Laser remelting of AlSi10Mg(-Ni) alloy surfaces: influence of Ni content and cooling rate on the microstructure

Danusa Araújo de Moura1,2 · Guilherme Lisboa de Gouveia1,2 · Gustavo Figueira1,2 · Amauri Garcia3 · Piter Gargarella1,2,4 · José Eduardo Spinelli1,2

Received: 17 February 2022 / Accepted: 25 April 2022 / Published online: 7 May 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
AlSi10Mg alloys are widely employed in a variety of industries, including aerospace, automotive, and microelectronics. This is because of its low density, acceptable mechanical properties, acceptable corrosion resistance, and inexpensive application cost. Advantageous fluidity, a short solidification period, and minimal volumetric contraction are beneficial characteristics under processing such alloys. Despite being used as commercial alloys, the mechanical properties of the AlSi10Mg alloys still need to be improved. In line with this, the current focus of Al-based alloy development is mostly on modifying commercially available alloys. Under such context, Ni was used as an alloying element in this study to generate the Al3Ni intermetallics, distinguished by its improved mechanical strength. Furthermore, the thermal stability of the Al3Ni may be a benefit, particularly for high-temperature applications. The present study aims to investigate the solidification under low and high cooling rates of four alloys: AlSi10Mg, AlSi10Mg-1Ni, AlSi10Mg-2Ni, and AlSi10Mg-3Ni (wt.%). Samples were obtained by directional solidification (DS) and laser surface remelting (LSR) processes. The cooling rates were calculated for the DS samples and with extrapolation for LSR samples as well as with the use of a model from the literature. After testing several laser conditions, the results also include an examination of microstructural and hardness changes in the treated and untreated zones. The produced gradient of microstructures is fully characterized as well as used to evaluate cooling rates inside the laser molten pools. For energy densities of 400 J/mm² and 100 J/mm², the mean dendritic spacings, λ, of the three Ni-containing alloys at the laser molten pool yielded estimated cooling rates of approximately 1.5 × 10⁴ °C/s and 4.7 × 10⁴ °C/s, respectively. A model explaining the reversion of λ across the molten pool will be outlined.

Keywords Laser remelting · Solidification · Microstructure · AlSi10Mg alloy

1 Introduction
Laser surface treatments are effective ways to change mechanical and chemical characteristics locally. Laser applications are particularly competitive in the industrial context because of the laser processes’ cleanliness, high speed, and automation [1, 2]. The laser surface remelting (LSR) process generates a thin molten region on the material surface by rapidly passing a continuous, high-energy–density laser beam over it. Once the energy source is withdrawn, the capability to keep a cold substrate while remelting a thin surface region results in rapid quenching of the molten region. Extremely high solidification cooling rates (from 10⁴ to 10⁷ °C/s) have been reported [3]. Moreover, LSR has been proven to produce a wide range of unique and intriguing surface microstructures and features [4–6]. LSR can produce a surface layer with strong metallurgical bonding to the
substrate under rapid melting and solidification conditions. Significant grain refinement and microstructure uniformity with fine dendrites/cells in the surface layer can be achieved using this process [7]. Nowadays, there is much interest in Al alloys for pistons, manifolds, gear units, crankcases, and chassis, all constructed mainly of light alloys like Al- and Mg-based ones. Although the density of these materials allows for significant weight and fuel savings, in most situations, it is required to adjust the surface microstructural properties, which may be accomplished using laser surface treatments.

Several variables may influence the interactions between a laser beam and an alloy surface [8]. Within the range of operating conditions, a specific combination of power density and residence time produces a particular operational regime, resulting in unique effects on the material’s surface. Physical measurements of crucial parameters such as temperature and velocity fields in the molten pools are also difficult due to the small area of the laser-treated zones and the short time frames [9].

Due to its capacity to produce complicated geometry components in a near-net-shape fashion, several additive manufacturing (AM) processes have emerged in the last years [10, 11]. Even though this technology has several processing particularities, the components generated must solidify at high cooling rates (T) [12, 13] due to the use of laser sources in various conditions. High cooling rates in the AM processes have long been known to optimize the microstructure in terms of grain size and dendrite arm spacing (DAS). Owing to that, the laser surface remelting (LSR) technique can aid in the examination of preliminary data before the AM processing. Moreover, transient directional solidification [14, 15] is another key approach for rationalizing cooling rate-microstructure dependences in Al alloys.

It is well known that the cooling rates in the laser molten pool are variable at various points and difficult to detect. As a result, the formation of a gradient microstructure at the surface is often reported [16], being their features and benefits still unclear.

Due to the high Si and proper Mg contents allowing hardening mechanisms to be activated, AlSi10Mg alloys are of major economic interest. These alloys have demonstrated great potential and versatility in several conventional processes involving melting and solidification, such as high-pressure die-casting (HPD), permanent mold casting (PM), and lost wax (LW) [17, 18]. Studies on solidification through HPD demonstrated the formation of refined microstructures containing the α-Al dendrites enveloped by the (Al + Si) eutectic for the AlSi10Mg0.6 alloy. In contrast, the PM low-cooling rate process produced the α-Al matrix with a coarse dendritic arrangement and interdendritic regions constituted by the α-Al, Si, and Mg2Si phases within the eutectic mixture [17, 18].

