Throughput Optimal Scheduling with Dynamic Channel Feedback

Mehmet Karaca, Yunus Sarikaya, Ozgur Ercetin, Tansu Alpcan, Holger Boche

Abstract—It is well known that opportunistic scheduling algorithms are throughput optimal under full knowledge of channel and network conditions. However, these algorithms achieve a hypothetical achievable rate region which does not take into account the overhead associated with channel probing and feedback required to obtain the full channel state information at every slot. We adopt a channel probing model where \(\beta\) fraction of time slot is consumed for acquiring the channel state information (CSI) of a single channel. In this work, we design a joint scheduling and channel probing algorithm named SDF by considering the overhead of obtaining the channel state information. We first analytically prove SDF algorithm can support \(1 + \epsilon\) fraction of the full rate region achieved when all users are probed where \(\epsilon\) depends on the expected number of users which are not probed. Then, for homogenous channel, we show that when the number of users in the network is greater than \(\beta\), \(\epsilon > 0\), i.e., we guarantee to expand the rate region. In addition, for heterogenous channels, we prove the conditions under which SDF guarantees to increase the rate region. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by probing only less than 50% of all channels in a CDMA based cellular network utilizing high data rate protocol under normal channel conditions.

I. INTRODUCTION

Scheduling is an essential problem for any shared resource. The problem becomes more challenging in a dynamic setting such as wireless networks where the channel capacity is time varying due to multiple superimposed random effects such as mobility and multipath fading. Opportunistic scheduling has emerged as an attractive solution for improving the efficiency of wireless systems with limited resources such as frequency band and power. In principle, opportunistic policies schedule the user with the favorable channel conditions to increase the overall performance of the system [1]. Optimal scheduling in wireless networks has been extensively studied in the literature under various assumptions. The seminal work by Tassiulas and Ephremides have shown that a simple Lyapunov-based opportunistic algorithm that schedules the user with the highest queue backlog and transmission rate product at every time slot, can stabilize the network, whenever this is possible [2].

There has been much work in developing scheduling algorithms for down-link wireless systems for various performance metrics that include stability, utility maximization and energy minimization [2], [1]. [3]. However, the common assumption in these studies is that the exact and complete channel state information, (CSI) of all users is available at every time slot. Hence, these algorithms achieve a hypothetical rate region by assuming that full channel state information is available without any channel probing or feedback costs. However, in practice acquiring CSI introduces significant overhead to the network, since CSI is obtained either by probing the channel or via feedback from the users. In current wireless communication standards such as WiMax [4] and LTE [5], there is a feedback channel used to relay CSI from the users to base station. Obviously, this feedback channel is bandlimited and it is impossible to obtain CSI from all users at the same slot. As a motivating example, consider CDMA/HDR (High Data Rate) system [6], where the Signal-to-Noise Ratio (SNR) of each link is measured. The value of the SNR is then mapped to a value representing the maximum data rate that can support a given level of error performance. This channel state information is then sent back to the base station via the reverse link data rate request channel (DRC). The channel state information is updated every 1.67 ms and sent back as 4 bits. Assume that there are 25 users in a cell, and hence, 100 bits of channel information has to be sent every 1.67 ms. This requires 60Kbps of channel rate to be dedicated only for channel measurements. The minimum data rate of HDR system is 38.4 Kbps and the average data rate is 308Kbps. Thus, overhead of acquiring CSI is twice the minimum data rate, and is approximately more than 20% of the average transmission rate. This overhead increases significantly in a multichannel communication system such as LTE. Thus, channel probing must be done efficiently in order to balance the trade-off between being opportunistic (e.g., obtaining useful channel information) and consuming valuable resources.

Most of real systems run under limited hardware and software capacity. Hence, in addition to taking into account the probing cost, the implementability of feedback schemes must be ensured in practical systems. For instance, a practical feedback scheme must not require high computation time and overhead for probing users. In addition, any feedback algorithm must not use any statistics such as channel or arrival statistics for probing decision since in real word, such statistics change over time. It is also beneficial to design a limited feedback system that can operate over a wide channel condition and numbers of users.

In this work, we consider in fully connected network (e.g., Cellular network, WLAN) where base station (BS) is transmitting to a fixed number of users. We assume that each user has infinite buffer capacity and data arrives into users’ queues according a stochastic arrival process. We aim to develop a joint scheduling and channel probing algorithm that stabilizes users’ queues with taking into account to the probing cost. Our algorithm dynamically determines the set of channels that must be probed at every time slot based on the information obtained from the channel state information of the user that has the
maximum queue length at a given time slot. The scheduling part is based on well known Max-Weight algorithm [2].

