REVIEW

The role of cDC1s in vivo: CD8 T cell priming through cross-presentation [version 1; referees: 3 approved]

Derek Theisen¹, Kenneth Murphy¹,²

¹Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
²Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA

Abstract
The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance on in vitro systems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.
Introduction

Dendritic cells (DCs) are a distinct lineage of innate immune cells that was originally defined based on its unique histocompatibility class I (MHCI)3. cDC1s are the unique DC subset specialized in cross-presentation in vivo. The molecular mechanisms specific to DCs that govern cross-presentation have been the subject of a large body of work over the past decade, with much of the early work on cross-presentation carried out in macrophages, though the majority of our understanding of cross-presentation is based on experiments carried out using GMDCs. GMDCs are generated from bone marrow cultures with GM-CSF alone or GM-CSF with IL-4 originally developed in the early 1990s. While these cells can cross-present in vitro, it is unlikely that these are the cells that operate in vivo, since Batf3 mice that lack cDC1s fail to mount CD8 T cell responses to challenges requiring cross-presentation. However, Batf3 mice can generate moDCs that are able to cross-present normally in vivo, indicating that any moDCs that may develop in vivo do not compensate for the loss of cDC1s for in vivo cross-presentation.

Surprisingly little work has been done to analyze cross-presentation in DCs derived from bone marrow cultures with Flt3L. DCs that resemble splenic cDC1 and cDC2 by surface markers can be generated in large numbers in bone marrow cultures with Flt3L. These cells are able to present antibody-targeted antigens and activate T cells to a similar extent as cDCs of the same lineage derived in vivo. Also, Flt3L-derived DCs express Rab43, a molecule necessary for cross-presentation in in vivo cDC1s but not moDCs. While more studies may be needed to compare the cross-presentation efficiency of Flt3L-derived DCs to in-vivo-generated cDCs, Flt3L-derived DCs are arguably more appropriate for in vitro studies of DC function than GMDCs. Nonetheless, the examination of macrophages and GMDCs has been useful for identifying the components of two major cross-presentation pathways, the cytosolic and vacuolar pathways.

In the cytosolic pathway, exogenous antigens that are taken up into phagosomes are exported into the cytosol to enter the traditional proteasome- and TAP-dependent MHCI presentation pathway. The cytosolic pathway is dependent on the reduced acidification of phagosomes produced by the activity of NADPH oxidase Nox2, leading to delayed antigen degradation. Recruitment and localization of NOX2 components was determined to be regulated by the activities of Rac2 and Rab27a. Phagosomal alkalization has also been demonstrated to involve Rab3c (a marker of recycling vesicles), Rab34 (an LPS-regulated protein that can delay phagosomal fusion), and TFE2 (a transcription factor that can negatively regulate cross-presentation). The delay in antigen degradation caused by phagosomal alkalization acts to allow antigens to move into the cytosol, possibly through channels such as Sec61, promoting antigen processing and presentation through the normal MHCI pathway. These pathways have mainly been shown to act in phagosomes containing latex beads, raising the question of whether this process is specific to uptake of beads or if antigens that bind different receptors are processed through similar mechanisms.

NOX2 has been shown to play a role in cross-presentation in vivo, suggesting that phagosomal alkalization may also be important for cross-presentation by cDC1s. However, the magnitude of the contribution of this pathway is limited, as loss of NOX2 activity...
decreased cross-presentation of antibody-targeted antigen only by about 50%50. The remainder of the molecules in the cytosolic pathway, including Rac2, Rab27a, Rab3c, Sec61, TFEB, and Rab34, have not been examined in \textit{in vivo} cDCs11-40. Genetic studies with mouse models will be necessary to determine the importance of these molecules and the cytosolic pathway in general to cross-presentation \textit{in vivo}.

