A general and scalable matheuristic for fleet design

Francesco Bertoli, Philip Kilby and Tommaso Urli

108 North Road, Acton ACT 2601, Australia

September 13, 2018

Abstract

We look at the problem of choosing a fleet of vehicles to carry out delivery tasks across a very long time horizon – up to one year. The delivery quantities may vary markedly day to day and season to season, and the underlying routing problem may have rich constraints – e.g., time windows, compatibility constraints, and compartments.

While many approaches to solve the fleet size and mix (FSM) problem in various contexts have been described, they usually only consider a “representative day” of demand. We present a method that allows any such single-day FSM solver to be used to find efficient fleets for a long time horizon.

We propose a heuristic based on column generation. The method chooses a fleet of vehicles to minimise a combination of acquisition and running costs over the whole time horizon. This leads to fleet choices with much greater fleet utilisation than methods that consider only a subset of the available demand data. Issues with using a heuristic sub-problem solver within the context of column generation are discussed.

The method is compared to two alternative methods on real-world data, and has shown to be very effective.

1 Introduction

Efficient transportation is a fundamental component of a nation’s economy, accounting for a significant fraction of the total cost of products. In order to stay competitive, particularly in the context of a global and connected market, companies are pressured to reduce their transportation expenses by making smarter use of their resources, e.g., fleets and warehouses. Of foremost importance, in this regard, are the decisions made at the strategic (long-term) and tactical (mid-term) levels, as they determine how the day-to-day operations can be carried out, which in turn reflects on the efficiency of the system. We look at one such tactical-level problem.

*francesco.bertoli@data61.csiro.au
Consider the following situation. A freight company is bidding for a large contract with a national supermarket chain. If successful, they will devote a certain number of existing and newly-purchased vehicles to the new contract. They have one year’s worth of demand data from the supermarket chain, exhibiting large variations in quantity on day to day and season to season basis. In order to submit a competitive but still financially viable bid, the freight company must determine the number and type of vehicles required to most effectively carry out the deliveries across the whole year. This is the problem we address here.

Fleet design is the problem of determining the size and composition of a fleet of vehicles to carry out the daily delivery operations of a company. The problem can be informally stated as follows: given

1. the demand of a set of customers over a period of time,
2. a “catalogue” of truck types with different characteristics, e.g., capacity, running costs, compartments, etc., and
3. a model describing the constraints and costs incurred in running the daily delivery operations,

identify the most efficient fleet to satisfy the demand across the whole time period.

In our context, the demand can be represented either by historical data or forecast data. The underlying VRP model can be a rich vehicle routing problem (see [3, 7, 10]) – a model capturing real-world operational constraints such as time windows for delivery, travelling distances, capacities, compatibilities, driver breaks, and so forth.

Most of the existing literature considers fleet design as an extension of the classic vehicle routing problem where the fleet composition is not an input to the problem, but rather a decision to be made. There are several variants of this extension which are usually called Fleet Size and Mix VRP or Heterogeneous VRP (according to [1]) depending on whether the fleet is unlimited or not. We will use the acronym FSM to denote this class of problem based on the classical VRP. Due to its huge search space, the FSM is much harder to solve than its VRP counterpart. For this reason, the FSMs models rarely extend beyond considering a single representative day of demand data, or model not-so-rich VRP variants.

The main features that define the VRP variant studied here are

- day-by-day demand known over a long time horizon;
- potentially, a rich underlying VRP; and
- we wish to determine fleet size and mix.

We call this problem the Long-Horizon Fleet Size and Mix (LHFSM) vehicle routing problem to differentiate it from the standard FSM.

While a solver for the (single-day) FSM can often be used to solve a multi-day instance by careful use of time window constraints, such approaches do not

1 Note that we use the term “day” because in most contexts, the VRPs are solved on a per-day basis. However, the term should be understood to mean a suitable unit of time in the context of the problem at hand.
usually scale well. Time horizons of one year for hundreds of customers are usually well beyond the scale that can be handled by these methods.

Another common way to approach the problem is to reduce the problem to a “representative day”, or even a single “big day”, and then solve using that single set of data. However, this approach can not adequately represent the variability in demand day to day and season to season. In addition, rich constraints may make a good solution for one day infeasible for another. For example, a good solution for a “big day” scenario may use many large trucks. But vehicle compatibility constraints, which forbid large vehicles visiting some customers, may make that solution expensive, or even infeasible, for a day with more moderate demand.

The method proposed here provides a framework in which a single-day FSM solver (appropriate for the underlying single-day rich VRP) can be used as a sub-problem solver to determine an efficient solution for the longer horizon. We show that the fleets produced are more effective than those produced considering only “representative” days.

Even though some companies build their fleet slowly over a long horizon, buying one vehicle at the time, there are cases where a company needs to design an entire fleet. Instances include fleet down-sizing after a merger, or fleet acquisition in response to gaining a new, large contract. A company may also want to determine their best fleet, so as to have a “target fleet” in order to guide purchases over time.

One notable attempt \cite{13} has been made to solve the fleet design problem for a multi-day rich vehicle routing formulation. The proposed approach is based on a pre-processing step that identifies a set of Pareto dominant days. The idea is that if a fleet can cover a “big-demand” day then it will also be able to cover all “smaller” days, but less so in the general case. This is possible in the specific problem presented because a dominance rule, i.e. a partial order between days, can be established. While the approach proved to be viable for the problem at hand, the authors identified two major issues: scalability and, more importantly, generality. The scalability issue arises from the fact that the whole multi-day problem associated with the Pareto front has to be solved at once in order to guarantee that, on each day, a subset of the same fleet of vehicles is used. Given that the single-day problem is already \textbf{NP}-hard, solving a multi-day variant for a large Pareto front can easily become intractable. A more fundamental problem is generality – that is, the problem-specific pre-processing technique cannot be extended to arbitrary VRP variants. For example this approach does not work when compatibility constraints are considered. The fleet for the Pareto days could, and in fact often will, be infeasible for days with smaller demand but with more compatibility constraints. The situation is even more complex when time related constraints, such as time windows, are considered. Defining a dominance rule for rich VRPs is not trivial, if at all possible. An additional inherent problem is the efficiency of the fleet. Since the fleet produced will be tailored for big days only, the authors have shown there will often be a high number of idle vehicles per day, which is not desirable. However, in Section \ref{5.5} we elaborate on how our method is able to implicitly identify a subset of days that are the critical ones. This will be a consequence of the mathematical framework we present.

In this paper, we aim to address the issues of scalability and generality. We present a general and scalable framework to determine efficient fleet configura-
tions from historical or forecast demand data. Notably, we allow the use of a rich FSM solver to solve the sub-problems in a column generation scheme. This means that the suggested approach can be used effectively, regardless of the richness of the underlying routing problem or the length of the demand horizon. The technique can be applied wherever a solver for the single day routing problem is available. The resulting algorithm is a combination of heuristic and mathematical programming methods and therefore can be considered a “matheuristic” \[2\]. We show the effectiveness of our approach on a rich vehicle routing variant representing a fuel distribution problem for which we have real-world demand data.

