Comparisons of the short-term effectiveness and safety of surgical treatment for neovascular glaucoma: a systematic review and network meta-analysis

Peijie Lin, Qian Zhao, Jing He, Wei Fan, Wenyi He, Mingying Lai

ABSTRACT

Objective To compare the effectiveness and safety of the six interventions for neovascular glaucoma.

Design A systematic review and network meta-analysis.

Methods Randomised controlled trials and cohort studies which compared the six interventions in neovascular glaucoma were identified using the following databases searched up to 1 September 2020: PubMed, Cochrane Library, Embase and Web of Science. The quality assessment was conducted by using the Cochrane risk of bias tool and the Newcastle-Ottawa scale. The primary outcome measure was the mean weighted differences for intraocular pressure reduction. Secondary one was ORs for success rate. Outcome measures were reported with 95% CI and p<0.05 was considered statistically significant. Network meta-analysis was performed using Stata V.15.0.

Results Twenty-three studies involving a total of 1303 patients were included. The types of surgical treatments included Ahmed glaucoma valve (AGV) implant surgery, AGV combined with intravitreal anti-vascular endothelial growth factor (AGV +IVAV), cyclophotocoagulation (CPC), cyclocryotherapy (CCT), trabeculectomy with mitomycin (Trab(MMC)) and Trab(MMC) combined with IVAV (Trab(MMC)+IVAV). Network meta-analysis showed that in comparison with AGV, AGV +IVAV (MD=4.74, 95% CI 1.04 to 8.45) and Trab(MMC)+IVAV (MD=6.19, 95% CI 0.99 to 11.40) showed a favourable effect in intraocular pressure reduction (IOPR) 6 months after surgery. Compared with CCT, AGV (OR=−0.17, 95% CI −0.53 to −0.05), AGV +IVAV (OR=−0.10, 95% CI −3.48 to −1.19), CPC (OR=−0.12, 95% CI −0.53 to −0.05), Trab(MMC) (OR=3.54, 95% CI 1.15 to 10.91) and Trab(MMC)+IVAV (OR=5.78, 95% CI 2.29 to 14.61) showed a superior impact in success rate. The order of efficacy as best intervention ranked as follows: Trab(MMC)+IVAV (IOPR 6 months after surgery, surface under the cumulative ranking (SUCRA)=88.1), CPC (IOPR 12 months after surgery, SUCRA=81.9), AGV +IVAV (IOPR 12 months after surgery, SUCRA=79.9) and AGV +IVAV (success rate, SUCRA=92.7). Adverse events were also summarised in detail.

Conclusion In the treatment of neovascular glaucoma, AGV+IVAV and CPC were more effective in IOPR and success rate than the other four interventions. Additionally, AGV+IVAV is superior to CPC concerning the success rate in the long-term treatment. However, considering the limitations of this review, more high-quality trials, especially those surgical interventions not mentioned in this review, should be carried out in the future to further confirm the current findings.

INTRODUCTION

Neovascular glaucoma (NVG) is a potentially blinding, refractory glaucoma, which is characterised by neovascularisation in iris or anterior chamber angle. NVG manifests as dramatic elevation of intraocular pressure (IOP), severe ocular pain and vision loss, influencing the quality of life in patients adversely. It is secondary to various ocular ischaemic diseases, such as diabetic retinopathy, central retinal vein occlusion and ocular ischaemic syndrome. With a high prevalence of diabetes and vascular disease, the incidence of NVG is increasing steadily, accounting for more than 30% of refractory glaucoma and becomes an occupational health issue.
The therapy for NVG is twofold. First, the underlying cause needs controlling, usually by panretinal photocoagulation (PRP) or intravitreal vascular endothelial growth factor (VEGF) inhibitors, aiming at reduction of ischemic drive that induces formation of new blood vessels. The second key aspect is the successful IOP management. When medication of decreasing IOP are insufficient, surgery is regarded as the first-line choice for NVG, but complicated by higher failure rates and more difficult tissue anatomy than in primary glaucoma. Thus, its treatments have been paid high attention to in glaucoma. Currently, glaucoma drainage devices (GDDs), filtering surgery, cyclodestructive surgery, combined with PRP or IVAV, are routinely used surgical treatment modalities for NVG, which present with a certain effectiveness and increase the diversity of treatment strategies. Many authors verified the effectiveness of these treatment modalities. Nevertheless, there is no sufficient evidence of superiority of one over another. Some systematic review and meta-analyses have been published to evaluate the effectiveness and safety of these combination of treatment modalities for NVG. Two meta-analyses reported the effect of intravitreal bevacizumab injection before AGV implantation, which indicated higher surgical success rate. However, because of the limitations of the traditional pairwise meta-analysis, it is difficult to determine which one is the best management of NVG in the modalities.

In recent years, network meta-analysis has been developed. Compared with traditional pairwise meta-analysis, it allows for combining of data related to multiple treatments, comparison of interventions based on indirect information and generating a ranking of treatment arms according to the efficacy. A latest network meta-analysis suggested that trabeculectomy with mitomycin and interferon was the most likely to improve the success rate in treatment of NVG, followed by glaucoma valve; however, there was an inevitable insufficiency of evidence to determine the optimal surgical interventions since intraocular pressure reduction (IOPR) and adverse events were not mentioned in the analysis. The significant heterogeneity of follow-up time also indicated different degrees of bias in the analysis, which may affect the assessment of surgical success. In addition, the result of loop-specific approach showed a certain local inconsistency signifying that the findings related to trabeculectomy should be interpreted cautiously.

Therefore, aiming to add more sufficient evidence, we performed a network meta-analysis involving more specific outcome measurements including IOPR, success rate and adverse events to evaluate the comparative effectiveness and safety of different surgical treatment, to help ophthalmologist better make treatment strategies for patients with NVG. We present the following article in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting checklist and the Meta-Analyses of Observational Studies in Epidemiology reporting checklist.

MATERIAL AND METHODS

Data sources
A medical literature search was performed in the following databases from their inception through 1 September 2020: PubMed, Web of Science, the Cochrane Library and Embase. Different from Dong’s network meta-analysis, we neglected the Chinese database due to the lower quality of literature retrieved. There are no restrictions regarding publication year, language or methodological filter on these studies. The searching was performed using medical subject headings and keywords, including ‘neovascular glaucoma’, ‘neovascular’, ‘rubeosis and iris’, ‘rubeosis iridis’, ‘neovascularization and iris’, ‘rubeotic glaucoma’, ‘congestive and glaucoma’, ‘haemorrhagic’, ‘hemorrhagic’, ‘NVG’, ‘NVI’ and ‘NVA’. The details of search strategy are showed in online supplemental appendix 1 to 4. Two reviewers searched literatures, reviewed the titles and abstracts of articles independently to select the potential ones and tried contacting authors. The full texts of the selected articles were checked based on inclusion and exclusion criteria, and the divergent articles were checked by a third reviewer.

Inclusion criteria
Studies were included according to the following criteria: (1) study type: randomised controlled trials (RCTs) or cohort studies; (2) population: patients were diagnosed as NVG by symptoms, signs and examination; (3) intervention: controlled study of different therapeutic strategies related to different surgeries; and (4) outcome variables: at least one of the outcome measures was required.

Exclusion criteria
The following studies were excluded if (1) follow-up time was <6 months; (2) trials with a small sample size of (n<10); (3) drug dose-related study; (4) comparative studies of similar surgical procedures, such as trabeculectomy versus modified trabeculectomy; (5) abstracts from conferences and full texts without raw data available for retrieval, literature reviews, letters and duplicate publications.

Outcome measure
The primary outcome was the mean difference in IOPR after surgery, with or without antiglaucoma medication. When authors reported the mean and SD of the IOPR, we used these directly. If not available, we computed them as follows: IOPR = (SD2baseline + SD2endpoint – SD2baseline × SD2endpoint)/2. In order to reduce bias, we preferably selected the common follow-up time point between all studies: mean IOPR 6 months after surgery and mean IOPR 12 months after surgery. In case 12-month data were not reported, we used the latest reported outcome data or the data closest to 12 months. The secondary outcomes were the rates of surgical success, using the definitions used by authors of individual studies. In case there was no common time...
point of data concerning success rate, we used information available at the final follow-up for statistical analysis.

Data extraction

Two investigators independently worked for data extraction, and they collected the following information: (1) basic characteristics, including author name, study design, publication year, age and gender of patients, intervention, sample size, stages of NVG, outcomes and follow-up; (2) clinical outcomes, including IOPR 6 months after surgery, IOPR 12 months after surgery and success rate.

Quality assessment

The quality assessment of RCTs was conducted by using the Cochrane risk of bias tool, and cohort studies using the Newcastle-Ottawa scale. Quality assessment was independently carried out by two reviewers, and disagreements were checked by a third reviewer.

Statistical analysis

A network meta-analysis was carried out using Stata V.15.0. Continuous variables (IOPR 6 months after surgery and IOPR 12 months after surgery) were analysed using mean difference (MD) and its 95% credible interval (CI), while dichotomous variables (success rate) using OR. At the beginning of our network meta-analysis, pairwise meta-analyses were performed, then `mvmeta` package was used to perform the plots of different comparisons, the rankplots based on probabilities and the surface under the cumulative ranking (SUCRA) for different endpoints. Furthermore, node-splitting analysis and loop-specific approach were used to evaluate inconsistency, and the Grades of Recommendations Assessment, Development and Evaluation (GRADE) was used to evaluate the importance of the outcomes.

RESULTS

Identification of the relevant studies

9658 articles were identified in our initial search, from which 2624 articles were excluded for duplications, and 6606 were excluded by reading titles and abstracts. In the remaining 428 articles, full texts were obtained to check eligibility, in which 39 studies were excluded because of non-comparative study, 168 studies were excluded for wrong intervention or comparator and 198 studies were excluded because of lacking of clinical data. Finally, 23 studies were included in our final analysis (online supplemental appendix 5). Figure 1 shows the selection process for relevant studies.

Characteristics of the included studies

The review involved 1303 patients and the sample size ranged from 20 to 170 cases. Four studies were RCTs and 19 were cohort studies. Twenty-two studies were two-arm studies, and one was three-arm study. In our study, the types of surgical treatments included Ahmed glaucoma valve (AGV), AGV combined with intravitreal anti-vascular endothelial growth factor (AGV +IVAV), cyclophotocoagulation (CPC), cyclocryotherapy (CCT), trabeculectomy with mitomycin (Trab(MMC)) and Trab(MMC) combined with IVAV (Trab(MMC)+IVAV). To be more understandable, we explained the meaning of acronyms in table 1.

