Triviality from the Exact Renormalization Group

Oliver J. Rosten

Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

Using the exact renormalization group, it is shown that no physically acceptable non-trivial fixed points, with positive anomalous dimension, exist for (i) $O(N)$ scalar field theory in four or more dimensions, (ii) non-compact, pure Abelian gauge theory in any dimension. It is then shown, for both theories in any dimension, that otherwise physically acceptable non-trivial fixed points with negative anomalous dimension are non-unitary. In addition, a very simple demonstration is given, directly from the exact renormalization group, that should a critical fixed point exist for either theory in any dimension, then the n-point correlation functions exhibit the expected behaviour.

PACS numbers: 11.10.Gh, 11.10.Hi, 11.10.Kk

I. INTRODUCTION

The renormalizability of quantum field theories in the nonperturbative, Wilsonian sense, is determined by the existence, or otherwise, of critical fixed points and the renormalized trajectories emanating from them [1, 2]. As a consequence of this, low energy effective theories which naively appear nonrenormalizable could in fact be descended from some ultraviolet (UV) fixed point. This is the idea behind the asymptotic safety scenario [3]. In this paper, we will rule out such a scenario for (i) $O(N)$ scalar field theory in or above four dimensions, (ii) non-compact, pure Abelian gauge theory in any dimension, by showing that no physically acceptable non-trivial fixed points exist in either case. Consequently, triviality of these theories follows from the very well known fact that the respective Gaussian fixed points do not support non-trivial renormalized trajectories.

There are two criteria we use to determine the physical acceptability of a fixed point. The first is ‘quasi-locality’ [4]: we demand that the action has a derivative expansion. Anticipating that we will be working in Euclidean space, the second is that the theory makes sense as a unitary quantum field theory, upon continuation to Minkowski space.

The analysis of the existence, or otherwise, of non-trivial fixed points is split into two parts. First, we consider the case where the fixed point anomalous dimension, η_\ast, is greater than or equal to zero. We will demonstrate that there are no quasi-local fixed points for the theories mentioned above, given the restriction on dimension for the scalar case. In the case of negative anomalous dimension, our results in fact apply in all dimensions, even in the case of $O(N)$ scalar field theory. It has been known for a long time that exotic Gaussian fixed points without the standard p^2 kinetic piece—going instead as p^{2n} for n an integer greater than one—have negative anomalous dimensions. However, such fixed points can be excluded from our considerations by the requirement that the theory be physically acceptable, since the absence of the standard kinetic term leads to violation of unitarity. It is worth noting that, from a condensed matter point of view, such a requirement is, of course, an irrelevance. However, even in this context these fixed points are still unimportant in $O(N)$ scalar field theory. This is because, as shown by Wegner [10], they have an infinite number of relevant directions for $D \leq 4$ and so, for typical condensed matter systems of interest, it is scarcely possible to approach the critical point.

Nevertheless, this says nothing as to the possible existence of non-Gaussian fixed points with negative anomalous dimension. In this paper, we will not show that such fixed points, which satisfy the requirement of having a quasi-local action, do not exist. Rather, it will be shown that should such fixed points exist, then they necessarily violate unitarity. It is well worth noting that, in the vicinity of a nonperturbative fixed point, we cannot rule out a negative anomalous dimensions by the usual unitarity arguments (upon continuation to Minkowski space). Given field strength renormalization, Z, these arguments relate the unitarity constraint $0 \leq Z \leq 1$ to a positive anomalous dimension via a perturbative calculation; but there is no reason to believe a perturbative calculation near to a nonperturbative fixed point (see [11] for an interesting discussion on negative anomalous dimensions).

Whilst the results obtained in this paper are unsurprising, they are either complimentary to or stronger than results obtained elsewhere. The first rigorous proof of triviality in scalar field theories (with field denoted by φ) was provided by Aizenman [12], who considered a lattice $\lambda \varphi^4$ model and showed that no interacting continuum limit exists in $D > 4$. This result was confirmed and extended by Fröhlich [13], who also proved that for one or two-component lattice $\lambda \varphi^4$ models in $D = 4$, the only non-trivial continuum limit would have to be asymptotically free, contradicting perturbative expectations. For a review of these ideas, see [14].

*Electronic address: orosten@stp.dias.ie

1 Non-linear sigma models are not considered.

2 As opposed to the compact formulation [4, 5]; see section IV.

3 There are claims that the Gaussian fixed point of scalar theory supports relevant, interacting directions in $D = 4$ [4] but, as convincingly argued by Morris [4, 5, 6], these directions cannot be used to construct a renormalized trajectory.
The approach taken in this paper is different, both in implementation and philosophy (see section II for a description of the formalism). First of all, everything is done directly in the continuum. Secondly, we are freed from considering a particular model, such as $\lambda \varphi^4$, and analysing whether a continuum limit exists. Rather, the Wilsonian view point is adopted that the bare action of a nonperturbatively renormalizable theory is something which should be solved for, not something which should be put in by hand \[12\]. Along a renormalized trajectory, the bare action is the ‘perfect action’ \[13\] in the vicinity of the ultraviolet (UV) fixed point of the theory, and so it is determined by the fixed point action—which must itself be solved for—and the integration constants associated with the relevant (including marginally relevant) directions.

As to addressing the question of the existence of non-trivial fixed points in $O(N)$ scalar field theories in $D = 4$, there are a number of studies which take, as a starting point, the same formalism that is employed in this paper \[14, 17\]. However, these earlier works rely on a truncated derivative expansion of the effective action. Nevertheless, despite the truncation, the space of possible interactions is infinite dimensional, so the power of this approach should not be underestimated. Within this approximation scheme, the space of truncated effective actions was scanned, numerically, with the result that the only fixed point found was the Gaussian one. It should be emphasised that this technique is very powerful for uncovering non-trivial fixed points in $D < 4$ and analysing their properties (see \[18\] for a comprehensive guide to the literature).

With regards to the triviality of non-compact, pure Abelian gauge theory, the strongest results to date are those of Morris \[19\]. Working in three dimensions (both with and without a Chern-Simons term) he considered truncated effective actions of the form $f(F_{\mu \nu})$, where f is allowed to be any invariant function of its argument. It was then shown, analytically, that the only acceptable fixed-point is the Gaussian one. In this paper, physically acceptable non-trivial fixed points are ruled out without any approximation, and in any dimension, representing a dramatic improvement on the current state of the art.

II. FORMALISM

The arguments in this paper crucially exploit scaling relations for the n-point correlation functions. One of the results of this paper is a very simple derivation from first principles, that the correlation functions at a fixed point do indeed take the form dictated by scale invariance. To achieve this, we employ the exact renormalization group (ERG), which is basically the continuous version of Wilson’s RG \[1\]. A particularly simple form of the ERG, due to Polchinski \[20\], will be described in the next section. After discussing how to compute correlation functions in this formalism, a slightly different ERG equation will be introduced which is better suited to our purposes.

A. The Polchinski Equation

Working in D-dimensional Euclidean space and starting from some high energy scale, degrees of freedom are integrated out down to a lower, effective scale denoted by Λ. During this process, the action evolves into the Wilsonian effective action, S_Λ, such that it encodes the effects of the high momentum modes. The ERG equation determines how the Wilsonian effective action varies with Λ. A central ingredient is the ERG kernel, which provides the flow equation with its UV regularization. To this end, we introduce the ‘effective propagator’,

$$\Delta(p, \Lambda) = \frac{c(p^2/\Lambda^2)}{p^2},$$

where $c(p^2/\Lambda^2)$ is a UV cutoff function which dies off sufficiently rapidly for $p^2/\Lambda^2 \to \infty$, and for which $c(0) = 1$.

The position-space kernel, $\Delta(x, y)$, is given by the Fourier transform of \[1\]. Note that we shall use p to denote both a four-vector and its modulus, with the meaning hopefully being clear from the context.

Whilst the choice \[1\] is the typical one, we will temporarily work with

$$\Delta_m(p, \Lambda) = \frac{c(p^2/\Lambda^2)}{p^2 + m^2(\mu)},$$

where μ is an arbitrary scale and $m^2(\mu)$ is a mass parameter independent of Λ. This mass term is included to provide infrared (IR) regularization though, as will be seen, it can usually be dispensed with.

In what follows, we will work with a single component scalar field, corresponding to the $O(1)$ model (i.e. there is a $\varphi \to -\varphi$ symmetry); generalization to the multi-component case is trivial [note that full $O(N)$ symmetry is assumed at putative fixed-points]. We now define the interaction part of the Wilsonian effective action, $S_\Lambda^I[\varphi]$, according to

$$S_\Lambda[\varphi] = \frac{1}{2} \varphi \cdot \Delta_m^{-1} \cdot \varphi + S_\Lambda^I[\varphi].$$

As usual, the dot notation is shorthand for the following: $A \cdot B \equiv \int d^Dx A(x)B(x)$. Similarly, $\varphi \cdot \Delta_m^{-1} \cdot \varphi \equiv \int d^Dx \int d^Dy \varphi(x) \Delta_m^{-1}(x, y) \varphi(y) = \int d^Dp/(2\pi)^D \varphi(p) \Delta_m^{-1}(p) \varphi(-p)$. Henceforth, we will cease to explicitly indicate the Λ dependence of S_Λ^I, for brevity.

