IκB-α: At the crossroad between oncogenic and
tumor-suppressive signals (Review)

ALESSANDRO MOROTTI, SABRINA CRIVELLARO, CRISTINA PANUZZO,
GIOVANNA CARRA, ANGELO GUERRASIO and GIUSEPPE SAGLIO

Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy

Received November 23, 2015; Accepted August 19, 2016

DOI: 10.3892/ol.2016.5465

Abstract. Nuclear factor κB (NF-κB) is an essential component of tumorigenesis and resistance to cancer treatments. NFκB inhibitor α (IκB-α) acts as a negative regulator of the classical NF-κB pathway through its ability to maintain the presence of NF-κB in the cytoplasm. However, IκB-α is also able to form a complex with tumor protein p53, promoting its inactivation. Recently, we demonstrated that IκB-α is able to mediate p53 nuclear exclusion and inactivation in chronic myeloid leukemia, indicating that IκB-α can modulate either oncogenic or tumor-suppressive functions, with important implications for cancer treatment. The present review describes the role of IκB-α in cancer pathogenesis, with particular attention to hematological cancers, and highlights the involvement of IκB-α in the regulation of p53 tumor-suppressive functions.

Contents

1. Introduction
2. IκB proteins
3. IκB-α-knockout murine models
4. IκB-α involvement in cancer from a genetic perspective
5. NF-κB/IκB-α pathway in cancer
6. IκB-α expression pattern in CML
7. Discussion

1. Introduction

Nuclear factor κB (NF-κB) proteins comprise a family of transcription factors that includes RelA (also known as p65), RelB, c-Rel, p50 (which originates from the p105 precursor) and p52 (which originates from the p100 precursor) (1,2). NF-κB transcription factors have essential roles in numerous physiological and pathological processes, which have been extensively reviewed (3-5). NF-κB members form homodimeric and heterodimeric complexes that are involved in signaling through canonical and non-canonical pathways (Fig. 1). In particular, the NF-κB canonical pathway is based on the p65/p50 dimer, which is physiologically trapped in the cytoplasm by the inhibitor protein NFκB inhibitor α (IκB-α) (Fig. 1A) (6). Various stimuli, including inflammatory cytokines [e.g. tumor necrosis factor α (TNF-α)], radiation, stress signals and cell surface receptors, induce the activation of the IκB-kinase (IKK) complex, which is in turn able to promote the serine phosphorylation of IκB-α (7). This event primes IκB-α for proteasomal degradation (8) and, as a consequence, free NF-κB dimers are allowed to migrate into the nucleus, where they regulate gene expression, leading to cellular proliferation and resistance to apoptosis (1). Notably, one of the first genes to be transcribed is NFKBIA, the gene that encodes IκB-α, allowing the generation of new IκB-α protein in order to terminate NF-κB signaling through its removal from the nucleus (9,10).

The non-canonical NF-κB activation pathway promotes the activation of the p50 and p52 NF-κB subunits (Fig. 1B). This pathway, also known as the alternative pathway, requires the activation of NF-κB-inducing kinase, which is able to promote IKK-α-mediated p100 degradation (11). Similarly to IκB-α, p100 prevents the translocation of RelB/p50 and RelB/p52 into the nucleus.

These two pathways are involved in numerous biological and pathological processes, ranging from immunological responses to cancer pathogenesis. Due to the key role of NF-κB in such processes, NF-κB signaling has been extensively investigated from a therapeutic standpoint (12). In addition to the development of several selective inhibitors of the kinases involved in NF-κB signaling (e.g. IKK) (13), the most relevant and clinically used therapeutic approach is to prevent the degradation of IκB-α through proteasome inhibitors (14). In particular, bortezomib is routinely used for the treatment of multiple myeloma and other cancers, due to its ability to prevent IκB-α degradation and therefore block NF-κB signaling (15,16). Clinical experiences with proteasome inhibitors have demonstrated that IκB proteins act as essential mediators of NF-κB signaling; however, the true

Correspondence to: Dr Alessandro Morotti, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, I-10043 Orbassano, Turin, Italy
E-mail: alessandro.morotti@unito.it

Key words: IκB-α, NFKB inhibitor α, chronic myeloid leukemia, NF-κB, p53
The contribution of IκB proteins to cancer pathogenesis is far from being exhaustively investigated.

