The bacterial protein YidC accelerates MPIase-dependent integration of membrane proteins

Masaru Sasaki¹, Hanako Nishikawa¹, Sonomi Suzuki², Michael Moser², Maria Huber², Katsuhiro Sawasato¹, Hideaki Matsubayashi³⁹, Kaoru Kumazaki⁴, Tomoya Tsukazaki⁵, Yutetsu Kuruma⁶⁷¹⁰, Osamu Nureki¹, Takuya Ueda³¹¹, Ken-ichi Nishiyama¹²⁸,*

From ¹the United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; ²Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan; ³Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan; ⁴Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; ⁵Nara Institute of Science and Technology, Nara 630-0192, Japan; ⁶Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; ⁷PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; ⁸Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.

Present address: ⁹Department of Cell Biology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 453 Rangos, Baltimore, MD 21205, USA; ¹⁰Japan Agency for Marine-Earth Science & Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan; ¹¹Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan

*To whom correspondence should be addressed: Ken-ichi Nishiyama: Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan. E-mail: nishiyam@iwate-u.ac.jp; Tel: +81 19 621 6471; Fax: +81-19-621-6243

Key words: glycolipid, inverted inner membrane vesicle (INV), liposome, mannitol permease (MtlA), membrane protein integrase (MPIase), membrane protein integration, PURE system, SecYEG, YidC

ABSTRACT

Bacterial membrane proteins are integrated into membranes through the concerted activities of a series of integration factors, including membrane protein integrase (MPIase). However, how MPIase activity is
MPIase and YidC function sequentially during membrane protein integration is incompletely understood. Here, using inverted inner-membrane vesicle (INV) and reconstituted (proteo)liposome preparations from *Escherichia coli* cells, along with membrane protein integration assays and the PURE system to produce membrane proteins, we found that anti-MPIase IgG inhibits the integration of both the Sec-independent substrate 3L-Pf3 coat and the Sec-dependent substrate MtlA into *E. coli* membrane vesicles. MPIase-depleted membrane vesicles lacked both 3L-Pf3 coat and MtlA integration, indicating that MPIase is involved in the integration of both proteins. We developed a reconstitution system in which disordered spontaneous integration was precluded, which revealed that SecYEG, YidC, or both are not sufficient for Sec-dependent and -independent integration. Although YidC had no effect on MPIase-dependent integration of Sec-independent substrates in the conventional assay system, YidC significantly accelerated the integration when the substrate amounts were increased in our PURE system-based assay. Similar acceleration by YidC was observed for MtlA integration. YidC mutants with amino acid substitutions in the hydrophilic cavity inside the membrane were defective in the acceleration of the Sec-independent integration. Of note, MPIase was upregulated upon YidC depletion. These results indicate that YidC accelerates the MPIase-dependent integration of membrane proteins, suggesting that MPIase and YidC function sequentially and cooperatively during the catalytic cycle of membrane protein integration.

The molecular mechanisms underlying membrane protein integration are conserved at the fundamental level among all organisms. Integration of membrane proteins into the cytoplasmic (or inner) membrane of *E. coli* proceeds co-translationally with the aid of a series of integration factors. SRP (signal recognition particle) interacts with the hydrophobic transmembrane (TM) domains of the nascent polypeptides of membrane proteins, followed by membrane targeting through SR (SRP receptor). The membrane proteins are then transferred to protein translocon SecYEG, on which membrane integration occurs (Supplementary Fig. 1). In addition to these canonical integrations (Sec-dependent integrations), small membrane proteins or membrane proteins with a TM domain at the very C-terminus are integrated into membranes independently of both the SRP and Sec systems (Sec-independent integrations) (Supplementary Fig. 1) (for reviews, see (1-5)).

Membrane integration of Sec-independent proteins has long been thought to proceed spontaneously through a hydrophobic interaction between membrane lipids and the TM domains of membrane proteins, since these proteins are integrated into liposomes formed only with phospholipids (6). However, an Sec-dependent substrate, mannitol permease (MtlA), was found to be
spontaneously integrated into liposomes formed with phospholipids as well (7). This spontaneous integration of MtlA was completely blocked when a physiological concentration of diacylglycerol (DAG) had been included in the liposomes (7,8). Under the same conditions, the spontaneous integration of Sec-independent substrates was blocked as well (7,8). Therefore, such spontaneous integration turned out to be an in vitro artefact. The discovery of involvement of YidC in the integration of these proteins (9) supported this notion.

YidC was identified as a factor that interacts with the Sec translocon (10). Disruption of the yidC gene caused accumulation of M13 procoat, a Sec-independent substrate, indicating that YidC is involved in the Sec-independent integration (9). YidC is homologous to mitochondrial Oxa1p and Alb3p in chloroplasts, both of which are involved in membrane protein integration (11). In the reconstitution systems, it has been shown that YidC is involved in a subset of membrane proteins such as F0C (12), M13 procoat (13) and Pf3 coat (14). Based on these observations, it is proposed that YidC is a membrane protein insertase (14). Beside the accumulating lines of evidence for the involvement of YidC in integration of Sec-independent proteins (15-17), no integration activity has been observed in an in vitro system using DAG-containing proteoliposomes (7), strongly suggesting the presence of an additional factor.

MPIase is a glycolipid that was in vitro identified as a factor involved in integration of Sec-independent substrates by means of a reconstitution system free of spontaneous integration (7,18,19). MPIase drives membrane protein integration of Sec-independent substrates (7,18,19). Since MPIase directs integration of more substrate molecules than that of MPIase, i.e., MPIase catalyzes protein integration, we named this glycolipid MPIase (membrane protein integrase) after its function (18). Structure determination of MPIase revealed that it contains DAG and a glycan chain through a pyrophosphate linker (19). The glycan chain consists of a repeating unit of three N-acetylated amino sugars (19). This glycan part directly interacts with substrate proteins to keep them integration-competent (19,20). MPIase, then, integrates them into membranes by affecting the membrane structures (21). MPIase is also involved in the integration of the Sec-dependent substrate, MtlA (7), although the other study reported that MtlA integration is driven by either SecYEG or YidC (22). In addition to the involvement in protein integrations, MPIase significantly stimulates protein translocation across the cytoplasmic membranes of E. coli (7,23), by affecting the dimer structure of SecYEG (23).

