Zoledronic Acid Produces Combinatory Anti-Tumor Effects with Cisplatin on Mesothelioma by Increasing p53 Expression Levels

Shinya Okamoto1, Yuanyuan Jiang2,3, Kiyoko Kawamura2, Masato Shingyoji4, Toshihiko Fukamachi1, Yuji Tada5, Yuichi Takiguchi6, Koichiro Tatsumi5, Hideaki Shimada7, Kenzo Hiroshima8, Hiroshi Kobayashi1, Masatoshi Tagawa2,3*

1 Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan, 2 Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan, 3 Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan, 4 Department of Thoracic Disease, Chiba Cancer Center, Chiba, Japan, 5 Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan, 6 Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan, 7 Department of Surgery, School of Medicine, Toho University, Tokyo, Japan, 8 Department of Pathology, Tokyo Women’s Medical University Yachiyo Medical Center, Yachiyo, Japan

Abstract

We examined anti-tumor effects of zoledronic acid (ZOL), one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP), one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.

Citation: Okamoto S, Jiang Y, Kawamura K, Shingyoji M, Fukamachi T, et al. (2013) Zoledronic Acid Produces Combinatory Anti-Tumor Effects with Cisplatin on Mesothelioma by Increasing p53 Expression Levels. PLoS ONE 8(3): e60297. doi:10.1371/journal.pone.0060297

Editor: Dominique Heymann, Faculté de médecine de Nantes, France

Received: August 15, 2012; Accepted: February 26, 2013; Published: March 28, 2013

Copyright: © 2013 Okamoto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan, and a Grant-in-Aid from the Nichias Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have the following interest. This study was partly funded by a Grant-in-Aid from the Nichias Corporation. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

* E-mail: mtgawaga@chiba-cc.jp

Introduction

The majority of mesothelioma development is tightly linked with occupational asbestos exposure and the patient numbers are increasing worldwide [1,2]. Approximately 70–80% of mesothelioma cells have the wild-type p53 gene but show a homologous deletion at the INK4A/ARF locus containing the p16INK4A and the p14ARF genes, which consequently leads to decreased p53 functions despite the wild-type genotype [3–5]. Prognosis of the mesothelioma patients is dim in most of the cases [1,2,6]. Extrapleural pneumonectomy is applicable only for the patients in an early clinical stage and mesothelioma is essentially resistant to radiation. Chemotherapy is therefore the primary treatment but produced limited anti-tumor effects. A combination of cisplatin (CDDP) and pemetrexed is currently the first-line regimen but an average survival period with the agents is about 12 months [7]. The clinical outcome even with the updated combinatory chemotherapy is thus unsatisfactory and a possible second-line agent has not yet been known. A novel therapeutics is thereby required and restoration of decreased p53 functions is one of the strategies.

Bisphosphonates (BPs) are synthetic analogues of pyrophosphate and have a strong affinity for mineralized bone matrix [8]. BPs inhibit bone absorption through interfering osteoclasts’ actions, and are currently used as a therapeutic agent for osteoporosis, malignancy-linked hypercalcemia and similar bone diseases. Recent reports demonstrated that BPs also achieved cytotoxicity on tumor cells through apoptosis induction and produced anti-tumor effects in vitro [9]. The BPs-mediated effects in vivo were evidenced with osseous tumors or with bone metastasis of non-osseous tumors [10]. Moreover, a number of studies also demonstrated the anti-tumor effects in vivo with non-osseous tumors despite BPs being readily excreted from body and accumulated in bone tissues [11,12]. The mechanism of BPs-mediated cytotoxicity is dependent on BPs structures [8,9]. The
The first generation of BPs is converted into non-hydrolyzable cytotoxic ATP analogues which decrease mitochondrial membrane potentials. Both the second and the third generations inhibit farnesyl pyrophosphate synthetase and deplete isoprenoid pools, which subsequently results in decreased prenylation of small guanine-nucleotide-binding regulatory proteins (small G proteins).

