Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads

Millar, B. C., Ferris, J., Murphy, A., Reid, N., & Moore, J. E. (2021). Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads. Access Microbiology, 3(5), [000229].
https://doi.org/10.1099/acmi.0.000229

Published in:
Access Microbiology

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors.
This is an open access Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 16. Jul. 2021
Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from *Legionella* species through successful domestic steam disinfection of showerheads

Beverley C. Millar1,2, Jonalyn Ferris2, Alan Murphy2, Norman Reid2 and John E. Moore1,2,*

Abstract

Given the importance of disinfecting showerheads from *Legionella* species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from *Legionella* species. Steam disinfection of *Legionella pneumophila* \[n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC1192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], *L. erythra* (wildtype environmental water isolate) and *L. bozemanii* CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all *Legionella* organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of *Legionella* species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.

INTRODUCTION

The Gram-negative bacterium *Legionella* is the causative organism of Legionnaire’s disease (LD), which usually presents as a pneumonia and Pontiac fever (PF), which is a milder form, mimicking the symptoms of influenza [1]. Each year, there are approximately just over 500 cases of LD reported in England and Wales [2], whereas in the USA, there are approximately 10000 cases each year [3], with a case fatality rate of 10% [4]. *Legionella* are opportunistic bacterial pathogens which are predominantly associated with human-made building water systems, and infection occurs where residents or others associated with *Legionella*-positive water systems within the housing breathe in small droplets of contaminated water that contains *Legionella* organisms. Showers and showerheads provide ideal environments for *Legionella* proliferation and exposure and have often been proposed as a source of sporadic, community-acquired legionellosis [5], especially if the water has been allowed to stagnate in the showerhead, due to periods of inactivity and lack of use.

Prior to COVID-19, a study of 160 water samples from showerheads or taps from recreational centres showed that 41/160 samples (25.6% overall; 57.1% hotels and 41.2% sports centres) were positive for *Legionella* [6].

In spring 2020, the emergence of COVID-19 disease, caused by the SARS CoV2 coronavirus, led to the closure of close contact services, including highstreet hair dressing salons, as well as barber shops, in order to help prevent the transmission of the coronavirus between clients and staff, as well as from client-to-client. This closure of premises lasted for several weeks, with the re-opening and subsequent re-closure due to emerging public health regulations. Overall, such actions has created a scenario in which water has been allowed to stagnate for long periods of time over the summer months with elevated temperatures in pipework, tubing and showerheads.
In such establishments. In an attempt to prevent the potential aerosolization of Legionella on re-opening of these services and to protect staff and customers, various guidelines have been introduced to help protect public health. The Chartered Institute of Environmental Health (CIEH) has published guidelines [7] to mitigate the risk from Legionella in water systems, including: (i) run all taps for approximately 5 min, (ii) raise the temperature of hot water tanks to at least 60°C or above to ensure any Legionella bacteria are killed, (iii) disinfect all tap areas and sinks, and (iv) seek guidance from a competent water treatment consultant to assist with the re-opening of swimming, hydrotherapy or jacuzzi pools, which were not drained prior to closing down. Importantly, these guidelines help inform business owners, where needed, to descale and disinfect showerheads, although no advice is given as to how best to disinfect showerheads. Equally, many showerhead manufacturers do not offer such advice, but rather give instructions as to how to descale showerheads from an accumulation of limescale.

Given the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was therefore to examine the ability of domestic steam disinfectors to successfully disinfect showerheads from Legionella species, thus helping to protect employee and customer safety.

METHODS

Description of organisms employed

Legionella pneumophila (n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. All Legionella organisms were subcultured on Legionella CYE (LCYE) agar base (CM0655; Oxoid) containing: activated charcoal (2 g l⁻¹), yeast extract (10 g l⁻¹) and agar (13 g l⁻¹), which was supplemented with Legionella BCYE Growth Supplement (Oxoid SR0110), containing buffer/potassium hydroxide (10 g l⁻¹), ferric pyrophosphate (0.25 g l⁻¹), L-cysteine HCl (0.4 g l⁻¹) and α-ketoglutarate (1.0 g l⁻¹), as well as Legionella (GVPC) selective supplement (Oxoid SR0152) containing glycine (ammonia free; 3 g l⁻¹), vancomycin hydrochloride (1 g l⁻¹), polymyxin B sulphate (80000 IU l⁻¹) and cycloheximide (80 mg l⁻¹). Isolates were cultured in a humid atmosphere containing 2.5% (v/v) CO₂ at 35°C. Individual inocula of each organism were freshly prepared by adding a 4 h culture into Maximum Recovery Diluent (Oxoid CM0733) to give a mean combined inoculum of Legionella organisms of 2.33×10⁶ (log₁₀ 5.37) c.f.u. ml⁻¹.

