In-Hospital 30-Day Survival Among Young Adults With Coronavirus Disease 2019: A Cohort Study

Safiya Richardson,1,2 Jordan Gitlin,2 Zachary Kozel,2 Sera Levy,1 Husneara Rahman,4 Jamie S. Hirsch,1,2,3 Thomas McGinn,1,2 and Michael A. Diefenbach1,2

1Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA, 2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA, 3Department of Information Services, Northwell Health, New Hyde Park, New York, USA, 4Biostatistics Unit, Feinstein Institutes for Medical Research, Northwell Health, Great Neck, New York, USA

Background. Our objective was to characterize young adult patients hospitalized with coronavirus disease 2019 (COVID-19) and identify predictors of survival at 30 days.

Methods. This retrospective cohort study took place at 12 acute care hospitals in the New York City area. Patients aged 18–39 hospitalized with confirmed COVID-19 between March 1 and April 27, 2020 were included in the study. Demographic, clinical, and outcome data were extracted from electronic health record reports.

Results. A total of 1013 patients were included in the study (median age, 33 years; interquartile range [IQR], 28–36; 52% female). At the study end point, 940 (92.8%) patients were discharged alive, 18 (1.8%) remained hospitalized, 5 (0.5%) were transferred to another acute care facility, and 50 (4.9%) died. The most common comorbidities in hospitalized young adult patients were obesity (51.2%), diabetes mellitus (14.8%), and hypertension (13%). Multivariable analysis revealed that obesity (adjusted hazard ratio [aHR], 2.71; 95% confidence interval [CI], 1.28–5.73; \(P = .002 \)) and Charlson comorbidity index score (aHR, 1.20; 95% CI, 1.07–1.35; \(P = .002 \)) were independent predictors of in-hospital 30-day mortality.

Conclusions. Obesity was identified as the strongest negative predictor of 30-day in-hospital survival in young adults with COVID-19.

Keywords. coronavirus disease 2019 (COVID-19); mortality; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); young adults.
The most common comorbidities in this group were obesity (51.2%), diabetes mellitus (14.8%), and hypertension (13%). The median length of stay was 3.85 days (IQR, 2.17–7.18) for all patients: 3.67 days (IQR, 2.13–6.88) for patients discharged alive and 11.84 days (IQR, 4.31–18.93) for those who died. The most prevalent age group was 32 to 39. The most common comorbidities for hospitalized patients were obesity (51.2%), diabetes mellitus (14.8%), and hypertension (13%). The median score on the CCI, which does not include obesity, asthma, or hypertension, was zero.

Patients Who Received Invasive Mechanical Ventilation

There were 105 (10.3%) patients who received treatment with invasive mechanical ventilation (median age, 34.5; IQR, 30–37; 31% female). For these patients, the median length of stay was 4.8 days (IQR, 3–9.7) compared to 3.3 days (IQR, 2–6.8) for those who did not receive invasive mechanical ventilation. The most common comorbidities in this group were obesity (56.2%), diabetes mellitus (31.4%), and hypertension (25.7%). Median score on the CCI was 1. Obese patients were not more likely to receive invasive mechanical ventilation, with 11.28% (59 of 523) of these patients requiring ventilation compared to 8.82% (38 of 431) of non-obese patients (P < .210). Eight of the patients who received treatment with invasive mechanical ventilation did not have a recorded body mass index and were left out of this analysis.
There were 119 patients in our study within this age group (median age, 22 years [IQR, 21–23]; 69% female). Median length of stay for these patients was 3 days (IQR, 1.9–4.9). Only 7 required invasive mechanical ventilation and, of those, 4 died. Two of the 7 who required invasive mechanical ventilation had no prior medical history except for obesity, whereas the remaining 5 patients all had comorbidities, including Down’s syndrome, congestive heart failure, end-stage kidney disease, and obstructive sleep apnea. The median BMI was 39.8 (IQR, 24.7–34.8) for all

