Prognostic role of PIK3CA mutations and their association with hormone receptor expression in breast cancer: a meta-analysis

Bo Pang, Shi Cheng, Shi-Peng Sun, Cheng An, Zhi-Yuan Liu, Xue Feng & Gui-Jian Liu

Clinical laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixian Ge 5#, XiCheng District, Beijing 100053, China.

The phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) gene is frequently mutated in breast cancer (BCa). Sex hormone receptors (HRs), including estrogen receptor (ER) and progesterone receptor (PR) play pivotal roles in BCa. In this study, we evaluated the association between PIK3CA mutations and ER/PR expression and the prognostic role of PIK3CA mutations in BCa patients, and in particular, HR-positive BCa. Thirty-two studies involving 5719 cases of BCa obtained from database searches were examined. PIK3CA gene mutations correlated significantly with ER/PR expression ($p < 0.00001$) and relapse-free survival (RFS) (hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.59–0.98, $p = 0.03$) but not overall survival (OS) (HR 1.14, 95%CI 0.72–1.82, $p = 0.57$) in unsorted BCa patients. PIK3CA mutations were not associated with OS (HR 1.06, 95%CI 0.67–1.67, $p = 0.81$) or RFS (HR 0.86, 95%CI 0.53–1.40, $p = 0.55$) in HR-positive BCa patients. In conclusion, PIK3CA mutations were significantly related to ER/PR expression and RFS in unsorted BCa patients. However, the clinical implications of PIK3CA mutations may vary according to different mutant exons. And PIK3CA mutations alone may have limited prognostic value for HR-positive BCa patients.

Breast cancer (BCa) is one of the most common cancers among women, with more than 1,300,000 new cases and about 450,000 deaths reported each year worldwide. This highly heterogeneous disease is divided into subgroups on the basis of molecular signatures, clinicopathologic features, and responses to therapy. Hormone receptors (HRs), including estrogen receptors (ERs) and progesterone receptors (PRs) are the most important markers of BCa. Most BCa cases are HR-positive (HR$^+$), and ER-positive (ER$^+$) BCa accounts for up to 80% of BCa cases among women 45 years and older. Endocrine therapy is regarded as the cornerstone of ER$^+$ BCa treatment. However, because of de novo or acquired resistance to endocrine therapy, prognosis is still poor for many ER$^+$ BCa patients. Therefore, finding new effective treatment methods for ER$^+$ BCa patients resistant to endocrine therapy is imperative.

After the TP53 gene, the phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) gene is the most frequently mutated gene in BCa. Phosphatidylinositol 3-kinase (PI3K) is composed of an 85-kD (p85) and a 110-kD (p110) subunit. When coupled to activated tyrosine kinases via p85 (the adaptor subunit), p110 (the catalytic subunit) phosphorylates the 3-hydroxy group of inositol phospholipids. Gain-of-function mutations in PIK3CA have been found in different types of cancers including BCa. The mutations result in PI3K activation independent of upstream signaling and constitutive activation of the downstream AKT pathway and may contribute to oncogenesis. The frequency of PIK3CA mutations in BCa cases ranges from 16.4 to 45%. There are 3 mutation “hotspots” in the PIK3CA gene: E542K, E545K at exon 9 (helix domain) and H1047R at exon 20 (kinase domain). The 3 hotspots represent almost 80% of PIK3CA mutations and lead to constitutive PI3K activity by different mechanisms.

Aberrant activation of the PI3K pathway is thought to contribute significantly to endocrine therapy resistance in patients with ER$^+$ BCa. There is evidence showing that endocrine therapy combined with p110 inhibitors is an effective treatment for ER$^+$ BCa cases, including those with PIK3CA mutations. The synthetic lethal interaction is a promising approach that needs further studies. Testing of several p110 inhibitors is underway in phase II clinical trials. Therefore, evaluation of the relationship between HRs and PIK3CA mutations in BCa is neces-
sary. It is also of great clinical interest to determine whether PIK3CA mutations are prognostic factors in HR+ BCa patients.

