Expression, Isolation, and Characterization of an Active Site (Serine 528→Alanine) Mutant of Recombinant Bovine Prothrombin*

(Received for publication, December 14, 1990)

Gang Pei, Keith Baker‡, S. Michelle Emfinger¶, Dana M. Fowlkes∥, and Barry R. Lentz‡

From the Department of Biochemistry and Biophysics and ‡Department of Pathology, University of North Carolina, Chapel Hill, North Carolina 27599-7260

An active site mutant bovine prothrombin cDNA (Ser528→Ala) has been constructed, subcloned, and expressed in Chinese hamster ovary cells. The recombinant mutant prothrombin, expressed at the level of 1.5–2.0 µg/ml of cell medium, was fully carboxylated (9.9 ± 0.4 mol of γ-carboxyglutamic acid/mol of prothrombin). The mutant prothrombin could be activated to thrombin by Taipan snake venom and activated to meizothrombin by ecarin in a manner comparable to native bovine prothrombin or recombinant wild-type bovine prothrombin. The mutant meizothrombin thus formed was stable and did not autolyze. The initial rate of cleavage of mutant prothrombin catalyzed by the full prothrombinase was only 28% of the rate of cleavage of native prothrombin, while recombinant wild-type prothrombin was cleaved at the same rate as the native molecule. The mutant thrombin, obtained from the mutant prothrombin in situ by prothrombinase or Taipan snake venom activation, showed no enzymatic activity toward either fibrinogen or a synthetic chromogenic substrate, D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroanilide dihydrochloride (S2238). The mutant thrombin also bound dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide, a specific fluorescent inhibitor of the thrombin active site, with a weaker binding affinity (kD = 5.4 × 10^4 M⁻¹) than did native thrombin (k2 = 1.7 × 10⁵ M⁻¹). These results indicate that the mutant recombinant prothrombin described here is a useful tool for the study of meizothrombin or thrombin without the complications arising from the proteolytic activities of these molecules. Study of the activation of this mutant has already revealed a functional link between the site of initial cleavage by the prothrombinase and the conformation at the nascent active site of prothrombin.

Prothrombin is the precursor of thrombin, a serine protease which plays a central role in the process of blood coagulation (Mann et al., 1988). The activation of bovine prothrombin to thrombin requires cleavage of two peptide bonds, Arg223–His224 and Arg274–Thr275. Cleavage at Arg223–His224 results in exposure of the active site and formation of meizothrombin, and, if Arg274–Thr275 has already been cleaved, thrombin (Mann et al., 1981; Rosing and Tans, 1988). Like other serine proteases, the thrombin active site contains the catalytic triad, composed of His530, Asp189, and Ser195.

The activity of thrombin active site toward fibrinogen, factor V, factor VIII, factor XIII, and platelets makes it very difficult to measure the thrombin binding to those substrates without activation. The cleavage of Arg530–Ser195 in bovine prothrombin and of both Arg223–Ser224 and Arg274–Thr275 in human prothrombin by either thrombin or the activation intermediate meizothrombin also creates an obstacle to the crystallization of prothrombin or to biophysical studies of meizothrombin. Meizothrombin undergoes autolysis even in the presence of potent active site inhibitors (Armstrong et al., 1990; Doyle and Mann, 1990; Pei and Lentz, 1991). Therefore, it is desirable to have an active site mutant of prothrombin.

A wild-type human prothrombin cDNA has been expressed in Chinese hamster ovary cells (CHO), and the expressed recombinant prothrombin has been shown to be equivalent to plasma-derived prothrombin in specific coagulant activity and in γ-carboxyglutamic acid content (Jorgensen et al., 1987). A series of point mutations in the amino-terminal region of prothrombin were successively made to identify the amino acid residues in the γ-carboxylation recognition site (Huber et al., 1990). In the study reported here, a wild-type bovine prothrombin cDNA and an active site mutant (Ser528→Ala) bovine prothrombin cDNA have been constructed and expressed in CHO cells. The mutant recombinant prothrombin obtained was fully γ-carboxylated and was activated at a similar rate by ecarin and Taipan snake venom and at a slower rate by the full prothrombinase as compared to native prothrombin or wild-type recombinant prothrombin. The mutant thrombin had no activity toward fibrinogen or toward a synthetic chromogenic substrate (S2238) and displayed a moderately decreased binding affinity toward dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide (DAPA), a specific thrombin active site inhibitor.

