Adiabatic Markovian Dynamics

Ognyan Oreshkov1,2 and John Calsamiglia1
1Física Teòrica: Informació i Fenòmens Quàntics,
Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
2Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
(Dated: February 14, 2022)

We propose a theory of adiabaticity in quantum Markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.

Introduction.—The adiabatic theorem is a simple and powerful result that has been known since the early days of quantum mechanics\cite{1, 2}. It states roughly that a closed system in an eigenstate of a continuously perturbed Hamiltonian remains in an instantaneous eigenstate in the limit of slow perturbations if the corresponding eigenvalue is separated from the rest of the spectrum by a gap. Adiabaticity in quantum mechanics has applications in a wide range of areas, including quantum chemistry\cite{3}, geometric phases\cite{4, 5}, quantum Hall effect\cite{6}, STIRAP\cite{7}, and quantum phase transitions\cite{8}. More recently, the adiabatic theorem has been the subject of increased interest in relation to quantum information processing, where it has served as a basis for a variety of schemes, including holonomic quantum computation\cite{9} and adiabatic quantum algorithms\cite{10}.

Given the importance of the concept of adiabaticity in closed quantum systems, it is natural to ask how this concept extends to the dynamics of systems interacting with an environment. This question is of particular interest from the point of view of quantum information processing where decoherence is a major obstacle to the construction of reliable quantum devices, and at the same time non-unitary processes are an important tool for quantum control\cite{11}. In Ref.\cite{12}, Sarandy and Lidar proposed an approach to the adiabatic dynamics of open quantum systems, defining adiabaticity as the regime in which the operator subspaces corresponding to the instantaneous Jordan blocks of the generator of the dynamics evolve independently (for adiabaticity in weakly open systems, see Ref.\cite{13}). This definition is motivated by the formal analogy between the Schrödinger equation and the time-dependent Markovian master equation written in a coherence basis, both being first-order linear vector differential equations with the difference that the generator of the master equation is generally not diagonalizable (hence the Jordan decomposition). But while in closed systems the phenomenon of adiabaticity concerns the decoupled evolution of eigenspaces of the Hamiltonian which themselves are Hilbert spaces containing physical states, the Jordan blocks correspond to generally nonorthogonal subspaces of the space of linear operators that need not contain density matrices or even observables and may decay to zero even when mutually decoupled. In the present paper, we propose a different approach, based primarily on physical considerations, which yields an inequivalent picture of open-system adiabaticity that links adiabatic dynamics to the theory of noiseless subsystems\cite{14}.

Taking as a ground the basic physical characteristic of adiabatic closed-system evolutions—namely, that these are quasi-static evolutions where under sufficiently slow changes of the Hamiltonian a system in a stationary state evolves so as to remain in a stationary state with respect to the changed Hamiltonian—we look for a generalization of this phenomenon to the case of Markovian dynamics. The key insight of our approach is that the natural generalization of the eigenspaces of the Hamiltonian corresponding to distinct eigenvalues are noiseless subsystems whose noiseful cofactors support unique fixed states. A decomposition of the Hilbert space into such subsystems arises naturally from the asymptotic behavior of the Lindblad semigroup\cite{15}. We define adiabaticity as the regime in which the stationary states over such a noiseless subsystem and its cofactor remain stationary with respect to the Lindbladian as it changes. We derive an adiabatic theorem based on this definition.

To illustrate the utility of our formalism, we propose two applications. One is a framework for decoherence-assisted computation in noiseless codes which generalizes the approach of Beige et al.\cite{16} to subsystems and general noise models. The other is a dissipation-driven approach to holonomic quantum computation based on adiabatic “dragging” of subsystems\cite{17} along paths that are generally not achievable by non-dissipative means.

Generalization of eigenspaces.—Our starting point is the observation that the eigenstates of a Hamiltonian H
are the stationary state vectors of its dynamics. In particular, all stationary density matrices under the evolution $d\rho/dt = -i[H, \rho]$ (we set $\hbar = 1$) have the direct-sum form $\rho = \bigoplus_i \rho_i \rho_i^\dagger$, where ρ_i are density matrices over the eigenspaces \mathcal{H}_i of H corresponding to distinct eigenvalues. In more general quantum processes, the stationary states are organized as operators over noiseless subsystems tensored with a fixed density matrix over the corresponding noiseful co-subsystems [18]. Consider a time-homogeneous finite-dimensional Markovian dynamics described by the Lindblad equation [19]

$$\frac{d\rho}{dt} = -i[H, \rho] + \sum_i (L_i \rho L_i^\dagger - \frac{1}{2} L_i^\dagger L_i \rho - \frac{1}{2} \rho L_i^\dagger L_i) = \mathcal{L}\rho,$$

(1)

where L_i are Lindblad operators. As shown in Ref. [13], Eq. (1) induces a decomposition of the Hilbert space

$$\mathcal{H} = \bigoplus_{ij} \mathcal{H}_i^A \otimes \mathcal{H}_j^B \oplus K,$$

(2)

where \mathcal{H}_i^A are noiseless subsystems [14], \mathcal{H}_j^B are noiseful subsystems that support unique fixed states, and K is a decaying subspace. More particularly, it was shown that for any initial state $\rho(0)$, the solution of Eq. (1) satisfies

$$\exists \{p_k, \rho_k^A\} : \lim_{t \to \infty} |\rho(t) - \bigoplus_j \rho_j e^{-iH_j^A t} \rho_j^A e^{iH_j^A t} \otimes \mathcal{E}_j^B| = 0,$$

(3)

where ρ_j^A are density matrices on the unitarily noiseless subsystems $\mathcal{H}_j^A = \bigoplus_i \mathcal{H}_i^A$ evolving under the Hamiltonians H_j^A, \mathcal{E}_j^B are fixed full-support states on \mathcal{H}_j^B, and $\sum_k p_k = 1$, $p_k \geq 0$. The noiseless subsystems \mathcal{H}_i^A are the eigenspaces of H_i^A. The stationary states have the form $\rho = \bigoplus_{ij} p_{ij} \rho_{ij}^A \otimes \mathcal{E}_{ij}^B$, where ρ_{ij}^A are density matrices on \mathcal{H}_i^A. This suggests that the subsystems \mathcal{H}_i^A whose cofactors \mathcal{E}_j^B support unique fixed states \mathcal{E}_{ij}^B can be thought of as the generalization of eigenspaces corresponding to distinct eigenvalues.

