Induction of circulating phospholipase A₂ by intravenous administration of recombinant human tumour necrosis factor

Waldemar Pruzanski,¹ CA
Matthew L. Sherman,² Donald W. Kufe,² and Peter Vadas¹

¹Inflammation Research Group, University of Toronto, The Wellesley Hospital, 160 Wellesley St. East, Toronto, Ontario, Canada M4Y 1J3; ²Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Abstract

We have examined the effects of intravenous infusion of recombinant human tumour necrosis factor (rh-TNF) on serum activity of phospholipase A₂ (PLA₂) in patients with malignancies. Nine patients received a 24 h continuous intravenous infusion ranging from 1.0×10^5 U/m² to 3.0×10^5 U/m²; 14 patients received a 5 day continuous intravenous infusion ranging from 0.5×10^5 U/m²/day to 3.0×10^5 U/m²/day. Twenty one of 23 patients responded with marked increases in serum PLA₂ activity that were detectable 3 h after the beginning of the rh-TNF infusion and reached maximum levels at 18 h with a mean increase of 16.2-fold. In patients receiving a 5 day rh-TNF infusion, the highest levels of PLA₂ were observed after the first day of infusion. Serum PLA₂ activity declined continuously to 2.9-fold above baseline at the end of the infusion. A significant correlation was noted between the dose of infused rh-TNF and the maximum increase in PLA₂ activity. To our knowledge, this is the first time that an association between intravenous TNF administration and induction of circulating PLA₂ in man has been established.

Key words: Cancer patients, Phospholipase A₂, Recombinant human tumour necrosis factor

Introduction

Phospholipase A₂ is a lipolytic enzyme that hydrolyses membrane associated phospholipids of mammalian cells and initiates the arachidonic acid cascade.¹ Several of its end product eicosanoids have well known proinflammatory activity.² Recent studies have demonstrated that phospholipase A₂ (PLA₂) is secreted extracellularly in inflammatory sites including synovial fluids in inflammatory arthritides,³ peritoneal fluid in peritonitis,⁴ and sera in septic shock.⁵ PLA₂ injected into skin,⁶ joints⁷ or paws⁸ of experimental animals elicits a time and dose-dependent inflammatory reaction. We have previously shown that intravenous injection of endotoxin in experimental animals⁹ or human volunteers,¹⁰ was associated with a marked increase in circulating PLA₂ activity. Furthermore, intravenous infusion of PLA₂ reproduces many features of endotoxaemia.⁵

Bacterial and toxic insults lead to the rapid synthesis and release of cytokines including IL-1 and TNF.¹¹-¹⁴ We recently demonstrated that these two cytokines markedly enhance the synthesis and extracellular release of PLA₂ from cultured mammalian cells.¹⁵ Infusion of TNF in man elicits clinical and haemodynamic manifestations similar to those caused by endotoxin.¹⁶,¹⁷ Since infusion of PLA₂ leads to similar manifestations,² it was of significant interest to determine whether recombinant human TNF (rh-TNF), given intravenously, would be followed by intravascular secretion of PLA₂ in vivo. The finding that TNF infusions, without prestimulation with endotoxin, cause increase in circulating PLA₂ would reinforce the link between proximal cytokine response and PLA₂ activity, and may provide insights into the mechanisms of the proinflammatory activity of TNF. Such findings may also indicate that TNF has an impact on activation of the PLA₂-initiated arachidonic acid cascade. The present study demonstrates that intravenous administration of TNF in humans leads to a rapid and marked increase in circulating PLA₂ activity.

Materials and Methods

Patient selection and therapy: Twenty-three patients with cancer (Tables 1 and 2) received intravenous infusion of human recombinant tumour necrosis factor (rh-TNF) (Asahi Chemical Industry Company of America, New York, NY). Nine patients (group I) received a 24 h continuous intravenous infusion,¹⁶ and 14 patients (group II) received a 5 day continuous intravenous infusion.¹⁷ In the first group the rh-TNF dose varied from 1.0×10^5 U/m²/day to 3.0×10^5 U/m²/day. In the second group the daily dose ranged from 0.5×10^5 U/m²/day to 3.0×10^5 U/m²/day. The first group also
received etoposide (Bristol-Myers Oncology, Wallingford, CT), 80 mg.m^-2 by continuous intravenous infusion for 3 days, starting 24 h prior to rh-TNF infusion. Both groups were pretreated with indomethacin 50 mg on the evening before and q.i.d. thereafter for 24 h. All patients were hospitalized and monitored as described. Sodium chloride (0.9%) was infused at 150 ml.h^-1 for 24 h prior to rh-TNF infusion. rh-TNF was diluted in the same buffer and infused at a constant rate (150–300 ml/day). In all patients, previous chemotherapy and/or radiotherapy was discontinued at least 3 weeks prior to rh-TNF infusion.

