Spatial distribution and implications to sources of halogenated flame retardants in riverine sediments of Taizhou, an intense e-waste recycling area in eastern China

Shanshan Zhou a, Jie Fu a, c, Huan He b, *, Jianjie Fu c, Qiaozhi Tang d, Minfeng Dong a, Yongqiang Pan a, An Li e, a, Weiping Liu d, Limin Zhang b

a College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
b School of Environment, Nanjing Normal University, Nanjing, 210023, China
c State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
d Ministry of Education Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Research Sciences, Zhejiang University, Hangzhou 310058, China
e School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, United States

HIGHLIGHTS

- Residues of DPs were similar to the median of levels reported globally.
- Dec604 stemmed from agrochemicals, while others from the use of flame retardants.
- Degradation of PBDEs and DP was evident.
- Distribution of DPs was influenced by a combination of diffuse and point sources.

ABSTRACT

Concentrations and spatial distribution pattern of organohalogen flame retardants were investigated in the riverine surface sediments from Taizhou, an intensive e-waste recycling region in China. The analytes were syn- and anti- Dechlorane Plus (DP), Dechloranes 602, 603, and 604, a DP monoadduct, two dechlorinated DPs and 8 congeners of polybrominated diphenyl ethers (PBDEs). The concentrations of Σ8PBDEs, ΣDP, ΣDec600s, and ΣDP-degradates ranged from <100 to 172,000, 100 to 55,000, not detectable (nd) to 1600, and nd to 2800 pg/g dry weight, respectively. BDE-209 and DP, both have been manufactured in China, had similar spatial distribution patterns in the study area, featured by distinctly recognizable hotspots some of which are in proximity to known e-waste dumping or metal recycling facilities. Such patterns were largely shared by Dec602 and dechlorinated DP, although their concentration levels were much lower. These major flame retardants significantly correlate with each other, and cluster together in the loading plot of principle component analysis. In contrast, most non-deca PBDE congeners do not correlate with DPs. Dec604 stood out having distinctly different spatial distribution pattern, which could be linked to historical use of mirex. Organic matter content of the sediment was not...
1. Introduction

Dechlorane Plus (DP) is a highly chlorinatednorbornene-based flame retardant used in electrical wire and cable coatings, computer and televisions connectors, and plastic roofing materials (OxyChem, 2011). DP was suggested as a potential substitute to decabromodiphenyl ether (deca-BDE) in some applications (European Commission, 2007). It is a high production volume (HPV) chemical in the United States (U.S. EPA, 2008). Other dechlorane series compounds, such as Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), and Dechlorane 604 (Dec604) were also patented as flame retardants (FRs) in the 1970s (Shen et al., 2010, 2011a, 2011b). After the first detection of DP and Dec 600s (Dec602, 603, and 604) in the environment (Hoh et al., 2006; Shen et al., 2010), their occurrence has been reported all over the world (Sverko et al., 2008; Wang et al., 2016). DP analogs such as Dechlorane Plus monoadduct (DPMA), DP degradation products like undecachloropentacyclooctadecadiene (C15-DP) and decachloropentacyclooctadecadiene (C10-DP) have also been detected in the environment (Sverko et al., 2008; Wang et al., 2016).

Electrical and electronic equipment, such as cell phones, televisions, and computers, is one of the largest categories of consumer products containing flame retardants. Such equipment eventually becomes electronic waste (e-waste) and would be dismantled to recover useful components. Emissions from e-waste recycling activities have been identified as an important source of flame retardants to the ambient environment, and found to increase the health risk of local residents (Wang et al., 2016). For example, elevated DP levels have been found in abiotia, biota, and human samples collecting from e-waste recycling regions (Ben et al., 2013; Chen et al., 2011; Li et al., 2014; Mo et al., 2013; Ren et al., 2009; Yu et al., 2010; Zheng et al., 2010).

