Toric-friendly groups
Mikhail Borovoi and Zinovy Reichstein
Toric-friendly groups
Mikhail Borovoi and Zinovy Reichstein

Let G be a connected linear algebraic group over a field k. We say that G is toric-friendly if for any field extension K/k and any maximal K-torus T in G the group $G(K)$ acts transitively on $(G/T)(K)$. Our main result is a classification of semisimple (and under certain assumptions on k, of connected) toric-friendly groups.

Introduction

Let k be a field and X be a homogeneous space of a connected linear algebraic group G defined over k. The first question one usually asks about X is whether or not it has a k-point. If the answer is “yes”, then one often wants to know whether or not the set $X(k)$ of k-points of X forms a single orbit under the group $G(k)$.

In this paper we shall focus on the case where the geometric stabilizers for the G-action on X are maximal tori of $G_k := G \times_k \overline{k}$ (here \overline{k} stands for a fixed algebraic closure of k). Such homogeneous spaces arise, in particular, in the study of the adjoint action of a connected reductive group G on its Lie algebra or of the conjugation action of G on itself; see [Colliot-Thélène et al. 2011]. It is shown in Corollary 4.6 of the same reference (see also [Kottwitz 1982, Lemma 2.1]) that every homogeneous space X of this type has a k-point, assuming that G is split and $\text{char}(k) = 0$. Therefore it is natural to ask if this point is unique up to translations by $G(k)$.

Definition 0.1. Let k be a field. We say that a connected linear k-group G is toric-friendly if for every field extension K/k the following condition is satisfied:

(*) For every maximal K-torus T of $G_k := G \times_k K$, the group $G(K)$ has only one orbit in $(G_K/T)(K)$; equivalently, the natural map $\pi : G(K) \to (G_K/T)(K)$ is surjective.
Examining the cohomology exact sequence associated to the K-subgroup T of G_K [Serre 1994, I.5.4, Proposition 36], we see that G is toric-friendly if and only if $\ker[H^1(K, T) \to H^1(K, G)] = 1$ for every field extension K/k and every maximal K-torus T of G_K.

Observe that G is toric-friendly if and only if condition (\ast) of Definition 0.1 is satisfied for all finitely generated extensions K/k.

We are interested in classifying toric-friendly groups. In Section 1 we partially reduce this problem to the case where the group is semisimple. The rest of this paper will be devoted to proving the following classification theorem for semisimple toric-friendly groups.

Main Theorem 0.2. Let k be a field. A connected semisimple k-group G is toric-friendly if and only if G is isomorphic to a direct product $\prod_i R_{F_i/k}G'_i$, where each F_i is a finite separable extension of k and each G'_i is an inner form of PGL_{n_i,F_i} for some integer n_i.

Notation. Unless otherwise specified, k will denote an arbitrary field. For any field K we denote by K_s a separable closure of K.

By a k-group we mean an affine algebraic group scheme over k, not necessarily smooth or connected. However, when talking of a reductive or semisimple k-group, we implicitly assume smoothness and connectedness.

Let S be a k-group. We denote by $H^i(k, S)$ the i-th flat cohomology set for $i = 0, 1$ [Waterhouse 1979, 17.6]. If S is abelian, we denote by $H^i(k, S)$ the i-th flat cohomology group for $i \geq 0$ [Berhuy et al. 2007, Appendix B]. There are exact sequences for flat cohomology similar to those for Galois cohomology, [Waterhouse 1979, 18.1; Berhuy et al. 2007, Appendix B]. When S is smooth, the flat cohomology $H^i(k, S)$ can be identified with Galois cohomology.

1. First reductions

Lemma 1.1. Let $1 \to U \to G \to G' \to 1$ be an exact sequence of smooth connected k-groups, where U is unipotent. We assume that U is k-split, that is, has a composition series over k whose successive quotients are isomorphic to $\mathbb{G}_{a,k}$. Then G is toric-friendly if and only if G' is toric-friendly.

Proof. Choose a field extension K/k and a maximal K-torus $T \subset G_K$. Set $T' = \varphi(T) \subset G'_K$, then T' is a maximal torus of G'_K. The map $\varphi^T : T \to T'$ is an isomorphism, because $T \cap U_K = 1$ (as U_K is unipotent). Conversely, let us start from a maximal torus T' of G'_K. The preimage

$$H = \varphi^{-1}(T') \subset G_K$$
of T' is smooth and connected, so any maximal torus T of H maps isomorphically onto T' and therefore it is maximal in G_K.

Now we have a commutative diagram

$$
\begin{array}{ccc}
H^1(K, T) & \longrightarrow & H^1(K, G) \\
\varphi^T_* & \downarrow & \varphi_* \\
H^1(K, T') & \longrightarrow & H^1(K, G')
\end{array}
$$

Since $\varphi^T : T \to T'$ is an isomorphism of tori, the left vertical arrow φ^T_* is an isomorphism of abelian groups. On the other hand, by [Sansuc 1981, Lemma 1.13], the right vertical arrow φ_* is a bijective map. We see that the top horizontal arrow in the diagram is injective if and only if the bottom horizontal arrow is injective, which proves the lemma. □

Let k be a perfect field and G be a connected k-group. Recall that over a perfect field the unipotent radical of G makes sense; that is, the “geometric” unipotent radical over an algebraic closure is defined over k, by Galois descent. We denote the unipotent radical of G by $R_u(G)$.

Corollary 1.2. Let k be a perfect field, G be a connected k-group, and $R_u(G)$ be its unipotent radical. Then G is toric-friendly if and only if the associated reductive k-group $G/R_u(G)$ is toric-friendly.

Proof. Since k is perfect, the smooth connected unipotent k-group $R_u(G)$ is k-split [Borel 1991, Theorem 15.4], and the corollary follows from Lemma 1.1. □

Let k be a field. We recall that a k-group G is called special if $H^1(K, G) = 1$ for every field extension K/k. This notion was introduced by J.-P. Serre [1958]. Semisimple special groups over an algebraically closed field were classified by A. Grothendieck [1958]; we shall use his classification later on.

Recall that a k-torus T is called quasitrivial, if its character group $\chi(T)$ is a permutation Galois module. Split tori and, more general, quasitrivial tori are special.

Proposition 1.3. Let $1 \to C \to G \xrightarrow{\varphi} G' \to 1$ be an exact sequence of k-groups, where G and G' are reductive, and $C \subset G$ is central, hence of multiplicative type (not necessarily connected or smooth).

(a) If G is toric-friendly, so is G'.

(b) If C is a special k-torus, then G is toric-friendly if and only if G' is toric-friendly.

Proof. Let K/k be a field extension. The map $T \mapsto T' := \varphi(T)$ is a bijection between the set of maximal K-tori $T \subset G_K$ and the set of maximal K-tori $T' \subset G'_K$.

