Spatial Strength Centrality and the Effect of Spatial Embeddings on Network Architecture

Andrew Liu
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Mason A. Porter
Department of Mathematics, University of California, Los Angeles, CA 90095, USA
(Dated: October 4, 2019)

For many networks, it is useful to think of their nodes as being embedded in a latent space, and such embeddings can affect the probability of whether nodes are adjacent to each other. In this paper, we extend existing models of synthetic networks to spatial network models by incorporating deterrent functions. We start by extending a geographical fitness model by employing Gaussian-distributed fitnesses, and we then develop spatial versions of preferential attachment and configuration models. We define a notion of “spatial strength centrality” to help characterize how strongly a spatial embedding affects network structure, and we examine spatial strength centrality on a variety of real and synthetic networks.

I. INTRODUCTION

Many networks have important spatial features, and it is often useful to think of the nodes of such spatial networks as being embedded in either a physical or a latent space. In nature, such a space can be literal, like the physical distance between different parts of a city, or they can be more abstract. In social networks, for example, one can construe the nodes that represent individuals as having a distance between them that represents physical distance; a distance between them that arises from demographic characteristics, interests, behaviors, or other features; or a combination of such distances. In food webs, nodes that represent individuals may be embedded in a latent space that represents various features and affects their likelihood of interacting with each other. For instance, in a standard niche model, one places species on a line, with a position that represents their mass and directed edges between nodes to represent who eats whom.

Physical networks, such as transportation networks and other networks within and between cities, possess a natural spatial embedding based on their physical location in the world. Whether networks are embedded in an explicit or latent space (or both), the distances between nodes can strongly influence whether they are adjacent to each other in a network. Intuitively, nodes that are farther apart from each other have fewer opportunities to interact (or their interaction has a greater associated cost), so we expect that there is a concomitant lower probability to observe edges between them. For example, people in a social network may be unlikely to interact if they share little in common, and animals in a food web may not hunt others that are too large or small in comparison to them.

It is sensible that spatial characteristics should influence network structure, but it is much more difficult to make these ideas precise. For example, how exactly does a spatial embedding influence the architecture — both topology and edge weights — of a given network? For simplicity, most studies of networks have ignored spatial embeddings, but new models that incorporate spatial considerations are being developed with increasing frequency. It is also desirable to develop spatial network models that can produce realistic structural features of networks.

Network models that incorporate space can improve measures of importance (i.e., centrality) of networks that one constructs from empirical data. Additionally, spatially relevant features have been examined in brain networks and fungal networks, road networks, air-traffic networks, gas-pipeline networks, granular networks, and other applications. Incorporating spatial features can improve the modeling of empirical data, and it is therefore important to further extend ideas from network analysis into the realm of spatial networks.

Examples of spatial models include spatially-embedded random networks and networks that grow in time (e.g., through preferential attachment). Such models can provide reference models with which to compare empirical networks. For example, ideas from spatial networks have led to the development of spatial null models for community detection. Some spatial network models produce networks with properties that are reminiscent of empirical networks, such as simultaneously having large values of clustering coefficients and heavy-tailed degree distributions. Spatial network models have also been helpful for studying models of biological growth, such as osteocyte-network formation and leaf-venation networks.

In the present paper, we explore a general approach for extending non-spatial network models to spatial versions by introducing a deterrence function. This deterrence function modifies the distance in either latent or physical space, modifies the probability that nodes are adjacent to each other as a function of the distance between them. We start by examining a modi-
fication of a geographical fitness (GF) model \cite{29} that is a latent-space (“hidden variable”) model. Other papers that examined this GF model \cite{21,27} used exponential and power-law fitness functions, but we use one that is Gaussian distributed. We then explore a spatial extension for the Barabási–Albert (BA) model, where the deterrence function \(h(r) \) modifies the attachment probability for new edges. This too was examined in earlier papers \cite{28,30,31}, but we incorporate a deterrence function in a slightly different way. Finally we apply the deterrence function \(h(r) \) to a configuration model \cite{32} to create a spatial configuration model. We compute some characteristics of our spatial network models to understand how a deterrence function affects network structure. We also define a new spatial notion of centrality, which we call “spatial strength centrality”, that helps us measure how strongly a spatial embedding affects the topological structure of a network. We examine how spatial strength centrality behaves on our new synthetic models, and we also compute it for a variety of empirical spatial networks.

Our paper proceeds as follows. In Section II we discuss GF models and explore the properties of these networks when using Gaussian-distributed fitnesses. We study a spatial preferential attachment (SPA) model in Section III and explore its properties, and we develop a new spatial configuration model in Section IV. In Section V we define our notion of spatial strength centrality and apply it to several empirical and synthetic networks, including the models that we explored in previous sections. We conclude in Section VI.

II. GEOGRAPHICAL FITNESS MODEL

A. Prior research

The (non-geographical) fitness network model is a class of networks that assigns fitness values to the \(n \) nodes of a network \cite{29}. Such models are sometimes also called “threshold models” \cite{21}, although one needs to be careful not to confuse them with other similarly-named models \cite{2}. One determines the intrinsic fitnesses of the nodes from a density function \(f(w) \). In the original threshold model of this type \cite{32}, the intrinsic fitness characterizes the propensity of a node to gain edges. Such models have been used to generate small-world networks with power-law degree distributions \cite{21}.

