Deciphering the photophysical kinetics, electronic configurations and structural conformations of Iridium-Cobalt Hydrogen Evolution Photocatalysts

Jiangyun Zhao¹, Simon De Kreijger², Ludovic Troian-Gautier², Jin Yu³, Wenhui Hu⁴, Xiaoyi Zhang³, Benjamin Elias*², Dooshaye Moonshiram*¹

¹. Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain

². Institute of Condensed Matter and Nanoscience, Molecular Chemistry, Materials and Catalysis Division, Place Louis Pasteur 1, Louvain-la-Neuve, Belgium

³. X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, U.S.A

⁴. Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, U.S.A

Emails: dooshaye.moonshiram@csic.es, benjamin.elias@uclouvain.be
Experimental Details

Extended X-ray Absorption Fine Structure (EXAFS) Analysis. Athena software\(^1\) was used for data processing. The energy scale for each scan was normalized using cobalt and iridium metal standard. Data in energy space were pre-edge corrected, normalized, de-glitched (if necessary), and background corrected. The processed data were next converted to the photoelectron wave vector (k) space and weighted by \(k^2\). The electron wave number is defined as \(k = [2m(E - E_0)/h^2]^{1/2}\), \(E_0\) is the energy origin or the threshold energy. K-space data were truncated near the zero crossings \(k = 2\) to \(11\) Å\(^{-1}\) for the Co and Iridium complexes’ ground states Co/Ir EXAFS Fourier transformation. The k-space data were transferred into the Artemis Software for curve fitting. In order to fit the data, the Fourier peaks were isolated separately, grouped together, or the entire (unfiltered) spectrum was used. The individual Fourier peaks were isolated by applying a Hanning window to the first and last 15% of the chosen range, leaving the middle 70% untouched. Curve fitting was performed using \textit{ab initio}-calculated phases and amplitudes from the FEFF8\(^2\) program from the University of Washington. \textit{Ab initio}-calculated phases and amplitudes were used in the EXAFS equation (Equation 1),

\[
\chi(k) = S_0^2 \sum_j \frac{N_j}{kR_j^2} f_{\text{eff}}(\pi, k, R_j) e^{-2\sigma^2 k^2} e^{-2R_j/k} \sin(2kR_j + \phi_j(k))
\]

(Equation 1)

where \(N_j\) is the number of atoms in the \(j^{th}\) shell; \(R_j\) the mean distance between the absorbing atom and the atoms in the \(j^{th}\) shell; \(f_{\text{eff}}(\pi, k, R_j)\) is the \textit{ab initio} amplitude function for shell \(j\), and the Debye-Waller term \(e^{-2\sigma^2 k^2}\) accounts for damping due to static and thermal disorder in absorber-backscatterer distances. The mean free path term \(e^{-2R_j/k}\) reflects losses due to inelastic scattering, where \(\lambda_j(k)\), is the electron mean free path. The oscillations in the EXAFS spectrum are reflected in the sinusoidal term \(\sin(2kR_j + \phi_j(k))\), where \(\phi_j(k)\) is the \textit{ab initio} phase function for shell \(j\). This sinusoidal term shows the direct relation between the frequency of the EXAFS oscillations in k-space and the absorber-backscatterer distance. \(S_0^2\) is an amplitude reduction factor.

The EXAFS equation\(^4\) (Eq. 1) was used to fit the experimental Fourier isolated data (q-space) as well as unfiltered data (k-space) and Fourier transformed data (R-space) using \(N, S_0^2, E_0, R, \) and \(\sigma^2\) as variable parameters (Table S1). \(N\) refers to the number of coordination atoms surrounding Co/Ir for each shell. The quality of fit was evaluated by R-factor and the reduced Chi\(^2\) value. The deviation in \(E_0\) ought to be less than or equal to 10 eV. R-factor less than 2% denotes that the fit is good enough. R-factor between 2 and 5% denotes that the fit is correct within a consistently broad model. The reduced Chi\(^2\) value is used to compare fits as more absorber-backscatter shells are included to fit the data. A smaller reduced Chi\(^2\) value implies a better fit. Similar results were obtained from fits done in k, q, and R-spaces.
Steady-state and time-resolved XAS measurements. Steady-state and time-resolved X-ray absorption spectra were collected at 11 ID-D3 beamlines at the Advanced Photon Source using undulator radiation at electron energy 7.71 KeV (Co K-edge) and 11.22 KeV (Ir L\textsubscript{3}-edge) in solvent grade acetonitrile. The samples were circulated through a stainless-steel nozzle into a free-flowing cylindrical jet inside an airtight aluminum chamber, and continuously degassed with nitrogen. This sample handling technique ensures proper sample recovery such that the subsequent laser pulse can hit a “fresh” sample position.

