Stefan Richter, MD PhD1 and David Ha, PharmD, BCIDP2; 1Los Angeles County Department of Public Health, Los Angeles, California; 2UCLA, Los Angeles, California; 3LA Biomed, Torrance, California; 4Li Biomed, Los Angeles, California; 5David Geffen School of Medicine UCLA, Los Angeles, California; 6KGI School of Pharmacy/Pomona Valley Hospital Medical Center, Los Angeles, California

Session: 59. HA1: MDRO: General
Thursday, October 3, 2019: 12:15 PM

Background. National surveillance for multidrug-resistant organisms (MDRO) are limited by narrow geographic sampling, few hospitals, and failure to account for local epidemiology. A Los Angeles County (LAC) regional antibiogram was created to inform public health interventions and provide a baseline for susceptibility patterns countywide. We present data to compare the 2015 and 2017 LAC regional antibiogram.

Methods. We conducted a cross-sectional survey of cumulative facility-level antibiograms from all hospitals in LAC, 83 hospitals (AH) and 9 Long-term Acute Care (LTAC). For 2015, submission was voluntary, 2017 data were collected by public health order. Non-respondents were contacted by phone and in person. Isolates from sterile sources were pooled. Countywide susceptibility was calculated by weighting each facility’s isolate count by its reported susceptibility rate with minimum-maximum observed (2015) and Interquartile range (IQR) for 2017. Change from 2015 mean susceptibility is reported.

Results. Seventy-five (75) facilities submitted antibiograms for 2015 and 86 facilities for 2017. Among non-respondents in 2017, two facilities could not provide an adequate antibiogram and 4 were specialty hospitals with too few cultures to create an antibiogram. Regional summary tables are presented in Tables 1–4. LAC regional antibiograms identified stable patterns of antimicrobial resistance for most pathogens, but concerning results with clindamycin was 43% (IQR 13–59%), a 22% increase from 2015, 14% lower than 2015. Susceptibility to meropenem was 84% (IQR 74–93%), no change from 2015. Regional summary tables are presented in Tables 1–4. Antibiograms from all hospitals in LAC; 83 hospitals (AH) and 9 Long-term Acute Care (LTAC).

Interquartile range (IQR) for 2017. Change from 2015 mean susceptibility is reported.

Disclosures. All authors: No reported disclosures.

543. Biocide Resistance Genes in Klebsiella spp. Infections from Trauma Patients in Iraq and Afghanistan

John L. Kiley, MD1; Dana M. Blyth, MD1; Dana M. Blyth, MD1; Miriam Beckius, MPH2; Susan Kaiser, BS1; M. Leigh. Carson, MS2; Dan Lu, MS1; Timothy Whitman, DO1; Joseph Petfield, MD1; David Tribble, MD, DFPH1; and Katrin Mende, PhD1; 1Brooke Army Medical Center, San Antonio, Texas; 2Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, San Antonio, Texas; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Walter Reed National Military Medical Center, Bethesda, Maryland; 3Landstuhl Regional Medical Center, Landstuhl, Rheinland-Pfalz, Germany; 4Uniformed Services University, Bethesda, Maryland; 5Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences and Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas

Session: 59. HA1: MDRO: General
Thursday, October 3, 2019: 12:15 PM

Background. Biocides play an integral role in infection control. Paralleling concern about rising incidence of multidrug-resistant (MDR) organisms is a concern for resistance to biocides. In small studies, several genes involved in the production of efflux pump proteins have been identified as markers of biocide resistance in Klebsiella spp. (221 K. variicola, 6 K. quasipneumoniae) met inclusion criteria, of which 149 (63%) were MDR. All isolates had been exposed to antimicrobials prior to isolation. Of all isolates, 234 (98%) carried cepA, qacA, qacE, qacΔE, and acrA. This study aimed to analyze the Klebsiella spp. isolates of a previously defined military trauma group with a high incidence of MDR organisms for the presence of these genes and their correlation with other resistance.

Methods. All infecting K. pneumoniae, K. variicola, and K. quasipneumoniae isolates archived by the Trauma Infectious Disease Outcomes Study (June 2009–December 2014) were selected. Additionally, all colonizing isolates linked with infecting isolates were included; the remainder to total 50 MDR and 46 non-MDR colonizing isolates were chosen randomly. Antimicrobial identification and susceptibilities were determined by CLSI criteria using the BD Phoenix Automated Microbiology System. PCR according to published methods for cepA, qacA, qacE, qacΔE, and acrA was accomplished in duplicate. MDR was defined as either resistance to ≥2 classes of aminoglycosides, β-lactams, carbapenems and/or fluoroquinolones or production of an ESBL or KPC.

Results. A total of 237 isolates (221 K. pneumoniae, 10 K. variicola, 6 K. quasipneumoniae) met inclusion criteria, of which 149 (63%) were MDR. All isolates had been exposed to antimicrobials prior to isolation. Of all isolates, 234 (98%) carried cepA; 218 (98%) K. pneumoniae carried cepA, 10 (100%) K. variicola carried cepA, and 6 (100%) of K. quasipneumoniae carried cepA. In addition, 148 (62%) isolates with cepA were MDR. One (1%) K. variicola isolate carried qacE along with cepA. This isolate was the only MDR K. variicola. None of the isolates carried qacA, qacΔE, or acrA.

Conclusion. We confirmed the near universal presence of the cepA biocide resistance gene in Klebsiella spp. isolated from trauma patients in Iraq and Afghanistan. In the largest evaluation of biocide resistance genes in Klebsiella spp. to our knowledge, the presence of qacA, qacE, qacΔE, or acrA was less common than has been reported elsewhere.

Disclosures. All authors: No reported disclosures.

