Effect of SuperYea and Mixture of SuperYea with Single, Double and Multi of Microbes on Growth Performance and Nutrient Digestibility in Growing Pigs

Siouvong A1, Loonvai W2, Poeikhampa2 and Tunwasorn S2*
1Department of Tropical Agriculture, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
2Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand

Abstract

This study was conducted to compare the effect of dietary supplementation of SuperYea, SuperYea mixture with single, double and multi-strain microbes on growth performance, nutrient digestibility and fecal noxious gas content in growing pigs. One hundred and forty female pigs (24.00 ± 0.50 kg) were divided into 5 treatments with 6 replicates of eighteen pigs each and analyzed by completely randomized design (CRD). The diets were composed by Treatment I) basal diet+SuperYea, Treatment II) basal diet+SuperYea+Bacillus subtilis (1 × 10^12 CFU), Treatment III) basal diet+SuperYea+Saccharomyces cerevisae (5 × 10^8 CFU), Treatment IV) basal diet+SuperYea+Bacillus subtilis (1 × 10^10 CFU)+Lactobacillus lactis (1 × 10^11 CFU) and Treatment V) basal diet+SuperYea+Bacillus subtilis (1 × 10^12 CFU)+Lactobacillus lactis (1 × 10^11 CFU)+Saccharomyces cerevisae (5 × 10^8 CFU). The results of the experiment showed that pigs fed with mixture of SuperYea and multi-strain microbes in diets showed heavier final body weights (67.20, 66.85, 65.44, 65.42, 65.47), body weight gain (42.80, 41.60, 40.99, 40.97, 40.97) and average daily gain (668.49, 660.32, 650.63, 650.32, 650.32) than another diets (P<0.05). The dry matter digestibilities of SuperYea mixed with multi-strain microbes were higher (P<0.05) than single strain treatments (86.53, 85.79, 84.40, 84.37, 84.44). The crude protein digestibilities were increased (P<0.05) with supplementation of multi-strain microbial in diet than another treatments (4.56, 4.46, 4.32, 4.30, 4.35). In conclusion, dietary inclusion of multi-strain microbes could be improve growth performance and nutrient digestibility and the decrease of ammonia in faecal.

Keywords: Symbiotic; Performance; Digestibility; Grower pigs; Multi-strain microbes; Pathogenic organism

Introduction

Normally, the intensive farming system had antibiotic on pig’s diet especially during the post weaning period (4-5 weeks of age) where piglets are weakened by pathogenic microorganism and other factors. Major losses of piglets are a result of diarrhea and found in most of pig farms. Using antibiotic clearly prevents diarrhea during post weaning period [1]. However, the use of antibiotics was banned around the world since the year 2006. Consequently, feed additives are alternative substitution of antibiotics and are intensively focused around the world.

Using feed additive is one of the strategies on feed management. The symbiotic approach is a part in using feed additives through the combination of prebiotic and probiotic. The symbiotic can be useful in stimulating beneficial bacteria and improving performance, digestibility and health [2-4]. Several studies showed that multi-strain probiotics had more effect on growth of the host animal when compared to one-strain probiotics [5-8]. Non-digestible oligosaccharides (NDO) can be regarded as prebiotics because there are available as substrates for the gastrointestinal microflora [9-11] and probiotics can be characterized as live microbial feed supplements which beneficially affect the host by improving its intestinal microbial balance [12,13].

This study was conducted to compare the effect of SuperYea, a domestic prebiotic from Rich and Green Co., Ltd., together with imported probiotic being used in most pig farms in Thailand. SuperYea alone and mixture of SuperYea with single, double and multi-strain of microbial as symbiotic source are studied on growth performance, nutrient digestibility and fecal noxious gas content of growing pigs.

Materials and Methods

This study was conducted at Nongbua Farm and Country Home Village Co., Ltd at Ratchaburi Province, Thailand. Experimental animals were kept, maintained and treated in adherence to accept standards for the humane Ct of animals in large commercial farm with high standard of feeding and management.

SuperYea

The SuperYea is manufactured using by-product from ethanol factory having molasses as initial substrate mixing with yeast culture. The SuperYea contains high levels of minerals and protein but low in fiber. The additional ingredient in SuperYea is β-glucan which is good sources of feed additive [13].