Results

Search results and description of eligible studies. A total of 1903 potentially relevant citations were retrieved. After exclusion of non-human studies, reviews, and duplicates, two authors independently perused the titles and abstracts of the articles. After screenings, 68 articles were chosen for further full-text review. Ultimately, 32 eligible studies were included in our meta-analysis5-39 (Figure 1).

The 32 eligible studies were published from 2004 to 2014 and involved 5719 cases. Data from the studies were grouped as follows: group A evaluated the relationship between PIK3CA mutations and ER (26 studies) or PR (20 studies) expression in BCa patients, group B (12 studies) and group C (8 studies) evaluated the relationship between PIK3CA mutations and the outcomes of all BCa patients and HR+ BCa patients, respectively. In the 32 selected studies, the percentage of patients with PIK3CA mutations ranged from 7.1% to 44.6%, and the percentage of ER+ patients ranged from 48.1% to 84.0%. For PR, the percentage ranged from 41.4% to 64.8%. In the B and C groups, the median follow-up time ranged from 50 to 153.6 months.

ER and PR expression and PIK3CA gene mutations in BCa patients. The relationship between PIK3CA gene mutations and ER expression was investigated in 4754 patients from 26 selected studies (Group A, the ER arm) using a fixed-effect model (Table 1). There was a significant association between PIK3CA gene mutations and ER expression in the patients in this group (odds ratio [OR] 1.92, 95%CI 1.65–2.23; P < 0.00001; Figure 2). Then we performed a separate analysis for PR expression in 3507 patients from 20 studies (Group A, the PR arm) using a fixed-effect model (Table 1), and found that PR expression was also significantly associated with PIK3CA mutations (OR 1.88, 95% CI 1.61–2.20; P < 0.00001) (Figure 3). Direct sequencing was the most frequently used method for detecting mutations in the selected studies. We introduced subgroups and found that direct sequencing and the other mutation detection methods produced similar results (p = 0.13).

