Supplemental Figure 1. CD16.7-PC1-truncation mutants do not localize to primary cilia of 3T3 cells. Swiss 3T3 cells expressing CD16.7-PC1 fusion proteins were labeled with
antibodies specific for CD16 (green) and a-ß-tubulin (red). Because each channel was rendered in three-dimensions using separate palettes in Voxx2 software, regions of colocalization do not appear yellow. Colocalization by pixel overlap was used to quantify colocalization of CD16.7-PC1 fusion proteins with a-ß-tubulin. Swiss 3T3 cells transfected with CD16.7-PC1-WT showed the fusion protein in the primary cilium and Golgi. Cells expressing CD16.7-PC1-359 and CD16.7-PC1-339 retained the protein predominately intracellularly in the Golgi with possible backup into ER in cases where nuclear envelope staining was detected. Intracellular accumulation of the truncation mutants was prominent even when cilia were present. (Scale bar = 20 µm). CD16.7-PC1-359 and CD16.7-PC1-339 fusion proteins did not localize to primary cilium. Yellow arrows indicate positions of primary cilia, blue arrows denote intracellular accumulation.
Supplemental Figure 2. GST-Arf4 activation and PC2 interaction with Arf4. (A) The dose dependent activation of GST-Arf4 by BODIPY FL GTP was measured for each preparation of GST-Arf4 before use for protein-protein interaction assays. Assays were conducted by incubating increasing concentrations of BODIPY-GTP to equilibrium for 2 h with bead bound GST-Arf4 and measuring in a bead-associated fluorescence by flow cytometry. Nucleotide binding specificity was demonstrated by the loss of fluorescent BODIPY-GTP binding in the presence of excess unlabeled GTP. (B) PC2 binds to Arf4 in vitro. GST-PC2 (amino acids 1-15) specifically pulls down Arf4 pre-loaded with GppNHp. Deletion of the RVxP motif (RVQP) in PC2 significantly diminished the
binding (*, p=0.01). Quantification presented as the means ± SE, n=3. (C) PC2 interaction with Arf4 depends on the RVxPx motif. C-terminally FLAG-tagged PC2 (amino acids 1-219) precipitated Arf4. Anti-FLAG agarose, control FLAG-BAP, or FLAG-PC2-.RVxPx, show similar levels of non-specific binding to Arf4 (black arrows point to FLAG-fusion proteins).
Supplemental Figure 3. NM002 pAb specifically recognizes PC1. (A) Confocal Z-stacks of RCTE apical cellular regions show NM002 labeled PC1 in all primary cilia (yellow arrows highlight select primary cilia) with a “beads-on-a-string” appearance. Sub-apical regions in the same cells revealed PC1 in the Golgi. Scale bar 10 µm. (B) MDCKII cells were transfected with myc-tagged α-2,6-sialyl-transferase (ST tyr isoform) or Organelle Lights Golgi-GFP (Invitrogen). Cells were immunostained for PC1 with NM002 (red) and for myc-tagged α2,6-sialyl-transferase with a specific mAb directed against myc (green). Arrows point to PC1 regions overlaid on or adjacent to Golgi proteins. Scale bar 10 µm. (C) Transmission electron microscopy of canine trachea or MDCKII cells labeled with NM002 and 10 nm gold-labeled secondary antibody as indicated. PC1 localized to motile cilia (arrows) and basal bodies in longitudinal and cross section (scale bar: 500 nm, upper panels; 100 nm, lower panel), consistent with published literature (Driscoll et al., 2008; Jain et al., 2010). MDCKII cells showed PC1 localization in several subcellular regions including the Golgi membrane (arrow) (Scale bar = 100 nm). Control was labeled with non-specific IgG and gold-labeled secondary. Gold labeling density in