Moreover, AM has extensively explored and manufactured commercial AlSi10Mg alloy parts [19, 20]. This is one of the few Al alloys that have been successfully employed in AM. Under AM conditions, it evolved to a completely different solidification behavior resulting in very refined microstructures. Yan et al. [21] demonstrated that the microstructure of the additive manufactured AlSi10Mg sample was composed of a thin cellular structure having α-Al cells smaller than 1 μm in size and with eutectic Si arranged in the intercellular regions. This was mainly because laser melting involves highly concentrated energy input, leading to large local-temperature gradients during solidification. It is worth mentioning that there is a current interest in developing alternative Al-based alloys for the aforementioned processes, which is mostly focused on the modification of commercially available alloys [22, 23].

Under such context, Garmendia et al. [24] added 1 wt.% Cu to the AlSi10Mg alloy. Compared to the AlSi10Mg, the ultimate tensile strength of the Cu-added specimens increased by 51 MPa. This was attributed to grain size reduction and subsequent Hall–Petch strengthening and to Orowan strengthening induced by Cu-rich particles. Like Cu, the addition of Ni appears to be a promising possibility considering that Al3Ni particles may be generated, improving mechanical properties.

According to the best of the authors’ knowledge, Ni has not yet been attempted in AlSi10Mg alloys. High mechanical strength is expected due to the hard Al3Ni intermetallics. Furthermore, below 500 °C, such intermetallics are proved to be thermally stable [25–27]. Cheung et al. [28] investigated the solidification microstructure of the Al-5Ni alloy remelted by laser surface treatment. In the laser track cross-section, three zones of refined microstructures were revealed: a lamellar eutectic at the bottom of the treated pool, an irregular eutectic pattern, and a dendritic pattern with different growth orientations that culminates in dendritic growth parallel to the laser beam speed direction at the top of the pool.

The isolated reinforcing roles of plate-like Si particles and Al3Ni fibers for binary Al-11Si and Al-5Ni alloys, respectively, have been determined by Kakitani et al. [29]. For each case, a similar performance in the blockage of dislocations has been demonstrated without any influence of the scale of the dendritic Al-rich matrix (secondary dendritic spacing ranging from 5 to 30 μm), resulting in a constant hardness of approximately 48 HV. The simultaneous interaction of both strengthening phases embedded in the interdendritic regions and the scale of the secondary dendritic arms (from 5 to 10 μm) was favorable to a notable improvement in hardness for the ternary Al-11Si-5Ni alloy.
The current research focuses on characterizing AlSiMg10(-Ni) alloys after laser remelting. To validate the extrapolation technique of cooling rates from DS, an experimental examination was previously carried out under slow solidification. This research also looks at the relationship between laser process parameters, layers generated inside the molten pool, characterization of microstructural spacings, and hardness changes in laser-treated and unmolten zones.

2 Experimental procedure

The AlSi10Mg, AlSi10Mg-1Ni, AlSi10Mg-2Ni, and AlSi10Mg-3Ni alloys were directionally solidified in cylindrical bipartite molds coated internally with a refractory material to minimize radial heat losses. K-type thermocouples were distributed along with the height of the casting from the water-cooled bottom part to obtain data on temperature either as a function of time (acquisition frequency of 5 Hz) or as a function of position (P) from the casting cooled bottom surface. When the molten alloys reached the liquidus temperatures $+5\%$ at the thermocouple closest to the casting’s bottom, water flow was activated against the external surface of the mold bottom part, promoting upward directional solidification. Specific information about this experimental setup can be found in previous studies [14, 15].

Various samples obtained under different processing conditions (i.e., different P) were extracted from the DS castings. The surfaces of these samples were prepared following the conventional metallographic grinding and polishing techniques. The samples were grinded with sandpaper and polished using 1.0-μm alumina suspension. After that, 0.5% HF etching for 10–20 s was used to expose the resulting microstructures. After acquiring images using an optical microscope (Olympus Corporation, GX41 model, Tokyo, Japan), the triangle and intercept techniques were used to measure the primary, λ_1, and secondary, λ_2, dendritic arm spacings, respectively [30]. Furthermore, a SEM (Philips XL 30 FEG, Eindhoven, Netherlands) was used to get greater magnification images as well as to identify the produced phases.

Transverse samples associated with a cooling rate of approximately 0.7 °C/s were extracted to be used in the LSR experiments. The surface treatment experiments of the four alloys of interest were conducted with an Aurora Labs® S -Titanium Pro machine equipped with a CO$_2$ laser, which has a maximum power of 300 W. The focused laser beam had a nominal spot size of 150 μm with a wavelength of 10.6 μm. The laser head is connected to a CNC-controlled XYZ system, and it moves during the treatment to selectively melt the surface of the samples placed in the building chamber under an argon atmosphere. During the LSR trials, the following operating conditions pairs (Q, laser power/v, laser beam speed) were used: 250 W/1 mm/s, 250 W/5 mm/s, 250 W/10 mm/s, 250 W/15 mm/s, 250 W/20 mm/s, 300 W/1 mm/s, 300 W/2 mm/s, 300 W/5 mm/s, 300 W/8 mm/s, 300 W/10 mm/s, 300 W/15 mm/s, and 300 W/20 mm/s. Area energy densities (ED) ranged from 83 to 2000 J/mm2. Eight EDs were chosen to be evaluated here to alter significantly the examination of laser conditions: 83, 100, 133, 200, 250, 333, 400, and 2,000 J/mm2. The sample surface was sandblasted before laser treatments to increase energy absorption from the laser beam. Conventional metallographic techniques [2, 6] were used to produce selected transverse (perpendicular to the growth direction) slices of the laser track. Optical (Olympus Corporation, GX41 model, Tokyo, Japan) and SEM (Philips XL30 FEG, Eindhoven, the Netherlands) microscopes were used to examine these sections. Moreover, microstructural spacings were determined within the laser molten pool. Vickers microhardness tests were performed on the cross-sections of the samples using test loads of 25 gf and 500 gf and a dwell time of 15 s.

