Gauge Equivariant Convolutional Networks and the Icosahedral CNN

Taco S. Cohen 1 Maurice Weiler 2 Berkay Kicanaoglu 2 Max Welling 1

Abstract

The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.

We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.

1. Introduction

By and large, progress in deep learning has been achieved through intuition-guided experimentation. This approach is indispensable and has led to many successes, but has not produced a deep understanding of why and when certain architectures work well. As a result, every new application requires an extensive architecture search, which comes at a significant labor and energy cost.

Although a theory that tells us which architecture to use for any given problem is clearly out of reach, we can nevertheless come up with general principles to guide architecture search. One such rational design principle that has met with substantial empirical success (Winkels & Cohen, 2018; Zaheer et al., 2017; Lunter & Brown, 2018) maintains that network architectures should be equivariant to symmetries. Besides the ubiquitous translation equivariant CNN, equivariant networks have been developed for sets, graphs, and homogeneous spaces like the sphere (see Sec. 3). In each case, the network is made equivariant to the global symmetries of the underlying space. However, manifolds do not in general have global symmetries, and so it is not obvious how one might develop equivariant CNNs for them.

General manifolds do however have local gauge symmetries, and as we will show in this paper, taking these into account is not just useful but necessary if one wishes to build manifold CNNs that depend only on the intrinsic geometry. To this end, we define a convolution-like operation on general manifolds M that is equivariant to local gauge transformations (Fig. 1). This gauge equivariant convolution takes as input a number of feature fields on M of various types (analogous to matter fields in physics), and produces as output new feature fields. Each field is represented by a number of feature maps, whose activations are interpreted as the coefficients of a geometrical object (e.g. scalar, vector, tensor, etc.) relative to a spatially varying frame (i.e. gauge). The network is constructed such that if the gauge is changed,
the coefficients change in a predictable way so as to preserve their geometrical meaning. Thus, the search for a geometrically natural definition of “manifold convolution”, a key problem in geometric deep learning, leads inevitably to gauge equivariance.

Although the theory of gauge equivariant networks developed in this paper is very general, we apply it to one specific manifold: the icosahedron. This manifold has some global symmetries (discrete rotations), which nicely shows the difference between and interplay of local and global symmetries. In addition, the regularity and local flatness of this manifold allows for a very efficient implementation using existing deep learning primitives (i.e. conv2d). The resulting algorithm shows excellent performance and accuracy on segmentation of omnidirectional signals.

Gauge theory plays a central role in modern physics, but has a reputation for being abstract and difficult. So in order to keep this article accessible to a broad machine learning audience, we have chosen to emphasize geometrical intuition over mathematical formality.

The rest of this paper is organized as follows. In Sec. 2, we motivate the need for working with gauges, and define gauge equivariant convolution for general manifolds and fields. In section 3, we discuss related work on equivariant and geometrical deep learning. Then in section 4, we discuss the concrete instantiation and implementation of gauge equivariant CNNs for the icosahedron. Results on IcoMNIST, climate pattern segmentation, and omnidirectional RGB-D image segmentation are presented in Sec. 5.

2. Gauge Equivariant Networks

Consider the problem of generalizing the classical convolution of two planar signals (e.g. a feature map and a filter) to signals defined on a manifold M. The first and most natural idea comes from thinking of planar convolution in terms of shifting a filter over a feature map. Observing that shifts are symmetries of the plane (mapping the plane onto itself while preserving its structure), one is led to the idea of transforming a filter on M by the symmetries of M. For instance, replacing shifts of the plane by rotations of the sphere, one obtains Spherical CNNs (Cohen et al., 2018b).

This approach works for any homogeneous space, where by definition it is possible to move from any point $p \in M$ to any other point $q \in M$ using an appropriate symmetry transformation (Kondor & Trivedi, 2018; Cohen et al., 2018c:a). On less symmetrical manifolds however, it may not be possible to move the filter from any point to any other point by symmetry transformations. Hence, transforming filters by symmetry transformations will in general not provide a recipe for weight sharing between filters at all points in M.

Instead of symmetries, one can move the filter by parallel transport (Schonsheck et al., 2018), but as shown in Fig. 2, this leaves an ambiguity in the filter orientation, because parallel transport is path dependent. This can be addressed by using only rotation invariant filters (Boscaini et al., 2015; Bruna et al., 2014), albeit at the cost of limiting expressivity.

The key issue is that on a manifold, there is no preferred gauge (tangent frame), relative to which we can position our measurement apparatus (i.e. filters), and relative to which we can describe measurements (i.e. responses). We must choose a gauge in order to numerically represent geometrical quantities and perform computations, but since it is arbitrary, the computations should be independent of it.

This does not mean however that the coefficients of the feature vectors should be invariant to gauge transformations, but rather that the feature vector itself should be invariant. That is, a gauge transformation leads to a change of basis $e_i \mapsto \tilde{e}_i$ of the feature space (fiber) at $p \in M$, so the feature vector coefficients f_i should change equivariantly to ensure that the vector $\sum_i f_i e_i = \sum_i \tilde{f}_i \tilde{e}_i$ itself is unchanged.