Mikhail Borovoi and Zinovy Reichstein

For such T and $T' = \varphi(T)$ we have commutative diagrams

\[
\begin{array}{ccc}
G_K & \xrightarrow{\varphi} & G'_K \\
\downarrow{\pi} & & \downarrow{\pi'} \\
G_K/T & \xrightarrow{\varphi_*} & G'_K/T'
\end{array}
\quad \begin{array}{ccc}
G(K) & \xrightarrow{\varphi} & G'(K) \\
\downarrow{\pi} & & \downarrow{\pi'} \\
(G_K/T)(K) & \xrightarrow{\varphi_*} & (G'_K/T')(K)
\end{array}
\]

where $\varphi_* : G_K/T \sim G'_K/T'$ is an isomorphism of K-varieties, and the induced map on K-points $\varphi_* : (G_K/T)(K) \rightarrow (G'_K/T')(K)$ is a bijection. Now, if G is toric-friendly, then the map $\pi : G(K) \rightarrow (G_K/T)(K)$ is surjective, and we see from the right-hand diagram that then the map $\pi' : G'(K) \rightarrow (G'_K/T')(K)$ is surjective as well. This shows that G' is toric-friendly, thus proving (a).

To prove (b), assume that G' is toric-friendly and C is a special k-torus. Then the map $\pi' : G'(K) \rightarrow (G'_K/T')(K)$ is surjective (because G' is toric-friendly) and the map $\varphi : G(K) \rightarrow G'(K)$ is surjective (because C is special). We see from the right-hand diagram that the map $\pi : G(K) \rightarrow (G_K/T)(K)$ is surjective as well. Hence G is toric-friendly. \hfill \square

We record the following immediate corollary of Proposition 1.3(b).

Corollary 1.4. Let G be a reductive k-group. Suppose that the radical $R(G)$ is a special k-torus (in particular, this condition is satisfied if $R(G)$ is a quasitrivial k-torus). Then G is toric-friendly if and only if the semisimple group $G/R(G)$ is toric-friendly. \hfill \square

The next result follows from Corollaries 1.2 and 1.4. It partially reduces the problem of classifying toric-friendly groups G to the case where G is semisimple.

Corollary 1.5. Let k be a perfect field. Let G be a connected k-group containing a split maximal torus. Then G is toric-friendly if and only if the semisimple group $G/R(G)$ is toric-friendly. \hfill \square

The following two lemmas will be used to reduce the problem of classifying adjoint semisimple toric-friendly groups G to the case where G is an absolutely simple adjoint k-group.

Lemma 1.6. A direct product $G = G' \times_k G''$ of connected k-groups is toric-friendly if and only if both G' and G'' are toric-friendly.

Proof. Let K/k be a field extension. Let $T' \subset G'_K$ and $T'' \subset G''_K$ be maximal K-tori, then $T := T' \times_K T'' \subset G_K$ is a maximal K-torus, and every maximal K-torus
in G_K is of this form. The commutative diagram

$$
\begin{array}{ccc}
G(K) & \longrightarrow & G'(K) \times G''(K) \\
\downarrow & & \downarrow \\
(G_K/T)(K) & \longrightarrow & (G'_K/T')(K) \times (G''_K/T'')(K)
\end{array}
$$

shows that every K-point of G_K/T lifts to G if and only if every K-point of G'_K/T' lifts to G' and every K-point of G''_K/T'' lifts to G''.

Lemma 1.7. Let l/k be a finite separable field extension, G' a connected l-group, and $G = R_{l/k}G'$. Then G is toric-friendly if and only if G' is toric-friendly.

Proof. Let K/k be a field extension. Then $l \otimes_k K = L_1 \times \cdots \times L_r$, where L_i are finite separable extensions of K. It follows that $G_K = \prod_i R_{L_i/K}G_{L_i}$. Let $T \subset G_K$ be a maximal K-torus, then $T = \prod_i R_{L_i/K}T_i'$, where T_i' is a maximal L_i-torus of G_{L_i} for each i. We have

$$G(K) = G_K(K) = \left(\prod_i R_{L_i/K}G_{L_i}' \right)(K) = \prod_i G_{L_i}'(L_i) = \prod_i G'(L_i)$$

and similarly $(G_K/T)(K) = \prod_i (G'_{L_i}/T'_i)(L_i)$, yielding a commutative diagram

$$
\begin{array}{ccc}
G(K) & \longrightarrow & \prod_i G'(L_i) \\
\downarrow & & \downarrow \\
(G_K/T)(K) & \longrightarrow & \prod_i (G'_{L_i}/T'_i)(L_i)
\end{array}
$$

If G' is toric-friendly, then the right vertical arrow in the diagram is surjective, hence the left vertical arrow is surjective and G is toric-friendly.

Conversely, assume that G is toric-friendly. Let l/k be a field extension and $T' \subset G'_L$ a maximal l-torus. Set $K := l$ and $T := T'$ in the diagram above. Then we can identify L with one of L_i in the decomposition $l \otimes_k K = L_1 \times \cdots \times L_r$, say with L_1. In this way we identify G'_L with G_{L_1}' and G'_L/T' with G'_{L_1}/T'_1. Since G is toric-friendly, the left vertical arrow in the diagram is surjective, hence the right vertical arrow is also surjective. This means that the map $G'(L_i) \rightarrow (G'_{L_1}/T'_1)(L_i)$ is surjective for each i and in particular, for $i = 1$. Consequently, the map $G'(L) \rightarrow (G'_{L}/T')(L)$ is surjective, and G' is toric-friendly, as desired. \qed

2. The elementary obstruction

2.1. Let K be a field and X be a smooth geometrically integral K-variety. Write $g = \text{Gal}(K_s/K)$, where K_s is a fixed separable closure of K. Recall from [Colliot-Thélène and Sansuc 1987, Definition 2.2.1] that the **elementary obstruction** $\text{ob}(X)$...
is the class in \(\text{Ext}^1_g(K_s(X)^*/K_s^*, K_s^*) \) of the extension
\[
1 \to K_s^* \to K_s(X)^* \to K_s(X)^*/K_s^* \to 1.
\]
In particular, \(\text{ob}(X) = 0 \) if and only if this extension of \(g \)-modules splits. If \(X \) has a \(K \)-point, then \(\text{ob}(X) = 0 \) [Colliot-Thélène and Sansuc 1987, Proposition 2.2.2(a)]. Conversely, if \(Y \) is a \(T \)-torsor over \(K \) for some \(K \)-torus \(T \), and \(\text{ob}(Y) = 0 \), then \(Y \) has a \(K \)-point, by Lemma 2.1(iv) of [Borovoi et al. 2008]. However, if \(X \) is an \(H \)-torsor over \(K \) for some simply connected semisimple \(K \)-group \(H \), then \(\text{ob}(X) = 0 \) even when \(X \) has no \(K \)-points; see Lemma 2.2(viii) of that same reference. (The standing assumption in [Borovoi et al. 2008] is that \(\text{char}(K) = 0 \); however, the proofs of Lemmas 2.1(iv) and 2.2(viii) go through in arbitrary characteristic.)

The following key lemma was suggested to us by J.-L. Colliot-Thélène.

