Brown-Sequard syndrome associated with a spinal cord injury caused by a retained screwdriver: A case report and literature review

Muthanna N. Abdulqader, Mustafa Ismail, Aktham O. Al-Khafaji, Teeba A. Al-Ageely, Zahraa M. Kareem, Ruqayah A. Al-Baider, Sama S. Albairmani, Fatimah Ayad, Samer S. Hoz

1Department of Neurosurgery, Neurosurgery Teaching Hospital, 2Department of Neurosurgery, University of Baghdad, College of Medicine, 3Department of Neurosurgery, University of Al-Iraqia, College of Medicine, Baghdad, Iraq, 4Department of Neurosurgery, University of Cincinnati, Cincinnati, United States.

E-mail: Muthanna N. Abdulqader - muthana1987@gmail.com; Mustafa Ismail - mustafalorance2233@gmail.com; Aktham O. Al-Khafaji - akthamalkhafaji@gmail.com; Teeba A. Al-Ageely - tbeaalageely@gmail.com; Zahraa M. Kareem - zahraa1999majeed@gmail.com; Ruqayah A. Al-Baider - rruqqayaayaa@gmail.com; Sama S. Albairmani - sama.sa909090@gmail.com; Fatimah Ayad - fatimahh.ayadd@gmail.com; *Samer S. Hoz - hozsamer2055@gmail.com

ABSTRACT

Background: Nonmissile penetrating spine injury (NMPSI) represents a small percent of spinal cord injuries (SCIs), estimated at 0.8% in Western countries. Regarding the causes, an NMPSI injury caused by a screwdriver is rare. This study reports a case of a retained double-headed screwdriver in a 37-year-old man who sustained a stab injury to the back of the neck, leaving the patient with a C4 Brown-Sequard syndrome (BSS). We discuss the intricacies of the surgical management of such cases with a literature review.

Methods: PubMed database was searched by the following combined formula of medical subjects headings, (MESH) terms, and keywords: ((SCIs [MeSH Terms]) OR (nmpsi [Other Term]) OR (nonmissile penetrating spinal injury [Other Term]) OR (nonmissile penetrating spinal injury [Other Term])) AND (BSS [MeSH Terms]) OR (BSS [MeSH Terms]).

Results: A total of 338 results were found; 258 were case reports. After excluding nonrelated cases, 16 cases were found of BSS induced by spinal cord injury by a retained object. The male-to-female ratio in these cases is 11:5, and ages ranged from 11 to 72. The causes of spinal cord injury included screwdrivers in three cases, knives in five cases, and glass in three cases. The extracted data were analyzed.

Conclusion: Screwdriver stabs causing cervical SCIs are extremely rare. This is the first case from Iraq where the assault device is retained in situ at the time of presentation. Such cases should be managed immediately to carefully withdraw the object under direct vision and prevent further neurological deterioration.

Keywords: Brown-Sequard syndrome, Retained foreign body, Screwdriver, Spinal cord injury

INTRODUCTION

Nonmissile penetrating spine injury (NMPSI) represents a very small percent of spinal cord injuries (SCI), estimated at 0.8% in Western countries, but can go up to 26% in countries like South Africa where the rates of street violence are high.[27,32] These injuries mainly affect the lower cervical and upper thoracic region.[40] An NMPSI injury caused by a screwdriver is rare.[31] Two
large South African studies involving cohorts of 130 and 450 individuals with spine stab wounds provide the most evidence for this entity.\cite{22,28} There are rare case reports and small series in the literature.\cite{4,12,29,35} Brown-Sequard syndrome (BSS) is a pattern of incomplete SCI where hemisection of the spinal cord manifests as ipsilateral paresis and loss of vibration and proprioception at the level of injury, with contralateral loss of pain and temperature sensation 2–3 levels below the injury.\cite{1,25} It represents about 17% of incomplete cord injuries.\cite{24}

Patients with traumatic BSS generally have the best outcomes of any type of SCI, and 75–90% of those patients ambulate within 1 month of inpatient rehabilitation.\cite{24,30}

The authors report a case of a retained double-headed screwdriver in a 37-year-old man who sustained a stab injury to the back of the neck, leaving the patient with a C4 BSS. We discuss the intricacies of the surgical management of such cases with a literature review of the related cases.

