Amaury de Kertanguya,1,*

aLERMA, Observatoire de Paris-Meudon 92195 Meudon France

Abstract

How to use recent symbolic programming language as $\textit{Mathematica}$\textregistered to build good quality programmes that yield valuable data in a short computation time. It is shown how to build good wave functions for any couple of states (both having proper quantum defects) $a \equiv n_a l_a$ and $b \equiv n_b l_b$ for a transition $a \rightarrow b$. The correct normalization of these wave functions $|n_a l_a\rangle$ and $|n_b l_b\rangle$ once obtained, enables the production of atomic useful data: such as line strengths, or average quantities as $\langle a | \rho^\alpha | a \rangle$, $\langle b | \rho^\alpha | b \rangle$ and $\langle a | \rho^\alpha b \rangle$ with α values $\{-2,-1,0,1,2\}$.

*Corresponding author.

Email address: E-mail: amaury.deker@gmail.com (Amaury de Kertanguy)

1First author footnote.
Contents

1 Introduction
 1.1 Using symbolic Mathematica ... 3
 1.2 isolated line problem ... 3
 1.3 Atomic quantum defects used as input quantities. 5

2 body of theory
 2.1 Normalization of the perturbed wave functions 5
 2.2 Building wave function wa(r) using Topbase quantum defect tables. 11

3 Summary ... 11

4 Oscillator strengths for MgII $3s \rightarrow 3p$ and $3s \rightarrow 4p$. 13

5 Explanation of tables
 5.1 $< n,l,m_N^N | r^\alpha | n,l,m_N^N >$ expectation values δ_s -values from Topbase. . 16
 5.2 Theoretical values $< r^\alpha >$ using the Messiah formulae \[6\] 25
 5.3 $< n,l,m_N^N | r^\alpha | n,l,m_N^N >$ expectation values δ_p-values from Topbase. (that is $n_s = n - \delta_p$ with angular momentum $l = 1$). 31
 5.4 Theoretical values using δ_p with angular momentum $l = 1$ and $l_s = l - \delta_p$ $< r^\alpha >$ using the Messiah formulae \[6\] 39
1. Introduction

It is well known that structures of Alkaline atoms exist with the so-called optical electron. This electron is to be understood as suffering the polarization potential. (see M. Seaton (1958) [3] for theory and Theodosiou & al 1999 [6] for astrophysical interest):

$$V_p(r) = \frac{1}{2} \alpha \langle \frac{1}{r^2} \rangle$$

$$\alpha$$ being the static dipolar polarizability, whose existence gives rise to quantum defects that modify the coulombic wave function.

Aspect of the calculation

1.1. Using symbolic Mathematica

The purpose is to take into account the structure effect in alkaline atoms and related ion ions due to the polarization potential. Including this potential (same sign as to the Coulomb potential,) it can be taken into account as a modification to the quantum number \(|n, l, m>\) of the coulombic wave functions: giving a new set of observables: \(|n_s, l_s, m_s>\). These formulae are valid for Coulomb interaction for kets \(|n, l, m>\) with principal quantum number, \(l\) momentum number, and \(m\) the azimuthal number.

$$n \geq 1$$

$$0 \leq l \leq n - 1$$

$$-l \leq m \leq l$$

(2)

For what follows we shall use the Mathematica function

\(SphericalHarmonicY[l, m, \theta, \phi]\) that is extended to non integer quantum numbers.

That is:

$$Y^*_l^m(\theta, \phi) = (-1)^m Y_{l-m}(\theta, \phi)$$

(3)

For consistency with the the structural modification of \(|n, l, m>\) coulombic states with as usual \(|l, m> = Y_l(\theta, \phi)\) states we need to define a restriction of the basic ket \(|n_s, l_s, m_s>\)

\(|nlm> \rightarrow |n_s, l_s, m_s>\)

$$n_s = n - \delta_l$$

$$l_s = l - \delta_l$$

$$-l_s \leq m_s \leq l_s$$

1.2. isolated line problem

Two points of view:

If two experimental lines (transition \(a \rightarrow b\) and transition \(i \rightarrow f\)) let us say of MgI exist and imply the same angular momentum change and are reported in \(cm^{-1}\) or Å.
This becomes a simple system of two linear equations: two identified levels, can be solved (in a symbolic way Mathematica instruction Solve[]) to give experimental quantum defects:

Explicitly: for MgI \(3s \rightarrow 3p\) and MgI \(3s \rightarrow 4p\) with \(Z=1\).

\[
\Delta E_{3s3p} = 0.159715 au \\
\Delta E_{3s4p} = 0.224959 au
\]

\[
myapp = \text{Solve}[[Z^2 \times 0.5 \times (\frac{1}{(3-\delta_s)^2} - \frac{1}{(3-\delta_p)^2})] == 0.159715 \\
0.5 \times Z^2 \times Z \times (\frac{1}{(3-\delta_s)^2} - \frac{1}{(4-\delta_p)^2})] == 0.2249599; \{\delta_s, \delta_p\}]
\]

Two distinct energy levels for two different quantum defects.

\[
\delta_s \rightarrow 0.950211, \delta_s \rightarrow 4.33938, \delta_p \rightarrow 0.95211 \\
\delta_s \rightarrow 1.66062, \delta_p \rightarrow 3.49592, \delta_s \rightarrow 3.47752 \\
\delta_s \rightarrow 3.49592, \delta_s \rightarrow 2.52248, \delta_p \rightarrow 4.77693 - 2.09315 \times I \\
\delta_s \rightarrow 1.28434 + 0.360287 \times I, \delta_p \rightarrow 4.77693 + 2.09315 \times I \\
\delta_s \rightarrow 1.28434 - 0.360287 \times I, \delta_p \rightarrow 4.77693 - 2.09315 \times I \\
\delta_s \rightarrow 4.71566 - 0.360287 \times I, \delta_p \rightarrow 4.77693 + 2.09315 \times I, \\
\delta_s \rightarrow 4.71566 + 0.360287 \times I
\]

Two distinct energy levels are to be given to obtain two different quantum defects here \(\delta_s\) and \(\delta_p\). After inspection of the output one keeps from the list: \(\delta_s \approx 1.660\) and \(\delta_p \approx 0.9502\). Conversely another way is to use the quantum defect theory to give calculate the perturbed energy levels (non hydrogenic behavior). When the polarization potential is used, then the energy levels are obtained:

\[
\Delta E_{n,m_n} = 0.5 \times Z^2 \times (\frac{1}{(n-\delta_s)^2} - \frac{1}{(m-\delta_p)^2})
\]

Finally the energy interval \(\Delta E_{n,m_n}\) is:

\[
\Delta E_{n_n} = 0.5 \times Z^2 \times (\frac{1}{(n-\delta_s)^2}) \\
\Delta E_{m_m} = 0.5 \times Z^2 \times (\frac{1}{(m-\delta_p)^2}) \\
\Delta E_{n,m_n} = E_{n_n} - E_{m_m} \\
= 0.5 \times Z^2 \times (\frac{1}{(n-\delta_s)^2} - \frac{1}{(m-\delta_p)^2})
\]
1.3. Atomic quantum defects used as input quantities.

We will simply represent a term or an identified transition as: It is very easy (in fact easier that any calculations before the existence of symbolic software) to build \((a \equiv n_a l_a)\) down level wave function \(w_a(r)\) and a wave function \(w_b(r)\) for \((b \equiv n_b l_b)\) upper level \(w_a(r)\) and \(w_b(r)\) normalized as the following:

\[
\text{Norm}_a = \int_0^\infty |w_a(r)|^2 r^2 dr \quad w_a(r) = \frac{w_a(r)}{\sqrt{\text{Norm}_a}}
\]

\[
\text{Norm}_b = \int_0^\infty |w_b(r)|^2 r^2 dr \quad w_b(r) = \frac{w_b(r)}{\sqrt{\text{Norm}_b}}
\]

Once the quantum defects are defined (theoretical or experimental) it is easy to use the symbolic software to calculate relevant integrals \(S_{ab} = |<a|r|b>|^2\) giving quantities such oscillator line strengths, or Einstein coefficients \(A_{ab}\) and to produce a lot of data, that are in excellent agreement, with former calculations.

Making this substitution:

\[
n \rightarrow n_\star = n - \delta_n
\]

\[
l \rightarrow l_\star = l - \delta_l
\]

The radial part \(R_{n_\star l_\star}(r)\) of the wave function is given by the following formula:

\[
|n_\star l_\star m_\star \rangle = w_a(r) \times Y_{l_\star m_\star}(\Theta, \Phi)
\]

\[
w_a(r) = R_{n_\star l_\star}(r) = \frac{1}{\sqrt{\Gamma(n_\star + l_\star + 1) \Gamma(n_\star - l_\star)}} \frac{1}{2^{0.5}} \times \exp\left(-\frac{R}{\alpha_r}\right) \times \left(\frac{\beta_r}{\alpha_r}\right)^l
\]

\[
\times \text{LaguerreL}(n_\star - l_\star - 1, 2l_\star + 1, \frac{\beta_r}{\alpha_r})
\]

\[
\times |n_\star l_\star m_\star \rangle = \text{Norm}
\]

It is very important to have the normalization carefully performed, it has the radial part, with some non integer parameters \((n_a l_a)\). It is proved that the Mathematica function LaguerreL[a,b,x] can be extended to non integer arguments. The same applies to the spherical harmonics Mathematica function SphericalHarmonicY[l,m,\Theta,\Phi]. I need that the norm \(<n_\star l_\star m_\star |n_\star l_\star m_\star \rangle = \text{Norm} \times \text{NormAng} \) exists.

\[
\text{NormAng} = \int_0^{2\pi} d\Phi \int_0^\pi |Y_{l_\star m_\star}(\Theta, \Phi)|^2 \sin(\Theta) d\Theta
\]
\[\text{Norm} = \int_0^\infty r^2 |wa(r)|^2 \, dr \] (15)

With the norm calculated further calculations the averaged quantities:

\[I_{nlm}^\alpha = < n_{nlm} | r^\alpha | n_{nlm} > \] (16)

With the normalized ket \(|n_{nlm} >^N = \frac{|n_{nlm} >}{\sqrt{\text{Norm} \times \text{Norm}^\alpha}} \) In fact we are dealing with the restriction to this quantity to give: It is well known that for hydrogen and hydrogenic ions, average values of operators \(< nlm | r^\alpha | nlm > \) being the Bohr radius, \(Z = 1 \) for hydrogen \(\alpha \equiv \{-2, -1, 0, 1, 2\} \).

\[a = \frac{a_0}{Z} \]
\[< nlm | r^2 | nlm >= \frac{n^2 \times (5n^2 + 1 - 3l(l + 1))}{2} \]
\[< nlm | r | nlm >= \frac{2n^2}{2l + 1} \]
\[< nlm | \frac{1}{r} | nlm >= \frac{2n^2}{2l + 1} \]
\[< nlm | 1 < \infty r^2 > nlm = \frac{2n^2}{(2l + 1) \alpha} \] (17)

Now we have to take advantage from a more recent way to deal with the task of evaluating the Bates & Damgaard integral [1].

