Research Article

Using an Improved PSO-SVM Model to Recognize and Classify the Image Signals

Ying Zhao 1 and Guocheng Wei 2

1 School of Humanities, Laboratory of Humanities, Wenzhou University, Wenzhou, Zhejiang 325027, China
2 Department of Innovation and Entrepreneurship, Wenzhou-Kean University, Wenzhou, Zhejiang 325060, China

Correspondence should be addressed to Ying Zhao; dancy@wzu.edu.cn

Received 19 April 2021; Revised 31 May 2021; Accepted 8 June 2021; Published 16 June 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Ying Zhao and Guocheng Wei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Image recognition is an important field of artificial intelligence. Its basic idea is to use computers to automatically classify different scenes in the acquired images, instead of traditional manual classification tasks. In this paper, through the analysis of rough set theory and artificial intelligence network, as well as the role of the two in image recognition, the rough set theory and artificial intelligence network are organically combined, and a network based on rough set theory and artificial intelligence network is proposed. Using BP artificial intelligence network model, improved BP artificial intelligence network model, and improved PSO-SVM model to identify and classify the extracted characteristic signals and compare the results, all reached 85% correct rate. The PCA and SVM are combined and applied to the MNIST handwritten digit collection for recognition and classification. At the data level, dimensionality reduction is performed on high-dimensional image data to compress the data. This greatly improves the performance of the algorithm, the recognition accuracy rate is as high as 98%, and the running time is shortened by about 90%. The model first preprocesses the original image data and then uses rough set theory to select features, which reduces the input dimension of the artificial intelligence network, improves the learning and recognition speed of the artificial intelligence network, and further improves the accuracy of recognition. The paper applies the model to handwritten digital image recognition, and the experimental results show that the model is effective and feasible. The system has the characteristics of easy deployment and easy maintenance and integration. Experiments show that the system has good time characteristics in the process of multialgorithm parallel image fusion processing.

1. Introduction

With the continuous development of the artificial intelligence era, the application of machine learning technology to speech recognition and image recognition has become two very important areas in pattern recognition [1]. Speech recognition has good development prospects in social production and life; image recognition is an important branch of pattern recognition and has been successfully applied in military, medical, and industrial computer vision fields [2]. Artificial intelligence network belongs to the field of machine learning. It has an adaptive, self-learning, and parallel distributed structure [3]. Image recognition is an important field of artificial intelligence, and it is also a traditional topic in the field of pattern recognition. This is because image recognition is not an isolated problem, but a basic problem encountered in most topics in the field of pattern recognition. Due to different specific conditions and different solutions, the research on image recognition has important theoretical and practical significance. The problem raised by image recognition is to study the use of computers instead of people to automatically process a large amount of physical information, thereby partially replacing people’s mental work. They are both in the fields of speech recognition and image recognition which has a good performance [4]. Support vector machine (SVM) is a machine learning method based on statistical learning, which has strong generalization and global optimality.

In the process of classifying or distinguishing, it is necessary to not only perform digital feature processing on the image, but to also use other techniques to extract the
important features of the image. Generally speaking, images have more features to reflect their characteristics, which brings a heavier workload to image processing and can further reduce the accuracy of image processing. Therefore, it is necessary to select and process image features in order to choose from. For more representative image features, this process is the image feature selection. Image pattern recognition problem is essentially a mapping problem from pattern space to type space. Its pattern recognition methods mainly include the following four: structural pattern recognition, template matching method, fuzzy pattern recognition, statistical pattern recognition. However, the four mode methods used in image recognition have their own advantages and disadvantages. Therefore, according to the current needs of many image recognition fields, many scholars have proposed and applied many new methods, such as image recognition methods based on neural networks, image recognition methods based on rough set theory, and many image recognition methods that combine the above methods, and have achieved good results in practice. Therefore, how to improve the recognition accuracy has become a key factor, which reflects the development level of a company or even a country’s frontier science and technology [5]. The research on speech recognition in my country started late, starting in the 1950s, but in recent decades there has been rapid development, gradually moving from the laboratory to the practical [6]. Image recognition is an important field of artificial intelligence, and it is also a traditional topic in the field of pattern recognition. This is because image recognition is not an isolated problem, but a basic problem encountered in most topics in the field of pattern recognition. Due to different specific conditions and different solutions, the research on image recognition has important theoretical and practical significance [7]. The problem raised by image recognition is to study the use of computers instead of people to automatically process a large amount of physical information, thereby partially replacing people’s mental work.

This article mainly uses different machine learning algorithms to identify and classify speech signals and images, mainly using BP artificial intelligence network model, improved BP artificial intelligence network model, SVM, improved particle swarm optimization (IPSO) optimized SVM model, and PCA optimization SVM model, CNN model, improved CNN model, etc. Several commonly used image recognition methods based on artificial intelligence networks are introduced. According to the characteristics of image recognition, two artificial intelligence networks using BP network and radial basis function are proposed. In this paper, the use of distributed system parallel processing to solve the problem of large amount of data processed by parallel image fusion of multiple algorithms and difficult-to-meet requirements of real-time engineering applications has conducted in-depth research and practical work. For image recognition models, the learning algorithms and specific application technologies of the two models are given. The structure of BP artificial intelligence network and the BP algorithm is systematically analyzed and researched. On this basis, the application of BP artificial intelligence network in image recognition is proposed; the radial basis function (RBF) artificial intelligence network model is used to finally compare images with other methods.

