AN EXAMPLE RELATED TO BRODY’S THEOREM

JÖRG WINKELMANN

ABSTRACT. We discuss an example related to the method of Brody.

1. INTRODUCTION

1.1. Bloch principle. In one-dimensional function theory there is a general philosophy which supposedly goes back to A. Bloch (see e.g. [12], [2]): If \(P \) is a sufficiently reasonable class of holomorphic maps or functions, then the following statements should be equivalent:

(1) Every map in class \(P \) defined on the complex line \(\mathbb{C} \) is constant.

(2) The set of all maps in class \(P \) defined on the unit disk \(\Delta = \{ z \in \mathbb{C} : |z| < 1 \} \) is a normal family.

(A family of maps is called a “normal family” if every sequence in it is either compactly divergent or contains a subsequence which converges uniformly on compact sets. A sequence of maps \(f_n : X \to Y \) between topological spaces is “compactly divergent”, if for every pair of compact subsets \(K \subset X, C \subset Y \) there are only finitely many \(f_n \) with \(f_n(K) \cap C \neq \{\} \).

For example, every bounded holomorphic function on \(\mathbb{C} \) is constant by Liouville’s theorem and due to Montel’s theorem the family of all bounded holomorphic functions on \(\Delta \) is a normal family. Thus the Bloch principle is valid for the family \(P \) of all bounded holomorphic functions with values in \(\mathbb{C} \).

1.2. Brody’s theorem. Let \(Y \) be a complex manifold. It is called “taut” if the family of all holomorphic maps \(f : \Delta \to Y \) is a normal family. Let us from now on assume that \(Y \) is compact. Then being “taut” is easily seen to be equivalent with hyperbolicity in the sense of Kobayashi. The theorem of Brody (see [3]) states that this is furthermore equivalent with the property that every holomorphic map from \(\mathbb{C} \) to \(Y \) is constant. In other words: Brody’s theorem states that the

1991 Mathematics Subject Classification. 32A22, 32Q45.

Acknowledgement. The author wants to thank V. Bangert and B. Siebert for the invitation to the workshop in Freiburg in September 2003.
Bloch principle hold for the class of holomorphic maps with values in a (fixed) compact complex manifold Y.

Now we may raise the question: What about holomorphic maps to a compact complex manifold fixing some given base points? Given a compact complex manifold Y and a point $y \in Y$, let us consider the following two statements:

- Every holomorphic map $f : \mathbb{C} \to Y$ with $f(0) = y$ is constant.
- The family of all holomorphic maps $f : \Delta \to Y$ with $f(0) = y$ is a normal family.

Are they equivalent?

Using the notion of the infinitesimal Kobayashi-Royden pseudometric as introduced in [10] this can be reformulated into the following question: "If the infinitesimal Kobayashi-Royden pseudometric on a compact complex manifold Y degenerates for some point $y \in Y$, does this imply that there exists a holomorphic map $f : \mathbb{C} \to Y$ with $y \in f(\mathbb{C})$?"

Thanks to Brody’s theorem it is clear that there exists some non-constant holomorphic map $f : \mathbb{C} \to Y$ if the Kobayashi-Royden pseudometric is degenerate at some point y of Y. But it is not clear that f can be chosen in such a way that y is in the image or at least in the closure of the image. Of course, at first it looks absurd that degeneracy of the Kobayashi-Royden pseudometric at one point y should only imply the existence of a non-constant holomorphic map to some part of Y far away of y and should not imply the existence of a non-constant map $f : \mathbb{C} \to Y$ whose image comes close to y.

Thus one is led to postulate

Conjecture. Let X be a compact complex manifold, $x \in X$. Assume that the infinitesimal Kobayashi-Royden pseudometric is degenerate on $T_x X$.

Then there exists a non-constant holomorphic map $f : \mathbb{C} \to X$ with $f(0) = x$.

1.3. **Bounded derivatives.** Let X be a complex manifold equipped with a hermitian metric h. For each holomorphic map $f : \mathbb{C} \to X$ and each point $z \in \mathbb{C}$ we may now calculate the norm of the derivative Df at z with respect to the euclidean metric on \mathbb{C} and h on X. Let P be a class of holomorphic maps $f : \mathbb{C} \to (X, h)$ with bounded derivatives (i.e. for every $f \in P$ there is a number $C > 0$ such that the inequality $||Df_z|| < C$ holds for all $z \in \mathbb{C}$). Let $f : \mathbb{C} \to X$ be a non-constant map in this class P. Via $f_n(x) = f(nx)$ this map f yields a non-normal family of maps $f_n : \Delta \to X$.
Now let P' denote the set of those maps in P for which the derivative (calculated with respect to the euclidean metric on \mathbb{C} resp. Δ and the hermitian metric on X) is bounded. For each of the f_n defined above the derivative is clearly bounded, since Δ is relatively compact in \mathbb{C}, and $f_n : \mathbb{C} \to X$ extends through the boundary. Thus f_n is a non-normal family in P'. If the Bloch principle holds for P', this implies the existence of a non-constant holomorphic map $F : \mathbb{C} \to X$ in P.