The starting point for our analysis is the form of the ERG equation introduced by Polchinski \[20\]:

$$-\Lambda \partial_\Lambda S_\Lambda^I = \frac{1}{2} \frac{\delta S_\Lambda^I}{\delta \varphi} \cdot \Delta_m \cdot \frac{\delta S_\Lambda^I}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta_m \cdot \frac{\delta S_\Lambda^I}{\delta \varphi},$$

(5)
where the \(\Lambda \)-derivative is performed at constant \(\varphi \) and the ERG kernel, \(\Delta_m \), is given by the flow of the effective propagator:

\[
\Delta_m \equiv -\Lambda \frac{d\Delta_m}{d\Lambda}.
\]

(6)

In addition to the proofs pertaining to triviality, the techniques developed below allow a very simple derivation of the expected form of the two-point correlation function at a critical fixed point, directly from the ERG.

B. Correlation Functions

We now define the \('dual action', \(D_m[\varphi] \), according to

\[- D_m[\varphi] = \ln \left\{ \exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta_m \cdot \frac{\delta}{\delta \varphi} \right) e^{-S[\varphi]} \right\}, \]

where the subscript \(m \) is to remind us that we have utilized \(\Delta_m \) in the construction.

Before describing what this object represents, we will compute its flow. It is easy to confirm, using (5) and (6), that

\[- \Lambda \partial_{\Lambda} D_m[\varphi] = 0. \]

(8)

Thus, the dual action is an invariant of the ERG. Just like the Wilsonian effective action, we can expand the dual action in powers of the fields, thereby defining its vertices, each of which are separately invariants of the ERG:

\[
D_m[\varphi] = \sum_n \frac{1}{n!} \int \frac{d^D p_1}{(2\pi)^D} \cdots \int \frac{d^D p_n}{(2\pi)^D} D_m^{(n)}(p_1, \ldots, p_n) \varphi(p_1) \cdots \varphi(p_n) \delta^{(D)}(p_1 + \cdots + p_n),
\]

(9)

where \(\delta^{(D)}(p) \equiv (2\pi)^D \delta^{(D)}(p) \). At the two-point level, we define

\[
D_2^{(2)}(p) \equiv D_2^{(2)}(p, -p).
\]

As we will shortly demonstrate, the vertices of the dual action are essentially \(n \)-point connected correlation functions. Indeed, from this perspective it is clear why these vertices are ERG invariants: such objects, which incorporate all quantum fluctuations, must be independent of the effective scale, \(\Lambda \), which is just an introduced as an intermediate step to facilitate the evaluation of the partition function.

To arrive at this interpretation of the dual action, it is useful to introduce a diagrammatic representation, about which three very important points should be made. First, the diagrammatics utilize exact vertices of the Wilsonian effective action, no perturbative expansion of the vertices having been performed. Secondly, the diagrammatic expansion will never be truncated. Thirdly, the dual action exists entirely independently of its diagrammatic representation. Throughout this paper, we will perform various manipulations of the dual action using the diagrammatics. However, it should be emphasised that exactly the same results could be obtained directly from a power expansion of (7), together with a field expansion of the Wilsonian effective action.\(^4\) The point is that, as usual, the diagrammatics provide an intuitive and transparent means of performing these manipulations; but the use of this tool is by no means a necessity.

From (7), the dual action comprises all connected diagrams built out of vertices of the interaction part of the Wilsonian effective action and effective propagators (it is the logarithm which, as usual, ensures connectedness). Indeed, this diagrammatic form has been used for some time \[22, 23, 24, 25, 26\], without realising that it was a representation of (7). A selection of terms contributing to the two-point vertex of the dual action is shown in figure 1

\[
D_m^{(2)} = S_1^1 + \frac{1}{2} S_1^1 S_1^1 - \frac{1}{6} S_1^1 S_1^1 + \cdots
\]

FIG. 1: The first few terms that contribute to \(D^{(2)} \). Momentum arguments have been suppressed. Each of the lobes represents a vertex of the interaction part of the Wilsonian effective action.

It is at this point we see that, by choosing a massive effective propagator, it has been ensured that potentially IR divergent diagrams contributing to \(D_m \) are individually regularized. These divergences have two sources. First, since \(D_m \) contains one-particle reducible (1PR) terms, a massless effective propagator would lead to strongly IR divergent diagrams in any dimension, as the external momenta go to zero. Furthermore, depending on the dimensionality, one-particle irreducible (1PI) diagrams, such as the final diagram of figure 1 (which can also appear as a sub-diagram in 1PR terms), can also possess IR divergences. These latter divergences do not occur exclusively for the external momenta going to zero, but can also occur for other ‘special’ momenta, whereby the external momenta entering a vertex sum to zero. However, since these divergences are also regularized by using a massive effective propagator, we will take our definition of IR divergences to include them.

Having made such a big deal of the IR regularization of the dual action we now argue that, for most purposes,

\(^4\) It is worth pointing out that truncated field expansions are known to suffer deficiencies when looking for fixed points \[17\], though see \[21\]. In this paper, no truncation is ever performed, and it is assumed that the conclusions drawn are reliable.
it is quite legitimate to deal with the vertices constructed from the massless effective propagator. The first point to make is that the dual action plays a very different role from the Wilsonian effective action. In particular, it does not appear as the weight in a partition function where we are integrating over all field configurations. Indeed, if we think of it simply as the object which naturally collects together the vertices $D^{(n)}_m$, then it does not necessarily matter if the

$$D^{(n)}(p_1, \ldots, p_n) \equiv \lim_{m(\mu) \to 0} D^{(n)}_m(p_1, \ldots, p_n)$$ \hfill (10)

have poles for certain values of their arguments.

With this in mind, consider computing connected n-point correlation functions from the bare action.\(^5\) For $n > 2$, the first contribution comes from the n-point bare action vertex, connected to n bare propagators, D_b. Since this vertex is pulled down from $e^{-S_{\text{bare}}}$, this contribution comes with a minus sign. Then we must include all other connected contributions with n legs, built out of the bare action. Thus we find that

$$G(p_1, \ldots, p_n) = -D^{(n)}_{\text{bare}}(p_1, \ldots, p_n) \prod_{i=1}^{n} \Delta_b(p_i), \quad n > 2.$$

But, we know that the dual action vertices do not depend on Λ, and so

$$G(p_1, \ldots, p_n) = -D^{(n)}_m(p_1, \ldots, p_n) \prod_{i=1}^{n} \Delta_b(p_i), \quad n > 2.$$

Consequently, $D^{(n)}_m$ is directly related to the n-point connected correlation function and so the limit $m(\mu) \to 0$ makes perfect sense: any IR divergences that now appear are just those we expect from the correlation functions.

Next, let us consider the two-point connected correlation function, $G(p)$, again computed from the bare action. The first contribution to this is just the bare propagator. The full contribution is

$$G(p) = \Delta_b(p) \left[1 - D^{(2)}_m(p) \Delta_b(p) \right]$$ \hfill (11)

where, again, we have recognized that since the two-point dual action vertex is independent of scale, we can evaluate it at the effective, rather than bare, scale.

We now introduce two objects which will play a central role in what follows. First, we define the 1PI components of the $D^{(n)}_m$, denoted $\overline{D}^{(n)}_m$. The two-point object, $\overline{D}^{(2)}_m$, will play a special role. As can be readily seen by considering the diagrammatic expression for $D^{(2)}_m$ in more detail,\(^{22, 23}\), $D^{(2)}_m$ is built out of $\overline{D}^{(2)}_m$ according to a geometric series:

$$D^{(2)}_m(p) = \frac{\overline{D}^{(2)}_m(p)}{1 + \Delta_m(p) \overline{D}^{(2)}_m(p)}$$ \hfill (12)

By inspection, this equation can be inverted:

$$\overline{D}^{(2)}_m(p) = \frac{D^{(2)}_m(p)}{1 - \Delta_m(p)D^{(2)}_m(p)}.$$ \hfill (13)

The second key object is the dressed effective propagator, Δ_m:

$$\Delta_m(p) \equiv \frac{1}{\Delta_m^{-1}(p) + \overline{D}^{(2)}_m(p)}.$$ \hfill (14)

Substituting (13) into (14) yields

$$\Delta_m(p) = \Delta_m(p) \left[1 - D^{(2)}_m(p)\Delta_m(p) \right],$$ \hfill (15)

and so we see that the dressed effective propagator is a UV regularized version of $G(p)$. Consequently, all the objects $D^{(n)}_m$ and Δ_m makes sense in the limit $m(\mu) \to 0$, with any IR divergences having a physical interpretation.

