size control—the gate-keeper for the commitment of G1 cells to cell division—has been for decades one of the most studied examples of complex biological functions. Genetic and biochemical analyses have identified many of the involved players without being able to propose a fully satisfactory, comprehensive molecular model. By utilizing a systems biology approach which integrates mathematical modelling and computational analysis with experimental validation, this paper proposes a precise, quantitative, predictive and unifying mechanism of the transcriptional analysis with experimental validation, this paper proposes a fully satisfactory, comprehensive molecular model. By utilizing a systems biology approach which integrates mathematical modelling and computational analysis with experimental validation, this paper proposes a precision model: dissociation of Whi5 from SBF is promoted by phosphorylation of its functional phosphoacceptor sites.

Discussion

The cell-fate decision given by the mitosis/mating switch and the connected critical cell size control—the gate-keeper for the commitment of G1 cells to cell division—has been for decades one of the most studied examples of complex biological functions. Genetic and biochemical analyses have identified many of the involved players without being able to propose a fully satisfactory, comprehensive molecular model. By utilizing a systems biology approach which integrates mathematical modelling and computational analysis with experimental validation, this paper proposes a precise, quantitative, predictive and unifying mechanism of the molecular events involved in this cell fate decision, accounting also for a large set of experimental data, which have been used to propose different and even conflicting conceptual models for critical cell size control.13,26,29

The novelty proposed by our paper is given by the multisite phosphorylation of Whi5 by Cln3–Cdk1 (first) and Cln1,2–Cdk1 (later). Our model assumes that Cln3 concentration is constant during G1. Our simulations show that the specific pattern of Cln3 accumulation has negligible effects on the outputs of the model (Supplementary Figs 1 and 2), which are instead affected by Cln3 average content. Nuclear Cln3 import is favored by the Ydj1 chaperone,27,29 the amount of nuclear Cln3 being larger in big cells than in small ones. We show that Cln3–Cdk1 is rate limiting for Whi5 phosphorylation, except than in very large cells. Cdk phosphoacceptor sites inside Whi5 include both decoy and functional sites.24,43 Decoy sites fruitlessly engage Cln3–Cdk1 phosphorylation of Whi5 (or of the Swi6 subunit of SBF) is required to release Whi5 from SBF. This mechanism originates synchronous dissociation of Whi5 from SBF at the hundreds of different promoters of the G1 regulon present in each cell, ensuring the coherence of the G1/S regulon transcription, essential for an ordered cell cycle progression and fully accounting for the observed role of Whi5 as the integrator of the signalling generated by Cln3 (ref. 57).

As an experimental validation, we report that whi54—e.g., a mutant protein mimicking constitutive phosphorylation of the four functional residues—causes anticipated activation of the G1/S regulon and S phase entrance at a reduced size, close to that of the whi5A strain. Pseudophosphorylation of the functional residues likely induces a change in folding of Whi5, an intrinsically disordered protein, that would act as a regulatory switch, by reducing the binding affinity of Whi5 to SBF.

As anticipated in the Introduction, our paper does not cover the modulation of critical cell size by nutrients, but we may offer a working hypothesis, elaborated following the idea20–29 that the mechanism that sets the critical cell size in response to nutrients adds molecular components to the basic mechanism (the dynamic interaction of Cln–Cdk1 and Whi5) by which cells gauge their size. Ribosome biosynthesis, regulated by CAM/PKA and Tor pathways (sensors of nutrient availability22,59), has been identified as the primary actor in the setting of the critical cell size by nutrients26,28. Mutations in ribosome biogenesis strongly affect Whi5 nuclear retention.25 Whi5 has many phosphorylation sites, specific not only for Cdk1, but also for other pathways13, and may therefore integrate contrasting inputs, as reported in osmостress that may affect Whi5 binding activity.46 On the other hand, the Cln3 level is very sensitive to changes in ribosome activity.41 Our model (in which the exponential growth rate is dependent on the rate of protein synthesis) predicts that critical cell size becomes larger as a cell increases its rate of protein synthesis (Supplementary Fig. 18). Thus, nutrients, through signalling, may affect ribosome biogenesis that, directly or indirectly, affects the Cln3/Whi5 interplay. The clarification of the proposed mechanism of critical cell size setting by nutrients may be brought on by new, quantitative, integrated, dynamic investigations performed taking into account previously collected and newly generated evidence.