The sketch in Fig. 1 displays all of the experimental techniques utilized and the details underlying their respective microstructural analyses.

![Fig. 1 Operational sequence of production of directionally solidified castings, characterizations, and laser surface treatment](image-url)
3 Results and discussion

3.1 Directional solidification: cooling path, microstructures, and scaling laws

The solidification precipitation sequences of the alloys may be described using the CALPHAD method, as shown in Fig. 2. For the AlSi10Mg, AlSi10Mg-1Ni, and AlSi10Mg-2Ni alloys, the α-Al phase began to solidify first from the liquid. The Al₃Ni phase was the initial phase in the AlSi10Mg-3Ni alloy. The Si, Al₃Ni, and Mg₂Si phases were predicted to precipitate at lower temperatures. The impacts of Ni content change might be noticeable if the fractions of Al₃Ni at 100 °C were examined, which were...
2.4%, 4.8%, and 7.1% with increasing Ni content. These diagrams in Fig. 2 were also helpful to confirm the experimentally determined liquidus and α-Al precipitation temperatures of 593.8 °C, 587.5 °C, 583.5 °C, and 580.0 °C for the AlSi10Mg, AlSi10Mg-1Ni, AlSi10Mg-2Ni, and AlSi10Mg-3Ni alloys, respectively. The computed Si and Mg$_2$Si fractions did not change substantially with Ni additions.

Optical longitudinal and cross-section images are captured at key spots throughout the length of each casting, based on the evolution of the DS samples, as shown in Fig. 3 and Fig. 4 for the examined alloys. The generation of well-defined dendritic arrays with noticeable changes in length scale as a function of the cooling rate, $\dot{\Gamma}$, and α-Al growth rate, V, encountered in different casting regions can be seen in Fig. 3 and Fig. 4. The cooling rate range varying between 14 and 0.02 °C/s may be related to changes in both microstructural morphology and length scale [14]. An α-Al matrix with a dendritic pattern (lighter areas in Figs. 3 and 4) and well-defined primary and secondary arms form the microstructure of all examined alloys, with interdendritic areas composed of the: α-Al, Si particles, Mg$_2$Si, and Al$_3$Ni intermetallics.
The compositions of phases of the samples solidified at 0.7 °C/s were determined by SEM/EDS. These results can be seen at the bottom part of Fig. 5. All phases predicted by the CALPHAD computations were confirmed here. While the Mg$_2$Si intermetallics has a Chinese-script-like form in the ternary Al–Mg–Si alloy [31], this does not appear to be the case with Ni-containing alloys, where some Mg$_2$Si particles have a more refined structure, and others have a Chinese-script shape. Moreover, Si particles display a lamellar shape in all evaluated alloys, which is a typical morphology reported for the Al-Si-based alloys solidified under a slow cooling regime [32, 33]. The addition of Ni propitiates the growth of the complex-shaped white Al$_3$Ni particles, as shown in Fig. 5. Chen and Thomson [34, 35] identified the growth of AlNi-bearing intermetallics in Al-Si-based multicomponent alloys (major additions of Cu, Ni, and Mg) used for pistons, and Mrówka-Nowotnik described these intermetallics to have a complex rod-like shape [36]. Canté et al. [37] observed regular rod-like Al$_3$Ni in their experiments with hypoeutectic Al-Ni alloys, but the morphology seen here is more complex. Moreover, Jain and Gupta [38] reported that the solubility of Si in the Al$_3$Ni phase may vary from 0.7 to 1.66 at.%, which agrees with the present EDS findings.

Jain and Gupta [38] also reported the presence of a ternary eutectic structure in Al-Si-Ni alloys. Acicular Si in equilibrium with Al and bright Al$_3$Ni in the shape of a skeleton structure has been reported. The morphology of Al$_3$Ni shown by Jain and Gupta [38] is much closer to that of the current microstructures in Fig. 5.

The thermal profiles obtained through several thermocouples for all examined alloys were analyzed to establish proper plots of position in the casting against the time of the α-Al isotherm passage during solidification: $P = f(t)$. The α-Al growth rate (V_g) was calculated using the time derivatives of these functions, as shown in Fig. 6. In addition, the time derivative of each cooling curve (dT/dt) was computed immediately after the α-Al isotherm has passed through each thermocouple position to estimate the α-Al cooling rate (\dot{T}) as a function of casting position, as also shown in Fig. 6. When using the transformation isotherm related to the α-Al phase as representative of a larger mass fraction (Fig. 2) for all alloys, it is clear that a wide range of cooling rates exists, ranging from approximately 14 °C/s near the chilled surface to less than 0.1 °C/s near the top of the DS castings.

Considering the very first solidification times (i.e., $P < 5$ mm), it appears that Ni additions have not been able to change the cooling rate. This might be due to small variations in alloy thermophysical properties produced by Ni addition, notably in the thermal and volumetric contraction occurring during solidification. These small variations do not appear to be sufficient to change the alloy/mold heat transfer coefficient (h). A change in h may result in a change in the initial cooling rate profile [39], which is not the case here. The determination of h, on the other hand, is outside the scope of this research.

