Lxr alpha deficiency hampers the hepatic adaptive response to fasting in mice
Oosterveer, Maaike H.; Van Dijk, Theo H.; Grefhorst, Aldo; Bloks, Vincent W.; Havinga, Rick; Kuipers, Folkert; Reijngoud, Dirk-Jan

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M801922200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Oosterveer, M. H., Van Dijk, T. H., Grefhorst, A., Bloks, V. W., Havinga, R., Kuipers, F., & Reijngoud, D-J. (2008). Lxr alpha deficiency hampers the hepatic adaptive response to fasting in mice. The Journal of Biological Chemistry, 283(37), 25437-25445. https://doi.org/10.1074/jbc.M801922200

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Lxrα Deficiency Hampers the Hepatic Adaptive Response to Fasting in Mice

Received for publication, March 10, 2008, and in revised form, July 8, 2008. Published, JBC Papers in Press, July 8, 2008, DOI 10.1074/jbc.M801922200

Maaike H. Oosterveer1†, Theo H. van Dijk‡§, Aldo Grefhorst†, Vincent W. Bloks†, Rick Havinga†, Folkert Kuipers‡, and Dirk-Jan Reijnoud†‡§

From the Departments of †Pediatrics and ‡Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, P. O. Box 30.001, Groningen 9700 RB, The Netherlands

Besides its well established role in control of cellular cholesterol homeostasis, the liver X receptor (LXR) has been implicated in the regulation of hepatic gluconeogenesis. We investigated the role of the major hepatic LXR isoform in hepatic glucose metabolism during the feeding-to-fasting transition in vivo. In addition, we explored hepatic glucose sensing by LXR during carbohydrate refeeding. Lxrα−/− mice and their wild-type littermates were subjected to a fasting-refeeding protocol and hepatic carbohydrate fluxes as well as whole body insulin sensitivity were determined in vivo by stable isotope procedures. Lxrα−/− mice showed an impaired response to fasting in terms of hepatic glycogen depletion and triglyceride accumulation. Hepatic glucose 6-phosphate turnover was reduced in 9-h fasted Lxrα−/− mice as compared with controls. Although hepatic gluconeogenic gene expression was increased in 9-h fasted Lxrα−/− mice compared with wild-type controls, the actual gluconeogenic flux was not affected by Lxra deficiency. Hepatic and peripheral insulin sensitivity were similar in Lxrα−/− and wild-type mice. Compared with wild-type controls, the induction of hepatic lipogenic gene expression was blunted in carbohydrate-refed Lxrα−/− mice, which was associated with lower plasma triglyceride concentrations. Yet, expression of “classic” LXR target genes Abca1, Abcg5, and Abcg8 was not affected by Lxra deficiency in carbohydrate-refed mice. In summary, these studies identify LXRα as a physiologically relevant mediator of the hepatic response to fasting. However, the data do not support a role for LXR in hepatic glucose sensing.

Liver X receptors α and β (LXRα/β, 2 NR1H3/NR1H2) are important players in the transcriptional control of various metabolic pathways. LXRα is predominantly expressed in liver, intestine, and adipose tissue but is also present in kidney, lung, and spleen. LXRβ is expressed in almost all tissues and organs (1, 2). LXRα can be activated by oxidized cholesterol metabolites (oxysterols), which have been identified to be their natural ligands. Hence, LXRα act as intracellular “cholesterol sensors” (3). LXRα induce lipogenic gene expression upon activation, both directly (4) and indirectly via the transcription factors sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate response element binding protein (ChREBP) (4–7). LXRα induce lipogenic gene expression upon activation, both directly (4) and indirectly via the transcription factors sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate response element binding protein (ChREBP) (4–7). Both SREBP-1c and ChREBP are involved in the control of the conversion of glucose into fatty acids. Thus, LXRα coordinate the interactions between sterol and fatty acid metabolism, for instance to enable cholesterol ester formation during cellular cholesterol overload. In the past years, several studies have been published that point toward a role of LXRα in the control of glucose homeostasis. These studies showed that pharmacological LXR activation improves glycemic control in diabetic rodent models by increasing peripheral glucose disposal (8, 9) and/or inhibition of hepatic gluconeogenesis (9–12). Mitro et al. (13) recently reported that physiologically relevant concentrations of either glucose or glucose 6-phosphate (G6P) are able to bind and activate LXR in HepG2 cells. The physiological relevance of this potential “glucose sensing” role of LXR has been debated (14–16) and needs to be established.

To explore the physiological relevance of LXRα in hepatic glucose metabolism we subjected mice deficient for Lxrα, the major hepatic isoform, to a fasting-refeeding protocol. Lxrα−/− mice showed an impaired hepatic fasting response in terms of glycogen depletion and triglyceride (TG) accumulation. Although gluconeogenic gene expression was increased in 9-h fasted Lxrα−/− mice compared with wild-type mice, stable isotope infusion revealed the actual gluconeogenic flux was not affected by Lxra deficiency. G6P turnover was reduced in Lxrα−/− mice compared with wild-type mice. In carbohydrate-refed Lxrα−/− mice, the hepatic lipogenic response was blunted while changes in the expression of the LXR target genes Abca1, Abcg5, and Abcg8 were similar in wild-type and Lxrα−/− mice. Taken together, these data imply an important role for LXRα in the control of hepatic glucose metabolism upon fasting, but they do not support the hypothesis that Lxra acts as a hepatic glucose sensor.

EXPERIMENTAL PROCEDURES

Animals and Diets—F2 male Lxrα−/− mice and their wild-type littermates on a Sv129/OlaHsd C57Bl/6J mixed back-
LXRα Mediates the Hepatic Response to Fasting

TABLE 1
Plasma and liver parameters in LXRα−/− mice and their wild-type littermates

Mice were fasted for 0, 9, or 24 hours. Blood glucose concentrations were measured using a EuroFlash glucose meter. Plasma insulin, NEFA, β-HB, TG, and cholesterol concentrations were determined using commercially available kits. Values represent means ± S.E. for n = 4 – 6.

