Plasma-based accelerators driven by either intense lasers or charged particle beams can accelerate electrons or positrons with extremely high gradients compared with conventional radio-frequency accelerators. For their use as next-generation light sources and in energy frontier colliders, beams with good stability, high quality, controllable polarization and excellent reproducibility are required. The accelerated electrons can be either internally injected directly from the background plasma or externally injected from conventional accelerators. Despite significant progress, the beam properties obtained with the internal injection scheme fall short of simultaneously reaching these requirements. In contrast, such high-property beams are routinely generated from conventional accelerators. Therefore, it is important to demonstrate the injection from a conventional accelerator into a plasma-based machine followed by further acceleration of the beam. Here we report the demonstration of external injection from a conventional linear accelerator into a laser wakefield accelerator and subsequent acceleration without any significant loss of charge, which is achieved by properly shaping and matching the beam into the plasma structure. The experimental results, combined with three-dimensional particle-in-cell simulations, indicate that this is possible with modest degradation in the beam quality. This work is an important step towards realizing a high-throughput, multistage, high-energy, hybrid conventional-plasma-based accelerator.

Multistage plasma-based accelerators (PBAs) with external injection are inherently difficult to build because of the micrometre-size beams and wake structures, exceedingly large focusing fields and the temporal synchronization precision required at the femtosecond scale. This is why in spite of some success, a high overall coupling efficiency or charge throughput of the externally injected beam has been difficult to achieve. Previously, external injection of electrons from a conventional radio-frequency (RF) accelerator and Van de Graaff accelerator to a plasma beat-wave accelerator has been demonstrated at University of California, Los Angeles and École Polytechnique, respectively. However, due to the non-ideal transverse and longitudinal matching between the very long electron bunch (tens of plasma wavelengths or even longer) and the beat-wave-excited plasma wake, the coupling efficiency was well below 1%. Recently, external injection—acceleration of a conventional RF-accelerator-produced electron beam into a self-modulated proton-beam-driven plasma wakefield accelerator has been demonstrated at CERN (European Centre for Particle Physics). Due to the non-collinear matching between the electron bunch and the plasma wake, and both the focusing and defocusing wakefields experienced by the long (several plasma wavelengths) beam, the coupling efficiency was below 0.1%. This issue of low coupling efficiency is not only challenging for external injection from an RF accelerator into a PBA, where two different accelerator technologies must be spatio-temporally synchronized with micrometre/femtosecond accuracy, but also for staging between two PBAs. For example, the staged acceleration of two inherently synchronized laser wakefield accelerators (LWFAs) has recently been demonstrated at the Berkeley Lab Laser Accelerator of Lawrence Berkeley National Laboratory and Osaka University. Although a plasma lens or a solenoid was installed between the two LWFA stages to refocus the electron beam exiting the first-stage injector into the second-stage booster, the overall coupling efficiency from the injector to the booster was typically at the percent level due to imperfect matching of the focusing and broad energy spread of the first-stage electron beam. On the other hand, although the two-electron-bunch plasma wakefield accelerator experiment (the driving and trailing bunches came from the same beam) at the Facility for Advanced Accelerator Experimental Tests, Stanford Linear Accelerator Center, has achieved roughly 25% coupling efficiency, the remaining ~75% charge was lost due to the oversized width and length of the electron beam, as well as the non-ideal matching of the injected bunch to the plasma wakefield accelerator. In all the above scenarios, such low coupling efficiencies will be problematic for most practical applications of PBAs, especially for a multistage collider, where the coupling efficiency must be near 100% per stage, otherwise the beam charge throughput will approach zero after some stages.

