S-Injective Modules and Rings

Nasr A. Zeyada

1Department of Mathematics, Faculty of Science, Cairo University, Cairo, Egypt
2Department of Mathematics, Faculty of Science, King Abd-Alaziz University, KSA
Email: nasmz@yahoo.com

Received October 7, 2013; revised November 7, 2013; accepted November 15, 2013

Copyright © 2014 Nasr A. Zeyada. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of http://dx.doi.org/10.4236/apm.2014.41004

ABSTRACT

We introduce and investigate the concept of s-injective modules and strongly s-injective modules. New characterizations of SI-rings, GV-rings and pseudo-Frobenius rings are given in terms of s-injectivity of their modules.

KEYWORDS

S-Injective Module; Kasch Ring; Pseudo Frobenius Ring

1. Introduction

In this paper we introduce and investigate the notion of s-injective Modules and Rings. A right R-module M is called right s-N-injective, where N is a right R-module, if every R-homomorphism f : K → M extends to N, where K is a submodule of the singular submodule Z(N). M is called strongly s-injective if M is s-N-injective for every right R-module N. The connection between this new injectivity condition and other injectivity conditions has been established, and examples are provided to distinguish s-injectivity from other injectivity concepts such as mininjectivity, soc-injectivity. Several properties of this new class of injectivity are highlighted.

Throughout this paper all rings are associative with identity, and all modules are unitary R-modules. For a right R-module M, we denoted J(M), soc(M), and Z(M) by the Jacobson radical, the socle and the singular submodule of M, respectively. S_r, S_s, Z_r, Z_s, and J are used to indicate the right socle, the left socle, the right singular ideal, the left singular ideal, and the Jacobson radical of R, respectively. For a submodule N of M, the notations N ≤^∞ M, N ≤^max M and N ≤^o M mean, respectively, that N is essential, maximal, and direct summand. If X is a subset of a right R-module M, right annihilators will be denoted by r(X) = r_k(X) = \{ r ∈ R : xr = 0 \ for all \ x ∈ X \} , with a similar definition of left annihilators l(X) = l_k(X). Multiplication maps x → ax and x → xa will be denoted by a* and a*, respectively. If M and N are right R-modules, then M is called N-injective if every R-homomorphism from a submodule of N into M can be extended to an R-homomorphism from N into M. Mod-R indicates the category of right R-modules. We refer to [1-3] for all the undefined notions in this paper.

2. Strongly S-Injective Modules

Definition 1 A right R-module M is called s-N-injective if every R-homomorphism f : K → M extends to N, where K is a submodule of the singular submodule Z(N). M is called s-injective if M is s-R-injective. M is called strongly s-injective, if M is s-N-injective for all right R-modules N.

For example every nonsingular R-module is strongly s-injective. In particular, the ring of integers Z is strongly s-injective, but not injective.

Proposition 1

1) Let N be a right R-module and \{ M_i : i ∈ I \} a family of right R-modules. Then the direct product \bigoplus_{i ∈ I} M_i...
is \(s\)-\(N\)-injective if and only if each \(M_i\) is \(s\)-\(N\)-injective, \(i \in I\).

2) Let \(M, N,\) and \(K\) be right \(R\)-modules with \(K \subseteq N\). If \(M\) is \(s\)-\(N\)-injective, then \(M\) is \(s\)-\(K\)-injective.

3) Let \(M, N,\) and \(K\) be right \(R\)-modules with \(K \subseteq N\). If \(K\) is \(s\)-\(M\)-injective, then \(N\) is \(s\)-\(M\)-injective.

4) Let \(N\) be a right \(R\)-module and \(\{A_i : i \in I\}\) a family of right \(R\)-modules. Then \(N\) is \(s\)-\(\bigoplus_{i \in I} A_i\)-injective if and only if \(N\) is \(s\)-\(A_i\)-injective, \(\forall i \in I\).

5) A right \(R\)-module \(M\) is \(s\)-injective if and only if \(M\) is \(s\)-\(P\)-injective for every projective right \(R\)-module \(P\).

6) Let \(M, N,\) and \(K\) be right \(R\)-modules with \(N \subseteq N\). If \(M\) is \(s\)-\(K\)-injective, then \(N\) is \(s\)-\(K\)-injective.

7) If \(A, B,\) and \(M\) are right \(R\)-modules, \(A \cong B\), and \(M\) is \(s\)-\(A\)-injective, then \(M\) is \(s\)-\(B\)-injective.

Proof. The proofs of 1) through 4) are routine.

5) This follows from 4).

6). Let \(f : L \rightarrow N\) be an \(R\)-homomorphism where \(L\) is singular submodule of \(N\). Then the map \(\iota \circ f : L \rightarrow M\) can be extended to an \(R\)-homomorphism \(g : K \rightarrow M\), where \(\iota : N \rightarrow M\) the inclusion map. Now, the map \(\pi \circ g : K \rightarrow N\) is an extension of \(f\), where \(\pi : M \rightarrow N\) the natural projection map into \(N\).

7). Let \(f : A \rightarrow B\) be an \(R\)-isomorphism, and \(g : K \rightarrow M\) an \(R\)-homomorphism where \(K\) is a singular submodule of \(B\). The restriction of \(f\) to \(Z(A)\) induces an isomorphism \(f^\# : Z(A) \rightarrow Z(B)\). By hypothesis, the map \(g \circ f : K \rightarrow M\) can be extended to an \(R\)-homomorphism \(\eta : A \rightarrow M\). Now, the map \(\eta \circ f^\# : B \rightarrow M\) is an extension of \(g\).

The next two corollaries are immediate consequences of the above proposition.

Corollary 1 Let \(N\) be a right \(R\)-module. Then the following statements are true:

1) A finite direct sum of \(s\)-\(N\)-injective modules is again \(s\)-\(N\)-injective. In particular a finite direct sum of \(s\)-injective (strongly \(s\)-injective) modules is again \(s\)-injective (strongly \(s\)-injective).