Taizhou is a medium-sized city in China, located at the central coastal section of Zhejiang Province. By the end of 2014, Taizhou had a total population of 5.97 million. It has been one of the largest e-waste recycling areas in the world since the 1980s (Chi et al., 2011). E-waste recycling operations are mainly in the towns of Luqiao and Wenling in southern Taizhou (Li et al., 2014). Each year, approximately 2.2 million metric tons of e-waste is processed in Taizhou (Chan et al., 2007). Unregulated primitive manner of the operations and dumping of the residual waste has resulted in severe contamination of the local environment (Fu et al., 2011; Ma et al., 2009, 2011). Several studies have revealed the existence of DP, Dec602, and anti-Cl11-DP in the living beings from Taizhou (Ben et al., 2013, 2014; Li et al., 2014; Wu et al., 2016). DP was also detected in the air (Sun et al., 2017) and in the floor particles of several e-waste recycling workshops in Taizhou (Zeng et al., 2016). However, little is known on the occurrence, spatial distribution, and sources of DP and its structurally related compounds in Taizhou’s water environment.

In the present study, the concentrations of 8 DPs, including syn-DP, anti-DP, Dec602, Dec603, Dec604, DPMA, anti-Cl10-DP and anti-Cl11-DP in sediment samples from five main rivers in Taizhou were measured. Concentrations of selected congeners (BDEs 28, 47, 100, 99, 154, 153, 183, and 209) of polybrominated diphenyl ethers (PBDEs) were also measured to examine the correlations among flame retardants. The spatial distribution and the site-specific contaminant patterns were analyzed to reveal potential sources of the targeted chemicals in the study area.

2. Materials and methods

2.1. Site description and sampling

Thirty-four surface sediment samples were collected during July 22–25, 2013, from five rivers, which run through the urban, industrialized, rural, or e-waste recycling areas of Taizhou and finally enter the East China Sea (ECS). A mapping sampling is shown in Fig. 1A, and site information is provided in Table S1 of Supplementary Material (SM). Sampling sites were chosen from the upstream to the downstream of each river within the study area, with 3–5 km apart between sites. Additional description of the rivers and sampling sites is provided in SM.

The top 5 cm of the sediments were taken with a stainless steel grab sampler and stored in stainless steel containers during transport under chilled conditions. All samples were freeze-dried, homogenized, passed through a 60 mesh sieve and kept at −20 °C before further analysis. Subsamples were analyzed for organic matter fraction (fOM) using previously established method (Zhou et al., 2014), and the results are provided in Table S1.

2.2. Chemical analysis

Chemical information and details of laboratory procedures are given in Supplementary Material. A brief description is given below. For each sample, 10 g freezing-dried sediment was spiked with surrogate standards (12C-PCB141 and 13C-PCB208), and Soxhlet-extracted. Anhydrous sodium sulfate and activated copper were added for removing water and elemental sulfur, respectively. The extract was concentrated by a rotary evaporator and the solvent was exchanged to 1–2 mL hexane. Cleanup of the extracts was conducted by the use of a glass column packed with Florisil, and target compounds were eluted with 40 mL of hexane:DCM (4:1). After volume reduction and solvent exchange to isooctane, internal standard 13C-PCB202 was added before instrumental analyses. All samples were quantitatively analyzed using an Agilent 7890/5973 gas chromatography — mass spectrometry (GC–MS) (Agilent Technologies, Santa Clara, California) with electron capture negative ionization. The GC was equipped with a DB-5HT capillary column (15 m × 0.25 mm × 0.10 μm; J&W Scientific). Identification of the compounds was performed by comparing their retention times and mass spectra with those of the standards. For each analyte, quantification was achieved via selected ion monitoring of the molecular ion with the most intensive isotopic abundance, and by use of a calibration curve based on the internal standard. All concentrations were normalized to dry weight (dw) and were not adjusted using surrogate recovery.

2.3. Quality control (QC)

For every set of 15 samples, a solvent blank and a procedure blank were run to check for interference and cross-contamination. The concentrations of anti-DP in all blanks were less than 0.5 pg/g dw, while those of other analytes were below their respective
method detection limits (MDLs), which were estimated as ten times the signal-to-noise ratio and are summarized in Table S2. Five spike recovery experiments were conducted with sediment in which residues of target chemicals were close to or below their MDLs. The spiked recoveries of the analytes were in the range of 86–111% and their relative standard deviation was in the range of 3–12%. The recoveries of surrogates 13C-PCB141 and 13C-PCB208 were 87 ± 13% and 92 ± 9%, respectively. All samples were extracted and analyzed in duplicate.

