Doenças renais hereditárias raras: um campo em evolução na Nefrologia

Rare inherited kidney diseases: an evolving field in Nephrology

Autores
Mariana Faucz Munhoz da Cunha1,2
Gabriela Sevignani3
Giovana Memari Pavanelli3
Mauricio de Carvalho3
Fellype Carvalho Barreto4

1Universidade Federal do Paraná, Departamento de Pediatria, Serviço de Nefrologia Pediátrica, Curitiba, PR, Brasil.
2Hospital Pequeno Príncipe, Serviço de Nefrologia Pediátrica, Curitiba, PR, Brasil.
3Universidade Federal do Paraná, Departamento de Clínica Médica, Curitiba, PR, Brasil.
4Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Nefrologia, Curitiba, PR, Brasil.

Resumo
As doenças renais genéticas raras compreendem mais de 150 desordens. Elas podem ser classificadas segundo achados diagnósticos como (i) distúrbios do crescimento e estrutura, (ii) doenças glomerulares, (iii) tubulares e (iv) metabólicas. Nos últimos anos, houve uma mudança de paradigma nesse campo. Os testes moleculares tornaram-se mais acessíveis, nossa compreensão sobre os mecanismos fisiopatológicos subjacentes a essas doenças evoluiu e novas estratégias terapêuticas foram propostas. Portanto, o papel do nefrologista mudou progressivamente de mero espectador a participante ativo, parte de uma equipe multidisciplinar, no diagnóstico e tratamento desses distúrbios. O presente artigo oferece um panorama geral dos recentes avanços a respeito dos distúrbios renais hereditários raros, discutindo aspectos genéticos, manifestações clínicas e abordagens diagnósticas e terapêuticas de alguns desses distúrbios, mais especificamente a glomeruloesclerose segmentar e focal familiar, complexo da esclerose tuberosa, nefropatia de Fabry e doença relacionada ao MYH9.

Palavras-chave: Doenças Genéticas Inatas; Nefropatias; Glomerulosclerose Segmentar e Focal; Doença de Fabry; Esclerose Tuberosa

Introdução
Não existe consenso a respeito da definição de uma doença rara. Apesar de levar em conta sua prevalência, os limites das definições variam regionalmente. Europa e Japão definem doença rara como aquela que afeta menos de uma em 2.000 e uma em 2.500 pessoas, respectivamente. Nos EUA, doenças raras se limitam às que afetam menos de 200.000 pessoas em todo o país. O Brasil segue a definição da Organização Mundial da Saúde (OMS), que considera raras as doenças que afetam menos de 65 em 100.000 indivíduos. Dados da INTERFARMA (Associação da Indústria Farmacêutica de Pesquisa) indicam que há aproximadamente 13 milhões de pessoas afetadas por doenças raras no Brasil.
A maioria das doenças raras tem origem genética e metade afeta a população pediátrica.

As doenças raras têm características peculiares que desafiam pacientes e médicos. Do ponto de vista do paciente, elas podem causar deficiências físicas e mentais, afetar a expectativa e a qualidade de vida, além de impor uma pesada carga emocional às famílias. O atraso no diagnóstico é outra questão importante, refletindo a escassez de informações clínicas sobre doenças raras. Um estudo europeu sobre oito doenças raras relatou um tempo decorrido de até 30 anos entre a manifestação dos primeiros sintomas e o estabelecimento do diagnóstico em 25% dos pacientes, além de 40% de diagnóstico incorreto. A maior disponibilidade de testes moleculares e o desenvolvimento de novas terapias no decurso das últimas décadas acaloraram os debates e enfatizaram as incertezas relativas à prática clínica. Dúvidas sobre a indicação de tratamento, os direitos legais para acessar medicamentos de alto custo e seu impacto sobre os sistemas de saúde públicos ou privados suscitaram preocupações.

Questões recorrentes nessa área incluem o momento em que o tratamento deve ser iniciado, quem deve ser tratado e quando o tratamento deve ser interrompido.

A maioria das doenças renais genéticas é rara. Somadas, elas incluem mais de 150 distúrbios diferentes. Causas monogênicas podem ser identificadas em cerca de 20% dos pacientes portadores de doença renal crônica (DRC) antes dos 25 anos de idade e em até 10% dos adultos em terapia renal substitutiva. Essas doenças podem ser agrupadas segundo os achados diagnósticos (Tabela 1) em: (i) distúrbios de crescimento e estrutura; (ii) doenças glomerulares; (iii) doenças tubulares; e (iv) doenças metabólicas. Dentre esses distúrbios, quatro foram escolhidos para serem discutidos no presente artigo, levando em conta sua prevalência, importância clínica e a experiência dos autores: glomeruloesclerose segmentar e focal (GESF) e nefropatia por MYH-9 (ambas causas de doença glomerular); esclerose tuberosa (ciliopatia); e nefropatia de Fabry (doença metabólica).

Tabela 1 Exemplos de Doenças Renais Genéticas Agrupadas Segundo os Principais Achados Diagnósticos.

Doenças	Herança	Principais Achados Clínicos	
Distúrbios do crescimento e estrutura	CAKUT	Agenesia/displasia renal, reflujo vesicoureteral, válvula de uretra posterior	
DRPAD *	AD	Rins policísticos, cistos hepáticos e pancreáticos, aneurisma cerebral, DRT	
Síndrome de Bardet-Biedl *	AR	Distrofia retiniana, obesidade, retardamento mental, defeitos de membros, anormalias renais, DRT	
TSC *	AD	Angiomiolipomas renais, angiofibromas, fibromas ungueais, convulsões, DRT, etc.	
Doenças glomerulares			
GESF	AD	SNCR de início tardio, DRT	
AR	SNCR de início precoce, DRT		
Síndrome de Alport	Ligado ao X	Hematúria familiar, lenticone, perda auditiva neurosensorial, DRT	
AR			
Doenças tubulares			
Síndrome de Bartter	AR	Alcalose hipocalêmica, hipercaleúria, poliúria, retardamento do crescimento	
AR	Alcalose hipocalêmica, hipercaleúria, hipomagnesemia		
Síndrome de Gitelman	AR	Cálculos de cistina, DRT	
Cistinúria	AR		
Doenças metabólicas	nephropathic cystinosis **	AR	Síndrome de Fanconi, fotofobia, hipotiroidismo, DRT
AR	Angiocirotomas, proteinúria, acidente vascular cerebral, infarto do miocárdio, DRT		
Doença de Fabry **	Ligado ao X	Cálculos renais e vesicais, DRT	
AR			

Abreviações: DRPAD: doença renal policística autossômica dominante; AD: autossômica dominante, AR: autossômica recessiva; CAKUT: anomalias congênitas dos rins e do trato urinário; DRT: doença renal terminal; GESF: glomeruloesclerose segmentar e focal; SNCR: síndrome nefrótica córtico-resistente; TSC: complexo esclerose tuberosa.

