Data and text mining

dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering

Tal Galili

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 6997801, Israel

Associate Editor: Jonathan Wren

Received on August 26, 2014; revised on July 17, 2015; accepted on July 20, 2015

Abstract

Summary: dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R’s rich ecosystem of packages for performing hierarchical clustering of items.

Availability and implementation: The dendextend R package (including detailed introductory vignettes) is available under the GPL-2 Open Source license and is freely available to download from CRAN at: (http://cran.r-project.org/package=dendextend)

Contact: Tal.Galili@math.tau.ac.il

1 Introduction

Hierarchical cluster analysis (HCA) is a widely used family of unsupervised statistical methods for classifying a set of items into some hierarchy of clusters (groups) according to the similarities among the items. The R language (R Core Team, 2014)—a leading, cross-platform and open source statistical programming environment—has many implementations of HCA algorithms (Chipman and Tibshirani, 2006; Hornik, 2014; Schmidtlein et al., 2010; Witten and Tibshirani, 2010). The output of these various algorithms is stored in the hclust object class, while the dendrogram class is an alternative object class that is often used as the go-to intermediate representation step for visualizing an HCA output.

In many R packages, a figure output is adjusted by supplying the plot function with both an object to be plotted and various graphical parameters to be modified (colors, sizes, etc.). However, different behavior happens in the (base R) plot.dendrogram function, in which the function is given a dendrogram object that contains within itself (most of) the graphical parameters to be used when plotting the tree. Internally, the dendrogram class is represented as a nested list of lists with attributes for colors, height, etc. (with useful methods from the stats package). Until now, no comprehensive framework has been available in R for flexibly controlling the various attributes in dendrogram’s class objects.

The dendextend package aims to fill this gap by providing a significant number of new functions for controlling a dendrogram’s structure and graphical attributes. It also implements methods for visually and statistically comparing different dendrogram objects. The package is extensively validated through unit-testing (Wickham, 2011), offers a C++ speed-up (Eddelbuettel and François, 2011) for some of the core functions through the dendextendRcpp package, and includes three detailed vignettes.

The dendextend package is primarily geared towards HCA. For phylogeny analysis, the phylo object class (from the ape package) is recommended (Paradis et al., 2004). A comprehensive comparison of dendextend, ape, as well as other software for tree analysis, is available in the supplementary materials.

2 Description

2.1 Updating a dendrogram for visualization

The function set(dend, what, value), in dendextend, accepts a dendrogram (i.e. dend) as input and returns it after some adjustment. The parameter what is a character indicating the property of the tree to be adjusted (see Table 1) based on value. The user can repeatedly funnel a tree, through different configuration of the set function, until a desired outcome is reached.

Table 1. Available options for the ‘what’ parameter when using the `set` function for adjusting the look of a dendrogram

Description	Option name
Set the labels’ names, color (per color, or with k clusters), size, turn to character	labels, labels_to_character, labels_colors, labels_cex, labels_to_character
Set the leaves’ point type, color, size, height	leaves_pch, leaves_col, leaves_cex, hang_leaves
Set all nodes’ point type, color, size	nodes_pch, nodes_col, nodes_cex
Set branches’ line type, color, width - per branch, based on clustering the labels, and for specific labels	branches_lty, branches_col, branches_lwd, branches_k_color, by_labels_branches_lty, by_labels_branches_col, by_labels_branches_lwd

Fig. 1. A dendrogram after modifying various graphical attributes

Figure 1 is created by clustering a vector of 1 to 5 into a dendrogram:

dend0 <- 1:5, dist, hclust, as.dendrogram

The above code uses the convenient forward-pipe operator (Milton and Wickham, 2014), which is just like running:

dend0 <- as.dendrogram(hclust(dist(1:5)))

Next, the tree is plotted after repeatedly using the `set` function:

dend0 %>% set("labels_color") %>%
set("labels_cex", c(2,3)) %>%
set("branches_lwd", c(2,4)) %>%
set("branches_k_lty", k=3) %>%
set("branches_k_color", k=3) %>% plot

The ‘value’ vector is recycled in a depth-first fashion, with the root node considered as having a branch (which is not plotted by default). The parameters of the new tree can be explored using the functions `get_nodes_attr` and `get_leaves_attr`. Also, we can rotate and prune a tree with the respective functions.

