The relationship between serum uric acid within the normal range and β-cell function in Chinese patients with type 2 diabetes: differences by body mass index and gender

Xing Zhong, Equal first author, Deyuan Zhang, Equal first author, Lina Yang, Yijun Du, Tianrong Pan, Corresponding Author

1 Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, He Fei, Anhui Province, China

Corresponding Author: Tianrong Pan
Email address: pantianrong1968@163.com

Background: Elevated serum uric acid (SUA) has a positive correlation with insulin secretion and insulin resistance indexes. However, whether weight- and gender-specific differences regarding the relationship between SUA within the normal range and β-cell function and insulin resistance exist is unknown in T2DM patients.

Methods: Three hundreds and eighty patients with type 2 diabetes were divided into two groups as overweight/obesity (n=268) and normal weight (n=112). Each group were again divided into low (LSUA) and high normal SUA (HSUA). The HbA1c, C-peptide, SUA, creatinine, and lipids profiles were measured. HOMA2IR and HOMA%2B were estimated using fasting glucose and C-peptide by homeostasis model assessment (HOMA). Pearson’s correlations and multiple linear regression analyses were conducted to assess the associations between SUA levels and islet function indexes.

Results: In overweight/obesity subgroup, the levels of BMI, FCP, P2HCP, FCPI, PPCPI, ΔC-peptide, HOMA2%B and HOMA2IR were higher in HSUA group than in LSUA group. In contrast, the HbA1c, FBS, and P2hBS were lower in HSUA than in LSUA. In normal weight subgroup, there were on differences between the HSUA than LSUA group in terms of clinical characteristics. Pearson’s correlations indicated that there were no significant correlations between SUA and insulin secretory capacity in normal weight group, but in overweight/obesity group, SUA had positive significant correlations with P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B. In female group, there were no significant correlations between SUA and insulin secretory capacity. However, in male group, SUA had positive significant correlations with insulin secretory capacity include P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B. Multiple linear regression showed that SUA was significantly associated with HOMA2%B, but not with HOMA2IR in overweight/obesity and male group.

Conclusions: Our study shows that SUA levels within normal range were associated with β-cell function in T2DM patients with overweight/obesity or male. This finding supports that the association between SUA within normal range and insulin secretion ability differs by weight and sex.
The relationship between serum uric acid within the normal range and β-cell function in Chinese patients with type 2 diabetes: differences by body mass index and gender

Xing Zhong, Deyuan Zhang, Lina Yang, Yijun Du, Tianrong Pan
Department of Endocrinology, The second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
Xing Zhong and Deyuan Zhang contributed equally to this article.

Corresponding Author:
Tianrong Pan
No.678, Furong Road, Hefei, Anhui Province, 230061, PR China
Email address: pantianrong1968@163.com
Abstract

Background: Elevated serum uric acid (SUA) has a positive correlation with insulin secretion and insulin resistance indexes. However, whether weight- and gender-specific differences regarding the relationship between SUA within the normal range and β-cell function and insulin resistance exist is unknown in T2DM patients.

Methods: Three hundreds and eighty patients with type 2 diabetes were divided into two groups as overweight/obesity (n=268) and normal weight (n=112). Each group were again divided into low (LSUA) and high normal SUA (HSUA). The HbA1c, C-peptide, SUA, creatinine, and lipids profiles were measured. HOMA2IR and HOMA%2B were estimated using fasting glucose and C-peptide by homeostasis model assessment (HOMA). Pearson’s correlations and multiple linear regression analyses were conducted to assess the associations between SUA levels and islet function indexes.

Results: In overweight/obesity subgroup, the levels of BMI, FCP, P2HCP, FCPI, PPCPI, ΔC-peptide, HOMA2%B and HOMA2IR were higher in HSUA group than in LSUA group. In contrast, the HbA1c, FBS, and P2hBS were lower in HSUA than in LSUA. In normal weight subgroup, there were on differences between the HSUA than LSUA group in terms of clinical characteristics. Pearson’s correlations indicated that there were no significant correlations between SUA and insulin secretory capacity in normal weight group, but in overweight/obesity group, SUA had positive significant correlations with P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B. In female group, there were no significant correlations between SUA and insulin secretory capacity. However, in male group, SUA had positive significant correlations with insulin secretory capacity include P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B. Multiple linear regression showed that SUA was significantly associated with HOMA2%B, but not with HOMA2IR in overweight/obesity and male group.

Conclusions: Our study shows that SUA levels within normal range were associated with β-cell function in T2DM patients with overweight/obesity or male. This finding supports that the association between SUA within normal range and insulin secretion ability differs by weight and sex.
Introduction

Type 2 diabetes mellitus (T2DM) has become a serious issue in China with increasing incidences over the past decades (Ogurtsova et al. 2017). Increasing evidence suggests that high serum uric acid (SUA) level is not only associated with metabolic syndrome (MS) (Babio et al. 2015), but also is regarded as a potential tool for early diagnosis of MS (Chen et al. 2016). Elevated the level of SUA is associated with increased risk of T2DM and prediabetes in individuals with normoglycaemia in a large population-based cohort study (Dehghan et al. 2008; van der Schaft et al. 2017). However, changes in SUA and blood glucose do not exhibit a linear relationship. SUA rise with increasing blood glucose concentrations in the normal and prediabetes population, while SUA levels are negatively associated with HbA1c in T2DM (Kawamoto et al. 2018).

Progressive deterioration of islet β-cell function and insulin resistance are considered as primary pathophysiological factors during the development of T2DM. SUA is the end product of an exogenous pool of purines and endogenous purine metabolism, and the final oxidation product of purine metabolism in humans, which is responsible for the production of UA and damage of free radicals. In hyperuricemic subjects with IGT, the failure of beta-cell function to compensate variation of insulin sensitivity, compared with non-hyperuricemic (Simental-Mendia et al. 2009). Furthermore, elevated SUA harbors a positive correlation with insulin secretion and insulin resistance indexes in newly diagnosed T2DM patients (Hu et al. 2018), implying a possible role for SUA in β-cell function. However, it remains unknown of the interaction of SUA within the normal range and body mass index on β-cell function and insulin resistance in T2DM patients.

