GRADED LEFT MODULAR LATTICES ARE SUPERSOLVABLE

HUGH THOMAS

Abstract. We provide a direct proof that a finite graded lattice with a maximal chain of left modular elements is supersolvable. This result was first established via a detour through EL-labellings in [MT] by combining results of McNamara [Mc] and Liu [Li]. As part of our proof, we show that the maximum graded quotient of the free product of a chain and a single-element lattice is finite and distributive.

Supersolvability for lattices was introduced by Stanley [St]. A finite lattice is supersolvable iff it has a maximal chain (called the M-chain) such that the sublattice generated by the M-chain and any other chain is distributive.

We say an element x of a lattice is left modular if it satisfies:

$$(y \lor x) \land z = y \lor (x \land z)$$

for all $y \leq z$. Following Blass and Sagan [BS], we say that a lattice is left modular if it has a maximal chain of left modular elements. Stanley [St] showed that the elements of the M-chain of a supersolvable lattice are left modular, and thus that supersolvable lattices are left modular.

We say that a lattice is graded if, whenever $x < y$ and there is a finite maximal chain between x and y, all the maximal chains between x and y have the same length. It is easy to check that supersolvable lattices are graded.

The main result of our paper is the converse of these two results:

Theorem 1. If L is a finite, graded, left modular lattice, then L is supersolvable.

This result was first proved in [MT], as an immediate consequence of results of Liu and McNamara. Liu [Li] showed that if a finite lattice is graded of rank n and left modular, then it has an EL-labelling of the edges of its Hasse diagram, such that the labels which appear on any maximal chain are the numbers 1 through n in some order. McNamara [Mc] showed that for graded lattices of rank n, having such a labelling is equivalent to being supersolvable. These two results together immediately yield that finite graded left modular lattices are supersolvable. However, since this proof involves considerations which seem to be extraneous to the character of the result, it seemed worth giving a more direct and purely lattice-theoretic proof.

On the way to our main result, we introduce the notion of the maximum graded quotient of a lattice. The maximum graded quotient need not exist, but if it exists, it is unique. We calculate explicitly the maximum graded quotient of the free product of the $k + 1$-element chain C_k with the single element lattice S and show that it is finite and distributive.

2000 Mathematics Subject Classification. Primary 06B99; Secondary 06B25.

Key words and phrases. Supersolvability, left modularity, graded lattice.
The Maximum Graded Quotient of a Lattice

When we refer to a quotient of a lattice, we mean a quotient with respect to a lattice congruence, that is to say, a homomorphic image of the original lattice.

Let L be a lattice. Define an equivalence relation \sim on L by setting $x \sim y$ iff $\theta(x) = \theta(y)$ for all lattice homomorphisms θ from L to a graded lattice. It is straightforward to check that \sim is a lattice congruence. We then define $g(L) = L/\sim$. By construction, $g(L)$ is the maximum quotient through which every lattice homomorphism to a graded lattice factors.

If $g(L)$ is graded, then we call it the maximum graded quotient of L. Otherwise, we say that L has no maximum graded quotient. The lattice shown in Figure 1 has $g(L) = L$, and since $g(L)$ is not graded, L has no maximum graded quotient.

For $x \in L$, we will write $[x]$ for the class of x in $g(L)$. We write $a \preceq b$ to indicate that either $a \prec b$ or $a = b$.

Lemma 1. If $[x] \preceq [y] \preceq [z]$ (for instance, if $x \prec y \prec z$ in L), and $[x] \leq [u] \leq [v] \leq [z]$, such that $[u] \lor [y] = [z]$ and $[v] \land [y] = [x]$, then $[u] = [v]$.

Proof. We consider separately graded quotients of $g(L)$ where $[y]$ is identified with $[x]$, where $[y]$ is identified with $[z]$, where $[y]$ is not identified with either $[x]$ or $[z]$, and where $[x]$, $[y]$, and $[z]$ are all identified. We see that in all these cases, $[u]$ and $[v]$ must be identified in the quotient. Since every lattice homomorphism from L to a graded lattice factors through $g(L)$, this implies that u and v are identified in any graded quotient of L, and therefore $[u] = [v]$. \square

The Maximum Graded Quotient of $C_k \ast S$

Let C_k denote the chain of length k, with elements $x_0 \prec \ldots \prec x_k$. Let S denote the one element lattice, with a single element y.

