Facilitating harmonized data quality assessments. A data quality framework for observational health research data collections with software implementations in R

Carsten Oliver Schmidt 1*, Stephan Struckmann 1, Cornelia Enzenbach 2, Achim Reineke 3, Jürgen Stausberg 4, Stefan Damerow 5, Marianne Huebner 6, Börge Schmidt 6, Willi Sauerbrei 7 and Adrian Richter 1

Abstract

Background: No standards exist for the handling and reporting of data quality in health research. This work introduces a data quality framework for observational health research data collections with supporting software implementations to facilitate harmonized data quality assessments.

Methods: Developments were guided by the evaluation of an existing data quality framework and literature reviews. Functions for the computation of data quality indicators were written in R. The concept and implementations are illustrated based on data from the population-based Study of Health in Pomerania (SHIP).

Results: The data quality framework comprises 34 data quality indicators. These target four aspects of data quality: compliance with pre-specified structural and technical requirements (integrity); presence of data values (completeness); inadmissible or uncertain data values and contradictions (consistency); unexpected distributions and associations (accuracy). R functions calculate data quality metrics based on the provided study data and metadata and R Markdown reports are generated. Guidance on the concept and tools is available through a dedicated website.

Conclusions: The presented data quality framework is the first of its kind for observational health research data collections that links a formal concept to implementations in R. The framework and tools facilitate harmonized data quality assessments in pursue of transparent and reproducible research. Application scenarios comprise data quality monitoring while a study is carried out as well as performing an initial data analysis before starting substantive scientific analyses but the developments are also of relevance beyond research.

Keywords: Data quality, Observational health studies, Data quality indicators, Data quality monitoring, Initial data analysis, R

© The Author(s). 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
Achieving a high data quality is a precondition for valid research results in all empirical sciences. Informative data quality indicators should inform data analysts about the “degree to which a set of inherent characteristics of data fulfills requirements” (ISO 8000). Data quality indicators thus describe actual and potential deviations from defined requirements such as formal compliance with pre-specified data structures, completeness, and the correctness of data values. Appropriately designing, assessing and quantifying data quality is of relevance during the entire research data life cycle. Already before the start of a data collection, having a clear understanding of data quality and its assessment should influence study design and data management. During study conduct, results of data quality assessments inform about the successful implementation of examinations, thereby triggering quality control and quality assurance activities such as data cleaning or training measures [1]. Data quality assessments after the end of a data collection influence decisions about data pooling and data harmonization [2], they can be used to benchmark studies and are necessary to safeguard responsible statistical analysis [3, 4].

While many data quality frameworks exist in the medical sciences [5–16], most of them target registries and electronic health records (EHR). These use data that have been generated outside of a research context, e.g. from administrative data. Yet, there is insufficient guidance on conducting data quality assessments for data that have specifically been generated for observational health research.

This lack of guidance is problematic as data quality frameworks for EHR data and registries are not directly applicable to designed research data collections [17]. For example, accessibility and interpretability have been defined as major quality criteria for EHR data [16]. Both are less relevant in research data collections where related issues are commonly solved by an appropriate study design, the standardisation of procedures, the training of examiners, and the implementation of a supporting infrastructure. Furthermore, preconditions for the computation of indicators may differ. Calculating the exact proportion of missing data in a population-based cohort study is based on a known sampling frame with a precisely defined number of study variables for each participant. In contrast, if, for example, information on a defined cardiovascular comorbidity in a patient with diabetes is missing in an EHR data set it is commonly unclear whether this comorbidity has not been diagnosed, examined, or simply not recorded. Therefore, a data quality framework must take specifics of the targeted data body into account.

A data quality framework must also guide the use of metadata and process variables for data quality assessments. Metadata in this context refers foremost to attributes that describe variables and expected data properties such as admissible values or distributional properties. Process variables describe aspects of the data generating process such as time stamps, observers or devices. Process variables are used to detect unexpected associations with study outcomes of interest. Ideally, each data quality indicator is accompanied by a description of the metadata and process variables that are required for its computation.

While a growing number of statistical routines address data quality issues [18–21], particularly in the programming language R [22–24], these routines are mostly not founded in data quality frameworks. Exceptions for EHR data are the approaches of Kahn et al. [10] within OHDSI [25] and Kapsner et al. [26].

The objectives of this work are twofold: (1) to provide a data quality framework tailored for designed data collections in observational health research, (2) to ease the application of the framework by providing openly available software implementations. All developments were integrated in a web-page to facilitate their successful application.

