Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow

Kushan De Silva1 · Ryan T. Demmer2,3 · Daniel Jönsson4,5 · Aya Mousa1 · Andrew Forbes6 · Joanne Enticott1

Received: 9 May 2021 / Revised: 19 June 2022 / Accepted: 24 June 2022 / Published online: 5 July 2022
© The Author(s) 2022

Abstract
Type 2 diabetes (T2D) has a complex etiology which is not yet fully elucidated. The identification of gene perturbations and hub genes of T2D may deepen our understanding of its genetic basis. We aimed to identify highly perturbed genes and hub genes associated with T2D via an extensive bioinformatics analytic workflow consisting of five steps: systematic review of Gene Expression Omnibus and associated literature; identification and classification of differentially expressed genes (DEGs); identification of highly perturbed genes via meta-analysis; identification of hub genes via network analysis; and downstream analysis of highly perturbed genes and hub genes. Three meta-analytic strategies, random effects model, vote-counting approach, and p value combining approach, were applied. Hub genes were defined as those nodes having above-average betweenness, closeness, and degree in the network. Downstream analyses included gene ontologies, Kyoto Encyclopedia of Genes and Genomes pathways, metabolomics, COVID-19-related gene sets, and Genotype-Tissue Expression profiles. Analysis of 27 eligible microarrays identified 6284 DEGs (4592 downregulated and 1692 upregulated) in four tissue types. Tissue-specific gene expression was significantly greater than tissue non-specific (shared) gene expression. Analyses revealed 79 highly perturbed genes and 28 hub genes. Downstream analyses identified enrichments of shared genes with certain other diabetes phenotypes; insulin synthesis and action-related pathways and metabolomics; mechanistic associations with apoptosis and immunity-related pathways; COVID-19-related gene sets; and cell types demonstrating over- and under-expression of marker genes of T2D. Our approach provided valuable insights on T2D pathogenesis and pathophysiological manifestations. Broader utility of this pipeline beyond T2D is envisaged.

Keywords Differential gene expression · Highly perturbed genes · Hub genes · Meta-analysis · Type 2 diabetes

Introduction
According to an analysis of global data through years 1990–2018, diabetes was prevalent in almost half a billion people, a number expected to rise by 25% and 51%, respectively, by 2030 and 2045 (Saeedi et al. 2019). Type 2 diabetes (T2D) accounts for over 90% of all diabetes cases (Zheng et al. 2018), affecting nearly 6.8% (537 million) of the world population in year 2021 (Sun et al. 2022). Current evidence suggests a complex and multifactorial etiology of
T2D characterized by genetic and environmental interactions (Arroyo et al. 2021), although T2D pathogenesis is not yet fully elucidated. There are likely varying degrees of shared genetic origins in the pathogenesis of T2D and other diabetes phenotypes such as type 1 diabetes (T1D) (Aylward et al. 2018), latent autoimmune diabetes in adults (Basile et al. 2014), and maturity-onset diabetes of the young (MODY) (Bonnefond et al. 2020). Recent studies also support the deconstruction of T2D heterogeneity to define T2D sub-types (Udler et al. 2018) and the delineation of a continuum of diabetes sub-types (Flannick et al. 2016) instead of the status quo characterized by a few distinct diabetes phenotypes. Understanding the genetic basis of T2D is fundamental to precision medicine approaches striving for impeccable matching and an individualized level of T2D care (Prasad and Groop 2019).

Cardinal tissues of the body impacted by heightened insulin resistance and diminished insulin secretion in T2D include the pancreas, liver, skeletal muscle, and adipose tissue (Batista et al. 2021). Exploration of gene perturbations in these tissues can deepen our understanding of the molecular etio-pathology of T2D. Highly up- and down-regulated genes expressed consistently across different tissue types may uncover potential genome-wide biomarkers or “gene signatures,” which are integral to achieving precision diagnostic, prognostic, monitoring, and treatment approaches. Topologically, hub genes are defined as highly and tightly connected nodes in typically scale-free gene regulatory networks (GRN) (Buchberger et al. 2021). As such, criteria such as high correlation in candidate modules (Liu et al. 2019a) and above-average betweenness, closeness, and degree (Liu et al. 2019b) in GRN have been used to demarcate hub genes in previous studies. Functionally, they perform critical regulatory roles in biological processes interacting with many other genes in associated pathways. Given their crucial structural and functional characteristics, hub genes are highly sought-after in precision medicine approaches as plausible niches for developing drug and treatment targets (Liu et al. 2021). In this context, the importance of identifying highly perturbed genes and hub genes associated with T2D for the purpose of individualizing T2D care is unequivocal.

Downstream analyses of gene sets provide invaluable insights into associated core biological functions, pathways, diseases, drugs, and many other aspects. Frequently used gene ontology (GO) analysis provides evidence as a snapshot of contemporary biological knowledge related to a given gene including its function at the molecular level, the cellular location(s) it functions at, and the biological processes reliant on it (Hill et al. 2008). Pathway analyses such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000) entail derivation of coherent and meaningful biological phenomena attributable to input genes (Nguyen et al. 2019). Additional downstream analyses of diseases, drugs, metabolomes, and tissue enrichment are also available and can provide valuable insights into associated genes. Taken together, downstream analysis of highly perturbed and hub genes associated with T2D may render valuable information on aspects such as affected biological processes, dysregulated pathways, related diseases, and metabolomic biomarkers.

Advances in high-throughput technologies have generated a wealth of gene expression data, while the availability of open-source platforms such as the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) (Edgar et al. 2002; Barrett et al. 2013) and simultaneous advent in big data and bioinformatics analytic tools such as microarray and RNA-seq meta-analysis and gene–gene interaction network analysis strategies have offered unprecedented opportunities for high-level evidence synthesis from a multitude of gene expression datasets. Such approaches are likely to render new knowledge on complex diseases like T2D and acquire adequate statistical power to identify genes associated with a disease that may not have been evoked via prior analysis of a single or a few datasets.

Yet, to date, no comprehensive evidence synthesis study has been performed to identify highly perturbed genes and hub genes associated with T2D in human adults using an extensive bioinformatics analytic pipeline. Prior studies were limited to identifying hub genes in a few \((n = 3)\) microarrays from a single tissue type (pancreatic islets) (Lin et al. 2020) or performing an ad hoc gene expression meta-analysis of all diabetes phenotypes \((n = 13)\) (Mei et al. 2017). In this study, we aimed to identify highly perturbed genes and hub genes associated with T2D in different tissues of adult humans via a pre-defined and extensive bioinformatics analytic workflow consisting of systematic review, meta-analysis, identification and classification of differentially expressed genes (DEGs), network analysis, and downstream analysis.

Methods

The methodological approach consisted of five sequential steps: (1) systematic review of NCBI GEO expression data and related publications, (2) analysis of microarrays to identify DEGs, (3) meta-analysis of DEGs to identify highly perturbed genes in T2D, (4) network analysis of gene–gene/protein–protein interactions to identify hub genes in T2D, and (5) downstream analysis of highly perturbed genes and hub genes associated with T2D.

Systematic review

A preliminary search on the NCBI GEO database was first run on 1st February 2021 using a pre-defined search string:
“(“diabetes mellitus, type 2” [MeSH Terms] OR type 2 diabetes[All Fields]) AND “Homo sapiens” [ptorgn] AND “Expression profiling by array” [Filter],” The resulting microarrays and related publications were further screened against pre-defined eligibility criteria. Microarrays of conditions other than T2D, all diabetes phenotypes other than T2D, and early dysglycemic conditions such as impaired glucose tolerance, insulin resistance, and prediabetes were excluded. Studies with non-human specimens, children, without healthy controls, or with notable comorbidity in control samples were also excluded. We also omitted studies involving long non-coding RNA (lncRNA), micro RNA (miRNA), samples subject to drug treatments and other interventions, pluripotent stem cells, xenografts, transfected or transgenic tissues, undifferentiated tissues, and sub-samples in super-series. Microarrays passing these eligibility criteria were selected for manual curation which were then further screened along with the full texts of related publications (where available) for the presence of adequate information such as clinical diagnosis (healthy vs T2D) and gene symbol/Entrez ID. Following this, all microarrays with sufficient information were selected for subsequent analyses.

