EFFECT OF NANO PARTICLES OF NATURAL MINERALS, IRON AND MANGAN COMPOUNDS, ON THE GROWTH AND SUPEROXIDE DISMUTASE ACTIVITY OF BACILLUS SUBTILIS IMV B-7023

Ivan Kurdistan, Andrii Chobotarow* , Roman Gritsay

Address(es): Andrii Chobotarow, PhD, Research Associate, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Department of Microbiological Processes on Solid Surfaces, Acad. Zabolotny str., 154, 03143, Kyiv, Ukraine, phone number: +38(044) 526-90-11.

*Corresponding author: andreych@ukr.net

ARTICLE INFO

Received 9. 10. 2018
Revised 25. 5. 2020
Accepted 26. 5. 2020
Published 1. 8. 2020

ABSTRACT

The cultivation of Bacillus subtilis IMV B-7023 in Spizizen medium, containing 1 g/L of bentonite or saponite stimulated the growth of these bacteria. The addition of 0.1–1 mM of Mn²⁺ ions to this medium resulted in increasing the number of bacteria. The cultivation of bacilli in the medium with similar concentrations of ferrum ions without NP’s had insignificant impact on their growth. However, the addition of 1 g/L of saponite to this medium led to considerable biomass increase, whereas bentonite had almost no impact on this value.

The cultivation of B. subtilis bacteria in the medium, containing Mn²⁺ ions, resulted in negligible increase in superoxide dismutase (SOD) activity. The addition of saponite and especially bentonite led to the considerable stimulation of SOD activity. The introduction of ferrum ions to the medium stimulated SOD activity of this strain, which maximum values amounted at the concentration of 1.5 mM Fe²⁺.

Keywords: Bacillus subtilis, growth, superoxide dismutase activity, nanoparticles, ions

INTRODUCTION

The application of bacterial preparations in agriculture is an important direction in correcting biotic processes in agroecosystems (Kurdish et al. 2007; Kuridz 2010). It is especially promising to use complex bacterial preparations, based on several strains of microorganisms, capable to cause diverse stimulating impact on the growth, development and performance of plants, protecting them from phytopathogens and phytophages (Kurdish 2010; Roi et al. 2005; Roy et al. 2014; Soytong 2004; Volkogon 2006; Iutynska et al. 2010).

The interaction of the selected strains of phosphate-nobribing microorganisms Bacillus subtilis IMV B-7023 (Patent of Ukraine No. 54923A) and nitrogen-fixing bacteria Azotobacter vinelandii IMV B-7076 (Patent of Ukraine No. 72856) with particles of mineral clay bentonite was used to develop a highly efficient complex bacterial preparation Azogran for agriculture. It is components are characterized by the capability of synthesizing a wide range of biologically active substances (Ocheretyanko et al. 2016; Chobotarow et al. 2017), inhibiting the diffusion of phytopathogens and phytophages in the phytosphere (Roi et al. 2005; Roy et al. 2014), and causing antioxidant impact on the plant seeds, exposed to hydrogen peroxide (Skorochod et al. 2011; Skorochod et al. 2013).

The metabolic processes in living cells including microorganisms are accompanied by the formation of reactive oxygen intermediates (ROI), excessive amounts of which may lead to oxidative stress and damage to biomolecules. Among ROI a considerable role belongs to superoxide anion radical (O₂⁻) – the product of incomplete reduction of molecular oxygen (Fridovich 1995). Superoxide dismutase (SOD) is one of the most relevant enzymes for the antioxidant protection of cells (McCord et al. 1971). The composition of the active center of SOD bacteria B. subtilis IMV B-7023 may contain ions of mangan and iron (Halliwell et al. 1999), the concentration of which in the medium may have impact both on the growth of bacteria and on the activity of this enzyme.

During Azogran application in agriculture, the bacteria in its composition may interact with nanoparticles of natural minerals (bentonite, saponite, etc.). The impact of mineral particles on the growth and SOD activity of this bacilli strain is not investigated yet.

Taking into account the above, the aim of this work was to determine the impact of natural mineral nanoparticles and mangan and iron ions on the growth and superoxide dismutase activity of the strain B. subtilis IMV B-7023 – a component of complex bacterial preparation Azogran.

