PERFECT MATCHINGS IN INHOMOGENEOUS RANDOM BIPARTITE GRAPHS IN RANDOM ENVIRONMENT

JAIRO BOCHI, GODOFREDO IOMMI, AND MARIO PONCE

ABSTRACT. In this note we study inhomogeneous random bipartite graphs in random environment. These graphs can be thought of as an extension of the classical Erdős-Rényi random graphs in a random environment. We show that the expected number of perfect matchings obeys a precise quenched asymptotic and that it can be approximated using an iterative process that converges exponentially fast.

1. Introduction

In their seminal paper [ER], Erdős and Rényi studied the following random graphs that now bear their names. Consider a bipartite graph with set of vertices given by\(W=\{w_1,\ldots,w_n\}\) and \(M=\{m_1,\ldots,m_n\}\). Let \(p\in[0,1]\) and consider the independent random variables \(X_{ij}\) with law

\[
X_{ij}(x) = \begin{cases}
1 & \text{with probability } p; \\
0 & \text{with probability } 1-p.
\end{cases}
\]

Denote by \(G_n(x)\) the bipartite graph with vertices \(W\) and \(M\) and edges \(E(x)\), where the edge \((w_i,m_j)\) belongs to \(E(x)\) if and only if \(X_{ij}(x) = 1\). Let \(\text{pm}(G_n(x))\) be the number of perfect matchings of the graph \(G_n(x)\) (see Sec. 3 for precise definitions). Erdős and Rényi [ER, p.460] observed that the mean of the number of perfect matchings is given by

\[
\mathbb{E}(\text{pm}(G_n(x))) = n!p^n. \tag{1.1}
\]

This number has been also studied by Bollobás and McKay [BoMc, Theorem 1] in the context of \(k\)-regular random graphs and by O’Neil [O, Theorem 1] for random graphs having a fixed (large enough) proportion of edges. We refer to the text by Bollobás [Bol1] for further details on the subject of random graphs.

This paper is devoted to study certain sequences of inhomogeneous random bipartite graphs \(G_{n,\omega}\) in a random environment \(\omega\in\Omega\) (definitions are given in Sec. 2). Inhomogeneous random graphs have been intensively studied over the last years (see [BolJaRi]). Our main result (see Theorem 3.2 for precise statement) is that there exists a constant \(c\in(0,1)\) such that for almost every environment \(\omega\in\Omega\) and for large \(n\in\mathbb{N}\),

\[
\mathbb{E}_{n,\omega}(\text{pm}(G_{n,\omega}(x))) = n!c^n. \tag{1.2}
\]

Moreover, we have an explicit formula for the number \(c\). This result implies that \(\mathbb{E}_{n,\omega}(\text{pm}(G_{n,\omega}(x)))\) is a quenched variable.
The result in equation (1.2) should be understood in the sense that the mean number of perfect matchings for inhomogeneous random bipartite graphs in a random environment is asymptotically the same as the one of Erdős-Rényi graphs in which \(p = c \). The number \(c \) is the so-called scaling mean of a function related to the random graphs. Scaling means were introduced, in more a general setting, in [BIF] and are described in Sec. 3 and Sec. 5.

2. Inhomogeneous Random Bipartite Graphs in Random Environment

Consider the following generalization of the Erdős-Rényi graphs. Let \(W = \{w_1, \ldots, w_n\} \) and \(M = \{m_1, \ldots, m_n\} \) be two disjoint sets of vertices. For every pair \(1 \leq i, j \leq n \), let \(a_{(ij)} \in [0,1] \) and consider the independent random variables \(X_{(ij)} \), with law

\[
X_{(ij)}(x) = \begin{cases}
1 & \text{with probability } a_{(ij)}; \\
0 & \text{with probability } 1 - a_{(ij)}.
\end{cases}
\]

Denote by \(G_\alpha(x) \) the bipartite graph with vertices \(W,M \) and edges \(E(x) \), where the edge \((w_i, m_j)\) belongs to \(E(x) \) if and only if \(X_{(ij)}(x) = 1 \). As it is clear from the definition all vertex of the graph do not play the same role. This contrasts with the (homogenous) Erdős-Rényi graphs (see [BolJaRi] for details). In this note we consider inhomogeneous random bipartite graphs in random environments, that is, the laws of \(X_{(ij)} \) (and hence the numbers \(a_{(ij)} \)) are randomly chosen following an exterior environment law. This approach to stochastic processes has developed since the ground breaking work by Solomon [Sol] on Random Walks in Random Environment and subsequent work of a large community (see [Bog] for a survey on the subject).