To reach 100% coupling efficiency, a good matching of the injected beam to the plasma wake, not only of the beam size and wake size but also of the beam phase space and wake structure, is critical. Such good matching is also essential for beam emittance preservation. Previous theoretical studies have suggested the use of tailored plasma density structures to fulfill this challenging requirement. However, there has not been any experimental demonstration so far. Here we demonstrate ~100% successful coupling of a high-quality externally injected beam from a conventional RF linear accelerator (LINAC) into an LWFA and subsequent monoenergetic acceleration of the injected charge. The beam divergence measurements,
Fig. 1 | Experimental layout. a, b. A laser pulse is focused and sent collinearly with the electron beam using a mirror with a 3-mm-diameter central hole. The laser focal spot is shown in a and the electron beam waist profile (measured using a removable cerium-doped yttrium-aluminium-garnet (YAG) screen) is shown in b. c. Measured neutral density profile of the gas jet along the longitudinal axis \(z \) (the blurred region shows the r.m.s. spread of five shots). The beam energy spectra are recorded by a spectrometer composed of a 1-mm-wide lead slit, a permanent dipole magnet of -1 T, a 25-\(\mu \)m-thick aluminium foil (not shown) and a phosphor screen (DRZ-High). The lead slit introduces an uncertainty in the incoming beam position relative to the spectrometer, and thus, its width induces an energy measurement uncertainty of \(\pm 0.05 \) MeV. The thin aluminium foil is placed between the dipole magnet and the DRZ-High screen (very close to the DRZ-High screen) to block the scattered residual drive laser and ambient light. d. A group (sorted by decreasing mean energy) showing the energy-dispersed beam distributions induced by the -100 fs timing jitter under the same experimental condition (\(z_o = -4.5 \) mm and \(n_p = 6 \times 10^{17} \) cm\(^{-3} \)).

A schematic of the experiment is shown in Fig. 1. A 31.30 ± 0.05 MeV electron bunch from a photocathode–RF gun–driven LINAC co-propagates with an ultrashort (40 ± 2 fs full-width at half-maximum (FWHM)), energetic (600 ± 14 mJ), 0.8-\(\mu \)m-wavelength laser pulse, which is focused by an 0.8-\(\mu \)m RMS full-width at half-maximum (FWHM), dipole magnet and the drive laser (~1.3 \(\mu \)m) are kept small compared with their spot sizes to enable a highly collinear overlap of the beam and the wake in space.

Another key to achieving high coupling efficiency is a longitudinally tailored focusing profile to match the beam transverse phase space. Otherwise, poor matching may lead to catastrophic emittance growth, divergence increase and beam loss. In this experiment, the gas jet is properly designed to produce a plasma structure with a density profile (Fig. 1c) for matching the injected beam to the plasma wake.

In the experiment, by tuning the electron beam arrival time relative to the laser pulse, we can place the beam immediately in the first few wake wavelengths behind the driver and control the beam injection phase. Since the beam arrival time has a jitter of ~100 fs (r.m.s.) (ref. 2), energy jitter will be induced in the LWFA, as shown in the 22 shots of the energy-dispersed beam distributions (Fig. 1d) measured under the same experimental condition (\(z_o = -4.5 \) mm and \(n_p = 6 \times 10^{17} \) cm\(^{-3} \)), where both beam acceleration and deceleration by the plasma wake can be observed. The first five shots of the plasma-on case (inside the red dashed rectangle in Fig. 1d) show features of both maximum energy gain and minimum energy spread, which can be viewed as the electron beam being at the proper acceleration phase of the plasma wakefield.
Fig. 2 | Experimental results. a–e, Energy-dispersed beam distributions for plasma-on cases with various laser focal plane position z_f and plasma plateau density n_p values (five shots for each experimental condition (a–d)) and for the plasma-off case (e). The beam vertical distribution corresponds to the beam transverse divergence since the propagation of electrons in this direction is not affected by the magnet. f–i, Integrated beam energy spectra corresponding to a–d. For comparison, 20 consecutive plasma-off shots for each plasma-on shot are simultaneously recorded within ~4 s. These total 100 plasma-off shots for each experimental condition (5 plasma-on shots) are shown in f–i with red lines, where the blurred regions show the r.m.s. spread of the data. j, Beam energy spreads (FWHM) corresponding to a–d (5-shot average for the plasma-on case and 100-shot average for the plasma-off case under each experimental condition). k–n, Integrated beam charge corresponding to a–d (normalized to the average value of 20 plasma-off shots for each plasma-on shot). o, Integrated beam divergences (FWHM) corresponding to a–d (5-shot average for the plasma-on case and 100-shot average for the plasma-off case under each experimental condition). In j–o, the error bars represent the standard deviation.
We vary the focal plane position z_f and the plasma density n_p, and find that such monoenergetic acceleration resulting from the proper wake phase is consistent and stable for a certain parameter interval. Examples of the energy-dispersed beam distributions are shown in Fig. 2a–d, where Fig. 2a–c is obtained by decreasing z_f from 3.5 mm to 5.5 mm while setting $n_p = 6 \times 10^{17}$ cm$^{-3}$ (cases 1–3) and Fig. 2d is obtained by decreasing n_p to 2×10^{17} cm$^{-3}$ while setting z_f to be the same as that in Fig. 2c (case 4). For comparison, Fig. 2e shows one typical shot of the beam distribution without plasma interaction.

