Quantum networks theory

Pablo Arrighi
Université Paris-Saclay, Inria, CNRS, LMF, 91190 Gif-sur-Yvette, France and IXXI, Lyon, France

Amélia Durbec
Université Paris-Saclay, CNRS, LISN, 91190 Gif-sur-Yvette, France

Matt Wilson
Department of Computer Science, University of Oxford, UK
HKU-Oxford Joint Laboratory for Quantum Information and Computation (Dated: October 22, 2021)

The formalism of quantum theory over discrete systems is extended in two significant ways. First, tensors and traceouts are generalized, so that systems can be partitioned according to almost arbitrary logical predicates. Second, quantum evolutions are generalized to act over network configurations, in such a way that nodes be allowed to merge, split and reconnect coherently in a superposition. The hereby presented mathematical framework is anchored on solid grounds through numerous lemmas. Indeed, one might have feared that the familiar interrelations between the notions of unitarity, complete positivity, trace-preservation, non-signalling causality, locality and localizability that are standard in quantum theory be jeopardized as the partitioning of systems becomes both logical and dynamical. Such interrelations in fact carry through, albeit two new notions become instrumental: consistency and comprehension.

I. INTRODUCTION

Motivations. In classical computer science composite systems such as computer processes [39], neurons [12], biochemical agents [37], particle systems [31], market agents [33], social networks users, are often modelled as dynamical networks. The suitability of dynamical network models for these systems comes from the fact their connectivity and population are subject to change, for instance agents within social networks have the capabilities to spawn, disappear, and form or (more sadly) sever connections. Another class of composite systems which has been given considerable attention in modern computer science are those whose constituents are quantum in nature, as they can be leveraged to perform computational and information processing tasks with efficiencies beyond those of their best known classical counterparts. In this paper we will argue that there are in fact many motivations which can be outlined for developing a unified paradigm for modelling composite systems in which, as opposed to the quantisation of constituents only, all of the fundamental features of dynamical network models are lifted into the quantum domain— including connectivity and population.

One such motivation is the evocative idea of a ‘quantum internet’ [13, 30, 41]. The development of a fully quantum internet echoes a fundamental question in Computer Science: What exactly is...
a computer? To the best of our knowledge, the key resources granted to us by nature for the sake of efficient computing are spatial parallelism between systems and quantum parallelism within the systems, both of which appear in the quantum circuit model of computation, independently. This observation motivates the questions: Are spatial parallelism and quantum parallelism independent computational resources, or could the former be subject to the latter? Can we combine both resources in a unified model of computation?

Indeed, a second motivation is found by considering models for distributed quantum computing, as such models so far feature only classical dynamical networks of quantum automata [5, 25]. The quantisation of connectivity within a distributed quantum computer [4] could be used to implement protocols in which the orderings of events [17] and trajectories of particles [18] are quantum in their specification. The importance of modelling the implementation [24, 42, 45] of such protocols is well-argued by noting that in several tasks, they are more efficient than their standard quantum counterparts [11, 13, 18, 21, 23, 38]. Despite the above advantages of quantising the networking of quantum systems, little is known about the dynamics of such networking [16].

As it turns out, motivations for considering the quantisation of networks appear not only in the development of quantum technologies, but also in the foundations of physics. Whilst a theory which satisfactorily quantises gravity remains elusive, the intersection of the fundamental principles of general relativity and quantum theory suggests that such a theory will have basic features in common with quantised networks. Indeed the geometry of spacetime is dependent on mass distribution in general relativity, and mass distribution may be superposed in quantum theory. As a result a striking feature shared by most attempts to quantise gravity is the possibility of quantum superpositions of spacetime geometries. Whilst the effects of superposing spacetime geometries have long been thought to be inaccessible experimentally, recent realistic experimental proposals have been infanted through research at the crossover of quantum information and quantum gravity [14, 15, 35, 36] which promise the near-term confirmation or invalidation of this feature [19, 20].

In most theories of quantum gravity, geometries are represented by networks dual to simplicial complexes [2, 43], and so the networking structure of systems is both a prominent conceptual feature and a feature whose quantum nature deserves considerable attention in its own right. The current network representations of geometry in theories of quantum gravity do however come with a few sources of discomfort. The first, a technical issue, is that the precise definition of such geometries is often left informal. The second is an uncomfortable physical consequence of the path integral formulation of dynamics, namely that such a formulation may very well jeopardize the unitary of quantum theory. A third uncomfortable feature of path integral formulation is that fundamental physical principles such as locality and causality are only seen as emergent, by means of heroic, and not entirely rigorous classical limits.

Building on the above motivations, the aim of this paper is to provide a rigorous mathematical framework for reasoning about fully quantum networks and their dynamics. Independently of whether the framework is used to model quantum complex systems, distributed quantum computing, or features of quantum gravity, the key properties are expected to remain the same: the framework should be sufficiently flexible to allow for arbitrary quantum superpositions of entire networks, and yet permit the definition of local, nearest-neighbour interactions, as well as global, non-signalling causal unitary dynamics—in the strictest of manners.

Contributions. In developing a model of fully quantum networks, We find that by taking entire network configurations as states the usual notion of tensor product fails us on very basic unsettling
questions such as: *When two nodes are connected, with one on the left of a tensor product, and the other on the right, where does the edge between them live?* and *On what ground can we discriminate which nodes go left of the tensor, and which nodes go right?* Can we base this on the naming of nodes, their states, their proximity to other nodes, or even on combinations of these? and finally *Is there a sense in which the tensor product of a given network with itself is even well defined?*

We provide an answer to these questions by generalizing the usual notion of tensor product via a decompositional (as opposed to compositional) approach. That is, we discriminate which nodes go left of a tensor \otimes, and which nodes go right, based on an almost arbitrary logical predicate χ with the property that $|G\rangle = |G_\chi\rangle \otimes |G_{\neg \chi}\rangle$ for any network configuration G. So that the decomposition be unambiguous, we ask that whenever L and R are not ‘consistent’, then $|L\rangle \otimes |R\rangle = 0$. We define a set of sufficiently well-behaved logical predicates for our purposes, which we refer to as ‘restrictions’. Restrictions then lead to a natural notion of partial trace $(|G\rangle \langle H|)_{\chi} = |G_\chi\rangle \langle H_{\neg \chi}|G_{\neg \chi}\rangle$ which is itself a completely positive and trace-preserving operation.

The notion of a restriction χ on a network is used to define the notions of locality and causality, which in the presence of unitarity will turn out to interact in a physically intuitive way. An operator is considered to be local on a restricted part χ of a network if it alters only that which is within χ, ignoring the remainder. Here we define χ-locality of operators as the satisfaction of $\langle H|A|G\rangle \equiv \langle H_\chi|A|G_\chi\rangle \langle H_{\neg \chi}|G_{\neg \chi}\rangle$ and then prove the equivalence of this definition with both gate-locality in the operational picture, and dual locality in the Heisenberg picture. An operator considered to be causal between two restrictions χ, ζ, may on the other hand alter the entire network, but its effects on region ζ must be fully determined by causes in region χ. Here we define $\chi\zeta$-causality as the satisfaction of $(U_{\rho}U^\dagger)_{\zeta} = (U_{\rho\chi}U^\dagger)_{\zeta}$ and prove equivalence of this definition with dual causality in the algebraic, Heisenberg picture. Whilst all the usual interrelations between these notions carry through, the path to them is full ambushes: consistency checking requires great care, and the usual notion of subrestriction requires an extra condition (‘comprehension’) before it behaves as expected—which fortunately vanishes in the name-preserving superselected space.