EXPERIMENTAL PROCEDURES

Materials—Bovine brain phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (PC) were purchased from Avanti Biochemicals (Birmingham, AL). DAPA was synthesized and purified according to Mann et al. (1981). D-Phenylalanyl-L-pipecolyl-L-arginine-p-nitroanilide dihydrochloride (S2238) was from Helena Laboratories (Beaumont, TX). Ecarin from Echis carinatus snake venom and Taipan snake venom from Oxyuranus scutellatus were from Sigma. Morpholinone was obtained from Aldrich and formaldehyde

* This work was supported by United States Public Health Service Grants HL26309 (Specialized Center for Research in Thrombosis and Hemostasis, to B. R. L) and HL36187 and HL31012 (to D. M. F.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom reprint requests should be addressed.

1 The abbreviations used are: CHO, Chinese hamster ovary; S2238, D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroanilide dihydrochloride; DAPA, dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide; PS, bovine brain phosphatidylserine; PC, 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine; ITS, insulin-transferrin-sodium selenite media supplement; SUV, small unilamellar vesicles; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; Gla, γ-carboxyglutamic acid.

This is an Open Access article under the CC BY license.
(37% aqueous solution) was from Mallinckrodt (St. Louis, MO). [14C]Formaldehyde was purchased from Du Pont-New England Nuclear. Insulin-stimulfer-sodium selenite media supplement (ITS) and NuSerum® were from Collaborative Research (Bedford, MA). Cell growth medium Dulbecco's modified Eagle's medium/F-12 and calf serum were purchased from Life Technologies, Inc. Six colonies were isolated from Linbro® microtiter plates in Dulbecco's modified Eagle's medium/F-12 with 50 μg/ml G418. To scale up cell production, one confluent 100-mm plate was transferred to one roller bottle (Costar, 900 cm²) in a total volume of 250 ml. In about 4 days, the cells were confluent. Sterile microcarrier beads (0.8 g, Pharmacia LKB Biotechnology, Inc., Cytodex 2), diluted in 50 ml of growth medium, were added to each bottle. After 3 days, the beads were covered with cells, they were washed once briefly with serum-free medium and once again overnight. All medium was removed, and each bottle was fed with 250 ml of serum-free medium. About 50 ml of conditioned medium was harvested daily, with 50 ml of fresh medium added, for 3 weeks. A final concentration of 10 mM benzamidine and 0.15 mM phenylmethylsulfonyl fluoride was added into the medium collected.

Isolation of Recombinant Prothrombins—Briefly, 3.7 ml of 0.4 M sodium acetate (pH 5.5) was mixed with 1.0 M benzamidine to obtain 100 ml of cell-free medium containing recombinant prothrombin. Prothrombin was precipitated with 1/10th volume of 1 M barium chloride, and the precipitate was washed three times with 0.1 M barium chloride and 1 M benzamidine. The precipitate was resuspended in 40% saturated ammonium sulfate and 0.2 M EDTA and subjected to centrifugation. The supernatant was then dialyzed against 20 mM Tris, pH 7.4, overnight and loaded onto a FPLC Mono Q ion-exchange column (HR 5/5, Pharmacia LKB Biotechnology, Inc.). The column was washed with 20 ml Tris, pH 7.4, buffer, and the protein was eluted with a linear gradient from 0 to 0.7 M NaCl over the same buffer. The same buffer was used for the subsequent steps. The fractions containing prothrombin were monitored at 280 nm. The identity of proteins in different fractions was determined by sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), using prestained SDS-PAGE standards (Bio-Rad) and purified native prothrombin as the standard. The fractions containing pure prothrombin were combined and stored at -70 °C for the following studies.