Figure 2f–i shows the integrated energy spectra corresponding to Fig. 2a–d and Fig. 2j shows the corresponding average energy spreads. The average peak-to-peak energy gain is ~1.5 MeV for $z_f = 3.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$. For a plasma length of ~6 mm FWHM, this represents an average acceleration gradient of ~250 MV m$^{-1}$. The average energy spread is as small as 1.4% FWHM (compared with the initial value of 0.6% FWHM). As z_f decreases, the laser intensity and thus the acceleration gradient decreases since the laser diffracts more, leading to a larger w_{max} (Fig. 2f–h). As n_p decreases, both the acceleration gradient and the phase interval occupied by the beam decrease, and therefore, the accumulated energy spread also decreases (Fig. 2h,i). Figure 2k–n shows the integrated beam charge corresponding to Fig. 2a–d. Due to the near-zero launching phase in the photocathode RF gun, the bunch charge is sensitive to the jitter of the RF phase and amplitude, leading to a shot-to-shot fluctuation of the charge fluctuation. If z_f increases further and n_p remains the same, for example, $z_f = -1.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$, the coupling efficiency is reduced to ~40–50%, as shown in Extended Data Fig. 1.

Figure 2o shows the integrated average beam divergences corresponding to Fig. 2a–d. For the case of $z_f = -3.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$, the divergence growth at the exit of the LWFA is within ~4% (from initial 1.95 mmrad to 2.75 mmrad FWHM), and this value decreases with decreasing z_f or n_p.

To achieve a deeper understanding of the experiment, full-scale 3D PIC simulations corresponding to Fig. 2a–d are performed using the OSIRIS code (Methods). In Fig. 3a,b, the simulated evolution of the laser spot size w and normalized vector potential a_0 ($a_0 = 0.85 \times 10^{-9} \sqrt{I_0}/\lambda_0$ (W cm$^{-2}$λ0 (μm)), where I_0 is the laser intensity and $\lambda_0 = 0.8$ μm is the laser wavelength) is shown as a function of the propagation distance z, respectively. Due to laser diffraction in vacuum, at the entrance of the plasma, w is several times the transverse size of the electron beam and it continues to increase during further propagation since the laser power ($P \approx 9$ TW) is less than the critical power for relativistic self-focusing ($P_c (TW) = 3 \times 10^{18}/n_p$ (cm$^{-3}$)), resulting in a relatively low a_0 ($a_0 < 1$). Such large w and relatively low a_0 lead to a linear plasma wake with a transverse size much larger than the beam size, which is beneficial for obtaining a high coupling efficiency.

Figure 3c–f shows the longitudinal wakefields E_z corresponding to Fig. 2a–d immediately at the start of the plasma plateau ($z = 2.4$ mm), where the accelerating gradient is found to be maximum during the whole acceleration process. For efficient acceleration, the beam centre is placed near the crest of the acceleration phase, as shown in Fig. 3c–f. This near on-crest acceleration also leads to the low accumulated energy spread despite no significant beam loading. Simulations confirm that all the electrons can be fully trapped and subsequently accelerated. The resulting energy-dispersed beam distributions and the corresponding energy spectra are shown in Fig. 3g–h, respectively, both in good agreement with the experimental results. Moreover, by varying the delay between the beam and the laser in the simulations, we can obtain the dispersed beam distributions as a function of the delay; a typical example for $z_f = -4.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$ is shown in Extended Data Fig. 2, which is very similar to the measured results (Fig. 1d).