Disinfection of showerhead employing domestic steam disinfecter

The ‘Nuby Natural Touch Steriliser and Dryer’ (Model number: BB1022-GS; 220–240V; 50–60 Hz; 650 W; Nuby UK) domestic steam disinfecter device was examined in this study, as previously described [8]. Briefly, this domestic baby bottle steam disinfecter device consists of five components: base, main body, lower tray, upper tray and lid. The lower layer is designed to hold five baby bottles upside down via locators, with the top layer used for accessories (teat and screw rings). The device can be operated solely in disinfection mode, as well as in disinfection + drying mode (short drying time (15 min) or long drying time (30 min)), where in the latter mode, the fan dryer commences 2 min after the disinfection mode has ended, without any further heating. All steam disinfection studies were performed at GPS coordinates 54°58′699, –5°92102 (54° 35′ 19.3″ N 5° 56′31.6″ W) at 12 m above sea level. In brief, the device was disassembled, water (90 ml) was placed in the heating element reservoir and the device was re-assembled for immediate disinfection of the showerhead. A plastic showerhead (Mira Flex; Kohler Mira) was disassembled by unscrewing the front plate and was sterilized by autoclaving at 121°C for 15 min at 15 p.s.i. (Fig. 1a). The device was placed aseptically on the upper layer of the baby bottle steam disinfecter (Fig. 1b). A combined inoculum of Legionella organisms (1000 µl), as prepared above, was added aseptically to the inner ring of the showerhead and disinfected in the device without drying. On completion of the disinfection cycle, the disinfected showerhead was allowed to stand for 3 min, after which disinfected inocula (100 µl) were removed and plated onto BCYE or GVPC agar and incubated as described above. In addition, disinfected inocula (100 µl) were enriched in BCYE broth (10 ml), consisting of LCYE base (without agar) + BCYE growth supplement and incubated for 48 h at 37°C. Following enrichment, inocula were subsequently plated onto BCYE or GVPC agar and incubated as described above. Plates were further incubated for 1 week. The experiment was replicated four times. In addition, two controls were set up: (i) examining the survival of all Legionella organisms in Maximum Recovery Diluent (Oxoid CM0733) for the same duration as in the steam disinfecter; and (ii) two reference strains, L. pneumophila serogroup 1 NCTC11192 and L. bozemanii CRM11368M, were placed on the showerhead without disinfection for the same duration. Following completion of control conditions, the organisms were tested for survival by culturing as described above.

RESULTS

Application of disinfection using the domestic steam disinfecter device employed under the manufacturer’s instructions resulted in the eradication of all legionellae, equating to a log₁₀ 5.37 reduction (Fig. 1c). Furthermore, no organisms could be recovered after disinfection and following non-selective microbiological enrichment, demonstrating the absolute eradication of all viable Legionella organisms. All organisms survived in the controls, both in the Maximum Recovery Diluent, as well as on the showerhead that had not been disinfected, demonstrating that all organisms remained viable throughout the experiment, as well as that the showerhead was not intrinsically antimicrobial.
DISCUSSION

This study examined the performance of steam disinfection using a domestic steam disinfector device for the disinfection of showerheads contaminated with *Legionella* species. Recently, our group reported on the thermal performance of baby bottle steam disinfectors in the hospital-at-home setting [8]. That study showed that such steam disinfectors can reach temperatures of 100°C [8].

Following disinfection, we were unable to recover any organisms from disinfected showerheads, either with direct plating onto *Legionella* agar or via non-selective *Legionella*-specific enrichment techniques. In order to ensure that we did not miss any potentially surviving but sub-lethally heat-stressed organisms, we conceived and performed novel bacteriological enhancement to ensure optimal recovery. For this, we introduced a novel non-selective broth-based *Legionella*-specific enrichment (containing cysteine) to improve recovery of potentially sub-lethally heat-stressed cells. Even with such enhanced bacteriological techniques, we were unable to recover any organisms, demonstrating that the heat stress applied was lethal to all strains examined.