Eight studies compared AGV with AGV +IVAV, three studies compared AGV with CPC, three compared AGV +IVAV with Trab(MMC)+IVAV, two compared CCT with Trab(MMC)+IVAV, five compared Trab(MMC) with Trab(MMC)+IVAV, one compared AGV with Trab(MMC) and one compared AGV with Trab(MMC)+IVAV. Three hundred and eight patients were included in AGV groups, 309 patients in AGV +IVAV groups, 67 patients in CPC groups, 53 patients in CCT groups, 235 patients in Trab(MMC) groups and 355 patients in Trab(MMC)+IVAV groups. In terms of the criteria of IOPR, 14 trials employed the criteria of IOPR 6 months after surgery and 12 trials used the criteria of IOPR 12 months after surgery. As summarised in online supplemental appendix 6, 21 trials used heterogeneous criteria of success rate defined by authors of individual studies. The baseline characteristics of each study are presented in table 2.

Quality assessment

In four RCTs, one study did not state the method of randomisation in details and three studies employed computer random number for randomisation. Only one study mentioned the blinding method. All of the RCTs had complete data. The risk of bias summary is shown in online supplemental appendix 7. In terms of the cohort studies, based on the Newcastle-Ottawa quality assessment scale, one study scored 9 points,
Table 1 The acronyms of the included surgical treatments

Acronym	Surgical treatment
AGV	Ahmed glaucoma valve implant surgery
IVAV	Intravitreal anti-vascular endothelial growth factor
AGV+IVAV	AGV combined with IVAV
CPC	Cyclophotocoagulation
CCT	Cyclodestructive surgery
Trab(MMC)	Trabeculectomy with mitomycin
Trab(MMC)+IVAV	Trab(MMC) combined with IVAV

...eight studies scored 8 points, five studies scored 7 points and five studies scored 6 points (online supplemental appendix 8).

The results of meta-analysis
The results of pairwise meta-analysis are demonstrated in online supplemental appendix 9. Figure 2 shows the network of eligible comparisons for IOPR 6 months after surgery, IOPR 12 months after surgery and success rate, and figure 3 shows the results of network meta-analysis.

Fourteen studies involving 882 eyes reported IOPR 6 months after surgery (figure 2). When compared with AGV, AGV +IVAV (MD=4.74, 95% CI 1.04 to 8.45) and Trab(MMC)+IVAV (MD=6.19, 95% CI 0.99 to 11.40) showed a significantly higher IOPR 6 months after surgery, but no significant difference was found between AGV +IVAV (MD=1.45, 95% CI −5.93 to 3.03) and Trab(MMC)+IVAV. Meanwhile, no significant difference was found among the other interventions.

Thirteen studies involving 681 eyes and 14 comparisons reported IOPR 12 months after surgery (figure 2). As illustrated in figure 3, no significant difference was found in IOPR 12 months after surgery.

In terms of success rate, 20 studies involving 21 comparisons and 1098 eyes were merged for analysis (figure 2). Compared with CCT, the interventions including AGV (OR=−0.17, 95% CI −0.53 to −0.05), AGV +IVAV (OR=−0.10, 95% CI −0.31 to −0.03), CPC (OR=−0.12, 95% CI −0.53 to −0.03), Trab(MMC) (OR=3.54, 95% CI 1.15 to 10.91) and Trab(MMC)+IVAV (OR=5.78, 95% CI 2.29 to 14.61) presented with a significantly higher success rate. Additionally, the success rate in AGV +IVAV was significantly higher than that in AGV (OR=1.71, 95% CI 1.12 to 2.61) and Trab(MMC) (OR=0.34, 95% CI −0.78 to −0.15), and no significant difference was found between the latter two treatments. However, no significant difference was found among the other interventions.

The plots of probability and SUCRA are illustrated in online supplemental appendix 10. Table 3 shows that Trab(MMC)+IVAV had the highest probability to be the best intervention in IOPR 6 months after surgery while AGV+IVAV ranking behind. CPC and AGV+IVAV had the highest probability to be the best intervention in IOPR 12 months after surgery, and AGV+IVAV had the highest probability to be the best intervention in success rate, respectively.

Consistency analysis
Node-splitting analysis was performed to evaluate the inconsistency by comparing direct and indirect effects, indicating no significant inconsistency (online supplemental appendix 11) and the results were reliable. In addition, the results of loop-specific approach showed no significant inconsistency in the comparisons of closed circles in outcomes of IOPR (12 mo) and success rate, but significant inconsistency in IOPR (6mo) (table 4).

GRADE for the outcome measurements
We summarised the GRADE judgements in online supplemental appendix 12. According to the suggestions of GRADE workgroups, we combined the evidences of direct and indirect comparisons and chose a higher level, and the results demonstrated the evidences provided in this review were moderate, low or very low.

Adverse events
In the included studies, 23 reported adverse events. Twenty studies reported 225 cases of hyphema, in which 70 occurred in the AGV group, 67 in the Trab(MMC) group, 38 in the AGV +IVAV group, 29 in the Trab(MMC)+IVAV group, 13 in the CCT group and 8 in the CPC group. Ten studies reported 73 cases of corneal oedema, in which 31 occurred in the CCT group, 20 in the AGV group, 14 in the CPC group, 5 in the AGV +IVAV group and 3 in the Trab(MMC) group. Eleven studies reported hypotony, in which 24 eyes occurred in the AGV +IVAV group, 17 in the Trab(MMC)+IVAV group, 16 in the AGV group, 7 in the Trab(MMC) group and 3 in the CPC group. Shallow anterior chamber was reported in 13 studies, including 42 cases in the AGV +IVAV group, 20 in the AGV group, 11 in the Trab(MMC)+IVAV group and 10 in the Trab(MMC) group.

Meanwhile, tube exposure or occlusion was reported in nine studies, including 23 cases in the AGV group and 17 in the AGV +IVAV group. Encapsulated plate was reported in six studies, including 19 eyes in the AGV group and 12 in the AGV +IVAV group. Bleb leak was reported in six studies, including six cases in the Trab(MMC) group, six in the Trab(MMC)+IVAV group and two in the AGV +IVAV group. Phthisis bulbi was reported in four studies, including six eyes in the AGV group and two in the Trab(MMC) group.

Moreover, five studies reported 24 cases of vitreous haemorrhage, in which 10 occurred in the Trab(MMC) group, 7 in the Trab(MMC)+IVAV group, 6 in the AGV group and 1 in the AGV +IVAV group. Choroidal effusion or detachment was reported in 11 studies, including 21 cases in the Trab(MMC) group, 18 in the Trab(MMC) group, 12 in the AGV group and 10 in the AGV +IVAV group. Two studies reported two cases with retinal detachment in the AGV group.
Table 2 The characteristics of the included studies

References	Study design	Interventions	Age (MD, SD)	Gender (Male/female)	Sample size	No. Eyes	Outcomes	Mean follow-up (months)	Anti-VEGF	Combine PRP
Ma et al²⁵	OCT	AGV vs AGV+IVAV	58.78 (13.09) vs 57.60 (13.56)	27/25	N/A	32 vs 20	*	15	Bevacizumab	Yes
Mahdy et al¹⁸	RCT	AGV vs AGV + IVAV	56 (4.3) vs 55 (1.3)	23/17	20 vs 20	20 vs 20	† †*	18	Bevacizumab	Yes
Zhou et al²⁶	OCT	AGV vs AGV + IVAV	57.89 (11.5) vs 54.40 (13.68)	36/17	28 vs 25	28 vs 25	† †*	15.36 (4.53) vs 15.08 (5.14)	Bevacizumab	Yes
Kang et al¹⁷	OCT	AGV vs AGV + IVAV	54.3 (10.8) vs 54.8 (13.0)	22/5	13 vs 14	13 vs 14	*	6	Bevacizumab	Yes
Arcieri et al¹⁹	OCT	AGV vs AGV + IVAV	62.40 (11.7) vs 59.25 (8.05)	24/16	20 vs 20	20 vs 20	† †*	28.2 (8.04) vs 25.8 (8.04)	Bevacizumab	Yes
Kwon and Sung²⁸	OCT	AGV vs AGV + IVAV	57 (18) vs 59 (10)	56/14	25 vs 45	25 vs 45	†*	27 (14) vs 26 (16)	Bevacizumab	Yes
Li et al³⁰	OCT	AGV vs AGV + IVAV	57.49 (8.42) vs 58.06 (7.33)	46/34	34 vs 46	34 vs 46	*	6	Ranibizumab	N/A
Feng et al³¹	OCT	AGV vs AGV + IVAV	54.24 (11.05) vs 53.00 (12.32) vs 54.00 (12.74)	43/25	21 vs 26 vs 21	21 vs 26 vs 21	† †*	12	Ranibizumab; conbercept	N/A
Yildirim et al³²	RCT	AGV vs CPC	57.2 (10.3) vs 60.0 (11.7)	35/31	33 vs 33	33 vs 33	† †*	24	No	N/A
Liu and Tong³³	OCT	AGV vs CPC	57.30 (12.88) vs 56.44 (13.16)	27/19	24 vs 22	31 vs 26	†	6	No	N/A
Choy et al³⁴	OCT	AGV vs CPC	62.8 (11.0) vs 61.3 (13.5)	13/6	12 vs 8	12 vs 8	†*	31.0 (15.4) vs 28.5 (17.9)	No	Yes
Zhang et al³⁵	OCT	AGV+IVAV vs AGV + IVAV	57.5 (12.5) vs 57.0 (11.5)	12/10	12 vs 10	13 vs 10	†	26	Bevacizumab	Yes
Sun et al³⁶	OCT	AGV+IVAV vs Trab(MMC)+IVAV	52.42 (12.78)	23/22	23 vs 22	23 vs 22	† †*	12	Ranibizumab	Yes
Gao and Liu³⁷	OCT	AGV+IVAV vs Trab(MMC)+IVAV	56.25 (9.98) vs 54.75 (11.10)	49/27	36 vs 40	36 vs 40	† †*	12	Ranibizumab	Yes
Li et al³⁸	OCT	AGV+IVAV vs Trab(MMC)+IVAV	57.6 (13.4)	31/15	23 vs 23	23 vs 23	† †*	12	Bevacizumab	Yes
Wang and Wang³⁹	OCT	CCT vs Trab(MMC)+ IVAV	45.5 (4.6) vs 44.5 (6.3)	33/27	30 vs 30	30 vs 30	† †*	12 (0.3)	Ranibizumab	Yes
Saito et al⁴⁰	OCT	Trab(MMC) vs Trab(MMC)+IVAV	61 (14) vs 60 (13)	33/19	32 vs 20	32 vs 20	*	28 (13) vs 12 (5)	Bevacizumab	Yes
Takihara et al⁴¹	OCT	Trab(MMC) vs Trab(MMC)+IVAV	60.0 (10.4) vs 60.3 (11.6)	44/6	30 vs 20	33 vs 24	† †*	25.3 (8.8) vs 15.2 (3.6)	Bevacizumab	Yes
Lee et al⁴²	OCT	Trab(MMC) vs Trab(MMC)+IVAV	52.73 (11.27) vs 56.53 (11.86)	38/20	26 vs 32	26 vs 32	*	12	Bevacizumab	Yes
Yu et al⁴³	OCT	Trab(MMC) vs Trab(MMC)+IVAV	54.88 (4.19) vs 55.71 (4.23)	48/42	42 vs 48	42 vs 48	†*	6	Conbercept	Yes
Song et al⁴⁴	OCT	Trab(MMC) vs Trab(MMC)+IVAV	59.25 (5.51) vs 58.73 (5.44)	91/79	82 vs 88	82 vs 88	†	6	Conbercept	N/A
Shen et al⁴⁵	OCT	AGV vs Trab(MMC)	54.0 (15.6) vs 59.65 (15.8)	19/21	20 vs 20	20 vs 20	†*	31.1 (24.5) vs 25.0 (19.7)	No	N/A