Drug formulation: The rh-TNF used for this study had a specific activity of 2.3 × 10^6 U/mg protein. One unit was defined as the amount required to lyse 50% of L-M cells in a 48 h assay. The preparation of TNF used in this study contained less than 100 pg of endotoxin per mg protein, as tested by the Limulus lysate assay.

Enzyme assay: Phospholipase A2 assay was performed as described, using autoclaved *Escherichia coli* K12 C600 labelled with [14C]oleic acid as the substrate. Assays were performed in substrate excess, using 2.8 × 10^8 E. coli per assay, corresponding to 5.6 nmol of phospholipid with a specific activity of 4120 cpm/nmol. In conditions of substrate excess, the rate of substrate hydrolysis was linear with reaction times up to 30 min, over a five-fold range of enzyme concentration. One unit of PLA2 activity is defined as the amount of enzyme activity that hydrolyses 56 pmol of E. coli phospholipid in 30 min. Activity of serum PLA2 after rh-TNF infusion was tested at different pH and calcium concentrations as described previously. The effect of neutralizing polyclonal antibody (NPA) against rh-PLA2 (lot 207, Biogen, Cambridge, MA) on rh-TNF-induced endogenous PLA2 was tested by incubating NPA with PLA2-containing sera for 60 min at room temperature, and testing the mixture for residual PLA2 activity. The direct effect of rh-TNF on PLA2 activity in vitro was tested using E. coli phospholipid substrate. rh-TNF in concentrations of up to 1000 U/ml were pre-incubated with PLA2 for 30 min at room temperature prior to addition of substrate.

The reference range for normal serum PLA2 (n = 143) is 149 ± 69 (SD) U/ml with a range of 40–365 U/ml. Serum samples from patients infused with rh-TNF were coded and assayed for PLA2 activity without any knowledge regarding the relationship of the sample to the time, dose or the nature of infusion. The results were simultaneously exchanged and analysed in two centres.

Statistical analysis: Statistical analysis was performed by standard tests including correlation coefficient and Student’s t-test.

Results

Group I consisted of three men and six women ranging in age from 25 to 73 y (mean 52.2 y). The primary tumours of these patients are summarized in Table 1. Metastases, mainly to the liver and lung, were present in all patients. One patient had a past history of cancer of the breast, one had tuberculosis sclerosis and one had mild, chronic pancreatitis. None had fever or infection preceding the rh-TNF infusion. White blood cell count varied from 5 to 11 × 10^12/l, with a normal differential count. All patients had normal creatinine.

Before rh-TNF infusion six of the nine patients had normal serum PLA2. In three patients, two with renal cell carcinoma and one with cancer of the colon, baseline PLA2 was elevated ranging from 727 U/ml to 2297 U/ml. Seven of nine patients responded to rh-TNF infusion with marked increases in PLA2 (Table 1). Increase in PLA2 activity was evident at 3 h after beginning the rh-TNF administration, and lasted for the entire period of infusion. Maximal PLA2 activity (16.2-fold) was observed at 18 h of infusion (Figure 1). Levels of PLA2 remained elevated (1510–38274 U/ml) in all three patients in whom the serum was tested 24 h after terminating the infusion.

In group II, there were seven men and seven women ranging in age from 37 to 70 y (mean 55.4 y). The diagnoses are summarized in Table 2. Metastases were detected in twelve of 14 patients. No past diseases known to influence PLA2 activity, such as pancreatitis, rheumatoid arthritis, infection or fever were documented. All patients had normal renal function (creatinine <1.2 mg/dl). Peripheral blood leukocyte count ranged from 4 to 14 × 10^9/l with normal differential counts.

