Some results on relative dual Baer property

Tayyebeh Amouzegar, Rachid Tribak

Abstract: Let R be a ring. In this article, we introduce and study relative dual Baer property. We characterize R-modules M which are R-R-dual Baer, where R is a commutative principal ideal domain. It is shown that over a right noetherian right hereditary ring R, an R-module M is N-dual Baer for all R-modules N if and only if M is a direct summand of M. It is also shown that for R-modules M_1, M_2, \ldots, M_n such that M_i is M_j-projective for all $i > j \in \{1, 2, \ldots, n\}$, an R-module N is $\bigoplus_{i=1}^{n} M_i$-dual Baer if and only if N is M_i-dual Baer for all $i \in \{1, 2, \ldots, n\}$. We prove that an R-module M is dual Baer if and only if $S = \text{End}_R(M)$ is a Baer ring and $IM = r_M(l_S(IM))$ for every right ideal I of S.

2010 MSC: 16D10, 16D80

Keywords: Baer rings, Dual Baer modules, Relative dual Baer property, Homomorphisms of modules

1. Introduction

Throughout this paper, R will denote an associative ring with identity, and all modules are unitary right R-modules. Let M be an R-module. We will use the notation $N \ll M$ to indicate that N is small in M (i.e., $L + N \neq M$ for every proper submodule L of M). By $E(M)$ and $\text{End}_R(M)$, we denote the injective hull of M and the endomorphism ring of M, respectively. By \mathbb{Q}, \mathbb{Z}, and \mathbb{N} we denote the set of rational numbers, integers and natural numbers, respectively. For a prime number p, $\mathbb{Z}(p^\infty)$ denotes the Prüfer p-group.

The concept of Baer rings was first introduced in [6] by Kaplansky. Since then, many authors have studied this kind of rings (see, e.g., [2] and [3]). A ring R is called Baer if the right annihilator of any nonempty subset of R is generated by an idempotent. In 2004, Rizvi and Roman extended the notion of Baer rings to a module theoretic version [10]. According to [10], a module M is called a Baer module if for every left ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14]. A module M is said to be dual Baer if for every right ideal I of $\text{End}_R(M)$, $\bigcap_{\phi \in I} \ker \phi$ is a direct summand of M. This notion was recently dualized by Keskin Tütüncü-Tribak in [14].
\[I \text{ of } S = \text{End}_R(M), \sum_{\phi \in I} \text{Im} \phi \text{ is a direct summand of } M. \] Equivalently, for every nonempty subset \(A \) of \(S \), \(\sum_{\phi \in A} \text{Im} \phi \) is a direct summand of \(M \) (see [14, Theorem 2.1]).

A module \(M \) is said to be \textit{Rickart} if for any \(\varphi \in \text{End}_R(M) \), \(\text{Ker} \varphi \) is a direct summand of \(M \) (see [7]). The notion of dual Rickart modules was studied recently in [8] by Lee-Rizvi-Roman. A module \(M \) is said to be \textit{dual Rickart} if for every \(\varphi \in \text{End}_R(M) \), \(\text{Im} \varphi \) is a direct summand of \(M \). In [8], it was introduced the notion of relative dual Rickart property which was used in the study of direct sums of dual Rickart modules. Let \(N \) be an \(R \)-module. An \(R \)-module \(M \) is called \textit{\(N \)-dual Rickart} if for every homomorphism \(\varphi : M \rightarrow N \), \(\text{Im} \varphi \) is a direct summand of \(N \) (see [8]). Similarly, we introduce in this paper the concept of relative dual Baer property. A module \(M \) is called \textit{\(N \)-dual Baer} if for every subset \(A \) of \(\text{Hom}_R(M, N) \), \(\sum_{f \in A} \text{Im} f \) is a direct summand of \(N \). It is clear that if \(M \) is \(N \)-dual Baer, then \(M \) is \(N \)-dual Rickart.

