Genome-Wide Identification of the LexA-Mediated DNA Damage Response in *Streptomyces venezuelae*

Kathryn J. Stratton,a Matthew J. Bush,a Govind Chandra,a Clare E. M. Stevenson,b Kim C. Findlay,c Susan Schlimpert a

aDepartment of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
bDepartment of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
cDepartment of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom

ABSTRACT DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus *Streptomyces* contain LexA and RecA homologs, but their roles in *Streptomyces* have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of *S. venezuelae* during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent *recA* promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in *S. venezuelae*. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage.

IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing *Streptomyces* bacteria and establish the existence of the SOS response in *Streptomyces*. Collectively, our work reveals significant insights into the DNA damage response in *Streptomyces* that will promote further studies to understand how these important bacteria adapt to their environment.

KEYWORDS *Streptomyces*, DNA damage, SOS response, LexA, RecA

Exposure to genotoxic agents can cause DNA damage with potentially lethal consequences, and therefore the ability to restore genome integrity is an essential task for all living organisms. In bacteria, DNA damage triggers a widely conserved cellular stress response called the SOS response (1). The SOS response is regulated by two key proteins, the activator RecA (a multifunctional recombinase) and the transcriptional repressor LexA. During unperturbed growth, LexA binds as a dimer to a 16-bp palindromic sequence motif, the SOS box, located in the promoter region of its target genes, thereby preventing their expression. Elevated levels of DNA damage can lead to the accumulation of single-stranded DNA (ssDNA), which is sensed and bound by RecA, resulting in the formation of a nucleoprotein filament. This activated form of RecA functions as a coprotease and promotes the self-cleavage of LexA. Consequently,
LexA repressor levels decrease in the cell, leading to the induction of the SOS response regulon. The gene products of the SOS regulon are involved in a range of cellular functions critical for survival, adaptation, and DNA repair (2). Specifically, SOS induction triggers the expression of genes involved in nucleotide excision and recombination repair (uvrABD, recN, and ruvCAB), the removal of alkylation damage (ada, alkAB, and aidB), and translesion synthesis (polB, dinP, umuC, and dnaE2) (3). In addition, the LexA regulon often activates species-specific cell cycle checkpoints that stall cellular development to allow sufficient time for DNA repair to occur (4). LexA also negatively autoregulates its own transcription and recA expression (5), thereby ensuring that the SOS response is rapidly turned off once genome integrity has been restored.

The two principal regulators of the SOS response, RecA and LexA, are evolutionarily well conserved and present in almost all free-living bacteria, including the ubiquitous Gram-positive Actinomyceta (previously Actinobacteria) (3). Prominent members of this phylum are the streptomycetes, which are renowned for their extraordinary potential to produce specialized metabolites of economic and medical importance (6). Streptomyces species are characterized by a sophisticated developmental life cycle that starts with the germination of spores. Emerging germ tubes grow by apical tip extension and hyphal branching to establish a dense vegetative mycelial network that scavenges for nutrients. In response to nutrient starvation, hyphae escape surface tension and grow upwards to form so-called aerial hyphae. These hyphae subsequently undergo reproductive cell division, resulting in the production of chains of equal-size unigenomic spores that are eventually released into the environment (7).

Streptomyces are commonly found in sediments, a heterogeneous and competitive habitat where they are constantly exposed to a range of environmental stressors, including genotoxic agents. Earlier studies showed that a Streptomyces recA null mutant is more sensitive to DNA-damaging agents and that DNA-damaging antibiotics can inhibit sporulation, suggesting the existence of an SOS-like stress response (8, 9). However, the underlying regulatory network that underpins such a stress response is not understood. Furthermore, work over the last 2 decades has revealed that the SOS motif recognized by LexA and the number of genes directly controlled by LexA vary between bacterial genera and cannot simply be predicted bioinformatically (2, 3).

In this work, we confirm the existence of the SOS response in Streptomyces venezuelae, one of the key model organisms for this genus (7, 10), and demonstrate that RecA and LexA are important for survival under DNA-damaging growth conditions. By combining global transcriptomic profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we identified the LexA regulon and the core set of SOS genes involved in DNA repair. Using surface plasmon resonance (SPR), we determined the LexA binding kinetics to selected target promoters and confirmed the specific interaction of LexA with the identified SOS box. Our in vivo and in vitro work further reveals that in S. venezuelae, LexA displays a differential DNA binding affinity that implies a fine-tuned activation of the SOS regulon in response to DNA damage.

RESULTS

Deletion of recA and lexA affects sporulation and sensitizes S. venezuelae to DNA damage. The S. venezuelae genome contains a single recA gene (vnz_26845) and a single lexA gene (vnz_27115). To characterize the SOS response in S. venezuelae, we first constructed a ΔrecA mutant by replacing the recA coding region with an apramycin resistance cassette. Deletion of recA resulted in a growth defect and the formation of two colony types: minute nonviable colonies and slow-growing colonies with delayed and irregular sporulation septation. A similar ΔrecA phenotype was previously described for Streptomyces coelicolor (8). The developmental defects of the ΔrecA mutant could be fully complemented by expressing recA in trans from its native promoter (Fig. 1A; see Fig. S1A in the supplemental material). To exclude the possibility that a compensating mutation allowed for more robust growth in the slow-growing ΔrecA mutant, we sequenced the genomic DNA isolated from two representative colonies and the parental strain. We did not detect a suppressor mutation in the ΔrecA mutant,
suggesting that both colony phenotypes are a direct consequence of the recA deletion.

Next, we generated an S. venezuelae lexA null mutant. Using a three-step procedure, a second copy of lexA was first integrated at the phage BT1 attachment site of wild-type S. venezuelae, followed by the deletion of the native lexA gene and the insertion of an apramycin resistance cassette. The apramycin-marked ΔlexA allele was then moved back into wild-type (WT) S. venezuelae, which lacked a second copy of lexA, using generalized SV1 phage transduction, generating the ΔlexA mutant strain. Notably, deletion of lexA resulted in a severe growth defect and a "white" phenotype (Fig. S1A), indicating that sporulation was impaired in this genetic background. Scanning electron micrographs of colony surfaces confirmed that the ΔlexA mutant failed to deposit regularly spaced sporulation septa, resulting in undifferentiated aerial hyphae and virtually no spores (Fig. 1A). Normal sporulation and pigmentation were restored to the ΔlexA mutant when a single copy of wild-type lexA under the control of its native promoter was introduced in trans (Fig. 1A; Fig. S1A).