Indeed, a first potential ambush is explained in [7], the causality of a quantum network dynamics only makes sense if its nodes are named. This is because of the role that names play in specifying the alignment of the network configurations which are superposed. Despite the need for a naming of nodes, the actual choice of naming of nodes should have no effect on the evolution of a network beyond this role: this independence is formalised by the notion of renaming-invariance. A second potential ambush is explained in [8], we must ensure that names are no obstacle to unitary node creation/destruction. Indeed, suppose that a node u splits into u and v. How can this evolution be a unitary U? Won’t U^\dagger just erase name v? If v gets renamed into v' before acting with U^\dagger, do we still get the node u?

We answer these questions by means of a name algebra discovered in the context of reversible causal graph dynamics. In short, a node u can be split into its left part $u.l$ and its right part $u.r$. Such a left-right pair can in turn re-merge to form $u.l \lor u.r = u$. The same notion of a name algebra when equipped with a sign ‘−’ can actually be used to encode edges, i.e. node $u = x \lor -y$ is connected to node $v = y \lor z$. This encoding of edges provides a simple way to answer the question of whereabouts an edge between nodes u and v “goes” when a node u is considered to be on the left of the tensor, and a node v is considered to be on the right.

Plan. Sec. [11] describes the name algebra used for the naming of nodes, defines network configurations and their induced state space, as well as defining the notions of renaming-invariance.
FIG. 1. Necessity of the name algebra. Left: naming vertices is necessary in order to track alignment across quantum superpositions. Right/grey: A quantum evolution may split \(u \) into \(u.l \) and \(u.r \). As the inverse evolution merges them back we need \((u.l \lor u.r) = u\). Right/blue: The inverse quantum evolution may also merge vertices \(u \) and \(v \) into \((u \lor v)\). As the forward evolution splits them back we need \((u \lor v).l = u\) and \((u \lor v).r = v\).

...and name-preservation. Sec. [V] defines locality in its various forms, proves their equivalences, and proves that every unitary operator can be extended into a local unitary operator. Sec. [9] defines causality in its two forms, proves their equivalences, and shows that causal unitary operators can be implemented by a product of local ones. Sec. [VI] summarizes the contributions of this paper and outlines potential avenues for future work on the formalism presented. Sec. [VI] furthermore enumerates several perspective applications of the formalism, beyond those that motivated work originally.

Introducing a new formalism for quantum theory is a slippery exercise. We have had reestablish basic facts first through numerous lemmas found in Appendix [A], including compositionality laws akin to the axioms of categorical approaches to quantum theory. The consequences of imposing renaming-invariance on the dynamics of networks are explored in [B].

II. AN ALGEBRA FOR NAMING NODES OF QUANTUM NETWORKS

The problem of defining superpositions of graphs immediately leads to the following conundrum. Consider a pair of systems, white and black, superposed with again a pair of systems, black and white. One must decide whether the mathematics assigned to this sentence should be either of \(|\circ \rightarrow \bullet \rangle + |\bullet \rightarrow \circ \rangle \) or \(|\circ \rightarrow \bullet \rangle\) (where no distinction is made between black-white and white-black). The only way to disambiguate this situation is by naming those vertices. The alternative choice, to neglect this alignment information by claiming that it does not matter since the graphs are isomorphic, leads to the physically unreasonable consequence of permitting super-luminal signalling [7].

Still, vertex names can be cumbersome. In the classical regime, and in a variety of different early formalisms, it was shown that their presence leads to vertex-preservation, i.e. the forbidding of vertex creation/destruction [10]. This was a somewhat uncomfortable situation, because the informally defined model of Hassalcher and Meyer [29] did seem to feature reversibility, vertex...
creation/destruction, and non-signalling causality. Again in the classical regime, the issue was finally solved by introducing a name algebra \[9\]. We now bring the notion of a name algebra over to the quantum regime, simplified. First, let us remind the reader of why we cannot do without such an algebra.

Indeed, say as in Fig. 1 that some quantum evolution splits a vertex \(u\) into two. We need to name the two infants in a way that avoids name conflicts with the vertices of the rest of the graph. But if the evolution is locally-causal, we are unable to just ‘pick a fresh name out of the blue’, because we do not know which names are available. Thus, we have to construct new names locally. A natural choice is to use the names \(u.l\) and \(u.r\) (for left and right respectively). Similarly, say that some other evolution merges two vertices \(u, v\) into one. A natural choice is to call the resultant vertex \(u \lor v\), where the symbol \(\lor\) is intended to represent a merger of names.

This is, in fact, what the inverse evolution will do to vertices \(u.l\) and \(u.r\) that were just split: merge them back into a single vertex \(u.l \lor u.r\). But, then, in order to get back where we came from, we need that the equality \(u.l \lor u.r = u\) holds. Moreover, if the evolution is unitary, as is prescribed by quantum mechanics, then this inverse evolution does exists, therefore we are compelled to accept that vertex names obey this algebraic rule.

Reciprocally, say that some evolution merges two vertices \(u, v\) into one and calls them \(u \lor v\). Now say that some other evolution splits them back, calling them \((u \lor v).l\) and \((u \lor v).r\). This is, in fact, what the inverse evolution will do to the vertex \(u \lor v\), split it back into \((u \lor v).l\) and \((u \lor v).r\). But then, in order to get back where we came from, we need the equalities \((u \lor v).l = u\) and \((u \lor v).r = u\).

A quick note on notations. Throughout the paper, the symbol \(\vdash\) means ‘is defined by’. Unquantified letters are implicitly introduced by a “for all” across the range that corresponds to the typographic convention used.

We now formally introduce the algebra that we will use the name nodes:

Definition 1 (Name algebra). Let \(\mathbb{K}\) be a countable set. Let \(-\mathbb{K} := \{ -c \mid c \in \mathbb{K}\}\). The name algebra \(\mathcal{N}[\mathbb{K}]\) has terms given by the grammar

\[u, v \vdash= c \mid u.t \mid u \lor v \quad \text{with} \quad c \in \mathbb{K}, \ t \in \{ l, r \}^* \]

and is endowed with the following equality theory over terms (with \(\varepsilon\) the empty word):

\[(u \lor v).l = u \quad (u \lor v).r = v \quad u.\varepsilon = u \quad u.l \lor u.r = u \]

We define \(\mathcal{V} := \mathcal{N}[\mathbb{K} \cup -\mathbb{K}]\). We write \(V \cong V'\) if and only \(\mathcal{N}[V] = \mathcal{N}[V']\).

In the examples of this paper we fix \(\mathbb{K} = \mathbb{N} \setminus \{0\}\), so that our \(x, y\) denote elements of \(\mathbb{Z}^+\).

The \(\pm\) sign will be used to capture the two tips of the edges of the graphs. To deal with \(d\)-dimensional simplicial complexes instead, we can for instance encode them as \(\pm\)-bipartite graphs. Or, alternatively we could have taken \(x \in [0, d] \times \mathbb{K}\).

A. Defining graphs

Next, we take a ‘system’ to mean both a ‘state’ and a ‘name’, whereas a ‘graph’ is a set of systems having disjoint names, see Fig. 2. Our formal definition of a graph is given by the following:
Definition 2 (Graphs). Let Σ be the set of internal states. The elements of $S := \Sigma \times V$ are referred to as systems and denoted $\sigma.v$, with

- $\sigma \in \Sigma$ the internal state of the system
- $v \in V$ the vertex which supports the system

A graph G is a finite set of systems such that

$$\sigma.v, \sigma'.v' \in S \text{ and } v.t = v'.t' \implies \sigma = \sigma' \text{ and } v = v' \text{ and } t = t'$$

We define its support $V(G) := \{v | \sigma.v \in G\}$. We denote by \mathcal{G} the set of all graphs.

