ANALYSIS AND ALGORITHMS FOR SOME COMPRESSED SENSING MODELS BASED ON L1/L2 MINIMIZATION

LIAOYUAN ZENG†, PEIRAN YU‡, AND TING KEI PONG§

Abstract. Recently, in a series of papers [30,36,37,39], the ratio of ℓ_1 and ℓ_2 norms was proposed as a sparsity inducing function for noiseless compressed sensing. In this paper, we further study properties of such model in the noiseless setting, and propose an algorithm for minimizing ℓ_1/ℓ_2 subject to noise in the measurements. Specifically, we show that the extended objective function (the sum of the objective and the indicator function of the constraint set) of the model in [30] satisfies the Kurdyka-Lojasiewicz (KL) property with exponent 1/2; this allows us to establish linear convergence of the algorithm proposed in [37, Eq. 11] under mild assumptions. We next extend the ℓ_1/ℓ_2 model to handle compressed sensing problems with noise. We establish the solution existence for some of these models under the spherical section property [35,42], and extend the algorithm in [37, Eq. 11] by incorporating moving-balls-approximation techniques [4] for solving these problems. We prove the subsequential convergence of our algorithm under mild conditions, and establish global convergence of the whole sequence generated by our algorithm by imposing additional KL and differentiability assumptions on a specially constructed potential function. Finally, we perform numerical experiments on robust compressed sensing and basis pursuit denoising with residual error measured by ℓ_2 norm or Lorentzian norm via solving the corresponding ℓ_1/ℓ_2 models by our algorithm. Our numerical simulations show that our algorithm is able to recover the original sparse vectors with reasonable accuracy.

Key words. L1/L2 minimization, Kurdyka-Lojasiewicz exponent, moving balls approximation, linear convergence

AMS subject classifications. 90C26, 90C32, 90C55, 90C90

1. Introduction. In compressed sensing (CS), a high-dimensional sparse or approximately sparse signal x_0 ∈ ℜ^n is compressed (linearly) as Ax_0 for transmission, where A ∈ ℜ^{m×n} is the sensing matrix. The CS problem seeks to recover the original signal x_0 from the possibly noisy low-dimensional measurement b ∈ ℜ^m. This problem is NP-hard in general; see [27].

When there is no noise in the transmission, i.e., Ax_0 = b, one can recover x_0 exactly by minimizing the ℓ_1 norm over A^{-1}{b} if x_0 is sufficiently sparse and the matrix A satisfies certain assumptions [13,17]. To empirically enhance the recovery ability, various nonconvex models like ℓ_p (0 < p < 1) minimization model [16] and ℓ_1-ℓ_2 minimization model [25] have been proposed, in which the ℓ_p quasi-norm and the difference of ℓ_1 and ℓ_2 norms are minimized over A^{-1}{b}, respectively. Recently, a new nonconvex model based on minimizing the quotient of the ℓ_1 and ℓ_2 norms was introduced in [30,39] and further studied in [36,37]:

\[(1.1) \nu_{cs}^* := \min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|_2} \quad \text{s.t.} \quad Ax = b, \]

where A ∈ ℜ^{m×n} has full row rank and b ∈ ℜ^m\{0\}. As discussed in [30], the above

* Funding: The research of the first author is supported in part by the AMSS-PolyU Joint Laboratory Postdoctoral Scheme. The research of the third author is supported in part by Hong Kong Research Grants Council PolyU/153003/19p.
† Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, PRC (lyzeng@polyu.edu.hk).
‡ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, PRC (peiran.yu@connect.polyu.hk).
§ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, PRC (tk.pong@polyu.edu.hk).
\(\ell_1/\ell_2\) model has the advantage of being \textit{scale-invariant} when reconstructing signals and images with high dynamic range. An efficient algorithm was proposed for solving (1.1) in [37, Eq. 11] and subsequent convergence was established under mild assumptions.

In practice, however, there is noise in the measurement, i.e., \(b = Ax_0 + \epsilon\) for some noise vector \(\epsilon\), and (1.1) is not applicable for (approximately) recovering \(x_0\). To deal with noisy situations, it is customary to relax the equality constraint in (1.1) to an inequality constraint [12]. In this paper, we consider the following model that minimizes the \(\ell_1/\ell_2\) objective over an inequality constraint:

\[
\nu^*_\text{ncs} = \min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|} \quad \text{s.t.} \quad q(x) \leq 0,
\]

where \(q(x) = P_1(x) - P_2(x)\) with \(P_1 : \mathbb{R}^n \to \mathbb{R}\) being Lipschitz differentiable and \(P_2 : \mathbb{R}^n \to \mathbb{R}\) being convex continuous, and we assume that \(\{x : q(x) \leq 0\} \neq \emptyset\) and \(q(0) > 0\). Our assumptions on \(q\) are general enough to cover commonly used loss functions for modeling noise in various scenarios:

1. \textbf{Gaussian noise}: When the noise in the measurement follows the Gaussian distribution, the least squares loss function \(y \mapsto \|y - b\|^2\) is typically employed [12, 17]. One may consider the following \(\ell_1/\ell_2\) minimization problem:

\[
\min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|} \quad \text{s.t.} \quad \|Ax - b\|^2 - \sigma^2 \leq 0,
\]

where \(\sigma > 0\), \(A \in \mathbb{R}^{m \times n}\) has full row rank and \(b \in \mathbb{R}^m\) satisfies \(\|b\| > \sigma\). Problem (1.3) corresponds to (1.2) with \(q(x) = P_1(x) = \|Ax - b\|^2 - \sigma^2\) and \(P_2 = 0\).

2. \textbf{Cauchy noise}: When the noise in the measurement follows the Cauchy distribution (a heavy-tailed distribution), the Lorentzian norm \(\|y\|_{\text{LL}, \gamma} := \sum_{i=1}^m \log \left(1 + \gamma^{-2}y_i^2\right)\) is used as the loss function [14, 15], where \(\gamma > 0\). Note that the Lorentzian norm is Lipschitz differentiable. One may then consider the following \(\ell_1/\ell_2\) minimization problem:

\[
\min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|} \quad \text{s.t.} \quad \|Ax - b\|_{\text{LL}, \gamma} - \sigma \leq 0,
\]

where \(\sigma > 0\), \(A \in \mathbb{R}^{m \times n}\) has full row rank, and \(b \in \mathbb{R}^m\) with \(\|b\|_{\text{LL}, \gamma} > \sigma\). Problem (1.4) corresponds to (1.2) with \(q(x) = P_1(x) = \|Ax - b\|_{\text{LL}, \gamma} - \sigma\) and \(P_2 = 0\).

3. \textbf{Robust compressed sensing}: In this scenario, the measurement is corrupted by both Gaussian noise and electromyographic noise [15, 29]: the latter is sparse and may have large magnitude (outliers). Following [24, Section 5.1.1], one may make use of the loss function \(y \mapsto \text{dist}^2(y, S)\), where \(S := \{z \in \mathbb{R}^m : \|z\|_0 \leq r\}\), \(\|z\|_0\) is the number of nonzero entries in \(z\) and \(r\) is an estimate of the number of outliers. One may then consider the following \(\ell_1/\ell_2\) minimization problem:

\[
\min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|} \quad \text{s.t.} \quad \text{dist}^2(Ax - b, S) - \sigma^2 \leq 0,
\]

where \(\sigma > 0\), \(S = \{z \in \mathbb{R}^m : \|z\|_0 \leq r\}\) with \(r \geq 0\), \(A \in \mathbb{R}^{m \times n}\) has full row rank and \(b \in \mathbb{R}^m\) satisfies \(\text{dist}(b, S) > \sigma\). Notice that

\[
\text{dist}^2(Ax - b, S) - \sigma^2 = \underbrace{\|Ax - b\|^2 - \sigma^2}_P \underbrace{- \max_{z \in S}\{2z, Ax - b\} - \|z\|^2}_{P_2}(x).
\]
with P_1 being Lipschitz differentiable and P_2 being convex continuous. So this problem corresponds to (1.2) with P_1 and P_2 as in (1.6) and $q = P_1 - P_2$.

In the literature, algorithms for solving (1.3) with ℓ_1 norm or ℓ_p quasi-norm in place of the quotient of the ℓ_1 and ℓ_2 norms have been discussed in [5,18,33], and [41] discussed an algorithm for solving (1.4) with ℓ_1 norm in place of the quotient of the ℓ_1 and ℓ_2 norms. These existing algorithms, however, are not directly applicable for solving (1.2) due to the fractional objective and the possibly nonsmooth continuous function q in the constraint.

In this paper, we further study properties of the ℓ_1/ℓ_2 models (1.1) and (1.2), and propose an algorithm for solving (1.2). In particular, we first argue that an optimal solution of (1.1) exists by making connections with the s-spherical section property [35,42] of $\ker A$: a property which is known to hold with high probability when $n \gg m$ for Gaussian matrices. We then revisit the algorithm proposed in [37, Eq. 11] (see Algorithm 4.1 below) for solving (1.1). Specifically, we consider the following function

$$(1.7) \quad F(x) := \|x\|_1 \|x\|_2 + \delta_{A^{-1}(b)}(x),$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank and $b \in \mathbb{R}^m \setminus \{0\}$. We show in section 4.2 that F is a Kurdyka-Łojasiewicz (KL) function with exponent $\frac{1}{2}$. This together with standard convergence analysis based on KL property [1–3] allows us to deduce local linear convergence of the sequence $\{x^t\}$ generated by Algorithm 4.1 when $\{x^t\}$ is bounded. The KL exponent of F is obtained based on a new calculus rule that deduces the KL exponent of a fractional objective from the difference between the numerator and (a suitable scaling of) the denominator.

Next, for the model (1.2), we also relate existence of solutions to the s-spherical section property of $\ker A$ when q takes the form in (1.3) and (1.4). We then propose an algorithm, which we call MBA ℓ_1/ℓ_2 (see Algorithm 6.1), for solving (1.2), which can be seen as an extension of Algorithm 4.1 by incorporating moving-balls-approximation (MBA) techniques. The MBA algorithm was first proposed in [4] for minimizing a smooth objective function subject to multiple smooth constraints, and was further studied in [6, 8, 41] for more general objective functions. However, the existing convergence results of these algorithms cannot be applied to MBA ℓ_1/ℓ_2 because of the possibly nonsmooth continuous function q and the fractional objective in (1.2). Our convergence analysis of MBA ℓ_1/ℓ_2 relies on a specially constructed potential function, which involves the indicator function of the lower level set of a proper closed function related to q (see (6.8)). We prove that any accumulation point of the sequence generated by MBA ℓ_1/ℓ_2 is a so-called Clarke critical point, under mild assumptions; Clarke criticality reduces to the usual notion of stationarity when q is regular. Moreover, by imposing additional KL assumptions on this potential function and assuming P_1 is twice continuously differentiable, we show that the sequence generated by MBA ℓ_1/ℓ_2 is globally convergent, and the convergence rate is related to the KL exponent of the potential function. Finally, we perform numerical experiments to illustrate the performance of our algorithm on solving (1.3), (1.4) and (1.5).

The rest of this paper is organized as follows. We present notation and some preliminaries in section 2. Existence of solutions for (1.1) is discussed in section 3. In section 4, we derive the KL exponent of F in (1.7) and establish local linear convergence of the algorithm proposed in [37, Eq. 11]. Properties of (1.2) such as solution existence and optimality conditions are discussed in section 5, and our algorithm, MBA ℓ_1/ℓ_2, for solving (1.2) is proposed and analyzed in section 6. Finally, numerical results are
We also use B.

The normal cone (resp., regular normal cone) of x, denoted as $\hat{C}(x)$ (resp., $\hat{C}(x)$), is given by $\hat{C}(x) := \partial C(x)$ (resp., $\hat{C}(x) := \partial C(x)$). The distance from a point x to C is denoted by $\text{dist}(x, C)$. The set of points in C that are closest to x is denoted by $\text{Proj}_C(x)$. The convex hull of C is denoted by $\text{conv} C$.

We next recall the Kurdyka–Łojasiewicz (KL) property. This property and the associated notion of KL exponent has been used extensively in the convergence analysis of various first-order methods; see [1–3, 9, 23].
 Definition 2.1 (Kurdyka-Lojasiewicz property and exponent). We say that a proper closed function \(h : \mathbb{R}^n \to (-\infty, \infty] \) satisfies the Kurdyka-Lojasiewicz (KL) property at an \(\hat{x} \in \text{dom} \, \partial h \) if there are \(a \in (0, \infty] \), a neighborhood \(U \) of \(\hat{x} \) and a continuous concave function \(\varphi : [0,a) \to [0,\infty) \) with \(\varphi(0) = 0 \) such that

(i) \(\varphi \) is continuously differentiable on \((0,a)\) with \(\varphi' > 0 \) on \((0,a)\);
(ii) for every \(x \in U \) with \(h(\hat{x}) < h(x) < h(\hat{x}) + a \), it holds that

\[
\varphi'(h(x) - h(\hat{x})) \text{dist}(0, \partial h(x)) \geq 1.
\]

If \(h \) satisfies the KL property at \(\hat{x} \in \text{dom} \, \partial h \) and the \(\varphi \) in (2.2) can be chosen as \(\varphi(\nu) = a_0\nu^{1-\theta} \) for some \(a_0 > 0 \) and \(\theta \in (0,1) \), then we say that \(h \) satisfies the KL property at \(\hat{x} \) with exponent \(\theta \).

A proper closed function \(h \) satisfying the KL property at every point in \(\text{dom} \, \partial h \) is called a KL function, and a proper closed function \(h \) satisfying the KL property with exponent \(\theta \in [0,1) \) at every point in \(\text{dom} \, \partial h \) is called a KL function with exponent \(\theta \).

KL functions arise naturally in various applications. For instance, proper closed semi-algebraic functions and proper subanalytic functions that have closed domains and are continuous on their domains are KL functions with some exponent \(\theta \in [0,1) \); see [2] and [7, Theorem 3.1], respectively.