Methods
Background
We built on an existing data quality framework, the 2nd edition of the TMF (Technology, Methods, and Infrastructure for Networked Medical Research) guideline for data quality [11, 14]. TMF is a major umbrella organization for networked medical research in Germany. The guideline was chosen because, unlike other frameworks, it includes data quality indicators, which are of specific relevance for cohort studies. Literature reviews and overviews of data quality concepts in health research [5–10, 27, 28] informed the development of our framework.

The focus of the presented framework is “intrinsic data quality” [16] which means that “data have quality in their own right”. Evaluating intrinsic data quality rests primarily on knowledge about the data generating process. This is in contrast to “contextual data quality” which means that data quality is considered within the context of a particular task, e.g. the analysis of a defined scientific research question. We currently exclude such task- and situation-specific indicators.

Evaluation of the TMF guideline for data quality
The TMF guideline for data quality was subject to an evaluation by representatives of German general-population cohort studies to assess its suitability for this study type. Details of the evaluation process and results
are available elsewhere [29]. In total, 43 out of the 51 quality indicators in the guideline have been assessed as being potentially relevant for cohort studies. In total 29 were classified as essential or important (mean evaluation score \(\leq 2 \); out of: 1 = essential, 2 = important, 3 = less important, and 4 = not important) and have been included in the current framework. Metrics of data quality indicators in the TMF guideline are restricted to counts and percentages, yet a broader scope of statistical metrics related to distributions, associations and measures of agreement were considered important for the quantification of aspects of data quality, as was a more specific handling of metadata compared to the TMF guideline. Therefore, novel indicators that cover aspects of descriptive statistics and initial data analysis [3] were added.

Computing data quality with R

Functions were developed as part of this project in the dataquieR package, available at CRAN [30], to compute data quality indicators, using R as the programming language because of its widespread use and free access [31]. We followed the style guide first published by Hadley Wickham [32]. R scripts were tested on simulated data and on data from several cohort studies, e.g. Study of Health in Pomerania [33], LIFE-Adult-Study [34], and the IDEFICS study [35]. An R Markdown generated website provides access to the concept, dataquieR functions, sample data, metadata descriptions, references, and tutorials [36].

Application example

The framework and implementations are illustrated using data from the Study of Health in Pomerania (SHIP), a population-based cohort study [33]. We used data from the baseline assessment of SHIP-0 from 1997 to 2001 (\(N = 4308 \)). The data set comprises variables on: height, weight, and waist circumference from the somatometric examination, systolic and diastolic blood pressure from a blood pressure measurement, and information on smoking, marital status and intake of contraceptives from the computer assisted medical interview. An anonymized dataset was created based on a 50% random subset of the original sample (\(N = 2154 \)). It is publicly available at [36].

R Markdown reports were rendered to HTML documents. These provide an overview of the results of the data quality assessment, including tables, and graphs. Modified study data sets are automatically generated to highlight unexpected findings at the level of individual observations with the purpose of simplifying subsequent data management steps.

Results

Structure of the data quality framework

In accordance with existing data quality concepts [6, 7, 9], completeness and correctness are the two core aspects of data quality (Table 1). Completeness is represented as a single dimension while correctness is subdivided into the two dimensions consistency and accuracy. The reason for this separation is introduced in the paragraph correctness. A precondition for successfully conducting any data quality assessment is the correct technical setup of study data and metadata. Related aspects are targeted within the integrity dimension.

Each dimension is subdivided into different data quality domains, an overview on dimensions and domains is provided in Table 1. The domains differ mainly in terms of the methodology used to assess data quality. The next level defines data quality indicators (Table 2). Currently, 34 indicators are distinguished. They describe quality attributes of the data at the level of single data fields, data records, data elements, and data sets [37]. Figure 1 displays the hierarchical structure. Figure 2 illustrates the used nomenclature of terms for data structures within the framework.

Integrity

Integrity related analyses are guided by the question: Do all data comply with pre-specified structural and technical requirements? Addressing this as an independent step is necessary in any data quality assessment, because study data and metadata are often deficient. The three domains within this dimension address:

1) the structurally correct representation of data elements or data records within data sets (structural data set error), e.g. a mismatch of observed and expected number of data records;
2) the correspondence between multiple data sets (relational data set error), e.g. the appropriate integration of multiple study data sets; and
3) the correct representation of data values within data sets (value format error), e.g. a mismatch between the expected and observed data type.

Deficits at the integrity level may invalidate any findings at subsequent stages of data quality assessments and for any substantial scientific analyses. Assessments of metadata are confined to the integrity domain.