We denote by \mathcal{H} the Hilbert space whose canonical basis is labelled by the elements of \mathcal{G}.

We are aware that the above definition is not quite the traditional one. Here, edges are derived information from the systems.

Definition 3 (Induced edges). The following defines the induced undirected edges:

$$E(G) := \{(v,v') | v.t = -x.s \text{ and } v'.t' = x.s \text{ and } \sigma.v, \sigma'.v' \in G \text{ with } \sigma.v + \sigma'.v' \}$$

The following defines the induced directed edges:

$$\bar{E}(G) := \{(v,v') | v.t = -x.s \text{ and } v'.t' = x.s \text{ and } \sigma.v, \sigma'.v' \in G \text{ with } \sigma.v + \sigma'.v' \}.$$

Notice that in both these conventions, geometrical information is encoded by means of names. Most often we want those names to indeed describe the geometry, and nothing else. In other words the geometry and the dynamics that governs its evolution need be renaming-invariant.

Definition 4 (Renaming and renaming-invariance). A renaming is an isomorphism $R : \mathcal{N}[\mathbb{K}] \to \mathcal{N}[\mathbb{K}]$, i.e. a bijection such that

$$R(u.t) = R(u).t \quad R(u \lor v) = R(u) \lor R(v)$$

It is fully specified by its action on domain \mathbb{K}.

It is extended to V by letting $R(-x) := -R(x)$, with $-(u.t) := -u.t$ and $-(u \lor v) := -u \lor -v$.

FIG. 2. Graphs. Left: A system with state 'white' and name $u = ((3.l \lor 8.rl) \lor -2)$. Right: A system with state 'black' and name $v = (2 \lor 4)$. Middle/grey: Here we decided to interpret $u.r = -2$ and $v.l = 2$ as the presence of an unoriented edge $\{u,v\}$. Middle/blue: We could have chosen to interpret it as an oriented edge (u,v) instead. Middle: In both cases, geometry is derived from relative information that is already present within systems, and which is invariant under renamings.
It is extended to S by letting $R(\sigma.v) = \sigma.R(v)$. It is extended to G by acting pointwise. It is extended to H by linearity.

Let A be an operator over graphs, possibly parameterized by $v \in V$. It is said to be renaming-invariant if and only if $R A_v = A_{R(v)} R$.

Renaming-invariance and its consequences are worked out in appendix [B]. For instance it leads to \pm-name-preservation. Yet, several results of this paper require full name-preservation:

Definition 5 (Name-preservation). Let A be an operator over graphs. It is said to be name-preserving (n.-p. for short) if and only if $V(G) \neq V(H)$ implies $\langle H A | G \rangle = 0$.

Again, notice that name-preservation does not prevent node-creation, for instance node 2 is allowed to split into 2.l and 2.r. Nor does it prevent edge-creation, for instance both 2.l and 2.r will then be connected to node -2, say.

Throughout the paper we track what becomes of the renaming-invariance and name-preservation properties, making it clear whenever they are used as necessary premises of the established result. Interestingly traceouts are preserved... name-preservation.

III. GENERALIZED TENSORS AND TRACES OVER QUANTUM NETWORKS

We now address this problem by generalizing the notions of partial traces and tensor products, so that we are able to partition systems in a modular fashion, i.e. parametrized by predicates, referred to as ’restrictions’.

Definition 6 (Restrictions, partial trace, comprehension). Consider a function

$$\chi : G \rightarrow G$$

$$\chi : G \mapsto G_{\chi} \subseteq G$$

It is called a restriction if and only if $G_{\chi} \subseteq H \subseteq G \Rightarrow H_{\chi} = G_{\chi}$.

Given ζ a restriction, ζ^r is the restriction such that $G_{\chi \cup \zeta} := G_{\chi} \cup G_{\zeta}$.

We write $G_{\chi} := G \setminus G_{\chi}$ even though χ is not necessarily a restriction.

A restriction is pointwise if and only if

$$G_{\chi} = \bigcup_{\sigma.v \in G_{\chi}} \{ \sigma.v \}_{\chi}.$$

Restrictions are extended as follows: $(\langle G \rangle \langle H \rangle)_{\chi} := |G_{\chi}\rangle \langle H_{\chi}|$.

They induce a partial trace:

$$\rho_{\chi} \rho_{\zeta}$$

Let ρ denote a trace-class operator.

$$\rho_{\chi}$$

is defined from the above by linear extension.

$$\rho_{\zeta}$$

denotes the usual, full trace $Tr(\rho)$.

We use the notation $G_{\chi \zeta} := (G_{\chi})_{\zeta}$ and thus $\chi_{\zeta} := \zeta \circ \chi$. We use the notation $[\chi, \zeta] = 0$ to mean that $\chi_{\zeta} = \zeta_{\chi}$.

We say that ζ is comprehended within χ and write $\zeta \subseteq \chi$ if and only if $G_{\chi \zeta} = G_{\zeta}$ and

$$\langle H_{\chi} | G_{\chi} \rangle = \langle H_{\chi \zeta} | G_{\chi \zeta} \rangle \langle H_{\zeta} | G_{\zeta} \rangle$$

(2)

as illustrated in Fig. [B].
FIG. 3. **Comprehension** of restrictions \(\zeta \subseteq \chi \) demands condition Eq. (2), which states that for any \(G, H \), equality outside the small restriction \(\zeta \) (i.e. whether \(G\zeta = H\zeta \)) may be decomposed as both equality outside \(\zeta \) but inside \(\chi \) (i.e. whether \(G\chi \zeta = H\chi \zeta \)), and equality outside \(\chi \) (i.e. whether \(G\chi = H\chi \)). Condition Eq. (2) may fail if a difference lying within \(\zeta \) influences the way \(\chi \) partitions the outside of \(\zeta \). The condition holds in most relevant cases as shown by Prop. 2. It is needed to establish Lem. 8.

FIG. 4. **Generalized partial trace.** Across figures \(v := y \vee -z \), restriction \(\zeta_v \) retains vertex \(v \). Top: the ket and bra do not coincide on the complement of the neighbourhood, this goes to zero. Middle: the ket and bra coincide beyond first neighours, this goes to the restriction of the ket and bra on first neighbours. Below: with oriented edges, the neighbours are those which can signal to \(v \). Overall: the question of what to do with edges of the frontier zone does not arise: at the end of the day only systems matter, edges are but derived information.

Soundness. See Lemmas 3, 4, 5

Notice that restrictions are in general oblique projections, aka non-hermitian projections. They must not be confused with the partial traces \((.)|\chi \) that they induce, as illustrated in Fig. 4.

Now, the tensor product corresponding to a restriction \(\chi \) works by weaving a restricted graph...
of which terms get zeroed by the operators (e.g. states), capital letters A, B, ρ, σ

Again a quick note on notations. Throughout the paper, greek symbols represent trace class operators (e.g. states), capital letters A, B represent bounded operators (e.g. transformations and observables).

A good rule of thumb is that usual intuitions about $A \otimes B$ will carry through provided that χ-consistency conditions are met. In fact much of the attention in the proofs is spent keeping track of which terms get zeroed by the \otimes.

Another good rule of thumb is that our usual intuitions about subsystems ζ of a wider system χ will carry through, provided that the comprehension condition given by Eq. 2 is met, which is

FIG. 5. Generalized tensor product. Here, $\chi_v := \zeta_v^1$ and $\bar{\chi}_v := \bar{\zeta}_v^1$ Top: the two graphs do not correspond to a disk around ν and its complement, this goes to zero. Middle: the two graphs correspond to a disk and its complement. Moreover, an edge between them can be derived from names. Below: Same with oriented edges.