We now recognize that, as usual (see e.g.\(^{27}\)), the physical mass of our theory is defined by $\Delta_m^{-1}(0) + \overline{D}^{(2)}_m(0)$. Therefore, IR regularization—should we want it—really means that $\Delta_m^{-1}(0) + \overline{D}^{(2)}_m(0) \neq 0$. In cases where we have performed the resummation,\(^{14}\), we now interpret any subscript ms to mean that we are constrained to lie on a massive RG trajectory.

For the rest of this paper, we will send $m(\mu) \to 0$. Nevertheless, there are certain circumstances where we should maintain the explicit IR regularization, at least at intermediate stages. This should be done, for example, when inverting (7), to recover the Wilsonian effective action:

$$-S^I[\varphi] = \ln \left[\exp \left(-\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta_m \cdot \frac{\delta}{\delta \varphi} \right) e^{-D_m[\varphi]} \right].$$ \hfill (16)

Incidentally, this relationship was proven diagrammatically in\(^{22}\) whereas here it follows trivially.

C. Generalized ERGs

Our aim now is to attempt to utilize the dual action to investigate the existence of fixed points. Fixed point behaviour is most easily seen by rescaling to dimensionless variables, by dividing all quantities by Λ to the appropriate scaling dimension (by this it is meant, of course, the full scaling dimension, not just the canonical dimension). As it turns out, there is a well known subtlety related to scaling out the anomalous dimension from φ, so we will

\(^{5}\) The bare action is to be interpreted as in the introduction. For a more detailed discussion see\(^{22}\), but these subtleties are of no real consequence here.
ERGs are defined according to [28, 29]:

\[\varphi(x) \rightarrow \varphi(x) \sqrt{Z}, \] \hspace{1cm} (17)

where \(Z \) is the field strength renormalization, from which we define the anomalous dimension:

\[\eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}. \] \hspace{1cm} (18)

The problem with this transformation is that it produces an annoying factor of \(1/Z \) on the right-hand side of the flow equation. However, we can remove this factor by utilizing the immense freedom inherent in the ERG. General ERGs are defined according to [28, 29]:

\[-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_x \frac{\delta}{\delta \varphi(x)} \left(\Psi_x[\varphi] e^{-S[\varphi]} \right). \] \hspace{1cm} (19)

The total derivative on the right-hand side ensures that the partition function \(Z = \int D\varphi e^{-S} \) is invariant under the flow—a fundamental ingredient of any Wilson-inspired ERG equation. The functional, \(\Psi \), parametrizes the remaining freedom in how modes are integrated out along the flow. The only restrictions on the seed action are that it leads to finite momentum integrals and that it admits an all orders derivative expansion.

We will focus on those blockings for which we define the anomalous dimension:

\[\eta_\Lambda \equiv \Lambda \frac{d \ln Z}{d \Lambda}. \] \hspace{1cm} (18)

The problem with this transformation is that it produces an annoying factor of \(1/Z \) on the right-hand side of the flow equation. However, we can remove this factor by utilizing the immense freedom inherent in the ERG. General ERGs are defined according to [28, 29]:

\[-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_x \frac{\delta}{\delta \varphi(x)} \left(\Psi_x[\varphi] e^{-S[\varphi]} \right). \] \hspace{1cm} (19)

The total derivative on the right-hand side ensures that the partition function \(Z = \int D\varphi e^{-S} \) is invariant under the flow—a fundamental ingredient of any Wilson-inspired ERG equation. The functional, \(\Psi \), parametrizes the remaining freedom in how modes are integrated out along the flow. The only restrictions on the seed action are that it leads to finite momentum integrals and that it admits an all orders derivative expansion. This latter property, a.k.a. ‘quasi-locality’ [4], is a fundamental requirement of all ingredients of the ERG equation and so covers \(\hat{\Delta} \) and \(S \), as well. Quasi-locality ensures that each ERG step is free of IR divergences or, equivalently, that blocking is performed only over a local patch.

We now choose the new ERG kernel such that, after performing the rescaling \(\hat{\Delta} \), the flow equation reads:

\[\left(-\Lambda \partial_{\Lambda} + \frac{\eta}{2} \partial_{\Lambda} \right) S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \Delta^{-1} \cdot \frac{\delta S}{\delta \varphi} + \frac{1}{2} \frac{\delta \Sigma}{\delta \varphi} \cdot \Delta^{-1} \cdot \frac{\delta \Sigma}{\delta \varphi}. \] \hspace{1cm} (21)

The next step in the analysis is to define the interaction part of the seed action, analogously to (11):

\[\hat{S}[\varphi] = \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi + \hat{S}_I[\varphi]. \] \hspace{1cm} (22)

Substituting this into (21) yields, up to a discarded vacuum energy term,

\[-\Lambda \partial_{\Lambda} S^I + \frac{\eta}{2} \varphi \partial_{\Lambda} \frac{\delta S}{\delta \varphi} = \frac{1}{2} \frac{\delta S^I}{\delta \varphi} \cdot \Delta^{-1} \cdot \frac{\delta \Sigma^I}{\delta \varphi} \] \hspace{1cm} (23)

where \(\Sigma^I \equiv S^I - 2\hat{S}_I \). Notice that if we take \(\hat{S}_I = 0 \)—as we are perfectly at liberty to do—then (23) is the rescaled version of Polchinski’s equation, modulo the fact that we have gotten rid of the annoying factor of \(1/Z \) on the right-hand side. This flow equation was first considered by Ball et al. [37]. The more general version, with a non-zero \(\hat{S}_I \), has been considered in [22, 34, 35].

Given the new flow equation, we retain our definition for the dual action (7), despite the fact that the fields have been rescaled according to (17). Using the new flow equation we therefore have:

\[-\left(\Lambda \partial_{\Lambda} + \frac{\eta}{2} \varphi \partial_{\Lambda} \right) D[\varphi] = -\frac{\eta}{2} \varphi \Delta^{-1} \cdot \varphi + e^D \varphi \Delta^{-1} \cdot \Delta \cdot \exp \left(\frac{1}{2} \frac{\delta \Sigma}{\delta \varphi} \right) \frac{\delta \hat{S}_I}{\delta \varphi} \] \hspace{1cm} (24)

where we recall (10). It is well worth noting that the seed action appears only in a single term, all other occurrences have been rescaled according to (17). Using the new flow equation we therefore have:

\[-\left(\Lambda \partial_{\Lambda} + \frac{\eta}{2} \varphi \partial_{\Lambda} \right) D[\varphi] = -\frac{\eta}{2} \varphi \Delta^{-1} \cdot \varphi. \] \hspace{1cm} (25)

in the case that we choose \(\hat{S}_I = 0 \), as we now do. We will comment on this choice further at the end of the paper. Notice that the relative sign between the two terms on the left-hand side of (25) has flipped, compared to (23).

To conveniently uncover fixed point solutions, we need to complete the rescalings started with (17). To this end, we define the ‘RG-time’:

\[t \equiv \ln \mu/\Lambda, \] \hspace{1cm} (26)

and also scale out the various canonical dimensions:

\[\varphi(x) \rightarrow \varphi(x) \Lambda^{(D-2)/2}, \quad p_i \rightarrow p_i \Lambda. \] \hspace{1cm} (27)

In these units, fixed point solutions follow from the condition

\[\partial_t S_\star[\varphi] = 0 \] \hspace{1cm} (28)

since, if all variables are measured in terms of \(\Lambda \), independence of \(\Lambda \) implies scale independence. (Subscript \(\star \) will be used to denote fixed-point quantities.)
Unlike the rescaling (17), the rescalings (27) do not introduce further subtleties concerning the form of the flow equation which now reads:

\[
\left(\partial_t + d_\varphi \Delta \partial_\varphi + \Delta_\partial - D \right) S^1 = \delta S^1 \cdot \delta \Delta_\partial - \delta \Delta \partial \cdot 2 \varphi \cdot \Delta^{-1} \varphi, \quad (29)
\]

where \(d_\varphi \equiv (D - 2 + \eta)/2 \) is the scaling dimension of the field, a prime denotes a derivative with respect to the argument and \(\Delta_\partial \) is the `derivative counting operator' (utterly unrelated to the effective propagator, \(\Delta \)):

\[
\Delta_\partial \equiv D + \int \frac{d^dp}{(2\pi)^d} \varphi(p) p_\mu \frac{\partial}{\partial p_\mu} \delta \varphi(p).
\]

We can remove the leading \(D \) from this expression if we specify that the \(\partial / \partial p_\mu \) does not strike the momentum conserving \(\delta \)-function associated with each vertex.