Continued
Besides, nine studies reported anterior segment inflammation, 20 cases occurred in the AGV +IVAV group, 19 in the AGV group, 16 in the CCT group, 11 in the CPC group and 1 in the Trab(MMC)+IVAV group. Ocular pain was reported in five studies, in which 36 cases in the CCT group, 18 in the CPC group, 8 in the AGV group, 5 in the Trab(MMC) group, 2 in the AGV +IVAV group and 2 in the Trab(MMC)+IVAV group. Two studies reported ocular atrophy, two cases occurred in the CPC group and one in the Trab(MMC) group.

Regarding to adverse events, we supplemented extra data of complications (online supplemental appendix 13) and summarised them in Table 5.

DISCUSSION

This is the first network meta-analysis to evaluate the efficacy and safety of the six widely used treatment modalities for NVG. The focus of our work is on more specific outcome measurements, with stricter inclusion criteria and less bias, which is very different from Dong’s work. First, we regrettably found that most of Dong’s included studies were of poor quality as well as some extraction errors and failed to meet our inclusion criteria. Studies with follow-up time which was not mentioned or less than 6 months were excluded, and only two included studies in our meta-analysis were the same as Dong’s.18 19 Meanwhile, since application of panretinal photocoagulation, laser peripheral iridotomy and anti-scarring drugs were common as adjunctive treatments, they could not be compared as stand-alone interventions. Due to similar principles of reducing VEGF, bevacizumab, ranibizumab and conbercept were classified as anti-VEGF inhibitors in our analysis.20 By reason of the foregoing, compared with Dong’s network meta-analysis,16 our inclusion criteria were more rigorous, leading to more convincing results.

The results demonstrated that in the six interventions, the effectiveness of CCT was the worst, and the effectiveness of AGV +IVAV was better than the other five interventions in success rate, but similar as CPC in IOPR 12 months after surgery. Besides, the effectiveness of Trab(MMC)+IVAV was the best among the six interventions in IOPR 6 months after surgery.

In terms of the rank of probability for the six interventions, it is reasonable that AGV +IVAV demonstrated a highest probability to be the best intervention in success rate. The insertion of GDD implants has been considered as an option with lower risk of failure than conventional filtering surgery for treating NVG.5 Among GDDs, Ahmed possesses even higher acceptance and popularity and has been widely used by an increasing number of surgeons.21 In this review, only AGV was included, we neglected other glaucoma valve-related studies in reason that there is no sufficient studies of comparison of each different types of GDDs. In regard to this, several authors conducted reviews and found no evidence of superiority of one over another in treatment of glaucoma.5 22 23

Table 2

References

Study design	Interventions	Age (MD, SD)	Gender	Sample size	No. Patients	No. Eyes
Liu et al46	AGV vs Trab(MMC)+IVAV	56.7 (13.6) vs 62.3 (10.8)	Male/female	21/16	19 vs 18	19 vs 18

Outcomes	Mean follow-up (months)	Anti-VEGF
Success rate.†	10 vs 12	Ranibizumab
Intraocular pressure reduction 6 months after surgery.‡	10 vs 12	N/A
Intraocular pressure reduction 12 months after surgery.†	10 vs 12	N/A

References

- OCT, observational cohort study;
- PRP, panretinal photocoagulation;
- RCT, randomised controlled trial;
- Trab(MMC), trabeculectomy with MMC;
- Trab(MMC)+IVAV, Trab(MMC) combined with IVAV;
- VEGF, vascular endothelial growth factor.

[†]Success rate.†Intraocular pressure reduction 6 months after surgery.‡Intraocular pressure reduction 12 months after surgery; AGV+IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IVAV, intravitreal anti-VEGF; MMC, mitomycin; OCT, observational cohort study; PRP, panretinal photocoagulation; RCT, randomised controlled trial; Trab(MMC), trabeculectomy with MMC; Trab(MMC)+IVAV, Trab(MMC) combined with IVAV; VEGF, vascular endothelial growth factor.

Ref: Lin P, et al. BMJ Open 2022;12:e051794. doi:10.1136/bmjopen-2021-051794
four interventions in IOPR 12 months after surgery. The fact that two studies in the CPC groups were RCTs and patients with similar visual acuity were selected in the non-RCT, avoids create a potential selection bias, since cyclodestructive procedures are normally an option for advanced NVG with limited visual acuity, whereas AGVs are usually implanted in patients with better prognosis and visual potential. Therefore, AGV + IVAV was superior to CPC concerning the success rate.

But it is noteworthy that Trab(MMC)+IVAV unexpectedly showed superiority in IOPR 6 months after surgery more than other five interventions. We think the reasons may be attributed to the following aspects. First of all, in this review most of trials have a small sample size, and the number of comparisons was small. As shown in figure 4, the contribution plot of IOPR 6 months after surgery showed Trab(MMC)+IVAV accounted for a large proportion, demonstrating the small sample size influenced the total effect and final outcomes adversely. In addition, the funnel plots of IOPR 6 months after surgery showed the potential report bias. Moreover, the results of loop-specific approach showed a significant inconsistency existed in IOPR 6 months after surgery, which means the results of indirect comparisons were not consistent with those of direct ones; two comparisons concluded different conclusions in IOPR 6 months after surgery. Subsequently, the findings in favour of Trab(MMC)+IVAV should be interpreted cautiously.

Besides, in respect of IOPR 12 months after surgery and success rate, Trab(MMC)+IVAV showed inferiority to AGV+IVAV, CPC and AGV. As mainstream consideration, it shared a low long-term effectiveness mainly due to neovascular membrane obstruction in the filtering passage or external scarring and conjunctival fibrosis.

Figure 2 Network of treatment comparisons (Note: width of the lines is proportional to the number of trials comparing every pair of treatments. Size of each circle is proportional to the sample size of interventions. For example, in success rate, ‘9’ represents the number of comparisons between AGV group and AGV+IVAV group, ‘n=257’ represents the sample size of Trab(MMC)+IVAV group). AGV, Ahmed glaucoma valve implant surgery; AGV+IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IOPR, intraocular pressure reduction; IVAV, intravitreal anti-vascular endothelial growth factor; mo, months; Trab(MMC), trabeculectomy with mitomycin; Trab(MMC)+IVAV, Trab(MMC) combined with IVAV.
promoted by VEGF, even with antimetabolites such as mitomycin C or 5-fluorouracil.6,8 Moreover, as shown in table 5, we had some interesting findings on adverse events. First, complications including tube exposure, tube occlusion and encapsulated plate occurred more often in AGV cases than those in AGV + IVAV cases, which demonstrated that anti-VEGF may improve surgical success rate of AGV. Additionally, bleb leak, vitreous haemorrhage and choroidal detachment were reported more in Trab(MMC) and Trab(MMC) + IVAV cases, and combined surgery with IVAV improved surgical effect; Last, it is worth noting that phthisis bulbi was reported in AGV and Trab(MMC) cases while retinal detachment was reported in AGV cases, although the incidence of these complications appeared low. However, there were some differences in the adverse events included in each study, the results need to be interpreted with caution.

Our review has two methodological strengths. In this research network meta-analysis was carried out to compare the direct and indirect effect of the four treatments, and the SUCRA plot was performed to estimate the ranks of interventions, which may facilitate ophthalmologist to make treatment strategies correctly. However, our review has its disadvantages. First, the evidence from GRADE for included outcomes was relatively low. Only four randomised studies were retrieved, whereas the remaining were non-randomised comparative studies. Second, there was a certain heterogeneity in follow-up time when observing 12-month postoperative IOP. We followed the recommendations of the European Glaucoma Society, which states that the latest reported outcome data or the data closest to 12 months could be reported in case 12-month data were not reported.17 Third, heterogeneous definitions of the success criteria challenges the validity of our analysis and conclusions. Fourth, the number and sample size of retrieved studies are small, which may affect the interpretation of the results. Fifth, only three outcomes were analysed in our review, more outcomes such as best corrected visual results. Fifth, only three outcomes were analysed in our research, more outcomes such as best corrected visual

Treatments/outcomes	SUCRA	PrBest	Mean rank
IOPR (6mo)			
AGV	14.5	0.001	5.3
AGV + IVAV	68.9	0.213	2.6
CPC	30.1	0.054	4.5
CCT	39.6	0.057	4
Trab(MMC)	58.8	0.128	3.1
Trab(MMC) + IVAV	88.1	0.547	1.6
IOPR (12mo)			
AGV	48.2	0.014	3.6
AGV + IVAV	79.9	0.304	2
CPC	81.9	0.59	1.9
CCT	18.2	0.022	5.1
Trab(MMC)	28.2	0.042	4.6
Trab(MMC) + IVAV	43.6	0.029	3.8

Success rate

Treatments/outcomes	SUCRA	PrBest	Mean rank
AGV	54.3	0.002	3.3
AGV + IVAV	92.7	0.663	1.4
CPC	73.7	0.303	2.3
CCT	0.4	0	6
Trab(MMC)	25	0.002	4.8
Trab(MMC) + IVAV	53.9	0.03	3.3

Data are probability in the rows of ‘SUCRA’ and ‘PrBest’. AGV, Ahmed glaucoma valve implant surgery; AGV + IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IOPR (6mo), intraocular pressure reduction 6 months after surgery; IOPR (12mo), intraocular pressure reduction 12 months after surgery; IVAV, intravitreal anti-vascular endothelial growth factor; PrBest, the best probability (from 0 to 1); SUCRA, surface under the cumulative ranking; Trab(MMC), trabeculectomy with mitomycin; Trab(MMC) + IVAV, Trab(MMC) combined with IVAV.