The vacuolar pathway involves the loading of MHCI molecules by antigens processed directly within endosomes without transport to the cytosol and is independent of TAP and the proteasome47-50. One molecule linked to the vacuolar pathway is the insulin-regulated aminopeptidase (IRAP)49. IRAP can trim peptides in DC phagosomes to lengths appropriate for loading into MHCI molecules49, similar to the action of endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) in the endoplasmic reticulum49. The role of IRAP \textit{in vivo} remains unclear. Although an early study detailing the mechanism of IRAP was conducted using \textit{in vitro} GMDCs, IRAP-deficient mice were also shown to have reduced cross-presentation49. However, a subsequent study concluded that IRAP was not required for cross-presentation of soluble OVA or OVA-coated splenocytes by splenic cDC1s \textit{in vitro}, suggesting that IRAP may not play a role in cDC1-mediated cross-presentation1. But another study, using OVA-expressing yeast \textit{in vitro}, showed that IRAP is recruited to endosomes in cDC1 cells and that cross-presentation is reduced in IRAP-deficient cDC1s15. Conceivably, the use of differing forms of antigen underlies some of these variances. While the ability of cDC1 cells to cross-present is not solely due to their ability to capture antigens50-54, it is plausible that distinct antigen internalization and processing pathways are used for different forms of antigen. For example, cell-associated and soluble antigens are not cross-presented equally and cDC2s, which do not cross-present \textit{in vivo}55, have the capacity to present soluble antigens \textit{in vitro}55,56. Therefore, work is still needed to compare cross-presentation of different antigens by cDC1s and cDC2s \textit{in vitro} to find a system that mimics \textit{in vivo} models where only cDC1s are able to cross-present. Developing standardized assays for the field through careful comparison of DC subsets may help to eliminate confusion between whether or not molecules are necessary for cross-presentation \textit{in vivo} as in the case of IRAP.

Presentation through the vacuolar pathway requires the loading of MHCI molecules within endosomes. The molecule Sec22b was described in GMDCs to regulate the movement of the peptide-loading complex to endosomes55. It has also been shown that GMDCs contain pools of MHCI in endosomal recycling compartments marked by Rab11a56. A model has been proposed where TLR signals induce MHCI movement from these intracellular pools to phagosomes, where they meet antigen and the peptide-loading complex machinery brought by Sec22b56. A second proposed model involves CD74, the MHCI invariant chain, which was also shown to control the movement of MHCI to endosomes and to regulate cross-presentation \textit{in vivo}17. CD74 acts in both splenic cDC1s and GMDCs, meaning CD74 and IRAP are the two molecules shown to be involved in the vacuolar pathway of cross presentation in cDC1s15,37. However, as with the cytosolic pathway, many gaps still remain in our understanding of what proteins and signals are involved in regulating the cross-presentation ability of cDC1s.

Role of moDCs \textit{in vivo}

The discovery that moDCs cannot compensate for the loss of cross-presentation by cDC1s \textit{in vivo} has called into question their relevance \textit{in vivo}11. Bone marrow cultured with GM-CSF produces a heterogeneous population of CD11c⁺ MHCI⁺ cells which contain functionally distinct macrophages and DCs36. While moDCs have a stellate morphology, express the eDC-specific ZBTB46 transcription factor58, and can cross-present cell-associated antigens, they do so in a manner distinct from \textit{ex vivo} cDC1 cells31,33.

Further, recent work has called into question if moDCs exist \textit{in vivo}. Studies of moDCs started with the observation that transferred monocytes are able to generate CD11c⁺ DC-like cells \textit{in vivo}22. These moDCs have been observed in numerous models including viral infections39, alum-OVA immunization60, arthritis61, and house dust mite exposure62. They can be distinguished from cDCs \textit{in vivo} by expression of CD64 and MAR-150,62 and are dependent on CCR2 and CD115 (MCSF-R)60,62. However, it is unclear whether the moDCs identified in these \textit{in vivo} studies are equivalent to those generated with GM-CSF and IL-4 \textit{in vitro}. Recent lineage tracing has suggested that the inflammatory cells that develop during house dust mite challenge lack expression of the eDC marker ZBTB4666 and instead express the macrophage-specific transcription factor MaB42,55, suggesting that these cells are not moDCs but rather monocyte-derived macrophages. Furthermore, others have shown little functional difference among moDCs, monocyte-derived macrophages, myeloid-derived suppressor cells, and immature monocytes60-62, also suggesting that \textit{in vivo} moDCs may actually be monocyte-derived macrophages. In addition, \textit{in vivo} model has yet to be described where moDCs are required for cross-presentation. Lineage tracing of \textit{in vivo} moDCs and comparisons to \textit{in vitro}-derived GMDCs will be necessary to determine whether GM-CSF cultures are an appropriate model to study DC function. Owing to the observed differences between GMDCs and cDC1s, studies of cross-presentation \textit{in vitro} should rely on either \textit{ex vivo} cDCs or Flt3L-derived DCs to more appropriately model how cross-presentation occurs \textit{in vivo}.