We then determined the viability of the wild type, the ΔrecA mutant, the ΔlexA mutant and the corresponding complemented mutant strains in the presence of DNA-damaging agents, including mitomycin C (MMC), ciprofloxacin (Cipro), and methyl methanesulfonate (MMS). MMC and MMS are DNA-alkylating agents that cause DNA double-strand breaks, while ciprofloxacin targets DNA gyrase and inhibits DNA replication, leading to the accumulation of single-stranded DNA. For this, we either performed multiwell-based liquid growth assays or spotted serial dilutions of the individual strains onto solid medium supplemented with MMC, ciprofloxacin, or MMS. Based on our initial liquid growth assays, we found that treatment of wild-type S. venezuelae with 0.25 μg mL⁻¹ MMC, 3 μg mL⁻¹ ciprofloxacin, and 3 to 5 mM MMS strongly inhibited growth (Fig. 1B; Fig. S1B). As expected, the absence of either recA or lexA dramatically reduced the viability of S. venezuelae when grown in the presence of MMC, ciprofloxacin, or MMS, and thus, as in other bacteria, RecA and LexA are essential for the survival of genotoxic stress in S. venezuelae.
Induction of the SOS response requires prolonged exposure to DNA-damaging agents. The Streptomyces life cycle includes a multicellular growth phase, during which growing multinucleoid filaments are segmented by cross-walls. To gain an initial insight into the spatial and temporal activation of the SOS response within the mycelium, we constructed a strain in which expression of an ectopically inserted copy of mCherry was driven by the recA promoter and monitored the increase of mCherry fluorescence in response to MMC-induced DNA damage. We found that exposure of vegetative growing S. venezuelae cells to 0.25 μg mL⁻¹ MMC for 1, 2, and 14 h did not lead to marked activation of the PrecA-mcherry reporter fusion. However, when S. venezuelae was grown in the presence of MMC for 14 h, a clear increase in cytoplasmic mCherry fluorescence within the entire mycelium was detectable (Fig. 2A). Notably, we obtained similar results when treating S. venezuelae with 3 μg mL⁻¹ ciprofloxacin or 3 mM methyl methanesulfonate for 1 h or 14 h, respectively, indicating that the delayed induction of recA expression was not specific to mitomycin C (Fig. S2A). We also repeated the live-cell imaging experiments using a 10-fold-higher MMC concentration (2.5 μg mL⁻¹) to test if this would trigger a more rapid induction of the SOS response, but we did not detect increased expression of the recA-mcherry promoter fusion (Fig. 2B).

Induction of the SOS response requires prolonged exposure to DNA-damaging agents. The Streptomyces life cycle includes a multicellular growth phase, during which growing multinucleoid filaments are segmented by cross-walls. To gain an initial insight into the spatial and temporal activation of the SOS response within the mycelium, we constructed a strain in which expression of an ectopically inserted copy of mCherry was driven by the recA promoter and monitored the increase of mCherry fluorescence in response to MMC-induced DNA damage. We found that exposure of vegetative growing S. venezuelae cells to 0.25 μg mL⁻¹ MMC for 1, 2, and 14 h did not lead to marked activation of the PrecA-mcherry reporter fusion. However, when S. venezuelae was grown in the presence of MMC for 14 h, a clear increase in cytoplasmic mCherry fluorescence within the entire mycelium was detectable (Fig. 2A). Notably, we obtained similar results when treating S. venezuelae with 3 μg mL⁻¹ ciprofloxacin or 3 mM methyl methanesulfonate for 1 h or 14 h, respectively, indicating that the delayed induction of recA expression was not specific to mitomycin C (Fig. S2A). We also repeated the live-cell imaging experiments using a 10-fold-higher MMC concentration (2.5 μg mL⁻¹) to test if this would trigger a more rapid induction of the SOS response, but we did not detect increased expression of the recA-mcherry promoter fusion (Fig. 2B).
To corroborate these findings, we engineered a functional LexA-FLAG fusion that complemented the growth and sporulation defect in hyphae lacking lexA (Fig. S2B). Vegetatively growing cultures expressing a single copy of lexA fused to the 3×FLAG tag were challenged with 0.25 μg mL⁻¹ MMC for 1 h, 2 h, or 14 h, and subsequently, LexA-FLAG abundance in the corresponding cell lysates was analyzed by automated Western blotting. In line with fluorescent recA reporter fusion results (Fig. 2A), the LexA-FLAG protein level remained largely stable following treatment with MMC, Cipro or MMS for 1 and 2h, respectively. However, LexA-FLAG was almost completely absent in cell lysates of samples grown in the presence of these genotoxins for 14 h (Fig. 2C). To test the possibility that the FLAG tag was responsible for the slow degradation of LexA-FLAG fusion, we used a polyclonal LexA antibody to examine the decrease in native LexA levels in wild-type S. venezuelae following the same MMC treatment. We observed the same slow decrease in native LexA levels as we saw in the strain producing the LexA-FLAG fusion, showing that the FLAG tag did not affect the rate of degradation of LexA (Fig. S2C). Together, these results indicate that the activation of the two key components involved in launching the SOS response requires a chronic exposure to genotoxic stress in Streptomyces.

Defining the LexA DNA damage response regulon. To identify genes directly under the control of LexA, we performed chromatin immunoprecipitation sequencing (ChIP-seq) using anti-FLAG antibody on the ΔlexA strain that expressed a functional LexA-FLAG fusion (Fig. S2C). Wild-type S. venezuelae was used as a negative control to eliminate any false signals that might arise from cross-reaction of the anti-FLAG antibody with other DNA binding proteins. ChIP-seq revealed numerous LexA binding sites distributed across the S. venezuelae genome in the absence of MMC (Fig. 3A). No significant
enrichment was observed in the wild-type control, suggesting that there was no cross-reaction of the anti-FLAG antibody leading to nonspecific enrichment (Fig. 3B). In total, 498 ChIP-seq peaks were identified, corresponding to LexA binding sites that were enriched more than 2-fold relative to the wild-type control. Of these, we selected all the binding sites that were located within a potential regulatory region of -200 to 100 bp relative to the start codon of the first gene in a transcriptional unit (Table S1). Through this route, we determined 270 putative LexA binding sites.

Furthermore, we detected 176 intragenic LexA binding sites that were in proximity to previously mapped transcription start sites (11), indicating that LexA might also control the activity of intragenic promoters. We note that the transcription start site mapping was performed in the absence of DNA damage, a condition during which LexA remains bound to its target operators and largely prevents transcription of the associated genes. Closer inspection of the putative intragenic promoters associated with LexA enrichment sites revealed that 6 out of the 176 putative intragenic promoters were located within genes with a proposed function in DNA replication and repair (vnz_05400, vnz_06010, vnz_08430, vnz_25520, and vnz_29285), and within one gene that shares similarity with the cell division protein ZapE (vnz_29020) (12). In addition, two noticeable intragenic LexA binding sites for which no transcription start site data are available were detected within the DNA helicase gene uvrD (vnz_23895) and the error-prone DNA polymerase gene dnaE2 (vnz_06640) (Table S2). However, with the exception of dnaE2, none of the genes associated with an intragenic LexA binding site were differentially regulated in response to DNA damage (Table S3).

In order to identify LexA target genes that showed a clear transcriptional response to DNA damage, we performed transcriptome sequencing (RNA-seq) on wild-type S. venezuelae treated with 0.25 μg mL⁻¹ MMC combined with an untreated wild-type control. Because we observed significant induction of recA expression and LexA degradation only after prolonged exposure to MMC, we conducted RNA-seq in three independent biological samples obtained from cultures that were grown in the presence and absence of MMC for 14 h. Due to the severely reduced viability of the ΔrecA mutant when grown in medium containing MMC (Fig. 1B), we were unable to include this strain in the RNA-seq analysis. In this way, we identified 175 LexA binding sites that were associated with differentially expressed transcriptional units upon treatment with MMC (adjusted \(P < 0.05, |\log{\text{fold change}}| > 1 \)) (Fig. 3C; Table S3). Of these, 97 transcriptional units were upregulated, including one putative LexA target of unknown function located on the S. venezuelae plasmid pSVJ11, and 78 transcriptional units were downregulated following MMC treatment (10). Although LexA generally functions as a transcriptional repressor (13–15), the MMC-induced downregulation of genes associated with a LexA binding site is indicative of a direct or indirect positive regulation of these genes by LexA. We note that our global transcriptional profiling analysis further showed that several genes required for sporulation were significantly downregulated following the treatment with MMC, including the classical Streptomyces developmental regulatory genes whiH, whiH, and whiB, genes involved in cell division (ssgB) and chromosome segregation (smeA-sffA) and several genes within the whiE locus, which encodes the biosynthesis machinery for the production of the polyketide pigment associated with mature spores (16–19). These findings are in agreement with those of other recent studies, reporting that subinhibitory concentrations of MMC inhibit sporulation in S. venezuelae (9, 20).