$|G_\chi\rangle$ and its complement $|G_{\bar{\chi}}\rangle$ back together, as illustrated in Fig. 5 and formalized as follows.

Definition 7 (Tensor, consistency). Every restriction χ induces a tensor:

$$|H\rangle \otimes |H'\rangle := \begin{cases} |G\rangle & \text{when } H = G_\chi, H' = G_{\bar{\chi}} \\ 0 & \text{otherwise} \end{cases}$$

$|\psi\rangle \otimes |\psi'\rangle$ is defined from the above, by bilinear extension.

$$|G\rangle \langle H| \otimes |G'\rangle \langle H'| := (|G\rangle \otimes |G'\rangle) (\langle H| \otimes \langle H'|).$$

For any two operators A, B, we define $A \otimes B$ from the above by bilinear extension.

$|\psi\rangle, |\psi'\rangle$ are χ-consistent if and only if $\langle G|\psi\rangle \langle G'|\psi'| \neq 0$ implies $|G\rangle \otimes |G'\rangle \neq 0$.

ρ, σ are χ-consistent if and only if $\rho_{G_{H'}H} \neq 0$ implies $|G\rangle \otimes |G'\rangle \neq 0 \neq |H\rangle \otimes |H'|$, where $\rho_{G_{H}} := \langle G| \rho |H\rangle$.

A is χ-consistent-preserving if and only if $\langle H| A |G_\chi\rangle \neq 0$ entails $|H\rangle \otimes |G_{\bar{\chi}}\rangle \neq 0$, and $\langle H| A^\dagger |G_\chi\rangle \neq 0$ entails $|H\rangle \otimes |G_{\bar{\chi}}\rangle \neq 0$.

To get an intuition for the strictness of this notion of tensor product, consider three disjoint non-empty graphs G, M, H such that $G \cup M \cup H$ is defined. With the above definition, $|G \cup M \otimes M \cup H \rangle = 0$, whatever the χ. This may seem unnecessarily strict; a more permissive alternative would have been to let $|G \cup M \rangle \otimes |M \cup H\rangle = |G \cup M \cup H\rangle$. This, however, would entail $A \otimes I = I$, which we will find we do not want (cf. Prop. 3).

These generalized partial traces and tensors are powerful tools, but working with them sometimes feels like a step into the unknown. Our old intuitions about traceouts and tensors guide us, but sometimes they mislead us. We have as a result had to check the conditions of applications of several basic facts about the way these tensor and tracing operators interact with one another, leading to the Toolbox of Table I.
true of most natural cases thanks to name-preservation, see Prop. 2.

Sometimes the two rules of thumb interact, e.g. it is the name-preservation assumption that helps meet \(\chi \)-consistency, as in Prop. 7.

Properties of traceouts over quantum networks

An early attempt to define a (non-modular) partial trace for quantum causal graph dynamics actually failed to exhibit positivity-preservation, i.e. there exists \(\rho \) non-negative with \(\rho_{|\chi} \) not non-negative [4]. Here we show that partial traces are actually positive-preserving. In fact we check they are completely-positive-preserving, meaning that they remain positive-preserving when tensored with the identity, as required for general quantum operations. We do the same for trace-preservation and name-preservation.

We denote by \((\cdot)_{|\chi} \otimes I\) the map \(\rho \otimes \sigma \mapsto \rho_{|\chi} \otimes \sigma\) linearly extended to the whole of \(\mathcal{H}\).

Lemma	Description															
2	\(\langle H	G = \langle H_{\chi}	G_{\chi}\rangle \langle H_{\bar{\chi}}	G_{\bar{\chi}}\rangle\)												
3	\(\chi \chi = \chi\) \(\chi \bar{\chi} = \emptyset\)															
	\((\rho	G \langle H)_{\emptyset} = \langle H	\rho	G\rangle\) \(\langle \rho A \rangle_{\emptyset} = \langle A \rho \rangle_{\emptyset}\) \(\langle \alpha \rho \rangle_{	\chi} = \alpha \langle \rho \rangle_{	\chi}\)									
	If \(G	\otimes	G'	\neq 0\) then \(G	\otimes	G'	=	G \cup G'	\) and \(\langle	G	\otimes	G'	\rangle_{\chi} =	G\rangle\)
4	\(\rho_{	\chi} = \sum G, H \otimes G, H_{\chi} \rho_{GH}	G_{\chi}\rangle \langle H_{\chi}	\)												
5	\(\text{If } \zeta \in \chi, (\rho_{	\chi})_{	\zeta} = \rho_{	\zeta}\) and \(A\) \(\zeta\)-local is \(\chi\)-local.												
6	\(A \otimes B = \sum G, H \otimes G, H_{\chi} A_{\chi} B_{\bar{\chi}} H_{\bar{\chi}}	G	\langle H	\) \(A \otimes I = A \otimes I_{\bar{\chi}}\)												
7	If \([\chi, \zeta] = [\bar{\chi}, \zeta] = [\chi, \bar{\zeta}] = [\bar{\chi}, \bar{\zeta}] = 0\), then \((A \otimes B) \otimes (C \otimes D) = (A \otimes C) \otimes (B \otimes D)\)															
8	\(\text{If } \rho, \sigma \chi\text{-consistent, } (\rho \otimes \sigma)_{	\chi} = \rho \sigma_{	\emptyset}\)													
9	\(\text{If } \zeta \in \chi, \rho, \sigma \chi\text{-consistent, } (\rho \otimes \sigma)_{	\zeta} = \rho_{	\zeta} \sigma_{	\emptyset}\)												
10	\(\text{If } [\chi, \zeta] = [\bar{\chi}, \zeta] = [\chi, \bar{\zeta}] = [\bar{\chi}, \bar{\zeta}] = 0\), and \(\rho, \sigma \chi\text{-consistent},\) \((\rho \otimes \sigma)_{	\zeta} = \rho_{	\zeta} \otimes \sigma_{	\emptyset}\)												
11	\((A \otimes I)	G\rangle = A	G_{\chi}\rangle \otimes	G_{\bar{\chi}}\rangle\). If \(A, A', B, B'\) are \(\chi\)-consistent-preserving, \((A' \otimes B')(A \otimes B) = A' A \otimes B' B\).												
Proposition 1 (Trace class operator positivity-preservation, trace-preservation, name-preservation). The map \(\rho \mapsto ((\cdot)|_\chi \otimes I)(\rho) \) over trace class operators is positive-preserving and name-preservation preserving.

If moreover \(|G_\zeta \rangle \otimes |G_\zeta \rangle \neq 0\), then the same map is trace-preserving.

