The affinity of mangrove species using Association and Cluster Index in North Coast of Jakarta and Segara Anakan of Cilacap, Indonesia

ENDANG HILMI1,2,*, LILIK KARTIKA SARI1, TRI NUR CAHYO3, MUSLIH1, ARIF MAHDIANA1, SESILIA RANI SAMUDRA1

1 Program of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr. Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. Tel./fax.: +62-281-642360, *email: dr.endanghilmi@gmail.com
2 Aquatic Resources Graduate Program, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr. Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia
3 Program of Marine Science, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr. Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia

Abstract. Hilmi E, Sari LK, CahYo TN, Muslih, Mahdiana A, Samudra SR. 2021. The affinity of mangrove species using Association and Cluster Index in North Coast of Jakarta and Segara Anakan of Cilacap, Indonesia. Biodiversitas 22: 2907-2918. The affinity of mangrove species using association and cluster index describe relationship among mangrove species. The species association and clustering explain the degree of utilization of resources and space by mangrove species. The association and cluster also describe specific species adaptation in mangrove ecosystems. This paper was aimed to analyze species affinity using association and clustering index of mangrove species. The association index used Chi-square equation and the clustered index used Euclidian distance analysis. The results showed that (i) mangrove density in Segara Anakan (166-4000 trees ha⁻¹) > North Jakarta (220-1100 trees ha⁻¹). (ii) Nypa fruticans, Avicennia marina, Rhizophora stylosa and Rhizophora apiculata dominated in Segara Anakan of Cilacap, and Rhizophora stylosa and Avicennia marina dominated in North Jakarta (iii) The association index had 12 pairs of negative species association and 17 pairs of positive species association, but most of mangrove vegetation had no association. (iv) mangrove ecosystem in Segara Anakan and North Jakarta had four clusters with Euclidean distance (ED score) 484 to describe cluster between Bruguiera parviflora-Bruguiera sexangulara until 76430847 to describe cluster among Bruguiera gymnorrhiza, Bruguiera parviflora, Ceriops decandra, Exocecaria agallocha, Nypa fruticans, Ceriops tagal, Rhizophora stylosa, and Sonneratia caseolaris

Keywords: Mangrove association, mangrove clustering, mangrove density, North Coast of Jakarta Segara Anakan Lagoon

INTRODUCTION

The affinity of mangrove species explains the relation of mangrove species to use resources and space in mangrove habitat (Ludwig and Renold, 1988). The species affinity can be described by many indexes including the species association and cluster. Mangrove clustering and association describe the relation and adaptation models of ecosystems using similarity, distance and specific correlation among species (Hilmi et al. 2015; Ludwig and Renold, 1988). The concepts are developed by a dissimilarity pointer known as the Euclidian distance index (Ludwig and Renold, 1988). Essentially, cluster analysis employs hierarchical and non-hierarchical methods (Ludwig and Renold 1988). Meanwhile, mangrove association provides an assessment tool to species relationships (coefficient variation) between various species. The phenomenon also demonstrates the importance of inter-species correlation and further underscores the ability to combine robust or vulnerable bonds (Ludwig and Renold, 1988). These relationships are introduced to aid structural development (Joshi and Bhatt 2015). Chi-Square index calculates the potential mutual existence of species (E(a)) and is compared by the number plot where the species are discovered (Ludwig and Renold, 1988; Macintosh et al. 2002; Rougier et al. 2005). Furthermore, species relationship mangroves (using associations and clusters index) are essential for effective mangrove forest management (Pham et al. 2019), and are also used to analyze potentials of plant density and species distribution (Ludwig and Renold, 1988), where homogeneity or similarity in ecosystems exist (Coehard et al. 2008).

The affinity of mangrove species (using association and cluster indexes) are analyzed to describe specific relationships among major species, minor species, and association species like Avicennia alba, A. marina, Sonneratia alba, S. caseolaris, Rhizophora apiculata, R. mucronata, Rhizophora stylosa, Bruguiera gymnorrhiza, B. sexangulara, B parviflora, Nypa fruticans, Ceriops decandra, Ceriops tagal, Acrosticium corniculatum, Heritiera littoralis, Exocecaria agallocha and Xylocarpus granatum. The specific of mangrove species relationships showing an adaptation pattern of mangrove species which are largely influenced by sea tide, water inundation and salinity, soil texture, marine pollution, garbage and social activities (Hilmi et al. 2015, 2017; Sari et al. 2016;). Generally, the environmental factors contribute to the cluster pattern, species distribution and correlation (Hilmi et al. 2019; Owuor et al. 2019; Leng and Cao 2020). The cluster and association will develop specific structure of mangrove ecosystem.
(Leng and Cao 2020), specific growth and productivity (Njana 2020), functional model of mangrove structure (Njana 2020), environment adaptation (Leng and Cao 2020), degradation and potential of biodiversity (Owuor et al. 2019), organism habitat (Owuor et al. 2019), potential of above and below-ground biomass, canopy covering, crown leaf spread and tree density (Dencer-Brown et al. 2020).

The mangrove species affinity in Segara Anakan of Cilacap and North Coast of Jakarta are developed to explain the potency of mangrove density, mangrove clusters and mangrove association. The mangrove density, clustering and association provide the zoning base for the density, species distribution and environment characteristics. The specific relationship and mangrove species adaptation reflect the ability of mangrove ecosystem to reduce impact of sea tide, water inundation, and salinity. The purpose of this paper was to analyze species affinity based on mangrove clustering and association in an ecosystem using density, species distribution, and environment characteristics.

