Growth and survival of hatchery produced and feed weaned striped murrel *Channa striata* (Bloch, 1793) fingerlings in cement tanks

ANURAG RAWAT, SUDHIR RAIZADA AND PREM PRAKASH SRIVASTAVA*

ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow - 226 002
Uttar Pradesh, India
*Dr. Rajendra Prasad Central Agricultural University, Samastipur - 848 125, Bihar, India
e-mail: sudhirraizada@hotmail.com

ABSTRACT

The growth and survival of hatchery produced and feed weaned fingerlings of striped murrel *Channa striata* (Bloch, 1793) was estimated in cement tanks in a subtropical climate. Each tank was stocked with 215 fingerlings (20 fingerlings m\(^{-3}\)) of length 6.7±1.0 cm and weight 2.21±1.05 g and fed exclusively on commercial floating pellet diets of two grades (crude protein CP 40-45%, lipid 8-10% and fibre 3-5%). Fish attained a total length of 28.0±2.8 cm and weight 202.7±59.1 g with 85% survival in 330 days of rearing in a subtropical climate in freshwater having a temperature regime of 15±1.5 to 29±2.5\(\^\circ\)C. The estimated fish biomass was 3.5 kg m\(^{-3}\), which was found exceptionally high. 'W' values were found to follow Fulton’s cube law with exponent 'b', 'R\(^2\)' and 'K' in the range 2.072-3.216, 0.776-0.943 and 0.715-0.915 respectively. The values of 'b', 'R\(^2\)' and 'K' were found size and temperature dependent. The present study revealed that cannibalism in this species could be controlled to a negligible level with hatchery produced and feed weaned fingerlings.

Keywords: Condition factor, Growth, LWR, Production, Survival

Introduction

Striped murrel or ‘striped snakehead’ *Channa striata* (Bloch, 1793) is a freshwater fish of high commercial value due to its excellent meat quality, therapeutic and antinociceptive properties. The species is widely distributed in Western to South-east Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Nepal, Pakistan, Sri Lanka, Thailand and Vietnam (Chaudhary, 2019). It is supposed to be introduced in countries like Fiji, New Caledonia (Welcomme, 1988), Madagascar (Stiassny and Raminosoa, 1994) and Hawaii (Courtenay *et al.*, 2004).

Globally, 92523 t of striped murrel is produced, of which the major share of 70802 t is contributed from capture fisheries and 21721 t from aquaculture (FAO, 2016). Capture fisheries of striped murrel are quite stable in terms of global production, aquaculture of the species is still in its infancy stage due to several bottlenecks associated with its farming such as non-availability of hatchery raised seed, its carnivorous and cannibalistic nature and non-acceptance of artificial diet in grow-out ponds unless weaned on artificial diet before stocking. Recent studies have shown higher survivals and production when seed procured from wild resources are fed a floating pellet diet before stocking in grow-out ponds (Rahman *et al.*, 2012; So *et al.*, 2012; Haiwen *et al.*, 2014; Farhana *et al.*, 2016) in contrast to those which are fed small-size fishes or other meat items (Devraj, 1973; Wee, 1981; Diana *et al.*, 1985). Though survivals have been found to improve in these studies, cannibalism remains a critical issue. The reason being the cannibalism in striped murrel starts at an early age (~48 h post-hatch onwards, authors unpublished data) and the cannibals do not leave the habit of cannibalising the siblings once it is developed, resulting in lowering the survival. To overcome this critical gap, the authors produced hatchery seed through induced breeding and weaned them from hatching to fingerling size under a strategic diet plan to finally get feed weaned fingerlings, which readily accepted floating pellet diet. Therefore, the present study aimed to estimate the growth, survival and production of hatchery produced and feed weaned fingerlings in cement tanks under intensive rearing conditions.

Materials and methods

Study area

The experimental culture of striped murrel was undertaken at the farm facility of ICAR-National Bureau of Fish Genetic Resources (ICAR-NBFGR), Lucknow, India (lat. 26.7858\(^\circ\)N; long. 80.9339\(^\circ\)E) from 1 October 2019 to 31 August 2020 (330 days). The climate of the area is subtropical warm with air temperatures of a minimum
average 8.8°C in January and a maximum average of 41.1°C in June. It has three seasons of winter (November-February), monsoon (July-September) and rest summer.

