Mass Splitting of Three Seesaw Neutrinos

Ernest Ma

Physics Department, University of California, Riverside,
CA 92521, USA

Abstract

If a family symmetry exists so that all three neutrinos have equal Majorana masses (via the seesaw mechanism), then the breaking of this symmetry from charged-lepton masses (via two-loop double W exchange) implies Δm less than about $10^{-9} m_0$. With the common mass $m_0 \sim eV$ for hot dark matter, $\Delta m^2 \sim 10^{-10} eV^2$ is natural for vacuum solar neutrino oscillations.

Talk presented at the 17th International Workshop on Weak Interactions and Neutrinos (Cape Town), 1999.
1 Introduction

The excitement generated by the Super-Kamiokande evidence of atmospheric neutrino oscillations [1] has prompted a great deal of theoretical activity in building models which explain it, as well as the possible evidence of solar neutrino oscillations [2]. With three known neutrinos, it is difficult to accommodate the LSND (Liquid Scintillator Neutrino Detector) results [3] as well, without sacrificing some pieces of the experimental data. Reviews of the overall situation are given in various other talks of these Proceedings. I will focus on the possibility of three nearly mass-degenerate neutrinos.

2 Common Mass for Three Neutrinos

Since neutrino oscillations only probe the difference of mass-squares, it is entirely possible that the three known neutrinos have a common large mass, but their splittings are small for some reason. This idea has received a lot of attention in the recent literature [4] and is being pursued actively at present [5].

A particularly desirable (ν_e, ν_μ, ν_τ) mass matrix for oscillations, dark matter [6], and the absence of neutrinoless double beta decay [7] is given by

$$\mathcal{M} \simeq \begin{bmatrix} 0 & -1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{2} & 1/2 & -1/2 \\ -1/\sqrt{2} & -1/2 & 1/2 \end{bmatrix} m_0,$$

where the zero ν_e diagonal entry ensures the absence of neutrinoless double beta decay. The eigenvalues of \mathcal{M} are $-m_0$, m_0, and m_0, and the mass eigenstates are related to the interaction eigenstates by

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} \simeq \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \\ 1/2 & -1/2 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}.$$
Most model builders now add splitting so that

\[(\Delta m^2)_{13} \simeq (\Delta m^2)_{23} \sim 10^{-3} \text{ eV}^2\] \hspace{1cm} (3)

and

\[(\Delta m^2)_{12} \sim 10^{-10} \text{ eV}^2\] \hspace{1cm} (4)

to obtain $\nu_\mu \to \nu_\tau$ oscillations with $\sin^2 2\theta = 1$. Further splitting is then added so that

\[(\Delta m^2)_{12} \sim 10^{-10} \text{ eV}^2\]

to obtain $\nu_e \to (\nu_\mu + \nu_\tau)/\sqrt{2}$ oscillations with $\sin^2 2\theta = 1$ also. Note that $m_0 \sim \text{eV}$ rules out the possibility of the small-angle matter-enhanced solution of the solar neutrino deficit in this context.

3 Natural Splitting of Three Seesaw Neutrinos

Whatever mechanism is assumed to obtain three mass-degenerate neutrinos, it is broken explicitly by charged-lepton masses. Hence there must be splitting among them from the physics of the standard model, supplemented only by the above-mentioned mass-generating mechanism. Consider thus the simplest such extension of the standard model. Add three heavy right-handed neutrino singlets N_{iR} as usual. Assume that they and the left-handed lepton doublets $(\nu_i, l_i)_L$, with $i = +, 0, -$, form $SO(3)$ triplets. This yields the following invariant terms:

\[f[(\bar{\nu}_+ N_+ + \bar{\nu}_0 N_0 + \bar{\nu}_- N_-)\phi^0 - (\bar{l}_+ N_+ + \bar{l}_0 N_0 + \bar{l}_- N_-)\phi^-], \hspace{1cm} (5)\]

