THE TIME ASYMPTOTIC EXPANSION FOR THE COMRESSIBLE EULER EQUATIONS WITH TIME-DEPENDENT DAMPING

Shifeng Genga Feimin Huangb Guanghui Jinc Xiaochun Wu*d

a School of Mathematics and Computational Science, Xiangtan University
 Xiangtan 411105, China
b Academy of Mathematics and Systems Science, Chinese Academy of Sciences
 Beijing 100190, China
c Department of Mathematics, Yanbian University, Yanji 133002, China
d School of Mathematics and Statistics, Central South University
 Changsha 410083, China

Abstract. In this paper, we study the compressible Euler equations with time-dependent damping
\(-\frac{1}{(1+t)^\lambda}\rho u\). We propose a time asymptotic expansion around the self-similar solution of the generalized
porous media equation (GPME) and rigorously justify this expansion as
\(\lambda \in \left(\frac{1}{7}, 1\right)\). In other word,
instead of the self-similar solution of GPME, the expansion is the best asymptotic profile of the solution
to the compressible Euler equations with time-dependent damping.

1. Introduction

In this paper, we consider the compressible Euler equations with time-dependent damping as follows:
\begin{align*}
\rho_t + m_x &= 0, \\
\rho_t + \left(\frac{m^2}{\rho} + p(\rho)\right)_x &= -\frac{1}{(1+t)^\lambda}m,
\end{align*}
(1.1)
with the initial data
\((\rho, m)(x, 0) = (\rho_0, m_0)(x) \to (\rho_\pm, m_\pm)\) as \(x \to \pm \infty\),
(1.2)
where \(\rho_\pm > 0\) and \(m_\pm\) are constants. Here \(\rho = \rho(x, t), m = m(x, t)\) and \(p = p(\rho)\) denote the density,
momentum and pressure, respectively. We assume that the pressure \(p(\rho)\) is a smooth function and satisfies
\(p'(\rho) > 0\) for \(\rho > 0\). The damping term \(-\frac{1}{(1+t)^\lambda}m\) represents the time-dependent friction effect, where
\(0 < \lambda < 1\) is constant.

When \(\lambda = 0\), the system (1.1) becomes the compressible system of Euler equations with damping
modeling the compressible flow through porous media. There has a huge literature on the investigations
of global existence and large time behaviors of smooth solutions to the compressible Euler equations
with damping. Among them, Hsiao and Liu \cite{13} firstly showed that the solution of (1.1) tends
time-asymptotically to the self-similar solution of porous media equation (PME), called by diffusion wave.
Since then, this problem has attracted considerable attentions, see \cite{3, 6, 7, 11, 13–16, 19, 21, 25–27} and
the references therein. When \(0 < \lambda < 1\), Cui-Yin-Zhang-Zhu \cite{2} showed that the asymptotic behavior of
the solution to the problem (1.1) is the so-called diffusion waves in the self-similar form of \((\bar{\rho}, \bar{m})(x, t) =
(\bar{\rho}, \bar{m})(x/\sqrt{(1+t)^{1+\lambda}})\) satisfying
\begin{align*}
\bar{\rho}_t + \bar{m}_x &= 0, \\
\bar{p}(\bar{\rho})_x &= -\frac{1}{(1+t)^\lambda}\bar{m}, \quad \text{equivalently,} \quad \frac{1}{(1+t)^\lambda}\bar{p}_t - p(\bar{\rho})_{xx} = 0 \quad \text{(GPME)}
\end{align*}
(1.3)

2000 Mathematics Subject Classification. 35L60, 35L65, 76R50, 76S05.
Key words and phrases. Compressible Euler equations, time-dependent damping, time asymptotic expansion.
* Corresponding author.
with
\[
\lim_{x \to \pm \infty} (\tilde{\rho}, \tilde{m})(x, t) = (\rho_\pm, 0).
\] (1.4)

The convergence rate obtained in [2] is in the form of
\[
\| (\rho - \tilde{\rho})(t) \|_{L^\infty} \leq \begin{cases}
C(1 + t)^{-\frac{1}{4}(1 + \lambda)}, & 0 < \lambda < \frac{1}{7}, \\
C_\varepsilon(1 + t)^{-\frac{1}{4} + \varepsilon}, & \lambda = \frac{1}{7}, \\
C(1 + t)^{(1 - \lambda)}, & \frac{1}{7} < \lambda < 1,
\end{cases}
\] (1.5)

for any small $\varepsilon > 0$. Similar results were obtained in [10] for the bipolar Euler-Poisson equation with time-dependent damping. For the other interesting works on the compressible Euler equations with time-dependent damping [13], see [13] and reference therein.

It is noted that the decay rate [13] for $\frac{1}{7} < \lambda < 1$ is different from the one for $0 < \lambda \leq \frac{1}{7}$. We guess that the solution $\tilde{\rho}$ of GPME may not be the best time-asymptotic profile of the solution ρ of (1.1) for $\frac{1}{7} < \lambda < 1$. We would also like to know more information on the large time behavior of $\rho(x, t)$. Thus, we propose a time asymptotic expansion as follows:

\[
\begin{cases}
\rho = \tilde{\rho} + \sum_{i=1}^{k} (1 + t)^{-\sigma_i} \rho_i(\xi) + P_k =: \tilde{\rho}_k + P_k, \\
m = \tilde{m} + \sum_{i=1}^{k} (1 + t)^{-1/2 + \sigma_i} m_i(\xi) + Q_k =: \tilde{m}_k + Q_k,
\end{cases}
\] (1.6)

where $(\tilde{\rho}, \tilde{m})$ is the diffusion wave of GPME given in (1.3), and $(\rho_i, m_i)(\xi)$ is a solution of a linear equation given in section 2 below. Once (1.6) is justified, the optimal decay rate, the main part and even more subsequent order terms of $(\rho - \tilde{\rho})(x, t)$ are clearly known.

For convenience, we focus on the case of $m_+ = m_- = 0$. And the precise statement of our main results are as follows.

Theorem 1.1. For any $\lambda \in (\frac{1}{7}, 1)$, there exists a unique positive integer $k_0(\lambda) = \sup_{0 < \lambda < \frac{1}{7}} \lfloor k(\lambda) \rfloor$, where $k(\lambda) = \frac{3(1 + \lambda)}{2(1 - \lambda)}$ and $\lfloor \cdot \rfloor$ stands for the floor function. If the initial data $(y_0, y_1)(x) \in H^3(\mathbb{R}) \times H^2(\mathbb{R})$, where

\[
y_0(x) = -\int_{-\infty}^{x} (\rho_0(r) - \tilde{\rho}_{k_0(\lambda)}(r, 0))dr \quad \text{and} \quad y_1(x) = m_0(x) - \tilde{m}_{k_0(\lambda)}(x, 0),
\]

then there is a small constant $\delta_0 > 0$ such that if $\delta_1 =: \| y_0 \|_3 + \| y_1 \|_2 + |\rho_+ - \rho_-| \leq \delta_0$, there exists a unique and global solution $(\rho, m)(x, t)$ of the problem (1.1)-(1.2). Moreover, the remainders $P_{k_0(\lambda)}$ and $Q_{k_0(\lambda)}$ in (1.6) satisfy

\[
\sum_{s=0}^{2} \left[(1 + t)^{(s+1)(1 + \lambda)} \| \partial_x^s P_{k_0(\lambda)}(t) \|^2 + (1 + t)^{2 + s(1 + \lambda)} \| \partial_x^s Q_{k_0(\lambda)}(t) \|^2 \right]
\leq \begin{cases}
C\delta_1^2, & \text{if} \quad k(\lambda) \notin \mathbb{N}^+, \\
C\delta_1^2 \ln^2(1 + t), & \text{if} \quad k(\lambda) \in \mathbb{N}^+.
\end{cases}
\]

Using the Sobolev inequality, we can derive the following estimates.

Corollary 1.1. Under the assumptions of Theorem 1.1, the remainders $P_{k_0(\lambda)}$ and $Q_{k_0(\lambda)}$ in (1.6) satisfy

\[
\| \partial_x^i (P_{k_0(\lambda)}, Q_{k_0(\lambda)})(t) \|_{L^\infty}
\leq \begin{cases}
C\delta_1 [(1 + t)^{-\frac{1}{4} + (1 + \lambda)}, (1 + t)^{-1 - \frac{1}{4} + (1 + \lambda)}], & i = 0, 1, \quad \text{if} \quad k(\lambda) \notin \mathbb{N}^+, \\
C\delta_1 [(1 + t)^{-\frac{1}{4} + (1 + \lambda)} \ln(1 + t), (1 + t)^{-1 - \frac{1}{4} + (1 + \lambda) \ln(1 + t)}], & i = 0, 1, \quad \text{if} \quad k(\lambda) \in \mathbb{N}^+.
\end{cases}
\]
Remark 1.1. Note that \(\frac{3(1+\lambda)}{4} = k(\lambda)\sigma \) and
\[
k_0(\lambda) = \begin{cases}
[k(\lambda)], & \text{if } k(\lambda) \notin \mathbb{N}^+,
k(\lambda) - 1, & \text{if } k(\lambda) \in \mathbb{N}^+,
\end{cases}
\]
the decay rate of the remainder \(P_{k_0(\lambda)} \) obtained in Corollary 1.1 is faster than \((1 + t)^{-k_0(\lambda)\sigma} \), which justifies the expansion (1.6) until the order of \(k_0(\lambda) \). Nevertheless, we conjecture that the expansion (1.6) still holds for any order.

Remark 1.2. If
\[
\int_{-\infty}^{\infty} (\rho_0(r) - \bar{\rho}_{k_0(\lambda)}(r,0)) dr \neq 0, \quad \text{i.e.,} \quad y_0(x) \notin H^3(\mathbb{R}),
\]
we can still prove that the above results hold by replacing \(\xi = \frac{x}{(1+t)^{\frac{1}{2}}} \) with \(\xi = \frac{x + x_0}{(1+t)^{\frac{1}{2}}} \) for some shift \(x_0 \), where \(x_0 \) is determined by the initial data.

Remark 1.3. For the case that \(m_- \neq 0 \) or \(m_+ \neq 0 \), we claim the above results still hold by introducing a correction function \((\check{\rho}, \check{m})(x,t) \) with exponential decay rate to delete the gap at \(x = \pm \infty \), see [2, 6] for the details.

The arrangement of the present paper is as follows. In Section 2, we propose the time asymptotic expansion \((\check{\rho}, \check{m})_k(x,t)\) of the solution to (1.3). In Section 3, we justify the expansion \((\check{\rho}_{k_0}, \check{m}_{k_0})\) and prove Theorem 1.1.