γ-Carboxylglutamic Acid Content of Recombinant Prothrombins—Prothrombin fragment 1 was generated by cleavage of prothrombin with thrombin coupled to agarose beads. The resulting fragment 1 corresponding to 1.4 kb was cloned on a pBluescript vector. The NcoI-PstI fragment containing fragment 1 was inserted into a new NcoI site in the expression vector pDx. One clone was selected and analyzed for the presence of fragment 1 by subcloning into the EcoRI-NcoI site of the expression vector p437 (Fig. 1A). The resulting expression vector p437 (Fig. 1C) was subcloned into the EcoRI-NcoI site of vector p451 encoding the carboxy-terminal region of prothrombin was subcloned into pUC-8, resulting in a clone p479 (Fig. 1B). To mutate the active site serine (SerγSi) to alanine, we replaced the BamHI-BamHI fragment from p479, containing a frame-shifted insert of oligonucleotides resulting from a single transposon insertion, with oligonucleotides encoding a single amino acid change (Fig. 1C). The EcoRI-NcoI fragment of p451 encoding a pair of PstI-BamHI fragment was inserted into the BamHI-Ban11 fragment of the expression vector p485 (Fig. 1C). The resulting expression vector p485 (Fig. 1C) was subcloned into the EcoRI-NcoI site of the expression vector p437. The result is a shuttle expression vector, p487 (Fig. 1C) that has the potential to express SerγSi-Ala prothrombin. Prothrombin fragments were generated from the expressed prothrombin in the supernatant of the cell-free medium.

Prothrombin Activation by Prothrombinase and Enzymatic Activity of the Activation Products—Mutant recombinant prothrombin, wild-type recombinant prothrombin, and native prothrombin (all at 1.2 μM) were activated with 0.5 mM factor Xa, 5 mM factor Va, 10 μM PS/PC (25/75) SUV and 5 mM CaCl₂ in 20 mM Tris, 150 mM NaCl, pH 7.4, at 37 °C. At intervals of 0.5, 10, and 60 min, aliquots were withdrawn and subjected to SDS-PAGE (10% polyacrylamide) under nonreducing and reducing (3% 2-mercaptoethanol) conditions. Gels were stained with Coomassie Blue R-250 (Sigma), and the protein bands were quantitated by densitometry (Molecular Dynamics, Sunnyvale, CA) and the enzymatic activity of the modified fragment F1 was counted on a LKB 1211 Rarcketa liquid scintillation counter.

Calcium phosphate cotransformation of CHO was carried out using a 1:10 ratio of p437 or p487 to pRSVneo according to a standard protocol (Graham and van der Eb, 1973). Cells were grown in Dulbecco's modified Eagle's medium/F-12 with 10% calf serum and 500 μg/ml G418. Individual clones of CHO cells resistant to G418 were tested for production of prothrombin. Nearly confluent cells were washed twice in Dulbecco's modified Eagle's medium/F-12 (ITS) and 10 μg/ml vitamin K. Two ml of media was left on each plate for 24 h. The media from the CHO cells transformed with wild-type prothrombin expression vector were tested for their ability to hydrolyze Spectrozyme TH as recommended by the supplier (American Diagnostic, Norwalk, CT). Stocks of cells were cultured in Dulbecco's modified Eagle's medium/F-12 with 5.0% NuSerum, 5.0% calf serum, and 500 μg/ml G418.

Activation was also carried out at 37 °C and thereby taken to completion in 45 min. The product was thrombin in every case as shown by SDS-PAGE. An aliquot of each incubation was taken to measure the activity toward synthetic chromogenic substrate S2238 and amidolytic (Sigma). The measurements were performed simultaneously on a 96-well plate with a Microplate Reader (model 3550, Bio-Rad) with absorbance read every 30 s at 405 nm. For the synthetic
An Active Site Mutant Prothrombin

chromogenic substrate assay, 5-μl aliquots (equal to 0.45 μg of prothrombin), 60 μl of 1 mM S2238, and 120 μl of 20 mM Tris, 150 mM NaCl, pH 7.4 buffer were used. For the fibrinogen clotting assay, 2-μl aliquots (equivalent to 0.18 μg of prothrombin), 140 μl of 5 mg/ml fibrinogen, and 50 μl of 20 mM Tris, 150 mM NaCl, pH 7,4 buffer were used, and turbidity was recorded at the same wavelength.

