SUPER-HÖLDER VECTORS AND
THE FIELD OF NORMS

by

Laurent Berger & Sandra Rozensztajn

Abstract. — Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-Hölder vectors in certain E-linear representations of \mathbb{Z}_p. In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_∞/K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_∞. We show that these super-Hölder vectors are the perfection of the field of norms of K_∞/K. By specializing to the case of a Lubin-Tate extension, we are able to recover $E[[Y]]$ inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathcal{O}_K^\times given by the endomorphisms of the corresponding Lubin-Tate group.

Contents

Introduction ... 2
1. Super-Hölder functions and vectors 3
 1.1. Uniform pro-p groups .. 4
 1.2. Super-Hölder functions and vectors 5
2. The field of norms .. 8
 2.1. The field of norms ... 8
 2.2. Decompleting the tilt 9
3. The Lubin-Tate case ... 10
 3.1. Lubin-Tate formal groups 10
 3.2. Decompletion of $\tilde{\mathbf{E}}$ 12
 3.3. The perfectoid commutant of $\text{Aut}(LT)$ 13
4. Mahler expansions and super-Hölder functions 14
 4.1. Good bases and wavelets 15
 4.2. Expansions of continuous functions 16
 4.3. Mahler bases .. 18
References .. 19

2020 Mathematics Subject Classification. — 11S; 12J; 13J; 22E.
Introduction

Let E be a field of characteristic p, for example a finite field. In our paper [BR22], we defined and studied super-Hölder vectors in certain E-linear representations of the p-adic Lie group \mathbb{Z}_p. These vectors are a characteristic p analogue of locally analytic vectors. They allowed us to recover $E((X))$ inside the X-adic completion of its perfection, seen as a valued E-vector space endowed with the action of \mathbb{Z}_p^\times given by $a \cdot f(X) = f((1+X)^a-1)$.

In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions K_∞/K of a p-adic field K, and compute the super-Hölder vectors in the tilt of K_∞. We show that these super-Hölder vectors are the perfection of the field of norms of K_∞/K.

By specializing to the case of a Lubin-Tate extension, we are able to recover $E((Y))$ inside the Y-adic completion of its perfection, seen as a valued E-vector space endowed with the action of O_K^\times given by the endomorphisms of the corresponding Lubin-Tate group.

We now give more details about the contents of our paper. Let Γ be a p-adic Lie group. It is known that Γ always has a uniform open pro-p subgroup G. Let G be such a subgroup, and let $G_i = G^{p^i}$ for $i \geq 0$. Let M be an E-vector space, endowed with a valuation val_M such that $\text{val}_M(xm) = \text{val}_M(m)$ if $x \in E^\times$. We assume that M is separated and complete for the val_M-adic topology. We say that a function $f : G \to M$ is super-Hölder if there exist constants $e > 0$ and $\lambda, \mu \in \mathbb{R}$ such that $\text{val}_M(f(g) - f(h)) \geq p^\lambda \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G_i$, for all $g, h \in G$ and $i \geq 0$. If M is now endowed with an action of G by isometries, and $m \in M$, we say that m is a super-Hölder vector if the orbit map $g \mapsto g \cdot m$ is a super-Hölder function $G \to M$. We let $M^{G-e\text{-sh}, \lambda}$ denote the space of super-Hölder vectors for given constants e and λ as in the definition above. The space of vectors of M that are super-Hölder for a given e is independent of the choice of the uniform subgroup G, and denoted by $M^{e\text{-sh}}$. When $G = \mathbb{Z}_p$ and $e = 1$, we recover the definitions of [BR22].

If Γ is a p-adic Lie group and $e = 1$, we get an analogue of locally \mathbb{Q}_p-analytic vectors. If K is a finite extension of \mathbb{Q}_p, Γ is the Galois group of a Lubin-Tate extension of K, and $e = [K : \mathbb{Q}_p]$, we seem to get an analogue of locally K-analytic vectors.

From now on, assume that $p \neq 2$. Let K be a p-adic field and let K_∞/K be an almost totally ramified p-adic Lie extension, with Galois group Γ of dimension $d \geq 1$. The tilt of K_∞ is the fraction field \mathcal{E}_{K_∞} of $\varprojlim_{x \to x'} O_{K_\infty}/p$. It is a perfect complete valued field of characteristic p, endowed with an action of Γ by isometries. The field \mathcal{E}_{K_∞} naturally contains the field of norms $X_K(K_\infty)$ of the extension K_∞/K, and it is known that \mathcal{E}_{K_∞} is the completion of the perfection of $X_K(K_\infty)$. We have the following result (theorem 2.2.3).
Theorem A. — We have $\tilde{E}_{K_\infty}^{d-sh} = \bigcup_{n \geq 0} \varphi^{-n}(X_K(K_\infty))$.

Assume now that K is a finite extension of \mathbb{Q}_p, with residue field k, and let LT be a Lubin-Tate formal group attached to K. Let K_∞ be the extension of K generated by the torsion points of LT, so that $\text{Gal}(K_\infty/K)$ is isomorphic to \mathcal{O}_K^\times. The field of norms $X_K(K_\infty)$ is isomorphic to $k((Y))$, and \mathcal{O}_K^\times acts on this field by the endomorphisms of the Lubin-Tate group: $a \cdot f(Y) = f([a](Y))$. Let $d = [K : \mathbb{Q}_p]$. The following (theorem 3.2.1) is a more precise version of theorem A in this situation.

Theorem B. — If $j \geq 1$, then $\tilde{E}_{K_\infty}^{1+p^j\mathcal{O}_K-d-sh,dj} = k((Y))$.

If $K = \mathbb{Q}_p$ and K_∞/K is the cyclotomic extension, theorem B was proved in [BR22]. A crucial ingredient of the proof of this theorem was Colmez’ analogue of Tate traces for \tilde{E}_{K_∞}. If the Lubin-Tate group if of height ≥ 2, there are no such traces (we state and prove a precise version of this assertion in §3.2). Instead of Tate traces, we a theorem of Ax and a precise characterization of the field of norms $X_K(K_\infty)$ inside \tilde{E}_{K_∞} in order to prove theorem A.

As an application of theorem B, we compute the perfectoid commutant of $\text{Aut}(LT)$. If $b \in \mathcal{O}_K^\times$ and $n \in \mathbb{Z}$, then $u(Y) = [b](Y^{p^n})$ is an element of $\tilde{E}_{K_\infty}^+$ that satisfies the functional equation $u \circ [g](Y) = [g] \circ u(Y)$ for all $g \in \mathcal{O}_K^\times$. Conversely, we prove the following (theorem 3.3.1).

Theorem C. — If $u \in \tilde{E}_{K_\infty}^+$ is such that $\text{val}_Y(u) > 0$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_K^\times$, there exists $b \in \mathcal{O}_K^\times$ and $n \in \mathbb{Z}$ such that $u(Y) = [b](Y^{p^n})$.

In the last section, we give a characterization of super-Hölder functions on a uniform pro-p group in terms of their Mahler expansions (theorem 4.3.4). In order to do so, we prove some results of independent interest on the space of continuous functions on \mathcal{O}_K^d with values in a valued E-vector space M as above.

At the end of [BR22], we suggested an application of super-Hölder vectors for the action of \mathbb{Z}_p to the p-adic local Langlands correspondence for $\text{GL}_2(\mathbb{Q}_p)$. We hope that this general theory of super-Hölder vectors, especially in the Lubin-Tate case, will have applications to the p-adic local Langlands correspondence for other fields than \mathbb{Q}_p.

1. Super-Hölder functions and vectors

In this section, we define Super-Hölder vectors inside a valued E-vector space M endowed with an action of a p-adic Lie group Γ. The definition is very similar to the one
that we gave for $\Gamma = \mathbb{Z}_p$ in our paper [BR22]. The main new technical tool is the existence of uniform open subgroups of Γ. These uniform subgroups look very much like \mathbb{Z}_p^d in a sense that we make precise.

1.1. Uniform pro-p groups. — Uniform pro-p groups are defined at the beginning of §4 of [DdSMS99]. We do not recall the definition, nor the notion of rank of a uniform pro-p group, but rather point out the following properties of uniform pro-p groups. A coordinate (below) is simply a homeomorphism.

Proposition 1.1.1. — If G is a uniform pro-p group of rank d, then
1. $G_i = \{g^{p^i}, g \in G\}$ is an open normal (and uniform) subgroup of G for $i \geq 0$
2. We have $[G_i : G_{i+1}] = p^d$ for $i \geq 0$
3. There is a coordinate $c : G \to \mathbb{Z}_p^d$ such that $c(G_i) = (p^i\mathbb{Z}_p)^d$ for $i \geq 0$
4. If $g, h \in G$, then $gh^{-1} \in G_i$ if and only if $c(g) - c(h) \in (p^i\mathbb{Z}_p)^d$

Proof. — Properties (1-4) are proved in §4 of [DdSMS99]. Alternatively, a uniform pro-p group G has a natural integer valued p-valuation ω such that (G, ω) is saturated (remark 2.1 of [Klo05]). Properties (1-4) are then proved in §26 of [Sch11].

For example, the pro-p group \mathbb{Z}_p^d is uniform for all $d \geq 1$.

Lemma 1.1.2. — If G is a uniform pro-p group, and H is a uniform open subgroup of G, there exists $j \geq 0$ such that $G_{i+j} \subset H_i$ for all $i \geq 0$.

Proof. — This follows from the fact that $\{G_i\}_{i \geq 0}$ forms a basis of neighborhoods of the identity in G.

A p-adic Lie group is a p-adic manifold that has a compatible group structure. For example, $\text{GL}_n(\mathbb{Z}_p)$ and its closed subgroups are p-adic Lie groups. We refer to [Sch11] for a comprehensive treatment of the theory. Every uniform pro-p group is a p-adic Lie group. Conversely, we have the following.

Proposition 1.1.3. — Every p-adic Lie group Γ has a uniform open subgroup G, and the rank of G is the dimension of Γ.

Proof. — See Interlude A (pages 97–98) of [DdSMS99].