Recently, we found that MPIase depletion causes inhibition of integration of Sec-independent proteins including M13 procoat in vivo, similar to YidC depletion, and therefore cell death (24-27), demonstrating that our reconstitution system faithfully reflects the in vivo reactions. It is suggested
that MPIase and YidC function together in F₀c integration, since MPIase-dependent F₀c integration is stimulated by YidC (28). This observation is compatible with the detailed molecular mechanisms based on the crystal structures of YidC (29-31). On the other hand, it has been totally unclear how MPIase and YidC function during the catalytic cycle of membrane protein integration, since we could not so far reveal the YidC involvement in the in vitro reconstitution system (7,8), except for the case of F₀c integration (28).

In this study, we found that MPIase functions at an initial stage of integration and subsequently YidC functions at a later stage. This mechanism was demonstrated by the observation that YidC had no effect on the MPIase-dependent integration in the conventional assay system, but that YidC significantly accelerated it when the synthesized amounts of substrates were increased by means of the PURE system (32). Such acceleration was also observed for MtlA integration. We also report possible reasons for the discrepancy between our findings for MPIase and previous reports (13,22).

Results

MPIase is involved in both Sec-independent and Sec-dependent integration into INV (inverted inner membrane vesicles)

To confirm the involvement of MPIase in protein integration into INV, an antibody against MPIase (αMPIase) was added to INV prepared from wild-type *E. coli*, followed by assaying of protein integration. This assay system relies on the fact that the membrane-inserted parts of membrane proteins are protected from proteinase K (PK) added outside the membrane vesicles, giving the membrane-protected fragments (MPF) (33). The integration activities are calculated as the percentage of the +PK samples to the -PK samples (Supplementary Fig. 2). The typical results of the integration assay are shown in Supplementary Fig. 3, in which 3L-Pf3 coat (A) and MtlA (B) are integrated into Wt INV. Firstly, 3L-Pf3 coat, a mutant version of Pf3 coat protein, in which three leucine residues have been inserted in the middle of a single transmembrane region (34) (Fig. 1A, left; Supplementary Fig. 4A), was used as a substrate. It is reported that 3L-Pf3 coat is a Sec-independent substrate that requires neither a membrane potential nor YidC for membrane integration (14,34). We observed that the anti-MPlase antibody inhibited 3L-Pf3 coat integration into INV in a dose-dependent manner (Fig. 1B, right, D, and E, gray bars), as reported (19). On the other hand, neither an anti-SecY nor an anti-YidC antibody inhibited 3L-Pf3 coat integration as well as a control IgG (Fig. 1B, left, and E, gray bars), suggesting that these factors are not involved under these experimental conditions. MtlA integration (Fig. 1A, right; Supplementary Fig. 4B), which has been reported to depend on the SecYEG translocon (33,35), was inhibited by both anti-SecY and anti-YidC antibodies (Fig. 1C, left and E, white bars), as expected. Both antibodies
recognize the C-terminal regions of the respective proteins, which are exposed to the cytosol. When the anti-MPlase antibody was used, more severe inhibition of MtlA integration was observed, again in a dose-dependent manner (Fig. 1C, right, D, and E, white bars), strongly suggesting that MPlase is involved in MtlA integration.

3L-Pf3 coat integration was examined under the conditions for the conventional assay in which the substrate amount is very low, since only radioactive methionine was used to translate 3L-Pf3 coat (synthesized level: 1~5 x 10^{-11} mol/mL) (Fig. 1B). When the amount of substrate was increased by adding cold methionine to the translation mixture (synthesized level: 2~4 x 10^{-9} mol/mL), essentially the same results were obtained (Fig. 1F, left). The anti-MPlase antibody severely inhibited 3L-Pf3 coat integration, whereas neither anti-SecY nor anti-YidC antibodies inhibited it at all. Since it is reported that 3L-Pf3 coat integration is independent of YidC (14), we examined the effects of a series of antibodies on Pf3 coat (Supplementary Fig. 4A) integration, which is YidC-dependent (36) (Fig. 1F, right). Again, the same results were obtained. The anti-MPlase antibody, but not the anti-SecY and anti-YidC antibodies, inhibited Pf3 coat integration. Under all the conditions examined here, severe inhibition by the anti-MPlase antibody was observed, indicating that MPlase is involved in the integration of membrane proteins examined here.

Since both MPlase (23) and YidC (10) are complexed with SecYEG, it is plausible that inhibition of MtlA integration by antibodies against these factors is due to a secondary effect, i.e., masking of SecYEG by the antibodies. To examine the effects of these factors, we prepared INV after these factors had been depleted (Fig. 2A; Supplementary Fig. 5A-C), followed by assaying of integration (Fig. 2B and C). We could confirm the successful depletion of the respective factors (Fig. 2A). In the case of MPlase depletion, the membrane integration of 3L-Pf3 coat (Fig 2B, left) and MtlA (Fig. 2C, left) was significantly reduced. These results strongly indicate that MPlase is involved in the integration of both Sec-independent and dependent substrates. On the other hand, in the case of SecE or YidC depletion, MtlA integration was reduced (Fig. 2C, right), whereas 3L-Pf3 coat integration was not (Fig. 2B, right). The extent of reduction in MtlA integration (~15% in ΔSecE INV/~39% in Wt INV) was comparable with that of SecE depletion (0.24 to Wt INV) (Fig. 2A, middle and C). The YidC depletion was more complete (<0.01 to Wt INV, Fig. 2A, right), however, MtlA integration into ΔYidC INV was not completely inhibited (Fig. 2C), suggesting that YidC stimulates MtlA integration under these conditions.

We checked the level of MPlase upon YidC depletion, since the importance of YidC could not be shown in Fig 1 and Fig 2B. We found that MPlase was upregulated upon YidC depletion by 4-fold (Fig. 2D, left; Supplementary Fig. 5D). On the other hand,
MPIase and YidC function sequentially

MPIase was not upregulated under the SecE-depletion conditions, although a longer molecule for MPIase was observed (Fig. 2D, right; Supplementary Fig. 5E). The reason for the appearance of longer MPIase is unclear. These observations strongly suggest that MPIase and YidC functionally related. This will be discussed later.

