Revealing the selective mechanisms of inhibitors to PARP-1 and PARP-2 via multiple computational methods

Hongye Hu¹, Buran Chen², Danni Zheng², Guanli Huang Corresp.¹

¹ Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
² The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China

Corresponding Author: Guanli Huang
Email address: huangguanli@wzhospital.cn

Background. Research has shown that Poly-ADP-ribose polymerases 1 (PARP-1) is a potential therapeutic target in the clinical treatment of breast cancer. An increasing number of studies have focused on the development of highly selective inhibitors that target PARP-1 over PARP-2, its closest isoform, to mitigate potential side effects. However, due to the highly conserved and similar binding sites of PARP-1 and PARP-2, there is a huge challenge for the discovery and design of PARP-1 inhibitors. Recently, it was reported that a potent PARP-1 inhibitor named NMS-P118 exhibited greater selectivity to PARP-1 over PARP-2 compared with a previously reported drug Niraparib. However, the mechanisms underlying the effect of this inhibitor remains unclear.

Methods. In the present study, classical molecular dynamics (MD) simulations and accelerated molecular dynamics (aMD) simulations combined with structural and energetic analysis were used to investigate the structural dynamics and selective mechanisms of PARP-1 and PARP-2 that are bound to NMS-P118 and Niraparib with distinct selectivity.

Results. The results from classical MD simulations indicated that the selectivity of inhibitors may be controlled by electrostatic interactions, which were mainly due to the residues of Gln-322, Ser-328, Glu-335, and Tyr-455 in helix αF. The energetic differences were corroborated by the results from aMD simulations.

Conclusion. This study provides new insights about how inhibitors specifically bind to PARP-1 over PARP-2, which may help facilitate the design of highly selective PARP-1 inhibitors in the future.
Revealing the selective mechanisms of inhibitors to PARP-1 and PARP-2 via multiple computational methods

Hongye Hu\textsuperscript{1}, Buran Chen\textsuperscript{2}, Danni Zheng\textsuperscript{2}, Guanli Huang\textsuperscript{1,*}

\textsuperscript{1} Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
\textsuperscript{2} The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China

* Correspondence
Guanli Huang
Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Nanbaixiang Town, Ouhai District, Wenzhou 325000, Zhejiang, China
E-mail: huangguanli@wzhospital.cn; Tel: 86-0577 55578166
Abstract

Background. Research has shown that Poly-ADP-ribose polymerases 1 (PARP-1) is a potential therapeutic target in the clinical treatment of breast cancer. An increasing number of studies have focused on the development of highly selective inhibitors that target PARP-1 over PARP-2, its closest isoform, to mitigate potential side effects. However, due to the highly conserved and similar binding sites of PARP-1 and PARP-2, there is a huge challenge for the discovery and design of PARP-1 inhibitors. Recently, it was reported that a potent PARP-1 inhibitor named NMS-P118 exhibited greater selectivity to PARP-1 over PARP-2 compared with a previously reported drug Niraparib. However, the mechanisms underlying the effect of this inhibitor remains unclear.

Methods. In the present study, classical molecular dynamics (MD) simulations and accelerated molecular dynamics (aMD) simulations combined with structural and energetic analysis were used to investigate the structural dynamics and selective mechanisms of PARP-1 and PARP-2 that are bound to NMS-P118 and Niraparib with distinct selectivity.

Results. The results from classical MD simulations indicated that the selectivity of inhibitors may be controlled by electrostatic interactions, which were mainly due to the residues of Gln-322, Ser-328, Glu-335, and Tyr-455 in helix αF. The energetic differences were corroborated by the results from aMD simulations.

Conclusion. This study provides new insights about how inhibitors specifically bind to PARP-1 over PARP-2, which may help facilitate the design of highly selective PARP-1 inhibitors in the future.

Keywords: PARP-1; PARP-2; Selective mechanisms; Molecular dynamics simulations
Introduction

As one of the most commonly diagnosed malignancies in women, breast cancer accounts for about a quarter of all female cancer cases (Siegel et al. 2018). In the past few years, the incidence of breast cancer has continued to rise, with more than 1 million new cases worldwide each year (Siegel et al. 2018). It is estimated that a total of 5-10% of all breast cancer cases are genetically susceptible to the disease, with multiple breast cancer susceptibility genes having been proposed, including breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), two of the major genes (Begg et al. 2008). Currently, sequencing of these two genes is considered as the optimal approach to determining the mutation status in breast cancer patients (Pfeffer et al. 2017). Previous studies have shown that homologous recombination-deficient tumor cells resulting from BRCA1 or BRCA2 gene mutations are hypersensitive to the inhibitory effect of poly-ADP ribose polymerase-1 (PARP-1) (Lin & Kraus 2017; McCann 2019). One mechanism that has been proposed as a tentative explanation is that inhibition of PARP-1 blocks DNA single strand break repair and leads to the formation of unrepaired double strand breaks at the replication fork (Kim et al. 2020; Min & Im 2020; Wang et al. 2019b). Aside from DNA damage repair, PARP-1 is also involved in a wide variety of cellular processes, such as cell proliferation and cell death. The implication of PARP-1 in these processes is a result of the diverse substrates in PARP-1, such as nuclear proteins, which are involved in apoptotic cell death, cell cycle regulation, chromatin decondensation, inflammation, and transcriptional regulation (Jubin et al. 2016). Due to these functions, PARP-1 inhibitors have been developed as the first class of cancer therapeutics in clinical trials (Min & Im 2020).

Currently, four PARP-1 drugs have been approved by the U.S. Food and Drug Administration (FDA), including olaparib, niraparib, talazoparib, and rucaparib. In addition to these commercially available PARP-1 drugs, numerous PARP-1 inhibitors have also entered different phases of clinical research, targeting multiple types of tumor either collectively or as single agents (Min & Im 2020). Most of the marketed PARP-1 drugs and inhibitors exhibit poor selectivity when
targeting PAPR-1. For instance, olaparib, the first PAPR-1 drug approved by FDA, also interacts with PAPR-1 close homologues PARP-2 and PARP-3 (Gunderson & Moore 2015; Min & Im 2020). Similarly, Niraparib, Talazoparib and rucaparib were also found to exhibit no selectivity between PARP-1 and PARP-2 (Min & Im 2020). There is ample evidence in previous studies that inhibition of PARP-2 could produce potentially undesirable side effects (Farres et al. 2013; Navarro et al. 2017). For instance, Farrés et al. reported that loss of PARP-2 leads to a shortened red blood cell lifespan and impaired differentiation of erythroid progenitor cells, thereby causing chronic anemia (Farres et al. 2013). In light of this situation, a great deal of efforts has been put into the design and development of potent PARP-1 inhibitors with high selectivity, especially between PARP-1 and PARP-2 (Eltze et al. 2008; Fatima et al. 2014; Papeo et al. 2015). However, given high sequence similarity (84% identity and 90% similarity) and conserved catalytic domain (Figure 1A-C), increasing the selectivity of inhibitors remains a huge challenge (Yelamos et al. 2011).