Figure 1. ZOL-induced cytotoxicity to mesothelioma. (A) Cells were treated with different concentrations of ZOL for 3 days and the cell viabilities were measured with the WST assay. Means of triplicated samples and the SD bars are shown. (B) Flow cytometrical analyses of cell cycle progression in ZOL-treated MSTO-211H cells. (C) Western blot analyses of unpreylated Rap1A expressions in cells treated with ZOL. Actin was used as a loading control. (D) Caspase activations in MSTO-211H cells that were treated with ZOL for 3 days were assayed with respective luminescence-based kits. The activities of untreated cells were expressed as 100%. Means of triplicated samples and the SE bars are shown. * P<0.01.

doi:10.1371/journal.pone.0060297.g001
The unprenylated form does not bind to cell membrane and the decreased membrane-bound fraction reduces functions of small G proteins since membrane binding is required for the biological activities including cell survival. It remains however uncharacterized as to the precise mechanisms of cytotoxicity induced by down-regulated functions of small G proteins.

In the present study, we examined cytotoxic activities of zoledronic acid (ZOL), one of the third generation of BPs, on human mesothelioma cells and investigated a possible combinatorial use of CDDP with ZOL. We found that ZOL induced up-regulation of p53 expression and the phosphorylation, but down-regulated p53 expression had little effects on the ZOL-induced cytotoxicity. Nevertheless, the ZOL-mediated p53 activation contributed to combinatorial effects with CDDP.

Materials and Methods

Cells and mice

Human mesothelioma MSTO-211H cells were purchased from American Type Culture Collection (Manassas, VA, USA) and EHMES-10 cells were kindly provided by Dr. Hamada (Ehime Univ., Ehime, Japan) [13]. Expressions of p14ARF and p16INK4A were negative and the p53 status was wild-type in both cells. BALB/c nu/nu mice (6-week-old females) were purchased from Japan SLC (Hamamatsu, Japan).

Adenoviruses (Ad) preparation

Replication-incompetent type 5 Ad expressing the wild-type p53 gene (Ad-p53) or the β-galactosidase gene (Ad-LacZ), in which the cytomegalovirus promoter activated transcription of the transgene, were prepared with an Adeno-X expression vector system (Takara, Shiga, Japan). The amounts of Ad were expressed as viral particles (vp).

Cell viability test

Cell viabilities were assessed with a WST reagent (Dojindo, Kumamoto, Japan) for 24 h using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for 24 h using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) or actin (Sigma-Aldrich, St Louis, MO, USA), unprenylated Rap1A (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or actin (Sigma-Aldrich, St Louis, MO, USA) as a control, followed by an appropriate secondary Ab. The membranes were developed with the ECL system (GE Healthcare, Buckinghamshire, UK).

RNA interference

Cells were transfected with small interfering RNA (siRNA) duplex targeting p53 or with non-coding siRNA as a control (Invitrogen). The membranes were developed with the ECL system (GE Healthcare, Buckinghamshire, UK).

Animal experiments

MSTO-211H cells were injected into the pleural cavity of BALB/c nu/nu mice. ZOL (25 μg) or the same amount of phosphate-buffered saline (PBS) was administrated intraperitoneally on day 3, and CDDP (Bristol-Myers Squibb, New York, USA) (100 μg) or the same amount of PBS was injected intraperitoneally on day 5. In this animal model, tumors became visible on day 9. The mice were sacrificed on day 24 and the tumor weights were

Table 1. Cell cycle distribution of ZOL-treated cells.

ZOL (Concentration)	Time	Sub-G1	G0/G1	S	G2/M
(-)	24 h	1.00±0.08	54.83±0.46	19.34±0.17	25.18±0.37
(-)	48 h	2.66±0.10	78.68±0.27	7.68±0.27	10.82±0.12
(-)	72 h	6.83±0.15	82.23±0.29	2.87±0.16	8.68±0.07
10 μM	24 h	2.12±0.10	56.88±0.33	18.19±0.28	23.90±0.24
10 μM	48 h	4.75±0.13	80.28±0.13	6.13±0.19	9.38±0.14
10 μM	72 h	18.84±0.12	71.53±0.21	3.09±0.03	6.58±0.14
50 μM	24 h	2.01±0.16	64.58±0.11	13.97±0.18	19.78±0.11
50 μM	48 h	26.98±0.76	59.05±0.53	4.37±0.21	9.70±0.07
50 μM	72 h	79.14±0.32	15.65±0.13	4.73±0.06	1.22±0.11

MSTO-211H cells were treated with or without ZOL (at 10 or 50 μM) for 24–72 h. Cell cycle was analyzed with flow cytometry.

doi:10.1371/journal.pone.0060297.t001
measured. The animal experiments were approved by the animal experiment and welfare committee at Chiba University and were performed according to the guideline on animal experiments.