We determine the structure of modules \(M \) which are \(R_R \)-dual Baer for a commutative principal ideal domain \(R \) (Proposition 2.7). Then we show that for an \(R \)-module \(M \), \(R_R \) is \(M \)-dual Baer if and only if \(M \) is a semisimple module (Proposition 2.9). It is shown that over a right noetherian right hereditary ring \(R \), an \(R \)-module \(M \) is \(N \)-dual Baer for all \(R \)-modules \(N \) if and only if \(M \) is an injective \(R \)-module (Corollary 2.17). We prove that if \(\{M_i\}_i \) is a family of \(R \)-modules, then for each \(j \in I \), \(\bigoplus_{i \in I} M_i \) is \(M_j \)-dual Baer if and only if \(M_i \) is \(M_j \)-dual Baer for all \(i \in I \) (Corollary 2.24). It is also shown that for \(R \)-modules \(M_1, M_2, \ldots, M_n \) such that \(M_i \) is \(M_j \)-projective for all \(i > j \in \{1, 2, \ldots, n\} \), an \(R \)-module \(N \) is \(\bigoplus_{i=1}^n M_i \)-dual Baer if and only if \(M_i \) is \(M_j \)-dual Baer for all \(i \in \{1, 2, \ldots, n\} \) (Theorem 2.25). We conclude this paper by showing that an \(R \)-module \(M \) is dual Baer if and only if \(S = \text{End}_R(M) \) is a Baer ring and \(IM = \tau_M(l_S(I)) \) for every right ideal \(I \) of \(S \), where \(l_S(I) = \{ \varphi \in S \mid \varphi I = 0 \} \), \(r_M(l_S(I)) = \{ m \in M \mid l_S(I)m = 0 \} \) and \(IM = \sum_{f \in I} \text{Im} f \) (Theorem 2.31).

2. Main results

Definition 2.1. Let \(N \) be an \(R \)-module. An \(R \)-module \(M \) is called \textit{\(N \)-dual Baer} if, for every subset \(A \) of \(\text{Hom}_R(M, N) \), \(\sum_{f \in A} \text{Im} f \) is a direct summand of \(N \).

Obviously, an \(R \)-module \(M \) is dual Baer if and only if \(M \) is \(M \)-dual Baer.

Example 2.2. (1) Let \(N \) be a semisimple \(R \)-module. Then for every \(R \)-module \(M \), \(M \) is \(N \)-dual Baer.

(2) If \(M \) and \(N \) are \(R \)-modules such that \(\text{Hom}_R(M, N) = 0 \), then \(M \) is \(N \)-dual Baer. It follows that for any couple of different maximal ideals \(m_1 \) and \(m_2 \) of a commutative noetherian ring \(R \), \(E(R/m_1) \) is \(E(R/m_2) \)-dual Baer (see [12, Proposition 4.21]).

(3) Let \(p \) be a prime number. Note that \(\mathbb{Z}/p\mathbb{Z} \) and \(\mathbb{Z}(p^\infty) \) are dual Baer \(\mathbb{Z} \)-modules. On the other hand, it is clear that \(\mathbb{Z}(p^\infty) \) is \(\mathbb{Z}/p\mathbb{Z} \)-dual Baer but \(\mathbb{Z}/p\mathbb{Z} \) is not \(\mathbb{Z}(p^\infty) \)-dual Baer.

Recall that a module \(M \) is said to have the \textit{strong summand sum property}, denoted briefly by \(\text{SSSP} \), if the sum of any family of direct summands of \(M \) is a direct summand of \(M \).

Following [8, Definition 2.14], a module \(M \) is called \textit{\(N \)-d-Rickart} if, for every homomorphism \(\varphi : M \rightarrow N \), \(\text{Im} \varphi \) is a direct summand of \(N \).

Proposition 2.3. Let \(M \) and \(N \) be two \(R \)-modules. If \(M \) is \(N \)-dual Baer, then \(M \) is \(N \)-d-Rickart. The converse holds when \(N \) has the \(\text{SSSP} \).

Proof. This follows from the definitions of “\(M \) is \(N \)-d-Rickart” and “\(M \) is \(N \)-dual Baer”.

The next example shows that the assumption “\(N \) has the \(\text{SSSP} \)” is not superfluous in Proposition 2.3.

Example 2.4. Let \(R \) be a von Neumann regular ring which is not semisimple (e.g., \(R = \prod_{l=1}^\infty \mathbb{Z}/2\mathbb{Z} \)). By [8, Proposition 2.26], the \(R \)-module \(R_R \) does not have the \(\text{SSSP} \). On the other hand, \(R_R \) is \(R_R \)-d-Rickart, but it is not \(R_R \)-dual Baer (see [14, Corollary 2.9] and [8, Remark 2.2]).
Proposition 2.5. Let N be an indecomposable R-module. Then the following conditions are equivalent for an R-module M.