Up to now, some potent inhibitors with high selectivity to PARP-1 over PARP-2 have been discovered, such as WD2000-012547, BYK204165 and NMS-P118 (Eltze et al. 2008; Fatima et al. 2014; Papeo et al. 2015). Despite these promising results, little computational research has been conducted to elucidate the selective mechanisms underlying the effect of these inhibitors. To this end, two representative inhibitors (Niraparib, NMS-P118) with divergent selectivity to PARP-1 and PARP-2 were utilized in this study to demonstrate such mechanisms (Ison et al. 2018; Papeo et al. 2015). Niraparib (also formerly known as MK-4827) is a novel, highly selective, and orally available PARP-1 and PARP-2 small molecule drug developed by Tesaro, approved by FDA in 2017 to treat ovarian cancer (Ison et al. 2018). Recent clinical studies show that the combined use of niraparib and pembrolizumab can have promising antitumor effects on patients with advanced or metastatic triple-negative breast cancer (Lin et al. 2019). NMS-P118, another inhibitor originally designed by Papeo et al., has been shown to exhibit ~150-fold selectivity to PAPR-1 over PARP2 (Figure 1D-E). In addition, the researchers also reported the co-crystal structure of PARP1 and PARP-2 bound to NMS-P118, and proposed that helix αF in the two proteins may be
responsible for the drug selectivity, as the induced binding pocket is larger in PARP-1 than in PARP-2 (Papeo et al. 2015). However, this explanation seems far from satisfactory. Here, classical molecular dynamics (cMD) simulations and accelerated molecular dynamics (aMD) simulations were employed to clarify the selective mechanisms between PARP-1 and PARP-2 using two representative inhibitors (Niraparib, NMS-P118). A combination of classical MD simulations, the root-mean-square deviations (RMSD), principal component analysis (PCA), dynamical cross-correlation (DCC) analysis, and root-mean-square fluctuations (RMSF) was applied to investigate the effects of the inhibitors on the protein flexibility and dynamic behavior of key parts of PARP-1 and PARP-2. Afterwards, binding free energy calculations and per-residue free energy decompositions based on the molecular mechanics/generalized Born solvent area (MM/GBSA) method were performed to highlight key residues related to selectivity. Next, aMD simulations combined with RMSD, PCA, DCC and free energy landscape (FEL) analyses were carried out to examine in detail the local energy minima and the conformational space that were not illuminated in the classical MD simulations. Overall, these results can be effective to deepen our understanding of the selective mechanisms between PARP-1 and PARP-2, and may help facilitate the design of novel inhibitors to improve drug selectivity.

Methods and materials
Preparation of the initial systems
The three-dimensional structures of human PARP-1 bound to NMS-P118 (PDB ID: 5A00), Niraparib (PDB ID: 4R6E), and PARP-2 bound to NMS-P118 (PDB ID: 4ZZY) were obtained from the Protein Data Bank (Papeo et al. 2015; Thorsell et al. 2017). The Loops/Refine Structure module of UCSF Chimera program was employed to model the missing side-chains and loop structures (Pettersen et al. 2004). The PDB2PQR Server was employed to estimate the protonation states of ionizable side chains (Dolinsky et al. 2004). The initial coordinates of PARP-2 bound to Niraparib were constructed using the AutoDock program (Morris et al. 2009). The grid size of cubic box, which was centered on the binding pocket, was set to $60 \times 60 \times 60$ xyz points with a
grid spacing of 0.375 Å. The AutoDockTools program was employed to assign the Gasteiger partial
charges to PARP-2 and Niraparib. The affinity maps of grids were estimated using AutoGrid
program. The docking protocol involved the generation of 200 conformations. The maximum
number of energy evaluations and iterations were set to 25,000,000 and 3,000, respectively. Other
parameters were set to default. The top-ranked structure was used for the subsequent molecular
dynamics (MD) simulation analyses.

Classical MD simulation
The prepared crystal structures of PARP-1 bound to NMS-P118 and Niraparib, PARP-2 bound to
NMS-P118, and modeled complex of PARP-2 bound to Niraparib were applied to determine the
dynamic structural behavior via Assisted Model Building with Energy Refinement 18 (Amber 18)
program. The restrained electrostatic potential (RESP) fitting technique was employed to estimate
the partial atomic charges of NMS-P118 and Niraparib (Wang et al. 2000). The parameters of
protein and ligand were derived from the ff14SB force field the General Amber Force Field 2
(GAFF2) in Amber 18 (Maier et al. 2015; Vassetti et al. 2019). Each of the prepared complexes
was solvated in a cubic box containing TIP3P water molecules, with a minimum distance of 15 Å
from any edge of the box to any complex atom. Counter ions of an appropriate quantity were added
to the system to preserve overall charge neutrality.