MATERIALS AND METHODS

Research site

This research was conducted in Segara Anakan Lagoon (West and East) as well as in the mangrove ecosystem of Nort Coast of Jakarta. In addition, the location is characterized by the mangrove, terrestrial, estuary ecosystems and also by certain rivers, including Donan, Sapuregel, Kembang Kuning, Cimanduy, Cimeneng and Cikonde (Hilmi et al. 2017; Hilmi et al. 2019). The Segara Anakan mangrove environment comprises two locations, including Segara Anakan (West and East). These regions are dominated by Avicennia alba, A. marina, Sonneratia alba, S. caseolaris, Rhizophora apiculata, R. mucronata, B. gymorrhiza, B. sexangula, B parviflora, Nypa frutican, Ceriops decandra, Ceriops tagal, Acrosticum corniculatum, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum (Hilmi, et al. 2017; Hilmi 2018; Hilmi, Sari, and Amron 2020). Meanwhile, the North Coast of Jakarta consists of Muara Angke Wildlife Reserve (SMMA), Angke Kapuk Nature Park (TWA) and Kapuk Angke-Kapuk forest. Conservation (HLAK) and Muara Angke Wildlife Reserve (SMMA) (Hilmi, et al. 2017) are occupied by Rhizophora stylosa, Rhizophora apiculata, and Avicennia marina (Hilmi et al. 2017). East Segara Anakan is occupied by 22 stations, while the West is home to 20 research units. Meanwhile, Jakarta's North Coast is influenced by Angke and Ciliwung waters and Java sea (Hilmi et al. 2017). Furthermore, the present study focuses on mangrove clustering in Angke Kapuk, and is categorized into 6 stations (Figure 1 and Table 1).

![Figure 1. Research area in: A. Segara Anakan of Cilacap, Cilacap, and B. North Coast of Jakarta, Indonesia. Note: Station](image-url)
The affinity of mangrove species was analyzed using the cluster analysis software and was justified by Premiere software. The analysis of mangrove vegetation species A and B only through euclidian distance analysis was used to determine the number of plots containing vegetation species A only, c: the number of plots containing vegetation species B only, d: the number of plots not have vegetation species A and B. The number of plots containing vegetation species A and B is calculated using the value of Chi-square (Ludwig and Renold, 1988).

\[
\text{Chi-square} = \frac{N(ad - bc)^2}{(a+b)(a+c)(c+d)(b+d)}
\]

Where: a: the number of plots containing vegetation species A and B. b: the number of plots containing vegetation species A only. c: the number of plots containing vegetation species B only. d: the number of plots not have vegetation species A and B. The number of plots containing vegetation species A and B is calculated using the value of Chi-square (Ludwig and Renold, 1988).

Chi-square

If score of a > E (a) be defined as positive association,
If score of a < E (a) be defined as negative association

Cluster analysis

Cluster analysis is built using similarity and dissimilarity analysis through euclidian distance analysis (Ludwig and Renold, 1988). The analysis of mangrove clusters followed mathematical manipulation using excel software and was justified by Premiere software. The cluster analysis followed stages:

Stage 1

\[
ED_{mk} = \sum_{i=1}^{n} (x_{ij} - x_{ik})^2
\]

Stage 2

\[
D(j,k) = \alpha_1 D(j,h) + \alpha_2 D(k,h) + \beta D(j,k)
\]

Research design

Vegetation sampling

The vegetation sampling employed the cluster technique with the stratification stage, comprising mangrove density and the river basin. Also, the number of stations involved in the analysis in East (22 stations) and West Segara Anakan (20 stations) and North Jakarta (6 stations) (Table 1).
RESULTS AND DISCUSSION

The mangrove trees density

Distribution of mangrove trees density in mangrove stations

The mangrove tree density distribution at several stations on the North Coast of Jakarta and Segara Anakan were presented in Figure 2 and Table 2. The obtained data showed a superior ecosystem in Segara Anakan, both West and East, compared to the North Coast of Jakarta. Furthermore, the potential densities in East and West Segara Anakan as well as in the North Coast of Jakarta, occurred between 166-4000 trees ha$^{-1}$, 133-3000 trees/ha, and 220-1100 trees ha$^{-1}$, respectively.

The data on Table 2 and Figure 2 and ones from Hilmi et al. (2020) also showed that the potential mangrove tree density divided into (i) East Segara Anakan had 9.1% (very high), 31.8% (high), 40.9% (moderate), and 18.2% (rare) (ii) West Segara Anakan had 5.6% (very high), 5.6% (high), 11.1% (moderate), 61.1% (rare) and 16.7% (very rare) and (iii) North Coast of Jakarta had 50% (rare) and 50% (very rare). These data can be predicted that ecosystem mangrove on North Coast of Jakarta was degraded and must be rehabilitated. However, mangrove ecosystem in Segara Anakan also was degraded but is undergoing a secondary succession process.

Essentially, the potential density is related to environmental conditions, including physical or chemical, water and soil, sedimentation, anthropogenesis, as well as conversion of mangrove forests (Syakti et al. 2013; Giri et al. 2015; Sari et al. 2016). Basically, mangrove tree density in Segara Anakan, both East and West, and the North Coast of Jakarta, are influenced by various levels of pollution (Hidayati et al. 2011; Syakti et al. 2013), sedimentation (Sari et al. 2016), conversion (Giri et al. 2015; Orchard et al. 2015; Hilmi et al. 2017; Castillo et al. 2017) and minimal waste potential (Hilmi et al. 2017). The ability of mangrove trees to grow and live in Segara Anakan and North Coast of Jakarta need effort adaptation toward environmental conditions. Many research describes natural regeneration of mangrove ecosystems in Segara Anakan as superior and faster than Jakarta (Hilmi et al. 2015, 2017, 2019). Consequently, the Segara Anakan region is also experiencing a secondary succession, where plant growth occurs rapidly.

