Multi Parametric Deformed Heisenberg Algebras: A Route to Complexity

E. M. F. Curado and M. A. Rego-Monteiro
Centro Brasileiro de Pesquisas Físicas,
Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ, Brazil

March 27, 2022

Abstract

We introduce a generalization of the Heisenberg algebra which is written in terms of a functional of one generator of the algebra, $f(J_0)$, that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for $q^2 = \tan \theta$. The case where f is a polynomial of order n in J_0 corresponds to a n-parameter deformed Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J_0, the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that cannot be continuously deformed to representations of Heisenberg algebra.

Keywords: q-oscillators; Heisenberg algebra; quantum algebras; non-linearity; chaos; Gauss number; q-analysis.
1 Introduction

Quantum algebras have first appeared in the algebraic Bethe ansatz approach to quantum integrable one-dimensional models [1]. Since then, there have been several attempts to apply them in a broad range of physical phenomena [2].

Associated to the omnipresent harmonic oscillator there is an algebra known as Heisenberg algebra. The simple structure of this algebra, that is described in terms of creation and annihilation operators, and its particle interpretation has promoted it to a paradigmatic tool in the second quantization approach.

A connection between these two topics appeared soon after the discovery of quantum algebras when it was found out that a generalization of Heisenberg algebra, known as q-oscillators, was necessary in order to realize $su_q(2)$ through the Jordan-Schwinger method [3].

Guided, in part, by the wide range of physical applicability of Heisenberg algebra there have been along the last ten years some effort in order to analyze possible physical relevance of q-oscillators or deformed Heisenberg algebras [4]. The expected physical properties of toy systems described by these generalized Heisenberg algebras were analyzed and indications on how to solve an old puzzle in physics were obtained [5].

Recently, it was introduced an algebra, called logistic algebra, that is a generalization of Heisenberg algebra where the eigenvalues of one generator of the algebra (the one that generalizes the number operator) are given by functional iterations of the logistic function. This algebra has finite- and infinite-dimensional representations associated to the cycles of the logistic map and infinite-dimensional representations related to the chaotic band [6], [7].

A quantum solid Hamiltonian whose collective modes of vibration are described by oscillators satisfying the logistic algebra was constructed and it was analyzed the thermodynamic properties of this model in the two-cycle and in a specific chaotic region of the logistic map. It is interesting to mention that in the chaotic band this model shows a curious hybrid behavior mixing classical and quantum behavior showing how a quantum system can present a non-standard quantum behavior [7].

In this paper, a generalization of the logistic algebra is constructed in such a way that the eigenvalues of one generator is given by a functional iteration of a starting number. This functional could be any analytical function but,
in order to study the properties of this algebra in detail, this function is taken as a polynomial of order n.

When the functional, $f(J_0)$, is linear in J_0, where J_0 is the hermitean generator of the algebra, i.e., $f(J_0) = r J_0 + s$, $r = q^2$ is shown to correspond to q-deformed Heisenberg algebra or q-oscillators. The general case, $f(J_0) = \sum_{i=0}^{n} r_i J_i^0$ is a n-parameter deformed Heisenberg algebra. This algebra is, therefore, a multi parametric deformation of Heisenberg algebra.

The representation theory is presented in detail for the linear and quadratic cases since they are the paradigmatic ones. It is shown that the essential tool in order to find the representations of the algebra is the analysis of the stability of the fixed points of the polynomial f and their composed functions.

Related to the cycles of period 1, 2, 4, ... there are finite- and infinite-dimensional representations of the algebra. The weights of the finite-dimensional representations are given exactly by the lowest values of the cycles.

In the next section we present the general algebra and the general representation theory. In section 3 we analyze the linear case, their representations and its connection to q-oscillators. The non-linear case or two-parameter deformed Heisenberg algebra is presented in section 4 where it becomes evident the essential role played by the analysis of the stability of the fixed points of the polynomial f and their composed functions in order to obtain the finite- and infinite-dimensional representations of the algebra. In section 5 we present our final comments and also introduce a generalization of $su(2)$ in the sense discussed in this paper.

2 Generalized Heisenberg algebra

Let us consider an algebra generated by J_0, J_{\pm} described by the relations

\begin{align*}
J_0 J_{+} &= J_{+} f(J_0), \quad (1) \\
J_{-} J_0 &= f(J_0) J_{-}, \quad (2) \\
[J_{+}, J_{-}] &= J_0 - f(J_0). \quad (3)
\end{align*}

Note that eq. (2) is the Hermitean conjugate of eq. (1), implying that $J_{-} = J_{+}^\dagger$ and $J_{0}^\dagger = J_{0}$, and $f(J_0)$ is a general analytic function of J_0. The case where $f(J_0) = r J_0 (1 - J_0)$ was analyzed in refs. [8] and [7]. The above algebra relations are constructed in order that the eigenvalues of operator J_0 are given by an iteration of an initial value as will be clear in a moment.