Proposition 1.1.4. — Let G be a pro-p group of finite rank, and N a closed normal subgroup of G. There exists an open subgroup G' of G such that $G', G' \cap N$ and $G'/G' \cap N$ are all uniform.

Proof. — This is stated and proved on page 64 of [DdSMS99] (their H is our G').
1.2. Super-Hölder functions and vectors. — Let M be an E-vector space, endowed with a valuation val_M such that $\text{val}_M(xm) = \text{val}_M(m)$ if $x \in E^\times$. We assume that M is separated and complete for the val_M-adic topology. Throughout this §, G denotes a uniform pro-p group.

Definition 1.2.1. — We say that $f : G \to M$ is super-Hölder if there exist constants $\lambda, \mu \in \mathbb{R}$ and $e > 0$ such that $\text{val}_M(f(g) - f(h)) \geq p^\lambda \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G$, for all $g, h \in G$ and $i \geq 0$.

Remark 1.2.2. — If $G = \mathbb{Z}_p$ and $e = 1$, we recover the functions defined in §1.1 (see also remark 1.12 of ibid).

In the above definition, e will usually be equal to either 1 or $\text{dim}(G)$.

We let $\mathcal{H}_e^{\lambda,\mu}(G, M)$ denote the space of functions such that $\text{val}_M(f(g) - f(h)) \geq p^\lambda \cdot p^{ei} + \mu$ whenever $gh^{-1} \in G$, for all $g, h \in G$ and $i \geq 0$, and $\mathcal{H}_e^{\lambda}(G, M) = \cup_{\mu \in \mathbb{R}} \mathcal{H}_e^{\lambda,\mu}(G, M)$ and $\mathcal{H}_e(G, M) = \cup_{\lambda, \mu \in \mathbb{R}} \mathcal{H}_e^{\lambda,\mu}(G, M)$.

If M, N are two valued E-vector spaces, and $f : M \to N$ is an E-linear map, we say that f is Hölder-continuous if there exists $c > 0, d \in \mathbb{R}$ such that $\text{val}_N(f(x)) \geq c \cdot \text{val}_M(x) + d$ for all $x \in M$.

Proposition 1.2.3. — If $\pi : M \to N$ is a Hölder-continuous linear map, we get a map $\mathcal{H}_e(G, M) \to \mathcal{H}_e(G, N)$.

Proof. — Take $c, d \in \mathbb{R}$ of Hölder continuity for π, $f \in \mathcal{H}_e^{\lambda,\mu}(G, M)$, and $g, h \in G$ with $gh^{-1} \in G$. We have $\text{val}_N(\pi(f(g)) - \pi(f(h))) \geq c \cdot \text{val}_M(f(g) - f(h)) + d \geq cp^\lambda \cdot p^{ei} + (\mu + d)$, so that $\pi \circ f \in \mathcal{H}_e^{\lambda,\mu'}(G, N)$ with $p^\lambda' = cp^\lambda$, and $\mu' = \mu + d$. \square

Proposition 1.2.4. — If $\alpha : G \to H$ is a group homomorphism, we get a map $\alpha^* : \mathcal{H}_e(H, M) \to \mathcal{H}_e(G, M)$.

Proof. — By definition of the subgroups G_i and H_i, we have $\alpha(G_i) \subset H_i$ for all i. Take $f \in \mathcal{H}_e^{\lambda,\mu}(H, M)$, and $g, h \in G$ with $gh^{-1} \in G_i$. We have $\text{val}_M(f(\alpha(g)) - f(\alpha(h))) \geq p^\lambda \cdot p^{ei} + \mu$ as $\alpha(g)\alpha(h)^{-1} \in H_i$, so that $\alpha^*(f) = f \circ \alpha \in \mathcal{H}_e^{\lambda,\mu}(G, M)$. \square

Proposition 1.2.5. — Suppose that M is a ring, and that $\text{val}_M(mm') \geq \text{val}_M(m) + \text{val}_M(m')$ for all $m, m' \in M$. If $c \in \mathbb{R}$, let $M_c = M^{\text{val}_M \geq c}$.

1. If $f \in \mathcal{H}_e^{\lambda,\mu}(G, M_c)$ and $g \in \mathcal{H}_e^{\lambda,\nu}(G, M_d)$, and $\xi = \min(\mu + d, \nu + c)$, then $fg \in \mathcal{H}_e^{\lambda,\xi}(G, M_{c+d})$.

2. If $\lambda, \mu \in \mathbb{R}$, then $\mathcal{H}_e^{\lambda,\mu}(G, M_0)$ is a subring of $C^0(G, M)$.

3. If $\lambda \in \mathbb{R}$, then $\mathcal{H}_e^{\lambda}(G, M)$ is a subring of $C^0(G, M)$.
Proof. — Items (2) and (3) follow from item (1), which we now prove. If \(x, y \in G \), then
\[
(fg)(x) - (fg)(y) = (f(x) - f(y))g(x) + (g(x) - g(y))f(y),
\]
which implies the claim. \(\square \)

We now assume that \(M \) is endowed with an \(E \)-linear action by isometries of \(G \). If \(m \in M \), let \(\text{orb}_m : G \to M \) denote the function defined by \(\text{orb}_m(g) = g \cdot m \).

Definition 1.2.6. — Let \(M^{G-\text{sh},\lambda,\mu} \) be those \(m \in M \) such that \(\text{orb}_m \in \mathcal{H}^{\lambda,\mu}(G, M) \), and let \(M^{G-\text{sh},\lambda} \) and \(M^{G-\text{sh}} \) be the corresponding sub-\(E \)-vector spaces of \(M \).

Remark 1.2.7. — We assume that \(G \) acts by isometries on \(M \), but not that \(G \) acts continuously on \(M \), namely that \(G \times M \to M \) is continuous. However, let \(M^{\text{cont}} \) denote the set of \(m \in M \) such that \(\text{orb}_m : G \to M \) is continuous. It is easy to see that \(M^{\text{cont}} \) is a closed sub-\(E \)-vector space of \(M \), and that \(G \times M^{\text{cont}} \to M^{\text{cont}} \) is continuous (compare with §3 of [Eme17]). We then have \(M^{\text{sh}} \subset M^{\text{cont}} \).

Lemma 1.2.8. — If \(m \in M \), then \(m \in M^{G-\text{sh},\lambda,\mu} \) if and only if for all \(i \geq 0 \), we have \(\text{val}_M(g \cdot m - m) \geq p^\lambda \cdot p^{ei} + \mu \) for all \(g \in G_i \).

Proof. — If \(m \in M \), then \(m \in M^{G-\text{sh},\lambda,\mu} \) if and only if the function \(\text{orb}_m \) is in \(\mathcal{H}^{\lambda,\mu}(G, M) \), that is, for all \(g, h \) with \(gh^{-1} \in G_i \), we have \(\text{val}_M(g \cdot m - h \cdot m) \geq p^\lambda \cdot p^{ei} + \mu \). As \(G \) acts by isometries, we have \(\text{val}_M(g \cdot m - h \cdot m) = \text{val}_M(h^{-1}g \cdot m - m) \). The result follows, as \(h^{-1}g = h^{-1} \cdot gh^{-1} \cdot h \in G_i \). \(\square \)

Lemma 1.2.9. — The space \(M^{G-\text{sh},\lambda,\mu} \) is a closed sub-\(E \)-vector space of \(M \).

Lemma 1.2.10. — If \(i_0 \geq 0 \), and \(m \in M \) is such that \(\text{val}_M(g \cdot m - m) \geq p^\lambda \cdot p^{ei} + \mu \) for all \(g \in G_i \) with \(i \geq i_0 \), then \(m \in M^{G-\text{sh},\lambda} \).

Proof. — Take \(i < i_0 \), and let \(R_i \) be a set of representatives of \(G_{i_0} \setminus G_i \). This is a finite set, so there exists \(\mu_i \in \mathbb{R} \) such that \(\text{val}_M(r \cdot m - m) \geq p^\lambda \cdot p^{ei} + \mu_i \) for all \(r \in R_i \). If \(g \in G_i \), it can be written as \(g = hr \) for some \(h \in G_{i_0} \) and \(r \in R_i \). We then have \(g \cdot m - m = hr \cdot m - h \cdot m + h \cdot m - m \), so that \(\text{val}_M(g \cdot m - m) \geq \min(\text{val}_M(r \cdot m - m), \text{val}_M(h \cdot m - m)) \) (recall that \(G \) acts by isometries), so \(\text{val}_M(g \cdot m - m) \geq \min(p^\lambda \cdot p^{ei} + \mu_i, p^\lambda \cdot p^{ei} + \mu) \geq p^\lambda \cdot p^{ei} + \min(\mu, \mu_i) \) as \(i_0 > i \). If \(\mu' \) is the min of \(\mu \) and the \(\mu_i \) for \(0 \leq i < i_0 \), then \(m \in M^{G-\text{sh},\lambda,\mu'} \). \(\square \)

Recall that if \(k \geq 0 \), then \(G_k \) is also a uniform pro-\(p \) group.

Lemma 1.2.11. — If \(k \geq 0 \) then \(M^{G-\text{sh},\lambda} = M^{G_{k-\text{sh},\lambda+k}} \).
Proof. — Note that \((G_k)_i = G_{i+k}\). The inclusion \(M_{G-e^s} \subset M_{G-e^s+k}\) is obvious, and the reverse inclusion follows from lemma \[1.2.10\].

Proposition 1.2.12. — The space \(M_{H-e^s}\) does not depend on the choice of a uniform open subgroup \(H \subset G\).

Proof. — Let \(H\) and \(H'\) be uniform open subgroups of \(G\). The group \(H \cap H'\) contains an open uniform subgroup by prop \[1.1.3\], so to prove the proposition, we can further assume that \(H' \subset H\). We then have \(H'_i \subset H_i\) for all \(i\), so that if \(m \in M_{H-e^s,\lambda,\mu}\), then \(m \in M_{H'-e^s,\lambda,\mu}\). This implies that \(M_{H-e^s,\lambda} \subset M_{H'-e^s,\lambda}\). Conversely, by lemma \[1.1.2\], there exists \(j\) such that \(H_j \subset H'\). The previous reasoning implies that \(M_{H'-e^s,\lambda} \subset M_{H_j-e^s,\lambda}\). Lemma \[1.2.11\] now implies that \(M_{H_j-e^s,\lambda} = M_{H-e^s,\lambda-j}\).