Another notion that will be needed in our discussion later is (subdifferential) regularity; see [32, Definition 6.4] and [32, Definition 7.25].

Definition 2.2. A nonempty closed set \(C \) is regular at \(x \in C \) if \(N_C(x) = \tilde{N}_C(x) \), and a proper closed function \(h \) is (subdifferentially) regular at \(x \in \text{dom} \, h \) if its epigraph \(\text{epi} \, h := \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : h(x) \leq t \} \) is regular at \((x,h(x)) \).

According to [32, Example 7.28], continuously differentiable functions are regular everywhere. Thus, the constraint functions in (1.3) and (1.4) are regular everywhere. In addition, a nonsmooth regular function particularly relevant to our discussion is the objective function of (1.1). Indeed, in view of [26, Corollary 1.111(i)], it holds that:

\[
\text{(2.3)} \quad \text{At any } \bar{x} \neq 0, \frac{\cdot}{||\cdot||} \text{ is regular and } \partial \frac{||\bar{x}||^2}{||\bar{x}||} = \frac{1}{||\bar{x}||} \partial ||\bar{x}|| - \frac{||\bar{x}||}{||\bar{x}||^3} \bar{x}.
\]

We will also need the following auxiliary lemma concerning the subdifferential of a particular class of functions in our analysis in section 6.

Lemma 2.3. Let \(q = P_1 - P_2 \) with \(P_1 : \mathbb{R}^n \to \mathbb{R} \) being continuously differentiable and \(P_2 : \mathbb{R}^n \to \mathbb{R} \) being convex continuous. Then for any \(x \in \mathbb{R}^n \), we have

\[
\text{(2.4)} \quad \partial^\circ q(x) = \nabla P_1(x) - \partial P_2(x).
\]

Proof. Note that for any \(x \in \mathbb{R}^n \), we have

\[
\partial^\circ q(x) \overset{(a)}{=} \nabla P_1(x) + \partial^\circ (-P_2(x)) \overset{(b)}{=} \nabla P_1(x) - \partial^\circ P_2(x) \overset{(c)}{=} \nabla P_1(x) - \partial P_2(x),
\]

where \((a) \) follows from Corollary 1 of [19, Proposition 2.3.3], \((b) \) holds because of [19, Proposition 2.3.1] and \((c) \) follows from [19, Proposition 2.2.7].

3. Solution existence of model (1.1). In this section, we establish the existence of optimal solutions to problem (1.1) under suitable assumptions. A similar discussion was made in [30, Theorem 2.2], where the existence of local minimizers was established under the strong null space property (see [30, Definition 2.1]) of the sensing matrix \(A \).
It was indeed shown that any sufficiently sparse solution of \(Ax = b \) is a local minimizer for problem (1.1), under the strong null space property. Here, our discussion focuses on the existence of \textit{globally optimal solutions}, and our analysis is based on the spherical section property (SSP) \[35, 42]\.

Definition 3.1 (Spherical section property \[35, 42]\). Let \(m, n \) be two positive integers such that \(m < n \). Let \(V \) be an \((n - m)\)-dimensional subspace of \(\mathbb{R}^n \). We say that \(V \) has the \(s \)-spherical section property if

\[
\inf_{v \in V \setminus \{0\}} \frac{\|v\|_1}{\|v\|} \geq \sqrt{\frac{m}{s}}.
\]

Remark 3.2. According to \[42, Theorem 3.1\], if \(A \in \mathbb{R}^{m \times n} (m < n) \) is a random matrix with i.i.d. standard Gaussian entries, then its \((n - m)\)-dimensional nullspace has the \(s \)-spherical section property for \(s = c_1 (\log(n/m) + 1) \) with probability at least \(1 - e^{-c_2 (n - m)} \), where \(c_0 \) and \(c_1 \) are positive constants independent of \(m \) and \(n \).

We now present our analysis. We first characterize the existence of unbounded minimizing sequences of (1.1): recall that \(\{x^t\} \) is called a minimizing sequence of (1.1) if \(Ax^t = b \) for all \(t \) and \(\lim_{t \to \infty} \frac{\|x^t\|_1}{\|x^t\|} = \nu^* \). Our characterization is related to the following auxiliary problem, where \(A \) is as in (1.1):

\[
\nu^*_d := \inf \left\{ \frac{\|d\|_1}{\|d\|} : Ad = 0, d \neq 0 \right\}.
\]

Lemma 3.3. Consider (1.1) and (3.1). Then \(\nu^*_s = \nu^*_d \) if and only if there exists a minimizing sequence of (1.1) that is unbounded.

Proof. We first suppose that there exists an unbounded minimizing sequence \(\{x^t\} \) of (1.1). By passing to a subsequence if necessary, we may assume without loss of generality that \(\|x^t\| \to \infty \) and that \(\lim_{t \to \infty} \frac{\|x^t\|_1}{\|x^t\|} = \nu^*_s \). Then we have \(\|x^*\|_1 = \nu^*_s \) using the definition of minimizing sequence, and

\[
Ax^* = \lim_{t \to \infty} \frac{Ax^t}{\|x^t\|} = \lim_{t \to \infty} \frac{b}{\|x^t\|} = 0.
\]

One can then see that

\[
\nu^*_d \leq \frac{\|x^*\|_1}{\|x^*\|} = \nu^*_s < \infty.
\]

Next, fix any \(x \) such that \(Ax = b \) and choose any \(d \neq 0 \) satisfying \(Ad = 0 \) (these exist thanks to \(\nu^*_d \leq \nu^*_s < \infty \)). Then it holds that

\[
\nu^*_cs \leq \frac{\|x + sd\|_1}{\|x + sd\|}
\]

for any \(s \in \mathbb{R} \). It follows from the above display that

\[
\nu^*_cs \leq \lim_{s \to \infty} \frac{\|x + sd\|_1}{\|x + sd\|} = \frac{\|d\|_1}{\|d\|}.
\]

Then we have \(\nu^*_cs \leq \nu^*_d \) by the arbitrariness of \(d \). This together with (3.3) shows that \(\nu^*_cs = \nu^*_d \).
We next suppose that $\nu^*_s = \nu^*_d$. Since $\nu^*_s < \infty$ (thanks to $A^{-1}\{b\} \neq \emptyset$), there exists a sequence $\{d^k\}$ satisfying $Ad^k = 0$ and $d^k \neq 0$ such that $\lim_{k \to \infty} \frac{\|d^k\|}{\|d^k\|} = \nu_d^*$. Passing to a further subsequence if necessary, we may assume without loss of generality that $\lim_{k \to \infty} \frac{d^k}{\|d^k\|} = d^*$ for some d^* with $\|d^*\| = 1$. It then follows that

$$Ad^* = \lim_{k \to \infty} \frac{Ad^k}{\|d^k\|} = 0 \quad \text{and} \quad \|d^*\|_1 = \lim_{k \to \infty} \frac{\|d^k\|}{\|d^k\|} = \nu^*_d.$$

Now, choose any x^0 such that $Ax^0 = b$ and define $x^t = x^0 + td^*$ for each $t = 1, 2, \ldots$. Then we have $Ax^t = b$ for all t. Moreover $\|x^t\| \to \infty$ as $t \to \infty$ and

$$\lim_{t \to \infty} \frac{\|x^t\|_1}{\|x^t\|} = \frac{\|d^*\|_1}{\|d^*\|} = \nu_d^* = \nu^*_s.$$

Thus, $\{x^t\}$ is an unbounded minimizing sequence for (1.1). This completes the proof.

We are now ready to present the theorem on solution existence for (1.1).

Theorem 3.4 (Solution existence for (1.1)). Consider (1.1). Suppose that ker A has the s-spherical section property for some $s > 0$ and there exists $\bar{x} \in \mathbb{R}^n$ such that $\|\bar{x}\|_0 < m/s$ and $A\bar{x} = b$. Then the optimal value ν^*_s of (1.1) is attainable, i.e., the set of optimal solutions of (1.1) is nonempty.

Proof. According to the s-spherical property of ker A and the definition of ν^*_d in (3.1), we see that $\nu^*_d \geq \sqrt{\frac{m}{s}}$. It then follows that

$$\nu^*_s \leq \frac{\|\bar{x}\|_1}{\|\bar{x}\|} \leq \sqrt{\frac{m}{s}} < \nu_d^*,$$

where (a) follows from the definition of ν^*_s and the fact that $A\bar{x} = b$, (b) follows from Cauchy-Schwarz inequality and (c) holds by our assumption. Invoking Lemma 3.3 and noting $\nu^*_s < \infty$, we see that there is a bounded minimizing sequence $\{x^t\}$ for (1.1). We can then pass to a convergent subsequence $\{x^{t_j}\}$ so that $\lim_{j \to \infty} x^{t_j} = x^*$ for some x^* satisfying $Ax^* = b$. Since $b \neq 0$, this means in particular that $x^* \neq 0$. We then have upon using the continuity of $\|x\|_1$ at x^* and the definition of minimizing sequence that

$$\frac{\|x^*\|_1}{\|x^*\|} = \lim_{j \to \infty} \frac{\|x^{t_j}\|_1}{\|x^{t_j}\|} = \nu^*_s.$$

This shows that x^* is an optimal solution of (1.1). This completes the proof.

4. KL exponent of F in (1.7) and global convergence of Algorithm 4.1.

In this section, we discuss the KL exponent of (1.7) and its implication on the convergence rate of the algorithm proposed in [37, Eq. 11] for solving (1.1). For ease of reference, this algorithm is presented as Algorithm 4.1 below. It was shown in [37] that if the sequence $\{x^t\}$ generated by this algorithm is bounded, then any accumulation point is a stationary point of F in (1.7).

Here, we first argue that if the sequence $\{x^t\}$ generated by Algorithm 4.1 is bounded, then it converges to a stationary point x^* of F in (1.7). The argument is standard, making use of H1, H2, H3 in [3, Section 2.3]. We include the proof for the ease of readers.

Proposition 4.1 (Global convergence of Algorithm 4.1). Consider (1.1). Let $\{x^t\}$ be the sequence generated by Algorithm 4.1 and suppose that $\{x^t\}$ is bounded. Then $\{x^t\}$ converges to a stationary point of F in (1.7).
Algorithm 4.1 The algorithm proposed in [37, Eq. 11] for (1.1)

Step 0. Choose x^0 with $Ax^0 = b$ and $\alpha > 0$. Set $\omega_0 = \|x^0\|_1/\|x^0\|$ and $t = 0$.

Step 1. Solve the subproblem

$$x^{t+1} = \arg\min_{x \in \mathbb{R}^n} \|x\|_1 - \frac{\omega_t}{\|x^t\|} (x, x^t) + \frac{\alpha}{2} \|x - x^t\|^2$$

s.t. $Ax = b$.

Step 2. Compute $\omega_{t+1} = \|x^{t+1}\|_1/\|x^{t+1}\|$. Update $t \leftarrow t + 1$ and go to **Step 1**.

Proof. First, according to [37, Lemma 1], the sequence $\{\omega_t\}$ generated by Algorithm 4.1 enjoys the following sufficient descent property:

$$\omega_t - \omega_{t+1} \geq \frac{\alpha}{2\|x^{t+1}\|} \|x^{t+1} - x^t\|^2.$$

Now, if we let λ^t denote a Lagrange multiplier of the subproblem (4.1) at iteration t, one then see from the first-order optimality condition that

$$-A^T \lambda^t + \frac{\|x^t\|_1}{\|x^t\|^2} x^t - \alpha(x^{t+1} - x^t) \in \partial\|x^{t+1}\|_1.$$

On the other hand, using (2.3) and noting that $x^t \not= 0$ for all t, we have

$$\frac{1}{\|x^{t+1}\|} \partial\|x^{t+1}\|_1 - \frac{\|x^{t+1}\|_1}{\|x^{t+1}\|^3} x^{t+1} + A^T \lambda^t = \partial\|x^{t+1}\|_1 + N_{A^{-1}(b)}(x^{t+1}) = \partial F(x^{t+1}),$$

where the last equality follows from [32, Corollary 10.9], the regularity at x^{t+1} of $\|\cdot\|_1$ (see (2.3)) and $\delta_{A^{-1}(b)}(\cdot)$ (see [32, Theorem 6.9]), and the definition of F in (1.7). Combining (4.3) and the above display, we obtain that

$$\frac{1}{\|x^{t+1}\|} \left(\frac{\|x^t\|_1}{\|x^t\|^2} x^t - \frac{\|x^{t+1}\|_1}{\|x^{t+1}\|^2} x^{t+1}\right) - \frac{\alpha}{\|x^{t+1}\|} (x^{t+1} - x^t) \in \partial F(x^{t+1}).$$

On the other hand, since $\|x^t\| \geq \inf_{y \in A^{-1}(b)} \|y\| > 0$ for all t (thanks to $Ax^t = b$ and $b \not= 0$) and $\{x^t\}$ is bounded, we see that there exists $C_0 > 0$ so that

$$\frac{\|x^t\|_1}{\|x^t\|^2} x^t - \frac{\|x^{t+1}\|_1}{\|x^{t+1}\|^2} x^{t+1} \leq C_0 \|x^{t+1} - x^t\|$$

for all t. Thus, in view of the above two displays, we conclude that

$$\text{dist}(0, \partial F(x^{t+1})) \leq \frac{C_0 + \alpha}{\inf_{y \in A^{-1}(b)} \|y\|} \|x^{t+1} - x^t\|$$

for all t. Using the boundedness of $\{x^t\}$, (4.2), the above display and the continuity of F on its domain, we see that the conditions H1, H2, H3 in [3, Section 2.3] are satisfied. Since F is clearly proper closed semi-algebraic and hence a KL function, we can then invoke [3, Theorem 2.9] to conclude that $\{x^t\}$ converges to a stationary point of F. \(\Box\)
While it is routine to show that the sequence \(\{x^t\}\) generated by Algorithm 4.1 is convergent when it is bounded, it is more challenging to deduce the asymptotic convergence rate: the latter typically requires an estimate of the KL exponent of \(F\) in (1.7), which was used in the above analysis. In what follows, we will show that the KL exponent of \(F\) is \(\frac{1}{2}\). To do this, we will first establish a calculus rule for deducing the KL exponent of a fractional objective from the difference between the numerator and (a suitable scaling of) the denominator: this is along the line of the calculus rules for KL exponents developed in [23,24,40], and can be of independent interest.