Before showing how this is achieved, we note that on non-parallelizable manifolds such as the sphere, it is not possible to choose a smooth global gauge. For instance, if we extend the blue gauge pictured in Fig. 1 to the whole sphere, we will inevitably create a singularity where the gauge changes abruptly. Hence, in order to make the math work smoothly, it is standard practice in gauge theory to work with multiple gauges defined on overlapping charts, as in Fig. 1.

The basic idea of gauge equivariant convolution is as follows. Lacking alternative options, we choose arbitrarily a smooth local gauge on subsets $U \subset M$ (e.g. the red or blue gauge in Fig. 1). We can then position a filter at each point $p \in U$, defining its orientation relative to the gauge. Then, we match an input feature map against the filter at p to obtain the value of the output feature map at p. For the output to transform equivariantly, certain linear constraints are placed on the convolution kernel. We will now define this formally.

2.1. Gauges, Transformations, and Exponential Maps

We define a gauge as a position-dependent invertible linear map $w_p : \mathbb{R}^d \to T_p M$, where $T_p M$ is the tangent space of M at p. This determines a frame $w_p(e_1), \ldots, w_p(e_d)$ in $T_p M$, where $\{e_i\}$ is the standard frame of \mathbb{R}^d.
A gauge transformation (Fig. 1) is a position-dependent change of frame, which can be described by maps \(g_p \in \text{GL}(d, \mathbb{R}) \) (the group of invertible \(d \times d \) matrices). As indicated by the subscript, the transformation \(g_p \) depends on the position \(p \in U \subset M \). To change the frame, simply compose \(w_p \) with \(g_p \), i.e. \(w_p \mapsto w_{p}g_p \). It follows that component vectors \(v \in \mathbb{R}^d \) transform as \(v \mapsto g^{-1}_p v \), so that the vector \((w_p g_p)(g^{-1}_p v) = w_p v \in T_p M \) itself is invariant.

If we derive our gauge from a coordinate system for \(M \) (as shown in Fig. 1), then a change of coordinates leads to a gauge transformation \((g_p\) being the Jacobian of the coordinate transformation at \(p \)). But we can also choose a gauge \(w_p \) independent of any coordinate system.

It is often useful to restrict the kinds of frames we consider, for example to only allow right-handed or orthogonal frames. Such restrictions limit the kinds of gauge transformations we can consider. For instance, if we allow only right-handed frames, \(g_p \) should have positive determinant (i.e. \(g_p \in \text{GL}^+(d, \mathbb{R}) \)), so that it does not reverse the orientation. If in addition we allow only orthogonal frames, \(g_p \) must be a rotation, i.e. \(g_p \in \text{SO}(d) \).

In mathematical terms, \(G = \text{GL}(d, \mathbb{R}) \) is called the structure group of the theory, and limiting the kinds of frames we consider corresponds to a reduction of the structure group (Husemoller, 1994). Each reduction corresponds to some extra structure that is preserved, such as an orientation (\(\text{GL}^+(d, \mathbb{R}) \)) or Riemannian metric (\(\text{SO}(d) \)). In the Icosahedral CNN (Fig. 4), we will want to preserve the hexagonal grid structure, which corresponds to a restriction to grid-aligned frames and a reduction of the structure group to \(G = C_6 \), the group of planar rotations by integer multiples of \(2\pi/6 \). For the rest of this section, we will work in the Riemannian setting, i.e. use \(G = \text{SO}(d) \).

Before we can define gauge equivariant convolution, we will need the exponential map, which gives a convenient parameterization of the local neighbourhood of \(p \in M \). This map \(\exp_p : T_p M \to M \) takes a tangent vector \(v \in T_p M \), follows the geodesic (shortest curve) in the direction of \(v \) with speed \(|v| \) for one unit of time, to arrive at a point \(q = \exp_p v \) (see Fig. 3, (Lee)).

2.2. Gauge Equivariant Convolution: Scalar Fields

Having defined gauges, gauge transformations, and the exponential map, we are now ready to define gauge equivariant convolution. We begin with scalar input and output fields.

We define a filter as a locally supported function \(K : \mathbb{R}^d \to \mathbb{R} \), where \(\mathbb{R}^d \) may be identified with \(T_p M \) via the gauge \(w_p \).

Then, writing \(q_v = \exp_p w_p(v) \) for \(v \in \mathbb{R}^d \), we define the scalar convolution of \(K \) and \(f : M \to \mathbb{R} \) at \(p \) as follows:

\[
(K \ast f)(p) = \int_{\mathbb{R}^d} K(v) f(q_v) dv. \tag{1}
\]

The gauge was chosen arbitrarily, so we must consider what happens if we change it. Since the filter \(K : \mathbb{R}^d \to \mathbb{R} \) is a function of a coordinate vector \(v \in \mathbb{R}^d \), and \(v \) gets rotated by gauge transformations, the effect of a gauge transformation is a position-dependent rotation of the filters. For the convolution output to be called a scalar field, it has to be invariant to gauge transformations (i.e. \(v \mapsto g^{-1}_p v \) and \(w_p \mapsto w_g g_p \)). The only way to make \((K \ast f)(p) \) (Eq. 1) invariant to rotations of the filter, is to make the filter rotation-invariant:

\[
\forall g \in G : K(g^{-1} v) = K(v) \tag{2}
\]

Thus, to map a scalar input field to a scalar output field in a gauge equivariant manner, we need to use rotationally symmetric filters. Some geometric deep learning methods, as well as graph CNNs do indeed use isotropic filters. However, this is very limiting and as we will now show, unnecessary if one considers non-scalar feature fields.