It has been shown by Kostelecky & al that a Supersymmetry transformation [7], exits and enables a gratifying simplification of the evaluation of the integrals relevant to the oscillator strengths for alkaline structures or ions of heavier elements. That is:

\[l_\ast = l - \delta_l + I(l) \]
\[I(l) = \{0, 1, 2\} \] (18)

Depending on the quantum defect \(\delta_l \) the higher is \(\delta_l \) the higher is the parameter \(I(l) \), \(I(l) \) can not be negative.

Another interesting development of these symbolic programmes notebooks using Mathematica, is to use these good wave functions to get a clear and good insight on physical grandeurs such as the average radii of most ions through He to Fe when databases as TopBase [9] provide the quantum defects of these ions. For instance, using data from TopBase one has access to the different quantum numbers with their defects existing for Fe. Here the author wants to show how screening for these structures atoms can be explained through simple considerations:

Defining the suitable modified ket for atoms with known quantum defects:

\[|n_{nlm} > = \frac{wa(r)}{\text{Norm}} \times Y_{l,m_s} (\theta, \phi) \]
\[n_s = n - \delta_l \]
\[l_\ast = l - \delta_l \] (19)

Once quantum defects are defined, it is possible to modify the average operators \(< ar^\alpha | a > \) values, whose expressions are shown in [6]. Using the above transformation that is:
\[a = \frac{a_0}{Z} \]

\[
< n_l m_s | n_l m_s > = \text{Norm} \\
< n_l m_s | r^2 | n_l m_s > = n^2 \times \frac{2}{Z^2} (5n^2 + 1 - 3l(l+1)) \\
< n_l m_s | r | n_l m_s > = \frac{a_0}{Z^2} (3n^2 - l(l+1)) \\
< n_l m_s | \frac{1}{r} | n_l m_s > = \frac{2}{Z^2} \\
< n_l m_s | \frac{1}{r^2} | n_l m_s > = \frac{2}{Z^2} \frac{2}{l(l+1))}
\]

These formulae produced with the \(< r^\alpha > \) extension of the hydrogenic values are shown to be in very good accordance, with the data produced with the numerical integration of LaguerreL polynomial extension, if a careful normalization on radial variable \(r \) is done, and \(\theta, \phi \) angular variables.

In fact \textit{Mathematica} function \(\text{LaguerreL}[a,b,x] \) \cite{9} can be extended to non integer arguments, while usual \textit{Mathematica} function \(\text{SphericalHarmonicY}[l,m,\theta,\phi] \) are changed by the transformation:

function \(\text{SphericalHarmonicY}[l,m,\theta,\phi] \rightarrow \text{SphericalHarmonicY}[l*,m*,\theta,\phi] \).

On the final integration of the angles : we perform the following angular average on \((\theta,\phi) \) variables:

\[
|i| \equiv |n_{ls}| \\
|f| \equiv |n_{ls}| \\
|<i|cos(\theta)|f>|^2 = \left| \sum_{M=-m_s}^{m_s} \int_0^\pi d\theta \sin(\theta) \int_0^{2\pi} d\phi Y_{ls,m_s} Y_{l'M,m'_{ls}} \right|^2 \\
M = -(m_{ls} + m_{ls})
\]

About an extension of the average values of the diagonal operators existing for H and hydrogen ions to the atomic radii of atomic elements from He to Na elements. This extension will be hereafter written as:

with for each element heavier than H:

here is to be understood as the quantum defect QD of the particular atom or ion of the non hydrogen species. It is well known that the \(\delta \) are tabulated in a textbook such as: \textit{Mechanics of the Atom} by Max Born \cite{5}.

Another interesting development of these symbolic programmes notebooks in \textit{Mathematica}, is to use these good wave functions to get a clear and good insight on physical grandeurs such as the average radii of most ions through He to Fe when databases as TopBase provide the quantum defects on these ions. For instance, using data from TopBase one has access to the different quantum numbers with their defects existing for \(^{16}O_{8} \), and \(^{24}Mg_{12} \), neutral elements and their ionized species.

Here the author wants to show how screening for these structures atoms can be explained through simple considerations:
$^6\text{Li}_3$	Ionization Number Z_i	δ_s	δ_p
	3	0.3995	0.0438
	2	0.181	0.053
	1	0.0071	−0.045

Table A: Here Quantum defects δ_s and δ_p are given for neutral Lithium and its ionized species.
Table B: Here Quantum defects δ_s and δ_p are given for neutral Oxygen and its ionized species.

$^{16}\text{O}_8$	Ionization Number Z_i	δ_s	δ_p
8	1.141	0.591	
7	0.861	0.564	
6	0.539	0.311	
5	0.431	0.121	
4	0.227	0.008	
3	0.111	0.002	
2	0.307	−0.0073	
1	0.0	0.0	
Table C: Here Quantum defects δ_s and δ_p are given for neutral Sodium Na and its ionized species.

Ionization Number Z_i	δ_s	δ_p
11	1.342	0.852
10	0.989	0.5180
9	0.812	0.498
8	0.653	0.372
7	0.415	0.289
6	0.325	0.211
5	0.283	0.087
4	0.153	-0.012^3
3	0.078	0.021
2	0.014	-0.005^3
1	0.000	0.000
2.2. Building wave function \(w_a(r) \) using Topbase quantum defect tables.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{\(^{24}M_{G12}\)} & \text{Ionization Number } Z_j & \delta_s & \delta_p \\
\hline
12 & 1.544 & 0.982 \\
11 & 1.069 & 0.700 \\
10 & 0.829 & 0.417 \\
9 & 0.696 & 0.696 \\
8 & 0.517 & 0.426 \\
7 & 0.438 & 0.368 \\
6 & 0.307 & 0.233 \\
5 & 0.225 & 0.154 \\
4 & 0.138 & 0.071 \\
3 & 0.071 & 0.015 \\
2 & 0.071 & -0.004 \\
1 & 0 & 0 \\
\hline
\end{array}
\]

Table D: Here Quantum defects \(\delta_s \) and \(\delta_p \) are given for Mg and ions.

3. Summary

It is seen from the Tables: (two distincts for S states quantum defects \(\delta_s \)) and (two for P states quantum defects \(\delta_p \)), that for low states \((n \leq 4)\), with high \(\delta_s\), there is a breakdown of the extended Messiah quantities \(I_{n,s}^{\alpha}\), these giving non-physical results such as negative numbers for \(< r^{\alpha} >\) powers, while the wave function approach <
\(n_s l_s m_s^N|^{r^\alpha} n_s l_s m_s^N\) still gives plausible results. However the production of a properly normalized wave function such as \(w_a(r) = |\Psi_a(r, \theta, \phi)\rangle\) with \(a \equiv n_s l_s\) and the norm \(\text{Norm} = \int_0^\infty |\Psi_a(r, \theta, \phi)|^2 r^2 dr Sin(\theta) d\theta d\phi\) has to be carefully calculated. It is obvious that there is basic case of failure of the ket building \(|w_a(r) \times Y_{l m_s}(\theta, \phi)\rangle\) method when the calculation implies low \(n\) states with an high \(\delta\), that is a situation for which \(n_s \leq 1\). For high states \(n_s = n - \delta_l\) with \(n \geq 4\) and \(\delta_l \leq 1\) the two approaches merge and give the same results for all powers of \(<r^\alpha>\). As a matter of fact, others \(\alpha\) powers such as \(\alpha \equiv \{-6, -5, -4, -3, 3, 4, 5, 6\}\) are accessible.
4. Oscillator strengths for MgII $3s \rightarrow 3p$ and $3s \rightarrow 4p$.

It is well known that the Magnesium MgII element (one fold ionized) exists in most stars, it is very well studied through two transitions: $3s \rightarrow 3p$ and $3s \rightarrow 4p$. The number of protons is $N_p = 12$ the number of electrons is $N_e = 11$.

To illustrate the capability of these wave functions we compare our results with existing data
1) the NBS Atomic Transition Probabilities Sodium through Calcium (1969) [12]
2) The interesting paper from C.E. Theodosiou & S.R. Federman [10]
3) New data on line on NIST database (2005) [11]
4) New data from TopBase (1999) [9]

This conjecture can be proved as follows: It is a recent advantage to use Symbolic language as Mathematica, to perform the plain recovering radial integral: where Norm has to be evaluated independently to insure the correctness of the symbolic evaluation.

It is there the point to be fixed: how to build a wave function that contains the quantum defect appropriate to each species, and to register it. It is there necessary to recall the first significant work and universally reckoned in the matter of elements heavier than H (such as HeI and NaI or OII) D. Bates & A. Damgaard [1] with their $W_n^*l^*+$1/2(r)

These functions could be summed and their products converge and are proportional to the oscillator strengths as:

$$S_{if} = S(M)S(L)\left| \int_0^\infty R_i R_f r dr \right|^2 \over (4l^2 - 1) \tag{22}$$

In fact we are dealing with the restriction to this quantity to give:

$$R_i = R_f$$

$$<i|ri> = \int_0^\infty R^*_i R_f r dr \tag{23}$$

The quantity is $R_{if} = <i|ri>$ is now is the ionic radius when $|i> = |n_alasl>$, when data such as δ_l and $Z_i = N_Z - Z_E$ being the charge of the considered ion.

Now we have to take advantages from a more recent way to deal with the task of evaluating the Bates & Damgaard integral [1] our $wa(r)$ is to be identified with $R_{n_i}(r) = wa(r) \times r$ in their fundamental paper.

$$wa(r) = \frac{1}{n^2} \sqrt{\frac{\beta^3}{2\Gamma(n_a + l_a + 1)\Gamma(n - l)}} \times$$

$$\exp(-\frac{\beta r}{2n_a}, l_a + \frac{\beta r}{n_a} \times \text{LaguerreL}[n - l - 1, 2l + 1, \frac{\beta r}{n_a}]) \tag{24}$$

$$\text{LaguerreL}[n - l - 1, 2l + 1, \frac{\beta r}{n_a}]$$ is a function in the Mathematica that is: LaguerreL[a,b,x], that is conform with the generating function:

$$L_n^a = \sum_{s=0}^p (-1)^s \frac{(a + n)!}{(n - s)! (a + s)! s!} x^s \tag{26}$$
It is very important to perform with attention the calculation of the normalization integral, once \(n_*, l_* \) are defined:

\[
\text{Norm} = \int_0^\infty |w_a(r)|^2 r^2 dr
\]

It is very rewarding to use the Mathematica \texttt{NIntegrate}[\texttt{f[x], x, 0, }\infty] with:

\[
f_{\text{test}}(r, \alpha) = |w_a(r)|^2 \times \frac{r^2}{\text{Norm}} \times r^\alpha.
\]

\texttt{NIntegrate}[\texttt{f_{\text{test}}[r, \alpha], \{r, 0, }\infty\}] gives all quantities useful to shapes or spatial extension of atoms and ionic species existing when \(Z \) is given.

\[
< n_*, l_* | r | n_*, l_* > = \int_0^\infty |w_a(r)|^2 \times \text{Norm} \times r^\alpha dr
\]

At this stage, the oscillator strengths can be obtained using three different operators namely \(\vec{R} \) dipolar term, \(\vec{V} \) velocity operator, \(\vec{\gamma} \) giving in theory the same numbers when evaluating:

\[
S_{ij} = | \langle i | r | f \rangle |^2.
\]

In fact, it has never been verified that the following three operators, giving the same on theory until our days.

\[
g_{f12} = 2 \times \Delta E_{12} \left| \int d\Omega \int_0^\infty w_1(\vec{r}).r.w_2(\vec{r}).r^2 dr \right|^2
\]

\[
g_{f12} = \frac{2}{\Delta E_{12}} \left| \int d\Omega \int_0^\infty w_1(\vec{r}).\left(\frac{1}{r} + \frac{d}{dr} \right).w_2(\vec{r}).r^2 dr \right|^2
\]

\[
g_{f12} = \frac{2}{\Delta E_{12}} \left| Z \int d\Omega \int_0^\infty w_1(\vec{r}).w_2(\vec{r}).r^2 dr \right|^2
\]

It is very interesting to verify that the applying Mathematica Command (Messiah M´ecanique Quantique) \[12\] with the wave function \(w_a(r) \) hereafter described, it is necessary to perform the calculation of the norm.