The paper is organised as follows: in Section 2 we review the literature related to fleet design. In Section 3 we formally define the problem that we tackle in this work. Sections 4 and 5 are devoted to the description of the model and the solution method proposed. In 6 we give a detailed account of the algorithm implementation. Experimental results and analysis are presented in Section 7. We finally conclude with some remarks and future research directions.

2 Related Work

In the following, we briefly review the existing literature on fleet design and rich vehicle routing.

In [5], the author provides a complete survey of long-haul freight transportation. The major decision are divided in three levels: strategic, tactical and operational. Examples of such decisions are: demand modelling and location of facilities for the strategic level, service network design and resource acquisition for the tactical level, routing and loading of vehicles for the operational level. A key point is that decisions at each different level have a strong influence on the decisions involved in next level and provide information for the decision at the previous level.

In [11], the authors present a thorough survey of the literature related to the problem of managing a fleet, with an emphasis on industrial applications. Following their classification the problem can be looked at from three different points of view, which correspond to the levels mentioned in [5]: strategic, tactical and operational. The main difference is the time horizon considered.

We concentrate our survey on papers addressing a tactical-level problem such as the one studied here. Strategic models usually focus on the evolution of the fleet through time and do not include any routing component in the objective, and are therefore addressing quite different problems. Operational level models (surveyed in [1, 11]) do not usually scale to the lengths of time horizon we are considering, and so are also omitted.

As noted in [11] and [20], the literature has not addressed tactical level problems in as much depth as the operational level. We quote [11]:

> A large part of the literature focuses on operational questions, along the line of “what to do given a certain fleet mix and a given set of service requests”. This is in contrast to the more tactical, or strategic, “which vehicles should we acquire to best solve our daily routing problem for the next half year”. There is a big absence of papers addressing these more tactical questions, and also on how to make robust or resilient solutions.
Two exceptions are: [23], where the authors consider a week as an horizon, although eventually solve each day separately, and [20], where the authors note the same lack in the literature and develop an advanced heuristic. Their solution method is based on a route perturbation procedure. After initially solving a classical VRP with a given capacity to create a starting solution, the algorithm checks which vehicles can be used on the routes and whether it is better to remove a route and insert the customers in other routes. Other refinement techniques are then applied to improve the solution. The whole algorithm is repeated several times with other starting solutions. The overall performance is good and the algorithm proved to be stable and able to handle complex constraints but is not tested on long horizons.

As we noted before, a first paper attempting to solve on a year worth of data is [13]. The authors make use of the particular structure of the specific problem considered to identify a Pareto dominant subset of days. They solve the problem only for the identified set by means of adaptive large neighbourhoods search. While this approach solves a (small) number of days simultaneously, it can still fail to produce a good fleet, for instance in the presence of compatibility constraints.

We also differentiate the problem studied here from two classes of problems involving multi-day horizons: the periodic vehicle routing problem (PVRP, [8]) and the inventory routing problem (IRP, [4]). In the PVRP, customers are visited a fixed number of times over the planning period. While similar in some ways, the LHFSM is significantly different for two reasons. First, the fleet selection component is not present in PVRP. Second, in the PVRP the delivery day is a decision variable, whereas in LHFSM the delivery day is fixed.

In the IRP, we know the rate of demand at each customer, and must visit customers a number of times over the planning horizon, delivering sufficient goods to avoid a stock-out. Again in the IRP, the delivery day is a decision variable, and no fleet selection is required. Also in the LHFSM, we do not have a demand rate available. Note that in both the PRP and IRP, the complexity lies in the choice of an efficient schedule for each customer and on how this combines with the routing plan. In the LHFSM, on the other hand, there is no such problem: the schedule is fixed. What links the days is only the choice of the fleet.

Another class of problems involving multi-day scenarios are the ones studied in Stochastic Optimisation [16]. One method is to sample a number of scenarios (days), and design a set of routes where the objective is to minimise the sum of costs across the all scenarios. In the most general case, all 365 days would be used to evaluate the objective, although this would be computationally very expensive. Another method is to analyse the demand patterns of each customer, and fit a probability distribution function. We can then use this to determine the probability of needing to visit a customer, and the probability of exceeding capacity. However, in both cases, this in effect imposes a “grand tour” constraint: customers, if they require service, are visited in the same order every day. Moreover, if time windows are present, the grand tour must observe the time windows in each scenario (or in expectation), further constraining the routes. If such a “grand tour” constraint is not present in our problem, enforcing it can lead us to very sub-optimal solutions.
3 The problem

The problem we address is that of optimising the costs of acquiring and running a fleet of vehicles over a long planning horizon, e.g., one or several months, while guaranteeing the necessary level of service to satisfy the demand of all customers. This requires taking into account both fixed costs (Capital expenses or CAPEX), e.g., acquisition and maintenance expenses, as well as operational costs (Operational expenses or OPEX), e.g., fuel and drivers’ wages.

More formally, let I be the set of days, or horizon, that we are considering, and T be the set of all available vehicle types. Each vehicle type $t \in T$ has a fixed cost b_t, which may aggregate, for instance, acquisition and maintenance costs. On each day $i \in I$ we must satisfy the demand of a set of customers while respecting a rich set of constraints, e.g., time windows, pickup and delivery, compartments, or vehicle-commodity compatibilities, etc. We denote the rich vehicle routing problem for day $i \in I$ as $VRP(i)$, and with $FSM(i)$ the corresponding fleet size and mix problem. As we will show, our fleet design approach can be applied to any rich vehicle routing problem, as long as a suitable solver for $FSM(\cdot)$ is available. This is a key point. To be precise, we assume to have a suitable solver (which we will refer to as FSM-solver), either an exact method or a heuristic, that can solve the FSM problem for a single day while honouring upper bounds on the number of vehicles of each type $t \in T$.

Our goal is to find a fleet that minimises the sum of fixed and operation costs across the whole horizon. In the next section we present a mathematical programming model for this problem.

It is obvious that if $\|I\| = 1$ then we have nothing to do, as one run of the FSM solver would be enough. If $\|I\| > 1$ than the difficulty lies in finding a good balance in the fleet.

4 Model

Given $i \in I$ we consider the set N_i of possible fleets that can be used to solve $VRP(i)$. We refer to these as options for i. The options for each day will, in general, be different.

Moreover, if we assume that all the vehicles in an option must be used, the number of options are guaranteed to be finite. We denote by r_{ij} the cost of operating option $j \in N_i$ of day $i \in I$. This value is calculated excluding any fixed costs (b_t), but including any possible vehicle-specific coefficients, e.g., fuel cost per kilometre, hourly driver wage, etc. For every day $i \in I$, every option $j \in N_i$ can be represented as a vector of length $|T|$ specifying how many vehicles of each type are used. We denote by F^t_{ij} the number of vehicles of type $t \in T$ used by option j for day i. Figure 1 gives examples of option sets.