Prothrombin Activation by Ecarin and Taipain Venom—Recombinant prothrombins were also activated with ecarin from E. carinatus venom, which cleaves the Arg335-Ile336 bond of bovine prothrombin (Rosing and Tans, 1988). Ecarin (12.5 μg/ml final concentration) was added to a final concentration of 90 μg/ml of native or recombinant prothrombin in 20 mM Tris, 150 mM NaCl, 6 mM CaCl2, pH 7.4, buffer at 37°C to start the activation. At intervals of 0, 30, 90 min, 20-μl aliquots were withdrawn and subjected to SDS-PAGE under both nonreducing and reducing conditions. Gels were stained with Coomassie Blue R-250.

The DAPA fluorescence assay (Mann et al., 1981; Nesheim and Mann, 1983; Krishnaswamy et al., 1986) was also applied to compare the activation of mutant and native prothrombin by ecarin and Taipain venom. Taipain snake venom from O. scutellatus is known to activate prothrombin to thrombin in the absence of factor Va at a rate that is enhanced 20–30 times by phospholipid vesicles (Owen and Jackson, 1973). Using an SLM 48000F fluorometer with excitation wavelength at 280 nm and emission wavelengths at 515–550 nm with a 515-nm cut-off filter, 125 nM mutant or native prothrombin,

5 mM CaCl2, and 500 nM DAPA in 20 mM Tris, 150 mM NaCl, pH 7.4, buffer were incubated at 37°C for 3 min before adding 100 μg/ml ecarin or 10 μg/ml Taipain venom (final concentrations) to start the reaction. The Taipain venom activation mixture also contained 10 μM PS/PC (25/75) SUV. The fluorescence intensity of DAPA was greatly enhanced when bound to the active site of newly formed meizothrombin or thrombin, and this allowed us to record continuously the time course of prothrombin activation. The fluorescence emission spectra of both reaction mixtures were also determined from 450 to 620 nm (4-nm bandpass) with an excitation wavelength of 280 nm and a 450-nm cut-off filter in the emission beam.

DAPA Fluorescence Emission Intensity Titration with Mutant or Native Thrombin—1.6 μM mutant or native prothrombin was incubated with 50 μg/ml Taipain venom, 10 mM PS/PC (25/75) SUV, and 5 mM CaCl2 in 20 mM Tris, 150 mM NaCl, pH 7.4, buffer at 22°C overnight. Prothrombin was completely activated to thrombin as judged by SDS-PAGE.

The activation mixtures were then used to titrate 150 nM DAPA in 20 mM Tris, 150 mM NaCl, pH 7.4, at 22°C by measuring DAPA fluorescence emission intensity using \(\lambda_a = 280 \) nm and \(\lambda_m = 515-550 \) nm with a 515-nm cut-off filter. The data were analyzed by the equation (Nesheim et al., 1979; Hibbard et al., 1982)

\[
\frac{1}{f[L_b]} = \frac{n[P]}{\delta(L)K_M} + \frac{1}{K_d}
\]

Fig. 1. Schematic diagram of construction of the expression vector for recombinant prothrombins. The expression vector for the wild type (p437) was made by subcloning the EcoRI-NcoI fragment of p433 (A) into p272. The mutant prothrombin (Ser304→Ala) expression vector (p487) was made by subcloning the EcoRI-NcoI fragment of p485 (B) into p272 (see "Experimental Procedures" for details). Resulting vectors are shown in C.
in which $[P]_0$ and $[L]_0$ are the nominal concentrations of protein and ligand, respectively; f and b are the fraction of total ligand concentration free and bound, respectively; n is the number of independent, noninteracting ligand-binding sites/protein molecule, and K_d is the dissociation constant.

RESULTS

FPLC and SDS-PAGE Behaviors of Native and Recombinant Prothrombins—Recombinant prothrombins isolated after barium precipitation and ion-exchange FPLC were nearly homogeneous as judged by SDS-PAGE (data not shown). Recombinant prothrombins migrated the same as native prothrombin on SDS-PAGE under both nonreducing and reducing conditions (Fig. 2). When eluted with a NaCl gradient from a Mono Q column, wild-type recombinant prothrombin was eluted at 21.14 min and mutant recombinant prothrombin (Ser29→Ala) was eluted at 21.01 min as compared to 21.26 min for native bovine prothrombin. After the FPLC purification, the yields of wild-type and mutant prothrombin were 0.6–0.8 and 1.5–2.0 μg/ml of cell medium, respectively.