How do we find the decomposition (2) for a given Lindbladian \mathcal{L}? An algorithm for finding the noiseless subsystems of a completely positive trace-preserving (CPTP) map that runs in time $O([\dim \mathcal{H}]^6)$ was described in Ref. [18] (see also Ref. [20]). It is based on finding the left and right operator eigenspaces corresponding to the eigenvalue 1 of the CPTP map. Since Eq. (1) is equivalent to the continuous application of an infinitesimal CPTP map, the same algorithm can be used here (the eigenvalue 1 of the map translates to eigenvalue 0 of \mathcal{L}).

Before we introduce adiabaticity for Markovian dynamics, let us briefly review the closed-system case.

Adiabaticity in closed systems.—Consider a time-dependent Hamiltonian $H(t/T)$ changing along a differentiable curve $H(s)$, $s \in [0, 1]$. Let $\epsilon_i(s)$ be an eigenvalue of $H(s)$ with multiplicity m, and $P_i(s)$ be the (twice-differentiable) projector on the corresponding eigenspace $\mathcal{H}_i(s) = P_i(s)\mathcal{H}$. [Note that $m = \text{const}(s)$ implies that $\epsilon_i(s)$ is separated from the rest of the spectrum by a gap. The adiabatic theorem has been extended to cases without a gap [21], but in this paper we restrict to the standard formulation.] The eigenspace $\mathcal{H}_i(t/T)$ is said to evolve adiabatically under $H(t/T)$ if any state initially in $\mathcal{H}_i(0)$ remains in $\mathcal{H}_i(t/T)$, $t \in [0, T]$. Equivalently, if we change the basis via a unitary $U(s)$ so that P_i becomes fixed, in the new basis the dynamics is driven by the effective Hamiltonian $H'(t/T) = H(t/T) + \frac{1}{T} V(t/T)$, where $\tilde{H}(s) = U(s)H(s)U(s)\dagger = \epsilon_i(s)P_i + \tilde{H}_i(s)$ with $\tilde{H}_i(s)$ having support on the orthogonal complement of \mathcal{H}_i, and $V(s) = i\frac{dU(s)}{ds}$. Adiabaticity then refers to the regime in which any state initially in \mathcal{H}_i remains in \mathcal{H}_i despite the action of $\frac{1}{T}V(t/T)$. The adiabatic theorem states [2] that in the limit of large T, one approaches perfect adiabaticity where the states in \mathcal{H}_i evolve via the unitary $U(s) = T \exp\left(-i \int_0^s P_i V(q) P_i dq\right)$ where T denotes time ordering. The error scales with T as $O(1/T)$, where $\Delta > 0$ is a fixed energy scale (e.g., the energy gap).

Note that unlike the “folk” adiabatic condition which is known to be insufficient [22], this theorem (similarly to the one derived below) is concerned with the scaling of the error as a function of T for a fixed curve $H(s)$.

Adiabaticity in Markovian dynamics.—Consider a time-dependent Lindbladian $\mathcal{L}(t/T)$ changing along a differentiable curve $\mathcal{L}(s)$, $s \in [0, 1]$. For every s, $\mathcal{L}(s)$ induces a decomposition of the Hilbert space $\mathcal{H} = \bigoplus_{ij} \mathcal{H}_i^A(s) \otimes \mathcal{H}_j^B(s) \oplus K(s)$ as explained earlier. Let $\mathcal{H}_i^A(s)$ and $\mathcal{H}_j^B(s)$ be the eigenspaces of the type above, and let $\mathcal{P}_k(s) \{\mathcal{P}_k(s)\rho = \text{Tr}_B(P_{k}^{AB}(s)\rho P_{kB}(s))\otimes \mathcal{E}_{k}^B(s)\}$ be the (twice-differentiable) superoperator projector on the fixed points over $\mathcal{H}_i^A(s) \otimes \mathcal{H}_j^B(s)$. Note. Similarly to the closed-system case, the assumption that $\dim \mathcal{H}_i^A(s)$ and $\dim \mathcal{H}_j^B(s)$ are constant implies an analogue of the gap condition (see Appendix A).

Definition. The noiseless subsystem $\mathcal{H}_i^A(t/T)$ and its noisy cofactor $\mathcal{H}_j^B(t/T)$ evolve adiabatically under $\mathcal{L}(t/T)$, if any state over $\mathcal{H}_i^A(0) \otimes \mathcal{H}_j^B(0)$ of the form $\rho(0) = \rho(0)_{i}^A \otimes \mathcal{E}_{i}^B(0)$ evolves to a state $\rho(t) = \rho(t)_{i}^A \otimes \mathcal{E}_{i}^B(t/T)$ over $\mathcal{H}_i^A(t/T) \otimes \mathcal{H}_j^B(t/T)$, $t \in [0, T]$.