CASE PRESENTATION

A 37-year-old male presented to the emergency department after an assault and injury to the back of the neck with a double-headed screwdriver while the patient was leaning forward [Figure 1]. The screwdriver inlet was a few centimeters left to the midline area at the level of C4 vertebra. The injury was caused by the flathead while the star head remained outside.

On examination, the patient was alert with a GCS of 15, laying in a prone position; the screwdriver was impacted in the back of the neck and hardly fixed, with minor bleeding around the inlet. The patient had right-sided hemiplegia (upper and lower limbs), Medical Research Council Grade 0/5 with loss of vibration and proprioception on the same side, and loss of pain and temperature sensation on the contralateral side of the body (Brown-Sequard injury), and urinary retention, which necessitated the insertion of a Foley catheter.

Cervical computed tomography (CT) scan showed the screwdriver going through the right lamina of C4 and entering the dura and the spinal cord, the tip reaching just medial to the transverse foramen of C4 [Figure 2].

The patient was taken to the operating room immediately. Under general anesthesia (tube in a lateral position), surgical exploration was performed by a midline skin incision from C1 to C7 with dissection of the fascia and muscle to reach the screwdriver entrance. C4–C5 laminectomy was performed, the ligamentum flavum was removed [Figure 3a], and the midline dural damage was discovered and surgically expanded. The screwdriver was progressively withdrawn parallel to the entrance tract under direct vision, and right hemi-cord damage was noticed [Figure 3b]. Surgicel® was used to manage minor bleeders, the canal was cleaned, and hair and debris were removed, the dura was closed watertight followed by multilayer skin closure.

Figure 1: Stabbing in the back of the neck with the screwdriver, with the point of entry just left of the midline.

Figure 2: (a) Sagittal computed tomography (CT) of the cervical spine indicates the position of the tip of the screwdriver at the level of C4. (b) Axial CT of cervical spine scan demonstrating the screwdriver going through the right lamina and entering the dura and the spinal cord, the tip reaching just medial to the lateral mass and transverse foramen.

Figure 3: (a) Laminectomy of C4-C5 was done, ligamentum flavum was removed, and dural injury was seen in the midline. (b) Following the removal of the screwdriver, damaged tissue of the cord can be seen at the site of injury.
Postoperatively, motor function on the right side of the body improved (upper limb Grade 2 and lower limb Grade 3). Seven days later, the right-sided weakness improved to Grade 3 in the upper limb and Grade 4 in the lower limb, and the urine catheter was removed as the patient regained urinary continence. However, there was no improvement in sensation. The postoperative cervical spine magnetic resonance imaging (MRI) revealed a mixed-intensity lesion in the posterior aspect of the spinal cord at the level of injury, suggesting a spinal cord contusion [Figure 4]. The patient was discharged home. Follow-up and physiotherapy were arranged.

LITERATURE REVIEW

Methods

We conducted a PubMed database search by the following combined formula of medical subject headings, [MESH] terms, and keywords: (((SCIs [MeSH Terms]) OR (nmpsi [Other Term]) OR (nonmissile penetrating spinal injury [Other Term]) OR (nonmissile penetrating spinal injury [Other Term])) AND (BSS [MeSH Terms])) OR (BSS [MeSH Terms]).

RESULTS

A total of 338 results were found; 258 were case reports. By excluding cases of nonretained objects causing spinal cord injury at the time of presentation, and the cases with noninjury induced BSS, we have found 16 reported cases of BSS induced by spinal cord injury by a retained object.