3
Let us now show that the operator

\[C = J_+ J_- - J_0 = J_- J_+ - f(J_0), \]

(4)

is a Casimir operator of the algebra. Using the algebraic relations in eqs. (1-3) it is easy to see that

\[[C, J_0] = [C, J_{\pm}] = 0, \]

(5)

i.e., \(C \) is one Casimir operator of the algebra.

We start now analyzing the representation theory of the algebra when the function \(f(J_0) \) is a general analytic function of \(J_0 \). In this section we obtain the general equations for an \(n \)-dimensional representation and in the next sections we solve these equations for linear and quadratic polynomials \(f(J_0) \) finding out the finite- and infinite-dimensional representations for the linear and quadratic cases that are the paradigmatic ones.

We assume we have an \(n \)-dimensional irreducible representation of the algebra given in eqs. (1-3). The hermitean operator \(J_0 \) can be diagonalized. Consider the state \(|0\rangle \) with the lowest eigenvalue of \(J_0 \)

\[J_0 |0\rangle = \alpha_0 |0\rangle. \]

(6)

For each value of \(\alpha_0 \) and the parameters of the algebra we have a different vacuum that for simplicity will be denoted by \(|0\rangle \). Moreover, it will be clear in the next sections, when we shall solve the representation theory for the linear and quadratic polynomials \(f(J_0) \), that the allowed values of \(\alpha_0 \) depend on the parameters of the algebra.

Let \(|m\rangle \) be a normalized eigenstate of \(J_0 \),

\[J_0 |m\rangle = \alpha_m |m\rangle. \]

(7)

Applying eq. (4) on \(|m\rangle \) we have

\[J_0(J_+ |m\rangle) = J_+ f(J_0) |m\rangle = f(\alpha_m)(J_+ |m\rangle). \]

(8)

Thus, we see that \(J_+ |m\rangle \) is a \(J_0 \) eigenvector with eigenvalue \(f(\alpha_m) \). Starting from \(|0\rangle \) and applying successively \(J_+ \) on \(|0\rangle \) we create different states with \(J_0 \) eigenvalue given by

\[J_0 \left(J_+^m |0\rangle \right) = f^m(\alpha_0) \left(J_+^m |0\rangle \right), \]

(9)
where \(f^m(\alpha_0) \) denotes the \(m \)-th iterate of \(f \). Since the application of \(J_+ \) creates a new vector, whose respective \(J_0 \) eigenvalue has iterations of \(\alpha_0 \) through \(f \) increased by one unit, it is convenient to define the new vectors \(J^m_+|0\rangle \) as proportional to \(|m\rangle\) and we then call \(J_+ \) a raising operator. Note that

\[
\alpha_m = f^m(\alpha_0) = f(\alpha_{m-1}),
\]

where \(m \) denotes the number of iterations of \(\alpha_0 \) through \(f \).

Following the same procedure for \(J_- \), applying eq. (2) on \(|m+1\rangle\), we have

\[
J_- J_0 |m+1\rangle = f(J_0)(J_- |m+1\rangle) = \alpha_{m+1} (J_- |m+1\rangle).
\]

This shows that \(J_- |m+1\rangle \) is also a \(J_0 \) eigenvector with eigenvalue \(\alpha_m \). Then, \(J_- |m+1\rangle \) is proportional to \(|m\rangle\) showing that \(J_- \) is a lowering operator.

Since we consider \(\alpha_0 \) the lowest \(J_0 \) eigenvalue, we must have

\[
J_- |0\rangle = 0.
\]

As was shown in [7], depending on the function \(f \) and its initial value \(\alpha_0 \), it may happen that the \(J_0 \) eigenvalue of state \(|m+1\rangle\) is lower than the one of state \(|m\rangle\). Thus, as we exemplify in section IV of this paper, given an arbitrary analytical function \(f \) (and its associated algebra in eqs. (1-3)) in order to satisfy eq. (12), the allowed values of \(\alpha_0 \) are chosen in such a way that the iterations \(f^m(\alpha_0) \) \((m \geq 1)\) are always bigger than \(\alpha_0 \). Then, eq.(12) must be checked for every function \(f \), giving consistent vacua for specific values of \(\alpha_0 \). This analysis is made in sections 3 and 4 where we find the parameter regions with consistent representations.