As in the case of closed systems, it is convenient to consider a basis rotated by a unitary $U(s)$, in which \mathcal{H}_i^A and \mathcal{H}_j^B are fixed. In this basis, the master equation is

$$\frac{d\rho}{dt} = -i [V(t/T), \rho] + \tilde{\mathcal{L}}(t/T)\rho,$$

(4)

where $\tilde{\mathcal{L}}(s)$ is the Lindbladian with $H(s)$ replaced by $U(s)H(s)U(s)^\dagger$ and $L_i(s)$ by $L_i(s)U(s)^{L_i(s)}$, and $V(s) = i\frac{dU(s)}{ds}$. (We will not use a different notation for ρ in this basis but will keep in mind the basis...
we are working in.) Adiabaticity then means that any state \(\rho(0) = \rho^0(0) \otimes \varrho^B(0) \) remains of the form \(\rho(t) = \rho^A_{kl}(t) \otimes \varrho^B(t/T) \) despite the perturbation \(\frac{\varrho^A(t)}{t/T} \).

Theorem. Consider Markovian dynamics satisfying the above assumptions. In the limit of large \(T \), perfect adiabaticity is approached with an error that scales as \(O(\sqrt{\frac{1}{T^2}}) \), where \(\Delta > 0 \) is some fixed energy scale. In the adiabatic limit, the states inside \(\mathcal{H}^A_{kl} \) evolve under the unitary \(U^A(s) = T \exp (-i \int_0^s \text{Tr}_B [\tilde{P}^A_{kl} V(\tilde{t})] P^A_{kl} I^A_{kl} \otimes \varrho^B(\tilde{t})]) dt) \).

Proof. Let us divide the total time \(T \) into \(N \) steps, each of length \(\delta t = T/N \). We will take \(\delta t = N/\Delta \) (hence, \(T = N^2/\Delta \)) such that when \(N \to \infty \), \(\delta t \) is short on the time scale of change of the Lindbladian but long on the time scale for reaching the asymptotic regime of the instantaneous Lindbladian. The differentiability assumptions about \(\mathcal{L}(s) \) and \(\mathcal{P}(s) \) imply that we can write \(\tilde{E}(t/T) = \tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \), so large \(\delta t \) the state on \(\mathcal{H}^B_{kl} \) decays to \(\varrho^B(t/T) + O(\varrho^B(t/T)) \) (see Appendix A for an exact relation to the decay rate). For the second term, ignoring errors of order \(O(\varrho^B(t/T)) \), we can use \(\rho(t) = \rho^A_{kl}(t) \otimes \varrho^B(t/T) \). But \(e^{\delta t}t \) leaves \(\rho(t) \) invariant, so this term becomes \(-i \int_0^T \frac{dt}{T} e^{\delta t}t \left[\left(\tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \right) \right] \).

Assume that the state at time \(t \) has the form

\[
\rho(t) = \rho^A_{kl}(t) \otimes [\varrho^B(t/T) + O(\varrho^B(t/T))] \tag{5}
\]

Then the first term on the right-hand side of Eq. 5 is

\[
\mathcal{T} e^{\delta t}t \left[\left(\tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \right) \right] \rho(t) = \rho^A_{kl}(t) \otimes [\varrho^B(t/T) + O(\varrho^B(t/T))] \tag{6}
\]

since \(\mathcal{H}^A_{kl} \) is noiseless and \(\mathcal{T} e^{\delta t}t \left[\left(\tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \right) \right] \rho(t) \). But \(e^{\delta t}t \) leaves \(\rho(t) \) invariant, so this term becomes \(-i \int_0^T \frac{dt}{T} e^{\delta t}t \left[\left(\tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \right) \right] \).

Using noiseless-subsystem properties of the Lindbladian \(\mathcal{L}(s) \), in Appendix A we show that this term is equal to \(\mathcal{T} e^{\delta t}t \left[\left(\tilde{E}(\varrho^A(t)) + O(\varrho^B(t/T)) \right) \right] \).

But \(\tilde{E}(s) P_{kl} = 0 \), so the integral yields \(-i \int_0^T \frac{dt}{T} [\text{Tr}_B \{ \tilde{P}^A_{kl} V(t/T) \} \tilde{P}^A_{kl} \otimes \varrho^B(\varrho^B(t/T)) \} \), \(\rho^A_{kl}(t) \otimes \varrho^B(\varrho^B(t/T)) \) (the last inequality can be verified by a simple algebra).

We therefore see that if the initial state is of the form (9), it will remain of this form for all times, up to an error \(O(\varrho^B(t/T)) = O(\sqrt{\frac{1}{T^2}}) \) resulting from the accumulation of the errors \(O(\varrho^B(t/T)) \) at every step. Moreover, we see that the reduced density matrix on \(\mathcal{H}^A_{kl} \) satisfies the difference equation

\[
\rho^A_{kl}(t + \delta t) - \rho^A_{kl}(t) = -\frac{i}{t} \left[\text{Tr}_B \{ \tilde{P}^A_{kl} V(t/T) \} \tilde{P}^A_{kl} \otimes \varrho^B(\varrho^B(t/T)) \} \right], \rho^A_{kl}(t) + O(\varrho^B(t/T)) \)

which in the limit \(N \to \infty \) yields the differential equation

\[
\frac{\partial}{\partial \varrho^A(T)} \rho^A_{kl}(T) = -i [\text{Tr}_B \{ \tilde{P}^A_{kl} V(s) \} \tilde{P}^A_{kl} \otimes \varrho^B(s) \} \], \rho^A_{kl}(T) \]

describing the effective evolution stated in the theorem.

Note. Our theorem includes an adiabatic theorem for closed systems as a special case. However, the convergence rate stated in our theorem is weaker than the standard one [the error is \(O(\sqrt{\frac{1}{T^2}}) \) as opposed \(O(\frac{1}{T}) \) since our proof captures dissipative cases as well. (In Appendix A, we describe a natural energy scale \(\Delta \) associated with the curve \(\mathcal{L}(s) \), which can be regarded as a generalization of the minimum energy gap.)