The model we propose is to consider the vertex sets \(W,M \) as the environment and to consider that the number \(a_{(ij)} \), which is the probability that the edge connecting \(w_i \) with \(m_j \) occurs in the graph, is a random variable depending on \(w_i \) and \(m_j \). We remark that similar constructions has been studied in the setting of stochastic block model (see [HLL]). These have been used, for example, in machine learning in problems of community detection. We now describe precisely the graphs under consideration in this note.

The space of environments is as follows. Fix \(\alpha \in \mathbb{N} \) and a stochastic vector \((p_1, p_2, \ldots, p_\alpha)\). Endow the set \(\{1, \ldots, \alpha\} \) with the probability measure \(P_\alpha \) defined by \(P_\alpha(\{i\}) = p_i \). Denote by \(\Omega_W \) the product space \(\prod_{i=1}^{\alpha}\{1, \ldots, \alpha\} \) and by \(\mu_W \) the corresponding product measure. For \(\beta \in \mathbb{N} \) let \((\Omega_M, \mu_M) \) be the analogous probability measure space for the set \(\{1, \ldots, \beta\} \) and the stochastic vector \((q_1, q_2, \ldots, q_\beta)\). The space of environments is \(\Omega = \Omega_W \times \Omega_M \) with the measure \(\mu_\Omega = \mu_W \times \mu_M \) and an environment is an element \(\omega \in \Omega \). Note that every environment defines two sequences

\[
W(\omega) = (w_1, w_2, \ldots) \in \Omega_W \quad \text{and} \quad M(\omega) = (m_1, m_2, \ldots) \in \Omega_M.
\]

For each environment \(\omega \in \Omega \) we now define the edge distribution \(X_{\omega,(ij)} \). Let \(F = \{f_{sr}\} \) be a \(\alpha \times \beta \) matrix with entries \(f_{sr} \) satisfying \(0 \leq f_{sr} \leq 1 \) and let \(f : \{1, 2, \ldots, \alpha\} \times \{1, 2, \ldots, \beta\} \to [0,1] \) be the function defined by \(f(w, m) = f_{wm} \). For each \(\omega \in \Omega \) let

\[
a_{(ij)}(\omega) := f(w_i(\omega), m_j(\omega)).
\]
Given an environment $\omega \in \Omega$ the corresponding *edges distributions* are the random variables $X_{\omega, (ij)}$ with laws

$$X_{\omega, (ij)}(x) = \begin{cases}
1 & \text{with probability } a_{(ij)}(\omega); \\
0 & \text{with probability } 1 - a_{(ij)}(\omega).
\end{cases}$$

Given an environment $\omega \in \Omega$, we construct a sequence of random bipartite graphs $G_{n, \omega}$ considering the sets of vertices

$$W_{n, \omega} = (w_1(\omega), \ldots, w_n(\omega)) \quad \text{and} \quad M_{n, \omega} = (m_1(\omega), \ldots, m_n(\omega)),$$

and edge distributions $X_{\omega, (ij)}$ given by the values of $a_{(ij)}(\omega)$ as in (2.1). We denote by $P_{n, \omega}$ the law of the random graph $G_{n, \omega}$ and we call F the *edge distribution matrix*.

Example 2.1. Given a choice of an environment $\omega \in \Omega$, the probability that the bipartite graph $G_{n, \omega}(x)$ equals the complete bipartite graph $K_{n, n}$, under independence of the edge variables, is

$$P_{n, \omega}(G_{n, \omega}(x) = K_{n, n}) = \prod_{1 \leq i, j \leq n} P_{n, \omega}(X_{\omega, (ij)} = 1) = \prod_{1 \leq i, j \leq n} a_{(ij)}(\omega).$$

3. Counting Perfect Matchings

Recall that a perfect matching of a graph G is a subset of edges containing every vertex exactly once. We denote by $\text{pm}(G)$ the number of perfect matchings of G. When the graph G is bipartite, and the corresponding partition of the vertices has the form $W = \{w_1, w_2, \ldots, w_n\}$ and $M = \{m_1, m_2, \ldots, m_n\}$, a perfect matching can be identified with a bijection between W and M, and hence with a permutation $\sigma \in S_n$. From this, the total number of perfect matchings can be computed as

$$\text{pm}(G) = \sum_{\sigma \in S_n} x_{1\sigma(1)} x_{2\sigma(2)} \cdots x_{n\sigma(n)}, \quad (3.1)$$

where x_{ij} are the entries of the adjacency matrix X_G of G, that is $x_{ij} = 1$ if (w_i, m_j) is an edge of G and $x_{ij} = 0$ otherwise. Of course, the right hand side of (3.1) is the *permanent*, $\text{per}(X_G)$, of the matrix X_G.

