DYNAMICS OF LACTIC ACID BACTERIA DURING PASTIRMA PRODUCTION

Banu Metin*1,2, Alya Toy3

Address(es): Assoc. Prof. Dr. Banu Metin
1Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Halkali cad. No: 281, Street and number, 34303, Istanbul, Turkey. phone number: +90 212 692 9764.
2Istanbul Sabahattin Zaim University, Food and Agricultural Research Center, Halkali cad. No: 281, Street and number, 34303, Istanbul, Turkey.
3Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Halkali cad. No: 281, Street and number, 34303, Istanbul, Turkey.

*Corresponding author: banu.metin@isz.edu.tr

ARTICLE INFO

Received 8. 6. 2022
Revised 4. 11. 2022
Accepted 22. 11. 2022
Published 1. 2. 2023

ABSTRACT

Pastirma is a traditional dry-cured meat product of Turkey, produced from whole beef or muscles of water buffalo. Studies on the microbial diversity of pastirma generally focus on the final product. In this study, we aimed to determine the lactic acid bacteria (LAB) dynamics during the pastirma production process. Samples were obtained from a commercial producer at four different production stages (after curing, before first drying, before çemen coating, and final product). During the production, the pH level slightly increased from ~5.6 to 5.8, while the water activity (a_w) decreased to ~0.86 until çemen addition, after which it increased to 0.89. Total mesophile aerobic bacteria (TMAB) and LAB counts increased during the production stages reaching 7.15 and 6.64 log cfu/g, respectively. The most dominant LAB for all stages was Lactilactobacillus sakei group with a relative abundance (RA) of 52-73% RA. Weissella species W. viridescens and W. halotolerans followed the L. sakei group. Phylogenetic analysis of 16S rRNA gene indicated that all L. sakei isolates were of subsp. carnosus, however, (GTG5) fingerprinting demonstrated a high degree of intraspecies variation. Moreover, fingerprinting analysis showed that L. sakei isolates of specific fingerprinting groups were selected towards the final production stages. The present study elucidates how the LAB diversity changes both at the species and intraspecies level during pastirma production.

Keywords: dry-cured meat products, (GTG5 fingerprinting, lactic acid bacteria dynamics, Lactilactobacillus sakei, pastirma

INTRODUCTION

Pastirma is a dry-cured meat product produced using whole muscles of beef and water buffalo (Kaban, 2009). Pastirma is produced through a series of drying and pressing steps and the production does not involve heating or smoking (Kaban, 2013). During pastirma production, after the carcass breakdown, muscles are separated from fat and connective tissues and they are rubbed with curing salts including salt, nitrate, and nitrite (figure 1). Pastirma samples from four production stages (after curing, before first drying, before çemen coating, and final product). Pastirmas samples from four production stages (figure 1), after curing (stage 1), after first pressing (stage 2), before çemen coating (stage 3), and the final product (stage 4), in a single lot were kindly provided by an industrial producer located in Afyonkarahisar (Turkey) in October 2018. The samples were brought to the laboratory in cold-chain and analyzed in one day. Three samples were combined (25 g) and homogenized in 225 mL physiological salt solution (0.85% NaCl, w/v [Merck KGaA, Darmstadt, Germany]) using a Stomacher (Bagmixer 400, Interscience, Saint Nom, France) (Hazar et al., 2017). All analyses were performed in two replicates.

Determination of pH and a_w

The pH value was measured using a HI 2211 pH meter (Hanna Instruments Inc., Woonsocket, RI, USA). Water activity (a_w) was determined using a water activity meter (Labswift-aw, Novasina AG, Lachen, Switzerland).

MATERIAL AND METHODS

Samples

Pastirma samples from four production stages (figure 1), after curing (stage 1), after first pressing (stage 2), before çemen coating (stage 3), and the final product (stage 4), in a single lot were kindly provided by an industrial producer located in Afyonkarahisar (Turkey) in October 2018. The samples were brought to the laboratory in cold-chain and analyzed in one day. Three samples were combined (25 g) and homogenized in 225 mL physiological salt solution (0.85% NaCl, w/v [Merck KGaA, Darmstadt, Germany]) using a Stomacher (Bagmixer 400, Interscience, Saint Nom, France) (Hazar et al., 2017). All analyses were performed in two replicates.