MATERIAL AND METHODS

Microorganisms, nutrient media and cultivation conditions

The cultures of Bacillus subtilis IMV B-7023 were cultivated in the nutrient medium of Spizizen (Spizizen 1958). The ions of Mn²⁺ and Fe²⁺ were added to the medium in the concentrations from 0.1 mM to 1.5 mM in the form of sulphates prior to its sterilization.

The bacteria were cultivated on the rotary shakers at 240 rpm at 28°C for 24 h in the 750 mL conic Erlenmeyer flasks, containing 100 ml of the nutrient medium. The initial concentration of bacilli in the medium was 1.10⁷ cells/mL. The number of viable bacteria in the suspension was determined by serial dilutions method on potato agar medium. The results were presented in the number of colony-forming units per 1 mL of suspension (CFU/mL) (Zviagintsev 1980).

Nanominerals used in the study

To obtain the nanoparticles of bentonite and saponite, 10 g of dry powdered mineral were added to 100 mL of Spizizen medium and dispersed for 5 min on the ultrasonic disintegrator UD-20 automatic, Poland. This method of minerals disintegration allowed to obtain nanoparticles with size up to 100 nm. After that the obtained nanocomposite was introduced into 0.9 L of nutrient medium, which was sterilized and used in the experiments.

Determination of superoxide dismutase activity

To obtain the supernatant, the cells of bacilli were centrifugated for 15 min at 5,000 g in the centrifuge OP-8, Russia. The bacterial precipitate was washed twice with the phosphate buffer (0.05 M, pH 7.0), resuspended in 10 mL of this buffer, subjected to the freezing/thawing cycle and cells were disrupted on the ice bath, using the ultrasonic disintegrator UD-20 automatic (Poland) with the frequency of 22±1.65 kHz for 4 min.

The residues of cells were removed by centrifugation of the obtained suspension on the ultracentrifuge UTbP-50 at 20,000 g, for 30 min at 4°C. The supernatant was used to study the superoxide dismutase activity. The impact of different factors on SOD activity was determined in the reaction mixture of the following composition: 0.05 M K-phosphate buffer, pH 7.0 – 1 ml; riboflavin (300 mg/L) – 6.5 ml; triphenyl tetrazolium chloride (TTC) (3 mg/mL) – 1 ml;
tetramethylhylenediamine (TEMED) – 48 μL; supernatant – 1.5 mL (Bernas et al. 2000).

The reaction mixture was exposed to ultraviolet for 15 min. The reaction mixture without TEMED was used as the negative control. The positive control was the reaction mixture, where the cell lysate was substituted for the similar volume of 0.05 M of the phosphate buffer (pH 7.65). The optical density was determined using the photocolorimeter KFK-2-UKhL 1.2 (Russia) in the cuvettes with d=1 cm at the wavelength of 540 nm (Bernas et al. 2000).

One unit of SOD activity (A) is defined as the difference in the amount of reduced formazan without the participation of SOD and the amount of formazan, reduced while inhibiting the SOD reaction by 50% for 15 min in 1 mL of the solution, per 1 mg of protein in the sample.

\[A = (D_b - D_a)(D_0 - D_b)/C \cdot 1 \]

where: \(A \) – a unit of enzyme activity, μm/mg of protein; \(D_b \) – the change in optical density of the solution of reducing TTC to formazan without SOD; \(D_a \) – the change in optical density of the solution of reducing TTC to formazan in the presence of SOD of the investigated sample; \(b \) – a coefficient, corresponding to the inhibition of reaction with the participation of SOD by 50 %; \(k \) – a coefficient of diluting the investigated sample in the reaction, corresponding to 6.667; \(C \) – the concentration of protein, mg/mL; 1 – the length of the optical distance of the cuvette (Bernas et al. 2000).

Protein concentration in the samples was determined by it is binding to coomassie bright blue G-250 (Bradford, 1976), using bovine serum albumin as a standard.

Statistical analysis

The results of the studies were statistically processed (Lakin, 1990) in Microsoft Excel (Microsoft corporation, USA) by the data analysis of average mean of three replicates (±SE) obtained from three independent experiments.