PIK3CA gene mutations and prognosis in all BCa patients. Analyses were conducted to evaluate the relationship between PIK3CA gene mutations and prognosis as defined by overall survival (OS) and relapse-free survival (RFS) in all BCa patients (group B) (Table 2). Because of significant heterogeneity among the group B studies for OS (P = 0.008; I2 = 66%), a random-effect model was used to assess OS correlations. However, because there
First author	Year of publication	Country	Design	Mean age(years)	No. of ER positive patients (%)	No. of PR positive patients (%)	No. of PIK3CA mutant patients (%)	Sequenced PIK3CA analysis methods
Bachman KE	2004	USA	HB	NR	28 (68.3)	23 (57.5)	9 (22.0)	exon 1 and 20 DS
Benvenuti S	2008	Italy	HB	NR	95 (76.0)	79 (64.8)	28 (16.0)	exon 9 and 20 DS
Bozhanov SS	2010	Bulgaria	HB	NR	81 (55.9)	81 (56.3)	45 (31.3)	exon 9 and 20 DS
Cizkova M	2012	France	HB	61.6 (31–91)	335 (74.1)	258 (57.1)	151 (33.4)	exon 9 and 20 DS
Dunlap J	2010	USA	HB	NR	66 (81.5)	42 (51.9)	12 (14.8)	exon 9, 7 and 20 DS
Li H	2010	China	HB	51 (33-80)	137 (83.0)	100 (60.6)	43 (26.1)	exon 9 and 20 DS
Liang X	2006	Singapore	HB	NR	37 (48.1)	41 (53.2)	31 (38.8)	exon 9 and 20 DS
Liedtke C	2008	USA	HB (stage II–III)	51 (28–73)	78 (55.7)	58 (41.4)	23 (16.4)	exon 9 and 20 DS
Lin CH	2011	China(Taiwan)	HB	NR (less than 35 y)	81 (69.8)	67 (57.8)	22 (19.0)	exon 9 and 20 DS
Mangone FR	2012	Brazil	HB	55 (26–85)	53 (61.6)	37 (46.3)	22 (30.6)	exon 9 and 20 DS
Maruyama N	2007	Japan	HB	NR	124 (66.0)	114 (61.0)	54 (28.7)	exon 1, 2, 4, 7, 9, 13, 18, and 20 DS
Michelucci A	2009	Italy	HB	43.5 (32–61)	98 (76.0)	88 (61.5)	63 (35.8)	exon 9 and 20 DS
Saal LH	2005	USA	HB	59 (24–89)	162 (55.5)	142 (51.4)	77 (26.4)	exon 1, 2, 4, 5, 7, 9, 12, 13, 18, 20 DS
Sanchez CG	2011	USA	HB	53.4 (32–80)	32 (62.7)	NR	16 (31.4)	exon 9 and 20 (HS)
Barbareschi M	2007	Italy	HB	62 (17–89)	137 (84.0)	96 (60.1)	45 (27.6)	exon 9 and 20 SSCP + DS
Butitta F	2006	Italy	HB	57.2*	124 (68.9)	106 (58.9)	46 (25.6)	exon 1–20 SSCP + DS
Campbell IG	2004	Australia	HB	NR	32 (62.7)	NR	22 (43.1)	exon 1–20 SSCP + DHPLC
Dupont Jensen J	2011	Denmark	HB	57 (32–87)	78 (77.2)	NR	45 (44.6)	exon 9 and 20 (HS) SNaPshot/DxS
Harlé A	2013	France	HB	NR	113 (79.0)	88 (61.5)	26 (18.2)	exon 9 and 20 (HS) PCR-ARMS
Jensen JD	2012	Denmark	HB (HER2+)	NR	118 (49.4)	NR	61 (25.7)	exon 9 and 20 PA
Kalinsky K	2009	USA	HB	NR	366 (62.0)	314 (57.8)	192 (32.5)	exon 1–20 SM + SS
Li SY	2006	Australia	HB	59 (18–93)	168 (68.9)	156 (63.9)	88 (35.2)	exon 7, 9 and 20 F-SSCP
Loi S	2013	Finnish	HB	NR	475 (69.1)	NR	174 (25.3)	exon 1, 2, 4, 9, 13, 18, 20 SM
Pérez-Tenorio G	2007	Sweden	HB	NR	188 (70.4)	NR	65 (24.3)	exon 9 and 20 SSCP + DS
Santarpia M	2008	Italy/Spain	HB	58 (32–85)	44 (74.6)	33 (55.9)	17 (27.9)	exon 9 and 20 (HS) AD

NR, not reported; HB, hospital based group; HS, hotspots mutation; AD, allelic discrimination; DHPLC, denaturing high performance liquid chromatography; DS, direct sequencing; SNaPshot, SNaPshot genotyping assay; DxS, DxS PI3K mutation test kit; F-SSCP, fluorescent Single-Strand Conformation Polymorphism; PA, pyrosequencing assay; PCR-Amplification Refractory Mutation System (PCR-ARMS); SM, Sequenom MassARRAY; SS, Sanger sequencing.

* means that the ranges of age were not reported in the studies.
Figure 2 | Forest plot with OR evaluating the relationship between **PIK3CA** mutation and ER expression status.