In general we obtain

\[
J_0 |m-1\rangle = f^{m-1}(\alpha_0) |m-1\rangle, \quad m = 1, 2, \ldots, \quad (13)
\]

\[
J_+ |m-1\rangle = N_{m-1} |m\rangle, \quad (14)
\]

\[
J_- |m\rangle = N_{m-1} |m-1\rangle, \quad (15)
\]

where \(N_{m-1}^2 = f^m(\alpha_0) - \alpha_0 \). We observe that if we put \(m = 0 \) in eq. (13) then \(N_{-1} \) is equal to zero, which is consistent with eq. (12). Eqs. (13-15) are easily proven by induction. In order to verify eqs. (13-15) for \(m = 1 \), apply eq. (1) on the state vector \(|0\rangle\) obtaining \(J_0 (J_+ |0\rangle) = f(\alpha_0)(J_+ |0\rangle) \). Thus, we define \(|1\rangle \equiv \frac{1}{N_0} J_+ |0\rangle \) where \(N_0 \) is a constant to be determined. It is easy to see that \(J_0 |1\rangle = f(\alpha_0) |1\rangle \). The constant \(N_0 \) can be determined by
imposing that the state vector $|1\rangle$ has unit norm and with the use of eq. (3), we get $N_0^2 = f(\alpha_0) - \alpha_0$. As the last step of this check apply eq. (3) on the state $|0\rangle$. Using eqs. (4) and (12) we get $J_-|1\rangle = N_0|0\rangle$. Then, eqs. (13-14) are verified for $m = 1$.

Now, suppose eqs. (13-14) are valid for m. Apply J_0 on eq. (14) and use eq. (1) on the left hand side, this gives

$$J_0 |m\rangle = f^m(\alpha_0) |m\rangle.$$

Applying eq. (1) on the state $|m\rangle$ and using eq. (16) we are allowed to suppose that there exists a state vector $|m + 1\rangle$ such that

$$|m + 1\rangle = \frac{1}{C(m)} J_+ |m\rangle,$$

where $C(m)$ is a constant. This constant is determined by imposing that the state vector $|m + 1\rangle$ has unit norm

$$1 = \langle m + 1|m + 1\rangle = \frac{1}{C(m)^2} \langle m| - J_+ |m\rangle =$$

$$= \frac{1}{C(m)^2} \left[\langle m| J_+ J_- |m\rangle + \langle m|(-J_0 + f(J_0))|m\rangle \right] =$$

$$= \frac{1}{C(m)^2} \left(N_{m-1}^2 - f^m(\alpha_0) + f^{m+1}(\alpha_0) \right),$$

which gives $C(m)^2 = N_m^2 = f^{m+1}(\alpha_0) - \alpha_0$.

Applying eq. (2) on $|m\rangle$ and using eqs. (13-14) plus the value of N_m we obtain the last equation we wanted. Putting everything together we recover eqs. (13-14) for $m \mapsto m + 1$ and the proof is complete.

Note that eqs. (13-15) define a general n-dimensional representation for the algebra in eqs. (1-3). In order to solve it, i.e., to construct the conditions under which we have finite- and infinite-dimensional representations we have to specify the functional $f(J_0)$. It is easy to see that if we choose $f(J_0) = J_0 + 1$ the algebra given by eqs. (1-3) becomes with this choice the Heisenberg algebra for A, A^\dagger and $N = A^\dagger A$ where $A = J_-$, $A^\dagger = J_+$ and $N = J_0$. Note that the Casimir operator in eq. (4), that in the general case has eigenvalue equal to $-\alpha_0$, becomes in this case $C = A^\dagger A - N$ which is identically null. We shall see in the next section that the choice $f(J_0) = r J_0 + s$ corresponds to a one-parameter deformed Heisenberg algebra and if we take a functional with
linear and quadratic terms (besides a constant term) we have a quadratic Heisenberg algebra or a two-parameter deformed Heisenberg algebra that will be analyzed in section 4.

Another very interesting observation is that, as mentioned in the beginning of this section, the algebraic relations eqs. (1) and (2) are constructed in such a way that the eigenvalues of operator J_0 are iterations of an initial value α_0 through the function f as shown in eq. (13). Then, the increasing complexity of function f will correspond to an increasing complex behavior of the eigenvalues of J_0 \[3\]. In fact, as already shown in refs. (\[6\], \[7\]) choosing the logistic map for f it could give rise to a chaotic behavior of the eigenvalue of J_0. Moreover, as will be clear in the next sections, it is this iteration aspect of the algebra that will allow us to find their representations through the analysis of the stability of the fixed points of the function f and their composed functions.

3 The linear case

In this section we are going to find the representations for the algebra defined by the relations given in eqs. (1-3) considering $f(J_0) = r J_0 + s$. The algebra relations can be rewritten for this case as

$$ [J_0, J_+]_r = s J_+, \quad (19) $$

$$ [J_0, J_-]_{r-1} = -\frac{s}{r} J_-, \quad (20) $$

$$ [J_+, J_-] = (1 - r) J_0 - s, \quad (21) $$

where $[a, b]_r \equiv a b - r b a$ is the r-deformed commutation of two operators a and b.

