Yves FÉLIX, Steve HALPERIN & Jean-Claude THOMAS

On The Growth of the Homology of a Free Loop Space II
Tome 67, no 6 (2017), p. 2519-2531.

<http://aif.cedram.org/item?id=AIF_2017__67_6_2519_0>
ON THE GROWTH OF THE HOMOLOGY OF A FREE LOOP SPACE II

by Yves FÉLIX, Steve HALPERIN & Jean-Claude THOMAS

Abstract. — Controlled exponential growth is a stronger version of exponential growth. We prove that the homology of the free loop space \(L_X \) has controlled exponential growth in two important situations: (1) when \(X \) is a connected sum of manifolds whose rational cohomologies are not monogenic, (2) when the rational homotopy Lie algebra \(L_X \) contains an inert element and \(\rho(L_X) < \rho(L_X/[L_X, L_X]) \), where \(\rho(V) \) denotes the radius of convergence of \(V \).

Résumé. — La croissance exponentielle controlée est une version forte de la croissance exponentielle. Nous prouvons que les nombres de Betti des lacets libres sur un espace \(X \) ont une croissance exponentielle controlée dans deux cas : lorsque \(X \) est la somme connexe de variétés dont la cohomologie n’est pas monogène, et lorsque l’algèbre de Lie \(L_X \) a une croissance exponentielle strictement plus grande que ses indécomposables.

1. Introduction

In this paper we are concerned with the growth of the homology \(H_*(X^{S^1}; \mathbb{Q}) \) of a free loop space on a simply connected space, \(X \).

A graded vector space \(V = V_{\geq 0} \) grows exponentially if there are constants \(1 < C_1 < C_2 \) such that for some \(N \),

\[
C_1^k \leq \sum_{i \leq k} \dim V_i \leq C_2^k, \quad k \geq N.
\]

In particular, if \(X \) is a simply connected CW complex of finite type and finite Lusternik–Schnirelmann category then [3] either \(\dim \pi_*(X) \otimes \mathbb{Q} < \infty \) (\(X \) is rationally elliptic) or \(\pi_*(X) \otimes \mathbb{Q} \) grows exponentially (\(X \) is rationally hyperbolic). The first examples of elliptic spaces are given by compact homogeneous spaces, but the generic situation is given by hyperbolic spaces.

Keywords: free loop space, exponential growth, inert attachment.

2010 Mathematics Subject Classification: 55P62.
For instance if the Euler characteristic $\chi(X) < 0$ then X is hyperbolic (see [4] for other examples of elliptic or hyperbolic spaces)

In [7] Gromov conjectured that $H_\ast(XS^1; \mathbb{Q})$ grows exponentially for almost all cases when X is a closed manifold. This would have an important consequence in Riemannian geometry, due to a theorem of Gromov, improved by Ballmann and Ziller:

Theorem 1.1 ([7], [2]). — Let $N_g(t)$ denote the number of geometrically distinct closed geodesics of length $\leq t$ on a simply connected closed Riemannian manifold (M, g). Then, for generic metrics g, there are constants $K > 0$ and $\beta > 0$ such that for k sufficiently large,

$$N_g(k) \geq K \cdot \max_{t \leq \beta k} \dim H_t(MS^1; \mathbb{Q}).$$

One of the first applications of Sullivan’s minimal models $(\wedge V, d)$ of a space X was the construction [16] (when X is simply connected) of the minimal model $(\wedge W, d)$ of XS^1 where $W^k = V^k \oplus V^{k-1}$. Since X is elliptic if and only if $\dim V < \infty$ it follows that in that case $H_\ast(XS^1; \mathbb{Q})$ grows at most polynomially. In [16] Vigué-Poirrier conjectures that in the hyperbolic case, $H_\ast(XS^1; \mathbb{Q})$ should grow exponentially, a conjecture which would give Gromov’s conjecture as a special case.

The Vigué-Poirrier conjecture has been proved for a finite wedge of spheres [16], for a non-trivial connected sum of closed manifolds [11] and in the case X is coformal [12].

For simplicity we write $H(X)$ and $H^\ast(X)$ respectively for the rational homology and cohomology of a space X, and denote the free loop space of maps $S^1 \to X$ by $\mathcal{L}X$. If X is simply connected and $\dim \pi_\ast(X) \otimes \mathbb{Q} < \infty$ then it is immediate from Sullivan’s model of $\mathcal{L}X$ [15] that $H(\mathcal{L}X)$ grows at most polynomially. However, even in the case when X is a rationally hyperbolic finite simply connected complex it is not known if $H(\mathcal{L}X)$ grows exponentially.

Next, for a graded vector space V denote by

$$V(z) := \sum_{k \geq 0} \dim V_k z^k$$

the formal Hilbert series of V and denote by ρ_V or $\rho(V)$ the radius of convergence of $V(z)$. If X is a topological space we denote by $X(z)$ and by ρ_X or by $\rho(X)$ the Hilbert series of $H(X)$ and its radius of convergence.

