Integrin-dependent Translocation of Phosphoinositide 3-Kinase to the Cytoskeleton of Thrombin-Activated Platelets Involves Specific Interactions of p85α with Actin Filaments and Focal Adhesion Kinase

Christine Guinebault, * Bernard Payrastre, * Claire Racaud-Sultan, * Honoré Mazarguil, † Monique Breton, * Gérard Maucó, * Monique Plantavid, * and Hugues Chap*

*Institut National de la Santé et de la Recherche Médicale, Unité 326, Hôpital Purpan, 31059 Toulouse, France; and † LPTF du CNRS, 31077 Toulouse, France

Abstract. Thrombin-induced accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) but not of PtdIns(3,4,5)P3 is strongly correlated with the relocation to the cytoskeleton of 29% of the p85α regulatory subunit of phosphoinositide 3-kinase (PtdIns 3-kinase) and is accompanied by a significant increase in PtdIns 3-kinase activity in this subcellular fraction. Actually, PtdIns(3,4)P2 accumulation and PtdIns 3-kinase, pp60 v-src, and p125FAK translocations as well as aggregation were concomitant events occurring with a distinct lag after actin polymerization. The accumulation of PtdIns(3,4)P2 and the relocalization of PtdIns 3-kinase to the cytoskeleton were both dependent on tyrosine phosphorylation, integrin signaling, and aggregation. Furthermore, although p85α was detected in anti-phosphotyrosine immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets, we failed to demonstrate tyrosine phosphorylation of cytoskeletal p85α. Tyrphostin treatment clearly reduced its presence in this subcellular fraction, suggesting a physical interaction of p85α with a phosphotyrosyl protein. These data led us to investigate the proteins that are able to interact with PtdIns 3-kinase in the cytoskeleton. We found an association of this enzyme with actin filaments: this interaction was spontaneously restored after one cycle of actin depolymerization-repolymerization in vitro. This association with F-actin appeared to be at least partly indirect, since we demonstrated a thrombin-dependent interaction of p85α with a proline-rich sequence of the tyrosine-phosphorylated cytoskeletal focal adhesion kinase, p125FAK. In addition, we show that PtdIns 3-kinase is significantly activated by the p125FAK proline-rich sequence binding to the src homology 3 domain of p85α subunit. This interaction may represent a new mechanism for PtdIns 3-kinase activation at very specific areas of the cell and indicates that the focal contact–like areas linked to the actin filaments play a critical role in signaling events that occur upon ligand engagement of αIβ3 integrin and platelet aggregation evoked by thrombin.

The accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and PtdIns(3,4,5)P3 in thrombin-stimulated human platelets is now well established (16, 24, 38, 41) and seems to be regulated differently (38). However, the exact mechanism of activation of phosphoinositide 3-kinase (PtdIns 3-kinase) in these cells is still obscure. The small G-protein rho (51), G-protein βγ subunit (44) protein kinase C (PKC) (26), Ca2+ (38), as well as tyrosine phosphorylation (19) may contribute to its activation. Possible ways of stimulation in other models also include physical association with specific proteins via the src homology 2 (SH2) domains or the proline-rich regions of the p85 subunit. This results in a conformational change of p85 that appears to be transmitted to the catalytic subunit (p10) as an activation signal (34, 37). Since PtdIns 3-kinase has been found to be associated with activated PDGF receptor (10) or pp60v-src (14), with a potentially very important role in mitogenesis (46) or oncogenic transformation (43), respectively, great interest has been elicited by its products (i.e., D3-phosphorylated phosphoinositides). Although their precise function is still unknown, these phospholipids have been suggested to play a role as second messengers activating downstream signaling enzymes like PKCγ isoform.

© The Rockefeller University Press, 0021-9525/95/05/831/12 $2.00
The Journal of Cell Biology, Volume 129, Number 3, May 1995 831–842 831
(29). Moreover, based on the homology of p110 with Saccharomyces cerevisiae protein Vps34p, PtdIns 3-kinase and/or its products have been recently suggested to play a role in intracellular sorting and down-regulating processes involving vesicle formation and targeting to the endosomal compartment (31). Another hypothesis is a possible role of PtdIns 3-kinase in regulating the polymerization and the organization of actin, as suggested by the simultaneous appearance of PtdIns(3,4,5)P_2 and actin polymerization of N-formyl peptide–stimulated human neutrophils (9).

In human platelets stimulated by thrombin, PtdIns(3,4,5)P_2 production occurs very rapidly (38), whereas the accumulation of PtdIns(3,4,5)P_2 is a late event dependent upon fibrinogen binding to the integrin receptor α_{IIb}β_3 (38, 41, 42) and partly requires tyrosine phosphorylations (19, 48). Its production may be due to PtdIns(3,4,5)P_2 degradation by a 5-phosphatase (40), to the effect of a PtdIns(3)P 4-kinase (47), or to the direct action of PtdIns 3-kinase on PtdIns(4)P. Since accumulations of PtdIns(3,4)P_2 and PtdIns(3,4,5)P_2 display different sensitivities to Ca^{2+}, integrin mobilization (38), and tyrosine phosphorylation (48), it is more likely that PtdIns(3,4)P_2 synthesis in platelet is due to the action of a 4-kinase on PtdIns(3)P or to the action of PtdIns 3-kinase on PtdIns(4)P, both of which would involve PtdIns 3-kinase. However, we and others have previously observed a translocation of PtdIns 3-kinase to the cytoskeleton of thrombin-activated platelets (18, 50). It is noteworthy that an association of PtdIns 3-kinase with the cytoskeleton has also been reported in other cells (32). In human platelets, thrombin stimulation leads to a dramatic reorganization of the cytoskeleton (15), which is possibly triggered in part by interaction of integrin receptors with their ligands (21). Interestingly, several proteins involved in signal transduction are found relocated to the cytoskeleton of thrombin-activated platelets; among these are various enzymes of phosphoinositide metabolism (18) and pp60^{src} (7, 18). This cellular proto-oncogene tyrosine kinase has been described to interact with PtdIns 3-kinase in different cell types (34). pp60^{src} is constitutively present in large amounts in platelets and may be responsible for the phosphorylation and the regulation of different enzymes (8). A potential role of this tyrosine kinase in the integrin-dependent part of PtdIns 3-kinase activation in platelets is thus conceivable. In this model, thrombin induces the activation of pp60^{src}, which is then translocated to the cytoskeleton after α_{IIb}β_3 integrin receptor mobilization and aggregation (7). However, other non–receptor tyrosine kinases whose activation is related to integrin signaling and cytoskeleton reorganization, like focal adhesion kinase (p125^{FAK}), may also play crucial roles in platelet activation (27).

Taken together, these observations point to a potentially important and dynamic function of the cytoskeleton in various signal transduction pathways. Therefore, to determine its possible functional relationships, we decided to study in detail the translocation of PtdIns 3-kinase to the platelet cytoskeleton during thrombin activation. Interestingly, kinetic studies revealed a strong correlation between the relocation of PtdIns 3-kinase and the accumulation of PtdIns(3,4)P_2. Since these events were dependent on both aggregation and α_{IIb}β_3 integrin receptor engagement, our approach was to ask whether PtdIns 3-kinase activation and translocation were related to tyrosine phosphorylation promoted by integrin signaling. The data obtained indicated an important role for the integrin-dependent tyrosine kinase activation; however, cytoskeletal p85α was not tyrosine phosphorylated. This observation led us to investigate the proteins that may interact with PtdIns 3-kinase in the cytoskeleton of activated platelets. We found that thrombin activation of platelets leads to the formation of multienzymatic complexes, including PtdIns 3-kinase and tyrosine-phosphorylated p125^{FAK} in areas tightly associated with the actin filament system corresponding to focal contact-like domains. Their formation appears to be dependent upon aggregation and is related to integrin-dependent tyrosine kinase activation. In investigating these associations further, we found that a proline-rich sequence of p125^{FAK} (residues 706–711) directly bound to the SH3 domain of p85α. Interestingly, micromolar amounts of a peptide corresponding to the proline-rich region of p125^{FAK} (706–711) increased the specific activity of PtdIns 3-kinase. We therefore propose that this interaction may represent a new mechanism for PtdIns 3-kinase activation at very specific areas (i.e., focal contact points). The strong correlation observed between the formation of these focal adhesion–like domains and the accumulation of PtdIns(3,4)P_2 in this model may help to elucidate its functional relationships and emphasize the dynamic role of the cytoskeleton in signal transduction.