4.1. KL exponent of fractional functions.

Let \(f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}\) be proper closed and \(g : \mathbb{R}^n \to \mathbb{R}\) be a continuous nonnegative function that is continuously differentiable on an open set containing \(\text{dom } f\). Suppose that \(\inf f \geq 0\) and \(\inf_{\text{dom } f} g > 0\). We consider the following fractional programming problem:

\[
\min_x G(x) := \frac{f(x)}{g(x)}.
\]

In algorithmic developments for solving (4.4) (see, for example, [20,21]), it is customary to consider functions of the following form

\[
H_u(x) := f(x) - \frac{f(u)}{g(u)} g(x),
\]

where \(u\) typically carries information from the previous iterate. We study a relationship between the KL exponent of \(G\) in (4.4) and that of \(H_u\) in (4.5) when \(\bar{x}\) is a stationary point of \(G\).

Theorem 4.2 (KL exponent of fractional functions). Let \(f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}\) be a proper closed function with \(\inf f \geq 0\) and \(g : \mathbb{R}^n \to \mathbb{R}\) be a continuous nonnegative function that is continuously differentiable on an open set containing \(\text{dom } f\) with \(\inf_{\text{dom } f} g > 0\). Assume that one of the following conditions hold:

(i) \(f\) is locally Lipschitz.

(ii) \(f = h + \delta_D\) for some continuously differentiable function \(h\) and nonempty closed set \(D\).

(iii) \(f = h + \delta_D\) for some locally Lipschitz function \(h\) and nonempty closed set \(D\), and \(h\) and \(D\) are regular at every point in \(D\).

Let \(\bar{x}\) be such that \(0 \in \partial G(\bar{x})\), where \(G\) is defined as in (4.4). Then \(\bar{x} \in \text{dom } \partial H_{\bar{x}}\). If \(H_{\bar{x}}\) defined as in (4.5) satisfies the KL property with exponent \(\theta \in [0,1)\) at \(\bar{x}\), then so does \(G\).

Proof. It is clear that \(\text{dom } H_{\bar{x}} = \text{dom } f = \text{dom } G\). We first argue that under the assumptions on \(f\) and \(g\), we have for any \(x \in \text{dom } G\) that

\[
\partial H_{\bar{x}}(x) = \partial f(x) - G(\bar{x}) \nabla g(x) \quad \text{and} \quad \partial G(x) = \frac{1}{g(x)} (\partial f(x) - G(x) \nabla g(x)).
\]

Indeed, in all cases, the first relation in (4.6) follows from [32, Exercise 8.8(c)]. When \(f\) is locally Lipschitz, the second relation in (4.6) follows from [26, Corollary 1.111(i)]. When \(f = h + \delta_D\) for some continuously differentiable function \(h\) and nonempty closed set \(D\), the second relation in (4.6) follows by first applying [32, Exercise 8.8(c)] to \(G = \frac{h}{g} + \delta_D\), then applying the usual quotient rule to the differentiable function \(\frac{h}{g}\), and subsequently using \(\partial f = \nabla h + \partial \delta_D\) (thanks to [32, Exercise 8.8(c)]). Finally, when \(f = h + \delta_D\) for some locally Lipschitz function \(h\) and nonempty closed set \(D\) with \(h\)
and \(D \) being regular at every point in \(D \), we have that the function \(\frac{h}{g} \) is regular for all \(x \in D \) in view of \([26, \text{Corollary 1.111(i)}]\). This together with the regularity of \(D \) gives

\[
\partial G(x) = \partial \left(\frac{h}{g} \right)(x) + \partial \delta_D(x) \\
= \frac{g(x)\partial h(x) - h(x)\nabla g(x)}{g(x)^2} + \partial \delta_D(x) \\
= \frac{g(x)\partial f(x) - f(x)\nabla g(x)}{g(x)^2},
\]

where the first and the last equalities follow from \([32, \text{Corollary 10.9}]\) and \([32, \text{Exercise 8.14}]\), and the second equality follows from \([26, \text{Corollary 1.111(i)}]\).

Now, in view of \((4.6)\), we have \(\operatorname{dom} \partial H_{\bar{x}} = \operatorname{dom} \partial f = \operatorname{dom} \partial G \). In addition, in all three cases, it holds that \(\operatorname{dom} f = \operatorname{dom} \partial f \). Indeed, when \(f \) is locally Lipschitz, this claim follows from Exercise \(8(c)\) of \([10, \text{Section 6.4}]\). When \(f = h+\delta_D \) as in \((ii)\), the claim follows from \([32, \text{Exercise 8.8(c)}]\), while for case \((iii)\), we have \(\operatorname{dom} f = \operatorname{dom} \partial f = D \) in view of \([32, \text{Corollary 10.9}]\), \([32, \text{Exercise 8.14}]\) and Exercise \(8(c)\) of \([10, \text{Section 6.4}]\). Consequently, in all three cases, we have

\[
\Xi := \operatorname{dom} G = \operatorname{dom} \partial G = \operatorname{dom} H_{\bar{x}} = \operatorname{dom} \partial H_{\bar{x}} = \operatorname{dom} f = \operatorname{dom} \partial f,
\]

and \(H_{\bar{x}} \) is continuous relative to \(\Xi \). In particular, \(\bar{x} \in \operatorname{dom} \partial G = \operatorname{dom} \partial H_{\bar{x}} \).

Let \(U \) be the open set containing \(\operatorname{dom} f \) on which \(g \) is continuously differentiable. Since \(H_{\bar{x}} \) satisfies the KL property with exponent \(\theta \) at \(\bar{x} \) and is continuous on \(\Xi \), there exist \(\epsilon > 0 \) and \(c > 0 \) so that \(B(\bar{x}, 2\epsilon) \subseteq U \) and

\[
(4.7) \quad \operatorname{dist}(0, \partial H_{\bar{x}}(x)) \geq c(H_{\bar{x}}(x) - H_{\bar{x}}(\bar{x}))^\theta = c(H_{\bar{x}}(x))^\theta
\]

whenever \(x \in \Xi, H_{\bar{x}}(x) > 0 \) and \(\|x - \bar{x}\| \leq \epsilon \). Let \(M := \sup_{\|x - \bar{x}\| \leq \epsilon} \max \{ g(x), \| \nabla g(x) \| \} \), which is finite as \(g \) is continuously differentiable on \(U \supseteq B(\bar{x}, 2\epsilon) \). Since \(H_{\bar{x}}(x) = 0 \) and \(\inf_{\operatorname{dom} f} g > 0 \), there exists \(\epsilon' \in (0, \epsilon) \) such that

\[
(4.8) \quad |H_{\bar{x}}(x)|^{1-\theta} \leq \frac{c\inf_{\operatorname{dom} f} g}{2M} \quad \text{whenever} \ \|x - \bar{x}\| \leq \epsilon' \ \text{and} \ x \in \Xi,
\]

where \(c \) is given in \((4.7)\).

Now, consider any \(x \in \Xi \) satisfying \(\|x - \bar{x}\| \leq \epsilon' \) and \(G(\bar{x}) < G(x) < G(\bar{x}) + \epsilon' \). Then we have from \((4.6)\) that

\[
\operatorname{dist}(0, \partial G(x)) = \frac{1}{g(x)} \inf_{\xi \in \partial f(x)} \|\xi - G(x)\nabla g(x)\| \overset{(a)}{\geq} \frac{1}{M} \inf_{\xi \in \partial f(x)} \|\xi - G(x)\nabla g(x)\| \\
\overset{(b)}{\geq} \frac{1}{M} \inf_{\xi \in \partial f(x)} \|\xi - G(\bar{x})\nabla g(x)\| - \frac{1}{M} |G(x) - G(\bar{x})|\|\nabla g(x)\| \\
\overset{(c)}{\geq} \frac{1}{M} \inf_{\xi \in \partial f(x)} \|\xi - G(\bar{x})\nabla g(x)\| - (G(x) - G(\bar{x})) \\
= \frac{1}{M} \operatorname{dist}(0, \partial H_{\bar{x}}(x)) - \frac{1}{g(x)} H_{\bar{x}}(x) \overset{(d)}{\geq} \frac{1}{M} \operatorname{dist}(0, \partial H_{\bar{x}}(x)) - \frac{1}{\inf_{\operatorname{dom} f} g} H_{\bar{x}}(x) \\
\overset{(e)}{\geq} \frac{c}{M} (H_{\bar{x}}(x))^\theta - \frac{1}{\inf_{\operatorname{dom} f} g} H_{\bar{x}}(x) \overset{(f)}{\geq} \frac{c}{2M} (H_{\bar{x}}(x))^\theta
\]
that follows from (4.11). This completes the proof.

Theorem 3.4 and [32, Theorem 10.1], we have whenever

\[\| \text{dist}(0, \partial p) \| \leq M \] and \(G(x) > G(\bar{x}) \), (d) holds because \(H_\xi(x) > 0 \) (thanks to \(G(x) > G(\bar{x}) \)), (e) then follows from (4.7) and (f) follows from (4.8) and the fact that \(H_\xi(x) > 0 \). Finally, (g) holds because \(G(x) > G(\bar{x}) \). This completes the proof. \(\square \)

4.2. KL exponent of \(F \) in (1.7). Before proving our main result concerning the KL exponent of \(F \) in (1.7), we also need the following simple proposition.

Proposition 4.3. Let \(p \) be a proper closed function, and let \(\bar{x} \in \text{dom } p \) be such that \(p(\bar{x}) > 0 \). Then the following statements hold.

(i) We have \(\partial(p^2)(x) = 2p(x)\partial p(x) \) for all \(x \) sufficiently close to \(\bar{x} \).

(ii) Suppose in addition that \(\bar{x} \in \text{dom } \partial(p^2) \) and \(p^2 \) satisfies the KL property at \(\bar{x} \) with exponent \(\theta \in [0, 1) \). Then \(p \) satisfies the KL property at \(\bar{x} \) with exponent \(\theta \in [0, 1) \).

Proof. Since \(p(\bar{x}) > 0 \) and \(p \) is closed, there exists \(\epsilon > 0 \) so that

\[0 < p(x) < \infty \]

whenever \(\| x - \bar{x} \| \leq \epsilon \) and \(x \in \text{dom } p \). Then we deduce from [28, Lemma 1] that

\[\hat{\partial}(p^2)(x) = 2p(x)\hat{\partial p}(x) \] whenever \(x \in \text{dom } p \) and \(\| x - \bar{x} \| \leq \epsilon \).

Using (4.9), and invoking the definition of limiting subdifferential and by shrinking \(\epsilon \) if necessary, we deduce that

\[\partial(p^2)(x) = 2p(x)\partial p(x) \] whenever \(x \in \text{dom } p \) and \(\| x - \bar{x} \| \leq \epsilon \).

In particular, if \(\bar{x} \in \text{dom } \partial(p^2) \), then \(\bar{x} \in \text{dom } \partial p \).

When \(p^2 \) also satisfies the KL property at \(\bar{x} \) with exponent \(\theta \), by shrinking \(\epsilon \) further if necessary, we see that there exists \(c > 0 \) so that

\[\text{dist}(0, \partial p^2(x)) \geq c(p^2(x) - p^2(\bar{x}))^\theta, \]

whenever \(p^2(\bar{x}) < p^2(x) < p^2(\bar{x}) + \epsilon(2p(\bar{x}) + \epsilon) \) and \(\| x - \bar{x} \| \leq \epsilon \). Thus, for \(x \in \text{dom } \partial p \) satisfying \(\| x - \bar{x} \| \leq \epsilon \) and \(p(\bar{x}) < p(x) < p(\bar{x}) + \epsilon \), we have from (4.10) that

\[\text{dist}(0, \partial p(x)) = \frac{1}{2p(x)} \text{dist}(0, \partial p^2(x)) \geq \frac{1}{2p(\bar{x}) + 2\epsilon} \text{dist}(0, \partial p^2(x)) \]

\[\geq \frac{c}{2p(\bar{x}) + 2\epsilon} (p^2(x) - p^2(\bar{x}))^\theta = \frac{c}{2p(\bar{x}) + 2\epsilon} (p(x) + p(\bar{x}))^\theta (p(x) - p(\bar{x}))^\theta \]

\[\geq \frac{c}{2(1-\theta)} (p(\bar{x}) + \epsilon) \| p(x) - p(\bar{x}) \|^\theta, \]

where (a) follows from (4.11). This completes the proof. \(\square \)

We are now ready to show that the KL exponent of \(F \) in (1.7) is \(\frac{1}{2} \). We remark that if the set \(\mathcal{X} := \{ x : 0 \in \partial F(x) \} \) is empty, then this claim holds trivially in view of [23, Lemma 2.1]. However, in general, one can have \(\mathcal{X} \neq \emptyset \). Indeed, according to Theorem 3.4 and [32, Theorem 10.1], we have \(\mathcal{X} \neq \emptyset \) with high probability when \(A \) is generated in a certain way.
Theorem 4.4. The function F in (1.7) is a KL function with exponent $\frac{1}{2}$.