Nota de pé de página: *ciliopatias. **Algumas doenças metabólicas, como a doença de Fabry e a cistinose nefropática, podem levar a lesão glomerular e tubular.
GLOMERULOESCLEROSE SEGMENTAR E FOCAL GENÉTICA

A glomeruloesclerose segmentar e focal (GESF) não é um diagnóstico único, mas sim um grupo de síndromes clínico-patológicas com o mesmo padrão de lesão glomerular histológica 7. Embora seja difícil estabelecer a real incidência da GESF, sua taxa média é de cerca de dois pacientes por milhão de população por ano, com considerável variabilidade dependendo de vários fatores, incluindo acesso ao diagnóstico e aspectos raciais/étnicos. A GESF é a principal causa glomerular de doença renal terminal (DRT) em adultos nos EUA e está presente em 15% das crianças que necessitam de terapia renal substitutiva (TRS) 8. A GESF pode ser classificada como primária, também denominada idiopática, secundária a uma doença subjacente ou genética 8,9. Apesar de sua raridade, as formas familiares de GESF afetam uma proporção significativa dos pacientes com síndrome nefrótica córtico-resistente 10.

Mais de 50 genes já foram relacionados à GESF, a maioria relacionada à função ou estrutura podocitária. A identificação desses genes e a compreensão do papel do tipo de mutação na fisiopatologia e na caracterização genótipo/fenótipo redefiniram o diagnóstico, tratamento e prognóstico da síndrome nefrótica 11,12. As causas genéticas da GESF podem se apresentar como doença esporádica ou familiar, com padrões de herança autossômica dominante, autossômica recessiva, ligada ao X ou mitocondrial (matrilinear). As manifestações clínicas seguem padrões diferentes. Vários distúrbios afetam o desenvolvimento glomerular precoce e ocorrem durante a infância ou mesmo na vida intrauterina, enquanto outros indivíduos expressam a síndrome nefrótica na idade adulta. Algumas das mutações genéticas (Tabela 2) que causam a manifestação de doenças na infância e na idade adulta são discutidas abaixo. Uma revisão mais detalhada sobre as mutações genéticas relacionadas à GESF pode ser encontrada na literatura 12.

Herança genética	Proteína	Fenótipo	Resistência e imunossupressão
NPHS1 AR	Nefrina	SN do tipo finlandês, raramente GESF na infância e idade adulta	Sim*
NPHS2 AR	Podocina	Aparece no início da infância, mas pode também ocorrer na adolescência e idade adulta	Sim*
MYO1E AR	Miosina não muscular 1e	Familiar de início na infância (normalmente 1-9 anos)	Relatos de resposta parcial a ciclosporina
ACTN4 AD	Alfa-actinina 4	Familiar início esporádico na idade adulta, progressão precoce para DRC	Sim
TRPC6 AD	Receptor catiônico potencial transiente do canal 6	SN esporádica de início na idade adulta, progressão precoce para DRC	Relatos de resposta parcial a ciclosporina
INF2 AD	Formina invertida 2	Início na adolescência e idade adulta, associação com doença de Charcot-Marie-Tooth	Sim
ARHGAP24 AR	Proteína ativadora de Rho-GTPase 24	GESF de início na adolescência	Sim
PTPRO AR	proteínas tirosina fosfatases tipo receptor 0	GESF de início na infância	Sim*
CD2AP AD, raramente AR	Proteína associada a CD2	GESF de início na infância	Sim
COQ2 AR	Coenzima Q2 4-hidroxibenzoato poliprenil transferase	GESF de início na infância, encefalopatia	Pode responder a coenzima Q10
COQ6 AR	Coenzima Q6 4-monoxigenase	GESF início na infância, perda auditiva neurosensorial	Sim.

Abreviações: AD: autossômica dominante; AR: autossômica recessiva; DRC: doença renal crônica; GESF: glomeruloesclerose segmentar e focal; SN: síndrome nefrótica.

Nota de pé de página: *Há relatos de resposta em mutação heterozigota; *Há relatos de resposta parcial.
A maioria dessas mutações segue um padrão autossômico recessivo de herança e está associada principalmente a mutações dos genes NPHS1 e NPHS2, que codificam nefrina e podocina, respectivamente, ambas proteínas transmembrana podocitárias do diaphragma da fenda. A perda de integridade da barreira de filtração glomerular resulta no início precoce da síndrome nefrótica, que pode ocorrer já no primeiro ano de vida e levar a rápida progressão para DRT.

Mutações no gene NPHS1 causam a síndrome nefrótica do tipo finlandês, o protótipo da síndrome nefrótica congênita. Já foram identificadas mais de 200 mutações do NPHS1, embora a maioria dos casos (90%) apresente mutações Fin-major e Fin-minor. Os pacientes desenvolvem proteinúria grave durante os três primeiros meses de vida e não respondem a terapia específica para reduzir a proteinúria. As complicações e as taxas de mortalidade são elevadas. Nefrectomia bilateral e diálise peritoneal seguida de transplante renal compõem o tratamento de escolha.

Pacientes com mutações no gene NPHS2 geralmente apresentam síndrome nefrótica antes dos seis anos de idade. A idade de início da doença pode depender do tipo de mutação. Alguns pacientes podem desenvolver formas tardias de GESF, com início na adolescência ou primeiros anos da vida adulta. A maioria dos casos não responde a corticoterapia padrão. A taxa de complicações renais adicionais da síndrome nefrótica é elevada e a evolução para DRT geralmente é rápida.

Recentemente, mutações no gene MYO1E, que codifica uma miosina não-muscular da classe I relacionada ao citoesqueleto dos podócitos, foram identificadas como causa de GESF autossômica recessiva. As manifestações clínicas, que aparecem entre um e nove anos de idade, são caracterizadas por proteinúria nefrótica ou síndrome nefrótica, hematuria microscópica e progressão precoce para DRC. Remissão parcial pode ser alcançada por meio de corticosteroides, inibidores da ECA e ciclosporina. DRC. Remissão parcial pode ser alcançada por meio de corticosteroides, inibidores da ECA e ciclosporina. NPHS1, embora a maioria dos casos não responda a corticoterapia.