Materials and Methods

Antibodies and Fusion Proteins

The mouse anti-actin antibody was obtained from Amersham International (Buckinghamshire, UK). Mouse anti-p125^{FAK}, mouse anti-phosphotyrosine 4G10, and rat anti-p85α antibodies came from Upstate Biotechnology Inc. (New York). A highly specific antibody against the p85α subunit was kindly provided by Dr. Waterfield (Ludwig Institute for Cancer Research, London). Sheep polyclonal antisera against pp60^{src} was from Cambridge Research Biochemicals Inc. (Cambridge, UK). The mouse antiphosphotyrosine 4G10 coupled to agarose, the GST–p85α–SH2 (NH2) immobilized or not on agarose, and the anti-GST antibody were from TEBU (Santa Cruz Biotechnology, Inc., Santa Cruz, CA). GST–p85α–SH3 was from PharMingen (San Diego, CA).

Preparation and Activation of Platelets

Platelet concentrates provided by the local blood bank (Centre Régional de Transfusion Sanguine de Toulouse) were used to prepare platelets as previously described (19) according to Ardlie et al. (2). For inositol lipid analysis, platelets were labeled with 0.3 mCi/ml 32Pi (Amersham International) during 60 min in Ca^{2+}-free Tyrode's buffer (pH 6.5, 0.2 mM EGTA) at 37°C. After a washing step in the same buffer minus EGTA, platelets were resuspended in Tyrode's buffer containing 2.5 mM CaCl_2 (3 × 10^5 or 5 × 10^5 cells per ml when the tetrapeptide RGDS was used) (42). In some experiments, before the stimulation by human thrombin (Sigma Chemical Co., St. Louis, MO), platelets were preincubated for 5 min in the presence of 100 μM tyrphostin AG-213 (supplied by Dr. A. Levitzki, Hebrew University, Jerusalem, Israel) or for 15 s with 500 μM RGDS (Sigma Chemical Co.). Activation by thrombin was performed with shaking. Aggregation was followed in parallel by turbidimetry using an aggregometer (Chronolog, Havertown, PA) (3 × 10^6 or 5 × 10^6 cells per ml as indicated, 600 rpm).
Cytoskeleton Extraction
Reactions were stopped, and cytoskeleton was immediately isolated by adding 1 vol of ice-cold CSK buffer containing 100 mM Tris-HCl, pH 7.4, 20 mM EGTA, 2 mM Na3VO4, 2 mg/ml aprotinin, 2 mg/ml leupeptin, 1 mM PMSE (Sigma Chemical Co.), and 2% (vol/vol) Triton X-100 to control or activated platelet suspensions (33). After a 10-min incubation at 4°C, the cytoskeletal and Triton X-100-soluble fractions were separated by centrifugation (12,000 g, 10 min, 4°C). For further use, cytoskeletons were washed as described by Grondin et al. (18) and subsequently resuspended in suitable buffers by sonication (20 kHz for 2 x 10 s) using an ultrasonic cell disruptor.

Isolation of Polymerized Actin and the Actin-Binding Protein–Rich Fraction
Actin filaments were isolated as previously described by Payrastre et al. (32). Briefly, cytoskeletons from resting or activated platelets were solubilized in 10 ml of buffer A containing 0.6 M KI, 100 mM Pipes, pH 6.5, 100 mM KCl, 10 µg/ml leupeptin, 1 mM PMSE, and 100 µM Na3VO4 for 20 min at 4°C with gentle shaking and centrifuged at 40,000 g for 20 min at 4°C. The supernatant, containing actin, was dialyzed at 4°C for 3 h and then repolymerized, and this suspension was centrifuged at 12,000 g for 10 min at 4°C. The pellet, corresponding to actin filaments and the actin-binding protein–rich fraction, was resuspended in 50 mM Tris-HCl (pH 7.5) and immediately used for the PtdsIns 3-kinase assay or Western blotting.

PtdsIns 3-Kinase Assay
PtdsIns 3-kinase activity was measured in a final volume of 100 µl containing 50 mM Tris-HCl, pH 7.4, 1.5 mM DTT, 100 mM NaCl, 0.5 mM EDTA, 5 mM MgCl2, 5 µM ATP, exogenous lipid vesicles (100 µM phosphatidylinositol plus 200 µM phosphatidyserine, prepared by sonication in 50 mM Tris-HCl, pH 7.4), and proteins from the different fractions. Reactions were started by adding 10 µCi of [γ-32P]ATP (Amersham International) and were performed at 37°C with shaking for 10 min. Reactions were stopped by adding a mixture of chloroform/methanol (vol/vol), and lipids were extracted and analyzed as previously described (41).

Immunoprecipitation and Immunopurification
Cytoskeletons were resuspended in 1 ml of a lysis buffer containing 40 mM Tris-HCl, pH 7.4, 100 mM NaCl, 100 mM NaF, 10 mM EDTA, 40 mM Na2PO4, 2 mM Na3VO4, 2 µg/ml aprotinin, 2 µg/ml leupeptin, 1 mM PMSF, 0.2% SDS, and 1% (vol/vol) Triton X-100. After sonication (20 kHz for 2 x 10 s), shaking for 20 min, and centrifugation (12,000 g for 10 min at 4°C), the soluble fraction was collected and subsequently preclarified for 30 min at 4°C with protein A-Sepharose CL-4B or protein G-Sepharose 4B fast flow, depending on the subclasses and the origin of the antibodies used (Sigma Immuno Chemicals). Preclarified suspensions were then incubated for 120 min at 4°C with the different antibodies: anti-phosphotyrosine antibody 4G10 coupled to agarose, anti-p25α antigen antibody (dilution 1:200), or anti-p85α antibody (dilution 1:200). After the first 60 min, 50 µl of 10% (wt/vol) protein A- or protein G-Sepharose resuspended in lysis buffer was added. The immunoprecipitates were then washed three times as described (19). With anti-phosphotyrosine immunoprecipitates, the phosphotyrosyl proteins were eluted as previously described (19).

Gel Electrophoresis and Western Blotting
Proteins were solubilized in electrophoresis sample buffer (100 mM Tris-HCl, pH 6.8, 15% (vol/vol) glycerol, 25 mM DTT, 3% SDS) boiled for 5 min and separated on 7.5% SDS-PAGE. Proteins were then blotted onto nitrocellulose (Bio Rad Laboratories, Hercules, CA) as described previously (19). The nitrocellulose was blocked for 60 min at room temperature in 10 mM Tris-HCl, pH 8, 150 mM NaCl, 0.1% (vol/vol) Tween 20 (TBST) containing 5% milk powder or 2% BSA (Sigma Chemical Co.) when phosphotyrosyl proteins were analyzed. Immunodetection was performed with different antibodies as indicated in the Figures. Antibody reaction was visualized using alkaline phosphatase–or peroxidase-conjugated secondary antibodies. Nitroblue tetrazolium salt and 5-bromo-4-chloro-3-indolyl phosphate were used as reagents (Sigma Chemical Co.) for alkaline phosphatase; the ECL chemiluminescence system (Amersham International) was used for peroxidase. Quantification of the different bands was performed using a densitometric analyzer (CRIS, Ramonville, France), which determines the pixel volume in each area.