Table 4 Loop-specific approach

Outcome	Loop	ROR	Z_value	P_value	95% CI	Loop_Heterog_tau2
IOPR (6mo)	AGV-AGVI-Trabl	6.490	0.85	0.395	(0.00 to 21.45)	25.666
IOPR (12mo)	AGV-AGVI-Trabl-Trabl	0.123	0.013	0.990	(0.00 to 19.05)	24.326
Success rate	AGV-Trabl	1.574	1.343	0.179	(0.00 to 3.87)	0

Loop-specific approach is used to check the inconsistency which aims at the closed loop. In this analysis, ROR is close to 1, indicating no significant difference between direct and indirect effects. AGV, Ahmed glaucoma valve implant surgery; AGVI, AGV + IVAV; IVAV, intravitreal anti-vascular endothelial growth factor; MMC, mitomycin; ROR, reporting odds ratio; Trab, trabeculectomy; TrabI, Trab(MMO); Trabl, Trab(MMC) + IVAV.
acuity and numbers of anti-glaucoma medications were also relevant but not analysed, because no sufficient data were reported in the included studies. Sixth, since most of the primary ocular diseases leading to NVG were diabetic retinopathy and retinal vein occlusion (online supplemental appendix 14), which may do better than ocular ischaemic syndrome cases or others, the results should be interpreted cautiously due to this potential confounding factor. Finally, the included studies only consisted of six interventions, more surgical treatment should be carried out in the upcoming studies to allow future systematic reviews and meta-analysis. These limitations may affect the final outcomes. In addition, data of each adverse event was insufficient, so the safety of the six treatments could not be evaluated by SUCRA in this review.

Table 5 Adverse events

	AGV (n=213 eyes)	AGV+IVAV (n=269 eyes)	CPC (n=33 eyes)	CCT (n=53 eyes)	Trab(MMC) (n=182 eyes)	Trab(MMC)+IVAV (n=278 eyes)
Corneal oedema	20 (9.4%)	5 (1.9%)	14 (42.4%)	31 (58.5%)	3 (1.6%)	—
Hyphema	70 (32.9%)	38 (14.1%)	8 (24.2%)	13 (24.5%)	67 (36.8%)	29 (10.4%)
Low intraocular	16 (7.5%)	24 (8.9%)	3 (9.1%)	—	7 (3.8%)	17 (6.1%)
pressure						
Shallow anterior	20 (9.4%)	42 (15.6%)	—	—	10 (5.5%)	11 (4.0%)
Vitreous haemorrhage	6 (2.8%)	1 (0.4%)	—	—	10 (5.5%)	7 (2.5%)
Choroidal detachment	12 (5.6%)	10 (3.7%)	—	—	18 (9.9%)	21 (7.6%)
Retinal detachment	2 (0.9%)	—	—	—	—	—
Tube exposure	11 (5.2%)	12 (4.5%)	—	—	—	—
Tube occlusion	12 (5.6%)	5 (1.9%)	—	—	—	—
Encapsulated plate	19 (8.9%)	12 (4.5%)	—	—	—	—
Phthisis bulbi	6 (2.8%)	—	—	—	2 (1.1%)	—
Bleb leak	—	2 (0.7%)	—	—	6 (3.3%)	6 (2.2%)
Anterior segment	19 (8.9%)	20 (7.4%)	11 (33.3%)	16 (30.2%)	—	1 (0.4%)
inflammation						
Ocular pain	8 (3.8%)	2 (0.7%)	18 (54.5%)	36 (67.9%)	5 (2.7%)	2 (0.7%)
Ocular atrophy	—	—	2 (6.1%)	—	1 (0.5%)	—

AGV, Ahmed glaucoma valve implant surgery; AGV+IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IVAV, intravitreal anti-VEGF; MMC, mitomycin; Trab(MMC), trabeculectomy with MMC; Trab(MMC)+IVAV, Trab(MMC) combined with IVAV; VEGF, vascular endothelial growth factor.

Figure 4 The contribution plots of each outcome (Note: 01=AGV, 02=AGV+IVAV, 03=CPC, 04=CCT, 05=Trab(MMC), and 06=Trab(MMC)+IVAV). AGV, Ahmed glaucoma valve implant surgery; AGV+IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IOPR, intraocular pressure reduction; IVAV, intravitreal anti-vascular endothelial growth factor; mo, months; Trab(MMC), trabeculectomy with mitomycin; Trab(MMC)+IVAV, Trab(MMC) combined with IVAV.
CONCLUSION
In conclusion, our review suggested, among the six interventions, AGV+IVAV and CPC were superior to the other four interventions, and the effectiveness of CCT was the worst in the treatment of NVG. Additionally, AGV+IVAV is superior to CPC concerning the success rate in the long-term treatment. However, considering the limitations of this study, more high-quality trials, especially those surgical interventions not mentioned in this review, should be carried out in the future to further confirm the current conclusions.

Acknowledgements We thank Haoyu Chen from Department of Ophthalmology, Joint Shantou International Eye Center Shantou University and the Chinese University of Hong Kong, for his editorial assistance.

Contributors PL conceived the study, drafted the protocol, collected data, performed the statistical analysis and wrote the manuscript. OZ participated in data extraction and data analysis. JH, WF and WH contributed to assembly of data, the quality assessment and data interpretation. ML revised the manuscript, accepted full responsibility for the work of the study, had access to the data, and controlled the decision to publish as the guarantor. All authors have read and approved the final version of the manuscript.

Funding This work was supported by Science and Technology Plan Projects of Shenzhen, China (grant number: JCXJ20160428144849002).

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access repository. All data relevant to the study are included in the article or uploaded as online supplementary information. All included articles could be downloaded from the website https://pubmed.ncbi.nlm.nih.gov/.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Peijie Lin http://orcid.org/0000-0002-4817-6764

REFERENCES
1 Havens SJ, Gulati V. Neovascular glaucoma. Dev Ophthalmol 2016;55:196–204.
2 Shazly TA, Latina MA. Neovascular glaucoma: etiology, diagnosis and prognosis. Semin Ophthalmol 2009;24:113–21.
3 Sivak-Callcott JA, O'Day DM, Gass JD, et al. Evidence-Based recommendations for the diagnosis and treatment of neovascular glaucoma. Ophthalmology 2001;108:1767–76.
4 Hayreh SS. Neovascular glaucoma. Prog Retin Eye Res 2007;26:470–85.
5 Tseng VL, Coleman AL, Chang MY, et al. Aqueous shunts for glaucoma. Cochrane Database Syst Rev 2017;7:CD004918.
6 Dahlan E, Ben Simon GJ. An augmented trabeculectomy for neovascular glaucoma. Ophthalmic Surg Lasers Imaging 2011;42:196–201.
7 Freiggasser P, Eckhardt M. Transscleral cyclophotocoagulation versus Cyclocryotherapy in treatment of neovascular glaucoma: a retrospective analysis. Acta Ophthalmol Scand 2003;81:674–9.
8 Yang H, Yu X, Sun X. Neovascular glaucoma: handling in the future. Taiwan J Ophthalmol 2018;8:60–6.
9 Olmos LC, Lee RK. Medical and surgical treatment of neovascular glaucoma. Int Ophthalmol Clin 2011;51:27–36.
10 Andrés-Guerrero V, Perouco-González L, García-Feijoo J, et al. Current perspectives on the use of anti-VEGF drugs as adjuvant therapy in glaucoma. Adv Ther 2017;34:378–95.
11 Shchomak Z, Cordeiro Sousa D, Leal I, et al. Surgical treatment of neovascular glaucoma: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 2019;257:1079–89.
12 Lee NY, Hwang HB, Oh SH, et al. Efficacy of additional glaucoma drainage device insertion in refractory glaucoma: case series with a systematic literature review and meta-analysis. Semin Ophthalmol 2015;30:345–51.
13 Hwang HB, Han JW, Yim HB, et al. Beneficial effects of adjuvant intravitreal bevacizumab injection on outcomes of Ahmed glaucoma valve implantation in patients with neovascular glaucoma: systematic literature review. J Ocul Pharmacol Ther 2015;31:198–203.
14 Zhou M, Xu X, Zhang X, et al. Clinical outcomes of Ahmed glaucoma valve implantation with or without intravitreal bevacizumab pretreatment for neovascular glaucoma: a systematic review and meta-analysis. J Glaucoma 2016;25:551–7.
15 Zhou R, Sun Y, Chen H. Laser trabeculoplasty for open-angle glaucoma: a systematic review and network meta-analysis. Am J Ophthalmol 2021;229:301–13.
16 Dong Z, Gong J, Liao R, et al. Effectiveness of multiple therapeutic strategies in neovascular glaucoma patients: a PRISMA-compliant network meta-analysis. Medicine 2018;97:e9897.
17 European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Chapter 2: Classification and terminology. Br J Ophthalmol 2017;101:73–127.