In the framework of Section 2, we estimate the number of perfect matchings for the sequence of inhomogeneous random bipartite graphs $G_{n, \omega}$, for a given environment $\omega \in \Omega$. More precisely, we obtain estimates for the growth of the mean of

$$\text{pm}(G_{n, \omega}(x)) = \text{per}(X_{G_{n, \omega}(x)}) = \sum_{\sigma \in S_n} X_{\omega,(1\sigma(1))} \cdots X_{\omega,(n\sigma(n))}. \quad (3.2)$$

Denote by $E_{n, \omega}$ the expected value with respect to the probability $P_{n, \omega}$. Since the edges are independent and $E_{n, \omega}(X_{\omega, (ij)}) = a_{ij}(\omega)$ we have

$$E_{n, \omega}(\text{pm}(G_{n, \omega})) = E_{n, \omega}\left(\sum_{\sigma \in S_n} X_{\omega,(1\sigma(1))} \cdots X_{\omega,(n\sigma(n))} \right)$$

$$= \sum_{\sigma \in S_n} a_{(1\sigma(1))}(\omega) \cdots a_{(n\sigma(n))}(\omega)$$

$$= \text{per}(A_n(\omega)),$$

where the matrix $A_n(\omega)$ has entries $(A_n(\omega))_{ij} = a_{ij}(\omega)$. The main result of this note describes the growth of this expected number for perfect matchings.
The following number is a particular case of a quantity introduced by the authors in a more general setting in [BIP].

Definition 3.1. Let F be an $\alpha \times \beta$ matrix with non-negative entries (f_{rs}). Let $\vec{p} = (p_1, \ldots, p_\alpha)$ and $\vec{q} = (q_1, \ldots, q_\beta)$ be two stochastic vectors. The scaling mean of F with respect to \vec{p} and \vec{q} is defined by

$$
\text{sm}_{\vec{p}, \vec{q}}(F) := \inf_{(x_r) \in \mathbb{R}_+^\alpha, (y_s) \in \mathbb{R}_+^\beta} \left(\prod_{r=1}^\alpha x_r^{-p_r} \right) \left(\prod_{s=1}^\beta y_s^{-q_s} \right) \left(\sum_{r=1}^\alpha \sum_{s=1}^\beta x_r f_{rs} y_s p_r q_s \right).
$$

The scaling mean is increasing with respect to the entries of the matrix and lies between the minimum and the maximum of the entries (see [BIP] for details and more properties). We stress that the scaling mean can be exponentially approximated using a simple iterative process (see Section 5).

The main result in this note is the following,

Theorem 3.2 (Main Theorem). Let $(G_{n,\omega})_{n \geq 1}$ be a sequence of inhomogeneous random bipartite graphs in a random environment $\omega \in \Omega$. If the entries of the edge distribution matrix F are strictly positive then the following pointwise convergence holds

$$
\lim_{n \to \infty} \left(\frac{\mathbb{E}_{n,\omega}(\text{pm}(G_{n,\omega}))}{n!} \right)^{1/n} = \text{sm}_{\vec{p}, \vec{q}}(F),
$$

for $\mu_W \times \mu_M$-almost every environment $\omega \in \Omega$.

Remark 3.3. As discussed in the introduction Theorem 3.2 shows that there exists a constant $c \in (0,1)$, such that for almost every environment $\omega \in \Omega$ and for $n \in \mathbb{N}$ sufficiently large

$$
\mathbb{E}_{n,\omega}(\text{pm}(G_{n,\omega}(x))) = n! c^n.
$$

Namely, $c = \text{sm}_{\vec{p}, \vec{q}}(F)$. This result should be compared with the corresponding one obtained by Erdős and Rényi for their class of random graphs, that is

$$
\mathbb{E}(\text{pm}(G_n(x))) = n! p^n.
$$

Thus, we have shown that for large values of n the growth of the number of perfect matchings for inhomogeneous random graphs in a random environment behaves like the simpler model studied by Erdős and Rényi with $p = \text{sm}_{\vec{p}, \vec{q}}(F)$.

