The alien Black-and-yellow Mud Dauber, *Sceliphron caementarium* (Drury, 1773) (Hymenoptera, Sphecidae), continues its spread: new citizen-science records from Eastern Europe and the Balkans

Jakovos Demetriou1*, Joan Díaz-Calafat2, Konstantinos Kalaentzis3, 4, Christos Kazilas3, 4, Christos Georgiadis5, Giuseppe Fabrizio Turrisi6, Evangelos Koutsoukos7, 8

1 Joint Services Health Unit Cyprus, BFC RAF Akrotiri BFPO 57, Akrotiri, Cyprus • JD: jakovosdemetriou@gmail.com https://orcid.org/0000-0001-5273-7109
2 Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden • JDC: joandiazcalafat@gmail.com https://orcid.org/0000-0002-5823-2176
3 Institute of Biology, Leiden University, Leiden, The Netherlands • KK: konstakal95@gmail.com https://orcid.org/0000-0003-4986-796X • CK: ckazilas@gmail.com https://orcid.org/0000-0003-4962-567X
4 Naturalis Biodiversity Center, Leiden, The Netherlands
5 Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece • cgeorgia@biol.uoa.gr https://orcid.org/0000-0002-2728-3122
6 Independent researcher, Pedara, Catania, Italy • GFT: giuseppefabrizioturrisi@gmail.com
7 Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece • EK: vag18000@gmail.com https://orcid.org/0000-0002-6412-2715
8 Museum of Zoology, National and Kapodistrian University of Athens, Athens, Greece

* Corresponding author

Abstract
The Nearctic *Sceliphron caementarium* (Drury, 1773) is widely distributed in the Western Palearctic and is spreading to new territories. Despite the large quantities of data on citizen-science platforms, these records have been mostly overlooked. In this publication, the first records of *S. caementarium* from six Eastern European and Balkan countries (Albania, Greece, Montenegro, Poland, Serbia, and Slovakia) are presented. Data derived from online citizen-science observations and museum specimens supplement our knowledge of this species’ range. The distribution of this species in Europe and possible ecological implications are discussed.

Keywords
Alien species, biological invasions, citizen science, first record, mud daubers, Western Palearctic

© The authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Public participation in scientific research, also known as “citizen-science” has been found to yield valuable information on species distribution and phenology, population abundance, habitat structure, ecosystem productivity, and disturbance regime (Chadler et al. 2017). The latter is closely associated with alien and invasive alien species (IAS), which have been deemed as one of the main biodiversity threats addressed in the Convention on Biological Diversity 93/626/EEC. EU Regulation 1143/2014 indicates the necessity for early detection and rapid eradication of IAS, as well as the need for establishment of surveillance systems to mitigate negative impacts on biodiversity. Citizen-science data have facilitated numerous times these endeavors, offering an early insight into alien species’ presence, distribution, and abundance, thus providing a powerful tool for biological invasion science (Maistrello et al. 2016; Pocock et al. 2017; Giosvos et al. 2019; Johnson et al. 2020). Nevertheless, despite their valuable contribution in biodiversity research, data collected by citizen scientists rarely make their way into peer-reviewed scientific publications (Theobald et al. 2015; Johnson et al. 2020). The impact and potential of public participation in research seems in most cases to be undermined by professional science, negatively affecting both sides, instead of being embraced and integrated into scientific research (Theobald et al. 2015). Although taxonomic accuracy of photographic observations provided by citizen scientists is considered sometimes problematic (Stafford et al. 2010), many alien species can be easily distinguished from native counterparts due to their distinctive morphological features or taxonomic uniqueness (e.g. Davranoglou and Koutsoukos 2018; Kalaentzis et al. 2019; Kazilas et al. 2020).

In Europe, various alien Sphecidae have been introduced, have established populations, and are currently expanding their range, such as the Grass-carrying Wasp Isodontia mexicana (Saussure, 1867) (Polodori et al. 2018; Turrißi 2020) and several mud daubers belonging to the genera Sceliphron Klug, 1801 and Chalybion Dahlbom, 1843 (Schmid-Egger 2005; Rasplus et al. 2010; Baghirov 2011; Četković et al. 2011; Mei et al. 2012; Mei and Boščík 2016; Mokrousov et al. 2019; Demetriou et al. 2021). The genus Sceliphron is represented by 35 species widespread across all temperate and tropical areas of the world (Bohart and Menke 1976; Pulawski 2020). The Western Palearctic Sceliphron fauna consists of eight species, three of which are alien to the continent, namely: the Oriental S. curvatum (Smith, 1870) and S. deforme (Smith, 1856), as well as S. caementarium, which is native to the Nearctic zoogeographical realm (Četković et al. 2004; Schmid-Egger 2005; Četković et al. 2011).