For each option $j \in N_i$ in each day $i \in I$, we introduce a binary decision variable d_{ij} representing whether a particular option is actuated or not. Moreover, the integer decision variables F_t represent, for each $t \in T$, the number of vehicles of type $t \in T$ that are part of the overall fleet.

We seek to minimise the sum of the fixed (b_t) and operation (r_{ij}) costs of the fleet across the whole planning horizon. The model follows.

\footnote{In other words, there cannot be any idle vehicle in an option.}
Figure 1: Suppose we have only two types of vehicle, with capacity 20 and 5, respectively represented by the solid and dotted lines. The smaller vehicle has a smaller routing coefficient. We could serve day one with 2 vehicles of each type with a routing cost of, say, 10. Although we could also use 2 vehicle of the first type and only 1 of the second, which yields a different routing cost. Note that option 1 for day 2 is completely different from option 1 for day 1. Moreover the fleet used for option 1 of day 2 would not be feasible for day 1, as we would not have enough capacity. On the other side the fleet used in option 1 for day 1 is not an option for day 2, because we would have 1 vehicle left idle.

\[
\text{minimise } \sum_t F_t b_t + \sum_{i,j} r_{ij} d_{ij} \tag{1}
\]

subject to \(\sum_j d_{ij} = 1 \quad \forall i \in I\) \tag{2}

\(\sum_j F_t^j d_{ij} \leq F_t \quad \forall i \in I, t \in T\) \tag{3}

\(F_t \geq 0, \text{integer} \quad \forall t \in T\) \tag{4}

\(d_{ij} \in \{0,1\} \quad \forall i \in I, j \in N_i\) \tag{5}

Constraints (2) means that we can only select one option for each day. Constraints (3) ensures that the overall fleet has enough vehicles of type \(t\) to actuate the chosen option for every day. Constraints (4) and (5) enforce the integrality
of the solution. The objective is the sum of fixed and the operational costs.

The solution to this problem will give us an exact solution to LHFSM if the column costs r_{ij} are calculated exactly. In many situations where a rich VRP underlies the selection process, r_{ij} will be calculated by a heuristic method. In this case the above model will give a heuristic solution to the fleet selection problem.

Note that, provided that d_{ij} is positive, Constraints 2 implies $d_{ij} \leq 1$. Therefore we can replace Constraints 2 with $d_{ij} \geq 0$, integer. We decided to keep d_{ij} binary to highlight its semantics as binary choice. Similarly we could replace Constraint 2 by $\sum_j d_{ij} \geq 1$ due to solving a minimisation problem.

5 Solution method

Every coefficient r_{ij} in (1) must be generated by solving the the corresponding VRP (i), $i \in I$ using the fleet $j \in N_i$. Each one of these VRP (\cdot) is NP-hard. Moreover the number of days $|I|$ can be quite large, e.g., one or more years. Determining the number of possible options $|N_i|$ would already be a hard problem, consequently the full enumeration of the columns is computationally intractable and solving the linear relaxation of \([M]\) is not a viable option. In these cases it is common to use a column generation (CG) approach. However CG can only be used to solve linear problems. In order to solve integer programs it is necessary to embed the CG method in other algorithms aimed at solving the integer version of the problem. We proposed two such approaches later in the section.

In the following, we first briefly review the column generation technique in general terms, then we describe the necessary steps to apply it to our model.

5.1 Column generation

Column generation [15] is a technique for solving linear programs where the number of variables, or equivalently columns, is intractable or hard to enumerate. The approach exploits the idea that only a small number of variables are needed to determine the optimal solution, as most of them will assume value zero.

The first step is to decompose the original problem into a master problem and a sub-problem. At each iteration, the master problem only considers a restricted number of variables, or equivalently columns, and it is solved to optimality. The sub-problem is an artificially defined problem that tries to identify which new columns are to be added to the master problem in the next iteration. The objective function of the sub-problem is the reduced cost of the new columns with respect to the optimal dual variables of the current optimal master solution. The constraints in the sub-problem ensure that a solution is indeed a valid column in the original problem. This phase is commonly referred to as pricing of columns. If we identify a column with negative reduced cost, we add it to the master and proceed to the next iteration, otherwise we stop.

A fundamental aspect in the implementation of a column generation scheme, is to recognise the structure of the sub-problem, and to identify a problem-specific technique to solve it efficiently. For instance, when solving a standard VRP by column generation [6], the sub-problem can be seen as a constrained
Column Generation

1: Solve the (restricted) master problem.
2: Retrieve the dual variables from the master.
3: Solve the pricing problem to identify a new variable.
4: If the objective of pricing problem is non-negative we have reached optimality.
5: Otherwise add the identified variable to the master and go to Step 1.

shortest path problem which can be solved by labelling algorithm. Note that it is not necessary to identify a single sub-problem. A problem can be decomposed in a master and several sub-problems. In fact this happens for our model [LM]. The extension of CG to this scenario is immediate. In Step 3 we simply solve all sub-problems and add several variables to the master. The optimality condition (Step 4) translates to all sub-problems having a non-negative objective.

5.2 Sub-problem

In order to apply column generation to our problem we consider [LM], the linear relaxation of [M], and denote by p_i and q_{ti} the dual variables of Constraints 2 and 3 respectively. It is evident that we have one sub-problem for each day $i \in I$. The sub-problem associated with day i aims at generating a variable d_{ij} with negative reduced cost. We now illustrate the special structure of the sub-problems.

The reduced cost of a variable d_{ij} is

$$r_{ij} + \sum_t F_{ij}^t q_{ti} - p_i.$$

Each column is uniquely identified by r_{ij} and the F_{ij}^ts, which represent variables of the sub-problem. Ignoring the term p_i, which is a constant in this context, we observe that the reduced cost is exactly the objective of an FSM where the fixed costs of the vehicles are represented by the q_{ti} variables and r_{ij} represents the cost of optimally operating the fleet determined by the F_{ij}^t variables. In other words, sub-problem associated with day i generates a new option $j \in N_i$.

Since the FSM is NP-hard, optimally solving the sub-problem efficiently for large problems is usually not viable. Instead, we allow the use of heuristic methods which are able to obtain good quality solutions in a short time. Using a heuristic method to solve the sub-problem makes our algorithm a heuristic. However, the method described still converges to a good solution to the original problem, modulated only by the quality of the underlying FSM heuristic. We regard this as one of the main strengths of our approach. If a solver for the single-day version of the problem is available, we can use it to solve the multi-day variant of the same problem.

Several issues arise when using a heuristic solver. The primary one is that, due to the stochastic nature of many heuristic solvers, different solutions can be produced for the same input. Thus, an r_{ij} for given a fleet j on day i may be calculated at one time. Then, later in the execution, a new, better r'_{ij} may be produced. When this happens, it is enough to replace the original r_{ij} with
the new r'_{ij} in the master problem. Because we only ever reduce the costs of columns, this does not effect the convergence of the column generation.