Our contributions are summarized as follows:

- We first propose a joint scheduling and channel probing algorithm which is easy to implement and low cost. In addition, our algorithm does not require any statistics (i.e., channel or arrival statistics) and can be applied over correlated and even non-stationary channels.
- Technical contributions of our paper are as follows: we first show that the proposed algorithm can achieve $1 + \epsilon$ fraction of the full rate region of the case when all users are probed. For homogenous channels, we analytically show that $\epsilon > 0$ (e.g., we guarantee to increase the rate region) when the number of users is greater than 3. For heterogenous channels, we prove that $\epsilon > 0$ as the number of channel states goes infinity or the number of users is large enough.
- We implement a realistic network setting where we simulate High Data Rate (HDR) protocol in CDMA cellular networks and show by numerical analysis that when our proposed algorithm is used a comparable performance with Max-Weight algorithm with full CSI can be achieved by only probing on the average less than 50% of users.

The rest of the paper is organized as follows. Section II summarizes the literature on opportunistic scheduling algorithms considering probing overhead. Section III presents the network model, the basic structure of the channel probing model. In Section IV, we give the problem formulation under the proposed channel probing models. In Section V, we give joint scheduling channel probing algorithms for both channel probing models. Numerical results are presented in Section VII. Finally, Section VIII concludes the paper and presents possible future directions.

II. RELATED WORKS

There has been a significant recent interest in applying Max-Weight-like algorithms in more realistic wireless network settings. Throughput-maximizing scheduling has been studied with different forms of limited CSI. For instance, infrequent channel state measurements was investigated in [7] and it was shown that achievable rate region shrinks as the frequent of CSI decreases. The impact of delayed CSI was investigated in [8]. However, unlike these works, we aim to minimize the number of probed users at a time while maximizing the achievable rate region. In this context, one of the most intriguing research challenges in the context of wireless networking with limited feedback is the design of a scheduling policy that

1) is implementable, simple and low-complexity,
2) achieves high performance, i.e., low packet delay and large rate region.
3) works (correlated or even over non-stationary channels) without requiring any statistics such as channel distribution.

In the following, we classify the works along this direction.

Limited feedback bandwidth: In [9], the authors proposed a joint scheduling and channel probing algorithm stabilizing the network by allowing the base station to probe a subset of channels (or links) at each time slot. First, the a throughput-optimality algorithm was developed that uses the expected channel rates, i.e., the channel distributions are given. While it is reasonable to estimate the joint channel state distribution when channels are independent, when the number of channels is small and channel statistics do not change. However, such estimation becomes intractable in real word where channels are non-stationary process and when the number of channels is large. Then, the authors proposed only queue length based algorithm. However, throughput-optimality of that algorithm can only be shown under certain condition, i.e., when channels are symmetric and subsets of channels are disjoint. In addition, delay performance of these algorithms are unknown. In [10], the authors proposed a variant of the algorithm in [9] to analyzes queue-overflow performance for scheduling with limited CSI.

In [11], a feedback allocation algorithm was proposed for multi-channel system with limited feedback bandwidth. In other words, only a limited number of users can be probed at a time. It was shown that the proposed algorithm can achieve $1 - \epsilon$ fraction of the full rate region when channel distributions are known at the BS. Note that the algorithms in [9], [11], [10] cannot achieve all three properties given above.

Unlike the works in [9], [11], [10], we assume a more flexible channel probing model where BS may probe all users at a given time. In other words, we did not assume bandwidth limited feedback channel. Similar model was used in [12]. However, it was assumed that all users have saturated buffers, i.e., they always have packets in the corresponding buffers and, hence, the network stability problem was not investigated. In this sense, the most related work is [13], where the optimal feedback-scheduling scheme for a single-channel downlink is derived. Specifically, in [13], it was assumed that a single channel probing requires a certain portion of data transmission (i.e., β fraction of data slot). Hence, the server has a cost for probing channels and gains a reward (queue weighted throughput) which depends on the user. The problem of finding optimal joint algorithm is transformed into an optimal stopping time problem and is solved by Markov Decision Process (MDP) where the channel probabilities are known to the BS. In addition, since the authors uses MDP to solve the problem, this formulation is computationally intractable as it involves a high dimensional state. Therefore, this work does not satisfy all three properties either.

Markovian Channels: Studies in [14], [15], [16], [17], [18] attempt to learn the channel distribution for scheduling. In [18], a 2-stage decision procedure is used where channel measurement and packet transmission has to be performed at every time slot without knowing the channel distribution. This work attempts to learn transmission success probabilities by averaging the previous outcomes. Similarly, in [14], the authors proposed to estimates the channel statistics by using some portion of the time slots for observation slot with
some probability. In [15], the authors proposed a scheduling algorithm under imperfect CSI in single-hop networks with i.i.d. channels. They consider that probing a channel brings a certain amount of energy cost. Under this setup, the proposed scheduling algorithm which decides whether to probe the channel with the energy cost is a Max-Weight type scheduling policy that minimizes the energy consumption subject to queue stability. In [17], it was assumed that wireless channels evolve as Markov-modulated ON/OFF processes. With this assumption, an exploitation-exploration trade-off was investigated. Similarly, in [16], a two-state process such as ergodic Markov chain. In practice, such an assumption does not hold most of the time. For instance, the process exhibits time-correlated and non-stationary behavior. Thus, these works cannot achieve all three properties above.