The global distribution and human-mediated spread of S. caementarium has been remarkable (van der Vecht and van Breugel 1968). Sceliphron caementarium even managed to reach Pacific Islands such as Wallis Island, Samoa, Society Islands, Marquesas Islands, Gambier, Cook Islands, and New Caledonia, as well as Japan in the Eastern Palearctic realm (Krauss 1961; van der Vecht and van Breugel 1968). Since then, even more records have been detected in Japan (Nambu 1975; Takahashi and Shimizu 2001; Terayama 2004) as well as other Asian countries such as Bangladesh (Begum and Bose 1976), China (Hua 2006), Iran (Fallahzadeh et al. 2005, 2009), South Korea (Kim et al. 2014), and India (Gurule et al. 2020). In addition, records of individuals setting foot in Australia and intercepted in New Zealand have been reported (Naumann 1983; Early and Townsend 1993; Harris 1997).

The presumably oldest S. caementarium specimen collected in Europe dates back to 1825 from Madeira (van der Vecht and van Breugel 1968) followed by one in 1942 from Bohemia (Bogusch and Macek 2005). However, according to Vepřek and Straka (2007), the latter was considered controversial and the occurrence had never been confirmed, until its re-collection from the Czech Republic in 2012 (Popelka 2015). To this day, the species has been detected in Austria (Gusenleitner 2002), Belgium (Ravoet et al. 2017), Bosnia and Herzegovina (Ravoet et al. 2017), Bulgaria (Gradinarov 2017), Croatia (Gusenleitner 1996), France (Leclercq 1975) (including Corsica; Bitsch et al. 1997), Germany (Burger 2015), Hungary (Vas and Józan 2014), Italy (Pagliano 1992) (including Sicily; Turrißi and Altdonna 2017 and Sardinia; Cillo and Bazzato 2013), Luxembourg (Schneider and Pelles 1988), Malta (Cassar and Mifsud 2020), the Netherlands (Schmitz 2015), Portugal (Leclercq 1975) (including Madeira; Berland 1946; van der Vecht and van Breugel 1968), Romania (Gagiu 2012), Russia (Danilov 2017), Slovenia (Gogala 2011), Spain (Schmid-Egger 2005) (including the Balearic and Canary Islands; Erlandsson 1977; Diaz-Calafat 2020), Switzerland (Schmid-Egger 2005), and Ukraine (Antropov 1993).

This publication provides the first observational citizen-science records of S. caementarium in several European countries, updating the current distribution of this species in Europe.

Methods

Photographic material and data were examined from the iNaturalist online citizen-science platform (iNaturalist 2021), Observation.org (2021), and other online sources (Dr. M. Friedrich, pers. comm.). Individuals were identified based on the identification keys and species diagnoses of Schmid-Egger (2005), Vas and Józan (2014), and Diaz-Calafat (2020). Only reliable records were taken into account, thus excluding those observations where the angle of the pictures made impossible to observe diagnostic features. When presenting the Greek locality data, information is also given in brackets using the transliteration rules as per Salata et al. (2019). Observational data
concerning Greece were complemented with specimens deposited in the Museum of Zoology of the University of Athens, Greece (ZMUA; Fig.1). Regarding the species spread in Europe, Turrisi and Altadonna (2017) had already included Slovakia within the species’ known distribution. However, this remark was deemed erroneous and not supported by the provided literature (G.F. Turrisi pers. comm.). Although Macek et al. (2010), briefly mentioned finding *S. caementarium* twice from Southern Slovakia in 2008, no further locality data, coordinates, dates, additional metadata, or other information about its establishment and habitat are provided. Thus, the first confirmed georeferenced records, alongside unquestionable photographic material as evidence of the presence of this exotic wasp in Slovakia, are hereafter added to the known distribution of *S. caementarium*.

Results

This research brings attention to several citizen-science observations, so far apparently overlooked, that represent the first record of *S. caementarium* in six European countries (Albania, Greece, Montenegro, Poland, Serbia, and Slovakia), including three Greek islands (Corfu, Ithaki, and Patmos). These new data supplemented by our personal contributions increase our knowledge on the current distribution of *S. caementarium* in Europe (Fig. 2).