	Fed	9-h fasted	Wild-type	LXRα−/−	24-h fasted
Blood glucose (mM)	8.8 ± 0.3	9.0 ± 0.7	5.2 ± 0.2*	4.8 ± 0.8*	3.5 ± 0.4*
Plasma insulin (ng/ml)	1.59 ± 0.38	0.37 ± 0.58	0.12 ± 0.03*	0.13 ± 0.1	0.06 ± 0.01
Plasma NEFA (mM)	0.38 ± 0.04	0.48 ± 0.05	0.37 ± 0.58	0.37 ± 0.58	0.37 ± 0.58
Plasma β-HB (mM)	0.48 ± 0.04	0.23 ± 0.09	0.12 ± 0.03	0.12 ± 0.03	0.12 ± 0.03
Plasma glucose (mM)	0.46 ± 0.09	0.47 ± 0.10	0.37 ± 0.58	0.37 ± 0.58	0.37 ± 0.58
Plasma TG (mM)	1.8 ± 0.1	1.6 ± 0.1	0.23 ± 0.09	0.23 ± 0.09	0.23 ± 0.09

*p < 0.05 9-h fasted versus fed.

p < 0.05 24-h fasted versus 9-h fasted.

p < 0.05 LXRα−/− versus wild-type (Mann-Whitney U-test, p value adjusted for multiple comparisons).

Ground (17) were housed in a light- and temperature-controlled facility (lights on 7 a.m. to 7 p.m., 21 °C). They were fed standard laboratory chow ad libitum (RMH-B, Abdiets, Woerden, The Netherlands) and had free access to water. All experiments were approved by the Ethics Committee for Animal Experiments of the University of Groningen.

Fasting and Refeeding Experiments—For fasting experiments we studied separate groups of mice. All mice were killed by cardiac puncture under isoflurane anesthesia at 8 a.m., either without being fasted, after a 9-h fast, or after a 24-h fast. For the refeeding experiments, mice were killed at 8 a.m. after a 24-h refeeding period with free access to high carbohydrate chow (38.5% w/w sucrose, Abdiets) following a 24-h fasting period.

Plasma Metabolite Concentrations—Plasma glucose concentrations were measured using a EuroFlash glucose meter (Lifescan Benelux, Beere, Belgium). Plasma insulin concentrations were determined using enzyme-linked immunosorbent assay (Ultraseensitive Mouse Insulin kit, Mercodia, Uppsala, Sweden). Free fatty acid concentrations were determined using a commercially available kit (FAsen II, EuroDiagnostica, Uppsala, Sweden). In a separate group of animals, plasma NEFA, β-HB, TG, and cholesterol concentrations were determined using commercially available kits (Roche Diagnostics, Mannheim, Germany and Wako Chemicals, Neuss, Germany).

Plasma non-esterified fatty acid concentrations were determined using a commercially available kit (Ultraseensitive Mouse Insulin kit, Mercodia, Uppsala, Sweden). Non-esterified fatty acid concentrations were determined using an enzyme-linked immunosorbent assay (Ultraseensitive Mouse Insulin kit, Mercodia, Uppsala, Sweden). Plasma non-esterified fatty acid concentrations were determined using enzyme-linked immunosorbent assay (Ultrase-sensitive Mouse Insulin kit, Mercodia, Uppsala, Sweden). Plasma non-esterified fatty acid concentrations were determined using enzyme-linked immunosorbent assay (Ultrase-sensitive Mouse Insulin kit, Mercodia, Uppsala, Sweden).

Hepatic Metabolite Content and Gene Expression Levels—Livers were quickly removed, weighed, freeze-clamped, and stored at −80 °C. A small piece of liver was fixed in 4% formalin in phosphate-buffered saline for histological analysis. Blood was centrifuged (4000 × g for 10 min at 4 °C), and plasma was stored at −20 °C. Frozen liver was homogenized in ice-cold saline. Hepatic TG concentrations were analyzed using a commercially available kit (Lipid Research Kit, Roche Diagnostics) after lipid extraction according to Bligh and Dyer (18). Hepatic G6P and glycogen content were determined as described previously (19, 20). In addition, hepatic glycogen deposition was visualized by periodic acid–Schiff staining of 3-μM-thick liver slices. RNA was extracted from frozen liver using TRI reagent (Sigma) and subsequently converted into cDNA by a reverse transcription procedure using Moloney murine leukemia virus transcriptase and random primers according to the manufacturer’s protocol. For real-time PCR, cDNA was amplified using the appropriate primers and probes. Primer and probe sequences for 18S, ATP binding cassette a1/g5/g8 (Abca1/g5/g8), carbohydrate response element binding protein (Chrebp), fatty acid synthase (Fas), fructose-1,6-biphosphatase 1 (Fbp1), glucose-6-phosphate dehydrogenase (G6pdh), glucose-6-phosphate translocase (G6pt), peroxisome proliferator activated receptor gamma coactivator 1 alpha (Pgc-1α), phosphoenolpyruvate carboxykinase (Pepck), pyruvate dehydrogenase kinase 4 (Pdk4), stearoyl-CoA desaturase 1 (Scd1), and sterol regulatory element binding protein 1c (Srebp-1c) have been published previously (www.LabPediaticsRug.nl). For acetyl-CoA carboxylase 1 (Acc1) the following primer/probes were used: sense, CCT CAT AAC CAG AGG GAA CAT C; antisense, CTAT CTA GAG TGC TGG T; probe, AGC CTA AAC AGA AGT CCC TTT GCC TCC AAC (accession number NM_133602.2). For acetyl-CoA carboxylase 2 (Acc2): sense, CCC AGG AGG CTG CAT TGA; antisense, AGA CAT GCT GGG CCT CAT AGT A; probe, CAC AAC TGA TCC TGA ATC TCA CGC GC (accession number NM_133904.1). All mRNA levels were normalized for 18S expression.