2. Related Work

The research of image recognition started in the 1950s, when it was mainly used in the recognition of two-dimensional images, such as optical character recognition, aerial picture recognition, etc. [8]. In 2020, Chen [9] extracted a variety of polyhedral three-dimensional structures in digital images. Under Roberts’ continuous research, he pioneered the research of three-dimensional computer vision. Since then, a large number of scholars have invested in research and established various data structures and reasoning rules. In the mid-1970s, many universities in the United States successively offered courses in computer vision. In the mid-1980s, computer vision had developed rapidly, and new concepts and new methods such as various object recognition theoretical frameworks were constantly being proposed [10]. In the 1990s, computer vision gradually became widely used in industrial environments, and the theoretical aspect also developed rapidly.

The emergence of artificial intelligence networks has effectively solved some of the above problems. The self-learning, self-organization, self-adaptive characteristics and parallel distributed processing characteristics of artificial intelligence networks enable artificial intelligence networks to recognize input signals that are noisy or that have been distorted. At the same time, although artificial intelligence networks have a relatively long training time, but the detection speed is very fast [11]. The research on artificial intelligence networks can be traced back to the 1920s. It is an interdisciplinary study of psychology, physics, and neurophysiology, but at this time there is no mathematical model of neuronal work. The research of modern artificial intelligence networks should start from the work of Hoashi [12] in 1999. The first practical application of artificial intelligence networks was the perceptron model first proposed by Zoph [13], which constructed a perceptron network. Zhang [14] and others proposed many powerful nonlinear multilayer networks and various effective learning algorithms. In particular, two of these concepts gave rise to artificial neural networks. It has important meanings: 1. Use a statistical machine to understand the recursive operations of certain networks. This type of network can be used as a lenovo memory. 2. Svyrydov [15] proposed a backpropagation algorithm for training multilayer perceptrons. Due to the success of theory and application, the research of artificial neural networks has gradually attracted people’s attention, and artificial intelligence networks have begun to revive. Henaff [16] and their research team designed the BP artificial intelligence network, which promoted the artificial intelligence network in practical applications. Artificial intelligence network has a wide range of applications in pattern recognition, signal processing, and other fields with its independent learning ability, associative storage function, and high-speed search for optimal solutions, especially in the field of image recognition [17]. At present, artificial
intelligence networks have been well used in the stages of image preprocessing, image feature extraction, and pattern classification. Due to the high-efficiency collective computing power and strong robustness of the artificial intelligence network, it has been widely used in image segmentation. Kim [18] adopted a combination of multi-channel filtering and forward artificial intelligence network to implement image texture segmentation algorithm. The artificial intelligence network algorithm compresses the number of features in the feature extraction stage to improve the classification speed and accuracy. In the field of image recognition, the research of artificial intelligence network as a classifier has also made great progress; in particular, its learning ability and fault tolerance are very beneficial to pattern recognition, which improves the training speed and recognition rate to a certain extent. Among them, there are a lot of researches on character recognition, fingerprint recognition, face recognition, banknote recognition, and human body recognition at home and abroad. There are also many research results [19–22].

Now people are trying to find more effective features and research and explore new artificial intelligence network models, in order to achieve better recognition effect. After 2010, many well-known universities at home and abroad, such as Stanford University, Princeton University, and Tsinghua University, launched large-scale visual recognition challenges, which promoted new developments in the field of computer visual recognition. According to the investigation and research of authoritative institutions, since 2014, the recognition accuracy of the algorithm used in the Computer Recognition Challenge has doubled compared with before. So far, image recognition technology has spread to many fields [23–25]. As people continue to pursue a better life, this technology will develop more mature [26, 27].

3. Construction of the Image Recognition Model Based on Distributed Artificial Intelligence

3.1. Distributed Image Recognition Theory. Image recognition is to use images as the research object and identify and classify them according to related characteristics. Therefore, the pattern recognition of images can be understood as the recognition and classification of images. Such activities have existed for a long time in human life practice. Clarity refers to the degree of clarity of the image boundary, which is a physical quantity that represents the ability to describe subtle images. The multifocus image has the characteristics that some targets are sharply focused and some targets are out-of-focus blurred. There is a big difference between the sharpness of clear targets and blurry targets. Therefore, the definition of each pixel is selected as the link strength of the corresponding neuron in the PCNN. The clarity of the clear target in the image is greater, and the link strength of the corresponding neuron is greater, reflecting the gray-scale change rate in the image window size. The smaller the gray-scale change rate in the image is, the smaller the value of the island is. This is consistent with the fact that the link strength of real neurons cannot be exactly the same, and it is consistent with the different weights of each neuron in the first- and second-generation neural networks and has certain practical significance.