Proof. In view of [23, Lemma 2.1], it suffices to look at the KL exponent at a stationary point \bar{x} of F. For any x satisfying $0 \in \partial F(\bar{x})$, we have $F(\bar{x}) > 0$ since $b \neq 0$. Moreover, we have $0 \in \partial(F^2)(\bar{x})$ in view of Proposition 4.3(i). Next, note that the function

$$F_1(x) := \|x\|^2_1 - \frac{\|\bar{x}\|^2_1}{\|x\|^2_1}\|x\|^2_1 + \delta_{A^{-1}\{b\}}(x)$$

can be written as $\min_{\sigma \in \mathcal{R}} \{Q_{\sigma}(x) + P_{\sigma}(x)\}$, where $\mathcal{R} = \{u \in \mathbb{R}^n : u_i \in \{1, -1\} \ \forall i\}$, and Q_{σ} are quadratic functions (nonconvex) and P_{σ} are polyhedral functions indexed by σ: indeed, for each $\sigma \in \mathcal{R}$, one can define P_{σ} as the indicator function of the set $\{x : Ax = b, \sigma \odot x \geq 0\}$, where \odot denotes the Hadamard product, and $Q_{\sigma}(x) := ((\sigma, x))^2 - \frac{\|\bar{x}\|^2_1}{\|x\|^2_1}\|x\|^2_1$. Then, in view of [23, Corollary 5.2], F_1 is a KL function with exponent $\frac{1}{2}$. Since the convex function $\|\cdot\|^2_1$ is regular everywhere and the convex set $A^{-1}\{b\}$ is regular at every $x \in A^{-1}\{b\}$ (thanks to [32, Theorem 6.9]), we deduce using Theorem 4.2 that the function

$$x \mapsto \frac{\|x\|^2_1}{\|x\|^2_1} + \delta_{A^{-1}\{b\}}(x)$$

satisfies the KL property at \bar{x} with exponent $\frac{1}{2}$. The desired conclusion now follows from this and Proposition 4.3(ii).

Equipped with the result above, by following the line of arguments in [1, Theorem 2], one can conclude further that the sequence $\{x^t\}$ generated by Algorithm 4.1 converges locally linearly to a stationary point of F in (1.7) if the sequence is bounded. The proof is standard and we omit it here for brevity.

Theorem 4.5 (Convergence rate of Algorithm 4.1). Consider (1.1). Let $\{x^t\}$ be the sequence generated by Algorithm 4.1 and suppose that $\{x^t\}$ is bounded. Then $\{x^t\}$ converges to a stationary point x^* of F in (1.7) and there exist $\ell \in \mathbb{N}_+$, $a_0 \in (0, 1)$ and $a_1 > 0$ such that

$$\|x^t - x^*\| \leq a_1a_0^t \quad \text{whenever} \ t > \ell.$$

5. Compressed sensing with noise based on ℓ_1/ℓ_2 minimization. In the previous sections, we have been focusing on the model (1.1), which corresponds to noiseless compressed sensing problems. In this section and the next, we will be looking at (1.2). We will discuss conditions for existence of solutions and derive some first-order optimality conditions for (1.2) in this section. An algorithm for solving (1.2) will be proposed in the next section and will be shown to generate sequences that cluster at “critical” points in the sense defined in this section, under suitable assumptions.

5.1. Solution existence. Clearly, if q in (1.2) is in addition level-bounded, then the feasible set is compact and hence the set of optimal solutions is nonempty. However, in applications such as (1.3), (1.4) and (1.5), the corresponding q is not level-bounded. Here, we discuss solution existence for (1.3) and (1.4). Our arguments are along the same line as those in section 3. We first present a lemma that establishes a relationship between the problems (1.3), (1.4) and (3.1).

Lemma 5.1. Consider (3.1) and (1.2) with q given as in (1.3) or (1.4). Then $\nu_{\text{nes}}^* = \nu_0^*$ if and only if there exists a minimizing sequence of (1.2) that is unbounded.
The proof of this lemma is almost identical to that of Lemma 3.3. Here we omit the details and only point out a slight difference concerning the derivation of (3.2). Take (1.3) as an example and let \(\{x^t\} \) be an unbounded minimizing sequence of it with \(\lim_{t \to \infty} x^t = x^* \) for some \(x^* \) satisfying \(\|x^*\| = 1 \). Then one can prove \(Ax^* = 0 \) by using the facts that \(\|Ax^t - b\| \leq \sigma \) for all \(t \) and \(\|x^t\| \to \infty \). Similar deductions can be done for (1.4).

Using Lemma 5.1, we can deduce solution existence based on the SSP of \(\ker A \) and the existence of a sparse feasible solution to (1.3) (or (1.4)). The corresponding arguments are the same as those in Theorem 3.4 and we omit the proof for brevity.

Theorem 5.2 (Solution existence for (1.3) and (1.4)). Consider (1.2) with \(q \) given as in (1.3) or (1.4). Suppose that \(\ker A \) has the \(s \)-spherical section property and there exists \(\bar{x} \in \mathbb{R}^n \) such that \(\|\bar{x}\|_0 < m/s \) and \(q(\bar{x}) \leq 0 \). Then the optimal value of (1.2) is attainable.

5.2. Optimality conditions

We discuss first-order necessary optimality conditions for local minimizers. Our analysis is based on the following standard constraint qualifications.

Definition 5.3 (Generalized Mangasarian-Fromovitz constraint qualifications). Consider (1.2). We say that the general Mangasarian-Fromovitz constraint qualifications (GMFCQ) holds at an \(x^* \) satisfying \(q(x^*) \leq 0 \) if the following statement holds:

- If \(q(x^*) = 0 \), then \(0 \notin \partial^q q(x^*) \).

The GMFCQ reduces to the standard MFCQ when \(q \) is smooth. One can then see from sections 5.1 and 5.2 of [41] that the GMFCQ holds at every \(x \) feasible for (1.3) and (1.4) for all positive \(\sigma \) and \(\gamma \), because \(A \) is surjective. We next study the GMFCQ for (1.5), in which \(A \) is also surjective.

Proposition 5.4. The GMFCQ holds in the whole feasible set of (1.5).

Proof. It is straightforward to see that the GMFCQ holds for those \(x \in \{x : q(x) < 0\} \). Then it remains to consider those \(x \) satisfying \(q(x) = 0 \). Let \(q \) be as in (1.5) and \(\bar{x} \) satisfy \(q(\bar{x}) = 0 \). Notice that a \(\xi \in \text{Proj}_S(A\bar{x} - b) \) takes the following form:

\[
\xi_j = \begin{cases}
[A\bar{x} - b]_j & \text{if } j \in I^*, \\
0 & \text{otherwise,}
\end{cases}
\]

where \(I^* \) is an index set corresponding to the \(r \)-largest entries (in magnitude). Then for any \(\xi \in \text{Proj}_S(A\bar{x} - b) \), we have

\[
\langle A\bar{x} - b, \xi \rangle = \|\xi\|^2,
\]

\[
\|A\bar{x} - b\|^2 = \|\xi\|^2 + \|A\bar{x} - b - \xi\|^2
\]

\[
= \|\xi\|^2 + \text{dist}^2(A\bar{x} - b, S) \overset{(a)}{=} \|\xi\|^2 + \sigma^2,
\]

where (a) holds because \(0 = q(\bar{x}) = \text{dist}^2(A\bar{x} - b, S) - \sigma^2 \). Furthermore, since \(A \) is surjective, we can deduce from [32, Example 8.53], [32, Exercise 10.7] and [32, Theorem 8.49] that

\[
\partial^q q(\bar{x}) = \text{conv}\{2A^T(A\bar{x} - b - \xi) : \xi \in \text{Proj}_S(A\bar{x} - b)\}.
\]

Now, suppose to the contrary that \(0 \in \partial^q q(\bar{x}) \). Using Carathéodory’s theorem, we see that there exist \(\lambda_i \geq 0 \) and \(\xi_i \in \text{Proj}_S(A\bar{x} - b) \), \(i = 1, \ldots, m + 1 \) such that

\[
\sum_{i=1}^{m+1} \lambda_i = 1, \sum_{i=1}^{m+1} \lambda_i \xi_i = 0, \forall \xi \in \text{Proj}_S(A\bar{x} - b).
\]
\[\sum_{i=1}^{m+1} \lambda_i = 1 \text{ and } \sum_{i=1}^{m+1} \lambda_i A^T (A\bar{x} - b - \xi_i) = 0. \] Since A is surjective, we then have
\[\sum_{i=1}^{m+1} \lambda_i (A\bar{x} - b - \xi_i) = 0. \]

Multiplying both sides of the above equality by \((A\bar{x} - b)^T\), we obtain further that
\[0 = \sum_{i=1}^{m+1} \lambda_i (A\bar{x} - b, A\bar{x} - b - \xi_i) = \sum_{i=1}^{m+1} \lambda_i [||A\bar{x} - b||^2 - (A\bar{x} - b, \xi_i)] \]
\[\overset{(a)}{=} \sum_{i=1}^{m+1} \lambda_i [||\xi_i||^2 + \sigma^2 - ||\xi_i||^2] = \sigma^2 > 0, \]
where (a) follows from (5.1) and the fact that \(\xi_i \in \text{Proj}_S (A\bar{x} - b)\) for each \(i\), and the last equality holds because \(\sum_{i=1}^{m+1} \lambda_i = 1\). This is a contradiction and thus we must have \(0 \notin \partial^c q(\bar{x})\). This completes the proof. \(\square\)

In the next definition, we consider some notions of criticality. The first one is the standard notion of stationarity while the second one involves the Clarke subdifferential.

Definition 5.5. Consider (1.2). We say that an \(\bar{x} \in \mathbb{R}^n\) satisfying \(q(\bar{x}) \leq 0\) is
(i) a stationary point of (1.2) if
\[0 \in \partial \left(\frac{||x||}{||x||} + \delta_{[0,\infty)} \right)(\bar{x}); \]
(ii) a Clarke critical point of (1.2) if there exists \(\bar{\lambda} \geq 0\) such that
\[0 \in \partial \frac{||x||}{||x||} + \bar{\lambda}\partial^c q(\bar{x}) \text{ and } \bar{\lambda} q(\bar{x}) = 0. \]

As mentioned above, Definition 5.5(i) is standard and it is known that every local minimizer of (1.2) is a stationary point; see [32, Theorem 10.1]. We next study some relationships between these notions of criticality, and show in particular that every local minimizer is Clarke critical when the GMFCQ holds.

Proposition 5.6 (Stationarity vs Clarke criticality). Consider (1.2) and let \(\bar{x}\) be such that \(q(\bar{x}) \leq 0\). Then the following statements hold.
(i) If \(\bar{x}\) is a stationary point of (1.2) and the GMFCQ holds at \(\bar{x}\), then \(\bar{x}\) is a Clarke critical point.
(ii) If \(\bar{x}\) is a Clarke critical point of (1.2) and \(q\) is regular at \(\bar{x}\), then \(\bar{x}\) is stationary.

Remark 5.7. Since local minimizers of (1.2) are stationary points, we see from Proposition 5.6(i) that when the GMFCQ holds in the whole feasible set, local minimizers are also Clarke critical.

Proof. Suppose that \(\bar{x}\) is a stationary point of (1.2) at which the GMFCQ holds. Then (5.2) holds and we consider two cases.

Case 1: \(q(\bar{x}) < 0\). Since \(q\) is continuous, (5.2) implies \(0 \in \partial \frac{||x||}{||x||}\) and hence (5.3) holds with \(\bar{\lambda} = 0\). Thus, \(\bar{x}\) is a Clarke critical point.

Case 2: \(q(\bar{x}) = 0\). Since the GMFCQ holds for (1.2) at \(\bar{x}\), we see that \(0 \notin \partial^c q(\bar{x})\). Then we can deduce from (5.2) and [32, Exercise 10.10] that
\[0 \in \partial \frac{||x||}{||x||} + N_{[q \leq 0]}(\bar{x}) \overset{(a)}{=} \partial \frac{||x||}{||x||} + \bigcup_{\lambda \geq 0} \lambda \partial^c q(\bar{x}), \]
where (a) follows from [11, Theorem 5.2.22], the first corollary to [19, Theorem 2.4.7] and the fact that \(0 \notin \partial^o q(\bar{x}) \). Thus, (5.3) holds with some \(\lambda \geq 0 \) (recall that \(q(\bar{x}) = 0 \)), showing that \(\bar{x} \) is a Clarke critical point. This proves item (i).

We now prove item (ii). Suppose that \(\bar{x} \) is a Clarke critical point and that \(q \) is regular at \(\bar{x} \). Then there exists \(\lambda \geq 0 \) so that (5.3) holds. We again consider two cases. **Case 1:** \(\lambda = 0 \). In this case, we see from (5.3) that \(0 \in \partial \frac{\|\bar{x}\|_1}{\|\bar{x}\|} \), which implies

\[
0 \in \partial \frac{\|\bar{x}\|_1}{\|\bar{x}\|} (a) \subseteq \partial \frac{\|\bar{x}\|_1}{\|\bar{x}\|} + \hat{N}_{\|q\| \leq 0}(\bar{x})
\]

where (a) follows from (2.3) and [32, Corollary 8.11], (b) holds thanks to [32, Corollary 10.9], and (c) follows from [32, Theorem 8.6]. Thus, \(\bar{x} \) is a stationary point.

Case 2: \(\lambda > 0 \). In this case, we have from (5.3) that \(q(\bar{x}) = 0 \). Since \(q \) is regular at \(\bar{x} \), we see from [32, Corollary 8.11] and the discussion right after [32, Theorem 8.49] that

\[
(\partial q(\bar{x}) = \partial^o q(\bar{x})).
\]

Now, in view of (5.4), \(q(\bar{x}) = 0 \) and [32, Proposition 10.3], we have

\[
\hat{N}_{\|q\| \leq 0}(\bar{x}) \supseteq \bigcup_{\lambda \geq 0} \lambda \partial q(\bar{x}) = \bigcup_{\lambda \geq 0} \lambda \partial^o q(\bar{x}).
\]

We then deduce that

\[
\partial \left(\frac{\| \cdot \|_1}{\| \cdot \|} + \delta_{\|q\| \leq 0}(\cdot) \right) (\bar{x}) \supseteq \hat{N}_{\|q\| \leq 0}(\bar{x}) \supseteq \bigcup_{\lambda \geq 0} \lambda \partial^o q(\bar{x}),
\]

where (a) follows from [32, Theorem 8.6] and [32, Corollary 10.9], and (b) follows from (5.5), (2.3) and [32, Corollary 8.11]. This together with the definition of Clarke criticality shows that (5.2) holds. This completes the proof.