Production of hatchery-seed and weaning on pellet diet

Induced breeding was undertaken using the protocol of Rawat et al. (2020). The practice of weaning the seed on feed was initiated when the larvae attained the age of 48 h posthatch (hph) by feeding them freshly hatched brine shrimp nauplii (BSN) *ad libitum*. The larvae were continued to be fed on freshly hatched BSN 3-4 times daily till 7 days post-hatch (dph). Live mixed pond plankton was given to the larvae from 8 dph onwards till 25 dph, initially two feeds of mixed plankton during day time followed with a night feed of BSN, up to 15 dph. The larvae were exclusively fed on mixed pond plankton from 16 to 25 dph three times daily. The mixed plankton was procured from the ICAR-NBFGR farm ponds, washed thoroughly and filtered with fine netting to avoid entry of large-size plankton and aquatic insects. The larvae were subsequently weaned on fresh fish mash for 3 days and mixed mash of fresh fish and grounded pellet diet (crude protein CP 45%, lipid 10% and fibre 3.5%) two times daily *ad libitum* for 7-8 days with the gradual replacement of about 15% fresh fish mash with that of grounded pellet diet. The fingerlings were then fed on a mix of grounded pellet diet and pellet diet (size 1.2 mm) till larvae were weaned exclusively on the pellet diet. Thus the fingerlings were weaned on pellet diet in 45 days time.

Rearing systems and protocol

Experimental culture of striped murrel with hatchery produced and feed weaned fingerlings was undertaken in two identical cement tanks (5x3x1.2 m). The tanks were provided a soil base of 6-inch depth and filled with freshwater from a tube well to a depth of 0.5 m for the first 2 months which was subsequently raised to 0.7 m (total volume of water 10.5 m3) till completion of the experiment. Each tank was stocked with 225 hatchery produced and pellet weaned fingerlings (length 6.7±1.0 cm, weight 2.2±1.05 g), to get a stocking density of 20 fingerlings m$^{-3}$. The fingerlings were fed with similar floating pellet diet which was used for weaning the fingerlings on pellet diet (CP 45%, lipid 10%, fibre 3.5%; pellet size 1.2 mm) for two months and with the increase in size, the next graded feed of the same brand (CP 40%, lipid 8%, fibre 3.5%; pellet size 1.8 mm) was given two times a day *ad libitum*. The feeding frequency was however reduced to one time during March-May due to lockdown of the country on account of Covid-19 Pandemic due to limited access to the site. The tanks were covered from the top with netting (mesh size 2") to avoid predation of fish by the birds. Partial change of tank water was done on monthly basis. The fishes were reared for 11 months (330 days) and harvesting was done by complete draining of the tanks.

Sampling and analysis of growth indices

The fishes were harvested with a netting cloth and sampled for lengths and weights on monthly basis. The length-weight of 50 fishes was taken on a random basis by pooling fishes of both the rearing tanks. The length of the fish was measured with the help of a digital vernier caliper and weight using a digital balance. The weight of small size fishes having a weight less than 5 g were measured using an electronic balance (Sartorius, precision 0.001 g), whereas larger ones with a digital pan balance (ATCO, precision 1 g). All the fishes were returned to the tanks immediately after recording length and weight parameters and giving them a bath of potassium permanganate (2 mg l$^{-1}$).

The LWR and growth indices were analysed using the following equation in M.S. Excel (2007).

(a) The length-weight relationship (log-transformed) was determined by linear regression analysis and scatter diagrams following the cube law given by Le Cren (1951) using the formula:

\[
W = aL^b
\]

where, W = weight of fish (g), L = total length (cm), ‘a’ is the regression intercept, and ‘b’, the regression slope or exponent.

The logarithmic transformation of the above formula was:

\[
\log W = \log a + b \log L
\]

(b) Fulton’s condition factor (K) was calculated according to Htun-Han (1978) equation as given under:

\[
K = \frac{W}{L^3} \times 100
\]

where, W=weight of fish (g), L=total length of fish (cm)

(c) Specific growth rate (SGR) was calculated with the following formula:

\[
SGR = \frac{\log \text{(Final weight)} - \log \text{(Initial weight)}}{\text{Culture duration (days)}} \times 100
\]

where weight is in g

The coefficient of determination (R^2) was estimated by drawing the regression line using X and Y variables in M. S. Excel (2007), where ‘X’ was log length and ‘Y’ was log weight.