Identification of DEGs

All microarrays selected from the systematic review were imported to R using `getGEO` function of `GEOquery` package (Davis and Meltzer 2007). In each expression set, `phenoData` component was examined to determine the number of eligible samples and confirm the presence of outcome (T2D vs controls) variable, while `featureData` component was explored to verify the presence of gene annotation information. Where required, non-normalized gene expression matrices were log2 transformed in order to alleviate

Dataset	Number of DEGs\(^a\) (n = 6284)	Upregulated\(^b\) (n = 1692)	Downregulated\(^c\) (n = 4592)	Tissue
GSE156993	0	0	0	PBMCs
GSE15932	309	79	230	Peripheral blood
GSE21321	37	15	22	Peripheral blood
GSE13015	3	0	3	Whole blood
GSE13760	0	0	0	Arterial tissue
GSE78721	1	0	1	Adipocytes
GSE71416	13	0	13	Omental adipose tissue
GSE54350	2	2	0	Visceral adipose tissue
GSE29231	1655	1051	604	Visceral adipose tissue
GSE16415	0	0	0	Visceral adipose tissue
GSE29226	967	159	808	Subcutaneous adipose tissue
GSE27949	0	0	0	Subcutaneous adipose tissue
GSE76895	101	31	70	Pancreatic islets
GSE76894	478	2	476	Pancreatic islets
GSE38642	0	0	0	Pancreatic islets
GSE25724	2164	76	2088	Pancreatic islets
GSE20966	56	26	30	Beta cells from pancreatic tissue
GSE64998	0	0	0	Liver
GSE23343	0	0	0	Liver
GSE15653	0	0	0	Liver
GSE73034	0	0	0	Skeletal muscle
GSE55650	30	9	21	Skeletal muscle
GSE29221	185	26	159	Skeletal muscle
GSE25462	8	6	2	Skeletal muscle
GSE19420	0	0	0	Skeletal muscle
GSE22309	275	210	65	Skeletal muscle
GSE21340	0	0	0	Skeletal muscle

\(^a\) differentially expressed genes were defined as BH-adjusted p value < 0.05 and log2FC > 1|log2FC < −0.5;
\(^b\) upregulated genes were defined as BH-adjusted p value < 0.05 and log2FC > 1;
\(^c\) downregulated genes were defined as BH-adjusted p value < 0.05 and log2FC < −0.5

DEGs, differentially expressed genes; PBMCs, peripheral blood mononuclear cells
skewness and create symmetric distributions (Le et al. 2020). Samples were assessed for the presence of any batch effects between the two groups by running principal components analysis on transposed expression matrices and were rectified using \texttt{removeBatchEffect} function in \texttt{limma} package (Ritchie et al. 2015). Relevant features were annotated with expression matrices to generate curated data for running differential gene expression analysis. Samples were ascribed to the relevant group (T2D/control) using \texttt{model.matrix} function of \texttt{limma} package (Ritchie et al. 2015) producing a binary design matrix. As the detection of DEGs can be enhanced by filtering genes with a low expression level, we assumed a median (50\%) cut-off for the gene expression level. A uniform analytic pipeline consisting of the following sequential steps was applied to each microarray: (1) median expression levels were calculated, and those above the median were retained. (2) From the resulting genes, those expressed in more than two samples were retained, while the others were removed. (3) Model fitting was performed using \texttt{lmFit} function of \texttt{limma} (Ritchie et al. 2015) to enumerate expression levels of T2D and control groups. (4) Contrasts were defined as “T2D, control,” and \textit{empirical}
Bayes step was run to derive differential expression results. (5) The DEGs, defined as those with $\log_{2}FC > 1$ and Benjamini–Hochberg (BH)-adjusted $p < 0.05$ for upregulated genes and $\log_{2}FC < -0.5$ and BH-adjusted $p < 0.05$ for downregulated genes, were identified for each microarray.

Microarrays with no DEGs were excluded, and those with non-zero DEGs were visualized with a clustered bar chart. Furthermore, DEGs were classified by tissue types and visualized as a Venn diagram. Information on clinical and other features of the microarrays with non-zero DEGs, individual DEGs identified by each dataset, and tissue-based classification of DEGs were also summarized.

Meta-analysis of DEGs: identification of highly perturbed genes

In order to identify highly perturbed genes associated with T2D, we conducted meta-analysis of DEGs using MetaVolcanoR package (Prada et al. 2020). We implemented all 3 meta-analytic strategies incorporated in this package, namely, random effects model (REM), vote-counting approach (VC), and p value combining approach (CA).

In brief, REM synthesizes a summary fold-change of multiple microarrays based on variance, producing a summary p value which indicates the probability that the summary fold-change is not different to zero. The metathr parameter can be specified to filter the desired percentage of the top-most consistently perturbed genes. Gene perturbation is ranked as per the topconfects approach (Harrison et al. 2019). The VC algorithm produces highly perturbed genes according to user-specified p values and fold-change cut-off levels, taking into account both the number of studies in which a DEG appeared and its gene fold-change sign consistency. Here also, metathr parameter can be defined to extract the required percentage of highly perturbed genes. Meta-synthesis of gene perturbation by CA algorithm is at the mean or median level along with p values derived by Fisher method. A required proportion of top-most DEGs can be identified by specifying metathr parameter with CA as well (Prada et al. 2020).

As required by the package, all microarray datasets with non-zero DEGs; each consisting of the columns gene name (symbol), fold-change (\log_{2}FC), and p value combining approach (CA), and p value combining approach (CA) were merged to build a list item. For all 3 meta-analytic models, metathr was set at 0.01. For VC, p value and absolute fold-change thresholds were set at 0.05 and 0, respectively.

Highly perturbed genes identified by each model as well as the compiled list of all highly perturbed genes were presented in tabular format. Volcano plots were drawn to illustrate the top-most perturbed genes identified by REM, VC, and CA methods. Inverse cumulative distribution of consistently differentially expressed genes as per VC was plotted to demonstrate the number of genes with perturbed expression in ≥ 1 studies. Detailed meta-analytic outputs...
Approach	Highly perturbed genes	Upregulated genes	Downregulated genes
Random effects model	49 genes: XLYT1, ISLR, CRTAC1, ERAP2, PCOLCE2, VNN2, U2AF2, NPTX2, MMP9, LOC10008589, DYRK3, LOC649456, BCL3, ZNF423, SOD3, CNTFR, ZNF75, RNF19B, TNFAIP6, TAPBP, PHACTR3, PHLD1A, ALDOB, PRIMA1, PVRL2, CNTNAP2, RASL11B, POMZP3, ELFN1, ESPNL, PI3, SCN1B, EGR2, MGRN1, SLC9A3R2, LOC650885, UGT2B7, C19orf33, HLA-DRB4, OR8B12, HLA-DRB5, IFNA7, LOC389286, FUT11, APOL4, LOC731682, KIAA1984, POPDC3, TAP2	35 genes: XLYT1, ISLR, CRTAC1, ERAP2, PCOLCE2, VNN2, U2AF2, NPTX2, MMP9, LOC10008589, DYRK3, LOC649456, BCL3, ZNF423, SOD3, CNTFR, ZNF75, RNF19B, TNFAIP6, TAPBP, PHACTR3, PHLD1A, ALDOB, PRIMA1, PVRL2, CNTNAP2, RASL11B, POMZP3, ELFN1, ESPNL, PI3, SCN1B, EGR2, MGRN1, SLC9A3R2	14 genes: LOC650885, UGT2B7, C19orf33, HLA-DRB4, OR8B12, HLA-DRB5, IFNA7, LOC389286, FUT11, APOL4, LOC731682, KIAA1984, POPDC3, TAP2
Vote-counting approach	27 genes: LOC644422, MCL1, CTSC, DYRK2, MCOLN3, TMEM37, AP15, ARG2, C14orf132, COG2, DHR52, ENPP2, ENTPD3, HADH, KIAA1279, LARP4, MARK1, MTRK, NAAAD2, PAAF1, PPP1RI1, RPL14, SLC2A2, SNAP25, STMN2, NNNAT2	2 genes: LOC644422, MCL1	25 genes: CTSC, DYRK2, MCOLN3, TMEM37, AP15, ARG2, C14orf132, COG2, DHR52, ENPP2, ENTPD3, HADH, KIAA1279, LARP4, MARK1, MTRK, NAAAD2, PAAF1, PPP1RI1, RPL14, SLC2A2, SNAP25, STMN2, NNNAT2
Combining approach	8 genes: PCOLCE2, ERAP2, EGR2, ZBTB16, SLC2A2, ARG2, ASCL2, IAPP	4 genes: PCOLCE2, ERAP2, EGR2, ZBTB16	4 genes: SLC2A2, ARG2, ASCL2, IAPP
Compiled set	79 genes: XLYT1, ISLR, CRTAC1, ERAP2, PCOLCE2, VNN2, U2AF2, NPTX2, MMP9, LOC10008589, DYRK3, LOC649456, BCL3, ZNF423, SOD3, CNTFR, ZNF75, RNF19B, TNFAIP6, TAPBP, PHACTR3, PHLD1A, ALDOB, PRIMA1, PVRL2, CNTNAP2, RASL11B, POMZP3, ELFN1, ESPNL, PI3, SCN1B, EGR2, MGRN1, SLC9A3R2, LOC644422, MCL1, ZBTB16, LOC650885, UGT2B7, C19orf33, HLA-DRB4, OR8B12, HLA-DRB5, IFNA7, LOC389286, FUT11, APOL4, LOC731682, KIAA1984, POPDC3, TAP2, CTSC, DYRK2, MCOLN3, TMEM37, AP15, ARG2, C14orf132, COG2, DHR52, ENPP2, ENTPD3, HADH, KIAA1279, LARP4, MARK1, MTRK, NAAAD2, PAAF1, PPP1RI1, RPL14, SLC2A2, SNAP25, STMN2, NNNAT2, ASCL2, IAPP	38 genes: XLYT1, ISLR, CRTAC1, ERAP2, PCOLCE2, VNN2, U2AF2, NPTX2, MMP9, LOC10008589, DYRK3, LOC649456, BCL3, ZNF423, SOD3, CNTFR, ZNF75, RNF19B, TNFAIP6, TAPBP, PHACTR3, PHLD1A, ALDOB, PRIMA1, PVRL2, CNTNAP2, RASL11B, POMZP3, ELFN1, ESPNL, PI3, SCN1B, EGR2, MGRN1, SLC9A3R2, LOC644422, MCL1, ZBTB16	41 genes: LOC650885, UGT2B7, C19orf33, HLA-DRB4, OR8B12, HLA-DRB5, IFNA7, LOC389286, FUT11, APOL4, LOC731682, KIAA1984, POPDC3, TAP2, CTSC, DYRK2, MCOLN3, TMEM37, AP15, ARG2, C14orf132, COG2, DHR52, ENPP2, ENTPD3, HADH, KIAA1279, LARP4, MARK1, MTRK, NAAAD2, PAAF1, PPP1RI1, RPL14, SLC2A2, SNAP25, STMN2, NNNAT2, ASCL2, IAPP
from all 3 approaches and the highly perturbed genes identified by each method were also compiled.