Ten of 14 patients had normal serum PLA2 activity prior to rh-TNF infusion (Table 2). In four patients, initial serum PLA2 levels were elevated ranging from 604 U/ml to 6397 U/ml. All 14 patients demonstrated an increase in PLA2 activity after initiation of the rh-TNF infusion (Table 2). The activity was highest after the first day of infusion (13-fold) and it gradually declined to 2.9 times higher than baseline after 5 days of infusion, and two times higher than baseline 24 h after termination of rh-TNF infusion (Fig. 2).

In both groups, there was a significant correlation between the daily dose of rh-TNF infused and the maximum increase in PLA2 activity (p < 0.05) (Fig. 3). PLA2 in the sera of rh-TNF infused patients was calcium dependent, with optimal activity at 5 mM and was completely inactivated by 2 mM EDTA. The pH optimum was 7.5. Polyclonal antibodies against human group II PLA2 completely neu-
Table 1. Clinical/laboratory profile of patients who received continuous 24 h intravenous infusion of rh-TNF

No.	Age	Sex	Diagnosis*	Dose of rh-TNF U/m²	PLA₂ U/ml peak during TNF infusion
1	53	F	Renal cell, liver	1×10^6	193
2	62	F	Renal cell, liver, lung	1×10^6	2297
3	57	F	Hepatoma, lung	1×10^6	105
4	34	F	Colon, lung, kidney	2×10^6	364
5	54	F	Renal cell, lung	2×10^6	2093
6	73	M	Colon, lung, liver	2×10^6	82
7	25	M	Colon, lung	2×10^6	727
8	49	F	Lung, contralateral	2×10^6	115
9	63	M	Renal cell, lung, skeletal	3×10^5	270

* Top line, primary cancer; below, site of metastatic involvement.

Table 2. Clinical/laboratory profile of patients who received 5 day continuous intravenous infusion of rh-TNF

No.	Age	Sex	Diagnosis*	Dose of rh-TNF U/m²/day	PLA₂ U/ml peak during TNF infusion
1	55	F	Lung, skeletal	0.5×10^5	263
2	55	M	Carcinoid, liver	0.5×10^5	167
3	54	F	Skeletal, lung, brain	0.5×10^5	158
4	37	F	Ovarian, liver	1.0×10^6	106
5	49	F	Breast, liver	1.0×10^6	178
6	55	M	Colon, liver	1.0×10^5	6397
7	45	M	Renal, pancreas	2.0×10^5	601
8	48	M	Colon, pleura, liver	2.0×10^5	264
9	58	F	Colon, pleura, liver	2.0×10^5	265
10	67	F	Uveal melanoma, lung	2.4×10^5	311
11	70	M	Colon	2.4×10^5	604
12	68	M	Lung	2.4×10^5	287
13	56	F	Colon, mesenteric	3.0×10^5	224
14	58	M	Renal, peritoneum	3.0×10^5	1984

* Top line, primary cancer; below, site of metastatic involvement.
nalized (93%) PLA₂ activity in the sera of rh-TNF infused patients. rh-TNF or etoposide had no detectable effect on the activity of purified PLA₂ in vitro.

Discussion

Extracellular phospholipase A₂ (PLA₂) has recently been identified in synovial fluids in inflammatory arthritides. Subsequently, very high serum activity of PLA₂ was found in systemic inflammatory processes such as septic shock and adult respiratory distress syndrome. Purified PLA₂ instilled into the lungs or injected into joints, skin or paws of experimental animals causes marked dose and time-dependent inflammatory reactions that are abolished by inhibitors of this enzyme. Taken together, these results suggest that PLA₂ plays an important role in local and systemic inflammatory processes.

Marked increases in circulating PLA₂ have been observed in animals challenged with endotoxin. In such animals, the rise in the serum PLA₂ activity correlates with the fall in the mean arterial blood pressure. When the PLA₂-enriched fraction of septic shock serum is infused into healthy rabbits, it reproduces the clinical and haemodynamic changes induced by endotoxin. Pretreatment of the PLA₂-enriched fraction by the PLA₂ inhibitor, \(p\)-bromophenacyl bromide, inhibits PLA₂ activity and abrogates the hypotensive effect.

