Recent results on the cluster structure of light nuclei

F Iachello
Center for Theoretical Physics, Sloane Laboratory,
Yale University, New Haven, Connecticut 06520-8120, USA
E-mail: francesco.iachello@yale.edu

Abstract. A recently developed model (ACM) is introduced and applied to the study of $k\alpha$ structures with $k=2$ (8Be), $k=3$ (12C) and $k=4$ (16O). Evidence for Z_2 ($k=2$), D_3 ($k=3$) and T_d ($k=4$) symmetry is presented. An extension (ACFM) of the model to $k\alpha+x$ (neutrons, protons) structures is briefly mentioned and applied to the study of 7Be ($k=2, x=1$).

1. Introduction

The cluster structure of light nuclei has been the subject of many investigations since the seminal work of Wheeler [1]. Further work of Dennison [2] and others, culminated in the study of Brink [3] who suggested specific geometric configurations for $k\alpha$ nuclei ($k=2$-7) based on “microscopic” calculations, the so-called Brink-Bloch model. Since then, many theoretical approaches have been introduced and used to study cluster properties of light nuclei. Recently, renewed interest in clustering has arisen from new experiments, especially in 12C, where additional states, predicted by cluster models have been observed [4]. A review of recent experimental results is given in These Proceedings [5].

Open questions in cluster physics are: (i) what are the signatures of specific geometric configurations, (ii) are these configurations rigid or soft, (iii) how far clustering extends in excitation energy, and (iv) how far clustering extends in mass number. In order to answer these questions, especially the first two, we have recently developed an algebraic approach to clustering based on the algebraic theory of molecules introduced in 1981 [6]. For $k\alpha$ structures, the approach amounts to a bosonic quantization of the Jacobi variables in terms of the algebra of $U(3k-2)$, where k is the number of constituents. Some results for $k=2$, will be reported in this contribution.

2. Algebraic cluster model (ACM)

This model describes cluster configurations of any type in terms of the Lie algebra $U(3k-2)$. An explicit construction of the algebra has been completed for $k=2,3,4$ and is summarized in Table 1.

k	Nucleus	$U(3k-2)$	Jacobi variables	Discrete symmetry
2α	8Be	$U(4)$ [6,7]	ρ	Z_2
3α	12C	$U(7)$ [8,9]	ρ, λ	D_3
4α	16O	$U(10)$ [10,11,12]	ρ, λ, η	T_d

Table 1. Algebraic description of $k\alpha$ structures
A major advantage of ACM is that it is possible to derive analytical results that provide benchmarks for experiments.

2.1. Energy formulas. For rigid structures, explicit expressions for energy levels in terms of the angular momentum \(L \) and the vibrational quantum numbers \(v_i \) (i=1,2,\ldots), in a semi-classical approximation to ACM, are:

\[
E(v, L) = E_0 + \omega \left(v + \frac{1}{2} \right) + BL(L + 1)
\]

\[
E(v_1, v_2, L, K) = E_0 + \omega_1 \left(v_1 + \frac{1}{2} \right) + \omega_2 (v_2 + 1) + BL(L + 1) + (C - B)(K + 2f_2)^2
\]

\[
E(v_1, v_2, v_3, L) = E_0 + \omega_1 \left(v_1 + \frac{1}{2} \right) + \omega_2 (v_2 + 1) + \omega_3 \left(v_3 + \frac{3}{2} \right) + BL(L + 1)
\]

for \(2\alpha \) (\(Z_2 \)), \(3\alpha \) (\(D_3 \)) and \(4\alpha \) (\(T_d \)) respectively, where the \(\omega \)'s, B and C are parameters.

Spectra are characterized by representations of the discrete group \(G \) and consist in a set of rotation-vibration bands, with specific values of the angular momentum and parity. Representations can be labeled either by \(G \) or by the isomorphic group \(S_n \), the permutation group. The conversion from \(G \) to \(S_n \) is: \(G=Z_2 \sim S_2 \sim P, A \equiv [2]; G=D_3 \sim S_3, A \equiv [3], E \equiv [21]; G=T_d \sim S_4, A \equiv [4], F \equiv [31], E \equiv [22] \).