Figure 2. Distribution of mangrove density based on mangrove stations
Table 2. Mangrove density based on distribution of mangrove station

Station	Mangrove density (trees/ha)	East Segara Anakan (station)	West Segara Anakan (station)																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22				
Total	2400	2833	1733	2633	1100	2667	700	2967	4400	1700	800	1700	1967	1780	3075	2100	1633	1767	2967	3200	1933	1067				
Sd	240	858	542	639	353	448	134	522	1033	306	89	321	1400	400	533	366	2000	333	500	3300	1499					
Class	High	High	Moderate	High	Rare	High	Rare	High	Very high	Moderate	Rare	Moderate	High	Moderate	Moderate	High	Very high	Moderate	Rare	Very rarely	Rare	Very rarely	Rare	Very high	Rare	
	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Total	166	767	833	400	500	600	2399	1233	600	133	2133	1400	400	533	366	2000	333	500	3300	1499	1917	467				
Sd	71	24	77	90	145	58	1328	118	330	47	786	305	120	235	96	469	51	212	917	467						
Class	Very rarely	Rare	Rare	Rare	Rare	Rare	High	Rare	High	Rare	Rare	Moderate	Rare	Rare	Very rarely	Moderate	Very rarely	Rare	Very rarely	Rare	Very rarely	Rare				
	43	44	45	46	47	48																				
Total	1100	311	330	220	600	738																				
Sd	255	32	66	54	113	278																				
Class	Rare	Very rarely	Very rarely	Very rarely	Rare	Rare																				
The other factor influences mangrove trees density is sedimentation. Essentially Sari et al. (2016) also noted higher sedimentation in West Segara Anakan and the East Segara Anakan from 26-103.60 gram day⁻¹ and give a total deposit of around 0.22-8.05 million tonnes year⁻¹. The potential sedimentation causes deposit accumulation which contributes to pore-water storage, clay mineral inflammation, low hydrodynamics, sediment deposition, and accretion landscape (Schwarzer et al. 2016; Hilmi 2018; Bomer et al. 2020; Hao Wang et al. 2020). Sari et al. (2016) and Hilmi et al. (2017) reported that the mangrove trees in Segara Anakan also caused accretion between 1.74-2.71 cm year⁻¹, because vegetation density plays a significant role in terms of capture and deposition. Suhendra et al. (2018) and Ross Jones et al. (2016) also explained that sedimentation is a trigger factor for mangrove trees growth, mangrove regeneration and mangrove adaptation. The mangrove trees also are influenced by substrate and water quality factors. Meanwhile, the water quality and substrate showed the entire ecosystems with environmental qualities believed to support the mangrove trees development. The potential of substrate and water quality in Segara Anakan and North Coast of Jakarta can be shown in Table 3.

Table 3 showed that (i) soil nitrate is between 0.010-0.22%, (ii) soil phosphate between 6.85-17.65%, (iii) soil pyrite between 1.03-3.10%, (iv) soil pH between 5.7-6.92, (v) soil salinity between 0-7.05, (vi) soil texture had clay, loam, loamy clay, mud, mud clay, (vii) water pH between 5.6-7.07, and (viii) water salinity between 0-40 ppt. These data match the Rachmawati (2019) report of West Segara Anakan, with potentials between 0.078-0.120 mg/L (phosphate), 25-36 ppt (salinity), 6.7-12.8 mg/L, 1.03-1.40% (pyrite), and muddy clay texture. Furthermore, Widowati (2018) data in East Segara Anakan include the range of 1.28-2.88% (pyrite), 18-32.33 ppt (salinity), 19.77-28.91 mg/L (nitrate), 0.1083-0.192 mg/L (phosphate) and muddy clay texture. Based on (Shiau et al. 2017; Q. Yang et al. 2008), the potential for phosphate, nitrate, and fertility appeared moderate, while the pH was slightly acidic. Also, several studies completely showed the potentials for salinity, temperature, phosphate, and soil nitrate with great suitability for mangrove vegetation growth (Barreto et al. 2016; Hilmi, Sari et al. 2019; Hilmi et al. 2017; Tam et al. 2009; Abdelhakeem, Aboulroos, and Kamel 2016), productivity of fine root and decomposition of organic carbon (Zhang et al. 2021). Consequently, (Djohan 2012; Kusmana and Maulina 2015; Yin et al. 2018) stated the existence of mangrove ecosystems in brackish water, with the salinity ranging from 4-35 ppt (best range occurs from 10-30 ppt), and the optimum phosphate standard from 0.15-0.3 mg/L (Sharafatmandrad and Khosravi Mashizi 2020).

Distribution of mangrove species density

Distribution of mangrove species density is shown in Table 4 and Figure 3. The data in Table 4 and Figure 3 represents the density distribution of mangrove vegetation in Segara Anakan and the North Coast of Jakarta. The major species of mangrove vegetation showed a significant difference between these regions, while the density revealed the dominance level (Huang et al. 2003; Hilmi et al. 2015, 2020; Khadim et al. 2019). Table 3 showed that in the research site were found Aegiceras corniculatum, Avicennia alba, Avicennia marina, Avicennia officinalis, Bruguiera gymnorrhiza, Bruguiera parviflora, Bruguiera sexangula, callophylum inophyllum, Carbera manghas, Ceriops decandra, Ceriops, Rhizophora apiculata, Rhizophora mucronata, Rhizophora stylosa, Sonneratia alba, Sonneratia caseolaris, Tepsis pulpunea, Terminalia catappa, Xylocarpus granatum, and Xylocarpus moluccensis. According to Hilmi et al. (2015, 2017), Segara Anakan was comprised of several species ranging from Rhizophora apiculata, Rhizophora mucronata, Rhizophora stylosa, Bruguiera gymnorrhiza, Bruguiera parviflora, Bruguiera sexangula, Aegiceras corniculatum, Avicennia alba, Avicennia marina, Ceriops decandra, Ceriops tagal, Excoecaria agallocha, Heriteria littoralis, Nypa fruticans, Sonneratia alba, Sonneratia caseolaris, Xylocarpus granatum, and Xylocarpus moluccensis. Different from Table 4, Sreelekshmi et al. (2018) stated the occurrence of 18 mangrove types in Kerala, India, categorized into 5 groups. Group 1 was dominated by Rhizophora mucronate, R. apiculata, Ceriops tagal, Kandelia candel, Sonneratia alba, and S. caseolaris in the fringe zone. Group 2 and 3 were comprised of Avicennia marina, A. alba, Lumnitzera racemosa, Acrostichum aureum, Excoecaria agallocha, E. indica, Avicennia officinalis, Bruguiera gymnorrhiza, and Aegiceras corniculatum, in the intermediate region. Group 4 encompassed the Landward regions and is conquered by Bruguiera sexangula and B. cylindrica. Group 5 occurred in the widespread area with Acanthus ilicifolius.