In Vivo Flux Measurements—Mice were equipped with a permanent catheter in the right atrium via the jugular vein (21) and were allowed a recovery period of at least 3 days. After the recovery period, the mice were placed in experimental cages and were fasted from 11 p.m. to 8 a.m. with drinking water available. All infusion experiments were performed in conscious, unrestrained mice. To determine hepatic carbohydrate fluxes, mice were infused with a solution containing [U-13C]glucose (7 mM), [2-13C]glycerol (82 μM), [1-13C]glucose (17 μM), and paracetamol (1 mg/ml) during 6 h at an infusion rate of 0.6 ml/h as described previously (22, 23). Blood glucose concentrations were measured every 30 min. Blood and urine spots were collected every 60 min on filter paper. In total, 80–90 μl of blood was withdrawn per animal from the tail vein during these experiments.

Hyperinsulinenic euglycemic clamps were performed in a separate group of mice as described earlier (8). Mice were fasted from 11 p.m. to 8 a.m. the next day with drinking water available. During 6 h, they were infused with two solutions. The first solution contained bovine serum albumin (1% w/v, Sigma), somatostatin (40 μg/ml, UCB, Breda, The Netherlands), insulin (110 milliunits/ml, Actrapid, Novo Nordisk, Bagsvaerd, Denmark), glucose (1111 mM), and [U-13C]glucose (33 mM, 99% 13C atom percent excess, Cambridge Isotope Laboratories, Andover, MA) and was infused at a rate of 0.135 ml/h. The second solution consisted of glucose (1111 mM) containing [U-13C]glucose (33 mM). The infusion rate of this solution was variable to maintain euglycemia. Blood glucose concentrations were measured every 15 min. Every 30 min, a bloodspot was collected. In total, 150–170 μl of blood was withdrawn per animal from the tail vein during these experiments.
Analytical procedures for extraction of glucose from blood spots, derivatization of the extracted compounds and gas chromatography-mass spectrometry measurements of derivatives were performed according to van Dijk et al. (22–24). From this, hepatic carbohydrate fluxes were calculated using mass isotopomer distribution analysis as previously described (22, 23, 25). Supplemental Fig. S1 depicts the isotopic model used. To balance input and output of hepatic G6P, minor adaptations were made to the published equations (26). The equations are given in supplemental Table S1. Glucose production and metabolic clearance rates during hyperinsulinemic euglycemic clamps were calculated according to Grefhorst et al. (8).

Statistics—All data are presented as mean values ± S.E. Statistical analysis was performed using SPSS for Windows software (SPSS 12.02, Chicago, IL). Analysis of data obtained in Lxr^{−/−} versus wild-type mice was assessed by Mann-Whitney U test for plasma and liver parameters. In vivo flux data were analyzed by analysis of variance for repeated measurements. The null hypothesis was rejected at the 0.05 level of probability, except for the fasting-refeeding experiments, where this p value was adjusted for multiple comparisons.

RESULTS

The Fasting Response Is Hampered in Lxr^{−/−} Mice—We compared the changes in metabolic parameters in fasted Lxr^{−/−} mice and wild-type littermates. Upon fasting, blood glucose and plasma insulin concentrations decreased while plasma NEFA and β-hydroxybutyrate concentrations increased, without differences between Lxr^{−/−} and wild-type mice (Table 1). Plasma TG concentrations increased upon fasting in both genotypes while plasma cholesterol concentrations were not affected. Compared with wild-type mice, hepatic G6P content tended
Lxrα Mediates the Hepatic Response to Fasting

to be higher in 9-h fasted Lxrα−/− mice (Fig. 1A, +73%, p = 0.26). Twenty-four hours of fasting decreased hepatic G6P content in both phenotypes, but this drop was less pronounced in Lxrα−/− mice. Hepatic glycogen content decreased upon fasting in both groups (Fig. 1B). However, in wild-type mice hepatic glycogen content already reached its lowest level after 9-h fast, whereas in 9-h fasted Lxrα−/− mice it was similar to what observed in the fed state. Histological analysis revealed that the glycogen in the 9-h fasted Lxrα−/− mice was mainly located in the periporal zone (Fig. 1C). After 24 h of fasting, hepatic glycogen stores were similarly depleted in both genotypes (Fig. 1B). Hepatic TG content increased upon fasting, but to a markedly lesser extent in Lxrα−/− mice compared with wild-type controls (Fig. 1D).

Gluconeogenic flux plays an essential role in glycogen accumulation (27) and hepatic gluconeogenic gene expression, e.g. of Pepck and G6pase, has been shown to be decreased upon Lxr activation (9–11). We therefore determined whether the increased hepatic glycogen content in the 9-h fasted Lxrα−/− mice was paralleled by an increased expression of genes encoding enzymes involved in hepatic gluconeogenesis. Compared with wild-type mice, hepatic expression of Pgc-1α, Pepck, Fbp1, and G6ph (encoding G6P hydrolyase, one component of the multiprotein complex G6Pase) were all increased in 9-h fasted Lxrα−/− mice (Fig. 2A). Expression of genes encoding other major enzymes involved in hepatic carbohydrate metabolism (G6pt, Gk, Pk, Pdk4, and Gp, except for Gs, Fig. 2, A and B) was not affected by Lxrα deficiency. Moreover, the lipogenic gene expression profile was similar in 9-h fasted wild-type and Lxrα−/− mice, except for a reduction of Acc2 and Scd1 expression (Fig. 2C).

