Recursion Rules for Scattering Amplitudes in
Non-Abelian Gauge Theories

Chanju Kim* and V.P. Nair†

Physics Department
City College of the City University of New York
New York, New York 10031

Abstract

We present a functional derivation of recursion rules for scattering amplitudes in a non-Abelian gauge theory in a form valid to arbitrary loop order. The tree-level and one-loop recursion rules are explicitly displayed.

*Permanent address: Physics Department, Seoul National University, Seoul, 151-742, Korea.
†e-mail: cjkim@scisun.sci.ccny.cuny.edu, vpn@ajanta.sci.ccny.cuny.edu
I. INTRODUCTION

It is by now a well-appreciated fact that non-Abelian gauge theories display many interesting and beautiful properties which are, no doubt, indicative of their deeply geometrical nature and symmetry. Already at the level of perturbation theory, many of the scattering amplitudes, in Quantum Chromodynamics (QCD) for example, have a simple and elegant form, although large numbers of Feynman diagrams have to be summed up to arrive at these \cite{1}. This feature was originally understood in terms of calculational techniques based on string theory as well as recursion rules \cite{2}- \cite{4}. (A field theoretic understanding of the string-based techniques has also emerged \cite{5}.) There are also indications that there are integrable field theories hidden in non-Abelian gauge theories which describe some aspects of these theories, such as scattering for certain specific choices of helicities as well as scattering in the Regge regime \cite{6}- \cite{8}. Given these features, it is clear that the theoretical exploration of the structure of even the perturbative scattering matrix can be quite useful.

Within a field-theoretic approach, recursion rules for scattering amplitudes have been very useful in understanding color factorization and many other properties. These rules were originally derived for tree-level amplitudes using diagrammatic analyses by Berends and Giele and have later been extended upto the one-loop level \cite{11}- \cite{12}. Elaboration and extension of this technique, we feel, can be very fruitful. In this letter, we present a derivation of the recursion rules within a functional formalism without reliance on diagrammatic analysis and in a way valid for any field theory. From the basic equations, recursion rules valid upto arbitrary loop order can be obtained, although at the expense of increasing algebraic complexity. We explicitly display the tree-level and one-loop recursion rules. Renormalization constants, which one must consider beyond the tree-level are also easily incorporated in a functional derivation.
II. THE S-MATRIX FUNCTIONAL

We start by considering a scalar field theory with action of the form

\[S[\phi] = S_0[\phi] + S_{\text{int}}[\phi], \]

(2.1)

where \(S_0[\phi] \) is the free action of the form \(S_0[\varphi] = \int \frac{1}{2} \phi K \phi \) and \(S_{\text{int}} \) is the interaction part of the action. Specifically, \(K \) can be taken to be of the form \(K = -Z_2(\partial^2 + m^2) \). The functional for the S-matrix elements can be written as

\[\mathcal{F}[\varphi] = e^F \int [d\phi] e^{iS_0[\phi] + iS_{\text{int}}(\phi + \varphi)}, \]

(2.2)

where \(\varphi(x) \) can be expanded as

\[\varphi(x) = \sum_k a_k u_k(x) + a_k^* u_k^*(x). \]

(2.3)

\(u_k(x), u_k^*(x) \) are the one-particle wave functions and are solutions of the free field equation \(K \varphi = 0 \). \(F \) is given by \(\sum_k a_k^* a_k \) and is introduced in (2.2) to give the matrix elements for subscattering processes where some of the particles fly by unscattered. The matrix element for a process where particles of momenta \(k_1, k_2 \ldots k_N \) scatter to particles of momenta \(p_1, p_2 \ldots p_M \) is given by

\[S_{k_1, k_2 \ldots k_N \rightarrow p_1, p_2 \ldots p_M} = \left[\frac{\delta}{\delta a_{k_1}} \frac{\delta}{\delta a_{k_2}} \ldots \frac{\delta}{\delta a_{k_N}} \frac{\delta}{\delta a_{p_1}^*} \frac{\delta}{\delta a_{p_2}^*} \ldots \frac{\delta}{\delta a_{p_M}^*} \mathcal{F}[\varphi] \right]_{\varphi=0}. \]

(2.4)

Since \(F \) is not particularly relevant for our calculations below we can drop it in what follows. Further we consider \(\varphi(x) \) to be an arbitrary function rather than a solution to \(K \varphi = 0 \). Eventually, in obtaining the S-matrix elements we can choose it to be a solution to \(K \varphi = 0 \). We thus define

\[\mathcal{F}[\varphi] = \int [d\phi] e^{iS_0[\phi] + iS_{\text{int}}(\phi + \varphi) - i\frac{1}{2} \int \varphi K \varphi} \]

\[= \int [d\phi] e^{iS[\phi] - i\int \varphi K \varphi}. \]

(2.5)

where we added a term \(\exp(-i/2 \int \varphi K \varphi) \) for simplifications in what follows; this of course does not contribute when \(K \varphi \) is. In terms of this \(\mathcal{F} \), the S-matrix elements are given by
\[S_{k_1,k_2...k_N \to p_1,p_2...p_M} = \left[\alpha_{k_1} \ldots \alpha_{k_N} \alpha^*_{p_1} \ldots \alpha^*_{p_M} \mathcal{F}[\varphi] \right]_{\varphi=0}. \tag{2.6} \]

where

\[\alpha_k = \int u_k(x) \frac{\delta}{\delta \varphi(x)} \tag{2.7} \]

From the second of equations (2.5), we see that \(\mathcal{F} \) is the generating functional of the connected Green functions with source \(K \varphi \) and (2.6) represents the well-known LSZ reduction formula.