2.4. Statistical analysis

Statistical analysis was performed with SPSS 17.0. For concentrations lower than the MDLs, half of the MDLs were used in calculation to avoid missing values. All concentration data and f_{OM} values were logarithm transformed for improved normality for statistical analysis. Pearson’s correlation analysis was conducted to investigate the correlations among the concentrations of different analytes, as well as f_{OM} values of sediment samples. Principle component analysis (PCA) was used to gain more insight into the pollution pattern at different sites. Only compounds with detection frequencies greater than 50% were used for correlation and PCA analyses. The level of statistical significance was set at $p < 0.05$ unless otherwise specified.

3. Results and discussion

Table 1 presents a summary of measured concentrations for individual DP compounds as well as Σ_8PBDEs (sum of BDEs 28, 47, 99, 100, 153, 154, 183 and 209). Table S2 provides detailed data for individual sites. DPMA was not detectable in any sediment samples; and thus is excluded in following discussion.

3.1. PBDEs

The concentration of Σ_8PBDEs ranged from below 100 to 173,000 pg/g dw with an average of 12,000 pg/g dw (Table 1). A comparison with recently published data (sampling time from 2007 to present) indicates that sedimentary PBDEs concentrations in the rivers of Taizhou were generally comparable to those from other e-waste or urban sites in China, but distinctly lower than those from some heavily industrialized areas in Guangdong, South China (Dongjiang River and Zhujiang River) and Jinlin, North China (Songhua River) (Table S3).

The highest average Σ_8PBDEs concentration 32, 000 pg/g dw was found in the sediments from the YN River, which runs through an e-waste area (Table 1). The second highest mean Σ_8PBDEs (7, 000 pg/g dw) was found in the BT River, especially in the upper reaches adjacent to an industrial center, suggesting influence of industrial activities on PBDE levels in the sediments (Table 1).
NG River passes over a large residential area with high population density and has an average \(\sum_8 \)PBDEs concentration of 5, 000 pg/g dw (Table 1). In contrast, the PBDE concentrations were lower in the sediment from rural and less industrialized areas, where the mean \(\sum_8 \)PBDEs were 2,800 and 2,000 pg/g dw for the YNJ River, and the JQ River, respectively (Table 1). Large variability in \(\sum_8 \)PBDEs was observed among sites in some individual rivers (Fig. 1B). In the YN River, for example, the highest \(\sum_8 \)PBDEs (173,000 pg/g dw) was found at site YN-5, a location very close to the Fengjiang Metal Recycling Base. Site YN-8, downstream of YN-5 (Fig. 1B), also had a much higher \(\sum_8 \)PBDEs concentration (12, 500 pg/g dw) than the upstream site YN-4 (980 pg/g dw), reiterating the influence of this metal recycling facility. The sources of the relatively high PBDE levels observed at sites YN-1 and YN-3 in the upstream Luqiao district are not clear, but may include drainage outlets which have acted as point sources. The low levels of PBDEs at sites YN-6 and YN-7 were not expected. These sites were from two artificial pools (surface area about 50 m\(^2\)) within the Fengjiang Metal Recycling Base. With no drainage pipes, surface runoff and air deposition were likely to be the only inputs of pollutants to these pools. PBDE levels in the sediment of the NG River seem to be highly affected by the YN River, as \(\sum_8 \)PBDEs was low at sites (NG-1 through NG-5) located upstream of the junction near YN-3, and decreased as the river flowed east-wards towards NG-6 and NG-7 after it passed the junction (Fig. 1B). In the BT River, the highest \(\sum_8 \)PBDEs was observed at site BT-2 (40,000 pg/g dw); while other sites had \(\sum_8 \)PBDEs ranging from 150 to 5,800 pg/g dw (Fig. 1B). BT-2 is in close proximity to an industrial center; in addition, frequent open burning of residential waste in a nearby backyard could be an important contributor to the observed high PBDE level as well. Among the sites in the YNJ River, significantly higher \(\sum_8 \)PBDEs was observed at YNJ-6, which is near an e-waste dumpling area and likely to receive its leachate (Fig. 1A).