Cooled running water from a chiller was additionally circulated around the jacketed sample flask to prevent heating damage of the complexes by radiation. The X-ray fluorescence signals were collected with two avalanche photodiodes (APDs) positioned at 90° on both sides of the liquid jet, and a combination of Z-1 filters and soller slits with conical geometry were used to reduce the background from elastically scattered X-rays.

The experiments were carried out using the 24 bunch timing mode of APS (in top up mode with a constant 102 mA ring current) which consists of a train of X-rays separated by 153 ns. This mode easily allows for gateable detectors that selects X-ray pulses. This timing mode was suitable for this type of experiments in which the separation between adjacent X-ray pulses was long enough for the Avalanche Photodiode (APD) detector to resolve individual X-ray pulses.

The time-resolved experiments were carried out by pumping the samples at 400 nm wavelength using a regenerative amplified laser with 10 kHz repetition rate 5 ps-FWHM pulse length and laser power of 630 mW at the sample. The X-ray and laser beam was spatially overlapped with an X-ray spot size of 100 μm(V) x 450 μm(H) and laser spot size of 170 μm(V) x 550 μm. With a liquid flow speed of around 4.5 m/s, the pumped laser volume was calculated to move out of the FWHM laser pulse region in around 20 μs. This temporal range ensured that the excited state volume was probed more at the centre and less at the edges where the excitation fraction would be less, due to movement of the sample. Beamline 11 ID-D has an automated data digitization system which allows for all X-ray pulses after laser excitation to be collected. Such a system, together with the larger X-ray beam spot size, was very useful for our experiments, as multiple X-ray pulses after laser excitation were averaged to monitor the dynamics for the formation and decay of the Co(II) transient signal in the nano-microsecond time regime.

The UV-vis measurements of the dyads before and after X-ray and laser exposure were checked after each run to ensure lack of X-ray and laser damage of the complexes. The laser-on XAS of the dyads at both Co K-edge and Ir L\textsubscript{3}-edge energies were further checked scan by scan at every 20 min interval to ensure lack of X-ray radiation and laser-induced damage (Figure S6). The “laser-on” X-ray measurements of the dyads I and II collected over one batch of experiments after laser exposure and over the course of 2.7 hours at Co K-edge and Ir L\textsubscript{3}-edge energies are shown in Figure S6. No decomposition of the dyads was hereby observed, thus ensuring the samples’ integrity.

The delay between the pump and X-ray pulses was adjusted by a programmable delay line (PDL-100A-20NS, Colby Instruments). A Co/Ir metal foil was placed between two ionization chambers downstream to the X-ray beam, and its transmission recorded with each scan for energy calibration.
Optical Transient Absorption Measurements. Ultrafast transient absorption spectroscopy was carried out at the Center for Nanoscale materials at Argonne National Laboratory with an amplified Ti-sapphire laser (Spectra Physics, Spitfire Pro) at 1 KHz repetition rate and an automated data acquisition system (Ultrafast Systems, Helios). The Ir dyads and Ir complexes were pumped with 405 nm excitation and typical pulse energy of 300 nJ per pulse, and probed with a super-continuum (Ultrafast systems, Helios) light source. The transient absorption data included a set of two-dimensional data together with kinetics spectra for a probe wavelength of 450 to 750 nm. The temporal chirp in the optical transient absorption data of the probe beam were corrected using the non-resonant response of blank water, and acetonitrile solvent, the latter of which gave an IRF of 400 fs. The samples were degassed with N$_2$ gas and continuously magnetically stirred in a 2 mm cuvette.

DFT Calculations. The DFT optimization calculations were performed using the ORCA (Version 5.0) program package developed by Neese4 and co-workers. The geometry optimizations were carried out using the solid-state (XRD) as a starting point. The calculations were carried out using the BP86 exchange-correlation functional5 in combination with the triple zeta valance polarization functions (def2-TZVP)6, and the atom-pairwise dispersion correction with the Becke-Johnson damping scheme (D3BJ)7,8. The RI9 approximation were used to accelerate Coulomb and exchange integrals for the ground and excited state calculations respectively. The default GRID settings were further used for the self-consistent field iterations and for the final energy evaluation. The calculated structures were confirmed to be minima based on a check of the energies and the absence of imaginary frequencies from frequency calculations carried out on the optimized geometries.

