PRKCQ rs4750316 is associated with Vogt-Koyanagi-Harada syndrome in a Han Chinese population

Lei Xu, Tingting Zhao, Gangxiang Yuan, Shengping Hou, Wenxin Zeng, Feilan Chen

1Laboratory Animal Center, Chongqing Medical University, Yixueyuan Road 1, Yuzhong District, Chongqing, P. R. China; 2Chongqing Engineering Research Center for Rodent Laboratory Animals, Yixueyuan Road 1, Yuzhong District, Chongqing, P. R. China; 3The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Yuzhong District, Chongqing, P. R. China

Purpose: The PRKCQ and REL genes are said to be associated with multiple autoimmune diseases. This study investigated the association between these genes and Vogt-Koyanagi-Harada (VKH) syndrome in Han Chinese.

Methods: A two-stage case-control study was performed on three single nucleotide polymorphisms (SNPs) rs4750316, rs11258747, and rs947474 of the PRKCQ gene and three SNPs (rs842647, rs702873, and rs13031237) of the REL gene using PCR-restriction fragment length polymorphism (PCR-RFLPs) in a total of 859 patients with VKH syndrome and 1,542 healthy controls. Variables such as extraocular presentations were assessed. The data were analyzed using chi-square analysis, and corrected for multiple comparisons with the Bonferroni method.

Results: We found a decreased frequency of the GC genotype and the C allele of rs4750316 in patients with VKH syndrome when the GG genotype or G allele was used as a reference, respectively (GC genotype: $P = 2.45 \times 10^{-10}$, odds ratio [OR] = 0.37, 95% confidence interval [CI] = 0.28–0.51; C allele: $P = 8.79 \times 10^{-10}$, OR = 0.41, 95% CI = 0.31–0.55). The genotypic and allelic frequencies of rs11258747, rs947474, rs842647, rs702873, and rs13031237 were not statistically significantly different between patients with VKH syndrome and controls. Stratification analysis indicated that the PRKCQ rs4750316 polymorphism was associated with patients with VKH syndrome experiencing headache, alopecia, poliosis, tinnitus, and dysacusia, but no statistically significant association of the other five SNPs was found.

Conclusions: The PRKCQ rs4750316 polymorphism may be a susceptibility factor for VKH syndrome pathogenesis and extraocular presentations, indicating that PRKCQ may be involved in the pathogenesis and extraocular presentations of VKH syndrome through the T-cell receptor (TCR) signaling pathway.

Vogt–Koyanagi–Harada (VKH) syndrome is a multisystemic inflammatory disease characterized by bilateral diffuse granulomatous panuveitis with neurologic symptoms (such as tinnitus, dysacusis, vertigo, meningismus, cerebrospinal fluid pleocytosis) and cutaneous changes (such as alopecia, poliosis, vitiligo) [1], and auditory symptoms [2,3]. VKH syndrome has a variable incidence, and is more prevalent in Asia [4], India, Iran [5], as well as among Hispanic and Native American individuals [6] and those of Mediterranean origin [7]. This syndrome is rare in Caucasians and individuals of Turkish descent [8-12]. In addition, VKH syndrome primarily affects middle-aged women [2,13]. Although the etiology of VKH syndrome remains elusive, it is generally considered that the interaction of genetic variants with environmental risk factors contributes to its development. Genome-wide association studies (GWASs) have identified the predominant VKH syndrome susceptibility loci, which include human leukocyte antigen (HLA)-DR4 (ID:3126), DR53 (ID:282811), HLA-DRB1 (ID:3123, OMIM: 142857), HLA-DQA1 (ID:3117, OMIM: 146880), HLA-DQB1 (ID:3119, OMIM: 604305), and non-HLA genes, such as IL23R (ID:149233, OMIM: 607562) – C1orf141 (ID:400757) and ADO (ID:84890, OMIM: 611392) – ZNF365 (ID:22891, OMIM: 607818) – EGR2 (ID:1959, OMIM: 129010) [14,15]. Candidate gene association studies have searched for additional VKH syndrome genes, including the CLEC16A (ID:23274, OMIM: 611303) and JAK1 (ID:3716, OMIM: 147795) [16] genes, and the CD40 gene (ID:958, OMIM: 109535) in Chinese patients [17]. However, the genes that have been associated with VKH syndrome do not fully account for its pathogenesis, and more novel VKH syndrome susceptibility loci still need to be identified.