(d) Survival was estimated by the following formula:

\[
\text{Survival percentage} = \frac{\text{Number of fishes at harvest}}{\text{The initial number of fishes}} \times 100
\]
Water quality

The water temperature was recorded on a daily basis to observe the lethal tolerance of fish during extreme cold and summer conditions and pH, total dissolved salts (TDS), ammonia, nitrite and nitrates, dissolved oxygen (DO), free CO₂ and total alkalinity on weekly basis. The temperature was measured with a mercury thermometer (0-110°C); pH, TDS and DO using a digital meter (Hanna); ammonia, nitrite and nitrates by Lifesonic Master Water Test kit (Manufacturer Lifesonic Innovations (P) Ltd., India) and free CO₂ and total alkalinity (TA) by titration methods (APHA, 2005).

Results and discussion

Growth and survival

The month-wise data on growth and survival is presented in Table 1 and Fig. 1. During 330 days of rearing, the growth in terms of both length and weight were found in increasing order (except during January) even though there were large differences in the temperature regime from a low of 15±2.0°C in December to a high of 29±2.5°C in May (Table 1, Fig. 1). The gain in both lengths and weights were low during the winter months (December-March) in comparison to summer/monsoon months (April-August). The SGR was found highest (3.52%) at the end of October with a small size group and negative (-0.032%) in January during extreme winter. Hence, an increase in both lengths and weight was found directly proportional to temperature. The fingerling attained a total length of 28±2.8 cm and a weight of 202±76 g with a survival of 85% at the end of the experiment (Table 1).

High survival of 85% at a stocking density of 20 fingerling m⁻² after 330 days of rearing on an artificial pellet diet in the present trial confirms that the rate of cannibalism was almost negligible. It is pertinent to mention that out of the mortality of 32 fishes recorded, 19 fishes died due to mishandling during monthly sampling and 8 of them died after restocking the sampled fishes in the tanks. Therefore, the remaining mortality of 5 fishes does not warrant the occurrence of cannibalism in that population particularly when few outliers were seen in each tank all through the culture period (Fig. 2). Therefore, survival of 85% after 11 months of rearing might be considered remarkable, considering that the species is highly carnivorous and cannibalistic (Ng and Lim, 1990). Devraj (1973) reported 19.3% survival in 3 months and 1.3% in 5 months in cement tanks when stocked with fingerlings collected from wild resources and fed them with fish liver. Weaning the seed on a pellet diet after its

![Image](https://via.placeholder.com/150)

