Bipartisan Paxos: A Modular State Machine Replication Protocol

Michael Whittaker\textsuperscript{1}, Neil Giridharan\textsuperscript{1}, Adriana Szekeres\textsuperscript{2}, Joseph M. Hellerstein\textsuperscript{1}, Ion Stoica\textsuperscript{1}

\textsuperscript{1}UC Berkeley, \textsuperscript{2}University of Washington

Abstract

There is no shortage of state machine replication protocols. From Generalized Paxos to EPaxos, a huge number of replication protocols have been proposed that achieve high throughput and low latency. However, these protocols all have two problems. First, they do not scale. Many protocols actually slow down when you scale them, instead of speeding up. For example, increasing the number of MultiPaxos acceptors increases quorum sizes and slows down the protocol. Second, they are too complicated. This is not a secret; state machine replication is notoriously difficult to understand.

In this paper, we tackle both problems with a single solution: modularity. We present Bipartisan Paxos (BPaxos), a modular state machine replication protocol. Modularity yields high throughput via scaling. We note that while many replication protocol components do not scale, some do. By modularizing BPaxos, we are able to disentangle the two and scale the bottleneck components to increase the protocol’s throughput. Modularity also yields simplicity. BPaxos is divided into a number of independent modules that can be understood and proven correct in isolation.

1 Introduction

State machine replication protocols like MultiPaxos\textsuperscript{12,15} and Raft\textsuperscript{25} allow a state machine to be executed in unison across a number of machines, despite the possibility of faults. Today, state machine replication is pervasive. Nearly every strongly consistent distributed system is implemented with some form of state machine replication\textsuperscript{1,2,4,5,7,9,10,32}.

MultiPaxos is one of the oldest and one of the most widely used state machine replication protocols. However, despite its popularity, MultiPaxos does not have optimal throughput or optimal latency. In response, a number of state machine replication protocols have been proposed to address MultiPaxos’ suboptimal performance\textsuperscript{6,8,11,13,14,17,20,23,24,26,27}. These protocols use sophisticated techniques that either increase MultiPaxos’ throughput, decrease its latency, or both.

These sophisticated replication protocols have two shortcomings: they do not scale, and they are very complex. In this paper, we address both these shortcomings with a single solution: modularity. We present Bipartisan Paxos (BPaxos), a state machine replication protocol that is composed of a number of independent modules. Modularity allows us to achieve state-of-the-art throughput via a straightforward form of scaling. Furthermore, modularity makes BPaxos significantly easier to understand compared to similar protocols.

Scaling Simple state machine replication protocols like MultiPaxos and Raft cannot take advantage of scaling. Conventional wisdom encourages us to use as few nodes as possible when deploying these protocols: “using more than $2f + 1$ replicas for $f$ failures is possible but illogical because it requires a larger quorum size with no additional benefit”\textsuperscript{34}. While some protocols use multiple leaders\textsuperscript{6,20,23}, the number of leaders is fixed (typically $2f + 1$ leaders to tolerate $f$ faults), which only alleviates but does not solve the scalability problem.

BPaxos, on the other hand, employs a straightforward form of scaling to achieve high throughput. A BPaxos deployment consists of a set of leaders, dependency service nodes, proposers, acceptors, and replicas. We will see later that dependency service nodes, acceptors, and replicas do not scale. This is why conventional wisdom dictates using as few of these nodes as possible. However, leaders and proposers operate independently from one another and are thus “embarrassingly scalable”. Moreover, when we analyze the performance of BPaxos, we find that these leaders and proposers are the throughput bottleneck. By increasing the number of leaders and proposers, we increase the protocol’s throughput. Note that BPaxos does not horizontally scale forever. Scaling the leaders and proposers shifts the bottleneck to other non-scalable components. With scaling, BPaxos is able to achieve roughly double the peak throughput of EPaxos, a state-of-the-art replication protocol.

This straightforward form of scaling has been largely overlooked because most existing replication protocols tightly couple their components together. For example, an EPaxos replica plays the role of a leader, a dependency service node, an acceptor, and a replica\textsuperscript{6}. This tight coupling has a number of advantages—e.g., messages sent between co-located nodes do not have to traverse the network, redundant metadata can be coalesced, fast paths can be taken to reduce latency, and so on. However, tight coupling lumps together components that do not scale with components that do. This prevents independently scaling bottleneck components. BPaxos’ modularity is the key enabling feature that allows us to perform independent scaling.

Simplicity MultiPaxos is notoriously difficult to understand, and sophisticated protocols that improve it are significantly more complex. BPaxos’ modular design, on the other hand, makes the protocol much easier to understand compared to these sophisticated protocols. Each module can be understood and proven correct in isolation, allowing newcomers to understand the protocol piece by piece, something that is difficult to do with existing protocols in which components
are tightly coupled.

Moreover, some of the modules implement well-known abstractions for which well-established protocols already exist. In these cases, BPaxos can leverage existing protocols instead of reinventing the wheel. For example, BPaxos depends on a module that implements consensus. Rather than implementing a consensus protocol from scratch and having to prove it correct, BPaxos uses Paxos off the shelf and inherits its safety properties. Many other protocols [6,23,24] instead implement consensus in a way that is specialized to each protocol. These specialized consensus protocols are difficult to understand and difficult to prove correct. As an anecdote, we discovered a minor bug in EPaxos’ implementation of consensus, which we confirmed with the authors, a bug that went undiscovered for six years.

Summary In summary, we present the following contributions:

- We introduce BPaxos, a modular, multileader, generalized state machine replication protocol that is significantly easier to understand compared to similar protocols.
- We describe how modularity enables a straightforward form of protocol scaling. We apply the technique to BPaxos and achieve double the peak throughput of a state-of-the-art replication protocol.

2 Background

2.1 Paxos

Assume we have a number of clients, each with a value that they would like to propose. The consensus problem is for all members to agree on a single value among the proposed values. A consensus protocol is a protocol that implements consensus. Clients propose commands by sending them to the protocol. The protocol eventually chooses a single one of the proposed values and returns it to the clients.

Paxos [12,15] is one of the oldest and most well studied consensus protocols. We will see later that BPaxos uses Paxos to implement consensus, so it is important to be familiar with what Paxos is. Fortunately though, BPaxos treats Paxos like a black box, so we do not have to concern ourselves with how Paxos works.

2.2 MultiPaxos

Whereas consensus protocols like Paxos agree on a single value, state machine replication protocols like MultiPaxos agree on a sequence of values called a log. A state machine replication protocol involves some number of replicas of a state machine, with each state machine beginning in the same initial state. Clients propose commands to the replication protocol, and the protocol orders the commands into an agreed upon log that grows over time. Replicas execute entries in the log in prefix order. By beginning in the same initial state and executing the same commands in the same order, all the replicas are guaranteed to remain in sync.

MultiPaxos [33] is one of the earliest and most popular state machine replication protocols. MultiPaxos uses one instance of Paxos for every log entry, agreeing on the log entries one by one. For example, it runs one instance of Paxos to agree on the command chosen in log entry 0, one instance for log entry 1, and so on. Over time, more and more commands are chosen, and the log of chosen commands grows and grows. MultiPaxos replicas execute commands as they are chosen, taking care not to execute the commands out of order.

For example, consider the example execution of a MultiPaxos replica depicted in Figure 1. The replica implements a key-value store with keys a and b. First, the command \( a \leftarrow 0 \) (i.e. set \( a \) to 0) is chosen in log entry 0 (Figure 1a), and the replica executes the command (Figure 1b). Then, the command \( a \leftarrow b \) is chosen in log entry 2 (Figure 1c). The replica cannot yet execute the command, because it must first execute the command in log entry 1, which has not yet been chosen (Figure 1d). Finally, \( b \leftarrow 0 \) is chosen in log entry 1 (Figure 1e), and the replica can execute the commands in both log entries 1 and 2. Note that the replica executes the log in prefix order, waiting to execute a command if previous commands have not yet been chosen and executed.