2. IκB proteins

IκB proteins comprise a family of proteins that includes the typical IκBs expressed in the cytoplasm, which undergo stimuli-dependent phosphorylation, degradation and re-synthesis; the atypical IκBs (such as B-cell CLL/lymphoma 3), which are barely expressed in basal conditions, and are upregulated upon stimulation and translocated into the nucleus; and the precursor proteins p100 and p105 (7). The typical IκBs include IκB-α, IκB-β and IκB-ε, and are characterized by the presence of six ankyrin repeats (7,17). It has been generally reported that IκB proteins mask the nuclear localization signal of NF-κB (18,19). However, a lack of IκBs only partially promotes the translocation of p65 into the nucleus, due to the compensation of other IκB proteins, suggesting that IκBs are primarily involved in the regulation and inhibition of basal NF-κB activation (20,21). IκB-α is a 37-kDa protein, which is phosphorylated in response to Toll-like receptor, TNF-α, interleukin 1 and other stimulatory signals, and is predominantly able to bind to heterodimers containing p50, p65 and c-Rel. IκB-α is the product of the NFKBIA gene at chromosome 14 (22).

3. IκB-α-knockout murine models

IκB-α-knockout mice are apparently normal at birth, but inevitably die within few days due to skin defects and extensive granulopoiesis. The bone marrow cells exhibit increased NF-κB activity, and the concurrent deletion of p50 partially rescues the phenotype (20). Similar data have been observed in a different knockout model (21). In particular, IκB-α homozygous null mice are normal at birth but die by day 10 due to the development of dry, flaky skin. In this model, the authors observed an increase in myelopoiesis in the spleen, which was considered to be of reactive origin (21).

4. IκB-α involvement in cancer from a genetic perspective

The role of IκB-α in murine models suggests that IκB-α acts as a tumor suppressor. In line with these phenotypes, IκB-α has been suggested to act as a tumor suppressor in various types of cancer. In particular, ~25% of glioblastomas harbor heterozygous NFKBIA gene deletions at chromosome 14q13 (23,24). Notably, the loss of NFKBIA has also been associated with shortened patient survival time; patients with NFKBIA loss had outcomes similar to those observed in patients with EGFR amplification, which are poorer than those observed in patients with normal levels of NFKBIA and EGFR, suggesting that NFKBIA deletion is a prognostic factor in glioblastoma (23). In Hodgkin lymphoma, NFKBIA was found to be mutated in rare cases, indicating a role of NFKBIA as a tumor suppressor in this lymphoid cancer (25). In 16% of lung cancer specimens, immunohistochemical analysis revealed an absence of IκB-α protein expression. In particular, NFKBIA appeared to be silenced in cases with wild-type epidermal growth factor receptor/wild-type RAS and in the absence of echinoderm microtubule-associated protein-like 4/anaplastic lymphoma kinase gene rearrangement (26). However, the NFKBIA gene has not been reported to be mutated/deleted in lung cancer.

5. NF-κB/IκB-α pathway in cancer

Aside from the genetic inactivation of IκB-α in some cases of Hodgkin lymphoma and glioblastoma, IκB-α has not been found to be recurrently mutated or deleted in other cancer types. However, NF-κB/IκB-α signaling has been shown to play essential roles in various types of hematological cancers, which have been extensively reviewed (27). In particular,
NF-κB was demonstrated to have a key role in acute myeloid leukemia (AML), via canonical (28-29) and non-canonical pathways (30), and via different modalities in chronic myeloid leukemia (CML) (31). In particular, during the chronic phase of CML, NF-κB was found to be active, although not as much as in AML blasts; in the blast phase of CML, NF-κB activity appeared to substantially increase, as reviewed recently (31). More recently, the IκB-α kinase, IKK-α, was revealed to be essential in CML pathogenesis, suggesting that IκB-α may also play a key role in this disease (32). The fact that NFKBIA is occasionally mutated/deleted in various cancer types, and in particular in AML/CML, while IκB-α has an essential therapeutic role when stabilized by proteasome inhibitors, suggests that IκB-α may have NF-κB-independent functions in the context of cancer.

6. IκB-α expression pattern in CML

While investigating the level of expression of IκB-α in CML samples, we discovered that, surprisingly, IκB-α is highly expressed in primary CML cells and that it retained highly expressed in primary CML cells and that it retained constitutively active due to the presence of BCR-ABL, IκB-α was revealed to be essential in CML pathogenesis, suggesting that IκB-α may also play a key role in this disease (32). The fact that NFkBIA is occasionally mutated/deleted in various cancer types, and in particular in AML/CML, while IκB-α has an essential therapeutic role when stabilized by proteasome inhibitors, suggests that IκB-α may have NF-κB-independent functions in the context of cancer.