Bacterial counts

Serial dilutions of the homogenized samples were inoculated on different media for bacterial enumerations. Total mesophilic aerobic bacteria (TMAB) were plated on plate count agar (PCA) (BioLife, Milan, Italy) and incubated aerobically at 30°C for 2 days. Lactic acid bacteria (LAB) were inoculated on de Man, Rogosa and Sharpe (MRS) agar (Merck KGaA, Darmstadt, Germany) and M17 agar (BioLife) and the plates were grown for 2 days at 30°C in anaerobic conditions (Dincer & Kivanc, 2012; Oz et al., 2017).

Bacteria isolation

From MRS and M17 agar plates containing ~25-250 colonies, approximately square root of morphologically different colonies were picked and streaked onto...
agar plates containing the same isolation media. Single colonies were restreaked consecutively twice for purification. Isolates were grown in liquid media containing 20% glycerol and stored at -80°C (Dincer & Kivanc, 2012). Gram reaction and catalase test were performed on the isolates as described previously (Chester, 1979; Powers, 1995).

DNA extraction and polymerase chain reaction (PCR)
DNA extraction was performed using a salting-out method as described previously (Martin-Platero et al., 2007). The isolates were grouped by (GTG)5 fingerprinting using the PCR conditions described previously (Versalovic et al., 1994). PCR reaction mixture was prepared as described previously (Seri & Metin, 2021). PCR reactions were conducted using T100 thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). PCR products were run in 1.5% (w/v) agarose gel containing Red Safe nucleic acid staining solution (Intron Biotechnology Inc., Korea) in 1 X TAE buffer (Bio-Rad) using Wide Mini-Sub Cell GT electrophoresis system (Bio-Rad) and visualized by Gel Doc EZ Imager (Bio-Rad).

Selected isolates according to the grouping patterns were subjected to 16S rRNA PCR using the universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GTTACCTTGTTACGACTT-3') (Lane, 1991). The PCR mixture was prepared as described for (GTG)5 PCR reaction except that 2 µL of both forward and reverse primer was used. PCR was carried out as described previously (Seri & Metin, 2021). PCR reaction products were analyzed on 0.8% (w/v) agarose gels, purified using a GeneJet PCR purification kit (Thermo Fisher Scientific) according to manufacturer’s instructions and sequenced with the primers used for PCR.

Statistical analyses
Data were analyzed using JMP 14.1 software (SAS Institute Inc., Cary, NC, USA). A comparison among different stages was performed using a one-way analysis of variance (ANOVA) at a confidence level of 95% (p < 0.05).

(GTG)5 fingerprinting analysis
(GTG)5 fingerprinting patterns were analyzed using temporary Bioanumerics (ver 8, Applied Maths, Sint-Martens-Latem, Belgium) evaluation licence that we have received permission to publish. A cluster analysis was performed using Ochiai similarity coefficient with 1% optimization and 1% band matching tolerance. Dendograms were generated using unweighted pair grouping by mathematical averaging (UPGMA).

Phylogenetic analyses of 16S rRNA gene
Phylogenetic analyses were conducted using MEGA X (Kumar et al., 2018). The model describing the substitution pattern the best was determined to be Kimura 2-parameter with Gamma distribution, which resulted in the lowest Bayesian information criterion score. Evolutionary analyses were conducted using maximum Likelihood method and Kimura 2-parameter model (Kimura, 1980) with Gamma distribution (5 categories, parameter = 0.1275).

RESULTS AND DISCUSSION

Chemical properties of pastirma during the production process
Change of pH and a0 was monitored during the production process because of their importance in microbiota development. Results indicated an increase of pH from 5.63 ±0.02) at stage 1 (after curing) to 5.81 ±0.01) at stage 3 (before cemen coating) (p<0.05), after which no significant change was observed (Tab 1). Previous studies on the pastirma production process indicated a similar trend of pH parameter especially after the first drying step (Doğruer et al., 2003; Kaban, 2009; Ozturk, 2015). For instance, in the study conducted by Kaban (2009), pH value first decreased during the curing stage (~ pH 5.5) compared to the fresh meat, and then increased significantly during the later stages until the final product (~ pH 5.9) is obtained. Similar to our study, cemen addition had little effect in pH change. Although there are reports of a relatively constant pH level during the production of certain dry-cured meat products around the world (Shu et al., 2017; Vargas-Remolla et al., 2020), recent studies (Benlacheheb et al., 2019; Lorenzo, 2014; Lorenzo et al., 2008; Pateiro et al., 2015; Virgili et al., 2007). For example, in Spanish Celta dry-cured loin, the pH value increases from 5.6 to 5.8 during dry-ripening (Pateiro et al., 2015). A similar pH increase from ~5.7 to ~5.9 was observed in Italian dry-cured ham during aging (Virgili et al., 2007). The increase of pH during the ripening period is suggested to be due to proteolytic activity taking place in the muscle (Virgili et al., 2007).