Figure 5 The funnel plots of each outcome (Note: 1=AGV, 2=AGV+IVAV, 3=CPC, 4=CCT, 5=Trab(MMC), and 6=Trab(MMC)+IVAV. AGV, Ahmed glaucoma valve implant surgery; AGV+IVAV, AGV combined with IVAV; CCT, cyclocryotherapy; CPC, cyclophotocoagulation; IOPR, intraocular pressure reduction; IVAV, intravitreal anti-vascular endothelial growth factor; mo, months; Trab(MMC), trabeculectomy with mitomycin; Trab(MMC)+IVAV, Trab(MMC) combined with IVAV.)
18 Mahdy RA, Nada WM, Fawzy KM, et al. Efficacy of intravitreal bevacizumab with panretinal photocoagulation followed by Ahmed valve implantation in neovascular glaucoma. *J Glaucoma* 2013;22:768–72.

19 Arcieri ES, Pavia JS, Jorge R. Efficacy and safety of intravitreal bevacizumab in eyes with neovascular glaucoma undergoing Ahmed glaucoma valve implantation: 2-year follow-up. *Acta Ophthalmol* 2015;93:6.

20 Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, et al. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: current research and future perspectives. *Cytokine Growth Factor Rev* 2018;39:102–15.

21 Riva I, Roberti G, Oddone F, et al. Ahmed glaucoma valve implant: surgical technique and complications. *Clin Ophthalmol* 2017;11:367–67.

22 Suda M, Nakanishi H, Akagi T, et al. Baerveldt or Ahmed glaucoma valve implantation with pars plana tube insertion in Japanese eyes with neovascular glaucoma: 1-year outcomes. *Clin Ophthalmol* 2018;12:2439–49.

23 Yalvac IS, Eksioglu U, Satana B, et al. Long-term results of Ahmed glaucoma valve and Molteno implant in neovascular glaucoma. *Eye* 2007;21:65–70.

24 SooHoo JR, Seibold LK, Kahook MY. Recent advances in the management of neovascular glaucoma. *Semin Ophthalmol* 2013;28:165–72.

25 Ma KT, Yang JY, Kim JH, et al. Surgical results of Ahmed valve implantation with intraoperative bevacizumab injection in patients with neovascular glaucoma. *J Glaucoma* 2012;21:331–6.

26 Zhou M-wen, Wang W, Huang W-bin, et al. Adjunctive with versus without intravitreal bevacizumab injection before Ahmed glaucoma valve implantation in the treatment of neovascular glaucoma. *Chin Med J* 2013;126:1412–7.

27 Kang JY, Nam KY, Lee SJ, et al. The effect of intravitreal bevacizumab injection before Ahmed glaucoma valve implantation in patients with neovascular glaucoma. *Int Ophthalmol* 2014;34:793–9.

28 Kwon J, Sung KR. Effect of preoperative intravitreal bevacizumab on the surgical outcome of neovascular glaucoma at different stages. *J Ophthalmol* 2017;2017.

29 Yue-Bing L, Xin L, Tai-Xiang L. Effect of Ahmed glaucoma drainage valve implantation and levizumab on neovascularization glaucoma. *Int Eye Sci* 2019;19:1853–6.

30 Kong F, Ma X, Fan S. Efficacy of intravitreal Lucentis or conbercept injection combined with Ahmed glaucoma valve implantation for treatment of neovascular glaucoma. *Journal of Jilin University Medicine Edition* 2017;43:1237–42.

31 Yildirim N, Yalvac IS, Sahin A, et al. A comparative study between diode laser cyclophotocoagulation and the Ahmed glaucoma valve implant in neovascular glaucoma: a long-term follow-up. *J Glaucoma* 2009;18:192–6.

32 Liu XN, Tong FF. Study of surgical treatment on neovascular glaucoma. *Int Eye Sci* 2014;14:942–4.

33 Cho Y, BK, Lai JSM, Yeung JCC. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese - a pilot study. *Clin Ophthalmol* 2018;12:2545–52.

34 Zhang XL, SY L, Zhang ZP, et al. Clinical effect of trabeculectomy and glaucoma valve implantation on neovascular glaucoma. *Int Eye Sci* 2014;14:349–51.

35 Sun J-T, Liang H-J, An M, et al. Efficacy and safety of intravitreal ranibizumab with panretinal photoocoagulation followed by trabeculectomy compared with Ahmed glaucoma valve implantation in neovascular glaucoma. *Int Ophthalmol* 2017;10:400–5.

36 Gao L, Liu W. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed glaucoma valve implantation in the treatment of neovascular glaucoma. Zhonghua Shiyan Yanke Zazhi/Chinese Journal of Experimental Ophthalmology 2018;36:613–8.

37 OW D, Yang LS. Effects of intravitreal injection of bevacizumab combined with complex trabeculectomy for advanced neovascular glaucoma. *Int Eye Sci* 2015;15:1766–8.

38 Wang F, Wang LL. Safety of anti-VEGF drugs with trabeculectomy for neovascular glaucoma. *Int Eye Sci* 2018;16:837–40.

39 Saito Y, Higashide T, Takeda H, et al. Beneficial effects of preoperative intravitreal bevacizumab on trabeculectomy outcomes in neovascular glaucoma. *Acta Ophthalmol* 2010;88:96–102.

40 Takihara Y, Inatani M, Kawaji T, et al. Combined intravitreal bevacizumab and trabeculectomy with mitomycin C versus trabeculectomy with mitomycin C alone for neovascular glaucoma. *J Glaucoma* 2011;20:196–201.

41 Lee YH, Kim R, Chang SD. The effect of intravitreal bevacizumab injection before trabeculectomy in patients with neovascular glaucoma. *Korean J Ophthalmol* 2015;56:917.

42 Yu Z, XP L, Yan XN. Intravitreal injection of Conbercept combined with trabeculectomy and panretinal photoocoagulation for the treatment of neovascular glaucoma. *Int Eye Sci* 2018;18:862–5.

43 Song RX. Effect of Conbercept combined with trabeculectomy on aqueous humor VEGF and SDF-1 levels for patients with neovascular glaucoma. *Chin J Pharm Biotechnol*. 2019;26:521–4.

44 Shen CC, Salim S, Du H, et al. Trabeculectomy versus Ahmed glaucoma valve implantation in neovascular glaucoma. *Clin Ophthalmol* 2011;5:281–6.

45 Liu L, Xu Y, Huang Z, et al. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed valve surgery in the treatment of neovascular glaucoma: assessment of efficacy and complications. *BMC Ophthalmol* 2016;16:65.
Contents

Appendix 1. PubMed search strategy ... 2
Appendix 2. Embase search strategy ... 2
Appendix 3. Central (Cochrane) search strategy ... 2
Appendix 4. Web of Science search strategy ... 2
Appendix 5 References list of included studies .. 3
Appendix 6 Success and failure criteria applied in each study 5
Appendix 7 Risk of bias summary of RCT ... 9
Appendix 8 The quality assessment according to the NOQAS of each cohort study 10
Appendix 9 Pair-wise meta-analysis ... 11
Appendix 10 The surface under the cumulative ranking plots based on cumulative probabilities of interventions .. 12
Appendix 11 Node-splitting analysis ... 13
Appendix 12 GRADE for outcome measurements ... 14
Appendix 13 Adverse events of included studies .. 16
Appendix 14 Composition of the primary diseases in the included studies 19
Appendix 1. PubMed search strategy

1. neovascular Glaucoma as Topic [Mesh]
2. ((glaucoma* or angle* or iris or anterior) near/4 (neovascular*)) [tw]
3. ((haemorrhagic or hemorrhagic or thrombotic or congestive or rubeotic or secondary) near/4 (glaucoma*)) [tw]
4. (NVG or NVI or NVA) [tw]
5. 1 or 2 or 3 or 4
6. randomized controlled trial [pt] or controlled clinical trial [pt] or randomized [tiab] or placebo [tiab] or clinical trials as topic [Mesh] or randomly [tiab] or trial [ti] or retrospective
7. animals [mh] not humans [mh]
8. 5 and 6 not 7

Appendix 2. Embase search strategy

1. neovascular glaucoma/exp
OR
2. ((glaucoma* or angle* or iris or anterior) adj4 neovascular*):ab
3. ((haemorrhagic or hemorrhagic or thrombotic or congestive or rubeotic or secondary) adj4 glaucoma*):ab
4. (NVG or NVI or NVA):ab
5. 1 or 2 or 3 or 4
6. [controlled clinical trial]/lim or [randomized controlled trial]/lim or retrospective
7. 5 and 6

Appendix 3. Central (Cochrane) search strategy

1. MeSH descriptor: [Glaucoma, Neovascular] explode all trees
2. (glaucoma* or angle* or iris or anterior) near/4 (neovascular*)
3. (haemorrhagic or hemorrhagic or thrombotic or congestive or rubeotic or secondary) near/4 (glaucoma*)
4. NVG or NVI or NVA
5. 1 or 2 or 3 or 4

Appendix 4. Web of Science search strategy

1. “Neovascular Glaucoma”
2. ((glaucoma* or angle* or iris or anterior) near/4 (neovascular*)) [tw]
3. ((haemorrhagic or hemorrhagic or thrombotic or congestive or rubeotic or secondary) near/4 (glaucoma*))[tw]
4. NVG or NVI or NVA
5. 1 or 2 or 3 or 4
Appendix 5 References list of included studies