5.3 Proposed Methods

As previously noted, CG only solves a linear problem. In order to solve [M] we propose two approaches. In the first one we use CG to solve [LM], and then we solve a restricted version of [M] involving only the columns generated in the linear phase. This method is called restricted master heuristic \[12\]. The second approach consists in a branch & bound tree search where CG is used at each node to provide lower bounds. This type of method is generally called branch & price. We denote the two methods by, respectively, RMH and BAP.

Note that RMH is heuristic in its nature, as the set of column that identify an optimal basis for the linear problem [LM] might not contain the optimal set of columns for the integer problem [M]. Oppositely, branch & price approaches aim to be exact. However, as we solve the sub-problem by means of an heuristic, both the methods are heuristics and do not guarantee optimality.

5.4 Historical and Stochastic Data

The demand over the time horizon of each customer is considered to be known and given as an input to the problem. However, the approach described can also be used effectively to handle stochastic demand for a single-day problem. Given some expression of the stochastic demand at each customer, an artificial multi-day problem could be created by generating different realisations of that demand to produce multiple scenarios. The method described above can then be used to determine a fleet that can cover the variable demand most effectively. While this approach seems to have some strength, we have not investigated it further.

5.5 An Extension of the Pareto Approach

In the Introduction we commented on the difficulty of extending the method proposed in \[13\] to rich vehicle routing problems. A byproduct of the mathematical programming framework that we are using is that we have some insights on how to extend the idea of identifying a subset of critical days. Let us define the dual of problem [LM].

\[
[D] \text{ maximise } \sum_i p_i \\
\text{subject to } \sum_i q_{it} \leq b_t \quad \forall t \in T \\
p_i - \sum_t F_{ij}^t q_{ti} \leq r_{ij} \quad \forall i \in I, j \in N_i \\
p_i \in \mathbb{R} \quad \forall i \in I \\
q_{ti} \geq 0 \quad \forall i \in I, t \in T
\]

The dual problem “distributes” the costs b_t over the days (if q_{ti} are interpreted as daily fixed costs) with the goal of maximising the sum of the lower
bounds \(p_i \) in this context) on each day’s total cost. If, for a fixed \(i \in I \) and \(t \in T \), Constraint 4 is not tight, the Complementary Slackness Theorem implies that \(q_{ti} = 0 \) and therefore the vehicle is “free” in the sub-problem. Intuitively, the variables \(q_{ti} \) tell us how much a vehicle of type \(t \) is worth on day \(i \) if we can only use the options (columns in the master) provided. In fact, in each iteration of CG, there will be a few days, having some of the \(q_{ti} \) that are non zero. This information point us to the days that need other options in order to reduce the overall fixed cost and it is of fundamental importance for an efficient implementation as is discussed in next section. In some sense the dual variables identify a subset of critical days. Notably, this set changes at each iterations, as the insertion of new variables in the master changes the dual problem \([D]\). However, the main advantage of our decomposition is that we can solve each day independently. Oppositely, in \([13]\) each Pareto subset has to be solved as a whole, considerably increasing the complexity of the method.

6 Implementation Details

We now go through the details of our implementation explaining how we address standard issues that arise when implementing column generation approaches and new ones originating from the fact that we are not solving the sub-problems to optimality.

Branching strategy. In a branch & price scheme one has to carefully choose the branching strategy so that the sub-problem structure is preserved. Once the linear relaxation of the root node is solved, we choose a fractional variable \(F_t \) and branch on it by imposing, for example, \(F_t \leq m_t \) and \(F_t \geq M_t \) where \(m_t \) and \(M_t \) are defined as \(\lfloor F_t \rfloor \) and \(\lfloor F_t \rfloor + 1 \). Note that adding this type of constraint to the master problem does not affect the problem structure, and constitutes additional information that can be passed to the underlying FSM-solver. Indeed bounding the maximum number of vehicles of type \(t \in T \) is standard in FSMs, while limiting it from below can be done by considering \(M_t + 1 \) free vehicles of type \(t \). Consequently a node is identified by the lower and upper bounds imposed on each vehicle type.

When exploring the branch and bound tree, we choose the node with the lowest integer objective, and which forbids the currently best-known integer solution. This has the effect of forcing the algorithm, and the underlying FSM-solver, to look at different parts of the search space. Note that, provided we have one option per day, problem \([M]\) always has a feasible solution.

Theoretical caveats. As pointed out earlier, the fact that the sub-problem is solved heuristically creates some theoretical issues that, however, can be easily addressed in the implementation. The first thing we note is that the heuristic might find the same column (fleet option) multiple times with different routing costs. If the cost is lower than the previously found one, we just replace the existing column with the newly found one. Otherwise we discard it. The main theoretical inconsistency comes from the fact that the solution of the master problem at the root node is not guaranteed to be optimal and therefore not
guaranteed to be a lower bound. Therefore, at some point in the branching tree we might find a node which has a better linear (and even integer) objective than the root node’s linear objective. This can happen when the branching constraints force the underlying FSM-solver to look in parts of the search space that were previously missed. If a better bound is found during execution, it does not affect convergence, only execution time. In effect, nodes that might have been pruned earlier will be pruned when the new, improved solution is found.

Initialisation. As noted earlier, a good feature of model [M] is that, provided that we have at least one option for each day, the problem is always feasible. We therefore need to initialise the problem by finding a first option for each day. Our choice was to use the underlying FSM-solver to find the one that generates the best routing option. In practice, we solve each day assuming that all the vehicle types are unlimited and that the acquisition cost is zero. We know that such option will have the best routing cost possible for that day. This will turn out to be useful during the sub-problem selection and the lower bound computation, as explained later in the section.

Number of solved sub-problems at each step. One particular feature of our problem is the high number of sub-problems that have to be solved. As we want to apply the method to long term scenarios, the number of days (sub-problems) can be in the hundreds.

It is clear that, in our case, solving the sub-problems is the most computationally expensive part of the algorithm. Simulations show that it amounts to 99.9% of the total run time. On the contrary, the solution of the master problem, integer or linear, is almost instantaneous. Therefore we are not concerned with the number of columns we insert in the master problem.

It is therefore advantageous to choose a subset of sub-problems to solve at each iteration. A similar problem appears in [9] where the number of sub-problems is \(\sim 300 \). The authors’ solution is to order the sub-problems and solve only a fraction of them (15 to 20) following a cyclic order until one column with negative reduced cost is found. In our problem not all the days have the same impact on the final solution; one of the interesting aspects of the problem lies in the fact that many days are different from each other. Therefore we will have some days that are easy to accommodate with a different fleet and others that require more work.

As noted in Section 5.5 the dual variables play a key role in the choice of sub-problems to be solved. We observe that, if \(q_i = 0 \), \(\forall t \in T \) for a given day \(i \in I \), then we do not need to solve the respective sub-problem, since the solution found in the initialisation phase is already the best and its reduced cost is zero. A standard approach would be to compute a lower bound for each sub-problem to estimate the objective. Despite the intuitive appeal this is not a viable option in our problem. Indeed, the sub-problem is a FSM problem, possibly based on a rich VRP. Computing a good lower bound for this type of problem is not trivial, nor computationally efficient.