Very high circulating PLA₂ activity has been found in patients with gram-negative septic shock. In both retrospective and prospective studies, the activity of PLA₂ correlates with the Haemodynamic Instability Score (\(p < 0.001 \)). The above studies have shown that PLA₂ fulfils several of Lefer's criteria for a mediator of circulatory shock: (1) a marked increase in circulatory PLA₂ in response to bacteria or their toxins; (2) hypotension caused by PLA₂ in experimental animals; and (3) correlation of endogenous PLA₂ levels with the severity of hypotension in both animals and man. Furthermore, an inhibitor of PLA₂, \(p\)-bromophenacyl bromide, ameliorates these effects of PLA₂. Taken together, these data suggest that PLA₂ is one of the mediators of septic shock manifestations.

Several studies have recently examined the relationship between PLA₂ and cytokines. TNF
exerts its impact on the cells through its binding to cell surface receptors. The interaction of TNF with the receptors is associated with GTP binding and increase in GTPase activity. Furthermore, the association of TNF and PL\(_2\) has been reported by several groups. TNF stimulates PL\(_2\) activity in HL-60 and Balb/c 3T3 cells and, conversely, PL\(_2\) activity is required for the transcriptional activation of TNF gene expression. Moreover, inhibitors of PL\(_2\) have been found to interfere with the cytotoxic and cytolytic activity of TNF. This phenomenon may be related to the previously described decline in TNF levels that occurs in patients who received 24 h continuous infusions. Neither the relationship between the saturation of TNF receptors and its impact on PL\(_2\) release, nor the intra-vascular/extravascular distribution of PL\(_2\) or its metabolism are known. However, the maximal increase in PL\(_2\) activity correlated with the daily dose of rh-TNF. Therefore a dose-related link was established between TNF and PL\(_2\) activation. Thus, PL\(_2\) is activated by both endotoxin and by proximal cytokines. Since PL\(_2\) is proinflammatory and vasoactive, some manifestations previously attributed to endotoxin and tumour necrosis factor should probably be attributed to PL\(_2\) as well.

In human volunteers challenged intravenously with endotoxin, marked increases in circulating PL\(_2\) followed transient increases in TNF. This temporal relationship is of particular interest, since it has been found that bacterial or toxin challenge in animals or in man leads to a prompt release of TNF followed by transient increases in GTPase activity. Furthermore, the association of TNF and PL\(_2\) has been reported by several groups. TNF is one of the endogenous mediators of clinical and haemodynamic changes, which in the past were assumed to be related to bacterial toxins, have recently been linked to the effects of cytokines. TNF is capable of eliciting most, if not all, effects of endotoxin. It was therefore concluded that TNF is one of the endogenous mediators of endotoxic shock. Recent studies have also suggested that several physiological and metabolic changes that are associated with malignant processes are in fact mediated through TNF.

Several clinical trials with intravenous administration of rh-TNF have been performed in cancer patients. The cascade of events following TNF infusions has not been elucidated. Transient increases in circulating IL-6 have been observed in cancer patients infused with TNF. The highest level of IL-6 was observed after 3-6 h of TNF infusion, and correlated with TNF dose. We hypothesized that TNF infusion will also lead to increased PL\(_2\) activity. This postulate was based on the observations that endotoxin infusion leads to increases in TNF following by high circulating PL\(_2\) and that TNF enhances PL\(_2\) synthesis and secretion in vitro. Many of the effects of TNF depend on the local and systemic activation of the cyclooxygenase pathway. Furthermore, prostanoids appear to play a role in mediating the effects of TNF. Thus, if the activity of PL\(_2\) is modulated by TNF, the role of eicosanoids in proximal cytokine mediated reactions would become more apparent.

In the present study we have shown that in 21 of 23 patients infusions of rh-TNF were associated with significant increases in the activity of circulating PL\(_2\). The earliest serum PL\(_2\) increases occurred 3 h after beginning the rh-TNF infusion and maximal levels were observed at 18-24 h. Of interest is the fact that in the patients who received 5 day rh-TNF infusion, the level of circulating PL\(_2\) declined after the first 24 h. This phenomenon may be related to the previously described decline in TNF levels that occurs in patients who received 24 h continuous infusions. Neither the relationship between the saturation of TNF receptors and its impact on PL\(_2\) release, nor the intra-vascular/extravascular distribution of PL\(_2\) or its metabolism are known. However, the maximal increase in PL\(_2\) activity correlated with the daily dose of rh-TNF. Therefore a dose-related link was established between TNF and PL\(_2\) activation. Thus, PL\(_2\) is activated by both endotoxin and by proximal cytokines. Since PL\(_2\) is proinflammatory and vasoactive, some manifestations previously attributed to endotoxin and tumour necrosis factor should probably be attributed to PL\(_2\) as well.

