Ten-Day Concomitant, 10-Day Sequential, and 7-Day Triple Therapy as First-Line Treatment for Helicobacter pylori Infection: A Nationwide Randomized Trial in Korea

Beom Jin Kim, Hyuk Lee, Yong Chan Lee, Seong Woo Jeon, Gwang Ha Kim, Hyun-Soo Kim, Jae Kyu Sung, Dong Ho Lee, Heung Up Kim, Moo In Park, Il Ju Choi, Soon Man Yoon, Sang Wook Kim, Gwang Ho Baik, Ju Yup Lee, Jin Il Kim, Sang Gyun Kim, Jayoun Kim, Joongyup Lee, Jae Gyu Kim, and Jae J. Kim, Korean College of Helicobacter and Upper Gastrointestinal Research

Background/Aims: This nationwide, multicenter prospective randomized controlled trial aimed to compare the efficacy and safety of 10-day concomitant therapy (CT) and 10-day sequential therapy (ST) with 7-day clarithromycin-containing triple therapy (TT) as first-line treatment for Helicobacter pylori infection in the Korean population. Methods: Patients with H. pylori infection were assigned randomly to 7d-TT (lansoprazole 30 mg, amoxicillin 1 g, and clarithromycin 500 mg twice daily for 7 days), 10d-ST (lansoprazole 30 mg and amoxicillin 1 g twice daily for the first 5 days, followed by lansoprazole 30 mg, clarithromycin 500 mg, and metronidazole 500 mg twice daily for the remaining 5 days), or 10d-CT (lansoprazole 30 mg, amoxicillin 1 g, clarithromycin 500 mg, and metronidazole 500 mg twice daily for 10 days). The primary endpoint was eradication rate by intention-to-treat (ITT) and per-protocol (PP) analyses. Results: A total of 1,141 patients were included. The 10d-CT protocol achieved a markedly higher eradication rate than the 7d-TT protocol in both the ITT (81.2% vs 63.9%) and PP analyses (90.6% vs 71.4%). The eradication rate of the 10d-ST protocol was superior to that of the 7d-TT protocol (76.3% vs 63.9%, ITT analysis; 85.0% vs 71.4%, PP analysis). No significant differences in adherence or serious side effects were found among the three treatment arms. Conclusions: The 10d-CT and 10d-ST regimens were superior to the 7d-TT regimen as standard first-line treatment in Korea. (Gut Liver 2019;13:531-540)

Key Words: Concomitant therapy; Disease eradication; Helicobacter pylori; Triple therapy; Sequential therapy
INTRODUCTION

Helicobacter pylori infection is associated with development of gastroduodenal diseases such as duodenal and gastric ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric adenocarcinoma.\(^1\,2\) To reduce the risk of these diseases, there has been continued interest in the elimination of *H. pylori*.\(^3\) The clarithromycin-containing triple therapy (TT), including amoxicillin and clarithromycin combined with a conventional proton-pump inhibitor (PPI), has long been recommended as the first-line treatment for *H. pylori* eradication and is the most commonly used treatment. It is also suggested by many international and Korean guidelines.\(^4\,6\) However, the major problem of TT is its clinical efficacy, which has significantly decreased globally to the point of unacceptable levels in many countries.\(^7\,9\) This is mostly caused by increased antimicrobial resistance, including clarithromycin resistance.\(^10\) Similarly, the eradication rate in Korea has been steadily decreasing over the past 20 years and has recently been reported to be 70% to 75%.\(^11\,14\) However, the Kyoto Global Consensus Report suggests that only regimens with an eradication rate of 90% or more in the area should be used as the sole empirical treatment, making it imperative to find a regimen that provides a more favorable eradication rate.\(^15\)

Recently, although susceptibility-based merits were suggested, the cost-effectiveness of this strategy has not been rigorously evaluated.\(^16\) Because no evidence supports the superiority of tailored therapy over empirical therapy at the nation level, optimal empirical regimen still needs to be determined.

Several alternative therapies have been proposed, including bismuth-containing quadruple therapy and non-bismuth-containing quadruple therapy.\(^17\) A non-bismuth-containing quadruple therapy known as concomitant therapy (CT) may be an alternative and has been found to be effective in an environment of high clarithromycin resistance.\(^18\) Furthermore, some randomized trials have suggested that CT in the Korean population is likely to be more effective than the sequential therapy (ST).\(^19\,20\) ST is among the proposed therapies and is relatively less dependent on clarithromycin sensitivity and therefore expected to be a suitable first-line regimen. Furthermore, a meta-analysis reported that ST was comparably more effective than TT, al-

Figure 1

Flow diagram of the study. A total of 1,141 patients participated in the study, of which 1,137 were included in the analyses.

ITT, intention-to-treat; **TT**, triple therapy; **ST**, sequential therapy; **CT**, concomitant therapy; **PP**, per-protocol; **UBT**, urea breath test.