Completeness

Completeness related assessments are guided by the question: Are the expected data values available? Results provide knowledge about the frequency and distribution of missing data. Two domains within completeness treat missing data differently. Within the “crude missingness”
domain, any specific reasons that underlie missing data are ignored because missing data are often improperly coded and meaningful indicators must nevertheless be computable. A common example is the provision of system-indicated missing values only such as NA in R. This impedes inferences on why data values are not available without context information. In contrast, “Qualified missingness” makes use of coded reasons for missing data such as refusals, met exclusion criteria or any other reason. The use of such missing codes enables the valid computation of non-response or refusal rates [38].

Missing data occur at different stages of a data collection. Reasons for participants not entering a study (1: unit missingness) may be different from those prompting a participant to leave the study after initial participation (2: longitudinal missingness, e.g. drop-out). Further restraints may impede the conduct of a segment of the study, such as a specific examination (3: segment missingness, e.g. taking part in an ultrasound examination). Within segments, there may be a failure to fully collect information (4: item missingness, e.g. refusal to respond to a question). Different sets of actionable information may result at each of these stages, both at the level of data quality management and statistical analyses. Analysing missing data at the stages 1 to 3 should forego the assessment of item missingness.

Correctness: consistency and accuracy

Correctness related analyses are guided by the question: Are data values free of errors? The first dimension, consistency comprises indicators that use Boolean type checks to identify inadmissible, impossible, or uncertain data values or combinations of data values. The domain range and value violations targets single data values that do not comply with admissible data values or value ranges. The second domain, contradictions examines impossible or improbable combinations of multiple data values. The domain range and value violations targets single data values that do not comply with allowed data values or value ranges [39]. The second domain, contradictions examines impossible or improbable combinations of multiple data values.

In contrast, indicators within the accuracy dimension use diverse statistical methods to identify unexpected data properties. Its first domain, unexpected distributions targets discrepancies between observed and expected distributional characteristics, e.g. the violation of an

Table 1: Data Quality Dimensions and Domains

Name Dimension	Definition	Primary reference objects to detect data quality issues	Primary reporting metrics of indicators
Integrity	The degree to which the data conforms to structural and technical requirements.	Data elements, data records	N
Structural data set error	The observed structure of a data set differs from the expected structure.	Data elements, data records	N
Relational data set error	The observed correspondence between different data sets differs from the expected correspondence.	Data sets	N
Value format error	The technical representation of data values within a data set does not conform to the expected representation.	Data fields	N, %
Completeness	The degree to which expected data values are present.	Data fields	N, %
Crude missingness	Metrics of missing data values that ignore the underlying reasons for missing data.	Data fields	N, %
Qualified missingness	Metrics of missing data values that use reasons underlying missing data.	Data fields, data elements, data record	N, %
Consistency	Consistency	Data fields	N, %
Range and value violations	Observed data values do not comply with admissible data values or value ranges.	Data fields	N, %
Contradictions	Observed data values appear in impossible or improbable combinations.	Data fields	N, %
Accuracy	The degree of agreement between observed and expected distributions and associations.	Data elements, data records	Diverse statistical measures*
Unexpected distributions	Observed distributional characteristics differ from expected distributional characteristics.	Data elements, data records	Diverse statistical measures*
Unexpected associations	Observed associations differ from expected associations.	Data elements, data records	Diverse statistical measures*
Disagreement of repeated measurements	Disagreement between repeated measurements of the same or similar objects under specified conditions.	Data elements, data records	Diverse statistical measures*

N: number of issues; %: the percentage of issues relative to the number of assessed elements in a data structure

* A wide range of statistical metrics may apply such as location, scale or shape parameters, correlation coefficients, measures of agreement.
Table 2 Overview on Data Quality Indicators with Definitions

