Counting homotopy classes of mappings via Dijkgraaf-Witten invariants

Haimiao Chen *

Beijing Technology and Business University, Beijing, China

Abstract

Suppose Γ is a finite group acting freely on S^n ($n \geq 3$ being odd) and M is any closed oriented n-manifold. We show that, given an integer k, the set $\text{deg}^{-1}(k)$ of based homotopy classes of mappings with degree k is finite and its cardinality depends only on the congruence class of k modulo $\#\Gamma$; moreover, $\# \text{deg}^{-1}(k)$ can be expressed in terms of the Dijkgraaf-Witten invariants of M.

key words: homotopy class, degree, topological spherical space form, Dijkgraaf-Witten invariant.

MSC2010: 55M25, 55S35, 57R19, 57R56.

1 Introduction

The topic of nonzero degree mappings between manifolds has a history of longer than 20 years. For a 3-manifold M, the homotopy set $[M, \mathbb{R}P^3]$ is important in the study of Lorentz metrics on a space-time model in which M corresponds to the space part (c.f. [10]), and in this context the existence of a degree-one mapping of any quotient of S^3 by a free action of a finite group to $\mathbb{R}P^3$ was completely determined by Shastri-Zvengrowski [15]. The existence of degree-one mappings from 3-manifolds M to lens spaces was studied by Legrand-Wang-Zieschang [10] and some conditions were obtained and expressed in terms of the torsion part of $H_1(M)$. Based on their work of computing cohomology ring, Bryden-Zvengrowski [2] gave sufficient and necessary conditions for the existence of degree-one mappings from Seifert 3-manifolds to lens spaces in terms of geometric data. As for another problem, the set of self-mapping degrees of 3-manifolds in Thurston’s picture are all

*Email: chenhm@math.pku.edu.cn
determined by Sun-Wang-Wu-Zheng [17]. In high dimension, degrees of mappings between \((n - 1)\)-connected \(2n\)-manifolds were studied in Ding-Pan [5], Duan-Wang [6] and Lee-Xu [9]. For other problems, see [14,16] and the references therein.

In this article we focus on mappings from a closed oriented \(n\)-manifold \(M\) (with \(n \geq 3\) odd) to a topological spherical space form \(S^n/\Gamma\) where \(\Gamma\) is a finite group with an orientatation-preserving free action on \(S^n\). Nowadays we have a fairly good understanding of such \(\Gamma\) in general and a complete classification of the spaces \(S^n/\Gamma\) when \(n = 3\). An important achievement of geometric topology is the characterization of finite group \(\Gamma\) which can act freely on some \(S^n\) by Madsen-Thomas-Wall [11]: a finite group \(\Gamma\) can act freely on some \(S^n\) if and only if \(\Gamma\) satisfies the \(p^2\)- and \(2p\)-conditions for all prime \(p\), i.e. all subgroups of \(\Gamma\) of order \(p^2\) or \(2p\) are cyclic. In dimension 3, a more concrete classification is known: by the work of Perelman, all 3-dimensional topological spherical space forms are spherical space forms, i.e. \(\Gamma < SO(4)\) acting on \(S^3\) by isometries; and the determination of 3-dimensional spherical space forms is a classical result due to Threlfall-Seifert and Hopf in the 1930’s ([8,18]). Besides the cyclic group case (where \(S^3/\Gamma\) is a lens space), there are four cases: the dihedral case, the tetrahedral case, the octahedral case and the icosahedral case (where the Poincaré 3-sphere is an example). For more details see [19,20].

It is a classical result of [13] that the homotopy classes of mappings \(f : M \to S^n/\Gamma\) are classified by the degree \(\deg f\) and the induced homomorphism \(\pi_1(f) : \pi_1(M) \to \Gamma\). We find that the based homotopy set \([M, S^n/\Gamma]\) has a nice structure, namely, it is an affine set modeled on \(\mathbb{Z}\). Given an integer \(k\), the subset of homotopy classes of mappings with degree \(k\) is a finite set and its cardinality can be expressed in terms of the Dijkgraaf-Witten invariants of \(M\).

Dijkgraaf-Witten theory was first proposed in [4] by the two authors naming the theory, as a 3-dimensional topological quantum field theory. Later it was generalized to any dimension by Freed [7]. Recall that for a given finite group \(\Gamma\) and a cohomology class \([\omega] \in H^n(B\Gamma; U(1))\), the Dijkgraaf-Witten invariant of a closed \(n\)-manifold \(M\) is defined as

\[
Z^{[\omega]}(M) = \frac{1}{\#\Gamma} \sum_{\phi : \pi_1(M) \to \Gamma} \langle [\omega], f(\phi)_* [M] \rangle,
\]

where \(f(\phi)_* : H_n(M; \mathbb{Z}) \to H_n(B\Gamma; \mathbb{Z})\) is induced by the associated mapping \(f(\phi) : M \to B\Gamma\) which is unique up to based homotopy. The TQFT axioms enable us to compute \(Z^{[\omega]}(M)\) by a cut-and-paste process.
2 Mappings to topological spherical space forms

We assume that all manifolds are closed, oriented and equipped with a basepoint, and all mappings and homotopies are base-point preserving.