Table 1

Study or Subgroup	ER positive	ER negative	Odds Ratio M-H. Fixed 95% CI
1.1.1 DS Subgroup			
Bachman KE, 2004	6	28	1.3% 0.82 [0.17, 4.00]
Benvenuti S, 2008	19	65	27 1.0% 3.13 [0.86, 14.37]
Bozhanov SS, 2010	24	80	21 6.3% 0.88 [0.43, 1.78]
Czikova M, 2012	131	335	20 6.9% 3.11 [1.84, 5.29]
Dunlop J, 2010	12	66	0 15 0.3% 7.11 [0.40, 126.87]
Li H, 2010	41	137	2 28 0.9% 5.55 [1.28, 24.98]
Liang X, 2006	17	37	13 40 2.6% 1.27 [0.70, 2.25]
Liedtke C, 2008	15	78	8 62 2.3% 1.61 [0.83, 4.08]
Lin CH, 2011	16	81	6 35 2.9% 1.19 [0.42, 3.55]
López-Knowles E, 2010	7	113	5 48 2.5% 0.57 [0.17, 1.89]
Mangone FR, 2012	18	53	5 27 1.7% 2.26 [0.73, 6.97]
Maryama N, 2007	42	124	12 64 4.0% 2.22 [1.07, 4.60]
Micheucci A, 2009	40	98	7 31 2.4% 2.36 [0.63, 0.91]
Saal LH, 2005	33	77	11 79 2.4% 4.04 [2.12, 10.12]
Sanchez C, 2011	14	32	1 17 0.3% 12.44 [1.47, 105.52]
Subtotal (95% CI)	1434	696	37.9% 2.23 [1.76, 2.83]

Total events 435 116
Heterogeneity: $\chi^2 = 24.99$, df = 14 ($P = 0.03$); $I^2 = 44$
Test for overall effect: $Z = 8.80$ ($P < 0.00001$)

Figure 3 | Forest plot with OR evaluating the relationship between **PIK3CA** mutation and PR expression status.

Table 2

Study or Subgroup	PR positive	PR negative	Odds Ratio M-H. Fixed 95% CI
1.2 Other sequencing methods			
Barberaschi M, 2007	36	137	7 26 3.3% 1.04 [0.41, 2.68]
Butitta F, 2006	35	124	11 56 4.2% 1.61 [0.75, 3.48]
Campbell IG, 2004	15	32	7 19 1.8% 1.51 [0.47, 4.84]
Dupont Jensen J, 2011	37	78	6 19 1.9% 1.96 [0.87, 5.67]
Hartí A, 2013	20	93	6 24 2.0% 0.82 [0.29, 2.34]
Jensen JD, 2012	32	117	29 120 8.0% 1.18 [0.66, 2.12]
Kalinsky K, 2009	141	366	44 186 13.8% 2.02 [1.36, 3.01]
Li SY, 2016	68	168	18 76 5.6% 2.25 [1.22, 4.14]
Lori G, 2013	140	475	36 212 13.5% 2.04 [1.36, 3.08]
Pérez-Tenciio G, 2007	52	188	13 79 5.1% 1.89 [0.98, 3.81]
Santarpia M, 2008	12	44	5 15 2.1% 0.76 [0.21, 2.65]
Subtotal (95% CI)	1822	832	62.1% 1.74 [1.43, 2.11]

Total events 591 182
Heterogeneity: $\chi^2 = 8.55$, df = 10 ($P = 0.57$); $I^2 = 0$
Test for overall effect: $Z = 5.56$ ($P < 0.00001$)

Figure 4 | Forest plot with OR evaluating the relationship between **PIK3CA** mutation and **HER2** expression status.

Table 3

Study or Subgroup	HER2 positive	HER2 negative	Odds Ratio M-H. Fixed 95% CI
1.3 Other sequencing methods			
Barberaschi M, 2007	27	98	18 65 6.6% 0.99 [0.49, 2.00]
Butitta F, 2006	30	106	16 74 5.9% 1.43 [0.71, 2.87]
Hartí A, 2013	17	88	9 55 3.9% 1.22 [0.50, 2.96]
Kalinsky K, 2009	125	314	56 229 16.9% 2.04 [1.40, 2.98]
Li SY, 2006	63	156	24 88 7.9% 1.81 [1.02, 3.19]
Santarpia M, 2008	12	33	5 28 1.5% 2.40 [0.72, 8.00]
Subtotal (95% CI)	795	537	43.0% 1.69 [1.32, 2.16]