Instead, we aim to diversify the search, by avoiding solving a sub-problem similar to ones we have solved before. The measure we adopt is to compare the
dual variables q_{t_i} with those used last time we solved the sub-problem on day i, and choose the sub-problem with the greatest difference.

To rank the days we therefore use a weighted total variation. We fix a day $i \in I$ and consider all the options $j \in N_i$ that we have found so far. Denote by $q_{t_i}^j$ the dual variables that were used when we found option j. Also denote by $|F_{ij}|$ the total number of vehicles in option j and by \hat{N}_i the number of options found so far for day i. The score of a day is then given by the following formula

$$\sum_j \sum_t (q_{t_i} - q_{t_i}^j)^2 \frac{F_{ij}}{\|F_{ij}\|} \frac{1}{\hat{N}_i}$$

We take the total variation with respect to the variables q_{t_i} weighted by the importance that vehicle type t had in the found option. In the current implementation the number of sub-problems that we solve simultaneously at each iteration is equal to the degree of parallelism (independent cores or virtual cores) of the hardware onto which we run the algorithm. Note that, in general, this does not have to be the case, and that the choice of this number influences more than just the run time of the algorithm.

Alternatively, one could define the score as the minimum variation (i.e., replacing the sum over all options with a minimum) or simply consider the sub-problems whose dual prices are the highest. However, experiments showed that taking the total variation produced better results.

Degeneracy and tailing-off effect. In cases where the primal problem exhibits high degeneracy and many equivalent solutions, solving the dual problem provides better numerical stability, and allows the direct calculation of dual variables. Therefore, at each master iteration, we directly solve the (restricted) problem $[D]$.

Another recurring problem in column generation is the tailing-off effect. In the last iterations the columns found have negative reduced costs close to zero, causing small or possibly null improvement in the objective. This is due to the fact that different fleets can produce almost identical routing costs, and hence the solutions we find in the final stages only decrease the routing cost by a very small amount. We use early termination, as described in the next paragraph, to stop the tailing off effect.

Early Termination Strategy. A common approach to early terminate and possibly fathom nodes is to compute lower bounds of the nodes’ optimal objective. The standard technique is to use Lagrangian lower bounds. Given a node in the search tree, we denote by z and \bar{z} the optimal value of the linear and integer master problem, respectively. Similarly, we denote by z_{RMP} and \bar{z}_{RMP} the optimal objectives of the current restricted master problem. Finally, we denote by rc_i^* the reduced cost of the exact solution of sub-problem i obtained using the dual variables of the current CG iteration. The Lagrangian lower bound (see [15]), is

$$z_{RMP} + \sum_i rc_i^* \leq z \leq \bar{z} \leq \bar{z}_{RMP}$$
However, as previously noted, we only solve a subset of sub-problems at each iterations, hence we do not know r^*_i for all $i \in I$. Moreover, due to the fact that we are solving the sub-problem by means of an heuristic, we have no guarantee we found the optimal solution of the sub-problems, i.e. we only have an estimate of the lowest possible reduced costs. We propose a simple modification of the above bounds to overcome these two limitation, and we make use of these only to terminate a node’s execution early. This does not affect the convergence of the algorithm, but only the way we explore the search tree.

We explained earlier that those days with $q_{ti} = 0$, $\forall t \in T$ necessarily have zero reduced cost. We therefore need to further lower bound r^*_i for all days associated with sub-problems that have at least a positive dual variable q_{ti} and that we did not solve in the current iteration. We recall that

$$r^*_i = r_{ij} + \sum_t q_{ti} F_{tij} - p_i.$$

Obviously a good lower bound has to be dependent on the specific underlying VRP variant. The technique we propose is however easily adjustable. For now, let us suppose we only have one commodity, capacity and some other routing constraints. Note that, given a day i, any option $j \in N_i$ satisfies the constraint

$$\sum_t c_t F_{tij} \geq TD_i$$

where c_t is the capacity of vehicle type t and TD_i is the total demand of day i. Let us assume, for now, that $r_{i0} \leq r_{ij}$. We have

$$r^*_i \geq r_{i0} + \min \left\{ \sum_t q_{ti} F_{t} : \sum_t c_t F_{tij} \geq TD_i \right\} - p_i = rc_i.$$

The variable in the problems between the brackets are the integer and non-negative $F_{tij} \forall t \in T$. The numbers rc_i are very easy to obtain. Note that if the underlying VRP has more than one commodity the lower bound computation can be improved by adding a constraint for each commodity. This is also the case for other constraints, such as compartments or compatibilities between products and vehicles. Although the same idea can be easily adapted to such constraints. Let us assume that the rc_i’s are obtained through a similar valid technique. Now denote by S the set of days i that we solved in the pricing phase and set $rc_i = 0$ if i is such that $q_{ti} = 0 \forall t \in T$. We have

$$z_{RMP} + \sum_{i \in S} rc^*_i + \sum_{i \in S^{c}} rc_i \leq z \leq z.$$

To obtain the approximate lower bound we assumed $r_{i0} \leq r_{ij}$ for all days i and options $j \in N_i$. As discussed in the Theoretical Caveats paragraph, due to the fact the we are using a heuristic to solve the sub-problems we might find an option with better routing cost later in the algorithm. However, since the lower bounds are only used to terminate early, and not to fathom a node, the approximation is still admissible.
Quick column generation and nested column generation. It is standard in column generation to keep a pool of columns formed by the columns generated in previous iterations that did not have a negative reduced cost at the time. At every iteration one can check the reduced cost of the columns in the pool to see if they now have negative reduced cost. We apply a slightly different approach. We form a pool consisting of all the routes that are generated for each day. At each iteration, we can formulate a set partitioning model to solve FSM(i) for each day $i \in I$. The set partitioning model \cite{6} is the standard and most effective technique to solve VRP and it has been applied to FSM too \cite{choi2007column}. For all $t \in T, i \in I$, we denote by R_{t}^{i} the set of routes found so far for vehicles of type t on day i. Furthermore, we denote by C_i the set of customers on day i. For each $r \in R_{t}^{i}, c \in C_i$ let c_r be the route operational cost, and let a_{rc} be a binary constant indicating whether customer c is on route r. The models are

\begin{align*}
[M_i] \text{ minimise } & \sum_{t \in T} \sum_{r \in R_{t}^{i}} (c_r + q_{it}) x_r \\
\text{subject to } & \sum_{r} a_{rc} x_r = 1 \quad \forall c \in C_i \\
& x_r \in \{0, 1\} \quad \forall r \in R_{t}^{i}, \forall t \in T
\end{align*}

Given that the number of routes does not grow too fast, we can solve these models to optimality very quickly. If the objective is smaller than p_i we have found a new column. Otherwise we have to run the normal column generation process described above.

