Enhancement of the electric dipole moment of the electron in BaF molecule.

M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko
Petersburg Nuclear Physics Institute,
Gatchina, St.-Petersburg district 188350, RUSSIA
(10 July 1997)

Abstract

We report results of ab initio calculation of the spin-rotational Hamiltonian parameters including P- and P,T-odd terms for the BaF molecule. The ground state wave function of BaF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of barium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine constants the accuracy of this method is about 5-10%.

31.25.Nj, 31.90.+s, 32.80.Ys, 33.15.Pw
a. Introduction. It is well known that possible P- and P,T-odd effects are strongly enhanced in heavy diatomic radicals (see, for example, \[\ref{1,2}\]). In the molecular experiment with the TlF molecule \[\ref{3}\] stringent limits on the Schiff moment of the Tl nucleus and on the tensor constant of the electron-nucleus P,T-odd interaction were obtained. In the experiments with the polar diatomics with the unpaired electron one can search for the P,T-odd effects caused by the permanent electric dipole moment (EDM) of the electron d_e \[\ref{4}\] and by the scalar electron-nuclear P,T-odd interaction \[\ref{5}\]. The most stringent limit on the electron EDM was obtained in the experiment with atomic Thallium \[\ref{6}\] (for the review of the theoretical predictions for d_e see \[\ref{7}\]). Heavy polar diatomic molecules provide enhancement of the electron EDM, which is several orders of magnitude larger, than in Tl. An experimental search for the EDM of the electron is now underway on the YbF molecule \[\ref{8}\]. The P-odd effects associated with the anapole moment of the nucleus are also strongly enhanced in diatomic radicals \[\ref{9,10}\].

The first calculations of the P,T-odd interactions in molecules were carried out for TlF molecule with the use of a “relativistic matching” of nonrelativistic one-configurational wave function \[\ref{11}\].

Then a semi-empirical scheme \[\ref{12,13}\] and \textit{ab initio} method based on the Relativistic Effective Core Potential (RECP) calculation of the molecular wave function \[\ref{14}\] were developed. The first RECP-based calculations of the P,T-odd spin-rotational Hamiltonian parameters for PbF and HgF molecules were carried out in the framework of the one-configurational approximation with minimal atomic basis sets, i.e. the correlation structure was not taken into account. In calculation of YbF molecule \[\ref{15}\], a flexible atomic basis set was used and the correlation effects were considered within the Restricted Active Space SCF (RASSCF) method \[\ref{16,17}\].

It was concluded in \[\ref{16}\] that in order to perform more accurate calculations of the hyperfine and the P,T-odd constants, the spin-correlation of the unpaired electron with the outermost core shells $5s$ and $5p$ of ytterbium should be taken into account. Such correlations can be hardly efficiently considered within MC SCF-like methods because of the necessity to correlate too many electrons.

Here we suggest to use an effective operator (EO) technique to account for the most important types of the core-valence correlations. EOs for the valence electrons are formed with the help of the atomic many body perturbation theory. This method allows to include correlations not only with the outermost core shells, but with all core electrons, which appears to be quite important for the hyperfine and P,T-odd interactions. The EO technique was recently developed for atoms \[\ref{18}\] and proved to be very efficient for the calculations of the hyperfine structure of the heavy atoms \[\ref{19}\]. This technique is naturally and easily combined with the RECP method for the molecular calculations. As a result, a significant improvement of the accuracy is achieved.

Below we report the results of application of this method to calculation of the BaF molecule.

b. Spin-rotational Hamiltonian. Molecular spin-rotational degrees of freedom are described by the following spin-rotational Hamiltonian (see \[\ref{2}\]):

\[
H_{sr} = B N^2 + \gamma S N - D_e n E + S \hat{A} I + W_A k_A n \times S \cdot I + (W_S k_S + W_d d_e) S n.
\]