Consider now \(\frac{\delta \mathcal{F}}{\delta \varphi} \). Differentiating with respect to \(\varphi \), we find

\[iK^{-1} \frac{\delta \mathcal{F}}{\delta \varphi} = \int [d\phi] \phi e^{iS[\phi]} - i \int \varphi K \phi. \tag{2.8} \]

Effectively, \(\phi \)'s inside the integral behave as \(iK^{-1} \frac{\delta}{\delta \varphi} \). From (2.5) we also have the equation of motion

\[\int [d\phi] \left[\frac{\delta S}{\delta \phi} - K \varphi \right] e^{iS[\phi]} - i \int \varphi K \phi = 0, \tag{2.9} \]

which can be written as

\[i \frac{\delta \mathcal{F}}{\delta \varphi} + \rho(\hat{\phi}) \mathcal{F} - (K \varphi) \mathcal{F} = 0. \tag{2.10} \]

where \(\rho(\phi) = \left(\frac{\delta S_{\text{mat}}}{\delta \phi} \right) \) and \(\hat{\phi} = iK^{-1} \frac{\delta}{\delta \varphi} \).

\(\mathcal{F} \) itself generates connected as well as disconnected scattering processes. If we write \(\mathcal{F}[\varphi] = e^{iC[\varphi]} \), where \(C[\varphi] \) describes connected processes only, (2.10) reduces to

\[- \frac{\delta}{\delta \varphi} C = K \varphi - \mathcal{F}^{-1} \rho(\hat{\phi}) \mathcal{F} \]

\[= K \varphi - \rho(-K^{-1} \frac{\delta C}{\delta \varphi} + \hat{\phi}). \tag{2.11} \]

This can be regarded as a nonlinear functional differential equation for the S-matrix generating functional and can be used for deriving systematic recursion rules for scattering amplitudes. We shall do this for Yang-Mills theory in the next section.

Although it is not crucial to the discussion of recursion rules, one may also work with the quantum effective action or the generating functional for one-particle irreducible vertices \(\Gamma[\Phi] \) defined by
\[\Gamma[\phi] = C[\phi] + \int (K\varphi)\Phi, \]
\[\text{with the connecting relations} \]
\[\frac{\delta \Gamma}{\delta \Phi} = K\varphi, \quad -K^{-1}\frac{\delta C}{\delta \varphi} = \Phi. \]

Then, (2.11) becomes
\[K\Phi = K\varphi - \rho(\Phi + \hat{\phi})1, \]
or, in terms of \(\Gamma[\phi] \),
\[\frac{\delta \Gamma}{\delta \Phi} = K\Phi + \rho(\Phi + \hat{\phi})1 \]
\[= \left(\frac{\delta S}{\delta \varphi} \right)_{\varphi=\Phi+iK^{-1}\frac{\delta}{\delta \varphi}} 1. \]

The right hand side involves the derivative of \(\Phi \) with respect to \(\varphi \) which is the two-point correlator \(\tilde{G} \) given by
\[\tilde{G}(x, y) \equiv \left(iK^{-1} \frac{\delta}{\delta \varphi} \right)_x \Phi(y) = \left(iK^{-1} \frac{\delta}{\delta \varphi} \right)_y \left(iK^{-1} \frac{\delta}{\delta \varphi} \right)_x iC. \]

It satisfies the basic Schwinger-Dyson equation for the theory, viz.,
\[\int_y \left[\frac{\delta^2 \Gamma}{\delta \Phi(x)\delta \Phi(y)} \right] \tilde{G}(y, z) = i\delta^{(4)}(x - z). \]

Equation (2.15) supplemented by (2.17) can thus be regarded as a nonlinear equation for \(\Gamma[\phi] \). From the connecting relations (2.13) we find that \(\frac{\delta \Gamma}{\delta \Phi} = 0 \) for \(K\varphi = 0 \), as is appropriate for S-matrix elements. In this case, from the definition of \(\Gamma \), we have
\[C[\phi] = \Gamma[\phi]|_{\frac{\delta \Gamma}{\delta \Phi}=0}. \]

The S-matrix is then given by
\[\mathcal{F} = \left[e^{i\Gamma[\phi]} \right]|_{\frac{\delta \Gamma}{\delta \Phi}=0}. \]

This relation gives a nonperturbative definition of the S-matrix. The free data in the solutions to \(\frac{\delta \Gamma}{\delta \Phi} = 0 \) are the quantities on which \(\mathcal{F} \) depends. (Perturbatively, the free data are the amplitudes \(a_k, a_k^* \) in the solution for \(\varphi \).) The fact that the S-matrix can be obtained as the exponential of \((i \text{ times}) \) the action evaluated on solutions of the equations of motion is rather well known [10], [13].
III. THE S-MATRIX FUNCTIONAL FOR YANG-MILLS THEORY

We start with the gauge-fixed Lagrangian \mathcal{L} of an $SU(N)$-Yang-Mills theory given by

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^a F^{\mu\nu a} - \frac{1}{2} (\partial \cdot A)^2 - \bar{c}(-\partial \cdot D)c
= \frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \text{Tr} (\partial \cdot A)^2 + 2\text{Tr} \bar{c}(-\partial \cdot D)c,
$$