One choice of fitness distribution is the exponential distribution

\[
f(w) = \lambda e^{-\lambda w}, \quad w \geq 0.
\]

where \(\theta \) is a “threshold parameter” that determines the fitness values that nodes need to be adjacent. With equation (2), nodes that have a higher fitness \(w \) also have a larger degree. With either an exponential distribution or power-law distribution of fitness, one can show that the resulting degree distribution follows the power law \(p(k) \sim k^{-2} \) as \(k \to \infty \) \cite{33,34,35}.

One can also formulate geographical (or, more generally, spatial) versions of a fitness model, as was illustrated in \cite{21,35,35}. In one extension, a network exists in a \(d \)-dimensional Euclidean space of finite size, such as \([0,1] \times [0,1] \subset \mathbb{R}^2 \) for \(d = 2 \). In addition to assigning node fitnesses using the distribution \(f(w) \), one now also assigns a location in space to each node \(v_i \). For example, perhaps one determines each of the node’s \(d \) coordinates uniformly at random in the space. One can then suppose that an edge exists between nodes \(v_i \) and \(v_j \), with \(i \neq j \), when

\[
g(i,j,r) = (w_i + w_j) h(r) \geq \theta,
\]

where \(r \) is the Euclidean distance between nodes \(v_i \) and \(v_j \), and the function \(h(r) \) describes the influence of space on the connection probability of two nodes as a function of the distance between them. The function \(h(r) \) is sometimes called a “deterrence function” \cite{15}, and it has been used in many studies of spatial networks \cite{1}. A common choice for a deterrence function is the power-law form

\[
h(r) = r^{-\beta},
\]

for some value of a spatial decay parameter \(\beta \). For certain values of \(\beta \), it is possible to determine exact expressions for degree distributions and global clustering coefficients for the resulting fitness-network model \cite{21}, but most investigations with this deterrence function have focused on numerical computations.

B. Gaussian-distributed fitnesses

In previous treatments of (geographical and non-geographical) fitness network models, exponential and power-law distributions have been very common choices, including for the specific purpose of generating networks with power-law degree distributions \cite{21,27,33,34,35}.

In the present study, we use a Gaussian distribution for fitness, rather than an exponential or power-law distribution. We make this choice based on the intuition that entities (which are represented by nodes) have a variety of intrinsic factors that influence whether they interact with other nodes in a system, so this is a plausible choice in many situations \cite{33}. Specifically, we employ the standard normal distribution

\[W \sim N(0,1). \]

We also modify the threshold function and write

\[
g(i,j,r) = |w_i - w_j| h(r) \geq \theta,
\]
such that nodes that differ widely in intrinsic fitness are more likely to interact with each other than those with similar intrinsic fitnesses. That is, we generate networks with disassortative mixing with respect to node fitness. Possibilities where this may be relevant include hyperlinks from many low-fitness Web pages to high-fitness ones and predators in a food web who hunt much weaker prey.

C. Network realizations and numerical computations

For our numerical computations, we construct networks with \(n = 500 \) nodes that are embedded in 2-dimensional (2D) space in a box \([0, 1] \times [0, 1]\) with periodic boundary conditions. The nodes have coordinates \((x_1, x_2)\), where we assign \(x_1\) and \(x_2\) independently with uniform probability on the interval \([0, 1]\), and Gaussian-distributed fitnesses with mean \(\mu = 0\) and standard deviation \(\sigma = 1\).

For the threshold function \(\theta\), we consider values \(\beta \in \{0, 0.5, 1, 1.5, 2, 2.5, 3\}\) for the decay parameter \(\beta\), and we manually adjust \(\theta\) such that the mean degree is \(\langle k \rangle = 20\). We obtain \(\theta\) through a combination of trial-and-error and fitting through linear regression. We generate 30 instances of these networks for each value of \(\beta\).

We calculate a few well-known network characteristics and find that they are affected by distance (as encoded in the value of \(\beta\)). The characteristics that we calculate are the following ones.

1. **Mean local clustering coefficient.** The local clustering coefficient of a node with degree at least 2 is \(c_i = \frac{2T(v_i)}{k_i(k_i-1)}\), where \(T(v_i)\) is the number of unique triangles (i.e., 3-cliques) to which node \(v_i\) belongs and \(k_i\) is the degree of node \(v_i\). A node with degree 0 or 1 has a local clustering coefficient of 0. The mean local clustering coefficient of a network is the mean value of \(c_i\) over all nodes in the network (including those with degrees 0 and 1).

2. **Mean geodesic distance.** The mean geodesic distance is \(L = \frac{\sum_{i \neq j} d(v_i, v_j)}{n(n-1)}\), where \(d(v_i, v_j)\) is the shortest-path distance (in terms of number of edges) between nodes \(v_i\) and \(v_j\).

3. **Mean edge length.** We take the length of an edge to be the Euclidean distance between its two incident nodes. The mean edge length of a network is the mean edge length over all edges in the network.

4. **Degree assortativity.** We calculate the degree assortativity of a network using the Pearson correlation coefficient \(r = \frac{\sum_{i \neq j} (A_{ij} - k_i k_j / 2m)(k_i k_j / 2m)}{\sum_{i \neq j} k_i k_j / 2m}\) [2], the normalized covariance of degrees of the nodes of the network.

Larger values of \(\beta\) yield shorter mean edge lengths, larger mean geodesic distances, and larger mean local clustering coefficients. In our plots in this section, we calculate the means of these characteristics in a network, and we then take the mean across 30 instantiations. We note that our result for the mean local clustering coefficient is intuitively sensible, as nodes in small neighborhoods of nodes are more likely to be adjacent to each other for larger values of \(\beta\) (i.e., as spatial effects become more prominent).