References

1. Verheij HM, Sloebboom AJ, de Haat GH. Structure and function of phospholipase A\(_2\). Eur Physiol Biochem Pharmacol 1981; 91: 91-203.
2. Trang IE. Prostaglandins and inflammation. Semin Arthr Rheum 1980; 9: 153-190.
3. Pruzanski W, Vadas P. Secretory synovial fluid phospholipase A\(_2\) and its role in the pathogenesis of inflammation in arthritis. J Rheumatol 1988; 15: 1601-1603.
4. Vadas P, Pruzanski W, Stefanfki E, Johnarso L, Sellhaser J, Mustad R, Bohmen J. Phospholipases A\(_2\) in acute bacterial peritonitis in man. In: Denns EA, Hunter T and Berridge M, eds. Cell activation and signal initiation: receptor and phospholipase control of inositol phosphates, PAF, and eicosanoid production. New York: Alan Liss Inc., 1989; 311-316.
5. Vadas P, Hay JB. Involvement of circulating phospholipase A\(_2\) in the pathogenesis of the hemodynamic changes in endotoxic shock. Can J Physiol Pharmacol 1983; 61: 561-566.
6. Vadas P, Pruzanski W, Stefanfki E, Sternecky B, Mustad R, Bohmen J, Fraser J, Farewell V, Bombardier C. Pathogenesis of hypotension in septic shock: correlation of circulating phospholipase A\(_2\) levels with circulatory collapse. Crit Care Med 1988; 16: 1-7.
7. Pruzanski W, Vadas P, Fornsavster V. Inflammatory effect of intradermal administration of soluble phospholipase A\(_2\) in rabbits. J Invest Dermatol 1989; 86: 380-383.
8. Vadas P, Pruzanski W, Kim J, Fornsavster V. The proinflammatory effect of intravenous injections of soluble human and venom phospholipase A\(_2\). Am J Pathol 1987; 134: 807-811.
9. Vinkhoven WS, Fawzy AA, Pran contraceptive. Edema-inducing activity of phospholipase A\(_2\) purified from human synovial fluid and inhibition by arachidonic acid. Inflammation 1988; 12: 549-561.
10. Pruzanski W, Stefanfki E, Wilmore DW, Maritch GC, Hoffman AGD, Sufiedini A, Vadas P. Sequential activation of TNF-phospholipase A\(_2\) axis following i.v. endotoxin challenge in human volunteers. J Atheroscler Res 1990; 4:A 1714.
11. Beutler B, Cerami A. The endogenous mediator of endotoxic shock. Clín Res 1987; 33: 192-197.
12. Tracey KJ, Lowry SF, Cerami A, Bachruch A. A hormone that triggers acute shock and chronic cachexia. J Infect Dis 1988; 157: 431-440.
13. Michle HR, Gullo PJ, Wilmore DW. Tumor necrosis factor and bacterial sepsis. Br J Surg 1987; 76: 670-671.
14. Simpson SG, Casey J.C. Role of tumour necrosis factor in septic and acute lung injury. Crit Care Clin 1989; 5: 27-47.
15. Vadas P, Pruzanski W, Stefanfki E, Baschli L, Aubin J, Soul A, Medner A. Extracellular phospholipase A\(_2\) secretion is a common effector pathway of interleukin-1 and tumour necrosis factor action. Immunol Lett 1991; 28: 47-54.
16. Spriggs DR, Shearn ML, Michle H, Arthur KA, Imamura K, Wilmore D, Frei III E, Kufe DW. Recombinant human tumour necrosis factor administered as a 24 hour intravenous infusion. Phase I and pharmacologic study. J Natl Cancer Inst 1988; 80: 1029-1044.
17. Sherman ML, Spriggs DR, Arthur KA, Imamura K, Frei III E, Kufe DW. Recombinant human tumour necrosis factor administered as a five day continuous infusion in cancer patients: phase I toxicity and effects on lipid metabolism. J Clin Oncol 1988; 6: 344-350.
18. Michle HR, Sherman ML, Spriggs DR, Rounds J, Christie M, Wilmore DW. Chronic TNF infusion causes anorexia but not accelerated nitrogen loss. Ann Surg 1989; 209: 19-24.
19. Stefanski E, Pruzanski W, Sternby B, Vadász P. Purification of soluble phospholipase A2 from synovial fluid in rheumatoid arthritis. J Biochem 1986; 100: 1297-1303.