544. Clonal Spread of Two Sequence Types of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates at a Tertiary Care Hospital in South Korea Over 2.5 Years

Seong Eun Kim, MD1; Su-Mi Choi, MD, PhD2; Yohan Yu, MD3; Sung un Shin, MD1; Tae hoon Oh, MD1; Uh Jin Kim, MD4; Seung-Ji Kang, MD, PhD5; Hee-Chang Jang, MD, PhD5; Kyung Hwa Park, MD, PhD3 and Sook In Jung, MD, PhD1; 1Chonnam National University Hospital, Kangju, Kwangju-jihakishi, Republic of Korea; 2Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea, Seoul, Seoul-ukpyeolsi, Republic of Korea; 3Infectious Diseases, Kangju, Kwangju-jihakishi, Republic of Korea; 4Chonnam
Background. The dissemination of carbapenem-resistant Acinetobacter baumannii (CRAB) became an urgent public health concern. A specific sequence type (ST) of A. baumannii has been reported to be associated with severity of disease or mortality. This study aimed to determine the genetic relatedness of CRAB blood isolates cultured from patients at a tertiary care hospital and to investigate clinical characteristics and outcome of CRAB bacteremia.

Methods. CRAB blood isolates were collected between June 2016 and December 2018, and their clinical data were obtained. Multi-locus sequence test (MLST) was performed using the Oxford scheme, and the STs were assigned using the MLST database.

Results. Of the 126 CRAB blood isolates, 123 isolates which could be typed by MLST all belonged to clonal complex (CC) 92. During the entire period, ST369 (42.3%) was the most dominant, followed by ST191 (32.5%), ST784 (13.8%) and ST451 (4.1%). ST369 was firstly introduced in August 2017, whereas ST191 (61.4%) was the most abundant during June 2016 to July 2017, whereas ST369 (65.8%) replaced ST191 (16.5%) since August 2017. The time interval between intensive care unit admission and bacteremia was shorter in ST369 than ST191 in multivariate analysis (day; median (Q1, Q3), ST369 6 (3, 9.8), ST191 9 (6, 17), Odds Ratio 0.87 (95% CI 0.76–0.99) P = 0.048 logistic regression). According to the ST, the 7-day and 30-day mortality rates were as follows: 46% and 65% in ST191, 50% and 62% in ST369, and 10.7% and 46.4% in the other STs. Patients infected by ST191 or 369 had significant higher 7-day mortality rates (ST191/369, 48.3% vs. the other STs 10.7%, P = 0.001 by log-rank test) and 30-day mortality rates (ST191/369, 63.2% vs. the other STs 46.4%, P = 0.045 by log-rank test).

Conclusion. This study demonstrates the clonal spread of two STs at a tertiary care hospital in South Korea over 2.5 years. After the introduction of ST369, it replaced ST 191 and widely disseminated within a hospital. Two predominant STs were associated with poor outcome. Continuous surveillance is necessary to monitor the dissemination of these strains.

Disclosures. All authors: No reported disclosures.

546. Seasonal Changes in the Prevalence of Antibiotic-Susceptible Acinetobacter baumannii Results in Increased Multidrug Resistance Rates During Winter Months
Juan J. Galis, MD, PhD and Mario Feldman, PhD; Washington University in St. Louis School of Medicine, St. Louis, Missouri

Session: 60. HAI: MDRO – GNR Epidemiology, Acinetobacter Thursday, October 3, 2019: 12:15 PM

Background. Understanding the seasonal behavior of infections (“seasonality”) caused by Gram-negative pathogens, including Acinetobacter baumannii, is essential for the design of effective healthcare policies; however, the factors mediating seasonality remain elusive.

Methods. Over 2,000 A. baumannii cases identified in the BJC Health System between 2007 and 2017, were retrospectively analyzed according to isolation month, hospital acquisition, anatomical source, and antibiotic susceptibility profile.

Results. Compared with quarter 1 (Q1, December-February), A. baumannii case incidence was similar in Q2 (March-May) but significantly higher in Q3 (June-August) and Q4 (September–November). This seasonality was exhibited by antibiotic-susceptible but not antibiotic-resistant isolates. This was independent of tested antibiotic, anatomic source, or hospital vs. community acquisition.

Conclusion. Seasonality is absent from antibiotic-resistant A. baumannii cases. Selective decrease of antibiotic-susceptible cases in Q1/Q2 results in 50–100% increase in resistance rates compared with Q3/Q4. A. baumannii seasonality is possibly linked to the increased use of antibiotics during winter. As resistance determinants tend to be genetically linked in A. baumannii, pressure from community antibiotics may have the inadvertent effect of selecting for multidrug resistance. This link must be further studied, as it may also explain seasonality in other, more antibiotic-susceptible Gram-negative pathogens.

Disclosures. All authors: No reported disclosures.

547. Multidrug-Resistant Pseudomonas aeruginosa in an Academic Regional Burn Intensive Care Unit
Carolee D. Estelle, MD1; Pranavi Sreeramoju, MD, MPH2; Katherine A. Collinsworth, RN, MSN, CIC3; Donna Gaffney, MT(ASCP), SM4; Lisa Verks, Bachelor of Science in Medical Technology5; Daniel L. Blast, MPH, CPH6; Rita Hollaway, PhD, ABMM7; Dominick Cavuoti, DO8; Karla Voy-Hatter, RN, MPH, MHA, CIC9; Kathryn L. Ehrhart, MPH, MPAS, PA-C10; Katrina Potthavoranant, PA-C, MPAS11; Trish M. Perl, MD, MSc12; and Trish M. Perl, MD, MSc12; 1University of Texas Southwestern, Dallas, Texas; 2UT Southwestern Medical Center, Dallas, Texas; 3Parkland Health and Hospital System,