Total events 274 128
Heterogeneity: $\chi^2 = 4.29$, df = 5 ($P = 0.51$); $I^2 = 0$
Test for overall effect: $Z = 4.15$ ($P < 0.00001$)

Figure 5 | Forest plot with OR evaluating the relationship between **PIK3CA** mutation and **HER2** expression status.
was no inter-study heterogeneity among the group B studies for RFS ($P = 0.93; F = 0\%$), a fixed-effect model was used to assess RFS correlations. For OS, 7 studies involving 2105 patients were analyzed and no significant association between PIK3CA mutations and OS was found (HR 1.14, 95% CI 0.72–1.82; $P = 0.57$) (Figure 4). We also performed analysis for different exons. For exon 9 mutations, a significant worse OS was found (HR 1.42, 95% CI 1.02–1.99; $P = 0.04$). In addition, for exon 20, the results of OS did not reach a significant level (HR 1.63, 95% CI 0.93–2.85; $P = 0.09$) (Figure 4). For RFS, 5 studies involving 1913 patients were analyzed, and a significant relationship between PIK3CA gene mutations and prolonged RFS was observed (hazard ratio 0.76, 95% CI 0.59–0.98; $P = 0.03$) (Fig. 5).

PIK3CA gene mutations and prognosis in HR+ BCa patients. The relationship between PIK3CA mutations and prognosis in HR+ BCa was evaluated in 8 studies involving 1021 patients, 5 studies (644 patients) for OS and 4 studies (534 patients) for RFS (group C) (Table 3). On the basis of the available data, kinase domain mutation is the priority for inclusion and analysis. No inter-study heterogeneity was found for OS ($P = 0.38; F = 4\%$) or RFS ($P = 0.73; F = 0\%$). PIK3CA gene mutations were not significantly associated with OS (hazard ratio 1.06, 95% CI 0.67–1.67; $P = 0.81$) (Fig. 6a) or RFS (hazard ratio 0.86, 95% CI 0.53–1.40; $P = 0.55$) (Fig. 6b) in HR+ BCa patients.

Publication bias. Publication bias was not investigated when the number of studies was less than 10 because of the low sensitivity of qualitative and quantitative tests. When the number of studies was more than 10, bias was assessed by Begg’s funnel plots. No evidence of obvious asymmetry was found in this analysis by visual evaluation (data not shown).

Discussion

Recently, several studies evaluating the prognosis of BCa patients suggest that PIK3CA mutations are “good mutations”. Our meta-analysis shows that PIK3CA gene mutations are significantly associated with both ER and PR expression, which are believed to be favorable clinicopathologic features of BCa. Furthermore, in unsorted BCa patients with PIK3CA mutations, RFS was significantly improved.

There are some possible explanations for the puzzling favorable effects of PIK3CA mutations. First, signaling pathways downstream of PI3K may not be active in some BCa patients with PIK3CA mutations. Loi et al. found that PIK3CA mutations were associated with relatively low mTORC1 signaling and that some AKT-regulated genes were repressed in BCa patients with PIK3CA mutations. Second, dysregulated gene expression resulting from PIK3CA mutations may be advantageous. Cizkova showed that the Wnt pathway was dysregulated and WNT5A was overexpressed in ER+ BCa patients with PIK3CA mutations. Interestingly, WNT5A expression has been associated with favorable outcomes in patients with invasive breast tumors. Third, PIK3CA, like many other oncopgenes, may induce senescence, resulting in a less aggressive phenotype after cell transformation.

Despite of this, there was only an insignificant connection between PIK3CA mutations and OS. The improvement in RFS but not OS may suggest a BCa specific effect of PIK3CA mutations. However, considering specific exons, the effects seemed weak or even contradictory. In the future, more studies focusing on specific exons mutations, including the non-hotspot mutations of PIK3CA, are warranted.

