CLONING HUBBLE DEEP FIELDS. I. A MODEL-INDEPENDENT MEASUREMENT OF GALAXY EVOLUTION

RYCHARD BOUWENS
Department of Physics, University of California, Berkeley, CA 94720; bouwens@astro.berkeley.edu

TOM BROADHURST
Department of Astronomy, University of California, Berkeley, CA 94720; tjb@astro.berkeley.edu

AND

JOSEPH SILK
Departments of Astronomy and Physics, and Center for Particle Astrophysics, University of California, Berkeley, CA 94720; silk@astro.berkeley.edu

Received 1997 October 30; accepted 1998 May 28

ABSTRACT

We present a model-independent method of quantifying galaxy evolution in high-resolution images, a method which we apply to the Hubble Deep Field (HDF). Our procedure is to k-correct all pixels belonging to the images of a complete set of bright galaxies and then to replicate each galaxy image to higher redshift by the product of its space density, \(1/V_{\text{max}} \), and the cosmological volume. The set of bright galaxies is itself selected from the HDF, because presently the HDF provides the highest quality UV images of a redshift-complete sample of galaxies (31 galaxies with \(I < 21.9, z = 0.5 \), for which \(V/V_{\text{max}} \) is spread fairly). These galaxies are bright enough to permit accurate pixel-by-pixel k-corrections into the rest frame UV (\(\sim 2000 \) Å). We match the shot noise, spatial sampling, and point-spread function smoothing of the HDF data, resulting in entirely empirical and parameter-free “no-evolution” deep fields of galaxies for direct comparison with the HDF. In addition, the overcounting rate and the level of incompleteness can be accurately quantified by this procedure. We obtain the following results. Faint HDF galaxies \((I > 24) \) are much smaller, more numerous, and less regular than our “no-evolution” extrapolation, for any interesting geometry. A higher proportion of HDF galaxies “dropout” in both \(U \) and \(B \), indicating that some galaxies are brighter at higher redshifts than our “cloned” \(z \sim 0.5 \) population.

Subject headings: galaxies: evolution — galaxies: structure — techniques: image processing — ultraviolet: galaxies

1. INTRODUCTION

Among the highest quality data available for exploring galaxy evolution are the long exposures of the Hubble Deep Field (HDF; Williams et al. 1996), which register the faintest and sharpest images of galaxies ever detected. The counts of faint galaxies are found to increase to the completeness limit \((I \sim 28) \), roughly doubling in number per magnitude, \(d \log (N)/dm = 0.2–0.3 \) (Williams et al. 1996; see Tables 9 and 10), in all bands. This trend is accompanied by a marked decline in angular size, so that most faint galaxies are barely resolved. While much of this light must arise from the epoch when galaxies and stars were first forming, the photometric limit of the HDF far exceeds the practical limit of spectroscopy (some 97% of the HDF galaxies do not have measured redshifts); hence, for the foreseeable future, interpretation of these images rests principally on photometric information.

A major impediment in analyzing the HDF images is our ignorance of the ultraviolet (UV) properties of ordinary galaxies, since at high redshift it is the rest frame UV light that is detected in the optical bands. Despite the rather modest UV performance of imaging satellites, it has become apparent that the appearance of even ordinary Hubble-sequence galaxies is knotty and irregular in the UV, governed by the spatial distribution of high contrast star-forming regions (O’Connell & Markum 1996; Giavalisco et al. 1996a). Hence, it is unclear to what extent the large numbers of blue and irregular-looking objects reported in Hubble Space Telescope (HST) images (Glazebrook et al. 1995; Driver, Windhorst, & Griffiths 1995; Abraham et al. 1996b; Colley et al. 1997) simply result from redshifted UV light rather than evolution.

There have been several efforts to obtain images of representative nearby galaxies. The FOCA balloon experiment at 2000 Å has measured six UV images of local galaxies (Blecha et al. 1990), the Astro-1 (Astro-2) mission measured 27 (45) UV images of objects using the Ultraviolet Imaging Telescope (Stecher et al. 1992), and Maoz et al. (1997) have recently compiled UV images of 110 galaxies using the Faint Object Camera (FOC) on HST (2300 Å). Cognizant of the importance of these UV images for assessing galaxy evolution, researchers (Bohlin et al. 1991; Giavalisco et al. 1996a; Maoz 1997) have already used these data to comment on deep HST images. While these studies have been very illustrative, the samples are either incomplete or register only the inner regions of galaxies so that a quantification of galaxy evolution in deep HST images has hitherto not been attempted.

Because of the inadequacies of UV instrumentation, it is interesting to note that even the gross effect of the Lyman limit is more easily observed in the optical, by virtue of the high redshifts of some faint galaxies (Steidel et al. 1996b). The rest frame UV morphologies of several tens of these high-redshift galaxies are measured directly with HST, particularly in the Hubble Deep Field (Steidel et al. 1996a; Giavalisco, Steidel, & Macchetto 1996b; Lowenthal et al. 1997) down to the Lyman limit. These galaxies lie in the range \(z \sim 2.0–3.5 \) and are reported to have a generally
compact appearance, but many have faint plumes and some are up to $3''$ in length (object C4-06 of Steidel et al. 1996a). The UV continuum flux places some constraint on the luminosity density of star-forming galaxies at high z (Madau et al. 1996), at least for galaxies blue enough to be dominated by the light of O stars. Comparison of the implied high-mass star formation rate with local estimates from H$_{\alpha}$ emission (Gallegos et al. 1995) provides an indirect means of estimating the evolution of the integrated UV-luminosity density (Madau et al. 1996).

In this paper, we outline a simple and practical method for measuring evolution in deep space images, by constructing empirical “no-evolution” fields of galaxies as a benchmark, matched in image properties to the data, in this case the HDF. Our method has the distinct advantages of being purely empirical and entirely free of parameterizations, so that our conclusions are liberated from the usual caveats. We first establish the k-correction for each pixel belonging to a given galaxy image drawn from a complete sample of relatively bright galaxies with redshifts (selected from the HDF). We then scale the numbers of these k-corrected galaxy images out to high redshift in proportion to the product of the volume and the space density of each galaxy, the latter being set by its value of $1/V_{\text{max}}$. Finally, we correct the point-spread function (PSF), add the appropriate noise and sampling of the HDF observations, and compare these no-evolution fields with the HDF at fainter magnitudes ($I > 24$). This approach is feasible because of the relatively high quality F300W images of the brighter galaxies detected in the HDF ($I < 22$), as well as the many subsequent redshift measurements of HDF galaxies with the Keck Telescope (Cohen et al. 1996; Lowenthal et al. 1997). Together these observations allow us to construct a statistically useful complete sample of 31 galaxies with sufficient UV-optical coverage for construction of an entirely empirical and parameter free no-evolution deep field for comparison with the HDF. The universal geometry is the only unknown, dictating the volume and angle-redshift relations, and bearing somewhat on the degree of evolution derived in the I band.

By following this procedure, we make no recourse to the usual parameterizations of morphological or color classes, galaxy luminosity functions, and light profiles. Implicitly, such parameterizations have tended to assume one-parameter relationships, particularly between morphological type and spectral type, reducing the inherent richness of the general galaxy population and potentially introducing artificial model dependencies. In light of this, it is not very surprising that simulations of two-dimensional images look artificial, appearing more “hygienic” than reality, and hence are of limited value in reliably quantifying evolution. Designating a morphological class has in itself proven to be problematic for well-resolved galaxies. Naim et al. (1995), for example, have found from a comparison of the classification of six human “experts” that classification exhibits a variance of two morphological types relative to one another. Hence there is still no clear way to map an observed image onto a given morphological type or to produce a realistic image given a morphological type.

Finally, we emphasize that our procedure is free of the many internal selection biases that have long haunted low-redshift to high-redshift comparisons, e.g., where deep CCD data have lower surface brightness thresholds than do photographic surveys used to construct the local luminosity functions.

