THE COMPACT-OPEN TOPOLOGY ON THE HOMEOMORPHISM GROUP OF A SURFACE WITHOUT BOUNDARY IS MINIMAL.

J. DE LA NUEZ GONZÁLEZ

Abstract. We show that the homeomorphism group of a surface without boundary does not admit a Hausdorff group topology strictly coarser than the compact-open topology. In combination with known automatic continuity results, this implies that the compact-open topology is the unique Hausdorff separable group topology on the group if the surface is closed or the complement in a closed surface of either a finite set or the union of a finite set and a Cantor set.

0. Introduction

We begin by recalling the following definition:

Definition 0.1. Let G be a group and t a Hausdorff group topology on G. We say that t is minimal if G admits no Hausdorff group topology strictly coarser than t.

The notion of minimality captures a key feature of compact groups and as such has received a substantial degree of attention in the literature. For the broader context and further questions we refer the reader to the comprehensive survey [3].

Given a topological space X, the compact-open topology on the homeomorphism group of X is the topology generated by all subsets of the form $[K, U] = \{ f \in G | f(K) \subseteq U \}$, for $K \subseteq X$ compact and $U \subseteq X$ open in X. The following classical result is due to Arens [1].

Fact 0.2. Let X be a Hausdorff, locally compact and locally connected topological space. Then the compact-open topology is a group topology on $\mathcal{H}(X)$.

Given a manifold X, we denote by $\mathcal{H}_0(X)$ the subgroup of $\mathcal{H}(X)$ consisting of all those $h \in \mathcal{H}(X)$ for which there exists an isotopy between h and the identity; i.e. some continuous map $H : X \times [0, 1] \to X$ such that $H(\cdot, t) \in \mathcal{H}(X)$ for all $t \in [0, 1]$, $H(x, 0) = h(x)$ and $h(x, 1) = x$. We denote by $\mathcal{H}_{c0}(X) \leq \mathcal{H}_0(X)$ the subgroup of all of those for which there exists some compact set $K \subseteq X$ such that $H(\cdot, t)$ is supported on K for all $t \in [0, 1]$. The term surface will be used to refer to topological 2-manifolds. The purpose of this short note is to provide a very elementary proof of the following result:

Korea Institute for Advanced Study (KIAS)
E-mail address: jnuezgonzalez@gmail.com.
Date: November 8, 2022.
Work supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1301-51.
Theorem 0.3. Let X be a surface without boundary and G be a group satisfying $\mathcal{H}_{c_0}(X) \leq G \leq \mathcal{H}(X)$. Then the restriction to G of the compact-open topology on $\mathcal{H}(X)$ is minimal.

It was first shown by Rosendal in [12] that any group homomorphism from the homeomorphism group of a compact surface to a separable topological group is automatically continuous. This was later generalized by Mann to homeomorphism groups of compact manifolds in arbitrary dimension [7] and later in [8] to certain groups of homeomorphisms of non-compact manifolds. Combining these results with Theorem 0.3 one obtains:

Corollary 0.4. Let X be a closed surface and $F \subseteq X$ either a finite set (possibly empty) or the union of a finite set and a Cantor set. Then the compact-open topology is the unique separable Hausdorff group topology on the group $\mathcal{H}(X \setminus F)$.

Note that the compact-open topology was already known to be the unique complete separable group topology on the homeomorphism group of a compact manifold (see [6] and [7]). The automatic continuity result in [8] applies to the group of homeomorphisms of a manifold X preserving a set F as above. However, as discussed there, in dimension 2 said group endowed with the compact-open topology is isomorphic to $\mathcal{H}(X \setminus F)$ as a topological group via the restriction map.

In [2] Chang and Gartside provide a counterexample to the minimality of the compact-open topology for any compact manifold X with non-empty boundary which admits the following alternative description. The restriction homomorphism $\rho : \mathcal{H}(X) \to \mathcal{H}(\text{int}(X))$ is injective and continuous, where $\text{int}(X) = X \setminus \partial X$. Let t_{c_0} denote the preimage by ρ of the compact-open topology on $\mathcal{H}(\text{int}(X))$. The fact that X is compact. In fact, the same argument shows that this is also true if X is not compact for t_{c_0} defined as above. On the other hand, since $\mathcal{H}_{c_0}(\text{int}(X)) \leq \text{im}(\rho)$, Theorem 0.3 applies and thus we get:

Corollary 0.5. For any surface with boundary the topology t_{c_0} on $\mathcal{H}(X)$ is minimal.

Outline of the proof. The proof of 0.3 is structured as follows. We fix once and for all some surface X without boundary, as well as some G with $H \leq G \leq \mathcal{H}(X)$, where $H = \mathcal{H}_{c_0}(X)$. We denote by t_{c_0} the compact-open topology on G and fix some group topology t on G strictly coarser than t_{c_0}. Denote by $N_t(1)$ the collection of open neighbourhoods of the identity in t. Fix some arbitrary $g_0 \in H \setminus \{1\}$ supported on a disk and assume the existence of $V \in N_t(1)$ with $g_0 \notin V$.

Section 1 establishes some notation and recalls some basic facts many readers will be familiar with. In Section 2 we see, using an auxiliary result from Section 1 that the assumption $t \leq t_{c_0}$ implies that every $V \in N_t(1)$ is very rich, containing a plethora of fix-point stabilizers of embedded graphs. Finally, in Sections 4 and 5 we show this to be in contradiction with the existence of V as in the previous paragraph.

1. Preliminaries

We do not assume X to be compact. However, we will often use the well-known fact that X admits an exhaustion by compact submanifolds, which follows from

1 That the two topologies are the same can be seen by applying the criterion of equality between t_{c_0} and $(t_{c_0})_F$ in Theorem 5 from [2] to the set-wise stabilizer of F in $\mathcal{H}_0(X)$.
a standard argument using the smoothability of surfaces and Whitney embedding theorem (see for instance [9]).

If we fix a metric d on X compatible with its topology, t_{co} can be described as the topology of uniform convergence on compact sets. That is, a base of neighbourhoods of the identity for the compact-open topology on G is given by the collection of sets

$$V_{K,\epsilon} = \{ g \in G \mid \forall x \in K \ d(x, gx), d(x, g^{-1}x) < \epsilon \}$$

where K ranges over all compact subsets of X and ϵ over all positive reals. Sometimes we might only be interested in the set $V_\epsilon := V_{X,\epsilon}$ (potentially not open in t_{co}).

For any subset $A \subseteq X$ and $\epsilon > 0$ we let $N_\epsilon(A) := \{ p \in X \mid d(p, A) < \epsilon \}$. We make and will assume that for any p there is δ_p such that the ball $B(p, \delta_p)$ is connected.

Given a surface Y and a closed set $F \subseteq Y$ we write $\mathcal{H}(Y, F)$ for the subgroup of all homeomorphisms of Y that fixes F point-wise, $\mathcal{H}_0(Y, F)$ for the subgroup of all homeomorphisms fixing F isotopic to the identity by an isotopy that fixes F at any point in time and $\mathcal{H}_{co}(Y, F)$ for the group of all homeomorphisms isotopic to the identity through a compactly supported isotopy fixing F at any point in time.

Disks and arcs.

By a disk in a surface Y we intend a homeomorphic image in Y of a standard 2-ball. We write I for the interval $[-1, 1]$. By an arc (in Y) from a point $p \in Y$ to a point $q \in Y$ we intend an injective continuous map $\alpha : I \to Y$ with $\alpha(-1) = p$ and $\alpha(1) = q$. We refer to p and q as the endpoints of α. By a small abuse of notation, we may use the term α to refer to the image of α. We will refer to $\alpha((-1, 1))$ as the interior of α. Whenever we concatenate a sequence of arcs or we restrict some arc to some interval $I \subseteq \mathbb{I}$ we always assume an order-preserving reparametrization is applied at the end so that \mathbb{I} is again the domain of the resulting map.

It is a consequence of the Jordan curve theorem and Schönflies theorem that for any arc $\alpha \subseteq \text{int}(Y)$ there exists some homeomorphic embedding $\hat{\alpha} : \mathbb{I} \times I \to Y$ so that α is the restriction of f to $\{0\} \times [-\frac{1}{2}, \frac{1}{2}]$ and $\mathbb{I} \times \mathbb{I}$. We will refer to $\hat{\alpha}$ as a rectangular extension of α. By a regular path we mean the concatenation of finitely many arcs intersecting only at the endpoints.

We say that two arcs α, β, are transverse on an open set $U \subseteq Y$ if $\mathbb{I} := U \cap \alpha \cap \beta$ is finite, coincides with $U \cap \alpha(I) \cap \beta(I)$ and α and β cross at q for any $q \in \mathbb{I} \mathbb{B}$. We say that two collection of arcs \mathcal{A}, \mathcal{B} are transverse on U if \mathcal{A} is transverse on U to each arc in \mathcal{B}. We will not mention U explicitly when $U = X$. Sometimes we will talk about a collection of arcs being transverse to a certain 1-dimensional compact submanifold Z, which simply means it is transverse to some decomposition of Z into arcs.

For the following see Chapters 2 and 3 in [5].