(i) M is N-dual Baer;

(ii) M is N-d-Rickart;

(iii) Every nonzero $\varphi \in \text{Hom}_R(M, N)$ is an epimorphism.

Proof. (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are clear.

(ii) \Rightarrow (iii) Let $0 \neq \varphi \in \text{Hom}_R(M, N)$. By assumption, $\text{Im}\varphi$ is a direct summand of N. But N is indecomposable. Then $\text{Im}\varphi = N$. This completes the proof.

Proposition 2.6. Let M and N be modules such that $\text{Hom}_R(M, N) \neq 0$ (e.g., N is M-generated). Then the following conditions are equivalent:

(i) M is N-dual Baer and N is indecomposable;

(ii) Every nonzero homomorphism $\varphi \in \text{Hom}_R(M, N)$ is an epimorphism.

Proof. (i) \Rightarrow (ii) This follows from Proposition 2.5.

(ii) \Rightarrow (i) It is clear that M is N-dual Baer. Now let K be a nonzero direct summand of N. Let K' be a submodule of N such that $N = K \oplus K'$. Since $\text{Hom}_R(M, N) \neq 0$, there exists a nonzero homomorphism $\varphi \in \text{Hom}_R(M, N)$. Let $\pi': N \to K'$ be the projection map and let $i': K' \to N$ be the inclusion map. Then $i'\pi'\varphi \in \text{Hom}_R(M, N)$. Assume that $i'\pi'\varphi \neq 0$. By hypothesis, $\text{Im}i'\pi'\varphi = N$. So $K' = N$. Thus $K = 0$, a contradiction. Therefore $i'\pi'\varphi = 0$. Hence $K' = 0$ and $K = N$. It follows that N is indecomposable.

The following result describes the structure of R-modules which are R_R-dual Baer, where R is a commutative principal ideal domain which is not a field.

Proposition 2.7. Let R be a commutative principal ideal domain which is not a field. Then the following conditions are equivalent for an R-module M:

(i) M is R_R-dual Baer;

(ii) M is R_R-d-Rickart;

(iii) M has no nonzero cyclic torsion-free direct summands;

(iv) $\text{Hom}_R(M, R_R) = 0$.

Proof. (i) \Rightarrow (ii) This is clear.

(ii) \Rightarrow (iii) Assume that M has an element x such that xR is a direct summand of M and $R_R \cong xR$. Let $\pi : M \to xR$ be the projection map and let $f : xR \to R_R$ be an isomorphism. Then $f\pi : M \to R_R$ is an epimorphism. Let α be a nonzero element of R which is not invertible. Consider the homomorphism $g : R_R \to R_R$ defined by $g(r) = \alpha r$ for all $r \in R$. Then $gf\pi \in \text{Hom}_R(M, R_R)$ and $\text{Im}gf\pi = \alpha R$. It is clear that $\alpha R \neq 0$ and $\alpha R \neq R$. Thus αR is not a direct summand of R. So M is not R_R-d-Rickart, a contradiction.

(iii) \Rightarrow (iv) Assume that $\text{Hom}_R(M, R_R) \neq 0$. So there exists a nonzero homomorphism $f : M \to R_R$. Thus $\text{Im}f = aR$ for some nonzero $a \in R$ since R is a principal ideal domain. Then $M/\text{Ker}f \cong aR \cong R_R$ is a projective R-module. It follows that $\text{Ker}f$ is a direct summand of M. Let Y be a submodule of M such that $M = \text{Ker}f \oplus Y$. Therefore $Y \cong R_R$. This contradicts our assumption. Hence $\text{Hom}_R(M, R_R) = 0$.

(iv) \Rightarrow (i) This is immediate.

Example 2.8. Consider a \mathbb{Z}-module $M = \mathbb{Q}(I) \oplus T$, where T is a torsion \mathbb{Z}-module and I is an index set. Suppose that M is not \mathbb{Z}-dual Baer. By Proposition 2.7, there exists a cyclic submodule L of M such that $L \cong \mathbb{Z}$ and L is a direct summand of M. Let N be a submodule of M such that $M = L \oplus N$.
Remark 2.11. The following conditions are equivalent for a ring R:

(i) R is M-dual Baer;

(ii) M is a semisimple module.