(3.1)

where

$$
F_{\mu\nu} = F_{\mu\nu}^a T^a = \partial_\mu A_\nu - \partial_\nu A_\mu + g[A_\mu, A_\nu],
$$

$$
D_\mu c = \partial_\mu c + g[A_\mu, c],
$$

(3.2)

with $[T^a, T^b] = f^{abc} T^c$ and $\text{Tr} T^a T^b = -\frac{1}{2} \delta_{ab}$. T^a are matrices in the fundamental representation of $SU(N)$. The free part and the interaction parts of the action are respectively identified as

$$
\mathcal{L}_0 = \text{Tr} A_\mu (-\partial^2) A^\mu + 2\text{Tr} \bar{c}(-\partial^2) c
$$

$$
\mathcal{L}^{(1)}_{\text{int}} = 2g \text{Tr} \partial_\mu A_\nu [A_\mu, A_\nu] + \frac{g^2}{2} \text{Tr} [A_\mu, A_\nu]^2
$$

(3.3)

$$
\mathcal{L}^{(2)}_{\text{int}} = 2g \text{Tr} \partial_\mu \bar{c}[A_\mu, c].
$$

(3.4)

Following the discussion of Sec. 2, the functional \mathcal{F} which gives the S-matrix can be constructed as

$$
\mathcal{F}[a] = \int e^{iS - i \int a^\alpha_{\mu} (-\partial^2) A^\mu} \frac{[dA][dc][d\bar{c}]}{[a_0]},
$$

(3.5)

The transition amplitude for N gluons of momenta k_i, polarizations $\epsilon^{(i)}_{\mu}$ and colors labelled a_1, \ldots, a_N to go to M gluons of momenta p_j, polarizations $\epsilon^{(j)}_{\nu}$ and color labels a_{N+1}, \ldots, a_M is

$$
T\{k_i, \epsilon^{(i)}_{\mu}, a_i \rightarrow \{p_j, \epsilon^{(j)}_{\nu}, a_j\}\} = \int \prod_i e^{-ik_i x_i} \epsilon^{(i)}_{\mu} \delta_{\mu\mu_i} \prod_j e^{ip_j y_j} \epsilon^{(j)}_{\nu} \delta_{\nu\nu_j} \mathcal{F}[a] \bigg|_{a=0}.
$$

(3.6)

From (2.10), \mathcal{F} satisfies the equation
\[-\frac{\delta F}{\delta a^a_\mu} = \partial^2 a^a_\mu F + \int \delta S_{\text{int}} \frac{e^{iS}}{\delta a^a_\mu} \]

\[= \partial^2 a^a_\mu F + J^a_\mu(A) \bigg|_{A=iG} F + \int 2g \text{Tr} \partial_\mu \bar{c}[T^a, c]e^{iS}, \quad (3.7)\]

where

\[J_\mu(A(x)) = J^a_\mu T^a \equiv \frac{\delta S^{(1)}_{\text{int}}}{\delta A^a_\mu} \]

\[= -g \partial^\nu [A_\mu, A_\nu] + g[F_{\mu\nu}, A^\nu]. \quad (3.8)\]

and \(G(x, y) = -\langle x|\partial^{-2}|y\rangle\). As we have written it, the term in (3.7) involving ghosts cannot immediately be replaced by derivatives on \(F\). For this, we proceed as follows. Integrating out the ghost fields in \(F\) we get Faddeev-Popov determinant \(\text{det}(\partial \cdot D) = e^{\text{tr} \ln(-\partial \cdot D)}\), which is equivalent to a term in the action \(-i\text{tr} \ln(-\partial \cdot D)\). This leads to a ghost-current of the form

\[J^a_\mu(A)_{\text{gh}} = -i \frac{\delta \text{tr} \ln(-\partial \cdot D)}{\delta A^a_\mu} \]

\[= i \sum_{n=1}^{\infty} (-g)^{n+1} \int \text{Tr} [T^a A^e_\nu(y_1) \cdots A^e_\nu(y_n)]_{\text{adj}} \partial^e A^a_\mu G(x, y_1) \cdots \partial^e A^a_\mu G(y_n, y_1), \quad (3.9)\]

where we have introduced the adjoint representation of \(T^a\)'s by \((T^a_{\text{adj}})_{bc} = -f^{abc}\). \((L^{(2)}_{\text{int}}\) in this notation reads \(L^{(2)}_{\text{int}} = -g \partial^\nu [A_\mu, A_\nu] + g[F_{\mu\nu}, A^\nu]\))

The trace in the above equation may be written in terms of the generators in fundamental representation using \(f^{abc} = -2\text{Tr} T^a[T^b, T^c]\),

\[\text{Tr} (T^{a_1} T^{a_2} \cdots T^{a_n})_{\text{adj}} = 2\text{Tr} T^a[T^b, [T^{a_1}, [T^{a_2}, [\ldots, [T^{a_{n-1}}, T^{a_n}], T^b] \ldots]]. \quad (3.10)\]