Fact 1.1. Let Y be a surface and $\{\alpha_i\}_{i=1}^k, \{\beta_j\}_{j=1}^r$ two collections of arcs in Y that can only meet ∂Y at an endpoint and such that $\alpha_i \cap \alpha_{i'}, \beta_j \cap \beta_{j'}$ are finite for $1 \leq i < i' \leq k$ and $1 \leq j < j' \leq r$. Then for any neighbourhood \mathcal{W} of the identity

2 Working in the universal cover one can first extend the arc to a closed curve (using [11] p.164 or some other of the suggestions found at https://mathoverflow.net/questions/57766/why-are-there-no-wild-arcs-in-the-plane and then apply Schönflies theorem (see [10]).

3 That is, there is a disk with $p \in D$ and a homeomorphism $h : D \to B = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \leq 1\}$ taking $\alpha \cap D, \beta \cap D$ to $\{(x, y) \mid x = 0\} \cap B$ and $\{(x, y) \mid y = 0\} \cap B$ respectively.
in the restriction of the compact-open topology to $\mathcal{H}(Y, \partial Y)$ there exists $\phi \in \mathcal{W}$ such that $\phi \cdot \alpha_i$ is transverse to β_j on $\text{int}(Y)$ for all $1 \leq i \leq k, 1 \leq j \leq r$.

Given a compact surface Y by a triangulation \mathcal{T} of Y we mean a homeomorphism between the geometric realization of some finite simplicial complex, which we assume to contain no double edges Y. We can think of it as a collection of disks, the triangles of \mathcal{T} and of arcs, the edges of \mathcal{T}. For the following see [10].

Fact 1.2. Every compact surface admits a triangulation. Given two compact surfaces Y, Y' with $Y \subseteq \text{int}(Y')$ every triangulation of Y extends to a triangulation of Y'.

We will often repeatedly use the following weak version of Alexander’s Lemma (see [3], Chapter 4):

Fact 1.3. If D is a disk, then $\mathcal{H}(D, \partial D) = \mathcal{H}_0(D, \partial D)$. Therefore any homeomorphism of X supported on an embedded disk is in H.

Dehn twists. An annulus A in X is the image of some homeomorphic embedding $h : S^1 \to I \to X$. A core curve of A is the image of $\alpha : S^1 \to I \times S^1, \alpha(s) = (0, s)$ by some such h with $\text{im}(h) = A$ and a Dehn twist over A the homeomorphism of X resulting from pushing forward the homeomorphism $(s, t) \mapsto (s, t+s)$ of $S^1 \to I$ onto A via some such h an then extending it by the identity outside of A.

Observation 1.4. Let A be an annulus and γ, δ two disjoint arcs in A joining the two boundary components of A. Let τ a Dehn twist over A. Then $\gamma \cup \tau^2 \cdot \delta$ is connected and contains some core curve of A.

Embedded graphs. By an embedded graph Γ we mean a finite tuple of arcs in X such that for distinct γ, γ' in Γ any intersection point of γ and γ' is an endpoint of both and no two distinct γ, γ' can have two endpoints in common. For convenience our notation will often treat Γ as a mere set.

We let $V(\Gamma)$ be the set of endpoints of Γ in X. Alternatively, we say that Γ is an embedded \mathbb{Q}-graph if $V(\Gamma) = \mathbb{Q}$. We write $\bigcup \Gamma = \bigcup_{\gamma \in \Gamma}\gamma$. We will refer to any neighbourhood of $\bigcup \Gamma$ simply as a neighbourhood of Γ. The group G acts on the collection of embedded graphs by post-composition.

Given embedded graphs $\Gamma = (\gamma_i)_{i=1}^k$ and $\Gamma' = (\gamma'_i)_{i=1}^{k'}$ we write $\Gamma \simeq \Gamma'$ if $k = k'$ and γ'_j is an order preserving reparametrization of γ_j for $1 \leq j \leq k$.

We denote by $H_{\cap \Gamma}$ the subgroup consisting of all the elements of H fixing $\bigcup \Gamma$ and by H_{Γ} the subgroup of H consisting of all $h \in H$ such that $h \cdot \Gamma \simeq \Gamma$.

Given a neighbourhood U of Γ and a homeomorphic embedding $h : U \to X$ preserving the arcs of Γ and fixing their endpoints we say that h is orientation preserving at Γ if for any $p \in \gamma$ there exists some homeomorphic embedding $\tilde{\gamma} : I \times I \to X$ with $\gamma = \tilde{\gamma}|_{\{0\} \times I}$ and some neighbourhood V of p such that $V, h(V) \subseteq \text{im}(\gamma)$ and if we let $A_0 = \tilde{\gamma}([-1,0) \times I)$, $A_1 = \tilde{\gamma}((0,1] \times I)$ then if $C \subseteq A_i$ for a component C of $V \setminus \gamma$ then also $h(C) \subseteq A_i$.

We denote by $H_{\cup \Gamma}^+$ and $H_{\cap \Gamma}^+$ the subgroups of $H_{\cup \Gamma}$ and $H_{\cap \Gamma}^+$ respectively consisting of those elements that are orientation preserving at Γ.

Extending partial homeomorphisms. The following facts can be seen as a consequence of Schönflies theorem, the Jordan curve theorem and the classification of compact surfaces.
Definition 2.1. Let \(\mathcal{N} = (\{D_q\}_{q \in \mathcal{Q}}, \{D_\gamma\}_{\gamma \in \Gamma}, (\theta_q)_{q \in \mathcal{Q}}, (\theta_\gamma)_{\gamma \in \Gamma}) \) where \(D_q \) and \(D_\gamma \) are embedded disks and \(\theta_q : I \times I \to D_q \mathcal{Q} = D_q \) such that

- \(\{D_q\}_{q \in \mathcal{Q}} \) are pair-wise disjoint and \(\{D_\gamma\}_{\gamma \in \Gamma} \) are pair-wise disjoint
- \(D_q \cap D_\gamma \) is an arc if \(q \) is an endpoint of \(\gamma \) for \(q \in \mathcal{Q} \) and \(\gamma \in \Gamma \) and empty otherwise

Fact 1.5. For any two families of disjoint embedded disks \(\{D_i\}_{i=1}^k, \{D'_i\}_{i=1}^k \) in some connected surface \(Y \) and any collection of homeomorphisms \(h_i : \partial D_i \cong \partial D'_i \), which we assume to be orientation-preserving if \(Y \) is orientable, there exists \(h \in \mathcal{H}_{\mathcal{Q}}(Y) \) taking \(D_i \) to \(D'_i \) and restricting to \(h_i \) on \(\partial D_i \) for \(1 \leq i \leq k \).

Fact 1.6. Let \(D \) be a disk and \(\{\alpha_i\}_{i=1}^k, \{\alpha'_i\}_{i=1}^k \) two families of pair-wise disjoint arcs between points in \(D \) such that either \(\alpha'_i, \alpha_i \subseteq \bar{D} \) for all \(i \) or the following holds:
- for all \(1 \leq i \leq k \) the intersection of \(\alpha_i \) with \(\partial D \) consists of one or two endpoints \(\alpha_i \) and the same is true for \(\alpha'_i \)
- if \(\alpha_i(-1) \in \partial D \), then \(\alpha'_i(-1) = \alpha_i(-1) \) and the same is true if we replace \(-1 \) with \(1 \) and/or exchange the roles of \(\alpha_i \) and \(\alpha'_i \)

Then there exists some \(h \in \mathcal{H}(D, \partial D) \) such that \(h \circ \alpha_i = \alpha'_i \) for all \(i \). In particular, for any arc \(\alpha \) and any embedded disk \(D \) with \(\alpha \subseteq D \) we have that \(D \) is the image of a rectangular extension of \(\alpha \).

In particular, for any arc \(\alpha \) and any embedded disk \(D \) with \(\alpha \subseteq \bar{D} \) we have that \(D \) is the image of a rectangular extension of \(\alpha \).

Fact 1.7. Let \(D \) be a disk and \(\Gamma \) some embedded \(\mathcal{Q} \)-graph such that \(\bigcup \Gamma \) is simply connected and \(\bigcup \Gamma \cap \partial D \) coincides with the set of points in \(\mathcal{Q} \) belonging to a unique \(\gamma \in \Gamma \). Then any homeomorphic embedding \(h \) of \(\bigcup \Gamma \cap \partial D \) into \(D \) that is the identity on \(\partial D \) extends to a homeomorphism of \(D \).

Point pushing maps. Given an arc \(\alpha \) from a point \(p \in X \) to a point \(q \in X \) and \(\epsilon > 0 \) we denote by \(\mathcal{P}_\epsilon(\alpha) \) the collection of all homeomorphisms that take \(p \) to \(q \) and are supported in some embedded disk \(D \) with \(\alpha \subseteq D \subseteq N_\epsilon(\alpha) \). The existence of rectangular extensions and Fact 1.3 implies that \(\mathcal{P}_\epsilon(\alpha) \neq \emptyset \) and by Fact 1.6 \(\mathcal{P}_\epsilon(\alpha) \subseteq H \). If \(\alpha \) is a regular path and \(U \) an open set containing \(\text{im}(\alpha) \) we let \(\mathcal{P}_\epsilon(\alpha) \) be the collection of all products of the form \(f_k f_{k-1} \ldots f_1 \), where \(f_i \in \mathcal{P}_\epsilon(\alpha_i) \) and \(\alpha = \alpha_1 \ast \alpha_2 \ldots \alpha_k \) for some decomposition of \(\alpha \) into arcs.

