Antioxidant Effects of Ocimum Gratissimum Leaf Essential Oils as a Supplement to Extender on Chilled Canine Sperm Quality

Vui Van Nguyen
 Tra Vinh University

Samom Ponchunchoovong
 Suranaree University of Technology Institute of Agricultural Technology

Sajeera Kupittayanant
 Suranaree University of Technology Institute of Science

Pakanit Kupittayanant (✉ pakani@sut.ac.th)
 Suranaree University of Technology Institute of Agricultural Technology https://orcid.org/0000-0002-3707-1801

Research article

Keywords: Ocimum gratissimum, Essential oils, Antioxidant, Chilled canine sperm

DOI: https://doi.org/10.21203/rs.3.rs-26157/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Oxidative stress during chilled storage is a major problem with canine sperm. To improve the quality of chilled canine sperm during storage, many synthetic antioxidants have been examined, but different outcomes were investigated depending on antioxidant properties. The bioactive compounds of essential oils from *Ocimum gratissimum* leaves are known as a natural antioxidant source. This study aimed to evaluate the antioxidant effects of essential oils from *Ocimum gratissimum* leaves as a supplement in extender on chilled canine sperm during 12 days of storage.

Results: The results showed that low concentrations of *Ocimum gratissimum* essential oils (25, 50, and 100µg/mL) have beneficial effects on sperm quality, whereas *Ocimum gratissimum* essential oils at high levels (above 200µg/mL) have harmful effects. Specifically, the addition of 100µg/mL of *Ocimum gratissimum* essential oil to the extender had the greatest beneficial effect in improving the quality of chilled canine sperm, and had a significant difference in all sperm quality parameters except motility when compared to the control group (*p*<0.05).

Conclusions: *Ocimum gratissimum* essential oils have an impact on chilled canine sperm quality in a dose-dependent manner, and the best results are achieved with a maximum dose of *Ocimum gratissimum* essential oils of 100µg/mL.

Background

Semen collection and artificial insemination (AI) techniques are currently widespread and play an essential role for breeding dogs. To prepare sperm for the AI technique, it must be diluted with appropriate extenders and preserved by chilling or freezing [1]. However, chilling is used more frequently than freezing for its convenience and high fertilizing capacity [2, 3]. In addition, canine sperm could be maintained at a chilling temperature without any deleterious effects before freezing [4]. In our previous studies, we found that tris-citric-fructose-mineral salts egg-yolk extender was the best extender for canine sperm chilling [5].

Reducing sperm quality during storage is a principal limitation of chilled canine sperm. One of the reasons for the decrease in chilled canine sperm quality is oxidative stress. Since sperm plasma membrane contains rich polyunsaturated fatty acids, they are susceptible to lipid peroxidation in the presence of reactive oxygen species [ROS] [6, 7]. Sperm lipid peroxidation can lead to changes in membrane fluidity and damage to plasma membrane, acrosome membrane, mitochondria, and DNA as well as subsequent sperm death [8, 9]. Fortunately, living organisms can produce a considerable amount of antioxidants physiologically that may prevent or minimise the effect of oxidative stress [10]. In canine semen, almost all enzymatic antioxidants including superoxide dismutase, glutathione peroxidase, phospholipid hydro-peroxide glutathione peroxidase, and catalase, are from seminal plasma [11, 12]. Nevertheless, due to the negative effects of seminal plasma during preservation, canine semen is centrifuged to remove seminal plasma before diluting with extenders [13, 14]. This may reduce the antioxidant capability and contribute to the high susceptibility of canine sperm to oxidative stress. Thus,
adding antioxidant molecules may inhibit free radicals or the attack of ROS during the sperm storage process, and improve sperm quality. Moreover, different synthetic antioxidants have been tested on canine sperm to improve sperm quality during storage against oxidative stress [15–20], but varied effects were found depending on the type and concentration of antioxidants.

Furthermore, Ocimum gratissimum, also known as an aromatic medicinal plant, is a species of Ocimum that is rich in essential oils (3.5%) from the leaves [21]. Studies had also shown that the essential oils from Ocimum gratissimum leaves contain bioactive components made up of eugenol, α-bisabolene, β-selinene, 1,8-cineole, and thymol [22–23]. These phytochemicals are known to have antioxidant activity [24–27]. However, until now, no study has investigated the effect of Ocimum gratissimum essential oils on mammalian sperm as a natural antioxidant. Hence, adding essential oil extract from Ocimum gratissimum leaves to the extender can improve chilled canine sperm quality by reducing sperm lipid peroxidation during storage.

Therefore, the aim of the present study was to investigate the antioxidant effects of essential oils from Ocimum gratissimum leaves as a supplement in tris-citric-fructose-mineral salts egg-yolk extender on motility, plasma membrane integrity, acrosome membrane integrity, and mitochondrial membrane potential in chilled canine sperm during 12 days of storage.

Results

Antioxidant activity (DPPH radical scavenging activity) of essential oils from Ocimum gratissimum

The concentration of Ocimum gratissimum essential oils providing 50% inhibition (IC50) of DPPH activity was higher than that of vitamin E with 263.63 µg/mL and 11.03 µg/mL, respectively [dataset] [51].

Sperm motility

The results of the total motility (TM) and progressive motility (PM) are presented in Table 2 [dataset] [51]. Overall, sperm in all treatments decreased gradually in TM and PM parameters during the whole experimental period (12 days). However, the treatments with low concentrations of Ocimum gratissimum essential oils (0-200 µg/mL) were similar in TM and PM parameters during 12 days, while the TM and PM of sperm in the high level of essential oils (up to 400 µg/mL) reduced drastically and had a significant difference when compared to that of the low level of essential oils (p < 0.05) from day 9 to day 12.
Table 2
Effects of different concentrations of *Ocimum gratissimum* essential oils supplementation in extender on total motility (TM) and progressive motility (PM) parameters of chilled canine sperm during 12 days at 5°C.