We begin this paper by describing the manner in which we select our bright galaxy sample in § 2. In § 3, we discuss our empirical procedure for deriving pixel-by-pixel spectral energy distributions and number densities for each of these bright galaxies. In § 4, we assess both the fairness of our sample and the viability of the method by making some simple predictions chiefly with regard to the Canada-France Redshift Survey (CDFS; Lilly et al. 1995). In § 5, we describe the simulation procedure in detail, and in § 6 we describe our analysis of the simulations and the HDF data using SExtractor. In § 7 we present our results, in § 8 we discuss these results, and in § 9 we present a summary.

We adopt $H_0 = 50$ km s$^{-1}$ Mpc$^{-1}$ and express all magnitudes in this paper in the AB^1 magnitude system (defined in terms of a flat spectrum in frequency). Also, to associate the HDF bands with their more familiar optical counterparts, we shall refer to the F814W, F606W, F450W, and F300W bands as I_{814}, V_{606}, B_{450}, and U_{300}, respectively, throughout this paper.

2. BRIGHT GALAXY SAMPLE

We select our sample of bright galaxies from the HDF. First we measure the photometry of all galaxies detected in the HDF by applying the SExtractor photometry package 1.2b5 (Bertin & Arnouts 1996) to the publicly released version 2 images of the HDF. In using SExtractor we require objects to be at least 2σ above the sky noise in the I_{814} image over an area of at least 10 contiguous pixels, after first mildly smoothing the images by a Gaussian profile of width 0.06σ (the approximate width of the PSF). We take the deblending parameter (DEBLEND_MINCONT) to be 0.04, which we found to be a good compromise between splitting too many faint objects apart and merging too many different objects together. For photometry, we use isophotal magnitudes (MAG BEST) corrected with a Gaussian extrapolation to approximate the light beyond the isophotes for all non-crowded (almost all) objects, where we take our isophotes to be equal to 2σ times the sky noise (≈ 24.9 mag arcsec$^{-2}$). Objects with half-light radii less than $0.15''$ are excluded as stars (five objects with $I_{814,AB} < 22.33$). We include only objects on the three Wide Field Camera chips lying farther than $4''$ from the edges, beyond which the image quality is diminished.

We match up our resulting photometric catalogs with redshifts measured by various groups (Cohen et al. 1996; Lowenthal et al. 1997) to construct a strictly magnitude-limited subset, bright enough to be highly complete in redshift. We settle for a conservative limit of $I_{814,AB} < 22.33$, which contains 32 objects in total—only one of which, for which we know of no attempt to measure a redshift nor any reason to suppose that its measurement would prove difficult, is without a redshift. Consequently, we shall assume that the 31 objects with redshifts are representative and simply scale volume densities by $32/31$. As more redshifts become available this analysis can be extended, although clearly the limited area of the HDF means that new fields are required in order to significantly enlarge the bright galaxy sample and to help average over the possible effects of clustering.

$^1 m(AB) = -2.5 \log f_\nu(\text{ergs cm}^{-2} \text{cm}^{-1} \text{s}^{-1} \text{Hz}^{-1}) - 48.60$ (Oke 1974).
The resultant bright sample is listed in Table 1, along with our determination of its coordinates, I_{814} magnitude, absolute magnitude, surface brightness (taken to be $m_{bJ}/(2\pi r_{hl}^2)$), and CWW SEDs (A0 V magnitudes). k-correction in I_{814} at redshift 2.5 using CWW SEDs.

Central surface brightness taken to equal $m_{bJ}(z=0)/(2\pi r_{hl}^2)$ (A0 V magnitudes).

Our own eyeball classification of the morphological type.

The light-emitting surfaces for the purpose of k-correction, 3. REPRESENTATION OF EACH SAMPLE GALAXY

3.1. The Light

We treat our bright galaxies as two-dimensional pixelated light-emitting surfaces for the purpose of k-correction,
avoiding the unnecessary step of parameterizing their light profiles. We do not attempt to alter the inclination of each galaxy in the simulations, with the attendant problems regarding extinction this would entail, since by default our sample already contains galaxies of all orientations.

The question arises as to the best method of \(k \)-correction when the redshift extends to wavelengths short enough that no UV information is available. The spectrum of any given pixel is sampled by only four broad passbands, and no information exists shortward of 2000 Å in the rest frame of the typical bright galaxy (for which \(z \sim 0.5 \)), allowing a reliable \(k \)-correction to \(z \sim 3 \) in the longest wavelength band, \(I_{814} \). In order to extend this work to higher redshift and in order to implement a smooth interpolation between the four passbands, we adopt empirical template spectra. To indicate the robustness of the results to the choice of templates, we compare simulations for two independent sets of templates, one based on the small but large-aperture UV sample of Coleman, Wu, & Weedman (1980) and the other on the larger but small-aperture sample of template spectra carefully compiled and combined from the IUE archive by Kinney et al. (1996). These data sets provide useful UV spectra for a range of optically selected galaxies nicely spanning the observed spectral range (see Connolly et al. 1996), so that a reasonable empirical interpolation and extrapolation can be performed by matching these templates to the four passbands of the HDF and improved by interpolating between these spectra to provide a smooth result. Additionally, we include the average effects of the H I Lyman continuum and series forest absorption at high redshift, as parameterized by Madau (1995) for distant QSOs, since they significantly affect the broadband colors of high-redshift galaxies.

Formally, we represent each element \((x) \) in the two-
dimensional template of a galaxy by

\[F_s(\lambda) = \mu(x) f_{s,\text{obs}}(\lambda), \]

where \(\mu(x) \) is the surface brightness template at element \(x \) in the \(B \)-band and where \(f_{s,\text{obs}}(\lambda) \) is the spectral energy distribution shape at the element \(x \). We take the surface brightness template to equal that observed in the HDF in band \(B \), the band with the highest integrated signal-to-noise ratio (S/N) (either the \(I_{B,14} \) or the \(V_{506} \) band for the objects in our sample). For clarity we use the word “element” when referring to a pixel in the original bright galaxy image because these pixels are transformed in area and flux by redshift and are therefore distinct from the pixel scale of the simulations, which is set by the HDF.

We take the spectral energy distribution (SED) shape, \(f_{s,\text{obs}}(\lambda) \), for each element \(x \) from two different compilations of spectral templates: the Coleman et al. (1980; hereafter CWW) set supplemented with the NGC 4449 spectrum (G. R. Bruzual & R. S. Ellis 1985, private communication) and the Kinney et al. (1996; hereafter K96) spectra. CWW includes SEDs intended to be representative of the dust-free E, Sbc, Scd, Sdm, and starburst (NGC 4449) galaxies, and the K96 set includes SEDs intended to represent ellipticals, Sa, Sb, and SB1 [starburst; \(E(B-V) \leq 0.3 \)] galaxies. We extend these observed SED templates below 1200 and 1400 Å, respectively, by extrapolating the slope of the SED at these wavelengths down to the Lyman break at 912 Å, below which we set the observed flux to zero (see Fig. 3). We also interpolate linearly between spectra to form a smoothly continuous set for better fitting the observed four passband flux measurements.

Integrating the SEDs over the transmission curve of the four passbands, we then find the most likely spectral template for each element \(x \), which we shall call \(s(x) \), such that the sum of the squares of the differences between the SED template fluxes and the observed fluxes divided by the expected error in these fluxes is a minimum. The expected error is taken to be the error in the value of the pixel fluxes added in quadrature with the typical cosmic variance in the model SED fluxes (0.25 mag) we find. Note that where the signal in a pixel is less than twice the sky noise we have set the signal in that pixel equal to the value given by equation (1), adopting the surface brightness profile and the spectral energy template that best match the mean values determined in a 1.0 diameter aperture. We have not attempted to realign the HDF images in the different bands, nor have we tried to correct for the different shapes that the PSF has in the different bands, since checks indicate that these effects are small and induce changes on scales smaller than the HDF pixel scale, i.e., 0.04. This wavelength independence is due to the undersampling of images by WFPC, the effective HDF PSF being more set by the wavelength independent subsampling grid pattern than by the wavelength-dependent diffraction of the telescope.