6. A moving-balls-approximation based algorithm for solving (1.2). In this section, we propose and analyze an algorithm for solving (1.2), which is an extension of Algorithm 4.1 by incorporating moving-balls-approximation (MBA) techniques [4]. Our algorithm, which we call MBA\(_{\ell_1/\ell_2}\), is presented as Algorithm 6.1 below. Unlike previous works [6,8,41] that made use of MBA techniques, our algorithm deals with a fractional objective and a possibly nonsmooth continuous constraint function. Thus, the convergence results in [6,8,41] cannot be directly applied to analyze our algorithm. Indeed, as we shall see later in section 6.2, we need to introduce a new potential function for our analysis to deal with the possibly nonsmooth \(q \) in the constraint.

We will show that Algorithm 6.1 is well defined later, i.e., for each \(t \in \mathbb{N}_+ \), the subproblem (6.1) has a unique solution for every \(l_t \) and the inner loop in **Step 1** terminates finitely. Here, it is worth noting that (6.1) can be efficiently solved using a root-finding procedure outlined in [41, Appendix A] since (6.1) takes the form of

\[
\min_x \|x\|_1 + \frac{\alpha}{2} \|x - c^t\|^2 \quad \text{s.t. } \|x - s^t\|^2 \leq R_t
\]

for some \(c^t \in \mathbb{R}^n \), \(s^t \in \mathbb{R}^n \) and \(R_t \geq 0 \).
Algorithm 6.1 MBA_{t_1/t_2}: Moving-balls-approximation based algorithm for (1.2)

Step 0. Choose \(x^0 \) with \(q(x^0) \leq 0 \), \(\alpha > 0 \) and \(0 < t_{\min} < t_{\max} \). Set \(\omega_0 = \|x^0\|_1/\|x^0\| \) and \(t = 0 \).

Step 1. Choose \(t^0 \in [t_{\min}, t_{\max}] \) arbitrarily and set \(t = t^0 \). Choose \(\zeta^t \in \partial P_2(x^t) \).

(1a) Solve the subproblem

\[
\tilde{x} = \arg\min_{x \in \mathbb{R}^n} \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{\alpha}{2} \|x - x^t\|^2 \\
\text{s.t.} \quad q(x^t) + (\nabla P_1(x^t) - \zeta^t, x - x^t) + \frac{t}{2} \|x - x^t\|^2 \leq 0.
\]

(1b) If \(q(\tilde{x}) \leq 0 \), go to **Step 2**. Else, update \(t \leftarrow 2t \) and go to **Step 1**.

Step 2. Set \(x^{t+1} = \tilde{x} \) and compute \(\omega_{t+1} = \|x^{t+1}\|_1/\|x^{t+1}\| \). Set \(t := t + 1 \). Update \(t \leftarrow t + 1 \) and go to **Step 1**.

6.1. Convergence analysis. In this subsection, we establish subsequential convergence of MBA_{t_1/t_2} under suitable assumptions. We start with the following auxiliary lemma that concerns well-definedness and sufficient descent. The proof of the sufficient descent property in item (iii) below is essentially the same as [37, Lemma 1]. We include it here for completeness.

Lemma 6.1 (Well-definedness and sufficient descent). Consider (1.2). Then the following statements hold:

(i) MBA_{t_1/t_2} is well defined, i.e., for every \(t \in \mathbb{N}_+ \), the subproblem (6.1) has a unique solution for every \(t \) and the inner loop in **Step 1** terminates finitely.

(ii) The sequence \(\{t_i\} \) is bounded.

(iii) Let \(\{(x^t, \omega_t)\} \) be the sequence generated by MBA_{t_1/t_2}. Then there exists \(\delta > 0 \) such that \(\|x^t\| \geq \delta \) for every \(t \in \mathbb{N}_+ \), and the sequence \(\{\omega_t\} \) satisfies

\[
\omega_t - \omega_{t+1} \geq \frac{\alpha}{2\|x^{t+1}\|} \|x^t - x^{t+1}\|^2, \quad t \in \mathbb{N}_+.
\]

Proof. Suppose that an \(x^t \) satisfying \(q(x^t) \leq 0 \) is given for some \(t \in \mathbb{N}_+ \). Then \(x^t \neq 0 \) since \(q(0) > 0 \). Moreover, for any \(t > 0 \), \(x^t \) is feasible for (6.1) and the feasible set is thus nonempty. Since (6.1) minimizes a strongly convex continuous function over a nonempty closed convex set, it has a unique optimal solution, i.e., \(\tilde{x} \) exists.

Let \(L_p \) be the Lipschitz continuity modulus of \(\nabla P_1 \). Then we have

\[
q(\tilde{x}) = P_1(\tilde{x}) - P_2(\tilde{x}) \leq P_1(x^t) + (\nabla P_1(x^t), \tilde{x} - x^t) + \frac{L_p}{2} \|\tilde{x} - x^t\|^2 - P_2(\tilde{x})
\]

\[
\leq P_1(x^t) - P_2(x^t) + (\nabla P_1(x^t) - \zeta^t, \tilde{x} - x^t) + \frac{L_p}{2} \|\tilde{x} - x^t\|^2 \leq \frac{L_p - \alpha}{2} \|\tilde{x} - x^t\|^2,
\]

where (a) holds because of the convexity of \(P_2 \) and the definition of \(\zeta^t \), and (b) follows from the feasibility of \(\tilde{x} \) for (6.1). Let \(k_0 \in \mathbb{N}_+ \) be such that \(L_p - 2k_0 l_{\min} \leq 0 \). Then by (6.3) and the definition of \(l_t \) we see that \(q(\tilde{x}) \leq 0 \) after at most \(k_0 \) calls of Step (1b). Moreover, it holds that \(l_t \leq 2k_0 l_{\max} \). Therefore, if \(q(x^t) \leq 0 \), then the inner loop of Step 1 stops after at most \(k_0 \) iterations and outputs an \(x^{t+1} \) satisfying \(q(x^{t+1}) \leq 0 \) (in particular, \(x^{t+1} \neq 0 \)) with \(l_t \leq 2k_0 l_{\max} \). Since we initialize our algorithm at an \(x^0 \) satisfying \(q(x^0) \leq 0 \), the conclusions in items (i) and (ii) now follow from an induction argument.

Next, we prove item (iii). Since \(q(0) > 0 \), we see immediately from the continuity of \(q \) that there exists some \(\delta > 0 \) such that \(\|x\| \geq \delta \) whenever \(q(x) \leq 0 \). Thus, \(\|x^t\| \geq \delta \).
for all \(t \in \mathbb{N}_+ \), thanks to \(q(x^t) \leq 0 \). Now consider (6.1) with \(l_t = \bar{l}_t \). Then \(x^t \) is feasible and \(x^{t+1} \) is optimal. This together with the definition of \(\omega_t \) yields

\[
\|x^{t+1}\|_1 - \frac{\|x^t\|}{\|x^t\|^2} \langle x^{t+1}, x^t \rangle + \frac{\alpha}{2} \|x^{t+1} - x^t\|^2 \leq \|x^t\|_1 - \frac{\|x^1\|}{\|x^t\|^2} \langle x^t, x^t \rangle + \frac{\alpha}{2} \|x^t - x^t\|^2 = 0.
\]

Dividing both sides of the above inequality by \(\|x^{t+1}\| \) and rearranging terms, we have

\[
\frac{\|x^{t+1}\|_1 + \alpha}{\|x^{t+1}\|} \|x^t - x^{t+1}\|^2 \leq \frac{\|x^t\|_1 \langle x^{t+1}, x^t \rangle}{\|x^t\|^2} - \frac{\|x^{t+1}\|_1 \|x^t\|}{\|x^{t+1}\|} = \frac{\|x^t\|_1}{\|x^t\|}.
\]

This proves (iii) and completes the proof. \(\square \)

We next introduce the following assumption.

Assumption 6.2. The GMFCQ for (1.2) holds at every point in \([q \leq 0]\).

Recall from Proposition 5.4 and the discussions preceding it that Assumption 6.2 holds for (1.3), (1.4) and (1.5) since \(A \) is surjective. We next derive the Karush-Kuhn-Tucker (KKT) conditions for (6.1) at every iteration \(t \) under Assumption 6.2, which will be used in our subsequent analysis.

Lemma 6.3 (KKT conditions for (6.1)). Consider (1.2) and suppose that Assumption 6.2 holds. Let \(\{x^t\} \) be the sequence generated by MBA\(_{t_1/t_2}\). Then the following statements hold:

(i) The Slater’s condition holds for the constraint of (6.1) at each \(t \in \mathbb{N}_+ \).

(ii) For each \(t \in \mathbb{N}_+ \), \(\zeta^t \in \partial P_2(x^t) \) and \(l_t > 0 \), the subproblem (6.1) has a Lagrange multiplier \(\lambda_t \). Moreover, if \(\bar{x} \) is as in (6.1), then it holds that

\[
\lambda_t \left(q(x^t) + \langle \nabla P_1(x^t) - \zeta^t, \bar{x} - x^t \rangle + \frac{l_t}{2} \|\bar{x} - x^t\|^2 \right) = 0,
\]

\[
0 \in \partial \|x\|_1 - \frac{\omega_t x^t}{\|x^t\|} + \lambda_t (\nabla P_1(x^t) - \zeta^t + (\alpha + \lambda_l)(\bar{x} - x^t)).
\]

Proof. Notice that we can rewrite the feasible set of (6.1) as \(B(s^t, \sqrt{R_t}) \) with \(s^t := x^t - \frac{1}{l_t} (\nabla P_1(x^t) - \zeta^t) \) and \(R_t := \frac{1}{l_t} \|\nabla P_1(x^t) - \zeta^t\|^2 - \frac{2}{l_t} q(x^t) \), where \(R_t \geq 0 \) because \(q(x^t) \leq 0 \). Suppose to the contrary that \(R_t = 0 \). Then we have \(q(x^t) = 0 \) and \(\nabla P_1(x^t) - \zeta^t = 0 \). The latter relation together with (2.4) implies \(0 \in \partial^c q(x^t) \), contradicting the GMFCQ assumption at \(x^t \). Thus, we must have \(R_t > 0 \) and hence the Slater’s condition holds for (6.1) at the \(t \)th iteration.

Since the Slater’s condition holds for (6.1), we can apply [31, Corollary 28.2.1] and [31, Theorem 28.3] to conclude that there exists a Lagrange multiplier \(\lambda_t \) such that the relation (6.4) holds at the \(t \)th iteration and \(\bar{x} \) minimizes the following function:

\[
\mathcal{L}_t(x) := \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{\alpha}{2} \|x - x^t\|^2 + \lambda_t \left(q(x^t) + \langle \nabla P_1(x^t) - \zeta^t, x - x^t \rangle + \frac{l_t}{2} \|x - x^t\|^2 \right).
\]

This fact together with [32, Exercise 8.8] and [32, Theorem 10.1] implies that (6.5) holds at the \(t \)th iteration. This completes the proof. \(\square \)

Now we are ready to establish the subsequential convergence of Algorithm 6.1. In our analysis, we assume that the GMFCQ holds and that the \(\{x^t\} \) generated by
MBAT_{t_1/t_2} is bounded. The latter boundedness assumption was also used in [37] for analyzing the convergence of Algorithm 4.1. We remark that this assumption is not too restrictive. Indeed, for the sequence \{x^t\} generated by MBAT_{t_1/t_2}, in view of Lemma 6.1(i), we know that \(q(x^t) \leq 0 \) for all \(t \). Thus, if \(q \) is level-bounded, then \{x^t\} is bounded. On the other hand, if \(q \) is only known to be bounded from below (as in (1.3), (1.4) and (1.5)) but the corresponding (1.2) is known to have an optimal solution, then one may replace \(q(x) \) by the level-bounded function \(q_M(x) := q(x) + ((\|x\| - M)^2) \), for a sufficiently large \(M \). As long as \(M > \|x^*\| \) for some optimal solution \(x^* \) of (1.2), replacing \(q \) by \(q_M \) in (1.2) will not change the optimal value.

Theorem 6.4 (Subsequential convergence of MBA_{t_1/t_2}). Consider (1.2) and suppose that Assumption 6.2 holds. Let \(\{(x^t, \zeta^t, l_t)\} \) be the sequence generated by MBA_{t_1/t_2} and \(\lambda_t \) be a Lagrange multiplier of (6.1) with \(l_t = l_1 \). Suppose in addition that \{x^t\} is bounded. Then the following statements hold:

1. \(\lim_{t \to \infty} \|x^t - x^t\|^2 = 0 \);
2. The sequences \{\lambda_t\} and \{\zeta^t\} are bounded;
3. Let \(\bar{x} \) be an accumulation point of \{x^t\}. Then \(\bar{x} \) is a Clarke critical point of (1.2). If \(q \) is also regular at \(\bar{x} \), then \(\bar{x} \) is a stationary point.

Proof. Since \{x^t\} is bounded, there exists \(M > 0 \) such that \(\|x^t\| \leq M \) for all \(t \in \mathbb{N}_+ \). Using (6.2), we obtain

\[
\sum_{t=0}^{\infty} \frac{\alpha}{2M} \|x^t - x^{t+1}\|^2 \leq \omega_0 - \liminf_{t \to \infty} \omega_t \leq \omega_0,
\]

which proves item (i).

