A solution to the learning dilemma for recurrent networks of spiking neurons

Guillaume Bellec1,\textdegree, Franz Scherr1,\textdegree, Anand Subramoney1, Elias Hajek1, Darjan Salaj1, Robert Legenstein1 & Wolfgang Maass1,*

December 6, 2019

1Institute of Theoretical Computer Science, Graz University of Technology, Infeldgasse 16b, Graz, Austria
\textdegree Equal contributions.
* To whom correspondence should be addressed; E-mail: maass@igi.tugraz.at.

Abstract

Recurrently connected networks of spiking neurons underlie the astounding information processing capabilities of the brain. But in spite of extensive research, it has remained open how they can learn through synaptic plasticity to carry out complex network computations. We argue that two pieces of this puzzle were provided by experimental data from neuroscience. A new mathematical insight tells us how these pieces need to be combined to enable biologically plausible online network learning through gradient descent, in particular deep reinforcement learning. This new learning method – called \textit{e-prop} – approaches the performance of \textit{BPTT} (backpropagation through time), the best known method for training recurrent neural networks in machine learning. In addition, it suggests a method for powerful on-chip learning in novel energy-efficient spike-based hardware for AI.

Introduction

Networks of neurons in the brain differ in at least two essential aspects from deep neural networks in machine learning: They are recurrently connected, forming a giant number of loops, and they communicate via asynchronously emitted stereotypical electrical pulses, called spikes, rather than bits or numbers that are produced in a synchronized manner by each layer of a feedforward deep network. Models that capture primary information processing capabilities of spiking neurons in the brain are well known, and we consider the arguably most prominent one: leaky integrate-and-fire (LIF) neurons, where spikes
that arrive from other neurons through synaptic connections are multiplied with the correspond-
ing synaptic weight, and are linearly integrated by a leaky membrane potential. The neuron fires – i.e., emits a spike – when the membrane potential reaches a firing threshold.

But it is an open problem how recurrent networks of spiking neurons (RSNNs) can learn, i.e., how their synaptic weights can be modified by local rules for synaptic plasticity so that the computational performance of the network improves. In deep learning this problem is solved for feedforward networks through gradient descent for a loss function E that measures imperfections of current network performance [1]. Gradients of E are propagated backwards through all layers of the feedforward network to each synapse through a process called backpropagation. Recurrently connected networks can compute more efficiently because each neuron can participate several times in a network computation, and they are able to solve tasks that require integration of information over time or a non-trivial timing of network outputs according to task demands. But since each synaptic weight can affect the network computation at several time points during a recurrent network computation, its impact on the loss function (see Fig. 1a) is more indirect, and learning through gradient descent becomes substantially more difficult. This learning problem is aggravated if there are slowly changing hidden variables in the neuron model, such as an adapting firing threshold of a spiking neuron, or the content of the memory cell of an LSTM (Long Short Term Memory) unit in artificial neural networks. In machine learning one had solved this problem by unrolling the recurrent network into a virtual feedforward network [1], see Fig. 1b, and applying the backpropagation algorithm to that (Fig. 1c). This learning method for recurrent neural networks is called backpropagation through time ($BPTT$) since it requires propagation of gradients backwards in time with regard to the network computation.

With a careful choice of the pseudo-derivative for handling the discontinuous dynamics of spiking neurons one can apply $BPTT$ also to RSNNs, and RSNNs were able to learn in this way for the first time to solve really demanding computational tasks (see [2], [3] for preceding results). But the dilemma is that $BPTT$ requires storing the intermediate states of all neurons during a network computation, and merging these in a subsequent offline process with gradients that are computed backwards in time (see Fig. 1c, Movie S1 and Movie S2). This makes it very unlikely that $BPTT$ is used by the brain [4].

We present a solution to this dilemma in the form of a biologically plausible method for online network learning through gradient descent: e-prop (Fig. 1d, see Movie S3). E-prop is motivated by two streams of experimental data from neuroscience:

i) Neurons in the brain maintain traces of preceding activity on the molecular level, for example in the form of calcium ions or activated CaMKII enzymes [5]. In particular, they maintain a fading memory of events where the presynaptic neuron fired before the postsynaptic neuron, which is known to induce synaptic plasticity if followed by a top-down learning signal [6, 7, 8]. Such traces are often referred to as eligibility traces.

ii) In the brain there exists an abundance of top-down signals such as dopamine, acetylcholine, and the event-related negativity (ERN), that inform local populations of
Figure 1: Schemes for RSNNs, BPTT, and e-prop. a) RSNN with network inputs x, neuron spikes z, and output targets y^*, for each time step t of the RSNN computation. Output neurons y provide a low-pass filter of a weighted sum of network spikes z. b) BPTT computes gradients in the unrolled version of the network. It has a new copy of the neurons of the RSNN for each time step t. A synaptic connection from neuron i to neuron j of the RSNN is replaced by an array of feedforward connections, one for each time step t, that goes from the copy of neuron i in the layer for time step t to a copy of neuron j in the layer for time step $t+1$. All synapses in this array have the same weight: the weight of this synaptic connection in the RSNN. c) Loss gradients of BPTT are propagated backwards in time and retrograde across synapses in an offline manner, long after the forward computation has passed a layer. d) Online learning dynamics of e-prop. Feedforward computation of eligibility traces is indicated in blue. These are combined with online learning signals according to equation 3(1).
neurons about behavioral results. Furthermore both dopamine signals [9, 10] and
ERN-related neural firing [11] have been found to be specific for different target pop-
ulations of neurons, rather than being global. We refer in our learning model to such
top-down signals as learning signals.

A re-analysis of the mathematical basis of gradient descent in recurrent neural net-
works tells us how local eligibility traces and top-down learning signals should be optim-
ally combined to enable network learning through gradient descent – without requiring
backpropagation of signals through time. The resulting new learning method, *e-prop*, turns
out to approximate the performance of *BPTT*, thereby providing a solution to the learning
dilemma for RSNNs. Essential is that *e-prop* also applies to RSNNs with more complex
neuron models, such as LSNNs [2] that contain neurons with an adaptive firing thresh-
old as further hidden variable. It had been shown in [2] that LSNNs trained with *BPTT*
achieve a performance similar to LSTM networks, the state of the art in machine learning.
We show here that this performance level can also be achieved with *e-prop*, i.e., a method
that is online and local, apart from top-down learning signals. This elucidates how the
brain could learn to recognize speech (Fig. 2), solve temporal credit assignment problems
(Fig. 3), and learn new behaviors – without any help from a teacher – just from rewards
(Fig. 4, 5).

The previously described learning dilemma for RSNNs also affects the development
and use of neuromorphic computing hardware, which aims at a drastic reduction in the
energy consumption of AI implementations. A substantial fraction of this neuromorphic
hardware, such as SpiNNaker [12] or Intel’s Loihi chip [13], implements RSNNs and aims
at on-chip training of these RSNNs. Although it does not matter here whether the learning
algorithm is biologically plausible, the excessive storage and offline processing demands of
BPTT make this option unappealing for neuromorphic hardware. Hence there also exists a
learning dilemma for RSNNs in neuromorphic hardware, which can be solved with *e-prop*.

Results

Mathematical basis for *e-prop*
Spikes are modeled as binary variables z_j^t that assume value 1 if neuron j fires at time t,
otherwise value 0. It is common in models to let t vary over small discrete time steps, e.g.
of 1 ms length. The goal of network learning is to find synaptic weights W that minimize
a given loss function E. E may depend on all or a subset of the spikes in the network.
E measures in the case of regression or classification learning the deviation of the actual
output y_k^t of each output neuron k at time t from its given target value y_k^*,t (Fig. 1a).
In reinforcement learning (RL), the goal is to optimize the behavior of an agent in order
to maximize obtained rewards. In this case, E measures deficiencies of the current agent
policy to collect rewards.