2) A summand of \(s\)-\(N\)-injective \((s\)-injective, strongly \(s\)-injective) module is again \(s\)-\(N\)-injective \((s\)-injective, strongly \(s\)-injective) module.

Corollary 2

1) Let \(M\) be a right \(R\)-module and \(1 = e_1 + e_2 + \cdots + e_n\) in \(R\), where the \(e_i\) are orthogonal idempotents. Then \(M\) is \(s\)-\(N\)-injective if and only if \(M\) is \(s\)-\(e_i R\)-injective for each \(i, 1 \leq i \leq n\).

2) Assume that \(e\) and \(f\) are idempotents of \(R\), \(e R \subseteq f R\), and \(M\) is \(s\)-\(e R\)-injective. Then \(M\) is \(s\)-\(f N\)-injective.

Proposition 2 If \(N\) is a finitely generated right \(R\)-module, then the following conditions are equivalent:

1) Any direct sum of \(s\)-\(N\)-injective modules is \(s\)-\(N\)-injective.

2) Any direct sum of injective modules is \(s\)-\(N\)-injective.

3) \(Z(N)\) is noetherian.

Proof. 1) \(\Rightarrow\) 2). Clear.

2) \(\Rightarrow\) 3). Consider a chain \(U_1 \subseteq U_2 \subseteq \cdots\) of singular submodules of \(N\) and \(U = \bigcup_{i \in I} U_i\). Let \(E(N/U_i)\) be the injective hull of \(N/U_i\), \(i \geq 1\), and \(f : U \rightarrow \bigoplus_{i \in I} E(N/U_i)\) be a map defined by \(f(n) = (n + U_i)\). Since, \(\bigoplus_{i \in I} E(N/U_i)\) is \(s\)-\(N\)-injective, \(f\) can be extended to an \(R\)-homomorphism \(\hat{f} : N \rightarrow \bigoplus_{i \in I} E(N/U_i)\). Since \(N\) is finitely generated, \(\hat{f}(N) \subseteq \bigoplus_{i \in I} E(N/U_i)\) for some \(n\), then \(f(U) \subseteq \bigoplus_{i \in I} E(N/U_i)\) and \(U = U_{j=0} \subseteq U_{j=0}\) for every \(j \geq 1\). Hence \(Z(N)\) is noetherian.

3) \(\Rightarrow\) 1). Let \(E = \bigoplus_{i \in I} E_i\) be a direct sum of \(s\)-\(N\)-injective modules, and \(f : U \rightarrow E_R\) be a homomorphism of right \(R\)-modules where \(U \subseteq Z(N)\). Since \(Z(N)\) is noetherian, \(f(U) \subseteq \bigoplus_{i \in I} E_i\) for some finite subset \(F \subseteq I\).

Since finite direct sums of \(s\)-\(N\)-injective modules is \(s\)-\(N\)-injective, \(f\) can be extended to an \(R\)-homomorphism \(f : N \rightarrow E\).

The second singular submodule of a right \(R\)-module \(M\), denoted by \(Z_2(M)\), is defined by the equality \(Z_2(M)/Z(M) = Z(M/Z(M))\). We see that \(Z_2(M)\) is closed submodule of \(M\) and \(M/Z_2(M)\) is non-singular. A right \(R\)-module is Goldie torsion if \(Z_2(G) = G\).

Lemma 1 Let \(M\) and \(N\) be right \(R\)-modules such that \(Z_2(M)\) is injective. Then every homomorphism
Let $f : K \to M$ where $K \subseteq Z_2(N)$ extends to N.

Proof. Let $M = Z_2(M) \oplus T$ where $Z_2(M)$ is injective and $Z(T) = 0$. If $f : K \to M$ is a homomorphism where $K \subseteq Z_3(N)$ such that $f(Z(K)) = 0$, then $f(K) \subseteq K/Ker(f)$ is singular. So f extendable to N. Now suppose that $0 \neq f(k) \in T$, so $f(kR) \cong kR/Ker(f)$ is singular which is a contradiction. Thus $f(K) \cap T = 0$. Suppose that $f(k) = a + b$ where $a \in Z_2(M)$ and $b \in T$. Since $r(a) \subseteq r(b)$ and the kernal of the map $ar \mapsto br$ is essential in ar which is a contradiction. Then every homomorphism $f : K \to M$ where $K \subseteq Z_2(N)$ extends to N. \hfill \Box

Proposition 3 The following statements are equivalent:

1) M is strongly s-injective.
2) M is $s-I(M)$-injective, where $I(M)$ is the injective hull of M.
3) $M = E \oplus K$, where K is nonsingular and E is injective with $Z(M) \subseteq_{ess} E$.
4) $Z_2(M)$ is injective.
5) M is G-injective for every Goldie torsion module G.
6) M is I-injective, where $I = I(Z_2(M))$ is the injective hull of $Z_2(M)$.

Proof.

2) \Rightarrow 3). If $Z(M) = 0$, we are done. Assume that $Z(M) \neq 0$ and consider the following diagram:

$$
\begin{array}{ccc}
0 & \rightarrow & Z(M) \\
\downarrow & & \downarrow i_2 \\
0 & \rightarrow & D \\
\end{array}
$$

where i_2 and i_3 are inclusion maps and D is injective closure of $Z(M)$ in $I(M)$. Since M is $s-I(M)$-injective, M is $s-D$-injective. So there exists an R-homomorphism $\sigma : D \to M$, which extends i_3. Since $Z(M) \subseteq_{ess} D$, σ is an embedding of D in M. If we write $E = \sigma(D)$, then $M = E \oplus K$ for some submodule K of M because E is injective. Finally K is nonsingular because $Z(M) \subseteq E$.