Thus: If the Bloch principle holds for P', the existence of a non-constant holomorphic map f in P implies the existence of a non-constant holomorphic map F in P with the additional property that $||DF||$ is bounded.

Brody’s theorem implies that this is indeed true if, given a compact complex manifold X, we consider the set P of all holomorphic maps with values in X.

However, we will give an example of a compact complex manifold X, an open subset Ω and a point $x \in \Omega$ such that this property does not hold if P is chosen as the family of all holomorphic maps f with image contained in Ω and $f(0) = x$.

1.4. Reparametrization. The key method for proving a Bloch principle is the following: Let $f_n : \Delta \to Y$ be a non-normal family. Then we look for an increasing sequence of disk Δ_{r_n} which exhausts \mathbb{C} (i.e. $\lim r_n = +\infty$) and a sequence of holomorphic maps $\alpha_n : \Delta_{r_n} \to \Delta$ such that a subsequence of $f_n \circ \alpha_n$ converges (locally uniformly) to a non-constant holomorphic map from \mathbb{C} to Y.

For the proof of his theorem Brody used this idea, taking combinations of affine-linear maps with automorphisms of the disk for the α_n.

Zalcman ([12]) investigated other reparametrizations where the α_n themselves are affin-linear maps, a concept which has the advantage that it can also be applied to harmonic maps.

1.5. Subvarieties of abelian varieties. Let A be a complex abelian variety (i.e. a compact complex torus which is simultaneously a projective algebraic variety) and X a subvariety. Let E denote the union of all translates of complex subtori of A which are contained in X. It is known that this union is either all of X or a proper algebraic subvariety ([6]).

Since A is a compact complex torus there is a flat hermitian metric on A induced by the euclidean metric on \mathbb{C}^g via $A \simeq \mathbb{C}^g/\Gamma$. A holomorphic map $f : \mathbb{C} \to A$ has bounded derivative with respect to this metric if and only if it is induced by an affine-linear map from \mathbb{C} to \mathbb{C}^g.
From this, one can deduce that \(f(\mathbb{C}) \subset E \) for every holomorphic map \(f : \mathbb{C} \rightarrow X \) with bounded derivative. Given the previous considerations about the Bloch principle, it is thus natural to conjecture:

Conjecture. For every non-constant holomorphic map \(f : \mathbb{C} \rightarrow X \) the image is contained in \(E \). The Kobayashi-pseudodistance on \(X \) is a distance outside \(E \).

For example, this statement is a consequence of the more general conjecture VIII.I.4 by S. Lang in [9]. In the context of classification theory the above statement has also be conjectured by F. Campana ([4], §9.3).

In the spirit of the analogue between diophantine geometry and entire holomorphic curves as pointed out by Vojta [11], the conjecture above is also supported by the famous result of Faltings ([5]) with which he solved the Mordell conjecture. This result states the following: If we assume that \(A \) und \(X \) are defined over a number field \(K \), then with only finitely many exceptions every \(K \)-rational point of \(X \) is contained in \(E \).

1.6. **Our example.** We construct an example of the following type: There is a compact complex manifold \(X \), equipped with some hermitian metric, an open subset \(\Omega \) and a point \(p \in \Omega \). There exists a non-constant holomorphic map \(f : \mathbb{C} \rightarrow \Omega \) with \(f(0) = p \). Via \(f_n(z) = f(nz) \) this yields a non-normal family of holomorphic maps \(f_n : \Delta \rightarrow \Omega \) with bounded derivatives such that \(f_n(0) = p \).

But there is no non-constant holomorphic map \(f : \mathbb{C} \rightarrow \Omega \) with \(f(0) = p \) and bounded derivative.

2. **The example**

2.1. **Statement of main results.** We construct an example which shows that Brody reparametrization sometimes necessarily changes the image of the curve.

Theorem 1. There exists a compact complex hermitian manifold \((T, h)\) and open subsets \(\Omega_2 \subset \Omega_1 \subset T \) such that:

1. \(\Omega_2 \) is not dense in \(\Omega_1 \) and neither is \(\Omega_1 \) in \(T \).
2. For every point \(p \in \Omega_1 \) there is a non-constant holomorphic map \(f : \mathbb{C} \rightarrow \Omega_1 \) with \(p = f(0) \).
3. If \(f : \mathbb{C} \rightarrow T \) is a non-constant holomorphic map with bounded derivative (with respect to the euclidean metric on \(\mathbb{C} \) and \(h \) on \(T \)) and \(f(\mathbb{C}) \subset \Omega_1 \), then \(f(\mathbb{C}) \subset \Omega_2 \).
Recall that Brody’s method, starting from any holomorphic map from \mathbb{C} to T, yields a holomorphic map from \mathbb{C} to T with bounded derivative. Thus this examples provides a picture in which Brody’s method really changes the properties of $f : \mathbb{C} \to T$ fundamentally.

Responding to some additional questions which may be asked, we prove a little bit more.