Clearly, we should take the spatial extent of each prototype image to be as large as possible within the limits of the signal. In practice, we take this to be the radius at which the mean pixel signal within an elliptical annulus is equal to the sky noise. Inspection of each image allows us to filter out the small number of obviously unrelated galaxies within this extended aperture, the pixels affected being replaced by their reflected counterparts. To be sure of including the “whole” object, we extend its two-dimensional profile by 50%, using the radial gradient. For this extended region we produce the noise by adding Poisson noise from modeled signal in quadrature with the general background noise. Except for the very brightest “cloned” galaxies, this extrapolation is not relevant, since the vast majority of replicated images generated from a given template galaxy are much fainter than the original, lying at higher redshift, where these outer regions of the profile lie further into the noise.

The question arises as to the utility of the HDF \(U_{300} \) images for generating the higher redshift images in the redder bands, since the sensitivity of the redder bands of the HDF is greater than that of the \(U_{300} \) Band. As it turns out, the signal in the HDF \(U_{300} \) images is more than sufficient for our purposes because of the strong \((1 + z)^4 \) cosmog.
logical surface brightness dimming. To see this, consider the S/N at a given σ in a pixel through the U_{300} filter at the observed redshift. This translates into a lower S/N at higher redshift in the other bands, given their relative sensitivities and exposure times. Taking the worst case that the spectrum of a given pixel is flat in frequency (though in practice the spectral indices of some starburst systems are somewhat steeper than this), the surface brightness dims by a factor 7.5 log $[(1 + z)/(1 + z_{\text{obs}})]$, or 7.5 log $(\lambda_{B}/\lambda_{300})$, or a decrease of the surface brightness by 1.3, 2.3, and 3.3 mag pixel$^{-2}$, for the B_{440}, V_{605}, and I_{814} bands, respectively. However, the measured 1 σ U_{300} noise level for the HDF is 32.4 mag pixel$^{-2}$, compared to the 32.2, 34.0, and 32.6 mag pixel$^{-2}$ levels in the B_{440}, V_{605}, and I_{814} bands. Clearly, then, since few pixels are as blue or bluer than a flat spectrum in our template galaxy sample, the S/N of any pixel in a redder band at higher redshift will always be less than that of the observed U_{300} image.

While it is apparent that a number of objects in our input sample have extremely low S/Ns in the U_{300} band (see the ellipticals in Fig. 2a), we emphasize that the S/N in U_{300} is always sufficient to determine the appearance of these galaxies at higher redshifts in the redder bands of the HDF given the relative band sensitivities and exposure times used in these passbands. Greater inequities between bands would limit the simulations to depths less than the limiting magnitudes of these passbands.

3.2. Space Density

We set the space density of each galaxy in our sample equal to $1/V_{\text{max}}$, determined by the maximum redshift, z_{max}, to which each galaxy could have potentially been selected given our chosen magnitude limit. V_{max} is given by

$$V_{\text{max}} = S \int_{0}^{z_{\text{max}}} \left(\frac{dL}{(1+z)} \right)^2 \frac{c \, dz}{H_0 \, E(z)},$$

(2)

where

$$E(z) = \sqrt{\Omega(1+z)^3 + (1-\Omega-\Omega_{\Lambda})(1+z)^2 + \Omega_{\Lambda}},$$

(3)

where S is the solid angle of the surveyed area and $d_L(z_{\text{max}})$ is the well-known luminosity distance at redshift z_{max}, determined by

$$22.33 = I_{814,AB} + k_{814}(z_{\text{max}}) - k_{814}(z_{\text{obs}}) + 5 \log \frac{d_L(z_{\text{max}})}{d_L(z_{\text{obs}})},$$

(4)

where z_{obs} is the observed redshift and $k_{814}(z)$ is the k-correction in the I_{814} band at redshift z. We determine the k-correction for the galaxy from the total spectral energy distribution, which incorporates the contribution of all the elements in our two-dimensional representation of each galaxy. Note that this procedure avoids the usual steps of constructing a luminosity function, parameterizing it, and then assigning k-corrections. We simply treat each galaxy as a class of its own with a space density set by its own value of $1/V_{\text{max}}$, allowing a fully unbinned, individual treatment of each template galaxy.

4. Consistency Checks and Sample Fairness

Astronomers have long used the V/V_{max} distribution (Schmidt 1968) to assess the completeness and uniformity of a sample, where V is the volume up to and including the redshift of the galaxy in question and V_{max} is the volume in which this galaxy could have been observed, given the selection criteria. For a uniform distribution of galaxies in a volume, one expects a uniform distribution of V/V_{max} between 0 and 1, in the absence of evolution and clustering, and for a sample with N galaxies the average value of this quantity is given by

$$\langle \frac{V}{V_{\text{max}}} \rangle = 0.5 \pm \frac{1}{\sqrt{12N}}.$$

(5)

The distribution of V/V_{max} for our template sample is shown in Figure 4, for $\Omega = 0.1/\Lambda = 0.9$, $\Omega = 0.1$, and $\Omega = 1$, where the k-correction is formed from the SED averaged over the whole object. The average value for the V/V_{max} distribution is 0.48, 0.51, and 0.53 for the $\Omega = 0.1/\Lambda = 0.9$, $\Omega = 0.1$, and $\Omega = 1$ geometries, which is within the expected deviations for the V/V_{max} statistic (0.50 \pm 0.05) and not inconsistent with the rate of evolution detected in a larger redshift survey to a similar magnitude limit (Lilly et al. 1995). We could have chosen to derive V_{max} by redshifting each pixel of the object and performing the photometry on the redshifted image for greater self-consistency, but this turns out to be virtually irrelevant because the magnitudes we recover from the redshifted images placed at z_{max} are on average displaced by only 0.07 mag faintward of our magnitude limit ($I_{814,AB} = 22.33$). A slight faintward shift is expected for aperture magnitudes since the lower surface brightnesses at z_{max} results in some small loss of the light on the wings. To illustrate this point, we compare the recovered magnitudes at z_{max} with the magnitude limit chosen for our bright sample in Figure 5.

To provide a basic context for understanding the no-evolution simulations described above, we display the luminosity function obtained for this sample in Figure 6, for two different representative cosmologies. We compare this luminosity function with the b_7-band luminosity functions determined by Loveday et al. (1992) and Zucca et al. (1997) in the Automatic Plate Measuring Facility (APM) and European Southern Observatory Slice Project (ESP) surveys, respectively, correcting our sample to rest frame b_7 directly using our pixel-by-pixel best-fit SEDs. We see that our luminosity function is shifted to larger luminosity and/or space density than that of the local universe, broadly consistent with the findings of Ellis et al. (1996) and Lilly et al. (1995), who observe the luminosity function of blue objects both to brighten and to steepen.

We can also compare our sample with the redshift distribution, $N(z)$, of the Canada-France Redshift Survey (CFRS), a survey of similar depth, by simulating (as described in detail below) its survey parameters. The CFRS sample covers $17.5 < I_{AB} < 22.5$ over 112 arcmin2. Scaling by these criteria and the 19% redshift incompleteness of the CFRS, we can construct a prediction for $N(z)$ using our method (Fig. 7). We make a small correction, inferable from Figure 5 of Lilly et al. (1995), to convert from isophotal to total magnitudes by a uniform 0.1 mag. A noticeable difference between our predicted $N(z)$ and that of the CFRS is found in the amplitude of the distributions, our redshift distribution being 28% higher, consistent with the differences in the respective luminosity functions (Fig. 6). Despite this, the shape of our predicted $N(z)$ is very similar to that of the CFRS, which is not surprising given the wide spread of V/V_{max} for our sample (Fig. 4). This basic agreement is quite satisfactory, showing that our bright galaxy sample fairly
samples the range, if not quite the average density, of galaxies comprising the general field population.