Table 1. Details of LWR and growth data of striped murrel reared in open tanks

Parameter	Stocking details	Oct. 2019 (30 days)	Nov. 2019 (60 days)	Dec. 2019 (90 days)	Jan. 2020 (120 days)	Feb. 2020 (150 days)	Mar. 2020 (180 days)	Apr. 2020 (210 days)	May 2020 (240 days)	Jun. 2020 (270 days)	Jul. 2020 (300 days)	Aug. 2020 (330 days)
Mean total temperature (°C)	-	22±2.0	19±1.5	15±1.5	17±2.5	19±2.0	24±2.0	27±1.5	29±2.5	29±2.0	28±2.0	27±1.5
Mean length (cm)	±1.0	±0.97	±1.55	±1.55	±0.95	±1.40	±0.98	±1.73	±2.25	±2.29	±2.23	±2.81
Max length (cm)	9.2	16.5	21.0	21.3	21.3	21.5	22.6	27.0	35.0	36.2	36.5	40.0
Min length (cm)	5.3	11.9	14.6	16.5	16.5	16.4	19.3	19.0	22.0	22.5	23.5	25.0
Mean weight (g)	2.21	23.74	38.25	44.42	43.46	47.22	74.74	106.18	118.44	138.24	180.12	202.76
Max weight (g)	±1.05	±5.42	±10.67	±7.08	±7.34	±1.40	±7.07	±18.00	±22.23	±48.58	±48.97	±59.14
Min weight (g)	5.6	38.0	67.0	68.0	74	94.0	164.0	358.0	402	446	500.0	
Proportionality constant 'a'	1.998	-2.330	-1.916	-1.590	-1.664	-2.171	-1.841	-0.794	-1.725	-2.241	-1.470	-0.953
Exponent 'b'	2.805	3.216	2.823	2.574	2.626	3.013	2.826	2.072	2.733	3.087	2.570	2.245
Coefficient of determination 'R²'	0.945	0.911	0.921	0.876	0.776	0.935	0.943	0.892	0.912	0.883	0.816	0.851
Ponderal Index 'K'	0.736	0.844	0.750	0.754	0.742	0.715	0.857	0.884	0.822	0.785	0.842	0.915
SGR (%) per day	3.52	0.655	0.242	-0.032	0.102	0.670	0.584	0.123	0.213	0.391	0.167	
Survival (%)	-	-	-	-	-	-	-	-	-	-	-	85
Fig. 2. Month-wise (October, 2019 to August, 2020) linear regression and scatter diagrams of striped murrel cultured in cement tanks and under culture conditions (Wee, 1982; Ng and Lim, 1990) and is dependent on several parameters such as size difference, population density, availability of weaker siblings, food availability, food type, the nutritional composition of food and its metabolism in the body, temperature, photoperiod, shape and colour of internal walls of rearing tanks (Hecht and Pienaar, 1993; Baras et al., 2000). The positive effect of feed application in the case of striped murrel has been well demonstrated in a heterogeneous population by Qin and Fast (1996a). According to them, when two different sized larval procurement from wild resources has also shown higher survivals in pond culture in past studies (Rahman et al., 2012; So et al., 2012; Farhana et al., 2016; Rao and Narasimha, 2020). The absence of cannibalism, therefore, seems to be due to proper weaning of fingerling on well acceptable floating pellet feed. Yadav et al. (2014) have also obtained higher growth and survival with a feed having CP 50% and fat 9% in comparison to low CP diets in *Channa marulius*.

Intracohort cannibalism (ICC) *i.e.* feeding own siblings is very high in striped murrel both in natural and under culture conditions (Wee, 1982; Ng and Lim, 1990) and is dependent on several parameters such as size difference, population density, availability of weaker siblings, food availability, food type, the nutritional composition of food and its metabolism in the body, temperature, photoperiod, shape and colour of internal walls of rearing tanks (Hecht and Pienaar, 1993; Baras et al., 2000). The positive effect of feed application in the case of striped murrel has been well demonstrated in a heterogeneous population by Qin and Fast (1996a). According to them, when two different sized larval
populations; larger fish of size 57.0±5.7 mm TL and smaller fish of size 18.1±1.8 mm TL in 1:2 ratio, were reared together without feed, 86% ICC was observed in captive conditions. However, cannibalism was reduced to 60 and 35% when feeding ration was provided @ 5 and 15% of larval body weight in 6 days period (Qin and Fast, 1996b). ICC is a critical bottleneck in the farming of striped snakehead, which once starts becomes difficult to control at later stages even in the presence of plenty of quality artificial feed, though it may help in reducing the rate of cannibalism (Fox, 1975; Qin and Fast, 1997; Kumari et al., 2018). However, cannibalism is first mediated by size heterogeneity in a population and is more intense among fast-growing larvae and young juveniles than among older fish (Hecht and Pienaar, 1993; Baras, 1998). If size heterogeneity that provides chances of cannibalism is controlled in a population at a right time, the cannibalism is likely to reduce to either a negligible level or even stop thereafter (Qin and Fast, 1996b; Raizada et al., 2021). This hypothesis was successfully adopted in the present study. The hatchery seed was produced through captive spawning and was weaned on diets based on ontogenic requirements of fish larvae using brine shrimp nauplii, pond plankton, fresh fish mash and finally on commercial artificial pellet diet through a strategic diet plan.

The total biomass produced per tank (volume of water 10.5 m³) was estimated to be 37 kg (3.5 kg m⁻³) or 35000 kg ha⁻¹ m⁻³, which was observed to be an extremely higher production in comparison to 3300 kg ha⁻¹ in 342 days (Haiken et al., 2014), 2143.7 kg ha⁻¹ in 180 days (Farhana et al., 2016) and 20930 kg ha⁻¹ in 8 months (Rao, 2020) obtained in the pond system with fingerlings obtained from wild resources and weaned on a pellet diet. The present study further revealed that, the major growth period was only 7-8 months and there was poor growth during winter months due to low water temperature and also one-time application of feed due to the lockdown of the country because of Covid-19 Pandemic.