The PRKCQ (ID:5588; OMIM: 600448) gene, encoding the protein kinase-C-theta (PKC-θ), plays a critical role in T-lymphocyte activation, differentiation, and responses through T-cell receptor (TCR) signaling [18,19]. Previous studies have shown that PKC-θ controls T-cell activation in many models of inflammatory disorders, such as experimental autoimmune encephalomyelitis (EAE) [19], the allergic response to house dust mites [20], arthritis [21],...
Peripheral blood collection were —27 PCR–restriction —25 rs4750316 —23 All the participants, including patients with VKH syndrome, their parents signed written informed consent before enrolling in this study. For pediatric patients with VKH syndrome, their parents signed written informed consent. All procedures followed the tenets of the Declaration of Helsinki and adhered to the ARVO statement on human subjects. Approval for the study was obtained from the Clinical Research Ethics Committee of the First Affiliated Hospital of Chongqing Medical University and the Ethics Committee of Chongqing Medical University (Permit Number: 2009–201008).

Study population: Eight hundred fifty nine VKH patients (475 men and 384 women [mean age 39.7 years]) and 1542 healthy controls (861 men and 681 women [mean age 39.5 years]) were recruited from the First Affiliated Hospital of Chongqing Medical University (Chongqing, China) and Zhongshan Ophthalmic Center, Sun Yat-sen University (Guangzhou, China) between April 2005 and December 2013 in this two-stage study. All patients had clinical findings of intraocular inflammation. The healthy controls with no history of ocular or autoimmune disorders were matched in terms of age and geographic area of origin. All patients and controls were of Han Chinese descent. VKH syndrome was diagnosed according to the revised criteria for VKH disease [34]. In this two-stage study, 600 patients with VKH syndrome and 1,000 healthy controls were randomly selected from the whole patient and control populations to determine the susceptible SNPs (p < 0.05) in the first stage of the study. In the second stage, another 259 patients with VKH syndrome and 542 controls were added to replicate the associated SNPs identified in the first stage. The clinical characteristics of patients with VKH syndrome are summarized in Table 1.

Genomic DNA extraction: Peripheral blood collection were conducted by venipuncture from all the participants and stored at -80 ℃ until used. Extraction of genomic DNA was performed from the peripheral blood of controls and patients using the QIAmp DNA Blood Mini Kit (QIAGEN Inc., Hilden, Germany) according to the manufacturer's instructions; the samples were then frozen at −80 °C for future use.

Gene genotyping and quality control: PCR–restriction fragment length polymorphism (PCR-RFLP) was used to genotype *PRKCQ* polymorphisms (rs4750316, rs11258747, and rs947474) and three *REL* SNPs (rs842647, rs702873, and rs13031237) were chosen as candidate risk variants of VKH syndrome. This study detected lower frequencies of the rs4750136 GC genotype and rs4750316 C allele in patients with VKH syndrome according to the reference GG genotype or G allele. Stratified analysis also showed an association between the rs4750136 C allele polymorphism and headache, alopecia, poliosis, tinnitus, and dysacusia in patients with VKH syndrome.

METHODS

Ethics statement: All the participants, including patients with VKH syndrome and controls, signed written informed consent before enrolling in this study. For pediatric patients with VKH syndrome, their parents signed written informed consent. All procedures followed the tenets of the Declaration of Helsinki and adhered to the ARVO statement on human subjects. Approval for the study was obtained from the Clinical Research Ethics Committee of the First Affiliated Hospital of Chongqing Medical University and the Ethics Committee of Chongqing Medical University (Permit Number: 2009–201008).

Genomic DNA extraction: Peripheral blood collection were conducted by venipuncture from all the participants and stored at -80 ℃ until used. Extraction of genomic DNA was performed from the peripheral blood of controls and patients using the QIAmp DNA Blood Mini Kit (QIAGEN Inc., Hilden, Germany) according to the manufacturer's instructions; the samples were then frozen at −80 °C for future use.