Therefore, we investigated the relationship between SUA within the normal range and β-cell function as well as their potential confounding factors such as age, gender, diabetic duration, blood pressure, blood lipid profiles, renal function, and HbA1c by body mass index (BMI) and gender.

Materials & Methods

Study Subjects. A total of 380 patients with type 2 diabetes who visited the Second Affiliated Hospital of Anhui Medical University were randomly selected in this cross-sectional study. The diagnosis of T2DM was according to the criteria of the American Diabetes Association (ADA). The exclusion criteria were 1) with hyperuricemia defined as serum uric acid ≥ 420 umol/L in men and ≥ 360 umol/L in women (Fang & Alderman 2000), 2) with renal dysfunction defined as
serum creatinine ≥ 106 umol/L in male and ≥ 97 umol/L in female or chronic kidney disease, 3) patients with severe pancreatic disease and liver disease and those who suffered recent diabetic ketoacidosis and hyperosmotic nonketotic diabetic coma. Written informed consent was provided by all participants. The study was approved by an Ethics Committee of the Second Affiliated Hospital of Anhui Medical University (approval number 2017027).

Measurements

Study participants were inquired about their age and family history. Body weight, height and blood pressure were measured by the diabetic nurses. Body mass index (BMI) was calculated by dividing weight (in kilograms) by square of the height (in meters). Normal weight and overweight/obesity were defined as BMI < 24 kg/m2 and BMI ≥ 24 kg/m2 for Chinese population, respectively, according to the Working Group on Obesity in China (WGOC) BMI criterias (Hou et al. 2013; Zhou 2002). Blood tests were carried out after an overnight fasting for glucose, serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), SUA, liver/renal functions and glycated hemoglobin (HbA1c).

After collecting fasting blood samples, subjects received a noodle mixed-meal in patients with T2DM. Blood samples were collected to measure the concentrations of glucose and C-peptide 2h after the meal. HOMA2IR and HOMA%2B were assessed using homeostasis model assessment based on paired of FPG and fasting C-peptide measurements (http://www.dtu.ox.ac.uk/homa) (Wallace et al. 2004). Insulin secretory capacity was also evaluate by CPI and ΔC-peptide. Fasting CPI (FCPI) and postprandial CPI (PPCPI) were calculated by a ratio of serum C-peptide to plasma glucose concentrations at baseline and 2h after meal, which we termed CPR (nmol/L)/FPG (mmol/L). The value of ΔC-peptide was defined as increment in serum C-peptide level (nmol/L) at 2h after the meal.

Serum C-peptide was measured by chemiluminescent enzyme immunoassay. HbA1c was measured by high performance liquid chromatography. Plasma glucose was evaluated with the glucose oxidase method. TC, TG, HDL, LDL, SUA and liver/renal functions were analyzed by the standardized enzymatic method.

Statistical analyses

Continuous variables were expressed as means and standard deviation (SD) or medians and interquartiles. Categorical variabies were expressed by numbers. In all the analyses, parameters
with non-normal distributions were used after log transformation. For categorical variables, the
Chi-square test was performed, while for continuous variables, Student's t-test was used. Pearson’s
correlations were calculated to characterize the associations between islet function indexes and
SUA levels within each group. To evaluate whether SUA was an independent risk factor for β-
cell function in T2DM, we performed the multiple linear regression analysis. A two-tailed p
≤0.05 was considered as statistically significant. All statistical analyses were conducted with
SPSS software (Version 21.0).

Results

Clinical and laboratory data of the patients according to BMI and SUA category
The characteristic of the study patients according to BMI was shown in Table 1. The levels of
SBP, DBP, TG, FCP, P2HCPI, FCPI, PPCPI, HOMA2%B and HOMA2IR were higher in
overweight/obesity group than in normal weight group. Furthermore, the patients were divided
into two groups according the median SUA levels of patients with normal weight or
overweight/obesity, respectively (LSUA: low-normal SUA, ≤ 285 umol/L; HSUA: high-normal
SUA, >285 umol/L). In overweight/obesity subgroup, the levels of BMI, ALT, CR, FCP,
P2HCPI, FCPI, PPCPI, ΔC-peptide, HOMA2%B and HOMA2IR were higher in HSUA group
than in LSUA group. In contrast, the HbA1c, FBS, P2hBS and HDL were lower in HSUA than
in LSUA (Table 2). In normal weight subgroup, there were on differences between the HSUA
and LSUA group in terms of clinical characteristics (Table 2).

Correlation between SUA and insulin secretory capacity within normal or
overweight/obesity groups
The relationship between confounding factors including SUA and insulin secretory capacity
within normal or overweight/obesity groups was shown in Table 3. In normal weight group,
there were no significant correlations between SUA and insulin secretory capacity. However, in
overweight/obesity group, FCP, P2hCP, FCPI, PPCPI, ΔC-peptide, HOMA2%B, and HOMA2IR
correlated positively with SUA, while HbA1c correlated negatively with SUA. After adjusting
for Cr, BMI, and gender, there were no significant correlations between SUA and HOMA2IR.
After additional adjustment for HbA1c and Duration, SUA still had positive significant
correlations with insulin secretory capacity include P2hCP, FCPI, PPCPI, ΔC-peptide, and
HOMA2%B.
To further define the relation between SUA and HOMA2%B in overweight/obesity group, multiple linear regression was carried out using SUA as the dependent variable (Table 4). FCP, P2HCP, FCPI, PPCPI, and ΔC-peptide were excluded from the model because of high correlation with HOMA2%B. FBS and P2hBS were also excluded because of high correlation with HbA1c. SUA levels were significantly associated with HOMA2%B in unadjusted analyses. After adjustments for sex, Cr, BMI, HbA1c and Duration, SUA remained positively associated with HOMA2%B.

