Copper- and Nitrogen-Codoped Graphene with Versatile Catalytic Performances for Fenton-Like Reactions and Oxygen Reduction Reaction

Xiuxiang Liao 1,2, Xiaobo Wang 1, Cuiyu Huang 1 and Lihua Zhu 1,*

1 College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; xiuxiang_liao@yeah.net (X.L.); wangxb@hust.edu.cn (X.W.); cuiyu_huang@yeah.net (C.H.)
2 Guangxi Guanfan Investment Co., Ltd., Guigang 537100, China
* Correspondence: lhzhu63@hust.edu.cn; Tel.: +86-27-87543632

Received: 8 October 2020; Accepted: 7 November 2020; Published: 15 November 2020

Abstract: Copper- and nitrogen-codoped reduced graphene oxide material (Cu/N-rGO) was prepared with a hydrothermal method. Its versatile catalytic performances were demonstrated toward the oxidative degradation of rhodamine B (RhB) and oxygen reduction reaction (ORR). The Cu and N codoping of graphene enhanced not only its activation ability toward H₂O₂, but also its electrocatalytic ability for ORR. It was observed that the use of 3%Cu/N-rGO together with 40 mmol·L⁻¹ H₂O₂ and 4 mmol·L⁻¹ Na₂CO₃ could remove more than 94% of the added RhB (30 mg·L⁻¹) in 20 min through a catalytic Fenton-like degradation. Quenching experiments and electron paramagnetic resonance (EPR) measurements indicated that the main reactive species generated in the catalytic oxidation process were surface-bound •OH. The modified graphene also showed good electrocatalytic activity for ORR reaction in alkaline media through a four-electron mechanism. On the electrode of Cu/N-rGO, the ORR reaction exhibited an onset potential of −0.1 V and a half-wave potential of −0.248 V, which were correspondingly close to those on a Pt/C electrode. In comparison with a Pt/C electrode, the 3%Cu/N-rGO electrode showed much greater tolerance to methanol. Such outstanding catalytic properties are attributed to the abundant active sites and the synergism between Cu and N in Cu/N-rGO.

Keywords: Cu–N-codoped graphene; versatile catalyst; oxidative degradation; oxygen reduction reaction

1. Introduction

Due to serious challenges from environmental pollution and energy shortages, various catalysts have been developed to enhance the related pollutant degradation reactions and energy conversion reactions, especially for Fenton-like reactions, and hydrogen evolution and oxygen reduction reactions [1–5]. Typical investigations are focused on the designs of heterogeneous catalysts with high catalytic activity and selectivity by using noble metals (Pt and Au) [6,7], metal oxides (Fe₂O₃ and ZnO/Co₃O₄) [8,9], and metal nitrides [10]. These catalysts may have the demerits of either high cost (due to noble metals) or poor durability (due to the less noble metals), which are unfavorable to their large-scale deployment. To overcome this problem, it is interesting and important to develop carbon-based versatile catalysts that have good catalytic performances for both the Fenton-like reactions (in the field of environmental chemistry) and electrochemical oxygen reduction reaction (in the field of energy chemistry).

In fact, carbon-based catalytic materials have recently attracted much attention, such as carbon nanotubes (CNTs) [11,12], graphene [13,14], graphitic carbon nitride (g-C₃N₄) [15–17], and carbon
nanospheres [18,19]. For example, Peng et al. [11] illustrated that CNTs could effectively accelerate the decomposition of H$_2$O$_2$ via a nonradical activation mechanism. Kannan and Kumar [13] reviewed the current status in the design and development of graphene-based oxygen reduction reaction (ORR) catalysts for microbial fuel cell applications. Cui et al. [15] demonstrated a g-C$_3$N$_4$ catalyst that activated H$_2$O$_2$ to generate reactive hydroxyl radicals and had good Fenton-like catalytic performance in the visible-light-driven degradation of contaminants. Mahajan et al. [18] developed a grape-like carbon nanosphere as photocatalyst and electrocatalyst, which activated the formation of oxidizing radical species under UV-light irradiation and exhibited excellent electrocatalytic activity, respectively. Heteroatom doping of metal (Fe, Cu, Co) or non-metal (N, S, B) in carbon may also enhance the catalytic performances [2,20–24]. The N atom, as an electron donor, provides electron carriers and decreases the band gap energy, which is used to dope into carbon [21,23,25]. The N-doped carbon catalysts are applied to the field of catalysis. Wang et al. [23] developed N-doped graphene as Fenton-like catalysts, which efficiently catalyze the activation of persulfates for the destruction of organic contaminants. Qu et al. [25] reported N-doped graphene as metal-free electrodes for ORR, which presented much better electrocatalytic activity. Another way of improving the catalytic performances of carbon is to fabricate composites of carbon with other components. Tang and Wang used Fe$_3$O$_4$/multiple-walled carbon nanotubes (MWCNT) composites to activate H$_2$O$_2$ for the degradation of sulfamethazine, in which MWCNTs have a rich surface area for adsorbing pollutants and for the circulation of FeII/FeIII [26]. These authors also fabricated the Fe@MesoC catalyst that the Fe-based magnetic nanoparticles embedded into mesoporous carbon [27]. The Fe@MesoC catalyst exhibited enhanced catalytic activity for sulfamethoxazole degradation.

