Effect of Insulin on Post-AI Circulating Estradiol-17β and LH in Crossbred Cattle

Mridula Sharma*, H.P. Gupta, Shiv Prasad

Department of Veterinary, Gynecology and Obstetrics, College of Veterinary and Animal Sciences, G. B. Pant University of Ag. & Tech., Pantnagar-263145 Distt- U.S. Nagar, Uttarakhand.

Abstract | The present study was conducted to evaluate the effect of insulin on blood level of estradiol-17β (E2) and LH. The experiment was conducted using forty-eight cows and divided into Treatment (I, II and III) and control groups each consisting of 12 animals. Insulin was injected @0.25 IU/Kg body weight subcutaneously on day 0-3, 4-7 and 8-11 of estrous cycle in group I, II and III, respectively and PBS was injected in control animals. Blood samples were collected on day 0, 5, 10, 16 and 21 of estrous cycle. Serum was separated and stored at -20°C till analysis. In pregnant animals, E2 level in blood on day 5 was significantly (P<0.01) lower in group I compared to control and group III. For the same day it was significantly (P<0.05) lower in group II compared to group III and control. Serum concentration of LH, in pregnant animals on day 0, 5 and 10 was significantly (P<0.01) higher from day 21 in group III. Serum LH concentration on day 5 and 10 was also significantly (P<0.05) higher than day 16. These results indicated that insulin treatment declined the estrogen at day 5 and enhanced LH secretion up to day 10 reflecting its beneficial effect in corpus luteum survival and further conception.

Keywords | Insulin, Crossbred, Estradiol 17-β, Cow, Post-AI, LH etc

INTRODUCTION

Application of metabolic hormones i.e. somatotrophin, insulin and insulin like growth factors (IGF-1) in regulation of ovarian functions in livestock is fairly a recent development (Purkayastha et al., 2015). Insulin and IGF-I either alone or in combination with gonadotrophins have been found to have a profound effect on steroidogenesis of cultured bovine granulosa cells (Singh et al., 2010, Gong et al., 1993b, Spicer et al., 1993), Garzo and Darrington (1984), Poretsky and Piper (1994) and Willis et al. (1996) suggested that acting at the ovarian level, insulin appears to potentiate the steroidogenic response to gonadotropins, both in vitro (Baithalu et al., 2013) and in vivo. In granulosa cells, this effect may be mediated by an increase in LH (Luteinizing Hormone) receptor number, since insulin in association with FSH (Follicle stimulating Hormone) increases ovarian LH-binding capacity (Adashi et al., 1985; Davoren et al., 1986). In vitro studies have shown that insulin directly stimulates both mitosis and steroid production of cultured bovine granulosa (Gutierrez et al., 1999), theca (Stewart et al., 1995) and luteal cells (Mamluk et al., 1999). Willis et al. (1996) reported that insulin stimulates ovarian steroidogenesis by both granulosa and thecal cells, increasing production of androgens, estrogens and progesterone in vitro.

Selvaraju et al. (2002) recorded significantly higher plasma progesterone concentrations on day 10 of estrous cycle in insulin treated repeat breeding cattle than control.
et al. (2008) reported a higher progesterone concentration in insulin-treated goats on days 12, 16, 20 and 24. Stewart et al. (1995) suggested that insulin enhances growth and proliferation of theca cells leading to production of progesterone. Increase in progesterone might be due to direct effect of insulin on corpus luteum or by increasing the ovulation rate. Donaldson and Hart (1981) reported that administration of estradiol-17-β increased blood insulin concentration in farm animals. Gong et al. (1994) and Monniaux and Pisselet (1992) reported that IGF-I enhances FSH stimulated estrogen and progesterone production in granulosa cells of bovines and ovinus. Ramoun et al. (2007) found that pretreatment with insulin for 3 days before gonadotrophin-releasing hormone agonist injection increased the size of the largest follicle and the oestrus induction rate in buffaloes suffering from summer acyclicity.

Insulin stimulates the follicle production and estrogen synthesis (Gupta et al., 2010). Information regarding the effect of insulin administration during follicular and luteal phase of the cycle on conception rate in cows is limited. Therefore, the present study was designed to observe the effect of insulin on circulating LH and estradiol 17-β in crossbred cows.

MATERIALS AND METHODS

The present study was conducted on 48 crossbred cyclic cows aged 4-12 years, maintained at Instructional Dairy Farm, GBPUA&T, Pantnagar (Uttarakhand). Ethical approval was taken to conduct the study. Cows were divided into four groups (n=12), as per the day of insulin (0.25 IU/kg subcutaneously) treatment. It was day 0-3, 4-7 and 8-11 into four groups (n=12), as per the methods described by Snedecor and Cochran (1994) and results were presented as Mean±SE.