The gradient $\frac{dE}{dW_{ji}}$ for the weight W_{ji} of the synapse from neuron i to neuron j tells
us how this weight should be changed in order to reduce E. The key innovation is that
This gradient can be represented as a sum over the time steps t of the RSNN computation, where the second factor is just a local gradient that does not depend on E:

$$\frac{dE}{dW_{ji}} = \sum_t \frac{dE}{dz_t} \cdot \left[\frac{dz_t}{dW_{ji}} \right]_{\text{local}}.$$

This local gradient can be represented as a sum of products of partial derivatives concerning the hidden state of neuron j up to time t (equation (13)), which can be updated during the forward computation of the RNN by a simple recursion (equation (14)). This term $\left[\frac{dz_t}{dW_{ji}} \right]_{\text{local}}$ is not an approximation. Rather, it collects the maximal amount of information about the network gradient $\frac{dE}{dW_{ji}}$ that can be computed locally in a forward manner. Therefore it is the key-factor of e-prop. Since it reduces for simple neuron models – whose internal state is fully captured by its membrane potential – to a variation of terms that are commonly referred to as eligibility traces for synaptic plasticity [8], we also refer to e_{ji}^t as eligibility trace. But most biological neurons have additional hidden variables that change on a slower time scale, such as for example the firing threshold of a neuron with firing threshold adaptation. Furthermore it was shown in [2] that these slower processes in neurons are essential for attaining with spiking neurons similarly powerful computing capabilities as LSTM networks. Hence the form that this eligibility trace e_{ji}^t takes for adapting neurons (see equation (25)) is essential for understanding e-prop, and it is the main driver behind the resulting qualitative jump in computing capabilities of RSNNs which are attainable through biologically plausible learning. Equations (1) and (2) yield the representation

$$\frac{dE}{dW_{ji}} = \sum_t L_j^t e_{ji}^t.$$

of the loss gradient, where we refer to $L_j^t \overset{\text{def}}{=} \frac{dE}{dz_j^t}$ as the learning signal for neuron j. This equation defines a clear program for approximating the network loss gradient through local rules for synaptic plasticity: Change each weight W_{ji} at step t proportionally to $-L_j^t e_{ji}^t$, or accumulate these “tags” in a hidden variable that is translated occasionally into an actual weight change. Hence e-prop is an online learning method in a strict sense (see Fig. 1d and Movie S3). In particular, there is no need to unroll the network as for BPTT.

Since the ideal value $\frac{dE}{dz_j^t}$ of the learning signal L_j^t also captures influences which the current spike output z_j^t of neuron j may have on E via future spikes of other neurons, its precise value is in general not available at time t. We replace it by an approximation, such as $\frac{\partial E}{\partial z_j^t}$, which ignores these indirect influences. This approximation takes only currently
arising losses at the output neurons k of the RSNN into account, and routes them with neuron-specific weights B_{jk} to the network neurons j (see Fig. 2a):

$$L^t_j = \sum_k B_{jk} \left(y^k_t - y^*_{k,t} \right)$$ \hspace{1cm} (4)

Although this approximate learning signal L^t_j only captures errors that arise at the current time step t, it is combined in equation (3) with an eligibility trace e^t_{ji} that may reach far back into the past of neuron j (see Fig. 3b), thereby alleviating the need to solve the temporal credit assignment problem by propagating signals backwards in time (like in $BPTT$).

There are several strategies for choosing the weights B_{jk} for this online learning signal. In *symmetric e-prop* we set it equal to the corresponding weight W_{kj}^{out} of the synaptic connection from neuron j to output neuron k, as demanded by $\frac{\partial E}{\partial z^t_j}$. Note that this learning signal would actually implement $\frac{\partial E}{\partial z^t_j}$ exactly in the absence of recurrent connections in the network. Biologically more plausible are two variants of $e-prop$ that avoid weight sharing: If all network neurons j are connected to output neurons k, we let B_{jk} evolve in *adaptive e-prop* through a simple local plasticity rule that mirrors the plasticity rule applied to W_{kj}^{out}. In *random e-prop* the values of the weights B_{jk} are randomly chosen and remain fixed, similar to broadcast alignment for feedforward networks [14, 15].

Resulting synaptic plasticity rules (see Methods) look similar to previously proposed plasticity rules [8] for the special case of LIF neurons without slowly changing hidden variables. In particular they involve postsynaptic depolarization as one of the factors, similarly as the data-based Clopath-rule in [16], see section S6.4 in the supplement for an analysis.

Comparing the performance of e-prop and BPTT for learning speech recognition

The speech recognition task TIMIT [17] is one of the most commonly used benchmarks for temporal processing capabilities of different types of recurrent neural networks and different learning approaches [18]. It comes in two versions. Both use, as input, acoustic speech signals from sentences that are spoken by 630 speakers from 8 dialect regions of the USA (see the top of Fig. 2b for a sample segment). In the simpler version, used for example in [18], the goal is to recognize which of 61 phonemes is spoken in each 10 ms time frame ("frame-wise classification"). In the more sophisticated version from [19], which achieved an essential step toward human-level performance in speech-to-text transcription, the goal is to recognize the sequence of phonemes in the entire spoken sentence independently of their timing ("sequence transcription"). RSNNs consisting of LIF neurons do not even reach with BPTT good performance for TIMIT [2]. Hence we are considering here LSNNs, where a random subset of the neurons is a variation of the LIF model with firing rate adaptation (ALIF neurons), see Methods. The name LSNN is motivated by the fact that
Figure 2: Comparison of the performance of BPTT and e-prop for learning speech recognition (TIMIT data set). a) Network architecture for e-prop, illustrated for an LSNN consisting of LIF and ALIF neurons. b) Input and target output for the two versions of TIMIT. c) Performance of BPTT and symmetric e-prop for LSNNs consisting of 800 neurons for framewise targets and 2400 for sequence targets (random and adaptive e-prop produced similar results, see Fig. S2). To obtain the “Global learning signal” baselines, the neuron specific feedbacks are replaced with global ones.
this special case of the RSNN model can achieve through training with BPTT similar performance as an LSTM network [2].

E-prop approximates the performance of BPTT on LSNNs for both versions of TIMIT very well, as shown in Fig. 2c. Furthermore LSNNs could solve the frame-wise classification task without any neuron firing more frequently than 12 Hz (spike count taken over 32 spoken sentences), demonstrating that they operate in an energy efficient spike-coding – rather than a rate-coding – regime. For the more difficult version of TIMIT we trained as in [19] a complex LSNN consisting of a feedforward sequence of three recurrent networks. Our results show that _e-prop_ can also handle learning for such more complex network structures very well. In Fig. S3 we show for comparison also the performance of _e-prop_ and _BPTT_ for LSTM networks on the same tasks. These data show that for both versions of TIMIT the performance of _e-prop_ for LSNNs comes rather close to that of _BPTT_ for LSTM networks. In addition, they show that _e-prop_ provides also for LSTM networks a functionally powerful online learning method.

The FORCE method of [20] is a frequently considered learning method for RSNNs. However it was not argued to be biologically realistic, since the plasticity rule for each synaptic weight requires knowledge of the current values of all other synaptic weights in the RSNN. It was applied in [20] to supervised learning of several pattern generation tasks. We show in Figs. S1, S5, and Movie S4 that RSNNs can learn such tasks also with a biologically plausible learning method: _e-prop_.

E-prop performance for learning a task where temporal credit assignment is difficult

A hallmark of cognitive computations in the brain is the capability to go beyond a purely reactive mode: to integrate diverse sensory cues over time, and to wait until the right moment arrives for an action. A large number of experiments in neuroscience analyze neural coding after learning such tasks (see e.g. [21, 9]). But it had remained unknown how one can model the learning of such cognitive computations in RSNNs of the brain. In order to test whether _e-prop_ can solve this problem, we considered the same task that was studied in the experiments of [21] and [9]. There a rodent moved along a linear track in a virtual environment, where it encountered several visual cues on the left and right, see Fig. 3a and Movie S1. Later, when it arrived at a T-junction, it had to decide whether to turn left or right. It was rewarded when it turned to that side from which it had previously received the majority of visual cues. This task is not easy to learn since the subject needs to find out that it does not matter on which side the last cue was, or in which order the cues were presented. Instead, the subject has to learn to count cues separately for each side and to compare the two resulting numbers. Furthermore the cues need to be processed properly long before a reward is given. We show in Fig. S4 that LSNNs can learn this task via _e-prop_ in exactly the same way just from rewards. But since the way how _e-prop_ solves
Figure 3: **Solving a task with difficult temporal credit assignment.** a) Setup of corresponding rodent experiments of [21] and [9], see Movie S1. b) Input spikes, internal spiking activity of 10 out of 50 sample LIF neurons and 10 out of 50 sample ALIF neurons, softmax output, sample learning signals and samples of slow components of eligibility traces in the bottom row. c) Learning curves for BPTT and two e-prop versions applied to LSNNs, and BPTT applied to an RSNN without adapting neurons (red curve). d) Correlation between the randomly drawn broadcast weights B_{jk} for $k =$ left/right for learning signals in random e-prop and resulting sensitivity to “left” and “right” input components after learning. $f_{j,\text{left}}$ ($f_{j,\text{right}}$) was the resulting average firing rate of neuron j during presentation of left (right) cues after learning.
the underlying temporal credit assignment problem is easier to explain for the supervised
learning version of this task, we discuss here the case where a teacher tells the subject at
the end of each trial what would have been the right decision. This still yields a challenging
scenario for any online learning method since non-zero learning signals L_j^t arise only during
the last 150 ms of a trial (Fig. 3b). Hence all synaptic plasticity has to take place during
these last 150 ms, long after the input cues have been processed. Nevertheless, e-prop is
able to solve this learning problem, see Fig. 3c and Movie S3. It just needs a bit more time
to reach the same performance level as offline learning via BPTT (see Movie S2). Whereas
this task can not even be solved by BPTT with a regular RSNN that has no adapting
neurons (red curve in Fig. 3c), all 3 previously discussed variations of e-prop can solve it if
the RSNN contains adapting neurons. We explain in section S2.4 how this task can also be
solved by sparsely connected LSNNs: by integrating stochastic rewiring [22] into e-prop.