Remark 3.4. Theorem 3.2 shows that the expected number of perfect matchings is a quenched variable.

Remark 3.5. Using the Stirling formula, the limit in (3.3) can be stated as

$$
\lim_{n \to \infty} \left(\frac{1}{n} \log (\mathbb{E}_{n,\omega}(\text{pm}(G_{n,\omega}))) - \log n \right) = \log \text{sm}_{\vec{p}, \vec{q}}(F) - 1,
$$

which gives a quenched result for the growth of the perfect matching entropy for the sequence of graphs $G_{\omega,n}$ (see [ACFG]).

Remark 3.6. Note that we assume a uniform ellipticity condition on the values of the probabilities a_{ij} as in (2.1). A similar assumption appears in the setting of Random Walks in Random Environment (see [Bog, p.355]).

We now present some concrete examples.
Example 3.7. Let $\alpha = \beta = 2$ and $p_1 = p_2 = q_1 = q_1 = 1/2$. Therefore, the space of environments is the direct product of two copies of the full shift on two symbols endowed with the $(1/2, 1/2)$–Bernoulli measure. The edge distribution matrix F is a 2×2 matrix with entries belonging to $(0, 1)$. In [BIP, Example 2.11], it was shown that

$$\text{sm}_{\vec{p}, \vec{q}} \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} = \frac{\sqrt{f_{11}f_{22}} + \sqrt{f_{12}f_{21}}}{2}.$$

Therefore, Theorem 3.2 implies that

$$\lim_{n \to \infty} \left(\frac{\mathbb{E}_{n, \omega} (\text{pm}(G_{n, \omega}))}{n!} \right)^{1/n} = \frac{\sqrt{f_{11}f_{22}} + \sqrt{f_{12}f_{21}}}{2},$$

for almost every environment $\omega \in \Omega$.

Example 3.8. More generally let $\alpha \in \mathbb{N}$ with $\alpha \geq 2$ and $\beta = 2$. Consider the stochastic vectors $\vec{p} = (p_1, p_2, \ldots, p_\alpha)$ and $\vec{q} = (q_1, q_2)$. The space of environments is the direct product of a full shift on α symbols endowed with the \vec{p}-Bernoulli measure with a full shift on two symbols endowed with the \vec{q}-Bernoulli measure. The edge distribution matrix F is a $\alpha \times 2$ matrix with entries belonging to $(0, 1)$, where $r \in \{1, \ldots, \alpha\}$. Denote by $\chi \in \mathbb{R}^+$ the unique positive solution of the equation

$$\sum_{r=1}^\alpha \frac{p_r f_{r1}}{f_{r1} + f_{r2} \chi} = q_1.$$

Then

$$\text{sm}_{\vec{p}, \vec{q}}(F) = \text{sm}_{\vec{p}, \vec{q}} \begin{pmatrix} f_{11} & f_{12} \\ \vdots & \vdots \\ f_{\alpha1} & f_{\alpha2} \end{pmatrix} = q_1^{q_2} \left(\frac{q_2}{\chi} \right)^{\alpha} \prod_{r=1}^\alpha \left(f_{r1} + f_{r2} \chi \right)^{p_r}.$$

Therefore, Theorem 3.2 implies that

$$\lim_{n \to \infty} \left(\frac{\mathbb{E}_{n, \omega} (\text{pm}(G_{n, \omega}))}{n!} \right)^{1/n} = q_1^{q_2} \left(\frac{q_2}{\chi} \right)^{\alpha} \prod_{r=1}^\alpha \left(f_{r1} + f_{r2} \chi \right)^{p_r},$$

for almost every environment $\omega \in \Omega$. The quantity in the right hand side first appeared in work by Halász and Székely in 1976 [HS], in their study of symmetric means. In [BIP, Theorem 5.1] using a completely different approach we recover their result.