Equation (26) becomes:

\[
\left(\partial_t + \frac{D - 2 - \eta}{2} \varphi + \Delta_\partial - D \right) D[\varphi] = -\frac{\eta}{2} \varphi \cdot \Delta^{-1} \varphi. \quad (30)
\]

Given all the rescalings, which in particular mean that \(\Delta(p) = c(p^2)/p^2 \), it follows from the definition of the dual action (2)---with \(m(\mu) = 0 \)---that the fixed point condition (28) implies

\[
\partial_t D_\star^{(n)} = 0. \quad (31)
\]

III. CRITICAL FIXED POINTS IN SCALAR FIELD THEORY

To analyse fixed points using the dual action formalism, let us start by solving (30) for \(D_\star^{(2)} \) at a fixed point:

\[
- \frac{2 + \eta_\star}{2} D_\star^{(2)}(p) + p^2 D_\star^{(2)} \frac{dp^2}{dp^2} = -\frac{\eta_\star}{2} \Delta(p). \quad (32)
\]

The solution to this equation is

\[
D_\star^{(2)}(p) = -p^{2(1+\eta_\star/2)} \left[\frac{1}{b(\eta_\star)} + \frac{\eta_\star}{2} \int dp^2 \frac{c^{-1}(p^2)}{p^{2(1+\eta_\star/2)}} \right], \quad (33)
\]

where \(-1/b(\eta_\star)\) is the integration constant (assumed to be finite) and is a functional of the cutoff function. In the case where \(\eta_\star \neq 0 \), \(b \) is defined by the form of \(D_\star^{(2)}(p) \) taken if we perform the indefinite integral by Taylor expanding the cutoff function. For \(\eta_\star = 0 \), we make a choice such that the leading behaviour in the first case coincides with the behaviour in the second case, as \(\eta_\star \to 0 \). Thus, for small momentum, we have

\[
D_\star^{(2)}(p) = \begin{cases}
-\frac{1}{b} p^{2(1+\eta_\star/2)} + (p^2 + \text{subleading}) , & \eta_\star \neq 0, \\
(1 - \frac{1}{b}) p^2 , & \eta_\star = 0.
\end{cases} \quad (34)
\]

Note that the subleading terms are cutoff dependent, not just with regards to their prefactors, but also to their structure. For example, if \(\eta_\star = 2 \) and \(c'(0) \neq 0 \), then the subleading piece has a nonpolynomial component \(p^4 \ln p^2 \), but this is absent altogether if \(c'(0) = 0 \). However, so long as \(\eta_\star < 2 \), the subleading term in the brackets is always subleading compared to \(b p^{2(1+\eta_\star/2)} \) and substituting (34) into (11) yields

\[
G(p) \sim \frac{1}{p^{2(1-\eta_\star/2)}} \sim \tilde{\Delta}_\star(p), \quad (35)
\]

for small \(p \). This is precisely the behaviour that we expect at a critical fixed point. Whilst there are simple, general arguments as to why such behaviour is expected (see e.g. [41]), I am unaware of a derivation as simple as this, directly from the ERG (see e.g. [10] for a different ERG derivation of (35) at the critical point of some model). For \(\eta_\star \leq 2 \), the leading behaviour of \(G(p) \) in the small \(p \) limit no longer describes critical behaviour and is, indeed, cutoff dependent. We do not consider this further (though it is straightforward enough to adapt the following analysis to deal with this scenario).

Note that in the large \(p \) limit we have

\[
\lim_{p \to \infty} \tilde{\Delta}_\star(p) = f(p^2) p^2, \quad (36)
\]

where \(f(p^2) \) is a monotonically decreasing function, related to the cutoff function, with \(f(p^2) \geq 0 \) for real \(p \) [this is most easily seen by using a power law cutoff \(c^{-1}(p^2) = 1 + p^{2r} \) in (33) and substituting the result into (14)]. It is worth pointing out that (36) is true irrespective of the sign of \(\eta_\star \) and so negative anomalous dimensions cannot obviously be ruled out at non-trivial fixed points, based simply on the form of \(\tilde{\Delta}_\star \).

Moving on to dual action vertices with more than two legs, the fixed point equation is

\[
\left(\sum_{i=1}^n p_i \partial p_i - D \right) \Delta_\partial^{(n)} = 0. \quad (37)
\]

This has solution

\[
\Delta_\partial^{(n)}(p_1, \ldots, p_n) = P_r^{(n)}(p_1, \ldots, p_n), \quad (38)
\]

with \(P_r^{(n)}(\xi p_1, \ldots, \xi p_n) = \xi^r P_r^{(n)}(p_1, \ldots, p_n) \) and

\[
r = D - n - 2 - \eta_\star. \quad (39)
\]
A. Fixed Points with $\eta_* \geq 0$

Let us now focus on the case where $2 > \eta_* \geq 0$. To this end, we now analyse $\mathcal{D}_*^{(2)}(p)$. First, we note from (34) and (33) that the leading behaviour in the small p limit is

$$\mathcal{D}_*^{(2)}(p) = \left\{ \begin{array}{ll}
bp^p(1-\eta_*/2) - p^2 + \cdots, & 2 > \eta_* > 0 \\
(b-1)p^2 + \cdots, & \eta_* = 0
\end{array} \right. \quad (40)$$

Secondly, we recognize that we can resum sets of loop diagrams contributing to $\mathcal{D}_*^{(2)}(p)$ such that all internal lines become dressed, as indicated in figure 2.

![Image](image.png)

FIG. 2: Resummation of diagrams contributing to $\mathcal{D}_*^{(2)}$: the thick lines represent dressed effective propagators, \underline{s}.

Now, consider the following scenarios:

1. $D > 4, \eta_* \geq 0$,
2. $D = 4$ and $\eta_* > 0$.

Assuming that the Wilsonian effective action vertices are Taylor expandable for small momenta—this being one of our requirements for physical acceptability—it is apparent by power counting that

$$\mathcal{D}_*^{(2)}(p) = \text{const} + f_0(p), \quad (41)$$

$$\frac{d}{dp^2} \mathcal{D}_*^{(2)}(p) = \text{const} + f_1(p), \quad (42)$$

where $\lim_{p \to 0} f_{0,1}(p) = 0$. The second relationship follows from considering diagrams like the third one in figure 2. This diagram is the prototype for diagrams whose first derivative with respect to p^2 will diverge for certain dimensions and/or values of η_*. In the IR, the leading term from this diagram looks like

$$\int \cdots \int \frac{1}{[k^2(l+p)^2(l+k)^2]^{1-\eta_*/2}}.$$

Differentiating with respect to p^2 will increase the degree of IR divergence by two, but this is still not enough, given the above conditions on D and η_*, to render the term IR divergent as $p \to 0$.

More generally, we have the following power counting in the IR. Given I internal lines and V vertices, there are $L = I - V + 1$ loops. If we differentiate with respect to p^2 a total of P times, then the degree of IR divergence is

$$D \geq D(I - V + 1) - 2(1 - \eta_*/2)I - 2P,$$

where we understand $D > 0$ to be IR safe. Now, since all two-point vertices have been absorbed into the dressed effective propagators, and since we have only even-legged vertices [which is ensured by our assumption of $O(N)$ symmetry at putative fixed-points], each vertex must have at least four legs. Given that there are two external legs, this implies that

$$I \geq 2V - 1.$$

Consequently [for $D \geq 2(1 - \eta_*/2)$], we have

$$D \geq (D - 4)V + (2V - 1)\eta_* + 2(1 - P).$$

Given the restrictions that either $D > 4$ and $\eta_* \geq 0$ or $D = 4$ and $\eta_* > 0$ we see that, both for $P = 0$ and $P = 1$, there are no IR divergent diagrams. Acting on $\mathcal{D}_*^{(2)}(p)$ with further derivatives with respect to p^2, it may be that the limit $p \to 0$ now diverges, but this does not concern us here. Rather, we simply note that we can write

$$\mathcal{D}_*^{(2)}(p) \sim \text{const} + O(p^2) + \text{subleading}, \quad (43)$$

where the subleading terms are not necessarily polynomial in p. For a critical fixed point, we must set the constant piece equal to zero. Comparing the resulting equation with the top line of (34) we deduce the following: (i) in $D > 4$, any critical fixed point with non-negative η_* must have precisely $\eta_* = 0$ (ii) in $D = 4$ there are no critical fixed points with $\eta_* > 0$ and so, again, if there are to be any non-trivial fixed points with $\eta_* \geq 0$, they must saturate the inequality.\(^6\)

To rule out fixed points with $\eta_* = 0$, let us consider the four-point vertex of the dual action. We start by expressing $\mathcal{D}^{(4)}$ in terms of $1PI$ pieces:

$$\mathcal{D}^{(4)}(p_1,p_2,p_3,p_4) = \frac{\mathcal{D}_*^{(4)}(p_1,p_2,p_3,p_4)}{\prod_{i=1}^4 [1 + \Delta(p_i)\mathcal{D}_*^{(2)}(p_i)]}. \quad (44)$$

(Since this formula is generally valid, we have dropped the $*$.) The resummation of the decorations of the legs into the denominator makes it clear that, since we have just shown that $\mathcal{D}_*^{(2)}(p) \sim p^2$, any IR divergences of $\mathcal{D}^{(4)}$.