Length-weight relationship (LWR)

The ‘W’ values were found to follow Fulton’s cube law during the entire culture period. The values of exponent ‘b’ were positive allometric (>3) during October, February and June with the highest of 3.216 in October 2019 and negatively allometric in other months with the lowest of 2.072 in April. The coefficient of determination (R²) was found to range between 0.776 in January 2020 and highest (0.943) in March 2020. Similarly, ponderal index (K) was found to range between 0.715 in February to 0.915 in August (Table 1, Fig. 3). The scatter regression line diagrams drawn from month-wise data on lengths and weights have shown straight line regression having few outliers continuously available all through the culture period (Fig. 2).

There are very few reports available on LWR for striped murrel. Past studies revealed that this species in general exhibited more of a negative allometric growth pattern (b<3) than positive (b>3) in samples collected from the natural population (Table 2). The value of ‘b’ however showed a positive allometric growth trend in small size groups under culture conditions (Table 1). The negative allometric growth in large specimens may be attributed to their less rounded body and low fecundity. The value of ‘b’ recorded in the present study ranged between 2.072-3.216 in captive conditions with the lowest value of 2.072 in April indicating more weight increment than length, probably due to sudden rise of temperature and onset of maturity in fish.

The scatter regression line diagrams drawn from the month-wise data on length and weight showed a straight line regression that confirms an increase in weight corresponds to an increase in length (Fig. 2). The coefficient of determination (R²) with respect to length and weight data in striped murrel, in general follows a good fit, except during severe stress conditions (Table 2). The factors that affect the value of b in LWR also influence the value of R². The lowest R² value of 0.776 (January) obtained in the present study clearly showed that a continuous drop in temperature in winter could be the sole reason for it. Though no trend in their values was seen, higher values were obtained either in small size or also when there was a rise in temperature (Fig. 2).

Studies on Fulton’s condition factor or ponderal index (K) on murrels are scanty. According to Hile (1936), Fulton’s condition factor is the appropriate method for comparing relative heaviness, whereas the LWR equation is the appropriate method for estimating weight from length. LWR in fishes can be affected by various...
and were observed to be normal when compared with low values in winter and higher in summer months and ponderal index ‘K’ were found temperature dependent values that are more affected when dropping down in natural stocks. The study thus revealed that hatchery parameters recorded were: pH 8.1±0.5, TDS 275±25 mg l\(^{-1}\) in May being the summer season. The mean water quality during extreme winter and the maximum of 29.5±2.5\(^\circ\)C temperature of 15±1.5\(^\circ\)C was observed in December during the winter and the summer seasons. The lowest water quality due to an increase in fish girth size. August and the highest (0.915) was recorded in August found to increase with the onset of maturity from April to temperature was higher (25±2.0 to 17±1.5\(^\circ\)C). The ‘K’ was affect the value of ‘b’ in LWR also influence the value of ‘K’ except in those which follow the cube law (Ali et al., 2000). The value of K was observed lowest (0.715) in February in the present study when there was a sudden increase in temperature from the previous month (January), which showed different trends both from ‘b’ and ‘R’ values that are more affected when dropping down in temperature was higher (25±2.0 to 17±1.5\(^\circ\)C). The ‘K’ was found to increase with the onset of maturity from April to August and the highest (0.915) was recorded in August due to an increase in fish girth size.

Water quality

There were large differences in water temperature during the winter and the summer seasons. The lowest temperature of 15.0±1.5\(^\circ\)C was observed in December during extreme winter and the maximum of 29.5±2.5\(^\circ\)C in May being the summer season. The mean water quality parameters recorded were: pH 8.1±0.5, TDS 275±25 mg l\(^{-1}\), total alkalinity 220±10 mg l\(^{-1}\), DO 5.5±1.6 mg l\(^{-1}\), free CO\(_2\) 8.0±3.1 mg l\(^{-1}\), unionised ammonia 0.25±0.12 mg l\(^{-1}\), nitrite 0.23±0.10 mg l\(^{-1}\) and nitrate 0.57±0.21 mg l\(^{-1}\), which were found in the normal range for culture of this species.