Table E: Oscillator strengths for singly ionized Mg : MgII 3\(s \to 3p \).

\(\text{MgII} 3s \to 3p \)	\(\lambda_{ik}(\text{Å}) \)	\(f_{ik}^a \)	\(f_{ik}^b \)	\(f_{ik}^c \)	\(f_{ik}^d \)	\(f_{ik}^e \)
\(\frac{1}{2} \to \frac{1}{2} \)	2798.0	0.940 \(B^+ \)	0.909 \(A^+ \)	0.901 \(A^+ \)	0.901	0.8543
\(\frac{1}{2} \to \frac{3}{2} \)	\(R = 2.00 \)	0.940	0.909	0.901 \(A^+ \)	0.901	0.8543

\(a \) NBS National Bureau of Standards \[12\] (1966)

\[2 R \neq 2 \text{ that is } R = 1.78 \text{ failure of the rule for degenerated lines.} \]

That is failure of the simple rule for intensity ratio of \(R = \frac{\lambda_{1/2} - \lambda_{3/2}}{\lambda_{1/2}} = \frac{2}{\lambda_{1/2}} \).
Table F: Oscillator strengths for singly ionized Mg: MgII 3s → 4p.

MgII 3s → 4p	$\lambda_{ik}(\text{Å})$	f_{ik}^a	f_{ik}^b	f_{ik}^c	f_{ik}^d	f_{ik}^e
	NBS	NBS	NIST	Theodosiou	TopBase	de Kertanguy
$\frac{1}{2} \rightarrow \frac{1}{2}$	1240.1	0.23 10^{-4}	9.72 10^{-4}	9.88 10^{-4}	10.98 10^{-4}	0.00319
$\frac{1}{2} \rightarrow \frac{3}{2}$	$R = 1.78^2$	0.23 10^{-4}	9.72 10^{-4}	9.88 10^{-4}	10.98 10^{-4}	0.00319

b NIST former NBS [13]
c Theodosiou C.E. & al [4] [10]
d Topbase on line results [9] 1999
e de Kertanguy A. 2012 Mathematica notebook
5. Explanation of tables

Table A is made with Topbase data, the resulting output are quantum defects δ_s and δ_p, for Lithium and Table B concerns the Oxygen element O, with all its ionization stages. Table C and Table D gives quantum defects δ_s and δ_p for Sodium Na element and Magnesium Mg element. Table E gives different estimates for the fundamental quantities : line strength factors for MgII $3s \rightarrow 3p$ and the same quantities in Table F, MgII transition $3s \rightarrow 4p$. These estimates give two Tables 1 & 2 results, the first calculation is performed (giving Table 1) with the wave functions $w_\alpha(r)$, that is to evaluate $l_{\alpha n l}^N$ and give a very good agreement when the same theoretical δ_s values are used in both calculations. Table 3 and 4 show results for the α powers of the r radial operator with another momentum $l=1$ value related to quantum defect δ_s. For p states one requires $l=1$ and the existence of δ_p, substituting $n \rightarrow n_\delta = n - \delta_p$ and $l \rightarrow l_\delta = 1 - \delta_p$. These estimates give 2 more Tables 3 & 4 results, with the wave functions $w_\alpha(r)$, that is to evaluate $l_{\alpha n l}^N$ and changing the value of give a very good agreement when the same theoretical δ_p values are used in both calculations. As done in upper tables two methods are used: first to calculate $<n,l,m_N^l | \alpha^* | n,l,m_N^l>$ & α values $\{-2,-1,0,1,2\}$, (Table 3) and second gives the Messiah formulae using the upward replacement (Table 4). Table 4 contains the extrapolated results obtained by using the analytic results for hydrogenic ions.

5.1. $<n,l,m_N^l | \alpha^* | n,l,m_N^l>$ expectation values δ_s -values from Topbase.

It contains $<r^\alpha>$ predictions for the $\alpha \equiv \{-2,-1,0,1,2\}$, when $\alpha = 0$, the average operator is just the norm of the wave function.

It is clear that there are no wave solutions when : $n_\delta < 1$, there is a breakdown of the theory of the quantum defect. This remark leads to the definition of the range of application of the full relativistic theory, when the corrected wave function $W_{n,l \frac{l}{2}}$ does not exist anymore.

Table 1: $<r^\alpha>$ values using Topbase l=0 δ_s values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

4Z	M	Ze	n	δ_s	$<\frac{1}{r^2}>$	$<\frac{1}{r}>$	N	$<r>$	$<r^2>$
Li	average Operators	δ_s							
63	3	2	0.399	2.5591	0.3925	1	3.9416	18.418	
63	3	3	id	0.5947	0.1483	1	10.230	119.36	
63	3	4	id	0.2237	0.0777	1	19.518	429.22	
63	3	5	id	0.1071	0.0473	1	31.806	1133.7	
63	3	6	id	0.0593	0.0319	1	47.094	2478.7	
63	3	7	id	0.0362	0.0229	1	65.383	4769.9	

Table 1 Continued...
Table 1: $\langle r^\alpha \rangle$ values using Topbase $l=0$ δ_s values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

A_ZM	Z_e	n	δ_s	$\langle \frac{1}{r^2} \rangle$	$\langle \frac{1}{r} \rangle$	N	$<r>$	$<r^2>$
63	2	2	0.181	1.3101	0.5387	1	2.8014	9.1731
63	2	3	id	0.3738	0.2334	1	6.4411	47.151
63	2	4	id	0.1547	0.1297	1	11.581	150.92
63	2	5	id	0.0783	0.0823	1	18.221	371.90
63	2	6	id	0.0450	0.0569	1	26.362	776.47
63	2	7	id	0.0281	0.0416	1	36.002	1446.0
O average Operators								
168	8	2	1.141	0.4335	0.2893	1	5.2443	32.213
168	8	3	id	0.1191	0.1223	1	12.321	172.60
168	8	4	id	0.0484	0.0671	1	22.398	564.57
168	8	5	id	0.0242	0.0423	1	35.475	1409.6
168	8	6	id	0.0138	0.0291	1	51.552	2969.4
168	8	7	id	0.0086	0.0212	1	70.629	2963.4
168	7	2	0.861	0.5469	0.4157	1	7.5890	65.373
168	7	3	id	0.2464	0.2570	1	5.7363	37.326
168	7	4	id	0.0114	0.1538	1	9.6523	104.80
168	7	5	id	0.0618	0.1022	1	14.568	237.75
168	7	6	id	0.0372	0.0728	1	20.484	468.95
168	7	7	id	0.0240	0.0545	1	27.404	837.84
168	6	2	0.539	0.6967	0.5139	1	2.8200	9.2150
168	6	3	id	0.2464	0.2570	1	5.7365	37.326
168	6	4	id	0.1140	0.1538	1	5.736	37.326
168	6	5	id	0.0696	0.1022	1	14.568	237.58
168	6	6	id	0.0372	0.0720	1	20.484	468.95
168	6	7	id	0.0240	0.0545	1	27.404	837.84
168	5	2	0.431	16.439	1.5907	1	0.9605	1.0890
168	5	3	id	13.676	0.6060	1	2.5055	7.1630
168	5	4	id	5.1000	0.3140	1	4.8079	26.042
168	5	5	id	2.4311	0.1916	1	7.8590	69.225
168	5	6	id	1.3420	0.1289	1	11.680	151.97

Table 1 Continued...
Table 1: \(<r^\alpha> \) values using Topbase l=0 \(\delta_s \) values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

\(M \)	\(Z_e \)	\(n \)	\(\delta_s \)	\(<\frac{1}{r^2}> \)	\(<\frac{1}{r}> \)	\(N \)	\(<r> \)	\(<r^2> \)
168	5	7	id	0.8180	0.0926	1	16.212	293.29
168	4	2	0.227	16.439	1.5900	1	0.9605	1.0830
168	4	3	id	4.2960	0.6505	1	2.3242	6.1460
168	4	4	id	1.7050	0.3512	1	4.2870	20.697
168	4	5	id	0.8425	0.2194	1	6.8517	52.591
168	4	6	id	0.4761	0.1500	1	10.010	112.08
168	4	7	id	0.2948	0.1089	1	13.779	157.192
168	3	2	0.111	13.775	1.6828	1	0.8996	0.9470
168	3	3	id	3.8490	0.7192	1	2.0937	4.9825
168	3	4	id	1.5776	0.3968	1	3.7878	16.144
168	3	5	id	0.7939	0.2511	1	5.9819	40.079
168	3	6	id	0.4542	0.1730	1	8.6760	84.102
168	3	7	id	0.2837	0.1264	1	11.870	157.19
168	2	2	0.020	13.189	1.7870	1	0.8408	0.8252
168	2	3	id	3.8672	0.7886	1	1.9033	4.1152
168	2	4	id	1.6220	0.4420	1	3.9444	12.926
168	2	5	id	0.8283	0.2823	1	5.3140	31.628
168	2	6	id	0.4783	0.1958	1	7.6620	65.596
168	2	7	id	0.3008	0.1437	1	10.439	121.57

\(Na \) average Operators	\(\delta_s\)						
2211 11	2	1.34	1.3886	0.3637	1	4.2359	21.194
2211 11	3	id	0.3370	0.1415	1	10.710	130.70
2211 11	4	id	0.1293	0.0747	1	20.184	458.83
2211 11	5	id	0.0620	0.0460	1	32.658	1195.0
2211 11	6	id	0.0349	0.0312	1	48.132	2588.8
2211 11	7	id	0.0214	0.0225	1	66.606	4949.7
2211 10	2	0.989	0.9654	0.4949	1	3.0270	10.693
2211 10	3	id	7.8237	2.1281	1	0.6677	0.5780
2211 10	4	id	0.0114	0.1538	1	9.6523	104.80
2211 10	5	id	0.0618	0.1022	1	14.568	237.75