Table 1	Concentrations (mean and range, pg/g dry weight) and detection rates of DP related compounds and PBDEs in the riverine sediments from Taizhou in 2013.				
Chemicals	YN (n = 10)	BT (n = 7)	NG (n = 7)	YNJ (n = 6)	JQ (n = 4)
Dec 602	Mean 50	9	16	nd\(^b\)	1
Dec 603	Mean 7	BDL	BDL	BDL	1
Dec 604	Mean 381	261	165	Nd	413
anti-Cl\(_{10}\)-DP	Mean 448	BDL	36	38	56
anti-Cl\(_{11}\)-DP	Mean 133	39	19	14	7
syn-DP	Mean 3183	681	328	194	81
anti-DP	Mean 11,867	3293	1263	490	225
\(\sum_8 \)Dec 600s\(^c\)	Mean 438	271	181	Nd	414
\(\sum_8 \)DPdegradates\(^d\)	Mean 581	39	55	51	63
\(\sum_8 \)DP\(^e\)	Mean 15,050	3974	1590	684	306
\(\sum_8 \)PBDEs\(^f\)	Mean 32,053	7278	5498	2885	2028

\(^a \) DR: detection rate.
\(^b \) nd: not detected.
\(^c \) \(\sum_8 \)Dec 600s: sum of Dec 602, 603 and 604.
\(^d \) \(\sum_8 \)DPdegradates: sum of anti-Cl\(_{10}\)-DP and anti-Cl\(_{11}\)-DP.
\(^e \) \(\sum_8 \)DP: sum of anti-DP and syn-DP.
\(^f \) \(\sum_8 \)PBDEs: sum of PBDEs 28, 47, 99, 100, 153, 154, 183, and 209.
3.2. DP

Both anti-DP and syn-DP were detected in the sediments at all sites (Table 1 and Table S2). Concentrations of \sumDP (sum of syn-DP and anti-DP) ranged from 100 to 55,000 pg g\(^{-1}\)dw with an average of 5600 pg g\(^{-1}\)dw. The sediment levels of \sumDP in the rivers from Taizhou were one to three orders of magnitude higher than those reported for many other water bodies in China and other areas, but lower than those in Lake Ontario, North America (Yang et al., 2011), and a reservoir near another e-waste recycling place (Qingyuan) in South China (Table S4).

The spatial distribution pattern of DP in sediment (Fig. 1C) was generally similar to that of PBDEs (Fig. 1B). The river averages of \sumDP were in the rank order that e-waste areas (the YN River) > industrial/urban areas (the BT River and NG River) > agricultural areas/suburban areas (the YN River and JQ River) (Table 1, Fig. 1A). The sampling sites near potential point-sources (YN-1, YN-3, YN-5, YN-8, BT-2, and YN-6) exhibited higher levels of both \sumPBDEs and \sumDP than other locations (Table S2, Fig. 1A), suggesting similar sources of PBDEs and DP in the study area. However, the opposite was observed at lower reach of the YN River (from YN-8 to YN-10) where \sumPBDEs was decreasing while \sumDP increasing (Table S2, Fig. 1A). DP discharge sources are suspected near YN-10 but future confirmation is needed.

Isomers syn-DP and anti-DP may differ in their environmental persistence and long range transport potential (Yang et al., 2011). The fractional abundance of the anti-isomer (f_{anti}) is defined as the concentration of anti-DP relative to total DP. In industrial formulations of the technical DP mixtures manufactured by AnPon (Huai’an, China) and OxyChem (Houston, Texas, USA), the f_{anti} values are in the range of 0.65–0.80 (Hoh et al., 2006; Li et al., 2013; Tomy et al., 2007; Wang et al., 2010a). In environmental samples, f_{anti} tends to decline at locations farther away from DP emission sources, due to the enrichment of syn-DP during atmospheric transport (Wang et al., 2016; Yang et al., 2011). The f_{anti} values in the sediment samples of this work were in the range of 0.69–0.86, which is not different from the range in the original DP mixture, reflecting the proximity of the sampling sites to discharge sources.