![Figure 1: An example of a MultiPaxos replica executing commands over time, as they are chosen](image)

MultizPaxos is implemented with a set of nodes called proposers and a set of nodes called acceptors. For this paper, we do not need to worry about the details of how MultiPaxos works, but let us focus briefly on its communication pattern. One of the proposers is designated a leader. Clients send all state machine commands to this single leader. When the leader receives a command \( x \), it selects a log entry in which to place \( x \) and then performs one round trip of communication.
with the acceptors to get $x$ chosen in the log entry. Then, it executes the command—once all commands in earlier log entries have been chosen and executed—and returns to the client. This communication pattern is illustrated in Figure 2.

![MultiPaxos communication pattern](image)

**Figure 2**: MultiPaxos communication pattern. The leader is adorned with a crown.

### 2.3 Multileader and Generalized Consensus

MultiPaxos has a number of inefficiencies. Here, we focus on two well-known ones. First, MultiPaxos’ throughput is bottlenecked by the leader. As shown in Figure 2, every command goes through the leader. Thus, MultiPaxos can run only as fast as the leader can. Protocols like Mencius [20], EPaxos [23], and Caesar [6] bypass the single leader bottleneck by having multiple leaders that can process requests in parallel. We call these protocols _multileader_ protocols.

Second, MultiPaxos requires that replicas execute _all_ commands in the same order. That is, MultiPaxos establishes a _total order_ of commands. This is overkill. If two commands commute, they can be executed by replicas in either order. For example, key-value store replicas executing the log in Figure 1 could execute commands $a \leftarrow 0$ and $b \leftarrow 0$ in either order since the two commands commute. More formally, we say two commands _conflict_ if executing them in opposite orders yields either different outputs or a different final state. State machine replication protocols that only require conflicting commands to be executed in the same order are said to implement _generalized consensus_ [13]. Colloquially, we say such a protocol is _generalized_. Generalized protocols establish a _partial order_ of commands (as opposed to a total order) in which only conflicting commands have to be ordered.

As a MultiPaxos leader receives commands from clients, it places them in increasing log entries. The first command is placed in log entry 0, the second in log entry 1, and so on. In this way, the leader acts as a sequencer, sequencing commands into a single total order. Multileader protocols however, by virtue of having multiple leaders, do not have a single designated node that processes every command. This makes it challenging to establish a single total order. As a result, most multileader protocols are also generalized. With multiple concurrently executing leaders, it is easier to establish a partial order than it is to establish a total order. Moreover, generalization allows leaders processing non-conflicting commands to operate completely independently from one another. While it is possible for a multileader protocol to establish a total order (e.g., Mencius [20]), such protocols run only as fast as the slowest replica (which lowers throughput), and involve all-to-all communication among the leaders (which also lowers throughput).

### 3 Bipartisan Paxos

BPaxos is a modular state machine replication protocol that is both multileader and generalized. Throughout the paper, we make the standard assumptions that the network is asynchronous, that state machines are deterministic, and that machines can fail by crashing but cannot act maliciously. We also assume that at most $f$ machines can fail for some integer-valued parameter $f$. Throughout the paper, we omit low-level protocol details involving the re-sending of dropped messages.

#### 3.1 BPaxos Command Execution

MultiPaxos is _not_ generalized. It totally orders all commands by sequencing them into a _log_. BPaxos is generalized, so it ditches the log and instead partially orders commands into a _directed graph_, like the ones shown in Figure 3.

BPaxos graphs are completely analogous to MultiPaxos logs. Every MultiPaxos log entry corresponds to a vertex in a BPaxos graph. Every MultiPaxos log entry holds a command; so does every vertex. Every log entry is uniquely identified by its index (e.g., 0); every vertex is uniquely identified by a _vertex id_ (e.g., $v_0$). The one difference between graphs and logs is that graphs have the _dependencies_ as edges, whereas logs have the commands as _dependencies_. BPaxos vertex $v$ has edges to some set of other vertices. These edges are called the _dependencies_ of $v$. Note that we view a vertex’s dependencies as belonging to the vertex, so when we refer to a vertex, we are also referring to its dependencies. The similarities between MultiPaxos logs and BPaxos graphs are summarized in Table 1.

| BPaxos | MultiPaxos |
|--------|------------|
| graph  | log        |
| vertex | log entry  |
| vertex id | index    |
| command | command    |
| dependencies | dependencies |

MultiPaxos grows its _log_ over time by repeatedly reaching consensus on one _log entry_ at a time. BPaxos grows its _graph_ over time by repeatedly reaching consensus on one _vertex_ (and its dependencies) at a time. MultiPaxos replicas execute logs in prefix order, making sure not to execute a command until after executing all _previous commands_. BPaxos replicas execute graphs in prefix order (i.e. reverse topological order),
making sure not to execute a command until after executing its dependencies.

An example of how BPaxos graphs grow over time and how a BPaxos replica executes these graphs is shown in Figure 3. As you read through the figure, note the similarities with Figure 1. First, the command $a \leftarrow 0$ is chosen in vertex $v_0$ with no dependencies (Figure 3a). Because the vertex has no dependencies, the replica executes $a \leftarrow 0$ immediately (Figure 3b). Next, the command $a \leftarrow b$ is chosen in vertex $v_2$ with dependencies on vertices $v_0$ and $v_1$ (Figure 3c). $v_2$ depends on $v_1$, but a command has not yet been chosen in $v_1$, so the replica does not yet execute $a \leftarrow b$ (Figure 3d). Finally, the command $b \leftarrow 0$ is chosen in vertex $v_1$ with no dependencies (Figure 3e). Because $b \leftarrow 0$ has no dependencies, the replica executes it immediately. Moreover, all of $v_2$’s dependencies have been executed, so the replica now executes $a \leftarrow b$ (Figure 3f).

Before we discuss the mechanisms that BPaxos uses to construct these graphs, note the following three graph properties.

Vertices are chosen once and for all. BPaxos reaches consensus on every vertex, so once a vertex has been chosen, it will never change. Its command will not change, it will not lose dependencies, and it will not get new dependencies.

Cycles can happen, but are not a problem. We will see in a moment that BPaxos graphs can sometimes be cyclic. These cycles are a nuisance, but easily handled. Instead of executing graphs in reverse topological order one command at a time, replicas instead execute graphs in reverse topological order one strongly connected component at a time. The commands within a strongly connected component are executed in an arbitrary yet deterministic order; $y$ then $z$ or $z$ then $y$.

Conflicting commands depend on each other. Because BPaxos is generalized, only conflicting commands have to be ordered with respect to each other. BPaxos ensures this by maintaining the following invariant:

Invariant 1 (dependency invariant). If two conflicting commands $x$ and $y$ are chosen in vertices $v_x$ and $v_y$, then either $v_x$ depends on $v_y$ or $v_y$ depends on $v_x$ or both. That is, there is at least one edge between vertices $v_x$ and $v_y$.

If two commands have an edge between them, every replica executes them in the same order. The dependency invariant ensures that every conflicting pair of commands has an edge between them, ensuring that all conflicting commands are executed in the same order. Non-conflicting commands do not need an edge between them and can be executed in any order.

3.2 Protocol Overview

BPaxos is composed of five modules: a dependency service, a consensus service, a set of leaders, a set of proposers, and a set of replicas. Here, we give an overview on how these modules interact by walking through the example execution shown in Figure 5. In the next couple of sections, we discuss each module in more detail.

1. A client $c$ sends a state machine command $x$ to leader $l_0$. Note that all of the leaders process commands in parallel and that clients can send commands to any of them.