Theorem 2. There exists a compact complex torus T, equipped with a flat hermitian metric h and open subsets $\Omega_2 \subset \Omega_1 \subset T$ such that:

1. Ω_2 is not dense in Ω_1 and neither is Ω_1 in T.
2. For every point $p \in \Omega_1$ and every $v \in T_p \Omega_1$ there is a non-constant holomorphic map $f : \mathbb{C} \to \Omega_1$ with $p = f(0)$, $v = f'(0)$ and $\Omega_1 = f(\mathbb{C})$.
3. If $f : \mathbb{C} \to T$ is a non-constant holomorphic map with bounded derivative (with respect to the euclidean metric on \mathbb{C} and h on T) and $f(\mathbb{C}) \subset \Omega_1$, then $f(\mathbb{C}) \subset \Omega_2$. Moreover f is affine-linear and $\overline{f(\mathbb{C})}$ is a closed analytic subset of T.

We remark that this implies in particular that the infinitesimal Kobayashi-Royden pseudometric vanishes identically on Ω_1.

Furthermore, it provides examples of holomorphic maps from \mathbb{C} into a compact complex torus with a rather “bad” image: The closure of the image with respect to the euclidean topology is $\overline{\Omega_2}$ and thus a set with non-empty interior such that the complement has also non-empty interior. This is in strong contrast to the Zariski-analytic closure: By the theorem of Green-Bloch-Ochiai for every holomorphic map f from \mathbb{C} to a compact complex torus T the closure of the image $f(\mathbb{C})$ with respect to the analytic Zariski topology (i.e. the smallest closed analytic subset of T containing $f(\mathbb{C})$) is always a translated subtorus of T.

We will now describe our example.

We precede the construction with some elementary observations about tori: Let $T = \mathbb{C}^n / \Lambda$ be a torus, equipped with the flat euclidean metric and the corresponding distance function $d_T(\cdot, \cdot)$. Let

$$\rho = \frac{1}{2} \min_{\gamma \in \Lambda \setminus \{0\}} ||\gamma||.$$

This is the *injectivity radius*, in other words ρ is the largest real number such that the natural projection $\pi : \mathbb{C}^n \to T$ induces a homeomorphism between the ball

$$B_\epsilon(\mathbb{C}^n; 0) = \{ v \in \mathbb{C}^n : ||v|| < \epsilon \}$$

and

$$B_\epsilon(T; e) = \{ x \in T : d_T(x, e) < \epsilon \}$$
for all $\epsilon < \rho$. Evidently, the injectivity radius ρ is a lower bound for the diameter

$$\rho \leq \text{diam} = \max_{x,y \in T} d_T(x, y)$$

If we pass from T to a subtorus $S \subset T$, the injectivity radius can only increase, while the diameter can only decrease. As a consequence we obtain:

Lemma 1. Let T be a compact (real or complex) torus with injectivity radius ρ. Then for every real positive-dimensional subtorus $S \subset T$ the diameter

$$\text{diam}(S) = \max_{x,y \in S} d_T(x, y)$$

is at least ρ.

Furthermore, if $0 < \epsilon < \rho$ and $x \in T$, then the ball $B_\epsilon(T; x)$ contains no translate of any positive-dimensional real subtorus of T.

Before giving the details of the construction of our example, let us try to express its idea in a drawing:

![Diagram](image)

Now let us start the precise construction of the example. Let $E' = \mathbb{C}/\Gamma'$ and $E'' = \mathbb{C}/\Gamma''$ be elliptic curves and $T = E' \times E''$. Let $\pi' : \mathbb{C} \to E'$, $\pi'' : \mathbb{C} \to E''$ and $\pi = (\pi', \pi'') : \mathbb{C}^2 \to T$ denote the natural projections. We assume that E' is not isogenous to E''. (For example, we might choose $E' = \mathbb{C}/\mathbb{Z}[i]$ and $E'' = \mathbb{C}/\mathbb{Z}[\sqrt{2}i]$.) Then $E' \times \{0\}$ and $\{0\} \times E''$ are the only non-trivial complex subtori of T.

Now $T = \mathbb{C}^2/\Gamma$ with $\Gamma = \Gamma' \times \Gamma''$. The compact complex torus T carries a hermitian metric h induced by the euclidean metric on \mathbb{C}^2 (i.e. $h = dz_1 \otimes \overline{dz_1} + dz_2 \otimes \overline{dz_2}$). The associated distance function is called d, the injectivity radius ρ is defined as explained above.

We choose numbers $0 < \rho' < \rho'' < \rho$ and define $W = B_{\rho'}(E', e)$.
Furthermore we choose $0 < \delta < \frac{1}{2}\rho$ and we choose a holomorphic map $\sigma : \mathbb{C} \to E''$ such that there exist complex numbers $t, t' \in B'_\rho(\mathbb{C}, 0)$ (i.e. $|t|, |t'| < \rho'$) and

$$d_{E''}(\sigma(t), \sigma(t')) > 2\delta.$$

(This is possible since 2δ is smaller than the injectivity radius ρ of T which in turn is a lower bound for the diameter of E'').

We denote by $s : \mathbb{C} \to \mathbb{C}$ a holomorphic function such that $\sigma = \pi'' \circ s$.