Development of a reconstitution system in which disordered spontaneous integration had been precluded

To determine the dependency of integration, reconstitution in which the cellular process is faithfully reflected is desired, since unexpected and pleiotropic effects are caused, as seen in Fig. 2D. Moreover, we found that a subset of detergents such as DDM (dodecylmaltoside) and DPC (dodecylphosphocholine), which are used in the purification of SecYEG/YidC and are carried over into the reconstitution system, abolishes the blockage of spontaneous integration by DAG. DDM (37) (Supplementary Fig. 6) and DPC could not only solubilize DAG, but also form a waxy complex. DDM and DPC induced spontaneous integration (Supplementary Fig. 7). By adding lower concentrations of these detergents to the reaction mixtures, the blockage of spontaneous integration by DAG was abolished, inducing as a high level of spontaneous integration of both proteins as that into DAG-free liposomes. These results indicate that a detergent that forms a complex with DAG must be completely removed from the assay system. To obtain DDM/DPC-free (proteo)liposomes, SecYEG and YidC solubilized in OG (octylglucoside) were reconstituted into proteoliposomes, or SecYEG and/or YidC were reconstituted into DAG-free liposomes followed by liposome fusion with DAG-containing liposomes. Spontaneous integration was thus blocked using the proteoliposomes reconstituted in these ways (Fig. 3). When the effects of the cycles of freezing-thawing-sonicating of proteoliposomes on 3L-Pf3 coat integration were examined, the activity was the same at least up to 5 cycles (Supplementary Fig. 8). Therefore, we carried out liposome fusion by repeating the cycle 3 times.

YidC accelerates MPIase-dependent integration of membrane proteins

By means of the reconstitution system free of spontaneous integration, we examined the dependency of the factors for 3L-Pf3 coat integration (Fig. 3A). 3L-Pf3 coat integration was absolutely dependent on MPIase: The level of the PK-protected bands in the presence of YidC-proteoliposomes was as low as that in the absence of liposomes, indicating that 3L-Pf3 coat was not integrated into YidC-proteoliposomes. When both MPIase and YidC were used for reconstitution, the activity toward 3L-Pf3 coat integration was almost the same as that in the case of MPIase-liposomes (Fig. 3A, low 3L-Pf3 coat level). In marked contrast, when the translation level of 3L-Pf3 coat was increased by adding cold methionine, prominent
stimulation by YidC was observed (Fig. 3A, high 3L-Pf3 coat level). Under these conditions, the synthesis level of 3L-Pf3 coat was ~3.0 x 10^{-9} mol/mL, which was higher than those of MPIase (1.8 x 10^{-10} mol/mL) and YidC (1.6 x 10^{-10} mol/mL), indicating that 3L-Pf3 coat integration occurred in multiple cycles. On the other hand, in the absence of cold methionine (low 3L-Pf3 coat level), the synthesis level of 3L-Pf3 coat (~1.4 x 10^{-11} mol/mL) was ~10 times lower than that in the case of the integration machineries on the proteoliposomes. Essentially the same results were obtained when YidC from *Bacillus halodurans* (Bh-YidC), the YidC molecule of which the structure was solved for the first time (29), was used (Supplementary Fig. 9). In the absence of cold methionine, 3L-Pf3 coat integration into MPIase-liposomes was as efficient as that into MPIase/Bh-YidC-containing liposomes (low 3L-Pf3 coat level). In contrast, YidC accelerated 3L-Pf3 coat integration by ~3 times in the presence of cold methionine (high 3L-Pf3 coat level). SecYEG had no effect on either MPIase-dependent integration or YidC-dependent acceleration (Fig. 3B). Also, no integration of 3L-Pf3 coat into SecYEG-proteoliposomes was observed (Fig. 3B). These results indicate that SecYEG is not involved in 3L-Pf3 coat integration. Originally, 3L-Pf3 coat integration is independent of YidC (14,34) as shown in Fig. 2B, however, under the YidC-depleted conditions MPIase was upregulated to suppress the defects caused by YidC depletion. YidC-dependent acceleration of integration was also observed when Pf3 coat (Fig. 3C) and MtlA (Fig. 3D) were used as substrates. Pf3 coat integration was also MPIase-dependent and was accelerated by YidC. The extent of YidC-dependent acceleration was similar to that for 3L-Pf3 coat. For MtlA integration, only MPIase or SecYEG was not sufficient, but MPIase/SecYEG-proteoliposomes were active, as reported (7). Moreover, this activity was doubly accelerated by YidC like Sec-independent integrations. Note that it was rather inefficient to synthesize MtlA under the translation conditions used in this study, giving shorter products than the full-length MtlA. Overall, we concluded that YidC accelerated the MPIase-dependent integration of both Sec-independent and -dependent substrates.

Effects of YidC mutants on MPIase-dependent integrations

We next examined the effects of the YidC mutants in the hydrophilic cavity inside the membrane (29-31) on the MPIase-dependent integration (Fig. 4). When a lethal mutant, T362A (30), was co-reconstituted with MPIase, the integration activity was similar to that in the absence of YidC, indicating that this mutant did not accelerate MPIase-dependent integration of 3L-Pf3 coat. In the case of cold-sensitive mutants, R366M and R366A (30), the extent of acceleration was lower than that in Wt YidC (Fig. 4A; Supplementary Fig. 10). These results support the importance of the positive charge inside the cavity of YidC and neighboring region.
When a YidC-dependent substrate, Pf3 coat, was used, the activities in the presence of mutants was similar to that of MPIase alone, indicating that all the mutants were defective in the acceleration of integration (Fig. 4B), reflecting the stronger dependency of this substrate on YidC (36). Alternatively, the absence of a membrane potential may render these mutations prominent. In the case of Bh-YidC, the R72Q mutant, equivalent to the R366A mutant for E. coli YidC, is a lethal one (29,30). When the R72Q mutant was co-reconstituted with MPIase, acceleration of MPIase-dependent integration of Pf3 coat was abolished, while Bh-YidC accelerated Pf3 coat integration by ~3-fold (Fig. 4C), again confirming the importance of the positive charge (R72Q) in the cavity. These results are consistent with the model proposed with the crystal structure of YidC (29,30,38).