(1)
In this expression \(N \) is the rotational angular momentum, \(B \) is the rotational constant, \(S \) and \(I \) are the spins of the electron and the Ba nucleus, \(\mathbf{n} \) is the unit vector directed along the molecular axis from Ba to F. The spin-doubling constant \(\gamma \) characterizes the spin-rotational interaction. \(D_e \) and \(E \) are the molecular dipole moment and the external electric field. The axial tensor \(\hat{A} \) describes magnetic hyperfine structure. It can be determined by two parameters: \(A = (A_\parallel + 2A_\perp)/3 \) and \(A_d = (A_\parallel - A_\perp)/3 \). The last three terms in (1) account for the \(P\)- and \(P, T\)-odd effects. First of them describes interaction of the electron spin with the anapole moment of the nucleus \(k_A \) \(^{[1]}\). The second one corresponds to the scalar \(P, T\)-odd electron-nucleus interaction with the dimensionless constant \(k_S \). The third one describes interaction of the electron EDM \(d_e \) with the molecular field. Constant \(W_d \) characterizes an effective electric field on the unpaired electron.

It is important to note that all \(P\)- and \(P, T\)-odd constants \(W_i \) mostly depend on the electron spin-density in the vicinity of the heavy nucleus. The same, of course, can be said about hyperfine constants \(A \) and \(A_d \). So, the comparison of the theoretical results for the hyperfine constants with the experiment is a good test for the accuracy of the whole calculation.

c. RECP calculation of electronic wave function. The scheme of the RECP calculation for BaF molecule is very similar to that for YbF described in \(^{[15]}\) (see also \(^{[14]}\)) and below we will focus only on specific features of the present calculations.

The Generalized RECP (GRECP) \(^{[20]}\) (with the inner core \(1s^2[\ldots]4s^24p^64d^{10} \) shells which were not included explicitly in the RECP calculations) was selected from a few other RECP variants for calculations of BaF because our test electronic structure calculations showed that it combined high accuracy with quite small computational expenses (see table \(^{1}\) and the spectroscopic data below).

Numerical pseudospinors derived from the GRECP/SCF calculations of some electronic configurations for Ba, Ba\(^+\) and Ba\(^{++}\) were approximated by generally contracted \(s, p, d \) and \(f \) gaussian functions forming \((10, 8, 6, 2) \rightarrow [6, 5, 4, 2] \) basis set for barium\(^{[1]}\). For fluorine we used basis sets \((14, 9, 4) \rightarrow [6, 5, 2] \) and \([4, 3, 3] \) from the ANO-I Library \(^{[17]}\). These basis sets proved to be sufficiently flexible to reproduce electronic structure in valence region of BaF as compared to other basis sets involved in our test SCF and RASSCF calculations.

The RASSCF calculations of the spectroscopic constants were performed with the spin-Averaged part of the GRECP (AREP) and contribution of relatively small spin-orbit interaction (i.e. Effective Spin-Orbit Potential or ESOP as a part of GRECP) was estimated in the framework of the perturbation theory. The results of our AREP/RASSCF calculations with 79558 configurations \(^{[1]}\) for the equilibrium distance and vibration constant \((r_e = 2.25 \text{ Å}, \omega_e = 433 \text{ cm}^{-1}) \) are in a good agreement with the experimental data \(^{[21]}\) \((r_e = 2.16 \text{ Å}, \omega_e = 433 \text{ cm}^{-1}) \).

\(^{1}\)See \(^{[15]}\) for details. Gaussian expansions for these pseudospinors, GRECP components and MO LCAO coefficients from BaF calculations can be found on \texttt{http://www.qchem.pnpi.spb.ru}.