ID	Name of indicator	Definition
DQI-	Unexpected data elements	The observed set of available data elements does not match the expected set.
1001	Unexpected data records	The observed set of available data records does not match the expected set.
DQI-	Duplicates	The same data elements or data records appear multiple times.
1003	Data record mismatch	Data records from different data sets do not match as expected.
DQI-	Data element mismatch	Data elements from different data sets do not match as expected.
1005	Data type mismatch	The observed data type does not match the expected data type.
DQI-	Inhomogeneous value formats	The observed data values have inhomogeneous format across different data fields.
1007	Uncertain missingness status	System indicated missing values (e.g. NA/./Null …) appear where a qualified missing code is expected.
	Completeness	
DQI-	Missing values	Data fields without a measurement value.
2001	Non-response rate	The proportion of eligible observational units for which no information could be obtained.
DQI-	Refusal rate	The proportion of eligible individuals who refuse to give the information sought.
2003	Drop-out rate	The proportion of all participants who only partially complete the study and prematurely abandon it.
DQI-	Missing due to specified reason	Information in a data collection that is missing due to a specified reason.
2005	Consistency	
DQI-	Inadmissible numerical values	Observed numerical data values are not admissible according to the allowed ranges.
3001	Inadmissible time-date values	Observed time-date values are not admissible according to the allowed time and date ranges.
DQI-	Inadmissible categorical values	Observed categorical data values are not admissible according to the allowed categories.
3003	Inadmissible standardized vocabulary	Data values are not admissible according to the reference vocabulary.
DQI-	Inadmissible precision	The precision of observed numerical data values does not match the expected precision.
3005	Uncertain numerical values	Observed numerical values are uncertain or improbable because they are outside the expected ranges.
DQI-	Uncertain time-date values	Observed time-date values are uncertain or improbable because they are outside the expected ranges.
3007	Logical contradictions	Different data values appear in logically impossible combinations.
DQI-	Empirical contradictions	Different data values appear in combinations deemed impossible based on empirical reasoning.
3009	Accuracy	
DQI-	Univariate outliers	Numerical data values deviate markedly from others in a univariate analysis.
4001	Multivariate outliers	Numerical data values deviate markedly from others in a multivariate analysis.
DQI-	Unexpected locations	Observed location parameters differ from expected location parameters.
expected normal distribution. The second domain, unexpected associations, assesses discrepancies between observed and expected associations. The third domain, disagreement of repeated measurements, targets the correspondence between repeated measurements of the same outcome, for example related to the precision of measurements, or the correspondence with gold standard measurements.

Implementations
Various methods exist to compute data quality indicators. For example, different approaches are available to calculate response rates [38] or to assess outliers [40, 41]. Implementations describe the actual computation of data quality indicators. They can be tailored to specific demands of data quality assessments and may summarize results from different indicators. Implementations may therefore be linked to any level of the data quality framework hierarchy, for example to provide overall estimates of data quality for some dimension. Changes of implementations do not constitute a modification of the data quality concept.

Descriptors
Results of data quality assessments should be available in machine-readable format. This is a necessary precondition for automated processing and subsequent aggregation of results. Yet, not all data-quality-related information may be expressed in a machine-readable format. For example, histograms or smoothed curves [42] may provide important insights in addition to a statistical test of some assumption about a distribution or association. However, the detection of a data quality issue based on graphs relies on the implicit knowledge of a person inspecting the results. Such output without a machine-readable metric is named a descriptor. All descriptive statistics are descriptors as well. To consider a sample mean as being problematic without an explicit rule-based assessment relies on implicit knowledge. A single descriptor may provide information for different indicators, as there are various possible interpretations. For example, a scatterplot may serve to identify outliers but also to detect unexpected associations and distributional properties.

Data quality and process variables
Data are collected over time, possibly at different sites, by different examiners using diverse methods. Ambient conditions may vary. Such sources of variability, coded as process variables [43], may affect measurements and result in data quality issues. Unexpected association of statistical parameters with process variables may constitute novel data quality problems and can be related to almost all data quality indicators. An example of high practical relevance are examiner effects (indicator: unexpected location, Table 2; implementation: examiner effects - margins, Table 3). Another example are time trends in the data. Such associations with process variables should routinely be targeted.

ID	Name of indicator	Definition
4003	Unexpected shape	The observed shape of a distribution differs from the expected shape.
4004	Unexpected scale	Observed scale parameters differ from expected scale parameters.
4005	Unexpected proportions	Observed proportions differ from expected proportions.
4006	Unexpected association strength	The observed strength of an association deviates from the expected strength of the association.
4007	Unexpected association direction	The observed direction of an association (e.g. negative, positive) deviates from the expected direction.
4008	Unexpected association form	The observed form of an association (e.g. linear, quadratic, exponential...) deviates from the expected form.
4009	Inter-Class reliability	Differences between classes (e.g. examiners) when measuring the same or similar objects under specified conditions.
4010	Intra-Class reliability	Differences within classes (e.g. examiners) when measuring the same or similar objects under specified conditions.
4011	Disagreement with gold standard	Differences with a gold standard when measuring the same or similar objects under specified conditions.

The term “expected” refers to a test criterion as annotated in metadata fields.
Fig. 1 Data Quality Concept Overview
Using R and the data quality workflow

Data quality can be assessed using the R package dataquieR. Table 3 provides an overview of the applied computational and statistical methods. The use of dataquieR can be twofold: (1) all-at-once without an in-depth specification of parameters using the function dq_report() to create complete default reports or (2) step-by-step allowing for a detailed data quality assessment in a sequential approach. The first option checks the availability of metadata and applies all appropriate functions to the specified study data. A flexdashboard [51] is then generated which summarizes the results by data quality dimensions and variables.