5. HDF SIMULATIONS

According to the number density derived for each template galaxy, $1/V_{\text{max}}$, and assuming homogeneity, we generate Monte Carlo catalogs of the objects out to very large redshift ($z = 7$) over the solid angle of the HDF, each object being assigned a random redshift, position, and position angle. We then generate mock images on the basis of these catalogs. Each redshifted image must be scaled in size and resampled with more noise and additional PSF smoothing to account for its higher redshift and generally smaller size relative to its brighter counterpart. Since the two-dimensional surface brightness profiles of the bright galaxies already contain noise, we find it useful to simultaneously generate both a signal I and a noise N image. The noise image N keeps track of how much noise has been implicitly added to each pixel in the signal image I by virtue of each galaxy template implicitly containing noise. Such an accounting allows the proper amount of noise to be added to each pixel in the signal image after all the scaled galaxy templates have been laid down.

To generate an image at a chosen redshift, we must calculate the change in size and surface brightness of each element x in our two-dimensional galaxy templates. For a galaxy with redshift z, we take the angular size of each element in our two-dimensional galaxy template, d_z, to be equal to

$$d_z = \left[\frac{d_\lambda(z_{\text{obs}})}{d_\lambda(z)} \right] d_{\text{gal}},$$

where z_{obs} is the redshift of the object as measured in the HDF, d_λ is the angular distance (Peebles 1993), and d_{gal} is the angular size of each element in our two-dimensional galaxy template image at z_{obs}, i.e., the pixel size of galaxies in the HDF (0′04). We calculate the surface brightness $\mu(x,z)$ that each element x of our two-dimensional galaxy template has at redshift z for a given passband X as

$$\mu(x,z) = \mu(x) + k^X(x, z) - k^X(x, z_{\text{obs}})$$
$$+ 2.5 \log \left(\frac{1 + z}{1 + z_{\text{obs}}} \right)^4 + (X - b)(x),$$

where $k^X(x,z)$ and $(X - b)(x)$ are the k-corrections and $z = 0 X - b$ colors calculated based on the spectral energy distribution $f_{\Delta\lambda}$ of element x. We have included the line blanketing by the Lyα forest as given by Madau (1995) as well as Lyman-limit absorption in our calculations of the k-corrections since these corrections become important at $z > 2.0$ in the U_{300} band and at $z > 3.5$ in the B_{450} band.

In calculating both the signal and the noise at each pixel on the images I and N, we break up each pixel into 25 smaller subpixels, and calculate the contribution of each redshifted element x to each of these smaller subpixels to account for the generally much larger area covered by a data pixel than that of the redshifted image element, for the purpose of rebinning.

Because the real PSF has smoothed each galaxy template, to correctly calculate the appearance of each prototype galaxy in our sample at higher redshifts we must smooth each object in the I image more, depending on the...
reduction in angular size for the object in question. For simplicity, we simply smooth each object with a kernel derived from a relatively isolated, unsaturated star from the Hubble Deep Field reduced in size so that its scale length is simply $[1 - (d_{\text{obs}}(z)/d_{\text{A}}(z))]^{1/2}$ times that of the original scale length. The above expression is exact for the case of a perfectly Gaussian PSF and is also close to exact in those cases in which the angular size of the simulated galaxy laid down in the I image is much smaller than the HDF. Of course, it is true that the real HDF PSF differs from a Gaussian PSF in that it has much more extended wings, but for the most part the differences that this makes are small. To verify this, we compared the angular sizes recovered using the present procedure and those assuming the PSF to be exactly Gaussian (the values of σ for which we determined by fitting to the same unsaturated star in the HDF), and we found little if any dependence on these differences.

For a pixel in which the contribution to the signal image I from an element in the template image is $I(x)f$, the noise contribution to the same pixel in the noise image N is taken to be

$$\frac{I(x)f}{S/N(x)} \sqrt{\frac{d_{\text{A}}(z)/d_{\text{g}}}{d_{\text{g}}}}$$

added in quadrature, where $S/N(x)$ is the S/N calculated for element x of the $\mu(x)$ template drawn from the HDF, and account is made of both the background and the Poissonian noise associated with the measured pixel-by-pixel signal.

Having generated the signal image, we want to calculate the appropriate noise for each pixel in our simulated HDF, which we take to be

$$N(x)_{\text{desired}} = \sqrt{\sigma^2 + [I(x)]^2G}$$

where σ is the background noise level in the HDF, $I(x)$ is the signal at pixel x, and G is the gain.

Having already calculated the amount of noise that each pixel in the signal image had by virtue of implicit noise in the templates, i.e., the noise image N, we can bring the noise to be

$$\frac{I(x)f}{S/N(x)} \sqrt{\frac{d_{\text{A}}(z)/d_{\text{g}}}{d_{\text{g}}}}$$

added in quadrature, where $S/N(x)$ is the S/N calculated for element x of the $\mu(x)$ template drawn from the HDF, and account is made of both the background and the Poissonian noise associated with the measured pixel-by-pixel signal.

Having generated the signal image, we want to calculate the appropriate noise for each pixel in our simulated HDF, which we take to be

$$N(x)_{\text{desired}} = \sqrt{\sigma^2 + [I(x)]^2G}$$

where σ is the background noise level in the HDF, $I(x)$ is the signal at pixel x, and G is the gain.

Having already calculated the amount of noise that each pixel in the signal image had by virtue of implicit noise in the templates, i.e., the noise image N, we can bring the noise to be

$$\frac{I(x)f}{S/N(x)} \sqrt{\frac{d_{\text{A}}(z)/d_{\text{g}}}{d_{\text{g}}}}$$

added in quadrature, where $S/N(x)$ is the S/N calculated for element x of the $\mu(x)$ template drawn from the HDF, and account is made of both the background and the Poissonian noise associated with the measured pixel-by-pixel signal.

Having generated the signal image, we want to calculate the appropriate noise for each pixel in our simulated HDF, which we take to be

$$N(x)_{\text{desired}} = \sqrt{\sigma^2 + [I(x)]^2G}$$

where σ is the background noise level in the HDF, $I(x)$ is the signal at pixel x, and G is the gain.

Having already calculated the amount of noise that each pixel in the signal image had by virtue of implicit noise in the templates, i.e., the noise image N, we can bring the noise...
in each pixel up to the appropriate value N_{desired} by adding pixel-by-pixel Gaussian-distributed noise with standard deviation $(N_{\text{desired}}^2 - N^2)^{1/2}$, smoothing this added noise with the noise kernel specified in Table 4 of Williams et al. (1996) so as to approximate the observed correlation properties of the noise in the HDF. While the outlined procedure will add the appropriate amount of noise to pixels if noise is lacking in those pixels, it is possible that some pixels will already have more noise added to them than is present per pixel in the HDF. In particular, this occurs when the redshift for an object is lower than that of the prototype, since of course we cannot improve on the S/N of the prototype galaxy image. To artificially prevent this possibility, we simply replace every galaxy in our mock catalog whose redshift is lower than its observed redshift with another galaxy from our bright sample placed at the same redshift whose observed redshift is lower than the mock catalog redshift. Though this results in a bright galaxy population that is slightly unrepresentative (and, in fact, this is the cause of the slight disagreement observed in the distribution

Fig. 8.—(a)–(c) 52’’ × 72’’ color images generated from our no-evolution simulations for the $\Omega = 1.0$, $\Omega = 0.1$, and $\Lambda = 0.9/\Omega = 0.1$ geometries, respectively, of the B_{450}, V_{606}, and I_{814} images, constructed with pixel size, S/N, and PSF identical to that of the HDF. (d) Image of the same size taken from the HDF. Clearly, the no-evolution simulation strongly underpredicts the total number of faint galaxies in the HDF.
Comparison of the apparent magnitudes, Petrosian radii, and half-light radii extracted from the HDF images against those sample bright galaxies laid down on a simulated image at their observed redshifts for our bright sample of galaxy prototypes. Note that the recovered values are very close to the true observations, thereby validating our technique of image generation.