Figure 7 shows the λ_1 and λ_2 values as a function of cooling rate and growth rate during DS. A single λ_1 dendritic scaling relation may be typified by a power function for the Ni-containing alloys. The -0.5 exponent described the dendritic development for these alloys in Fig. 7a, being typical of those reported for multicomponent Al-based alloys [40]. However, a -0.4 exponent has characterized the experimental λ_1 variation for the ternary AlSi10Mg alloy.

Figure 7b shows experimental growth laws relating the λ_2 to the growth rate. This plot has been figured out from the experimental λ_2 results measured along the length of the
DS alloy castings. Power functions with an exponent of $-2/3$ characterize the evolution of λ_2. This exponent is also consistent with those found in λ_2 growth during transient DS of Al-based alloys [29, 41]. The alloy without Ni resulted in a profile of λ_2 higher than that of the other alloys. Due to solute rejection ahead the solid/liquid interface (S/L), the liquid in contact with it has become more solute-enriched. Because Ni solute has no solubility in the α-Al phase, there will be a local composition that differs from the concentration of the available liquid. The establishment of a temperature gradient in the liquid will be caused by this gradient in solute concentration, and higher constitutional supercooling levels will be observed in the areas adjacent to the S/L interface. This might account for the decrease in λ_2 caused by Ni additions.

3.2 LSR: gradient of microstructures and growth mechanisms in the molten pool

The microstructural features of the laser-treated zone and substrate (previously directionally solidified in a water-cooled mold) are depicted in Figs. 8 and 9. The substrate had a coarse dendritic microstructure, and the resolidified zone (either low or high ED) was characterized by a very...
fine dendritic arrangement at the molten pool bottom. Furthermore, optical images in Figs. 8 and 9 depict the shift in microstructure size at the top surface of the molten pool, as indicated by dashed white lines. The layer closest to the base is the bottom layer, while the one above the indicated line is the top layer. In sum, a morphological transition was detected for all examined alloys and conditions. Han and Jiao [42] observed a refinement in the microstructure after post-processing with LSR of the selective laser melted (SLM)–fabricated AlSi10Mg alloy surface. Microhardness was observed to be enhanced due to the LSR. These authors reported the formation of a dendritic structure finer than that related to the previous SLM as-fabricated samples.

Wang et al. [43] affirmed that the dendrites might fragment due to Marangoni convection effects giving origin to equiaxed α-Al grains. These fragments may be transported...
towards the top surface, forming the final refined layer. Theoretical and experimental solidification investigations show that an increase in cooling rate resulted in a change of the micromorphology of the solid/liquid interface from planar to cellular and subsequently to dendritic, implying a direct effect of solidification kinetics on the morphology of the solidification interface. Some authors demonstrated that the dendritic front may be transformed into a cellular and planar front at higher cooling rates, defining a reverse transition that may produce high cooling rate cells towards the top [30, 44, 45]. Similar findings have been demonstrated in the literature when SLM has been used to process Al alloys [46, 47].

It is worth noting the formation of a gradient of microstructures towards the top surface of the molten pool in the
present investigated samples. Liu et al. [9] estimated top
surface and bottom cooling rates of approximately $10^6 \degree C/s$
and $10^3 \degree C/s$, respectively, during SLM of the AlSi10Mg
alloy at a very high laser speed of 1500 mm/s. These authors
stated that studying the gradient of microstructures is essen-
tial for laser-treated surfaces since the growth of short-range
distinct microstructures may substantially influence on the
resulting mechanical properties. The fundamental reason for
the gradient of microstructures in terms of Si particle distribu-
tion and dendritic/cell size is the variation in molten pool
cooling rate [9]. Moreover, the gradient of microstructures
with increasing grain size from the surface to the inner has
improved mechanical behavior [16].

Analyzing the SEM images of some of the tested condi-
tions in Figs. 8 and 9, it is observed that lower ED refers to
the growth of rounded cells or grains, while more complex
structures (dendrites) characterize the top surface of high
ED samples.

It is feasible to evaluate the distribution of elements after laser
processing using the color mapping data for the AlSi10Mg-
3Ni alloy surface solidified under low ED conditions. Mg and
Fe appear to be equally distributed throughout the microstruc-
ture, but Ni and Si remain concentrated at the grain bounda-
ries. It seems that the present solidification conditions allowed
rejection of solute to happen in such a way that second phases
such as Al$_3$Ni and Si could be formed at the end stage of
solidification.

The greater tendency of Ni and Si to segregate in the
solidification front may be linked to the lower redistribu-
tion coefficients (k) related to these elements, 0.008 [37]
and 0.12 [48], respectively. On the other hand, k for the
Al–Mg system is approximately 0.5 [49], which may inhibit
its accumulation at the solidification interface. In addition,
Mg is less dense than Al, and because of this, it can be bet-
ter distributed in the remaining liquid during rapid solidi-
fication. Furthermore, the impurity Fe level is around 0.1
wt.%, favoring an even distribution of this element, as seen
in Fig. 10.