This technique allows us to rearrange the routes we already have to generate a new fleet size option. This is very close to what is known as Nested Column Generation (NCG, \cite{17}), except that we do not generate any new columns. It is possible to use NCG by implementing column generation to solve the sub-problems. However it is not always easy, and for some variants it is not even possible, to solve a FSM by column generation.

7 Experimental Analysis

In this section we present some experiments to analyse the performance of the proposed method. We have at our disposal some real data provided by a business partner. The context is a fuel distribution problem in north Australia. We have data coming from two different distribution centres (DC), therefore representing two instances of the same problem. One of these two set of data was used in \cite{22} to validate their heuristic. The authors note that the set of instances are rather small. Therefore we chose to use only the second set of data which is computationally more challenging. Before presenting the simulation we briefly describe the underlying VRP and the FSM-solver we used for the single day problem.

Routing problem and solver The problem can be summarised as follow: every day we have a set of requests to be satisfied by a fleet starting and returning to a single depot. Each requests is characterised by: the demand, which involves
two different commodities, a time window (morning, afternoon or the whole day), a service time which depends on the quantity being delivered, variable for each customer and, possibly, compatibilities with vehicles types. Each customer can be visited more than once, and hence this is a “split delivery” problem. We have seven different vehicle types available. Each type is characterised by: a different number of compartments for which a maximum capacity for each fuel type is given (each fuel type can have a different density and a compartment can be filled by only one product at a time), a fixed annual cost, a variable operation cost, comprising a per-unit time cost (representing, e.g. salary) and a per-unit distance cost (representing, e.g., fuel cost). Each vehicle can perform one or more trips which are constrained to be in a certain time window. During a working day, a vehicle can return to the depot to refill (i.e., the problem also features vehicle re-use). A better analysis of the performance of the FSM-solver on the single day instances and a detailed description of the problem can be found in [22]. The authors solve it by means of a Large Neighbourhood Search heuristic where the “repair” phase is implemented through Constraint Programming [19]. Their heuristic was developed to support fleet size and mix and is the FSM-solver we use to solve the sub-problem. We do not go into details of the FSM-solver implementation; the interested reader can refer to [22].

![Graphs showing number of requests and total demand](image)

Figure 2: On the left we plot the number of requests for each day. On the right the total demand for each day for the commodities (the y-scale is in hundreds of thousands). The plot includes all the 50 days.

Available Data We have at our disposal a month of demand data. Given that some days do not have any requests, the actual number of days we have available is 25. The different types of vehicle available is 7 and the number of customers per day varies in the interval [20, 60]. To better analyse the algorithm we modified the data to create a longer horizon. Since a lot of customers require service on several days it is possible to perturb the history to create more days. Moreover we performed a problem reduction by merging a few customers so that the daily problem is easier and quicker to solve. This resulted in 50 days with number of customers varying in the interval [17, 52]. This gives us the possibility of considering two instances of 25 days each. We will denote by DC1 and DC2 the first and second set of 25 days. In order to not compromise the data we tried to maintain the variation of total demand and number of customers per day. Figure 2 gives a visual representation of how the daily scenario varies across the planning horizon.
7.1 Algorithm performance

Ideally, we would be able to compare the proposed approaches with other methods from the literature. We used the method proposed in [13] to produce a fleet based on the days in the first “Pareto front”. However, due to incompatibility constraints, this fleet was infeasible for many days in the test data. Since [13] does not offer a method to overcome this limitation, we are unable to compare its performance.

Instead we use an approximate lower bound, described later, as the “benchmark” solution.

We also compare the performance of the two proposed methods, RMH and BAP, to other two standard approaches described in [22]. The first, naive, approach consists in solving each day separately with amortised fixed costs, i.e., $b_t/|I|$ (the overall fixed costs of the vehicles divided by the number of working days), then taking the fleet that is effectively the union of the fleet of vehicles obtained by solving each day separately. The authors name it “Union fleet” (UF) method. We remark that the UF approach treats every day as a separate entity and therefore is clearly sub-optimal. However this is the approach that is used in the literature to solve multi-day FSM problems (see for example [23, 14]).

The second approach is to formulate a “big day” scenario. The logic here, often employed in practice, is to form a fleet that can meet the demand on the day with largest demand, and hence will be able to meet the demand on all other days. The method, which we name Subset Algorithm (SA), is illustrated in Algorithm 6. This is based on the fact that the FSM-solver described in [22] supports the solution of FSM problems over several days.

The SA solves a “restricted” fleet design problem on the first m biggest day, obtaining a fleet F. Then it proceeds to solve the routing problem only on all the other days. Note that, for a fixed day $i \notin \{i_1, \ldots, i_m\}$ the fleet F is not guaranteed to be feasible. In an attempt to try to prevent infeasibility we adjust F in Step 5. This is done only if vehicles’ compatibilities imply we need to add some vehicles to F. As an example: if F has no vehicle of type 0 but there are customers in day i which can only be served by this type of vehicle we add the minimum number of vehicles of type 0 needed by F. Note that this might
not be enough to prevent infeasibility, as for example the placement and time windows of the customers could make a day infeasible even for the adjusted fleet F, however there is no trivial way to prevent this possibility. If there is one infeasible day with the given fleet F we simply set the routing cost to infinity. The fixed costs used to solve the restricted fleet design are normalised (Step 4) but then the fixed costs of F are computed using the original vector b (Step 11). Note that there is a trade-off in increasing the number of considered days m. For small values of m the produced fleet might be too sub-optimal and probably not feasible on some other day. For higher values of m the fleet has a higher degree of guaranteed coverage but Step 5 becomes computationally challenging. We run the algorithm SA with $m = 1, \ldots, 5$ to give SA a fair chance of finding the best possible results it can reach. This way we enable a fair comparison with RMH and BAP. However, except for one run, the best results were found with $m = 3$.

For the UF method we run the FSM-solver on each day for 20 minutes, which is enough to reach convergence. We used 3 parallel cores, which amounts to a total of 500 minutes. To have a fair comparison we run RMH with a maximum time of 160 minutes. Once the execution at the root node is finished we allow an additional 160 minutes to BAP. We run the SA algorithm, for a fixed m, allowing $20m$ minutes to the multi-day FSM-problem solve in Step 5 and 20 minutes to every other day. Although we only take the best results of the runs with different values for m. This clearly gives SA an advantage (a 5 times higher computational time), but we will show that, regardless of this advantage, RMH and BAP still outperform SA. Since all methods are stochastic we run each algorithm 5 times on each instance and take the average in order to have a robust result.

Given the computational difficulty of the problem, we do not have a lower bound available with which to compare our solution. Moreover we do not have the current solution adopted by the company. However we can compute an “approximate lower bound” that will serve as a lower bound for comparison purposes. It is calculated assuming we can change the fleet each day. While this bound still relies on the accuracy of the heuristic technique, it does provide a conservative bound on the best possible solution that could be obtained using the given FSM solver. It therefor highlights the efficacy of the different approaches to choosing a fleet for the overall problem.

