Habitat Degradation: A Comparative Study Between Tomar (PT) and Potenza (IT)

Luciana Nolè¹, Angela Pilogallo¹(✉), Lucia Saganeiti¹(✉), Francesco Scorza¹, Luis Santos², and Beniamino Murgante¹

¹ University of Basilicata, viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
angela.pilogallo@unibas.it
² Polytechnic Institute of Tomar, Quinta Do Contador, Estrada Da Serra, 2300-313 Tomar, Portugal

Abstract. The increasing impacts of climate and land use change directly impact habitat quality and biodiversity. Monitoring the habitats quality can be a valuable tool for the conservation of biodiversity, as it is an indicator of biodiversity. This research work aims to apply the InVEST Habitat Quality model to compare two different cases study from Portugal (Tomar) and Southern Italy (Potenza). Threats to biodiversity were considered taking into account the substantial territorial differences of the two areas considered: Tomar, an area particularly affected by forest fires-driven degradation phenomena; Potenza is, instead, an area particularly affected by the installation of wind farms. Results highlight how these tools can be considered a valuable support tool for spatial planning decisions for biodiversity conservation.

Keywords: Habitat quality · Tomar (Portugal) · Potenza (Italy)

1 Introduction

Intensive human activities can lead to a widespread loss of species, habitat fragmentation and habitat degradation [1, 2]. Habitat loss and degradation is a key cause of declining biodiversity [3, 4]. Biodiversity means biological wealth and therefore environmental quality: decision-makers and conservation organizations should learn about spatial changes in biodiversity and habitat and identify potential impact factors [5]. Consequently, the greater the diversity of the system, the less its vulnerability. Sometimes biodiversity is closely related to human activities. Therefore its quantification can be useful in order to better guide the decisions in territorial planning and in order to better understand the interaction and the consequent effect between territorial components and anthropogenic activities [6]. This new approach allows to better design sustainable and environmental policies and deeply understand the interaction among territorial components and relative processes and dynamics [7, 8].

The purpose of this work is to test InVEST-Habitat Quality (Integrated Valuation of Ecosystem Services and Tradeoffs) model [9] in order to compare the spatial distribution of biodiversity threats between Tomar (Portugal) and Potenza (Italy). As highlighted from many authors [10–12], this tool reveals to be useful in assessing the impact
of changing in land use/land cover (LULC) or, equally, in appreciating benefits from conservation policies [13, 14]. As a result, we aimed to (1) identify habitat suitability and threats to biodiversity for different land uses; (2) apply the InVEST-Habitat Quality model to assess and map habitat quality from 2007 to 2015 for Tomar and from 2014 to 2018 for Potenza; and (3) to analyze and compare the potential impact factors of habitat quality.

2 Study Area

The study areas both belong to Southern Europe (Portugal and Southern Italy) and have similar characteristics: both areas are characterized by a low density of settlement and a high landscape value of the territory [15–17], articulated in a high naturalness environment (woods and forests) and valuable agroforestry mosaics (see Fig. 1 and Fig. 2). Although the important similarities, they have a fundamental difference: the main threat to biodiversity is represented for Tomar by the forest fires [18, 19] and for Potenza, as the rest of the Basilicata region [20–23], by the transformations due to the installation of wind farms [24].

Fig. 1. Municipality of Tomar

Tomar. Tomar is a Portuguese municipality, located in the district of Santarém, in the Centro region, subregion Medio Tejo. It has an extension of 352 km² and has slightly more than 40,000 inhabitants. The municipal territory is mainly wooded. Forests are largely the result of policies from the 20th century [25], which have characterized changes in land use/land cover across the country. Nowadays, 97% of Portuguese woodland is privately owned, the result of this choice is that one of the most widespread tree species in Portugal is eucalyptus [18], one of the most easily flammable and fire-spreading species. The eucalyptus is a species not autochthonous but imported from Australia, starting from the 1970s to support the paper industry that began to grow in those years [26]. The eucalyptus plantations are intended solely for the cellulose industry and to
ensure a faster financial return for the owners, as they are a rapidly growing species. The monoculture of eucalyptus, besides being highly flammable [27], also causes nutrient loss [28, 29] and other negative impacts [30], because it needs more water to grow and its structure does not allow the growth of other species in the surrounding area [31].