Functional categorization of the 97 LexA target genes derepressed in response to MMC stress did not suggest an enrichment of a specific gene category and revealed that the functions of most genes associated with a LexA binding site are unknown (Fig. 3D and Table 1). Among the LexA targets that showed the highest upregulation were several genes belonging to a predicted prophage cluster (vnz_21525, vnz_21545, and vnz_21550) and genes functioning in protein translation and degradation (vnz_05845 and vnz_00275), metabolism (vnz_22770), and molecule transport (vnz_15995 and vnz_26265). Importantly, our integrated RNA-seq and ChIP-seq approach led to the identification of a core set of
LexA targets (3), including the recA-recX operon, lexA, and several conserved DNA repair genes encoding the translesion DNA polymerases DnaE2 and DinP, RuvC and RuvA required for recombination and repair, and the alkylation repair protein AlkB. In addition, our data suggest that uvrA (nucleotide excision repair) may also be part of the LexA-controlled DNA damage response as we observed a clear LexA ChIP-seq peak and a change in uvrA expression, although this was just beneath our applied cutoff in the RNA-seq analysis (\(\log_2\) fold change).

Moreover, the LexA regulon includes additional genes that could further contribute to the relief of DNA damage stress. These genes include parE (vnz_27225), which encodes an additional topoisomerase IV subunit, vnz_027225, which shares similarity to radical S-adenosylmethionine (SAM) enzymes that repair DNA cross-links between thymine bases caused by UV, radiation and an operon located on S. venezuelae plasmid pSVJI1 consisting of a hypothetical protein and an error-prone DNA polymerase gene (pvnz_37140 to pvnz_37135).

TABLE 1

Gene	Locus	Description	FC^a	RNA-seq	ChIP-seq	SOS box	Position (bp)^b
recA	vnz_26845	Recombinase A and LexA coprotease	9.07	1.84		TCGAACATCCATTC^c	−162
recX	vnz_26850	Recombination regulator	6.28			TCGAACGTTGCAC (lexA-1)^c	−53
lexA	vnz_27115	Transcriptional repressor	−3.10	1.34		TCGAACGTTGCAC (lexA-2)^c	−68
dnaE2	vnz_06640	DNA polymerase III, α subunit	30.62	1.39		TCGACGTACGTTC (dnaE2-1)^c	−23
dinP	vnz_06635	DNA polymerase IV	13.74			TCGACGTACGTTC (dnaE2-2)^c	−139
ruvC	vnz_05440	Resolvase endonuclease subunit	2.78	1.84		TCCACCCGAGAAC^c	−20
ruvA	vnz_05435	Holliday junction DNA helicase	2.13	1.84		TCGACCTAGCTTC	−157
alkB	vnz_32390	Alkylated DNA repair protein	11.02	1.39		GGTACCAGCTGGATC^c	−174
infC	vnz_05845	Translation initiation factor IF-3	3.05	2.39		TCGAATTCTGTGC	91
parE	vnz_27225	DNA topoisomerase IV subunit B	3.78	1.18		TCGAATTCTGTGC	−157

Cellular processes and signaling

Gene	Locus	Description	FC^a	RNA-seq	ChIP-seq	SOS box	Position (bp)^b
vnz_21525	Phage tail fiber protein	526.40	2.24		TCGAACACCGGCGC	−174	
vnz_21545	Hypothetical protein	190.02	1.00		TCGAACACCAAGCC	−139	
vnz_21550	Hypothetical protein	190.02	1.00		TCGAACACCAAGCC	−182	
vnz_00275	Serine protease	10.93	1.92		TCGAAGCTTGCAG	−42	

Metabolism

Gene	Locus	Description	FC^a	RNA-seq	ChIP-seq	SOS box	Position (bp)^b
vnz_22770	Alcohol dehydrogenase	26.72	1.62		CCGGACACCGGAC	−105	
vnz_15995	ABC transporter permease	15.14	2.01		CCGGACACCGGAC	−30	
vnz_26265	Thiamine ABC transporter substrate-binding protein	9.00	1.79		TCGAACACATCTTC	−199	

General prediction

Gene	Locus	Description	FC^a	RNA-seq	ChIP-seq	SOS box	Position (bp)^b
pvnz_37140	Hypothetical protein	15.35	1.22		TCGAACACGTGCTC	−14	
pvnz_37135	DNA polymerase IV	7.52			TCGAACACGTGCTC	−61	
vnz_31145	Radical SAM protein	19.97	1.31		TCGACCACGCGGAC	−199	

^aFor RNA-seq data, relative fold changes (FC) represent gene expression of the wild-type cells grown for 14 h in the presence of MMC (WT plus MMC) compared to untreated cells (WT minus MMC) (adjusted \(P\) < 0.05). For the Chip-seq data, relative FC represent local LexA-FLAG enrichment of cells expressing lexA-FLAG, which were grown for 14 h in the absence of MMC (LexA-FLAG minus MMC) compared to cells grown in the presence of MMC (LexA-FLAG plus MMC) (\(\log_2\) FC > 1).

^bThe position of the first base of the SOS box relative to the predicted start codon is indicated.

^cSOX box experimentally validated (Fig. 4D).
SOS boxes of DNA damage repair genes are tightly bound by LexA. Since the SOS response involves the derepression of LexA target genes, we sought to study the effect of MMC treatment on LexA binding in vivo. Therefore, and in parallel with our earlier experiments conducted under non-DNA-damaging growth conditions, we performed ChIP-seq experiments following MMC-induced stress and subsequently compared LexA enrichment across the genome in untreated samples to that in ChIP-seq samples that had been obtained from cultures grown in the presence of 0.25 μg mL⁻¹ MMC for 14 h. In contrast to our untreated ChIP-seq experiments, which demonstrated widespread binding of LexA across the genome, there was an observable decrease in genome-wide LexA binding in the presence of MMC (Fig. 4A). This is in line with the observation that LexA protein levels are decreased under DNA-damaging conditions (Fig. 2C). As in our earlier experiments, no significant enrichment was observed in the wild-type negative control under these conditions (Fig. 4B). Of the 175 LexA binding sites determined here to be part of the SOS response, MMC treatment resulted in reduced local enrichment of LexA at 112 genomic positions and the complete dissociation of LexA at 61 chromosomal loci. Both sets of loci also included the core DNA damage repair genes described above (Table 1; and Fig. S3A). Two chromosomal loci retained a similar level LexA enrichment under the conditions tested (Table S4).
These findings prompted us to further examine the sequence specificity of LexA binding. Using the motif-based sequence analysis tool MEME (21) and 100-nucleotide (nt) sequences located under the summit of each LexA ChIP-seq peak \(n = 175 \), we first identified the 16-bp consensus LexA DNA-binding motif tCGAAC-N4-GNNCGa (Fig. 4C), which is an imperfect palindromic sequence, similar to previously reported LexA binding motifs from related and distant bacterial systems (3). We then compared this consensus LexA binding motif to the motifs generated from 100-nt sequences associated with either ChIP-seq peaks that decreased \(n = 112 \) or disappeared \(n = 61 \) after MMC stress. This analysis did not reveal any significant differences in the sequence specificity of LexA binding in vivo (Fig. S3B), indicating that additional factors might contribute to LexA enrichment and the differential response to MMC.