MDCKII cells was quantified for four control and four NM002 labeled sections of similar cell areas and gold particles/µm² plotted. (D) RCTE, 9-12 PKD and normal primary cells were labeled with NM002 or NM002 antibody pre-incubated with the immunizing peptide. Intense Golgi staining pattern was absent in cells stained with the peptide-blocked NM002. (Scale bar = 20 µm) (E) Upper panel: HPAC cells grown to subconfluence were transfected with Cy3-labeled PC1 siRNA (PC-17) nucleotides 584-605 (LRR domain) or GAPDH control siRNA (Ambion control template set 4800) for 48 h and immunostained for PC1. Graph represents mean NM002 staining ± SE of 30 PC1 Cy3-siRNA-positive cells compared to 30 control Cy3-siRNA-positive cells (Slidebook, 3i, Inc, Denver, CO). Lower panels: HeLa cells were transfected with PC1 siRNA and grown for 24-48 h post-transfection. NM002 was used for immunoblots. Intensity of 230-250 kDa and 150 kDa bands of PC1 diminished at both time-points, with 45% knockdown occurring at 24 h and 70% knockdown after 48 h of PC1 siRNA relative to control siRNA treatment. Actin blot served as loading control. n=2 (F) Upper panel: Epitope regions of NM002 and NM005 on human PC1 (red arrows). Blue arrow points to a PC1 region with potential metalloprotease recognition sequences; cleavage of which results in 230-250 kDa C-terminal cleavage fragments. Black arrow points to a conserved G-protein-coupled-receptor Proteolytic Site (GPS) that results in cis-autocatalytic cleavage to produce a 150 kDa C-terminal fragment. Lower panel: RCTE cell lysate was resolved with SDS-PAGE and immunoblotted with purified, PC1 specific NM002, NM032 or NM005 antibodies. All antibodies identify a slow migrating band at ~460 kDa, a faster migrating doublet at ~250-260 kDa, and the 150 kDa GPS C-terminal cleavage fragment. In the presence of 2 mM EDTA in the lysis buffer, the 468 kDa band and 150 kDa bands were readily apparent whereas the 230-250 kDa bands were undetectable using NM005, suggesting increased metalloprotease cleavage in the absence of EDTA, see also Supplemental Figure 5. Similar degradation fragments were first reported in fetal kidney extracts by van Adelsberg. NM002 and a second antiserum (NM0032) raised against the same peptide antigen also preferentially detected the full length PC1 in the presence of EDTA.
Supplemental Figure 4. Control immunoprecipitations for Arf4, ASAP1, Rab5, Rab7, Rab8, and Rab11. Lysates and immunoprecipitation products were separated by SDS-PAGE and immunoblots were performed using the same antibodies used to immunoprecipitate the protein complex.
Supplemental Figure 5. Confocal microscopy of cultured normal human kidney cells shows colocalization (arrowheads) of Rab11 (red), PC1 (green), and ASAP1 (white) in select punctae on the Golgi ribbon identified by PC1 staining (scale bar 20µm for A and B, 10µm for zoomed-in region of B).
Supplemental Figure 6. Polycystin-1 accumulates with mutant Arf4 and Rab11 isoforms. (Top) Arf4-wild type and I46D mutant GFP fusion proteins were expressed in baby hamster kidney cells. (Middle) Arf4-GFP-WT or Arf4-GFP-I46D was expressed in MDCK cells and labeled with NM002. NM002 signals show greater overlap with Arf4-
GFP-I46D in punctae and collapsed subcellular regions compared to WT control.
(Bottom) GFP-Rab11-WT and GFP-Rab11-S25N dominant negative mutant expression in MDCK cells. PC1 (NM002 antibody) shows greater signal overlap with Rab11 S25N in numerous punctae in the Golgi region compared to WT control. Some GFP transfected cells or cell clusters are outlined in yellow to assist with orientation within each channel. Scale bars = 20µm.
Supplemental Figure 7. HeLa cells were transfected with GAPDH or Arf4 pGIPZ shRNA GFP plasmids and grown for 48 h. Lysates were separated by SDS-PAGE and immunoblots were performed using antibodies directed against Arf4 or actin. (Graph) Arf4 expression levels were normalized against actin.
Supplemental Figure 8