These inclusions imply the proposition.

Definition 1.2.13. — If \(\Gamma\) is a \(p\)-adic Lie group that acts by isometries on \(M\), we let \(M_{e^s} = M_{G-e^s}\) where \(G\) is any uniform open subgroup of \(\Gamma\).

Remark 1.2.14. — If \(e \leq f\), then \(M_{I-e} \subset M_{e^s}\).

Recall that \(G\) is a uniform pro-\(p\) group. If a closed normal subgroup \(N\) of \(G\) acts trivially on \(M\), then \(G/N\) acts on \(M\).

Proposition 1.2.15. — If a closed normal subgroup \(N\) of \(G\) acts trivially on \(M\), then \(M_{G-e^s} = M_{G/N-e^s}\).

Proof. — By prop \[1.1.4\] \(G\) has an open subgroup \(G'\) such that \(G'\) and \(G'/N'\) are uniform (where \(N' = G' \cap N\)). By prop \[1.2.12\] we have \(M_{G-e^s} = M_{G'-e^s}\) and \(M_{G/N-e^s} = M_{G'/N'-e^s}\). Let \(\pi : G' \to G'/N'\) denote the projection. We have \(\pi(G'_i) = (G'/N')_i\), for all \(i\). Hence if \(m \in M\), then \(\val_M(g \cdot m - m) \geq p^\lambda \cdot p^{e_i + \mu}\) for all \(g \in G'_i\) if and only if \(\val_M(\pi(g) \cdot m - m) \geq p^\lambda \cdot p^{e_i + \mu}\) for all \(\pi(g) \in (G'/N')_i\).

Proposition 1.2.16. — Suppose that \(M\) is a ring, and that \(g(mm') = g(m)g(m')\) and \(\val_M(mm') \geq \val_M(m) + \val_M(m')\) for all \(m, m' \in M\) and \(g \in G\).

1. If \(v \in \mathbf{R}\) and \(m, m' \in M_{G-e^s,\lambda,\mu} \cap M_{\val_M \geq v}\), then \(m \cdot m' \in M_{G-e^s,\lambda,\mu+v}\).
2. If \(m \in M_{G-e^s,\lambda,\mu} \cap M^x\), then \(1/m \in M_{G-e^s,\lambda,\mu-2\val_M(m)}\).

Proof. — Item (1) follows from prop \[1.2.5\] and lemma \[1.2.8\] Item (2) follows from

\[g \left(\frac{1}{m} \right) - \frac{1}{m} = \frac{m - g(m)}{g(m)m} \]
2. The field of norms

Let K be a p-adic field, and let K_∞ be an algebraic Galois extension of K, whose Galois group G is a p-adic Lie group of dimension ≥ 1. We assume that K_∞/K is almost totally ramified, namely that the inertia subgroup of G is open in G. Let $d = \dim(G)$ and let $\ell = p^d$. Let $\hat{E}^+_{K_\infty}$ denote the ring $\varprojlim_{x \rightarrow x^{\ell}} \mathcal{O}_{K_\infty}/p$. This is a perfect domain of characteristic p, which has a natural action of G. The map $(y_j)_{j \geq 0} \mapsto (y_{d^i})_{i \geq 0}$ gives an isomorphism between $\varprojlim_{x \rightarrow x^{\ell}} \mathcal{O}_{K_\infty}/p$ and $\hat{E}^+_{K_\infty}$, so that $\hat{E}^+_{K_\infty}$ is the ring of integers of the tilt of \hat{K}_∞ (see §3 of [Sch12]).

If $x = (x_i)_{i \geq 0}$, and \hat{x}_i is a lift of x_i to \mathcal{O}_{K_∞}, then $\ell^i \mathrm{val}_p(\hat{x}_i)$ is independent of $i \geq 0$ such that $x_i \neq 0$. We define a valuation on $\hat{E}^+_{K_\infty}$ by $\mathrm{val}_E(x) = \lim_{i \rightarrow +\infty} \ell^i \mathrm{val}_p(\hat{x}_i)$.

The aim of this section is to compute $(\hat{E}^+_{K_\infty})^{d\text{-sh}}$. Given definition 1.2.13, we assume from now on (replacing K by a finite subextension if necessary) that G is uniform and that K_∞/K is totally ramified. Let k denote the common residue field of K and K_∞.

2.1. The field of norms. — Let $\mathcal{E}(K_\infty)$ denote the set of finite extensions E of K such that $E \subset K_\infty$. Let $X_K(K_\infty)$ denote the set of sequences $(x_E)_{E \in \mathcal{E}(K_\infty)}$ such that $x_E \in E$ for all $E \in \mathcal{E}(K_\infty)$, and $\mathcal{N}_{F/E}(x_F) = x_E$ whenever $E \subset F$ with $E, F \in \mathcal{E}(K_\infty)$.

If $n \geq 0$, let $K_n = K_\infty^n$ so that $[K_{n+1} : K_n] = \ell$, $\{K_n\}_{n \geq 0}$ is a cofinal subset of $\mathcal{E}(K_\infty)$, and $X_K(K_\infty) = \varprojlim_{n \geq 0} K_n$. If $x = (x_n)_{n \geq 0} \in X_K(K_\infty)$, let $\mathrm{val}_E(x) = \mathrm{val}_p(x_0)$.

Theorem 2.1.1. — Let K and K_∞ be as above.

1. If $x, y \in X_K(K_\infty)$, then $\{N_{K_{n+1}/K_n}(x_{n+j} + y_{n+j})\}_{j \geq 0}$ converges for all $n \geq 0$.
2. If we set $(x + y)_n = \lim_{j \rightarrow +\infty} N_{K_{n+j}/K_n}(x_{n+j} + y_{n+j})$, then $x + y \in X_K(K_\infty)$, and the set $X_K(K_\infty)$ with this addition law, and componentwise multiplication, is a field of characteristic p.
3. The function val_E is a valuation on $X_K(K_\infty)$, for which it is complete.
4. If $\varpi = (\varpi_n)_{n \geq 0}$ is a norm compatible sequence of uniformizers of \mathcal{O}_K, the valued field $X_K(K_\infty)$ is isomorphic to $k((\varpi))$ (with $\mathrm{val}(\varpi) = \mathrm{val}_p(\varpi_0)$).

Proof. — By a result of Sen [Sen72], K_∞/K is strictly APF in the terminology of §1.2 of [Win83] (see 1.2.2 of ibid). The theorem is then proved in §2 of ibid. \qed

Let $X^+_{K}(K_\infty) = \varprojlim_{n \geq 0} \mathcal{O}_K$ be the ring of integers of the valued field $X_K(K_\infty)$.

If $c > 0$, let $I^c_n = \{x \in \mathcal{O}_K$ such that $\mathrm{val}_p(x) \geq c\}$. If $m, n \geq 0$, the map $\mathcal{O}_K/I^c_n \rightarrow \mathcal{O}_{K_{m+n}}/I^c_{m+n}$ is well-defined and injective.
Proposition 2.1.2. — There exists \(c(K_\infty/K) \leq 1 \) such that if \(0 < c \leq c(K_\infty/K) \), then \(\text{val}_p(N_{K^{n+k}/K_n}(x)/x^{[K_{n+k}:K_n]} - 1) \geq c \) for all \(n, k \geq 0 \) and \(x \in O_{K_{n+k}} \).

Proof. — See [Win83] as well as §4 of [CD15]. The result follows from the fact (see 1.2.2 of [Win83]) that the extension \(K_\infty/K \) is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

Using prop 2.1.2, we get a map \(\iota : X^+_K(K_\infty) \to \lim_{\leftarrow x \to x^t} O_{K_\infty}/I_{\infty}^c \) given by \((x_n)_{n \geq 0} \in \lim_{\leftarrow_{N_{K_n}/K_{n-1}}} O_{K_n} \mapsto (\tau_n)_{n \geq 0} \). Let \(\lim_{\leftarrow x \to x^t} O_{K_n}/I_n^c \) denote the set of \((x_n)_{n \geq 0} \in \lim_{\leftarrow_{x \to x^t}} O_{K_\infty}/I_{\infty}^c \) such that \(x_n \in O_{K_n}/I_n^c \) for all \(n \geq 0 \).

Proposition 2.1.3. — Let \(0 < c \leq c(K_\infty/K) \) be as in prop 2.1.2.

1. the natural map \(\tilde{E}_{K_\infty}^+ \to \lim_{\leftarrow x \to x^t} O_{K_\infty}/I_{\infty}^c \) is a bijection
2. the map \(\iota : X^+_K(K_\infty) \to \lim_{\leftarrow x \to x^t} O_{K_\infty}/I_{\infty}^c = \tilde{E}_{K_\infty}^+ \) is injective and isometric
3. the image of \(\iota \) is \(\lim_{\leftarrow x \to x^t} O_{K_n}/I_n^c \).

Proof. — See [Win83] and §4 of [CD15]. We give a few more details for the convenience of the reader. Item (1) is classical (see for instance prop 4.2 of [CD15]). The map \(\iota \) is obviously injective and isometric. For (3), choose \(x = (x_n)_{n \geq 0} \in \lim_{\leftarrow x \to x^t} O_{K_n}/I_n^c \), and choose a lift \(\hat{x}_n \in O_{K_n} \) of \(x_n \). One proves that \(\{N_{K_{n+j}/K_n}(\hat{x}_n+j)\}_{j \geq 0} \) converges to some \(y_n \in O_{K_n} \), and that \((y_n)_{n \geq 0} \in X^+_K(K_\infty) \) is a lift of \((x_n)_{n \geq 0} \). See §4 of [CD15] for details, for instance the proof of lemma 4.1. □

Prop 2.1.3 allows us to see \(X^+_K(K_\infty) \), and hence \(\varphi^{-n}(X^+_K(K_\infty)) \) for all \(n \geq 0 \), as a subring of \(\tilde{E}_{K_\infty}^+ \).

