New Phytologist Supporting Information

Article title: **Early evolution of the land plant circadian clock**

Authors: Anna-Malin Linde, D. Magnus Eklund, Akane Kubota, Eric R. A. Pederson, Karl Holm, Niclas Gyllenstrand, Ryuichi Nishihama, Nils Cronberg, Tomoaki Muranaka, Tokitaka Oyama, Takayuki Kohchi and Ulf Lagercrantz

Article acceptance date: 18 January 2017

The following Supporting Information is available for this article:

Fig. S1 Alignments used for phylogenetic construction

Fig. S2 Inferred phylogeny of homologs to the ELF3 family

Fig. S3 Inferred phylogeny of homologs to the ELF4 family

Fig. S4 Inferred phylogeny of homologs to the LUX family

Fig. S5 Inferred phylogeny of homologs to the GI gene family

Fig. S6 Inferred phylogeny of homologs to the ZTL gene family

Fig. S7 Temporal expression patterns of putative circadian clock genes in *M. polymorpha* (Mp) under ND, LL and DD conditions

Fig. S8 Generation of MpRVE knockout mutant

Fig. S9 Generation of MpPRR knockout mutant

Fig. S10 Generation of MpTOC1 knockout mutants

Fig. S11 Temporal expression pattern of MpPRR and 35S_{pro:LUC} under ND and LL conditions

Fig. S12 Temporal expression pattern of MpPRR in WT, Mprve^{ko}, Mptoc₁^{ko} and restored lines of Mprve^{ko}
Fig. S13 pro:LUC bioluminescence for MpELF3, MpGI, MpLUX and MpRVE

Fig. S14 Luciferase imaging in transgenic *M. polymorpha* plants expressing luciferase under the control of *M. polymorpha* promoters

Fig. S15 MpPRR_{pro}:GUS expression in mature thallus

Fig. S16 Temporal expression patterns of putative circadian clock genes in *A. agrestis* (Aa) under ND, LL and DD conditions

Table S1 Gene names, family/sub-clade, gene ID or accession number

Table S2 Oligonucleotides used in this study

Methods S1 Supplemental materials and methods describing sequence retrieval, sequence analysis and phylogenetic reconstruction
Fig. S1 Alignments used for phylogenetic construction. Amino acid sequences were aligned using the M-Coffee algorithm in T-Coffee (Notredame et al., 2000; Wallace et al., 2006). Alignments were filtered using Transitive Consistency Score (TCS) in the T-Coffee distribution (Chang et al., 2014). (a) CCA1/LHY/RVE, (b) PRR/TOC1, (c) ELF3, (d) ELF4, (e) LUX, (f) GI, (g) ZTL.

(a)

#NEXUS
BEGIN DATA;
dimensions ntax=31 nchar=215;
format missing=?
symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.
matrix
OsRVE6 MDRSSSEMPGKKARKPYTITKPRERWSEEEHERFLDALIMYGRDWKKIEE
PaCCA1-3 MLPFSIDEFFSKVRKPYTTKQERWTEDEHKKFLDALKLYGRSWRIE
PaCCA1 MMSSGDELAAKVRKPYTITKQERWSEEEHLKFLAELKMYGRAWRKIEE
KfRVE MLGGKGDMMHKKVRKPYTITKQRENWTEQEHNKFLAELFDRDWKKIEE
MpRVE MA-QGSEEKSKKVRKPYTITKSRSWTEQEHDKFLEALQLFDWKKIEE
AtRVE5 MVSSFSEDPTTKIRKPYTITKSRWTDQEHDKFLEALHLFDWKKIEA
AtRVE3 MVTSSFEDPTTKVRKPYTITKSRWTEQEHDKFLEALHFWDWKKIK
AtRVE4 MTESEAGEAPEKKVRKAYTITKSRWTEQEHDFLEALQLFDWKKIEA
AtRVE8 MSSAVAEGGSSKKVRKPYTITKSRWTEQEHDKFLEALQLFDWKKIEA
OsRVE5 MSSEVDDGGRVRKPYTITKSRWTDQEHDKFLEALQLFDWKKIEA
AaRVE MF-GTVEEGSKKIRKPYTITKSRWTEQEHDFLEALQLFDWKKIEA
SmRVE ---PSDASVSKKVRKPYTITKSRWTEQEHDFLEALQLFDWKKIEA
OsRVE4 MVSSAGEDASKKVRKPYTITKSRWTEQEHDKFLEALQLFDWKKIEA
AtRVE6 MVSSSEEDLSKIRKPYTITKSRWTEQEHDKFLEALQLFDWKKIEA
PpRVE1 MNASVSEEGSSKKIRKPYTITKSRWTEQEHDFKLDLALQFDWKKIEA
PpRVE2 MNPVSEEGSSKKIRKPYTITKSRWTEQEHDFKLEDALQFDWKKIEA
PpRVE3 MNASVSEEGSSKKIRKPYTITKSRWTEQEHDFKLEDALQFDWKKIEA
KfCCA1 MDDTSTESLSTKIRKPYTITKQTERWTEAEHDFLEALKLHGRAWRKIEE
PaCCA1-2 MASSGDEFTTKVRKPYTITKQTERWEHEHDFLEALKLHGRAWRKIEE
OsCCA1 ---SSGEEAVVKVRKPYTITKQTERWTEHNRFLERALKLYGRRAWQIEE
AtLHY ---TSGEELAKKVRKPYTITKQTERWTEHERFLEALKLYGRRAWQIEE
AaCCA1 MNSSSGDEALAKVRKPYTITKQTERWTEHEHTKLEALKLYGRRAWQIEE
AtCCA1 ---SSGEDLVIKTRKPYTITKQTERWTEEHFRFLEALKLYGRRAWQIEE
OsRVE2 MARMMDEARIKPARKPYTITKQREKWTEDEHLKFLAELQLHGRAWRRIQE
OsRVE1 MAACLSEGEEHPARKPYTITKQREKWTEDEHRLKFLAELQLHGRAWRRIQE
AtRVE7 MLCISHNENVKVRKPYTITKQREKWSEEEEHRDFLEALKLYGRQRIQE
AtRVE7Like MVMNHENVENKVRKPYTITKQREWSEEEEHRDFLEALKLYGRQRIQE
PpCCA1a -----------VRKPYTITKQREWTEHEHQRFLERALKLYGRRAWQIEE
PpCCA1b ---SGDEGASTKVRKPYTITKQTERWTEHEHQRFLERALKLYGRRAWQIEE
OsRVE3 MASEGMEEFPVKVRKPYTITKQREKWTEEHDFLEALKLYGRRAWQIEE
AtRVE2 M--SSDAFYLKTRKPYTITQREKWTEAEHEKFVEALKLYGRAWRRIEE
AtRVE1 MASFGNDYAPKVRKYITQERERWTDEEHKKEALKLYGRAWRRIEE
OsRVE6 HVTGTKTTIQIRSHAQKFKFLKVKQKGLMLAA--GLPPQYPRRRLVMQQQQQS
OsCCA1-3 HIKGSKAQVRSHAQKFKFTKLEKAGYELIEPPPFRKKPGHPYPKKTG
PaCCA1 HIGTKTAQIRQSHAQKFKSFLVGRSGSDDIPRPKRPKHPYPRKAV
KfRVE YHVTGTKTQIRQSHAQKFKFLKVKQLDQA--HPVPPRPRKRKSSQPYPKAS
MpRVE FVGSKSVIRQSHAQKFKFLKVKQKNTGE--HPVPPRPRKRKSAGQPYPKAP
AtRVE5 FVGSKTVQIRQSHAQKFKFLKVKQKSGANEM--HLPPPRPRKKAHPYPRKAPH
AtRVE3 FVGSKTVQIRQSHAQKFKFLKVKQKSGTNKE--HLPPPRPRKKAHPYPRKAPH
AtRVE4 FVGSKTVQIRQSHAQKFKFLKVKQKNGTGE--HLPPPRPRKKAHPYPRKAPH
AtRVE8 FVGSKTVQIRQSHAQKFKFLKVKQKSGTGE--HLPPPRPRKKAHPYPRKAPH
OsRVE5 YVGTKTVIQIRSHAQKFPYVQKNGTGE--HLPPPRPRKKAHPYPRKAPH
AaRVE FVGSKTVQIRQSHAQKFKFLKVKQKNGTGE--HLPPPRPRKKAHPYPRKAPH
SmRVE FVGSKTVQIRQSHAQKFKFLKVKQKNGTGE--HPVPPRPRKRKSAGQPYPKAP
OsRVE4 FVGSKTVQIRQSHAQKFKFLKVKQKNGTSE--HPVPPRPRKKAHPYPRKAPH
AtRVE6 FIGSKTVIQIRSHAQKFKFLKVKQKNTGE--HLPPPRPRKKAHPYPRKAPH
PpRVE1 FVGSKTVQIRQSHAQKFKFLKVKQKNGTGE--HPVPPRPRKRKSAGQPYPKAP
PpRVE2 FVGSKTVQIRQSHAQKFKFLKVKQKNTGE--HPVPPRPRKRKSAGQPYPKAP
PpRVE3 FVGSKTVQIRQSHAQKFKFLKVKQKNTGE--HPVPPRPRKRKSAGQPYPKAP
KfCCA1 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
OsCCA1-2 HIGSKTAVQIRSHAQKFKSFLERASAGDISIPRPKRPKSHYPKAG
OsCCA1 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
AtLHY HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
AaCCA1 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
AtCCA1 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
OsRVE2 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
OsRVE1 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
AtRVE7 HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
AtRVE7Like HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
PpCCA1a HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
PpCCA1b HIGSKTAVQIRSHAQKFKSFLERAGTSAEIDIPRPKRPKSHYPKAG
OsRVE3 HIGSKTAVQIRSHAQKFSKSVREPGS--AIEIPPRPPKRPKPLHPYPRKCA
AtRVE2 HIGSKTAVQIRSHAQKFKFTKVARDFGV--SEIPPRPPKRPKMPHPYPRKLV
AtRVE1 HIGSKTAVQIRSHAQKFSKSVREPGS--AIEIPPRPPKRPKPLHPYPRKCA
OsRVE6 SPA--MQNELEWASTGTAWGGNHGLPFVSFE--------TT-----
OsCCA1-3 VID-----KSTIHSSVSFTSNWSPA--LSYTHQ--QDEKQRNK----L
PaCCA1 GTA------EAVAVAVATVAASAWLSYGASLHPR--AENISSV--KAREGIQ
KfRVE KVV------TPSKANPDFAF--V-YRFLGDVFEIGVAGNQLKCMPPIDR
MpRVE KAV------TDLRATPDFAE--V-YKFIIGNVFDPGSINNHKLKEMAPIDR
AtRVE5 KNV------KPHRVMNFAE--V-YSFIGSVFPNTSGHQLRKLQMDPINM
AtRVE3 KFT------KPHRVAFLNAE--V-YNFIGSVFPKTGGVNRKLEMADNNL
AtRVE4 KNA------PSMHGLPDFAE--V-YNFIGSVFDPDKGMRKJMELMDNPINF
AtRVE8 KNA------PVLHGVPDFAE--V-YNFIGSVFDPETRHEKJEMADNNL
OsRVE5 KRA------PTLRAVDPDFAQ--V-YNFLGSFDPETSGLHRLEMDNPIDV
AaRVE KSV------ASLRAVDPDFAQ--V-YKFIGSVFPDTAGHLKJLEMDADNNL
SmRVE KPG------VTLSAAPAFSE--V-YKFIGSIFDPGTAGHLKREMIDR
OsRVE4 KNE------PSLRLMPDFAQ--V-YSFLGSVFDPSTSGLHKLEMNIDV
AtRVE6 KNV------HSLRVLPDFAQ--V-YGFIGSVFDPYASNLHQLKMDPIDV
PpRVE1 KCV------SCIRAAPDFAE--V-YKFIGSIFDPGTAGHLKREMIDR
PpRVE2 KTA------SCIRAAPDFAE--V-YKFIGSVFDPGVSHLRKLEMISAI
PpRVE3 KCG------SCIRAAPDFTE--V-YKFIGSVFDPGVSHLRKLEMISPIDR
KfCCA1 GNM------AAVAAATTMAASAWWTLQNNAQFP-QAKESEEQK-G--SMG
OsCCA1-2 TAI------IMAAVTAATVAAASAWWTLHGAPLPG-GNSSPL-KTEDGNE
OsCCA1 LSSGIH--MASIVTATVAAASAWWATQGLL--ADVQRAKEKDNDE
AtLHY NNG------ITAIAAATVAAATAWWASHGLV--API--VAVPTAMTDQDS
AaCCA1 GSFS---Y-AAVAAATAIAASAWWALQGSPVHP--APTRTQKQE--DEGV
AtCCA1 SGT------AAVAAATVAAASAWWAANGLL--APL--HPSFPGSCQEHDS
OsRVE2 STA------PNGQVHSAIPCFTYHNEF-NEQ-------------
OsRVE1 GAA----------GFAAQPVMPWLSYNGSCF-----------AAA
AtRVE7 VPY----------GFAAQPVMPWLSYNGSCF-----------AAA
AtRVE7Like VPY----------GFAAQPVMPWLSYNGSCF-----------AAA
PpCCA1a RSF------AVSAMAATIAAASTWWAMHGGPMHPAV---------QCGENIP
PpCCA1b RSF------AVSAMAATIAASAWWAMQGGPMHPAA---------QCGQEVL
OsRVE3 NSG------GESAADARIPPLHVWWPYYGFI--HPR-----------SDESS
AtRVE2 IP----------GFAAQPVMPWLSYNGSCF-----------AAA
AtRVE1 NE--------LS--SSKTL----------PI-RNSQEELLCW---PL
OsRVE6 -----LP--LSP----------------------------------
OsCCA1-3 EAIVL--------------------------------------QS--
PaCCA1 ESNDARC---HAEKQ------------------GERSQCASNTRRGAF-
KfrVE ETIIILMRNLAINLASPVFAEQQHILALAD--QPRM-IPEQE---EQ-
MpRVE ETVLLLMRLSINLSSPEFEEAKLIFMPAFE--QLA--MLSAQ--PHRT-----
AtRVE5 ETVLLLMQNLNLINLSPEFEEQRLILSSYS----------------
AtRVE3 ETVLLLMKNSVLNTSPEFDEQRLIYNS--SDESS
AtRVE4 ETVLLLMRLNTVLSNPDQPTSETYVDAAE----SDESS
AtRVE8 ETVLLLMRLNTVLSNPDLESTRKVLSSYD----------SDESS
OsRVE5 ETVLLLMKNSLNTNPFEAHRKLASHG--HE------SDESS
AaRVE ETVLLLMRLSINLSSPDFEEHKLFLSVYD--QING-PSTAPASKHRY-
SmRVE ETVLLLMRLNAINLSSPDFQKFRAK--------CF------SDESS
OsRVE4 ETALLLMRLSINLSDQKKLLSSYS--EL-----SDESS
AtRVE6 ETVLLLMRLSINLSDQKDHRLLSSYD--TDH-----SDESS
PpRVE1 ETVLLLMRLSINLSSPDFEHKLFLMVPID--DST--IGPAQPTPSY-
PpRVE2 ETVLLLMHLNLSINLDPFEQ-------TARSH
PpRVE3 ETVLLLMRLSINLSDPDFFKLYLSFYV--DLTS--APSAAQ-TPSY-
KfCCA1 APGGVPR--EAAIRRAERANKLREL-----KGLRTHQASNSFPRGAE-
OsCCA1-2 ESDVEM--QIEQ------------------IHRSSSGLTNPAEGAF
OsCCA1 S--EVLK--HTEL------------------KQDRSSCSSGTNPAEGAF
AtLHY D--VTKL--NADS------------------LVDRSSCSSGTNPAEGAF
AaCCA1 DEAPSRK--CSAARERANSRMKEQ------ARVRSVSGNTPRGADG
AtCCA1 E------E---ENKS------------------QVDRSSCSSGTNPAEGAF
OsRVE2 ---------------------QREGSLTGSNTA------
OsRVE1 ---------------------QREGSLTGSNTA------
AtRVE7 ------------------ETFCTGSNAFW-----
AtRVE7Like -----------------------------------FCTGS---S------
PpCCA1a INGN-SR--SSAMRRAERAQLVKELE-------SSNSSACGSSDGRRGAFL
PpCCA1b SNNNSHR--SSAMRRRAERAQRVKELE-------SSNSSACGSSDGRRGAFL
OsRVE3 S--S-L--
AtRVE2 ---SETQSQCSSSTS------
AtRVE1 KQEDVEN--QNEGSSSTGSNTG------