Clinical and laboratory data of the patients according to gender and SUA category

The characteristic of the study patients according to gender was shown in Table 5. There were 234 males and 146 females. The male group were younger and had shorter duration compared to the female group. Compared with female group, the levels of SUA, ALT and CR in male group were higher. Furthermore, the patients were divided into two groups according the median SUA levels of patients with male (LSUA: low-normal SUA, \(\leq 292.0 \) umol/L; HSUA: high-normal SUA, \(> 292.0 \) umol/L) or female (LSUA, \(\leq 264.5 \) umol/L; HSUA, \(> 264.5 \) umol/L) group, respectively (Table 6). In male subgroup, the levels of BMI, ALT, HbA1c, P2HCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B were higher in HSUA group than in LSUA group. In contrast, the HbA1c, FBS, and P2hBS were lower in HSUA than in LSUA. In female subgroup, the levels of BMI, TG, CR and HOMA2IR were higher in HSUA group than in LSUA group.

Correlation between SUA and insulin secretory capacity by gender category

The relationship between confounding factors including SUA and insulin secretory capacity within male or female groups was shown in Table 7. In male group, FCP, P2hCP, FCPI, PPCPI, ΔC-peptide and HOMA2%B correlated positively with SUA, while HbA1c correlated negatively with SUA. After adjusting for Cr and BMI, there were also significant correlations between SUA and HOMA2IR. After additional adjustment for HbA1c and Duration, SUA still had positive significant correlations with insulin secretory capacity include P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B. However, in female group, SUA only correlated positively with P2hCP and ΔC-peptide.

To further define the relation between SUA and HOMA2%B or HOMA2IR, multiple linear regression was carried out using SUA as the dependent variable (Table 8). In male group, SUA levels were significantly associated with HOMA2%B in unadjusted analyses. After adjustments for Cr, BMI, HbA1c and Duration, SUA remained positively associated with HOMA2%B. SUA
levels were significantly associated with HOMA2IR in unadjusted analyses. After adjustments for Cr, BMI, HbA1c and Duration, there were no significant correlations between SUA and HOMA2IR. However, there were no significant correlations between SUA and HOMA2%B and HOMA2IR in female group.

Correlation between islet function/insulin resistance and related variables in T2DM patients

To indentify confounding factors affecting islet function and insulin resistance, multiple linear regression was again performed in T2DM patients. Independent variables such as SUA, age, gender, duration, SBP, DBP, BMI, TG, TCH, LDL, HDL, ALT, CR, HbA1c were enrolled (Table 9). HOMA2%B had positive associations with BMI, SUA, age and duration and a negative correlation with HbA1c. HOMA2IR had positive associations with BMI and TG and a negative correlation with duration.

Discussion

In this study, we confirmed that SUA levels are significantly associated with HOMA2%B in T2DM patients with overweight/obesity and male group, but not in normal weight and female group. In addition, we also demonstrated that other islet function indexes, such as FCPI, PPCPI, and ΔC-peptide, did correlate with SUA levels in T2DM patients with overweight/obesity and male group. However, our study observed the absence of a relationship between SUA and HOMA2IR after adjustment for Cr, BMI, sex, HbA1c, and diabetic duration in T2DM patients with overweight/obesity or male. To the best of our knowledge, this study is the first that these effects of SUA within the normal range on determinants of β-cell function and insulin resistance in T2DM by BMI and gender categories.

Uric acid is the end product of purine metabolism and derives from the conversion of hypoxanthine to xanthine and of xanthine to uric acid. We observed that SUA was higher in T2DM patients with overweight/obesity group than in those with normal weight group, SUA within normal range independently related to obesity in T2DM. Consistent with our results, several previous studies have also shown the relationship between BMI and uric acid (Han et al. 2018). For example, Chen et al (Chen et al. 2017) also found that prevalence of obesity steadily increased across SUA quartiles in T2DM. A 10-year follow-up study demonstrated that BMI had a significant independent association with uric acid in all race-sex-groups (Rathmann et al. 2007). Furthermore, in subjects without diabetes or hyperuricemia, SUA levels were also
associated with BMI, waist circumference, and waist-to-hip ratio (Jin et al. 2013). Interestingly, Zhou et al found that successful weight control, mostly >10kg weight reduction, was correlated with significant uric acid reduction after 2 years observation (Zhou et al. 2017). Therefore, SUA levels, even in normal range, were associated with BMI in T2DM patient.

In addition to strong association with BMI, SUA is also associated with β-cell function in T2DM. Tang et al. (Tang et al. 2014) found that patients with higher levels of SUA had higher insulin secretion, including the early phase and total insulin secretion in T2DM patients. Similarly, another study (Hu et al. 2018) has also reported that SUA augments insulin secretion, particularly basal insulin secretion, in the population-based study of newly diagnosed T2DM. Even in nondiabetic population, higher SUA levels also significantly correlate with lower early-phase insulin secretion (Shimodaira et al. 2014). However, the abovementioned studies do not evaluate the relationship between SUA in the normal range and β-cell function. Most of prior studies researching the association between SUA and β-cell function did not conduct subgroup analyses by BMI categories. Our present results show that SUA in the normal range is significantly associated with HOMA2%B in T2DM patients with overweight/obesity, but not in normal weight group. Although it is not possible to explain the mechanism underlying this body weight difference from our study, this observation may be due to the influence of SUA levels, which our study showed that SUA levels were higher in T2DM patients with overweight/obesity than in those with normal weight group. Although subjects with higher SUA secrete more insulin, it does not mean that high SUA is beneficial to β-cell function. SUA becomes a strong oxidant in the environment of obesity (Johnson et al. 2009), which may in turn promote lipid oxidation. In addition, obesity is related to elevated SUA level via both low urinary urate excretion and overproduction of SUA (Matsuura et al. 1998). A recent study found that an elevated level of uric acid causes β-cell injury via the NFκB-iNOS-NO signaling axis (Jia et al. 2013). Furthermore, Sun et al (Sun et al. 2015) found that uric acid-associated genes have an impact on insulin secretion in a Chinese patients with T2DM. Finally, another study (Seyed-Sadjadi et al. 2017) showed that the associations between SUA and diabetes risk factors are largely dependent on visceral fat mass in a non-diabetic population. Physicochemical properties define hyperuricemia as levels above the solubility threshold (6.8mg/dl). With regard to metabolic sequel, high-normal SUA levels are already associated with an increased risk in patient with overweight/obesity.
The disposition index (DI) is thought to reflect the capacity for insulin secretion adjusted for insulin sensitivity and thus to provide a useful measure of β-cell function. PP-CPI, a ratio of the circulating level of C-peptide to that of glucose, is correlated with clamp DI (Okuno et al. 2013).