In [5] we introduced a much stronger version of exponential growth: V has **controlled exponential growth** if $0 < \rho_V < 1$ and for each $\lambda > 1$ there
is an infinite sequence \(n_1 < n_2 < \cdots \) such that \(n_{i+1} < \lambda n_i, \ i \geq 1 \), and
\[
\lim_i \frac{\log \dim V_{n_i}}{n_i} = -\log(\rho_V).
\]

As usual, \(\Omega X \) denotes the (based) loop space on a space \(X \). We recall [14] or [4] that if \(X \) is simply connected, then \(H(\Omega X) \) is the universal enveloping algebra of the graded Lie algebra \(L_X = \pi_* (\Omega X) \otimes \mathbb{Q} \); \(L_X \) is called the homotopy Lie algebra of \(X \). According to [5, Lemma 4],
\[(1.1) \quad \rho_{\Omega X} = \rho(L_X).\]
If \(X \) has rational homology of finite type and infinite dimensional rational homotopy, then Sullivan’s model for \(L_X \) gives
\[(1.2) \quad \rho L_X \leq \rho_{\Omega X}.\]

Our objective here is to establish new classes of spaces \(X \) (Theorems 1.3 and 1.4 below) for which \(H(LX) \) has controlled exponential growth and
\[\rho L_X = \rho_{\Omega X}.\]

Our approach is by constructing maps
\[F \to X \xrightarrow{p} Y\]
in which \(F \) is the homotopy fibre of \(p \).

Theorem 1.2. — With the above notations if \(F \) is rationally a wedge of spheres, and if \(0 < \rho_{\Omega F} < \rho_{\Omega Y} \) then \(H(LX) \) has controlled exponential growth and \(\rho L_X = \rho_{\Omega X} \).

Proof. — This follows from [5, formula (4)], together with Theorems 1.2 and 1.4. \(\square \)

One method for constructing other maps \(p : X \to Y \) is via inert elements \(\alpha \in L_X \), where \(L_X \) is the homotopy Lie algebra of \(X \). Any \(\alpha \in (L_X)_k \) corresponds up to a scalar multiple to a map \(\sigma : S^{k+1} \to X \) and \(\alpha \) is called inert if the map
\[p : X \to X \cup_\sigma D^{k+2}\]
is surjective in rational homotopy. In Lemma 2.2 we recall the proof that if \(\alpha \) is inert then the homotopy fibre of \(p \) is a wedge of spheres with homology isomorphic to \(H(\Omega(X \cup_\sigma D^{k+2})) \otimes \mathbb{Q} \alpha \). For instance the attaching map of the top cell in a simply connected manifold whose cohomology is not monogenic is inert [8]. (Recall that a graded algebra \(A = \mathbb{Q} \oplus A^{\geq 1} \) is monogenic if it is generated by a single element \(a \in A^{\geq 1} \)). Also, every nonzero element \(\alpha \) in a free Lie algebra generated by elements of even degrees is inert ([8]).
A key condition in our theorems is the hypothesis

\[\Omega_X(\rho_{\Omega X}) := \lim_{z \to \rho_{\Omega X}} \Omega_X(z) = \infty. \]

There are no examples where this is known to fail if \(X \) is a rationally hyperbolic, finite, simply connected CW complex. In fact (Proposition 2.1) this follows from the condition

\[\rho(L_X) < \rho \left(\frac{L_X}{[L_X, L_X]} \right), \]

which is not known to fail for such \(X \). When \(\dim L_X / [L_X, L_X] < \infty \), Proposition 2.1 follows from a result of Anick [1].

With this preamble we can state our two theorems:

Theorem 1.3. — Suppose \(X \) is a simply connected CW complex with rational homology of finite type. If \(L_X \) contains an inert element \(\gamma \) and if \(\rho(L_X) < \rho(L_X / [L_X, L_X]) \) then \(H(L_X) \) has controlled exponential growth and \(\rho_{L_X} = \rho_{\Omega X} \).

Theorem 1.4. — Suppose \(M \# N \) is the connected sum of two closed simply connected \(n \)-manifolds with \(H^*(N) \) not monogenic and \(M \) not rationally a sphere. If \(\rho_{\Omega N} \leq \rho_{\Omega M} \) and if \(\Omega_N(\rho_{\Omega N}) = \infty \) then \(H(L(M \# N)) \) has controlled exponential growth and \(\rho_{L(M \# N)} = \rho_{\Omega(M \# N)} \).

Remarks 1.5.

1. Theorem 1.3 is proved in [5] under the considerably stronger hypothesis that \(\dim L_X / [L_X, L_X] < \infty \).
2. If \(H^*(M) \) and \(H^*(N) \) are monogenic, but of dimension > 2 then \(M \# N \) is elliptic and so \(H(L(M \# N)) \) grows at most polynomially.
3. Theorem 1.4 strengthens a result of Lambrechts [10], which asserts that \(H(L(M \# N)) \) grows exponentially unless both \(H^*(M) \) and \(H^*(N) \) are monogenic.