After reviewing several citizen-science platforms and authors’ contributions, we found a total of 27 new records from six European countries. Part of these records can be accessed through GBIF (occurrence download https://doi.org/10.15468/dl.ah2w5n).

New records. ALBANIA – **Qarku i Durrësit** • Durrës, Rruga e Yjeve; 41.3161°N, 019.4926°E; 30.VIII.2019; A. Ndoni obs.; iNaturalist (https://www.inaturalist.org/observations/31778923) – **Qarku Vlorë** • Vlorë; 40.4864°N, 019.4771°E; 26.VI.2020; A. Golemaj obs.; 1 ♂; iNaturalist (https://www.inaturalist.org/observations/47413401).

GREECE – **Attika [Attiki]** • Athens [Athina], Kryoneri; 38.1450°N, 023.8340°E; 3.VIII.2016; Dr. Christos Georgiadis leg.; 1 ♀; deposited at the ZMUA (voucher code: ZMUA HYM 00000011) • Nea Peraimos; 38.0012°N, 023.4198°E; 8.VIII.2021; E. Koutsoukos leg.; 1 ♀; deposited at the ZMUA (voucher code: ZMUA HYM 00000241) – **Ionian Islands** • Corfu [Kerkyra], Dassia; 39.68°N, 019.84°E; 8.IX.2011; Dr. M. Friedrich obs.; (https://arthropodafotos.de/dbsp.php?lang=eng&sc=0&ta=t_43_hym_apo_sph&sci=Sceliphron&scisp=caementarium) • Ithaki, Vathi [Vathi]; 38.3608°N, 020.7162°E; 30.VII.2018; J. Mees obs.;

![Figure 1. *Sceliphron caementarium* (Drury, 1773), ♀ specimen deposited at the ZMUA. A. Dorsal view. B. Lateral view. Scale bar = 10 mm. Note the completely black hind femora, yellow scapus and collar.](image-url)
Observation.org ([https://observation.org/observation/observation/161214565](https://observation.org/observation/161214565)) – **South Aegean** • Dodecanese [Dodekanisa], Patmos; 37.3007°N, 026.5545°E; 3.VI.2021; C. Spoorenberg obs.; 1 ♂; Observation.org (https://observation.org/observation/21539100) – **Thessaly** • Trikala, Agios Georgios park; 39.5446°N, 021.7866°E; 13.VII.2019; N. Papageorgiou obs.; 1 ♀; iNaturalist ([https://www.inaturalist.org/observations/28725388]).

MONTENEGRO – **Opština Budva** • Bečići; 42.2837°N, 018.8796°E; 11.VII.2019; E. Meyke obs.; iNaturalist ([https://www.inaturalist.org/observations/28603679]).

Opština Bar • Breca; 42.1327°N, 019.0674°E; 19.VI.2021; N. Несмеянов obs.; iNaturalist ([https://www.inaturalist.org/observations/59576412]) – **Opština Herceg Novi** • Herceg Novi; 42.4573°N, 018.5315°E; 17.IX.2020; D. Lupin obs.; iNaturalist ([https://www.inaturalist.org/observations/89621771]).

Opština Kotor • Kotor; 42.4254°N, 018.7704°E; 9.VII.2021; O. Malikin obs.; 1 ♀; iNaturalist ([https://www.inaturalist.org/observations/86279111]).

POLAND – **Małopolskie** • Gorlice; 49.660°N, 020.800°E; VIII.2021; username: rece69 obs.; iNaturalist ([https://www.inaturalist.org/observations/91391207]).

SERBIA – **Južnobanatski okrug** • Južno-Banatski, Vrsac; 45.111187°N, 021.295293°E; 11.IX.2020; B. Radeka obs.; 2 ♀♀; iNaturalist ([https://www.inaturalist.org/observations/26109651]) – **Severnobački okrug** • Severno-Bački, Subotica; 46.0684°N, 019.7661°E; 4.VIII.2019; M. Bárta obs.; 1 ♀; iNaturalist ([https://www.inaturalist.org/observations/30384199]) – **Srednjobanatski okrug** • Srednje-Banatski, Zrenjanin; 45.3800°N, 020.3603°E; 2.VIII.2021; I. Pancic obs.; 1 ♀; iNaturalist ([https://www.inaturalist.org/observations/89621771]).

SLOVAKIA – **Bratislavský kraj** • Bratislava; 48.1458°N, 017.0733°E; 31.VII.2021; F. Bednar obs.; 1 ♂; iNaturalist ([https://www.inaturalist.org/observations/89706820]).