Parameter(s)	Extenders	Day1	Day3	Day6	Day9	Day12
TM (%)	T0	92.9 ± 0.7^A	91.4 ± 0.9^A	87.0 ± 2.0^B	83.2 ± 1.0^{aB}	61.2 ± 4.9^{ac}
	T25	93.7 ± 0.8^A	92.2 ± 1.5^A	88.7 ± 1.5^B	86.1 ± 1.9^{ab}	69.2 ± 6.8^{ac}
	T50	93.8 ± 1.4^A	92.2 ± 0.8^{AB}	90.2 ± 1.0^B	85.5 ± 4.2^{ab}	71.6 ± 3.7^{ac}
	T100	94.4 ± 1.3^A	92.3 ± 1.5^B	90.2 ± 2.5^B	88.0 ± 3.3^{ab}	64.5 ± 6.7^{ac}
	T200	94.1 ± 1.0^A	91.5 ± 1.9^B	89.0 ± 2.1^B	84.5 ± 2.4^{aB}	43.4 ± 9.7^{bc}
	T400	94.0 ± 1.2^A	91.2 ± 1.2^B	88.5 ± 2.9^B	66.0 ± 8.4^{bc}	8.3 ± 1.1^{cd}
	T600	93.6 ± 0.5^A	91.0 ± 0.6^B	88.8 ± 1.5^B	53.6 ± 5.8^{bc}	4.9 ± 0.9^{cd}
	T800	93.2 ± 0.8^A	90.9 ± 0.9^B	86.3 ± 2.4^C	48.3 ± 8.5^{cd}	3.4 ± 0.9^{ce}
PM (%)	T0	70.1 ± 0.7^A	68.4 ± 4.7^A	63.6 ± 2.2^B	55.9 ± 9.7^{aB}	27.9 ± 3.6^{ac}
	T25	70.7 ± 3.1^A	68.7 ± 3.5^A	64.4 ± 2.3^B	59.2 ± 7.1^{aB}	31.2 ± 4.9^{ac}
	T50	72.4 ± 2.0^A	69.9 ± 3.6^{AB}	66.3 ± 3.0^B	62.7 ± 3.2^{aB}	33.2 ± 4.8^{ac}
	T100	74.5 ± 1.2^A	72.8 ± 2.1^A	68.9 ± 1.4^B	59.5 ± 6.1^{aB}	26.8 ± 7.4^{ac}
	T200	74.7 ± 3.9^A	69.6 ± 4.2^B	66.7 ± 2.4^B	50.9 ± 9.5^{aC}	23.6 ± 8.2^{ad}
	T400	73.0 ± 1.9^A	69.4 ± 3.7^B	65.9 ± 2.1^B	30.1 ± 8.4^{bc}	4.0 ± 0.8^{bd}

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, or c) in the same column indicates significant difference among extenders (p < 0.05) and uppercase superscript letters (A, B, C, or D) in the same row indicates significant difference within extenders with different storage time (p < 0.05).
Parameters	Extenders	Day1	Day3	Day6	Day9	Day12
	T600	72.9 ± 1.8^A	69.2 ± 2.0^B	65.4 ± 2.5^B	23.2 ± 5.8^{bC}	0.0 ± 0.0^{bD}
	T800	72.6 ± 3.1^A	68.7 ± 1.7^B	64.6 ± 2.6^C	20.1 ± 4.1^{bD}	0.0 ± 0.0^{bE}

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, or c) in the same column indicates significant difference among extenders (<i>p</i> < 0.05) and uppercase superscript letters (A, B, C, or D) in the same row indicates significant difference within extenders with different storage time (<i>p</i> < 0.05).

Besides TM and PM parameters, sperm velocity (VAP, VSL, and VCL) was also an important parameter in evaluating the sperm motility characteristics. The sperm velocity parameters are shown in Table 3 [dataset] [51]. The results of the VAP, VSL, and VCL were parallel with that of TM and PM parameters. It was found that there was a significant decrease in the VAP, VSL, and VCL parameters after the addition of up to 600 µg/mL essential oils (<i>p</i> < 0.05) on day 9 and 400 µg/mL essential oils (<i>p</i> < 0.05) on day 12.
Table 3
Effects of different concentrations of *Ocimum gratissimum* essential oils supplementation in extender on average pathway velocity (VAP), straight line velocity (VSL) and curvilinear velocity (VCL) parameters of chilled canine sperm during 12 days at 5°C.

Parameter(s)	Extenders	Day1	Day3	Day6	Day9	Day12
VAP(µm/s)	T0	84.0 ± 3.0^A	78.5 ± 2.6^B	73.5 ± 3.4^{BC}	67.7 ± 5.9^{abCD}	57.9 ± 8.2^{aD}
	T25	84.4 ± 3.0^A	80.9 ± 2.2^A	73.6 ± 4.2^B	68.8 ± 3.3^{abBC}	62.0 ± 6.9^{aC}
	T50	86.0 ± 2.5^A	80.8 ± 2.3^{AB}	75.6 ± 4.7^{BC}	69.8 ± 2.7^{abCD}	62.3 ± 4.0^{aD}
	T100	86.1 ± 2.5^A	81.3 ± 1.4^{AB}	76.9 ± 1.6^{BC}	70.1 ± 4.3^{aCD}	60.3 ± 7.1^{aD}
	T200	86.9 ± 2.8^A	83.7 ± 1.1^A	74.3 ± 4.2^B	70.5 ± 0.6^{aB}	57.1 ± 8.1^{aC}
	T400	86.4 ± 1.2^A	82.3 ± 1.7^{AB}	76.6 ± 3.3^B	58.9 ± 2.8^{abcC}	38.3 ± 8.4^{bD}
	T600	86.3 ± 1.0^A	82.2 ± 2.0^A	72.7 ± 7.2^B	57.9 ± 7.3^{bC}	0.0 ± 0.0^{cD}
	T800	86.1 ± 2.3^A	81.8 ± 2.1^A	71.9 ± 4.4^B	51.3 ± 8.6^{ccC}	0.0 ± 0.0^{cD}
VSL(µm/s)	T0	78.0 ± 2.3^A	72.2 ± 3.9^{AB}	67.7 ± 4.9^{BC}	59.6 ± 7.3^{abC}	45.4 ± 5.6^{aB}
	T25	78.7 ± 3.3^A	72.7 ± 1.0^{AB}	67.3 ± 5.4^{BC}	61.4 ± 4.4^{aC}	51.4 ± 6.0^{aD}
	T50	79.0 ± 3.2^A	73.0 ± 1.7^{AB}	67.7 ± 3.1^B	62.6 ± 4.5^{aB}	49.9 ± 6.8^{aC}
	T100	79.2 ± 3.2^A	74.8 ± 2.9^A	70.5 ± 4.2^{AB}	61.6 ± 5.6^{aB}	46.8 ± 7.9^{aC}
	T200	82.3 ± 2.0^A	76.7 ± 1.3^A	68.9 ± 2.3^B	60.7 ± 8.9^{aB}	44.4 ± 8.4^{aB}
	T400	79.6 ± 1.2^A	77.0 ± 2.1^A	68.1 ± 1.6^B	46.8 ± 4.5^{abcC}	30.3 ± 8.2^{abD}