Time-dependent (TD)-DFT XANES Calculations. Time-dependent DFT (TD)-DFT calculations for the XANES spectra of the Cu complexes were carried out using the hybrid-DFT functional B3LYP due to its preferred use in predicting spectroscopic features.10 The TD-DFT XANES simulations were in this case performed with the B3LYP11,12 as functional with the def2-TZVP triple-zeta11,12 basis sets together with the ZORA approximation and D3BJ dispersion correction effects with dense integration grids. The def2-TZVP/J auxiliary basis set was also employed. The XANES absorption spectra from the TD-DFT calculations were shifted in energy, by -5 eV relative to the experimental data as previously demonstrated$^{13-15}$, and a broadening of 2.0 eV was applied to all calculated spectra. Up to 150 roots were calculated. The calculated XANES spectrum contains contributions from electric quadrupole, electric dipole and magnetic dipole transitions. All spectra were broadened with a Gaussian line shape of 2.0 eV (FWHM).
Table S1. EXAFS Fits parameters for Co and Ir-based complexes

Complex	Fit	Region	Shell, N	R, Å	E₀	ss.² (1₀⁻³)	R-factor	Reduced Chi-square			
Co(III) chlorido complex	1	I	Co-N,5	1.87	-8.6	4.9	0.0594	1954			
	2	I	Co, N-5, Co-Cl, 1	1.84	2.15	-13	0.55	0.0221	515		
	3	I,II	Co-N,5, Co-Cl, 1, Co-C, 10	1.85	2.16,-9.4	1.8	0.50	9.3	0.0135	246	
Ir(ppy)₂-L	4	I	Ir-C/N,6	2.00	-0.74	5.9	0.0145	132			
	5	I,II	Ir-C/N,6, Ir-C, 4, IrC, 8	2.00	2.75	-3.0	6.5	5.5	2.9	0.0202	136
Ir(piq)₂-L	6	I	Ir-C/N,6	2.01	-1.2	7.5	0.0165	147			
	7	I,II	Ir-C/N,6, Ir-C, 4, IrC, 8	1.98	2.67, -4.8	7.8	3.5	2.6	0.0157	108	

* The amplitude reduction factor S₀² was fixed to 0.8
Figure S1 A. Normalized Co K-edge EXAFS for Co$^{\text{III}}$ complex in dyads I and II (black). B. Normalized Ir L$_3$-edge EXAFS for Ir(ppy)$_2$-L (red) and C. Ir(piq)$_2$-L (green) in dyads I and II respectively.
Figure S2. Fourier transforms of k^2-weighted EXAFS for A. 1 mM Co(III) complex in dyads I and II (solid black line) and its corresponding fit (Fit 3, Table S1), for B. 1 mM Ir(ppy)$_2$-L complex (Dyad I) (red solid line), and its corresponding fit (Fit 5, Table S1) and C. 1 mM Ir(piq)$_2$-L complex (Dyad II) (green solid line) and its corresponding fit (Fit 7, Table S1).

Figure S3. Simulated EXAFS spectra for CoIII chloro complex in dyads I and II. Atomic coordinates were obtained from single crystal X-ray diffraction structure of [LCoIIICl]$^+$ (solid black line)16 and from DFT simulations (dashed black line)
Figure S4. Stacked spectra corresponding to a series of time delays between laser and X-ray pulses of A. dyad I and B. dyad II. These measurements were carried out for a range of averaged time delays from 0 to 18.4 µs. The dotted lines represent the raw data and the solid lines represent a smoothening of the spectrum.