Recombinant Prothrombins Possess Normal Gla Content—The relative γ-carboxyglutamatic acid (Gla) contents of the fragment 1 peptides isolated from recombinant and native prothrombins were determined by the Gla-specific [14C]formaldehyde-morpholine method (Wright et al., 1986). This method specifically labels Gla residues with [14C]formaldehyde. The results are presented in Table I, where the specific [14C]radioactivity of each modified fragment 1 was obtained using the molecular weight of 22,000 (Mann, 1976). Using the ratio of the specific radioactivity of recombinant prothrombin fragment 1 to that of the native molecule and a value of 10 Gla residues/molecule (Nelsenstuen et al., 1974) for native prothrombin fragment 1, the relative values of Gla content of recombinant prothrombin fragment 1 were calculated (Jorgensen et al., 1987). Mutant recombinant prothrombin contained 9.9 ± 0.5 mol of Gla residues/mol of fragment 1, and wild-type recombinant prothrombin contained 9.4 ± 0.4 mol of Gla residues/mol of fragment 1.

Activation of Recombinant Prothrombins by Prothrombinase—As shown in Fig. 2, activation of wild-type recombinant prothrombin by the full prothrombinase complex was similar both in rate and extent of activation to the activation of native prothrombin. By contrast, the activation of the mutant prothrombin (Ser29→Ala) was much slower than that of the native molecule under the same conditions. The initial rate of recombinant prothrombin activation relative to that of native prothrombin, as quantitated with the scanning densitometer, was 97% for wild-type prothrombin and 28% for mutant prothrombin.

Mutant Thrombin Showed No Activity Toward S2238 and Fibrinogen—Thrombin derived either from wild-type prothrombin or mutant prothrombin by the prothrombinase activation was tested for its activities toward synthetic chromogenic substrate S2238 and fibrinogen and compared to native bovine thrombin (Fig. 3). As expected, wild-type thrombin had the same enzymatic activities as native thrombin, while the mutant thrombin (Ser29→Ala) displayed no

Specific activity	γ-Carboxyglutamatic acid content	
dpdmol	mol/mol	
Native prothrombin F1	34.6 ± 1.5	10.0a
Mutant prothrombin F1	34.3 ± 1.6	9.9 ± 0.5
Wild-type prothrombin F1	32.5 ± 1.3	9.4 ± 0.4

a 10 Gla residues/native prothrombin fragment 1 was taken as the standard to obtain relative values for the recombinant molecules.

![Fig. 2. SDS-PAGE analysis of recombinant prothrombin activation by the full prothrombinase complex.](image-url)

![Fig. 3. Enzymatic activities of prothrombin activation products toward S2238 and fibrinogen.](image-url)
activity toward these substrates.

The reaction mixtures of the recombinant prothrombins activated by Taipan snake venom, in which thrombin was the activation product as judged by SDS-PAGE, were also tested. The same results (data not shown) were obtained as those obtained with the prothrombinase-derived thrombin.

SDS-PAGE Analysis of Recombinant Prothrombin Activation by Ecarin—When activated with ecarin, wild-type recombinant prothrombin behaved the same as native prothrombin, as analyzed with SDS-PAGE (Fig. 4). Activation of the wild-type prothrombin was almost completed at 90 min, and most prothrombin was converted to meizothrombin des fragment 1, which is the product of bovine meizothrombin autolysis (Rosing and Tans, 1988). Activation of mutant prothrombin was also completed by 90 min as judged by the reducing gel (Fig. 4B), but the product was meizothrombin instead of meizothrombin des fragment 1, showing mutant meizothrombin was not subject to autolysis as were the native and wild-type molecules.

