SUBSTANTIATION OF AUXILIARY SUBSTANCES OF IN THE COMPOSITION OF TABLETS WITH DRY EXTRACT OF ZINGIBER OFFICINALE

Alkhalaf Malek Walid Ahmad, O. Ruban, O. Kutova, N. Herbina
National University of Pharmacy

UDC 615.32:582.548.27:615.014.2:615.453.6:616.379-008.64
https://doi.org/10.24959/ubphj.19.233

Alkhalaf Malek Walid Ahmad, O. Ruban, O. Kutova, N. Herbina
National University of Pharmacy

SUBSTANTIATION OF AUXILIARY SUBSTANCES OF IN THE COMPOSITION OF TABLETS WITH DRY EXTRACT OF ZINGIBER OFFICINALE

Topicality. Due to its rich chemical composition and pharmacological activity, Zingiber officinale is a promising raw material for creating various drugs, including ones for the treatment of type 2 diabetes.

Aim. To obtain tablets with dry ginger extract by direct pressing using polyfactorial dispersion analysis (taking into account the quality factors).

Materials and methods. The objects of the study were dry ginger extract, filler – Galen IQ 721 and excipients of three technological groups: dry binders, moisture regulators and lubricants. The effect of auxiliary substances on such indicators as bulk density, tapped density and the Carr index of the tablet mass, as well as disintegration, mechanical strength and friability of the obtained tablets have been investigated.

Results and discussion. Using the mathematical planning of the experiment by the 3×3 Latin square method, the influence of qualitative factors on the pharmacological indicators of tablets with a dry extract of ginger has been studied.

Conclusions. According to the results of analysis of variance, the optimal excipients in the composition of tablets with ginger extract were chosen: from the group of binders – Kollidone k30, as a moisture regulator – Neusilin UFL 2 and lubricant – calcium stearate.

Key words: type II diabetes; dry ginger extract; Excipients; tablets; direct pressing; pharmaceutotechnological indicators of powder masses and tablets; mathematical planning of the experiment; three-factor analysis of variance.
INTRODUCTION

The use of ginger in folk medicine has a centuries-long history, since no other spice has such an amazing combination of taste and healing properties [1].

Ginger rhizomes contain a complex of BAI, the main of which are: essential oil, content of which is 1-4.3 %, linoleic, oleinic, nicotinic acids, sesquiterpene compounds (gingerol, gigerolene, gigeronine A, B, zingerol, zingiberene, p-bisabolone, magnol, curcumene), flavonoids, asparagine, calcium, magnesium, manganese, iron, phosphorus, potassium, sodium, vitamins C, A, B, B., In addition, ginger contains all the essential amino acids (tryptophan, threonine, methionine, phenylalanine, valine, etc.) [2].

Due to the rich chemical composition Zingiber officinale manifests a multifaceted spectrum of pharmacological properties: antipyretic, analgesic, anti-inflammatory, antihypertensive, antimicrobial, sedative, etc. [3, 4].

In the pharmaceutical market of Ukraine there are drugs with different pharmacological activity that contain ginger [5]:
- for the prevention and treatment of metotrophic reactions and autonomic disorders (Antifront, Hungary);
- antitussives (Bronchomed, Doctor Cough, India);
- expectorants (Dr. Mom, Travisil, Cofol, India);
- analgesic and anti-inflammatory (Osteoarthritis, Active, Australia);
- to activate the digestive processes in dyspeptic disorders (Actis, Australia);
- to maintain and improve the functional activity of the body (Vivabon, Pakistan);
- for the correction of overweight (Lipomin, Liponorm, Australia).

In addition, the analysis of literature sources and pharmacological studies have confirmed the presence of hypoglycemic and antioxidant properties in the dry extract of ginger [6, 7]. But medicines based on it for the treatment of diabetes are absent in the pharmaceutical market of Ukraine [11]. For the tablet mass, the following was evaluated: p.2.9.34 – bulk density (у), p.2.9.8 – resistance to crushing (у), p.2.9.7 – friability (у).

The results obtained were subjected to analysis of variance [12-14]. The influence of a factor on each indicator was determined using the Fisher criterion. Based on the data obtained for significant factors, the effect of their levels was evaluated using Duncan’s multiple criterion and, for clarity of such a comparison, histograms were constructed.