Overlay Assay
Total cytoskeletons isolated from thrombin-activated platelets (0.7 IU/ml for 5 min) or immunopurified p25α (at 5–15% gradient SDS-PAGE) and blotted onto nitrocellulose. The nitrocellulose was incubated with 1% BSA, 1% milk powder in TBST (0.1% Tween 20) for 5 h and subsequently incubated overnight at 4°C in 50 mM Tris-HCl (pH 7.5) containing 12 mM 2-mercaptoethanol, 0.2 M NaCl, and 0.1% milk powder in the presence of GST-p85α–SH3, GST-p85α–SH2 (NH2), or GST (at 15 µg/ml). Nitrocellulose was then washed in TBST (0.1% Tween 20) containing 1% milk powder for 1 h to remove unbound material and then probed with anti-GST mAb as previously described.

Peptide Synthesis
The peptides KPPPRG, KVVRVG, and KPPPRG were prepared by solid-phase synthesis on an automated peptide synthesizer (model 430A; Applied Biosystem Inc., Foster City, CA) according to the instructions provided by the manufacturer (Pharmacia LKB Biotechnology Inc., Piscataway, NJ). Cytoskeletons were resuspended in 1 ml of lysis buffer as described for the immunoprecipitation method, preclarified with Sepharose 4B, and incubated or not in the presence of a mixture of two different mAbs to the SH3 domain of p85α (obtained from Dr. Waterfield's Laboratory and Dr. Matsuda). 50 µl of 10% (wt/vol) beads coupled to the peptide were added during 120 min at 4°C. The beads were then washed three times as described for the immunoprecipitation method, resuspended in sample buffer, and separated by SDS-PAGE (7.5%). Proteins were transferred to nitrocellulose and probed with antibodies to p85α.

Assay of PtdsIns 3-Kinase in the Presence of the Prolline-rich Peptide from p25α
PtdsIns 3-kinase was immunopurified from the Triton X-100-soluble fraction of resting platelets and was assayed essentially as previously described except that the final concentration of ATP was 50 µM and the exogenous lipid vesicles used were 150 µM phosphatidylinositol 4-monophosphate/300 µM phosphatidyserine or 150 µM phosphatidylinositol/300 µM phosphatidyserine. After addition of the peptide (solubilized in 50 mM Tris-HCl, pH 7.4), samples were preincubated for 10 min at 4°C. The reaction was then started by adding 10 µCi of [γ-32P]ATP and was performed at 37°C with shaking for 5 min. The lipids were immediately extracted, analyzed, and quantified by HPLC (41). Under these assay conditions, PtdIns(3,4)P2 formation was linear with time for 10 min.

Results
PtdsIns(3,4)P2, but Not PtdsIns(3,4,5)P3 Synthesis Parallels Translocation of Activated PtdsIns 3-Kinase to the Cytoskeleton
We and others have previously shown that upon thrombin stimulation, both p85α and PtdsIns 3-kinase activity significantly relocate to the cytoskeleton of human platelets (18, 50). Quantitative immunoblotting (Fig. 1) showed that under resting conditions, p85α was hardly detectable in the

Guinebault et al., PtdsIns 3-Kinase in Cytoskeleton of Human Platelets

833
Figure 1. Quantitative immunodetection of p85α in the cytoskeleton. Cytoskeletons were extracted as indicated in Materials and Methods from resting (R) or thrombin-stimulated (0.7 IU/ml for 5 min) (A) platelets. Proteins from the cytoskeleton (CSK) and the corresponding Triton X-100-soluble (SOL) fractions obtained from 1.6 x 10^8 platelets were separated by SDS-PAGE (7.5%) blotted onto nitrocellulose, and probed with the anti-p85α antibody.

In agreement with Zhang et al. (50), when PtdIns 3-kinase was assayed in the homogenate and in the cytoskeleton obtained from thrombin-stimulated cells, its specific activity (picomoles per minute per p85α) was increased by eightfold in the cytoskeleton.

To investigate further a possible functional role for the relocation of PtdIns 3-kinase, we checked whether the kinetics of the production of D3-phosphorylated phosphoinositides were correlated with the redistribution of the enzyme. Interestingly, Fig. 2 shows a striking correlation between PtdIns(3,4)P_2 accumulation in whole platelets, increasing PtdIns 3-kinase activity in the cytoskeleton, and translocation of p85α to the cytoskeleton (Fig. 2, A, B, and C, respectively). In contrast, the PtdIns(3,4,5)P_3 signal (Fig. 2 A, inset) appeared to be more rapid than PtdIns(3,4)P_2 synthesis, as previously reported (24, 38). Thus, the accumulation of PtdIns(3,4)P_2 but not of PtdIns(3,4,5)P_3 temporally correlated with the translocation of PtdIns 3-kinase to the cytoskeleton.

Tyrosine Phosphorylation, Integrin Engagement, and Aggregation Are Required for Association of PtdIns 3-Kinase with the Cytoskeleton and for PtdIns(3,4)P_2 Accumulation

Thrombin-induced platelet aggregation is accompanied by a number of biochemical events, among them pp60^c-src translocation to the cytoskeleton, tyrosine phosphorylation of several cytoskeletal proteins, and actin polymerization. Fig. 3, A and B show that translocation of p85α, pp60^c-src, and p125^β/α correlated well and may be considered late events, since they were significantly detectable only after 30 s of stimulation. In addition, Fig. 3 B indicates that translocation of p85α, p125^β/α, and pp60^c-src to the cytoskeleton was not due to an artificial trapping of proteins during actin polymerization, which was very rapidly measurable. Indeed, the F-actin content increased about two times within 10 s of stimulation. Moreover, it is noteworthy that p85α, p125^β/α, and pp60^c-src relocalization was significantly measurable only when 25% of aggregation (ΔT max %) was reached.

The tetrapeptide RGDS and tyrphostin AG-213 are commonly used to inhibit the binding of fibrinogen to integrin α_{IIb/β_3} receptor and to inhibit tyrosine phosphorylation, respectively. Both compounds have been previously shown to block the translocation of p85α, p125^β/α, and pp60^c-src to the cytoskeleton, whereas up to 29 ± 9% was translocated to this compartment after 5 min of activation using 0.7 IU/ml thrombin. A parallel decrease in the Triton X-100-soluble fraction was observed. The use of a highly specific antibody from Dr. Waterfield's laboratory unambiguously identified platelet p85 as the α isoform (data not shown).

Figure 2. Comparison of the time courses of PtdIns 3-kinase translocation and 3D-phosphorylated inositol lipids accumulation in whole cells upon thrombin stimulation. 32P-labeled platelets (3 x 10^8 cells/ml) were activated with 0.7 IU/ml thrombin for increasing periods of time. Reactions were stopped by addition of chloroform/methanol (vol/vol). Lipids were immediately extracted and deacylated. [32P]Pi(3,4)P_2 (•) and [32P]Pi(3,4,5)P_3 (○) were subsequently separated and quantified using HPLC (A) as described in Materials and Methods. In parallel, platelets from the same preparation were incubated under similar conditions (1.6 x 10^8 cells per assay) and lysed by addition of CSK buffer. Cytoskeletons were immediately extracted and assayed for PtdIns 3-kinase activity (B) or analyzed for the presence of p85α by Western blotting (C). Results are expressed as percent control and are means ± SD of three to five independent experiments.
to reduce significantly aggregation as well as PtdIns(3,4)P$_2$ accumulation induced by thrombin (19, 42). Here, we show that tyrphostin (Fig. 4 A) and RGDS (Fig. 4 B) were able to inhibit both the translocation of p85$_\alpha$ to the cytoskeleton and PtdIns(3,4)P$_2$ synthesis (Table I), with RGDS being somewhat more potent. The translocation of pp60$^{c-src}$ has already been shown to depend on \(\alpha_{\text{IIb/}\beta_3}\) mobilization (22, 30); therefore, we used it as an internal control. Its relocalization was also clearly inhibited by RGDS (Fig. 4 B), whereas tyrphostin had a clear but weaker inhibitory effect.