Lemma 2. The free product $C_k \ast S$ is a disjoint union of elements lying above x_0 and elements lying below y.

Proof. This is an immediate application of the Splitting Theorem [Gr, Theorem VI.1.11], which says that the free product of two lattices A and B is the disjoint union of the dual ideal generated by A and the ideal generated by B. \square

We shall now proceed to consider these two subsets of $C_k \ast S$ in more detail.

Lemma 3. The elements of $C_k \ast S$ lying below y are exactly y and $y \land x_i$ for $0 \leq i \leq k$.

Proof. For $f \in C_k \ast S$, write $f^{(x)}$ for the smallest element of the C_k which lies above f. If there is no such element, set $f^{(x)} = \hat{1}$. We now claim that $f \land y = f^{(x)} \land y$.

By definition, $f^{(x)} \geq f$, so $f^{(x)} \land y \geq f \land y$. We prove the other inequality by induction on the rank of a polynomial expression for f. The statement is clearly
true for rank 1 polynomials. If the rank of \(f \) is greater than 1, it can be written as either \(g \land h \) or \(g \lor h \), for \(g \) and \(h \) polynomials of lower rank. Suppose that \(f = g \land h \). Then \(f(x) = g(x) \land h(x) \) [Gr, Theorem VI.1.10], so
\[
f(x) \land y = g(x) \land h(x) \land y \leq g \land h \land y = f \land y.
\]
Alternatively, suppose that \(f = g \lor h \). Then \(f(x) = g(x) \lor h(x) \) [Gr, Theorem VI.1.10]. Since \(C_k \cup \{1\} \) forms a chain, we may assume without loss of generality that \(f(x) = g(x) \). Thus,
\[
f(x) \land y = g(x) \land y \leq g \land y \leq (g \lor h) \land y = f \land y.
\]
This completes the proof of the claim.

It follows that if \(z \leq y \), then \(z = z \land y = z^{(x)} \land y \), and we have written \(z \) in the form described in the statement of Lemma 3. □

Lemma 4. The elements of \(g(C_k \ast S) \) which lie strictly above \(x_0 \) are generated by \(x_1, \ldots, x_n, y \lor x_0 \).

Proof. We begin by showing that the elements of \(C_k \ast S \) lying strictly above \(x_0 \) are generated by \(x_0, \ldots, x_n, y \lor x_0, (y \land x_1) \lor x_0, \ldots, (y \land x_n) \lor x_0 \).

Let \(T_0 \) denote \(\{x_0, \ldots, x_n, y\} \). Define \(T_i \) inductively as those elements of \(C_k \ast S \) which can be formed as either a meet or a join of a pair of elements in \(T_{i-1} \). The union of the \(T_i \) is \(C_k \ast S \). We wish to show by induction on \(i \) that any element of \(T_i \) lying strictly above \(x_0 \) can be written as a polynomial in \(x_0, \ldots, x_n, y \lor x_0, (y \land x_1) \lor x_0, \ldots, (y \land x_n) \lor x_0 \). The statement is certainly true for \(i = 0 \). Suppose it is true for \(i - 1 \). The statement is also true for any element of \(T_i \) formed by a meet, since if the meet lies strictly above \(x_0 \), so did both the elements of \(T_{i-1} \). Now consider the case of the join of two elements, \(a \) and \(b \), from \(T_{i-1} \). If both \(a \) and \(b \) lie strictly above \(x_0 \), the statement is true for \(a \lor b \) by induction. If neither \(a \) nor \(b \) lies strictly above \(x_0 \), then (by Lemma 3) one of \(a \) or \(b \) must equal \(x_0 \), and \(a \lor b \) is one of the generators which we are allowing. Now suppose that \(a \) lies strictly above \(x_0 \) and \(b \) does not. By Lemma 3, \(b \) equals \(x_0, y \), or \(y \land x_1 \). If \(b = x_0 \), then \(a \lor b = a \), and the statement is true by induction. Otherwise, \(a \lor b = a \lor (b \lor x_0) \), and \(b \lor x_0 \) is one of the allowed generators, so we are done. We have shown that every element of \(T_i \) lying above \(x_0 \) can be written in the desired form, and hence by induction that the same is true of any element of \(C_k \ast S \) lying above \(x_0 \).