Gene genotyping and quality control: PCR–restriction fragment length polymorphism (PCR-RFLP) was used to genotype *PRKCQ* polymorphisms (rs4750316, rs11258747, and rs947474) and three *REL* SNPs (rs842647, rs702873, and rs13031237) were chosen as candidate risk variants of VKH syndrome. This study detected lower frequencies of the rs4750136 GC genotype and rs4750316 C allele in patients with VKH syndrome according to the reference GG genotype or G allele. Stratified analysis also showed an association between the rs4750136 C allele polymorphism and headache, alopecia, poliosis, tinnitus, and dysacusia in patients with VKH syndrome.
Molecular Vision 2019; 25:834-842 <http://www.molvis.org/molvis/v25/834> © 2019 Molecular Vision

Fisher Scientific Inc., Ontario, Canada), Mwol (New England BioLabs, Inc., Ontario, Canada), Ddel (Thermo Fisher Scientific), HpyCH4 III (Thermo Fisher Scientific), BsiWI (New England BioLabs, Inc.), and Csp6I (Thermo Fisher Scientific Inc.) restriction enzymes (Table 2) in a 10-μl reaction system for 12 to 16 h. Electrophoresis on a 4.5% agarose gel and stain with GoldView (SBS Genentech, Beijing, China) was used to separate the digestion products. Genotype results were assessed in a blinded manner, and repeats of all ambiguous samples were conducted. Moreover, to validate the results of the PCR-RFLP, 10% of the samples were double-checked using direct sequencing (Sangon Biotech, Co., Ltd., Shanghai, China).

Statistical analysis: Statistical analysis was performed using SPSS software version 17.0 for Windows (SPSS Inc., Chicago, IL). The Hardy–Weinberg equilibrium (HWE) was quantified by using the chi-square test. Genotype and allele frequencies were calculated with direct counting, and were compared between patients and controls using chi-squares. Logistic regression analysis was performed to assess the association of the tested SNPs with the extraocular manifestations. All statistical analyses were two-sided, and a p value of less than 0.05 was considered statistically significant.

RESULTS

The distribution of the genotype frequencies of the six tested SNPs was in line with HWE in the case and control groups (p>0.05). Table 3 presents the genotype and allele frequencies of the three tested PRKCQ polymorphisms and REL polymorphisms in the cohort. In the first-stage study, 600 patients with VKH syndrome and 1,000 healthy controls were

Table 1. Clinical characteristics of the investigated VKH patients used for the first- and second-stage studies.

Clinical characteristics	VKH patients in the first stage (total=600)	%	VKH patients in Second stage (total=259)	%
Age at onset (years ± SD)	38.74±13.44	41.96±14.21		
Males	327	54.50	148	57.1
Females	273	45.50	111	42.9
Headache	244	40.67	120	46.33
Alopecia	240	40.00	94	36.29
Poliosis	232	38.67	100	38.61
Vitiligo	106	17.67	48	18.53
Tinnitus	274	45.67	126	48.65
Neck stiffness	70	11.67	34	13.13
Dysacusia	188	31.33	101	38.40
Scalp hypersensitivity	94	15.67	40	15.44

Table 2. Primers and restriction enzymes used for RFLP analysis of the PRKCQ and REL genes.

Gene	rs number	Primers	Restriction enzyme
PRKCQ	rs4750316	5'-GGAGAGGCTGATAAGGGAAATGTCT-3'	HpyCH4III
		5'-TCCAGAAGGGCCAGAACACTA-3'	
	rs1125874	5'-GGGTCAATCTCCTTTCCGTCTCA-3'	
		5'-TGCTCTGCTCCCTTTCCAGCTCTT-3'	MwoI
	rs947474	5'-ACCAGTTATGAAAGGTGACAAAGA-3'	
		5'-GATCAAATACCAACTGCGTTGACT-3'	Ddel
REL	rs842647	5'-TGCTTGTCTCTATCTCTGGGTCTC-3'	HpyCH4III
		5'-CTGGGCGCACAAGTGTGAAACTC-3'	
	rs702873	5'-CAAAGGACATCCTTTCTTTAAGGTGTGTT-3'	BsiWI
		5'-AAGGCCATTAGGAAGATTAGTGGTGTC-3'	
	rs13031237	5'-GAGTGTATGAGAGTTAAAGGGCTGC-3'	
		5'-AAGTACACAAGTTCTGCTAGGGTA-3'	Csp6I

RFLP-restriction fragment length polymorphism.
randomly enrolled from the whole population of patients and healthy controls, to identify the susceptible SNPs (P_{c}<0.05).