Cross-presentation during viral infections

Though cDC1s are the major cell that appears to carry out cross-presentation for expanding CD8 T cells \textit{in vivo}61, many cells are able to present antigens on MHCI to CD8 T cells62. Therefore, it is unclear whether cross-presentation is the only pathway used in priming CD8 T cells to pathogens, or alternately whether direct presentation by infected cells might contribute in some settings. Indeed, the cell type responsible for T cell priming and the pathway of antigen processing may vary with the pathogen and could depend on factors such as viral tropism and the time after infection60,71. For example, using DC-tropic vaccinia virus expressing an extended OVA peptide that could not be cross-presented, Xu et al. demonstrated that direct presentation is sufficient for generating a CD8 T cell response60. However, during infection with mouse cytomegalovirus, another DC-tropic virus, the predominant T cell clones react to epitopes that were presented through cross-presentation71. It is likely that both direct and cross-presentation can contribute to priming CD8 T cell responses and that the predominant form of presentation may depend on the stage of infection. Early during infection, antigen presentation requires viral replication, suggesting...
direct presentation is playing a role; however, late during infection most presentation occurs by uninfected DCs through cross-presentation22 (Figure 1). Imaging of T cells and cDC1s during vaccinia virus infection showed a similar phenomenon and it was observed that multiple DC subsets could prime CD8 T cell responses early during infection; however, later in infection CD8 T cells interacted with only XCR1-expressing cDC1s72. cDC1s are also essential for priming CD8 T cell responses during secondary infections and generating T resident memory cells, a process recently shown to depend on cross-presentation73,74.

In lymph nodes, cDC1s can be separated into two categories of migratory and resident DCs that are developmentally related76, either of which could be involved in the presentation of antigen to CD8 T cells during an infection. Tracking of migratory DCs from the skin during herpes simplex virus (HSV) infection has shown that CD8 T cell priming occurs in lymph nodes and movement of migratory DCs from the skin is required for priming to occur77.

Then in the lymph node, antigens acquired by migratory DCs can be transferred to lymph-node-resident DCs for presentation to CD8 T cells77 (Figure 1C). These results imply that there may be two distinct priming events: an initial priming from migratory cDC1s that directly captured antigen and then a secondary priming that occurs after antigen has been transferred to resident cDC1s. Imaging of the anti-viral response to HSV suggested that CD4 T cells are primed before CD8 T cells and that they interact with migratory DCs, while CD8 T cells interact with resident cDC1s in the lymph node35. However, others have demonstrated that antigen-specific CD8 T cells preferentially interact with migratory cDC1s76,80. These results raise the question of whether all CD8 T cell priming occurs through migratory cDC1s, which are directly exposed to antigens, or through resident cDC1s, which can present their antigens through either cross-presentation73,77 or cross-dressing, a process by which loaded MHCI is transferred between different cells81. Conceivably, early CD8 and potentially CD4 T cell priming is mediated by direct presentation from migratory cDC1s, since they encounter

![Figure 1. Model for CD8 T cell priming by resident classical CD8α+ dendritic cells (cDC1s).](image-url)
antigen first, and then later CD8 T cell priming occurs after antigen transfer to and cross-presentation by lymph-node-resident cDC1s (Figure 1A and D).

CD4 T cells and cDC1s

For many pathogens, DCs alone are not enough to prime a CD8 T cell response. CD4 T cells and type I interferons have been shown to be involved in the “help” reaction, which stimulates DCs and enables them to prime CD8 T cells\(^3\,\text{5,6}\). Early work on cross-presentation showed that CD4 T cell help to DCs is necessary for the generation of a CD8 T cell response against cell-associated antigens\(^7\,\text{8}\). This help is mediated through interactions between CD40 on DCs and CD40L on CD4 T cells\(^9\,\text{10}\). These results describe a “bridge” model, where CD4 T cells and CD8 T cells interact with the same dendritic cell, albeit likely at different times, in order to properly prime a cytotoxic T cell response\(^7\,\text{11}\). This suggests that CD4 T cells must be activated prior to CD8 T cells, likely by migratory cDCs, in order for them to act on cDC1s through CD40L to help induce CD8 T cell priming (Figure 1B and D).

