Review
Platinum drugs in the treatment of non-small-cell lung cancer

J Cosaert1 and E Quoix*2
1AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK; 2Service de Pneumologie Lyautey, Hôpitaux Universitaires, 1, Place de l’Hôpital, 67091 Strasbourg, France

Lung cancer has the highest mortality rate of any major malignancy in the developed world, causing an estimated 1 million deaths worldwide annually (Abratt, 1995). In the United States alone it has been estimated that 157,400 deaths from lung cancer will occur in 2001 (American Cancer Society (http://www.cancer.org/ (accessed 18 September 2001)). Mortality due to lung cancer exceeds that related to breast, prostate, colorectal and ovarian cancers combined (American Cancer Society, 2001). Approximately 85–90% of cases of lung cancer are attributable to smoking (Bunn et al, 1998).

Non-small-cell lung cancer (NSCLC) represents approximately 75–80% of all lung cancer (Abratt, 1995; Bunn et al, 1998; Natale, 1998). Fewer than 25% of patients have resectable disease, due to locally advanced or metastatic disease, which does not allow surgery despite improvements in diagnosis and peri- and postoperative care (Bulzebruck et al, 1992). Also, comorbidities, mostly linked to tobacco, may prevent patients with potentially resectable disease from receiving surgery. Overall 5-year survival is between 5 and 13%, and varies with the different stages of the disease (Johnson, 1995; Mountain, 1997; Natale, 1998; Breathnach et al, 2001).

This review outlines current treatment options for patients with NSCLC with emphasis on the use of platinum-containing regimens. This disease is inherently resistant to chemotherapy and is associated with lower response rates than many other malignancies (Bunn et al, 1998; Natale, 1998) and the optimal treatment is yet to be determined (Breathnach et al, 2001).

MANAGEMENT OF NSCLC
Surgery or radiotherapy is the standard option for patients with early stages of NSCLC. Chemotherapy has shown benefit when used alone in patients with stage IV disease, in combination with radiotherapy in patients with locally advanced disease and in the preoperative setting in those with early stages of NSCLC.

Surgery and primary radiotherapy
Surgery provides the best chance for cure of localised disease. It is therefore the treatment of choice in stages 0, I and II NSCLC (Deslauriers and Gregoire, 2000). With very careful patient selection, surgery may also be used as part of combined modality treatment in stages IIIA and IIB (T4) disease (Rosell et al, 1994; Roth et al, 1994; CancerLinksUSA, http://www.cancer101.net (accessed May 26, 2001)) or stage IV disease to remove single metastatic lesions. However, even if surgery is the best treatment possible, the results are still unsatisfactory with a 5-year survival of less than 35%. These results have led clinicians to evaluate combined modalities of treatment including chemotherapy.

Primary radiotherapy (with curative intent) can be considered in patients with inoperable stages I or II of the disease and sufficient pulmonary reserve. Analysis of one randomised and 26 nonrandomised studies in more than 2000 patients receiving radical radiotherapy for stage I or II disease found that 5-year survival rates ranged from 0 to 42% (Rowell and Williams, 2001). Primary radiotherapy used to be the ‘gold standard’ treatment in locally advanced NSCLC.

Chemotherapy
The poor efficacy and considerable toxicity of chemotherapy caused great pessimism for many years regarding this approach, as only a small impact on survival was observed.

During the 1980s, cisplatin and carboplatin were studied extensively in NSCLC (Bunn, 1989a,b). Randomised trials as well as meta-analyses provided scientific evidence that platinum-based therapy prolonged survival of patients with advanced NSCLC.
Platinum drugs in NSCLC

J Cosaert and E Quoix

(stage IIIB with pleural effusions and stage IV) and advanced regional NSCLC (non resectable stages IIIA and IIIB disease) (Non-Small Cell Lung Cancer Collaborative Group, 1995). Experience over the past two decades has shown improvements in survival, symptom control and quality of life in patients with NSCLC who receive chemotherapy instead of best supportive care, and chemotherapy is now considered standard treatment in individuals with advanced NSCLC (Splinter, 1990; Non-Small Cell Lung Cancer Collaborative Group, 1995; Bunn and Kelly, 1998; Johnson, 2000; Bahl and Falk, 2001). More recently, platinum-based chemotherapy has shown to be of interest in the neoadjuvant setting, before surgery in patients with resectable stage IIIA (Rosell et al, 1994; Roth et al, 1998) and stages I to II disease (Depierre et al, 2002). Combined therapy with a platinum and taxane before surgery has also shown notable results, with a 1-year survival rate of 85% in patients with stages I to IIa NSCLC reported after treatment with paclitaxel and carboplatin (Pisters et al, 2000). Another large randomised Intergroup trial is ongoing in the United States that is evaluating the efficacy of paclitaxel plus carboplatin in patients with early stage NSCLC.

The first generation agents in NSCLC (cisplatin, mitomycin-C, ifosphamide/cyclophosphamide, vindesine, vinblastine and etoposide) produced response rates ranging from 15 to 25% when used as monotherapy (Bakowski and Crouch, 1983; Grant and Kris, 1995) but, with the exception of cisplatin, had an unclear effect on survival. Second generation agents (gemcitabine, paclitaxel, docetaxel, vinorelbine, irinotecan and topotecan) showed response rates of 20–25% (Bunn et al, 1998). Moreover, randomised studies comparing monotherapy with paclitaxel, gemcitabine or docetaxel versus best supportive care showed a survival benefit in the chemotherapy arm (Anderson et al, 2000; Ranson et al, 2000; Roszkowski et al, 2000) emphasising the results of the meta-analysis of the NSCLC COG (Non-Small Cell Lung Cancer Collaborative Group, 1995). Additional reports of large randomised trials (one a pooled analysis of two trials), each conducted in more than 700 patients, have confirmed the survival benefit of cisplatin-based combined two- or three-agent chemotherapy versus best supportive care (Cullen et al, 1999; Stephens et al, 2002).

Cisplatin and carboplatin

Platinum agents have currently shown the greatest promise in patients with NSCLC. These agents induce their cytotoxic effects by targeting cellular DNA and are active against a number of tumour types (Go and Adjei, 1999). Cisplatin is thought to act by activating apoptosis and altering a number of other cellular parameters. It forms adducts with all DNA bases but preferentially binds to the N7 positions of guanine and adenine in intact DNA. The main DNA lesions produced by both cisplatin and carboplatin, accounting for a total of 95% of platinum-DNA adducts, are at the G-G, A-G and G-X-G intrastrand crosslinks (Fink and Howell, 2000).