Notations. Throughout this paper, the symbol \(C \) will be used to represent a generic constant which is independent of \(x \) and \(t \) and may vary from line to line. \(L^2(\mathbb{R}) \) is the space of square integrable real valued function defined on \(\mathbb{R} \) with the norm \(\| \cdot \| \), and \(H^k(\mathbb{R}) \) (\(H^k(\mathbb{R}) \) without any ambiguity) denotes the usual Sobolev space with the norm \(\| \cdot \|_k \), especially \(\| \cdot \|_0 = \| \cdot \| \). In addition, for \(r, s \in \mathbb{N} \), we adopt the convention that
\[
\sum_{i=r}^{s} a_i = 0 \quad \text{if} \quad s < r.
\]

2. The time asymptotic expansion

We first list some properties on the diffusion wave \((\check{\rho}, \check{m})(\xi)\) of GPME (1.3)-(1.4) as follows.

Lemma 2.1 ([2, 10]). For the diffusion wave \((\check{\rho}, \check{m})(\xi)\) of (1.3)-(1.4), it holds that
\[
\begin{align*}
|\check{\rho}(\xi)| - \rho_+ |\xi| < 0 + |\check{\rho}(\xi)| - \rho_- |\xi| < 0 & \leq C |\rho_+ - \rho_-| e^{-c\xi^2}, \\
|\partial_x^k \partial_t^l \check{\rho}| & \leq C |\rho_+ - \rho_-| (1 + t)^{-\frac{k(1+\lambda)+2}{2} - kl} e^{-c\xi^2}, \quad k, l \geq 1, k + l \geq 0, \\
|\partial_x^k \partial_t^l |\partial_x^i \check{\rho}|^2 & \leq C |\rho_+ - \rho_-| (1 + t)^{-\frac{k(1+\lambda)+2}{2} - 2l} e^{-c\xi^2}, \quad k, l \geq 1.
\end{align*}
\]

Then we consider the following time asymptotic expansion:
\[
\begin{align*}
\rho &= \check{\rho}(\xi) + \sum_{i=1}^{k} (1 + t)^{-i\sigma} \check{\rho}_i(\xi) + P_k =: \check{\rho}_k + P_k, \\
m &= \check{m}(\xi) + \sum_{i=1}^{k} (1 + t)^{-i\sigma} \check{m}_i(\xi) + Q_k =: \check{m}_k + Q_k,
\end{align*}
\]
where \(k \) is a positive integer determined later, and
\[
\xi = \frac{x}{(1+t)^{\frac{1}{2} \lambda}}, \quad \sigma = 1 - \lambda.
\]
Note that \(\check{\rho}_t + \check{m}_x = 0 \), we expect
\[
((1 + t)^{-i\sigma} \check{\rho}_i)_t + (1 + t)^{-i\sigma} \check{m}_i)_x = 0,
\]
which implies that
\[m_{i\xi} = i\sigma \rho_i + \frac{1 + \lambda}{2}\xi\rho_i. \]
We hope \(\int_0^\infty \rho_i(\xi)d\xi = 0 \), which leads to
\[m_i(\xi) = (i\sigma - (1 + \lambda))G_i + \frac{1 + \lambda}{2}(\xi G_i)\xi, \quad G_i(\xi) := \int_0^\xi \rho_i(\eta)d\eta. \tag{2.2} \]
Plugging (2.1) and (2.2) into (1.1), we derive a formal hierarchy of ODEs satisfied by the functions \(\tilde{\rho} \) and \(\rho_i, i = 1, \ldots, k \). Define the source term
\[S(\tilde{\rho}_k) = \hat{m}_{kt} + \left(\frac{\hat{\theta}_i^2}{\tilde{\rho}_k} + p(\tilde{\rho}_k) \right)_t + \frac{1}{(1 + t)^\lambda}\hat{m}_k. \tag{2.3} \]

Lemma 2.2. For \(k \in \mathbb{N}^+ \), the source term \(S(\tilde{\rho}_k) \) given by (2.3) satisfies
\[S(\tilde{\rho}_k) = \sum_{i=1}^k (1 + t)^{-\frac{1 + \lambda}{2} - i\sigma} \left[(P(\tilde{\rho})G_i(\xi))_\xi + \frac{1 + \lambda}{2}(\xi G_i)_\xi + c_{1,i}G_i - c_{2,i}G_{i-1} + h_i\xi \right] \]
\[+ (1 + t)^{-\frac{1 + \lambda}{2} - (k+1)\sigma}R_k, \tag{2.4} \]
where
\[c_{1,i} = i\sigma - (1 + \lambda), \quad c_{2,i} = (i\sigma - 1)((i - 1)\sigma - (1 + \lambda)), \quad i = 1, 2, \ldots, k, \]
\(G_0, h_i \) and \(R_k \) are given by (2.1), (2.13) and (2.9) below.

Proof. From (2.3), the Taylor expansion gives that
\[P(\tilde{\rho}_k) = P(\tilde{\rho}) + \sum_{i=1}^k (1 + t)^{-i\sigma} \sum_{j=1}^i h_{1,i,j} + (1 + t)^{-(k+1)\sigma}R_{1,k}, \tag{2.5} \]
and
\[\hat{m}_k^2 = (1 + t)^{-\sigma} \frac{(P(\tilde{\rho})\xi)^2}{\tilde{\rho}} + \sum_{i=2}^k (1 + t)^{-i\sigma} \sum_{j=1}^{i-1} h_{2,i,j} + \sum_{i=3}^k (1 + t)^{-i\sigma} \sum_{j=2}^{i-1} h_{3,i,j} + (1 + t)^{-(k+1)\sigma}R_{2,k}, \tag{2.6} \]
where
\[h_{1,i,j} = \frac{P^{(j)}(\tilde{\rho})}{j!} \sum_{l_1+\cdots+l_j=i, l_1, \ldots, l_j \geq 1} \rho_{l_1} \cdots \rho_{l_j}, \quad 1 \leq j \leq i, \]
\[h_{2,i,j} = \frac{(-1)^j(P(\tilde{\rho})\xi)_\xi^2}{(\tilde{\rho})^{j+1}} \sum_{l_1+\cdots+l_j=i-1, l_1, \ldots, l_j \geq 1} \rho_{l_1} \cdots \rho_{l_j} \]
\[+ \frac{2(-1)^jP(\tilde{\rho})}{(\tilde{\rho})^j} \sum_{l_1+\cdots+l_j=i-1, l_1, \ldots, l_j \geq 1} m_{l_1}\rho_{l_2} \cdots \rho_{l_j} , \quad 1 \leq j \leq i-1, \]
\[h_{3,i,j} = \frac{(-1)^j}{(\tilde{\rho})^{j-1}} \sum_{l_1+\cdots+l_j=i-1, l_1, \ldots, l_j \geq 1} m_{l_1}m_{l_2}\rho_{l_3} \cdots \rho_{l_j} , \quad 2 \leq j \leq i-1, \]
and the remainder terms \(R_{1,k}, R_{2,k} \) are some functions depending on \(\tilde{\rho} \) and \(\rho_l \) with \(l \in \{1, \ldots, k\} \).

On the other hand, the direct computations give that
\[\hat{m}_{kt} + \frac{1}{(1 + t)^\lambda}\hat{m}_k \]
\[= -(1 + t)^{-\frac{1 + \lambda}{2}}P(\tilde{\rho})\xi + (1 + t)^{-\frac{1 + \lambda}{2}-\sigma} \left[-\lambda P(\tilde{\rho})\xi + \frac{1 + \lambda}{2}(\xi P(\tilde{\rho})\xi + m_1) \right] + \sum_{i=2}^k (1 + t)^{-\frac{1 + \lambda}{2} - i\sigma} \left[m_i - (i\sigma - 1)m_{i-1} + \frac{1 + \lambda}{2}(\xi m_{i-1})_\xi \right] + (1 + t)^{-\frac{1 + \lambda}{2} - (k+1)\sigma}R_{3,k}, \tag{2.7} \]
where
\[R_{3,k} = -(k + \frac{1}{2})\sigma m_k - \frac{1 + \lambda}{2} \xi m_k. \]

Thus, we use (2.10) and (2.11) to obtain
\[
S(\tilde{\rho}_k) = (1 + t)^{-\frac{i + \lambda}{2} - \sigma} \left[m_1 + \left(P^{(1)}(\tilde{\rho}) \rho_1 \right) \xi - \lambda \rho \xi + \frac{1 + \lambda}{2} (\xi \rho \xi + \left(\frac{P(\rho) \xi}{\rho} \right) \xi \right] \\
+ \sum_{i=2}^{k} (1 + t)^{-\frac{i + \lambda}{2} - i \sigma} \left[m_i + \left(P^{(1)}(\tilde{\rho}) \rho_i \right) \xi + \tilde{h}_i \xi - (i \sigma - 1)m_{i-1} \right] \\
+ (1 + t)^{-\frac{i + \lambda}{2} - (k+1) \sigma} R_k,
\]
where
\[\tilde{h}_i = \sum_{j=2}^{i} h_{1,i,j} + \sum_{j=1}^{i-1} h_{2,i,j} + \sum_{j=2}^{i-1} h_{3,i,j} + \frac{1 + \lambda}{2} \xi m_{i-1}, \quad \text{for} \ i = 2, 3, \ldots, k, \]
\[R_k = (R_{1,k} + R_{2,k})\xi + R_{3,k}. \]

Moreover, substituting (2.10) into (2.11) yields
\[
S(\tilde{\rho}_k) = (1 + t)^{-\frac{i + \lambda}{2} - \sigma} \left[\left(P^{(1)}(\tilde{\rho}) \rho_1 \right) \xi + \frac{1 + \lambda}{2} (\xi G_1) \xi - 2 \lambda G_1 + \lambda \rho \xi + \left(\frac{1 + \lambda}{2} \xi \rho \xi + \left(\frac{P(\rho) \xi}{\rho} \right) \xi \right) \right] \\
+ \sum_{i=2}^{k} (1 + t)^{-\frac{i + \lambda}{2} - i \sigma} \left[\left(P^{(1)}(\tilde{\rho}) \rho_i \right) \xi + \frac{1 + \lambda}{2} (\xi G_i) \xi + c_{1,i} G_i - c_{2,i} G_{i-1} + h_{i}\xi \right] \\
+ (1 + t)^{-\frac{i + \lambda}{2} - (k+1) \sigma} R_k,
\]
where
\[c_{1,i} = i \sigma - (1 + \lambda), \]
\[c_{2,i} = (i \sigma - 1)((i - 1) \sigma - (1 + \lambda)), \]
\[h_i = \tilde{h}_i - \frac{1 + \lambda}{2} (i \sigma - 1) \xi G_{i-1} \]
with \(i = 2, \ldots, k \). Note that \(c_{1,1} = -2 \lambda \), we may supply
\[G_0 = \frac{P(\tilde{\rho}) \xi}{1 + \lambda}, \]
\[h_1 = \frac{1 + \lambda}{2} \xi P(\tilde{\rho}) \xi + \left(\frac{P(\rho) \xi}{\rho} \right) \xi, \]
so that (2.10) holds with \(i = 1, \ldots, k \). Therefore, the proof of Lemma 2.2 is completed. \(\square \)