7. Discussion

IκB-α is well-established to negatively regulate the NF-κB canonical pathway through its ability to prevent p50/p65 translocation into the nucleus (1,2). However, IκB-α is also able to constrain p53 to the cytoplasm, thereby counteracting the tumor-suppressive functions of p53 (33,37-40). IκB-α appears to act as a traffic light at the crossroads between oncogenes and tumor suppressors. Further investigations are necessary to better understand how, when and in which cellular context IκB-α is able to modulate these two opposing signals. At least in CML, where oncogenic signals are constitutively active due to the presence of BCR-ABL, IκB-α appears to be stably associated with p53, promoting its inactivation as a transcriptional factor, due to its re-localization to the cytoplasm (33). In our opinion, the IκB-α-mediated functional inactivation of p53 is a challenging opportunity for cancer therapy, particularly for cancers without effective molecularly targeted therapies. The concept of functional inactivation of wild-type tumor suppressors has been extensively studied for PTEN (41,42), and in particular in CML (43,44). While genetically mutated/deleted tumor suppressors cannot be specifically targeted, the identification of functionally inactivated tumor suppressors may offer the potential to design therapies that will reactivate them, leading to cancer-selective induction of apoptosis.

In summary, in addition to promoting the loss of p53 tumor-suppressive functions via changes in cellular compartmentalization, IκB-α may also orchestrate p53 cytoplasmic functions. Therefore, further analyses must also investigate the role of the IκB-α/p53 complex on p53 cytoplasmic functions.

Acknowledgements

The authors would like to thank members of the Professor G. Saglio laboratory for their assistance and discussions. This review was supported by the Italian Ministry of Health, Ricerca Finalizzata-Giovani Ricercatori (project code #GR-2011-02351167), awarded to Alessandro Morotti.

References

1. Perkins ND: The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer 12: 121-132, 2012.
2. Aggarwal BB: Nuclear factor-kappaB: The enemy within. Cancer Cell 6: 203-208, 2004.
3. Xia Y, Shen S and Verma IM: NF-κB, an active player in human cancers. Cancer Immunol Res 2: 823-830, 2014.
4. Bradford JW and Baldwin AS: IKK/nuclear factor-kappaB and oncogenesis: Roles in tumor-initiating cells and in the tumor microenvironment. Adv Cancer Res 121: 125-145, 2014.
5. Chatrvedi MM, Sung B, Yadav VR, Kannappan R and Aggarwal BB: NF-κB addiction and its role in cancer: ‘One size does not fit all.’ Oncogene 30: 1615-1630, 2011.
6. Hinz M and Scheidereit C: The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 15: 46-61, 2014.
7. Hinz M, Arslan ŞÇ and Scheidereit C: It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 246: 59-76, 2012.
8. Karin M: How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene 18: 6867-6874, 1999.
9. Werner SL, Barken D and Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309: 1857-1861, 2005.
10. O’Dea EL, Barken D, Peralta RQ, Tran KT, Werner SL, Kearns JD, Levchenko A and Hoffmann A: A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB activity. Mol Syst Biol 3: 111, 2007.
11. Häcker H and Karin M: Is NF-kappaB2/p100 a direct activator of programmed cell death? Cancer Cell 2: 431-433, 2002.
12. Baud V and Karin M: Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8: 33-40, 2009.
13. Suzuki J, Ogawa M, Muto S, Itai A, Isole M, Hirata Y and Nagai R: Novel IκB kinase inhibitors for treatment of nuclear factor-κB-related diseases. Expert Opin Investig Drugs 20: 395-405, 2011.
14. Sánchez-Serrano I: Success in translational research: Lessons from the development of bortezomib. Nat Rev Drug Discov 5: 107-114, 2006.
15. Li ZW, Chen H, Campbell RA, Bonavida B and Berenson JR: NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 15: 391-399, 2008.
16. Gilmore TD: Multiple myeloma: Lusting for NF-kappaB. Cancer Cell 12: 95-97, 2007.
17. Viatour P, Merville MP, Bours V and Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends Biochem Sci 30: 43-52, 2005.
by constitutive phosphorylation of the NF-κB subunit p65 at CD7/CD56-positive acute myeloid leukemias are characterized. Bosa M, Messa F, Arruga F, Catalano R, 2002.

IkappaBalpha cytoplasmic retention sequences of the subunits of NF-kappaB: A mechanism for cytoplasmic retention. Genes Dev 6: 1899-1913, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization signal of NF-kappaB B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.

IkappaBalpha interacts with the nuclear localization domain of IkappaBalpha B p65 and requires the transactivation domain to inhibit NF-kappaB B p65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992.