To get a deeper insight into the beam transverse-phase space dynamics and the possible beam quality degradation during the injection–acceleration process, Fig. 4a–c shows the simulated evolutions of beam divergence, spot size and normalized emittance for different z_f and n_p cases. At the exit of the plasma, the simulated divergences agree well with those measured in the experiment (diamonds in Fig. 4a). The small divergence increases and the small variations of the beam spot sizes (Fig. 4b) indicate that the growth of the beam emittance should be limited; this is confirmed by the simulated emittance evolution (Fig. 4c), where for most cases, the emittance growth is only a few percentage points, with the worst case being ~28% for $z_f = -3.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$. This level of emittance preservation is indeed highly non-trivial, which needs a proper focusing phase for the electron beam and careful tailoring of the plasma profile (see Supplementary Information for details). This is because the longitudinal-position-dependent transverse focusing fields in the wake can lead to large phase differences in the betatron oscillation of different beam slices; therefore, significant projected emittance growth can be induced if the beam is not properly matched with a carefully chosen plasma profile16,17. To clearly show the importance of a properly chosen plasma profile, Fig. 4c shows the simulated evolutions of normalized beam emittance for other two different profiles (with a 500-μm up-ramp and a step-function up-ramp) plotted for $z_f = -3.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$, where a significant growth of the projected emittance (a factor of 2.6 and 4.2 for the 500-μm up-ramp and step-function up-ramp cases, respectively) can be seen. In contrast, for the experimental condition where a 2.4 mm up-ramp is adopted, the projected emittance growth is fairly small, where the phase differences induced in the plateau have been partially compensated by the phase differences induced in the up-ramp.

In our experiment, a beam charge of ~20 pC is adopted for achieving a short bunch length of ~13 fs r.m.s. by velocity compression, where space-charge-induced longitudinal expansion of the bunch can be mitigated. If the bunch charge is increased by 50 times to 1 pC while all other parameters are exactly identical to those in the experiment, the simulations confirm that the whole physical process is almost the same. If the bunch charge is further increased by 100 times to 2 pC, although the simulations show that the self-excited wakefields of the beam become slightly comparable to the laser-excited wakefields, the beam is still unable to optimally load the wake but monoenergetic acceleration with 100% coupling efficiency and beam quality preservation (an even smaller energy...
spread and a little larger emittance of the output beam compared with the 20 fC charge case) can still be achieved, as clearly shown in Extended Data Fig. 3.

In the current experiment, the laser power is relatively low (~9 TW) and the plasma length is much shorter than the dephasing length and the pump depletion length, especially
for $n_e = 2 \times 10^{17} \text{cm}^{-3}$. For this density, a channel-guided LWFA has a dephasing length of ~20 cm and a pump depletion length larger than 20 cm. Using a 40 fs, 200 TW laser ($a_0 = 2.2$) interacting with a 20-cm-long plasma channel (while gas jets may not be the best choice, similar characterization and optimization of the density profiles of capillaries, gas ovens, etc. can be applied), 3D PIC simulations show that the energy of the injected beam (a 50 pC, 25 MeV electron beam with a normalized emittance of 1 mm-mrad, a focused Gaussian spot of 4 μm r.m.s. (which can be achieved using a permanent magnetic quadrupole or an active plasma lens) and a flat-top current profile of 10 fs full duration (which can be achieved using a magnetic chicane) can be boosted to ~4.3 GeV with 100% coupling efficiency, ~0.3% r.m.s. energy spread and negligible normalized emittance growth (Extended Data Fig. 4).

In summary, we have experimentally demonstrated high-efficiency coupling (~100%) and subsequent monoenergetic acceleration between a conventional RF LINAC and an LWFA. The results demonstrated here are also applicable to positron acceleration between a conventional RF LINAC and an LWFA. The high-efficiency coupling (~100%) and subsequent monoenergetic spread and negligible normalized emittance growth (Extended data from plasma channel undulator31.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of data and code availability are available at https://doi.org/10.1038/s41567-021-01202-6.