Motivated by Lemma 2.2, we define the hierarchy of ODEs as
\[
(P'(\tilde{\rho}) G_i) \xi + \frac{1 + \lambda}{2} (\xi G_i) \xi + c_{1,i} G_i = c_{2,i} G_{i-1} - h_{i}\xi, \quad \text{for} \ i = 1, 2, \ldots, k, \]
so that \(S(\tilde{\rho}_k) = O(1)(1 + t)^{-\frac{i + \lambda}{2} - (k+1) \sigma} \). We will seek for the solution \(G_i \in \chi^l(\mathbb{R}) \) to (2.14), where
\[\chi^l(\mathbb{R}) = \{ f : \xi^s \partial^r_f \in L^2(\mathbb{R}), \ \forall r, s \in \{0, 1, \ldots, l\} \} \]
equipped with the norm
\[\| f \|_{\chi^l(\mathbb{R})} = \left(\sum_{0 \leq s, r \leq l} \int_{\mathbb{R}} (\xi^s \partial^r_f)^2 d\xi \right)^{\frac{1}{2}}. \]

Then integrating (2.14) with respect to \(\xi \) over \(\mathbb{R} \) gives that
\[\int_{\mathbb{R}} G_i d\xi = \frac{c_{2,i}}{c_{1,i}} \int_{\mathbb{R}} G_{i-1} d\xi \quad \text{for} \ i = 1, 2, \ldots, k. \]
We obtain the existence of the smooth solution \(G_i \) of (2.14) and (2.16) as follows.

Lemma 2.3. Let \(\delta = |\rho_+ - \rho_-| \ll 1 \), there exists a solution \(G_i \in \chi^{m_i}(\mathbb{R}) \) to (2.14) and (2.16) for large integer \(m_i > 0 \). Furthermore, it holds that
\[
\|G_i\|_{\chi^{m_i}(\mathbb{R})} \leq C\delta
\]
and
\[
\|\xi^{s_0} \partial_{\xi_{m}} G_i\|_{L^\infty} \leq C\delta,
\]
where \(0 \leq s_0 \leq m_i \) and \(0 \leq r_0 \leq m_i - 1 \).

The detailed proof is left in the Appendix.

Thanks to Lemmas 2.2-2.3 we get the estimates of source term \(S(\tilde{\rho}_k) \) in (2.3).

Lemma 2.4. It holds that
\[
S(\tilde{\rho}_k) = O(1)\delta(1 + t)^{-\frac{1 + \lambda}{2}-(k+1)\sigma}
\]
(2.17)
and
\[
\|\partial_t^{2j} \partial_{x}^{l} S(\tilde{\rho}_k)\|_{L^{2}(\mathbb{R})}^{2} \leq C\delta^{2}(1 + t)^{-2j-2(k+1)\sigma -(l+\frac{3}{2})(1+\lambda)}, \quad j, l \geq 0.
\]
(2.18)

Proof. It follows from (2.4) and Lemma 2.3 that
\[
S(\tilde{\rho}_k) = (1 + t)^{-\frac{1 + \lambda}{2}-(k+1)\sigma} R_k,
\]
where \(R_k \) is given by (2.8). Then, (2.17) and (2.18) can be obtained by direct computations. Thus, the proof of Lemma 2.4 is completed. \(\square\)

3. The Estimates of the Remainder Terms

This section is devoted to Theorem 1.1 by the classical energy method with the continuation argument based on the local existence and the a priori estimates. For any \(\lambda \in (\frac{1}{2}, 1) \), let
\[
k_0 =: k_0(\lambda) = \sup_{0 < \varepsilon < \frac{1}{2}} \left[k(\lambda) - \varepsilon \right] = \sup_{0 < \varepsilon < \frac{1}{2}} \left[\frac{3(1 + \lambda)}{4(1 - \lambda)} - \varepsilon \right]
\]
and the time asymptotic expansion is
\[
\rho = \tilde{\rho} + \sum_{i=1}^{k_0} (1 + t)^{-i\sigma} \rho_i(\xi) + P_{k_0} =: \tilde{\rho}_{k_0} + P_{k_0},
\]
\[
m = \tilde{m} + \sum_{i=1}^{k_0} (1 + t)^{-(i+\frac{3}{2})\sigma} m_i(\xi) + Q_{k_0} =: \tilde{m}_{k_0} + Q_{k_0}.
\]
(3.1)

We shall show that the remainder \(P_{k_0} \) decays faster than \((1 + t)^{-k_0}\sigma\). Denote
\[
y = -\int_{-\infty}^{x} P_{k_0}(r, t)dr,
\]
then
\[
y_x = -P_{k_0}, \quad y_t = Q_{k_0}.
\]
Thus the system (1.1) can be rewritten as a quasilinear wave equation for \(y \):
\[
\begin{cases}
y_{tt} - (P(\tilde{\rho}_{k_0})y_x)_x + \frac{y_t}{(1 + t)^{\frac{3}{2}}} = g_1 + g_2 + S(\tilde{\rho}_{k_0}), \\
y(x, y)|_{(x, 0)} = (y_0, y_1)(x),
\end{cases}
\]
(3.2)
where
\[
g_1 = -(P(\rho) - P(\tilde{\rho}_{k_0}) + P'(\tilde{\rho}_{k_0})y_x)_x, \quad g_2 = -\left(\frac{m^2}{\rho} - \frac{\tilde{m}^2}{\tilde{\rho}_{k_0}} \right)_x.
\]

Motivated by the work of [15], we seek for the solution of (3.2) in the following solution space
\[
X_T =: \{ y \in C([0, T); H^3(\mathbb{R})); y_t \in C([0, T); H^2(\mathbb{R})) \}. \]
Since the local existence of the solution of (3.2) can be proved by the standard iteration method, see [12], the main effort in this section is to establish the a priori estimates for the solution.

For any $T \in (0, +\infty)$, define

$$N(T)^2 = \sup_{0 \leq t \leq T} \{ \| y \|^2 + \sum_{i=0}^{2} (1 + t)^{(i+1)(1+\lambda)} \| (\partial_x^i y_t) \|^2 + (\partial_x^i y_x) \|^2 \}.$$

We assume

$$N(T) \leq \begin{cases}
\epsilon, & \text{if } k(\lambda) \notin \mathbb{N}^+, \\
\epsilon \ln(1 + T), & \text{if } k(\lambda) \in \mathbb{N}^+.
\end{cases} \quad (3.3)$$

where ϵ is sufficiently small and will be determined later. Then it follows from Sobolev inequality $\| \partial_x^i f \|_{L^\infty} \leq C \| \partial_x^i f \|^{1/2} \| \partial_x^{i+1} f \|^{1/2}$ for $i = 0, 1$ that

$$\| \partial_x^i y_t \|_{L^\infty} + \| \partial_x^i y_x \|_{L^\infty} \leq \begin{cases}
C \epsilon (1 + t)^{-\frac{4}{2(2+3)(1+\lambda)}}, & \text{if } k(\lambda) \notin \mathbb{N}^+, \\
C \epsilon (1 + t)^{-\frac{4}{2(2+3)(1+\lambda)} \ln(1 + t)}, & \text{if } k(\lambda) \in \mathbb{N}^+.
\end{cases} \quad (3.4)$$

We first establish the following basic energy estimate. For abbreviation, let $(\hat{\rho}, \hat{m})$ stand for $(\hat{\rho}_{k_0}, \hat{m}_{k_0})$ in what follows.

Lemma 3.1. For any $T > 0$, assume that $y(x, t) \in \mathcal{X}_T$ is the solution of (3.2). If ϵ and δ are small, then it holds that

$$\int_{\mathbb{R}} \left[(1 + t)^{\beta+1}(y_t^2 + y_x^2) + (1 + t)^{\beta-\lambda}y^2 \right] dx + \int_0^t \int_{\mathbb{R}} (1 + \tau)^{\beta+1-\lambda}y_t^2 dx d\tau$$

$$+ \int_0^t \int_{\mathbb{R}} (1 + \tau)^{\beta}y_x^2 dx d\tau \leq C N(0)^2 + \delta^2 + \delta \epsilon, \quad (3.5)$$

where $\beta < \lambda$.

Proof. Multiplying (3.2) by $(\alpha + t)^{\beta} y$ and integrating the result over \mathbb{R}, we obtain

$$\frac{d}{dt} \int_{\mathbb{R}} [(\alpha + t)^{\beta} y_t y + \frac{(\alpha + t)^{\beta}}{2(1 + t)^{\lambda}} y^2] dx + (\alpha + t)^{\beta} \int_{\mathbb{R}} P'(\hat{\rho}) y_t^2 dx + \frac{(\alpha + t)^{\beta}}{(1 + t)^{1+\lambda}} \lambda \alpha - \beta + (\lambda - \beta) t \int_{\mathbb{R}} \frac{1}{2} y^2 dx$$

$$= (\alpha + t)^{\beta} \int_{\mathbb{R}} y_t^2 dx + \beta (\alpha + t)^{\beta-1} \int_{\mathbb{R}} y_t y dx + (\alpha + t)^{\beta} \int_{\mathbb{R}} g_1 y dx$$

$$+ (\alpha + t)^{\beta} \int_{\mathbb{R}} g_2 y dx + (\alpha + t)^{\beta} \int_{\mathbb{R}} S(\hat{\rho}) y dx, \quad (3.6)$$

where α is a positive constant to be determined later. From Lemmas 2.1, 2.3 the a priori assumption (3.3) and the expansion (3.1), we have

$$(\alpha + t)^{\beta} \int_{\mathbb{R}} g_1 y dx = (\alpha + t)^{\beta} \int_{\mathbb{R}} (P(\rho) - P(\hat{\rho}) + P'(\hat{\rho}) y_x) y dx \leq C \epsilon (\alpha + t)^{\beta} \int_{\mathbb{R}} y_x^2 dx \quad (3.7)$$

and

$$(\alpha + t)^{\beta} \int_{\mathbb{R}} g_2 y dx = -(\alpha + t)^{\beta} \int_{\mathbb{R}} \left(\frac{m^2}{\rho} - \frac{m^2}{\rho} \right) y dx$$

$$\leq C(\delta + \epsilon) \frac{(\alpha + t)^{\beta}}{(1 + t)^{1+\lambda}} \int_{\mathbb{R}} y^2 dx + C(\delta + \epsilon)(1 + t)^{\beta+\lambda-1} \int_{\mathbb{R}} (y_x^2 + y_y^2) dx. \quad (3.8)$$

