Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment

J. Angle, E. Aprile, F. Arneodo, L. Baudis, A. Bernstein, A. Bolozdynya, L.C.C. Coelho, C. E. Dahl, L. DeViveiros, A.D. Ferella, L.M.P. Fernandes, S. Fiorucci, R.J. Gaitskell, K.L. Giboni, R. Gomez, R. Hasty, J. Kwong, J.A.M. Lopes, N. Madden, A. Manalaysay, A. Manzur, D. N. McKinsey, M.E. Monzani, K. Ni, U. Oberlack, J. Orboeck, G. Plante, R. Santorelli, J.M.F. dos Santos, P. Shagin, T. Shutt, P. Sorensen, S. Schulte, C. Winant, and M. Yamashita

(XENON10 Collaboration)

1Department of Physics, University of Florida, Gainesville, FL 32611, USA
2Physics Institute, University of Zürich, Zürich, CH-8057, Switzerland
3Department of Physics, Columbia University, New York, NY 10027, USA
4INFN - Laboratori Nazionali del Gran Sasso, Assergi, 67100, Italy
5Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA
6Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
7Department of Physics, University of Coimbra, Coimbra 3004-516, Portugal
8Department of Physics, Brown University, Providence, RI 02912, USA
9Department of Physics and Astronomy, Rice University, Houston, TX 77251, USA
10Department of Physics, Yale University, New Haven, CT 06511, USA
11Department of Physics, RWTH Aachen University, Aachen, 52074, Germany

(Dated: September 10, 2008)

XENON10 is an experiment to directly detect weakly interacting massive particle (WIMPs), which may comprise the bulk of the non-baryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live-days of operation at the Laboratori Nazionali del Gran Sasso (LNGS). Based on the non-observation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutrinos. We also exclude a heavy Majorana neutrino with a mass in the range of \sim10 GeV/c2–2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

PACS numbers: 95.35.+d, 29.40.Mc, 95.55.Vj

Evidence for a significant cold dark matter component in our universe is stronger than ever, a well-motivated particle candidate being the lightest neutralino from super-symmetric extensions to the Standard Model. Such a particle is neutral, non-relativistic, stable, and more generally classified as a Weakly Interacting Massive Particle (WIMP). The open question of the nature of WIMPs is being addressed by numerous direct and indirect detection experiments. Among these, the XENON10 experiment aims to directly detect Galactic WIMPs scattering elastically from Xe atoms. Moving with velocities around $10^{-3}c$, WIMPs can couple to nucleons via both spin-independent and spin-dependent (axial vector) interactions. Spin-independent WIMP-nucleon couplings are in general smaller than axial vector couplings. However, for low momentum transfer, they benefit from coherence across the nucleus, and therefore the overall event rate for WIMP interactions is expected to be dominated by the spin-independent coupling for target nuclei with $A \geq 30$. The sensitivity of XENON10 to spin-independent interactions is published.

We report here on a spin-dependent analysis of 58.6 live-days of WIMP-search data, taken in low-background conditions at LNGS, which provides \sim3100 meters water equivalent rock overburden. XENON10 is a dual phase (liquid and gas) xenon time projection chamber, discriminating between the predominantly electron-recoil background and the expected nuclear-recoil WIMP signal via the distinct ratio of ionization to scintillation for each type of interaction. A nuclear recoil energy threshold of 4.5 keV was achieved, and 10 candidate events were recorded for an exposure of about 136 kg days after analysis cuts (the fiducial mass was 5.4 kg). Although all observed events are consistent with expected background from electron recoils (see for details on the analysis and the candidate events), no background subtraction is employed for calculating the WIMP upper limits. In the following analysis, we use identical data quality, fiducial volume, and physics cuts as reported.