DAPA Assay of Mutant Prothrombin Activation by Ecarin or Taipan Venom—When monitored with the DAPA fluorescence assay, the emission intensity of the mutant prothrombin reaction mixture activated by ecarin (line 2, Fig. 5A) reached a plateau after 300 s. The native prothrombin reaction mixture (line 1, Fig. 5A) also reached a maximum at about 300 s and subsequently declined. The later behavior is characteristic of formation of meizothrombin followed by its subsequent autolysis (Hibbard et al., 1982; Doyle and Mann, 1990), as shown in the SDS-PAGE results in Fig. 4. Also consistent with Fig. 4, the initially formed mutant meizothrombin was stable (line 2, Fig. 5A).

The most interesting aspect of the data shown in Fig. 5 is that the fluorescence intensity of the mutant prothrombin activation mixture was only 33% of that of native molecule at the maximum when activated by ecarin. In addition, the fluorescence intensity after activation of mutant prothrombin to thrombin with Taipan venom was only 40% of the fluorescence intensity observed for the native thrombin-DAPA complex. This could be due either to reduced binding of DAPA or to a reduced quantum yield of the DAPA-mutant active site complex as compared to the DAPA-native active site complex.

The DAPA fluorescence emission spectrum of the mutant prothrombin reaction mixture activated by ecarin was similar ($\lambda_{\text{max}} \approx 525$ nm) to that of the native activation mixture, measured at about 300 s after initiation of the activation (data not shown). The DAPA fluorescence emission spectrum of the mutant prothrombin reaction mixture activated by Taipan snake venom was also similar ($\lambda_{\text{max}} \approx 540$ nm) to that of the native activation mixture (data not shown).

Mutated Thrombin Active Site Showed a Weaker DAPA Binding Affinity—As titrated with the same amount of DAPA under the same conditions, the fluorescence intensity of the complex of DAPA and mutant thrombin was 74% of that of the complex of DAPA and native thrombin when both titrations reached saturation (data not shown). Analysis of the titration data using Equation 1 gave a stoichiometry $n = 1.22$ mol of DAPA/mol of mutant thrombin and a dissociation constant $K_d = 5.4 \times 10^{-6}$ M (Fig. 6B) as contrasted to $n = 1.02$ mol of DAPA/mol of native thrombin and $K_d = 1.7 \times 10^{-6}$ M (Fig. 6A). By comparison, $n = 1.20 \pm 0.14$ mol of DAPA/mol of bovine thrombin and $K_d = (1.9 \pm 0.6) \times 10^{-6}$ M were reported by Hibbard et al. (1982).

DISCUSSION

The catalytic triad residues in thrombin, as for other members of the serine protease family, are identified as His265,
An Active Site Mutant Prothrombin

\[K_s = 1.7 \times 10^{-8} \text{ M} \]

Fig. 6. Analysis of DAPA titration with native thrombin (A) and mutant thrombin (B). 1.6 \mu M native or mutant prothrombin was incubated with 50 \mu g/ml Taipan venom, 10 mM PS/PC (25/75) SUV, and 5 mM CaCl\textsubscript{2} in 20 mM Tris, 150 mM NaCl, pH 7.4, at 22\degree \text{C} overnight. The reaction mixtures were then used to titrate 150 nm DAPA in 20 mM Tris, 150 mM NaCl, pH 7.4, at 22\degree \text{C} by measuring DAPA fluorescence emission intensity with \lambda_{ex} = 280 nm. Data were analyzed according to Equation 1 under “Experimental Procedures” (Nesheim et al., 1979; Hibbard et al., 1982).

Asp49 and Ser49 (Mann et al., 1981). Because of the essential function of thrombin in blood coagulation, no natural prothrombin mutated in any of these 3 catalytic residues is likely to be found. In the current study, a mutant bovine prothrombin (Ser49→Ala) cDNA has been constructed, subcloned, and expressed in CHO. The expressed mutant recombinant prothrombin, as compared to native prothrombin, is fully \gamma-carboxylated in CHO cells in the presence of vitamin K at a yield of 1.5–2.0 \mu g/ml. The mutant prothrombin (Ser49→Ala), with the same mobility as native prothrombin on an anion exchange FPLC column and on SDS-PAGE, can be activated to meizothrombin and thrombin as are native and wild-type expressed prothrombin. The mutant meizothrombin obtained by ecarin activation is very stable and does not undergo autolysis even in the absence of thrombin active site inhibitors. Thus, it provides a useful tool to examine the role of meizothrombin as an important intermediate in prothrombin activation by the full prothrombinase. The availability of a stable form of meizothrombin will allow determination of the secondary or tertiary structure of meizothrombin as well as of its interactions with other coagulation factors and with the phospholipid surface. The mutant thrombin, as expected, does not cleave fibrinogen and does not hydrolyze thrombin-specific chromogenic substrates. This inactive mutant thrombin is suitable for studying the binding interactions of thrombin with its substrate and with inhibitors in the absence of catalysis.