Bigons. The following follows from a similar argument to that in the proof of 1.7 in [H].

Fact 1.8. Let \(Y \) be a compact surface with boundary and let \(\{\gamma_i\}_{i=1}^k, \{\gamma'_i\}_{i=1}^k \) be two families of pair-wise disjoint arcs in \(Y \) between boundary points with \(\gamma_i(1), \gamma'_i(1) \subseteq \text{int}(Y) \). Assume that for each \(1 \leq i \leq k \) and \(1 \leq j \leq r \) the arcs \(\gamma_i \) and \(\gamma'_j \) are transverse on \(\text{int}(Y) \) and some representative of the homotopy class of \(\gamma'_j \) is disjoint from \(\gamma_i \) on \(\text{int}(Y) \). Then there is an innermost bigon bounded by \(\gamma \) and \(\gamma' \): an embedded disk \(D \) in \(Y \) whose boundary is the union of a subarc of some \(\gamma_i \) and a subarc of some \(\gamma'_j \) and whose interior is disjoint from all \(\gamma_i \) and \(\gamma'_j \).

2. Extending partial homeomorphisms around graphs

Definition 2.1. Let \(\Gamma \) be an embedded \(\mathcal{Q} \)-graph. By a nice system of disks around \(\Gamma \) we mean a tuple \(\mathcal{N} = (\{D_q\}_{q \in \mathcal{Q}}, \{D_\gamma\}_{\gamma \in \Gamma}, (\theta_q)_{q \in \mathcal{Q}}, (\theta_\gamma)_{\gamma \in \Gamma}) \) where \(D_q \) and \(D_\gamma \) are embedded disks and \(\theta_q : I \times I \to D_q \mathcal{Q} = D_q \) such that
- \(\{D_q\}_{q \in \mathcal{Q}} \) are pair-wise disjoint and \(\{D_\gamma\}_{\gamma \in \Gamma} \) are pair-wise disjoint
- \(D_q \cap D_\gamma \) is an arc if \(q \) is an endpoint of \(\gamma \) for \(q \in \mathcal{Q} \) and \(\gamma \in \Gamma \) and empty otherwise
• \(\theta_\gamma \) takes \(\{0\} \times I \) to \(\gamma \cap D_\gamma \) and \(I \times \{-1\} \) and \(I \times \{1\} \) to \(D_\gamma(-1) \cap D_\gamma \) and \(D_\gamma(1) \cap D_\gamma \) respectively.

and moreover for any arc \(\gamma \in \Gamma \) from \(q \) to \(q' \) we have that

• \(\gamma \) can be divided into three consecutive subarcs: \(\gamma = \gamma_q * \gamma' * \gamma_{q'} \) with \(\gamma_q \subseteq D_q \), \(\gamma' \subseteq D_\gamma \) and \(\gamma_{q'} \subseteq D_{q'} \)

• \(\gamma \) intersects \(\partial D_q \) only at the common endpoint of \(\gamma_q \) and \(\gamma' \), which lies in the interior of \(D_q \cap D_\gamma \), and similarly for \(q' \)

We write \(\bigcup \mathcal{N} = \bigcup_{q \in \mathcal{Q}} D_q \cup \bigcup_{\gamma \in \Gamma} D_\gamma \). It is easy to see that \(\bigcup \mathcal{N} \) is a neighbourhood of \(\bigcup \Gamma \). We will refer to any set of this form as a nice neighbourhood of \(\Gamma \).

Definition 2.2. In particular, in the situation above each \(D_q \) intersects each arc \(\gamma \in \Gamma \) in either the empty set or a single arc from \(q \) to \(\partial D_q \) touching \(\partial D_q \) in a single point. We will henceforth refer to any disk satisfying this condition for some \(q \in V(\Gamma) \) as intersecting \(\Gamma \) in a star.

Remark 3. Given two collection of disks as in the definition, a collection of homeomorphisms \(\{\theta_\gamma\}_{\gamma \in \Gamma} \) always exists.

The following follows from the Jordan curve theorem and Schönflies theorem by standard arguments:

Fact 2.4. Let \(\Gamma \) be an embedded \(\mathcal{Q} \)-graph. Then for any \(\epsilon > 0 \) there is a nice system of disks \(\mathcal{N} = \{\{D_q\}_{q \in \mathcal{Q}}, \{D_\gamma\}_{\gamma \in \Gamma}, \{\theta_\gamma\}_{\gamma \in \Gamma}\} \) such that \(\bigcup \mathcal{N} \subseteq \mathcal{N}_\epsilon(\bigcup \Gamma) \) and \(\text{diam}(D_q) < \epsilon \) for all \(q \in \mathcal{Q} \).

The Lemma below is probably known, but we were unable to find a suitable reference.

Lemma 2.5. Given any embedded graph \(\Gamma \) and \(\epsilon > 0 \) there exists some \(\delta = \delta(\epsilon, \Gamma) > 0 \) such that for any closed neighbourhood \(U \) of \(\Gamma \) there is some closed neighbourhood \(N \subseteq U \) and with the property that any homeomorphic embedding \(h : N \to X \) which is the identity on \(\bigcup \Gamma \), orientation preserving at \(\Gamma \) and satisfies \(d(\mathcal{p}, h(\mathcal{p})) < \delta \) for all \(\mathcal{p} \in N \) extends to some \(h \in V_c \cap H \). Moreover, if there exists some union \(C \) of connected components of \(X \setminus \bigcup \Gamma \) such that \(h \) restricts to the identity on \(C \cap N \), then we may assume that \(h \) is the identity on \(C \).

Proof. Pick some nice system of disks \(\mathcal{N} = \{\{D_q\}_{q \in \mathcal{Q}}, \{D_\gamma\}_{\gamma \in \Gamma}, \{\theta_\gamma\}_{\gamma \in \Gamma}\} \) around \(\Gamma \) with \(\text{diam}(D_q) < \frac{\epsilon}{2} \) for all \(q \in \mathcal{Q} \) and some \(\eta > 0 \) such that \(\text{diam}(\theta_\gamma(J_1 \times J_2)) < \frac{\epsilon}{2} \) for any \(\gamma \in \Gamma \), \(J_1, J_2 \subseteq I \), \(\text{diam}(J_1), \text{diam}(J_2) \leq 2\eta \).

Pick \(t_0 = -1 < t_1 < \ldots < t_m < t_{m+1} = 1 \) such that \(|t_i - t_{i+1}| \leq (\eta, 2\eta) \) for \(0 \leq i \leq m \). For any \(1 \leq i \leq m \) let \(J_i = \left[\frac{t_i + t_{i+1}}{2}, \frac{t_i + t_{i+1}}{2}\right] \). Let also \(Q^\gamma_{t_i} = \theta_\gamma(J_0 \times J_i) \) and \(Q^-_{\gamma t_i} = \theta_\gamma([-\eta, 0] \times J_i) \).

Using compactness we can find some \(\delta \in (0, \frac{\eta}{2}) \) such that

1. for any \(\gamma \in \Gamma \) any arc in \(X \setminus \bigcup \Gamma \) from a point in \(\theta_\gamma([-1, 0] \times I) \) to a point \(\theta_\gamma((0, 1] \times I) \) has diameter at least \(3\delta \)
2. \(d(\text{im}(\theta_\gamma), \text{im}(\theta_{\gamma'})) \geq \delta \) for distinct \(\gamma, \gamma' \in \Gamma \)
3. \(d(\text{im}(\theta_\gamma), D_q) \geq \delta \) for \(\gamma \in \Gamma \) and \(q \in \mathcal{Q} \) such that \(q \) is not an endpoint of \(\gamma \)
4. for any \(\gamma \in \Gamma \) and \((s, s'), (t, t') \in I^2 \) with \(|s - t| + |s' - t'| \geq \frac{\eta}{2} \) we have \(d(\theta_\gamma(t, t'), \theta_\gamma(s, s')) \geq 2\delta \)

Note that this allows for the possibility that the disk in question intersects \(\Gamma \) in just one or two arcs.
(5) \(d(D_{\gamma(-1)} \cup D_{\gamma(1)}, \theta_\gamma(I \times \left[-1 + \frac{p}{2}, 1 - \frac{p}{2}\right])) \geq 2\delta \)

It is easy to find some nice neighbourhood \(N \) of \(\Gamma \) contained in \(U \) such that:

(a) \(d(N, \partial(N)) \geq \delta \)

(b) for all \(\gamma \in \Gamma \) we have \(\theta_\gamma^{-1}(N \cap D_\gamma) = [\xi, \xi] \times I \) for some \(\xi > 0 \) such that

\[
\text{diam}(\theta_\gamma([-\xi, \xi] \times \{t\})) < \delta \quad \text{for all } t \in I
\]

Assume now that \(h : N \to X \) is a homeomorphic embedding restricting to the identity on \(\Gamma \), orientation preserving at \(\Gamma \) and such that \(d(p, h(p)) < \delta \) for all \(p \in N \).