OsRVE6 ------FEPIRRLLS
OsCCA1-3 --SGAGFVPYKGCQK
PaCCA1 -KSGVGFPYERCS--
KfRVE ---------P----
MpRVE -GFGMPLPTLT----
AtRVE5 --
AtRVE3 ---
AtRVE4 -----------------------------S---
AtRVE8 -----------------------------A---
OsRVE5 -----------------------------K---
AaRVE -VYGLGMPPLA-----
SmRVE ---------KVRK
OsRVE4 ---------P----
AtRVE6 --
PpRVE1 -VYLPLPLSPLP----
PpRVE2 -VYS--LPSLP----
PpRVE3 -VYSAFLPSLP----
KfCCA1 HGGSSGFVPYKGYQG
OsCCA1-2 -NFFQGSVTWETLCF
OsCCA1 -SRRTGFKPYKRCSV
AtLHY -TRQTGFKPYKRCSM
AaCCA1 -FSGVGFPYQRNST
AtCCA1 -RGRTGFKPYKRCSM
OsRVE2 -NCRRGFVPYKRCVA
OsRVE1 -LLQRGFMPYKRCAA
AtRVE7 -VNASGRFPYKRCLS
AtRVE7Like -VNASGRFPYKRCLS
PpCCA1a -YSGVGFPYQRVSI
PpCCA1b -YSGVGFPYQRAST
OsRVE3 -EVIRGFVPYKRCKF
AtRVE2 -NNRGFMPYKRRVK
AtRVE1 -SNSRGFGPYKRRKM

; end;
(b)
#NEXUS
BEGIN DATA;
dimensions ntax=25 nchar=361;
format missing=?
symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.;
matrix
KfTOC1 M----------HDVTTFHRSSVHILLADRLQTRKEVFELLRRCSYKVT
PaPRR1 M----------AGSSVLDRCVRILLCDKDPTNSQQLLELLRKCMYQVT
MgTOC1 M----------GRVVFDRSRRLKICLDPNTSP--EVVDLLQRCYSQVV
SmTOC1 M----------EGKIGDRSRVILLCDKDSATAQVEKELLRCQYSQVS
AtTOC1 M----------DGFIARDSRVLICNDTSSTGEVTLLSECSYQVT
OsPRR1 MV---------EGQQFVDRSKRVILLCDSDPSSREVLRLNCQYSQVT
OsPRR59 -----------------------------
OsPRR95 MG---------RETRMLPRMPVRLAEGDSRTHIALLRKCGRYRA
AtPRR7 MN---------CWERFLHVRTIRVLLVENDDCTRYTVTALLRNCSYEVV
OsPRR37 MM----------CWERFIIKTTIKVLLVSDDDSTRQVSAALLRHCMEVII
OsPRR73 -------------------------------
PaPRR3 MQ---------VKDGHQPPQRCLKVLLVEDDDSTRKVVRALLCHRQYEV
AtPRR5 MW---------KWERFLPKIALRVLLEVADDDSTRQIIAALLRKCQYRA
KfPRR MT---------SQWATLPSKHRLVLLVEDDDCTRHVAAALLRNCGYEV
AtPRR9 MG---------QWEKYPKTVLRLVVESDYSTRQIIALLRRCYKV
SmPRR7b M---------QAEAFQHHHLKVLLVEDDDSTRHVAVALLRNCGQEV
AtPRR3 MC---------KWERYLPVRLKVLLVEDDDSTRHVALTALKNCYEV
SmPRR7a MT---------GWENLFQPRQLVLVLLVEDDDSTRHVAAALLRNCGQVV
PaPRR7 MW---------RWSLLVHLQPLVD----------VV-------SVV
AaPRR MT---------GWESFLPQRLRLVLLVEDDDSTRHVAGALLRNCSYEV
MpPRR MS---------AEQGWESFLPRKHIRVLLAEDDDSTRHVAGALLRNCGYEV
PpPRR4 MDVARAGE------GWESFLKRNKLVLLVEDDDATHVAGALLRNCNYEV
PpPRR3 M----------MLSL-L-N-------------VE
PpPRR1 ---------GWESFLKRSRLILLVEYDADTHVAGALLRNCDYEVT
PpPRR2 ---------SWESFLKRKRLVLLVEDDDATHVAGALLRNCNYEV

KfTOC1 AVESAKHVLLEVLRAAGPAVDVLISEVEFPHEGKGLHKLLKHMREELKQIP
PaPRR1 AVSTARGVVSILNAEGQIEIDLILADVLPLSKGKMLKGYIRSTRCLQRIP
MgTOC1 AVQXARQVMVLRNMGSDVLILAEVELPKKGGKMLKHITKEARKLQIP
SmTOC1 VXKTARQVEVNLHITDSDKVLVSLVSEVNLPNGGKFLKHLIKVSNFKHPI
AtTOC1 AVKSARQVIDALNAEGPDIDIILAEIDLPMAKGMLRKEYTRDDELRI
OsPRR1 CASKPRQVINLRLCEAGIDIIIAEVLPSKCFKMLKYIRNRLERH
OsPRR59 -------MKAWGVMRERAYAFDLVLTEVTMLPSGIELLSRIVASDECKNIP
OsPRR95 ASGDKLYADKLFLEGNDLVLVTEVLPMSGLLLSTIMEHADCKNI
AtPRR7 EASNQIQAQKWDELNHHIDILVETEIVMYLSGILLCIKILNHSRRNIP
OsPRR37 PAENGQQTWYLEDLMNQISDLVLETEVMPGVSGILSLSRIMNHICKN
OsPRR73 PAENGTLHAWCLEDIQLNQHIDLVLETEVMPLSLGIGILSWHSHKICDIN
PaPRR3 AVALQAWNLDLETRQFDVLTEAMGPCLSIGIDLLSKIMSHRTKYHIP
Protein	Sequence
AtPRR5	AVPDGLKAWEMLKGKPEVSDLILTEVDLPSISGYALLTLIMEHDICKNIP
KfPRR	PAADGFQALKLSDMKQFDLVLTEVMPGLSGIQLLSRIOQRDOHKRMP
AtPRR9	AVSDGLAWEVKHELKNIDILTELDDLPSISGFALLALVMHEACKNIP
SmPRR7b	PAASGLQAEILETRSSVDLVLTDMMPSRLMGSSLHKKRSPKRP
AtPRR3	AVPDVLAEWRLEDKESCIDLVLTEVMDPVHSTGLLLSISHMTKLKNIP
SmPRR7a	PAANGLQAEILDNNREDLVLTDVLTPGSLGGLLSSIMIKNNHQKVP
PaPRR7	AVANGQQAWKLEDPSNHLVLTEVMPCLSGLLCLLKERKCHTCKNIP
AaPRR	SANGQLAEILQLLERLLQLGLLGLLLKMKDNISPKRP
MpPRR	SAANMQAEILEDNNFDLVLTDVMPCLSGVLKIMHRKAGKRIP
PpPRR4	PVANGSLGLLEEANSFDLVLTDVMPYLSGGLSMMKREACKRVP
PpPRR3	P-------------PELEDANNSFDLVLTDVMPCLSGGLSMMKREACKRVP
PpPRR1	AVANGSLGLLEEANSFDLVLTDVMPRLSGLMSKKRPKCRVP
PpPRR2	SVANGSLGLLEEANSFDLVLTDVMPCLSGGLSMMKREACKRVP
KfTOC1	VVMMSQRDEMALVVLRLGAADLYKPLRKNELNLWTHWRRRMGLM
PaPRR1	IVMMSRARDETVVMKLPLGADLYKLPRRNELNLWWMWRRRMGLL
MpTOC1	IVMMSRDEMAMVVLKLMGAADLYKPLRKNELNLWTHWRRRMGLM
SmTOC1	IVMMSRDEMAMVVLKLMGAADLYKPLRKNELNLWTHWRRRMGLM
AtTOC1	VIMMSRQDEAMVVLKLMGAADLYKPLRKNELNLWTHWRRRMGLM
OsPRR1	IIMMSNREDEVSVVVLGCLGAELKPLRNELNLWTHWRRRMGLM
OsPRR59	VIMMSQDSIGTVLQCMQKAVDFLKVPRKELNLWLQHVWRHAMSQ
OsPRR95	VIMMSNDSMVFLKMLGAADLYKPLRKNELNLWTHWRRRMGLM
AtPRR7	VIMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCRQSSSG
OsPRR37	VIMMSNNDSMVFLKMLGAADLYKPLRKNELNLWTHWRRRMGLM
OsPRR73	VIMMSNDSMVFLKMLGAADLYKPLRKNELNLWTHWRRRMGLM
PaPRR3	VIMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCRQSSSG
AtPRR5	VIMMSQTSDEVYVKLMGAADLYKPLRRNLWLQHVWRQTSLAP
KfPRR	VIMMSKDATDVVFKCFQRGAADLYKPLRKNELNLWTHVWRKCCSSSG
AtPRR9	VIMMSQDSIKMVLKMLGAADLYKPRKELNLWLQHVWRRLTLD
SmPRR7b	VVMMSCLDMSDVVLKMLGAADLYKPLRKNELNLWTHVRMLLSSSG
AtPRR3	VIMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCSVS
SmPRR7a	VMMMSHDTNVVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCRASSSG
PaPRR7	VIMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCSVS
AaPRR	VMMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCSVS
MpPRR	VIMMSHMDMLVFKLKALGAGDFVLFKPRKELNLWLQHVWRKCSVS
PpPRR4	IVIMMSYDSLIGVRLFKLCAGCLYKVLKPRKELNLWLQHVWRKCSVS
PpPRR3	IVIMMSYDSLIGVRLFKLCAGCLYKVLKPRKELNLWLQHVWRKCSVS
PpPRR1	IVIMMSYDSLIGVRLFKLCAGCLYKVLKPRKELNLWLQHVWRKCHSL--
PpPRR2	IVIMMSYDSLIGVRLFKLCAGCLYKVLKPRKELNLWLQHVWRKCSVS
KfTOC1	TRLEGQVNEPDER-EDSRPQMS-YGSPAKFRTPPAP--------F--VPS
PaPRR1	RNHAG-------PEIS-------ASH----------EL----------
MpTOC1	RSVMDVANGLSQ----------YLLTTSV----------KP----------VLTVCNHI--
SmTOC1	KKLKNPSEE-------------EI----------
AtTOC1	RSTNPQGRNLSNH-EWSVATA-DHLAGSHHEPMKR--
OsPRR1	ENINQETSTSNQ-EHNSDA--------EGGQ----------
OsPRR59	SKTGEHSDEESDAQSSGSKREV-HALKGNDAPSNG--------LRSSDP
OsPRR95 HKNMECSEQESDAQSSCSTRSEL-FSKPDHKNTEKNG--------CEKASR	
AtPRR7 LNASDGSSDGSQ ASSWTTKAV-DVTMGRLDLEISR--------ESPS SK	
OsPRR37 LNARDGSNGSTGQSSWTTKRAV-DFDKGKDEIGSP---------NEPTTQ	
OsPRR73 HNARDGSNGSTGQSSWTTKRAV-DSMKGKDEIGAP---------NEPTTQ	
PaPrR3 SKI VDGSSGDGKGTQAG--------DCA MGKLE IAPI--------VEPLQE	
AtPRR5 DHVVS G-NDGAQQSCSTRPEM-------------------QSKQAE	
KfP R R VNVGGGS DNGSG TR N E SSVPVD-QRE-----ETPER------SR SSEK	
AtPRR9 -D SRYHSDQGSQGAQAI----------------------KETF DV	
SmPrR7b LNVGGGS DNGSGTQSSWTTKPV-DRDCG- EVAMA EK--------GGGE PS	
AtPRR3 LQDGS DNGSGTQSSWT KRAS-------------------QIGTG--------SKKAEE	
SmPrR7a IRISDQSDTES----SCTKKA-PK------------CPPS R------TDRAME	
PaPrR7 LNRRDGSSDNGSGTQSSWTKRAV-DFAMQDSEIAVP--------SEVATK	
AaPrR LNLRRGSSDNGSGTQSSWTKRAT- EIESAHVDSVKK----YEQCE	
M PPr R LNRVGGSDNGSGTQTVAEVQ-DEQM QDLEMATR--------SGGS AK	
PpPrR4 VNAQGGSDNGSGNACMQPVQ-DEMGHDLMATR--------EESSPK	
PpPrR3 LNAQGGSDNGSGNACMQPVQ-DEEMGDLEMATR--------EESSPK	
PpPrR1 ------LAA--------SS-----------SS-------------ES	
PpPrR2 LNAQGGSDNGSGNACVPQPVQ-LDSKMGDLEMATR--------EESPK	
KfTOC1 SGWHPN A QHAPPP PEYH RSQA QGDARR GTEG E----GSWQNSHRPPYP-...	
PaPrR1 --------QK--------------------------- NVSVSPEIPI G	
MpTOC1 -----------PA--------------------------CMGPPAA----	
SmTOC1 ------------------P---------------------- HHQHSIPWS S	
AtTOC1 SLHLHRGLAEKF----------GTEQ------YH-------SGQTLQNGA YPH	
OsPrR1 RLDS------S---------------TPPV------YH-------FP------ FYYPG	
OsPrR59 GKL DL LV V AQ TDRSHFVEINLKEKQHRNGYTNKL NEKDIFNHNS SSA FSRY	
OsPrR95 DMELVHIIDNQQAHLQLESLVRS RDSYS RLEQ KNERRTLNHST TSPS LY	
AtPrR7 QMHEDGGSSFK--IMHVEHSSKRHRGH TDKG DTRDNLRVLSRSEGSAFS RY	
OsPrR37 AADLIGM AKNMMPSELSLKR SRSTGDGAN QEEQRNVLRRSDLSAFT RY	
OsPrR73 TVDLISSIARSTM TSEEGLKRLKT GSGATSEIHDERNILKRS DLSAFT RY	
PaPrR3 AIDLIGSIARKTPLLELTRRHSPSDGD--VHEPHVLRS HSGASAFS RY	
AtPrR5 AIDFMGASFRRTRIE DLSSLRPNAS-ENQSGDRPSLP HSASAF SRY	
KfP R R AADLIGNFVEEKM PGLELSLKR GRPAGDSSE AQQMRTLRO QS GSAF SRY	
AtPrR9 TMDL I GIDKRPGPEGLGLS LKRSCVSVSFENQDESHQKQL LSLDA SAS AF SRY	
SmPrR7b CKDLASIQQADSALELSLKTRVKGPDPDGDE GQKRLLLHSGS AF SRY	
AtPrR3 PGDLEKNAKYSVLQSLQLEQTLKKTRED-----RDYKVGRSVLRHNSLNASFSKY	
SmPrR7a AVDLIGNIAE PSA TPLELKASPTP------DHAYEPSYVLNQ SGPSA SF RY	
PaPrR7 AADLIGAIANKPLPFLELTKPRQNGKEDGEPEDHRVLRQGYS AFS RY	
AaPrR PMDLTATISRQALPTLELSLRKRPRAAGDHEGETDDRRVLRQGYS AFS RY	
MPPR AIDLIGIACQNMPTLELSLK RSRVPGDNSSEE AQQMRTLRO QS GSAF SRY	
PpPrR4 IIDLINVIACQPSTLSELKRPRSAVNGGECLERQPLRHS GSAF SRY	
PpPrR3 AVDSLHRRRVQSLVDCEILGR----------------------WY	
PpPrR1 AVDLINIAQICPGSMLELSLKRPRSAVDNDGTELQPLRHS GSAF SRY	
PpPrR2 AIDLINVVACQPMPLELSLKRPRSAVDNDGTELQPLRHS GSAF SRY	
KfTOC1 -PQFGAMPQRESQLPSDL M------PHLAMFNLP----- PQSKPPQVTG--	
PaPrR1 -AAAG--------SMHLC-H-GVHDV-----------------------	
Protein	Sequence
---	---
MpTOC1	PSEIQPM--MMTHKETL
SmTOC1	TGAA--I-MVSHI
AtTOC1	ERSR--DGSGF-S-APNAYP-YYMH
OsPRR1	GKRRELLSCVE-GAAIPYHYGAIMQPMYQPA----RKG
OsPRR59	NCRTAS--LTFDGQPFNPVAPASLYFPQSA---KTLS
AtPRR7	NPASNA--IKVKh--SSFQPL--LPPQCGSSNVNYSVN
OsPRR37	HTPVASAMKTDVKANGHTSAFHPAQH--GAPQCGSSNVNYGVN
OsPRR73	HHTVASALKTDVKATQHTSAFHPVQR----SDACQCGSSNVNYSVN
PaPRR3	NTCKNHFPMPEILYNGVPQYGAAPAMFPHTCTVPNCGLSSM-ESV
AtPRR5	VHRPLQ--SNQLNSWPQGSSYPTPT---GGL
KfPRR	SGGAMPQAFMPGPFPFQPPFHFQPYQPQESGLAGSSRSQ---ANN
AtPRR9	EESKSA----NQENI---G-------------------------------
SmPRR7b	SNNPLL----VAFNDAAYAQSLHHFFHYGSSSTQCGSSNVNGSVN
AtPRR3	NNQAA----LSYDQLSPARGATY--YQTQPAPTCGGSNTNV
SmPRR7a	NDQAA----LSYDQLSPARGATY--YQTQPAPTCGGSNTNV
PaPRR7	NTSGGQAVAIEMPYDTTPRAYGSAIHPIYSHGTTPCLGSSNMGN
AaPRR	STSVVNGLGKDMTDYDGLSAAFGSMHPGFYPRPAGHRCGSSNVNGGN
MpPRR	STSGVISTAFDIIYDVGVCASYGPMHPSFYSHPA-----NGSVN
PpPRR4	GSGTIGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
PpPRR3	GSGTIGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
PpPRR2	SDGGTIGMDLADYGIGSYGAPMHPMYAHPSAPRCGSTVGSMN
KfTOC1	GPVIGSVS-MDQAEREEALSKFRKQKRDKRCFZKIRYASRRKLAECARP
PaPRR1	ISQVERREAAANKFRQKRKRDFDKIKYRSRKLAECARP
MpTOC1	STRTTANTYFEQAEREEALNKFQKRKRKDFEKIRYSRKLAECARP
SmTOC1	STRTTANTYFEQAEREEALNKFQKRKRKDFEKIRYSRKLAECARP
AtTOC1	QHSQMSVNKLDRREEALLKFRKRNQRCFDKKIRYVRNKRALKAEPPR
OsPRR1	QSNQLPCRSRERRAALAKFRLKRKFCFDKVKYVRNKRKLAEERP
AtPRR5	QSNQLPCRSRERRAALAKFRLKRKFCFDKVKYVRNKRKLAEERP
OsPRR37	GDGGTQMGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
OsPRR95	GSGTIGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
AtPRR7	GSGTIGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
OsPRR73	GSGTIGMDLADYGIGTYGAPMHPMYAHPSAPRCGSTVGSMN
PaPRR3	ASEHGSNNRPNQSAQREAAALKFRKLCRCEFVKRYQSRKLAECARP
AtPRR5	QDRDCSMVIGQQLQEREEALLKFRKRNQRCFDKIKYVRNKRKLAEERP
KfPRR	TSGGGSNFGLVRDAREREEALNKFQKRKERNFEKIVKRYQSRKLAECARP
AtPRR9	KAASKERWRSRSQREAAALKFRKLCRCEFVKRYQSRKLAECARP
SmPRR7b	GSVGGSGNLSAblrTRREVALYKFQKRKERCFCFEVKRYQSRKLAECARP
AtPRR3	GSSSSDLNDPSDWAQREAAALKFRKLCRCEFVKRYQSRKLAECARP
SmPRR7a	GSVGGSGNLSAblrTRREVALYKFQKRKERCFCFEVKRYQSRKLAECARP
PaPRR7	SAUTGSNNRPNQSAQREAAALKFRKLCRCEFVKRYQSRKLAECARP
AaPRR	GSGSNNATTKFRSREELAlanKFRQKRKERCFCFEVKRYQSRKLAECARP
MpPRR	GSGSNNLQNFREREEALNKFQKRKERCFCFEVKRYQSRKLAECARP
PpPRR4	GSGSNTQMRFREEREEALNKFQKRKERCFCFEK----PKQETAP
PpPRR3	GSGSNTQMRFREEREEALNKFQKRKERCFCFEK----PKQETAP
(c)