In the present study, we found that PPCPI and ΔC-peptide had positive associations with SUA levels in overweight/obesity group, but not in normal weight group. Our findings agree with previous report by Tang et al (Tang et al. 2014), which shows that patients with higher SUA had greater disposition indices (both DI30 and DI120). Taken together, accumulated evidence suggest SUA levels may be associated with insulin secretion in T2DM patients with overweight/obesity.

Another important finding in our study was that SUA had positive significant correlations with insulin secretory capacity include P2hCP, FCPI, PPCPI, ΔC-peptide, and HOMA2%B in male group. Hyperuricemia affected men more commonly than women. There was a SUA difference of 30-120 umol/l between men and women (Akizuki 1982). It is previously known that estrogen may promote excretion of uric acid. (Hu et al. 2018) Together, these result indicate that gender differences in association between SUA within normal range and insulin secretion in patients with T2DM. However, a previous study (Hu et al. 2018) suggested that elevated SUA was associated with insulin secretion in male and female. The mechanism underlying this sex-based difference remains unclear, and requires further study.

The evidence of the linkage between SUA and insulin resistance in type 2 diabetes is growing, but it is unclear if SUA within the normal range directly lead to declines in insulin sensitivity in T2DM patients. However, our study observed the absence of a relationship between SUA within normal range and insulin resistance in T2DM patients with overweight/obesity and normal weight groups. Other researchers (Hu et al. 2018; Wang et al. 2011) have also demonstrated that the UA levels of hyperuricemic patients have no effect on their insulin sensitivity index. Liu et al. (Liu & Ho 2011) study suggested that SUA was not associated with insulin resistance after adjustment for BMI, TG, and BP. There are several possible explanations for the lack of independent relationship between SUA within normal range and insulin resistance in this study. Firstly, this result could be driven by SUA levels that are well within the normal range. Secondly, these discrepancies could be related the techniques used for measurement of insulin sensitivity. Finally, UA has an important role as an antioxidant (Lippi et al. 2008), but elevated SUA may cause oxidative stress (Pasalic et al. 2012) and inhibit endothelial NO bioavailability.
Collectively, the exact role of SUA within normal range in oxidation is still worth further investigation in T2DM patients. The relationship between SUA and HbA1c has been reported. For example, Kawamoto et al. (Kawamoto et al. 2018) found a negative association between SUA and HbA1c was shown particularly in men with HbA1c ≥6.5%. Cui et al. (Cui et al. 2016) showed that a negative correlation between uric acid and HbA1c is conditional in newly diagnosed type 2 diabetes patients. In our study, we also found that SUA within normal range negatively related to HbA1c in T2DM patients with overweight/obesity. In T2DM patients with normal weight group, the partial correlation analysis demonstrated the negative correlation between SUA and HbA1c, but no significant difference was observed with multiple linear regression analysis. These results indicated that there was negatively association between SUA, even within normal range, and HbA1c in T2DM patients with overweight/obesity.

Unfortunately, this study has some limitations. Firstly, we do not analyses whether oral hypoglycemic agents have effect on SUA. Sodium-glucose co-transporter 2 inhibitor (SGLT-2i) could improve glycemic control and lower SUA levels in T2DM (Hao et al. 2018). However, other hypoglycemic drugs, including metformin, rosiglitazone, glibenclamide and pharmacologic insulin, do not have a large impact on SUA concentration (Hussain et al. 2018; Iliadis et al. 2007; MacFarlane et al. 2015). In our study, the T2DM patients were treated with oral hypoglycemic drugs (not including SGLT2i) and insulin. Secondly, the number of subjects enrolled was relatively small. Thirdly, the relationship between SUA within normal range and oxidative stress is still worth further investigation in T2DM.

In conclusion, our study shows that SUA levels within normal range are associated with β-cell function in T2DM patients with overweight/obesity, and the relationship also displays sex-based differences. However, SUA levels within normal range are not related to insulin resistance in T2DM patients. This finding supports that the association between SUA within normal range and insulin secretion ability differs by weight and gender.

References

Akizuki S. 1982. Serum uric acid levels among thirty-four thousand people in Japan. Ann Rheum Dis 41:272-274.
Babio N, Martinez-Gonzalez MA, Estruch R, Warnberg J, Recondo J, Ortega-Calvo M, Serra-Majem L, Corella D, Fito M, Ros E, Becerra-Tomas N, Basora J, and Salas-Salvado J. 2015. Associations between serum uric acid concentrations and metabolic syndrome and its components in the PREDIMED study. *Nutr Metab Cardiovasc Dis* 25:173-180. 10.1016/j.numecd.2014.10.006

Chen JH, Hsieh CH, Liu JS, Chuang TJ, Chang HW, Huang CL, Li PF, Pei D, and Chen YL. 2016. The Power of Serum Uric Acid in Predicting Metabolic Syndrome Diminishes With Age in an Elderly Chinese Population. *J Nutr Health Aging* 20:912-917. 10.1007/s12603-015-0633-6

Chen MY, Zhao CC, Li TT, Zhu Y, Yu TP, Bao YQ, Li LX, and Jia WP. 2017. Serum uric acid levels are associated with obesity but not cardio-cerebrovascular events in Chinese inpatients with type 2 diabetes. *Sci Rep* 7:40009. 10.1038/srep40009

Cui Y, Bu H, Ma X, Zhao S, Li X, and Lu S. 2016. The Relation between Serum Uric Acid and HbA1c Is Dependent upon Hyperinsulinemia in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. *J Diabetes Res* 2016:7184123. 10.1155/2016/7184123

Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, and Witteman JC. 2008. High serum uric acid as a novel risk factor for type 2 diabetes. *Diabetes Care* 31:361-362. 10.2337/dc07-1276

Fang J, and Alderman MH. 2000. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. *JAMA* 283:2404-2410.