Animal and managements

Three hundred and twenty four commercial crossbred female piglets (Duroc × Large White × Landrace; 24.00 ± 0.50 kg body weight) were used in this trial. The pigs were divided into 5 treatments and each treatment consisted of six pens (eighteen pigs/pen). The piglets were raised in naturally ventilated houses consisting of 18 pens (4 × 5 m²), and each pen was assigned a crib and two of water nipples. During the feed trail, the piglets were bathed and the house was cleaned two days interval, while the face of piglets was removed every day.

Experimental design and diets

The Completely Randomized Design (CRD) was used as an

*Corresponding author: Tunwasorn S, Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand, Tel:+66 2 579 0113; E-mail: somtheps65@gmail.com

Received April 12, 2017; Accepted April 17, 2017; Published April 25, 2017

Citation: Siouvong A, Loonvai W, Poeikhampa, Tunwasorn S (2017) Effect of SuperYea and Mixture of SuperYea with Single, Double and Multi of Microbes on Growth Performance and Nutrient Digestibility in Growing Pigs. J Fisheries Livest Prod 5: 231 doi: 10.4172/2332-2608.1000231

Copyright: © 2017 Siouvong A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
experimental design. Three Experimental diets were provided to pigs for 3 weeks as follow; Treatment I) basal diet+SuperYea, Treatment II) basal diet+SuperYea+*Bacillus subtilis* (1 × 10^12 CFU), Treatment III) basal diet+SuperYea+*Saccharomyces cerevisae* (5 × 10^5 CFU), Treatment IV) basal diet+SuperYea+*Bacillus subtilis* (1 × 10^12 CFU)+*Lactobacillus lactis* (1 × 10^11 CFU) and Treatment V) basal diet+SuperYea+*Bacillus subtilis* (1 × 10^12 CFU)+*Lactobacillus lactis* (1 × 10^11 CFU)+*Saccharomyces cerevisae* (5 × 10^5 CFU). The basal diets were formulated to provide the same amount of nutrients and net the requirement by National Research Council [14] as show in Table 1. Feed and water were provided *ad libitum*.

Parameters

Growth Performance: The initial and final body weight of each pig was recorded during 9 weeks feeding trial. Meanwhile the body weight gain and feed intake were recorded one week interval in order to calculate average daily gain, average daily feed intake, and feed to gain ratio.

Nutrient Digestibility: One week before the end of experiment, chromium oxide (Cr₂O₃) was added at 0.2% of the diet as an indigestible marker to calculate digestibility coefficient. Fecal samples were randomly drawn from each treatment around 30%. After collection, samples will be frozen and stored in refrigerator at -20°C until analysis take place. Before determination of dry matter (DM), crude protein (CP), crude fiber (CF) and ether extracts (EE) analyzed according to AOAC and chromium will be analyzed by UV absorption spectrophotometry.

Statistical analysis

All Data were statistically analyzed using analysis of covariance (ANOCOVA) of SAS [15]. The differences between the means of groups were compared by Ducan’s New Multiple Range Test according to the following model:

\[Y_{ij} = \mu + t_i + \beta (x_{ij} - x) + \epsilon_{ij} \]

Where;

- \(Y_{ij} \) = observation of dependent variables from treatment i and replication j,
- \(\mu \) = the overall mean,
- \(t_i \) = effect of treatment i (i=1,2,…,5),
- \(\beta \) = regression coefficient of final weight on initial weight,
- \(x_{ij} \) = observation of covariance from treatment I in replication j, x=mean of x, and
- \(\epsilon_{ij} \) = residual error distributed as NID with mean 0 and a common variance. Statements of statistical significance were based on p less than or equal to 0.05 and all data statistical analyses were employed in accordance with the method of Steel and Torrie [16].

Results

Growth performance

The growth performances of animals are shown in Table 2. The initial body weights of pigs were not significantly difference. At the end