Proof. (i) \implies (ii) Let $x \in M$. Consider the R-homomorphism $\varphi : R \to M$ defined by $\varphi(r) = xr$ for all $r \in R$. Then $\text{Im} \varphi = xR$. Since R_R is M-dual Baer, it follows that for any submodule L of M, $L = \sum_{x \in L} xR$ is a direct summand of M. Therefore M is semisimple.

(ii) \implies (i) is obvious. \qed

Corollary 2.10. The following conditions are equivalent for a ring R:

(i) The R-module R_R is R-dual Baer;

(ii) The R-module R_R is $E(R)$-dual Baer;

(iii) R is a semisimple ring.

Proof. (i) \iff (iii) By [14, Corollary 2.9].

(ii) \iff (iii) This follows from Proposition 2.9. \qed

Remark 2.11. If K is a submodule of an R-module M such that K is M-dual Baer, then K is a direct summand of M. In particular, if the R-module M is $E(M)$-dual Baer, then M is an injective module.

The next example shows that even if a module M is injective, the module M need not be M-dual Baer.

Example 2.12. Let R be a self injective ring which is not semisimple (e.g., $R = \prod_{n=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$). Then $E(R_R) = R_R$. By [14, Corollary 2.9], the R-module R_R is not R_R-dual Baer.

Next, we will be concerned with the modules M which are N-dual Baer for all modules N. We begin with the following proposition which provides a class of rings R whose semisimple modules are N-dual Baer for any R-module N.

Proposition 2.13. Let R be a right noetherian right V-ring and let M be a semisimple R-module. Then M is N-dual Baer for every R-module N.

Proof. Let N be an R-module. It is clear that for any $\varphi \in \text{Hom}_R(M,N)$, $\text{Im} \varphi$ is semisimple. Let A be a subset of $\text{Hom}_R(M,N)$. Then $\sum_{f \in A} \text{Im} f$ is a semisimple submodule of N. Since R is a right noetherian right V-ring, $\sum_{f \in A} \text{Im} f$ is injective by [4, Proposition 1]. Therefore $\sum_{f \in A} \text{Im} f$ is a direct summand of N. So M is N-dual Baer. \qed

The next example shows that the condition “R is a right noetherian ring” in the hypothesis of Proposition 2.13 is not superfluous.

Example 2.14. Let F be a field and let $R = \prod_{n \in \mathbb{N}} F_n$ such that $F_n = F$ for all $n \in \mathbb{N}$. Then R is a commutative V-ring which is not noetherian. Note that $\text{Soc}(R) = \bigoplus_{n \in \mathbb{N}} F_n$ is an essential proper ideal of R. In particular, $\text{Soc}(R)$ is not a direct summand of R. So $\text{Soc}(R)$ is not R_R-dual Baer.
Proposition 18.13. Therefore since the ring (i) Proof.

\[R \]

is a right noetherian ring. Then the following conditions are equivalent for an \(R \)-module \(M \):

(i) \(M \) is \(N \)-dual Baer for all \(R \)-modules \(N \);
(ii) Every factor module of \(M \) is an injective \(R \)-module.

Proof. (i) \(\Rightarrow \) (ii) By Proposition 2.15.

(ii) \(\Rightarrow \) (i) Let \(N \) be an \(R \)-module. It is clear that \(\text{Im} \varphi \) is injective for every \(\varphi \in \text{Hom}_R(M,N) \). Since the ring \(R \) is right noetherian, \(\sum_{f \in A} \text{Im} f \) is injective for every subset \(A \) of \(\text{Hom}_R(M,N) \) by [1, Proposition 18.13]. Therefore \(\sum_{f \in A} \text{Im} f \) is a direct summand of \(N \). This proves the proposition.

Recall that a ring \(R \) is called right hereditary if each of its right ideals is projective. It is well known that a ring \(R \) is right hereditary if and only if every factor module of an injective right \(R \)-module is injective (see, for example [16, 39.16]). The next result is a direct consequence of Proposition 2.16. It determines the structure of \(R \)-modules \(M \) which are \(N \)-dual Baer for all \(R \)-modules \(N \), where \(R \) is a right noetherian right hereditary ring.

Corollary 2.17. Let \(R \) be a right noetherian right hereditary ring (e.g., \(R \) is a Dedekind domain). Then the following conditions are equivalent for an \(R \)-module \(M \):

(i) \(M \) is \(N \)-dual Baer for any \(R \)-module \(N \);
(ii) \(M \) is an injective \(R \)-module.