Table 1 Continued…
Table 1: $<r^\alpha>$ values using Topbase $l=0$ δ, values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

$^A Z$	M	Z_e	n	δ	$<\frac{1}{r^2}>$	$<\frac{1}{r}>$	N	$<r>$	$<r^2>$
$^{22}11$	10	6	id	0.0372	0.0728	1	20.484	468.95	
$^{22}11$	10	7	id	0.0240	0.0545	1	27.404	837.84	
$^{22}11$	9	2	0.812	1.2513	0.6270	1	2.3550	6.4460	
$^{22}11$	9	3	id	0.4044	0.2953	1	5.0423	28.855	
$^{22}11$	9	4	id	0.1783	0.1114	1	13.417	85.719	
$^{22}11$	9	5	id	0.0938	0.19161	1	2.4311	151.97	
$^{22}11$	9	6	id	0.0552	0.0783	1	19.104	201.62	
$^{22}11$	9	7	id	0.0352	0.0580	1	25.791	742.19	
$^{22}11$	8	2	0.653	7.7476	2.2068	1	0.6214	0.4907	
$^{22}11$	8	3	id	1.4630	0.7265	1	2.006	4.6667	
$^{22}11$	8	4	id	0.5045	0.3572	1	4.1408	319.45	
$^{22}11$	8	5	id	0.2302	0.2117	1	7.0255	55.521	
$^{22}11$	8	6	id	0.1237	0.1399	1	10.660	127.29	
$^{22}11$	8	7	id	0.0739	0.0993	1	51.552	2969.4	
$^{22}11$	8	7	id	0.0086	0.0212	1	15.045	252.95	
$^{22}11$	7	2	0.495	0.9654	0.4949	1	3.0278	10.693	
$^{22}11$	7	3	id	0.2875	0.2207	1	6.7929	52.408	
$^{22}11$	7	4	id	0.1216	0.1243	1	12.058	163.57	
$^{22}11$	7	5	id	0.0623	0.0796	1	18.823	396.83	
$^{22}11$	7	6	id	0.0361	0.0553	1	27.088	819.84	
$^{22}11$	7	7	id	0.0227	0.0406	1	36.567	1515.2	
$^{22}11$	6	2	0.325	1.7919	2.2101	1	0.7036	0.5909	
$^{22}11$	6	3	id	3.8833	0.7973	1	1.9061	4.1514	
$^{22}11$	6	4	id	14.171	0.4072	1	3.7086	15.506	
$^{22}11$	6	5	id	66.731	0.2464	1	6.1110	41.865	
$^{22}11$	6	6	id	36.567	0.1650	1	9.1135	92.839	
$^{22}11$	6	7	id	22.161	0.1181	1	12.716	180.43	
$^{22}11$	5	2	0.283	43.840	2.1390	1	0.7195	0.6109	
$^{22}11$	5	3	id	10.761	0.8386	1	1.8069	3.7194	
$^{22}11$	5	4	id	4.1501	0.4443	1	3.3943	12.975	

Table 1 Continued...
Table 1: $< r^\alpha >$ values using Topbase $l=0$ δ_s values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

AZ

M	Z_e	n	δ_s	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
^{22}Ne	5	5	id	2.0159	0.2745	1	5.4817	33.669
^{22}Ne	5	6	id	1.1269	0.1863	1	8.0690	72.759
^{22}Ne	7	id	0.6925	0.1346	1	11.156	138.87	
^{22}Ne	2	0.380	44.630	2.3747	1	0.6461	0.4917	
^{22}Ne	3	4	id	4.3994	0.5066	1	2.9749	9.9640
^{22}Ne	4	5	id	2.1526	0.3146	1	4.7821	25.621
^{22}Ne	6	id	1.2090	0.2141	1	7.0170	55.035	
^{22}Ne	7	7	id	0.7454	0.1551	1	9.6823	104.59
^{22}Ne	3	2	0.153	37.181	2.6404	1	0.5753	0.3878
^{22}Ne	3	3	id	10.147	1.1109	1	1.3573	2.0949
^{22}Ne	4	4	id	4.1109	0.6038	1	2.4727	9.9647
^{22}Ne	5	id	2.0556	0.3832	1	3.9210	17.225	
^{22}Ne	6	id	1.1709	0.2633	1	5.7030	36.347	
^{22}Ne	7	id	0.7291	0.1920	1	7.8180	68.206	
^{24}Mg	2	2	0.078	13.189	1.7870	1	0.8408	0.8252
^{24}Mg	3	id	10.147	1.1100	1	1.3570	2.0940	
^{24}Mg	4	id	4.1120	0.6038	1	2.4727	6.8813	
^{24}Mg	5	id	2.0556	0.3832	1	3.9215	17.225	
^{24}Mg	6	id	1.1709	0.2633	1	5.7035	36.347	
^{24}Mg	7	id	0.7291	0.1920	1	7.8189	68.206	

Mg	average Operators	δ_s						
^{24}Mg	2	1.545	0.0729	0.1673	1	8.6510	86.600	
^{24}Mg	3	id	0.0253	0.0837	1	17.579	350.53	
^{24}Mg	4	id	0.0118	0.0503	1	29.445	975.38	
^{24}Mg	5	id	0.0064	0.0335	1	4.2359	21.194	
^{24}Mg	6	id	0.0038	0.0239	1	62.178	4321.0	
^{24}Mg	7	id	0.0025	0.0179	1	4.2359	21.194	
^{24}Mg	11	2	1.069	0.1110	0.2328	1	5.9930	41.400
^{24}Mg	11	3	id	0.0460	0.1294	1	11.140	140.75

Table 1 Continued...
Table 1: \(\langle r^\alpha \rangle \) values using Topbase l=0 \(\delta \), values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

\(M \)	\(Z_\text{c} \)	\(n \)	\(\delta \)	\(\langle \frac{1}{r} \rangle \)	\(\langle \frac{1}{r^2} \rangle \)	\(N \)	\(\langle r \rangle \)	\(\langle r^2 \rangle \)
2412	11	4	id	0.0233	0.0822	1	17.786	356.15
2412	11	5	id	0.0133	0.0568	1	25.933	704.06
2412	11	6	id	0.0083	0.0416	1	35.570	1415.9
2412	11	7	id	0.0056	0.0317	1	46.726	2438.2
2412	10	2	0.829	1.3100	0.6366	1	2.3220	6.2720
2412	10	3	id	0.4204	0.2984	1	4.9933	28.298
2412	10	4	id	0.1849	0.1724	1	8.6640	84.436
2412	10	5	id	0.0970	0.1122	1	13.333	199.15
2412	10	6	id	0.0570	0.0728	1	19.005	403.59
2412	10	7	id	0.0363	0.0583	1	25.676	735.56
2412	9	2	0.696	1.6269	0.7535	1	1.9400	4.3700
2412	9	3	id	0.5516	0.3664	1	4.0430	18.550
2412	9	4	id	0.2496	0.2159	1	6.8968	53.503
2412	9	5	id	0.1333	0.1421	1	10.499	123.48
2412	9	6	id	0.0794	0.1006	1	14.852	246.51
2412	9	7	id	0.0510	0.0749	1	19.955	44.350
2412	8	2	0.517	1.6620	0.8111	1	1.7775	3.6578
2412	8	3	id	0.6022	0.4122	1	3.5670	14.433
2412	8	4	id	0.2824	0.2488	1	5.9560	39.918
2412	8	5	id	0.1543	0.1662	1	8.9466	89.670
2412	8	6	id	0.0933	0.1189	1	12.536	175.64
2412	8	7	id	0.0739	0.0993	1	51.552	2969.4
2412	8	7	id	0.0060	0.0893	1	16.725	312.21
2412	7	2	0.438	48.388	0.2444	1	0.6297	0.4712
2412	7	3	id	10.987	0.9108	1	1.6600	3.1461
2412	7	4	id	13.046	0.4731	1	3.1900	11.474
2412	7	5	id	6.2094	0.2884	1	5.2210	30.557
2412	7	6	id	3.4259	0.1940	1	7.7510	67.164
2412	7	7	id	2.0860	0.1393	1	10.782	129.72
2412	6	2	0.307	37.566	2.4383	1	0.6288	0.4662

Table 1 Continued...
Table 1: \(\langle r^\alpha \rangle \) values using Topbase \(l=0 \) \(\delta_s \) values Mathematica integration of LaguerreL\([a,b,x]\) with proper normalization.

\(M \)	\(Z_e \)	\(n \)	\(\delta_s \)	\(\frac{1}{r^2} \)	\(\frac{1}{r} \)	\(N \)	\(<r> \)	\(<r^2> \)
\(^{24}_{12} \)	6	3	\textit{id}	9.3389	0.9642	1	1.5683	2.8014
\(^{24}_{12} \)	6	4	\textit{id}	5.0650	0.5134	1	2.9364	25.099
\(^{24}_{12} \)	6	5	\textit{id}	2.4678	0.3179	1	4.7330	25.099
\(^{24}_{12} \)	6	6	\textit{id}	1.3823	0.2160	1	6.9583	54.104
\(^{24}_{12} \)	6	7	\textit{id}	0.8506	0.1563	1	9.6121	103.08
\(^{24}_{12} \)	5	2	0.254	34.938	2.5984	1	0.6013	0.4248
\(^{24}_{12} \)	5	3	\textit{id}	9.1461	1.0382	1	1.4540	2.4060
\(^{24}_{12} \)	5	4	\textit{id}	4.3370	0.5614	1	2.6823	8.0990
\(^{24}_{12} \)	5	5	\textit{id}	2.1412	0.3509	1	4.2850	20.571
\(^{24}_{12} \)	5	6	\textit{id}	1.2103	0.2399	1	6.2630	43.832
\(^{24}_{12} \)	5	7	\textit{id}	0.7495	0.1743	1	8.6160	138.87
\(^{24}_{12} \)	4	2	0.138	31.752	2.5965	1	0.5839	0.3993
\(^{24}_{12} \)	4	3	\textit{id}	8.7414	0.9483	1	1.0984	2.1368
\(^{24}_{12} \)	4	4	\textit{id}	3.8970	0.6037	1	2.4913	6.9845
\(^{24}_{12} \)	4	5	\textit{id}	1.9528	0.3808	1	3.9450	17.432
\(^{24}_{12} \)	4	6	\textit{id}	1.1141	0.2619	1	5.7324	36.710
\(^{24}_{12} \)	4	7	\textit{id}	0.6945	0.1911	1	7.852	68.710
\(^{24}_{12} \)	3	2	0.071	30.547	2.7850	1	0.5388	0.3388
\(^{24}_{12} \)	3	3	\textit{id}	8.9910	1.2328	1	1.2170	1.6820
\(^{24}_{12} \)	3	4	\textit{id}	3.9230	0.6920	1	2.1670	5.2877
\(^{24}_{12} \)	3	5	\textit{id}	2.0045	0.4423	1	3.9210	12.883
\(^{24}_{12} \)	3	6	\textit{id}	1.1585	0.3069	1	4.8800	26.695
\(^{24}_{12} \)	3	7	\textit{id}	0.7288	0.2253	1	6.6570	49.442
\(^{24}_{12} \)	2	2	0.013	30.547	2.7859	1	0.5388	0.3388
\(^{24}_{12} \)	2	3	\textit{id}	8.9910	1.2328	1	1.2170	1.6820
\(^{24}_{12} \)	2	4	\textit{id}	3.9230	0.6920	1	2.1679	5.2870
\(^{24}_{12} \)	2	5	\textit{id}	2.0045	0.4423	1	3.9164	12.883
\(^{24}_{12} \)	2	6	\textit{id}	1.1585	0.2633	1	5.7035	26.695
\(^{24}_{12} \)	2	7	\textit{id}	0.7288	0.2253	1	6.6570	49.442

Table 1 Continued.
Table 1: \(< r^\alpha >\) values using Topbase \(l=0\) \(\delta_s\) values Mathematica integration of LaguerreL\([a,b,x]\) with proper normalization.