The successful expression of the mutant prothrombin in vitro might also benefit crystallographic studies of prothrombin, thrombin, and even meizothrombin. So far, only the crystallographic structures of prothrombin fragment 1 and of thrombin inhibited with D-Phe-Pro-Arg chloromethylketone or hirudin have been reported (Tulinsky et al., 1988; Skrzypczak-Jankun et al., 1989; Bode et al., 1989; Rydel et al., 1990; Grütter et al., 1990).

DAPA, a specific inhibitor of the thrombin active site (\(K_s = 1.7 \times 10^{-8} \text{ M} \)), does not bind to prothrombin or to prothrombin 1, in which both Arg273-Thr275 and Arg273-Ile274 remain intact, while it binds at a lower affinity (\(K_s = 5.9 \times 10^{-7} \text{ M} \)) to prothrombin 2, in which Arg272, Ile274 is intact and the active site unexposed (Hibbard et al., 1982). Although the replacement of Ser49 by Ala in the mutant thrombin active site reduces its binding affinity to DAPA about 3-fold (\(K_s = 5.4 \times 10^{-6} \text{ M} \)), the affinity is still 10 times higher than that of the DAPA-prothrombin 2 complex. In addition, the DAPA fluorescence emission spectrum of the mutant thrombin has the same spectral features as that of native thrombin. These observations suggest that the active site, after the Arg272-Ile274 bond is cleaved, might be normally developed in the mutant thrombin, despite any disruption that might occur as a result of the Ser49→Ala replacement. The weaker binding of the mutant thrombin to DAPA reveals that Ser49 of the catalytic triad may be directly involved in DAPA binding, as recently shown for hirudin binding (Rydel et al., 1990).

It is worthwhile to point out that the initial rate of recombinant mutant prothrombin activation by the full prothrombinase is less than one-third the rate of native prothrombin activation, while the rate of activation of recombinant wild-type prothrombin was the same as for native prothrombin. By comparison, the activation rates of recombinant mutant prothrombin by ecarin (at Arg272-Ile274) and by Taipan snake venom (at both Arg272-Thr275 and Arg273-Ile274) were the same as for native prothrombin and for recombinant wild-type prothrombin. This suggests that the mutation of Ser49 to Ala in the active site might alter the environment or structure around Arg272, Ile274 in a way that could be sensed by the full prothrombinase, which activates prothrombin through meizothrombin as the intermediate (Rosing et al., 1986; Krishnaswamy et al., 1986). The prothrombin molecule has been shown to interact functionally with each component of the prothrombinase, factor Xa, factor Va, Ca2+, and the phospholipid surface (Mann et al., 1988, 1990; Mann et al., 1990). The difference in the kinetics of activation between mutant recombinant prothrombin and the native molecule might be derived, then, from altered molecular interactions between mutant prothrombin and some components of the prothrombinase. Alternatively, meizothrombin may function as an important catalytic species within the prothrombinase complex. If so, meizothrombin would be an ideal target for rational antithrombotic drug design. Use of mutant prothrombin and its activation products to investigate further the details of these interactions should lead to a better understanding of the structural basis of prothrombin activation by prothrombinase.