Prior to the classical MD simulation, two-step minimizations, heating and equilibration were
performed. At first, two-step minimizations were undertaken to eliminate bad contacts between
the solvent molecules and the complexes. To reduce the counterions and water molecules to a
minimum, a harmonic constraint of 20 kcal·mol⁻¹·Å⁻² was first imposed on the four complexes.
Then, restriction was eliminated in order for all atoms to move freely. During each stage, the
steepest descent minimization of 7,000 steps was performed, followed by conjugate gradient
minimization of 7,000 steps. Thereafter, Langevin thermostat with a position restraint of 20
cal·mol⁻¹·Å⁻² was applied to gradually heat up each complex from 0 K to 300 K over 300 ps.
Then, each complex was equilibrated at 300 K with 1000 ps simulation time in the isothermal
isobaric (NPT) ensemble. Finally, 800 ns production classical MD simulation was carried out for each complex in the NPT ensemble with a time step of 2 fs. During the simulations, the Langevin temperature scalings and Berendsen barosta were utilized to maintain the temperature and pressure, respectively (Izaguirre et al. 2001; Praprotnik et al. 2005). The Particle mesh Ewald (PME) method was employed to estimate the long-range electrostatic interactions, with the cutoff parameter of nonbonded interaction set to 10 Å (Essmann et al. 1995). SHAKE method was applied to constrain all covalent bonds connecting hydrogen atoms (Krautler et al. 2001). The coordinates for each complex were saved at an interval of 10 ps for subsequent analysis. The RMSDs and RMSF of the trajectories were calculated using CPPTRAJ module in Amber 18 program.

**aMD simulations**

The aMD is an enhanced sampling technique that alters the energy landscape through the addition of a boost potential $\Delta V(r)$ to the original potential energy surface. The $\Delta V(r)$ stands for either the total potential energy ($E_{\text{total}}$) or the dihedral energy ($E_{\text{dihedral}}$) of a system (Hamelberg et al. 2004). When $V(r)$ is equal or greater than a predefined reference energy $E$, none of addition energy will be added (equation 1). On the contrary, the modified $\Delta V(r)$ of the system is calculated according to the following equation (2):

$$\Delta V(r) = 0 \quad \Delta V(r) \geq E \quad (1)$$

$$\Delta V(r) = \frac{[E - \Delta V(r)]^2}{\alpha + [E - \Delta V(r)]} \quad \Delta V(r) < E \quad (2)$$

where $\alpha$ is the acceleration factor that governs the size of the boost. The $\alpha$ is calculated with equations (3) and (4), and the $E$ is calculated according to equations (5) and (6). The boost parameters $E$ and $\alpha$ for the total boost ($E_{\text{total}}$ and $\alpha_{\text{total}}$) and dihedral boost ($E_{\text{dihedral}}$ and $\alpha_{\text{dihedral}}$) are based on the corresponding average $E_{\text{total}}$ ($V_{\text{total_avg}}$) and average $E_{\text{dihedral}}$ ($V_{\text{dihedral_avg}}$),
which are calculated from the classical MD simulations prior to the aMD simulations. \( N_{\text{atoms}} \) and \( N_{\text{res}} \) represent the number of atoms and residues in the system, respectively. In equation (3), the \( n \) is an integer defined as the magnitude of the threshold, which is a multiple of the \( \alpha \).

\[
E_{\text{total}} = V_{\text{total}\_avg} + n \times \alpha_{\text{total}\_ral}
\]

(3)

\[
\alpha_{\text{total}\_ral} = 0.2 \times N_{\text{atoms}} \ (N=1, 2, 3\ldots)
\]

(4)

\[
E_{\text{dihedral}} = V_{\text{dihedral}\_avg} + (3.5 \times N_{\text{res}})
\]

(5)

\[
\alpha_{\text{dihedral}} = 3.5 \times \frac{N_{\text{res}}}{5}
\]

(6)

Herein, the equilibrated structures extracted from classical MD simulations were selected as the initial structures for the aMD simulations. The Dual-boost approach was applied by adding \( \Delta V(r) \) to both the \( E_{\text{total}} \) and \( E_{\text{dihedral}} \) of the system. The \( \Delta V(r) \) was obtained based on the \( N_{\text{atoms}} \), \( N_{\text{res}} \), \( V_{\text{total}\_avg} \), and \( V_{\text{dihedral}\_avg} \) from the first 40 ns of the classical MD simulations. Then, 800 ns aMD simulations were employed using the dual-boost approach. During aMD simulations, the PME method was employed to estimate the long-range electrostatic interactions, with the cutoff parameter of nonbonded interaction set to 10 Å (Essmann et al. 1995). SHAKE method was applied to constrain all covalent bonds connecting hydrogen atoms (Krautler et al. 2001). The Langevin temperature scalings was used to handle the temperature (Izaguirre et al. 2001). The coordinates for each complex were saved at an interval of 10 ps and the trajectories were calculated using the CPPTRAJ module in Amber 18 program.

**Principal component analysis (PCA)**

PCA was performed on the trajectories from both classical MD and aMD simulations via the CPPTRAJ module in Amber 18 program. All snapshots of each trajectory were aligned to eliminate...
the translational and rotational motions of all protein C\textsubscript{\alpha} atoms. Then, a covariance matrix (3N × 
3N) was generated from the Cartesian coordinates. A set of eigenvectors and eigenvalues were 
generated by diagonalizing the matrix. The top two eigenvalues (principal component 1 and 
principal component 2, PC1 and PC2) were used for subsequent analysis.

DCC analysis

The \textit{Bio3D} package of R was employed to conduct DCC analysis of the backbone atoms (C\textsubscript{\alpha}) 
(Skjaerven et al. 2014). The cross-correlation matrix (\(C_{ij}\)) between residues \(i\) and \(j\) was generated 
based on the trajectories from both classical MD simulations and aMD simulations, with 5,000 
snapshots for each complex. The \(C_{ij}\) is calculated based on the following equation (3). The \(\Delta r_i\) and 
\(\Delta r_j\) represent the shift from the mean position of the \(i\)\textsuperscript{th} or \(j\)\textsuperscript{th} of protein C\textsubscript{\alpha} atom. angle bracket 
represents an average of these two values over the sampled period.

\[
C_{ij} = \frac{\langle \Delta r_i \cdot \Delta r_j \rangle}{\sqrt{\langle \Delta r_i^2 \rangle \cdot \langle \Delta r_j^2 \rangle}}
\]  

(7)

Binding free energy calculations based on classical MD simulations

The MM/GBSA method is often used to perform classical MD simulations combined with free-
energy calculations, which can serve as an effective tool for quantitative prediction of protein-
ligand binding energies (Wang et al. 2019a). The binding free energies (\(\Delta G_{\text{bind}}\)) are calculated on 
the basis of the MM/GBSA method according to the following equations:

\[
\Delta G_{\text{bind}} = \Delta G_{R+L} - (\Delta G_R + \Delta G_L) = \Delta E_{\text{MM}} + \Delta G_{\text{sol}} - T\Delta S
\]  