Impaired Hepatic G6P Metabolism in 9-h Fasted Lxrα−/− Mice Is Associated with Decreased Glucose Turnover and Increased Hepatic G6P Content—A 9-h fast uncovered major differences in hepatic adaptive response between wild-type and Lxrα−/− mice. To determine whether the increased gluconeogenic gene expression was a cause of the observed differences in hepatic glycogen and G6P content between 9-h fasted wild-type and Lxrα−/− mice, we determined glucose turnover, disposal, and individual hepatic carbohydrate fluxes using stable isotope techniques (22, 28). During the infusion of the stable isotopes, blood glucose concentrations were lower in Lxrα−/− mice compared with wild-type littermates (Fig. 3A). Steady-state isotope enrichment was reached from 3 h of infusion onwards. Isotope dilution data during this steady-state situation are shown in Table 2. Glucose cycling and endogenous glucose production were reduced in Lxrα−/− mice compared with their wild-type littermates (Fig. 3B), resulting in a decreased total glucose production. Metabolic glucose clearance was similar in both groups of mice (Fig. 3C).

Gluconeogenic flux, e.g. de novo synthesis of G6P was not affected by Lxrα deficiency (Table 3). In the compartmentation of newly synthesized G6P toward glucose (86 ± 1% in both Lxrα−/− and wild-type mice) and glycogen (14 ± 1% in both Lxrα−/− and wild-type mice) was comparable in both genotypes. However, glucose phosphorylation (glucokinase flux), dephosphorylation (glucose-6-phosphatase flux), glycogen synthesis (glycogen synthase flux), and glycogen breakdown (glycogen phosphorylase flux) were reduced in Lxrα−/− mice compared with wild-type mice (Table 3). G6P turnover and glucose balance were reduced in Lxrα−/− mice compared with wild-type littermates, while glycogen balance tended to be less negative in Lxrα−/− mice (Fig. 4).
Lxrα Mediates the Hepatic Response to Fasting

TABLE 2
Primary isotopic parameters during steady state infusion (t = 180 – 360 min) in 9-h fasted Lxrα−/− mice and their wild-type littermates

The parameters were calculated using the equations listed in supplemental Table S1. Values represent means ± S.E. for n = 6.

	Wild-type	Lxrα−/−
Isotope dilution		
d(glc)	0.016 ± 0.001	0.019 ± 0.001*
d(UDPglc)	0.141 ± 0.008	0.164 ± 0.006*
Isotope exchange		
c(glc)	0.27 ± 0.02	0.19 ± 0.01*
c(UDPglc)	0.15 ± 0.03	0.31 ± 0.01
MIDA analysis		
f(glc)	0.66 ± 0.03	0.71 ± 0.02
f(UDPglc)	0.54 ± 0.02	0.52 ± 0.01

* p < 0.05 Lxrα−/− versus wild-type (analysis of variance for repeated measurements). For abbreviations see supplemental Table S1.

TABLE 3
Individual fluxes comprising hepatic G6P metabolism during steady-state infusion (t = 180 – 360 min) in 9-h fasted Lxrα−/− mice and their wild-type littermates

The individual fluxes were calculated using the equations listed in supplemental Table S1. Values represent means in micromoles/kg/min ± S.E. for n = 6.

Component	Wild-type	Lxrα−/−
Gluconeogenic flux	109 ± 6	98 ± 4
Glucokinase flux	75 ± 9	39 ± 3*
Glucose-6-phosphatase flux	223 ± 16	158 ± 6*
Glycogen synthase flux	45 ± 4	34 ± 3*
Glycogen phosphorylase flux	71 ± 7	48 ± 4*

* p < 0.05 Lxrα−/− versus wild-type (analysis of variance for repeated measurements).

sulinemia resulted in a 41 and 51% reduction of hepatic glucose production in Lxrα−/− and wild-type mice, respectively (compare Fig. 5C with Fig. 3B). In addition, peripheral insulin sensitivity was not affected by Lxrα deficiency, because the MCR was increased to 406% in Lxrα−/− mice and 378% in wild-type littermates (compare Figs. 5D with 3C).

Carbohydrate Refeeding Affects Hepatic Lipogenesis and Gene Transcription Independent of LXRα—We also determined whether there are indications for glucose-mediated LXR activation. Therefore, plasma and liver metabolite concentrations were assessed in Lxrα−/− and wild-type mice that were refed a carbohydrate rich diet following a 24-h fast (Table 4). Blood glucose and plasma insulin, NEFA, and β-hydroxybutyrate concentrations were comparable in both groups of carbohydrate-refed mice. Plasma TG concentrations were lower in carbohydrate-refed Lxrα−/− mice compared with wild-type mice, whereas plasma cholesterol concentrations were similar. Hepatic G6P and glycogen content were increased in carbohydrate-refed mice compared to mice that had been fasted for 24 h (Fig. 2, A and B), but no differences were observed between the two genotypes (Table 4). Hepatic TG content was lower in carbohydrate-refed Lxrα−/− mice (p = 0.052).

In both groups of mice, carbohydrate refeeding increased expression of Gk, Phk, and Gp, while Pdk4 expression was decreased. Chrebp and Gs expression were not affected by carbohydrate refeeding (Fig. 6A). Expression of Srebp-1c, Acc1, Fas, and Scd1 was clearly induced in carbohydrate-refed wild-type mice, while this response was less pronounced in Lxrα−/− mice. Acc2 expression was not affected by carbohydrate refeeding (Fig. 6B). In both wild-type and Lxrα−/− mice, expression of the LXR target genes Abca1, Abcg5, and Abcg8 was not induced by carbohydrate-refeeding (Fig. 6C).