\(M\)	\(Z_e\)	\(n\)	\(\delta_s\)	\(< \frac{1}{r^2} >\)	\(< \frac{1}{r} >\)	\(N\)	\(< r >\)	\(< r^2 >\)
26	13	2	1.771	0.1474	0.2098	1	7.0670	58.100
26	13	3	\(id\)	0.0407	0.0959	1	15.488	272.58
26	13	4	\(id\)	0.0118	0.0559	1	26.685	801.02
26	13	5	\(id\)	0.0095	0.0365	1	40.872	1871.1
26	13	6	\(id\)	0.0056	0.0257	1	58.050	3766.7
26	13	7	\(id\)	0.0036	0.0191	1	78.240	6831.4
26	12	2	1.209	0.1425	0.2567	1	5.4880	34.759
26	12	3	\(id\)	0.0568	0.1391	1	10.424	123.50
26	12	4	\(id\)	0.0281	0.0871	1	16.861	319.97
26	12	5	\(id\)	0.0159	0.0596	1	24.797	689.20
26	12	6	\(id\)	0.0098	0.0433	1	34.234	1310.5
26	12	7	\(id\)	0.0065	0.0329	1	45.170	2278.1
26	11	2	0.899	1.6150	0.6797	1	2.1880	5.5740
26	11	3	\(id\)	0.5024	0.3120	1	4.7880	26.036
26	11	4	\(id\)	0.2172	0.1783	1	8.3890	79.170
26	11	5	\(id\)	0.1128	0.1153	1	12.990	189.00
26	11	6	\(id\)	0.0659	0.0800	1	18.591	386.18
26	11	7	\(id\)	0.0418	0.0594	1	25.190	708.06
26	10	2	0.715	1.7090	0.7535	1	1.9400	4.3700
26	10	3	\(id\)	0.5753	0.3707	1	4.0002	18.156
26	10	4	\(id\)	0.2592	0.2178	1	6.8380	52.600
26	10	5	\(id\)	0.1381	0.1432	1	10.427	121.78
26	10	6	\(id\)	0.0821	0.1012	1	14.765	243.48
26	10	7	\(id\)	0.0527	0.0755	1	19.854	439.85
26	9	2	0.610	2.0610	0.8759	1	3.3910	3.1860
26	9	3	\(id\)	0.7223	0.4351	1	3.3910	13.053
26	9	4	\(id\)	0.3320	0.2595	1	5.7250	36.870
26	9	5	\(id\)	0.1796	0.1721	1	8.6586	83.980
26	9	6	\(id\)	0.1078	0.1224	1	12.192	166.12

Table I Continued...
Table 1: $< r^\alpha >$ values using Topbase l=0 δ_s values Mathematica integration of LaguerreL[a,b,x] with proper normalization.

δ_s	α	$< r^2 >$
1	16.325	297.42
2	0.6224	0.4606
3	1.6481	3.1000
4	3.1739	11.353
5	5.1990	30.303
6	7.7254	66.705
7	10.751	128.97
8	0.5600	0.3718
9	1.4563	2.4193
10	2.7813	8.7150
11	4.5348	23.046
12	6.7160	50.422
13	9.3270	97.076
14	0.4968	0.2925
15	1.2855	1.8840
16	2.4490	6.7580
17	5.9010	38.925
18	5.9016	38.952
19	8.1903	74.840
20	0.4924	0.2858
21	1.2250	1.7090
22	2.2914	5.9122
23	3.6900	15.262
24	5.4236	32.870
25	7.4898	62.580
26	0.4783	0.2689
27	1.1591	1.5289
28	2.1390	5.1547
29	3.4206	13.108
30	5.0010	27.950

Table 1 Continued...
Table 1: $< r^\alpha >$ values using Topbase $l=0$ δ_s values Mathematica integration of Laguerre$[a,b,x]$ with proper normalization.

$^\Lambda Z$	M	Z_e	n	δ_s	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
2613	4	7	id	1.1976	0.2182	1	6.8820	52.842	
2613	3	2	0.065	49.285	3.1342	1	0.4836	0.2738	
2613	3	3	id	13.659	1.3323	1	1.1309	1.4538	
2613	3	4	id	5.5760	0.7331	1	2.0509	4.7333	
2613	3	5	id	2.7997	0.4631	1	3.2430	11.784	
2613	3	6	id	1.5993	0.3188	1	4.7090	24.777	
2613	3	7	id	0.9979	0.2328	1	6.4473	46.374	
2613	2	2	0.065	45.727	3.2056	1	0.4704	0.2586	
2613	2	3	id	13.102	1.3932	1	1.0791	1.3232	
2613	2	4	id	5.4364	0.7750	1	1.9378	4.2252	
2613	2	5	id	2.7559	0.4927	1	3.0465	10.395	
2613	2	6	id	1.5844	0.3406	1	4.4052	21.682	
2613	2	7	id	0.9930	0.2495	1	6.0139	40.344	

Table 1 Continued...

5.2. Theoretical values $< r^\alpha >$ using the Messiah formulae $[6]$. $I_{^\alpha}^{\text{rel}}$, Messiah formulae

Table 2: sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions (only until the changes obtained comparing both tables 1 are less than 1%).

$< r^\alpha >$ values using extended Messiah formulae.

$^\Lambda Z$	M	Z_e	n	δ_s	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
Li average Operators	δ_s	Same as Table 1							
63	3	2	0.399	2.5591	0.3925	1	3.9416	18.418	
63	3	3	id	0.5947	0.1483	1	10.230	119.36	
63	3	4	id	0.2237	0.0777	1	19.518	429.22	

Table 2 Continued...
Table 2: sketches the averaged operator values obtained by extrapolating
the Messiah formulae for hydrogenic ions (only until the changes
obtained comparing both tables 1 are less than 1%).

\(< r^\alpha >\) values using extended Messiah formulae.

$^A Z$	M	Z_e	n	δ_n	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
63	3	5	id	0.1071	0.0473	1	31.806	1133.7	
63	3	6	id	0.0593	0.0319	1	47.094	2478.7	
63	3	7	id	0.0362	0.0229	1	65.383	4769.9	
63	2	2	0.181	1.3101	0.5387	1	2.8014	9.1731	
63	2	3	id	0.3738	0.2334	1	6.4411	47.151	
63	2	4	id	0.1547	0.1297	1	11.581	150.92	
63	2	5	id	0.0783	0.0823	1	18.221	371.90	
63	2	6	id	0.0450	0.0569	1	26.362	776.47	
63	2	7	id	0.0281	0.0416	1	36.002	1446.0	

O average Operators

$^A Z$	M	Z_e	n	δ_n	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
168	8	2	1.141	4.3941	1.3551	1	5.2443	32.213	
168	8	3	id	0.1191	0.4331	1	12.321	172.60	
168	8	4	id	0.1191	0.1223	1	22.398	564.57	
168	8	5	id	0.0481	0.0671	1	35.475	1409.6	
168	8	6	id	0.0242	0.0421	1	51.552	2969.4	
168	8	7	id	0.0080	0.0211	1	70.629	2963.4	
168	7	2	0.861	3.3961	1.4041	1	3.5490	14.646	
168	7	3	id	0.5461	0.4151	1	7.5890	65.375	
168	7	4	id	0.1771	0.1961	1	13.129	193.90	
168	7	5	id	0.0781	0.1131	1	20.484	455.6	
168	7	6	id	0.0411	0.0521	1	28.709	920.90	
168	7	7	id	0.0240	0.0545	1	38.749	1675.2	
168	6	2	0.539	3.4601	1.4921	1	2.8200	9.2150	
168	6	3	id	0.6961	0.5131	1	5.7360	37.320	
168	6	4	id	0.2461	0.2571	1	9.6520	104.80	
168	6	5	id	2.4311	0.1916	1	2.4311	151.97	
168	6	6	id	1.3425	0.1289	1	11.660	115.17	
168	6	7	0.431	0.8180	0.0926	1	16.212	293.29	

Table 2 Continued...
A Z M Zn δn < 1/2 > < 1/r > N < r > < r^2 >

αZ								
2211	11	2	1.342	22.211	2.3091	1	0.7611	0.8311
2211	11	3	id	1.3881	0.3631	1	4.2351	21.194
2211	11	4	id	0.3371	0.1451	1	10.71	130.70
2211	11	5	id	0.1291	0.0741	1	20.181	458.31
2211	11	6	id	0.0621	0.0461	1	32.651	1195.1
2211	11	7	id	0.0391	0.0311	1	48.131	2588.1
2211	10	2	0.989	7.6081	1.9601	1	0.7621	0.7741
2211	10	3	id	0.9651	0.4941	1	3.0271	10.691
2211	10	4	id	0.2871	0.2201	1	6.7921	52.401
2211	10	5	id	0.1216	0.1241	1	12.0581	163.57
2211	10	6	id	0.0621	0.0791	1	18.821	396.83
2211	10	7	id	0.0361	0.0553	1	27.0881	819.45
2211	9	2	0.812	0.9651	0.4941	1	3.0271	10.691
2211	9	3	id	0.2871	0.22071	1	6.7921	52.401
2211	9	4	id	0.1211	0.1241	1	12.051	163.51
2211	9	5	id	0.0621	0.0791	1	18.823	396.83
2211	9	6	id	0.0361	0.0551	1	27.081	819.81
2211	9	7	id	0.0221	0.0401	1	36.851	1515.1
2211	8	2	0.653	7.7476	2.2068	1	0.6214	0.4907
2211	8	3	id	1.4630	0.7265	1	2.0060	4.6667
2211	8	4	id	0.5045	0.3572	1	4.1408	19.452
2211	8	5	id	0.2302	0.2117	1	7.0255	55.521
2211	8	6	id	0.1237	0.1399	1	10.661	127.29
2211	8	7	id	0.0086	0.0212	1	15.045	252.95
2211	7	2	0.495	7.8231	2.1281	1	0.6671	0.5781
2211	7	3	id	1.2511	0.6271	1	2.3551	6.4461
2211	7	4	id	0.4041	0.2951	1	5.0421	28.851

Table 2 Continued...
Table 2: sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions (only until the changes obtained comparing both tables 1 are less than 1%).