Item	T 1	T 2	T 3	T 4	T 5
Rice Extruded	21	21	21	21	21
Corn Extruded	17	17	17	17	17
Cassava Chip Meal	18	17.91	17.91	17.91	17.91
Soybean Meal	14	14	14	14	14
Soybean Extruded	16.3	16.2	16.2	16.2	16.2
Vinasces	4.5	4.5	4.5	4.5	4.5
SuperYea	1.5	1.5	1.5	1.5	1.5
Bacillus subtilis	-	0.2	-	-	-
Saccharomyces cerevisae	-	-	0.2	-	-
Double-strain of microbial	-	-	-	0.2	-
Multi-strain of microbial	-	-	-	-	0.2
L-lysine	1.5	1.5	1.5	1.5	1.5
DL-methionine	0.3	0.3	0.3	0.3	0.3
Coconut Oil	5	5	5	5	5
Mono dicalcium phosphate	0.01	0.01	0.01	0.01	0.01
Calcium carbonate	0.01	0.01	0.01	0.01	0.01
Salt	0.02	0.02	0.02	0.02	0.02
Vitamin Premix	0.23	0.23	0.23	0.23	0.23
Mineral Premix	0.23	0.23	0.23	0.23	0.23
Anti-fungi	0.4	0.39	0.39	0.39	0.39
Total	100	100	100	100	100

Nutrients Calculated, %

Item	T 1	T 2	T 3	T 4	T 5
Swine ME (Kcal/kg)	3.278	3.275	3.274	3.277	3.276
Crude Protein (%)	18	18	18	18	18
Calcium (%)	0.67	0.67	0.67	0.67	0.67
Available Phosphorus (%)	0.55	0.55	0.55	0.55	0.55
Methionine (%)	0.65	0.65	0.65	0.65	0.65
Lysine (%)	1.51	1.51	1.51	1.51	1.51

Premix content; Vitamin A 4MIU, D 0.65 MIU, E 24,000 IU, K₂1.4 g, B₆ 0.6 g, B₆ 0.3 g, B₆ 0.75 g, B₆ 14 mg, Nicotinic 20 g, Pantothenic acid 10 g, Folic acid 0.44 g, Biotin 0.04 g, Choline 60 g, Fe45 g, Cu 40 g, Mn 15 g, Zn 40 g, Co 0.2 g, I0.4 g, Se 0.06 g, Carrier add to 1 kg

Item	T 1	T 2	T 3	T 4	T 5
Table 1: Calculation of experimental feed ingredient and composition of growing pigs diet.					

J Fisheries Livest Prod, an open access journal
ISSN: 2332-2608
Volume 5 • Issue 2 • 1000231
feeding trail, supplementation of mixture of SuperYea and multi-strain of microbes found to be heavier final body weight, body weight gain and average daily gain than other treatments (p<0.05).

Nutrient digestibility

The nutrient digestibility of animals is shown in Table 3. The crude fiber, ether extract and crude ash were not significantly different between supplementation probiotic mixtures with probiotic. At the end feeding trial, the SuperYea mixed with multi-strain microbes yielded higher dry matter nutrient digestibility than other treatments (p<0.05).

Discussion

Growth Performance of various feed mixed with different prebiotic and probiotic showed that the dietary of supplementation of prebiotic mixture probiotics helped the beneficial microflora in animals. Adding prebiotics will stimulate the good microflora population by adding beneficial microbes in the intestine which might improve intestinal in that aspect indirectly and eventually increase feed intake. As result animals may have increased growth performance because they eat more. We also investigated whether a specific symbiotic, a combination of SuperYea and multi-strain probiotic have a higher effect on body final weight gain, body weight gain and average daily gain compared to other treatments for growing pigs (p<0.05) but average daily feed intake had not significant(p>0.05) as similarly with [5,17-19]. The difference may be associated with the different chemical structure (degree of polymerization) of prebiotic used in the different studies and length of oligosaccharides and the presence of other fermentable sources especially non-starch polysaccharides in the diets and the experiment was investigated whether feeding a multi-strain microbes to growing pigs would yield higher performances as compared to a double-strain microbes. The supplementation of multi-strain microbes in diet has shown higher body final weight gain, body weight gain and average daily gain compared to the two-strain microbial. Some studies reported that feeding probiotics improved average daily gain, average daily feed intake and feed conversion in young pigs [11,12,24-28]. Other studies, however, did not find positive effects of probiotics in weanling piglets [29,30].