To facilitate exposition, we use the term “spatial effects” to describe the influence of a spatial embedding on network topology and network characteristics, such that “greater” spatial effects signify more influence of a spatial embedding on a network. With the deterrence function \(h(r) = r^{-\beta}\), we expect spatial effects to increase as we increase \(\beta\). The most obvious example of this phenomenon is with the mean edge length of a network. With this model (and the subsequent ones in this paper), as we increase \(\beta\), edges form more preferentially between spatially close nodes, so mean edge length decreases as we increase \(\beta\).

Near \(\beta = 0\), we observe a small degree assortativity because of the heterogeneous mixing of nodes with different degrees. This is a consequence of how we formulated the model, as nodes with extreme fitness values (either positive or negative ones) yield larger values of \(|w_i - w_j|\), so they are adjacent to all nodes with fitnesses that are sufficiently close to 0. These nodes, whose fitnesses are in the center of the fitness distribution, are not likely to be adjacent to each other.

By contrast, for larger values of the decay parameter \(\beta\) (e.g., for \(\beta \geq 2\)), the Euclidean distance between two nodes has more influence over the probability that they are adjacent. In this regime, it is no longer the case that nodes with extreme fitness are adjacent to all nodes in the network.

If we let \(\beta \to \infty\), we expect the distance between nodes to become the sole factor that determines whether nodes are adjacent. In our numerical computations, we hold \(\langle k \rangle\) roughly constant at 20, so we expect nodes to be adjacent to roughly 20 of their nearest neighbors. In this respect, as \(\beta \to \infty\), we expect the network to resemble a random geometric graph (RGG) [20, 37] with an appropriate value of a connection radius \(r_c\). We consider the simplest type of RGG, which has two parameters: the number \(n\) of nodes and a connection radius \(r_c\). We add each node to the region \([0, 1] \times [0, 1] \subset \mathbb{R}^2\), and we assign its location uniformly at random in the space. Pairs of nodes are adjacent to each other if their Euclidean distance is less than or equal to \(r_c\), so adjacency in the network is determined completely by the positions of the
nodes.

Starting with an instantiation of the GF with $\beta = 50$, we construct an RGG (with periodic boundary conditions) with the same node positions and with $r_c \approx 11.3$ (which implies that $\langle k \rangle \approx 20$). This network has 98% of the same edges as the GF network. The same experiment with $\beta = 3$ yields 77% of the same edges, and one with $\beta = 1$ yields 52% of the same edges. Random geometric graphs have positive degree assortativity [38], so for progressively larger β, we expect degree assortativity to increase to positive values that resemble those of the RGG. As we show in Fig 2, this indeed appears to be the case.

D. Closeness centrality

Normalized closeness centrality gives an idea of how “close” a node is to other nodes in a network, as determined by how many edges are between it and other nodes in the network [2]. The version of closeness centrality that we calculate is

$$C(v_i) = \frac{n - 1}{\sum_{i \neq j} l(v_i, v_j)}, \quad (7)$$

where $l(v_i, v_j)$ is the geodesic distance between nodes v_i and v_j.

For $\beta = 0$, the closeness centralities of the nodes arise only from their intrinsic fitness values, as the model does not incorporate any spatial effects. In the scatter plots of fitness versus closeness centrality, we observe two large branches of values (see Fig. 3) in all networks from our 30 instantiations. In these networks, the node whose fitness has the large absolute value (which we call the “extremum”) is adjacent to all nodes in the network that have sufficiently different fitnesses; these nodes all belong to the other large branch, and the extremum acts as a shortcut to other nodes in the network.

In these scatter plots, we also observe a small central curve between the two branches. It lies below the lowest point of the two branches (such as in the bottom-right scatter plot of Fig. 3) or above the nearby parts of both branches. This curve is below the branches when no nodes in the network have fitnesses with large enough absolute values, such that the nodes in the curve are not adjacent to any other node. Specifically, if the node whose fitness is closest to 0 has a fitness value of w_m and the extremum has a fitness value of w_M, then the small central curve is below the branches when $|w_M| < \theta - |w_m|$. (Note that $\theta \approx 2.9$ for $\beta = 0$.) Otherwise, nodes in the...
Closeness centrality

Mean local clustering coefficient (C)

Mean geodesic distance (L)

Mean edge length

Degree assortativity

FIG. 2. Characteristics of networks (with n = 500 nodes) from a geographical fitness models with Gaussian-distributed fitness for different values of the spatial decay parameter β and 30 instantiations of the model for each value of β. We show the (a) mean local clustering coefficient, (b) mean geodesic distance, (c) mean edge length, and (d) degree assortativity. In all cases, we first take means with respect to individual networks and then take means over the 30 instantiations.

middle curve are adjacent to nodes with very negative or very positive fitnesses.

Extremum nodes still behave as shortcuts for β = 0.5, but the spatial constraints necessitate spatial proximity for nodes to be adjacent to other nodes, so the role of the extremum as a shortcut is less important. For example, some shortest paths go through other nodes. We show example scatter plots of closeness versus fitness for β = 0.5 in Fig. 4. In the top-left plot, for example, the presence of an extremum with whose fitness has a very large magnitude still yields some branches in the scatter plot. However, in the other examples in this figure (and in most scatter plots from the 30 instantiations), it is more difficult to discern clear branches. For β = 1 (and hence for larger values of β), branches are almost never apparent, as node fitnesses are less likely to determine whether two nodes are adjacent; instead, spatial effects become more prominent. We thereby see how spatial effects manifest in this geographical threshold model.