2.3. Feature Fields

Intuitively, a field is an assignment of some geometrical quantity (feature vector) \(f(p) \) of the same type to each point \(p \in M \). The type of a quantity is determined by its transformation behaviour under gauge transformations. For instance, the word vector field is reserved for a field of tangent vectors \(v \), that transform like \(v(p) \mapsto g^{-1}_p v(p) \) as we saw before. It is important to note that \(f(p) \) is an element of a vector space (“fiber”) \(F_p \simeq \mathbb{R}^C \) attached to \(p \in M \) (e.g. the tangent space \(T_p M \)). All \(F_p \) are similar to a canonical feature space \(\mathbb{R}^C \), but \(f \) can only be considered a function \(U \to \mathbb{R}^C \) locally, after we have chosen a gauge, because there is no canonical way to identify all feature spaces \(F_p \).

In the general case, the transformation behaviour of a \(C \)-dimensional geometrical quantity is described by a representation of the structure group \(G \). This is a mapping \(\rho : G \to \text{GL}(C, \mathbb{R}) \) that satisfies \(\rho(gh) = \rho(g)\rho(h) \), where \(gh \) denotes the composition of transformations in \(G \), and \(\rho(g)\rho(h) \) denotes multiplication of \(C \times C \) matrices \(\rho(g) \) and \(\rho(h) \). The simplest examples are the trivial representation \(\rho(g) = 1 \) which describes the transformation behaviour of scalars, and \(\rho(g) = g \), which describes the transformation behaviour of (tangent) vectors. A field \(f \) that transforms like \(f(p) \mapsto \rho(g^{-1}_p) f(p) \) will be called a \(\rho \)-field.

![Figure 3. The exponential map and the gauge \(w_p \).](Image 331x656 to 515x725)
In Section 4 on Icosahedral CNNs, we will consider one more type of representation, namely the regular representation of C_6. The group C_6 can be described as the 6 planar rotations by $k \cdot 2\pi/6$, or as integers k with addition mod 6. Features that transform like the regular representation of C_6 are 6-dimensional, with one component for each rotation. One can obtain a regular feature by taking a filter at p, rotating it by $k \cdot 2\pi/6$ for $k = 0, \ldots, 5$, and matching each rotated filter against the input signal. When the gauge is changed, the filter and all rotated copies are rotated, and so the components of a regular C_6 feature are cyclically shifted. Hence, $\rho(g)$ is a 6×6 cyclic permutation matrix that shifts the coordinates by k' steps for $g = k' \cdot 2\pi/6$. Further examples of representations ρ that are useful in convolutional networks may be found in (Cohen & Welling, 2017; Weiler et al., 2018a; Thomas et al., 2018; Hy et al., 2018).

2.4. Gauge Equivariant Convolution: General Fields

Now consider a stack of C_n input feature maps on M, which represents a C_n-dimensional ρ_n-field (e.g. $C_n = 1$ for a single scalar, $C_n = d$ for a vector, $C_n = 6$ for a regular C_6 feature, or any multiple of these, etc.). We will define a convolution operation that takes such a field and produces as output a C_{out}-dimensional ρ_{out}-field. For this we need a filter bank with C_{out} output channels and C_n input channels, which we will describe mathematically as a matrix-valued kernel $K : \mathbb{R}^d \rightarrow \mathbb{R}^{C_{out} \times C_n}$.

We can think of $K(v)$ as a linear map from the input feature space ("fiber") at p to the output feature space at p, these spaces being identified with \mathbb{R}^{C_n} resp. $\mathbb{R}^{C_{out}}$ by the choice of gauge w_p at p. This suggests that we need to modify Eq. 1 to make sure that the kernel matrix $K(v)$ is multiplied by a feature vector at p, not one at $q_v = \exp_p w_p(v)$. This is achieved by transporting $f(q_v)$ to p along the unique geodesic connecting them, before multiplying by $K(v)$.

As $f(q_v)$ is transported to p, it undergoes a transformation which will be denoted $g_{p \rightarrow q_v} \in G$ (see Fig. 2). This transformation acts on the feature vector $f(q_v) \in \mathbb{R}^{C_n}$ via the representation $\rho_n(g_{p \rightarrow q_v}) \in \mathbb{R}^{C_n \times C_n}$. Thus, we obtain the generalized form of Eq. 1 for general fields:

$$ (K \ast f)(p) = \int_{\mathbb{R}^d} K(v) \rho_n(g_{p \rightarrow q_v}) f(q_v) dv. \quad (3) $$

Under a gauge transformation, we have:

$$ v \mapsto g_{q_v}^{-1} v, \quad f(q_v) \mapsto \rho_n(g_{q_v}^{-1}) f(q_v), \quad w_p \mapsto w_p g_p, \quad g_{p \rightarrow q_v} \mapsto g_{p \rightarrow q_v} g_{p \rightarrow q_v} g_{q_v}. \quad (4) $$

For $K \ast f$ to be well defined as a ρ_{out}-field, we want it to transform like $(K \ast f)(p) \mapsto \rho_{out}(g_p^{-1})(K \ast f)(p)$. Or, in other words, \ast should be gauge equivariant. This will be the case if and only if K satisfies

$$ \forall g \in G : K(g^{-1} v) = \rho_{out}(g^{-1}) K(v) \rho_n(g). \quad (5) $$

One may verify this by making the substitutions of Eq. 4 in Eq. 3 and simplifying using $\rho(g_h) = \rho(g) \rho(h)$ and Eq. 5, to find that $(K \ast f)(p) \mapsto \rho_{out}(g_p^{-1})(K \ast f)(p)$.