The task of the first part is to obtain image information, that is, to obtain the required data and materials by investigating and understanding the research object. For image recognition, some electronic devices (such as photoelectric scanning devices or cameras) are first used to convert some research objects such as pictures or text images into electrical signals, which are then stored in a computer for subsequent processing.

$$x(t) = \{t_i\}, \quad (i = 1, 2, \ldots, n - 1).$$

The second part of the task is image preprocessing, the ultimate goal of this part of the task is to extract features through the computer: remove interference, noise, and differences. The closeness is used to measure the closeness of two fuzzy sets.

$$t(n) = \{t(a - i)\} = \{s - (i, d - i)\}, \quad i = 1, 2, \ldots, n.$$ (2)

The main task is to extract image features. The ultimate goal is to reflect the essence of things. First, through removing the false and keeping the truth, it is processing, sorting, analyzing, and summarizing the data and materials learned by the rough investigation and then extracting the features that can reflect the essence of the thing. As for the final number of features and the decision method to be adopted, it depends on the goal.

$$y(n) = x(n) \cdot w(n).$$ (3)

The main task of the fourth part is classification judgment; that is, according to the extracted feature subsets, by using discriminant rules and a certain classification discriminant function, the image information is classified and identified to obtain the final recognition result. This process is basically consistent with the process by which people evolve from perceptual knowledge to rational knowledge and then reach conclusions.

$$u(t) = \max[u(t0)], \quad (1 < k \leq n).$$ (4)

The complexity is determined by the feature extraction method, which is closely related to the feature extraction method, for example, correlation analysis, minimum distance, and similarity, etc. Using small and simple primitives and grammatical rules to describe large and complex patterns, this method is called structural pattern recognition.

$$m(a, b) = \frac{\sum(u(x) - y(x))}{n \sum(u(x) + y(x))}$$ (5)

Through analysis, it can be seen that this structural pattern recognition method has another characteristic, which is that it makes full use of the recursive characteristics of grammar. Because some grammar rules can be recursively applied multiple times, it can therefore represent a very large set of sentences in a very compact form. A sample representing n components with binary or continuous values is sent to the neural network. The first stage of the neural network classifier is the same as the first stage of the
traditional classifier, and it also calculates the matching degree. The degree of application of structural pattern recognition is related to the recognition ability of primitives and the ability to express the two factors of primitives by synthetic operations. The PCNN multifocus image recognition process is shown in Figure 1 (the recognition of two multifocus images is used here to illustrate). Suppose the images involved in the recognition are A and B, and the definition M of each pixel is calculated separately as the basic PCNA and PCNN. At the same time, input B into PCNN as the input stimulus of each neuron. Suppose each neuron in PCNN is linked with surrounding 7×7 neighborhood neurons. The output of two PCNNs is time map and input to decision selection in the operator. In the decision selection operator, it is judged whether the clarity target is in A or B according to the ignition time.

$$n(a, b) = \frac{\sum (u(x) - y(x)) - x}{n(\sum (u(x) + y(x)))}$$

(6)

In the primitive extraction stage, when each preprocessed image is segmented, its primitives are also extracted, and subimages are used to describe their inter-relationships. The image is divided into subimages and image primitives. Each subimage itself is also recognized by a given set of image primitives. In this way, the image is calculated by a set of image primitives according to a predetermined syntax; the formula is expressed. In the syntactic structure recognition system, an image primitive set is determined first, but this is limited by the characteristics of the image itself, usage, technical feasibility, and other factors.

$$C(x) = \begin{cases} c(i, j) = \{ p(i) \mid p(i) \in p: p(x(i)) \neq p(x(j)) \}, \\ c(i, j) = 0. \end{cases}$$

(7)

At present, there is no unified solution to the problem of primitive selection. In actual application, the following two principles should be followed: simplify the selected primitives to facilitate grammatical description and analysis; and easily use nonlinguistic methods to extract. But sometimes the principle and the principle are contradictory. The difference is that the matching degree is calculated and transmitted to the second stage in parallel through m output lines. At this time, each category in the second stage has an output and those with a high matching degree have only one output. According to the current research situation, using the principle to select primitives will make the selected primitives so complicated that they are difficult to identify, but the principle emphasizes that the primitive extraction method is as simple as possible. This may make the description and analysis more complicated. From this point of view, the trade-off between principles and principles becomes very important to the realization of the recognition system at certain times. For example, when analyzing the structure of mathematical expressions, it is simpler to use operators and characters as primitives, but it is very difficult to choose straight or curved line segments as primitives.