Whether PIK3CA mutations contribute to endocrine therapy resistance remains unclear and intriguing. Another important finding of this study was that PIK3CA mutations did not affect either OS or RFS in HR+ BCa patients. In most of the studies selected for our
analysis, hormone treatment was the standard therapy method. However, PIK3CA mutations may have only limited prognostic value with respect to hormone therapy responsiveness. Ellis et al. showed that the PIK3CA kinase domain mutations were inversely correlated with the clinical response to neoadjuvant endocrine treatment in BCa patients and was not associated with proliferation, as determined by immunostaining for Ki-67. In patients who did not receive tamoxifen, as Beelen et al. showed, PIK3CA mutation was not a prognostic marker, either.

It also should be noted that there is some dissociation between PIK3CA mutations and activation of signaling pathways downstream of PI3K. In some phase I clinical trials, PIK3CA mutations were not strongly related to responses produced by PI3K inhibitors. In our study, PIK3CA mutations were associated with favorable pro-

Figure 4 | Forest plots of the analysis on the HR of OS in BCa patients. Subgroups are introduced for evaluating exon 9 or 20 mutations.

Figure 5 | Forest plot of the analysis on the HR of RFS in BCa patients.
Table 3 | Main characteristics of studies that evaluated the relationships of PIK3CA mutations and the OS/RFS in HR+ breast cancer patients

First author	Year of publication	Country	Design	Treatment	No. of PIK3CA mutant patients (%)	Sequenced PIK3CA mutations and the OS/RFS in HR+ breast cancer patients	Mutation analysis methods	Median follow-up time (months, range)	Outcome type
Bozhanov SS	2010	Bulgaria	HB	H, C, RT	24 (100)	exon 9 and 20	DS	69 (11-96)	OS
Cuorvo LV	2014	Italy	HB	H, C, T	50 (110)	exon 9, 10	HRM	97 (8-140)	OS*
PA	97 (38)	Italy	HB	H, C	50 (14)	exon 9, 10	MS	118 (7-154)	OS
Sanchez CG	2011	USA	HB	H	13 (11)	exon 9, 10	DS	51 (15-256)	OS*
Ellis MJ	2010	Multicentre	HB	H	45 (110)	exon 9, 20	DS	45 (11-296)	OS*
Maruyama N	2007	Japan	HB	H	54 (28.7)	exon 9 and 20	DS	64 (38-88)	OS

Note: *Only exon 20 mutations were analyzed.

In summary, our results show that PIK3CA mutations are significantly related to the ER and PR expression status of BCa patients. They also correlated with improved RFS in unsorted BCa patients, but not with OS or RFS in HR+ BCa patients. As a potential biomarker, PIK3CA mutations were not prognostic for HR+ BCa patients or, most notably, ER+ BCa patients. Further studies are needed to collectively explore the possible roles of PIK3CA mutations, the activation of signaling pathways downstream of PI3K, and other important biomarkers such as the genes encoding the components of the PI3K/AKT/mTOR pathway.

Methods

Literature search and eligibility criteria. We searched PubMed and Embase databases up to April 2014 for English-language titles or abstracts that included the words “phosphoinositide-3-kinase”, “PIK3CA”, “mutation”, “breast cancer”, or “breast neoplasms”. We also screened the references of the retrieved articles and relevant reviews for additional articles. A published article was included if it (1) evaluated the association between PIK3CA mutations and ER or PR expression in BCa patients or the association between PIK3CA mutations and BCa prognosis; (2) had sufficient data for estimating an OR with a 95% CI or a HR with a 95% CI; and (3) evaluated OS, RFS, or other survival index. The exclusion criteria were as follows: (1) letters, reviews, conference abstracts, and case reports; and (2) articles that did not provide sufficient information such as a HR for OS or had data that could not be extracted.