The dosages at which these agents are given varies according to the agent(s) with which they are being combined and the status of the patient. However, cisplatin is usually given at a dosage of 50–120 mg m⁻² per cycle, whereas the dose of carboplatin is usually customised for each patient using the area under the concentra- tion-time curve (AUC) and renal function of the patient (Calvert et al, 1989; Chatelut et al, 1995), because this drug undergoes extensive renal excretion. An AUC of 4–6 per cycle, which is approximately equivalent to a dose in the range 200–350 mg m⁻² per cycle, is usual. Both platinum agents are usually given every 3–4 weeks, according to the haematological status of the patient, for 3–6 cycles. Analysis of the Southwest Oncology Group (SWOG) database of 2531 patients with extensive NSCLC (1974–1988) showed the use of cisplatin to be an independent predictor of improved outcome (Albain et al, 1991). Thus, most clinical studies of chemotherapy in advanced or locoregionally advanced NSCLC in recent years have incorporated cisplatin. However, because of the toxicity of cisplatin (see below), less toxic platinum alternatives have been developed. The most extensively evaluated has been carboplatin (Bunn, 1989b), with studies demonstrating the efficacy of carboplatin, alone (Bonomi et al, 1989; Bunn, 1989a,b; Gatzeimeier et al, 1990a; Kreisman et al, 1990) or in combination (Gatzeimeier et al, 1990b). The available data suggest that carboplatin can substitute cisplatin in patients with stage IIIB/IV NSCLC (Lokich and Anderson, 1998; Go and Adjei, 1999; Zatloukal et al, 2001). However, direct comparisons between cisplatin- and carboplatin-based chemotherapy have been very rare (Klastersky et al, 1990; Gatzeimeier et al, 1999). Rodriguez et al (2001) presented the results of a randomised study comparing docetaxel plus cisplatin or carboplatin versus vinorelbine plus cisplatin at the 2001 meeting of the American Society of Clinical Oncology. Although the study was not designed to compare carboplatin with cisplatin, results in the carboplatin arm were inferior.

Two drug combinations Two types of trials have been conducted to compare monotherapy with cisplatin-containing two agent chemotherapy: comparisons with cisplatin monotherapy and comparisons using monotherapy with the non-platinum agent. The relative benefits of combination therapy over monotherapy, shown in many publications, resulted in combination therapy becoming recognised standard practice (Splinter, 1990; Marino et al, 1995; Lilienbaum et al, 1998) and a number of phase III studies are currently underway or completed that investigate the relative efficacies of several new platinum-containing two-agent combinations (Table 1) (Kelly et al, 2001; Rodriguez et al, 2001; Scagliotti et al, 2001; van Meerbeeck et al, 2001; Schiller et al, 2002). Of note, Schiller et al (2002) compared cisplatin plus paclitaxel (the ECOG standard of care) with the new combination regimens of cisplatin plus gemcitabine or docetaxel and paclitaxel plus carboplatin (four-arm study). No major differences were observed in terms of efficacy (objective response rate and survival) or toxicity. Similar findings were reported in a trial comparing paclitaxel plus carboplatin with vinorelbine plus cisplatin (Kelly et al, 2001).

Comparisons between cisplatin containing double therapy and monotherapy with the non-platinum agent Results of trials comparing monotherapy with vindesine (Elliott et al, 1984; Einhorn et al, 1986), etoposide (Rosso et al, 1990), teniposide (Splinter et al, 1996), and vinorelbine (Depierre et al, 1994; Le Chevalier et al, 1994) with the respective agent combined with cisplatin showed consistently higher response rates in the combination therapy arm, but only about half showed a survival benefit for the combination (Table 2). Similarly, preliminary analysis of a multicenter phase III trial comparing docetaxel vs docetaxel plus cisplatin in patients with inoperable advanced and metastatic NSCLC showed no survival advantage but a significant improvement in objective response rate with combination therapy (Georgoulis et al, 2002; Table 2).

Comparisons between cisplatin containing double therapy and cisplatin monotherapy Comparisons of cisplatin monotherapy and combination therapy with cisplatin plus vindesine (Kawahara et al, 1990a,b), etoposide (Rosso et al, 1989; Calvert et al, 1989), vinorelbine (Wozniak et al, 1998), paclitaxel (Gatzeimeier et al, 2000), gemcitabine (Sandler et al, 2000) and tirapazamine (von Pawel et al, 2000) consistently showed a higher response rate in the combination therapy arm, but again only half of the trials showed a survival benefit for the combination therapy arm (Table 3).

Comparisons between carboplatin containing double therapy and monotherapy with the non-platinum agent A comparison between monotherapy with paclitaxel and paclitaxel plus carbopla-
Table 1 Recent phase III studies comparing platinum-based two agent combination therapies for patients with stage IIIb or IV NSCLC

Trial	Platinum	Additional agent	Frequency
Schiller et al (2000)	Cisplatin 75 mg m⁻² d²	Paclitaxel 135 mg m⁻² d₁	Every 21 days
	Cisplatin 100 mg m⁻² d₁	Gemcitabine 1000 mg m⁻² d₁, d₂, d₁₅	Every 28 days
	Cisplatin 75 mg m⁻² d₁	Docetaxel 75 mg m⁻² d₁	Every 21 days
	Carboplatin AUC 6 d₁	Paclitaxel 225 mg m⁻² d₁	Every 21 days
Kelly et al (2001)	Cisplatin 100 mg m⁻² d₂	Vinorelbine 25 mg m⁻² week⁻¹	Every 28 days
	Carboplatin AUC 6 d₁	Paclitaxel 225 mg m⁻² d₁	Every 21 days
Rodriguez et al (2001)	Cisplatin 75 mg m⁻² d₁	Docetaxel 75 mg m⁻² d₁	Every 21 days
	Carboplatin AUC 6 d₁	Paclitaxel 225 mg m⁻² d₁	Every 21 days
Scaglotti et al (2001)	Cisplatin 75 mg m⁻² d₂	Gemcitabine 1250 mg m⁻² d₁, d₂	Every 21 days
	Carboplatin AUC 6 d₁	Paclitaxel 225 mg m⁻² d₁	Every 21 days
Van Meerbeeck et al (2001)	Cisplatin 100 mg m⁻² d₂	Vinorelbine 25 mg m⁻² d₁, d₇, d₁₄, d₂₁	Every 28 days
	Carboplatin AUC 6 d₁	Paclitaxel 175 mg m⁻² d₁	Every 21 days
	Cisplatin 80 mg m⁻² d₁	Gemcitabine 1250 mg m⁻² d₁, d₂	Every 21 days
	Cisplatin 80 mg m⁻² d₁	Paclitaxel 175 mg m⁻² d₁	Every 21 days

*Statistically significant difference relative to monotherapy.