Variables	Total n = 1013	Died n = 50	Alive n = 963
Demographic Information			
Age, median, IQR (range)	33 (28–36)	35 (30–38)	32 (28–36)
Age, n (%)			
18–24	119 (11.7)	4 (3.4)	115 (96.6)
25–31	329 (32.5)	12 (3.7)	317 (96.4)
32–39	565 (55.8)	34 (6.0)	531 (94.0)
Female, n (%)	527 (52)	15 (2.9)	512 (97.2)
Male, n (%)	486 (48)	35 (7.2)	451 (92.8)
Race, n (%)			
African American	215 (21.2)	14 (6.5)	201 (93.5)
Asian	82 (8.1)	2 (2.4)	80 (97.6)
White	263 (26)	9 (3.4)	254 (96.6)
Other/Multiracial	416 (41.1)	24 (5.8)	392 (94.2)
Unknown/Declined	37 (3.7)	1 (2.7)	36 (97.3)
Ethnicity, n (%)			
Hispanic	334 (33)	19 (5.7)	315 (94.3)
Non-Hispanic	623 (61.5)	25 (4.5)	598 (95.5)
Unknown/Declined	56 (5.5)	3 (5.4)	53 (94.6)
Insurance, n (%)			
Commercial	405 (40)	16 (4.0)	389 (96.1)
Medicaid	516 (50.9)	27 (5.2)	489 (94.8)
Medicare	41 (4)	4 (9.8)	37 (90.2)
Self-pay	33 (3.6)	3 (9.1)	30 (90.9)
Other	18 (1.8)	0 (0.0)	18 (100.0)
Comorbidities			
Cancer, n (%)	5 (.5)	3 (60.0)	2 (40.0)
Cardiovascular Disease, n (%)			
Hypertension	132 (13)	13 (9.9)	119 (90.2)
Coronary artery disease	2 (.2)	0 (0.0)	2 (100.0)
Congestive heart failure	9 (.9)	4 (44.4)	5 (55.6)
Chronic liver disease	21 (2.1)	1 (4.8)	20 (95.2)
Chronic Respiratory Disease, n (%)			
Asthma	122 (12)	6 (4.9)	116 (95.1)
Chronic Obstructive Pulmonary Disease	3 (3)	1 (33.3)	2 (66.7)
Diabetes mellitus	150 (15)	8 (12.0)	132 (88.0)
End-stage kidney disease, n (%)	23 (2.3)	2 (8.7)	21 (91.3)
BMI, median, IQR, n = 954	30.9 (26.6–36.7)	33.7 (28.3–40.6)	30.7 (26.6–36.6)
Obesity, n (%), n = 954			
Normal (BMI <25.0)	163 (16.1)	5 (3.1)	158 (96.9)
Overweight (BMI 25.0–29.9)	272 (26.9)	9 (3.3)	263 (96.7)
Obese (BMI 30.0–39.9)	368 (36.3)	20 (5.4)	348 (94.6)
Severe obese (BMI ≥40.0)	151 (15)	12 (8.0)	139 (92.1)
Charlson comorbidity index, median (IQR)	0 (1.0)	1 (2.0)	0 (1.0)
Smoking Status, n (%)			
Never	881 (87)	34 (3.86)	847 (96.1)
Former	47 (4.6)	3 (6.4)	44 (93.6)
Active	39 (3.8)	2 (5.1)	37 (94.9)
Unknown	46 (4.5)	11 (23.9)	35 (76.1)

Abbreviations: BMI, body mass index; IQR, interquartile range.
patients in this age group, 33.0 (IQR, 23.4–49.0) for those requiring invasive mechanical ventilation, and 24.0 (IQR, 21.1–40.5) for those who died.

Predictors of Survival

Obesity and CCI were both negatively associated with in-hospital 30-day survival (Table 2). The strongest predictor of mortality in this age group was obesity (Figures 1 and 2). Patients who were obese, compared to those who were not, were 2.7 times more likely to expire within 30 days. Mortality risk increased by 20% for each additional point on the CCI. Among covariates examined sex, insurance type, asthma, hypertension, and smoking status were eliminated from the final model as these were not associated with increased mortality risk. The hazard ratio for other race varied over time and was significant only in patients with a hospital stay over 20 days.

DISCUSSION

This is the first study to report on predictors of survival in young adults, and its findings are significantly strengthened by our large number of participants. As expected, the overwhelming majority (95%) of hospitalized patients in this age group were alive at the study end point. Obesity, diabetes mellitus, and hypertension were the most common comorbidities in hospitalized patients; these findings echo reports for hospitalized patients of all age groups and support the findings from study in young adults [17, 23]. Body mass index and comorbidity burden (as measured by the CCI) were identified as predictors of in-hospital survival in young adults with COVID-19.

Obesity emerged as the most significant predictor of mortality in this age group. Obesity does not show a decreased prevalence by age in America, where approximately 40% of adults in all age groups are obese [28]. With the exception of 1 patient, with cachexia secondary to metastatic choriocarcinoma, all of the college-aged (18–24) patients in our cohort who died or required invasive mechanical ventilation were obese or morbidly obese. Our findings are supported by a recent study detailing the differential effect of obesity on risk of mortality based on age [29]. That study found that obesity was independently associated with mortality in those younger than 50 with an adjusted odds ratio of 5.1. For those with age above 50, however, the strength of association was weaker, with an adjusted odds ratio of 1.6.

We analyzed data only for patients admitted with COVID-19 and were unable to assess for predictors of infection or severe disease in young adults outside of the hospital. However, of the 954 people in our study with a recorded BMI, 519 (54.4%) were obese. This is higher than the national average and average in the NYC metropolitan area and suggests either a higher susceptibility to infections or a higher likelihood of severe disease requiring hospitalization. Further study will assess obesity as a predictor of severe disease and out-of-hospital survival in those with COVID-19.

The reason that obesity is associated with mortality in young adults is likely multifactorial. Obesity is associated with several additional chronic medical problems, such as diabetes and chronic kidney disease. However, we adjusted for these and other medical conditions in our analysis using the CCI. Obese persons are known to have reduced lung volumes and hypoventilation, which makes them at greater risk for complications from respiratory illnesses [30]. In addition, there is emerging evidence that patients with COVID-19 suffer from a hypercoagulable state that may act synergistically with the hypercoagulable state seen in obesity, which can lead to an increased risk of potentially fatal conditions such as pulmonary embolism, stroke, and arterial thrombosis [31].

Limitations

Several limitations should be noted. First, this cohort comprised only patients within the New York metropolitan area. Data were extracted from the EHR database and do not include the level of granularity that would be possible with a manual chart review. Of note, smoking status was limited given the inability to capture e-cigarette and vaping usage among this younger cohort. Evidence-based treatment regimens were developing and changing rapidly, and thus data collection of these regimens was not possible. Despite these limitations, the results are based on a large and diverse number of patients and thus significantly contribute to the existing literature.

CONCLUSIONS

Obesity may represent the most significant barrier to survival in young adults hospitalized with COVID-19. Given these findings and our understanding of obesity as an almost entirely preventable disease, public health recommendations to improve population-level health should include food policy changes in addition to existing diet and lifestyle recommendations. In this

Table 2. In-Hospital 30-Day Mortality Risk Assessment Using an Extended Cox Model

Factor	aHR (95% CI)	P Value
Age	1.05 (0.98–1.13)	.148
Charlson comorbidity index	1.20 (1.07–1.35)	.002
Obesity	2.71 (1.28–5.73)	.009
Asian, compared with white	0.36 (0.043–2.98)	.342
Black, compared with white	2.0 (0.81–4.90)	.136
Other/multiracial, compared with white	1.05 (0.32–3.48)	.934
Hispanic, compared with non-Hispanic	1.14 (0.42–3.10)	.801

Abbreviations: aHR, adjusted hazard ratio; CI, confidence interval.

*All variables were used in multivariate analysis.

study, the impact of obesity on in-hospital survival in young adults was similar in magnitude to the previously reported impact on survival of age over 65 in patients of all ages [10].

We acknowledge and honor all of our Northwell team members who consistently put themselves in harm’s way during the coronavirus disease 2019 (COVID-19) pandemic. This article is dedicated to them, to honor their vital contribution to knowledge about COVID-19 and their sacrifices on

Figure 1. Unadjusted Kaplan-Meier curve for survival by obesity status.

![Unadjusted Kaplan-Meier curve for survival by obesity status.](image)

Factor	HR	95% CI	P Value
Age	1.05	0.98–1.13	.148
Charlson comorbidity index	1.2	1.07–1.35	.002
Obesity			
Not obese (ref.)			
Obese (BMI > 30)	2.71	1.28–5.73	.009
Race			
White (ref.)			
Asian	0.36	0.04–2.98	.342
Black	2.00	0.81–4.90	.136
Other*	1.05	0.32–3.48	.934
Ethnicity			
Not Hispanic/Latino (ref.)			
Hispanic/Latino	1.14	0.42–3.10	.801

*Time varying covariate; day 5 estimate.

Figure 2. Forest plot: in-hospital 30-day mortality. BMI, body mass index; HR, hazard ratio.
Acknowledgments

Author contributions. S. R., J. G., Z. K., S. L., H. R., J. S. H., T. M., and M. A. D. contributed to concept and design, H. R. and J. H. contributed to acquisition, analysis, or interpretation of data, S. R., S. L., Z. K., and M. A. D. contributed to drafting the manuscript, S. R., J. G., Z. K., S. L., H. R., J. S. H., T. M., and M. A. D. contributed to critical revision of the manuscript for important intellectual content. H. R. contributed to statistical analysis. None of the funding sources had any role in the study design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication. The views expressed in this paper are those of the authors and do not represent the views of the National Institutes of Health, the United States Department of Health and Human Services, or any other government entity. The corresponding author confirms that he had full access to all the data in the study and final responsibility for the decision to submit for publication.

Financial support. This work was funded by grants from the National Institutes of Health (K23HL145114; to S. R.), the Centers for Disease Control and Prevention (U01OH101690; to M. A. D.), the National Cancer Institute at the National Institutes of Health (R01CA224918; to M. A. D.), and a Research Scholar Award by the American Cancer Society (RSG-15-021-01-CPPB; to M. A. D.).

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. World Health Organization. Pneumonia of unknown cause – China. Available at: www.who.int/csr/don/05-january-2020-pneumonia-of-unknown-cause-china/en/. Accessed 12 June 2020.

2. World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-19)-and-the-virus-that-causes-it. Accessed

3. Livingston E, Bucher KJ. Coronavirus disease 2019 (COVID-19) in Italy. JAMA 2020; 323:1335.

4. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020; 323:1239–42.

5. Centers for Disease Control and Prevention. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) - United States, February 12 - March 16, 2020. MMWR Morb Mortal Wkly Rep 2020; doi:10.15585/mmwr.mm6912e2.

6. Centers for Disease Control and Prevention. Cases in the US. COVID Data Tracker. Available at: https://covid.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html. Accessed 12 June 2020.

7. Health N. Coronavirus-19: Data. Available at: https://www1.ncdc.gov/cid/covid-19-data-page. Accessed 12 June 2020.

8. Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci 2020; 75:1788–95.

9. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients from Wuhan, China, Intensive Care Med 2020; 46:846–48.

10. Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020; 55.

11. Ripp K, Gwang J, Henry BM. Hypersensitivity and its severity or mortality in coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med 2020; 130:304–9.

12. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care 2020; doi:10.1136/bmjoa-2020-001343.

13. Wang K, Zuo P, Liu Y, et al. Clinical and laboratory predictors of in-hospital mortality in 305 patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis 2020; 71:2077–88.

14. Petrelli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 2020; 369:m1066.

15. Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis 2020; 71:896–7.

16. Simonnet A, Chetboun M, Poissy J, et al; LICON and the Lille COVID-19 and Obesity study group. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020; 75:1788–95.

17. Cunningham JM, et al. Clinical outcomes in young us adults hospitalized with COVID-19. JAMA Intern Med 2020; doi: 17001031/2020/202005313.

18. Xu S, Li Y. Beware of the second wave of COVID-19. Lancet 2020; 395:1321–2.

19. Mamelu ND. 1918 pandemic morbidity: the first wave hits the poor, the second wave hits the rich. Influenza Other Respir Viruses 2020; 12:307–13.

20. Gagnon A, Miller MS, Hallman SA, et al. Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality. PLoS One 2013; 8:e69586.

21. Davila J, Chowell G, Borja-Aburto VH, et al. Substantial morbidity and mortality associated with pandemic A/H1N1 influenza in Mexico, Winter 2013–2014: gradual age shift and severity. PLoS Curr 2014; 6. doi:10.1371/currents.outbreaks.a855a92f19db1409ca95f58e908d6631

22. Snyder, TD, de Brey C, Dillow SA. Total fall enrollment in degree-granting postsecondary institutions, by level and control of institution and race/ethnicity of student: selected years, 1976 through 2015. Table 2018; 306:2017–094.
23. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323: 2052–9.

24. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020; 98:209–18.

25. Nair V, Jandovitz N, Hirsch JS, et al. COVID-19 in kidney transplant recipients. Am J Transplant 2020; 20:1819–25.

26. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40:373–83.

27. Kleinbaum DG, Klein M. Survival Analysis. New York: Springer Verlag. 2010.

28. Centers for Disease Control and Prevention. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. Available at: https://www.cdc.gov/nchs/products/databriefs/db360.htm#:~:text=The%20prevalence%20was%2040.0%25%20among%20adults%20aged%2060%20and%20over. Accessed 12 June 2020.

29. Klang EKG, Soffer S, Freeman R, et al. Morbid obesity as an independent risk factor for COVID-19 mortality in hospitalized patients younger than 50. Obesity 2020. doi: 10.1002/oby.22913.

30. Olson AL, Zwillich C. The obesity hypoventilation syndrome. Am J Med 2005; 118:948–56.

31. Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA 2020; 324:799–801.