(8)

\[
\Delta E_{\text{MM}} = \Delta E_{\text{int}} + \Delta E_{\text{vdW}} + \Delta E_{\text{elec}}
\]  

(9)

\[
\Delta G_{\text{sol}} = \Delta G_{\text{GB}} + \Delta G_{\text{SA}}
\]  

(10)

In equation (8), \(\Delta G_{R+L}\), \(\Delta G_R\), and \(\Delta G_L\) stand for the free energies of receptor-ligand complex, 
receptor and ligand, respectively. The sum of molecular mechanics interaction energy (\(\Delta E_{\text{MM}}\),
solvent energy ($\Delta G_{\text{sol}}$) and the change of the conformational entropy at temperature $T$ ($-T\Delta S$) are equal to the sum of $\Delta G_{R-L}$, $\Delta G_{R}$, and $\Delta G_{L}$. In equation (9), $\Delta E_{\text{MM}}$ is given as the sum of intermolecular interaction energy ($\Delta E_{\text{int}}$), van der Waals energy ($\Delta E_{\text{vdW}}$), and electrostatic energy ($\Delta E_{\text{elec}}$). The solvation free energy can be divided into polar ($\Delta G_{\text{GB}}$) and nonpolar ($\Delta G_{\text{SA}}$) and contributions (equation 10). Here, for each complex, 1,000 structures extracted from the classical MD simulations with a simulation time between 600 and 800 ns were utilized to conduct binding free energy calculations and per-residue energy decomposition. The $\Delta E_{\text{int}}$ was canceled as the single trajectory strategy was executed. Based on parameters by Onufriev et al., the $\Delta G_{\text{GB}}$ was determined using a modified GB model (GB$^{\text{OBC1}}$) (Onufriev et al. 2000). The $\Delta G_{\text{SA}}$ was determined using the solvent accessible surface area (SASA) model ($\Delta G_{\text{SA}} = \sigma*SASA$). The parameter $\sigma$ was set to 0.0072 kcal·mol$^{-1}$·Å$^{-2}$. The $-T\Delta S$ was excluded from consideration because of relatively low prediction accuracy and high computational demand (Hou et al. 2011).

**Free energy landscape (FEL) calculation based on aMD**

The cumulant expansion to the second order method was employed to determine the FEL for each simulated complex from aMD simulations, because this method offers a good approximation for calculating the reweighting factor. In this study, the $\Delta V(r)$ combined with PC1 and PC2 from PCA of the aMD simulation trajectories were utilized to recover the FEL (Miao et al. 2014b; Roe & Cheatham 2013).

**Results**

**Evaluation of the stability of simulated complexes from classical MD simulations**

To validate the docking results of the modeled complex of PARP-2 bound to Niraparib, structural alignments of the PARP-2/NMS-P118 and modeled PARP-2/Niraparib were performed with the corresponding crystal structures of PARP-1/NMS-P118 and PARP-1/Niraparib. As shown in Figure 2A, alignment of the crystal structures between PARP-1/NMS-P118 (PDB code: 5A00) and PARP-2/NMS-P118 (PDB code: 4ZZY) exhibited relatively high similarity, with a RMSD of
0.704 Å for heavy atoms. Similarly, the alignment of the modeled complex of PARP-2/Niraparib
with the crystal structure of PARP-1/Niraparib (PDB code: 4R6E) mostly showed similarities with
only minor differences, with a RMSD of 0.767 Å for heavy atoms (Figure 2B). These results
suggest that the predicted model is sufficient to study the dynamic features through further MD
simulations.

Firstly, 800 ns classical MD simulations for the modeled structure and the three crystal
structures were performed. As a prerequisite for all further analyses, the dynamic stability of the
simulated complexes was monitored by studying the RMSDs for all protein backbones (Cα) atoms
and all ligand heavy atoms for each complex with the starting structure as a function of simulation
time. Theoretically, smaller fluctuations of RMSDs indicate greater stability of the complex. As
shown in Figure 3, the time evolution of the RMSD values of Cα atoms and ligand heavy atoms in
each complex tend to converge after ~100-300 ns simulations. During the simulation of the last
400 ns, the RMSD curves of both PARP-1 Cα atoms displayed minor fluctuations (< 1 Å),
indicating that NMS-P118 constrained the protein structural flexibility of PARP-1. In contrast,
those for both PARP-2 and NMS-P118 exhibited greater fluctuations compared to the complex of
PARP-2/NMS-P118 (Figure 3B). This attested to the highly unstable nature of PARP-2 when it
was bound to selective PARP-1 inhibitor NMS-P118. In comparison, the RMSD curves for
Niraparib in both PARP-1 and PARP-2 oscillated with minute fluctuations (< 1 Å) during the last
400 ns simulation, indicating that the non-selective drug Niraparib constrained the structural
flexibility of both PARP-1 and PARP-2. Based on these results, the structural and energetic
properties for each complex were further analyzed in detail.

**Dynamic features of each complex from classical MD simulations**

The different flexibility for NMS-P118 and Niraparib in different proteins may result in different protein
conformational transitions. To characterize the protein conformational transitions over time, PCA
was performed to identify the trend in large-scale collective motions. Generally, the eigenvectors
with the highest eigenvalues capture the majority of variance in the original protein conformational
distributions (Mashiko 2018; Sittel et al. 2017). Herein, the protein conformational ensembles were investigated by projecting the first two principal components (PC1 and PC2) from classical MD simulations onto a two-dimensional space. Generally, when PC1 and PC2 are plotted against each other, structures with high similarity are clustered together. As a result, a cluster represents a different state of protein conformation. As shown in Figure 4, the protein conformational distributions for each complex were dynamic during 800 ns classical MD simulations and eventually reached overall stability. It is apparent that the conformational distributions of PARP-1/NMS-P118 were remarkably different from those of PARP-2/NMS-P118, while those for PARP-1/Niraparib and PARP-2/Niraparib were also different. Analysis of the protein conformational distributions clearly showed that PARP-2/NMS-P118 samples a wider conformational space compared to PARP-1/NMS-P118. However, those for PARP-1/Niraparib and PARP-2/Niraparib shared a certain degree of similarity. These results demonstrate that the selective PARP-1 inhibitor NMS-P118 bound to PARP-1 had a different protein conformational flexibility compared to PARP-1, not the non-selective drug Niraparib.