Nutrient digestibility of various feed mixed with different prebiotic and probiotic in this study showed the positive symbiotic effects as reported by Shim et al. [28]. The supplementation of 0.1 % oligofructose (OF) mixed with multi-strain probiotic have higher percent of dry matter (DM) and crude protein (CP) than the rest of all treatments (p<0.05). The supplementation of probiotic, probiotic and combined between prebiotic and probiotic may lead to improved digestion and absorption of nutrients in gut. The apparent fecal digestibility of dry matter and crude protein are not known whether the digestibility in ileum or fecal digestibility would be less with probiotics or probiotic because there is more fecal biomass. Similar results of Li and Kim [23] showed significant improvement in digestibility of dry matter when weanling pigs were fed a corn-soybean meal diet supplemented with Aspergillus oryzae. Hu et al. [23] reported that piglets fed a diet supplemented with complex probiotic had increased nutrient digestibility. Burr et al. [31] demonstrated that supplementation of probiotic had significantly increased crude protein digestibility compared with the control diet in fish. Lee et al. [21] also demonstrated that supplemental symbiotic effects from anaerobic microflora (probiotic from yeast, mold and bacteria) was increased (p<0.05) digestibility of dry matter and protein

Item	T1	T2	T3	T4	T5
IBW (Kg)	24.5 ± 0.14	24.5 ± 0.14	24.5 ± 0.14	24.4 ± 0.14	24.4 ± 0.14
FBW (Kg)	64.8 ± 0.30*	65.3 ± 0.30*	65.3 ± 0.30*	66.4 ± 0.30**	67.4 ± 0.30*
BWG (Kg)	40.3 ± 0.21*	40.9 ± 0.21*	40.9 ± 0.21*	42 ± 0.21**	43 ± 0.21**
ADG (g/d)	750.3 ± 14.7a	753.2 ± 14.7a	730.3 ± 14.7b	760.3 ± 14.7**	770.4 ± 14.7**
ADFI (g/d)	1.62 ± 2.15	1.63 ± 2.15	1.64 ± 2.15	1.65 ± 2.15	1.66 ± 2.15

T1: add 1.50 percentage of SuperYea in the diet
T2: add 0.20 percentage of Bacillus Subtilis (1 × 1010 CFU) in the diet.
T3: add 0.20 percentage of Saccharomyces cerevisiae (5 × 1010 CFU) in the diet.
T4: add 0.20 percentage of Bacillus subtilis (1 × 1010 CFU) mixture with Lactobacillus lactis (1 × 1010 CFU) in diet.
T5: add 0.20 percentage of Bacillus subtilis (1 × 1010 CFU) mixture with Lactobacillus lactis (1 × 1010 CFU) and plus Saccharomyces cerevisiae (5 × 1010 CFU) in diet.

BUN: Blood Urea Nitrogen
WBC: White Blood Cell
RBC: Red Blood Cell

Means in the same row with different superscripts differ (P < 0.05).

Table 2: LS means and standard errors of growth performance of piglets in all treatments imposed in the study.

Item	T1	T2	T3	T4	T5
DM	84.4 ± 0.26a	84.1 ± 0.26a	84.2 ± 0.26a	85.8 ± 0.26a	86.5 ± 0.26a
CF	4.43 ± 0.38a	4.30 ± 0.38a	4.32 ± 0.38b	4.46 ± 0.38b	4.56 ± 0.38b
EE	2.73 ± 0.45a	2.70 ± 0.45a	2.72 ± 0.45b	2.74 ± 0.45b	2.75 ± 0.45b
Ash	3.56 ± 0.14	3.56 ± 0.14	3.58 ± 0.14	3.60 ± 0.14	3.63 ± 0.14

T1: add 1.50 percentage of SuperYea in the diet
T2: add 0.20 percentage of Bacillus Subtilis (1 × 1010 CFU) in the diet.
T3: add 0.20 percentage of Saccharomyces cerevisiae (5 × 1010 CFU) in the diet.
T4: add 0.20 percentage of Bacillus subtilis (1 × 1010 CFU) mixture with Lactobacillus lactis (1 × 1010 CFU) in diet.
T5: add 0.20 percentage of Bacillus subtilis (1 × 1010 CFU) mixture with Lactobacillus lactis (1 × 1010 CFU) and plus Saccharomyces cerevisiae (5 × 1010 CFU) in diet.

DM: Dry matter
CP: Crude Protein
CF: Crude Fiber
EE: Ether Extract

Means in the same row with different superscripts differ (P < 0.05).