Proposition 2.1.4. — The ring \(\bigcup_{n \geq 0} \varphi^{-n}(X^+_K(K_\infty)) \) is dense in \(\tilde{E}_{K_\infty}^+ \).

Proof. — See §4.3 of [Win83]. □

2.2. Decompleting the tilt. — We now compute \((\tilde{E}_{K_\infty}^+)_{d-sh} \). Since prop 2.2.1 below is vacuous if \(p = 2 \), we assume in this § that \(p \neq 2 \).

Proposition 2.2.1. — If \(0 < c \leq 1 - 1/(p-1) \), and \(x \in O_{K_\infty} \) is such that \(\text{val}_p(g(x) - x) \geq 1 \) for all \(g \in G_n \), then the image of \(x \) in \(O_{K_\infty}/I_{\infty}^c \) belongs to \(O_{K_n}/I_n^c \).

Proof. — If \(\text{val}_p(g(x) - x) \geq 1 \) for all \(g \in \text{Gal}(K^{alg}/K_n) \), then by theorem 1.7 of [LB10] (an optimal version of a theorem of Ax), there exists \(y \in K_n \) such that \(\text{val}_p(x - y) \geq 1 - 1/(p-1) \). This implies the proposition. □

Proposition 2.2.2. — If \(c = p^\gamma \) is as above, then \(X^+_K(K_\infty) \subset (\tilde{E}_{K_\infty}^+)_{G-d-sh,\gamma,0} \).
In particular, π power series giving the addition law in L_T in that coordinate. Recall that Lemma 3.1.1

$\pi = q$ with ring of integers O. We see that $\text{val}_K(x) = \min\{e(K_{\infty}/K), 1 - 1/(p - 1)\}$. Take $x = (x_n)_{n \geq 0} \in \lim_{\longleftarrow x \to x^e} O_{K_{\infty}}/I_{n}^c$. If $n \geq 0$ and $x \in (\tilde{E}_{K_{\infty}}^{+})^{G_{dsh}, 0, 0}$, then $\text{val}_K(x) = p^d$.

Theorem 2.2.3. — We have

1. $(\tilde{E}_{K_{\infty}}^{+})^{G_{dsh}, 0, 0} \subset X_{K_{\infty}}^{+}(K_{\infty})$
2. $(\tilde{E}_{K_{\infty}}^{+})^{dsh} = \cup_{n \geq 0} \varphi^{-n}(X_{K_{\infty}}^{+}(K_{\infty}))$ and $\tilde{E}_{K_{\infty}}^{dsh} = \cup_{n \geq 0} \varphi^{-n}(X_{K_{\infty}}^{+}(K_{\infty}))$

Proof. — Take $c \leq \min\{e(K_{\infty}/K), 1 - 1/(p - 1)\}$. Take $x = (x_n)_{n \geq 0} \in \lim_{\longleftarrow x \to x^e} O_{K_{\infty}}/p$. If $n \geq 0$ and $x \in (\tilde{E}_{K_{\infty}}^{+})^{G_{dsh}, 0, 0}$, then $\text{val}_K(x) = p^d$.

Since $\text{val}_K(\varphi(x)) = p \cdot \text{val}_K(x)$, item (2) follows from (1) and props 2.2.2 and 1.2.16.

Remark 2.2.4. — We have $\tilde{E}_{K_{\infty}}^{1sh} \subset \tilde{E}_{K_{\infty}}^{1sh}$. The field $\tilde{E}_{K_{\infty}}^{1sh}$ contains the field of norms $X_{K_{\infty}}(L_{\infty})$ of any p-adic Lie extension L_{∞}/K contained in K_{∞}. Indeed, $\tilde{E}_{L_{\infty}} \subset \tilde{E}_{K_{\infty}}$ and if $e = \dim \text{Gal}(L_{\infty}/K)$, then $X_{K_{\infty}}(L_{\infty}) \subset \tilde{E}_{L_{\infty}}^{1sh} \subset \tilde{E}_{K_{\infty}}^{1sh}$ (see prop 1.2.15).

Can one give a description of $\tilde{E}_{K_{\infty}}^{1sh}$, for example along the lines of §5 of [Ber16]?

3. The Lubin-Tate case

We now specialize the constructions of the previous section to the case when K_{∞} is generated over K by the torsion points of a Lubin-Tate formal group.

3.1. Lubin-Tate formal groups. — Let K be a finite extension of \mathbb{Q}_p of degree d, with ring of integers O_K, inertia index f, ramification index e, and residue field k. Let $q = p^f = \text{Card}(k)$ and let π be a uniformizer of O_K. Let LT be the Lubin-Tate formal O_K-module attached to π (see [LT65]). We choose a coordinate Y on LT. For each $a \in O_K$ we get a power series $[a](Y) \in O_K[Y]$, that we now see as an element of $k[[Y]]$.

In particular, $[\pi](Y) = Y^{q}$. Let $S(T, U) \in k[T, U]$ denote the reduction mod π of the power series giving the addition law in LT in that coordinate. Recall that $S(T, 0) = T$ and $S(0, U) = U$.

Lemma 3.1.1. — If $a, b \in O_K$ and $i \geq 0$, then $\text{val}_Y([a + p^i b](Y) - [a](Y)) \geq p^{di}$.

Furthermore, $[1 + \pi^i](Y) = Y + Y^{q^i} + O(Y^{q^i+1})$.

Proof. — We have $[\pi](Y) = Y^q$, so $\text{val}_Y([\pi](Y)) = p^f$. Writing $p = u \pi^e$ for a unit u, we see that $\text{val}_Y([p^f b](Y)) \geq p^{di}$ if $b \in O_K$. If $a, b \in O_K$ and $i \geq 0$, then $[a + b p^i](Y) = \cdots$.
$S([a](Y), [bp](Y))$. We have $S(T, U) = T + U + TU \cdot R(T, U)$, so that $[a + bp](Y) - [a](Y) = S([a](Y), [bp](Y)) - [a](Y) \in [bp](Y) \cdot k[Y]$. This implies the first result.

The second claim follows likewise from the fact that $[1 + \pi^n](Y) = S(Y, [\pi^n](Y)) = Y + [\pi^n](Y) + Y \cdot [\pi^n](Y) \cdot R(Y, [\pi^n](Y))$. □

Let $E = k((Y))$. Let $E_n = k((Y^{1/q^n}))$ and let $E_n = \cup_{n \geq 0} E_n$. These fields are endowed with the Y-adic valuation val_Y, and we let E_n^+ denote the ring of integers of E_n. The group \mathcal{O}_K acts on E_n by $a \cdot f(Y^{1/q^n}) = f([a](Y^{1/q^n}))$.

Lemma 3.1.2. — If $j \geq 1$ ($j \geq 2$ if $p = 2$), then $1 + p^j \mathcal{O}_K$ is uniform, and $(1 + p^j \mathcal{O}_K)_i = 1 + p^{j+i} \mathcal{O}_K$.

Proof. — The map $1 + p^j \mathcal{O}_K \rightarrow \mathcal{O}_K$, given by $x \mapsto p^{-j} \cdot \log_p (x - 1)$, is an isomorphism of pro-p groups taking $1 + p^{j+i} \mathcal{O}_K$ to $p^j \mathcal{O}_K$.

Recall that $d = [K : \mathbb{Q}_p]$, that $f = [k : E]$, and that $q = p^f$.

Proposition 3.1.3. — We have $E_n^+ = (E_n^+)^{1 + p^j \mathcal{O}_{K-d-sh,dj} - fn,0}$.

Proof. — If $b \in \mathcal{O}_K$ and $i, j \geq 0$, then by lemma 3.1.1, we have

$$\text{val}_Y((1 + p^{i+j}b)(Y^{1/q^n}) - Y^{1/q^n}) \geq 1/q^n \cdot p^{d(i+j)} = p^{dj-fn} \cdot p^{dj}.$$

Lemma 3.1.2 then implies that $Y^{1/q^n} \in (E_n^+)^{1 + p^j \mathcal{O}_{K-d-sh,dj} - fn,0}$. The lemma now follows from prop 1.2.16 and lemma 1.2.9. □

Corollary 3.1.4. — We have $E = E^{1 + p^j \mathcal{O}_{K-d-sh,dj}}$.

Proof. — This follows from prop 3.1.3 with $n = 0$, and prop 1.2.16. □

Proposition 3.1.5. — If $\varepsilon > 0$, then $k[[Y]]^{1 + p^j \mathcal{O}_{K-d-sh,dj+\varepsilon}} \subset k[[Y^p]]$.

Proof. — Take $f(Y) \in k[Y]$. There is a power series $h(T, U) \in k[[T, U]]$ such that

$$f(T + U) = f(T) + U \cdot f'(T) + U^2 \cdot h(T, U).$$

If $m \geq 0$, lemma 3.1.1 implies that $[1 + \pi^m](Y) = Y + Y^{q^m} + O(Y^{q^m+1})$. Therefore,

$$f([1 + \pi^m](Y)) = f(Y) + (Y^{q^m} + O(Y^{q^m+1})) \cdot f'(Y) + O(Y^{2q^m}).$$

If $f(Y) \notin k[[Y^p]]$, then $f'(Y) \neq 0$. Let $\mu = \text{val}_Y(f'(Y))$. The above computations imply that $\text{val}_Y(f([1 + \pi^m + \varepsilon](Y)) - f(Y)) = p^d \cdot p^{dj} + \mu$ for $i \geq 0$.