Therefore we can finally write the ghost part of the current (as a matrix in the fundamental representation) as

\[J_\mu(A)_{\text{gh}} = J^a_\mu(A)_{\text{gh}} T^a \]

\[= i \sum_{n=1}^{\infty} (-g)^{n+1} D_{\mu_1 \cdots \mu_n} (x, y_1, \ldots, y_n) \{T^b, [A^{\mu_1}(y_1), \ldots, [A^{\mu_{n-1}}(y_{n-1}), [A^{\mu_n}(y_n), T^b] \ldots], \quad (3.11)\]
where

\[D_{\mu_1 \ldots \mu_n}(x, y_1, \ldots, y_n) \equiv \partial_{\mu_1} G(x, y_1) \ldots \partial_{\mu_n} G(y_{n-1}, y_n) \partial_{\mu} G(y_n, x). \] (3.12)

Then (3.7) finally becomes

\[-i \frac{\delta F}{\delta a_\mu} = \partial^2 a_\mu + J_\mu(A) + J_\mu(A) g h \bigg|_{A=\frac{i G}{\pi^2}} F. \] (3.13)

For connected part \(C[a] = -i \ln F[a] \),

\[\hat{h} \frac{\delta C}{\delta a_\mu} = \partial^2 a_\mu + \bigg[J_\mu(A) + \hat{h} J_\mu(A) g h \bigg]_{A=-\frac{i c C}{\pi^2} + i h G} \frac{1}{1}. \] (3.14)

This is the basic equation for the scattering amplitudes. The \(\hat{h} \)-expansion of this equation leads to recursion rules up to arbitrary order. We have explicitly displayed the factors of \(\hat{h} \) in (3.14). Recall that the interaction part of the action carries \(1/\hat{h} \) and that each propagator \(G \) carries \(\hat{h} \). The ghost terms, arising from the determinant, have \(\hat{h}^0 \). \(C[a] \) in (3.14) has an expansion of the form

\[C[a] = -i \ln F[a] = \frac{1}{\hat{h}} C^{(0)} + C^{(1)} + \hat{h} C^{(2)} + \cdots. \] (3.15)

Starting from (3.14) and using the above expansion for \(C[a] \), one can, in principle, systematically derive recursion relations to any desired order in \(\hat{h} \).

Let us begin with a tree-level recursion formula for \(C^{(0)} \). This is simply given by

\[\frac{\delta C^{(0)}}{\delta a_\mu} = \partial^2 a_\mu + J_\mu(A^{(0)}), \] (3.16)

where

\[A^{(0)a}_\mu \equiv -\int G \frac{\delta C^{(0)}}{\delta a_\mu}, \] (3.17)

i.e.,

\[\partial^2 A^{(0)}_\mu = \partial^2 a_\mu + J_\mu(A^{(0)}). \] (3.18)

This is just the equation of motion as it should be. \(A^{(0)}_\mu \) is essentially the same object as the current that Berends and Giele \[2\] used to derive tree-level recursion relation for gluon.
scattering processes; if one expands \(A_{\mu}^{(0)} \) in powers of \(a_\mu \), the coefficient function of each term gives one-gluon off-shell current of Ref. [2] when multiplied by polarization vectors of on-shell external gluons. More generally, if one considers \(a_\mu \)'s off shell, it gives the generalized current with off-shell gluons which has been used for \(q\bar{q} \rightarrow q\bar{q}gg \cdots g \) process and some one-loop calculations [11,12]. Also, notice that from the form of current \(J_\mu \) in (3.8), it is obvious that color factors are factorized from coefficient functions and we can write

\[
A_{\mu}^{(0)} = \sum_{n=1}^{\infty} \int C_{\mu \mu_1 \cdots \mu_n}^{(0)}(x, y_1, \ldots, y_n) a^{\mu_1}(y_1) \cdots a^{\mu_n}(y_n). \tag{3.19}
\]

The coefficient functions \(C^{(0)} \)'s do not carry color indices. We also have \(C_{\mu \mu_1}^{(0)}(x, y_1) = \delta(x - y_1)\delta_{\mu \mu_1} \). Using (3.19) in (3.18),

\[
\begin{align*}
\partial^2 & \sum \int C_{\mu}^{(0)}(x, Y) a(Y) - \partial^2 a_\mu = J_\mu(A) \\
& = -\sum \int [2\partial^\nu C_{\mu}^{(0)}(x, Y) C_{\nu}^{(0)}(x, Z) - 2\partial_\nu C_{\mu}^{(0)}(x, Z) C^{(0)}(x, Y) + C_{\nu}^{(0)}(x, Y) \frac{\delta}{\delta a_\mu} C_{\mu}^{(0)}(x, Z) \\
& \quad + C_{\mu}^{(0)}(Y) \partial_{\nu} C^{(0)}(x, Y) - C_{\mu}^{(0)}(x, Z) \partial_{\nu} C_{\nu}^{(0)}(x, Y)] a(X) a(Y) \\
& - \sum \int [2C_{\nu}^{(0)}(x, X) C_{\mu}^{(0)}(x, Y) C_{\nu}^{(0)}(x, Z) - C_{\nu}^{(0)}(x, X) C_{\nu}^{(0)}(x, Y) C_{\mu}^{(0)}(x, Z) \\
& \quad - C_{\mu}^{(0)}(x, X) C_{\nu}^{(0)}(x, Y) C^{(0)}(x, Z)] a(X) a(Y) a(Z), \tag{3.20}
\end{align*}
\]

where \(X, Y \) and \(Z \) are collective indices and \(a(Y) \) stands for \(\prod_i a_{\mu_i}(y_i) \) etc. If \(a_\mu \) is restricted to be on-shell, the terms containing \(\partial^\nu C_{\mu}^{(0)} \) in the third line vanish because of current conservation. We can transform this equation to momentum space by writing