Network analysis: identification of hub genes

The list of highly perturbed genes was fed into GENEMANIA (Warde-Farley et al. 2010) to determine the gene–gene interaction network. The interaction network formulated by the GENEMANIA gene function prediction program, based on the multiple association network integration algorithm (MANIA), incorporates a multitude of functional associations including co-expression, pathways, physical interactions, co-localization, genetic interactions, and protein domain similarity. It has been found more accurate and computationally efficient than other gene function prediction methods (Mostafavi et al. 2008; Peña-Castillo et al. 2008). The gene–gene interaction network was first constructed and visualized in GENEMANIA. Next, these interactions were imported to visualize the protein–protein interaction (PPI) network in STRING version 11.0 (Szklarczyk et al. 2019). We used the Centiscape application (Scardoni et al. 2009) in the Cytoscape software (Shannon et al. 2003) to analyze the PPI network and determine the hub nodes. After removing nodes with a connection number <2, the network was visualized in Cytoscape. Hub genes were defined as those nodes in the network with betweenness, closeness, and degree higher than their mean values. A similar approach has been previously used to demarcate hub genes (Liu et al. 2019b). Topological features of the hub nodes and details of the PPI network derived by Centiscape were summarized.

Downstream analysis of highly perturbed genes and hub genes

Using Enrichr (Chen et al. 2013; Kuleshov et al. 2016; Xie et al. 2021) platform, we ran a series of downstream analyses for both highly perturbed genes and hub genes as outlined below:

- Ontologies: GO Biological Process 2018 (Hill et al. 2008)
- Pathways: KEGG 2019 Human (Kanehisa and Goto 2000)
- Diseases/drugs: COVID-19-related gene sets
- Cell types: GTEx tissue sample gene expression profiles up and GTEx tissue sample gene expression profiles down
- Miscellaneous: HMDB metabolites
The Genotype-Tissue Expression (GTEx) portal contains tissue-specific gene expression and regulation data (GTEx Consortium 2013), whereas the Human Metabolome Database (HMDB) records human metabolomics data (Wishart et al. 2018).

Results

The bioinformatic analytic workflow is summarized in Online Resource 1.

Systematic review outputs

The preliminary search resulted in 178 eligible microarrays, while 45 of these were selected for manual curation. We selected 27 microarrays with sufficient information for subsequent analyses, the details of which are provided in Online Resource 2.

Differential gene expression analysis outputs

The number of DEGs identified by each dataset is shown in Table 1. There were 11 microarrays with no DEGs. In Fig. 1, microarrays with non-zero DEGs (n = 16) are visualized as a clustered bar chart. The identified DEGs belonged to four tissue types (i.e., circulatory; adipose; digestive; skeletal muscle) as visualized in the Venn diagram (Fig. 2). Clinical and other information of the 16 microarrays with non-zero DEGs is presented in Online Resource 3. Details of DEGs identified by each dataset are presented in Online Resource 4, while DEGs classified by tissue type are presented in Online Resource 5.

A significantly larger proportion of genes associated with T2D is downregulated

Of all the DEGs identified by different tissues (n = 6284), the proportion of downregulated genes (n = 4592) was significantly higher than the proportion of upregulated genes (n = 1692) (p < 0.00000001). At the level of tissue type, circulatory (255 downregulated vs 94 upregulated; p < 0.000001), adipose (1426 downregulated vs 1212 upregulated; p = 0.000017), and digestive (2664 downregulated vs 135 upregulated; p < 0.000001) tissues revealed a similar pattern, while the skeletal muscle (247 downregulated vs
251 upregulated; \(p = 0.44653 \) showed no such over-expression of downregulated genes. Of the 27 microarrays, 11 contained no DEGs, while the two datasets containing the highest number of DEGs were from pancreatic islets (GSE25724; 2164 DEGs) and visceral adipose tissue (GSE29231; 1655 DEGs) (Table 1, Fig. 1).

Tissue-specific DEGs are predominant compared to DEGs shared between tissues in T2D

Proportions of tissue-specific DEGs were significantly higher than the proportions shared with one or more other tissue types in circulatory (242 specific vs 89 non-specific; \(p < 0.000001 \)), adipose (1989 specific vs 342 non-specific; \(p < 0.000001 \)), and digestive (1875 specific vs 409 non-specific; \(p < 0.000001 \)) groups, while skeletal muscle (244 specific vs 217 non-specific; \(p = 0.112959 \)) had no such over-expression (Fig. 2).

Meta-analytic outputs

As shown in Table 2, the three meta-analytic algorithms REM, VC, and CA identified 49, 27, and 8 highly perturbed genes, respectively. The compiled list, after removing redundancies, comprised 79 highly perturbed genes. Volcano plots illustrating the top-most perturbed genes identified by REM, VC, and CA are given in Figs. 3, 4, and 5, respectively. Figure 6 presents the inverse cumulative distribution of consistently differentially expressed genes as per VC, plotted to demonstrate the number of genes with perturbed expression in \(\geq 1 \) studies. We present detailed meta-analytic outputs from all 3 approaches in Online Resource 6 and highly perturbed genes identified by each method in Online Resource 7.

Highly perturbed genes associated with T2D comprise both up- and downregulated genes

There was no significant difference (\(p = 0.410983 \)) between the proportions of up- (38/79) and downregulated (41/79) genes that constituted the highly perturbed gene set (\(n = 79 \)) identified by all 3 meta-analytic algorithms (Table 2, Figs. 3, 4, 5, 6). The 38 upregulated genes were ALDOB; BCL3; CNTFR; CNTNAP2; CRTAC1; DYSK3; EGR2; ELF11; ERAP2; ESPNL; ISLR; LOC100008589; LOC644422; LOC649456; MCL1; MGRN1; MMP9; NPTX2; PCOLCE2; PHACTR3; PHLDAl; PI3; POMZP3; PRIMA1; PRVLA2; RASL11B; RNF19B; SCN1B; SLC9A3R2; SOD3; TAPBP; TNFAIP6; U2AF2; VNN2; XLYT1; ZBTB16; ZNF423; and ZNF75. The 41 downregulated genes were API5; APOL4; ARG2; ASCL2; C1orf132; C19orf33; COG2; CTSC; DHR52; DYSK2; ENPP2; ENTPD3; FUT1; HADH; HLADR4; HLADR5; IFN7; KIAA1279; KIAA1984; LARP4; LOC389286; LOC650885; LOC731682; MARK1; MCOLN3; MTRR; NAALAD2; NMNAT2; OR8B12; PAIF1; POPDC3; PPP1K; PPP1R1A; RPL14; SLC2A2; SNAP25; STMN2; TAP2; TMEM37; and UGT2B7.
Network analysis outputs

Network analysis identified 28 hub genes, the topological features of which are summarized in Table 3. Figure 7 presents the gene–gene interaction network produced on GENEMANIA, and details of this network are given in Online Resource 8. The PPI network visualized on STRING version 11.0 (Szklarczyk et al. 2019) is given in Fig. 8. The network created by Cytoscape is provided in Fig. 9. Details of the PPI network derived by Centiscape are provided in Online Resource 9.

Hub genes associated with T2D also comprise both up- and downregulated genes

The 28 hub genes consisted of 13 upregulated, 9 downregulated, and 6 predicted genes. There was no significant difference ($p = 0.261216$) between the proportions of up- (13/22) and downregulated (9/22) genes constituting the hub gene set. The 13 upregulated hub genes were CNTFR; CNTNAP2; ISLR; MCL1; MPP9; PHLDA1; RASL11B; SCN1B; SOD3; TNFAIP6; XYLTI; ZBTB16; and ZNF423. The 9 downregulated genes were CTSC; ENPP2; HADH; PPP1R1A; RPL14; SLC2A2; SNAP25; STMN2; and UGT2B7. The 6 hub genes predicted by GENEMANIA were ARG1; CD226; DPEP1; PPP1R15A; TAP1; and ZMIZ1 (Table 3).