For axial WIMP-nuclei interactions, the WIMPs couple to the spins of the nucleons. Although the interaction with the nucleus is coherent (as it is in the spin-independent case) in the sense that scattering amplitudes are summed over nucleons, the strength of the interaction vanishes for paired nucleons in the same energy state. Thus only nuclei with an odd number of nucleons will yield a significant sensitivity to axial WIMP-nuclei interactions. Almost half of naturally occurring xenon has non-zero nuclear spin: 129Xe (spin-1/2) makes up 26.4%, and 131Xe (spin-3/2) another 21.2%. The differential WIMP-nucleus cross section for the spin-dependent in-
teraction can be written as [4]:

\[
\frac{d\sigma}{d|q|^2} = \frac{C_{\text{spin}}}{v^2} G_F^2 \frac{S(|q|)}{S(0)},
\]

(1)

where \(G_F\) is the Fermi constant, \(v\) is the WIMP velocity relative to the target, \(S(|q|)\) is the spin structure function for momentum transfer \(q > 0\), and \(S(0)\) represents the zero-momentum transfer limit. The so called enhancement factor, \(C_{\text{spin}}\), is given by

\[
C_{\text{spin}} = 8 \pi [(a_p \langle S_p \rangle + a_n \langle S_n \rangle)^2 J + 1],
\]

(2)

where \(J\) is the total nuclear spin, \(a_p\) and \(a_n\) are the effective WIMP-nucleon couplings (these depend on the quark spin distribution within the nucleons and on the WIMP type), and \(\langle S_{p,n} \rangle = \langle N \mid S_{p,n} \mid N \rangle\) are the expectation values of the spin content of the proton and neutron groups within the nucleus.

Detailed nuclear shell-model calculations for \(\langle S_{p,n} \rangle\) for two different Hamiltonians describing the nuclei exist in the literature [10]. The Hamiltonians are based on realistic nucleon-nucleon potentials, Bonn A [11] and Nijmegen II [12]. The accuracy of these calculations is typically assessed by comparing their predictions of the magnetic moment \(\mu\) with experimental values, due to the similarity between the magnetic moment operator and the matrix element for WIMP-nucleon coupling.

For \(^{129}\text{Xe}\) the magnetic moment agrees to within 25% and 11% for the Bonn A and Nijmegen II potentials, respectively, using the standard free-particle g-factor (and to within 19% and 52% for using effective g-factors). We calculate our main WIMP-nucleon exclusion limits using the Bonn A potential (Fig. 1 solid curves), with \(\langle S_p \rangle = 0.028\) and \(\langle S_n \rangle = 0.359\). In order to indicate the level of systematic uncertainty associated with the different models we also calculate limits using the alternate Nijmegen II potential (Fig. 1 dashed curves), with \(\langle S_p \rangle = 0.0128\) and \(\langle S_n \rangle = 0.300\). For \(^{131}\text{Xe}\), the same Bonn A and Nijmegen II models predict the magnetic moment to within 8% and 50% of the measured value, respectively. However, for this isotope there are calculations by Engel using the Quasiparticle Tamm-Dancoff approximation (QTDA) [13], which yield a magnetic moment within 1% of the experimental value. We follow [10] [14] and use the calculation by Engel, choosing \(\langle S_p \rangle = -0.041\) and \(\langle S_n \rangle = -0.236\), the effect of the 3 different models for \(^{131}\text{Xe}\) on the variation in the exclusion limits being quite small. We also note that recent calculations by Kortelainen, Toivanen and Toivanen [15] yield values for the magnetic moments within about 20% and 10% for \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\), respectively, without using effective g-factors. For the sake of brevity and comparison with other experimental results (which follow [10]), we use the \(\langle S_{p,n} \rangle\) values detailed above.