The primary spacing varied from an average value of
approximately 440 μm in the non-treated zone to a mean
spacing of approximately 1.8 μm in the center part of the
resolidified zones of the investigated alloys, i.e., a remark-
able decrease in length scale. The equation proposed by
Ashby and Easterling [50] allowed for the cooling rate in
laser melting traces to be estimated, based on the following
expression:

$$\dot{T} = \frac{-2\pi k(T_a-T_0)^2}{A(Q/v)},$$

where A is the laser beam absorptivity for the laser beam
(0.18 as stated by Liu et al. [51]), $v (m/s)$ is the laser scan-
ning speed, $Q (W)$ is the laser power, $k (W/mK)$ is the liquid
thermal conductivity determined through CALPHAD. T_0 is

![Fig. 10 EDS elemental mapping images display elements’ distribution in the remelted AlSi10Mg-3Ni alloy surface for an ED of approximately 100 J/mm2](image-url)
Table 1 Data extracted for all examined laser treated AlSi10Mg(-Ni) alloy surfaces

Alloy	Q [W]	v [mm/s]	Energy density [J/mm²]	Bottom layer fraction (%)	Top layer fraction (%)	Microstructure Spacing [μm]	Cooling rate at the bottom [K/s]	Cooling rate before top layer [K/s]	Theoretical cooling rate [K/s]	Molten pool average Hardness [HV]	
Non-modified											
300 1	463×155	2000	77.7	22.3	2.1	2.6	1.4	5.5×10⁴	3.2×10⁴	2.5×10⁴	100.8
300 5	638×264	400	73.8	26.2	2.8	2.4	2.6	2.7×10⁴	4.0×10⁴	1.3×10⁴	105.9
300 8	633×267	250	71.4	28.6	2.5	1.8	2.3	3.5×10⁴	7.5×10⁴	2.0×10⁴	107.8
300 10	651×274	200	73.3	26.7	2.2	1.9	2.5	4.9×10⁴	7.0×10⁴	2.5×10⁴	110.7
300 15	632×257	133	73.2	26.8	2.2	1.7	2.0	4.9×10⁴	8.8×10⁴	3.8×10⁴	113.2
300 20	621×240	100	54.8	45.2	2.1	1.5	2.0	5.4×10⁴	1.2×10⁴	5.0×10⁴	113.8
Modified with 1%Ni											
250 5	472×180	333	68.4	31.6	2.4	1.9	2.6	4.3×10⁴	8.8×10⁴	3.8×10⁴	126.7
250 20	446×157	83	84.4	15.6	1.4	1.0	1.3	4.3×10⁴	8.8×10⁴	6.1×10⁴	126.7
300 1	475×175	2000	89.0	11.0	2.5	2.0	2.3	1.1×10⁴	1.1×10⁴	2.5×10⁴	121.6
300 5	550×216	400	72.3	27.7	2.5	2.0	2.3	1.4×10⁴	1.3×10⁴	2.5×10⁴	121.7
300 10	520×205	200	79.9	20.1	1.6	1.4	2.0	3.4×10⁴	4.7×10⁴	2.5×10⁴	124.3
300 20	508×190	100	66.5	33.5	1.6	1.4	1.6	2.4×10⁴	4.7×10⁴	2.5×10⁴	127.5
Modified with 2%Ni											
250 5	467×179	333	64.2	35.8	2.1	1.5	2.2	3.0×10⁴	8.5×10⁴	6.0×10⁴	127.0
250 20	408×140	83	85.2	14.8	1.7	1.1	1.4	3.2×10⁴	8.5×10⁴	6.0×10⁴	127.0
300 1	492×177	2000	84.8	15.2	2.9	3.2	3.4	1.1×10⁴	8.9×10⁴	2.5×10⁴	131.7
300 5	521×193	400	83.1	16.9	1.9	1.9	2.4	2.6×10⁴	2.4×10⁴	1.3×10⁴	126.2
300 10	512×182	200	83.3	16.7	1.9	1.5	2.2	2.8×10⁴	4.2×10⁴	2.5×10⁴	131.3
300 20	501×182	100	87.9	12.1	1.8	1.1	1.3	2.7×10⁴	8.2×10⁴	5.0×10⁴	142.6
Modified with 3%Ni											
250 5	505×195	333	71.7	28.3	2.1	1.6	2.1	2.1×10⁴	3.6×10⁴	1.5×10⁴	129.9
250 20	429×173	83	67.1	32.9	1.7	1.2	1.4	3.0×10⁴	6.2×10⁴	6.0×10⁴	132.2
300 1	533×201	2000	83.9	16.1	2.7	2.9	3.9	1.2×10⁴	1.1×10⁴	2.5×10⁴	126.2
300 5	595×231	400	82.9	17.1	2.1	1.9	2.3	2.0×10⁴	2.4×10⁴	1.3×10⁴	133.8
300 10	553×219	200	78.2	21.8	1.8	1.4	1.9	2.7×10⁴	4.3×10⁴	2.5×10⁴	136.7
300 20	513×177	100	75.6	24.4	1.5	1.0	1.3	4.0×10⁴	8.5×10⁴	5.0×10⁴	136.1
the room temperature, and T_{α} is the transformation temperature of the α-Al growth start.

Given that the thermal conductivity and T_{α} changed minimally as a function of Ni addition, the calculated cooling rates were similar for the alloys studied. For instance, \dot{T} was about 1.3×10^4 °C/s for the 300 W/5 mm/s and 5.0×10^4 °C/s for the 300 W/20 mm/s. Extrapolations from the scaling law of average λ values of 2.47 μm and 1.38 μm for the 3 Ni-containing alloys under the same aforementioned conditions resulted in estimated molten pool cooling rates of 1.5×10^4 °C/s and 4.7×10^4 °C/s, which were adequately validated for the 300 W/5 mm/s and 300 W/20 mm/s LSR conditions, respectively. The extrapolation approach, which permits estimating the point-to-point cooling rate inside the molten pool, was validated by the closeness of the cooling rate values determined by both methods.