Polycystin 1 isoform 2 precursor [Homo sapiens]-4302aa

Supplemental Figure 8. PC1 contains metalloproteinase cleavage sites in ectodomain. Human PC1 protein sequence is highlighted to show the GPS cleavage domain (yellow) and 11 transmembrane domains (aqua). Underlined sequence represents the region of the PC1 C-terminus cleaved by metalloproteinase activity. Potential ADAM10 and TACE cleavage sites (red) were predicted by comparing the PC1 sequence with predicted...
optimal cleavage motifs for TACE and ADAM10. The N-terminal site (PRFSHSFPR) is predicted to generate a 259,000 MW C-terminal PC1 fragment; the next downstream site (PLTQSIQAN) is predicted to generate a 225,000 MW C-terminal PC1 fragment. The predicted molecular weights of these C-terminal fragments correlate with the 230-260 kDa bands that are recognized by NM002 and NM005 via immunoblot in the absence of EDTA containing buffer (see Supplemental Figure 3F).
Supplemental Text

CD16.7-PC1 WT localizes to primary cilia of 3T3 cells, but truncation mutants do not. The integral membrane CD16.7-PC1-WT fusion protein encoding the last 112 aa of the conserved human PC1 tail (termed CD16.7-PC1-WT) localizes to the primary cilia and Golgi of mouse Swiss 3T3 cells (Supplemental Figure 1). Truncation of the last 20 or 40 amino acids of the PC1 C-terminus, CD16.7-PC1-359 and CD16.7-PC1-339 respectively, abolishes transport to cilia and results in intracellular protein accumulation in the Golgi and possibly the ER suggested by rimming of nuclear envelope (Supplemental Figure 1, yellow arrows).

C-terminally FLAG-tagged PC2 binds Arf4
Cells expressing C-terminally FLAG-tagged PC2 (amino acids 1-219) were used to further confirm Arf4 binding specificity. FLAG-PC2 precipitated purified Arf4 above the background levels seen with FLAG-BAP control protein (Supplemental Figure 2). Arf4 was minimally precipitated with FLAG-PC2-ΔRVxPx deletion mutant and could not be distinguished from FLAG-BAP negative control levels. Immunoblotting for the immunoprecipitated FLAG proteins confirmed their equal precipitation.

Specific antibodies against Polycystin-1 recognize protein in Golgi
Antibodies directed against a peptide epitope in the third cytoplasmic loop region of PC1 (NM002 and NM032) and remote from the C-terminal ciliary targeting sequence were generated in two different rabbits. By immunofluorescence and immuno-EM NM002 showed PC1 enriched in the Golgi and cilia of cultured kidney epithelial cells (MDCKII and RCTE) (Supplemental Figure 3A-C and main text Figure 3A). Acetylated α-tubulin served as a ciliary marker and α-2,6 sialyltransferase or Golgi lights served as independent Golgi markers (Supplemental Figure 3A-B and main text Figure 3A). The peptide antigen used to generate NM002 and NM032 was originally used to generate an antibody for the first definitive immunolocalization of PC1 in tissues though the subcellular localization of PC1 was not described (Van Adelsberg et al., 1997). Antibody specificity of NM002 pAb was further confirmed by peptide-blocking and siRNA depletion experiments (Supplemental Figure 3D-E). Both immunostaining and immunoblot reactivity were decreased by nearly 70% following siRNA depletion of PC1. Comparative evaluation of NM002 and NM0032 against our well-characterized PC1 specific antibody (NM005) raised against a pMAL-PC1 C-terminus fusion protein (Ward et al., 1996; Roitbak et al., 2004; Xu et al., 2007) showed all the antibodies have similar immunoreactivities by Western blot (Supplemental Figure 3F).

Control immunoprecipitations for Arf4, ASAP1, Rab5, Rab7, Rab8 and Rab11.

Polycystin-1 accumulated with mutant Arf4 and Rab11 isoforms.
Arf4-GFP-WT localizes in the Golgi (refer to Figure 3). To determine analyze the function of Arf4 and Rab11 in Golgi export, we analyzed the expression of mutant proteins Arf4 I46D and Rab11 S25N. We used the Arf4 I46D mutant, which blocks ASAP1 interaction, causes morphological defects, including Golgi collapse, and results in retinal degeneration in transgenic animals (Deretic et al., 2005). Accordingly, Arf4-GFP-I46D accumulated in regions predicted to be collapsed Golgi in BHK and MDCK cells (Supplemental Figure 6, top and middle panels). PC1 was found to overlap with these Arf4-GFP-I46D accumulations. The Rab11 S25N dominant
negative mutant causes Golgi accumulation and has been shown to reduce the rate of transferrin recycling, as the Golgi serves as a hub for Rab11 recruitment and activation (Chen et al., 1998; Chen and Wandinger-Ness, 2001). PC1 signals strongly overlapped with GFP-Rab11 S25N, suggesting that this mutant causes PC1 retention in the Golgi (Supplemental Figure 6).

Characterization of shRNA mediated depletion of Arf4.
Arf4 shRNA (OligoIDs: V3LHS-410096, V2LMM-62890, V2LHS-271123, V3LHS-371138, V2LHS-92212) and Rab8 shRNA (OligoID: V3LHS-359728) clones obtained in pGIPZ-GFP vectors (ThermoScientific Open Biosystems, Huntsville, AL) were transfected into HeLa and RCTE cells using Lipofectamine 2000 and knockdown analyzed after 48 h by immunoblotting for Arf4 protein (Supplemental Figure 4).

