Brief Definitive Report

SELECTIVE USE OF THE V_\text{H}Q52 FAMILY IN FUNCTIONAL V_\text{H} TO DJ_\text{H} REARRANGEMENTS IN A B PRECURSOR CELL LINE

BY HARUO SUGIYAMA,* TOYOKI MAEDA,* YOSHIHIKO TANI,* SEIGOU MIYAKE,* YOSHIHIRO OKA,* TOSHIHISA KOMORI,* HIROYASU OGAWA,* TOSHIHIRO SOMA,* YUSAKU MINAMI,* NOBUO SAKATO,$ AND SUSUMU KISHIMOTO *

From *The Third Department of Internal Medicine, Osaka University Medical School, Fukushima-ku, Osaka 553; and $The Department of Immunochemistry, The Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka 565, Japan

Functional transcription of immunoglobulin heavy chain genes in B lymphocyte lineage cells follows two sequential rearrangement events: D to J_\text{H} joins occur first on both chromosomes, followed by V_\text{H} and DJ_\text{H} rearrangement (1-3). The second of these events involved selection of one variable region segment from among seven major families, which were determined on the basis of nucleotide sequence homology (4, 5). Seven families have been mapped on chromosome 12 of BALB/c mice in the following order: V_\text{H}36-60 (5), V_\text{H}606 (10), V_\text{H}J558 (60), V_\text{H}S107 (4), V_\text{H}Q52 (15), V_\text{H}7183 (12), V_\text{H}X24 (2), D, J_\text{H}, C_\mu. The numbers in parentheses indicate the estimated number of V_\text{H} segments within the family. There are so far some indications that the choice of V_\text{H} segment genes in V_\text{H} to DJ_\text{H} rearrangements may be not random (6-9). AT11-2 is an Abelson virus (AMuLV)-transformed B precursor cell line originating from BALB/c mice and capable of differentiating from Ig to A' cells via functional recombination of V_\text{H} segments to preexisting DJ_\text{H} complexes (1, 2). AT11-2 can further class-switch from A' to A' or A{\textsmaller{B}} cells by the deletion mechanism of intervening C_\mu genes (10). Recently we have reported that AT11-2 is able to create secondary DJ_\text{H} complexes by the replacement of the preexisting DJ_\text{H} complexes (11).

In the present study, we examine V_\text{H} gene families of the V_\text{H} segments that were used in functional V_\text{H} to DJ_\text{H} recombinations in AT11-2, and describe nonrandom use of V_\text{H} gene families and the existence of a stage at which the V_\text{H}Q52 family is preferentially used during the normal development of early pre-B cells.

Materials and Methods

Cells and Immunofluorescence. Cell line, cell cloning, and immunofluorescence were previously described (1, 10).

Southern Blot Analysis. Southern blot analysis was performed as described (1). DNAs were digested with the indicated restriction enzyme, electrophoresed in 0.5% agarose gels, blotted onto nitrocellulose filters, and hybridized to a J_\text{H} probe, to a C_\mu probe, or to a 5' probe as previously described (1, 11).

This work was supported by a grant from the Ministry of Education, Science, and Culture of Japan.
FIGURE 1. Generation of intracytoplasmic μ^+ subclones from Ig$^-$ parent clones with a DJμ/DJμ configuration on both chromosomes by functional V\rightarrowDJ rearrangements during culture. Two Ig$^-$ subclones P$_1$ (AT11-2-5-1-5-1) and P$_2$ (AT3-44-17) were cloned from Ig$^-$ AT11-2. P$_1$ was recloned and 14 Ig$^-$ subclones (P$_1-14$) were isolated. Because each Ig$^-$ subclone contained 0.1-0.2% of μ^+ cells, only one μ^+ subclone per each Ig$^-$ subclone was isolated by the cloning and a total of 14 μ^+ subclones (P$_1-1$ to P$_1-14$-1) were independently isolated. P$_2$ was also recloned and 18 Ig$^-$ subclones (P$_2-18$) were isolated. Because the Ig$^-$ subclones also contained 0.1-0.2% of μ^+ cells, only one μ^+ subclone per one Ig$^-$ subclone was isolated and a total of 18 μ^+ subclones (P$_2-1$-1 to P$_2-18$-1) were isolated.