Condition (3) above implies that \(h(N) \subseteq \bigcup N \).

It suffices to show that there exists some \(g \in \mathcal{V}_\gamma \cap H^+_{\Gamma} \) such that \(g \circ h \) extends to some \(g' \in \mathcal{V}_\gamma \cap H^+_{\Gamma} \), since then \(g^{-1}g' \in \mathcal{V}_\gamma \cap H \) will be the extension we need.

To begin with, notice that we may assume without loss of generality that \(h \circ \partial N \) is transverse to the boundary of the \(Q^+_{\gamma, i} \) and \(Q^-_{\gamma, i} \). For any \(\gamma \in \Gamma \) and \(1 \leq i \leq m \) condition (4) above implies that

\[
h(\theta_\gamma([0, 1] \times \{t_i\})), h(\theta_\gamma([-1, 0] \times \{t_i\})) \subseteq B(\theta_\gamma(0, t_i), 2\delta),
\]

which together with the fact that \(h \) is orientation preserving at \(\Gamma \) implies that \(h(\theta_\gamma([-1, 0] \times \{t_i\})) \subseteq Q^+_{\gamma, i} \) with only one endpoint on \(\partial Q^+_{\gamma, i} \) and similarly for \(\theta_\gamma([-1, 0] \times \{t_i\}) \) and \(Q^-_{\gamma, i} \). We refer to the image of \([0, \eta] \times \{\frac{t_i + t_{i+1}}{2}\} \) and \([0, \eta] \times \{t_{i+1} - t_i\} \) by \(\gamma \) as the two vertical sides of \(Q^+_{\gamma, i} \) and similarly for \(Q^-_{\gamma, i} \).

Claim 2.6. There is only one subarc of \(h \circ \partial N \) joining the two vertical sides of \(Q^+_{\gamma, i} \) (resp. \(Q^-_{\gamma, i} \)) of \(\theta_\gamma(\{0, \eta\} \times \{1, t_i\}) \).

Proof. Conditions (1) and (5) and the fact that \(h \) is orientation preserving at \(\Gamma \) imply that no point in \(\theta_\gamma([-1, 0] \times I) \) can be sent to \(Q^+_{\gamma, i} \) by \(h \). Together with conditions (2) and (3) this implies that no point outside of \(D_{\gamma(-1)} \cup \theta_\gamma([-1, 0] \times I) \cup D_{\gamma(1)} \) can be sent to \(Q^+_{\gamma, i} \) by \(h \) and a similar statement holds for \(Q^-_{\gamma, i} \).

On the other hand, there cannot exist \(p \in D_{\gamma(-1)} \cup \theta_\gamma([-1, 0] \times I) \cup D_{\gamma(1)} \) such that \(h(p) \in \theta_\gamma([-1, 0] \times \{\frac{t_i + t_{i+1}}{2}\}) \). Since by conditions (1) and (5) we have \(d(A, B) \geq \delta \), and the same holds if we exchange the role of the two endpoints of \(\gamma \) and/or of + and −. The moreover part is clear and the result follows.

This implies the existence of arcs \(\alpha^+_{\gamma, i} \subseteq Q^+_{\gamma, i} \) and \(\alpha^-_{\gamma, i} \subseteq Q^-_{\gamma, i} \) from \(\theta_\gamma(\eta, t_i) \) to \(\theta_\gamma(\xi, t_i) \) and from \(\theta_\gamma(-\eta, t_i) \) to \(\theta_\gamma(-\xi, t_i) \) respectively of which only the endpoints \(\theta_\gamma(\xi, t_i) \) and \(\theta_\gamma(-\xi, t_i) \) respectively belong to \(h(N) \). Let \(\beta^+_{\gamma, i} \) be the concatenation of \(\alpha^+_{\gamma, i} \) and the arc with image \(h(\theta_\gamma([0, \xi] \times \{i\})) \) and define \(\beta^-_{\gamma, i} \) in a similar way.

Fact (\ref{fact:homeo}) implies the existence of homeomorphisms \(g^+_{\gamma, i} \in H \) supported on \(Q^+_{\gamma, i} \) and \(g^-_{\gamma, i} \in H \) supported on \(Q^-_{\gamma, i} \) such that \(g^+_{\gamma, i}(\beta^+_{\gamma, i}) = \theta_\gamma([-\eta, 0] \times \{t_i\}) \) and \(g^-_{\gamma, i}(\beta^-_{\gamma, i}) = \theta_\gamma([-\eta, 0] \times \{t_i\}) \). Moreover, we may assume that \(g^+_{\gamma, i} \circ h \) is the identity on \(\theta_\gamma([0, \eta] \times \{t_i\}) \) and similarly for \(g^-_{\gamma, i} \circ h \). Since the \(Q^\pm_{\gamma, i} \) have disjoint interiors and diameter at most \(\leq \frac{\epsilon}{2} \), it follows that the product \(g := \prod_{\gamma \in \Gamma} g^+_{\gamma, i}g^-_{\gamma, i} \) is in \(\mathcal{V}_\gamma \cap H \).

For all \(q \in \mathbb{Q} \) let \(D_q^\gamma \) is the union of \(D_q^\gamma \) and all the sets of the form \(\theta_\gamma(I \times [-1, t]) \) for \(\gamma \in \Gamma \) with \(\gamma(-1) = q \) and \(\theta_\gamma(I \times [t, 1]) \) for \(\gamma \in \Gamma \) with \(\gamma(1) = q \). Notice that \(\text{diam}(D_q^\gamma) \leq \frac{\epsilon}{2} \), since \(\text{diam}(D_q^\gamma) \leq \frac{\epsilon}{6} \) and

\[
\text{diam}(\theta_\gamma([-\eta, \eta] \times [-1, t_0])) \leq \frac{\epsilon}{6},
\]

by the choice of \(\eta \) and similarly for \(\theta_\gamma(I \times [t, 1]) \).
Since \(g \) is supported on \(\bigcup \mathcal{N} \), the image of \(N \) by the rectified map \(g \circ h \) is still contained in \(\bigcup \mathcal{N} \). Additionally, \(g \circ h(N \cap E) = g \circ h(N) \cap E \) whenever \(E \) is either:

- \(D_q' \) for some \(q \in \mathcal{Q} \)
- \(\theta_\gamma([0, \eta] \times [t_i, t_{i+1}]) \) or \(\theta_\gamma([-\eta, 0] \times [t_i, t_{i+1}]) \) for \(\gamma \in \Gamma \) and \(1 \leq i \leq m - 1 \)

and \(g \circ h \) restricts to the identity on the arc \(\partial E \cap N \). It follows from Fact 1.6 that \(g \circ h \) extends to some \(g' \in H \) which is the product of elements supported on sets \(E \) as above. Since \(\text{diam}(E) \leq \frac{1}{2} \) in both cases, it follows that \(g' \in \mathcal{V}_\frac{1}{2} \). This concludes the proof. The moreover part is clear.

\[\square \]

3. Neighbourhoods of the identity contain fix-point stabilizers of embedded graphs

We begin with the following observation:

Observation 3.1. There do not exist disks \(D, D' \) with \(D \subseteq D' \) and \(\mathcal{V} \in \mathcal{N}_i(1) \) such that \(g \cdot D \subseteq D' \) for all \(g \in \mathcal{V} \).

Proof. Indeed, given such \(D, D' \), any \(p \in X \) and any \(\epsilon > 0 \) small enough applying Fact 1.3 two times yields some \(h \in H \) such that \(p \in h \cdot D \subseteq h \cdot D' \subseteq B(p, \epsilon) \). Then \(g \cdot D_0 \subseteq B(p, \epsilon) \) for any \(g \in \mathcal{V}_{\frac{1}{h}} \), where \(D_0 = h \cdot D \). It follows easily from this using the definition of compactness that the conjugates of \(\mathcal{V} \) by the action of \(H \) generate a system of neighbourhoods of \(t_\infty \) at the identity.

\[\square \]

Lemma 3.3 below can be seen as a consequence of the theory of pseudo-Anosov mapping classes on compact surfaces. For the sake of self-containment and with the potential for higher dimension generalizations in view we provide a more elementary proof.

Lemma 3.2. Suppose that \(\alpha_1, \alpha_2, \ldots, \alpha_m \) are pair-wise transverse regular paths in \(X \) and \(U_1, \ldots, U_m \) open sets such that \(\alpha_1(1) \in U_1 \). Denote by \(\mathcal{I} \) the collection of self-intersection points of the \(\alpha_i \) and of intersection points between different \(\alpha_i \). Then for any \(\mu > 0 \) there exists some \(f_1 \in H \) such that if we let \(f = f_m f_{m-1} \ldots f_1 \) then \(\alpha_1 \setminus N_\mu(\mathcal{I}) \subseteq \alpha \cdot U_1 \) for \(1 \leq l \leq m \).