Since $\pi' : \mathbb{C} \to E'$ restricts to an isomorphism between $B'_\rho(\mathbb{C}, 0)$ and $B_\rho(E', e)$, the holomorphic maps s and σ induce maps from $B_\rho(E', e)$ to \mathbb{C} resp. E''. By abuse of notation these maps will also be denoted by s resp. σ.

Now define $\Omega_2 = (E' \setminus \bar{W}) \times E''$ and $\Omega_1 = \Omega_2 \cup \Sigma$ with

$$\Sigma = \{(x, y) : x \in \bar{W}, y \in E'', d_{E''}(y - \sigma(x)) < \delta\}$$

Let us now fix some point $p \in \Omega_1$ and $v = (v_1, v_2) \in T_p(T) = \mathbb{C}^2$. We have to show that there exists a holomorphic map f as stipulated in (2) of theorem 2.

Let $(p_1, p_2) \in \mathbb{C}^2$ be a point mapped on p by $\pi : \mathbb{C}^2 \to T$. If $p \in \Sigma$, we require $|p_1| \leq \rho'$ and $|s(p_1) - p_2| < \delta$ and define $\delta' = \delta - |s(p_1) - p_2|$. If $p \notin \Sigma$, we require $|p_1| > \rho''$ and define $\delta' = \delta$.

As the next step, we will choose a pair of entire functions (Q, H).

Claim 1. There is a pair of entire functions (Q, H) with the following properties:

1. Q is a non-constant polynomial,
2. $(Q(0), H(0)) = (p_1, p_2)$ and
3. $(Q'(0), H'(0))$ and v are parallel.
4. If $p \in \Sigma$, we require furthermore that $(Q(z), H(z) + y) \in \pi^{-1}(\Sigma)$ for all z and y with $|Q(z)| \leq \rho'$ and $|y| \leq \frac{1}{2}\delta'$.

Let us first discuss the case where $p \notin \Sigma$.

Then it suffices to choose

$$Q(z) = z^2 + v_1 z + p_1$$

and

$$H(z) = v_2 z + p_2.$$

If $p \in \Sigma$, we proceed as follows: First, for $r, t \in \mathbb{C}$ we define

$$Q_t(z) = (z + t)^2 + p_1 - t^2$$

and

$$H_{r,t}(z) = p_2 - s(p_1) + s(Q_t(z)) + rz.$$
We will set $Q = Q_t$ and $H = H_{r,t}$ for appropriately chosen parameters r, t.

Evidently Q_t is a polynomial for any choice of t. Furthermore $(Q_t(0), H_{r,t}(0)) = (p_1, p_2)$ independent of the choice of r, t:

$$Q_t(0) = t^2 + p_1 - t^2 = p_1$$

and

$$H_{r,t}(0) = p_2 - s(p_1) + s(p_1) + 0 = p_2.$$

Let $\Phi_{r,t} = (Q_t, H_{r,t})$. We have

$$\Phi'_{r,t}(0) = \left(Q'_t(0), s'(Q_t(0))Q'_t(0) + r \right) = \left(2t, 2s'(p_1)t + r \right)$$

Observe that $(r, t) \mapsto 2t$ defines a meromorphic function on \mathbb{C}^2 with a point of indeterminacy at $(0, 0)$. This is true regardless of the value of $s'(p_1)$.

Thus every neighborhood of $(0, 0)$ contains a point $(r, t) \neq (0, 0)$ such that $\Phi'_{r,t}(0)$ is a non-zero multiple of v.

Next we note that $(t, z) \mapsto Q_t(z)$ defines a proper map from $B_1(\mathbb{C}, 0) \times \mathbb{C}$ to \mathbb{C}. Therefore there is a constant $C > 0$ such that $|z| < C$, whenever there exists a parameter t such that $|t| \leq 1$ and $|Q_t(z)| \leq \rho$.

It is therefore possible to choose two numbers r, t in such a way that

1. $\Phi'_{r,t}(0)$ is a non-zero multiple of v,
2. $|t| < 1$ and
3. $|2rC| < \delta'$.

Now assume that $z, y \in \mathbb{C}$ with $|Q_t(z)| \leq \rho'$ and $|y| < \frac{1}{2}\delta'$. By the definition of the constant C, this implies $|z| < C$. Let $(w_1, w_2) = \Phi_{r,t}(z) + (0, y)$. Then

$$|w_2 - s(w_1)| = |p_2 - s(p_1) + rz + y| < |p_2 - s(p_1)| + |rC| + \frac{1}{2}\delta' <$$

$$< (\delta - \delta') + \frac{1}{2}\delta' + \frac{1}{2}\delta' = \delta.$$

Now $|w_2 - s(w_1)| < \delta$ in combination with $|w_1| = |Q_t(z)| \leq \rho'$ implies $\pi(w_1, w_2) \in \Sigma$. Hence $\Phi_{r,t}(z) + (0, y) \in \pi^{-1}(\Sigma)$ under this assumption. Thus the claim is proved. Q.E.D.

Our next step is to construct a closed subset A of \mathbb{C} to which we will apply Arakelyan approximation.