2. Upon receiving command $x$, $l_0$ generates a globally unique vertex id $v_x$ for $x$. It then sends the message $(v_x, x)$ to the dependency service.
3. Upon receiving message \( \langle v_x, x \rangle \), the dependency service computes a set of dependencies \( \text{deps}_x \) for vertex \( v_x \). Later, we will see exactly how the dependency service computes dependencies. For now, we overlook the details. The dependency service then sends back the message \( \langle v_x, x, \text{deps}_x \rangle \) to \( l_0 \).

4. \( l_0 \) forwards \( \langle v_x, x, \text{deps}_x \rangle \) to proposer \( p_0 \).

5. \( p_0 \) sends the message \( \langle v_x, x, \text{deps}_x \rangle \) to the consensus service, proposing that the value \( x, \text{deps}_x \) be chosen in vertex \( v_x \).

6. The consensus service implements one instance of consensus for every vertex. Upon receiving \( \langle v_x, x, \text{deps}_x \rangle \), it chooses the value \( x, \text{deps}_x \) for vertex \( v_x \) and notifies \( p_0 \) with the message \( \langle v_x, x, \text{deps}_x \rangle \). Note that in this example, the consensus service chose the value proposed by \( p_0 \). In general, the consensus service may choose some other value if other proposers are concurrently proposing different values for vertex \( v_x \). However, we will see later that this can only happen during recovery and is therefore not typical.

7. After \( p_0 \) learns that command \( x \) with dependencies \( \text{deps}_x \) has been chosen in vertex \( v_x \), it notifies the replicas by broadcasting the message \( \langle v_x, x, \text{deps}_x \rangle \).

8. Every replica manages a graph of chosen commands, as described in the previous subsection. Upon receiving \( \langle v_x, x, \text{deps}_x \rangle \), a replica adds the vertex \( v_x \) to its graph with command \( x \) and dependencies \( \text{deps}_x \). As described earlier, the replicas execute their graphs in reverse topological order. Once they have executed command \( x \), yielding output \( o \), one of the replicas sends back the response to the client \( c \). Given \( r \) replicas, replica \( i \) sends back the response where \( i = \text{hash}(v_x) \mod r \) for some hash function.

Pseudocode for BPaxos is given in Figure 6, and a TLA+ specification of BPaxos is given in Appendix A. We now detail each BPaxos module. In the next section, we discuss why the dependency service, consensus service, and replicas do not scale and why the leaders and proposers do.

### 3.3 Dependency Service

When the dependency service receives a message of the form \( \langle v_x, x \rangle \), it replies with a set of dependencies \( \text{deps}_x \) for \( v_x \) using the message \( \langle v_x, x, \text{deps}_x \rangle \).

Concretely, we implement the dependency service with \( 2f + 1 \) dependency service nodes. Every dependency service node maintains a single piece of state, commands. commands is the set of all the messages that the dependency service node has received to date. When a dependency service node receives message \( \langle v_x, x \rangle \) from a leader, it computes the dependencies of \( v_x \) as the set of all vertices \( v_x \) in commands that contain a command that conflicts with \( x \):

\[
\text{deps} = \{v_y | (v_y, y) \in \text{commands} \text{ and } x \text{ and } y \text{ conflict}\}.
\]

It then adds \( \langle v_x, x, \text{deps} \rangle \) to commands and sends \( \langle v_x, x, \text{deps} \rangle \) back to the leader. When a leader sends a message \( \langle v_x, x, \text{deps} \rangle \) to the dependency service, it sends it to every dependency service node. Upon receiving \( f + 1 \) responses, \( \{\langle v_x, x, \text{deps}_1 \rangle, \ldots, \langle v_x, x, \text{deps}_{f+1} \rangle\} \), the leader computes the final dependencies as \( \bigcup_{i=1}^{f+1} \text{deps}_i \), the union of the computed dependencies.

The dependency service maintains the following invariant.

**Invariant 2 (dependency service invariant).** If the dependency service produces responses \( \langle v_x, x, \text{deps}_x \rangle \) and \( \langle v_y, y, \text{deps}_y \rangle \) for conflicting commands \( x \) and \( y \), then \( v_x \in \text{deps}_y \) or \( v_y \in \text{deps}_x \) or both.

That is, the dependency service computes dependencies such that conflicting commands depend on each other. Note that the dependency service invariant (Invariant 2) is very similar to the dependency invariant (Invariant 1). This is not an accident. Only dependencies computed by the dependency service can be chosen, so the dependency service invariant suffices to guarantee that the dependency invariant is maintained.

**Theorem 1.** The dependency service maintains Invariant 2.

**Proof.** Assume the dependency service produces responses \( \langle v_x, x, \text{deps}_x \rangle \) and \( \langle v_y, y, \text{deps}_y \rangle \) for conflicting commands \( x \) and \( y \). We want to show that \( v_x \in \text{deps}_y \) or \( v_y \in \text{deps}_x \) or both. \( \text{deps}_x \) is the union of dependencies computed by some set \( Q_x \) of \( f + 1 \) dependency service nodes. Similarly, \( \text{deps}_y \) is the union of dependencies computed by some set \( Q_y \) of \( f + 1 \) dependency service nodes. Any two sets of \( f + 1 \) nodes must intersect \( (f + 1 \) is a majority of \( 2f + 1 \)). Consider a dependency service node \( d \) in the intersection of \( Q_x \) and \( Q_y \). \( d \) received both \( \langle v_x, x \rangle \) and \( \langle v_y, y \rangle \). Without loss of generality, assume it received \( \langle v_y, y \rangle \) second. Then, when \( d \) received \( \langle v_y, y \rangle \), \( \langle v_x, x \rangle \) was already in its commands, so it must have included...
Thus, consensus, or BPaxos graphs, or state machines, or any other module within BPaxos. The dependency service is unaware of cycles. This is the reason why BPaxos graphs may be formed from dependency service nodes. Note that the dependency service is an independent service node. Also note that the dependency service is an independent module within BPaxos. The dependency service is unaware of consensus, or BPaxos graphs, or state machines, or any other detail outside of the dependency service. The dependency service can be completely understood in isolation. In contrast, dependency computation in EPaxos and Caesar is tightly coupled with the rest of the protocol. For example, in Caesar, every command is assigned a timestamp. If a node receives two commands out of timestamp order, it must first wait to see if the higher timestamp command gets chosen with a dependency on the lower timestamp command before it is able to compute the lower timestamp command’s dependencies. This coupling prevents us from understanding dependency computation in isolation.

### 3.4 Leaders

When a leader receives a command $x$ from a client, it assigns $x$ a globally unique vertex id $v_x$. The mechanism by which leaders assign vertex ids is unimportant. You can use any mechanism you would like as long as ids are globally unique. In our implementation, a vertex id is a tuple of the leader’s index and a monotonically increasing id beginning at 0. For example, leader 2 generates vertex ids $(2, 0), (2, 1), (2, 2),$ and so on.

After generating a vertex id $v_x$, the leader sends $(v_x, x)$ to all dependency service nodes, aggregates the dependencies from

---

**Figure 6: BPaxos pseudocode**

$v_x$ in its computed dependencies for $v_y$. deps$_y$ is a union of dependencies that includes the dependencies computed by $d$. Thus, $v_x \in$ deps$_y$. This is illustrated in Figure 7.

---

**Figure 7: An illustration of the proof of Theorem 1.**

Note that if the dependency service produces responses $(v_x, x, $\text{deps}_x$)$ and $(v_y, y, $\text{deps}_y$)$ for conflicting commands $x$ and $y$, it may include $v_x \in$ deps$_y$ and $v_y \in$ deps$_x$. For example, if dependency service node $d_1$ receives $x$ then $y$ while dependency service node $d_2$ receives $y$ then $x$, then dependencies formed from $d_1$ and $d_2$ will have $v_x$ and $v_y$ in each other’s dependencies. This is the reason why BPaxos graphs may develop cycles.