Potenza. Potenza is an Italian city, capital of the Basilicata region, with an extension of about 170 km² and counts, according to the National Institute of Statistics (ISTAT) [32], 66,391 inhabitants. It is a mostly rural environment characterized by very low population and building density [33, 34]. As the rest of the region, a significant part of the soil development process, during the last decade, is due to the expansion of urban areas, the transformation of rural areas, and the use of agricultural land for renewable energy production through the construction of ground-mounted photovoltaic systems and numerous installations of wind turbines [35]. Indeed, since 2010, a large part of the territory has been affected by the installation of RES plants, most of them with a total power output less than 1 MW which implied a relevant territorial impact not balanced by the low power output [21].

3 Methods and Materials

In order to evaluate the Habitat Quality of the two areas chosen for the comparison we applied the Habitat Quality module of InVEST (InVEST-HQ) [36]; this model generates a map of habitat quality, linking the land use maps and the threats to biodiversity considered. This approach evaluates habitat quality based on suitability and threats to biodiversity, and the hypothesis of the model is that areas with higher habitat quality support higher native species richness [37, 38]. In the model, habitat degradation by threat factors is indicated by declining habitat quality score. We have therefore selected buildings, road infrastructure, agricultural areas and quarries as the main threat factors for the habitat. The fifth source of threat to biodiversity was, instead, differentiated according to the characteristics of the two areas, considering the fires for Tomar and wind turbines.
Table 1. Threats summary table of Tomar and Potenza.

Municipality	Threat	Max_Dist	Weight	Decay
Tomar and Potenza	Residential areas	10	0.8	Exponential
Tomar and Potenza	Agricultural areas	8	0.5	Exponential
Tomar and Potenza	Roads and railways	1	0.6	Exponential
Tomar and Potenza	Pollution	4	0.5	Linear
Tomar	Fire	6	0.9	Linear
Potenza	Wind power	6	0.9	Linear

Table 2. Habitat and sensitivity summary table.

LULC	Habitat	Residential areas	Agricultural areas	Fire	Pollution	Roads, railways
Water bodies	1	0.8	0.4	0	0.8	0.7
Residential areas	0	0	0	0	0	0
Industrial areas	0	0	0	0	0	0
Roads and railways	0	0	0	0	0	0
Quarries	0	0	0	0	0	0
Urban green and gardens	0	0	0	0	0	0
Wind power	0	0	0	0	0	0
Vineyards and olive groves	1	0.6	0	0.8	0.8	0.7
Landfill sites	0	0	0	0	0	0
Orchards and citrus groves	1	0.6	0	0.8	0.8	0.7
Deciduous forest	1	1	0.6	0.9	0.9	0.9
Coniferous forest	1	1	0.6	0.9	0.9	0.9
Fallow field	1	0.6	0	0.8	0.8	0.7
Forest	1	1	0.6	0.9	0.9	0.9
Vegetable gardens	1	0.6	0	0.8	0.8	0.7
Arable land	1	0.6	0	0.8	0.8	0.7
for Potenza. Each threat considered has been constructed from land use maps, and the information for each threat considered is listed in Table 1.

To compute on-board effects, an area with a greater extent was considered by a buffer operation equal to 10 km, the maximum distance from the threat i-th considered. In order to assign suitability, it was necessary to reclassify the land use classes to make them as homogeneous as possible, assigning to each class a value, 0 or 1, to describe the propensity to perform a habitat function. A land use type could be considered as habitat in relation to the level of biodiversity present and the intensity of human activities [39]. The threat parameters were determined by an expert survey and are summarized in Table 2.

4 Discussion and Conclusion

The model returns in output a spatial distribution of habitats degradation, relative to the years considered, assuming a more intense coloration in the areas more degraded (see Fig. 3 (A) and (B)). The first difference is that Tomar degradation level achieved is fairly homogeneous and widespread over the whole area of study, because, as highlighted in the context analyses, major territorial transformations are not of anthropic origin but linked to the phenomenon of forest fires; instead, in Potenza it is evidenced a negative impact mainly in correspondence of inhabited centers and more anthropized areas.