4. Proof of the Theorem

The shift map $\sigma_W : \Omega_W \to \Omega_W$ is defined by

$$\sigma_W(w_1, w_2, w_3, \ldots) = (w_2, w_3, \ldots).$$

The shift map σ_W is a μ_W-preserving, that is, $\mu_W(\Lambda) = \mu_W(\sigma_W^{-1}(\Lambda))$ for every measurable set $\Lambda \subset \Omega_W$, and it is ergodic, that is, if $\Lambda = \sigma_W^{-1}(\Lambda)$ then $\mu_W(\Lambda)$ equals 1 or 0. Analogously for σ_M and μ_M. We define a function $\Phi : \Omega_W \times \Omega_M \to \mathbb{R}$ by

$$\Phi(\vec{w}, \vec{m}) = f_{w_1, m_1}.$$

Thus

$$\Phi(\sigma_W^{-1}(\vec{w}), \sigma_M^{-1}(\vec{m})) = f_{w, m} = a_{(ij)}(\omega).$$

That is, the matrix $A_\omega(\omega)$ has entries $a_{(ij)}(\omega) = \Phi(\sigma_W^{-1}(\vec{w}), \sigma_M^{-1}(\vec{m}))$. We are in the setting of the Law of Large Permanents ([BIP, Theorem 4.1]).
Theorem (Law of Large Permanents). Let \((X, \mu), (Y, \nu)\) be Lebesgue probability spaces, let \(T: X \to X\) and \(S: Y \to Y\) be ergodic measure preserving transformations, and let \(g: X \times Y \to \mathbb{R}\) be a positive measurable function essentially bounded away from zero and infinity. Then for \(\mu \times \nu\)-almost every \((x, y) \in X \times Y\), the \(n \times n\) matrix

\[
M_n(x, y) = \begin{pmatrix}
g(x, y) & g(Tx, y) & \cdots & g(T^{n-1}x, y)
g(x, Sy) & g(Tx, Sy) & \cdots & g(T^{n-1}x, Sy)
\vdots & \vdots & \ddots & \vdots
g(x, S^{n-1}y) & g(Tx, S^{n-1}y) & \cdots & g(T^{n-1}x, S^{n-1}y)
\end{pmatrix}
\]

pointwise, where \(\text{sm}_{\mu, \nu}(g)\) is the scaling mean of \(g\) defined as

\[
\text{sm}_{\mu, \nu}(g) = \inf_{\varphi, \psi} \frac{\int_{X \times Y} \varphi(x) g(x, y) \psi(y) d\mu d\nu}{\exp \left(\int_X \log \varphi(x) d\mu \right) \exp \left(\int_Y \log \psi(y) d\nu \right)},
\]

where the functions \(\varphi\) and \(\psi\) are assumed to be measurable, positive and such that their logarithms are integrable.

Let \(X = \Omega_W, Y = \Omega_M, T = \sigma_W, S = \sigma_M, g = \Phi\). As a consequence of an alternative characterization of the scaling mean (see [BIP, Proposition 3.5]) we have

\[
\text{sm}_{\mu_W, \mu_M}(\Phi) = \text{sm}_{\tilde{\varphi}, \tilde{\psi}}(F).
\]

Since \(f_{rs} > 0\) we can apply the Law of Large Permanents to conclude the proof of the Main Theorem.

Remark 4.1. We have chosen to present our result in the simplest possible setting. That is, the environment space being products of full-shifts endowed with Bernoulli measures. In terms of stochastic block models we are considering only a finite number of communities. Using the general form of the Law of Large Permanent above our results can be extended for inhomogeneous random graphs in more general random environments.

5. A procedure to compute the scaling mean

It is well known that the computation of the permanent, and therefore of the number of perfect matchings, is a very hard problem. Indeed, it was shown by Valiant [Va] that the evaluation of the permanent of \((0,1)\)-matrices is an NP-hard problem. Thus, it is of interest to remark that the computation of the scaling mean, and therefore of the expectation of the number of perfect matchings, can be performed with a simple iterative process that converges exponentially fast.

Denote by \(B^\alpha \subset \mathbb{R}^\alpha\) and by \(B^\beta \subset \mathbb{R}^\beta\) the positive cones. Define the following maps forming a (non-commutative) diagram:

\[
\begin{array}{c}
B^\alpha \xrightarrow{I_1} B^\alpha \\
\downarrow \kappa_1 \\
B^\beta \xleftarrow{I_2} B^\beta
\end{array}
\]

where

\[
\kappa_1(\theta, \eta) = \theta^{-\frac{\alpha}{2\beta}}, \quad \kappa_2(\theta, \eta) = \eta^{-\frac{\beta}{2\alpha}}.
\]
by the formulas:

\[(I_1(\vec{x}))_i := \frac{1}{x_i}, \quad (I_2(\vec{y}))_j := \frac{1}{y_j}, \]
\[(K_2(\vec{x}))_j := \sum_{i=1}^{\alpha} f_{ij} x_i p_i, \quad (K_1(\vec{y}))_i := \sum_{j=1}^{\beta} f_{ij} y_j q_j.\]