Outras mutações genéticas, como as observadas nos genes ARHGAP24, PTPRO e CD2AP, foram associadas à GESF familiar. Além disso, polimorfismos do gene APOL1 foram associados a elevação do risco de GESF em indivíduos afro-americanos.

Testes moleculares não são recomendados rotineiramente para pacientes adultos com GESF, mesmo quando associada a córtico-resistência. Mutações específicas foram detectadas em menos de 15% dos casos em que não há histórico de GESF familiar. Contudo, a identificação de uma forma genética de GESF pode aprimorar as indicações de tratamento e evitar o uso excessivo e os efeitos colaterais da corticoterapia.

Várias mutações no gene TRPC6 também foram associadas à GESF autossômica dominante. Mutações nesse gene que codifica canais catiónicos levam a aumento do influxo de cálcio, resultando em disfunção glomerular. O início da proteinúria ocorre geralmente durante a terceira e quarta décadas de vida e até 60% dos pacientes progredem para DRT em 10 anos. Outra forma autossômica dominante da doença foi recentemente associada a mutações no INF2, uma proteína que regula a polimerização de actina. As manifestações clínicas incluem aparecimento de proteinúria discreta durante a adolescência ou a idade adulta, hematuria microscópica, hipertensão e progressão para DRT. Curiosamente, mutações no gene INF2 parecem estar relacionadas à GESF associada a doença de Charcot-Marie-Tooth, uma das neuropatias motoras e sensoriais periféricas mais frequentes e o mais comum distúrbio neuromuscular hereditário.

Outras mutações genéticas, como as observadas nos genes ARHGAP24, PTPRO e CD2AP, foram associadas à GESF familiar. Além disso, polimorfismos do gene APOL1 foram associados a elevação do risco de GESF em indivíduos afro-americanos.

Testes moleculares não são recomendados rotineiramente para pacientes adultos com GESF, mesmo quando associada a córtico-resistência. Mutações específicas foram detectadas em menos de 15% dos casos em que não há histórico de GESF familiar. Contudo, a identificação de uma forma genética de GESF pode aprimorar as indicações de tratamento e evitar o uso excessivo e os efeitos colaterais da corticoterapia.

Várias mutações no gene TRPC6 também foram associadas à GESF autossômica dominante. Mutações nesse gene que codifica canais catiónicos levam a aumento do influxo de cálcio, resultando em disfunção glomerular. O início da proteinúria ocorre geralmente durante a terceira e quarta décadas de vida e até 60% dos pacientes progredem para DRT em 10 anos. Outra forma autossômica dominante da doença foi recentemente associada a mutações no INF2, uma proteína que regula a polimerização de actina. As manifestações clínicas incluem aparecimento de proteinúria discreta durante a adolescência ou a idade adulta, hematuria microscópica, hipertensão e progressão para DRT. Curiosamente, mutações no gene INF2 parecem estar relacionadas à GESF associada a doença de Charcot-Marie-Tooth, uma das neuropatias motoras e sensoriais periféricas mais frequentes e o mais comum distúrbio neuromuscular hereditário.
Não há tratamento específico para as formas genéticas da GESF, embora o progresso no entendimento da fisiologia podocitária ofereça novos alvos de tratamento, como modulação da atividade dos canais TRPC5 e TRPC6. Alguns estudos relataram resolução da proteinúria e progressão mais lenta da doença renal crônica com suplementação de CoQ₁₀ em altas doses em distúrbios mitocondriais causados por mutações no gene COQ2 que se manifestam com síndrome nefrótica em pacientes pediátricos.

O bloqueio do sistema renina-angiotensina tem sido recomendado para crianças e adultos com síndrome nefrótica familiar. Nenhum ensaio clínico relatou fortes evidências sobre a eficácia da terapia imunossupressora, ainda que alguns estudos tenham indicado que esses medicamentos podem retardar a progressão para DRT em alguns pacientes. O transplante renal é considerado uma boa opção com taxas de recidiva muito baixas.

Complexo da Esclerose Tuberosa

O complexo esclerose tuberosa (TSC) é um distúrbio genético raro caracterizado pela presença de múltiplos tumores benignos em vários órgãos e sistemas, como cérebro, rins, coração, pulmões, olhos, fígado e pele. É causado por mutações no TSC1, localizado no cromossomo 9, ou no TSC2, localizado no cromossomo 16, genes que codificam hamartin e tuberin, respectivamente. O complexo hamartina-tuberina regula o crescimento e a proliferação celular por meio da inibição da proteína alvo da rapamicina em mamíferos (mTOR). Mutações nesses genes resultam na atividade da mTOR, levando à proliferação celular descontrolada e ao desenvolvimento de hamartomas em vários órgãos. A incidência estimada em nascidos vivos varia de 1: 5.000 a 10.000.

O padrão de herança é autossômico dominante, com penetrância quase completa. A prevalência de mutações em TSC2 e TSC1 é semelhante nos casos familiares, enquanto as mutações em TSC2 são mais frequentes em casos esporádicos. Mutações de novo representam 80% dos casos de esclerose tuberosa. Em 10-15% dos casos, a mutação não é identificada, principalmente quando ocorre em regiões não codificadoras ou por conta de mosaicismo.

Há uma grande variedade de fenótipos de TSC em termos de manifestações clínicas, idade de início e número e gravidade das lesões. Embora nenhuma correlação genótipo-fenótipo tenha sido estabelecida, mutações no TSC2 foram associadas a manifestações mais graves. Achados neurológicos, dermatológicos e renais figuram entre os mais comuns. Pacientes pediátricos e adultos apresentam risco aumentado de malignidade, particularmente no cérebro, rins e partes moles.

O diagnóstico de TSC é baseado em critérios clínicos (Tabela 3). A presença de dois sinais principais ou um principal e dois menores é necessária para o diagnóstico.