1,141 Patients randomly assigned to treatment groups
377 Assigned to 7-day TT group in the ITT population
377 Assigned to 10-day ST group in the ITT population
383 Assigned to 10-day CT group in the ITT population
9 Did not receive at least one dose of study medication
13 Did not receive at least one dose of study medication
13 Did not receive at least one dose of study medication
Safety analysis 368 Received at least one dose of 7-day TT
Safety analysis 364 Received at least one dose of 10-day ST
Safety analysis 370 Received at least one dose of 10-day CT
67 Excluded from the PP analysis
9 Violations of inclusion or exclusion criteria
20 Protocol violations
44 Compliance <80%
16 Withdraw or discontinue due to adverse events
5 Withdrawal consent
4 Missing UBTs
1 Other
77 Excluded from the PP analysis
10 Violations of inclusion or exclusion criteria
22 Protocol violations
62 Compliance <80%
20 Withdraw or discontinue due to adverse events
7 Withdrawal consent
4 Missing UBTs
1 Other
81 Excluded from the PP analysis
10 Violations of inclusion or exclusion criteria
22 Protocol violations
72 Compliance <80%
16 Withdraw or discontinue due to adverse events
12 Withdrawal consent
4 Missing UBTs
0 Other

| 301 in the PP population |
| 287 in the PP population |
| 289 in the PP population |
though a variation in efficacy was found because of regional differences in antibiotic resistance.21-23 Despite previous results, there were issues of inadequate quality of research design, insufficient sample size, and most studies were single institutional or local studies in Korea. Thus, it is highly important to conduct a well-designed nationwide population-based trial to determine the most appropriate first-line treatment regimen for Korean subjects. Such a trial enables providing a basis for changing the primary treatment in light of the domestic reality, as well as providing specific alternatives in Korea. In fact, the study was endorsed by the Korean government as part of an effort to prevent gastric cancer by eradicating \textit{H. pylori} in Korea.

Therefore, the primary endpoint was to demonstrate the difference in eradication rates between CT for 10 days versus TT, ST for 10 days versus TT, respectively. Our secondary aim was to evaluate drug compliance and adverse events of the three treatment groups.

MATERIALS AND METHODS

1. **Study design**

This was a multicenter, prospective, randomized, three-armed, superiority, parallel-group, open label trial which was performed at fifteen institutions nationwide in Korea. The study design has been published previously,24 and the protocol was approved by the Institutional Review Board of the Samsung Medical Center.

Table 1. Clinical Characteristics of the Enrolled Patients
Characteristics
Age, yr
Mean±SD
Median (range)
Sex
Male
Female
Smoking
Never smoker
Ex-smoker
Current smoker
Alcohol consumption
Never drinker
Ex-drinker
Current drinker
General medical history4
Past medical history of GI diseases5
Family history of gastric cancer
Benign gastric ulcer
Benign duodenal ulcer
After ESD for EGC
MALT lymphoma
Eosinophilic gastritis
Gastric adenoma
Gastric polyp6
Iron deficiency anemia
\textit{Helicobacter pylori (+)} gastritis

Data are presented as number (%).

7d, 7 days; TT, triple therapy; CT, concomitant therapy; ST, sequential therapy; GI, gastrointestinal; ESD, endoscopic submucosal dissection; EGC, early gastric cancer; MALT, mucosa-associated lymphoid tissue.

4Fisher exact test; †Chi-square test; 4General medical history includes hypertension, arrhythmia, myocardial infarction, heart failure, diabetes mellitus, asthma, chronic obstructive pulmonary disease, liver cirrhosis, renal failure, and any cancer except GI cancer; 5Past medical history of GI diseases includes esophagitis, gastric ulcer, duodenal ulcer, gastric cancer, past history of abdominal surgery, gastrectomy, intractable iron deficiency anemia, chronic idiopathic thrombocytopenic purpura, atrophic gastritis, and nonulcer dyspepsia; 6Gastric polyp includes hyperplastic and inflammatory polyps.
Korea (IRB number: SMC 2016-02-131-002), and all participating centers also approved committee approval. The study was conducted in accordance with the standards of the Declaration of Helsinki and the Food and Drug Administration regulations regarding Good Clinical Practice. Written informed consent was obtained from all participants. This investigator-initiated trial is registered at https://cris.nih.go.kr/cris (Identifier number: KCT0001980). Fig. 1 demonstrates a flow diagram of this trial.

2. Patients

This trial included H. pylori-infected patients aged ≥19 years who agreed to trial participation, provided written informed consent, and fulfilled the eligibility criteria. In addition, those who met the following criteria were excluded: patients with a previous history of H. pylori infection management; patients with a gastric surgical history; patients with a history of antibiotic therapy within the prior 1 month; patients with a history of PPI use within the prior 2 weeks; patients with a history of taking various drugs; patients with serious concomitant illnesses; pregnant participants. Antibiotics or other medications affecting the treatment results were prohibited during the study period.

3. Randomization and allocation concealment

A centralized web-based randomization system, which uses permuted block randomization with a concealed and varying block size, was used for randomization. To ensure concealed allocation, an independent staff dispensed consecutively numbered, identically designed treatment packs that contained sealed bottles of study drugs. Participants were not blinded to group allocation.