Proof. Consider first the case \(m = 1 \). Let \(\alpha = \alpha_1 \), \(U_1 = U \) and \(p = \alpha(-1) \). Let \(\alpha = \alpha_1 \ast \ldots \ast \alpha_k \) be a decomposition of \(\alpha \) into arcs not containing any point of \(\mathcal{I} \) in their interior and write \(\alpha^i = \alpha^1 \ast \ldots \ast \alpha^i \). Let \(\vec{\alpha} = \alpha \setminus N_\mu(\mathcal{I}) \) and pick some \(\nu > 0 \) be smaller than \(\frac{\mu}{2} \) and \(d(\vec{\alpha}^i, \vec{\alpha}^j) \) for \(1 \leq i < j \leq m \).

We choose \(g_i \in \mathcal{P}_\nu(\alpha^i) \) by induction so that if we write \(\vec{g}_i = g_i g_{i-1} \ldots g_1 (\vec{g}_0 = 1) \) then for all \(0 \leq i \leq m \) the set \(\vec{g}_i \cdot U \) contains some path \(\beta^i \) from \(\vec{B}_\nu(p) \) to \(\vec{\alpha}^i(1) \) such that \(\vec{\alpha} \setminus N_{2\nu}(\mathcal{I}) \subseteq \beta^i \) and \(\alpha^i \subseteq \beta^i \) if \(i \geq 1 \).

In the base case we simply take as \(\beta^0 \) some non-trivial arc in \(U \) ending in \(\alpha(-1) \) such that \(\beta^0 \ast \alpha^0 \) is still an arc. Suppose now that \(i \geq 1 \) and the result has been shown for \(i - 1 \). Let \(\vec{\alpha}^i \) be a rectangular extension of \(\alpha^i \) with \(im(\vec{\alpha}^i) \subseteq N_\nu(\alpha^i) \) and let \(D = im(\vec{\alpha}^i) \). We may assume that \(D \cap \beta^{i-1} \) is a single arc \(\gamma \) from \(\partial D \) to \(\alpha^i(-1) \) (use a rectangular extension of an arc \(\gamma' \ast \beta \), where \(\gamma' \) is a subarc of \(\beta^{i-1} \)). By Fact 1.6 there exist some \(g_i \) supported in \(D \) such that \(g_i \cdot \gamma = \gamma \ast \alpha^i \). If \(1 \leq i \leq m - 1 \), the construction ensures that \(\alpha^i \setminus N_{2\nu}(\mathcal{I}) \subseteq \vec{g}_{i+1} \cdot U \), from it which it follows that \(\vec{g}_m \cdot U \supseteq (g_{i+1} \cdot U) \bigcup_{j=i+2}^m N_\nu(\alpha^j) \supseteq \alpha^i \setminus N_{2\nu}(\mathcal{I}) \).
For the general case one can proceed similarly. Take \(\nu = \min\{\frac{1}{2} \mu, d(\tilde{\alpha}_t, \tilde{\alpha}_u)\}_{v \neq l} \), \(\tilde{\alpha}_t = \alpha_l \setminus N_{\mu}(I) \). We may assume that \(U_i \cap \bigcup_{v \neq l} N_{\nu}(\alpha_l) = \emptyset \). For \(1 \leq l \leq m \) let \(T_l \) be the set of self-intersection points of \(\alpha_l \) and pick some \(f_l \in T_{\nu}(\alpha_l) \) such that \(\alpha_l \setminus N_{\mu}(T_l) \subseteq f_l \cdot U_l \). Let \(\tilde{f}_l = f_l f_{l-1} \cdots f_1 \). Then \(\tilde{f}_l(U_l) = f_l(U_l) \) and

\[

f \cdot U_l \supseteq (f_l \cdot U_l) \setminus \bigcup_{\nu \neq l} N_{\nu}(\alpha_l) \supseteq \alpha_l \setminus N_{\mu}(I).

\]

\[\square \]

Lemma 3.3. Let \(D, E_1, \ldots, E_k \) be disks in \(X \) such that \(E_i \) is not contained in \(D \) for any \(1 \leq i \leq k \). Let also \(K \subseteq X \) be a compact subset and \(\epsilon \) a positive real. Then there exists \(h, h' \in H \) fixing \(D \) such that for any \(1 \leq i, j \leq k \) and any connected component \(C \) of the complement of \(h \cdot E_i \cup h' \cdot E_j \) either:

- \(K \cap C = \emptyset \)
- \(\text{diam}(C) < \epsilon \)
- \(C \subseteq N_\epsilon(D) \)

Proof. For \(1 \leq i \leq k \) choose some \(p_i \in E_i \setminus D \). Pick some compact submanifold \(Y \) such that \(N_\epsilon(D), N_\epsilon(K) \subseteq Y \) and let \(T \) a triangulation of \(Y \). We can choose \(T \) so that each triangle has diameter at most \(\frac{\epsilon}{2} \) and \(\{p_i\}_{i=1}^k \cap T_D = \emptyset \). Let \(T_D \) be the collection of triangles disjoint from \(D \) and \(T_D \) be the collection of all their vertices. Given adjacent \(u, v \in T_D \) we denote by \([u, v] \) the corresponding triangle side, an arc in \(X \).

Let \(\eta = \min\{\frac{\epsilon}{2}, \frac{1}{2} d([v, v'], [v, v] \cap T_D, v \neq v')\} \). For each \(v \in T_D \) choose disks \(F_v, F_v' \) such that \(v \in F_v, F_v \subseteq F_v' \) and \(F_v' \subseteq B(v, \eta) \) and let \(A_v \) be the annulus \(F_v' \setminus F_v \).

For \(1 \leq i \leq k \) it is easy to find some regular path \(\alpha_i \) in \(Y \setminus D \) starting at \(p_i \) and such that for each triangle \(T \) in \(T \) that does not intersect \(D \) and each side \([u, v]\) of \(T \) there exists some arc \(\alpha_i^{[u, v]} \subseteq \alpha_i \cap T \) from a point \(u' \in F_u \) to a point \(v' \in F_v \).

We may also make the choice in such a way that the \(\alpha_i \) are pair-wise transverse and that if we denote by \(T \) the set consisting of all self-intersection points of \(\alpha_i \) for some \(i \) and of intersection points of \(\alpha_i \) and \(\alpha_j \) for different \(i, j \), then \(T \) is contained in \(\bigcup_{v \in T_D} F_v \) and disjoint from all the \(\alpha_i^{[u, v]} \).

Lemma 3.2 applied to the collection of paths \(\{\alpha_i\}_{i=1}^k \) with a suitably small constant \(\mu \) provides some \(f_i \in H \) fixing \(D \) such that for each \(1 \leq i \leq k \) and each edge \([u, v]\) in a triangle \(T \) in \(T_D \) we have \(\alpha_i^{[u, v]} \subseteq f_i \cdot E_i \).

For each \(v \in T_D \) let \(\tau_v \in H \) be a Dehn twist over the annulus \(A_v \). Let \(\tau = \prod_{v \in T_D} \tau_v^2 \) and \(h' = \tau h \). Then by virtue of Observation 1.4 for each \(1 \leq i, j \leq k \) the set \(E_{i,j} := h \cdot E_i \cup h' E_j \) contains:

- a core curve \(\beta_v \) of each of the annuli \(A_v, v \in T_D \)
- for each edge \([u, v']\) of some triangle \(T \) in \(T_D \) some path from \(\beta_v \) to \(\beta_{v'} \) in \(T \)

It easily follows that every connected component in the complement of \(E_{i,j} \) is either contained in \(N_\epsilon(D) \) or it has diameter less than \(\epsilon \) or else it is contained in \(N_\epsilon(Y^c) \) and is thus disjoint from \(K \). \[\square \]

Corollary 3.4. Let \(D, E_1, \ldots, E_k \) be disks in \(X \). Assume that \(E_i \not\subseteq D \) for \(1 \leq i \leq k \) and there exists \(\mathcal{V} \subseteq N_\epsilon(1) \) such that for all \(g \in \mathcal{V} \) there is \(1 \leq i \leq k \) with \(g \cdot E_i \cap D = \emptyset \). Then for any \(\epsilon > 0 \) and any compact set \(K \subseteq X \) there is \(\mathcal{V}_D^{K, \epsilon} \subseteq N_\epsilon(1) \) such that for any \(g \in \mathcal{V}_D^{K, \epsilon} \) either:
such that T transverse to the edges of Γ.

Suppose that ℓ_1 (1) there exists $g \in \mathcal{V}$ such that $g \cdot D \cap E_i \neq \emptyset$ for all $1 \leq i \leq k$.

Proof. Suppose that $\mathcal{V} \in \mathcal{N}_1(1)$ fails to satisfy the property. Up to making D smaller, we may assume that $E_i \subseteq D$ for all $1 \leq i \leq k$.