Table 1 shows data for the 24 conditions, 6 for each alloy. The dimensions of the molten pool as well the fractions of the bottom and top layers may be observed. Average hardness values are also included. Although the spacing values at the bottom and center varied relatively little, an important impact on the extrapolated cooling rates is attained if those regions are compared. The extrapolation was performed considering information related to the bottom and center of the molten pool since the top layer is very affected by convection, and the λ scaling relationships are not valid for this layer.

Flow dynamics is a feature of molten pools that is sometimes neglected. The flow in a molten pool is primarily caused by a spatial fluctuation in surface tension, called thermocapillary flow or Marangoni convection. Fluid flow has been demonstrated to have a crucial role in heat transfer and

![Flow dynamics in molten pool](image)

Fig. 11 Scheme showing the microstructure evolution and flow dynamics effects across the molten pool explaining λ reversion towards the top: a completely molten pool; b initial growth of dendrites towards the top; c growth of finer dendrites in the central area and transportation of solid fragments; and d end-stage of solidification forming the top layer. The subscripts b, c, and t in the illustrative drawing mean bottom, center, and top of the molten pool.
solidification behavior in the molten pool, affecting solidification microstructure, alloy element distribution, and defects in previous researches [52–54]. In a diffusive-driven regime, the growth rate is expected to increase continuously toward the pool top, and the effect on dendrite refinement would be even higher, producing lower λ [3]. However, this is not the case if the present results for spacing are considered. Most conditions tested show that the spacing is larger at the bottom, decreasing at the center and increasing again towards the top surface. A mechanism explaining the reversion of λ across the molten pool can be seen in Fig. 11.

It appears that the induced convection in the molten pool affects growth by generating fragmentation (Fig. 11b). In the central part of the pool, despite convection, solidification velocities are still higher than those at the bottom, resulting in lower λ (Fig. 11c). However, due to solute drag from the interdendritic regions to the top and the presence of floating fragments, the λ characterizing the top surface tends to be increased (Fig. 11d).

Some of the conditions increased λ from the bottom towards the top, especially for higher Ni content and low laser speed. Reduced laser speed causes a significant increase in contact duration and peak temperature, resulting in greater Marangoni fluid convection. These features appear to explain the increasing λ profile in a few cases. Indeed, low laser speed conditions seem to provide a more significant accumulation of solute in the upper part, resulting in a thicker eutectic film, according to Fig. 12.

When the AlSi10Mg(-Ni) alloys were produced at an energy density range of 83 to 133 J/mm2, the hardness resulted is higher, attaining approximately 140 HV for the alloys having higher Ni content, as can be seen in Fig. 13. It appears that as the Ni content is increased, the hardness tends to become constant.

For each condition, hardness measurements were carried out at the bottom, center, and top of the molten pool, generating an appreciable set of hardness as a function of λ for each alloy, as shown in Fig. 14. Although λ has no effect on the hardness for all examined alloys, the LSR treatment has a notable influence on the hardness of all treated surfaces of the Al–Si–Mg-Ni samples. The hardness of the remelted zone increased from 75 to 80 HV in the substrate to 107–131.5 HV. The fineness of the eutectic mixture and the resulting homogenous distribution of intermetallic particles, which resulted from the laser treatment, are primarily responsible for the greater hardness values of the remelted zones.
Conclusions

The microstructures of the DS samples of any alloy examined have generated well-defined α-Al dendritic arrays with noticeable changes in length scale as a function of cooling rate, \dot{T}, and α-Al growth rate, V along the length of the castings. The dendritic pattern was shown to be characterized by well-defined primary (λ_1) and secondary (λ_2) arms with interdendritic areas composed of α-Al; Si particles, Mg$_2$Si, and Al$_3$Ni intermetallics. Scaling power function laws relating λ_1 to \dot{T} and λ_2 to V were experimentally determined for any alloy examined. The alloy without Ni resulted in a profile of λ_2 higher than those of the other alloys.

The laser-treated zone was shown to be formed by a gradient of microstructures towards the top surface of the molten pool, characterized by a very fine dendritic arrangement at the bottom/center of the molten pool, followed by a shift in microstructure size at the top surface for all examined alloys. The solidification conditions allowed rejection of solute to happen in such a way that second phases such as Al$_3$Ni and Si could be formed at the end stage of solidification. λ_1 varied from an average value of approximately 440 μm in the non-treated zone to a mean spacing of approximately 1.8 μm in the center part of the resolidified zones.

The laser surface remelting treatment (LSR) was shown to have a remarkable influence on hardness of all treated surfaces of the Al–Si–Mg–Ni samples. The hardness of the remelted zone increased from 75 to 80 HV at the substrate to 107–131.5 HV. The fineness of the eutectic mixture and the resulting homogenous distribution of intermetallic particles, which resulted from the laser treatment, are the primarily responsible for the greater hardness of the remelted zones.

Acknowledgements The authors are grateful to CNPq—National Council for Scientific and Technological Development, Brazil, and to FAPESP—São Paulo Research Foundation, Brazil (grant numbers #2019/23673-7 and #2017/27031-4), for their financial support.