For \(2\alpha \) with \(Z_2 \) symmetry, the spectrum consists of a set of rotation-vibration bands with A symmetry and \(L^P = 0^+, 2^+, 4^+, \ldots \)

For \(3\alpha \) with \(D_3 \) symmetry, the spectrum consists of a set of rotation-vibration bands with A and E symmetry as shown in Fig.1. For A-representations, the rotational band has \(L^P = 0^+, 2^+, 3^-, 4^+, \ldots \) while for E-representations the rotational band has \(L^P = 1^-, 2^+, 3^+, \ldots \). Note the unusual angular momentum and parity content of the rotational bands and the parity doubling.

\[\text{Figure 1. Allowed states of } 3\alpha \text{ with } D_3 \text{ symmetry}\]

For \(4\alpha \) with \(T_d \) symmetry the spectrum consists of a set of rotation-vibration bands with A, E and F symmetry as shown in Fig.2. For A-representations, the rotational band has \(L^P = 0^+, 3^-, 4^+, 6^+, \ldots \) while for E-representations it has \(L^P = 2^+, 4^+, 5^+, \ldots \) and for F-representations \(L^P = 1^-, 2^+, 3^+, \ldots \). Note again the unusual angular momentum and parity content and the parity doubling.
The occurrence of D_3 symmetry in 12C has been confirmed by recent experiments [4, 13] and is reported in These Proceedings [14]. The occurrence of T_d symmetry in 16O was discussed long ago by Robson [15], and it has been emphasized recently in [12, 16]. The evidence is shown in Fig.3.

2.2. Electromagnetic transition rates. In the rigid limit, explicit expressions for B(EL) values along the ground state band can be derived. They are:
for 2α, 3α and 4α respectively. Here β is the displacement of each α particle from the center of mass and Z is the total charge. These expressions are compared with experiment in Tables 2, 3 and 4 for 8Be ($k=2$), 12C ($k=3$) and 16O ($k=4$). The measured B(EL) values provide strong evidence for close-packed clustering, Z_2, D_3, T_4, in the ground state bands of 8Be, 12C, 16O.

$$B(EL;0 \rightarrow L) = \left(\frac{Ze^2}{2} \right)^2 \frac{2L+1}{4\pi} \left[2 + 2P_l(-1) \right]$$

$$B(EL;0 \rightarrow L) = \left(\frac{Ze^2}{3} \right)^2 \frac{2L+1}{4\pi} \left[3 + 6P_l(-\frac{1}{2}) \right]$$

$$B(EL;0 \rightarrow L) = \left(\frac{Ze^2}{4} \right)^2 \frac{2L+1}{4\pi} \left[4 + 12P_l(-\frac{1}{3}) \right]$$

For 2α, 3α and 4α respectively. Here β is the displacement of each α particle from the center of mass and Z is the total charge. These expressions are compared with experiment in Tables 2, 3 and 4 for 8Be ($k=2$), 12C ($k=3$) and 16O ($k=4$). The measured B(EL) values provide strong evidence for close-packed clustering, Z_2, D_3, T_4, in the ground state bands of 8Be, 12C, 16O.

B(EL;L\rightarrow 0^+)	Th	Exp	E(L\beta)	Th	Exp	
B(E2;2\rightarrow 0^+)	20.4	21±2.3	(23.0(2.5) W.u.)	E(2\beta)	3060	3030
B(E4;4\rightarrow 0^+)	326.1			E(4\beta)	10200	11350

Table 2. B(EL) values and energies in 8Be compared to those expected from Z_2 symmetry. B(EL) values in e2fm2L, E in keV. The theoretical energies are calculated using E(keV)$=510L(L+1)$. The experimental value for $B(E2;2\rightarrow 0^+)$ is estimated from radiative capture [17].

B(EL;L\rightarrow 0^+)	Th	Exp	E(L\beta)	Th	Exp	
B(E2;2\rightarrow 0^+)	9.3	7.6±0.4	(4.65(26) W.u.)	E(2\beta)	4400	4439
B(E3;3\rightarrow 0^+)	84	103±17	(12(2) W.u.)	E(3\beta)	9640	9641
B(E4;4\rightarrow 0^+)	68			E(4\beta)	14670	14080

Table 3. B(EL) values and energies in 12C compared to those expected from D_3 symmetry. B(EL) values in e2fm2L, E in keV. The theoretical energies are calculated using E(keV)$=730L(L+1)$. The value of $\beta=1.9$fm is estimated from the elastic form factor measured in electron scattering.