Tabela 3	Complexo da Esclerose Tuberosa: Critérios Diagnósticos
Principais Características	
Angiofibromas (≥3) ou placa fibrosa cefálica	
Fibromas ungueais (≥ 2)	
Múltiplos hipomelanóticas (≥3, pelo menos 5 mm de diâmetro)	
Marcas de shagreen	
Múltiplos hamartomas retinianos	
Displasia cortical	
Nódulos subependimários	
Astrocitomas subependimários de células gigantes	
Angiomielopomas renais (≥2)*	
Rabdomioma cardíaco	
Linfangioleioiomiomatose *	
Características secundárias	
Erosões do esmalte dentário (> 3)	
Fibromas intraorais (≥ 2)	
Hamartoma renal	
Mancha acrôômica na retina	
Múltiplos cistos renais	
Lesões na pele tipo confete	

*A presença isolada de angiomielopomas renais e linfangioleioiomiomatose não preenche os critérios para o diagnóstico de complexo da esclerose tuberosa.
A idade de início das manifestações clínicas varia. Rabdomiomas se desenvolvem durante a vida fetal, enquanto fibromas ungueais aparecem na adolescência e na idade adulta. Embora não seja necessário para o diagnóstico, o teste molecular é útil no aconselhamento genético e para confirmar a suspeita de TSC em pacientes que não satisfaçam os critérios diagnósticos. Juntamente com o histórico clínico e o exame dermatológico e neurológico cuidadoso, estudos de imagem podem ser indicados para identificar lesões e avaliar sua progressão. Biópsia renal pode ser necessária em alguns casos.

Lesões neurológicas são achados comuns na esclerose tuberosa, incluindo hamartomas e nódulos subependimários. Até 90% dos pacientes apresentam convulsões. Autismo, comprometimento cognitivo e problemas comportamentais são outras manifestações neurológicas da doença conhecidas por apresentarem grande variabilidade. Quase todos os pacientes têm lesões de pele. Máculas hipomelanóticas são observadas em cerca de 90% dos casos de TSC. Marcas de shagreen, angiofibromas (também conhecidos como fibroadenomas) e placa fibrosa na testa (às vezes a manifestação mais facilmente reconhecida) são os achados dermatológicos mais frequentes.

Manifestações renais ocorrem em 50-80% dos pacientes com TSC e estão associadas a alta morbimortalidade. Sua prevalência parece aumentar com a idade e sua idade média de apresentação é dez anos. Angiomiolipomas são a manifestação renal mais frequente, presente em até 80% dos pacientes (Figura 1). São lesões benignas, geralmente múltiplas e bilaterais, que tendem a aumentar de tamanho e número com a idade. Elas podem causar sangramento, devido à sua alta vascularização, além de dor, efeito de massa, obstrução do fluxo urinário e distorção do parênquima renal. Doença renal cística apresenta associação com TSC em 50% dos pacientes, que são acometidos por cistos únicos ou múltiplos. O gene TSC2 é contíguo ao gene PKD1 e as deleções em ambos os genes, denominadas síndrome de genes contíguos, causam doença renal policística autossômica dominante, resultando em hipertensão e disfunção renal. Pacientes com TSC têm a mesma incidência (2-3%) de carcinoma de células renais da população em geral, ainda que sua manifestação ocorra mais precocemente nos primeiros.

É importante ressaltar que pode ser difícil diferenciar carcinomas de células renais de angiomiolipomas com pouca gordura. Embora a ressonância magnética ou a tomografia computadorizada com contraste possam ajudar em sua diferenciação, alguns casos exigem a realização de biópsia. A DRC pode se desenvolver por vários mecanismos, como invasão do parênquima renal por angiomiolipomas, perda de parênquima renal devido a embolização ou nefrectomia, síndrome do gene contíguo TSC2/PKD1, fibrose intersticial e doença renal glomerulocística. A DRT atenta um em 100 pacientes e as complicações renais são a principal causa de óbito na população com TSC.

O manejo do TSC tem sido direcionado principalmente para as manifestações clínicas. Mais recentemente, tratamentos com inibidores da mTOR, como sirolimus ou everolimus, foram propostos para abordar a desregulação patogênica subjacente da sinalização da mTORC1 presente no TSC. Ensaios clínicos relataram que o everolimus consegue reduzir o tamanho do angiomiolipoma e o risco de sangramento com um perfil relativamente seguro. Por exemplo, o sirolimus reduziu o tamanho dos angiomiolipomas em ~30% durante 12 meses de tratamento. O ensaio clínico EXIST-2 foi o primeiro a avaliar o everolimus no tratamento de angiomiolipomas renais. A taxa de resposta (definida como redução ≥50% no volume dos angiomiolipomas) após ~8 meses de tratamento foi de 42% para os pacientes tratados com everolimus e 0% para os pacientes que receberam placebo. A taxa de resposta dependeu do tempo.
Pacientes tratados por uma mediana de 29 meses apresentaram taxa de resposta de 54%, enquanto indivíduos tratados por quatro anos chegaram a taxa de resposta de 58% 32. A análise post-hoc do EXIST-1 revelou uma resposta ao tratamento de 75% entre os pacientes pediátricos tratados com everolimus 33.

Alguns eventos adversos comumente associados ao tratamento com inibidores da mTOR foram relatados, a saber: estomatite/mucosite, infecções, hipofosfatemia, hipertirigliceridemia, hipercolesterolemia, anomalias hematológicas (anemia, neutropenia leve e leucopenia) e proteinúria 30,32,34. As diretrizes internacionais recomendam os inibidores da mTOR como terapia de primeira linha para angiomiolipomas assintomáticos em crescimento de 3 cm de diâmetro 35. A literatura indica que a inibição da mTOR pode potencialmente piorar a progressão da DRC 36 e que os efeitos a longo prazo dessa modalidade terapêutica são desconhecidos. O conhecimento atual preconiza que a realização de intervenções cirúrgicas – com preferência por procedimentos que poupem os rins ou embolização – seja reservada para casos excepcionais, com o objetivo de evitar sangramentos e em casos com mais de 4 cm de diâmetro, alta vascularidade, grandes aneurismas, suspeita de doença maligna ou presença de hemorragia aguda 29,37.

DOENÇA RELACIONADA AO MYH9

A doença relacionada ao MYH-9 é um distúrbio genético raro causado por mutações no gene MYH-9, que codifica o componente da cadeia pesada da miosina 9 da miosina não muscular IIA (NMMHC-IIA). Sua mutação afeta o processo de liberação plaquetária dos megacariócitos e pode alterar a estrutura dos podócitos e das células epiteliais cocleares 38. Mais de 40 mutações foram descritas e o modo de herança genética é autossômico dominante 39.