We note that equations 1 and 2 are special cases of 3 and 5 for $\rho_n(g) = \rho_{out}(g) = 1$, i.e. for scalar fields.

This concludes our presentation of the general case. A gauge equivariant $\rho_1 \rightarrow \rho_2$ convolution on M is defined relative to a local gauge by Eq. 3, where the kernel satisfies the equivariance constraint of Eq. 5. By defining gauges on local charts $U_i \subset M$ that cover M and convolving inside each one, we automatically get a globally well-defined operation, because switching charts corresponds to a gauge transformation (Fig. 1), and the convolution is gauge equivariant.

2.5. Locally Flat Spaces

On flat regions of the manifold, the exponential parameterization can be simplified to $\varphi(\exp_p w_p(v)) = \varphi(p) + v$ if we use an appropriate local coordinate $\varphi(p) \in \mathbb{R}^d$ of $p \in M$. Moreover, in such a flat chart, parallel transport is trivial, i.e. $g_{p \rightarrow q_v}$ equals the identity. Thus, on a flat region, our convolution boils down to a standard convolution / correlation:

$$ (K \ast f)(x) = \int_{\mathbb{R}^d} K(v) f(x + v) dv. \quad (6) $$

Moreover, we can recover group convolutions, spherical convolutions, and convolution on other homogeneous spaces as special cases as well (see supplementary material).

3. Related work

Equivariant Deep Learning Equivariant networks have been proposed for permutation-equivariant analysis and prediction of sets (Zaheer et al., 2017; Hartford et al., 2018), graphs (Kondor et al., 2018b; Hy et al., 2018; Maron et al., 2019), translations and rotations of the plane and 3D space (Oyallon & Mallat, 2015; Cohen & Welling, 2016; 2017; Marcos et al., 2017; Weiler et al., 2018b;a; Worrall et al., 2017; Worrall & Brostow, 2018; Winkels & Cohen, 2018; Veeling et al., 2018; Thomas et al., 2018; Bekkers et al., 2018; Hoogeboom et al., 2018), and the sphere (see below). Ravanbakhsh et al. (2017) studied finite group equivariance. Equivariant CNNs on homogeneous spaces were studied by (Kondor & Trivedi, 2018) (scalar fields) and (Cohen et al., 2018c:a) (general fields). In this paper we generalize G-CNNs from homogeneous spaces to general manifolds.
Geometric Deep Learning Geometric deep learning (Bronstein et al., 2017) is concerned with the generalization of (convolutional) neural networks to manifolds. Many definitions of manifold convolution have been proposed, and some of them (those called “intrinsic”) are gauge equivariant (although to the best of our knowledge, the relevance of gauge theory has not been observed before). However, these methods are all limited to particular feature types ρ (typically scalar), and/or use a parameterization of the kernel that is not maximally flexible.

Bruna et al. (2014); Boscaini et al. (2015) propose to use isotropic (spectral) filters (i.e. scalar field features), while (Masci et al., 2015) define a convolution that is essentially the same as our scalar-to-regular convolution, followed by a max-pooling over orientations, which in our terminology maps a regular field to a scalar field. As shown experimentally in (Cohen & Welling, 2016; 2017) and in this paper, it is often more effective to use convolutions that preserve orientation information (e.g. regular to regular convolution). Another solution is to align the filter with the maximum curvature direction (Boscaini et al., 2016), but this approach is not intrinsic and does not work for flat surfaces or uniformly curved spaces like spheres.

(Poulenard & Ovsjanikov, 2018) define a multi-directional convolution for “directional functions” (somewhat similar to what we call regular fields), but they parameterize the kernel by a scalar function on the tangent space, which is very limited compared to our matrix-valued kernel (which is the most general kernel mapping ρ1 fields to ρ2 fields).

Spherical CNNs Besides the general theoretical framework of gauge equivariant convolution, we present in this paper a specific model (the Icosahedral CNN), which can be viewed as a fast and simple alternative to Spherical CNNs (Cohen et al., 2018b; Esteves et al., 2018; Boomsma & Frelsen, 2017; Su & Grauman, 2017; Perraudin et al., 2018; Jiang et al., 2018; Kondor et al., 2018a). Liu et al. (2019) use a spherical grid based on a subdivision of the icosahedron, and convolve over it using a method that is similar to the one presented in Sec. 4 (and thus ignores curvature), but this method is not equivariant and does not take into account gauge transformations. We show in Sec. 5 that both are important for optimal performance.

Mathematics & physics To deeply understand gauge equivariant networks, we recommend studying the mathematics of gauge theory: principal & associated fiber bundles (Schuller, 2016; Husemöller, 1994; Steenrod, 1951). The work presented in this paper can be understood as replacing the principal G-bundle H → H/G used in G-CNNs over homogeneous spaces H/G (Cohen et al., 2018a) by the frame bundle of M, which is another principal G-bundle. More details can be found in the supplementary material.