Figure 2. Current known distribution of the alien *Sceliphron caementarium* (Drury, 1773) in the study area. Countries where the species has been previously reported are shaded red, while new records are depicted with dots. The map was created with QGIS, v. 3.14.16. Inset: *S. caementarium* (photo by Judy Gallagher).
017.1501°E; 22.VIII.2020; M. Beděra obs.; iNaturalist (https://www.inaturalist.org/observations/57216019)
• Bratislava, Senec; 48.0341°N, 017.2272°E; 6.IX.2020; username: oblong obs.; 1 ♀; iNaturalist (https://www.inaturalist.org/observations/58728425) • Bratislava, Senec; 48.183972°N, 17.247784°E; 28.IX.2021; V. Hemana obs.; iNaturalist (https://www.inaturalist.org/observations/96556833) – Nitriansky kraj • Nitriansky, Levice, Levické laka; 48.2861°N, 018.6172°E; 2.VII.2020; P. Hoffmann obs.; 1 ♀; iNaturalist (https://www.inaturalist.org/observations/28602171) • Nitriansky, Levic; 48.1888°N, 018.6145°E; 25.VIII.2019; P. Hoffmann obs.; 2 ♀; iNaturalist (https://www.inaturalist.org/observations/31540931) – Trenčiansky kraj • Prievídza, Lehota pod Vtáčnikom; 48.6986°N, 018.6086°E; 29.VIII.2020; F. Vida obs.; 1 ♀; iNaturalist (https://www.inaturalist.org/observations/57915716) – Trnavský kraj • Trnavský, Hlohovec; 48.4267°N, 017.7977°E; 21.VIII.2021; E. Uhrakova obs.; 1 ♀; iNaturalist (https://www.inaturalist.org/observations/92018292).

Identification. The species can be distinguished by its yellow scapus, black mesosoma with yellow collar, tegula, scutellum, and postscutellum, and two yellow spots on the mesopleuron. These yellow markings can be more-or-less obvious depending on the specimen’s population and its provenance. The propodeum is yellow and the first metasomal tergite usually bears a yellow spot. Hind femora are completely black, as opposed to other Sceliphron species found in Europe. The petiole is usually black, or quite less frequently yellow or bicolored yellow/black (Schmid-Egger 2005; Vas and Józan 2014; Díaz-Calafat 2020).

Discussion
In most cases, S. caementarium seems to have established viable populations in its newly recorded invaded countries. This is evidenced by both individuals being recorded at least during the last two years but also by the presence of females either collecting nesting material or building a nest itself, meaning a successful copulation and implicating breeding that could secure a viable population. In addition, it is of significant interest that the first photographic record of S. caementarium from Greece was taken in 2011 (Corfu), while the lone specimen from the ZMUA was collected in 2016 (Athens). The remaining citizen-science observations from Greece unveil an extended distribution in the country, with potentially alarming impacts towards native biodiversity in fragile island ecosystems (Reaser et al. 2017). Such an example reinforces the positive impact of citizen-science data in mapping alien species’ distribution, setting the approximate timeframe of initial invasion and assessing their status. Regarding Poland, more research is due in order to clarify the presence of established populations as just one citizen science observation was detected. The present study deems the Nearctic S. caementarium widely distributed in the Western Palearctic, currently present in 26 countries (Fig. 2). Taking into account the extensive distribution of the species in Eastern Europe and the Balkans, the species is predicted to be found in neighboring countries such as North Macedonia, Moldova, and Turkey. Nevertheless, based on the repeated history of unsuccessful introductions of this species in Europe (Leclercq 1975; Bogusch and Macek 2005), it is difficult to assess the invasion history of such wasp in the Old World without taking a molecular approach.