To further investigate the correlation between the motion of the residues in the proteins, DCC analysis was performed. As plotted in Figure 5, the direction of correlation is represented by a color gradient ranging from blue (negative correlation) to red (positive correlation). The correlation coefficient (-1 to +1), corresponding to three different colors: dark blue (-0.25 to -1) represents anti-correlation; dark red (0.25 to 1) represents positive correlation; blue represents anti-correlation (-0.25 to -1); and light red or light blue (-0.25 to +0.25) represents weak or no-correlation. It can be observed that both the red and blue regions in PARP-2/NMS-P118 were larger and more intense than those in PARP-1/NMS-P118, implying elevated correlation or anti-correlation motions in PARP-2/NMS-P118 (Figure 5A and 5B). In comparison, color regions for PARP-1 and PARP-2 bound to the non-selective drug Niraparib were quite similar (Figure 5C and 5D). These results indicate that the relative motions of different protein subdomains may correlate with different protein flexibility, which was responsible for drug selectivity.

To further highlight the key sub-domains, the $C_\alpha$ of RMSF analyses were conducted. Low
RMSF values of residues represented less flexibility, whereas high RMSF values indicated greater fluctuations in relation to their average position during simulation. As shown in Figure 6, the RMSFs of PARP-1/NMS-P118 showed a high degree of similarity with those of PARP-1/Niraparib. However, the helix αF connected with loop 347-356 in PARP-2 exhibited amplified fluctuations when it binds to the selective PARP-1 inhibitor NMS-P118 compared with the non-selective drug Niraparib. The above results indicate that the binding of selective PARP-1 inhibitor NMS-P118 leads to increased fluctuations of PARP-2 (especially the αF and loop 347-356), which might be the dominating driving force for the redistributions of free energies.

Binding free energy calculations using the MM/GBSA method based on classical MD simulation trajectories

MM/GBSA binding free energy calculations based on classical MD simulation trajectories were applied for the assessment of the energy properties of NMS-P118 and Niraparib when they were bound with PARP-1 or PARP-2. As listed in Table 1, the predicted binding free energies ($\Delta G_{\text{binding}}$) for PARP-1/NMS-P118, PARP-2/NMS-P118, PARP-1/Niraparib and PARP-2/Niraparib were -46.06±0.15, -36.40±0.14, -44.35±0.22, and -43.89±0.24 kcal/mol, respectively. It is clear that the $\Delta G_{\text{binding}}$ was highly correlated with the experimental data reported, and that for each system, different energy terms contribute differentially to the $\Delta G_{\text{binding}}$. In this study, only the polar contributions ($\Delta E_{\text{elec}} + \Delta G_{\text{GB}}$) for the most vital factor were discussed. The polar contributions for the PARP-1/NMS-P118 and PARP-2/NMS-P118 were significantly different at 10.65±0.34 and 19.29±0.16 kcal/mol, respectively. In comparison, those for PARP-1/Niraparib and PARP-2/Niraparib were quite similar at 9.72±0.29 and 9.84±0.17 kcal/mol. The non-polar contributions ($\Delta E_{\text{vdW}} + \Delta G_{\text{SA}}$) for PARP-1/NMS-P118 and PARP-2/NMS-P118 (-56.70±0.12 and -55.69±0.19 kcal/mol) were almost identical with those for PARP-1/Niraparib and PARP-2/Niraparib (-53.92±0.26 and -53.72±0.41 kcal/mol). Taken together, these results demonstrate that the polar contribution has a significant impact on drug selectivity to PARP-1 and PARP-2.

To gain further insights into the vital residues in drug selectivity, per-residue decomposition...
based on the MM/GBSA method was employed to assess residue contributions to the binding of
the protein-ligand complexes. Per-residue energy differences between Niraparib and NMS-P118
systems ($\Delta \Delta G = \Delta G_{\text{Niraparib}} - \Delta G_{\text{NMS-P118}}$) were plotted to identify the key residues. Negative values
represent the residues of Niraparib formed stronger interactions with the protein than those of
NMS-P118, whereas positive values indicated quite the opposite, namely, that the residues of
Niraparib formed weaker interactions with the protein than those of NMS-P118. As shown in
Figure 7A, the differences of $\Delta \Delta G$ between PARP-1/NMS-P118 and PARP-1/Niraparib were quite
small with $\Delta \Delta G$ less than 0.5 kcal/mol. Alignment of the representative structures of PARP-
1/NMS-P118 and PARP-1/Niraparib were highly similar (Figure 7B). However, the residues of
Ser-328, Gln-322, Glu-335, and Tyr-455 formed significantly stronger interactions with Niraparib
than with NMS-P118 in PARP-2 (Figure 7C). Notably, the key residues of Ser-328, Gln-322 and
Glu-335 were located in the helix $\alpha F$, which exhibited amplified fluctuations in RMSF analysis.
This may be due to the fact that the distinctive flexibility of the helix $\alpha F$ in PARP-2 bound to
selective PARP-1 inhibitors induced energetic redistributions.

Evaluation of the stability of the simulated complexes from aMD simulations
To explore the conformational behaviors in greater detail, aMD simulations were first employed.
Thereafter, the RMSDs of C$_{\alpha}$ atoms and ligand heavy atoms were monitored. As shown in Figure
8, the RMSD values of C$_{\alpha}$ atoms and ligand heavy atoms for each complex reached equilibrium
after 120-200 ns aMD simulations, suggesting that simulated complexes became dynamically
stable through 800 ns aMD simulations. Interestingly, the fluctuations of selective PARP-1
inhibitor NMS-P118 bound to PARP-1 were much smaller than when bound to PARP-2. In
contrast, the fluctuations of non-selective drug Niraparib were similar in both PARP-1 and PARP-
2. A comparison of these results revealed that the selective PARP-1 inhibitor allowed for larger
protein conformational changes of PARP-2. These findings were corroborated by the DCC
analysis, which further revealed that the red and blue regions in PARP-2/NMS-P118 were both
larger and more intense than those in PARP-1/NMS-P118, while those for PARP-1 and PARP-2
bound to Niraparib were quite similar (Figure 9).