Let A_0 be the union of $\overline{B_{\rho'}(0)}$ and $\overline{B_{\rho'}(\gamma)}$ for all $\gamma \in \Gamma'$. If $p \notin \Sigma$, then $p_1 \notin A_0$. Hence in this case we can choose $\eta > 0$ such that $\overline{B_{\eta}(p_1)}$
is disjoint to A_0 and define A_1 as the union of A_0 with this closed ball $\overline{B_\eta(p_1)}$. If $p \in \Sigma$, we simply take $A_1 = A_0$.

Next we choose dense countable subsets $S_1 \subset \text{int}(\Sigma)$ (where $\text{int}(\Sigma)$ denotes the interior of Σ) and $S_2 \subset \Omega_2$. We observe that $\mathbb{C} \setminus A_1$ projects surjectively onto $E' \setminus \overline{W}$ and that the fibers of this projection are infinite discrete subsets of \mathbb{C}. For this reason we can find sequences a_n, b_n in \mathbb{C} such that

$$S_2 = \{\pi(a_n, b_n) : n \in \mathbb{N}\}$$

and all the a_n are distinct elements of $\mathbb{C} \setminus A_1$ with $\lim_{n \to \infty} |a_n| = +\infty$.

It follows that

$$\Theta = \{a_n : n \in \mathbb{N}\}$$

is a discrete subset of \mathbb{C} which has empty intersection with A_1. We define $A_2 = A_1 \cup \Theta$.

We fix a bijection $\xi : \Gamma' \setminus \{0\} \sim S_1$ and an enumeration $n \mapsto \gamma_n$ of $\Gamma' \setminus \{0\}$. Then we can choose sequences of complex numbers c_n, d_n such that the following properties hold for all $n \in \mathbb{N}$

1. $\pi(c_n, d_n) = \xi(\gamma_n)$,
2. $|c_n - \gamma_n| < \rho'$ and
3. $|d_n - s(c_n)| < \delta$.

We define $A = Q^{-1}(A_2)$.

Claim 2. Arakelyan approximation is applicable to A, i.e. $\{\infty\} \cup (\mathbb{C} \setminus A)$ is connected and locally connected.

Observing that we can deform $B_{\rho'}(\mathbb{C}, 0)$ to $B_{\rho'}(\mathbb{C}, 0)$, we deduce from prop. 1 that $Q^{-1}(A_0)$ has the desired property. Now A and $Q^{-1}(A_0)$ differ only by removing the preimage of a closed disc and by removing a discrete countable set (namely $Q^{-1}(\Theta)$). This can not destroy connectivity, hence not only $\{\infty\} \cup (\mathbb{C} \setminus Q^{-1}(A_0))$ but also $\{\infty\} \cup (\mathbb{C} \setminus A)$ is connected and locally connected. Thus the claim is proved.

We will now define a continuous function h on A, which is holomorphic in its interior, and which we will then approximate by an entire function, using Arakelyan’s theorem.

If $p \notin \Sigma$, we take $h(z) = H(z)$ on $Q^{-1}(B_\eta(p_1))$ and $h = s$ on $Q^{-1}(B_{\rho'}(0))$.

If $p \in \Sigma$, we define h on $Q^{-1}(B_{\rho'}(0))$ as $H(z)$.

Next, for every $n \in \mathbb{N}$, we define $h(z)$ as

$$h(z) = s(Q(z) - \gamma_n) + d_n - s(c_n)$$

whenever $|Q(z) - \gamma_n| \leq \rho'$.

Finally, we define h on $Q^{-1}(\Theta)$ by stipulating that $h(z) = b_n$ whenever $Q(z) = a_n$ for a number $n \in \mathbb{N}$.
By the construction of \((Q, H)\) we know that \(\pi(Q(0), h(0)) = p\) and that \((Q'(0), h'(0))\) is a multiple of \(v\). The choice of \(h\) implies moreover that \(S_1 \cup S_2\) is contained in the image of \(z \mapsto \pi(Q(z), h(z))\).

Next we define a continuous positive function \(\epsilon : A \to \mathbb{R}^+\) as follows:

- \(\epsilon \equiv 1\) on \(Q^{-1}(B_{\eta}(p_1))\) if \(p \notin \Sigma\).
- \(\epsilon \equiv \frac{1}{2}\delta'\) on \(Q^{-1}(B_{\rho''}(0))\).
- \(\epsilon(z) = \frac{1}{n}\) if \(Q(z) = a_n\).
- \(\epsilon(z) = \min\{\frac{1}{n}, \frac{1}{2}(\delta - \lvert d_n - s(c_n)\rvert)\}\) whenever \(\lvert Q(z) - \gamma_n\rvert \leq \rho'\).

Using prop. 2, we deduce that there exists an entire function \(F : \mathbb{C} \to \mathbb{C}\) such that

(1) \(|F(z) - h(z)| < \epsilon(z)\) for all \(z \in A\).
(2) \(F(0) = h(0)\) and \(F'(0) = h'(0)\).