We therefore performed hyperinsulinemic euglycemic clamps in 9-h fasted conscious, unrestrained mice. Steady-state isotope enrichment and euglycemia (Fig. 5A) were reached within 3 h of infusion. The glucose infusion rates to maintain euglycemia (Fig. 5B) did not differ between the two genotypes, indicative for unaffected whole body insulin sensitivity in Lxrα−/− mice compared with wild-type littermates. Hepatic insulin sensitivity was not affected in Lxrα−/− mice. Hyperinsulinemia resulted in a 41 and 51% reduction of hepatic glucose production in Lxrα−/− and wild-type mice, respectively (compare Fig. 5C with Fig. 3B). In addition, peripheral insulin sensitivity was not affected by Lxrα deficiency, because the MCR was increased to 406% in Lxrα−/− mice and 378% in wild-type littermates (compare Figs. 5D with 3C).
LXRα Mediates the Hepatic Response to Fasting

LXRs act as cholesterol sensors that control transcription of genes involved in cellular cholesterol and lipid homeostasis. Lipid and carbohydrate metabolism are tightly linked and strongly regulated to ensure an adequate control of whole body energy metabolism. LXR regulates transcription and activity of the glucose-sensing lipogenic transcription-factor ChREBP (4), which strongly suggest a physiological role of LXR in hepatic carbohydrate metabolism in the postprandial state.

It is known that LXR activation results in hepatic steatosis (5, 29). On the other hand, prolonged fasting is also associated with hepatic lipid accumulation (30). These lines of evidence prompted us to study the role of hepatic LXR during fasting and refeeding. LXR

/L9r

/H9251

is considered to be the major isoform regulating lipogenic gene expression in the liver. Therefore, we subjected

/L9r

/H9251

/H11002

/H11002

mice (17) to fasting and refeeding protocols, and we applied sophisticated stable isotope techniques to quantify hepatic carbohydrate fluxes in vivo in these mice.

We are the first to show that LXRα plays an important role in the feeding-to-fasting transition. LXRα deficiency results in an impaired fasting response, indicated by a delayed fasting-induced hepatic glycogen depletion and increased hepatic G6P content in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. Moreover, the

/L9r

/H9251

/H11002

/H11002

mice accumulated less hepatic TG upon fasting.

Expression of gluconeogenic genes was increased in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. This is in agreement with the decreased expression of Pgc-1α, G6pase, and Pepck upon pharmacological LXR activation (9–11). However, evaluation of hepatic carbohydrate fluxes in 9-h fasted mice revealed that the induction of gluconeogenic gene expression in

/L9r

/H9251

/H11002

/H11002

mice was not paralleled by an increased gluconeogenic flux. Thus, there is a discrepancy between gene expression levels and gluconeogenic flux in vivo (8). This indicates that other factors such as precursor availability (31, 32) and post-transcriptional modification of enzymes are important determinants that control hepatic carbohydrate fluxes in vivo.

Glucose phosphorylation and dephosphorylation as well as glycogen synthesis and breakdown were reduced in

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. Thus, instead of an altered de novo synthesis of G6P the interconversions of G6P, glucose and glycogen were clearly affected in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice. The net effect of the lower glycogen synthesis (−24%) and breakdown (−32%) fluxes in

/L9r

/H9251

/H11002

/H11002

mouse was a less negative glycogen balance, supporting the delayed glycogen depletion observed upon fasting in the Lxrα-deficient mice.

DISCUSSION

LXRs act as cholesterol sensors that control transcription of genes involved in cellular cholesterol and lipid homeostasis. Lipid and carbohydrate metabolism are tightly linked and strongly regulated to ensure an adequate control of whole body energy metabolism. LXR regulates transcription and activity of the glucose-sensing lipogenic transcription-factor ChREBP (4), which strongly suggest a physiological role of LXR in hepatic carbohydrate metabolism in the postprandial state. It is known that LXR activation results in hepatic steatosis (5, 29). On the other hand, prolonged fasting is also associated with hepatic lipid accumulation (30). These lines of evidence prompted us to study the role of hepatic LXR during fasting and refeeding. LXRα is considered to be the major isoform regulating lipogenic gene expression in the liver. Therefore, we subjected

/L9r

/H9251

/H11002

/H11002

mice (17) to fasting and refeeding protocols, and we applied sophisticated stable isotope techniques to quantify hepatic carbohydrate fluxes in vivo in these mice.

We are the first to show that LXRα plays an important role in the feeding-to-fasting transition. LXRα deficiency results in an impaired fasting response, indicated by a delayed fasting-induced hepatic glycogen depletion and increased hepatic G6P content in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. Moreover, the

/L9r

/H9251

/H11002

/H11002

mice accumulated less hepatic TG upon fasting.

Expression of gluconeogenic genes was increased in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. This is in agreement with the decreased expression of Pgc-1α, G6pase, and Pepck upon pharmacological LXR activation (9–11). However, evaluation of hepatic carbohydrate fluxes in 9-h fasted mice revealed that the induction of gluconeogenic gene expression in

/L9r

/H9251

/H11002

/H11002

mice was not paralleled by an increased gluconeogenic flux. Thus, there is a discrepancy between gene expression levels and gluconeogenic flux in vivo (8). This indicates that other factors such as precursor availability (31, 32) and post-transcriptional modification of enzymes are important determinants that control hepatic carbohydrate fluxes in vivo.

Glucose phosphorylation and dephosphorylation as well as glycogen synthesis and breakdown were reduced in

/L9r

/H9251

/H11002

/H11002

mice compared with wild-type littermates. Thus, instead of an altered de novo synthesis of G6P the interconversions of G6P, glucose and glycogen were clearly affected in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice. The net effect of the lower glycogen synthesis (−24%) and breakdown (−32%) fluxes in

/L9r

/H9251

/H11002

/H11002

mouse was a less negative glycogen balance, supporting the delayed glycogen depletion observed upon fasting in the Lxrα-deficient mice.