Also note that the dependency service is an independent module within BPaxos. The dependency service is unaware of consensus, or BPaxos graphs, or state machines, or any other
of consensus for every vertex, and eventually informs the proposer of the value \( (x', \text{deps}'_x) \) that was chosen for vertex \( v_x \). In the normal case, \( (x', \text{deps}'_x) \) is equal to \( (x, \text{deps}_x) \), but the consensus service is free to choose any value proposed for vertex \( v_x \).

You can implement the consensus service with any consensus protocol that you would like. In our implementation of BPaxos, BPaxos proposers are Paxos proposers, and the consensus service is implemented as \( 2f + 1 \) Paxos acceptors. We implement Paxos with the standard optimization that phase 1 of the protocol can be skipped in round 0 (a.k.a. ballot 0). Doing so, and partitioning vertex ids uniformly across proposers, the proposers can get a value chosen in one round trip to the acceptors (in the common case). This optimization is very similar to the one done in MultiPaxos.

Again, note that the consensus service is an independent module that we can understand in isolation. The consensus service implements consensus, and that is it. It is unaware of dependencies, graphs, or any other detail of the protocol. Moreover, note that the consensus service is not specialized at all to BPaxos. We are able to use the Paxos protocol without modification. This lets us avoid having to prove a specialized implementation of consensus correct.

### 3.6 Replicas

Every BPaxos replica maintains a BPaxos graph and an instance of a state machine. Every state machine begins in the same initial state. Upon receiving a message \( \langle v_x, x, \text{deps}_x \rangle \) from a proposer, a replica adds vertex \( v_x \) to its graph with command \( x \) and with edges to \( \text{deps}_x \). As discussed earlier, the replicas execute their graphs in reverse topological order, one component at a time. When a replica is ready to execute a command \( x \), it passes it to the state machine. The state machine transitions to a new state and produces some output \( o \). One replica then returns \( o \) to the client that initially proposed \( x \). In particular, given \( n \) replicas, \( r_i \) returns outputs to clients for vertices \( v_x \) where \( \text{hash}(v_x) \% n = i \).

### 3.7 Summary

In summary, BPaxos is composed of five modules: leaders, dependency service nodes, proposers, a consensus service, and replicas. Clients propose commands; leaders assign unique ids to commands; the dependency service computes dependencies (ensuring that conflicting commands depend on each other); the proposers and consensus service reach consensus on every vertex; and replicas execute commands.

### 3.8 Fault Tolerance and Recovery

BPaxos can tolerate up to \( f \) failures. By deploying \( f + 1 \) leaders, proposers, and replicas, BPaxos guarantees that at least one of each is operational after \( f \) failures. The dependency service deploys \( 2f + 1 \) dependency service nodes, ensuring that at a quorum of \( f + 1 \) nodes is available despite \( f \) failures. The consensus service tolerates \( f \) failures by assumption. In our implementation, we use \( 2f + 1 \) Paxos acceptors, as is standard.

However, despite this, failures can still lead to liveness violations if we are not careful. A replica executes vertex \( v_x \) only after it has executed \( v_x \)'s dependencies. If one of \( v_x \)'s dependencies has not yet been chosen, then the execution of \( v_x \) is delayed. For example, in Figure 3, the execution of \( v_2 \) is delayed until after \( v_1 \) has been chosen and executed. If a vertex \( v_x \) depends on a vertex \( v_y \) that remains forever unchosen, then \( v_x \) is never executed. This situation is rare, but possible in the event of failures. For example, if two leaders \( l_x \) and \( l_y \) concurrently send commands \( x \) and \( y \) in vertices \( v_x \) and \( v_y \) to the dependency service, and if \( l_x \) then crashes, it is possible that \( v_x \) gets chosen with a dependency on \( v_y \), but \( v_y \) remains forever unchosen.

Dealing with these sorts of failure scenarios to ensure that every command eventually gets chosen is called recovery. Every state machine replication protocol has to implement some form of recovery, and for many protocols (though not all protocols), recovery is its most complicated part.

Fortunately, BPaxos’ modularity leads to a very simple recovery protocol. When a replica notices that a vertex \( v_x \) has been blocked waiting for another vertex \( v_y \) for more than some configurable amount of time, the replica contacts the consensus service and proposes that a no-operation command \( \text{noop} \) be chosen for vertex \( v_x \) with no dependencies. \( \text{noop} \) is a special command that does not affect the state machine and does not conflict with any other command. Eventually, the consensus protocol returns the chosen value to the replica, and the execution of \( v_x \) can proceed.

### 4 Disaggregating and Scaling

BPaxos’ modular design leads to high throughput in two ways: disaggregation and scaling.

#### 4.1 Identifying Bottlenecks

The throughput of a protocol is determined by its bottleneck. Before we discuss BPaxos’ throughput, we discuss how to identify the bottleneck of a protocol. Identifying a bottleneck with complete accuracy is hard. Protocol bottlenecks are affected by many factors including CPU speeds, network
bandwidth, message sizes, workload characteristics, and so on. To make bottleneck analysis tractable, we make a major simplifying assumption. The assumption is best explained by way of an example.

Consider the execution of MultiPaxos shown in Figure 8 in which a client proposes a command $x$. The execution involves $N \geq 2f + 1$ acceptors. We have annotated each node with the number of messages it sends and receives in the process of handling $x$. The leader $p_0$ processes $2N + 2$ messages, and every acceptor processes 2 messages. Our major assumption is that the time required for each node to process command $x$ is directly proportional to the number of messages that it processes. Thus, the leader takes time proportional to $2N + 2$, and the acceptors take time proportional to 2. This means that the leader is the bottleneck, and the protocol’s throughput is directly proportional to $\frac{1}{2N + 2}$, the inverse of the time required by the bottleneck component.

While our assumption is simplistic, we will see in Section 6 that empirically it is accurate enough for us to identify the actual bottleneck of protocols in practice. Now, we turn our attention to BPaxos. Consider the execution of BPaxos shown in Figure 9. We have $N \geq 2f + 1$ dependency service nodes, $N$ acceptors, $L \geq f + 1$ leaders, $L$ proposers, and $R \geq f + 1$ replicas.

Again, we annotate each node with the number of messages it processes to handle the client’s command. The dependency service nodes and acceptors process two messages each. The replicas process either one or two messages depending on whether they are returning a response to the client—for an average of $1 + \frac{1}{R}$. The leaders and proposers process significantly more messages, $2N + 2$ and $2N + R + 1$ messages respectively. Thus, the throughput through a single leader and proposer is proportional to $\frac{L}{2N + R + 1}$. Unlike MultiPaxos though, BPaxos does not have a single leader. All $L$ of the leaders and proposers execute concurrently, with client commands divided amongst them. With $L$ leaders and proposers, BPaxos’ throughput is proportional to $\frac{L}{2N + R + 1}$.

Figure 8: MultiPaxos’ throughput bottleneck. Every node is annotated with the number of messages that it sends and receives. MultiPaxos’ throughput is proportional to $\frac{1}{2N + 2}$.

Figure 9: BPaxos’ throughput bottleneck. Every node is annotated with the number of messages that it sends and receives. BPaxos’ throughput is proportional to $\frac{L}{2N + R + 1}$.

4.2 Disaggregation

Many state machine replication protocols pack multiple logical nodes onto a single physical node. We could do something similar. We could deploy $N = L = R$ dependency service nodes, acceptors, leaders, proposers, and replicas across $N$ physical “super nodes”, with one of each component collocated on a single physical machine. This would reduce the latency of the protocol by two network delays and open the door for optimizations that could reduce the latency even further.

However, aggregating logical components together would worsen our bottleneck. Now, for a given command, a super node would have to process the messages of a dependency service node, an acceptor, a leader, a proposer, and a replica. With the bottleneck component processing more messages per command, the throughput of the protocol decreases. Disaggregating the components allows for pipeline parallelism in which load is more evenly balanced across the components.