QUALITATIVE FACTORS AND THEIR LEVELS

Factors	Factor levels
A – binding agents	a. – MCC 112.5 %, a. – Polypeplasdone 630.5 %, a. – Kollidone K30 5 %
B – moisture regulators	b. – Syloid 244 FP 1 %, b. – Neusilin UFL 2 1 %, b. – Aerosil 1 %
C – Lubricants	c. – Calcium stearate 1 %, c. – Compritol 808 1 %, c. – sodium stearyl fumarate 1 %

The results of pharmacotechnological studies have shown unsatisfactory flowability and compressibility of the extract, which shows the need to add lubricants and binding excipients in the development of the solid dosage form [8].

Therefore, for our research, 9 excipients have been selected, which were divided into 3 groups: dry binders (factor A), moisture regulators (factor B) and lubricants (factor C). Each factor was considered at three levels, presented in Tab. 1. The levels of factors were chosen based on the literature data [9].

Galen IQ 721, selected on the basis of previous studies [10], was used as a filler. It was added to an average tablet weight of 0.5.

For the experiment, a tablet mass was prepared by mixing 0.3 g of dry ginger extract per tablet with filler and an auxiliary substance from each group (factors A, B, C).

To study the three factors with the same number of levels used 3 × 3 Latin square.

Pharmacotechnological studies were performed according to the methods of the State Pharmacopoeia of Ukraine [11]. For the tablet mass, the following was evaluated: p.2.9.34 – bulk density (у), p.2.9.8 – resistance to crushing (у), p.2.9.7 – friability (у).

In Tab. 2, the matrix of experiment and the results of studies of pharmacotechnological indicators are given. Two series of trials of 9 experiments each were carried out.

The results obtained were subjected to analysis of variance [12-14]. The influence of a factor on each indicator was determined using the Fisher criterion. Based on the data obtained for significant factors, the effect of their levels was evaluated using Duncan’s multiple criterion and, for clarity of such a comparison, histograms were constructed.
RESULTS AND DISCUSSION

The results of analysis of variance showed that factor A (binders) has the most significant effect on such indicators as the bulk density, the Carr index and hardness. Studying the levels of binders allowed ranking them by the degree of influence on the responses. The greatest bulk density \(a_3 > a_2 > a_1 \) and the smallest index of Carr \(a_3 < a_2 < a_1 \) provides Kollidone k30 5%, the highest strength was observed in the presence of Polyplasdone s630 5% \(a_2 > a_3 > a_1 \) (Fig. 1).

Thus, Kollidone k30 has the greatest impact on the bulk density of the powder to the maximum and the Carr index to a minimum compared with other binders: Kollidone k30 > Polyplasdone s630 > MCC 112.

When studying factor B (moisture regulators), it has been revealed that they have the most significant effect on such indicators as tap-density, Carr index, strength and friability of tablets. According to the degree of influence on the responses, they are arranged as follows: tapped density \(b_2 = b_1 < b_3 \), Carr index \(b_2 = b_1 < b_3 \), strength \(b_2 > b_1 > b_3 \), and friability \(b_2 > b_1 < b_3 \) (Fig. 2).

Thus, the use of Neusilin UFL 2 as a moisture regulator has the greatest impact on the tapped density of the powder to the maximum, the Carr index to a minimum, strength to the maximum and friability to a minimum as compared to other moisture regulators:

Neusilin UFL 2 > Aerosil > Syloid 244 FP.

Studies have shown that factor C (lubricants) has a significant impact on all pharmacological parameters, except for the bulk density. According to the degree of

No	A	B	C	\(y_1' \)	\(y_2' \)	\(y_3' \)	\(y_4' \)	\(y_5' \)	\(y_6' \)
1	a_1	b_1	c_1	0.391	0.401	0.818	0.820	52.2	51.09
2	a_1	b_2	c_2	0.473	0.502	0.60	0.630	21.16	20.32
3	a_2	b_1	c_1	0.562	0.532	0.750	0.727	25.06	26.82
4	a_2	b_2	c_2	0.60	0.591	0.750	0.749	20.2	21.09
5	a_2	b_1	c_2	0.562	0.514	0.750	0.704	25.06	26.99
6	a_2	b_2	c_1	0.562	0.514	0.750	0.704	25.06	26.99
7	a_2	b_3	c_1	0.562	0.540	0.692	0.701	23.55	22.97
8	a_2	b_3	c_1	0.60	0.61	0.750	0.752	20.188	20.32
9	a_3	b_3	c_1	0.562	0.570	0.692	0.701	18.79	18.69