\[
C_{\mu \mu_1 \cdots \mu_n}^{(0)}(x, y_1, \ldots, y_n) = \int (2\pi)^4 \delta(k + \sum p_i) C_{\mu \mu_1 \cdots \mu_n}^{(0)}(p_1, \ldots, p_n) e^{ik \cdot x} e^{i \sum p_i y_i}, \tag{3.21}
\]

where momentum conservation has been taken into account. Then (3.20) becomes

\[
P_{1,\mu}^{\nu} C_{\mu}^{(0)}(1, \ldots, n) = \sum_{m=1}^{n-1} V_{3, \mu}^{\nu \rho}(P_{1,m}, P_{m+1,n}) C_{\nu}^{(0)}(1, \ldots, m) C_{\rho}^{(0)}(m + 1, \ldots, n) \\
\quad + \sum_{m=1}^{n-2} \sum_{k=m+1}^{n-1} V_{3, \mu}^{\nu \rho} C_{\nu}^{(0)}(1, \ldots, m) C_{\rho}^{(0)}(m + 1, \ldots, k) C_{\sigma}^{(0)}(k + 1, \ldots, n), \tag{3.22}
\]

where \(P_{i,j} = p_i + \cdots + p_j \) and \(V_{3, \mu}^{\nu \rho}, V_{4, \mu}^{\nu \rho \sigma} \) are color-ordered vertices,
This equation is the recursion relation for currents with off-shell gluons derived in [2], [11]. In deriving higher order recursion relations for S-matrix elements, we must correct (3.14) by including the appropriate renormalization constants. As usual, we interpret fields and coupling constants as renormalized ones and assume that renormalization counterterms are included in \mathcal{L}_{int} of (3.4). Explicitly,

$$
\mathcal{L}_{\text{int}} = -\frac{1}{2} \delta Z_3 \text{Tr} \left(\partial_\mu A_\nu - \partial_\nu A_\mu \right)^2 - 2gZ_1 \text{Tr} \partial_\mu A_\nu [A_\mu, A_\nu] - \frac{g^2}{2} Z_1^2 Z_3^{-1} \text{Tr} [A_\mu, A_\nu]^2 \\
-2\delta Z_3 \text{Tr} \bar{c}(-\partial^2)c - 2gZ_1 \bar{Z}_3/Z_3 \text{Tr} \partial_\mu \bar{c}[A_\mu, c],
$$

(3.24)

where $\sqrt{Z_3}A_\mu$, $\sqrt{\bar{Z}_3}c$ and $gZ_1Z_3^{-3/2}$ are bare quantities with $\delta Z_3 = Z_3 - 1$, $\delta \bar{Z}_3 = \bar{Z}_3 - 1$. Correspondingly, J_μ becomes

$$
J_\mu(A) = -g \partial_\nu [A_\mu, A_\nu] + g[F_{\mu\nu}, A_\nu] \\
-\frac{1}{2} \delta Z_3 \partial_\nu (\partial_\mu A_\nu - \partial_\nu A_\mu) - g(Z_1 - 1)(\partial_\nu [A_\mu, A_\nu] - [F_{\mu\nu}, A_\nu]) \\
+g^2 Z_1(Z_1/Z_3 - 1) [[A_\mu, A_\nu], A_\nu].
$$

(3.25)

The extra counterterms contribute to one-loop or higher orders and will cancel ultraviolet divergences from loop integrals. In addition, to account for the freedom of arbitrary finite renormalization we include a finite wavefunction renormalization constant z_3 in the external field, i.e., $a_\mu \rightarrow \bar{a}_\mu \equiv a_\mu/\sqrt{z_3}$.

Now we are ready to discuss one-loop recursion relations. Keeping terms relevant up to one-loop order,

$$
A_\mu = -G \frac{\delta C^{(0)}}{\delta a_\mu} - \left(G \frac{\delta C^{(1)}}{\delta a_\mu} - \frac{1}{2} \delta z_3 G \frac{\delta C^{(0)}}{\delta a_\mu} \right) + \cdots \\
= A^{(0)}_\mu + A^{(1)}_\mu + \cdots
$$

(3.26)

The current can similarly be expanded as $J_\mu(A) = J^{(0)}_\mu + J^{(1)}_\mu + \cdots$, with
\[J^{(0)}_{\mu} = -g \partial^\nu [A^{(0)}_\mu, A^{(0)}_\nu] + g [F_{\mu \nu}(A^{(0)}), A^{(0)}] \]

\[J^{(1)}_{\mu} = -g \partial^\nu ([A^{(0)}_\mu, A^{(1)}_\nu] + [A^{(1)}_\mu, A^{(0)}_\nu]) + g [F_{\mu \nu}(A^{(0)}), A^{(1)}] + g [D_\mu A^{(1)}_\nu - D_\nu A^{(1)}_\mu, A^{(0)}] \]

\[-\delta Z_1 J^{(0)}_{\mu}(A^{(0)}) - \frac{\delta Z_1}{2} \partial^\nu (\partial_\mu A^{(0)} - \partial_\nu A^{(0)}) \]

\[+ g^2 (\delta Z_1 - \delta Z_3) [[A^{(0)}_\mu, A^{(0)}_\nu], A^{(0)}] \]