To further validate our in vivo ChIP-seq analysis, we examined the DNA binding specificity of purified S. venezuelae LexA using surface plasmon resonance (SPR). Twenty-three-base-pair double-stranded oligonucleotides containing the consensus LexA DNA binding motif were tethered to a chip surface within an SPR flow cell. Purified His6-LexA was flowed over the test DNA, and LexA binding was recorded by measuring the change in response units during LexA injection. Control experiments using double-stranded DNA with a scrambled LexA DNA binding sequence showed only a very weak association of LexA, supporting the idea that the observed binding was sequence specific (Fig. 4D). In addition, we performed SPR analysis using 23-bp duplex DNA that contained the putative LexA binding motifs identified upstream of lexA, recA, and the two SOS genes dnaE2 and uvrA. Based on our initial MEME analysis, we identified two potential LexA binding sites in the promoter region of lexA (lexA1 and lexA2) and three for dnaE2 (dnaE2-1, dnaE2-2, and dnaE2-3). In agreement with our ChIP-seq results, we observed clear binding of LexA to the predicted binding sites, except for the dnaE2-3 motif, suggesting that either this sequence may not represent a relevant LexA binding site or an additional factor or factors are required for binding in vivo (Fig. 4D). We repeated the SPR experiments, using sequentially increasing concentrations of LexA to enable the determination of the binding affinity equilibrium dissociation constant \(K_d \). These analyses showed a differential but overall strong binding of LexA to the tested duplex DNA, indicating that the induction of LexA target genes in vivo is under tight control in Streptomyces (Fig. 4D; Fig. S3C). This may provide an explanation for the requirement of prolonged exposure to genotoxic agents to induce the SOS response in S. venezuelae since LexA needs to first dissociate from its target sequence to become susceptible to RecA-stimulated self-cleavage (22). However, we cannot exclude the possibility that the overall stability of LexA also contributes to the delayed induction of the SOS response.

DISCUSSION

In this work, we confirm the presence of a functional DNA damage response and identify the core set of LexA-controlled SOS genes in S. venezuelae. While deletion of recA is not detrimental for most bacteria under non-DNA-damaging growth conditions, deletion of lexA and the resulting constitutive activation of the SOS response are lethal in Escherichia coli or cause cell filamentation in other bacterial species (23–26). S. venezuelae strains lacking either recA or lexA are viable; however, growth and sporulation are severely compromised in these mutant strains even under non-DNA-damaging conditions. Available microarray data indicate that recA is constitutively expressed throughout the S. venezuelae life cycle (27). Given the importance of recA in genome maintenance (28), it is likely that the observed phenotypic defects in the recA mutant are a direct consequence of genome instability, which could result in a large deletion in the chromosomal arms or defective chromosome segregation (8, 29). Furthermore, in the lexA null mutant, permanent induction of the SOS response may result in the activation of a cell cycle checkpoint that suppresses sporulation, analogous to the SOS-dependent cell division inhibitors identified in diverse bacteria (30–33). Notably, Streptomyces lack clear homologs of these known cell division regulators, indicating
the presence of a yet unidentified mechanism involved in coordinating DNA damage repair and cell division.

Our investigations revealed that the activation of the SOS response is delayed and requires a chronic exposure to DNA-damaging agents in *S. venezuelae*. Similar slow activation of the SOS response was previously reported for other *Streptomyces* species and related *Actinomycetota*, showing that short treatments with DNA-damaging agents were not sufficient to increase *recA* expression (34–36). The basis for this phenomenon is not fully understood, but several factors may contribute to the delayed induction of the SOS response. For example, the basal level of RecA may be sufficiently high to repair DNA damage caused by short-term genotoxic stress without the need to induce the SOS response. It is also conceivable that LexA autocleavage is intrinsically slow compared to LexA from other organisms in which LexA is degraded within minutes (37, 38). It is also conceivable that the coprotease function of RecA is inhibited by RecX, a negative regulator of RecA activity (36, 39). Although we cannot exclude the possibility that the intracellular accumulation of genotoxic agents is slowed down by increased efflux activity or properties of the *Streptomyces* cell envelope that limit the uptake of toxic compounds, these findings suggest that the regulation of the SOS response might be different in *Streptomyces*. Notably, the related *Actinomycetota* species *Mycobacterium smegmatis* employs two DNA damage response pathways, a RecA/LexA-dependent SOS response and a RecA/LexA-independent DNA damage response, with the latter one controlling the vast majority of DNA repair genes (40, 41). This alternative stress response involves a protein complex comprised of the two transcriptional regulators PafB and PafC, which bind to a DNA sequence motif that is distinct from the SOS box to activate the mycobacterial DNA damage response, presumably upon binding single-stranded DNA (40–42). Although *Streptomyces* species encode homologs of the PafBC system, an initial motif search suggested that the PafBC binding motif from *M. smegmatis* is not conserved in *S. venezuelae*. Thus, it remains to be shown whether a similar RecA/LexA-independent DNA response exists in *Streptomyces*.

Our results, however, establish the presence of a LexA-dependent DNA damage response in *Streptomyces*. In total, we identified 175 LexA binding sites that were associated with DNA damage-responsive genes that were either upregulated or downregulated following MMC-induced degradation of LexA. While the majority of these genes are of unknown function, about 36% of all differentially regulated genes are predicted to encode proteins involved in metabolism, signaling, and other cellular processes. This clearly highlights the functional diversity of the gene categories that comprise the LexA regulon in *Streptomyces*. Importantly, our work identifies a core set of SOS-regulated DNA response genes involved in the regulation of the SOS response (*lexA* and *recA*), DNA mutagenesis (*dnaE2-dinP*), and DNA repair (*nuvC-ruvA* operon and *alkB*) (3). We also identified several additional genes and previously unrecognized LexA target genes, involved in DNA decatenation (*parE*) (43, 44), UV damage repair (*vnnz_31145*) (45), and mutagenesis (*vnnz_37140 to vnnz_37135*), which could further contribute to restoring the integrity of the genome.

Furthermore, we detected a significant number of positively regulated LexA targets. Although we cannot exclude the possibility that the MMC-induced downregulation of LexA target genes might reflect the requirement for an additional transcriptional regulator or regulators for induction, several examples of positive regulation by LexA have now been identified, (23, 46–49). Two noticeable LexA targets in *S. venezuelae* that showed a significant downregulation upon MMC treatment include the structural genes for the developmental regulator WhiI and the small membrane protein SmeA, which together with its partner protein SffA, is involved in chromosome segregation during sporulation (18, 50). However, *whiI* and *smeA* expression is also controlled by additional developmental regulators, indicating the presence of a multilayer regulatory network that controls the initiation of sporulation (16, 51). Together, our findings support the idea of a much more diverse cellular role of LexA in DNA damage stress resistance and *Streptomyces* development.

Our work further revealed that LexA displays a differential binding behavior *in vivo*, indicating a graded response to DNA damage. These observations are in line with a
hierarchical induction of LexA targets that is dependent upon both the level of DNA damage and the LexA dissociation rate constant at a given promoter (52–54). Indeed, our in vitro assays confirmed that in *S. venezuelae*, LexA binds tighter to the recA, lexA2, and dnaE2-2 operator sequences than the lexA1/dnaE2-1 motif and the SOS box located in the promoter region of *uvrA*. This is likely to create a finely tuned response, balancing DNA damage surveillance, rapid repair of DNA lesions, and the need to mount a full SOS response. Collectively, our work provides significant insight into the SOS response and how it might enable *Streptomyces* to survive in diverse environments.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The strains, plasmids, and oligonucleotides used in this work are listed in Tables 5S and 6S in the supplemental material. *E. coli* strains were grown in LB or LB agar at 37°C supplemented with the following antibiotics when necessary: 100 μg ml⁻¹ carbenicillin, 50 μg ml⁻¹ kanamycin, 25 μg ml⁻¹ hygromycin, 50 μg ml⁻¹ apramycin, or 25 μg ml⁻¹ chloramphenicol. *S. venezuelae* NRRL B-6544 was grown in maltose-yeast extract-malt extract extract medium (MYM), composed of 50% tap water and 50% reverse-osmosis water, and supplemented with R2 trace element (TE) solution at a ratio of 1:500. Liquid cultures were grown under aeration at 30°C and at 250 rpm. MYM agar was supplemented with the following antibiotics when required: 5 μg ml⁻¹ kanamycin, 25 μg ml⁻¹ hygromycin, or 50 μg ml⁻¹ apramycin.