The male-to-female ratio in these cases is 11:5, and ages ranged from 11 to 72. The causes of spinal cord injury included screwdrivers in three cases, knives in five cases, and glass in three cases. Other objects included; sunglasses, dart, iron fence, and Kirschner wire. Thirteen of the reported cases were managed by an operative procedure to decompress the spinal cord and retrieve the causative objects, and two of the cases were conservatively treated.

Improvement was observed during the follow-up period in 12 of the reported cases, while three of the cases reported no improvement in motor and sensory functions or deterioration postoperatively [Table 1].

DISCUSSION

In 1977, Peacock et al. reported a total of 450 spinal cord stab injuries, a publication that remains the major study on the subject thus far. About 26% of all spine assaults they managed over 13 years were attributed to stab injuries. Knives were most frequently used (84.2%), followed by axes, screwdrivers, bicycle spokes, scissors, garden forks, sickles, and sharpened broomsticks. Other reported culprits of NMPSI include: pencils and splinters. Instead of cutting, knives are typically withdrawn after the assault and seldom lodge into bones. Hence, knives are rarely documented as a retained foreign body, while screwdrivers are well established.

When the penetrating object is left in place, as in the present case, certain aspects of managing such injuries become quite
Table 1: The reported cases of retained spinal cord injury causing BSS, according to the injury site, management, and outcome.

Author/year	Age/Gender	Stage of BSS/manifestations	Injury site	Injury cause	Management	Symptom outcome
Singh et al., 1995	45/M*	Impaired motor function, muscle tone, sensation, and reflexes on the left side	T1	Knife	Surgical intervention with retrieval of the knife	Improvement of the motor function, with analgesia and impaired joint position
Loncán et al., 1998	22/M	BSS***	T2-T3	Kirschner wire Knife	Surgical intervention	Improvement
Blackburn et al., 2002	27/M	BSS	-	Knife	-	-
Gray et al., 2003	30/M	BSS at the level of C2 along with a visual field defect due to injury of the optic nerves	C1-C2	Sunglasses temple (arm)	Surgical intervention for the retrieval of the temple	Improvement of vision with persistence of motor function defect. Slight improvement of motor function with physical therapy. Improvement in the motor function with persistence of sensory deficit
Jones et al., 2005	17/F**	BSS, 1/5 motor function in the right lower limb, with a sensory deficit on the left side	C3-C4	Dart	Surgical intervention for the retrieval of the dart	Surgical intervention
Ye et al., 2010	54/M	BSS	T5	Iron fence	Surgical intervention	
Giner Pascual et al., 2011	35/F	BSS at C5 on the right side	C7	Knife	Surgical intervention for the retrieval of the knife	Improvement of the motor function, with analgesia and impaired joint position
Rabiu et al., 2011	52/M	BSS	C4-C5	Screwdriver	Lamincotomy surgical intervention to remove the blade	No improvement in the motor function with physical therapy. No improvement
Ceruti and Previsdomini, 2012	72/F	Asymptomatic, she was alert, quiet, and calm and clinical examination revealed neither cardiorespiratory nor neurological deficit	T1	Knife	Surgical intervention	Slight improvement in the motor function, no improvement.
Komarowska et al., 2013	11/F	BSS	T11-T12	Glass	Surgical approach	Slight improvement in the motor function, no improvement.
Beer-Furlan et al., 2014	34/M	BSS with Grade 4 motor deficit in the left leg	T5-T6	Screwdriver	Surgical intervention	Improvement in the motor function, no improvement.
Amendola et al., 2014	35/M	BSS	T5	Glass	Conservative	Improvement in the motor function, no improvement.
Amendola et al., 2014	45/F	BSS	C5-C6	Knife	Surgery intervention to retrieve the knife	No improvement in the motor function, no improvement.
Meena et al., 2016	20/M	BSS	T12	Screwdriver	Surgical intervention for the retrieval of the screwdriver	Improvement in the motor function.
Jesmanas et al., 2018	50/M	Weakness and sensory loss in the lower limb	C6-C7	Glass chip	Conservative treatment due to the risks of surgery	Slight improvement in the motor function.
Rodriguez-Quintero et al., 2020	38/M	BSS	Back (unspecified)	Screwdriver	Surgical intervention	Improvement