Discussion

Based on the results presented here and reported previously (16,17,19,20,24,29,30), we propose molecular mechanisms underlying membrane protein integration, especially with respect to that of Sec-independent substrates (Fig. 5). Under conditions where spontaneous integration has been properly blocked, integration of these proteins is absolutely dependent on MPIase, when the integration activity is evaluated by the protease protection assay. Even if DAG was co-reconstituted in proteoliposomes, contamination by DDM (22) or DPC (13) should cause the disordered spontaneous integration, as shown in Supplementary Fig. 7. Since the appearance of MPF reveals the early step of integration, MPIase should function at this step. On the other hand, YidC should function at a later step, consistent with the finding that no integration into YidC-proteoliposomes is observed when spontaneous integration is properly blocked. If the spontaneous integration was not completely precluded, it is likely that YidC accelerated such a spontaneous integration, as reported (13,14). Since the glycan chain of MPIase directly interacts with the substrate membrane proteins to maintain the integration-competent structure (19,20), MPIase would receive membrane proteins at the cytoplasmic face of the membrane (Fig. 5A and B, (a)), forming an integration-competent complex (b). In this case, the positive charge of membrane proteins would interact with the negative charge of either pyrophosphate of MPIase or phospholipids, ensuring the positive-inside topology (39). Then, upon the structure change of membrane surfaces by MPIase (21), membrane integration proceeds on MPIase (c). If YidC is present in this stage, YidC would receive a part of the substrate through electrostatic interaction between the positive charge inside the cavity of YidC and the negative charges of substrate proteins (29-31). The lateral movement of the substrate proteins inside the membranes explains why anti-YidC antibody did not inhibit integration (g). This interaction should be important, as revealed by the results.
for the YidC mutants (Fig. 4). In both cases, the substrate becomes protected by the membrane on PK digestion, and they are evaluated as being membrane-integrated in the assay, even if integration is not completed. Next, the substrates dissociate from MPIase (d), and integration is completed (e). MPIase, free of substrates, enters the next cycle of integration (f). Since MPIase exists in the cytoplasmic half of the membrane, step (d) would be a spontaneous one, the rate of which is not so fast. On the other hand, if YidC positively receives the substrates from MPIase (h), the rate of dissociation from MPIase would be much faster than that in (d), rendering the MPIase ready for the next cycle of integration (j). The quick regeneration of MPIase explains the acceleration of integration when the substrate level is high, where multiple cycles of integration are necessary. On the other hand, when the substrate level is low, integration occurs only once. In this case, after steps (c) and (g), the substrates are regarded as being integrated, reflecting that YidC had no effect in the assay system. YidC is committed to the final step of integration (i) (40,41). Even if step (e) proceeds without the aid of YidC, the speed would be very slow, explaining why the YidC function is essential for cell growth (9). Thus, MPIase functions at an early step, and then the substrate is transferred to YidC to complete the integration. The acceleration by YidC has also been observed for Fc integration (28). This working model is consistent with the effects of anti-MPIase IgG and anti-YidC IgG, i.e., anti-MPIase IgG severely inhibited the Sec-independent integration but anti-YidC IgG did not at all, while anti-YidC IgG inhibited the MtlA integration. Beside the effects of MPIase and YidC, SecYEG had no effect on the Sec-independent integration, strongly suggesting that SecYEG is not involved in Sec-independent integration.

MtlA integration was inhibited by all the antibodies examined in this study. Since both MPIase (23) and YidC (10) interact with SecYEG, the inhibition might be brought about by the steric hindrance by SecYEG, however, depletion of either factor had a strong effect, indicating that all of them are involved in MtlA integration. The incomplete inhibition with anti-SecY IgG and anti-YidC IgG might be the result of competition with ribosomes with the nascent chain of MtlA. It is reported that the same antibody against SecY inhibited post-translational protein translocation completely (42). The results for antibodies and factor-depleted INV clearly revealed the involvement of these factors in MtlA integration. Also, at least, under our conditions for MPIase depletion, the wild-type levels of SecYEG and YidC are still present in ΔMPIase INV (24). On the other hand, it is reported that either SecYEG or YidC is sufficient for MtlA integration (22). It is possible that detergent DDM had not been removed completely from SecYEG and YidC proteoliposomes in that study (22), causing spontaneous integration, as seen in Supplementary Fig. 7. Consistent with the results for INV, our proteoliposomes free of
DDM revealed that both MPIase and SecYEG are necessary for MtlA integration and that YidC accelerated the integration, similar to Sec-independent integration.

3L-Pf3 coat is a potential-independent mutant of Pf3 coat, and is reported that integration of this protein is YidC-independent (14). On the other hand, in our reconstitution system, YidC significantly accelerated 3L-Pf3 coat integration when the synthesis level of 3L-Pf3 coat was increased. Therefore, it is possible that 3L-Pf3 coat would become YidC-dependent if the expression level of 3L-Pf3 coat is increased. This would be the same for MtlA integration. Previously, we could not detect the YidC dependence of MtlA integration (7), however, we could show the acceleration of MtlA integration by YidC. In this study, we used the PURE system for MtlA synthesis, for which the addition of cold methionine was essential for MtlA synthesis, making the MtlA level much higher than that in the previous study (7).

The results presented here strongly suggest that MPIase functions together with YidC. Therefore, the two factors might function as a protein insertase/integrase complex. This idea is also consistent with the in vivo evidence that depletion of either YidC (9) or MPIase (24, 25) causes severe defects in M13 procoat integration. Therefore, MPIase can be a glycolipid subunit of the YidC/MPIase protein integrase. Since YidC is an essential component (9), YidC depletion should cause pleiotropic effects. Nevertheless, the upregulation of MPIase observed in the YidC-depleted cells strongly suggest that these factors function at a similar stage for protein integration. It is likely that the defects in protein integration caused by YidC depletion were partially suppressed by upregulation of MPIase. The defects by lower rate of protein integration performed by MPIase alone should be partially relieved by MPIase overproduction, consistent with the model in Fig. 5.

In summary, we conclude that YidC accelerates MPIase-dependent integration of membrane proteins. Relationship between two integration factors, MPIase and YidC, will solve the discrepancies or controversies so far reported.