Questions remain as to whether the interaction between cDC1s and CD4 T cells is antigen specific. Initial studies that showed that CD4 T cell help for CD8 T cell priming required cognate CD4 T cell interactions\(^4\,\text{12}\). However, later it was suggested that CD40 signaling was sufficient to provide help, even when DCs lack MHCII\(^13\). In vitro analysis of presentation by DC subsets using antibody-targeted antigen implied that cDC1s were relatively poor in antigen presentation to CD4 T cells relative to cDC2s, while cDC2s were adept at activating CD4 T cells in vitro\(^14\,\text{15}\). This leads to the question of whether cDC1s use MHCII presentation solely to obtain help from previously activated CD4 T cells for CD8 T cell priming or, alternatively, whether cDC1s can also prime naïve CD4 T cells. A recent study has shown that CD8 T cells cluster with cDC1s, while CD4 T cells cluster with cDC2s during OVA immunization\(^16\), suggesting that T cell priming may be DC-subset specific. However, late during viral infection both cDC1 and cDC2 subsets have the capacity to activate CD4 T cells\(^17\). In addition, both CD4 and CD8 T cell priming against insulin in non-obese diabetic mice is decreased in the absence of cDC1s\(^18\). Since CD4 T cells were shown to be primed first by migratory DCs\(^9\), it is possible that migratory cDC1s prime the CD4 T cells that later help lymph-node-resident cDC1s induce CD8 T cell priming (Figure 1B and D). Further studies will be necessary to determine to what extent each DC subset contributes to T cell priming in different infection contexts.

Conclusion

cDC1s are the predominant cross-presenting cells functioning in CD8 T cell priming in vivo\(^19\). Recent imaging studies suggest that cDC1s also function as a platform for CD4 T cell help during viral infections\(^20\,\text{21}\), likely through CD40–CD40L interactions\(^22\,\text{23}\). However, it remains unclear whether cDC1s can also prime naïve CD4 T cells or whether they receive only help from them\(^24\,\text{25}\). More sophisticated in vivo models will need to be generated in order to determine the role of cDC1s in priming CD4 T cell responses in vivo in order to further distinguish the unique roles of DC subsets.

Transcriptional profiling has suggested that moDCs may not be a functional cross-presenting DC subset in vivo\(^26\) and at least in one setting may represent monocyte-derived macrophages\(^27\). Many molecules described previously to be involved in cross-presentation were evaluated in the context of GMDCs and need to be examined in the context of cDC1s\(^28\,\text{29}\). Recent advances in DC biology have allowed for the conditional deletion of genes in cDC1s through the use of XCR1-cre\(^30\) and analysis of transcriptional differences between DC subsets\(^31\). Examining molecules described in moDCs also in cDC1s and studying other cDC1-specific genes will aid in our understanding of how cross-presentation against viral and cancer antigens occurs and may provide more insight into whether moDCs are a true DC subset in vivo. Elucidating the mechanisms by which cDC1s activate CD8 T cells and the mechanisms underlying the various interactions between DC subsets and T cells should be of value in designing DC-based cancer vaccines.

Abbreviations

- BMDC, bone-marrow-derived dendritic cell; cDC, classical dendritic cell; CDP, common dendritic cell progenitor; DC, dendritic cell; Flt3L, fms-related tyrosine kinase 3 ligand; GMDC, GM-CSF-derived dendritic cell; HSV, herpes simplex virus; IRAP, insulin-regulated aminopeptidase; MHCI, major histocompatibility class I; MHCII, major histocompatibility class II; moDC, monocyte-derived dendritic cell; pDC, plasmacytoid dendritic cell.

Competing interests

The authors declare that they have no competing interests.

Grant information

The author(s) declared that no grants were involved in supporting this work.

Acknowledgements

We thank Prachi Bagadia, Carlos Briseño, and Vivek Durai for their contributions to this review.
production in CD4 T cells. J Immunol. 2011; 186(6): 5488–77.

52. Piantinga A, Guilliams M, Vanheerswynghels M, et al.: Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013; 38(2): 322–35.

53. Greter M, Heltt J, Chow A, et al.: GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunology. 2012; 136(6): 1031–49.

54. Gautier EL, Shay T, Miller J, et al.: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012; 13(1): 1118–28.

55. Wu X, Biseño CG, Duri V, et al.: Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J Exp Med. 2016; 213(2): 2555–65.