3) \Rightarrow 4). Since $E/Z(M)$ is singular and $Z_2(M)/Z(M)$ is singular submodule of $M/Z(M)$, so $E \subseteq Z_2(M)$ and $Z_2(M) = E \oplus L$ for some submodule L of M. Then $Z_2(M) = E \{Z(M) \subseteq_{ess} Z_2(M)\}$ and $Z_2(M)$ is injective.

4) \Rightarrow 5). Let G be a Goldie torsion right R-module and K a submodule of G. Using the above Lemma, every homomorphism $f : K \to M$ extends to G.

5) \Rightarrow 6). If $I = I(Z_2(M))$ is the injective hull of $Z_2(M)$, then $Z_2(I) = I$ and I is Goldie torsion.

6) \Rightarrow 1). Let N be a right R-module and K a singular submodule of N. Consider the diagram

$$
\begin{array}{ccc}
K & \rightarrow & Z_2(M) \\
\downarrow i_1 & & \downarrow i_2 \\
N & \rightarrow & I(Z_2(M)) \\
\end{array}
$$

where i_1, i_2, and i_3 are the inclusion maps. Since M is I-injective and I is injective. So, there exist R-homomorphisms $h : I \to M$ and $g : N \to I$ such that $hi_1 = i_2$ and $gi_2 = i_3f$. Thus $i_2f = hi_1f = hg_i_1$.

Hence M is strongly s-injective.

Corollary 3 Let M a Goldie torsion right R-module. Then M is injective if and only if M is strongly s-injective.

Proposition 4 For a ring R, the following conditions are equivalent:

1) R is a strongly s-injective.
2) R is $s-I(R)$-injective, where $I(R)$ is the injective hull of R.
3) $R = E \oplus T$, where E is injective and T is nonsingular. Moreover, if $Z_i \neq 0$, then $Z_i \subseteq_{ess} E$, and in this case E and T are relatively injective.
4) Z_2^i is injective.
5) R is G-injective for every Goldie torsion right R-module G.
6) R is I-injective, where $I = I(Z_2^i)$ is the injective hull of Z_2^i.
7) Every finitely generated projective right R-module is strongly s-injective.

Proof. The equivalence between 1), 2), 3), 4), 5) and 6) is from Proposition 3.
1) ⇒ 7) Since a finite direct sum of \(s \)-\(N \)-injective is \(s \)-\(N \)-injective for every right \(R \)-module \(N \) (Corollary 1), so every finitely generated free right \(R \)-module is strongly \(s \)-injective. But a direct summand of strongly \(s \)-injective is strongly \(s \)-injective (Corollary 1). Therefore every finitely generated projective module is strongly \(s \)-injective. The converse is clear. □

The following examples show that the two classes of strongly \(s \)-injective rings and of \(soc \)-injective rings are different.

Example 1 Let \(F = \mathbb{Z}_2 \) be the field of two elements, \(F_n = F \) for \(n = 1, 2, \cdots \), \(Q = \prod_{i=1}^{\infty} F_i \), \(S = \bigoplus_{i=1}^{\infty} F_i \). If \(R \) is the subring of \(Q \) generated by \(1 \) and \(S \), then \(R \) is a von Neumann regular ring with \(soc(R) = S \), and hence \(Z'_2 = 0 \) and \(R \) is strongly \(s \)-injective. However, the map \(f : S_R \rightarrow R_{S_R} \), given by \((a_1, a_2, a_3, \cdots) \mapsto (a_1, 0, a_2, 0, \cdots) \), cannot be extended to an \(R \)-homomorphism from \(R \) into \(R \) (suppose that \(f = c \cdot \) for some \(c = (c_i) \in R \). Then for every \((a_1, a_2, \cdots) \in S_R \), \((a_1, 0, a_2, 0, \cdots) = (c_1)(a_1) \) which is impossible), and so \(R \) is not a \(soc \)-injective ring.

Example 2 Let \(R = \mathbb{Z}_2[x_1, x_2, \cdots] \) where \(x_i^2 = 0 \) for all \(i \), \(x_i x_j = 0 \) for all \(i \neq j \) and \(x_i^2 = m \neq 0 \) for all \(i \) and \(j \). Then \(R \) is a commutative, semiprimary, local ring with \(J = \text{span}\{m, x_1, x_2, \cdots\} = \mathbb{Z}_2 \), and \(R \) has simple essential socle \(J^2 = \mathbb{Z}_2 m \). It is not difficult to see that \(R \) is right \(s \)-injective. However the \(R \)-homomorphism \(\gamma : \mathbb{Z}_2 \rightarrow R \) defined by \(\gamma(a) = a^2 \) for all \(a \in \mathbb{Z}_2 \) cannot be extended to an endomorphism of \(R \), and so \(R \) is not \(s \)-injective ring.

Definition 2 A ring \(R \) is called a right generalized \(V \)-ring (right \(GV \)-ring) if every simple singular right \(R \)-module is injective.

Proposition 5 A ring \(R \) is right \(GV \)-ring if and only if every simple right \(R \)-module is strongly \(s \)-injective.

Proof. Let \(R \) be a right \(GV \)-ring and \(M \) be a simple right \(R \)-module. The module \(M \) is either projective or singular, so \(M \) is strongly \(s \)-injective. Conversely, if \(M \) is a simple singular \(R \)-module, then \(M \) is strongly \(s \)-injective. Thus \(M \) is injective by Proposition 3. □

Lemma 2 For a right \(R \)-module \(M \) the following conditions are equivalent:
1) \(M \) satisfies \(ACC \) on essential submodules.
2) \(M \oslash \text{Soc}(M) \) is noetherian.