Using Lemma 3.3 take $h \in \mathcal{G}$ such that $\text{supp}(g_0) \subseteq h \cdot D =: D'$, let $\mathcal{V}' = \mathcal{V}_{h^{-1}}$ and pick some compact set $L \subset X$ and $\epsilon > 0$ such that $\mathcal{V}_{L,\epsilon} \subseteq \mathcal{V}'$ and $\mathcal{N}_1(D')$ is contained in a disk D''. Let also $\mathcal{V}_1 = \mathcal{V}_{h^{-1}} \in \mathcal{N}_1(1)$ be such that $g_0 \notin \mathcal{V}_1$. Consider the intersection $\mathcal{V}_0 := \mathcal{V}_1 \cap \mathcal{V}_{L,\epsilon}$, where $\mathcal{V}_{L,\epsilon}$ is given by Corollary 3.4 applied to \mathcal{V}' and D', $h \cdot E_i$. For any given $g \in \mathcal{V}_0$ at least one of the following possibilities holds:

- $g \cdot D' \subseteq D''$
- $\text{diam}(g \cdot D') < \epsilon$
- $g \cdot D' \cap L = \emptyset$

If $g \in \mathcal{V}_0$ satisfies the second or third possibility, then $g_0^{-1} \in \mathcal{V}_{L,\epsilon} \subseteq \mathcal{V}_1$ and thus $g_0 \cdot \mathcal{V}_1$, contradicting the choice of \mathcal{V}_1. Hence the first alternative must always hold, contrary to Observation 3.1.

Lemma 3.5. Let D, E_1, \ldots, E_k be disks in X and $\mathcal{V} \in \mathcal{N}_1(1)$. Then for any $\mathcal{V} \in \mathcal{N}_1(1)$ there exists $g \in \mathcal{V}$ such that $g \cdot D \cap E_i \neq \emptyset$ for all $1 \leq i \leq k$.

Proof. Suppose that $\mathcal{V} \in \mathcal{N}_1(1)$ fails to satisfy the property. Up to making D smaller, we may assume that $E_i \subseteq D$ for all $1 \leq i \leq k$.

Using Lemma 3.3 take $h \in \mathcal{G}$ such that $\text{supp}(g_0) \subseteq h \cdot D =: D'$, let $\mathcal{V}' = \mathcal{V}_{h^{-1}}$ and pick some compact set $L \subset X$ and $\epsilon > 0$ such that $\mathcal{V}_{L,\epsilon} \subseteq \mathcal{V}'$ and $\mathcal{N}_1(D')$ is contained in a disk D''. Let also $\mathcal{V}_1 = \mathcal{V}_{h^{-1}} \in \mathcal{N}_1(1)$ be such that $g_0 \notin \mathcal{V}_1$. Consider the intersection $\mathcal{V}_0 := \mathcal{V}_1 \cap \mathcal{V}_{L,\epsilon}$, where $\mathcal{V}_{L,\epsilon}$ is given by Corollary 3.4 applied to \mathcal{V}' and D', $h \cdot E_i$. For any given $g \in \mathcal{V}_0$ at least one of the following possibilities holds:

- $g \cdot D' \subseteq D''$
- $\text{diam}(g \cdot D') < \epsilon$
- $g \cdot D' \cap L = \emptyset$

If $g \in \mathcal{V}_0$ satisfies the second or third possibility, then $g_0^{-1} \in \mathcal{V}_{L,\epsilon} \subseteq \mathcal{V}_1$ and thus $g_0 \cdot \mathcal{V}_1$, contradicting the choice of \mathcal{V}_1. Hence the first alternative must always hold, contrary to Observation 3.1.

Lemma 3.6. For any $\mathcal{V} \in \mathcal{N}_1(1)$ and any compact set $L \subset X$ there exists some embedded graph Γ such that $H^+_1 \subseteq \mathcal{V}$ and L is contained in the closure of one connected component \mathcal{V}_0 of $X \setminus \bigcup \Gamma$.

Proof. Take $\mathcal{V}_0 = \mathcal{V}_0^{-1} \in \mathcal{N}_1(1)$ with $\mathcal{V}_0 \subseteq \mathcal{V}$. Let K a compact set and $\epsilon > 0$ be such that $\mathcal{V}_{K,\epsilon} \subseteq \mathcal{V}_0$. Now, pick some disk D with $\text{diam}(D) < \epsilon$ and some triangulation \mathcal{T} of a compact submanifold Y of X containing $\mathcal{V}_0(K \cup L)$ in which each triangle has diameter strictly less than ϵ. Applying Lemma 3.5 we can find some $g' \in \mathcal{V}_0$ such that $g' \cdot D \cap T \neq \emptyset$ for each triangle T in \mathcal{T}. Let Y' be a compact submanifold such that $g \cdot D \subseteq \text{int}(Y')$, equipped with a triangulation \mathcal{T}' that restricts to \mathcal{T} on Y. We may also assume that $g' \cdot \partial D$ is transverse to all the internal edges of \mathcal{T}', so that for any triangle $T \in \mathcal{T}'$ if it intersects \mathcal{T} if and only if it intersects \mathcal{T}. Let F be the union of all triangles of \mathcal{T}' intersecting $g \cdot D$ and \mathcal{V} the collection of vertices of \mathcal{T}' that lie in F.

Claim 3.7. There is $\phi \in \mathcal{V}_{K,\epsilon}$ such that $\phi g \cdot D$ intersects exactly the same triangles of \mathcal{T}' as $g \cdot D$ and $\mathcal{V} \subseteq \phi g \cdot D$.

Proof. Indeed, we can easily find a family of disjoint disks $\{D_u\}_{u \in \mathcal{V}}$ contained in \mathcal{T} and $\{\phi_u\}_{u \in \mathcal{V}} \subseteq H$, where ϕ_u is supported on D_u, $u \in \mathcal{V}$, $g \cdot D$ and D_u is either disjoint from K or is contained in some small neighbourhood of some triangle $T \in \mathcal{T}$ and has diameter less than ϵ. We then let $\phi = \prod_{u \in \mathcal{V}} \phi_u$.

Using Fact 11 we can slightly perturb $g := \phi g$ within \mathcal{V}_0 so that $g \cdot \partial D$ is transverse to the edges of \mathcal{T}', while preserving the conclusion of Claim 3.7.

We construct an embedded graph Γ in X as follows. For each triangle T in \mathcal{T}' such that $T \cap g \cdot D \neq \emptyset$ and every connected component C of $\mathcal{T} \setminus g \cdot D$ we pick
a vertex \(q_c \in C \cap \hat{C} \) and given two components \(C, C' \) in adjacent triangles \(T, T' \) satisfying \(C \cap C' \neq \emptyset \) add an arc between \(v_c \) and \(v_{c'} \) inside \(T \cup T' \) intersecting \(C \cap C' \) in a single point. The choice can clearly be made in such a way that two of the resulting arcs can only intersect at a common endpoint. We can assume that \(T \) contains at least 3-triangles so that no two of the resulting edges can have the same pair of endpoints.

Let \(U_0 \) be the connected component of \(X \setminus \bigcup \Gamma \) containing \(g \cdot D \).

Claim 3.8. \(K \cup L \subseteq U_0 \)

Proof. The inclusion \(N_e(K \cup L) \subseteq Y \) implies that for any triangle \(T \) in \(T \) with \((K \cup L) \cap T \neq \emptyset \) the triangle \(T \) and any triangle in \(T \) adjacent to it must intersect \(g \cdot D \) (be contained in \(F \)) and thus that all the vertices of \(T \) must belong to \(Y \), since they are all in \(\text{int}(Y) \). It follows that for each component \(C \) of \(T \setminus \bigcup g \cdot D \) and every edge \(\gamma \in \Gamma \) with \(v_c \) as an endpoint and crossing some side \(\gamma \) of \(\Gamma \) there is some subarc \(\gamma' \subseteq \gamma \) intersecting \(g \cdot D \) only in \(\gamma'(-1) \) and intersecting \(\bigcup \Gamma \) only in \(\gamma(1) \in \gamma \cap \sigma \). It follows that any component \(V \) of \(T \setminus \bigcup \Gamma \) intersects \(g \cdot D \) and therefore that \(K \cup L \subseteq U_0 \).

Claim 3.9. For any neighbourhood \(N \) of \(\bigcup \Gamma \) there exists some \(f \in V_{K,e} \) such that \(f \cdot (U_0 \setminus N) \subseteq g \cdot D \).

Proof. It is easy to see that \(U_0 \setminus g \cdot D \) is the union of all the connected components of \(T \setminus (\bigcup \Gamma \cup g \cdot D) \) bordering \(g \cdot D \) as \(T \) ranges among all the triangles of \(T' \) that intersect \(g \cdot D \) non-trivially but are not contained in \(g \cdot D \). We construct \(f \) as a homeomorphism preserving each of the triangles in \(T' \) intersecting \(g \cdot D \) and fixing their complement in \(X \). We can first define \(f \) on the 1-skeleton of \(T' \), fixing \(u, v \) and preserving \([u, v] \cap \bigcup \Gamma \) for every edge \([u, v] \) and mapping \([u, v] \setminus N \) into \([u, v] \cap g \cdot D \) and then use [1.6] to find an extension to the interior of the triangles with the same property.