It is very simple to realize that, for $r = 1$ and s arbitrary, the above algebra is the Heisenberg algebra for A, A^\dagger and N where $A = J_-/\sqrt{s}$, $A^\dagger = J_+/\sqrt{s}$ and $N = J_0/s$. In this case the Casimir operator given in eq. (4) is null. Then, for general r and s the algebra defined in eqs. (19-21) is a one-parameter deformed Heisenberg algebra and generally speaking the algebra given in eqs. (1-3) is a generalization of the Heisenberg algebra.

It is easy to see for the general linear case that

$$ f^m(\alpha_0) = r^m \alpha_0 + s (r^{m-1} + r^{m-2} + \cdots + 1) $$

$$ = r^m \alpha_0 + s \frac{r^m - 1}{r - 1}, \quad (22) $$
thus,
\[N_{m-1}^2 = f^m(\alpha_0) - \alpha_0 = [m]_r N_0^2 \] (23)
where \([m]_r \equiv (r^m - 1)/(r - 1)\) is the Gauss number of \(m\) and \(N_0^2 = \alpha_0 (r - 1) + s\).

Let us search for finite-dimensional representations of the linear Heisenberg algebra. Our approach is the following: we start from the vacuum state \(|0\rangle\) and apply repeatedly the operator \(J_+\) arriving, for specific values of \(\alpha_0\), \(r\) and \(s\), eventually to \(J_+|n-1\rangle = 0\) for a \(n\)-dimensional representation. From eq. (14) we see that the set of parameters providing an \(m\)-dimensional representation, using eq. (23), is computed from

\[N_0^2 = \alpha_0 (r - 1) + s > 0 \, , \]
\[N_1^2 = [2]_r N_0^2 > 0 \, , \]
\[\vdots \]
\[N_{m-2}^2 = [m-1]_r N_0^2 > 0 \, , \]
\[N_{m-1}^2 = [m]_r N_0^2 = 0 \, . \] (24)

The solutions for \([m]_r = 0\) are given by \(r = \exp(2\pi ik/m)\) for \(k = 1, 2, \ldots, m-1\), \((k = 0\) corresponds to Heisenberg algebra that we are not considering at the moment) but since \(J_0\) is taken hermitean, the only interesting finite dimensional solution is a two-dimensional \((m = 2)\) representation with \(r = -1\) and \(s > 2\alpha_0\). There is of course a trivial one-dimensional representation where the weight of the representation is the fixed point \(\alpha_0 = \alpha^* = s/(1-r)\) and \(r \in (-1,1) \cup (1,\infty)\). We have also a marginal uninteresting one-dimensional solution obtained for \(r \to \infty\) and \(s/r^2 = \text{finite}\).

The infinite-dimensional solutions are more interesting. In this case we must solve the following set of equations:

\[N_m^2 > 0 \, , \quad \forall m, \ m = 0, 1, 2, \ldots \, . \] (25)

Apart from the Heisenberg algebra given by \(r = 1\), the solutions are

\[
\text{type I} : \quad r > 1 \text{ and } \alpha_0 > \frac{s}{1-r} \quad \text{or}
\]
\[
\text{type II} : \quad -1 < r < 1 \text{ and } \alpha_0 < \frac{s}{1-r} \, .
\] (26)
with matrix representations

\[
J_0 = \begin{pmatrix}
\alpha_0 & 0 & 0 & 0 & \ldots \\
0 & \alpha_1 & 0 & 0 & \ldots \\
0 & 0 & \alpha_2 & 0 & \ldots \\
0 & 0 & 0 & \alpha_3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad J_+ = \begin{pmatrix}
0 & 0 & 0 & 0 & \ldots \\
N_0 & 0 & 0 & 0 & \ldots \\
0 & N_1 & 0 & 0 & \ldots \\
0 & 0 & N_2 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad J_- = J_+^T.
\]

(27)

Note that for type I solutions the eigenvalues of \(J_0 \), as can be easily computed from eqs. (13) and (10), go to infinite as we consider eigenvectors \(|m\rangle \) with increasing value of \(m \). Instead, for type II solutions the eigenvalues go to the value \(s/(1-r) \), the fixed point of \(f \), as the state \(|m\rangle \) increase.

The reason for this asymptotic behavior of the eigenvalues of \(J_0 \) is simple. It is clear from eqs. (13) and (10) that the eigenvalues of \(J_0 \) are given by the functional iteration of \(f(\alpha) = r \alpha + s \) for the starting number \(\alpha_0 \). Moreover, the stability of the fixed point of \(f(\alpha) \) is directly related to the asymptotic behavior of the eigenvalue of \(J_0 \). If the fixed point of \(f(\alpha) \) is stable \((-1 < r < 1) \) or unstable \((r > 1) \) the eigenvalues of \(J_0 \) go to the fixed point \(\alpha^* = s/(1-r) \) or to infinite respectively since they are given by iterations of \(\alpha_0 \) through the function \(f \). Finally, we mention that the allowed values of \(\alpha_0 \) in eq. (27) are purely algebraic conditions that comes from our choice that the representations of the algebra have always a lowest-weight vector.