3.2. Image Processing Algorithms under Artificial Intelligence. Artificial intelligence networks use analog neurons to learn knowledge, so that the established models have intelligent characteristics. The basic process of learning is mainly carried out by adjusting each domain value and weight value. Artificial intelligence networks can realize distributed storage and parallel collaborative processing of information, thereby organically combining information processing and information storage, so that information processing has the characteristics of self-organization. It can be seen from the definition of contrast that the contrast of each pixel in an image is related to its local neighborhood and is a reflection of a feature of the local neighborhood. The organic integration of complementary information can reduce or suppress the ambiguity, incompleteness, uncertainty, and error that may exist in the interpretation of a single information to the perceived object or the environment and maximize the use of information provided by various information sources, thereby greatly improving the effectiveness in feature extraction, classification, target recognition, and so on. In the image, whether it is the clear area and the blurred area of the multifocus image, the brightness component and high-resolution image of the remote sensing multispectral image, or the details of the medical image with different imaging mechanisms, the contrast has a relatively obvious difference, and it reflects that local characteristics of the corresponding area are described. Therefore, the contrast of each pixel is selected as the link strength of the corresponding neuron in the PCNN. The BP artificial intelligence network must first be trained before image signal recognition and classification. After training, the network can have the ability to remember and predict. Its training process includes the following 7 steps: Step 1: The number of nodes in the input layer, hidden layer, and output layer of the network is s and m, respectively. Initialize the connection weights between the layers, initialize the thresholds a and b of the hidden layer and the input layer, and determine the science j rate and excitation function. Step 2: Calculate the output of the hidden layer.

$$v(t) = \frac{\text{conut}(t) - 1}{\lim_{n \to \infty} \sum_{i=1}^{n} \text{conut}(i)}, \quad (i = 1, 2, \ldots, n).$$

(8)

In the formula, the input vector is the connection weight between the input and the hidden layer, a is the hidden layer deviation, and t is the number of hidden layer neurons; factory is the hidden layer activation function, which is different form of the function used in this chapter:

$$z(t, s) = p\left(\frac{s(i) \cdot t(n)) \cdot p(t(n))}{p(s(i))}\right).$$

(9)

Step 3: Calculate the predicted output D of the BP artificial intelligence network. Step 4: Calculate the network error. Step 5: Update the weight of the network according to the error. Step 6: Update the network thresholds a, b according to the error. Step 7: Determine whether the algorithm iteration is completed. If not completed, go back to Step 2. In the recognition and classification of the BP artificial intelligence network, the traditional BP artificial
intelligence network can make the weight and deviation vector finally get a stable solution, but the convergence speed of the learning and training process is slow, and the network is easy to fall into the local optimum. Therefore, we first adopt the additional momentum method to solve the above problems. The easiest way to use this method for identification is to do it after the membership of the model is determined. The most important thing is to accurately determine the membership function. If the membership function is set improperly, the recognition result may be unsatisfactory. The methods we commonly use to determine the membership function are as follows: ① According to subjective knowledge or experience, give the specific value of the membership. ② According to the nature of the problem, select some typical functions as the membership function. The maximum membership principle recognition method is also a widely used image recognition method, but it is only suitable for processing relatively simple image recognition. If the pattern to be recognized is not a specific element, but a fuzzy element in the domain U for subsets, the principle of maximum membership is difficult to apply.

In the case of large differences in the duration of a distributed network trigger, even the same distributed network trigger sequence may represent different activities. The main bottleneck for image fusion is that the algorithm is uncertain and the amount of data to be processed is large. A distributed image fusion system is proposed, and the design of the system is studied in detail, and the realization process of the system is systematically explained. The activities A1 and A3 in Figure 2 are taken as examples. The distributed network trajectories triggered by the two activities are the same, but the trigger duration at node 18 is quite different. These two activities should be identified as different activities. We assume that there is activity A-x. From the definition of the model of activity A-x, we can see that although the activation duration of A-x is not exactly the same as that of A-1, it can be seen that the difference between them is relatively small. Therefore, A-x actually represents the same activity as A-1. From this we can conclude that, in the establishment of the activity model, it is very necessary to introduce the duration of the activity trigger, so that it can be more accurately judged whether the two activities are the same. This paper proposes the quantitative algorithm deviation of duration similarity to measure duration similarity. The algorithm sets the threshold for the duration difference of the distributed network triggering. If the difference between the durations of the two activities at the same node is less than A-x (the threshold of the duration difference of the distributed network triggering), then it can be judged.

3.3. Linear Optimization of Model Parameters. In image recognition, for the selection of recognition features, generally, the image recognition effect should be the goal, and useful features should be selected from the overall set of original features, and then the useful features should be optimally combined. In other words, if some of the features of these feature sets are removed, it will have a great impact on the recognition of the system. This impact is used to measure the importance of the feature to the recognition result. In the image, whether it is the clear area and the
blurred area of the multifocus image, the brightness component and high-resolution image of the remote sensing multispectral image, or the details of the medical image with different imaging mechanisms, the contrast has a relatively obvious difference, and it reflects that the local characteristics of the corresponding area are described. Therefore, the contrast of each pixel is selected as the link strength of the corresponding neuron in the PCNN. For the features that have little effect on the result, select those that are most effective for identification, and give different combinations of important related features, so as to simplify the feature set and reduce the data that the system needs to process. According to the actual data information obtained through the observation and measurement of a system, we construct the perspective of classification, based on the concepts of set approximation, approximate classification, and indistinguishability. Since its introduction, it has been widely used in many aspects such as pattern recognition, data mining, decision analysis, and so on. A big application of rough set theory is to simplify the observed data. The concepts of upper approximation set, lower approximation set, and kernel are used to extract useful features of the knowledge expression system and remove redundant features to achieve the purpose of simplification. In the image recognition system, because of the need to extract multiple types of features of the image, if the obtained feature set is not simplified, the system has to deal with a huge amount of data, which will seriously affect the real-time performance of the system, so the rough set theory of knowledge simplifies the extracted feature set, which can greatly improve the operating efficiency of the image recognition system.