Downstream functional analysis outputs

Findings from downstream analyses of highly perturbed genes are summarized in Tables 4, 5, 6 and illustrated in Figs. 10, 11, 12 with details in Online Resource 10. Results from downstream analyses of hub genes are presented in Tables 7, 8, 9 and visualized in Figs. 13, 14, 15 with details in Online Resource 11.

Gene	Betweenness Mean	Closeness Mean	Degree Mean	Regulation
PHLDA1	213.0074	0.005618	22	Upregulated
CTSC	149.7385	0.005495	18	Downregulated
HADH	208.3918	0.00578	18	Downregulated
RPL14	139.3092	0.005464	17	Downregulated
ZBTB16	127.1864	0.005405	14	Upregulated
SOD3	198.8821	0.005714	21	Upregulated
SNAP25	380.1873	0.005814	30	Downregulated
SLC2A2	438.8331	0.005747	26	Downregulated
ISLR	465.6411	0.005952	27	Upregulated
SCN1B	175.7841	0.005376	14	Upregulated
MMP9	196.9649	0.005682	22	Upregulated
ENPP2	230.6537	0.005618	17	Downregulated
TAP1*	189.4171	0.005376	40	-
MCL1	320.3027	0.005917	27	Upregulated
DPEP1*	133.0483	0.005208	15	-
CNTNAP2	761.7546	0.006649	39	Upregulated
STN2	200.277	0.005618	18	Downregulated
PPP1R1A	219.8601	0.005587	18	Downregulated
ZNF423	406.5439	0.006061	21	Upregulated
CNTFR	200.657	0.005319	16	Upregulated
TNFAIP6	162.3969	0.005208	14	Upregulated
PPP1R15A*	119.5084	0.005155	13	-
XYLTI	194.4998	0.00565	18	Upregulated
ZMIZ1*	392.1699	0.005682	26	-
RASL11B	168.9444	0.005376	13	Upregulated
ARG1*	124.961	0.005263	18	-
UGT2B7	247.0102	0.005682	19	Downregulated
CD226*	222.4953	0.005495	17	-

*Genes included in the network as predicted by GENEMANIA

Table 3 Topological characteristics of the hub genes ($n = 28$) identified via network analyses
Enriched biological processes associated with highly perturbed genes and hub genes of T2D

Ontology analysis of highly perturbed genes identified 89 enriched biological processes (Online Resource 10). The top 10 enriched biological processes were intrinsic apoptotic signaling pathway in response to DNA damage (GO:0,008,630); intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator (GO:0,042,771); antigen processing and presentation of peptide antigen via MHC class I (GO:0,002,474); cellular response to oxidative stress (GO:0,034,599); plasma membrane bounded cell projection organization (GO:0,120,036); intrinsic apoptotic signaling pathway by p53 class mediator (GO:0,072,332); myeloid cell differentiation (GO:0,030,099); nicotinamide nucleotide metabolic process (GO:0,046,496); regulation of intrinsic apoptotic signaling pathway (GO:2,001,242); and myeloid leukocyte differentiation (GO:0,002,573). Three of these, antigen processing and presentation of peptide antigen via MHC class I (GO:0,002,474); myeloid cell differentiation (GO:0,030,099), and regulation of intrinsic apoptotic signaling pathway (GO:2,001,242), were associated with upregulated genes in T2D (Table 4).

Ontological analysis of hub genes identified 179 enriched biological processes (Online Resource 11). Top 10 enriched biological processes were neutrophil degranulation (GO:0,043,312); neutrophil activation involved in immune response (GO:0,002,283); neutrophil-mediated immunity (GO:0,002,446); regulation of intrinsic apoptotic signaling pathway (GO:2,001,242); negative regulation of intrinsic apoptotic signaling pathway (GO:2,001,243); positive regulation of cell projection organization (GO:0,031,346); cellular response to reactive oxygen species (GO:0,034,614); negative regulation of apoptotic signaling pathway (GO:2,001,234); negative regulation of cysteine-type endopeptidase activity involved in apoptotic process (GO:0,043,154); and regulation of peptide hormone secretion (GO:0,090,276). Of these, three (regulation of intrinsic apoptotic signaling pathway (GO:2,001,242); negative regulation of intrinsic apoptotic signaling pathway (GO:2,001,243);
negative regulation of apoptotic signaling pathway (GO:2,001,234)) were associated with upregulated genes in T2D, whereas one (regulation of peptide hormone secretion (GO:0,090,276)) was associated with downregulated genes in T2D (Table 6).

Enriched KEGG pathways associated with highly perturbed genes and hub genes of T2D

As per KEGG analysis of highly perturbed genes, 21 pathways were enriched (Online Resource 10). The top 10 pathways were Epstein–Barr virus infection; antigen processing and presentation; autoimmune thyroid disease; maturity-onset diabetes of the young; asthma; allograft rejection; graft-versus-host disease; type 1 diabetes mellitus; intestinal immune network for IgA production; and cell adhesion molecules (CAMs). Seven of these (autoimmune thyroid disease; maturity-onset diabetes of the young; asthma; allograft rejection; graft-versus-host disease; type 1 diabetes mellitus; intestinal immune network for IgA production) were associated with downregulated genes in T2D (Table 6).

According to KEGG analysis of hub genes, 12 pathways were enriched (Online Resource 11). The top 10 pathways were insulin secretion; apoptosis; adrenergic signaling in cardiomyocytes; cell adhesion molecules (CAMs); JAK-STAT signaling pathway; transcriptional mis-regulation in cancer; arginine biosynthesis; maturity-onset diabetes of the young; ascorbate and aldarate metabolism; and fatty acid elongation. Four of these (insulin secretion; maturity-onset diabetes of the young; ascorbate and aldarate metabolism; fatty acid elongation) were associated with downregulated genes in T2D, while two pathways (JAK-STAT signaling pathway and transcriptional mis-regulation in cancer) were associated with upregulated genes in T2D (Table 6).

COVID-19 related gene sets associated with highly perturbed genes and hub genes of T2D

Downstream analyses revealed 20 COVID-19-related gene sets associated with the highly perturbed genes of T2D (Online Resource 10), and the top 10 of these are visualized in Fig. 11a. There were 23 COVID-19-related gene sets associated with the hub genes of T2D (Online Resource 11), the top 10 of which are visualized in Fig. 14a.

HMDB metabolites associated with highly perturbed genes and hub genes of T2D

Four HMDB metabolites (zinc (HMDB01303), manganese (HMDB01333), magnesium (HMDB00547), C10H13N2O7P (HMDB01570)) were associated with the highly perturbed genes of T2D (Online Resource 10). Of these, Zinc (HMDB01303) was associated with upregulated genes in T2D, while C10H13N2O7P (HMDB01570) was associated with downregulated genes in T2D (Table 5).

There were 45 HMDB metabolites associated with the hub genes of T2D (Online Resource 11). The top 10 metabolites were zinc (HMDB01303); ethyl glucuronide (HMDB01025); 3-acetoacetyl-CoA (HMDB01484); (S)-methylmalonate semialdehyde (HMDB02217); C18H31NO14S (HMDB00632); ornithine (HMDB00214); 17beta-estradiol glucuronide (HMDB010317); (3alpha,5beta,20S)-20-hydroxypregnan-3-yl beta-D-glucopyranosiduronic acid (HMDB010325); 3,17-androstanediol glucuronide (HMDB010321); and 17alpha-estradiol-3-glucuronide (HMDB010322). Seven of these (Ethyl glucuronide (HMDB01303); 3-acetoacetyl-CoA (HMDB01484); (S)-methylmalonate semialdehyde (HMDB02217); 17beta-estradiol glucuronide (HMDB010317); (3alpha,5beta,20S)-20-hydroxypregnan-3-yl beta-D-glucopyranosiduronic acid (HMDB010318); 3,17-androstanediol glucuronide (HMDB010321); and 17alpha-estradiol-3-glucuronide (HMDB010322)) were associated with upregulated genes in T2D (Table 4).
Gene expression in different cell types associated with highly perturbed genes and hub genes of T2D

There were 168 downregulated GTEx profiles (Online Resource 10) associated with highly perturbed genes of T2D, the top 10 of which consisted of one brain, two thyroids, and seven blood tissue samples (Table 6 and Fig. 12). There were 77 upregulated GTEx profiles (Online Resource 10) associated with highly perturbed genes of T2D, the top 10 of which consisted of six adipose and one each of lung, breast, heart, and blood vessel tissue samples (Table 6 and Fig. 12).

There were 223 downregulated GTEx profiles (Online Resource 11) associated with hub genes of T2D, the top 10 of which consisted of five nervous system (three brain, one nerve, one pituitary), three blood, one breast, and one bladder tissue samples (Table 9 and Fig. 12). There were 178 upregulated GTEx profiles (Online Resource 11) associated with hub genes of T2D, the top 10 of which consisted of six adipose, two blood, and two skin tissue samples (Table 9 and Fig. 15).