Decoherence-assisted computation in noiseless codes.—Computation in noiseless subsystems requires operations that keep the information inside the code \(\mathcal{C} \). However, the Hamiltonians that preserve the code in general may be rather complicated and may not be naturally available in a particular experimental setup. Thus strategies for achieving encoded universality \(\mathcal{C} \) by other means are of particular interest \(\mathcal{C} \). An immediate implication of the above theorem is that for the common case of time-homogenous Markovian noise with Lindbladian \(\mathcal{L} \) [to play the role of \(\mathcal{L}(t/T) \) in Eq. (1)], any Hamiltonian perturbation \(\frac{\varrho^A}{t/T} V(t/T) \) acting during \(t \in [0, T] \) would give rise to (possibly non-trivial) unitary evolutions inside the noiseless subsystems \(\mathcal{H}^A_{kl} \) within an arbitrary precision for sufficiently large \(T \). Thus given a set of available interactions \(\{V_{\mu,i}\} \) that can be turned on with variable strength, for a given subsystem \(\mathcal{H}^A_{kl} \) one can produce the set of effective interactions

\[
V^\mu_{\mu} = \text{Tr}_B \{ \tilde{P}^A_{kl} V_{\mu,i} \tilde{P}^A_{kl} \otimes \varrho^B(\varrho^B) \}
\]

(Note that preparation of the states on \(\mathcal{H}^B \) is not needed as they quickly decay to the fixed points.) Encoded universality is achieved if the set \(\{V^\mu_{\mu}\} \) spans the Lie algebra \(su(m) \) over \(\mathcal{H}^A_{kl} \). Remarkably this is possible even if the Hamiltonians \(\{V_{\mu,i}\} \) commute (see example below).

Such an approach was first proposed in Ref. \(\mathcal{C} \) for noiseless subspaces \(\dim \mathcal{H}^B = 1 \) under certain noise models that can be interpreted as continuous Zeno measurements projecting onto the subspace. Equation \(\mathcal{C} \) provides a generalization of this idea to noiseless subsystems (that may exist even when no noiseless subspaces exist) and arbitrary time-homogenous Markovian models. As an example, in Appendix B we study a two-level noiseless subsystem of three spin-\(\frac{1}{2} \) particles under collective decoherence \(\mathcal{C} \). The noiseless subsystem involves highly entangled states, and non-local interactions are in principle required to perform operations on the encoded qubit. However, we find that the decoherence process itself can be used to induce an effective universal set of gates on the code by acting with local Hamiltonians.

Holonomic quantum computation via dissipation.—In the previous method, we assumed that the perturbation \(\frac{\varrho^A}{t/T} V(t/T) \) is applied by the experimenter. However, the conclusions are valid also if we assume that the description is with respect to an instantaneous basis of
a time-dependent noiseless subsystem $\mathcal{H}_A^s(t)$ of $\mathcal{L}(s)$, where the perturbation now arises from the time dependence of the basis. As $\mathcal{L}(s)$ acts trivially on $\mathcal{H}_A^s(t)$, the effective transformation in $\mathcal{H}_A^s(t)$ is not of dynamical origin. Indeed, in the adiabatic limit, an initial state $\rho_A^{A'}(0)$ over $\mathcal{H}_A^s(0) \otimes \mathcal{H}_B^s(0)$ transforms via the superoperator $\lim_{s \to 0} P_{\mathcal{KL}}(1)\mathcal{P}_{\mathcal{KL}}(1-\delta s)\ldots\mathcal{P}_{\mathcal{KL}}(\delta s)\mathcal{P}_{\mathcal{KL}}(0)$ which is an intrinsically geometric quantity defined via the projectors $P_{\mathcal{KL}}(s)$. But the effective unitary on $\mathcal{H}_A^s(t)$ depends on the choice of basis for $\mathcal{H}_A^s(t)$ and is not gauge invariant. However, if $\mathcal{H}_A^s(t)$ is taken around a loop, $\mathcal{H}_A^s(0) = \mathcal{H}_A^s(1)$, so that the final basis is the same as the initial one, the resultant transformation is a gauge-invariant quantity that generalizes the standard holonomy associated with parallel transport of Hamiltonian eigenspaces [5]. We note that the idea of adiabatically “dragging” a subsystem (rather than a subspace) along suitable paths in order to perform geometric gates inside it has been proposed for the case of Hamiltonian dynamics as a powerful tool for robust computation [17]. However, a subsystem cannot be dragged along an arbitrary path $\mathcal{H}^A(s)$ by a Hamiltonian since some paths necessarily give rise to correlations between $\mathcal{H}^A(s)$ and $\mathcal{H}^B(s)$. This problem does not exist here since the Lindbladian acting on $\mathcal{H}^B(s)$ severs any such correlations. (For dissipation-driven holonomies in subspaces, see Ref. [25].