In addition, it is easy to check that

$$\beta (\alpha + t)^{\beta-1} \int_{\mathbb{R}} y_t y dx \leq \nu_1 \frac{(\alpha + t)^{\beta}}{(1 + t)^{1+\lambda}} \int_{\mathbb{R}} y^2 dx + C(\nu_1)(\alpha + t)^{\beta+\lambda-1} \int_{\mathbb{R}} y_t^2 dx. \quad (3.9)$$

Moreover, from the a priori assumption (3.3) and the estimates (2.18), for the case of $k(\lambda) \notin \mathbb{N}^+$ we have

$$(\alpha + t)^{\beta} \int_{\mathbb{R}} S(\hat{\rho}) y dx \leq (\alpha + t)^{\beta} \| y \| \| S(\hat{\rho}) \| \leq C \delta \epsilon (1 + t)^{-\frac{1-\sigma(k_0+1)-k(\lambda)}{-(\lambda-\beta)}} \quad (3.10)$$
and for the case of \(k(\lambda) \in \mathbb{N}^+ \) we have

\[
(\alpha + t)^\beta \int_{\mathbb{R}} S(\tilde{\rho}) y dx \leq (\alpha + t)^\beta \| y \| S(\tilde{\rho}) \leq C\delta \epsilon (1 + t)^{-1 - \sigma[(k_0+1)-k(\lambda)]} - (\lambda - \beta) \ln(1 + t).
\]

(3.11)

Substituting (3.7)-(3.11) into (3.6) and choosing \(\nu \) and \(\beta \) small enough give that

\[
\frac{d}{dt} \int_{\mathbb{R}} [(\alpha + t)^\beta y y + (\alpha + t)^\beta \frac{2}{(1 + t)^\lambda} y^2] dx \geq \frac{(\alpha + t)^\beta}{(1 + t)^{\lambda+1}} \int_{\mathbb{R}} \frac{\lambda - \beta}{4} y^2 dx
\]

\[
\leq C(\alpha + t)^\beta \int_{\mathbb{R}} y^2 dx + C\delta \epsilon (1 + t)^{-1 - \sigma[(k_0+1)-k(\lambda)]} - (\lambda - \beta)(1 + \ln(1 + t)),
\]

(3.12)

where we choose \(\beta < \lambda \) such that

\[
\frac{\lambda - \beta}{\alpha + t} = \lambda - \beta + \frac{\beta(\alpha - 1)}{\alpha + t} \geq \lambda - \beta > 0.
\]

We multiply by \((\alpha + t)^{\beta+1}y_t\) and integrate the result over \(\mathbb{R} \) to obtain

\[
\frac{d}{dt} \int_{\mathbb{R}} [(\alpha + t)^{\beta+1} \frac{1}{2} y_t^2 + (\alpha + t)^{\beta+1} P'(\tilde{\rho}) \frac{1}{2} y_t^2] dx + \frac{(\alpha + t)^{\beta+1}}{(1 + t)^\lambda} \left[1 - (\frac{1}{2(\alpha + t)})^\lambda \right] \int_{\mathbb{R}} y_t^2 dx \leq C(\alpha + t)^\beta \int_{\mathbb{R}} y_t^2 dx.
\]

(3.13)

A direct computation yields that

\[
(\alpha + t)^{\beta+1} \int_{\mathbb{R}} g_1 y_t dx = \frac{d}{dt} \left\{ (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \left[- \int_{\tilde{\rho}} \bar{P}(s) ds - P(\tilde{\rho}) y_x + \frac{1}{2} P'(\tilde{\rho}) y_t^2 \right] dx \right\}
\]

\[
- (1 + \beta)(\alpha + t)^\beta \int_{\mathbb{R}} \left[- \int_{\tilde{\rho}} \bar{P}(s) ds - P(\tilde{\rho}) y_x + \frac{1}{2} P'(\tilde{\rho}) y_t^2 \right] dx
\]

\[
+ (\alpha + t)^{\beta+1} \int_{\mathbb{R}} (P(\tilde{\rho} - y_x) - P(\tilde{\rho}) - P'(\tilde{\rho}) y_x - \frac{1}{2} P''(\tilde{\rho}) y_x^2) \bar{\rho}_t dx
\]

\[
\leq \frac{d}{dt} \left\{ (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \left[- \int_{\tilde{\rho}} \bar{P}(s) ds - P(\tilde{\rho}) y_x + \frac{1}{2} P'(\tilde{\rho}) y_t^2 \right] dx \right\}
\]

\[
+ C(\epsilon + \delta)(\alpha + t)^\beta \int_{\mathbb{R}} y_t^2 dx.
\]

(3.14)

Next, we estimate the term \((\alpha + t)^{\beta+1} \int_{\mathbb{R}} g_2 y_t dx\). Note that

\[
g_2 = -\left(\frac{m^2}{\rho} - \frac{\tilde{m}^2}{\tilde{\rho}} \right) x = -\left(\frac{m^2}{\rho^2} y_{xx} - \frac{2m}{\rho} y_{xt} + \frac{m^2}{\rho^2} \tilde{\rho}_x - \frac{2m}{\rho} \tilde{\rho}_t \right) \tilde{m}_x,
\]

(3.15)

and

\[
\left\{ \begin{array}{l}
|m| \leq |\tilde{m}| + |y_t| \leq C(\delta + \epsilon)(1 + t)^{-\frac{\lambda-1}{\lambda}}; \\
|\rho_t| + |m_x| \leq |\tilde{\rho}_t| + |y_{xt}| + |\tilde{m}_x| \leq C(\delta + \epsilon)(1 + t)^{-1}; \\
|\rho_x| + |m_t| \leq |\tilde{\rho}_x| + |y_{xx}| + |\tilde{m}_t| + |y_t| \leq C(\delta + \epsilon)(1 + t)^{-\frac{\lambda+1}{\lambda}};
\end{array} \right.
\]

(3.16)

we have

\[
(\alpha + t)^{\beta+1} \int_{\mathbb{R}} \frac{m^2}{\rho^2} y_{xx} y_t dx
\]

\[
= -\frac{1}{2} \frac{d}{dt} \left\{ (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \frac{m^2}{\rho^2} y_t^2 dx \right\} + \frac{\beta + 1}{2} (\alpha + t)^\beta \int_{\mathbb{R}} \frac{m^2}{\rho^2} y_t^2 dx + \frac{1}{2} (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \left(\frac{m^2}{\rho^2} \right) y_t^2 dx
\]

\[
- (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \left(\frac{m^2}{\rho^2} \right) y_{xt} y_t dx
\]

\[
\geq -\frac{1}{2} \frac{d}{dt} \left\{ (\alpha + t)^{\beta+1} \int_{\mathbb{R}} \frac{m^2}{\rho^2} y_t^2 dx \right\} - C(\delta + \epsilon)(\alpha + t)^\beta \int_{\mathbb{R}} y_t^2 dx - C(\delta + \epsilon)(\alpha + t)^\beta \int_{\mathbb{R}} y_t^2 dx
\]

(3.17)
Thus, it follows from (3.15) and (3.17)-(3.18) that
\[
\xi(t) = \left(\int_0^t \left(\frac{m^2}{\rho^2} - \frac{m\tilde{m}}{\rho}
ight) \tilde{m}_x y_t dx + \frac{2m}{\rho} - \frac{2\tilde{m}}{\rho}\right) y_t dx
\]

Thus, the proof of Lemma 3.1 is completed.

In addition, it is straightforward to check from (2.18) that
\[
(\alpha + t)^{3+1} \int_\mathbb{R} S(\bar{\rho}) y_t dx \leq \nu_1 \frac{(\alpha + t)^{3+1}}{(1 + t)\lambda} \int_\mathbb{R} y_t^2 dx + C(\nu_1) \int_\mathbb{R} (\alpha + t)^{3+1} (1 + t)^\lambda S^2(\bar{\rho}) dx
\]

Substituting (3.14) and (3.19) into (3.18) and choosing \(\nu_1\) small enough, together with the fact that \(|\xi'| \leq C\delta\), give that
\[
\frac{d}{dt}\left[\frac{1}{2} (\alpha + t)^{3+1} \int_\mathbb{R} \left(y_t^2 + P(\bar{\rho})y_t^2 + \frac{m^2}{\rho^2} y_t^2 \right) dx \right] + \frac{1}{2} \frac{(\alpha + t)^{3+1}}{(1 + t)\lambda} \int_\mathbb{R} y_t^2 dx
\]

Integrating \(C_1 \times (3.12) + (3.21)\) in \((0, t)\) for large constant \(C_1\) and choosing \(\alpha\) large enough, we obtain
\[
(1 + t)^{3+1} \int_\mathbb{R} (y_t^2 + y_x^2) dx + \frac{\alpha + t}{(1 + t)\lambda} \int_\mathbb{R} y_t^2 dx + \int_0^t \int_\mathbb{R} \frac{(\alpha + \tau)^\beta}{(1 + \tau)^{\lambda - 1}} y_t^2 dx d\tau + \int_0^t \int_\mathbb{R} \frac{(1 + \tau)^{3+1}}{(1 + \tau)^{1+\lambda}} y_t^2 dx d\tau
\]

where we have used the facts that \(\beta < \lambda\) and that
\[
\begin{cases}
(k_0 + 1) - k(\lambda) > 0 & \text{if } k(\lambda) \notin \mathbb{N}^+,
(k_0 + 1) - k(\lambda) = 0 & \text{if } k(\lambda) \in \mathbb{N}^+,
\end{cases}
\]

from \(k_0 = \sup_{0<\varepsilon<\frac{1}{2}} [k(\lambda) - \varepsilon] \) with \(k(\lambda) = \frac{3(1+\lambda)}{4(1-\lambda)}\). Thus, the proof of Lemma 3.1 is completed. \(\square\)