Positivity preservation. A trace class operator \(\rho \) is a compact operator, hence it is non-negative if and only if it has the form \(\sum_i |\psi^i \rangle \langle \psi^i| \).

\[
|\psi\rangle = \sum_{G, G' \in \mathcal{G}} \alpha_{GG'} |G\rangle \otimes |G'\rangle \\
\langle \psi| = \sum_{H, H' \in \mathcal{G}} \alpha_{HH'}^* \langle H| \otimes \langle H'| \\
|\psi\rangle \langle \psi| = \sum_{G, G', H, H' \in \mathcal{G}} \alpha_{GG'} \alpha_{HH'}^* |G\rangle \langle H| \otimes |G'| \langle H'| \\
(\langle \psi| \langle \psi|)_|_\chi = \sum_{G, G', H, H' \in \mathcal{G}} \alpha_{GG'} \alpha_{HH'}^* |G\rangle \langle H| \otimes |G'| \langle H'| \\
\quad |G\rangle \otimes |G'\rangle \neq 0 \\
\quad |H\rangle \otimes |H'\rangle \neq 0 \\
\quad = \sum_{G, H, K \in \mathcal{G}} \alpha_{GK} \alpha_{HK}^* |G\rangle \langle H| \\
\quad |G\rangle \otimes |K\rangle \neq 0 \\
\quad |H\rangle \otimes |K\rangle \neq 0 \\
\quad = \sum_{K \in \mathcal{G}} \left(\sum_{G \in \mathcal{G}} \alpha_{GK} |G\rangle \langle G| \right) \left(\sum_{H \in \mathcal{G}} \alpha_{HK}^* |H\rangle \langle H| \right) \\
\quad = \sum_{K \in \mathcal{G}} |\phi^K \rangle \langle \phi^K| \\
\rho|_\chi = \left(\sum_i |\psi^i \rangle \langle \psi^i| \right)_|_\chi \\
\quad = \sum_{i, K \in \mathcal{G}} |\phi^{i,K} \rangle \langle \phi^{i,K}|
\]

[Complete positivity preservation]

\[
|G\rangle \langle H| = |G_\zeta\rangle \langle H_\zeta| \otimes |G_\zeta\rangle \langle H_\zeta| \\
((\cdot)|_\chi \otimes I)|G\rangle \langle H| = |G_\zeta\rangle \langle H_\zeta| \otimes |G_\zeta\rangle \langle H_\zeta| \\
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
Let $\alpha'_{G,KG'} : \begin{cases} \alpha_{GG'} & \text{if } |G_\chi\rangle \otimes |K\rangle = |G\rangle \\ 0 & \text{otherwise} \end{cases}$.

$$|\psi\rangle = \sum_{G', G' \in \mathcal{G}} \alpha_{GG'} \langle G \rangle \otimes |G'|$$

$$\langle \psi | = \sum_{H', H' \in \mathcal{G}} \alpha^{*}_{HH'} \langle H \rangle \otimes |H'|$$

$$|\psi\rangle \langle \psi | = \sum_{G', H', H' \in \mathcal{G}} \alpha_{GG'}\alpha^{*}_{HH'} \langle G \rangle \langle H | \otimes |G'| \langle H'|$$

$$(\cdot)_{|\chi \rangle \otimes I} \left((|\psi\rangle \langle \psi |) (\cdot) \right) = \sum_{G' \in \mathcal{G}} \alpha_{GG'}\alpha^{*}_{HH'} \langle G_\chi \rangle \langle H_\chi | \langle H'_\chi | \otimes |G'| \langle H'|$$

$$= \sum_{G'_\chi = H'_\chi \in \mathcal{G}} \alpha_{GG'}\alpha^{*}_{HH'} \langle G_\chi \rangle \langle H_\chi | \otimes |G'| \langle H'|$$

$$|\phi^K\rangle := \sum_{G'_\chi \in \mathcal{G}} \alpha_{GG'} |G_\chi\rangle \otimes |G'|$$

$$(\cdot)_{|\chi \rangle \otimes I} \left((|\psi\rangle \langle \psi |) (\cdot) \right) = \sum_{K \in \mathcal{G}} |\phi^K\rangle \langle \phi^K |$$

$$= \sum_{K \in \mathcal{G}, i} |\phi^K_i\rangle \langle \phi^K_i |$$

[Name-preservation preservation]

An operator ρ is name-preserving if and only if it is a sum of terms of the form $|G\rangle \langle H |$ with $V(G) \cong V(H)$.

$$|G\rangle = |G_\chi\rangle \otimes |G_\chi'\rangle$$

$$\langle H | = \langle H_\chi | \otimes |H_\chi' |$$

$$(|G\rangle \langle H |)_{|\chi \rangle} = |G_\chi\rangle \langle H_\chi | \otimes |G_\chi'| \langle H_\chi' |$$

When this is non-zero, $V(G_\chi) = V(H_\chi)$.

Then by Lem. $\mathbb{[]} V(G_\chi) = V(G) \setminus V(G_\chi') \cong V(H) \setminus V(H_\chi') = V(H_\chi)$.

So, $\rho_{|\chi \rangle}$ is a sum of terms of the form $|G_\chi\rangle \langle H_\chi |$ with $V(G_\chi) \cong V(H_\chi)$.

[Complete name-preservation preservation]

An operator ρ is name-preserving if and only if it is a sum of terms of the form $|G\rangle \langle H |$ with
\[
\begin{align*}
\left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right| \quad \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

= \left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

\end{align*}
\]

\begin{align*}
\left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

\left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

\left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

\left| \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \right\rangle & \langle \begin{array}{c}
-\gamma \\
y \lor \gamma \\
z \lor \gamma \\
x \lor \gamma \\
\end{array} \rangle

\end{align*}

\begin{align*}
V(G) = V(H).
\langle G \rangle \langle H \rangle &= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

(\langle . \rangle_\chi \otimes I) \langle G \rangle \langle H \rangle &= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

= \langle H_\chi \rangle \langle G_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

When this is non-zero, \(V(G_\zeta) = V(H_\zeta) \). Let \(|G'\rangle := |G_\chi \rangle \otimes |G_\zeta \rangle \) and \(|H'\rangle := |H_\chi \rangle \otimes |H_\zeta \rangle \).

Then by Lem. 1, \(V(G') = V(G) \otimes V(G_\zeta) = V(H) \otimes V(H_\zeta) = V(H') \).

So, \((\langle . \rangle_\chi \otimes I)(\rho) \) is a sum of terms of the form \(|G'\rangle \langle H'| \) with \(V(G') = V(H') \).

[Trace Preservation]

Notice that \(\zeta \chi \cup \bar{\zeta} = \chi \bar{\zeta} \).

\begin{align*}
(\langle . \rangle_\chi \otimes I)(\langle G \rangle \langle H \rangle) &= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

= \langle G_\chi \rangle \langle H_\chi \rangle \langle G_\zeta \rangle \langle H_\zeta \rangle

By Lem. 2, \(\langle H | G \rangle \)

\end{align*}

\[\square\]

Even though, \(\zeta_\chi^2 \zeta_\chi^1 = \zeta_\zeta \), i.e. \(\zeta_\chi^1 \) is included in \(\zeta_\chi^2 \) in a natural sense, the comprehension condition Eq. 6 does not hold in general and thus \(\zeta_\chi^1 \not\in \zeta_\chi^2 \). As a consequence, Lem. 3 does not apply and it is not the case that \(\rho_{\zeta_\chi^2} = (\rho_{\zeta_\chi^2})_{\zeta_\chi^1} \), as shown in Fig. 6, where we see that \(\rho_{\zeta_\chi^2} \) decoheres certain superpositions of names whilst \(\rho_{\zeta_\chi^1} \) does not. This counter-intuitive behaviour disappears over name-preserving states.

Proposition 2 (Name-preservation and comprehension). Consider \(\zeta \) a restriction such that \(\chi := \zeta^\tau \) verifies \(\chi \zeta = \zeta \).

When \(V(G) \equiv V(H) \), \(\langle H \chi | G_\chi \rangle = \langle H \chi | G_\chi \rangle \langle H \chi | G_\chi \rangle \).

Hence, over name-preserving superselected states and operators, \(\zeta \subseteq \chi \).
FIG. 7. Local operators. Left: A χ-local will only modify G_χ. Middle: ζ_v-local operator τ_v just toggles a 'black/blue' bit inside the system at v. Right: χ_v-local operator K_v is a reversible update rule which computes the future state of the system at v (according to M, see Fig. 9) and toggles it out, whilst attempting to leave the rest mostly unchanged, cf. Th. 1.