4. Procedures

In the treatment group, the experimental arm 1 group received the 10d-ST (lansoprazole 30 mg and amoxicillin 1 g twice daily for the first 5 days followed by lansoprazole 30 mg, clarithromycin 500 mg, and metronidazole 500 mg twice daily for the remaining 5 days), and the experimental arm 2 group received CT (10d-CT; lansoprazole 30 mg, amoxicillin 1 g, clarithromycin 500 mg, and metronidazole 500 mg twice daily for 10 days). In addition, the control group received the triple regimen (7d-TT; lansoprazole 30 mg, amoxicillin 1 g, and clarithromycin 500 mg twice daily for 7 days). Before enrollment, rapid urease test, urea breath test (UBT), and/or histology was performed for the evaluation of H. pylori infection status. Adverse event and compliance were evaluated at the first visit after allocation. At the second visit, the efficacy of H. pylori eradication therapy was determined. UBT was conducted to assess H. pylori status at the 4th to 6th week after the end of H. pylori eradication therapy. A staff member blinded to the eradication arm of each patient performed the UBT.

5. Outcomes

The primary endpoint of the study is the H. pylori eradication rate. The secondary endpoints are the adverse events and treatment compliance. Adverse events were evaluated using the Common Terminology Criteria for Adverse Events v4.0. Adherence to treatment was assessed by providing all patients with a prestructured printed table with all dosages illustrated. Poor compliance was defined as the use of less than 80% of the total medication prescribed.
6. Statistical considerations

The eradication rate of 7d-TT is approximately 75% in Korea,27 and the eradication rate of sequential or CT has been reported to be more than 80%.28,29 To obtain the optimal eradication rate, an eradication efficacy of more than 85% is needed. Therefore, we hypothesized that the eradication rate would be superior in the 10d-ST or 10d-CT groups, with a 10% difference compared to the rate for 7d-TT (85% vs 75%). To demonstrate this 10% difference in the eradication rate using a statistical power of 80% and type one error rate of 0.025 allowing maximum 20% of the participant drop-out or noncompliance, the protocol requires 1,137 subjects.

All efficacy analyses were evaluated for the intent-to-treat (ITT) and per-protocol (PP) populations. The primary endpoint was assessed in the ITT population. All randomized subjects were included in the ITT analysis. Patients who did not return for a follow-up UBT were considered treatment failures. In the PP analysis, patients with unknown \textit{H. pylori} status following therapy and those with major protocol violations were excluded. Subjects who received at least one dose of eradication drugs were included in the safety analysis. SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used for statistical analysis. All statistical tests were two-sided, and p-value 0.025 was used as cutoff for the statistical significance of the primary outcome analysis, while p-value 0.05 was adopted for all other statistical tests.

RESULTS

1. Clinical characteristics of the study groups

A total of 1,141 patients from 15 hospitals from October 2016 to October 2018 were screened for eligibility. Of these,

Characteristics	Eradication	Univariate analysis	Multivariate analysis				
	Total (n=760)	Yes (n=552)	No (n=208)	Unadjusted OR (95% CI)	p-value	Unadjusted OR (95% CI)	p-value
Group							
TT	377 (100)	241 (63.9)	136 (36.1)	Reference		Reference	
CT	383 (100)	311 (81.2)	72 (18.8)	2.43 (1.75–3.39)	<0.001	3.39 (2.33–4.94)	<0.001
Age, yr							
<60	480	361 (75.2)	119 (24.8)	Reference		Reference	
≥60	280	191 (68.2)	89 (31.8)	0.70 (0.51–0.98)	0.030	0.63 (0.44–0.90)	0.012
Sex							
Male	413	319 (77.2)	94 (22.8)	Reference		Reference	
Female	347	233 (67.1)	114 (32.9)	0.60 (0.43–0.83)	0.002	0.56 (0.39–0.80)	0.001
Compliance							
<80	116	48 (41.4)	68 (58.6)	Reference		Reference	
≥80	644	504 (78.3)	140 (21.7)	5.10 (3.37–7.71)	<0.001	7.22 (4.57–11.41)	<0.001
General medical history*							
No	428	317 (74.1)	111 (25.9)	Reference			
Yes	332	235 (70.8)	97 (29.2)	0.84 (0.61–1.16)	0.310		
Medical history of GI diseases†							
No	196	138 (70.4)	58 (29.6)	Reference			
Yes	564	414 (73.4)	150 (26.6)	1.16 (0.81–1.66)	0.410		
Family history of gastric cancer							
No	651	471 (72.4)	180 (27.6)	Reference			
Yes	109	81 (74.3)	28 (25.7)	1.10 (0.69–1.75)	0.670		
Concomitant medication							
No	439	327 (74.5)	112 (25.5)	Reference			
Yes	321	225 (70.1)	96 (29.9)	0.80 (0.58–1.10)	0.180		