In the limit of zero momentum transfer the WIMP essentially interacts with the entire nucleus. Once the momentum transfer \(q\) reaches a magnitude such that \(\hbar/q\) is no longer large compared to the nucleus, the spatial distribution of the nuclear spin must be considered. This is described by the spin structure function

\[
S(q) = a_0^2 S_{00}(q) + a_{01} S_{01}(q) + a_1^2 S_{11}(q),
\]

(3)

here written by using the isospin convention in terms of the isoscalar \((a_0 = a_p + a_n)\) and isovector \((a_1 = a_p - a_n)\) coupling constants. The independent form factors, namely the pure isoscalar term \(S_{00}\), the pure isovector term \(S_{11}\) and the interference term \(S_{01}\) can be obtained from detailed nuclear shell model calculations. Ressell and Dean [10] parameterize the structure function in terms of \(y = (q b/2h)^2\), where \(b\) parameterizes the nuclear size with \(b = \sqrt{2} A^{1/3}\) fm ~ 2.3 fm for heavy nuclei. For a WIMP mass of 100 GeV/c\(^2\) with velocity \(10^{-3}\)c, typical Xe nuclear recoil energies are below \(\sim 25\) keV. We have restricted our search to below 26.9 keV, resulting in a maximum momentum transfer of \(q \approx 81\) MeV/c, i.e. \(h/q \geq 2.4\) fm and \(y < 0.25\). For our analysis, we use the structure function calculated with the Bonn A and Nijmegen II potentials [10] and with the QTDA method [13] for \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\), respectively.

In order to set limits on spin-dependent WIMP nucleon couplings, we follow the procedure described in [16, 17, 18], avoiding model-dependent assumptions on the (Majorana) WIMP composition. We first present exclusion limits for the cases of pure-proton \((a_n = 0)\) and pure-neutron \((a_p = 0)\) couplings, by assuming that the total cross section is dominated by the proton and neutron contributions only. We calculate the 90% C.L. exclusion limits as a function of WIMP mass with Yellin's Maximal Gap method [19]. The exclusion limits presented here assume a flat 19% \(\mathcal{E}_{\text{eff}}\) for the xenon scintillation efficiency of nuclear recoils relative to electron recoils. The motivation for this choice is explained in reference [8], in which we also show that the uncertainty in \(\mathcal{E}_{\text{eff}}\) could raise the limits by about 15% (18%) for a WIMP mass of 30 GeV/c\(^2\) (100 GeV/c\(^2\)).

In Fig. 1 we show the combined upper limit curves in the WIMP-nucleon cross section versus WIMP mass plane, for the simple case of pure neutron (left) and pure proton (right) couplings for the \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\) isotopes. We also include limits from CDMS [20], ZEPLIN-II [21], KIMS [22], NAIAD [23], PICASSO [24], COUPP [25] as well as the indirect detection limits from Super-Kamiokande [31] for the case of pure proton couplings. Given that \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\) both contain an unpaired neutron, XENON10 is mostly sensitive to WIMP-neutron spin-dependent couplings and excludes previously unexplored regions of parameter space. The minimum WIMP-nucleon cross section of \(\sim 6 \times 10^{-39}\) cm\(^2\) is achieved at a WIMP mass of around 30 GeV/c\(^2\). The sensitivity to pure proton-couplings is less strong, however XENON10 improves upon the parameter space constrained by the ZEPLIN-II [21] and the CDMS [20] experiments and approaches the sensitivity of other direct
FIG. 1: XENON10 combined 90% CL exclusion limits for 129Xe and 131Xe for pure neutron (left) and pure proton (right) couplings (solid curves). The dashed curves show the combined Xe limits using the alternate form factor. Also shown are the results from the CDMS experiment [20] (diamonds), ZEPLIN-II [21] (circles), KIMS [22] (triangles), NAIAD [23] (squares), PICASSO [24] (stars), COUPP [25] (pluses), SuperK [31] (crosses), as well as the DAMA evidence region under the assumption of standard WIMP nuclear recoils and dark halo parameters (green filled region) [18]. The theoretical regions (blue filled) for the neutralino (in the constrained minimal supersymmetric model) are taken from [32].