RESULTS AND DISCUSSION

It was established that eightfold exposure of the B. subtilis suspension to ultrasound for 30 s each ensured the lysis of over 90 % viable cells. This allowed to obtain the lysates containing more than 1 mg/mL of protein. Taking into consideration the fact that natural nanomaterials are able to adsorb protein (Herasmienko et al. 2015), it was relevant to determine the permissible content of these nanoparticles in the reaction mixture, which would allow determining the impact of investigated minerals on SOD activity of these bacteria.

It was demonstrated that the introduction of 1 g/L of bentonite nanoparticles into the solution, containing 1 mg/mL albumin, resulted in low sorption on the particles of this mineral and did not exceed 5% of the initial content (Tab. 1). However, this value increased rapidly with the increase of bentonite concentrations in the solution up to 5 g/L. At the same time, the sorption of albumin on saponite did not exceed 5% for all the investigated concentrations of the natural mineral particles (Tab. 1).

Table 1 The dependence of protein sorption on the nanoparticles of natural minerals on their content in the solution

Type of disperse material	Content of nanomaterial, g/L	Sorption of albumin, %
Bentonite	0.5	3.0 ± 0.2
	1.0	4.0 ± 0.5
	5.0	21.0 ± 2.0
Saponite	0.5	1.5 ± 0.1
	1.0	3.2 ± 0.2
	5.0	4.6 ± 0.5

Note: The initial content of albumin in the solution was 1 mg/mL.

Taking into consideration the obtained results, the mineral nanoparticles were added into the medium at the concentration of 1 g/L. It was established that the cultivation of B. subtilis IMV В-7023 for 24 h in Spizizen medium containing 1 g/L of saponite or bentonite particles was accompanied with the increase in their growth (Fig. 1). During the bacteria cultivation in the medium with Mn2+ ions at concentration of 0.1 mM, the number of viable cells increased up to 2·10^10 cells/mL, both in the suspension without nanoparticles and with saponite at concentration of 1 g/L. With increase in the cation concentration in the medium without nanoparticles up to 1 mM, increase in the bacilli growth obtained, but at the concentration of 1.5 mM of Mn2+ this value decreased down to 2·10^9 cells/mL (Fig. 1).

While cultivating B. subtilis IMV В-7023 in the medium with bentonite, low concentrations of Mn2+ ions (0.1 mM) did not impact the growth of these bacteria. However, at the concentration of 0.5 mM of these cations therein, the growth was over 2.2 · 10^10 cells/mL in the medium. The growth of bacteria decreased with the increase of these ions concentration in the medium (Fig. 1).

With addition of Fe2+ ions into the B. subtilis cultivation medium, which did not contain mineral nanoparticles, resulted in low stimulation effect on the bacterial growth. During the bacteria cultivation in the medium containing 1 g/L of bentonite, increase in the number of viable cells was observed only at the concentration of 1 mM Fe2+ (Fig. 2).

![Figure 1](image_url)

Figure 1 The number of viable cells (N) of Bacillus subtilis IMV В-7023 depending on the concentration (C) of Fe2+ cations in the medium without nanomaterials (1) and with 1.0 g/L of saponite (2) or bentonite (3)

A considerable impact on the growth of B. subtilis in the medium containing 1.0 g/L of saponite was caused by various concentrations of Fe2+ cations (Fig. 2). For instance, even at the concentration of 0.1 mM of Fe2+ ions in the medium the number of viable bacteria increased up to 2.53 · 10^7 cells/mL. With the increase in the concentration of Fe2+ in the medium with saponite up to 1.0 mM, there was an increase in the number of B. subtilis cells. The most significant increase in the growth of these bacteria was observed in saponite-containing medium at concentration of 1.5 mM of Fe2+ cations and amounted to 6.66 · 10^7 cells/mL (Fig. 2).

The cultivation of B. subtilis IMV В-7023 in the medium with nanoparticles had a considerable impact on SOD activity of these bacteria. In the medium without the nanoparticles, the SOD activity of the strain amounted 7 um/mg of protein (Fig. 3). With the introduction of 1 g of saponite or bentonite into the medium, the enzyme activity increased up to 8.3 and 9.3 um/mg of protein, respectively.