Table I indicates that the percentage of inhibition of aggregation (\(\Delta T \text{ max} \%\)) induced by tyrphostin or RGDS varied in the same way as the percentage of inhibition of p85$_\alpha$ translocation to the cytoskeleton, as well as the percentage of inhibition of PtdIns(3,4)P$_2$ accumulation. However, RGDS again had a more pronounced effect on aggregation. Moreover, EGTA (5 mM) was also able to inhibit thrombin-induced aggregation by 80 \pm 3\%, and interestingly, p85$_\alpha$ relocalization and PtdIns(3,4)P$_2$ synthesis were both inhibited in the same range (85 \pm 5\%). Finally, the absence of shaking during thrombin stimulation abolished these events by about the same percentage as the inhibition observed with EGTA, clearly indicating that they are aggregation dependent. Therefore, integrin engagement, aggregation, and tyrosine phosphorylation are crucial for PtdIns(3,4)P$_2$ accumulation as well as p85$_\alpha$ translocation to the cytoskeleton. To investigate these relationships further, we have immunopurified the phosphotyrosyl proteins from the cytoskeleton and probed them with anti-p85$_\alpha$ and anti-pp60$^{c-src}$ antibodies. Interestingly, both proteins were absent in the pool of phosphotyrosyl proteins obtained from the cytoskeleton of resting cells, whereas they were clearly detected in the immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets (Fig. 5). Again, this was inhibited in the presence of tyrphostin. An interesting question then concerned the tyrosine phosphorylation state of cytoskeletal p85$_\alpha$.

Cytoskeletal Activated PtdIns 3-Kinase Is Not Tyrosine Phosphorylated on p85$_\alpha$

Anti-p85$_\alpha$ immunoprecipitates were prepared from the cytoskeleton of resting or thrombin-activated platelets. The presence of p85$_\alpha$ in such immunoprecipitates was analyzed by PtdIns 3-kinase assay and Western blotting (Fig. 6 A). Both PtdIns 3-kinase activity and p85$_\alpha$ were clearly detected in the anti-p85 immunoprecipitate obtained from the cytoskeleton of activated platelets (Fig. 6 A), indicating the

Figure 3. Analysis and comparison of different events occurring in cytoskeletons of thrombin-stimulated platelets. Platelets were stimulated with 0.7 IU/ml thrombin for increasing periods of time as indicated in the figure. The reactions were stopped by addition of CSK buffer, and cytoskeletons were immediately extracted. Cytoskeletal proteins (corresponding to 1.6 \times 108 platelets) were separated by SDS-PAGE (7.5\%), blotted onto nitrocellulose, and probed with different antibodies as indicated in the figure. Alkaline phosphatase detection was used for pp60$^{c-src}$ analysis, and the ECL system was used for p85$_\alpha$, p125FAK, and actin detection (A). (B) Time course of quantitated Western blot by densitometric analysis; data are expressed as a percentage of maximal translocation for each protein and are representative of three different experiments.

Figure 4. Effect of tyrphostin AG-213 and RGDS on p85$_\alpha$ and pp60$^{c-src}$ relocalization. Cytoskeletons were prepared from resting (R) or thrombin-activated (0.7 IU/ml, 5 min) (A) platelets preincubated or not with tyrphostin (100 \(\mu\)M for 5 min) (panel A) or with RGDS (500 \(\mu\)M for 15 s) (panel B). Cytoskeletal proteins (corresponding to 1.6 \times 108 platelets) were separated by SDS-PAGE (7.5\%), blotted onto nitrocellulose, and probed with anti-p85$_\alpha$ or anti-pp60$^{c-src}$ antibodies as indicated in the figure.
Table I. Effect of Tyrphostin and RGDS Treatment on Several Platelet Responses

Platelet responses	Percent of inhibition by tyrphostin (100 µM)	Percent of inhibition by RGDS (500 µM)
PtdIns(3,4)P₂ synthesis	53.0 ± 5.6	60.3 ± 6.9
p85 translocation to CSK	40.4 ± 12.0	54.2 ± 6.4
Aggregation ΔT max %	39.2 ± 10.5	81.5 ± 0.8

Platelets were preincubated or not with tyrphostin (100 µM) or RGDS (500 µM) and activated for 5 min by thrombin as indicated in Materials and Methods. PtdIns(3,4)P₂ synthesis was quantified using an h.p.l.c. technique. The translocation of p85α to the cytoskeleton (CSK) was detected by Western blotting experiments using anti-p85α antibody as a probe. Quantification was performed by densitometric analysis. Platelet aggregation was measured by turbidimetry using a Chronolog aggregometer (600 rev/min). Results are representative of three to five experiments, P < 0.001, unpaired t test.

 validity of the procedure. When these immunoprecipitated proteins were then probed with an anti-phosphotyrosine mAb (Fig. 6 A, right panel), we found that p85α present in the cytoskeleton of activated platelets was itself virtually not tyrosine phosphorylated. However, possibly only a small population of p85α is phosphorylated. Obviously, the best candidate would be p85α recovered in the anti-phosphotyrosine immunoprecipitate obtained from the cytoskeleton of thrombin-stimulated platelets. To check this possibility, we first estimated, using nonlimiting amounts of antibody, the p85α content recovered in the anti-phosphotyrosine immunoprecipitate from the cytoskeleton of activated platelets (Fig. 6 B, lane 2) compared with the content of p85α recovered in the anti-p85α immunoprecipitate from a similar cytoskeleton (Fig. 6 B, lane 1). The data indicate that only a subpopulation of p85α was recovered in the anti-phosphotyrosine immunoprecipitate. Finally, when the immunopurified phosphotyrosyl proteins were then probed with an anti-phosphotyrosine antibody (Fig. 6 B, lane 3), no 85-kD band could be detected, indicating that, after a 5-min stimulation, the pool of p85α recovered in the anti-phosphotyrosine immunoprecipitate was virtually not tyrosine phosphorylated. These data raised the question of the identification of the proteins interacting with PtdIns 3-kinase in the cytoskeleton.

Translocation of PtdIns 3-Kinase Is Directed to the Actin Filament System

As a first attempt to localize PtdIns 3-kinase in the cytoskeleton, we performed a selective extraction procedure. By solubilizing cytoskeleton in potassium iodine followed by in vitro polymerization of actin as previously described (32), we selectively obtained the actin filament system consisting of actin and actin-binding proteins. As indicated in Fig. 7, actin was indeed present in these fractions, with a significant increase in F-actin content upon thrombin stimulation. As shown in Fig. 7, p85α was hardly detectable in the F-actin-rich fraction obtained from resting platelets, whereas in thrombin-activated platelets, p85α was clearly present in the F-actin fraction. Interestingly, p125αε and pp60c-src were also strongly present in this fraction (Fig. 7). Finally, a significant PtdIns 3-kinase activity was measured in the isolated actin filamental system of stimulated cells (Fig. 7), indicating that both p85α and the catalytic subunit p110 were associated with actin or with an actin-binding protein in stimul-
lated platelets. Moreover, this result shows that PtdIns 3-kinase was still able to bind to the actin filament system after one cycle of depolymerization–repolymerization of actin in vitro. These data do not prove a direct association of PtdIns 3-kinase with actin, since several proteins may be candidates to link this enzyme to the actin filament system. Our previous data suggested an association of p85α with a cytoskeletal tyrosine-phosphorylated protein; pp60^{src} is a possible candidate (20). A 125-kD protein is also strongly recognized by anti-phosphotyrosine antibodies in the cytoskeleton of activated platelets (Fig. 6 B, lane 3). Since platelet aggregation induces focal contact–like areas, p125^{FAK} may thus be a good candidate as well (36). Therefore, we investigated the possible interactions between PtdIns 3-kinase and these two non–receptor tyrosine kinases.