Table 3. Environment characteristics of mangrove ecosystem

Environment variables	Segara Anakan of Cilacap	North Coast of Jakarta
	West	East
Soil nitrate (%)	0.049-0.161	0.095-0.22
Soil phosphate (%)	8.76-15.44	6.85-17.65
Soil pyrite (%)	1.03-1.24	1.60-2.88
Soil pH	6.67-6.92	5.91-6.25
Soil salinity (ppt)	5.85-7.05	5.21-7.01
Soil texture	Clay, loam, mud, mud clay	Clay, loam, mud, mud clay
Water ph	5.85-7.05	6.83-7.07
Water salinity (ppt)	31-40	18-31
Water temperature	24-29	26-30
Mangrove species density possibly influences species diversity, richness, uniformity (Arunugum et al. 2016; Azman et al. 2021) and plant structure (Sreelekshmi et al. 2018; Haitao et al. 2018; Wang et al. 2019) in addition to the adaptability to heavy metal pollution (Hilmi, Siregar, and Syakti 2017; Syakti et al. 2013), oil pollution (Syakti et al. 2013), sedimentation (Sari et al. 2016), salinity (Hilmi et al. 2020; Hilmi, Kusmana, et al. 2017; Win et al. 2019), texture, sea-level rise (Fu et al. 2018), and water quality (Bullock et al. 2017; Karl and Church 2017). The mangrove in Segara Anakan of Cilacap (SAL) and North Coast of Jakarta (NCJ) were dominated by major species like Rhizophora apiculata, Rhizophora mucronate, Rhizophora stylosa, Avicennia marina, and Nypa fruticans. The adaptation models of mangrove species in SAL and NCJ are related to the capacity to develop root systems, particularly in reducing erosion impact, sedimentation, nutrient cycling and pollution (Bullock et al. 2017; Yang et al. 2018). In mangrove ecosystem, the species density can represent the succession, geomorphology, external disturbances, ecophysiology, and competition (Bullock et al. 2017; Fu et al. 2018). Furthermore, species dominance describes the adaptation of pioneer species, e.g Sonneratia spp, with dominant species, including Rhizophora spp., Bruguiera spp., Ceriops spp., and Nypa fruticans (Cooray et al. 2021; Fu et al. 2018).

![Figure 3. Distribution of species in mangrove stations](image)

Species	Segara Anakan Average	North Jakarta Average	Stdev	Stdev
Aegiceras cornículum	290	246		
Aegiceras floridum	4	4		
Avicennia alba	145	124		
Avicennia marina	289	240	393	348
Avicennia officinalis	45	43		
Bruguiera gymnorrhiza	143	126	20	14
Bruguiera parviflora	5	5		
Bruguiera sexangula	36	35		
Calophyllum inophyllum	11	11		
Cerbera manghas	35	35	7	7
Ceriops decandra	64	60		
Ceriops tagal	74	61		
Excoecaria agallocha	18	19	90	40
Heritiera littoralis	8	9		
Nypa fruticans	804	625	65	35
Rhizophora apiculata	227	186	35	7
Rhizophora mucronata	172	142	208	269
Rhizophora stylosa	346	291	228	288
Sonneratia alba	227	208		
Sonneratia caseolaris	101	88	23	15
Terminalia catappa	73	29		
Thespesia populnea	19	19	1	1
Xyloracpus granatum	92	86		
Xyloracpus mucoicensis	11	10		

![Table 4. Distribution of species density in mangrove ecosystem](image)
The dominant species in Segara Anakan include *Nypa fruticans*, with an individual potential of 804 ± 625 trees/ha, while *Rhizophora stylosa*, *Rhizophora apiculata*, *Aegiceras corniculatum*, *Sonneratia alba*, and *Avicennia marina* (moderate), with potential abundance ranging from 227-290 trees/ha and others are recessive species. Meanwhile, the North Coast of Jakarta is predominantly *Avicennia marina*, *Rhizophora mucronata*, and *Rhizophora stylosa*, with an abundance of 228-393 trees/ha, and others are not widespread. Based on Hilmi et al. (2015), *Avicennia* spp. and *Sonneratia* spp. are common in West Segara Anakan, while *Rhizophora* apiculata, *Nypa fruticans*, and *Aegiceras corniculatum* reside extensively in the East. The species dominance gives indication has greatly adapted toward habitat conditions. For instance, *Sonneratia alba* and *Avicennia* spp. are very prevalent in regions with substrates and are directly in close water proximity (Avelar et al. 2017; Yin et al. 2018), *Rhizophora* spp. and *Bruguiera* spp. thrive in less flooded areas with relatively soft substrates (Hilmi et al. 2017). Meanwhile, *Nypa fruticans* dominance is due to the ability to replicate in groups with high density, specifically around river estuaries (Hilmi 2018). Leopold et al. (2013) also reported that the dominance species have correlated with carbon absorption, oxygen, and nutrients from the soil and air and species relationship to develop a clustering pattern and species association (Pham et al. 2019). The species dominance also influenced potential of root biomass, biomass productivity, density, and growth, the formation of stand structure and spatial distribution (Ahmad et al. 2016).