The interesting and certainly unexpected connection we have just analyzed between the infinite-dimensional representations of the linear Heisenberg algebra and the classification of the different types of fixed point and their stability will become more relevant in the next section where we shall consider the quadratic case \(f(J_0) = q J_0^2 + r J_0 + s \). In this case, even the finite dimensional representations will be connected to the fixed point analysis through the attractors of \(f \).

It is interesting to note that in eq. (23) we obtained, considering the linear case, the well-known Gauss number of \(m \) as

\[
\frac{N_{m-1}}{N_0^2} = \frac{r^m - 1}{r - 1} = [m]_r.
\]

(28)

It is possible to look at the above equation the other way round and to
define a general Gauss number $[m]_{\text{general}}$ for the case of arbitrary f as

$$[m]_{\text{general}} \equiv \frac{N_m}{N_0} = \frac{f^m(x) - x}{f(x) - x}.$$

(29)

Of course, this definition gives

$$[m]_{\text{general}} \rightarrow m \quad \text{for} \quad f(x) = x + s,$$

$$[m]_{\text{general}} \rightarrow [m]_r \quad \text{for} \quad f(x) = r x + s.$$

(30)

Finally, it is easy to see that there is a direct relation between the linear Heisenberg algebra given in eqs. (19-21) and the standard q-oscillators. In fact, defining

$$J_0 = q^{2N} \alpha_0 + s \ [N]_q,$$

$$\frac{J_+}{N_0} = a^\dagger q^{N/2},$$

$$\frac{J_-}{N_0} = q^{N/2} a,$$

(31-33)

we see that a, a^\dagger and N satisfy the usual q-oscillator relations

$$a a^\dagger - q a^\dagger a = q^{-N}, \quad a a^\dagger - q^{-1} a^\dagger a = q^N,$$

$$[N, a] = -a, \quad [N, a^\dagger] = a^\dagger.$$

(34)

Note that, Heisenberg algebra is obtained from (31-33) for $q \rightarrow 1$ and $\alpha_0 = 0$.

4 The non-linear case

In this section we consider the algebra defined by eqs. (1-3) for $f(x) = t x^2 + r x + s$. In this case the algebra becomes

$$[J_0, J_+]_r = t J_+ J_0^2 + s J_+,$$

$$[J_0, J_-]_{r-1} = -\frac{t}{r} J_0^2 J_- - \frac{s}{r} J_-,$$

$$[J_+, J_-] = -t J_0^2 + (1 - r) J_0 - 2.$$

(35-37)

Of course, for $t = 0$ we recover the linear (or r-deformed) Heisenberg algebra given in eqs. (19-21) and for $t = 0$ and $r = 1$ the standard Heisenberg algebra.
We focus now on the analysis of eqs. (6,12-15), aiming to find the finite- and infinite-dimensional representations of the above quadratic Heisenberg algebra. Following an observation done at the end of the previous section we shall find the algebra representations through the analysis and the stability of the fixed points of \(f(x) = t x^2 + r x + s \) and their composed functions.

One clear way to do this is to perform a graphical analysis of the function \(f \). Let us graph \(y = f(x) \) together with \(y = x \). Where the lines intersect we have \(x = y = f(x) \), so that the intersections are precisely the fixed points. Now, for a point \(x_0 \), different from the fixed point, in order to follow its path through iterations with the function \(f \) we perform the following steps

1. move vertically to the graph of \(f(x) \),
2. move horizontally to the graph of \(y = x \), and
3. repeat steps 1, 2, etc. (in figure 1 it is shown the example of the Heisenberg algebra, where \(f(J_0) = J_0 + 1 \)).

There are three cases to be analyzed: (I) \(\Delta < 0 \), (II) \(\Delta = 0 \) and (III) \(\Delta > 0 \), for \(\Delta = (r - 1)^2 - 4ts \). In the first case there is no fixed point and it is easy to see by a graphical analysis that only \(t > 0 \) corresponds to infinite-dimensional representations \((N^m_0 \neq 0, \forall m, m \in Z^+)\) having lowest weight states as desired (see figure 2(a)). Then, case (I) provides infinite-dimensional representations with lowest weight \(\alpha_0 \) for the value of the parameters

\[
t > 0 \quad , \quad (r - 1)^2 - 4ts < 0 \quad \text{and} \quad \alpha_0 \in \mathbb{R} \ . \tag{38}
\]

In case (II), \(t > 0 \) as well and we have one fixed point given by \(\alpha^* = (1 - r)/2t \). This fixed point corresponds to a trivial one-dimensional representation of the algebra for \(\alpha_0 = \alpha^* \) since \(N_0 = 0 \). Besides this trivial one-dimensional representation we have for case (II) infinite-dimensional representations with lowest weight \(\alpha_0 \) for the set of parameters (see figure 2(b))

\[
t > 0 \quad , \quad (r - 1)^2 - 4ts = 0 \quad \text{and} \quad \alpha_0 \in \mathbb{R}, \alpha_0 \neq (1 - r)/2q \ . \tag{39}
\]