4.3 Scaling

Scaling is a classic systems technique that is used to increase the throughput of a system. However, to date, consensus protocols have not been able to take full advantage of scaling. Conventional wisdom for replication protocols suggests that we use as few nodes as possible. Returning to Figure 8, we see this conventional wisdom in action. The throughput of MultiPaxos is proportional to $\frac{1}{2N + 2}$. Adding more proposers does not do anything, and adding more acceptors (i.e. increasing $N$) lowers the throughput.

BPaxos revises conventional wisdom and notes that while some components are hard or impossible to scale (e.g., ac-
ceptrors), other components scale trivially. Serendipitously, the components that are easy to scale turn out to be the same components that are a throughput bottleneck.

More specifically, we learned from Figure 9 that B Paxos’ throughput is proportional to $\frac{L}{2N+R+1}$ with the $L$ leaders and proposers being the bottleneck. To increase B Paxos’ throughput, we simply increase $L$. We can increase the number of leaders and proposers until they are no longer the bottleneck. This pushes the bottleneck to either the dependency service nodes, the acceptors, or the replicas. Fortunately, these nodes only process at most two messages per command. This is equivalent to an unreplicated state machine which must at least receive and execute a command and reply with the result. Thus, we have effectively shrunk the throughput bottleneck to its limit.

Note that we are able to perform this straightforward scaling because B Paxos’ components are modular. When we co-locate components together, $L = N = R$, and it is impossible for us to increase $L$ (which increases throughput) without increasing $N$ and $R$ (which decreases throughput). Modularity allows us to scale each component independently.

5 Practical Considerations

5.1 Ensuring Exactly Once Semantics

If a client proposes a command to a state machine replication protocol but does not hear back quickly enough, it resends the command to the protocol to make sure that the command eventually gets executed. Thus, a replication protocol might receive a command more than once, but it has to guarantee that it never executes the command more than once. Executing a command more than once would violate exactly once semantics.

Non-generalized protocols like Paxos [33], Viewstamped Replication [18], and Raft [25] all employ the following technique to avoid executing a command more than once. First, before a client proposes a command to a replication protocol, it annotates the command with a monotonically increasing integer-valued id. Moreover, clients only send one command at a time, waiting to receive a response from one command before sending another. Second, every replica maintains a client table, like the one illustrated below. A client table has one entry per client. The entry for a client records the largest id of any command that the replica has executed for that client, along with the result of executing the command with that id. A replica only executes commands for a client if it has a larger id than the one recorded in the client table. If it receives a command with the same id as the one in the client table, it replies with the recorded output instead of executing the command a second time.

Naively applying this same trick to BPaxos (or any generalized protocol) is unsafe. For example, imagine a client issues command $x$ with id 1. The command gets chosen and is executed by replica 1. Then, the client issues non-conflicting command $y$ with id 2. The command gets chosen and is executed by replica 2. Because $y$ has a larger id than $x$, replica 2 will never execute $x$.

To fix this bug, a replica must record the ids of all commands that it has executed for a client, along with the output corresponding to the largest of these ids. Replicas only execute commands they have not previously executed, and relay the cached output if they receive a command with the corresponding id.

5.2 Dependency Compaction

Upon receiving a command $x$ in vertex $v_x$, a dependency service node returns the set of all previously received vertices with commands that conflict with $x$. Over time, as the dependency service receives more and more commands, these dependency sets get bigger and bigger. As the dependency sets get bigger, BPaxos’ throughput decreases because more time is spent sending these large dependency sets, and less time is spent doing useful work.

To combat this, a BPaxos dependency service node has to compact dependencies in some way. Recall that BPaxos leader $i$ creates vertex ids $(i,0), (i,1), (i,2)$, and so on. Thus, vertex ids across all the leaders form a two-dimensional array with one column for every leader index and one row for every monotonically increasing id.

```
 3 e
 2 c
 1 a e
 0 b d
```

Figure 10: An example of dependency compaction

For example, consider a dependency service node that has received commands $a$, $b$, $c$, $d$, and $e$ in vertices $(0,1), (0,0), (1,2), (1,0), and (2,1)$ as shown in Figure 10. Without dependency compaction, if the dependency service node receives a command that conflicts with commands $a$, $b$, $c$, $d$, and $e$, it would return the vertex ids of these five commands. In our example, the dependency service node returns only five dependences, but in a real deployment, the node could return hundreds of thousands of dependencies.

With dependency compaction on the other hand, the dependency service node instead artificially adds more dependences. In particular, for every leader $i$, it computes the largest id $j$ for which a dependency $(i, j)$ exists. Then, it adds

| Client   | Id | Output |
|-----------|----|--------|
| 10.31.14.41 | 2  | “foo”  |
| 10.54.13.123 | 1  | “bar”  |
\{(i,k) \mid k \leq j\} to the dependencies. In other words, it finds the largest dependency in each column and then adds all of the vertex ids below it as dependencies. In Figure 10, the inflated set of dependencies is highlighted in blue. Even though more dependencies have been added, the set of inflated dependencies can be represented more compactly, with a single integer for every leader (i.e., the id of the largest command for that leader). Thus, every BPaxos dependency set can be succinctly represented with \(N\) integers (for \(N\) leaders).

6 Evaluation

6.1 Latency and Throughput

Experiment Description. We implemented MultiPaxos, EPaxos\(^2\), and BPaxos in Scala\(^3\). Here, we measure the throughput and latency of the three protocols with respect to three parameters: the number of clients, the conflict rate, and the parameter \(f\).

- Clients. Clients propose commands in a closed loop. That is, after a client proposes a command, it waits to receive a response before proposing another command. We also run multiple clients in the same process, so deployments with a large number of clients (e.g., 1200 clients) may use only a few client processes. We run 1, 10, 50, 100, 300, 600, and 1200 clients.

- Conflict rate. The protocols replicate a key-value store state machine. Commands are single key gets or single key sets. With a conflict rate of \(r\), the commands are sets to a single key, while \((1-r)\) of the commands are gets to other keys. Keys and values are both eight bytes. If commands are large, the data path and control path can be split, as in \([8]\). We run with \(r = 0\), \(r = 0.02\), and \(r = 0.1\). As described in \([23]\), workloads in practice often have very low conflict rates.

- \(f\). Recall that a protocol with parameter \(f\) must tolerate at most \(f\) failures. We run with \(f = 1\) and \(f = 2\).

The protocols do not perform batching. All three protocols implement thriftiness, a standard optimization \([23]\).

Results. The benchmark results are shown in Figure 11. In Figure 11a, we see that MultiPaxos achieves a peak throughput of roughly 25,000 to 30,000 commands per second. EPaxos achieves a peak throughput of 30,000 to 40,000 depending on the conflict rate. BPaxos achieves 70,000 to 75,000, nearly double that of EPaxos. Both EPaxos’ and BPaxos’ throughput decrease with higher conflict rate. Higher conflict rates lead to graphs with more edges, which increases the time required to topologically sort the graphs.

Note that the EPaxos implementation in \([23]\) achieves a peak throughput of 45,000 to 50,000, slightly higher than our implementation. We believe the discrepancy is due to implementation language (Go vs Scala) and various optimizations performed in \([23]\) that we have not implemented (e.g., a custom marshaling and RPC compiler \([3]\)). We believe that if we apply the same optimizations to our implementations, all three protocols’ throughput would increase similarly.

In Figure 11b, with \(f = 2\), MultiPaxos’ peak throughput has decreased to 20,000, EPaxos’ peak throughput has decreased to 25,000, and BPaxos’ peak throughput has decreased to 65,000. As \(f\) increases, the MultiPaxos leader has to contact more nodes, so the drop in throughput is expected. With \(f = 2\), EPaxos and BPaxos both have more leaders. More leaders increases the likelihood of cycles, which slows the protocols down slightly. Moreover, when performing dependency compaction as described in Section 5, the number of dependencies grows with the number of leaders. BPaxos’ peak throughput is still roughly double that of EPaxos.