Estradiol 17-β was assayed by RIA kits (Immunotech, France) as per guidelines of manufacturer of RIA kits. Luteinizing hormone (LH) level in blood was determined by ELISA. Samples stored at -20 °C were thawed and used for qualitative and quantitative determination of various hormones in blood.

The data obtained in the present study was analyzed statistically as per the methods described by Snedecor and Cochran (1994) and results were presented as Mean±SE.

RESULTS AND DISCUSSION

Serum estradiol 17-β concentration (pg/ml) in animals of different groups was estimated (Table 1). Analysis of variance indicated that E2 concentration on day 0, 5, 10, 16 and 21 in all groups and among group I, II, III and IV varied non-significantly on different days.

Serum estradiol 17-β concentration was also studied in insulin treated pregnant animals (Table 2). Blood level of E2 on day 5 varied significantly (P<0.01) among all the groups. E2 level in blood on day 5 was significantly (P<0.01 and P<0.05) lower in group I compared to Control and group III, respectively. For the same day it was significantly (P<0.05) lower in group II compared to group IV. E2 level in pregnant animals on day 5 was significantly lower in group I and II compared to IV and in group I compared to group III might be due to suppressing effect of insulin on immature follicles during luteal phase of estrous cycle. E2 concentration on day 0, 5, 10, 16 and 21 was studied and analysed between pregnant and non-pregnant animals of each group.

Table 1: Blood concentration (Mean±SE) of estradiol 17-β (pg/ml) during estrous cycle in insulin treated crossbred cows (n=12).

Treatment Groups	Days of estrous cycle	Days of estrous cycle			
	Day 0	Day 5	Day 10	Day 16	Day 21
Group I	10.35±3.15	7.82±1.99	8.46±1.79	8.35±1.23	7.11±1.73
Group II	12.53±2.59	11.60±3.28	11.65±2.58	13.22±3.29	11.49±2.45
Group III	17.43±3.05	13.94±1.81	14.93±2.49	16.13±2.0	15.11±3.26
Group IV	9.63±1.72	12.89±2.45	10.46±2.22	12.72±1.57	12.17±2.38

Table 2: Blood concentration (Mean±SE) of estradiol 17-β (pg/ml) during estrous cycle in insulin treated pregnant crossbred cows

Days of estrous cycle	Treatment Groups	Treatment Groups		
	Pregnant (n=7)	Pregnant (n=3)		
	Pregnant (n=5)	Pregnant (n=2)		
Day 0	10.17±5.54	9.19±4.34	22.67±6.45	18.94±1.55
Day 5	4.66±2.05	12.90±4.99	15.44±3.46	26.84±4.09
Day 10	7.16±1.42	4.57±2.19	11.95±2.82	13.42±9.43
Day 16	8.27±1.53	11.51±6.97	17.92±2.40	17.48±0.27
Day 21	6.36±2.75	11.83±4.60	19.47±5.06	17.03±3.55

Means bearing different superscripts within the rows (a,b,c) differs significantly (P<0.05)
E2 might be in correlation with LH level as suggested by earlier researchers that the effect of insulin and LH on bovine granulosa cells is likely physiologically relevant (Spicer, 1998). Average concentrations of insulin and LH in beef and dairy cattle are usually less than 10 ng/ml (Richards et al., 1989; 1991) except at the time of the ovulatory surge of LH during which LH concentrations can achieve > 30 ng/ml (Richards et al., 1991). Studies in vivo have shown that insulin injections increase estradiol concentrations in follicular fluid of cattle (Simpson et al., 1994), and that estradiol concentrations in follicular fluid decrease after the LH surge in cattle (Voss and Fortune, 1993). Thus, insulin and LH may be physiologically relevant regulators of ovarian follicular estradiol production in cattle (Spicer, 1998).

Serum LH concentration (mIU/ml) in insulin treated crossbred cows during estrous cycle was estimated (Table 3) while it was also studied and analysed in insulin treated pregnant and non-pregnant animals (Table 4).

Serum concentration of LH on day 0, 5, 10, 16 and was analysed between pregnant and nonpregnant animals for all the groups. Its concentration on day 16 and 21 varied significantly (P<0.05) for group III. Concentration of LH on day 16 and day 21 in group III was significantly (P<0.05) lower in pregnant animals compared to nonpregnant animals. It was due to the negative feedback effect of P4 on LH secretion (Convey et al., 1977).

Level of LH in blood on day 10 was also significantly (P<0.05) higher in pregnant animals of group I compared to pregnant animals of control. LH supports the P4 secretion since luteinizing hormone treatment increased progesterone secretion in 6th–10th and 11th–16th days of the estrous cycle as suggested by Rekawiecki (2007).

CONCLUSION

Insulin treatment declined the estrogen at day 5 and enhanced LH secretion up to day 10 reflecting its beneficial effect in corpus luteum survival and further conception.