By comparisons over time we have a second difference that emerges: in Tomar there is a decrease of habitat quality in wooded areas facing residential settlements, highlighting as most vulnerable areas the transition zones from woodland to residential; in Potenza there is a decrease of habitat quality in the area located to the North-West of the compact town, following the installation of wind generators, as from 2014 to 2018 the number of wind turbines has considerably increased. Therefore, the main threat to Tomar is represented by the forest fires, this source of impact is not negligible if we consider that the tree species are the more easily flammable ones and that propagate the fire, and furthermore this source of impact is believed to be potentially increasing because it is indirectly linked to climate change; in Potenza the main source of degradation is represented by the wind farms installation, these changes are justified by the common need to fight climate change, but they have taken place in a regulatory framework that is not adequate to balance this with all territorial values, preventing adequate control and the consequent impact on the territory. In conclusion, the most degraded area between the two ones is Tomar, as result of the threat sources considered. As regards the interpretation of final results, it should be noted that the linear overlap of the effects related to different threats has the disadvantage of neglecting a certainly non-linear interaction between different sources of impact which, acting simultaneously, can amplify the effects of the other. The proposed method, applicable to the different planning scales [40, 41], provides a low-precision biodiversity indicator, but may provide a synthetic support for land-use assessment in terms of reducing the habitats quality [42] and may provide appropriate information on a land-use planning [43] and management system that ensures [44], among other quality objectives, the reduction of soil consumption, taking into account territorial characteristics and their ecosystem functionality, with a view to the conservation of biodiversity not considering natural processes as, for example, landslides [45]. As highlighted in previous works [46–49], the ecosystem services approach reveal
Fig. 3. Degradation maps for Potenza (A) and Tomar (B) study areas

to be particularly useful in supporting decision making and in designing conservation policies, but also in offering the possibility to use an effective monitoring tool of territorial transformation [35] and in overcoming a piecemeal structure of the normative framework [50].

References

1. Baral, H., Keenan, R.J., Sharma, S.K., Stork, N.E., Kasel, S.: Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 36, 552–562 (2014). https://doi.org/10.1016/J.ECOLIND.2013.09.022
2. Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L., O’Connor, M.I.: A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012). https://doi.org/10.1038/nature11118
3. Duarte, G.T., Ribeiro, M.C., Paglia, A.P.: Ecosystem services modeling as a tool for defining priority areas for conservation. PLoS ONE 11, e0154573 (2016). https://doi.org/10.1371/journal.pone.0154573

4. Polasky, S., Nelson, E., Pennington, D., Johnson, K.A.: The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of minnesota. Environ. Resour. Econ. 48, 219–242 (2011). https://doi.org/10.1007/s10640-010-9407-0

5. Costanza, R., Daly, H.E.: Natural capital and sustainable development. Conserv. Biol. 6, 37–46 (1992). https://doi.org/10.1046/j.1523-1739.1992.610037.x

6. Liotta, P.H.: Development, O. of R.: the use of scenario analysis to assess water ecosystem services in response to future land use change in the Willamette river basin, oregon, achieving environmental security. Ecosyst. Serv. Hum. Welfare 69, 97 (2010)

7. Bai, Y., Wong, C.P., Jiang, B., Hughes, A.C., Wang, M., Wang, Q.: Developing China’s ecological红线 policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018). https://doi.org/10.1038/s41467-018-05306-1

8. Ahern, J., Cilliers, S., Niemelä, J.: The concept of ecosystem services in adaptive urban planning and design: a framework for supporting innovation. Landsc. Urban Plan. 125, 254–259 (2014). https://doi.org/10.1016/j.landurbplan.2014.01.020

9. The Natural Capital Project: Habitat Quality-InVEST 3.6.0 documentation. http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/habitat_quality.html, Accessed 13 Nov 2019