Han T, Meng X, Shan R, Zi T, Li Y, Ma H, Zhao Y, Shi D, Qu R, Guo X, Liu L, Na L, and Sun C. 2018. Temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes. *Int J Obes (Lond)* 42:1336-1344. 10.1038/s41366-018-0074-5

Hao Z, Huang X, Shao H, and Tian F. 2018. Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial. *Ther Clin Risk Manag* 14:2407-2413. 10.2147/tcrm.s186347

Hou X, Lu J, Weng J, Ji L, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, Yang Z, Yang W, and Jia W. 2013. Impact of waist circumference and body mass index on risk of cardiometabolic disorder and
cardiovascular disease in Chinese adults: a national diabetes and metabolic disorders survey. *PLoS One* 8:e57319. 10.1371/journal.pone.0057319

Hu Y, Liu J, Li H, Zhu H, Liu L, Yuan Y, Chen J, Wang Y, Hu X, and Xu Y. 2018. The association between elevated serum uric acid levels and islet beta-cell function indexes in newly diagnosed type 2 diabetes mellitus: a cross-sectional study. *PeerJ* 6:e4515. 10.7717/peerj.4515

Hussain A, Latiwesh OB, Ali F, Younis MYG, and Alammari JA. 2018. Effects of Body Mass Index, Glycemic Control, and Hypoglycemic Drugs on Serum Uric Acid Levels in Type 2 Diabetic Patients. *Cureus* 10:e3158. 10.7759/cureus.3158

Iliadis F, Kadoglou NP, Hatzitolios A, Karamouzis M, Alevizos M, and Karamitsos D. 2007. Metabolic effects of rosiglitazone and metformin in Greek patients with recently diagnosed type 2 diabetes. *In Vivo* 21:1107-1114.

Jia L, Xing J, Ding Y, Shen Y, Shi X, Ren W, Wan M, Guo J, Zheng S, Liu Y, Liang X, and Su D. 2013. Hyperuricemia causes pancreatic beta-cell death and dysfunction through NF-kappaB signaling pathway. *PLoS One* 8:e78284. 10.1371/journal.pone.0078284

Jin YL, Zhu T, Xu L, Zhang WS, Liu B, Jiang CQ, Yu H, Huang LM, Cheng KK, Thomas GN, and Lam TH. 2013. Uric acid levels, even in the normal range, are associated with increased cardiovascular risk: the Guangzhou Biobank Cohort Study. *Int J Cardiol* 168:2238-2241. 10.1016/j.ijcard.2013.01.214

Johnson RJ, Sautin YY, Oliver WJ, Roncal C, Mu W, Gabriela Sanchez-Lozada L, Rodriguez-Iturbe B, Nakagawa T, and Benner SA. 2009. Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society? *J Comp Physiol B* 179:67-76. 10.1007/s00360-008-0291-7

Kawamoto R, Ninomiya D, Kasai Y, Senzaki K, Kusunoki T, Ohtsuka N, and Kumagi T. 2018. Interaction between gender and uric acid on hemoglobin A1c in community-dwelling persons. *J Endocrinol Invest* 41:421-429. 10.1007/s40618-017-0760-5

Lippi G, Montagnana M, Franchini M, Favaloro EJ, and Targher G. 2008. The paradoxical relationship between serum uric acid and cardiovascular disease. *Clin Chim Acta* 392:1-7. 10.1016/j.cca.2008.02.024
Liu ZM, and Ho SC. 2011. The association of serum C-reactive protein, uric acid and magnesium with insulin resistance in Chinese postmenopausal women with prediabetes or early untreated diabetes. *Maturitas* 70:176-181. 10.1016/j.maturitas.2011.07.007

MacFarlane LA, Liu CC, and Solomon DH. 2015. The effect of initiating pharmacologic insulin on serum uric acid levels in patients with diabetes: a matched cohort analysis. *Semin Arthritis Rheum* 44:592-596. 10.1016/j.semarthrit.2014.10.008

Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, and Matsuzawa Y. 1998. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. *Metabolism* 47:929-933.

Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, and Makaroff LE. 2017. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. *Diabetes Res Clin Pract* 128:40-50. 10.1016/j.diabres.2017.03.024

Okuno Y, Komada H, Sakaguchi K, Nakamura T, Hashimoto N, Hirota Y, Ogawa W, and Seino S. 2013. Postprandial serum C-peptide to plasma glucose concentration ratio correlates with oral glucose tolerance test- and glucose clamp-based disposition indexes. *Metabolism* 62:1470-1476. 10.1016/j.metabol.2013.05.022

Pasalic D, Marinkovic N, and Feher-Turkovic L. 2012. Uric acid as one of the important factors in multifactorial disorders--facts and controversies. *Biochem Med (Zagreb)* 22:63-75.

Rathmann W, Haastert B, Icks A, Giani G, and Roseman JM. 2007. Ten-year change in serum uric acid and its relation to changes in other metabolic risk factors in young black and white adults: the CARDIA study. *Eur J Epidemiol* 22:439-445. 10.1007/s10654-007-9132-3

Seyed-Sadjadi N, Berg J, Bilgin AA, and Grant R. 2017. Visceral fat mass: is it the link between uric acid and diabetes risk? *Lipids Health Dis* 16:142. 10.1186/s12944-017-0532-4

Sharaf El Din UAA, Salem MM, and Abdulazim DO. 2017. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. *J Adv Res* 8:537-548. 10.1016/j.jare.2016.11.004
Shimodaira M, Niwa T, Nakajima K, Kobayashi M, Hanyu N, and Nakayama T. 2014. The relationship between serum uric acid levels and beta-cell functions in nondiabetic subjects. *Horm Metab Res* 46:950-954. 10.1055/s-0034-1389996

Simental-Mendia LE, Rodriguez-Moran M, and Guerrero-Romero F. 2009. Failure of beta-cell function to compensate lack of insulin action in hyperuricemic subjects. *Diabetes Metab Res Rev* 25:535-541. 10.1002/dmrr.988

Sun X, Zhang R, Jiang F, Tang S, Chen M, Peng D, Yan J, Wang T, Wang S, Bao Y, Hu C, and Jia W. 2015. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population. *PLoS One* 10:e0116714. 10.1371/journal.pone.0116714

Tang W, Fu Q, Zhang Q, Sun M, Gao Y, Liu X, Qian L, Shan S, and Yang T. 2014. The association between serum uric acid and residual beta-cell function in type 2 diabetes. *J Diabetes Res* 2014:709691. 10.1155/2014/709691

van der Schaft N, Brahimaj A, Wen KX, Franco OH, and Dehghan A. 2017. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study. *PLoS One* 12:e0179482. 10.1371/journal.pone.0179482

Wallace TM, Levy JC, and Matthews DR. 2004. Use and abuse of HOMA modeling. *Diabetes Care* 27:1487-1495.