2. Proposition 2.1 and Theorem 1.3

Suppose \(A = \mathbb{Q}1 \oplus A_{\geq 1} \) is a finitely generated graded algebra satisfying \(\rho_A < 1 \). Then it follows from a result of Anick [1] that

\[A(\rho_A) = \infty. \]

We generalize this with
Proposition 2.1. — Let $L = L_{\geq 1}$ be a graded Lie algebra of finite type such that $0 < \rho_{UL} < 1$. If L is generated by a subspace V with $\rho_{UL} < \rho_V$ then $UL(\rho_{UL}) = \infty$.

Proof. — We assume $UL(\rho_{UL}) < \infty$, and deduce a contradiction. By Anick's result we have $\dim V = \infty$. Choose some σ with $\rho_{UL} < \sigma < \rho_V$. Then $V(\sigma) < \infty$ and so $V_{\geq r}(\sigma) \to 0$ as $r \to \infty$. In particular, we may choose r so that $UL(\rho_{UL}) \cdot V_{\geq r}(\sigma) < 1$.

Now let E be the sub Lie algebra generated by $V_{< r}$ and note that by Anick's result, $E \neq L$. In particular, $UE(\rho_{UL}) < UL(\rho_{UL})$. Clearly $\rho_{UE} \geq \rho_{UL}$. If $\rho_{UE} = \rho_{UL}$, then $0 < \rho_{UE} < 1$. Then by Anick's result $UE(\rho_{UE}) = \infty$, and $UL(\rho_{UL}) = \infty$. It follows that $\rho_{UE} > \rho_{UL}$. Thus for some τ with $\rho_{UL} < \tau < \rho_{UE}$ we have $UE(\tau) < UL(\rho_{UL})$.

Choose ρ so that $\rho_{UL} < \rho < \tau$ and $\rho < \sigma$. Then $UE(\rho) \cdot V_{\geq r}(\rho) < UE(\tau) \cdot V_{\geq r}(\tau) < UL(\rho_{UL}) \cdot V_{\geq r}(\sigma) < 1$.

Now let $W = UE \circ V_{\geq r}$ where “\circ” denotes the adjoint action and note that $W(\rho) < 1$. Then, let I be the sub Lie algebra generated by W. The inclusion of W in I extends to a surjection $TW \to UI$. Since $(TW)(\rho) = \frac{1}{1-W(\rho)} < \infty$, it follows that $\rho_{UI} \geq \rho_{TW} \geq \rho > \rho_{UL}$.

On the other hand, since $W \supset V_{\geq r}$ and $[E, W] \subset W$, it follows that I is an ideal in L. The surjection $L \to L/I$ kills $V_{\geq r}$, and so it restricts to a surjection $E \to L/I$. Thus $\rho_{U(L/I)} \geq \rho_{UE} > \rho_{UL}$. But as graded vector spaces $UL \cong UI \otimes U(L/I)$ and so $\rho_{UL} = \min\{\rho_{UI}, \rho_{U(L/I)}\}$.

This is the desired contradiction because $\rho_{UL} < \rho_{UI}$ and $\rho_{UL} < \rho_{U(L/I)}$. \hfill \Box

We also require the following lemma announced in the Introduction, and which is essentially proved, if not stated, in [8].

Lemma 2.2. — Let X be a simply connected CW complex that is not rationally a sphere. If $\alpha \in (L_X)_k$ is an inert element corresponding to $\sigma : S^{k+1} \to X$, then

1. The homotopy fibre $i : F \to X$ of $p : X \to X \cup_{\sigma} D^{k+2} = Y$ is rationally a wedge of spheres.

2. $H(\Omega i)$ restricts to an isomorphism $L_F \cong I$, where $I \subset L_X$ is the ideal generated by α.

TOME 67 (2017), FASCICULE 6
(3) I is a free Lie algebra and $I/[I, I] \cong U(L_X/I) \otimes \mathbb{Q}\alpha$.

(4) $H_\ast(\Omega p)$ induces an isomorphism $U(L_X/I) \cong H_\ast(\Omega Y)$.