\(^6\) Note that whilst an infinite number of diagrams are involved in the above arguments, we expect the series to be (re)summable: no perturbative expansion of the vertices has been performed and we recall that the diagrammatics is just a convenient way of visualizing manipulations of the dual action, which is related to the exact correlation functions.
must occur within $\mathcal{D}^{(4)}_*$. As with $\mathcal{D}^{(2)}$, we can resum classes of loop diagrams contributing to $\mathcal{D}^{(4)}$ such that all internal lines become dressed. A selection of the resummed diagrams contributing to $\mathcal{D}^{(4)}$ is shown in figure 3.

\[\mathcal{D}^{(4)} = S^4 \left(\frac{1}{4} S^4 \right) + \ldots \]

FIG. 3: Resummation of diagrams contributing to $\mathcal{D}^{(4)}$. In the final diagram we implicitly sum over the independent permutations of the external legs. The thick external lines denote decorated legs, as in (44).

From (37) and (39), the fixed point solution for $\mathcal{D}^{(4)}$ is

\[\mathcal{D}^{(4)}_*(p_1, p_2, p_3, p_4) = P^{(4)}_r(p_1, p_2, p_3, p_4), \quad (45) \]

with

\[r = 4 - D + 2\eta_* \quad (46) \]

First let us consider $D > 4$.

The crucial point is that, by the same logic that lead to (43), we have:

\[\mathcal{D}^{(4)}_*(p_1, p_2, p_3, p_4) = c_4 + \text{subleading}, \quad (47) \]

where c_4 is a constant. We can see this by looking at the second diagram on the right-hand side of figure 3 (modulo the dressings on the external legs), which is the prototype for diagrams which possess IR divergences for certain values of D and/or η_*. As a direct consequence of (47), it must be that $r \geq 0$. But, given this condition and given $\eta_* = 0$, (10) has no solutions and so we conclude that $\mathcal{D}^{(4)}_* = 0$. But, directly from this, it follows that $\mathcal{D}^{(6)}_* = 0$, also. This is because in $D > 4$ the only contributions to $\mathcal{D}^{(n)}_*$ which could potentially violate the analogue of (47) comes from the diagram of figure 4.

But this term is built from a pair of $\mathcal{D}^{(4)}_*$'s, which we have just said vanish! Thus, repeating the same logic that lead to (10), we find that $\mathcal{D}^{(6)}_* = 0$. By induction, then, we have that $\mathcal{D}^{(n>2)}_* = 0$ and the only fixed point is the Gaussian one.

For $D = 4$, we could at this point conclude our analysis: after continuing to Minkowski space, there is a theorem due to Pohlmeyer which implies that a scale invariant scalar field theory with vanishing anomalous dimension must be trivial [42]. However, since we can demonstrate this directly within the current approach, with only a little extra effort, we will do so. Consider the fixed point equation for $\mathcal{D}^{(n)}_*$: returning to (37) there is now a solution for the four-point vertex in $D = 4$ with $\eta_* = 0$ which is potentially compatible with the structure of $\mathcal{D}^{(4)}$:

\[\mathcal{D}^{(4)}_*(p_1, p_2, p_3, p_4) = c_4. \quad (48) \]

Whilst contributions of the form e.g. p_1^2/p_2^2 are also solutions of (37), there is no way to generate such a strong IR divergence in $D = 4$, given that $\eta_* = 0$. However, it turns out that c_4 must be zero. To see this, consider further building up contributions to the second diagram in figure 3, as shown in figure 5 (we drop the overall combinatoric factor).

\[\mathcal{D}^{(4)}_*(p_1, p_2, p_3, p_4) = c_4 + \ldots \]

FIG. 4: A potentially strongly IR divergent contribution to $\mathcal{D}^{(6)}$.

To justify this, let us start by considering the origin of the first term. Returning to the second diagram of figure 3, imagine temporarily pulling the vertices off the pair of internal lines. Each of these vertices has four legs: two external and two which, upon reattachment, are internal. Now, rather than the pair of internal lines simply attaching at both ends to a single, undecorated vertex, we should also consider terms in which this pair of lines attaches to all possible structures. Summing over all such contributions, our first thought might be that the pair of internal lines should attach at each end to a $\mathcal{D}^{(4)}$, as this is precisely the sum of all structures with a total of four legs. However, decorations of the external
legs have already been included (indicated by the thick external lines in figure 3) and the internal decorations have already been ‘used up’ to dress the internal lines. Thus, our second thought might be to attach the pair of internal lines at each end to a $D^{(4)}$; indeed, this yields precisely the first term in figure 5 (up to the ignored overall constant).

However, even this is not quite correct, as certain terms are wrongly counted. Let us return once again to the second diagram of figure 3 but this time imagine pulling off just the top vertex. Let us now replace this vertex with a copy of the diagram we have just mutilated. From figure 3, this diagram comes with a factor of $-1/4$. However, we can attach it to the rest of the diagram via either of its vertices, giving a net factor of $-1/2$. [The structure of this term is the same as that of the second diagram in figure 3 but with the vertices being just $S^{(4)}$s.] Now, were we to repeat this procedure by instead pulling off the bottom vertex, we would generate an identical term. This symmetry means that we should count the diagram only once. However, two copies are needed to build up each of the $S^{(4)}$s in the first diagram of figure 5. Thus, the first diagram in figure 5 overcounts the contribution discussed. To remedy this, we add the next term in figure 5 with the factor adjusted to precisely remove one of the terms, of the structure just discussed, which is buried in the first diagram.

But we are still not done! For example, terms with three $S^{(4)}$s are not correctly counted. To get the correct combinatorics for every contribution, we must add an infinite series of terms. The good news is that these terms can be resummed. Indeed, we have met this problem before. Since each vertex is joined to every other vertex by a pair of internal lines, imagine representing this pair by a single line (say a red line). Similarly, combine the pair of (dressed) external legs on the topmost and bottom most vertices into a single red leg. Now, each diagram is a string of ‘two-point’ vertices. Moreover, we know that each of these ‘two-point’ vertices can be unpackaged into strings of various ‘two-point’ 1PI diagrams each joined to the next by a red line. Thus, modulo the slightly different combinatorics, the job of resumming these terms is just the same as the job of rewriting $\overline{D}^{(2)}$ in terms of $D^{(2)}$ viz. (13). [This is the right way around: each $D^{(2)}$ can be expanded out in terms of two point 1PI diagrams—i.e. the $\overline{D}^{(2)}$—each joined to the next by a single internal line.]

Taking the momenta carried by the top pair of legs to be p and q, let us now define

$$I(p, q) = \int d^2k \frac{\Delta^2(k)\Delta^2(k + p + q)}{\Delta(k)\Delta(k + p + q)}.$$

Given (44), and since $D^{(4)} = c_4$, we can resum the diagrams of figure 5 to give

$$\frac{c_4^2 I(p, q)}{1 - \frac{1}{2} c_4 I(p, q)}.$$

This represents a momentum dependent contribution to $D^{(4)}$ which cannot cancel against anything else. Therefore, since $D^{(4)}_\ast$ is a constant, we deduce that $c_4 = 0$ i.e. $D^{(4)} = 0$.

Now consider the six-point dual action vertex. The solution to (37), in $D = 4$ with $\eta_* = 0$, requires that the six-point vertex $\sim 1/mom^2$. However, such a divergence can only come from the diagram of figure 4 which again vanishes since $D^{(6)}_\ast = 0$. Consequently, we conclude that $D^{(6)} = 0$. Proceeding by induction, as before, we find that the only acceptable critical fixed point solution in $D = 4$, given the restriction that η_* is non-negative, is the Gaussian one!

Before moving on, it is instructive to examine the form of the Gaussian solution. In this case, $D^{(2)}_\ast(p) = S^{(2)}_\ast(p)$ and, using (4), we find that

$$S_\ast[\phi] = \frac{1}{2} \phi \cdot \frac{\Delta^{-1}(p)}{1 - (1 - b)c(p^2)} \cdot \phi,$$

exactly in agreement with (2). The reason that there is a line of equivalent Gaussian fixed points, parametrized by b, is due to the reparametrization invariance inherent in the ERG [2, 28, 43]. Note that $b = 1$ corresponds to canonical normalization of the kinetic term.