The mangrove association

The mangrove association shows a robust connection among the species and provides the framework for the analysis. Table 4 represents the association phenomenon in Segara Anakan. The mangrove association (positive, negative, and not associated) in North Coast of Jakarta and Segara Anakan are developed by three criteria that are (i) the avoidance of similar habitat, (ii) mutual basic biotic and abiotic environmental needs, (iii) one or more of these species are interconnected, either by attraction or rejection (Ludwig and Renold 1988). The positive and negative associations of mangrove species in Segara Anakan of Cilacap and North Coast Jakarta also described indicating the expectation of coexistence or mutual refusal to coexist.

The association of mangrove ecosystem in Table 4 showed (i) 12 pairs of negative associated, including *A. alba-Ae.corniculatum*, *A. marina-Ae. corniculatum*, *A. marina-C. decandra*, *A. marina-C. tagal*, *A. marina-N. fruticans*, *B. sexangula-X. granatum*, *C. decandra-N. fruticans*, *C. tagal-S. caseolaris*, *C. tagal-S. alba*, *N. fruticans-S. alba*, *A. alba-C. tagal*, and *A. alba-N. fruticans*, (ii) 17 pairs of positively-associated mangrove vegetation, including *A. marina-A. alba*, *A. marina-S. caseolaris*, *A. marina-S. alba*, *A. alba-S. caseolaris*, *A. alba-S. alba*, *B. parviflora-B. sexangula*, *B. parviflora-S. caseolaris*, *B. parviflora-S. alba*, *B. sexangula-S. alba*, *C. decandra-C. tagal*, *C. tagal-N. frutican*, *R. apiculata-R. mucronata*, *R. apiculata-R. stylosa*, *S. alba-B. sexangula*, *S. caseolaris-S. alba*, *S. caseolaris-B. sexangula*, and *E. agallocha-X. granatum*, (iii) most mangrove vegetation is not associated, almost reached positive or negative association. Most mangrove vegetation are not associated, indicating the tendency to form clusters among similar species. Kurniawan, Undaharta, and Pendit (2008) noted: (i) High-frequency pairs do not regularly produce positive associations; (ii) Pairs of types with low frequencies do not necessarily generate negative relations. Moreover, the data showed 2 association types in Segara Anakan, and are known to develop zonation or not show any correlation.

Positive association describes strong relationship between species in same habitat. Positive association also occurs when mangrove species have a collective relationship, or join other species because have similar needs (Kurniawan et al. 2008). As a consequence, a positively connected species tends to generate a definite spatial relationship with other kinds (Ludwig and Renold 1988). This condition shows a robust relationship of mangrove species with others varieties. Furthermore, two species with similar adaptations are constructed and presented in a grouping pattern. Previous studies described the association by presenting the adaptation between two species in mutual existence with similar habitat, due to related adjustment to associated environmental parameters, including sunlight, water, and soil (Hilmi et al. 2015).

Kairo et al. (2008), Petrakis et al. (2016), Khadim et al. (2019), and Azman et al. (2021) clarified the species pairs do not constantly produce positive relationships. Moreover, plant groups with high occurrence, are not commonly generating extensive positive association. In similar conditions, low presence does not repeatedly demonstrate a negative correlation with other species. Negative association shows no tolerance for coexisting in related ecosystem or have no mutually beneficial relationships. Essentially, the survival of several species in the community instigates the possibility of competition and development of species compositions or clusters. In the mangrove ecosystem, the cluster is shown as a mangrove zoning to illustrate the connection between several mangrove types (Hilmi et al. 2015, 2017).

Potential mangrove associations are influenced by the relationships among species, pollution and human activities (Pham et al. 2019). For instance, the decline in *Avicennia alba-Sonneratia alba* (Association I) by 20.1% and an increase of *Rhizophora apiculata* (Association II) by 34.7% were caused by aquaculture and other human activities (Pham et al. 2019). Other factors are potential of soil carbon sequestration (Chen et al. 2021) and human activity causes degradation of nutrients and microorganisms, sedimentation and logging (Sun et al. 2020).

Furthermore, mangrove association and ecosystem potential tend to influence the habitat, biodiversity, and potential wildlife fauna. These situations further impacted on buffer zones of retaining nutrients (Li et al. 2016; Hao Wang et al. 2020) and also provided the spawning habitat, nursery ground habitat, and feeding base for several faunas (Nagelkerken et al. 2008; Jones et al. 2015; Abdelhakeem et al. 2016).
Table 4. The mangrove Asosiation in Segara Anakan of Cilacap