Proof. The LHS and RHS of Eq. (2) can either be 0 or 1.

[RHS=1 \Rightarrow LHS=1]

RHS=1 implies $H_{\chi \zeta} = G_{\chi \zeta}$ and $H_{\chi} = G_{\chi}$. Thus, $H_{\chi \zeta} \cup H_{\chi} = G_{\chi \zeta} \cup G_{\chi} = G_{\chi} \cup G_{\chi} = G_{\chi} \cup G_{\chi}$. But $\zeta = \chi \zeta = \chi \zeta \cup \chi$. So, $H_{\zeta} = G_{\zeta}$, i.e. LHS=1.

[LHS=1 \Rightarrow RHS=1]

LHS=1 implies $H_{\zeta} = G_{\zeta} = K$.

Combined with name-preservation, $V(H_{\zeta}) = V(H) \setminus V(H_{\zeta}) \cong V(G) \setminus V(G_{\zeta}) = V(G_{\zeta})$.

Thus, H_{ζ} and G_{ζ} have the same r-neighbours in K, namely $H_{\chi \zeta} = G_{\chi \zeta}$, and the same complement to the r-neighbours, namely $H_{\chi} = G_{\chi}$. Hence RHS=1.

IV. LOCAL OPERATORS OVER QUANTUM NETWORKS

Since a restriction χ isolates a part of each possible graph, one can introduce the notion of a χ-local operator, one that only acts on the restriction χ, leaving its complement χ unchanged. I.e. a χ-local operator acts only on the left of \otimes.

Definition 8 (Locality). A is χ-local if and only if

$$\langle H \mid A \mid G \rangle = \langle H_{\chi} \mid A \mid G_{\chi} \rangle \langle H_{\chi} \mid G_{\chi} \rangle$$

(3)

A is strictly χ-local if, moreover, $A^\dagger A$ and AA^\dagger are χ-local.

In particular, every unitary χ-local is strictly χ-local.

Soundness. [Unitary case] Suppose U is unitary χ-local. Then $U^\dagger U = U^\dagger U = I$, which is χ-local by Lem. 2.

The standard way to state the locality of A is to write it as $A = B \otimes I$. Here follows a generalization of this statement, a key point that allows for this generalisation is that tensoring with the identity zeroes out the non-local terms of B.

Proposition 3 (Operational locality). A is χ-local if and only if $A = A \otimes I$.

For all B, $B \otimes I$ is χ-local.

Moreover, if B is n.-p., so is $B \otimes I$.

Proof. [Preliminary]

\[A \otimes I = \left(\sum_{G \in \mathcal{G}} \langle H | A | G \rangle | G \rangle \otimes \sum_{K \in \mathcal{G}} | K \rangle \langle K | \right) = \left(\sum_{G \in \mathcal{G}} \langle H | A | G \rangle | G \rangle \otimes \sum_{G' \in \mathcal{G}} \langle H' | G' \rangle | G' \rangle \langle G' | \right) = \sum_{G, H \in \mathcal{G}, G', H' \in \mathcal{G}} \langle H | A | G \rangle \langle H' | G' \rangle \langle H | G \rangle = A \otimes I \]

By Lem. 6

[First part]

\[A \chi\text{-local} \iff \langle H | A | G \rangle = \langle H_{\chi} | A | G_{\chi} \rangle \langle H_{\chi} | G_{\chi} \rangle \]

\[\iff A = \sum_{G, H \in \mathcal{G}} \langle H_{\chi} | A | G_{\chi} \rangle \langle H_{\chi} | G_{\chi} \rangle | H \rangle \langle G | = A \otimes I \]

[Second part]

\[\langle H | (B \otimes I) | G \rangle = \langle H_{\chi} | B | G_{\chi} \rangle \langle H_{\chi} | G_{\chi} \rangle \]

by the preliminaries. So, \(B \otimes I \) is \(\chi\)\text{-local.}

We show that \((B \otimes I) \otimes I \). By preliminaries:

\[\langle H | ((B \otimes I) \otimes I) | G \rangle = \langle H_{\chi} | (B \otimes I) | G_{\chi} \rangle \langle H_{\chi} | G_{\chi} \rangle \]

By prelim. \[= \langle H_{\chi \chi} | B | G_{\chi \chi} \rangle \langle H_{\chi \chi} | G_{\chi \chi} \rangle \langle H_{\chi} | G_{\chi} \rangle \]

By idempotency and Lem 3

\[= \langle H_{\chi} | B | G_{\chi} \rangle \langle \emptyset | \emptyset \rangle \langle H_{\chi} | G_{\chi} \rangle \]

\[= \langle H_{\chi} | B | G_{\chi} \rangle \langle H_{\chi} | G_{\chi} \rangle \]

By prelim. \[= \langle H | (B \otimes I) | G \rangle \]

[Name-preserving case]

A matrix \(B \) is \(n\)\-, \(p\) if and only if it is a sum of terms of the form \(| G \rangle \langle H | \) with \(V(G) \equiv V(H) \).

Then, \(B \otimes I \) is a sum of terms of the form \(| G' \rangle \langle H' | = (| G \rangle \otimes | K \rangle) (| H \rangle \otimes | K \rangle), \) with \(V(G') = V(G) \cup V(K) \equiv V(H) \cup V(K) = V(H') \).

\[\square \]

Proposition 4 (Strict locality and consistency). \(A \) is strictly \(\chi\)\text{-local if and only if \(A \) is \(\chi\)\text{-local and \(\chi\)\text{-consistent-preserving.} \)

Proof. [Preliminary]

Notice that \(A^\dagger \) is also \(\chi\)\text{-consistent-preserving by the symmetry of the definition, and \(\chi\)\text{-local since}

\[\langle G | A^\dagger | H \rangle = \langle H | A | G \rangle^* \]

\[= \langle H_{\chi} | A | G_{\chi} \rangle^* \langle H_{\chi} | G_{\chi} \rangle^* \]

\[= \langle G_{\chi} | A^\dagger | H_{\chi} \rangle \langle G_{\chi} | H_{\chi} \rangle \]
FIG. 8. Strict locality. 1/ Local but not strictly. Let \(\chi := \zeta^2 \). Consider \(A = |1 \rangle \langle 0 \rangle \). It is \(\chi \)-local because \(\langle H \rangle = \langle G \rangle \neq 0 \) if and only if \(|G \rangle = |G \rangle = |0 \rangle \) and \(|H \rangle = |H \rangle = |1 \rangle \). It is not strictly \(\chi \)-local because \(\langle 0 | A^\dagger A | 0 \rangle = 0 \neq 1 = \langle 0 | A^\dagger A | 0 \rangle \langle 2 | 2 \rangle \). It is not \(\chi \)-consistent-preserving because \(|0 \rangle \otimes |2 \rangle \neq 0 \) yet \(|1 \rangle \otimes |2 \rangle = 0 \).