We run the FSM-solver, with fixed costs set to zero, 5 times on each day for 20 minutes (each run) and take the best run for each day. By summing the best results of all days we obtain an approximated lower bound on the operational cost. We then compute a (formal) lower bound on the fixed cost by extending the technique explained in the “Early termination strategy” paragraph of Section 6 to the multi-day problem. This is straightforward and we do not go into details. The sum of the lower bounds on operational and fixed costs is taken as the overall approximated lower bound.

In Table 1 we report the average overall cost (cost), its standard deviation (σ), a breakdown of the cost in its components (operational and fixed cost), the average number of vehicles (veh) in the fleet and the average number of idle vehicles per day (idle). Lastly we report the average gap with respect to the approximated lower bound.

It is easy to see that RMH outperforms UF and SA. As expected the main saving is in the fixed costs. As expected, both UF and SA, yield bigger fleets.
Table 1: Computational Results.

instance DC1	method	cost	σ	operational	fixed	veh	idle	gap
	UF	785727	27030	440847	344880	30.4	18.7	43.1 %
	SA	697739	18297	413939	283800	24.6	10.7	27 %
	RMH	605781	9866	420141	185640	16.2	5.1	10.3 %
	BAP	578164	2835	416374	161790	14.2	4.5	5.4 %

instance DC2	method	cost	σ	operational	fixed	veh	idle	gap
	UF	613004	9470	364214	248790	22.2	14.0	34.2 %
	SA	588488	9250.4	342458	246030	21.4	9.5	28.8 %
	RMH	499821	5727	348892	150930	13.4	4.4	9.4 %
	BAP	484543	4880	340932	143611	12.8	4.1	6.0 %

with a higher average of idle vehicles per day.

The fact that RMH is able to produce a solution that is only 5.4% more expensive than a solution where a new fleet is able to be chosen each day, indicates the efficacy of the approach described. As we will show later, the performance of the algorithm depends on the performance of the FSM-solver. However the two methods, RMH and BAP, best leverage the performance of the underlying FSM-solver, and the small gaps indicate the solutions are close to the best possible result obtainable with the given FSM-solver.

It is also interesting to see that the average number of idle vehicles is even further reduced, in proportion, than the average number of vehicles. When designing a fleet, companies usually try to have a high utilisation rate, i.e., the average number of days a vehicle remain idle should be low. Our approach does not consider this criterion explicitly in the objective, but it is clear from Table 1 that the reduction of idle vehicles is a consequence of the efficiency of the method. Applying BAP leads to an improvement in the overall cost although the difference is not substantial. It is possible that the BAP method would add more if we had a bigger problem due to the fact that forcing the FSM-solver to look at different parts of the search space might lead to substantial improvements. Overall we conclude that, for these instances, allowing enough time to the RMH yields a good solution. Because of this observation, in the next experiments we will only use RMH.

7.2 Efficiency of underlying FSM-solver

One question is how the efficiency of the FSM-solver affects the overall algorithm. It is clear that better FSM-solvers can provide better solutions for the single days and lead to a better overall solution. We argue that the Fleet Size and Mix aspect of the underlying FSM-solver is quite important. The fixed costs of the vehicles are the only way of communication between the master problem and the sub-problems (and hence to the FSM-solver). To demonstrate this point we solve DC1 applying RMH and stopping the FSM-solver at the i-th solution (where i = 1, ..., 9) found in the LNS search during the solution
Table 2: RMH runs with limited solutions for the underlying FSM-solver.

i	1	2	3	4	5	6	7	8	all	
Fixed cost	365550	331950	331950	229200	219000	216150	228300	183000	170850	180150
Operational cost	428523	428969	427133	426214	423149	425984	423592	425260	423035	423716
Total cost	794073	760919	759083	655413	642149	642134	651892	608260	593885	603866

of a sub-problem. Clearly as i grows the FSM-solver produces better quality solutions. We set a maximum of a 120 sec for each sub-problem.

The results are reported in Table 2. A consistent improvement is seen in the total and fixed cost if i is increased from 1 to 6. This indicates, as it is shown in [22], that the FSM-solver finds good quality solution rather quickly. After that the cost does not decrease substantially. The routing costs is lowered as i increases but not as much as the fixed cost. We can conclude that as the FSM-solver becomes more efficient we observe a greater savings in fixed costs rather than in the routing costs.

7.3 Number of days

The usual meaning of size, when it comes to routing problems, is the number of customers involved in the daily VRP. This affects the FSM-solver used to tackle the day sub-problem, rather than the column generation scheme. The other inputs which can increase the complexity of the problem are the number of (type of) vehicles and days. We now investigate the performance of RMH, SA and UF, when the number of days grows. We consider all the 50 days of demand data to have a longer horizon available. We denote by I(d) the problem formed by the first d days of demand data. We run UF, SA and RMH on I(d) for d = 1, …, 50. We run UF, SA and RMH with time limits as described in section 7.1. We fixed m = 3 for SA algorithm as this produced the best results.

In Figure 3 for d = 1, …, 50 we plot (a) the total cost per day and (b) the average number of idle vehicles per day, for problem I(d). It can be seen that RMH is stable when the number of days grow. Oppositely, the fixed cost of the UF tends to deteriorate as the number of days increases. This is due to the fact that, as the number of days increases, the lack of communication between days in the solution methods becomes more and more a problem. RMH becomes more and more effective with respect to UF and SA as we consider more days.

The behaviour exhibited by the SA algorithm is harder to interpret. Given all the 50 days available, the biggest days have indexes 3, 21 and 22. Therefore once we consider more than 22 days the fixed cost per day produced by the SA algorithm is constant. The number of days is somehow ignored by the SA, that is the fleet design problem is always solved for 3 days. Even though this might suggest that SA is not affected by the number of days this is not entirely true. In some cases SA produced an infeasible result, i.e., the fleet designed in Step 5 was not feasible on some other days. In this cases we ran again the whole SA algorithm.

20
true. A side effect of adding new days that are not ranked in the first positions is the increase of the average number of idle vehicles, as can be observed in Figure 3 (b). Moreover, and more importantly, SA is particularly sensitive to the addition of a new “hard” day, i.e. a slight variation in one day might render the obtained fleet infeasible on that day. This can be seen in Figure 3 in the area delimited by $d \leq 22$. As mentioned before, after this point the first positions of the rank (Step 2) do not change. Before this point it is possible to observe how the cost can change rapidly, as the insertions of a new day changes the rank and therefore the fleet. Overall, RMH is more effective, especially when the number of days d grows.

![Graphs showing per-day cost and per-day idle vehicles.](a) per-day cost. (b) per-day idle vehicles.