Lemma 3.2. Assume that \(y(x, t) \in X_T\) is the solution of (3.2). If \(\epsilon\) and \(\delta\) are small, it holds that
\[
\int_\mathbb{R} (1 + t)^{3+1} (y_t^2 + y_x^2) dx + \int_0^t \int_\mathbb{R} (1 + \tau)^{\lambda} y_t^2 dx d\tau + \int_0^t \int_\mathbb{R} (1 + \tau) y_t^2 dx d\tau
\]

\[
\leq \begin{cases}
C(\lambda)(N(0)^2 + \delta^2 + \delta\epsilon), & \text{if } k(\lambda) \notin \mathbb{N}^+,
C(\lambda)(N(0)^2 + \delta^2 + \delta\epsilon) \ln^2(1 + t), & \text{if } k(\lambda) \in \mathbb{N}^+.
\end{cases}
\]
Proof. Multiplying (3.2) by \((\alpha + t)^\lambda y\) and integrating the result over \(\mathbb{R}\), we obtain
\[
\frac{d}{dt} \int_{\mathbb{R}} \left[(\alpha + t)^\lambda y_t + \frac{(\alpha + t)^\lambda}{2(1 + t)} y^2 \right] dx + (\alpha + t)^\lambda \int_{\mathbb{R}} P'(\tilde{\rho}) y_x^2 dx + \lambda(\alpha - 1) (\alpha + t)^{\lambda - 1} \int_{\mathbb{R}} \frac{1}{2} y_t^2 dx \\
= (\alpha + t)^\lambda \int_{\mathbb{R}} g_1^2 dx + \lambda(\alpha + t)^{\lambda - 1} \int_{\mathbb{R}} y_1 y dx + (\alpha + t)^\lambda \int_{\mathbb{R}} g_2 y dx \\
+ (\alpha + t)^\lambda \int_{\mathbb{R}} S(\tilde{\rho}) y dx.
\]
Different from (3.6), it is difficult to use the term \(\frac{(\alpha + t)^{\lambda - 1}}{(1 + t)\beta} \int_{\mathbb{R}} y_t^2 dx\) to control \((\alpha + t)^{-1} \int_{\mathbb{R}} y_1 y dx\) and \((\alpha + t)^\lambda \int_{\mathbb{R}} g_2 y dx\). To overcome this, we choose \(2\lambda - 1 < \beta < \lambda\) to get
\[
\lambda(\alpha + t)^{\lambda - 1} \int_{\mathbb{R}} y_t y dx \leq \frac{\lambda}{2} \frac{(\alpha + t)^\beta}{(1 + t)^{1 + \lambda}} \int_{\mathbb{R}} y_t^2 dx + \frac{\lambda}{2} (\alpha + t)^{2(\lambda - 1) - \beta + \lambda} \int_{\mathbb{R}} y_t^2 dx \\
\leq \frac{\lambda}{2} \frac{(\alpha + t)^\beta}{(1 + t)^{1 + \lambda}} \int_{\mathbb{R}} y_t^2 dx + \frac{\lambda}{2} (\alpha + t)^{\beta + 1 - \lambda} \int_{\mathbb{R}} y_t^2 dx
\]
and
\[
(\alpha + t)^\lambda \int_{\mathbb{R}} g_2 y dx = - (\alpha + t)^\lambda \int_{\mathbb{R}} \left(\frac{\tilde{m}^2}{\rho} - \frac{m^2}{\rho} \right) y dx \\
\leq C(\delta + \epsilon) \frac{(\alpha + t)^\beta}{(1 + t)^{1 + \lambda}} \int_{\mathbb{R}} y_t^2 dx + C(\delta + \epsilon) (\alpha + t)^{2\lambda - \beta} (1 + t)^{\lambda - 1} \int_{\mathbb{R}} (y_x^2 + y_t^2) dx \\
\leq C(\delta + \epsilon) \frac{(\alpha + t)^\beta}{(1 + t)^{1 + \lambda}} \int_{\mathbb{R}} y_t^2 dx + C(\delta + \epsilon) (\alpha + t)^\lambda \int_{\mathbb{R}} (y_x^2 + y_t^2) dx.
\]
In addition, we use the similar method applied in (3.7) and (3.10), (3.11) and Lemma 3.1 to get
\[
\frac{d}{dt} \int_{\mathbb{R}} \left[(\alpha + t)^\lambda y_t + \frac{(\alpha + t)^\lambda}{2(1 + t)} y^2 \right] dx + \frac{(\alpha + t)^\lambda}{2} \int_{\mathbb{R}} P'(\tilde{\rho}) y_x^2 dx \\
\leq \frac{\lambda}{2} \frac{(\alpha + t)^\beta}{(1 + t)^{1 + \lambda}} \int_{\mathbb{R}} y_t^2 dx + C(\delta + \epsilon) (1 + t)^{-1 - \sigma_{\infty}}(k_{0} + 1) \int_{\mathbb{R}} y_t^2 dx \\
+ \begin{cases}
C(\delta + \epsilon)(1 + t)^{-1} \ln(1 + t), & \text{if } k(\lambda) \notin \mathbb{N}^+, \\
C(\delta + \epsilon)(1 + t)^{-1}, & \text{if } k(\lambda) \in \mathbb{N}^+,
\end{cases}
\]
where we have used the fact (3.22).

On the other hand, multiplying (3.2) by \((\alpha + t)^{1 + \lambda} y_t\) and integrating the result over \(\mathbb{R}\), we use the same argument in (3.22) to obtain that
\[
\frac{1}{2} \frac{d}{dt} \left[(\alpha + t)^{1 + \lambda} \int_{\mathbb{R}} \left(y_t^2 + P'(\tilde{\rho}) y_x^2 + \frac{m^2}{\rho^2} y_x^2 \right) dx \right] + \frac{1}{2} (\alpha + t)^{\lambda + 1} \int_{\mathbb{R}} y_t^2 dx \\
\leq \frac{d}{dt} \left[(\alpha + t)^{1 + \lambda} \int_{\mathbb{R}} \left(\int_{\tilde{\rho}^\gamma y_x} \right) P(s) ds - P(\tilde{\rho}) y_x^2 + \frac{1}{2} P'(\tilde{\rho}) y_x^2 dx \right] \\
+ C(\alpha + t)^\lambda \int_{\mathbb{R}} y_t^2 dx + C\tilde{\delta}^2 (1 + t)^{-1 - 2\sigma_{\infty}}(k_{0} + 1) - k(\lambda)].
\]
Thanks to (3.22) and the improved estimates (3.5), integrating \(C_2 \times (3.24) + (3.25)\) in \((0, t)\) for large constant \(C_2\) and choosing \(\alpha\) large enough imply (3.22) directly. Thus the proof of Lemma 3.2 is completed. \(\square\)
Lemma 3.3. Assume that \(y(x,t) \in \mathcal{X}_T \) is the solution of (3.2). If \(\epsilon \) and \(\delta \) are small, it holds that for \(s = 1, 2 \),

\[
(\alpha + t)^{(s+1)(1+\lambda)} \int_{\mathbb{R}} [(\partial_x^{s+1})^2 + (\partial_x^s y)^2] \, dx + \int_{0}^{t} \left(\int_{\mathbb{R}} (\alpha + \tau)^{(1+s)(1+\lambda)} (\partial_x^s y)^2 \, d\tau \right) \, dx \leq \begin{cases}
C(N(0)^2 + \delta^2 + \delta \epsilon), & \text{if } k(\lambda) \in \mathbb{N}^+; \\
C(N(0)^2 + \delta^2 + \delta \epsilon) \ln^2(1 + t), & \text{if } k(\lambda) \notin \mathbb{N}^+.
\end{cases} \tag{3.26}
\]

Proof. Differentiating (3.2) with respect to \(x \), we obtain

\[
(\partial_x y)_{xt} - (\partial_x (P(\rho)y)_x)_x + \frac{\partial_x y_t}{(1 + t)^{\lambda}} = \partial_x g_1 + \partial_x g_2 + \partial_x S(\rho). \tag{3.27}
\]

Multiplying (3.27) by \((\alpha + t)^{(2+1)(1+\lambda)}\partial_x y_t\) and integrating the result with respect to \(x \) over \(\mathbb{R} \) give that

\[
\frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \right] \int_{\mathbb{R}} \frac{1}{2} (P'(\rho)(\partial_x^2 y)^2 + (\partial_x^s y)^2) \, dx + \int_{\mathbb{R}} \frac{(\alpha + t)^{2(1+\lambda)}}{(1 + t)^{\lambda}} (\partial_x y_t)^2 \, dx \\
\leq 2(1 + \lambda)(\alpha + t)^{1+2\lambda} \int_{\mathbb{R}} \frac{1}{2} (\partial_x^2 y)^2 \, dx + (\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} \partial_x^2 y(P'(\rho))_x + y_x \partial_x^2 (P'(\rho)) \, dx.
\]

A direct computation yields that

\[
|I_1| \leq C \left(1 + \frac{\delta}{1 + t} \right) (\alpha + t)^{1+2\lambda} \int_{\mathbb{R}} (\partial_x^2 y)^2 \, dx + C\delta \frac{(\alpha + t)^{2(1+\lambda)}}{(1 + t)^{\lambda}} (\partial_x y_t)^2 \, dx + C\delta \frac{(\alpha + t)^{2(1+\lambda)}}{(1 + t)^{2+\lambda}} \int_{\mathbb{R}} y_x^2 \, dx. \tag{3.29}
\]

Note that

\[
(\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} \partial_x g_1 \partial_x y_t \, dx \\
= (\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} [(P'(\rho) - P'(\rho))y_{xx} + (P'(\rho) - P'(\rho) + P''(\rho)y_x)\partial_x^2 y \, dx \\
= \frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} (P'(\rho) - P'(\rho))\frac{1}{2} (\partial_x^2 y)^2 \right] + I_{2,1} + I_{2,2},
\]

where

\[
I_{2,1} = -2(1 + \lambda)(\alpha + t)^{1+2\lambda} \int_{\mathbb{R}} (P'(\rho) - P'(\rho))\frac{1}{2} (\partial_x^2 y)^2 \, dx - (\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} (P'(\rho) - P'(\rho))\frac{1}{2} (\partial_x^2 y)^2 \, dx,
\]

\[
I_{2,2} = (\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} [(P'(\rho) - P'(\rho) + P''(\rho)y_x)\partial_x^2 y + (P'(\rho) - P'(\rho) + P''(\rho)y_x)\partial_x^2 y] \, dx,
\]

then it follows from the a priori assumption (3.4) and the estimates (3.16) that

\[
(\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} \partial_x g_1 \partial_x y_t \, dx \\
\leq \frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \int_{\mathbb{R}} (P'(\rho) - P'(\rho))\frac{1}{2} (\partial_x^2 y)^2 \right] + C(\delta + \epsilon + \delta \frac{\alpha + t}{1 + t})(\alpha + t)^{1+2\lambda} \int_{\mathbb{R}} (\partial_x y_t)^2 \, dx \\
+ C\delta \frac{(\alpha + t)^{2(1+\lambda)}}{(1 + t)^{\lambda}} (\partial_x y_t)^2 \, dx + C\delta (1 + t)^{\lambda} \int_{\mathbb{R}} y_x^2 \, dx. \tag{3.30}
\]