B(EL;L\rightarrow 0^+)	Th	Exp	E(L\beta)	Th	Exp	
B(E3;3\rightarrow 0^+)	181	205±10	(13.6(7) W.u.)	E(3\beta)	6132	6130
B(E4;4\rightarrow 0^+)	338	378±133	(3.7(1.3) W.u.)	E(4\beta)	10220	10356
B(E6;6\rightarrow 0^+)	8245			E(6\beta)	21462	21052

Table 4. B(EL) values and energies in 16O compared to those expected from T_4 symmetry. B(EL) values in e2fm2L, E in keV. The theoretical energies are calculated from E(keV)$=511L(L+1)$. The value of $\beta=2.0$fm is extracted from the elastic form factor in electron scattering.

2.3. Form factors in electron scattering. In the rigid limit and semi-classical approximation, the form factors are given by $F_{L}(0 \rightarrow L)=c_{L}(\beta \beta)$. A discussion of these form factors and comparison with experiment is given in the accompanying contribution of Bijker [18].

3. Current work
An important question is to what extent clustering persists when additional particles are added to $k\alpha$ structures. To this end we have initiated a study of $k\alpha+x$ neutrons (protons) structures (ACFM model). These structures were suggested by von Oertzen [19] and have been the subject of many investigations. The ACM offers a simple way to calculate single particle levels in a field with discrete symmetry on top of which rotation-vibration bands are built. Calculations are currently being done [20] for 7Be, 7B.
(2α+1neutron, proton); 13C, 13N (3α+1neutron, proton); and 17O, 17F (4α+1 neutron, proton). Preliminary results for cluster rotational bands in 9Be are shown in Fig.4. It should be noted that no additional parameter is required in the calculation except for the value $β=2.6$ fm. This value is larger than the value $β=2.0$ fm obtained from the moment of inertia of 8Be due to the finite extent of the nucleon-alpha interaction.

Figure 4. Cluster rotational bands in 9Be

4. Summary and conclusions
A model based on symmetry has been developed (ACM) within which one can derive analytic expressions for energy levels, electromagnetic transition rates and form factors in kα nuclei. Evidence has been presented for k=2, 3, 4 (8Be, 12C, 16O). Clustering appears to be robust for the ground state band and somewhat soft for vibrational bands. A model (ACFM) is currently being developed to derive analytic expressions for energy levels and electromagnetic transition rates in kα+x (neutrons, protons). Evidence has been presented for k=2, x=1. The development of ACM and ACFM opens the way for a renewed study of clustering in light nuclei.

Current answers to the questions posed in the introduction are: (i) signatures of clustering are properties of spectra and electromagnetic transition rates, especially parity doubling, unusual structures of rotational bands, and enhanced E2, E3, E4, E5, ... transition rates; (ii) clustering appears to extend at least to angular momentum J=6 in k=2, 3, 4 systems and up to excitation energies of the order of 25MeV; (iii) clustering appears to extend to A=16; (iv) clustering appears to survive the coupling of fermions, at least up to x=1.

Acknowledgements
This work was supported in part by U.S.D.O.E. Grant DE-FG02-91ER40608.

References
[1] Wheeler JA 1937 Phys. Rev. 52 1083
[2] Dennison DM 1954 Phys. Rev. 96 378
[3] Brink DM 1965 Proc. Int. School of Physics Enrico Fermi, Course XXXVI, 247
Brink DM, Friedrich H, Weiguny A and Wong CW 1970 Phys. Lett. B 33 143
[4] Marin-Lambbari et al 2014 Phys. Rev. Lett. 113 012502
[5] Beck C 2016 These Proceedings
[6] Iachello F 1981 Chem. Phys. Lett. 78 581
[7] Iachello F 1981 Phys. Rev. C 23 2778 (R)
[8] Bijker R and Iachello F 2000 Phys. Rev. C 61 067305
[9] Bijker R and Iachello F 2002 Ann. Phys. (N.Y.) 298 334
[10] Bijker R 2010 AIP Conf. Proc. 1323 28
[11] Bijker R 2012 J. Phys.: Conf. Series 380 012003
[12] Bijker R and Iachello F 2014 Phys. Rev. Lett. 112 152501
[13] Freer M et al 2011 Phys. Rev. C 83 034314
[14] Gai M 2016 These Proceedings
[15] Robson D 1978 Nucl. Phys. A 308 381; Robson D 1979 Phys. Rev. Lett. 42 876
Robson D 1982 Phys Rev. C 25 1108 (R)
[16] Bijker R and Iachello F 2016 in preparation
[17] Daker DM et al 2013 Phys. Rev. Lett. 111 062502
[18] Bijker R 2016 These Proceedings
[19] von Oertzen W 1996 Z. Phys. A 354 37; von Oertzen W 1997 Z. Phys. A 357 355
[20] Della Rocca V and Iachello F 2016 in preparation