\(< r^2 >\) values using extended Messiah formulae.

A	Z	M	Z_e	n	\(\delta_x \)	\(\frac{1}{r^2} \)	\(\frac{1}{r} \)	N	\(< r >\)	\(< r^2 >\)
22	11	7	5	id	0.017\(^1\)	0.171\(^1\)	1	8.729\(^1\)	85.71\(^1\)	
22	11	7	6	id	0.093\(^1\)	0.111\(^1\)	1	13.41\(^1\)	201.6\(^1\)	
22	11	7	7	id	0.055\(^1\)	0.078\(^1\)	1	19.10\(^1\)	407.8\(^1\)	
22	11	6	2	0.325	7.747\(^1\)	2.206\(^1\)	1	2.355\(^1\)	6.446\(^1\)	
22	11	6	3	id	1.463\(^1\)	0.726\(^1\)	1	2.006\(^1\)	4.666\(^1\)	
22	11	6	4	id	0.504\(^1\)	0.357\(^1\)	1	4.140\(^1\)	19.45\(^1\)	
22	11	6	5	id	0.230\(^1\)	0.211\(^1\)	1	7.025\(^1\)	55.52\(^1\)	
22	11	6	6	id	0.123\(^1\)	0.139\(^1\)	1	10.66\(^1\)	127.2\(^1\)	
22	11	6	7	id	0.073\(^1\)	0.099\(^1\)	1	15.04\(^1\)	325.2\(^1\)	
22	11	5	2	0.283	0.965\(^1\)	0.494\(^1\)	1	3.027\(^1\)	10.69\(^1\)	
22	11	5	3	id	0.287\(^1\)	0.220\(^1\)	1	6.792\(^1\)	52.40\(^1\)	
22	11	5	4	id	0.121\(^1\)	0.124\(^1\)	1	12.05\(^1\)	163.5\(^1\)	
22	11	5	5	id	0.062\(^1\)	0.079\(^1\)	1	18.82\(^1\)	396.8\(^1\)	
22	11	5	6	id	0.036\(^1\)	0.055\(^1\)	1	27.08\(^1\)	819.8\(^1\)	
22	11	5	7	id	0.022\(^1\)	0.040\(^1\)	1	36.85\(^1\)	1515.1\(^1\)	
22	11	4	2	0.380	44.630	2.3747	1	0.6461	0.4917	
22	11	4	3	id	11.264	0.9483	1	1.5962	2.9011	

Table 2 Continued…
Table 2: sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions (only until the changes obtained comparing both tables 1 are less than 1%).

\[<r^a > \text{ values using extended Messiah formulae.} \]

| A Z | 24 12 | 11 5 | id | 0.046 | 0.129 | 11.14 | 140.7 | 24 12 | 11 6 | id | 0.023 | 0.082 | 17.78 | 356.1 | 24 12 | 11 7 | id | 0.013 | 0.056 | 25.93 | 1145.1 | 24 12 | 10 2 | 0.829 | 8.363 | 2.188 | 1.651 | 0.552 | 24 12 | 10 3 | id | 1.311 | 0.636 | 2.322 | 6.272 | 24 12 | 10 4 | id | 0.420 | 0.298 | 4.993 | 28.29 | 24 12 | 10 5 | id | 0.184 | 0.172 | 8.664 | 84.43 | 24 12 | 10 6 | id | 0.097 | 0.112 | 13.33 | 199.1 | 24 12 | 10 7 | id | 0.057 | 0.071 | 19.00 | 403.5 | 24 12 | 9 2 | 0.696 | 8.978 | 2.352 | 0.588 | 0.441 | 24 12 | 9 3 | id | 1.627 | 0.753 | 1.940 | 4.370 | 24 12 | 9 4 | id | 0.551 | 0.366 | 4.043 | 18.55 | 24 12 | 9 5 | id | 0.249 | 0.215 | 6.896 | 53.50 | 24 12 | 9 6 | id | 0.133 | 0.142 | 10.49 | 123.4 | 24 12 | 9 7 | id | 0.079 | 0.100 | 14.85 | 246.5 | 24 12 | 8 2 | 0.517 | 7.800 | 2.274 | 0.587 | 0.432 | 24 12 | 8 3 | id | 1.662 | 0.811 | 1.777 | 3.657 | 24 12 | 8 4 | id | 0.602 | 0.412 | 3.567 | 14.43 | 24 12 | 8 5 | id | 0.282 | 0.249 | 5.955 | 39.91 | 24 12 | 8 6 | id | 0.154 | 0.166 | 8.946 | 89.67 | 24 12 | 8 7 | id | 0.093 | 0.118 | 12.53 | 175.6 | 24 12 | 7 2 | 0.438 | 154.8 | 2.462 | 0.629 | 0.4712 | 24 12 | 7 3 | id | 35.07 | 0.914 | 1.6603 | 3.1461 | 24 12 | 7 4 | id | 13.046 | 0.4731 | 3.1900 | 11.474 | 24 12 | 7 5 | id | 6.294 | 0.2884 | 5.2210 | 30.557 | 24 12 | 7 6 | id | 3.4259 | 0.1940 | 7.7510 | 67.164 | 24 12 | 7 7 | id | 2.0860 | 0.1393 | 10.78 | 129.72 | 24 12 | 6 2 | 0.3078 | 52.61 | 2.4383 | 0.6288 | 0.4662 |

Table 2 Continued...
Table 2: sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions (only until the changes obtained comparing both tables 1 are less than 1%).

\[< r^\alpha > \] values using extended Messiah formulae.

A Z	M	Z_e	n	\(\delta_s \)	\(\frac{1}{r^2} \)	\(\frac{1}{r} \)	N	\(r \)	\(r^2 \)
2412	6	3	id	13.06^1	0.9642	1	1.5683	2.8014	
2412	5	2	0.254	41.70^1	2.5984	1	0.6013	0.4248	
Mg average Operators	\(\delta_s \)	Same as Table 1							
2412	4	2	0.138	34.79^1	2.5965	1	0.5839	0.3993	
2412	4	3	id	9.578^1	0.9483	1	1.0984	2.1368	
Mg average Operators	\(\delta_s \)	Same as Table 1							
2412	3	2	0.071	32.49^1	2.785	1	0.5388	0.3388	
2412	3	3	id	9.280^1	1.2328	1	1.2170	1.6820	
Mg average Operators	\(\delta_s \)	Same as Table 1							
2412	2	2	0.0132	32.492	2.7859	1	0.5388	0.3388	
2412	2	3	id	9.280^1	1.2328	1	1.2170	1.6820	

Table 2 Continued...
Table 3 and 4 show results for the α powers of the r radial operator with another angular momentum $l = 1$ value related to quantum defect δ_p. For p states one requires $l = 1$ and the existence of δ_p, substituting $n \rightarrow n^* = n - \delta_p$ and $l \rightarrow l^* = 1 - \delta_p$. These estimates give 2 more Tables 3 & 4 results, with the wave functions $w_{n^*l^*}$ that is to evaluate α values, and changing the value of give a very good agreement when the same theoretical δ_p values are used in both calculations. As done in upper tables two methods are used: first to calculate $\langle n^*_l m^*_n | r^\alpha | n^*_l m^*_n \rangle$ & α values $\{-2, -1, 0, 1, 2\}$, (Table 3) and second gives the Messiah formulae using the upward replacement (Table 4). Table 4 contains the extrapolated results obtained by using the analytic results for hydrogenic ions.

5.3. $\langle n^*_l m^*_n | r^\alpha | n^*_l m^*_n \rangle$ expectation values δ_p-values from Topbase. (that is $n_s = n - \delta_p$ with angular momentum $l = 1$).
Table 3: $< r^m >$ values l=1 P states using Topbase quantum defects δ_p
obtained with integration of LaguerreL[a,b,x] with proper normalization.

$^{\text{A}Z}$	M	Z_e	n	δ_p	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
Li average Operators	63	3	2	0.399	2.5591	0.3925	1	3.9416	18.418
	63	3	3	id	0.5947	0.1483	1	10.230	119.36
	63	3	4	id	0.2237	0.0777	1	19.518	429.22
	63	3	5	id	0.1071	0.0473	1	31.806	1133.7
	63	3	6	id	0.0593	0.0319	1	47.094	2478.7
	63	3	7	id	0.0362	0.0229	1	65.383	4769.9
	63	2	2	0.181	1.3101	0.5387	1	2.8014	9.1731
	63	2	3	id	0.3738	0.2334	1	6.4411	47.151
	63	2	4	id	0.1547	0.1297	1	11.581	150.92
	63	2	5	id	0.0783	0.0823	1	18.221	371.90
	63	2	6	id	0.0450	0.0569	1	26.362	776.47
	63	2	7	id	0.0281	0.0416	1	36.002	1446.0
O average Operators	168	8	2	1.141	0.0533	0.2032	1	6.0285	43.028
	168	8	3	id	0.0174	0.0965	1	14.182	231.30
	168	8	4	id	0.0077	0.0562	1	25.336	728.14
	168	8	5	id	0.0040	0.0367	1	39.490	1756.6
	168	8	6	id	0.0024	0.0258	1	56.644	3599.8
	168	8	7	id	0.0015	0.01919	1	76.798	6600.8
	168	7	2	0.861	1.6510	0.8821	1	1.5099	2.8484
	168	7	3	id	0.2528	0.3185	1	4.5185	23.629
	168	7	4	id	0.0923	0.1627	1	9.027	92.428
	168	7	5	id	0.0434	0.0985	1	15.035	254.33
	168	7	6	id	0.0238	0.0659	1	22.544	569.42
	168	7	7	id	0.0144	0.0472	1	3.5520	1112.7
	168	6	2	0.539	2.1265	1.2052	1	1.5099	1.4812
	168	6	3	id	0.4875	0.4514	1	3.1703	11.623
	168	6	4	id	0.1823	0.2347	1	6.2480	44.277

Table 3 Continued...
Table 3: $< r^{\alpha} >$ values $l=1$ P states using Topbase quantum defects δ_p
obtained with integration of LaguerreL[a,b,x] with proper normalization.