Cytoskeletal PtdIns 3-Kinase Is Associated with Tyrosine-Phosphorylated p125^{FAK}

Despite the use of various antibodies and methodologies, we were unable to demonstrate the presence of pp60^{src} in the anti-p85α immunoprecipitate (or the other way around) obtained from cytoskeleton (data not shown). Thus, we have no evidence for a direct interaction between PtdIns 3-kinase and pp60^{src} in the cytoskeleton of activated platelets.

We then prepared anti-p125^{FAK} immunoprecipitates from the cytoskeleton of resting and thrombin-stimulated platelets. They were probed with anti-phosphotyrosine and anti-p85α antibodies. Fig. 8 shows that p125^{FAK} present in the cytoskeleton of resting platelets was weakly phosphorylated, whereas significant tyrosine phosphorylation was observed upon thrombin stimulation. It is noteworthy that a protein of ~190 kD was also recognized and may be a putative p125^{FAK}-binding phosphotyrosyl protein or a member of the focal adhesion complex. When anti-p85α antibody was used as a probe, no signal appeared in the anti-p125^{FAK} immunoprecipitate obtained from the cytoskeleton of resting platelets, whereas a clear and single 85-kD protein was detected upon thrombin stimulation. These data indicate a thrombin-dependent physical interaction between the regulatory subunit (p85α) of PtdIns 3-kinase and the tyrosine-phosphorylated p125^{FAK} in the cytoskeleton of activated platelets. This interaction appears specific, since under similar conditions, p85α was not recovered when nonimmune IgG1 from mouse was used instead of the anti-p125^{FAK} antibody (Fig. 8, lane C). Moreover, in agreement with our previous data (Fig. 6), the cytoskeletal p125^{FAK}-associated p85α was virtually not tyrosine phosphorylated, since no 85-kD protein was revealed in the anti-p125^{FAK} immunoprecipitate with the anti-phosphotyrosine antibody (Fig. 8, left panel).

Interaction of a Proline-rich Sequence of p125^{FAK} (706–711) with the SH3 Domain of p85α as a New Mechanism of PtdIns 3-Kinase Activation

To determine the domain of interaction between p125^{FAK} and p85α, we first investigated the potential binding of the SH2 domain of p85α to the tyrosine-phosphorylated region of p125^{FAK}. Using the immobilized p85α–SH2 (NH₂) domain, we were unable to precipitate p125^{FAK} significantly. More-
over, overlay technique did not indicate binding of GST-p85α-SH2 (NH3) to the immunopurified tyrosine-phosphorylated pl25αx on nitrocellulose (data not shown). These negative data are in agreement with the fact that pl25αx does not possess the typical consensus p85-SH2 binding domain in the potential tyrosine phosphate-containing sequence found near its catalytic domain.

Another possibility was the binding of a proline-rich domain of pl25αx to the SH3 domain of p85α. We therefore synthesized a peptide, KPPRPG, corresponding to a proline-rich sequence of human pl25αx (residues 706-711). Once immobilized on Sepharose beads, this peptide could significantly bind cytoskeletal p85α (Fig. 9). This direct interaction seems to be specific, since PLCγ1, another SH3-containing enzyme of the phosphoinositide metabolism present in platelets, was not found to bind to this peptide (data not shown). In addition, preincubation of resuspended cytoskeleton, obtained from activated platelets, with specific antibodies directed to the SH3 domain of p85α significantly prevented this association (Fig. 9, A and B, lane 3), strongly suggesting that the proline-rich sequence of pl25αx (701-711) interacts with the SH3 domains of p85α. As a control, unrelated antibodies (nonimmune IgGl from mouse or mAbs directed against the EGF receptor, which is not present in platelets) used instead of anti-p85α-SH3 antibodies were not able to reduce the association significantly (data not shown). Moreover, Fig. 9 C shows that the p85α-SH3 domain used as GST-p85α-SH3 was also able to bind directly to the peptide KPPRPG in vitro (NH3). Fig. 10 A indicates that p85α-SH3 but not p85α-SH2 (NH3) was able to bind in vitro to the immunopurified pl25αx obtained from cytoskeleton of activated platelets. Since weak interactions may be favored in these experiments, we have done overlay assay in which blots of immunopurified pl25αx (Fig. 10 B, lane 1) or total cytoskeletal proteins obtained from activated platelets (lanes 2 and 3) were probed with GST-p85α-SH3 (lanes 1 and 3) or with GST alone as a control (lane 2) and then detected with an anti-GST antibody. Under these conditions, p85α-SH3 was able to bind to immunopurified pl25αx (Fig. 10 B, lane 1) and to a 125-kD protein of the cytoskeleton of activated platelets that matches pl25αx (Fig. 10 B, lane 3). In addition, p85α-SH3 was found to bind more weakly to three other proteins (Fig. 10 B, lane 3) of ~93, 64, and 68 kD, which have yet to be identified.

Finally, we assessed the effect of the binding to p85α of the proline-rich sequence of pl25αx on PtdIns 3-kinase activity. As shown in Fig. 11, the peptide KPPRPG significantly increased the PtdIns 3-kinase activity of immunopurified enzyme by 2.5-fold. Half-maximal activation was obtained in the presence of 10 μM peptide. Preincubation of the enzyme with antibodies directed to the SH3 domain of p85α before addition of the peptide reduced this activation by ~80% (data not shown). Finally, a control peptide, KVVRVG (Fig. 11) or KPRPG (data not shown), was unable to activate PtdIns 3-kinase significantly under similar conditions.

To prove definitively that the direct binding of the peptide is responsible for the activation of PtdIns 3-kinase, we preincubated the immunopurified enzyme with or without 50 μM peptide for 120 min in lysis buffer lacking SDS, washed the immunocomplex twice to remove the unbound peptide, and finally assayed for PtdIns 3-kinase. Again, a twofold increase in activity was observed, indicating that the direct binding of the peptide is responsible for the activation of PtdIns 3-kinase.

Discussion

In agreement with Zhang et al. (50), we have demonstrated that ~30% of p85α is translocated to the cytoskeleton of thrombin-stimulated platelets. The translocation of p85α is