As a further benchmark, we consider heavy Majorana neutrinos with standard weak interactions. Such neutrinos, with masses in the region 100-500 GeV/c2, have recently been proposed as dark matter candidates in minimal technicolor theories in cosmologies with a dynamical dark energy term [27, 28]. The expected cross section on protons and neutrons can be written as [29]:

$$\sigma_{\nu N} = \frac{8 G_F^2}{\pi \hbar^4} \mu^2 C_{\text{spin,}\nu}$$ \hspace{1cm} (4)

where μ is the neutrino-nucleon reduced mass, and the spin enhancement factor in this case is:

$$C_{\text{spin,}\nu} = a_p \langle S_p \rangle + a_n \langle S_n \rangle^2 \frac{J+1}{J}$$ \hspace{1cm} (5)

with the values for the WIMP-nucleon spin factors $a_p = 0.46$ and $a_n = 0.34$ taking into account the strange quark contribution to the nucleon spin, as measured by the EMC collaboration and given in [29] for coupling to protons and neutrons, respectively.

In Fig. 2 (left) we show the predicted number of events in XENON10 as a function of the heavy Majorana neutrino mass, the light shaded area showing the excluded mass region at 90% CL for using the main form factors. Our result excludes a heavy Majorana neutrino as a dark matter candidate with a mass between 9.4 GeV/c2–2.2 TeV/c2 (9.6 GeV/c2–1.8 TeV/c2 for the alternate form factor). We note that a heavy Majorana neutrino with a mass below half the Z-boson mass has already been excluded at LEP [30].

We now present the results in terms of the more general phase space for a_p and a_n for a fixed WIMP mass. We follow [18] and express the expected number of recoil events N_{xenon} as a function of a_p and a_n:

$$N_{\text{xenon}} = A a_p^2 + B a_p a_n + C a_n^2$$ \hspace{1cm} (6)

with A, B, C being constants of integration of the differential event rate dR/dE over the relevant energy region, in our case 4.5 keV–27 keV nuclear recoil energy.

Fig. 2 (right) shows the allowed regions at 90% CL in the $a_p - a_n$ parameter space for a WIMP mass of 50 GeV/c2. We include the published CDMS [20], ZEPLIN-II [21], KIMS [22] and the DAMA allowed region [18] for comparison. The advantage of using different isotopes with spin as dark matter targets is evident: the presence of both odd-neutron and odd-proton number isotopes breaks the degeneracy and only the common space inside the ellipses is allowed by the data.

In conclusion, we have obtained new limits on the spin-dependent WIMP-nucleon cross section by operating a liquid-gas xenon time projection chamber at LNGS, in WIMP search mode for 58.6 live days with a fiducial mass...
FIG. 2: Left: Predicted number of events in XENON10 for a heavy Majorana neutrino with standard weak interaction as a function of the neutrino mass, using the main (solid curve) and alternate (dashed curve) form factors. The light shaded area shows the excluded mass region at 90% CL, calculated with Yellin’s Maximal Gap method [19] for the main form factors. Right: Regions allowed at the 90% CL in $a_p - a_n$ parameter space for a WIMP mass of 50 GeV/c2. The combined limit from 129Xe and 131Xe is shown as a dark solid curve (using the main form factor, see text). The exteriors of the corresponding ellipses are excluded, the common space inside the ellipses being allowed by the data. We also show the results obtained by KIMS [22] (dot-dashed), COUPP [25] (dotted) (‘horizontal’ ellipses) and CDMS [20] (dotted), ZEPLIN-II [21] (dashed) and the DAMA evidence region [18] (light filled region) (‘vertical’ ellipses).

of 5.4 kg. The results for pure neutron couplings are the world’s most stringent to date, reaching a minimum cross section of 5×10^{-39} cm2 at a WIMP mass of 30 GeV/c2. We exclude new regions in the $a_p - a_n$ parameter space, and, for the first time, we directly probe a heavy Majorana neutrino as a dark matter candidate. Our observations exclude a heavy Majorana neutrino with a mass between ~ 10 GeV/c2–2 TeV/c2 for a local WIMP density of 0.3 GeV/cm3 and a Maxwell-Boltzmann velocity distribution. We note that our sensitivity to axial-vector couplings could be strongly improved by using a larger mass of enriched 129Xe as the dark matter target.