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, or c) in the same column indicates significant difference among extenders (p < 0.05) and uppercase superscript letters (A, B, C, or D) in the same row indicates significant difference within extenders with different storage time (p < 0.05).
Plasma membrane integrity, acrosome membrane integrity and mitochondrial membrane potential

The results of the plasma membrane integrity, acrosome membrane integrity, and mitochondrial membrane potential are given in Table 4 [dataset] [51]. In general, these parameters in all the concentrations of essential oils declined steadily during chilled storage. In addition, the quality of sperm increased progressively in the treatments with the low levels of essential oils (from 0 to 100 µg/mL) and then decreased gradually with the high levels of essential oils (from 200 to 800 µg/mL). In particular, the treatment of 100 µg/mL essential oils had the highest values and was markedly different from the control (without essential oils) from day 3 to day 9 in both intact plasma membrane (77.5 ± 2.2 vs. 67.1 ±
5.8 on day 3 \((p = 0.008)\), 74.3 ± 3.7 vs. 59.2 ± 9.2 on day 6 \((p = 0.01)\), and 65.1 ± 5.1 vs. 52.1 ± 0.9 on day 9 \((p = 0.007)\), respectively) and high mitochondrial membrane potential parameters \(82.2 ± 2.5\) vs. 70.3 ± 4.3 on day 3 \((p = 0.013)\), 78.0 ± 3.0 vs. 62.5 ± 5.9 on day 6 \((p = 0.001)\), and 73.7 ± 3.0 vs. 54.1 ± 3.2 on day 9 \((p < 0.001)\), respectively). Notably, the percentage of intact acrosome membrane in treatment of 100 µg/mL essential oil supplementation was greatest and had a substantial difference when compared to the control \(73.0 ± 1.8\) vs. 63.6 ± 3.4 on day 1 \((p = 0.002)\), 66.4 ± 2.8 vs. 48.3 ± 3.9 on day 6 \((p < 0.001)\), and 50.2 ± 3.4 vs. 24.8 ± 3.7 on day 12 \((p < 0.001)\), respectively) and compared to the treatments with a higher concentration of essential oils, 400 µg/mL \(73.0 ± 1.8\) vs. 62.5 ± 1.4 on day 1 \((p = 0.001)\), 66.4 ± 2.8 vs. 57.9 ± 1.3 on day 6 \((p = 0.001)\), and 50.2 ± 3.4 vs. 26.8 ± 6.8 on day 12 \((p < 0.001)\), respectively) during the whole storage period of 12 days.
Table 4
Effects of different concentrations of *Ocimum gratissimum* essential oils supplementation in extender on intact plasma membrane, high mitochondrial membrane potential, and intact acrosome membrane of chilled canine sperm during 12 days at 5°C.

Parameter	Extenders	Day1	Day3	Day6	Day9	Day12	
		Plasma membrane (%)					
	T0	72.4 ± 5.6abA	67.1 ± 5.8bcB	59.2 ± 9.2bcC	52.1 ± 0.9bCD	45.5 ± 5.6abD	
	T25	73.2 ± 2.1abA	70.2 ± 4.3abcA	63.8 ± 5.6abB	56.7 ± 5.1abB	48.4 ± 6.0abcC	
	T50	78.5 ± 5.6aA	74.9 ± 3.2abA	65.7 ± 5.3abB	60.9 ± 6.4abB	52.3 ± 3.3abC	
	T100	80.0 ± 3.5aA	77.5 ± 2.2abcAB	74.3 ± 3.7abBC	65.1 ± 5.1aC	56.4 ± 3.5aD	
	T200	73.4 ± 2.0abA	71.4 ± 1.2abcABC	66.9 ± 2.1abBC	59.7 ± 3.7abcC	50.2 ± 6.0abD	
	T400	71.5 ± 2.3abA	69.1 ± 2.4abcABC	64.1 ± 1.9abcBC	56.9 ± 3.0abcC	39.0 ± 3.2abcD	
	T600	69.1 ± 2.9abA	67.2 ± 2.2bcABC	60.5 ± 5.8bcBC	55.4 ± 2.6abBC	33.3 ± 3.7cc	
	T800	68.7 ± 3.3abA	64.4 ± 3.8abcABC	58.9 ± 2.8bcBC	50.5 ± 4.9bcC	31.8 ± 4.9cd	
		Mitochondrial membrane potential (%)					
	T0	78.7 ± 1.3aA	70.3 ± 4.3bbB	62.5 ± 5.9abcC	54.1 ± 3.2cd	47.9 ± 1.7abD	
	T25	79.6 ± 4.8aA	76.2 ± 3.9abA	68.5 ± 6.1abcB	61.9 ± 6.1abcC	52.9 ± 8.6abD	
	T50	82.4 ± 5.9aA	80.0 ± 6.7abA	73.3 ± 4.5abB	67.6 ± 5.5abB	58.8 ± 5.7ac	
	T100	86.2 ± 1.6aA	82.2 ± 2.5abA	78.0 ± 3.0acC	73.7 ± 3.0acC	62.5 ± 3.5ad	
	T200	81.6 ± 3.2aA	78.3 ± 4.5abA	73.2 ± 2.8abcB	65.9 ± 5.0abcC	53.9 ± 7.2ad	

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, c or d) in the same column indicates significant difference among extenders ($p < 0.05$) and uppercase superscript letters (A, B, C, D or E) in the same row indicates significant difference within extenders with different storage time ($p < 0.05$).
Parameter(s)	Extenders	Day1	Day3	Day6	Day9	Day12
	T400	78.1 ± 4.2^{aA}	72.9 ± 4.0^{abB}	69.1 ± 3.3^{abcC}	63.3 ± 3.8^{abcC}	40.1 ± 3.8^{bcD}
	T600	78.7 ± 1.9^{aA}	72.0 ± 3.4^{abB}	67.6 ± 4.0^{abcC}	60.7 ± 3.0^{bcD}	28.6 ± 9.1^{CE}
	T800	77.6 ± 1.9^{aA}	70.0 ± 2.7^{bbB}	66.0 ± 3.5^{bcC}	57.0 ± 7.1^{bcD}	25.3 ± 4.4^{CE}

Acrosome membrane (%)