3.3. Dec 600s

The Dec-600s, including Dec602, Dec603, and Dec604, in sediments were first detected in the Laurentian Great Lakes (Shen et al., 2010, 2011a, 2011b; Yang et al., 2011). They have also been found in various environmental samples in China (Jia et al., 2011; Peng et al., 2014; Sun et al., 2013; Wang et al., 2010a, 2010b). In the sediment of this work, both Dec602 and Dec604 were detected in about half of the samples. The concentration of Dec604 was found to vary considerably, ranging from nd to 1500 pg/g dw with a mean of 250 pg/g dw. Dec602 concentrations ranged from nd-380 pg/g dw with a mean of 20 pg/g dw. Dec603 was found to be above its detection limit of 0.4 pg/g dw in only seven samples (detection rate 20%), with the highest being 43 pg/g dw at site YN-8. The sum of Dec602, Dec603, and Dec604 (\(\sum\)Dec600s) ranged from nd to 1600 pg/g dw, much lower than \sumPBDEs and \sumDP.

Among the rivers, the average \sumDec-600s was about 400 pg/g dw in both YN River and JQ River, which was 1.5–2.4 times higher than those in the BT River and the NG rivers; whereas Dec-600s were not detected in the sediment samples from the YNJ River (Table 1 and Fig. 1D). Sites YN-7, YN-8, BT-2, and JQ-2 have accumulated Dec-600s orders of magnitude higher than the other sites (Table S2; Fig. 1B). These hotspots for Dec-600s (Fig. 1D) do not overlapped with the hotspots for PBDEs and DP (YN-1, YN-3, YN-5, YN-8, BT-2, and JQ-2), implying different origins and/or time trends. Li et al. (2015) reported that DP in indoor dust from China is dominated by its use as a flame retardant in consumer goods, while Dec-600s is associated with agricultural discharges.

The concentrations of Dec602 and Dec603 measured in this work are in the range reported from northern and eastern China (Table S4). However, Dec604 was not detected in sediment studies from China prior to this work (Table S4). We found Dec604 had a higher concentrations than Dec602 and Dec603 in most samples, and contributed >70% of \(\sum\)Dec-600s at sites YN-7, YN-8, BT-2, and JQ-2. To our knowledge, China has not manufactured Dec604 to date. However, it was reported as an impurity (2%) in a commercial product of mirex (U.S. Department of Health and Human Services, 1990), one of the two organochlorine pesticides used in China for termite control until 2009 (Wang et al., 2010b). A total of 869 kg of mirex was used in Zhejiang province from 1997 to 2001 (Global Environment Facility, 2006); an estimated 1.5 metric tonnes of mirex remains in the environment of Zhejiang, most of which are in soil and sediment (Wang et al., 2010b). The elevated concentrations of Dec604 could be attributed, at least partially, to the historical use of mirex in China.

3.4. Dechlorinated DP

Two DP-like compounds were first observed in the surficial sediments from the Niagara River and Lake Ontario (Sverko et al., 2008). They have one and two less chlorine atoms than DP, thus are labeled as Cl11-DP and Cl10-DP, respectively. These compounds can form from the decomposition of DP during instrumental analyses if a "dirty" glass liner is used in GC inlet (Sverko et al., 2008). To avoid false positive detection in the collected sediments, the GC inlet liner used in this work was replaced frequently. Moreover, a QC standard (including syn-DP, anti-DP, anti-Cl10-DP and anti-Cl11-DP; 20 ng/mL each) was analyzed daily to examine the possible DP decomposition within the GC instrument. The deviations were less than 10% for all target compounds in all cases, indicating negligible effect on the results for the sediment from the operations of the GC-MS system. Only the anti isomers of Cl10-DP and Cl11-DP were analyzed in this work.