III. SYSTEM MODEL

We consider a cellular system with a single base station transmitting to N users with a fixed power. Let N denote the set of users in the cell. Time is slotted, $t \in \{0, 1, 2, \ldots \}$, and wireless channel between the base station and a mobile user is assumed to be independent across users and slots. The gain of the channel is constant over the duration of a time slot but varies between slots. In practical systems (e.g., CDMA/HDR system), transmission rate is determined by a link adaptation algorithm, which selects the highest transmission rate to meet a given allowable target error probability. Only finite number of transmission rates can be supported due to modulation and coding schemes. We assume that each channel has L possible states with corresponding rates $\mathcal{R} = \{r_1, r_2, \ldots, r_L\}$ listed in descending order, i.e., $r_k > r_l$ if $l > k$. Note that $r_k, k \in \{1, 2, \ldots, L\}$ only depends on the Signal-to-Noise Ratio (SNR). We denote $R_n(t) \in \mathcal{R}$ as the channel state information (CSI) of user n at time t. For user n, let p_k^n denote the probability of being state k, i.e., $Pr[R_n(t) = r_k] = p_k^n$ and each channel state is possible with non-zero probability such that $p_k^{\min} < p_k^n < p_k^{\max}, \forall n, i$.

A. Channel Probing Model

In this work, we assume that there is no dedicated feedback channel, and CSI is relayed over the data channel. Hence, depending on the scheduling algorithms, the scheduler can probe any number of users at any time slot. We quantify the overhead of obtaining the CSI of a single user in terms of a time fraction of the time slot as in [13]. This time duration may include the time spent for pilot signal transmission, measurement of the signal strength of pilot signal and the transmission of CSI to the base station.

We assume that at the beginning of a time slot, the BS sends a pilot signal. Based on the quality of the received pilot signal, each user n can determine its current channel state $R_n(t)$. We also assume that downlink and uplink channels are identical, i.e., the maximum transmission rates in both directions are the same. Hence, the BS obtains reports from a selected number of users before scheduling a downlink transmission. Let $N_p(t) \subset \mathcal{N}$ be the set of users who report back their CSI. Let $I_n(t)$ be an indicator function showing whether user n is scheduled to be transmitted in to slot t:

$$I_n(t) = \begin{cases} 1 & \text{if user } n \in N_p(t) \text{ and it is scheduled} \\ 0 & \text{otherwise} \end{cases}$$

(1)

Note that for successful transmission, a user scheduled to be transmitted to in slot t should be selected from among the users who have reported their channel states.

We assume that β fraction of the time slot is consumed to obtain CSI from a single user. Hence, only $(1 - \beta N_p(t)) \times T_s$ seconds are available for data transmission where $N_p(t)$ is the cardinality of $N_p(t)$ and T_s is the duration of the time slot. We assume that $1 - \beta N_p(t) < 1$. Note that when full CSI is obtained, this time is equal to $(1 - \beta N) \times T_s$. We assume that at most one user can be scheduled at a given time. Hence, the amount of data that can be transmitted to user n by the BS when $N_p(t)$ users are probed at time t is given by,

$$D_n(t) = (1 - \beta N_p(t)) T_s R_n(t) I_n(t).$$

(2)

We assume that T_s is normalized to unit slot length, i.e., $T_s = 1$ in the rest of the paper. Let $A_n(t)$ be the amount of data (bits or packets) arriving into the queue of user n at time slot t. We assume that $A_n(t)$ is stationary and it is independent across users and time slots. We denote the arrival rate vector as $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_N)$, where $\lambda_n = E[A_n(t)]$.

Let $Q(t) = (Q_1(t), Q_2(t), \ldots, Q_N(t))$ denote the vector of queue sizes, where $Q_n(t)$ is the queue length of user n at time slot t.

Definition 1: A queue is strongly stable if

$$\limsup_{t \to \infty} t^{-1} \sum_{\tau=0}^{t-1} E[Q_n(t)] < \infty$$

(3)

Moreover, if every queue in the network is stable then the network is called stable. The dynamics of the queue of user n is given by,

$$Q_n(t+1) = [Q_n(t) + A_n(t) - D_n(t)]^+.$$

(4)

where $[x]^+ = \max(x, 0)$.

Before giving the proposed scheduling algorithm the following definitions are useful.

The achievable rate region or rate region of a network is defined as the closure of the set of all arrival rate vectors λ for which there exists an appropriate scheduling policy that stabilizes the network.

Definition 2: Λ_h is the hypothetical rate region where full CSI is available (e.g. by an Oracle) without any channel probing or feedback costs, i.e., $\beta = 0$.