Experimental procedures

Materials

INVs were prepared as described (43) from E. coli MC4100 (F- Δ[argF-lac]U168 araD139 rpsL150 relA1 thi deoC7 ptsF25 fliB5301) (44) as a wild type strain, JS7131 (Δ[codB-lac]3 galK16 galE15 λ- relA1 rpsL150 spoT1 hsdR2 ara+ attB::R6Kori ParAB::yidC+ spec ΔyidC) (9) to deplete YidC, PS273 (secEΔ19-111 pcnB80 zadl::Tn10 phoAΔPvull lacΔX74 galE galK rpsL) (45) harboring pAE9 (Para-secE) to deplete SecE, and KS23 (MC4100 ara- ΔynbB::kan ΔcdsA::cat) harboring pAra-CdsA (24) to deplete MPIase. To deplete YidC, SecE, and MPIase, the respective strains, grown in the presence of arabinose overnight, were washed several times and then cultivated in the presence of 0.2% glucose. Ffh (46), FtsY
MPIase and YidC function sequentially

E. coli YidC (47), B. halodurans YidC (29), and SecYEG (23) were purified from the strains overproducing the respective proteins, as described. MPIase was purified as described (18). EXPRESS [35S] Protein Labeling Mix (Perkin Elmer), a mixture of [35S] methionine and [35S] cysteine (43.5 TBq/mmol), was used for in vitro translation. Anti-SecY (42) and anti-YidC (24) antisera were raised in rabbits using synthetic peptides (Ser426~Arg443 in SecY and Gln527~Ser548 in YidC, respectively) as antigens. Anti-MPIase antiserum was raised in rabbits using purified MPIase (19). All the antibodies were obtained through the commercially available custom services. IgG was isolated from antisera by means of a Pierce protein A IgG purification kit (Thermo Fisher Scientific). Plasmids pET-MtlA (48), pT7-7-3L-Pf3 (14), and pT7-7-Pf3 (14) were used to in vitro synthesize MtlA, 3L-Pf3 coat, and Pf3 coat, respectively. Proteinase K (PK) was from Roche Diagnostics. Octyl-β-D-glucopyranoside (OG) and n-dodecyl-β-D-maltopyranoside (DDM) were obtained from Dojindo Laboratories. The PURE system (32), optimized for the in vitro integration assay (18), was used to synthesize membrane proteins. In this system, the magnesium concentration was kept below 9 mM, and polyethylene glycol, polyamine, and detergents were avoided to protect (proteo)liposomes. E. coli polar phospholipids were purchased from Avanti Polar Lipids, Inc. DAG (dioleoylglycerol) and n-dodecylphosphocholine (DPC) were purchased from Sigma.

Reconstitution of (proteo)liposomes

Liposomes containing DAG were prepared as follows. E. coli polar phospholipids (1 mg) and DAG (0.05 mg) were mixed in chloroform, and then evaporated under an N2 stream and under vacuum. To the dried residue, buffer A (50 mM Hepes-KOH, pH 7.5, 1 mM dithiothreitol) was added to give the concentration of 10 mg of phospholipids/mL, and then liposomes were formed by bath sonication.

MPIase-containing liposomes were prepared as follows. MPIase, dissolved in solvent C (chloroform/ethanol/water = 3/7/4), was mixed with phospholipids and DAG in solvent C, and then evaporated, followed by liposome formation as described above.

YidC and/or SecYEG were reconstituted into proteoliposomes as follows. Sonicated liposomes (200 μg) without DAG were solubilized in 50 μL of buffer A containing 1.5% OG and then mixed with YidC and/or SecYEG. The total volume was adjusted to 100–150 μL using buffer A containing 1.5% OG. After incubation on ice for 20 min, OG was removed by dialysis against 500 mL of buffer A for at least 3 h at 4°C to allow the formation of proteoliposomes. The proteoliposome suspension thus prepared was diluted with 0.9 mL of buffer A, followed by centrifugation (170,000 x g, for 1 h at 4°C) to sediment proteoliposomes. Proteoliposomes were then frozen, thawed, and sonicated to obtain unilamellar vesicles.
MPIase and YidC function sequentially (49). To include DAG and/or MPIase, MPIase and/or DAG-containing liposomes were fused with YidC/SecYEG proteoliposomes by repeated cycles of freezing, thawing and sonication for three times.

Assaying of membrane protein integration

The reaction mixture (20 µL) was composed of PURE system, [35S] methionine (2.5~10 MBq/mL; 50~200 nM), plasmid DNA, and (proteo)liposomes or INV (0.4 mg/mL). Where specified, cold methionine (30 µM for MtlA or 300 µM for others) was added. Ffh (50 µg/mL) and FtsY (17 µg/mL) were added for MtlA integration. Protein synthesis/membrane integration was allowed for 30 min at 37°C. After the reaction had been terminated on ice, the mixture was divided into two parts. One part directly received trichloroacetic acid (5%) to determine the synthesis level. The other part was mixed with an equal volume of PK (1 mg/mL), followed by incubation for 20 min at 25°C. After inactivation of PK at 56°C for 5 min in the presence of 5% of trichloroacetic acid, proteins were recovered by centrifugation. Radioactive materials were separated on SDS-gels and visualized using PhosphorImager (GE Healthcare). The membrane-protected fragments (MPF) were then quantified using the ImageQuant software (GE Healthcare).

Miscellaneous

SDS-PAGE was carried out using gels of 12.5% acrylamide-0.27% N, N’-bismethyleneacrylamide containing 6 M urea to analyze Pf3 coat, and 3L-Pf3 coat (7), and not containing urea to analyze MPIase (19), as described. To analyze the other proteins, gels of 13.5% acrylamide-0.36% N, N’-bismethyleneacrylamide (50) were used. Protein was determined using bovine serum albumin as a standard as described (51). Western blotting was carried out as described (52). Bands on Western blots were quantitated using an ATTO CS5 analyzer.
Acknowledgements: We thank Prof. A. Kuhn (Hohenheim University) for the plasmids, S. Yamada and Y. Kato (The University of Tokyo) for contributing to the early stage of experiments involving the PURE system, and M. Saikudo and M. Sawaguchi for the technical assistance. KS was supported by a SUNBOR scholarship (Suntory Foundation for Life Sciences). Experiments involving radioisotopes were carried out at the RI laboratory in Iwate University.