#NEXUS
BEGIN DATA;
dimensions ntax=11 nchar=204;
format missing=?
symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.

matrix
PpELF3-2 AGPALFPRLHVAETKKAGPRGPPRNKMALYEQTLPSHRYKMSPLPPSKK
PpELF3-1 PEIALFPRLHVAETKKAGPRGPPRNKMALYEQTLPSHKFKPSPOMPPTNK
PpELF3-3 VGAALFPRLHVAETKKAGPRGPPRNKMALSEQTLIPHSKFKPSPAPIPSKK
KfELF3 EAAALFPRLHVSHAKRNGPFPRAKMNALYEQVTLPASHPKAAGASSRPR
SmELF3 PGGALFPRLHVKTNPAGPRPPRNKMALYEQTLPSHRFQQQQSDKTRA

PpPRR1 GSAGSNTGQIRFARREAALNKFRQKRERCFEKK-RYQSRKLAEQRPR
PpPRR2 GSAGSNTGQMRFARREAALNKFRQKRERCFEKK-RYQSRKLAQRPR
KfTOC1 IKGQFVRQKEG
PaPRR1 VRGQFVRQTNND
MTOC1 NRGQFVRRTSD
SmTOC1 VKGQFVRRAEE
AtTOC1 VKGQFVRKMNG
OsPRR1 VRGQFVRQANY
OsPRR59 VKGQFVSQKLL
OsPRR95 VKGQFVRQDHG
AtPRR7 VRGQFVRKTAAG
OsPRR37 VRGQFVRQAVQ
OsPRR73 IRGQFVRQSQG
PaPRR3 VRGQFVCQAVC
AtPRR5 IKGQFVRQVQS
KfPRR IRGQFVRQATF
AtPRR9 VKGQFVRTVNS
SmPRR7b IKTJRFDNNEA
AtPRR3 VRGQFIRKRD
SmPRR7a VRGQFVRQAVF
PaPRR7 VRGQFVRQTV
AaPRR VRGQFVRQAVY
MPPR VRGQFVRQTVY
PpP RR4 C-------------
PpP RR3 VGAKCCIAALR
PpP RR1 VRGLFVRQAAH
PpP RR2 VRGLFVRQAVY

; end;

AtEEC TIPPLFPVRHVNDTGRGGL------------------------SQQFDGKTMS-----
AtELF3 ILEPMFPRLHVNDADKGGPRAPPNKMLEYEQLISPSQRFGDHGMQRKM
OsELF3-1 VMGPLFPRLHVNDAAKGGPRAPPNKMLEYEQTFTPSHRFSGGSGGRK
OsELF3-2 VMGPLFPRLHVNDAAKGGPRAPPNKMLEYEQTFTPSHRFSGGGSAGGRK
AaELF3 ETGLALFPRLHVKETKNVPRAPPNKLMEYEQTFTPSHRFMSSLPAAKK
MpELF3 ETGLALFPRLHVKETKNVPRAPPNKLMEYEQTFTPSHRFMSSLPAAKK

PpELF3-2 GKEEDDFAVPTYSSAETEESILEDPLGSSCQFQELLDHFQGQGELWKAQK
PpELF3-1 ESLGDDFAVPTYSSAMEETGSGKLMLENVVMGSIERFDVVDFAGQQGFFWKVQM
PpELF3-3 GRDDEDFAVPTAHGSGARTGSGLMLENVPTDFQVLRDVNFQGGFQWTQK
KfELF3 QGEEDGCVIPASYGPDVESNGASAAAAAIGLPKDVGSVITQHGFQWKSRR
SmELF3 PRVDDVAVPFTPSEKDSATKVVNAAPSAITSAEVMSAVGDEEFWKR
AtEEC --EKNQFS--PIYNTKVASNCSAESLSSGASSYDARVIGEKRFWKMRT
AtELF3 VREEEDFAVVPYINSDDSVSMDSSISSIDVSPPDVVGILGQKFWRAR
OsELF3-1 LADDDEFMPSVFN3DSDDSVSSVCITGWEISPDKIVGAIGKTFWKARR
OsELF3-2 LADDDEFIVSPVSDADDLSDDSVSECTAWEISPDEIVGAIGAKHTFWKARR
AaELF3 HRNEDDFPTVSPDDSSSMVESITIHRISPWHVGAGQEFEWTRRK
MpELF3 GRNDDCVPITPYTAPEESDATMEDPSHKITPKDINAVGQGFEWTARK

PpELF3-2 AIIRQKQVFQRSQVFELHRLVIEQVQLLAKPLSLFRL-SNPYARSHMYVP
PpELF3-1 MIIRQKLFALQVFEHRAEIVQQLLAKLCSFLHV-ANPCATRMYVPP
PpELF3-3 VIIRQDRSKOLFDLHRIMEVQHLLAKEKCFSTV--TNPWAPMYVYP
KfELF3 AMQQQKKFSAQLFEMHRLVKQKMFAENPDFTETEQVPNPWLQNAAY-A
SmELF3 AMQRQQTFOQQLFELHRLIKVQKLIAASSSHKLTVQHMANSKID---YNYQWYAP---P
AtEEC YMINQQKIFAGQFQVELHRLLIMVQKMVASKPNLFLES-GNQWLVPVLVYK
AtELF3 AIANQQRVFAQVFEHLRHLIKQVQLLIAASPDIDEQG<OPWILFVLYK
OsELF3-1 AIMNRQRVFAQVFEHLHKLKVQKLIAASPHLIES-QNQWLVPVLVYK
OsELF3-2 AIMNRQRVFAQVFEHLHKLKVQKLIAASPHLIES-QNQWLVPVLVYK
AaELF3 AIRQQRISFSQVFELRHLKQVLQMLAMPSVEYTV-NPWLGAMYPCH
MpELF3 ILQRQQMFASQVFELHCLIQKVQQLVGEDEEDWE-ANGWFGALMY-P

PpELF3-2 YPGPQSFGPWFPIIQCGVINVKKVVPRAVATQESAASILLSIQKERQR--
PpELF3-1 YSGPCPPWRISRFPTLYGGVKKVVPRAVATQESTASILLSIQTERR--
PpELF3-3 YPPTCSPWARFPQILQQGIVPLIKVAPAHTSASANILLSIQTKEWR--
KfELF3 FSNPAAQWELQFPVKAAPKIVPKPRASETPDGLVSILSIQKRER-----
SmELF3 FQFPFPPV--------SHKAIKVTPTAARPVTAESAASIALHISQKERPS-
AtEEC FPGCPCTY-------MLRAIKAVPHNSTSAEASAIRFRIQΕΕΕΕΕEE
AtELF3 HPGMAHTY-------VTTRIKVVPNKLASEANARIFQSIQERKR
OsELF3-1 YSGPCPPY-------QTNIKVVPHNSTASEAARIFRISIQMERQRD
OsELF3-2 YSGPCPPY-------QTNIRVPHNSQTSEASEARIFRISIQMERQD
AaELF3 SAGPVGWLPIFLPVPVVQGQVKKVAPRAVATSEASAILLISIQQERRR--
MpELF3 YPGFQAHWALPLFPLAFFGKIVKVPVRAMVTAESAALILLSIQQKRQ--

PpELF3-2 ----
PpELF3-1 ----
PpELF3-3 ----
KfELF3 ----
SmELF3 ----
AtEEC HMIS
AtELF3 SSKP
OsELF3 1----
OsELF3 2 S----
AaELF3 ----
MpELF3 ----

;
end;

