Improved genome of *Agrobacterium radiobacter* type strain provides new taxonomic insight into *Agrobacterium* genospecies 4

Han Ming Gan 1,2,3, Melvin VL Lee 3, Michael A Savka 4

1 Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
2 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
3 School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
4 College of Science, The Thomas H. Gosnall School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States

Corresponding Author: Michael A Savka
Email address: massbi@rit.edu

The reported *Agrobacterium radiobacter* DSM30174\(^T\) genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the *Agrobacterium radiobacter* type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of *Agrobacterium tumefaciens* B6\(^T\), enabling for the first time, a proper comparative genomics of these contentious *Agrobacterium* species. We provide concrete evidence that the previously reported *A. radiobacter* type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that *Agrobacterium tumefaciens* be reclassified as *A. radiobacter* subsp. *tumefaciens* and that *A. radiobacter* retains it species status with the proposed name of *A. radiobacter* subsp. *radiobacter*. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both *A. radiobacter* and *A. tumefaciens* into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that *A. radiobacter* NCPPB3001 is sufficiently divergent from *A. tumefaciens* to propose two independent sub-clades. Third, *A. tumefaciens* demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than *A. radiobacter*.
Improved genome of *Agrobacterium radiobacter* type strain provides new taxonomic insight into *Agrobacterium* genomospecies 4

Han Ming Gan¹,²,³, Melvin VJ Lee³, Michael A. Savka⁴*

¹ Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
² Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
³ School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
⁴ College of Science, The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

*Corresponding author
Michael A. Savka
The Thomas H. Gosnell School of Life Sciences,
85 Lomb Memorial Dr., Rochester, NY 14623 United States
Email address: massbi@rit.edu

ABSTRACT

The reported *Agrobacterium radiobacter* DSM30174ᵀ genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the *Agrobacterium radiobacter* type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of *Agrobacterium tumefaciens* B6ᵀ, enabling for the first time, a proper comparative genomics of these contentious *Agrobacterium* species. We provide concrete evidence that the previously reported *A. radiobacter* type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that *Agrobacterium tumefaciens* be reclassified as *A. radiobacter* subsp. *tumefaciens* and that *A. radiobacter* retains it species status with the proposed name of *A. radiobacter* subsp. *radiobacter*. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both *A. radiobacter* and *A. tumefaciens* into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that *A. radiobacter* NCPPB3001 is sufficiently divergent from *A. tumefaciens* to propose two independent sub-clades. Third, *A. tumefaciens* demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than *A. radiobacter*.

INTRODUCTION
The taxonomy and phylogeny of the genus *Agrobacterium* has proven to be complex and controversial. Bacteria of the genus *Agrobacterium* have been grouped into six species based on the disease phenotype associated, in part, with the resident disease-inducing plasmid. Among those six species are *A. tumefaciens* causing crown gall on dicotyledonous plants, stone fruit and nut trees and *A. radiobacter* that is not known to cause plant diseases of any kind (Bouzar & Jones 2001; Conn 1942; Kerr & Panagopoulos 1977; Panagopoulos et al. 1978; Riker et al. 1930; Starr & Weiss 1943; Süle 1978). An alternative classification approach grouped *Agrobacterium* organisms into three biovars based on physiological and biochemical properties without consideration of disease phenotype (Keane et al. 1970; Kerr & Panagopoulos 1977; Panagopoulos et al. 1978). The species and biovar classification schemes do not coincide well, in a large part, because of the disease-inducing plasmids, tumor-inducing (pTi) and hairy root-inducing (pRi), are readily transmissible plasmids (Young et al. 2001).

Many widely used approaches for bacterial species definition include composition of peptidoglycan, base composition of DNA, fatty acid and 16S rDNA sequence (Stackebrandt et al. 2002) in addition to newer methods based on the whole-genome analysis (Coutinho et al. 2016; Jain et al. 2017), horizontal gene transfer analysis (Bobay & Ochman 2017) or the core genome analysis (Moldovan & Gelfand 2018) which is used in the present study. The genus *Agrobacterium* is a prime example with many proposals and oppositions regarding the amalgamation of *Agrobacterium* and *Rhizobium* over the last three or four decades (Farrand et al. 2003; Gaunt et al. 2001; Young et al. 2001; Young et al. 2003). However, more recent studies appear to favor the preservation of the genus *Agrobacterium* backed by strong genetic and genomic evidence (Gan & Savka 2018; Ramírez-Bahena et al. 2014). Within the genus *Agrobacterium*, the taxonomic status of *A. radiobacter* and *A. tumefaciens* remains contentious (Sawada et al. 1993; Young 2008; Young et al. 2006). *Agrobacterium radiobacter* (originally proposed as *Bacillus radiobacter*) is a non-pathogenic soil bacterium associated with nitrogen utilization isolated more than a century ago in 1902 (Beijerinck & van Delden 1902; Conn 1942). On the other hand, *A. tumefaciens* (previously *Bacterium tumefaciens*) is a plant pathogen capable of inducing tumorigenesis (Smith & Townsend 1907). However, the descriptive assignment for *A. tumefaciens* was later found to be contributed by a set of genes located on the large Ti plasmid that can be lost (Gordon & Christie 2014). In other words, the curing of Ti plasmid in *A. tumefaciens* will change its identity to the non-pathogenic species, *A. radiobacter*. Furthermore, comparative molecular analysis based on single-copy housekeeping genes also supports the close relatedness of *A. radiobacter* and *A. tumefaciens*, blurring the taxonomic boundaries between these species (Mousavi et al. 2015; Shams et al. 2013). As taxa are reclassified into different populations that do not conform to the characteristics of the original description, the given names lose their significant and descriptive importance. Consistent with the Judicial Commission according to the Rules of the International Code of Nomenclature of Bacteria, Tindall (2014) concluded that “the combination of *A. radiobacter* has priority over the combination *A. tumefaciens* when the two are treated as members of the same species.
since \textit{A. radiobacter} was the first proposed and described in 1902 whereas \textit{A. tumefaciens} was first proposed and described in 1907) (Tindall 2014). However, given that \textit{A. tumefaciens} has been more widely studied than \textit{A. radiobacter} due to its strong relevance to agriculture (Bourras et al. 2015), it remains unclear but interesting to see if the broader scientific community will obey this rule by adopting the recommended species name change in future studies.