In the doping of carbon-based materials, there are few reports on the codoping by both a metal atom and a non-metal atom. We investigated well the N-doped graphene as a Fenton-like catalyst [23], and observed the strong effect of Cu species on the catalytic performances of carbon- and non-carbon-based substrates [28–31]. Furthermore, previous reports suggested that some M–N/C catalysts showed better catalytic activity and stability than those containing only a single metal [5,31–33]. As an extension of our previous investigations, we aimed to develop a Cu-containing nitrogen-doped carbon composite as a versatile catalyst. In this carbon-based catalyst (Cu/N-rGO), the doping of heteroatoms N into reduced graphene oxide (rGO) can be useful to trap and bond the Cu atoms, constructing the nitrogen-coordinated copper; and the transition metal related to Lewis acid could be prone to bind with N (Lewis base) to form a strong M-N coordination coupled with carbon, forming double active sites. By investigating its catalytic performances toward the degradation reaction and ORR, it was found that the 3%Cu/N-rGO catalyst could not only efficiently catalyze the degradation of rhodamine B by H$_2$O$_2$, but also provide the electrochemical catalytic ability for ORR being close to that of the traditional Pt-C electrocatalyst.

2. Results and Discussion

2.1. Characterizations of Cu/N-rGO

The morphologies of 3%Cu/N-rGO and 100%Cu/N-rGO were observed by transmission electron microscopy (TEM). As shown in Figure 1a, 3%Cu/N-rGO exhibited intrinsic graphene structures, which were composed of crumpled wave-like layers. It was evident that no copper species particles were observed due to its low-content Cu doping. Even at high magnification (5 nm), no lattice fringes from Cu particles were observed (Figure 1b). When the doping content of Cu was increased, the TEM image of 100%Cu/N-rGO in Figure 1c clearly reveals that CuO particles were dispersed on the surface of the graphene. The elemental mapping images (Figure 1d–h) confirm that the 3%Cu/N-rGO catalyst consisted of four elements, i.e., oxygen, carbon, nitrogen, and copper. The evenly distributed strong signals of Cu and N suggested that both copper and nitrogen were successfully doped in the 3%Cu/N-rGO material.
The X-ray diffraction (XRD) patterns of rGO, N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO are shown in Figure 2a. For all samples, two distinct characteristic peaks of the graphite (002) plane at $2\theta = 26.5^\circ$ and (100) plane at $2\theta = 43^\circ$ were observed, which demonstrated the graphitic crystal structure. However, no copper-based characteristic peaks were detected in the patterns of the 3%Cu/N-rGO sample, due to the low Cu content, poor crystallinity of Cu-based compounds, and/or the formation of Cu-N. For 100%Cu/N-rGO, new reflection peaks at 35.6$^\circ$ and 38.9$^\circ$ can be indexed to the (-111) and (111) planes of CuO (JPCDS card no. 45-0937), indicating the presence of CuO species. This was consistent with the TEM observation.

Figure 2b shows the Raman spectra of rGO, N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO. In all the spectra, there were two peaks at around 1350 cm$^{-1}$ and 1603 cm$^{-1}$, corresponding to the D band and G band of graphene, respectively [23]. In comparison with the I_D/I_G value of rGO (1.55), the values of N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO were decreased to 1.11, 1.08, and 1.10, respectively, due to the incorporation of N and Cu atoms. This suggested the formation of the increased number of hopping defects in the graphene layers. The increased number of defect sites can be beneficial to the enhancement of the catalytic activity.

To obtain the specific surface area of rGO, N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO, we measured the adsorption–desorption isotherms of N$_2$ (Figure S1). It was found that the pore sizes distribute mainly in the range of 2–20 nm. The specific surface area of 3%Cu/N-rGO (425.21 m2·g$^{-1}$) was larger than that of N-rGO (398.05 m2·g$^{-1}$), 100%Cu/N-rGO (186.45 m2·g$^{-1}$), and rGO (177.98 m2·g$^{-1}$) (Table S1). The specific surface area declined when the doping context of Cu was 100%, which may be because the CuO species anchored onto the surface of 100%Cu/N-rGO.
After adding the catalysts, the adsorption capacity (Figure 4b) of these samples followed the order...20 min was only 3% by adding 40 mM H2O2. The degradation of RhB was started by adding H2O2...Cu improved the pre-adsorption capacity of RhB on rGO, which may be attributed to more active sites...there was no adsorption capacity in the system of H2O2 and H2O2 + Na2SO4. After adding the catalysts, the adsorption capacity (Figure 4b) of these samples followed the order 3% Cu/N-rGO (345 mg g⁻¹) > N-rGO (232 mg g⁻¹) > rGO (208 mg g⁻¹). Therefore, the doping N and Cu improved the pre-adsorption capacity of RhB on rGO, which may be attributed to more active sites and a larger specific surface area (as confirmed in Figure S1). After the pre-adsorption, the oxidative degradation of RhB was started by adding H2O2. In the absence of any catalyst, the degradation removal of RhB in 20 min was only 3% by adding 40 mM H2O2, and it was increased slightly to 13% by...
co-adding 4 mM Na₂CO₃. The enhancement induced by the introduction of Na₂CO₃ may be attributed
to the greater number of free radicals originating from the interaction between CO₃²⁻ and •OH [40,41].
This result was consistent with previous reports that carbonates may enhance the degradation of
organic pollutants [40,42]. When N-rGO was used as the catalyst system in the presence of H₂O₂ and
Na₂CO₃, RhB was partly degraded, giving a corresponding total RhB removal of 47%. Surprisingly,
the RhB removal efficiency was increased to be more than 94% when 3%Cu/N-rGO was introduced.
This improved activation performance may be ascribed to the increased number of defect sites and the
synergism between Cu and N doped in Cu/N-rGO. The transition metal related to Lewis acid can be
prone to bind with N (Lewis base) to form a strong M-N coordination coupled with carbon, which
contributes to excellent catalytic activity. The nature of the metal-nitrogen species (M-Nₓ) resulted in
an irregular charge distribution and distribution [20,43,44], which ameliorated the RhB adsorption and
degradation. Moreover, the transition metal provided new active sites, which was beneficial to the
catalytic activation because of its vacant 3D orbital and variable valence state [27].