1. K. T. Ma, J. Y. Yang, J. H. Kim, et al. Surgical results of ahmed valve implantation with intraoperative bevacizumab injection in patients with neovascular glaucoma. Journal of Glaucoma 2012; 21(5): 331-336.
2. R. A. Mahdy, W. M. Nada, K. M. F. Efficacy of intravitreal bevacizumab with panretinal photocoagulation followed by Ahmed valve implantation in neovascular glaucoma. Journal of glaucoma 2013; 22(9): 768‐772.
3. M. W. Zhou, W. Wang, W. B. Huang, et al. Adjunctive with versus without intravitreal bevacizumab injection before ahmed glaucoma valve implantation in the treatment of neovascular glaucoma. Chinese Medical Journal 2013; 126(8): 1412-1417.
4. J. Y. Kang, K. Y. Nam, S. J. Lee, et al. The effect of intravitreal bevacizumab injection before Ahmed valve implantation in patients with neovascular glaucoma. International Ophthalmology 2014; 34(4): 793-799.
5. E. S. Arcieri, J. S. Paula, R. Jorge, et al. Efficacy and safety of intravitreal bevacizumab in eyes with neovascular glaucoma undergoing Ahmed glaucoma valve implantation: 2-year follow-up. Acta ophthalmologica 2015; 93(1): e1-6.
6. J. Kwon, K. R. Sung. Effect of Preoperative Intravitreal Bevacizumab on the Surgical Outcome of Neovascular Glaucoma at Different Stages. J Ophthalmol 2017; 2017: 7672485.
7. L. Yue-Bing, L. Xin, L. Tai-Xiang, et al. Effect of ahmed glaucoma drainage valve implantation and leizumab on neovascularization glaucoma. International eye science 2019; 19(11): 1853-1856.
8. F. Kong, X. Ma, S. Fan, et al. Efficacy of intravitreal lucentis or conbercept injection combined with Ahmed glaucoma valve implantation for treatment of neovascular glaucoma. Journal of Jilin University Medicine Edition 2017; 43(6): 1237-1242.
9. N. Yildirim, I. S. Yalvac, A. Sahin, et al. A Comparative Study Between Diode Laser Cyclophotocoagulation and the Ahmed Glaucoma Valve Implant in Neovascular Glaucoma A Long-term Follow-up. Journal of Glaucoma 2009; 18(3): 192-196.
10. X. N. Liu, F. F. Tong. Study of surgical treatment on neovascular glaucoma. International Eye Science 2014; 14(5): 942-944.
11. B. N. K. Choy, J. S. M. Lai, J. C. C. Yeung, et al. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese – A pilot study. Clinical ophthalmology (Auckland, N.Z.) 2018; 12: 2545-2552.
12. X. L. Zhang, S. Y. Li, Z. P. Zhang, et al. Clinical effect of trabeculectomy and glaucoma valve implantation on neovascular glaucoma. International Eye Science 2014; 14(2): 349-351.
13. J. T. Sun, H. J. Liang, M. An, et al. Efficacy and safety of intravitreal ranibizumab with panretinal photocoagulation followed by trabeculectomy compared with Ahmed glaucoma valve implantation in neovascular glaucoma. Int J Ophthalmomol 2017; 10(3): 400-405.
14. L. Gao, W. Liu. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed glaucoma valve implantation in the treatment of neovascular glaucoma. Zhonghua Shiyan Yanke Zazhi/Chinese Journal of Experimental Ophthalmology 2018; 36(8): 613-618.
15. Q. W. Du, L. S. Yang. Effects of intravitreal injection of Bevacizumab combined with complex trabeculectomy for advanced neovascular glaucoma. International Eye Science 2015; 15(10): 1766-1768.
16. F. Wang, L. L. Wang. Safety of anti-VEGF drugs with trabeculectomy for neovascular glaucoma. International eye science 2016; 16(5): 837-840.
17. Y. Saito, T. Higashide, H. Takeda, et al. Beneficial effects of preoperative intravitreal bevacizumab on trabeculectomy outcomes in neovascular glaucoma. Acta Ophthalmologica 2010; 88(1); 96-102.
18. Y. Takihara, M. Inatani, T. Kawaji, et al. Combined intravitreal bevacizumab and trabeculectomy with mitomycin C versus trabeculectomy with mitomycin C alone for neovascular glaucoma. Journal of Glaucoma 2011; 20(3): 196-201.
19. Y. Lee, K. S. Kim, S. Chang. The effect of intravitreal bevacizumab injection before trabeculectomy in patients with neovascular glaucoma. Investigative Ophthalmology and Visual Science 2015; 56(7): 2726.
20. Z. Yu, X. L. Pu, X. N. Yan, et al. Intravitreal injection of Conbercept combined with trabeculectomy and panretinal photocoagulation for the treatment of neovascular glaucoma. International Eye Science 2018; 18(5): 862-865.
21. R. X. Song. Effect of Conbercept Combined with Trabeculectomy on Aqueous Humor VEGF and SDF-1 Levels for Patients with Neovascular Glaucoma. Chinese Journal of Pharmaceutical Biotechnology 2019; 26(6): 521-524.
22. C. C. Shen, S. Salim, H. Du, et al. Trabeculectomy versus Ahmed glaucoma valve implantation in neovascular glaucoma. Clinical Ophthalmology 2011; 5(1): 281-286.
23. L. Liu, Y. Xu, Z. Huang, et al. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed valve surgery in the treatment of neovascular glaucoma: assessment of efficacy and complications. BMC ophthalmology 2016; 16: 65.
Appendix 6 Success and failure criteria applied in each study

References	Outcomes
Ma,2012	A failure of operation was defined by: (1) IOP more than 21mmHg using a Goldmann application despite the use of antiglaucoma medication at 2 consecutive visits, (2) light perception-negative vision (except when preoperative vision acuity was light perception negative), (3) when additional glaucoma surgery was needed, or (4) operative or postoperative devastating complications, such as endophthalmitis, were noted.
Mahdy,2013	Complete success was defined as an IOP≤21mmHg and ≥10mmHg without antiglaucoma medications or additional glaucoma surgery and without visually devastating complications such as endophthalmitis or phthisis bulbi and no loss of light perception. - Qualified success was considered when the above criteria were fulfilled, but with additions of antiglaucoma topical medical treatment. - Failure of shunt surgery in the study included instances when the above criteria of complete or qualified success were not fulfilled, a lack of control of IOP with or without glaucoma medications, operative or postoperative devastating complications, loss of light perception, or the need for additional glaucoma surgical intervention.
Zhou,2013	Postoperative survival was defined as IOP < 21mmHg, with or without glaucoma medications, and without significant vision-threatening complications (endophthalmitis, retinal detachment, suprachoroidal hemorrhage, preseptal cellulitis, or persistent hypotony (IOP < 5mmHg)). - A complete success was defined as IOP between 6 and 21mmHg without any antiglaucoma medication. - Qualified success was defined as IOP between 6 and 21mmHg with one medication or more. - Failure was defined as IOP of more than 21mmHg despite the use of maximum-tolerated medications; IOP < 5mmHg on two consecutive follow-up visits after 3 months; or the need for additional glaucoma surgery or laser to control IOP, removal of the shunt implant, or serious complication.
Kang,2014	Surgical success was defined as an IOP≤21 mmHg with or without anti-glaucoma medication, and maintenance of visual acuity of light perception or better (except when preoperative visual acuity was NPL). - Surgical failure was defined as an IOP≥22 mmHg at two consecutive follow-up visits, or when additional glaucoma surgery was needed. Postoperative use of anti-glaucoma medication was not a criterion of success or failure.
Arcieri,2015	Success was defined by the following criteria: (1) post-operative IOP level between 6 and 21 mmHg, with or without antiglaucoma medications, (2) IOP reduction of at least 30% relative to preoperative values. - Eyes requiring additional glaucoma surgery that developed phthisis or that showed loss of light perception were classified as failures.
Kwon,2017	Surgical success was defined as an IOP between 6 and 21 mmHg, without loss of light perception (LP), and with or without the use of anti-glaucoma medication. - Surgical failure was defined as an IOP of more than 21 mmHg or less than 6 mmHg at two consecutive follow-up visits, the loss of LP, or a need for additional glaucoma interventions.
Author, Year	Success Criteria
-------------	-----------------
Li, 2019	Complete success was defined as an IOP between 6 and 21 mmHg without the use of anti-glaucoma medication, and without serious ocular complication. Qualified success was considered as an IOP between 6 and 21 mmHg, with 1 or 2 kinds of anti-glaucoma medication. Failure was defined as: (1) IOP more than 21 mmHg or less than 6 mmHg, with 3 kinds of anti-glaucoma medication, (2) when additional glaucoma surgery was needed, (3) light perception-negative vision when preoperative vision acuity was light perception negative, (4) serious ocular complications were mentioned, or (5) removal of the shunt implant. The total success rate was calculated as the sum of the complete success rate and the qualified success rate.
Kong, 2017	Complete success was defined as an IOP between 6 and 21 mmHg without the use of antiglaucoma medication, and without serious ocular complication. Qualified success was defined as an IOP between 6 and 21 mmHg, with one medication or more. Failure was defined as: (1) IOP more than 21 mmHg at two consecutive follow-up visits, with 3 kinds of anti-glaucoma medication or more, and a need for additional glaucoma surgery; (2) IOP less than 6 mmHg at consecutive follow-up visits; or (3) serious complications or (4) removal of the shunt implant due to ocular complications. The total success rate was calculated as the sum of the complete success rate and the qualified success rate.
Yildirim, 2009	Surgical success was defined as IOP less than 21mmHg and greater than 5mm Hg without additional glaucoma surgery and without loss of light perception. Postoperative use of antiglaucoma medications was not accepted as a criterion of success or failure. The definition of hypotonia in this study was IOP of 5mm Hg or less in more than 2 consecutive visits. The patients who underwent repeated DCPC and needling procedures were considered as treatment failures.
Choy, 2018	In the TSCP group, the laser procedure was repeated as necessary, spaced at least 4 weeks apart, until either the IOP was 21 mmHg or below, or a total of five treatments had been given. Uncontrolled IOP requiring any additional, non-assigned interventions was counted as failure. Additional procedures in relation to the implanted AGV (for example, clearing tube blockage, repair of implant exposure, excision of encapsulated bleb, and repositioning of implant) were not counted as failure but documented as complications. Similarly, any TSCP-related conjunctival burn or scleral thinning, with or without need for additional procedures, was recorded as a complication. Successful IOP control was defined as a final visit IOP not higher than 21 mmHg, with or without medication, and no hypotony-related maculopathy or choroidal detachment. Successful IOP control excluding the 1 TSCP and 5 agV eyes that did not follow the assigned protocol. Overall success is defined as not only IOP normalization but also preservation or improvement of BCVA. Overall success = Valid cases – (failed IOP control + deteriorated BCVA).
Sun, 2017	Complete success was defined by the following criterion: postoperative IOP between 6 and 21 mmHg without anti-glaucoma medications and without further anti-glaucoma surgery. The qualified success criterion was IOP between 6 and 21 mmHg with one or more medications. Failure was defined as IOP>21 mm Hg despite the use of maximum medications. If a patient maintained stable IOP after an additional surgery because of a complication, this was not considered failure of the procedure; however, the additional surgery could not be an
anti-glaucoma surgery.
- The total success rate was calculated as the sum of the complete success rate and the qualified success rate.