To our knowledge, a detailed comparative genomics analysis of \textit{A. radiobacter} and \textit{A. tumefaciens} type strains has not been reported despite their genome availability (Zhang et al. 2014). The high genomic relatedness of both type strains was briefly mentioned by Kim and Gan (2017) through whole genome alignment and pairwise nucleotide identity calculation from homologous regions. However, evidence is now mounting that the \textit{A. radiobacter} DSM 30147T reported by Zhang et al. (2014) is contaminated, warranting immediate investigation (Jeong et al. 2016). The assembled genome is nearly 7 MB, the largest among \textit{Agrobacterium} currently sequenced at that time with up to 6,853 predicted protein-coding genes contained in over 600 contigs. At sequencing depth of nearly 200\times, its genome assembly is unusually fragmented even for a challenging microbial genome (Utturkar et al. 2017). Furthermore, the phylogenomic placement of \textit{A. radiobacter} DSM 30147T based on this genome assembly has been questionable as evidenced by its basal position and substantially longer branch length relative to other members of the species (Gan & Savka 2018). The overly fragmented nature of this assembly also precludes fruitful comparative genomics focusing on gene synteny analysis. More importantly, analysis done on a contaminated assembly but with the assumption that it is not, will likely lead to incorrect biological interpretations (Allnutt et al. 2018).

In this study, we sequenced the whole genome of \textit{A. radiobacter} using a type strain that was sourced from the National Collection of Plant Pathogenic Bacteria (NCPBP). We produced a contiguous genome assembly exhibiting genomic statistics that are more similar to other assembled \textit{Agrobacterium} genomes. We show here, through comparative genomics and phylogenetics, that the previously assembled \textit{A. radiobacter} DSM 30147T genome contains substantial genomic representation from another \textit{Agrobacterium} sp. isolated and sequenced by the same lab, consistent with our initial suspicion of strain contamination. Using the newly assembled genome for subsequent comparative analysis, we provide genomic evidence that \textit{A. radiobacter} DSM 30147T and \textit{A. tumefaciens} B6T are the same species. However, strain DSM 30147T should not be considered as a merely non-tumorigenic strain of \textit{A. tumefaciens} as substantial genomic variation exists between these two type strains notably in the nucleotide sugar metabolism pathway that may contribute to their ecological niche differentiation.

\section*{MATERIALS & METHODS}

\subsection*{DNA extraction and whole genome sequencing}
Approximately 10 bacterial colonies were scrapped using a sterile P200 pipette tip from a 3-day-old nutrient agar culture and resuspended in lysis buffer with proteinase K.
(Sokolov 2000) followed by incubation at 56 °C for 3 hours. DNA purification was performed as previously described. The extracted DNA was normalized to 0.2 ng/μL and prepared using the Nextera XT library preparation kit (Illumina, San Diego, CA) according to the manufacturer’s instructions. The library was sequenced on an Illumina MiSeq desktop sequencer located at the Monash University Malaysia Genomics Facility (2 × 250 bp run configuration) that routinely sequences mostly decapod crustacean mitogenomes (Gan et al. 2016a; Gan et al. 2016b; Tan et al. 2015) and occasionally microbial genomes (Gan et al. 2015; Gan et al. 2014; Wong et al. 2014) without prior history of processing any member from the Agrobacterium genomospecies 4.

De novo assembly and genome completeness assessment
Raw paired-end reads were adapter-trimmed using Trimmomatic v0.36 (Bolger et al. 2014) followed by error-correction and de novo assembly using Spades Assembler v3.9 (Bankevich et al. 2012) (See Data S1 for specific trimming and assembly settings). Genome completeness was assessed with BUSCOv3 (Rhizobiales database) (Waterhouse et al. 2017).

Protein clustering
Gene prediction used Prodigal v2.6 (Hyatt et al. 2010). Clustering of the predicted coding sequence (CDS) was performed with CD-HIT-EST using the settings “-C 0.95, -T 0.8” (Li & Godzik 2006). Identification of unique and shared clusters were done using basic unix commands e.g. csplit, grep, sort and uniq. The specific commands used and files generated during clustering can be found in the Zenodo database (https://doi.org/10.5281/zenodo.1489356).

Phylogenetic analysis
Reconstruction of the Agrobacterium phylogeny used PhyloPhlAN (Segata et al. 2013). PhyloPhlAN is a bioinformatic pipeline that identifies conserved proteins (400 markers) from microbial genomes and uses them to construct a high-resolution phylogeny using maximum likelihood inference approach (Price et al. 2010). For single gene tree construction, protein sequences were aligned with mafft v7.3 (Katoh & Standley 2013) using the the most accurate setting (--localpair --maxiterate 1000) followed by phylogenetic tree construction via IqTree v1.65 with optimized model (Kalyaanamoorthy et al. 2017; Nguyen et al. 2014). Visualization and annotation of phylogenetic trees was performed with Figtree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Pan-genome construction and phylogenomics
Whole genome sequences were reannotated with Prokka v1.1 using the default setting (Seemann 2014). The Prokka-generated gff files were used as the input for Roary v3.12.0 to calculate the pan-genome (Page et al. 2015). Maximum likelihood tree construction of the core-genome alignment and tree visualization used FastTree2 v2.1.10 (-nt -gtr) (Price et al. 2010) and FigTree v 1.4.3, respectively. Input and output files associated with the Roary analysis have been deposited in the Zenodo database (https://doi.org/10.5281/zenodo.1489356).

Detection and visualization of Ti plasmid
Genome sequences of each member of the genomospecies 4 except for the problematic DSM 37014T strain were used as the query for blastN search (-evalue 1e-100) against the octopine-type Ti plasmid (Altschul et al. 1990). The result of the similarity search was subsequently visualized in Blast Ring Image Generator (BRIG) v0.95 (Alikhan et al. 2011).

Genome annotation and KEGG pathway reconstruction

Whole genome sequences of *A. tumefaciens* B6T and *A. radiobacter* NCPPB 3001T were submitted to the online server GhostKoala (Kanehisa et al. 2016b) for annotation and the annotated genomes were subsequently used to reconstruct KEGG pathways (Kanehisa et al. 2016a) in the same webserver. Identification of proteins with TIGRFAM signatures of interest (Haft et al. 2003) used HMMsearch v3.1b2 with the option “--cut_tc” activated to filter for only protein hits passing the TIGRFAM trusted cutoff values (Johnson et al. 2010).