Data are presented as number or number (%).
7d, 7 days; TT, triple therapy; CT, concomitant therapy; OR, odds ratio; CI, confidence interval; GI, gastrointestinal.
*General medical history includes hypertension, arrhythmia, myocardial infarction, heart failure, diabetes mellitus, asthma, chronic obstructive pulmonary disease, liver cirrhosis, renal failure, and any cancer except GI cancer; †Past medical history of GI diseases includes esophagitis, gastric ulcer, duodenal ulcer, gastric cancer, past history of abdominal surgery, gastrectomy, intractable iron deficiency anemia, chronic idiopathic thrombocytopenic purpura, atrophic gastritis, and nonulcer dyspepsia.
1,137 patients were included and randomly assigned to receive a 7d-TT group (n=377), 10d-CT group (n=383), or 10d-ST group (n=377) (Fig. 1). The baseline characteristics of patients in each study group are summarized in Table 1. There was no significant difference in age, sex, residence, smoking, alcohol consumption, past medical history, and family history of gastric cancer between the three groups. There was no significant difference in the indication of H. pylori eradication between treatment groups. Gastric or duodenal ulcers and post-endoscopic resection for gastric cancer and MALT lymphoma were, respectively, included in 28.0%, 8.4%, and 0.5% of the TT group; in 25.8%, 6.7%, and 0.2% of the CT group; and in 29.1%, 5.5%, and 0.3% of the ST group.

2. Eradication efficacy of H. pylori

The primary goal was eradication rates of treatments by ITT and PP analysis. The 10d-CT and 10d-ST had a higher eradication rate than the 7d-TT. The 10d-CT achieved a markedly higher eradication rate than the 7d-TT. The eradication rates in the ITT analyses for the 7d-TT and 10d-CT groups were 63.9% and 81.2%, respectively (p<0.001) (Fig. 2). The eradication rates in the PP analyses for the 7d-TT and 10d-CT groups were 71.4% and 90.6%, respectively (p<0.001) (Fig. 3). The eradication rate of the 10d-ST was superior to that of 7d-TT. The eradication rates in the ITT analyses for the 7d-TT and 10d-ST groups were 63.9% and 76.3%, respectively (p<0.001). The eradication rates in the PP analyses for the 7d-TT and 10d-ST groups were 71.4% and 85.0%, respectively (p<0.001).

Table 3. Univariate and Multivariate Analyses of Factors Associated with Eradication Success

Characteristics	Total (n=754)	Yes (n=529)	No (n=225)	Univariate analysis	Multivariate analysis		
		(n=529)	(n=225)	Unadjusted OR (95% CI)	p-value	Unadjusted OR (95% CI)	p-value
Group							
TT	377	241 (63.9)	136 (36.1)	Reference		2.10 (1.50–2.95)	<0.001
ST	377	288 (76.4)	89 (23.6)	1.82 (1.32–2.50)	<0.001		
Age, yr							
<60	476	341 (71.6)	135 (28.4)	Reference			
≥60	278	188 (67.6)	90 (32.4)	0.82 (0.60–1.14)	0.246		
Sex							
Male	416	316 (75.9)	100 (24.1)	Reference		0.57 (0.41–0.80)	0.001
Female	338	213 (63.0)	125 (37.0)	0.53 (0.39–0.73)	<0.001		
Compliance							
<80	106	43 (40.6)	63 (59.4)	Reference		4.79 (3.07–7.47)	<0.001
≥80	648	486 (75)	162 (25)	4.39 (2.86–6.73)	<0.001		
General medical history*							
No	415	292 (70.4)	123 (29.6)	Reference			
Yes	339	237 (70.0)	102 (30.0)	0.97 (0.71–1.33)	0.890		
Medical history of GI diseases†							
No	195	138 (70.7)	57 (29.2)	Reference			
Yes	559	391 (70.0)	168 (30.0)	0.96 (0.67–1.37)	0.830		
Family history of gastric cancer							
No	651	456 (70.0)	195 (30.0)	Reference			
Yes	103	73 (70.9)	30 (29.1)	1.04 (0.65–1.64)	0.860		
Concomitant medication							
No	420	303 (72.1)	117 (27.9)	Reference			
Yes	334	226 (67.7)	108 (32.3)	0.80 (0.59–1.10)	0.180		

Data are presented as number or number (%).

OR, odds ratio; CI, confidence interval; TT, triple therapy; ST, sequential therapy; GI, gastrointestinal.

*General medical history includes hypertension, arrhythmia, myocardial infarction, heart failure, diabetes mellitus, asthma, chronic obstructive pulmonary disease, liver cirrhosis, renal failure, and any cancer except GI cancer; †Past medical history of GI diseases includes esophagitis, gastric ulcer, duodenal ulcer, gastric cancer, past history of abdominal surgery, gastrectomy, intractable iron deficiency anemia, chronic idiopathic thrombocytopenic purpura, atrophic gastritis, and nonulcer dyspepsia.
3. Factors affecting \textit{H. pylori} eradication

First, we identified age group, sex, treatment regimen, and compliance which were significant in the univariate analysis and verified whether those covariates are all statistically significant in the multiple logistic regression model. Especially, 10d-CT group has higher related with \textit{H. pylori} eradication than the 7-d TT with statistical significance (odds ratio [OR], 3.40; 95% confidence interval [CI], 2.34 to 4.94) (Table 2). Second, clinical factors such as treatment regimen, age, sex, and compliance were identified as risk factors associated with successfully eradicated and failed patients between 7d-TT and 10d-ST groups in the univariate logistic model. In multiple logistic model, 10d-ST has higher association with eradication rate than 7d-TT (OR, 2.10; 95% CI, 1.50 to 2.95) (Table 3).