The performance of hatchery produced and feed weaned seeds could be cultured in an intensive farming system with higher survival and production. More research is needed for the optimisation of stocking density to get larger size fish within a shorter period.

Acknowledgments

The first two authors are thankful to the Indian Council of Agricultural Research, New Delhi, India for the award of Emeritus Scientist Scheme under which this work was carried out. These authors also extend their gratitude to the Deputy Director General (Education Division), ICAR for facilitating all support for the smooth running of the scheme. The authors also gratefully acknowledge the support of the Director, ICAR-NBFGR, Lucknow for providing necessary field facilities for conducting the work. The authors also acknowledge the support of Dr. Ajay Kumar Singh, Farm In-charge, ICAR-NBFGR, Lucknow for providing logistic facilities for carrying out this work.

References

Ahmadi, A. 2018. The length-weight relationship and condition factor of the threatened snakehead (Channa striata) from Sungai Batang River, Indonesia. Pol. J. Nat. Sci., 33(4): 607-623.

Ali, A., Dahamakar, N. and Raghavan, R. 2013. Length-weight and length-length relationship of three species of snakehead fish, Channa diplogramma, C. marulius and C. striata from the riverine reaches of lake Vembanad, Kerala, India. J. Threat. Taxa, 5(3): 4769-4773. DOI:10.11609/JoTT.o3353.4769-73.

Ali, M. A., Salam, A. and Iqbal, F. 2000. Weight-length and condition factor relationship of wild Channa punctata from Multan (Pakistan), Punjab Univ. J. Zool., 12(10): 75-85.

APHA 2005. Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/ American Water Works Association/Water Environment Federation, Washington DC, USA.

Table 2. Values of exponent ‘b’, coefficient of determination (R\(^2\)) and condition factor in striped murrel in different studies

Stock type and place	Fish size (cm)	b	R\(^2\)	K/Kn Reference
Captive stock, Lucknow	6.70-28.88	2.07±3.216	0.776-0.945	0.715-0.915 Present study
Capture stock, Ganga River	-	2.929	-	-
Capture stock, Chi River, Thailand	-	2.94	-	-
Capture stock, Sungai River, Indonesia	-	2.9223	0.9725	-
Capture stock, River Siang, India	-	1.612	-	-
Rawa Sekayu	20.73	2.812	0.952	-
Rawa Maria (Capture stock from Wetlands)	20.84	2.543	0.881	-
Capture stock, Lake Vembanad	-	2.73	0.6113	-
Capture stock, Chennai	-	0.9628-1.127	0.9836-0.9965	-
Capture stock, Nadia (W.B.)	13-40	3.06-3.10	-	1.02-1.22 (Kn) Chakraborty et al. (2017)
Capture stock, Lucknow	22.9-42.4	3.407-3.958	0.9333	-

... (continued in next document)
Growth and survival of hatchery produced and feed weaned *Channa striata* fingerlings

58

Bagenal, T. B. and Tesch, F. W. 1987. Methods for the assessment of fish production in freshwaters. Blackwell Scientific Publication, Oxford, UK, p.101-136.

Baras, E. 1998. Bases biologiques du cannibalisme chez les poissons. *Gh. Ethol.*, 18: 53-98 (In French).

Baras, E. M., Maxi, N., Jeandrain, M. Y. J. D., Thome, J. P., Vandewalle, P. and Melard, C. 2000. Sibling cannibalism in dorada under experimental conditions. I. Ontogeny, dynamics, bioenergetics of cannibalism and prey size selectivity. *J. Fish Biol.*, 57: 1001-1020.

Chakraborty, R., Das, S. K. and Bhakta, D. 2017. Length-weight relationship, relative condition factor, food and feeding habits of *Channa striata* from wetlands of Nadia District, West Bengal. *J. Inland Fish. Soc. India*, 49(2): 22-26.

Chaudhry, S., De Alwis Goonatilake, S., Fernado, S. M. and Chakraborty, R., Das, S. K. and Bhakta, D. 2017. Length-weight relationship (LWR) of *Channa striatus* of *Channa striata* condition factor of striped snakehead, *Channa striata* fingerlings. *J. Exper. Zool. India*, 21(1): 205-210.