In contrast, the sequential approach allows for specific parameter settings, changes to the output, corrections and modification of the data, and stratification according to additional variables. Examples of the step-by-step approach are shown in Fig. 3 using SHIP data. For the sake of clarity, only five variables (data elements) have been selected for display. First, the applicability of implementations to each data element was checked. Apparently, the data type of “waist circumference” did not comply with the data type specified in the metadata (Fig. 3, panel 1 top-left). After resolving this issue further data quality checks were conducted. Item missingness has been tabulated to provide insights about different reasons for missing data at this level (Fig. 3, panel 2 bottom-left). Afterwards the consistency of the data was examined with respect to limit deviations (Fig. 3, panel 3 top-right). Among the different applications addressing accuracy, the adjusted margins function compares mean values across observers to address examiner effects while adjusting for a for a vector of covariates (Fig. 3, panel 4 bottom-right). A commented example is available in the tutorial section of the webpage.

Discussion

We provide a data quality framework for research data collections in observational health research, accompanied by software implementations in R. Data quality is addressed with regards to four core requirements: compliance with pre-specified structural and technical requirements (integrity), presence of data values (completeness), and absence of errors in the sense of, first, inadmissible data values, uncertain data values and contradictions (consistency) and second, unexpected distributions or associations (accuracy). To the best of our knowledge, this is the first data quality framework in the field that is accompanied by documented and freely available software code to compute indicators. A web page provides further guidance on all concepts and tools. The framework may promote harmonized data quality assessments and can be extended to accommodate other aspects of data quality and study types.

The framework was built from the perspective of “intrinsic data quality” [16] with requirements focussing on 1. processable data, 2. complete data, and 3. error-free data. The first dimension to target is integrity, as data quality assessments are a complex workflow where pre-conditions must be checked and reported first to safeguard the validity of subsequent results. Integrity in our framework resembles the conformance dimension in other approaches [8, 10], but focusses more narrowly structural requirements on data sets and data values. In practice, integrity checks often reveal recoverable issues. Additional data management processes may restore compliance with requirements, for example, by adding missing data structures.

In line with other approaches [6–8], completeness and correctness are the other main aspects of data quality. Both have been defined as core data quality constructs with regard to EHR data in the framework of Weiskopf et al. [9]. The stronger notion of correctness was preferred over plausibility [8, 10] because the data generation in observational health research data collections is largely under the control of the researchers. This implies strong options to address errors during data collections and thereafter. We did not include the third core dimension by Weiskopf et al. [9], currency, which denotes whether “a value is representative of the clinically relevant time”. This aspect is considered to be of lesser importance in a research data collection from an intrinsic perspective.

Despite overlap with the TMF guideline [11, 14], Table 4, our data quality framework differs in several regards. The TMF-guideline focuses on registries while our framework focuses data collected for research purposes. Our framework is organized hierarchically, whereas there is no comparable structure in the TMF-guideline. TMF indicators correspond to different elements of our approach, ranging from data quality dimensions to implementations (Table 4). We cover all of the indicators classified as important [29] in the evaluation of the TMF-guideline with two exceptions: Compliance with operating procedures (TMF-1047) has not been included because information in standard operating procedures or study protocols is not available in an appropriate format for automated assessments.
Replications (TMF-1048) can be formally targeted using indicators within the unexpected distributions domain to check observed sample properties against known population characteristics. It is however a matter of context-knowledge to interpret findings as a result of selection bias instead of measurement error. As such, representativeness is a contextual rather than an intrinsic aspect of data quality.
Computation of data quality indicators

The necessity to develop software for data quality assessments has previously been acknowledged [8, 9]. Providing not only a theoretical framework but also the code to analyse data quality is important to facilitate homogeneous and transparent assessments across studies. This is also of relevance for the implementation of harmonized data quality assessments within complex research data infrastructures such as euCanSHare [52] or NFDI4Health, a federated research data infrastructure for personal health data [53]. Our implementations differ from most other available program codes [18–24] in that they are attached to a formal framework. To ensure the robustness of implementation, dozens of utility functions support their appropriate application in the background. Standards for the setup of metadata were defined to enable automated data quality checks [43] as well as for the programmed R routines to avoid heterogeneous programming code. This will facilitate extensions by other scientists. Further software implementations within the program Stata and a Java web-application [54] are currently being programmed.