4. Treatment compliance and adverse events

The secondary outcomes were treatment compliance and adverse events. The compliance with \textit{H. pylori} eradication therapy of the 7d-TT, 10d-CT, and 10d-ST groups were 91.21, 86.0, and 88.0, respectively (p=0.004). At least one adverse event was recorded in 33.2% (n=378) of the 1,137 patients, and in total, 602 adverse events were recorded. The incidences of adverse events were 29.7% in 7d-TT, 36.5% in 10d-CT, and 33.4% in 10d-ST groups, respectively (Table 4). Diarrhea was the most common adverse event in all three treatment groups. Diarrhea (n=42), dysgeusia (n=36), and dyspepsia (n=12) were the most common adverse reactions in the 7d-TT group. Diarrhea (n=51), dysgeusia (n=34), and non-cardiac chest pain (n=23) were the most common adverse reactions in the 10d-CT group. Diarrhea (n=28), nausea (n=26), and dysgeusia (n=21) were the most common events in the 10d-ST group. However, there were no serious adverse events associated with the present study. There was little difference in serious side effects among the three treatment groups.

Table 4. Adverse Events According to Regimen

Adverse events	Total (n=602)	7d-TT (n=166)	10d-CT (n=243)	10d-ST (n=193)
Diarrhea	121	42	51	28
Dysgeusia	91	36	34	21
Nausea	56	11	19	26
Non-cardiac chest pain	53	11	23	19
Dyspepsia	44	12	13	19
Allergic reaction	29	11	11	7
Headache	28	4	14	10
Gastroesophageal reflux disease	24	7	10	7
Dizziness	18	3	9	6
Fatigue	17	2	9	6
Abdominal pain	15	3	6	6
Others	106	24	44	38

TT, standard triple therapy; CT, concomitant therapy; ST, sequential therapy.

DISCUSSION

This multicenter randomized controlled trial of three regimens for \textit{H. pylori} eradication involved a large sample of patients recruited from the general populations in Korea. In particular, this is a nationwide, most systematic, and verifiable study that best represents Korea. In this clinical setting, we have demonstrated a higher eradication rate in both the 10d-CT and 10d-ST novel approaches.

Data demonstrate that 10d-CT achieves significantly higher eradication rates than 7d-TT, regardless of whether ITT or PP analysis is used. The eradication rate of 10d-CT and 10d-ST was higher than that of 7d-TT. There was little difference in serious adverse events among the three treatment groups.

\textit{H. pylori} eradication is of great importance in preventing gastric cancer. In Japan, eradication treatment is allowed in all cases where \textit{H. pylori} infection has been confirmed, since 2013. In Korea, the indication for \textit{H. pylori} eradication is expanding, but the increase in the failure rate of the first-line eradication requires the development of a new first-line standard treatment. Therefore, to the best of our knowledge, this is the first large-scale prospective study to present the optimal standard first-line treatment for \textit{H. pylori}, which is suitable for domestic conditions in Korea.

Globally, the primary option for \textit{H. pylori} eradication is clarithromycin-based TT, which includes a PPI and two antibiotics, amoxicillin and clarithromycin. Because the incidence of resistance to clarithromycin in \textit{H. pylori} has been increasing, the eradication rates of TT have decreased to less than 80%, which is considered below the appropriate therapeutic range. To overcome the low eradication rate of clarithromycin therapy, many researchers have developed other therapeutic options such as prolonged treatment schedules or modified drug administration sequences including CT and ST.32
In Korea, no alternative treatment has been established so far to
replace the 7d-TT. Instead, 7d- or 14d-clarithromycin-based
TT is still recognized as the first-line therapy in the Korean na-
tional guidelines.3 Furthermore, Health Insurance Review and
Assessment Service of the Korean government approves only
7d-TT as the first-line H. pylori therapy.12 Our previous study
showed the regional difference in eradication rate as first-line
treatment in Korea.11 One Korean study reported different rates
of resistance to clarithromycin prepared using the agar dilution
method, suggesting that different guidelines should be applied
to eradicate H. pylori based on antibiotic resistance even within
the same country or ethnic group.4

Recent studies have carried out randomized trials including
bismuth–containing quadruple therapy, widely used as a sec-
ond-line eradication therapy.31,35 In this trial, we compared all
three currently used therapeutic regimens: 7d-TT, 10d-CT, and
10d-ST. In practical terms, comparisons among the three groups
would result in more accurate results, but they would have to
include more patients and take longer to implement.

CT includes the use of both PPI and three antibiotics at the
same time, although it may lead to antibiotic abuse and unnec-
essary resistance. There was no difference in the clinical efficacy
of CT in clarithromycin-sensitive and clarithromycin-resistant
groups46 as well as in metronidazole-sensitive and metroni-
dazole-resistant groups.37 In clinical practice, the concomitant
regimen is much easier to take than the sequential one, which
is a two-stage therapy with a drug switch halfway through the
course. A meta-analysis revealed that CT was superior to TT,
and there was no difference in the eradication rates of CT and
ST (93.0% vs 93.1%, respectively).48 Unfortunately, there is little
research data on CT in Korea.