2/ Strictly local. Let \(\xi \) be the restriction that selects \(|0 \rangle \) or \(|1 \rangle \) whatever their context, and returns the empty graph if they do not occur. Then \(U := (|0 \rangle \langle 1 | + |1 \rangle \langle 0 | + |\varnothing \rangle \langle \varnothing |) \otimes I \) is unitary, strictly \(\xi \)-local and \(\xi \)-consistent preserving.

\[\Rightarrow \]

Notice that \(A \) \(\chi \)-consistent-preserving is equivalent to \(\| (A | G \rangle \rangle \otimes | G_T \rangle \rangle = \| A | G \rangle \rangle \) and \(\| (A^\dagger | G \rangle \rangle \otimes | G_T \rangle \rangle = \| A^\dagger | G \rangle \rangle \). Indeed, the only reason why the norm conditions would not hold, would be if some \(|H \rangle \) was such that \(\langle H | A | G \rangle \rangle \) or \(\langle H | A^\dagger | G \rangle \rangle \), and yet \(\langle H \rangle \otimes | G_T \rangle \rangle = 0 \), i.e. if \(A \) weren’t \(\chi \)-consistent.

Since \(A \) is \(\chi \)-local, \(\| A | G \rangle \rangle = \| (A | G \rangle \rangle \otimes | G_T \rangle \rangle \). But since \(A^\dagger A \) is \(\chi \)-local we also have that

\[\| A | G \rangle \rangle = \langle G | A^\dagger A | G \rangle \rangle \]
\[= \langle G | A^\dagger A | G \rangle \rangle \langle G_T | G_T \rangle \]
\[= \| A | G \rangle \rangle \]

So the first norm condition is fulfilled. Similarly with \(A^\dagger \) for the second norm condition.

\[\Leftarrow \]

By Prop. 3, \(A = A \otimes I \) and \(A^\dagger = A^\dagger \otimes I \).

By Lem. 11, \(A^\dagger A = A^\dagger A \otimes I \) and \(AA^\dagger = AA^\dagger \otimes I \).

Thus \(A \) is strictly \(\chi \)-local.

The fact that an operator \(A \) may sometimes be \(\chi \)-local but not strictly \(\chi \)-local, comes from the fact we allow for dynamical geometries. Indeed, \(A \) may change the geometry of \(| G \rangle \rangle \), in such a way that makes it inconsistent with \(| G_T \rangle \rangle \), resulting in a loss of norm, see Fig. 8. Since such an \(A \) is not consistent-preserving, Lem. 11 fails, it follows that the composition of two \(\chi \)-local operators is not always \(\chi \)-local.

None of these issues arise, however, if \(A \) is unitary, or if it is just \(\chi \)-consistent-preserving, as is the case of \(U \) in Fig. 8. These entail strict \(\chi \)-locality, which is composable by Prop. 3 and Lem. 11.

A. Locality in the Heisenberg picture

The result of an \(\chi \)-local observable on \(\rho \) solely depends on its partial trace \(\rho | \chi \rangle \rangle . \)
Proposition 5 (Dual locality). A is \(\chi \)-local if and only if \((A\rho)_{|\emptyset} = (A\rho_{|\chi})_{|\emptyset} \).

Proof. \(\Rightarrow \)

\[
(A(G|H))_{|\emptyset} = (H|A|G)
= (H_{\chi}|A|G_{\chi})(H_{\chi}|G_{\chi}')\]
= \((A|G_{\chi}) (H_{\chi}|H_{\chi}'|G_{\chi}')_{|\emptyset} \)
= \(A((G|H)_{|\chi})_{|\emptyset} \)

\(\Leftarrow \)

\[
(H|A|G) = (A|G)(H)|_{|\emptyset}
= (A((G)\langle H\rangle)_{|\chi})_{|\emptyset}
= (A|G_{\chi})(H_{\chi}|H_{\chi}'|G_{\chi}')_{|\emptyset}
= (H_{\chi}|A|G_{\chi})(H_{\chi}'|G_{\chi}')_{|\emptyset}
\]

\(\square \)

The above proposition states that \(\rho_{|\chi} \) contains the part of \(\rho \) that is observable by \(\chi \)-local operators. The next proposition states that \(\rho_{|\chi} \) does contain anything more.

Proposition 6 (Local tomography). If for all \(A \) \(\chi \)-local \((A\rho)_{|\emptyset} = (A\sigma)_{|\emptyset} \) then \(\rho_{|\chi} = \sigma_{|\chi} \).

Moreover, if \(\rho, \sigma \) are name-preserving and for all \(A \) \(\chi \)-local and name-preserving \((A\rho)_{|\emptyset} = (A\sigma)_{|\emptyset} \) then \(\rho_{|\chi} = \sigma_{|\chi} \).

Proof. In general, \(\rho_{|\chi} = \sum \alpha_{G_{\chi} H_{\chi}} G_{\chi} H_{\chi} \in \mathcal{G}_{\chi} \). Let \(E_{X|G_{\chi}} : |H_{\chi}\rangle \langle G_{\chi}| \) and \(E_{X|G_{\chi}} = E_{X|G_{\chi}} \otimes I \), which is local by Prop. 3.

We have \((E_{H_{\chi} G_{\chi}} \rho)_{|\emptyset} = (E_{H_{\chi} G_{\chi}} \rho_{|\chi})_{|\emptyset} = (E_{H_{\chi} G_{\chi}} \rho_{|\chi})_{|\emptyset} = \alpha_{G_{\chi} H_{\chi}} \) as the following shows:

\[
(E_{H_{\chi} G_{\chi}} \rho_{|\chi})_{|\emptyset} = \sum_{G_{\chi} H_{\chi} \in \mathcal{G}_{\chi}} \alpha_{G_{\chi} H_{\chi}} \left((H_{\chi} \otimes |K\rangle) \right) \left((G_{\chi} \otimes |K\rangle |G_{\chi}'\rangle \langle H_{\chi}'|) \right)_{|\emptyset}
= \sum_{G_{\chi} H_{\chi} \in \mathcal{G}_{\chi}} \alpha_{G_{\chi} H_{\chi}} ((G_{\chi} \otimes |K\rangle |G_{\chi}'\rangle \langle H_{\chi}'|) (|H_{\chi} \langle \otimes |K\rangle)\right)
=(G_{\chi} \otimes |K\rangle) ((|G_{\chi}'\rangle \otimes |\emptyset\rangle))
= \alpha_{G_{\chi} H_{\chi}} \right)
\]

so (n.-p.) \(\chi \)-local "measurements" can tell any difference between \(\rho_{|\chi} \) and \(\sigma_{|\chi} \).
In this case, \(\rho_{|\chi} = \sum G_{\chi}, H_{\chi} \in \mathcal{G}_{\chi} \alpha_{G_{\chi}H_{\chi}} |G_{\chi}\rangle \langle H_{\chi}| \) and \(\sigma_{|\chi} = \sum G_{\chi}, H_{\chi} \in \mathcal{G}_{\chi} \beta_{G_{\chi}H_{\chi}} |G_{\chi}\rangle \langle H_{\chi}|. \)

The fact that \(V(G_{\chi}) \not\equiv V(H_{\chi}) \) comes from the assumption that \(\rho, \sigma \) are n.-p. and the fact that the partial trace preserves that by Prop. \(1 \).

Then \(E_{\chi}^{\alpha G_{\chi}G_{\chi}} := |H_{\chi}\rangle \langle G_{\chi}| \) and \(E^{\beta G_{\chi}G_{\chi}} := E_{\chi}^{\alpha G_{\chi}G_{\chi}} \otimes I \) are n.-p. by Prop. \(1 \)

Notice that if we stick to n.-p. observables, we limit our power of observation. For instance whenever \(V(G) \not\equiv V(H) \), n.-p. observables cannot tell the difference between:

\[
\rho = \frac{1}{2} (|G\rangle + |H\rangle) (\langle G| + \langle H|) \quad \text{and} \quad \tilde{\rho} = \frac{1}{2} |G\rangle \langle G| + \frac{1}{2} |H\rangle \langle H|
\]

i.e. they cannot read-out superpositions of supports coherently. That is unless states are n.-p., too.