The mathematical foundations of these geometric transformations will be studied elsewhere. Here we show that the method can be used for universal quantum computation. Consider a two-qubit system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and a depolarizing Markovian channel acting locally on \mathcal{H}_B^s, $\frac{d\rho_B}{dt} = \mathcal{L}^B\rho_B = \gamma \left(\frac{I}{4} - \rho_B \right)$. Consider the unitary $U(s) = e^{-i\sigma_z \otimes \sigma_z + i\sigma_x \otimes \sigma_x + i\sigma_y \otimes \sigma_y}$, where $\sqrt{a^2 + b^2} = 2\pi$. The Hamiltonian in the exponent can be easily diagonalized and one sees that $U(1) = U(0) = I$. Hence, if we change the Lindbladian via the unitary $U(s)$, we will take the noiseless subsystem \mathcal{H}_A^s around a loop $\mathcal{H}^A(s) \otimes \mathcal{H}^B(s) = U(s)\mathcal{H}^A \otimes \mathcal{H}^B(s)$ with a single-valued basis. According to Eq. (35) (here $\theta^B = \frac{\theta^B}{2}$), the subsystem will experience the effective Hamiltonian $\beta \sigma_z^A$ which gives rise to the transformation $e^{-i\theta z A}$ at the closing of the loop. Similarly, by exchanging σ_x and σ_z, we can generate the unitary $e^{-i\theta x A}$. To perform an entangling gate between two qubits, A and A', we can start with the same Lindbladian acting on B and rotate it via the unitary $U(s) = e^{-i\theta \sigma_z \otimes \sigma_z + i\sigma_x \otimes \sigma_x + i\sigma_y \otimes \sigma_y}$, which gives rise to $e^{-i\theta z A}$ at the closing of the loop. This set of gates is universal.

Conclusion.—We introduced a theory of adiabatic Markovian dynamics that relates the notion of adiabaticity to the theory of noiseless subsystems. We proved an adiabatic theorem for such dynamics and proposed two novel methods of quantum information processing based on it—decoherence-assisted computation in noiseless subsystems and dissipation-driven holonomic computation—that add to the developing picture of dissipation as a powerful quantum computation primitive [29]. A natural problem for future research would be to find exact bounds on the adiabatic error in Markovian dynamics similar to those obtained for closed systems, e.g., in Ref. [39].

Acknowledgments.—We thank Lorenza Viola for helpful comments. This work was supported by the Spanish MICINN via the Ramón y Cajal program (JC), contract FIS2008-01236/FIS, and project QOIT (CONSIDER2006-00019), and by the Generalitat de Catalunya via CIRIT 2005SGR-00994. OO was also supported by the Foundational Questions Institute (FQXi).

[1] M. Born and V. Fock, Z. Phys. 51, 165 (1928).
[2] T. Kato, J. Phys. Soc. Jpn 5, 435 (1950).
[3] M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927).
[4] M. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[5] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[6] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[7] See, e.g., N. V. Vitanov et al., Ann. Rev. Phys. Chem. 52, 763 (2001).
[8] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000).
[9] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999).
[10] E. Farhi et al., e-print arXiv:quant-ph/0001106 (2000).
[11] N. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[12] M. S. Sarandy and D. A. Lidar, Phys. Rev. A 71, 012331 (2005); Phys. Rev. Lett. 95, 250503 (2005); Phys. Rev. A 73, 062101 (2006). See also A. Joye, Comm. Math. Phys. 275, 139 (2007).
[13] P. Thunström, J. Åberg, and E. Sjöqvist, Phys. Rev. A 72, 022328 (2005). See also J. P. Pekola et al., Phys. Rev. Lett. 105, 030401 (2010).
[14] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84, 2525 (2000); S. De Filippo, Phys. Rev. A 62, 052307 (2000); C.-P. Yang and J. Gea-Banacloche, Phys. Rev. A 63, 022311 (2001).
[15] B. Baumgartner and H. Narnhofer, J. Phys. A 41, 395303 (2008).
[16] A. Beige et al., Phys. Rev. Lett. 85, 1762 (2000).
[17] O. Oreshkov, Phys. Rev. Lett. 103, 090502 (2009); O. Oreshkov, T. A. Brun, and D. A. Lidar, Phys. Rev. Lett. 102, 070502 (2009); O. Oreshkov, T. A. Brun, and D. A. Lidar, Phys. Rev. A 80, 022325 (2009); D. Bacon and S. T. Flammia, Phys. Rev. Lett. 103, 120504 (2009); D. Bacon and S. T. Flammia, e-print arXiv:0912.2098.
[18] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, Phys. Rev. Lett. 100 030501 (2008).
[19] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976); G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[20] M.-D. Choi and D. W. Kribs, Phys. Rev. Lett. 96, 050501 (2006).
[21] J. E. Avron and A. Elgart, Commun. Math. Phys. 203, 445 (1999).
[22] See, e.g., K.-P. Marzlin and B. C. Sanders, Phys. Rev.
APPENDIX A: DETAILED PROOF OF THE ADIABATIC THEOREM

Preliminaries

Before we go in detail through the main steps of the proof, it is convenient to introduce an energy scale Δ associated with the curve $\mathcal{L}(s)$. This quantity can be regarded as a generalization of the minimal spectral gap of the Hamiltonian from the case of closed systems, and is a suitable choice in view of certain later calculations. Although it is not the purpose here, this energy scale could be useful for deriving exact bounds on the error and not just its scaling with T.

As shown in Ref. [23], the subsystem \mathcal{H}_{kl}^A is noiseless under the evolution driven by $\tilde{\mathcal{L}}(s)$, if and only if for every s the Hamiltonian and the Lindblad operators have the block forms

$$\tilde{H}(s) = \begin{bmatrix} I^A \otimes H_{kl}^B(s) & H_2(s) \\ H_2(s) & H_3(s) \end{bmatrix},$$

$$\tilde{L}_j(s) = \begin{bmatrix} I^A \otimes L_{1j}^B(s) & L_{2j}(s) \\ 0 & L_{3j}(s) \end{bmatrix},$$

where the upper-left block corresponds to $H_{kl}^A \otimes H_1^B$, and

$$H_2(s) = -\frac{i}{2} \sum_j I^A \otimes L_{1j}^B(s)L_{2j}(s).$$

Then it is not difficult to verify (see also Ref. [24]) that $\tilde{\mathcal{L}}(s)$ preserves the subspace \mathcal{B}_2 of operators with vanishing lower right block,