COMPRESSIBLE EULER EQUATIONS 11
In addition, it holds that
\[
(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \partial_x g_2 \partial_x y_t dx
\]
\[
= - (\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \partial_x \left[\frac{m^2}{\rho^2} y_{xx} + \frac{2m}{\rho} y_{xt} - \left(\frac{m^2}{\rho^2} - \frac{m^2}{\rho^2} \right) \partial_x \tilde{\rho} + \left(\frac{2m}{\rho} - \frac{2m}{\rho} \right) \partial_x \tilde{m} \right] dx
\]
\[
= \frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \frac{m^2}{\rho^2} \left(\partial_x^2 y \right)^2 dx \right] + I_{3,1} + I_{3,2} + I_{3,3},
\]
where
\[
I_{3,1} = -2(1+\lambda)(\alpha + t)^{1+2\lambda} \int_\mathbb{R} \frac{m^2}{\rho^2} \left(\partial_x^2 y \right)^2 dx - (\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \left(\frac{m^2}{\rho^2} \right) \frac{1}{2} \left(\partial_x^2 y \right)^2 dx;
\]
\[
I_{3,2} = - (\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \frac{2m}{\rho} \frac{1}{2} \left(\partial_x y_t \right)^2 dx,
\]
\[
I_{3,3} = (\alpha + t)^{2(1+\lambda)} \sum_{l+r=1} \int_\mathbb{R} C_1 \left(\frac{m^2}{\rho^2} - \frac{m^2}{\rho^2} \right) \left(\partial_x \tilde{\rho} \right)^{(l)} \left(\partial_x \tilde{m} \right)^{(r)} \partial_x y_t dx.
\]
Similarly, a tedious computation shows that
\[
(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \partial_x g_2 \partial_x y_t dx
\]
\[
\leq \frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \frac{m^2}{\rho^2} \left(\partial_x^2 y \right)^2 dx \right] + C(\delta + \epsilon)(\alpha + t)^{1+2\lambda} \int_\mathbb{R} \left(\partial_x^2 y \right)^2 dx
\]
\[
+ C(\delta + \epsilon)(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \left(\partial_x y_t \right)^2 dx + C(1 + t)^{\lambda} \int_\mathbb{R} \left(y^2 + y_t^2 \right) dx.
\] (3.31)

Moreover, Lemma 2.4 yields that
\[
(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \partial_x S(\tilde{\rho}) \partial_x y_t dx
\]
\[
\leq \nu_1 (\alpha + t)^{2(1+\lambda)\alpha} \int_\mathbb{R} \left(\partial_x y_t \right)^2 dx + C(\nu_1)\delta^2 (1 + t)^{-1-2\sigma[(k_0+1)-k(\lambda)]},
\] (3.32)

where \(\nu_1 \) is a small constant. Substituting \(\nu_1 \) into (3.31), and choosing \(\nu_1 \) small and \(\alpha \) large enough give that
\[
\frac{d}{dt} \left[(\alpha + t)^{2(1+\lambda)} \int_\mathbb{R} \frac{1}{2} \left[\left(P'(\rho) - \frac{m^2}{\rho^2} \right) (\partial_x^2 y)^2 + (\partial_x y_t)^2 \right] dx \right] + \int_\mathbb{R} \frac{2m}{\rho} \frac{1}{2} \left(\partial_x^2 y \right)^2 dx
\]
\[
\leq C(1 + \delta \frac{\alpha + t}{1 + t}) (\alpha + t)^{1+2\lambda} \int_\mathbb{R} \left(\partial_x y_t \right)^2 dx + C(\delta + \epsilon)(1 + t)^{\lambda} \int_\mathbb{R} \left(y^2 + y_t^2 \right) dx
\]
\[
+ C(\nu_1)\delta^2 (1 + t)^{-1-2\sigma[(k_0+1)-k(\lambda)]}.
\] (3.33)

It remains to estimate the term \((\alpha + t)^{1+2\lambda} \int_\mathbb{R} \left(\partial_x^2 y \right)^2 dx \). We multiply \((\alpha + t)^{1+2\lambda} \partial_x y_t \) and integrate the result over \(\mathbb{R} \) to obtain
\[
\frac{d}{dt} \left[\int_\mathbb{R} \frac{(\alpha + t)^{1+2\lambda}}{2(1 + t)^{\lambda}} \left(\partial_x y_t \right)^2 dx \right] + (\alpha + t)^{1+2\lambda} \int_\mathbb{R} P'(\tilde{\rho}) \left(\partial_x^2 y \right)^2 dx
\]
\[
\leq (\alpha + t)^{1+2\lambda} \int_\mathbb{R} \left(\partial_x g_1 + \partial_x g_2 + \partial_x S(\tilde{\rho}) \right) \partial_x y_t dx + \sum_{i=1}^{3} I_{4,i},
\] (3.34)
Proof. Differentiating (3.2) with respect to \(t\), we have

\[
I_{4,1} = (1 + 2\lambda)(\alpha + t)^{2\lambda} \int_x \partial_x y \partial_x y_t dx + (\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx,
\]

\[
I_{4,2} = (\alpha + t)^{1+2\lambda} \int_x (P'(\rho))_x y \partial_x^2 y dx,
\]

\[
I_{4,3} = \frac{1}{2} [(1 + 2\lambda)\alpha + t^{2\lambda} - \lambda (\alpha + t)^{1+2\lambda}] \int_x y_t^2 dx.
\]

Integrating (3.33) + (3.34) and choosing \(\nu\) where we have used the fact (3.22).

It is easy to check that

\[
\frac{3}{\nu_1} \leq (\alpha + t)^{1+2\lambda} \int_x y_t^2 dx + C(\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + C(1 + t)^{1+2\lambda} \int_x y_t^2 dx,
\]

(3.35)

where \(\nu_1\) is a small constant. In addition, a direct computation shows that

\[
(\alpha + t)^{1+2\lambda} \int_x \partial_x S(\rho) \partial_x y dx \leq (\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + C(\nu_1) \delta^2 (1 + t)^{1-2\sigma[k(0)-k(\lambda)]}.
\]

(3.36)

and

\[
(\alpha + t)^{1+2\lambda} \int_x \partial_x (\rho) \partial_x y dx \leq C(\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + C(\alpha + t)^{1+2\lambda} (1 + t)^{1-2\sigma[k(0)-k(\lambda)]} \int_x (y_t^2 + y_t^2) dx + C(\nu_1) \delta^2 (1 + t)^{1-2\sigma[k(0)-k(\lambda)]}.
\]

(3.37)

Substituting (3.35) - (3.37) into (3.34) and choosing \(\nu_1\) small enough to verify that

\[
\frac{d}{dt} \int_x (\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + (\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + (\alpha + t)^{1+2\lambda} \int_x P'(\rho) \partial_x^2 y dx + C(\alpha + t)^{1+2\lambda} (1 + t)^{1-2\sigma[k(0)-k(\lambda)]} \int_x (y_t^2 + y_t^2) dx + C(\nu_1) \delta^2 (1 + t)^{1-2\sigma[k(0)-k(\lambda)]}.
\]

(3.38)

Integrating (3.33) + (3.35) - (3.37) in \((0, t)\) for large constants \(C_3\) and \(\alpha\) and using Lemma 3.2, we obtain

\[
(\alpha + t)^{2(1+\lambda)} \int_x [(\partial_x y_t)^2 + (\partial_x y_t)^2] dx + (\alpha + t)^{1+2\lambda} \int_x (\partial_x^2 y_t)^2 dx + (\alpha + t)^{1+2\lambda} \int_x (\partial_x^2 y_t)^2 dx + C(\alpha + t)^{1+2\lambda} (1 + t)^{1-2\sigma[k(0)-k(\lambda)]} \int_x (y_t^2 + y_t^2) dx + C(\nu_1) \delta^2 (1 + t)^{1-2\sigma[k(0)-k(\lambda)]}.
\]

(3.39)

where we have used the fact (3.22).

Similarly, we can obtain the desired estimates (3.30) for the case of \(s = 2\). Thus, the proof is completed.

\[
\square
\]

Lemma 3.4. Assume that \(y(x, t) \in X_T\) is the solution of (3.2). If \(\epsilon\) and \(\delta\) are small, it holds that for \(s = 0, 1,\)

\[
(1 + t)^{3+\lambda+s(1+\lambda)} \int_x [(\partial_x y_t)^2 + (\partial_x y_t)^2] dx + (\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx + C(\alpha + t)^{1+2\lambda} \int_x (\partial_x y_t)^2 dx.
\]

(3.40)

Proof. Differentiating (3.2) with respect to \(t\) gives

\[
y_{tt} - (P'(\rho)y_x)_{xt} + \frac{y_t}{(1 + t)^{1+\lambda}} = g_{tt} + g_{xt} + S(\rho)_t.
\]

(3.40)
Then we multiply (3.40) by \((\alpha + t)^{3+\lambda} y_{tt}\) and integrate the result over \(\mathbb{R}\) to obtain that
\[
\frac{d}{dt} \int_{\mathbb{R}} \frac{(\alpha + t)^{3+\lambda}}{2} \left[y_{tt}^2 + P'(\rho) y_{xx}^2 \right] dx + \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx \\
\leq \frac{3 + \lambda}{2} (\alpha + t)^{2+\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + (\alpha + t)^{3+\lambda} \int_{\mathbb{R}} g_{tt} y_{tt} dx + (\alpha + t)^{3+\lambda} \int_{\mathbb{R}} g_{2tt} y_{tt} dx \\
+ (\alpha + t)^{3+\lambda} \int_{\mathbb{R}} S(\tilde{\rho}) y_{tt} dx + I_5,
\]
where
\[
I_5 = \frac{3 + \lambda}{2} (\alpha + t)^{2+\lambda} \int_{\mathbb{R}} P'(\rho) y_{tt}^2 dx + (\alpha + t)^{3+\lambda} \left[\int_{\mathbb{R}} P''(\rho) \tilde{\rho}_{tt} \frac{1}{2} y_{tt}^2 dx + \int_{\mathbb{R}} P''(\rho) \tilde{\rho}_{tt} y_{xx} y_{tt} dx \\
+ \int_{\mathbb{R}} P''(\rho) \tilde{\rho}_{x2} y_{tt} dx + \int_{\mathbb{R}} P''(\rho) \tilde{\rho}_{y2} y_{tt} dx \right] + \lambda (\alpha + t)^{3+\lambda} \int_{\mathbb{R}} y_{tt}^2 dx.
\]
A direct computation shows that
\[
|I_5| \leq \nu_1 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + C(\alpha + t)^{3+\lambda} \left[\frac{1}{\alpha + t} + \frac{\delta}{1 + t} \right] \int_{\mathbb{R}} y_{tt}^2 dx + C\delta^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^2} \int_{\mathbb{R}} y_{tt}^2 dx,
\]
\[
(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} g_{tt} y_{tt} dx \leq \frac{d}{dt} \left[(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} (P'(\rho) - P'(\rho)) \frac{1}{2} y_{tt}^2 dx \right] + \nu_1 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx \\
+ C(\nu_1)^2 \left(\frac{\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{xx}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^2} \int_{\mathbb{R}} y_{tt}^2 dx \\
+ C(\nu_1)^2 \frac{(\alpha + t)^{2+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^2} \int_{\mathbb{R}} y_{tt}^2 dx \right) \int_{\mathbb{R}} y_{tt}^2 dx
\]
and
\[
(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} S(\tilde{\rho}) y_{tt} dx \leq \nu_1 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx
\]
In addition, it follows from Lemma 2.24 that
\[
(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} S(\tilde{\rho}) y_{tt} dx \leq \nu_1 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx
\]
where \(\nu_1\) is a small constant. Next, substituting (3.41) into (3.44) and choosing \(\alpha\) large and \(\nu_1\) small enough yield that
\[
\frac{d}{dt} \left[\int_{\mathbb{R}} \frac{(\alpha + t)^{3+\lambda}}{2} \left[y_{tt} + \left(P'(\rho) - \frac{m^2}{\rho^2} \right) y_{xx} \right] dx \right] + \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^\lambda} \int_{\mathbb{R}} y_{tt}^2 dx \\
\leq C(\alpha + t)^{3+\lambda} \left[\frac{1}{\alpha + t} + \frac{\delta}{1 + t} \right] \int_{\mathbb{R}} y_{xx}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^2} \int_{\mathbb{R}} y_{tt}^2 dx \\
+ C(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} y_{tt}^2 dx + C(\nu_1)^2 \frac{(\alpha + t)^{3+\lambda}}{(1 + t)^2} \int_{\mathbb{R}} y_{tt}^2 dx
\]
From Lemmas 3.2-3.3 and the fact (3.51), we integrate (3.40) over \([0, t]\) to obtain that
\[
(\alpha + t)^{3+\lambda} \int_{\mathbb{R}} (y_{it}^2 + y_{tt}^2)dx + \int_0^t \int_{\mathbb{R}} (\alpha + \tau)^3 y_t^2 dx d\tau \leq \begin{cases} C(N(0)^2 + \delta^2 + \delta\epsilon), & \text{if } k(\lambda) \notin \mathbb{N}^+, \\ C(N(0)^2 + \delta^2 + \delta\epsilon) \ln^2(1 + t), & \text{if } k(\lambda) \in \mathbb{N}^+. \end{cases}
\]

Similarly, we can verify that (3.39) holds for the case of \(s = 1\). Thus the proof is completed. \(\square\)

Lemma 3.5. Assume that \(y(x, t) \in X_T\) is the solution of (3.2). If \(\epsilon\) and \(\delta\) are small, it holds that
\[
(1 + t)^2 \int_{\mathbb{R}} y_t^2 dx \leq \begin{cases} C(N(0)^2 + \delta^2 + \delta\epsilon), & \text{if } k(\lambda) \notin \mathbb{N}^+, \\ C(N(0)^2 + \delta^2 + \delta\epsilon) \ln^2(1 + t), & \text{if } k(\lambda) \in \mathbb{N}^+. \end{cases}
\]

(3.47)

Proof. Multiplying (3.40) by \((1 + t)^{2+\lambda} y_t\) and integrating the result over \(\mathbb{R}\) lead to
\[
\frac{d}{dt} \left[\int_{\mathbb{R}} (1 + t)^{2+\lambda} y_t y_{tt} dx + \int_{\mathbb{R}} \frac{1}{2} (1 + t)^2 y_t^2 dx \right]
\leq C(1 + t)^{2+\lambda} \int_{\mathbb{R}} (y_{xt}^2 + y_{tt}^2) dx + C(1 + t)^3 \int_{\mathbb{R}} y_t^2 dx + C(1 + t) \int_{\mathbb{R}} y_t^2 dx + (1 + t)^{2+\lambda} \int_{\mathbb{R}} (g_{1t} + g_{2t} + S(\tilde{\rho}_t)) y_t dx.
\]

(3.48)

It follows from (3.16) that
\[
(1 + t)^{2+\lambda} \int_{\mathbb{R}} g_{1t} y_t dx + (1 + t)^{2+\lambda} \int_{\mathbb{R}} g_{2t} y_t dx
\leq C(1 + t)^{2+\lambda} \int_{\mathbb{R}} (y_{xt}^2 + y_{tt}^2) dx + C(1 + t)^3 \int_{\mathbb{R}} y_t^2 dx + C(\nu_1) \sigma^2 (1 + t)^{1-2\sigma} \int_{\mathbb{R}} \|y_t\|^2 dx.
\]

(3.49)

Moreover, it follows from Lemma 2.4 that
\[
(1 + t)^{2+\lambda} \int_{\mathbb{R}} S(\tilde{\rho}_t) y_t dx \leq (1 + t) \int_{\mathbb{R}} y_t^2 dx + C(\nu_1) \sigma^2 (1 + t)^{1-2\sigma} \int_{\mathbb{R}} \|y_t\|^2 dx + C(\nu_1) \sigma^2 (1 + t)^{1-2\sigma} \int_{\mathbb{R}} \|y_t\|^2 dx.
\]

(3.50)

Substituting 2.39 - 2.40 into 2.38 and integrating the result over \([0, t]\), we deduce 2.47 from Lemmas 3.2-3.3. Thus the proof is completed. \(\square\)

Proof of Theorem 1.1 Lemmas 3.2-3.3 show that there exists some positive constant \(C_0\) such that
\[
\sum_{s=0}^{2} \left[(1 + t)^{(s+1)(1+\lambda)} \|\partial_s^s y_s(t)\|^2 + (1 + t)^{2+s(1+\lambda)} \|\partial_s^s y_s(t)\|^2 \right]
\leq \begin{cases} C_0(N(0)^2 + \delta^2 + \delta\epsilon), & \text{if } k(\lambda) \notin \mathbb{N}^+, \\ C_0(N(0)^2 + \delta^2 + \delta\epsilon) \ln^2(1 + t), & \text{if } k(\lambda) \in \mathbb{N}^+. \end{cases}
\]

provided that \(\epsilon \ll 1\). Choose \(\epsilon = 4C_0(N(0) + \delta)\) and suppose that \(N(0) + \delta \ll 1\), then we can obtain from 2.31 that
\[
N(T) \leq \begin{cases} \frac{\phi^2}{4}, & \text{if } k(\lambda) \notin \mathbb{N}^+, \\ \frac{\phi^2}{4} \ln(1 + T), & \text{if } k(\lambda) \in \mathbb{N}^+. \end{cases}
\]

which closes the a priori assumption 3.3. Therefore the proof is completed. \(\square\)

Appendix A. Proof of Lemma 2.3

For the case \(i = 1\), we consider the following ODE
\[
(P'(\tilde{\rho})G_1)_{\xi} + \frac{1 + \lambda}{2} (\xi G_1)_{\xi} - 2\lambda G_1 = \lambda P(\tilde{\rho})_{\xi} - h_{1\xi}
\]

(A.1)

with the condition
\[
\int_{\mathbb{R}} G_1 dx = \frac{P(\rho_+) - P(\rho_-)}{2}.
\]

(A.2)
Let \(\tilde{G}_1 = G_1 + \frac{1}{2} P(\tilde{\rho}) \xi \), then (A.1)-(A.2) can be rewritten as
\[
\begin{align*}
\int_R \tilde{G}_1(\xi)d\xi &= 0,
\end{align*}
\]
where
\[
\tilde{h}_1 = \frac{1}{2} P'(\tilde{\rho}) P(\tilde{\rho}) \xi - \frac{1}{4} \xi P(\tilde{\rho}) - h_1.
\]

Taking the Fourier transformation of \(\tilde{G}_1(\xi) \) gives that
\[
\begin{align*}
\mathcal{F}_1(\eta) &= \mathcal{F}[\tilde{G}_1(\xi)], \\
\mathcal{F}_1(0) &= \mathcal{F}[\tilde{h}_1],
\end{align*}
\]
where \(\mathcal{F}_1(\eta) = \mathcal{F}[\tilde{G}_1(\xi)] \). We construct the following iterative sequences \(\{\mathcal{F}_n\} \):
\[
\begin{align*}
\mathcal{F}_{n+1}(\eta) &= -\frac{2}{1 + \lambda} \eta \int_0^\eta e^{-i \int_{\eta_1}^{\eta} P'(\rho_+) \xi^2} \int_0^{\eta_2} \frac{d\eta_2}{\eta_2} e^{-i \int_{\eta_1}^{\eta} P'(\rho_+) \xi^2} \mathcal{F}[((P'(\rho_+) - P'(\tilde{\rho})) \tilde{G}_1^\eta \xi)] + \mathcal{F}[\tilde{h}_1],
\end{align*}
\]
where \(\tilde{G}_1^\eta(\xi) = \mathcal{F}^{-1}[\mathcal{F}_1(\eta)] \) with \(n \in \mathbb{N}^+ \) and \(\tilde{G}_1^0(\xi) = 0 \). It follows from (A.4) that
\[
\mathcal{F}_{n+1}(\eta) = -\frac{2}{1 + \lambda} \eta \mathcal{F}_n(\eta) + \mathcal{F}[\tilde{h}_1],
\]
where \(\mathcal{F}_1(\eta) = \mathcal{F}[\tilde{G}_1(\xi)] \) is the Schwartz space. Indeed, since \(\tilde{G}_1(\xi) = 0 \) and \(\mathcal{F}[\tilde{h}_1] \in \mathcal{F}(\mathbb{R}) \), it is straightforward to imply that for any nonnegative integers \(\alpha \) and \(\beta \),
\[
|\eta^\alpha \partial_\eta^\beta \mathcal{F}_1 | \to 0, \quad \text{as} \quad |\eta| \to \infty.
\]
Thus \(\mathcal{F}_1 \in \mathcal{F}(\mathbb{R}) \) holds. In the same way, we can verify \(\{\mathcal{F}_n\} \subset \mathcal{F}(\mathbb{R}) \).