Vegetation relationship	Chi-square E(A)	Association
A. alba-Ae. corniculatum, A. marina-Ae. Corniculatum, A. marina-C. decandra, A. marina-C. tagal, A. marina-N. frutican, B. sexangula-X. granatum, C. decandra-N. frutican, C. tagal-S. caseolaris, C. tagal-S. alba, N. frutican-S. alba, A. alba-C. tagal, A. alba-N. frutican	4.02-11.81 1.82-8.73	Negative
A. marina-A. alba, A. marina-S. caseolaris, A. marina-S. alba, A. alba-S. caseolaris, B. parviflora-S. sexangula, B. parviflora-S. caseolaris, B. parviflora-S. alba, B. sexangula-S. alba, C. decandra-C. tagal, C. tagal-N. frutican, R. apiculata-R. mucronata, R. apiculata-R. stylosa, S. alba-B. sexangula, S. caseolaris-S. alba, S. caseolaris-B. sexangula, E. agallocha-X. granatum	4.07-18.16 0.09-12.09	Positive
Ae. corniculatum-A. lanata, Ae. corniculatum-A. officinalis, Ae. corniculatum-B. gymnorhiza, Ae. corniculatum-B. parviflora, Ae. corniculatum-B. sexangula, Ae. corniculatum-C. decandra, Ae. corniculatum-R. apiculata, Ae. corniculatum-R. mucronata, Ae. corniculatum-R. stylosa, Ae. corniculatum-S. caseolaris, Ae. corniculatum-L. Racemosa, Ae. corniculatum-E. agallocha, Ae. corniculatum-X. granatum, A. alba-A. lanata, A. alba-A. officinalis, A. alba-B. gymnorhiza	0.03-2.92 0.06-2.33	Not associated
A. alba-B. parviflora, A. alba-B. sexangula, A. alba-C. decandra, A. alba-C. tagal, A. alba-N. frutican, A. alba-R. apiculata, A. alba-R. mucronata, A. alba-R. stylosa, A. alba-L. Racemosa, A. alba-E. agallocha, A. alba-X. granatum, A. lanata-A. officinalis, A. lanata-B. gymnorhiza, A. lanata-B. parviflora, A. lanata-B. sexangula, A. lanata-C. decandra, A. lanata-C. tagal, A. lanata-R. apiculata, A. lanata-R. mucronata, A. lanata-R. stylosa, A. lanata-L. Racemosa, A. lanata-E. agallocha, A. lanata-X. granatum, A. marina-A. officinalis, A. marina-B. gymnorhiza, A. marina-B. parviflora, A. marina-B. sexangula, A. marina-R. mucronata, A. marina-R. stylosa, A. marina-L. Racemosa, A. marina-E. agallocha	0.03-2.92 0.06-2.33	Not associated
A. marina-X. granatum, A. officinalis-B. gymnorhiza, A. officinalis-B. parviflora, A. officinalis-B. sexangula, A. officinalis-C. decandra, A. officinalis-C. tagal, A. officinalis-R. apiculata, A. officinalis-R. mucronata, A. officinalis-R. stylosa, A. officinalis-S. caseolaris, A. officinalis-S. alba, A. officinalis-L. Racemosa, A. officinalis-E. agallocha, A. officinalis-X. granatum, B. gymnorhiza-S. caseolaris, B. gymnorhiza-S. alba, B. gymnorhiza-L. Racemosa, B. gymnorhiza-E. agallocha, B. gymnorhiza-X. granatum, B. parviflora-L. Racemosa, B. parviflora-E. agallocha, B. parviflora-X. granatum, B. sexangula-C. decandra, B. sexangula-C. tagal, B. sexangula-R. mucronata, B. sexangula-R. stylosa, B. sexangula-L. Racemosa, B. sexangula-E. agallocha, C. decandra-R. stylosa, C. decandra-S. caseolaris, C. decandra-S. alba, C. decandra-L. Racemosa, C. decandra-E. agallocha, C. decandra-X. granatum, C. tagal-R. mucronata, C. tagal-R. stylosa, C. tagal-L. Racemosa, C. tagal-E. agallocha, C. tagal-X. granatum, N. frutican-L. Racemosa, N. frutican-E. agallocha, N. frutican-X. granatum, R. apiculata-S. caseolaris, R. apiculata-S. alba, R. apiculata-L. Racemosa, R. apiculata-E. agallocha, R. apiculata-X. granatum, R. mucronata-S. alba, R. mucronata-L. Racemosa, R. mucronata-E. agallocha, R. mucronata-X. granatum, R. stylosa-X. granatum, R. stylosa-R. stylosa, R. stylosa-X. granatum, S. caseolaris-L. Racemosa, S. caseolaris-E. agallocha, S. caseolaris-X. granatum, S. alba-L. Racemosa, S. alba-E. agallocha, S. alba-X. granatum	0.03-11.81 0.06-8.73	Not associated to negative association
Ae. corniculatum-A. alba, Ae. corniculatum-A. marina, Ae. corniculatum-N. frutican, A. lanata-N. frutican, A. marina-N. apiculata, A. officinalis-N. frutican, B. gymnorhiza-C. decandra, B. gymnorhiza-C. tagal, B. gymnorhiza-N. frutican, B. parviflora-C. decandra, B. parviflora-C. tagal, B. parviflora-N. frutican, B. sexangula-N. frutican, C. decandra-R. apiculata, C. decandra-R. mucronata, C. tagal-R. apiculata, N. frutican-R. apiculata, N. frutican-R. mucronata, N. frutican-R. stylosa, N. frutican-S. caseolaris, N. frutican-S. alba, R. mucronata-C. caseolaris, R. mucronata-S. caseolaris, R. mucronata-S. alba, R. stylosa-S. alba	0.03-18.16 0.06-12.09	Not associated to positive association
Figure 4. Dendrogram of species cluster in mangrove ecosystem Segara Anakan, Cilacap, Indonesia. Note: 1. Aegiceras corniculatum, 2. Aegiceras floridum, 3. Avicennia alba, 4. Avicennia marina, 5. Avicennia officinalis, 6. Bruguiera gymnorrhiza, 7. Bruguiera parviflora, 8. Bruguiera sexangula, 9. Ceriops decandra, 10. Ceriops tagal, 11. Excoecaria agallocha, 12. Hertitiera littoralis, 13. Nypa fruticans, 14. Rhizophora apiculata, 15. Rhizophora mucronata, 16. Rhizophora stylosa, 17. Sonneratia alba, 18. Sonneratia caseolaris, 19. Xylocarpus granatum; 20. Xylocarpus moluccensis.