Figure 3. (a) Wide survey XPS spectra of rGO, N-rGO, and 3%Cu/N-rGO; (b) C 1s spectra of rGO,
N-rGO and 3%Cu/N-rGO; (c) N 1s spectra of N-rGO and 3%Cu/N-rGO; (d) Cu 2p of 3%Cu/N-rGO.
When the Cu-loading amount was increased to 100 wt.%, the RhB oxidative degradation was not significantly enhanced in relation to 3% Cu/N-rGO, and the apparent rate constant was only about 0.33 min$^{-1}$. This was due to insufficient catalytic sites and self-quenching of the generated superfluous *OH. The good performance of 3% Cu/N-rGO was attributed to the moderate coordination of copper and nitrogen atoms, and then the formation of Cu-N$_x$ (2 or 4) active sites that exhibited the strong Lewis acid–base interaction [37,45].

The effect of the initial concentration of H$_2$O$_2$ for RhB degradation in the 3%Cu/N-rGO system was studied, as shown in Figure 5b. With increasing H$_2$O$_2$ concentrations from 5.0 mM to 40.0 mM, the degradation efficiency improved from 73% to 94% and the k value increased from 0.19 to 0.27 min$^{-1}$. The enhanced efficiency can be attributed to the greater generation of radical species at higher H$_2$O$_2$ concentrations. The use of 60 mM H$_2$O$_2$ did not further increase the degradation efficiency with a k value of 0.25 min$^{-1}$. This was due to insufficient catalytic sites and self-quenching of the generated superfluous *OH. The performance of the 3% Cu/N-rGO catalyst and the values in the previous articles are shown in Table S5.
Figure 5. Effects of different reaction parameters on the adsorption and degradation of RhB over Cu/N-rGO: (a) Cu load, (b) H$_2$O$_2$ concentration, (c) Na$_2$CO$_3$ concentration, and (d) temperature. The insets give the dependence of the apparent rate constant of RhB degradation on the specified reaction parameter.

Figure 5c displays the effect of Na$_2$CO$_3$ on the catalytic degradation of RhB. It was easily observed that the k value increased from 0.19 to 0.27 min$^{-1}$ with the increasing Na$_2$CO$_3$ concentrations from 0 to 4 mM, but the addition of 8 mM Na$_2$CO$_3$ induced little further enhancement of the RhB degradation. It seemed that 4 mM Na$_2$CO$_3$ was optimal. This was explained by the fact that the co-existence of the H$_2$O$_2$ molecules and carbonate radicals resulted in the generation of CO$_3$•, which triggered a series of reactions to generate other radicals (including the superoxide ion and singlet oxygen) for pollutant degradation as suggested by the equations below [40,41], involving the following reactions:

1. $\text{H}_2\text{O}_2 + \text{H}_2\text{O} + \text{CO}_3$•$\rightarrow \text{H}_2\text{O} + \text{HCO}_4^-$
2. $\text{H}_2\text{O}_2 + \text{CO}_3$•$\rightarrow \text{HCO}_3^- + \text{HO}_2^*$
3. $\text{HO}_2^* \rightarrow \text{H}^+ + \text{O}_2$•$
4. \text{O}_2$•$ + \cdot\text{OH} \rightarrow \text{O}_2^1 + \text{HO}^$
5. $\text{HO}_2^* + \text{O}_2$•$\rightarrow \text{O}_2^1 + \text{HO}_2^-$
6. $\text{HO}_2^* + \text{HO}_2$•$\rightarrow \text{O}_2^1 + \text{H}_2\text{O}_2$
7. $\text{H}_2\text{O}_2 + \text{HCO}_3^- \rightarrow \text{H}_2\text{O} + \text{HCO}_4^-$.

These reactions contribute to the efficient degradation of RhB.
The degradation of RhB over 3%Cu/N-rGO was investigated at temperatures in the range of 10–55 °C, as shown in Figure 5d. The k value was roughly linearly increased from 0.24 min⁻¹ to 0.36 min⁻¹ with increasing temperatures from 10 °C to 55 °C. The activation energy (Ea) of the degradation of RhB in the 3%Cu/N-rGO-H2O2-Na2CO3 system was calculated according to the Arrhenius equation of lnk = lnA – Ea/RT, where R is the universal gas constant (8.314 J·mol⁻¹). The Ea value was obtained as 6.93 kJ·mol⁻¹, indicating the high catalytic activity of 3%Cu/N-rGO.