10. Sharma, R., Nehren, U., Rahman, S.A., Meyer, M., Rimal, B., Aria Seta, G., Baral, H., Sharma, R., Nehren, U., Rahman, S.A., Meyer, M., Rimal, B., Aria Seta, G., Baral, H.: Modeling land use and land cover changes and their effects on biodiversity in central Kalimantan, Indonesia. Land 7, 57 (2018). https://doi.org/10.3390/land7020057

11. Kim, T., Song, C., Lee, W.-K., Kim, M., Lim, C.-H., Jeon, S.W., Kim, J.: Habitat quality valuation using InVEST model in Jeju island. J. Korea Soc. Environ. Restor. Technol. 18, 1–11 (2015). https://doi.org/10.13087/kosert.2015.18.5.1

12. Lai, S., Leone, F., Zoppi, C.: Assessment of municipal masterplans aimed at identifying and fostering green infrastructure: a study concerning three towns of the metropolitan area of Cagliari, Italy. Sustainability 11, 1470 (2019). https://doi.org/10.3390/su11051470

13. Leone, F., Zoppi, C., Leone, F., Zoppi, C.: Conservation measures and loss of ecosystem services: a study concerning the sardinian natura 2000 network. Sustainability 8, 1061 (2016). https://doi.org/10.3390/su8101061

14. Zoppi, C.: Integration of conservation measures concerning natura 2000 sites into marine protected areas regulations: a study related to sardinia. Sustainability 10, 3460 (2018). https://doi.org/10.3390/su10103460

15. Lasaponara, R., Murgante, B., Elfadaly, A., Qelichi, M., Shahraei, S., Wafa, O., Attia, W.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at kom el shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). https://doi.org/10.3390/su9040572

16. Murgante, B., Borruzo, G., Lapucci, A.: Sustainable development: concepts and methods for its application in urban and environmental planning. Stud. Comput. Intell. 348, 1–15 (2011). https://doi.org/10.1007/978-3-642-19733-8_1

17. Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City. GET, pp. 275–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31157-9_14

18. Nunes, M.C.S., Vasconcelos, M.J., Pereira, J.M.C., Dasgupta, N., Alldredge, R.J., Rego, F.C.: Land cover type and fire in Portugal: do fires burn land cover selectively? Landsc. Ecol. 20, 661–673 (2005). https://doi.org/10.1007/s10980-005-0070-8
19. Tedim, F., Remelgado, R., Borges, C., Carvalho, S., Martins, J.: Exploring the occurrence of mega-fires in Portugal. For. Ecol. Manage. 294, 86–96 (2013). https://doi.org/10.1016/j.foreco.2012.07.031

20. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Energy landscape fragmentation: basilicata region (Italy) study case. In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 692–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_50

21. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Territorial fragmentation and renewable energy source plants: which relationship? Sustainability 12, 1828 (2020). https://doi.org/10.3390/SU12051828

22. Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B.: Ecosystem services approach to evaluate renewable energy plants effects. In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 281–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_20

23. Scorza, F., Saganeiti, L., Pilogallo, A., Murgante, B.: Ghost Planning: the inefficiency of energy sector policies in a low population density region. Arch. DI Stud. URBANI E Reg. In press (2020)

24. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 20–38 (2014). https://doi.org/10.4018/IJAIES.2014040102

25. Pereira, M.G., Trigo, R.M., Da Camara, C.C., Pereira, J.M.C., Leite, S.M.: Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 129, 11–25 (2005). https://doi.org/10.1016/j.agrformet.2004.12.007

26. Da Silva Vieira, R., Canaveira, P., Da Simões, A., Domingos, T.: Industrial hemp or eucalyptus paper?: An environmental comparison using life cycle assessment. Int. J. Life Cycle Assess. 15, 368–375 (2010). https://doi.org/10.1007/s11367-010-0152-y

27. Khanna, P.K., Raison, R.J.: Effect of fire intensity on solution chemistry of surface soil under a eucalyptus pauciflora forest. Aust. J. Soil Res. 24, 423–434 (1986). https://doi.org/10.1071/SR9860423

28. Thomas, A.D., Walsh, R.P.D., Shakesby, R.A.: Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal. Catena 36, 283–302 (1999). https://doi.org/10.1016/S0341-8162(99)00051-X