The origin of proteolysis in meat products has been suggested to be mainly due to meat-originated proteolytic enzymes; however, microbial enzymes have also been reported to be involved (Duri et al., 2004; Petrova et al., 2015; Scannell et al., 2004). pH increases have also been reported in other dry-cured products such as Spanish dry-cured loin and dry-cured foie cocina (Lorenzo, 2014; Lorenzo et al., 2008).

Table 1 Change of pH, a0, and bacterial counts during pastirma manufacture

Stage no	Stage	pH	a0	TMAB	LAB	M17
1	After curing	5.63±0.02*	0.92±0.003*	4.8±0.01*	4.23±0.05*	4.92±0.02*
2	After first pressing	5.73±0.01	0.85±0.002	5.29±0.00	5.67±0.02	4.63±0.02*
3	Before cemen coating	5.13±0.01*	0.88±0.001	7.13±0.02A	6.83±0.05A	7.25±0.16A
4	Final product	5.80±0.015A	0.88±0.002	7.15±0.05A	6.64±0.01	6.65±0.12A

Legend: *p<0.05 Different superscripts represents values that differ significantly within a column at P<0.05.

During pastirma production, a0 significantly decreased from 0.923 ±0.003) at stage 1 in the salted meat to 0.859 ±0.003) at stage 2 after first pressing (p<0.05) resulting in about 7% reduction, after which, it remained relatively constant until cemen coating. Osmotic pressure created by salt and pressing operation accelerated the water loss and drying resulting in a significant decrease in a0. Cemen addition slightly increased the a0 of the final product to 0.889 ±0.002) (p<0.05), likely because of diffusion of water in cemen into the meat. Similar a0 decreases were reported during the pastirma production process (Inat, 2008; Kaban, 2009; Ozturk, 2015); however, the stages where the most significant reduction takes place differ among the studies. Kaban (2009) reported a significant decrease after the end of first drying (~0.96) to the final product (~0.87). According to their results, a0 decreased at a similar rate during the first and the second drying periods until the final product was obtained. However, our results indicated that the most significant reduction occurred during the first drying and the first pressing stages. In the study conducted by Ozturk (2015), a decrease of a0 from 0.97 to 0.90 occurred during salting to the first drying stage, while pressing and the second drying stage had little effect. The differences observed between the studies might be due to the differences in the process conditions such as temperature and relative humidity during drying, or the pressing force applied. a0 is an important parameter determining the shelf life of the product. Reduction of a0 during the drying steps makes pastirma an intermediate-moisture food, increasing its microbial stability (Leistner, 1985).

Bacterial counts of pastirma during the production process
During the production process, TMAB and LAB counts changed in a similar manner: they increased during the production process until the final step, cemen coating, which did not change the counts significantly (p>0.05). The lowest TMAB count was 4.88 ±0.01 log cfu/g at stage 1, after curing, and it increased to 7.15 ±0.05 log cfu/g at the final product. Similar to our results, previous studies showed an increasing trend of TMAB loads with similar pH values during the pastirma production process (Dogruer et al., 1997; Guner et al., 2008; Gurbuz et al., 2003). LAB enumerated on MRS agar exhibited a similar increasing trend to TMAB, having the lowest load at stage 1 (4.23±0.05 log cfu/g), which increased to 6.83 ±0.05) before cemen addition. The decrease of LAB counts to 6.64 ±(0.01) in the final product after cemen addition was statistically insignificant (p>0.05). LAB counts in different studies demonstrated a similar rising trend during the production stages although the values vary with final product counts changing from ~4.5 to 7.25 log cfu/g (Dogruer et al., 1997; Guner et al., 2008; Gurbuz et al., 2003; Kaban, 2009). This variation was also indicated in studies that conducted LAB counts in different pastirma samples from the market to reveal an extensive variation between ~3 – 8 log cfu/g (Akso & Kaya, 1991; Öz et al., 2017; Özdemir et al., 1998). Differences observed in the LAB loads of different pastirma samples are probably because of the variation of the properties of raw material, the production conditions used in different facilities as well as the storage period in the market. In addition, specifically in our study, microbial counts might have been affected by the cold chain transportation process of samples from the production facility in Afyonkarahisar to our laboratory in Istanbul. Although the loads differ in different studies, the rising trend during the production stages seem to be common.