Figure 9. Association of the immobilized proline-rich sequence of pl25αx (706-711) with the SH3 domain of p85α. Proteins from cytoskeleton of resting (lane 1) or thrombin-activated (0.7 IU/ml for 5 min) (lane 2) platelets were adsorbed onto Sepharose beads coupled to the pl25αx proline-rich region (706-711) as described in Materials and Methods. Alternatively, proteins from cytoskeleton of activated platelets were preincubated for 30 min with antibodies directed to the SH3 domain of p85α and then adsorbed onto Sepharose beads coupled to the pl25αx proline-rich region (706-711) (lane 3). Finally, proteins from cytoskeleton of activated platelets were adsorbed to Sepharose beads alone as a control (lane 4). After SDS-PAGE (7.5%), the proteins adsorbed were analyzed by Western blotting with the anti-p85α antibody (A). (B) Quantification by densitometric analysis of the Western blot. Data are expressed in arbitrary units (pixel points) and are means ± SEM of three different experiments. Finally, the direct binding of p85α-SH3 to the proline-rich region of pl25αx (706-711) was analyzed in C. Purified GST-p85α-SH3 was diluted in lysis buffer to 5 μg/ml and incubated for 1.5 h with Sepharose beads alone (lane 1) or with Sepharose beads coupled to the peptide (lane 2). As a control, GST alone was incubated with the Sepharose beads coupled to the peptide (lane 3). After extensive washing, the adsorbed proteins were analyzed by Western blotting with the anti-GST antibody. Lane 4 shows the position of GST-p85α-SH3 (37 kD) on the blot.
likely accompanied by a functional pl10 catalytic subunit, since PtdIns 3-kinase activity was measured in the cytoskeleton of activated platelets and exhibited a higher specific activity than in the homogenate. Interestingly, PtdIns(3,4)P$_2$ but not PtdIns(3,4,5)P$_3$ synthesis paralleled the translocation of both p85$_\alpha$ and PtdIns 3-kinase activity to the cytoskeleton, strongly suggesting a relationship between these two events. In thrombin-stimulated platelets, PtdIns(3,4,5)P$_3$ is produced very rapidly, whereas PtdIns(3,4)P$_2$ accumulates at a later stage (24, 38). Although PtdIns(3,4)P$_2$ has been shown to be a degradation product of PtdIns(3,4,5)P$_3$ in neutrophils, Sorisky et al. (38) have demonstrated that the production of these two phospholipids is regulated differently in thrombin-stimulated platelets. In this model, in contrast to the PtdIns(3,4,5)P$_3$ response, the accumulation of PtdIns(3,4,5)P$_3$ is unaffected by Ca$^{2+}$ or the tetrapeptide RGDS (38, 42). Our results suggest that the redistribution of PtdIns 3-kinase to the cytoskeleton may be of importance for the accumulation of PtdIns(3,4)P$_2$. Detailed time course studies of PtdIns(3,4)P$_2$ accumulation and PtdIns 3-kinase, p125$^\beta$-α, and pp60$^{c-src}$ relocalization revealed that these events are in fact concomitant and significantly detectable only when 25–30% of aggregation (AT max %) is reached. Similar data have been obtained by Torti et al. (45) for the low molecular weight GTP-binding protein Rap2B. In contrast, actin polymerization is very rapidly detected, since double the amount of F-actin is observed within 10 s of stimulation. One may note that this time course of polymerization fits rather well with the PtdIns(3,4,5)P$_3$ signal as previously shown in fMLP-stimulated neutrophils (9). Moreover, it is noteworthy that the state of actin polymerization may in turn influence the phosphorylation state of several cytoskeletal proteins, including the focal adhesion kinase p125$_{F\alpha}$ (23).

On the other hand, we have previously shown that PtdIns(3,4)P$_2$ accumulation is inhibited by RGDS (42). Here we demonstrate that the redistribution of p85$_\alpha$ to the actin cytoskeleton and aggregation (AT max %) are inhibited in a similar manner by RGDS. In addition, EGTA (5 mM)

![Figure 10. Direct binding of p85α-SH3 to cytoskeletal p125$^\beta$-α.](image)

Figure 10. Direct binding of p85α-SH3 to cytoskeletal p125$^\beta$-α. P125$^\beta$-α was immunopurified from cytoskeleton of thrombin-activated platelets (0.7 IU/ml for 5 min) as described in Materials and Methods. The immunocomplex was then incubated in lysis buffer at 4°C for 1.5 h in the presence of 15 μg/ml GST-p85α-SH3, GST-p85α-SH2 (NH$_2$), or GST alone, as indicated in the figure. After two washes in lysis buffer and three washes in 50 mM Tris-HCl, pH 7.35, 150 mM NaCl, the adsorbed proteins were analyzed by Western blotting using the anti-GST antibody as a probe (A). (B) Immunopurified P125$^\beta$-α (lane 1) or total cytoskeletal proteins prepared from activated platelets (lanes 2 and 3) were resolved by 7.5% or 5-15% SDS-PAGE, respectively, and blotted onto nitrocellulose for overlay assay as indicated in Materials and Methods. After two washes in lysis buffer and three washes in 50 mM Tris-HCl, pH 7.35, 150 mM NaCl, the adsorbed proteins were analyzed by Western blotting using the anti-GST antibody as a probe (A). (B) Immunopurified P125$^\beta$-α (lane 1) or total cytoskeletal proteins prepared from activated platelets (lanes 2 and 3) were resolved by 7.5% or 5-15% SDS-PAGE, respectively, and blotted onto nitrocellulose for overlay assay as indicated in Materials and Methods. Proteins on nitrocellulose were then probed with GST-p85α-SH3 (lanes 1 and 3) or with GST alone (lane 2) and subsequently detected with anti-GST antibody using the ECL system. The nitrocellulose of lane 3 has then been stripped according to the procedure provided in the ECL kit and reprobed with the anti-pl125$^\beta$-α antibody. The position of pl125$^\beta$-α is indicated by the arrowhead.

![Figure 11. Activation of PtdIns 3-kinase by the peptide containing the proline-rich sequence of pl125$^\beta$-α (706-711).](image)

Figure 11. Activation of PtdIns 3-kinase by the peptide containing the proline-rich sequence of pl125$^\beta$-α (706-711). Immunopurified PtdIns 3-kinase was assayed in the presence of increasing concentrations of the peptide corresponding to the proline-rich sequence of pl125$^\beta$-α (KPPRPG) (•) or a control peptide with the same number of charges (KVVRVG) (○). Products of PtdIns 3-kinase were quantitated by HPLC as described in Materials and Methods. Results are expressed as PtdIns 3-kinase activity relative to that measured in the absence of peptide, which was taken as 1. The results shown are mean ± SD of three to five different experiments.
or the absence of shaking during activation significantly inhibited the association of p85α with the cytoskeletons as well as the accumulation of PtdIns(3,4)P2. Therefore, aggregation via the binding of adhesive proteins to their receptors, especially fibrinogen binding to αIIbβ3, is required for both the production of PtdIns(3,4)P2 and the translocation of PtdIns 3-kinase and pp60src to the actin cytoskeleton. The similarity both in the time course and in the sensitivity of tyrophostin and RGDS of PtdIns(3,4)P2 synthesis and PtdIns 3-kinase translocation to the cytoskeleton suggests that these events might be tightly linked. This is not the case for PtdIns(3,4,5)P3 production, which is not regulated in the same way (38, 48). Such a difference would be explained by the presence in human platelets of a PtdIns 3-kinase activated by G-protein βγ subunits (44), which was recently identified in other hematopoietic cells (39). Our present data and those previously obtained on Glanzmann's thrombasthenic platelets (42) may suggest a role for the αIIbβ3-linked actin cytoskeleton in the compartmentalization of activated PtdIns 3-kinase. The inhibitory effect of tyrophostin that we observed is in agreement with the fact that when RGDS blocks the binding of fibrinogen and other ligands to αIIbβ3, thrombin-induced tyrosine phosphorylation of several substrates is also blocked (11, 17). The chronology of this cascade of events may also explain why RGDS has a more potent inhibitory effect than tyrophostin. Thus, both fibrinogen binding to αIIbβ3 and the subsequently induced tyrosine phosphorylations are crucial events for the translocation of PtdIns 3-kinase to the actin cytoskeleton and the production of PtdIns(3,4)P2 in thrombin-stimulated platelets. The role of tyrosine kinases in this mechanism is confirmed by the presence of a fraction of p85α in anti-phosphotyrosine immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets. However, we have found that the pool of cytoskeletal p85α is virtually not tyrosine phosphorylated, even though only a subpopulation of p85α is recovered in the anti-phosphotyrosine immunoprecipitate. Furthermore, we were also unable to show the tyrosine phosphorylation of p85α in the Triton X-100-soluble fraction of activated platelets (data not shown). Therefore, its presence in the pool of phosphotyrosyl proteins is possible only if p85α is physically associated with another tyrosine-phosphorylated protein. This result stimulated us to investigate the proteins that may interact with PtdIns 3-kinase in the cytoskeleton of activated platelets. We found that the relocation of PtdIns 3-kinase and pp60src is preferentially directed to the actin filament system consisting of F-actin and actin-binding proteins. Functional PtdIns 3-kinase is still able to bind to the actin filaments even after one cycle of depolymerization-repolymerization of actin in vitro. Our observations are consistent with the recent data obtained by Fox et al. (13). These authors have observed that the Triton X-100-insoluble membrane skeleton components sedimentsed at 100,000 g, such as spectrin, vinculin, or talin, as well as pp60src, pp62src, and p21GAP, are redistributed to the Triton X-100-insoluble low speed fraction (15,000 g) during thrombin-induced aggregation. In this respect, it is noteworthy that a number of proteins that have been identified in the platelet membrane skeleton are actin-binding proteins (12, 13). Our data do not prove a direct association with actin, since actin-binding proteins may link PtdIns 3-kinase to F-actin and since we found a population of cytoskeletal p85α associated with a tyrosine-phosphorylated protein. The kinase pp60src is found in the actin-rich fraction and has been described to interact weakly with PtdIns 3-kinase in the Triton X-100-soluble fraction of thrombin-activated human platelets (20). Therefore, we have investigated such a possibility in the cytoskeleton. However, using both Western blot and enzymatic assays, we have failed to find a clear interaction between PtdIns 3-kinase and pp60src under our conditions (data not shown). The association between p85α and src-like kinases has been described in other models and seems to be due to SH3-mediated interactions (35); this mechanism might be minor in platelets (20).