A doença é caracterizada principalmente por macrotrombocitopenia congênita, juntamente com glomerulonefrite, perda auditiva neurossensorial e catarata. Na maioria dos casos a trombocitopenia é discreta, resultando em episódios de sangramento de leves a moderados em 25-50% dos pacientes. Além disso, como contagem de plaquetas próxima do limite inferior da normalidade foi descrita em alguns indivíduos com doença relacionada ao MYH-9, plaquetas grandes são o único achado compartilhado entre todos os indivíduos afetados 38-41. Também é comum a presença de inclusão citoplasmática nos leucócitos, denominados corpúsculos de Döhle, que correspondem a agregados citoplasmáticos de NMMHC-IIA. A perda auditiva é a alteração extra-hematológica mais frequente, sendo relatada em até 60% dos casos. Geralmente é progressiva, bilateral, neurosensorial e pode começar em qualquer idade. Catarata ocorre em 16% dos pacientes, com idade média de apresentação aos 23 anos 38,41.

Gleroumlonifrite ocorre em 30-70% dos indivíduos. Proteinúria é a manifestação mais precoce e causa de síndrome nefrótica, associada ou não a hematúria microscópica. Na maioria dos casos, a progressão para DRT é rápida e exige a instauração de terapia renal substitutiva antes da quarta década de vida. Durante muito tempo, em função da sobreposição de manifestações clínicas, essa doença foi considerada uma variante da síndrome de Alport. A presença de macrotrombocitopenia e a identificação do gene MYH9 afetado permitiram a distinção das duas patologias 41.

O diagnóstico pode ser confirmado por imunofluorescência para NMMHC-IIA em neutrófilos 42. A genotipagem também deve ser realizada sempre que possível. Além de confirmar o diagnóstico, a genotipagem pode proporcionar informações prognósticas importantes devido à correlação genótipo-fenótipo 43.

Biópsia renal geralmente não é indicada por conta do risco de sangramento e das características histopatológicas inespecíficas dos achados, devendo ser reservada para os casos em que é necessário um diagnóstico diferencial em relação a outras glomerulopatias. Os principais achados histopatológicos incluem expansão e proliferação mesangial e glomerulosclerose segmentar. Microscopia eletrônica geralmente releva espessamento da membrana basal glomerular e fusão dos pedicelos 39.

Transferência de plaquetas é indicada para pacientes trombocitopenicos com sangramento ativo e em regime de profilaxia pré-operatória. O bloqueio do sistema renina-angiotensina parece ser eficaz na redução da proteinúria e na desaceleração da progressão da disfunção renal 39.

Recentemente, descrevemos o primeiro caso no Brasil de nefropatia associada à mutação do gene MYH9 devida a uma mutação missense de novo no exón 1 do MYH9 [c.287C>T; p.Ser(TCG)96(TTG)Leu].
O paciente apresentava proteinúria nefrótica e perda progressiva da função renal, com declínio anual da taxa de filtração glomerular estimada em 18 mL/min/1,73m²/ano nos últimos cinco anos. Infelizmente, ele não aderiu ao uso de inibidor da ECA no início da doença, o que pode ter obscurecido o benefício potencial do bloqueio do sistema renina-angiotensina no decurso da doença.

DOENÇA DE FABRY

A doença de Fabry é um distúrbio raro de armazenamento lisossômico ligado ao X causado por mutações no gene GLA (posição Xq22), que codifica a enzima α-galactosidase A (α-GAL). A mutação pode levar a uma deficiência total ou parcial da enzima, resultando na incapacidade de catabolizar lipídios com resíduos terminais α-galactosil, principalmente a globotriaosilceramida (GB3). Estes, por sua vez, se acumulam na forma de depósitos lisossômicos que geram disfunção celular em células endoteliais, neurônios, cardiomiócitos e células renais, levando, finalmente, a processos degenerativos (fibrose) e perda de função em diferentes órgãos. Portanto, a doença de Fabry é um distúrbio multissistêmico com um amplo espectro de manifestações.

Mais de 1000 mutações no gene GLA foram descritas (Human Genome Mutation Database). Contudo, nem todas são consideradas patogênicas. Cada mutação é específica para uma única família e, dependendo do seu tipo, diferentes níveis de atividade enzimática residual podem estar presentes. Isso ajuda, pelo menos em parte, a explicar a grande variabilidade de manifestações e diferenças na evolução clínica da doença. Curiosamente, devemos sublinhar que mulheres heterozigotas também podem desenvolver a doença de Fabry devido à mudança no padrão de inativação do cromossomo X. Mulheres heterozigotas têm um espectro mais amplo de manifestações clínicas, indo de portadoras assintomáticas na manifestação clínica da doença de Fabry. Além disso, devemos ressaltar que mulheres heterozigotas também podem desenvolver a doença de Fabry devido à mudança no padrão de inativação do cromossomo X. Mulheres heterozigotas têm um espectro mais amplo de manifestações clínicas graves, como é comumente observado em indivíduos do sexo masculino.

A prevalência da doença de Fabry varia de 1:40.000 a 1:117.000. Contudo, uma vez que a maioria dos médicos não tem conhecimento sobre a doença, as manifestações clínicas podem ser particularmente sutis nos fenótipos de início tardio e que os estudos de rastreamento dificilmente incluem mulheres, é plausível supor que sua prevalência tenha sido subestimada. Entre populações de alto risco, como pacientes com cardiomiopatia hipertrófica idiopática, acidente vascular cerebral criptogénico ou DRT de etiologia indeterminada, a prevalência da doença de Fabry relatada é mais alta. A prevalência descrita entre pacientes com DRT é de 0,04%, ao passo que em indivíduos do sexo masculino em diálise o valor chega a 1,16%. Estudos de rastreamento em recém-nascidos do sexo masculino relataram incidência de 1:3.100.

Duas apresentações fenotípicas da doença de Fabry foram reconhecidas: os fenótipos clássico e de início tardio. Na forma clássica, manifestações clínicas como acroparestesia, dor neuropática, crises de Fabry, angioqueratomas, hipo ou hiperidrose, distúrbios cocleovestibulares e gastrointestinais, geralmente começam na infância ou adolescência. Complicações renais, cardíacas e cerebrovasculares geralmente aparecem após a segunda década de vida. As manifestações cardíacas incluem cardiomiopatia hipertrófica, predominantemente do ventrículo esquerdo e do septo interventricular, distúrbios de condução, que podem levar ao aumento da suscetibilidade a arritmias e infarto. Manifestações comuns do sistema nervoso central incluem lesão da substância branca e AVC isquêmico.