Table 2 Comparisons between cisplatin containing double therapy and monotherapy with the second agent in patients with advanced NSCLC

Study	Patients enrolled	Drugs	Overall response rate (%)	Median survival
Georgoulas et al (2002)	279	Docetaxel 100 mg m⁻² d₁ x 3 weeks	18	10 months
		Cisplatin 80 mg m⁻² d₂+docetaxel	35⁸	13 months
		100 mg m⁻² d₁ x 3 weeks		
Splinter et al (1996)	225	Teniposide 120 mg m⁻² d₁, d₃, d₅ or 360 mg m⁻² d₁	6	5.9 months
		Cisplatin 80 mg m⁻² d₁+teniposide	22⁸	7.2 months
		120 mg m⁻² d₁, d₃, d₅ or 360 mg m⁻² d₁		
Depierre et al (1994)	231	Vinorelbine 30 mg m⁻² week⁻¹	16	32 weeks
		Cisplatin 80 mg m⁻² x 3 weeks+ vinorelbine 30 mg m⁻² week⁻¹	43⁹	33 weeks
		Vinorelbine 30 mg m⁻² week⁻¹	14	31 weeks
Le Chevalier et al (1994)	612	Cisplatin 120 mg m⁻² d₁ and 29, then every 6 weeks+vinorelbine 30 mg m⁻² week⁻¹	30	40 weeks
		120 mg m⁻² d₁ and d₂₉, then every 6 weeks+vinorelbine 30 mg m⁻² week⁻¹	19	32 weeks
		3 mg m⁻² week⁻¹ x 6 weeks then every other week		
Rosso et al (1990)	216	Etoposide 120 mg m⁻² d₁–3	7	6 months
		Cisplatin 60 mg m⁻² d₂+etoposide	25.8⁸	8 months
		20 mg m⁻² d₁–3		
Einhorn et al (1986)	124	Vinorelbine	14	18 weeks
		Cisplatin 120 mg m⁻²+vinorelbine	27	26 weeks
		Cisplatin 60 mg m⁻²+vinorelbine+mitomycin C	20	17 weeks
Elliott et al (1984)	105	Vinorelbine	7	4 months
		Cisplatin+vinorelbine	33	11 months⁸

*Statistically significant survival improvement relative to monotherapy.

in 584 patients with advanced NSCLC showed a significant advantage in terms of objective response rate (16 vs 30%, P < 0.0001) and survival distribution (6.5 vs 8.5 months, P = 0.023) in favour of combination therapy but no significant difference between treatments in 1-year survival rate (31 vs 36%) (Lilenbaum et al., 2002). Similarly, a comparison of gemcitabine with gemcitabine plus carboplatin in 275 patients with advanced NSCLC showed higher objective response rates (12 vs 30%) and a significantly longer time to progression (4 vs 6 months, P = 0.001) with combination therapy; the median survival was 9 months for the whole study population (Sederholm, 2002).

Conclusions The survival results reported to date suggest that the importance of inclusion of a platinum agent in the combination therapy setting is still at least open for discussion, although it appears to be accepted that two-agent combination therapy is better than monotherapy.

Three drug combinations No statistically significant survival difference has been observed between regimens containing cisplatin in combination with doxorubicin and cyclophosphamide (CAP), doxorubicin and 5-fluorouracil (AFP), cyclophosphamide and bleomycin (CBP), vindesine (VP), etoposide (EP), or vindesine and mitomycin-C (MVP). Median survival ranged from 21.6 to 26.6 weeks. The MVP regimen showed a trend towards a higher response rate than the other regimens in certain trials with no benefit on survival (Ruckdeschel et al., 1985). MVP showed superiority to EP in another trial (Ginopoulos et al., 1997). A recent trial that compared triple therapy with cisplatin plus ifosfamide plus mitomycin (MIP) with gemcitabine plus cisplatin showed a higher response rate in the ‘modern’ double therapy regimen and no difference in survival between the two arms (Crino et al., 1999). Other comparisons between double and triple therapy with modern drugs did not show any advantage for triple therapy over double therapy (Alberola et al., 2001; Souquet et al., 2001).
Table 3 Comparisons between cisplatin containing double therapy and cisplatin monotherapy in patients with advanced NSCLC

Study	Patients enrolled	Drugs	Overall response rate (%)	Median survival
Gatzenmeier et al (2000)	414	Cisplatin 100 mg m⁻² × 3 weeks	17	8.6 months
		Cisplatin 80 mg m⁻² × 3 weeks+	26	8.1 months
		paclitaxel 175 mg m⁻² × 3 weeks		
Sandler et al (2000)	522	Cisplatin 100 mg m⁻² × 3 weeks	11	9.1 months*
		Cisplatin 100 mg m⁻² × 4 weeks		
von Pawel et al (2000)	437	Gemcitabine 1000 mg m⁻² × 12.5 weeks+	30*	
		Cisplatin 75 mg m⁻² × 3 weeks		
Wozniak et al (1998)	415	Cisplatin 100 mg m⁻² × 24 weeks	12	6 months
		Vinorelbine 25 mg m⁻² × 4 weeks		8 months*
Kawahara et al (1991)	160	Cisplatin 80 mg m⁻² × 24 weeks	12	39 months
		Vinorelbine 25 mg m⁻² × 24 weeks	29*	45 weeks
		+Vindesine 3 mg m⁻² × 24 weeks		
Crino et al (1990)	156	Cisplatin 120 mg m⁻² × 24 weeks	4	18 weeks
		Cisplatin 120 mg m⁻² × 24 etoposide	30	35 weeks*
		100 mg m⁻² × 24 × 3 weeks		
		Cisplatin 120 mg m⁻² × 4 etoposide	26	37 weeks*
		100 mg m⁻² × 24 × 3 weeks		
		Mtmomycin-C 10 mg m⁻² × 24 days		
		Cisplatin 120 mg m⁻² × 24 etoposide	19	26 weeks
		100 mg m⁻² × 24 × 3 weeks		22 weeks
		+Vindesine 3 mg m⁻² × 24 weeks		

*Statistically significant difference relative to monotherapy.