Lemma 2.2. Let \(K \) be a field, \(T \) be a \(K \)-torus, \(H \) be a simply connected semisimple \(K \)-group, \(X \) be a \(H \)-torsor over \(K \) and \(Y \) be a \(T \)-torsor over \(K \). If \(Y \) has an \(F \)-point over the function field \(F = K(X) \) of \(X \), then \(Y \) has a \(K \)-point.

Proof. Since \(H \) is simply connected, \(\text{ob}(X) = 0 \); see Section 2.1 above. Suppose \(Y \) has an \(F \)-point. This means that there exist a \(K \)-rational map \(X \to Y \). By [Wittenberg 2008, Lemma 3.1.2], if we have a \(K \)-rational map \(X \to Y \) between smooth geometrically integral \(K \)-varieties, then \(\text{ob}(X) = 0 \) implies \(\text{ob}(Y) = 0 \). Since \(T \) is a \(K \)-torus, if \(\text{ob}(Y) = 0 \), then \(Y(K) \neq \emptyset \); see Section 2.1 above. Thus in our situation \(Y \) has a \(K \)-point, as claimed. \(\square \)

Lemma 2.3. Let \(k \) be a field. Assume we have a commutative diagram of \(k \)-groups

\[
\begin{array}{ccc}
S & \to & T \\
\downarrow & & \downarrow \\
H & \to & G
\end{array}
\]

where \(G \) is a smooth connected \(k \)-group, the vertical map \(T \to G \) is the inclusion of a maximal \(k \)-torus \(T \) into \(G \), and \(H \) is semisimple and simply connected. If there exists a field extension \(K/k \) such that the map
\[
H^1(K, S) \to H^1(K, T)
\]
is nontrivial, then \(G \) is not toric-friendly.

Proof. Choose \(K \) and \(s \in H^1(K, S) \) such that the image \(t \in H^1(K, T) \) of \(s \) in \(H^1(K, T) \) is nontrivial. Let \(h \in H^1(K, H) \) be the image of \(s \in H^1(K, S) \) in \(H^1(K, H) \), and let \(g \in H^1(K, G) \) be the image of \(t \) (and of \(h \)) in \(H^1(K, G) \), as
shown in the commutative diagram below:

\[
\begin{array}{ccc}
H^1(K, S) & \longrightarrow & H^1(K, T) \\
\downarrow & & \downarrow \\
H^1(K, H) & \longrightarrow & H^1(K, G)
\end{array}
\]

Let \(X \) be an \(H \)-torsor over \(K \) representing \(h \) and let \(F = K(X) \) be the function field of \(X \). We denote by \(h_F \) the image of \(h \) in \(H^1(F, H) \), and similarly we define \(s_F, t_F, \) and \(g_F \). Clearly \(X \) has an \(F \)-point, hence \(h_F = 1 \) in \(H^1(F, H) \) and therefore \(g_F = 1 \) in \(H^1(F, G) \). On the other hand, by Lemma 2.2, \(t_F \neq 1 \). We conclude that the kernel of the natural map \(H^1(F, T) \to H^1(F, G) \) contains \(t_F \neq 1 \) and hence, is nontrivial. This implies that \(G \) is not toric-friendly. \(\square \)

2.4. Let \(G \) be a reductive \(k \)-group. Let \(G^{ss} \) be the derived group of \(G \) (it is semisimple), and let \(G^{sc} \) be the universal cover of \(G^{ss} \) (it is semisimple and simply connected). Consider the composed homomorphism \(f : G^{sc} \to G \).

Let \(K/k \) be a field extension. There is a canonical bijective correspondence \(T \leftrightarrow T^{sc} \) between the set of maximal \(K \)-tori \(T \subset G_K \) and the set of maximal \(K \)-tori \(T^{sc} \subset G^{sc} \). Starting from a maximal \(K \)-torus \(T \subset G_K \), we define a maximal \(K \)-torus \(T^{sc} := f^{-1}(T) \subset G^{sc}_K \). Conversely, starting from a maximal \(K \)-torus \(T^{sc} \subset G^{sc}_K \), we define a maximal \(K \)-torus \(T := f(T^{sc}) \cdot R(G)_K \subset G_K \), where \(R(G) \) is the radical of \(G \).

Proposition 2.5. Let \(G \) be a reductive \(k \)-group. Let \(G^{sc} \) and \(f : G^{sc} \to G \) be as in Section 2.4 above. Let \(K/k \) be a field extension, \(T \subset G_K \) be a maximal \(K \)-torus of \(G_K \), and set \(T^{sc} = f^{-1}(T) \subset G^{sc}_K \) as above. If the natural map \(H^1(K, T^{sc}) \to H^1(K, T) \) is nontrivial, then \(G \) is not toric-friendly.

Proof. Immediate from Lemma 2.3. \(\square \)

Proposition 2.6. Let \(G \) be a semisimple \(k \)-group, \(f : G^{sc} \to G \) be the universal covering and \(C := \ker(f) \). Then the following conditions are equivalent:

(a) \(G \) is toric-friendly.

(b) The map \(H^1(K, T^{sc}) \to H^1(K, T) \) is trivial (identically zero) for every field extension \(K/k \) and every maximal \(K \)-torus \(T^{sc} \) of \(G^{sc} \). Here \(T := f(T^{sc}) \).

(c) The map \(H^1(K, C) \to H^1(K, T^{sc}) \) is surjective for every field extension \(K/k \) and every maximal \(K \)-torus \(T^{sc} \) of \(G^{sc} \).

(d) The connecting homomorphism \(\partial_T : H^1(K, T) \to H^2(K, C) \) is injective for every field extension \(K/k \) and every maximal \(K \)-torus \(T \) of \(G \).

(e) The natural map \(H^1(K, T) \to H^1(K, G) \) is injective for every field extension \(K/k \) and every maximal \(K \)-torus \(T \) of \(G \).
Proof. (a) ⇒ (b) by Proposition 2.5. Examining the cohomology sequence

\[H^1(K, C) \rightarrow H^1(K, T^{sc}) \rightarrow H^1(K, T) \rightarrow H^2(K, C) \]

associated to the exact sequence \(1 \rightarrow C \rightarrow T^{sc} \rightarrow T \rightarrow 1 \) of \(k \)-groups, we see that (b), (c) and (d) are equivalent.

(d) ⇒ (e): The diagram

\[
\begin{array}{cccccc}
1 & \rightarrow & C & \rightarrow & T^{sc} & \rightarrow & T & \rightarrow & 1 \\
& & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & C & \rightarrow & G^{sc} & \rightarrow & G & \rightarrow & 1
\end{array}
\]

of \(K \)-groups induces compatible connecting morphisms

\[
\begin{array}{ccc}
H^1(K, T) & \rightarrow & H^2(K, C) \\
\downarrow & & \downarrow \\
H^1(K, G) & \rightarrow & H^2(K, C)
\end{array}
\]

Suppose \(\alpha, \beta \in H^1(K, T) \) map to the same element in \(H^1(K, G) \). Then the diagram above shows that \(\partial_T(\alpha) = \partial_T(\beta) \) in \(H^2(K, C) \). Part (d) now tells us that \(\alpha = \beta \).