Construction and complementation of the recA null mutant. The ΔrecA mutant strain (KS3) was generated using “redirect” PCR targeting (55, 56). The recA coding sequence (vnz_26845) on the cosmid vector P1-B2 (http://strepdb.streptomyces.org.uk/) was replaced by an oriT-containing apramycin resistance cassette, which was amplified from pIJ773 using the primer pair ks6 and ks7. The resulting disrupted cosmid (pKS100) was introduced into *S. venezuelae* by conjugation via *E. coli* ET12567/pUZ8002. The resulting exconjugants were screened for double-crossover events (Apr⁺ Kan⁺), and deletion of recA was verified by PCR analysis using the primers ks8, ks9, and ks10. A representative recA null mutant was designated KS3. For complementation, plasmid pKS2 (P_orc-recA) was introduced into the ΔrecA mutant by conjugation.

Genomic DNA for genome sequencing of the ΔrecA mutant (KS3) and the parental wild-type strain was performed using the FastDNA kit for soil (MP Biomedicals Germany). Genomic DNA of biological replicate samples per strain was sequenced by MiGS (Pittsburgh, USA).

Construction and complementation of the lexA null mutant. To generate the ΔlexA mutant strain (KS4A), a plasmid carrying a second copy of lexA (pKS1) was first integrated at the phage BT1 attachment site of wild-type *S. venezuelae*. In the resulting strain (KS9), the native lexA coding sequence (vnz_27115) was then replaced by the apr-oriT cassette using the Redirect PCR targeting technology and cosmid P12-B2 as described above, using the primer pair ks1 and ks2 to PCR amplify the apr-oriT cassette from pIJ773. The mutagenized cosmid (pKS200) was introduced into KS9 by conjugation via ET12567/pUZ8002, and exconjugants that had successfully undergone double-crossover events were identified by screening for apramycin resistance and kanamycin sensitivity, yielding strain KS25. The ΔlexA:apr allele of KS25 was then moved back into wild-type *S. venezuelae* via generalized SV1 phage transduction, as described by Tschowri et al. (57). Transduction of the ΔlexA:apr allele was confirmed by PCR analysis using the primers ks3, ks5, and ks2. A representative ΔlexA null mutant strain was designated KS44. For complementation, plasmid pKS1 (P_orc-lexA) or pKS3 (P_orc-lexA-3x-FLAG) was introduced into the ΔlexA mutant by conjugation, yielding strains KS57 and KS74, respectively.

RNA preparation, sequencing (RNA-seq), and analysis. RNA-seq was conducted in biological triplicate using the protocol described by Bush et al. (58). Triplicate cultures of wild-type *S. venezuelae* grown in 30 ml MYM cultures with shaking (250 rpm) for 14 h at 30°C, “treated” cultures were grown with the addition of 0.25 μg ml⁻¹ mitomycin C (MMC) (Merck Life Sciences UK, Ltd.). Mycelial pellets from untreated and treated cultures were washed in 1× phosphate-buffered saline (PBS) before lysis and RNA purification using the RNeasy kit (Qiagen). Purified RNA samples were treated with on-column DNase I (Qiagen), followed by an additional DNase I treatment (Turbo DNA-free; Invitrogen), and the absence of DNA contamination was confirmed by PCR amplification of the housekeeping gene hrdB (vnz_27210) using the primer pair mb1 and mb2. Library construction, RNA depletions and paired-end Illumina Hiseq sequencing (2×150-bp configuration) was performed by Genewiz (NJ, USA).

The quality of the obtained sequencing reads was checked using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the reads were mapped to the genome of *S. venezuelae* NRRL B-6544 (NCBI reference sequence NZ_CP018074.1) using the Bowtie2 alignment tool (59) and subsequently sorted and indexed using the Samtools package (60). A custom Perl script was used to make a saf file for genes in the *S. venezuelae* genome. The featureCounts tool of the BioConductor package “Rsubread” was used to count the reads mapping to every gene in the *S. venezuelae* genome. The counts were read into a DGEList object of the edgeR package of R, and a quasilikelihood negative binomial generalized log-linear model was fitted to the data using the glmQLFit function of edgeR. Gene-wise statistical tests were conducted using the glmqFLTest function of edgeR (61). The “topTags” function was used to arrive at a table of differentially expressed genes (61). Genes were classed as differentially expressed genes (DEGs) if the log₂ fold change (treated/untreated) was greater than or equal to 1 or less than or equal to −1 and had a false-discovery rate (FDR [adjusted P-value]) of ≤0.05.
Chromatin immunoprecipitation sequencing and analysis. ChiP-seq was performed in biological replicates as described previously (16) using a \(S. \) venezuelae \(\Delta \)lexA strain that was complemented with a \(\Delta \)lexA-3×FLAG fusion (KS74). Cells were grown in MYM in the absence (untreated) and presence of 0.25 \(\mu\)g mL\(^{-1}\) MMC for 14 h (14-MMC) at 30°C. Library construction and sequencing were performed by Genewiz (NJ, USA) using Illumina HiSeq (2× 150-bp configuration, trimmed to 100 bp). Obtained sequencing reads were aligned to the \(S. \) venezuelae NRRL B-65442 genome (NCBI reference sequence NZ_CP018074.1) using the Bowtie 2 alignment tool (59). The resultant bam files were sorted and indexed using the Samtools package (60). A custom Perl script was used to make a saf file for every 30-nucleotide section in the \(S. \) venezuelae genome, with adjacent sections overlapping by 15 nucleotides. The featureCounts tool of the R package Rsubread was used to count the number of reads mapping to every 30-nucleotide section in the saf file made above. A custom R script was then employed to calculate a local enrichment for every 30-nucleotide section (overlapping by 15 nucleotides) by comparing the read density in the section to the read density in the 3,000 nucleotides around the section. The local enrichment in the corresponding sections of the controls were subtracted from the local enrichment of the ChIP samples. Custom Perl and R scripts were used to list out genes to the left and right and overlapping genome sections with a local enrichment of 2 or more. In addition, genes had to be in the right orientation and within 300 nucleotides of the enriched region for association with \(\Delta \)lexA-3×FLAG binding sites. Intragenic LexA bindings sites (local enrichment of >2) were defined as genomic positions that were located more than 100 bp downstream of the annotated start codon of a gene and which were not considered to be part of a promoter region of the downstream gene. Of the 208 intragenic \(\Delta \)lexA-3×FLAG binding sites, 176 binding sites were detected in proximity of a transcription start site (based on the “14H” TSS data set publicly available at EMBL-EBI under E-MTAB-10690) (11).