A^Z	M	Z_e	n	δ_p	$< \frac{1}{r^2} >$	$< \frac{1}{r} >$	N	$< r >$	$< r^2 >$
^{16}O	6	5	id	0.0870	0.1431	1	10.325	119.96	
^{16}O	6	6	id	0.0481	0.0964	1	15.403	265.85	
^{16}O	6	7	id	0.0293	0.0690	1	21.481	910.36	
^{16}O	5	2	0.431	3.8750	1.6248	1	0.8115	0.8178	
^{16}O	5	3	id	0.8827	0.6060	1	2.3633	6.459	
^{16}O	5	4	id	0.3292	0.3140	1	4.6650	24.998	
^{16}O	5	5	id	2.4311	0.1916	1	7.7160	66.998	
^{16}O	5	6	id	0.0866	0.1289	1	11.518	148.66	
^{16}O	5	7	id	0.8180	0.0926	1	16.212	509.82	
^{16}O	4	2	0.227	3.8193	1.6499	1	0.7801	0.7444	
^{16}O	4	3	id	0.9786	0.6656	1	2.1246	5.2119	
^{16}O	4	4	id	0.3846	0.3573	1	4.0691	18.779	
^{16}O	4	5	id	0.1890	0.2224	1	6.6136	49.223	
^{16}O	4	6	id	0.1064	0.1517	1	9.7581	106.72	
^{16}O	4	7	id	0.0657	0.1100	1	13.502	203.85	
^{16}O	3	2	0.111	3.0988	1.5226	1	0.8226	0.8120	
^{16}O	3	3	id	0.9113	0.6733	1	2.0640	4.9117	
^{16}O	3	4	id	0.3830	0.3778	1	3.8070	16.144	
^{16}O	3	5	id	0.7939	0.2511	1	5.9819	40.079	
^{16}O	3	6	id	0.1130	0.1674	1	8.7920	86.688	
^{16}O	3	7	id	0.0711	0.1222	1	12.034	162.02	
^{16}O	2	2	0.020	4.3502	1.8018	1	0.6957	0.5825	
^{16}O	2	3	id	1.2701	0.7930	1	1.7547	3.5480	
^{16}O	2	4	id	0.5319	0.4439	1	3.2420	11.923	
^{16}O	2	5	id	0.2711	0.2823	1	5.1585	29.959	
^{16}O	2	6	id	0.1564	0.1963	1	7.5032	63.128	
^{16}O	2	7	id	0.0983	0.1440	1	10.276	118.13	

Na average Operators δ_p

| ^{22}Ne | 11 | 2 | 1.342 | 1.3886 | 0.3637 | 1 | 4.2359 | 21.194 |
| ^{22}Ne | 11 | 3 | id | 0.3370 | 0.1415 | 1 | 10.710 | 130.70 |

Table 3 Continued...
Table 3: \(\langle r^\alpha \rangle \) values \(l=1 \) P states using Topbase quantum defects \(\delta_p \) obtained with integration of LaguerreL\([a,b,x]\) with proper normalization.

A	Z	n	\(\delta_p \)	\(\langle \frac{1}{r} \rangle \)	\(\langle \frac{1}{r^2} \rangle \)	N	\(\langle r \rangle \)	\(\langle r^2 \rangle \)	
22	11	4	id	0.1293	0.0747	1	20.184	458.83	
22	11	5	id	0.062	0.046	1	32.658	1195.0	
22	11	6	id	0.0349	0.0312	1	48.132	2588.8	
22	11	7	id	0.0214	0.0225	1	66.606	4949.7	
22	11	10	2	0.989	0.9654	0.4949	1	3.072	10.693
22	11	10	3	id	7.8237	2.1281	1	0.6677	0.578
22	11	10	4	id	0.0114	0.1538	1	9.6523	104.8
22	11	10	5	id	0.0618	0.1022	1	14.568	237.75
22	11	10	6	id	0.0372	0.0728	1	20.484	468.95
22	11	10	7	id	0.0240	0.0545	1	27.404	837.84
22	11	9	2	0.812	1.2513	0.6270	1	2.355	6440
22	11	9	3	id	0.4044	0.2953	1	5.0423	28.855
22	11	9	4	id	0.1783	0.1114	1	13.417	85.719
22	11	9	5	id	0.0938	0.1916	1	2.4310	151.97
22	11	9	6	id	0.0552	0.0783	1	19.104	201.62
22	11	9	7	id	0.0352	0.0580	1	25.791	742.19
22	11	8	2	0.653	7.7476	2.2068	1	0.6214	0.4907
22	11	8	3	id	1.4630	0.7265	1	2.0060	4.6667
22	11	8	4	id	0.5045	0.3572	1	4.1408	319.452
22	11	8	5	id	0.2302	0.2117	1	7.0255	55.521
22	11	8	6	id	0.1237	0.1399	1	10.660	127.29
22	11	8	7	id	0.0739	0.0993	1	51.552	2969.4
22	11	8	7	id	0.0086	0.0212	1	15.045	252.95
22	11	7	2	0.495	0.9654	0.4949	1	3.0278	10.693
22	11	7	3	id	0.2875	0.2207	1	6.7929	52.408
22	11	7	4	id	0.1216	0.1243	1	12.058	163.57
22	11	7	5	id	0.0623	0.0796	1	18.823	396.83
22	11	7	6	id	0.0361	0.0553	1	27.088	819.84
22	11	7	7	id	0.0227	0.0406	1	36.567	1515.2
22	11	6	2	0.325	1791.9	2.2101	1	0.7036	0.5909

Table 3 Continued...
Table 3: \(< r^{\alpha} >\) values l=1 P states using Topbase quantum defects \(\delta_p\) obtained with integration of LaguerreL[a,b,x] with proper normalization.

AZ	M	Z_e	n	\(\delta_p\)	\(< \frac{1}{r^2} >\)	\(< \frac{1}{r} >\)	N	\(< r >\)	\(< r^2 >\)
22	11	6	3	id	388.33	0.7973	1	1.9061	4.1514
22	11	6	4	id	141.71	0.4072	1	3.7086	15.506
22	11	6	5	id	66.731	0.2464	1	6.1110	41.865
22	11	6	6	id	36.567	0.1650	1	9.1135	92.839
22	11	6	7	id	22.161	0.1181	1	12.716	180.43
22	11	5	2	0.283	43.840	2.1390	1	0.7195	0.6109
22	11	5	3	id	10.761	0.8386	1	1.8069	3.7194
22	11	5	4	id	4.1501	0.4443	1	3.3943	12.975
22	11	5	5	id	2.0159	0.2745	1	5.4817	33.669
22	11	5	6	id	1.1269	0.1863	1	8.069	72.759
22	11	5	7	id	0.6925	0.1346	1	11.156	138.87
22	11	4	2	0.380	44.630	2.3747	1	0.6461	0.4917
22	11	4	3	id	11.264	0.9483	1	1.5962	2.9011
22	11	4	4	id	4.3994	0.5066	1	2.9749	9.9640
22	11	4	5	id	2.1526	0.31461	1	4.7821	25.621
22	11	4	6	id	1.2090	0.2141	1	7.0170	55.035
22	11	4	7	id	0.7454	0.1551	1	9.6823	104.59
22	11	3	2	0.153	37.181	2.6404	1	0.5753	0.3878
22	11	3	3	id	10.147	1.1109	1	1.3573	2.0949
22	11	3	4	id	4.1109	0.6038	1	2.4727	9.9647
22	11	3	5	id	2.0556	0.3832	1	3.9210	17.225
22	11	3	6	id	1.1709	0.2633	1	5.7030	36.347
22	11	3	7	id	0.7291	0.1920	1	7.8189	68.206
22	11	2	2	0.078	13.189	1.7870	1	0.8408	0.8252
22	11	2	3	id	10.147	1.1100	1	1.3570	2.0940
22	11	2	4	id	4.1120	0.6038	1	2.4727	6.8813
22	11	2	5	id	2.0556	0.3832	1	3.9215	17.225
22	11	2	6	id	1.1709	0.2633	1	5.7035	36.347
22	11	2	7	id	0.7291	0.1920	1	7.8189	68.206

\(\delta_p\) Operators

Table 3 Continued...
Table 3: \(< r^{\alpha} >\) values \(l=1\) P states using Topbase quantum defects \(\delta_p\) obtained with integration of LaguerreL\([a,b,x]\) with proper normalization.

\(^A Z\)	\(M\)	\(Z_e\)	\(n\)	\(\delta_p\)	\(< \frac{1}{r}\>\)	\(< \frac{1}{r^2}\>\)	\(N\)	\(< r >\)	\(< r^2 >\)
24\(12\)	12	2	1.545	0.0729	0.16731	1	8.6510	86.600	
24\(12\)	12	3	id	0.0253	0.0837	1	17.579	350.53	
24\(12\)	12	4	id	0.0118	0.0503	1	29.445	975.38	
24\(12\)	12	5	id	0.0064	0.0335	1	4.2359	21.194	
24\(12\)	12	6	id	0.0038	0.0239	1	62.178	4321.0	
24\(12\)	12	7	id	0.0025	0.0179	1	4.2359	21.194	
24\(12\)	11	2	1.069	0.1110	0.2328	1	5.9930	41.400	
24\(12\)	11	3	id	0.0460	0.1294	1	11.140	140.75	
24\(12\)	11	4	id	0.0233	0.0822	1	17.786	356.15	
24\(12\)	11	5	id	0.0133	0.0568	1	25.933	704.06	
24\(12\)	11	6	id	0.0083	0.0416	1	35.570	1415.9	
24\(12\)	11	7	id	0.0056	0.0317	1	46.726	2438.2	
24\(12\)	10	2	0.829	1.310	0.6366	1	2.3220	6.2720	
24\(12\)	10	3	id	0.4204	0.2984	1	4.9933	28.298	
24\(12\)	10	4	id	0.1849	0.1724	1	8.6640	84.436	
24\(12\)	10	5	id	0.0970	0.1122	1	13.333	199.15	
24\(12\)	10	6	id	0.0570	0.0728	1	19.005	403.59	
24\(12\)	10	7	id	0.0363	0.0583	1	25.676	735.56	
24\(12\)	9	2	0.696	1.6269	0.7535	1	1.9400	4.3700	
24\(12\)	9	3	id	0.5516	0.3664	1	4.0430	18.550	
24\(12\)	9	4	id	0.2496	0.2159	1	6.8968	53.503	
24\(12\)	9	5	id	0.1333	0.1421	1	10.499	123.48	
22\(11\)	9	6	id	0.0794	0.1006	1	14.852	246.51	
24\(12\)	9	7	id	0.0510	0.0749	1	19.955	44.350	
24\(12\)	8	2	0.517	1.6620	0.8111	1	1.7775	3.6578	
24\(12\)	8	3	id	0.6022	0.4122	1	3.5670	14.433	
24\(12\)	8	4	id	0.2824	0.2488	1	5.9560	39.918	
24\(12\)	8	5	id	0.1543	0.1662	1	8.9466	89.670	
24\(12\)	8	6	id	0.0933	0.1189	1	12.536	175.64	
24\(12\)	8	7	id	0.0739	0.0993	1	51.552	2969.4	

Table 3 Continued...
Table 3: \(<r^\alpha>\) values l=1 P states using Topbase quantum defects \(\delta_p\) obtained with integration of LaguerreL[a,b,x] with proper normalization.