$$\mathcal{B}_2 = \{ \tau \in \mathcal{B}(\mathcal{H}) \mid \tau = \begin{bmatrix} \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22} \end{bmatrix} \},$$

where $\mathcal{B}(\mathcal{H})$ denotes the space of linear operators over \mathcal{H}. It further preserves the subspace of operators with vanishing lower right and offdiagonal blocks,

$$\mathcal{B}_1 = \{ \tau \in \mathcal{B}(\mathcal{H}) \mid \tau = \begin{bmatrix} \tau_{11} & 0 \\ 0 & 0 \end{bmatrix} \},$$

where it acts as

$$\tilde{\mathcal{L}}(s) = \begin{bmatrix} \tau_{11} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I^A \otimes \tilde{\mathcal{L}}^B(s)\tau_{11} & 0 \\ 0 & 0 \end{bmatrix},$$

where $\tilde{\mathcal{L}}^B(s)$ is a local Lindbladian with Hamiltonian $H_{kl}^B(s)$ and Lindblad operators $L_{ij}^B(s)$. Note that $\tilde{\mathcal{L}}^B(s)$ has a non-degenerate eigenvalue 0 with a corresponding right eigenoperator $\phi_0^B(s)$, and all its other eigenvalues have negative real parts, since $\phi_0^B(s)$ is an attractive fixed point. By continuity, the magnitudes of the real parts of the non-zero eigenvalues of $\tilde{\mathcal{L}}^B(s)$ have a minimum value in the interval $s \in [0,1]$. Denote that value by $\Delta > 0$.

We will also need another quantity, Δ_2, which is the minimum of the magnitudes of the non-zero eigenvalues of $\mathcal{L}(s)\mathcal{P}_2$ in the interval $s \in [0,1]$, where \mathcal{P}_2 is the projector on \mathcal{B}_2 (this minimum also exist by the assumption of continuity in a closed interval). Then we can define

$$\Delta = \min(\Delta_1, \Delta_2),$$

which we will serve as a natural energy scale in our analysis. If \mathcal{H}_{kl}^A is a noiseless subspace (dim $\mathcal{H}_{kl}^B = 1$), Δ_1 does not exist and $\Delta = \Delta_2$.

We note that in the case of closed systems, where \mathcal{H}_{kl}^A is an eigenspace of the Hamiltonian, Δ is exactly the minimum gap that separates this eigenspace from the rest of the spectrum. This is because the non-zero eigenvalues of $\mathcal{L}(s)\mathcal{P}_2$ are $\pm i(E_k(s) - E_m(s))$, $m \neq k$, where E_n are the energies of the eigenspaces \mathcal{H}_{n1}.

Remark. The existence of $\Delta > 0$ follows naturally from continuity and the assumption that dim \mathcal{H}_{kl}^A and dim \mathcal{H}_{kl}^B are fixed during the closed interval $s \in [0,1]$. The condition dim $\mathcal{H}_{kl}^A = \text{const}(s)$ can be thought of as an analogue of the closed-system requirement that the eigenspace does not cross other energy levels. However, it may be possible to relax the condition dim $\mathcal{H}_{kl}^B = \text{const}(s)$ as long as we require $\Delta > 0$ for the open subintervals of $s \in [0,1]$ during which dim $\mathcal{H}_{kl}^B = \text{const}(s)$.

Before we proceed, we will need another observation. By the definition of $\mathcal{H}_{kl}^A \otimes \mathcal{H}_{kl}^B$, the only right eigenoperators of $\mathcal{L}(s)$ with eigenvalue 0 inside the subspace \mathcal{B}_2 are those with $\tau_2 = 0$ and $\tau_1^{AB} = \tau_{kl}^A \otimes \phi_0^B(s)$. Denote the subspace of these operators by $\mathcal{B}_0(s)$.

$$\mathcal{B}_0(s) = \{ \tau \in \mathcal{B}(\mathcal{H}) \mid \tau = \begin{bmatrix} \tau_{kl}^A \otimes \phi_0^B(s) & \tau_{kl}^A \otimes \phi_0^B(s) \\ 0 & 0 \end{bmatrix} \} = \mathcal{B}(\mathcal{H}_{kl}^A).$$
Let $\mathcal{P}'(s)$ be the projector on the subspace $\mathcal{B}_2 \otimes \mathcal{B}_0(s)$. Then the superoperator $\tilde{\mathcal{L}}'(s) \equiv \tilde{\mathcal{L}}(s)\mathcal{P}'(s)$ over $\mathcal{B}_2 \otimes \mathcal{B}_0(s)$ has only non-zero eigenvalues and is therefore invertible. Its inverse, $\tilde{\mathcal{L}}^{-1}(\frac{t}{T})$, has magnitude which is bounded by the inverse of Δ,

$$\| \tilde{\mathcal{L}}^{-1} \| \leq \frac{1}{\Delta}. \quad (16)$$

The boundedness of this operator will be used at a certain stage of the proof, and the energy scale Δ was chosen as described above since it provides the bound \((16)\).

We are now ready to go through the steps of the proof.