By the second condition we obtain that \(\pi(Q(0), F(0)) = p\) and that \((Q'(0), F'(0))\) is a multiple of \(v\). The first condition ensures that \(\pi(Q(z), F(z)) \in \Omega\) for all \(z \in \mathbb{C}\). It also ensure that the image is dense: Indeed, let \(w \in \Omega_2\). Then there is a sequence of points in \(S_2\) converging to \(w\). But \(S_2 = \{\pi(a_n, b_n) : n \in \mathbb{N}\}\) and the construction of \(F\) implies that for every \(n \in \mathbb{N}\) there exists a number \(z_n \in \mathbb{C}\) such that \(Q(z_n) = a_n\) and \(|F(z_n) - b_n| < \frac{1}{n}\). It follows that there is a subsequence \(z_{n_k}\) such that \(\lim_k \pi(Q(z_{n_k}), F(z_{n_k})) = w\). If \(w \in \Sigma\), we argue similarly, with \(S_1\) in the role of \(S_2\). Thus the whole set \(\Omega_1\) is in the closure of the image of the map \(z \mapsto \pi(Q(z), F(z))\) from \(\mathbb{C}\) to \(T\).

Finally, let \(\mu\) be a complex number such that \(\mu(Q'(0), F'(0)) = v\) and define

\[f(z) = \pi(Q(\mu z), F(\mu z)) \]

Then \(f : \mathbb{C} \to \Omega_1\) is a holomorphic map with the desired properties.

3. Arakelyan Approximation with interpolation

We will need a slight improvement of Arakelyan’s theorem. We recall the theorem of Arakelyan (see [1]):

Theorem 3. Let \(A\) be a closed subset of \(\mathbb{C}\), \(U = \mathbb{P}_1(\mathbb{C}) \setminus A\), \(\epsilon : A \to \mathbb{R}^+\) a continuous function and \(f_0 : A \to \mathbb{C}\) a continuous function which is holomorphic in the interior of \(A\). Assume that \(U\) is connected and locally connected.

Then there exists a holomorphic function \(F : \mathbb{C} \to \mathbb{C}\) with \(|F(z) - f(z)| < \epsilon(z)\) for all \(z \in A\).

We want to verify that Arakelyan’s theorem is applicable in our situation.
Proposition 1. Let Γ be a lattice in \mathbb{C} and ρ' a real number with

$$0 < \rho' < \rho = \frac{1}{2} \min_{\gamma \in \mathbb{C} \setminus \{0\}} |\gamma|$$

Let $A' = \{z \in \mathbb{C} : d(z, \Gamma) \leq \rho'\} = \bigcup_{\gamma \in \mathbb{C}} B_{\rho'}(\gamma)$, $P : \mathbb{C} \to \mathbb{C}$ a non-constant polynomial and $U = \{\infty\} \cup (\mathbb{C} \setminus P^{-1}(A'))$.

Then U is connected and locally connected.

Proof. First we want to verify that U contains no bounded connected component. Indeed, assume that there is such a connected component C. Its boundary ∂C is a connected set mapped into $\bigcup_{\gamma \in \mathbb{C}} B_{\rho'}(\gamma)$ by P. This is a disjoint union due to the choice of ρ'. Hence continuity of P implies that there is one element $\gamma \in \mathbb{C}$ such that $|P(z) - \gamma| \leq \rho'$ for all $z \in \partial C$.

But $C \subset U$ implies $|P(z) - \gamma| > \rho'$ for all $z \in C$, $\gamma \in \Gamma$. This is in contradiction with the maximum principle for the holomorphic function P. Hence there can not exist a bounded connected component $C \subset U$.

For each $n \in \mathbb{N}$ we choose a simple closed curve $R_n \subset \mathbb{C} \setminus A'$ such that the open bounded subset $V_n \subset \mathbb{C}$ which is enclosed by R_n has the property that $B_n(\mathbb{C}, 0) \subset V_n$.

The ramification locus

$$Z = \{z \in \mathbb{C} : \exists w \in \mathbb{C} : P(w) = z, P'(w) = 0\}$$

is a finite set. Let $N_0 = \max\{|z| : z \in Z\}$. Now the restriction of P to $P^{-1}(\mathbb{C} \setminus V_n) \to \mathbb{C} \setminus V_n$ is an unramified covering of degree $d = \deg(P)$.
for all \(n > N_0 \). As a polynomial map, \(P \) extends to a proper map \(P : \mathbb{C} \cup \{ \infty \} \to \mathbb{C} \cup \{ \infty \} \). For a suitably chosen local coordinate \(w \) at \(\infty \) the map \(P \) near \(\infty \) can be described as \(w \mapsto w^d \). Using this fact and the fact that by construction each curve \(R_n \) defines a generator for \(\pi_1(\mathbb{C}^*) \cong \pi_1(\mathbb{C} \setminus B_n(\mathbb{C},0)) \)

we can conclude that \(P^{-1}(R_n) \) is connected for all \(n > N_0 \). Then \(P^{-1}(\Omega) \) is connected for every open subset \(\Omega \subset \mathbb{C} \setminus B_n(\mathbb{C},0) \) with \(R_n \subset \Omega \).