Example 2.18. Let \(M \) be a \(\mathbb{Z} \)-module. It is easily seen from Corollary 2.17 that \(M \) is \(N \)-dual Baer for any \(\mathbb{Z} \)-module \(N \) if and only if \(M \) is a direct sum of \(\mathbb{Z} \)-modules each isomorphic to the additive group of rational numbers \(\mathbb{Q} \) or to \(\mathbb{Z}(p^\infty) \) (for various primes \(p \)).

Combining Corollary 2.17 and [8, Corollary 2.30], we obtain the following result.

Corollary 2.19. The following conditions are equivalent for a ring \(R \):

(i) Every injective \(R \)-module is dual Baer;
(ii) Every injective module is \(N \)-dual Baer for every \(R \)-module \(N \);
(iii) \(R \) is a right noetherian right hereditary ring.

The next characterization extends [14, Corollary 2.5].

Theorem 2.20. Let \(M \) and \(N \) be two \(R \)-modules. Then \(M \) is \(N \)-dual Baer if and only if for any direct summand \(M' \) of \(M \) and any submodule \(N' \) of \(N \), \(M' \) is \(N' \)-dual Baer.

Proof. Let \(M' = eM \) for some \(e^2 = e \in \text{End}_R(M) \) and let \(N' \) be a submodule of \(N \). Let \(\{ \varphi_i \}_{i \in I} \) be a family of homomorphisms in \(\text{Hom}_R(M',N') \). Since \(\varphi_i(M) = \varphi_i(M') \subseteq N' \subseteq N \) for every \(i \in I \) and \(M \) is \(N \)-dual Baer, \(\sum_{i \in I} \varphi_i(M) \) is a direct summand of \(N \). Therefore \(\sum_{i \in I} \varphi_i(M) \) is a direct summand of \(N' \). It follows that \(M' \) is \(N' \)-dual Baer. The converse is obvious.
Corollary 2.21. The following conditions are equivalent for a module M:

(i) M is a dual Baer module;

(ii) For any direct summand K of M and any submodule N of M, K is N-dual Baer.

From [14, Example 3.1 and Theorem 3.4], it follows that a direct sum of dual Baer modules is not dual Baer, in general. Next, we focus on when a direct sum of N-dual Baer modules is also N-dual Baer for some module N.

Proposition 2.22. Let N be a module having the SSSP and let $\{M_i\}_i$ be a family of modules. Then $\bigoplus_{i \in I} M_i$ is N-dual Baer if and only if M_i is N-dual Baer for all $i \in I$.

Proof. Suppose that $\bigoplus_{i \in I} M_i$ is N-dual Baer. By Theorem 2.20, M_i is N-dual Baer for all $i \in I$. Conversely, assume that M_i is N-dual Baer for all $i \in I$. Let $\{\varphi_i\}_\lambda$ be a family of homomorphisms in $\text{Hom}_R(\bigoplus_{i \in I} M_i, N)$. For each $i \in I$, let $\mu_i : M_i \to \bigoplus_{i \in I} M_i$ denote the inclusion map. Then for every $i \in I$ and every $\lambda \in \Lambda$, $\varphi_i M_i \in \text{Hom}_R(M, N)$. Since M_i is N-dual Baer for every $i \in I$, it follows that $\text{Im}(\varphi_i M_i)$ is a direct summand of N for every $(i, \lambda) \in I \times \Lambda$. Note that for each $\lambda \in \Lambda$, $\text{Im}(\varphi_i M_i) = \sum_{i \in I} \text{Im}(\varphi_i M_i)$. As N has the SSSP, $\sum_{\lambda \in \Lambda} \text{Im}(\varphi_i M_i) = \sum_{\lambda \in \Lambda} \sum_{i \in I} \text{Im}(\varphi_i M_i)$ is a direct summand of N. Therefore $\bigoplus_{i \in I} M_i$ is N-dual Baer.

The following result is taken from [14, Theorem 2.1].

Theorem 2.23. The following conditions are equivalent for a module M and $S = \text{End}_R(M)$:

(i) M is a dual Baer module;

(ii) For every nonempty subset A of S, $\sum_{f \in A} \text{Im} f = e(M)$ for some idempotent $e \in S$;

(iii) M has the SSSP and for every $\varphi : M \to M$, $\text{Im}\varphi$ is a direct summand of M.