*M: Male, **F: Female, ***BSS: Brown-Sequard syndrome

challenging, such as patient transfer and positioning. Avoiding withdrawal or the slightest movement of retained objects before obtaining imaging and consultation is necessary. A complete neurological assessment must be done immediately to monitor any further neurological damage caused by patient handling, hemorrhage, or infection. Secondary injuries, including vascular injuries, must be ruled out, mainly following stabs to the cervical and dorsal spine. [38]
The imaging modality of choice in NMPSI is a CT scan, which has a high sensitivity for foreign bodies, spinal hematomas, and bony fractures. In emergency settings, a CT scan is also preferred due to its short acquisition time. MRI is not recommended in the case of retained metallic objects, as it can worsen the deficits, incite movement of the metallic foreign body, and even heat it, causing thermal injury to the spinal cord and surrounding structures. Vascular imaging, such as CT or conventional angiography, should be considered when the injury is in proximity to the vertebral vessels or the aorta, as was the case in our patient. However, no vascular imaging modalities were available at the time of presentation.

Operative management is somewhat controversial when it comes to NMPSI. Surgical exploration must be attempted in incomplete neurological deficits, spinal instability, retained foreign body, persistent leakage of cerebrospinal fluid (CSF), CSF fistula, and persistent pain. In cases of retained objects, immediate exploration is advised to avoid any infections and neurological deterioration. Retained materials must be removed in a theater equipped for dural repair or spine stabilization. In the absence of CSF leakage, exploration of the spinal canal should not be attempted, as laminectomy carries a high risk of dural injury. Care should be taken throughout the procedures to avoid manipulating the retained object and causing further neurological damage. Slow, careful removal of the screwdriver should be achieved in a straight line parallel to the entry trajectory, avoiding any sideways manipulation that can worsen the arc of injury to the spinal cord.

In our case, the operation decision was straightforward, as the screwdriver was retained. Surgical exploration was challenging to remove the object safely under direct vision without altering the neurological status and to prevent any possible secondary damage. The complications may include bleeding from epidural venous plexus, spinal traction injury, and CSF leakage.

According to Meena et al., the literature only documents five cases of BSS in the setting of retained foreign material in penetrating SCIs, with their case being the sixth reported up to the time of its publication. Three of the cases were due to screwdriver injury, and only one case involved the cervical spine. All cases were managed immediately, and surgical exploration to remove the retained object was the established practice. Other reported cases of Brown-Sequard due to penetrating injury were managed similarly. Late complications following incomplete spinal cord injury due to retained foreign objects may occur, including intramedullary abscess, myelopathy, progressive neurological deterioration, and symptomatic pseudomeningocele.

In penetrating spinal injuries resulting in BSS, the prognosis relies on the severity, extent of damage to the spinal cord, and whether it has an associated secondary (i.e., vascular) injury. Generally speaking, BSS carries the most favorable prognosis among all SCI syndromes. The prognosis following penetrating trauma is less favorable than that following blunt trauma. However, regardless of the etiology of BSS, marked improvement in motor and bladder control functions can be expected within a few days, which slows down but continues over a period of up to 2 years. About 75–90% of patients are ambulatory within 1 month of rehabilitation, mainly when the initial weakness is upper limb predominant. In summary, this is the first case from Iraq where the assault device is retained in situ at the presentation time. Neurological deterioration can be prevented by managing such cases immediately by carefully withdrawing the object under direct vision.

CONCLUSION

Cervical SCIs caused by screwdriver stabs are extremely rare occurrences. We report the first such case from Iraq, where the assault device is retained in situ at the time of presentation. Such cases must be operated on immediately to carefully withdraw the object under direct vision and prevent further neurological deterioration and catastrophic outcomes.