Metalloprotease cleavage sites in ectodomain of polycystin-1.
Several potential metalloprotease recognition sequences were identified in the ectodomain of polycystin-1 based on reported consensus sequences (Caescu et al., 2009) (Supplemental Figure 5). Metalloprotease cleavage at these sites is expected to result in 230-250 kDa C-terminal cleavage fragments, which are in fact observed when polycystin immunoprecipitations are performed in the presence of magnesium and absence of EDTA (Supplemental Figure 3F). Similar degradation fragments were first reported in fetal kidney extracts (Van Adelsberg et al., 1997).

Supplemental Figure Legends

Supplemental Figure 1. CD16.7-PC1-truncation mutants do not localize to primary cilia of 3T3 cells. Swiss 3T3 cells expressing CD16.7-PC1 fusion proteins were labeled with antibodies specific for CD16 (green) and α-β-tubulin (red). Because each channel was rendered in three-dimensions using separate palettes in Voxx2 software, regions of colocalization do not appear yellow. Colocalization by pixel overlap was used to quantify colocalization of CD16.7-PC1 fusion proteins with α-β-tubulin. Swiss 3T3 cells transfected with CD16.7-PC1-WT showed the fusion protein in the primary cilium and Golgi. Cells expressing CD16.7-PC1-359 and CD16.7-PC1-339 retained the protein predominately intracellularly in the Golgi with possible backup into ER in cases where nuclear envelope staining was detected. Intracellular accumulation of the truncation mutants was prominent even when cilia were present. (Scale bar = 20 µm). CD16.7-PC1-359 and CD16.7-PC1-339 fusion proteins did not localize to primary cilium. Yellow arrows indicate positions of primary cilia, blue arrows denote intracellular accumulation.

Supplemental Figure 2. GST-Arf4 activation and PC2 interaction with Arf4. (A) The dose dependent activation of GST-Arf4 by BODIPY FL GTP was measured for each preparation of GST-Arf4 before use for protein-protein interaction assays. Assays were conducted by incubating increasing concentrations of BODIPY-GTP to equilibrium for 2 h with bead bound GST-Arf4 and measuring in a bead-associated fluorescence by flow cytometry. Nucleotide binding specificity was demonstrated by the loss of fluorescent BODIPY-GTP binding in the presence of excess unlabeled GTP. (B) PC2 binds to Arf4 in vitro. GST-PC2 (amino acids 1-15) specifically pulls down Arf4 pre-loaded with GppNHz. Deletion of the RVxP motif (RVQP) in PC2 significantly diminished the binding (*, p=0.01). Quantification presented as the means ± SE, n=3. (C) PC2 interaction with Arf4 depends on the RVxPx motif. C-terminally FLAG-
tagged PC2 (amino acids 1-219) precipitated Arf4. Anti-FLAG agarose, control FLAG-BAP, or FLAG-PC2-ΔRVxPx, show similar levels of non-specific binding to Arf4 (black arrows point to FLAG-fusion proteins).