Data quality assessments in research

Data quality assessments must generate actionable information. While a study is carried out, the main aim is to detect and mitigate errors. After the end of a data collection, data quality assessments can be conceived as a specific aspect of initial data analysis [3], which aims “to provide reliable knowledge about the data to enable responsible statistical analyses and interpretation”. As such, the presented work also provides a framework for structuring initial data analysis.

Data quality assessments may be conducted locally at the sites of the respective data holders by using the software implementations above. Further transparency is possible if data quality related metadata is stored centrally in widely used metadata repositories. One example are the Opal and Mica [55] tools which are used, among others, in euCanSHare [52], Maelstrom [56], and NFDI4Health [53]. Another example is the Medical Data Models Portal, a meta-data registry for sharing and reusing medical forms [57]. Developments to host the necessary metadata in metadata repositories are currently ongoing.
TMF ID	TMF name	Related in current framework to concept	Description of element type/ implementation in current framework
TMF-1001	Agreement with previous values	Disagreement of repeated measurements	Domain
TMF-1003	Consistency	Contradictions	Domain
TMF-1004	Certain contradiction/error	Certain contradictions	Indicator
TMF-1005	Possible contradiction/warning	Uncertain contradictions	Indicator
TMF-1006	Distribution of values	Unexpected location parameter	Indicator but TMF differentiates by the influencing factor while the current framework distinguishes by the statistical aspect.
TMF-1009	Distribution of parameters recorded by the investigator	Unexpected shape parameter	
TMF-1010	Distribution of parameters recorded by the device	Unexpected scale parameter	
TMF-1011	Distribution of findings recorded by a medical reader	Unexpected proportion	
TMF-1012	Distribution of values between study sites	Distribution of parameters recorded by the investigator	
TMF-1013	Missing modules	UNexpected data elements	An implementation that identifies missing modules within the indicator unexpected data elements
TMF-1014	Missing values in data elements	Missing values	Indicator
TMF-1016	Missing values in mandatory data elements	Missing due to specified reason	Indicator (TMF targets a specific reason for missing value: unknown values)
TMF-1018	Data elements with value unknown etc.	Univariate outliers	Indicator
TMF-1019	Missing values	Missing values	An implementation that identifies mandatory data elements within the indicator missing values
TMF-1021	Values that exceed the measurability limits	Inadmissible numerical values	Implementation within inadmissible numerical values
TMF-1022	Illegal values of qualitative data elements	Inadmissible categorical values	Indicator
TMF-1023	Illegal values of qualitative data elements used for the coding of missing modules	Inadmissible categorical values	An implementation that identifies inadmissible coding of missing modules within the indicator inadmissible categorical values
TMF-1024	Illegal values of qualitative data elements used for the coding of results exceeding measurability limits	Inadmissible categorical values	An implementation that identifies data elements with codes related to measurability limits within the indicator inadmissible categorical values
TMF-1029	Duplicates	Duplicates	Indicator
TMF-1030	Recruitment rate	Nonresponse rate	Indicator, the current framework uses the inverse. The link between both depends on the definition of recruitment and nonresponse rates
TMF-1031	Refusal rate of investigations	Refusal rate	Indicator with implementations at the level of examination modules or the entire study
TMF-1032	Refusal rate of modules	Refusal rate	Indicator
TMF-1034	Drop-out rate	Drop-out rate	Indicator
TMF-1042	Observational units with follow-up	Non-response rate (inverse at unit level, depending on implementation form)	Indicator
TMF-1052	Accuracy	Accuracy	Dimension
Another aspect are intelligible metrics to communicate information about the achieved data quality, such as visual alerts. This has been implemented in the SHIP-project. Related standards could facilitate communication between scientists to leverage a common understanding of data quality. This goal is also pursued by the Data Nutrition Project [58]. Yet, the latter takes a different methodological approach and focusses primarily on the intended use of data, thus emphasizing contextual data quality [16], whereas we emphasize intrinsic data quality. Future extensions of our framework to cover contextual data quality may increase overlap. Vice versa, structural aspects of the framework and suggested workflow may be of relevance to guide other approaches.

Another goal is to improve the scientific reporting of studies and the further elaboration of guidance documents to cover aspects of data quality more extensively, such as for example by the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network [59] or the STRATOS (STReNGTHening Analytical Thinking for Observational Studies) initiative [60]. Furthermore, many funding bodies require data management plans but no system exists for the handling or reporting of data quality. Standardized data quality reports may accompany both, final reports and scientific papers to provide transparent insights into data properties and study success. As a necessary precondition for harmonized data quality assessments, the improved management of metadata would contribute to a better compliance with FAIR (Findable, Accessible, Interoperable and Reusable) data principles [61].