This implies the claim, since $\pi^\varepsilon \mathcal{O}_K = p \mathcal{O}_K$. □

Corollary 3.1.6. — We have $E_n^{1 + p^j \mathcal{O}_{K-d-sh,dj} - fn} = E_n$. ■
Proof. — We prove that, more generally, \(
abla_1^{+1 + p^iO_{K^{dsh, dj} - \ell}} = k((Y^{1/p^f})) \). Take \(f(Y^{1/p^m}) \in (\nabla_1^{+1 + p^iO_{K^{dsh, dj} - \ell}} \cap \nabla_1^{+1 + p^iO_{K^{dsh, dj} - \ell}}) \). Since \(\text{valy}(h^p) = p \cdot \text{valy}(h) \) for all \(h \in \nabla_1^+ \), we have \(f^{p^m}(Y) \in (\nabla_1^{+1 + p^iO_{K^{dsh, dj} - \ell + m}} \cap \nabla_1^{+1 + p^iO_{K^{dsh, dj} - \ell + m}}) \). Let \(m \) denote the \(m \) - torsion points of \(\nabla_1^{+1 + p^iO_{K^{dsh, dj} - \ell + m}} \). This implies the claim.

3.2. Decompletion of \(\nabla_1^{+} \). — Since we use the results of §2.2, we once more assume that \(p \neq 2 \). Let \(\nabla_1^{+} \) denote the \(Y \)-adic completion of \(\nabla_1^{+} \).

Theorem 3.2.1. — We have \(\nabla_1^{+1 + p^iO_{K^{dsh, dj}}} = \nabla_1^{+} \), and \(\nabla_1^{+dsh} = \nabla_1^{+} \).

Proof. — Let \(K_\infty = K(LT[\pi_\infty]) \) denote the extension of \(K \) generated by the torsion points of \(LT \), and let \(\Gamma = \text{Gal}(K_\infty/K) \). The Lubin-Tate character \(\chi_\pi \) gives rise to an isomorphism \(\chi : \Gamma \to \nabla_1^{+} \). For \(n \geq 1 \), let \(K_n = K(LT[\pi^n]) \). If \((\pi_n)_{n \geq 1} \) is a compatible sequence of primitive \(\pi^n \)-torsion points of \(LT \), then \(\pi_n \) is a uniformizer of \(\nabla_1^{+} \), \(\omega = (\pi_n)_{n \geq 0} \) belongs to \(\lim_{\to \infty} N_{K_n/K_{n-1}} \nabla_1^{+} \), and \(X_K(K_\infty) = k((\omega)) \) by theorem 2.1.1.

If \(g \in \Gamma \), then \(g(\omega) = [\chi_\pi(g)](\omega) \), so that if we identify \(\Gamma \) and \(\nabla_1^{+} \), then \(X_K(K_\infty) = \nabla_1^{+} \) with its action of \(\nabla_1^{+} \). Prop 2.1.3 implies that \(\nabla_1^{+} = \nabla_1^{+} \) as valued fields with an action of \(\Gamma \). We can therefore apply theorem 2.2.3 and get \(\nabla_1^{+dsh} = \nabla_1^{+} \).

This implies the second statement. The first one then follows from coro 3.1.6. \(\square \)

Remark 3.2.2. — In the above proof, note that \(K_\infty^{+1 + p^iO_K} = K_{ne} \), so that the numbering is not the same as in §2.1.

Remark 3.2.3. — We can define Lubin-Tate \(\Gamma \)-modules over \(\nabla_1^{+} \) as in §3.2 of [BR22]. The results proved in that section carry over to the Lubin-Tate setting without difficulty.

In theorem 2.9 of [BR22], we proved theorem 3.2.1 above in the cyclotomic case, using Tate traces. There are no such Tate traces in the Lubin-Tate case if \(K \neq Q_p \). We now explain why this is so. More precisely, we prove that there is no \(\Gamma \)-equivariant \(k \)-linear projector \(\nabla_1^{+} \to \nabla_1^{+} \) if \(K \neq Q_p \). Choose a coordinate \(T \) on \(LT \) such that \(\log_{LT}(T) = \sum_{n \geq 0} T^n/\pi^n \), so that \(\log_{LT}'(T) \equiv 1 \mod \pi \). Let \(\partial = 1/\log_{LT}'(T) \cdot d/dT \) be the invariant derivative on \(LT \). Let \(\varphi = \varphi' \) where \(q = p^f \).

Lemma 3.2.4. — We have \(d_\gamma(Y)/dY \equiv \chi_\pi(\gamma) \) in \(\nabla_1^{+} \) for all \(\gamma \in \Gamma \).

Proof. — Since \(\log_{LT}' \equiv 1 \mod \pi \), we have \(\partial = d/dY \) in \(\nabla_1^{+} \). Applying \(\partial \circ \gamma = \chi_\pi(\gamma) \gamma \circ \partial \) to \(Y \), we get the claim. \(\square \)

Lemma 3.2.5. — If \(\gamma \in \Gamma \) is nontorsion, then \(\nabla_1^{+} = k \).
Proposition 3.2.6. — If \(K \neq \mathbb{Q}_p \), there is no \(\Gamma \)-equivariant map \(R : E \to E \) such that \(R(\varphi_q(f)) = f \) for all \(f \in E \).

Proof. — Suppose that such a map exists, and take \(\gamma \in \Gamma \) nontorsion and such that \(\chi_\pi(\gamma) \equiv 1 \pmod{\pi} \). We first show that if \(f \in E \) is such that \((1 - \gamma)f \in \varphi_q(E)\), then \(f \in \varphi_q(E) \). Write \(f = f_0 + \varphi_q(R(f)) \) where \(f_0 = f - \varphi_q(R(f)) \), so that \(R(f_0) = 0 \) and \((1 - \gamma)f_0 = \varphi_q(g) \in \varphi_q(E)\). Applying \(R \), we get \(0 = (1 - \gamma)R(f_0) = g \). Hence \(g = 0 \) so that \((1 - \gamma)f_0 = 0 \). Since \(E^{\gamma = 1} = k \) by lemma 3.2.5, this implies \(f_0 \in k \), so that \(f \in \varphi_q(E) \).

However, lemma 3.2.4 and the fact that \(\chi_\pi(\gamma) \equiv 1 \pmod{\pi} \) imply that \(\gamma(Y) = Y + f_\gamma(Y^p) \) for some \(f_\gamma \in E \), so that \(\gamma(Y^{q/p}) = Y^{q/p} + \varphi_q(g_\gamma) \). Hence \((1 - \gamma)(Y^{q/p}) \in \varphi_q(E) \) even though \(Y^{q/p} \) does not belong to \(\varphi_q(E) \). Therefore, no such map \(R \) can exist.

Corollary 3.2.7. — If \(K \neq \mathbb{Q}_p \), there is no \(\Gamma \)-equivariant \(k \)-linear projector \(\varphi_q^{-1}(E) \to E \). A fortiori, there is no \(\Gamma \)-equivariant \(k \)-linear projector \(E \to E \).

Proof. — Given such a projector \(\Pi \), we could define \(R \) as in prop 3.2.6 by \(R = \Pi \circ \varphi_q^{-1} \).

3.3. The perfectoid commutant of \(\text{Aut}(LT) \).

In §3.1 of \([BR22]\), we computed the perfectoid commutant of \(\text{Aut}(G_m) \). We now use theorem 3.2.1 to do the same for \(\text{Aut}(LT) \). We still assume that \(p \neq 2 \).

Theorem 3.3.1. — If \(u \in \hat{E}^+ \) is such that \(\text{val}_Y(u) > 0 \) and \(u \circ [g] = [g] \circ u \) for all \(g \in \mathcal{O}_K^\times \), there exists \(b \in \mathcal{O}_K^\times \) and \(n \in \mathbb{Z} \) such that \(u(Y) = [b](Y^n) \).

Recall that a power series \(f(Y) \in k[[Y]] \) is separable if \(f'(Y) \neq 0 \). If \(f(Y) \in Y \cdot k[[Y]] \), we say that \(f \) is invertible if \(f'(0) \in k^\times \), which is equivalent to \(f \) being invertible for composition (denoted by \(\circ \)). We say that \(w(Y) \in Y \cdot k[[Y]] \) is nontorsion if \(w^{(n)}(Y) \neq Y \) for all \(n \geq 1 \). If \(w(Y) = \sum_{i \geq 0} w_i Y^i \in k[[Y]] \) and \(m \in \mathbb{Z} \), let \(w^{(m)}(Y) = \sum_{i \geq 0} w_i^{(m)} Y^i \). Note that \((w \circ v)^{(m)} = w^{(m)} \circ v^{(m)} \).

Proposition 3.3.2. — Let \(w(Y) \in Y + Y^2 \cdot k[[Y]] \) be a nontorsion series, and let \(f(Y) \in Y \cdot k[[Y]] \) be a separable power series. If \(w^{(m)} \circ f = f \circ w \) for some \(m \in \mathbb{Z} \), then \(f \) is invertible.

Proof. — This is a slight generalization of lemma 6.2 of \([Lub94]\). Write

\[
 f(Y) = f_n Y^n + O(Y^{n+1})
\]

\[
 f'(Y) = g_j Y^j + O(Y^{j+1})
\]

\[
 w(Y) = Y + w_r Y^r + O(Y^{r+1}),
\]

where \(f_n \neq 0 \) and \(g_j \neq 0 \). Since \(w(Y) \in Y \cdot k[[Y]] \), we get

\[
 f_n w_r Y^{n+r} = f_n Y^n + O(Y^{n+1}) + g_j Y^j + O(Y^{j+1}) + w_r Y^r + O(Y^{r+1}) = f_n Y^n + O(Y^{n+1})
\]

Hence \(w_r Y^{n+r} = f_n Y^n \). This implies that \(w_r = f_n Y^{n-r} \), which is separable since \(f(Y) \) is.