AZ	Z_e	n	\(\delta_p\)	\(<\frac{1}{r^\alpha}>\)	\(<\frac{1}{r}>\)	N	\(<r>\)	\(<r^2>\)
2412	8	7	id	0.0060	0.0893	1	16.725	312.21
2412	7	2	0.438	48.388	0.2444	1	0.6297	0.4712
2412	7	3	id	10.987	0.9108	1	1.6600	3.1461
2412	7	4	id	13.046	0.4731	1	3.1900	11.474
2412	7	5	id	6.2094	0.2884	1	5.2210	30.557
2211	7	6	id	3.4259	0.19401	1	7.7510	67.164
2412	7	7	id	2.0860	0.1393	1	10.782	129.72
2412	6	2	0.307	37.566	2.4383	1	0.6288	0.4662
2412	6	3	id	9.3389	0.9642	1	1.5683	2.8014
2412	6	4	id	5.0650	0.5134	1	2.9364	25.099
2412	6	5	id	2.4678	0.3179	1	4.7330	25.099
2412	6	6	id	1.3823	0.2160	1	6.9583	54.104
2412	6	7	id	0.8506	0.1563	1	9.6121	103.08
2412	5	2	0.254	34.938	2.5984	1	0.6013	0.4248
2412	5	3	id	9.1461	1.0382	1	1.4540	2.4060
2412	5	4	id	4.3370	0.5614	1	2.6823	8.0990
2412	5	5	id	2.1412	0.3509	1	4.2850	20.571
2412	5	6	id	1.2103	0.2399	1	6.2630	43.832
2412	5	7	id	0.7495	0.1743	1	8.6160	138.87
2412	4	2	0.138	31.752	2.5965	1	0.5839	0.3993
2412	4	3	id	8.7414	0.9483	1	1.0984	2.1368
2412	4	4	id	3.8970	0.6037	1	2.4913	6.9845
2412	4	5	id	1.9528	0.3808	1	3.9450	17.432
2412	4	6	id	1.1141	0.2619	1	5.7324	36.710
2412	4	7	id	0.6945	0.1911	1	7.8520	68.710
2412	3	2	0.071	30.547	2.7850	1	0.5388	0.3388
2412	3	3	id	8.9910	1.2328	1	1.2170	1.6820
2412	3	4	id	3.9230	0.6920	1	2.1670	5.2877
2412	3	5	id	2.0045	0.4423	1	3.9210	12.883
2412	3	6	id	1.1585	0.3069	1	4.880	26.695

Table 3 Continued...
Table 3: $< r^{\alpha} >$ values l=1 P states using Topbase quantum defects δ_p
 obtained with integration of LaguerreL[a,b,x] with proper normalization.

^{A}Z	M	Z_c	n	δ_p	$\frac{1}{r^1}$	$\frac{1}{r^2}$	N	$< r >$	$< r^2 >$
$^{24}12$	3	7	id	0.7288	0.2253	1.0	6.6570	49.442	
$^{24}12$	2	2	0.013	30.547	2.7859	1.0	0.5388	0.3388	
$^{24}12$	2	3	id	8.9910	1.2328	1.0	1.2170	1.6820	
$^{24}12$	2	4	id	3.9230	0.6920	1.0	2.1679	5.2870	
$^{24}12$	2	5	id	2.0045	0.4423	1.0	3.9164	12.883	
$^{24}12$	2	6	id	1.1585	0.2633	1.0	5.7035	26.695	
$^{24}12$	2	7	id	0.7288	0.2253	1.0	6.6570	49.442	

Table 3 Continued...
5.4. Theoretical values using δ_p with angular momentum $l = 1$ and $l_\ast = l - \delta_p < r^\alpha >$ using the Messiah formulae [6].
Table 4: \(< r^α >\) l=1 P states values. Quantum defects same as in Table 3. The Table sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions only until the changes obtained in Table 1 are less than 1%. \(< r^α >\) values using extending the Messiah formulae.

\(\Delta Z\)	\(M\)	\(Z_e\)	\(n\)	\(\delta_p\)	\(< \frac{1}{r^2}\>\)	\(< \frac{1}{r}\>\)	\(\langle r\rangle\)	\(< r^2\>\)		
identical as upper	\(6^3\)	2	3	id	0.3995	0.2230	0.3914	1	3.3537	13.927
Table 3	\(6^3\)	3	3	id	0.0519	0.1481	1	9.6486	107.63	
identical as upper	\(6^3\)	4	4	id	0.0019	0.0772	1	18.943	407.01	
\(O\)	\(16^8\)	2	2	id	0.181	0.3919	0.5387	1	2.3380	6.5924
average Operators	\(16^8\)	3	3	id	0.1118	0.2334	1	5.9782	41.196	
\(16^8\)	4	4	id	0.0462	0.1297	1	11.18	140.20		
\(16^8\)	5	5	id	0.0234	0.0823	1	17.758	355.02		
\(16^8\)	6	6	id	0.01346	0.0569	1	25.898	752.06		
\(16^8\)	7	7	id	0.0084	0.0416	1	35.539	1412.71		
\(16^8\)	8	2	1.141	0.3221	0.6740	1	6.0285	43.028		
\(16^8\)	3	3	id	0.0533	0.2032	1	14.182	231.30		
\(16^8\)	4	4	id	0.0174	0.0965	1	25.336	728.14		
\(16^8\)	5	5	id	0.0077	0.0562	1	39.490	1756.6		
\(16^8\)	6	6	id	0.0040	0.0562	1	56.644	3599.8		
\(16^8\)	7	7	id	0.0024	0.0258	1	76.798	6600.8		
\(16^8\)	8	2	0.861	1.1650	0.8821	1	1.5099	2.8484		
\(16^8\)	3	3	id	0.2528	0.3185	1	4.5185	23.629		
\(16^8\)	4	4	id	0.0923	0.1627	1	9.0270	92.428		
\(16^8\)	5	5	id	0.0438	0.0985	1	15.035	254.33		
\(16^8\)	6	6	id	0.0238	0.0659	1	22.544	569.42		
\(16^8\)	7	7	id	0.0144	0.0472	1	31.552	1112.7		
\(16^8\)	8	2	0.539	2.1265	1.2052	1	1.0926	1.4812		
\(16^8\)	3	3	id	0.48754	0.4514	1	3.1703	11.623		

Table 4 Continued...
Table 4: $< r^{\alpha} >$ l=1 P states values. Quantum defects same as in Table 3. The table sketches the averaged operator values obtained by extrapolating the Messiah formulae for hydrogenic ions only until the changes obtained in Table 1 are less than 1%. $< r^{\alpha} >$ values using extending the Messiah formulae.

$$\begin{array}{cccccccc}
\hline
^4Z & M & Z_e & n & \delta_p & \frac{1}{r^2} & \frac{1}{r^3} & N & < r > & < r^2 > \\
\hline
168 & 6 & 4 & id & 0.1823 & 0.2343 & 1 & 6.2480 & 44.277 \\
168 & 6 & 5 & id & 0.0870 & 0.1431 & 1 & 10.323 & 119.96 \\
168 & 6 & 6 & id & 0.0481 & 0.0964 & 1 & 15.403 & 265.85 \\
168 & 6 & 7 & id & 0.0094 & 0.0276 & 1 & 54.061 & 1974.5 \\
168 & 5 & 2 & 0.431 & 3.8750 & 1.6248 & 1 & 0.8115 & 0.8178 \\
168 & 5 & 3 & id & 0.9786 & 0.6665 & 1 & 2.1240 & 5.2119 \\
168 & 5 & 4 & id & 0.3848 & 0.3573 & 1 & 4.0691 & 18.779 \\
168 & 5 & 5 & id & 2.4311 & 0.1916 & 1 & 7.8590 & 69.225 \\
\hline
\textbf{Na} & average Operators & \delta_p & \\
2211 & 11 & 2 & 1.342 & 3.2900 & 1.5097 & 1 & 0.8658 & 0.9257 \\
2211 & 11 & 3 & id & 0.0613 & 0.2169 & 1 & 5.6835 & 38.404 \\
\hline
\textbf{Mg} & Operators & \delta_p & \\
2412 & 12 & 2 & 1.545 & 1.7846 & 0.9647 & 1 & 1.5450 & 3.1736 \\
2412 & 12 & 3 & id & 0.2290 & 0.2455 & 1 & 6.0987 & 43.376 \\
2412 & 12 & 4 & id & 0.0702 & 0.2455 & 1 & 13.652 & 211.68 \\
2412 & 12 & 5 & id & 0.0297 & 0.0619 & 1 & 24.206 & 659.16 \\
2412 & 12 & 6 & id & 0.0038 & 0.0619 & 1 & 62.178 & 1596.9 \\
2412 & 12 & 7 & id & 0.0025 & 0.0179 & 1 & 4.2359 & 21.194 \\
\hline
\end{array}$$

References

[1] Bates D.R., Damgaard A. (1949) Phil. Trans. Roy. Soc. London A 242, 101.

[2] Saraph H. E. and Seaton M. J. (1971) Phil. Trans. R. Soc. A 271, 1

[3] Seaton M.J. (1958) M.N.R.A.S. Vol. 118, p. 504

41
[4] C. E. Theodosiou, M. Inokuti, and S. T. Manson, Quantum defect values for positive atomic ions, *At. Data Nucl. Data Tables* 35, 473 (1986)

[5] Born M. Mechanics of the Atom *F. Ungar Pub. Co.*, (1960)

[6] Albert Messiah, *Mécanique Quantique* Tome I Dunod Eds. (1962). p. 411 appendix. **B-3**

[7] Kostelecky V.A. and Nieto M.M. (1984) *Phys. Rev. Lett.* 53 2285 *Phys. Rev. A* 32 (1985) **1293**, 3243.

[8] Stephen Wolfram, *Mathematica* Fourth Edition Version 4 (1999).

[9] W Cunto, C. Mendoza, Ochsenbein, F. C. J. Zeippen, C. J. Topbase at the CDS Astronomy & Astrophysics, *Vol. 275, L5*, 1993.

[10] C.E. Theodosiou & S.R. Federman *ApJ. 527* : 470-473, 1999)

[11] on line NIST data base (2005).

[12] Atomic Transition Probabilities *U.S. Department of Commerce NBS* 1966.

[13] NIST Database A. Kramida, Y. Ralchenko, and J. Reader 1999.

* means that these low states quantum defects $\delta_s \geq n$ principal quantum number: no wave solution for $n_s \leq 1$.

** the upper footnote clearly indicates where relativistic theory of these highly stripped ions has to be considered $\delta_s \geq n$ principal quantum number: no wave solution for $n_s \leq 1$.

*** means that the data contained in the Tables are given correct to the third figure after the decimal point.
1 means that numerical Integral $\int_{0}^{\infty} r^2 |wa(r)|^2 \, dr$ differs from $< r^\alpha >$ from more than 1% Messiah quantities.

2 means that Messiah extrapolated quantities $< r^\alpha >$ are negative ≤ 0 thus non-physical!

3 means that the polarization $V_p(r) = \frac{\alpha}{2r}$ change sign and acts as a repulsive potential!