However, another interesting candidate is p125src, a protein tyrosine kinase involved with integrin signaling that is phosphorylated and activated upon thrombin stimulation of platelets (27). Moreover, actin-dependent cytoskeletal interactions seem to be necessary for these events (27). Interestingly, p125src is not activated in platelets from Glanzmann's thrombasthenia (27), which also fail to produce PtdIns(3,4)P2 (42). Our results show both the presence of a tyrosine-phosphorylated form of p125src in the cytoskeleton of thrombin-activated platelets and an interaction between tyrosine-phosphorylated p125src and non-tyrosine-phosphorylated p85α in this cytoskeleton. Furthermore, the amount of p85α found associated with p125src is comparable to the amount of p85α recovered in the anti-phosphotyrosine immunoprecipitate. This association may therefore explain the presence of non-tyrosine-phosphorylated p85α in such immunoprecipitates and the increase in its ability to be precipitated with the anti-phosphotyrosine antibody after thrombin stimulation. It is noteworthy that the potential tyrosine phosphate-containing domain found near the catalytic domain of p125src (1) does not exhibit the consensus motif known to bind the SH2 domain of p85α, and using different approaches, we were unable to demonstrate an association by this way. However, two proline-rich domains (564-576 and 694-714) containing the PPXP motif (6, 49) are found in the sequence of p125 src (1). Here we show that a peptide corresponding to residues 706-711 of human p125src binds to the SH3 domain of non-tyrosine-phosphorylated p85α. This binding seems to be specific, since the p85α SH3 domain was also able to bind to immunopurified p125src in vitro or to a 125-kD cytoskeletal protein that matches p125src on nitrocellulose.

Moreover, this binding led to a significant activation of PtdIns 3-kinase. This activation possibly results from the induction of a conformational change leading to the activation of the pl10 catalytic subunit, which is comparable to the activation described for PtdIns 3-kinase by the tyrosine-phosphorylated PDGF receptor (10), IRS-1 (28) and the src family kinase SH3 (34). Our data strongly suggest a new mode of PtdIns 3-kinase regulation in which binding of proline-rich sequence of p125src (706-711) to the SH3 domain of p85α increased enzymatic activity of this lipid kinase. This mechanism is operative during thrombin-induced aggregation and may be important for enzyme access to its substrate at very specific areas of the cell (i.e., focal contacts). The role of 3D-phosphorylated phospholipids at these particular points has now to be investigated in detail. However, with respect to the data published recently, it is possible
to suggest that these lipids may play a role in the organization of actin polymerization, leading to the formation of actin filament bundles linked to focal contact points.

We propose that p25 \(^{\text{SH}} \) is responsible, at least in part, for the indirect binding of PtdIns 3-kinase to actin microfilaments and plays a critical role in activating and directing this lipid kinase to an appropriate location. Since we demonstrate here a role of aggregation, integrin receptor engagement and subsequent tyrosine phosphorylation in PtdIns 3-kinase translocation, and concomitant PtdIns(3,4)P\(_2\) accumulation, it is tempting to suggest that p25 \(^{\text{SH}} \) may be a key enzyme in coupling integrin receptor signaling with these events. During the reviewing process of this manuscript, Chen and Guan (4, 5) described an interaction of p25 \(^{\text{SH}} \) with PtdIns 3-kinase in fibroblasts. Interestingly, this association was induced by cell adhesion to fibronectin-coated culture dishes (5) or by PDGF treatment (4). Our results also suggest that PtdIns 3-kinase likely displays different modes of interaction with cytoskeletal elements since only \(\sim 25\% \) of cytoskeletal p85 \(^{\text{SH}} \) is found associated with p25 \(^{\text{SH}} \). This physical interaction may be transient, and PtdIns 3-kinase may then be compartmentalized in other cytoskeletal areas possibly to be down-regulated. The presence of the SH2 and SH3 domains as well as SH3-binding motifs in the p85 subunit (25) may explain the different targeting of these associations. Further work is necessary to identify all of the different cytoskeletal proteins with which PtdIns 3-kinase may be associated and their relevant biochemical and functional relationships.

In conclusion, focal contact-like areas induced upon thrombin stimulation of platelets, involving \(\alpha_{\text{IIb}} \beta_{3} \), p25 \(^{\text{SH}} \), as well as other phospholipid and protein microfilaments, are very important for PtdIns 3-kinase relocation and PtdIns(3,4)P\(_2\) accumulation. Whether this inositol lipid may in turn play a role in stabilizing the clot remains to be established.

We thank Dr. M. Waterfield and Dr. R. Dhand for kindly providing the highly specific anti-p85 \(^{\text{SH}} \) antibody. We are grateful to Drs. P. M. P. Van Bergen en Henegouwen and L. Wolfraim for fruitful discussions and Miss Guinebault et al.

We propose that p125 \(^{\text{SH}} \) is responsible, at least in part, for the indirect binding of PtdIns 3-kinase to actin microfilaments and plays a critical role in activating and directing this lipid kinase to an appropriate location. Since we demonstrate here a role of aggregation, integrin receptor engagement and subsequent tyrosine phosphorylation in PtdIns 3-kinase translocation, and concomitant PtdIns(3,4)P\(_2\) accumulation, it is tempting to suggest that p25 \(^{\text{SH}} \) may be a key enzyme in coupling integrin receptor signaling with these events. During the reviewing process of this manuscript, Chen and Guan (4, 5) described an interaction of p25 \(^{\text{SH}} \) with PtdIns 3-kinase in fibroblasts. Interestingly, this association was induced by cell adhesion to fibronectin-coated culture dishes (5) or by PDGF treatment (4). Our results also suggest that PtdIns 3-kinase likely displays different modes of interaction with cytoskeletal elements since only \(\sim 25\% \) of cytoskeletal p85 \(^{\text{SH}} \) is found associated with p25 \(^{\text{SH}} \). This physical interaction may be transient, and PtdIns 3-kinase may then be compartmentalized in other cytoskeletal areas possibly to be down-regulated. The presence of the SH2 and SH3 domains as well as SH3-binding motifs in the p85 subunit (25) may explain the different targeting of these associations. Further work is necessary to identify all of the different cytoskeletal proteins with which PtdIns 3-kinase may be associated and their relevant biochemical and functional relationships.