We now wish to show that the generators of the form \((y \land x_i) \lor x_0 \) are unnecessary once we pass to \(g(C_k \ast S) \). It follows from Lemma 3 that \(y \land x_n < y \). Dually, \(y \not< y \lor x_0 \). Observe that \(y \land x_n < (y \land x_n) \lor x_0 < (y \lor x_0) \land x_n < y \lor x_0 \) in \(C_k \ast S \). Thus, by Lemma 1, \((y \land x_n) \lor x_0 = (y \lor x_0) \land x_n \).

We now proceed to show that
\[
[(y \land x_i) \lor x_0] = [(y \lor x_0) \land x_i]
\]
for all \(1 \leq i \leq n \). The proof is by downward induction; we have already finished the base case, when \(i = n \). So suppose the result holds for \(i + 1 \). In \(L \),
\[
y \land x_i < y \land x_{i+1} < (y \land x_{i+1}) \lor x_0 < (y \lor x_0) \land x_{i+1},
\]
but when we pass to \(g(L) \) the final inequality becomes an equality by the induction hypothesis. Since in \(L \) we also have that
\[
y \land x_i < (y \land x_i) \lor x_0 < (y \lor x_0) \land x_i < (y \lor x_0) \land x_{i+1},
\]
we can apply Lemma 1 to conclude that \([(y \land x_i) \lor x_0] = [(y \lor x_0) \land x_i] \) as desired.
We have already shown that the elements of L lying above x_0 are generated by the x_i, $y \lor x_0$, and the $(y \land x_i) \lor x_0$, for $i \geq 1$. It follows that the elements of $g(L)$ above $[x_0]$ are generated by the x_i, $y \lor x_0$, and the $(y \land x_i) \lor x_0$. But $[(y \land x_i) \lor x_0] = [(y \lor x_0) \land x_i] = [y \lor x_0] \land [x_i]$, and so the $[(y \land x_i) \lor x_0]$ are redundant, proving the lemma.

Proposition 1. The lattice $g(C_k * S)$ is as shown in Figure 2.

![Diagram](image)

Figure 2

Proof. Observe that by Lemma 4, the elements of $g(C_k * S)$ lying strictly over x_0 are isomorphic to a quotient of $g(C_{k-1} * S)$. Now applying Lemma 3 inductively, we see that every element of $g(C_k * S)$ can be written as $(y \lor x_i) \land x_j$ for $j \geq i$. It follows that $g(C_k * S)$ is a quotient of the lattice from Figure 2, but since the lattice from Figure 2 is graded, it must coincide with $g(L)$. □

Left Modular Lattices

In this section, we recall a few results about left modular elements and left modular lattices from [Li] and [MT].

Lemma 5 ([Li]). Suppose $u \prec v$ are left modular in L. Let $z \in L$. Then:

(i) $u \lor z \preceq v \lor z$.
(ii) $u \land z \preceq v \land z$.

Proof. We prove (i). Suppose otherwise, so that there is some element y such that $u \lor z < y < v \lor z$. Now observe that $((u \lor z) \lor v) \land y = y$. Now $v \land y = u$, so $(u \lor z) \lor (v \land y) = u \lor z$, contradicting the left modularity of u. This proves (i). Now (ii) follows by duality. □

Lemma 6 ([MT]). Let x be left modular, and $y < z$. Then $y \lor x \land z$ is left modular in $[y, z]$.
Proof. Let \(s < t \) in \([y, z]\).
\[
(s \lor (y \lor x \land z)) \land t = (s \lor x \land z) \land t = s \lor x \land t = s \lor (y \lor x \land t) = s \lor ((y \lor x \land z) \land t).
\]

\[\square\]

Lemma 7 ([MT]). If \(L \) is a finite lattice with a maximal left modular chain \(\hat{0} = x_0 \prec x_1 \prec \ldots \prec x_r = \hat{1} \) and \(y \leq z \), then the set of elements of the form \(y \lor x_i \land z \) forms a maximal left modular chain in \([y, z]\).

Proof. The fact that the elements of the form \(y \lor x_i \land z \) form a maximal chain in \([y, z]\) follows from Lemma 5; the fact that they are left modular, from Lemma 6. \[\square\]

Modularity

For \(y \leq z \), let us write \(M(x, y, z) \) for the statement:
\[
M(x, y, z) : (y \lor x) \land z = y \lor (x \land z).
\]

A lattice is said to be modular if \(M(x, y, z) \) holds for all \(x \) whenever \(y \leq z \).