Corollary 2.24. Let $\{M_i\}_i$ be a family of modules and let $j \in I$. Then $\bigoplus_{i \in I} M_i$ is M_j-dual Baer if and only if M_i is M_j-dual Baer for all $i \in I$.

Proof. The necessity follows from Theorem 2.20. Conversely, by assumption, we have M_i is M_j-dual Baer. Then M_i is a dual Baer module. By Theorem 2.23, M_i has the SSSP. Applying Proposition 2.22, $\bigoplus_{i \in I} M_i$ is M_j-dual Baer.

In the following result, we present conditions under which a module N is $\bigoplus_{i=1}^n M_i$-dual Baer for some modules M_i ($1 \leq i \leq n$).

Theorem 2.25. Let M_1, \ldots, M_n be R-modules, where $n \in \mathbb{N}$. Assume that M_i is M_i-projective for all $i > j \in \{1, 2, \ldots, n\}$. Then for any R-module N, N is $\bigoplus_{i=1}^n M_i$-dual Baer if and only if N is M_i-dual Baer for all $i \in \{1, 2, \ldots, n\}$.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that N is M_i-dual Baer for all $i \in \{1, 2, \ldots, n\}$. We will show that N is $\bigoplus_{i=1}^n M_i$-dual Baer. By induction on n and taking into account [9, Proposition 4.33], it is sufficient to prove this for the case $n = 2$. Assume that N is M_i-dual Baer for $i = 1, 2$ and M_2 is M_1-projective. Let $\{\varphi_i\}_\lambda$ be a family of homomorphisms in $\text{Hom}_R(N, M_1 \oplus M_2)$. Let $\pi_2 : M_1 \oplus M_2 \to M_2$ be the projection of $M_1 \oplus M_2$ on M_2 along M_1. We want to prove that $\sum_{\lambda \in \Lambda} \text{Im}\varphi_\lambda$ is a direct summand of $M_1 \oplus M_2$. Since N is M_2-dual Baer, $\sum_{\lambda \in \Lambda} \varphi_\lambda(N)$ is a direct summand of M_2. So $\sum_{\lambda \in \Lambda} \varphi_\lambda(N) = M_1 \oplus (\sum_{\lambda \in \Lambda} \varphi_\lambda(N))$ is a direct summand of $M_1 \oplus M_2$, there exists a submodule $L \leq \sum_{\lambda \in \Lambda} \text{Im}\varphi_\lambda$ such that $M_1 \oplus (\sum_{\lambda \in \Lambda} \text{Im}\varphi_\lambda) = M_1 \oplus L$ by [9, Lemma 4.47]. Thus $\sum_{\lambda \in \Lambda} \text{Im}\varphi_\lambda = (M_1 \cap (\sum_{\lambda \in \Lambda} \text{Im}\varphi_\lambda)) \oplus L$ by modularity. It is easily seen that $\sum_{\lambda \in \Lambda} \varphi_\lambda(N)$ is a direct summand of M_2. Let K_2 be a submodule of M_2 such that $M_2 = K_2 \oplus (\sum_{\lambda \in \Lambda} \varphi_\lambda(N))$. Therefore $M_1 \oplus M_2 = M_1 \oplus L \oplus K_2$. Let $\pi_1 : M_1 \oplus (L \oplus K) \to M_1$
be the projection of $M_1 \oplus M_2$ on M_1 along $L \oplus K$. Then $\pi_1 \phi_\lambda \in \text{Hom}_R(N, M_1)$ for every $\lambda \in \Lambda$. Moreover, we have

$$\sum_{\lambda \in \Lambda} \pi_1 \phi_\lambda(N) = \pi_1 \left(\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda \right) = \left(\left(\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda \right) + (L \oplus K) \right) \cap M_1.$$

But $\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda = (M_1 \cap (\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda)) \oplus L$. Then,

$$\sum_{\lambda \in \Lambda} \pi_1 \phi_\lambda(N) = \left(M_1 \cap \left(\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda \right) \right) \oplus L \oplus K \cap M_1 = M_1 \cap \left(\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda \right).$$

Since N is M_1-dual Baer, $\sum_{\lambda \in \Lambda} \pi_1 \phi_\lambda(N) = M_1 \cap \left(\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda \right)$ is a direct summand of M_1. It follows that $(M_1 \cap (\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda)) \oplus L$ is a direct summand of $M_1 \oplus L \oplus K_2$. So $\sum_{\lambda \in \Lambda} \text{Im} \phi_\lambda$ is a direct summand of $M_1 \oplus M_2$. Consequently, N is $M_1 \oplus M_2$-dual Baer. This completes the proof.