ACKNOWLEDGMENTS

Authors are thankful to the Dean, College of Veterinary and Animal Sciences and Joint Director, IDF, DES GB-PUA & T, Pantnagar, for facilities and financial assistance extended during the course of study.

CONFLICT OF INTEREST

There is no conflict of interest.

AUTHORS CONTRIBUTION

All authors contributed equally.
References

- Adashi EY, Resnick CE, D’Ercole AJ, Svoboda ME, VanWyk JJ (1985). Insulin-like growth factors as intravascular regulators of granulosa cell growth and function. Endocrine Rev. 6: 400-420. https://doi.org/10.1210/edrv-6-3-400
- Baihtalu RK, Singh SK, Gupta C, Raja AK, Saxena A, Agarwal SK (2013). Insulin stimulates progesterone secretion to a greater extent than LH in early pregnant buffalo luteal cells cultured in vitro. Anim. Reprod. Sci. 142: 888-890. https://doi.org/10.1016/j.anireprosci.2013.09.004
- Convey EM, Beck TW, Neitzel RR, Hafs HD (1977). Growth hormone increases luteal cytochrome P450 side-chain cleavage in bovine luteal cells. J. Anim. Sci. 67: 62-67. https://doi.org/10.2527/jas1977.454792x
- Davoren JB, Hsueh JW (1986). Aromatase activity in cultured granulosa cells: evidence for a role in estrogen production and the modulation by follicle-stimulating hormone and insulin. Am. J. Obst. Gynaecol. 148: 657-62. https://doi.org/10.1016/0002-9378(84)90769-5
- Donaldson IA, Hart IC (1981). Growth hormone, insulin, and the modulation by follicle-stimulating hormone and insulin-like growth factor-I in vitro. J. Reprod. Fertil. 60: 628–634. https://doi.org/10.1095/biolreprod46.5.1141
- Gutierrez CG, Gong JG, Bramley TA, Webb R (1999). Effects of recombinant bovine somatotrophin, insulin like growth factor-1, steroidogenic acute regulatory protein, and follicle-stimulating hormone on bovine granulosa cell proliferation, progesterone production, insulin, insulin-like growth factor-I and follicle stimulating hormone. Biol. Reprod. 44: 961–966. https://doi.org/10.1095/biolreprod44.6.961
- Sarath T (2005). Follicular Dynamics, Endocrine and Nitric Oxide Profiles In Cyclic And Insulin Administered Acyclic Goats. M.V.Sc Thesis, IVRI, Izatnagar (U.P.). morphological characteristics. Biol. Reprod. 52: 608–616.
- Selvaraju S, Agarwal SK, Karche SD, Srivastava SK, Majumdar AC, Shanker U (2002). Fertility responses and hormonal profiles in repeat breeding cows treated with insulin. Anim. Reprod. Sci. 73: 141–149. https://doi.org/10.1016/S0378-4320(02)00133-1
- Simpson BB, Chase JCC, Spicer LJ, Vernon RK, Hammond AC, Rae DO (1994). Effect of exogenous insulin on plasma and follicular insulin-like growth factor-I, insulin-like growth factor binding protein activity, follicular oestradiol and progesterone, follicular growth in superovulated Angus and Brahman cows. J. Reprod. Fertil. 102: 483–92. https://doi.org/10.1530/jrf.0.1020438
- Singh J Lalthazuali, SPs Ghuman, AK Pandey, GS Dhaliwal (2010). Impact of insulin treatment during post-insemination mid-luteal phase on luteal profile and conception rate in buffaloes. Indian J. Anim. Sci. 80 (9) (2010), Pp. 854-856.
in vitro: involvement of TNF receptors. Endocrine 8: 109–115. https://doi.org/10.1385/ENDO:8:2:109

• Stewart RE, Spicer LJ, Hamilton TD, Keefer BE (1995). Effects of insulin-like growth factor I and insulin on proliferation and on basal and luteinizing hormone-induced steroidogenesis of bovine thecal cells: involvement of glucose and receptors for insulin-like growth factor I and luteinizing hormone. J. Anim. Sci. 73: 3719–3731. https://doi.org/10.2527/1995.73123719x

• Voss AK, Fortune JE (1993). Levels of messenger ribonucleic acid for cytochrome P450 17 alpha-hydroxylase and P450 aromatase in preovulatory bovine follicles decrease after the luteinizing hormone surge. Endocrinol. 132: 2239–45. https://doi.org/10.1210/endo.132.5.8477668

• Willis D, Mason H, Gilling-Smith C, Franks S (1996). Modulation by insulin of FSH and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J. Clin. Endocrinol. Metabol. 81: 302-09. https://doi.org/10.1210/jc.81.1.302