T0	63.6 ± 3.4^{bca}	57.1 ± 4.6^{cb}	48.3 ± 3.9^eC	39.4 ± 4.4^cD	24.8 ± 3.7^{cdE}
T25	66.7 ± 2.1^{abcA}	64.7 ± 1.9^{abA}	53.8 ± 1.7^{de}B	45.1 ± 5.0^{bcC}	34.7 ± 7.3^{bcd}
T50	70.1 ± 2.5^{abA}	67.2 ± 2.5^{aA}	59.0 ± 2.1^{bcB}	50.5 ± 5.5^{bc}C	43.7 ± 7.0^{abc}
T100	73.0 ± 1.8^{aA}	70.2 ± 1.6^{abAB}	66.4 ± 2.8^{AB}	60.1 ± 2.8^{aC}	50.2 ± 3.4^{adD}
T200	67.8 ± 1.5^{abcA}	65.8 ± 1.8^{aA}	60.4 ± 1.9^{bbB}	52.1 ± 1.9^{abC}	36.4 ± 6.1^{abcD}
T400	62.5 ± 1.4^{cA}	59.0 ± 1.3^{bcAB}	57.9 ± 1.3^{bcB}	48.2 ± 1.6^{bcC}	26.8 ± 6.8^{cdD}
T600	62.4 ± 4.3^{cA}	57.9 ± 0.8^{cB}	54.0 ± 1.7^{cdB}	45.1 ± 1.9^{bcC}	22.2 ± 4.9^{cdD}
T800	61.4 ± 3.8^{cA}	54.3 ± 2.5^{cB}	50.1 ± 1.7^{deC}	39.8 ± 4.1^{cD}	17.3 ± 5.6^{de}E

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, c or d) in the same column indicates significant difference among extenders (p < 0.05) and uppercase superscript letters (A, B, C, D or E) in the same row indicates significant difference within extenders with different storage time (p < 0.05).

Table 5 presents the proportion of healthy sperm with intact plasma membrane, high mitochondrial membrane potential, and intact acrosome membrane [dataset] [51]. As with the previous parameters, the percentage of healthy sperm increased regularly after adding essential oils to the extender and reached the top value at the level of 100 µg/mL before going down at the greater levels of essential oils (200 µg/mL). Although the values of those sperm in the treatment of 100 µg/mL essential oils were not evidently different from that in the treatments of 50 and 200 µg/mL essential oils, they were superior and had a significant difference when compared to the other treatments (p < 0.05).
Table 5
Effects of different concentrations of *Ocimum gratissimum* essential oils supplementation in extender on healthy sperm with intact plasma membrane, high mitochondrial membrane potential, and intact acrosome membrane of chilled canine sperm during 12 days at 5°C.

Extenders	Day1	Day3	Day6	Day9	Day12
T0	60.0 ± 3.6cdA	52.9 ± 9.3cB	43.0 ± 6.5cC	36.3 ± 5.4cD	21.9 ± 4.5cdE
T25	64.7 ± 2.2bcaA	60.9 ± 5.6abcA	51.9 ± 2.4bcdB	43.0 ± 5.4bcC	33.0 ± 6.7abcD
T50	68.1 ± 3.7abaA	64.3 ± 4.1abaA	56.2 ± 3.6bbB	46.5 ± 3.6bcC	39.9 ± 4.9acC
T100	71.4 ± 1.6aaaA	68.7 ± 0.5aAB	65.6 ± 2.2abB	56.3 ± 3.5acC	44.3 ± 5.9aD
T200	65.4 ± 2.2abcA	64.4 ± 1.9abaA	59.3 ± 2.7abbbB	49.4 ± 1.7abcC	34.1 ± 7.4abD
T400	61.7 ± 1.0cdA	59.1 ± 0.7abcAB	55.7 ± 1.4bcbbB	44.8 ± 1.3bccC	22.8 ± 3.3bcdD
T600	61.2 ± 1.8cdaA	56.7 ± 0.6bcA	50.8 ± 2.5cdeB	42.2 ± 2.8bcC	15.6 ± 3.4dD
T800	57.8 ± 2.1dA	52.5 ± 3.1cB	46.6 ± 2.3deC	37.1 ± 3.5cdC	10.4 ± 2.0de

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a, b, c or d) in the same column indicates significant difference among extenders (p < 0.05) and uppercase superscript letters (A, B, C, D or E) in the same row indicates significant difference within extenders with different storage time (p < 0.05).

Sperm lipid peroxidation

Table 6 summarises the level of malondialdehyde (MDA) (nmol/50 × 10⁶ sperm) of chilled canine sperm during 12 days [dataset] [51]. The concentration of MDA in all the treatments decreased slowly from day 1 to day 6 and then went up gradually to day 12. Moreover, although there was not notable difference in this parameter among the treatments with essential oil supplementation, the level of MDA was lowest and had a substantial difference from the control in both the treatments of 100 µg/mL (6.02 ± 0.24 vs. 7.03 ± 0.47 on day 1 (p = 0.029), 5.61 ± 0.08 vs. 6.34 ± 0.38 on day 6 (p = 0.035), and 6.04 ± 0.24 vs. 6.85 ± 0.02 on day 12 (p = 0.015), respectively), and 200 µg/mL (5.93 ± 0.33 vs. 7.03 ± 0.47 on day 1 (p = 0.012), 5.51 ± 0.26 vs. 6.34 ± 0.38 on day 6 (p = 0.010), and 6.03 ± 0.39 vs. 6.85 ± 0.02 on day 12 (p = 0.012), respectively) essential oils during 12 days' storage.
Table 6
Effects of different concentrations of *Ocimum gratissimum* essential oils supplementation in extender on the level of malondialdehyde (MDA) (nmol/50 × 10^6 sperm) of chilled canine sperm during 12 days at 5°C.

Extenders	Day1	Day6	Day12
T0	7.03 ± 0.47\(^{aA}\)	6.34 ± 0.38\(^{aB}\)	6.85 ± 0.20\(^{aA}\)
T25	6.55 ± 0.48\(^{abA}\)	6.02 ± 0.28\(^{abB}\)	6.46 ± 0.19\(^{abA}\)
T50	6.15 ± 0.22\(^{abAB}\)	5.76 ± 0.16\(^{abB}\)	6.31 ± 0.27\(^{abA}\)
T100	6.02 ± 0.24\(^{bAB}\)	5.61 ± 0.08\(^{bB}\)	6.04 ± 0.24\(^{bA}\)
T200	5.93 ± 0.33\(^{bAB}\)	5.51 ± 0.26\(^{bB}\)	6.03 ± 0.39\(^{bA}\)
T400	6.06 ± 0.32\(^{bAB}\)	5.74 ± 0.32\(^{abB}\)	6.30 ± 0.37\(^{abA}\)
T600	6.24 ± 0.40\(^{abAB}\)	5.83 ± 0.28\(^{abB}\)	6.37 ± 0.30\(^{abA}\)
T800	6.46 ± 0.48\(^{abA}\)	5.98 ± 0.37\(^{abB}\)	6.31 ± 0.26\(^{abAB}\)

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. Values are mean ± standard deviation for four replicates, each being a pool of five ejaculates. Lowercase superscript letters (a or b) in the same column indicates significant difference among extenders (\(p<0.05\)) and uppercase superscript letters (A or B) in the same row indicates significant difference within extenders with different storage time (\(p<0.05\)).