Case (III) is less trivial. In this case it is also possible to have attractors of period 1, 2, 4, \(\cdots \) and even a chaotic region in the space of parameters \((t, r, s, \alpha_0)\). Thus, there are regions in this space associated to finite- and
infinite-dimensional representations. In what follows, we analyze completely the cases of attractors of period 1, 2 and give an example of the chaotic behavior of the algebra. For shortness, the analysis from now on will be done only for $t > 0$; the $t < 0$ behaviour is similar, with no conceptually significant difference.

We recall that a fixed point α^*, where by definition α^* is solution of the equation $\alpha^* = f(\alpha^*)$, is stable if $|f'(\alpha^*)|$ is smaller than one and is unstable if it is greater than one. For case (III) the fixed points are

$$\alpha^*_\pm = \frac{1 - r \pm \sqrt{\Delta}}{2t}. \quad (40)$$

The fixed point α^*_+ is always unstable and computing the derivative of f at α^*_+ we have that α^*_+ is stable for a set of t, r and s such that $0 < \Delta < 4$ (we stress again that this analysis is for $t > 0$). For this set of (t, r, s) we must search for the region of α_0 that corresponds to lowest-weight states. It is easy to realize that the region $\alpha^*_+ < \alpha_0 < \alpha^*_+$ has to be eliminated since it does not correspond to a representation with lowest-weight state, i.e., there will always exist an $n > 0$ such that $\alpha_n < \alpha_0$ if $\alpha^*_+ < \alpha_0 < \alpha^*_-$.

For the allowed values of α_0 corresponding to infinite-dimensional representations with lowest-weight state, i.e., $-\infty < \alpha_0 < \alpha^*_- \text{ and } \alpha_0 > \alpha^*_+$, there are two types of asymptotic behaviors for the eigenvalues of J_0. They can go to infinite or go to the fixed point α^*_+. In order to identify these two regions consider the point $f(\alpha^*_+)$. There is another point, denominated α^m, that gives $f(\alpha^m)$, i.e., $f(\alpha^m) = f(\alpha^*_+) = \alpha^*_+$, this point is given by

$$\alpha^m = \frac{-1 - r - \sqrt{\Delta}}{2t}. \quad (41)$$

It is easy to verify that the set of (t, r, s, α_0) such that

$$0 < \Delta < 4 \text{ and } \begin{cases} \text{(a)} & -\infty < \alpha_0 < \alpha^m \text{ or } \alpha^*_+ < \alpha_0 < \infty \\ \text{(b)} & \alpha^m < \alpha_0 < \alpha^*_+ \end{cases} \quad (42)$$

corresponds to infinite-dimensional representations where the asymptotic eigenvalues of J_0 in case (a) go to infinite and in case (b) go to the asymptotic value α^*_+, see figure 2(c). Moreover, $\Delta > 0$ and $\alpha_0 = \alpha^*_-$ or $\alpha_0 = \alpha^*_+$ correspond to the trivial finite one-dimensional representation. Note that in case (b), eq. (42), future iterations of α_0 (that are always bigger than...
\(\alpha_0 \) will not increase monotonically. This is a specific example were a non-monotonic function \(f \) presents a non-monotonic behavior of iterations of \(\alpha_0 \), with a consistent vacuum \(|0\rangle \).

Next step is to consider the set of parameters \((t, r, s, \alpha_0)\) such that the function \(f(\alpha) = t \alpha^2 + r \alpha + s \) has an attractor of period 2. This will permit us to find infinite-dimensional representations where the asymptotic behavior of the eigenvalues of \(J_0 \) is infinity or an attractor of period 2. Moreover, when the weight of the representation is the lowest value of the attractor there will be a set of parameters \((t, r, s)\) corresponding to a 2-dimensional representation.

In order to perform that analysis we must study the fixed points of \(f^2(\beta) \equiv f(f(\beta)) \), i.e., the points \(\beta^* \) satisfying \(\beta^* = f^2(\beta^*) \) that are different from the previous one-cycle (attractors of period 1). They are

\[
\beta^*_\pm = \frac{-1 - r \pm \sqrt{\Delta_1}}{2t},
\]

where \(\Delta_1 = -3 - 2r + r^2 - 4ts \). Since the fixed points of \(f^2 \), \(\beta^*_\pm \), have the same tangent it is sufficient to analyze the stabilization region for one of them. It is simple to see that this region is given by the set \((t, r, s)\) such that \(4 < \Delta < 6 \). We see that for \(\Delta = 4 \) the one-cycle solution looses stability and starts the stabilization region for the two-cycle solution. Then, the set of \((t, r, s, \alpha_0)\) such that

\[
4 < \Delta < 6 \quad \text{and} \quad \begin{cases}
(c) & -\infty < \alpha_0 < \alpha^m \text{ or } \alpha^*_+ < \alpha_0 < \infty, \\
(d) & \alpha^m < \alpha_0 < \beta^*_-,
\end{cases}
\]

(44)

corresponds to infinite-dimensional representations where the asymptotic eigenvalues of \(J_0 \) in case (c) go to infinite and in (d) go to the lowest value of the stable two-cycle attractor with values \(\beta^*_\pm \).