Figure S5. Pump-probe time delay scans recorded at 11.2 keV of A. Ir(ppy)$_2$-L and B. Ir(piq)$_2$-L complexes with triethanolamine in the absence of the CoIII catalyst and tetrafluoroboric acid proton source. Kinetic fittings of the Ir 3MLLCT state with the electron donor triethanolamine (T_1) together with the back electron transfer times (T_2) in the case of complex Ir(piq)$_2$-L are indicated.
Figure S6. “Laser-on” scans of dyads I and II at Co K-edge energy of A. Dyad I B. Dyad II and at Ir L₃-edge of C. Dyad I, D. Dyad II. No change is hereby observed in the XANES spectra of one batch of sample over the course of 2.7 hrs indicating their intact nature and lack of decomposition.
Figure S7 A. Normalized Co K-edge XANES for Co$^{\text{III}}$ complex (black) and Co$^{\text{III}}$ complex shifted by -1 eV (in red). B. Experimental difference spectrum between black and red spectrum shown in **Figure S4** A. A difference spectrum with a peak energy of 7720 eV is observed showing that the K-edge of the Co centre shifts to lower energy and confirming the formation of Co$^{\text{II}}$ from Co$^{\text{III}}$.
Appendix

DFT optimized coordinates of using the BP-865 functional, and the atom-pairwise Grimme dispersion correction with the Becke-Johnson damping scheme (D3BJ)7.

[LCoIIICl]2+ octahedral complex

Atom	X	Y	Z
Co	23.056504	7.777308	17.785380
O	21.133961	8.210469	19.810294
O	23.359639	9.050204	15.284206
O	22.812090	6.480054	20.333957
O	25.108790	7.392870	15.815900
N	21.902887	6.436150	16.947589
N	21.555748	8.581747	18.620658
N	22.656127	9.001953	16.392380
N	23.518457	6.571442	19.200757
N	24.627794	7.009856	17.007008
C	19.820890	10.317188	18.423281
H	19.494455	9.819195	19.301944
H	20.045502	10.422881	17.650909
H	20.130728	11.331388	18.720904
N	22.987018	9.534782	17.917094
C	21.022254	9.777969	16.630309
C	21.173937	10.829240	15.669665
H	21.948427	10.980694	14.909620
H	20.983734	11.780016	16.187477
H	20.241322	10.539036	15.159357
C	25.133050	4.891740	20.019472
H	24.528566	4.929730	20.931035
H	26.173872	5.142692	20.271547
H	25.128932	3.860497	19.633611
C	24.590359	5.847928	19.010084
C	25.240906	6.106094	17.724700
C	26.511084	5.441622	17.309719
H	26.779066	5.747364	16.293952
H	26.414999	4.346007	17.345256
H	27.332228	5.720268	17.987955
C	20.268495	4.511895	15.758818
C	20.079548	4.886312	17.088908
H	19.294087	4.442421	17.699410
C	20.910781	5.849472	17.650896
H	20.790076	6.175730	18.682735
C	22.084927	6.083308	15.657505
H	22.883832	6.593261	15.122560
C	21.289361	5.127506	15.035058
H	21.479054	4.877809	13.991904
H	22.040704	7.282057	20.200533
Element	X Position	Y Position	Z Position
---------	------------	------------	------------
H	24.392369	8.197634	15.517943
H	19.631416	3.758476	15.294681
Cl	24.359544	9.333316	18.738533

$[\text{LCo}^{\text{III}}\text{CH}_3\text{CN}]^{3+}$ octahedral complex

Element	X Position	Y Position	Z Position
Co	23.209160	7.662558	17.811237
O	21.427138	8.356376	19.872275
O	23.634264	8.884637	15.308775
O	22.872109	6.399391	20.380403
O	25.127261	6.950838	15.776988
N	21.859009	6.506693	17.017620
N	21.827362	8.660040	18.666501
N	22.931241	8.915470	16.408959
N	23.527251	6.369104	19.211788
N	24.616028	6.635684	16.975468
C	20.261928	10.546052	18.447863
H	19.956000	10.230143	19.450029
H	19.387816	10.510746	17.780630
H	20.598341	11.592558	18.492481
C	21.349039	9.654296	17.948005
C	21.986678	9.800103	16.644212
C	21.647048	10.843877	15.633174
H	22.557475	11.368496	15.310284
H	20.930616	11.571552	16.028710
H	21.217913	10.380250	14.732040
C	24.810056	4.390316	19.936109
H	24.435347	4.634221	20.935443
H	25.899948	4.261653	19.974465
H	24.376286	3.423963	19.634326
C	24.433986	5.460782	18.968401
C	25.067231	5.612343	17.650348
C	26.144865	4.710858	17.151757
H	26.226189	4.783376	16.061714
H	25.947667	3.669269	17.437419
H	27.119581	4.992289	17.581236
C	19.952719	4.816423	15.891079
C	19.914365	5.129337	17.249455
H	19.144537	4.726137	17.905965
C	20.879445	5.976467	17.781630
H	20.872794	6.250246	18.834129
C	21.895687	6.217902	15.698679
H	22.686318	6.683466	15.114373
C	20.960767	5.376291	15.107149
H	21.034098	5.171389	14.039902
H	22.220952	7.274606	20.266528
Atomic Symbol	X	Y	Z
---------------	-----	-----	-----
H	24.544320	7.831700	15.489189
N	24.472861	8.817529	18.568415
H	19.208669	4.152251	15.450877
C	25.240123	9.547350	19.032536
C	26.198353	10.464727	19.609813
H	25.694990	11.397550	19.899076
H	26.984482	10.694064	18.877104
H	26.657079	10.016628	20.501827