(3.27)

where \(D_\mu \equiv \partial_\mu + g [A^{(0)}_\mu, \cdot] \). In (3.14) we need

\[J_{\mu} (A + iG \frac{\delta}{\delta a})_1 = J_{\mu}(A) - g \partial^\nu iG \frac{\delta}{\delta a} A^{(0)}_\nu \]

\[+ g [i \partial_\mu G \frac{\delta}{\delta a}, A^{(0)}] \]

\[- g^2 \left([[[iG \frac{\delta}{\delta a}], A^{(0)}], A^{(0)}], [[[A^{(0)}_\mu, iG \frac{\delta}{\delta a}], A^{(0)}]] \right) + \cdots \]

(3.28)

Upto the one-loop order, the functional derivative term in the ghost current has no contribution,

\[J_\mu (A + iG \frac{\delta}{\delta a})_{gh} = J_\mu (A^{(0)})_{gh} + \cdots \]

(3.29)

Collecting all these, we get an equation for \(A^{(1)}_\mu \),

\[\partial^2 A^{(1)}_\mu = J^{(1)}_\mu + J_\mu (A^{(0)})_{gh} \]

\[- g \partial^\nu iG \frac{\delta}{\delta a} A^{(0)}_\nu \]

\[+ g [i \partial_\mu G \frac{\delta}{\delta a}, A^{(0)}] \]

\[- g^2 \left([[[iG \frac{\delta}{\delta a}], A^{(0)}], A^{(0)}], [[[A^{(0)}_\mu, iG \frac{\delta}{\delta a}], A^{(0)}]] \right) , \]

(3.30)

where \(A^{(0)}_\mu \) is the solution of (3.18). Notice that, in this case, \(iG \delta_{\delta a} \) terms contract color indices when acting on \(A^{(0)}_\mu \) and so the color decomposition does not occur as in tree-level case. However, it is possible to write \(A^{(1)}_\mu \) as a sum of color-factorized amplitudes and the proof has been given using string-theory argument [14] and color flow diagrams [16]. Here we give a simple proof based on (3.30).

First we study the action of \(iG \frac{\delta}{\delta a} \) on \(A^{(0)}_\mu \). From (3.19),

\[[G \frac{\delta}{\delta a}, A^{(0)}_\nu] = \sum_{n=1}^{\infty} \sum_{m=1}^{n} \int C_{\nu_1 \nu_{m-1} \mu_0 \nu_{m+1} \nu_\nu} (x, y_1, \ldots, y_{m-1}, y, y_{m+1} \ldots, y_n) G(x, y) \]

\[\times [T^{a}, a_{\nu_1} (y_1) \cdots a_{\nu_{m-1}} (y_{m-1}) T^{a} a_{\nu_{m+1} (y_{m+1}) \cdots a_{\nu_n}}] . \]

(3.31)

With the help of Fierz identity for \(SU(N) \).
\[(T^a X T^a)_{ij} = -\frac{1}{2} \left(\delta_{ij} \text{Tr} X - \frac{1}{N} X_{ij} \right), \quad (3.32)\]

it becomes

\[\left[G \frac{\delta}{\delta a^\mu}, A_\nu^{(0)} \right] = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \int \tilde{C}_{\nu \mu}(x, 1, \ldots, m; m+1 \ldots, n) a(1) \cdots a(m) \text{Tr} [a(m+1) \cdots a(n)], \quad (3.33)\]

where

\[\tilde{C}_{\nu \mu}(x, 1, \ldots, m; m+1 \ldots, n) = -\frac{1}{2} \int G(x, y) \left[C_{\nu \mu}^{(0)}(x, y_1, \ldots, y_m; y, y_{m+1}, \ldots, y_n) - C_{\nu \mu}^{(0)}(x, y_m+1, \ldots, y_n, y, y_1, \ldots, y_m) \right]. \quad (3.34)\]

(Here the $1/N$-term in (3.32) does not contribute because of the commutator; notice also that the summation in (3.33) starts with $m = 0$.) Thus differentiation of $A_\mu^{(0) a}$ produces terms with trace over substrings of a^μ's. Also, from (3.11), we see that the ghost current has the same structure,

\[J_\mu(A^{(0)})_{gh} = i \sum_{n=1}^{\infty} (-g)^{n+1} D_\mu(x, 1, \ldots, n)\]

\[\times \sum_{k=0}^{n} \sum_{\{i_k\}} \left\{ T^b A^{(0)}(i_1) \cdots A^{(0)}(i_k) T^b A^{(0)}(i_{k+1}) \cdots A^{(0)}(i_n) - A^{(0)}(i_1) \cdots A^{(0)}(i_k) T^b A^{(0)}(i_{k+1}) \cdots A^{(0)}(i_n) T^b \right\}, \quad (3.35)\]

where $\sum_{\{i_k\}}$ is the sum over all permutations of $\{1, \ldots, n\}$ such that $i_1 < \ldots < i_k$ and $i_{k+1} > \ldots > i_n$. Using (3.32), we get

\[J_\mu(A^{(0)})_{gh} = -i \sum_{n=1}^{\infty} \sum_{k=0}^{n} \sum_{\{\sigma\} \in S_{n,k}} g^{n+1} (-1)^k \tilde{D}_\mu(x, \sigma_1, \ldots, \sigma_n)\]