The simulations cover a sky area 4 times that of the HDF in each of the four broadbands U_{300}, B_{450}, V_{606}, and I_{814}. We perform these simulations self-consistently for $\Omega = 0.1/\Lambda = 0.9$, $\Omega = 0.1$, and $\Lambda = 1$, by which we mean that the V_{max} of the bright sample uses the same geometry as the volume used in constructing the simulation. In Figure 8 we compare a no-evolution simulation assuming $\Omega = 1.0$, $\Omega = 0.1$, and $\Lambda = 0.9/\Omega = 0.1$ with an area of the same size selected from the HDF.

A simple test of our procedure is to construct images of the 31 prototype galaxies at their observed redshifts (z_{obs}). Good agreement, within the errors expected on the basis of our pixel-by-pixel SED fits, is found between these images and their originals at z_{max}. To illustrate this agreement more quantitatively, we plot a comparison of the recovered values for the half-light radius, Petrosian radius (Petrosian 1976), and apparent I_{814} magnitudes in Figure 9.

6. OBJECT DETECTION

On both the simulations and the HDF itself, we perform the object identification and photometry using SExtractor version 1.2b5 (Bertin & Arnouts 1996). After smoothing the I_{814} images with a Gaussian PSF of 0'06 radius (the approximate PSF) within SExtractor, we require that objects be at least 2 σ above the noise over an area of at least 10 contiguous pixels, and we use a cleaning parameter of 1.0. We select our apparent magnitudes to be equal to SExtractor's MAG_BEST estimate, which for noncrowded objects is equivalent to an isophotal magnitude extrapolated beyond the isophotes. We exclude objects with half-light radii less than 0'15 and $I_{814,\text{AB}} < 23$, fainter than which the contamination is relatively small, as stars. Then, based upon the detected objects, we used SExtractor to determine the apparent magnitudes in the other bands with the I_{814} apertures.

We set the deblending parameter (DEBLEND_MINCONT), which is important in determining the extent to which SExtractor breaks up objects, to be equal to 0.04. We found some dependence of our results on the value chosen for this parameter, particularly the breakup rate, but for the most part this dependence was small. Our chosen value of the deblending parameter is very close to that (0.05) used by Clements & Couch (1997) (W. Couch 1997, private communication). With this choice of parameter, we obtained the reasonable result that no bright galaxy from our sample broke up into smaller pieces when placed at its z_{max}, in agreement with our qualitative impressions in looking at these images.

We derive two different measures of the angular size for each object in our image, a Petrosian radius (Petrosian 1976) and a half-light radius. We take the Petrosian radius to equal the smallest radius for which the surface brightness at that radius equals one-half the average surface brightness interior to that radius. The half-light radius is equal to the
radius of the aperture that contained one-half the light as determined by SExtractor’s best estimate of the total light. We performed some simulations to test our method for recovering half-light radii and found that our recovered half-light radii are only slightly scattered about sizes 10% smaller than the input half-light radii at $I_{814,AB} \approx 24$. The scatter in this relationship partially derives from the uncertainty in the overall photometry performed by SExtractor.

7. RESULTS

7.1. Number Counts in the I_{814} band

It is natural to begin our comparison of the faint galaxy population in the HDF by looking at the counts in I_{814}, the longest wavelength band and hence the band least affected by uncertainty in the k-correction. Figure 10 compares the number counts recovered from both our simulations and the observations (a description of the plotted 1σ estimates based on the size of our bright sample is given in Appendix A). For all geometries, we find that our no-evolution predictions fall steadily short of the observations with increasing apparent magnitude. For $\Lambda = 0.9/\Omega = 0.1$, the shortfall is noticeably less pronounced because of the relatively larger volume available. At $I_{814,AB} = 26$, for example, the counts fall short by a factor 1.9 ± 0.4 for $\Lambda = 0.9/\Omega = 0.1$ compared to 5.4 ± 1.0 for $\Omega = 1$ and 2.7 ± 0.8 for $\Omega = 0.1$.

Of course, the counts recovered at bright magnitudes, $I_{814,AB} \approx 22$, are in fair agreement with the observations, as one would expect given the definition of our sample up to approximately the same bright limit, $I_{814,AB} = 22.33$. It is reassuring to find that there is little dependence of the number counts on the choice of spectral template, whether it be the CWW set or the K96 set. Finally, as discussed in Appendix B, we note that the present no-evolution faint counts ($I_{814,AB} \approx 28$) are comprised of a nonnegligible number of the input prototype galaxies (≈ 10).

7.2. Number-Count Completeness, Overcounting, and Clustering

Given our knowledge of the positions, redshifts, magnitudes, and types of galaxies laid down in each simulated image, it is simple to determine systematic uncertainties such as incompleteness in the number counts, by matching up the object catalogs from the simulations created by SExtractor with our input Monte Carlo catalogs. Figure 11 shows that the incompleteness becomes significant in the range $I_{814,AB} > 26$ for both of our no-evolution simulations. This incompleteness stems from the fact that at fainter magnitudes we are sensitive to smaller and hence higher surface brightness galaxies, so that a large fraction of the population of galaxies at faint magnitudes subtends areas
too large for detection given their redshifted surface brightnesses.

In a similar manner, we can determine the rate of overcounting in our simulated fields. As explained in Colley et al. (1996), it is possible to overcount the number of faint galaxies by misidentifying individual parts of a galaxy as distinct galaxies, especially at higher redshifts, where the rest frame ultraviolet light is accessed and H II regions have higher contrast (see the galaxy at \(z = 0.319\) in Fig. 2b). For simplicity, rather than perform an angular correlation analysis as did Colley et al. (1996), we have chosen to measure this number directly. In Figure 12, we display the rate of overcounting for all the simulations performed by comparison of the input random catalog with those recovered.

Clearly, in our no-evolution simulations, using the parameters chosen for the photometry, overcounting is never an important effect for any of the cosmologies examined.

The clustering seen in the HDF redshift data at bright magnitudes (Fig. 1) is responsible for the overdensity at bright magnitudes \(I_{814} < 22.33\) in the HDF relative to the mean field counts measured in wider field surveys. Compared to the CFRS, for example, this amounts to a \(\sim 28\%\) overdensity (Fig. 7). At fainter magnitudes, however, the count variance should be less affected by clustering, given the greater projected volume and the expectation of less well-developed structure at earlier times. We provide a quick test of the plausibility of this hypothesis using other deep \(HST\) \(I_{814}\) data. Figure 13 shows the count variance between six pointings (two sets of three \(HST\) pointings separated by 3 hr on the sky from another program). These data show that the count variance in the \(I_{814}\) band decreases steadily to the Poissonian limit (\(I > 25\)) over the area of WFPC2, consistent with isotropy at faint magnitudes.

7.3. Angular Sizes

We compare the distributions of half-light radii recovered from the HDF with those of our no-evolution simulations in Figure 14. The hatched area represents the 1 \(\sigma\) uncertainty range based on the finite size of our bright sample for the no-evolution model using the CWW SED templates. The solid curve indicates the angular size distribution recovered from simulations using the K96 SED templates. At bright magnitudes (\(21 < I_{814, AB} < 22.6\)), the angular sizes recovered from the simulations agree quite well with the observations as expected given the fact that we defined our bright sample in terms of many of these same galaxies.

In contrast, at fainter magnitudes, the half-light radii from the no-evolution simulations become significantly larger than those from the observations: larger by 43\%, 44\%, and 57\% in the magnitude range \(24 < I_{814, AB} < 26\) and larger by 35\%, 42\%, and 53\% in the magnitude range \(26 < I_{814, AB} < 27.5\) for the \(\Lambda = 0.1/\Omega = 0.1, \Omega = 0.1, \text{and} \Omega = 1\) geometries, respectively, where the median of the angular size distribution in each magnitude bin is used for comparison. As expected, we see that galaxies in the \(\Lambda = 0.9/\Omega = 0.1\) geometry tend to possess smaller angular sizes than galaxies in the \(\Omega = 0.1\) geometry and especially galaxies in the \(\Omega = 1.0\) geometry because of the somewhat larger angular-diameter distances.