Table 3: LS means and standard errors of nutrient digestibility of piglets in all treatments imposed in the study (in percentage).
in ear-weeping pigs. Zhao et al. [32] and Zhao et al. [33] proposed that dietary FOS supplementation at 0.1% has a substantial positive effect on nutrient digestibility. Rodrigues et al. [34] was reported that supplementation 0.25% of prebiotic mixed with 0.3% of probiotic was higher digestibility of dry matter than control (p<0.05). Limited reports are available to compare the effects of lactulose on nutrient digestibility with other; thus, we could only compare our results with those reported in FOS studies. Mountzouris et al. [35] demonstrated that FOS did not affect nutrient digestibility in growing pigs at level of 0.6%, 1.35% or 1%.

Conclusion
The result of this study suggest that supplementation with prebiotic mixed with probiotic as base feed additives (synbiotic) in diet of growing pigs significantly improved final weight gain, body weight gain, average daily gain, dry matter digestibility, crude protein digestibility [36].

Acknowledgements
The authors gratefully acknowledge the funding from the Rich and Green Co., Ltd, Thailand. The support from Nongbua Farm and Country Home Village Co., Ltd in Rachaburi Province, Thailand for suggestions, guidance throughout this trial was graceful. We thank the Thailand International Development Cooperation Agency (TICA) under program *Aseyawady-Chao Praya-Mekong Economic Cooperation Strategy (ACMCECS)*, Ministry of Foreign Affair, Bangkok, Thailand.

References
1. Poeikhampha T, Bunchasak C (2011) Comparative Effect of sodium gluconate,mannan oligosaccharide and potassium diformate on growth performance and small intestinal morphology of nursery pigs. Asian Aust J Anim Sci 24: 844-850.

2. Nousiainen J, Setälä J (1993) Lactic acid bacteria as animal probiotics. In: Lactic Acid Bacteria (Ed. Salminen S, A Von Wright). Marcel Dekker, New York, USA: 315-356.

3. Gibson GR (1995) Roberfroid Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401-1412.

4. Nemcová R, Bomba RA, Gancarčiková S, Herič R, Guba P (1999) Study of the effect of lactobacillus paracasei and fructo-oligosaccharides on the faecal microflora in weaning piglets. Ber Münch Tierärztl Wschr 112: 225-228.

5. Gao YY, Jiang ZY, Lin YC, Zheng CT, Zhou GL (2011) Effects of spray-dried porcine serum on serous and intestinal redox status and cytokines of neonatal piglets. J Anim Sci 89: 150-157.

6. Cromwell GL (2001) Antimicrobial and promicrobial agents. In: Aj Lewis and LL Southern (ed.). Swine Nutrition. CRC Press. Boca Raton, Florida, USA.

7. Ngoc TT, Hong TTT, Len NT, Lindberg JE (2012) Effect of fibre level and fibre source on Gut morphology and micro-environment in local (Mong Cai) and Virginiamycin and a commercially-available Lactobacillus probiotic in swine diets. Anim. Feed Sci Technol 8: 130-139.

8. Kil DL, Lim SJ, Tian JZ, Kim BG, Kim KS (2004) Effect of continuous feeding of Bifidobacterium, Enterococcus and Pediococcus strains in promoting broiler carcass grade quality traits. R Bras Zootec 43: 1202-1208.

9. Balasubramanian B, Li T, Kim IH (2016) Effects of supplementing growing-finishing pig diets with Bifidulceappi3 probiotic on growth performance and meat-carcass grade quality traits. R Bras Zootec 45: 93-100.

10. Han KN, Kwon IK, Lohakare JD, Heo S, Chae BJ (2007) Chito-oligosaccharides as an alternative to antimicrobials in improving performance, digestibility and microbial ecology of the gut in weaning pigs. Asian-Aust J Anim Sci 20: 556-562.

11. Lee SJ, Shin NH, Ok JU, Jung HS, Chu GM, et al. (2009) Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and faecal pathogenic bacteria population in weaning pigs. Asian-Aust J Anim Sci 22: 1202-1208.

12. Estrada A, Drew MD, Kessel AV (2000) Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early weaned pigs on performance and fecal bacterial populations. Can J Anim Sci 80: 141-148.

13. Hu Y, Dun Y, Li S, Zhao S, Peng N, et al. (2004) Effect of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial of weaned piglets. Asian-Aust J Anim Sci 27: 1131-1140.