Discussion

During chilled storage, canine sperm are susceptible to oxidative stress due to the high amounts of reactive oxygen species (ROS), which can cause damage to all sperm components [6, 7]. In previous studies, different synthetic antioxidants have been tested on chilled canine sperm to improve sperm quality during storage against oxidative stress, and the results were useful [15–18] or sometimes limited [19, 20]. Our previous study demonstrated the benefits of tris-citric-fructose-mineral salts egg-yolk extender in chilled canine sperm [5]. The present study, into applying an antioxidant substance of plant origin, was carried out to evaluate the effects of essential oils from *Ocimum gratissimum* leaves supplementation in tris-citric-fructose-mineral salts egg-yolk extender on chilled canine sperm.

In general, *Ocimum gratissimum* essential oils supplementation affected all parameters studied in a dose-dependent manner. The study suggested that low concentrations of *Ocimum gratissimum* essential oils (25, 50, and 100 µg/mL) have positive effects on sperm quality, while *Ocimum gratissimum* essential oils at high levels (above 200 µg/mL) have a harmful effect. A supplement of 100 µg/mL of *Ocimum gratissimum* essential oil in the extender was the best treatment to improve the quality of chilled canine sperm. The beneficial effects of *Ocimum gratissimum* essential oils in canine sperm quality may be due
to its antioxidant properties. *Ocimum gratissimum* essential oil is known to contain important phenolic compounds comprising eugenol, α-bisabolene, β-selinene, 1,8-cineole and thymol [21–23], which may subsequently assist the intercellular antioxidant system, including superoxide dismutase, glutathione peroxidase, phospholipid hydro-peroxide glutathione peroxidase, and catalase [24–27]. Our results are similar to those reported by [28]. They found that a rosemary aqueous extract supplement in soybean lecithin extender influenced ram sperm quality in a dose-dependent manner. In the same way, Baghshahi et al. [29] have also illustrated that adding a maximum clove bud extract of 75 μg/mL in semen extender could improve sperm motility, viability, and plasma membrane integrity of ovine sperm. In contrast, *Thymus munbyanus* essential oils and thymol had no protective effects on human sperm, instead acting as potent immobilising and spermicidal agents [30]. In addition, the negative effects on chilled canine sperm quality at high levels of *Ocimum gratissimum* essential oils may be explained by its antimicrobial activities. Besides antioxidant activities, the phenolic compounds of *Ocimum gratissimum* essential oils are also known to inhibit microbial growth [31–33]. Based on hydrophobic properties, these phenolic compounds can interact with phospholipids and proteins in sperm plasma membranes. As a result, they affect membrane permeability, membrane potential and ion fluxes [34, 35]. These results are in agreement with previous reports on rams [29, 36], bulls [37], and boars [38]. They have confirmed that the high antioxidant concentrations could induce a higher plasma membrane fluidity and lead to increased sperm susceptibility.

Furthermore, one of the main by-products of lipid peroxidation is malondialdehyde (MDA) [39], which is an important indicator for oxidative damage in sperm [7, 40, 41]. Our results have found that the treatments of 100 μg/mL and 200 μg/mL *Ocimum gratissimum* essential oils have a lower concentration of MDA, while these treatments have a higher sperm quality when compared to the other treatments. These results are consistent with the previous studies [28, 42–44]. They have demonstrated that there was a negative correlation between sperm quality and rate of lipid peroxidation. Moreover, the results of sperm lipid peroxidation in the present study have also shown that the levels of MDA on day 1 were higher than that on day 6. This may be explained by the fact that on the first day of storage, the antioxidant substrates in the extender may absorb incompletely into the sperm plasma membrane. Thus, spermatozoa are prone to lipid peroxidation by FeSO₄ inducing before using thiobarbituric acid (TBA) assay.

Conclusions

In conclusion, the results of our investigation revealed that supplementation of *Ocimum gratissimum* essential oils in an extender at an appropriate level (100 μg/mL) has protective effects on chilled canine sperm without any adverse effects on sperm motility, plasma membrane, acrosome membrane, and mitochondrial membrane potential parameters, as well as a decrease in MDA concentration. Further studies are necessary in frozen canine sperm to evaluate more sperm quality parameters such as DNA fragmentation and fertility.
Methods

Plant material and preparation of \textit{Ocimum gratissimum} ethanol extract

The source of \textit{Ocimum gratissimum} trees was supported by School of Crop Production Technology, Suranaree University of Technology, Thailand. The formal identification was performed by Khanittha Kuboran, Head of Plant Science Unit, Suranaree University of Technology Farm - Thailand and voucher specimens, herbarium No. PK-012018, was recorded and deposited at the Centre for Scientific and Technological Equipment, Suranaree University of Technology – Thailand for future reference. \textit{Ocimum gratissimum} leaves were collected in the morning and dried in a hot-air oven at 40°C for three days. The dried leaves were finely powdered using a grinder. The extraction was conducted at room temperature by soaking 100 g of leaf powder in one litre of ethanol (98%) for five days. The mixture was passed through filter papers (No. 1) and concentrated using a rotary evaporator at 40°C. Then, this concentrated solution was centrifuged at 3,500 x \(g \) for 15 minutes, and the bottom layer was freeze-dried to obtain the essential oils.

Antioxidant activity (DPPH radical scavenging activity) of essential oils from \textit{Ocimum gratissimum}

The antioxidant activity of essential oils was carried out using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay according to the method of Blois \cite{45}. Vitamin E was used as standard. The diluted working solutions of essential oils and standard (100 µL) were prepared in methanol with amounts ranging from 25 to 600 µg/mL and from 0.5 to 50 µg/mL in 96 wells micro plate, respectively. 100 µL DPPH (200 µM in methanol) was added to the essential oils and standard solution. Methanol (100 µL) with DPPH solution (200 µM, 100 µL) was used as a control, while methanol (100 µL) with essential oils or standard (100 µL) was used as a blank. These solution mixtures were kept in the dark for 30 minutes and optical density was measured at 517 nm using a spectrophotometric plate reader. The percentage of antioxidant activity (AA\%) was determined using the following formula \cite{46}:

\[
AA\% = 100 - \frac{[\text{Absorbance}_{\text{sample}} - \text{Absorbance}_{\text{blank}}] \times 100}{\text{Absorbance}_{\text{control}}}
\]

The concentration of essential oils and standard providing 50% inhibition (IC50) of DPPH activity were calculated from the graph plotting between the percentage inhibition and concentration.