This work was funded by NSF Grants No. PHY-03-02646 and No. PHY-04-00596, the CAREER Grant No. PHY-0542066, the DOE Grant No. DE-FG02-91ER40688, by the Swiss National Foundation SNF Grant No 20-11819, by the Volkswagen Foundation (Germany) and by the FCT Grant No POCI/FIS/60534/2004 (Portugal). We would like to thank the LNGS/INFN staff and engineers for their help and support.

[1] W. Freedman and M. Turner, Rev. Mod. Phys. 75, 1433 (2003).
[2] D. Clowe et al., ApJ. 648 L109 (2006).
[3] M.J. Jee et al., http://xxx.lanl.gov/abs/0705.2171 to appear in The Astrophysical Journal (2008).
[4] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195–373 (1996).
[5] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54, 315 (2004).
[6] G. Chardin in ”Cryogenic Particle Detection”, editor C. Enss, Springer, Heidelberg (2005).
[7] L. Baudis, Int. J. Mod. Phys. A 21, 1925 (2006).
[8] J. Angle et al. (XENON10 Collaboration), Phys. Rev. Lett. 100, 021303 (2008).
[9] J.D. Lewin and P.F. Smith, Astron. Phys. 6, 87 (1996).
[10] M.T. Ressell and D.J. Dean, Phys. Rev. C 56, 535 (1997).
[11] M. Hjorth-Jensen, T.T.S. Kuo and E. Osnes, Phys. Rep. 264, 126 (1996).
[12] V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994).
[13] J. Engel, Phys. Lett. B 264, 114 (1991).
[14] D. J. Dean, private communication.
[15] M. Kortelainen, J. Toivanen and P. Toivanen, private communication.
[16] D.R. Tovey et al., Phys. Lett. B 488, 17 (2000).
[17] F. Giuliani, Phys. Rev. Lett. 95, 101301 (2005).
[18] C. Savage, P. Gondolo and K. Freese, Phys. Rev. D 70, 123513 (2004) and C. Savage, private communication.
[19] S. Yellin, Phys. Rev. D 66, 032005 (2002).
[20] D. S. Akerib et al. (CDMS Collaboration), Phys. Rev. D 73, 011102 (2006).
[21] G. J. Alner et al. (ZEPLIN-II Collaboration), Phys. Lett. B 653, 161 (2007).
[22] H.S. Lee et al. (KIMS Collaboration), Phys. Rev. Lett. 99, 091301 (2007).
[23] G. J. Alner et al. (UKDMC Collaboration), Phys. Lett. B 616, 17 (2005).
[24] M. Barnabe-Heider et al. (PICASSO Collaboration),
Phys. Lett. B 624, 186 (2005).
[25] E. Behnke et al., Science 319, 933 (2008).
[26] J. Ellis, M. Karliner, Phys. Lett. B 341, 397 (1995).
[27] K. Kainulainen, K. Tuominen and J. Virkajarvi, Phys. Rev. D 75, 085003 (2007).
[28] C. Kouvaris, Phys. Rev. D 76, 015011 (2007).
[29] J. Primack, D. Seckel, B. Sadoulet, Annu. Rev. Nuc. Part. Sci. 38, 751–807 (1988).
[30] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004).
[31] S. Desai et al. (Super-Kamiokande Kollaboration), Phys. Rev. D 70, 083523 (2004).
[32] L. Roszkowski, R. Ruiz de Austri and R. Trotta, JHEP 07, 075 (2007).