As discussed in [20], it is impossible to achieve the boundary of Λ_h in real systems, since there is an overhead of acquiring CSI from the users.
Definition 3: Λ_f is the achievable rate region when probing cost is taken into account and when all users’ channels are probed at every time slot according to the feedback model. Note that $\Lambda_f \subseteq \Lambda_h$.

Definition 4: Λ_a is the algorithm-dependent achievable rate region where the probing cost is taken into account.

Note that if $\Lambda_f \subseteq \Lambda_a \subseteq \Lambda_h$, then we can argue that there exists an algorithm which is more efficient than full CSI Max-Weight algorithm in terms of the rate region. We define the *weighted rate* of user n as follows:

$$W_n(t) = Q_n(t)R_n(t),$$

and $w(t)$ is the maximum weighted rate such that $w(t) = \arg\max_{n\in N} \{W_n(t)\}$. In the next section, we propose a scheduling and dynamic feedback algorithm which finds the maximum weighted rate at every time slot by probing only $N_p(t)$ number of users where $N_p(t) \leq N$.

IV. SCHEDULING AND DYNAMIC FEEDBACK (SDF) ALGORITHM

Recall that our aim is to find a joint scheduling and channel probing algorithm which is able to find the user which has the maximum weighted throughput at each time slot with minimum number of channel probing. In this section, we propose a joint scheduling and dynamic feedback allocation algorithm that determines the user which has the maximum weighted throughput at each time slot without probing every user.

SDF Algorithm:

1. **probing decision**:
 - Step 1: Determine the user which has the maximum queue length,
 $$i^* = \arg\max_{i\in N} \{Q_i(t)\}$$
 - Step 2: Probe and acquire the CSI of user i^*. Let $R_{i^*}(t)$ be the CSI of user i^* at time t.
 - Step 3: Broadcast the value of $R_{i^*}(t)$.
 - Step 4: The users which have higher rate than $R_{i^*}(t)$ report their CSIs to BS.

 Let us define the set $S_p(t)$ as follows:
 $$S_p(t) = \{j : R_j(t) > R_{i^*}(t)\}$$

2. **scheduling decision**:
 - BS schedules a user which has the maximum weighted throughput according to Max-Weight algorithm as follows:
 $$n^* = \arg\max_{n\in N_p(t)} \{(1 - \beta N_p(t))W_n(t)\}$$
 where
 $$N_p(t) = S_p(t) \cup i^*$$

Intuition: Let us assume that user n^* has the maximum weighted rate at a time slot. Given CSI of the user i^*, the CSI of users with rate lower than R_{i^*} need not be collected since their weighted rates are always smaller than that of user i^*. SDF algorithm is especially efficient when the number of users is large since in that case the number of users with rate lower than that of user i^* is large with high probability.

A. Analysis of SDF Algorithm with Homogenous Channels

Now, we investigate the increase in achievable rate region when SDF algorithm is employed. We first consider a homogenous channel model where,

$$p_k^n = p_k, \forall n.$$

Let $M(t)$ denote the number of users which do not send their CSIs since their channel conditions are worse than the user which has the maximum queue length at time t. The number of fractions of time slot consumed for probing with SDF algorithm is determined as follows: first, the BS acquires the CSI of user i^* and β fraction of time slot is used for probing user i^*. Then, BS broadcasts the value of CSI of user i^*. We assume that broadcasting CSI of a user also consumes β fraction of time slot. Then, the number of users which have higher rate than $R_{i^*}(t)$ is equal to $N - 1 - M(t)$. Hence, the total number of fractions used for channel probing within SDF algorithm at time t is given as follows:

$$N_p(t) = 1 + 1 + N - 1 - M(t) = N + 1 - M(t).$$

Note that $N_p(t) = N$ when all users are probed as in conventional Max Weight algorithm.

We consider the following two functions:

$$f_s(Q(t)) = \mathbb{E} \left[\sum_{n\in N_p(t)} (1 - \beta N_p(t))W_n(t)I_n(t)\right] |Q(t)|,$n$$

$$f_m(Q(t)) = \mathbb{E} \left[\sum_{n\in N} (1 - \beta N)W_n(t)I_n(t)\right] |Q(t)|,$n$$

where the expectation is taken with respect to the randomness of channel variations and scheduling decisions. Given $Q(t)$, both Max-Weight algorithm with full CSI and SDF schedules the same user which has the maximum weighted rate at every time slot. Hence, the value of $W_n(t)I_n(t)$ is the same for both functions, and the only difference between $f_s(Q(t))$ and $f_m(Q(t))$ appears in the number of users probed. Next, we analyze the performance of SDF algorithm in terms of achievable rate region by using the theorem given in [21].

Theorem 5: [21] If for some $\epsilon > 0$ SDF algorithm guarantees

$$f_s(Q(t)) \geq (1 + \epsilon)f_m(Q(t))$$

for all $Q(t)$, then SDF can achieve $1 + \epsilon$ fraction of the rate region Λ_f.