[LCo^{II}Cl]^+ octahedral complex

Atomic Symbol	X	Y	Z
Co	23.296993	7.549305	17.902322
O	21.366522	8.017348	19.948352
O	23.385691	8.673771	15.256319
O	23.139046	6.333749	20.510952
O	25.137596	6.964176	15.799993
N	21.884407	5.936952	17.000704
N	21.770725	8.316997	18.730574
N	22.743466	8.623672	16.453642
N	23.782410	6.394144	19.315340
N	24.766335	6.700041	17.038792
C	19.869236	9.865036	18.467640
H	19.372496	9.225454	19.210077
H	19.173846	10.083264	17.644815
H	20.109478	10.817982	18.970728
C	21.099373	9.173056	17.977176
C	21.679203	9.361392	16.658360
C	21.129042	10.302071	15.633934
H	21.894353	10.502432	14.875120
H	20.817864	11.250387	16.094981
H	20.248107	9.874186	15.125678
C	25.411713	4.752265	20.160331
H	25.197076	5.167125	21.153920
H	26.497281	4.639104	20.038227
H	24.960273	3.746277	20.119284
C	24.844632	5.656142	19.112005
C	25.411833	5.818383	17.782519
C	26.618454	5.085994	17.290861
H	26.657743	5.166954	16.196866
H	26.596150	4.024020	17.579439
H	27.549546	5.521628	17.692718
C	19.734284	5.373665	15.277233
C	19.517742	5.659080	16.629801
H	18.510983	5.671065	17.051411
C	20.610024	5.929861	17.450165
H	20.480805	6.169155	18.507873
C	22.088712	5.647788	15.696916
[LCoIICH$_3$CN]$^{2+}$ octahedral complex

Co 23.079043 7.571296 17.739524
O 21.126045 8.016721 19.757972
O 23.521485 9.108183 15.332716
O 22.800996 6.232351 20.269414
O 25.160346 7.257449 15.807763
N 21.874422 6.222000 16.770713
N 21.649019 8.445479 18.632398
N 22.814276 8.975761 16.494413
N 23.550691 6.415428 19.157992
N 24.698955 6.893045 16.996454
C 20.071794 10.328464 18.628795
H 19.267742 9.660161 18.968499
H 19.662639 11.051488 17.913005
H 20.419385 10.876676 19.519377
C 21.864561 9.833990 16.784329
C 21.522900 11.002731 15.919600
H 22.261389 11.105772 15.117948
H 21.495802 11.930725 16.509374
H 20.529355 10.878632 15.460280
C 25.179132 4.803437 20.055328
H 24.915395 5.178678 21.052504
H 26.267184 4.686290 19.983304
H 24.721416 3.806085 19.952685
C 24.667262 5.742456 19.013591
C 25.336776 6.011292 17.747426
C 26.617201 5.369951 17.324461
H 26.754384 5.519126 16.246878
H 26.617724 4.293409 17.547926
H 27.483459 5.813662 17.841965
C 20.223189 4.407796 15.440103
C 19.892846 4.871336 16.714217
H 18.986634 4.539871 17.220465
C 20.740440 5.776857 17.347239
H 20.522770 6.169430 18.342010
C 22.197692 5.773085 15.541700
H 23.127935 6.158216 15.120868
C 21.398561 4.869518 14.846502
H 21.701557 4.537975 13.853896
H 22.037528 6.992781 20.152433
H 24.254007 8.330691 15.436913
N 19.576568 3.700192 14.919623
C 24.712185 9.452813 19.363899
C 25.378537 9.684889 18.438255
C 26.199338 9.956041 17.271841
H 25.720371 10.724583 16.650046
H 26.292191 9.038459 16.669022
H 27.194674 10.304495 17.577716