Declaration of patient consent

Patient’s consent not required as patient’s identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Amendola L, Corghi A, Cappuccio M, De Iure F. Two cases of Brown-Séquard syndrome in penetrating spinal cord injuries. Eur Rev Med Pharmacol Sci 2014;18:2-7.
2. Beer-Furlan AL, Paiva WS, Tavares WM, de Andrade AF, Teixeira MJ. Brown-Sequard syndrome associated with unusual spinal cord injury by a screwdriver stab wound. Int J Clin Exp Med 2014;7:316-9.
3. Bhatoe HS. Stabbed in the back. Indian J Neurotrauma 2007;4:9-10.
4. Bhutta MA, Dunkow PD, Lang DM. A stab in the back with a screwdriver: A case report. Cases J 2008;1:305.
5. Blackburn D, Werring DJ, Connor SE, Munro N, Bajaj NP. An eponymous reaction to a knife wound. Postgrad Med J 2002;78:376, 379-80.
6. Boukobza M, Guichard JP, Boissonet M, George B, Reizine D, Gelbert F, et al. Spinal epidural haematoma: Report of 11 cases and review of the literature. Neuroradiology 1994;36:456-9.
7. Boyle EM Jr., Maier RV, Salazar JD, Kovacich JC, O’Keefe G,
Mann FA, et al. Diagnosis of injuries after stab wounds to the back and flank. J Trauma 1997;42:260-5.
8. Ceruti S, Previsdomini M. Traumatic Brown-Séquard syndrome. J Emerg Trauma Shock 2012;5:371-2.
9. de Villiers JC, Grant AR. Stab wounds at the craniocervical junction. Neurosurgery 1985;17:930-6.
10. Evans RJ, Richmond JM. An unusual death due to screwdriver impalement: A case report. Am J Forensic Med Pathol 1996;17:70-2.
11. Giner Pascual M, Alcácer VS, Pomares MV, Alberola MA. Brown-Séquard-plus syndrome after a stab injury. NeuroRehabilitation 2011;29:353-7.
12. Goyal RS, Goyal NK, Salunke P. Non-missile penetrating spinal injuries. Indian J Neurotrauma 2009;6:81-4.
13. Gray TL, Karagiannis A, Crompton JL, Selva D. Self-inflicted blindness and Brown-Séquard syndrome. J Neuroophthalmol 2003;23:154-6.
14. Jesmanas N, Norvainyté K, Gleiznienė R, Mačionis A. Retained glass fragment in the cervical spinal canal in a patient with acute transverse myelitis: A case report and literature review. Case Rep Neurol Med 2018;2018:5129513.
15. Jones FD, Woosley RE. Delayed myelopathy secondary to retained intraspinal metallic fragment. Case report. J Neurosurg 1981;55:979-82.
16. Jones FK, Babalola E, Eltayeb O, Texeira A. Blowdart injury resulting in Brown-Séquard plus syndrome. Am Surg 2005;71:1075-7.
17. Karlinis NL, Marmolya G, Snow N. Computed tomography for the evaluation of knife impalement injuries: Case report. J Trauma 1992;32:667-8.
18. Kim HS, Ko K. Penetrating trauma of the posterior fossa resulting in Vernet’s syndrome and internuclear ophthalmoplegia. J Trauma 1996;40:647-9.
19. Kocael H, Tafikapilio MO, Bekar LA. Stab injury of the thoracic spinal cord: Case report. Turk Neurosurg 2008;18:298-301.
20. Komarowska M, Debek W, Wojnar JA, Hermanowicz A, Rogalski M. Brown-Séquard syndrome in a 11-year-old girl due to penetrating glass injury to the thoracic spine. Eur J Orthop Surg Traumatol 2013;23 Suppl 2:S141-3.
21. Kulikarni AV, Bhandari M, Stiver S, Reddy K. Delayed presentation of spinal stab wound: Case report and review of the literature. J Emerg Med 2000;18:209-13.
22. Lipschitz R, Block J. Stab wounds of the spinal cord. Lancet 1962;2:169-72.