Therefore, \(f \) is invertible.
with \(f_n, g_j, w_r \neq 0 \). Since \(w \) is nontorsion, we can replace \(w \) by \(w^{op} \) for \(\ell \gg 0 \) and assume that \(r \geq j + 1 \). We have
\[
 w^{(m)} \circ f = f(Y) + w^{(m)} f(Y)^r + O(Y^{nr+1}) \\
 = f(Y) + w^{(m)} f_n Y^{nr} + O(Y^{nr+1}).
\]
If \(j = 0 \), then \(n = 1 \) and we are done, so assume that \(j \geq 1 \). We have
\[
 f \circ w = f(Y + w r Y^r + O(Y^{r+1})) \\
 = f(Y) + w r f(Y) + O(Y^{2r}) \\
 = f(Y) + w r g[Y] f(Y + j + O(Y^{r+j+1}).
\]
This implies that \(nr = r + j \), hence \((n - 1)r = j \), which is impossible if \(r > j \) unless \(n = 1 \). Hence \(n = 1 \) and \(f \) is invertible.

\[\square \]

Lemma 3.3.3. — If \(u \in \mathbb{E}^+ \) is such that \(\text{val}_X(u) > 0 \) and \(u \circ [g] = [g] \circ u \) for all \(g \in \mathcal{O}_K^x \), then \(u \in (\mathbb{E}^+)^{\text{sh}} \).

Proof. — The group \(\mathcal{O}_K^x \) acts on \(\mathbb{E}^+ \) by \(g \cdot u = u \circ [g] \). By lemmas 3.1.1 and 3.1.2, the function \(g \mapsto [g] \circ u \) is in \(H^X_1(1 + p \mathcal{O}_K, \mathcal{E}^+) \), where \(p^X = \text{val}_y(u) \).

Proof of theorem 3.3.1. — Take \(u \in \mathbb{E} \) such that \(\text{val}_y(u) > 0 \) and \(u \circ [g] = [g] \circ u \) for all \(g \in \mathcal{O}_K^x \). By lemma 3.3.3 and theorem 3.2.1, there is an \(m \in \mathbb{Z} \) such that \(f(Y) = u(Y)^m \) belongs to \(Y \cdot k[Y] \) and is separable. Take \(g \in 1 + \pi \mathcal{O}_K \) such that \(g \) is nontorsion, and let \(w(Y) = [g](Y) \) so that \(u \circ w = w \circ u \). We have \(f \circ w = w^{(m)} \circ f \). By prop 3.3.2, \(f \) is invertible. In addition, \(f \circ w = w^{(m)} \circ f \) if \(w(Y) = [g](Y) \) for all \(g \in \mathcal{O}_K^x \). Hence \(f_0 \cdot \mathcal{G} = \mathcal{G}^{p^m} \cdot f_0 \), so that \(\mathcal{G}^{p^m} = a \) for all \(a = \mathcal{G} \in k \). This implies that \(F_q \subset F_{p^m} \), so that \(m = fn \) for some \(n \in \mathbb{Z} \). Hence \(w^{(m)} = w \), and \(f \circ [g] = [g] \circ f \) for all \(g \in \mathcal{O}_K^x \). Theorem 6 of [LS07] implies that \(f \in \text{Aut}(LT) \). Hence there exists \(b \in \mathcal{O}_K^x \) such that \(u(Y) = [b](Y^{q^n}) \).

\[\square \]

4. **Mahler expansions and super-Hölder functions**

In §1.3 of [BR22], we proved an analogue of Mahler’s theorem for continuous functions \(\mathbb{Z}_p \to M \), and then gave a characterization of super-Hölder functions in terms of their Mahler expansions. We now indicate how these results generalize to functions \(G \to M \) for a uniform pro-\(p \) group \(G \). Given the definition of super-Hölder functions and the existence of a coordinate \(c : G \to \mathbb{Z}_p^d \) as in prop 1.1.1, it is enough to study functions \(\mathbb{Z}_p^d \to M \). We generalize the setting a little bit, and study functions \(\mathcal{O}_K^d \to M \) where \(K \)
is a finite extension of \(\mathbb{Q}_p \). Let \(K \) be such a field, fix a uniformizer \(\pi \) of \(\mathcal{O}_K \) and let \(k \) be the residue field of \(K \). Let \(q = \mathrm{Card}(k) \).

4.1. Good bases and wavelets.

Let \(X = \mathcal{O}_K^d \), which we endow with the valuation \(\mathrm{val}_X(x_1, \ldots, x_d) = \min_i \mathrm{val}_x(x_i) \). For \(n \geq 0 \), let \(X_n = \pi^n X = \{ x \in X, \mathrm{val}_X(x) \geq n \} \).

We endow \(X \) with the \(\mathrm{val}_X \)-adic topology. For any set \(Y \), we denote by \(\mathrm{LC}(X, Y) \) the set of locally constant functions \(X \to Y \). For \(n \geq 0 \) we denote by \(\mathrm{LC}_n(X, Y) \) the subset of elements of \(\mathrm{LC}(X, Y) \) that factor through \(X/X_n \). Let \(I = \bigcup_{n \geq 0} I_n \) be a set of indices, where \(I_n \subset I_{n+1} \) for all \(n \geq 0 \), and \(\mathrm{Card}(I_n) = \mathrm{Card}(X/X_n) = q^n d \). Let \(E \) be a field of characteristic \(p \).

Definition 4.1.1. — A family \(\{ h_i \}_{i \in I} \) is a good basis of \(\mathrm{LC}(X, E) \) if it is a basis of the \(E \)-vector space \(\mathrm{LC}(X, E) \) such that for all \(n \geq 0 \), \(\{ h_i \}_{i \in I_n} \) is a basis of \(\mathrm{LC}_n(X, E) \).

Let \(M \) be (as usual) an \(E \)-vector space with a valuation \(\mathrm{val}_M \), such that \(\mathrm{val}_M(ax) = \mathrm{val}_M(x) \) for all \(a \in E^\times \) and \(x \in M \). We assume that \(M \) is separated and complete for the \(\mathrm{val}_M \)-adic topology.

Proposition 4.1.2. — Every \(f \in \mathrm{LC}_n(X, M) \) can be written uniquely as \(\sum_{i \in I_n} h_i \cdot m_i \) for some elements \(m_i \in M \). Moreover, \(\inf_{x \in X} \mathrm{val}_M(f(x)) = \inf_{i \in I_n} \mathrm{val}_M(m_i) \).

Proof. — Let \(\{ h_i \}_{i \in I_n} \) be the basis of \(\mathrm{LC}_n(X, E) \) defined as follows: \(\delta_x \) is the characteristic function of \(x + X_n \). Then \(f \in \mathrm{LC}_n(X, M) \) is equal to \(\sum_{x \in X/X_n} \delta_x \cdot f(x) \).

As \(\{ h_i \}_{i \in I_n} \) is also a basis of \(\mathrm{LC}_n(X, E) \), we can write \(\delta_x = \sum_{i \in I_n} a_{i,x} h_i \) for some elements \(a_{i,x} \in E \). We now have \(f = \sum_{i \in I_n} h_i \cdot m_i \) where \(m_i = \sum_{x \in X/X_n} a_{i,x} f(x) \). This formula implies that \(\inf_{i \in I_n} \mathrm{val}_M(m_i) \geq \inf_{x \in X} \mathrm{val}_M(f(x)) \).

On the other hand we can also write \(h_i = \sum_{x \in X/X_n} b_{x,i} \delta_x \) for some elements \(b_{x,i} \in E \), so that \(f(x) = \sum_{i \in I_n} b_{x,i} m_i \). This implies that \(\inf_{i \in I_n} \mathrm{val}_M(m_i) \leq \inf_{x \in X} \mathrm{val}_M(f(x)) \). \(\square \)

We now give an example of a particularly nice good basis of \(\mathrm{LC}(X, E) \), the basis of wavelets (see §1.3 of [Col10] and §2.1 of [dS16]). Let \(\mathcal{T} \) be a set of representatives of \(X/X_1 \) in \(X \), chosen so that the representative of 0 is 0. For each \(n \geq 0 \), let \(\mathcal{R}_n \) be the set of representatives of \(X/X_n \) defined as follows: \(\mathcal{R}_0 = \{ 0 \} \), and for \(n \geq 1 \), \(\mathcal{R}_n = \{ \sum_{i=0}^{n-1} \pi^i x_i, \ x_i \in \mathcal{T} \text{ for all } i \} \). We have \(\mathcal{R}_1 = \mathcal{T} \), and \(\mathcal{R}_n \subset \mathcal{R}_{n+1} \) for all \(n \). Let \(\mathcal{R} = \bigcup_{n \geq 0} \mathcal{R}_n \). If \(r \in \mathcal{R} \) let \(\ell(r) \) be the smallest \(n \) such that \(r \in \mathcal{R}_n \). For \(r \in \mathcal{R} \), let \(\chi_r \) be the characteristic function of the closed disc \(r + X_{\ell(r)} = \{ x \in X, \mathrm{val}_X(x-r) \geq \ell(r) \} \).

Proposition 4.1.3. — The set \(\{ \chi_r \}_{r \in \mathcal{R}} \) is a good basis of \(\mathrm{LC}(X, E) \).
Proof. — We prove that for all \(n \geq 0 \), the set \(\{ \chi_r \}_{r \in \mathcal{R}_n} \) is a basis of \(\text{LC}_n(X, E) \). Consider the basis \(\{ \delta_r \}_{r \in \mathcal{R}_n} \) of \(\text{LC}_n(X, E) \), where \(\delta_r \) is the characteristic function of \(r + X_n \). We have
\[
\chi_r = \sum_{r' \in \mathcal{R}_{n-l(r)}} \delta_{r+\pi_l(r)r'}.
\]
This implies that if we write \(\mathcal{R}_n = (\mathcal{R}_n \setminus \mathcal{R}_{n-1}) \cup \ldots \cup (\mathcal{R}_1 \setminus \mathcal{R}_0) \cup \mathcal{R}_0 \) and we express the family \(\{ \chi_r \}_{r \in \mathcal{R}_n} \) in terms of the basis \(\{ \delta_r \}_{r \in \mathcal{R}_n} \), we get a unipotent matrix. This shows that \(\{ \chi_r \}_{r \in \mathcal{R}_n} \) is also a basis of \(\text{LC}_n(X, E) \). \(\square \)

4.2. Expansions of continuous functions. — We show that every continuous function \(X \to M \) has a convergent expansion along a good basis of \(X \), and prove some continuity estimates in terms of the coefficients of the expansion. If \(\{ m_i \}_{i \in I} \) is a family of \(M \), we say that \(m_i \to 0 \) if \(\inf_{i \in I} \text{val}_M(m_i) \to +\infty \) as \(n \to +\infty \).