(e) ⇒ (a) is obvious, since (a) is equivalent to the assertion that \(H^1(K, T) \rightarrow H^1(K, G) \) has trivial kernel for every \(K \) and \(T \); see Definition 0.1. □

Corollary 2.7. With the assumptions and notation of Proposition 2.6, if \(G \) is toric-friendly and quasisplit, then

(a) the map \(H^1(K, G^{sc}) \rightarrow H^1(K, G) \) is trivial for every \(K/k \),
(b) the map \(H^1(K, C) \rightarrow H^1(K, G^{sc}) \) is surjective for every \(K/k \),
(c) the connecting map \(\partial_G : H^1(K, G) \rightarrow H^2(K, C) \) has trivial kernel for every \(K/k \).

Proof. Examining the cohomology sequence

\[H^1(K, C) \rightarrow H^1(K, G^{sc}) \rightarrow H^1(K, G) \rightarrow H^2(K, C) \]

associated to the exact sequence \(1 \rightarrow C \rightarrow G^{sc} \rightarrow G \rightarrow 1 \), we see that (a), (b) and (c) are equivalent.

To prove (a), recall that since \(G_K \) is quasisplit, by a theorem of Steinberg [1965, Theorem 1.8] every \(x^{sc} \in H^1(K, G^{sc}) \) lies in the image of the map \(H^1(K, T^{sc}) \rightarrow \)
$H^1(K, G^{sc})$ for some maximal K-torus T^{sc} of G^{sc}. Since G is toric-friendly, by Proposition 2.6 the map $H^1(K, T^{sc}) \to H^1(K, T)$ is trivial. The commutative diagram

$$
\begin{array}{ccc}
H^1(K, T^{sc}) & \longrightarrow & H^1(K, T) \\
\downarrow & & \downarrow \\
H^1(K, G^{sc}) & \longrightarrow & H^1(K, G)
\end{array}
$$

now shows that the image of x^{sc} in $H^1(K, G)$ is 1. Thus the map $H^1(K, G^{sc}) \to H^1(K, G)$ is trivial. □

Theorem 2.8. Let G be a split semisimple k-group and $f : G^{sc} \to G$ be its universal covering map. If G is toric-friendly, then G^{sc} is special.

Proof. Let T^{sc} be a split maximal torus of G^{sc}. Recall that T^{sc} is special (as is any split torus). Set $C = \ker f$, then $C \subset T^{sc}$. For any field extension K/k, the map $H^1(K, C) \to H^1(K, G^{sc})$ factors through $H^1(K, T^{sc}) = 1$ and hence is trivial. By Corollary 2.7(b) this map is also surjective. This shows that $H^1(K, G^{sc}) = 1$ for every K/k, that is, G^{sc} is special. □

Remark 2.9. Our proof of Theorem 2.8 goes through for any (not necessarily split) semisimple k-group G, as long as G^{sc} contains a special maximal k-torus T^{sc}. In particular, Theorem 2.8 remains valid for any quasisplit semisimple k-group G, in view of Lemma 2.10 below. This lemma is a special case of [Colliot-Thélène et al. 2004, Lemma 5.6]; however, for the sake of completeness we supply a short self-contained proof.

Lemma 2.10. Let G be a semisimple, simply connected, quasisplit k-group over a field k. Let $B \subset G$ be a Borel subgroup defined over k, and let $T \subset B \subset G$ be a maximal k-torus of G contained in B. Then T is a quasitrivial k-torus.

Proof. We write \bar{k} for a fixed algebraic closure of k. Let $X^\vee(T)$ denote the group of cocharacters of T. Let $R^\vee = R^\vee(G_{\bar{k}}, T_{\bar{k}}) \subset X^\vee(T)$ denote the coroot system of $G_{\bar{k}}$ with respect to $T_{\bar{k}}$, and let $\Pi^\vee \subset R^\vee$ denote the basis of R^\vee corresponding to B. The Galois group $\text{Gal}(k_s/k)$ acts on $X^\vee(T)$. Since T, G, and B are defined over k, the subsets R^\vee and Π^\vee of $X^\vee(T)$ are invariant under this action. Since G is simply connected, Π^\vee is a \mathbb{Z}-basis of $X^\vee(T)$. Thus $\text{Gal}(k_s/k)$ permutes the \mathbb{Z}-basis Π^\vee of $X^\vee(T)$; in other words, T is a quasitrivial torus. □

Remark 2.11. A similar assertion for adjoint quasisplit groups was proved by G. Prasad [1989, Proof of Lemma 2.0].

3. **Examples in type A**

Let k be a field and A a central simple k-algebra of dimension n^2. We write $GL_{1,A}$ for the k-group with $GL_{1,A}(R) = (A \otimes_k R)^*$ for any unital commutative k-algebra.
Let K be a field. Recall that an n-dimensional commutative étale K-algebra is a finite product $E = \prod_i L_i$, where each L_i is a finite separable field extension of K and $\sum_i [L_i : K] = n$. For such $E = \prod_i L_i$ we define a K-torus $R_{E/K G_m, E} := \prod_i R_{L_i/K G_m, L_i}$, then $(R_{E/K G_m, E})(K) = E^*$. Clearly the K-torus $R_{E/K G_m, E}$ is quasitrivial.

Proposition 3.1. Let k be a field, and let A/k be a central simple k-algebra of dimension n^2.

(a) The k-group $G = \text{GL}_{1,A}$ is toric-friendly.

(b) The k-group $\text{PGL}_{1,A} := \text{GL}_{1,A} / \mathbb{G}_m,k$ is toric-friendly.

(c) In particular, $\text{GL}_{n,k}$ and $\text{PGL}_{n,k}$ are toric-friendly.

Proof. (a) Let K/k be a field extension and let $T \subset G_K = \text{GL}_{1,A \otimes k K}$ be a maximal K-torus. Let E be the centralizer of T in $A \otimes k K$. An easy calculation over a separable closure K_s of K shows that E is an n-dimensional commutative étale K-subalgebra of $A \otimes k K$ and that $T = R_{E/K G_m, E}$. It follows that T is quasitrivial, hence special. Since all maximal K-tori $T \subset G_K$ are special, G is toric-friendly.

(b) follows from (a) and Corollary 1.4. To deduce (c) from (a) and (b), set $A = M_n(k)$ (the matrix algebra). □

We now come to the main result of this section, which asserts that a toric-friendly semisimple groups of type A is necessarily an adjoint group.

Proposition 3.2. Let k be a field. Consider a k-group $G = (\text{SL}_{n_1} \times \cdots \times \text{SL}_{n_r}) / C$, where $C \subset \mu := \mu_{n_1} \times \cdots \times \mu_{n_r}$ is a central subgroup of $G^{\text{sc}} = \text{SL}_{n_1} \times \cdots \times \text{SL}_{n_r}$, not necessarily smooth. If $C \neq \mu$, then G is not toric-friendly.