Standard notation is to write \(xMz \) for the statement that \(M(x, y, z) \) holds for all \(y \leq z \). In this case \((x, z)\) is called a modular pair. An element \(x \) is said to be modular if for any \(z \) both \(xMz \) and \(zMx \) are modular pairs. As we have already seen, an element \(x \) is left modular if it satisfies half the condition of being modular, namely that \(xMz \) for all \(z \).

Let \(L \) be a finite graded left modular lattice, with maximal left modular chain \(\hat{0} = x_0 \prec x_1 \prec \ldots \prec x_r = \hat{1} \), which we denote \(x \). By definition, for any \(y \leq z \), we have \(M(x_i, y, z) \). We also have the following lemma:

Lemma 8. In a finite graded left modular lattice \(L \), with maximal left modular chain \(x \), for any \(w \in L \) and \(i < j \), we have \(M(w, x_i, x_j) \).

Proof. Consider the sublattice \(K \) of \(L \) generated by \(x \) and \(w \). First, we show that \(K \) is graded. Let \(y < z \in K \). By Lemma 7, we know that the elements of the form \(y \lor x_i \land z \) form a maximal chain in \(L \). These are all elements of \(K \), so there is a maximal chain between \(y \) and \(z \) having the same length as in \(L \). It follows that the covering relations in \(K \) are a subset of the covering relations in \(L \), and hence that \(K \) is graded (with the same rank function as \(L \)).

Since \(K \) is generated by \(x \) and \(w \), \(K \) is a quotient of \(C_r \ast S \). Further, since \(K \) is graded, it is a quotient of \(g(C_r \ast S) \). Since \(g(C_r \ast S) \) is distributive, the modular equality is always satisfied in it, and therefore also in \(K \). So \(M(w, x_i, x_j) \) holds in \(K \), and therefore in \(L \). \[\square\]

Graded Left Modular Lattices are Supersolvable

In this section, we prove Theorem 1, that finite graded left modular lattices are supersolvable. To do this, we have to show that the sublattice generated by the left modular chain and another chain is distributive.

The proof mimics the proof of Proposition 2.1 of [St], which shows that if \(L \) is a finite lattice with a maximal chain of modular elements, then this chain is an \(M \)-chain, and hence \(L \) is supersolvable. The proof from [St] is based on Birkhoff’s proof [Bi, §III.7] that a modular lattice generated by two chains is distributive.

We recall briefly the way Birkhoff’s proof works. Let \(L \) be a finite modular lattice, and let \(\hat{0} = x_0 < \cdots < x_r = \hat{1} \) and \(\hat{0} = y_0 < \cdots < y_s = \hat{1} \) be two chains,
which we denote x and y respectively. Assume further that L is generated by x and y. Let $u^i_j = x_i \land y_j$, and let $v^i_j = x_i \lor y_j$. Write U for $\{u^i_j\}$ and V for $\{v^i_j\}$.

Observe [Bi, §III.7 Lemma 1] that any join of elements of U can be written in the form

$$\bigvee_{i=1}^{t} a_i \land b_i$$

where a_1, a_2, \ldots form a decreasing sequence from x, and b_1, b_2, \ldots form an increasing sequence from y.

Then [Bi, §III.7 Lemma 2], the following two identities are established for all decreasing sequences a_1, a_2, \ldots from x and increasing sequences b_1, b_2, \ldots from y, and for all t, under the assumption that L is modular:

- \(P_t: \ (b_1 \lor a_1) \land (b_2 \lor a_2) \land \cdots \land (b_t \lor a_t) = b_1 \lor (a_1 \land b_2) \lor \cdots \lor (a_{t-1} \land b_t) \lor a_t\)
- \(Q_t: \ (a_1 \land b_1) \lor (a_2 \land b_2) \lor \cdots \lor (a_t \land b_t) = a_1 \land (b_1 \lor a_2) \land \cdots \land (b_{t-1} \lor a_t) \lor b_t\)

Using P_t and Q_t, it is straightforward to see that the set of joins of elements of U coincides with the set of meets of elements of V and that they therefore form a sublattice of L [Bi, III§7 Lemma 3]. Since L is generated by x and y (by assumption), it follows that every element of L can be written as a join of elements of U.