Limitations and outlook
The presented data quality framework does not cover all aspects of “fitness for use” (ISO 8000) as contextual aspects have not been taken into account. For example, a single missing data value due to a technical error may trigger corrective actions during data collection but may not affect statistical analyses. Thresholds for critical amounts of missing data depend on the methods and aims of a statistical analysis plan [62]. Even without data quality issues at the intrinsic level some data set may prove unfit for the study of a research question because of issues such as an insufficient number of events if the main outcome is a time-to-event variable.

While the defined set of indicators suffices to address a wide range of data quality issues further expansions will be necessary. For example, speaking of non-response rate in studies without a clearly defined sampling frame may not be appropriate and additional indicators need to be added [38]. The framework currently also does not address specific demands arising from special data sources such as omics or medical imaging.

Indicators make no assumptions about the underlying reasons for data quality issues. It is up to the scientist or data manager to make causal decisions, for example on the presence of some type of bias [63]. This in turn relies on the study design being well-documented and the study being conducted accordingly [64, 65].

We defined indicators that are statistically computable in an automated workflow, using a set of study data and metadata. Therefore, we did not address approaches of source data verification. To avoid lengthy computational times, in some cases heuristic statistical methods have been favoured over ones that are more sophisticated.

The functionality of R code is supported by versatile and numerous utility function to mitigate user errors. Nonetheless, this code relies on the existence of sufficient metadata and metadata itself may constitute a gateway for data quality issues. Any user must comprehend the framework and the conventions underlying the definition of metadata. Because the handling of study data varies greatly across studies, interoperability issues may arise, and the provision of interfaces to facilitate data transfer will be an important future extension of our work. Therefore, an alignment of data quality related metadata with standards for information exchange such as HL7 FHIR [66] and common data models to enable data quality assessments without additional efforts in a harmonized fashion across data sets is a main objective [53, 67].

We have sketched application scenarios of data quality assessments during the research data life cycle, yet quantitative approaches to data quality are also of relevance in other areas of life. For example, data quality monitoring during study conduct shares structural similarities with quality improvement related activities in a hospital setting. Benchmarking is of relevance for production processes in industrial settings. Sustainable decision-making and innovation rests on the availability of data.

TMF-ID	TMF name	Related in current framework to concept	Description of element type/ implementation in current framework
TMF-1043	Completeness	Completeness	Dimension

1) Included are TMF-indicators that have been classified as being at least important based on an empirical evaluation [29]. Two indicators with an important rating have not been included, “Compliance with procedural rule” (TMF-1047) and “Representativeness” (TMF-1048), as described in discussion.

with adequate quality properties. Aspects of the outlined framework may be useful whenever data is collected for such purposes in a designed and controlled fashion. Yet, each application scenario has its specific requirements that likely require adaptions and extensions of this framework as well as the related software implementations.

Conclusions

A data quality framework for research data collections in observational health research is provided with software implementations in the programming language R. The framework covers four core aspects of data quality: compliance with pre-specified formats and structures (integrity), the presence of data values (completeness), and errors in the data values in the sense of inadmissible or uncertain data values as well as contradictions (consistency) and unexpected distributions or associations (accuracy). R functions facilitate harmonized data quality assessments within and across studies in pursuit of transparent and reproducible research. Applications of the framework and software implementations are not limited to research.

Abbreviations

ANOVA: Analysis of variance; DQ: Data quality; DQI: Data quality indicator; ecdf: Empirical cumulative distribution functions; EHR: Electronic health records; EQUITATOR: Enhancing the QUAlity and Transparency Of Research; exdat: Examination date; FAIR: Findable, Accessible, Interoperable and Reusable; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level 7; IDA: Initial data analysis; ISO: International standards organization; LOESS: Locally estimated scatterplot smoothing; NA: Not applicable; sbp: Systolic blood pressure; SHIP: Study of Health in Pomerania; STRA-TOS: STRengthening Analytical Thinking for Observational Studies; TMF: Technology, Methods, and Infrastructure for Networked Medical Research; TMFID: TMF guideline identifier.

Acknowledgements

We thank the TMF e.V., an umbrella organization for networked medical research in Germany, for providing infrastructure to facilitate interdisciplinary exchange on our developments and participants of meetings for their comments.

Authors’ contributions

COS: design of the research project, manuscript drafting and concept development, support of software development / web design, evaluation of TMF guideline; AR: manuscript drafting, software development, concept development, web design; SS: software development; website design; manuscript revision; CE, ACR, JS, SD, BS: evaluation of TMF guideline, input regarding epi study data quality assessments; feedback/revision on concept and tools; critical revision of manuscript; WS, MH: feedback on concept and tools with a focus on statistics, initial data analysis; critical revision of manuscript. All authors have approved the manuscript.