(d)
#NEXUS
BEGIN DATA;
dimensions ntax=21 nchar=87;
format missing=?
symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=-- match=.;

matrix
AtELF4 MK--GGEDPAMWENLDRNFRQVQSVLDRNRSLIQVQVNDNHQSRMADNMSK
AtEFL1 MEASGVDEVEWVDTESNFGKRAQLYLDQNRDLIQVRVENHMSRIPDNVSR
KfELF4-1 MDLSTLGISKEWPG-AANFDKVMILHDQNRLLIKEINQHNCARRTEGLSR
SmELF4-2 MESSLGAEGKAWGKFQRTFHFQVQFLLDHNRLLIKEINVNQESQIPESLSR
KfELF4-2 MDLTVFDPHEWPGFEK-FIIVQAILIDHNKLLNEINLHERRRPEGLTR
AaELF4-1 MDE----KFNAEETFHRFFKEVCMILDHNNLLISEINHNHETRIPERRORLTR
OsELF4 3 MEEDSGGGGKQVQVLQRFGEVQILEQNRVLIEISQHARDADGLTR
OsELF4 2 MGDSTAEDGKVLHAFQTSFVQVQSLIDQRNEINEQHESKVPDGLSR
OsELF4 1 MGDSQVQNLKLIQTFHKSFQVQVQIDQRMLLEINEQHESRAPDNLTR
AtEFL2 MEQDVMQGLQINFQKFQVQDILDQNRLLINEQHESQADHLGR
AtEFL4 MEQDVQMDGKLLQSFQSFVDQVQDILDQNRLLINEQHESQPDNLGR
AtEFL3 MEQDVGQMDGKLLQSFQSFVDQVQDILDQNRLLINEQHESQPDNLGR
PaELF4-1 MGDAIQDKVMQTFQKSFGQVQNILQHNRLLINEQHESKQRSRTPNLTR
PaELF4-2 MGDAIQDKVMQTFQKSFGQVQNILQHNRLLINEQHESKQRSRTPNLTR
PaELF4-3 MGDAIQDKVMQTFQKSFGQVQNILQHNRLLINEQHESKQRSRTPNLTR
PaELF4-4 MGDAIQDKVMQTFQKSFGQVQNILQHNRLLINEQHESKQRSRTPNLTR
PaELF4-5 MGDAIQDKVMQTFQKSFGQVQNILQHNRLLINEQHESKQRSRTPNLTR
AaELF4-2 ------MDRAKLSKHFHSLSQDFVQDIDHNRVIDEIINQNEEKIPESLDR
SmELF4-1 MEADAVDRKMWAAFERGFSQVFQVQFLLDHRNLLEINEQHESKQPSL
MpELF4 MDRDQMDKTVAGFHQQNSQVQLDHRNLLEINEQHESKQPSL
PpELF4 MDRQPMQVGAHQQNSQVQLDHRNLLEINEQHESKQPSL

AtELF4 NVALIQELNGISKVVMYDSLNTSFSSGFHGTR---
AtEFL1 NVLIGNEINISQVMEISLDLSNFAKFDQ-----
KfELF4-1 NVLLIRELHSNVAKVELEYREISESVVVFVGN--VQ--
SmELF4-2 NVMLIENKYNKREYVAGLPTSIFRSNKLARS

13
\(\text{KfELF4-2} \) NVQ LI R E L N E N V T K V M K L Y E E L S Q A F V Q S F G K --GQK
\(\text{AaELF4-1} \) NV TL I R E L N H N I L K V V G M Y S D L S A V F E K S F E N A K M R I
\(\text{OsELF4-3} \) N VAL I R E L N T N I AR V V D L Y A N L S G S F S R S V T A S K S R A
\(\text{OsELF4-2} \) NV TL I R E L N N N I R R V V D L Y A D L S L F A A S P A H K V R S
\(\text{OsELF4-1} \) NV TL I R E L N N N I R R V V G L Y A D L S A F S A R T M D A Q K V R P
\(\text{AtELF2} \) NV GL I R E L N N R I T V A S L Y G D L S H S F A R S V D A Q K F R S
\(\text{AtELF4} \) NV GL I K E L N N N I R R V A S L Y G D L S H S F A R S V D A Q K F R S
\(\text{AtELF3} \) NV GL I R E L N N N I R R V A S L Y G D L S H S F A R S V D A Q K F R S
\(\text{PaELF4-1} \) NV TL I R E L N N N I R R V V D L Y A D L S S F A S P A H K V R S
\(\text{PaELF4-2} \) NV TL I R E L N N N I R R V V D L Y A D L S S F A S P A H K V R S
\(\text{PaELF4-3} \) NV GL I R E L N N N I R R V V D L Y A D L S S F A S P A H K V R S
\(\text{PaELF4-4} \) NV GL I R E L N N N I R R V V D L Y A D L S S F A S P A H K V R S
\(\text{PaELF4-5} \) NV GL I R E L N N N I R R V V D L Y A D L S S F A S P A H K V R S
\(\text{AaELF4-2} \) NV SL I T E L N Q N I K V V D L Y S G I S S F A S T F Q S ----- ---
\(\text{SmELF4-1} \) NV VL I K E L N K N I G Q V V S L Y S T I S S F V K S F E N H K V R S
\(\text{MpELF4} \) NV LL I R E L N N T K V V D L Y A S L S V S F K L F D N M K A R S
\(\text{PpELF4} \) NV ML I R Q L N S N I G K V V D L Y A N L S N F S ----- ---

\(\text{e} \)
#NEXUS
BEGIN DATA;
dimensions ntax=13 nchar=176;
format missing=?
symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.;
matrix
KfLUX-1 MSRESISKVTGLGSEDTSLEGELTLTLGLSAGLGSVEQAIAAAEA
KfLUX-2 --KEITRRWGVGISPEELAPLSTRLITPVLACAFNIEGDSGASEEEVDE
AaLUX -----MQLGVS---
AtBOA MGEYRIPEIQLPNGDLLTPLSRLYVPSILALAFSMIPERSRTIHVPN
OsPCL1 MGDRVMEWETGLPGADELTPLSQQPLPGCLAAAFRIPPEPGRSTL
PpLUX2 --DDQVSDWTKGLPTSEELTPLSHSTLISRIASAFRIKHEEPMD
PpLUX1 ---
PpLUX3 MHGDHVVEWNPGLPTGEELNPTSKSLSLISLVLASLSMKPEPLKTAADVSG
MpLUX MANNRVREWEAGLSADLTPLHLHSLITVRLARAFCIPTNATSAPADVLQ
PaLUX --EDWLGKWEDELPSPPELMPPLTQNLTPDAAAElfKHPSSASAP---
AtLUX MGGRDVEWEMGLPSDEDSLSPLSILPNLAMAFSPRTSRIQDVNR
PaLUX2 --DDRVEWEAGLPGPDELTPSQLPVLFPELACAFSISPECRSQLDVSR
PaLUX2 --NDRVEWEAGLPGPDELTPSQLPVLFPELACAFSISPECRSQLDVSR
KfLUX-1 PGEQAGAQAGGTEGEEEQREGRGQGNKKQRLVWTAELHRSRFFMNAVNLG
KfLUX-2 AALNTVTPSEQMEHTSDDPPGRALKRPRLWTPQLHHRFCDAVNHLGVE
AaLUX -----------GGPENSNEEPNARTLKRPRLVWTPQLHKRFVDAVGHLGIK
AtBOA ASQITSSLR-----GPEDASGKTSKRPRLVWTPQLHKRFVDVVAHLGIK
OsPCL1 ASAATVSLRGGADGGNTNNSSRASKARLWVTPLHKRFVEVVAHLGKM
PpLUX2 ESQATTHMLFGGLMNSNDE-----PKRARLWVTPLHKRFVEVVAHLGIK
PpLUX1 -----------GGPVSNEEPNARTLKRPRLVWTPQLHKRFVDAVGHLGIK
PpLUX3 ESASFSLQGGPVSNRENTARTLKRPRLVWTPQLHKRFVDAVGHLGIK
MpLUX ASKTVVQQLDCP-----DGNTARTLKRPRLWTPQLHKRFVDAVGHLGIK
PaLUX -----------GVTTENGG-PARTLKRPRLVWTPQLHKRFVDAHLGIK
AtLUX ASETTLSLRR-----GTDLSGKTLKRPLWTPQLHKRFVEVVAHLGIK
PaLUX2 ASKNTMSALRSFENGSSDEHSARTLKRPRLWTPQLHRFVDVSAHLGIK
PaLUX2 ASIAMTVTALRGFPSEFEEPAARLKRPRLWTPQLHRFVDAHLGIK

KfLUX-1 NAVPKTILQLMNVEGVTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
KfLUX-2 NAVPKTIMQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
AaLUX NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
AtBOA NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
OsPCL1 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PpLUX2 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PpLUX1 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PpLUX3 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
MpLUX NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PaLUX NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
AtLUX NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PaLUX2 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG
PaLUX2 NAVPKTQLMNVEGLTENVDASHLQPSAPIARPPHHACKYRLYKLKLAG

KfLUX-1 LPPNARMMAPPLHQGPYPPPPPHRMQ
KfLUX-2 DAPAVPSSSDAVFANGQPPPGRGGAH
AaLUX VPTDGPANDQLFASTPLPPNGLFP
AtBOA LTTEEDSSSDQLFSSTPVPPQSFVND
OsPCL1 LSNGGSPSFHDIFASTPVPHA-----
PpLUX2 LSNQPASDHLAFASMLPPGMLFP
PpLUX1 LPSDGMPANDQLFASTSLPSNLGLFP
PpLUX3 LSSDGPPANDQLFSSSTPLPPNLGLFP
MpLUX LSNGGSAADPLFASAPLNNLQFA
PaLUX LSSEGPSADDQLFASTPPVEDF--LFP
AtLUX LTNEGPSASDKLFSSTPVPPQSFANE
PaLUX2 LSNGGPSLSDHLFASTPVPHASHA-----
PaLUX2 LSSEGPSADDQLFASTPVPHASHA-----

;
end;
#NEXUS
BEGIN DATA;
dimensions ntax=9 nchar=1001;
format missing=?
symbols="ABCDEFGHIKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.;

matrix
CcGI --MAFVDLLLLQ
CiGI PGDDQDRSEDDLPKLRWLQGLVSSSSLRRPPSNNQQRQVEVLAYTELFQG
AaGI ---------MSVARPEWLLGLQSSSLFRPPPRNHQEMEILGYLEILMVQ
PaGI ---------MSISEQKWHLGLQSSSSLFRPQPQDAQRQRQAELAYVELFAQ
AtGI ---------SSSSSERWIDQLQFSSSLWPPRPDPQHQKDQVAYVEYFGQ
OsGI ---------MSASNKEWQDLQFSSSSLFPWPPQDQKQAQLAYVEYFGQ
MpGI ---------MSFPQGWGWLQGSSLFQPPESAIQRKQAELASVELFGH
SmGI ---------MSQPPQWHTLGYLSTSSLFPRPPLDHQERTKTVAYVEYFGQ
TlGI ---------RQQWLRGLQSSSSYRPPPANHRQRQTEVLEYVELFGH

CcGI LSQDLFAHVIALRILQYPREHPILLDVLASIVLHSPHEHAILHVLLS
CiGI FASELLSDDISQLVRNYHQPQNSSTLLDDVLATFVHLHPEHDATVHLLS
AaGI FASESFVDENMLEVRSHYPKEEACLVDLLAASFVHLHPEHDATVHLLS
PaGI FTS-EFPDDIAELVHSHYPNGEASLLDDVLAIVFVHLHPEHAILHLLS
AtGI FTS-QFPDDIAELVRHQYQPSTKRRLLDDVLAMIFVHLHPEHAVLPIIS
OsGI FTAQFQFEDIQLIQSCYPSEKELRQLVDLEFVHLHPEHAVBVPIIS
MpGI FASESFVDIGELVRAHETYNECHLLDDVLATFVHLHPEHAVHLLLS
SmGI FASDSFPEDALVDRHPKHEPCCLUDLLDDVLATFVHLHPEHAGTLHLLS
TlGI FASDAFVDDIGELVRHYPSEEEVCLDDDLDDVLATFVHLHPEHAILHLLS

CcGI SLVHGNLRYSRGISPSFSAFVAIFSPSSQRCAPCEQYELACAELQLLTHYN
CiGI CIIDGSLYESRKSPFPFSFVALFTNSTERMGLRQWALACTEILRVLTHYN
AaGI CVIDGTLYSEKGSFPRCFIALSFSSANEKHFSEQWAVACETLRLTHYN
PaGI CIIDGTLYDJKMSPSNFSNLFSPPSENDYSEQWALCEILRVLTHYN
AtGI CLIDGSLYVESKHFPFASFISTLVCPSSENDYSEQWALEILRILTHYN
OsGI RIIDGTLYSDRNGFPPFSFISLFSHTSEKEYSEQWALCEILRVLTHYN
MpGI CVIDGTLYNKTPPSFVSLFSPSTDFSEQWALCEITLRLTHYN
SmGI CVIDGTLAYSFTPPGSFVSFGVSSERDLTEQWALCEILRLLLLTHYN
TlGI CVIDGTLYDKTPPSFVSLFSPSTEFSEQWALCEITLRLTHYN