Regimens containing oxaliplatin

Three small studies are underway to assess combinations of oxaliplatin and gemcitabine (Franciosi et al., 2001), paclitaxel (Hoffman et al., 2001) or vinorelbine (Monnet et al., 2002) in patients with advanced NSCLC. Early results in 24 previously untreated (Hoffman et al., 2001), 28 previously untreated (Monnet et al., 2002) and 10 previously treated (Franciosi et al., 2001) patients show response rates of 25, 35 and 30%, respectively. Oxaliplatin monotherapy has also demonstrated activity in a small study of 33 patients with poor-prognosis NSCLC (Monnet et al., 1998).

Other chemotherapy options

In addition, combinations of paclitaxel or docetaxel with nonplatinum agents such as gemcitabine have shown promising results (Douillard et al., 2001b; Georgoulas et al., 2001). Indeed, such combinations may be an option for patients unable to tolerate platinum agents or those with compromised performance status. In addition, patients with a performance status of 2 do not benefit from platinum-based chemotherapy (Soria et al., 2001). In general, studies comparing non-platinum regimens with platinum-based regimens are still ongoing. In one that is published (Georgoulas et al., 2001), no significant difference was seen between gemcitabine plus docetaxel and cisplatin plus docetaxel. The results of such trials need to be confirmed.

Several of the new agents have been studied as second line chemotherapy in patients with NSCLC and have shown some efficacy (Socinski and Langer, 1999; Huisman et al., 2000; Millet and Kris, 2000), especially docetaxel for which there has been two randomised studies (Fossella, 1999a,b; Shepherd et al., 2000).

Combined modality and adjuvant therapy

The use of platinum-based chemotherapy in conjunction with radiotherapy in patients with locally advanced unresectable NSCLC has become standard since the studies of Le Chevalier et al. (1991) and Dillman et al. (1990). The NSCLCCG meta-analysis confirmed the survival benefit provided by giving cisplatin-based chemotherapy before radiotherapy over radiotherapy alone (Non-Small Cell Lung Cancer Collaborative Group, 1995). Although it is standard to use induction chemotherapy followed by radiotherapy, there are some arguments favouring concurrent chemoradiation using chemotherapy at systemic dosages (Eberhardt et al., 1998; Jeremic et al., 1999) or at radiosensitising dosages (Trovo et al., 1992; Schaeke-Koning et al., 1994; Bardet et al., 1997; Clamon et al., 1999). These two different treatment modalities have been studied in a number of promising phase II trials but there are very limited data from positive randomised phase III trials (Schaeke-Koning et al., 1994; Furuse et al., 1999). Results of these phase III studies support the use of concurrent chemotherapy and radiotherapy in preference to radiotherapy alone (Schaeke-Koning et al., 1994) or sequential chemotherapy then radiotherapy (Furuse et al., 1999).

Problems with currently used platinum drugs

Toxicity Severe adverse effects limit the use of cisplatin (McKeage, 1995). Nephrotoxicity may be reduced but not suppressed by hyper-hydration (Hamilton et al., 1989; Bissett et al., 1990). However, this hyper-hydration is not possible in patients with congestive heart failure, a condition that is not rare in patients with NSCLC. Cisplatin is also one of the most emetogenic drugs used, with considerable variability between individuals. Systematic use of serotonin antagonists has improved control of acute emesis but not delayed emesis (Fauser et al., 1999; Gralla et al., 1999). Anemia can also occur during treatment with cisplatin. This can be due to several mechanisms, including depletion of intrinsic erythropoietin production (caused by peritubular renal cell depletion), reduced bone marrow stem cell activity and the absence of the stem cell reaction of administered erythropoietin (Dufour et al., 1990; Canpolat et al., 1994; Wood and Hrushesky, 1995).

Nephrotoxicity and neurotoxicity have been considerably reduced by replacing cisplatin with carboplatin, which shows nephrotoxicity only when used in high dosages. Carboplatin, however, causes dose-limiting myelosuppression (McKeage, 1995;
Bunn, 1989b; Judson and Kelland, 2000). Transient rises in bilirubin levels have also been observed (Fields et al, 1995).

Resistance Kelland (2000) and Giaccone (2000) reviewed recently in detail the inherent resistance of NSCLC to current platinum agents. NSCLC is inherently resistant to treatment with cisplatin (Giaccione, 2000), so an understanding of the mechanisms behind this could help to improve the diagnosis of many patients with the cancer. Thus, resistance to cisplatin has been studied extensively in vitro. A number of resistance mechanisms have been identified including: (a) increased repair of platinum-induced DNA damage (increased nucleotide excision repair or loss of DNA mismatch repair); (b) glutathione or metallothionein drug deactivation; (c) reduced cellular uptake of the platinum; (d) altered apoptosis (Kelland, 2000).

The clinical relevance of these mechanisms is currently not entirely clear; however, tumour cell overexpression of metallothionein has been shown to correlate with chemo-resistance and prognosis in patients with oesophageal and urothelial cancer (Go and Adjei, 1999). Similarly, clinical trials have shown that prognosis is related to lung resistance-related protein abnormalities, which may alter transport of cisplatin; increased repair of cisplatin-DNA adducts, and loss of mismatch repair (Fink and Howell, 2000; Giaccione, 2000). Nucleotide excision repair appears to be the most important pathway for cisplatin-DNA damage, and the critical gene appears to be excision repair cross-complementing (ERCC1) (Giaccone, 2000). A number of studies have shown that high levels of the ERCC1 relative messenger RNA are associated with response and survival after cisplatin treatment (Giaccione, 2000; Rosell and Felip, 2001). Another genetic abnormality though to be related to cisplatin resistance affects the apoptosis gene p53; 60% of NSCLC patients have p53 mutations (Giaccione, 2000). Resistance to carboplatin is less well studied, but it is assumed that similar mechanisms are involved (Go and Adjei, 1999). The pharmacogenomics of these agents is therefore being intensively studied and may dictate therapy choices in the future.

New platinum agents

The problems associated with the use of current platinum agents, and the need to improve response and survival in patients with NSCLC (and other cancers), have prompted research into new platinum agents that have improved toxicity profiles, may circumvent resistance mechanisms, and have administration schedules that are acceptable to physicians and patients.

New agents include nedaplatin, a cisplatin-like compound registered in Japan and active in NSCLC (Judson et al, 1997), and satraplatin, an orally available drug with dose-limiting toxicity similar to that of carboplatin currently being explored in prostate cancer. Two other novel agents, BBR3464 and ZD0473, have shown good results in preclinical and in vitro studies, and have potential in the treatment of solid tumours (Judson and Kelland, 2000).