Table 5. Clustering of mangrove species

No	Euclidian Distance (ED) score	Mangrove species clustering
1.	456 Bp-Bs	
2.	1290 BpBs-Cd	
3.	3336 Af-HI	
4.	113444 Ea-Nf	
5.	113548 BpBsCd-EaNf	
6.	257450 Ao-Sa	
7.	283884 BpBsCdEaNf-Ct	
8.	641463 AHI-Xm	
9.	722247 BpBsCdEaNfCt-Bg	
10	1138205 AHI-Xm-Xg	
11	1948256 AHI-XmXg-Aa	
12	3168590 AHI-XmXgAA-Rm	
13	3178790 BpBsCdEaNfCtBg-Rs	
14	3980595 BpBsCdEaNfCtBg-RsSc	
15	4096101 Ae-Ra	
16	7204671 AoSa-Am	
17	9645962 BpBsCdEaNfCtBgRsScAeHI-XmXgAA-Rm	cluster of mangrove density
18	2114220 BpBsCdEaNfCtBgRsSc-AoSaAm	
19	76430847 BpBsCdEaNfCtBgRsScAfHI-XmXgAA-Rm-AeRa	

Note: Ac: Aegiceras corniculatum, Ae: Aegiceras floridum, Aa: Avicennia alba, Am: Avicennia marina, Ao: Avicennia officinalis, Bg: Bruguiera gymnorrhiza, Bp: Bruguiera parviflora, Bs: Bruguiera sexangula, Ci: Callophyllum inophyllum, Cm: Cerbera manghas, Cd: Ceriops decandra, Ct: Ceriops tagal, Ea: Excoecaria agallocha, Hi: Hertitiera littoralis, Nf: Nypa fruticans, Ra: Rhizophora apiculata, Rm: Rhizophora mucronata, Rs: Rhizophora stylosa, Sa: Sonneratia alba, Sc: Sonneratia caseolaris, Tc: Terminalia catappa, Tp: Thespesia populnea, Xg: Xylocarpus granatum, Xm: Xylocarpus moluccensis.

Cluster of mangrove density

The cluster of mangrove density can be shown in Table 5 and Figure 4. The data in Table 5 and Figure 4 showed the cluster of mangrove density in West and East Segara Anakan, Cilacap. This arrangement follows the dissimilarity pattern, as illustrated by the Euclidian distance index (Ludwig and Renold, 1988).

Based on the potential mangrove density at each station in Segara Anakan, 3 primary clusters with ED values between 254-3,498, were created (Rachmawati 2019) and also structured, due to the dominance of Avicennia marina, Avicennia alba, Rhizophora apiculata, Rhizophora stylosa, Rhizophora mucronate, and Sonneratia caseolaris, and Nypa fruticans. Also, East Segara Anakan showed 3 clusters with potential ED between 512.8-4,580.2, with the common types of Avicennia marina, Avicennia alba, Rhizophora apiculata, Rhizophora mucronata, Rhizophora stylosa, and Sonneratia alba (D Widowati 2018).

Cluster analysis in Segara Anakan, Cilacap and North Coast of Jakarta indicate a pattern of species grouping and kinship in reducing environmental impact factors, including sedimentation (Sari et al. 2016; Bullock et al. 2017; Bomer et al. 2020), tides (Bomer et al. 2020), hydrodynamic oceanography (Bomer et al. 2020), water logging (Fu et al. 2018), soil stability (Fu et al. 2018), carbon, CO₂ and organic matter (Leopold et al. 2013), natural disasters (Hilmi 2018; Win et al. 2019) as well as other environmental factors, including salinity, pH and soil fertility (Ahmed et al. 2021). The adaptation was reflected in the presence of root patterns, biomass potential (Ahmed et al. 2021), nutrient absorption (Pham et al. 2019), nutrient decomposition (Leopold et al. 2013), and the ability to trap sediment and nutrients (Fu et al. 2018). These abilities and adaptation circumstances...
have significantly impacted the formation of species clusters, association pattern, structure, vertical and horizontal distribution, biodiversity, as well as zoning (Hilmi et al. 2015; Arumugam et al. 2016; Hilmi 2018; Sreeleekshmi et al. 2018; Win et al. 2019).

In conclusion, the potential mangrove density in East and West Segara Anakan occur between 166-4,000 trees ha$^{-1}$ and 133–3,000 trees ha$^{-1}$, respectively, while the North Coast of Jakarta ranged from 220-1,100 trees ha$^{-1}$. As a consequence, the predominant species in Segara Anakan were Nypa fruticans (high dominant), Rhizophora stylosa, Rhizophora apiculata, Aegiceras corniculatum, Sonneratia alba and Avicennia marina (moderate). Meanwhile, the North Coast of Jakarta was mostly occupied by Avicennia marina, Rhizophora mucronata and Rhizophora stylosa. The mangrove ecosystem generated 12 and 17 species groups, based on species similarity or zoning. However, most sets were neutral, indicating the tendency to form groups, based on species similarity or zoning. Furthermore, the cluster analysis showed the formation of 4 mangrove clusters, with the closest unit as Bruguiera parviflora-Bruguiera sexangula.

ACKNOWLEDGEMENTS

We would like to thank Dr. Isdy Sulystio (Dean of the Faculty of Fisheries and Marine Science, Universitas Jenderal Soedirman (Unsoed), Indonesia), LPPM Unsoed to support grant with Riset Unggulan (2021) and researcher colleague for providing his advice for this research. We would also like to thank anonymous reviewers for their helpful and constructive comments which greatly helped us improve our manuscript.

REFERENCES

Abdelhakeem SG, Aboulroos SA, Kamel MM. 2016. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J Adv Res 7 (5): 803-814. DOI: 10.1016/j.jare.2015.12.002.

Ahmad CB, Abdillah J, Jafar J. 2016. Buffer Zone Delineation at Conservation Reserve. Procedia Soc Behav Sci 222: 685-692. DOI: 10.1016/j.spbs.2016.05.227.

Ahmed S, Kamruzzaman M, Azad MS, Khan MNI. 2021. Fine root biomass and its contribution to the mangrove communities in three saline zones of Sundarbans, Bangladesh. Rhizophora 100294. DOI: 10.1016/j.rhuph.2020.100294.

Arunugam S, Sigamani S, Samikannu M, Perumal M. 2016. Assemblages of phytoplankton diversity in different zonation of Muthupet mangroves. Reg Stud Mar Sci 3: 234-241. DOI: 10.1016/j.rsma.2015.11.005.

Avelar S, van der Voort TS, Eglinton TI. 2017. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations. Carbon Balance Manag 12: 10. DOI: 10.1186/s12649-017-0077-x.