But how can the neurons in the LSNN learn to record and count the input cues if all
the learning signals are identically 0 until the last 150 ms of a 2000 ms long trial (5th row
of Fig. 3b)? The solution is indicated in the bottom row of Fig. 3b: The slow component
$\epsilon^t_{ji,a}$ of the eligibility traces ϵ_{ji} of adapting neurons j decays with the typical long time
constant of firing rate adaptation (see equation (24) and Movie S3), that typically lies in
the range of seconds. Since these traces stretch from the beginning of the trial into its last
phase, they enable learning of differential responses to “left” and “right” input cues that
arrived over 1000 ms ago, see Fig. 3d. Fig. 3d also provides insight into the functional role
of the broadcast weights of random e-prop: The difference of these weights determines for
each neuron j whether it learns to respond in the first phase of a trial more to cues from
the left or right. This observation suggests that neuron-specific learning signals for RSNNs
have the advantage that they can create a diversity of feature detectors for task-relevant
network inputs. Hence a suitable weighted sum of these feature detectors is later able
to cancel remaining errors at the network output, similarly as in the case of feedforward
networks [14].

Reward-based e-prop

Deep RL has significantly advanced the state of the art in machine learning and AI through
clever applications of BPTT to RL [23]. We found that one of the arguably most powerful
RL methods within the range of deep RL approaches that are not directly biologically
implausible, policy gradient in combination with actor-critic, can be implemented with
e-prop. This yields the biologically plausible and hardware friendly deep RL algorithm
reward-based e-prop. The LSNN learns here both an approximation to the value function
(the “critic”) and a stochastic policy (the “actor”). Neuron-specific learning signals are
combined in reward-based e-prop with a global signal that transmits reward prediction
errors (Fig. 4b). In contrast to the supervised case, where the learning signals L_j^t depend
on the deviation from an external target signal, the learning signals communicate here how
a stochastically chosen action deviates from the action mean that is currently proposed by
the network.

The resulting online synaptic plasticity rule (5) for deep RL is similar to equation (3),
Figure 4: **Application of e-prop to the Atari game Pong.**

a) Here the player (green paddle) has to outplay the opponent (light brown). A reward is acquired when the opponent cannot bounce back the ball (a small white square). To achieve this, the agent has to learn to hit the ball also with the edges of his paddle, which causes a less predictable trajectory.

b) The agent is realized by an LSNN. The pixels of the current video frame of the game are provided as input. During processing of the stream of video frames by the LSNN, actions are generated by the stochastic policy in an online manner. At the same time, future rewards are predicted. The current error in prediction is fed back both to the LSNN and the spiking CNN that preprocesses the frames. (caption continued on next page)
except that a fading memory filter F_γ is applied here to the term $L_{ji}^t \bar{e}_{ji}^t$, where γ is the given discount factor for future rewards and \bar{e}_{ji}^t denotes a low-pass filtered copy of the eligibility trace e_{ji}^t (see Methods). This term is multiplied in the synaptic plasticity rule with the reward prediction error $\delta^t = r^t + \gamma V_{t+1} - V_t$, where r^t is the reward received at time t. This yields an instantaneous weight change of the form:

$$\Delta W_{ji}^t = -\eta \delta^t F_\gamma (L_{ji}^t \bar{e}_{ji}^t).$$

(5)

Previous 3-factor learning rules for RL were usually of the form $\Delta W^t = \eta \delta^t \bar{e}_{ji}^t$ [24, 8]. Hence they estimated gradients of the policy just by correlating the output of network neurons with the reward prediction error. The learning power of this approach is known to be quite limited due to high noise in the resulting gradient estimates. In contrast, in the plasticity rule (5) for reward-based e-prop the eligibility traces are first combined with a neuron specific feedback L_j^t, before they are multiplied with the reward prediction error δ^t. We show in Methods analytically that this yields estimates of policy- and value gradients similarly as in deep RL with BPTT. Furthermore, in contrast to previously proposed 3-factor learning rules, this rule (5) is also applicable to LSNNs.

We tested reward-based e-prop on a classical benchmark task [23] for learning intelligent behavior from rewards: Winning Atari video games provided by the Arcade Learning Environment [25]. To win such game, the agent needs to learn to extract salient information from the pixels of the game screen, and to infer the value of specific actions, even if rewards are obtained in a distant future. In fact, learning to win Atari games is a serious challenge for reinforcement learning even in machine learning [23]. Besides artificial neural networks and BPTT, previous solutions also required experience replay (with a perfect memory of many frames and action sequences that occurred much earlier) or an asynchronous training of numerous parallel agents sharing synaptic weight updates. We show here that also an LSNN can learn via e-prop to win Atari games, through online learning of a single agent. This becomes possible with a single agent and without episode replay if the agent uses a schedule of increasing episode lengths—with a learning rate that is inversely related to that length. Using this scheme, an agent can experience diverse and uncorrelated short episodes in the first phase of learning, producing useful skills. Subsequently, the agent can fine-tune its policy using longer episodes.

First, we considered the well-known Atari game Pong (Fig. 4a). Here, the agent has to learn to hit a ball in a clever way using up and down movements of his paddle. A reward
Figure 5: Application of e-prop to learning to win the Atari game Fishing Derby.
a) Here the player has to compete against an opponent, and try to catch more fish from the sea.
b) Once a fish has bit, the agent has to avoid that the fish gets touched by a shark.
c) Sample trial of the trained network. From top to bottom: probabilities of stochastic actions, prediction of future rewards, learning dynamics of a random synapse (arbitrary units), spiking activity of 20 out of 180 sample LIF neurons and 20 out of 120 sample ALIF neurons. d) Learning curves of an LSNN trained with reward-based e-prop. Episode return on the y-axis is the sum of collected rewards during an episode. The result is averaged over 5 different seeds. Comparison results taken from [23] like in Fig. 4d.
is obtained if the opponent cannot catch the ball. We trained an agent using reward-based e-prop for this task, and show a sample trial in Fig. 4c and Movie S5. In contrast to common deep RL solutions, the agent learns here in a strict online manner, receiving at any time just the current frame of the game screen. In Panel d of Fig. 4 we demonstrate that also this biologically realistic learning approach leads to a competitive score.

If one does not insist on an online setting where the agent receives just the current frame of the video screen but the last 4 frames, winning strategies for about half of the Atari games can already be learnt by feedforward neural networks (see table S3 of [23]). However it was shown in [23] that LSTM networks achieve with the A3C method a higher score than feedforward networks (with batch processing of 4 successive frames) for the game Pong. For other Atari games, such as Fishing Derby (Fig. 5a), it was even shown in [23] that deep RL applied to LSTM networks achieves a substantially higher score than any deep RL method for feedforward networks which was considered there. Hence, in order to test the power of online reward-based e-prop also for those Atari games that require enhanced temporal processing, we tested it on the Fishing Derby game. In this game, the agent has to catch as many fish as possible while avoiding that the shark touches the fish with any part of its body, and that the opponent catches the fish first. We show in Fig. 5c that online reward-based e-prop applied to an LSNN does in fact reach the same performance as reference offline algorithms applied to LSTM networks. We show a random trial after learning in Fig. 5d, where we can identify two different learnt behaviors: 1) evading the shark, 2) collecting fish. The agent has learnt to switch between these two behaviors as required by the situation.

In general, we conjecture that variants of reward-based e-prop will be able to solve most deep RL tasks that can be solved by online actor-critic methods in machine learning.

Discussion

We propose that in order to understand the computational function and neural coding of neural networks in the brain, one needs to understand the organization of the plasticity mechanisms that install and maintain these. So far BPTT was the only candidate for that, since no other learning method provided sufficiently powerful computational function to RSNN models. But since BPTT is not viewed to be biologically realistic [4], it does not help us to solve this problem. E-prop offers a solution to this dilemma, since it does not require biologically unrealistic mechanisms, but still enables RSNNs to learn difficult computational tasks, in fact almost as well as BPTT. Furthermore it enables RSNNs to solve these tasks in an energy efficient sparse firing regime, rather than resorting to rate coding.