Now we turn to item (ii). The boundedness of \{z^t\} follows from the boundedness of \{x^t\} and [34, Theorem 2.6]. We next prove the boundedness of \{\lambda_t\}. Suppose to the contrary that \{\lambda_t\} is unbounded. Then there exists a subsequence \{\lambda_{t_k}\} such that \(\lambda_{t_k} \to \infty \). Passing to a subsequence if necessary, we can find subsequences \{x^{t_k}\} and \{\lambda_{t_k}\} such that \(x^{t_k} = x^* \) and \(\lambda_{t_k} > 0 \) for all \(k \in \mathbb{N}_+ \), where the existence of \(x^* \) is due to the boundedness of \{x^t\}. According to (6.4) and the definition of \(x^{t_k+1} \), we obtain

\[
q(x^{t_k}) + \langle \nabla P_1(x^{t_k}) - \zeta^{t_k}, x^{t_k+1} - x^{t_k} \rangle + \frac{\bar{l}_{t_k}}{2} \|x^{t_k+1} - x^{t_k}\|^2 = 0.
\]

Since \{x^t\} is bounded and \(P_1 \) is Lipschitz differentiable, we then see that \(\nabla P_1(x^t) \) is bounded. Moreover, \(\{\bar{l}_{t_k}\} \) is bounded thanks to Lemma 6.1(ii) and we also know that \{\zeta^t\} is bounded. Using these facts, item (i) and the continuity of \(q \), we have upon passing to the limit in the above display that \(q(x^*) = 0 \). Since the GMFCQ holds for (1.2) at \(x^* \), we then have \(0 \not\in \partial q(x^*) \).

Let \(t = t_k, l_t = \bar{l}_{t_k}, x^t = x^{t_k+1} \) in (6.5), and divide both sides of (6.5) by \(\lambda_{t_k} \). Then

\[
\nabla P_1(x^{t_k}) - \zeta^{t_k} \in -\frac{1}{\lambda_{t_k}} \partial \|x^{t_k+1}\| + \frac{\omega_{t_k} x^{t_k}}{\lambda_{t_k} \|x^{t_k}\|} - \left(\bar{l}_{t_k} + \frac{\alpha}{\lambda_{t_k}} \right) (x^{t_k+1} - x^{t_k}).
\]

Thus, there exists a sequence \{\eta^k\} satisfying \(\eta^k \in \partial \|x^{t_k+1}\| \) and

\[
\nabla P_1(x^{t_k}) - \zeta^{t_k} = -\frac{1}{\lambda_{t_k}} \eta^k + \frac{\omega_{t_k} x^{t_k}}{\lambda_{t_k} \|x^{t_k}\|} - \left(\bar{l}_{t_k} + \frac{\alpha}{\lambda_{t_k}} \right) (x^{t_k+1} - x^{t_k}).
\]

Note that \{\eta^k\} is bounded in view of the boundedness of \{x^t\} and [34, Theorem 2.6]. Moreover, \{\omega_{t_k}\} is bounded since \(\|x\| \leq \|x\| \leq \sqrt{n} \|x\| \) for any \(x \in \mathbb{R}^n \). Furthermore,
we have the boundedness of \(\{ \hat{t}_k \} \) from Lemma 6.1(ii). Also recall that \(\lim_{k \to \infty} \lambda_{t_k} = \infty \) and \(\zeta^t \in \partial P_2(x^t) \). Using these together with item (i), we have upon passing to the limit in the above display and invoking the closedness of \(\partial P_2 \) (see Exercise 8 of [10, Section 4.2]) that \(\nabla P_1(x^*) \in \partial P_2(x^*) \). This together with (2.4) further implies \(0 \in \partial^0 q(x^*) \), leading to a contradiction. Thus, the sequence \(\{ \lambda_t \} \) is bounded.

We now turn to item (iii). Suppose \(\bar{x} \) is an accumulation point of \(\{ x^t \} \) with \(\lim_{j \to \infty} x^{t_j} = \bar{x} \) for some convergent subsequence \(\{ x^{t_j} \} \). Since \(\{ \lambda_t, \hat{t}_t \} \) and \(\{ \zeta^t \} \) are bounded (thanks to Lemma 6.1(ii) and item (ii)), passing to a further subsequence if necessary, we may assume without loss of generality that

\[
(6.6) \quad \lim_{j \to \infty} (\lambda_{t_j}, \hat{t}_j) = (\lambda, \hat{t}) \quad \text{for some } \lambda, \hat{t} \geq 0, \quad \lim_{j \to \infty} \zeta^{t_j} = \zeta \quad \text{for some } \zeta \in \partial P_2(\bar{x});
\]

here, \(\zeta \in \partial P_2(\bar{x}) \) because of the closedness of \(\partial P_2 \) (see Exercise 8 of [10, Section 4.2]). On the other hand, according to Lemma 6.1(iii), we have \(\| x^t \| \geq \delta > 0 \) for all \(t \in \mathbb{N}_+ \). This together with the definition of \(\bar{x} \) yields \(\| \bar{x} \| \neq 0 \). It then follows that \(\frac{\| x^t \|}{\| x^t \|} \) is continuous at \(\bar{x} \). Thus, we have, upon using this fact, the definition of \(\omega_t \), the continuity of \(\nabla P_1 \), the closedness of \(\partial \| \cdot \|_1 \), item (i), (6.6), and passing to the limit as \(j \to \infty \) in (6.5) with \((\bar{x}, \lambda_t, l_t) = (x^{t_j+1}, \lambda_{t_j}, \hat{t}_{t_j}) \) and \(t = t_j \) that

\[
0 \in \partial \| \bar{x} \|_1 - \frac{\| \bar{x} \|_1}{\| \bar{x} \|^2} \bar{x} + \frac{\| \bar{x} \|_1}{\| \bar{x} \|^2} \nabla P_1(\bar{x}) - \zeta.
\]

We then divide both sides of the above inclusion by \(\| \bar{x} \| \) and obtain

\[
(6.7) \quad 0 = \frac{1}{\| x^t \|} \partial \| \bar{x} \|_1 - \frac{\| \bar{x} \|_1}{\| \bar{x} \|^3} \bar{x} + \frac{\bar{x}}{\| \bar{x} \|^2} \nabla P_1(\bar{x}) - \zeta = \partial \| \bar{x} \|_1 + \frac{\bar{x}}{\| \bar{x} \|^2} \nabla P_1(\bar{x}) - \zeta,
\]

where the equality holds due to (2.3). In addition, using (6.4) with \((\bar{x}, \lambda_t, l_t) = (x^{t_j+1}, \lambda_{t_j}, \hat{t}_{t_j}) \) and \(t = t_j \), we have

\[
\lim_{j \to \infty} \lambda_{t_j} \left[q(x^{t_j}) + \langle \nabla P_1(x^{t_j}) - \zeta^{t_j}, x^{t_j+1} - x^{t_j} \rangle + \frac{\hat{t}_{t_j}}{2} \| x^{t_j+1} - x^{t_j} \|^2 \right] = 0.
\]

This together with item (i) and (6.6) shows that \(\lambda q(\bar{x}) = 0 \). Combining this with (6.7), \(\zeta \in \partial P_2(\bar{x}) \) (see (6.6)), (2.4) and the fact that \(q(x) \leq 0 \) (because \(q(x^t) \leq 0 \) for all \(t \)) shows that \(\bar{x} \) is a Clarke critical point. Finally, the claim concerning stationarity follows immediately from Proposition 5.6. This completes the proof. \[\square \]

6.2. Global convergence under KL assumption. We now discuss global convergence of the sequence \(\{ x^t \} \) generated by Algorithm 6.1. Our analysis follows the line of analysis in [1–3, 6, 8, 41] and is based on the following auxiliary function:

\[
F(x, y, \zeta, w) := \frac{\| x \|_1}{\| x \|} + \delta_{[\| \zeta \| \leq 0]}(x, y, \zeta, w) + \delta_{\| \cdot \| > \rho}(x),
\]

with

\[
q(x, y, \zeta, w) := P_1(y) + \langle \nabla P_1(y), x - y \rangle + P_2^* (\zeta) - \langle \zeta, x \rangle + \frac{\omega}{2} \| x - y \|^2,
\]

where \(P_1 \) and \(P_2 \) are as in (1.2), and \(\rho > 0 \) is chosen such that \(\{ x : q(x) \leq 0 \} \subset \{ x : \| x \| > \rho \} \). Some comments on \(F \) are in place. First, recall that in the potential function used in [8] for analyzing their MBA variant, the authors replaced \(P_1(x) \) by a
quadratic majorant $P_1(y) + \langle \nabla P_1(x), x - y \rangle + \frac{L_p}{2} \|x - y\|^2$, where L_p is the Lipschitz continuity modulus of ∇P_1. Here, as in [41], we further introduce the variable w to handle the varying \tilde{l}_t. Finally, to deal with the possibly nonsmooth $-P_2$, we replaced $-P_2(x)$ by its majorant $P_2^*(\zeta) - \langle \zeta, x \rangle$ as in [24].

The next proposition concerns the subdifferential of \tilde{F} and will be used for deriving global convergence of the sequence generated by MBA\tilde{l}_1/\tilde{l}_2.

Proposition 6.5. Consider (1.2) and assume that P_1 is twice continuously differentiable. Suppose that Assumption 6.2 holds. Let $\{(x^t, \zeta^t, \tilde{l}_t)\}$ be the sequence generated by MBA\tilde{l}_1/\tilde{l}_2 and suppose that $\{x^t\}$ is bounded. Let \tilde{F} and \tilde{q} be given in (6.8) and (6.9) respectively. Then the following statements hold:

(i) For any $t \in \mathbb{N}_+$, we have $\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) \leq 0$.

(ii) There exist $\kappa > 0$ and $\tilde{l} \in \mathbb{N}_+$ such that

$$\text{dist}(0, \partial \tilde{F}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)) \leq \kappa \|x^{t+1} - x^t\| \quad \text{for all } t > \tilde{l}.$$

Proof. We first observe that

$$\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)$$

$$= P_1(x^t) + \langle \nabla P_1(x^t), x^{t+1} - x^t \rangle + P_2^*(\zeta^t) - \langle \zeta^t, x^{t+1} \rangle + \frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2$$

$$= P_1(x^t) + \langle \nabla P_1(x^t) - \zeta^t, x^{t+1} - x^t \rangle + P_2^*(\zeta^t) - \langle \zeta^t, x^t \rangle + \frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2$$

$$\leq P_1(x^t) - P_2(x^t) + \langle \nabla P_1(x^t) - \zeta^t, x^{t+1} - x^t \rangle + \frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2$$

$$= q(x^t) + \langle \nabla P_1(x^t) - \zeta^t, x^{t+1} - x^t \rangle + \frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2 \leq 0,$$

where (a) follows from (2.1) because $\zeta^t \in \partial P_2(x^t)$, and the last inequality holds because x^{t+1} is feasible for (6.1) with $\tilde{l}_t = \tilde{l}_t$. This proves item (i).

Now, note that $N_{\mathbb{R}^n}(-\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)) = \{0\}$ if $\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) < 0$. Using this together with [32, Proposition 10.3], we conclude that at any $(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)$ (regardless of whether $\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) < 0$ or $\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) = 0$), the relation

$$\tilde{N}_{\tilde{q} \leq 0}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) \supseteq \lambda \tilde{\partial} \tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)$$

holds for any $\lambda \in N_{\mathbb{R}^n}(-\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t))$. Thus, for any $\lambda \in N_{\mathbb{R}^n}(-\tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t))$, we have that

$$\tilde{N}_{\tilde{q} \leq 0}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t) \supseteq \lambda \tilde{\partial} \tilde{q}(x^{t+1}, x^t, \zeta^t, \tilde{l}_t)$$

$$\sim$$

$$\begin{bmatrix}
\lambda \langle \nabla P_1(x^t) - \zeta^t + \tilde{l}_t(x^{t+1} - x^t) \rangle \\
\lambda \langle \nabla^2 P_1(x^t)(x^{t+1} - x^t) - \tilde{l}_t(x^{t+1} - x^t) \rangle \\
\lambda \partial P_2^*(\zeta^t) - \lambda x^{t+1} \\
\frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2
\end{bmatrix} \supseteq \begin{bmatrix}
\lambda V_1^t \\
\lambda V_2^t \\
\lambda (x^t - x^{t+1}) \\
\frac{\tilde{l}_t}{2} \|x^{t+1} - x^t\|^2
\end{bmatrix},$$

with

$$V_1^t := \nabla P_1(x^t) - \zeta^t + \tilde{l}_t(x^{t+1} - x^t),$$

$$V_2^t := \nabla^2 P_1(x^t)(x^{t+1} - x^t) - \tilde{l}_t(x^{t+1} - x^t),$$

where (a) uses the definition of \tilde{q}, [32, Exercise 8.8(c)], [32, Proposition 10.5] and [32, Proposition 8.12] (so that $\partial P_2^*(\zeta^t) = \partial P_2^*(\zeta^t)$), and (b) uses (2.1) and the fact that
\(\zeta^t \in \partial P_2(x^t) \). On the other hand, we have from [32, Theorem 8.6] that

\[
\partial \bar{F}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) \supseteq \partial \bar{F}(x^{t+1}, x^t, \zeta^t, \bar{l}_t)
\]

(6.13) \(\overset{(a)}{\supseteq} \)

\[
\begin{bmatrix}
\frac{1}{\|x^{t+1}\|_2} \partial \|x^{t+1}\|_1 - \frac{\|x^{t+1}\|_2}{\|x^{t+1}\|_2} x^{t+1} \\
0 \\
0
\end{bmatrix}
+ \tilde{N}_{[\bar{l}_t \leq 0]}(x^{t+1}, x^t, \zeta^t, \bar{l}_t),
\]

where (a) uses [32, Corollary 10.9], (2.3) and [32, Corollary 8.11], and the facts that \(\partial \delta_{[\bar{l}_t \leq 0]}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) = \tilde{N}_{[\bar{l}_t \leq 0]}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) \) and \(\tilde{N}_{\|\cdot\|_\rho}(x^{t+1}) = \{0\} \).