4. Icosahedral CNNs

In this section we will describe a concrete method for performing gauge equivariant convolution on the icosahedron. The very special shape of this manifold makes it possible to implement gauge equivariant convolution in a way that is both numerically convenient (no interpolation is required), and computationally efficient (the heavy lifting is done by a single conv2d call).

4.1. The Icosahedron

The icosahedron is a regular solid with 20 faces, 30 edges, and 12 vertices (see Fig. 4, left). It has 60 rotational symmetries. This symmetry group will be denoted I2.

4.2. The Hexagonal Grid

Whereas general manifolds, and even spheres, do not admit completely regular and symmetrical pixelations, we can define an almost perfectly regular grid of pixels on the icosahedron. This grid is constructed through a sequence of refinement steps. We begin with a grid H₀ consisting of the corners of the icosahedron itself. Then, for each triangular face, we subdivide it into 4 smaller triangles, thus introducing 3 new points on the center of the edges of the original triangle. This process is repeated r times to obtain a grid Hᵣ with \(N = 5 \times 2^{2r+1} + 2 \) points (Fig. 4, left).

Each grid point (pixel) in the grid has 6 neighbours, except for the corners of the icosahedron, which have 5. Thus, one can think of the non-corner grid points as hexagonal pixels, and the corner points as pentagonal pixels.

Notice that the grid Hᵣ is perfectly symmetrical, which means that if we apply an icosahedral symmetry \(g \in I \) to a point \(p \in Hᵣ \), we will always land on another grid point, i.e. \(gp \in Hᵣ \). Thus, in addition to talking about gauge equivariance, for this manifold grid, we can also talk about (exact) equivariance to global transformations (3D rotations in I). Because these global symmetries act by permuting the pixels and changing the gauge, one can see that a gauge equivariant network is automatically equivariant to global transformations. This will be demonstrated in Section 5.

4.3. The Atlas of Charts

We define an atlas consisting of 5 overlapping charts on the icosahedron, as shown in Fig. 4. Each chart is an invertible map \(\varphi_i : U_i \rightarrow V_i \), where \(U_i \subset Hᵣ \subset M \) and \(V_i \subset \mathbb{Z}^2 \). The regions \(U_i \) and \(V_i \) are shown in Fig. 4. The maps themselves are linear on faces, and defined by hard-coded correspondences \(\varphi_i(c_j) = x_j \) between the corner points \(c_j \) in \(Hᵣ \) and points \(x_j \) in the planar grid \(\mathbb{Z}^2 \).

2As an abstract group, \(I \simeq A5 \) (the alternating group A5), but we use I to emphasize that it is realized by a set of 3D rotations.
Each chart covers all the points in 4 triangular faces of the icosahedron. Together, the 5 charts cover all 20 faces of the icosahedron.

We divide the charts into an exterior $V_e \subset V_i$, consisting of border pixels, and an interior $V_i^p \subset V_i$, consisting of pixels whose neighbours are all contained in chart i. In order to ensure that every pixel in H_r (except for the 12 corners) is contained in the interior of some chart, we add a strip of pixels to the left and bottom of each chart, as shown in Fig. 4 (center). Then the interior of each chart (plus two exterior corners) has a nice rectangular shape $2^r \times 2^{r+1}$, and every non-corner is contained in exactly one interior V_i^p.

So if we know the values of the field in the interior of each chart, we know the whole field (except for the corners, which we ignore). However, in order to compute a valid convolution output at each interior pixel (assuming a hexagonal filter with one ring, i.e. a 3×3 masked filter), we will still need the exterior pixels to be filled in as well (introducing a small amount of redundancy). See Sec. 4.6.1.

4.5. The Signal Representation

A stack of C feature fields is represented as an array of shape $(B, C, R, 5, H, W)$, where B is the batch size, C the number of fields, R is the dimension of the fields ($R = 1$ for scalars and $R = 6$ for regular features), 5 is the number of charts, and H, W are the height and width of each local chart ($H = 2^r + 2$ and $W = 2^{r+1} + 2$ at resolution r, including a 1-pixel padding region on each side, see Fig. 4). We can always reshape such an array to shape $(B, CR, 5H, W)$, resulting in a 4D array that can be viewed as a stack of CR rectangular feature maps of shape $(5H, W)$. Such an array can be input to conv2d.

4.6. Gauge Equivariant Icosahedral Convolution

Gauge equivariant convolution on the icosahedron is implemented in three steps: G-Padding, kernel expansion, and 2d convolution / HexaConv (Hoogeboom et al., 2018).

4.6.1. G-PADDING

In a standard CNN, we can only compute a valid convolution output at positions (x, y) where the filter fits inside the input image in its entirety. If the output is to be of the same size as the input, one uses zero padding. Likewise, the IcoConv requires padding, only now the padding border V_i of a chart consists of pixels that are also represented in the interior of another chart (Sec. 4.3). So instead of zero padding, we copy the pixels from the neighbouring chart. We always use hexagonal filters with 1 ring, which can be represented as a 3×3 filter on a square grid, so we pad by 1 pixel.