After sending a command, a BPaxos client must wait eight network delays to receive a response. MultiPaxos and EPaxos require only four. Thus, under low load, MultiPaxos and EPaxos have lower latency than BPaxos. In Figure 11c, we see that with a single client, MultiPaxos and EPaxos have a latency of roughly 0.25 ms, whereas BPaxos has a latency of 0.41. Under high load though, BPaxos achieves lower latency. With 10 clients, the latency of the three protocols is roughly even, and with 50 clients, BPaxos’ latency has already dropped below that of the other two protocols. In Figure 11a and Figure 11b, we see that under higher loads of 600 and 1200 clients, BPaxos’ latency can be two to six times lower than the other two protocols.

Note that our results are specific to our deployment within a single data center. With a geo-replicated deployment, MultiPaxos and EPaxos would both outperform BPaxos. In this scenario, minimizing network delays is essential for high performance. Also note that BPaxos uses more machines than MultiPaxos and EPaxos in order to achieve higher throughput via disaggregation and scaling. This makes BPaxos a poor fit in resource constrained environments.

\(^2\)Note that we implement Basic EPaxos, the algorithm outlined in \([22]\). In general, Basic EPaxos has larger quorums and simpler recovery compared to the complete EPaxos protocol which is described in \([23]\). For \(f = 1\) though, the performance of the two protocols is practically identical.

\(^3\)To mitigate the effects of JVM garbage collection on our experiments, we run our experiments with a large heap size of 32GB and run experiments for only a short amount of time.
6.2 Ablation Study

**Experiment Description.** The previous experiment showed that BPaxos can achieve roughly double the throughput of EPaxos. Now, we analyze how BPaxos achieves these speedups. In particular, we perform an ablation study to measure how BPaxos' disaggregation and scaling affect its throughput. We repeat the experiment from above with $f = 1$, with $r = 0$, and with 1 and 600 clients. We vary the number of leaders from 3 to 7. Moreover, we also consider a “coupled BPaxos” deployment with three machines where each machine runs a single process that acts as a leader, a dependency service node, a proposer, an acceptor, and a replica. This artificially coupled BPaxos is similar to EPaxos in which every replica plays many roles.

**Results.** The results of the experiment are shown in Figure 12. In Figure 12a, we see the throughput of the coupled BPaxos deployment is only 20,000 under high load. This is lower than both Multipaxos and EPaxos. When we decouple the protocol and run with three leaders, the throughput increases threefold to 60,000. Disaggregating the nodes introduces pipeline parallelism and reduces the load on the bottleneck component. As we increase to five leaders, the throughput increases to a peak of 75,000. At this point, the leaders are not the bottleneck and adding more leaders only serves to slow down the protocol (for reasons similar to why the $f = 2$ deployment of BPaxos is slightly slower than the $f = 1$ deployment).

In Figure 12b, we see that the coupled protocol has roughly six times the latency compared to the decoupled protocol under high load. Moreover, the number of leaders doesn’t have much of an impact on the latency. In Figure 12c, we see that the coupled protocol has lower latency compared to the decoupled protocol under low load, as fewer messages have to traverse the network. These results are consistent with the previous experiment. Coupled protocols can achieve lower latency under low load but decoupled protocols achieve higher throughput and lower latency under high load.

In summary, both disaggregation and scaling contribute significantly to BPaxos’ increased throughput and lower latency under high load, and they also explain why BPaxos has higher latency under low load.

6.3 Batching

Existing state machine replication protocols can perform batching to increase their throughput at the cost of some latency [22, 28, 30]. BPaxos uses decoupling and scaling to increase throughput at the cost of some latency. These two techniques accomplish the same goal but are orthogonal. We can add batching to BPaxos to increase its throughput even further. BPaxos leaders can collect batches of commands from clients and place all of them within a single vertex. While batching improves the throughput of all replication protocols, BPaxos’ modular design enables the protocol to take advantage of batching particularly well.

First, the overheads of receiving client messages and forming batches falls onto the leaders. Because we can scale the leaders, these overheads can be amortized until they are no longer a bottleneck. Moreover, the execution time of proposers and acceptors increases linearly with the number of batches, not the number of commands. Thus, increasing the batch size also amortizes their overheads. Finally, as batch sizes grow, the number of vertices and edges in the replicas’ graphs shrinks. Thus, replicas can topologically sort the smaller graphs faster.

We repeated the benchmarks from above with $f = 1$ and $r = 0$ with a batch size of 1000 and achieved a peak throughput of roughly 500,000 commands per second with a median
 latency of roughly 200 ms.

7 Related Work

Paxos, VR, Raft  MultiPaxos [12, 15, 16, 21, 33], Raft [21], and Viewstamped Replication [18] are all single leader, non-generalized state machine replication protocols. BPaxos has higher throughput than these protocols because it is not bottlenecked by a single leader. These protocols, however, have lower latency than BPaxos under low load and are much simpler.

Mencius  Mencius [20] is a multi-leader, non-generalized protocol in which MultiPaxos log entries are round-robin partitioned among a set of leaders. Because Mencius is not generalized, a log entry cannot be executed until all previous log entries have been executed. To ensure log entries are being filled in appropriately, Mencius leaders perform all-to-all communication between each other. This prevents leaders from scaling and prevents other throughput-improving optimizations such as thriftiness.

Generalized GPaxos  Generalized Paxos [13] and GPaxos [31] are generalized, but not fully multi-leader. Clients can send commands directly to acceptors, behaving very much like a leader. However, in the face of collisions, Generalized Paxos and GPaxos rely on a single leader to resolve the collision. This single leader becomes a bottleneck in high contention workloads and prevents scaling.

EPaxos and Caesar  EPaxos [22, 23], like BPaxos, is generalized and multi-leader. EPaxos has lower latency than BPaxos (four network delays as opposed to eight). EPaxos is a tightly coupled protocol. Every node acts as a leader, dependency service node, proposer, acceptor, and replica. This increases the load on the bottleneck nodes and also prevents disaggregation and scaling. EPaxos, like Fast Paxos, optimistically takes a “fast path” before sometimes reverting to a “slow path”. This allows the protocol to execute a command in four network delays in the best case, but fast paths significantly complicate the protocol. For example, recovery in the face of fast paths can deadlock if not implemented correctly. Caesar [6] is very similar to EPaxos, with slight tweaks that increase the odds of the fast path being taken.

A Family of Leaderless Generalized Algorithms  In [19], Losa et al. present a generic architecture for leaderless (what we call multi-leader) generalized consensus protocols. The generic algorithm is very similar to BPaxos. In fact, some parts like the dependency service are practically identical. However, the three page paper does not present any implementations and focuses more on the theory behind abstracting the commonalities shared by existing leaderless generalized algorithms. BPaxos fleshes out the design and improves on the work by discussing disaggregation, scaling, and practical considerations like ensuring exactly once semantics and dependency compaction.

Multi-Core Paxos  In [29], Santos et al. describe how to increase the throughput of a single MultiPaxos node by decomposing the node into multiple components, with each component run on a separate core (e.g., one core for sending messages, one for receiving messages, and so on). This work complements BPaxos nicely. Santos et al. perform fine-grained decoupling to improve the throughput of a single node, and BPaxos performs higher-level protocol decoupling to improve the throughput of the entire protocol.

SpecPaxos, NOPaxos, CURP  SpecPaxos [27], NOPaxos [17], and CURP [26] all perform speculative execution to reduce latencies as low as two network delays. However, speculative execution on the fast path significantly increases the complexity of the protocols, and
none of the protocols focus on disaggregation or scaling as a means to increase throughput.

References

[1] A brief introduction of tidb. https://pingcap.github.io/blog/2017-05-23-perconalive17/. Accessed: 2019-09-03.