Proof. Assume that \(M \) has \(ACC \) on essential submodules. Then \(B/A \) is noetherian for every submodule \(A \subset B \) of \(B \oslash (B \oplus L)/(A \oplus L) \) where \(L \) is an intersection complement of \(A \) and \(M/(A \oplus L) \) is noetherian. In particular, every uniform submodule of \(M \) is noetherian. Let \(H \) be an intersection complement of \(S \) (\(= \text{Soc}(M) \)) (see Kasch [2] p.112). Then \(M/(H \oplus S) \) is noetherian. So, to prove that \(M/S \) is noetherian it is enough to show that \(H \) is noetherian. Assume that \(H \) contains an infinite direct sum \(K = K_1 \oplus K_2 \oplus \cdots \) of nonzero submodules \(K_i \). Since \(K_i \cap S = 0 \), each \(K_i \) contains a proper essential submodule \(L_i \) and \(L = L_1 \oplus L_2 \oplus \cdots \) is essential in \(K \). But this gives that \(K/L \) is noetherian which is impossible because \(K/L \cong \bigoplus K_i/L_i \oplus \cdots \) with each \(K_i/L_i \) nonzero. Then \(H \) contains \(k \) independent uniform submodules \(U_i \) such that \(U = \bigoplus U_1 \oplus U_2 \oplus \cdots \oplus U_k \) is essential in \(H \). Thus \(U \) and \(H/U \) are noetherian. Hence \(H \) is noetherian.

It is well-known that, a ring \(R \) is right noetherian if and only if all direct sums of injective right \(R \)-modules are injective. In the next Proposition we obtain a characterization of ring which has \(ACC \) on essential right ideals in terms of strongly \(s \)-injective right \(R \)-modules.

Proposition 6 The following conditions on a ring \(R \) are equivalent:
1) Every direct sum of strongly \(s \)-injective right \(R \)-modules is strongly \(s \)-injective.
2) Every direct sum of injective right \(R \)-modules is strongly \(s \)-injective.
3) Every finitely generated right \(R \)-module has \(ACC \) on essential submodules.
4) \(R/\text{Soc}(R) \) is noetherian.

Proof. 1) ⇒ 2). Clear.
2) ⇒ 3). Consider a chain \(K_1 \subset K_2 \subset \cdots \) of essential submodules of a finitely generated right \(R \)-module \(M \) and \(K = \bigcup_{i \in I} K_i \). Let \(I(M/K_i) \) be the injective hull of \(M/K_i \), \(i \geq 1 \), and \(f : K \rightarrow \bigoplus_{i \in I} I(M/K_i) \) be a map defined by \(f(k) = (k + I_i) \). Since \(\bigoplus I(M/K_i) \) is strongly \(s \)-injective and \(I(M/K_i) \) has an essential singular submodule, so \(\bigoplus I(M/K_i) \) is injective and \(f \) can be extended to an \(R \)-homomorphism.
\[f : aR \to E \ni f(a) \text{ is simple right ideal, so } aR \text{ is a singular right ideal and } f(aR) \subseteq \bigoplus_{i \in I} E_i \text{ where } F \subseteq I \text{ is finite. Thus } f \text{ extends to } g : R \to \bigoplus_{i \in I} E_i. \text{ Then } 0 \neq g(a) = g(1) a = f(a) \text{ which is a contradiction with } ES_i = 0. \]

Hence any homomorphism \(h : U \to E \) where \(U \) is a right ideal of \(R \) induces a map \(h : (U + S_r)S_e \to E \) with \(h(u + S_r) = h(u) \). The map \(h \) extends to a homomorphism \(\hat{a} : R/S_r \to E \). Then the map \(\alpha = \hat{a} \pi : R \to E \) where \(\pi \) is the natural epimorphism \(\pi : R \to R/S_r \), extends \(h \). Hence \(E \) is injective. Therefore, every direct sum of strongly \(s \)-injective right \(R \)-modules is strongly \(s \)-injective.

If \(I \) is an ideal of \(R \), \(R \) is called \(I \)-semiperfect if for every right ideal \(K \), there is a decomposition \(K = eR \oplus U \) such that \(e^2 = e \) and \(U = K \cap (1-e)R \subseteq I \) \([4]\).

Lemma 3 If \(R \) is \(Z \)-semiperfect, then the following statements hold:

1) A module \(M \) is \(s \)-injective if and only if \(M \) is injective.
2) \(K = rl(K) \) for all singular right ideals \(K \) of \(R \) if and only if \(K = rl(K) \) for all right ideals \(K \) of \(R \).

Proof. 1) Let \(M \) be \(s \)-injective, and \(f : T \to M \) be an \(R \)-homomorphism where \(T \) is a right ideal of \(R \). Then \(T = eR \oplus U \), where \(U = T \cap (1-e)R \subseteq Z \). Let \(g : R \to M \) be an extension of the restriction map \(f | U \). Define \(h : R \to M \) by \(h(x) = h((1-e)x) = f((1-e)x) + g((1-e)x) \) for all \(x \in R \). Clearly, \(h \) is an extension of \(f \), and so \(M \) is injective by the Baer’s Criterion.

2) Let \(T \) be a right ideal of \(R \). Since \(R \) is right \(Z \)-semiperfect, then \(T = eR \oplus U \), where \(e^2 = e \in R \) and \(U = T \cap (1-e)R \subseteq Z \). So \(I(T) = I(1-e) \cap I(U) \) and \(rl(T) = rl((1-e) \cap I(U)) \). If \(x \in r[(1-e) \cap I(U)] \), then \(I((1-e)U) \subseteq I(1-e) \) and so \((1-e)x \in rl((1-e)U) \subseteq rl((1-e)U) = (1-e)U \). The last equality is because that \((1-e)U \) is a singular right ideal of \(R \). Write \((1-e)x = (1-e)u \) where \(u \in U \). Then \(x = e(x-u) + u \in T \). Therefore, \(T = rl(T) \). \(\square \)

Proposition 7 Let \(M \) be a right \(R \)-module. \(Z(M) \) is semisimple summand of \(M \) if and only if every right \(R \)-module is \(s \)-\(M \)-injective.