Northern Blot Analysis. Total RNAs were prepared from cells by a guanidium/CsCl method. RNAs were electrophoresed through 1% agarose gels after denaturation with glyoxal and dimethylsulfoxide, and transferred to nitrocellulose filters. The filters were incubated at 42°C for 16 h with the probes in reaction mixture containing 50% formamide, 5X SSC, Denhardt's solution, 20 mM sodium phosphate (pH 6.5), 10% SDS, and 100 μg/ml denatured salmon sperm DNA. The filters were washed three times in 2X SSC and 0.1% SDS at room temperature and twice in 0.1X SSC and 0.1% SDS at 50°C. DNA fragments containing functional V\rightarrowDJμ rearrangements were used as the probes: V\rightarrowH$^{\gamma}$-60, a 2.5 kb Eco RI-Eco RI fragment from MOPC315; V\rightarrowHI-606, a 8.0 kb Eco RI-Eco RI fragment from J606; V\rightarrowHI-558, a 2.0 kb Bam HI-Bam HI fragment from ARS; V\rightarrowHI-558, a 6.7 kb Eco RI-Eco RI fragment from TEPC15; V\rightarrowQ9, a 2.8 kb Hind III-Hind III fragment from MOPC141; V\rightarrowHI-7185, a 3.4 kb Eco RI-Eco RI fragment from SAPC15 and a 6.7 kb Hind III-Hind III fragment from MOPC21. S9 is the 5.4 kb cloned DNA containing the functional V\rightarrowDJμ rearrangement, which was isolated from the μ^+ subclone P$_1$-7-1 (original name, AT11-2-5-1-5-1) as previously described (2).

Results

We isolated 14 Ig$^-$ subclones from the Ig$^-$ P$_1$ clone containing D$_{SP2.8}$Jγ and D$_{FL16.1}$Jγ complexes being carried by 11.0 kb and 5.4 kb Eco RI fragments, respectively, and 18 Ig$^-$ subclones from the Ig$^-$ P$_2$ clone containing D$_{FL16.1}$Jγ and D$_{FL16.1}$Jγ complex being carried by 5.4 kb and 5.0 kb Eco RI fragments, respectively (Fig. 1). P$_2$ was generated by the replacement of the preexisting D$_{SP2.8}$Jγ complex by the secondarily formed D$_{FL16.1}$Jγ complex (11). Because each Ig$^-$ subclone also contained 0.1-0.2% of intracytoplasmic μ^+ cells that were generated from in vitro functional V\rightarrowDJμ recombinations, we isolated only one μ^+ subclone per each Ig$^-$ subclone by the cloning in 0.33% soft agarose medium (see Fig. 1). In total, 32 μ^+ subclones were isolated which were generated from independent functional V\rightarrowDJμ recombinational events. All μ^+ subclones synthesized only μ chains, but not heavy chains of other isotypes nor κ or λ chains, when tested by immunofluorescence. They had κ genes in germline configuration on both chromosomes (data not shown).

The configuration of immunoglobulin heavy chain genes was examined in all μ^+ subclones by a Southern blotting procedure. DNAs were digested with Eco RI and hybridized to a Jγ probe (Fig. 2). The Ig$^-$ parent clone P$_1$ and its Ig$^-$
FIGURE 2. Analysis of heavy chain gene rearrangements of \(\mu^+ \) subclones. DNAs were digested with Eco RI and hybridized to a \(J_\mu \) probe. When a \(\mu^+ \) subclone retained or lost 5' D flanking sequences, it was determined to be VDJ*/DJ or VDJ*/VDJ*, respectively, as previously described (11). VDJ*/O means the deletion of the \(J_\mu \) gene on one chromosome. A mixture of 5' DFC, 5' Dsp and 5' DQS2 flanking sequences was used as the 5' D probe. Some \(\mu^+ \) subclones (e.g., \(P_2-3-1 \)) were determined to be VDJ*/DJ because of the retention of the fragments detected by the 5' D flanking sequence probe, although they had two rearranged bands quite different from parent clones \(P_1 \) and \(P_2 \). This might suggest secondary DJ complex formation as previously described (11).

Subclones (\(P_1-1-14 \)) revealed 11.0 and 5.4 kb Eco RI fragments, and another Ig parent clone \(P_2 \) and its Ig subclones (\(P_2-18 \)) showed 5.4 and 5.0 kb Eco RI fragments. On the other hand, all \(\mu^+ \) subclones (\(P_1-1-1 \) to \(P_1-14-1 \) and \(P_2-1-1 \) to \(P_2-18-1 \)) revealed one or two further rearranged bands different from those of the parent clones. Note that 32 \(\mu^+ \) subclones were generated from completely independent \(V_H \) to DJ\(_H \) rearrangements (see Fig. 1). Six \(\mu^+ \) subclones from \(P_1-1-1 \) to \(P_1-6-1 \) showed the same rearranged pattern.

To determine which \(V_H \) segments were used in the rearrangements, RNAs were prepared from \(\mu^+ \) subclones and analyzed by a Northern blotting procedure using probes specific for the \(V_H \) families, \(V_H36-60, V_H407, V_H558, V_H558, V_H558, V_H7183 \) (4, 5) (Fig. 3). Surprisingly, of 32 \(\mu^+ \) subclones that were generated by independent \(V_H \) to DJ\(_H \) rearrangements (see Fig. 1), 31 (\(P_1-1-1 \) to \(P_1-13-1 \), and \(P_2-1-1 \) to \(P_2-18-1 \)) used \(V_H \) segments of the \(V_H452 \) family. The remaining one \(\mu^+ \) subclone (\(P_1-1-14-1 \)) used a \(V_H \) segment of the \(V_H7183 \) family. No \(V_H \) to DJ\(_H \) rearrangements used the \(V_H36-60, V_H407, V_H558, V_H558, \) or \(V_H558 \) families. These
FIGURE 3. VH expression of the V\textsubscript{H}Q52 family in μ+ subclones. A, specificity of the probes used for Northern blotting analysis. DNA probes were electrophoresed, blotted to nitrocellulose filters and hybridized to the 0.72 kb nick-translated Hind III–Sac I DNA fragment specific for the variable region of MOPC141 prepared by the incision from the 2.8 kb Hind III–Hind III fragment of MOPC141. B, Northern blot analysis. RNAs were prepared and analyzed as described in Materials and Methods.

results suggest that VH segments of the V\textsubscript{H}Q52 family were almost exclusively used, as this B-lineage precursor line gave rise to pre-B cell progeny.

The functional V\textsubscript{H}DJ\textsubscript{H} rearrangement of μ+ P1-7-1 (original name, AT11-2-5-1-5-51-1) was cloned and named S9 as previously described (2). Because S9 shares 85, 50, and 51% V\textsubscript{H} coding region sequence homology with MOPC141 (V\textsubscript{H}Q52 family), MOPC21 (V\textsubscript{H}7183 family), and V\textsubscript{H}81X (V\textsubscript{H}7183 family [6]), respectively, S9 (V\textsubscript{H} segment of P1-7-1) is a member of the V\textsubscript{H}Q52 family. This is consistent with the results of Northern blotting analysis.

Discussion

Yancopoulos et al. reported the preferential use of VH segments of the V\textsubscript{H}7183 family in A-MuLV-transformed cell lines originated from BALB/c strain mice (6). This occurred in at least 19 (58%) out of 33 V\textsubscript{H}DJ\textsubscript{H} rearrangements examined, and the preferential use of this VH family was correlated with its proximity to
SUGIYAMA ET AL. BRIEF DEFINITIVE REPORT

the Jn locus. The reason for the differences between their results and our findings is not clear. However, we analyzed spleen cell-derived lines established by the injection of A-MuLV into neonatal BALB/c mice, whereas they examined fetal liver- and bone marrow-derived lines established by the viral infection in vitro. It may be that our B precursor clone was frozen at a stage of B cell development at which members of the VnQ52 family were preferentially or selectively used. The analysis of the Vn expression by pre-B and B hybridomas of fetal and neonatal mice indicated that the Vn repertoire of fetal B-lineage cells is largely restricted to the Vn7183 family and that subsequent recruitment of additional Vn families occurred during neonatal development (7). 78% of fetal liver-derived pre-B hybridomas used the Vn7183 family whereas no neonatal liver-derived pre-B hybridomas used the family. The determination of the Vn expression in the fetal liver (developing B cells) and adult spleen (mature B cells) also indicated that the initial pattern of preferential use of the Vn7183 family resulted in higher expression of more Jn-distal Vn families in the mature B cells of the adult with a concomitant decrease in the representation of the more Jn-proximal families (9).

Because our clone was established by the culture of the transformed spleen cells after viral injection into neonatal BALB/c mice (12), it may be derived from early pre-B cells in neonatal spleen. Therefore, it might be plausible that early pre-B cells in neonatal spleen preferentially use the VnQ52 family but not the Vn7183 family. Thus, our results strongly indicated nonrandom use of Vn gene families and the existence of a stage at which the VnQ52 family is preferentially used during the normal development of early pre-B cells. Recently, the biased use of Vn segments of the VnQ52 family in an NIH/Swiss-derived 300-19 line but not in BALB/c-derived lines was described (8). They related the differences to organization of the more 3' Vn families between the two strains. They demonstrated that in the BALB/c strain, the Vn7183 family was the most Jn proximal whereas in the NIH/Swiss strain, at least a portion of the VnQ52 family, which was preferentially used, occurred 3' to the bulk of the Vn7183 family. We have demonstrated selective use of the VnQ52 family in a BALB/c-derived clone.

Furthermore, it seems that selective use of the VnQ52 family is independent of the types of preexisting DJn complexes because a Dsp2.8-JH3 complex in the P1 clone (2) and DFL16.1-JH3 and DFL16.1-JH4 complexes in the P2 clone (11) could also join selectively to the VnQ52 family.

Summary

AT11-2, an Abelson virus-transformed cell line has DJn complexes on both chromosomes and is able to form functional variable region genes by the joins of Vn genes to the DJn complexes during culture. Therefore we examined which Vn gene family was used in functional Vn to DJn recombinations in AT11-2. Surprisingly, of 32 independent functional Vn to DJn recombinational events in AT11-2, 31 events used the Vn segments of the VnQ52 family, and the remaining one used the Vn segment of the Vn7183 family. Thus, we describe here the first B precursor cell line that almost selectively uses the VnQ52 family in functional Vn to DJn rearrangements. The selective use of the VnQ52 family in this B precursor cell line strongly indicates nonrandom use of Vn gene families, and the existence of a stage at which the VnQ52 family is preferentially used during
the normal development of early pre-B cells and has important implications for understanding the ontogeny of V \textsubscript{\mu} repertoire development. Furthermore, this cell line should prove extremely valuable in further studies of this kind.

We thank Profs. Susumu Tonegawa (Massachusetts Institute of Technology, Cambridge, MA) and Yoshikazu Kurosawa (Fujita Gakuen Health University) for providing the V \textsubscript{\mu} probes. We also thank Prof. Paul W. Kincade (Oklahoma Medical Research Foundation) for his helpful discussion and criticism.

Received for publication 4 March 1987 and in revised form 14 May 1987.

References

1. Sugiyama, H., S. Akira, H. Kikutani, S. Kishimoto, Y. Yamamura, and T. Kishimoto. 1983. Functional V region formation during in vitro culture of a murine immature B precursor cell line. *Nature (Lond.).* 303:812.

2. Yaoita, Y., N. Matsunami, C. Y. Choi, H. Sugiyama, T. Kishimoto, and T. Honjo. 1983. The D\textsubscript{J\mu} complex is an intermediate to the complete immunoglobulin heavy-chain V-region gene. *Nucleic Acids Res.* 11:7303.

3. Alt, F. W., G. D. Yancopoulous, T. K. Blackwell, C. Wood E. Thomas, M. Boss, R. Coffman, N. Rosenberg, S. Tonegawa, and D. Baltimore. 1984. Ordered rearrangement of immunoglobulin heavy chain variable region segments. *EMBO (Eur. Mol. Biol. Organ.) J.* 3:1209.

4. Brodeur, P. H., and R. Riblet. 1984. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. *Eur. J. Immunol.* 14:922.

5. Brodeur, P. H., M. A. Thompson, and R. Riblet. 1984. The content and organization of mouse Igh-V families. *UCLA Symp. Mol. Cell. Biol.* 18:445.

6. Yancopoulos, G. D., S. V. Desiderio, M. Paskind, J. F. Kearney, D. Baltimore, and F. W. Alt. 1984. Preferential utilization of the most J\textsubscript{\mu}-proximal V \textsubscript{\mu} gene segments in pre-B-cell lines. *Nature* 311:727.

7. Perlmutter, R. M., J. F. Kearney, S. P. Chang, and L. E. Hood. 1985. Developmentally controlled expression of immunoglobulin V \textsubscript{\mu} genes. *Science (Wash. DC).* 227:1597.

8. Reth, M. G., S. Jackson, and F. W. Alt. 1986. V\textsubscript{\mu}D\textsubscript{\mu} formation and D\textsubscript{\mu} replacement during pre-B differentiation: nonrandom usage of gene segments. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:2131.

9. Alt, F. W., T. K. Blackwell, R. A. DeFinho, M. G. Reth, and G. D. Yancopoulous. 1986. Regulation of genome rearrangement events during lymphocyte differentiation. *Immunol. Rev.* 89:5.

10. Sugiyama, H., T. Maeda, S. Akira, and S. Kishimoto. 1986. Class-switching from \(\mu\) to \(\gamma^3\) or \(\gamma^2\) production at pre-B cell stage. *J. Immunol.* 136:3092.

11. Maeda, T., H. Sugiyama, Y. Tani, S. Miyake, Y. Oka, H. Ogawa, T. Komori, T. Soma, and S. Kishimoto. 1987. Start of \(\mu\)-chain production by the further two-step rearrangements of immunoglobulin heavy chain genes on one chromosome from a D\textsubscript{\mu}/D\textsubscript{\mu} configuration in an Abelson virus-transformed cell line: Evidence of secondary D\textsubscript{\mu} complex formation. *J. Immunol.* 138:2305.

12. Sugiyama, H., S. Akira, N. Yoshida, S. Kishimoto, Y. Yamamura, P. Kincade, T. Honjo, and T. Kishimoto. 1982. Relationship between the rearrangement of immunoglobulin genes, the appearance of a B lymphocyte antigen, and immunoglobulin synthesis in murine pre-B cell lines. *J. Immunol.* 126:2793.