The concentration sum of anti-Cl10-DP and anti-Cl11-DP (\(\sum\)DP-degradates) ranged from nd to 2800 pg/g dw. These were significantly higher than those in the coastal sediments of the Yellow Sea, North China (nd-0.04 ng/g dw) (Zhao et al., 2011). As shown in Table 1 and Fig. 1C, \(\sum\)DP-degradates in the YN River was at least 10

![Fig. 2. Loading plot of the concentrations of PBDEs and DP related compounds in all sediment samples from the principal component analysis.](Image 308x75 to 547x267)
times higher than in other four rivers. This is not surprising given that the YN River is also the most contaminated with DPs (Fig. 1C).

The decomposition of DP may occur via pyrolytic reaction during the e-waste burning processes (Chen et al., 2011; Wang et al., 2011b). In addition, no significant difference in this ratio was observed among the samples of this study, suggesting that they share similar sources and histories of production and handling among others. Non-point, diffusive sources such as agricultural discharge is likely a major contributor to Dec604, which was not found in sediments in China prior to this work, and stood out as having a distinct spatial distribution pattern than known flame retardants in the riverine sediment of Taizhou.

3.5. Correlation analysis and principal component analysis (PCA)

Pearson correlation and PCA were conducted among individual target compounds as well as f_{om} of the sediments. Dec603, anti-Cl10-DP, BDE154, and BDE183 were excluded due to their low detection rates (<50%).

PCA extracted two components with eigenvalues greater than 1; PC1 and PC2 contributed 42.8% and 26.5% to the cumulative variance, respectively. In the loading plot (Fig. 2), the analytes are strongly correlated with each other in most cases, but not with BDE 209 and anti-Dec604. They were also strongly correlated with each other by Pearson correlation analyses (Table 2), particularly strong was the correlation between DP and BDE209 ($r = 0.592$; $p < 0.0001$), suggesting that they share similar sources and histories of production and uses in the study area. Group 2 consists of non-deca PBDEs, although BDE28 is distanced from others to some extent. They were correlated with each other in most cases, but not with BDE 209 and most DP related compounds (Table 2). Dec604 is not associated with others in Fig. 2, and it does not correlate with any other DP related analytes (Table 2), suggesting distinctly different emission sources or environmental behavior of Dec604 in comparison with others.

Natural organic matter of sediment is an important variable that influences the distribution of hydrophobic organic compounds. In the samples of this study, f_{om} varied from 0.24% to 6.21% with an average of 1.98%. It statistically significantly correlated with the dry weight based concentrations of BDE209, Dec602, Dec604, anti-DP, and anti-Cl11-DP ($r = 0.367$–0.476; $p = 0.004$–0.03; Table 2). Based on the r^2 of the correlations, f_{om} explains 14%–23% of the variations in the concentration of these analytes. For other analytes, no statistically significant correlations with f_{om} were found ($p > 0.05$).

We conclude that, although organic matter of the sediments plays a role in retaining hydrophobic organics such as the analytes of this work, it is the potential point sources that dominates the spatial distribution of the target flame retardants in Taizhou’s environment.

4. Conclusions

Combining the visualization of spatial distribution with the results of statistical analyses, we conclude that the spatial distribution of major flame retardants, particularly BDE209, DP, and Dec602, in the sediments of the Taizhou rivers is dominated by local point sources, which are associated with e-waste dumping and handling among others. Non-point, diffusive sources such as agricultural discharge is likely a major contributor to Dec604, which was not found in sediments in China prior to this work, and stood out as having a distinct spatial distribution pattern than known flame retardants in the riverine sediment of Taizhou.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 21377117, 41671493, and 21320102007), and Zhejiang Provincial Natural Science Foundation of China (No. LY13B070006).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.chemosphere.2017.06.104.

References

Ben, Y., Li, X., Yang, Y., Li, L., Di, J., Wang, W., Zhou, R., Xiao, K., Zheng, M., Tian, Y., Xu, X., 2013. Dechlorane Plus and its dechlorinated analogs from an e-waste recycling center in maternal serum and breast milk of women in Wenling, China. Environ. Pollut. 173, 176–181.