We repeat the above comparisons using the Petrosian radii instead of the half-light radii. Ideally, Petrosian radii provide a more reliable surface brightness-independent estimator of the angular size than half-light radii, though one
might question its meaningfulness given the increasingly lumpy appearance and small sizes of faint galaxies. In any case, an inspection of Figure 15 shows that the same general trends and conclusions hold here as for the half-light radii.

7.4. Color Distributions

In Figures 16 and 17, we plot comparisons between the color distributions recovered from the observations and our no-evolution simulations in three different magnitude ranges for two different colors, $(B_{450} - I_{814})_{AB}$ and $(V_{606} - I_{814})_{AB}$. Good agreement is found at the bright magnitudes ($21 < I_{814, AB} < 22.6$), as expected given that our bright sample is selected up to this magnitude limit. At fainter magnitudes, however, a clear excess of bluer galaxies is observed relative to our no-evolution simulations. In addition, in the faintest magnitude bin ($26 < I_{814, AB} < 27.5$), there also appears to be an excess of red galaxies relative to that found in the no-evolution simulations. This is somewhat unexpected because one would expect the real universe, for which our sample is representative at $z \approx 0.5$, to have a younger and therefore bluer appearance than that of our extrapolated sample. This excess may, therefore, reflect the presence of dust and Lyman-series forest absorption at moderate to high redshift. Conceivably, an ad hoc maximal dwarf model might also account for this red excess in terms of faded dwarfs at low redshift.

7.5. Redshift Distributions

In Figure 18, we plot the redshift distributions of the galaxies recovered by SExtractor by matching them up with our input catalogs. It is apparent that in the absence of evolution very few galaxies lie beyond a redshift $z = 2$, even at the faintest magnitude, with little dependence on the choice of geometry. A dramatic illustration of the relative unobservability of high-redshift galaxies for $\Omega = 0.1$ is given in Figure 19, where we have broken up the simulation of a $52' \times 72'$ HDF exposure into four redshift slices.

It is interesting to see how these distributions compare with the photometric redshift estimates derived from fits to the four passbands of the HDF, and from subsequent near-IR imaging of this field from the ground. Surprisingly enough, the redshift distribution recovered from our no-evolution simulations agree remarkably well with the approximate distribution of Yahil, & Fernandez-Lanzetta, Soto (1996). Given that similar coincidences have been found for redshift surveys at somewhat brighter magnitude limits (Broadhurst et al. 1988; Colless et al. 1993; Cowie et al. 1996), it is somewhat tempting to suppose that this result might hold to yet fainter magnitudes. Despite such hopes, clearly this relationship begins to break down in the B-band at fainter magnitudes, at least at $B > 24$ as Cowie et al. (1996) have shown, and presumably a similar breakdown will occur in the redder bands at fainter magnitudes.
7.6. U_{300} and B_{450} "Dropouts"

In Figures 20 and 21, we plot several color-color diagrams, and overplot the U_{300}-dropout and B_{450}-dropout selection criteria given by Madau et al. (1996), criteria useful for selecting galaxies at redshifts $2 < z < 3.5$ and $3.5 < z < 4.5$, respectively. We count the number of recovered galaxies satisfying these criteria and provide a summary in Table 2. As expected from the recovered redshift distributions plotted in Figure 18, it is clear that the no-evolution simulations contain manifestly fewer dropouts than the observations. Clearly, then, the high-redshift universe contains a larger number of objects that are of greater luminosity in the ultraviolet than does the galaxy population in our redshift-complete sample.

We have compared the numbers of dropouts in the HDF found by Madau et al. (1996) with our values listed in Table 2, using the same color-magnitude window. Our dropout rate is higher for the HDF, a finding that might result from our use of SExtractor for photometry rather than the Faint Object Classification and Analysis System (FOCAS) as employed by Madau et al. (1996). Given that these programs likely differ with regard to the degree to which they successfully estimate the magnitudes of detected objects, our analyses probably probe slightly different depths, even though we choose for comparison the same nominal magnitude limit $I_{S14} < 26.79$. Imposing a magnitude limit 0.3 mag brighter, we can reproduce their dropout rate. Also, as stated by Madau et al. (1996), their FOCAS magnitudes are in general estimated to be too faint by about 0.5 mag.

7.7. Asymmetry

In the light of recent work attempting to quantify the morphology of faint galaxies, we compare the properties of the faint galaxies from the HDF against those from our simulations with the A statistic proposed by Abraham et al. (1996a, 1996b), in order to provide an approximate estimate of the extent to which evolution may affect the asymmetry of galaxies; A is defined as the sum of the absolute value of the differences between a galaxy image and itself rotated 180 degrees about the center of the image. The approximate contribution of the noise to the apparent asymmetry is calculated and subtracted. We plot the distribution of this asymmetry parameter recovered both from our simulations and from the HDF in Figure 22, for two different magnitude bins. We find a clear trend toward larger values of this parameter with increasing magnitude. At the simplest level, this would seem to imply that the faint galaxies are less

Table 2

Data Set	U_{300} Dropouts	B_{450} Dropouts
Observations (Madau et al. 1996)	58	14
Observations (this work)	90	19
NE ($\Omega = 0.1/\Lambda = 0.9$/CWW)	1 ± 1	3 ± 2
NE ($\Omega = 0.1$/CWW)	2 ± 1	4 ± 3
NE ($\Omega = 1$/CWW)	6 ± 3	5 ± 3
NE ($\Omega = 0.1$/K96)	2 ± 2	3 ± 2
NE ($\Omega = 0.1$/K96)	2 ± 1	4 ± 3
NE ($\Omega = 1$/K96)	3 ± 2	2 ± 2

* 1σ uncertainties are given on all simulated results based on the finite size of our bright sample.
smooth than the redshifted field population at \(z \sim 0.5 \) used in our simulations.

Some caution must be exercised in interpreting the \(A \) statistic since it appears to be extremely sensitive to the manner in which one determines the center about which to rotate for evaluating the statistic (R. G. Abraham & J. Brinchmann 1997, private communication) and can exhibit a fair amount of scatter (\(\pm 0.1 \)) depending upon whether one takes the centroid or the maximum as the center. Because of this, the statistic, or at least the present implementation, seems to become increasingly unreliable for the smallest galaxies; hence, we restrict our comparison to the bright magnitudes (\(I_{814, AB} < 26 \)) at which we are more confident in the reliability of the statistic from our own internal tests.

Note that along similar lines, based upon pixel-by-pixel \(k \)-corrections of the Frei, Guhathakurta, & Gunn (1996) sample and systematic applications of asymmetry (\(A \)) and central-concentration (\(C \)) statistics, Abraham et al. (1996a, 1996b) have argued that the fainter galaxy population is quite unlike the local galaxy population broadly represented by the Frei et al. (1996) sample, which is nevertheless somewhat ill defined, lacking a firm magnitude limit or well-defined selection criteria.

8. DISCUSSION

Since the novelty of the HDF is principally its angular size information obtained to unprecedentedly faint magnitudes, it is not too surprising that our most interesting finding relates to the sizes of the faint images. The count excess is clearly composed of galaxies with smaller projected areas than expected on the basis of relatively low-redshift galaxies for any interesting geometry. The evolution of angular size has not been completely clear in the literature to date. Previously, in the range \(24 < I < 25 \), Roche et al. (1996) find an apparent excess of galaxies with small angular sizes relative to their no-evolution models, which are designed to replicate the angular sizes of galaxies in the local universe. At brighter magnitudes (\(I \approx 22 \)), the study by Im et al. (1995) on the prererefurbished \(HST \) data indicates that the angular sizes of this population are also smaller than expected based upon more local, brighter measures. However, there have also been some studies based on this parallel data indicating no changes in size (Mutz et al. 1994; Casertano et al. 1995).