Wang T, Bi Y, Xu M, Huang Y, Xu Y, Li X, Wang W, and Ning G. 2011. Serum uric acid associates with the incidence of type 2 diabetes in a prospective cohort of middle-aged and elderly Chinese. *Endocrine* 40:109-116. 10.1007/s12020-011-9449-2

Zhou BF. 2002. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. *Biomed Environ Sci* 15:83-96.

Zhou J, Wang Y, Lian F, Chen D, Qiu Q, Xu H, Liang L, and Yang X. 2017. Physical exercises and weight loss in obese patients help to improve uric acid. *Oncotarget* 8:94893-94899. 10.18632/oncotarget.22046
Table 1 (on next page)

Clinical characteristics and islet function indexes of T2DM patients by BMI
Table 1 Clinical characteristics and islet function indexes of T2DM patients by BMI

Variables	Normal weight group (N=112)	Overweight/obesity group (N=268)	F/χ	P
SUA (umol/L)	262.5 (224.3, 297.0)	290.5 (256.0, 333.0)	-5.08	<0.001
Age (years)	54.1±11.9	52.1±12.0	1.50	0.134
Male/Female	63/49	171/97	1.38	0.168
Duration (years)	5.0 (1.0, 10.0)	4.0 (0.3, 9.7)	0.51	0.613
SBP (mmHg)	120.0 (110.0, 131.5)	130.0 (120.0, 140.0)	-2.06	0.040
DBP (mmHg)	77.0 (70.0, 84.8)	80.0 (76.0, 90.0)	0.90	<0.001
BMI (kg/m²)	22.3 (20.6, 23.4)	26.1 (25.4, 28.2)	-21.3	<0.001
TG (mmol/L)	1.38 (0.88, 2.12)	2.00 (1.22, 3.12)	-4.24	<0.001
TCH (mmol/L)	4.37 (3.87, 5.11)	4.54 (3.91, 5.20)	-1.01	0.315
LDL (mmol/L)	2.58 (2.18, 2.93)	2.58 (2.18, 3.10)	0.39	0.697
HDL (mmol/L)	1.07 (0.84, 1.38)	1.01 (0.76, 1.10)	2.86	0.004
ALT (U/L)	18.0 (14.0, 27.0)	21.0 (15.0, 33.0)	-1.87	0.063
CR (umol/L)	68.5 (58.0, 81.8)	73.0 (62.0, 85.0)	-1.73	0.084
HbA1c (%)	9.40 (7.53, 11.20)	8.90 (7.60, 10.70)	0.86	0.391
FPG (mmol/L)	9.49±3.38	9.32±3.03	0.47	0.637
P2hPG (mmol/L)	19.17±4.91	18.69±4.37	0.95	0.344
FCP (nmol/L)	1.84 (1.31, 2.82)	2.40 (1.79, 3.31)	-4.28	<0.001
P2hCP (nmol/L)	5.03 (3.52, 7.21)	5.90 (4.13, 7.74)	-2.54	0.011
FCPI	0.22 (0.16, 0.32)	0.28 (0.19, 0.37)	-3.77	<0.001
PPCPI	1.49 (0.94, 2.35)	1.78 (1.14, 2.62)	-2.24	0.026
ΔC-peptide	2.92 (1.76, 4.68)	3.23 (1.90, 4.62)	-1.16	0.245
HOMA2%B	42.2 (28.0, 69.0)	49.7 (33.9, 78.4)	-2.39	0.017
HOMA2IR	1.66 (1.17, 2.43)	2.11 (1.60, 3.11)	0.14	<0.001

Values are expressed as mean ±standard deviation (SD) or median (range 25th-75th percentile)
Table 2 (on next page)

Clinical characteristics and islet function indexes of overweight/obesity and normal weight group by the median of SUA
Variables	Overweight/obesity group	Normal weight group
SUA (umol/L)	<285, 285–420	<285, 285–420
Age (years)	52.9±11.2, 51.4±12.5	55.4±10.9, 51.7±13.5
Male/Female	62/56, 109/41	38/34, 25/15
Duration (years)	4.0(0.3, 10.0), 4.0(0.29, 9.00)	6.0(1.0, 10.0), 4.5(0.42, 10.0)
SBP (mmHg)	129.4±16.3, 128.7±17.3	126.2±17.1, 122.8±20.0
DBP (mmHg)	80.5±10.2, 82.1±11.6	76.9±9.5, 77.1±9.6
BMI (kg/m²)	26.5±1.9, 27.4±2.7	21.8±1.9, 21.6±2.0
TG (mmol/L)	1.88(1.09, 2.58), 2.08(1.34, 3.32)	1.21(0.84, 2.03), 1.43(1.00,2.15)
TCH (mmol/L)	4.46(3.74, 5.35), 4.57(4.07, 5.15)	4.37(3.95, 5.08), 4.33(3.51, 5.26)
LDL (mmol/L)	2.58(2.19, 2.95), 2.59(2.17, 3.13)	2.58(2.31, 2.93), 2.58(2.02, 3.15)
HDL (mmol/L)	1.07±0.38, 0.97±0.40	1.24±0.49, 0.99±0.29
ALT (U/L)	20.0(14.0, 30.3), 23.5(17.0, 35.0)	18.0(14.3, 23.0), 20.0(14.0, 30.0)
CR (umol/L)	70.9±16.1, 75.4±14.9	70.2±15.5, 70.7±14.8
HbA1c (%)	9.5±2.13, 8.89±1.96	9.3±2.32, 9.7±2.75
FPG (mmol/L)	9.7±2.8, 9.0±3.2	9.5±3.3, 9.5±3.5
P2hPG (mmol/L)	19.4±3.9, 18.1±4.7	18.9±4.9, 19.5±4.9
FCP (mmol/L)	2.24(1.71, 3.02), 2.50(1.87, 3.41)	1.81(1.30, 2.74), 1.92(1.32, 3.09)
P2hCP (mmol/L)	5.00(3.63, 6.73), 6.52(4.87, 8.43)	4.87(3.20, 6.68), 5.46(3.58, 7.69)
FCP1	0.24(0.17,0.34), 0.31(0.22, 0.42)	0.22(0.16, 0.30), 0.25(0.15, 0.36)
PPC1	1.46(0.95, 2.36), 2.04(1.35, 2.95)	1.45(0.94, 2.18), 1.76(0.94, 2.60)
ΔC-peptide	2.52(1.44, 4.07), 3.81(2.28, 5.46)	2.82(1.60, 4.77), 3.36(1.77, 4.66)
HOMA2%B	45.4(30.3, 63.4), 60.3(37.6, 90.9)	40.3(29.2, 64.1), 43.5(26.7, 91.3)
HOMA2IR	2.03(1.53, 2.75), 2.23(1.62, 3.16)	1.64(1.17, 2.32), 1.86(1.12, 2.66)