III. A SPATIAL PREFERENTIAL-ATTACHMENT MODEL

A. Prior research

We now examine characteristics of a spatial generalization of the BA preferential-attachment model [39]. Such a spatial preferential-attachment model (SPA) was first introduced in [28] and explored further in [30] [31] [40]. It starts with a seed network, with nodes located in [0, 1] × [0, 1] ⊂ R², at t = 0. During each subsequent time step, one adds a new node and assigns its location uniformly at random in the space. If a node is assigned the same location as an existing node, we then assign a different location uniformly at random. New nodes link to m existing nodes with probability

$$p(v_i, v_j) = \frac{k_j h(r_{i,j})}{\sum_l k_l h(r_{i,l})},$$

where r_{i,j} is the Euclidean distance between nodes v_i and v_j, and h(r_{i,j}) is the same as in Eq. 1 (i.e., h(r_{i,j}) = r_{i,j}^\beta). In [28], this SPA was simulated on a 1D space.

References [30] [31] examined this SPA model embedded in 2D. Manna and Sen [30] assigned one new edge...
per incoming node and explored the distribution of edge lengths and the expected degree of a node that is born at time \(t \). Yook et al. [31] attempted to fit empirical internet network data using this SPA model.

Other spatial generalizations of the BA model have also been studied. In [41, 42], for example, each node has a “sphere of influence” with radius proportional to the node’s in-degree. Upon the addition of a new node \(v_t \), if its location is inside the sphere of influence for an existing node, then \(v_t \) has a probability \(p \) to create an edge to that node. As \(t \to \infty \), the model exhibits a power-law degree distribution and has a positive value for the mean local clustering coefficient [42].

B. Description of our SPA model

In contrast to the SPA models in [23, 30, 31], which used a connection probability that is given by Eq. (6), we instead use a connection probability function of

\[
p(v_i, v_j) = \frac{k_j h(r_{i,j})}{\sum_i k_i}.
\]

The intuition behind our choice is that a node’s “popularity” of a node (which we quantify by its relative degree in a network) is independent of its distance from another node. This allows us to transform an existing non-spatial PA model (such as the BA model) into a spatial variant by multiplying the probability that an edge forms by a deterrence function \(h \). The probability that an incoming node \(v_t \) at time step \(t \) forms an edge with any other node in the network (after normalizing this probability such that it sums to 1) is thus

\[
p(v_t, v_j) = \frac{p(v_t, v_j)}{\sum_{j|v_j \notin N(v_t)} p(v_t, v_j)},
\]

where \(N(v_t) \) is the set of nodes to which \(v_t \) is adjacent (i.e., its neighborhood). When implemented in an algorithm, we assign edges one at a time. Additionally, note that we do not allow self-edges or multi-edges in our model.

We assign a location uniformly at random in \([0, 1] \times [0, 1]\) to each node as we add it to the network. We start our network with a seed that consists of a 10-clique, where each node in this clique is located at a position in \([0, 1] \times [0, 1]\) that we assign uniformly at random. At each time step, we add a new node \(v_t \) with \(m = 5 \) stubs (i.e., ends of edges), and we link each of these stubs to an existing node in the network with a probability equal to Eq. (10). Consequently, nodes with larger degrees are more likely to accrue more edges and incoming nodes are more likely to connect to nearby nodes than to ones that are farther away. All edges are undirected and unweighted.

For our computations, we consider decay parameters of \(\beta \in \{0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0\} \), and we examine 10 instantiations of our model for each value of \(\beta \). We simulate each instantiation of our model for \(T \) time steps. We use \(T \in \{300, 1000, 3000, 10000\} \), which have \(n \in \{310, 1010, 3010, 10010\} \) nodes, respectively, because there are 10 nodes in the seed network. Each node adds 5 edges to a network, so \(\langle k \rangle \to 10 \) as \(T \to \infty \).

C. Computational results

As with the GF model, we calculate the mean local clustering coefficient, mean geodesic distance, mean edge
length, and degree assortativity of our networks. (See Section II for definitions of these quantities.) In our SPA model, we observe the same general trends in these quantities for progressively larger values of the spatial decay parameter \(\beta \) as we observed in the GF model. Specifically, the mean local clustering coefficient, mean geodesic distance, and degree assortativity are larger for progressively larger \(\beta \); and the mean edge length are smaller for progressively larger \(\beta \).

We examine in more detail how the mean geodesic distance (see Fig. 8) and mean local clustering coefficient (see Fig. 9) depend on the number of nodes for SPA networks. Based on our numerical simulations in Fig. 8 for spatial decay parameter values \(\beta \in \{0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\} \), the mean geodesic distance seems to increase logarithmically with the number \(n \) of nodes. This is consistent with the observations for a 1D SPA in [23], which observed in numerical simulations that mean geodesic distance seems to depend logarithmically on \(n \).

In Fig. 9, we see for \(\beta \in \{0, 1, 2\} \) that the mean local clustering coefficient decays sharply for progressively larger \(n \), and it is possible that it may approach 0 as \(n \to \infty \). However, for \(\beta = 4 \) and \(\beta = 3 \), we do not observe such sharp decay, at least for the examined values of \(n \). Our numerical computations suggest the possibility that there is a value \(\beta_c \) such that for \(\beta > \beta_c \), one obtains a positive mean local clustering coefficient in the limit.
IV. A SPATIAL CONFIGURATION MODEL

We now generalize a configuration model [2, 32] to incorporate spatial considerations. Configuration models are among the most important random-graph models, as they are used frequently as reference models (including as null models in community detection [24, 25]) in network analysis. We envision that spatial analogs of configuration models will be similarly helpful for spatial networks.