14. NRC (1998) Nutrient requirement of pigs (10th Ed.) National Research Council, Academy Press. Washington DC, USA.

15. SAS (1998) SAS User’s Guide: Statistics 6.06 Edition. SAS Institute Inc., Cary, NC.15.

16. Steel RGD, Torrie JH (1980) Principles and procedures of statistics-A, Biometrical Approach (2nd Ed.) McGraw-Hill, New York.

17. Allakarpour HT, Chamani M, Rahimi G, Sadeghi AA, Quijé D (2012) The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene expression. Histomorphology and Growth Performance in Broilers. Asian-Aust J Anim Sci 25: 1285-1293.

18. Jolliff JS, Mahan DC (2012) Effect of dietary inulin and pufase on mineral digestibility and tissue Retention in Weaning and Growing Swine. J Anim Sci 90: 3012-3022.

19. Balasubramanian B, Li T, Kim IH (2016) Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. R Bras Zootec 45: 93-100.

20. Han KN, Kwon IK, Lohakare JD, Heo S, Chae BJ (2007) Chito-oligosaccharides as an alternative to antimicrobials in improving performance, digestibility and microbial ecology of the gut in weaning pigs. Asian-Aust J Anim Sci 20: 556-562.

21. Lee SJ, Shin NH, Ok JU, Jung HS, Chu GM, et al. (2009) Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and faecal pathogenic bacteria population in weaning pigs. Asian-Aust J Anim Sci 22: 1202-1208.

22. Estrada A, Drex MD, Kessel AV (2000) Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early weaned pigs on performance and fecal bacterial populations. Can J Anim Sci 80: 141-148.

23. Hu Y, Dun Y, Li S, Zhao S, Peng N, et al. (2004) Effect of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial of weaned piglets. Asian-Aust J Anim Sci 27: 1131-1140.

24. Kyrilias SC, Sarris K, Kritas SK, Tsinas AC, Giannakopoulos C (1996) Effect of salinomycin in the control of Clostridium perfringens type C infections in suckling pigs. Vet Rec 23: 281-283.

25. Heuglen VE, Funderburke D, Dorton K (2003) Growth performance, nutrient digestibility, and fecal microflora in weaning pigs fed live yeast. J Anim Sci 81: 1004-12.

26. Kil DL, Lim SJ, Tian JZ, Kim BG, Kim KS (2004) Effect of continuous feeding of Bifidobacterium, Enterococcus and Pediococcus strains in promoting broiler carcass grade quality traits. R Bras Zootec 43: 1202-1208.

27. Berry AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clinical Chem 8: 130.

28. van der Peel-Schweering CM, Jansman AJM, Smith D, Yoon I (2007) Effects of yeast culture on performance, gut integrity, and blood cell composition of weaning pigs. Asian-Aust J Anim Sci 85: 3099-3109.

29. Harpe AFE, Kornegay ET, Bryant KL, Thomas HR (1983) Efficacy of Virginiamycin and a commercially-available Lactobacillus probiotic in swine diets. Anim. Feed Sci Technol 8: 69-76.

30. Hiss S, Sauverwein H (2003) Influence of dietary B-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J Anim Physiol a. Anim Nutr 67: 2-11.

31. Burr G, Hume M, Neil VH, Galtin DM (2008) Effect of prebiotics on nutrient digestibility of a soybean meal based feed by red drum Scianops ocellatus (Linneaus). Aquaculture Research 39: 1680-1686.

32. Zhao PY, Jinh J, Kim IH (2012) Effect of mannan oligosaccharides and fructan on growth performance, nutrient digestibility,blood profile, and diarrhoea score in weaning pigs. J Anim Sci 90: 833-839.

33. Zhao PY, Wang JP, Kim JH (2013) Evaluation of dietary fructan supplementation on Growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. J Anim Sci 91: 5280-5286.

34. Rodrigues M, Pozza PC, Pozza MSS, Possamai M, Bruno LDG, et al (2013) Effect of inulin and a probiotic mixture on nutrient digestibility and nitrogen balance in pigs. Arch Zootec 62: 255-264.

35. Mountzouris KB, Tsitstikos P, Kalamaras E, Nitis S, Schatzmayr G, et al. (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus and Pediococcus strains in promoting broiler
performance and modulating caecal microflora composition and metabolic activities. Poult Sci 86: 309-317.

36. Fuller R (1989) Probiotics in man and animals-A review. J Appl Bacterol 66: 365-378.