Most observations were made in urban and semi-urban areas and involved the nesting activities of S. caementarium, which have been associated with human settlements (Bohart and Menke 1976). As in the case of S. curvatum, urban areas may be facilitating the spread of S. caementarium into higher latitudes (Polidori et al. 2021). Therefore, further research could shed a light into the potential distribution of the species based on its ecological and climatic requirements, taking into account how climate change may affect its dispersal and possibility of establishment. Furthermore, taking into account the sporadic reports of the species in countries such as the Czech Republic (Bogusch and Macek 2005; Popelka 2015) where populations may have gone extinct and recently accidentally re-introduced, countries numbering only a handful of records (e.g. Albania and Poland) and countries with multiple records such as Italy (Pagliano 1992, 1995, 2009; Strumia 1996; Grillenzeno and Pesarini 1998; Pagliano et al. 2000; Hellríg 2004, 2006, 2012; Schmid-Egger 2011; Ceccolini and Paggetti 2011, 2012; Cillo and Bazzato 2013; Dollfuss 2016; Turrisi and Altadonna 2017), a molecular approach could help assess the invasiveness and management of this species in Europe. A genomic analysis such as that of Kotsakiozi et al. (2017) on Aedes albopictus (Skuse, 1894) could unveil the number of different introductions in the Western Palearctic, the species’ pathways of spread, origin, genetic structure, and differentiation of populations. Thus, such a genomic analysis would assist monitoring efforts by predicting invasion patterns and establishment based on climate matching between source and invasive localities (Kotsakiozi et al. 2017).

Various researchers have commented on the potential ecological threats of alien Sceliphron spp., with Ćetković et al. (2011) stating them as “potentially invasive”. The existing knowledge concerning the invasiveness of alien Sceliphron spp. is summarized by Turrisi and Altadonna (2017) and Díaz-Calafat (2020). The alien species has been shown to gradually replace native Sceliphron species; e.g. S. spirifex in southern France (Pieck 1986; Hamon et al. 1994) and S. destillatorium in Italy (Campanelli et al. 1999). According to Díaz-Calafat (2020), S. caementarium, S. curvatum, and S. spirifex were observed collecting nesting material without showing strong signs of interspecific competition. The same conclusions were drawn by Bitsch (2010), while observing coexisting S. caementarium, S. curvatum, and S. destillatorium populations. Furthermore, S. caementarium has
been found to prey upon native European spiders of the families Araneidae and Oxyopidae (Gros 2020). Some of these species are also known prey of *S. distillatorium*, such as *Argiope lobata* (Pallas, 1772) and *Neoscona adianta* (Walckenaer, 1802) (Fateryga and Kovblyuk 2014). On the other hand, although no trophic niche partitioning was found between *S. caementarium* and native *S. spirifex* in Italy (Polidori et al. 2007), foraging and resource use of *S. caementarium* has been shown to vary, with both specialists and generalists coexisting within a population (Powell and Taylor 2017). A more recent study in Italy, classified the species as having minor impacts on native biodiversity (Molfini et al. 2020). This conclusion was derived from a single article on the presence of *S. caementarium* in Liguria (Pagliano 1995) despite of more than a dozen of articles addressing its ecology, distribution, and impacts (Pagliano 1992, 2009; Strumia 1996; Grillenzoni and Pesarini 1998; Pagliano et al. 2000; Hellrigl 2004, 2006, 2012; Schmid-Egger 2011; Ceccolini and Paggetti 2011, 2012; Cillo and Bazzato 2013; Dollfuss 2016; Turrisi and Altadonna 2017). Thus, a detailed, quantitative study of trophic resources and nesting sites across the invaded range of *S. caementarium* would be highly encouraged, in order to carefully evaluate the possible ecological niche overlapping with native species and carefully assess its invasiveness over the time (Diaz-Calafat 2020). Thus, even though more research is needed regarding the trophic preferences, nesting ecology and species interrelationships of *S. caementarium* in Europe [currently restricted to Campadelli et al. (1999) and Gros (2020)], it seems that the ecological impacts of *S. caementarium*, as well as other alien *Sceliphron* spp. on native biodiversity have not been adequately explored yet.

In conclusion, the alien *S. caementarium* has managed to spread throughout the vast majority of Europe without receiving adequate attention regarding its presence, population abundances, and invasiveness. This is evidenced both by the minimal contributions regarding national or European data surrounding its nesting ecology and species interrelationships as well as the sheer volume of overlooked available data found in citizen-science platforms (e.g. iNaturalist, Observation.org). As highlighted by this study, citizen scientists can be a valuable source of information regarding the detection and spread of alien species. Moving forward, public participation in scientific research could be harnessed towards unravelling the invasiveness and ecological interactions of *S. caementarium* with native biodiversity. Countries such as Greece, Montenegro, and Russia, where all three alien *Sceliphron* spp. have been reported, should be of special interest, as to the possible ecological impacts lurking (Četković et al. 2011).