We also find that the number density of dropouts discovered at faint magnitudes exceeds that recovered from our no-evolution simulation, a finding that clearly indicates that the real high-redshift universe contains a larger density of galaxies with high UV surface brightnesses. Note, however, that despite this finding the estimated integrated star formation rates in these redshift ranges are similar (Madau et al. 1996). Clearly, then, as argued in Giavalisco et al. 1996b and Lowenthal et al. (1997) (cf. Fig. 7), more star formation took place on relatively small scales at high redshift. It remains unclear whether this is the result of the
intrinsically smaller baryonic aggregations or the increasing prominence of starbursts at high redshifts.

Our finding that overcounting rates do not seem to be very important (see also a companion paper in this issue, Bouwens, Broadhurst, & Silk 1998) is somewhat contrary to the claims of Colley et al. (1996), even though we used a similar program (SExtractor) with similar values of the deblending parameter as one catalog & Couch (Clements used in their study. Of course, the galaxy population we have used for our study is more evolved than expected in the real universe at higher redshifts, so we might expect our value to be an underestimate. Note that, in any case, the small-scale correlation claimed is a statistically marginal result, ($\sim 1.5 \sigma$; Colley et al. 1996).

Less contentious are our findings regarding the colors and the number counts. In agreement with most authors, we find clear evidence that the predictions without evolution are redder than observed (Lilly et al. 1995) and that the number counts fall short of the data at faint magnitudes (Lilly 1993; Pozzetti, Bruzual, & Zamorani 1996).

As we have already argued, it is possible to see the present work as a demonstration that the trends found in comparing the local ($z \sim 0$) population with intermediate-redshift galaxies ($z \sim 0.5$) extend to yet fainter magnitudes and presumably higher redshifts. At these intermediate magnitudes, a larger number of faint, blue, irregular, and presumably small galaxies (Ellis et al. 1996; Lilly et al. 1995; Brinchmann et al. 1998; Guzman et al. 1997) have been reported at $z \sim 0.5$–0.8 relative to local expectations. The present study demonstrates that these trends extend to yet fainter magnitudes, in that there continue to be both an increase in the number and apparent starburst activity of the faint galaxy population and a decrease in mean galaxy size.

Uncertainty estimates for the present study are somewhat "internal" and, therefore, might underestimate a field-averaged variance in our measurements. Certainly, at bright magnitudes the HDF is $\sim 28\%$ overdense with respect to the CFRS. However, since 90% of our bright galaxy sample ranges over a wide spread in distance, some $1500 h^{-1}$ Mpc, and V/V_{max} is evenly spread over the interval $[0, 1]$, most bright galaxies should be considered as independent. Clearly, we would prefer a larger, more local sample of redshift-complete bright galaxies for our simulations, and other deep multicolor HDF imaging would be useful in the first two respects.

9. SUMMARY

We have developed a technique for generating a model-independent faint galaxy population based on pixel-by-pixel k-corrected images of the bright galaxy population, for comparison with deep high-resolution images. Our technique has the virtue of being model-independent and completely empirical, except for the usual choice of geometry. We have made use of the HDF for the purposes of defining a redshift-complete bright galaxy sample from which to construct empirical simulations and also for evaluating the evolution of the much fainter galaxies detected in the HDF.
We have made use of all four passbands and have been able to make concrete statements about the evolution of the image properties with estimated uncertainties based on the size of a volume-limited sample. We find that, relative to our simulations based on the bright galaxy sample, the faint galaxies are smaller, more numerous, bluer, less regular, and contain more dropouts for any interesting geometry. Of particular note is our finding with regard to angular sizes, for which a variety of nebulous and seemingly contradictory statements may be found in the literature.

Our bright galaxy sample is small, and it will be important to see if our conclusions remain valid when a larger sample is available. Nonetheless, we believe this work is an important foundation on which to build, in particular, as we look forward to independent deep fields and the very significant improvement in the quality of UV and optical imaging promised by the Advanced Camera (Ford et al. 1996).

We would like to thank Daniela Calzetti, Marc Davis, Mike Fall, Holland Ford, Andy Fruchter, Nick Kaiser, and Alex Szalay for some very useful conversations, Emmanuel Bertin for answering several of our questions regarding SExtractor, Gordon Squires and Nick Kaiser for the use of several routines from their software package IMCAT, Harry Ferguson for his help in producing color images and answering a few of our questions, Jarle Brinchmann and Roberto Abraham for a number of useful tips and comments with regard to the routine we incorporated into SExtractor for measuring the A parameter, and finally Harry Ferguson, Steve Zepf, Eric Gawiser, and Jonathan Tan for some helpful comments on near-final drafts of this document. R. J. B. acknowledges support from an NSF graduate fellowship, T. J. B. acknowledges the NASA grant GO-05993.01-94A, and J. S. acknowledges support from NSF and NASA grants.
Fig. 19.—Simulated 52″ × 72″ color images generated from the B_{450}, V_{606}, and I_{814} bands for four different redshift slices ($0 < z < 1$, $1 < z < 2$, $2 < z < 3$, and $3 < z < 4$) using a $\Omega = 0.1$ no-evolution simulation with pixel size, S/N, and PSF identical to that of the HDF. Note the decreased visibility of our bright galaxy sample at high redshift.

APPENDIX A

DETERMINATION OF RANDOM ERRORS

Here we quantify the empirical model uncertainties due to the finite size of our input sample. We look at this uncertainty in terms of an arbitrary quantity describing the surface density of objects on the sky satisfying some observational criteria.

For any faint sample of objects satisfying a certain set of observable criteria (S_o), it is possible to express the probability distribution for the number of these objects as the sum of the probability distributions for this variable over all possible galaxy morphologies, luminosities, and sizes, i.e., $\sum_{i=1}^{N} f_i$. We suppose that this faint sample of galaxies is derived in a Monte Carlo
manner from our bright sample on the basis of no-evolution assumptions, so that it is possible to express this probability distribution for each galaxy type as the product of the probability distribution for the number of times this object will appear in our bright sample, referred to as "\(B_i\)" and the probability distribution for the number of times such a galaxy would be expected to appear in the faint sample in question \(\left(S_{\text{D}}\right)\), referred to as "\(D_i\)." In this way, the overall probability distribution for
FIG. 22.—Comparison of the distribution of asymmetries recovered from the HDF (histogram, with 1σ Poissonian errors) and our simulations assuming no-evolution using the CWW SED templates (hatched region representing the 1σ uncertainties estimated from the finite size of our bright sample) and using the K96 SED templates (solid line) for (left column) 21 < \textcolor{red}{$I_{814,MB}$} < 22.6 and (right column) 24 < \textcolor{red}{$I_{814,MB}$} < 26. The asymmetry statistic, pioneered by Abraham et al. (1996a, 1996b), is equal to zero for completely symmetric objects and systematically increases for more asymmetric objects. Clearly, the data appears to be systematically more asymmetric at fainter magnitudes than the observations, though this result may be partially biased by the general differences in angular sizes of the populations in question.

The number of galaxies observed in a given faint sample \(S_o \) can be expressed as

\[
S_o = \sum_{i=1}^{N} B_i D_i.
\]

We shall suppose that each galaxy in our bright sample is sufficiently unique to be represented by its own term in the above equation. Furthermore, since each of these galaxies appeared in our bright sample once and only once, we suppose that \(B_i \) is Poisson-distributed with a mean of 1, which we approximate as a normal distribution about this mean. For lack of something better, we shall take the probability distributions \(B_i \) for all other galaxy types to be \(\delta \) functions at 0. \(^2\)

Now, it is possible to estimate the uncertainty in the expectation value for the number of galaxies in our faint sample based on the finite number of galaxies we have in our bright sample. Because our simulated area is, in principle, unlimited, the uncertainty in the expected value of \(D_i \) is vanishingly small, and in practice we take this uncertainty to be zero. As such, the above probability distribution is simply the sum of normal distributions with various weights, and therefore its 1σ uncertainty is simply equal to \((\sum_{i=1}^{N} D_i^2)^{1/2} \). We have used this expression throughout our paper in the estimation of errors for each observable calculated from our no-evolution simulations.