20. Vadász P, Pruzanski W, Stefanski E, Sternby B. Compartmental heterogeneity of soluble phospholipases A. Inflammation 1990; 14: 173-183.

21. Edelson JD, Vadász P, Villar J, Mullen JBM, Pruzanski W. Acute lung injury induced by phospholipase A2. Structural and functional changes. Am Rev Respir Dis 1991; 143: 102-1109.

22. Pruzanski W, Vadász P. Phospholipase A2—a mediator between proximal and distal effectors of inflammation. Inflamm Today 1991; 12: 143-146.

23. Vadász P, Wasi S, Movat HZ, Hay JB. Extracellular phospholipase A2 mediates inflammatory hyperemia. Nature 1981; 293: 583-585.

24. Vadász P, Pruzanski W, Stefanski E, Rose J, Friell V, McLaughlin J, Bonnand C. Concordance of endogenous cortisol and phospholipase A2 in gram negative septic shock: a prospective study. J Lab Clin Med 1988; 111: 584-590.

25. Lefer AM. Eicosanoids as mediators of ischaemia and shock. Fed Proc 1985; 44: 275-280.

26. Larrick JW, Kunzel SL. The role of tumour necrosis factor and interleukin 1 in the immunoinflammatory response. Pharma Rev 1988; 8: 129-139.

27. Imamura K, Sherman ML, Spriggs D, Kufe D. Effect of tumour necrosis factor on GTP binding and GTPase activity in HL-60 and U937 cells. J Biol Chem 1988; 263: 10247-10253.

28. Suffys P, Beyaert R, Van Roy F, Fiers W. Reduced tumour necrosis factor-induced cytotoxicity by inhibitors of arachidonic acid metabolism. Biochem Biophys Res Commun 1987; 149: 735-743.

29. Neale MI, Fiers RA, Matthews N. Involvement of phospholipase A2 activation in tumour cell-killing by tumour necrosis factor. Immunology 1988; 64: 81-85.

30. Palombella VJ, Villec J. Mitogenic and cytotoxic actions of tumour necrosis factor in BALB/c 3T3 cells. J Biol Chem 1989; 264: 18128-18136.

31. Sherman ML, Weber BI, Datta R, Kufe D. Transcriptional and post-transcriptional regulation of macrophage-specific colony stimulating factor gene expression by tumour necrosis factor. J Clin Invest 1990; 85: 442-447.

32. Spriggs DR, Sherman ML, Imamura K, Mohri M, Rodriguez C, Robbins G, Kufe DW. Phospholipase A2 activation and autoinduction of tumour necrosis factor gene expression by tumour necrosis factor. Cancer Res 1990; 50: 7101-7107.

33. Mohri M, Spriggs DR, Kufe D. Effects of lipopolysaccharide on phospholipase A2 activity and tumour necrosis factor expression in HL-60 cells. J Immunol 1990; 144: 2678-2682.

34. Demetri GD, Spriggs DR, Sherman ML, Arthur KA, Imamura K, Kufe DW. A phase I trial of recombinant human tumour necrosis factor and interferon-gamma: effects of combination cytokine administration in vivo. J Clin Oncol 1989; 7: 1545-1553.

35. Besoueka P, Spriggs DR, Demetri G, Kufe DW, Fiers W. Circulating interleukin 6 during a continuous infusion of tumour necrosis factor and interferon. J Exp Med 1989; 169: 2257-2262.

ACKNOWLEDGEMENTS. This work was supported by grants-in-aid from the Medical Research Council of Canada and the Arthritis Society, National Institutes of Health Grant CA 42802 and by a Burroughs Wellcome Award in Clinical Pharmacology (DWK).

Received 31 March 1992; accepted in revised form 11 May 1992