\[\times A^{(0)}(1) \cdots A^{(0)}(k) \text{Tr} [A^{(0)}(k+1) \cdots A^{(0)}(n)], \quad (3.36)\]

where $S_{n,k}$ is the set of all permutations of $\{1, 2, \ldots, n\}$ that preserves the ordering of $\{\alpha\} \equiv \{1, \ldots, k\}$ and the cyclic ordering of $\{\beta\} \equiv \{n, n-1, \ldots, k+1\}$, while allowing for all possible relative orderings between elements in the two sets (For example, $(1, n, 2, \ldots, k, n-1, \ldots)$ is in $S_{n,k}$ but $(2, 1, \ldots, k, n, n-1, \ldots)$ is not.); \tilde{D}_μ is given by
\[
\widetilde{D}_\mu(x,1,\ldots,n) = D_\mu(x,1,\ldots,n) - (-1)^n D_\mu(x,n,n-1,\ldots,1). \tag{3.37}
\]

Since (3.30) is at most linear in \(A^{(1)}_\mu\), it is clear that \(A^{(1)}_\mu\) can be written as
\[
A^{(1)}_\mu(x) = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \int \bar{C}^{(1)}_{m,\mu}(x,1,\ldots,m;m+1,\ldots,n) a(1) \cdots a(m) \text{Tr}[a(m+1) \cdots a(n)]. \tag{3.38}
\]

Then in (3.30) we can separately equate terms with the same trace structure and \(C^{(1)}_{m,\mu}\)'s with different \(m\)'s do not mix with each other. The functions we need are then \(C^{(1)}_{n,\mu} = C^{(1)}(x,1,\ldots,n)\) corresponding to the term in (3.38) with no trace. These obey the recursion rule obtained by substituting \(A^{(1)} = \sum_{n=1}^{\infty} \int \bar{C}^{(1)}(x,1,\ldots,n) a(1) \cdots a(n)\) in (3.30). The other amplitudes can be obtained from \(C^{(1)}_{n,\mu}\).

The coefficient functions corresponding to different trace structures have simple relations among them (which allow us to construct the amplitudes with subtraces from \(C^{(1)}_{n,\mu}\)). We have [14], [15]
\[
C^{(1)}_{m,\mu}(x,1,\ldots,m;m+1,\ldots,n) = (-1)^{n-m} \sum_{\sigma \in S_{n,m}} C^{(1)}_{n,\mu}(x,\sigma_1,\ldots,\sigma_n), \tag{3.39}
\]
For this, we show that the right hand side of (3.39) satisfies the same equation as that for the left hand side. This is most easily seen for the ghost current which we shall consider first. Obviously, an equation like (3.39) holds for \(\bar{D}_\mu\)'s (with the identification of the summation indices \(k\) in (3.36) and \(m\) in (3.39)), if \(A^{(0)}_\mu(x) = \int \bar{C}^{(0)}_\mu(x) a(X)\) in (3.36) is replaced by its lowest order term \(a_\mu\). For the terms with more than one \(a_\mu\)'s from one \(A^{(0)}\), there are potential discrepancies between both sides. This is because in (3.39) the summation is over all \(\sigma \in S_{n,m}\) while, in (3.39), we sum only over \(\sigma \in S_{n,k}\) \((k < m)\) which does not include such permutations that mix indices from both \(\{\alpha\}\) set and \(\{\beta\}\) set within one tree structure. However, the extra terms in (3.39) cancel out thanks to the symmetry properties of color-ordered vertices,
\[
V^\mu_{3,\rho}(p,q) + V^\rho_{3,\mu}(q,p) = 0, \\
V^\mu_{4,\rho} + V^\rho_{4,\mu} + V^\mu_{4,\sigma} = 0, \tag{3.40}
\]
which, when applied to (3.22) together with induction, leads to identities for $1 \leq m < n$,

$$
\sum_{\sigma \in S_{n;m}} C^{(0)}_{\mu}(\sigma_1, \ldots, \sigma_n) = 0, \quad (3.41)
$$

where $S'_{n;m}$ is the same as $S_{n;m}$ defined above except that it does not include the cyclic permutations of $\{\beta\}$ set. [This equation can be considered as a generalization of the so-called “dual Ward identity” for tree amplitudes which corresponds to $m = 1$ case [3], [17].]

Thus (3.39) holds for ghost current.

We shall now show that the relation (3.39) connecting amplitudes with different trace structures holds for the nonghost terms in (3.38) as well. Towards this, consider the terms with differentiation $G^k_{\delta \delta a}$ in (3.30). Diagramatically, those terms correspond to one-loop gluon diagrams with the external leg x directly connected to the loop. In our setting, we can proceed as follows. Applying (3.22) repeatedly to $C^{(0)}_{\mu}(x, 1, \ldots, m, y, m + 1, \ldots, n)$ we can identify the internal line for each term from (3.22). It connects x and y and the other external legs are ordered in clockwise direction in such a way that $1, \ldots, m$-th legs are below the line while $m + 1, \ldots, n$-th legs are above the line (Fig. 1). Then we draw a line connecting x and y which enclose $m + 1, \ldots, n$-th legs so that it represents that the legs inside the loop are traced. Then, it is easy to see which terms generate which color structures. Obviously, given such a diagram, we get the same subtrace structure from diagrams made by altering the relative order of trees belonging to different sets while keeping the order of $\{1, \ldots, m\}$ and the cyclic order of $\{m + 1, \ldots, n\}$ (Fig. 2). Moreover, they are trivially related to terms which contribute to $C^{(1)}_{\mu}(x)$, i.e., we can simply pull out the trees inside the loop to outside with minus sign, using symmetry property of vertices (3.40). Notice that during this procedure the order of $\{m + 1, \ldots, n\}$ is also reversed. Thus, essentially we have the same situation as in the case of ghost current and the relation of the type (3.39) holds in this case as well.