Main proof

Let us divide the total time T into N time steps, each of length δt, $T = N\delta t$. We will take $\delta t = N/\Delta$ (hence, $T = N^2/\Delta$) such that when $N \rightarrow \infty$, δt is short on the time scale of change of the Lindbladian but long on the time scale for reaching the asymptotic regime of the instantaneous Lindbladian. The evolution of the density matrix of the system during one time step can be written

$$\rho(t) \rightarrow \rho(t + \delta t) = Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) + \int_0^{\delta t} dt' Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \left(-\frac{i}{T} [V(\frac{t}{T}), \cdot] \right) \times \tilde{\mathcal{L}}(\frac{t}{T}) \rho(t) + O\left(\frac{1}{N^2} \right), \quad (17)$$

where $[V(\cdot), \rho] = [V, \rho]$. Our assumption that $\mathcal{L}(s)$ is differentiable and $\mathcal{P}_{kl}(s)$ is twice-differentiable implies that $\tilde{\mathcal{L}}(s)$ and $V(s)$ are differentiable. Hence we have $\tilde{\mathcal{L}}(\frac{t}{T}) = \tilde{\mathcal{L}}(\frac{t}{T}) + O(\frac{1}{N})$, $V(\frac{t}{T}) = V(\frac{t}{T}) + O(\frac{1}{N})$, $t' \in [0, \delta t]$. We can therefore simplify Eq. \((17)\):

$$\rho(t) \rightarrow \rho(t + \delta t) = Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) + \int_0^{\delta t} dt' e^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})(\delta t - t')} \left(-\frac{i}{T} [V(\frac{t}{T}), \cdot] \right) e^{\tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) + O(\frac{1}{N^2}). \quad (18)$$

Let us now assume that the state at time t has the form

$$\rho(t) = \rho_{kl}(t) \otimes [g^B(\frac{t}{T}) + O(\frac{1}{N})] + O(\frac{1}{N^2}). \quad (19)$$

Then the first term on the right-hand side of Eq. \((18)\) is

$$Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) = \rho_{kl}(t) \otimes \tau^B(t) + O\left(\frac{1}{N^2} \right). \quad (20)$$

for some $\tau^B(t)$, because \mathcal{H}_{kl}^B is noiseless under $\tilde{\mathcal{L}}(s)$. We will now show that for sufficiently large δt,

$$\tau^B(t) = g^B(\frac{t}{T}) + O(\frac{1}{N}), \quad (21)$$

First of all, we have $Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} = e^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} + O(\frac{1}{N})$.

Also, under the action of $\tilde{\mathcal{L}}(\frac{t}{T})$ (for fixed t) any state ρ^{AB} on $\mathcal{H}_k^A \otimes \mathcal{H}_l^B$ decays towards $\rho^A \otimes g^B(\frac{t}{T})$, where $\rho^A = \text{Tr}_{B} \rho^{AB}$, with a rate at least Δ. Since $\delta t = N/\Delta$, we have $e^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) = \rho_{kl}(t) \otimes [g^B(\frac{t}{T}) + O(\frac{1}{N})]$. (In fact, the error $O(\frac{1}{N})$ in the latter expression is an overestimate, but for our purposes this precision suffices.) Therefore, for the first term on the right-hand side of Eq. \((18)\) we obtain

$$Te^{\delta t \tilde{\mathcal{L}}(\frac{t}{T})} \rho(t) = \rho_{kl}(t) \otimes [g^B(\frac{t}{T}) + O(\frac{1}{N})] + O(\frac{1}{N^2}). \quad (22)$$

Next, consider the second term on the right-hand side of Eq. \((18)\). Ignoring terms of order $O(\frac{1}{N^2})$, for this term we can take $\rho(t) = \rho_{kl}(t) \otimes g^B(\frac{t}{T})$. The superoperator $e^{\tilde{\mathcal{L}}(\frac{t}{T})} \rho(t)$ leaves $\rho(t)$ invariant, so the expression becomes

$$-i \int_0^{\delta t} dt' e^{\tilde{\mathcal{L}}(\frac{t}{T})(\delta t - t')} [V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})] + O(\frac{1}{N^2}). \quad (23)$$

Indeed, let us add and subtract $\mathcal{P}_{kl}[V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$ from the operator $[V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$ in expression \((22)\). We obtain

$$-i \int_0^{\delta t} dt' e^{\tilde{\mathcal{L}}(\frac{t}{T})(\delta t - t')} \mathcal{P}_{kl}[V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$$

$$-i \int_0^{\delta t} dt' e^{\tilde{\mathcal{L}}(\frac{t}{T})(\delta t - t')} W(t), \quad (24)$$

where

$$W(t) = [V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$$

$$- \mathcal{P}_{kl}[V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$$

Note that $[V(\frac{t}{T}), \rho_{kl}(t) \otimes g^B(\frac{t}{T})]$ belongs to \mathcal{B}_2, and therefore $W(t) \in \mathcal{B}_2 \otimes \mathcal{B}_0(\frac{t}{T})$ since $W(t)$ decays to zero under the action of $\tilde{\mathcal{L}}(\frac{t}{T})$, i.e., it has no component in $\mathcal{B}_0(\frac{t}{T})$. We can therefore formally solve

$$-i \int_0^{\delta t} dt' e^{\tilde{\mathcal{L}}(\frac{t}{T})(\delta t - t')} W(t)$$

$$= -i \int_0^{\delta t} dt' \tilde{\mathcal{L}}^{-1}(\frac{t}{T}) ((1 - e^{\tilde{\mathcal{L}}(\frac{t}{T})}) W(t), \quad (25)$$