Let \(T : B^\alpha \to B^\alpha\) be the map defined by \(T := K_1 \circ I_2 \circ K_2 \circ I_1\). The map \(T\) is a contraction for a suitable Hilbert metric. Indeed, for \(\vec{x}, \vec{z} \in B^\alpha\) define the following (pseudo)-metric

\[d(\vec{x}, \vec{z}) := \log \left(\frac{\max_i x_i \max_j z_j}{\min_i x_i \min_j z_j} \right).\]

The following results were proven in [BIP, Lemma 3.4, Lemma 3.3].

Lemma 5.1. For every \(\vec{x}, \vec{z} \in B^\alpha\) we have that

\[d(T(\vec{x}), T(\vec{z})) \leq \left(\tanh \frac{\delta}{4} \right)^2 d(\vec{x}, \vec{z}),\]

where

\[\delta \leq 2 \log \left(\frac{\max_{i,j} f_{ij}}{\min_{i,j} f_{ij}} \right) < \infty.\]

Lemma 5.2. The map \(T\) has a unique (up to positive scaling) fixed point \(\vec{x}_T \in B^\alpha\). Moreover, defining \(\vec{y}_T := K_2 \circ I_1(\vec{x}_T)\) one has that

\[\text{sm}_{\vec{x},\vec{y}}(F) = \prod_{i=1}^{\alpha} x_i^{p_i} \prod_{j=1}^{\beta} y_j^{q_j}.\]

Therefore, since the scaling mean can be directly computed from the fixed point of a contraction it possible to find good approximations of it using an iterative process that converges exponentially fast.

Acknowledgements. We appreciate interesting discussions with Manuel Cabezas about Random Walks in Random Environment.

References

[ACFG] Abért, M.; Csikvári, P.; Frenkel, P.; Kun, G. Matchings in Benjamini-Schramm convergent graph sequences. Trans. Amer. Math. Soc. 368 (2016), no. 6, 4197–4218. (Cited on page 4.)

[BIP] Bochi, J.; Iommi G.; Ponce M. The Scaling Mean and a Law of Large Permanents. Advances in Mathematics, vol. 292 (2016), pp. 374–409. (Cited on pages 2, 4, 5, 6, and 7.)

[Bog] Bogachev, L.V. Random Walks in Random Environments. Encyclopedia of Mathematical Physics. Vol. 4, pp. 353–371. Elsevier, Oxford, 2006. (Cited on pages 2 and 4.)

[Boll] Bollbóras, B. Random Graphs, 2nd edition. Cambridge Studies in Advanced Mathematics, 2001. (Cited on page 1.)

[BolMc] Bollbóras, B.; McKay, B. D. The number of matchings in random regular graphs and bipartite graphs. J. Combin. Theory Ser. B 41 (1986), no. 1, 80–91. (Cited on page 1.)

[BolJaRi] Bollbóras, B., Janson, S.; Riordan., O. The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 (2007), no. 1, 3–122. (Cited on pages 1 and 2.)

[ER] Erdős, P.; Rényi, A. On Random Graphs I. Publicationes Mathematicae (Debrecen) 6 (1959), 290–297. (Cited on page 1.)
Halász, G.; Székely, G.J. On the elementary symmetric polynomials of independent random variables. *Acta Math. Acad. Sci. Hungar.* 28 (1976), no. 3–4, 397–400. (Cited on page 5.)

Holland P.; Laskey K.; Leinhardt S. Stochastic blockmodels: First steps, *Social Networks* 5 (1983), no. 2, 109–137. (Cited on page 2.)

O’Neil, P.E. *Asymptotics in random (O,1)-matrices.* Proc. Amer. Math. Soc. 25 (1970), 290–296. (Cited on page 1.)

Solomon, F. Random Walks in a Random Environment. *Ann. Probab.* Volume 3, Number 1 (1975), 1–31. (Cited on page 2.)

Valiant, L.G. The complexity of computing the permanent. *Theoret. Comput. Sci.* 8 (1979), no. 2, 189–201. (Cited on page 6.)