Authors’ information

Not applicable.

Funding

This work was supported by the German Research Foundation (DFG; SCHM 2744/3–1, JO 170/10–1, KU 3111/2–1, LO 342/13–1, PI 345/11–1, STA 454/17–1, SCHM 2744/9–1, SA 580/10–1), by the TMF grant V114-01 M, and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825903 (euCanSHARE project). Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the dataquieR repository on gitlab, https://gitlab.com/libreumg/dataquieR/-/tree/master/inst/extdata

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have approved the manuscript for publication.

Competing interests

The authors declare that they have no competing interests.

Author details

1Institute for Community Medicine, Department SHIP-KEF, University Medicine Greifswald, Greifswald, Germany. 2Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany. 3Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany. 4Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Faculty of Medicine, University of Duisburg-Essen, Duisburg, Germany. 5Robert Koch Institute, Department of Epidemiology and Health Monitoring, Berlin, Germany. 6Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA. 7Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.

Received: 1 December 2020 Accepted: 12 March 2021

Published online: 02 April 2021

References

1. Houston ML, Yu AP, Martin DA, Probst DY. Defining and developing a generic framework for monitoring data quality in clinical research. AMIA Annu Symp Proc. 2018;2018:1300–9.
2. Fortier I, Burton PR, Robson PJ, Ferretti V, Little J, L’Heureux F, et al. Quality, quantity and harmony: the DataSHaper approach to integrating data across bioclinical studies. Int J Epidemiol. 2010;39(5):1383–93. https://doi.org/10.1093/ije/dyp139.
3. Houbenier M, Le Cessie S, Schmidt CO, Vach W. A contemporary conceptual framework for initial data analysis. Obes Rev. 2018;19:71–192.
4. Maelstrom guidelines. https://www.maelstrom-research.org/page/maelstrom-guidelines. Accessed 25 Mar 2021.
5. Arts DG, De Keizer NF, Scheffler GJ. Defining and improving data quality in medical registries: a literature review, case study, and generic framework. J Am Med Inform Assoc. 2002;9(6):600–11. https://doi.org/10.1197/jamia.M1087.
6. Stausberg J, Nasseh D, Nonnemacher M. Measuring data quality: a review of the literature between 2005 and 2013. Stud Health Technol Inform. 2015; 210:712–6.
7. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc. 2013;20(1):144–51. https://doi.org/10.1136/amiajnl-2011-000681.
8. Lee K, Weiskopf N, Pathak J. A framework for data quality assessment in clinical research datasets. AMIA Annu Symp Proc. 2017;2017:1080–9.
9. Weiskopf NG, Bakken S, Hripcsak G, Weng C. A Data Quality Assessment Guideline for Electronic Health Record Data Use. EGEMS (Wash DC). 2017; 5(1):14.
10. Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. EGEMS (Wash DC). 2016; 4(1):1244.
11. Nonnemacher M, Nasseh D, Stausberg J. Datenqualität in der medizinischen Forschung: Leitlinie zum Adaptiven Datenmanagement in Kohortenstudien und Registern. Berlin: TMF e.V, 2014. https://doi.org/10.32745/978395663743.
12. European Centre for Disease Prevention and Control. Data quality monitoring and surveillance system evaluation – A handbook of methods and applications. Stockholm: ECDC, 2014.
63. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248–52. https://doi.org/10.1016/S0140-6736(02)07451-2.

64. Schmidt CO, Krabbe CEM, Schossow J, Berger K, Enzenbach C, Kamtsiuris P, et al. Quality standards for epidemiologic cohort studies: an evaluated catalogue of requirements for the conduct and preparation of cohort studies. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz. 2018;61(1):65–77. https://doi.org/10.1007/s00103-017-2658-y.

65. Hoffmann W, Latza U, Baumeister SE, Brunger M, Buttmann-Schweiger N, Hardt J, et al. Guidelines and recommendations for ensuring good epidemiological practice (GEP): a guideline developed by the German Society for Epidemiology. Eur J Epidemiol. 2019;34(3):301–17. https://doi.org/10.1007/s10654-019-00500-x.

66. HL7 FHIR. Documentation index. 2019. http://hl7.org/fhir/documentation.html. Accessed 25 Mar 2021.

67. Huser V, Kahn MG, Brown JS, Gouripeddi R. Methods for examining data quality in healthcare integrated data repositories. Pac Symp Biocomput. 2018;23:628–33.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.