FIGURE 4. Hepatic glucose balance, glycogen balance, G6P turnover, and gluconeogenic flux in 9-h fasted

/L9r

/H9251

/H11002

/H11002

mice and their wild-type littermates during steady state infusion (t = 180–360 min). Glucose and glycogen balances were calculated from the difference between input (glucokinase flux for glucose balance and glycogen synthase flux for glycogen balance) and output (glucose-6-phosphatase flux for glucose balance and glycogen phosphorylase flux for glycogen balance). G6P turnover was calculated from the sum of gluconeogenic flux, glucokinase flux, and glycogen phosphorylase flux. Open bars, wild-type mice; filled bars,

/L9r

/H9251

/H11002

/H11002

mice. Values represent means ± S.E. for

n

6; *,
p < 0.05

/L9r

/H9251

/H11002

/H11002

versus wild-type (analysis of variance for repeated measurements).
The remaining glycogen was located in the periportal zone. It is known that upon fasting, glycogen is initially degraded to G6P in periporal hepatocytes. In perivenous hepatocytes, glycogen is predominantly broken down into pyruvate and hence released as lactate (reviewed in Ref. 33). Thus in the livers of 9-h fasted Lxrα−/− mice, less glycogen was broken down, contributing to the reduced G6P turnover observed in these mice. The changes in G6P and glycogen metabolism were not secondary to changes in hepatic gluconeogenesis (27, 34), because neither the gluconeogenic flux nor the partitioning of newly synthesized G6P toward glucose and glycogen was affected by Lxrα deficiency. In addition, the net effect of reduced glucokinase and glucose-6-phosphatase fluxes was a reduction in endogenous glucose production and glucose cycling.

Glycogen synthesis and breakdown are regulated by several factors, including insulin. Although insulin concentrations were comparable in 9-h fasted Lxrα−/− mice and their wild-type littermates, hepatic insulin sensitivity could have been altered by Lxrα deficiency, explaining the differences observed in hepatic G6P and glycogen content as well as their interconversions. Hepatic and peripheral insulin sensitivity were determined in 9-h fasted Lxrα−/− mice and their wild-type littermates using hyperinsulinemic euglycemic clamps. Insulin sensitivity of both hepatic glucose production and peripheral glucose disposal was not affected by Lxrα deficiency. Although LXR agonists have been implicated as potential insulin sensitizers (9, 10, 12), our data do not support a direct role of LXR as a potential mediator of hepatic and peripheral insulin sensitivity (8). However, many of the studies performed on the role of LXR are based on pharmacological activation. In the Lxrα−/− mice there may be some adaptations that prevent the endogenous ligand from increasing, or there may be additional systems that compensate for the Lxrα deficiency. The reduced hepatic carbohydrate fluxes could also be a result from an altered reliance on glucose versus fatty acids and/or a differential energy demand in the Lxrα−/− mice during the feeding-to-fasting transition. In addition to the delay in glucose depletion observed upon fasting in the Lxrα−/− mice, these mice accumulated remarkably less TG. Gene expression analysis provided indications for an increase in hepatic fatty acid oxidation in fasted Lxrα−/− mice, which could explain this remarkable reduction in hepatic TG accumulation (data not shown). However, additional in vivo studies are required to determine the physiological relevance of these observations.

Finally, we explored the role of LXRα in glucose-induced hepatic lipogenesis. Upon refeeding, hepatic TG content was lower, and plasma TG levels were reduced in Lxrα−/− mice

TABLE 4

Plasma and liver parameters upon refeeding in Lxrα−/− mice and their wild-type littermates
Plasma insulin (ng/mL)
Plasma NEFA (mM)
Plasma TG (mM)
Hepatic glycogen (µmol/g)
Hepatic G6P (µmol/g)
Hepatic TG (µmol/g)

*a p < 0.05 Lxrα−/− versus wild-type (Mann-Whitney U-test).
Lxrα Mediates the Hepatic Response to Fasting

A

Glycolysis/ glycogen metabolism

Relative mRNA expression

Chrebp Gk Pk Pdk4 Gs Gp

Wildtype 24h

Lxrα−/− 24h

Wildtype refed

Lxrα−/− refed

p = 0.032 vs. wildtype

B

Lipogenesis

Relative mRNA expression

Srebp-1c Acc1 Acac2 Fms Scdl

Wildtype 24h

Lxrα−/− 24h

Wildtype refed

Lxrα−/− refed

p = 0.052 vs. wildtype

C

Cholesterol transport

Relative mRNA expression

Abca1 Abcg5 Abcg8

Wildtype 24h

Lxrα−/− 24h

Wildtype refed

Lxrα−/− refed

Values represent means ± S.E. for n = 5; &,

p < 0.05 refed versus 24-h fasted; *, p < 0.05 Lxrα−/− versus wild-type (Mann-Whitney U test, p value adjusted for multiple comparisons).

FIGURE 6. Hepatic gene expression levels upon fasting and refeeding in Lxrα−/− mice and their wild-type littermates. Mice were fasted for 24 h and refed a carbohydrate rich diet during 24 h. A, glycolytic gene expression; B, lipogenic gene expression; C, cholesterol transporter gene expression. Abca1, Abcg5, Abcg8, Atp binding cassette a1/g5/g8; Acc, acetyl CoA carboxylase; Chrebp, carbohydrate response element binding protein; Fas, fatty acid synthase; Gk, glucokinase; Gp, glycerol 3-phosphate; Gs, glycogen synthase; Pdk4, pyruvate dehydrogenase kinase 4; Pk, pyruvate kinase; Scdl1, stearoyl-CoA desaturase 1; Srebp-1c, sterol regulatory element binding protein 1c. Light gray bars, 24-h fasted wild-type mice; dark gray bars, 24-h fasted Lxrα−/− mice; open bars, refed wild-type mice; filled bars, refed Lxrα−/− mice. Values represent means ± S.E. for n = 5; &,

p < 0.05 refed versus 24-h fasted; *, p < 0.05 Lxrα−/− versus wild-type (Mann-Whitney U test, p value adjusted for multiple comparisons).

compared with wild types. Quite strikingly, no differences in Chrebp expression were observed between Lxrα−/− and wild-type mice. This is in contrast to observations by Cha and Repa (4), which suggested that CHREBP is a downstream target of LXRα. However, carbohydrate refeeding resulted in a less pronounced induction of Srebp-1c and other lipogenic gene expression in the Lxrα−/− mice compared with the wild-types. Considering our observation that Chrebp and Pk expression were similar in carbohydrate-refed Lxrα−/− and wild-type mice, we conclude that the blunted lipogenic response in carbohydrate-refed Lxrα−/− mice resulted from the reduced SREBP-1c activity secondary to Lxrα deficiency. Apparently, the relationship between LXR, ChREBP, and SREBP-1c on the one hand and hepatic TG metabolism on the other hand requires further investigation.