It was reported *OH, •O2−/HO2•, and singlet oxygen (1O2) could be generated to the reactive oxygen species for RhB in the H2O2-Na2CO3 system. To determine the main free radicals for determining the degradation process, electron paramagnetic resonance (EPR) and quenching experiments were carried out. Figure 6a displays the EPR spectra of the tested catalytic system, which were typical for TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-•OH, and DMPO-•OH, and DMPO-•O2−/HO2•. Strong characteristic peaks of DMPO-•OH were detected, but the signals for DMPO-•O2−/HO2• were weak and no signals were observed for TEMPO-1O2. This suggested that •OH was primarily important in the degradation process. Furthermore, thiourea, benzoquinone, and NaN3 were used as the radical scavenger for •OH, •O2−/HO2•, and 1O2 [46,47], respectively. According to Figure 6b, the RhB degradation was inhibited significantly after adding thiourea, and the removal was decreased from 94% to 53.6%. When benzoquinone or NaN3 was used as the radical scavenger in the 3%Cu/N-rGO/H2O2/Na2CO3 system, the degradation efficiency declined slightly as compared with that without adding any radical scavenger. This result illustrated that the dominant free radical was •OH rather than •O2−/HO2• and 1O2 during the catalysis process, which was consistent with the reported literature [48].

![Figure 6](image_url)
Figure 6. (a) Electron paramagnetic resonance (EPR) spectra in the systems for the degradation of RhB over Cu/N-rGO, being trapped as typical DMPO-•O2−/HO2•, DMPO-•OH, and TEMPO-1O2. (b) Effect of quenching agents on the adsorption and degradation of RhB for 3%Cu/N-rGO.

2.3. Electrocatalytic Performance of Cu/N-rGO

The electrocatalytic activity of 3%Cu/N-rGO for the ORR was evaluated with cyclic voltammetry (CV), which was conducted in 0.1 M KOH at a scan rate of 10 mV·s⁻¹. As shown in Figure 7a,b, the obtained cyclic voltammogram of N-rGO and 3%Cu/N-rGO in the N2-saturated solution was typically capacitive without an observable electrocatalytic active reaction occurring in the potential window from −1.0 to 0.2 V (vs. Ag/AgCl). However, both the electrodes of N-rGO and 3%Cu/N-rGO exhibited an obvious oxygen reduction peak around −0.285 V in the O2-saturated electrolyte, and the peak current (0.7 mA·cm⁻²) on 3%Cu/N-rGO was more than two times (0.26 mA·cm⁻²) that on N-rGO. This was indicative of an excellent ORR electrocatalytic activity of 3%Cu/N-rGO. To further support the result, we compared the linear sweep voltammetry (LSV) of rotating disk electrodes (RDEs) of 3%Cu/N-rGO and other materials including Pt/C at a rotation rate of 2500 rpm in O2-saturated
0.1 M KOH. As shown in Figure 7c, these catalysts gave onset potentials (E_onset) in the order of Pt/C (−0.086 V) > 3%Cu/N-rGO (−0.1 V) > 100%Cu/N-rGO (−0.143 V) > N/rGO (−0.146 V) > rGO (−0.178 V), half-wave potentials (E_1/2) in the order of Pt/C (−0.163 V) > 3%Cu/N-rGO (−0.248 V) > rGO (−0.31 V) > 100%Cu/N-rGO (−0.351 V) > N/rGO (−0.365 V), and limiting current density in the order of 3%Cu/N-rGO (−6.83 mA·cm⁻²) > Pt/C (−6.34 mA·cm⁻²) > 100%Cu/N-rGO (−5.18 mA·cm⁻²) > N/rGO (−4.78 mA·cm⁻²) > rGO (−3.34 mA·cm⁻²). These results were close to or higher than the values previously reported in the literature (Table S6). It should be mentioned that both the much higher limiting current density and more positive onset potential (and half-wave potential) of 3%Cu/N-rGO proved that the electrocatalytic activity of 3%Cu/N-rGO was much better than 100%Cu/N-rGO, rGO, and N-rGO, and very close to that of Pt/C, indicating that the existence of Cu species played a key role in the catalytic activity. Such outstanding catalytic properties may be attributed to the abundant active sites and the synergism between Cu and N in the Cu/N-rGO.

Figure 7. Cyclic voltammetry (CV) curves of (a) 3%Cu/N-rGO and (b) N-rGO in N₂-saturated and O₂-saturated in 0.1 M KOH. (c) Linear sweep voltammetry (LSV) curves of the rotating electrodes of rGO, N/rGO 3%Cu/N-rGO, 100%Cu/N-rGO, and 20% Pt/C at 2500 rpm. (d) LSV curves of 3%Cu/N-rGO at different rotating rates (inset: corresponding Koutecky–Levich plots). (e) Tafel plots of 3%Cu/N-rGO and commercial 20 wt% Pt/C in O₂-saturated 0.1 M KOH at a scan rate of 10 mV·s⁻¹. (f) Current–time (I–t) curves of Cu–N/C and Pt/C at 0.55 V in 0.1 M KOH after addition of 10 mL methanol.