Gao, 2018
- Complete success was defined as an IOP between 6 and 21 mmHg without the use of anti-glaucoma medication, and without serious ocular complication.
- Qualified success was defined as an IOP between 6 and 21 mmHg, with one medication or more, and without serious ocular complication.
- Failure was defined as: (1) IOP more than 21 mmHg at two consecutive follow-up visits, with 3 kinds of anti-glaucoma medication or more, and a need for additional glaucoma surgery; (2) IOP less than 6 mmHg at consecutive follow-up visits, with serious complications or (4) removal of the shunt implant due to ocular complications.
- Serious complications included: (1) Drainage tube related complications: exposure, displacement, obstruction and corrosion of drainage tube; (2) Non-drainage tube related complications: retinal detachment, corneal decompensation, malignant glaucoma, supracoroidal hemorrhage, endophthalmitis, long-term low intraocular pressure.
- The total success rate was calculated as the sum of the complete success rate and the qualified success rate.

Du, 2015
- Surgical success was defined as an IOP between 7 and 22 mmHg, according to the general efficacy criteria.

Wang, 2016
- Surgical success was defined as an IOP between 7 and 22 mmHg, according to the general efficacy criteria.

Sisto, 2007
- Successes and failures were defined at the last post-operative visit.
- Complete success was defined as post-operative IOP < 21 mmHg without medical therapy.
- Qualified success was defined as post-operative IOP < 21 mmHg with medical therapy.
- Failure was defined as postoperative IOP≥21 mmHg, despite maximal medical treatment, along with cases demonstrating no light perception (NLP) postoperatively.

Saito, 2010
- The surgery was considered to have been successful when IOP < 21 mmHg with or without medication (qualified or complete success, respectively) was achieved.
- A procedure was considered to have failed if IOP exceeded these criteria at two consecutive follow-up visits (follow-up visits were made monthly up to 1 year and once every several months thereafter) or in the presence of phthisis bulbi, loss of light perception or need for additional glaucoma surgeries, including surgical revision, trabeculectomy and cyclophotocoagulation.

Takahara, 2011
- The surgical success and failure were defined before the data analysis. Surgical success was defined as an IOP ≤21 mmHg with or without topical ocular hypotensive medication and the maintenance of visual acuity of light perception or better.
- Surgical failure was defined as an IOP continuously ≥22 mmHg at 2 consecutive follow-up visits, a deterioration of visual acuity to NPL, or additional glaucoma surgeries (such as filtering surgery and destruction of the ciliary body). We completed laser suture lysis within 2 months after MMCT. An IOP ≥22 mm Hg within 2 months after MMCT was not considered as a surgical failure because laser suture lysis was not completed.

Lee, 2015
- Surgical success was defined as an IOP less than 21 mmHg, with or without anti-glaucoma medication and the maintenance of visual acuity of light perception or better.
- Surgical failure was defined as more than 22 mmHg, a deterioration of visual acuity to NPL, or additional glaucoma surgeries (such as filtering surgery).
| Author, Year | Definition |
|-------------|------------|
| Yu, 2018 | - Complete success was defined as an IOP less than 21 mmHg without anti-glaucoma medication.
- Qualified success was defined as an IOP between 21 and 26 mmHg without anti-glaucoma medication, or IOP less than 21 mmHg with one medication.
- Failure was defined as an IOP more than 30 mmHg, and still more than 21 mmHg when using two kinds of medication. |
| Shen, 2011 | - Surgical success was defined as 6 mm Hg ≤ intraocular pressure ≤ 21 mm Hg, with or without glaucoma medications, without further glaucoma surgery including cyclophotocoagulation or complications that required removal of the Ahmed implant, and without loss of light perception.
- For failure due to elevated intraocular pressure, two consecutive visits with intraocular pressure ≥ 21 mm Hg were required. Laser suture lysis and bleb needling to improve bleb function were not considered failure of the procedure. |
| Liu, 2016 | - Complete success was defined as IOP ≥ 6 mmHg and ≤ 21 mmHg without any anti-glaucoma medications or further glaucoma surgery, and without loss of light perception.
- Partial success was defined as IOP < 21 mmHg with topical anti-glaucoma medicines.
- Surgical failure was defined as IOP ≥ 21 mmHg even with anti-glaucoma medicines, or additional surgical treatment was needed to control IOP, or loss of light perception. |
Appendix 7 Risk of bias summary of RCT

Note: The yellow circle with question mark represents “unclear risk of bias”, the red one with minus sign represents “high risk of bias” and the green one with plus sign represents “low risk of bias” (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Notes: NOQAS = New Castle – Ottawa Quality Assessment Scale.
Appendix 8 The quality assessment according to the NOQAS of each cohort study

Study	Selection	Comparability	Outcome	Total score
Ma,2012	3	1	3	7
Zhou,2013	4	2	3	9
Kang,2014	3	2	2	7
Kwon,2017	3	2	3	8
Li,2019	3	2	2	7
Kong,2017	3	2	3	8
Liu,2014	3	2	1	6
Zhang,2014	3	2	1	6
Sun,2017	3	0	3	6
Gao,2018	3	2	3	8
Du,2015	3	0	3	6
Wang,2016	3	2	3	8
Saito,2010	3	2	3	8
Takihara,2011	3	2	3	8
Lee,2015	3	2	3	8
Yu,2018	4	2	2	8
Song,2019	4	2	1	7
Shen,2011	3	1	3	7
Liu,2016	3	1	2	6

Notes: NOQAS = New Castle – Ottawa Quality Assessment Scale.
Appendix 9 Pair-wise meta-analysis

Comparison

	Mean difference (95% CI) in IOP 6 months after surgery	Mean difference (95% CI) in IOP 12 months after surgery							
	AGV	AGV + IVAV	CPC	CPC + IVAV	AGV	AGV + IVAV	CPC	CPC + IVAV	
	4.74 (1.04,8.45)	-2.55 (-6.70,1.59)	-3.71 (-10.18,2.76)	2.41 (-5.00,9.82)	4.13 (-2.46,10.72)	3.34 (-0.45,7.03)	4.68 (-5.24,14.59)	-3.19 (-9.74,3.35)	-1.90 (-9.66,5.85)
Mean difference (95% CI) in IOP 12 months after surgery									
Odds ratio (95% CI) in success rate									
	0.79 (-5.45,7.03)	2.07 (-5.36,10.75)	-1.90 (-5.06,13.03)	3.34 (-1.75,14.83)	1.45 (-2.41,5.25)	1.80 (-0.54,2.97)	-1.27 (-6.27,2.15)	0.54 (-0.29,1.36)	-0.94 (-0.67,0.76)
Odds ratio (95% CI) in failure rate									
	0.79 (-5.45,7.03)	2.07 (-5.36,10.75)	-1.90 (-5.06,13.03)	3.34 (-1.75,14.83)	1.45 (-2.41,5.25)	1.80 (-0.54,2.97)	-1.27 (-6.27,2.15)	0.54 (-0.29,1.36)	-0.94 (-0.67,0.76)
Odds ratio (95% CI) in success rate									
	0.79 (-5.45,7.03)	2.07 (-5.36,10.75)	-1.90 (-5.06,13.03)	3.34 (-1.75,14.83)	1.45 (-2.41,5.25)	1.80 (-0.54,2.97)	-1.27 (-6.27,2.15)	0.54 (-0.29,1.36)	-0.94 (-0.67,0.76)
Odds ratio (95% CI) in failure rate									
	0.79 (-5.45,7.03)	2.07 (-5.36,10.75)	-1.90 (-5.06,13.03)	3.34 (-1.75,14.83)	1.45 (-2.41,5.25)	1.80 (-0.54,2.97)	-1.27 (-6.27,2.15)	0.54 (-0.29,1.36)	-0.94 (-0.67,0.76)
Odds ratio (95% CI) in success rate									
	0.79 (-5.45,7.03)	2.07 (-5.36,10.75)	-1.90 (-5.06,13.03)	3.34 (-1.75,14.83)	1.45 (-2.41,5.25)	1.80 (-0.54,2.97)	-1.27 (-6.27,2.15)	0.54 (-0.29,1.36)	-0.94 (-0.67,0.76)
Odds ratio (95% CI) in failure rate									

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Appendix 10 The surface under the cumulative ranking plots based on cumulative probabilities of interventions
Appendix 11 Node-splitting analysis

| Side/Outcomes | Direct | | Indirect | | Difference | | P > | |z| | tau |
|---------------|--------|----------|----------|----------|------------|----------|-----|-----|-----|-----|
| | | Coefficient | Standard Error | Coefficient | Standard Error | Coefficient | Standard Error | | | |
| IOPR (6mo) | | | | | | | | | | |
| A B | 3.944 | 2.028 | 10.178 | 5.248 | -6.234 | 5.624 | 0.268| 3.241|
| A F | 10.400 | 4.606 | 4.115 | 3.243 | 6.2847 | 5.633 | 0.265| 3.241|
| B F | 0.177 | 2.537 | 6.424 | 5.025 | -6.247 | 5.628 | 0.267| 3.241|
| D F | 3.784 | 2.689 | 12.388 | 309.772 | -6.234 | 309.783 | 0.978| 3.251|
| E F | 2.064 | 2.064 | 14.512 | 199.487 | -0.056 | 199.497 | 0.958| 3.251|
| IOPR (12mo) | | | | | | | | | | |
| A B | 2.550 | 2.316 | 2.605 | 8.314 | -0.056 | 8.631 | 0.995| 4.549|
| A E | -2.700 | 5.830 | -2.754 | 6.405 | 0.054 | 8.661 | 0.995| 4.551|
| B F | -3.405 | 2.917 | -3.346 | 8.142 | -0.059 | 8.649 | 0.995| 4.550|
| D F | 3.195 | 3.340 | -1.584 | 330.177 | 4.779 | 330.193 | 0.988| 4.241|
| E F | 1.900 | 5.212 | 1.846 | 6.918 | 0.054 | 8.662 | 0.995| 4.551|
| Success rate | | | | | | | | | | |
| A B | 0.564 | 0.227 | 0.256 | 0.707 | 0.308 | 0.743 | 0.679| 0.000|
| A E | -0.205 | 0.641 | -0.782 | 0.553 | 0.577 | 0.846 | 0.495| 0.000|
| A F | -1.185 | 0.914 | 0.171 | 0.398 | -1.356 | 0.997 | 0.174| 0.000|
| B F | -0.483 | 0.415 | -0.791 | 0.616 | 0.308 | 0.743 | 0.679| 0.000|
| D F | 1.754 | 0.473 | 0.354 | 95.137 | 2.109 | 95.139 | 0.982| 0.000|
| E F | 0.595 | 0.359 | 0.018 | 0.766 | 0.577 | 0.846 | 0.495| 0.000|
| Failure rate | | | | | | | | | | |
| A B | -0.564 | 0.227 | -0.117 | 0.744 | -0.446 | 0.778 | 0.566| 0.000|
| A E | 0.205 | 0.641 | 0.848 | 0.566 | -0.643 | 0.855 | 0.452| 0.000|
| A F | 2.197 | 1.143 | -0.171 | 0.398 | 2.368 | 1.210 | 0.050| 0.000|
| B F | 0.483 | 0.415 | 0.930 | 0.658 | -0.446 | 0.778 | 0.566| 0.000|
| D F | -1.754 | 0.473 | 0.435 | 95.135 | -2.189 | 95.137 | 0.982| 0.000|
| E F | -0.595 | 0.359 | 0.049 | 0.776 | -0.643 | 0.855 | 0.452| 0.000|