\(^{2}\)We used \(C_{2v} \) point group with \((a_1, b_1, b_2, a_2) \) irreducible representations; 17 electrons were distributed on active orbitals within RAS 1=(3,1,1,0), RAS 2=(3,1,1,0) and RAS 3=(5,3,3,1) subspaces.
$\omega_e = 469 \text{ cm}^{-1}$). For the dipole moment we have obtained $D_e = 2.93 \, D$.

d. Restoration of four-component spinor for valence electron. In order to evaluate matrix elements of the operators singular near nucleus of barium, we have performed GRECP/SCF and GRECP/RASSCF calculations of BaF where the pseudospinors corresponding to $5s_{1/2}$, $5p_{1/2}$ and $5p_{3/2}$ shells were “frozen” with the help of the level-shift technique (that is also known as Huzinaga-type ECP, see [22] and references therein). It was necessary to do because polarization of these shells were taken into account by means of EO technique (see below). Spin-orbit interaction was neglected for the explicitly treated electrons because of its smallness (see [15]). Thus, only core molecular pseudoorbitals occupying mainly atomic $1s$, $2s$ and $2p$ orbitals of fluorine and the valence pseudoorbital of unpaired electron (that is mainly $6s, 6p$-hybridized orbital of barium) were varied. RASSCF calculations with 5284 configurations were performed for 11 electrons distributed in RAS 1=(2,0,0,0), RAS 2=(2,1,1,0) and RAS 3=(6,4,4,2) subspaces.

The molecular relativistic spinor for the unpaired electron was constructed from the molecular pseudoorbital $\tilde{\varphi}_u^M$

\[\tilde{\varphi}_u^M = \sum_i C_i^s \tilde{\varphi}_i^s + \sum_i C_i^p \varphi_i^{p, m_l=0} + \cdots, \tag{2} \]

so that the atomic s- and p-pseudoorbitals of barium in (2) were replaced by the unsmoothed four-component DF spinors derived for the same atomic configurations which were used in generation of basis s, p-pseudoorbitals. The MO LCAO coefficients were preserved after the RECP calculations. As the spin-orbit interaction for the unpaired electron is small, the “spin-averaged” valence atomic p-pseudoorbital was replaced by the linear combination of the corresponding spinors with $j = l \pm 1/2$ (see [15,14] for details).

e. Effective operators for valence electrons It is well known that the accuracy of the hyperfine structure calculations for heavy atoms is not high if core polarization effects are not taken into account. In [23] it was suggested, that correlations which are not included in the active space, can be treated with the help of the EO. The latter is constructed by means of the atomic many body perturbation theory (for the application of the perturbation theory to the calculations of the P, T-violation in atoms see, for example, [24]). The main advantage of this method is that there is no need to extend the active space to include core electrons.

In [23] it was supposed that EO is constructed in the active space which includes only few interacting levels. On the contrary, in [15,13] it is suggested to use single EO for the whole (infinite dimensional) valence space. Thus, all correlations between valence electrons are treated explicitly, while EO accounts only for the core excitations. In this case, EO is energy dependent, but this dependence is weak if the energy gap between the core and the valence space is not too small. This makes EO method much more flexible and allows to use one EO for different quantum systems, provided that they have the same core. In particular, it is possible to form EO for the atom (or ion) and then use it in a molecular calculation.

Generally speaking, EO for the hyperfine interaction (as well as for any other one-electron operator) is no longer one-electron operator, even in the lowest order of the perturbation theory. On the other hand, the one-electron part of EO includes two most important correlation corrections and in many cases appears to be a very good approximation. The first
correction corresponds to the Random Phase Approximation (RPA), and the second one corresponds to the substitution of the Dirac-Fock orbitals by the Brueckner orbitals.

To illustrate how EO works for the atomic barium, let us look at the hyperfine constant of the $^3P_1(6s6p)$-level of 137Ba. The two-electron multiconfigurational Dirac-Fock calculation gives $A = 804$ MHz [25], which should be compared to the experimental value 1151 MHz. The two-electron configuration interaction calculation with RPA and Brueckner corrections included gives $A = 1180$ MHz.

In this work we calculated EOs for the magnetic hyperfine interaction, for the EDM of the electron and for the anapole moment. Both RPA equations and Brueckner equations were solved for a finite basis set in the V^{N-2} approximation (which means that SCF corresponds to Ba$^{++}$), and matrix elements of the EOs were calculated. The basis set included Dirac-Fock orbitals for 1s . . . 6s, 6p shells. In addition $7−21s, 7−21p, 5−20d$ and $4−15f$ orbitals were formed in analogy to the basis set N2 of [18]. Molecular orbitals were reexpanded in this basis set to find matrix elements of EOs for the molecular wave function.

f. Results. Expressions for the electronic matrix elements which correspond to the parameters A, A_d and W_i of the operator (1) can be found in [2]. All radial integrals and atomic four-component spinors were calculated for the finite nucleus in a model of uniformly charged ball.