Data extraction and quality assessment. Two authors independently screened all publications by title or abstract for inclusion in our study. Discrepancies were resolved by group discussion, and data were extracted from eligible publications. The following information was collected: name of the first author, year of publication, source of patients, study design, mean age of the patients, percentage of ER+ and PR+ patients, percentage of patients with PIK3CA mutations, the region of the sequenced PIK3CA mutations, mutation analysis methods, outcome of BCa patients, and median follow-up time (months, range). The studies were assessed for quality according to the Newcastle-Ottawa quality assessment scale, and articles with 5 stars or more qualified for our study.

Statistical analysis. An OR with a 95% CI was used to assess the strength of the association between PIK3CA mutations and ER or PR expression status. The primary end points were RFS and OS. A HR and a 95% CI were used to estimate the impact of PIK3CA mutations on RFS and OS. When a HR and a 95% CI were not given in the article, estimated values were derived indirectly from Kaplan-Meier curves using the methods described by Tierney et al. Combined HR > 1 implied a worse survival for groups of patients with PIK3CA mutations. Cochran Q and I² statistic values were used to assess heterogeneity among the studies. For the Q statistic, a P value < 0.10 was considered statistically significant for heterogeneity, and the random-effects model was calculated according to the DerSimonian-Laird method. Otherwise, the fixed-effects model (Mantel-Haenszel method) was used. I² < 50% was considered acceptable. If significant heterogeneity was found, a random-effects model was used for meta-analysis. Statistical analyses were performed using
Review Manager 5.0 software (http://www.cochrane.org). A significant two-way p value for comparison was defined as $P < 0.05$.

Ethical Standards

We declare that the experiments comply with the current laws of China.

1. Network, C. G. A. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
2. Boswell, K. A., Wang, X., Shah, M. V. & Aapro, M. S. Disease burden and treatment outcomes in second-line therapy of patients with estrogen receptor-positive (ER+) advanced breast cancer: a review of the literature. Breast 21, 701–706 (2012).
3. Glass, A. G., Lacey, J. V., Jr., Carreon, J. D. & Hoover, R. N. Breast cancer incidence, 1980-2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. J Natl Cancer Inst 99, 1152–1161 (2007).
4. O’Brien, C. et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3’ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 16, 3670–3683 (2010).
5. Mangone, F. R., Bobrovnitchaia, I. G., Salaorni, S., Manuli, E. & Nagai, M. A. PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. Clinics (Sao Paulo) 67, 1285–1290 (2012).
6. Drury, S. C. et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Cancer 18, 565–577 (2011).
7. Boulay, A. et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 11, 5319–5328 (2005).
8. Crowder, R. J. et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 69, 3953–3962 (2009).
9. Bachman, K. E. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3, 772–775 (2004).
10. Barbareschi, M. et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 13, 6064–6069 (2007).
11. Beelen, K. et al. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2 and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res 16, R13 (2014).
12. Benvenuti, S. et al. PIK3CA cancer mutations display gender and tissue specificity patterns. Hum Mutat 29, 284–288 (2008).
13. Bozhnov, S. S. et al. Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. J Cancer Res Clin Oncol 136, 1657–1669 (2010).
14. Buttitta, F. et al. PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208, 350–355 (2006).
15. Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64, 7678–7681 (2004).
16. Cizkova, M. et al. PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. Breast Cancer Res 14, R28 (2012).
17. Cuzo, L. V. et al. PIK3CA mutation status is of limited prognostic relevance in ER-positive breast cancer patients treated with hormone therapy. Virchows Archiv: an international journal of pathology 464, 85–93 (2014).
18. Dunlap, J. et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 120, 409–418 (2010).
19. Dupont Jensen, J. et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17, 667–677 (2011).
20. Ellis, M. J. et al. Phosphatidylinositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 119, 379–390 (2010).
21. Gonzalez-Angulo, A. M. et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res 15, 2472–2478 (2009).
22. Harle, A. et al. Analysis of PIK3CA exon 9 and 20 mutations in breast cancers using PCR-HRM and PCR-ARMS: correlation with clinicopathological criteria. Oncology reports 29, 1043–1052 (2013).
23. Jensen, J. D. et al. PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Ann Oncol 23, 2034–2042 (2012).
24. Kalinsky, K. et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15, 5049–5059 (2009).
25. Lai, Y. L. et al. PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15, 1064–1069 (2008).
26. Li, H. et al. PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp Mol Pathol 88, 150–155 (2010).
27. Li, S. Y., Rong, M., Grieu, F. & Iacopetta, B. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Breast Cancer Res Treat 119, 379–390 (2010).
28. Lin, C. H. et al. PIK3CA mutation status is of limited prognostic relevance in ER-positive breast cancer patients treated with hormone therapy. Virchows Archiv: an international journal of pathology 464, 85–93 (2014).
29. Liu, Y. L. et al. PIK3CA mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15, 1064–1069 (2008).
30. Liedtke, C. et al. PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. Breast Cancer Res Treat 10, R27 (2008).
31. Lin, C. H. et al. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst 102, 1105–1111 (2010).
32. Lopez-Knowles, E. et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126, 1121–1131 (2010).
33. Maruyama, N. et al. Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. *Clin Cancer Res* **13**, 408–414 (2007).