Acknowledgements

We kindly thank all citizen scientists and researchers for the data and photographs of their observations. Namely, we are grateful to Aleksander Golemaj and Arjan Ndoni (Albania), Nikolaos Papageorgiou and Dr. Marion Friedrich (Greece), Evgeniy Meyke and Oleksandr Malikin (Montenegro), and Slobodan Stevčić (Serbia), as well as Peter Hoffmann and Martin Bedéra (Slovakia) for their critical contribution to this manuscript. We are also thankful to Judy Gallagher for providing photographic material. We are highly grateful to Dr. Wojciech J. Pulawski (California Academy of Sciences) for the provision of literature on *S. caementarium*. Finally, we would like to thank our reviewers Dr. Petr Bogusch, Dr. Michael Ohl, and the academic editor, Dr. Filippo Di Giovanni, for their suggestions, improvements, and comments on the manuscript. This article is based upon work from COST Action CA17122 – Alien CSI, supported by COST (European Cooperation in Science and Technology), http://www.cost.eu.

Authors’ Contributions

Conceptualization: EK, JD. Data curation: JD, CK, KK. Formal analysis: KK, JD, CK. Funding acquisition: JD. Investigation: CG, GFT, JD, KK, CK, EK, JDC. Methodology: JD, EK. Project administration: JD, EK. Resources: CG. Supervision: EK. Validation: JD, GFT, CK. Visualization: KK, JD, CK. Writing – original draft: CK, KK, JD, JDC, EK. Writing – review and editing: CG, JD, EK, KK, JDC, GFT, CK.

References

Antropov AV (1993) Заметки о трех малоизвестных палеарктических видах роющих ос (Hymenoptera, Sphecidae) [Notes on three little known Palaearctic species of digger wasps (Hymenoptera, Sphecidae)]. Zoologicheskii Zhurnal 72 (10): 156–158 [in Russian].

Baghirov RT (2011) First record of the digger wasp *Chalybion turanicum* (Gussakovskij, 1935) (Hymenoptera: Sphecidae) from Russia. Far Eastern Entomologist 222: 24.

Begum A, Bose SK (1976) A systematic account of the solitary wasps of *Dacca City and its suburbs* (Hymenoptera: Sphecidae). Journal of the Asiatic Society of Bangladesh. Science. 2: 25–27.

Berland L (1946) Capture énigmatique d’une guêpe américaine à Ver- sailles. L’Entomologiste 2: 227–228.

Bitsch J (2010) Compléments au volume 2 des Hyménoptères Sphecidae d’Europe occidentale (Faune de France 82). Bulletin de la Société Entomologique de France 115 (1): 99–136.

Bitsch J, Barbier Y, Gayubo S, Schmidt K, Ohl M (1997) Hyménoptères Sphecidae de l’Europe occidentale. Vol. 2. Faune de France, 82. Fédération Française des Sociétés de Sciences Naturelles, Paris, France, 1–V + 429 pp.

Bogusch P, Maciej J (2005) *Sceliphron caementarium* (Drury, 1773) in the Czech Republic in 1942 – first record from Europe? Linzer biologische Beiträge 37: 1071–1075.

Bohart RM, Menke AS (1976) Sphecid wasps of the world. A generic revision. University California Press, Berkeley, USA, 695 pp.

Burger R (2015) Nachweise der Großen Mörtelgrabwespe *Sceliphron destillatorium* in Mannheim and Angaben zur aktuellen Verbreitung der neozeitlichen Grabwaspen *Sceliphron curvatum*, *S. caementarium* und *Isodontia mexicana* in Rheinland-Pfalz (Hymenoptera: Sphecidae). Pollichia-Kurier 31 (1): 9–15.

Campadelli G, Pagliano G, Scararomazzino PL, Strumia F (1999) Parasitoidi e inquilini di *Sceliphron caementarium* (Drury, 1773) (Hy-
menoptera: Sceliphron caementarium) in Romagna. Bollettino del Museo Regionale di Scienze Naturali di Torino 16: 225–240.

Cassar T, Mifsud D (2020) The introduction and establishment of Sceliphron caementarium (Drury, 1773) (Hymenoptera, Sphecidae) in Malta (Central Mediterranean). Journal of Hymenoptera Research 79: 163–168. https://doi.org/10.3897/jhr.79.58659

Ceccolini F, Paggetti E (2011) Note sulla distribuzione degli Sceliphron italiani con nuovi dati corologici per le specie alloctone (Insecta Hymenoptera Sphecidae). Quaderno di Studi e Notizie di Storia Naturale della Romagna 34: 111–118.