As explained in Sec. 4.4, when transitioning between charts one may have to perform a gauge transformation on the features. Since scalars are invariant quantities, transition padding amounts to a simple copy in this case. Regular C_6 features (having 6 orientation channels) transform by cyclic shifts $\rho(g_{ij}(p))$ (Sec. 2.3), where $g_{ij} \in \{+1, 0, -1\} \cdot 2\pi/6$ (Fig. 4), so we must cyclically shift the channels up or down before copying to get the correct coefficients in the new
4.6.2. Weight Sharing & Kernel Expansion

Figure 6. Kernel expansion for scalar-to-regular ($R_{in} = 1, R_{out} = 6$; left) and regular-to-regular ($R_{in} = R_{out} = 6$; right) convolution. Top: free parameters. Bottom: expanded kernel used in conv2d.

For the convolution to be gauge equivariant, the kernel must satisfy Eq. 5. The kernel $K : \mathbb{R}^2 \rightarrow \mathbb{R}^{R_{out} \cdot C_{out} \times R_{in} \cdot C_{in}}$ is stored in an array of shape $(R_{out} \cdot C_{out}, R_{in} \cdot C_{in}, 3, 3)$, with the top-right and bottom-left pixel of each 3×3 filter fixed at zero so that it corresponds to a 1-ring hexagonal kernel.

Eq. 5 says that if we transform the input channels (columns) by $\rho_{in}(g)$ and the output channels (rows) by $\rho_{out}(g)$, the result should equal the original kernel where each channel is rotated by $g \in C_6$. This will the case if we use the weight-sharing scheme shown in Fig. 6.

Weight sharing can be implemented in two ways. One can construct a basis of kernels, each of which has shape $(R_{out}, R_{in}, 3, 3)$ and has value 1 at all pixels of a certain color/shade, and 0 elsewhere. Then one can construct the full kernel by linearly combining these basis filters using learned weights (one for each $C_{in} \cdot C_{out}$ input/output channels and basis kernel) (Cohen & Welling, 2017; Weiler et al., 2018a). Alternatively, for scalar and regular features, one can use a set of precomputed indices to expand the kernel as shown in Fig. 6, using a single indexing operation.

4.6.3. Complete Algorithm

The complete algorithm can be summarized as

$$\text{GConv}(f, w) = \text{conv2d}(\text{GPad}(f), \text{expand}(w)).$$ (7)

Where f and GPad(f) both have shape $(B, C_{in} \cdot R_{in}, 5H, W)$, the weights w have shape $(C_{out}, C_{in} \cdot R_{in}, 7)$, and expand(w) has shape $(C_{out} \cdot R_{out}, C_{in} \cdot R_{in}, 3, 3)$. The output of GConv has shape $(B, C_{out} \cdot R_{out}, 5H, W)$.

On the flat faces, being described by one of the charts, this algorithm coincides exactly with the hexagonal regular convolution introduced in (Hoogeboom et al., 2018). The non-zero curvature of the icosahedron requires us to do the additional step of padding between different charts.

5. Experiments

5.1. IcoMNIST

In order to validate our implementation, highlight the potential benefits of our method, and determine the necessity of each part of the algorithm, we perform a number of experiments with the MNIST dataset, projected to the icosahedron.

We generate three different versions of the training and test sets, differing in the transformations applied to the data. In the N condition, No rotations are applied to the data. In the I condition, we apply all 60 icosahedral symmetries (rotations) to each digit. Finally, in the R condition, we apply 60 random continuous rotations $g \in \text{SO}(3)$ to each digit before projecting. All signals are represented as explained in Sec. 4.5 / Fig. 4 (right), using resolution $r = 4$, i.e. as an array of shape $(1, 5 \cdot (16 + 2), 32 + 2)$.

Our main model consists of one gauge equivariant scalar-to-regular (S2R) convolution layer, followed by 6 regular-to-regular (R2R) layers and 3 FC layers (see Supp. Mat. for architectural details). We also evaluate a model that uses only S2R convolution layers, followed by orientation pooling (a max over the 6 orientation channels of each regular feature, thus mapping a regular feature to a scalar), as in (Masci et al., 2015). Finally, we consider a model that uses only rotation-invariant filters, i.e. scalar-to-scalar (S2S) convolutions, similar to standard graph CNNs (Boscaini et al., 2015; Kipf & Welling, 2017). We also compare to the fully SO(3)-equivariant but computationally costly Spherical CNN (S2CNN). See supp. mat. for architectural details and computational complexity analysis.

In addition, we perform an ablation study where we disable each part of the algorithm. The first baseline is obtained from the full R2R network by disabling gauge padding (Sec. 4.6.1), and is called the No Pad (NP) network. In the second baseline, we disable the kernel Expansion (Sec. 4.6.2), yielding the NE condition. The third baseline, called NP+NE uses neither gauge padding nor kernel expansion, and amounts to a standard CNN applied to the same input representation. We adapt the number of channels so that all networks have roughly the same number of parameters.