O comprometimento renal é caracterizado pelo desenvolvimento de proteinúria, na maioria das vezes abaixo da fai sa nefrótica, e perda progressiva da função renal. É importante ressaltar que proteinúria maior que 1g/24h e mais de 50% dos glomérulos escleróticos apresentam associação com pior prognóstico. Outras manifestações renais incluem defeito da concentração urinária (isostenúria), acido tubular renal distal e cistos parapiélicos. A progressão para DRT que requer TRS ocorre por volta da quarta e quinta décadas de vida. Outras manifestações clínicas observadas em pacientes com doença de Fabry são: perda auditiva, intolerância ao frio, intolerância à atividade física e doença pulmonar obstrutiva. Nos fenótipos de início tardio, um único órgão, o coração ou os rins, é afetado, enquanto os sintomas clássicos geralmente estão ausentes ou aparecem mais tardiamente na vida.

Complicações cerebrovasculares e cardiovasculares figuram atualmente entre as principais causas de óbito de pacientes com doença de Fabry, ocorrendo por volta da quinta e sexta décadas de vida. A doença de Fabry prejudica sobremaneira a qualidade de vida e a produtividade do indivíduo, estando associada a maior morbidade e menor sobrevida.
O diagnóstico da doença de Fabry é geralmente aventado com base na baixa atividade da enzima α-GAL, que pode ser medida em nível plasmático, nos leucócitos ou em amostra de sangue seco em papel filtro. É altamente recomendável a realização de testes moleculares em todos os pacientes com baixa atividade enzimática da α-GAL (i) para identificar a mutação específica do gene GLA e (ii) descartar mutações não patogênicas (polimorfismos), como a D313Y, que pode causar pseudodeficiência enzimática e, consequentemente, levar ao diagnóstico incorreto da doença de Fabry. Devemos considerar que a patogenicidade de certas variantes, como D313Y e R118C, ainda está sujeita a incertezas no tocante à doença de Fabry. Relatos descrevem portadores dessas mutações com manifestações clínicas da doença de Fabry. Fatores genéticos, epigenéticos e ambientais podem influenciar a apresentação clínica e a gravidade das patologias que podem levar à manifestação da variante patogênica em alguns casos. Obviamente, tal variabilidade não pode ser plenamente detectada por genotipagem. Confirmar o diagnóstico da doença de Fabry é um enorme desafio e uma questão de apuração dos fatos. Não podemos depender de apenas uma única ferramenta diagnóstica, e sim adotar uma abordagem multifacetada, que integre avaliação clínica detalhada, detecção de alterações metabólicas (atividade enzimática da α-GAL, acúmulo tecidual ou plasmático de GB3) e genotipagem. O diagnóstico da doença de Fabry em indivíduos do sexo feminino é particularmente intrigante e requer a realização de testes moleculares independentemente da atividade enzimática, que é bastante variável devido à mudança no padrão de inativação do cromossomo X. Finalmente, na presença de incerteza diagnóstica – como quando uma variante de significado incerto é detectada – pode ser necessário realizar biópsia em órgão afetado para confirmar o diagnóstico de doença de Fabry por meio da demonstração da presença de depósitos lisossômicos.

Embora seja um procedimento invasivo, a biópsia renal pode ser uma ferramenta útil na confirmação de diagnóstico e na avaliação da eficácia do tratamento. Um dos principais achados histológicos reais na doença de Fabry é a vacuolização das células renais, principalmente dos podócitos, identificada por microscopia de luz em cortes corados com hematoxilina-eosina (Figura 2). A vacuolização corresponde ao edema dos lisossomos secundários repletos de estruturas membranosas lamelares denominadas corpos zebroides, observadas por microscopia eletrônica. Apagamento dos pedicelos também é um achado comum, embora inespecífico. Seções semifinas coradas com azul de toluidina permitem a visualização das inclusões de GB3 por microscopia de luz. Um escor ger foi proposto recentemente para padronizar o relato de alterações histológicas na nefropatia de Fabry. É importante lembrar que alguns medicamentos, como amiodarona e cloroquina, podem levar à formação de depósitos lipídicos teciduais, mimetizando a doença de Fabry em diferentes órgãos, como os rins e a córnea.

Antes do advento da terapia de reposição enzimática (TRE), o tratamento da doença de Fabry era meramente de suporte e para o combate aos sintomas. Aprovada em 2001, a TRE foi o primeiro tratamento específico para a doença de Fabry. Estudos seminais sugerem que a TRE é segura e eficaz, sendo capaz de modificar a história natural da doença. Há duas preparações enzimáticas recombinantes diferentes disponíveis no mercado: (i) alfa-agalsidase e (ii) beta-agalsidase. Em geral, as diretizes atuais recomendam TRE para todos os homens com idade superior a 16 anos, crianças menores de 16 anos e mulheres na presença de sinais ou sintomas da doença e quando há acometimento de órgão nobre.
Mais recentemente, foi aprovado o uso de uma chaperona farmacológica como monoterapia para a doença de Fabry. Ao contrário das preparações enzimáticas, sua administração ocorre por via oral em dias alternados. Pode ser utilizada apenas em pacientes com mutações missense favoráveis e com TFG superior a 30 mL/min/1,73m². Esta em andamento um ensaio clínico fase III (NCT03180840) sobre uma nova enzima de reposição, a alf-pegunigalsidase, que é superior à outras duas formulações enzimáticas atualmente disponíveis. No âmbito das futuras abordagens terapêuticas, estudos pré-clínicos relatam resultados promissores de uma terapia de redução de substrato (Genz-682452) em associação com TRE.

Por fim, vale ressaltar que os nefrologistas desempenham um papel fundamental na doença de Fabry. Uma vez que os pacientes com DRT são considerados uma população de alto risco, atenção crescente tem sido dada à triagem da doença de Fabry em centros de diálise e transplante. Tal estratégia de triagem pode levar à identificação de casos de índice e familiares em risco. Se por um lado essa abordagem é crucial para detectar uma doença geralmente negligenciada e potencialmente possibilitar o início precoce do tratamento de familiares, por outro lado os médicos devem estar cientes de que pode haver um aumento no número de casos duvidosos e erros de diagnóstico em função da detecção de variantes de significado desconhecido.