A. Description of the model

In developing a spatial configuration model, we seek to preserve the degree sequence of an input network, while randomizing the adjacencies in the network according to some rule that incorporates a spatial embedding. Specifically, the nodes are embedded in a latent space, and we assign the numbers of stubs to the nodes from the degree sequence of the input network. We then match stubs in a process that resembles the usual one from a non-spatial configuration model [32] (i.e., using a random matching), but instead of selecting edge stubs uniformly at random, we preferentially match stubs that are spatially close to each other.

To undertake this process, we need to make some choices. We must choose how to assign node locations. They can be assigned uniformly at random, or according to a different randomization. If the input network is embedded in space and includes node locations, we can also use the existing node locations. We must also choose how to bias stub selection to connect stubs from spatially close nodes. In our model, we use a deterrence function in a similar fashion as in our SPA and GF models. Our procedure is the following:

1. For each node, assign a location, which we choose uniformly at random, in \([0, 1] \times [0, 1]\).

2. To each node \(v_i\) with degree \(k_i\), assign \(k_i\) stubs to it. We denote the number of unmatched stubs for a node \(v_i\) at time step \(t\) by \(u(v_i, t)\).

3. Choose a stub from step (2) uniformly at random. We use \(v_i\) to label its associated node.

4. Choose a second stub with a probability proportional to \(h(r_{i,j})\). That is, select a stub from node \(v_j\) with probability
\[
p(v_i, v_j, t) = \frac{u(v_j, t)h(r_{i,j})}{\sum_{l \neq i} u(v_l, t)h(r_{i,l})}.
\]

5. Connect the two stubs from steps (3) and (4) to each other with an undirected, unweighted edge.

6. Repeat steps (3)–(5) until all we have matched all stubs to form edges between the nodes.

Because \(r_{i,j}\) is independent of the time step, we can make the above process efficient by calculating the pairwise Euclidean distance between all node pairs in a network (there are \(O(n^2)\) such pairs to calculate) and store it for reuse in each stub-choosing step. After this, the algorithm takes \(O(|E|n)\) time to run, where \(|E|\) is the number of edges.

In formulating a spatial configuration model, one needs to decide whether to allow multi-edges and/or self-edges. Because \(h(r_{i,j}) = 0^{-\beta}\) does not have a well-defined value for positive values of \(\beta\), we disallow self-edges. However, we allow multi-edges.

One can also many other types of spatial configuration models. For example, one can randomize the positions of nodes while preserving the adjacency matrix of a network.

As with non-spatial configuration models [32], choices regarding the implementation of the spatial configuration process depend on the application and question of interest. One common application of a configuration model is to use it as a null model in community detection [24, 25, 23], where the exact choice of the null model greatly affects the properties of detected communities. As discussed in [32], the choice of whether to allow self-edges and/or multi-edges is an important one.

B. Computational results

To illustrate the properties of our spatial configuration model, we start by generating a standard BA network. The seed network for the BA network is a 10-clique, each new node has \(m = 5\) stubs, and we grow the network for a total of \(T = 1000\) time steps (such that the final network has \(n = 1010\) nodes). We then use the degree sequence from this network as the degree sequence for the spatial configuration model. This process gives a single spatial configuration-model network.

For each value of \(\beta \in \{0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\}\), we generate 30 such networks, and we calculate mean characteristics for these networks. To construct each spatial configuration-model network, we generate a new BA network to create a degree sequence.

In our spatial configuration model, we observe (as in our SPA and GF models) that for progressively larger values of the spatial decay parameter \(\beta\), the mean local clustering coefficient and mean geodesic distance increases, whereas the mean edge length decreases. The degree assortativity of networks from our spatial configuration model does not appear to have a clear correlation with \(\beta\), in contrast to our observations for our SPA and GF models.

For comparison, we include an additional scatter plot of these characteristics for our spatial configuration model (for which we use degree sequences that we generated from BA networks), alongside scatter plots from
FIG. 10. Degree distributions for individual instances of our spatial configuration model, with a degree sequence given by a BA network with \(n = 1010 \) nodes and \(m = 5 \) new edges for each node that we add after the seed, for spatial decay parameters of \(\beta = 0 \), \(\beta = 2 \), and \(\beta = 4 \).

FIG. 11. Some characteristics of the networks from our spatial configuration-model networks for various values of the spatial decay parameter \(\beta \). For each configuration-model network, we use a degree sequence given by a BA model with \(n = 1010 \) nodes and \(m = 5 \) new edges for each node that we add after the seed. In our computations, we take means over 30 instantiations (for which we have 30 different networks) of our model. We show computations of (a) mean local clustering coefficient, (b) mean geodesic distance, (c) mean edge length, and (d) degree assortativity.

V. SPATIAL STRENGTH CENTRALITY

Our explorations of spatial network models raise an interesting question: Can we quantify the strength of the effects of the spatial embedding and choice of spatial decay function \(h(r) \)? We have observed that larger values of the spatial decay parameter \(\beta \) lead to more prominent spatial effects on network topology. However, it is desirable to be more systematic about our analysis of spatial networks. For example, it is important to compare different choices of the deterrence function \(h(r) \), different sizes and dimensions of the ambient space, and different distributions of nodes in space. Therefore, we define a centrality measure for spatial networks that we call spatial strength centrality, and we compare it across several synthetic and empirical spatial networks.