We now deviate slightly from the exposition in [Bi]. Let D denote the distributive lattice of down-closed subsets of $[1, r] \times [1, s]$. Define a map $\phi : D \rightarrow L$ by setting

$$\phi(I) = \bigvee_{(i,j) \in I} u^i_j.$$

This map respects join operations, and from what we have already shown, it is surjective.

Similarly, define a map $\psi : D \rightarrow L$ by setting

$$\psi(I) = \bigwedge_{(i,j) \notin I} v^{i-1}_{j-1}.$$

This map respects meet operations. Now, we observe (by P_t and Q_t) that ϕ and ψ coincide. They therefore form a lattice homomorphism from D onto L, which shows that L is distributive, as desired.

The only point at which modularity has been used is in establishing P_t and Q_t. Stanley noticed that it was sufficient to assume only that all the x_i are modular. In fact, still less is sufficient.

Lemma 9. P_t and Q_t hold in any graded lattice such that the x_i form a maximal chain of left modular elements.

Proof. We prove P_t and Q_t by simultaneous induction on t. P_1 and Q_1 are tautological. Assume that P_{t-1} and Q_{t-1} hold. We now prove Q_t. Recall that a_1, a_2, \ldots is a decreasing sequence from x, and b_1, b_2, \ldots is an increasing sequence from y.
We start from the lefthand side of Q_t:

\[(a_1 \land b_1) \lor \cdots \lor (a_{t-1} \land b_{t-1}) \lor (a_t \land b_t)\]

\[= (a_1 \land b_1) \lor \cdots \lor (a_{t-1} \land b_{t-1}) \land (a_t \land b_t)\]

by $M((a_t, (a_1 \land b_1) \lor \cdots \lor (a_{t-1} \land b_{t-1}), b_t))$

\[= [(a_1 \land (b_1 \lor a_2) \land \cdots \land (b_{t-2} \lor a_{t-1}) \land b_{t-1}) \lor a_t] \land b_t\]

by Q_{t-1}

\[= a_1 \land [(b_1 \lor a_2) \land \cdots \land (b_{t-2} \lor a_{t-1}) \land b_{t-1}) \lor a_t] \land b_t\]

by $M((b_1 \lor a_2) \land \cdots \land (b_{t-2} \lor a_{t-1}) \land b_{t-1}, a_t, a_1)$ (Lemma 8)

\[= a_1 \land [(b_1 \lor a_2) \land \cdots \land (b_{t-2} \lor a_{t-1}) \land b_{t-1}) \lor (b_{t-1} \lor \hat{0})] \land a_t] \land b_t\]

by P_{t-1}

\[= a_1 \land [(b_1 \lor a_2) \land \cdots \land (b_{t-2} \lor a_{t-1}) \land b_{t-1}) \lor (b_{t-1} \lor a_t)] \land b_t\]

by P_{t-1}.

This proves Q_t. The dual argument holds for P_t, which completes the induction step, and the proof of the lemma.

This shows that Birkhoff’s proof can be adapted to our situation, proving Theorem 1.

Acknowledgements

I would like to thank George Grätzer for suggesting the idea for this paper, and for some guidance about free lattices. I would like to thank Peter McNamara, Ralph Freese, and an anonymous referee for helpful suggestions.

References

[Bi] G. Birkhoff, Lattice Theory, third edition. American Mathematical Society, Providence, RI, 1973.

[BS] A. Blass and B. Sagan, M"obius functions of lattices. Adv. Math. 127 (1997), 94–123.

[Gr] G. Grätzer, General Lattice Theory, second edition. Birkhäuser, Basel, 2003.

[Li] L. S.-C. Liu, Left-modular elements and edge labellings. Ph. D. thesis, Michigan State University, 1999.

[Mc] P. McNamara, EL-labelings, supersolvability, and 0-Hecke algebra actions on posets. J. Combin. Theory Ser. A 101 (2003), 69–89.

[MT] P. McNamara and H. Thomas, Poset Edge-Labelling and Left Modularity. European J. Combin., to appear.

[St] R. Stanley, Supersolvable lattices. Algebra Universalis 2 (1972), 197–217.

Fields Institute, 222 College Street, Toronto ON, M5T 3J1, Canada

Current address: Department of Mathematics and Statistics, University of New Brunswick, Fredericton NB, E3B 5A3 Canada

E-mail address: hugh@math.unb.ca