[2] Cockroachdb replication layer. https://www.cockroachlabs.com/docs/stable/architecture/replication-layer.html. Accessed: 2019-09-03.

[3] Experience with epaxos: Systems research using go. https://da-data.blogspot.com/2013/10/experience-with-epaxos-systems-research.html. Accessed: 2019-09-03.

[4] Global data distribution with azure cosmos db - under the hood. https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood. Accessed: 2019-09-03.

[5] Raft replication in yogabyte db. https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/. Accessed: 2019-09-03.

[6] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy Ravindran. Speeding up consensus by chasing fast decisions. In Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP International Conference on, pages 49–60. IEEE, 2017.

[7] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing scalable, highly available storage for interactive services. In CIDR, volume 11, pages 223–234, 2011.

[8] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. S-paxos: Offloading the leader for high throughput state machine replication. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on, pages 111–120. IEEE, 2012.

[9] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th symposium on Operating systems design and implementation, pages 335–350. USENIX Association, 2006.

[10] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[11] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quorum Intersection Revisited. In Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedro, editors, 20th International Conference on Principles of Distributed Systems (OPODIS 2016), volume 70 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.

[13] Leslie Lamport. Generalized consensus and paxos. 2005.

[14] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[15] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[16] Butler Lampson. The abcd’s of paxos. In PODC, volume 1, page 13, 2001.

[17] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports. Just say {NO} to paxos overhead: Replacing consensus with network ordering. In 12th {USENIX} Symposium on Operating Systems Design and Implementation (\{OSDI\} 16), pages 467–483, 2016.

[18] Barbara Liskov and James Cowling. Viewstamped replication revisited. 2012.

[19] Giuliano Losa, Sebastiano Peluso, and Binoy Ravindran. Brief announcement: A family of leaderless generalized-consensus algorithms. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages 345–347. ACM, 2016.

[20] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo. Mencius: building efficient replicated state machines for wans. In 8th \{USENIX\} Symposium on Operating Systems Design and Implementation (\{OSDI\} 08), pages 369–384, 2008.

[21] David Mazieres. Paxos made practical. Unpublished manuscript, Jan, 2007.

[22] Iulian Moraru, David G Andersen, and Michael Kaminsky. A proof of correctness for egalitarian paxos. Technical report, Technical report, Parallel Data Laboratory, Carnegie Mellon University, 2013.

[23] Iulian Moraru, David G Andersen, and Michael Kaminsky. There is more consensus in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 358–372. ACM, 2013.

[24] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Dpaxos: Managing data closer to users for low-latency and mobile applications. In Proceedings of the 2018 International Conference on Management of Data, pages 1221–1236. ACM, 2018.

[25] Diego Ongaro and John K Ousterhout. In search of an understandable consensus algorithm. In USENIX Annual Technical Conference, pages 305–319, 2014.

[26] Seo Jin Park and John Ousterhout. Exploiting commutativity for practical fast replication. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI) 19, pages 47–64, 2019.

[27] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind Krishnamurthy. Designing distributed systems using approximate synchrony in data center networks. In NSDI, pages 43–57, 2015.

[28] Nuno Santos and André Schiper. Tuning paxos for high-throughput with batching and pipelining. In International Conference on Distributed Computing and Networking, pages 153–167. Springer, 2012.

[29] Nuno Santos and André Schiper. Achieving high-throughput state machine replication in multi-core systems. In 2013 IEEE 33rd International Conference on Distributed Computing Systems, pages 266–275. Ieee, 2013.

[30] Nuno Santos and André Schiper. Optimizing paxos with batching and pipelining. Theoretical Computer Science, 496:170–183, 2013.

[31] Pierre Sutra and Marc Shapiro. Fast genuine generalized consensus. In Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium on, pages 255–264. IEEE, 2011.

[32] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J Abadi. Calvin: fast distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages 1–12. ACM, 2012.

[33] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex. ACM Computing Surveys (CSUR), 47(3):42, 2015.

[34] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan RK Ports. Building consistent transactions with inconsistent replication. ACM Transactions on Computer Systems (TOCS), 35(4):12, 2018.
A BPaxos TLA+ Specification

--- MODULE SimpleBPaxos ---

(* This is a specification of Simple BPaxos. To keep things simple and to *)
(* make models more easily checkable, we abstract a way a lot of the *)
(* unimportant details of Simple BPaxos. In particular, the specification *)
(* does not model messages being sent between components and does not *)
(* include leaders, proposers, or replicas. The consensus service is also *)
(* left abstract. The core of Simple BPaxos is that dependency service *)
(* responses (noops) are proposed to a consensus service. This core of the *)
(* algorithm is what is modelled. *)
(* *)
(* Run `tlc SimpleBPaxosModel` to check the model. *)

EXTENDS Dict, Integers, FiniteSets

(* Constants *)

CONSTANT Command
ASSUME IsFiniteSet(Command)

CONSTANT Conflict
ASSUME /
\ Conflict \subseteq Command \X Command
\ / \A ab \in Conflict : <<ab[2], ab[1]>> \in Conflict

CONSTANT noop
ASSUME noop \notin Command

CONSTANT DepServiceNode
ASSUME IsFiniteSet(DepServiceNode)

CONSTANT DepServiceQuorum
ASSUME
\ / \A Q \in DepServiceQuorum : Q \subseteq DepServiceNode
\ / \A Q1, Q2 \in DepServiceQuorum : Q1 \intersect Q2 /= {}
Variables and definitions. 

In Simple BPaxos, vertex ids are of the form Q.i where Q is a leader and i is a monotonically increasing id (initially zero). In this specification, we don’t even model Simple BPaxos nodes. So, we let instances be simple integers. You might imagine we would say 'VertexId == Nat', but keeping things finite helps TLC. Every command can be proposed at most once, so allowing instances to range between 0 and |Command| works great.

\[ \text{VertexId} = 0..\text{Cardinality(Command)} \]

A proposal is a command (or noop) and its dependencies.

\[ \text{Proposal} = [\text{cmd: Command} \cup \{\text{noop}\}, \text{deps: SUBSET VertexId}] \]

The proposal associated with noop. Noop doesn’t conflict with any other command, so its dependencies are always empty.

\[ \text{noopProposal} = [\text{cmd} \mapsto \text{noop}, \text{deps} \mapsto \{\}] \]

A dependency graph is a directed graph where each vertex is labelled with an vertex id and contains a command. We model the graph as a dictionary mapping a vertex id to its command and dependencies.

\[ \text{DependencyGraph} = \text{Dict(VertexId, Proposal)} \]

\[ \text{dependencyGraphs}[d] \text{ is the dependency graph maintained on dependency service node d.} \]

\[ \text{VARIABLE dependencyGraphs} \]

The next vertex id to assign to a proposed command. It is initially 0 and incremented after every proposed command.

\[ \text{VARIABLE nextVertexId} \]

A dictionary mapping vertex id to the command proposed with that vertex id.

\[ \text{VARIABLE proposedCommands} \]

A dictionary mapping vertex id to the set of proposals proposed to the consensus service in that instance.

\[ \text{VARIABLE proposals} \]

A dictionary mapping vertex id to the proposal that was chosen by the consensus service for that vertex id.

\[ \text{VARIABLE chosen} \]

\[ \text{vars} = << \text{dependencyGraphs}, \text{nextVertexId}, \text{proposedCommands}, \text{proposals}, \text{chosen} >> \]

\[ \text{TypeOk} = \text{\small{| dependencyGraphs \in Dict(DepServiceNode, DependencyGraph) |}} \]
\nextVertexId \in VertexId
\proposedCommands \in Dict(VertexId, Command)
\proposals \in Dict(VertexId, SUBSET Proposal)
\chosen \in Dict(VertexId, Proposal)

--------------------------------------------------------------------------------

(******************************************************************************)
(* Actions. *)
(******************************************************************************)

\* Propose a command `cmd` to Simple BPaxos. In a real implementation of Simple
\* BPaxos, a client would send the command to a leader, and the leader would
\* forward the command to the set of dependency service nodes. Here, we bypass
\* all that. The only thing to do here is to assign the command an instance and
\* make sure it hasn’t already been proposed.
ProposeCommand(cmd) ==
  \cmd \notin Values(proposedCommands)
  \proposedCommands' = \[proposedCommands EXCEPT ![nextVertexId] = cmd\]
  \nextVertexId' = nextVertexId + 1
  \UNCHANGED \<<dependencyGraphs, proposals, chosen>>

\* Given a dependency graph G and command cmd, return the set of vertices in G
\* that contain commands that conflict with cmd. For example, consider the
\* following dependency graph with commands b, c, and d in vertices v_b, v_c,
\* and v_d. If command a conflicts with c and d, then the dependencies of a are
\* v_c and v_d.