In conclusion, focal contact-like areas induced upon thrombin stimulation of platelets, involving \(\alpha_{\text{IIb}} \beta_{3} \), p25 \(^{\text{SH}} \), as well as other phospholipid and protein microfilaments, are very important for PtdIns 3-kinase relocation and PtdIns(3,4)P\(_2\) accumulation. Whether this inositol lipid may in turn play a role in stabilizing the clot remains to be established.

We thank Dr. M. Waterfield and Dr. R. Dhand for kindly providing the highly specific anti-p85 \(^{\text{SH}} \) antibody. We are grateful to Drs. P. M. P. Van Bergen en Henegouwen and L. Wolfraim for fruitful discussions and Miss Guinebault et al.

We propose that p125 \(^{\text{SH}} \) is responsible, at least in part, for the indirect binding of PtdIns 3-kinase to actin microfilaments and plays a critical role in activating and directing this lipid kinase to an appropriate location. Since we demonstrate here a role of aggregation, integrin receptor engagement and subsequent tyrosine phosphorylation in PtdIns 3-kinase translocation, and concomitant PtdIns(3,4)P\(_2\) accumulation, it is tempting to suggest that p25 \(^{\text{SH}} \) may be a key enzyme in coupling integrin receptor signaling with these events. During the reviewing process of this manuscript, Chen and Guan (4, 5) described an interaction of p25 \(^{\text{SH}} \) with PtdIns 3-kinase in fibroblasts. Interestingly, this association was induced by cell adhesion to fibronectin-coated culture dishes (5) or by PDGF treatment (4). Our results also suggest that PtdIns 3-kinase likely displays different modes of interaction with cytoskeletal elements since only \(\sim 25\% \) of cytoskeletal p85 \(^{\text{SH}} \) is found associated with p25 \(^{\text{SH}} \). This physical interaction may be transient, and PtdIns 3-kinase may then be compartmentalized in other cytoskeletal areas possibly to be down-regulated. The presence of the SH2 and SH3 domains as well as SH3-binding motifs in the p85 subunit (25) may explain the different targeting of these associations. Further work is necessary to identify all of the different cytoskeletal proteins with which PtdIns 3-kinase may be associated and their relevant biochemical and functional relationships.

In conclusion, focal contact-like areas induced upon thrombin stimulation of platelets, involving \(\alpha_{\text{IIb}} \beta_{3} \), p25 \(^{\text{SH}} \), as well as other phospholipid and protein microfilaments, are very important for PtdIns 3-kinase relocation and PtdIns(3,4)P\(_2\) accumulation. Whether this inositol lipid may in turn play a role in stabilizing the clot remains to be established.
33. Pho, D. B., C. Vasseur, E. Desbruyères, and A. Olomuck. 1984. Evidence for the presence of tropomyosin in the cytoskeletons of ADP- and thrombin-stimulated blood platelets. FEBS (Fed. Eur. Biochem. Soc.) Lett. 173:164–168.

34. Pleiman, C. M., W. H. Hertz, and J. C. Cambien. 1994. Activation of phosphatidylinositol 3' kinase by SRC-family kinase SH3 binding to the p85 subunit. Science (Wash. DC). 263:1609–1612.

35. Prasad, K. V. S., O. Janssen, R. C. C. L. Kappcller, and C. E. Rudd. 1993. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc. Natl. Acad. Sci. USA. 90:7366–7370.

36. Schaller, M. D., and J. T. Parsons. 1993. Focal adhesion kinase: an integrin-linked protein tyrosine kinase. Trends Celt Biol. 3:258–261.

37. Shoclson, S. E., M. Sivaraja, K. P. Williams, P. Hu, J. Schlessinger, and M. A. Weiss. 1993. Specific phosphoprotein binding regulates a conformational change in PI 3-kinase SH2 domain associated with enzyme activation. EMBO (Eur. Mol. Biol. Org.) J. 12:795–802.

38. Sorisky, A., W. G. King, and S. E. Rittenhouse. 1992. Accumulation of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in thrombin-stimulated platelets. Different sensitivities to Ca2+ or functional integrin. Biochem. J. 286:581–584.

39. Stephens, L., A. Smrcka, F. T. Cooke, T. R. Jackson, P. C. Sternweis, and P. T. Hawkins. 1994. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell. 77:83–93.

40. Stephens, L. R., K. T. Hughes, and R. F. Irvine. 1991. Pathway of phosphatidylinositol(3,4,5)trisphosphate synthesis in activated neutrophils. Nature (Lond.). 351:33–39.

41. Sultan, C., M. Breton, G. Mauco, P. Grondin, M. Plantavid, and H. Chap. 1990. The novel inositol lipid phosphatidylinositol 3,4-bisphosphate is produced by human blood platelets upon thrombin stimulation. Biochem. J. 269:831–834.

42. Sultan, C., M. Plantavid, C. Bachelot, P. Grondin, M. Breton, G. Mauco, S. Levy-Toledano, J. P. Caen, and H. Chap. 1991. Involvement of platelet glycoprotein Iib-IIIa (cell-23 integrin) in thrombin-induced synthesis of phosphatidylinositol 3',4'-bisphosphate. J. Biol. Chem. 266:23554–23557.

43. Talavage, D. A., R. Freund, A. T. Young, J. Dahl, C. J. Dane, and T. L. Benjamin. 1989. Phosphorylation of middle T by pp60c-sr a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Cell. 59:55–66.

44. Thomason, P. A., S. R. James, P. J. Casey, and C. P. Downes. 1994. A G-protein βγ-subunit-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J. Biol. Chem. 269:16525–16528.

45. Torti, M., G. Ranaschi, F. Sinigaglia, E. G. Lapetina, and C. Baldini. 1993. Association of the low molecular weight GTP-binding protein rasG with the cytoskeleton during platelet aggregation. Proc. Natl. Acad. Sci. USA. 90:7553–7557.

46. Vallius, M., and A. Kazlauskas. 1993. Phospholipase Cγ1 and phosphatidylinositol 3-kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell. 73:321–334.

47. Yamamoto, K., A. Graziani, C. Carpenter, L. C. Cantley, and E. G. Lapetina. 1990. A new pathway for the formation of phosphatidylinositol-3,4-bisphosphate. Phosphorylation of phosphatidylinositol-3-monophosphate by phosphatidylinositol-3-monophosphate 4-kinase. J. Biol. Chem. 265:22086–22089.

48. Yatomi, Y., Y. Ozaki, and S. Kume. 1992. Synthesis of phosphatidylinositol 3,4-bisphosphate but not phosphatidylinositol 3,4,5-trisphosphate is closely correlated with protein-tyrosine phosphorylation in thrombin-activated platelets. Biochem. Biophys. Res. Commun. 185:1480–1486.

49. Yu, H., J. K. Chen, S. Feng, D. C. Dalgarno, A. W. Brauer, and S. L. Schreiber. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 76:933–945.

50. Zhang, J., M. J. Fry, M. D. Wateriield, S. Jaken, L. Liao, J. E. B. Fox, and S. E. Rittenhouse. 1992. Activated phosphoinositide 3,4-bisphosphate but not phosphatidylinositol 3,4,5-trisphosphate is closely correlated with protein-tyrosine phosphorylation in thrombin-activated platelets. J. Biol. Chem. 267:4686–4692.

51. Zhang, J., W. G. King, S. Dillon, A. Hall, L. Feig, and S. E. Rittenhouse. 1993. Activation of platelet phosphatidylinositol 3-kinase requires the small GTP-binding protein Rho. J. Biol. Chem. 268:22251–22254.