E-prop relies on two types of signals that are abundantly available in the brain, but whose precise role for learning have not yet been understood: eligibility traces and learning signals. Since e-prop is based on a transparent mathematical principle (see equation (3)), it provides a normative model for both types of signals, as well as for synaptic plasticity rules. Interestingly, the resulting learning model suggests that a characteristic aspect of
many biological neurons – the presence of slowly changing hidden variables – provides a possible solution to the problem how a RSNN can learn without error signals that propagate backwards in time: Slowly changing hidden variables of neurons cause eligibility traces that propagate forward over longer time spans, and are therefore able to coincide with later arising instantaneous error signals (see Fig. 3b).

The theory of e-prop makes a concrete experimentally testable prediction: that the time constant of the eligibility trace for a synapse is correlated with the time constant for the history-dependence of the firing activity of the postsynaptic neuron. It also suggests that the experimentally found diverse time constants of the firing activity of populations of neurons in different brain areas [26] are correlated with their capability to handle corresponding ranges of delays in temporal credit assignment for learning.

Finally, e-prop theory provides a hypothesis for the functional role of the experimentally found diversity of dopamine signals to different populations of neurons [9]. Whereas previous theories of reward-based learning required that the same learning signal is sent to all neurons, the basic equation (1) for e-prop postulates that ideal top-down learning signals to a population of neurons depend on its impact on the network performance (loss function), and should therefore be target specific (see Fig. 2c and section S6.2). In fact, the learning-to-learn result for e-prop in [27] suggests that prior knowledge about the possible range of learning tasks for a brain area could optimize top-down learning signals even further on an evolutionary time scale, thereby enabling for example learning from few or even a single example.

Several methods for approximating stochastic gradient descent in feedforward networks of spiking neurons have been proposed, see e.g. [28, 29, 30, 31, 32]. These employ – like e-prop – a pseudo-gradient to overcome the non-differentiability of a spiking neuron, as proposed previously in [33, 34]. [28, 30, 31] arrive at a synaptic plasticity rule for feedforward networks that consists – like e-prop – of the product of a learning signal and a derivative (eligibility trace) that describes the dependence of a spike of a neuron j on the weight of an afferent synapse W_{ji}. But in a recurrent network the spike output of j depends on W_{ji} also indirectly, via loops in the network that allow that a spike of neuron j contributes to the firing of other neurons, which in turn affect firing of the presynaptic neuron i. Hence the corresponding eligibility trace can no longer be locally computed if one transfers these methods for feedforward networks to recurrently connected networks. Therefore [28] suggests the need to investigate extensions of their approach to RSNNs.

Previous work on the design of online gradient descent learning algorithms for RNNs was based on real-time recurrent learning (RTRL) [35]. RTRL has rarely been used since its computational complexity per time-step is $O(n^4)$, if n is the number of neurons. But interesting approximations to RTRL have subsequently been proposed: some stochastic approximations [36] which are $O(n^3)$ or only applicable for small networks [37], and also recently two deterministic $O(n^2)$ approximations [38, 39]. The latter were in fact written at the same time as the first publication of e-prop [27]. A structural difference of [38] is that it requires that learning signals are transmitted between the neurons in the RNN, with separately learnt weights. [39] derived for rate based neurons a learning rule similar to random e-prop. But this work did not address other forms of learning than supervised
regression, such as RL, nor learning in networks of spiking neurons, or in more powerful
types of RNNs such as LSTM networks or LSNNs.

E-prop also has complexity $O(n^2)$, in fact $O(S)$ if S is the number of synaptic connec-
tions. This bound is optimal since this is the complexity of just simulating the RNN. The
key point of *e-prop* is that the general form (13) of its eligibility trace collects all contri-
butions to the loss gradient that can be locally computed in a feedforward manner. This
general form enables applications to spiking neurons with slowly varying hidden variables,
such as neurons with firing rate adaptation, which are essential ingredients of RSNNs to
reach the computational power of LSTM networks [2]. It also enables the combination of
these rigorously derived eligibility traces with – semantically identical but algorithmically
very different – eligibility traces from RL for *reward-based e-prop* (equation (5)), thereby
bringing the power of deep RL to RSNNs. As a result, we were able to show in Fig. 2 -
5 that RSNNs can learn with the biologically plausible rules for synaptic plasticity that
arise from the *e-prop* theory to solve tasks such as speech recognition, integrating evidence
over time and waiting for the right moment to act, and winning Atari games. These are
tasks that are fundamental for modern learning-based AI, but have so far not been solved
with RSNNs. Hence *e-prop* provides a new perspective of the major open question how
intelligent behavior can be learnt and controlled by neural networks of the brain.

Apart from obvious consequences of *e-prop* for research in neuroscience and cognitive
science, *e-prop* also provides an interesting new tool for approaches in machine learning
where *BPTT* is replaced by approximations in order to improve computational efficiency.
We have already shown in Fig. S3 that *e-prop* provides a powerful online learning method
for LSTM networks. Furthermore, the combination of eligibility traces from *e-prop* with
synthetic gradients from [40] even improves performance of LSTM networks for difficult
machine learning problems such as the copy-repeat task and the Penn Treebank word
prediction task [27].

Finally, *e-prop* suggests a promising new approach for realizing powerful on-chip learn-
ing of RSNNs on neuromorphic chips. Whereas *BPTT* is not within the reach of current
neuromorphic hardware, an implementation of *e-prop* appears to offer no serious hurdle.
Our results show that an implementation of *e-prop* will provide a qualitative jump in
on-chip learning capabilities of neuromorphic hardware.

Methods

Table of Contents:

- Network models
- Conventions
- Mathematical basis for *e-prop*
- Eligibility traces
Network models

To exhibit the generality of the e-prop approach, we define the dynamics of recurrent neural networks using a general formalism that is applicable to many recurrent neural network models, not only to RSNNs and LSNNs. Also non-spiking models such as LSTM networks fit under this formalism (see Section S4.3 in the Supplement). The network dynamics is summarized by the computational graph in Fig. 6. It uses the function M to define the update of the hidden state of a neuron j: $h_j^t = M(h_j^{t-1}, z_t^{t-1}, x_t, W_j)$, where W_j gathers the weights of synapses arriving at neuron j, and f to define the update of the observable state of a neuron j: $z_j^t = f(h_j^t, z_t^{t-1}, x_t, W_j)$ (f simplifies to $z_j^t = f(h_j^t)$ for LIF and ALIF neurons).

LIF neurons. Each LIF neuron has a one dimensional internal state – or hidden variable h_j^t that consists only of the membrane potential v_j^t. The observable state $z_j^t \in \{0, 1\}$ is binary, indicating a spike ($z_j^t = 1$) or no spike ($z_j^t = 0$) at time t. The dynamics of the LIF model is defined by the equations:

\[
\begin{align*}
v_j^{t+1} & = \alpha v_j^t + \sum_{i \neq j} W_{ji}^{\text{rec}} z_i^t + \sum_i W_{ji}^{\text{in}} x_i^{t+1} - z_j^t v_{\text{th}} \\
z_j^t & = H(v_j^t - v_{\text{th}}).
\end{align*}
\]

L_{rec} (W_{ji}^{in}) is the synaptic weight from network (input) neuron i to neuron j. The decay factor α in (6) is given by $e^{-\delta t/\tau_m}$, where δt is the discrete time step size (1 ms in our simulations) and τ_m (typically 20 ms) is the membrane time constant. H denotes the Heaviside step function.

Due to the term $-z_j^t v_{\text{th}}$ in equation (6), the neurons membrane potential is reduced by a constant value after an output spike, which relates our model to the spike response model [41]. To introduce a simple model of neuronal refractoriness, we further assume that z_j^t is fixed to 0 after each spike of neuron j for a short refractory period of 2 to 5 ms depending on the simulation.

LSNNs. LSNNs are recurrently connected networks that consist of LIF neurons and of adaptive LIF (ALIF) neurons. ALIF neurons j have a second hidden variable a_j^t, which denotes the variable component of its firing threshold. As a result, their internal state is a 2 dimensional vector $h_j^t \overset{\text{def}}{=} [v_j^t, a_j^t]$. Their threshold potential A_j^t increases with every
output spike and decreases exponentially back to the baseline threshold v_{th}. This can be described by

$$A^t_j = v_{th} + \beta a^t_j,$$

$$z^t_j = H(v^t_j - A^t_j),$$

with a threshold adaptation according to

$$a^{t+1}_j = \rho a^t_j + z^t_j,$$

where the decay factor ρ is given by $e^{-\delta t/\tau_a}$, and τ_a is the adaptation time constant that is typically chosen to be in the range of the time span of the length of the working memory that is relevant for a given task. This is a very simple model for a neuron with spike frequency adaptation [2]. We refer to [41, 42, 43] for experimental data and other neuron models. We refer to a recurrent network of spiking neurons (RSNN) as LSNN if some of its neurons are adaptive.