![Figure 2](image_url)

Figure 2 The number of viable cells (N) of Bacillus subtilis IMV В-7023 depending on the concentration (C) of Fe2+ cations in the medium with nanomaterials (1) and with 1.0 g/L of bentonite (2) or saponite (3)

It was established that the cultivation of B. subtilis IMV В-7023 in the medium with mangan ions was accompanied with the increase in superoxide dismutase activity of the bacteria (Fig. 3). For instance, addition of 0.1 mM of Mn2+ ions resulted in the SOD activity increase in 1.2 times compared to the control (without mangan ions). The increase in Mn2+ ions concentration led to decrease in the bacteria enzyme activity, however its obtained values were higher compared to the control (Fig. 3).

While cultivating the bacteria in the medium with mangan ions and 1 g/L of saponite, the SOD activity of bacilli increased considerably (Fig. 3), reaching the maximum values with the addition of 1.5 mM of mangan into the medium.
these conditions, the SOD activity of B. subtilis was 27.2% higher compared to the corresponding medium without the nanomaterial (Fig. 3).

CONCLUSION

It was established that the introduction of mangan ions into the medium of cultivating B. subtilis, containing 1 g/L of bentonite also had a considerable impact on the SOD activity of B. subtilis IMV B-7023 (Fig. 3). At the content of 0.1 mM of mangan ions in the medium, the enzymatic activity decreased compared to the control. However, when the concentration of these ions in the medium increased, the SOD activity increased considerably as well. Its maximum values were observed with the introduction of 1.5 mM of Mn2+ cations into the cultivation medium. In these conditions the SOD activity of bacteria amounted to 12.3 un/mg of protein and was 29.5% higher compared to the variant without Clostridium perfringens nanoparticle and especially when 1.5 times higher concentration of Mn2+ ions of 1.5 mM had negligible impact on the growth of B. subtilis IMV B-7023. However, while cultivating in the medium, containing 1.5 mM of these ions and 1 g/L of saponite there was a considerable increase in the growth of the bacteria. These differences may be caused both by the impact of some concentrations of cations and the changes in the composition of the medium which may take place during its interaction with the particles of the investigated minerals. The possibility of such processes was demonstrated in previous investigations (Chobotariov et al. 2010).

While cultivating B. subtilis IMV B-7023 in the medium without nanomaterials, but containing 0.1 mM Mn2+, the SOD activity of bacteria increased up to 8.5 un/mg of protein. However, the increase in the content of these cations in the medium resulted in some decrease in the value of enzyme activity. At the same time, cultivation of the bacteria with the particles of saponite and especially bentonite resulted in the SOD activity increase. The cultivation of B. subtilis IMV B-7023 in the medium, containing Fe3+ ions also caused significant impact on the SOD activity of bacteria, especially at Fe2+ concentration of 1.5 mM. A similar dependence of the SOD activity on the content of these ions was obtained for bacteria Desulfovibrio desulfuricans IMV B-7384 (Maslovská et al. 2015). The results of our studies confirm the relevant role of Mn2+ and Fe3+ cations in the composition of the active center of SOD bacteria (Halliwell et al. 1999) for the functioning of this enzyme of B. subtilis IMV B-7023 – a component of Azogran preparation in conditions of the interaction of these bacteria with nanoparticles of the investigated natural minerals of different types of soils.

Conflict of Interest: The authors declare that they have no conflict of interest.

REFERENCES

Barnas, T., Drobucki, J.W. 2000. The role of plasma membrane in bioreduction of two tetravalent salts, MIT and CTC. Archives of biochemistry and biophysics. 380(1), 108 – 116.https://doi.org/10.1006/abbi.2000.1907

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2), 248 - 254.https://doi.org/10.1016/0003-2697(76)90527

Chobotariov, A.Yu., Hordonenko, A.S., Samchuk, A.I, Kurdish, I.K. 2010. Impact of silicon dioxide and saponite on the growth of Bacillus subtilis IMV B-7023. Microbioz. 72(4), 33 - 39

Chobotariov, A., Volkogon, M., Vovktenko, L., Kudrast, I. 2017. Accumulation of phytohormones by soil bacteria Azotobacter vinelandii and Bacillus subtilis under the influence of nanomaterials. Journal of Microbiology, Biotechnology and Food Science. 7(3), 271 - 274.https://doi.org/10.15414/jmbfs.2017.18.7.3.271-274

Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64(1), 97 – 112.https://doi.org/10.1146/annurev.bi.64.070195.000525

Halliwell B., Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine. Oxford Univ. Press, Oxford

Herasimenko, I.O., Kurdish, I.K. 2015. Influence of vermiculite and silicon dioxide on hydrogenase activity of Bacillus subtilis IMV B-7023 and Azotobacter vinelandii IMV B-7076. Michulsk. Z. 77(5), 9 - 13

Iatynska, G.O., Ponomenenko, S.P., Andreyuk, K.I. 2010. Bioregulation of microbial-plant systems. Nichlava, Kyiv

Kasem Sotyong 2004. Research and Development of microbial products for agriculture in Thailand, China and Vietnam. Biological plant protection is the basis for stabilization of agroecosystems (Proceeding of the work of the International Scientific Conference). Krasnodar. P. 82 - 84

Kurdish, I.K. 2010. Introduction of microorganisms in agroecosystems. Naukova dumka, Kyiv

Kurdish, I.K., Roy, A.A., Belogubreva, E.N., Tserkovnii, L.S., Direnko, D.I. 2007. The interaction of bacteria – components of a complex effect preparation with some species of plants. Fundamentalnye i prikladnye aspekty issledovaniya simbioticheskikh sistem 11
Lakin, G.R. 1990. Biometry. Vyssaya shkola, Moscow
Maslovska, O., Hnatush, S. 2015. Oxidative modification of proteins and specific superoxide dismutase activity of Desulfiromonas acetoxidans IMV B-7384 bacteria under the influence of ferric citrate. Microbiologia i biotechnologia. 2, 34 – 40
McCord, J.M., Keele, B.B. and Fridovich, I. 1971 An Enzyme-Based Theory of Obligate Anaerobiosis: The Physiological Function of Superoxide Dismutase. Proc. Nat. Acad. Sci. USA. 68(5), 1024 – 1027https://doi.org/10.1073/pnas.68.5.1024
Ocheretyanko, A., Roy, A., Skorochod, I., Kurdish, I. 2016. Influence of Physical and Chemical Factors on the Accumulation of Phenolic Compounds Nitrogen-Fixing Bacteria Azotobacter vinelandii IMV B-7076. Acta Velit. 3: 49 - 55
Patent of Ukraine No. 54923A. Strain of bacteria Bacillus subtilis for bacterial fertilizer obtaining for plant-growing/ IK Kurdish, AO Roy. - Published in 2003, bulletin No. 3
Patent of Ukraine No. 72856. Strain of bacteria Azotobacter vinelandii for bacterial fertilizer obtaining for plant-growing/ IK Kurdish, ZT Bega. - Published in 2006, bulletin No. 8
Roi, A.A., Zaloilo, O.V., Chernova, L.S., Kurdish, I.K. 2005. Antagonistic activity of phosphate-mobilizing bacilli to phytopathogenic fungi and bacteria. Agroecolog. journal. 1, 50 - 55.
Roi, A.O., Matselyukh, O.V., Zubko, P.D., Varbanets, L.D., Kurdish, I.K. 2014. Proteolytic activity of phosphotous mobilizing bacteria of Bacillus genus and their influence on some phytophages. Silskohospodarska mikrobiologia. 20, 66 - 73.
Skorochod, I.O., Roy, A.O., Melentiev, O.I., Kurdish, I.K. 2013. Influence of bioactive substances of phosphate-mineralizing strains of genus Bacillus on plant seeds affected by oxidative stress. Microbiology and biotechnology. 2, 41 - 51
Skorochod, I.O., Tserkovniak, L.S., Kurdish, I.K. 2011. The antioxidant effect of Bacillus subtilis and Azotobacter vinelandii on the seeds of cereals. Microbiol. Z. 73(3): 44 - 50
Spizizen, J. 1958 Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA. 44(10), 1072 – 1078
Volkogon, V.V., Nadkernychna, O.V., Kovalevska, T.M. 2006. Microbial preparations in agriculture: Teoria i praktyka. Agrarna nauka, Kiyv
Zviagintsev, D.G. 1980. Methods of soil microbiology and biochemistry. MGU Publishing House, Moscow