Results

ZOL-induced cytotoxicity and caspase activation

We examined a possible cytotoxic action of ZOL on mesothelioma cells with the WST assay and found that both mesothelioma cells, MSTO-211H and EHMES-10, were susceptible to ZOL with a dose-dependent manner (Fig. 1A). Cell cycle analyses showed that ZOL increased sub-G1 phase fractions in MSTO-211H cells (Fig. 1B, Table 1), indicating that ZOL induced cell death. We also tested ZOL-induced unprenylation of Rap 1A, one of small G proteins, and confirmed that ZOL inhibited the prenylation in both cells (Fig. 1C). We investigated a possible activation of caspase-3/7, -9 and -8 by testing the cleaving activity of a specific substrate (Fig. 1D). ZOL treatments at 1 µM did not induce activation of respective caspases but those at 10 µM activated the caspases in MSTO-211H cells. These data collectively indicated that ZOL treatments activated cell death processes through the caspase cleavages in mesothelioma cells.

![Figure 1](image1.png)

Figure 1. ZOL-induced cytotoxicity and caspase activation. (A) MSTO-211H and EHMES-10 cells were treated with different doses of ZOL and CDDP for 3 days and the cell viabilities were measured with the WST assay. Means of triplicated samples and the SD bars are shown. (B) CI values based on the cell viabilities as shown in (A) were calculated at different Fa points with CalcuSyn software. The SE bars are also indicated. (C) Sub-G1 phase populations of PI-stained MSTO-211H cells that were treated with ZOL (15 µM) and/or CDDP (4 µM) for 24 h were calculated with flow cytometry. Means of triplicated samples and the SE bars are shown. *P<0.01.

doi:10.1371/journal.pone.0060297.g001

![Figure 2](image2.png)

Figure 2. Combinatory effects of ZOL and CDDP. (A) Cells were treated with different doses of ZOL and CDDP at a constant concentration ratio (ZOL:CDDP = 3:2 at each concentration in MSTO-211H and 4:3 in EHMES-10 cells) for 3 days and the cell viabilities were measured with the WST assay. Means of triplicated samples and the SD bars are shown. (B) CI values based on the cell viabilities as shown in (A) were calculated at different Fa points with CalcuSyn software. The SE bars are also indicated. (C) Sub-G1 phase populations of PI-stained MSTO-211H cells that were treated with ZOL (15 µM) and/or CDDP (4 µM) for 24 h were calculated with flow cytometry. Means of triplicated samples and the SE bars are shown. *P<0.01.

doi:10.1371/journal.pone.0060297.g002
Combiantory cytotoxic effects of ZOL and CDDP

We investigated combinatory effects of ZOL and CDDP in MSTO-211H and EHMES-10 cells. We calculated respective IC50 values of each agent to know an optimal test range and then examined cytotoxicity at various doses of both agents with a constant concentration ratio according to the CalcuSyn software instruction. Combination of ZOL and CDDP achieved cytotoxicity greater than each agent (Fig. 2A) and statistical analyses showed that CI values at Fa points below 0.8 in MSTO-211H cells were less than 1 and those between 0.15 and 0.8 Fa points in EHMES-10 cells were close to but under 1 (Fig. 2B). These CI values demonstrated that both ZOL and CDDP achieved cytotoxicity synergistically in MSTO-211H cells, and additively, or possibly slightly synergistically, in EHMES-10 cells. Cell cycle analyses indicated that sub-G1 phase populations in ZOL- plus CDDP-treated MSTO-211H cells were greater than those in ZOL- or CDDP-treated cells (Fig. 2C), suggesting that the enhanced cytotoxic activities by the combination of ZOL and CDDP were attributable to increased apoptotic cell death.

Combiantory effects of ZOL and CDDP in vivo

We investigated anti-tumor effects of ZOL in combination with CDDP in an orthotopic animal model (Fig. 3). Nude mice injected with MSTO-211H cells in the pleural cavity received ZOL intrapleurally and/or CDDP intraperitoneally. All the tumors were found in the pleural cavity without any detectable extrapleural metastatic foci. ZOL or CDDP administration inhibited the tumor growth compared with PBS-injected group. A combinatory administration of ZOL and CDDP further decreased tumor weights, demonstrating that the combination produced greater therapeutic effects than the case treated with a single agent. We did not notice body weight loss in the combinatory group, indicating that the combination was not toxic to the tested animals.