To assess the effect of MMC, the enrichment of the 175 \(\Delta \)lexA-3×FLAG ChiP-seq peaks located upstream of transcriptional units was assessed based on the differential response to MMC stress (adjusted \(P < 0.05 \) and fold change cutoff [log, fold change] >1) and on the following criteria. (i) Complete dissociation of \(\Delta \)lexA-3×FLAG from a binding site upon MMC treatment was judged to have occurred when the enrichment value (log, fold change) in the MMC-treated ChiP-seq data set (\(\Delta \)lexA-3×FLAG 14-h MMC/WT 14-h MMC) was less than 0.25. (ii) No dissociation of \(\Delta \)lexA-3×FLAG from a binding site upon MMC treatment was called when the enrichment value (log, fold change) calculated from the comparison of the treated and untreated ChiP-seq data sets (\(\Delta \)lexA-3×FLAG 14-h MMC/\(\Delta \)lexA-3×FLAG untreated) was less than 0.2. (iii) Partial dissociation of \(\Delta \)lexA-3×FLAG from a binding site upon MMC treatment was defined when peaks displayed a local enrichment value (log, fold change) in the MMC-treated ChiP-seq data set (\(\Delta \)lexA-3×FLAG 14-h MMC/\(\Delta \)lexA-3×FLAG untreated) greater than 0.25 and the enrichment value from the comparison of the treated and untreated ChiP-seq data sets (\(\Delta \)lexA-3×FLAG 14-h MMC/\(\Delta \)lexA-3×FLAG untreated) was greater than 0.2.

Functional analysis of the LexA regulon. Analysis for the enrichment of functional classes was performed on proteins encoded by the 176 genes that were associated with intragenic \(\Delta \)lexA binding sites and the 175 differentially expressed genes that are subject to LexA regulation (Tables S2 and S4). To predict conserved protein features and to assign COG (Clusters of Orthologous Groups) identifiers, the queries were searched against the Position Specific Scoring Matrix (PSSM) database (NCBI) using the rpsblast program (62). Where more than one COG identifier was reported, genes were inspected for their genetic context and predicted function and were manually assigned a COG class.

Motif prediction from LexA enrichment sites. One-hundred-nucleotide sequences surrounding the center position of each of the 175 enrichment sites determined by our ChiP-seq analysis were used as input for the MEME suite (21) (Table S4), with an \(S. \) venezuelae background model, to search for a conserved \(\Delta \)lexA binding motif (SOS box). Site distribution was set to “zero” or “one occurrence per sequence,” and the MEME algorithm was set to search for three motifs on both strands with a width of 6 to 500 nucleotides.

Automated Western blotting. To determine \(\Delta \)lexA and \(\Delta \)lexA-FLAG levels, the \(\Delta \)lexA-\(\Delta \)lexA-3×FLAG strain (KS74), and the wild type were used. To confirm specific binding of the antibodies, the wild type and the \(\Delta \)lexA deletion strain (KS44) were used as the respective negative controls. Duplicate cultures of each strain were grown in liquid MYM for 14 h without (untreated) and with 0.25 \(\mu\)g mL\(^{-1}\) MMC, 3 \(\mu\)g mL\(^{-1}\) ciprofloxacin, or 3 mM MMS. After 14 h, untreated cultures were exposed for 1 and 2 h to 0.25 \(\mu\)g mL\(^{-1}\) or 2.5 \(\mu\)g mL\(^{-1}\) MMC, 3 \(\mu\)g mL\(^{-1}\) ciprofloxacin, and 5 mM MMS, respectively. At the end of the incubation time, 2 to 5 mL of each MYM culture was removed and washed once with 1× PBS. Samples of mycelium were resuspended in 0.4 mL ice-cold sonication buffer (20 mM Tris [pH 8.0], 5 mM EDTA, 1× EDTA-free protease inhibitors [Sigma-Aldrich]) and sonicated (5 times for 15 s on and 15 s off) at an amplitude of 4.5 \(\mu\)m. Lysates were then centrifuged at 16,000 \(\times\) g for 15 min at 4°C to remove cell debris. The total protein concentration was determined using the Bradford assay (Bio-Rad). To detect \(\Delta \)lexA-FLAG or \(\Delta \)lexA abundance in cell lysates, 2 \(\mu\)g of total protein for each sample was loaded in duplicate into a microplate (ProteinSimple 043-165) together with either anti-FLAG antibody (Sigma F4725) diluted 1:100 or polyclonal anti-LexA antibody diluted 1:200. LexA-FLAG and LexA levels were then assayed using the automated Western blotting (WES) machine (ProteinSimple, San Jose, CA), according to the manufacturer’s guidelines. Virtual Western blots related to Fig. 2C and Fig. S2C were generated using the Compass software for Western blotting (WES) machine (ProteinSimple, San Jose, CA), according to the manufacturer’s guidelines.
with an excitation/emission bandwidth of 577 to 603 nm/614 to 659 nm to detect fluorescence emitted by the mCherry reporter fusion. Still images were collected using the Zen Blue software and further analyzed using the Fiji imaging software (63). To normalize the mCherry fluorescence intensity across different MMC treatments, images were corrected for background fluorescence.

Cryo-scanning electron microscopy. Streptomyces samples were mounted on an aluminum stub using Tissue Tek (Agar Scientific, Ltd., Stansted, England) and plunged into liquid nitrogen slush. The sample was transferred onto the cryo-stage of an ALTO 2500 cryo-system (Gatan, Oxford, England) attached to an FEI Nova NanoSEM 450 field emission scanning electron microscope (SEM) (Thermo Fisher Scientific, Eindhoven, The Netherlands). Sublimation of surface frost was performed at ~95°C for 4 min before sputter coating with platinum for 150 s at 10 mA. The sample was moved onto the main cryo-stage in the microscope, held at ~125°C, and imaged at 3 kV, spot 3, and digital TIFF files were stored.

Growth assays. To determine viability of S. venezuelae strains on solid medium, 10^6 CFU mL^{-1} (spores or mycelial fragments) were used to prepare a 10-fold serial dilution series, and 3 μL of each dilution series was subsequently spotted onto MYM agar containing either no antibiotic, 0.25 μg mL^{-1} MMC, 3 μg mL^{-1} ciprofloxacin, or 3 mM MMS. Plates, in biological triplicate, were incubated at 30°C for 3 to 5 days and subsequently imaged.

To assay the growth of S. venezuelae in liquid MYM, measurements of the optical density at 600 nm (OD_{600}) were made using a plate reader (SPECTROstar Nano by BMG Labtech) set at 30°C with shaking at 700 rpm. Eight hundred microliters of MYM supplemented with increasing concentrations of MMC, ciprofloxacin, or MMS was loaded into the wells of a 48-well plate (677102; Greiner Bio-One) and inoculated with either 5 μL of spores or 10 μL of mycelium. OD_{600} measurements were recorded every 15 min for 24 h, and data were subsequently visualized using GraphPad Prism (version 9.3.1). Each experiment was performed in triplicate.

Purification of His₆-LexA. To purify His₆-LexA, E. coli MGCo21(DE3) cells were transformed with the pLex5 and pSK16 plasmids. Cells were grown at 30°C in LB medium containing 25 μg mL^{-1} chloramphenicol and 100 μg mL^{-1} carbenicillin until they reached an OD_{600} of 0.5, before the addition of 0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside) to induce protein production. Cultures were incubated with shaking at 30°C for 4 h and then harvested by centrifugation. Cell pellets were resuspended in a mixture of 50 mM Tris (pH 10.5), 1 M NaCl, and 10% glycerol with protease inhibitor (EDTA free; Merck) and lysed by sonication for 14 cycles at 18 microns amplitude with 15 s on and 10 s off. Lysates were centrifuged at 26,000 × g for 45 min at 4°C to remove cell debris and passed through a 0.45-μm-pore filter before being loaded on a HisTrap column via the ÄKTA pure system. (GE Healthcare). His₆-LexA was then eluted using 0.78 and 2600 M Tris (pH 10.5), 200 mM NaCl, 10% glycerol, 0.5 mM dithiothreitol (DTT). The concentration of an increasing concentration of imidazole. Fractions containing His₆-LexA were pooled and subjected to size exclusion chromatography on a HiLoad 16/600 Superdex 200-pg column (GE Healthcare) in a mixture of 50 mM Tris (pH 10.5), 1 M NaCl plus 50 mM NaOH. DNA sequences were tested in triplicate at two different protein concentrations, and the amount of binding was recorded as response units (RU). The concentration of pooled protein fractions was determined by Bradford assay, and His₆-LexA was subsequently stored at ~80°C until further use. To produce antibodies against LexA from Streptomyces, His₆-LexA was overexpressed and purified as described above, and a total amount of 3.54 mg of purified protein was sent to Cambridge Research Biochemicals (United Kingdom) to be used to raise antibodies in rabbits.