Let \(\lambda_t \geq 0 \) be a Lagrange multiplier of (6.1) with \(l_t = \bar{l}_t \), which exists thanks to Lemma 6.3. In view of the inequality and the last equality in (6.10) and using (6.4) with \((\bar{x}, l_t) = (x^{t+1}, \bar{l}_t) \), we deduce that \(\lambda_t \in N_{\mathbb{R}_+}(\bar{q}(x^{t+1}, x^t, \zeta^t, \bar{l}_t)) \), which in turn implies that \(\frac{\lambda_t}{\|x^{t+1}\|_2} \in N_{\mathbb{R}_+}(\bar{q}(x^{t+1}, x^t, \zeta^t, \bar{l}_t)) \). We can hence let \(\lambda = \frac{\lambda_t}{\|x^{t+1}\|_2} \) in (6.11) to obtain an element in \(\tilde{N}_{[\bar{l}_t \leq 0]}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) \). Plugging this particular element into (6.13) yields

\[
\partial \bar{F}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) \supseteq \begin{bmatrix}
\frac{1}{\|x^{t+1}\|_2} \partial \|x^{t+1}\|_1 - \frac{\|x^{t+1}\|_2}{\|x^{t+1}\|_2} x^{t+1} + \frac{\lambda}{\|x^{t+1}\|_2} V_1 \\
\frac{\lambda}{\|x^{t+1}\|_2} V_2 \\
\frac{\lambda}{\|x^{t+1}\|_2} \|x^{t+1} - x^t\|^2
\end{bmatrix},
\]

where \(V_1 \) and \(V_2 \) are given in (6.12). On the other hand, applying (6.5) with \((\bar{x}, l_t) = (x^{t+1}, \bar{l}_t) \) and recalling that \(\omega_t = \|x^t\|_1/\|x^t\|_2 \), we obtain

\[
\begin{aligned}
\partial \|x^{t+1}\|_1 &\supseteq \|x^t\|_1 x^t - \lambda_t (\nabla P_1(x^t) - \zeta^t) - (\alpha + \lambda_t \bar{l}_t) (x^{t+1} - x^t) \\
&= \|x^t\|_1^2 x^t - \lambda_t V_1^t - \alpha (x^{t+1} - x^t).
\end{aligned}
\]

Combining (6.14) and (6.15), we see further that

\[
\partial \bar{F}(x^{t+1}, x^t, \zeta^t, \bar{l}_t) \supseteq \begin{bmatrix}
J_1^t \\
\frac{\lambda}{\|x^{t+1}\|_2} V_2 \\
\frac{\lambda}{\|x^{t+1}\|_2} \|x^{t+1} - x^t\|^2
\end{bmatrix},
\]

where

\[
J_1^t := \frac{1}{\|x^{t+1}\|_2} \left(\|x^t\|_1 x^t - \frac{\|x^{t+1}\|_2}{\|x^{t+1}\|_2} x^{t+1} \right) - \frac{\alpha}{\|x^{t+1}\|_2} (x^{t+1} - x^t).
\]

Next, recall from Lemma 6.1(iii) that

\[
\|x^{t+1}\|_1 \geq \delta, \text{ for all } t \in \mathbb{N}_+.
\]

Using this together with our assumption that \(\{x^t\} \) is bounded, we see that there exists \(L_1 > 0 \) such that

\[
\left\| \frac{\|x^t\|_1}{\|x^t\|_2^2} x^t - \frac{\|x^{t+1}\|_1}{\|x^{t+1}\|_2^2} x^{t+1} \right\| \leq L_1 \|x^{t+1} - x^t\| \text{ for all } t.
\]
Combining the above three displays, we deduce that

\[L_2 \frac{\lambda_t}{\|x^{t+1}\|} \leq \frac{L_3}{\delta} \|x^{t+1} - x^t\|. \]

(6.19)

On the other hand, one can see from (6.17), the definition of \(V_2^t \) (see (6.12)), the boundedness of \(\{\lambda_t, l_t\} \) (see Theorem 6.4(ii) and Lemma 6.1(iii)), the continuity of \(\nabla^2 P_1 \) and the boundedness of \(\{x^t\} \) that there exist \(L_2 > 0 \) and \(L_3 > 0 \) such that

\[\frac{\lambda_t}{\|x^{t+1}\|} \leq \frac{L_2}{\delta} \text{ and } \left\| \frac{\lambda_t}{\|x^{t+1}\|} V_2^t \right\| \leq L_3 \|x^{t+1} - x^t\|. \]

Moreover, we can see from Theorem 6.4(i) that there exists \(t \in \mathbb{N}_+ \) such that

\[\|x^{t+1} - x^t\|^2 \leq \|x^{t+1} - x^t\| \]

whenever \(t \geq t \). Now we can conclude from (6.16), (6.18), (6.19) and the above display that there exists \(\kappa > 0 \) such that

\[\text{dist}(0, \partial \tilde{F}(x^{t+1}, x^t, \tilde{c}, \tilde{l}_t)) \leq \kappa \|x^{t+1} - x^t\| \]

for all \(t \geq t \). This completes the proof. \(\square \)

When the sequence \(\{x^t\} \) generated by MBA is bounded, one can show that the set of accumulation points \(\Omega \) of \(\{(x^{t+1}, x^t, \tilde{c}, \tilde{l}_t)\} \) is compact. This together with Lemma 6.1(iii) and the continuity of \(\tilde{F} \) on its domain shows that \(\tilde{F} \) is constant on \(\Omega \subseteq \text{dom} \partial \tilde{F} \). Using this together with Proposition 6.5 and Lemma 6.1(iii), one can prove the following convergence result by imposing additional KL assumptions on \(\tilde{F} \).

Theorem 6.6 (Global convergence and convergence rate of MBA). Consider (1.2) and assume that \(P_1 \) is twice continuously differentiable. Suppose that Assumption 6.2 holds. Let \(\{x^t\} \) be the sequence generated by MBA and assume that \(\{x^t\} \) is bounded. If \(\tilde{F} \) in (6.8) is a KL function, then \(\{x^t\} \) converges to a Clarke critical point \(x^* \) of (1.2) \(x^* \) is stationary if \(q \) is in addition regular at \(x^* \). Moreover, if \(\tilde{F} \) is a KL function with exponent \(\theta \in (0, 1) \), then the following statements hold:

(i) If \(\theta = 0 \), then \(\{x^t\} \) converges finitely.

(ii) If \(\theta \in (0, \frac{1}{2}) \), then there exist \(c_0 > 0 \), \(Q_1 \in (0, 1) \) and \(t \in \mathbb{N}_+ \) such that

\[\|x^t - x^*\| \leq c_0 Q_1^t \text{ for } t > t. \]

(iii) If \(\theta \in (\frac{1}{2}, 1) \), then there exist \(c_0 > 0 \) and \(t \in \mathbb{N}_+ \) such that

\[\|x^t - x^*\| \leq c_0 t^{\frac{1 - \theta}{2\theta - 1}} \text{ for } t > t. \]

Remark 6.7 (KL property of \(\tilde{F} \) corresponding to (1.3), (1.4) and (1.5)).

(i) In both (1.3) and (1.4), we have \(q = P_1 \) being analytic and \(P_2^\star = \delta_{[0]} \). Hence \(\tilde{F} \) becomes \(\tilde{F}(x, y, \zeta, w) = \|x\|_1 + \delta_{\Delta}(x, y, \zeta, w) \) with \(\Delta = \{(x, y, \zeta, w) : P_1(y) + \langle \nabla P_1(y), x - y \rangle + \frac{\rho}{2} \|x - y\|^2 \leq 0, \zeta = 0, \|x\| \geq \rho \}. \) Hence, the graph of \(\tilde{F} \) is

\[\begin{cases} (x, y, \zeta, w, z) : & \|x\|_1 = z\|x\|, \quad \|x\| \geq \rho, \quad \zeta = 0, \\ P_1(y) + \langle \nabla P_1(y), x - y \rangle + \frac{\rho}{2} \|x - y\|^2 \leq 0. \end{cases} \]
which is semianalytic [22, Page 596]. This means that \tilde{F} is subanalytic [22, Definition 6.6.1]. Moreover, the domain of \tilde{F} is closed and $\tilde{F}|_{\text{dom } \tilde{F}}$ is continuous. Therefore, \tilde{F} satisfies the KL property according to [7, Theorem 3.1].

(ii) For (1.5), first note that P_2 is a convex piecewise linear-quadratic function (see, for example, the proof of [24, Theorem 5.1]). Then P_1^* is also piecewise linear-quadratic function thanks to [32, Theorem 11.14]. Thus, one can see that \tilde{q} corresponding to (1.5) is semialgebraic and so is the set $\Theta = \{(x,y,\zeta,w) : \tilde{q}(x,y,\zeta,w) \leq 0\}$. Therefore \tilde{F} is semialgebraic as the sum of the semialgebraic functions $x \mapsto \|x\| + \|q\|_{\geq \rho}(x)$ and δ_3, and is hence a KL function [2].

Using Theorem 6.6, Remark 6.7, Proposition 5.4 and the discussions preceding it, and recalling that continuously differentiable functions are regular, we have the following immediately corollary.

Corollary 6.8 (Global convergence of MBA$_{t_1/t_2}$ for (1.3), (1.4) and (1.5)).

(i) Suppose that MBA$_{t_1/t_2}$ is applied to (1.3) or (1.4). Then the sequence generated converges to a stationary point of the problem if the sequence is bounded.

(ii) Suppose that MBA$_{t_1/t_2}$ is applied to (1.5). Then the sequence generated converges to a Clarke critical point of the problem if the sequence is bounded.

7. Numerical simulations

In this section, we perform numerical experiments on solving random instances of (1.3), (1.4) and (1.5) via MBA$_{t_1/t_2}$. All numerical experiments are performed in MATLAB 2019b on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz) and 32GB of RAM.

We set $t_{\min} = 10^{-8}$, $t_{\max} = 10^8$ and $\alpha = 1$ in MBA$_{t_1/t_2}$. We let $t_0 = 1$ and compute, for each $t \geq 1$,

$$
\ell_t^0 = \max \left\{ \begin{array}{ll}
\max \{t_{\min}, \min \left\{ \frac{(d_{xt}^t, d_{yt}^t)}{\|d_{xt}^t\|^2}, l_{\max} \right\} \} & \text{if } \langle d_{xt}^t, d_{yt}^t \rangle \geq 10^{-12}, \\
\max \{t_{\min}, \min \left\{ \frac{t-1}{2}, l_{\max} \right\} \} & \text{otherwise},
\end{array} \right.
$$

where $d_{xt}^t = x^t - x^{t-1}$ and $d_{yt}^t = \xi^t - \xi^{t-1}$ with $\xi^t = \nabla P_1(x^t) - \zeta^t$: specifically, $\zeta^t = 0$ when solving (1.3) and (1.4), while for (1.5), we pick any $\zeta^t \in \text{Proj}_{S}(Ax^t - b)$, which can be obtained by finding the largest r entries of $Ax^t - b$.

We initialize MBA$_{t_1/t_2}$ at some feasible point x_{feas} and terminate MBA$_{t_1/t_2}$ when

$$
\|x^t - x^{t-1}\| \leq \text{tol} \cdot \max \{\|x^t\|, 1\};
$$

we will specify the choices of x_{feas} and tol in each of the subsections below.

7.1. Robust compressed sensing problems (1.5)

We generate a sensing matrix $A \in \mathbb{R}^{(p+1) \times n}$ with i.i.d standard Gaussian entries and then normalize each column of A. Next, we generate the original signal $x_{\text{orig}} \in \mathbb{R}^n$ as a k-sparse vector with k i.i.d standard Gaussian entries at random (uniformly chosen) positions. We then generate a vector $z_i \in \mathbb{R}^t$ with i.i.d standard Gaussian entries, and set $z \in \mathbb{R}^{p+t}$ to be a vector with the first p entries being zero and the last t entries being $2 \text{sign}(z_i)$. The vector b in (1.5) is then generated as $b = Ax_{\text{orig}} - z + 0.01e$, where $e \in \mathbb{R}^{p+t}$ has i.i.d. standard Gaussian entries. Finally, we set $\sigma = 1.2\|0.01e\|$ and $r = 2t$. In MBA$_{t_1/t_2}$, we set $x_{\text{feas}} = A^*b$, and $t_0 = 10^{-6}$ in (7.1).

In our numerical tests, we consider $(n, p, k, i) = (2560i, 720i, 80i, 10i)$ with $i \in \{2, 4, 6, 8, 10\}$. For each i, we generate 20 random instances as described above. The

\[1\text{We compute } A^*b \text{ via the MATLAB commands } [Q,R] = qr(A',0); x_{\text{feas}} = Q^*(R\backslash b).\]
computational results are shown in Table 1. We present the time t_{qr} for the (reduced) QR decomposition when generating x_{feas}, the CPU times t_{mba} and t_{sum}, the recovery error $\text{RecErr} = \frac{\|x_{out} - x_{orig}\|}{\max(1,\|x_{orig}\|)}$, and the Residual $= \text{dist}(Ax_{out} - b, S) - \sigma^2$, averaged over the 20 random instances, where x_{out} is the approximate solution returned by MBA_{1/2}. We see that x_{orig} are approximately recovered in a reasonable period of time.