B. Fixed Points with $\eta_* < 0$

The simplest fixed points with negative anomalous dimension to deal with are the exotic Gaussian fixed points found by Wegner [10]. To recover these, we set $D^{(4n+2)}_\ast = 0$ and note that at a Gaussian fixed point we have $D^{(2)}_\ast(p) = S^{(2)}_\ast(p)$. Defining $\gamma_* = \eta_* > 0$, we can read off the leading behaviour in the small momentum limit from (40) by recognizing that this comes from the first line, but with the relative importance of the first two terms interchanged:

$$S^{(2)}_\ast(p) = -p^2 + bp^{2(1+\gamma_*/2)} + \ldots$$

Now, the crucial point about the $-p^2$ term is that, as is apparent from (40), it removes the standard kinetic term, $\frac{1}{2} \phi \cdot p^2 \cdot \phi$, from the full Wilsonian effective action. Thus we find that, for small p,

$$S^{(2)}_\ast(p) \sim p^{2(1+\gamma_*/2)},$$

where, to ensure locality, we must take $\gamma_*/2$ to be an integer. This removal of the standard kinetic term is a generic feature of fixed points with negative anomalous dimension, as we will now see.
Before embarking on an analysis of non-trivial fixed points with negative anomalous dimension we note the following: if $\gamma_* > D - 2$ then diagrams such as the first one of figure 2 blow up independently of the external momenta (the external momentum does not flow through the loop). Thus we only allow $D - 2 > \gamma_* > 0$.

The vital property of fixed points with negative anomalous dimension, which we will now exploit, is that

$$\lim_{p \to 0} \frac{d}{dp^2} D^{(2)}_\ast(p) = -1,$$ \hspace{1cm} (51)

and, since the right-hand side is obviously independent of the shape of the cutoff function, the same must be true of the left-hand side. Note that for fixed points with positive anomalous dimension, the right-hand side of (51) instead diverges and so the logic which we now use does not apply. This is a good job, as otherwise we would rule out physically acceptable fixed points which we know to exist for $D < 4$.

In what follows, it will be useful to define

$$z \equiv \lim_{p \to 0} \frac{d}{dp^2} S^{(2)}(p).$$ \hspace{1cm} (52)

Note that z is just a number that we are free to choose, independently of the shape of the cutoff function. Similarly to the above discussion, if $z > -1$, then the full action has a p^2 kinetic term with the right sign. In this case, z is a free parameter corresponding to the normalization of the field, with $z = 0$ being canonical normalization. The case where $z = -1$ includes Wegner’s Gaussian fixed points but could, in principle, include non-Gaussian fixed points. This could happen if all $n > 2$-point vertices come with sufficiently high powers of momenta on each of their legs. Either way, such fixed points are ruled out by our requirement of unitarity, upon continuation to Minkowski space. There is no need for us to consider $z < -1$, since the action then has a kinetic term of the wrong sign. However, the following analysis anyway implies that non-trivial fixed points of this type do not exist.

Let us denote the remaining contributions to the left-hand side of (51) by W, so that we have

$$W = -z - 1,$$ \hspace{1cm} (53)

and focus now on the case where $z > -1$ is a finite number.

Again, we emphasise that W is independent of the shape of the cutoff function. Now, the only contribution to the cutoff function which is independent of its shape—i.e. universal—is $c(0) = 1$. Heuristically, then, we expect that any surviving contributions to W come from when the loop momenta are precisely equal to zero. To be more precise about this we note that, since every contribution to W contains at least one loop integral, we can write

$$W = \int \frac{d^Dk}{(2\pi)^D} \frac{c(k^2)}{k^2} G[c](k^2).$$ \hspace{1cm} (54)

Given that $\delta W/\delta c = 0$ and noting that W is a finite, nonzero number we have two options. First, we could have that $G[c](k^2) = c^{-1}(k^2)g(k^2)$, where $\delta g(k^2)/\delta c = 0$ and $\int g(k^2)/k^2 = -1 - z$. However, if $g(k^2)$ is independent of the cutoff function, then this means that $G[c](k^2)$ diverges strongly in the UV [so long as $c^{-1}(k^2)$ overwhelms $g(k^2)$ in this regime, which we can always arrange to be the case]. But, as we will now argue, the strength of this divergence is incompatible with the structure of G.

We can generate $G[c](k^2)$ by discarding the first diagram of figure 2, cutting out one effective propagator from all subsequent terms, and taking the nascent legs to carry momenta k and $-k$. Actually, this argument works just as well if we redefine G such that it is obtained by cutting out a dressed effective propagator. The diagrams cut in this way are built out of interaction vertices and dressed effective propagators. These latter components are UV regularized, so any UV divergence in $G[c](k^2)$ must occur via the Wilsonian effective action vertices.

Now, the presence of the final term in the flow equation (49) tells us that strong (i.e. related to the inverse of the cutoff function) UV divergent behaviour does feed into the flow equation at the two-point level. However, in the diagrams we are considering, two-point vertices only ever appear embedded in dressed effective propagators, which we know are UV regularized; there is no problem here. Nevertheless, this divergent behaviour can feed into the higher point vertices via the first term on the right-hand side of the flow equation. But, the structure of this term means that any c^{-1} is always accompanied by a c', ameliorating the effect. Whilst it is true that $c'c^{-1}$ can diverge in the UV if c dies off faster than an exponential, in such cases it does so only logarithmically, compared with c itself. Thus, the diagrams contributing to G cannot reproduce the strength of the divergence $G[c](k^2) = c^{-1}(k^2)g(k^2)$ must have if $\delta g/\delta c = 0$.

Returning to the discussion under (54), the other option is that $G[c](k^2)$ has net contributions only when both k, and also all momenta internal to G, are zero. It is tempting to say that such contributions must have zero support but this is not true, a priori, as it is quite possible that individual terms contributing to $dD^{(2)}_\ast(p)/dp^2$ diverge as $p \to 0$.

However, inspired by the resummations shown in figure 5, let us resum the diagrams contributing to $D^{(2)}_\ast(p)$, yet further, as shown in figure 6.

As before, there are corrections to the final term in figure 6 to avoid overcounting. However, the crucial point is that all such contributions, as well as the rest of those included in the second ellipsis, are built out of the 1PI dual action vertices (with more than two legs) and dressed effective propagators. Now, we know from the above arguments that we can analyse the various contributions to the left-hand side of (51) for small loop momenta. From the scaling laws for the dual action vertices
FIG. 6: Further resummation of diagrams contributing to \mathcal{D}^2. The brackets contain terms in which both fields decorate the same vertex. The second ellipse represents diagrams built out of just $\mathcal{D}^{(n>2)}$ vertices.

and the dressed effective propagator, the small momentum behaviour of two-point diagrams built out of the $\mathcal{D}^{(n>2)}$ and Δ is just that of \mathcal{D}^2 (this is easy to check). Thus, after differentiation with respect to p^2, these contributions go precisely as

$$p^{2(\gamma/2)}$$

at a fixed point and, therefore, vanish in the $p \to 0$ limit.

Consequently, the only contributions to W come from the diagrams enclosed by the brackets in figure 6. Even after differentiation with respect to p^2, these are most certainly IR safe for $p \to 0$, since the external momentum never flows around any of the loops and so the diagrams do have zero support for vanishing loop momenta. Therefore, there are no fixed points with $W \neq 0$. Finally, then, the only fixed points with negative anomalous dimension are those for which $z = -1$ and these correspond to non-unitary theories, upon continuation to Minkowski space.8

IV. NON-COMPACT, PURE ABELIAN GAUGE THEORY

Exactly the same methodology can be applied to demonstrate that there are no physically acceptable non-trivial fixed points in non-compact, pure Abelian gauge theory, but this time in any dimension. In a lattice formulation, compactness refers to the gauge connection, A_μ, being valued on a circle, as opposed to the real line. In the continuum limit, the compact case supports the existence of field configurations corresponding to monopoles.

We focus on just the non-compact case, for which a manifestly gauge invariant flow equation is provided by 44:

$$-\Delta \partial_\lambda S[A] = \frac{1}{2} \delta S}{\delta A} \cdot \delta \Sigma - \frac{1}{2} \frac{\delta A}{\delta A} \cdot \Delta \cdot \delta \Sigma, \quad (55)$$

where the dots now include a contraction of the Lorentz indices, wherever these indices are suppressed. Manifest gauge invariance follows since, for the Abelian Abelian symmetry, $\delta/\partial \Delta$ is gauge invariant. Gauge invariance of the functional derivatives also means that the flow equation can be regularized just as in the scalar case, simply by introducing a cutoff function $c(p^2/L^2)$.

Seeing as we have not fixed the gauge, it is important that the effective propagator is properly interpreted. The point is that, first and foremost, the object Δ in the flow equation should be thought of as an ERG kernel, which provides UV regularization, ensuring that the flow equation is well defined; and if the flow equation is well defined, then we are happy. In scalar field theory, it just so happens that Δ can be directly interpreted as the flow of a UV regularized propagator. In manifestly gauge invariant ERGs, the interpretation must be different 35, 36, since we cannot define a propagator in the usual way, having never fixed the gauge. However, the integrated ERG kernel plays a role which is analogous to the usual propagator, albeit residing inside ERG diagrams, rather than Feynman diagrams. Indeed, this is the reason for the terminology ‘effective propagator’. Actually, in the current case of pure Abelian gauge theory, these considerations are essentially irrelevant, as we will see below.