Other dry-cured products also reported an increase in LAB counts after salting. For example, in dry-cured lacin production, LAB counts increased during the post-salting stage and in the first weeks of the ripening period (Virgili et al., 1997). In another dry-cured product el-gueddol, one log increase from 104 to 105 was observed in LAB load during the ripening stage compared to the after salting stage (Benlacheheb et al., 2019). M17 counts also had an increasing trend during the production process. The counts were similar with no statistical significance during salting and cold-pressing
stages, after which they increased to 7.25 (±0.16) before cemen coating (p<0.05) and remained similar in the final product (p<0.05).

LAB diversity during the production process

All 82 MRS isolates (named AB#) and only 7 of 80 M17 agar isolates (named AC#) were Gram positive and catalase negative putative LAB. These isolates were then typed by (GTG)5 fingerprinting analysis (Figure 2). Selected isolates from each fingerprinting group were subjected to 16S rRNA gene sequencing for members in different lineages. The pangenome of the LAB was larger. The presence of a diverse lineages was recruited from the last two stages. This finding indicates a selection of strains with certain genetic background during specific stages of the process. This selection process might be related to the pH or a, variations during production. It could also be related to the competitive ability of the strain because total bacterial counts increase from ~5 log cfU/g during the first two stages to ~7 log cfU/g during the last two stages (Tab 1). The strain with a better competing ability would be expected to predominate during later stages of production. Similar to our finding, in the production of the Italian fermented sausage Ventricina, three different biotypes of L. sakei were observed and during maturation, a specific biotype was selected and outcompeted others (Tremonte et al., 2017). How specific strains are selected during pastirma production process is an interesting question and requires further experiments, such as determination of pH, aw, and salt tolerance, as well as fitness of each strain, which could be performed in future studies.

In all pastirma production stages analyzed, L. sakei LL. graminis was the most dominant group with its relative abundance (RA) changing between 52-73% during different production stages (Figure 4). Weissella species follow this group with W. viridescens (21-28% RA) and W. halotolerans (6-21% RA). During the stages 3 and 4, other Weissella species, W. helenica/W. saegusa and W. thailandensis were also observed (Figure 4). Weissella species are heterofermentative and produce ethanol, CO2, and acetic acid from glucose (Kroeckel, 2013). The species W. viridescens, W. halotolerans, and W. helenica have been described as beneficial and isolated in various fermented meat products (Albano et al., 2009; Fusco et al., 2015; Kmesen et al., 2012; Samelis et al., 1994). But they are generally present as a minority group among LAB (Fessard & Remize, 2017). In this study, the species W. helenica and W. saegusa could not be discriminated using 16S rRNA sequences. Li et al. (2020) reported that the pheS gene coding for phenylalanine-rRNA synthetase alpha subunit, was very successful in discriminating Weissella species. PheS was also described a successful marker for other LAB species (Naser et al., 2005; Sánchez-Juárez et al., 2020). Therefore, this marker can be used in future studies if the isolates are further analyzed. In the final product, Leu. citreum (11% RA) appeared, possibly originating from cemen. Other species observed included C. diversgens in the first and L. curvatus in the third stage.

In fermented meat products where the LAB dynamics was followed, different trajectories were reported. For example, in Ventricina, RA of L. sakei progressively increased during maturation until only this species was detected (Tremonte et al., 2017). In harbin dry sausage production, on the other hand, the RA of L. sakei increased up to ~60% after six days and remained approximately around this level later (Hu et al., 2021). To the best of our knowledge, how the diversity of lactic acid bacteria changes during pastirma production has not been investigated before. We present here that in pastirma, L. sakei LL. graminis remained the predominant species group with an RA of 52-73% throughout the production process. However, the strain diversity of this species changed during different production stages. Analysis of microbial dynamics of samples from different producers in future studies and comparison of the results with the current study will be more comprehensive in understanding pastirma microbial ecology. The effects of seasonal variations on the microbiota of pastirma can also be explored. For example, in spontaneously fermented Italian sausages, L. sakei pangenome changed according to the season indicating a strain diversity among production batches from different seasons (Franciosa et al., 2021).
Figure 2: (GTG)5 fingerprinting analysis of pastirma LAB isolates. Selected isolates from each clade were identified by 16S rRNA sequencing. Isolate name, identification result and isolation stage were indicated next to the fingerprinting pattern of each isolate. The clades harboring different species or intraspecies groups were indicated as I-IX.
Figure 3 The phylogenetic analysis of LAB isolates and closely related type strains using 16S rRNA gene sequence. The analysis involved 830 nucleotides of 16S rRNA gene.
CONCLUSION
In conclusion, in this study, we have determined certain physicochemical parameters, bacterial dynamics, and LAB diversity during pastirma production process using samples from a commercial producer. During the production, while the pH increased from ~5.6 at the curing stage to 5.8 in the final product, aerobic bacteria and coagulase negative cocci in fermented dry sausages produced under different curing processes. Fungal and bacterial abundances were measured in the final product of pastirma manufactured with different curing processes. Therefore, we concluded that the changes in LAB, such as L. sakei, L. decumbens, L. curvatus, and W. viridescens, were driven by the curing process and environmental conditions. Our findings support the development of a better understanding of the ecosystem in the traditional fermented meat products and provide insights into the factors influencing the microbial community composition and functionality during the manufacturing process of these products.
pastirma. *Journal of Food Science and Technology, 54*(12), 3892–3898. https://doi.org/10.1007/s11699-017-2845-8