Conflicts of interest: The authors declare that they have no conflicts of interest with the contents of this article.
References

1. Dalbey, R. E., Wang, P., and Kuhn, A. (2011) Assembly of bacterial inner membrane proteins. *Annu Rev Biochem* **80**, 161-187
2. du Plessis, D. J., Nouwen, N., and Driessen, A. J. (2011) The Sec translocase. *Biochim Biophys Acta* **1808**, 851-865
3. Denks, K., Vogt, A., Sachelaru, I., Petriman, N. A., Kudva, R., and Koch, H. G. (2014) The Sec translocon mediated protein transport in prokaryotes and eukaryotes. *Mol Membr Biol* **31**, 58-84
4. Endo, Y., and Nishiyama, K. (2015) Relationship between glycolipozyme MPIase and components comprising the protein transport machinery. *Med Res Archives* **2**, 11
5. Nishiyama, K., and Shimamoto, K. (2014) Glycolipozyme membrane protein integrase (MPIase): recent data. *Biomol Concepts* **5**, 429-438
6. Geller, B. L., and Wickner, W. (1985) M13 procoat inserts into liposomes in the absence of other membrane proteins. *J Biol Chem* **260**, 13281-13285
7. Nishiyama, K., Ikegami, A., Moser, M., Schiltz, E., Tokuda, H., and Muller, M. (2006) A derivative of lipid A is involved in signal recognition particle/SecYEG-dependent and -independent membrane integrations. *J Biol Chem* **281**, 35667-35676
8. Kawashima, Y., Miyazaki, E., Muller, M., Tokuda, H., and Nishiyama, K. (2008) Diacylglycerol specifically blocks spontaneous integration of membrane proteins and allows detection of a factor-assisted integration. *J Biol Chem* **283**, 24489-24496
9. Samuelson, J. C., Chen, M., Jiang, F., Moller, I., Wiedmann, M., Kuhn, A., Phillips, G. J., and Dalbey, R. E. (2000) YidC mediates membrane protein insertion in bacteria. *Nature* **406**, 637-641
10. Scotti, P. A., Urbanus, M. L., Brunner, J., de Gier, J. W., von Heijne, G., van der Does, C., Driessen, A. J., Oudega, B., and Luirink, J. (2000) YidC, the *Escherichia coli* homologue of mitochondrial Oxa1p, is a component of the Sec translocase. *EMBO J* **19**, 542-549
11. Yi, L., and Dalbey, R. E. (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. *Mol Membr Biol* **22**, 101-111
12. van der Laan, M., Bechtlufu, P., Kol, S., Nouwen, N., and Driessen, A. J. (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. *J Cell Biol* **165**, 213-222
13. Stiegler, N., Dalbey, R. E., and Kuhn, A. (2011) M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes. *J Mol Biol* **406**, 362-370
14. Serek, J., Bauer-Manz, G., Struhalla, G., van den Berg, L., Kiefer, D., Dalbey, R., and
Kuhn, A. (2004) *Escherichia coli* YidC is a membrane insertase for Sec-independent proteins. *EMBO J* **23**, 294-301

15. Hennon, S. W., Soman, R., Zhu, L., and Dalbey, R. E. (2015) YidC/Alb3/Oxa1 family of insertases. *J Biol Chem* **290**, 14866-14874

16. Shanmugam, S. K., and Dalbey, R. E. (2019) The conserved role of YidC in membrane protein biogenesis. *Microbiol Spectr* **7**, PSIB-0014-2018

17. Kiefer, D., and Kuhn, A. (2018) YidC-mediated membrane insertion. *FEMS Microbiol Lett* **365**, fny106

18. Nishiyama, K., Maeda, M., Abe, M., Kanamori, T., Shimamoto, K., Kusumoto, S., Ueda, T., and Tokuda, H. (2010) A novel complete reconstitution system for membrane integration of the simplest membrane protein. *Biochem Biophys Res Commun* **394**, 733-736

19. Nishiyama, K., Maeda, M., Yanagisawa, K., Nagase, R., Komura, H., Iwashita, T., Yamagaki, T., Kusumoto, S., Tokuda, H., and Shimamoto, K. (2012) MPIase is a glycolipoyzme essential for membrane protein integration. *Nat Commun* **3**, 1260

20. Fujikawa, K., Suzuki, S., Nagase, R., Ikeda, S., Mori, S., Nomura, K., Nishiyama, K., and Shimamoto, K. (2018) Syntheses and activities of the functional structures of a glycolipid essential for membrane protein integration. *ACS Chem Biol* **13**, 2719-2727

21. Nomura, K., Yamaguchi, T., Mori, S., Fujikawa, K., Nishiyama, K. I., Shimanouchi, T., Tanimoto, Y., Morigaki, K., and Shimamoto, K. (2019) Alteration of membrane physicochemical properties by two factors for membrane protein integration. *Biophys J* **117**, 99-110

22. Welte, T., Kudva, R., Kuhn, P., Sturm, L., Braig, D., Muller, M., Warscheid, B., Drepper, F., and Koch, H. G. (2012) Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the *Escherichia coli* signal recognition particle. *Mol Biol Cell* **23**, 464-479

23. Moser, M., Nagamori, S., Huber, M., Tokuda, H., and Nishiyama, K. (2013) Glycolipoyzme MPIase is essential for topology inversion of SecG during preprotein translocation. *Proc Natl Acad Sci USA* **110**, 9734-9739

24. Sawasato, K., Sato, R., Nishikawa, H., Iimura, N., Kamemoto, Y., Fujikawa, K., Yamaguchi, T., Kuruma, Y., Tamura, Y., Endo, T., Ueda, T., Shimamoto, K., and Nishiyama, K. (2019) CdsA is involved in biosynthesis of glycolipid MPIase essential for membrane protein integration in vivo. *Sci Rep* **9**, 1372

25. Sato, R., Sawasato, K., and Nishiyama, K. (2019) YnbB is a CdsA paralogue dedicated to biosynthesis of glycolipid MPIase involved in membrane protein integration. *Biochem Biophys Res Commun* **510**, 636-642
MPIase and YidC function sequentially

26. Sawasato, K., Suzuki, S., and Nishiyama, K. (2019) Increased expression of the bacterial glycolipid MPIase is required for efficient protein translocation across membranes in cold conditions. *J Biol Chem* **294**, 8403-8411

27. Sawasato, K., Sekiya, Y., and Nishiyama, K. I. (2019) Two-step induction of *cdsA* promoters leads to upregulation of the glycolipid MPIase at cold temperature. *FEBS Lett* **593**, 1711-1723

28. Nishikawa, H., Sasaki, M., and Nishiyama, K. (2017) Membrane insertion of F$_0$ c subunit of F$_0$F$_1$ ATPase depends on glycolipoyze MPIase and is stimulated by YidC. *Biochem Biophys Res Commun* **487**, 477-482

29. Kumazaki, K., Chiba, S., Takemoto, M., Furukawa, A., Nishiyama, K., Sugano, Y., Mori, T., Dohmae, N., Hirata, K., Nakada-Nakura, Y., Maturana, A. D., Tanaka, Y., Mori, H., Sugita, Y., Arisaka, F., Ito, K., Ishitani, R., Tsukazaki, T., and Nureki, O. (2014) Structural basis of Sec-independent membrane protein insertion by YidC. *Nature* **509**, 516-520