Proof. If \(Z(M) \) is semisimple summand of \(M \), then every right \(R \)-module \(N \) is \(s \)-\(M \)-injective. Conversely, if every right \(R \)-module is \(s \)-\(M \)-injective, then every identity map \(i : K \to K \) where \(K \) is singular submodule of \(M \) extends to \(f : M \to K \). Thus \(K \) is a summand of \(M \). Hence \(Z(M) \) is a semisimple summand of \(M \). \(\square \)

Corollary 4 A ring \(R \) is right nonsingular if and only if every right \(R \)-module is \(s \)-injective.

A ring \(R \) is called a right (left) \(SI \) ring if every singular right (left) \(R \)-module is injective. \(SI \) rings were initially introduced and investigated by Goodearl \([5]\).

Theorem 1 The following statements are equivalent:

1) \(R \) is right \(SI \) ring.
2) Every right \(R \)-module is strongly \(s \)-injective.
3) Every singular right \(R \)-module is strongly \(s \)-injective.

Proof. Clear from Proposition 3. \(\square \)

A module \(M \) is said to satisfy the \(C2 \)-condition, if \(K \) and \(L \) are submodules of \(M \), \(K \trianglelefteq L \), and \(K \subseteq^{\oplus} M \). We also say \(M \) satisfies the \(C3 \)-condition if \(K \) and \(L \) are submodules of \(M \) with \(K \cap L = 0 \), \(K \subseteq^{\oplus} M \) and \(L \subseteq^{\oplus} M \), then \(K \oplus L \) is a summand of \(M \). It is a well-know fact that the \(C2 \)-condition implies the \(C3 \)-condition. In the next proposition we show that \(s \)-\(quasi \)-injective modules inherit a weaker version of these conditions.

Proposition 8 Suppose \(M \) is a \(s \)-\(quasi \)-injective right \(R \)-module.

1) \((s\text{-}C2) \) If \(K \) and \(L \) are singular submodules of \(M \), \(K \trianglelefteq L \), and \(K \subseteq^{\oplus} M \), then \(L \subseteq^{\oplus} M \).
2) \((s\text{-}C3) \) Let \(K \) and \(L \) be singular submodules of \(M \) with \(K \cap L = 0 \). If \(K \subseteq^{\oplus} M \) and \(L \subseteq^{\oplus} M \), then \(K \oplus L \) is a summand of \(M \).
Proof. 1) Since $K \cong L$, and K is s-injective, being a summand of the s-quasi-injective right R-module M, L is s-injective. If $\iota: L \to M$ is the inclusion map, the identity map $Id_{L} : L \to L$ has an extension $\eta: M \to L$ such that $\iota \circ \eta = Id_{L}$, and so K is a summand of M.

2) Since K and L are summands of M, and M is s-quasi-injective, both K and L are s-M-injective. Thus the singular module $K \oplus L$ is s-M-injective, and so is a summand of M. □

It is a well-known fact that the $C2$-condition implies the $C3$-condition.

Proposition 9 If a module M has s-$C2$-condition, then M has s-$C3$-condition.

Proof. Consider singular summands M_1 and M_2 of M such that $M_1 \cap M_2 = 0$. Write $M = M_1 \oplus M_2$ and let π denote the projection $M_1 \oplus M_2^\ast \to M_1^\ast$. Then $M_1 \oplus M_2 = M_1 \oplus \pi(M_2)$. If $b \in M_2$, $s = c + d$ where $c \in M_1$ and $d \in M_2^\ast$ and $\pi(b) = 0$, $\pi_{M_2}(c + d) = 0 = d$ and $b \in M_1 \cap M_2 = 0$. Then π_{M_2} is a monomorphism; so $\pi(M_2)$ is a summand of M by S-$C2$. As $\pi(M_2) \leq M_2^\ast$, $M_1 \oplus \pi(M_2) \subseteq M$.

Proposition 10 Let R and S be Morita-equivalent rings with category equivalence $f : ModR \to ModS$. Let M, N, and K be right R-modules. Then

1) K_{s} is singular if and only if $f(K)_{s}$ is singular.

2) M_{s} is s-N-injective if and only if $f(M)_{s}$ is s-injective.

Proof. There is a natural isomorphisms $\eta : GF \to 1_{modS}$ and $\zeta : FG \to 1_{modS}$. This means that for each M_{s} there is an isomorphism $f_{M} : GF(M) \to M$ in $modR$ such that for each M, M' in $modR$ and each $f : M \to M'$ in $modR$, the following diagram commutes

$$
\begin{array}{ccc}
M & \xrightarrow{f} & M' \\
\uparrow_{\eta_{M}} & & \uparrow_{\eta_{M'}}
\end{array}
\Rightarrow
\begin{array}{ccc}
GF(M) & \xrightarrow{GF(f)} & GF(M')
\end{array}
$$

1). The right R-module K is singular if and only if there is an exact sequence of right R-modules $0 \to A \to B \to K \to 0$ with essential monomorphism $0 \to A \to B$. But using [6, Proposition 21.4 and Proposition 21.6] the sequence $0 \to A \to B \to K \to 0$ is exact with essential monomorphism $0 \to A \to B$ if and only if the sequence $0 \to F(A) \to F(B) \to F(K) \to 0$ of right S-modules is exact with essential monomorphism $0 \to F(A) \to F(B)$. So K_{s} is singular if and only if $f(K)_{s}$ is singular.