Hu, Y., Wang, H., Kong, B., Wang, Y., & Chen, Q. (2021). The succession and correlation of the bacterial community and flavour molecules of Hanbin dry sausages during fermentation. *LWT*, 138. 110689. https://doi.org/10.1016/j.lwt.2020.110689

Inat, G. (2008). Determination of contamination sources and investigation of improved conditions in pastirma manufacturing. *Uludağ Üniversitesi Veteriner Fakültesi Dergisi*, 27(1–2), 53–59.

Kaban, G. (2008). Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastirma processing. *Meat Science, 82*(1), 17–23. https://doi.org/10.1016/j.meatsci.2008.10.017

Kaban, G. (2013). Sucuk and pastirma: Microbiological changes and formation of volatile compounds. *Meat Science, 95*(4), 912–918. https://doi.org/10.1016/j.meatsci.2013.03.022

Kesmen, Z., Yetiman, A. E., Gellice, A., Kacmaz, N., Sagdic, O., Cetin, B., Adiguzel, A., Sahin, F., & Yetim, H. (2012). Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. *International Journal of Microbiology, 1*(3), 428–435. https://doi.org/10.1155/2012/687435

Kim, E., Yang, S.-M., Kim, D., & Kim, H.-Y. (2021). Real-time PCR method for qualitative and quantitative detection of Lactobacillus sakei group species targeting novel markers based on bioinformatics analysis. *International Journal of Food Microbiology*, 355, 109335. https://doi.org/10.1016/j.ijfoodmicro.2021.109335

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through neutral mutation. *Journal of Molecular Evolution*, 16(2), 111–120. https://doi.org/10.1007/BF01711581

Koot, J., Vandenpom, S., Schillinger, U., & Björkroth, K. (2004). Molecular Evolution of *Lactobacillus sakei*: Microbiological changes and formation of volatile compounds. *Meat Science, 95*(4), 912–918. https://doi.org/10.1016/j.meatsci.2013.03.022

Krocek, L. (2013). The role of lactic acid bacteria in safety and flavour development of meat and meat products. In J. M. Kono (Ed.), *Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes* (pp. 115–175). John Wiley and Sons.

Lebert, I., Leroy, S., & Talon, R. (2014). Microorganisms in Trademeat: Microbiological changes and formation of volatile compounds. *Meat Science, 95*(4), 912–918. https://doi.org/10.1016/j.meatsci.2013.03.022

Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), *Nucleic acid techniques in bacterial systematics* (pp. 115–175). John Wiley and Sons.

Lorenzo, J. M. (2010). Study of the physicochemical properties and microbial flora of pastırma markı. *Veteriner Fakültesi Dergisi*, 68(4), 349–354. https://doi.org/10.3989/vfd.872878

Özdemir, H., Şireli, U. T., Sarımelihmetoğlu, B., & Inat, G. (1998). Investigation of the microbial flora of pastırma marketing in Ankara. *Turkish Journal of Veterinary and Animal Sciences, 2*, 37–41. https://doi.org/10.26577/TJVAS.37-41

Özdemir, H., & Sirsken, B. (1996). Pastirmadan izole edilen laktobasillerin bazı biyokimyasal ve fizyolojik özellikleri-Some biochemical and physiological characterization of lactic acid bacteria isolated from pastırma. *Ankara Üniversitesi Veteriner Fakültesi Dergisi*, 43(03), 307–310. https://doi.org/10.1501/Vetfak_0000000688