Now it remains to consider the term from $J^{(1)}$ which contains $C^{(1)}_{\mu}$’s with less number of legs. It corresponds to the gluon-loop diagram with the external leg x attached to a tree. This case, however, is not much different from the previous one and we can argue in the same way with the help of (3.41) if needed. Finally, there are counterterm contributions.
for $C^{(1)}_{n \mu}(x, 1, \ldots, n)$ case in contrast to $C^{(1)}_{m \mu}(x, 1, \ldots, m; m + 1, \ldots, n)$ ($m < n$). But again the identity (3.41) guarantees that those terms cancel out when the summation in (3.39) is done. This completes the proof that both the left and the right hand sides of (3.39) satisfy the same recursion relation. Since (3.39) trivially holds for $n = 3$, they are indeed equal to each other.

Beyond one-loop, it is clear from (3.14) that $A^{(k)}_{\mu}$ will in general have terms with k subtraces,

$$A^{(k)}_{\mu}(x) = \sum_{n=1}^{\infty} \sum_{\{m\}} \int C^{(k)}_{m_1m_2\ldots m_k \mu}(x, 1, \ldots, m_1; m_1 + 1, \ldots, m_2; \ldots; m_k + 1 \ldots n) \times a(1) \cdots a(m_1) \text{Tr} [a(m_1 + 1) \cdots a(m_2)] \cdots \text{Tr} [a(m_k + 1) \cdots a(n)],$$

(3.42)

and each $C^{(k)}_{m_1m_2\ldots m_k \mu}$ with different k will satisfy its own equation. It might be possible to find simple relations between them as in one-loop case.

CK was supported in part by the Korea Science and Engineering Foundation and VPN was supported in part by the National Science Foundation Grant Number PHY-9322591.
REFERENCES

[1] S. J. Parke and T. R. Taylor, Phys. Rev. Lett. 56 (1986) 2459; Nucl. Phys. B269 (1986) 410.

[2] F. Berends and W. Giele, Nucl. Phys. B306 (1988) 759.

[3] D. A. Kosower, B.-H. Lee and V. P. Nair, Phys. Lett. 201B (1988) 85.

[4] See, for example, Z. Bern, L. Dixon and D. A. Kosower, SLAC-PUB-7111, hep-ph/9602280 (to appear in Ann. Rev. Nucl. Part. Sci.).

[5] Z. Bern and D. C. Dubna Nucl. Phys. B379 (1992) 562; M. J. Strassler, Nucl. Phys. B385 (1992) 145.

[6] L. N. Lipatov, Phys. Lett. 309B (1993) 394; L. D. Faddeev and G. P. Korchemsky, Phys. Lett. 342B (1995) 311.

[7] V. P. Nair, Phys. Lett. 214B (1988) 215.

[8] W. A. Bardeen, FERMILAB-CONF-95-379-T, Presented at Yukawa International Seminar '95: From the Standard Model to Grand Unified Theories, Kyoto, Japan, 21-25 Aug. 1995; K.G. Selivanov, ITEP-21-96, hep-ph/9604206.

[9] D. Cangemi, UCLA-96-TEP-16, hep-th/960508; G. Chalmers and W. Siegel, ITP-SB-96-29, [hep-th/9606061]; V. E. Korepin and T. Oota, YITP-96-33, [hep-th/9608004].

[10] L. D. Faddeev and A. A. Slavnov, Gauge Fields, Introduction to the Quantum Theory, Benjamin-Cummings, MA (1980).

[11] G. Mahlon, T.-M. Yan and C. Dunn, Phys. Rev. D48 (1993) 1337.

[12] G. Mahlon Phys. Rev. D49 (1994) 2197; 4438.

[13] A. Jevicki and C. Lee, Phys. Rev. D37 (1988) 1485; R. Fukuda, M. Komachiya, and M. Ukita, Phys. Rev. D38 (1988) 3747.
[14] Z. Bern and D. A. Kosower, Nucl. Phys. B362 (1991) 389.

[15] Z. Bern, L. Dixon, D. C. Dubna, and D. A. Kosower, Nucl. Phys. B425 (1994) 217.

[16] Z. Bern, L. Dixon, and D. A. Kosower, Nucl. Phys. B437 (1995) 259.

[17] C. Dunn and T.-M. Yan, Nucl. Phys. B352 (1991) 402.
FIGURES

FIG. 1. A typical term in $C^{(0)}_{\mu}(x, 1, \ldots, m, y, m + 1, \ldots, n)$. y is connected to x and the loop encloses legs $m + 1, \ldots, n$ which are under a trace.

FIG. 2. (a) A diagram obtained by changing the relative order of traced legs and the others from Fig. 1. It contributes to $C^{(1)}_{m, \mu}(x, 1, \ldots, m; m + 1, \ldots, n)$; (b) A diagram obtained by pulling the legs out of the loop in Fig. 2(a). It contributes to $C^{(1)}_{n, \mu}(x, 1, \ldots, n)$.
