ANOTHER REFINEMENT OF THE RIGHT-HAND SIDE OF THE HERMITE-HADAMARD INEQUALITY FOR SIMPLICES

MONIKA NOWICKA AND ALFRED WITKOWSKI

Abstract. In this paper, we establish a new refinement of the right-hand side of Hermite-Hadamard inequality for convex functions of several variables defined on simplices.

The classical Hermite-Hadamard inequality states that if \(f : I \rightarrow \mathbb{R} \) is a convex function then for all \(a < b \in I \) the inequality

\[
 f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(t) \, dt \leq \frac{f(a) + f(b)}{2}
\]

is valid. This powerful tool has found numerous applications and has been generalized in many directions (see e.g. \cite{2} and \cite{1}). One of those directions is its multivariate version:

Theorem 1 (\cite{1}). Let \(f : U \rightarrow \mathbb{R} \) be a convex function defined on a convex set \(U \subset \mathbb{R}^n \) and \(\Delta \subset U \) be an \(n \)-dimensional simplex with vertices \(x_0, x_1, \ldots, x_n \), then

\[
 f(b_\Delta) \leq \frac{1}{\text{Vol} \Delta} \int_\Delta f(x) \, dx \leq \frac{f(x_0) + \cdots + f(x_n)}{n+1},
\]

where \(b_\Delta = \frac{x_0 + \cdots + x_n}{n+1} \) is the barycenter of \(\Delta \) and the integration is with respect to the \(n \)-dimensional Lebesgue measure.

The aim of this note is to proof a refinement of the right-hand side of \cite{1}.

Let us start with a set of definitions.

A function \(f : I \rightarrow \mathbb{R} \) defined on an interval \(I \) is called convex if for any \(x, y \in I \) and \(t \in (0, 1) \) the inequality

\[
 f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

holds.

If \(U \) is a convex subset of \(\mathbb{R}^n \), then a function \(f : U \rightarrow \mathbb{R} \) is convex if its restriction to every line segment in \(U \) is convex.

For \(n+1 \) points \(x_0, \ldots, x_n \in \mathbb{R}^n \) in general position the set \(\Delta = \text{conv} \{ x_0, \ldots, x_n \} \) is called an \(n \)-dimensional simplex. If \(K \) is a nonempty subset of the set \(N = \{0, \ldots, n\} \) of cardinality \(k \), the set \(\Delta_K = \text{conv} \{ x_i : i \in K \} \) is called a face (or a \(k-1 \)-face) of \(\Delta \). The point \(b_K = \frac{1}{k} \sum_{i \in K} x_i \) is called a barycenter of \(\Delta_K \). The barycenter of \(\Delta \) will be denoted by \(b \). By \text{card} \(K \) we shall denote the cardinality of set \(K \).

\[\text{Date: 16.12.2014.}\]
\[2010 \text{ Mathematics Subject Classification.} \ 26D15.\]
\[\text{Key words and phrases.} \ \text{Hermite-Hadamard inequality, convex function, barycentric coordinates.}\]
For each \(k - 1 \)-face \(\Delta_K \) we calculate the average value of \(f \) over \(\Delta_K \) using the formula
\[
\text{Avg}(f, \Delta_K) = \frac{1}{\text{Vol}(\Delta_K)} \int_{\Delta_K} f(x) dx,
\]
where the integration is with respect to the \(k - 1 \)-dimensional Lebesgue measure (in case \(k = 1 \) this is the counting measure).

For \(k = 1, 2, \ldots, n + 1 \) we define
\[
\mathcal{A}(k) = \frac{1}{\binom{n+1}{k}} \sum_{K \subset N, \text{card } K = k} \text{Avg}(f, \Delta_K).
\]

Note that the right-hand side of the inequality (1) can be rewritten as \(\mathcal{A}(n + 1) \leq \mathcal{A}(1) \). It turns out, that

Theorem 2. The following chain of inequalities holds:
\[
\mathcal{A}(n + 1) \leq \mathcal{A}(n) \leq \cdots \leq \mathcal{A}(2) \leq \mathcal{A}(1).
\]

In the proof we shall use the following

Lemma 1 ([3, Theorem 4.1]). If \(K_i = N \setminus \{i\} \) and \(b \) is the barycenter of \(\Delta \), then
\[
\text{Avg}(f, \Delta) \leq \frac{1}{n + 1} f(b) + \frac{n}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}).
\]

Proof of Theorem 2. We shall prove first the inequality \(\mathcal{A}(n + 1) \leq \mathcal{A}(n) \). Let us use the notation from Lemma 1. For \(i = 0, 1, \ldots, n \) we have
\[
b_{K_i} = \frac{1}{n} \sum_{j=0}^{n} x_j = \frac{1}{n} \left(\sum_{j=0}^{n} x_j - x_i \right) = \frac{1}{n} ((n + 1)b - x_i).
\]

Summing (2) we obtain
\[
b = \frac{1}{n + 1} \sum_{j=0}^{n} b_{K_j}.
\]

Now using Lemma 1 and convexity of \(f \) applied to (3) we get
\[
\text{Avg}(f, \Delta) \leq \frac{1}{n + 1} f(b) + \frac{n}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]
\[
\leq \frac{1}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} f(b_{K_i}) + \frac{n}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]

thus, by the left-hand side of (1)
\[
\leq \frac{1}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}) + \frac{n}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]
\[
= \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]

This shows the inequality \(\mathcal{A}(n + 1) \leq \mathcal{A}(n) \). The other inequalities follow by simple induction argument applying the same reasoning to all terms in \(\mathcal{A}(n) \) etc. \(\Box \)
Just for completeness note that similar refinement of the left-hand side of [1] can be found in [4, Corollary 2.6]. It reads as follows:

Theorem 3. For a nonempty subset K of N define the simplex Σ_K as follows: let A_K be the affine span of Δ_K and A'_K be the affine space of the same dimension, parallel to A_K and passing through the barycenter of Δ. Then $\Sigma_K = \Delta \cap A'_K$.

For $k = 1, 2, \ldots, n + 1$ we let

$$B(k) = \frac{1}{\binom{n+1}{k}} \sum_{\substack{K \subseteq N \\text{card} K = k}} \operatorname{Avg}(f, \Sigma_K).$$

Then

$$f(b) = B(1) \leq B(2) \leq \cdots \leq B(n + 1) = \operatorname{Avg}(f, \Delta).$$

References

[1] Bessenyei, M: The Hermite–Hadamard inequality on simplices. American Mathematical Monthly **115**(4), 339–345 (2008)

[2] Dragomir, SS, Pearce, CEM: Selected topics on Hermite–Hadamard inequalities

[3] Nowicka, M and Witkowski, A: A refinement of the right-hand side of the Hermite-Hadamard inequality for simplices, Aequat. Math., **91** (2017), 121-128, doi:10.1007/s00010-016-0433-z,

[4] Nowicka, M and Witkowski, A: A refinement of the left-hand side of Hermite-Hadamard inequality for simplices, J. Inequal. Appl., (2015), 2015:3 73, doi:10.1186/s13660-015-0904-0,