Ceccolini F, Paggetti E (2012) Segnalazioni faunistiche. 120 - Sceliphron caementarium (Drury, 1773) (Insecta Hymenoptera Sphecidae). Quaderno di Studi e Notizie di Storia Naturale della Romagna 36: 208–209.

Četković A, Mokrousov M, Pleeas M, Bogusch P, Antić D, Dorović-Jovanović L, KRP-O-Cetković J, Karaman M (2011) Status of the potentially invasive Asian species Sceliphron deforme in Europe, and an update on the distribution of S. curvatum (Hymenoptera: Sphecidae). Acta Entomologica Serbica 16(1/2): 91–114.

Četković A, Radović I, Dorović L (2004) Further evidence of the Asian mud-daubing wasps in Europe (Hymenoptera: Sphecidae). Entomological Science 7: 225–229. https://doi.org/10.1111/j.1479-8298.2004.00067.x

Chadler M, See L, Copas K, Bonde AMZ, López BC, Danielsen F, Ćetković A, Radović I, Dorović L, Stangeella magnana 36: 208–209.

Díaz-Calafat J (2020) First record of Sceliphron caementarium (Hymenoptera: Sphecidae), new to the Romanian fauna. Nymphaea 39: 105–109.

GBIF.org (2021) GBIF occurrence download. GBIF Secretariat, Copenhagen, Denmark. https://doi.org/10.15468/di.ah2w5n. Accessed on: 2021-11-02.

Giovos I, Kleitou P, Poursanidis D, Batjakas I, Bernardi G, Crocetta F, Dounpas N, Kalogirou S, Kampouris TE, Keramidas I, Lanegeek J, Maximidi M, Mitsou E, Stoilas VO, Tiralongo F, Romanidis – Kyriakidis G, Xentidis NJ, Zenetos A, Katsanevakis S (2019) Citizen-science for monitoring marine invasions and stimulating public engagement: a case project from the eastern Mediterranean. Biological Invasions 21: 3707–3721. https://doi.org/10.1007/s10530-019-02083-w

Gogala A (2011) Scyphid wasps of Slovenia (Hymenoptera: Ampulicidae, Sphecidae and Crabronidae). Scopolia 73: 1–39.

Gradinarov D (2017) First records of the American wasps Sceliphron caementarium (Drury, 1770) and Isodontia mexicana (de Saussure, 1867) (Hymenoptera: Sphecidae) from Bulgaria. ZooNotes 118: 1–4.

Grillenzoni G, Pesarini F (1998) Due nuovi Sfieci della fauna esotica rinvenuti a Ferrara Hymenoptera Sphecidae). Annali del Museo Civico di Storia Naturale di Ferrara 1: 83–85.

Gros E (2020) Nouvelles observations sur le comportement de quelques espèces de Spégéciformes palearctiques (Hymenoptera, Ampulicidae, Sphecidae, Crabronidae). Bulletin de la Société Entomologique de France 125: 395–403. https://doi.org/10.32475/besf_2136

Gurule SA, Jadhav TA, Gangurde JH (2020) Hymenopteran fauna inhabiting K.T.H.M. College Campus, Nashik, Maharashtra. Flora and Fauna 26: 149–155.

Gusenleitner J (1996) Hymenopterologische Notizen aus Österreich - 4 (Insecta: Hymenoptera aculeata). Linzer Biologische Beiträge 28(1): 5–13.

Gusenleitner J (2002) Hymenopterologische Notizen aus Österreich - 15 (Insecta: Hymenoptera aculeata. Linzer Biologische Beiträge 34(2): 1132–1126.

Hamon J, Fonfría R, Clary J, Eyraud M, Schwartz F, Carriere J (1994) Données complémentaires sur la distribution de Sceliphron caementarium en Europe (Hymenoptera, Sphecidae). L’Entomologiste 50: 343–345.

Harris AC (1997) A nest and life-history stages of Sceliphron caementarium (Hymenoptera: Sphecidae) reared in Europe, and an update on the distribution of Sceliphron deforme in Europe, and an update on the distribution of S. curvatum (Hymenoptera: Sphecidae). The New Zealand Entomologist 15 (Insecta: Hymenoptera aculeata). L’Entomologiste 50: 343–345.

Hellrigl K (2006) Rasche Ausbreitung eingeschleppter Neobiota (Neozoen und Neophyten) – Increasing invasion and expansion – of alien species (Neobiota). Forest Observer 2–3: 349–388.

Hellrigl K (2012) Neue Fundnachaben zu einigen Fluginspektren in Südtirol. Forest Observer 6: 117–138.