Previous thermal inactivation studies for *Legionella* have shown that the inactivation kinetics of the five *Legionella* strains fit a first-order model [9]. At 50°C, *L. longbeachae* ATCC 33462 was the most sensitive strain, reaching a 5-log inactivation after a 20 min exposure. At higher temperatures, *L. pneumophila* strains reached a 4-log reduction in a range between 2–4 min at 60°C and 1 min at 65 and 70°C. Given these heat inactivation data, the time/temperature profiles achieved by the baby bottle steam disinfector device [8] would exceed these requirements, and hence the device was able to eradicate all *Legionella* organisms on the contaminated showerhead in the current study.

Unlike other *Legionella* control measures, including flushing with large volumes of water or chemical disinfection, as a physical disinfection method, steam disinfection has the ability to heat up the entire device absolutely and is not compromised by biofilm and limescale that may harbour *Legionella* organisms and compromise the efficiency of the former control methods. This method of *Legionella* control in showerheads may have wider uptake than just hairdressing salons, barber shops or gyms, but may be adopted by any establishment which uses showerheads, including hotels.
student accommodation, hospitals, holiday homes and the domestic setting. Operators of commercial establishments, including hairdressing salons, barber shops and gyms, should ensure that showerheads are made of materials that are able to withstand regular steam disinfection and to avoid the use of rain showers or similar devices which are not amenable to dismantling and disinfection by steam on a regular basis. Further advice and guidance on Legionella control in water systems may be obtained from the Health and Safety Executive [10].

In conclusion, domestic steam disinfection employing baby bottle disinfecter devices, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the regular employment of such devices to disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as in other establishments and homes that employ showerheads, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.

Funding Information
The authors received no specific grant from any funding agency.

Author contributions
B.C.M.: conceptualization; formal analysis; investigation; methodology; visualization; roles/writing - original draft; writing - review and editing. J.F.: methodology; writing - review and editing. A.M.: methodology; visualization; roles/writing - original draft; writing - review and editing.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Hayes-Phillips D, Bentham R, Ross K, Whitey H. Factors influencing Legionella contamination of domestic household showers. Pathogens 2019;8:27.
2. Anon. 2019. Legionnaires’ disease monthly surveillance reports: 2019. Public Health England. Available at: https://www.gov.uk/government/publications/legionnaires-disease-monthly-surveillance-reports-2019 [accessed 01 April 2021].
3. Anon. 2020. Legionella (Legionnaires’ Disease and Pontiac Fever). Centers for Disease Control and Prevention 2020. Available at: https://www.cdc.gov/legionella/fastfacts.html [accessed 01 April 2021].
4. Dooling KL, Toews K-A, Hicks LA, Garrison LE, Bachaus B et al. Active bacterial core surveillance for legionellosis — United States, 2011–2013. MMWR Morb Mortal Wkly Rep 2015;64:1190–1193.
5. Schoen ME, Ashbolt NJ. An in-premise model for Legionella exposure during showering events. Water Res 2011;45:5826–5836.
6. De Filippis P, Mozzetti C, Amicosante M, D’Alò GL, Messina A et al. Occurrence of Legionella in showers at recreational facilities. J Water Health 2017;15:402–409.
7. Matthewman R. Reopening salons and spas following lockdown: reducing risks of COVID-19 and other considerations. Chartered Institute of environmental health. https://www.cieh.org/news/press-releases/2020/cieh-issues-new-guidance-for-salons-and-spas-to-reopen-following-lockdown/https://www.cieh.org/news/press-releases/2020/cieh-issues-new-guidance-for-salons-and-spas-to-reopen-following-lockdown/ 2020.
8. Millar BC, Stirling J, Maguire M, Moore RE, Murphy A et al. Re-purposing of domestic steam disinfectors within the hospital-at-home setting. Infect Dis Health 2021;26:72–80.
9. Cervero-Aragó S, Rodríguez-Martínez S, Puertas-Bennasar A, Araujo RM. Effect of common drinking water disinfectants, chlorine and heat, on free Legionella and amoebae-associated Legionella. PLoS One 2015;10:e0134726.
10. Anon. 2021. Managing legionella in hot and cold water systems. Health and Safety Executive. https://www.hse.gov.uk/healthservices/legionella.htm [accessed 01 April 2021].

Five reasons to publish your next article with a Microbiology Society journal
1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.