Methods

Yeast experiments. Whi5 mutants were generated in CEN.PK2–1C genetic background (MATa ura3-52 rpl1-209 leu2-3,112 his3-11 Malone2–8a7CUC2, www.euroscarf.de (ref. 65). Recombinant DNA manipulation and yeast transformation were performed according to standard protocols.

A DNA fragment encoding the Whi54E CKD mutant was synthesized de novo by Eurofins (www.eurofins.com) and subcloned into the Yplac211 integrative plasmid46 under the WHI5-545p native promoter46, yielding the construct Yplac211-545p::WHI54E. Single-copy genomic integration of the construct at the URA3 locus was verified by quantitative PCR.

Yeast cultures were grown in synthetic complete minimal medium, containing 0.67% (w/v) yeast nitrogen base (YNB), appropriate quantities of the ‘drop-out’ amino-acid-nucleotide mixture (Formedium) and supplemented with 2% (w/v) glucose.

Growth of cultures was monitored as increase in cell number using a Coulter Counter model Z2 (Coulter Electronics, Inc.). The fraction of budding cells was scored by direct microscopic observation on at least 400 cells, fixed in 3.6% formaldehyde and mildly sonicated. Cell size analysis was performed using a Coulter Z2 Particle Cell Analyzer (Beckman-Coulter).

For synchronization studies, yeast cells were grown till late exponential phase in 21 of csm/YNB medium supplemented with 2% raffinose. Small G1 phase cells were isolated by centrifugal elutriation using a 40-ml chamber elutriator (Beckman Coulter) and released into fresh 2% glucose medium at 5 × 10⁶ cells per ml. Samples were collected at appropriate intervals for determination of budding index, cell volume, DNA and protein content by flow cytometry and for quantitative PCR with reverse transcription (qRT–PCR).

At least 2 × 10⁶ cells were collected and fixed in 70% ethanol before the cytosinimetric analysis. For RNA staining, cells were washed once with cold PBS (3.3 mM NaH2PO4, 6.7 mM Na2HPO4, 127 mM NaCl, 0.2 mM EDTA, pH 7.2), resuspended in 1 ml of Propidium Iodide staining solution (0.046 mM propidium iodide in 0.05 Tris-HCl, pH = 7.7, 15 mM MgCl2) and incubated for 30 min on ice (cold). To obtain protein distribution, cells were stained with fluorescein isothiocyanate (50 μg/ml –1 FITC in 0.5M NaHCO3) for 30 min on ice, washed three times in PBS before the analysis. For DNA staining, cells were washed once in PBS, resuspended in 1 ml of PBS containing 1 mg/ml RNase and incubated at least 12 h at 37 °C. Cells were then washed once with PBS, resuspended in 1 ml of Propidium Iodide solution and incubated for 30 min on ice (cold). All cell suspensions were sonicated 30 s before the analysis, which was performed with a FACScalibur (Becton Dickinson) instrument equipped with a 488 nm Argon laser. Sample flow rate during analysis did not exceed 1,000 cells/s per channel. Typically, 50,000 cells were analysed for each sample.

For RNA extraction, ~2 × 10⁶ cells were collected by filtration, washed with 5% Trichloroacetic acid solution and rapidly frozen at −80 °C. Cells were resuspended in 500 μl of LETS buffer (200 mM LiCl, 20 mM EDTA, 20 mM Tris pH = 7.4, 0.5% SDS), plus 300 μl of phenol:chloroform:isoamyl-alcohol solution
(PCI) and lysed by glass beads. Two PCI extractions were performed on the recovered aqueous phase. RNA was subsequently isolated by ethanol precipitation in the presence of LiCl. Five hundred micrometres of RNA were treated with 9 units of DNase I (RNase-free, Qiagen) for 1 h at 37 °C. Total RNA was then purified with the RNeasy kit (QIagen) and 0.5 μg were used for cDNA synthesis using the iScript cDNA Synthesis Kit (Bio-RAD) according to the manufacturer’s instructions. qRT–PCR reactions were performed in a final volume of 15 μl were performed in 48-well reaction microwells suitable for the MiniOpticon detection system (Bio-RAD) using the SsoFast EvaGreen Supermix (Bio-RAD). Primers used for the assay were designed with the Beacon Designer software (PREMIER Biosoft).