Huá L (2006) Superfamily Apoidea (Sphecoidea), In: Huá L (Ed.) List of Chinese insects. Vol. IV. SunYat-sen University Press, Guangzhou, China, 274–299.

Inaturalist (2021) https://www.inaturalist.org. California Academy of Sciences and the National Geographic Society, USA. Accessed on: 2021-11-02.

Johnson BA, Mader AD, Dasgupta R, Kumar P (2020) Citizen science and invasive alien species: an analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Global Ecology and Conservation 21: 1–14. https://doi.org/10.1016/j.gca.2019.e00812

Dollfuss H (2016) The Chloriontinae, Sceliphrinae and Scepinus spp. of the “Biologiezentrum Linz”-collection in Linz, Austria including the genera Chalybion Dahlbom, Chlorion Latreille, Dy-natus Lepeletier de Saint Fargeau, Penepodium Menke, Podium Fabricius, Sceliphron Klug, Stangenelo Menke and Trigonopsis Perty (Hymenoptera, Apoidea, Sphecidae) and description of the new species Chalybion ohli from Madagascar. Linzer Biologische Beiträge 48: 1149–1185. http://doi.org/10.5251/zenodo.5354686

Early JW, Townsend JJ (1993) Further New Zealand records of Sceliphron (Hymenoptera: Sphecidae). The New Zealand Entomologist 16: 52–54.

Erlandsson S (1977) Notes of aculeate Hymenoptera from the Macaronesian Islands. Vieraea: Folia Scintarum Biologicarum Canar-iensium 7: 201–206.

Fallahzadeh M, Ostovan H, Saghaei N (2009) A contribution to the fauna of Sphecidae and Crabronidae (Hymenoptera) in Fars Province, Iran. Plant Protection Journal 1: 234–248.

Fallahzadeh M, Ostovan H, Shoaij M (2005) First record of four sphe-
cid wasps from Iran. Applied Entomology and Phytopathology 73: 43.

Fatyrya AV, Kovblyuk MM (2014) Nesting ecology of the wasps Sceliphron destillatorium (Illiger, 1807) (Hymenoptera, Sphecidae) in the Crimea. Entomological Research 9: 330–336. https://doi.org/10.1134/s001387381403004x

Gagiu A (2012) Sceliphron caementarium (Hymenoptera, Sphecidae), new to the Romanian fauna. Nymphaea 39: 105–109.

GBIF.org (2021) GBIF occurrence download. GBIF Secretariat, Copenhagen, Denmark. https://doi.org/10.15468/di.ah2w5n. Accessed on: 2021-11-02.
nel territorio Pisano (Hymenoptera: Sphecidae). Frustula Entomologica 32:176–179.

Takahashi H, Shimizu A (2001) Notes on a collection of Hymenoptera, from the Ogasawara Islands, in the insect collection of the Laboratory of Systematic Zoology, Tokyo Metropolitan University. Ogasawara Research 32: 9–20.

Terayama M (2004) Aculeate wasps from two islands, the Volcano Islands. Tsunekibachi 2: 1–5.

Tewksbury J, HilleRisLambers J, Tewksbury J, Harsch MA, Parrish JK (2015) Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation 181: 236–244. https://doi.org/10.1016/j.biocon.2014.10.021

Turrisi GF (2020) Further spread of the alien invasive sphecid wasp *Isodontia mexicana* (Saussure, 1867) (Hymenoptera, Sphecidae) in Italy. Redia 103: 55–64. https://doi.org/10.19263/redia-103.20.10

Turrisi GF, Altadonna G (2017) A report on two alien invasive species of the genus *Sceliphron* Klug, 1801 (Hymenoptera Sphecidae) from Sicily, with a brief faunistic update on the native species. Biodiversity Journal 8 (2): 753–762.

van der Vecht J, van Breugel FMA (1968) Revision of the nominate subgenus *Sceliphron* Latreille (Hymenoptera, Sphecidae) (Studies on the Sceliphronini, Part I). Tijschrift voor Entomologie 111: 185–255.

Vas Z, Józan Zs (2014) New data and a key to Hungary’s wasp fauna (Hymenoptera: Sphecidae). Natura Somogyiensis 24: 157–164.

Vepřek D, Straka J (2007) Apoidea: Spheciformes (kutilky). In: Bogusch P, Straka J, Kment P (Eds.) Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia. Acta Entomologica Musei Nationalis Pragae, Supplementum 11: 191–239.