Animals

All dogs were supported by America Bully Dogs groups in Nakhon Ratchasima Province, Thailand. Sperm samples were obtained from five mature American Bully dogs (2–5 years old) of proven fertility. All dogs
were trained to ejaculate by digital manipulation for semen collection before studying. This study was performed under the guidelines of the Institutional Animal Care and Use Committee of the Suranaree University of Technology, Nakhon Ratchasima, Thailand. Animals were returned to the groups after sample collection.

Semen collection and evaluation

Ejaculates were collected once a week from each dog by digital manipulation according to the technique as described by Linde-Forsberg [2]. The collections were performed from all 5 dogs at the same time concurrently. Sperm with the following quality criteria was used in this study: >70% progressive motility; >200 × 10⁶ sperm/mL; <5% sperm abnormal morphology; and > 90% sperm viability. Computer-assisted sperm analysis (CASA) was used to determine sperm progressive motility and sperm concentration, while sperm morphology and viability were estimated using eosin-nigrosin staining [47].

Preparation of extenders

The basis extender in this study was tris-citric-fructose-mineral salts extender added to 20% egg yolk. Different extenders were prepared with different concentrations of *Ocimum gratissimum* essential oils supplementation (0, 25, 50, 100, 200, 400, 600, and 800 µg/mL). The composition of these extenders is shown in Table 1. All chemicals were purchased from Sigma-Aldrich. Before being added to the extenders, the *Ocimum gratissimum* essential oils were diluted in DMSO, and the final concentration of DMSO in each extender was 0.8%. Sterile distilled water was used to prepare solutions.
Ingredients	Extenders							
	T0	T25	T50	T100	T200	T400	T600	T800
Tris (mg)	900	900	900	900	900	900	900	900
Citric acid (mg)	500	500	500	500	500	500	500	500
Fructose (mg)	1250	1250	1250	1250	1250	1250	1250	1250
NaCl (mg)	450	450	450	450	450	450	450	450
KHPO$_4$ (mg)	60	60	60	60	60	60	60	60
KCl (mg)	60	60	60	60	60	60	60	60
CaHPO$_4$ (mg)	20	20	20	20	20	20	20	20
MgCl$_2$ (mg)	10	10	10	10	10	10	10	10
Egg yolk (mL)	20	20	20	20	20	20	20	20
Essential oils (mg)*	0	2.5	5	10	20	40	60	80
Gentamicin (mg)	200	200	200	200	200	200	200	200
DMSO (mL)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Distilled water (mL)	To 100							
pH	6.57	6.56	6.55	6.54	6.54	6.54	6.53	6.53

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively. * Essential oils extract from Ocimum gratissimum leaves.
Ingredients	Extenders							
	T0	T25	T50	T100	T200	T400	T600	T800
Osmolality (mOsmol/kg)	453	454	455	457	460	469	472	476

T0: control; T25, T50, T100, T200, T400, T600, and T800: 25, 50, 100, 200, 400, 600, and 800 µg/mL essential oils, respectively.* Essential oils extract from Ocimum gratissimum leaves.

Semen processing and experimental design

After collection, semen from five dogs was pooled and separated into eight sterile tubes. Then, the seminal plasma was removed by centrifuging (5 minutes, 720 × g) [48]. The sperm pellets were diluted with a sufficient volume of the extenders to reach the sperm concentration of 100 × 10^6 sperm/mL. After that, the extended sperm was slowly cooled (0.3°C/min) to 5°C by manual [49], and stored at 5°C for 12 days. Experimental design in this study was presented by a repeated measurement in the completely randomised design with four replicate trials.

Sperm evaluation

Sperm quality was evaluated every three days (Day1, Day3, Day6, Day9, and Day12).

Evaluation of sperm motility

Computer-assisted sperm analysis (CASA; Hamilton Thorne, USA), version IVOS 14.0 (HTR-IVOS 14.0) was used to evaluate the sperm motility. Before analysing, extended sperm was diluted with tris buffer and incubated at 38°C in a water bath for 15 minutes. The parameters of sperm motility were recorded including total motility (TM %), progressive motility (PM %), velocity average pathway (VAP, µm/s), velocity straight line (VSL, µm/s), and velocity curvilinear (VCL, µm/s).

Evaluation of plasma membrane integrity, acrosome membrane integrity, and mitochondrial membrane potential

A fluorescent staining combination of propidium iodide (PI), Hoechst 33342 (H342), fluorescein isothiocyanate–conjugated Pisum sativum agglutinin (FITC-PSA), and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolly-carbocyanine iodide (JC-1) was carried out to evaluate the plasma membrane integrity, acrosome membrane integrity, and mitochondrial membrane potential. The fluorescent staining process was prepared as described by [50] and modified by the method of [5]. The stained sperm was
identified by a confocal laser scanning microscope (CLSM; Nikon/Ni-E, Japan). The stained canine sperm under a confocal laser scanning microscope can be seen in Fig. 1. The spermatozoa with the intact plasma membrane, intact acrosome membrane, and high mitochondrial membrane potential were PI- and FITC-PSA-negative, and H342- and JC-1-positive, while the spermatozoa with the damaged plasma membrane, damaged acrosome membrane, and low mitochondrial membrane potential were PI- and FITC-PSA-positive, and H342 and JC-1 negative (PI-positive (+) = red-stained nucleus; H342-positive (+) = blue-stained nucleus; FITC-PSA positive (+) = yellow-green acrosome region; JC-1-positive (+) = bright red-orange in midpiece region; JC-1 negative (-) = bright green in midpiece region).

Evaluation of sperm lipid peroxidation

The lipid peroxidation of spermatozoa was determined by measuring the malondialdehyde (MDA) production, using thiobarbituric acid (TBA) assay according to the method described by Buege and Aust [39] and modified by Maia et al. [40]. The MDA concentration of each sample was measured immediately after inducing sperm lipid peroxidation with 0.24 mM FeSO$_4$ at 37°C in a water bath for 15 minutes. Then, 1 mL TBA reagent (trichloroacetic acid 15% (w/v), thiobarbituric acid 0.375% (w/v) in 0.25N hydrochloric acid) was added to 0.5 mL of each sample. The mixture was treated in a boiling water bath for 15 minutes. After cooling, the suspension was centrifuged at 1,000 × g for ten minutes. The supernatant was separated and the absorbance was measured at 535 nm using a spectrophotometric plate reader. The MDA concentration was determined by comparing the sample's absorbance at 535 nm with an MDA standard curve. The results were expressed in nmol MDA/50 × 106 sperm.