In this case there is also a set of parameters, for \(\Delta > 4 \), corresponding to a 2-dimensional representation. Note that if we take the weight of the representation as

\[
\alpha_0 = \beta^* = \frac{-1 - r - \sqrt{\Delta_1}}{2t},
\]

we have a two-dimensional representation with matrix representation given by

\[
J_0 = \begin{pmatrix} \beta^* & 0 \\ 0 & \beta^*_+ \end{pmatrix}, \quad J_+ = \begin{pmatrix} 0 & 0 \\ N_0 & 0 \end{pmatrix}, \quad J_- = J_+^\dagger,
\]

(46)
where N_0 is computed for $\Delta > 4$ and α_0 given in eq. (15).

Clearly, for $\Delta > 6$, we will have other cycles, of length 4, 8, \ldots, $2^k \ldots$, entering then in the chaotic region and displaying, in the region (α_m, α^*_+), exactly the same scenario the logistic map shows. To give an example of the chaotic region one chooses a point in the parameter space presenting two chaotic bands. This point corresponds to the numeric values $t = 1$, $r = 2$ and $s = -1.543591$, see figure 3. Actually, there is a whole surface in the parameter space (t, r, s), in which this point is included, exhibiting these two chaotic bands. Clearly also, chaos implies infinite-dimension representation and, for the example above, the eigenvalues of J_0 belong, mainly, to the α-region limited by the two chaotic bands showed in figure 3. The frequency of a specific eigenvalue is given by the relative height of the band at this value. If we call the lowest value of α of the two bands by α^m_{chaos}, the allowed range for the lowest weight values of possible representations in this example is $\alpha_0 \in (\alpha_m, \alpha^m_{\text{chaos}})$.

In the case where $t < 0$ the whole region outside the interval (α^m, α^*_+) is not allowed, contrary to the case $t > 0$. The lowest fixed point is always unstable, also contrary to the case of positive values of t, where the highest fixed point was always unstable. But the general sequence of attractors and chaotic regions is exactly the same as is well-known. A study of a particular case of $t < 0$, the logistic case, was done in [6, 7].

5 Final comments

In this paper we have presented the first steps towards the complete analysis of the algebra described by the relations in eqs. (1-3). This algebra can be rewritten for the polynomial $f(J_0) = \sum_{i=0}^{n} a_i J_0^i$ as

\[
[J_0, J_+]_{a_1} = a_0 J_+ + \sum_{i=2}^{n} a_i J_+ J_0^i ,
\]

\[
[J_0, J_-]_{a_1^{-1}} = -\frac{a_0}{a_1} J_- - \sum_{i=2}^{n} \frac{a_i}{a_1} J_0^i J_- ,
\]

\[
[J_+, J_-] = -\sum_{i=2}^{n} a_i J_0^i + (1 - a_1) J_0 - a_0 .
\]

The linear case, $f(J_0) = a_0 + a_1 J_0$, corresponds to Heisenberg algebra for $a_1 = 1$ and to a_1^2-deformed Heisenberg algebra otherwise. The representation
theory was shown to be directly related to the stability analysis of the fixed point of the function \(f \) and their composed functions.

The linear and quadratic cases were analyzed in detail. The finite-dimensional representations correspond to lowest-weight being the lowest value of the attractors of period 1, 2, 4, \ldots. Moreover, associated to each attractor there is a parameter region providing an infinite-dimensional representation. We expect that this relation between representations and stability analysis of the fixed points of \(f \) and their composed functions will be the same for any analytical function \(f \). In fact, in higher-order polynomials there will be the possibility to have, simultaneously, more than one attractor, each one with its own basin of attraction in the parameter space. In spite of this, inside one particular basin of attraction the scenario is the same as analysed here in the non-linear case.

It is interesting to mention that there are parameter regions corresponding to certain representations that cannot be smoothly deformed to a representation of Heisenberg algebra. An obvious example is the so-called Logistic algebra where \(f(J_0) = r J_0(1 - J_0) \) is chosen as the logistic map for \(J_0 \). It is clear that this algebra cannot be deformed to Heisenberg algebra even if it is a generalization of it in the sense discussed in this paper.