From now on we suppose Γ acts freely on S^n and denote $m = \#\Gamma$. The classifying space $B\Gamma$ can be obtained by attaching higher dimensional cells to S^n/Γ to kill homotopy groups. Let $\varphi : S^n/\Gamma \to B\Gamma$ denote the inclusion map, and let $p : S^n \to S^n/\Gamma$ denote the covering map.

Lemma 2.1. Suppose M is an n-manifold, and $f_0, f_1 : M \to S^n/\Gamma$ are two mappings such that $\pi_1(f_0) = \pi_1(f_1) : \pi_1(M) \to \Gamma$, then $\deg f_0 \equiv \deg f_1 \pmod{m}$. If furthermore $\deg f_0 = \deg f_1$, then f_0 is homotopic to f_1.

Proof. The composition $\varphi \circ f_0$ is homotopic to $\varphi \circ f_1$ since $\pi_1(f_0) = \pi_1(f_1) : \pi_1(M) \to \Gamma$; choose a homotopy $h : M \times [0, 1] \to B\Gamma$. Let $K \subset M$ be the $(n-1)$-skeleton of M, then $M = K \cup D^n$. By cellular approximation, we may find $h' : K \times [0, 1] \to S^n/\Gamma$ such that $\varphi \circ h' \simeq h|_{K \times [0, 1]} : K \times [0, 1] \to B\Gamma$, and $h'|_{K \times \{i\}} = f_i$ for $i = 0, 1$.

From f_0, f_1 and h' we can construct a mapping

$$g : S^n = \partial(D^n \times [0, 1]) \hookrightarrow M \times \{0, 1\} \cup K \times [0, 1] \to S^n/\Gamma.$$

Let $g \circ f_0$ denote the composite

$$M \cong S^n \# M \to S^n \vee M \xrightarrow{g \circ f_0} S^n/\Gamma.$$

Then $g \circ f_0 \simeq f_1$, hence $\deg g = \deg f_1 - \deg f_0$.

Clearly g lifts to a mapping $\overline{g} : S^n \to S^n$ and $\deg g = m \deg \overline{g}$. \hfill \square

From the proof we see that there is a free action of $[S^n, S^n/\Gamma] \cong \mathbb{Z}$ on $[M, S^n/\Gamma]$. By cellular approximation, each mapping $M \to B\Gamma$ is homotopic to a mapping $M \to S^n/\Gamma$. Summarizing, we have a diagram

$$
\begin{array}{c}
[M, S^n/\Gamma] \\
\downarrow_{\deg}
\end{array} \xrightarrow{\pi_1} \hom(\pi_1(M), \Gamma)$$

such that

- The map π_1 is surjective, and $\deg \times \pi_1 : [M, S^n/\Gamma] \to \mathbb{Z} \times \hom(\pi_1(M), \Gamma)$ is injective.
For any $\phi \in \text{hom}(\pi_1(M), \Gamma)$, the set $\deg(\pi_1^{-1}(\phi))$ is a congruence class modulo m.

It is well-known that (see Section 1.6 of [1], for instance), by splicing the acyclic $Z\Gamma$ complex

$$0 \to Z \to C_n(S^n) \to \cdots \to C_0(S^n) \to Z \to 0$$

we obtain a periodic resolution of Z as a trivial $Z\Gamma$-module and hence $H^*_n(B\Gamma; Z) \cong Z/mZ$ with a preferred generator coming from the fundamental class of S^n/Γ. By the Universal Coefficient Theorem,

$$H^*_n(B\Gamma; U(1)) \cong \text{hom}(H^*_n(B\Gamma; Z), U(1)) \cong Z/mZ$$

and the pairing $H^*_n(B\Gamma; U(1)) \times H_n(B\Gamma; Z) \to U(1)$ is given by

$$\langle l, k \rangle = \zeta^{kl}_m,$$

where

$$\zeta_m = \exp\left(\frac{2\pi i}{m}\right).$$

Theorem 2.2. Each homotopy set $\deg^{-1}(k)$ is finite. More precisely,

$$\# \deg^{-1}(k) = \sum_{l \in \mathbb{Z}/m\mathbb{Z}} Z^l(M) \cdot \zeta_{m}^{-kl}.$$

Proof. There is a one-to-one correspondence

$$\deg^{-1}(k) \leftrightarrow \{ \phi : \pi_1(M) \to \Gamma : f(\phi)_*[M] = \overline{k} \},$$

hence

$$\# \deg^{-1}(k) = \# \{ \phi : \pi_1(M) \to \Gamma : f(\phi)_*[M] = \overline{k} \},$$

$$Z^\overline{k}(M) = \frac{1}{m} \cdot \sum_{\overline{k} \in \mathbb{Z}/m\mathbb{Z}} \# \deg^{-1}(k) \cdot \zeta_{m}^{kl}.$$

The formula for $\# \deg^{-1}(k)$ is obtained by Fourier transformation.