Based on the above findings, PCA was used to identify the various protein conformations obtained during the aMD simulations. As shown in Figure 10, the protein conformations of for each complex was characterized by dynamic fluctuations during 800 ns aMD simulations. Similar with the results from classical MD simulations, the conformational distributions of PARP-1/NMS-P118 were remarkably different from those of PARP-2/NMS-P118 (Figure 10A-B). Meanwhile, those for PARP-1/Niraparib and PARP-2/Niraparib were also different (Figure 10C-D). Compared to the PARP-1/NMS-P118 complex, the PARP-2/NMS-P118 complex exhibited more structural clusters and a wider range of conformational distributions (Figure 10A-B). However, the conformational distributions for Niraparib bound to PARP-1 and PARP-2 had a somewhat similar range (Figure 10C-D), suggesting that the selective PARP-1 inhibitors could stabilize the protein conformation of PARP-1. These results were in agreement with the RMSDs, DCC and PCA analyses from the classical MD simulations.

The FEL was employed to further demonstrate the relationship between the changes of conformation and energy (Figure 11). Generally, more energy wells (dark blue regions) represent greater conformational changes of the protein during aMD simulation (Han et al. 2019; Miao et al. 2014a). As shown in Figure 11A, only a deep energy well for NMS-P118 bound to PARP-1 was observed throughout the whole 800 ns aMD simulation. In contrast, two major deep energy wells with a much wider range of distributions were observed for the complex of PARP-1/NMS-P118 (Figure 11B). Nevertheless, those for Niraparib bound to PARP-1 and PARP-2 showed a similar range of distributions and both were confined to a single deep energy. These results highlight the unstable nature of PARP-2 bound to selective PARP-1 inhibitor NMS-P118.

**Discussion**

PARP-1 inhibitors have been widely studied as potential cancer therapeutics for breast and ovarian cancers (Min & Im 2020). The reported clinical candidates and preclinical PARP-1 inhibitors were designed with the purpose of imitating the nicotinamide portion of nicotinamide adenine
dinucleotide (NAD$^+$), with which they compete for the corresponding PARP-1 binding site. A number of recent studies have indicated that due to their high sequence and structural similarity (Figure 1A-C), non-selective PARPs drugs may result in potentially undesirable side effects, especially between PARP-1 and PARP-2 (Eltze et al. 2008; Fatima et al. 2014; Papeo et al. 2015). In this aspect, the ideal drug candidate should be a highly selective PARP-1 inhibitor with greater subtype specificity. Until now, only a few highly selective PARP-1 inhibitors have been reported. However, even fewer computational modeling researches have been conducted to elucidate their underlying selective mechanisms.

In the present study, a comprehensive molecular computational method was employed to demonstrate the selective mechanisms via two representative inhibitors (NMS-P118, Niraparib) with different selectivity to PARP-1 and PARP-2 (Figure 1D-E). Initially, molecular docking was applied to predict the complex of PARP-2/Niraparib. To examine the prediction accuracy, the predicted and the crystal structures were aligned. The RMSDs between the predict pose (PARP-2/Niraparib) and the crystal structure (PARP-1/Niraparib) were highly similar, a finding that was consistent with the results observed by alignment of crystal structures of NMS-P118 bound to PARP-1 and PARP-2 (Figure 2). Based on the above findings, these structures were employed to further explore the dynamic behavior via classical MD simulations and aMD simulations. Classical MD simulations in conjunction with the RMSD, PCA, and DCC analyses provided compelling evidence that the conformation fluctuations were different for PARP-2 bound to selective PARP-1 inhibitors and PARP-2 bound to non-selective inhibitor (Figure 3-5). Further RMSF analysis revealed that the major structural variations were the conformational changes of the helix $\alpha_F$, which may account for drug selectivity (Figure 6). According to the binding free energy calculations, the polar contributions had an obvious impact on drug selectivity (Table 1). Per-residue decomposition analysis further revealed that drug selectivity was primarily controlled by the residues of Ser-328, Gln-322, Glu-335, and Tyr-455, most of which are located in the helix $\alpha_F$ (Figure 7).

As there are possible energy barriers between various meta-stable states, the classical MD
simulations may still not be sufficient to sample the possible conformations (Hamelberg et al. 2004; Miao et al. 2014a). Therefore, an enhanced sampling technique that can sample the protein conformation at various meta-stable states is still required. Most of enhanced sampling techniques often require expert knowledge of the studied complexes, as these techniques require reaction coordinates. This limitation is overcome by the aMD simulations, which can explore the conformational behavior of the biomacromolecule without this requirement (Hamelberg et al. 2004; Miao et al. 2014a). Therefore, within the framework of this study, aMD simulation was employed to further sample the possible conformational ensembles. The results of RMSD, PCA, DCC analyses from aMD simulations indicated that the selective PAPR-1 inhibitor NMS-P118 may significantly disrupt the stability of the PARP-2 protein, not the non-selective drug Niraparib, a finding that was consistent with the results from classical MD simulations (Figure 8-10). The FEL analysis further demonstrated the unstable nature of PAPR-2 bound to the selective PAPR-1 inhibitors NMS-P118 (Figure 11). The preferential binding of NMS-P118 to PARP-1 takes precedence over PARP-2, resulting in a better inhibitory effect of PARP-1 than PARP-2, and greater PARP-1 selectivity. In summary, more selective PARP-1 inhibitors may be required to evaluate the above findings via molecular modeling, which might help facilitate the rational design of high selective PARP-1 inhibitors.

Conclusions

Multiple computational techniques were employed to conduct an exploration of the selective mechanisms of inhibitors underlying PARP-1 and PARP-2. The results from classical MD simulations offered compelling evidence that preferential NMS-P118 binding to PARP-1 over PARP-2 was controlled by the protein conformational changes of helix αF, which lead to decreased polar contributions. These findings were further corroborated by the RMSDs, DCC, PCA analyses from aMD simulations. FEL results from aMD simulations further suggested that PARP-2 bound to the selective PARP-1 inhibitor NMS-P118, but not the non-selective drug Niraparib, underwent large conformational changes. Taken together, these results may prove conducive to the design of
more selective PAPR-1 inhibitors with fewer potential side effects.

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province of China (LY20H160011).

Conflicts of Interest

The authors declare that they have no competing interests.