The results demonstrated that the frequencies of the GC genotype and the C allele of rs4750316 were statistically significantly decreased in patients with VKH syndrome compared with controls (GC genotype: Bonferroni-corrected P value (P_{c})=6.00e-5, odds ratio [OR]=0.44, 95% confidence interval [CI]=0.31–0.62; C allele: P_{c}=1.12e-4, OR=0.47, 95% CI=0.34–0.65). No statistically significant difference was observed in the genotype or allele frequencies of rs11258747, rs947474, rs842647, rs702873, and rs13031237 between patients with VKH syndrome and healthy controls (P_{c}>0.05).

In the second-stage study, we replicated the association of the rs4750316 polymorphism using another set of 259 patients with VKH syndrome and 542 controls. Genotype distribution and allele frequencies are shown in Table 4. The results showed a statistically significantly reduced frequency of the GC genotype and the C allele in patients with VKH syndrome when the GG genotype and the C allele were used as a reference (P_{c}=7.75e-5; P_{c}=0.0002, respectively).

SNP	Genotype allele	Cases (n=600)	Controls (n=1000)	P value	P_{c}	OR (95% CI)
rs4750316	GG	554 (92.33)	842 (84.2)	2.50e-6	0.44	0.31–0.62
	GC	44 (7.33)	153 (15.3)	0.55	NS	0.61 (0.12–3.14)
	CC	2 (0.34)	5 (0.5)			NS
	C	1152 (96.00)	1837 (91.85)			Reference
rs11258747	GG	549 (91.50)	867 (86.7)			Reference
	GT	49 (8.20)	131 (13.1)	0.0026	NS	0.59 (0.42–0.83)
	TT	2 (0.30)	2 (0.2)	0.65	NS	1.58 (0.22–11.24)
	C	1147 (95.60)	1865 (93.30)			Reference
	T	53 (4.40)	135 (6.8)	0.0066	NS	0.64 (0.46–0.88)
rs947474	AA	379 (63.17)	686 (68.60)			Reference
	AG	204 (34.00)	287 (28.70)	0.024	NS	1.29 (1.03–1.60)
	GG	17 (2.83)	27 (2.70)	0.68	NS	1.14 (0.61–2.12)
	A	962 (80.17)	1659 (82.95)			Reference
	G	238 (19.83)	341 (17.05)	0.048	NS	1.20 (1.00–1.45)
	T	53 (4.40)	135 (6.8)	0.0066	NS	0.64 (0.46–0.88)
rs842647	GG	456 (76.00)	759 (75.90)			Reference
	GA	135 (22.50)	222 (22.20)	0.92	NS	1.01 (0.79–1.29)
	AA	9 (1.50)	19 (1.90)	0.56	NS	0.79 (0.35–1.76)
	G	1047 (87.25)	1740 (87.00)			Reference
	A	153 (12.75)	260 (13.00)	0.84	NS	0.98 (0.79–1.21)
	T	53 (4.40)	135 (6.8)	0.0066	NS	0.64 (0.46–0.88)
rs702873	GG	418 (69.67)	732 (73.20)			Reference
	AG	165 (27.50)	241 (24.10)	0.12	NS	1.20 (0.95–1.51)
	AA	17 (2.83)	27 (2.70)	0.76	NS	1.10 (0.59–2.05)
	G	1001 (83.42)	1705 (85.25)			Reference
	A	199 (16.58)	295 (14.75)	0.17	NS	1.15 (0.94–1.40)
	T	53 (4.40)	135 (6.8)	0.0066	NS	0.64 (0.46–0.88)
rs13031237	GG	570 (95.00)	962 (96.20)			Reference
	GT	27 (4.50)	38 (3.80)	0.48	NS	1.20 (0.72–1.99)
	TT	3 (0.50)	0 (0)	0.025	NS	2.69 (2.52–2.87)
	G	1167 (97.25)	1962 (98.10)			Reference
	T	33 (2.75)	38 (1.90)	0.11	NS	1.46 (0.91–2.34)
The combined results of the first- and second-stage studies using meta-analysis also showed a statistically significant association of SNP rs4750316 between the syndrome and healthy controls when the GG genotype or the G allele was used as the reference (GC genotype: \(P = 2.45\times10^{-10}, \text{OR}=0.37, 95\% \text{CI}=0.28–0.51 \); C allele: \(P = 8.79\times10^{-10}, \text{OR}=0.41, 95\% \text{CI}=0.31–0.55 \)).