RESULTS

An improved *Agrobacterium radiobacter* type strain genome

Raw sequencing data and whole genome assembly for strains B6 and NCPPB3001 reported in this study are linked to the NCBI Bioproject IDs PRJNA300485 and PRNA300611, respectively. The newly assembled genome of *A. radiobacter* type strain that was sourced from the National Collection of Plant Pathogenic Bacteria (NCPPB) is approximately 30% smaller than the first reported *A. radiobacter* DSM 30147T genome with 96% less contigs (22 vs 612), 20-fold longer N50 (480 kb vs 23 kb) and assembled length that is much more similar to other *Agrobacterium* spp. (Table 1). In addition, it is near-complete with 685 out of 686 BUSCO Rhizobiale single-copy genes detected as either partial or complete with minimal evidence of contamination as indicated by the near absence of duplicated single-copy gene(<0.1%). On the contrary, the current DSM 30147 genome is missing 25.1% of the single copy gene with up to 34.8% duplication rate. At the time of this manuscript writing, another genome of *A. radiobacter* type strain that was sourced from another culture collection centre e.g. the Belgian Coordinated Collections of Microorganisms has been deposited in the NCBI wgs database (*A. radiobacter* LMG140T, Table 1) with assembly statistics that are highly similar to the type strain genome reported in this study.

The inflated genome size of *Agrobacterium radiobacter* DSM 30147(T) is due to technical errors

Instead of sharing a recent common ancestor as would be expected for a recently duplicated gene, the duplicated single copy genes coding for seryl-tRNA synthetase in *A. radiobacter* DSM 30147T were placed in two distinct clusters with one affiliated to genomospecies 4 and the other affiliated to genomospecies 7 (Figure 1A). Such an unexpected clustering pattern raises the suspicion of genome assembly from two or more non-clonal bacterial strains. In addition, by performing comparison at the genome-scale based on whole proteome clustering of *A. radiobacter* DSM 30147T /NCPPB
3001^T (Previous study, GCF_000421945; This study, GCF_001541305), A. sp. TS43 (unpublished, GCF_001526605) and A. tumefaciens B6 (GCF_001541315), we observed a high number of proteins that were exclusively shared between Zhang et al A. radiobacter DSM 30147 and A. sp. TS43 belonging to genomospecies 7 (Figure 1B). Coincidentally, despite not sharing the same Bioproject ID, the whole genomes of strains DSM 30147^T and TS43 were sequenced by the Zhang et al., and submitted to NCBI on the same date, 30-May-2013, hinting strain contamination during sample processing in the lab.

Genome-scale average nucleotide identity calculation supports the amalgamation of A. radiobacter and A. tumefaciens into a single genomospecies

Single gene tree shows that A. radiobacter NCPPB 3001^T and A. tumefaciens B6^T belong to the genomospecies 4 clade (Figure 1A), corroborating with the PhyloPhIaN phylogenomic tree that was constructed based on the alignment of 400 universal single-copy proteins (Figure S1). The pairwise average nucleotide (ANI) among strains within this clade is consistently more than 95% further supporting their affiliation to the same genomospecies (Figure 2) (Coutinho et al. 2016; Jain et al. 2017). As expected, pairwise ANI of less than 92% was observed when they were compared with strains from genomospecies 7 (strains RV3 and Zutra 3/1). A 100% pairwise ANI was observed between A. radiobacter type strains that were sourced from NCPPB and LMG. In addition, non-type strains B140/95 and CFBP5621 also exhibit a strikingly high pairwise ANI (>99%) to the type strains of A. tumefaciens and A. radiobacter, respectively, leading to the formation of sub-clusters within genomospecies 4 (Figure 2).

Is A. radiobacter a non-tumorigenic strain of A. tumefaciens?

A majority of the currently sequenced strains from genomospecies 4 are non-tumorigenic as evidenced by the near complete lack of genomic region with significant nucleotide similarity to the octopine-type Ti reference plasmid (Figure 3). Of the 14 genomes analyzed, only strains B6^T and B140/95 exhibit a complete coverage of the Ti plasmid with near 100% sequence identity while strain 186 shows hits mainly to the essential gene clusters of a Ti plasmid such as the vir gene cluster (black rings and gene labels in Figure 3) at a substantially lower sequence identity (50%<x<90%) (Figure 3), suggesting that it may be harboring a dissimilar variant of Ti plasmid e.g. different opine type. In addition, although lacking hits to the virulence gene of the Ti plasmid, the tra and trb clusters involved in plasmid conjugal transfer are present in strains Kerr 14, CCNWGS0286 and UNC420CL41Cvi. Despite belonging to the same genomospecies, core genome alignment and phylogenomic analysis indicates that A. radiobacter NCPPB3001^T is sufficiently divergent from A. tumefaciens B6^T leading to their separation into two distinct sub-clusters (Figure 4A). This is also resonated by their different sub-cluster placement in the pairwise ANI heatplot (Figure 2). Furthermore, strains from both subclades could be broadly differentiated by the set of core accessory genes that they harbor (Figure 4B). Therefore, even though A. radiobacter does not harbor a Ti plasmid, it cannot be considered as a non-tumorigenic strain of A.
tumefaciens given multiple lines of evidence indicating its substantial genomic divergence from *A. tumefaciens*.