References

Begg CB, Haile RW, Borg A, Malone KE, Concannon P, Thomas DC, Langholz B, Bernstein L, Olsen JH, Lynch CF, Anton-Culver H, Capanu M, Liang X, Hummer AJ, Sima C, and Bernstein JL. 2008. Variation of breast cancer risk among BRCA1/2 carriers. *JAMA* 299:194-201. 10.1001/jama.2007.55-a

Dolinsky TJ, Nielsen JE, McCammon JA, and Baker NA. 2004. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res* 32:W665-667. 10.1093/nar/gkh381

Eltze T, Boer R, Wagner T, Weinbrenner S, McDonald MC, Thiemermann C, Burkle A, and Klein T. 2008. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors. *Mol Pharmacol* 74:1587-1598. 10.1124/mol.108.048751

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, and Pedersen LG. 1995. A smooth particle mesh Ewald method. *The Journal of chemical physics* 103:8577-8593.

Farres J, Martin-Caballero J, Martinez C, Lozano JJ, Llacuna L, Ampurdanes C, Ruiz-Herguido C, Dantzer F, Schreiber V, Villunger A, Bigas A, and Yelamos J. 2013. Parp-2 is required to maintain hematopoiesis following sublethal gamma-irradiation in mice. *Blood* 122:44-54. 10.1182/blood-2012-12-472845

Fatima S, Jatavath MB, Bathini R, Sivan SK, and Manga V. 2014. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. *J Recept Signal Transduct Res* 34:417-430. 10.3109/10799893.2014.917323

Gunderson CC, and Moore KN. 2015. Olaparib: an oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. *Future Oncol* 11:747-757. 10.2217/fon.14.313

Hamelberg D, Mongan J, and McCammon JAJTJoep. 2004. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. 120:11919-11929.

Han Y, Wu Y, Xu Y, Guo W, Zhang N, and Wang X. 2019. Molecular mechanism of point mutation-induced Monopolar spindle 1 (Mps1/TTK) inhibitor resistance revealed by a comprehensive molecular modeling study. *PeerJ* 7:e6299. 10.7717/peerj.6299

Hou T, Wang J, Li Y, and Wang W. 2011. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations.
Ison G, Howie LJ, Amiri-Kordestani L, Zhang L, Tang S, Sridhara R, Pierre V, Charlab R, Ramamoorthy A, Song P, Li F, Yu J, Manheng W, Palmby TR, Ghosh S, Horne HN, Lee EY, Philip R, Dave K, Chen XH, Kelly SL, Janoria KG, Banerjee A, Eradiri O, Dinin J, Goldberg KB, Pierce WF, Ibrahim A, Kluetz PG, Blumenthal GM, Beaver JA, and Pazdur R. 2018. FDA Approval Summary: Niraparib for the Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to Platinum-Based Chemotherapy. *Clin Cancer Res* 24:4066-4071. 10.1158/1078-0432.CCR-18-0042

Izaguirre JA, Catarello DP, Wozniak JM, and Skeel RD. 2001. Langevin stabilization of molecular dynamics. *The Journal of chemical physics* 114:2090-2098.

Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, and Begum R. 2016. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. *Cell Prolif* 49:421-437. 10.1111/cpr.12268

Kim DS, Challa S, Jones A, and Kraus WL. 2020. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. *Genes Dev* 34:302-320. 10.1101/gad.334433.119

Krautler V, Van Gunsteren WF, and Hunenberger PH. 2001. A fast SHAKE: Algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. *Journal of Computational Chemistry* 22:501-508. Doi 10.1002/1096-987x(20010415)22:5<501::Aid-Jcc1021>3.0.Co;2-V

Lin J, Yang X, and Zhao H. 2019. BRCA Mutations and Homologous Recombination Repair Deficiency in Treatment With Niraparib Combined With Pembrolizumab. *JAMA Oncol.* 10.1001/jamaoncol.2019.4595

Lin KY, and Kraus WL. 2017. PARP Inhibitors for Cancer Therapy. *Cell* 169:183. 10.1016/j.cell.2017.03.034

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling CJ, and computation. 2015. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. 11:3696-3713.

Mashiko TJ, Japan. 2018. Principal Component Analysis for Molecular Dynamics Simulation of the Crystal Phase Transition. 17:196-198.

McCann KE. 2019. Advances in the use of PARP inhibitors for BRCA1/2-associated breast cancer: talazoparib. *Future Oncol* 15:1707-1715. 10.2217/fon-2018-0751

Miao Y, Nichols SE, and McCammon JA. 2014a. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. *Phys Chem Chem Phys* 16:6398-6406. 10.1039/c3cp53962h

Miao Y, Sinko W, Pierce L, Bucher D, Walker RC, and McCammon JA. 2014b. Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation. *J Chem Theory Comput* 10:2677-2689. 10.1021/ct500909q

Min A, and Im SA. 2020. PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation. *Cancers (Basel)* 12. 10.3390/cancers12020394

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, and Olson AJ. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *Journal of computational chemistry* 30:2785-2791. 10.1002/jcc.21256

Navarro J, Gozalbo-Lopez B, Mendez AC, Dantzer F, Schreiber V, Martinez C, Arana DM, Farres J, Revilla-
Nuin B, Bueno MF, Ampurdanes C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, and Yelamos J. 2017. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. *Sci Rep* 7:41962. 10.1038/srep41962

Onufriev A, Bashford D, and David A. 2000. Modification of the generalized Born model suitable for macromolecules. *J Phys Chem* 104:3712-3720.

Papeo G, Posteri H, Borghi D, Busel AA, Caprera F, Casale E, Ciomei M, Cirla A, Corti E, D’Anello M, Fasolini M, Forte B, Galvani A, Isacchi A, Khvat A, Krasavin MY, Lupi R, Orsini P, Perego R, Pesenti E, Pezzetta D, Rainoldi S, Riccardi-Sirtori F, Scolaro A, Sola F, Zuccotto F, Felder ER, Donati D, and Montagnoli A. 2015. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoxindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. *J Med Chem* 58:6875-6898. 10.1021/acs.jmedchem.5b00680

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and Ferrin TE. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* 25:1605-1612. 10.1002/jcc.20084

Pfeffer CM, Ho BN, and Singh ATK. 2017. The Evolution, Functions and Applications of the Breast Cancer Genes BRCA1 and BRCA2. *Cancer Genomics Proteomics* 14:293-298. 10.21873/cgp.20040

Praprotnik M, Delle Site L, and Kremer K. 2005. Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly. 123:224106.