The distinguishable matrix is a matrix symmetrical on the main diagonal. When considering the distinguishable matrix, only the upper triangular matrix or the lower triangular matrix needs to be considered. According to the definition of the discernibility matrix above: if the decision attribute values of two objects are equal, their corresponding element value in the discernibility matrix is 0; if the condition attributes of the two objects are the same but the decision attributes are different, the corresponding element value in the distinguishable matrix is 1; if the decision attributes of two objects are not equal and can be distinguished by some attributes with different values, then their corresponding element values in the distinguishable matrix are conditional attributes of these two objects that have different values. If the contrast of a certain pixel in the image is larger, the link strength of the corresponding neuron will be larger. Compared with the pixel at the corresponding position of other images participating in the recognition, the neuron corresponding to this pixel will be captured and fired earlier. Obviously it reflects part of the characteristic information of the pixel, and its value is generally different from Figure 3. This is consistent with the fact that the link strength of real neurons cannot be exactly the same and has certain practical significance. After being processed by PCNN, an ignition map is generated for each image that participates in the recognition. By comparing the ignition time at the corresponding pixel of the ignition map (that is, the output threshold of the neuron ignition), it can be judged whether the target at this pixel is a target with obvious characteristics or a target with inconspicuous characteristics.

Taking related concepts as the basic starting point, use the coordination of the knowledge system to simplify processing, in other words: first judge whether the knowledge system is coordinated; that is, delete or perform additional processing on the inconsistent information in the data, and perform the processing on the data of the repeated information in the merge. The second step is to simplify the coordinated data. Keep the attribute; if coordinated, continue to delete the attribute. Finally, by listing all the remaining attribute values, a simplified decision rule can be obtained. After being processed by PCNN, each image participating in the fusion generates an ignition map. By comparing the ignition time at the corresponding pixel of the ignition map (that is, the output threshold when the neuron is ignited), it can be judged whether the target at the pixel is a target with obvious characteristics or a target with unobvious characteristics. Therefore, the elements in the distinguishable matrix can be used as a basis for judging whether the decision-making system is coordinated. It contains all the information to examine whether an attribute set simplifies itself, but it is less than the data in the original information system decision.

4. Application and Analysis of the Image Recognition Model Based on Distributed Artificial Intelligence

4.1. Simulation Experiment of the Image Recognition Model. Assuming that the size of a picture is 1000×1000, if the number of neurons is 10, the weight parameter is 10 when using full connection. The huge parameter training is very time-consuming and prone to overfitting. With local connection, each nerve element is only connected to the 10×10 image blocks in the image, and the weight parameter is 10, which is reduced by 4 orders of magnitude. It can retain the relevant spectral characteristics of each pixel and transform all the brightness information into high-resolution full-color image. It is to perform multispectral band color normalization for RGB image display and multiply the proportions of high-resolution panchromatic image and multispectral image red, green, and blue bands to complete the recognition. Set the structure of the BP artificial intelligence network; it is 24-25-4. That is, the numbers of neurons in the input layer, the hidden layer and the output layer are 24, 25, and 4, respectively. The activation functions of the hidden layer and the output layer are sigmoid functions and linear functions, respectively. The output layer adopts the softmax classifier. The actual output value of the network is usually around (0, 1), and their sum is approximately equal to 1. Take the neuron category corresponding to the maximum output value, which is the final classification result. For example, we choose any set of classification results: [0. 0.280 1.2489 0.2594], where the value of 1.2489 is the largest, the output category is judged as [0 1 0], that is, the classification result is the first of the second category, and the others can be deduced by analogy. A total of 2000 sets of characteristic
signal data are extracted, and 1500 sets of data are randomly selected as training data, and 500 sets of data are used as test data.

First, according to the MFCC method, four types of image feature signals are extracted, which are identified by 1, 2, 3, and 4 respectively. Each group of data is 25-dimensional, the first dimension is the category identification, and the last 24 dimensions are the image feature signals in Figure 4. The four types of image feature signals are integrated into a matrix randomly selecting 1500 samples as training, that is, to convert all data into $[0, 1]$; the purpose is to avoid the magnitude difference of input data which causes the network prediction error to be large and eliminates the dimension between different features.

According to the coding principle in the above, if the output is $[1 \ 0 \ 0 \ 0]$, we can judge that the modified sample belongs to a special image and share these 10×10 weight parameters to each neuron; that is, the weight parameters of all neurons are the same. Then the parameters that need to be trained at this time are 10×10, that is, the size of the convolution kernel is 10×10, and more features can be extracted by adding multiple convolution kernels. The traditional BP network, the artificial intelligence network with additional momentum method, the artificial intelligence network with variable learning rate, and the two improved artificial intelligence networks are used for simulation comparison experiments. Since the system is executed in a distributed environment, image data needs to be transmitted on the network, which increases the system overhead and causes the system response time to increase by 3 seconds compared with the standalone operation. Considering that the network load is not affected by other factors in the test environment, and the fusion source image size is relatively small, the network overhead still accounts for nearly 10% of the total response time of the system. The experimental results are shown in Figure 5.