BBR3464 BBR3464 is a trinuclear platinum complex that binds to DNA more rapidly than cisplatin and forms long-range inter- and intrastrand crosslinks. Phase I studies show diarrhoea and neutropenia to be dose-limiting toxicities, without significant nephro-, neuro- or pulmonary toxicity (Calvert et al, 1999; Sessa et al, 2000). Antitumour activity was observed in colorectal and pancreatic cancer patients after a one-hour infusion of 1.1 mg m^{-2} every 28 days (Calvert et al, 1999). A second study (Sessa et al, 2000) showed similar toxicity (0.03–0.17 mg m^{-2} day^{-1} for 5 days, repeated every 28 days), in patients with solid tumours unresponsive to previous antitumour treatment. Phase II trials are currently underway.

ZD0473 ZD0473 is a new-generation platinum agent designed to deliver an extended spectrum of antitumour activity and overcome platinum resistance mechanisms. A common mechanism of resistance is the replacement of the platinum centre by a thiol moiety. This substitution is hindered by increasing the steric bulk of the molecule, and ZD0473, with its methyl-substituted pyridine side chain, was designed with this property in mind (Holford et al, 1998b).

Biochemical studies show that ZD0473 at least partially overcomes mechanisms of inherent or acquired resistance (Holford et al, 1998a), and preclinical work indicates activity against cell lines resistant to older platinum agents (Raynaud et al, 1997). In man, dose-limiting toxicity is myelosuppression, particularly in patients previously treated with carboplatin (Trigo et al, 1999; Hootin-Boes et al, 2001); without evidence of clinically relevant neurotoxicity, nephrotoxicity or otoxicity when given at doses of 120 or 150 mg m^{-2} (Hootin-Boes et al, 2001).

Of the newer platinum agents, the new-generation agent ZD0473 could be of interest in NSCLC, with good tolerability having been reported in phase I trials in which the drug has been given in combination with paclitaxel, gemcitabine or vinorelbine in patients with advanced and/or refractory solid tumours (Table 4). These trials are ongoing, as are phase II monotherapy studies of first- and second-line treatment in patients with NSCLC in which ZD0473 is being given at a dosage of 120–150 mg m^{-2} every 3 weeks.

CONCLUSIONS

Chemotherapy is now broadly accepted in stage IIIb/IV NSCLC, and there is growing interest in its use in earlier disease when

Table 4 Phase I studies of ZD0473 in combination with paclitaxel, gemcitabine or vinorelbine in patients with advanced solid tumours

Study	Regimens	Patients	Results reported to date
Douillard et al (2001a)	ZD0473 60–120 mg m^{-2} i–2 h	Patients with advanced solid tumours	No DLT reported for doses up to 90/15 mg m^{-2} ZD0473/vinorelbine
Gatzeiner et al (2001)	ZD0473 60, 90 or 120 mg m^{-2} h infusion+ paclitaxel 135 mg m^{-2} 3 h infusion every 3 weeks	7 NSCLC; 2 mesothelioma 1 SCLC (all refractory malignancies)	Grade 3–4 leucopenia in four patients. No DLT. SD in five out of seven evaluable patients (including two NSCLC with 25% reduction in tumour size)
O'Dwyer et al (2001)	ZD0473 60–120 mg m^{-2} i–2 h	26 with various advanced solid tumours	Grade 3–4 thrombocytopenia or grade 4 neutropenia in seven patients. Two MR, both in patients with gemcitabine- and cisplatin-pretreated NSCLC; 10 SD. No clinically relevant nephro- or neurotoxicity

DLT=dose-limiting toxicity; MR=minor response; SD=stable disease; SCLC=small cell lung cancer.
platinum drugs in NSCLC

J Cosaert and E Quoix

REFERENCES

Abratt RP (1995) Current chemotherapy of advanced non-small cell lung cancer. Anticancer Drugs 6(Suppl 6): 15 – 18

Alhain KS, Crowley JJ, Leblanc M, Livingston RB (1991) Survival determinants in extensive-stage non-small cell lung cancer: the Southwest Oncology Group experience. J Clin Oncol 9: 1618 – 1626

Alberola V, Camps C, Provenca M, Isla D, Rosell R, Vadell C, Bover I, Ruiz-

toxicitiy and the inherent resistance. These observations have

results of meta-analyses, with the inconvenience of the observed

combined with other (local) therapy. Platinum drugs are still

Bahl A, Falk S (2001) Meta-analysis of single agents in the chemotherapy of

Bakowski MT, Crouch JC (1983) Chemotherapy of non-small cell lung

Bardet E, Riviere A, Charloux A, Spaeth D, Ducolone A, Le Groumellec A,

Bunn Jr PA (1989a) The expanding role of cisplatin in the treatment of non-

Bunn Jr PA, Kelly K (1998) New chemotherapeutic agents prolong survival

Bunn Jr PA, Vokes EE, Langer CJ, Schiller JH (1998) An update on North

Casado A, Azagra P, Jimenez U, Gonzalez-Larriba JL, Cardenal F, Artal A,

Oncol 20: 447 – 453

Bahl A, Falk S (2001) Meta-analysis of single agents in the chemotherapy of

NSCLC: what do we want to know?. Br J Cancer 84: 1143 – 1145

Bakowski MT, Crouch JC (1983) Chemotherapy of non-small cell lung cancer: a reappraisal and a look to the future. Cancer Treat Rep 10: 159 – 172

Bardet E, Riviere A, Charloux A, Spaeth D, Ducolone A, Le Groumellec A, Pellae-Cosset B, Henry-Amar M, Douillard JY (1997) A phase II trial of radiochemotherapy with daily carboplatin, after induction chemotherapy (carboplatin and etoposide), in locally advanced non-small-cell lung cancer: final analysis. Int J Radiat Oncol Biol Phys 38: 163 – 168

Bissett D, Kunkeler L, Zwanenburg L, Paul J, Gray C, Swan IR, Kerr DJ, Kaye SB (1990) Long-term sequelae of treatment for testicular germ cell tumours. Br J Cancer 62: 655 – 659

Bonomi PD, Finkelstein DM, Ruckdeschel JC, Blum RH, Green MD, Mason B, Hahn R, Tormey DG, Harris J, Comis R (1989) Combination chemotherapy versus single agents followed by combination chemotherapy in stage IV non-small-cell lung cancer: a study of the Eastern Cooperative Oncology Group. J Clin Oncol 7: 1602 – 1613