Proof. — Since α is inert $\pi_\ast(p) \otimes \mathbb{Q}$ is surjective. Thus $\pi_\ast(\Omega p) \otimes \mathbb{Q}$ is surjective and

$$
\pi_\ast(\Omega i) \otimes \mathbb{Q} : L_F = \pi_\ast(\Omega F) \otimes \mathbb{Q} \cong \ker \pi_\ast(\Omega p) \otimes \mathbb{Q}.
$$

Moreover, it follows from [8, Theorem 1.1], that $L_F = I$, and so $H_\ast(\Omega p) \otimes \mathbb{Q}$ induces an isomorphism $U(L_X/I) \cong H_\ast(\Omega Y)$. Theorem 1.1 of [8] also asserts that I is a free Lie algebra, and that

$$I/[I, I] \cong U(L_X/I) \otimes \mathbb{Q}\alpha.$$

It remains to show that F is rationally a wedge of spheres. Let $\sigma_i : S^{n_i} \to F$ corresponding to elements $\alpha_i \in L_F$ which represent a basis of $I/[I, I]$. Then the map

$$
\varphi = \vee_i \sigma_i : \vee S^{n_i} \to F
$$

induces a map $\Omega \varphi : \Omega(\vee S^{n_i}) \to \Omega F$ and $\pi_\ast(\Omega \varphi) \otimes \mathbb{Q}$ is a morphism between free Lie algebras inducing an isomorphism $I/[I, I] \cong L_F/[L_F, L_F]$. Thus $\pi_\ast(\Omega \varphi) \otimes \mathbb{Q}$ is an isomorphism and φ is a rational homotopy equivalence. □

Proof of Theorem 1.3. — Denote L_X simply by L, let $\alpha \in L_k$ be the inert element corresponding to $\sigma : S^{k+1} \to X$, and let $p : X \to X \cup_\sigma D^{k+2}$ be the map considered in Lemma 1. Then by Lemma 1, with I the ideal generated by α and $V = I/[I, I]$, we have isomorphisms

$$H_\ast(\Omega F) \cong UI \cong TV \quad \text{and} \quad H(\Omega(X \cup_\sigma D^{k+2})) \cong U(L/I).$$

Thus, as observed in the Introduction, Theorem 1.3 will be established once we prove

$$\rho_{UI} < \rho_{U(L/I)}.$$

Clearly $\rho_{UL} \leq \rho_{U(L/I)}$ and if $\rho_{UL} < \rho_{U(L/I)}$ then $\rho_{UI} < \rho_{U(L/I)}$ since $UL \cong UI \otimes U(L/I)$. It remains to consider the case that $\rho_{UL} = \rho_{U(L/I)}$. Since $UI \cong TV$ and since $\dim V \geq 2$ it follows that $\rho_{UL} \leq \rho_{UI} < 1$. Since $L/[L, L]$ maps surjectively to $(L/I)/[L/I, L/I]$, we obtain

$$\rho_{U(L/I)} = \rho_{UL} < \rho_{L/[L, L]} \leq \rho_{(L/I)/[L/I, L/I]}.$$

Thus by Proposition 2.1,

$$U(L/I)(\rho_{U(L/I)}) = \infty.$$

On the other hand, $UI \cong TV$ with $V \cong U(L/I) \otimes \mathbb{Q}\alpha$. Thus

$$UI(z) = \frac{1}{1 - z^k U(L/I)(z)}.$$
Since $\lim_{z \to \rho(U(L/I))} U(L/I)(z) = \infty$, it follows that $r^k U(L/I)(r) = 1$ for some $r < \rho U(L/I)$. But then $r = \rho U I$ and so again $\rho U I < \rho(U(L/I))$. \(\square\)

3. Connected sums

The objective of this section is to prove Theorem 1.4, and we shall frequently rely on the acyclic closure [6] of a cdga, (A, d) in which $A^0 = \mathbb{Q}$ and $H^1(A) = 0$. This is a cdga of the form $(A \otimes \wedge U, d)$ containing (A, d) as a sub cdga, where the quotient $(\wedge U, d)$ is a minimal Sullivan algebra, and such that $H(A \otimes \wedge U, d) = \mathbb{Q}$. The acyclic closure is determined up to isomorphism ([6, Theorem 3.2]).

For the proof of Theorem 1.4 we establish a preliminary proposition to deal with the case that $H^\ast(M)$ is monogenic and $H^\ast(N)$ is not. Recall that a model for a space X is a connected commutative graded differential algebra whose minimal Sullivan model is also a minimal Sullivan model for the rational polynomial differential forms on X ([15], [4]).

Let (A, d) and (B, d) be finite dimensional models for the closed n-manifolds M and N of Theorem 1.4. We may suppose $A^0 = B^0 = \mathbb{Q}$, $A^1 = B^1 = 0$, $A^{>n} = B^{>n} = 0$, $A^n = \mathbb{Q} \alpha$ and $B^n = \mathbb{Q} \beta$.

Lemma 3.1. — A model for the connected sum $M \# N$ is given the cdga

$$(A \oplus \mathbb{Q} B) \oplus \mathbb{Q} w, d)$$

with $dw = \alpha - \beta$ and $w \cdot A^+ = w \cdot B^+ = 0$.