4.2. Distributed Image Feature Extraction Processing. Among them, the correct rate of each category is the number of samples correctly predicted in each category/the total number of samples in each category; average correct rate = the number of all predicted correct samples/the total number of samples, which can be obtained from the observation, the artificial intelligence network combined with the two improved algorithms achieves 94.49%, 95.93%, 94.74%, and 95.73% for the four types of images, respectively, except that the classification of popular songs is slightly lower than that of the additional momentum method. Except for the BP network, the classification accuracy of each type of signal is higher than the other three algorithms, and the average classification accuracy is 95.2%; the artificial intelligence network that only uses the additional momentum method and only uses the variable speed of the average classification
accuracy rate of the artificial intelligence network with high rate also reached 92.6% and 91.2%, which are also higher than the 90.20% of the traditional artificial intelligence network.

From the above experiments on image signal recognition and classification, it can be seen that the two improved algorithms can be applied to signal classification with good results, and the artificial intelligence network performance after the combination of the two improved algorithms is better. In layer C, the sizes of the convolution kernels are all set to 5×5, the numbers of convolution kernels are 5 and 10, and the window moving step size is 1. In the S layer, the commonly selected pooling methods are average pooling and maximum pooling. In this chapter, the average pooling method is selected. After passing through the S layer, the row and column scales of the obtained matrix are both half of the previous layer. In the F layer, first arrange each feature map obtained in the S4 layer into a column vector, each feature map has $13 \times 13 = 169$ features, and then all the column vectors are connected first in turn, and the final feature number is $169 \times 10 = 1690$. Input the extracted features into the SVM classifier to get the final classification result. In the content, (a) represents the image recognition classification effect, “O” represents the predicted signal category, and “wood” represents the actual signal category. From Figure 6, it can be seen that whether it is a classification effect diagram or an error diagram, using two improved algorithms to optimize the artificial intelligence network at the same time, the results are better than the other three algorithms.

First, PCA is used to reduce the dimensionality of the handwritten digit set. The original image is reduced from 784 to 59 dimensions, and a cumulative contribution rate of 85% is extracted. The fusion request sent by the system from the client to the dispatch server is independent; that is, each fusion algorithm sends an independent fusion request, and each fusion request contains two fusion source images, resulting in repeated data transmission. Image data repeatedly sent accounted for nearly 50% of the total system network data transmission. It contains most of the information of the original data; secondly, the SVM model is used to reduce the dimensionality of the data. The experimental results show that, compared with several other classic algorithms, the PCA-SVM algorithm in this chapter has higher recognition accuracy, and the calculation time is about 1/10 of other algorithms, which proves the effectiveness of the algorithm. The x-axis represents evolutionary algebra, and the y-axis represents the accuracy of the training set: in Figure 7, we can see that the best accuracy of the particles during the training process reached 98.47%, and the penalty factor c and the kernel function parameter g are, respectively, 73.829 and 0.714141. The following is to test the set, IPSO-SVM, and PSO, respectively. SVM, genetic algorithm optimized SVM (GA-SVM), and SVM are compared, and the experimental results are shown in it. The test results show that the system can perform various image recognition algorithms well and obtain the recognition results. From the submission of the recognition request to the completion of the display of the recognition result, the system execution time is 12 seconds. The test results prove that after the system adopts distributed parallel processing operation mode, the recognition effect is still very good and is not affected by parallel recognition. The system response time is greatly reduced in line with the theoretical analysis results.

4.3. Example Results and Analysis. The experimental data come from the MNIST database, with 70,000 samples in total, from which 60,000 samples are selected as PSO. SVM training data and 1000 samples are used as test data. Some digital human eyes are difficult to distinguish. The

![Figure 4: The histogram of the weight distribution of the number of image recognition layers.](image4)

![Figure 5: Curve of image recognition model applicability and iteration times.](image5)

$\begin{align*}
\text{Accuracy} &= \frac{\text{Correct Predictions}}{\text{Total Predictions}} \\
\text{SVM} &= \text{Support Vector Machine}
\end{align*}$
experiment first uses the cepstrum coefficient method to extract four different characteristic signals according to a total of 2000 samples, each image contains 500 samples, each sample data is 25 dimensions, the first dimension is the label, respectively, and 1, 2, 3, and 4 represent four kinds of image signals. 1500 training samples were randomly selected from them, and 500 were test samples. First, normalize the data. We select 40 pictures from the training sample and the test set sample and divide them into four groups. The random salt and pepper noise of each group is 0.01, 0.02, 0.03, and 0.04, and the Gaussian noise is 0.01, 0.02, 0.03, and 0.04. The test results obtained are as in the text. It can be seen that different sizes of convolution kernels have a certain impact on the recognition effect, and when the convolution kernel is larger, the adjustable parameters become more, which leads to the corresponding running time becoming longer. When the convolution kernels are all 9×9, the recognition effect is the best, which is 97.18%. This result has also been applied to the improved CNN. In the improved CNN, both convolutional layers use a convolution kernel with a size of 9×9. For the features extracted by CNN, 5000 training samples were randomly selected, and the remaining 880 samples were used as test samples, and SVM classifier was used to test its performance. Use improved PSO algorithm to optimize SVM. The initial population is 20, the evolutionary generation is 100, and $c_1 = 1.5, c_2 = 1.7$. First of all, the improved PSO-SVM is trained, and the fitness data is shown in Figure 8.