Values are expressed as mean ± standard deviation (SD) or median (range 25th-75th percentile).
Table 3 (on next page)

Correlation of selected variables with SUA in T2DM patients with overweight/obesity group
Table 3 Correlation of selected variables with SUA in T2DM patients with overweight/obesity group

Variable	Crude r	p	Adjusted for Cr, BMI, sex r	p	Adjusted for Cr, BMI, sex, HbA1c, Duration r	p
HbA1c	-0.186	0.002	-0.226	<0.001		
FCP	0.194	0.001	0.130	0.034	0.115	0.085
P2hCP	0.286	<0.001	0.274	<0.001	0.220	0.001
FCPI	0.268	<0.001	0.222	<0.001	0.142	0.034
PPCPI	0.308	<0.001	0.296	<0.001	0.232	<0.001
ΔC-peptide	0.255	<0.001	0.275	<0.001	0.215	0.001
HOMA2%B	0.257	<0.001	0.235	<0.001	0.137	0.040
HOMA2IR	0.142	0.020	0.082	0.158	0.105	0.117
Table 4 (on next page)

Multiple linear regression analysis for SUA and HOMA2%B in T2DM patients with overweight/obesity
	Partial regression coefficient (B)	Standard error (SE)	Standard partial regression coefficient (β)	t	p-Value
HOMA2%B (unadjusted)	0.076	0.018	0.257	4.337	<0.001
HOMA2%B (adjusted for model 1: sex, Cr, BMI)	0.066	0.017	0.223	3.930	<0.001
HOMA2%B (adjusted for model 2: model 1, HbA1c and Duration)	0.049	0.022	0.182	2.135	0.013
Table 5 (on next page)

Clinical characteristics and islet function indexes of T2DM patients by gender
Table 5 Clinical characteristics and islet function indexes of T2DM patients by gender

Variables	Male (N=234)	Female (N=146)	t/Z	P
SUA (μmol/L)	292.0 (256.0, 339.5)	264.5 (233.5, 297.0)	5.01	<0.001
Age (years)	49.9 ± 12.3	57.2 ± 9.9	-6.03	<0.001
Duration (years)	3.3 (0, 8.0)	5.5 (1.0, 10.0)	-3.38	0.001
SBP (mmHg)	128.0 (114.8, 136.5)	130.0 (118.0, 140.0)	-0.91	0.363
DBP (mmHg)	80.0 (75.5, 90.0)	80.0 (70.0, 84.5)	-3.24	0.001
BMI (kg/m²)	25.5 (23.8, 27.7)	25.4 (23.4, 27.3)	-1.71	0.088
TG (mmol/L)	1.99 (1.12, 3.13)	1.54 (0.96, 2.29)	-2.89	0.004
TCH (mmol/L)	4.44 (3.87, 5.20)	4.52 (3.94, 5.15)	-0.32	0.752
LDL (mmol/L)	2.58 (2.09, 3.10)	2.58 (2.34, 3.01)	-1.23	0.220
HDL (mmol/L)	0.95 (0.74, 1.07)	1.07 (0.92, 1.34)	-4.61	<0.001
ALT (U/L)	21.5 (16.0, 35.3)	18.0 (13.0, 26.9)	-3.68	<0.001
CR (μmol/L)	75.5 (64.0, 87.3)	67.0 (56.8, 76.6)	-4.89	<0.001
HbA1c (%)	9.22 (7.98, 10.70)	8.45 (7.00, 11.2)	-1.97	0.051
FBS (mmol/L)	9.50 ± 2.99	9.16 ± 3.35	1.04	0.301
P2hBS (mmol/L)	18.85 ± 4.36	18.80 ± 4.81	0.11	0.913
FCP (nmol/L)	2.25 (1.69, 3.27)	2.26 (1.58, 3.03)	-1.33	0.182
P2hCP (nmol/L)	5.53 (3.94, 7.34)	5.74 (4.21, 8.04)	-0.94	0.346
FCPI	0.27 (0.18, 0.36)	0.26 (0.17, 0.35)	-0.43	0.671
PPCPI	1.61 (1.04, 2.45)	1.71 (1.01, 2.85)	-0.91	0.365
ΔC-peptide	2.97 (1.74, 4.30)	3.29 (1.95, 5.40)	-1.97	0.053
HOMA2%B	47.3 (31.6, 75.1)	52.3 (30.5, 79.9)	-0.75	0.471
HOMA2IR	2.04 (1.47, 3.09)	2.02 (1.31, 2.63)	0.45	0.140

Values are expressed as mean ±standard deviation (SD) or median (range 25th-75th percentile)
Table 6 (on next page)