ZOL induced p53 activation

We examined whether p53 activation was involved in the ZOL-mediated cytotoxicity since the p53 pathways play a key role in apoptosis induction. Firstly, we tested possible p53 activation in wild-type p53 mesothelioma with CDDP (Fig. 4A). CDDP-treated MSTO-211H and EHMES-10 cells induced phosphorylation of p53 at the Ser 15 residue, a hallmark of p53 activation, and up-regulated p53 protein levels. We then examined influence of ZOL on p53 expressions and found that ZOL treatments phosphorylated p53 at Ser 15 and augmented p53 protein levels in both cells (Fig. 4B). These data showed that ZOL induced p53 activation and subsequently raised a possibility that the ZOL-mediated cytotoxicity was caused by p53 activation. We also investigated the combinatory effects of CDDP and ZOL on the p53 phosphorylation at Ser 15 (Fig. 4C). The phosphorylation level in cells treated with both agents was greater than that in cells treated with either CDDP or ZOL, suggesting that both agents cooperatively activated the p53 pathways.

Down-regulated p53 action on cytotoxicity and on combination effect

We further investigated a possible involvement of p53 activation in the ZOL-mediated cytotoxicity by down-regulating p53 expression with siRNA. The p53-siRNA treatment markedly decreased p53 expression and the phosphorylation level (Fig. 4D). The down-regulated p53 however minimally affected the ZOL-induced cytotoxicity in MSTO-211H cells, at least in lower concentrations, and rather slightly enhanced the cytotoxicity in
Figure 4. ZOL-induced up-regulation of p53 and knockdown of the p53 expressions with siRNA. (A, B) CDDP-treated (20 μM) and ZOL-treated (48 h) cells were subjected to Western blot analysis and probed with antibodies as indicated. Actin was used as a loading control. (C) Cells were treated with CDDP and/or ZOL for 48 h at the indicated concentrations and the expression levels of phosphorylated p53 were examined. (D) Cells were transfected with p53-targeted siRNA (p53-siRNA) or non-targeted control siRNA (Control) for 24 h and then treated with ZOL (50 μM) for 48 h. Relative viability was measured and p53 expression was examined. (E, F) Cells were treated with CDDP and/or ZOL for 48 h at the indicated concentrations. Relative viability was measured and p53 expression was examined.
constant ratio between the agents (Fig. 5C). The combination produced additive, or possibly slightly synergistic, effects at above 0.15 Fa points. (Fig. 5D) and suggested that up-regulation of p55 by ZOL enhanced Ad-p53-mediated cytotoxicity by further activating the p53 pathways.

Discussion

In this study we demonstrated that ZOL alone and the combination with CDDP produced anti-tumor effects on mesothelioma. ZOL up-regulated p53 expression but the ZOL-mediated cytotoxicity was scarcely dependent on the p53 induction, suggesting that the cytotoxicity was due to inhibition of small G proteins' functions. Down-regulated p53 levels on the other hand negated the synergetic actions by ZOL and CDDP, indicating that the ZOL-induced p53 activation contributed to the combinatory anti-tumor effects produced with CDDP.

The majority of mesothelioma cells have defect of p14ARF, which results in an increased level of Mdm2 that induces p53 degradation [14,15]. Augmentation of p53 is therefore a possible therapeutic strategy for mesothelioma by restoring p53 functions [16]. The present study indicated that ZOL phosphorylated p53 and up-regulated the expression levels, suggesting a crucial role of p53 induction in the ZOL-mediated cytotoxicity. ZOL, in fact, activated caspases and increased sub-G1 phase populations. The knockdown experiments with p53-siRNA however demonstrated that p53 activation itself did not contribute to the ZOL-mediated cytotoxic actions. A possible involvement of the p53 pathways in ZOL-mediated cytotoxicity may need further investigations but the present data evidenced that the up-regulated p53 level in ZOL-treated cells was irrelevant to the cytotoxicity as reported previously [17,18]. The ZOL-induced cytotoxicity can be therefore attributable to inhibition of prenylation of small G proteins [8–10].

ZOL-induced activation of p53 nevertheless contributed to the cytotoxicity by other agents of which the functions were linked with p53 levels. CDDP is one of such agents and augmented p53 levels in target tumors facilitate CDDP-induced cell death [19,20]. In fact our previous study showed that Ad-p53-transduced MSTO-211H cells that were transfected with respective siRNA for 24 h and then treated with or without 50 μM ZOL for further 48 h. Cell cycle was analyzed with flow cytometry.