Theorem 6: SDF algorithm can support \((1 + \epsilon)\) fraction of the rate region \(\Lambda_f\), where
\[
\epsilon = \frac{\beta (E[M(t)] - 1)}{1 - \beta N}.
\] (8)

Proof: By using (7), \(f_s(Q(t))\) can be rewritten as follows:
\[
f_s(Q(t)) = E \left[\sum_{n} (1 - \beta(N + 1 - M(t)))W_n(t)I_n(t)|Q(t) \right]
= f_m(Q(t)) + E \left[\sum_{n} (\beta M(t) - \beta)W_n(t)I_n(t)|Q(t) \right]
\] (9)

Now, we consider the value of \(f_s(Q(t))/f_m(Q(t))\) such that,
\[
f_s(Q(t))/f_m(Q(t)) = \frac{f_m(Q(t)) + E \left[\sum_{n \in N_p(t)} (\beta M(t) - \beta)W_n(t)I_n(t)|Q(t) \right]}{f_m(Q(t))} = 1 + \frac{E \left[\sum_{n \in N_p(t)} (\beta M(t) - \beta)W_n(t)I_n(t)|Q(t) \right]}{f_m(Q(t))}
\] (10)

where,
\[
E \left[\sum_{n \in N_p(t)} (\beta M(t) - \beta)W_n(t)I_n(t)|Q(t) \right] = \sum_{m=0}^{N-1} (\beta m - \beta) E \left[\sum_{n \in N_p(t)} W_n(t)I_n(t)|Q(t), M(t) = m \right] \times \Pr[M(t) = m]
\] (11)

Note that
\[
E \left[\sum_{n \in N_p(t)} W_n(t)I_n(t)|Q(t), M(t) = m \right] = \frac{f_m(Q(t))}{1 - \beta N}
\]

Hence, (11) can be rewritten as follows:
\[
(11) = \frac{f_m(Q(t))}{1 - \beta N} \sum_{m=0}^{N-1} (\beta m - \beta) \Pr[M(t) = m] = \frac{\beta f_m(Q(t)) (E[M(t)] - 1)}{1 - \beta N}
\]

Thus we have,
\[
f_s(Q(t))/f_m(Q(t)) \geq 1 + \frac{\beta (E[M(t)] - 1)}{1 - \beta N}
\] (12)

Hence, the proposed algorithm can support \((1 + \epsilon)\) fraction of the rate region \(\Lambda_f\) where \(\epsilon = \frac{\beta (E[M(t)] - 1)}{1 - \beta N}\). This completes the proof.

Let us define
\[
f_h(Q(t)) = E \left[\sum_{n \in N(t)} W_n(t)I_n(t)|Q(t) \right]
\] (13)

Note that \(f_h(Q(t))\) represents the hypothetical capacity region, \(\Lambda_h\) since \(\beta = 0\). Hence, by comparing \(f_h(Q(t))\) and \(f_m(Q(t))\), we can find \(\epsilon_{\text{max}}\) which the maximum fraction that can be supported.

Lemma 7: The maximum fraction \(\epsilon_{\text{max}}\) is given by,
\[
\epsilon_{\text{max}} = \frac{\beta N}{1 - \beta N}
\] (14)

Proof: The proof is similar to the proof of Theorem 6 and is omitted.

Note that according to Theorem 6 the performance of SDF algorithm in terms of rate region depends on \(E[M(t)]\). if \(E[M(t)] > 1\), then \(\epsilon > 0\). In other words, we can increase the rate region. Next, we determine the the value of \(E[M(t)]\) when channels are homogenous and heterogenous.

V. PERFORMANCE OF SDF WITH HOMOGENOUS CHANNELS

We begin with a Lemma that shows how to determine the value of \(E[M(t)]\) when channels are homogenous.

Lemma 8: When channels are homogenous, \(E[M(t)]\) is given as follows:
\[
E[M(t)] = \left[p_1 + p_2 (\sum_{k=2}^{L} p_k) + p_3 (\sum_{k=3}^{L} p_k) + \ldots + p_L^2 \right] (N - 1)
\] (15)

Proof: Let \(E[M(t)]|R_i^*(t) = r_k, n = i^*\) be the conditional expectation when the user which has the maximum queue length and its CSI are given. Note that for homogenous channels, the following equality holds,
\[
E[M(t)|R_i^*(t) = r_k, n = i^*] = E[M(t)|R_i^*(t) = r_k],
\] (16)

and \(E[M(t)]\) is determined as follows:
\[
E[M(t)] = \left[\sum_{k=1}^{L} E[M(t)|R_i^*(t) = r_k] \Pr[R_i^*(t) = r_k] \right].
\]