Roe DR, and Cheatham TE, 3rd. 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. *J Chem Theory Comput* 9:3084-3095. 10.1021/ct400341p

Siegel RL, Miller KD, and Jemal A. 2018. Cancer statistics, 2018. *CA Cancer J Clin* 68:7-30. 10.3322/caac.21442

Sittel F, Filk T, and Stock G. 2017. Principal component analysis on a torus: Theory and application to protein dynamics. 147:244101.

Skjaerven L, Yao XQ, Scarabelli G, and Grant BJ. 2014. Integrating protein structural dynamics and evolutionary analysis with Bio3D. *BMC Bioinformatics* 15:399. 10.1186/s12859-014-0399-6

Thorsell AG, Ekblad T, Karlberg T, Low M, Pinto AF, Tresaugues L, Moche M, Cohen MS, and Schuler H. 2017. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. *J Med Chem* 60:1262-1271. 10.1021/acs.jmedchem.6b00990

Vassetti D, Pagliai M, Procacci PJ, and computation. 2019. Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. 15:1983-1995.

Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, and Hou T. 2019a. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. *Chem Rev* 119:9478-9508. 10.1021/acs.chemrev.9b00055

Wang J, Cieplak P, and Kollman PA. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? 21:1049-1074.

Wang Y, Luo W, and Wang Y. 2019b. PARP-1 and its associated nucleases in DNA damage response. *DNA Repair (Amst)* 81:102651. 10.1016/j.dnarep.2019.102651
Yelamos J, Farres J, Llacuna L, Ampurdanes C, and Martin-Caballero J. 2011. PARP-1 and PARP-2: New players in tumour development. *Am J Cancer Res* 1:328-346.
Table 1 (on next page)

Binding free energies of NMS-P118 and Niraparib in PARP-1 and PARP-2 (kcal/mol)
Table 1. Binding free energies of NMS-P118 and Niraparib in PARP-1 and PARP-2 (kcal/mol)

| Ligand   | NMS-P118         | Niraparib         |
|----------|------------------|-------------------|
|          | PARP-1 | PARP-2 | PARP-1 | PARP-2 | PARP-1 | PARP-2 |
| Protein  |         |        |         |        |         |        |
| Δ$E_{vdW}$ | -50.94±0.14 | -49.87±0.12 | -48.65±0.16 | -48.46±0.14 |
| Δ$E_{elec}$ | -85.06±0.70 | -54.88±0.53 | -116.24±0.91 | -86.98±1.05 |
| Δ$G_{GB}$  | 95.71±0.68  | 74.17±0.52  | 125.96±0.78  | 96.82±0.89  |
| Δ$G_{SA}$  | -5.76±0.01  | -5.82±0.01  | -5.27±0.01  | -5.26±0.01  |
| Δ$E_{non-polar}$ | -56.70±0.12 | -55.69±0.19 | -53.92±0.26 | -53.72±0.41 |
| Δ$E_{polar}$ | 10.65±0.34  | 19.29±0.16  | 9.72±0.29  | 9.84±0.17  |
| Δ$G_{bind}$ | -46.06±0.15 | -36.40±0.14 | -44.35±0.22 | -43.89±0.24 |

Δ$E_{vdW}$: Van der Waals energy; Δ$E_{elec}$: Electrostatic energy; Δ$G_{GB}$: Electrostatic contribution to solvation; Δ$G_{SA}$: Non-polar contribution to solvation; Δ$E_{non-polar}$: Non-polar interaction; Δ$E_{polar}$: polar interaction; Δ$G_{bind}$: Binding free energy;
Figure 1

Alignment of the crystal structures of PARP-1 and PARP-2, and representative inhibitors.

(A) Overview of the crystal structures of PARP-1 (magenta, PDB code: 5A00) and PARP-2 (green, PDB code: 4ZZY), the binding pocket is colored blue. (B) Close up view of the active site of PARP-1, the residues of Glu-988 is vital for catalysis. (C) Close up view of the active site of PARP-2, the residues of Glu-558 is vital for catalysis. (D) Chemical structure of NMS-P118. (E) Chemical structure of Niraparib.
A: Helical domain and ART domain

B: PARP-1 and PARP-2 residues

C: PARP-1 and PARP-2 residues

D: NMS-P118

E: Niraparib

NMS-P118:
- PARP-1 (K_D = 9 nM)
- PARP-2 (K_D = 1390 nM)

Niraparib:
- PARP-1 (IC_{50} = 3.8 nM)
- PARP-2 (IC_{50} = 2.1 nM)
Figure 2

Validation of modeling results.

(A) Alignment of the crystal structures of PARP-1/NMS-P118 and PARP-2/NMS-P118. (B) Alignment of the crystal structure of PARP-1/Niraparib and the modeled structure of PARP-2/Niraparib.
Figure 3

RMSD values of the protein backbones atoms and ligand heavy atoms from the 800 ns classical MD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 4

The top two ranked principal components (PC1, PC2) are plotted against each other from the 800 ns classical MD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 5

DCC analysis from the 800 ns classical MD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 6

RMSF analysis from the 800 ns classical MD simulations.

(A) Alignment of RMSF of PARP-1/NMS-P118 and PARP-1/Niraparib. (B) Alignment of RMSF of PARP-2/NMS-P118 and PARP-2/Niraparib.
Figure 7

Energy difference in per-residue contributions between Niraparib and NMS-P118.

(A) The energy differences between PARP-1/NMS-P118 (green) and PARP-1/Niraparib (gray).

(B) Alignment of representative structures of PARP-1/NMS-P118 and PARP-1/Niraparib. (C) The energy differences between PARP-2/NMS-P118 and PARP-2/Niraparib. (D) Alignment of representative structures of PARP-2/NMS-P118 (green) and PARP-2/Niraparib (gray).
Figure 8

RMSD values of the protein backbones atoms and ligand heavy atoms from the 800 ns aMD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 9

DCC analysis from the 800 ns aMD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 10

The top two ranked principal components (PC1, PC2) are plotted against each other from the 800 ns aMD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.
Figure 11

FEL analysis from the 800 ns aMD simulations.

(A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.