With these points in mind, we define

$$S[A] = \frac{1}{2} A_\mu \cdot \Delta^{-1}_{\mu \nu} \cdot A_\nu + S^0[A] \quad (56)$$

and also

$$\Delta(p) \equiv \frac{c(p^2)}{p^2}. \quad (57)$$

The consequence of manifest gauge invariance is that $\Delta(p)$ is the inverse of $\Delta^{-1}_{\mu \nu}(p)$ only inverse in the transverse space:

$$\Delta^{-1}_{\mu \nu}(p) \Delta(p) = \delta_{\mu \nu} - \frac{p_\mu p_\nu}{p^2} = \Box_{\mu \nu}(p) \frac{1}{p^2}, \quad (58)$$

where $\Box_{\mu \nu}(p) \equiv p^2 \delta_{\mu \nu} - p_\mu p_\nu$. However, in the pure Abelian case, the final term, ‘the gauge remainder’ 31, has no effect since gauge invariance implies that all vertices satisfy

$$p_\mu S_{\mu_1 \cdots \mu_n} (p_1, \ldots, p_i, \ldots, p_n) = 0, \quad \forall i. \quad (59)$$

Consequently, whenever a gauge remainder appears inside a diagram, the diagram is annihilated.

8 It is worth pointing out that, for this argument to work, it is crucial that z can be chosen independently of the cutoff, which follows as a consequence of the freedom to choose the normalization of the field. Without this freedom, we would expect z to be a functional of c, in which case W could also be a functional of c, with only the sum $W + z$ independent of the shape of the cutoff function.
As before, we define the dual action according to
\[-D[A] = \ln \left\{ \exp \left(\frac{1}{2} \frac{\delta}{\delta A} \cdot \Delta \frac{\delta}{\delta A} \right) e^{-S[A]} \right\}, \tag{60} \]
and, as before, the dual action is an ERG invariant. Similarly, we can introduce the 1PI contributions to the dual action vertices, so long as we properly take account of the fact the the two-point dual action vertex is transverse. Thus, defining \(w \) according to
\[D_\mu^2(p) \equiv w(p) \Box_{\mu\nu}(p), \tag{61}\]
and defining \(\bar{\omega} \) as the corresponding 1PI piece, the same logic that led to \(\square \) yields:
\[w(p) = \frac{\bar{\omega}(p)}{1 + c(p^2) \bar{\omega}(p)}. \tag{62}\]

Noting on account of \([59] \) that, when building up internal lines according to \(\Delta(p) [\delta_{\mu\nu} - \Delta(p) \Box_{\mu\nu}(p) + \cdots] \), all \(p_\mu p_\nu \) contributions can be effectively set to zero, we define the dressed effective propagator according to:
\[\hat{\Delta}(p) \equiv 1 + \frac{1}{p^2 [c^{-1}(p^2) + \bar{\omega}(p)]}. \tag{63}\]

Exactly as in the scalar case, the next step is to rescale to dimensionless variables, having changed flow equation to avoid annoying factors of \(1/Z \) on the right-hand side. Taking the seed action to possess only a kinetic term, the rescaled flow equation for the dual action reads:
\[
\left(\partial_t + D - 2 - \eta A \cdot \frac{\delta}{\delta A} + \Delta \theta - D \right) D[A] = -\eta \frac{A_{\mu} \cdot \Delta^{-1}_{\mu\nu} A_{\nu}}{2}. \tag{64}\]

When computing \(D_\mu^2(p) \), we must remember to account for the \(\Box_{\mu\nu}(p) \) buried in the right-hand side. Employing \([61] \), we find that
\[w_*(p) = p^{\eta_*/2} \left[b - \frac{\eta_*}{2} \int dp^2 \frac{c^{-1}(p^2)}{p^{2(1+\eta_*/2)}} \right]. \tag{65}\]

We now follow through the logic used in the scalar case but note that, on account of \([59] \) we have that, for \(\eta_* \geq 0 \),
\[
\lim_{p \to 0} \bar{\omega}_*(p) = \text{const} \tag{66}\]
in any dimension. However, since for \(2 > \eta_* \geq 0 \) equations \([92] \) and \([65] \) imply that
\[
\lim_{p \to 0} \bar{\omega}_*(p) \sim p^{-2\eta_*/2},
\]
we conclude that the anomalous dimension for a putative critical fixed point with non-negative \(\eta_* \) is zero. Utilizing the Ward identity, it is straightforward to show that this implies that \(D_*^{(4)} \) vanishes, but now in any dimension. As before, we can proceed by induction to show that all \(D_*^{(>2)} \) vanish. The analysis of fixed points with negative anomalous dimension exactly mirrors the scalar case.

Note that, in three dimensions, the analysis is unchanged by the presence of a Chern-Simons term (see \([18] \) for a discussion of the effects of such a term in the context of the ERG).

V. CONCLUSION

The proofs presented in this paper rely crucially on the scaling properties of correlation functions at putative non-trivial fixed points. Whilst these scaling properties can be deduced, heuristically, on general grounds, we provide a simple and direct derivation using the ERG. The ERG gives a precise meaning to the Wilsonian effective action, out of which we build the correlation functions, and provides a nonperturbative regularization scheme. The correlation functions, with a bare propagator amputated from each leg, are collected together into the ‘dual action’, given by \(\square \) and \(\square \) for scalar field theory and non-compact, pure Abelian gauge theory, respectively.

Nevertheless, without somehow fixing the anomalous dimension, not much more can be said about these fixed points. The crucial realization is that, for the examples studied in this paper, the behaviour of the two-point dual action vertex forces the anomalous dimension at a critical fixed point to be either zero or negative. In the former case, we were able to show that the only critical fixed point theory of this type is trivial. In the latter case, whilst it might be that quasi-local critical fixed points exist, it is shown that they necessarily violate unitarity; it is worth noting that the regularization scheme inherent to the ERG plays a crucial role in this.

An obvious set of questions to ask now is whether these methods can be extended to say something about:

1. critical fixed points in scalar field theory for \(D < 4 \);
2. other theories.

With regards to the first question it is certainly straightforward to identify the Wilson-Fisher fixed point using an \(\epsilon \)-expansion (this has been explicitly checked). Whether any new approximation scheme and/or some refinement of existing approximation schemes is possible within the framework of this paper is left as an open question.

With regards to the second question, there are several major obstructions to applying the methods here to more complicated theories. First of all, recall that if the seed action has interactions then the flow of the dual action picks up an extra term on the right-hand side [see \([24] \)]. In the cases considered in this paper, this term could be dropped, leaving a very simple equation for the dual action. However, in any theory where the two-point function is related to any higher point vertices by some symmetry—including, of course, QED and Yang-Mills theories—the seed action must possess interaction terms, in order that this symmetry be preserved.
by the flow equation. In these situations, the dual action is no longer an invariant of the ERG, and it is hard to see how to proceed. Indeed, if we use a direct generalization of the dual action proposed in this paper for these theories, then it does not even satisfy the right symmetries. (Although in retrospect, it is apparent that what would be the $O(p^2) \times$ nonpolynomial part of the two-point dual action vertex was used to extract the β-function in both QED \cite{24, 35}, SU(N) Yang-Mills \cite{22, 23, 35}, and QCD \cite{46}.) Whether the formalism can be adapted to cope with these issues is also left to the future.

However, there are at least a couple of places where one might be able to apply the techniques of this paper. First of all, it is reasonably straightforward to supersymmetrize the construction and analyze the existence of non-trivial fixed points in theories of a scalar chiral superfield \cite{45}. Actually, using general arguments, it has recently been proven that for an asymptotic safety scenario to exist for the Wess-Zumino model, the associated non-trivial fixed point must have a negative anomalous dimension \cite{46}. This can be ruled out using the methodology of this paper. More generally, an asymptotic safety scenario for theories of a scalar chiral superfield—including those without a three-point contribution to the superpotential—does not exist \cite{45}.

It might also be possible to investigate similar issues in the context of non-commutative scalar field theory. Whilst, from an ERG perspective, we might worry about how to deal with the non-locality inherent in this scenario, it turns out that one can transfer to a matrix basis and construct a matrix version of the Polchinski equation. Indeed, having added a harmonic oscillator term to the action, Grosse and Wulkenhaar used precisely this formalism to demonstrate the perturbative renormalizability of the resulting model \cite{17}. Trivially, then, the dual action can be constructed; the challenge is to understand what the criteria for physical acceptability of (the non-commutative analogue of) fixed points are and what the procedure for constraining η_d becomes, in the matrix base (for a thoroughly Wilsonian approach to noncommutative scalar field theory, see \cite{48}). This could be particularly interesting in light of the claim that there does indeed exist a non-trivial fixed point in the Grosse and Wulkenhaar model \cite{49}.