Remark 2.3. In [12] Murakami-Ohtsuki-Okada defined an invariant of 3-manifold which can be shown to depend only on $\beta_1(M)$ (the first Betti number of M) and the linking paring λ on $\text{Tor}H_1(M)$. They proved a formula expressing the DW invariant $Z^\overline{k}(M)$ (for a cyclic group) in terms of their invariant. Combining this with our result, we see that in dimension 3 there is an indirect connection from $\beta_1(M)$ and λ to $\# \deg^{-1}(k)$, and the result of [10] provided an evidence for the case $k = 1$.

4
Example 2.4. Let us consider the special case when $n = 3$, M is the Seifert 3-manifold with orientable base $M_O(g; (a_1, b_1), \cdots, (a_r, b_r))$ and $\Gamma = \mathbb{Z}/m\mathbb{Z}$. The Dijkgraaf-Witten invariants of such manifolds are computed by the first author in [3]. By Theorem 3.3 of [3],

$$Z_l^g(M) = m^{2g-2} \sum_{h,s \in \mathbb{Z}/m\mathbb{Z}} \prod_{j=1}^r \left(\sum_{z_j \in \mathbb{Z}/m\mathbb{Z}} \zeta_{m^2}^{la_j b_j z_j^2 - (2l\tilde{h} + ms)\tilde{b}_j \tilde{z}_j} \right),$$

where $x \mapsto \tilde{x}$ denotes the obvious map $\mathbb{Z}/m\mathbb{Z} \to \{0, 1, \cdots, m-1\}$.

Thus

$$\# \text{deg}^{-1}(k) = m^{2g-2} \sum_{l,h,s \in \mathbb{Z}/m\mathbb{Z}} \zeta_{m}^{-kl} \prod_{j=1}^r \left(\sum_{z_j \in \mathbb{Z}/m\mathbb{Z}} \zeta_{m^2}^{la_j b_j z_j^2 - (2l\tilde{h} + ms)\tilde{b}_j \tilde{z}_j} \right).$$

Acknowledgements

I would like to express my special gratitude to Professor Yang Su at Institute of Mathematics, Chinese Academy of Science, for many beneficial conversations.

References

[1] K. S. Brown, Cohomology of groups. Graduate Texts in Mathematics 87, Springer-Verlag, New York, U.S.A, 1982.

[2] J. Bryden, P. Zvengrowski, The cohomology ring of the orientable Seifert manifolds, II. Topology Appl. 127 (2003), no. 1-2, 213-257.

[3] H. Chen, The Dijkgraaf-Witten invariants of Seifert 3-manifolds with orientable bases. [arXiv:1307.0364]

[4] R. Dijkgraaf, E. Witten, Topological gauge theories and group cohomology. Comm. Math. Phys. 129 (1990), no. 2, 393-429.

[5] Y. Ding, J. Pan, Computing degree of maps between manifolds. Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1277-1284.
[6] H. Duan, S. Wang, The degrees of maps between manifolds. Math. Z. 244 (2003), no. 1, 67-89.

[7] D. S. Freed, Higher algebraic structures and quantization. Comm. Math. Phys. 159 (1994), no. 2, 343-398.

[8] H. Hopf, Zum Clifford-Kleinschen Raumproblem. Math. Ann. 95 (1926), no. 1, 313-339.

[9] Y. M. Lee, F. Xu, Realization of numbers as the degrees of maps between manifolds. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 8, 1413-1424.

[10] C. Hayat-Legrand, S. Wang, H. Zieschang, Degree-one maps onto lens spaces. Pacific J. Math. 176 (1996), no. 1, 19-32.

[11] I. Madsen, C. B. Thomas, C. T. C. Wall, The topological spherical space form problem. II. Existence of free actions. Topology 15 (1976), no. 4, 375-382.

[12] H. Murakami, T. Ohtsuki, M. Okada, Invariants of three-manifolds derived from linking matrices of framed links. Osaka J. Math. 29 (1992), no. 3, 545-572.

[13] P. Olum, Mappings of manifolds and the notion of degree. Ann. of Math. 58 (1953), 458-480.

[14] Y. Rong, Degree one maps between geometric 3-manifolds. Trans. Amer. Math. Soc. 332 (1992), no. 1, 411-436.

[15] A. Shastri, P. Zvengrowski, Types of 3-manifolds and addition of relativistic kinks. Reviews in Mathematical Physics 3 (1991), 467-478.

[16] T. Soma, Sequences of degree-one maps between geometric 3-manifolds. Math. Ann. 316 (2000), no. 4, 733-742.

[17] H. Sun, S. Wang, J. Wu, H. Zheng, Self-mapping degrees of 3-manifolds. Osaka J. Math. 49 (2012), no. 1, 247-269.

[18] W. Threlfall, H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Math. Ann. 104 (1931), no. 1, 1-70.

[19] K. Volkert, Das Homöomorphieproblem, insbesondere der 3-Mannigfaltigkeiten in der Topologie 1932-1935. Paris, (2002).
[20] K. Volkert, *Le retour de la géométrie*, in *Géométrie au XXe siècle*, ed. by J. Kouneiher, D. Flament, P. Nbonnand and J. Szczeciniarz (Paris, 2005), 150-162.