When \(R_i^*(t) = r_1\), then SDF determines the user which has the maximum weighted rate by only using one fraction of time slot with probability \(p_1\), i.e., \(\Pr[R_i^*(t) = r_k] = p_1\). If this event occurs, the other \(N - 1\) users do not report their CSIs with probability 1 and \(E[M(t)|R_i^*(t) = r_1] = (N - 1)\). Similarly, when \(R_i^*(t) = r_2\), user \(j \neq i^*\) does not report its CSI if \(R_j(t) \leq r_2\) and \(\Pr[R_j(t) \leq r_2] = \sum_{k=2}^{L} p_k\). Hence, with homogenous channels, \(E[M(t)|R_i^*(t) = r_2] = (N - 1)\). Now, for a given any value of \(L\), we give a general formulation for \(E[M(t)]\) as follows,
\[
E[M(t)] = \left[p_1 + p_2 (\sum_{k=2}^{L} p_k) + p_3 (\sum_{k=3}^{L} p_k) + \ldots + p_L^2 \right] (N - 1)
\]

Next, we investigate the case when the channels are homogenous and uniformly distributed such that \(p_k = \frac{1}{L}\) for all \(k\).
Lemma 9: When channels are homogenous and uniformly distributed, $E[M(t)]$ is given as follows:

$$E[M(t)] = \left[\frac{1}{L} + \frac{L(L-1)}{2L^2}\right] (N-1) = \left[\frac{1}{2} + \frac{1}{2L}\right] (N-1)$$ (17)

Proof: If all channels are uniformly distributed, then $p_k = \frac{1}{L}$. In that case, using (15) $E[M(t)]$ is given by,

$$E[M(t)] = \left[\frac{1}{L} + \frac{1}{L^2}\left(\sum_{k=2}^{L} \frac{1}{k} + \frac{L}{L} \sum_{k=3}^{L} \frac{1}{k} + \ldots + \frac{1}{L}\right)\right] (N-1)$$

Thus, we have,

$$E[M(t)] = \left[\frac{1}{L} + \frac{1}{L^2}(L-1) + \frac{1}{L^2}(L-2) + \ldots + \frac{1}{L}\right] (N-1)$$ (18)

When we arrange (19), we obtain

$$E[M(t)] = \left[\frac{1}{L} + \frac{L(L-1)}{2L^2}\right] (N-1) = \left[\frac{1}{2} + \frac{1}{2L}\right] (N-1)$$ (19)

Hence, $E[M(t)]$ is jointly convex function of p_1, p_2, \ldots, p_L.

Lemma 12: $E[M(t)]$ has the minimum value when channels are uniformly distributed.

Proof: We already showed that $E[M(t)]$ is jointly convex function of p_1, p_2, \ldots, p_L. Hence, by using $p_k = 1 - \sum_{k=2}^{L} p_k$ we have the following $L-1$ linear equations,

$$\frac{\partial E[M(t)]}{\partial p_2} = -1 + 2p_2 + (p_3 + p_4 + \ldots + p_L) = 0$$ (21)

$$\frac{\partial E[M(t)]}{\partial p_3} = -1 + 2p_3 + (p_2 + p_4 + \ldots + p_L) = 0$$ (22)

$$\frac{\partial E[M(t)]}{\partial p_4} = -1 + 2p_4 + (p_2 + p_3 + p_5 + \ldots + p_L) = 0$$ (23)

$$\vdots$$

$$\frac{\partial E[M(t)]}{\partial p_L} = -1 + 2p_L + (p_2 + p_3 + p_5 + \ldots + p_{L-1}) = 0$$ (25)

(26)

with matrix notation,

$$\begin{pmatrix} 2 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 2 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \cdots & 2 \end{pmatrix} \begin{pmatrix} p_2 \\ p_3 \\ p_4 \\ p_5 \\ \vdots \\ p_L \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$ (27)

Solving this linear system, we have,

$$p_k - p_1 = 0, \forall k, l \neq l$$ (28)

Hence,

$$p_k = p_1, \forall k, l \neq l$$ (29)

Thus,

$$p_k = \frac{1}{L}, \forall k.$$ (30)

Thus, when the channel distributions are uniform, $E[M(t)]$ has the minimum value.

We now prove the second part of the theorem. We show that when channels are uniform, $E[M(t)]$ is a decreasing function of L.

Lemma 13: $E[M(t)]$ is a decreasing function of L.