Conclusões

As doenças renais hereditárias raras representam um grande desafio na clínica nefrológica. Nos últimos anos, houve uma mudança de paradigma nesse campo. O maior acesso a testes genéticos e a ampliação das possibilidades terapêuticas têm alimentado o interesse nessa área. É importante investigar as diferenças regionais em termos de prevalência das diferentes causas de DRC de forma a subsidiar a investigação genética. A divulgação do interesse em doenças renais raras é fundamental para mudar a realidade de peregrinação dos pacientes por várias consultas médicas, exames laboratoriais desnecessários e medidas terapêuticas ineficazes. Por outro lado, a comunidade médica deve estar preparada para lidar com os pacientes com doenças renais raras, a fim de evitar erros diagnósticos e indicações incorretas de tratamentos onerosos.

Referências

1. Schieppati A, Henter JI, Daina E, Aperia A. Why rare diseases are an important medical and social issue. Lancet. 2008;371(9629):2039-41.
2. Devuyst O, Knoers NV, Remuzzi G, Schaefer F; Board of the Working Group for Inherited Kidney Diseases of the European Renal Association and European Dialysis and Transplant Association. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844-59.
3. Doenças Raras: A urgência do acesso à saúde. Interfarma, 2018. Available from: https://www.interfarma.org.br/public/files/biblioteca/doencas-raras-a-urgencia-do-acesso-a-saude-interfarma.pdf. Access in: 2019 March 08.
4. EuroRdis. Survey of diagnostic delays for 8 rares diseases in Europe. Available from http://www.eurodis.org/big_article.php?id_article=434. Access in: 2019 March 08.
5. Soliman NA. Orphan kidney diseases. Nephron Clin Pract. 2012;120(4):194-9.
6. Hildebrandt F. Genetic kidney diseases. Lancet. 2010;375(9722):1287-1293.
7. D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398-2411.
8. Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2017;12(3):502-17.
9. Trautmann A, Schindt S, Lipska-Zietkiewicz BS, Bodria M, Ozalitin F, Emma F, et al. Long-Term Outcome of Steroid-Resistant Nephrotic Syndrome in Children. J Am Soc Nephrol. 2017;28(10):3055-65.
10. Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, Schultheiss M, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol. 2004;15(3):722-32.
11. Feltren LS, Varela P, Silva ED, Veronez CL, Franco MC, Filho AP, et al. Targeted Next-Generation Sequencing in Brazilian Children with Nephrotic Syndrome Submitted to Renal Transplantation. 2017;101(12):2905-912.
12. Boyer O, Dorval G, Servais A. Hereditary Podocytopathies in Adults: The Next Generation. Kidney Dis. 2017(2);3:50-56.
13. Sethi S, Glasscock RJ, Fervenza FC. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol Dial Transplant. 2015;30(3):375-84.
14. Holmberg C, Jalkano H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatric Nephrol. 2014;29(12):2309-17.
15. Ttryggersøn K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med. 2006;354(13):1387-1401.
16. Brown EJ, Schliendoff JB, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42(1):72-6.
17. Boyer O, Nevo E, Plassier E, Funalot B, Gribouval O, Benoit G, et al. INF2 mutations in Charcot-Marie-Tooth disease with focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2377-88.
18. Hildebrandt F, Heeringa SF. Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. Kidney Int. 2009;75(7):669-71.
19. Tin A, Grams ME, Estrella M, Lipkowitz M, Greene TH, Kao WH, et al. Patterns of Kidney Function Decline Associated with APOL1 Genotypes: Results from AASK. Clin J Am Soc Nephrol. 2016;11(8):1353-59.
20. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Inter Suppl, 2012, pp. 139-274.
21. Wieder N, Greka A. Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr Nephrol. 2016;31(7):1047-54.
22. Starr MC, Chang IJ, Finn LS, Sun A, Larson AA, Goebel J, et al. COQ2 nephropathy: a treatable cause of nephrotic syndrome in children. Pediatr Nephrol. 2018;33(7):1257-61.

23. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345-56.

24. Hong CH, Tu HP, Lin JR, Lee CH. An estimation of the incidence of tuberous sclerosis complex in a nationwide retrospective cohort study (1997-2010). Br J Dermatol. 2016;174(6):1282-89.

25. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):567-68.

26. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 2007;9(2):88-100.

27. Rakowski SK, Wiercok EB, Paul E, Steele DJ, Halpern EF, Thiele EA. Renal manifestations of tuberous sclerosis complex: Incidence, prognosis, and predictive factors. Kidney Int. 2006;70(10):1777-82.

28. Casper KA, Donnelly LF, Chen B, Bissler JJ. Tuberous sclerosis complex: renal imaging findings. Radiology. 2002;225(2):451-6.

29. Kingswood JC, Bissler JJ, Budde K, Hultberg J, Guay-Woodford L, Sampson JR, et al. Review of the Tuberous Sclerosis Renal Guidelines from the 2012 Consensus Conference: Current Data and Future Study. Nephron. 2016;134(2):51-8.

30. Davies DM, de Vries PJ, Johnson SR, McMurtry DL, Cox JA, Serra AL, et al. Sirolimus therapy for angiomylipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17(12):4071-81.

31. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, et al. Sirolimus for Angiomyolipoma in Children with Tuberous Sclerosis Complex: lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):140-51.

32. Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9869):817-24.

33. Bissler JJ, Franzen DN, Frost MD, Belousova E, Benin EM, Sparagana S, et al. The effect of everolimus on renal angiomyolipoma in pediatric patients with tuberous sclerosis being treated for subependymal giant cell astrocytoma. Pediatr Nephrol. 2018;33(1):101-9.

34. Franzen DN, Belousova E, Sparagana S, Benin EM, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytoma associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125-32.

35. Krueger DA, Northrup H; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):255-65.

36. Declèves AE, Sharma K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat Rev Nephrol. 2011;7(6):327-34.

37. Krueger DA, Northrup H; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex: renal imaging findings. Radiology. 2002;225(2):140-51.

38. Balduini CL, Ceci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. British Journal of Haematology. 2011;154(2):174-87.

39. Singh N, Nainani N, Arora P, Venuto RC. CKD in MYH9-related disorders. Am J Kidney Dis. 2009;54(4):732-40.

40. Seri M, Pecci A, Di Bari F, Casano R, Savino M, Panza E, et al. MYH9-related disease: May Heggin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore). 2003;82(3):203-15.

41. Arrondel C, Vodovar N, Knebelmann B, Grünfeld JP, Gubler MC, Antignac C, et al. Expression of the non-muscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol. 2002;13(1):65-74.