Breathnach OS, Freidlin B, Conley B, Green MR, Johnson DH, Gandara DR, O’Connell M, Shepherd FA, Johnson BE (2001) Twenty-two years of phase III trials: older patients with advanced non-small-cell lung cancer: sobering results. J Clin Oncol 19: 1734 – 1742

Bulzebruck H, Bopp R, Drings P, Bauer E, Krysa S, Probst G, van Kaick G, Muller KM, Vogt-Moykopf I (1992) New aspects in the staging of lung cancer. Prospective validation of the International Union Against Cancer TNM classification. Cancer 70: 1102 – 1110

Bunn Jr PA (1989a) The expanding role of cisplatin in the treatment of non-

small-cell lung cancer. Semin Oncol 16: 10 – 21

Bunn Jr PA (1989b) Review of therapeutic trials of carboplatin in lung cancer. Semin Oncol 16: 27 – 33

Bunn Jr PA, Kelty K (1998) New chemotherapeutic agents prolong survival and improve quality of life in non-small cell lung cancer: a review of the literature and future directions. Clin Cancer Res 4: 1087 – 1100

Bunn Jr PA, Vokes EE, Langer CJ, Schiller JH (1998) An update on North American randomized studies in non-small cell lung cancer. Semin Oncol 25: 2 – 10

Calvert PM, Highley MS, Hughes AN, Plummer ER, Azzabi AST, Verrill MW, Camboni MG, Verde, Bernareggi A, Zucchetti M, Robinson AM, Carmichael J, Calvert AH (1999) A phase I study of a novel, triunuclear, platinum analogue, BRBR3464, in patients with advanced solid tumors (abstract/poster no. 333). Clin Cancer Res 5: (Suppl): 3796

Calvert AH, Newell DR, Gumbrell LA, O’Reilly S, Burnell M, Baloxil FE, Siddik ZH, Judson IR, Gore ME, Wilshaw E (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7: 1748 – 1756

Campolati C, Pearson P, Jaffe N (1994) Cisplatin-associated hemolytic uraemic syndrome. Cancer 74: 3059 – 3062

Chatelut E, Deneuze A, Lavit M, Chevreau C, Puiol A, Boneu A, Roche H, Houin G, Bugat R, Canal P (1995) Prediction of carboplatin clearance from morphological and biological patient characteristics (In French). Bull Cancer 82: 946 – 953

Clamon G, Herndon J, Cooper R, Chang AY, Rosenman J, Green MR (1999) Radiosensitization with carboplatin for patients with unrectsectable stage III non-small-cell lung cancer: a phase III trial of the Cancer and Leukemia Group B and the Eastern Cooperative Oncology Group. J Clin Oncol 17: 4 – 11

Crino L, Scagliotti GV, Ricci S, De Marinis F, Rinaldi M, Gridelli C, Ceribelli A, Bianco R, Marangolo M, Di Costanzo F, Sarti M, Raviolo A, Adamo V, Portalone L, Cruciani G, Masotti A, Ferrara G, Gozzelino F, Tonon M (1999) Gemcitabine and cisplatin versus mitomycin, ifosfamide, and cisplatin in advanced non-small-cell lung cancer: A randomized phase III study of the Italian Lung Cancer Project. J Clin Oncol 17: 3522 – 3530

Crino L, Tonato M, Darwin S, Meacci ML, Corgna E, Di Costanzo F, Buzzi F, Fornari G, Santì E, Baldiotti E. (1990) A randomized trial of three cisplatin-containing regimens in advanced non-small-cell lung cancer (NSCLC): a study of the Umbrian Lung Cancer Group. Cancer Chemother Pharmacol 26: 52 – 56

Cullen MH, Billingham LJ, Woodroffe CM, Chetiyawardana A, Gower NH, Joshi R, Ferry DR, Rudd RM, Spiro SG, Cook JE, Trask C, Bessel E, Connolly CK, Tobias J, Souhami RL (1999) Mitomycin, ifosfamide, and cisplatin in unresectable non-small-cell lung cancer: effects on survival and quality of life. J Clin Oncol 17: 3188 – 3194

Depierre A, Chastang C, Quoix E, Lebeau B, Blanchon F, Paillot N, Lemarie E, Milleron B, Moro D, Clavier J (1994) Vinorelbine versus vinorelbine plus cisplatin in advanced non-small cell lung cancer: a randomized trial. Ann Oncol 5: 37 – 42

Depierre A, Milliken B, Moro-Sibilot D, Chevret S, Quoix E, Lebeau B, Braun D, Breton JL, Lemarie E, Gouva S, Paillot N, Brechet JM, Janicot H, Lebas FX, Terrioux P, Clavier J, Foucher P, Monchartre M, Coetmeur D, Level MC, Leclerc P, Blanchon F, Rodjer MJ, Thiberville L, Villeneuve A, Westeel V, Chastang C (2002) Preoperative Chemotherapy Followed by Surgery Compared With Primary Surgery in Resectable Stage I (Except T1NO), II, and III Non-Small-Cell Lung Cancer. J Clin Oncol 20: 247 – 253

Deslauriers J, Gregoire J (2000) Surgical therapy of early non-small cell lung cancer. Chest 117: 1045 – 1095

Dillman RO, Seagren SL, Propert KJ, Guerra J, Eaton WL, Perry MC, Carey RW, Frei III, Green MR (1990) A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. N Engl J Med 329: 940 – 945

Douillard J, Cosaert J, Barbarot V (2001a) Phase I trial of ZD0473 in combination with Vinorelbine for Patients with advanced cancer (abstract 274). Eur J Cancer 37(Suppl 6): 577

Douillard JY, Lereouge D, Monnier A, Bennouma J, Haller AM, Sun XS, Assouline D, Grau B, Riviere A (2001b) Combined paclitaxel and gemcitabine as first-line treatment in metastatic non-small cell lung cancer: a multicentre phase II study. Br J Cancer 84: 1179 – 1184

Dufour P, Bergerat JP, Eber M, Renaud P, Karcher V, Giron C, Leroy MJ, Oberling F (1990) Cisplatin-induced anemia: a potential interference with iron metabolism at erythroid progenitors level. Anticancer Drugs 1: 49 – 54