The model provides in output ribosome and protein content as well as all the involved molecular player time courses according to which the following relevant outputs are computed:

(i) length of timer T_1, when cytoplasmic Whi5 exceeds 50% of total Whi5.
(ii) length of Timer T_2 when cytoplasmic Sic1 exceeds 50% of total Sic1.
(iii) critical size P_c, the protein content at the onset of the budded phase.

A further output is given by the time course of the percentage of activated genes. The Hill function best-fitting such a percentage provides a fourth relevant output: the Hill coefficient aiming at measuring the coherence of the G1/S regulon activation.

Code availability. The MatLab file is available at http://dx.doi.org/10.5281/zenodo.60655. This link allows to obtain all the software, in a zip file, necessary to simulate our model plus a readme file containing the procedure to run the code. All the model parameters are defined in the d1_one_cell.m file. The MatLab version used was the R2014b.

Populations. Cell populations were obtained according to the following rules:

(1) The initial protein content $P(0)$ of each cell was drawn from a log-normal distribution of a given average value ($\langle \sigma_P \rangle$ and s.d. (σ_P). Different values of η_P allowed to build populations of smaller or larger cells, and different values of σ_P allowed to build populations with a larger or smaller cell protein dispersion.

(2) The initial ribosome content $R(0)$ was straightforwardly set from $P(0)$ using the equation:

$$R(0) = P(0) \times \eta_P$$

(3) The order of proper expression and the times of weak expression for the molecular layers Cln1, Cln2, Clb5, Clb6 and Nrm1 were drawn from chosen log-normal distributions (Supplementary Table 5).

(4) All other model parameters reported in Supplementary Tables 1–4 and 6–7 were drawn from log-normal distributions of chosen average values, sharing the same CV.

(5) Parameters specific for each simulation of cell population are reported in Supplementary Table 10.

Model complexity and simulation times are discussed in Supplementary Note 24, and Supplementary Fig. 19.

Sensitivity analysis. For sensitivity analysis, tested parameters were grouped in four sets: Cln3 production and nuclear import (all parameters in Supplementary Table 3); G1/S regulon activation (all parameters in Supplementary Table 4 except for Whi5_{C} for which the parameters were taken from the Supplementary Table 5; Sic1 function (all parameters in Supplementary Table 7 except for Sic1_{C}). Taking the standard value as 1, each parameter was either increased (up to 81-fold the standard value, step 3) or decreased (down to 1/81-fold the standard value, step 1/3) by a fixed factor. The impact of each of these changes in parameter value was tested on four significant outputs: N, the Hill coefficient for G1/S regulon activation curve, the length of the T_1 and T_2 period and the critical size P_c.

The sensitivity analysis was done by varying each parameter individually, associating it to the run of a single-cell deterministic simulation, with the proper order of activation and the weak activation times fixed to their average values, i.e. Bcd1_{A}, Bcd2_{A}, Nrm1_{A}, Bcd6_{A}, Bcd6_{C}, Bcd6_{C} (Supplementary Table 5). Results and further details are reported in Supplementary Figs 12–15 and Supplementary Notes 19–23.