Results for the parameters of the spin-rotational Hamiltonian are given in table II. There are two measurements of the hyperfine constants for 137BaF [26,27]. First of them was made for a matrix-isolated molecule and second was performed in a molecular beam. Results of these measurements were used in the semiempirical calculations [12] of P- and P, T-odd parameters of the spin-rotational Hamiltonian. These calculations were based on the similarity between electronic matrix elements for the hyperfine structure interaction and for the P- and P, T-odd interactions. All of these operators mainly depend on the electron spin density in the vicinity of the nucleus. As a result, in a one-electron approximation parameters W_i are proportional to $\sqrt{AA_d}$ [12]. Electronic correlations can break this proportionality.

In table II we give results of the SCF and RASSCF calculations for 11 electrons with the restoration procedure described above. It is seen that in these calculations parameters A and A_d are significantly smaller than in experiments [26,27]. On the next stage we used EOs to account for the core polarization effects. That led to the 50% growth for the constant A, while constant A_d increased by 130%. Our final numbers for the hyperfine constants are very close to the experiment [26] (the difference being less than 5%) but differ more significantly from [27].

Our SCF and RASSCF results for all three constants W_i are much smaller than results of the semiempirical calculations [14]. When core polarization effects are taken into account with the help of corresponding EOs, our values for W_d and W_A dramatically increase (at present we do not have RPA for the constant W_S). There is a good agreement between our final value for W_d and that from the semiempirical calculation, but for the constant W_A, our result is noticeably smaller.

It can be explained by the fact that proportionality between W_d and $\sqrt{AA_d}$ holds within 10% accuracy, but for the constant W_A deviation from proportionality reaches 30%. Almost half of this deviation is caused by the finite nuclear size corrections to radial integrals. Electron correlation corrections for both constants are about 15%.

Two conclusions can be made from the results of this work. First, as it was suggested
in [15], core polarization effects play very important role in calculations of parameters of the spin-rotational Hamiltonian for heavy diatomic radicals. Second, results of the \textit{ab initio} calculations with core polarization included, are close to the results of the semiempirical calculations, correlation corrections being about 15%. The fact that two very different methods give similar results confirms that it is possible to make reliable calculations for such molecules.

\textit{Acknowledgments.} This work was supported in part by RFBR grant N 96–03–33036a and RFBR/DFG grant 96–03–00069G.
REFERENCES