The relationship between the six SNPs and clinical features of VKH syndrome, including headache, alopecia, poliosis, vitiligo, tinnitus, neck stiffness, dysacusia, and scalp hypersensitivity, was then analyzed. The frequencies of the C allele of rs4750316 were statistically significantly lower in patients with headache, alopecia, poliosis, tinnitus, and dysacusia than in controls when the G allele was used as the reference (\(P_c=6.96\times10^{-5}, \text{OR}=0.38, 95\% \text{CI}=0.28–0.51 \); \(P_c=0.43, 95\% \text{CI}=0.28–0.56 \); \(P_c=6.74\times10^{-4}, \text{OR}=0.41, 95\% \text{CI}=0.27–0.63 \); \(P_c=4.32\times10^{-4}, \text{OR}=0.44, 95\% \text{CI}=0.30–0.65 \); \(P_c=0.013, \text{OR}=0.48, 95\% \text{CI}=0.31–0.73 \); respectively; Table 5). A statistically significant relationship among the other five SNPs was not observed between patients with VKH syndrome and the clinical manifestations and controls.

DISCUSSION

The present two-stage study investigated the association of \(PRKCQ \) polymorphisms (rs4750316, rs11258747, and rs947474) and \(REL \) polymorphisms (rs842647, rs702873, and rs13031237) with VKH syndrome in a Han Chinese cohort. The results demonstrated that the frequencies of the GC genotype and the C allele of rs4750316 were negatively correlated with patients with VKH syndrome in this Han Chinese cohort. An association with VKH syndrome of the two tested SNP polymorphisms (rs11258747 and rs947474) in the \(PRKCQ \) gene or the three tested SNP polymorphisms (rs842647, rs702873, and rs13031237) in the \(REL \) gene in the Han Chinese cohort was not found.

We made the following efforts to control quality. First, exclusion of non-Han individuals was performed to avoid interference from different genetic ancestries, and the distribution of variants in cases and controls was in accordance with HWE. In addition, the patients were diagnosed strictly following the previously described criteria. Then, to confirm the genotype results with PCR-RFLP, 10% of the samples were randomly chosen for sequencing, and the two results were absolutely in line.

The rs4750316 polymorphism in the \(PRKCQ \) gene was first identified as a susceptibility locus in Caucasians with RA, and subsequently, reported to have no association with BD in the Chinese Han population [27,35]. In this study, three SNPs of \(PRKCQ \) were genotyped. In one of these SNPs, rs4750316, a negative association between the GC genotype and the C allele with VKH syndrome was observed, suggesting that the rs4750316 C allele is a common protective factor for VKH syndrome and RA. Whether the observed rs4750316 polymorphism influences the underlying biologic function of \(PRKCQ \) remains unclear, and deserves further investigation. Regarding the two other tested SNPs, rs11258747 and rs947474, in the \(PRKCQ \) gene, no association.
with patients with VKH syndrome in the Han Chinese population was detected, although an association with T1DM in British cohorts was reported [32,36]. In the case of another selected REL gene, associations between rs842647 GG and potential CD in populations of southern Italy and BD in Han Chinese populations have been observed [27,37]. Previous studies reported that the SNP rs13031237 T allele was associated with RA in the British population, and with systemic lupus erythematosus (SLE) in a Chinese cohort [38,39], and an association between the rs702873 G allele and psoriasis in the United Kingdom (UK) and Ireland has previously been observed [40]. However, no association was observed between the SNPs rs842647, rs13031237, and rs702873 in REL, and susceptibility to VKH syndrome in the Han Chinese population. These differences in genetic models involving VKH syndrome, BD, RA, SLE, and psoriasis may be attributable to heterogeneous genetic loci, distinct environmental exposures, or different ethnic populations, which may lead to distinct underlying pathogenic mechanisms.