Take an arbitrary \(h \in H^+_{\bigcup \Gamma} \) and let \(h_0 \in H^+_{\bigcup \Gamma} \) the map that agrees with \(h \) on \(U_0 \) and is the identity outside of \(V_0 \). Let \(\delta = \delta(\Gamma, e) \) be the constant provided by Lemma 2.5. Continuity of \(h_0 \) implies the existence of a neighbourhood \(V \) of \(\Gamma \) such that \(d(p, h \cdot p) < \delta \) for all \(p \in V \). Lemma 2.5 then provides some \(h_1 \in V_\epsilon \cap H \subseteq V_0 \) agreeing with \(h_0 \) on \(N \cup (X \setminus U_0) \), where \(N \subseteq V \) is some neighbourhood of \(\Gamma \).

Then Claim 3.9 provides some \(f \in V_e \cap H^+_{\bigcup \Gamma} \) such that \(f \cdot (U_0 \setminus N) \subseteq g \cdot D \) so that

\[
\text{supp}(h_1^{-1}h_0) \subseteq \text{supp}(g^{-1}f \cdot (U_0 \setminus N) \subseteq D)
\]

It follows that \(h_0 \in h_1 V_{g^{-1}}^{2} \subseteq V_0^{8} \). On the other hand, \(h_1^{-1}h \in H \) is in \(V_0 \), since its support is disjoint from \(K \), and thus \(h \in V_0 \subseteq V \).

Corollary 3.10. For any \(V \in N_e(1) \) and any open \(U \subseteq X \) there exists some \(Q \)-embedded graph \(\Gamma \) with \(Q \subseteq U \) such that \(H^+_{\bigcup \Gamma} \subseteq V \). Moreover, we can assume \(\Gamma \) to be transverse to any given finite collection of arcs.

Proof. We first observe that for any finite set \(F \) of points, any ball \(B = B(p, \delta) \) and any \(W \in N_e(1) \) there exists some \(g \in W \) such that \(g \cdot F \subseteq B \). Indeed, take \(W_0 = W_{0}^{-1} \in N_e(1) \) with \(W_{0}^{2} \subseteq W \) and by Lemma 3.6 some embedded graph \(\Delta \) such that \(H^+_{\bigcup \Delta} \subseteq W_0 \) and \(\bigcup F \subseteq V \) for some connected component \(V \) of \(X \setminus \bigcup \Delta \). Since \(t \in t_0 \) there exists some \(g_0 \in W_0 \) such that \(g_0 \cdot F \subseteq U \) and then some \(g_1 \in H^+_{\bigcup \Gamma} \) such that \(g_1 \cdot (g_0 \cdot F) \subseteq B \) by Fact 1.6.
Proof. The first alternative must take place, but this contradicts Corollary 3.10.

Claim 3.12. For any $\mathcal{V} \in \mathcal{N}_i(1)$ there exists some embedded graph Γ with $H^{+}_{\Gamma} \subseteq \mathcal{V}$ which is transverse to the β_i and satisfies the second alternative above.

Proof. Suppose not. Notice that by Fact 1.15 there exists some $f \in H$ preserving D and mapping $im(\beta_1)$ homeomorphically onto $im(\beta_{i+1})$ (cyclically). If we let $\mathcal{V}_0 = \mathcal{V} \cap \mathcal{V}^j$, then for any Γ transverse to the β_i such that $H^{+}_{\Gamma} \subseteq \mathcal{V}_0$ necessarily the first alternative must take place, but this contradicts Corollary 3.10.

Now, given α and $\epsilon > 0$ as in the premise, choose some embedded disk \mathcal{E} with $\alpha \subseteq \hat{\mathcal{E}} \subseteq \mathcal{E} \subseteq \mathcal{N}_i(\alpha)$, $\mathcal{V}_0 = \mathcal{V}_0^{-1} \in \mathcal{N}_i(1)$ with $\mathcal{V}_0^{\delta} \subseteq \mathcal{V}$ and $\delta > 0$ such that

- $B(p,\delta), B(q,\delta)$ are connected
- $B(p,\delta) \cup B(q,\delta) \subseteq \mathcal{E}$
- $\mathcal{V}_{2\delta} \subseteq \mathcal{V}_0$
- $d(p, q) > 3\delta$

Now choose an embedded disk $\mathcal{D} \subseteq \hat{\mathcal{E}}$ bounded by β_i^{-1} as above so that, $p \in \beta_1(\hat{\mathcal{D}})$, $q \in \beta_3(\hat{\mathcal{D}})$ and $diam(\beta_1), diam(\beta_3) < \delta$.

If Γ satisfies $H^{+}_{\Gamma} \subseteq \mathcal{V}_0$ and is as in the second alternative, then for $\eta > 0$ small enough and some arc κ in \mathcal{D} from some $p' \in \beta_1(\hat{\mathcal{D}})$ to $q' \in \beta_3(\hat{\mathcal{D}})$ we have $N_{\eta}(im(\kappa)) \subseteq \mathcal{E} \setminus \mathcal{D}$. On the other hand, there is h supported in the disjoint union $B(p,\delta) \cap B(q,\delta)$ such that $h \cdot (p, q) = (p', q')$. Then $h \in \mathcal{V}_{2\delta}$ and

$$\mathcal{P}_y(\kappa)^h \subseteq (H^{+}_{\Gamma})^h \subseteq \mathcal{V}_0^{\delta} \subseteq \mathcal{V},$$

while on the other hand $\emptyset \neq \mathcal{P}_y(\kappa)^h \subseteq \mathcal{P}_*(\alpha)$.

\[\square\]

4. Untangling embedded graphs

Lemma 4.1. Let \mathcal{Q} be a finite set of points, $\Gamma = (\gamma_1, \ldots, \gamma_k)$ a \mathcal{Q}-embedded graph, Y a compact subsurface of X such that Γ is transverse to ∂Y and let $g \in H$ supported on Y be such that $g_{\partial Y} \in \mathcal{H}_0(\partial Y)$ and Γ and $\Gamma' := g \cdot \Gamma$ are transverse on $int(Y)$.

Then for any $\mathcal{V} \in \mathcal{N}_i(1)$ there exists $h_0 \in H^{+}_{\Gamma}$ and $h_1 \in \mathcal{V}$ supported on Y such that $h_0 h_1 \cdot \Gamma \simeq \Gamma'$.

Proof. We prove the result by induction on $N := |(\bigcup \Gamma) \cap (\bigcup \Gamma') \cap int(Y)| < \infty$.

Pick some $\mathcal{V}_0 = \mathcal{V}_0^{-1} \in \mathcal{N}_i(1)$ such that $\mathcal{V}_0^{\delta} \subseteq \mathcal{V}$.
Let \mathcal{A} be the collection of maximal subarcs of some γ_i contained in Y. Notice that any two distinct $\alpha, \alpha' \in \mathcal{A}$ satisfy $\alpha \cap \alpha' = \emptyset$. If $N = 0$ then for all $\alpha \in \mathcal{A}$ we have that $\alpha \cup \alpha'$ is the boundary of some disk $D \subseteq Y$ with $D \cap (\bigcup \Gamma \cup \bigcup \Gamma') = \emptyset$.

Then for any $\epsilon > 0$ one can easily find some $h_1 \in \mathcal{V}_\epsilon \cap H$ supported on Y such that $h_1 \cdot \alpha$ lies inside the closed bigon bounded by α and α' for all $\alpha \in \mathcal{A}$ and then some $h_0 \in H^+_{\mathcal{A}}$, such that $h_0 h_1 \cdot \Gamma \approx \Gamma'$.

Assume now that $N > 0$. Then by Claim 4.2 there are $1 \leq i, j \leq k$ and a bigon B in Y whose interior is disjoint from $\Gamma \cup \Gamma'$ and which is bounded by the union of a subarc of γ_i and a subarc of γ'_j meeting only at the endpoints.

It is easy to find a disk D with $B \subseteq D$ intersecting Γ in a single subarc $\alpha_i \subset \gamma_i$ and Γ' in a single subarc $\alpha'_j \subset \gamma'_j$ and containing no other points from $\bigcup \Gamma \cap \bigcup \Gamma'$ other than the two intersection points in ∂B. Then Fact 1.4 yields some f supported on D such that $f^{-1} \cdot \alpha'_j$ and α_i do not cross.

We can then apply the induction hypothesis to $f^{-1} \cdot \gamma$ and γ_0. We obtain $h_0' \in H^+_{\Gamma}$ and $h_1' \in \mathcal{V}_0$ supported on Y such that $f^{-1} \cdot \Gamma = h_0' h_1' \cdot \Gamma$.

We claim that there exists $h''_0 \in H^+_{\Gamma}$, $\hat{h} \in H_{[h_0', h_1']}$, $h''_1 \in \mathcal{V}_0$ supported on Y such that $f h''_0 = h''_0 h''_1 \hat{h}$. A simple calculation then shows that $h_0 := h_0' h''_0 \in H^+_{\Gamma}$ and $h_1 := h''_0 h''_1 \in \mathcal{V}_0 \subseteq \mathcal{V}$ verify the properties we need.

Notice that $f' := f h_0'$ is supported on $D' = (h_0')^{-1} \cdot D$. It brings the arc $\beta''_j := (f h_0')^{-1} \cdot \alpha'_j \subseteq h_1 \cdot \gamma_j \cap D$, which is disjoint from the arc $\beta_i := (h_0')^{-1} \cdot \alpha_i \subseteq \gamma_i \cap D$, to a position in which it intersects the latter in exactly two points, creating a bigon inside D'. The proof now reduces to the following:

Claim 4.2. There is $h''_0 \in \mathcal{V}_0^2$ supported in D' bringing, β''_j to a curve intersecting β_i in exactly two points (bounding a bigon).