References

1. Johnston, A. & Skotkeim, J. M. Start and the restriction point. Curr. Opin. Cell Biol. 25, 717–723 (2013).
2. Turner, J. I., Ewald, J. C. & Skotheim, J. M. Cell size control in yeast. Curr. Biol. 22, R350–R359 (2012).
3. Cook, M. & Tyers, M. Size control goes global. Curr. Opin. Biotechnol. 18, 395–396 (2007).
4. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. I. Genetic control of the cell division cycle in yeast. Science (New York, N.Y.) 183, 46–51 (1974).
5. Doncic, A., Falleur-Fettig, M. & Skotheim, J. M. Distinct interactions select and maintain a specific cell fate. Mol. Cell. 43, 528–539 (2011).
6. Johnston, G. C. Cell size and budding during starvation of the yeast Saccharomyces cerevisiae. J. Bacteriol. 132, 738–739 (1977).
7. Johnston, G. C., Singer, R. A. & McFarlane, S. Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. J. Bacteriol. 132, 723–730 (1977).
8. Arima, K. & Takano, I. Multiple fusion of protoplasts in Saccharomyces yeasts. Mol. Gen. Genet. 173, 271–277 (1979).
9. Hartwell, L. H. & Unger, M. W. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75, 422–435 (1977).
10. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977).
coherence of origin activation and robustness against rereplication. PLoS Comput. Biol. 6, e1000783 (2010).
41. Salazar, C., Brümmer, A., Alberghina, L. & Höfer, T. Timing control in regulatory networks by multisite protein modifications. Trends Cell Biol. 20, 634–641 (2010).
42. Wagner, M. V. et al. Whi5 regulation by site specific CDK-phosphorylation in Saccharomyces cerevisiae. PLoS ONE 4, e3400 (2009).
43. Hasan, M. M. et al. A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Front. Physiol. 4, 315 (2013).
44. Wijnken, H., Landman, A. & Butcher, F. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell Biol. 22, 4402–4418 (2002).
45. Skotheim, J. M., Di Talia, S., Sigga, E. D. & Cross, F. R. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291–296 (2008).
46. de Bruin, R. A. et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated coressor Nmt1 acts via negative feedback. Mol. Cell 23, 483–496 (2006).
47. Barberis, M., Klipp, E., Vanoni, M. & Alberghina, L. Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput. Biol. 3, e64 (2007).
48. Doncic, A. & Skotheim, J. M. Feedforward regulation ensures stability and rapid reversibility of a cellular state. Mol. Cell 50, 856–866 (2013).
49. Butti, S. & Far. Overexpression of Far1, a cyclin-dependent kinase inhibitor, induces a large transcriptional reprogramming in which RNA synthesis senses Far1 in a Sfp1-mediated way. Biotechnol. Adv. 30, 185–201 (2012).
50. Zaman, S., Lippman, S. I., Schneper, L., Slonim, N. & Broach, J. R. Glucose regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol. 5, 245 (2009).
51. O’Dohre, F. et al. Cell cycle population effects in perturbation studies. Mol. Syst. Biol. 10, 732 (2014).
52. Andrew, G. et al. Bayesian Data Analysis (CRC Press, 2004).
53. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871–1878 (2007).
54. Transtrom, M. K. & Qu. P. Optimal experiment selection for parameter estimation in biological differential equation models. BMC Bioinformatics 13, 181 (2012).
55. Daniels, B. C., Chen, Y. J., Sethna, J. P., Gutenkunst, R. N., Myers, C. R. Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19, 389–395 (2008).
56. Barriente, S., Cooke, C. & Goodrich, D. W. Glutamic acid mutagenesis of retinoblastoma protein phosphorylation sites has diverse effects on function. Oncogene 19, 562–570 (2000).
57. Liu, X. et al. Reliable cell cycle commitment in budding yeast is ensured by signal integration. Elife 4, 1–19 (2015).
58. Bah, A. et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519, 106–109 (2015).
59. Wei, Y. & Zheng, X. F. Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol. Biol. 759, 307–319 (2011).
60. Conrad, M. et al. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 38, 254–299 (2014).
61. Jorgensen, P. et al. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 18, 2491–2505 (2004).
62. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).
63. Bernstein, K. A., Bleichert, F., Bean, J. M., Cross, F. R. & Baserga, S. J. Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol. Biol. Cell 18, 953–964 (2007).
64. Gonzalez-Novoa, A. et al. Hog1 targets Whi5 and Msd1 transcription factors to downregulate cyclin expression upon stress. Mol. Cell Biol. 35, 1606–1618 (2015).
65. van Dijken, J. P. et al. An interlabaratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706–714 (2000).
66. Gietz, R. D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988).

Acknowledgements
We warmly thank Matteo Barberis, Enrico Bucci and Jonathan R Karr for critical reading of the manuscript and insightful comments. The financial support of the MIUR grant SysBioNet—Italian Roadmap for ESFRI Research Infrastructures—to SYSBIO Centre of Systems Biology is gratefully acknowledged. V.C. and F.M. are supported by the MIUR grant SysBioNet.
Author contributions
L.A. conceived the model and coordinated the project; L.A. and M.V. co-wrote the main text; P.P., M.V. and C.M. constructed the mathematical model; P.P. and V.C. performed simulations; P.P., M.V. and L.A. evaluated the simulation findings and wrote the Supplementary Information; S.B. and F.M. run the validation experiments; L.A., M.V. and P.P. edited the manuscript; all the authors read and approved the entire paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Palumbo, P. et al. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate. *Nat. Commun.* 7:11372 doi: 10.1038/ncomms11372 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/