Statistical analysis

Two-factor mixed analysis of variance (ANOVA) was used to examine the interaction between time and extender as the main effects, and the Tukey test was applied for multiple comparisons of means among groups of each factor (time, extender). Statistical analyses were performed with SPSS software version 17.0 for Windows (SPSS Inc., Chicago, IL, USA). All data are presented as mean ± standard deviation (SD). A difference was considered significant for $p < 0.05$.

Abbreviations

AI: artificial insemination; ROS: reactive oxygen species; DNA: deoxyribonucleic acid; TM: total motility; PM: progressive motility; VAP: velocity average pathway; VSL: velocity straight line; VCL: velocity curvilinear; DPPH: 1,1-diphenyl-2-picrylhydrazyl; MDA: malondialdehyde; CASA: computer assisted sperm analysis; DMSO: dimethyl sulfoxide; PI: propidium iodide; FITC-PSA: fluorescein isothiocyanate–conjugated *Pisum sativum* agglutinin; JC-1: 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide; H342: Hoechst 33342; TBA: thiobarbituric acid

Declarations
Acknowledgements

We would like to express our sincere gratitude to the America Bully Dogs groups in Nakhon Ratchasima for their kind support.

Authors’ contributions

P.K. conceived and designed the experiments; V.V.N. and P.K. performed the experiments; V.V.N. and P.K. analysed the data; S.P. contributed materials; V.V.N., S.K. and P.K. wrote the paper; all authors reviewed and approved the final manuscript.

Funding

This study was financially supported by an SUT-PhD scholarship for ASEAN countries from Suranaree University of Technology in Thailand for educational purpose. The funding institution had no role in the study design, data collection or interpretation, or manuscript preparation.

Availability of data and materials

Most of the analyses that were carried out in this investigation were made with the data that can be found in the link “https://figshare.com/s/5d6d45c8238f5615e503” or provided by the corresponding author upon request.

Ethics approval and consent to participate

This study was performed with the approval of Ethics Committee for experiments on animals of School of Animal Production Technology and Innovation, Suranaree University of Technology, Nakhon Ratchasiam, Thailand.

Informed written consent was obtained from America Bully Dogs groups in Nakhon Ratchasima Province, Thailand. This study complied with the Institutional Animal Care and Use Committee of the Suranaree University of Technology, Nakhon Ratchasima, Thailand.

Consent for publication

Not applicable

Competing interests
The authors declare that they have no competing interests

Author details

1. Tra Vinh University, Vietnam.
2. School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Thailand.
3. School of Preclinical Science, Institute of Science, Suranaree University of Technology, Thailand.

References

1. Thomassen R, Farstad W. Artificial insemination in canids: A useful tool in breeding and conservation. Theriogenology. 2009;71(1):190–9.
2. Linde-Forsberg C. Achieving canine pregnancy by using frozen or chilled extended semen. Vet Clin North Am Small Anim Pract. 1991;21(3):467–85.
3. Eilts BE. Theoretical aspects of canine semen cryopreservation. Theriogenology. 2005;64(3):692–7.
4. Santana M, Batista M, Alamo D, Lez FG, Nin’o T, Cabrera F, et al. Influence of Cool Storage before Freezing on the Quality of Frozen – Thawed Semen Samples in Dogs. Reprod Domest Anim. 2013;48:165–70.
5. Vui NV, Samorn P, Sajeera K, Pakanit K. Effects of egg yolk and soybean lecithin on sperm quality determined by computer-assisted sperm analysis and confocal laser scanning microscope in chilled canine sperm. Vet Med Sci. 2019;5(3):345–60.
6. Lamirande E de, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Reprod Fertil. 1997;2:48–54.
7. Vieira N, de M, Gôes, Kawai GKV, Assumpção MEOD, Rui BR, Angrimani D, de SR, et al. Induced sperm oxidative stress in dogs: Susceptibility against different reactive oxygen species and protective role of seminal plasma. Theriogenology. 2017;108(2018):39–45.
8. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-hafez MA, Thomas AJ, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–38.
9. Lucio CF, Regazzi FM, Silva LCG, Angrimani DSR, Nichi M, Vannucchi Cl. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs. Theriogenology. 2016;85(9):1568–75.
10. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2017;54(4):287–93.
11. Neagu VR, García BM, Rodríguez AM, Ferrusola CO, Bolaños JMG, Fernández LG, et al. Determination of glutathion peroxidase and superoxide dismutase activities in canine seminal plasma and its relation with sperm quality and lipid peroxidation post thaw. Theriogenology. 2011;75(1):10–6.

12. Angrimani DSR, Lucio CF, Veiga GAL, Silva LCG, Regazzi FM, Nichi M, et al. Sperm maturation in dogs: sperm profile and enzymatic antioxidant status in ejaculated and epididymal spermatozoa. Andrologia. 2014;46(7):814–9.

13. Treulen F, Sánchez R, Risopatrón J. Effects of Seminal Fluid Fractions on Plasma and Acrosome Membrane Integrity and Mitochondrial Membrane Potential Determined by Flow Cytometry in Chilled Canine Spermatozoa. Reprod Domest Anim. 2012;47(6):1043–8.

14. Hori T, Masuda T, Kobayashi M, Kawakami E. Role of prostatic fluid in cooled canine epididymal sperm. Reprod Domest Anim. 2017;52(4):655–60.

15. Michael A, Alexopoulos C, Pontiki E, Hadjipavlou-Litina D, Saratsis P, Boscos C. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology. 2007;68:204–12.

16. Trevisan MTS, Silva MGV, Pfundstein B, Spiegelhalder B, Owen RW. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum. J Agric Food Chem. 2006;54(12):4378–82.

21. Prabhu KS, Lobo R, Shirwaikar AA, Shirwaikar A. Ocimum gratissimum: A Review of its Chemical, Pharmacological and Ethnomedicinal Properties. Open Complement Med J. 2009;1(1):1–15.
24. Akinmoladun AC, Ibukun EO, Afor E, Obuotor EM, Farombi EO. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Sci Res Essay. 2007;2(5):163–6.