Acknowledgments

I acknowledge IRCSET for financial support. I would like to thank Denjoe O’Connor for some extremely valuable discussions and also Brian Dolan, Andreas Jüttner, Peter Kopietz, Werner Nahm, Hugh Osborn, Roberto Percacci and Christian Sämann. Thanks must also go to an anonymous referee for several insightful comments.

[1] K. G. Wilson and J. Kogut, “The Renormalization group and the epsilon expansion,” *Phys. Rept.* **12** (1974) 75.
[2] T. R. Morris, “Elements of the continuous renormalization group,” *Prog. Theor. Phys.* **131** (1998) 395, hep-th/9802039.
[3] S. Weinberg, “Ultraviolet Divergences In Quantum Theories Of Gravitation,” in *General Relativity*, S. W. Hawking and W. Israel, eds., p. 790. CUP, 1979.
[4] A. M. Polyakov, “Compact gauge fields and the infrared catastrophe,” *Phys. Lett.* **B 59** (1975) 82.
[5] A. M. Polyakov, “Quark Confinement And Topology Of Gauge Groups,” *Nucl. Phys.* **B 120** (1977) 429.
[6] K. Halpern and K. Huang, “Non-Trivial Directions for Scalar Fields,” *Phys. Rev.* **D 53** (1996) 3252, hep-th/9510128.
[7] T. R. Morris, “On the Fixed-Point Structure of Scalar Fields,” *Phys. Rev. Lett.* **77** (1996) 1658, hep-th/9601128.
[8] T. R. Morris, “Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group,” *Nucl. Phys.* **B 495** (1997) 477, hep-th/9611117.
[9] T. R. Morris, “A manifestly gauge invariant exact renormalization group,” in *The Exact Renormalization Group*, A. Krasnitz et al., eds., p. 1. World Sci., 1999.
[10] F. J. Wegner, “The Critical State, General Aspects,” in *Phase Transitions and Critical Phenomena, Vol.6*, C. Domb and M. S. Green, eds., p. 7. London, 1976.
[11] K. Higashijima and E. Itou, “Unitarity bound of the wave function renormalization constant,” *Prog. Theor. Phys.* **110** (2003) 107, hep-th/0304047.
[12] M. Aizenman, “Proof of The Triviality of φ^4_4 Field Theory and Some Mean Field Features of Ising Models For $d > 4$,” *Phys. Rev. Lett.* **47** (1981) 1.
[13] J. Frohlich, “On The Triviality of $\lambda \varphi^4_4$ Theories and the Approach to the Critical Point in $d \geq 4$ Dimensions,” *Nucl. Phys.* **B 200** (1982) 281.
[14] D. J. E. Callaway, “Triviality Pursuit: Can Elementary Scalar Particles Exist?,” *Phys. Rept.* **167** (1988) 241.
[15] P. Hasenfratz and F. Niedermayer, “Perfect Lattice Action For Asymptotically Free Theories,” *Nucl. Phys.* **B 414** (1994) 785, hep-lat/9308004.
[16] A. Hasenfratz and P. Hasenfratz, “Renormalization Group Study Of Scalar Field Theories,” *Nucl. Phys.* **B 270** (1986) 687 [Helv. Phys. Acta 59 (1986) 833].
[17] T. R. Morris, “On truncations of the exact renormalization group,” *Phys. Lett.* **B 334** (1994) 355, hep-th/9405190.
[18] C. Bagnuls and C. Bervillier, “Exact renormalization group equations: An introductory review,” *Phys. Rept.* **348** (2001) 91, hep-th/0002034.
[19] T. R. Morris, “Noncompact pure gauge QED in 3-D is free,” *Phys. Lett.* **B 357** (1995) 225, hep-th/9503226.
[20] J. Polchinski, “Renormalization And Effective Lagrangians,” *Nucl. Phys.* **B 231** (1984) 269.
14

H. Terao, “Rapidly converging truncation scheme of the exact renormalization group,” Prog. Theor. Phys. 99 (1998) 451, hep-th/9803056

[22] O. J. Rosten, “A manifestly gauge invariant and universal calculus for SU(N) Yang-Mills,” Int. J. Mod. Phys. A 21 (2006) 4627, hep-th/0602229

[23] O. J. Rosten, “General computations without fixing the gauge,” Phys. Rev. D 74 (2006) 125006, hep-th/0604183

[24] O. J. Rosten, “Universality from very general nonperturbative flow equations in QCD,” Phys. Lett. B 645 (2006) 237, hep-th/0601323

[25] O. J. Rosten, “Sensitivity of Nonrenormalizable Trajectories to the Bare Scale,” J. Phys. A 41 (2008) 075406, arXiv:0710.3658 [hep-th]

[26] O. J. Rosten, “A Resummable beta-Function for Massless QED,” Phys. Lett. B 662 (2008) 237, arXiv:0801.2462 [hep-th]

[27] S. Weinberg, The Quantum Theory of Fields II. CUP, 1995.

[28] F. J. Wegner, “Some Invariance Properties of the Renormalization Group,” J. Phys C 7 (1974) 2098.

[29] T. R. Morris and J. L. Latorre, “Exact scheme independence,” JHEP 0011 (2000) 004, hep-th/0008123

[30] L. P. Kadanoff, “Scaling laws for Ising models near T(c),” Physics 2 (1966) 263.

[31] S. Arnone, A. Gatti, and T. R. Morris, “A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory,” Phys. Rev. D 67 (2003) 085003, hep-th/0209162

[32] S. Arnone, T. R. Morris, and O. J. Rosten, “A Generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang-Mills,” Eur. Phys. J. C 50 (2007) 467, hep-th/0507154

[33] T. R. Morris and O. J. Rosten, “A manifestly gauge invariant, continuum calculation of the SU(N) Yang-Mills two-loop beta function,” Phys. Rev. D 73 (2006) 065003, hep-th/0508026

[34] S. Arnone, A. Gatti, T. R. Morris, and O. J. Rosten, “Exact scheme independence at two loops,” Phys. Rev. D 69 (2004) 065009, hep-th/0309242

[35] S. Arnone, T. R. Morris, and O. J. Rosten, “Manifestly gauge invariant QED,” JHEP 0510 (2005) 115, hep-th/0505169

[36] T. R. Morris and O. J. Rosten, “Manifestly gauge invariant QCD,” J. Phys. A 39 (2006) 11657, hep-th/0606189

[37] R. D. Ball, P. E. Haagensen, J. I. Latorre, and E. Moreno, “Scheme Independence And The Exact Renormalization Group,” Phys. Lett. B 347 (1995) 80, hep-th/9411122

[38] S. Arnone, A. Gatti, and T. R. Morris, “Exact scheme independence at one loop,” JHEP 0205 (2002) 059, hep-th/0201237

[39] O. J. Rosten, “A primer for manifestly gauge invariant computations in SU(N) Yang-Mills,” J. Phys. A 39 (2006) 8699, hep-th/0507166

[40] T. R. Morris, “Derivative expansion of the exact renormalization group,” Phys. Lett. B 329 (1994) 241, hep-th/9403340

[41] M. E. Fisher, “Renormalization group theory: Its basis and formulation in statistical physics,” Rev. Mod. Phys. 70 (1998) 653.

[42] K. Pohlmeyer, “The Jost-Schroer Theorem For Zero-Mass Fields,” Commun. Math. Phys. 12 (1969) 204.

[43] K. G. Wilson and T. L. Bell, “Nonlinear Renormalization Groups,” Phys. Lett. B 10 (1974) 3935.

[44] T. R. Morris, “A gauge invariant exact renormalization group. I,” Nucl. Phys. B 573 (2000) 97, hep-th/9910058

[45] O. J. Rosten, “On the Renormalization of Theories of a Scalar Chiral Superfield,” arXiv:0808.2150 [hep-th]

[46] O. J. Rosten, “Constraints on an Asymptotic Safety Scenario for the Wess-Zumino Model,” arXiv:0807.4106 [hep-th]

[47] H. Grosse and R. Wulkenhaar, “Renormalisation of φ^4 theory on noncommutative R^4 in the matrix base,” Commun. Math. Phys. 256 (2005) 305, hep-th/0401128

[48] R. Gurau and O. J. Rosten, “Wilsonian Renormalization of Noncommutative Scalar Field Theory,” arXiv:0902.4888 [hep-th]

[49] M. Disertori, R. Gurau, J. Magnen, and V. Rivasseau, “Vanishing of beta function of non commutative φ^4 theory to all orders,” Phys. Lett. B 649 (2007) 95, hep-th/0612251