2). Let M be a s-N-injective and K be a singular submodule of $F(N)$. Let $f : K \to F(M)$ be a homomorphism. Since $G(K)$ is singular, $G(1_{K})$ is a monomorphism and the maps η_{N} and η_{M} are isomorphisms (we may assume that $G(K)$ is a submodule of N), then we have the commutative diagram

$$
\begin{array}{ccc}
G(K) & \xrightarrow{\eta_{G}(f)} & M \\
\downarrow_{\eta_{G}(1_{K})} & & \uparrow_{\alpha}
\end{array}
\Rightarrow
\begin{array}{ccc}
N
\end{array}
$$

So the following diagram

$$
\begin{array}{ccc}
K & \xrightarrow{\zeta_{K}(\eta_{G}(f))} & F(M) \\
\downarrow_{\zeta_{K}(\eta_{G}(1_{K}))} & & \uparrow_{\alpha}
\end{array}
\Rightarrow
\begin{array}{ccc}
F(N)
\end{array}
$$

is commutative where $f(M)_{s}$ is s-$F(N)_{s}$-injective. The converse is similarly. □

As for right self-injectivity, right strongly s-injectivity turns out to be a Morita invariant.

Theorem 2 Right strong s-injectivity is a Morita invariant property of rings.

Proof. Let R and S be Morita-equivalent rings with category equivalences $f : modR \to modS$, and $G : modS \to modR$. Let P, and N be right R-modules. P_{R} is finitely generated projective R-module if and only if $F(P)_{S}$ is finitely generated projective S-module [6, Propositions 21.6 and 21.8]. Also P_{R} is s-N-injective if and only if $f(P)_{S}$ is s-$F(N)$-injective (Proposition 10) and then P_{R} is strongly s-injective if and only if $f(P)_{S}$ is strongly s-injective. Then, every finitely generated projective right R-module is strongly s-injective and if only if every finitely generated projective right S-module is strongly s-injective. Therefore right strong s-injectivity is a Morita invariant property of rings. □

Proposition 11 For a projective right R-module M, the following conditions are equivalent:
1) Every homomorphic image of an s-M-injective right R-module is s-M-injective.
2) Every homomorphic image of an injective right R-module is s-M-injective.
3) Every singular submodule of M is projective.

Proof. 1) \Rightarrow 2) Obvious.
2) \Rightarrow 3) Consider the following diagram:

$$
\begin{array}{ccc}
E & \xrightarrow{g} & N \\
\downarrow{f} & & \downarrow{\eta} \\
K & \rightarrow & M
\end{array}
$$

Where K is a singular submodule of M, E and N are right R-modules with E injective, η an R-epimorphism, and f an R-homomorphism. Since N is s-injective, f can be extended to an R-homomorphism $\tilde{g}: M \rightarrow E$ such that $\eta \circ \tilde{g} = g$. Now, define $\tilde{f}: K \rightarrow E$ by $\tilde{f} = \tilde{g}/K$. Clearly, $\eta \circ \tilde{f} = f$, and hence K is projective.

3) \Rightarrow 1) Let N and L be right R-modules with $\eta: N \rightarrow L$ an R-epimorphism, K is a singular submodule of M and N is s-M-injective. Consider the following diagram:

$$
\begin{array}{ccc}
0 & \rightarrow & K \\
& \downarrow{\eta} & \rightarrow \\
& N & \rightarrow L & \rightarrow 0
\end{array}
$$

Since K is projective, f can be lifted to an R-homomorphism $g: K \rightarrow N$ such that $\eta \circ g(x) = f(x)$, $\forall x \in K$. Since N is s-injective, g can be extended to an R-homomorphism $\tilde{g}: M \rightarrow N$. Clearly, $\eta \circ \tilde{g} = M \rightarrow L$ extends f.

Corollary 5 The following conditions are equivalent:
1) Every quotient of s-injective right R-module is s-injective.
2) Every quotient of an injective right R-module is s-injective.
3) Every singular right ideal is projective.

Proposition 12 The following conditions are equivalent:
1) Every strongly s-injective right R-module is injective.
2) Every nonsingular right R-module is semisimple injective.
3) For every right R-module M, $M = E \oplus Z_s(M)$ where E semisimple injective.
4) R is Z_s-semiperfect.

Proof. 1) \Rightarrow 2) If M is nonsingular right R-module, then M is strongly s-injective. Thus M is semisimple injective.
2) \Rightarrow 3) Let M be a right R-module. If M is Goldie torsion, we are done. Now suppose that $Z(M)$ is not essential in M and K be a maximal submodule M with respect to $K \cap Z(M) = 0$. Then K is semisimple injective and $M = K \oplus L$. It is clear that $L = Z_s(M)$.
3) \Rightarrow 4) Let K be a right ideal of R. Then $K = E \oplus Z_s(K)$ where E is semisimple injective. We have $Z_s(K) \subseteq Z_s^2(K)$ and E is a summand of R and generated by an idempotent. Hence R is Z_s-semiperfect.
4) \Rightarrow 1) Let M be a strongly s-injective and $f: T \rightarrow M$ be an R-homomorphism where T is a right ideal of R. By $T = eR \oplus U$, where $U = T \cap (1-e)R \subseteq Z_s^2$ and $e^2 = e$. Using Proposition 3 let $g: R_n \rightarrow M$ be an extension of the restriction map $f/\ker f$. Define $h: R \rightarrow M$ by $h(x) = h(ex + (1-e)x) = f(ex) + g((1-e)x)$ for all $x \in R$. Clearly, h is an extension of f, and so M is injective by the Baer’s Criterion.

Theorem 3 The following are equivalent for a ring R:
1) R is a right NF-ring.
2) R is Z_s-semiperfect, right strongly s-injective ring with essential right socle.
3) R is semiperfect, right min-C2, right strongly s-injective ring with essential right socle.
4) R is semiperfect with $soc(J) = soc(Z_s)$, right strongly s-injective ring with essential right socle.
5) R is right finitely cogenerated, right min-C2, right strongly s-injective ring.
6) R is a right Kasch, right strongly s-injective ring.
7) R is a right strongly s-injective ring and the dual of every simple left R-module is simple.