A. Definition and description of spatial strength centrality

To develop a notion of centrality for spatial networks, we proceed as follows. Let \(\mathcal{N}(v_i) \) the neighborhood of \(v_i \) (i.e., the set of nodes to which node \(v_i \) is adjacent). We then calculate a normalized mean edge distance — which we take to be Euclidean for concreteness, but one can also consider other metrics — from node \(v_i \) to each other node in its neighborhood. For a node \(v_i \) with at
least one incident edge, this distance is

\[L(v_i) = \frac{\sum_{v_j \in N(v_i)} d(v_i, v_j)}{k_i} \langle L \rangle, \]

where

\[\langle L \rangle = \frac{\sum_{(v_i, v_j) \in E} d(v_i, v_j)}{n(k)} \]

and \(d(i, j) \) is the Euclidean distance between nodes \(v_i \) and \(v_j \). The left fraction in \(L(v_i) \) gives the mean edge length of \(v_i \); we then normalize it by \(\langle L \rangle \), the mean edge length in the network. We now calculate the mean neighbor degree of each node \(v_i \) and normalize it by the mean degree in the network. That is,

\[K(v_i) = \frac{\sum_{v_j \in N(v_i)} k_j}{k_i} \langle k \rangle. \]

We then combine the above two quantities to calculate the spatial strength centrality

\[S(v_i) := \frac{1}{L(v_i)K(v_i)} \]

of each node \(v_i \) with at least one incident edge.

Our motivation in defining \(S(v_i) \) is to capture a notion of whether nodes are adjacent to each other because they are spatially close or because they are adjacent to each other for a topological reason. Heuristically, we reward a node for being adjacent to spatially close nodes, and we penalize it for being adjacent to nodes with low degree (which, in some contexts, are “hubs”).

As an example, consider a network of flights between airports. Suppose that a small airport \(v_i \) is adjacent only to a hub \(v_j \), which is also far away from it geographically. Node \(v_i \) has a small spatial strength \(S(v_i) \) because its edge to \(v_j \) does not arise from the fact that it is nearby, but instead because \(v_j \) is a hub. This idea is captured by \(S(v_i) \) because both \(L(v_j) \) and \(K(v_j) \) are large, as the one edge of \(v_i \) is a long edge and its neighbor has large degree. Therefore, from \((14) \), we see that \(S(v_i) \) is small.

Conversely, consider a granular network \([8] \). In such a network, nodes are adjacent if they are touching (or at least sufficiently close to be construed as touching). Because of physical constraints, the number of edges that are attached to a node is limited to be a small number. Therefore, a node \(v_j \) in a granular network has short edges, so \(L(v_j) \) is small. Additionally, every node in the neighborhood of \(v_j \) has small degree, so \(K(v_j) \) is small. Therefore, from \((14) \), we expect \(S(v_j) \) to be larger in this example than \(S(v_i) \) in the air-traffic example.

It can also be informative to calculate a network’s mean spatial strength centrality

\[\langle S \rangle = \frac{\sum_i S(v_i)}{n}. \]

In the previous examples, for instance, we expect a granular network to have a larger value of \(\langle S \rangle \) than the air-traffic network, because the former’s network topology is subjected to more stringent constraints.

There are several important considerations for calculating mean spatial strength:

1. We have normalized all quantities, so we expect to be able to meaningfully compare the values of \(\langle S \rangle \) for different types of networks, including ones with different sizes and spatial embeddings. However, \(\langle S \rangle \) is unbounded (in particular, it is not confined to values between 0 and 1), so we need to be careful about interpreting its values and comparisons of these values.

2. The mean spatial strength \(\langle S \rangle \) is nonnegative.

3. We normalized \(K(v_i) \) by the mean degree \(\langle k \rangle \), rather than by the largest degree \(k_{\text{max}} \) in a network, so it is not guaranteed to lie between 0 and 1.

4. Our formulas for \(L(v_i) \) and \(S(v_i) \) are not well-defined for nodes that have no edges; we take these quantities to be 0 in these cases.

B. Computation of spatial strength on network models

As an initial test case, we consider the spatial strength centrality of our GF model, SPA model, and spatial configuration model. We expect the mean spatial strength \(\langle S \rangle \) to increase as we increase the spatial decay parameter \(\beta \) (see Fig. 13).

Interestingly, although there is generally a positive correlation between \(\beta \) and \(\langle S \rangle \), it is not a linear relationship. The spatial configuration and SPA models have S-shaped curves, and the GF model has an initially rapid increase of \(\langle S \rangle \) with \(\beta \) before tapering off.

Contrary to expectations (which were for \(\langle S \rangle \) to tend to increase with \(\beta \)), the spatial configuration model has a peak in the mean spatial strength reaches at about \(\beta = 3 \). For progressively larger \(\beta \), the mean edge length of a network decreases, in turn decreasing the mean spatial strength (because \(L(v_i) \) increases as \(\langle L \rangle \) decreases, as we can see from \((11) \), so \(S(v_i) \) decreases as \(\langle L \rangle \) decreases). This sensitivity to mean edge length is a potential weakness in the centrality measure. In Section V E we discuss potential ways to address this issue.

C. Examination of spatial strength on simple synthetic networks

To develop intuition about the centrality measure, we consider several simple types of synthetic networks. We start with our GF mode, for which we illustrate instantiations of different mean spatial strength centralities in Fig. 14.

We also consider the following types of networks:
Mean spatial strength ($\langle S \rangle$)

Geographical Fitness Model
Spatial Preferential Attachment
Configuration Model

FIG. 13. Mean spatial strength for our GF model, our SPA model, and the spatial configuration model for various values of the spatial decay parameter β. For a given value of β, each point represents a mean over 20 realizations of the model. Our GF-model networks have $n = 500$ nodes, and our SPA and spatial-configuration-model networks have $n = 1010$ nodes.