Funding This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.
Availability of data and material Data presented in this study are available on request from the corresponding author. Data are not publicly available because they pertain to a research still in development.

Declarations

Ethics approval The authors declare that there is no ethical issue applied to this article.

Consent to participate The authors declare that all authors have read and approved to submit this manuscript to IJAMT.

Consent to publish The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon acceptance.

Competing interests The authors declare no competing interests.

References

1. Steen PH, Ehrhardt P, Schüssler A (1994) Depth of melt- pool and heat- affected zone in laser surface treatments. Metall Mater Trans A 25:427–435. https://doi.org/10.1007/BF02647988
2. Cheung N, Ierardi M, Garcia A, Vilar R (2000) The use of artificial intelligence for the optimization of a laser transformation hardening process. Lasers Eng 10:275–291
3. Kurz W, Fisher D (1998) Fundamentals of solidification, 4th edn. Trans Tech Publications, Switzerland
4. Saleh AF, Abboud JH, Benyounis KY (2010) Surface carburizing of Ti–6Al–4V alloy by laser melting. Opt Lasers Eng 48:257–267. https://doi.org/10.1016/j.optlasteng.2009.11.001
5. de Damborenea J (1998) Surface modification of metals by high power lasers. Surf Coatings Technol 100–101:377–382. https://doi.org/10.1016/S0257-8972(97)00652-X
6. Colaço R, Vilar R (2005) On the influence of retained austenite in the abrasive wear behaviour of a laser surface melted tool steel. Wear 258:225–231. https://doi.org/10.1016/j.wear.2004.09.029
7. Zhong M, Liu W, Zhang H (2006) Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner. Wear 260:1349–1355. https://doi.org/10.1016/j.wear.2005.09.033
8. Steen WM, Mazumder J (2010) Laser material processing. Springer, London, London
9. Liu YJ, Liu Z, Jiang Y et al (2018) Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J Alloys Compd 735:1414–1421. https://doi.org/10.1016/j.jallcom.2017.11.020
10. Kempen K, Thijs L, Van Humbeeck J, Kruth J-P (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39:439–446. https://doi.org/10.1016/j.phpro.2012.10.059
11. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Des 65:417–424. https://doi.org/10.1016/j.matdes.2014.09.044
12. Yu G, Gu D, Dai D et al (2016) Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A 122:891. https://doi.org/10.1007/s00339-016-0428-6
13. Delroisse P, Rigo O, Jacques P, Simar A (2017) AlSi10Mg lattice structures processed by selective laser melting: influence of the geometry and the heat treatments on the microstructure. TMS 2017
14. Gandolfi M, Xavier MGC, Gomes LF et al (2021) Relationship between microstructure evolution and tensile properties of AlSi10Mg alloys with varying Mg content and solidification cooling rates. Metals (Basel) 11:1019. https://doi.org/10.3390/met11071019
15. Kakitani R, Reyes RV, Garcia A et al (2019) Effects of melt superheating on the microstructure and tensile properties of a ternary Al–15 Wt Pt Si–1.5 Wt Pt Mg Alloy. Metall Mater Trans A 50:1308–1322. https://doi.org/10.1007/s11661-018-5058-5
16. Lu K (2014) Making strong nanomaterials ductile with gradients. Science (80-) 345:1455–1456. https://doi.org/10.1126/science.1255940
17. Zhang Z, Liu MY, Breton F, Chen XG (2018) Microstructure and mechanical properties of alsi10mg permanent mould and high pressure vacuum die castings. Proc 16th Int Alum Alloy Conf (ICAA16) 17–21. Montr QC, Canada
18. Ji S, Wang Y, Watson D, Fan Z (2013) Microstructural evolution and solidification behavior of Al-Mg-Si alloy in high-pressure die casting. Metall Mater Trans A 44:3185–3197. https://doi.org/10.1007/s11661-013-6665-3
19. Trevisan F, Calignano F, Lorusso M et al (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel) 10:76. https://doi.org/10.3390/ma10010076
20. Tang M, Pistorius PC, Narra S, Beuth JL (2016) Rapid solidification: selective laser melting of AlSi10Mg. JOM 68:960–966. https://doi.org/10.1007/s11837-015-1763-3
21. Yan Q, Song B, Shi Y (2020) Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol 41:199–208. https://doi.org/10.1016/j.jmatstechnol.2019.08.049
22. Li R, Wang M, Yuan T et al (2017) Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties. Powder Technol 319:117–128. https://doi.org/10.1016/j.powtec.2017.06.050
23. Zhao T, Dahmen M, Cai W et al (2020) Laser metal deposition for additive manufacturing of AA5024 and nanoparticulate TiC modified AA5024 alloy composites prepared with balling milling process. Opt Laser Technol 131:106438. https://doi.org/10.1016/j.optlastec.2020.106438
24. Garmendia X, Chalker J, Bilton M et al (2020) Microstructure and mechanical properties of Cu-modified AlSi10Mg fabricated by Laser-Powder Bed Fusion. Materialia 9:100590. https://doi.org/10.1016/j.materialia.2020.100590
25. Zhuang YX, Zhang XM, Zhu LH, Hu ZQ (2001) Eutectic spacing and faults of directionally solidified Al–A13 Ni eutectic. Sci Technol Adv Mater 2:37–39. https://doi.org/10.1016/S1468-6996(01)00023-7
26. Hunt Jr WH (2000) New directions in aluminum-based P/M materials for automotive applications. SAE Trans 90–97
27. Afonso CRM, Spinelli JE, Bolfarini C et al (2012) Rapid solidification of an Al-5Ni alloy processed by spray forming. Mater Res 15:779–785. https://doi.org/10.1590/S1516-14392012005000044
28. Cheung N, Cruz KAS, Cante MV et al (2010) Numerical and experimental analysis of rapidly solidified laser remelted Al 5wt pct Ni surfaces. Int J Microstruct Mater Prop 5:193. https://doi.org/10.1504/IJMMP.2010.035939
29. Kakitani R, Cruz CB, Lima TS et al (2019) Transient directional solidification of a eutectic Al–Si–Ni alloy: Macrostructure, microstructure, dendritic growth and hardness. Materialia 7:100358. https://doi.org/10.1016/j.materialia.2019.100358
30. Trivedi R, Sekhar JA, Seetharaman V (1989) Solidification microstructures near the limit of absolute stability. Metall Trans A 20:769–777. https://doi.org/10.1007/BF02667594