Arch.	N/N	N/I	N/R	I/I	I/R	R/R
S2CNN	99.38	99.38	99.38	99.12	99.13	99.12
NP+NE	99.29	25.50	16.20	98.52	47.77	94.19
NE	99.42	25.41	17.85	98.67	60.74	96.83
NP	99.27	36.76	21.4	98.99	61.62	97.87
S2S	97.81	97.81	55.64	97.72	58.37	89.92
S2R	98.99	98.99	59.76	98.62	55.57	98.74
R2R	**99.43**	**99.43**	**69.99**	**99.38**	**66.26**	**99.31**

Table 1. IcoMNIST test accuracy (%) for different architectures and train / test conditions (averaged over 3 runs). See text for explanation of labels.
As shown in Table 1, icosahedral CNNs achieve excellent performance with a test accuracy of up to 99.43%, which is a strong result even on planar MNIST, for non-augmented and non-ensambled models. The full R2R model performs best in all conditions (though not significantly in the N/N condition), showing that both gauge padding and kernel expansion are necessary, and that our general (R2R) formulation works better in practice than using scalar fields (S2S or S2R). We notice also that non-equivariant models (NP+NE, NP, NE) do not generalize well to transformed data, a problem that is only partly solved by data augmentation. On the other hand, the models S2S, S2R, and R2R are exactly equivariant to symmetries \(g \in I \), and so generalize perfectly to \(I \)-transformed test data, even when these were not seen during training. None of the models automatically generalize to continuously rotated inputs (R), but the equivariant models are closer, and can get even closer (> 99%) when using \(\text{SO}(3) \) data augmentation during training. The fully \(\text{SO}(3) \)-equivariant S2CNN scores slightly worse than R2R, except in N/R and I/R, as expected. The slight decrease in performance of S2CNN for rotated training conditions is likely due to the fact that it has lower grid resolution near the equator. We note that the S2CNN is slower and less scalable than Ico CNNs (see supp. mat.).

5.2. Climate Pattern Segmentation

We evaluate our method on the climate pattern segmentation task proposed by Mudigonda et al. (2017). The goal is to segment extreme weather events (Atmospheric Rivers (AR) and Tropical Cyclones (TC)) in climate simulation data.

We use the exact same data and evaluation methodology as (Jiang et al., 2018). The preprocessed data as released by (Jiang et al., 2018) consists of 16-channel spherical images at resolution \(r = 5 \), which we reinterpret as icosahedral signals (introducing slight distortion). See (Mudigonda et al., 2017) for a detailed description of the data.

We compare an R2R and S2R model (details in Supp. Mat.). As shown in Table 2, our models outperform both competing methods in terms of per-class and mean accuracy. The difference between our R2R and S2R model seems small in terms of accuracy, but when evaluated in terms of mean average precision (a more appropriate evaluation metric for segmentation tasks), the R2R model clearly outperforms.

Model	BG	TC	AR	Mean	mAP
Mudigonda et al.	97	74	65	78.67	-
Jiang et al.	97	94	93	94.67	-
Ours (S2R)	97.3	97.8	97.3	97.5	0.686
Ours (R2R)	97.4	**97.9**	**97.8**	**97.7**	**0.759**

Table 2. Climate pattern segmentation accuracy (%) for BG, TC and AR classes plus mean accuracy and average precision (mAP).

5.3. Stanford 2D-3D-S

For our final experiment, we evaluate icosahedral CNNs on the 2D-3D-S dataset (Armeni et al., 2017), which consists of 1413 omnidirectional RGB+D images with pixelwise semantic labels in 13 classes. Following Jiang et al. (2018), we sample the data on a grid of resolution \(r = 5 \) using bilinear interpolation, while using nearest-neighbour interpolation for the labels. Evaluation is performed by mean intersection over union (mIoU) and pixel accuracy (mAcc).

The network architecture is a residual U-Net (Ronneberger et al., 2015; He et al., 2016) with R2R convolutions. The network consists of a downsampling and upsampling network. The downsampling network takes as input a signal at resolution \(r = 5 \) and outputs feature maps at resolutions \(r = 4, \ldots, 1 \), with 8, 16, 32 and 64 channels. The upsampling network is the reverse of this. We pool over orientation channels right before applying softmax.

As shown in table 3, our method outperforms the method of (Jiang et al., 2018), which in turn greatly outperforms standard planar methods such as U-Net on this dataset.

	mAcc	mIoU
(Jiang et al., 2018)	0.547	0.383
Ours (R2R-U-Net)	**0.559**	**0.394**

Table 3. Mean accuracy and intersection over union for 2D-3D-S omnidirectional segmentation task.

6. Conclusion

In this paper we have presented the general theory of gauge equivariant convolutional networks on manifolds, and demonstrated their utility in a special case: learning with spherical signals using the icosahedral CNN. We have demonstrated that this method performs well on a range of different problems and is highly scalable.

Although we have only touched on the connections to physics and geometry, there are indeed interesting connections, which we plan to elaborate on in the future. From the perspective of the mathematical theory of principal fiber bundles, our definition of manifold convolution is entirely natural. Indeed it is clear that gauge invariance is not just nice to have, but necessary in order for the convolution to be geometrically well-defined.

In future work, we plan to implement gauge CNNs on general manifolds and work on further scaling of spherical CNNs. Our chart-based approach to manifold convolution should in principle scale to very large problems, thus opening the door to learning from high-resolution planetary scale spherical signals that arise in the earth and climate sciences.
Acknowledgements

We would like to thank Chiyu “Max” Jiang and Mayur Mudigonda for help obtaining and interpreting the climate data, and Erik Verlinde for helpful discussions.

References

Armeni, I., Sax, A., Zamir, A. R., and Savarese, S. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. ArXiv e-prints, February 2017.