The kinetics of ORR reaction pathways of various catalysts were studied by LSV. The LSV curves (Figure 7d) of the 3%Cu/N-rGO catalyst illustrated that the current densities were increased with the increasing rotation speed, which was due to the increased mass transport, considering a kinetics-controlled process of ORR. As a comparison, the LSV data of rGO, N-rGO, 100%Cu/N-rGO, and Pt/C are plotted in Figure S2. The corresponding Koutecky–Levich (K–L) plots showed nearly parallel fitting lines (inset of Figure 7d), validating that the transferred electron numbers per oxygen molecule in ORR were almost the same. The electron transfer number (n) of 3%Cu/N-rGO was calculated to an average value of 4.04, indicating a better selectivity of the 4e⁻ pathway to directly reduce O₂ to H₂O. However, the corresponding values (insets of Figure S2a,b) of rGO and N-rGO were 1.51 and 2.16, respectively, suggesting the presence of a less efficient 2e⁻ pathway. For both 100%Cu/N-rGO and Pt/C, the electron transfer number (insets of Figure S2c,d) was close to 4. However,
the catalysis ability of 100%Cu/N-rGO decreased greatly compared with 3%Cu/N-rGO, due to the existence of CuO species.

Figure 7e presents the Tafel plots of 3%Cu/N-rGO and 20 wt% Pt/C. The Tafel slope value for the 3%Cu/N-rGO catalyst was calculated to be 84.31 mV·dec⁻¹, which was very close to that of Pt/C (84.1 mV·dec⁻¹). This demonstrated that it was easy to drive a larger catalytic current density at a lower overpotential and had a favorable electron transfer kinetics. In a methanol fuel cell, methanol may permeate from the anode to the cathode, leading to the poisoning and deactivation of the cathode catalyst. The durability of 3%Cu/N-rGO was evaluated by chronoamperometric measurements into 0.1 M KOH. As observed in Figure 7f, the 3%Cu/N-rGO catalyst still retained 97.5% of its original current after methanol (AR, 99.5%) injection, whereas the 20%Pt/C displayed a dramatic decline (current loss of 23.9%), illustrating the superior tolerance toward methanol of 3%Cu/N-rGO comparable to that of 20%Pt/C. The result was higher than the values previously reported in the literature (Table S6).

3. Materials and Methods

3.1. Reagents and Materials

Rhodamine B (RhB), copper nitrate trihydrate (Cu(NO₃)₂·3H₂O), hydrogen peroxide (H₂O₂, 30 wt.%), Na₂CO₃ (99.8%), NaNO₃, NH₃·H₂O (30%), KMnO₄, and H₂SO₄ (98%) were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Graphite powder was purchased from American Bay Carbon (Bay City, MI, USA). All the reagents were chemical grade or higher and used without further purification.

3.2. Preparation of the Cu/N-rGO Catalyst

Graphene oxide (GO) was prepared according to a modified Hummers method (see Supplementary Materials for more details) [23,49], and the GO suspension was obtained by dispersing GO in deionized water. Typically, a 12.5 mL portion of GO (4 mg·mL⁻¹) suspension was added to 32.5 mL of Cu(NO₃)₂·3H₂O aqueous solution. Afterward, the mixture was treated by ultrasonication for 30 min. Then, 5 mL of NH₃·H₂O were added with magnetic stirring. The mixture was then transferred into a 100 mL Teflon-lined autoclave and heated at 180 °C for 6 h. Subsequently, the black precipitates were filtrated and washed with distilled water several times. Finally, the product was dispersed in water as Cu/N-rGO dispersions. N-rGO and rGO samples were similarly prepared in the absence of Cu(NO₃)₂·3H₂O and/or NH₃·H₂O, respectively. In the present work, the Cu/N-rGO catalysts were referred to as x%Cu/N-rGO, where x represented the Cu²⁺/GO mass ratio.

3.3. Characterizations

The morphology and the element distribution of the catalysts were characterized by transmission electron microscopy (TEM, FEI Tecnai G2 F20, Hillsboro, TX, USA) and energy-dispersive spectroscopy (EDS) (Fei company, Hillsboro, TX, USA). X-ray diffraction (XRD) was applied to obtain the crystal structure by using an X-ray diffractometer (Bruker D8 Advance, Thermo Fisher Technology Co., Ltd, Walsham, MA, USA) under the condition of Cu Kα irradiation with operating voltage and current of 40 kV and 40 mA. The surface chemical composition and valence state were analyzed with X-ray photoelectron spectroscopy (XPS) on a VG Multilab 2000 spectrometer (Thermo Fisher Technology Co., Ltd, Walsham, MA, USA) with Al Kα radiation (300 W). Raman spectra were obtained on a Thermo Fisher DXR Raman spectrometer (Thermo Fisher Technology Co., Ltd, Walsham, MA, USA) with laser power (532 nm). The free radicals in the DMPO-•OH, DMPO-O₂⁻•/HO₂•, and TEMPO⁻•O₂ systems were trapped by electron paramagnetic resonance (EPR) spectra (Bruker, Beijing, China).