ST was effective in case of clarithromycin resistance,39 metro-
nidazole resistance,40 and even resistance to both clarithromycin
and metronidazole.39 ST was reported to be more effective than
7d-TT in many Asian countries.35 However, the shortcoming
of ST is that medications were changed during treatment and
patients found it difficult to take them.42 A recent systematic re-
view from six Korean randomized trials revealed that the over-
al eradication rates by ITT analysis were 65.9% for 7d-TT and
77.7% for ST.41 The overall eradication rates were 72.6% for 7d-
TT and 84.5% for ST by PP analysis.

Overall, in this study, 10d-CT and 10d-ST showed superior
clinical efficacy to 7d-TT as first-line therapy for H. pylori
infection. Our data support those of previous study, as they
demonstrate that the 10d-CT achieved a significantly higher
eradication rate than the 10d-TT.42 From the ITT analysis, the
eradication rate of the 10d-CT was 81.2% in our study, which
was 17.3% better than that of the 7d-TT (p<0.001). In addition,
comparison results of the 10d-ST and 7d-TT groups indicated
that 10d-ST was 12.4% more effective than the 7d-TT (p<0.001).
Until recently, results of the 10d-ST in Korea were found to be
above the 7d-standard clarithromycin-containing TT.43 How-
ever, the 10d-ST demonstrated lower eradication rates than ex-
pected so far.44-46

Several studies have shown no difference in the effectiveness
of CT and ST in clarithromycin and metronidazole-sensitive or
clarithromycin and metronidazole-resistant groups.26,28 In this
study, the eradication rate of CT appeared to be better than that
of ST, although direct comparison was not possible.

Drug compliance is one of the important elements in deter-
mining the treatment outcome in bacterial eradication, espe-
cially for short-term treatment.26 In this study, three therapies
were well tolerated and showed similar adverse event profiles
and frequencies. In fact, 34.0% of the patients observed adverse
events, which were minor or moderate.

Many studies have evaluated the factors affecting H. pylori
eradication rates, such as antibiotic resistance, and various types
of gastropathy, alcohol consumption, smoking, hyperlipidemia,
and comorbidity.35 This study surveyed the results of both the
successful and failed eradication according to each regimen
comparison.

As regards age, sex, treatment regimen, compliance, general
medical history except gastrointestinal system, medical history
of gastrointestinal diseases, family history of gastric cancer,
concomitant medication, the notable factors were treatment regi-
men, sex, and compliance. Interestingly, in this study, although
men are more prone to eradication failure than women, the rate
of eradication for women was lower than for men. Although
metronidazole is widely used to treat gynecologic diseases and
resistance to metronidazole frequently occurs in Korea, the rea-
sons for the contradictory results were unclear.

The strength of this study is that it is the first nationwide
large-scale randomized controlled trial assessing the efficacies
of 10d-CT and 10d-ST versus a 7d-TT for treating H. pylori
infection. Especially, this study represented the Korean population
because it took into account regional distribution. Moreover,
this study was conducted in Korea where the prevalence of
H. pylori and gastric cancer is high. The fact that the research
was conducted on a large scale through a nationwide network
based on the Korean population with H. pylori infection and
upper gastrointestinal research with the support of the Korean
government is worth noting. Furthermore, a separate statistical
and research management institution, Seoul National University
Hospital Medical Research Collaboratory Center, was involved
in providing professional analyses in this study.

This study has some limitations. First, we could not make a
direct comparison of the eradication rate between 10d-CT and
10d-ST groups. Insufficient sample size for simultaneous com-
parison between the three groups made it impossible to directly
compare 10d-CT and 10d-ST. Second, this study did not obtain
any culture test result.

This trial provides evidence of the suboptimal efficacy of 7d-
TT as the standard first-line treatment for H. pylori infection
and that 10d-CT and 10d-ST were superior to 7d-TT in a coun-
try with clarithromycin resistance higher than 15%. The low eradication rates of the 7d-TT call for novel treatment options. In conclusion, novel therapies such as 10d-CT and 10d-ST can be recommended as alternative therapy for standard first-line treatment for H. pylori infection in Korea. Especially, 10d-CT may be the best new first-line alternative therapy for H. pylori infection in Korea. In addition, this study gives strong evidence of the adjustment of the Korean national guidelines for the treatment of H. pylori, which currently recommend TT as the first-line treatment for H. pylori infection. Furthermore, the results of this study could be used as a basis for changing Korea's National Health Insurance standards in H. pylori eradication.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGEMENTS

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HC15C1077).

AUTHOR CONTRIBUTIONS

B.J.K. drafted the article. J.I.K., J.I.K., L.I.C., S.G.K., J.G.K. designed the study. J.L., J.K. were statistical advisors. J.G.K., Y.C.L., D.H.L., S.M.Y., K.S., S.W.K., H.S.K., S.W.J., J.Y.L., G.H.K., M.I.P., H.U.K., G.H.B., J.J.K. had leadership in each institute and collected data. H.L. contributed to coordination of the study. J.J.K. organized the study group. All the authors approved the final version of this manuscript.