Note. \(y_1' \) – bulk density (g/ml); \(y_2' \) – tapped density (g/ml); \(y_3' \) – Carr index; \(y_4' \) – disintegration (sec); \(y_5' \) – tablet strength (N); \(y_6' \) – friability of tablets (%).
influence on the responses, they are arranged as follows:
tapped density – \(c_1 = c_2 = c_3 \), Carr index – \(c_2 < c_3 < c_1 \), disintegration – \(c_1 < c_2 = c_3 \), strength – \(c_2 > c_3 > c_1 \) and friability – \(c_1 = c_2 < c_3 \) (Fig. 3).

Thus, the use of calcium stearate as a lubricant has the greatest effect on powder’s tapped density, disintegration and friability to a minimum compared with other lubricants: calcium stearate < Compritol < sodium stearyl fumarate.

CONCLUSIONS

1. Using the method of mathematical planning – a three-factor experiment based on 3 × 3 Latin square the influence of 9 qualitative factors on the pharmacotechnological properties of tablets has been studied.
2. According to the results of analysis of variance, the optimal excipients in the composition of tablets with ginger extract were chosen: from the group of binders, Kollidone k30, as a moisture regulator; Neusilin UFL 2 and lubricant, calcium stearate.
3. The obtained data will be used for further research in order to determine the optimal amount of these excipients in the development of technology of tablets with a dry extract of ginger by direct compression.

Conflict of interests: authors have no conflict of interest to declare.
REFERENCES

1. An overview: ginger, a tremendous herb / M. Shoaib, A. Shehzad, M. S. Butt et al. // The J. of Global Innovations in Agricultural and Social Sci. – 2016. – Vol. 4, № 4. – P. 172–187. https://doi.org/10.22194/jgiass.4.4.766

2. Журналь, І. О. Імбир лікарський як перспективна рослина для застосування в медицині / І. О. Журналь // Український фармацеутичний журнал. – 2012. – № 7. – С. 4–9.

3. Быков, И. И. Экстрагирование биологически активных веществ из Zingiber Officinale Roscoe в технологии фитопрепаратов (обзор) / И. И. Быков, Д. В. Компантцев, И. М. Привалов // Вестник смоленской гос. мед. академии. – 2017. – Т. 16, № 1. – С. 170–180.

4. Быков, Игнатьев. Влечение рослинних ліків багатосторонньої та поліорганної дії (загал матеріалів) / О. І. Волошин, Н. В. Бачук-Понеч, Л. О. Волошин // Фітотерапія. Часопис. – 2012. – № 2. – С. 19–22.

5. Компендіум online. [Електронний ресурс]. – Режим доступу : http://compendium.com.ua

6. Экспериментальное обґрунтування вибору гіпоглікемічної дози сухого екстракту імбіру на нормоглікемічних шираках / Н. М. Коненко, В. В. Чікініна, М. В. Сорокіна та ін. // Фармац. технол., біофармація, гомеопатія. – 2017. – № 2. – С. 52–58.

7. Protective Effects of Ginger (Zingiber officinale) Extract against Diabetes-Induced Heart Abnormality in Rats / B. Ilkhanizadeh, A. Shirpoor, М. Н. Коненко та ін. // J. of Pharmac. Sci. and Res. – 2018. – Vol. 10, № 1. – Р. 5–7.

8. Studies of Physico–Chemical and Pharmaco–Technological Properties of Zingiber Officinale Dry Extract / M. V. Alkhalaф, О. А. Рубан, Н. А. Гербина et al. // J. of Pharmaceut. Sci. and Res. – 2018. – Vol. 10, № 1. – Р. 5–7.