Clinical characteristics and islet function indexes of male and female group by the median of SUA
Table 6 Clinical characteristics and islet function indexes of male and female group by the median of SUA

Variables	Male group (n=234)	Female group (n=146)	t/Z	P
	LSUA < 292 umol/L	HSUA ≥ 292 umol/L		
Age (years)	50.78 ± 12.79	48.91 ± 11.76	1.16	0.247
Duration (years)	4.0 (0.1, 8.0)	3.0 (0.0, 7.0)	-0.76	0.447
SBP (mmHg)	128.0 (115.0, 136.0)	126.0 (114.0, 138.0)	-0.35	0.726
DBP (mmHg)	80.0 (74.0, 90.0)	80.0 (76.0, 90.0)	-0.45	0.685
BMI (kg/m²)	25.4 (23.2, 26.6)	25.9 (24.5, 28.4)	-3.44	0.001
TG (mmol/L)	4.38 (3.80, 5.19)	4.57 (3.92, 5.18)	-0.99	0.319
LDL (mmol/L)	2.58 (2.07, 3.10)	2.58 (2.15, 3.12)	-0.88	0.380
FBS (mmol/L)	10.09 ± 2.82	8.89 ± 3.05	3.10	0.002
P2hBS (mmol/L)	19.78 ± 3.99	17.88 ± 4.55	3.42	0.001
FCPI	0.22 (0.17, 0.33)	0.31 (0.22, 0.47)	-3.93	<0.001
PPCPI	1.35 (0.92, 1.96)	2.03 (1.41, 2.69)	-4.53	<0.001
ΔC-peptide	2.32 (1.38, 3.84)	3.55 (2.26, 5.27)	-4.01	<0.001
HOMA2%B	38.3 (27.9, 59.8)	59.3 (37.3, 89.0)	-4.39	<0.001
HOMA2IR	1.98 (1.49, 2.65)	2.20 (1.43, 3.25)	-1.24	0.214

Values are expressed as mean ± standard deviation (SD) or median (range 25th-75th percentile)

PeerJ reviewing PDF | (2018:11:32929:1:1:NEW 12 Feb 2019)
Correlation of SUA with selected variables in T2DM patients with male and female group

Table 7 (on next page)
Table 7 Correlation of SUA with selected variables in T2DM patients with male and female group

	Crude		Adjusted for Cr, BMI		Adjusted for Cr, BMI, HbA1c, Duration
Male group					
HbA1c	-0.291 <0.001	-0.284 <0.001	0.101	0.127	
FCP	0.235 0.001	0.142 0.031	0.163	0.013	
P2hCP	0.331 <0.001	0.280 <0.001	0.288	0.007	
FCPi	0.356 <0.001	0.288 <0.001	0.178	0.007	
PPCPI	0.351 <0.001	0.322 <0.001	0.195	0.003	
ΔC-peptide	0.293 <0.001	0.273 <0.001	0.147	0.026	
HOMA2%B	0.350 <0.001	0.319 <0.001	0.195	0.003	
HOMA2IR	0.156 0.017	0.065 0.322	0.066	0.320	
Female group					
HbA1c	0.013 0.876	0.011 0.884			
FCP	0.165 0.046	0.108 0.199	0.113	0.182	
P2hCP	0.203 0.014	0.182 0.029	0.200	0.017	
FCPi	0.171 0.039	0.137 0.101	0.155	0.066	
PPCPI	0.135 0.104	0.114 0.175	0.133	0.116	
ΔC-peptide	0.182 0.028	0.177 0.034	0.198	0.018	
HOMA2%B	0.134 0.106	0.135 0.108	0.163	0.053	
HOMA2IR	0.149 0.072	0.090 0.282	0.094	0.268	
Table 8 (on next page)

Multiple linear regression analysis for SUA and HOMA2%B or HOMA2IR in T2DM patients by gender category
Table 8 Multiple linear regression analysis for SUA and HOMA2%B or HOMA2IR in T2DM patients by gender category

Gender	HOMA2%B	Partial regression coefficient (B)	Standard error (SE)	Standard partial regression coefficient (β)	t	p-Value	
Male	unadjusted	0.514	0.090	0.350	5.69	<0.001	
	adjusted for model 1: Cr, BMI	0.458	0.090	0.312	5.10	<0.001	
	adjusted for model 2: model 1, HbA1c and Duration	0.319	0.107	0.217	2.99	0.003	
	HOMA2IR	unadjusted	2.986	3.323	0.156	2.40	0.017
	adjusted for model 1: Cr, BMI	3.415	3.443	0.067	0.99	0.322	
	adjusted for model 2: model 1, HbA1c and Duration	3.346	3.359	0.065	0.99	0.320	

Female	HOMA2%B	Partial regression coefficient (B)	Standard error (SE)	Standard partial regression coefficient (β)	t	p-Value	
group	unadjusted	0.141	0.087	0.134	1.626	0.106	
	adjusted for model 1: Cr, BMI	0.137	0.085	0.131	1.618	0.108	
	adjusted for model 2: model 1, HbA1c and Duration	0.197	0.101	0.188	1.949	0.053	
	HOMA2IR	unadjusted	4.703	2.593	0.149	1.814	0.072
	adjusted for model 1: Cr, BMI	2.783	2.578	0.088	1.079	0.282	
	adjusted for model 2: model 1, HbA1c and Duration	2.940	2.646	0.093	1.111	0.268	
Table 9 (on next page)

Multiple linear regression analysis on related variables for islet function indexes in T2DM patients
Table 9 Multiple linear regression analysis on related variables for islet function indexes in T2DM patients

Variable	Partial regression coefficient (B)	Standard error (SE)	Standard partial regression coefficient (β)	p-Value
HOMA2%B	HbA1c	-9.103	-0.501	<0.001
	SUA	0.127	0.177	<0.001
	age	0.486	0.146	0.002
	BMI	1.143	0.095	0.029
	Duration	-0.697	-0.100	0.034
HOMA2IR	BMI	0.089	0.241	<0.001
	TG	0.076	0.165	0.001
	Duration	-0.029	-0.134	0.006