Recent in vitro studies have shown that glucose is able to bind and activate hepatic LXR (13), suggesting that LXR may act as a putative hepatic “glucose sensor.” However, the physiological relevance of glucose sensing by LXR has been debated (14–16) and therefore required further investigation. In the studies performed by Mitro et al. (13), the expression of the cholesterol transporters that are direct LXR targets, e.g. Abca1 and Abcg1, only marginally increased upon carbohydrate-refeeding, whereas lipogenic mRNA expression was clearly induced.

We confirmed that the expression of the classic LXR-target genes Abca1, Abcg5, and Abcg8 was not affected by carbohydrate-refeeding in Lxrα−/− mice. Thus, the effect of carbohydrate refeeding on hepatic lipogenic gene expression was different from that on expression of the cholesterol transporters Abca1, Abcg5, and Abcg8. Similar results have been obtained by Denechaud et al. (16), who showed no induction of hepatic Abcg1 and Abca1 mRNA expression in carbohydrate-refed mice, whereas lipogenic gene expression was induced. Moreover, in contrast to the blunted induction of lipogenic gene expression, Abcg1 and Abca1 expression was not affected in carbohydrate-refed Lxrαβ−/− mice compared with wild-type controls (16). Taken together, these and our data provide strong evidence that carbohydrate refeeding does not induce hepatic gene expression via LXR and, therefore, question the physiological relevance of glucose sensing by hepatic LXR in vivo.

In summary, our data identify LXRα as an important player in control of metabolic adaptation during the feeding-to-fast- ing transition but question the physiological relevance of glucose sensing by hepatic LXR. In addition to its regulatory role in cholesterol, lipid, and glucose metabolism to ensure energy storage in the postprandial state, LXRα seems to facilitate the release of stored energy upon fasting. Under these conditions, LXRα not only mediates TG accumulation, but also controls hepatic G6P and glycogen deposition, because it determines the partitioning and turnover of these energy-bearing molecules, possibly to fulfill the liver’s demand for these metabolites.

Acknowledgment—We thank Juul F. W. Baller for excellent technical assistance.

REFERENCES

1. Willy, P. J., Umesono, K., Ong, E. S., Evans, R. M., Heyman, R. A., and Mangelsdorf, D. J. (1995) Genes Dev. 9, 1033–1045
2. Teboul, M., Enmark, E., Li, Q., Wikstrom, A. C., Pelto-Huikko, M., and Gustafsson, J. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 2096–2100
3. Lehmann, J. M., Kliewer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B., Su, J. L., Sundseth, S. S., Winegar, D. A., Blanchard, D. E., Spencer, T. A., and Willson, T. M. (1997) J. Biol. Chem. 272, 3137–3140
4. Cha, J. Y., and Repa, J. J. (2007) J. Biol. Chem. 282, 743–751
5. Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwedner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., and Shan, B.
LXRα Mediates the Hepatic Response to Fasting

Hohorst, H. J. (1970) in Methoden der Enzymatischen Analyse (Bergmeyer, H. U., ed) pp. 1200–1204, Verlag Chemie, Weinheim, Germany

Kuipers, F., Hovinga, R., Bosschier, H., Toorop, G. P., Hindriks, F. R., and Vonk, R. J. (1985) Gastroenterology 88, 403–411

Van Dijk, T. H., Boer, T. S., Hovinga, R., Stellarda, F., Kuipers, F., and Reijngoud, D. J. (2003) Anal. Biochem. 322, 1–13

Bandsma, R. H., Greffhorst, A., Van Dijk, T. H., van der Sluijs, F. H., Hammer, A., Reijngoud, D. J., and Kuipers, F. (2004) Diabetologia 47, 2022–2031

Lee, W. N., Byerley, L. O., Bergner, E. A., and Edmond, J. (1991) Biol. Mass Spectrom. 20, 451–458

Hellerstein, M. K., Neese, R. A., Linfoot, P., Christiansen, M., Turner, S., and Letscher, A. (1997) J. Clin. Invest. 100, 1305–1319

Derks, T. G., Van Dijk, T. H., Greffhorst, A., Rake, I. P., Smit, G. P., Kuipers, F., and Reijngoud, D. J. (2008) Hepatology 47, 1032–1042

Youn, J. H., and Bergman, R. N. (1990) Am. J. Physiol. 258, E899–E906

Bandsma, R. H., Van Dijk, T. H., Harmel At, A., Kok, T., Reijngoud, D. J., Staels, B., and Kuipers, F. (2004) J. Biol. Chem. 279, 8930–8937

Greffhorst, A., Elzinga, B. M., Voshol, P., Plosch, T., Kok, T., Bloks, V. W., van der Sluijs, F. H., Havekes, L. M., Romijn, J. A., Verkade, H. J., and Kuipers, F. (2002) J. Biol. Chem. 277, 34182–34190

van Ginneken, V., Verhey, E., Poelmans, R., Ramakers, M., van Dijk, K. W., Ham, L., Voshol, P., Havekes, L., Van, E. M., and van der Gref, J. (2007) Biochim. Biophys. Acta 1771, 1263–1270

Xu, J., Xiao, G., Trujillo, C., Chang, V., Blanco, L., Joseph, S. B., Bassilana, S., Saad, M. F., Tontonoz, P., Lee, W. N., and Kurland, J. J. (2002) J. Biol. Chem. 277, 50237–50244

Burgess, S. C., Leone, T. C., Wende, A. R., Croce, M. A., Chen, Z., Sherry, A. D., Maloy, C. R., and Finck, B. N. (2006) J. Biol. Chem. 281, 19000–19008