9. Handbook of Pharmaceutical Excipients / C. R. Raymond, J. S. Paul, G. C. Walter et al. – 7th ed. – Pharmaceutical Press and American Pharmacists Association, 2012. – 1033 p.

10. Ruban, О. А. The choice of a filler when developing tablets based on the dry extract of ginger / О. А. Рубан, М. В. Алхалаф, Н. А. Гербина // EUREKA : Health Sci. – 2019. – Vol. 3. – Р. 26–34. https://doi.org/10.21303/2504-5679.2019.00904

11. Державна фармакопея України : в 3-х т. / Державне підприємство “Український науковий фармакопейний центр якості лікарських засобів”. – 2-е вид. – Х. : Державне підприємство “Український науковий фармакопейний центр якості лікарських засобів”, 2015. – Т. 1. – 1128 с.

12. Mathematical planning of the experimental study on the preparation of medicinal preparations / Т. А. Грошовий, В. М. Марченко, Л. І. Кучеренко та ін. – Тернопіль : ТДМУ “Укрмедкнига”, 2008. – 368 с.

13. Підбір кількісного складу допоміжних речовин при створенні таблеток “Ангіолін” / І. А. Мазур, Л. І. Кучеренко, О. С. Бідненко та ін. // Фармацевтична технологія, біофармація, гомеопатія. – 2016. – № 4. – С. 12–15.

14. Кучеренко, Л. І. Вибір допоміжних речовин з метою отримання таблеток на основі карбамазепіну з тіотриазоліном методом вологої грануляції / Л. І. Кучеренко, Г. Р. Німенко, З. Б. Моряк // Фармац. технол., біофармація, гомеопатія. – 2017. – № 2. – С. 52–58.

REFERENCES

1. Shoaib, M., Shehzad, A., Butt, M. S., Saed, M., Raza, H., Niazi, S., ... Shakel, A. (2016). An OVERVIEW: GINGER, A TREMENDOUS HERB. Journal of Global Innovations in Agricultural and Social Sciences, 4(4), 172–187. https://doi.org/10.22194/jgiass.4.4.766

2. Zhuravel, I. O. (2012). Ukrains’kij biofarmacevtičnij žurnal, No. 3 (60) 2019 ISSN 2311-715X (Print)ISSN 2519-8750 (Online)

3. Bykov, I. I., Kompantcev, D. V., & Privalov, I. M. (2017). Vestnik Smolenskoi gosudarstvennoi medicinskoi akademii, 16 (2), 170–180.

4. Voloshyn, O. I., Bachuk-Ponych, N. V., Voloshyna, L. O., Vasiuk, V. L. (2012). Fitoiterapiya. Chasopys, 2, 19–22.

5. Kompendium online. (n.d.). Available at: http://compendium.com.ua

6. Kononenko, N. M., Chikitkina, V. V., Sorokina, M. V., Alkhalaф, M. V. (2018). Farmatsvetnychnyi zhurnal, 2, 68–75.

7. Ilkhanizadeh, B., Shirpoor, A., Khadem Ansari, M. hasan, Nemati, S., & Rasmi, Y. (2016). Protective Effects of Ginger (Zingiber officinale) Extract against Diabetes-Induced Heart Abnormality in Rats. Diabetes & Metabolism Journal, 40 (1). 46. https://doi.org/10.4093/dmj.2016.40.1.46

8. Alkhalaф, M. V., Ruban, О. А., Gerbina, N. A., Masliy, Ju. S. (2018). Studies of Physico–Chemical and Pharmaco–Technological Properties of Zingiber Officinale Dry Extract. Journal of Pharmaceutical Science and Research, 10 (1), 5–7.

9. Raymond, C. R., Paul, J. S., Walter, G. C., Marian, E. F. (2012). Handbook of Pharmaceutical Excipients. (2nd ed.). (2015). (Vols. 1–3; Vol. 1). Kharkiv : Derzhavne pidpryemstvo “Ukrainskyi naukovyi farmakopeinyi tsentr якості лікарських засобів”, 2015. – Т. 1. – 1128 с.

10. Alkhalaф, M. V., Ruban, О. А., Gerbina, N. A., Masliy, Ju. S. (2018). Studies of Physico–Chemical and Pharmaco–Technological Properties of Zingiber Officinale Dry Extract. Journal of Pharmaceutical Science and Research, 10 (1), 5–7.