Eberhardt W, Wilke H, Stamatis G, Stuschke M, Harstrick A, Menker H, Krause B, Mueller MR, Stahl M, Flasshove M, Budach V, Greschuchna D, Konietzko N, Sack H, Seber S (1998) Preoperative chemotherapy followed by concurrent chemomodulation therapy based on hyperfractionated accelerated radiotherapy and definitive surgery in locally advanced non-small-cell lung cancer: mature results of a phase II trial. J Clin Oncol 16: 622 – 634

British Journal of Cancer (2002) 87(8), 825 – 833 © 2002 Cancer Research UK
Einhorn LH, Loehrer PJ, Williams SD, Meyers S, Gabrys T, Nattan SR, Woodburn R, Draga R, Songer J, Fisher W (1986) Random prospective study of vindesine versus vindesine plus high-dose cisplatin versus vindesine plus cisplatin plus mitomycin C in advanced non-small-cell lung cancer. *J Clin Oncol* 4: 1037 – 1043

Elliot JA, Ahmedzai S, Hole D, Dorward AJ, Stevenson RD, Kaye SB, Bambha NK, Stott BH, Calman KC (1984) Vindesine and cisplatin combination chemotherapy compared with vindesine as a single agent in the management of non-small cell lung cancer: a randomized study. *Eur J Cancer Clin Oncol* 20: 1025 – 1032

Fauser AA, Felhauer M, Hoffmann M, Link H, Schlimok G, Gralla RJ (1999) Guidelines for anti-emetic therapy: acute emesis. *Eur J Clin Oncol* 35: 361 – 370

Furuse K, Fukuoka M, Kawahara M, Nishikawa H, Takada Y, Kudoh S, Kata-gami N, Ariyoshi Y (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small cell lung cancer. *J Clin Oncol* 17: 2692 – 2699

Gatzemeier U, Heckmayr M, Hossfeld DK, Zschaber R, Achterath W, Lenaz L (1990a) Phase II study of carboplatin in untreated, inoperable non-small-cell lung cancer. *Cancer Chemother Pharmacol* 26: 369 – 372

Gatzemeier U, Heckmayr M, Neuhauß R, Hossfeld D, Achterath W, Lenaz L (1990b) Phase II studies with carboplatin in non-small cell lung cancer. *Semin Oncol* 17: 25 – 31

Gatzemeier U, Rosell R, Betticher D, Keppel U, Marschall H, Wirth W, Schmenger W (1997) A phase II study of paclitaxel and carboplatin in advanced non-small cell lung cancer (abstract). *Eur J Cancer Clin Oncol* 33(Suppl 4): 973

Gatzemeier U, Twelves C, Anson-Hay D, Pentheroudakis G, Groth G, Cosaert J (2001) A feasible combination of gemcitabine and paclitaxel (GEM-OXAL) in patients with advanced non-small cell lung cancer. Preliminary results of a phase II study. *Proc Am Soc Clin Oncol* 20: 263b (abstract 2804)

Gralla RJ, Osoba D, Kris MG, Kirkbride P, Hesketh PJ, Chinnery LW, Clark-Snow R, Gill DF, Groshen S, Grunberg S, Koehler JM, Morrow GR, Perez EA, Silber JH, Pfister DG (1999) Recommendations for the use of antiemetics: evidence-based, clinical practice guidelines. American Society of Clinical Oncology. *J Clin Oncol* 17: 2971 – 2994

Hamilton CR, Bliss JM, Horwich A (1989) The late effects of cis-platinum on renal function. *Eur J Cancer Clin Oncol* 25: 185 – 189

Hocin-Boes G, Cosaert J, Koehler M, Smith M (2001) Safety profile of ZD0473 in phase II trials of patients with advanced cancer (poster). *Br Cancer Res Meeting July* 2001

In Vim-Boes G, Cosaert J, Koehler M, Smith M (2001) Safety profile of ZD0473 in phase II trials of patients with advanced cancer (poster). *Br Cancer Res Meeting July* 2001

Hoffman PC, Mauer AM, Otterson GA, Rudin CM, Valleyona MA, Golomb HM, Wade LE, Lanzanotti VI, Ansari RH, Zetos LL, Vokes EE (2001) Phase II study of oxaliplatin and paclitaxel in advanced non-small cell lung cancer (NSCLC) (abstract). *Proc Am Soc Clin Oncol* 20: A2852, p. 275b

Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, Abrams M, Kelland LR (1998a) Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)]platinum(II) (AMG473). *Anticancer Drug Des* 13: 1 – 18

Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR (1998b) In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMG473. *Br J Cancer* 77: 366 – 373

Huisman C, Smit EF, Giaccone G, Postmus PE (2000) Second-line chemotherapy in relapsing or refractory non-small cell lung cancer: a review. *J Clin Oncol* 18: 3722 – 3730

Jeremic B, Shibamoto Y, Milisic B, Milasavljevic S, Nikolic N, Dogovic A, Aleksandrovic I, Radosavljevic-Asic G (1999) A phase II study of concurrent accelerated hyperfractionated radiotherapy and carboplatin/etoposide for elderly patients with stage III non-small-cell lung cancer. *Int J Radiat Oncol Biol Phys* 44: 343 – 348

Johnson DH (1995) Phase III trial (ESS92) comparing cisplatin plus etoposide with cisplatin plus paclitaxel at two dose levels for treatment of advanced non-small-cell lung cancer. Eastern Cooperative Oncology Group. *J Natl Cancer Inst Monogr* 19: 61 – 63

Johnson DH (2000) Evolution of cisplatin-based chemotherapy in non-small cell lung cancer: a historical perspective and the eastern cooperative oncology group experience. *Clin Oncol (Suppl)* 11: S133 – S137

Judson I, Cerny T, Epelbaum R, Dunlop D, Smyth J, Schaefer B, Roelvink M, Kaplan S, Hanauske A (1997) Phase II trial of the oral platinum complex JM216 in non-small-cell lung cancer: an EORTC early clinical studies group investigation. *Ann Oncol* 8: 604 – 606

Judson I, Kelland LR (2000) New developments and approaches in the platinum arena. *Drugs* 59(Suppl 4): 29 – 36; discussion 37 – 38

Kawahara M, Furuse K, Kodama N, Yamamoto M, Kubota K, Takada M, Negoro S, Kusunoki Y, Matui K, Takifugi N (1991) A randomized study of cisplatin versus cisplatin plus vindesine for non-small cell lung carcinoma. *Cancer* 68: 714 – 717

Kelland LR (2000) Preclinical perspectives on platinum resistance. *Drugs* 59(Suppl 4): 1 – 8; discussion 37 – 38