Agrobacterium genomospecies 4 strains differ in their genomic potential for nucleotide sugar metabolism

Individual comparison of the reconstructed KEGG pathways in *A. tumefaciens* (Figure 5A) and *A. radiobacter* (Figure 5B) revealed stark contrast in the anabolism of dTDP-L-rhamnose which is commonly found in the O-antigen of LPS in gram-negative bacteria. Surprisingly, the entire enzyme set required for the generation of dTDP-L-rhamnose from D-glucose-phosphate (Table 2) is absent in *A. tumefaciens* B6, suggesting that this common nucleotide sugar may be absent from the LPS O-antigen of strain B6. A manual inspection of the accessory genes uniquely shared by *A. tumefaciens* strains B6 and B140/95 identified a homolog cluster containing GDP-L-fucose synthase (EC 1.1.1.271) that is involved in the enzymatic production of GDP-L-fucose from GDP-4-dehydro-6-deoxy-D-mannose and NADH (Table 2 and Figure 5C). As expected, the genes coding for this enzyme and GDP-mannose 4,6-dehydratase involved in the conversion of GDP-alpha-D-mannose to GDP-4-dehydro-6-deoxy-D-mannose, are absent in the *A. radiobacter* NCPPB3001 genome (Figure 5D). Intriguingly, HMMsearch scan revealed the presence of two protein hits to the TIGR01479 HMM profile in *A. tumefaciens* B6 that corresponds to D-mannose 1,6-phosphomutase (EC 5.4.2.8) required for the synthesis of D-mannose 6-phosphate. In addition to strain B6, its close relative, strain B140/95, and a more distantly related strain Kerr14 also harbor two copies of this gene. However, one of the D-mannose 1,6-phosphomutases in strain Kerr14 is more divergent with a lower TIGRFAM HMM sequence score (Table 2). Furthermore, it exhibits less than 70% protein identity to the *A. tumefaciens* B6 and B140/95 homologs, forming a private protein cluster in the pan-genome (data not shown).

DISCUSSION

We re-sequenced the genome of *Agrobacterium radiobacter* type strain using strain directly obtained from NCPPB. The assembled *A. radiobacter* genome reported in this study exhibits assembly statistics that are consistent with a high-quality draft genome such as high genome completeness and contiguity, near-zero contamination/duplication and comparable genome size to other closely related strains (Gan et al. 2018; Parks et al. 2015). Furthermore, given the improved contiguity and dramatic reduction in the number of contigs of this newly assembled draft genome, we recommend using this genome in place of the previously published draft genome for future *Agrobacterium* comparative studies.

The distinct separation of *Agrobacterium* genomospecies 4 and 7 at 95% ANI cutoff corroborates with the previously established “genomic yardstick” for species differentiation (Konstantinidis & Tiedje 2005; Richter & Rosselló-Móra 2009). Using this percentage cutoff, the ANI approach has been successfully used to provide a near
“black-and-white” pattern of species separation in even some of the most diverse bacterial genera such as *Pseudomonas*, *Arcobacter* and *Stenotrophomonas* (Pérez-Cataluña et al. 2018; Tran et al. 2017; Vinuesa et al. 2018). Given the increasing evidence highlighting the robustness and reliability of the ANI approach in species delineation, the pairwise ANI between *A. tumefaciens* and *A. radiobacter* type strains that is at least 2.5% higher than the 95% cutoff value is rigorous evidence that they belong to the same genomospecies, effectively serving as the final nail in the coffin for the decade-long debate on their taxonomic status. The amalgamation of *A. radiobacter* and *A. tumefaciens* into a single species have been repeatedly suggested in the past few years but was complicated by the special status of *A. tumefaciens* as the type species of the genus *Agrobacterium* despite the priority that *A. radiobacter* has over *A. tumefaciens* as it was isolated and described 3 years before *A. tumefaciens* (Young et al. 2001; Young et al. 2003). Despite sharing numerous morphological and biochemical features, differences in genomic features such as pairwise ANI, phylogenomic clustering and core accessory gene contents do exist among members in *Agrobacterium* genomospecies 4 that can facilitate the identification of genotypic and phenotypic variants to accurately delimit sub-species relationships in the future (Brenner et al. 2015; Jezbera et al. 2011; Meier-Kolthoff et al. 2014; Tan et al. 2013).

To date the LPS for both type strains have been determined (De Castro et al. 2004; De Castro et al. 2002). In stark contrast to *A. radiobacter*, the *A. tumefaciens* LPS consists of D-arabinose and L-fucose that have yet been reported to date in another members of the genus *Agrobacterium* (De Castro et al. 2002). The presence of the L configuration of fucose is considered to be rare even among plant pathogenic bacteria but may be associated with the ability of *A. tumefaciens* to colonize or bind to wounded plant cell (Lippincott et al. 1977; Whatley et al. 1976; Whatley & Spiess 1977). It has been previously shown that the LPS of *A. tumefaciens* but not *A. radiobacter* can bind to the plant cells thus providing protection against subsequent infection by pathogenic strains (Whatley et al. 1976). The presence and absence of nucleotide sugars in the O-chain constituent of LPS in both type strains corroborates with their observed genomic potential in the nucleotide sugar metabolism pathway thus underscoring the utility of comparative genomics in facilitating the prediction of microbial host range and ecological niche (Klosterman et al. 2011). For example, the absence of L-rhamnose and L-fucose in the LPS of *A. tumefaciens* B6 and *A. radiobacter* DSM30147, respectively, is consistent with the lack of genes coding for enzymes involved with the particular nucleotide sugar metabolism. Generation of *Agrobacterium tumefaciens* B6 LPS mutant via targeted gene deletion (Kaczmarczyk et al. 2012) or the classical but more laborious transposon mutagenesis approach followed by characterization of the LPS mutant host-range and phytopathogenicity will be instructive (Gan et al. 2011; Reuhs et al. 2005).

Our current genomic sampling indicates that the Ti plasmid appears to be restricted to the *A. tumefaciens* subclade. The maintenance of the Ti plasmid is metabolically taxing given its large size (Barker et al. 1983; Glick 1995). Even if the Ti plasmid was conjugally transfer for example, to *A. radiobacter*, the inability of *A. radiobacter* to colonize plant host as evidenced by its LPS incompatibility will not confer
an advantage to the new plasmid host in a natural environment (Thomashow et al. 1980). Furthermore, in the absence of high density AHL signals which is required to trigger Ti plasmid conjugation (Fuqua & Winans 1994; Pappas 2008; Zhang et al. 2002), the newly acquired Ti plasmid in *A. radiobacter* may be cured in its natural soil habitat after a few generations. Although the spontaneous transfer of the Ti plasmid from tumorigenic *A. tumefaciens* to *A. radiobacter* K84 has been reported previously, strain K84 was re-classified based on a recent core gene analysis to *Rhizobium rhizogenes* (Velázquez et al. 2010; Vicedo et al. 1996), reiterating the pervasive taxonomic inconsistency within the genus *Agrobacterium* that may have confounded previous biological interpretations (De Ley et al. 1966; Lindström et al. 1995; Young 2008). Given that a large majority of *Agrobacterium* genetics was performed during the pre-NGS era (Gan & Savka 2018), it remains unknown as to how many *A. tumefaciens* and *A. radiobacter* strains have been molecularly misclassified due to their high genomic relatedness.