APPENDIX B

BREAKDOWN OF FAINT SAMPLES

At fainter magnitudes, one expects a smaller number of the galaxy prototypes to make up an increasing fraction of our faint galaxy sample, as a result both of the differential \(k \)-corrections and of the relatively greater volume available to lower magnitudes, could result in large systematic errors in this distribution.
FIG. 23.—Effective number of the galaxy prototypes that contribute as a function of magnitude (see Appendix B for a description) for, from left to right, the $\Omega = 0.1/\Lambda = 0.9, \Omega = 0.1,$ and $\Omega = 1$ geometries. At brighter magnitudes, the effective number should be close to the number of galaxy prototypes; the shortfall seen here can be attributed to shot noise. At fainter magnitudes, because of a relatively smaller differential volume for the more luminous galaxies and differing k-corrections, the blue galaxy prototypes contribute more to the counts than others, effectively reducing the numbers of prototypes sampled at higher redshift.

luminosity objects at fainter magnitudes. To quantify the importance of this trend, we compute a weighted measure of the effective number of galaxies that contribute to the counts in each magnitude bin, a quantity we take to equal

$$\left(\frac{\sum_{i=1}^{N} n_i}{\sqrt{\sum_{i=1}^{N} n_i}} \right)^2,$$

where n_i is the number of galaxies of a given prototype per magnitude per square degree recovered from our simulations and N is the number of prototypes considered (i.e., 31). Basically, the above expression equals the square of the quantity of the number counts divided by the estimated Poissonian error based on the size of the contributing sample at the magnitude in question, the derivation of which is given in Appendix A. In the case that all the n_i are the same, the expression reduces to N as required.

We compute the above expression from our simulations, and we plot the results in Figure 23. At bright magnitudes, the bright galaxy catalogs are still dominated by shot noise so that the number of galaxies estimated from the above expression to contribute at any magnitude is lower than the real number (~31) that contribute. At fainter magnitudes, the effective number of galaxies decreases again for the reasons stated above, i.e., a relatively smaller differential volume for the more luminous galaxies and the k-correction. For the sake of clarity, we emphasize that at each magnitude, every galaxy prototype contributes some fraction to the number counts there.

REFERENCES

Abraham, R. G., Tanvir, N. R., Santiago, B. X., Ellis, R. S., Glazebrook, K., & van den Bergh, S. 1996a, MNRAS, 279, L47

Abraham, R. G., van den Bergh, S., Glazebrook, K., Ellis, R. S., Santiago, B., Surma, P., & Griffiths, R. E. 1996b, ApJS, 107, 1

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

Blecha, A., Golay, M., Huguenin, D., Reichen, D., & Bersier, D. 1990, A&A, 233, L9

Bolithic, R. C., et al. 1991, ApJ, 386, 12

Bonn, M. G., Broadhurst, T. J., & Silk, J. 1998, ApJ, XXX, XXX

Brinchmann, J., et al. 1998, MNRAS, submitted

Broadhurst, T. J., Ellis, R. S., & Shank, T. 1998, MNRAS, 235, 827

Casertano, S., Ratnatunga, K. U., Griffiths, R. E., Im, M., Neuschaeffer, L. W., Ostrander, E. J., & Windhorst, R. A. 1995, ApJ, 453, 699

Clements, D., & Couch, W. 1997, MNRAS, 280, L43

Cohen, J. G., Cowie, L. L., Hogg, D. W., Sonegaila, A., Blandford, R., Hu, E. M., & Shopbell, P. 1996, ApJ, 471, L5

Coleman, G. D., Wu, C.-C., & Weedman, D. W. 1980, ApJS, 43, 393

(CWW)

Colless, M., Ellis, R. S., Taylor, K., Broadhurst, T. J., & Peterson, B. A. 1993, MNRAS, 261, 19

Colley, W. N., Rhoads, J. E., Ostriker, J. P., & Spergel, D. N. 1996, ApJ, 473, L63

Connolly, A. J., Zapals, A. S., Bershady, M. A., Kinney, A. L., & Calzetti, D. 1996, AJ, 110, 1071

Cowie, L. L., Sonegaila, A., Hu, E. M., & Cohen, J. D. 1996, AJ, 112, 839

Driver, S. P., Windhorst, R. A., & Griffiths, R. E. 1995, ApJ, 453, 48

Ellis, R. S., Colless, M., Broadhurst, T. J., Heyl, J. S., & Glazebrook, K. 1996, MNRAS, 260, 235

Ford, H. C., et al. 1996, Proc. SPIE, 2807, 184

Frei, Z., Guha, J., & Gunn, J. E. 1996, AJ, 111, 174

Galle, J., Zamorano, J., Aragon-Salamanca, A., & Rego, M. 1995, ApJ, 445, L1

Giavalisco, M., Livio, M., Bohlin, R. C., Macchetto, F. D., & Stecher, T. P. 1996a, AJ, 112, 369

Giavalisco, M., Steidel, C. C., & Macchetto, F. D. 1996b, ApJ, 470, 189

Glazebrook, K., Ellis, R. S., Santiago, B., & Griffiths, R. 1995b, MNRAS, 275, L19

Guzman, R., Gallego, J., Koo, D. C., Phillips, A. C., Lowenthal, J. D., Faber, S. M., Illingworth, G. D., & Votg, N. P. 1997, ApJ, 489, 559

Im, M., Casertano, S., Griffiths, R. E., & Ratnatunga, K. U. 1995, ApJ, 441, 494

Kinney, A. L., Calzetti, D., Bohlin, R. C., McQuade, K., Storchi-Bergmann, T., & Schmitt, H. R. 1996, ApJ, 467, 38 (K96)

Lanzetta, K. M., Yahil, A., & Fernandez-Soto, A. 1996, Nature, 381, 759

Lilly, S. J. 1992, ApJ, 411, 902

Lilly, S. J., Tresse, L., Hammer, F., Crampton, D., & LeFevre, O. 1995, ApJ, 455, 108

Loveday, J., Peterson, B. A., Efstathiou, G., & Maddox, S. J. 1992, ApJ, 390, 338

Lowenthal, J., et al. 1997, ApJ, 481, 673

Madau, P. 1995, ApJ, 441, 18

Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., & Frucht, A. 1996, MNRAS, 283, 1388

Maoz, D. 1997, ApJ, 140, L135

Maoz, D., Filippenko, A. V., Ho, L. C., Macchetto, F. D., Rix, H.-W., & Schneider, D. P. 1997, ApJS, 107, 215

Mobasher, B., Rowan-Robinson, M., Georgakakis, A., & Eaton, N. 1996, MNRAS, 282, L7

Mutz, S. B., et al. 1994, ApJ, 434, L55

Naim, N. A., et al. 1995, MNRAS, 274, 1107

O’Connell, R. W., & Marcum, P. 1996, in HST and the High Redshift Universe, 37th Hertsmoneux Conference, ed. N. R. Tanvir, A. Aragon-Salamanca, & J. V. Wall (Singapore: World Scientific), XXX

Oke, J. B. 1974, ApJS, 27, 21
Peebles, P. J. E. 1993, Principles of Physical Cosmology (Princeton: Princeton Univ. Press)
Petrosian, V. 1976, ApJ, 209, L1
Pozzetti, L., Bruzual, G., & Zamorani, G. 1996, MNRAS, 274, 832
Roche, N., Ratnatunga, K., Griffiths, R. E., Im, M., & Neuschaefer, L. 1996, MNRAS, 282, 1247
Sawicki, M. J., Lin, H., & Yee, H. K. C. 1997, AJ, 113, 1
Schmidt, M. 1968, ApJ, 151, 393
Stecher, T., et al. 1992, ApJ, 395, L1
Steidel, C. C., Giavalisco, M., Dickinson, M., & Adelburger, K. L. 1996a, AJ, 112, 352
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelburger, K. L. 1996b, ApJ, 462, L17
Williams, R. E., et al. 1996, AJ, 112, 1335
Zucca, E., et al. 1997, A&A, 326, 477