where $\tilde{\mathcal{L}}^{-1}(\frac{t}{T})$ is the pseudo-inverse of $\tilde{\mathcal{L}}(\frac{t}{T})$ over $\mathcal{B}_2 \otimes \mathcal{B}_0(\frac{t}{T})$. According to Eq. \((16)\), $\| \tilde{\mathcal{L}}^{-1} \| \leq \frac{1}{\Delta}$, hence the magnitude of the term in Eq. \((25)\) is $O(\frac{1}{N^2}) = O(\frac{1}{N})$. The only non-trivial contribution to the expression \((24)\).
then comes from
\[-\frac{i}{T} \int_0^{\delta t} dt' e^{(\delta t - t')} P_{kl} [V(t'), \rho_{kl}^A(t) \otimes \rho_{kl}^B(t)] \] (26)
\[= -\frac{i\delta t}{T} P_{kl} [V(t), \rho_{kl}^A(t) \otimes \rho_{kl}^B(t)] \]
\[= -\frac{i\delta t}{T} [\text{Tr}_B \{ P_{kl}^A V(t) P_{kl}^A I^A_k \otimes \rho_{kl}^B(t) \}, \rho_{kl}^A(t) \otimes \rho_{kl}^B(t)], \]
where in the first equality we used that \(\tilde{L}(s) P_{kl} = 0 \), and the second equality can be verified by a simple algebra.
We now see that if we start with \(\rho(0) = \rho_{kl}^A(0) \otimes [\rho_{kl}^B(0) + O(\frac{1}{N})] \), the state will remain of this form for all times, up to an error of order \(O(\frac{1}{N}) \) that results from the accumulation of the errors \(O(\frac{1}{N}) \) at every step (there are a total of \(N \) steps). Moreover, the reduced density matrix in \(\mathcal{H}_A \) satisfies the difference equation
\[\rho_{kl}^A(t + \delta t) - \rho_{kl}^A(t) = -\frac{i\delta t}{T} [\text{Tr}_B \{ P_{kl}^A V(t) P_{kl}^A I^A_k \otimes \rho_{kl}^B(t) \}, \rho_{kl}^A(t)], \]
which in the limit \(N \to \infty \) yields the differential equation
\[\frac{\partial}{\partial S} \rho_{kl}^A(Ts) = -i [\text{Tr}_B \{ P_{kl}^A V(S) P_{kl}^A I^A_k \otimes \rho_{kl}^B(S), \rho_{kl}^A(Ts) \}] \] (28)

Describing the effective evolution stated in the theorem. This completes the proof.

APPENDIX B: EXAMPLE OF DECOHERENCE-ASSISTED COMPUTATION IN NOISELESS SUBSYSTEMS

To illustrate the idea of decoherence-assisted quantum computation in noiseless subsystems, we consider as an example a *two-level* noiseless subsystem of three spin-\(\frac{1}{2} \) particles under collective decoherence [14].

Under the evolution [31]
\[\frac{d\rho}{dt} = -i[\sigma^z, \rho] + \gamma^+ (J_+ \rho J_+ - \frac{1}{2} J_+ J_+ \rho - \frac{1}{2} \rho J_+ J_+) + \gamma^- (J_- \rho J_- - \frac{1}{2} J_- J_- \rho - \frac{1}{2} \rho J_- J_-) \] (29)
where \(J_+ = \sum_{\alpha} \frac{1}{2} \sigma^z_\alpha \) and \(J_- = \sum_{\alpha} \sigma^z_\alpha \) are collective spin operators and \(\gamma^+, \gamma^- > 0 \), there are no non-trivial noiseless subspaces but there is a noiseless subsystem. The (closed) operator algebra generated by \(J_\alpha \) is isomorphic to \(\mathcal{M} = \bigoplus_{j=1/2}^{3/2} I_{n_j} \otimes \mathcal{M}(d_j) \), where \(J \) is the total angular momentum and \(\mathcal{M}(d_j) \) are \(d_j \times d_j \) complex matrix algebras with multiplicity \(n_j \). In particular, \(d_j = 2j+1 \) and \(n_1 = 2 \), \(n_2 = 1 \). The Hilbert space correspondingly decomposes as
\[\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C, \]
where \(\mathcal{H}_A \) is a noiseless qubit subsystem arising from the two-fold multiplicity of \(\mathcal{M}(2) \), \(\mathcal{H}_B \) is the noisy cofactor supporting \(\mathcal{M}(2) \), and \(\mathcal{H}_C \) is a noisy subspace supporting \(\mathcal{M}(4) \). The subsystems \(\mathcal{H}_A \otimes \mathcal{H}_B \) can be described in the basis
\[|0\rangle^A |0\rangle^B = \frac{1}{\sqrt{2}} (|111\rangle - |101\rangle), \]
\[|0\rangle^A |1\rangle^B = \frac{1}{\sqrt{2}} (|100\rangle - |010\rangle), \]
\[|1\rangle^A |0\rangle^B = \frac{1}{\sqrt{6}} (2|110\rangle - |101\rangle - |011\rangle), \]
\[|1\rangle^A |1\rangle^B = \frac{1}{\sqrt{6}} (-2|001\rangle + |010\rangle + |100\rangle). \]

One can verify that under the evolution [21], there is a unique fixed point on \(\mathcal{H}_B \),
\[\eta = \frac{\gamma^+}{\gamma^- + \gamma^+} |0\rangle^B + \frac{\gamma^-}{\gamma^- + \gamma^+} |1\rangle^B. \] (35)
Similarly, there is a unique fixed point on the subspace \(\mathcal{H}_C \). Using that
\[V^\mu_{ij} = \text{Tr}_B (P_{ij}^AB V_{ij} P_{ij}^AB I^A_k \otimes \eta^B_j), \]
we obtain that the local Hamiltonian \(\sigma^z_\mu \) gives rise to the effective Hamiltonian \(\frac{-\gamma^- \gamma^-}{2\gamma^- \gamma^+ + \gamma^2} \sigma^A \), where \(\sigma^A = |0\rangle\langle 1| + |1\rangle\langle 0| \) is the encoded Pauli operator \(\sigma^A \) on \(\mathcal{H}_A \). Similarly, \(\sigma^x_\mu \) gives rise to \(\frac{2(\gamma^- - \gamma^+)}{\gamma^- \gamma^+} \sigma^A \). These two Hamiltonians generate \(SU(2) \) on \(\mathcal{H}_A \).

For universal computation one needs the ability to entangle multiple noiseless qubits, e.g., by bringing different blocks together [23] and manipulating the logical information inside the resulting larger noiseless subsystems. This problem can be treated via the same approach.