The inability to accurately identify plasmid and chromosomal-derived contigs among the draft genomes means that some of the core accessory genes among tumorigenic strains may be plasmid-derived and should be treated with caution as the low-copy-number Ti-plasmid is prone to curing in the absence of AHL signals. Despite the value of complete genome assembly in enabling the accurate partitioning of plasmid and chromosomal genomic region (Arredondo-Alonso et al. 2017), the representation of complete *Agrobacterium* genomes in current database is still very low as a majority of the genomes were assembled from short Illumina reads that cannot effectively span repetitive region (Wibberg et al. 2011; Wood et al. 2001). Furthermore, most *Agrobacterium* strains harbor multiple large plasmids that further complicate short-read-only assembly graph (Kado et al. 1981; Lowe et al. 2009; Shao et al. 2018). Given the currently available genomic resources for *Agrobacterium*, defining subspecies within the *Agrobacterium* genomospecies 4 based on the identification of lineage-specific gene set (Moldovan & Gelfand 2018) will be challenging. However, we anticipate that the advent of high throughput long-read sequencing that can span large repetitive region in recent years is likely going to overcome this limitation allowing a more accurate depiction of microbial pangenome (Gan et al. 2012; Gan et al. 2017; Schmid et al. 2018a; Schmid et al. 2018b). Future hybrid genome assemblies (Illumina and Nanopore/PacBio reads) of members from genomospecies 4 with comprehensive metadata and reliable phenotypic information, will be instructive.

CONCLUSIONS

Despite belonging to the same genomospecies, *A. tumefaciens* and *A. radiobacter* are by no means clonal at the chromosomal level and instead demonstrate sufficient genomic characters that qualify their separation into two sub-species. In addition, the difference in the LPS profile among two type strains will have implications to host specificity leading to geographical separation. In the spirit of preserving the naming of both species but at the same time respecting the taxonomic jurisdiction for strain priority, we propose *A. tumefaciens* to be reclassified as *A. radiobacter subsp.*
tumefaciens and for A. radiobacter to retains its species status with the proposed name of A. radiobacter subsp. radiobacter.

REFERENCES

Alikhan N-F, Petty NK, Zakour NLB, and Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC genomics 12:1.

Allnutt T, Yan CZY, Crowley TM, and Gan HM. 2018. Commentary: Genome Sequence of Vibrio parahaemolyticus VP152 Strain Isolated From Penaeus indicus in Malaysia. Frontiers in microbiology 9. 10.3389/fmicb.2018.00865

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403-410. 10.1016/s0022-2836(05)80360-2

Arredondo-Alonso S, Willems RJ, van Schaik W, and Schürch AC. 2017. On the (im) possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microbial genomics 3.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, and Prjibelski AD. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology 19:455-477.

Barker R, Idler K, Thompson D, and Kemp J. 1983. Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Molecular Biology 2:335-350.

Beijerinck M, and van Delden A. 1902. On a colourless bacterium, whose carbon food comes from the athmosphere. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 5:398-413.

Bobay L-M, and Ochman H. 2017. Biological species are universal across Life’s domains. Genome biology and evolution 9:491-501.

Bolger AM, Lohse M, and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.

Bouzar H, and Jones JB. 2001. Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. International Journal of Systematic and Evolutionary Microbiology 51:1023-1026.

Brenner DJ, Staley JT, and Krieg NR. 2015. Classification of Procaryotic Organisms and the Concept of Bacterial Speciation. Bergey’s Manual of Systematics of Archaea and Bacteria:1-9.

Conn HJ. 1942. Validity of the Genus Alcaligenes. Journal of Bacteriology 44:353-360.
460 Farrand SK, Van Berkum PB, and Oger P. 2003. *Agrobacterium* is a definable genus of the
461 family Rhizobiaceae. *Int J Syst Evol Microbiol* 53:1681-1687. 10.1099/ijs.0.02445-0
462 Fuqua WC, and Winans SC. 1994. A LuxR-LuxI type regulatory system activates *Agrobacterium*
463 Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. *Journal of Bacteriology* 176:2796-2806.
464 Gan HM, Chew TH, Tay Y-L, Lye SF, and Yahya A. 2012. Genome sequence of *Hydrogenophaga* sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium. *Journal of Bacteriology* 194:4759-4760.
465 Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, and Savka MA. 2015. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxl and luxR homologs in bacteria belonging to the Sphingomonadaceae family. *Frontiers in Cellular and Infection Microbiology* 4.
466 Gan HM, Ibrahim Z, Shahir S, and Yahya A. 2011. Identification of genes involved in the 4-aminobenzenesulfonate degradation pathway of *Hydrogenophaga* sp. PBC via transposon mutagenesis. *FEMS microbiology letters* 318:108-114. 10.1111/j.1574-6968.2011.02245.x
467 Gan HM, Lee MVJ, and Savka MA. 2018. High-Quality Draft Genome Sequence of the Type Strain of *Allorhizobium vitis*, the Primary Causal Agent of Grapevine Crown Gall. *Microbiol Res Announc* 7:e01045-01018.
468 Gan HM, Lee YP, and Austin CM. 2017. Nanopore long-read guided complete genome assembly of *Hydrogenophaga intermedia*, and genomic insights into 4-aminobenzenesulfonate, p-aminobenzoic acid and hydrogen metabolism in the genus *Hydrogenophaga*. *Frontiers in microbiology* 8:1880.
469 Gan HM, and Savka MA. 2018. One More Decade of *Agrobacterium* Taxonomy.
470 Gan HM, Tan MH, and Austin CM. 2016a. The complete mitogenome of the red claw crayfish *Cherax quadricarinatus* (Von Martens, 1868)(Crustacea: Decapoda: Parastacidae). *Mitochondrial DNA Part A* 27:385-386.
471 Gan HM, Tan MH, Epilurahman R, and Austin CM. 2016b. The complete mitogenome of *Cherax monticola* (Crustacea: Decapoda: Parastacidae), a large highland crayfish from New Guinea. *Mitochondrial DNA Part A* 27:337-338. 10.3109/19401736.2014.892105
472 Gan HY, Gan HM, Savka MA, Triassi AJ, Wheatley MS, Smart LB, Fabio ES, and Hudson AO. 2014. Whole-Genome Sequences of 13 Endophytic Bacteria Isolated from Shrub Willow (*Salix*) Grown in Geneva, New York. *Genome Announcements* 2.
473 Gaunt M, Turner S, Rigottier-Gois L, Lloyd-Macgilp S, and Young J. 2001. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. *International Journal of Systematic and Evolutionary Microbiology* 51:2037-2048.
474 Glick BR. 1995. Metabolic load and heterologous gene expression. *Biotechnology advances* 13:247-261.
475 Gordon JE, and Christie PJ. 2014. The *Agrobacterium* Ti Plasmids. *Microbiol Spectr* 2.
476 Haft DH, Selengut JD, and White O. 2003. The TIGRFAMs database of protein families. *Nucleic Acids Research* 31:371-373.
477 Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, and Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC bioinformatics* 11:119.
478 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, and Aluru S. 2017. High-throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *bioRxiv*:225342.
Jeong H, Pan J-G, and Park S-H. 2016. Contamination as a major factor in poor Illumina assembly of microbial isolate genomes. *bioRxiv*. 10.1101/081885