56. Chow KV, Lew AM, Sutherland RM, et al.: Monocyte-Derived Dendritic Cells Promote Th Polarization, whereas Conventional Dendritic Cells Promote Th Polarization. J Immunol. 2007; 179(9): 5571–78.

57. Blum JS, Wearsch PA, Cresswell P: Pathways of antigen processing. Annu Rev Immunol. 2013; 31: 443–73.

58. Xu RH, Remakus S, Ma X, et al.: Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog. 2010; 6(2): e1000768.

59. Busche A, Jirko AC, Welter SP, et al.: Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. J Immunol. 2013; 190(6): 2767–77.

60. Snyder CM, Allan JE, Bonnett EL, et al.: Cross-presentation of a spread-detective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS One. 2010; 5(3): e9861.

61. Heijertz EL, Davies ML, Lin E, et al.: Prolonged antigen presentation following an acute virus infection requires direct and then cross-presentation. J Immunol. 2014; 193(6): 4169–77.

62. Eckhoff S, Brewitz A, Gerner MY, et al.: Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions. Cell. 2015; 162(6): 1522–37.

63. Alexandre YO, Ghilas S, Sanchez C, et al.: XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J Exp Med. 2016; 213(1): 75–92.

64. Iborra S, Martínez-López M, Khouili SC, et al.: Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells During Viral Infection Requires Crosspriming by DNGR-1 Dendritic Cells. J Immunol. 2016; 196(5): 847–55.

65. Edelson BT, Ko W, Jiang R, et al.: Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8αα conventional dendritic cells. J Exp Med. 2010; 207(4): 823–36.

66. Allan RS, Waittman J, Bedou S, et al.: Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunology. 2006; 121(5): 153–62.

67. Hor JL, Whitney PG, Zaid A, et al.: Spatiotemporal Distinct Interactions with Dendritic Cell Subsets Facilitates CD4+ and CD8+ T Cell Activation to Localized Viral Infection. Immunol. 2012; 143(5): 555–65.

68. Bedou S, Whitney PG, Waittman J, et al.: Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009; 10(6): 488–95.

69. Kilano M, Yamazaki C, Takumi A, et al.: Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. Proc Natl Acad Sci U S A. 2016; 113(4): 1044–9.

70. Waksim LM, Bevan MJ: Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature. 2011; 471(7340): 629–32.

71. Bennett SR, Carbone FR, Karamals F, et al.: Induction of a CD8+ cytotoxic...
T lymphocyte response by cross-priming requires cognate CD4+ T cell help.

PubMed Abstract | Publisher Full Text | Free Full Text

83. Wang Y, Swiecki M, Cella M, et al.: Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell Host Microbe. 2012; 11(6): 631–42. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

84. Bennett SR, Carbone FR, Karamalis F, et al.: Help for cytotoxic T-cell responses is mediated by CD40 signaling. Nature. 1998; 393(6684): 478–80. PubMed Abstract | Publisher Full Text

85. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998; 393(6684): 474–8. PubMed Abstract | Publisher Full Text

86. Schoenberger SP, Toes RE, van der Voort EI, et al.: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998; 393(6684): 480–3. PubMed Abstract | Publisher Full Text

87. Dudziak D, Kamphorst AO, Heidkamp GF, et al.: Differential antigen processing by dendritic cell subsets in vivo. Science. 2007; 315(5808): 107–11. PubMed Abstract | Publisher Full Text | F1000 Recommendation

88. Gerner MY, Torabi-Parizi P, Germain RN: Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity. 2015; 42(1): 172–85. PubMed Abstract | Publisher Full Text | F1000 Recommendation

89. Ferris ST, Carrero JA, Mohan JF, et al.: A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity. 2014; 41(4): 657–69. PubMed Abstract | Publisher Full Text | Free Full Text

90. Ohta T, Sugiyama M, Hemmi H, et al.: Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep. 2016; 6: 23505. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

91. Heng TS, Painter MW: The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008; 9(10): 1091–4. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Paul Roche, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Competing Interests: No competing interests were disclosed.

2 Terri M. Laufer, 1,2 1 Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

2 Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA

Competing Interests: No competing interests were disclosed.

3 Caetano Reis e Sousa, Immunobiology Laboratory, The Francis Crick Institute, London, UK

Competing Interests: No competing interests were disclosed.