Corollary 2.26. Let M_1, \ldots, M_n be R-modules, where $n \in \mathbb{N}$. Assume that M_i is M_j-projective for all $i > j \in \{1, 2, \ldots, n\}$. Then $M = \bigoplus_{i=1}^n M_i$ is a dual Baer module if and only if M_i is M_j-dual Baer for all $i, j \in \{1, 2, \ldots, n\}$.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that M_i is M_j-dual Baer for all $i, j \in \{1, 2, \ldots, n\}$. By Corollary 2.24, M is M_j-dual Baer for all $j \in \{1, 2, \ldots, n\}$. Since M_i is M_j-projective for all $i > j \in \{1, 2, \ldots, n\}$, M is $\bigoplus_{i=1}^n M_i$-dual Baer by Theorem 2.25. Thus M is a dual Baer module.

Note that the sufficiency in Corollary 2.26 can be proved by using [14, Theorem 3.10].

Proposition 2.27. Let M_1, \ldots, M_n be R-modules, where $n \in \mathbb{N}$. Assume that M_i is M_j-dual Baer for all $i, j \in \{1, 2, \ldots, n\}$. Then $\bigoplus_{i=1}^n M_i$ is a dual Baer module if and only if M_i is M_j-dual Baer for all $i, j \in \{1, 2, \ldots, n\}$ and M has the SSSP.

Proof. (\Rightarrow) By [8, Theorem 5.11], M_i is M_j-Rickart for all $i, j \in \{1, 2, \ldots, n\}$. Note that M_i has the SSSP for every $i \in \{1, 2, \ldots, n\}$ (see Theorem 2.23). Applying Proposition 2.3, it follows that M_i is M_j-dual Baer for all $i, j \in \{1, 2, \ldots, n\}$.

(\Leftarrow) This follows easily from [8, Theorem 5.11], Proposition 2.3 and Theorem 2.23.

Theorem 2.28. Let $M = \bigoplus_{i \in I} M_i$ be the direct sum of fully invariant submodules M_i. Then M is a dual Baer module if and only if M_i is a dual Baer module for all $i \in I$.

Proof. The necessity follows from [14, Corollary 2.5]. Conversely, let $S = \text{End}_R(M)$ and let $\{\varphi_\lambda\}_\Lambda$ be a family of homomorphisms in S. For each $i \in I$, let $\pi_i : M \to M_i$ be the projection map and let $\mu_i : M_i \to M$ be the inclusion map. Note that for each $\lambda \in \Lambda$, $\varphi_\lambda(M) = \sum_{i \in I} \varphi_\lambda \mu_i(M_i)$. Since each M_i ($i \in I$) is fully invariant in M, it follows that $\varphi_\lambda(M) = \sum_{i \in I} \pi_i \varphi_\lambda \mu_i(M_i)$ for all $\lambda \in \Lambda$. For every $i \in I$ and every $\lambda \in \Lambda$, let $N_{i,\lambda} = \pi_i \varphi_\lambda \mu_i(M_i)$. Therefore,

$$\sum_{\lambda \in \Lambda} \varphi_\lambda(M) = \sum_{\lambda \in \Lambda} \sum_{i \in I} \pi_i \varphi_\lambda \mu_i(M_i) = \sum_{\lambda \in \Lambda} \left(\sum_{i \in I} N_{i,\lambda} \right) = \bigoplus_{i \in I} \left(\sum_{\lambda \in \Lambda} N_{i,\lambda} \right).$$

Since each M_i ($i \in I$) is dual Baer, each M_i ($i \in I$) has the SSSP by Theorem 2.23. Thus $\sum_{\lambda \in \Lambda} N_{i,\lambda}$ is a direct summand of M_i for every $i \in I$. So $\sum_{\lambda \in \Lambda} \varphi_\lambda(M)$ is a direct summand of M. Consequently, M is a dual Baer module.
We conclude this paper by showing a new characterization of dual Baer modules.

Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Then for every nonempty subset \(A \) of \(S \), we denote \(l_S(A) = \{ \phi \in S \mid \phi A = 0 \} \) and \(r_M(A) = \{ m \in M \mid Am = 0 \} \). We also denote \(l_S(N) = \{ \phi \in S \mid \phi(N) = 0 \} \) for any submodule \(N \) of \(M \).

Recall that a ring \(R \) is called a Baer ring if for every nonempty subset \(I \subseteq R \), there exists an idempotent \(e \in R \) such that \(l_S(I) = Re \).

Proposition 2.29. ([5, Proposition 2.3]) For an \(R \)-module \(M, S = \text{End}_R(M) \) is a Baer ring if and only if \(r_M(l_S(\sum_{\varphi \in A} \text{Im} \varphi)) \) is a direct summand of \(M \) for all nonempty subsets \(A \) of \(S \).

The next example shows that if \(M \) is a module such that \(S = \text{End}_R(M) \) is a Baer ring, then \(M \) is not a dual Baer module, in general.

Example 2.30. Consider the \(\mathbb{Z} \)-module \(M = \mathbb{Z} \). Then \(S = \text{End}_\mathbb{Z}(M) \cong \mathbb{Z} \). Clearly, \(\mathbb{Z} \) is a Baer ring. On the other hand, it is easily seen that \(M \) is not a dual Baer module.

Note that if \(M \) is an \(R \)-module with \(S = \text{End}_R(M) \), then for any nonempty subset \(A \) of \(S \), \(l_S(A) = l_S(AM) \), where \(AM = \sum_{f \in A} \text{Im} f \). The next result can be considered as an analogue of [8, Theorem 3.5].

Theorem 2.31. The following are equivalent for an \(R \)-module \(M \) and \(S = \text{End}_R(M) \):

(i) \(M \) is a dual Baer module;

(ii) \(S \) is a Baer ring and \(AM = r_M(l_S(AM)) \) for every nonempty subset \(A \) of \(S \);

(iii) \(S \) is a Baer ring and \(IM = r_M(l_S(IM)) \) for every right ideal \(I \) of \(S \).

Proof.

(i) \(\Rightarrow \) (ii) From [15, Theorem 3.6], it follows that \(S \) is a Baer ring. Moreover, we have \(r_M(l_S(AM)) = r_M(l_S(A)) = r_M(S(1 - e)) = e(M) = AM \) for all nonempty subsets \(A \) of \(S \).

(ii) \(\Rightarrow \) (iii) This is obvious.

(iii) \(\Rightarrow \) (i) Let \(I \) be a right ideal of \(S \). Since \(S \) is a Baer ring, \(r_M(l_S(IM)) \) is a direct summand of \(M \) by Proposition 2.29. But \(IM = r_M(l_S(IM)) \). Then \(IM \) is a direct summand of \(M \). By Theorem 2.23, it follows that \(M \) is a dual Baer module.

Combining Theorem 2.31 and [10, Theorem 4.1], we get the following result.

Corollary 2.32. Let \(M \) be an \(R \)-module such that \(IM = r_M(l_S(IM)) \) for every right ideal \(I \) of \(S = \text{End}_R(M) \). If \(M \) is a Baer module, then \(M \) is a dual Baer module.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, vol. 13, Springer–Verlag, New York 1992.
[2] E. P. Armendariz, A note on extensions of Baer and P.P.–rings, J. Austral. Math. Soc. 18(4) (1974) 470–473.
[3] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159(1) (2001) 25–42.
[4] K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc. 33(2) (1972) 235–240.
[5] S. M. Khuri, Baer endomorphism rings and closure operators, Canad. J. Math. 30(5) (1978) 1070–1078.
[6] I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York-Amsterdam 1968.
[7] G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38(11) (2010) 4005–4027.
[8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036–4058.
[9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge University Press 1990.
[10] S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004) 103–123.
[11] S. T. Rizvi, C. S. Roman, Baer property of modules and applications, Advances in Ring Theory (2005) 225–241.
[12] D. W. Sharpe, P. Vámos, Injective Modules, Cambridge University Press, Cambridge 1972.
[13] Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002) 1449–1460.
[14] D. K. Tütüncü and R. Tribak, On dual Baer modules, Glasgow Math. J. 52(2) (2010) 261–269.
[15] D. K. Tütüncü, P. F. Smith, S. E. Toksoy, On dual Baer modules, Contemp. Math. 609 (2014) 173–184.
[16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia 1991.