After repeated experiments and comparisons, when the sample data is normalized to the interval of [0, 0.1], the classification effect is the best. From Figures 9(a) and 9(b), we can see that the cumulative contribution rate of the first 10 features reached nearly 50%, which is the same as the initial data dimension. In comparison, it is reduced by about 98.7%; that is, only 1.3% of the data volume represents nearly 50% of the characteristic information of the data, which greatly reduces the complexity of the data and improves the computational efficiency of the algorithm.

It can be seen intuitively that the classification effect after dimensionality reduction is obviously better than the effect before dimensionality reduction. Through testing, the method used in this paper has a correct recognition rate of 98.2% for handwritten digits, and only misclassifies 18 digits. Among them, the recognition rate of the two digits 0 and 1 reaches 100%. The test results show that the system can execute various image fusion algorithms well and get the fusion results. From the submission of the integration request to the completion of the integration result display, the system execution time is within the allowable range. The test results prove that after the system adopts the distributed parallel processing operation mode, the fusion effect is still very good and is not affected by the parallel fusion. The system response time is greatly reduced, in line with the theoretical analysis results. The method is to compress the image data and then transmit it over the network. By integrating the data compression method and the decompression method in the ORB interface, the new identification server program is easy to implement. But the shortcomings of this method are also obvious: a unified high-efficiency image data compression method is not easy to implement; in particular a lossless compression method is even more difficult; if a loss compression method is used for different situations, it will cause image information loss, and the program of the complexity has increased greatly, and it is difficult to update the system when the image compression method is expanded.

The actual classification and test classification effects of the four algorithms are, respectively, explained. O represents the actual image category, and L represents the predicted image category. The greater the overlap between the two is, the better the classification effect is. From Figure 10, it can be seen that whether it is actual, the picture is still the error picture, and SVM is better than the other three algorithms. Perform 50 experiments for each classifier, and take the average of 50 times. The SVM algorithm has achieved 100%, 93.94%, 98.36%, and 100% for the four types of image classification, respectively. The classification accuracy of each of the four types of image signals is higher than that of the other three algorithms. The average classification accuracy of the SVM algorithm has reached 97.8%. The average classification accuracy rates of SVM and SVM
Figure 8: The dependence of image output value on density.

Figure 9: Image situation before and after artificial intelligence recognition. (a) Before. (b) After.

Figure 10: Distributed image recognition error factor distribution.
algorithms are 96.4%, 94.4%, and 93.8%, respectively, and their average classification accuracy rates are also higher than those of the other three algorithms. The classification accuracy of the SVM algorithm is better than the several BP algorithms. The SVM algorithm has higher accuracy and certain applicability.