Jezbera J, Jezberová J, Brandt U, and Hahn MW. 2011. Ubiquity of *Polynucleobacter necessarius* subspecies *asymbioticus* results from ecological diversification. *Environmental microbiology* 13:922-931.

Johnson LS, Eddy SR, and Portugaly E. 2010. Hidden Markov model speed heuristic and iterative HMM search procedure. *BMC bioinformatics* 11:431.

Kaczmarczyk A, Vorholt JA, and Francez-Charlot A. 2012. Markerless Gene Deletion System for Sphingomonads. *Applied and Environmental Microbiology* 78:3774-3777. 10.1128/AEM.07347-11

Kado C, amp, and Liu S. 1981. Rapid procedure for detection and isolation of large and small plasmids. *Journal of Bacteriology* 145:1365-1373.

Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, and Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature methods* 14:587.

Kanehisa M, Sato Y, Kawashima M, Furumichi M, and Tanabe M. 2016a. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Research* 44:D457-D462.

Kanehisa M, Sato Y, and Morishima K. 2016b. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. *Journal of molecular biology* 428:726-731.

Katoh K, and Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30:772-780.

Keane P, Kerr A, and New P. 1970. Crown gall of stone fruit II. Identification and nomenclature of *Agrobacterium* isolates. *Australian Journal of Biological Sciences* 23:585-596.

Kerr A, and Panagopoulos C. 1977. Biotypes of *Agrobacterium radiobacter* var. *tumefaciens* and their biological control. *Journal of Phytopathology* 90:172-179.

Katoh K, and Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30:772-780.

Keane P, Kerr A, and New P. 1970. Crown gall of stone fruit II. Identification and nomenclature of *Agrobacterium* isolates. *Australian Journal of Biological Sciences* 23:585-596.

Kerr A, and Panagopoulos C. 1977. Biotypes of *Agrobacterium radiobacter* var. *tumefaciens* and their biological control. *Journal of Phytopathology* 90:172-179.

Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z, Henrissat B, Lee Y-H, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchiesta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, and Ma L-J. 2011. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. *PLoS Pathogens* 7:e1002137. 10.1371/journal.ppat.1002137

Konstantinidis KT, and Tiedje JM. 2005. Genomic insights that advance the species definition for prokaryotes. *Proceedings of the National Academy of Sciences* 102:2567-2572.

Li W, and Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22:1658-1659.

Lindström K, Van Berkum P, Gillis M, Martinez E, Novikova N, and Jarvis B. 1995. Report from the roundtable on *Rhizobium* taxonomy. *Nitrogen Fixation: Fundamentals and Applications*: Springer, 807-810.

Lippincott BB, Whatley MH, and Lippincott JA. 1977. Tumor induction by *Agrobacterium* involves attachment of the bacterium to a site on the host plant cell wall. *Plant physiology* 59:388-390.

Lowe N, Gan HM, Chakravartty V, Scott R, Szegedi E, Burr TJ, and Savka MA. 2009. Quorum-sensing signal production by *Agrobacterium vitis* strains and their tumor-inducing and tartrate-catabolic plasmids. *FEMS microbiology letters* 296:102-109.

Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, and Goodwin LA. 2014. Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of *Escherichia coli*, and a proposal for delineating subspecies in microbial taxonomy. *Standards in genomic sciences* 9:2.
Segata N, Börnigen D, Morgan XC, and Huttenhower C. 2013. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. *Nature communications* 4:2304.

Shams M, Vial L, Chapulliot D, Nesme X, and Lavire C. 2013. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of *Agrobacterium* spp. using recA-based PCR. *Syst Appl Microbiol* 36:351-358. 10.1016/j.syapm.2013.03.002

Shao S, Zhang X, van Heusden GPH, and Hooykaas PJ. 2018. Complete sequence of the tumor-inducing plasmid pTiChry5 from the hypervirulent *Agrobacterium tumefaciens* strain Chry5. *Plasmid* 96:1-6.

Smith EF, and Townsend CO. 1907. A plant-tumor of bacterial origin. *Science* 25:671-673.

Sokolov EP. 2000. An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. *Journal of Molluscan Studies* 66:573-575.

Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, and Trüper HG. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. *International Journal of Systematic and Evolutionary Microbiology* 52:1043-1047.

Starr M, and Weiss J. 1943. Growth of phytopathogenic bacteria in a synthetic asparagin medium. *Phytopathology* 33:314-318.

Süle S. 1978. Biotypes of *Agrobacterium tumefaciens* in Hungary. *Journal of Applied Bacteriology* 44:207-213.

Tan JL, Khang TF, Ngeow YF, and Choo SW. 2013. A phylogenomic approach to bacterial subspecies classification: proof of concept in *Mycobacterium abscessus*. *BMC genomics* 14:879.