Jungermann, K., and Kietzmann, T. (1996) Annu. Rev. Nutr. 16, 179–203

Greenberg, C. C., Jurczak, M. J., Danos, A. M., and Brady, M. J. (2006) J. Biol. Chem. 281, 1–8
Legend Supplementary Table 1

S1
Supplementary Table 1 Parameters and equations used to calculate hepatic glucose metabolism

Parameter	Equation
Primary isotopic parameters	
1. d(glc)	\[
\frac{M_0(glc)_{\text{blood}}}{M_0(glc)_{\text{infusate}}}\]	
2. d(UDPglc)	\[
\frac{M_1(pGlcUA)_{\text{urine}}}{M_1(gal)_{\text{urine}}}\]	
3. c(glc)	\[
\frac{M_0(pGlcUA)_{\text{urine}}}{M_0(glc)_{\text{blood}}}\]	
4. c(UDPglc)	\[
\frac{M_1(glc)_{\text{blood}}}{M_1(pGlcUA)_{\text{urine}}}\]	
5. f(glc)	\[
\frac{M_2(glc)_{\text{blood}}}{M_2(\text{FBP:MIDA})_{\text{glc}}}\]	
6. f(UDPglc)	\[
\frac{M_2(pGlcUA)_{\text{urine}}}{M_2(\text{FBP:MIDA})_{\text{pGlcUA}}}\]	
Whole body glucose metabolism	
7. Ra(glc;whole body)	\[
\text{Inf}(glc;\text{total})/d(glc)\]	
8. Ra(UDPglc;whole body)	\[
\text{Inf}(gal;\text{total})/d(UDPglc)\]	
9. MCR(glc)	\[
\frac{Ra(glc;\text{whole body})}{\text{glc conc}}\]	
10. Ra(glc;endo)	\[
Ra(glc;\text{whole body}) - \text{Inf}(gal;\text{total})\]	
11. Ra(UDPglc;endo)	\[
Ra(UDPglc;\text{whole body}) - \text{Inf}(gal;\text{total})\]	
12. Rr(glc)	\[
\frac{c(glc)/[1-c(glc)]}{Ra(glc;\text{endo})}\]	
13. Rr(UDPglc)	\[
\frac{c(UDPglc)/[1-c(UDPglc)]}{Ra(UDPglc;\text{endo})}\]	
14. Total Ra(glc;endo)	\[
Ra(glc;\text{endo}) + Rr(glc)\]	
15. Total Ra(UDPglc;endo)	\[
Ra(UDPglc;\text{endo}) + Rr(UDPglc)\]	
16. UDPglc(glc)	\[
c(UDPglc) \times [Ra(glc;\text{endo}) + \text{Inf}(glc;\text{total})]\]	
17. glc(UDPglc)	\[
c(glc) \times [Ra(UDPglc;\text{endo}) + \text{Inf}(gal;\text{total})]\]	
18. GNG(glc)	\[
f(glc) \times [Ra(glc;\text{whole body}) + Rr(glc)]\]	
19. GNG(UDPglc)	\[
f(UDPglc) \times [Ra(UDPglc;\text{whole body}) + Rr(UDPglc)]\]	
20. GNG(glc; indirect)	\[
[f(UDPglc) \times UDPglc(glc)] + [f(glc) \times Rr(glc)]\]	
21. GNG(UDPglc; indirect)	\[
[f(glc) \times glc(UDPglc)] + [f(UDPglc) \times Rr(UDPglc)]\]	
22. GNG(glc; direct)	\[
GNG(glc) - GNG(glc; indirect)\]	
23. GNG(UDPglc; direct)	\[
GNG(UDPglc) - GNG(UDPglc; indirect)\]	
24. GLY(glc)	\[
Ra(glc;\text{endo}) - GNG(glc;\text{direct}) - [f(UDPglc) \times UDPglc(glc)]\]	
25. GLY(UDPglc)	\[
Ra(UDPglc;\text{endo}) - GNG(UDPglc;\text{direct}) - \text{glc(UDPglc)}\]	
Individual fluxes comprising hepatic G6P metabolism	
26. GNG(G6P)	\[
GNG(glc;\text{direct}) + GNG(UDPglc;\text{direct})\]	
27. GK	\[
glc(UDPglc) + Rr(glc)\]	
28. G6Pase	\[
GNG(glc) + GLY(glc)\]	
29. GS	\[
GNG(UDPglc) + GLY(UDPglc)\]	
30. GP	\[
GLY(UDPglc) + GLY(glc) + \{[1-c(glc)] \times Rr(UDPglc)\}\] |
Schematic model of hepatic carbohydrate metabolism. Major metabolic pathways and enzymatic reactions are depicted, despite glycolysis, sharing glucose-6-phosphate (G6P) as a central metabolite. The pathways included are: (1) Gluconeogenic flux toward G6P, (2) Glycogen phosphorylase flux, (3) Glucose-6-phosphatase flux, (4) Glucokinase flux and (5) Glycogen synthase flux. Mice received an infusion containing [U-13C]glucose, [2-13C]glycerol, [1-2H]galactose and paracetamol for six hours. Mass isotopomer distribution analysis (MIDA) was applied on blood glucose and urinary paracetamol glucuronide samples.
Supplementary Figure 1

![Graphical representation of metabolic pathways involving glucose, glycogen, and paracetamol metabolism.](image-url)

- **Glucose**
 - [U-13C]-glucose
 - [2-13C]-glycerol
- **Glycogen**
 - [1-2H]-galactose
 - UDP-glucose
- **Blood sample glucose**
- **Urine sample paracetamol glucuronic acid**
Access the most updated version of this article at doi: 10.1074/jbc.M801922200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2008/07/09/M801922200.DC1.html

This article cites 32 references, 15 of which can be accessed free at
http://www.jbc.org/content/283/37/25437.full.html#ref-list-1