Discussion

In this study, we identified highly perturbed genes and hub genes associated with T2D in different tissues of adult humans, via an extensive bioinformatics analytic workflow. Downstream analyses revealed valuable insights on T2D pathogenesis, including associations with other diabetes phenotypes and COVID-19 and patterns of tissue-specific and tissue non-specific differential gene expression as well as pathophysiological manifestations such as those related to insulin action, immunity, and apoptosis. Salient findings of the study which contribute towards the understanding of the genetic basis of T2D are further discussed below. The comprehensive evidence synthesis approach with open-source gene expression data exemplified in this study could be replicated to gain high-level evidence synthesis for other clinical conditions.

Patterns of differential gene expression in T2D

Our findings indicate that T2D seems rather a disorder of gene downregulation than upregulation, when the whole genome is considered. This is consistent with previous studies where a preponderance of gene downregulation was associated with T2D (Takematsu et al. 2020; Palsgaard et al. 2009). Also,
Table 4 Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: GO biological processes and KEGG pathways

Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
Ontologies: GO biological processes							
Intrinsic apoptotic signaling pathway in response to DNA damage	3/48	9.03E-04	0.230983	17.43509	122.2228	DYRK2; BCL3; MCL1	
(GO:0.008,630)							
Intrinsic apoptotic signaling pathway in response to DNA damage by	2/20	0.002795	0.230983	28.72006	168.8714	DYRK2; BCL3	
p53 class mediator (GO:0.042,771)							
Antigen processing and presentation of peptide antigen via MHC class I	2/28	0.005448	0.230983	19.87512	103.5986	ERAP2; TAPBP	Up
(GO:0.002,474)							
Cellular response to oxidative stress (GO:0.034,599)	3/115	0.010668	0.230983	6.981555	31.69995	MMP9; DHRS2; SOD3	
Plasma membrane bounded cell projection organization	3/118	0.011436	0.230983	6.798398	30.39569	CNTNAP2; STMN2; NPTX2	
(GO:0.120,036)							
Intrinsic apoptotic signaling pathway by p53 class mediator	2/43	0.012527	0.230983	12.59424	55.1606	DYRK2; BCL3	
(GO:0.072,332)							
Myeloid cell differentiation (GO:0.030,099)	2/44	0.013091	0.230983	12.29375	53.30386	DYRK3; ZBTB16	Up
Nicotinamide nucleotide metabolic process (GO:0.046,496)	2/45	0.013665	0.230983	12.00725	51.54622	NMNAT2; ALDOB	
Regulation of intrinsic apoptotic signaling pathway	2/47	0.014845	0.230983	11.47244	48.2997	MMP9; MCL1	Up
(GO:2.001,242)							
Myeloid leukocyte differentiation	2/50	0.016695	0.230983	10.75379	44.01114	MMP9; DHRS2	
(GO:0.002,573)							
Pathways: KEGG							
Epstein–Barr virus infection	6/201	0.000144	0.012503	8.31444	73.51986	IFNA7; HLA-DRB5; HLA-DRB4;	
Antigen processing and presentation	4/77	0.000245	0.012503	14.50082	120.5547	HLA-DRB5; HLA-DRB4; TAP2;	
Autoimmune thyroid disease	3/53	0.001205	0.040983	15.68763	105.436	IFNA7; HLA-DRB5; HLA-DRB4;	Down
Maturity-onset diabetes of the young (MODY)	2/26	0.004708	0.12006	21.53355	115.3862	SLC2A2; IAPP	Down
Asthma	2/31	0.006651	0.135681	17.81639	89.31323	HLA-DRB5; HLA-DRB4	Down
Allograft rejection	2/38	0.009878	0.159725	14.34704	66.24726	HLA-DRB5; HLA-DRB4	Down
Graft-versus-host disease	2/41	0.011434	0.159726	13.24142	59.20461	HLA-DRB5; HLA-DRB4	Down
Type I diabetes mellitus (T1DM)	2/43	0.012527	0.159726	12.59423	55.1606	HLA-DRB5; HLA-DRB4	Down
Intestinal immune network for IgA production	2/48	0.015452	0.175118	11.2247	46.79817	HLA-DRB5; HLA-DRB4	Down
Cell adhesion molecules (CAMs)	3/145	0.019771	0.181561	5.49824	21.5726	CNTNAP2; HLA-DRB5; HLA-DRB4	

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; T2D, type 2 diabetes
hyperglycemia-induced global downregulation of gene expression in adipose and skeletal muscle tissues have been documented previously (Meugnier et al. 2007). A similar pattern has been observed in T1D (Yip et al. 2020) and other endocrine disorders such as polycystic ovary syndrome (Idicula-Thomas et al. 2020). In contrast, highly perturbed genes and hub genes associated with T2D, which might together constitute the candidate gene set critical for pathogenicity of T2D, were found to contain both up- and downregulated genes. This presentation suggests a more complex dysregulation at the crux of the GRN of T2D, involving actions and interactions between both repressed and augmented genes.

Tissue-specific and tissue non-specific DEGs associated with T2D

Results of the present study indicate the predominance of tissue-specific DEGs in T2D. This supports the use of target

Table 5 Downstream analyses of highly perturbed genes (n=79) associated with type 2 diabetes in different tissues of human adults: COVID-19-related gene sets and HMDB metabolites

Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
Diseases: COVID-19-related gene sets							
Upregulated by SARS-CoV-2 in pancreatic organoids from GSE151803	9/500	0.000155	0.01841	5.08787	44.64083	**TMEM37; PPP1R1A; VNN2; BCL3; TAP2; ELF1; MMP9; DHRS2; SCN1B**	-
SARS perturbation down genes mouse lung from GSE19137;GPL1261:2	5/246	0.002908	0.08566	5.51755	32.22428	**PCOLCE2; RPL14; HADH; CTSC; MCLI**	-
SARS perturbation up genes mouse lung from GSE19137;GPL1261:3	6/366	0.003262	0.08566	4.46598	25.56907	**SLC9A3R2; HLA-DRB5; U2AF2; ZBTB16; RPL14; MCLI**	-
Healthy lung biopsy vs. COVID-19 infected lung series 15 from GSE147507 up genes	7/500	0.003599	0.08566	3.8313	21.55896	**POPDC3; HLA-DRB5; TNFAIP6; VNN2; BCL3; RNF19B; CTSC**	-
Upregulated by SARS-CoV-2 in lung tissue from GSE147507	7/500	0.003599	0.08566	3.8313	21.55896	**POPDC3; HLA-DRB5; TNFAIP6; VNN2; BCL3; RNF19B; CTSC**	-
SARS-CoV perturbation up genes bronchial epithelial 2B4 from GSE17400;GPL570:6	6/402	0.005143	0.100484	4.05251	21.35735	**ERAP2; VNN2; TAP2; RNF19B; PPM1K; DHRS2**	-
SARS perturbation up genes mouse lung from GSE19137;GPL1261:5	5/291	0.005911	0.100484	4.63877	23.80141	**HLA-DRB5; U2AF2; ZBTB16; RPL14; MCLI**	-
Upregulated by SARS-CoV-1 in Calu-3 from GSE148729	6/498	0.013921	0.16867	3.24574	13.87347	**APOL4; EGR2; TAP2; RNF19B; PPM1K; DHRS2**	-
Upregulated by SARS-CoV-2 in Calu-3 24 h from GSE148729	6/499	0.014047	0.16867	3.23899	13.81541	**APOL4; EGR2; ERAP2; TAP2; RNF19B; PPM1K**	-
Upregulated by SARS-CoV-2 in NHBE from GSE147507	6/500	0.014174	0.16867	3.23227	13.75766	**ENTPD3; BCL3; TAP2; PI3; MMP9; CTSC**	-
Miscellaneous: HMDB metabolites							
Zinc (HMDB01303)	4/82	0.000312	0.025909	13.56786	109.52001	**ZBTB16; ALDOB; MMP9; SOD3**	Up
Manganese (HMDB01333)	4/193	0.007193	0.127982	5.56811	27.4768	**ARG2; DYRK2; PPM1K; SOD3**	-
Magnesium (HMDB00547)	6/463	0.009991	0.127982	3.50061	16.12387	**DYRK3; DYRK2; ENTPD3; PPM1K; NMNAT2; MARK1**	-
C10H13N2O7P (HMDB01570)	1/11	0.042612	0.127982	25.52692	80.55315	**ENTPD3**	Down
Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
------	---------	---------	------------------	------------	----------------	-------	------------------
Cell types: GTEx tissue sample gene expression profiles down							
GTEX-XUJ4-0726-SM-4BOOP thyroid female 60–69 years	4/79	0.0027	0.3129	14.1127	115.93606	HLA-DRB5; STMN2; RNF19B; DHR52	-
GTEX-V955-0004-SM-3NMDH blood male 60–69 years	23/2789	0.00034	0.3129	2.54729	20.28253	CNTFR; POPDC3; RASL1B; PCOLCE2; ZBTB16; C14orf132; NMNAT2; ASCL2; SOD3; POMZP3; SLCA93R2; APOL4; ISLR; PPP1R1A; CRTAC1; PHACTR3; P13; NPTX2; ZNF423; PVRL2; SCN1B; PRIMA1; MARK1	-
GTEX-XXEK-0004-SM-4BRWO blood male 50–59 years	24/3085	0.00059	0.3129	2.40349	17.85933	CNTFR; CNTNAP2; SNAP25; POPDC3; ARG2; RASL1B; ENTPD3; PCOLCE2; ZBTB16; XLYT1; C14orf132; NMNAT2; ELFN1; ASCL2; SOD3; SLCA93R2; ISLR; PPP1R1A; CRTAC1; NPTX2; ZNF423; PVRL2; SCN1B; MARK1	-
GTEX-S7SE-0005-SM-2XCEA blood male 50–59 years	23/2919	0.00067	0.3129	2.41451	17.63845	POPDC3; ARG2; RASL1B; ENTPD3; PCOLCE2; NMNAT2; LARP4; ELFN1; SOD3; SLCA93R2; TMEM37; ISLR; ESPNL; KIAA1279; ENPP2; PHACTR3; HADH; NPTX2; ZNF423; PVRL2; SCN1B; PRIMA1; MARK1	-
GTEX-XUYS-0005-SM-47JZ2 blood male 50–59 years	24/3115	0.00068	0.3129	2.37593	17.31639	CNTFR; SNAP25; POPDC3; DYRK3; RASL11B; ENTPD3; PCOLCE2; ZBTB16; NMNAT2; LARP4; SOD3; SLCA93R2; TMEM37; ISLR; KIAA1279; PPP1R1A; CRTAC1; ENPP2; HADH; NPTX2; ZNF423; PHILDA1; PVRL2; MARK1	-
GTEX-XUJ4-0004-SM-4BOQE blood female 60–69 years	25/3348	0.00081	0.3129	2.31245	16.45932	SNAP25; PCOLCE2; STMN2; ELFN1; ASCL2; SLCA93R2; APOL4; ISLR; CRTAC1; PHACTR3; P13; ZNF423; PHILDA1; SCN1B; PRIMA1; MARK1; ARG2; ENTPD3; ZBTB16; C14orf132; NMNAT2; SOD3; PPP1R1A; ALDOB; PVRL2	-
GTEX-WL46-2826-SM-3LK81 brain male 50–59 years	17/1966	0.00149	0.33149	2.52838	16.44486	DYRK3; EGR2; MCOLN3; DYRK2; TNFAIP6; PCOLCE2; ERAP2; MPP9; ASCL2; SOD3; APOL4; ISLR; FFN2; BCL2; PVRL2; CTSC; MCLI	-
GTEX-TML8-0001-SM-3NMAF blood female 40–49 years	22/2914	0.00161	0.33149	2.27268	14.60663	CNTFR; RASL11B; ENTPD3; PCOLCE2; ZBTB16; STMN2; C14orf132; NMNAT2; ASCL2; SOD3; SLCA93R2; APOL4; ISLR; PPP1R1A; CRTAC1; ALDOB; ZNF423; PHILDA1; PVRL2; SCN1B; PRIMA1; MARK1	-
Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
GTEX-OIZF-0006-SM-215GQ blood male 60–69 years	32/5000	0.00172	0.33149	2.04927	13.03763	CNTFR; POPDC3; DYRK3; MTRR; RASL11B; ELFN1; POPDC3; SLC9A3R2; APOL4; ISLR; CRTC1; ENPP2; NAALAD2; HADH; NPTX2; ZNF423; PHLD1A; PAAF1; PRMA1; MFRK1; EGR2; MCOLN3; ENTPD3; ZBTB16; CL40RF132; NMAT2; LARP4; SOD3; TME367; KIAA1279; PPP1RIA; PVRL2	-
GTEX-WFOO-0226-SM-3GIKW thyroid male 30–39 years	5/222	0.00186	0.33149	6.13526	38.59908	SNAP25; TNFAIP6; STMN2; ALDOB; P13	-
Cell types: GTEx tissue sample gene expression profiles up							
GTEX-WHPG-0626-SM-3NMBD adipose tissue male 50–59 years	12/778	0.00005	0.147791	4.47878	44.22047	CNTFR; TMEM37; APOL4; DYRK3; EGR2; HLA-DRB5; PCOLCE2; BCL3; ENPP2; HADH; ZNF423; MCL1	-
GTEX-XGQ4-1026-SM-4AT4L adipose tissue male 50–59 years	9/598	0.00057	0.448488	4.21994	31.48829	SLC9A3R2; CNTFR; APOL4; EGR2; PPP1RIA; BCL3; HADH; ELFN1; MCL1	-
GTEX-X88G-0226-SM-4GIE4 adipose tissue male 30–39 years	11/872	0.00061	0.44848	3.58099	26.50301	TMEM37; APOL4; ISLR; EGR2; TNFAIP6; PCOLCE2; ERAP2; BCL3; TAP2; CTSC; MCL1	-
GTEX-WHPG-1426-SM-3NMBB lung male 50–59 years	13/1178	0.00067	0.44848	3.17113	23.17132	HLA-DRB5; MTRR; TAP2; RNF19B; MMP9; TAPBP; SLC9A3R2; APOL4; VNN2; CRTAC1; BCL3; CTSC; MCL1	-
GTEX-WH7G-1126-SM-3NMBK adipose tissue male 40–49 years	10/758	0.00078	0.448488	3.71483	26.5752	CNTFR; APOL4; DYRK3; TNFAIP6; PCOLCE2; PPP1RIA; BCL3; HADH; ELFN1; MCL1	-
GTEX-P4PP-3026-SM-3P61O blood vessel female 30–39 years	7/434	0.00163	0.71722	4.43852	28.4846	SLC9A3R2; CNTFR; APOL4; EGR2; RASL11B; PCOLCE2; ZNF423	-
GTEX-PWCY-1926-SM-3NB25 adipose tissue female 20–29 years	10/866	0.0021	0.71722	3.23179	19.92596	SLC9A3R2; CNTFR; TMEM37; APOL4; PCOLCE2; PPP1RIA; NAALAD2; HADH; ZNF423; LARP4	-
GTEX-XQ4-2226-SM-4AT4Y adipose tissue male 50–59 years	9/722	0.00213	0.717225	3.46367	21.29601	SLC9A3R2; CNTFR; TMEM37; APOL4; PCOLCE2; PPP1RIA; ZBTB16; XLYT1; HADH; ZNF423	-
GTEX-S4Q7-1126-SM-4AD6R breast male 20–29 years	9/737	0.00245	0.717225	3.38965	20.37124	CNTFR; TMEM37; APOL4; PCOLCE2; PPP1RIA; ENPP2; HADH; ELFN1; POPDC3; POMZP3	-
GTEX-VUSG-0726-SM-3G1K1 heart male 50–59 years	10/886	0.0025	0.7172	3.15085	18.87721	POPDC3; APOL4; DYRK3; DYRK2; RASL11B; PCOLCE2; FUT11; COG2; HADH; ELFN1	-
tissue gene expression analysis as a viable avenue for identifying tissue-specific T2D biomarkers. A previous analysis integrating multiple tissue transcriptomics and PPI data to explore molecular biomarkers of T2D confirmed the presence of common signatures (Calimlioglu et al. 2015). We also observed common DEGs across different tissue types which can act as confluent molecular signatures of T2D. Identification of tissue-specific and non-specific molecular gene signatures of T2D facilitates downstream exploration of key pathways amenable to therapeutic targeting and drug repurposing efforts.

Shared gene enrichment across diabetes phenotypes

As revealed by KEGG pathway analyses, both MODY and T1D were enriched pathways associated with highly perturbed genes of T2D, while MODY was also an enriched

Fig. 10 Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: a GO biological processes, b KEGG pathways

Fig. 11 Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: a COVID-19 related gene sets, b HMDB metabolites
pathway associated with hub genes of T2D. Specifically, SLC2A2 (GLUT2), and IAPP genes were commonly enriched in MODY, while HLA-DRB4 and HLA-DRB5 genes were underlying the enrichment with T1D. A gene expression meta-analysis also revealed the existence of possible pleiotropic mechanisms manifest via common gene signatures (PGRMC1 and HADH) across different diabetes phenotypes (Mei et al. 2017).

Downregulation of SLC2A2 is associated with not only T2D (Solimena et al. 2018) but also neonatal diabetes (Sanisbury et al. 2012) and early childhood diabetes (Alhaidan et al. 2020), suggesting a likely role in insulin secretion. Amylin (IAPP), a gluco-modulatory hormone co-expressed with insulin by pancreatic β cells, is downregulated in both T1D and advanced T2D (Abedini et al. 2013), while amylin agonists are considered novel therapeutic agents for treating diabetes (Sonne et al. 2021). Moreover, human amylin plays a protective role against autoimmune diabetes inducing CD4+ Foxp3+ regulatory T cells (Zhang et al. 2018). Downregulation of HLA-DRB4 in peripheral blood mononuclear cells is associated with T2D as well as dyslipidemia and periodontitis (Corbi et al. 2013), while amylin agonists are considered novel therapeutic agents for treating diabetes (Sonne et al. 2021). Additionally, human amylin plays a protective role against autoimmune diabetes inducing CD4+ Foxp3+ regulatory T cells (Zhang et al. 2018). Downregulation of HLA-DRB4 in peripheral blood mononuclear cells is associated with T2D as well as dyslipidemia and periodontitis (Corbi et al. 2013), while amylin agonists are considered novel therapeutic agents for treating diabetes (Sonne et al. 2021).