The association between the extraocular clinical findings in patients with PRKCQ and REL polymorphisms was also investigated. The extraocular findings included headache, alopecia, poliosis, vitiligo, tinnitus, stiffness, dysacusia, and scalp hypersensitivity. The rs4750316 C allele was associated with a reduced risk of headache, alopecia, poliosis, tinnitus, and dysacusia in patients with VKH syndrome. These findings show that the PRKCQ rs4750316 polymorphism is associated not only with the occurrence of disease but also with the clinical findings of disease. No association between any of the other five tested SNP polymorphisms or clinical characteristics of patients was observed.

VKH syndrome is generally defined as a multisystemic inflammatory disease caused by a T-cell-mediated autoimmune dysfunction targeting melanocytic self-antigens. In addition to mediating the key costimulatory CD28 signal, the PRKCQ gene, encoding PKC-θ, activates the NF-κB signaling pathway [41]. The present study showed that the PRKCQ gene was associated with VKH syndrome susceptibility, whereas the REL gene was not, suggesting that the TCR signaling pathway gene, PRKCQ, and not the NF-κB signaling gene, REL, plays a crucial role in VKH syndrome pathogenesis.

There are some limitations in this study. The results identified the relationship between the variants in the PRKCQ and REL genes and patients with VKH syndrome from a Han Chinese cohort. Therefore, other ethnic groups must be replicated in future studies. Furthermore, the biologic role of the observed PRKCQ rs4750316 polymorphism in relation to VKH syndrome pathogenesis remains unknown. The fact that PRKCQ has a risk effect on the pathogenesis of VKH syndrome may provide an attractive therapeutic strategy for management of this disease.

Collectively, the results of this study showed that PRKCQ rs4750316 may point to a predisposition to VKH syndrome, and that PRKCQ may be involved in the pathogenesis and

Allele	Clinical findings	Cases n=364	Controls n=1542	P value	Pc	OR (95% CI)
	Headache	G 704 (96.70) C 24 (3.30)	G 2827 (91.66) C 257 (8.33)	2.90e-6	6.96e-5	0.38 (0.25–0.57)
	Alopecia	G 643 (96.26) C 25 (3.74)	G 2827 (91.67) C 257 (8.33)	4.50e-5	0.0011	0.43 (0.28–0.65)
	Poliosis	G 640 (96.39) C 24 (3.61)	G 2827 (91.67) C 257 (8.33)	2.81e-5	6.74 e-4	0.41 (0.27–0.63)
	Tinnitus	G 769 (96.13) C 31 (3.87)	G 2827 (91.67) C 257 (8.33)	1.80e-5	4.32e-4	0.44 (0.30–0.65)
	Dysacusia	G 554 (95.85) C 24 (4.15)	G 2827 (91.67) C 257 (8.33)	0.00053	0.013	0.48 (0.31–0.73)

Pc-Bonferroni-corrected p value; CI-confidence interval; OR-odds ratio; NS-not significant.
clinical manifestations of VKH syndrome. No association between any of the other tested SNPs with VKH syndrome in the Han Chinese cohort was detected.

ACKNOWLEDGMENTS

We would like to thank Professor Peizeng Yang for providing all the samples in the study. We would also like to thank all donors enrolled in this study. This work was supported by the National Natural Science Foundation Project (Grant Nos. 81200677 and 81670843) and by grant Chongqing Science and Technology Commission (CSTC) 2016jcyjA0265 from the Project of Nature Science Foundation of Chongqing and by Project of Yuzhong District Science and Technology Commission. None of the authors has any potential financial conflict of interest related to this manuscript.