Ozturk, I. (2015). Presence, changes and technological properties of yeast species during processing of pastırma, a Turkish dry-cured meat product. *Food Control, 50*, 76–84. https://doi.org/10.1016/j.foodcont.2014.08.039

Pateiro, M., Franco, D., Carrell, J. A., & Lorenzo, J. M. (2015). Changes on physicochemical properties, oxidation and volatile compounds during the manufacture of celta dry-cured loin. *Journal of Food Science and Technology, 52*(8), 4808–4818. https://doi.org/10.1177/0021701914533555

Petrioa, I., Aasen, I. M., Rustad, T., & Eikevik, T. M. (2015). Manufacture of dry-cured ham: A review. Part I. Biochemical changes during the technological process. *European Food Research and Technology, 241*(5), 587–599. https://doi.org/10.1007/s00217-015-2499-2

Powers, E. M. (1995). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of foodborne and waterborne bacteria and yeasts. *Applied and Environmental Microbiology, 61*(10), 3756–3758. https://doi.org/10.1128/aem.61.10.3756-3758.1995

Power, J. (1994). Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. *International Journal of Microbiology, 23*(2), 179–196. https://doi.org/10.1016/1605-0901(94)90051-5

Sánchez-Juanes, F., Texeira-Martín, V., González-Buitrago, J. M., Velázquez, E., & Flores-Félix, J. D. (2020). Identification of species and subspecies of lactic acid bacteria present in Spanish cheeses type “Torta” by MALDI-TOF MS and pheS gene analyses. *Microorganisms*, 8(2), 301. https://doi.org/10.3390/microorganisms8020301

Sannelli, A. G. M., Kenneally, P. M., & Arendt, E. K. (2004). Contribution of starch to the proteolytic process of a fermented non-dried whole muscle ham product. *International Journal of Food Microbiology, 93*(2), 219–230. https://doi.org/10.1016/j.ijfoodmicro.2003.11.007

Shi, K., Lang, Y.-M., Sun, B.-Z., Su, H.-W., Li, H.-P., Zhang, L., Lei, Y.-H., Li, H.-B., & Zhang, Y. (2017). Changes in lipid oxidation, fatty acid profile and volatile compounds of traditional Kazakh dry-cured beef during processing and storage. *Journal of Food Processing and Preservation, 44*(1), e13059. https://doi.org/10.1186/s13197-016-00130-9

Terán, L. C., Courert, G., Raya, R., Zagorec, M., Champonnier-Vergès, M.-C., & Chaillou, S. (2018). Phylogenetic analysis of lactobacillus curvatus reveals two lineages distinguished by genes for fermenting plant-derived carbohydrates. *Microorganisms*, 6(3), 1516–1525. https://doi.org/10.3390/microorganisms6030301

Vargas-Ramella, M., Domínguez, R., Pateiro, M., Franco, D., Barba, F. J., & Lorenzo, J. M. (2020). Chemical and physico-chemical changes during the dry-cured processing of deer loin. *International Journal of Food Science & Technology, 55*(3), 1025–1031. https://doi.org/10.1111/ijfs.14342

Versalovic, J., Schneider, M., Bruijn, F. J., & Luspi, J. R. (1994). Genomic fingerprinting of lactic acid bacteria using repetitive sequence-based polymerase chain reaction. *Methods in Molecular and Cellular Biology, 5*, 25–40.

Vilar, I., García Fontán, M. C., Prieto, B., Toramedio, M. E., & Carballo, J. (2000). A survey on the microbiological changes during the manufacture of dry-cured loin, a Spanish traditional meat product. *Journal of Applied Microbiology, 89*(6), 1018–1026. https://doi.org/10.1046/j.1365-2672.2000.01348.x

Virgili, R., Saccani, G., Gabba, L., Tanzi, E., & Soresi Bordini, C. (2007). Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. *LWT - Food Science and Technology, 40*(5), 871–878. https://doi.org/10.1016/j.lwt.2006.03.024

Zapotec, M. & Champonnier-Vergès, M.-C. (2017). *Lactobacillus sakei*: A starter for sausage fermentation, a protective culture for meat products. *Microorganisms*, 5(3), 56. https://doi.org/10.3390/microorganisms5030056
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus \textit{Lactobacillus}: Description of 23 novel genera, emended description of the genus \textit{Lactobacillus} Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. In International Journal of Systematic and Evolutionary Microbiology (Vol. 70, Issue 4, pp. 2782–2858). Microbiology Society. https://doi.org/10.1099/ijsem.0.004107