Theorem 4.2.1. — Let \(\{ h_i \}_{i \in I} \) be a good basis of \(\text{LC}(X, E) \).

If \(\{ m_i \}_{i \in I} \) is a family of \(M \) such that \(m_i \to 0 \), the function \(f : X \to M \) given by \(f = \sum_{i \in I} h_i \cdot m_i \) belongs to \(C^0(X, M) \), and \(\inf_{x \in X} \text{val}_M(f(x)) = \inf_{i \in I} \text{val}_M(m_i) \).

Conversely, if \(f \in C^0(X, M) \), there exists a unique family \(\{ m_i(f) \}_{i \in I} \) of elements of \(M \) such that \(m_i(f) \to 0 \) and such that \(f = \sum_{i \in I} h_i \cdot m_i(f) \).

Proof. — Let \(\{ m_i \}_{i \in I} \) be a family of \(M \) such that \(m_i \to 0 \). If \(f_n = \sum_{i \in I} h_i \cdot m_i \), then \(f_n \in C^0(X, M) \), and \(f \) is the uniform limit of the \(f_n \). We have \(\inf_{x \in X} \text{val}_M(f_n(x)) = \inf_{i \in I} \text{val}_M(m_i) \) by prop 4.1.2. Since \(m_i \to 0 \), we have \(\inf_{i \in I} \text{val}_M(m_i) = \inf_{i \in I} \text{val}_M(m_i) \) for \(n \gg 0 \). Hence \(\inf_{x \in X} \text{val}_M(f_n(x)) = \inf_{i \in I} \text{val}_M(m_i) \) for \(n \gg 0 \). Since \(\inf_{x \in X} \text{val}_M(f(x)) = \lim_n \inf_{x} \text{val}_M(f_n(x)) \), we have \(\inf_{x \in X} \text{val}_M(f(x)) = \inf_{i \in I} \text{val}_M(m_i) \).

We now prove the converse. Let \(M_n = \{ m \in M, \text{val}_M(m) \geq n \} \), let \(\pi_n : M \to M/M_n \) be the projection, and for each \(n \), fix a lift \(\psi_n : M/M_n \to M \). Take \(f \in C^0(X, M) \), and let \(f_n = \psi_n \circ \pi_n \circ f \). As \(f \) and \(f_n \) coincide modulo \(M_n \), \(f \) is the uniform limit of the \(f_n \). On the other hand, \(\pi_n \circ f \) is locally constant, and therefore so is \(f_n \). As \(X \) is compact, there exists some \(k(n) \geq 0 \) such that \(f_n \in \text{LC}_{k(n)}(X, M) \). By prop 4.1.2, we can write \(f_n = \sum_{i \in I} h_i \cdot m_{i,n} \), where \(m_{i,n} = 0 \) if \(i \notin I_{k(n)} \). We have \(\text{val}_M(m_{i,n} - m_{i,n'}) \geq \min(n, n') \) by construction, so that for each \(i \), the sequence \(\{ m_{i,n} \} \) converges to some \(m_i \in M \).

Moreover, if \(i \notin I_{k(n)} \), then \(\text{val}_M(m_i) \geq n \), so that \(m_i \to 0 \). The continuous function \(\sum_{i \in I} h_i \cdot m_i \) is the uniform limit of the \(f_n \), so that finally \(f = \sum_{i \in I} h_i \cdot m_i \). \(\square \)

Proposition 4.2.2. — Take \(f \in C^0(X, M) \) and \(t \in \mathbb{Z}_{\geq 0} \). If \(\{ h_i \}_{i \in I} \) is a good basis of \(\text{LC}(X, E) \), and we write \(f = \sum_i h_i \cdot m_i \) with \(m_i \to 0 \), then \(\inf_{i \in I} \text{val}_M(m_i) \) depends only on \(f \) and not on the choice of the good basis.
Proof. — Fix two good bases \(\{ h_i \}_{i \in I} \) and \(\{ h'_i \}_{i \in I} \) of \(\mathbb{LC}(X, E) \). There exists a family \(\{ \lambda_{i,j} \}_{(i,j) \in I \times I} \) of elements of \(E \) such that \(h_i = \sum_j \lambda_{i,j} h'_j \) for all \(i \). Moreover, if \(i \in I_t \) then \(\lambda_{i,j} = 0 \) for all \(j \not\in I_t \). Now write \(f = \sum_{i \in I} h_i \cdot m_i(f) = \sum_{i \in I} h'_i \cdot m'_i(f) \). We also have
\[
f = \sum_i \left(\sum_j \lambda_{i,j} h'_j \right) \cdot m_i(f) = \sum_j h'_j \cdot \left(\sum_i \lambda_{i,j} m_i(f) \right),
\]
so that \(m'_i(f) = \sum_i \lambda_{i,j} m_i(f) \). If \(j \not\in I_t \), then \(m'_i(f) = \sum_{i \in I_t} \lambda_{i,j} m_i(f) \), as \(\lambda_{i,j} = 0 \) if \(i \in I_t \) and \(j \not\in I_t \). This implies that \(\inf_{j \not\in I_t} \text{val}_M(m'_j(f)) \geq \inf_{i \in I_t} \text{val}_M(m_i(f)) \).

By symmetry, we get that \(\inf_{j \not\in I_t} \text{val}_M(m'_j(f)) = \inf_{i \not\in I_t} \text{val}_M(m_i(f)) \).

\(\square \)

Theorem 4.2.3. — Take \(f \in \mathbb{C}^0(X, M) \) and \(t \in \mathbb{Z}_{\geq 0} \).

If \(\{ h_i \}_{i \in I} \) is a good basis of \(\mathbb{LC}(X, E) \), and we write \(f = \sum_i h_i \cdot m_i \) with \(m_i \to 0 \), then
\[
\inf_{i \not\in I_t} \text{val}_M(m_i) = \inf_{x, y \in X} \text{val}_M(f(x) - f(y))
\]

Proof. — Let \(C_t(f) = \inf_{x, y \in X, \text{val}_X(x - y) \geq t} \text{val}_M(f(x) - f(y)) \) and \(B_t(f) = \inf_{i \not\in I_t} \text{val}_M(m_i) \).

If \(x \in X \) and \(z \in X_t \), then \(f(x + z) - f(x) = \sum_{i \in I} \left(h_i(x + z) - h_i(z) \right) \cdot m_i(f) \). As \(h_i \in \mathbb{LC}_t(X, E) \) for \(i \in I_t \), the above equality gives us
\[
f(x + z) - f(x) = \sum_{i \not\in I_t} \left(h_i(x + z) - h_i(z) \right) \cdot m_i(f).
\]

This implies that \(C_t(f) \geq B_t(f) \).

We now prove the converse inequality. By prop \(4.2.2 \), \(B_t(f) \) is independent of the choice of a good basis, and we choose the wavelet basis of prop \(4.1.3 \). Write \(f = \sum_{r \in \mathcal{R}} \chi_r \cdot m_r(f) \), so that we want to show that \(\inf_{s \in \mathcal{R}} \text{val}_M(m_s(f)) \geq C_t(f) \) for all \(s \not\in \mathcal{R}_t \). If \(x \in X \), define \(g_x : X \to M \) by \(g_x(z) = f(x + \pi^t z) - f(x) \), and write \(g_x = \sum_{r \in \mathcal{R}} \chi_r \cdot m_r(g_x) \). For each \(r \in \mathcal{R}_t \), we can write uniquely \(r = r_t + \pi^t s \) with \(r_t \in \mathcal{R}_t \), where \(s = 0 \) if \(r \in \mathcal{R}_t \), and \(s \neq 0 \in \mathcal{R}_{(r) - t} \) if \(r \not\in \mathcal{R}_t \). For \(x \in \mathcal{R}_t \) and \(r \not\in \mathcal{R}_t \), the map \(z \mapsto \chi_r(x + \pi^t z) - \chi_r(x) \) is the zero function if \(r_t \neq x \), and is \(\chi_s \) if \(r_t = x \). This implies that if \(x \in \mathcal{R}_t \), then
\[
g_x(z) = \sum_{r \in \mathcal{R}_t} \left(\chi_r(x + \pi^t z) - \chi_r(x) \right) \cdot m_r(f) = \sum_{r \not\in \mathcal{R}_t} \left(\chi_r(x + \pi^t z) - \chi_r(x) \right) \cdot m_r(f) = \sum_{s \not\in \mathcal{R}_0} \chi_s(z) \cdot m_{x + \pi^t s}(f).
\]
Therefore if \(x \in \mathcal{R}_t \), then \(m_0(g_x) = 0 \) and \(m_s(g_x) = m_{x + \pi^t s}(f) \) if \(s \neq 0 \). We have \(\inf_{s \in \mathcal{R}} \text{val}_M(m_s(g_x)) = \inf_{z \in X} \text{val}_M(g_x(z)) \geq C_t(f) \), so that \(\text{val}_M(m_s(g_x)) \geq C_t(f) \) for all \(x \in X \) and \(s \in \mathcal{R} \). This implies that for all \(x \in \mathcal{R}_t \) and \(s \neq 0 \), \(\text{val}_M(m_{x + \pi^t s}(f)) \geq C_t(f) \). Hence for all \(r \not\in \mathcal{R}_t \), we have \(\text{val}_M(m_r(f)) \geq C_t(f) \). \(\square \)
4.3. Mahler bases. — We now construct some other examples of good bases. For $n \geq 0$, let $\text{Int}_n(\mathcal{O}_K)$ denote the set of polynomials $f(T) \in K[T]$ such that $\deg(P) \leq n$ and $f(\mathcal{O}_K) \subset \mathcal{O}_K$. Recall (see for instance §1.2 of [dS16]) that a Mahler basis for \mathcal{O}_K is a sequence $\{h_n\}_{n \geq 0}$ with $h_n(T) \in K[T]$ of degree n, and such that $\{h_0, \ldots, h_n\}$ is a basis of the free \mathcal{O}_K-module $\text{Int}_n(\mathcal{O}_K)$ for all $n \geq 0$. For example, if $K = \mathbb{Q}_p$, we can take $h_n(T) = \binom{T}{n}$. Let $\{h_n\}_{n \geq 0}$ be a Mahler basis for \mathcal{O}_K. Each h_n defines a function $\mathcal{O}_K \to \mathcal{O}_K$ and hence $\mathcal{O}_K \to k$. Let $I = \mathbb{Z}_{\geq 0}$ and let $I_n = \{0, \ldots, q^n - 1\}$ for $n \geq 0$.

