The design of two level power system stabilizer (PSS) controller is discussed in this article. First level is conventional PSS controller, while the second level is designed using following two methods: New Coordinated Fuzzy-PID controller and Distributed Time-Delay Neural Network (DTDNN) controller, Speed deviation and derivative of speed deviation of synchronous generator are taken as the input to the controller and voltage signal is the output of the controller.

The main function of the conventional power system stabilizers is to enhance the damping of low frequency oscillations in power system, while the power system stabilizer which is designed using Fuzzy-PID and distributed time-delay neural network improves the total dynamic response of power system to achieve the required results.

This technique is applied on a single machine infinite bus (SMIB) power system. The distributed time-delay neural network damps out the low frequency oscillations and enhances the power system stability.
system dynamic stability in the better manner than the conventional power system stabilizer.

References

1. Latha.r ,Kanthalakshmi.s and ,Kanagaraj- 2013, Design of power system stabilizer using fuzzy based sliding mode control technique.
2. A. A gharaveisi , A.darabi , M.monadi , A Khageh-Zadeh,M.Rashidi-nejad,2005 ,Performance evaluation of an ANFIS based power system stabilizer applied in multimachine power system.
3. Arun Kumar Sahu, Vishwanath Prasad Kurmi, 2017, Stability Enhancement of Power System using Fuzzy Logic based power system stabilizer international Journal of Science Engineering and Technology, Volume 5 Issue 3.
4. Jenica Ileana Corcau, Eleonor Stoenescu, 2007, Fuzzy logic controller as a power system stabilizer, Issue 3, Volume 1.
5. Hassan Bevrani, Takashi Hiyama, &HosseinBevranic, 2011."Robust PID based power system stabiliser: Design and real-time implementation", Electrical Power and Energy Systems 33, pp 179–188.
6. P. Kundur, 1994, Power System Stability and Control, MacGraw-Hill.
7. M. Bounou. “Contribution a l'exploitation robuste des reseaux electriques par la methode de taguchi”. Thesis, Polytechnique, Montréal. 1997.
8. Ang, K.H., Chong, G. and Li, Y. (2005) PID Control System Analysis, Design, and Technology.
9. Astrom, K.J. and Hägglund, T. (1995) PID Controllers: Theory, Design, and Tuning. Research Triangle Park, NC: Instrument Soc. Amer.
10. G., Magdy. (2016) Digital Redesign of Analog Controllers for Power Systems Using PIM. LAP LAMERT-Academic Publishing, paperback, 164 Pages, 2016.
11. El-Hawary, M.E. (1998) Electric Power Applications of Fuzzy System. IEEE Press.
12. Baliyan A, Gaurav K & Mishra SK (2015). A Review of Short Term Load Forecasting using Artificial Neural Network Models. Procedia Computer Science, 48, 121-125.

Index Terms

Computer Science Artificial Intelligence

Keywords

Fuzzy-PID- Distributed Time-Delay Neural Network - (DTDNN)- frequency oscillations.