Proof. — By [4, §12], the cdga $A \oplus \mathbb{Q} B$ is a model for the wedge $M \lor N$. Denote by $p : M \# N \to M \lor N$ the pinch map and $(\wedge X, d)$ a Sullivan minimal model for $M \lor N$. Since $H^{<n}(p)$ is an isomorphism and $H^n(p)$ simply identifies the classes α and β, a model of p is given by the inclusion $(\wedge X, d) \to (\wedge X \otimes \wedge u \otimes \wedge Z, d)$ where $du = \alpha - \beta$ with $[\alpha]$ and $[\beta]$ the fundamental classes of M and N, and where $Z = \mathbb{Z}^{<n-1}$ is introduced to kill recursively all new cohomology classes. We then have clearly a commutative diagram, where the vertical maps are quasi-isomorphisms

$$
\begin{array}{ccc}
(\wedge X, d) & \xrightarrow{\varphi} & (\wedge Y, d) \\
\downarrow \cong & & \downarrow \cong \\
A \oplus \mathbb{Q} B & \longrightarrow & (A \oplus \mathbb{Q} B) \oplus \mathbb{Q} w, d).
\end{array}
$$

Now consider the case that $H^\ast(M)$ is monogenic. Then $H^\ast(M) = \wedge a/a^{n+1}$, where $\deg a = 2p$, $n = 2pk$, and $k \geq 2$ because M is not rationally
a sphere. In this case \((\wedge a / a^{n+1}, 0)\) is a model for \(M\) and we choose as model
\((B, d)\) for \(N\) a quotient of the minimal Sullivan model such that \(B^{> n} = 0\) and \(B^n = \mathbb{Q}\beta\). Then \(a\) represents a cohomology class in \(H^{2p}(M \# N)\) and hence determines a map \(p : M \# N \to K(2p, \mathbb{Q})\) with homotopy fibre \(F\).

Proposition 3.2. — The homotopy fibre \(F\) has a model of the form
\[
(C, d) = (B / \beta, d) \oplus (B^{\geq 1}, d) \otimes \mathbb{Q}a
\]
where \(\deg a = 2p - 1\), \((B / \beta, d)\) is the quotient cdga of \((B, d)\) acting by multiplication on the left on \((B^{\geq 1}, d) \otimes \mathbb{Q}a\), and \((B^{\geq 1} \otimes \mathbb{Q}a)(B^{\geq 1} \otimes \mathbb{Q}a) = 0\).

Proof. — As observed above, a model for \(M \# N\) is given by \(((\wedge a / a^{k+1} \times \mathbb{Q}B) \oplus \mathbb{Q}w, d)\) with \(dw = a^k - \beta\). Now a quasi-isomorphism
\[
((\wedge a \otimes \wedge w) \times \mathbb{Q}B, d) \xrightarrow{\sim} (\wedge a / a^{k+1} \times \mathbb{Q}B) \oplus \mathbb{Q}w
\]
is given by dividing by the elements \(a^q\) and \(a^r w\), \(q \geq k + 1\) and \(r \geq 1\); here on the left \(dw = a^k - \beta\). (This follows by filtering by the degree in \(B\).)

Thus it follows from Theorem 15.3 in [4] or Theorem 5.1 in [6] that the Sullivan fibre of the morphism \(\wedge a \to ((\wedge a \otimes \wedge w) \times \mathbb{Q}B)\) is a model for \(F\). Let \((\wedge a \otimes \wedge \bar{a}, d \bar{a} = a)\) be the acyclic closure of \((\wedge a, 0)\). Then this Sullivan fibre is given by \(((\wedge a \otimes \wedge w) \times \mathbb{Q}B) \otimes_{\wedge a} (\wedge a \otimes \wedge \bar{a})\). Hence
\[
(\wedge a \otimes \wedge w \otimes \wedge \bar{a}) \oplus (B^{\geq 1} \otimes \wedge \bar{a}) = (\wedge a \otimes \wedge w \otimes \wedge \bar{a}) \times_{\wedge \bar{a}} (B \otimes \wedge \bar{a})
\]
is also a model for \(F\).

Next note that \(I = (\wedge^{\geq 2} a \oplus \wedge^{\geq 1} a \cdot \bar{a}) \otimes \wedge w \subset (\wedge a \otimes \wedge w \otimes \wedge \bar{a}) \oplus (B^{\geq 1} \otimes \wedge \bar{a})\) is an ideal preserved by \(d\), and that \(H(I, d) = 0\). Thus division by \(I\) produces another model for \(F\), given explicitly by
\[
(\mathbb{Q}(1 \oplus a + \bar{a}) \otimes \wedge w) \oplus (B^{\geq 1} \otimes \wedge \bar{a})
\]
with \(a^2 = a\bar{a} = \bar{a}^2 = 0\), \(d \bar{a} = a\) and, since \(k \geq 2\), \(dw = -\beta\). In this cdga, \(d(\bar{a}w) = aw + \bar{a}\beta\). Moreover, the subspace spanned by \(\bar{a}w\) and \(aw + \bar{a}\beta\) is an ideal. Thus a quasi-isomorphism
\[
(\mathbb{Q}(1 \oplus a + \bar{a}) \otimes \wedge w) \oplus (B^{\geq 1} \otimes \wedge \bar{a}) \to \mathbb{Q}(1 \oplus a \oplus \bar{a} \oplus w) \oplus (B^{\geq 1} \otimes \wedge \bar{a})
\]
is given by \(\bar{a}w \mapsto 0\) and \(aw \mapsto -\bar{a}\beta\).