34. Michelucci, A. et al. PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. *Diagn Mol Pathol* **18**, 200–205 (2009).

35. Perez-Tenorio, G. et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. *Clin Cancer Res* **13**, 3577–3584 (2007).

36. Saal, L. H. et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. *Cancer Res* **65**, 2554–2559 (2005).

37. Sanchez, C. G. et al. Preclinical modeling of combined phosphatidylinositol-3 kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. *Breast Cancer Res* **13**, R21 (2011).

38. Santarpia, M. et al. PIK3CA mutations and BRCA1 expression in breast cancer: potential biomarkers for chemoresistance. *Cancer Invest* **26**, 1044–1051 (2008).

39. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. *Cancer Res* **68**, 6084–6091 (2008).

40. Ioannidis, J. P. & Trikalinos, T. A. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. *CMAJ* **176**, 1091–1096 (2007).

41. Cizkova, M. et al. Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway. *PLoS One* **5**, e15647 (2010).

42. Ford, C. E., Ekstrom, E. J., Howlin, J. & Andersson, T. The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERalpha negative breast cancer. *Cell Cycle* **8**, 1838–1842 (2009).

43. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. *Nat Rev Mol Cell Biol* **8**, 729–740 (2007).

44. Dumont, A. G., Dumont, S. N. & Trent, J. C. The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer. *Clin J Cancer* **31**, 327–334 (2012).

45. Loi, S. et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. *Proc Natl Acad Sci U S A* **107**, 10208–10213 (2010).

46. Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* **25**, 603–605 (2010).

47. Tierney, J. F., Stewart, L. A., Gherzi, D., Burdett, S. & Sydes, M. R. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* **8**, 16 (2007).

48. Lau, J., Ioannidis, J. P. & Schmid, C. H. Quantitative synthesis in systematic reviews. *Ann Intern Med* **127**, 820–826 (1997).

49. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. *Control Clin Trials* **7**, 177–188 (1986).

Acknowledgments
This work was supported by Funding of Guang’an men Hospital (Grant No. 2011S244).

Author contributions
B.P. carried out the search of the Embase and Pubmed database, performed the statistical analysis by Revman, participated in the design of the study and drafted the manuscript. S.C. carried out the search of the Embase and Pubmed database and performed the statistical analysis by Revman. S.C. performed the data collection and extraction and helped to draft the manuscript. C.A. participated in the design of the study and made the language polishing. Z.Y.L. performed the data collection and arrangement. X.F. performed the data collection and arrangement. G.J.L. conceived of the study, and participated in its design and coordination and helped to draft the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pang, B. et al. Prognostic role of PIK3CA mutations and their association with hormone receptor expression in breast cancer: a meta-analysis. *Sci. Rep.* **4**, 6255; DOI:10.1038/srep06255 (2014).