In particular

\[
W_n = U \setminus P^{-1}(V_n)
\]

is connected for all \(n > N_0 \). The collection of all these open sets \(W_n \) constitutes an neighborhood basis of \(U \) at \(\infty \), implying that \(U \) is locally connected at infinity. Furthermore, the connectedness of the sets \(W_n \) implies that \(U \) is only one unbounded connected component. Since we have already seen that \(U \) is no bounded connected component, this completes the proof that \(U \) is connected and locally connected. \(\square \)

Proposition 2. Let \(A \) be a closed subset in \(\mathbb{C} \), \(A \neq \mathbb{C} \), and suppose that for every function \(f \) on \(A \) which is holomorphic in its interior and every continuous map \(\varepsilon : A \to \mathbb{R}^+ \) there is an entire function \(F : \mathbb{C} \to \mathbb{C} \) with \(|F(z) - f(z)| < \varepsilon(z) \) for all \(z \in A \).

Let \(q \) be a point in the interior of \(A \). Then we can find such an entire function \(F \) with the additional properties \(F(q) = f(q) \) and \(F'(q) = f'(q) \).

Proof. Let \(U = \{ \infty \} \cup (\mathbb{C} \setminus A) \). By assumption \(U \) is connected and locally connected at infinity. Let \(p \in \mathbb{C} \setminus A \) and let \(W \) be a bounded connected open subset of \(\mathbb{C} \) containing both \(p \) and \(q \). Choose \(\delta > 0 \) such that

\[
\delta < \min \{ d(q, \partial W), d(q, \partial A), d(p, q) \}
\]

and define

\[
\tilde{A} = \overline{B_\delta(q)} \cup A \setminus W
\]

and

\[
\tilde{U} = \{ \infty \} \cup \left(\mathbb{C} \setminus \tilde{A} \right) = U \cup \left(W \setminus \overline{B_\delta(q)} \right).
\]

Now both \(U \) and \(\left(W \setminus \overline{B_\delta(q)} \right) \) are connected, and their intersection is non-empty, since it contains \(p \). Therefore \(\tilde{U} \) is connected. Moreover, \(\tilde{U} \) is locally connected at infinity, because it coincides with \(U \) near \(\infty \). Thus we have Arakelyan approximation for \(\tilde{A} \).
We choose constants $\xi_0, \xi_1 \in \mathbb{C} \setminus \{0\}$ such that
\[|\xi_0| < \frac{1}{16} \epsilon(z) \]
and
\[|\xi_1(z - q)| < \frac{1}{16} \epsilon(z) \]
for all $z \in \overline{B_\delta(q)}$.

Then we define functions $g, h : \tilde{A} \to \mathbb{C}$ via
\[g(z) = \begin{cases}
\xi_0 & \text{if } z \in \overline{B_\delta(q)} \\
0 & \text{else}
\end{cases} \]
and
\[h(z) = \begin{cases}
\xi_1(z - q) & \text{if } z \in \overline{B_\delta(q)} \\
0 & \text{else}
\end{cases} \]

Clearly, g and h are continuous and holomorphic in the interior of \tilde{A}. The choice of ξ_0, ξ_1 implies that $|g(z)| < \frac{1}{10} \epsilon(z)$ and $|h(z)| < \frac{1}{10} \epsilon(z)$ for all $z \in A$.

By the Arakelyan property we find sequences of entire functions $g_n, h_n : \mathbb{C} \to \mathbb{C}$ such that
\[|g_n(z) - g(z)| < \frac{1}{8n} \epsilon(z) \]
for all \(n \in \mathbb{N} \), \(z \in \hat{A} \). Locally uniform convergence on \(\hat{A} \) implies that inside the interior of \(\hat{A} \) the derivatives converge as well. Hence we obtain
\[
\lim_{n \to \infty} \begin{pmatrix} g_n(q) & h_n(q) \\ g'_n(q) & h'_n(q) \end{pmatrix} = \begin{pmatrix} g(q) & h(q) \\ g'(q) & h'(q) \end{pmatrix} = \begin{pmatrix} \xi_0 & 0 \\ 0 & \xi_1 \end{pmatrix}.
\]
Thus, for \(n \) sufficiently large the vectors \((g_n(q), g'_n(q)) \) and \((h_n(q), h'_n(q)) \) are linearly independent.

Next we observe that \(A \setminus \hat{A} \) is relatively compact in \(A \). Therefore, for sufficiently large numbers \(n, C \) the functions \(\alpha = \frac{1}{C} g_n \) and \(\beta = \frac{1}{C} h_n \) have the following properties:

1. \(\alpha, \beta \) are entire functions,
2. \(|\alpha(z)|, |\beta(z)| < \frac{1}{8} \epsilon(z) \) for all \(z \in A \), and
3. the vectors \((\alpha(q), \alpha'(q)) \) and \((\beta(q), \beta'(q)) \) are linearly independent.

