A multidrug-resistant *Escherichia coli* isolate from an abdominal lesion displayed resistance to all β-lactams tested, including carbapenems, in addition to macrolides, fluoroquinolones, and tetracycline. Sequence analyses demonstrated the presence of \(\text{bla}_{\text{NDM-5}} \) in addition to at least 13 genes and 6 efflux pumps associated with antibiotic resistance.

References

1. Bush K. 2010. Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant gram-negative infections. Crit Care 14:224–232. http://dx.doi.org/10.1186/cc8892.
2. Perez F, van Duin D. 2013. Carbapenem-resistant *Enterobacteriaceae*: a menace to our most vulnerable patients. Cleve Clin J Med 80:225–233. http://dx.doi.org/10.3949/ccjm.80a.12182.
3. Nordmann P, Cuzon G, Naas T. 2009. The real threat of *Klebsiella* multiresistant Gram-negative bacteria are an increasing public health threat, particularly the emergence of carbapenem-resistant *Enterobacteriaceae* (CRE). Limited therapeutic options exist for infections caused by CRE, which can be associated with high mortality (1, 2). Although carbapenem resistance may result from a variety of mechanisms, the most concerning is the production of carbapenemases, including *Klebsiella pneumoniae* carbapenemase (KPC), the most common carbapenemase among *Enterobacteriaceae* in the United States (3). The recent emergence of the New Delhi metallo-β-lactamase (NDM) is of great concern globally. Whole-genome sequencing (WGS) is becoming an important tool for providing the capacity to detect emerging variants of known resistance genes as well as novel antibiotic resistance mechanisms through surveillance (4).

Numerous multidrug-resistant *Escherichia coli* isolates were obtained during the course of an investigation into health care-associated transmission in a tertiary care facility (5). All 39 outbreak-related isolates were very closely related (>92% similar) by pulsed-field gel electrophoresis (PFGE) and by WGS analysis (range, 1 to 28 single nucleotide polymorphisms in the core genome). One isolate, *E. coli* 1400026, obtained from an abdominal lesion, was selected for the annotation described here. DNA was extracted using the Maxwell 16 (Promega, Madison, WI) instrument. The availability of this genomic sequence enables further comparative genomic analyses within *E. coli* strains and also provides information on the genetic background of antibiotic resistance.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. JTKA00000000. The version described in this paper is version JTKA01000000.

Acknowledgment

This work was made possible through support from the Advanced Molecular Detection (AMD) initiative at Centers for Disease Control and Prevention.

References

1. Bush K. 2010. Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant gram-negative infections. Crit Care 14:224–232. http://dx.doi.org/10.1186/cc8892.
2. Perez F, van Duin D. 2013. Carbapenem-resistant *Enterobacteriaceae*: a menace to our most vulnerable patients. Cleve Clin J Med 80:225–233. http://dx.doi.org/10.3949/ccjm.80a.12182.
3. Nordmann P, Cuzon G, Naas T. 2009. The real threat of *Klebsiella*
pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. http://dx.doi.org/10.1016/S1473-3099(09)70054-4.

4. Köser CU, Ellington MJ, Peacock SJ. 2014. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30:401–407.

5. Epstein L, Hunter JC, Arwady MA, Tsai V, Stein L, Gribogiannis M, Frias M, Guh AY, Laufer AS, Black S, Pacilli M, Moulton-Meissner H, Rasheed JK, Avillan JJ, Kitchel B, Limbago BM, MacCannell D, Lonsay D, Noble-Wang J, Conway C, Vernon M, Kallen AJ. 2014. New Delhi metallo-β-lactamase–producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 312:1447–1455. http://dx.doi.org/10.1001/jama.2014.12720.

6. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151. http://dx.doi.org/10.1111/j.1365-2958.2006.05172.x.

7. Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler H, Ewers C. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7:e53039. http://dx.doi.org/10.1371/journal.pone.0053039.

8. Zhang X, Lou D, Xu Y, Shang Y, Li D, Huang X, Li Y, Hu L, Wang L, Yu F. 2013. First identification of coexistence of blaNDM-1 and blaCMY-42 among Escherichia coli ST167 clinical isolates. BMC Microbiol 13:282–289. http://dx.doi.org/10.1186/1471-2180-13-282.

9. Cuzon G, Bonnin RA, Nordmann P. 2013. First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PLoS One 8:e61322. http://dx.doi.org/10.1371/journal.pone.0061322.

10. Delcher AL, Blatke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. http://dx.doi.org/10.1093/bioinformatics/btm009.

11. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. http://dx.doi.org/10.1093/nar/25.5.0955.

12. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

13. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. http://dx.doi.org/10.1093/jac/dks261.