Table 2. Cell cycle distribution of p53-siRNA-treated cells.
siRNA for
(−)
(+)
Control
p53

MSTO-211H cells were transfected with or without siRNA for 24 h, and then treated with or without 50 μM ZOL for further 48 h. Cell cycle was analyzed with flow cytometry.

do i:10.1371/journal.pone.0060297.t002
leukemia [25] and breast cancer [26], respectively. These data indicated that ZOL, even through a systemic administration route, produced anti-tumor effects together with other cytotoxic agents. Moreover, mesothelioma can be one of the suitable targets of ZOL in clinical settings because the intrapleural administration is speculated to keep a relative high concentration of ZOL at tumor sites compared with an intravenous injection, although this remains to be proven. The present study suggests that ZOL administered intrapleurally and CDDP injected systemically may produce a therapeutic benefit to mesothelioma patients. Our preliminary study showed that intrapleural administration of 40 μg ZOL at a concentration of 0.4 mg/ml in mice, which was equivalent to 7.8–9.8 mg in human [27] and was 10 times higher drug concentration than the current clinical dose (4 mg in total and 0.04 mg/ml at the concentration), did not cause any body weight changes or other adverse reactions such as inflammatory reactions (data not shown), showing a feasible intrapleural injection of ZOL with safe.

We also showed that Ad-p53 suppressed the viability of mesothelioma and produced combinatorial anti-tumor effects with ZOL. Intrapleural injections of Ad-p53 were in fact conducted safely in patients with pleural effusions [28]. Previous studies demonstrated that Ad-p53 activated the p53 pathways and achieved combinatorial anti-tumor effects with an anti-cancer agent including CDDP [21,29,30]. The mechanism of ZOL-mediated p53 induction remains unclear but the p53-inducible p21 is a downstream target of Ras and RhoA, the major molecules of small G proteins [31]. Inhibited protein prenylation can cause downstream activation of p53, and ZOL thereby is a candidate to analyze a possible cross-talk between small G proteins and the p53 pathways. Previous studies also showed that combinatorial cytotoxicity of ZOL and an anti-cancer agent was linked with ZOL-mediated inhibition of P-glycoprotein functions [24] and that a combinatorial use of doxorubicin and ZOL inhibited angiogenesis [26]. These studies indicated possible p53-independent cytotoxicity of ZOL that could synergize with other agents through multiple mechanisms.

In conclusion, we demonstrated that ZOL produced cytotoxic activities on mesothelioma and a combinatorial use with CDDP or Ad-p53 produced better therapeutic effects than monotherapy with a single agent. ZOL-mediated p53 up-regulation was not involved in the ZOL-induced cytotoxicity in EHMES-10 cells, and in MSTO-211H cells at least at low concentrations at which synergistic effects were observed with CDDP, but contributed to combinatorial anti-tumor effects of CDDP or Ad-p53. Based on the current study we presume that an intrapleural injection of ZOL, which is technically feasible, in combination with CDDP, the first-line agent for mesothelioma, is a potential therapeutics for mesothelioma.

Acknowledgments
We appreciate Ms. Yoshie Chiba for helpful discussion.
Author Contributions
Conceived and designed the experiments: TF Y. Takiguchi KT HK MT. Performed the experiments: SO YJ KK MS Y. Tada. Contributed reagents/materials/analysis tools: HS KH. Wrote the paper: SO MT.