Proof. 1) \Rightarrow 2). Clear.
2) \(\Rightarrow \) 1). Clear by Lemma 2.
1) \(\Rightarrow \) 3). Clear.
3) \(\Rightarrow \) 4). Suppose that \(0 \neq aR \) is a non singular simple right ideal in \(J \), so \(r(a) \cap eR = 0 \) for some simple right ideal \(eR \) with \(e^2 = e \). Thus \(eR \subseteq aR \) and \(aR \) is a summand which is a contradiction. Then \(\text{soc}(J) \subseteq \text{soc}(Z) \). The other inclusion is clear.
4) \(\Rightarrow \) 1). Let \(R \) be semiperfect and right strongly \(s \)-injective ring with essential right socle and \(\text{soc}(J) = \text{soc}(Z) \). Then \(R = Z \oplus T \) where \(Z \) is injective and \(Z \subseteq \text{soc}(J) \). Thus \(J \subseteq Z \) and \(J(T) = 0 \).

The right ideal \(T \) may be considered as a \(R/J \)-module. Let \(f : L \to T \) be a map where \(L \) is a right ideal of \(R \), \(f \) induces a map \(h : (L+J)/J \to T \) given by \(h(l+J) = f(l) \). Since \(T \) is injective as an \(R/J \)-module so \(h \) extends to \(g : R/J \to T \). The map \(\pi : R \to T \), where \(\pi \) is the natural epimorphism \(\pi : R \to R/J \), extends \(f \) and \(T \) is injective. Therefore \(R \) is right selfinjective and \(R \) is right \(PF \).

1) \(\Rightarrow \) 5). Clear.
5) \(\Rightarrow \) 1). Since \(R \) is right strongly \(s \)-injective ring, it follows from Proposition 3 that \(R = Z \oplus T \), where \(Z \) is injective and \(T \) is nonsingular. If \(aR \) is simple right ideal in \(T \) such that \((aR)^2 = 0 \), then, by the proof of 3) \(\Rightarrow \) 1) \(aR = 0 \) and every simple right ideal in \(T \) is a summand of \(T \). Since \(R \) is right finitely cogenerated, \(T \) has a finitely generated essential socle. Thus \(T \) is semisimple. Hence \(R \) is injective and \(R \) is right \(PF \)-ring.

1) \(\Rightarrow \) 6) Proposition 3 and [7, Theorem 5]
1) \(\Rightarrow \) 7). Assume that \(R \) is right strongly \(s \)-injective and the dual of every simple left \(R \)-module is simple.

If \(aR \) is a nonsingular simple right ideal, then \(r(a) \cap eR = 0 \) for some simple right ideal \(eR \) with \(e^2 = e \). But \(R \) is \(C2 \), so \(eR \subseteq aR \) and \(aR \) is a summand. Thus \(R \) is right \(min-CS \), so by [3, Theorem 4.8] \(R \) is semiperfect with essential right socle. Hence \(R \) is right \(PF \) by 3).

The following is an example of a right perfect, left Kasch ring and right strongly \(s \)-injective which is not right self-injective ring.

Example 3 Let \(K \) be a field and let \(R \) be the ring of all upper triangular, countably infinite square matrices over \(R \) with only finitely many off-diagonal entries. Let \(S \) be the \(K \)-subalgebra of \(R \) generated by 1 and \(J(R) \). Then \(S \) is a right perfect, left Kasch \((S \) has only one simple left \(R \)-module \(M \) up to isomorphism. So \(M \cong S/J(S) \cong K \) such that \((Z_1)_S = 0 \) whereas \(S \) is neither left perfect nor right self-injective because it is not right finite dimensional.

Remark 1 Note that the ring of integers \(\mathbb{Z} \) is an example of a commutative noetherian strongly \(s \)-injective ring which is not quasi-Frobenius.

Definition 3 A ring \(R \) is called right \(CF \) (FGF-ring) if every cyclic (finitely generated) right \(R \)-module embeds in a free module. It is not known whether right \(CF \)-rings (FGF-rings) are right artinian (quasi-Frobenius). In the next result we provide a positive answer if we assume in addition that the ring \(R \) is strongly right \(s \)-injective.

Proposition 13 Every right \(CF \) right strongly \(s \)-injective ring is quasi-Frobenius.

Proof. Theorem 3 and [7, Theorem 5] \(\square \)

3. S-CS Modules and Rings

A module \(M \) is said to satisfy \(C1 \)-condition or called \(CS \) module if every submodule of \(M \) is essential in a direct summand of \(M \).

Definition 4 A right \(R \)-module \(M \) is called \(s-CS \) module if every singular submodule of \(M \) is essential in a summand of \(M \).

For example, every nonsingular module is \(s-CS \). In particular, the ring of integers \(\mathbb{Z} \) is \(s-CS \) but not \(CS \).

Proposition 14 For a right \(R \)-module \(M \), the following statements are equivalent:

1) The second singular submodule \(Z_2(M) \) is \(CS \) and a summand of \(M \).
2) \(M \) is \(s-CS \).

Proof. 1) \(\Rightarrow \) 2). If the second singular submodule \(Z_2(M) \) of \(M \) is \(CS \) and a summand of \(M \), then every singular submodule of \(M \) is a summand of \(Z_2(M) \) and a summand of \(M \).

2) \(\Rightarrow \) 1). Let \(M \) be \(s-CS \) and \(K \) is a submodule of \(Z_2(M) \). Then \(Z(K) \subseteq L \) where \(L \) is a summand of \(M \) and \(L \subseteq K + L \). But \(L \) is closed, so \(K \subseteq L \). Since \(Z_1(M) \subseteq L + Z_2(M) \) and \(Z_1(M) \) is closed in \(M \), so \(L \subseteq Z_2(M) \) and \(Z_2(M) \) is \(CS \). In particular, \(Z_2(M) \) is the only closure of \(Z_2(M) \). Thus \(Z_2(M) \) is a summand of \(M \). \(\square \)
A module is called s-continuous if it satisfies both the s-C1- and s-C2-conditions, and a module is called quasi-s-continuous if it satisfies the s-C1- and s-C3-conditions, and \(R \) is called a right s-continuous ring (right quasi-s-continuous ring) if \(R_g \) has the corresponding property. Clearly every strongly s-injective is s-continuous.