Before proceeding with the proof, we fix some notation. Let L/K be a finite separable field extension of degree n. Set

$$R^1_{L/K}(\mathbb{G}_m) := \ker[N_{L/K} : R_{L/K \mathbb{G}_m, L} \rightarrow \mathbb{G}_m,K],$$

where $N_{L/K}$ is the norm map. Clearly $R^1_{L/K}(\mathbb{G}_m)$ can be embedded into $\text{SL}_{n,K}$ as a maximal K-torus. The embedding $K \hookrightarrow L$ induces an embedding $\mu_{n,K} \hookrightarrow R^1_{L/K \mathbb{G}_m}$, where $n = [L : K]$.

The following two lemmas are undoubtedly known. We include short proofs below because we have not been able to find appropriate references.
Lemma 3.3. There is a commutative diagram

\[\begin{array}{c}
K^* / K^{*n} \xrightarrow{\cong} H^1(K, \mu_n) \\
\downarrow \\
K^* / N_{L/K}(L^*) \xrightarrow{\cong} H^1(K, R_{L/K}^1 \mathbb{G}_m)
\end{array} \] (1)

where the horizontal arrows are canonical isomorphisms, the right vertical arrow is induced by the embedding \(\mu_n \hookrightarrow R_{L/K}^1 \mathbb{G}_m \), and the left vertical arrow is the natural projection.

Proof. Apply the flat cohomology functor to the commutative diagram of commutative \(K \)-groups

\[\begin{array}{c}
1 \rightarrow \mu_n, K \rightarrow \mathbb{G}_{m, K} \xrightarrow{n} \mathbb{G}_{m, K} \rightarrow 1 \\
\downarrow \\
1 \rightarrow R_{L/K}^1 \mathbb{G}_m \rightarrow R_{L/K}^1 \mathbb{G}_m \xrightarrow{N_{L/K}} \mathbb{G}_{m, K} \rightarrow 1
\end{array} \]

and use Hilbert’s Theorem 90. \(\square \)

Lemma 3.4. Suppose \(r \mid n \). Then there is a commutative diagram

\[\begin{array}{c}
K^* / K^{*n} \xrightarrow{\cong} H^1(K, \mu_n) \\
\downarrow^{(n/r)_*} \\
K^* / K^{*r} \xrightarrow{\cong} H^1(K, \mu_r) ,
\end{array} \]

where the horizontal arrows are canonical isomorphisms, the right vertical arrow is induced by the homomorphism \(\mu_n \xrightarrow{n/r} \mu_r \) given by \(x \mapsto x^{n/r} \), and the left vertical arrow is the natural projection.

Proof. Similar to that of Lemma 3.3, using the commutative diagram

\[\begin{array}{c}
1 \rightarrow \mu_n \rightarrow \mathbb{G}_m \xrightarrow{n} \mathbb{G}_m \\
\downarrow^{n/r} \downarrow^{n/r} \downarrow \text{id} \\
1 \rightarrow \mu_r \rightarrow \mathbb{G}_m \rightarrow \mathbb{G}_m \\
\end{array} \]

Example 3.5. The group \(G = \text{SL}_{n,k} \) (\(n \geq 2 \)) is not toric-friendly.

Proof. Since \(\text{SL}_n \) is special, it suffices to construct an extension \(K/k \) and a maximal \(K \)-torus \(T := R_{L/K}^1 \mathbb{G}_m \) such that \(H^1(K, T) \neq 1 \). In view of Lemma 3.3 it suffices to show that \(N_{L/K}(L^*) \neq K^* \) for some field extension \(K/k \) and some finite
separable field extension \(L/K \) of degree \(n \). This is well known; see for example the proof of [Rowen 1980, Proposition 3.1.46]. We include a short proof below as a way of motivating a related but more complicated argument at the end of the proof of Proposition 3.2.

Let \(L := k(x_1, \ldots, x_n) \), where \(x_1, \ldots, x_n \) are independent variables, and \(K := L^{\Gamma} \), where \(\Gamma \) is the cyclic group of order \(n \) that acts on \(L \) by cyclically permuting \(x_1, \ldots, x_n \). For \(0 \neq a \in k[x_1, \ldots, x_n] \), let \(\deg(a) \in \mathbb{N} \) denote the degree of \(a \) as a polynomial in \(x_1, \ldots, x_n \). If \(a \in k(x_1, \ldots, x_n) \) is of the form \(a = b/c \) with nonzero \(b, c \in k[x_1, \ldots, x_n] \), then we define \(\deg(a) = \deg(b) - \deg(c) \). This yields the usual degree homomorphism \(\deg : L^* \to \mathbb{Z} \). Since \(N_{L/K}(a) = \prod_{\gamma \in \Gamma} \gamma(a) \), we see that \(\deg(N_{L/K}(a)) = n \deg(a) \) is divisible by \(n \), for every \(a \in L^* \). On the other hand, \(s_1 = x_1 + \cdots + x_n \in K \) has degree 1. This shows that \(N_{L/K}(L^*) \neq L^* \), as claimed.

\[\square \]

3.6. Proof of Proposition 3.2. Let \(K/k \) be a field extension. For each \(i = 1, \ldots, r \), let \(L_i \) be a separable field extension of degree \(n_i \) over \(K \), and let \(T = T_1 \times \cdots \times T_r \) be a maximal \(K \)-torus of \(G^\times \), where \(T_i := R_{L_i/K}(G_m) \). By Proposition 2.6 it suffices to show that the composition

\[
H^1(K, C) \to H^1(K, \mu) \to H^1(K, T)
\]

is not surjective for some choice of extensions \(K/k \) and \(L_i/K_i \). Since \(C \subseteq \mu \), there exist a prime \(p \) and a nontrivial character \(\chi : \mu \to \mu_p \) such that \(\chi(C) = 1 \). By Proposition 1.3(a) we may assume that \(C = \ker(\chi) \). For notational simplicity, let us suppose that \(n_1, \ldots, n_s \) are divisible by \(p \) and \(n_{s+1}, \ldots, n_r \) are not, for some \(0 \leq s \leq r \). Then it is easy to see that \(\chi \) is of the form

\[
\chi(c_1, \ldots, c_r) = c_1^{d_1 n_1/p} \cdots c_s^{d_s n_s/p}
\]

for some integers \(d_1, \ldots, d_s \). Since \(\chi \) is nontrivial on \(\mu \), we have \(s \geq 1 \) and \(d_i \) is not divisible by \(p \) for some \(i = 1, \ldots, s \), say for \(i = 1 \). That is, we may assume that \(d_1 \) is not divisible by \(p \).

Lemma 3.3 gives a concrete description of the second map in (2). To determine the image of the map \(H^1(K, C) \to H^1(K, \mu) \), we examine the cohomology exact sequence

\[
\begin{array}{c}
H^1(K, C) \xrightarrow{} H^1(K, \mu) \xrightarrow{\chi_*} H^1(K, \mu_p) \\
\prod_{i=1}^r K^*/K^{*n_i} \xrightarrow{\chi_*} K/K^{*p}
\end{array}
\]

induced by the exact sequence \(1 \to C \to \mu \xrightarrow{\chi} \mu_p \to 1 \). The image of \(H^1(K, C) \) in \(H^1(K, \mu) \) is the kernel of \(\chi_* \). By Lemma 3.4, \(\chi_* \) maps the class of \((a_1, \ldots, a_r)\)
in $H^1(K, \mu) = \prod_{i=1}^r K^*/K^{s_i}$ to the class of $a_1^{d_1} \cdots a_s^{d_s}$ in $H^1(K, \mu_p) = K/K^p$.