\* Dependencies(G, cmd) ==
  \{v \in VertexId : G[v] /= NULL \&\& <<cmd, G[v].cmd>> \in Conflict\}

\* Here, dependency service node d processes a request in vertex v. Namely,
\* it adds v to its dependency graph (along with the command in
\* proposedCommands). Dependency service nodes also do not process a command
\* more than once. In a real Simple BPaxos implementation, the dependency
\* service node would receive a message from a leader and send dependencies
\* back to the leader. Also, a dependency service node could receive a request
\* from the leader more than once. We abstract all of this away.
DepServiceProcess(d, v) ==
  LET G == dependencyGraphs[d] IN
  \proposedCommands[v] /= NULL
  \G[v] = NULL
  \LET cmd == proposedCommands[v] IN
  \dependencyGraphs' = \[dependencyGraphs EXCEPT ![d][v] =
    [cmd |-> cmd, deps |-> Dependencies(G, cmd)]\]
\* Evaluates to whether a quorum of dependency service nodes have processed the
\* command in vertex v.

`ExistsQuorumReply(Q, v) ==
\A d \in Q : dependencyGraphs[d][v] /= NULL`

\* Evaluates to the dependency service reply for vertex v from quorum Q of
\* dependency service nodes.

`QuorumReply(Q, v) ==
LET responses == \{dependencyGraphs[d][v] : d \in Q\} IN
\{cmd |-> (CHOOSE response \in responses : TRUE).cmd,
deps |-> UNION {response.deps : response \in responses}\}`

\* Propose a noop gadget in vertex v to the consensus service. In a real
\* Simple BPaxos implementation, a proposer would propose a noop only
\* in some circumstances. In this model, we allow noops to be proposed at any
\* time.

`ConsensusProposeNoop(v) ==
/\ proposals' = [proposals EXCEPT ![v] = @ \union \{noopProposal\}]
/\ UNCHANGED <<dependencyGraphs, nextVertexId, proposedCommands, chosen>>`

\* Propose a dependency service reply in vertex v to the consensus service.

`ConsensusPropose(v) ==
\E Q \in DepServiceQuorum :
  /\ ExistsQuorumReply(Q, v)
  \E proposals' = [proposals EXCEPT ![v] = @ \union \{QuorumReply(Q, v)\}]
  \E chosen' = [chosen EXCEPT ![v] = CHOOSE g \in proposals[v] : TRUE]
  /\ UNCHANGED <<dependencyGraphs, nextVertexId, proposedCommands, proposals>>`

\* Choose a value for vertex v.

`ConsensusChoose(v) ==
\E cmd \in Command : ProposeCommand(cmd)
\E d \in DepServiceNode : \E v \in VertexId : DepServiceProcess(d, v)
\E v \in VertexId : ConsensusProposeNoop(v)
\E v \in VertexId : ConsensusPropose(v)
\E v \in VertexId : ConsensusChoose(v)`
Spec == Init \ [][Next]_vars

FairSpec == Spec \ WF_vars(Next)

(* Properties and Invariants. *)

\* The consensus service can choose at most command in any given instance.
ConsensusConsistency ==
\A v \in VertexId :
  chosen[v] /= NULL => chosen'[v] = chosen[v]

AlwaysConsensusConsistency ==
[]][ConsensusConsistency]_vars

\* If two conflicting commands a and b yield dependencies deps(a) and deps(b) from the dependency service, then a is in deps(b), or b is in deps(a), or both.
DepServiceConflicts ==
\A v1, v2 \in VertexId :
  \A Q1, Q2 \in DepServiceQuorum :
  IF v1 /= v2 \&\& ExistsQuorumReply(Q1, v1) \&\& ExistsQuorumReply(Q2, v2) THEN
    LET proposal1 == QuorumReply(Q1, v1)
    proposal2 == QuorumReply(Q2, v2) IN
    <<proposal1.cmd, proposal2.cmd>> \in Conflict =>
    v1 \in proposal2.deps \&\& v2 \in proposal1.deps
  ELSE
    TRUE

\* Simple BPaxos should only choose proposed commands. This is inspired by [1].
Nontriviality ==
\A v \in VertexId :
  chosen[v] /= NULL =>
    \&\& chosen[v].cmd \in Values(proposedCommands)
    \&\& chosen[v].cmd = noop

\* If two conflicting commands a and b are chosen, then a is in deps(b), or b is in deps(a), or both.
ChosenConflicts ==
\A v1, v2 \in VertexId :
  IF v1 /= v2 \&\& chosen[v1] /= NULL \&\& chosen[v2] /= NULL THEN
    LET proposal1 == chosen[v1]
    proposal2 == chosen[v2] IN
    <<proposal1.cmd, proposal2.cmd>> \in Conflict =>
    v1 \in proposal2.deps \&\& v2 \in proposal1.deps
  ELSE
    TRUE

\* True if every command is chosen.
EverythingChosen == \
\A cmd \in Command :
\E v \in VertexId :
   \\ chosen[v] /= NULL
   \\ chosen[v] = cmd

\* Fairness free theorem.
THEOREM
Spec => /
    \AlwaysConsensusConsistency
    \[]DepServiceConflicts
    \[]Nontriviality
    \[]ChosenConflicts

\* True if no noops are chosen.
NoNoop ==
\~ \E v \in VertexId :
   \\ chosen[v] /= NULL
   \\ chosen[v].cmd = noop

\* If no noops are chosen, then every command is chosen. This property is only \* true for FairSpec.
NoNoopEverythingChosen ==
[[]NoNoop => <>EverythingChosen

\* Fairness theorem.
THEOREM
FairSpec => /
    \AlwaysConsensusConsistency
    \[]DepServiceConflicts
    \[]Nontriviality
    \[]ChosenConflicts
    NoNoopEverythingChosen

================================================================================
--------------------------------- MODULE Dict ----------------------------------
(******************************************************************************)
(* TLA+ has the notion of functions. For example \[A -> B\] is the set of all *)
(* functions from the set A to the set B. Functions are a lot like the *)
(* dictionaries you find in a language like Python, except for one notable *)
(* distinction. A function f \in [A \to B] is total, so every value a \in A *)
(* must map to some value b \in B by way of f. Dictionaries from A to B, on *)
(* the other hand, do not have to map every a \in A to some corresponding b *)
(* \in B. This module builds up dictionaries out of functions. Doing so is *)
(* relatively straightforward. We introduce a NULL value and model a *)
(* Dictionary as a function [A \to B \cup \{NULL\}]. *)
(******************************************************************************)
CONSTANT NULL

Dict(K, V) == [K -> V \cup \{NULL\}]

Keys(dict) == \{k \in DOMAIN dict : dict[k] /= NULL\}

20
Values(dict) == {dict[k] : k \in Keys(dict)}

Items(dict) == {<<k, dict[k]>> : k \in Keys(dict)}