Proposition 15 If every singular simple right \(R \)-module embeds in \(M \) and \(M \) is s-CS, then \(Z_2(M) \) is finitely cogenerated.

Proof. Let \(M \) be a s-CS and every singular simple right \(R \)-module embeds in \(M \). Then \(Z_2(M) \) is a CS and summand of \(M \) by above Proposition. Also \(Z_2(M) \) cogenerates every simple quotient of \(Z_2(M) \) then by [3, Theorem 7.29], \(Z_2(M) \) is finitely cogenerated.

Proposition 16 Let \(R \) be a ring. Then \(R \) is a right PF-ring if and only if \(R_a \) is a cogenerator and \(Z_2^2(R) \) is CS.

Proof. Every right PF-ring is right self-injective and is a right cogenerator by [3, 1.56]. Conversely, if \(Z_2^2 \) is a CS and \(R \) is cogenerator then \(Z_2^2 \) has finitely generated, essential right socle by Proposition 15. Since \(Z_2^2 \) is right finite dimensional and \(R_a \) is a cogenerator, let \(\text{Soc}(Z_2^2) = S_1 \oplus S_2 \oplus \cdots \oplus S_n \) and \(I_i = I(S_i) \) be the injective hull of \(S_i \), then there exists an embedding \(\sigma: I_i \to R' \) for some set \(I \). Then \(\pi \circ \sigma \neq 0 \) for some projection \(\pi: R' \to R \), so \((\pi \circ \sigma) | S_i \neq 0 \) and hence is monic. Thus \(\pi \circ \sigma: I_i \to R \) is monic, and so \(R = E_1 \oplus \cdots \oplus E_n \oplus T \) where \(T \) is nonsingular. So \(R \) is a right PF-ring by Theorem 3.

Proposition 17 If every singular simple right \(R \)-module embeds in \(R \) and \(Z_2^2(R) \) is continuous, then \(R \) is semiperfect.

Proof. Let \(\{ Z_2^2(R) \} \) be continuous and every simple singular right \(R \)-module embeds in \(R \). Then \(\{ Z_2^2(R) \} \) has a finitely generated essential socle by Proposition 15. Thus, by hypothesis, there exist simple submodules \(S_1, \ldots, S_n \) of \(\{ Z_2^2(R) \} \) such that \(\{ S_1, \ldots, S_n \} \) is a complete set of representatives of the isomorphism classes of simple singular right \(R \)-modules. Since \(\{ Z_2^2(R) \} \) is CS, there exist submodules \(Q_i, \ldots, Q_n \) of \(\{ Z_2^2(R) \} \) such that \(Q_i \) is a direct summand of \(\{ Z_2^2(R) \} \) and \(\{ S_i \} \subseteq \{ Q_i \} \) for \(i = 1, \ldots, n \). Since \(Q_i \) is an indecomposable continuous \(R \)-module, it has a local endomorphism ring; and since \(Q_i \) is projective, \(J(Q_i) \) is maximal and small in \(Q_i \) by [3, 1.54]. Then \(Q_i \) is a projective cover of the simple module \(Q_i/J(Q_i) \). Note that \(Q_i \cong Q_i \) clearly implies \(Q_i/J(Q_i) \cong Q_i/J(Q_i) \) and the converse also holds because every module has at most one projective cover up to isomorphism. But it is clear that \(Q_i \cong Q_i \) if and only if \(S_i \cong S_j \) if and only if \(i = j \). Moreover, every \(Q_i/J(Q_i) \) is singular. Thus, \(\{ Q_i/J(Q_i), \ldots, Q_i/J(Q_i) \} \) is a complete set of representatives of the isomorphism classes of simple singular right \(R \)-modules. Hence every simple singular right \(R \)-module has a projective cover. Since every non-singular simple right \(R \)-module is projective, we conclude that \(R \) is semiperfect.

REFERENCES

[1] C. Faith, “Algebra II Ring Theory,” Springer-Verlag, Berlin, 1976.
http://dx.doi.org/10.1007/978-3-642-65321-6

[2] F. Kasch, “Modules and Rings,” L.M.S. Monograph No. 17. Academic Press, New York, 1982.

[3] W. K. Nicholson and M. F. Yousif, “Quasi-Frobenius Rings,” In: Cambridge Tracts in Mathematics, Vol. 158, Cambridge University Press, Cambridge, 2003.
http://dx.doi.org/10.1017/CBO9780511546525

[4] M. F. Yousif and Y. Zhou, “Semi-Regular, Semi-Perfect and Perfect Rings Relative to an Ideal,” Rocky Mountain Journal of Mathematics, Vol. 32, No. 4, 2002, pp. 1651-1671.
http://dx.doi.org/10.1216/rmjm/1181070046

[5] K. R. Goodearl, “Singular Torsion and the Splitting Properties,” Memoirs of the American Mathematical Society, Vol. 124, 1972.

[6] F. W. Anderson and K. R. Fuller, “Rings and Categories of Modules,” Springer-Verlag, Berlin/New York, 1974.
http://dx.doi.org/10.1007/978-1-4684-9913-1

[7] M. F. Yousif, Y. Zhou and N. Zeyada, “On Pseudo-Frobenius rings,” Canadian Mathematical Bulletin, Vol. 48, No. 2, 2005, pp. 317-320.
http://dx.doi.org/10.4153/CMB-2005-029-5