Kelly K, Crowley J, Bunn PA, Presant CA, Grestad KP, Moinpour CM, Ramsey SD, Wozniak AI, Weiss GR, Moore DF, Israel VK, Livingston RB, Gandara DR (2001) Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: a Southwest Oncology Group trial. *J Clin Oncol* 19: 3210 – 3218

Klastersky J, Sculler JP, Lamantea H, Daubous G, Bureau G, Libert P, Richez M, Ravez P, Vandernoten G, Thiriaux J, Lecomte J, Cordier R, Dabouis G (1989) Cisplatin versus cisplatin plus etoposide in the treatment of advanced non-small-cell lung cancer. *Lung Cancer Working Party, Belgium.* *J Clin Oncol* 7: 1087 – 1092

Klastersky J, Sculler JP, Lamantea H, Daubous G, Bureau G, Libert P, Richez M, Ravez P, Vandernoten G, Thiriaux J (1990) A randomized study comparing cisplatin or carboplatin with etoposide in patients with advanced non-small-cell lung cancer: European Organization for Research and Treatment of Cancer Protocol 07861. *J Clin Oncol* 8: 1556 – 1562

Kreiman H, Goutoum M, Medeas C, Graziano SL, Costanza ME, Green MR (1999) Cisplatin-carboplatin therapy in extensive non-small cell lung cancer: a Cancer and Leukemia Group B study. *Eur J Cancer* 26: 1057 – 1060

Gralla RJ, Osoba D, Kris MG, Kirkbride P, Hesketh PJ, Chinnery LW, Clark-Snow R, Gill DF, Groshen S, Grunberg S, Koehler JM, Morrow GR, Perez EA, Silber JH, Pfister DG (1999) Recommendations for the use of antiemetics: evidence-based, clinical practice guidelines. American Society of Clinical Oncology. *J Clin Oncol* 17: 2971 – 2994

Grant SC, Kris MG (1995) New antineoplastic agents in lung cancer 1988-1993. *Cancer Treat Res* 22: 323 – 347

Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. *J Clin Oncol* 17: 409 – 422

Ginopoulos P, Spyropoulos K, Kardamakis D, Dougenis D, Onyenadum A, Gogos CH, Solomou E, Chrysanthopoulos K (1997) Advanced non-small cell lung cancer chemotherapy: a randomized trial of two active regimens (MVP and PE). *Cancer Lett* 119: 241 – 247

Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. *J Clin Oncol* 17: 409 – 422
British Journal of Cancer (2002) 87(8), 825 – 833
© 2002 Cancer Research UK
Souquet JP, Tan EH, Pereira JR, Klaveren RV (2001) GLOB1, A prospective randomised phase III trial comparing Vinorelbine and Cisplatin (NP) versus Vinorelbine, ifosfamide and cisplatin (NIP) in metastatic NSCLC patients (PTS): A Patient’s benefit analysis. *Proc Am Soc Clin Oncol* 20: A1337 (abstract)

Splinter TA (1990) Chemotherapy in advanced non-small cell lung cancer. *Eur J Cancer* 26: 1093–1099

Splinter TA, Sahmoud T, Festen J, van Zandwijk N, Sorensen S, Clerico M, Burghouts J, Dautzenberg B, Kho GS, Kirpatrick A, Giaccone G (1996) Two schedules of teniposide with or without cisplatin in advanced non-small-cell lung cancer: a randomized study of the European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. *J Clin Oncol* 14: 127–134

Stephens RJ, Fairlamb D, Gower N, Maslove L, Milroy R, Napp V, Peake MD, Rudd RM, Spiro S, Thorpe H, Waller D (2002) The Big Lung Trial (BLT): determining the value of cisplatin-based chemotherapy for all patients with non-small cell lung cancer (NSCLC). Preliminary results in the supportive care setting (abstract 1161). *Proc Am Soc Clin Oncol* 20: 291a

Trigo JM, Beale P, Judson IR, Raynaud F, Rees C, Milan D, Wolf L, Walker R, Hanwell J, Giandomenico C (1999) Phase I and Pharmacokinetic (PK) Study of Cis-Amminedichloro (2-Methylpyridine) Platinum (II) (ZD0473), a Novel Sterically Hindered Platinum Complex, in Patients (pts) with Advanced Solid Malignancies. *Proc Am Soc Clin Oncol* 18: A648 (abstract)

Trovò MG, Minatel E, Franchin G, Bocciere MG, Nascimben O, Bolzico G, Pizzi G, Torretta A, Veronesi A, Gobitti C (1992) Radiotherapy versus radiotherapy enhanced by cisplatin in stage III non-small cell lung cancer. *Int J Radiat Oncol Biol Phys* 24: 11–15

Van Meerbeeck JP, Smit EF, Lianes P, Schramel F, Lenz M, Debruyne C, Giaccone G (EORTC Lung Cancer Groupe) (2001) A EORTC randomised phase III trial of three chemotherapy regimens in advanced non-small cell lung cancer (NSCLC). *Proc Am Soc Clin Oncol* 20: 308a (abstract 1228)

von Pawel J, von Roemeling R, Gatzemeier U, Boyer M, Elisson LO, Clark P, Talbot D, Rey A, Butler TW, Hirsh V, Olver I, Bergman B, Ayoub J, Richardson G, Dunlop D, Arcenas A, Vescio R, Viallet J, Treat J (2000) Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. *J Clin Oncol* 18: 1351–1359

Wood PA, Hrushesky WJ (1995) Cisplatin-associated anemia: an erythropoietin deficiency syndrome. *J Clin Invest* 95: 1650–1659

Wozniak AJ, Crowley JJ, Balcerzak SP, Weiss GR, Spiridonidis CH, Baker LH, Albain KS, Kelly K, Taylor SA, Gandara DR, Livingston RB (1998) Randomized trial comparing cisplatin with cisplatin plus vinorelbine in the treatment of advanced non-small-cell lung cancer: a Southwest Oncology Group study. *J Clin Oncol* 16: 2459–2465

Zatloukal P, Petruzella I, Zemanova M, Kolek V, Grygarkova I, Sixtova D, Roubec J, Horenkova E, Kuta M, Havel L, Prusa P, Novakova I Czech Lung Cancer Cooperative Group (2001) Gemcitabine plus cisplatin (GCis) versus gemcitabine plus carboplatin (GCarb) in patients (Pts) with non-small cell lung cancer (NSCLC) stage IIIb and IV: and interim analysis of a randomized trial. *Proc Am Soc Clin Oncol* 20: A1343 (abstract), p. 337a