Now the inclusion \(\mathbb{Q} \oplus \mathbb{Q}w \oplus (B^{\geq 1} \otimes \wedge \bar{a})\) in \(\mathbb{Q}(1 \oplus a \oplus \bar{a} \oplus w) \oplus (B^{\geq 1} \otimes \wedge \bar{a})\) is clearly a quasi-isomorphism. Since \(dw = -\beta\), division by \(w\) and \(\beta\) then gives a quasi-isomorphism
\[
\mathbb{Q} \oplus \mathbb{Q}w \oplus (B^{\geq 1} \otimes \wedge \bar{a}) \xrightarrow{\sim} B / \beta \oplus (B^{\geq 1} \otimes \mathbb{Q}a).
\]
(Note that in the left hand cdga $\beta \otimes \overline{\alpha}$ is not the product of β and $\overline{\alpha}$, since $\overline{\alpha}$ is not an element in the cdga!).

Proof. — We consider separately the cases that $H^*(M)$ is monogenic and $H^*(N)$ is not, and that neither $H^*(M)$ nor $H^*(N)$ are monogenic. Note that since M and N are simply connected, and N is not a rational sphere, $n \geq 4$.

Case 1: $H^*(M)$ is monogenic. — We adopt the notation of Proposition 3.2, and for simplicity denote $- \otimes \mathbb{Q}\overline{\alpha}$ simply by $- \otimes \overline{\alpha}$. It is immediate from Theorem 3 and (4) in [5] that it is sufficient to prove that $H(LF)$ has controlled exponential growth and that $\rho_{LF} = \rho_{\Omega F}$. Let $(\Lambda W, d) \to (B/\beta, d)$ be a minimal Sullivan model, and extend this to a Sullivan model $(\Lambda W \otimes \Lambda Z, d) \to (C, d)$. By Proposition 3.2, $(\Lambda W \otimes \Lambda Z, d)$ is a Sullivan model for F. Now, letting $(\Lambda W \otimes \Lambda U, d)$ be the acyclic closure of $(\Lambda W, d)$, we have for the Sullivan fibre $(\Lambda Z, d)$ that

\[(\Lambda Z, d) \simeq (\Lambda W \otimes \Lambda Z \otimes \Lambda W \otimes \Lambda U, d) = (\Lambda W \otimes \Lambda Z \otimes \Lambda U, d) \to (B/\beta \oplus (B^{\geq 1} \otimes \overline{\alpha}) \otimes \Lambda U, d) \to \mathbb{Q} \oplus (B^{\geq 1} \otimes \overline{\alpha} \otimes \Lambda U, d).
\]

Since products in $(B^{\geq 1} \otimes \overline{\alpha})$ are zero it follows that $(\Lambda Z, d)$ is the minimal Sullivan model of a wedge of spheres with cohomology $\mathbb{Q} \oplus H(B^{\geq 1} \otimes \overline{\alpha} \otimes \Lambda U, d)$.

Thus in this case Theorem 1.4 will follow from the Sullivan model version of Theorem 3 and (4) in [5] once we show that the Sullivan acyclic closure $(\Lambda Z \otimes \Lambda S, d)$ of $(\Lambda Z, d)$ satisfies

\[(3.1) \quad \rho_{\Lambda S} < \rho_{\Lambda U}.
\]

Denote $H(B^{\geq 1} \otimes \overline{\alpha} \otimes \Lambda U)$ simply by H. Since $(\Lambda Z, d)$ is the model of a wedge of spheres, it follows that ΛS is the dual of a tensor algebra TE with $E_i \simeq H^{i+1}$. Thus

\[(3.2) \quad \Lambda S(z) = \frac{1}{1 - E(z)} = \frac{1}{1 - \frac{1}{z}H(z)}.
\]

It remains to estimate $H(z)$.

For this recall that the morphism $B \to B/\beta$ corresponds to the inclusion

\[N - D^n \to (N - D^n) \cup_{S^{n-1}} D^n,
\]

where S^{n-1} is the boundary of a small disk $D^n \subset N$. Since $H(N)$ is not monogenic Theorem 5.1 of [8] asserts that the sphere S^{n-1} corresponds
to an inert element in the homotopy Lie algebra of $N - D^n$. Thus by [8, Theorem 1.1],

$$H(\Omega(N - D^n)) \cong TV \otimes H(\Omega N)$$

where $V \cong H(\Omega N) \otimes v$ and $\deg v = n - 2$. Since $V(z) = z^{n-2}\Omega N(z)$ it follows that $\rho_V = \rho_{\Omega N}$ and that $V(\rho_V) = \infty$. Since

$$TV(z) = \frac{1}{1 - V(z)}$$

it follows that $\rho_{TV} < \rho_V$ and that $TV(\rho_{TV}) = \infty$.