29. Thomas, A.D., Walsh, R.P.D., Shakesby, R.A.: Solute losses in overland flow following fire in eucalyptus and pine forests, northern Portugal. Hydrol. Process. 14, 971–985 (2000). https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5%3c971:AID-HYP4%3e3.0.CO;2-J

30. Shakesby, R.A., Coelho, C.D.O.A., Ferreira, A.D., Terry, J.P., Walsh, R.P.D.: Wildfire impacts on soil erosion and hydrology in wet mediterranean forest, Portugal. Int. J. Wildl. Fire. 3, 95–110 (1993). https://doi.org/10.1071/WF9930095

31. Correia, A., Santos, L.A., Carvalho, P., Martinho, J.: Use of unmanned aerial vehicles in the monitoring of forest fires. In: Fernandes, F., Malheiro, A., Chaminié, H.I. (eds.) Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge. ASTI, pp. 75–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34397-2_15

32. Istat.it. https://www.istat.it/, Accessed 01 Jul 2019

33. Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in basilicata region. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8
34. Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 10, 3274 (2018). https://doi.org/10.3390/su10093274

35. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B., Pontrandolfi, P.: Comparing the territorial performances of Renewable Energy Sources’ plants with an integrated Ecosystem Services loss assessment: a case study from the Basilicata region (Italy). Sustain. Cities Soc. 56, 102082 (2020). https://doi.org/10.1016/j.scs.2020.102082

36. Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., Acuña, V.: Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016). https://doi.org/10.1016/j.scitotenv.2015.03.064

37. Querner, P., et al.: Habitat structure, quality and landscape predict species richness and communities of Collembola in dry grasslands in Austria. Insects 9, 81 (2018). https://doi.org/10.3390/insects9030081

38. Rondinini, C., et al.: Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011). https://doi.org/10.1098/rstb.2011.0113

39. Elfadaly, A., Attia, W., Qelichi, M.M., Murgante, B., Lasaponara, R.: Management of cultural heritage sites using remote sensing indices and spatial analysis techniques (2018). https://doi.org/10.1007/s10712-018-9489-8

40. Bolund, P., Hunhammar, S.: Ecosystem services in urban areas. Ecol. Econ. 29, 293–301 (1999). https://doi.org/10.1016/S0921-8009(99)00013-0

41. Aneseyee, A.B., Noszczyk, T., Soromessa, T., Elias, E.: The InVEST habitat quality model associated with land use/cover changes: a qualitative case study of the winike watershed in the omo-gibe basin. Southwest Ethiopia. Remote Sens. 12, 1103 (2020). https://doi.org/10.3390/rs12071103

42. Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M.: Why Italy first? health, geographical and planning aspects of the COVID-19 outbreak. Sustainability 12, 5064 (2020). https://doi.org/10.3390/su12125064

43. Geneletti, D.: Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environ. Impact Assess. Rev. 40, 25–35 (2013). https://doi.org/10.1016/j.eiar.2012.12.003

44. de Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L.: Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010). https://doi.org/10.1016/J.ECOCOM.2009.10.006

45. Pascale, S., Parisi, S., Mancini, A., Schiattarella, M., Conforti, M., Sole, A., Murgante, B., Sdao, F.: Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 473–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_34

46. Scorza, F., Pilogallo, A., Las Casas, G.: Investigating tourism attractiveness in inland areas: ecosystem services, open data and smart specializations. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_4

47. Pilogallo, A., Saganeiti, L., Scorza, F., Las Casas, G.: Tourism attractiveness: main components for a spacial appraisal of major destinations according with ecosystem services approach. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_54
48. Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B.: Ecosystem services’ based impact assessment for low carbon transition processes TeMA-J. L. Use. Mobil. Environ. 12, 127–138 (2019). https://doi.org/10.6092/1970-9870/6117

49. Attolico, A., Smaldone, R., Scorza, F., De Marco, E., Pilogallo, A.: Investigating good practices for low carbon development perspectives in basilicata. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 763–775. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_58

50. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B.: Natura 2000 areas and sites of national interest (SNI): measuring (un)integration between naturalness preservation and environmental remediation policies. Sustainability 12, 2928 (2020). https://doi.org/10.3390/su12072928