References
1. Tada Y, Takiguchi Y, Hiroshima K, Hiroshima K, Shimada H, et al. (2008) Gene therapy for malignant pleural mesothelioma: Present and Future. Oncol Res 17: 239–246.
2. Robinson BWS, Lake RA (2005) Advances in malignant mesothelioma. N Engl J Med 353: 1591–1603.
3. Altomare DA, Menges CW, Xu J, Pei J, Zhang L, et al. (2011) Losses of both products of the Cbp20/Aj locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS ONE 6. e18829. doi:10.1371/journal.pone.0018828.
4. Prins JB, Williamson KA, Kamp MMK, Van Hezink EJ, Van Der Kwast TH, et al (1998) The gene for the cyclin-dependent-kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int J Cancer 75: 649–653.
5. Altomare DA, Menges CW, Pei J, Zhang L, Skele-Stump KL, et al. (2009) Activated TNF-α/INF-αB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesothelioma from Aj1 knockout mice. Proc Natl Acad Sci USA 106: 3420–3425.
6. Robinson BWS, Musk AW, Lake RA (2005) Malignant mesothelioma. Lancet 366: 397–406.
7. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, et al. (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21: 2636–2644.
8. Yuasa T, Kimura S, Ashihara E, Habuchi T, Markawa T (2007) Zoledronic acid -a multiplicity of anti-cancer action. Curr Med Chem 14: 2126–2135.
9. Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97 (Suppl 3):840–847.
10. Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9 (Suppl 4): 3–13.
11. Skerjanec A, Berenson J, Hsu C, Major P, Miller WH Jr, et al. (2003) The regulation of INK4/ARF
12. Clezardin P (2011) Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48: 71–79.
13. Nakatani E, Yano S, Matsumori Y, Goto H, Kakiuchi S, et al. (2006) Novel orthotopic implantation model of human malignant pleural mesothelioma (EHMES-10 cells) highly expressing vascular endothelial growth factor and its receptor. Cancer Sci 97: 183–191.
14. Yang CT, You L, Yeh CC, Chang JWCC, Zhang F, et al. (2000) Adenovirus-mediated p14ARF gene transfer in human mesothelioma cells. Natl Cancer Inst 92: 636–641.
15. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127: 265–275.
16. Hoskins-Donaldson S, Belyanskaya LL, Simões-Wüst AP, Sigirist B, Kurz S, et al. (2006) p53-induced apoptosis occurs in the absence of p14ARF in malignant pleural mesothelioma. Neoplasia 8: 551–559.
17. Kuroda J, Kimura S, Segawa H, Sato K, Matsumoto S, et al. (2004) p53-independent anti-tumor effects of the nitrogen-containing bisphosphonate zoledronic acid. Cancer Sci 95: 186–192.
18. Cly B, Blanchard F, Battaglia S, Gousin F, Rédini F, et al. (2007) Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retnoblastoma status. Mol Pharmacol 71: 333–343.
19. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265–7279.
20. Benassi MS, Chiuchi A, Ponticelli F, Pazzaglia L, Gamberi G, et al. (2007) Growth inhibition and sensitization to cisplatin by zoledronic acid in osteosarcoma cells. Cancer Let 250: 194–203.
21. Li Q, Kawamura K, Okamoto S, Yamanaka M, Yang S, et al (2012) Upregulated p53 expression activates apoptotic pathways in wild-type p53-bearing mesothelioma and enhances cytotoxicity of cisplatin and pemetrexed. Cancer Gene Ther 19: 210–220.
22. Schinzer N, Nemunaitis J, Nemunaitis M, Lamont J, Gore M, et al. (2007) p53 therapy in a patient with Li-Fraumeni syndrome. Mol Cancer Ther 6: 1478–1492.
23. Rossi A, Di Maio M, Chioldini P, Rudd RM, Okamoto H, et al. (2012) Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol 30: 1692–1698.
24. Horie H, Murata H, Kimura S, Takeshita H, Sakabe T, et al. (2007) Combined effects of a third-generation bisphosphonate, zoledronic acid with other anticancer agents against murine osteosarcoma. Brit J Cancer 96: 255–261.
25. Kuroda J, Kimura S, Segawa H, Kobayashi Y, Yoshikawa T, et al. (2003) The third-generation bisphosphonate zoledronate synergistically augments the anti-osteosarcoma activity of imatinib. Cancer 98: 1229–1235.
26. Oterwell PD, Moukhkinn H, Jones M, Leffley DV, Coleman RK, et al. (2008) Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst 100: 1167–1178.
27. Reagan-Shaw S, Nihal M, Ahmad N (2000) Dose translation from animal to human studies revisited. FASEB J 14: 2229–2235.
28. Liu DH, Liu WC, Fan Li, Sheng R, Xue Y, et al. (2006) Clinical effect of cisplatin on patients with varying degrees of renal function. J Clin Pharmacol 43: 154–162.
29. Liu DH, Liu WC, Fan Li, Sheng R, Xue Y, et al. (2006) Clinical effect of cisplatin on patients with varying degrees of renal function. J Clin Pharmacol 43: 154–162.
30. Kamata T, Yamashita J, Iwahori S, Sato K, Okamoto H, et al. (2007) Synergistic effects of zoledronic acid on osteosarcoma cells. Cancer Gene Ther 14: 169–176.
31. Kamata T, Yamashita J, Iwahori S, Sato K, Okamoto H, et al. (2007) Synergistic effects of zoledronic acid on osteosarcoma cells. Cancer Gene Ther 14: 169–176.