Surface plasmon resonance. All surface plasmon resonance (SPR) experiments were performed using a Biacore 8K instrument (Cytiva). All measurements were performed with a single sensor chip SA (Cytiva), using the RedDcAT system, as described previously (64). Complementary single-stranded oligonucleotides containing the individual LexA binding sequences or a scrambled binding motif were annealed and subsequently diluted to a working concentration of 1 μM in HPS-EP+ buffer (0.01 M HEPES (pH 7.4), 0.15 M NaCl, 3 mM EDTA, 0.005% (vol/vol) surfactant P20). Each DNA was designed to contain the sequence of interest and a single-stranded extension on the reverse primer, which anneals to the RedDcAT sequence on the chip, enabling DNA of interest to be bound and stripped after each experiment. For each experiment double-stranded DNA (with a 20-base single-strand extension) was flowed over one flow cell on the chip at a flow rate of 10 μL min^{-1} for 60 s to allow annealing to the RedDcAT linker via the complementary DNA. Purified S. venezuelae His₆-LexA (diluted in HBS-EP+ buffer) was flowed over both the blank cell surface and the one containing the DNA to ensure the response seen was specific to binding to the DNA. To assess whether LexA bound the DNA, 1 μM and 0.5 μM His₆-LexA were used at a flow rate of 50 μL min^{-1} for 120 s before switching back to buffer flow to allow dissociation for 120 s. The DNA and any remaining protein were then removed with a wash over both flow cells at 10 μL min^{-1} with 1 M NaCl plus 50 mM NaOH. DNA sequences were tested in triplicate at two different protein concentrations, and the amount of binding was recorded as response units (RU). To determine LexA binding kinetics, a single-cycle kinetics approach was used. DNA was initially captured as previously described on the test flow cell and then increasing concentrations of His₆-LexA (0.78125 nM, 1.5625 nM, 3.125 nM, 6.25 nM, 12.5 nM, and 25 nM) were injected over both the blank and DNA-bound flow cells at a flow rate of 100 μL min^{-1} for 120 s. At the end of all the His₆-LexA injections, HPS-EP+ buffer was flowed over the surface for 1,200 s to measure the dissociation. The DNA and any remaining bound protein were then removed using the wash with 1 M NaCl and 50 mM NaOH. The recorded sensorgrams were analyzed using Biacore Insight Evaluation software version 3.0.11.15423 (Cytiva). The following formulas were used to calculate R_{max} and %R_{max} values: R_{max} = (MW of LexA)/(MW of DNA) × RU × n × 0.78 and %R_{max} = (analyte binding RU)/R_{max} × 100. MW is the molar mass, RU is the DNA capture response, 0.78 is a constant used for estimating responses for DNA-protein interactions, and n is the binding stoichiometry. Raw data used to calculate R_{max} and %R_{max} are shown in Table S6. To calculate LexA binding kinetics, a fit was applied using a predefined kinetics 1-to-1 binding model provided with the Biacore 8K Evaluation Software 3.0.11.15423 (Cytiva). Data were plotted using GraphPad Prism (version 9.3.1).

Data availability. The authors confirm that all supporting data have been provided within the article or through supplemental data files. Raw RNA-seq and ChiP-seq data have been deposited in the MIAME-
SUPPLEMENTAL MATERIAL

Supplemental material is available only.

SUPPLEMENTAL FILE 1, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.04 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 6, PDF file, 1.3 MB.

ACKNOWLEDGMENTS

This work was funded by a Royal Society University Research Fellowship (URF\R1\180075) to S.S. and by the BBSRC Institute Strategic Program grant BB/J004561/1 to the John Innes Centre. K.J.S.’s Ph.D. studentship was funded by the Royal Society Enhancement Award (RGF\EA\181026).

We declare no conflict of interest.

REFERENCES

1. Radman M. 1975. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A: 355–367. https://doi.org/10.1007/978-1-4684-2895-7_48.
2. Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145. https://doi.org/10.1111/1574-6976.12077.
3. Erill I, Campoy S, Barbe J. 2007. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656. https://doi.org/10.1111/j.1574-6976.2007.00082.x.
4. Burby PE, Simmons LA. 2020. Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. J Bacteriol 202: e00408-19. https://doi.org/10.1128/JB.00408-19.
5. Brent R. 1982. Regulation and autoregulation by lexA protein. Biochimica et Biophysica Acta 645:565–569. https://doi.org/10.1016/0005-2736(82)90808-6.
6. Hopwood DA. 2007. Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, Oxford, United Kingdom.
7. Bush MJ, Tschowri N, Schlimpert S, Frührich K, Buttner MJ. 2015. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13:749–760. https://doi.org/10.1038/nrmicro3546.
8. Huang T-W, Chen CW. 2006. A recA null mutation may be generated in Streptomyces coelicolor. J Bacteriol 188:6771–6780. https://doi.org/10.1128/JB.00051-06.
9. McAnally S, Huey H, Howells A, Walpole C, Maxwell A, Nodwell JR. 2019. Discovery of a novel DNA gyrase-targeting antibiotic through the chemical perturbation of Streptomyces venezuelae sporulation. Cell Chem Biol 26:1274–1282.e4. https://doi.org/10.1016/j.chembiol.2019.06.002.
10. Gomez-Escibano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G, Wilkinson B, Buttner MJ, Bibb MJ. 2021. Streptomyces venezuelae NRR1-8-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol 48:kuab035. https://doi.org/10.1007/jmbi.00608-035.
11. Bush MJ, Chandra G, Buttner MJ. 2021. Streptomyces venezuelae transcription start sites data. http://streptomyces.org.uk/vnz_tss.html. Accessed 13 June 2022.
12. Marteyn BS, Karimova G, Fenton AK, Gad AD, West N, Touqui L, Prevost M-C, Betton J-M, Poyraz O, Ladant D, Gerdes K, Sansonetti PJ, Tang CM. 2014. ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics. mBio 5:e00022-14. https://doi.org/10.1128/mBio.00022-14.
13. Harniemen LW, Hajimea B, Bijuoma JJ, Venema G, Lovett CM. 2001. The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem 276:42901–42907. https://doi.org/10.1074/jbc.M104047200.
14. Little JW, Mount OW, Yanisch-Perron CR. 1981. Purified LexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A 78:4199–4203. https://doi.org/10.1073/pnas.78.7.4199.
15. Brent R, Ptashne M. 1981. Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A 78:4204–4208. https://doi.org/10.1073/pnas.78.7.4204.
16. Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ. 2013. Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. mBio 4: e00684-13. https://doi.org/10.1128/mBio.00684-13.
17. Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP. 2011. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89–99. https://doi.org/10.1101/gad.600211.
18. Ausmees N, Wahlstedt H, Bagchi S, Elliot MA, Buttner MJ, Frärdh K. 2007. SmaE, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 65:1458–1473. https://doi.org/10.1111/j.1365-2958.2007.05877.x.
19. Kelemen GH, Brian P, Frärdh K, Chamberlin L, Charter KF, Buttner MJ. 1998. Developmental regulation of transcription of whiE, a locus specifying the polypeptide spacer pigment in Streptomyces coelicolor A3(2). J Bacteriol 180:2515–2521. https://doi.org/10.1128/JB.180.9.2515-2521.1998.
20. Falguera JVT, Stratton KJ, Bush MJ, Jani C, Findlay KC, Schlimpert S, Nodwell JRY. 2022. DNA damage-induced block of sporulation in Streptomyces venezuelae involves downregulation of SsgB. Microbiology. https://doi.org/10.1058/jcr.159.001198.
21. Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Res 43:W39–W49. https://doi.org/10.1093/nar/gkv416.
22. Butala M, Klose D, Hodnik V, Anderluh G, Busby SJW, Steinhoff H-J, Žagar-Bertok D. 2011. Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response. Nucleic Acids Res 39:3546–3557. https://doi.org/10.1093/nar/gkr265.
23. da Rocha RP, de Miranda Paquola AC, do Valle Marques M, Menck CFM, Gaillard RS. 2008. Characterization of the SOS region of Caulobacter crescentus. J Bacteriol 190:1218–1228. https://doi.org/10.1128/JB.01419-07.
24. Kawai Y, Moriya S, Ogawara N. 2003. Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47:1113–1122. https://doi.org/10.1046/j.1365-2958.2003.03360.x.
25. Walter BM, Cartman ST, Minton NP, Butala M, Rupnik M. 2015. The SOS response master regulator LexA is associated with sporulation, motility and biofilm formation in Clostridium difficile. PLoS One 10:e0144763. https://doi.org/10.1371/journal.pone.0144763.
26. Huisman O, D’Ari R, Gottesman S. 1984. Cell-division control in Escherichia coli: specific induction of the SOS function SogA. Cell 369:420–427. https://doi.org/10.1016/0092-8674(84)90036-1.
controlled by rBhD is a cognate anti-sigma factor. RbBk. Mol Microbiol 84:1035–1049. https://doi.org/10.1111/j.1365-2958.2012.08070.x.