Courténay, W. R. Jr., Williams, J. D., Britz, R., Yamamoto, M. N. and Loiselle, P. V. 2004. Identity of introduced murrels (Pisces, Channidae) in Hawaii and Madagascar, with comments on ecological concerns. *Bishop Museum Occasional Papers* 77, Honolulu, Hawaii, 13 pp.

Das, B. K., Singh, N. R., Das, S. and Kar, D. 2015. Length-weight relationship (LWR) of *Channa striatus* (Bloch, 1793) of river Siang, Arunachal Pradesh. *Int. J. Environ. Nat. Sci.*, 7: 1-6.

Dayal, R., Srivastava, P. P., Bhatnagar, A., Chowdhary, S., Lakra, W. S., Raizada, S. and Yadav, A. K. 2012. Comparative study of WLR of *Channa striatus* of fry-fingerling, grow-outs and adults of Gangetic Plains. *J. Anim. Feed Res.*, 2(2): 174-176.

Devraj, M. 1973. Experiments on the culture of the large snakehead *Ophiocephalus marulius* (Hamilton). *Indian J. Fish.*, 20(1): 138-147.

Diana, J. S., Chang, W. Y. B., Ottey, D. R. and Chuapoehuk, W. 1985. Production systems for commonly cultured freshwater fishes of Southeast Asia. *International Program Report, No. 7*, Great Lake and Marine Water Centre, University of Michigan, Ann Arbor, Michigan, USA, p. 75-79.

FAO 2016. Species fact sheet *Channa striatus* (Bloch, 1793). Fisheries and Aquaculture Department, Food and Agriculture Organisation of the United Nations, Rome, Italy.

Farhana, T., Hasan, M. E., Mamun, A. and Islam, M. S. 2016. Commercially culture potential of striped murrel fish *Channa striatus* (Bloch, 1793) in earthen ponds of Bangladesh. *Int. J. Pure and Appl. Zool.*, 4(2): 168-173.

Fox, L. R. 1975. Cannibalism in natural populations. *Ann. Rev. Ecol. syst.*, 6: 87-106. DOI:10.1146/annurev.es.06.110175.000511.

Haiwen, B., Shaoyu, H., Lwin, U. T., Swe, U. T., Zhang, S., Dong, Q. and Yong, Y. 2014. The murrel fish: A success in Myanmar. AQUA Culture Asia Pacific Magazine (April-May), p. 20-23.

Hecht, T. and Pienaar, A. G. 1993. A review of cannibalism and its implication in fish larviculture. *J. World Aquac. Soc.*, 24: 246-261. https://doi.org/10.1111/j.1749-7345.1993.tb00014.x.

Hile, R. 1936. Age and growth of the cisco *Leucichthys artedi* (Le Sueur), in the lakes of the north-eastern highlands, Wisconsin. *Bull. US Bureau Fish.*, 48: 211-317.

Htun-Han, M. 1978. The reproductive biology of the dab *Limanda limanda* (L) in the North Sea, gonadosomatic index, hepatosomatic index and condition factor. *J. Fish Biol.*, 13(1): 351-357.

Khan, S., Khan, M. A., Miyan, K. and Muluk, M. 2011. Length-weight relationships for nine freshwater teleosts collected from river Ganga, India. *Int. J. Zool. Res.*, 7(6): 401-405. DOI: 10.3923/ijzr.2011.401.405.

Kumari, S., Tiwari, V. K., Babitha Rani, A. M., Kumar, R. and Prakash, S. 2018. Effect of feeding rate on growth, survival and cannibalism in striped snakehead, *Channa striata* (Bloch, 1793) fingerlings. *J. Exper. Zool. India*, 21(1): 205-210.

Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (*Perca fluviatilis*). *J. Anim. Ecol.*, 20: 201-219.

Muthamainnah, D. 2013. The length-weight relationship and condition factor of striped snakehead (*Channa striata* Bloch, 1793) grow-out in swamp pond, South Sumatra Province. *Depik*, 2(3): 184-190.

Ng, P. K. and Lim, K. K. P. 1990. Snakeheads (Pisces: Channidae): Natural history, biology and economic importance. In: Ming, C. L. and Ng, P. K. L. (Eds.), *Essays in zoology. Papers commemorating the 40th Anniversary of the Department of Zoology*, National University of Singapore, Singapore, p.127-152.