Moreover, the minimal Sullivan model $(\wedge W, d)$ of B/β has the form $(\wedge W_N \otimes \wedge P, d)$ in which $\wedge W_N$ is the minimal Sullivan model of N. Thus the acyclic closure $(\wedge W \otimes \wedge U, d)$ has the form

$$(\wedge W_N \otimes \wedge U_N \otimes \wedge P \otimes \wedge U_P, d)$$

in which $(\wedge W_N \otimes \wedge U_N, d)$ is the acyclic closure of $(\wedge W_N, d)$. In particular, $\wedge U \cong \wedge U_N \otimes \wedge U_P$, and there are linear isomorphisms

$$(3.3) \quad \wedge U_N \cong H^*(\Omega N) \quad \text{and} \quad \wedge U_P \cong TV^#,$$

$V^#$ denoting the dual of V. Thus

$$\rho_{\wedge U_P} = \rho_{TV} < \rho_V = \rho_{\wedge U_N}.$$

Since $\wedge U = \wedge U_N \otimes \wedge U_P$, it follows that

$$\rho_{\wedge U} = \rho(\wedge U_N \otimes \wedge U_P) = \rho_{\wedge U_P},$$

and that $\wedge U(\rho_{\wedge U}) = \infty$.

Now consider the short exact sequence

$$0 \rightarrow (B^{\geq 1} \otimes \bar{a} \otimes \wedge U, d) \rightarrow (B \otimes \bar{a} \otimes \wedge U, d) \rightarrow (\bar{a} \otimes \wedge U, 0) \rightarrow 0.$$

Since $(B \otimes \bar{a} \otimes \wedge U, d) = (B \otimes \bar{a} \otimes \wedge U_N \otimes \wedge U_P, d)$ it follows that

$$H = H(B \otimes \bar{a} \otimes \wedge U, d) \cong \bar{a} \otimes \wedge U_P.$$

It follows that $H(B^{\geq 1} \otimes \bar{a} \otimes \wedge U, d)$ contains a subspace T with

$$T^{i + \deg \bar{a} + 1} \cong (\wedge^{\geq 1} U_N \otimes \wedge U_P)^i.$$

In particular, with \gg denoting coefficient-wise inequality, we have

$$E(z) \gg z^{\deg \bar{a}} \cdot (\wedge^{\geq 1} U_N)(z) \cdot (\wedge U_P)(z).$$

Thus $\rho_E \leq \rho_{\wedge U}$ and if $\rho_E = \rho_{\wedge U}$, then $E(\rho_E) = \infty$. Since

$$\wedge S(z) = \frac{1}{1 - E(z)}$$

it follows in either case that $\rho_{\wedge S} < \rho_{\wedge U}$, which completes the proof of Theorem 1.4 in this case.
Case 2: Neither $H(M)$ nor $H(N)$ is monogenic. — In this case Theorem 5.4 of [8] asserts that the collar sphere S^{n-1} joining $M - \{pt\}$ to $N - \{pt\}$ represents an inert element in $L_{M \# N}$. Attaching a disk to this sphere gives $M \vee N$ and thus by Theorem 1.1 in [8] the homotopy fibre F of the map $p : M \# N \to M \vee N$ is rationally a wedge of spheres with

$$H_i(F) \cong H_{i-n+2}(\Omega(M \vee N)).$$

Thus

$$H(\Omega F) = TV \quad \text{and} \quad V_i \cong H_{i-n+2}(\Omega(M \vee N)),$$

and so

$$\Omega F(z) = \frac{1}{1 - z^{n-2}(\Omega(M \vee N))(z)}.$$

On the other hand it is a classical fact that the homotopy fibre G of the map $q : M \vee N \to M \times N$ is the join $\Omega M * \Omega N$, (we sketch the proof in Lemma 3.3 below). Thus G is the suspension of $\Omega M \wedge \Omega N$ and therefore rationally a wedge of spheres. Since $\pi_*(q)$ is trivially surjective. It follows that

$$H(\Omega G) = TW \quad \text{with} \quad W_i \cong H_{i-1}(\Omega M * \Omega N).$$

By hypothesis, $\rho_{\Omega N} \leq \rho_{\Omega M}$ and $\rho_{\Omega N}(\Omega N) = \infty$. In particular, $W(\rho_{\Omega N}) = \infty$ and, since $\Omega G(z) = \frac{1}{1 - W(z)}$, it follows that the radius of convergence, ρ, of $\Omega G(z)$ satisfies

$$\rho < \rho_{\Omega N} \leq \rho_{\Omega M} \quad \text{and} \quad W(\rho) = 1.$$

Moreover, since $\pi_*(q)$ is surjective,

$$H(\Omega(M \vee N)) = H(\Omega G) \otimes H(\Omega M) \otimes H(\Omega N)$$

and so ρ is also the radius of convergence of $\Omega(M \vee N)(z)$ and

$$\Omega(M \vee N)(\rho) = \infty.$$

Finally, since

$$\Omega F(z) = \frac{1}{1 - z^{n-2}(\Omega(M \vee N))(z)}$$

it follows that $\rho_{\Omega F} < \rho = \rho_{\Omega(M \vee N)}$ and Theorem 1.4 follows from Theorem 1, Theorem 3 and (4) in [5].