T2D as a disorder of insulin secretion and action

Downstream analyses provided insights into the characterization of T2D as a disorder of insulin secretion and action. We found that insulin secretion was the most significant KEGG pathway associated with hub genes, whereby two downregulated hub genes (SLC2A2, SNAP25) in T2D were underlying this enrichment. Zinc, the most significant HMDB metabolite associated with both highly perturbed genes and hub genes of T2D, is an essential element with key regulatory roles in insulin synthesis, storage, and secretion (Kim and Lee 2012). Other metabolomic markers associated with highly perturbed genes included magnesium which is necessary for insulin signaling (Piuri et al. 2011) as well as manganese which is involved in insulin synthesis and secretion (Chen et al. 2018). Together, these findings underscore the effects on insulin production and action as pivotal to T2D pathogenesis.

Pathophysiological manifestations of T2D

Apoptosis Downstream analyses revealed that multiple GO and KEGG pathways associated with apoptosis, including intrinsic apoptotic signaling pathway, were enriched in T2D.
It is known that hyperglycemia-induced β cell apoptosis, a hallmark in T2D progression, occurs via intrinsic pathways causing reduced islet mass and metabolic abnormalities (Wali et al. 2013). Hyperglycemia-induced apoptosis has been reported to occur in other sites such as renal cells (Jung et al. 2012) and coronary arteries (Kageyama et al. 2011), indicating a possible role in disease progression and the onset of complications.

Table 7 Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: GO biological processes and KEGG pathways

Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
Ontologies: GO biological processes							
Neutrophil degranulation (GO:0,043,312)	5/479	0.000481	0.061879	8.94239	68.31934	SNAP25; TNFAIP6; ARG1; MMP9; CTSC	
Neutrophil activation involved in immune response (GO:0,002,283)	5/483	0.000499	0.061878	8.86574	67.39777	SNAP25; TNFAIP6; ARG1; MMP9; CTSC	
Neutrophil-mediated immunity (GO:0,002,446)	5/487	0.000518	0.061878	8.79036	66.49468	SNAP25; TNFAIP6; ARG1; MMP9; CTSC	
Regulation of intrinsic apoptotic signaling pathway (GO:2,001,242)	2/47	0.001965	0.081572	34.06324	212.28967	MMP9; MCL1	Up
Negative regulation of intrinsic apoptotic signaling pathway (GO:2,001,243)	2/62	0.003393	0.081572	25.5282	145.15226	MMP9; MCL1	Up
Positive regulation of cell projection organization (GO:0,031,346)	2/63	0.003501	0.081572	25.10844	141.97721	STMN2; SCN1B	
Cellular response to reactive oxygen species (GO:0,034,614)	2/65	0.003722	0.081572	24.30891	135.96666	DPEP1; MMP9	
Negative regulation of apoptotic signaling pathway (GO:2,001,234)	2/65	0.003722	0.081572	24.30891	135.96666	MMP9; MCL1	Up
Negative regulation of cysteine-type endopeptidase activity involved in apoptotic process (GO:0,043,154)	2/68	0.004066	0.081572	23.20046	127.71724	DPEP1; MMP9	
Regulation of peptide hormone secretion (GO:0,090,276)	2/73	0.004671	0.081572	21.56121	115.70462	SNAP25; SLC2A2	Down
Pathways: KEGG							
Insulin secretion	2/86	0.006424	0.166054	18.21245	91.9304	SNAP25; SLC2A2	Down
Apoptosis	2/143	0.016992	0.166054	10.81887	44.08705	CTSC; MCL1	
Adrenergic signaling in cardiomyocytes	2/145	0.017442	0.166054	10.66648	43.18703	PPP1R1A; SCN1B	
Cell adhesion molecules (CAMs)	2/145	0.017442	0.166054	10.66648	43.18703	CNTNAP2; CD226	
JAK-STAT signaling pathway	2/162	0.021472	0.166054	9.525	36.58529	CNTFR; MCL1	Up
Transcriptional mis-regulation in cancer	2/186	0.027752	0.166054	8.27257	29.65238	ZBTB16; MMP9	Up
Arginine biosynthesis	1/21	0.029006	0.166054	36.94814	130.80559	ARG1	
Maturity-onset diabetes of the young (MODY)	1/26	0.035792	0.166054	29.55111	98.40622	SLC2A2	Down
Ascorbate and aldarate metabolism	1/27	0.037143	0.166054	28.4131	93.5634	UGT2B7	Down
Fatty acid elongation	1/27	0.037143	0.166054	28.4131	93.5634	HADH	Down

GO, gene ontology; **KEGG**, Kyoto Encyclopedia of Genes and Genomes; **T2D**, type 2 diabetes
Table 8 Downstream analyses of hub genes ($n=28$) associated with type 2 diabetes in different tissues of human adults: COVID-19-related gene sets and HMDB metabolites

Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
Diseases: COVID-19-related gene sets							
SARS perturbation down genes mouse lung from GSE19137:GPL1261:2	5/246	0.000021	0.002066	17.79812	191.63596	RPL14; DPEP1; HADH; CTSC; MCL1	-
Upregulated by SARS-CoV-2 in NHBE from GSE147507	4/500	0.004909	0.106835	6.54435	34.79441	PPP1R15A; TAP1; MMP9; CTSC	-
Upregulated by SARS-CoV-2 in pancreatic organoids from GSE151803	4/500	0.004909	0.106835	6.54435	34.79441	PPP1R1A; TAP1; MMP9; SCN1B	-
SARS perturbation down genes airway epithelium (HAE) from GSE47961:GPL6480:2	3/264	0.005837	0.106835	9.06253	46.61365	RASL11B; ENPP2; MMP9	-
SARS perturbation up genes PBMCs GDS1028:GPL201	3/280	0.006865	0.106835	8.53213	42.50101	PPP1R15A; ARG1; MMP9	-
SARS-CoV-2/human interactome gene set from Guzzi	2/92	0.007319	0.106835	16.99316	83.55855	ISLR; MCL1	Up
SARS perturbation up genes mouse lung from GSE19137:GPL1261:5	3/357	0.013276	0.142647	8.5016	48.74044	TNFAIP6; ARG1; TAP1	-
SARS perturbation up genes mouse lung from GSE68820:GPL7202:4	3/366	0.014189	0.142647	6.48231	27.58368	ZBTB16; RPL14; MCL1	-
Downregulated by IAV-infection in mouse spleen	3/455	0.025142	0.142647	5.1823	19.08734	ISLR; ENPP2; SOD3	-
Miscellaneous: HMDB metabolites							
Zinc (HMDB01303)	4/82	4.99E-06	0.000264	42.50854	518.98916	ZBTB16; DPEP1; SOD3; MMP9	-
Ethyl glucuronide (HMDB10325)	1/13	0.018053	0.035712	61.60493	247.30909	UGT2B7	Down
3-Acetoacetyl-CoA (HMDB01484)	1/13	0.018053	0.035712	61.60493	247.30909	HADH	Down
(S)-Methylmalonate semialdehyde (HMDB00632)	1/14	0.019428	0.035712	56.86324	224.09815	HADH	Down
C18H31NO14S (HMDB00632)	1/14	0.019428	0.035712	56.86324	224.09815	XYLTI	Up
Ornithine (HMDB00214)	1/15	0.020802	0.035712	52.79894	204.47351	ARG1	-
17beta-Estradiol glucuronide (HMDB01317)	1/19	0.026278	0.035712	41.05761	149.40806	UGT2B7	Down
(3alpha,5beta,20S)-20-Hydroxypregnan-3-yl beta-D-glucopyranosiduronic acid (HMDB01318)	1/19	0.026278	0.035712	41.05761	149.40806	UGT2B7	Down
3,17-Androstanediol glucuronide (HMDB01321)	1/19	0.026278	0.035712	41.05761	149.40806	UGT2B7	Down
17alpha-Estradiol-3-glucuronide (HMDB01322)	1/19	0.026278	0.035712	41.05761	149.40806	UGT2B7	Down
Table 9: Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: GTEx tissue sample gene expression profiles