REFERENCES

1. Jabs DA. Improving the Diagnostic Criteria for Vogt-Koyanagi-Harada Disease. JAMA Ophthalmol 2018; 136:1032-3.
2. Moorothy RS, Inomata H, Rao NA. Vogt-Koyanagi-Harada syndrome. Surv Ophthalmol 1995; 39:265-92.
3. Bonnet C, Daudin JB, Brezin A. Vogt-Koyanagi-Harada disease. J Fr Ophtalmol 2017; 40:512-9.
4. Yang P, Zhang Z, Zhou H, Li B, Huang X, Gao Y, Zhu L, Ren Y, Klooster J, Kijlstra A. Clinical patterns and characteristics of uveitis in a tertiary center for uveitis in China. Curr Eye Res 2005; 30:943-8.
5. Al-Mendalawi MD. Patterns of Uveitis at a Tertiary Referral Center in Northeastern Iran. J Ophthalmic Vis Res 2018; 13:522-3.
6. Nussenblatt RB. Clinical studies of Vogt-Koyanagi-Harada's disease at the National Eye Institute, NIH, USA. Jpn J Ophthalmol 1988; 32:330-3.
7. Al Dhahri H, Al Rubaie K, Hemachandran S, Mousa A, Gikandi PW, Al-Mezaine HS, Abu El-Asrar AM. Patterns of Uveitis in a University-based Tertiary Referral Center in Riyadh, Saudi Arabia. Ocul Immunol Inflamm 2015; 23:311-9.
8. Perkins ES, Folk J. Uveitis in London and Iowa. Ophthalmologica 1984; 189:36-40.
9. Smit RL, Baarsma GS, de Vries J. Classification of 750 consecutive uveitis patients in the Rotterdam Eye Hospital. Int Ophthalmol 1993; 17:71-6.
10. Cimino L, Aldigeri R, Salvarani C, Zotti CA, Boiardì L, Parmegiani M, Casali B, Cappuccini L. The causes of uveitis in a referral centre of Northern Italy. Int Ophthalmol 2010; 30:521-9.
11. Chee SP, Jap A, Bacsal K. Spectrum of Vogt-Koyanagi-Harada disease in Singapore. Int Ophthalmol 2007; 27:137-42.
23. Hayashi K, Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 2007; 55:537-44.

24. Ali FR, Barton A, Smith RL, Bowes J, Flynn E, Mangino M, Bataille V, Foerster JP, Worthington J, Griffiths CE, Warren RB. An investigation of rheumatoid arthritis loci in patients with early-onset psoriasis validates association of the REL gene. Br J Dermatol 2013; 168:864-6.

25. Ellinghaus E, Stuart PE, Ellinghaus D, Nair RP, Debrus S, Raedt J, Belouchi M, Tejasvi T, Li Y, Tsoi LC, Onken AT, Esko T, Metspalu A, Rahman P, Gladman DD, Bowcock AM, Helms C, Krueger GG, Koks S, Kingo K, Gieger C, Wichtmann HE, Mrowietz U, Weidinger S, Schreiber S, Abecasis GR, Elder JT, Weichenthal M, Franke A. Genome-wide meta-analysis of psoriatic arthritis identifies susceptibility locus at REL. J Invest Dermatol 2012; 132:1133-40.

26. Trynka G, Zhernakova A, Romanos J, Franke L, Hunt KA, Turner G, Bruinenberg M, Heap GA, Platteel M, Ryan AW, de Kovel C, Holmes GK, Howdle PD, Walters JR, Sanders DS, Mulder CJ, Mearin ML, Verbeek WH, Trimble V, Stevens FM, Kelleher D, Barisani D, Bardella MT, McManus R, van Heel DA, Wijmenga C. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-kappaB signalling. Gut 2009; 58:1078-83.

27. Chen F, Xu L, Zhao T, Xiao X, Pan Y, Hou S. Genetic Variation in the REL Gene Increases Risk of Behcet's Disease in a Chinese Han Population but That of PRKCD Does Not. PLoS One 2016; 11:e0147350-.