In other words, the image of $H^1(K, C)$ in $H^1(K, \mu)$ is the subgroup of classes of r-tuples (a_1, \ldots, a_r) in $H^1(K, \mu) = \prod_{i=1}^r K^*/K^{s_i}$ such that $a_1^{d_1} \cdots a_s^{d_s} \in K^p$.

Hence, the image of $H^1(K, C)$ in $H^1(K, T) = \prod_{i=1}^r K^*/N_{L_i/K}(L_i^*)$ consists of classes of r-tuples (a_1, \ldots, a_r) such that $a_1^{d_1} \cdots a_s^{d_s} \in K^p$.

It remains to construct a field extension K/k, separable field extensions L_i/K of degree n_i for $i = 1, \ldots, r$, and an element $\alpha \in H^1(K, T) = \prod_{i=1}^r K^*/N_{L_i/K}(L_i^*)$, which cannot be represented by $(a_1, \ldots, a_r) \in (K^*)^r$ such that $a_1^{d_1} \cdots a_s^{d_s} \in K^p$.

This will show that the map $H^1(K, C) \to H^1(K, T)$ is not surjective, as claimed.

Set $L := k(x_1, \ldots, x_n)$, where $n = n_1 + \cdots + n_r$ and x_1, \ldots, x_n are independent variables. The symmetric group S_n acts on L by permuting these variables; we embed $S_{n_1} \times \cdots \times S_{n_r}$ into S_n in the natural way, by letting S_{n_1} permute the first n_1 variables, S_{n_2} permute the next n_2 variables, etc. Set $K := L^{S_{n_1} \times \cdots \times S_{n_r}}$, $s_1 := x_1 + \cdots + x_n \in K$ and

$$L_1 := K(x_1), \; L_2 := K(x_{n_1+1}), \ldots \; L_r := K(x_{n_1+\cdots+n_{r-1}+1}).$$

Clearly $[L_i : K] = n_i$. We claim the class of $(s_1, 1, \ldots, 1)$ in $\prod_{i=1}^r K^*/N_{L_i/K}(L_i^*)$ cannot be represented by any $(a_1, \ldots, a_r) \in (K^*)^r$ with $a_1^{d_1} \cdots a_s^{d_s} \in K^p$.

Let $\deg : L^* \to \mathbb{Z}$ be the degree map, as in Example 3.5. Arguing as we did there, we see that $\deg(N_{L_i/K}(a))$ is divisible by n_i for every $i = 1, \ldots, r$ and every $a \in L_i^*$. In particular, $(a_1, \ldots, a_r) \mapsto \deg(a_i) + n_i \mathbb{Z}$ is a well-defined function $\prod_{i=1}^r K^*/N_{L_i/K}(L_i^*) \to \mathbb{Z}/n_i \mathbb{Z}$, and consequently,

$$f(a_1, \ldots, a_n) := d_1 \deg(a_1) + \cdots + d_s \deg(a_s) + p \mathbb{Z}$$

is a well-defined function $H^1(K, T) \to \mathbb{Z}/p \mathbb{Z}$. We have

$$f(a_1, \ldots, a_n) = \deg(a_1^{d_1} \cdots a_s^{d_s}).$$

If $a_1^{d_1} \cdots a_s^{d_s} \in K^p$, then $f(a_1, \ldots, a_r) = 0$ in $\mathbb{Z}/p \mathbb{Z}$. On the other hand, since $\deg(1) = 0$, $\deg(s_1) = 1$ and d_1 is not divisible by p, we conclude that $f(s_1, 1, \ldots, 1)$ is nonzero in $\mathbb{Z}/p \mathbb{Z}$. This proves the claim and the proposition.

4. Groups of type C_n and outer forms of A_n

Proposition 4.1. No absolutely simple k-group of type C_n ($n \geq 2$) is toric-friendly.

Proof. Clearly we may assume that k is algebraically closed. We may also assume that G is adjoint, see Proposition 1.3(a). We see that $G = \text{PSp}_{2n}$ and $G^{sc} = \text{Sp}_{2n}$. By Example 3.5, SL_2 is not toric-friendly. This means that there exist a field extension K/k, a maximal K-torus $S \subset \text{SL}_{2, K}$, and a cohomology class $a_S \in H^1(K, S)$ such
that $a_\mathcal{S} \neq 1$. We consider the standard embedding

$$ (\text{SL}_2)^n = (\text{Sp}_2)^n \hookrightarrow \text{Sp}_{2n}, \quad n \geq 2. $$

Set $T^{sc} = S^n \subset (\text{Sp}_2)^n \subset \text{Sp}_{2n} = G^{sc}$. Let $\iota : S \hookrightarrow T^{sc} = S^n$ be the embedding as the first factor. Set $a^{sc} = \iota_*(a_S) \in H^1(K, T^{sc})$. Let T be the image of T^{sc} in $G = \text{PSp}_{2n}$, and let a be the image of a^{sc} in $H^1(K, T)$.

Now observe that the homomorphism

$$ \chi : T^{sc} = S^n \rightarrow S, \quad (x_1, \ldots, x_n) \mapsto x_1x_2^{-1}, $$

factors through T (recall that $n \geq 2$). Since $\chi \circ \iota = \text{id}_S$, we see that $a \neq 1$. On the other hand, the image of a^{sc} in $H^1(K, G^{sc})$ is 1 (because $G^{sc} = \text{Sp}_{2n}$ is special), hence $a \in \ker[H^1(K, T) \rightarrow H^1(K, G)]$, and we see that $G = \text{PSp}_{2n}$ is not toric-friendly. \hfill \square

Proposition 4.2. No absolutely simple k-group of outer type A_n ($n \geq 2$) is toric-friendly.

Lemma 4.3. Let k be a field, K/k a separable quadratic extension, and D/K a central division algebra of dimension r^2 over K with an involution σ of the second kind (i.e., σ acts nontrivially on K and trivially on k). Then there exists a finite separable field extension F/k such that $K_F := K \otimes_k F$ is a field and $D \otimes_K K_F$ is split, that is, K_F-isomorphic to the matrix algebra $M_r(K_F)$.

Proof of the lemma. Since there are no nontrivial central division algebras over finite fields, we may assume that k and K are infinite. Let

$$ H = \{ x \in D \mid x^\sigma = x \} $$

denote the k-space of Hermitian elements of D. Consider the embedding $D \hookrightarrow M_r(K_s)$ induced by an isomorphism $D \otimes_K K_s \cong M_r(K_s)$, where K_s is a separable closure of K. An element x of D is called semisimple regular if its image in $D \otimes_K K_s \cong M_r(K_s)$ is a semisimple matrix with r distinct eigenvalues. A standard argument using an isomorphism $D \otimes_k K_s \cong M_r(K_s) \times M_r(K_s)$ shows that there is a dense open subvariety H_{reg} in the space H, consisting of semisimple regular elements. Clearly H_{reg} is defined over k and contains k-points.