Tan MH, Gan HM, Schultz MB, and Austin CM. 2015. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. *Molecular phylogenetics and evolution* 85:180-188.

Thomasow M, Panagopoulos C, Gordon M, and Nester E. 1980. Host range of *Agrobacterium tumefaciens* is determined by the Ti plasmid. *Nature* 283:794.

Tindall B. 2014. *Agrobacterium radiobacter* (Beijerinck and van Delden 1902) Conn 1942 has priority over *Agrobacterium tumefaciens* (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority and Rule 23a, Note 1 as applied to the corresponding specific epithets. Opinion 94. *International Journal of Systematic and Evolutionary Microbiology* 64:3590-3592.

Tran PN, Savka MA, and Gan HM. 2017. In-silico taxonomic classification of 373 genomes reveals species misidentification and new genospecies within the genus *Pseudomonas*. *Frontiers in microbiology* 8:1296.

Utturkar SM, Klingeman DM, Hurt RA, and Brown SD. 2017. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies. *Frontiers in microbiology* 8:1272.

Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME, García-Benavides P, Mateos PF, Wabiko H, and Martínez-Molina E. 2010. Analysis of core genes supports the reclassification of strains *Agrobacterium radiobacter* K84 and *Agrobacterium tumefaciens* AKE10 into the species *Rhizobium rhizogenes*. *Systematic and applied microbiology* 33:247-251.

Vicedo B, López MJ, Asins MJ, and López MM. 1996. Spontaneous Transfer of the Ti Plasmid of *Agrobacterium tumefaciens* and the Nopaline Catabolism Plasmid of *A. radiobacter* Strain K84. *Phytopathology* 86:528-534.

Vinuesa P, Ochoa-Sánchez LE, and Contreras-Moreira B. 2018. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring...
pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus

Stenotrophomonas. Frontiers in microbiology 9.

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, and Zdobnov EM. 2017. BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular biology and evolution 35:543-548.

Whatley M, Bodwin J, Lippincott B, and Lippincott J. 1976. Role of *Agrobacterium* cell envelope lipopolysaccharide in infection site attachment. Infection and immunity 13:1080-1083.

Whatley MH, and Spiess LD. 1977. Role of bacterial lipopolysaccharide in attachment of *Agrobacterium* to moss. Plant physiology 60:765-766.

Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, and Setubal JC. 2011. Complete genome sequencing of *Agrobacterium* sp. H13-3, the former *Rhizobium lupini* H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. *Journal of biotechnology* 155:50-62.

Wong YM, Juan JC, Gan HM, and Austin CM. 2014. Draft Genome Sequence of *Clostridium perfringens* Strain JJC, a Highly Efficient Hydrogen Producer Isolated from Landfill Leachate Sludge. *Genome Announcements* 2. 10.1128/genomeA.00064-14.

Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, and Almeida NF. 2001. The genome of the natural genetic engineer *Agrobacterium tumefaciens* C58. *Science* 294:2317-2323.

Young J, Kuykendall L, Martinez-Romero E, Kerr A, and Sawada H. 2001. A revision of *Rhizobium* Frank 1889, with an emended description of the genus, and the inclusion of all species of *Agrobacterium* Conn 1942 and *Allorhizobium undicola* de Lajudie et al. 1998 as new combinations: *Rhizobium radiobacter*, *R. rhizogenes*, *R. rubi*, *R. undicola* and *R. vitis*. *International Journal of Systematic and Evolutionary Microbiology* 51:89-103.

Young J, Kuykendall L, Martinez-Romero E, Kerr A, and Sawada H. 2003. Classification and nomenclature of *Agrobacterium* and *Rhizobium*—a reply to Farrand et al.(2003). *International Journal of Systematic and Evolutionary Microbiology* 53:1689-1695.

Young JM. 2008. *Agrobacterium*—Taxonomy of plant-pathogenic *Rhizobium* species. *Agrobacterium: From biology to biotechnology*: Springer, 183-220.

Young JM, Pennycook SR, and Watson DR. 2006. Proposal that *Agrobacterium radiobacter* has priority over *Agrobacterium tumefaciens*. Request for an opinion. *Int J Syst Evol Microbiol* 56:491-493. 10.1099/ijs.0.64030-0.

Zhang H-B, Wang L-H, and Zhang L-H. 2002. Genetic control of quorum-sensing signal turnover in *Agrobacterium tumefaciens*. *Proceedings of the National Academy of Sciences* 99:4638-4643.

Zhang L, Li X, Zhang F, and Wang G. 2014. Genomic analysis of *Agrobacterium radiobacter* DSM 30147(T) and emended description of *A. radiobacter* (Beijerinck and van Delden 1902) Conn 1942 (Approved Lists 1980) emend. Sawada et al. 1993. *Stand Genomic Sci* 9:574-584. 10.4056/sigs.4688352.
Figure 1

Phylogenetic and genomic evidence indicating contamination in the published *A. radiobacter* DSM 30147T genome.

(A) Maximum likelihood phylogenetic tree of seryl-tRNA synthetases from Agrobacterium genomospecies 4 and 7. Codes after the tildes are contigs containing the corresponding homologs. Node labels indicate ultra-fast bootstrap support value and branch length indicates number of substitutions per site. Duplicated homologs in the problematic *A. radiobacter* DSM 30147 genome were colored red. (B) Venn diagram of the core proteome of selected Agrobacterium strains from genomospecies 4. Numbers in the overlapping regions indicate the number of coding sequences (CDS) that shared by two or more groups at 95% nucleotide identity cutoff.
Manuscript to be reviewed
Figure 2

A heatmap showing the hierarchical clustering of *Agrobacterium* strains based on genomic distance.

Values in boxes indicate pairwise average nucleotide identity. Horizontal colored bar below the heatmap indicate the genomospecies assigned to each genome (G7, genomospecies 7; G4, genomospecies 4). Boxed labels indicate genomes sequenced in this study.
Figure 3

Prevalence and sequence conservation of the octopine-type Ti plasmid among Agrobacterium genomospecies 4.