Qin, J. and Fast, A. W. 1996a. Effects of feed application rates on growth, survival and feed conversion of juvenile snakehead *Channa striatus*. *J. World Aquac. Soc.*, 27(1): 52-56. https://doi.org/10.1111/j.1749-7345.1996.tb00593.x.

Qin, J. and Fast, A. W. 1996b. Size and feed dependent cannibalism with juvenile snakehead *Channa striatus*. *Aquaculture*, 114: 313-320.

Qin, J., Fast, A. W., DeAnda, D. and Weidenbach, R. P. 1997. Growth and survival of larval snakehead (*Channa striatus*) fed different diets. *Aquaculture*, 148: 105-113.

Rahman, M. A., Arshad, A. and Amin, S. M. N. 2012. Growth and production performance of threatened snakehead fish, *Channa striatus* (Bloch), at different stocking densities in earthen ponds. *Aquac. Res.*, 43(2): 297-302. https://doi.org/10.1111/j.1365-2109.2011.02830.x.
Rao, T. and Narasimha, C. V. 2020. Experience in farming the murrel in India. *Aquac. Asia Pacif. Magazine*. May-June, 2020, p. 40-41.

Raizada Sudhir, Srivastava P. P. and Rawat Anurag 2021. A handbook on striped snakehead, *Channa striata* (Reproductive biology, breeding, seed and grow-out productions) (Bloch, 1793), NIPA Publisher, New Delhi, 101 pp.

Rawat Anurag, Raizada Sudhir, Yadav K. C. and Sahu Vikash 2020. Induced spawning and embryonic development of striped murrel *Channa striata* (Bloch, 1793) under indoor conditions using salmon gonadotropin releasing hormone analogue (sGnRHa). *Indian J. Fish.*, 67(3): 52-61. http://doi/10.21077/ijf2020.67.3.97091-06.

Satrawaha, R. and Pilasamorn, C. 2009. Length-weight and length-length relationships of fish species from the Chi River, north-eastern Thailand. *J. Appl. Ichthyol.*, 25(6): 787-788. http://dx.doi.org/10.1111/j.1439-0426.2009.01293.x.

So Nam, Robert, S., Pomeroy and Dong, T. 2012. Sustainable murrel aquaculture development in the lower Mekong River Basin of Cambodia and Vietnam Indigenous Species Development / Study /09IND02UC Part 1: Breeding and weaning of striped murrel (*Channa striata*) in Cambodia. Corpus ID: 53954029.

Stiassny, M. L. J. and Raminosoa, N. 1994. The fishes of the inland waters of Madagascar. In: Teugels, G. G., Guegan, J.-F. and Albaret, J.-J. (Eds.), *Biological diversity of African fresh and brackishwater fishes*. *Ann. Mus. R. Afr. Centr., Sci. Zool.*, 275: 133-148.

Sugumaran, E., Shabecena, B. and Radhakrishnan, M. V. 2018. Growth performance, length-weight relationship of snakehead fish *Channa striata* (Bloch) fed with different diets. *Int. J. Zool. Invest.*, 4(1): 81-87.

Tesch, F. W. 1968. Age and growth. In: Ricker, W. E. (Ed.), *Methods for assessment of fish production in fresh waters*. Blackwell Scientific Publications, Oxford, UK, p. 99-130.

Wee, K. L. 1981. Murrel (*Channa striatus*) farming in Thailand. *NACA/WP/81/3*.

Wee, K. L. 1982. The biology and culture of snakeheads. In: Muir, J. F. and Robberts, R. J. (Eds.). *Recent advances in aquaculture*, Westview Press, Boulder Co., USA, p. 181-213.

Welcomme, R. L. 1988. International introductions of inland aquatic species. *FAO Fish. Tech. Pap.*, 294, Food and Agriculture organisation of the United Nations, Rome, Italy, 318 pp.

Yadav, K. C., Mishra, A., Raizada, S., Sahu, V. and Srivastava, P. P. 2014. Influence of formulated diet on survival and growth of giant-snakehead, *Channa marulius* reared in pond condition. *Proc. Nat. Acad. Sci. India, B Biol. Sci.*, 86(1): 97-103. DOI 10.1007/s40011-0414-8.