Received: 30 April 2020; Accepted: 10 February 2021; Published online: 18 March 2021

References
1. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).
2. Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985); erratum 55, 1537 (1985).
3. Ritz, S. et al. Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context (The Particle Physics Project Prioritization Panel (P5): Subpanel of the High Energy Physics Advisory Panel (HEPAP)); 2014; http://www.usparticlephysics.org/p5/.
4. Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. & Leemans, W. P. Physics considerations for laser-plasma linear colliders. Phys. Rev. ST Accel. Beams 13, 101301 (2010).
5. Adli, E. et al. A beam driven plasma-wave linear collider from Higgs factory to multi-TeV. Preprint at https://arxiv.org/abs/1308.1145 (2013).
6. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).
7. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).
8. Dangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004).
9. Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).
10. Corde, S. et al. Multi-gigaelectronvolt acceleration of protons in a self-loaded plasma wakefield. Nature 524, 442–445 (2015).
11. Adli, E. et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363–367 (2018).
12. Steinke, S. et al. Multistage coupling of independent laser-plasma accelerators. Nature 530, 190–193 (2016).
13. Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).
14. Maier, A. R. et al. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X 10, 031039 (2020).
15. Clayton, C. E. et al. Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves. Phys. Rev. Lett. 70, 37–40 (1993).
16. Everett, M. et al. Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368, 527–529 (1994).
17. Amiranoff, F. et al. Electron acceleration in Nd-laser plasma beat-wave experiments. Phys. Rev. Lett. 74, 5220–5223 (1995).
18. Jin, Z. et al. Coupling effects in multistage laser wake-field acceleration of electrons. Sci. Rep. 9, 20045 (2019).
19. Luo, J. et al. Multistage coupling of laser-wakefield accelerators with curved plasma channels. Phys. Rev. Lett. 120, 154801 (2018).
20. Xu, X. L. et al. Physics of phase space matching for staging plasma and traditional accelerator components using longitudinal tailored plasma profiles. Phys. Rev. Lett. 116, 124801 (2016).
21. Dornmair, I. et al. Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. ST Accel. Beams 18, 041302 (2015).
22. Du, Y. et al. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray source. Rev. Sci. Instrum. 84, 053501 (2013).
23. Zheng, L. et al. Development of 5-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Methods Phys. Res. 834, 98–107 (2016).
24. Wang, X. J., Qiu, X. & Ben-Zvi, I. Experimental observation of high-brightness microbunching in a photocathode rf electron gun. Phys. Rev. E 54, R3121–R3124 (1996).
25. Lin, Z. et al. Development of sub-100 femtosecond timing and synchronization system. Rev. Sci. Instrum. 89, 014701 (2018).
26. Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Notes Comput. Sci. 2331, 342–351 (2002).
27. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).
28. Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802 (2015).
29. Yoon, S. J., Palastro, J. P. & Milchberg, H. M. Quasi-phase-matched laser wakefield acceleration. Phys. Rev. Lett. 112, 134803 (2014).
30. Cowley, J. et al. Excitation and control of plasma wakefields by multiple laser pulses. Phys. Rev. Lett. 119, 044802 (2017).
31. Wang, J. W., Schroeder, C. B., Li, R., Zepf, M. & Rykovanov, S. G. Plasma channel undulator excited by high-order laser modes. Sci. Rep. 7, 16884 (2017).
Methods

Electron beam generation and transport. An ~20 fC, ~13 fs (r.m.s.), 31.3 MeV electron bunch has been produced by a high-brightness S-band LINAC\(^22,23\) at Tsinghua University. A schematic of the beamline is shown in Extended Data Fig. 5a. The bunch charge is set by tuning the energy of the 300-kV (FWHM), 266 nm photocathode drive laser. The short bunch length is achieved through velocity compression within the photocathode RF gun by launching the beam at the near-zero phase to gain an energy chirp with the bunch tail with energy higher than the bunch head.\(^24\) High-fidelity particle dynamics simulations with the ASTRA\(^32\) code are performed to estimate the bunch length and beam current profile (near the flat top) (Extended Data Fig. 5b). After further acceleration in the accelerating tube, the electron beam is transported to the vacuum interaction chamber (experimental area with setup (Fig. 1)). Two triplets are used to focus the beam to the entrance of the plasma with an r.m.s. transverse waist size of 20.3 ± 0.9 μm, detected by a removable yttrium–aluminium–garnet (YAG) screen (Fig. 1). A 180-mm-thick diamond film (not shown in Extended Data Fig. 5a) is inserted between the LINAC and the interaction chamber for creating a differential vacuum pressure. The vertical \((y)\) axis normal emittance of the beam after the diamond film is directly measured to be ~1 mm mrad by using a two-screen method\(^33\) (a YAG screen and a Mitsubishi Chemical DRZ-High screen (Fig. 1)).