Each genome (labelled 1-15) is represented by a colored ring shaded based on nucleotide percentage similarity to the reference Ti plasmid (min. 50%; max. 100%). The outermost ring highlights the gene regions involved in tumorigenesis (vir, iaa and ipt) and plasmid conjugation (trb and tra). Asterisks indicate genomes sequenced in this study.
Figure 4

Genomic divergence among genospecies 4 strains.

(A) Unrooted maximum likelihood tree constructed based on the core genome alignment. Branch length and node labels indicate number of substitutions per site and FastTree2 SH-like support values, respectively. Putative subclades were colored blue, red and purple (B) Distribution of accessory (non-core) gene clusters among strains determined with Roary and plotted with the perl script roary2svg.pl (https://github.com/sanger-pathogens/Roary/blob/master/contrib/roary2svg/roary2svg.pl). A total of 7,906 accessory gene clusters were identified by Roary and the number of accessory genes presence in each genome are shown in the most right column. Vertical grey lines/bars along the plot indicate presence of accessory gene. Asterisks indicate genomes sequenced in this study.
A

Unclassified subcluster

MANUSCRIPT TO BE REVIEWED

B

	Number of Accessory Genes
CFBP_5621	1463
LMG140	1629
NCPPB_3001*	1634
B140_95	1874
B6	1881
B6*	1792
224MFTsu31	870
719_389	990
UNC420CL41Cvi	1032
CCNWGS0286	1285
LMG215	1507
186	1790
LAD9	1932
Kerr_14	1957
Figure 5

KEGG pathway of nucleotide sugar metabolism associated with *Agrobacterium* lipopolysaccharide synthesis.

(A) and (B), genomic potential of *A. tumefaciens* B6 and *A. radiobacter* DSM 30147, respectively, in the biosynthesis of dTDP-L-rhamnose. (C) and (D), genomic potential of *A. tumefaciens* B6 and *A. radiobacter* DSM 30147, respectively, in the biosynthesis of GDP-L-Fucose. Numbers in boxes indicate Enzyme Commission numbers. White and green boxes indicate absence and presence of the corresponding enzymes, respectively, based on GhostKoala annotation (Kanehisa et al. 2016).
Table 1 (on next page)

Genome statistics of publicly available *Agrobacterium* genomospecies 4 whole genome sequences
Table 1: Genome statistics of publicly available Agrobacterium genomospecies 4 whole genome sequences

Assembly accession	Strain	Isolation Source	Country	Size	GC%	# Contig	
GCF_900045375	B6	Apple Gall (Iowa)	USA	5.8	59.07	4	
GCF_001541315*	B6	Apple Gall (Iowa)	USA	5.6	59.32	52	
GCF_001692245	B140/95	Peach/Almond Rootstock	USA	5.7	59.23	45	
GCF_002179795	LMG 215	Humulus lupulus gall (USA)	USA	5.4	59.48	33	
GCF_000233975	CCNWGS0286	R. pseudoacacia nodules	China	5.2	59.53	49	
GCF_900011755	Kerr 14= LMG 15 = CFBP 5761	Soil around Prunus dulcis	Australia	5.9	59.04	5	
GCF_002591665	186	English Walnut gall	California	5.7	59.42	22	
GCF_002008215	LMG 140 = NCPPB 3001 =CFBP 5522= DSM 30147	saprobiic soil	Germany	5.5	59.34	22	
GCF_000421945	LMG 140 = NCPPB 3001 =CFBP 5522= DSM 30147	saprobiic soil	Germany	7.17	59.86	612	
GCF_001541305*	LMG 140 = NCPPB 3001 =CFBP 5522= DSM 30147	saprobiic soil	Germany	5.5	59.36	22	
GCF_900012605	CFBP 5621	Lotus corniculata, root tissue commensal	France	5.4	59.32	3	
GCF_003031125	LAD9 (CGMCC No. 2962)	landfill leachate treatment system	China	5.9	59.13	49	
GCF_000384555	224MFTsu31	rhizosphere of L. luteus in Hungary, formerly R. lupini H13-3	USA	4.8	59.73	21	
GCF_900188475	719_389	Rhizosphere and endosphere of Arabidopsis thaliana.	USA	4.9	59.73	18	
	GCF_000384555	UNC420CL41Cvi	Plant associated	USA	5	59.69	18
---	---------------	---------------	------------------	--------	---	-------	----
1	*Reported in this study						
Table 2 (on next page)

Identification of *Agrobacterium* proteins with TIGRFAM domains involved in the biosynthesis of nucleotide sugar.

Numbers indicate bit scores calculated based on protein alignment to the model with higher scores indicating stronger and more significant hits.
Table 2. Identification of *Agrobacterium* proteins with TIGRFAM domains involved in the biosynthesis of nucleotide sugar. Numbers indicate bit scores calculated based on protein alignment to the model with higher scores indicating stronger and more significant hits.

Assembly ID	Strain	TIGR01479 (EC 5.4.2.8)	TIGR01472 (EC 4.2.1.47)	TIGR01207 (EC 2.7.7.24)	TIGR0118 (EC 4.2.1.46)	TIGR0122 (EC 1.1.1.133)	TIGR0121 (EC 5.1.3.13)	1st hit	2nd hit
GCF_9000453	B6	690.2	566.6	589.5					
GCF_0015413	B6	690.2	566.6	589.5					
GCF_0016922	B140/95	690.2	566.6	589.5					
GCF_9000117	Kerr14	691.3	690.2	428.6*					
GCF_0015413	NCPPB3001	690.2	494.6	488.5	215.4	331.5			
GCF_0020082	LMG140	690.2	494.6	488.5	215.4	331.5			
GCF_9000126	CFBP5621	689.3	494.6	489.5	215.4	331.5			
GCF_0025916	186	689.3	494.6	488.5	215.4	331.8			
GCF_0030311	LAD9	688.5	494.4	487.9	215.4	329.9			
GCF_002339	CCNWGS	644.8	494.6	487.5	215.4	331.8			
GCF_0021797	LMG215	690.2							
GCF_0003845	224MFTsu31	644.8							
GCF_0004822	UNC420CL41	644.8							
GCF_9001884	719_389	687.5							

*Formed a separate protein cluster from the rest of genomospecies 4 GDP-mannose-4,6-dehydratase orthologs (<70% pairwise protein identity)