Ben, Y., Li, X., Yang, Y., Li, L., Zheng, M., Wang, W., Xu, X., 2014. Placental transfer of Dechlorane Plus in mother-infant pairs in an e-waste recycling area (Wenling, China). Environ. Sci. Technol. 48, 5187–5193.

Chan, J., Xing, C., Xu, Y., Liang, Y., Chen, L., Wu, S., Wong, C., Leung, C., Wong, M., 2007. Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. Environ. Sci. Technol. 41, 7668–7674.

Chen, S., Tian, M., Wang, J., Shi, T., Luo, Y., Luo, X., Mai, B., 2011. Dechlorane plus (DP) in air and plants at an electronic waste (e-waste) site in South China. Environ. Pollut. 159, 1290–1296.

Chi, X., Streicher-Porte, M., Wang, M., Reyter, M., 2011. Informal electronic waste recycling: a sector review with special focus on China. Waste Manage 31, 7674–7684.

Dannerud, P.O., Eriksen, G.S., Johannesson, T., Larsen, P.B., Viluksela, M., 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ. Health Perspect. 109, 49–68.

Ben, Y., Li, X., Yang, Y., Li, L., Di, J., Wang, W., Zhou, R., Xiao, K., Zheng, M., Tian, Y., Xu, X., 2013. Dechlorane Plus and its dechlorinated analogs from an e-waste recycling center in maternal serum and breast milk of women in Wenling, China. Environ. Pollut. 173, 176–181.

Ben, Y., Li, X., Yang, Y., Li, L., Zheng, M., Wang, W., Xu, X., 2014. Placental transfer of Dechlorane Plus in mother-infant pairs in an e-waste recycling area (Wenling, China). Environ. Sci. Technol. 48, 5187–5193.

Chan, J., Xing, C., Xu, Y., Liang, Y., Chen, L., Wu, S., Wong, C., Leung, C., Wong, M., 2007. Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. Environ. Sci. Technol. 41, 7668–7674.

Chen, S., Tian, M., Wang, J., Shi, T., Luo, Y., Luo, X., Mai, B., 2011. Dechlorane plus (DP) in air and plants at an electronic waste (e-waste) site in South China. Environ. Pollut. 159, 1290–1296.

Chi, X., Streicher-Porte, M., Wang, M., Reyter, M., 2011. Informal electronic waste recycling: a sector review with special focus on China. Waste Manage 31, 731–742.