3.4. Adsorption and Degradation Experiments

The adsorption and catalytic degradation experiments were carried out in a 100 mL beaker at 298 K. The given amount of Cu/N-rGO (40 mg/L) was added to 50 mL solution of RhB (30 mg/L), and the
dispersion was magnetically stirred for 16 min to achieve the adsorption/desorption equilibrium between the solution and the Cu/N-rGO solid. Then, a specified amount of \(\text{H}_2\text{O}_2 \) + \(\text{Na}_2\text{CO}_3 \) was added to the above suspension to initiate the degradation. Afterward, aliquots (1 mL) were sampled at given time intervals and centrifuged by using an EBA-21 centrifuge (13000 rpm) to remove Cu/N-rGO. The RhB concentration in the supernatant was determined by monitoring its absorbance at \(\lambda_{\text{max}} = 554 \text{ nm} \) on a Cary 60 UV–VIS spectrophotometer (Agilent, Palo Alto, CA, USA).

3.5. Electrochemical Measurements

The electrocatalytic activity of Cu/N-rGO for ORR was investigated at room temperature by using a CHI 660A electrochemical station with a standard three-electrode system consisting of a rotating disk electrode with a geometric area of 0.196 cm\(^2\) coated with the catalyst, a Ag/AgCl reference electrode (saturated with 1 M KOH), and a Pt foil counter electrode. The primary catalyst ink was prepared by dispersing 5 mg of Cu/N-rGO into 5 mL of N, N-dimethylformamide (DMF) within 50 µL of 5% naphthol. The as-obtained ink was coated onto the disk electrode, yielding a catalyst loading of 0.1 mg·cm\(^{-2}\). The ORR reaction of the catalyst was investigated by cyclic voltammetry (CV) in the \(\text{N}_2/\text{O}_2 \)-saturated 0.1 M KOH electrolyte solution, with a scan rate of 10 mV·s\(^{-1}\). Linear sweep voltammetry (LSV) curves were measured at various rotating speeds, with a scan rate of 10 mV·s\(^{-1}\) under \(\text{O}_2 \) condition. The stability of the catalysts was also evaluated by acquiring current–time (I–t) curves at 0.55 V in \(\text{O}_2 \)-saturated 0.1 M KOH solution.

4. Conclusions

A versatile catalyst of Cu- and N-codoped graphene was synthesized by a hydrothermal process. The Cu load in the catalyst and several other parameters were optimized in terms of the catalytic activity. It was confirmed that the 3%Cu/N-rGO catalyst showed superior catalytic activity in the \(\text{H}_2\text{O}_2/\text{Na}_2\text{CO}_3 \) system. Its use achieved a total removal of 94% of the added RhB within 20 min with an apparent degradation rate constant of 0.27 min\(^{-1}\). Furthermore, the 3%Cu/N-rGO catalyst was applied to oxygen reduction reaction, and displayed a four-electron pathway and excellent tolerance to methanol in ORR. The better catalytic and ORR performances were attributed to the abundant active sites and the synergism between Cu and N in the Cu/N-rGO.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1326/s1;
Table S1: Specific surface area and pore diameter of rGO, N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO. Table S2: Elemental compositions of rGO, N-rGO, and 3%Cu/N-rGO catalysts determined by XPS. Table S3: Relative percentage of N species for N-rGO and 3%Cu/N-rGO catalysts. Table S4: The actual Cu-doping contents of 0.5%Cu/N-rGO, 1.0%Cu/N-rGO, 3.0%Cu/N-rGO, and 100%Cu/N-rGO form Atomic absorption spectroscopy. Table S5: The performance of M-N catalysts in previous articles. Table S6: ORR performances of some M-N catalysts in previous articles. Figure S1: (a) \(\text{N}_2 \) adsorption/desorption isotherms and (b) pore distributions of rGO, N-rGO, 3%Cu/N-rGO, and 100%Cu/N-rGO. Figure S2: LSV curves of (a) rGO, (b) N/rGO, (c) 100%Cu-N/rGO, and (d) 20% Pt/C.

Author Contributions: Conceptualization, X.L., X.W., and L.Z.; methodology, X.L. and C.H.; software, X.L. and X.W.; validation, C.H. and X.W.; formal analysis, X.L., X.W., C.H., and L.Z.; investigation, X.L.; resources, X.L.; data curation, X.L. and X.W.; writing—original draft preparation, X.L. and X.W.; writing—review and editing, X.L., X.W., C.H., and L.Z.; funding acquisition, X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Postdoctoral Science Foundation (2018M642850).

Acknowledgments: X.W. acknowledges the funding support from the China Postdoctoral Science Foundation (2018M642850).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Peng, Z.; Qiu, X.; Yu, Y.; Jiang, D.; Wang, H.; Cai, G.; Zhang, X.; Dong, Z. Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes with FeP encapsulated for hydrogen evolution. *Carbon* **2019**, *152*, 16–23. [CrossRef]

2. Tan, H.; Tang, J.; Kim, J.; Kaneti, Y.V.; Kang, Y.M.; Sugahara, Y.; Yamauchi, Y. Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. *J. Mater. Chem. A* **2019**, *7*, 1380–1393. [CrossRef]

3. Wang, Y.; Liu, Y.; Xu, J.; Separation of hydrogen sulfide from gas phase using Ce$^{3+}$/Mn$^{2+}$-enhanced fenton-like oxidation system. *Chem. Eng. J.* **2019**, *359*, 1486–1492. [CrossRef]