30. Kumazaki, K., Kishimoto, T., Furukawa, A., Mori, H., Tanaka, Y., Dohmae, N., Ishitani, R., Tsukazaki, T., and Nureki, O. (2014) Crystal structure of *Escherichia coli* YidC, a membrane protein chaperone and insertase. *Sci Rep* **4**, 7299

31. Tanaka, Y., Izumioka, A., Abdul Hamid, A., Fujii, A., Haruyama, T., Furukawa, A., and Tsukazaki, T. (2018) 2.8-Å crystal structure of *Escherichia coli* YidC revealing all core regions, including flexible C2 loop. *Biochem Biophys Res Commun* **505**, 141-145

32. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T. (2001) Cell-free translation reconstituted with purified components. *Nat Biotechnol* **19**, 751-755

33. Koch, H. G., Hengelage, T., Neumann-Haefelin, C., MacFarlane, J., Hoffschulte, H. K., Schimz, K. L., Mechler, B., and Muller, M. (1999) *In vitro* studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of *Escherichia coli*. *Mol Biol Cell* **10**, 2163-2173

34. Kiefer, D., and Kuhn, A. (1999) Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control. *EMBO J* **18**, 6299-6306

35. Koch, H. G., and Muller, M. (2000) Dissecting the translocase and integrase functions of the *Escherichia coli* SecYEG translocon. *J Cell Biol* **150**, 689-694

36. Chen, M., Samuelson, J. C., Jiang, F., Muller, M., Kuhn, A., and Dalbey, R. E. (2002) Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. *J Biol Chem* **277**, 7670-7675
MPIase and YidC function sequentially

37. Zhou, C., and Roberts, M. F. (1997) Diacylglycerol partitioning and mixing in detergent micelles: relevance to enzyme kinetics. *Biochim Biophys Acta* **1348**, 273-286

38. Tanaka, Y., Sugano, Y., Takemoto, M., Mori, T., Furukawa, A., Kusakizako, T., Kumazaki, K., Kashima, A., Ishitani, R., Sugita, Y., Nureki, O., and Tsukazaki, T. (2015) Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. *Cell Rep* **13**, 1561-1568

39. von Heijne, G. (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. *J Mol Biol* **225**, 487-494

40. Samuelson, J. C., Jiang, F., Yi, L., Chen, M., de Gier, J. W., Kuhn, A., and Dalbey, R. E. (2001) Function of YidC for the insertion of M13 procoat protein in *Escherichia coli*: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. *J Biol Chem* **276**, 34847-34852

41. Kuhn, A., Haase, M., and Leptihn, S. (2017) Assisted and unassisted protein insertion into liposomes. *Biophys J* **113**, 1187-1193

42. Nishiyama, K., Kabuyama, Y., Akimaru, J., Matsuyama, S., Tokuda, H., and Mizushima, S. (1991) SecY is an indispensable component of the protein secretory machinery of *Escherichia coli*. *Biochim Biophys Acta* **1065**, 89-97

43. Alami, M., Trescher, D., Wu, L. F., and Muller, M. (2002) Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in *Escherichia coli*. *J Biol Chem* **277**, 20499-20503

44. Casadaban, M. J. (1976) Transposition and fusion of the lac genes to selected promoters in *Escherichia coli* using bacteriophage lambda and Mu. *J Mol Biol* **104**, 541-555

45. Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the *E. coli* secretion machinery. *EMBO J* **10**, 1749-1757

46. Eisner, G., Koch, H. G., Beck, K., Brunner, J., and Muller, M. (2003) Ligand crowding at a nascent signal sequence. *J Cell Biol* **163**, 35-44

47. Koch, H. G., Moser, M., Schimz, K. L., and Muller, M. (2002) The integration of YidC into the cytoplasmic membrane of *Escherichia coli* requires the signal recognition particle, SecA and SecYEG. *J Biol Chem* **277**, 5715-5718

48. Kuruma, Y., Nishiyama, K., Shimizu, Y., Muller, M., and Ueda, T. (2005) Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins. *Biotechnol Prog* **21**, 1243-1251

49. Tokuda, H., Shiozuka, K., and Mizushima, S. (1990) Reconstitution of translocation activity for secretory proteins from solubilized components of *Escherichia coli*. *Eur J...
MPIase and YidC function sequentially

Biochem 192, 583-589

50. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685

51. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275

52. Nishiyama, K., Mizushima, S., and Tokuda, H. (1992) The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli. J Biol Chem 267, 7170-7176
FOOTNOTES
This study was supported by Grants-in-Aid from the Japan Society for the Promotion of Science (Grant Numbers: 18J21847 to HN, 13J06852 to HM, 18H02405 and 18KK0197 to TT, 16H06156 to YK, 15KT0073, 16H01374, 16K15083, 17H02209 and 18KK0197 to K.N.).

The abbreviations used are: BPB, bromophenol blue; DAG, diacylglycerol; DDM, n-dodecyl-β-D-maltopyranoside; DPC, n-dodecylphosphocholine; INV, inverted inner membrane vesicles; MPF, membrane-protected fragments; MPIase, membrane protein integrase; OG, octyl-β-D-glucopyranoside; PK, proteinase K; SR, SRP receptor; SRP, signal recognition particle; TM, transmembrane.
Figure 1. Anti-MPlase antibody inhibits protein integration into INV. A, topological arrangements of Pf3 coat/3L-Pf3 coat (left) and MtlA (right) in the inner membrane. The positions, where PK added outside INV digests, are indicated. B, antibodies against MPlase, but not against SecY and YidC inhibit 3L-Pf3 coat integration into INV. INV prepared from wild type strain MC4100 (4 µg) and anti-SecY IgG, anti-YidC IgG or anti-MPlase IgG (α-IgG) were added.
mixed at the indicated concentrations, followed by incubation for 30 min on ice. As a control, non-immune (N. I.) IgG was also used. 3L-Pf3 coat was then synthesized in vitro without adding cold methionine. The membrane-protected fragments (MPF) derived on proteinase K (PK) digestion were analyzed by SDS-PAGE/autoradiography. Samples that were not treated with PK were also analyzed to monitor the translation level (20%). The integration activity of each sample was determined, and is indicated at the bottom. The x5 loading of ‘+PK’ samples was taken into account for activity determination. C, antibodies against MPIase, SecY and YidC inhibit MtlA integration into INV. INV and IgG were mixed as described in (B), followed by MtlA synthesis in the presence of 30 µM methionine, and then PK digestion. Samples that were not treated with PK (100%) were also analyzed. The positions of MtlA and MtlA-MPF are indicated. The integration activities are indicated at the bottom. The numbers of methionine residues (25 for MtlA and 18 for MtlA-MPF) were taken into account for activity determination. D, dose-dependent inhibition by anti-MPIase IgG of 3L-Pf3 coat (triangles) and MtlA (squares) integration. The relative activities of integration as to the activity with non-immune IgG are plotted as a function of αMPIase concentration. E, summary of the effects of the respective IgGs on 3L-Pf3 coat (gray bars) and MtlA (white bars) integration. The relative activities of integration as to the activity with non-immune IgG were indicated. Error bars were calculated for three independent experiments. All the relative activities were indicated with dots. F, Effects of the respective IgGs on 3L-Pf3 coat (left half) and Pf3 coat (right half) integration in the presence of cold methionine (0.3 mM). 3L-Pf3 coat or Pf3 coat was synthesized in vitro in the presence of INVs and IgGs as described in (B), except that 0.3 mM methionine was added to synthesize 3L-Pf3 coat at high level. The integration activities with standard deviations (SD), calculated for three independent experiments, are indicated at the bottom.
MPIase and YidC function sequentially