Supplemental Figure 3. NM002 pAb specifically recognizes PC1. (A) Confocal Z-stacks of RCTE apical cellular regions show NM002 labeled PC1 in all primary cilia (yellow arrows highlight select primary cilia) with a “beads-on-a-string” appearance. Sub-apical regions in the same cells revealed PC1 in the Golgi. Scale bar 10 μm. (B) MDCKII cells were transfected with myc-tagged α-2,6-sialyl-transferase (ST tyr isoform) or Organelle Lights Golgi-GFP (Invitrogen). Cells were immunostained for PC1 with NM002 (red) and for myc-tagged α2,6-sialyl-transferase with a specific mAb directed against myc (green). Arrows point to PC1 regions overlaid on or adjacent to Golgi proteins. Scale bar 10μm. (C) Transmission electron microscopy of canine trachea or MDCKII cells labeled with NM002 and 10 nm gold-labeled secondary antibody as indicated. PC1 localized to motile cilia (arrows) and basal bodies in longitudinal and cross section (scale bar: 500 nm, upper panels; 100 nm, lower panel), consistent with published literature (Driscoll et al., 2008; Jain et al., 2010). MDCKII cells showed PC1 localization in several subcellular regions including the Golgi membrane (arrow) (Scale bar = 100 nm). Control was labeled with non-specific IgG and gold-labeled secondary. Gold labeling density in MDCKII cells was quantified for four control and four NM002 labeled sections of similar cell areas and gold particles/μm² plotted. (D) RCTE, 9-12 PKD and normal primary cells were labeled with NM002 or NM002 antibody pre-incubated with the immunizing peptide. Intense Golgi staining pattern was absent in cells stained with the peptide-blocked NM002. (Scale bar = 20 μm) (E) Upper panel: HPAC cells grown to subconfluence were transfected with Cy3-labeled PC1 siRNA (PC-17) nucleotides 584-605 (LRR domain) or GAPDH control siRNA (Ambion control template set 4800) for 48 h and immunostained for PC1. Graph represents mean NM002 staining ± SE of 30 PC1 Cy3-siRNA-positive cells compared to 30 control Cy3-siRNA-positive cells (Slidebook, 3i, Inc, Denver, CO). Lower panels: HeLa cells were transfected with PC1 siRNA and grown for 24-48 h post-transfection. NM002 was used for immunoblots. Intensity of 230-250 kDa and 150 kDa bands of PC1 diminished at both time-points, with 45% knockdown occurring at 24 h and 70% knockdown after 48 h of PC1 siRNA relative to control siRNA treatment. Actin blot served as loading control. n=2 (F) Upper panel: Epitope regions of NM002 and NM005 on human PC1 (red arrows). Blue arrow points to a PC1 region with potential metalloprotease recognition sequences; cleavage of which results in 230-250 kDa C-terminal cleavage fragments. Black arrow points to a conserved G-protein-coupled-receptor Proteolytic Site (GPS) that results in cis-autocatalytic cleavage to produce a 150 kDa C-terminal fragment. Lower panel: RCTE cell lysate was resolved with SDS-PAGE and immunoblotted with purified, PC1 specific NM002, NM032 or NM005 antibodies. All antibodies identify a slow migrating band at ~460 kDa, a faster migrating doublet at ~250-260 kDa, and the 150 kDa GPS C-terminal cleavage fragment. In the presence of 2 mM EDTA in the lysis buffer, the 468 kDa band and 150 kDa bands were readily apparent whereas the 230-250 kDa bands were undetectable using NM005, suggesting increased metalloprotease cleavage in the absence of EDTA, see also Supplemental Figure 5. Similar degradation fragments were first reported in fetal kidney extracts by van Adelsberg. NM002 and a second antiserum (NM0032) raised against the same peptide antigen also preferentially detected the full length PC1 in the presence of EDTA.
Supplemental Figure 4. Control immunoprecipitations for Arf4, ASAP1, Rab5, Rab7, Rab8, and Rab11. Lysates and immunoprecipitation products were separated by SDS-PAGE and immunoblots were performed using the same antibodies used to immunoprecipitate the protein complex.

Supplemental Figure 5. Confocal microscopy of cultured normal human kidney cells shows colocalization (arrowheads) of Rab11 (red), PC1 (green), and ASAP1 (white) in select punctae on the Golgi ribbon identified by PC1 staining (scale bar 20µm for A and B, 10µm for zoomed-in region of B).

Supplemental Figure 6. Polycystin-1 accumulates with mutant Arf4 and Rab11 isoforms. (Top) Arf4-wild type and I46D mutant GFP fusion proteins were expressed in baby hamster kidney cells. (Middle) Arf4-GFP-WT or Arf4-GFP-I46D was expressed in MDCK cells and labeled with NM002. NM002 signals show greater overlap with Arf4-GFP-I46D in punctae and collapsed subcellular regions compared to WT control. (Bottom) GFP-Rab11-WT and GFP-Rab11-S25N dominant negative mutant expression in MDCK cells. PC1 (NM002 antibody) shows greater signal overlap with Rab11 S25N in numerous punctae in the Golgi region compared to WT control. Some GFP transfected cells or cell clusters are outlined in yellow to assist with orientation within each channel. Scale bars = 20µm.

Supplemental Figure 7. HeLa cells were transfected with GAPDH or Arf4 pGIPZ shRNA GFP plasmids and grown for 48 h. Lysates were separated by SDS-PAGE and immunoblots were performed using antibodies directed against Arf4 or actin. (Graph) Arf4 expression levels were normalized against actin.