ORCID

Beom Jin Kim https://orcid.org/0000-0002-0938-6697
Hyuk Lee https://orcid.org/0000-0003-4271-7205
Yong Chan Lee https://orcid.org/0000-0001-8800-6906
Seong Woo Jeon https://orcid.org/0000-0002-9539-9389
Gwang Ha Kim https://orcid.org/0000-0001-9721-5734
Hyun-Soo Kim https://orcid.org/0000-0003-4834-0496
Jae Kyu Sung https://orcid.org/0000-0002-9068-624X
Dong Ho Lee https://orcid.org/0000-0002-6376-410X
Heung Up Kim https://orcid.org/0000-0003-4827-2358
Moo In Park https://orcid.org/0000-0003-2071-6957
Il Ju Choi https://orcid.org/0000-0002-8339-9824
Soon Man Yoon https://orcid.org/0000-0003-3885-6763
Sang Wook Kim https://orcid.org/0000-0001-8209-540X
Gwang Ho Baik https://orcid.org/0000-0003-1419-7484
Ju Yup Lee https://orcid.org/0000-0003-0021-5354
Jin Il Kim https://orcid.org/0000-0001-8833-2138
Sang Gyun Kim https://orcid.org/0000-0003-1799-9028
Jayoun Kim https://orcid.org/0000-0003-2234-7091
Joongyup Lee https://orcid.org/0000-0003-2074-9003
Jae Gyu Kim https://orcid.org/0000-0002-4841-9404
Jae J. Kim https://orcid.org/0000-0002-3894-5910