$\langle S \rangle \approx 0.786$, $\beta = 0.5$
$\langle S \rangle \approx 1.007$, $\beta = 3$

FIG. 14. Mean spatial strength centralities of example networks from individual instantiations of the GF model with $n = 150$ nodes, which we place in 2D according to their assigned coordinates. We show examples with (left) $\beta = 0.5$ and $\langle S \rangle \approx 0.786$ and (right) $\beta = 3$ and $\langle S \rangle \approx 1.007$.

- **Square lattice.** The lattice network has x columns and y rows, giving it a total of $n = xy$ nodes. We space these nodes evenly in $[0, 1] \times [0, 1]$; each node is adjacent to the nodes that are immediately north, south, east, and west of it. See the left plot of Fig. 15. When $x = y$, the mean spatial strength tends towards the value 1 as $n^2 \to \infty$.

- **Spatially-embedded Cayley tree.** This network has b branches and l layers. We start with one central node (layer 0). Subsequently, each node in layer l is adjacent to b nodes in layer $l + 1$, whose nodes are equally spaced in a circle of radius $l + 1$.

$\langle S \rangle \approx 0.999$
$\langle S \rangle \approx 0.687$
$\langle S \rangle \approx 0.300$

FIG. 15. Example networks with the indicated values of the mean spatial strength. The depicted networks are (left) a lattice network, (center) a spatially-embedded Cayley tree, and (right) a hub-and-spoke example.

$\langle S \rangle \approx 8.008$

FIG. 16. This example of a two-scale network with two pairs of nodes illustrates that the mean spatial strength centrality $\langle S \rangle$ can be arbitrarily large. See the center plot of Fig. 15.

- **Hub-and-spoke example.** This example has three “hub” nodes that are each spaced relatively far away from its 10 “spoke” nodes, which occur in a circle around it. See the right plot of Fig. 15. This example demonstrates that a network with long-range connections can have a small mean spatial strength centrality.

- **Two-scale example.** Exploiting the definition of spatial strength centrality, we construct a network that consists of two pairs of nodes, where the nodes of each pair are adjacent to each (see Fig. 16). By making one edge short and the other arbitrarily large, the mean spatial strength centrality approaches infinity as the second edge becomes arbitrarily long. This example demonstrates that there exist networks with arbitrarily large values of mean spatial strength centrality.

D. Examination of spatial strength centrality on empirical and synthetic data sets

We now examine spatial strength centrality in several empirical networks, as well as on an RGG (which we defined in [11]). The data sets for fungal networks are from [13] (with 270 networks with between 68 and 2742 nodes and a mean of 819 nodes), and the data sets for city road networks are from [14] (with 101 networks with between
Networks have diverse uses in the modeling of networks from empirical data, and the models that we have examined in the present paper should help in such efforts. We anticipate that further exploration of spatial null models (e.g., using our spatial configuration model and generalizations of it) will be particularly insightful, as they provide baselines for comparisons with empirical data. To explore the diverse effects of spatial embeddings and other influences on network architecture — we defined a spatial strength centrality, which allowed us to estimate how strongly the effects of a network’s ambient space (in which its nodes are embedded) affects observed network topology. We then examined spatial strength centrality on several toy networks and compared it on a diverse set of synthetic and empirical spatial networks.

Spatial networks have diverse uses in the modeling of networks from empirical data, and the models that we have examined in the present paper should help in such efforts. We anticipate that further exploration of spatial null models (e.g., using our spatial configuration model and generalizations of it) will be particularly insightful, as they provide baselines for comparisons with empirical data. To explore the diverse effects of spatial embeddings (and other effects of space) on network topology, it is also important to further analyze deterrence functions $h(r)$ and a variety of notions of spatial strength centrality.

VI. CONCLUSIONS AND DISCUSSION

We have developed and examined a straightforward method for generalizing generative models of networks to incorporate spatial information by using a deterrence function $h(r)$ that decays with the distance r between nodes to adjust the probability that an edge occurs between a pair of nodes. For concreteness, we used Euclidean distance and the power-law decay rate $h(r) = r^{-\beta}$, but our formulation allows one to make diverse choices of both metric and decay function.

One illustration of how to augment existing network models, rather than define new spatial network models from scratch, is with our formulation of a spatial configuration model. We also extended a GF model with a deterrence function $h(r)$ and studied an SPA model that uses this deterrence function. We examined the properties of these models and compared them to random geometric graphs and empirical spatial networks from two disparate applications. To examine the structure of spatial networks more deeply — and, in particular, to try to separate the effects of spatial embeddings and other influences on network architecture — we defined a spatial strength centrality, which allowed us to estimate how strongly the effects of a network’s ambient space (in which its nodes are embedded) affects observed network topology. We then examined spatial strength centrality on several toy networks and compared it on a diverse set of synthetic and empirical spatial networks.

Spatial networks have diverse uses in the modeling of networks from empirical data, and the models that we have examined in the present paper should help in such efforts. We anticipate that further exploration of spatial null models (e.g., using our spatial configuration model and generalizations of it) will be particularly insightful, as they provide baselines for comparisons with empirical data. To explore the diverse effects of spatial embeddings (and other effects of space) on network topology, it is also important to further analyze deterrence functions $h(r)$ and a variety of notions of spatial strength centrality.
\[\langle S \rangle \approx 2.339 \quad \langle S \rangle \approx 2.279 \quad \langle S \rangle \approx 1.228 \]

FIG. 17. Example networks and mean spatial strength centralities of empirical networks and an RGG. We show (left) a road network from Tunis, Africa with 1731 nodes; (center) a fungal network of type “Pv_M1+4R_U_N_21d_4” (see [13]) with 641 nodes; and (right) an RGG with \(n = 500 \) nodes and connection radius of \(r_c = 0.07 \).