It follows from the above claim that \(\{\mathcal{F}_n\} \subset \chi^{m_1}(\mathbb{R}) \) for any given integer \(m_1 > 0 \), where \(\chi^{m_1}(\mathbb{R}) \) is given in (2.15). We will use the contraction principle to show that \(\mathcal{F}_n \) has a unique limit in \(\chi^{m_1}(\mathbb{R}) \). To this end, let \(\Delta_1^{n+1} = \mathcal{F}_{n+1} - \mathcal{F}_n \) and we hope that
\[
\|\Delta_1^{n+1}\|_{\chi^{m_1}(\mathbb{R})} \leq C \delta \|\Delta_1^{n}\|_{\chi^{m_1}(\mathbb{R})} \leq \frac{1}{2} \|\Delta_1^{n}\|_{\chi^{m_1}(\mathbb{R})}.
\]

It remains to prove (A.3). Note that \(\Delta_1^{n+1} \) satisfies that
\[
\begin{align*}
\frac{1 + \lambda}{2} \eta \Delta_1^{n+1} + (2 \lambda + P'(\rho_+)) \Delta_1^{n+1} &= -\mathcal{F}[((P'(\rho_+) - P'(\tilde{\rho})) (\tilde{G}_1^\eta \xi - \tilde{G}_1^{n-1}))],
\end{align*}
\]
we take the procedure as (A.6) \(\times \Delta_1^{n+1} + (A.6) \times \Delta_1^{n+1} \) and integrate the result over \(\mathbb{R} \) to obtain
\[
\begin{align*}
\int_R P'(\rho_+) \eta^2 |\Delta_1^{n+1}|^2 d\eta &= \left(\frac{1 + \lambda}{4} - 2\lambda \right) \int_R |\Delta_1^{n+1}|^2 d\eta - \frac{1}{2} \int_R \mathcal{F}[((P'(\rho_+) - P'(\tilde{\rho})) (\tilde{G}_1^\eta \xi - \tilde{G}_1^{n-1}))] \Delta_1^{n+1} d\eta \\
&\quad - \frac{1}{2} \int_R \mathcal{F}[((P'(\rho_+) - P'(\tilde{\rho})) (\tilde{G}_1^\eta \xi - \tilde{G}_1^{n-1}))] \Delta_1^{n+1} d\eta \\
&\leq \tilde{C} \int_R |\Delta_1^{n+1}|^2 d\eta + \nu_1 \int_R \eta^2 |\Delta_1^{n+1}|^2 d\eta + C(\nu_1) \int_R |F[(P'(\rho_+) - P'(\tilde{\rho})) (\tilde{G}_1^\eta \xi - \tilde{G}_1^{n-1})]|^2 d\eta \\
&\leq \tilde{C} \int_R |\Delta_1^{n+1}|^2 d\eta + \nu_1 \int_R \eta^2 |\Delta_1^{n+1}|^2 d\eta + C(\nu_1) \int_R |(P'(\rho_+) - P'(\tilde{\rho})) (\tilde{G}_1^\eta \xi - \tilde{G}_1^{n-1})|^2 d\eta \\
&\leq \tilde{C} \int_{|\eta| \geq M} |\Delta_1^{n+1}|^2 d\eta + \tilde{C} \int_{|\eta| \leq M} |\Delta_1^{n+1}|^2 d\eta + \nu_1 \int_R \eta^2 |\Delta_1^{n+1}|^2 d\eta + C(\nu_1) \delta^2 \int_R \eta^2 |\Delta_1^{n+1}|^2 d\eta,
\end{align*}
\]
where \(\bar{f} \) represents the conjugate complex of \(f \) and we have used Plancherel’s Theorem in the last two inequalities. By choosing \(\nu \) small and \(M \) large enough so that \(P'(\rho_+)M^2 > 2\bar{C} \), we deduce from (A.7) that
\[
\int_{\mathbb{R}} \eta^2 |\Delta_1^{n+1}|^2 \, d\eta \leq C \int_{\mathbb{R}} |\Delta_1^{n+1}|^2 \, d\eta + C(\nu_1) \delta^2 \int_{\mathbb{R}} \eta^2 |\Delta_1^n|^2 \, d\eta.
\]
Moreover, the explicit expression \(\Delta_1^{n+1} \) from (A.6) shows that
\[
\int_{\mathbb{R}} |\Delta_1^{n+1}|^2 \, d\eta = \int_{\mathbb{R}} \left| \eta \frac{\Delta_1}{1 + \lambda} e^{-\frac{\rho_+\eta^2}{1 + \lambda}} \int_0^\eta \frac{\Delta_1}{1 + \lambda} e^{\frac{\rho_+\eta^2}{1 + \lambda}} \{ \mathcal{F}[(P'(\rho_+) - P'(\bar{\rho}))\tilde{G}_1^\eta - \hat{G}_1^{n-1}] \} \, d\eta \right|^2 \, d\eta
\leq C \int_{\mathbb{R}} \left| \mathcal{F}[(P'(\rho_+) - P'(\bar{\rho}))(\tilde{G}_1^\eta - \hat{G}_1^{n-1})] \right|^2 \, d\eta \, d\eta
\leq C_M \delta^2 \int_{\mathbb{R}} \eta^2 |\Delta_1^n|^2 \, d\eta,
\]
which, together with (A.8), yields that
\[
\int_{\mathbb{R}} |\Delta_1^{n+1}|^2 \, d\eta + \int_{\mathbb{R}} \eta^2 |\Delta_1^{n+1}|^2 \, d\eta \leq C(\nu_1, M) \delta^2 \int_{\mathbb{R}} \eta^2 |\Delta_1^n|^2 \, d\eta \leq \frac{1}{2} \int_{\mathbb{R}} \eta^2 |\Delta_1^n|^2 \, d\eta.
\]
In the same way, we can verify further that (A.3) holds.

Thus, it follows from the contraction mapping principle that (A.3) admits a unique solution \(\mathcal{F}_1 \in \chi^{m_1}(\mathbb{R}) \). Moreover, applying the similar argument in (A.3) we get
\[
\| \mathcal{F}_1 \|_{\chi^{m_1}(\mathbb{R})} \leq C\delta, \quad \text{or equivalently}, \quad \| \tilde{G}_1 \|_{\chi^{m_1}(\mathbb{R})} \leq C\delta.
\]
Note that \(\tilde{G}_1 = G_1 + \frac{1}{2} P(\rho) \xi \), it holds that \(\| G_1 \|_{\chi^{m_1}(\mathbb{R})} \leq C\delta \).

Similarly, for the general case \(i \geq 2 \), let \(\tilde{G}_i = G_i - \frac{c_{i-1}}{c_i} G_{i-1} \) and we can rewrite (2.14) and (2.16) as
\[
\left\{ (P'((\rho^+ - P'(\bar{\rho})))\tilde{G}_i\xi + \frac{1 + \lambda}{c_i} \xi \tilde{G}_i\xi + c_{i-1} \tilde{G}_i = ((P'((\rho^+ - P'(\bar{\rho}))))\tilde{G}_i\xi + \tilde{h}_i, \xi, \right. \quad \text{A.9}
\]
\[
\int_{\mathbb{R}} G_i(\xi) \, d\xi = 0,
\]
where \(\tilde{h}_i = -\frac{c_{i-1}}{c_i} \left(P'(\bar{\rho})G_{i-1}\xi + \frac{1 + \lambda}{2} \xi G_{i-1} \right) - h_i \) and \(c_1, c_2, h_1 \) are given in (2.10)–(2.11). Note that \(G_1 \in \chi^{m_1}(\mathbb{R}) \) with any given integer \(m_1 > 0 \), which implies that \(\mathcal{F}[\tilde{h}_i] \in \mathcal{S}(\mathbb{R}) \). Thus in the same way we can see that (A.9) admits a unique solution \(G_i \in \chi^{m_i}(\mathbb{R}) \) and \(\| G_i \|_{\chi^{m_i}(\mathbb{R})} \leq C\delta \) for any given integer \(m_i > 0 \). Thus, the proof of Proposition 2.3 is completed.

Acknowledgements S. Geng’s research is supported in part by the National Natural Science Foundation of China (No. 12071397). F. Huang’s research is supported in part by the National Natural Science Foundation of China (No. 11688101).

References

[1] S. Chen, H. Li, J. Li, M. Mei, and K. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differential Equations, 268 (2020), no. 9, 5035-5077.

[2] H. Cui, H. Yin, J. Zhang and C. Zhu, Convergence to nonlinear diffusion waves for solutions of Euler equations with time-dependent damping, J. Differential Equations, 264 (2018), 4564-4602.

[3] C. T. Duyn and L. A. Van Peletier, A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal., 1 (1977), pp. 223-230.

[4] S. Geng, F. Huang, X. Wu, L^1-convergence to generalized Barenblatt solution for compressible Euler equations with time-dependent damping, SIAM J. Math. Anal., 53(5) (2021), 6048-6072.

[5] S. Geng, Y. Lin, M. Mei, Asymptotic behavior of solutions to Euler equations with time-dependent damping in critical case, SIAM J. Math. Anal., 52 (2020), 1463-1488.

[6] L. Hsiao, T. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.

[7] L. Hsiao, T. Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math., 14B (1993), 465-480.
[8] F. Huang, P. Marcati, R. Pan, Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum, *Arch. Ration. Mech. Anal.*, 176 (2005), 1-24.

[9] F. Huang, R. Pan, Z. Wang, L^1 Convergence to the Barenblatt Solution for Compressible Euler Equations with Damping, *Arch. Ration. Mech. Anal.*, 200 (2011), 665-689.

[10] H. Li, J. Li, M. Mei and K. Zhang, Convergence to nonlinear diffusion waves for solutions of p-system with time-dependent damping, *J. Math. Anal. Appl.*, 456 (2017), 849-871.

[11] T. Luo, H. Zeng, Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping, *Comm. Pure Appl. Math.*, 69(7) (2016), 1354-1396.

[12] A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with the first-order dissipation, *Publ. RIMS Kyoto Univ.*, 13 (1977), 349-379.

[13] M. Mei, Best asymptotic profile for hyperbolic p-system with damping, *SIAM J. Math. Anal.*, 42 (2010), 1-23.

[14] M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, *J. Differential Equations*, 247 (2009), 1275-1296.

[15] K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, *J. Differential Equations*, 131 (1996), 171-188.

[16] K. Nishihara, W. Wang, T. Yang, L^p-convergence rate to nonlinear diffusion waves for p-system with damping, *J. Differential Equations*, 161 (2000), 191-218.

[17] X. Pan, Global existence of solutions to 1-d Euler equations with time-dependent damping, *Nonlinear Anal.*, 132 (2016), 327-336.

[18] X. Pan, Blow up of solutions to 1-d Euler equations with time-dependent damping, *J. Math. Anal. Appl.*, 442 (2016), 435-445.

[19] T. Sideris, B. Thomases, D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, *Comm. Partial Differential Equations*, 28(3-4) (2003), 795–816.

[20] Y. Sugiyama, Singularity formation for the 1-d compressible Euler equations with variable damping coefficient, *Nonlinear Anal.*, 170 (2018), 70-87.

[21] W. Wang, T. Yang, Existence and stability of planar diffusion waves for 2-D Euler equations with damping, *Journal of Differential Equations*, 242(2007), 40-71.

[22] J. Wirth, Solution representations for a wave equation with weak dissipation, *Math. Methods Appl. Sci.*, 27 (2004), 101-124.

[23] J. Wirth, Wave equations with time-dependent dissipation. I. Non-effective dissipation, *J. Differential Equations*, 222 (2006), 487-514.

[24] J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation, *J. Differential Equations*, 232 (2007), 74-103.

[25] H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping, *J. Differential Equations*, 174 (2001), 200-236.

[26] Y. Zheng, Global smooth solutions to the adiabatic gas dynamics system with dissipation terms, *Chinese Ann. Math.*, 17A (1996), 155-162.

[27] C. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, *Sci. China Ser. A.*, 46 (2003), 562-575.

Email address: sfgeng@xtu.edu.cn

Email address: fhuang@amt.ac.cn

Email address: jinguanghui@ybu.edu.cn

Email address: wuxc19@amss.ac.cn