and

\[M(2N_+ N_+ - N_0 N_0). \hspace{1cm} (6)\]
In the basis \((\nu_+, \nu_-, \nu_0, N_+, N_-, N_0)\), the mass matrix is then

\[
\mathcal{M}_{\nu,N} = \begin{bmatrix}
0 & 0 & 0 & m_D & 0 & 0 \\
0 & 0 & 0 & 0 & m_D & 0 \\
0 & 0 & 0 & 0 & 0 & m_D \\
m_D & 0 & 0 & M & 0 & 0 \\
0 & m_D & 0 & M & 0 & 0 \\
0 & 0 & m_D & 0 & 0 & -M
\end{bmatrix},
\tag{7}
\]

where \(m_D = f \langle \phi^0 \rangle\). Let \(m_D << M\), the well-known seesaw mechanism \cite{8} then reduces the above to a \(3 \times 3\) mass matrix for \((\nu_+, \nu_-, \nu_0)\):

\[
\mathcal{M}_\nu = \begin{bmatrix}
0 & -m_0 & 0 \\
-m_0 & 0 & 0 \\
0 & 0 & m_0
\end{bmatrix},
\tag{8}
\]

where \(m_0 = m_D^2 / M\).

Choose \(l_+ = e\), then in general \(l_- = c\mu + s\tau\) and \(l_0 = c\tau - s\mu\), where of course \(c = \cos \theta\) and \(s = \sin \theta\). The degeneracy of \(\mathcal{M}_\nu\) is now lifted through the two-loop diagram \cite{9} of Fig. 1. The result is \cite{10}

\[
\mathcal{M}_\nu = \begin{bmatrix}
0 & -m_0 - s^2 I & -scI \\
-m_0 - s^2 I & 0 & scI \\
-scI & scI & m_0 + 2c^2 I
\end{bmatrix},
\tag{9}
\]

where

\[
I = \frac{g^4}{256\pi^4} \frac{m_{\tau}^2}{m_W^2} \left(\frac{\pi^2}{6} - \frac{1}{2} \right) m_0 = 3.6 \times 10^{-9} m_0.
\tag{10}
\]

The new eigenvalues are \(-m_0 - s^2 I\), \(m_0\), and \(m_0 + (1 + c^2)I\). For small \(s^2\), the above yields \(\nu_e \rightarrow \nu_\mu\) oscillations with \(\sin^2 2\theta \simeq 1\) and \(\Delta m^2 = 2s^2 m_0 I\) which is about \(3 \times 10^{-10}\) eV\(^2\) for \(s = 0.1\) and \(m_0 = 2\) eV. This shows that vacuum solar neutrino oscillations are natural with three seesaw neutrinos of the same tree-level mass.
4 Atmospheric Neutrino Oscillations

It has been shown in the above that with equal tree-level seesaw masses for the three Majorana neutrinos, there is an irreducible splitting among them which is of the right magnitude for vacuum solar neutrino oscillations. However, there is no explanation of atmospheric neutrino oscillations in this minimal version of the model. An ad hoc assumption may be made that the state $c'\nu_0 + s'(\nu_+ - \nu_-)/\sqrt{2}$ acquires a mass m_1 with $m_1/m_0 \simeq 5 \times 10^{-4}$. In that case, with $s' << 1$ but not zero, the mass eigenvalues become $-m_0 - s^2 I$, $m_0 + (s^2 + 2\sqrt{2}s'sc)I$, and $m_0 + m_1$, with

$$ \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} \simeq \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & s'/\sqrt{2} \\ c/\sqrt{2} & -c/\sqrt{2} + s's & -s - s'c/\sqrt{2} \\ s/\sqrt{2} & -s/\sqrt{2} - s'c & c - s's/\sqrt{2} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}. \quad (11) $$

Atmospheric $\nu_\mu \to \nu_\tau$ oscillations now occur with $\sin^2 2\theta = 4s^2c^2$ and $\Delta m^2 = 2m_0m_1 \simeq 4 \times 10^{-3}$ eV2, and solar $\nu_e \to c\nu_\mu + s\nu_\tau$ vacuum oscillations occur with $\sin^2 2\theta \simeq 1$ and $\Delta m^2 \simeq 4\sqrt{2}ssc'm_0 I \simeq 4 \times 10^{-10}$ eV2, if $m_0 = 2$ eV, $s = c = 1/\sqrt{2}$, and $s' = 0.01$.