28. Chen G, Hardy K, Pagler E, Ma L, Lee S, Gerondakis S, Daley PL, Shannon MF. The NF-kappaB transcription factor c-Rel is required for Th17 effector cell development in experimental autoimmune encephalomyelitis. J Immunol 2011; 187:4483-91.

29. Lamhamedi-Cherradi SE, Zheng S, Hilliard BA, Xu L, Sun J, Asheidat S, Liou HC, Chen YH. Transcriptional regulation of type I diabetes by NF-kappa B. J Immunol 2003; 171:4886-92.

30. Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J, Plant D, Gibbons LJ, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Worthington J. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat Genet 2008; 40:1156-9.

31. Bowes J, Ho P, Flynn E, Ali F, Marzo-Ortega H, Coates LC, Warren RB, McManus R, Ryan AW, Kane D, Korendowych E, McHugh N, Fitzgerald O, Packham J, Morgan AW, Bruce IN, Barton A. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort. Ann Rheum Dis 2012; 71:1350-4.

32. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, Downes K, Barrett JC, Healy BC, Mychaleckyj JC, Warram JH, Todd JA. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 2008; 40:1399-401.

33. Hu DN, Chen M, Zhang DY, Ye F, McCormick SA, Chan CC. Interleukin-1beta increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via the p38 MAPK NF-kappaB pathway. Invest Ophthalmol Vis Sci 2011; 52:3767-74.

34. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, Arellanes-Garcia L, Pivetti-Pezzi P, Tessler HH, Usui M. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 2001; 131:647-52.

35. Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J, Plant D, Gibbons LJ, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Worthington J, Consor WTCC, Consortium Y, Consortium B. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat Genet 2008; 40:1156-9.

36. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schanefeld H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS, Consortium TDG. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41:703-7.

37. Sperandeo MP, Tosco A, Izzo T, Tucci F, Troncone R, Auricchio R, Romanos J, Trynka G, Auricchio S, Jabri B, Greco L. Potential celiac patients: a model of celiac disease pathogenesis. PLoS One 2011; 6:e21281-

38. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, Seldin MF, Criswell LA, Plenge RM, Holers VM, Mikuls TR, Sokka T, Moreland LW, Bridges SL, Xie G, Begovich AB, Siminovich KA. REL, encoding a member of the NF-kappa B family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 2009; 41:820-U77.

39. Zhou XJ, Lu XL, Nath SK, Lv JC, Zhu SN, Yang HZ, Qin LX, Zhao MH, Su Y, Shen N, Li ZG, Zhang H. International Consortium on the Genetics of Systemic Lupus E. Gene-gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in systemic lupus erythematosus. Arthritis Rheum 2012; 64:222-31.

40. Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, Bergboer JG, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Cork MJ, Corvin A, Deloukas P, Dilthey A, Duncanson A, Edkins S, Estivill X, Fitzgerald O, Freeman C, Giardina E, Gray E, Hofer A, Huffman E, Hunt SE, Irvine AD, Jankowski J, Kirby B, Langford C, Lacorz J, Leman J, Leslie S, Mallbris L, Markus HS, Mathew CG, McLean WH, McManus R, Mosnier R, Moutsianas L, Nalui AT, Nestle FO, Novelli G, Onoufriadi S, Palmer CN, Perricone C, Pirinen M, Plomin R, Potter SC, Pujol RM, Rautanen A, Riveira-Ramirez E, Ryan AW, Salmo, Samuelsson L, Sawcer SJ, Schalkwijk J, Smith CH, Stabile M, Su Z, Tazi-Ahnini R, Traupe H, Viswanathan AC, Warren RB, Weger W, Wolk K, Wood N, Worthington J, Young HS, Zeeuwen PL, Hayday A, Burden AD, Griffiths CE, Kere J, Reis A, McVean G,
Evans DM, Brown MA, Barker JN, Peltonen L, Donnelly P, Trembath RC. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42:985-90.

Zanin-Zhorov A, Dustin ML, Blazar BR. PKC-theta function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol 2011; 32:358-63.