2.2 Comparing two dendrograms

The tanglegram function allows the visual comparison of two dendrograms, from different algorithms or experiments, by facing them one in front of the other and connecting their labels with lines. Distinct branches are marked with a dashed line. For easier and nicer plotting, `dendlist` concatenates the two dendrograms together, while `untangle` attempts to rotate trees with un-aligned labels in search for a good layout. Figure 2 demonstrates a comparison of two clustering algorithms (single versus complete linkage) on a subset of 15 flowers from the famous Iris dataset. The `entangle` function measures the quality of the tanglegram layout. Measuring the correlation between tree topologies can be calculated using different measures with `cor.dendlist` (Sokal and Rohlf, 1962), `bk_plot` (Fowlkes and Mallows, 1983), or `dist.dendlist`. Permutation test and bootstrap confidence intervals are available. The above methods offer sensitivity and replicability analysis for researchers who are interested in validating their hierarchical clustering results.

3 Enhancing other packages

The R ecosystem is abundant with functions that use dendrograms, and `dendextend` offers many functions for interacting and enhancing their visual display: The function `rotate_DendSer` (Hurley and Earle, 2013) rotates a dendrogram to optimize a visualization-based cost function. Other functions allow the highlighting of uneven clusters with the `dynamicTreeCut` package (Langfelder et al., 2008), as well as of ‘significant’ clusters based on the `pvclust` package (Suzuki and Shimodaira, 2006). Previously mentioned functions can be combined to create a highly customized (rotated, colorful, etc.) static heatmap using `heatmap.2` from `gplots` (Warnes et al., 2014), or a D3 interactive heatmap using the `d3heatmap` package. The `circlize_dendrogram` function produces a simple circular tree layout, while more complex circular layouts can be achieved using the `circlize` package (Gu et al., 2014). Aside from R base graphics, a `ggplot2` dendrogram may be created using the `as.gg dend` function.

In conclusion, the `dendextend` package simplifies the creation, comparison and integration of dendrograms into fine-tuned (publication quality) graphs. A demonstration of the package on various datasets is available in the supplementary materials.

Acknowledgements

This work was made possible thanks to the code and kind support, of Yoav Benjamini, Gavin Simpson, Gregory Jeffries, Marco Gallotta, Johan Renaudie, The R Core Team, Martin Maechler, Kurt Hornik, Uwe Ligges, Andrej-Nikolai Spiess, Steve Horvath, Peter Langfelder, skullkey, Romain Francois, Dirk Eddelbuettel, Kevin Ushey, Mark Van Der Loo and Andrei de Vries.
Funding
This work was supported in part by the European Research Council under
EC–EP7 European Research Council grant PSARPS-297519.

Conflict of Interest: none declared.

References
Chipman,H. and Tibshirani,R. (2006) Hybrid hierarchical clustering with ap-
plications to microarray data. *Biostatistics*, 7, 286–301.
Eddelbuettel,D. and François,R. (2011) Repp: Seamless R and C++
Integration. *J. Stat. Softw.*, 40, 1–18.
Fowlkes,E.B. and Mallows,C.L. (1983) A method for comparing two hierarch-
cal clusterings. *J. Am. Stat. Assoc.*, 78, 553–569.
Gu,Z. *et al.* (2014) circlize implements and enhances circular visualization in
R. *Bioinformatics*, 30, 1–2.
Hurley,C.B. and Earle,D. (2013) DendSer: Dendrogram seriation: ordering for
visualisation, R, package version 1.0.1.
Langfelder,P. *et al.* (2008) Defining clusters from a hierarchical cluster tree:
the Dynamic Tree Cut package for R. *Bioinformatics*, 24, 719–720.
Mächler,M. *et al.* (2015) cluster: Cluster Analysis Basics and Extensions. R
package version 2.0.3.
Milton,R.S. and Wickham,H. (2014) magrittr: magrittr—a forward-pipe oper-
ator for R, R package version 1.5.
Paradis,E. *et al.* (2004) APE: Analyses of Phylogenetics and Evolution in R lan-
guage. *Bioinformatics*, 20, 289–290.
R Core Team. (2014) R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria URL http://
www.R-project.org/.
Schmidtlein,S. *et al.* (2010) A brute-force approach to vegetation classifica-
tion. *J. Veg. Sci.*, 21, 1162–1171.
Sokal,R.R. and Rohlf,F.J. (1962) The comparison of dendrograms by objective
methods. *Taxon*, 11, 33–40.
Suzuki,R. and Shimodaira,H. (2006) Pclust: an R package for assessing the
uncertainty in hierarchical clustering. *Bioinformatics*, 22, 1540–1542.
Warnes,G.R. *et al.* (2014) gplots: Various R programming tools for plotting
data, R package version 2.6.0.
Wickham,H. (2011) testthat: Get started with testing. *R. J.*, 3, 5–10.
Witten,D.M. and Tibshirani,R. (2010) A framework for feature selection in
clustering. *J. Am. Stat. Assoc.*, 105, 713–726.