42. Pecci A, Noris P, Invernizzi R, Seri M, Ghiggeri GM, Sartore S, et al. Immunocytochemistry for the heavy chain of the non-muscle myosin IIA as a diagnostic tool for MYH9-related disorders. Br J Haematol. 2002;117(1):164-7.

43. Pecci A, Klersy C, Gresele P, Lee KJ, De Rocco D, Bozzi V, et al. MYH9-Related Disease: A novel prognostic model to predict the clinical evolution of the disease based on genotyp-phenotype correlations. Hum Mutat. 2014;35(2):236-47.

44. Sevignani G, Pavanelli GM, Milano SS, et al. Macrophthopothyctenosis, renal dysfunction and nephrotic syndrome in a young male patient: a case report of MYH9-related disease. J Bras Nefrol. 2018;40(2):199-200.

45. Desnick R, Ioannou Y. α-Galactosidase A deficiency: Fabry disease. The Metabolic and Molecular Bases of Inherited disease. 8th ed. 2001; 3733-34.

46. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5(1):30.

47. Veloso VSP, Ataides TL, Canziani MEF, Veloso MP, da Silva NA, Barreto DV, et al. A novel missense GLA mutation (p.G35V) detected in hemodialysis screening leads to severe systemic manifestations of Fabry disease in men and women. Nephron. 2018;136(1):47-56.

48. Meikle PJ, Hopwood JJ, Cagle AE, Carey WF. Prevalence of lysosomal storage disorder. JAMA. 1999;281(3):249-54.

49. Poorthuis BJ, Wevers RA, Kleijer WJ, Groener J, de Jong JG, van Weely S, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999;105(1-2):151-6.

50. Doheny D, Srinivasan R, Pagant S, Chen B, Yasuda M, Desnick RJ. Fabry Disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1993-2017. J Am Med Genet. 2018;5(5):461-8.

51. Vale NFD, Silva ABR, Veras AB, Monteiro FMR, Sousa JLM, Bezerra VG, et al. Diagnóstico de doença de Fabry em indivíduos submetidos à hemodiálise no estado do Piauí: o papel do exame de triagem e estudo de casos. J Bras Nefrol. 2008;30(4):259-63.

52. Silva CA, Barreto FC, Dos Reis MA, Moura Junior JA, Cruz CM. Targeted screening of Fabry disease in male hemodialysis patients in Brazil highlights importance of family screening. Nephron. 2016;134(4):221-30.

53. Kotanko P, Kramar R, Devrnja D, Paschke E, Voigtlander T, Aumering M, et al. Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol. 2004;15(5):1323-29.

54. Frabasile J, Durand C, Sokn S, Gaggioli D, et al. Prevalence of Fabry disease in male dialysis patients: Argentinian screening study.JIMD Rep. 2019 Jul; 48(1): 45–52.

55. Spada M, Pagant S, Yasuda M, van Weely S, et al. The frequency of lysosomal storage diseases related disease. J Bras Nefrol. 2018;40(2):198–200.

56. Silva CA, Barreto FC, Dos Reis MA, Moura Junior JA, Cruz CM. Targeted screening of Fabry disease in male hemodialysis patients in Brazil highlights importance of family screening. Nephron. 2016;134(4):221-30.

57. Balduini CL, Ceci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. British Journal of Haematology. 2011;154(2):174-87.

58. Singh N, Nainani N, Arora P, Venuto RC. CKD in MYH9-related disorders. Am J Kidney Dis. 2009;54(4):732-40.

59. Seri M, Pecci A, Di Bari F, Casano R, Savino M, Panza E, et al. MYH9-related disease: May Heggin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore). 2003;82(3):203-15.
60. Abensur H, Reis MA. Renal involvement in Fabry disease. J Bras Nefrol. 2016;38(2):245-54.
61. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64(3):801-7.
62. Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333(5):288-93.
63. MacDermot KD, Holmes A, Miners AH. Natural history of Fabry disease in affected males and obligate carrier females. J Inherit Metab Dis. 2001;24(2):13-4.
64. Schiffmann R, Hughes DA, Linthorst GE, Ortiz A, Svarstad E, Warnock DG, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91(2):284-93.
65. Van der Tol L, Cassiman D, Houge G, Janssen MC, Lachmann RH, Linthorst GE, et al. Uncertain diagnosis of Fabry disease in patients with neuropathic pain, angiokeratoma or cornea verticillata: consensus on the approach to diagnosis and follow-up. JIMD Rep. 2014;17(1):83-90.
66. Yasuda M, Shabbeer J, Benson SD, Maire I, Burnett RM, Desnick RJ. Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Hum Mutat. 2003;22(6):486-92.
67. Talbot A, Nicholls K. Elevated Lyso-Gb3 Suggests the R118C GLA Mutation Is a Pathological Fabry Variant. p.D313Y is more than just a polymorphism in Fabry disease. JIMD Rep. 2019;45(1):95-98
68. Skrunes R, Tøndel C, Leh S, Larsen KK, Houge G, Davidsen ES, et al. Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease. Clin J Am Soc Nephrol. 2017;12(9):1470-9.
69. Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25(7):2168-77.
70. de Menezes Neves PDM, Machado JR, Custódio FB, Dos Reis Monteiro MLG, Iwamoto S, Freire M, et al. Ultrastructural deposits appearing as “zebra bodies” in renal biopsy: Fabry disease? comparative case reports. BMC Nephrol. 2017;18(1):157.
71. Maruyama H, Takata T, Tsubata Y, Tazawa R, Goto K, Tohyama J, et al. Screening of male dialysis patients for Fabry disease by plasma globotriaosylphosphoglycerine. Clin J Am Soc Nephrol. 2013;8(4):629-36.
72. Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, et al. Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol. 2016;29(6):791-7.
73. Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743-9.
74. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med. 2001;345(1):9-16.
75. El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A, Barreto F. Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One. 2017;12(3): e0173358.
76. Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416-27.
77. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilco WR, et al. Treatment of Fabry’s disease with the pharmacologic chaperone Migalastat. N Engl J Med. 2016;1(1):375:545-55.
78. Ashe KM, Budman E, Bangari DS, Siegel CS, Nietupski JB, Wang B, et al. Efficacy of enzyme and substrate reduction therapy with a novel antagonist of glucosylceramide synthase for Fabry disease. Mol Med. 2015;21(1):389-99.