[Co^{II}]^{2+} square bypiramidal complex

Co 22.928691 7.628737 17.699868
O 21.026385 8.221884 19.780234
O 23.281172 8.965761 15.213150
O 22.656252 6.380248 20.242438
O 25.051520 7.290665 15.779682
N 21.750943 6.218998 16.826902
N 21.526215 8.561253 18.563610
N 22.620605 8.938496 16.352557
N 23.408109 6.521535 19.170829
N 24.559070 6.963158 17.002087
C 19.886347 10.405137 18.422541
H 19.407561 9.904782 19.270632
H 19.138909 10.593805 17.639053
H 20.254272 11.385041 18.766452
C 21.007601 9.568471 17.899998
C 21.644428 9.793490 16.609083
C 21.254277 10.868971 15.649953
H 22.111774 11.109571 15.092833
H 20.921699 11.774449 16.174684
H 20.431784 10.546432 14.989250
C 25.042749 4.924652 20.086826
H 24.754305 5.314133 21.072223
H 26.133497 4.817392 20.037593
H 24.598659 3.919224 19.999293
C 24.535767 5.845430 19.026875
C 25.199642 6.098956 17.755374
C 26.481406 5.451071 17.345362
H 26.616311 5.540284 16.261775
H 26.492764 4.389917 17.630026
H 27.342476 5.933662 17.834828
C 20.175581 4.255907 15.619575
C 20.250990 4.355124 17.009444
H 19.701168 3.673186 17.657919
C 21.047442 5.346567 17.576496
H 21.142497 5.457577 18.658606
C 21.677524 6.127913 15.483615
H 22.259100 6.860550 14.920787
C 20.903427 5.161711 14.846972
H 20.877808 5.127973 13.757492
H 21.686639 7.417304 20.077933
H 24.346061 8.041098 15.447872

References:
1. B. Ravel and M. Newville, J.Synchrotron.Radiat., 2005, 12, 537-541.
2. J. J. Rehr and R. C. Albers, Rev.Mod.Phys., 2000, 72, 621-654.
3. L. X. Chen and X. Zhang, J.Phys.Chem.Lett. 2013, 4, 4000-4013.
4. F. Neese, Wiley Interdiscip.Rev.: Comput.Mol.Sci., 2012, 2, 73-78.
5. A. D. Becke, Phys.Rev.A., 1988, 38, 3098-3100.
6. F. Weigend and R. Ahlrichs, Phys.Chem.Chem.Phys., 2005, 7, 3297-3305.
7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J.Chem.Phys. 2010, 132, 154104.
8. S. Grimme, S. Ehrlich and L. Goerigk, J.Comput.Chem., 2011, 32, 1456-1465.
9. S. Kossmann and F. Neese, J.Chem.Theory.Comput., 2010, 6, 2325-2338.
10. N. C. Tomson, K. D. Williams, X. Dai, S. Sproules, S. DeBeer, T. H. Warren and K. Wieghardt, Chem.Sci., 2015, 6, 2474-2487.
11. A. D. Becke, J.Chem.Phys., 1993, 98, 5648-5652.
12. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J.Phys.Chem., 1994, 98, 11623-11627.
13. M. Roemelt, M. A. Beckwith, C. Duboc, M.-N. Collomb, F. Neese and S. DeBeer, Inorg.Chem., 2012, 51, 680-687.
14. D. Moonshiram, C. Gimbett-Suriñach, A. Guda, A. Picon, C. S. Lehmann, X. Zhang, G. Doumy, A. M. March, J. Benet-Buchholz, A. Soldatov, A. Llobet and S. H. Southworth, J.Am.Chem.Soc., 2016, 138(33), 10586-10596
15. D. Moonshiram, A. Guda, L. Kohler, A. Picon, S. Guda, C. S. Lehmann, X. Zhang, S. H. Southworth and K. L. Mulfort, J.Phys.Chem.C., 2016, 120, 20049-20057.
16. C. Lentz, O. Schott, T. Auvray, G. S. Hanan and B. Elias, Dalton Trans., 2019, 48, 15567-15576.