Characterization of the plasma. The plasma structure used in the experiment is produced by a supersonic slit-opening gas jet (6 mm × 2 mm), and its density profile is characterized by combining offline and online measurements with shearing interferometry\(^34\) using a wavefront sensor (SID-4, Phasics) (see Supplementary Information for details).

PIC simulations. Computer simulations are carried out using the 3D fully relativistic PIC ORSIS\(^35\) code in the moving-window configuration (the simulation box travels at the speed of light in the laser propagation direction).

The experiment-related simulations (shown in Figs. 3 and 4 and Extended Data Figs. 2 and 3) are carried out in the laboratory frame. A 3D cylindrical geometry with Fourier azimuthal decomposition\(^36,37\) (the first two Fourier modes) is utilized in these simulations. To compare the simulations and experimental results, parameters of the laser, plasma and electron beam used in the simulations are chosen as close to the experimental conditions as possible. A 40 fs (FWHM) with a sinc\(^2\) temporal profile) linearly polarized laser pulse is initialized with \(\Delta t = 1.35\) and a Gaussian focal spot (12.2 μm) at the focus. A transversely uniform plasma is initialized with a measured longitudinal profile, as shown in Fig. 1c. A 31.3 MeV electron beam with 0.6% (FWHM) energy spread and 1 mm mrad normalized emittance is initialized with a Gaussian focal spot of 20 μm r.m.s. and a flat-top current profile of 52 fs full duration (13 fs r.m.s. duration). The simulation window has a dimension of 571.5 μm × 108.2 μm with 1,500 × 5,100 cells in the \(r\) and \(z\) directions, respectively. This corresponds to cell sizes of \(\Delta r = 3\lambda_0^{-1}\) and \(\Delta z = 0.167\lambda_0^{-1}\) (where \(k_0 = 2\pi\lambda_0^{-1}\) is the laser wavevector). Here 2 macroparticles per cell in the \(r\) – \(z\) direction and 16 particles in the azimuthal direction are used for both plasma and electron beam.

The simulation of the matching section in Extended Data Fig. 4 is performed within the laboratory frame in 3D Cartesian coordinates. The simulation window has dimensions of 228.6 μm × 228.6 μm × 76.2 μm with 600 × 600 × 4,500 cells in the \(x\), \(y\) and \(z\) directions, respectively. To save the computational resources, the simulation of the acceleration section Extended Data Fig. 4 is carried out in a Lorentz-boosted frame\(^38\) with the relativistic factor \(γ_{\text{boost}} = 5\) in 3D Cartesian coordinates. An electron beam with almost the same parameters as those at the exit of the matching section is initialized. The simulation window (in the boosted frame) has dimensions of 228.6 μm × 228.6 μm × 762 μm with 600 × 600 × 4,500 cells in the \(x\), \(y\) and \(z\) directions, respectively. For simulations of both the matching and acceleration sections, 1 macroparticle per cell and 8 macroparticles per cell are used for the plasma and electron beam, respectively.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

32. Flöttmann, K. ASTRA: a space charge tracking algorithm (DESY, 2017); http://www.desy.de/~myfilo

33. Zhang, L. & Zhuang, J. Calculation of two-screen emittance measurement. *Nucl. Instrum. Methods Phys. Res.* **407**, 356–358 (1998).

34. Chanteleuup, J.-C. Multiple-wave lateral shearing interferometry for wave-front sensing. *Appl. Opt.* **44**, 1559–1571 (2005).

35. Lifschitz, A. F. et al. Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition. *J. Comput. Phys.* **228**, 1803–1814 (2009).

36. Davidson, A. et al. Implementation of a hybrid particle code with a PIC description in \(r\) – \(z\) and a gridless description in \(\phi\) into OSIRIS. *J. Comput. Phys.* **281**, 1063–1077 (2015).

37. Martins, S. F. et al. Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. *Nat. Phys.* **6**, 311–316 (2010).

38. Martins, S. F. et al. Numerical simulations of a laser wakefield accelerators in optimal Lorentz frames. *Comput. Phys. Comm.* **181**, 869–875 (2010).