Supplemental Figure 8. PC1 contains metalloprotease cleavage sites in ectodomain. Human PC1 protein sequence is highlighted to show the GPS cleavage domain (yellow) and 11 transmembrane domains (aqua). Underlined sequence represents the region of the PC1 C-terminus cleaved by metalloproteinase activity. Potential ADAM10 and TACE cleavage sites (red) were predicted by comparing the PC1 sequence with predicted optimal cleavage motifs for TACE and ADAM10. The N-terminal site (PRFSHSFPR) is predicted to generate a 259,000 MW C-terminal PC1 fragment; the next downstream site (PLTQSIQAN) is predicted to generate a 225,000 MW C-terminal PC1 fragment. The predicted molecular weights of these C-terminal fragments correlate with the 230-260 kDa bands that are recognized by NM002 and NM005 via immunoblot in the absence of EDTA containing buffer (see Supplemental Figure 3F).

Supplemental Movie 1. PC1 and Arf4-GFP colocalized to Golgi associated discrete orange punctae in MDCKII cells. Image was analyzed by confocal microscopy using a Zeiss LSM 510. MDCKII cells expressing Arf4-GFP (green) were transfected for 24 h, fixed and immunostained for PC1 with NM002 (red).

Supplemental Movie 2. Rab11, PC1 and ASAP1 colocalize in NK1 cells. Three dimensional confocal Z-stack of cultured normal human kidney (NK1) cells shows co-localization of Rab11 (red), PC1 (green), and ASAP1 (blue) in regions of the Golgi (pink punctae).
Supplemental Movie 3. RCTE cells were sequentially transfected with pGIPZ-GFP shRNA GAPDH for 72 hours, followed by transfection and expression of CD16.7-PC1-WT for an additional 20 h. Samples were labeled for CD16 (red) and acetylated α-tubulin (blue). Confocal z-stack is projected from apical to basal surface to show apical cilium.

Supplemental Movie 4. RCTE cells were sequentially transfected with pGIPZ-GFP shRNA Arf4 for 72 hours, followed by transfection and expression of CD16.7-PC1-WT for an additional 20 h. Samples were labeled for CD16 (red) and acetylated α-tubulin (blue). Confocal z-stack is projected from apical to basal surface to show apical cilium.

Supplemental Movie 5. RCTE cells were sequentially transfected with pGIPZ-GFP shRNA Rab8 for 72 hours, followed by transfection and expression of CD16.7-PC1-WT for an additional 20 h. Samples were labeled for CD16 (red) and acetylated α-tubulin (blue). Confocal z-stack is projected from apical to basal surface to show apical cilium.

Supplemental References

Caescu, C. I., Jeschke, G. R., and Turk, B. E. (2009). Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem J. 424, 79-88.

Chen, W., Feng, Y., Chen, D., and Wandinger-Ness, A. (1998). Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell. 9, 3241-3257.

Chen, W., and Wandinger-Ness, A. (2001). Expression and functional analyses of Rab8 and Rab11a in exocytic transport from trans-Golgi network. Methods Enzymol. 329, 165-175.

Deretic, D., Williams, A. H., Ransom, N., Morel, V., Hargrave, P. A., and Arendt, A. (2005). Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc Natl Acad Sci U S A. 102, 3301-3306.

Driscoll, J. A., Bhalla, S., Liapis, H., Ibricevic, A., and Brody, S. L. (2008). Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest. 133, 1181-1188.

Jain, R., Pan, J., Driscoll, J. A., Wisner, J. W., Huang, T., Gunsten, S. P., You, Y., and Brody, S. L. (2010). The Temporal Relationship Between Primary and Motile Ciliogenesis in Airway Epithelial Cells. Am J Respir Cell Mol Biol.

Roitbak, T., Ward, C. J., Harris, P. C., Bacallao, R., Ness, S. A., and Wandinger-Ness, A. (2004). A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell. 15, 1334-1346.

Van Adelsberg, J., Chamberlain, S., and D'Agati, V. (1997). Polycystin expression is temporally and spatially regulated during renal development. Am J Physiol. 272, F602-9.

Ward, C. J., Turley, H., Ong, A. C., Comley, M., Biddolph, S., Chetty, R., Ratcliffe, P. J., Gattner, K., and Harris, P. C. (1996). Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc Natl Acad Sci U S A. 93, 1524-1528.

Xu, C., Rossetti, S., Jiang, L., Harris, P. C., Brown-Glaberman, U., Wandinger-Ness, A., Bacallao, R., and Alper, S. L. (2007). Human ADPKD primary cyst epithelial cells with a
novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol. 292, F930-45.