Proof: From (17),

$$E[M(t)] = \left[\frac{1}{2} + \frac{1}{2L}\right] (N-1)$$ (31)

Taking the derivative of $E[M(t)]$ with respect to L yields that,

$$\frac{dE[M(t)]}{dL} = \left[\frac{-1}{2L^2}\right] (N-1) < 0.$$ (32)

Thus, $E[M(t)]$ is a decreasing function of L. ■
Now, it is easy to see that in (17), taking \(L \to \infty \) yields that
\[
\lim_{L \to \infty} \mathbb{E}[M(t)] = \lim_{L \to \infty} \left[\frac{1}{2} + \frac{1}{2L} \right] (N - 1) = \frac{N - 1}{2}. \tag{33}
\]
In the limiting case, when \(N > 3 \), \(\mathbb{E}[M(t)] > 1 \). In addition, according to Lemma 13, if \(L \) is finite, \(\mathbb{E}[M(t)] \) is still greater than 1 whenever \(N > 3 \) since \(\mathbb{E}[M(t)] \) decreases as \(L \) increases. We can conclude that when all channels are uniformly distributed, and when \(N > 3 \), then \(\mathbb{E}[M(t)] > 1 \). As a result, we guarantee to expend the rate region, i.e., \(\epsilon > 0 \). In addition, according to Lemma 11 and Lemma 12, \(\mathbb{E}[M(t)] \) has its minimum value when channels are uniform. Therefore, for homogenous channels, when \(N > 3 \), then \(\epsilon > 0 \) and rate region is expended. This completes the proof.

VI. PERFORMANCE OF SDF WITH NON-HOMOGENOUS CHANNEL

When the channels are not identical, then \(p_{nk} \neq p_{mk}, \) where \(n \neq m \) and \(\forall k \). In addition, for homogenous channels, the following equality holds,
\[
\mathbb{E}[M(t) | R_i^*(t) = r_k, n = i^*] = \mathbb{E}[M(t) | R_i^*(t) = r_k], \tag{34}
\]
However, this condition cannot be hold when channels are heterogenous. Hence, \(\mathbb{E}[M(t)] \) cannot be determined in a similar way of homogenous channels. We have the following results for heterogenous channels.

Theorem 14: When channels are non-homogenous and as \(L \) goes infinity, i.e., \(L \to \infty \), or \(N \) is sufficiently large, then \(\epsilon > 0 \) i.e., we guarantee to expand the rate region.

Proof: the proof is provided in Appendix A.

VII. NUMERICAL RESULTS

In our simulations, we model a single cell CDMA downlink transmission utilizing high data rate (HDR) [6]. The base station serves 20 users and keeps a separate queue for each user. Time is slotted with length \(T_s = 5 \) ms. Packets arrive at each slot according to Poisson distribution for each users with mean \(\lambda_n \). The size of a packet is set to 128 bytes which corresponds to the size of an HDR packet. Each channel has 5 possible states with rates as given in Table I.

Table I: Possible Physical Rates
Rates
kb/s

A. Homogenous Channels

First, we evaluate the performance of SDF algorithm when channels are homogenous and both uniform and non-uniform distributions.

B. Heterogenous Channels

Here, we investigate the performance of SDF algorithm when channels are neither homogenous nor uniform. For the heterogeneous case, we divide the users into four groups where
there are 5 users in each group. The channel state distributions are given for each group in Table III.

Table III: Channel state distribution with heterogeneous channels

	p_1	p_2	p_3	p_4	p_5
Group 1	0.3	0.3	0.2	0.1	0.1
Group 2	0.1	0.1	0.2	0.3	0.3
Group 3	0.25	0.15	0.1	0.25	0.15
Group 4	0.15	0.25	0.25	0.1	0.25

Figure 3 depicts the average total queue sizes in terms of packets vs. the overall arrival rate when channel state distributions are given as in Table III and $\beta = 0.02$. The maximum supportable arrival rate still is achieved in the hypothetical case whereas the minimum supportable rate is achieved when full CSI is obtained. It is easy to see that the maximum supportable rate achieved by SDF algorithm when uniform, non-uniform and heterogeneous channels are the same.

1) Non-Stationary Channels: Next, we demonstrate the performance of SDF algorithm over time-correlated and non-stationary channels. The channel between the BS and each user is modeled as a correlated Rayleigh fading according to Jakes’ model with different Doppler frequencies varying randomly between 5 Hz and 15 Hz. We set $\text{BW} = 1.25$ MHz and $\text{SNR} = 10$ dB. Let $H_n(t)$ denote CSI of user n at time slot t. $H_n(t)$ is a random process which does not have a stationary probability distribution, i.e., the mean of the channel gain changes over time. Let $h_n(t)$ represent the realization of $H_n(t)$ at time t, $n \in \{1, 2, \ldots, N\}$. Then, the maximum number of bits of a user may transmit is given as,

$$R_n(t) = T_s(1 - \beta N_p(t)) \text{BW} \log_2(1 + \text{SNR} \times h_n(t)) \quad (35)$$

where BW is the bandwidth of a channel. Similar to the previous scenario, Figure 4 depicts the average total queue sizes in terms of packets vs. the overall arrival rate when the channels are non-stationary and $\beta = 0.02$. The maximum and the minimum arrival rates while keeping the queues stable are achieved in the hypothetical and full CSI cases, respectively. As the overall arrival rate exceeds 14 packets/slot queue sizes suddenly increase with full CSI Max-Weight and the network becomes unstable. However, SDF improves over full CSI Max-Weight by supporting the overall arrival rate of up to 16 packets/slot. In other words, SDF algorithm is able to sustain 14% more traffic than the full CSI Max-Weight algorithm. Thus, SDF appears to stabilize a larger range of arrival rates.
VIII. CONCLUSION