11. Derzhavna farmakopeia Ukrainy (2nd ed.). (2015). (Vols. 1–3; Vol. 1). Kharkiv : Derzhavne pidpryemstvo “Ukrainskyi naukovyi farmakopeinyi tsentr якості лікарських засобів”, 1128.

12. Groshevoy, T. A., Martensyk, V. P., Kucherenko, L. I., Vron ska, L. V., Gureeva, S. M. (2008). Matematichne planuvannya eksperimentu pri provedenii naukovih doslidhenn v farmatytsii. Ternopil : TDMIU “Ukrmedknya”, 368.

13. Mazur, I. A., Kucherenko, L. I., Bidnенко, O. S. (2016). Farmatsvetnychna tehnologiya, biofarmatsiya, gomeopatiya, 4, 12–15.

14. Kucherenko, L. I., Nimenko, G. R., Morysak, Z. B. (2017). Farmatsvetnychna tehnologiya, biofarmatsiya, gomeopatiya, 2, 52–58.
Information about authors:
Alkhalaf Malek Walid Ahmad, post graduate student of the Department of Industrial Technology of Drugs, National University of Pharmacy, Kharkiv, Ukraine. E-mail: malekwalkhalaf@gmail.com. ORCID: http://orcid.org/0000-0003-1188-0632
Ruban O., Doctor of Pharmacy, Professor, head of the Department of Industrial Technology of Drugs, National University of Pharmacy, Kharkiv, Ukraine. E-mail: ztl@ukrfa.kharkov.ua. ORCID: https://orcid.org/0000-0002-2456-8210
Kutova O., Candidate of Technical Sciences, Associate Professor of the Department of Processes and Equipment of Chemical and Pharmaceutical Production, National University of Pharmacy, Kharkiv, Ukraine.
Gerbina N., Candidate of Pharmaceutical Sciences, teaching assistant of the Department of Industrial Technology of Drugs, National University of Pharmacy, Kharkiv, Ukraine. ORCID: https://orcid.org/0000-0001-9826-7552

Відомості про авторів:
Алхалаф Малек Валид Ахмад, аспірант кафедри заводської технології ліків, Національний фармацевтичний університет. E-mail: malekwalkhalaf@gmail.com. ORCID: http://orcid.org/0000-0003-1188-0632
Рубан О. А., д-р фармац. наук, професор, завідувач кафедри заводської технології ліків, Національний фармацевтичний університет. E-mail: ruban_elen@ukr.net. ORCID: http://orcid.org/0000-0002-2456-8210
Кутова О. В., канд. техн. наук, доцент кафедри процесів та апаратів хіміко-фармацевтичних виробництв, Національний фармацевтичний університет. E-mail: paxtoxt@gmail.com. ORCID: https://orcid.org/0000-0002-3761-2831
Гербіна Н. А., канд. фармац. наук, доцент кафедри заводської технології ліків, Національний фармацевтичний університет. E-mail: n.a.gerbina@gmail.com. ORCID: http://orcid.org/0000-0001-9826-7552

Сведения об авторах:
Алхалаф Малек Валид Ахмад, аспирант кафедры заводской технологии лекарств, Национальный фармацевтический университет. E-mail: malekwalkhalaf@gmail.com. ORCID: http://orcid.org/0000-0003-1188-0632
Рубан Е. А., д-р фармац. наук, профессор, заведующий кафедрой заводской технологии лекарств, Национальный фармацевтический университет. E-mail: ruban_elen@ukr.net. ORCID: http://orcid.org/0000-0002-2456-8210
Кутова О. В., канд. техн. наук, доцент кафедры процессов и аппаратов химико-фармацевтических производств, Национальный фармацевтический университет. E-mail: paxtoxt@gmail.com. ORCID: https://orcid.org/0000-0002-3761-2831
Гербина Н. А., канд. фармац. наук, доцент кафедры заводской технологии лекарств, Национальный фармацевтический университет. E-mail: n.a.gerbina@gmail.com. ORCID: http://orcid.org/0000-0001-9826-7552

Надійшла до редакції 14.06.2019 р.