In relation to the more general formalism represented in the computational graph in Fig. 6, equations (6) and (10) define $M(h^t_{j-1}, z^t_{j-1}, x^t, W_j)$, and equations (7) and (9) define $f(h^t_j)$.

Gradient descent for RSNNs. Gradient descent is problematic for spiking neurons because of the step function H in equation (7). We overcome this issue as in [44, 2]:

The non-existing derivative $\frac{\partial z^t_j}{\partial v^t_j}$ is replaced in simulations by a simple nonlinear function of the membrane potential that is called the pseudo-derivative. Outside of the refractory period, we choose a pseudo-derivative of the form

$$\psi^t_j = \frac{1}{v_{th} \gamma_{pd}} \max \left(0, 1 - \left| \frac{v^t_j - A^t_j}{v_{th}} \right| \right)$$

where $\gamma_{pd} = 0.3$. During the refractory period the pseudo derivative is set to 0.

Network output and loss functions. We assume that network outputs y^t_k are real-valued and produced by leaky output neurons (readouts) k, which are not recurrently connected:

$$y^t_k = \kappa y^{t-1}_k + \sum_j W_{kj}^\text{out} z^t_j + b^\text{out}_k,$$

where $\kappa \in [0, 1]$ defines the leak and b^out_k denotes the output bias. The leak factor κ is given for spiking neurons by $e^{-\delta t/\tau_{out}}$, where τ_{out} is the membrane time constant. Note that for non-spiking neural networks (such as for LSTM networks), temporal smoothing of the network observable state is not necessary. In this case, one can use $\kappa = 0$.

The loss function $E(z^1, \ldots, z^T)$ quantifies the network performance. We assume that it depends only on the observable states z^1, \ldots, z^T of the network neurons. For instance, for a regression problem we define E as the mean square error $E = \frac{1}{2} \sum_{t,k} (y^t_k - y^*_{k,t})^2$ between the network outputs y^t_k and target values $y^*_{k,t}$. For classification or RL tasks the loss function E has to be re-defined accordingly.
Figure 6: **Computational graph and gradient propagations**

a) Assumed mathematical dependencies between hidden neuron states h^t_j, neuron outputs z^t, network inputs x^t, and the loss function E through the mathematical functions $E(\cdot)$, $M(\cdot)$, $f(\cdot)$ are represented by coloured arrows.

b-c) The flow of computation for the two components e^t and L^t that merge into the loss gradients of equation (3) can be represented in similar graphs.

b) Following equation (14), the flow of the computation of the eligibility traces e^t_{ji} is going forward in time.

c) Instead the ideal learning signals $L^t_j = \frac{dE}{dz^t_j}$ require to propagate gradients backward in time. Hence while e^t_{ji} is computed exactly, L^t_j is approximated in e-prop applications to yield an online learning algorithm.

19
Conventions

Notation for derivatives. We distinguish the total derivative $\frac{dE}{dz_t}(z^1, \ldots, z^T)$, which takes into account how E depends on z^t also indirectly through influence of z^t on the other variables z^{t+1}, \ldots, z^T, and the partial derivative $\frac{\partial E}{\partial z_t}(z^1, \ldots, z^T)$ which quantifies only the direct dependence of E on z^t.

Analogously for the hidden state $h_t^j = M(h_{j-1}^t, z_{t-1}^j, x_t^j, W_{ji})$ the partial derivative $\frac{\partial M}{\partial h_{ji}^j}$ denotes the partial derivative of M with respect to h_{j-1}^t. It only quantifies the direct influence of h_{j-1}^t on h_{ji}^j and it does not take into account how h_{j-1}^t indirectly influences h_{ji}^j via the observable states z_{t-1}^j. To improve readability we also use the following abbreviations: $\frac{\partial h_{ji}^t}{\partial h_{ji}^j} \equiv \frac{\partial M}{\partial h_{ji}^j}(h_{j-1}^t, z_{t-1}^j, x_t^j, W_{ji})$, $\frac{\partial h_{ji}^t}{\partial W_{ji}} \equiv \frac{\partial M}{\partial W_{ji}}(h_{j-1}^t, z_{t-1}^j, x_t^j, W_{ji})$, and $\frac{\partial z_{ji}^t}{\partial h_{ji}^j} \equiv \frac{\partial f}{\partial h_{ji}^j}(h_{ji}^j, z_{t-1}^j, x_t^j, W_{ji})$.

Notation for temporal filters. For ease of notation we use the operator F_α to denote the low-pass filter such that, for any time series x_t:

$$F_\alpha(x^t) = \alpha F_\alpha(x^{t-1}) + x^t,$$

and $F_\alpha(x^0) = x^0$. In the specific case of the time series z_j^t and e_{ji}^t, we simplify notation further and write \bar{z}_j^t and \bar{e}_{ji}^t for $F_\alpha(z_j^t)$ and $F_\kappa(e_{ji}^t)$.

Mathematical basis for e-prop

We provide here the proof of the fundamental equation (1) for e-prop

$$\frac{dE}{dW_{ji}} = \sum_t \frac{dE}{dz_{ji}^t} \left[\frac{dz_{ji}^t}{dW_{ji}} \right]_{\text{local}},$$

with the new eligibility trace

$$e_{ji}^t \equiv \left[\frac{dz_{ji}^t}{dW_{ji}} \right]_{\text{local}} = \frac{\partial z_{ji}^t}{\partial h_{ji}^j} \sum_{t' \leq t} \frac{\partial h_{ji}^{t'}}{\partial h_{ji}^{t-1}} \cdots \frac{\partial h_{ji}^{t+1}}{\partial h_{ji}^t} \cdot \frac{\partial h_{ji}^t}{\partial W_{ji}} \equiv e_{ji}^t.$$ \hspace{1cm} (13)

For spiking neurons j we replace the first factor $\frac{\partial z_{ji}^t}{\partial h_{ji}^j}$ of e_{ji}^t by the pseudo-derivative, see [2, 3, 44]. The second factor e_{ji}^t, which we call eligibility vector, obviously satisfies the recursive equation

$$e_{ji}^t = \frac{\partial h_{ji}^t}{\partial h_{ji}^j} \cdot e_{ji}^{t-1} + \frac{\partial h_{ji}^t}{\partial W_{ji}},$$

(14)
where \(\cdot \) denotes the dot product. This provides the rule for the online computation of \(e^t_{ji} \), and hence of \(e^t_{ji} = \frac{\partial z^t_{ji}}{\partial h^t_{ji}} \cdot e^t_{ji} \).

We start from a classical factorization of the loss gradients in recurrent neural networks that arises for instance in equation (12) of [45] to describe BPTT. This classical factorization can be justified by unrolling an RNN into a large feedforward network where each layer \((l)\) represents one time step. In a feedforward network the loss gradients with respect to the weights \(W(l)_{ji} \) of layer \(l \) are given by \(\frac{dE}{dW(l)_{ji}} = \frac{dE}{dh(l)_{j}} \cdot \frac{\partial h(l)_{j}}{\partial W(l)_{ji}} \). But as the weights are shared across the layers when representing a recurrent network, the summation of these gradients over the layers \(l \) of the unrolled RNN yields this classical factorization of the loss gradients:

\[
\frac{dE}{dW_{ji}} = \sum_t dE \frac{\partial h^t_{j}}{\partial h^t_{ji}} \cdot \frac{\partial h^t_{ji}}{\partial W_{ji}}. \tag{15}
\]

Note that the first factor \(\frac{dE}{dh^t_{j}} \) in these products also needs to take into account how the internal state \(h^t_{j} \) of neuron \(j \) evolves during subsequent time steps, and whether it influences firing of \(j \) at later time steps. This is especially relevant for ALIF neurons and other biologically realistic neuron models with slowly changing internal states. Note that this first factor of (15) is replaced in the \(e\)-prop equation (13) by the derivative \(\frac{dE}{dz^t_{j}} \) of \(E \) with regard to the observable variable \(z^t_{j} \). There the evolution of the internal state of neuron \(j \) is pushed into the second factor, the eligibility trace \(e_{ji} \), which collects in \(e\)-prop all online computable factors of the loss gradient that just involve neurons \(j \) and \(i \).

Now we show that one can re-factorize the expression (15) and prove that the loss gradients can also be computed using the new factorization (13) that underlies \(e\)-prop. In the steps of the subsequent proof until equation (19), we decompose the term \(\frac{dE}{dh^t_{ji}} \) into a series of learning signals \(L^t_{j} = \frac{dE}{dz^t_{j}} \) and local factors \(\frac{\partial h^{t+1}_{ji}}{\partial h^t_{ji}} \) for \(t \geq t' \). Those local factors will later be used to transform the partial derivative \(\frac{\partial h^t_{ji}}{\partial W_{ji}} \) from equation (15) into the eligibility vector \(e^t_{ji} \) that integrates the whole history of the synapse up to time \(t \), not just a single time step. To do so, we express \(\frac{dE}{dh^t_{ji}} \) recursively as a function of the same derivative at the next time step \(\frac{dE}{dh^{t+1}_{ji}} \) by applying the chain rule at the node \(h^t_{j} \) for \(t = t' \) of the computational graph shown in Fig. 6c:

\[
\frac{dE}{dh^t_{j}} = \frac{dE}{dz^t_{j}} \frac{\partial z^t_{j}}{\partial h^t_{j}} + \frac{dE}{dh^{t+1}_{j}} \frac{\partial h^{t+1}_{j}}{\partial h^t_{j}} = L^t_{j} \frac{\partial z^t_{j}}{\partial h^t_{j}} + \frac{dE}{dh^{t+1}_{j}} \frac{\partial h^{t+1}_{j}}{\partial h^t_{j}}, \tag{16}
\]

where we defined the learning signal \(L^t_{j} \) as \(\frac{dE}{dz^t_{j}} \). The resulting recursive expansion ends at the last time step \(T \) of the computation of the RNN, i.e., \(\frac{dE}{dh^T_{ji}} = 0 \). If one repeatedly sub-
stitutes the recursive formula (17) into the classical factorization (15) of the loss gradients, one gets:

$$\frac{dE}{dW_{ji}} = \sum_{t'} \left(L_{ji} \frac{\partial z_{ji}^{t'}}{\partial h_{ji}^{t'}} + \frac{dE}{dh_{ji}^{t'+1}} \right) \cdot \frac{\partial h_{ji}^{t'}}{\partial W_{ji}} + \sum_{t'} \left(L_{ji} \frac{\partial z_{ji}^{t'}}{\partial h_{ji}^{t'}} + (L_{ji}^{t'+1} \frac{\partial z_{ji}^{t'+1}}{\partial h_{ji}^{t'+1}} + \cdots) \frac{\partial h_{ji}^{t'+1}}{\partial h_{ji}^{t'}} \right) \cdot \frac{\partial h_{ji}^{t'}}{\partial W_{ji}}. \quad (18)$$

The following equation is the main equation for understanding the transformation from BPTT into \textit{e-prop}. The key idea is to collect all terms \(\frac{\partial h_{ji}^{t'+1}}{\partial h_{ji}^{t'}}\) which are multiplied with the learning signal \(L_{ji}^{t'}\) at a given time \(t\). These are only terms that concern events in the computation of neuron \(j\) up to time \(t\), and they do not depend on other future losses or variable values. To this end, we write the term in parentheses in equation (19) into a second sum indexed by \(t\) and exchange the summation indices to pull out the learning signal \(L_{ji}^{t'}\). This expresses the loss gradient of \(E\) as a sum of learning signals \(L_{ji}^{t'}\) multiplied by some factor indexed by \(ji\), which we define as the eligibility trace \(e_{ji}^{t'} \in \mathbb{R}\). The main factor of it is the eligibility vector \(\epsilon_{ji}^{t'} \in \mathbb{R}^{d}\), which has the same dimension as the hidden state \(h_{ji}^{t'}\):

$$\frac{dE}{dW_{ji}} = \sum_{t'} \sum_{t \geq t'} L_{ji} \frac{\partial z_{ji}^{t'}}{\partial h_{ji}^{t'}} \cdot \frac{\partial h_{ji}^{t'+1}}{\partial h_{ji}^{t'}} \cdot \frac{\partial h_{ji}^{t'}}{\partial W_{ji}} + \sum_{t} L_{ji}^{t} \frac{\partial z_{ji}^{t}}{\partial h_{ji}^{t}} \sum_{t' \leq t} \frac{\partial h_{ji}^{t}}{\partial h_{ji}^{t'}} \cdot \frac{\partial h_{ji}^{t'}}{\partial W_{ji}}. \quad (20)$$

This completes the proof of equations (1), (3), (13).

Derivation of eligibility traces for concrete neuron models

The eligibility traces for LSTMs are derived in the supplementary materials. Below we provide the derivation of eligibility traces for spiking neurons.

Eligibility traces for LIF neurons. We compute the eligibility trace of a synapse of a LIF neuron without adaptive threshold (equation (6)). Here the hidden state \(h_{ji}^{t}\) of a neuron consists just of the membrane potential \(v_{ji}^{t}\) and we have \(\frac{\partial h_{ji}^{t+1}}{\partial h_{ji}^{t}} = \frac{\partial v_{ji}^{t+1}}{\partial v_{ji}^{t}} = \alpha\) and \(\frac{\partial v_{ji}^{t}}{\partial W_{ji}} = z_{ji}^{t-1}\) (for a derivation of the eligibility traces taking the reset into account we refer to section S1.2). Using these derivatives and equation (14), one obtains that the eligibility vector is the low-pass filtered presynaptic spike-train,

$$e_{ji}^{t+1} = F_{\alpha}(z_{ji}^{t}) \overset{\text{def}}{=} z_{ji}^{t}, \quad (22)$$
and following equation (13), the eligibility trace is:

\[e_{ji}^{t+1} = \psi_j^{t+1} z_i^t. \]

(23)

For all neurons \(j \) the derivations in the next sections also hold for synaptic connections from input neurons \(i \), but one needs to replace the network spikes \(z_i^{t-1} \) by the input spikes \(x_i^t \) (the time index switches from \(t - 1 \) to \(t \) because the hidden state \(h_j^i = M(h_j^{i-1}, z^{i-1}, x_i, W_j) \) is defined as a function of the input at time \(t \) but the preceding recurrent activity). For simplicity we have focused on the case where transmission delays between neurons in the RSNN are just 1 ms. If one uses more realistic length of delays \(d \), this \(-d \) appears in equations (23)–(25) instead of \(-1\) as the most relevant time point for presynaptic firing (see Section S1.3). This moves resulting synaptic plasticity rules closer to experimentally observed forms of STDP.

Eligibility traces for ALIF neurons. The hidden state of an ALIF neuron is a two dimensional vector \(h_j^i = [v_j^i, a_j^i] \). Hence a two dimensional eligibility vector \(e_{ji}^{t} \) is associated with the synapse from neuron \(i \) to neuron \(j \), and the matrix \(\frac{\partial h_j^{i+1}}{\partial h_j^i} \) is a \(2 \times 2 \) matrix. The derivatives \(\frac{\partial a_j^{i+1}}{\partial a_j^i} \) and \(\frac{\partial a_j^{i+1}}{\partial v_j^i} \) capture the dynamics of the adaptive threshold. Hence to derive the computation of eligibility traces we substitute the spike \(z_j \) in equation (10) by its definition given in equation (9). With this convention one finds that the diagonal of the matrix \(\frac{\partial h_j^{i+1}}{\partial h_j^i} \) is formed by the terms \(\frac{\partial a_j^{i+1}}{\partial a_j^i} = \alpha \) and \(\frac{\partial a_j^{i+1}}{\partial v_j^i} = \rho - \psi_j^t \beta \). Above and below the diagonal, one finds respectively \(\frac{\partial a_j^{i+1}}{\partial v_j^i} = 0, \frac{\partial a_j^{i+1}}{\partial a_j^i} = \psi_j^t \). Seeing that \(\frac{\partial h_j^i}{\partial W_{ji}} = \left[\frac{\partial v_j^i}{\partial W_{ji}}, \frac{\partial a_j^i}{\partial W_{ji}} \right] = [z_i^{t-1}, 0] \), one can finally compute the eligibility traces using equation (13). The component of the eligibility vector associated with the membrane potential remains the same as in the LIF case and only depends on the presynaptic neuron: \(e_{ji,v}^{t} = z_i^{t-1} \).

For the component associated with the adaptive threshold we find the following recursive update:

\[e_{ji,a}^{t+1} = \psi_j^t z_i^{t-1} + (\rho - \psi_j^t \beta) e_{ji,a}^t, \]

(24)

and this results in an eligibility trace of the form:

\[e_{ji}^t = \psi_j^t \left(z_i^{t-1} - \beta e_{ji,a}^t \right). \]

(25)

Recall that the constant \(\rho = \exp(-\frac{\delta t}{\tau_a}) \) arises from the adaptation time constant \(\tau_a \), which typically lies in the range of hundreds of milliseconds to a few seconds in our experiments, yielding values of \(\rho \) between 0.995 and 0.9995. The constant \(\beta \) is typically of the order of 0.07 in our experiments.

To provide a more interpretable form of eligibility trace that fits into the standard form of local terms considered in 3-factor learning rules [8], one may drop the term \(-\psi_j^t \beta \) in
equation (24). This approximation \(\tilde{\epsilon}_{ji,a}^{t+1} \) of equation (24) becomes an exponential trace of the post-pre pairings accumulated within a time window as large as the adaptation time constant:

\[
\tilde{\epsilon}_{ji,a}^{t+1} = \mathcal{F}_\rho (\psi_j^t z_i^{t-1}) .
\]

(26)

The eligibility traces are computed with equation (24) in most experiments, but the performances obtained with symmetric e-prop and this simplification were indistinguishable in the task where temporal credit assignment is difficult of Fig. 3.

Synaptic plasticity rules resulting from e-prop

An exact computation of the ideal learning signal \(\frac{\partial E}{\partial z_j^t} \) in equation (1) requires to back-propagate gradients through time (see Fig. 6c). For online e-prop we replace it with the partial derivative \(\frac{\partial E}{\partial z_j^t} \), which can be computed online. Implementing the weight updates with gradient descent and learning rate \(\eta \), all the following plasticity rules are derived from the formula

\[
\Delta W_{ji}^{rec} = -\eta \sum_t \frac{\partial E}{\partial z_j^t} e_{ji}^t .
\]

(27)

Note that in the absence of the superscript \(t \), \(\Delta W_{ji} \) denotes the cumulated weight change over one trial or batch of consecutive trials but not the instantaneous weight update. This can be implemented online by accumulating weight updates in a hidden synaptic variable. Note also that the weight updates derived in the following for the recurrent weights \(W_{ji}^{rec} \) also apply to the inputs weights \(W_{ji}^{in} \). For the output weights and biases the derivation does not require the theory of e-prop, and the weight updates can be found in the Section S3.1.

Case of regression tasks. In the case of a regression problem with targets \(y_k^{*t} \) and outputs \(y_k^t \) defined in equation (11), we define the loss function \(E = \frac{1}{2} \sum_{t,k} (y_k^t - y_k^{*t})^2 \). This results in a partial derivative of the form \(\frac{\partial E}{\partial z_j^t} = \sum_k W_{kj}^{out} \sum_{t',\geq t} (y_{k'}^t - y_k^{*t'}) \kappa_{t'-t} \). This seemingly provides an obstacle for online learning, because the partial derivative is a weighted sum over future errors. But this problem can be resolved since one can interchange the two summation indices in the expression for the weight updates (see section S3.1). In this way the sum over future events transforms into a low-pass filtering of the eligibility traces \(\bar{\epsilon}_{ji}^t = \mathcal{F}_\kappa (e_{ji}^t) \), and the resulting weight update can be written as

\[
\Delta W_{ji}^{rec} = -\eta \sum_t (\sum_k B_{jk}^t (y_k^t - y_k^{*t})) \bar{\epsilon}_{ji}^t .
\]

(28)
Case of classification tasks. We assume that K target categories are provided in the form of a one-hot encoded vector π^t with K dimensions. We define the probability for class k predicted by the network as $\pi_k^t = \text{softmax}_k(y_1^t, \ldots, y_K^t) = \exp(y_k^t)/\sum_k \exp(y_k^t)$, and the loss function for classification tasks as the cross-entropy error $E = -\sum_{t,k} \pi_k^t \log \pi_k^t$.

The plasticity rule resulting from e-prop reads (see derivation in Section S3.1):

$$\Delta W_{ji} = -\eta \sum_t \left(\frac{\sum_k B_{jk}(\pi_k^t - \pi_k^{t*,t})}{\sum_k \pi_k^{t*,t}} \right) c_{ji}^t .$$

Reward-based e-prop: application of e-prop to deep RL

For reinforcement learning, the network interacts with an external environment. At any time t the environment can provide a positive or negative reward r^t. Based on the observations x^t that are perceived, the network has to commit to actions a^0, \ldots, a^n, \ldots at certain decision times t_0, \ldots, t_n, \ldots. Each action a^t is sampled from a probability distribution $\pi(\cdot | y^t)$ which is also referred to as the policy of the RL agent. The policy is defined as function of the network outputs y^t, and is chosen here to be a categorical distribution of K discrete action choices. We assume that the agent chooses action k with probability $\pi_k^t = \pi(a^t = k | y^t) = \text{softmax}_k(y_1^t, \ldots, y_K^t) = \exp(y_k^t)/\sum_k \exp(y_k^t)$.

The goal of reinforcement learning is to maximize the expected sum of discounted rewards. That is, we want to maximize the expected return at time $t = 0$, $\mathbb{E}[R^0]$, where the return at time t is defined as $R^t = \sum_{t' > t} \gamma^{t' - t} r^{t'}$ with a discount factor $\gamma \leq 1$. The expectation is taken over the agent actions a^t, the rewards r^t and the observations from the environment x^t. We approach this optimization problem by using the actor-critic variant of the policy gradient algorithm, which applies gradient ascent to maximize $\mathbb{E}[R^n]$. The basis of the estimated gradient relies on an estimation of the policy gradient, as shown in section 13.3 in [46]. There, the resulting weight update is given in equation (13.8), where G_t refers to the return R^t. Hence, the gradient $\frac{d\mathbb{E}[R^0]}{dW_{ji}}$ is proportional to $\mathbb{E} \left[\sum_{t_n} R^{t_n} \frac{d \log \pi(a^n | y^{t_n})}{dW_{ji}} \right]$, which is easier to compute because the expectation can be estimated by an average over one or many trials. Following this strategy, we define the per-trial loss function E_π as a function of the sequence of actions a^0, \ldots, a^n, \ldots and rewards r^0, \ldots, r^T sampled during this trial:

$$E_\pi(z^0, \ldots, z^T, a^0, \ldots a^n, \ldots, r^0, \ldots, r^T) = \sum_n R^{t_n} \log \pi(a^n | y^{t_n}) .$$

And thus:

$$\frac{d\mathbb{E}[R^0]}{dW_{ji}} \propto \mathbb{E} \left[\sum_{t_n} R^{t_n} \frac{d \log \pi(a^n | y^{t_n})}{dW_{ji}} \right] = -\mathbb{E} \left[\frac{dE_\pi}{dW_{ji}} \right] .$$

Intuitively, given a trial with high rewards, policy gradient changes the network output y to increase the probability of the actions a^n that occurred during this trial. In practice, the
gradient \(\frac{dE_{\pi}}{dW_{ji}} \) is known to have high variance and the efficiency of the learning algorithm can be improved using the actor-critic variant of the policy gradient algorithm. It involves the policy \(\pi \) (the actor) and an additional output neuron \(V^t \) which predicts the value function \(\mathbb{E}[R^t] \) (the critic). The actor and the critic are learnt simultaneously by defining the loss function as

\[
E = E_\pi + c_V E_V ,
\]

where \(E_\pi = -\sum_t R^{tn} \log \pi(a^{tn}|y^{tn}) \) measures the performance of the stochastic policy \(\pi \), and \(E_V = \sum_t \frac{1}{2}(R^t - V^t)^2 \) measures the accuracy of the value estimate \(V^t \).

Since \(V^t \) is independent of the action \(a^t \) one can show that

\[
0 = \mathbb{E} \left[V^{tn} \frac{d \log \pi(a^{tn}|y^{tn})}{dW_{ji}} \right].
\]

We can use that to define an estimator \(\hat{\frac{dE}{dW_{ji}}} \) of the loss gradient with reduced variance:

\[
- \frac{d\mathbb{E}[R^0]}{dW_{ji}} + c_V \mathbb{E} \left[\frac{dE_V}{dW_{ji}} \right] \propto \mathbb{E} \left[\frac{dE}{dW_{ji}} \right] \tag{33}
\]

\[
= \mathbb{E} \left[\sum_t (R^{tn} - V^{tn}) \frac{d \log \pi(a^{tn}|y^{tn})}{dW_{ji}} + c_V \frac{dE_V}{dW_{ji}} \right],
\]

\[
\frac{dE}{dW_{ji}} \overset{\text{def}}{=} \hat{\frac{dE}{dW_{ji}}} \tag{34}
\]

similarly as in equation (13.11) of section 13.4 in [46]. A difference in notation is that \(b(S_t) \) refers to our value estimation \(V^t \). In addition, equation (34) already includes the gradient \(\frac{dE_V}{dW_{ji}} \) that is responsible for learning the value prediction. Until now this derivation follows the classical definition of the actor-critic variant of policy gradient, and the gradient \(\hat{\frac{dE}{dW_{ji}}} \) can be computed with BPTT. To derive reward-based e-prop we follow instead the generic online approximation of e-prop as in equation (27) and approximate \(\hat{\frac{dE}{dW_{ji}}} \) by a sum of terms of the form \(\hat{\frac{\partial E}{\partial z_j}} c_j^t \) with

\[
\hat{\frac{\partial E}{\partial z_j}} = -\sum_n (R^{tn} - V^{tn}) \frac{\partial \log \pi(a^{tn}|y^{tn})}{\partial z_j^t} + c_V \frac{\partial E_V}{\partial z_j^t} .
\]

We choose this estimator \(\hat{\frac{\partial E}{\partial z_j}} \) of the loss derivative because it is unbiased and has a low variance, more details are given in section S5.1. We derive below the resulting synaptic plasticity rule as needed to solve the task of Fig. 4, 5. For the case of a single action as used in Fig. S4 we refer to section S5.1.

When there is a delay between the action and the reward or, even harder, when a sequence of many actions lead together to a delayed reward, the loss function \(E \) cannot be
computed online because the evaluation of R^n_t requires knowledge of future rewards. To overcome this, we introduce temporal difference errors $\delta^t = r^t + \gamma V^{t+1} - V^t$ (see Fig. 4), and use the equivalence between the forward and backward view in reinforcement learning [46].

Using the one-hot encoded action $1_{a^t = k}$ at time t, which assumes the value 1 if and only if $a^t = k$ (else it has value 0), we arrive at the following synaptic plasticity rules for a general actor-critic algorithm with e-prop (see Section S5.1):

$$\Delta W_{ji}^{\text{rec}} = -\eta \sum_t \delta^t \mathcal{F}_\gamma \left(L_j^t / e_{ji}^t \right)$$ \hspace{1cm} (36)

$$L_j^t = -c_V B_j^V + \sum_k B_{jk}^\pi (\pi^t_k - 1_{a^t = k})$$ \hspace{1cm} (37)

where we define the term $\pi^t_k - 1_{a^t = k}$ to have value zero when no action is taken at time t.

B_j^V is here the weight from the output neuron for the value function to neuron j, and the weights B_{jk}^π denote the weights from the outputs for the policy.

A combination of reward prediction error and neuron-specific learning signal was previously used in a plasticity rule for feedforward networks inspired by neuroscience [47, 48].

Here it arises from the approximation of BPTT by e-prop in RSNNs solving RL problems. Note that the filtering \mathcal{F}_γ requires an additional eligibility trace per synapse. This arises from the temporal difference learning in RL [46]. It depends on the learning signal and does not have the same function as the eligibility trace e_{ji}^t.

Acknowledgments

This research/project was supported by the Human Brain Project (Grand Agreement number 785907) and the SYNCH project (Grand Agreement number 824162) of the European Union. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Quadro P6000 GPU used for this research. Computations were carried out on the Human Brain Project PCP Pilot Systems at the Juelich Supercomputing Centre, which received co-funding from the European Union (Grand Agreement number 604102) and on the Vienna Scientific Cluster (VSC).

We thank Thomas Bohnstingl, Wulfram Gerstner, Christopher Harvey, Martin Vinck, Jason MacLean, Adam Santoro, Christopher Summerfield, and Yuqing Zhu for helpful comments on an earlier version of the manuscript.

Authors contributions GB, FS, AS and WM conceived the work, GB, FS, AS, EH and DS carried out experiments and all authors contributed to the writing of the paper.

References

[1] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature (2015).
[2] Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long short-term memory and learning-to-learn in networks of spiking neurons. *NeurIPS* (2018).

[3] Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks. *NeurIPS* (2018).

[4] Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain. *Current Opinion in Neurobiology* (2019).

[5] Sanhueza, M. & Lisman, J. The CAMKII/NMDAR complex as a molecular memory. *Molecular Brain* 6, 10 (2013).

[6] Cassenaer, S. & Laurent, G. Conditional modulation of spike-timing-dependent plasticity for olfactory learning. *Nature* (2012).

[7] Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. *Science* (2014).

[8] Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor Learning Rules. *Frontiers in Neural Circuits* (2018).

[9] Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. *Nature* (2019).

[10] Roeper, J. Dissecting the diversity of midbrain dopamine neurons. *Trends in neurosciences* (2013).

[11] Sajad, A., Godlove, D. C. & Schall, J. D. Cortical microcircuitry of performance monitoring. *Nature Neuroscience* (2019).

[12] Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. *Proceedings of the IEEE* 102, 652–665 (2014).

[13] Davies, M. et al. Loihi: A neuromorphic manycore processor with on-chip learning. *IEEE Micro* (2018).

[14] Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support error backpropagation for deep learning. *Nature Communications* (2016).

[15] Nøkland, A. Direct feedback alignment provides learning in deep neural networks. In *NIPS* (2016).

[16] Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. *Nature Neuroscience* (2010).
[17] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G. & Pallett, D. S. DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NASA STI/Recon Technical Report N (1993).

[18] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. LSTM: A search space odyssey. IEEE TNNLS (2017).

[19] Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep recurrent neural networks. ICASSP (2013).

[20] Nicola, W. & Clopath, C. Supervised learning in spiking neural networks with force training. Nature Communications (2017).

[21] Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience (2016).

[22] Kappel, D., Legenstein, R., Habenschuss, S., Hsieh, M. & Maass, W. A dynamic connectome supports the emergence of stable computational function of neural circuits through reward-based learning. eNeuro (2018).

[23] Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In ICML, 1928–1937 (2016).

[24] Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Frontiers in neural circuits 9, 85 (2016).

[25] Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47, 253–279 (2013).

[26] Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature (2017).

[27] Bellec, G. et al. Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets. arXiv:1901.09049 (2019).

[28] Zenke, F. & Ganguli, S. Superspike: Supervised learning in multilayer spiking neural networks. Neural computation (2018).

[29] Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassignment in time. In Bengio, S. et al. (eds.) NeurIPS (2018).

[30] Neftci, E. O., Augustine, C., Paul, S. & Detorakis, G. Event-driven random backpropagation: Enabling neuromorphic deep learning machines. Frontiers in neuroscience 11, 324 (2017).

[31] Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous local learning. arXiv preprint arXiv:1811.10766 (2018).
[32] Emre O. Neftci, F. Z., Hesham Mostafa. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. *IEEE Signal Processing Magazine* (2019).

[33] Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432* (2013).

[34] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. & Bengio, Y. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. *arXiv preprint arXiv:1602.02830* (2016).

[35] Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. *Neural computation* 1, 270–280 (1989).

[36] Mujika, A., Meier, F. & Steger, A. Approximating real-time recurrent learning with random kronecker factors. *NeurIPS* (2018).

[37] Tallec, C. & Ollivier, Y. Unbiased online recurrent optimization. *ICLR* (2018).

[38] Roth, C., Kanitscheider, I. & Fiete, I. Kernel rnn learning (kerln). *ICLR* (2019).

[39] Murray, J. M. Local online learning in recurrent networks with random feedback. *eLife* (2019).

[40] Jaderberg, M. et al. Decoupled neural interfaces using synthetic gradients. *arXiv preprint arXiv:1608.05343* (2016).

[41] Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. *Neuronal dynamics: From single neurons to networks and models of cognition* (Cambridge University Press, 2014).

[42] Pozzorini, C. et al. Automated high-throughput characterization of single neurons by means of simplified spiking models. *PLoS Computational Biology* (2015).

[43] Gouwens, N. W. et al. Systematic generation of biophysically detailed models for diverse cortical neuron types. *Nature Communications* (2018).

[44] Esser, S. K. et al. Convolutional networks for fast, energy-efficient neuromorphic computing. *PNAS* (2016).

[45] Werbos, P. J. Backpropagation through time: what it does and how to do it. *Proceedings of the IEEE* (1990).

[46] Sutton, R. S. & Barto, A. G. *Reinforcement Learning: An Introduction* (MIT press, 2018).

[47] Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical networks. *Nature Reviews Neuroscience* (2018).
Pozzi, I., Bohté, S. & Roelfsema, P. A biologically plausible learning rule for deep learning in the brain. *arXiv preprint arXiv:1811.01768* (2018).