Term	Overlap	\(p \) value	Adjusted \(p \) value	Odds ratio	Combined score	Genes	Regulation in T2D
Cell types: GTEx tissue sample gene expression profiles down							
GTEx-OHPK-1726-SM-48TC4 nerve female 50–59 years	4/178	0.00010	0.140263	18.9636	173.71976	SNAP25; CNTNAP2; ARG1; CD226	-
GTEx-R55E-0011-R11A-SM-2TC6I brain male 20–29 years	8/1275	0.00026	0.140263	5.905288	48.68668	TNFAIP6; ZBTB16; RPL14; TAP1; DPEP1; MMP9; CTSC; MCL1	-
GTEx-N7MS-0011-R11A-SM-2HMJS brain male 60–69 years	10/2072	0.00031	0.140263	4.82541	38.89372	ISLR; TNFAIP6; ZBTB16; XLYT1; TAP1; CD226; SOD3; MMP9; CTSC; MCL1	-
GTEx-PVOW-2726-SM-48TCA pituitary male 40–49 years	5/447	0.00035	0.140263	9.60554	76.42437	TNFAIP6; ARG1; ZBTB16; XLYT1	-
GTEx-R55E-2526-SM-2TC6H brain male 20–29 years	5/570	0.00105	0.232779	7.4671	51.853	TNFAIP6; ZBTB16; TAP1; DPEP1; CTSC	-
GTEx-T6MN-0002-SM-3NMAH blood male 50–59 years	12/2999	0.00036	0.140263	4.26473	33.74814	CNTFR; ISLR; RASL11B; PPP1R1A; ZBTB16; STMN2; DPEP1; ZNF423; PHLDAl; SOD3; SCN1B	-
Cell types: GTEx tissue sample gene expression profiles up							
GTEx-P5DG-1626-SM-48TCQ breast male 50–59 years	5/487	0.00051	0.165673	8.79036	66.49468	SNAP25; CNTNAP2; RASL11B; CD226	-
GTEx-SNOS-0526-SM-4DM54 bladder male 40–49 years	3/144	0.00104	0.232779	16.87744	115.77124	TNFAIP6; PPP1R1A; STMN2	-
GTEx-R55E-2526-SM-2TC6H brain male 20–29 years	5/570	0.00105	0.232779	7.4671	51.853	TNFAIP6; ZBTB16; TAP1; DPEP1; CTSC	-
GTEx-TML8-0001-SM-3NMAF blood male 40–49 years	11/2914	0.00119	0.232779	3.80456	25.59278	CNTFR; ISLR; RASL11B; PPP1R1A; ARG1; ZBTB16; STMN2; DPEP1; ZNF423; PHLDAl; SOD3; SCN1B	-
GTEx-XYKS-0002-SM-4BRWN blood female 60–69 years	11/2979	0.001443	0.232779	3.70707	24.24791	SNAP25; CNTNAP2; CNTFR; ISLR; RASL11B; PPP1R1A; ZBTB16; STMN2; ZNF423; SOD3; SCN1B	-

© Springer
Downstream analyses also revealed that multiple immunity-related GO and KEGG pathways, encompassing both innate and humoral immune responses, were enriched in T2D. These included multiple ontologies involving neutrophils and antigen processing and presentation as well as severe immune reactions such as graft-versus-host disease and allograft rejection. Impaired immunity in T2D and consequent susceptibility to infections and complications is frequently observed (Berbudi et al. 2020). A deeper understanding of the genomics underlying impaired immunity in T2D might provide opportunities to personalize the management of comorbidities and pharmacotherapy.

Immunity Downstream analyses also revealed that multiple immunity-related GO and KEGG pathways, encompassing both innate and humoral immune responses, were enriched in T2D. These included multiple ontologies involving neutrophils and antigen processing and presentation as well as severe immune reactions such as graft-versus-host disease and allograft rejection. Impaired immunity in T2D and consequent susceptibility to infections and complications is frequently observed (Berbudi et al. 2020). A deeper understanding of the genomics underlying impaired immunity in T2D might provide opportunities to personalize the management of comorbidities and pharmacotherapy.

COVID-19 and T2D

Epidemiological studies strongly suggest poorer prognosis of COVID-19 among people with T2D (Selvin and Juraschek, 2020), although underlying mechanisms are not well-understood (Apicella et al. 2020). Downstream analysis of highly perturbed genes and hub genes of T2D in the present study revealed a large number of enriched COVID-19-related gene sets, providing support for this putative link at a more granular level.

Table 9 (continued)

Term	Overlap	p value	Adjusted p value	Odds ratio	Combined score	Genes	Regulation in T2D
GTEX-XUW1-0526-SM-4BOP3 adipose tissue female 50–59 years	5/735	0.003217	0.606044	5.730196	32.88661	CNTFR; PPP1R1A; ZBTB16; ENPP2; HADH	-
GTEX-R55C-0005-SM-3GAE9 blood male 40–49 years	6/1090	0.003461	0.606044	4.752096	26.92674	TNFAIP6; ARG1; CD226; MMP9; CTSC; MCL1	-
GTEX-WH7G-1126-SM-3NMBK adipose tissue male 40–49 years	5/758	0.003672	0.606044	5.54853	31.11036	CNTFR; TNFAIP6; PPP1R1A; HADH; MCL1	-
GTEX-OIZH-0005-SM-2HMJN blood male 50–59 years	6/1105	0.003703	0.606044	4.68351	26.221	TNFAIP6; ARG1; TAP1; CD226; MMP9; MCL1	-

Fig. 13 Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: **a** GO biological processes, **b** KEGG pathways
Over- and under-expression of genes in different tissues associated with T2D

Downstream analysis of GTEx profiles identified tissues that are likely to demonstrate under- and over-expression of DEGs associated with T2D. Findings indicate that adipose tissue tends to over-express marker genes of T2D, while these might be under-expressed in other tissues such as those of the nervous system. These findings have implications for biomarker discovery and can guide further research on tissues which should be explored for identifying DEGs.
Conclusions

Findings of this study contribute towards the understanding of the genetic basis of T2D, and further research is warranted to substantiate the molecular mechanisms underlying these findings which is fundamental to establishing precision T2D medicine initiatives. The proposed bioinformatics pipeline may have broader use as a judicious strategy to identify gene perturbations and pathophysiological mechanisms of other clinical conditions beyond T2D which ought to be validated in future research. Finally, this study describes an exemplary approach to applying comprehensive evidence synthesis using existing open-source gene expression data. Other researchers are encouraged to apply this methodology to obtain high-level evidence from existing multiple datasets, thereby getting the most value from existing bioinformatics sources.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10142-022-00881-5.

Author contribution KDS performed data acquisition, pre-processing, and curation of data, conducted the analyses, and wrote this manuscript. KDS, RTD, AF, and JE were responsible for study conceptualization and design and contributed to validating analyses, results, and interpretation and drafting the manuscript. DJ and AM contributed to study conceptualization and design and interpretation of data and critically revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions KDS is supported by a PhD scholarship funded by the Australian government under Research Training Program (RTP). The funder was not involved in the design of the study; the collection, analysis, and interpretation of data; and writing the report and did not impose any restrictions regarding the publication of the report.

Data availability Data used in this study are freely available at the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) portal: https://www.ncbi.nlm.nih.gov/geo/

Code availability All analytic codes are available on reasonable request from the corresponding author.

Declarations

Ethics approval Not required being a review and secondary analysis of publicly available, deidentified data.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587(8):1119–1127. https://doi.org/10.1016/j.febslet.2013.01.017

Alhaidan Y, Christesen HT, Hojlund K, Al Balwi MA, Brusgaard K (2020) A novel gene in early childhood diabetes: EDEM2 silencing decreases SLC2A2 and PDX1 expression, leading to impaired insulin secretion. Mol Genet Genomics 295(5):1253–1262. https://doi.org/10.1007/s00438-020-01695-5

Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppella A, Del Prato S (2020) COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol 8(9):782–792. https://doi.org/10.1016/s2223-8587(20)30238-2

Arroyo MN, Green JA, Cnop M, Igoillo-Esteve M (2021) tRNA biology in the pathogenesis of diabetes: role of genetic and environmental factors. Int J Mol Sci 22(2):496. https://doi.org/10.3390/ijms22020496

Ayward A, Chiou J, Okino ML, Kadakia N, Gaulton KJ (2018) Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum Mol Genet ddy314 https://doi.org/10.1093/hmg/ddy314

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41(Database issue):D991–5. https://doi.org/10.1093/nar/gks1193

Basile KJ, Guy VC, Schwartz S, Grant SF (2014) Overlap of genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. Curr Diab Rep 14(11):550. https://doi.org/10.1007/s11892-014-0550-9

Batista TM, Haider N, Kahn CR (2021) Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia 64(5):994–1006. https://doi.org/10.1007/s00125-021-05415-5

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R (2021) Tissue-specific molecular biomarker signatures of type 2 diabetes and its impact on the immune system. Curr Diabetes Rev 17(5):442–449. https://doi.org/10.2174/1573399815666191024085838

Bonnefond A, Boissel M, Bolze A, Durand E, Toussaint B, Vaillant E, et al (2020) Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat Metab 2(10):1126–1134. https://doi.org/10.1038/s42255-020-00294-3

Buchberger E, Bilan A, Ayaz S, Salamanca D, Matas de Las Heras C, Niksic A, et al (2021) Variation in pleiotropic hub gene expression is associated with interspecific differences in head shape and eye size in Drosofila. Mol Biol Evol 2021:msaa335. https://doi.org/10.1093/molbev/msaa335

Calimlioglu B, Karagoz K, Sevimoglu T, Kilic E, Gov E, Arga KY (2015) Tissue-specific molecular biomarker signatures of type 2 diabetes: an integrative analysis of transcriptomics and protein-protein interaction data. OMICS 19(9):563–573. https://doi.org/10.1089/omi.2015.0088

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128. https://doi.org/10.1186/1471-2105-14-128