Chi, X., Streicher-Porte, M., Wang, M., Reyter, M., 2011. Informal electronic waste recycling: a sector review with special focus on China. Waste Manage 31, 731–742.
European Commission. 2007. Review on Production Processes of Deca-
bromodiphenyl Ether (decaBDE) Used in Polymeric Applications in Electronic
and Electronic Equipment, and Assessment of the Availability of Potential Al-
ternatives to decaBDE. http://publications.jrc.ec.europa.eu/repository/handle/
JRC36323.
Fu, J., Wang, Y., Zhang, A., Zhang, Q., Zhao, Z., Wang, T., Jiang, G., 2011. Spatial di-
tribution of polybrominated biphenyls (PCBs) and polybrominated diphenyl
ethers (PBDEs) in an e-waste dismantling region in Southeast China: use of
apple snail (Amphilaia reticulata) as a bionindicator. Chemosphere 82, 648–655.
Global Environment Facility. 2006. China: Demonstration of Alternatives to Chlor-
dane and Mires in Termite Control Project.
Hoh, E., Zhu, L., Hites, R., 2006. Dechlorane Plus, a chlorinated flame retardant, in
the Great Lakes. Environ. Sci. Technol. 40, 1184–1189.
Jia, H., Sun, Y., Liu, X., Yang, M., Wang, D., Qi, H., Shen, L., Sverko, E., Reiner, E., Li,
Y., 2011. Concentration and bioaccumulation of dechlorane compounds in coastal
environment of Northern China. Environ. Sci. Technol. 45, 2613–2618.
La Guardia, M., Hale, R., Harvey, E., 2006. Detailed polybrominated diphenyl ether
(PBDE) congener composition of the widely used penta-, octa- and deca-PBDE
technical flame-retardant mixtures. Environ. Sci. Technol. 40, 6247–6254.
Li, L., Wang, W., Lv, Q., Ben, Y., Li, X., 2014. Bioavailability and tissue distribution of
Dechloranes in wild frogs (Rana limnocharis) from an e-waste recycling area in
Southeast China. J. Environ. Sci. 26, 636–642.
Li, W., Qi, H., Ma, W., Liu, L., Zhang, Z., Zhu, N., Mohammed, M., Li, Y., Yu, L., Wang,
J., Wu, J., Mai, B., Dai, J., 2013. Accumulation pattern of Dechlorane Plus and
associated biological effects on rats after 90 d of exposure. Chemosphere 90, 2149–2156.
Li, W., Qi, H., Ma, W., Liu, L., Zhang, Z., Zhu, N., Li, Y., 2015. Occurrence, behavior and
human health risk assessment of Dechlorane Plus and related compounds in
indoor dust of China. Chemosphere 134, 166–171.
Ma, J., Addink, R., Yun, S., Cheng, J., Wang, W., Kannan, K., 2009. Poly-
brominateddibenzo-p-dioxins/dibenzofurans and polybrominated dibenyl
ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue
from an electronic waste recycling factory and in soils from a chemical indus-
trial complex in eastern China. Environ. Sci. Technol. 43, 7350–7356.
Ma, J., Cheng, J., Wang, W., Kuniuse, T., Wu, M., Kannan, K., 2011. Elevated con-
centrations of polybrominated dibenzo-p-dioxins and polychlorinated di-
benzo- and dibenzofurans and polybrominated diphenyl ethers in hair from workers at an
electronic waste recycling facility in Eastern China. J. Hazard. Mater 186, 1966–1971.
Ma, J., Qiu, X., Zhang, X., Zhu, T., 2012. State of polybrominated diphenyl ethers in
China: an overview. Chemosphere 88, 769–778.
Mo, L., Wu, J., Luo, X., Sun, Y., Zheng, X., Zhang, Q., Zou, F., Mai, B., 2013. Dechlorane
Plus flame retardant in kingfishers (Alcedo atthis) from an electronic waste
cyling site and reference site, South China: influence of residue levels on the
isomeric composition. Environ. Pollut. 174, 57–62.
OxyChem, 2011. Dechlorane Plus Manual. http://www.oxy.com/OurBusinesses/
Chemicals/Products/Documents/dechloranplus/dechlorane_plus.pdf.
Peng, H., Han, Y., Zhang, K., Sun, J., Hu, J., 2014. Trophic transfer of dechloranes in the
marine food web of Liaodong Bay, North China. Environ. Sci. Technol. 48, 5458–5466.
Ren, G., Yu, Z., Ma, S., Li, H., Peng, P., Sheng, G., Fu, J., 2009. Determination of
Dechlorane Plus in serum from electronic dismantling workers in South China.
Environ. Sci. Technol. 43, 9453–9457.
Shen, L., Reiner, E., Macpherson, K., Kolic, T., Sverko, E., Helin, P., Bhavsar, S.,
Brindle, I., Marvin, C., 2010. Identification and screening analysis of halogenated
norbornene flame retardants in the Laurentian Great Lakes: Dechloranes 602,
603, and 604. Environ. Sci. Technol. 44, 760–766.
Shen, L., Reiner, E., Macpherson, K., Kolic, T., Helin, P., Richman, L., Marvin, C.,
Burniston, D., Hill, B., Brindle, I., 2011a. Dechloranes 602, 603, 604, Dechlorane
Plus, and chlorodene Plus, a newly detected analogue, in tributary sediments of
the Laurentian Great Lakes. Environ. Sci. Technol. 45, 693–699.
Shen, L., Reiner, E., Helm, P., Marvin, C., Hill, B., Zhang, X., MacPherson, K., Kolic, T.,
Tomy, G., Brindle, I., 2011b. Historic trends of Dechloranes 602, 603, 604,