![Table 1: Random tests on robust compressed sensing](image)

i	t_{qr}	$t_{mba} (t_{sum})$	RecErr	Residual
2	0.5	1.2 (1.7)	3.3e-02	-3e-11
4	3.1	4.1 (7.2)	3.3e-02	-5e-11
6	9.8	8.3 (18.1)	3.3e-02	-9e-11
8	24.9	14.3 (38.4)	3.3e-02	-1e-10
10	43.6	21.5 (65.3)	3.3e-02	-2e-10

7.2. CS problems with Cauchy noise (1.4). Similar to the previous subsection, we generate the sensing matrix $A \in \mathbb{R}^{m \times n}$ with i.i.d standard Gaussian entries and then normalize each column of A. We then generate the original signal $x_{orig} \in \mathbb{R}^n$ as a k-sparse vector with k i.i.d standard Gaussian entries at random (uniformly chosen) positions. However, we generate b as $b = Ax_{orig} + 0.01\varepsilon$ with $\varepsilon_i \sim \text{Cauchy}(0, 1)$, i.e., $\varepsilon_i = \tan(\pi(\bar{\varepsilon}_i - 1/2))$ for some random vector $\bar{\varepsilon} \in \mathbb{R}^m$ with i.i.d. entries uniformly chosen in $(0, 1)$. Finally, we set $\gamma = 0.02$ and $\sigma = 1.2\|0.01\varepsilon\|_{L^2, \gamma}$.

We compare the ℓ_1 minimization model (which minimizes ℓ_1 norm in place of ℓ_1/ℓ_2 in (1.4); see [41, Eq. (5.8)] with $\mu = 0$) with our ℓ_1/ℓ_2 model. We use SCP_{ls} in [41] for solving the ℓ_1 minimization model. We use the same parameter settings for SCP_{ls} as in [41, Section 5], except that we terminate SCP_{ls} when (7.1) is satisfied with $\text{tol} = 10^{-6}$. We initialize MBA_{1/2} at the approximate solution x_{scp} given by SCP_{ls}, and terminate MBA_{1/2} when (7.1) is satisfied with $\text{tol} = 10^{-6}$.

In our numerical experiments, we consider $(n, m, k) = (2560i, 720i, 80i)$ with $i \in \{2, 4, 6, 8, 10\}$. For each i, we generate 20 random instances as described above. Our computational results are presented in Table 2, which are averaged over the 20 random instances. Here we show the CPU time t_{qr} for performing (reduced) QR decomposition on A^T, the CPU time, the recovery error $\text{RecErr} = \frac{\|x_{out} - x_{orig}\|}{\max(1,\|x_{orig}\|)}$, and the residual Residual $= \|Ax_{out} - b\|_{L^2, \gamma} - \sigma$ of both SCP_{ls} and MBA_{1/2}, where x_{out} is the approximate solution returned by the respective algorithm. We see that the recovery error is significantly improved by solving the nonconvex model.

7.3. Badly scaled CS problems with Gaussian noise (1.3). In this section, we generate test instances similar to those in [37]. Specifically, we first generate $A = [a_1, \ldots, a_n] \in \mathbb{R}^{m \times n}$ with

$$a_j = \frac{1}{\sqrt{n}} \cos \left(\frac{2\pi j}{F} \right), \quad j = 1, \ldots, n, \quad$$

sum the run time of MBA_{1/2}, the time for performing (reduced) QR factorization on A^T and the time for computing $Q(R^{-1})^Tb$.

mba the run time of MBA_{1/2}/\ell_2$, the time for computing $Q(R^{-1})^Tb$.

For MBA_{1/2}/\ell_2$, the time in parenthesis is the total run time including the time for computing the initial point A^Tb for SCP_{ls} and the run times of SCP_{ls} and MBA_{1/2}/\ell_2$, the time without parenthesis is the actual run time of MBA_{1/2}/\ell_2$ starting from $x_{feas} = x_{scp}$.
Table 2: Random tests on CS problems with Cauchy noise

i	qr	CPU	SCP	MBA₁/₂₂	Residual	SCP	MBA₁/₂₂	Residual
2	0.5	10.0	1.3e-01	6.5e-02	-2e-07	-8e-08		
4	3.0	52.4	1.3e-01	6.6e-02	-6e-07	-2e-07		
6	9.4	87.3	1.3e-01	6.6e-02	-9e-07	-2e-07		
8	23.4	281.6	1.3e-01	6.5e-02	-1e-06	-3e-07		
10	42.4	285.5	1.3e-01	6.5e-02	-2e-06	-4e-07		

where \(w \in \mathbb{R}^m \) have i.i.d. entries uniformly chosen in \([0, 1]\). Next, we generate the original signal \(x_{\text{orig}} \in \mathbb{R}^n \) using the following MATLAB command:

\[
I = \text{randperm}(n); J = I(1:k); x_{\text{orig}} = \text{zeros}(n,1); x_{\text{orig}}(J) = \text{sign}(\text{randn}(k,1)).*10.^(D*\text{rand}(k,1));
\]

We then set \(b = Ax_{\text{orig}} + 0.01\epsilon \), where \(\epsilon \in \mathbb{R}^m \) has i.i.d standard Gaussian entries.

Finally, we set \(\sigma = 1.2 \|0.01\epsilon\|\).

We compare the \(\ell_1 \) minimization model (which minimizes \(\ell_1 \) norm in place of \(\ell_1/\ell_2 \) in (1.3); see [41, Eq. (5.5)]) with \(\mu = 0 \) and \(\ell_1/\ell_2 \) model. The \(\ell_1 \) minimization model is solved via SPGL1 [5] (version 2.1) using default settings. The initial point for MBA\(\ell_1/\ell_2 \) is generated from the approximate solution \(x_{\text{spgl1}} \) of SPGL1 as follows:

\[
x_{\text{feas}} = \begin{cases}
A^*b + \sigma \frac{x_{\text{spgl1}} - A^*b}{\|A_{\text{spgl1}} - b\|} & \text{if } \|Ax_{\text{spgl1}} - b\| > \sigma, \\
x_{\text{spgl1}} & \text{otherwise.}
\end{cases}
\]

We terminate MBA\(\ell_1/\ell_2 \) when (7.1) is satisfied with \(tol = 10^{-8} \).

In our numerical tests, we set \(n = 1024, m = 64 \) and consider \(k \in \{8, 12\}, F \in \{5, 15\} \) and \(D \in \{2, 3\} \). For each \((k, F, D)\), we generate 20 random instances as described above. We present the computational results (averaged over the 20 random instances) in Table 3. Here we show the CPU time,\(^4\) the recovery error \(\text{RecErr} = \frac{\|x_{\text{out}} - x_{\text{orig}}\|}{\max(1, \|x_{\text{orig}}\|)} \), the Residual = \(\|Ax_{\text{out}} - b\|^2 - \sigma^2 \) of both SPGL1 and MBA\(\ell_1/\ell_2 \), where \(x_{\text{out}} \) is the approximate solution returned by the respective algorithm. We again observe that the recovery error is significantly improved (on average) by solving the nonconvex model in most instances, except when \((k, F, D) = (12, 15, 3)\). In this case, we see that the \(x_{\text{spgl1}} \) can be highly infeasible and thus the starting point \(x_{\text{feas}} \) provided to MBA\(\ell_1/\ell_2 \) may not be a good starting point. This might explain the relatively poor performance of MBA\(\ell_1/\ell_2 \) in this case.

REFERENCES

[1] H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. *Math. Program.*, 116:5–16, 2009.
[2] H. Attouch, J. Bolte, P. Redont and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. *Math. Oper. Res.*, 35:438–457, 2010.

\(^4\)For MBA\(\ell_1/\ell_2 \), the time in parenthesis is the total run time including the time for computing the feasible point \(A^*b \) and the run times of SPGL1 and MBA\(\ell_1/\ell_2 \), the time without parenthesis is the actual run time of MBA\(\ell_1/\ell_2 \) starting from \(x_{\text{feas}} \).
Table 3: Random tests on badly scaled CS problems with Gaussian noise

k	F	D	CPU	RecErr	Residual			
			SPGL1	MBA₁/₂	SPGL1	MBA₁/₂		
8	5	2	0.07	0.13 (0.20)	3.2e-02	2.3e-03	-4e-05	-1e-13
8	5	3	0.06	0.14 (0.20)	3.2e-03	6.8e-04	-4e-05	-2e-11
8	15	2	0.08	3.92 (4.01)	4.7e-01	1.5e-01	-9e-05	-7e-13
8	15	3	0.11	31.46 (31.58)	3.8e-01	5.3e-02	-2e-02	-5e-11
12	5	2	0.06	2.26 (2.32)	1.4e-01	3.6e-02	-3e-04	-8e-13
12	5	3	0.08	4.05 (4.14)	6.0e-02	3.8e-03	1e-04	-7e-11
12	15	2	0.09	8.32 (8.41)	5.2e-01	2.0e-01	-1e-04	-1e-12
12	15	3	0.11	403.80 (403.91)	5.2e-01	1.5e+00	2e-02	-3e-10

[3] H. Attouch, J. Bolte and B. F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137:91–129, 2013.
[4] A. Auslender, R. Shefi and M. Teboulle. A moving balls approximation method for a class of smooth constrained minimization problems. SIAM J. Optim. 20:3232–3259, 2010.
[5] E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31:890–912, 2008.
[6] J. Bolte, Z. Chen and E. Pauwels. The multiproximal linearization method for convex composite problems. To appear in Math. Program., DOI:10.1007/s10107-019-01382-3.
[7] J. Bolte, A. Daniilidis and A. Lewis. The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamic systems. SIAM. J. Optim 17:1205–1223, 2007.
[8] J. Bolte and E. Pauwels. Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs. Math. Oper. Res. 41:442–465, 2016.
[9] J. Bolte, S. Sabach and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146:459–494, 2014.
[10] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. 2nd edition, Springer, 2006.
[11] J. M. Borwein and Q. J. Zhu. Techniques of Variational Analysis. Springer, 2004.
[12] E. J. Cand´es, J. K. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59:1207–1223, 2006.
[13] E. J. Candés and T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory. 51:4203–4251, 2005.
[14] R. E. Carrillo, K. E. Barner and T. C. Aysal. Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J. Sel. Topics Signal Process. 4(2):392–408, 2010.
[15] R. E. Carrillo, A. B. Ramirez, G. R. Arce, K. E. Barner and B. M. Sadler. Robust compressive sensing of sparse signals: a review. EURASIP J. Adv. Signal Process. 108, 2016.
[16] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14:707–710, 2007.
[17] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM. REV. 43:129–159, 2001.
[18] X. Chen, Z. Lu and T. K. Pong. Penalty Methods for a Class of Non-Lipschitz Optimization Problems. SIAM J. Optim. 26:1405–1492, 2016.
[19] F. H. Clarke. Optimization and Nonsmooth Analysis, SIAM, 1990.
[20] J.-P. Crouzeix, J. A. Ferland and H. V. Nguyen. Revisiting Dinkelbach-type algorithms for generalized fractional programs. Opsearch. 45:97–110, 2008.
[21] W. Dinkelbach. On nonlinear fractional programming. Manage. Sci. 13:492–498, 1967.
[22] F. Facchinei and J.-S. Pang. Finite-dimensional Variational Inequalities and Complementarity Problems Part I. Springer, New York, 2003.
[23] G. Li and T. K. Pong. Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods. Found. Comput. Math. 18:1199–1222, 2018.
[24] T. Liu, T. K. Pong and A. Takeda. A refined convergence analysis of pDCA, with applications to simultaneous sparse recovery and outlier detection. Comput. Optim. Appl. 73:69–100, 2019.
[25] Y. Lou, P. Yin, Q. He and J. Xin. Computing sparse representation in a highly coherent dictionary based on difference of L_1 and L_2. J. Sci. Comput. 64:178–196, 2015.
[26] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation I. Springer, 2006.
[27] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput. 24:227–234, 1995.
[28] H. van Ngai and M. Théra. Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116:397–427, 2009.
[29] L. F. Polania, R. E. Carrillo, M. Blanco-Velasco and K. E. Barner. Compressive sensing for ECG signals in the presence of electromyography noise. In: Proceeding of the 38th Annual Northeast Bioengineering Conference. 295-296, 2012.
[30] Y. Rahimi, C. Wang, H. Dong and Y. Lou. A scale invariant approach for sparse signal recovery. SIAM J. Sci. Comput. 41:A3649–A3672, 2019.
[31] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.
[32] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 1998.
[33] R. Shefi and M. Teboulle. A dual method for minimizing a nonsmooth objective over one smooth inequality constraint. Math. Program. 159:137–164, 2016.
[34] H. Tuy. Convex Analysis and Global Optimization. Springer, 1998.
[35] S. A. Vavasis. Derivation of compressive sensing theorems from the spherical section property. University of Waterloo, 2009.
[36] C. Wang, M. Tao, J. Nagy and Y. Lou. Limited-angle CT reconstruction via the L_1/L_2 minimization. Available at https://arxiv.org/abs/2006.00601.
[37] C. Wang, M. Yan and Y. Lou. Accelerated schemes for the L_1/L_2 minimization. IEEE T. Signal Proces. 68:2660–2669, 2020.
[38] B. Wen, X. Chen and T. K. Pong. A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69:297–324, 2018.
[39] P. Yin, E. Esser and J. Xin. Ratio and difference of L_1 and L_2 norms and sparse representation with coherent dictionaries. Commun. Inform. Systems. 14:87–109, 2014.
[40] P. Yu, G. Li and T. K. Pong. Deducing Kurdyka-Lojasiewicz exponent via inf-projection. Available at https://arxiv.org/abs/1902.03635.
[41] P. Yu, T. K. Pong and Z. Lu. Convergence rate analysis of a sequential convex programming method with line search for a class of constrained difference-of-convex optimization problems. Available at https://arXiv.org/abs/2001.06998.
[42] Y. Zhang. Theory of compressive sensing via L_1-minimization: a non-RIP analysis and extensions. J. Oper. Res. Soc. China. 1:79–105, 2013.