Last, but not least, we have the feeling that the approach we have presented in this paper be, in a certain sense, universal. In this approach we construct the non-linear generalization of a given undeformed algebra and its representation theory is directly related to the classification of the fixed points - and their stability - of a function \(f \) (and their composed functions) that generates the algebra.

In fact, it is possible to construct another iterative algebra as

\[
\begin{align*}
J_0 J_- & = J_- f(J_0), \\
J_+ J_0 & = f(J_0) J_+ , \\
[J_+, J_-] & = J_0(J_0 + 1) - f(J_0)(f(J_0) + 1) ,
\end{align*}
\]

with Casimir

\[
C = J_+ J_- + f(J_0)(f(J_0) + 1) = J_- J_+ + J_0(J_0 + 1) ,
\]

where \(J_- = J_0^\dagger, J_0^\dagger = J_0 \) and \(f(J_0) \) is an analytical function in \(J_0 \). Note that if \(f(J_0) \) is the simplest linear functional \(f(J_0) = J_0 - 1 \) we obtain the relations and the Casimir of the \(su(2) \) algebra. It is tempting to investigate, as we
did in this paper for the iterative algebra in eqs. (1-3), the above algebra for more complicated functionals $f(J_0)$.

Acknowledgments: The authors thank a member of the Editorial Board for valuable comments. We also thank PRONEX and CNPq (Brazil) for partial support.
References

[1] P. Kulish and N. Reshetikhin, J. Sov. Math. 23 (1983) 2435; L.D. Faddeev, Les Houches Session XXXIX, Elsevier, Amsterdam, 1982, page 563.

[2] C. Zachos, Contemporary Math. 134 (1992) 351; and references therein.

[3] A. J. Macfarlane, J. Phys. A 22 (1989) 4581; L. C. Biedenharn, J. Phys. A 22 (1989) L873.

[4] see for instance (this is not a complete list): M. Martin-Delgado, J. Phys. A24 (1991) 1285; L. Baulieu and E. G. Floratos, Phys. Lett. B 258 (1991) 171; P. Něskovic and B. Urosševic, Int. J. Mod. Phys. A 7 (1992) 3379; J. Schwenk and J. Wess, Phys. Lett. B 291 (1992) 273; M. Chaichian, R. Gonzalez Felipe and C. Montonen, J. Phys. A 26 (1993) 4020; S. S. Avancini, A. Eiras, D. Galetti, B. M. Pimentel and C. L. Lima, J. Phys. A 28 (1995) 4915; D. Galetti, B. M. Pimentel, C. L. Lima and J. T. Lunardi, Physica A 242 (1997) 501; M. S. Plyushchay, Nucl. Phys. B 491 (1997) 619; B. E. Palladino and P. Leal Ferreira, Braz. J. Phys. 28 (1998) 444; J. L. Gruver, Phys. Lett. A 254 (1999) 1; A. Lavagno, P. N. Swamy, Phys. Rev. E 61 (2000) 1218.

[5] M. R.-Monteiro, L. M. C. S. Rodrigues and S. Wulck, Phys. Rev. Lett. 76 (1996) 1098.

[6] M. A. Rego-Monteiro, preprint cbpf-nf-023/99.

[7] E. M. F. Curado and M. A. Rego-Monteiro, Phys. Rev. E 61 (2000) 6255.

[8] K. T. Alligood, T. D. Sauer and J. A. Yorke, ”Chaos: an introduction to dynamical systems”, Springer-Verlag, New York (1997).
Figure Captions

Fig. 1: Iterations of α_0 for the Heisenberg algebra. The eigenvalues α_n increase by a constant factor as n increases.

Fig. 2(a): Iterations of α_0 for the case I: $\Delta < 0$. As it is easily seen, α_n goes to infinity as $n \to \infty$. This figure was plotted for the values $t = 1$, $r = -1.5$ and $s = 2.5$.

Fig. 2(b): Iterations of α_0 for the case II: $\Delta = 0$. Also in this case, for $\alpha \neq \alpha^*$, α_n goes to infinity as $n \to \infty$. This figure was plotted for the values $t = 1$, $r = -2$ and $s = 9/4$.

Fig. 2(c): Iterations of α_0 for the case III: $0 < \Delta < 4$. α^a_0 is a starting point belonging to the regions $\alpha_0 < \alpha^m$ or $\alpha_0 > \alpha^*$, whose future iterations tend to infinity; α^b_0 is a starting point belonging to the region $\alpha^m < \alpha_0 < \alpha^*$, and whose future iterations tend to the fixed point α^*. This figure was plotted for the values $t = 0.8$, $r = -4$ and $s = 6$.

Fig. 3: Histogram of the chaotic bands corresponding to the points $t = 1$, $r =$ and $s = -1.543591$.

\[f(\alpha) \]

(a)

\[f(\alpha) \]

\[\alpha_0 \]

\[\alpha \]
\[f(\alpha) \]