CcGI RPVQRSTSS---------GRVAPERVLTQWTIDCLLASPLGFRDYFRWSCGGV
CiGI KPVHKNRQEEDTNRNERRDARFRRLTMITIDCLLLAAPS1MTNYFRWCGGV
AaGI RPYVKSDP---------EKRVPSRLTPWITDSLAAAPGLVRSDFYFRWCGGV
PaGI RPYVYKIDR---------QDKKPLRLQTPWITDSLAAAPGLGIRDYFRCGGV
AtGI RPIYKTEQ---------HERKPLRPLSPWISDLLAAGPLGISDYFRCGGV
OsGI RPIIFKVDD---------PDRLPLRPLSPWITDSLAAAPGLGIRDYFRCGGV
MpGI RPTFRSDT---------DRRSPTRLLTPWITDSLAAAPGSRDYFQWCGGV
SmGI RPIYKSES---------GRRAPKRLLLTPWITDSLAAAPGLGSKDYFRCGGV
Protein	Sequence
TlGI	RPTYKAET-\-\-\-EKRVPTRLTPWITESLIAAPLGRSDYFRWCGGV
CcGI	VGQYATSGDLHPLPSP--SGPGKHQPQLMPS\-TPRWAVANGAAAVIVSVDDE
CiGI	TGYAAVGAL\-RPTTTL\-GNGQGKAPQLQPSPTPMWAMANGAAAVILWVDDE
AaGI	MGKYAAGVDLKPSTV奶奶GKQPLLPSPTPMWAPANGAAVILSVCDDE
PaGI	KGKTAAGGKLKPPTTAGGRGPGKHLMPSTPMWAPANGAVIGLSVSVDDE
AtGI	MGKYAAG-ELKPTTAS-RGSKGPQLMPSPTPMWAPANGAGVILSVCDDE
OsGI	MGKYAAGKPTTTAYRSRSGKHQPQLMPSPTPMWAPANGAVIGL SVSVDDE
MpGI	MGKYTAGEELRPTTASSRQQGKQPQLPSPTPMWAPANGAVIGLSVSVDDE
SmGI	LGKYAGGGLRPPTTGDCKGKHGPQLLLPSPTPMWAPANGAVIGL SVSVDDE
TlGI	MGKYAAGVLRPTTASSGQRQGKHQLLLPSPTPMWAPANGAVIGL SVSVDDE
CcGI	VARWGSVELTAA\-APALLLP\-EVEDEHLI-GLP\-PLEF\-ARLFHRYYAI
CiGI	VTRFGTADLTAAAVPALLLP\-PDHDDDARAVALP\-PLEYTLRHFHVYTM
AaGI	VERYRSAHLTAAAV\-APALLLP\-PEPA\-ALNILV\-APLEYQLFHRYYAI
PaGI	VTRYETANLTAAPALLLP\-PTTTLDEHLA\-PLPLEYACLHFHVYAI
AtGI	VARYETALTLAADV\-PALLLP\-PTTTLDEHLA\-PLPLEYARLFHRYYAI
OsGI	VARYETAL\-PALLLP\-PPPTTLDPEHLA\-PLPLEYARLHFHVYAI
MpGI	VRYETADLAT\-PALLLP\-PPPTTLPDEHLA\-PLPLEYP\-ARLFHRYYAI
SmGI	VRLYETADLAT\-PALLLP\-PPPTTLPDEHLA\-PLPLEYARLHFHVYAI
TlGI	VMRYETAL\-TAA\-PALLLLPP\-PATALDQL\-VLA\-PLPLEYARLHFHVYAI
CcGI	ATSGATQRLLGLLEAL\-RPDALDA\-AVQLVELLRL\-SAEDGYSGACQLPNN
CiGI	GAPVATQRLLLGLLTDVG\-P\-L\-ADAMEA\-AVLH\-RS-EDFGPPK\-LPP
AaGI	ATPSATQR\-LLL\-LPALLES\-SWAPDALDA\-AVQLVELLA\-EDYAST\-LMR LPN
PaGI	A\-TPSATQR\-LGP\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYGVR\-LPRN
AtGI	A\-TPSATQR\-LGP\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYDSG\-LMR LPN
OsGI	A\-TPSATQR\-LGP\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYDSG\-LMR LPN
MpGI	VPSRATQR\-L\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYDSG\-LMR LPN
SmGI	VLSRATQR\-L\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYDSG\-LMR LPN
TlGI	VPSRATQ\-L\-LPALLES\-SWAPDALDA\-AVQLVELLRA\-EDYDSG\-LMR LPN
CcGI	WLHLHFLRP\-G\-V\-AMAK\-Q\-S\-G\-A\-S\-ADAAA\-LLFR\-SFQP\-V\-LL\-F\-TP\-P\-HP\-GA\-AQGYPD
CiGI	WLLHFLRP\-G\-V\-AMSSRAAV\-S\-A\-S\-ALLFR\-SFQH\-T\-L\-F\-PPP\-A\-LPD
AaGI	WLLHFLRP\-G\-SAMAR\-Q\-SVI\-A\-D\-AA\-LLFR\-SFQP\-V\-LL\-F\-PR\-GA\-Q VR
PaGI	WLLHFLRA\-T\-G\-AMRMV\-G\-IA\-AD\-T\-AA\-LLFR\-SFQ\-P\-LL\-F\-PL\-LAQ\-GDV
AtGI	WMHLHFL\-R\-G\-AMSM\-RG\-AVA\-DA\-A\-ALLFR\-SFQ\-P\-PLL\-P\-QLV\-E
OsGI	WMHLHFL\-R\-G\-AMSM\-RG\-AVA\-DA\-A\-ALLFR\-SFQ\-P\-PLL\-P\-QLV\-E
MpGI	WLT\-H\-L\-R\-P\-G\-AMQ\-A\-R\-G\-ST\-TA\-D\-AA\-ALLH\-F\-R\-P\-L\-P\-QQG \-L
SmGI	WFR\-L\-H\-L\-R\-P\-G\-AM\-T\-K\-Q\-G\-I\-A\-S\-D\-A\-A\-ALLH\-F\-R\-P\-P\-P\-R\-G\-H\-A \-G
TlGI	WLHLHFL\-R\-P\-G\-AM\-T\-V\-R\-G\-I\-A\-S\-D\-A\-A\-ALLH\-F\-R\-P\-P\-P\-G\-H\-A \-G
CcGI	AGRFV\-V\-KE\-Q\-A\-A\-A\-A\-A\-A\-D\-A\-T\-A\-L\-G\-A\-V\-E\-E\-W\-R\-C\-L\-W\-E\-A\-A\-F\-G\-L
CiGI	TSS\-LR\-M\-M\-Q\-V\-L\-H\-A\-E\-E\-T\-A\-R\-G\-A\-L\-M\-C\-H\-G\-P\-D\-W\-E\-R\-I\-C\-S\-V\-L\-E\-A\-A\-Y\-G\-L \-T
AaGI	VIPFR\-D\-E\-I\-E\-M\-A\-A\-V\-\-A\-\-Q\-\-N\-\-G\-A\-T\-C\-A\-A\-A\-L\-M\-E\-H\-G\-P\-D\-W\-E\-R\-I\-C\-S\-V\-L\-E\-A\-A\-Y\-G\-L
PaGI	VQ\-C\-\-S\-G\-E\-E\-I\-E\-M\-Y\-Q\-\-S\-I\-E\-T\-A\-Q\-G\-V\-A\-S\-L\-M\-C\-L\-H\-G\-P\-D\-W\-E\-R\-I\-C\-S\-V\-L\-E\-A\-A\-Y\-G\-L
AtGI	IQHYR\-K\-Q\-I\-E\-V\-A\-E\-E\-I\-T\-A\-Q\-G\-I\-A\-S\-M\-L\-C\-H\-G\-P\-D\-W\-E\-R\-I\-C\-S\-V\-L\-E\-A\-A\-Y\-G\-L
OsGI LHHYKRQLEVPASEATIDATAQGIASMLCAHGPDVEWRICTIWEAAYGLL
MpGI STQSREAAKAAAQESEVATASGGLALTGHGIDVECHICAIWEAAYGLR
SmGI VVQFHAQMEALATQVNEEATAKGVASLMRDHGRDVEWRICALWEAAYGLL
TlGI INIQEVAADAAAQAANEETATAAQAVAALMCTHGLDVEWRICALWEAAYGLL
CcGI PPQSSSSQLLPLLVANLAIYPFLPVLSWNVLRPLRRFHPHPNPSQSSLGR
CiGI PVDSTVIALSHVGGISEVRHVLVLSWNLFRPLLLHFEHLPQPGPSHACLRR
AaGI PVDLSVNVQQLDMTQLPFPVLVSWNLHFPLRRVMEHLRTGTRSQACLRR
PaGI PLSSSTVFLPEIVATQLPPPVLSWNLQPLLRLVLEYLPGRSPSEASLMR
AtGI PLNSSSAVDLPEIVATPLQLPPILSWSWNLPLLKLVEYLPGSPAELMKG
OsGI PLSSSAVDLPEIVTAPQPLTFKLPLLLRALSILFYEYLPGRSPSEACLMK
MpGI SLTSSVLPLDPVLSTPLQPPVLSWNLRLAlFRLISLYLPSPSQAACLKR
SmGI PLDKSVDLMPVEMTQLPLSSLPFLTVPPLVEQGCQSTQLCRR
TlGI PLNSSLKPDVLPEIVATPLQPPFLSWNLVLPRLVYMELPREPSLSLVMRR
CcGI IFSATVQLGLERTQFSDESAGARLVGMTEIRALVHHLTEPCPSAPALASK
CiGI IFSATLSSVLFSFPLTGHPPQTPQTLQPOQNDQQALHHHHHHHDLSSP
AaGI VFSATVEAIVQRTFPCEENAGAKNVGMGALRMAVGLHFTEACPSDVAA
PaGI IFTATVQLIALRRTAPQPSSTKSNRAELRTMVHLSFTESCVPIDLASR
AtGI IFVATVETIRLSFPSEPSSATKNLASEMRLAVHALFLESCAGVFLASR
OsGI IFVATVEAIRLRTSFQSETSSQSNRAELRTMHLFVECSADLAR
MpGI IFVATVEAILRTFPLEDEVAGAKSVGMELRAMLHCLFTESFLSPFALAH
SmGI IFSATVAIIRSFPLDVSAGMAELRALVHLFTETAFPSALASQ
TlGI IFSATVEAILRTFQPSVEGAASQGVMELRATLHCLFTETSCPSDLGSQ
CcGI LFTRLLTSLAYDAISARSVIGVATGRGRRREVCAGGGVGSRMNGG
CiGI LQFPLPLHSQSSSSSSFP--K---FPATQ--IPIAwapla------WPPPS
AaGI LLADALLCLESQKRGQADDQGRAVATFDSYLMAMCALAECVMAFSR
PaGI LLFMSITVCLSHDAVQKAKKERGAVATFGSIALAAVCAQACEVQLFSSTS
AtGI LLLFVVLTVQSVHESQSSNVGQGPPVAAPDSYAVLAAVCAACVMAQYPMIS
OsGI LLLFVVLTVQSVHESQSSNVGQGPPVAAPDSYAVLAAAACLSELQFPFS
MpGI LLLSALSLCSSDASQQGKQGRHAVATFDSYAVLAAVCAACVQPFPSP
SmGI LLSDALTVCLSHDTRLQSNKDRGAVASFDSYIAAVCAACVQQLTFS
TlGI LLSDVLTVCLSHDQSLVSQKRAGAVATFDSYIAVCACVQAMCQSLPLR
CcGI VRSQEGQGGQEGGQIEEPSREMAGVDQAFFPFRETEAEGVGTGDEMSG
CiGI PTHT-EHGPFPYHHHHPLHT-----HTTPSVPAAAENORSATQKMLATP
AaGI STSS-FPALSNGTPVGIQQAARKVLELLERLLAEVPASLAEQSSSSIDVGD
PaGI PMPV-VEGPPNGFQAVNTRRLLGIAMELSKPAAGCSSESISIIAAA
AtGI GGGN-SKEYGAGIDSAISHTTRILAILEALFSKLPSVSQYTSSSEIIVA
OsGI KNGN-SNEIHSISISAILHTTRILGILEALFSLKPSVSQYTSSSEIIVA
MpGI AYFT-SNRFPGYFANVLKETKLRLGGELLGVPSFAGTTSTNEILQG
SmGI ADGT-------GVTNSAQARLMSVEGLLVPEFSPVGNPNDLVSEA
TlGI SMFT-PNVYVPEVAADAHTVRVLLGLESSLALVSHPSSHGTSSGESIVA
CcGI SGGQIETKSQGTPMANGAQMTEKTTGGSFQKRKRRSEKSVRGARGV
CiGI STLSLPLLPPGFLLLLLLLQLQTRLPWPPSLLLSFYPYHHHHHPSSL
AaGI ISAAHISGVLGKSACLQLAGAVRCKWDSEVCTRASHALELVQAVCQTM
PaGI MAVAAHVDLLGSKCAMHAI5SVMMRCKWDSELCARASRTVLALIDVNRKAV
AtGI MAVAAHISEFRRSKALTHSLGMRCKWDKEIKHRASSLYNLIIVDSKVV
OsGI MAVAHISFRRSRPCLNLASALKQCKWDAEISTRASSLYHIDLHFKT
MpGI VGAAMHDSLQSLHSLTGLRMIRCKWPGILKASALSASIESGDLV
SmGI IVAAMHISLRSQTHAILRCKWPGVSSKALSILAVDGNDKAV
TlGI VVAAMHSSLGRSNACISHLTAIRCKWPGIQEKAASVSLAVEGNDVV

CcGI KGAARARRGGLTSC-AAFSMSRSRSGSPLQLGADADASCQD-KVGAIMLL
CiGI LLLLLLAAAGGGGGA-VETSSAPSSTEP-HPSGLGKGVPSSRLALRGQSSTMQWSGPIRVI
PaGI ASIJKSESSSVSHV-E-DVSGKVIALNSMDGSVSLTVDNDVGNVFHAV
AtGI ASIVDKAEPLAYLTDGSEGKLKIDFILLAASDNFLTDATGQLLRSV
OsGI TISVNAKPLEAHL-ELNGSGKAILSLQVEASDLNFLMDSQTLRSLV
MpGI AIATHGRNGFGGD-GENVGEARSFLPLEASDVLCSKTLTSDLKSV
SmGI EAVFYNAKDLSIGE-ASGDKVDALSLSVDSTNLCC-TVSDLKAV
TlGI ATAVHASNYESKID-RINGMEKIANGILLPLAADASSCNVKSICNLKLV

CcGI LMSQQDVTAVPVLWQRLVLPHEVSVSQEGTASSRSRQVVAEALCNLVV
CiGI LMEKOQLLAAAPLWQRLMCAPVLSTEGTSAEKWRQVLEGCLNIVV
AaGI LTKEKDELVSSSVPVIWVRLAIPDPNSTIMNGASPRQGWRQVEAICLKVE
PaGI LEEKQDLVESPLWQRLWPLITPEMSVETSAKQGWRQVVDALCNIVL
AtGI LAEKPELSFSVLSSWHKILAAPIQDTEASTSAQQGWRQVVDALCNVVS
OsGI LSEKQELCSVSVLWKLASPEMQMSAESTSAHQGWRQVVDALCDIVS
MpGI LVGKQHILAIGATALLCQRLILAPDNPNAEGTSAERGWQVVEANCEFSA
SmGI LKQKRLDVAIPLWQRLMAEELTPESTKEAQSAGWRQVVDAVCNVV
TlGI LTKWQLAVAAVPPLLWQRLIFAPAEPVSSEGTSAKGRGWQVVEACINNVV

CcGI AFSPGKASSAILAQAERDLKPVMPNVEVATAIAPDWSVNTRIMSLLAEILQQR
CiGI APLQAOAVAILAIAEERLEPAWAEEDVGGDVCGRNGNIRVAISLAEMLLIR
AaGI TFPGBKTSAILLQVQRDSLWSWGDQSDMRVENRKVRNRTIILVEHRLKL
PaGI ASPAKAATAIVQVAAERDLQPWVARHDSQGQQWLRQIRVSLAEILLYR
AtGI ATPAKAAAVAILQVQARLQPWIAKDEEQKMKWNQRIKVLVELRNH
OsGI ASPTKAADIAVQQLAQEKLQPIARDDEGQQKMKVHRQVRKLAEILRNH
MpGI AFSQVKVARFVQSAEAELRPWTVKDDGPSQSLWIRTRVCCULLSDILRT
SmGI TEOKATSVVLQAIRGQIPWIGIDG--GEKWRMNTRIVFSLLELRNL
TlGI GLPAQAAAIAIVQVQERDLHPWTRDDLQVQTVWVRNTRLSSLTELLRL

CcGI RSREAWTAVACSESSLRLRATDGLIALAGVETPLLQELLEAVSVARSAQA
CiGI QCPAAAVGVAHAAHALLHRATADIGIEGEACTPLLQELLEAATAADVARH
AaGI HCEPAAILQALAKSSDLLRATDGLIEEADAYLPLLQELLEAAANIAVQRSLS
PaGI NAPWALMNASDLMRATDGLMVDGCACTTPLLQELLEAMAVTAQLSLG
AtGI DRPESLVIALASDLDLLRATDGLMVDGCACTPLLQELLEATARAPVLA
OsGI DSPEALVILASDLDLLRATDGLMVDGCACTPLLQELLEVTARAVHLVE
MpGI HLPKIVVQVHDGALLRRATDGMGLDGEAACLPLLQELLEAAALAAQBAALK
SmGI D-PQVLGILANAGTLVQATDGSVDGPECTLPLLQELLEAAAALK
TlGI TSEAVKVVQVSSDLHRATDGMVTGEACTPLLQELLEAMAVQVLLR
CcGI

```
WPIGGCQVAGKLLDLLKVRIPSLKVCKVCHENAHVRALATSLLQTILDTPD
```

CiGI

```
WGHSVTELLFMLKERRPVTVRCLSSTSTHVRALAMALLRHLAYEAV
```

AaGI

```
WDNSGVGQAQKLVAVLKDRIPOAVCRCLHSVCDARVLSQTFIQLDRVADS
```

PaGI

```
WVPFGKAMAEGLWNLLKYRLPATVQCLHSSAHHVRLSTSVLRDLHAES
```

AtGI

```
WGPSGLAVVDGLSNLKLKCRRLPATIRCLHSHPSAHHVRLSTSVLRDINQQSS
```

OsGI

```
WGDSGVSVADGLSNLLLKCRRLSTTIRCLHSHPSAHHVRLSMVSVLRLNSGQ
```

MpGI

```
WEEPNEVADQFLSRLRELPATVRCLHSNHSTHVROMSVARLRDMLYMES
```

SmGI

```
WKVSS----RGLLILLKITERALPAICLIHDSPIRASSASLLRREIVSTDV
```

TlGI

```
SEVSGKNALDKLILLKDLPLPAICLIHDSPIRASSASLLRREIVSTDV
```

CcGI

```
SPMAASWQAVERAVSLVSRDRQRHGLEVRILEEVSFALGNCNT-C------
```

CiGI

```
LAARCEWRRAVEQCLSEWAHFRSGLSTLLVDAASTLHCQIAV------
```

AaGI

```
VRLDSDKRAVEEALMFMEAQHRRAARLSTLSLLAAATVGLTIPN------
```

PaGI

```
LNFVQDWNKAVEQCAWAEHNRQARGMISIALALLAANLGSAN------
```

AtGI

```
IPISIDWKADIQNCEAHLSSLLSTMPTQFILTAARELGCSTIL------
```

OsGI

```
INSIINWQADVRCWEQAEHSSRAATGLTLAFLTAALKGCLPL------
```

MpGI

```
LRSTGNWRETYVQCVVWEKGSSASS-TIQIVEEYLSRGTSVWIWKL
```

SmGI

```
LRAAGAWLEDVQSIAWETHYRRAEGLSESFLASAIALGCLKLF------
```

TlGI

```
LQGEDWRRAVEKCEWEAYYRATGMSLSSASSLGCSP------
```

CcGI

```
-
```

CiGI

```
-
```

AaGI

```
-
```

PaGI

```
-
```

AtGI

```
-
```

OsGI

```
-
```

MpGI

```
I
```

SmGI

```
-
```

TlGI

```
-
```

; end;

(g)

```nexus
#NEXUS
BEGIN DATA;
dimensions ntax=12 nchar=559;
format missing=?
symbols="ABCDEFGHIKLMNOPQRSTUVWXYZ"
interleave datatype=PROTEIN gap=- match=.
```

```
matrix
KfZTL       MEDRIEVLHSSPHGLVTDALAEHPITYVNTIFQYTYGDAESILGRNC
AtFKF1      HAIVGMYMPMTPPSIVSDALEPDPFIYVNRVEVFYTGYRASEVLGRNC
OsFKF1      GDRDEAAAEGERAAIIVSVAEVDFPVIYVNAFEAATGYRASEVLGRNC
```
AaZTL MDGRVKMLQTSCPALVTDALELDQPVIYVNSIFEHATGYKAEEILGRNC
AtLKP2 MIEWPGSLTAPCGFVVSDELPDNPIIYVNTVEIYTGRIAEEVI-----
SmZTL -------MLGPCSVVTDALDVDPFPIIYVNNIFEFITGKYEAVLGRNC
OsZTL1 MEWAIEGV--GACGLVVSDELPDFPIIYVNRGFDATGRIAEEVLGRNC
OsZTL2 MEWAIEGMASPCGMLVTDALDPCPIIYVNCGFFEEATGRIAEEVLGRNC
PaZTL MEWAMDNLSTPCGFAVTDELPDPIIYVNAFFEYVTGKAEEILGRNC
AtZTL MEWPVGNLHTAPCGFVVTDAVEPDPIIYVNTVFEMTVGRIAEEVLGNC
MpFKF1 --MRELVHSSPCGMLVTDALPDPIIYVNTVFEGITYKAEEILGKNC
TlZTL MDWRLEMLHSSPCGMLVTDALPDPIIYVNTVFEGITYKAEEILGRNC

KfZTL RFLQMRGEFADKRPAVDLKTVRKMEIAAIGQEFKGEILLNFKSKDGPTLI
AtFKF1 RFLQYRDPAQRHRLVDVPVSVSREIRCLEGHIEFQGELLNFKSKDGPTLI
OsFKF1 RFLQFRPFAQRHRLVDPMVPVESIRECLNEIGEFQGELLNFKSKDGPTLI
AaZTL RFLQNRGPFAQRHRLVDEATTISIEIRRCISGVEFEGILLNFKSKDGPTLI
AtLKP2 -------GPTKRHPMDVSTIARAQMRCLEIGEFQGELLNFKSKDGPTLI
SmZTL RFLQCRGPFAQRHRLVDASAVTEIRRCREIGEFGQGELLNFKSKDGPTLI
OsZTL1 RFLQCRGPFAQRHRLVDSATTVEIRRCREIGEFGQGELLNFKSKDGPTLI
OsZTL2 RFLQGRGPFAQRHRLVDAMVCTEIRRCRevIGEFGQGELLNFKSKDGPTLI
PaZTL RFLQRYRGPFAQRHRLVDPMVESIRECLDEEGEFQGELLNFKSKDGPTLI
AtZTL RFLQCRGPFAQRHRLVDPMVESIRECLDEEGEFQGELLNFKSKDGPTLI
MpFKF1 RFLQCRGPFAQRHRLVDVTAVTIRKCTEGFEGILLNFKSKDGPTLI
TlZTL RFLQYRGPFAQRHRLVDVSTVEIRRCRGEFEGILLNFKSKDGPTLI

KfZTL NNLLMTPIHGEDIVTHFIGIQSFPIKMDLGPLPERPWHDSRHNAPVFA
AtFKF1 NTRLAPIRDDDGTIHTVIFGQFSETTIIDLDVRVSPVFKKHDPCGIQ
OsFKF1 NTRLAPIPMHDDDFQVTHTIGIQLFSEANIDLSNVYVPYKQSEYCCILQ
AaZTL NKLFLTPILDEGAVTHVIGQSFQAEKIGMGPLSNAILKERSSTCGILQ
AtLKP2 NKLRLVPIDDGAVTHVIGQSFQAEKIGMGPLSNAILKERSSTCGILQ
SmZTL NKLCLPIRQEDRGITIIGIQSFSEVKDLGILPLPPLWRNSKRDGCILR
OsZTL1 AKLQLTPIYGDEDTITMYGQFFNDNVDDLSPLVSTKEDSEHSDLFL
OsZTL2 NKLHLPITGDITDITMYGIQFFTANVDLGPLPLPSLTKEDSEHSLFL
PaZTL NKLRLTPITGHGIITIIGIQSFTEALGDSPLSAIKEKSDGCILQ
AtZTL NKLRLTPIGDITDIITIIGIQSFTEALGDSPLSAIKEKSDGCILQ
MpFKF1 NKLCPITIADGTVITHVIGIQSFTEAKLGLPLPGW---WKDSDKACGLLQ
TlZTL NKMCLTPIHAGDGVTHIIGIQSFMEALKDLGPLPCWSKDRSDDCGLLH

KfZTL LSDEVLVSRILGRLAPKDVAICSVMCRCVRFFRRLQDDYIWKRCRNWSNGH
AtFKF1 LSDEVLHNLISRSLTRPDVAGISGACRRRLQILTKESVRKMCQNAWGE
OsFKF1 LSDEVLHNLISRSLTRPDVAGISGACRRRLQILTKESVRKMCQNAWGFD
AaZTL LSNEVLSYRILAVSPRDVAGISGLVCRRHLQHTKNDLLKLCVQNAWGD
AtLKP2 LSDEVIAIKIQLSGDGIAVGCVRRLNLKNDLWVVRMCQNTWGTE
SmZTL LSDEVLVQKLQALQRTPRDVSVALCRRFNETNKTLWLVRCNAWGE
OsZTL1 LSDEVLQKLQALQRTPRDVSVALCRRFNETNKTLWLVRCNAWGE
OsZTL2 LTDEVLCQISLRSRPRDASVVSSCVCLRLLLRTNECLWVRMCQNAWGE
PaZTL LSDEVLAQKILSLRTPRDASVVSSVCRLQLTKNDLWVRMCQNAWGE
AtZTL LSDEVVSMKLISLRTPRDASVVSSCRLVLTKNDLWVRMCQNAWGE
MpFKF1 LSDEVLTHKIIAYVAPRDAALGLVCRRLHEITKNDLWRSVQNSWGE
TlZTL LSDEVLAQKILALVAPRDVAIGSVCKRLHELTKNEDLWRMVCQNAWGSE
KfZTL TAAAAIQALDTPSLGWARIARELTLEAAAWRKFTVGGVESPRCNFSEC
AtFKF1 ITGTLEIM--TKKLWGRGRELTLTEAVCRCWFTVGGVQFESPRCNFSEC
OsFKF1 VTVRLEMS--TKMLWGRGRELTLTEAAAWRKFTVGGREVESPRCNFSEC
AaZTL ATMSLQALPGTSLWGRGRELTLTEAVWRKFTVGGAVEPRCNFSEC
AtLKP2 ATRVLESVGAKIGRWLRELATEFTTATEAWKFsVGGTVEPESRCNFSEC
SmZTL TTAVERVHNPRLSDWGLARELTLEAAAWRKLVGGAVEPRCNFSEC
OsZTL1 ATQVLETAGTSLWGRGRELTLTEAVTRKFTVGGAVEPRCNFSEC
OsZTL2 TTRALETVPAAKRLWGRGRELTLTEAVWRKFTVGGAVEPRCNFSEC
PaZTL TTRVLETVGAKRGWLRELATELLEAAAWRKLVGGAVEPRCNFSEC
AtZTL TTRVLETVGAKRGWLRELATELLEAAAWRKLVGGAVEPRCNFSEC
MpFKF1 ATKALESVPAGDNLWGRGRELTLTEAAAWRKLVGGAVEPRCNFSEC
TlZTL ATAMLEAVPPAGRIWGLARLELTLEAAAWKLTLVGGGVEPESRNCNFSEC

KfZTL AVGNKVLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
AtFKF1 AVGNRLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
OsFKF1 AVGNRLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
AaZTL AVGNRLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
AtLKP2 AVGNRLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
SmZTL AVGNKVLFLFGGEVNMQPMDTFVLDSLLEHPAWRHVDVSAAPPGGWGHT
OsZTL1 AAGNRVVLFLFGGEVNMQPMDTFVLDNSKPEWRHINRASAPPGGWGHT
OsZTL2 AVGNRVLFLFGGEVNMQPMDTFVLDNSKPEWRHINRASAPPGGWGHT
PaZTL AVGNRVLFLFGGEVNMQPMDTFVLDNSKPEWRHINRASAPPGGWGHT
AtZTL AVGNRVLFLFGGEVNMQPMDTFVLDNSKPEWRHINRASAPPGGWGHT
MpFKF1 AVGNKVLFLFGGEVNMQPMDTFVLDSLKVPAWQHVNKSAPPGGWGHT
TlZTL AVGNKVLFLFGGEVNMQPMDTFVLDSLKVPAWQHVNKSAPPGGWGHT

KfZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtFKF1 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsFKF1 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AaZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtLKP2 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
SmZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsZTL1 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsZTL2 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
PaZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
MpFKF1 LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
TlZTL LCCLNGSWLVLVFGGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW

KfZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtFKF1 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsFKF1 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AaZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtLKP2 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
SmZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsZTL1 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
OsZTL2 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
PaZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
MpFKF1 HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
TlZTL HSSCTVGDYLVFVGCGTDGPLNDVFVLDDLDAEHPAWREVAGAPPLPRSW
AtFKF1 HELCLASRQ
OsFKF1 HELCLASRP
AaZTL HELSLASKM
AtLKP2 HELLLATST
SmZTL HELSLSSTS
OsZTL1 HELSLMFPT
OsZTL2 HELSLASST
PaZTL HELSLASKH
AtZTL HELSLASYL
MpFKF1 HELSITHKS
TlZTL HELSLASKV

;
end;
Fig. S2 Inferred phylogeny of homologs to the ELF3 gene family. The tree was constructed using MrBayes and PhyML on an amino acid alignment of proteins retrieved from *Arabidopsis thaliana* (At), *Oryza sativa* (Os), *Picea abies* (Pa), *Selaginella moellendorffii* (Sm), *Physcomitrella patens* (Pp), *Marchantia polymorpha* (Mp), *Anthoceros agrestis* (Aa), and *Klebsormidium flaccidum* (Kf). The Bayesian tree is shown with posterior probabilities (above) and bootstrap proportions from PhyML analysis (below) for each node. Nodes with conflicting support from the two methods were collapsed. Branch length is relative to the thickness of individual branches: the shortest branches have a straight line and the longest are increasingly triangular.
Fig. S3 Inferred phylogeny of homologs to the ELF4 gene family. The tree was constructed using MrBayes and PhyML on an amino acid alignment of proteins retrieved from *Arabidopsis thaliana* (At), *Oryza sativa* (Os), *Picea abies* (Pa), *Selaginella moellendorffii* (Sm), *Physcomitrella patens* (Pp), *Marchantia polymorpha* (Mp), *Anthoceros agrestis* (Aa), and *Klebsormidium flaccidum* (Kf). The Bayesian tree is shown with posterior probabilities (above) and bootstrap proportions from PhyML analysis (below) for each node. Nodes with conflicting support from the two methods were collapsed. Branch length is relative to the thickness of individual branches: the shortest branches have a straight line and the longest are increasingly triangular.
Fig. S4 Inferred phylogeny of homologs to the LUX gene family. The tree was constructed using MrBayes and PhyML on an amino acid alignment of proteins retrieved from *Arabidopsis thaliana* (At), *Oryza sativa* (Os), *Picea abies* (Pa), *Selaginella moellendorffii* (Sm), *Physcomitrella patens* (Pp), *Marchantia polymorpha* (Mp), *Anthoceros agrestis* (Aa), and *Klebsormidium flaccidum* (Kf). The Bayesian tree is shown with posterior probabilities (above) and bootstrap proportions from PhyML analysis (below) for each node. Nodes with conflicting support from the two methods were collapsed. Branch length is relative to the thickness of individual branches: the shortest branches have a straight line and the longest are increasingly triangular. The SHAQKYF-like motif in LUX homologs is SHLQKYR.
Fig. S5 Inferred phylogeny of homologs to the GI gene family. The tree was constructed using MrBayes and PhyML on an amino acid alignment of proteins retrieved from *Arabidopsis thaliana* (At), *Oryza sativa* (Os), *Picea abies* (Pa), *Selaginella moellendorfii* (Sm), *Marchantia polymorpha* (Mp), *Anthoceros agrestis* (Aa), *Cylindrocystis cushleckae* (Cc), *Coleochaete irregularis* (Ci) and *Takakia lepidodzioides* (Tl). The Bayesian tree is shown with posterior probabilities (above) and bootstrap proportions from PhyML analysis (below) for each node. Nodes with conflicting support from the two methods were collapsed. Branch length is relative to the thickness of individual branches: the shortest branches have a straight line and the longest are increasingly triangular. † indicates gene loss in Pp (as well as all other mosses except Takakia).
Fig. S6 Inferred phylogeny of homologs to the ZTL gene family. The tree was constructed using MrBayes on an amino acid alignment of proteins retrieved from *Arabidopsis thaliana* (At), *Oryza sativa* (Os), *Picea abies* (Pa), *Selaginella moellendorffii* (Sm), *Takakia lepidiozioides* (Ti), *Marchantia polymorpha* (Mp), *Anthoceros agrestis* (Aa), and *Klebsormidium flaccidum* (Kf). The Bayesian tree is shown with posterior probabilities (above) and bootstrap proportions from PhyML analysis (below) for each node. Nodes with conflicting support from the two methods were collapsed. Branch length is relative to the thickness of individual branches: the shortest branches have a straight line and the longest are increasingly triangular. † indicates gene loss in *Physcomitrella patens* (Pp; as well as all other mosses except Takakia).
Fig. S7 Temporal expression patterns of putative circadian clock genes in *M. polymorpha* (Mp) under ND, LL, and DD conditions. Plants were sampled every fourth hour during 2 d. Quantitative RT-PCR expression values with standard errors are based on two biological replicates and were normalized using three reference genes (see the Materials and Methods section for details).
Fig. S8 Generation of MpRVE knockout mutant. The exon-intron structure of MpRVE and the construct used for MpRVE transformation are shown in (a). Primer sets used in (b) are illustrated as arrows with numbers. The result of genomic PCR of MpRVE knock-out line and WT are shown in (b). Numbers refer to primer sets as shown in (a).
Fig. S9 Generation of MpPRR knockout mutant. The exon-intron structure of MpPRR and the construct used for MpPRR transformation are shown in (a). Primer sets used in (b) are illustrated as arrows with numbers. The result of genomic PCR of MpPRR knock-out line and WT are shown in (b). Numbers refer to primer sets as shown in (a).
Fig. S10 Generation of MpTOC1 knockout mutants. The exon-intron structure of MpTOC1 and the construct used for MpTOC1 transformation are shown in (a). Primer sets used in (b) are illustrated as arrows with numbers. The result of genomic PCR of three MpTOC1 knock-out lines and WT are shown in (b). Numbers refer to primer sets as shown in (a).
Fig. S11 Temporal expression pattern of *MpPRR* (a) and *35S:LUC* (b) under ND and LL conditions. Quantitative RT-PCR expression values with standard errors are based on 3 biological replicates and were normalized using *MpEF1*.
Fig. S12 Temporal expression pattern of MpPRR in WT, Mprve^{ko}, Mptoc1^{ko} and restored lines of Mprve^{ko}. MpPRR expression in WT, Mprve^{ko} and a restored line are shown in (a). MpPRR expression under ND conditions (b) and LL conditions (c) in WT and two additional Mptoc1^{ko} lines. Quantitative RT-PCR expression values with standard errors are based on 3 biological replicates and were normalized using MpEF1.
Fig. S13 *pro:LUC* bioluminescence for MpELF3, MpGI, MpLUX and MpRVE. Plants were entrained in 12 h light, 12 h dark photoperiod and transferred to T=12 photocycles. Light intensity was set to 5 μmol m$^{-2}$ s$^{-1}$. Averages from three replicates of one transformant per gene are shown. Expression patterns were readily adjusted to a T=12 photocycle without frequency demultiplication.
Fig. S14 Luciferase imaging in transgenic *M. polymorpha* plants expressing luciferase under the control of *M. polymorpha* promoters. (a–c) MpRVE_{pro}:LUC. (d–f) MpELF3_{pro}:LUC. (g–i) MpGI_{pro}:LUC. (j–l) MpLUX_{pro}:LUC. (a, d, g, j) 4-d-old gemmaling showing expression at the apical notches. (b, e, h, k) 7-d-old gemmaling with expression at the recently split apical notches. (c, f, j, l) 4-wk-old thallus showing strong expression in apical regions and young gemmae cups. Bioluminescence is pseudocolored in green.
Fig. S15 $MpPRR_{pro:GUS}$ expression in mature thallus. $MpPRR_{pro:GUS#7}$ stained overnight (a, c) or for 4 h (b). Dorsal side (a), and ventral side (b) of mature thallus. Close-up of dorsal side showing air chambers with expression in chlorenchyma cells (c). Arrowheads points at strongly stained meristematic regions.
Fig. S16 Temporal expression patterns of putative circadian clock genes in *A. agrestis* (Aa) under ND, LL, and DD conditions. Plants were sampled every fourth hour during 2 d. Quantitative RT-PCR expression values with standard errors are based on two biological replicates and were normalized using two reference genes (see the Materials and Methods section for details).
Species	Gene name	Gene family/Clade	ID/Accession
Chlamydomonas reinhardtii	Data from Phytozome v11.0 (https://phytozome.jgi.doe.gov)		
CrLHY (ROC40)	RVE		Cre06.g275350
CrPRR-1	PRR		Cre02.g094150
CrPRR-2	PRR		Cre16.g676421
CrLUX-1 (ROC75)	LUX⁺		Cre02.g083750
CrLUX-2 (ROC15)	LUX⁺		Cre09.g410450
CrEFL	ELF4⁺		
Ostreococcus tauri	Data from JGI (http://genome.jgi.doe.gov)		
OtCCA1	RVE		4802
OtTOC1	PRR		24394
Klebsormium flaccidum	Data from Klebsormidium flaccidum genome V1.0 (http://www.plantmorphogenesis.bio.titech.ac.jp/~algae_genome_project/klebsormidium/)		
KfCCA1	RVE/CCA1-LHY-clade		kfl00255_0190
KFRVE	RVE/LCL clade		kfl00237_0160
KFTOC1	PRR/TOC1 clade		kfl00059_0230
KFPRR	PRR/PRR clade		kfl00165_0030
KfZTL	ZTL		kfl00059_0220
KfEFL3	ELF3		kfl00240_0090
KfEFL-1	ELF4		kfl00065_0150
KfEFL-2	ELF4		kfl00184_0080
KfLUX-1	LUX		kfl00118_0040
KfLUX-2	LUX		kfl00537_0090
Anthoceros agrestis	Data from the oneKP database (www.onekp.com)		
AaCCA1	RVE/CCA1-LHY-clade		
AaRVE	RVE/LCL-clade		
AaPRR	PRR/PRR clade		
AaEFL3	ELF3		
AaEFL-1	ELF4		
AaEFL-2	ELF4		
AaLUX	LUX		
AaGI	GI		
AaZTL	ZTL		
Marchantia polymorpha	Data from Phytozome v11.0 (https://phytozome.jgi.doe.gov)		
MpRVE¹	RVE/CCA1-LHY-clade		Mapoly0042s0058.1
MpTOC1²	PRR/TOC1 clade		Mapoly0085s0081.1
-----	-----	-----	
MpPRR2	PRR/PRR clade	Mapoly0122s0007.1	
MpELF3	ELF3	Mapoly0014s0139.1	
MpEFL	ELF4	Mapoly0033s0009.1	
MpLUX3	LUX	Mapoly0101s0068.1	
MpGI	GI	Mapoly0019s0145.1	
MpFKF	ZTL	Mapoly0004s0235.1	

Physcomitrella patens
Data from Phytozome v11.0 (https://phytozome.jgi.doe.gov)
PpCCA1a RVE/CCA1-LHY-clade BAI39991.1
PpCCA1b RVE/CCA1-LHY-clade BAI39992.1
PpRVE1 RVE/LCL clade Pp1s198_135
PpRVE2 RVE/LCL clade Pp1s160_6
PpRVE3 RVE/LCL clade Pp1s46_272
PpPRR1 PRR/PRR clade XP_001784613
PpPRR2 PRR/PRR clade XP_001766102
PpPRR3 PRR/PRR clade XP_001784616
PpPRR4 PRR/PRR clade XP_001766105
PpELF3 ELF3 Pp3c1_12790
PpELF3-3 ELF3 Pp3c11_14750
PpELF3-2 ELF3 Pp3c7_10610
PpEFL ELF4 Pp1s180_31
PpLUX1 LUX Pp3c9_14170
PpLUX2 LUX Pp3c21_6770
PpLUX3 LUX Pp3c15_13960

Selaginella moellendorffii
Data from Phytozome v11.0 (https://phytozome.jgi.doe.gov)
SmRVE RVE/LCL clade 78045
SmTOC1 PRR/TOC1 clade 438647
SmPRR7a PRR/PRR clade XP_002972852†
SmPRR7b PRR/PRR clade XP_002979868†
SmELF3 ELF3 415241
SmELF-1 ELF4 118674
SmELF-2 ELF4 91083
SmZTL ZTL 174189
SmLUX LUX 36646
SmGI GI 140066

Picea abies
Data from congenie.org
PaCCA1 RVE/CCA1-LHY-clade MA_115536g0010
PaCCA1-2 RVE/CCA1-LHY-clade MA_11267g0020
PaCCA1-3 RVE/CCA1-LHY-clade MA_102199g0010
PaPRR1 PRR/TOC1 clade
Plant	Data Source	Gene Name	Description	Accession
Oryza sativa	Data from IRGSP-1.0 (http://rapdb.dna.affrc.go.jp)	PaPRR3	PRR/PRR clade	MA_3352g0010
		PaPRR7	PRR/PRR clade	MA_303578g0010
		PaLUX	LUX	MA_70291g0010
		PaLUX2	LUX	MA_303578g0010
		PaZTL	ZTL	MA_70291g0010
		PaGI	GI	
		PaEFL-1	ELF4	MA_57007g0010
		PaEFL-2	ELF4	MA_99665g0010
		PaEFL-3	ELF4	MA_866497g0010
		PaEFL-4	ELF4	MA_4172g0010
		PaEFL-5	ELF4	MA_8565294g0010
Arabidopsis thaliana	Data from TAIR 10 (www.arabidopsis.org)	OsCCA1	RVE/CCA1-LHY-clade	Os08t0157600
		OsRVE1	RVE/CCA1-LHY-clade	Os02t0685200
		OsRVE2	RVE/CCA1-LHY-clade	Os04g0583900
		OsRVE3	RVE/CCA1-LHY-clade	Os06t0728700
		OsRVE4	RVE/LCL clade	Os02t0680700
		OsRVE5	RVE/LCL clade	Os06t0105800
		OsRVE6	RVE/LCL clade	Os01t0156000
		OsPRR1	PRR/TOC1 clade	Os02g0618200
		OsPRR37	PRR/PRR clade	Os07g0695100
		OsPRR73	PRR/PRR clade	Os03g0284100
		OsPRR95	PRR/PRR clade	Os09g0532400
		OsZTL1	ZTL	Os11t0547000
		OsZTL2	ZTL	Os06t0694000
		OsFKF1	ZTL	Os11t0547000
		OsPCL1	LUX	Os01g0971800
		OsELF3-1	ELF3	Os06t0142600
		OsELF3-2	ELF3	Os01t0566100
		OsEFL-1	ELF4	OS11G0621500
		OsEFL-2	ELF4	OS03G0410300
		OsEFL-3	ELF4	OS08G0366200
		OsGI	GI	Os01g0182600

Note:

- **Pa** stands for *Populus trichocarpa*.
- **Os** stands for *Oryza sativa*.
- **At** stands for *Arabidopsis thaliana*.

45
Genes	Clades	Genes
AtRVE3	RVE/LCL clade	At1g01520
AtRVE4	RVE/LCL clade	At5g02840
AtRVE5	RVE/LCL clade	At4g01280
AtRVE6	RVE/LCL clade	At5g52660
AtRVE7	RVE/CCA1-LHY-clade	At1g18330
AtRVE7-like	RVE/CCA1-LHY-clade	At3g10113
AtRVE8	RVE/LCL clade	At3g09600
AtTOC1	PRR/TOC1 clade	At5g61380
AtPRR3	PRR/PRR clade	Ag5g60100
AtPRR5	PRR/PRR clade	Ag5g24470
AtPRR7	PRR/PRR clade	Ag5g02810
AtPRR9	PRR/PRR clade	Ag2g46790
AtZTL	ZTL	At5g57360
AtFKF1	ZTL	At1g68050
AtLKP2	ZTL	At2g18915
AtLUX	LUX	At3g46640
AtBOA	LUX	At5g59570
AtELF3	ELF3	At2g25930
AtEEC	ELF3	At3g21320
AtELF4	ELF4	At2g40080
AtEFL-1	ELF4	At2g29950
AtEFL-2	ELF4	At1g72630
AtEFL-3	ELF4	At2g06255
AtEFL-4	ELF4	At1g17455
AtGI	GI	At1g22770

1 Uncertain homology.
2 The second most similar *M. polymorpha* gene from the BLAST searches, Mapoly0026s0070, was excluded from further analyses as it resembled At5g08520 and related genes with high similarity to *DIVARICATA* in reciprocal BLAST searches (Galego & Almeida, 2002).
3 The third best *M. polymorpha* BLAST hit was Mapoly0101s0006. This protein contains a MYB domain not present in PRR family members and it also lack the C-terminal CCT domain. Reciprocal BLAST searches against the Arabidopsis genome gave RESPONSE REGULATOR1 (RR1) as the best hit, indicating Mapoly0101s0006 belongs to the RR family.
4 As with MpTOC1/PRR the most similar protein to MpLUX in the *M. polymorpha* genome is the RR-family member Mapoly0101s0006.1.
Primer name	Sequence - 5' to 3'	Comments	
AaCCA1 F	CGAAGCCATGCCGCGAGAAATT	qRT-PCR	
AaCCA1 R	CGGTGTTGAGGAATCTATGT	qRT-PCR	
AaELF3 F	AAGGACGCTATTACTGACACA	qRT-PCR	
AaELF3 R	GTGAGTACGGTGCTTTTCA	qRT-PCR	
AaELF4_2011664 F	CCCAGTACCGTGATGATGA	qRT-PCR	
AaELF4_2011664 R	TCGTGGACGGTCTAAAC	qRT-PCR	
AaELF4_2045507 F	TCACTGATACGGGACGTGAA	qRT-PCR	
AaELF4_2045507 R	CCAACACTGAGACATGCTGTT	qRT-PCR	
AaELF4_2048939 F	TGTCCGGTTTGGCATGAGAG	qRT-PCR	
AaELF4_2048939 R	GCCACACATTTGCTTCTTT	qRT-PCR	
AaGI F	GGAGAAGCTGGTCTGATTG	qRT-PCR	
AaGI R	TCACTGTTCTCTCTCTGGT	qRT-PCR	
AaLUX F	ATGGCTGTCTACATGGGATT	qRT-PCR	
AaLUX R	CCATAGGGTCCCATGCTCA	qRT-PCR	
AaPRR F	ACCGATATCCGAAATCTGGA	qRT-PCR	
AaPRR R	CGCGCAAAGAACATGAGGTT	qRT-PCR	
AaRVE F	CGGCCAACAGGTGAAATAC	qRT-PCR	
AaRVE R	CGGCCCAGCTGAAATGTA	qRT-PCR	
AaTUB F	AGCCTGACATGCTCTGCTGGA	qRT-PCR	
AaTUB R	CTGGCAGAACAAGAAGCTGGG	qRT-PCR	
AaTTL F	GGGGGAGAGGGATTAAAGA	qRT-PCR	
AaTTL R	GAGTGAAGAGGGAGCCAA	qRT-PCR	
CPEP23_2	AGTACCTGAGCAGCCAAGACTGCAACC	Rev MpRVEpro 1.9kb	
CPEP24	cacccAGGTACCAGAGGAGTTGTA^2	Fwd MpRVEpro 1.9kb	
CPEP29	cacccTGTAGCTCTCTGCTGCT^2	Fwd MpGIpro 5.4kb	
CPEP30	AGGCCAATTCTCCCAAAGG	Rev MpGIpro 5.4kb	
CPEP32	cacccATGTAGCTGGCAGGAGGC^2	Fwd MpLUXpro 5.5kb	
CPEP33	CGCTGCCCATTTCACTTGAGGGTGT	Rev MpLUXpro 5.5kb	
CPEP49	cacccGGGGTTTCTCTTCTGCTG^2	Fwd MpELF4pro 5.8kb	
CPEP50	CGTCCCTGACATGCTGAAATCTCCTACT	Rev MpELF4pro 5.8kb	
EFpro_R	CAACCTTTCTGCAGGGCACATC	Genotyping^19	
gMpPRR_F	CACAGCTCGACATCTCTTTGCT	Fwd Compl. test	
gMpPRR_R	TGAAGGTAAAACAGTGGCAAAACA	Rev Compl. test	
gMpRVE_F	CACCATTTTTGGGACTGCCCCCTTTTT	Fwd Compl. test	
gMpRVE_R	CGTGGTGGAGGAGGGAGAATT	Rev Compl. Test	
HPT_F	GTTAAGATCATAGCTTACAGGAATCTATGT	Genotyping^20	
ME292	cacccTGTTTGGATCTCGACGTTGGGAAA^2	Fwd MpPRRpro 4.0kb	
ME303	TAAAGGCATCTATCTGGCGAACGACAA	Rev MpPRRpro 4.0kb	
ME367	CGAAGACGCGAACGAGCTACC	Fwd MpAPT qRT-PCR	
ME368	GTACCCCGGGTTGGCAATAAG	Rev MpAPT qRT-PCR	
ME369	AGGCACTTGATCTACGAGG	Fwd MpACT qRT-PCR	
ME370	ACATGGTCTTTCTCCACGAC	Rev MpACT qRT-PCR	
ME428	cacccGGAAAACCATGGGAGTGA^2	Fwd MpELF3pro 2.1kb	
ME429	GCCACACCTCTACGGCAAA	Rev MpELF3pro 2.1kb	
MpELF3 F	ATCTTTCTCCTCCATCTCTTGCG	qRT-PCR	
MpELF3 R	ACAGCAGATGATATTTCCGAT	qRT-PCR	
MpELF4 F	GGGCAGCGAATTCTGCAAGAAA	qRT-PCR	
MpELF4 R	AGGTCAATATTCCGCCAGAGT	qRT-PCR	
MpGI F	TTGATGCTGGACCTCTCTAGT	qRT-PCR	
MpGI R	CATGACCTTTGGAGGAGGACT	qRT-PCR	
MpLUX F	TGGGAGACGATAGAGAATCTCTG	qRT-PCR	
MpLUX R	ATCTTCTACAGCTTCTCCTCTT	qRT-PCR	
MpPRR F	CACAGCTCTCTTGGCAAAACCA	qRT-PCR	
MpPRR R	GCCGTGAGGAGGAAGGAAAT	qRT-PCR	
Primer	Sequence	Method	Notes
-----------------	---	----------	--
MpPRR_GT3_F	AACACTAGTGCGCCGCTGGGAAAGCTCTACCT	Ko-plasm.	
MpPRR_GT3_R	TTATCCCCCTAGCGCCGCTGGGAAGGCAACTGAC	Ko-plasm.	
MpPRR_GT5_F	CTAAAGGTAGCGATAATCAAAACTGACCATCTCAG	Ko-plasm.	
MpPRR_GT5_R	CGGGGCAAGCTTTTAATAAGGCGGACCCAAAGGATT	Ko-plasm.	
MpRVE F	AAACCTCGGCAAAATCAGGAGT	qRT-PCR	
MpRVE R	GGCGAGGCAATTTTCAAAGCTG	qRT-PCR	
MpRVE_GT3_F	AACACTAGTGCGCCGCTGGGAAAGCTCTACCT	Ko-plasm.	
MpRVE_GT3_R	TTATCCCCCTAGCGCCGCTGGGAAGGCAACTGAC	Ko-plasm.	
MpRVE_GT5_F	CTAAAGGTAGCGATAATCAAAACTGACCATCTCAG	Ko-plasm.	
MpRVE_GT5_R	CGGGGCAAGCTTTTAATAAGGCGGACCCAAAGGATT	Ko-plasm.	
MpTOC1 F	CGAAGGAAGAACGACTGAAGCA	qRT-PCR	
MpTOC1 R	TCTGAGACATTTGACGACGACA	qRT-PCR	
MpTOC1_GT3_F	AACACTAGTGCGCCGCTGGGAAAGCTCTACCT	Ko-plasm.	
MpTOC1_GT3_R	TTATCCCCCTAGCGCCGCTGGGAAGGCAACTGAC	Ko-plasm.	
MpTOC1_GT5_F	CTAAAGGTAGCGATAATCAAAACTGACCATCTCAG	Ko-plasm.	
MpTOC1_GT5_R	CGGGGCAAGCTTTTAATAAGGCGGACCCAAAGGATT	Ko-plasm.	
MpTUB3 F	AGGGGCTGAACTCATAGACTCT	qRT-PCR	
MpTUB3 R	TATGAGGAGGTACCCTATGCGCA	qRT-PCR	
MpZTL F	TGTTCGAGTTCATAACAGGCTACA	qRT-PCR	
MpZTL R	CTCTGTTAATCTGGGCAACAT	qRT-PCR	
prrko_F1	GTTTCCGAAAAGAGCCTCCCA	Genotyping	
prrko_R1	GATCCTGGAACCCGATTTTT	Genotyping	
prrko_F2	AAAATGAAGAGCCGCAATTTT	Genotyping	
prrko_R3	CTCAGCATGCAACCTGAT	Genotyping	
RP_LUC_F1	AATCCCACTTCTGCTCCACAC	qRT-PCR	
RP_LUC_R1	CGGTGCTCCAAAACAACAC	qRT-PCR	
RP_PRR_F1	CAGAAGACAGTATGCTCCACAGG	qRT-PCR	
RP_PRR_R1	CATCTCCCGGCTGCTACATT	qRT-PCR	
rveko_F1	TGAAGATATCTTTAGATGCC	Genotyping	
rveko_R1	TACATCTCAGGGGGTCCG	Genotyping	
rveko_F2	TGATCAAATGCAGCAAATG	Genotyping	
rveko_R3	AAGATTGCGCTCTGTTTT	Genotyping	
tocko_F1	GCTAGAAGCTAGCAAAACAGG	Genotyping	
tocko_R1	TGTCTAAGCAGAAATGGAGGT	Genotyping	
tocko_F2	TTTACCCAGTTGAATTTGACTG	Genotyping	
tocko_R3	CCATGAGAAAGCTGGGAGG	Genotyping	

Notes

Primer in **bold** were used in the Kyoto lab. All other primers were used in the Uppsala lab.

1. Saint-Marcoux et al., 2015
2. “cacc” is added to the 5’ end of the F primer for directional TOPO cloning in pENTR/D-TOPO (Thermofisher)
3. The gene ID for MpTUB2 is Mapoly0158s0010.1
4. MpPRR 3’ homologous arm
5. MpPRR 5’ homologous arm
6. MpRVE 3’ homologous arm
7. MpRVE 5’ homologous arm
8. MpTOC1 3’ homologous arm
9. MpTOC1 5’ homologous arm
10. Illustrated as primer set 1 in S8
11. Illustrated as primer set 2 in S8
12. Illustrated as primer set 3 in S8
13) Illustrated as primer set 1 in S9
14) Illustrated as primer set 2 in S9
15) Illustrated as primer set 3 in S9
16) Illustrated as primer set 1 in S10
17) Illustrated as primer set 2 in S10
18) Illustrated as primer set 3 in S10
19) Illustrated as primer set 2 in S8-10
20) Illustrated as primer set 3 in S8-10
Methods S1 Supplemental materials and methods describing sequence retrieval, sequence analysis and phylogenetic reconstruction.

Inventory of putative bryophyte and charophyte circadian clock genes

Homologs to *Arabidopsis thaliana* circadian clock genes were first identified in the liverwort *Marchantia polymorpha*, in the hornwort *Anthoceros agrestis* and in the charophyte *Klebsormidium flaccidum*. Initial gene family classification was supported by BLAST e-values, reciprocal BLAST searches to the Arabidopsis genome, characterization of conserved protein domains and by BLAST searches against the oneKP database (www.onekp.com).

Sequence retrieval

M. polymorpha genes were identified using Arabidopsis amino acid sequences as queries in tBLASTn searches in the publically available *M. polymorpha* genome v. 3.1 (Phytozome 11; https://phytozome.jgi.doe.gov). *A. agrestis* genes were likewise obtained searching the oneKP database (www.onekp.com). Algal gene sequences were retrieved from the publically available *K. flaccidum* genome V1.0 database (http://www.plantmorphogenesis.bio.titech.ac.jp/) and from transcriptome NGS data for the streptophyte algae *Cylindrocystis cushleckae* (Cc; Acc. No. ERR364373) and *Coleochaete irregularis*. (Ci; Acc. No. ERR364367), which were obtained from the NCBI short read archive (SRA). Sequences were assembled using Trinity r20131110 (Haas et al., 2013), tBLASTn searches were performed and gene prediction was done using the web-based FGENESH+ program. Homologs were also retrieved from the following species: *A. thaliana, Oryza sativa, Selaginella moellendorffii, Picea abies* and *P. patens*. Arabidopsis sequences were downloaded from TAIR (www.arabidopsis.org). Genes of other species were identified by BLASTp searches with Arabidopsis queries against databases at JGI (http://www.jgi.doe.gov/), NCBI (http://ncbi.nlm.nih.gov) and plantGDB (http://www.plantgdb.org). To investigate the distribution of identified clock homologs among charophyte algae, hornworts, liverworts and mosses, BLAST searches were performed against the oneKP database (www.onekp.com). All previously identified clock genes as well as genes
identified in this study are listed with accession numbers in Supporting Information Table S1.

Sequence analysis and phylogenetic reconstruction

Conserved protein motifs and domains were identified using MEME Suite MAST (http://meme-suite.org; Bailey & Gribskov, 1998; Bailey *et al*., 2009), SMART (Schultz *et al*., 1998; Letunic *et al*., 2015), and NCBI CD-search (CDD v.3.14; Marchler-Bauer & Bryant, 2004; Marchler-Bauer *et al*., 2015). Amino acid sequences were aligned using the M-Coffee algorithm in T-Coffee (Notredame *et al*., 2000; Wallace *et al*., 2006). Alignments were filtered using Transitive Consistency Score (TCS) in the T-Coffee distribution (Chang *et al*., 2014) and are available in Supporting Information Fig. S1. Phylogenetic reconstructions were done using PhyML 3.0 (Guindon *et al*., 2010) and MrBayes 3.2.6 (Huelsenbeck & Ronquist, 2001; Ronquist *et al*., 2012). For MrBayes the substitution model used was decided individually for each alignment using Modelgenerator v.85 (Keane *et al*., 2006). The final phylogenograms were visualized and edited in TreeGraph2 (Stöver & Müller, 2010), where the Bayesian tree was used as reference tree on which both posterior probabilities and bootstrap proportion from PhyML were mapped. Branches resulting in conflicting topologies from the two methods were collapsed. Trees were rooted with charophyte sequences, except for the CCA1/LHY/RVE and PRR families that were midpoint rooted.
References for Supporting information

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Research* 37: W202–W208.

Bailey TL, Gribskov M. 1998. Methods and statistics for combining motif match scores. *Journal of Computational Biology* 5: 211–221.

Chang J-M, Di Tommaso P, Notredame C. 2014. TCS: a new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. *Molecular Biology and Evolution* 31: 1625–1637.

Galego L, Almeida J. 2002. Role of *DIVARICATA* in the control of dorsoventral asymmetry in *Antirrhinum* flowers. *Genes & Development* 16: 880–891.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology* 59: 307–321.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nature Protocols* 8: 1494–1512.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics (Oxford, England)* 17: 754–755.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. *BMC Evolutionary Biology* 6: 29.

Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. *Nucleic Acids Research* 43: D257–D260.

Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. *Nucleic Acids Research* 32: W327–W331.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DL et al. 2015. CDD: NCBI’s conserved domain database. *Nucleic Acids Research* 43: D222–D226.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. *Journal of Molecular Biology* 302: 205–217.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61: 539–542.

Saint-Marcoux D, Proust H, Dolan L, Langdale JA. 2015. Identification of reference genes for real-time quantitative PCR experiments in the liverwort *Marchantia polymorpha*. *PLoS ONE* 10: e0118678.

Schultz J, Milpetz F, Bork P, Ponting CP. 1998. SMART, a simple modular architecture research tool: identification of signaling domains. *Proceedings of the National Academy of Sciences, USA* 95: 5857–5864.

Stöver BC, Müller KF. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. *BMC Bioinformatics* 11: 7.

Wallace IM, O’Sullivan O, Higgins DG, Notredame C. 2006. M-Coffee: combining multiple sequence alignment methods with T-Coffee. *Nucleic Acids Research* 34: 1692–1699.