By the approximation property for \(A \) there are sequences of entire functions \(\alpha_n, \beta_n, f_n : \mathbb{C} \to \mathbb{C} \) such that
\[
\max\{|\alpha_n(z) - \alpha(z)|, |\beta_n(z) - \beta(z)|, |f_n(z) - f(z)|\} < \frac{1}{n} \epsilon(z)
\]
for all \(n \in \mathbb{N} \), \(z \in A \). The locally uniform convergence of \(\lim \alpha_n = \alpha \), \(\lim \beta_n = \beta \) and \(\lim f_n = f \) on \(A \) implies that in the interior of \(A \) the respective derivatives converge as well. In particular, this happens at \(q \). Hence the matrix
\[
A_n = \begin{pmatrix} \alpha_n(q) & \beta_n(q) \\ \alpha'_n(q) & \beta'_n(q) \end{pmatrix}
\]
converges to
\[
\lim_{n \to \infty} A_n = A = \begin{pmatrix} \alpha(q) & \beta(q) \\ \alpha'(q) & \beta'(q) \end{pmatrix}.
\]
Since \(A \) is invertible, it follows that \(A_n \) is likewise invertible for all sufficiently large \(n \). Hence we can define (for sufficiently large \(n \)) sequences \(\lambda_n, \mu_n \) via
\[
\begin{pmatrix} \lambda_n \\ \mu_n \end{pmatrix} = A_n^{-1} \cdot \begin{pmatrix} f(q) - f_n(q) \\ f'(q) - f'_n(q) \end{pmatrix}.
\]
Now \(\lim f_n = f \), \(\lim f'_n = f' \) and \(\lim A_n^{-1} = A^{-1} \). Therefore \(\lim \lambda_n = 0 = \lim \mu_n \).

Thus we can choose a natural number \(N \in \mathbb{N} \) with the following properties:
(1) A_N is invertible,
(2) $|\lambda_N|, |\mu_N| < 1$,
(3) and $N > 4$.

We define
\[F(z) = f_N(z) + \lambda_N \alpha_N(z) + \mu_N \beta_N(z). \]

By the choice of λ_n, μ_n we have
\[
\begin{pmatrix}
F(q) \\
F'(q)
\end{pmatrix} = \begin{pmatrix}
f_N(q) + \lambda_N \alpha_N(q) + \mu_N \beta_N(q) \\
f'_N(q) + \lambda_N \alpha'_N(q) + \mu'_N \beta'(q)
\end{pmatrix} = \begin{pmatrix}
f_N(q) \\
f'_N(q)
\end{pmatrix} + A_N \cdot \begin{pmatrix}
\lambda_N \\
\mu_N
\end{pmatrix} = \begin{pmatrix}
f(q) \\
f'(q)
\end{pmatrix}.
\]

Furthermore
\[
|F(z) - f(z)| \leq |f_N(z) - f(z)| + |\lambda_N| \cdot |(\alpha_N(z) - \alpha(z)) + |\alpha(z))| +
+ |\mu_N| \cdot |(\beta_N(z) - \beta(z)) + |\beta(z))|
\leq \frac{1}{N} \epsilon(z) + \frac{1}{N} \epsilon(z) + \frac{1}{8} \epsilon(z) + \frac{1}{N} \epsilon(z) + \frac{1}{8} \epsilon(z) < \left(\frac{3}{4} + \frac{2}{8} \right) \epsilon(z) = \epsilon(z)
\]
for all $z \in A$. Thus F is an entire function with the desired properties. \hfill \Box

\section*{References}

[1] Arakelyan, N. U. : Approximation complexe et propriétés des fonctions analytiques. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 595–600. Gauthier-Villars, Paris, 1971.
[2] Bloch, A: Sur les systèmes de fonctions uniformes satisfaisant à l’équation d’une variété algébrique dont l’irrégularité dépasse la dimension. J. Math. Pures Appl. (9) 5, 19-66 (1926)
[3] Brody, R.: Compact manifolds and hyperbolicity. T.A.M.S. 235, 213–219 (1978)
[4] Campana, F.: Orbifolds, Special Varieties and Classification Theory. (2004)
[5] Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73, (3), 349–366 (1983)
[6] Kawamata, Y.: On Bloch’s conjecture. Invent. Math. 57, 97-100 (1980)
[7] Kobayashi, S.: Hyperbolic complex spaces. Springer 1998.
[8] Lang, S.: Introduction to Complex hyperbolic spaces. Springer 1987.
[9] Lang, S. Number Theory III. Diophantine geometry. Encyclopaedia of Mathematical Sciences, 60. Springer-Verlag, Berlin, 1991.
[10] Royden, H.: Remarks on the Kobayashi metric. Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), pp. 125–137. Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971.
[11] Vojta, P.: Diophantine approximations and value distribution theory. Springer LN 1239. (1987)
[12] Zalcman, L.: Normal families: new perspectives. (English. English summary) Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215–230.

Jörg Winkelmann, Institut Elie Cartan (Mathématiques), Université Henri Poincaré Nancy 1, B.P. 239, F-54506 Vandœuvre-les-Nancy Cedex, France

E-mail address: jwinkel@member.ams.org
Webpage: http://www.math.unibas.ch/~winkel/