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) grants (no. 11535006, no. 11991071, no. 11775125 and no. 11875175), CAS Center for Excellence in Particle Physics, the US Department of Energy grants (no. DE-SC00110064, no. DE-SC0008491 and no. DE-SC0008316) and the US National Science Foundation (NSF) grant no. 1734315. The simulations were performed on Sunway TaihuLight and Cori cluster at National Energy Research Scientific Computing Center (NERSC).

Author contributions

W.L. conceived and supervised the project. J.H. led the development of laser system, plasma structure and diagnostics. Y.D. led the optimization of electron beam. Y.W., Z.Z., S.L., B.P., J.H., Y.D. and W.L. performed the experiments. Y.W. analysed the experimental data and carried out the corresponding simulations. W.L., C.J., Y.W. and J.H. wrote the paper. All the authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41567-021-01202-6.

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1038/s41567-021-01202-6.

Correspondence and requests for materials

should be addressed to J.H., Y.D. or W.L.

Peer review information

Nature Physics thanks John Palastro, Paramel Pattathil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Experimental cases for non-matched injection. a, The measured energy-dispersed beam distributions, with $z_f = -1.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$. b, The integrated normalized beam charge corresponding to panel a (20-plasma-off-shot average for each plasma-on shot), where the error bars represent the standard deviation.
Extended Data Fig. 2 | Simulation results for different relative delays. The simulated energy-dispersed beam distributions as a function of the relative delay between the electron beam and the laser, with $z_f = -4.5\text{ mm}$ and $n_p = 6 \times 10^{17}\text{ cm}^{-3}$. Here the relative delay of 0 fs corresponds to the absolute delay as shown in Fig. 3d.
Extended Data Fig. 3 | Simulation results obtained by increasing the beam charge. **a**, The simulated angle-resolved energy-dispersed beam distributions obtained by increasing the beam charge Q from 20 fC to 1 pC and 2 pC, while keeping other parameters invariant, with $z_s = -3.5$ mm and $n_p = 6 \times 10^{17}$ cm$^{-3}$. **b**, The corresponding energy spectra. **c**, The corresponding evolutions of the normalized beam emittance.
Extended Data Fig. 4 | Simulation results for high energy gain when using a longer plasma and a more powerful laser. The plasma has a 2.4 mm-long up-ramp identical to the experimental condition as the matching section, and a 20 cm-long plateau as the acceleration section (see panel a). A 200 TW laser is focused to a spot size $w_0 = 35 \mu m$ with $a_0 = 2.2$ at the beginning of the plateau $(z = 2.4 \text{ mm})$. The plasma transverse profile is set to a parabolic channel $n_{p,0} \times \left(1 + 0.4 \times \frac{x^2 + y^2}{w_0^2}\right)$ for laser guiding, where $n_{p,0}$ is the on-axis density with the plateau value of $2 \times 10^{17} \text{ cm}^{-3}$. A 50 pC, 25 MeV, 10 fs full duration (flat-top current profile) electron beam with 0.6% FWHM (no chirp) energy spread and 1 mm mrad normalized emittance is focused to $z = 0$ with a transverse waist size of $4 \mu m$ r.m.s. (left inset in panel a). The matching section can transport the beam from this waist to another waist with spot size of $1.5 \mu m$ r.m.s. and energy of ~50 MeV at $z = 2.4 \text{ mm}$ (right inset in panel a), which is nearly matched to the plasma focusing fields in the acceleration section. b, The simulated E_z at $z = 2.4 \text{ mm}$ (upper half) and $z = 93.6 \text{ mm}$ (lower half). The blue and red lines show the lineouts of on-axis E_z values for $z = 2.4 \text{ mm}$ and $z = 93.6 \text{ mm}$, respectively. The green and yellow lines show the contours of the laser (e^{-2} of its peak intensity) and the electron beam (full bunch length in ξ and r.m.s. spot size in x), respectively. c, Evolutions of the beam r.m.s. spot size (green line), normalized emittance (blue line) and central energy (red line). The shaded regions correspond to the beam r.m.s. energy spread (times 5 for visual clarity). d, The final beam longitudinal phase space.
Extended Data Fig. 5 | Ultrashort electron beam generation and transport. a, The schematic layout of the high-brightness S-band LINAC beamline at Tsinghua University. b, The simulated beam current profile (charge 20 fC) using the code ASTRA according to the experimental settings, where the beam head locates at the right.