Proposition 4.3.1. — If $\{h_n\}_{n \geq 0}$ is a Mahler basis for \mathcal{O}_K, then $\{h_i\}_{i \in I}$ is a good basis of $\text{LC}(\mathcal{O}_K; k)$.

Proof. — By theorem 1.2 of [dS16], $\{h_0, \ldots, h_{q^n - 1}\}$ is a basis of the k-vector space $\text{LC}_n(\mathcal{O}_K; k)$ for all $m \geq 0$. This implies the claim. \hfill \Box

We now specialize to $K = \mathbb{Q}_p$. Write N for $\mathbb{Z}_{\geq 0}$ and n for an element $(n_1, \ldots, n_d) \in \mathbb{N}^d$. For each $n \in \mathbb{N}^d$, we denote by h_n the function $\mathbb{Z}_d^+ \to \mathbb{E}$ given by $(x_1, \ldots, x_d) \mapsto (x_{n_1}) \cdots (x_{n_d})$. For $m \in \mathbb{Z}_{\geq 0}$, let $I_m = \{n \in \mathbb{N}^d \mid \max(n_1, \ldots, n_d) \leq m - 1\}$.

Proposition 4.3.2. — The functions $\{h_n\}_{n \in \mathbb{N}^d}$ form a good basis of $\text{LC}(\mathbb{Z}_d^+, \mathbb{F}_p)$.

Proof. — The claim follows from prop4.3.1 for $K = \mathbb{Q}_p$, and lemma 4.3.3 below. \hfill \Box

Lemma 4.3.3. — If X and X' are as in §4.1 and $\{h_i\}_{i \in I}$ and $\{h'_j\}_{j \in J}$ are good bases of $\text{LC}(X, E)$ and $\text{LC}(X', E)$, then $\{h_i \otimes h'_j\}_{(i,j) \in I \times J}$ is a good basis of $\text{LC}(X \times X', E)$, with $(I \times J)_n = I_n \times J_n$.

Let G be a uniform pro-p group, and let $c : G \to \mathbb{Z}_d^+$ be a coordinate as in prop4.3.1. The theorem below follows from prop4.3.2, theorem 4.2.1 and theorem 4.2.3.

Theorem 4.3.4. — If $\{m_n\}_{n \in \mathbb{N}^d}$ is a sequence of M such that $m_n \to 0$, the function $f : G \to M$ given by $f(g) = \sum_{n \in \mathbb{N}^d} \left(c_{n_1}(g) \cdots c_{n_d}(g) \right) m_n$ belongs to $C^0(G, M)$. We have $\inf_{g \in G} \text{val}_M(f(g)) = \inf_{n \in \mathbb{N}^d} \text{val}_M(m_n)$.

Conversely, if $f \in C^0(G, M)$, there exists a unique sequence $\{m_n(f)\}_{n \in \mathbb{N}^d}$ such that $m_n(f) \to 0$ and such that $f(g) = \sum_{n \in \mathbb{N}^d} \left(c_{n_1}(g) \cdots c_{n_d}(g) \right) m_n(f)$.

We have $f \in \mathcal{H}_c^{\alpha, \mu}(G, M)$ if and only if for all $i \geq 0$, we have $\text{val}_M(m_n(f)) \geq p^\alpha \cdot p^{d_1} + \mu$ whenever $\max(n_1, \ldots, n_d) \geq p^i$.

Remark 4.3.5. — The first two assertions in the above theorem also follow from theorem 1.2.4 in §III of [Laz65] (we thank Konstantin Ardakov for pointing this out).
We finish by considering the case $G = \mathcal{O}_K$ for K a finite extension of \mathbb{Q}_p, and working with a Mahler basis for \mathcal{O}_K. Let K be a finite extension of \mathbb{Q}_p as before. Assume that E is an extension of k. Let $\{h_n\}_{n \geq 0}$ be a Mahler basis for \mathcal{O}_K. If $f \in C^0(\mathcal{O}_K, M)$, write $f = \sum_{n \geq 0} h_n m_n(f)$ with $m_n(f) \to 0$. Let e denote the ramification index of K.

Proposition 4.3.6. — If $f = \sum_{n \geq 0} h_n m_n(f)$ as above, then $f \in H^\lambda_{te}(\mathcal{O}_K, M)$ if and only if $\text{val}_M(m_n(f)) \geq p^\lambda \cdot p^\mu i + \mu$ whenever $n \geq p^\mu i$.

Proof. — This follows from theorem 4.2.3, since $\text{val}_\pi(x - y) \geq i$ if and only if $\text{val}_{\pi}(x - y) \geq e_i$, and since $q^i = p^d$.

In this situation we can also define a slightly different version of super-Hölder functions. We say that a function $f : \mathcal{O}_K \to M$ is in $H^\lambda_{K,t}(\mathcal{O}_K, M)$ if $\text{val}_M(f(x) - f(y)) \geq p^\lambda \cdot p^\mu i + \mu$ whenever $\text{val}_\pi(x - y) \geq i$. We then have

$$H^\lambda_{te}(\mathcal{O}_K, M) \subset H^\lambda_{K,t}(\mathcal{O}_K, M) \subset H^\lambda_{te}(\mathcal{O}_K, M).$$

In particular, $H_{K,t}(\mathcal{O}_K, M) = H_{te}(\mathcal{O}_K, M)$. If K/\mathbb{Q}_p is unramified then $H^\lambda_{K,t}(\mathcal{O}_K, M) = H^\lambda_{te}(\mathcal{O}_K, M)$. Moreover we have the following criterion:

Proposition 4.3.7. — If $f = \sum_{n \geq 0} h_n m_n(f)$ as above, then $f \in H^\lambda_{K,t}(\mathcal{O}_K, M)$ if and only if $\text{val}_M(m_n(f)) \geq p^\lambda \cdot p^\mu i + \mu$ whenever $n \geq p^\mu i$.

Example 4.3.8. — For all $n \geq 0$, there exists $c_n(T) \in \text{Int}_n(\mathcal{O}_K)$ such that $[a](Y) = \sum_{n \geq 0} c_n(a) Y^n$. This implies that $\text{val}_Y(m_n(a \mapsto [a](Y))) \geq n$, so that the function $a \mapsto [a](Y)$ is in $H^0_d(\mathcal{O}_K, E[Y])$, and in $H^0_{K,J}(\mathcal{O}_K, E[Y])$ where $q = p^d$.

References

[Ber16] L. Berger – “Multivariable (φ, Γ)-modules and locally analytic vectors”, *Duke Math. J.* **165** (2016), no. 18, p. 3567–3595.

[BR22] L. Berger & S. Rozensztajn – “Decompletion of cyclotomic perfectoid fields in positive characteristic”, *Ann. H. Lebesgue* **5** (2022), p. 1261–1276.

[CD15] B. Cais & C. Davis – “Canonical Cohen rings for norm fields”, *Int. Math. Res. Not. IMRN* (2015), no. 14, p. 5473–5517.

[Col10] P. Colmez – “Fonctions d’une variable p-adique”, *Astérisque* (2010), no. 330, p. 13–59.

[DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann & D. Segal – *Analytic pro-p groups*, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999.

[dS16] E. de Shalit – “Mahler bases and elementary p-adic analysis”, *J. Théor. Nombres Bordeaux* **28** (2016), no. 3, p. 597–620.

[Eme17] M. Emerton – “Locally analytic vectors in representations of locally p-adic analytic groups”, *Mem. Amer. Math. Soc.* **248** (2017), no. 1175, p. iv+158.
[Klo05] B. Klopsch – “On the Lie theory of p-adic analytic groups”, *Math. Z.* 249 (2005), no. 4, p. 713–730.

[Laz65] M. Lazard – “Groupes analytiques p-adiques”, *Inst. Hautes Études Sci. Publ. Math.* (1965), no. 26, p. 389–603.

[LB10] J. Le Borgne – “Optimisation du théorème d’Ax-Sen-Tate et application à un calcul de cohomologie galoisienne p-adique”, *Ann. Inst. Fourier (Grenoble)* 60 (2010), no. 3, p. 1105–1123.

[LS07] J. Lubin & G. Sarkis – “Extrinsic properties of automorphism groups of formal groups”, *J. Algebra* 315 (2007), no. 2, p. 874–884.

[LT65] J. Lubin & J. Tate – “Formal complex multiplication in local fields”, *Ann. of Math.* (2) 81 (1965), p. 380–387.

[Lub94] J. Lubin – “Nonarchimedean dynamical systems”, *Compositio Math.* 94 (1994), no. 3, p. 321–346.

[Sch11] P. Schneider – *p-adic Lie groups*, Grundlehren der mathematischen Wissenschaften, vol. 344, Springer, Heidelberg, 2011.

[Sch12] P. Scholze – “Perfectoid spaces”, *Publ. Math. Inst. Hautes Études Sci.* 116 (2012), p. 245–313.

[Sen72] S. Sen – “Ramification in p-adic Lie extensions”, *Invent. Math.* 17 (1972), p. 44–50.

[Win83] J.-P. Wintenberger – “Le corps des normes de certaines extensions infinies de corps locaux; applications”, *Ann. Sci. École Norm. Sup. (4)* 16 (1983), no. 1, p. 59–89.