© Springer
31. Liu YL, Kang SB (1997) The solidification process of Al–Mg–Si alloys. J Mater Sci 32:1443–1447
32. Hosch T, England LG, Napolitano RE (2009) Analysis of the high growth-rate transition in Al–Si eutectic solidification. J Mater Sci 44:4892–4899. https://doi.org/10.1007/s10853-009-3747-6
33. Warmuzek M (2016) Aluminum-silicon casting alloys: atlas of microfactographs. ASM International
34. Chen C-L, Thomson RC (2010) The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al–Si piston alloys. J Alloys Compd 490:293–300. https://doi.org/10.1016/j.jallcom.2009.09.181
35. Chen C-L, Thomson RC (2010) Study on thermal expansion of intermetallics in multicomponent Al–Si alloys by high temperature X-ray diffraction. Intermetallics 18:1750–1757. https://doi.org/10.1016/j.intermet.2010.05.015
36. Ahmad Z (2011) Recent trends in processing and degradation of aluminium alloys. BoD–Books on Demand
37. Canté MV, Spinelli JE, Ferreira IL et al (2008) Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions. Metall Mater Trans A 39:1712–1726. https://doi.org/10.1007/s11661-008-9536-z
38. Jain M, Gupta S (2003) Formation of intermetallic compounds in the Ni–Al–Si ternary system. Mater Charact 51:243–257. https://doi.org/10.1016/j.matchar.2003.12.002
39. Quaresma JM, Santos CA, Garcia A (2000) Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys. Metall Mater Trans A 31:3167–3178. https://doi.org/10.1007/s11661-000-0096-0
40. Xavier MGC, Freitas BIM, Gouveia GL et al (2021) The roles of Ni and Co in dendritic growth and tensile properties of Fe-containing Al–Si–Cu–Zn scraps under slow and fast solidification cooling. Adv Eng Mater 2100822. https://doi.org/10.1002/adem.202100822
41. da Silva C, Soares T, Cheung N et al (2019) Dendritic spacing and macrosegregation affecting microhardness of an Al-Si-Mg alloy solidified under unsteady state conditions. Mater Res 22. https://doi.org/10.1590/1980-5373-mr-2019-0390
42. Han Q, Jiao Y (2019) Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting. Int J Adv Manuf Technol 102:3315–3324. https://doi.org/10.1007/s00170-018-3027-0y
43. Wang D, Song C, Yang Y, Bai Y (2016) Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des 100:291–299. https://doi.org/10.1016/j.matdes.2016.03.111
44. Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35:444–451. https://doi.org/10.1063/1.1713333
45. Cahn RW, Haasen P (1996) Physical Metallurgy, 4th ed. North Holland, Amsterdam
46. Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of Al356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 89:1294–1301. https://doi.org/10.1016/j.matdes.2015.10.065
47. Li XP, Wang XJ, Saunders M et al (2015) A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 95:74–82. https://doi.org/10.1016/j.actamat.2015.05.017
48. Peres MD, Siqueira CA, Garcia A (2004) Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd 381:168–181. https://doi.org/10.1016/j.matchar.2004.03.107
49. Gomes LF, Silva BL, Garcia A, Spinelli JE (2017) Dendritic growth, solidification thermal parameters, and mg content affecting the tensile properties of Al-Mg-1.5 Wt Pct Fe Alloys. Metall Mater Trans A 48:1841–1855. https://doi.org/10.1007/s11661-015-3798-0
50. Ashby MF, Easterling KE (1984) The transformation hardening of steel surfaces by laser beams—I. Hypo-eutectoid steels Acta Metall 32:1935–1948. https://doi.org/10.1016/0001-6160(84)90175-5
51. Liu B, Li B-Q, Li Z et al (2019) Numerical investigation on heat transfer of multi-laser processing during selective laser melting of AlSi10Mg. Results Phys 12:454–459. https://doi.org/10.1016/j.rinp.2018.11.075
52. Staub A, Spierings AB, Wegener K (2019) Correlation of melt-pool characteristics and residual stresses at high laser intensity for metal lpbf process. Adv Mater Process Technol 5:153–161. https://doi.org/10.1080/2374068X.2018.1535643
53. Yan Z, Liu W, Tang Z et al (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441. https://doi.org/10.1016/j.optlastec.2018.04.034
54. Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18. https://doi.org/10.1155/2018/4920718

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.