Let $x \in H_{\text{reg}}(k) \subset D$ be a semisimple regular Hermitian element. Let L be the centralizer of x in D. Since x is Hermitian (σ-invariant), the k-algebra L is σ-invariant. Since x is semisimple and regular, the algebra L is a commutative étale K-subalgebra of D of dimension r over K, as is easily seen by passing to K_s. Clearly L is a field, $[L : K] = r$, and L is separable over k. Since $L \subset D$ and $[L : K] = r$, the field L is a splitting field for D; see, for example, [Pierce 1982, Corollary 13.3].
Since \(L \supset K \), we see that \(\sigma \) acts nontrivially on \(L \). Let \(F = L^{(\sigma)} \) denote the subfield of \(L \) consisting of elements fixed by \(\sigma \). Then \([L : F] = 2\) and \([F : k] = r\). Clearly \(F \) is separable over \(k \). Since \(F \cap K = k \) and \(FK = L \), we conclude that \(L = K \otimes_k F := K_F \). This completes the proof of the lemma.

4.4. Proof of Proposition 4.2. By Proposition 1.3(a) we may assume that \(G \) is adjoint. By Lemma 4.3 there is a finite separable field extension \(F/k \) such that \(G_F \cong \text{PSU}(L^{n+1}, h) \), where \(L/F \) is a separable quadratic extension and \(h \) is a Hermitian form on \(L^{n+1} \). It suffices to prove that \(G_F = \text{PSU}(L^{n+1}, h) \) is not toric-friendly.

Set \(S = \mathbb{R}^1_{L/K} \mathbb{G}_m \). We set \(G_F^{sc} = \text{SU}(L^{n+1}, h) \). We may assume that \(h \) is a diagonal form [Knus 1991, Proposition 6.2.4(1); Scharlau 1985, Theorem 7.6.3]. Consider the diagonal torus \(S^{n+1} \subset \text{U}(L^{n+1}, h) \) and set \(T^{sc} = S^{n+1} \cap \text{SU}(L^{n+1}, h) \).

We claim that there exists a field extension \(K/F \) such that \(H^1(K, S) \neq 1 \). Indeed, take \(K = F((t)) \), the field of formal Laurent series over \(F \). Then by [Serre 1968, Proposition V.2.3(c)], \(H^1(K, S) \cong H^1(F, S) \times \mathbb{Z}/2\mathbb{Z} \neq 1 \).

Now let \(a_S \in H^1(K, S) \), \(a_S \neq 1 \), and consider the embedding

\[\iota : S \hookrightarrow T^{sc} \subset S^{n+1}, \quad x \mapsto (x, x^{-1}, 1, \ldots, 1). \]

Set \(a^{sc} = \iota_*(a_S) \in H^1(K, T^{sc}) \). Let \(T \) be the image of \(T^{sc} \) in \(G_F = \text{PSU}(L^{n+1}, h) \) and \(a \) be the image of \(a^{sc} \) in \(H^1(K, T) \).

Note that the homomorphism

\[\chi : T^{sc} \rightarrow S, \quad (x_1, \ldots, x_n, x_{n+1}) \mapsto x_1x_3^{-1}, \]

factors through \(T \) (recall that \(n \geq 2 \)). Since \(\chi \circ \iota = \text{id}_S \), we see that \(a \neq 1 \). Now by Proposition 2.5, \(G_F \) and hence \(G \) are not toric-friendly.

5. Classification of semisimple toric-friendly groups

Lemma 5.1. Let \(k \) be an algebraically closed field. If a semisimple \(k \)-group \(G \) is toric-friendly, then it is adjoint of type \(A \), that is, \(G \cong \prod_i \text{PGL}_{n_i} \) for some integers \(n_i \geq 2 \).

Proof. First assume that \(G \) is simple. By Theorem 2.8 the simply connected cover \(G^{sc} \) of \(G \) is special. By a theorem of Grothendieck [1958, Theorem 3], \(G^{sc} \) is special if and only if \(G \) is of type \(A_n, n \geq 1 \) or \(C_n, n \geq 2 \). Proposition 4.1 rules out the second possibility. Thus \(G \) is of type \(A \).

Now let \(G \) be semisimple. By Proposition 1.3(a), \(G^{ad} \) is toric-friendly. Write \(G^{ad} = \prod_i G_i \), where each \(G_i \) is an adjoint simple group, then by Lemma 1.6 each \(G_i \) is toric-friendly. As we have seen, this implies that each \(G_i \) is of type \(A \), that is, isomorphic to \(\text{PGL}_{n_i} \) for some \(n_i \). By Proposition 3.2, \(G \) is adjoint, that is, \(G = G^{ad} = \prod_i \text{PGL}_{n_i} \).
5.2. **Proof of the Main Theorem 0.2.** If G is toric-friendly, then clearly $G_\mathbb{K}$ is toric-friendly, where \mathbb{K} is an algebraic closure of k. By Lemma 5.1, G is adjoint of type A. Write $G = \prod_i R_{F_i/k} G'_i$, where each F_i/k is a finite separable extension and G'_i is a form of PGL_{n_i,F_i}. By Lemmas 1.6 and 1.7, each G'_i is toric-friendly, and by Proposition 4.2, G'_i is an inner form of PGL_{n_i,F_i}.

Conversely, by Proposition 3.1 an inner form G'_i of PGL_{n_i,F_i} is toric-friendly. By Lemmas 1.6 and 1.7, the product $G = \prod_i R_{F_i/k} G'_i$ is toric-friendly. □

Corollary 5.3. Let G be a nontrivial semisimple k-group. Then there exist a field extension K/k and a maximal K-torus $T \subset G$ that is not special. Equivalently, there exist a field extension K/k and a maximal K-torus T of G such that $H^1(K, T) \neq 1$.

Proof. Assume the contrary, that is, that for any field extension K/k, any maximal K-torus $T \subset G_K$ is special. We may and shall assume that G is split. Recall that for a (quasi)split group, by [Steinberg 1965, Theorem 11.1], every element of $H^1(K, G)$ lies in the image of the map $H^1(K, T) \to H^1(K, G)$ for some maximal K-torus T of G. Thus, under our assumption we have $H^1(K, G) = 1$ for every field extension K/k, that is, G is special. By [Grothendieck 1958, Theorem 3], this is only possible if G is simply connected and has components only of types A and C. On the other hand, G is clearly toric-friendly (see Definition 0.1), and by the Main Theorem 0.2 no nontrivial simply connected semisimple group can be toric-friendly, a contradiction. □

The next result follows immediately from the Main Theorem 0.2 and Corollary 1.4.