REFERENCES

Armstrong, S. A., Husten, E. J., Esmon, C. T., and Johnson, A. E. (1980) J. Biol. Chem. 255, 6210–6218

Bode, W., Mayer, I., Baumann, U., Huber, R., Stone, S. R., and Hofsteenge, J. (1989) EMBO J. 8, 3467–3475

Church, F. C., and Whinn, H. C. (1986) Anal. Biochem. 157, 77–83

Cutsforth, G. A., Whitaker, R. N., Hermans, J., and Lentz, B. R. (1988) Biochemistry 27, 7453–7461

Doyle, M. F., and Mann, K. G. (1990) J. Biol. Chem. 265, 10683–10701

Graham, F. L., and van der Ed, A. J. (1973) Virology 52, 456–461
An Active Site Mutant Prothrombin

Grüter, M. G., Priestle, J. P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteenge, J., and Stone, R. S. (1990) *EMBO J.* 9, 2361–2365
Hibbard, L. S., Nesheim, M. E., and Mann, K. G. (1982) *Biochemistry* 21, 2285–2292
Huber, P., Schmitz, T., Griffin, J., Jacobs, M., Walah, C., Furie, B., and Furie, B. C. (1990) *J. Biol. Chem.* 265, 12467–12473
Jesty, J., and Nemerson, Y. (1976) *Methods Enzymol.* 45, 95–107

Hibbard, L. S., Nesheim, M. E., and Mann, K. G. (1982) *Biochemistry*

Huber, P., Schmitz, T., Griffin, J., Jacobs, M., Walah, C., Furie, B., and Furie, B. C. (1990) *J. Biol. Chem.* 265, 12467–12473

Jorgensen, M. J., Cantor, A. B., Furie, B. C., and Furie, B. (1987) *J. Biol. Chem.* 262, 6729–6734

Kisiel, W., and Canfield, W. M. (1981) *Methods Enzymol.* 80, 275–285

Krishnaswamy, S. (1990) *J. Biol. Chem.* 265, 3708–3718

Krishnaswamy, S., Mann, K. G., and Nesheim, M. E. (1986) *J. Biol. Chem.* 261, 8977–8984

MacGillivray, R. T. A., Friezner, D. S. J., Chandra, T., Woo, S. L. C., and Davie, E. W. (1980) *Proc. Natl. Acad. Sci. U. S. A.* 77, 5153–5157

Mann, K. G. (1976) *Methods Enzymol.* 45, 123–156

Mann, K. G., Elion, J., Butkowski, R. T., Downing, M., and Nesheim, M. E. (1981) *Methods Enzymol.* 80, 286–302

Mann, K. G., Jenny, R. J., and Krishnaswamy, S. (1988) *Annu. Rev. Biochem.* 57, 915–966

Mann, K. G., Nesheim, M. E., Church, W. R., Haley, P., and Krishnaswamy, S. (1990) *Blood* 76, 1–16

Nelsestuen, G. L., Zytkovicz, T. H., and Howard, J. B. (1974) *J. Biol. Chem.* 249, 6347–6350

Nesheim, M. E., and Mann, K. G. (1983) *J. Biol. Chem.* 258, 5386–5391

Nesheim, M. E., Prendergast, F. G., and Mann, K. G. (1979) *Biochemistry* 18, 996–1003

Owen, W. G., and Jackson, C. M. (1973) *Thromb. Res.* 3, 705–714

Pei, G., and Lentz, B. R. (1991) *Blood Cong. Fibrinolysis*, in press

Rosing, J., and Tans, G. (1988) *Thromb. Haemostasis* 60, 355–360

Rosing, J., Zwaal, R. F. A., and Tans, G. (1986) *J. Biol. Chem.* 261, 4224–4228

Rydel, T. J., Ravichandran, K. G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C., and Fenton, J. W., II (1990) *Science* 249, 277–280

Sanger, F., Nicklen S., and Coulson, A. R. (1977) *Proc. Natl. Acad. Sci. U. S. A.* 74, 5463–5467

Skrzypczak-Jankun, E., Rydel, T. J., Tulinsky, A., Fenton, J. W., II, and Mann, K. G. (1989) *J. Mol. Biol.* 206, 755–757

Tendian, S. W., and Lentz, B. R. (1990) *Biochemistry* 29, 6720–6729

Tulinsky, A., Park, C. H., and Skrzypczak-Jankun, E. (1988) *J. Mol. Biol.* 202, 885–901

Wright, S. F., Berkowitz, P., Deerfield, D. W., Byrd, P. A., Olson, D. L., Larson, R. S., Hinn, G. C., Koehler, K. A., Pedersen, L. G., and Hiskey, R. G. (1986) *J. Biol. Chem.* 261, 10598–10605