Bekkers, E. J., Lafarge, M. W., Veta, M., Eppehof, K. A. J., Pluim, J. P. W., and Duits, R. Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. In MICCAI, 2018.

Boomsma, W. and Frellsen, J. Spherical convolutions and their application in molecular modelling. In NIPS, 2017.

Boscaini, D., Masci, J., Melzi, S., Bronstein, M. M., Castellani, U., and Vandergheynst, P. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 2015.

Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. M. Learning shape correspondence with anisotropic convolutional neural networks. In NIPS, 2016.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 2017.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral Networks and Deep Locally Connected Networks on Graphs. In ICLR, 2014.

Cohen, T., Geiger, M., and Weiler, M. A General Theory of Equivariant CNNs on Homogeneous Spaces. 2018a.

Cohen, T. S. and Welling, M. Group equivariant convolutional networks. In ICML, 2016.

Cohen, T. S. and Welling, M. Steerable CNNs. In ICLR, 2017.

Cohen, T. S., Geiger, M., Koehler, J., and Welling, M. Spherical CNNs. In ICLR, 2018b.

Cohen, T. S., Geiger, M., and Weiler, M. Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks). 2018c.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. Learning SO(3) equivariant representations with spherical cnns. In ECCV, 2018.

Hartford, J. S., Graham, D. R., Leyton-Brown, K., and Ravabakhsh, S. Deep models of interactions across sets. In ICML, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition. In CVPR, 2016.

Hoogeboom, E., Peters, J. W. T., Cohen, T. S., and Welling, M. HexaConv. In ICLR, 2018.

Husemoller, D. Fibre Bundles. Number 20 in Graduate Texts in Mathematics. Springer-Verlag, New York, 3rd ed edition, 1994. ISBN 978-0-387-94087-8.

Hy, T. S., Trivedi, S., Pan, H., Anderson, B. M., and Kondor, R. Predicting molecular properties with covariant compositional networks. The Journal of Chemical Physics, 148(24), 2018.

Jiang, C., Huang, J., Kashinath, K., Prabhat, Marcus, P., and Niessner, M. Spherical CNNs on Unstructured Grids. In ICLR, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Kondor, R. and Trivedi, S. On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups. In ICML, 2018.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch–Gordan Nets: A Fully Fourier Space Spherical Convolutional Neural Network. In NIPS, 2018a.

Kondor, R., Son, H. T., Pan, H., Anderson, B., and Trivedi, S. Covariant Compositional Networks For Learning Graphs. January 2018b.

Lee, J. Introduction to Riemannian Manifolds. Graduate Texts in Mathematics. Springer International Publishing, 2 edition. ISBN 978-3-319-91754-2.

Liu, M., Yao, F., Choi, C., Ayan, S., and Karthik, R. Deep Learning 3D Shapes using Alt-Az Anisotropic 2-Sphere Convolution. In ICLR, 2019.

Lunter, G. and Brown, R. An Equivariant Bayesian Convolutional Network predicts recombination hotspots and accurately resolves binding motifs. Bioinformatics, 2018.

Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. Rotation equivariant vector field networks. In ICCV, 2017.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. Invariant and Equivariant Graph Networks. In arXiv:1812.09902 [Cs, Stat], 2019.
Masci, J., Boscaini, D., Bronstein, M. M., and Vandergheynst, P. Geodesic convolutional neural networks on riemannian manifolds. *ICCVW*, 2015.

Mudigonda, M., Kim, S., Mahesh, A., Kahou, S., Kashinath, K., Williams, D., Michalski, V., O’Brien, T., and Prabhat, M. Segmenting and Tracking Extreme Climate Events using Neural Networks. 2017.

Oyallon, E. and Mallat, S. Deep roto-translation scattering for object classification. In *CVPR*, 2015.

Perraudin, N., Defferrard, M., Kacprzak, T., and Sgier, R. DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications. *arXiv:1810.12186 [astro-ph]*, October 2018.

Poulenard, A. and Ovsjanikov, M. Multi-directional geodesic neural networks via equivariant convolution. *ACM Transactions on Graphics*, 2018.

Ravanbakhsh, S., Schneider, J., and Póczos, B. Equivariance through parameter-sharing. In *ICML*, 2017.

Ronneberger, O., P.Fischer, and Brox, T. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI*, 2015.

Schonsheck, S. C., Dong, B., and Lai, R. Parallel Transport Convolution: A New Tool for Convolutional Neural Networks on Manifolds. *arXiv:1805.07857 [cs, math, stat]*, May 2018.

Schuller, F. Lectures on the Geometrical Anatomy of Theoretical Physics, 2016.

Steenrod, N. *The Topology of Fibre Bundles*. 1951.

Su, Y.-C. and Grauman, K. Flat2sphere: Learning spherical convolution for fast features from 360 imagery. In *NIPS*, 2017.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds. February 2018.

Veeling, B. S., Linmans, J., Winkens, J., Cohen, T. S., and Welling, M. Rotation Equivariant CNNs for Digital Pathology. In *MICCAI*, 2018.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. S. 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In *NeurIPS*, 2018a.

Weiler, M., Hamprecht, F. A., and Storath, M. Learning Steerable Filters for Rotation Equivariant CNNs. In *CVPR*, 2018b.