Figure 3

7.4 Number of vehicle types

In this section we focus on the second input influencing the complexity of the problem: the number of vehicle types, i.e. $|T|$. In the original DC instance we have 7 different types of vehicles available. These differ in term of fixed costs, operating costs, capacity, compatibilities with customers and shifts duration. Clearly the last two features play a role in the feasibility of a problem while the first three only influence the cost. We considered instance DC1 and removed up to 3 types of vehicles. Therefore we created a new set of instance having 4 to 7 vehicle types available. We call them, respectively DC1−t, $t = 4, \ldots, 7$. Note that DC1−7 and DC1 coincide. We run UF, SA and RMH on each of these instances and report the results in Table 3. We structure the table so that is possible to observe the behaviour of each method with respect to: the average number of idle vehicles per day, the fixed costs and the operational costs. Clearly a higher number of vehicle types available implies a bigger search space and, coherently, we observe all the three methods worsening as we move from DC1−5 to DC1−7. However, with less vehicles types, compatibilities constraints have a higher impact on the fleet design. Accordingly, on the instance DC1−4 all three methods produced higher costs that on DC1−4. The SA method is particularly affected since fleet designed in Step 5 does not see compatibilities of the other days. Therefore the designed fleet has to be adjusted significantly in Step 7 yielding a higher number of idle vehicles. We can see that both RMH and SA are quite stable. The idle coefficient increases with $|T|$ but not dramatically.
On the other side, UF significantly worsen, with respect to the idle vehicles and fixed costs, when we add vehicle types.

Table 3: Vehicle types.

instance	idle		
	UF	SA	RMH
DC1-4	8.48	9.44	5.84
DC1-5	8.76	12.24	3.64
DC1-6	16.96	12.76	4.68
DC1-7	18.7	16.7	5.1

instance	fixed		
	UF	SA	RMH
DC1-4	208650	281550	209550
DC1-5	204450	296400	161550
DC1-6	301350	291150	175350
DC1-7	344880	283800	185640

instance	operational		
	UF	SA	RMH
DC1-4	421623	423946	425737
DC1-5	424626	426014	429215
DC1-6	426314	416014	418461
DC1-7	440547	413939	420141

8 Concluding Remarks

Strategical and tactical-level decisions in the context of transportation, can have a significant impact on the day-to-day operations, and can make the difference between running a profitable business or not.

In this paper we look at the problem of automatically designing a fleet of vehicles based on existing historical or forecast demand data. The single-day version of this problem is known as Fleet Size and Mix (FSM) and has been extensively studied in literature as an extension of the renowned Vehicle Routing Problem (VRP). Because the FSM by itself provides little guidance in the context of a long planning horizon, e.g., one or more years, in this paper we propose a method to fill this gap. Importantly, our method can leverage any existing solver for the FSM to solve the more complex problem of designing an efficient fleet to be operated over a long horizon. The proposed method employs column generation. Even when the sub-problem is solved heuristically, good convergence is observed. The method produces either exact or heuristic solutions to the fleet design problem, depending on whether the sub-problem solver is able to provide exact or heuristic solutions.

We investigated two frameworks: a restricted master heuristic and a branch & price scheme. Both of the methods proposed rely on a suitable FSM-solver. We are not aware of any other approach able to tackle the same problem in the literature.

We have compared the technique to the solutions obtained using two common but simplistic approximations: the union of the best fleets found for each day.
and the fleet obtained as solution of a critical subset of days. The proposed method is shown to consistently outperform these heuristics.

While being able to computationally generate an efficient fleet given historical or forecast demand data is useful, there are several arguments in favour of exploring techniques to extend an existing fleet and consider the possibility of hiring, instead of acquiring, vehicles in situations of peak demand. We also want to consider options to modify (not necessarily extend) an existing fleet by selling existing vehicles.

References

[1] Baldacci, R., Battarra, M., Vigo, D.: Routing a heterogeneous fleet of vehicles. In: The vehicle routing problem: latest advances and new challenges, pp. 3–27. Springer (2008)

[2] Boschetti, M.A., Maniezzo, V., Roffilli, M., Röhler, A.B.: Matheuristics: optimization, simulation and control. In: International Workshop on Hybrid Metaheuristics, pp. 171–177. Springer (2009)

[3] Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem: Survey. ACM Computing Surveys (CSUR) 47(2), 32 (2015)

[4] Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transportation Science 48(1), 1–19 (2013)

[5] Crainic, T.G.: Long-haul freight transportation. In: Handbook of transportation science, pp. 451–516. Springer US (2003)

[6] Desrosiers, J., Soumis, F., Desrochers, M.: Routing with time windows by column generation. Networks 14(4), 545–565 (1984)

[7] Drezl, M.: Rich vehicle routing in theory and practice. Logistics Research 5(1-2), 47–63 (2012)

[8] Francis, P.M., Smilowitz, K.R., Tzur, M.: The period vehicle routing problem and its extensions. In: The vehicle routing problem: latest advances and new challenges, pp. 73–102. Springer (2008)

[9] Gamache, M., Soumis, F., Marquis, G., Desrochers, J.: A column generation approach for large-scale aircrew rostering problems. Operations research 47(2), 247–263 (1999)

[10] Hasle, G., Kloster, O.: Industrial vehicle routing. In: Geometric modelling, numerical simulation, and optimization, pp. 397–435. Springer (2007)

[11] Hoff, A., Andersson, H., Christiansen, M., Hasle, G., Lokketangen, A.: Industrial aspects and literature survey: Fleet composition and routing. Computers & Operations Research 37(12), 2041–2061 (2010)

[12] Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., Vanderbeck, F.: Column generation based primal heuristics. Electronic Notes in Discrete Mathematics 36, 695–702 (2010)
[13] Kilby, P., Urli, T.: Fleet design optimisation from historical data using constraint programming and large neighbourhood search. Constraints pp. 1–20 (2016)

[14] Kopfer, H., Wang, X.: Combining vehicle routing with forwarding: extension of the vehicle routing problem by different types of sub-contraction. Journal of Korean Institute of Industrial Engineers 35(1), 1–14 (2009)

[15] Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations Research 53(6), 1007–1023 (2005)

[16] M. Gendreau O. Jabali, W.R.: Stochastic Vehicle Routing Problems, chap. 8. MOS-SIAM Series on Optimization. SIAM (2014)

[17] Mason, A.J., Smith, M.C.: A nested column generator for solving rostering problems with integer programming. In: International conference on optimisation: techniques and applications, pp. 827–834. Citeseer (1998)

[18] Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science 40(4), 455–472 (2006)

[19] Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier (2006)

[20] Salhi, S., Rand, G.K.: Incorporating vehicle routing into the vehicle fleet composition problem. European Journal of Operational Research 66(3), 313–330 (1993)

[21] Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: International Conference on Principles and Practice of Constraint Programming, pp. 417–431. Springer (1998)

[22] Urli, T., Kilby, P.: Constraint-based fleet design optimisation for multi-compartment split-delivery rich vehicle routing. In: International Conference on Principles and Practice of Constraint Programming, pp. 414–430. Springer (2017)

[23] Yoshizaki, H.T.Y., et al.: Scatter search for a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries in brazil. European Journal of Operational Research 199(3), 750–758 (2009)