Notes: AGV, Ahmed glaucoma valve implant surgery; CPC, cyclophotocoagulation; CCT, cyclocryotherapy; Trab, trabeculectomy; MMC, mitomycin; IVAV, intravitreal anti-VEGF; IOPR (6mo), intraocular pressure reduction 6 months after surgery; IOPR (12mo), intraocular pressure reduction 12 months after surgery; A=AGV, B=AGV+IVAV, C=CPC, D=CCT, E=Trab(MMC), F=Trab(MMC)+IVAV.
Appendix 12 GRADE for outcome measurements

Comparison	N (studies)	Within-study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
IOPR (6mo)								
01 vs 02	4	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
01 vs 03	2	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
01 vs 06	1	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
02 vs 06	2	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
04 vs 06	2	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
05 vs 06	3	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
IOPR (6mo)								
IOPR (12mo)								
01 vs 04	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
01 vs 05	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
02 vs 04	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
02 vs 05	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
03 vs 04	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
03 vs 05	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
04 vs 05	-	Some concerns	Undetected	No concerns	Some concerns	No concerns	Moderate	
IOPR (12mo)								

Notes: N(studies)=number of studies, IOPR (6mo)= intracocular pressure reduction 6 months after surgery, IOPR (12mo)= intracocular pressure reduction 12 months after surgery; 01=AGV, 02=AGV+IVAV, 03=CPC, 04=CCT, 05=Trab(MMC), and 06=Trab(MMC)+IVAV.
(Continue on the previous table)

Comparison	N (studies)	Within-study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
Success rateMixed evidence								
01 vs 02	9	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
01 vs 03	2	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Low
01 vs 05	1	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Low
01 vs 06	1	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
02 vs 06	2	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Low
04 vs 06	2	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
05 vs 06	4	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
Success rateIndirect evidence								
01 vs 04	-	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
02 vs 03	-	Some concerns	Undetected	Some concerns	Major concerns	No concerns	No concerns	Very low
02 vs 04	-	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
02 vs 05	-	Some concerns	Undetected	Some concerns	No concerns	Some concerns	No concerns	Low
03 vs 04	-	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
03 vs 05	-	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Low
03 vs 06	-	Some concerns	Undetected	Some concerns	No concerns	Some concerns	No concerns	Very low
04 vs 05	-	Some concerns	Undetected	Some concerns	No concerns	No concerns	No concerns	Moderate
Appendix 13 Adverse events of included studies

Author	Sample	Corneal edema	Hyphema	Low IOP	Shallow anterior hemorrhage	Vitreous detachment	Choroidal detachment	Retinal detachment	Tube exposure	Tube occlusion	Encapsulated plate	Phthisis bulbi	Bleb leak	Anterior segment inflammation	Eye pain	Ocular atrophy
Ma	2012	32/20	1/0	3/1	—	—	4/1	—	1/0	4/2	1/1	—	—	—	—	—
Mahdy	2013	20/20	2/0	17/4	3/2	6/5	—	1/0	—	1/0	1/0	6/1	1/0	—	—	—
Zhou	2013	28/20	—	8/1	—	4/4	—	4/3	—	—	—	7/4	—	—	—	—
Arcieri	2013	20/20	2/1	6/2	—	1/2	—	4/3	1/0	0/1	—	—	—	1/0	—	—
Kang	2014	13/14	—	—	2/1	0/1	—	1/0	—	0/2	1/2	—	0/2	—	—	—
Li	2019	34/46	4/4	8/2	2/4	1/2	—	—	—	8/2	—	—	—	3/4	1/2	—

AGV vs AGV+IV A V vs AGV+IV A V
	Kong	2017	21/	2/	5/	2/	2/	9/
	26/	10/9	3/	6/			4/	1/
	21	11	3	7			3	3
	AGV vs CPC							
Yildir	33/	33	0/2	7/0	1/3		1/0	
	m							
	AGV+IVAV vs Trab(MMC)+IVAV							
	Zhang	13/	2014	23/	10/	2/1		
	2014	10						
	Sun	23/	2017	22		3/4	3/2	0/2
	2017	22						
	Gao	36/	2018	40		5/3	11/9	8/4
	2018	40						
	CCT vs Trab(MMC)+IVAV							
	Du	23/	2018	23	15/0	7/2		

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Year	Case	Trab(MMC) vs Trab(MMC)+IVAV
		Trab(MMC) vs Trab(MMC)+IVAV
		Saito
2016	30	16/0 6/2 0/1 7/0 20/0
		Takihara
2011	33/24	19/15 2/4 7/2 5/2 2/0 4/0
		Lee
2015	32	9/5 8/13
		Yu
2018	32	4/1 6/2
		Song
2019	32	3/0 7/1 1/2 3/2 0/1 0/1 5/2 1/0
		AGV vs Trab(MMC)
		Shen
2011	20	7/8 0/2 1/1 0/1
		Liu
2016	18	1/1 6/0 3/0 2/1 2/0 1/0

Notes: AGV, Ahmed glaucoma valve implant surgery; CPC, cyclophotocoagulation; CCT, cyclocryotherapy; Trab, trabeculectomy; MMC, mitomycin; IVAV, intravitreal anti-vascular endothelial growth factor; IOP, intraocular pressure reduction.
Appendix 14 Composition of the primary diseases in the included studies

References	Study design	Interventions	DR	RVO	OIS	CRAO	Others	Combine PRP			
Ma,2012	OCT	AGV vs AGV+IVAV	26 vs 15	5 vs 5	1 vs 0	—	—	Yes			
Mahdy,2013	RCT	AGV vs AGV+IVAV	15 vs 16	4 vs 4	1 vs 0	—	—	Yes			
Zhou,2013	OCT	AGV vs AGV+IVAV	12 vs 7	10 vs 13	1 vs 2	2 vs 1	3 vs 2	Yes			
Kang,2014	OCT	AGV vs AGV+IVAV	9 vs 12	2 vs 1	—	—	2 vs 1	Yes			
Arcieri,2015	RCT	AGV vs AGV+IVAV	11 vs 10	9 vs 10	—	—	—	Yes			
Kwon,2017	OCT	AGV vs AGV+IVAV	14 vs 33	3 vs 5	5 vs 7	—	—	Yes			
Li,2019	OCT	AGV vs AGV+IVAV	14 vs 20	20 vs 26	—	—	—	N/A			
		AGV vs AGV+IVAV vs AGV+IVAV vs AGV+IVAV	—	—	—	—	—	N/A			
Kong,2017	OCT	AGV+IVAV	10 vs 12 vs 12	10 vs 11 vs 7	1 vs 3 vs 2	—	—	—			
Yildirim,2009	RCT	AGV vs CPC	NA	NA	NA	NA	NA	NA			
Liu,2014	OCT	AGV vs CPC	13 vs 12	11 vs 9	—	—	7 vs 5	NA			
Choy,2018	RCT	AGV vs CPC	6 vs 4	4 vs 1	1 vs 3	1 vs 0	—	Yes			
Zhang,2014	OCT	AGV+IVAV vs Trab(MMC)+IVAV	5 vs 3	5 vs 5	—	—	3 vs 2	Yes			
Sun,2017	OCT	AGV+IVAV vs Trab(MMC)+IVAV	—	—	—	—	—	—			
Gao,2018	OCT	AGV+IVAV vs Trab(MMC)+IVAV	16 vs 16	16 vs 22	3 vs 1	1 vs 1	—	Yes			
Author	Year	Type	Intervention	OCT	Outcome						
-------------	------	--------	-------------------------------------	-----	-----	-----	-----	-----	-----	-----	---------
Du, 2015		OCT	CCT vs Trab(MMC)+IVAV	19	17	—	—	—	—	10	Yes
Wang, 2016		OCT	CCT vs Trab(MMC)+IVAV	14	14	14 vs 13	—	—	4 vs 3	Yes	
Saito, 2010		OCT	Trab(MMC) vs Trab(MMC)+IVAV	22	14	6 vs 6	4 vs 0	—	—	Yes	
Takihara, 2011		OCT	Trab(MMC) vs Trab(MMC)+IVAV	28	18	4 vs 6	1 vs 0	—	—	Yes	
Lee, 2015		OCT	Trab(MMC) vs Trab(MMC)+IVAV	24	25	2 vs 4	0 vs 3	—	—	Yes	
Yu, 2018		OCT	Trab(MMC) vs Trab(MMC)+IVAV	16	18	26 vs 30	—	—	—	Yes	
Song, 2019		OCT	Trab(MMC) vs Trab(MMC)+IVAV	43	43	39 vs 45	—	—	—	NA	
Shen, 2011		OCT	AGV vs Trab(MMC)	14	13	4 vs 3	1 vs 1	2 vs 2	—	NA	
Liu, 2016		OCT	AGV vs Trab(MMC)+IVAV	8	6	9 vs 10	1 vs 0	—	—	NA	

Notes: AGV, Ahmed glaucoma valve implant surgery; CPC, cyclophotocoagulation; CCT, cyclocryotherapy; Trab, trabeculectomy; MMC, mitomycin; IV AV, intravitreal anti-vascular endothelial growth factor; DR, diabetic retinopathy; RVO, retinal vein occlusion; OIS, ocular ischemic syndrome; CRAO, central retinal artery occlusion; PRP, panretinal photocoagulation.