4. Chen, M.; Zhang, Z.; Zhu, L.; Wang, N.; Tang, H. Bisulfite-induced drastic enhancement of bisphenol A degradation in Fe$^{3+}$-H$_2$O$_2$ Fenton system. *Chem. Eng. J.* **2019**, *361*, 1190–1197. [CrossRef]

5. Liu, P.; Hu, Y.; Liu, X.; Wang, T.; Xi, P.; Xi, S.; Gao, D.; Wang, J. Cu and Co nanoparticle-Co-decorated N-doped graphene nanosheets: A high efficiency bifunctional electrocatalyst for rechargeable Zn-air batteries. *J. Mater. Chem. A* **2019**, *7*, 12851–12858. [CrossRef]

6. Zheng, X.; Zhang, Z.; Meng, S.; Wang, Y.; Li, D. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. *Chem. Eng. J.* **2020**, *393*, 124676. [CrossRef]

7. Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. *Nat. Commun.* **2017**, *8*, 14969. [CrossRef]

8. Wang, Y.; Ye, X.; Chen, G.; Li, D.; Meng, S.; Chen, S. Synthesis of BiPO$_4$ by crystallization and hydroxylation with boosted photocatalytic removal of organic pollutants in air and water. *J. Hazard. Mater.* **2020**, *399*, 122999. [CrossRef]

9. Dias, J.A.; Arantes, V.L.; Ramos, A.S.; Giraldi, T.R.; Minucci, M.Z.; Maestrelli, S.C. Characterization and photocatalytic evaluation of ZnO–Co$_3$O$_4$ particles obtained by high energy milling. Part II: Photocatalytic properties. *Ceram. Int.* **2016**, *42*, 3485–3490. [CrossRef]

10. Wang, X.R.; Liu, J.Y.; Liu, Z.W.; Wang, W.C.; Luo, J.; Han, X.P.; Du, X.W.; Qiao, S.Z.; Yang, J. Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. *Adv. Mater.* **2018**, *30*, e1800005. [CrossRef]

11. Peng, J.; Xue, J.; Li, J.; Du, Z.; Wang, Z.; Gao, S. Catalytic effect of low concentration carboxylated multi-walled carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system. *Chem. Eng. J.* **2017**, *321*, 325–334. [CrossRef]

12. Waki, K.; Wong, R.A.; Oktaviano, H.S.; Fujio, T.; Nagai, T.; Kimoto, K.; Yamada, K. Non-nitrogen doped carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system. *Chem. Eng. J.* **2019**, *361*, 1190–1197. [CrossRef]

13. Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Metal-free activation of H$_2$O$_2$ by g-C$_3$N$_4$ under visible light irradiation for the degradation of organic pollutants. *Phys. Chem. Chem. Phys.* **2012**, *14*, 1455–1462. [CrossRef] [PubMed]

14. Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C$_3$N$_4$ photocatalyst under visible light irradiation. *Appl. Catal. B: Environ.* **2014**, *148–159*, 382–390. [CrossRef]

15. Qin, Y.; Ding, Y.; Tang, H. Highly efficient visible-light photocatalytic activity of graphitic carbon nitride prepared from melamine-thiourea molecular composite. *J. Environ. Chem. Eng.* **2016**, *4*, 4374–4384. [CrossRef]

16. Mahajan, M.; Singla, G.; Singh, K.; Pandey, O.P. Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst. *J. Solid State Chem.* **2015**, *232*, 108–117. [CrossRef]
19. Shen, M.; Ruan, C.; Chen, Y.; Jiang, C.; Ai, K.; Lu, L. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 1207–1218. [CrossRef]

20. Wu, H.; Li, H.; Zhao, X.; Liu, Q.; Wang, J.; Xiao, J.; Xie, S.; Si, R.; Yang, F.; Miao, S.; et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 2016, 9, 3736–3745. [CrossRef]

21. Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [CrossRef] [PubMed]

22. Yao, Y.; Chen, H.; Lian, C.; Wei, F.; Zhang, D.; Wu, G.; Chen, B.; Wang, S. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 2016, 314, 129–139. [CrossRef] [PubMed]

23. Wang, X.; Qin, Y.; Zhu, L.; Tang, H.Q. Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis. Environ. Sci. Technol. 2015, 49, 6855–6864. [CrossRef] [PubMed]

24. Liu, H.; Zhao, Q.; Liu, J.; Ma, X.; Rao, Y.; Shao, X.; Li, Z.; Wu, W.; Ning, H.; Wu, M. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction. Appl. Surf. Sci. 2017, 423, 909–916. [CrossRef]

25. Qu, L.T.; Liu, Y.; Baek, J.B.; Dai, L.M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326. [CrossRef] [PubMed]

26. Tang, J.T.; Wang, J.L. FeO$_2$-MWCNT Magnetic Nanocomposites as Efficient Fenton-Like Catalysts for Degradation of Sulfamethazine in Aqueous Solution. Chem. Select. 2017, 2, 10727–10735.