Indeed, once such h''_0 is given, we first see using Fact 1.4 the existence of $\hat{h} \in H^+_{[h_1', h_1]}$ supported on D' such that

$$(h''_0 \hat{h})^{-1} (\beta_i) \cap \beta''_j = \hat{h}^{-1} (h''_0)^{-1} (\beta_i) \cap \beta''_j = f'^{-1} (\beta_i) \cap \beta''_j$$

and then the existence of $h''_0 \in H^+_{[h_1', h_1]}$ such that $h''_0 h''_1 \hat{h} = f'$ easily follows from the same fact.

To prove the claim pick some disk E in D' which is divided into two smaller disks by an arc of β_i and has a diameter small enough so that any homeomorphism supported on E belongs to \mathcal{V}_0. Choose points $p \in \beta''_j$, $q \in E$ in the same connected component C_0 of $D' \setminus \beta_i$, as well as some arc ω in C_0 from p to q.

Let $\epsilon > 0$ be small enough that $N_\epsilon(\omega) \subseteq C_0$. By Lemma 3.11 there exists some $\phi \in \mathcal{P}_\epsilon(\omega) \cap \mathcal{V}_0$. The arc $\phi \cdot \beta''_j$ does not intersect β_i, but it intersects E, so it is easy to see that we can choose some θ supported on E such that $h''_0 : = \theta \phi \in \mathcal{V}_0^2$ brings β''_j into the desired configuration (we may assume ∂E and $\phi \cdot \beta''_j$ are transverse).

Remark 3. We may not have simply chosen ω to be a point-pushing map along a path crossing β, and dispense of θ altogether, since the condition $\phi \in N_\epsilon(\omega)$ is too weak to guarantee multiplying on the left by ϕ creates only one new bigon.

\\

Lemma 4.4. For any $\epsilon > 0$ and any embedded graph $\Gamma = (\gamma_j)_{j=1}^k$ we have

$$H^+_{[\Gamma]} \subseteq \mathcal{V}_\epsilon H^+_{\bigcup \Gamma} \mathcal{V}_\epsilon H^+_{\bigcup \Gamma}.$$
Proof. Let $Q = V(\Gamma)$. It suffices to show that for any homeomorphism h of $\cup \Gamma$ preserving the arcs of Γ with orientation and fixing their endpoints there is some $g \in \mathcal{V}_h \mathcal{H}_{\Gamma}^+ \mathcal{V}_\Gamma$ such that $g_\Gamma = h$.

Fact 2.4 there exists some family $\{D_q\}_{q \in Q}$ of disks with $q \in \hat{D}_q$ and $\delta \in (0, \frac{\epsilon}{10})$ such that D_q intersects Γ in a star, $\text{diam}(D_q) < \frac{\epsilon}{10}$ and $B(q, 5\delta) \subseteq D_q$.

By continuity of h there are subarcs $\gamma_j \subseteq \gamma_j \setminus Q$ such that:

$$\gamma_j \setminus \gamma_j \cup h \cdot (\gamma_j \setminus \gamma_j) \subseteq N_{\delta}(\gamma_j(\{-1, 1\}))$$

By Facts 1.7 and 2.4 there exist some $\phi_j \in H$ supported in some small neighborhood of $\bigcup \gamma_j \setminus \gamma_j$ such that $\phi_j \circ h$ preserves γ_j and fixes the endpoints of γ_j (thus preserving γ_j as well). It is not difficult to see that one can choose $\phi_j \in \mathcal{V}_{\Delta} \phi_j$ with disjoint supports, so that $\phi := \prod_{j=1}^k \phi_j \in \mathcal{V}_{\Delta} \phi_j$.

The following easy consequence of Fact 2.4 is left to the reader.

Claim 4.5. There exists some $g_1 \in \mathcal{V}_{\Delta}$ such that $g_1 \cdot \gamma_j \cap \bigcup \Gamma = \emptyset$ for all $1 \leq j \leq k$.

Consider now the partial homeomorphism $h' = \left(g_1 \circ h \circ g_1^{-1} \right) |_{\bigcup \gamma_j \setminus \gamma_j}$. Notice that the fact that $g_1 \cdot \gamma_j$ admits a rectangular extension implies the existence of some disk D_j disjoint from $\bigcup \Gamma$, with ∂D_j transverse to $g_1 \cdot \gamma_j$ and $D_j \cap g_1 \cdot \gamma_j = g_1 \cdot \gamma_j$.

Together with Fact 1.6 this implies that there is some $g_2 \in H$ which extends h', is orientation preserving at each arc $g_1 \cdot \gamma_j$ and is supported in the complement of $\bigcup \Gamma \cup \bigcup_{j=1}^k g_1 \cdot (\gamma_j \setminus \gamma_j)$. In particular $g_2^{\Delta} \gamma_j$ is the identity on $\bigcup_{j=1}^k (\gamma_j \setminus \gamma_j)$.

On the one hand, $\phi \in \mathcal{V}_{\Delta}$ for all $\eta \in \{0, 1\}$ the component of $\gamma_j \setminus \gamma_j$ in $B(\gamma_j(\eta), \delta)$ is mapped by ϕ into $B(\gamma_j(\eta), 5\delta) \subseteq \hat{D}_q$. On the other hand, γ_j, so the image of said component is disjoint from $\bigcup \gamma_j \setminus \gamma_j$. It follows from Fact 1.7 that there exists some $g_3 \in H$ supported on $\bigcup_{q \in Q} D_q$ fixing $\bigcup_{j=1}^k \gamma_j$ such that $(g_3)_s = \phi_1 s$. Notice that $g_3 \in \mathcal{V}_{\Delta}$. The element $\phi^{-1} g_3 g_1^{-1} g_2 g_1 \in \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta} \mathcal{V}_{\Delta}$ agrees with h on the entire $\bigcup \Gamma$ and is orientation preserving at Γ so we are done.

5. Concluding the proof

Proof of Theorem 4.3. Pick some $V_0 = V_0^{-1} \in N_1(1)$ such that our fixed element g_0 does not belong to V_0 and let D_0 be a disk on which g_0 is supported. By Corollary 3.10 there is some embedded \mathcal{Q}-graph Γ such that $H_{\Gamma}^{\Delta} \subseteq V_0^0$, $Q \cap D_0 = \emptyset$ and Γ is transverse to ∂D_0. Using Fact 1.1 we can find some $f \in H$ supported on D_0 such that $f g_0 \cdot \Gamma$ and Γ are transverse on \hat{D}_0. By Lemma 4.3 there are $h_0, h_1 \in \mathcal{V}_{\Delta}$ supported on D_0 such that $h_0 h_1 \cdot \Gamma \simeq \Gamma'$.

The element $\psi := h_1^{-1} h_0^{-1} f g_0$ is the identity in a neighborhood of Q and satisfies $\psi \cdot \Gamma \simeq \Gamma$. It follows that $\psi \in \mathcal{H}_{\Gamma}^+$. Finally, note that $H_{\Gamma}^{\Delta} \subseteq V_0^0$ by Lemma 4.3 so that

$$g_0 \in f^{-1} h_0 h_1 H_{\Gamma}^{\Delta} \subseteq V_0 H_{\Gamma}^{\Delta} V_0 H_{\Gamma}^{\Delta} \subseteq V_0^8,$$

a contradiction.

References

[1] Richard Arens. Topologies for homeomorphism groups. American Journal of Mathematics, 68(4):593–610, 1946.

[2] Xiao Chang and Paul Gartside. Minimum topological group topologies. Journal of Pure and Applied Algebra, 221(8):2010–2024, 2017.
[3] Dikran Dikranjan and Michael Megrelishvili. Minimality conditions in topological groups. In Recent progress in general topology III, pages 229–327. Springer, 2014.
[4] Benson Farb and Dan Margalit. A primer on mapping class groups (pms-49). Princeton university press, 2011.
[5] Morris W Hirsch. Differential topology, volume 33. Springer Science & Business Media, 2012.
[6] Robert R Kallman. Uniqueness results for homeomorphism groups. Transactions of the American Mathematical Society, 295(1):389–396, 1986.
[7] Kathryn Mann. Automatic continuity for homeomorphism groups and applications. Geometry & Topology, 20(5):3033–3056, 2016.
[8] Kathryn Mann. Automatic continuity for homeomorphism groups of noncompact manifolds. arXiv preprint arXiv:2003.01173, 2020.
[9] John Milnor. Morse theory.(am-51), volume 51. In Morse Theory.(AM-51), Volume 51. Princeton university press, 2016.
[10] Edwin E Moise. Geometric topology in dimensions 2 and 3, volume 47. Springer Science & Business Media, 2013.
[11] Maxwell Herman Alexander Newman. Elements of the topology of plane sets of points. Cambridge, 1939.
[12] Christian Rosendal. Automatic continuity in homeomorphism groups of compact 2-manifolds. Israel Journal of Mathematics, 166(1):349–367, 2008.