REFERENCES

1. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002;347:1175–1186.
2. Graham DY. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology 2015;148:719–731.
3. Kavitt RT, Cifu AS. Management of Helicobacter pylori infection. JAMA 2017;317:1572–1573.
4. Asaka M, Kato M, Takahashi S, et al. Guidelines for the management of Helicobacter pylori infection in Japan: 2009 revised edition. Helicobacter 2010;15:1–20.
5. Kim SG, Jung HK, Lee HL, et al. Guidelines for the diagnosis and treatment of Helicobacter pylori infection in Korea, 2013 revised edition. J Gastroenterol Hepatol 2014;29:1371–1386.
6. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection: the Maastricht IV/Florenc Consensus Report. Gut 2012;61:646–664.
7. Gatta L, Vakil N, Vaira D, Scarpignato C. Global eradication rates for Helicobacter pylori infection: systematic review and meta-analysis of sequential therapy. BMJ 2013;347:f4587.
8. Kim JM, Kim JS, Jung HC, Kim N, Kim YJ, Song IS. Distribution of antibiotic MICs for Helicobacter pylori strains over a 16-year period in patients from Seoul, South Korea. Antimicrob Agents Chemother 2004;48:4843–4847.
9. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 2017;66:6–30.
10. Thung I, Aramin H, Vavinayka V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther 2016;43:514–533.
11. Kim BJ, Kim HS, Song HJ, et al. Online registry for nationwide database of current trend of Helicobacter pylori eradication in Korea: interim analysis. J Korean Med Sci 2016;31:1246–1253.
12. Lee JW, Kim N, Kim JM, et al. Prevalence of primary and secondary antimicrobial resistance of Helicobacter pylori in Korea from 2003 to 2012. Helicobacter 2013;18:206–214.
13. Shin WG, Lee SW, Baik GH, et al. Eradication rates of Helicobacter pylori in Korea over the past 10 years and correlation of the amount of antibiotics use: nationwide survey. Helicobacter 2016;21:266–278.
14. Jung YS, Park CH, Park JH, Nam E, Lee HL. Efficacy of Helicobacter pylori eradication therapies in Korea: a systematic review and network meta-analysis. Helicobacter 2017;22:e12389.
15. Sugano K, Tack J, Kuipers EJ, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015;64:1353–1367.
16. Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG clinical guide-
line: treatment of Helicobacter pylori infection. Am J Gastroenterol 2017;112:212-239.
17. Graham DY, Dore MP, Lu H. Understanding treatment guidelines with bismuth and non-bismuth quadruple Helicobacter pylori eradication therapies. Expert Rev Anti Infect Ther 2018;16:579-687.
18. Gisbert JP, Calvet X. Review article: non-bismuth quadruple (concomitant) therapy for eradication of Helicobacter pylori. Aliment Pharmacol Ther 2011;34:604-617.
19. Heo J, Jeon SW, Jung JT, et al. A randomised clinical trial of 10-day concomitant therapy and standard triple therapy for Helicobacter pylori eradication. Dig Liver Dis 2014;46:980-984.
20. Kim SY, Lee SW, Hyun JJ, et al. Comparative study of Helicobacter pylori eradication rates with 5-day duration “concomitant” therapy and 7-day standard triple therapy. J Clin Gastroenterol 2013;47:21-24.
21. Gatta L, Vakil N, Leonadro G, Di Mario F, Vaira D. Sequential therapy or triple therapy for Helicobacter pylori infection: systematic review and meta-analysis of randomized controlled trials in adults and children. Am J Gastroenterol 2009;104:3069-3079.
22. Nyssen OP, McNicholl AG, Megnau F, et al. Sequential versus standard triple first-line therapy for Helicobacter pylori eradication. Cochrane Database Syst Rev 2016:CD009304.
23. Yeo YH, Shin SI, Ho JJ, et al. First-line Helicobacter pylori eradication therapies in countries with high and low clarithromycin resistance: a systematic review and network meta-analysis. Gut 2018;67:20-27.
24. Lee H, Kim BJ, Kim SG, et al. Concomitant, sequential, and 7-day triple therapy in first-line treatment of Helicobacter pylori infection in Korea: study protocol for a randomized controlled trial. Trials 2017;18:549.
25. Dueck AC, Mendoza TR, Mitchell SA, et al. Validity and reliability of the US National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). JAMA Oncol 2015;1:1051-1059.
26. Hsu PI, Wu DC, Chen WC, et al. Randomized controlled trial comparing 7-day triple, 10-day sequential, and 7-day concomitant therapies for Helicobacter pylori infection. Antimicrob Agents Chemother 2014;58:5936-5942.
27. Gong EJ, Yun SC, Jung HY, et al. Meta-analysis of first-line triple therapy for helicobacter pylori eradication in Korea: is it time to change? J Korean Med Sci 2014;29:704-713.
28. Choe JW, Jung SW, Kim SY, et al. Comparative study of Helicobacter pylori eradication rates of concomitant therapy vs modified quadruple therapy comprising proton-pump inhibitor, bismuth, amoxicillin, and metronidazole in Korea. Helicobacter 2018;23:e12466.
29. Kim JS, Kim BW, Ham JH, et al. Sequential therapy for Helicobacter pylori infection in Korea: systematic review and meta-analysis. Gut Liver 2013;7:546-551.
30. Graham DY, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut 2010;59:1143-1153.
31. Graham DY, Shiotani A. New concepts of resistance in the treatment of Helicobacter pylori infections. Nat Clin Pract Gastroenterol Hepatol 2008;5:321-331.
32. Lee HJ, Kim JI, Lee JS, et al. Concomitant therapy achieved the best eradication rate for Helicobacter pylori among various treatment strategies. World J Gastroenterol 2015;21:351-359.
33. Lee JW, Kim N, Kim JM, et al. A comparison between 15-day sequential, 10-day sequential and proton pump inhibitor-based triple therapy for Helicobacter pylori infection in Korea. Scand J Gastroenterol 2014;49:917-924.
34. Lee JH, Ahn JY, Choi KD, et al. Nationwide antibiotic resistance mapping of Helicobacter pylori in Korea: a prospective multicenter study. Helicobacter 2019;24:e12592.
35. Kefeli A, Basyigit S, Yeniova AO, Kefeli TT, Aslan M, Tanas O. Comparison of three different regimens against Helicobacter pylori as a first-line treatment: a randomized clinical trial. Bosn J Basic Med Sci 2016;16:52-57.
36. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003;51:9-11.
37. Okada M, Nishimura H, Kawashima M, et al. A new quadruple therapy for Helicobacter pylori: influence of resistant strains on treatment outcome. Aliment Pharmacol Ther 1999;13:769-774.
38. Wu DC, Hsu PI, Wu JY, et al. Sequential and concomitant therapy with four drugs is equally effective for eradication of H pylori infection. Clin Gastroenterol Hepatol 2010;8:36-41.
39. Vaira D, Zullo A, Vakil N, et al. Sequential therapy versus standard triple-drug therapy for Helicobacter pylori eradication: a randomised trial. Ann Intern Med 2007;146:556-563.
40. Tong JT, Ran ZH, Shen J, Xiao SD. Sequential therapy vs. standard triple therapies for Helicobacter pylori infection: a meta-analysis. J Clin Pharm Ther 2009;34:41-53.
41. Lee SW, Kim HJ, Kim JG. Treatment of Helicobacter pylori infection in Korea: a systematic review and meta-analysis. J Korean Med Sci 2015;30:1001-1009.
42. Georgopoulos S, Papastergiou V, Xiouchakis E, et al. Nonbismuth quadruple “concomitant” therapy versus standard triple therapy, both of the duration of 10 days, for first-line H pylori eradication: a randomized trial. J Clin Gastroenterol 2013;47:228-232.
43. Park HG, Jung MK, Jung JT, et al. Randomised clinical trial: a comparative study of 10-day sequential therapy with 7-day standard triple therapy for Helicobacter pylori infection in naive patients. Aliment Pharmacol Ther 2012;35:56-65.
44. Choi HS, Chun HJ, Park SH, et al. Comparison of sequential and 7-, 10-, 14- d triple therapy for Helicobacter pylori infection. World J Gastroenterol 2012;18:2377-2382.
45. Chung JW, Jung YK, Kim YJ, et al. Ten-day sequential versus triple therapy for Helicobacterpylori eradication: a prospective, open-label, randomized trial. J Gastroenterol Hepatol 2012;27:1675-1680.
46. Oh HS, Lee DH, Seo JY, et al. Ten-day sequential therapy is more effective than proton pump inhibitor-based therapy in Korea: a prospective, randomized study. J Gastroenterol Hepatol 2012;27:504-509.