Figure 2. MPIase depletion from INV causes defects in protein integration. A, the levels of the respective factors upon depletion. B, 3L-Pf3 coat integration into INV is impaired on MPIase depletion. INV, prepared from KS23/pAra-CdsA cultivated in the presence (+MPIase) and absence (∆MPIase) of 0.2% arabinose, were subjected to the integration assay as described in Fig. 1F (left half). 3L-Pf3 coat was synthesized in vitro in the presence of 0.3 mM methionine was added to synthesize 3L-Pf3 coat at high level. As a control, INV prepared from MC4100 (Wt), PS273/pAE9 cultivated in the presence (+SecE) or absence (ΔSecE) of 0.2% arabinose, and JS7131 cultivated in the presence (+YidC) or absence (ΔYidC) of 0.2% arabinose were also subjected to the assay. The integration activities with SD, calculated for three independent experiments, are indicated at the bottom. C, MtlA integration into INV is impaired on MPIase depletion. MtlA was synthesized in vitro in the presence of the specified INV as described in (A). Cold methionine (30 μM) was also added. The translation level (-PK) was analyzed at 20% (left) and 100% (right). The integration activities with SD, calculated for three independent experiments, are indicated at the bottom. D, the level of MPIase upon YidC (left) and SecE (right) depletion. To determine the level of SecE and YidC, the INV used in (B) and (C) were analyzed by SDS-PAGE and immunoblotting using antisera against SecE and YidC, respectively (A). The MPIase levels were determined by SDS-PAGE/immunoblotting using the total cellular extracts before INV preparation (A, D). The relative level of each factor is indicated at the bottom.
MPIase and YidC function sequentially

Figure 3. YidC accelerates MPIase-dependent integration into reconstituted proteoliposomes. A, 3L-Pf3 coat integration is accelerated by YidC when the substrate level is high. (Proteo)liposomes containing MPIase and/or YidC were subjected to the integration assay using 3L-Pf3 coat as a substrate, as described in Fig. 1B. Cold methionine (0.3 mM) was added in the right half (high 3L-Pf3 level), while it was not added in the left half (low 3L-Pf3 coat level). The integration activities are indicated at the bottom. B, SecYEG is not involved in 3L-Pf3 coat integration. 3L-Pf3 coat was in vitro synthesized in the presence of (proteo)liposomes containing MPIase, YidC, and/or SecYEG, as specified. To increase the level of 3L-Pf3 coat, 0.3 mM methionine was added (high 3L-Pf3 coat level). The integration activities are indicated at the bottom. C, Pf3 coat integration is accelerated by YidC. Pf3 coat was in vitro synthesized in the presence of (proteo)liposomes containing MPIase and/or YidC, as specified, in the presence of 0.3 mM methionine (high 3L-Pf3 coat level). The integration activities are indicated at the bottom. D, MtlA integration is dependent on both MPIase and SecYEG, and is accelerated by YidC. MtlA was in vitro synthesized in the presence of (proteo)liposomes containing MPIase, SecYEG and/or YidC, as specified. Cold methionine (30 µM) was also added. The integration activities are indicated at the bottom. All the integration activities with SD were calculated for three independent experiments.
Figure 4. Effects of YidC mutants on MPIase-dependent integration. *A*, effects of YidC mutants on 3L-Pf3 coat integration. 3L-Pf3 coat was *in vitro* synthesized in the presence of (proteo)liposomes containing MPIase and the specified YidC variant. Cold methionine (0.3 mM) was added to synthesize 3L-Pf3 coat at high level. The integration activities are indicated at the bottom. *B*, effects of YidC mutants on Pf3 coat integration. Pf3 coat was *in vitro* synthesized in the presence of (proteo)liposomes as described in (A). The integration activities are indicated at the bottom. *C*, effects of Bh-YidC and its mutant on Pf3 coat integration. Pf3 coat was *in vitro* synthesized in the presence of (proteo)liposomes containing MPIase and/or Bh-YidC or the R72Q mutant, as specified. The integration activities are indicated at the bottom. All the integration activities with SD were calculated for three independent experiments.
Figure 5. Working model for MPIase-dependent integration of Sec-independent substrates. A, the mechanism of MPIase-dependent integration in the absence of YidC. B, the mechanism of MPIase-dependent integration in the presence of YidC. MPIase, YidC, and substrates are shown. Black boxes indicate the TM region of the substrates. Positive (+) and negative (-) charges in the substrate, MPIase (pyrophosphate), and the cavity of YidC in the membranes are also shown. For details, see the text.
The bacterial protein YidC accelerates MPIase-dependent integration of membrane proteins
Masaru Sasaki, Hanako Nishikawa, Sonomi Suzuki, Michael Moser, Maria Huber, Katsuhiro Sawasato, Hideaki Matsubayashi, Kaoru Kumazaki, Tomoya Tsukazaki, Yutetsu Kuruma, Osamu Nureki, Takuya Ueda and Ken-ichi Nishiyama

J. Biol. Chem. published online October 29, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.011248

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts