Research note

Is there a phase constraint for solar dynamo models?

M. Schüssler

Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany

Received; accepted

Abstract. The spatio-temporal relationship between the sign of the observed radial component of the magnetic field at the solar surface and the sign of the toroidal field as inferred from Hale's polarity rules for sunspots is usually interpreted as signifying the phase relation between the poloidal and the toroidal magnetic field components involved in the solar dynamo process. This has been taken as a constraint for models of the solar dynamo. This note draws attention to the fact that the observed phase relation is naturally and inevitably produced by the emergence of tilted bipolar regions and flux transport through surface flows, without any necessity of recourse to the dynamo process. Consequently, there is no constraint on dynamo models resulting from the observed phase relation.

Key words. Sun: magnetic fields—Sun: activity—MHD

The relationship between the sign of the observed longitude-averaged radial magnetic field component in the photosphere, B_r, and the sign of the azimuthal field, B_ϕ, as inferred from the polarities of the following and preceding parts of sunspot groups (according to Hale’s rules), is taken by many authors as an important constraint for models of the solar dynamo (e.g., Stix 1976; Yoshimura 1976; Parker 1987; Schmidt 1993; Schlichenmaier & Stix 1995; Rüdiger & Brandenburg 1995; Bonanno et al. 2002; Ossendrijver 2003; Brandenburg 2005).

Stix (1976) considered Mount Wilson magnetograph data for the period 1959–1973. Taking B_r positive in the outward radial direction and B_ϕ positive in the direction of solar rotation, he found the relation $B_rB_\phi < 0$ to hold in the sunspot zones below 35 degrees heliolatitude. In a time-latitude diagram, the average radial field shows ‘butterfly wings’ that closely match the corresponding sunspot pattern. The ‘phase relation’, $B_rB_\phi < 0$, then means that the average radial field has the same polarity as the preceding parts of the active regions emerging during the same half cycle (Stenflo 1972; Howard & Labonte 1981; Schlichenmaier & Stix 1995; see also the upper panel of Fig. 1).

When taking the phase relation as a constraint for solar dynamo models, the tacit assumption is made that the observed radial field at the surface actually represents the poloidal field component resulting from the (deep-seated) dynamo process. However, there is evidence that this assumption is not necessarily valid. The observed evolution of sunspots and active regions indicate that the corresponding magnetic flux is dynamically disconnected from its subsurface roots within a few days after emergence (Fan et al. 1994; Schriver & Title 1999; Schüssler 2005; Schüssler & Rempel 2005). In fact, the large-scale evolution of the observable magnetic flux at the solar surface is reproduced quite well by the so-called flux-transport models, which simulate the passive advection of the radial magnetic field by the near-surface flows of supergranulation (described as a turbulent diffusion process), differential rotation, and meridional circulation (e.g., Wang et al. 1989; Schriver 2001; Mackay et al. 2002; Baumann et al. 2004). The flux input in such models is provided by the emergence of bipolar magnetic regions, taken either directly from the observational data or assumed at random locations, but keeping the basic statistical properties of active regions (tilt angle according to Joy’s law, latitude drift of the activity belt, Hale’s polarity rules). As an illustration, Fig. 1 shows a comparison of the result from the flux-transport model of Baumann et al. (2004) with the actual time-latitude diagram of the (longitudinally averaged) observed surface field. The input for the flux-transport simulation has been derived from the RGO and NOAA/USAF SOON sunspot data (Baumann et al. 2005, in preparation).

It turns out that all such flux-transport models reproduce the observed phase relation, $B_rB_\phi < 0$, in low latitudes, i.e., they all show that the longitude-averaged radial field predominantly has the same polarity as the leading parts of the active regions emerging throughout the same half cycle (see also Fig. 3 of Baumann et al. 2004).
The dynamo process apparently has not reached the majority of the dynamo community. It is the purpose of this note to draw attention to this result and thus prevent the exclusion of dynamo models because of an inappropriate constraint.

As a side remark, we note that in the class of Babcock-Leighton-type advection-dominated dynamos (e.g., Dikpati & Charbonneau 1999) the tilt of the bipolar magnetic regions provides the source of the poloidal field for the next (half) cycle. In that sense, this kind of dynamos automatically reproduces the observed phase relation, but that does not exclude other dynamo models that do not rely on the tilt of active regions as the source for the poloidal field. Note also that Joy’s law for the tilt angle of bipolar magnetic regions is explained completely independent from any dynamo model by the action of the Coriolis force on rising flux loops (e.g., D’Silva & Choudhuri 1993; Fan et al. 1994; Caligari et al. 1995).

Several authors have pointed out that the tilt angle of active regions leads to a dominance of leading polarity flux in the sunspot latitudes (e.g., Stenflo 1972; Howard & Labonte 1981; Wang et al. 1991; Choudhuri & Dikpati 1999). The message that this provides a natural explanation for the phase relation independent of the dynamo process apparently has not reached the majority of the dynamo community. It is the purpose of this note to draw attention to this result and thus prevent the exclusion of dynamo models because of an inappropriate constraint.

Acknowledgements. Ingo Baumann kindly provided Fig. 1.

References

Baumann, I., Schmitt, D., Schüssler, M., & Solanki, S. K. 2004, A&A, 426, 1075
Bonanno, A., Elstner, D., Rüdiger, G., & Belvedere, G. 2002, A&A, 390, 673
Brandenburg, A. 2005, ArXiv Astrophysics e-prints, astro-ph/0502275
Caligari, P., Moreno-Insertis, F., & Schüssler, M. 1995, ApJ, 441, 886
Choudhuri, A. R. & Dikpati, M. 1999, Sol. Phys., 184, 61
Dikpati, M. & Charbonneau, P. 1999, ApJ, 518, 508
D’Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621
Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ, 436, 907
Howard, R. & Labonte, B. J. 1981, Sol. Phys., 74, 131
Mackay, D. H., Priest, E. R., & Lockwood, M. 2002, Sol. Phys., 209, 287
Ossendrijver, M. 2003, A&AR, 11, 287
Parker, E. N. 1987, Sol. Phys., 110, 11
Rüdiger, G. & Brandenburg, A. 1995, A&A, 296, 557
Schüssler, M. 2005, Astronomische Nachrichten, 326, 194
Schüssler, M. & Rempel, M. 2005, A&A, submitted
Schlichenmaier, R. & Stix, M. 1995, A&A, 302, 264
Schmitt, D. 1993, in The Cosmic Dynamo, IAU Symp. 157, ed. F. Krause, K.-H. Rädler, & G. Rüdiger (Dordrecht: Kluwer Academic Publishers), 1
Schrijver, C. J. 2001, ApJ, 547, 475
Schrijver, C. J. & Title, A. M. 1999, Sol. Phys., 188, 331
Stenflo, J. O. 1972, Sol. Phys., 23, 307
Stix, M. 1976, A&A, 47, 243
Wang, Y.-M., Nash, A. G., & Sheeley, N. R. 1989, ApJ, 347, 529
Wang, Y.-M., Sheeley, N. R., & Nash, A. G. 1991, ApJ, 383, 431
Yoshimura, H. 1976, Sol. Phys., 50, 3