25. Ouyang X, Wei L, Pan Y, Huang S, Wang H, Begonia GB, et al. Antioxidant properties and chemical constituents of ethanolic extract and its fractions of Ocimum gratissimum. Med Chem Res. 2012;22:1124–30.

26. Huang S-J, Liu J-Y, Lo H-J, Huang H-Y, Chao P-Y, Chiu Y-W, et al. The antioxidant and cytoprotective activity of Ocimum gratissimum extracts against hydrogen peroxide-induced toxicity in human HepG2 cells. J Food Drug Anal. 2013;21(3):253–60.

27. Mahapatra SK, Roy S. Phytopharmacological approach of free radical scavenging and antioxidative potential of eugenol and Ocimum gratissimum Linn. Asian Pac J Trop Med. 2014;7(S1):391–7.

28. Motlagh MK, Sharafi M, Zhandi M, Mohammadi-Sangcheshmeh A, Shakeri M, Soleimani M, et al. Antioxidant effect of rosemary (Rosmarinus officinalis L.) extract in soybean lecithin-based semen extender following freeze-thawing process of ram sperm. Cryobiology. 2014;69(2):217–22.

29. Baghshahi H, Riasa A, Mahdavi AH, Shirazi A. Cryobiology Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology. 2014;69(3):482–7.

30. Chikhoune A, Stouvenel L, Iguer-ouada M, Hazzit M, Schmitt A, Lorès P, et al. In-vitro effects of Thymus munbyanus essential oil and thymol on human sperm motility and function. Reprod Biomed Online. 2015;31(3):411–20.

31. Matias EFF, Santos KKA, Almeida TS, Costa JGM, Coutinho HDM. Phytochemical screening and modulation of antibiotic activity by Ocimum gratissimum L. Biomed Prev Nutr. 2011;1(1):57–60.

32. Prakash B, Shukla R, Singh P, Kumar P, Kishore N, Nath R. Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and a flattoxin B1 contamination of spices. Food Res Int. 2011;44(1):385–90.

33. Aguiar JS, Sousa CPB, Araruna MKA, Silva MKN, Portelo AC, Lopes JC, et al. Antibacterial and modifying-antibiotic activities of the essential oils of Ocimum gratissimum L. and Plectranthus amboinicus L. Eur J Integr Med. 2015;7(2):151–6.

34. Visconti PE, Westbrook VA, Chertihihi O, Demarco I, Sleight S, Diekman AB. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. Reprod Immunol. 2002;53:133–50.

35. Nazzaro F, Fratianni F, Martino L, De. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals. 2013;6:1451–74.

36. Arando A, Delgado JV, Fernández-prior A, León JM, Bermúdez-oria A, Nogales S. Effect of different olive oil-derived antioxidants (hydroxytyrosol and 3, 4- dihydroxyphenylglycol) on the quality of frozen-thawed ram sperm. Cryobiology. 2019;86:33–9.

37. Shoae A, Zamiri MJ. Effect of butylated hydroxytoluene on bull spermatozoa frozen in egg yolk-citrate extender. Anim Reprod Sci. 2008;104:414–8.
38. Roca J, Gil MA, Hernandez M, Parrilla I, Vazquez JM, Martinez EA. Survival and Fertility of Boar Spermatozoa After Freeze-Thawing in Extender Supplemented With Butylated Hydroxytoluene. Andrology. 2004;25(3):397–405.

39. Buege JA, Aust SD. Microsomal Lipid Peroxidation. Methods Enzymol. 1978;52:302–10.

40. Maia S, Dimas S, Cecilia C, Rodello L, Cristina I, Gallego S. Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants. Anim Reprod Sci. 2010;122(1–2):118–23.

41. Toker MB, Alcay S, Gokce E, Ustuner B. Cryopreservation of ram semen with antioxidant supplemented soybean lecithin-based extenders and impacts on incubation resilience. Cryobiology. 2016;72(3):205–9.

42. Cassani P, Beconi MT, O’Flaherty C. Relationship between total superoxide dismutase activity with lipid peroxidation, dynamics and morphological parameters in canine semen. Anim Reprod Sci. 2005;86(1–2):163–73.

43. Kasimanickam R, Pelzer KD, Kasimanickam V, Swecker WS, Thatcher CD. Association of classical semen parameters, sperm DNA fragmentation index, lipid peroxidation and antioxidant enzymatic activity of semen in ram-lambs. Theriogenology. 2006;65(7):1407–21.

44. Kao S, Ph D, Chao H, Ph D, Chen H, Ph D. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89(5):1183–90.

45. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181(4617):1199–200.

46. Mensor LL, Menezes S, Leita GG, Reis AS, Tereza C. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phyther Res. 2001;15:127–30.

47. Tamuli MK, Watson PF. Use of a simple stating technique to distinguish acrosomal changes in the live sperm sub-population. Anim Reprod Sci. 1994;35:247–54.

48. Rijsselaere T, Van Soom A, Maes D, De Kruijf A. Effect of centrifugation on in vitro survival of fresh diluted canine spermatozoa. Theriogenology. 2002;57(6):1669–81.

49. Bouchard GF, Morris JK, Sikes JD, Youngquist RS. Effect of Storage Temperature, Cooling Rates and Two Different Semen Extender on Canine Spermatozoal Motility. Theriogenology. 1990;34(1):147–57.

50. Celeghini ECC, De Arruda RP, De Andrade AFC, Nascimento J, Raphael CF. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reprod Domest Anim. 2007;42(5):479–88.

51. Data Availability Statement. Figshare. Dataset
https://doi.org/10.6084/m9.figshare.8277263.v1
[dataset] Vui VN, Samorn P, Sajeera K, Pakanit K. Data Availability Statement. Figshare. Dataset.2019. https://doi.org/10.6084/m9.figshare.8277263.v1.
Figure 1

Canine spermatozoa stained with the association of fluorescent probes, H324, PI, FITC-PSA, and JC-1 under a confocal laser scanning microscope (600x magnification). (A) Intact plasma and acrosome membrane, and high mitochondrial membrane potential. (B) Intact plasma membrane, damaged acrosome membrane, and high mitochondrial membrane potential. (C) Damaged plasma membrane, intact acrosome membrane, and high mitochondrial membrane potential. (D) Intact plasma membrane, damaged acrosome membrane, and low mitochondrial membrane potential. (E) Damaged plasma membrane, intact acrosome membrane, and low mitochondrial membrane potential. (F) Damaged plasma and acrosome membrane, and low mitochondrial membrane potential.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- EnglishLanguageCertificateT2BMC.pdf