Azman MS, Sharma S, Shaharudin MAM, Hamzah ML, Adibah SN, Zakaria RM, MacKenzie RA. 2021. Stand structure, biomass and dynamics of naturally regenerated and restored mangroves in Malaysia. For Ecol Manag 482: 118852. DOI: 10.1016/j.foreco.2020.118852.

Barreto MB, Lo Mônaco S, Dias H, Barreto-Pitol E, Lópex L, Peralba M, do CR. 2016. Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Organic Geochem 100: 51-61. DOI: 10.1016/j.orggeochem.2016.08.002.
Schwarzer K, Thamb NC, Ricklefs K. 2016. Sediment re-deposition in the mangrove environment of Can Gio, Saigon River estuary (Vietnam). J Coast Res 75 (suppl): 138-142. DOI: 10.2112/s75-028.1
Sharafatmandrad M, Khosravi MA. 2020. Investigating distribution of ecosystem services in rangeland landscapes: an approach based on weighted key functional traits. Ecol Indicat 111: 105971. DOI: 10.1016/j.ecolind.2019.105971.
Shiau YJ, Lee SC, Chen TH, Tian G, Chiu CY. 2017. Water salinity effects on growth and nitrogen assimilation rate of mangrove (Kandelia candel) seedlings. Aquat Bot 137: 50-55. DOI: 10.1016/j.aquabot.2016.10.008.
Sreekrishna H, Preethy CM, Varghese R, Joseph P, Asha CV, Bijoy Nandan S, Radhakrishnan CK. 2018. Diversity, stand structure, and zonation pattern of mangroves in southwest coast of India. J Asia-Pac Biodiv 11 (4): 573-582. DOI: 10.1016/j.rpab.2018.08.001.
Suhendra, Amron A, Hilmi E. 2018. The pattern of coastline change based on the characteristics of sediment and coastal soil in Pangemanan coast of Cirebon, West Java. ESS Web Conf 47: 06001. DOI: 10.1051/e3sconf/20184706001.
Sun H, He Z, Zhang M, Yen L, Cao Y, Hu Z, Peng Y, Lee SY. 2020. Spatial variation of soil properties impacted by aquaculture effluent in a small-scale mangrove. Mar Pollut Bull 160: 111511. DOI: 10.1016/j.marpolbul.2020.111511.
Syakí AD, Ahmed MM, Hidayati NV, Hilmi E, Sulyosto I, Piram A, Doumeng P. 2013. Screening of emerging pollutants in the mangrove of Segara Anakan Nature Reserve, Indonesia. IERI Procedia 5: 216-222. DOI: 10.1016/j.ieriprocedia.2013.11.095.
Syakí AD, Hidayati NV, Hilmi E, Piram A, Doumeng P. 2013. Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Mar Pollut Bull 74 (1): 141-148. DOI: 10.1016/j.marpolbul.2013.07.015.
Tam NFY, Wong AYH, Wong MH, Wong YS. 2009. Mass balance of nitrogen in constructed mangrove wetlands receiving ammonium-rich wastewater: Effects of tidal regime and carbon supply. Ecol Eng 35 (4): 453-462. DOI: 10.1016/j.ecoleng.2008.05.011.
Wang, Haitao, Gilbert JA, Zhu Y, Yang X. 2018. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci Total Environ 631-632: 1342-1349. DOI: 10.1016/j.scitotenv.2018.03.102.
Wang, Hao, Liu G, Li Z, Zhang W. 2020. Processes and driving forces for changing vegetation ecosystem services: Insights from the Shaanxi Province of China. Ecol Indicat 112: 106105. DOI: 10.1016/j.ecolind.2020.106105.
Wang, Y, Ying Y, Yin Y, Zheng H, Cui Z. 2019. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 675: 96-112. DOI: 10.1016/j.scitotenv.2018.12.029.
Widowati D. 2018. Clustering Vegetasi Mangrove Di Segara Anakan Bagian Timur, Cilacap. Universitas Jenderal Soedirman, Banyumas. [Indonesian].
Win S, Towsprayoow S, Chidhasong A. 2019. Adaptation of mangrove trees to different salinity areas in the Ayeyarwaddy Delta Coastal Zone, Myanmar. Estuar Coast Shelf Sci 228: 106389. DOI: 10.1016/j.ecs要闻.2019.106389.
Xiong J, Mei X, Liu J. 2003. Comparative studies on community structure, biodiversity of plantation and zoonothons in four lakes of different trophic states in China. Water 16: 361-372.
Xiong Y, Liao B, Proffitt E, Guan W, Sun Y, Wang F, Liu X. 2018. Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Sci Total Environ 619-620: 1226-1235. DOI: 10.1016/j.scitotenv.2017.11.187.
Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Pan CY, Shin PKS, Cheung SG. 2008. Potential use of mangroves as constructed wetland for municipal sewage treatment in Putian, Shenzhen, China. Mar Pollut Bull 57 (6-7): 735-743. DOI: 10.1016/j.marpolbul.2008.01.037.
Yang Z, Song W, Zhao Y, Zhou J, Wang Z, Lai Y, Lin G. 2018. Differential responses of litter decomposition to regional excessive nitrogen input and global warming between two mangrove species. Estuar Coast Shelf Sci 214: 141-148. DOI: 10.1016/j.ecs要闻.2018.09.018.
Yin P, Yin M, Cui Z, Wu G, Lin G, Zhou J. 2018. Structural inflexibility of the rhizophore microbiome in mangrove plant Kandelia obovata under elevated CO2. Mar Environ Res 140: 422-432. DOI: 10.1016/j.marenres.2017.07.013.
Zhang Y, Xiao L, Guan D, Chen Y, Motelica-Heino M, Peng Y, Lee SY. 2017. The role of mangrove fine root production and decomposition on soil organic carbon component ratios. Ecol Indicat 25: 107525. DOI: 10.1016/j.ecolind.2021.107525.