27. Tang, J.T.; Wang, J.L. Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chem. Eng. J. 2018, 351, 1085–1094. [CrossRef]

28. Lei, M.; Guo, S.; Wang, Z.; Zhu, L.; Tang, H. Ultrarapid and Deep Debromination of Tetrabromodiphenyl Ether over Noble-Metal-Free Cu/TiO$_2$ Nanocomposites under Mild Conditions. Environ. Sci. Technol. 2018, 52, 11743–11751. [CrossRef]

29. Lei, M.; Wang, N.; Zhu, L.; Zhou, Q.; Nie, G.; Tang, H. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO$_2$ nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Appl. Catal. B Environ. 2016, 182, 414–423. [CrossRef]

30. Ding, Y.; Tang, H.; Zhang, S.; Wang, S.; Tang, H. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO$_2$ mediated heterogeneous activation of peroxymonosulfate. J. Hazard. Mater. 2016, 317, 686–694. [CrossRef]

31. Wu, Q.; Wang, J.; Wang, Z.; Xu, Y.; Xing, Z.; Zhang, X.; Guan, Y.; Liao, G.; Li, X. High-loaded single Cu atoms decorated on N doped graphene for boosting Fenton-like catalysis under neutral pH. J. Mater. Chem. A 2020, 8, 13685–13693. [CrossRef]

32. Lin, L.; Yang, Z.K.; Jiang, Y.F.; Xu, A.W. Nonprecious Bimetallic (Fe,Mo)–N/C Catalyst for Efficient Oxygen Reduction Reaction. ACS Catal. 2016, 6, 4449–4454. [CrossRef]

33. Jiang, K.; Siahrostami, S.; Akey, A.J.; Li, Y.; Lu, Z.; Lattimer, J.; Hu, Y.; Stokes, C.; Gangishetty, M.; Chen, G.; et al. Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. Chem 2017, 3, 950–960. [CrossRef]

34. Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Adv. Energy Mater. 2012, 2, 884–888. [CrossRef]

35. Chen, M.; Zhu, L.; Zhang, Y.; Zou, J.; Tang, H. Cobalt particles encapsulated and nitrogen-doped bamboo-like carbon nanotubes as a catalytic and adsorptive bifunctional material for efficient removal of organic pollutants from wastewater. J. Environ. Chem. Eng. 2017, 5, 5322–5330. [CrossRef]

36. Ju, W.; Bagger, A.; Hao, G.P.; Varela, A.S.; Sinev, I.; Bon, V.; Cuenya, B.R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO$_2$. Nat. Commun. 2017, 8, 944. [CrossRef]
37. Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. *Nat. Catal.* **2018**, *1*, 781–786. [CrossRef]

38. Galtayries, A.; Bonnelle, J.P. XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces. *Surf. Interface Anal.* **1995**, *23*, 171–179. [CrossRef]

39. Wang, Y.; Birad, A.V.; Wang, G.; Sharma, K.K.; Duncan, C.T.; Rangan, S.; Asefa, T. Controlled Synthesis of Water-Dispersible Faceted Crystaline Copper Nanoparticles and Their Catalytic Properties. *Chem. Eur. J.* **2010**, *16*, 10735–10743. [CrossRef]

40. Li, L.; Huang, J.; Hu, X.; Zhang, S.; Dai, Q.; Chai, H.; Gu, L. Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species. *Chemosphere* **2019**, *215*, 647–656. [CrossRef]

41. Zhou, L.; Song, W.; Chen, Z.; Yin, G. Degradation of Organic Pollutants in Wastewater by Bicarbonate-Activated Hydrogen Peroxide with a Supported Cobalt Catalyst. *Environ. Sci. Technol.* **2013**, *47*, 3833–3839. [CrossRef] [PubMed]

42. Bagal, M.V.; Gogate, P.R. Sonochemical degradation of alachlor in the presence of process intensifying additives. *Sep. Purif. Technol.* **2012**, *90*, 92–100. [CrossRef]

43. Huang, Z.; Pan, H.; Yang, W.; Zhou, H.; Gao, N.; Fu, C.; Li, S.; Li, H.; Kuang, Y. In Situ Self-Template Synthesis of Fe-N-Doped Double-Shelled Hollow Carbon Microspheres for Oxygen Reduction Reaction. *ACS Nano* **2018**, *12*, 208–216. [CrossRef] [PubMed]

44. Yin, P.; Yao, T.; Zheng, L.; Lin, Y.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. *Angew. Chem. Int. Ed.* **2016**, *55*, 10800–10805. [CrossRef] [PubMed]

45. Ni, Y.; Chen, Z.; Kong, F.; Qiao, Y.; Kong, A.; Shan, Y. Space-confined synthesis of multilayer Cu–N doped graphene nanosheets for efficient oxygen electroreduction. *Dalton Trans.* **2017**, *46*, 8586–8592. [CrossRef] [PubMed]

46. Yan, P.; Sui, Q.; Lyu, S.; Hao, H.; Schröder, H.F.; Gebhardt, W. Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. *Sci. Total Environ.* **2018**, *640*, 973–980. [CrossRef]

47. Ge, L.; Moor, K.; Zhang, B.; He, Y.; Kim, J.H. Electron Transfer Mediation by Aqueous C60 Aggregates in H2O2/UV Advanced Oxidation of Indigo Carmine. *Nanoscale* **2014**, *6*, 13579–13585. [CrossRef]

48. Du, J.; Bao, J.; Fu, X.; Lu, C.; HoonKim, S. Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol A. *Appl. Catal. B Environ.* **2016**, *184*, 132–141. [CrossRef]

49. Hummer, W.; Offeman, R. Preparation of graphitic oxide. *J. Am. Chem. Soc.* **1958**, *80*, 1339–1340. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.