28. Michel B, Sandler SJ. 2017. Replication restart in bacteria. J Bacteriol 199: e00102-17. https://doi.org/10.1128/JB.00102-17.

29. Hoff G, Bertrand C, Piotrowski E, Thibassard A, Leblond P. 2018. Genome plasticity is governed by double strand break repair in Mycobacterium. Sci Rep 8:5272. https://doi.org/10.1038/s41598-018-23662-w.

30. Mukherjee A, Cao C, Lutkenhaus J. 1998. Inhibition of FtsZ polymerization by Sula, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A 95:2885–2890. https://doi.org/10.1073/pnas.95.6.2885.

31. Masser EA, Burby PE, Hawkins WD, Gustafson BR, Lenhart JS, Simmons LA. 2021. DNA damage checkpoint activation affects peptidoglycan synthesis and late divisome components in Bacillus subtilis. Mol Microbiol 116: 707–722. https://doi.org/10.1111/mmi.14765.

32. Bojer MS, Wacnik K, Kjeldgaard P, Gallay C, Bottomley AL, Cohn MT, Lindahl F, Fries D, Veening J, Foster SJ, Ingmer H. 2019. Soa inhibits cell division in Staphylococcus aureus in response to DNA damage. Mol Microbiol 112:1116–1130. https://doi.org/10.1111/mmi.14350.

33. Modell JW, Hopkins AC, Laib MT. 2011. A DNA damage checkpoint in Caco-lactobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev 25:1328–1343. https://doi.org/10.1101/gad.2038911.

34. Szafrran MJ, Gongerowska M, Małeczk I, Elliot M, Jakimowicz D. 2019. Transcriptional response of Streptomyces coelicolor to rapid chromosome relaxation or long-term supercoiling imbalance. Front Microbiol 10:1605. https://doi.org/10.3389/fmicb.2019.01605.

35. Movahedzadeh F, Colston MJ, Davis EO. 1997. Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-damaging agents suggests that two modes of regulation exist. J Bacteriol 179:3509–3518. https://doi.org/10.1128/JB.179.11.3509–3518.1997.

36. Vierling S, Weber T, Wohlleben W, Muth G. 2000. Transcriptional and mutational analyses of the Streptomyces lividus recX gene and its interference with RecA activity. J Bacteriol 182:4005–4011. https://doi.org/10.1128/JB.182.40.4005-4011.2000.

37. Cohn MT, Kjeldgaard P, Fries D, Penadés JR, Ingmer H. 2011. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (Reading) 157:677–684. https://doi.org/10.1099/mic.0.043794-0.

38. Lovett CM, O’Gara TM, Woodruff JN. 1994. Analysis of the SOS inducing signal in Bacillus subtilis subspecies with Escherichia coli LexA as a probe. J Bacteriol 176:4914–4923. https://doi.org/10.1128/JB.176.16.4914-4923.1994.

39. Prasad D, Muniyappa K. 2020. The extended N-terminus of Mycobacterium smegmatis RecX potentiates its ability to antagonize RecA functions. Mol Microbiol 114:112. https://doi.org/10.1111/mmi.14781.

40. Jones EC, Uphoff S. 2021. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 6:981–990. https://doi.org/10.1038/s41564-021-00930-y.

41. Cohn MT, Kjeldgaard P, Fries D, Penadés JR, Ingmer H. 2011. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (Reading) 157:677–684. https://doi.org/10.1099/mic.0.043794-0.

42. Smollett KL, Smith KM, Kahramanoglu C, Arvigo KB, Buxton PS, Davis EO. 2012. Global analysis of the regulation of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 287:22004–22014. https://doi.org/10.1074/jbc.M112.357715.

43. Gustekunst K, Plunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J. 2005. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcriptional activator. Mol Microbiol 58:810–823. https://doi.org/10.1111/j.1365-2958.2005.04867.x.

44. Jochemann N, Kurze A-K, Czaja LF, Brinkhoff K, Brune I, Häser AT, Hansmeier N, Pühler A, Borovok I, Tauch A. 2009. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology (Reading) 155:1459–1477. https://doi.org/10.1099/mic.0.025841-0.

45. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ. 2014. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10:e1004554. https://doi.org/10.1371/journal.pgen.1004554.

46. Cohn MT, Kjeldgaard P, Fries D, Penadés JR, Ingmer H. 2011. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (Reading) 157:677–684. https://doi.org/10.1099/mic.0.043794-0.

47. Smollett KL, Smith KM, Kahramanoglu C, Arvigo KB, Buxton PS, Davis EO. 2012. Global analysis of the regulation of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 287:22004–22014. https://doi.org/10.1074/jbc.M112.357715.

48. Gutekunst K, Plunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J. 2005. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcriptional activator. Mol Microbiol 58:810–823. https://doi.org/10.1111/j.1365-2958.2005.04867.x.

49. Jochemann N, Kurze A-K, Czaja LF, Brinkhoff K, Brune I, Häser AT, Hansmeier N, Pühler A, Borovok I, Tauch A. 2009. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology (Reading) 155:1459–1477. https://doi.org/10.1099/mic.0.025841-0.

50. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ. 2014. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10:e1004554. https://doi.org/10.1371/journal.pgen.1004554.

51. Cohn MT, Kjeldgaard P, Fries D, Penadés JR, Ingmer H. 2011. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (Reading) 157:677–684. https://doi.org/10.1099/mic.0.043794-0.

52. Movahedzadeh F, Colston MJ, Davis EO. 1997. Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-damaging agents suggests that two modes of regulation exist. J Bacteriol 179:3509–3518. https://doi.org/10.1128/JB.179.11.3509–3518.1997.

53. Prasad D, Muniyappa K. 2020. The extended N-terminus of Mycobacterium smegmatis RecX potentiates its ability to antagonize RecA functions. Mol Microbiol 114:112. https://doi.org/10.1111/mmi.14781.