5 Conclusion

The idea of nearly mass-degenerate neutrinos of a few eV may be cosmologically relevant as a component of dark matter. If the origin of their common mass m_0 is the seesaw mechanism, then there is an irreducible splitting of the order $10^{-9} m_0$ due to the charged-lepton masses. This is very suitable for vacuum solar neutrino oscillations with $\Delta m^2 \sim 10^{-10}$ eV2. On the other hand, the above generic statement says nothing about atmospheric neutrino oscillations, but once the latter are incorporated (by hand or with the help of some new physics), then the residual splitting is available for solar neutrino oscillations.
Acknowledgments

I thank the organizers Cesareo Dominguez and Raoul Viollier for their great hospitality at Cape Town. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

References

[1] Y. Fukuda et al., Phys. Lett. B433, 9 (1998); B436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); hep-ex/9812014.

[2] R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994); P. Anselmann et al., Phys. Lett. B357, 237 (1995); B361, 235 (1996); J. N. Abdurashitov et al., Phys. Lett. B328, 234 (1994); Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996); 81, 1158 (1998); hep-ex/9812009, 9812011.

[3] C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 77, 3082 (1996); 81, 1774 (1998).

[4] D. Caldwell and R. N. Mohapatra, Phys. Rev. D48, 3259 (1993); A. S. Joshipura, Z. Phys. C64, 31 (1994); Phys. Rev. D51, 1321 (1995); P. Bamert and C. P. Burgess, Phys. Lett. B329, 289 (1994); D.-G. Lee and R. N. Mohapatra, Phys. Lett. B329, 463 (1994); A. Ioannisian and J. W. F. Valle, Phys. Lett. B332, 93 (1994); A. Ghosal, Phys. Lett. B398, 315 (1997); A. K. Ray and S. Sarkar, Phys. Rev. D58, 055010 (1998); C. D. Carone and M. Sher, Phys. Lett. B420, 83 (1998); H. Fritzsch and Z. Xing, Phys. Lett. B440, 313 (1998); U. Sarkar, Phys. Rev. D59, 037302 (1999); G. C. Branco, M. N. Rebelo, and J. I. Silva-Marcos, Phys. Rev. Lett. 82, 683 (1999).
[5] F. Vissani, hep-ph/9708483; H. Georgi and S. L. Glashow, hep-ph/9808293; R. N. Mohapatra and S. Nussinov, hep-ph/9809415; Y. L. Wu, hep-ph/9810491, 9901245, 9901320; C. Wetterich, hep-ph/9812420; R. Barbieri, L. J. Hall, G. L. Kane, and G. G. Ross, hep-ph/9901228.

[6] E. Gawiser and J. Silk, Science 280, 1405 (1998); J. R. Primack and M. A. K. Gross, astro-ph/9810204; K. S. Babu, R. K. Schaefer, and Q. Shafi, Phys. Rev. D53, 606 (1996).

[7] For a review, see for example H. V. Klapdor-Kleingrothaus, hep-ex/9901021.

[8] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979), p. 315; T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto (KEK Report No. 79-18, Tsukuba, Japan, 1979), p. 95; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[9] K. S. Babu and E. Ma, Phys. Rev. Lett. 61, 674 (1988); Phys. Lett. B228, 508 (1989). See also S. T. Petcov and S. T. Toshev, Phys. Lett. B143, 175 (1984).

[10] E. Ma, hep-ph/9812344.

[11] J. N. Bahcall, P. I. Krastev, and A. Yu. Smirnov, Phys. Rev. D58, 096016 (1998).
Fig. 1. Two-loop radiative breaking of neutrino mass degeneracy.