Lemma 3.3. — The homotopy fiber G of the injection $q : M \vee N \to M \times N$ has the homotopy type of $\Omega M * \Omega N$.

Proof. — Recall the Cube Lemma ([13]): In a homotopy commutative cube, if the vertical faces are homotopy pullbacks and the lower face an homotopy push-out, then the upper face is also an homotopy push-out.
Let $j : G \to M \vee N$ be the homotopy fibre of the inclusion q. Then we form the following cube by taking the pullbacks of j along the injections $M \to M \vee N$ and $N \to M \vee N$.

\[
\begin{array}{ccc}
\Omega N \times \Omega M & \to & \Omega M \\
\downarrow & & \downarrow \\
\Omega N & \to & G \\
\downarrow & & \downarrow \\
\{\ast\} & \to & N \\
\downarrow & & \downarrow \\
M & \to & M \vee N \\
\end{array}
\]

This shows that $G \cong \Omega M \ast \Omega N$. □

BIBLIOGRAPHY

[1] D. J. Anick, “The smallest singularity of a Hilbert series”, *Math. Scand* 51 (1982), p. 35-44.

[2] W. Ballmann & W. Ziller, “On the number of closed geodesics on a compact riemannian manifold”, *Duke Math. J.* 49 (1982), p. 629-632.

[3] Y. Félix, S. Halperin & T. Jean-Claude, “The homotopy Lie algebra for finite complexes”, *Publ. Math., Inst. Hautes Étud. Sci.* 56 (1983), p. 387-410.

[4] ———, *Rational Homotopy Theory*, Graduate Texts in Mathematics, vol. 205, Springer, 2001, xxxii+535 pages.

[5] ———, “On the growth of the homology of a free loop space”, *Pure Appl. Math. Q.* 9 (2013), no. 1, p. 167-187.

[6] ———, *Rational Homotopy II*, World Scientific, 2015, xxxvi+412 pages.

[7] M. Gromov, “Homotopical effects of dilatations”, *J. Differ. Geom.* 13 (1978), p. 303-310.

[8] S. Halperin & L. Jean-Michel, “Suites inertes dans les algèbres de Lie graduées”, *Math. Scand.* 61 (1987), p. 39-67.

[9] S. Halperin & G. Levin, “High skeleta of CW complexes”, in *Algebra, Algebraic Topology and their Interactions (Stockholm 1983)*, Lecture Notes in Math., vol. 1183, Springer, 1986, p. 211-217.

[10] P. Lambrechts, “Analytic properties of Poincaré series of spaces”, *Topology* 37 (1998), p. 1363-1370.

[11] ———, “The Betti numbers of the free loop space of a connected sum”, *J. Lond. Math. Soc.* 64 (2001), p. 205-228.

[12] ———, “On the Betti numbers of the free loop space of a coformal space”, *J. Pure Appl. Algebra* 161 (2001), p. 177-192.

[13] M. Mather, “Pull-backs in homotopy theory”, *Can. J. Math.* 28 (1976), p. 225-263.

[14] J. W. Milnor & J. Moore, “On the structure of Hopf algebras”, *Ann. Math.* 81 (1965), p. 211-264.
ON THE GROWTH OF THE HOMOLOGY OF A FREE LOOP SPACE II 2531

[15] D. Sullivan, “Infinitesimal Computations in Topology”, Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), p. 269-331.

[16] M. Vigué-Poirrier, “Homotopie rationnelle et nombre de géodésiques fermées”, Ann. Sci. Éc. Norm. Supér. 17 (1984), p. 413-431.

Manuscrit reçu le 16 avril 2015,
révisé le 27 mai 2017,
accepté le 7 août 2017.

Yves FÉLIX
Université Catholique de Louvain,
Institut de Mathématique,
2, Chemin du cyclotron,
1348 Louvain-La-Neuve (Belgium)
yves.felix@uclouvain.be

Steve HALPERIN
University of Maryland,
Department of Mathematics,
Mathematics Building,
College Park, MD 20742 (USA)
shalper@umd.edu

Jean-Claude THOMAS
Université d’Angers,
LAREMA,
2 Bd Lavoisier,
49045 Angers Cedex (France)
jean-claude.thomas@univ-angers.fr