23. Loncán LI, Sempere DF, Ajuria JE. Brown-Sequard syndrome caused by a Kirschner wire as a complication of clavicular osteosynthesis. Spinal Cord 1998;36:797-9.
24. McKinley W, Santos K, Meade M, Brooke K. Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med 1998;21:169-72.
25. Meena US, Kataria R, Sharma K, Sardana VR. Penetrating spinal cord injury with screwdriver in situ, leading to Brown-Sequard syndrome. J Neurosci Rural Pract 2016;7:324-7.
26. Meltzer HS, Kim PJ, Ozgur BM, Levy ML. Vertebral body granuloma of the cervical region after pencil injury. Neurosurgery 2004;54:1527-9.
27. Moulton C, Crawford R, Swann IJ. Cutaneous leakage of cerebrospinal fluid following a stab wound to the back. Injury 1994;25:118-9.
28. Peacock WJ, Shrosbree RD, Key AG. A review of 450 stabwounds of the spinal cord. S Afr Med J 1977;51:961-4.
29. Prasad MK, Sinha AK, Bhadani UK, Chabra B, Rani K, Srivastava B. Management of difficult airway in penetrating cervical spine injury. Indian J Anaesth 2010;54:59-61.
30. Priban V, Fiedler J. Spinal cord stab injury associated with modified Brown-Séquard syndrome symptoms-a case review and literature overview. Rozhl Chir 2010;89:220-2.
31. Rabiu TB, Areemu AA, Amao OA, Awoloko JO. Screwdriver: An unusual cause of cervical spinal cord injury. BMJ Case Rep 2011;2011:bcr0620114309.
32. Ritchie DA. Stab injury to the lumbar spine. Br J Hosp Med 1993;49:574-5.
33. Rodríguez-Quintero JH, Romero-Velez G, Pereira X, Kim PK. Traumatic Brown-Séquard syndrome: Modern reminder of a neurological injury. BMJ Case Rep 2020;2020:e236131.
34. Rubin G, Tallman D, Sagan L, Melgar M. An unusual stab wound of the cervical spinal cord: A case report. Spine (Phila Pa 1976) 2001;26:444-7.
35. Schulz F, Colmant HJ, Trübker N. Penetrating spinal injury inflicted by screwdriver: Unusual morphological findings. J Clin Forensic Med 1995;2:153-5.
36. Singh P, Sarup S, Singh AP, Sharma AK. Non missile penetrating injury of spine with retained foreign body. Med J Armed Forces India 1999;55:348-50.
37. Smrkolj V, Balazic J, Princic J. Intracranial injuries by a screwdriver. Forensic Sci Int 1995;76:211-6.
38. Thakur RC, Khosla VK, Kak VK. Non-missile penetrating injuries of the spine. Acta Neurochir (Wien) 1991;113:144-8.
39. Tutton MG, Chitnavis B, Stell IM. Screwdriver assaults and intracranial injuries. J Accid Emerg Med 2000;17:225-6.
40. Wallace DJ, Sy C, Peitz G, Grandhi R. Management of non-missile penetrating spinal injury. Neurosurg Rev 2019;42:791-8.
41. Wirz M, Zörner B, Rupp R, Dietz V. Outcome after incomplete spinal cord injury: Central cord versus Brown-Sequard syndrome. Spinal Cord 2010;48:407-14.
42. Wright RL. Intramedullary spinal cord abscess. Report of a case secondary to stab wound with good recovery following operation. J Neurosurg 1965;23:208-10.
43. Ye TW, Jia LS, Chen AM, Yuan W. Brown-Séquard syndrome due to penetrating injury by an iron fence point. Spinal Cord 2010;48:582-4.

How to cite this article: Abdulqader MN, Ismail M, Al-Khafaji AO, Al-Ageely TA, Kareem ZM, Al-Bairder RA, et al.: Brown-Sequard syndrome associated with a spinal cord injury caused by a retained screwdriver: A case report and literature review. Surg Neurol Int 2022;13:520.