5. Conclusion

The paper describes the principle of the distributed artificial intelligence network model and the steps of training the network, as well as its limitations and shortcomings, and uses the existing methods, namely, the additional momentum method and the variable rate method to improve the original artificial intelligence network. Recognize and classify the 4 kinds of image signals, and use graphs to illustrate the experimental results and compare and analyze them. Experiments show that the performance of the artificial intelligence network of the two improved algorithms is higher than that of the traditional artificial intelligence network. This paper studies the types of commonly used neural networks, focuses on the structure and learning algorithms of BP neural networks, proposes improved algorithms, analyzes the design principles of BP networks, and finally puts forward the basic ideas and basic steps of data fusion using neural networks, and using Matlab to simulate an actual problem of ground object recognition, the effectiveness and feasibility of image recognition based on neural network are verified. That is, it has been reduced from 784 dimensions to 59 dimensions, eliminating redundant data. The experiment proves that the model after PCA dimensionality reduction, SVM algorithm, and the network search algorithm were compared. In addition to a small improvement in the recognition accuracy, the calculation time was reduced by more than 90%, which greatly improved the efficiency of the algorithm. The average classification accuracy rate reached 91.2% and 92.6%, and the average accuracy rate of the artificial intelligence network reached 95.20%, which is higher than that of the traditional artificial intelligence network. This paper discusses the possibility of combining rough set theory and neural network, studies the construction and learning algorithm of neural network based on rough set theory, proposes a rough set-neural network image recognition model, and applies the model to handwriting digital picture recognition, and Matlab simulation experiments were carried out. This fully demonstrates the effectiveness of distributed improved networks and greatly overcomes the shortcomings of traditional artificial intelligence networks. The hierarchical connection of neural network, the number of neurons in each layer, and the learning algorithm directly affect the learning speed of the neural network and the accuracy of the network output needs to be further studied.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] B. Maschler, S. Kamm, N. Jazdi, and M. Weyrich, “Distributed cooperative deep transfer learning for industrial image recognition,” Procedia CIRP, vol. 93, pp. 437–442, 2020.
[2] X. Jia, “Image recognition method based on deep learning,” Control and Decision, vol. 4, pp. 4730–4735, 2019.
[3] B. Chaib-Draa, B. Moulin, R. Mandiau et al., “Trends in distributed artificial intelligence,” Artificial Intelligence Review, vol. 6, no. 1, pp. 35–66, 2019.
[4] F. Gandon, “Distributed artificial intelligence and knowledge management: ontologies and multi-agent systems for a corporate semantic web,” IEEE Antipolis, vol. 2, pp. 18–25, 2010.
[5] M. Wu and L. Chen, “Image recognition based on deep learning,” Automation Content, vol. 6, pp. 542–546, 2019.
[6] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recognition,” ICML Deep Learning Workshop, vol. 2, pp. 21–28, 2018.
[7] Y. Tian, “Artificial intelligence image recognition method based on convolutional neural network algorithm,” IEEE Access, vol. 8, pp. 125731–125744, 2020.
[8] T. Bi, Q. Liu, T. Ozceteli et al., “PCANN: distributed ANN architecture for image recognition in resource-constrained IoT devices,” Intelligent Environments, vol. 4, pp. 1–8, 2019.
[9] R. Chen, M. Wang, and Y. Lai, “Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network,” PLoS One, vol. 15, no. 7, pp. 231–237, 2020.
[10] J. Su, D. V. Vasconcellos, S. Prasad et al., “Lightweight classification of IoT malware based on image recognition,” Computer Software, vol. 2, pp. 664–669, 2018.
[11] M. Kozierski and B. Cyganek, “Image recognition with deep neural networks in presence of noise-dealing with and taking advantage of distortions,” Integrated Computer-Aided Engineering, vol. 24, no. 4, pp. 337–349, 2017.
[12] H. Hoashi, T. Joutou, and K. Yanai, “Image recognition of 85 food categories by feature fusion,” International Symposium on Multimedia, vol. 3, pp. 296–301, 2019.
[13] B. Zoph, V. Vasudevan, J. Shlens et al., “Learning transferable architectures for scalable image recognition,” Proceedings of the Computer Vision and Pattern Recognition, vol. 3, pp. 8697–8710, 2018.
[14] Y. Zhang, S. Nie, W. Liu et al., “Sequence-to-sequence domain adaptation network for robust text image recognition,” in Proceedings of the 2019 IEEE/CVF Computer Vision and Pattern Recognition, pp. 2740–2749, Long Beach, CA, USA, June 2019.
[15] A. Svyrydov, H. Kuchuk, and O. Tsiapa, “Improving efficiency of image recognition process: approach and case study,” Services and Technologies, vol. 2, pp. 593–597, 2018.
[16] O. Henaff, “Data-efficient image recognition with contrastive predictive coding,” Machine Learning, pp. 4182–4192, 2020.
[17] Y. Shu, Y. Chen, and C. Xiong, “Application of image recognition technology based on embedded technology in environmental pollution detection,” Microprocessors and Microsystems, vol. 75, pp. 103061, 2020.
[18] T. K. Kim and J. Kittler, “Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 318–327, 2019.
[19] P. Remagnino, A. I. Shihab, and G. A. Jones, “Distributed intelligence for multi-camera visual surveillance,” Pattern Recognition, vol. 37, no. 4, pp. 675–689, 2020.
[20] R. Yang, M. Xu, T. Liu et al., “Enhancing quality for HEVC compressed videos,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 7, pp. 2039–2054, 2018.

[21] T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A deep learning approach for multi-frame in-loop filter of HEVC,” IEEE Transactions on Image Processing, vol. 28, no. 11, pp. 5663–5678, 2019.

[22] L. Ding, S. Li, H. Gao et al., “Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 7, pp. 2512–2523, 2018.

[23] W. Wei, Z. G. Sun, Z. H. Zhang et al., “Improved fisher MAP filter for despeckling of high-resolution SAR images based on structural information detection,” Journal of Internet Technology, vol. 22, no. 2, pp. 413–421, 2021.

[24] J. Yang, C. Wang, B. Jiang et al., “Visual perception enabled industry intelligence: state of the art, challenges and prospects,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2204–2219, 2020.

[25] F. Orujov, R. Maskeliunas, R. Damaševičius, and W. Wei, “Fuzzy based image edge detection algorithm for blood vessel detection in retinal images,” Applied Soft Computing, vol. 94, p. 106452, 2020.

[26] J. Wen, J. Yang, B. Jiang et al., “Big data driven marine environment information forecasting: a time series prediction network,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 12–19, 2020.

[27] P. Jain, M. Gyanchandani, and N. Khare, “Improved k-anonymize and l-diverse approach for privacy preserving big data publishing using MPSEC dataset,” Computing and Informatics, vol. 39, no. 3, pp. 537–567, 2020.