Corollary 5.4. Let G be a split reductive k-group. The group G is toric-friendly if and only if it satisfies these two conditions:

(a) the center $Z(G)$ of G is a k-torus, and

(b) the adjoint group $G^\text{ad} := G/Z(G)$ is a direct product of simple adjoint groups of type A. □

Note that in condition (a) we allow the trivial k-torus $\{1\}$.

By Corollary 1.4 if G is a reductive k-group such that $G/R(G)$ is toric-friendly and $R(G)$ is special, then G is toric-friendly. The example below shows that when $G/R(G)$ is toric-friendly but $R(G)$ is not special, G need not be toric-friendly.

Example 5.5. Let $k = \mathbb{R}$, $G = \mathbb{U}_2$, the unitary group in two complex variables. Then $Z(G)$ is the group of scalar matrices in G, it is connected, hence $R(G) = Z(G)$ and $G/R(G) = G^\text{ad} = \text{PSU}_2$. Since PSU_2 is an inner form of $\text{PGL}_{2,\mathbb{R}}$, by the Main Theorem 0.2 it is toric-friendly. However, the group $G = \mathbb{U}_2$ is not toric-friendly. This does not contradict Corollary 1.4, because $R(G) = Z(G)$ is not special: $H^1(\mathbb{R}, Z(G)) = \mathbb{R}^*/N_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^*) \cong \mathbb{Z}/2\mathbb{Z}$.

To show that $G = U_2$ is not toric-friendly, set $S = R^1_{C/R} G_m$. Let T be the diagonal maximal R-torus of U_2. Set $G^{sc} = SU_2$, $T^{sc} = T \cap SU_2$, then $T^{sc} \cong S$.

Let $a^{sc} \in H^1(R, T^{sc})$ be the cohomology class of the cocycle given by the element $-1 \in T^{sc}(R)$ of order 2. Let $a \in H^1(R, T)$ be the image of a^{sc} in $H^1(R, T)$. Clearly $a \neq 1$. By Proposition 2.5, G is not toric-friendly.

Acknowledgements

We are grateful to Jean-Louis Colliot-Thélène for helpful comments and suggestions. In particular, he contributed Lemma 2.2 and the idea of Proposition 2.5, which simplified our earlier arguments. We thank the anonymous referee for a quick and thorough review and an anonymous editor of ANT for helpful comments. We also thank Brian Conrad, Philippe Gille, Boris Kunyavskiǐ, and James S. Milne for stimulating discussions.

References

[Berhuy et al. 2007] G. Berhuy, C. Frings, and J.-P. Tignol, “Galois cohomology of the classical groups over imperfect fields”, J. Pure Appl. Algebra 211:2 (2007), 307–341. MR 2009f:12004 Zbl 1121.11035

[Borel 1991] A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. MR 92d:20001 Zbl 0726.20030

[Borovoi et al. 2008] M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, “The elementary obstruction and homogeneous spaces”, Duke Math. J. 141:2 (2008), 321–364. MR 2009f:14040 Zbl 1135.14013

[Colliot-Thélène and Sansuc 1987] J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles, II”, Duke Math. J. 54:2 (1987), 375–492. MR 89f:11082 Zbl 0659.14028

[Colliot-Thélène et al. 2004] J.-L. Colliot-Thélène, P. Gille, and R. Parimala, “Arithmetic of linear algebraic groups over 2-dimensional geometric fields”, Duke Math. J. 121:2 (2004), 285–341. MR 2005f:11063 Zbl 1129.11014

[Colliot-Thélène et al. 2011] J.-L. Colliot-Thélène, B. Kunyavskiǐ, V. L. Popov, and Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math. 147:2 (2011), 428–466. MR 2776610

[Grothendieck 1958] A. Grothendieck, “Torsion homologique et sections rationnelles”, Sém. C. Chevalley 3:5 (1958), 1–29.

[Knus 1991] M.-A. Knus, Quadratic and Hermitian forms over rings, Grundlehren der Math. Wiss. 294, Springer, Berlin, 1991. MR 92i:11039 Zbl 0756.11008

[Kottwitz 1982] R. E. Kottwitz, “Rational conjugacy classes in reductive groups”, Duke Math. J. 49:4 (1982), 785–806. MR 84k:20020 Zbl 0506.20017

[Pierce 1982] R. S. Pierce, Associative algebras, Grad. Texts in Math. 88, Springer, New York, 1982. MR 84c:16001 Zbl 0497.16001

[Prasad 1989] G. Prasad, “Volumes of S-arithmetic quotients of semi-simple groups”, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91–117. MR 91c:22023 Zbl 0695.22005

[Rowen 1980] L. H. Rowen, Polynomial identities in ring theory, Pure Appl. Math. 84, Academic Press, New York, 1980. MR 82a:16021 Zbl 0461.16001
[Sansuc 1981] J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres”, J. Reine Angew. Math. 327 (1981), 12–80. MR 83d:12010 Zbl 0468.14007

[Scharlau 1985] W. Scharlau, Quadratic and Hermitian forms, Grundlehren der Math. Wiss. 270, Springer, Berlin, 1985. MR 86k:11022 Zbl 0584.10010

[Serre 1958] J.-P. Serre, “Espaces fibrés algébriques”, Sém. C. Chevalley 3:1 (1958), 1–37.

[Serre 1968] J.-P. Serre, Corps locaux, 2nd ed., Publications de l’Institut de mathématique de l’Université de Nancago 8, Hermann, Paris, 1968. 4th ed. in 2004. MR 50 #7096 Zbl 1095.11504

[Serre 1994] J.-P. Serre, Cohomologie Galoisienne, 5th ed., Lecture Notes in Math. 5, Springer, Berlin, 1994. MR 96b:12010 Zbl 0812.12002

[Steinberg 1965] R. Steinberg, “Regular elements of semi-simple algebraic groups”, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 31 #4788 Zbl 0136.30002

[Waterhouse 1979] W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts in Math. 66, Springer, New York, 1979. MR 82e:14003 Zbl 0442.14017

[Wittenberg 2008] O. Wittenberg, “On Albanese torsors and the elementary obstruction”, Math. Ann. 340:4 (2008), 805–838. MR 2008m:14022 Zbl 1135.14014

Communicated by Jean-Louis Colliot-Thélène
Received 2010-04-03 Revised 2010-10-17 Accepted 2010-10-17

borovoi@post.tau.ac.il
Tel Aviv University, School of Mathematical Sciences, 69978 Tel Aviv, Israel
http://www.math.tau.ac.il/~borovoi

reichst@math.ubc.ca
University of British Columbia, Department of Mathematics, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
http://www.math.ubc.ca/~reichst

mathematical sciences publishers
A categorical proof of the Parshin reciprocity laws on algebraic surfaces
DENIS OSIPOV and XINWEN ZHU

Quantum differentiation and chain maps of bimodule complexes
ANNE V. SHEPLER and SARAH WITHERSPOON

Toric-friendly groups
MIKHAIL BOROVOI and ZINOVY REICHSTEIN

Reflexivity and rigidity for complexes, II Schemes
LUCHEZAR AVRAMOV, SRIKANTH B. IYENGAR and JOSEPH LIPMAN

289
339
361
379