[1] I. B. Khriplovich, *Parity non-conservation in atomic phenomena* (Gordon and Breach, New York, 1991);
[2] M. G. Kozlov and L. N. Labzowsky, J. Phys. B, 28, 1933 (1995).
[3] D. Cho, K. Sangster and E. A. Hinds, Phys. Rev. A, 44, 2783 (1991).
[4] O. P. Sushkov and V. V. Flambaum, JETP, 48, 608 (1978).
[5] V. G. Gorshkov, L. N. Labzowsky and A. N. Moskalev ZhETF, 76, 414 (1979) [JETP 49 (1979)].
[6] E. Commins, S. Ross, D. DeMille and B. Regan, Phys. Rev. A 50, 2960 (1994).
[7] S. M. Barr, Int. J. Mod. Phys., 8, 209 (1993).
[8] B. E. Sauer, S. K. Peck, G. Redgrave and E. Hinds, Phys. Scr., T70, 34 (1997); for preliminary studies of the YbF molecule see B. E. Sauer, J. Wang and E. A. Hinds, Phys. Rev. Lett., 74, 1554 (1995).
[9] L. N. Labzowsky, JETP, 48, 434 (1978).
[10] V. V. Flambaum and I. B. Khriplovich, Phys. Lett., 110A, 12 (1985).
[11] E. A. Hinds and P. G. H. Sandars, Phys. Rev. A, 21, 471 (1980); P. V. Coveney and P. G. H. Sandars, J. Phys. B, 16, 3727 (1983).
[12] M. G. Kozlov, JETP, 62, 1114 (1985).
[13] M. G. Kozlov and V. F. Ezhov, Phys. Rev. A, 49, 4502 (1994).
[14] Yu. Yu. Dmitriev, M. G. Kozlov, L. N. Labzowsky and A. V. Titov, Preprint 1046 (Leningrad Nuclear Physics Institute, Leningrad, 1985); A. V. Titov, thesis, (Leningrad University, 1986); M. G. Kozlov, V. I. Fomichev, Yu. Yu. Dmitriev, L. N. Labzowsky and A. V. Titov, J. Phys. B, 20, 4939 (1987); Yu. Yu. Dmitriev *et al.*, Phys. Lett., 167A, 280 (1992).
[15] A. V. Titov, N. S. Mosyagin, and V. F. Ezhov, Phys. Rev. Lett., 77, 5346 (1996).
[16] J. Olsen and B. O. Roos, J. Chem. Phys., 89, 2185 (1988).
[17] K. Andersson, M. R. A. Blomberg, M. P. Fülscher, V. Kellö, R. Lindh, P.-Aa. Malmqvist, J. Noga, J. Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban and P.-O. Widmark, MOLCAS, Version 2, University of Lund, Sweden, 1991.
[18] V. A. Dzuba, V. V. Flambaum and M. G. Kozlov, JETP Lett., 63, 882 (1996); Phys. Rev. A, 54, 3948 (1996).
[19] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov and S. G. Porsev, to be published.
[20] I. I. Tupitsyn, N. S. Mosyagin, A. V. Titov, J. Chem. Phys., 103, 6548 (1995); N. S. Mosyagin, A. V. Titov, Z. Latajka, Int. J. Quant. Chem., 63, 1107 (1997).
[21] K. P. Huber and G. Herzberg, *Constants of Diatomic Molecules* (Van Nostrand, New York, 1979).
[22] V. Bonifacic and S. Huzinaga, J. Chem. Phys., 60, 2779 (1974).
[23] I. Lindgren, Rep. Prog. Phys., 47, 345 (1984).
[24] A.-M. Martensson-Pendrill, Meth. Comp. Chem., 5, 99 (1992).
[25] T. Olsson, A. Rosen, B. Frike and G. Torbohm, Phys. Scripta, 37, 730 (1988).
[26] L. B. Knight, W. C. Easley and W. Weltner, J. Chem. Phys., 54, 322 (1971).
[27] Ch. Rzyzlewicz *et al.*, Chem. Phys., 71, 389 (1982).
TABLES

TABLE I. Excitation energies for low-lying states of Ba averaged over nonrelativistic configurations (finite difference SCF calculations).

Transition	DF Transition energy (au)	Absolute error (au)	Relative error (%)
$6s^2 \rightarrow 6s^16p^1$	0.04813	-0.00003	0.06
$6s^15d^1$	0.03942	0.00010	0.24
$6s^1$	0.15732	-0.00002	0.01
$6p^1$	0.24473	0.00002	0.01
$5d^1$	0.18742	0.00017	0.09

TABLE II. Parameters of the spin-rotational Hamiltonian for BaF.

Method	A (MHz)	A_d (MHz)	W_d (Hz/cm)	W_A (KHz)	W_S (Hz)
Exper.-I/Semiemp. a	2326	25	-0.41	240	-13
Exper.-II/Semiemp. b	2418	17	-0.35	210	-11
SCF	1457	11	-0.230	111	-6.1
RASSCF	1466	11	-0.224	107	-5.9
SCF/EO	2212	26	-0.375	181	
RASSCF/EO	2224	24	-0.364	175	

aHyperfine structure constants measured for matrix-isolated molecule [26] and semiempirical calculation of constants W_i based on this experiment [2].

bHyperfine structure constants measured for free molecule [27] and semiempirical calculation based on this experiment [2].