In this paper, we have considered the joint scheduling and channel probing problem in a single channel wireless downlink network. We have developed a low complex and dynamic feedback algorithm named SDF. We have shown that SDF algorithm can support $1 + \epsilon$ fraction of full achievable rate region. Then, we have proved the sufficient condition for $\epsilon > 0$. Our simulation results demonstrated a significant performance gain of the proposed algorithm compared to the case when the full CSI is obtained. In this extended abstract, the analytical and simulation results are given by assuming a single channel wireless network. In the full version of the paper, we will provide the result by considering the multichannel wireless system, i.e., OFDM networks.

REFERENCES

[1] X. Liu, E. K. P. Chong, and N. B. Shroff, “A framework for opportunistic scheduling in wireless networks,” Comput. Netw., vol. 41, 2003.
[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12, pp. 1936 – 1948, Dec. 1992.
[3] M. J. Neely, “Energy optimal control for time varying wireless networks,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915 – 2934, 2006.
[4] IEEE, “IEEE Std 802.16-2009,” in IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems, 2009.
[5] 3GPP, “3GPP ts 36.300-870,” in 3rd Generation Partnership Project.
[6] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushyana, and K. Kar, X. Luo, and S. Sarkar, “Throughput-optimal scheduling in multi-channel wireless networks,” in Proc. of the 45th Allerton Conference, 2007.

A. SDF with Non-homogenous channel

When the channels are not identical, i.e., $p_{nk} \neq p_{mk}$, where $n \neq m$ and $\forall k$. We define the χ_n such that $n = i^*$, i.e., user n is the user with maximum queue size at a time. In addition, we define φ_k such that $R_{i^*}(t) = r_k$, i.e., the user with maximum queue size is at channel state k at time t. Hence,

$$Pr[\chi_n] = Pr[n = i^*],$$
$$Pr[\varphi_k] = Pr[R_{i^*}(t) = r_k].$$

Then $E[M(t)]$ can be found as follows:

$$E[M(t)] = \sum_{n=1}^{N} \sum_{k=1}^{L} E[M(t)|\chi_n, \varphi_k] Pr[\chi_n, \varphi_k].$$

Hence,

$$E[M(t)] =$$

$$Pr[\chi_1] \left(p_{11}(N - 1) + p_{12} \sum_{n=2}^{N} \sum_{k=2}^{L} p_{nk} + \ldots + p_{1L} \sum_{n=2}^{N} p_{nL} \right)$$
$$+ Pr[\chi_2] \left(p_{21}(N - 1) + p_{22} \sum_{n=1}^{N} \sum_{k=2}^{L} p_{nk} + \ldots + p_{2L} \sum_{n=1}^{N} p_{nL} \right)$$
$$+ Pr[\chi_3] \left(p_{31}(N - 1) + p_{32} \sum_{n=1}^{N} \sum_{k=2}^{L} p_{nk} + \ldots + p_{3L} \sum_{n=1}^{N} p_{nL} \right)$$
$$\vdots$$
$$+ Pr[\chi_N] \left(p_{N1}(N - 1) + p_{N2} \sum_{n=1}^{N} \sum_{k=2}^{L} p_{nk} + \ldots + p_{NL} \sum_{n=1}^{N} p_{nL} \right).$$

Note that $Pr[\chi_n] \geq p_{\min}^{\text{min}}$ for all n, where $0 < p_{\min}^{\text{min}} < 1$. Hence, a lower bound on $E[M(t)]$ can be given as follow,

$$E[M(t)] \geq Np_{q}^{\min} (p_{\min}^{\text{min}} (N - 1) + p_{\min}^{\text{min}} (L - 1)(N - 1) + p_{\min}^{\text{min}} (L - 2)(N - 1) + \ldots + p_{\min}^{\text{min}} (L - N)(N - 1))$$

By rearranging, we have,

$$E[M(t)] \geq Np_{q}^{\min} \left((N - 1) \left(p_{\min}^{\text{min}} + (p_{\min}^{\text{min}})^2 \left(\frac{L(L - 1)}{2} \right) \right) \right).$$
Therefore, we can guarantee to achieve a larger capacity region when the following condition is satisfied:

\[N(N - 1) > \frac{1}{p_q^{\min} \left(\frac{(L(L-1))}{2} \right) \left(p^{\min} + (p^{\min})^2 \right) \sqrt{\left(\frac{L(L-1)}{2} \right)}} \]

Clearly, \(L \to \infty \) or \(N \) is large enough, this condition holds and \(\epsilon > 0 \). This completes the proof.