ACKNOWLEDGEMENTS

We thank Heather Brooks for helpful discussions.

[1] M. Barthelemy, *Morphogenesis of Spatial Networks* (Springer International Publishing, Cham, Switzerland, 2018).
[2] M. E. J. Newman, *Networks*, 2nd ed. (Oxford University Press, Inc., Oxford, UK, 2018).
[3] P. D. Hoff, A. E. Raftery, and M. S. Handcock., Journal of the American Statistical Association 97, 1090 (2002).
[4] R. J. Williams and N. D. Martinez, Nature 404, 180 (2000).
[5] P. Crucitti, V. Latora, and S. Porta, Phys. Rev. E 73, 036 (2006).
[6] A. Barrat, M. Barthelemy, and A. Vespignani, Journal of Statistical Mechanics: Theory and Experiment 2005, P05003 (2005).
[7] D. J. Aldous and J. Shun, Statistical Science 25, 275 (2010).
[8] L. Papadopoulos, M. A. Porter, K. E. Daniels, and D. S. Bassett, Journal of Complex Networks 6, 485 (2018).
[9] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, Physical Review E 70, 056122 (2004).
[10] M. Boguñá, D. Krioukov, P. Almagro, and M. Ángeles Serrano, arXiv:1909.00226 (2019).
[11] F. Klimm, D. S. Bassett, J. M. Carlson, and P. J. Mucha, PLoS Computational Biology 10 (2014).
[12] D. A. Fair, A. L. Cohen, J. D. Power, N. U. F. Dosenbach, J. A. Church, F. M. Miezin, B. L. Schlaggar, and S. E. Petersen, PLoS Computational Biology 5 (2009).
[13] S. H. Lee, M. D. Fricker, and M. A. Porter, Journal of Complex Networks 5, 145 (2017).
[14] S. H. Lee and P. Holme, Physical Review Letters 108, 128 (2012).
[15] H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, F. Simini, and M. Tomasini, Physics Reports 734, 1 (2018).
[16] G. Boeing, Environment and Planning B: Urban Analytics and City Science, 2399803418784595 (2018).
[17] M. T. Gastner and M. E. J. Newman, J. Stat. Mech. 2006, P01015 (2006).
[18] E. Berthier, M. A. Porter, and K. E. Daniels, Proceedings of the National Academy of Sciences of the United States of America 116, 16742 (2019).
[19] S. Nauer, L. Böttcher, and M. A. Porter, Journal of Complex Networks in press (arXiv:1907.13424) (2019).
[20] M. Penrose, Random Geometric Graphs (Oxford University Press, Oxford, UK, 2003).
[21] N. Masuda, H. Miwa, and N. Konno, Physical Review E 71, 036108 (2005).
[22] J. P. Taylor-King, D. Basanta, S. J. Chapman, and M. A. Porter, Physical Review E 96, 012301 (2017).
[23] R. Xulvi-Brunet and I. M. Sokolov, Physical Review E 66, 026118 (2002).
[24] M. Sarzynska, E. A. Leicht, G. Chowell, and M. A. Porter, Journal of Complex Networks 4, 363 (2016).
[25] P. Expert, T. S. Evans, V. D. Blondel, and R. Lambiotte, Proceedings of the National Academy of Sciences of the United States of America 108, 7663 (2011).
[26] K. Zuev, M. Boguñá, G. Bianconi, and D. Krioukov, Scientific Reports 5 (2015).
[27] M. Bradonjić, A. Hagberg, and A. G. Percus, Internet Mathematics 5, 113 (2011).
[28] H. Ronellenfitsch and E. Katifori, Physical Review Letters 117, 138301 (2016).
[29] Y. Ide, N. Konno, and N. Obata, Internet Mathematics 6, 173 (2010).
[30] S. S. Manna and P. Sen, Physical Review E 66, 066114 (2002).
[31] S.-H. Yook, H. Jeong, and A.-L. Barabási, Proceedings of the National Academy of Sciences of the United States of America 99 (2002).
[32] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, SIAM Review 60, 315 (2018).
[33] G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. Muñoz, Physical Review Letters 89, 258 (2002).
[34] N. Masuda, H. Miwa, and N. Konno, Physical Review E 70, 036124 (2004).
[35] M. Boguñá and R. Pastor-Satorras, Physical Review E 68, 036112 (2003).
[36] S. A. Frank, Journal of Evolutionary Biologyology 22, 1563 (2009).
[37] J. Dall and M. Christensen, Physical Review E 66, 016121 (2002).
[38] A. Antonioni and M. Tomassini, Physical Review E 86, 037101 (2012).
[39] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[40] L. Ferretti and M. Corteleezi, Physical Review E 84, 016103 (2011).
[41] W. Aiello, A. Bonato, C. Cooper, J. Janssen, and P. Pralat, Internet Mathematics 5, 175 (2008).
[42] J. Emmanuel and P. Mörters, The Annals of Applied Probability 25, 632 (2015).
[43] D. S. Bassett, E. T. Owens, M. A. Porter, M. L. Manning, and K. E. Daniels, Soft Matter 11, 2731 (2015).
[44] M. Feng and M. A. Porter, arXiv:1902.05911 (2019).