B. Extending unitaries acting on a subnetwork

Often we are given an operator over \(\mathcal{H}_{\chi} \), and we want to extend it to \(\mathcal{H} \). In standard quantum theory it is easy to show that any such unitary operator can be extended, with the result being unitary. To generalise this to unitaries over quantum networks we will need name-preservation.

Proposition 7 (Unitary extension). Consider \(\chi \) pointwise.

If \(U \) is a n.-p. operator over \(\mathcal{H}_{\chi} \), then \(U \) \(\chi \)-consistent-preserving.

If \(U \) is a n.-p. unitary over \(\mathcal{H}_{\chi} \), then \(U' := U \otimes I \) is a n.-p. unitary with \(U'^{\dagger} = U^{\dagger} \otimes I \).

If moreover \(\chi \) and \(U \) are renaming-invariant, so is \(U' \).

Proof. [Consistency-preservation]

\(|G'_{\chi}\rangle \otimes |G'_{\chi}\rangle \neq 0 \) and \(|G_{\chi}\rangle \otimes |G'_{\chi}\rangle \neq 0. \)

We need to prove first that \(\langle G'_{\chi}|U|G_{\chi}\rangle \neq 0 \) entails \(|G'_{\chi}\rangle \otimes |G_{\chi}\rangle \neq 0 \) and second that \(\langle G'_{\chi}|U'^{\dagger}|G_{\chi}\rangle \neq 0 \) entails \(|G'_{\chi}\rangle \otimes |G_{\chi}\rangle \neq 0. \)

Let us prove the first.

Since \(U \) is over \(\mathcal{H}_{\chi} \), \(U|G_{\chi}\rangle = \sum_{H_{\chi} \in \mathcal{G}_{\chi}} U_{H_{\chi}G_{\chi}} |H_{\chi}\rangle \).

For any \(G \), consider \(H_{\chi} \) such that \(\langle H_{\chi}|U|G_{\chi}\rangle \neq 0 \) and construct the graph \(G' = H_{\chi} \cup G_{\chi} \).

Notice that this union is always defined since \(U \) is assumed n.-p., and hence \(\mathcal{N}[V(G_{\chi})] \cap \mathcal{N}[V(G_{\chi})] = \emptyset \) entails \(\mathcal{N}[V(H_{\chi})] \cap \mathcal{N}[V(G_{\chi})] = \emptyset \).

Moreover since \(\chi \) is pointwise it verifies that \(G'_{\chi} = H_{\chi} \cup G_{\chi} \).

Thus, \(|H_{\chi}\rangle \otimes |G_{\chi}\rangle = |G'_{\chi}\rangle \neq 0. \)

It follows that \((U|G_{\chi}) \), \(|G_{\chi}\rangle \) are \(\chi \)-consistent.

Similarly for \(U'^{\dagger} \). Hence \(U \) is \(\chi \)-consistent-preserving.

[Unitarity]

By Lem. \(1 \)

\[
(U \otimes I) U'^{\dagger} (U \otimes I) = (U U'^{\dagger}) (I \otimes I) = I
\]

\[
(U'^{\dagger} \otimes I) (U \otimes I) = (U'^{\dagger} U \otimes I) = (I \otimes I) = I
\]
\[(U|G_{\chi}) \otimes |G_{\bar{\chi}}) = \sum_{H_{\chi} \in \mathcal{G}_{\chi}} U_{H_{\chi}G_{\chi}} (|H_{\chi}| \otimes |G_{\bar{\chi}})\]

\[\|(U')[G]\|^2 = \sum_{H_{\chi}, H'_{\chi} \in \mathcal{G}_{\chi}} U_{H'_{\chi}G_{\chi}}^* U_{H_{\chi}G_{\chi}} \langle |H'_{\chi}| \otimes |G_{\bar{\chi}}| \rangle (|H_{\chi}| \otimes |G_{\bar{\chi}})\]

\[= \sum_{H_{\chi}, H'_{\chi} \in \mathcal{G}_{\chi}} U_{H'_{\chi}G_{\chi}}^* U_{H_{\chi}G_{\chi}} \langle H'_{\chi}|H_{\chi}\rangle \langle G_{\bar{\chi}}|G_{\bar{\chi}}\rangle\]

By \(U, I\ \chi\)-consistent-preserving.

\[\sum_{H_{\chi}, H'_{\chi} \in \mathcal{G}_{\chi}} U_{H'_{\chi}G_{\chi}}^* U_{H_{\chi}G_{\chi}} \langle H'_{\chi}|H_{\chi}\rangle \langle G_{\bar{\chi}}|G_{\bar{\chi}}\rangle = \sum_{H_{\chi} \in \mathcal{G}_{\chi}} U_{H_{\chi}G_{\chi}} = 1\]

Thus \(U'\) is an isometry, i.e. \(U'U' = I\).

Notice that \((U^\dagger \otimes I)\) is its right inverse since by means of Lem. \[11\].

Since \(U\) is over \(\mathcal{H}_{\chi}\), we have that \(U^\dagger\) preserves the range of \(\chi\), and so \(U^\dagger, I\ are \(\chi\)-consistent-preserving.

Thus,

\[(U^\dagger \otimes I)|G) = \sum_{H_{\chi} \in \mathcal{G}_{\chi}} U_{G_{\chi}H_{\chi}}^* (|H_{\chi}| \otimes |G_{\bar{\chi}})\]

\[U' (U^\dagger \otimes I)|G) = \sum_{H_{\chi}, H'_{\chi} \in \mathcal{G}_{\chi}} U_{H'_{\chi}H_{\chi}} U_{G_{\chi}H_{\chi}}^* \langle |H'_{\chi}| \otimes |G_{\bar{\chi}}| \rangle \langle |H_{\chi}| \otimes |G_{\bar{\chi}}| \rangle = 0\]

By \(U^\dagger, I\ \chi\)-consistent-preserving.

\[\sum_{H_{\chi} \in \mathcal{G}_{\chi}} U_{H_{\chi}H'_{\chi}} U_{G_{\chi}H_{\chi}}^* \langle |H'_{\chi}| \otimes |G_{\bar{\chi}}| \rangle\]

\[\sum_{H_{\chi} \in \mathcal{G}_{\chi}} I_{H'_{\chi}G_{\chi}} \langle |H'_{\chi}| \otimes |G_{\bar{\chi}}| \rangle = |G)\]

[Name-preservation]

Follows from Prop. \[3\]

[Renaming-invariance]
Let $G' = RG$ and $H = RH'$.

\[
\langle H | (U \otimes I) R | G \rangle = \langle H | (U \otimes I) | G' \rangle
\]
\[
= \langle H | (U \otimes I) \left(|G'_\chi\rangle \otimes |G'_\chi\rangle \right) \rangle
\]
\[
= \langle (H| \otimes (H|) \left(U |G'_\chi\rangle \otimes |G'_\chi\rangle \right) \rangle \rangle
\]

U is χ-consistent-preserving. $= \left(H| \otimes (H|) \right) \langle H| G'_\chi \rangle \rangle \langle H| G'_\chi \rangle \rangle
\]

U χ-consistent-preserving. $= \left((H| \otimes (H|) \left(U |G'_\chi\rangle \otimes |G'_\chi\rangle \right) \right) \rangle \rangle
\]

Since χ renaming-invariant. $= \langle H| UR|G' \rangle \rangle \langle H| R|G' \rangle \rangle
\]

Since U renaming-invariant. $= \langle H| RU|G' \rangle \rangle \langle H| R|G' \rangle \rangle
\]

Since χ renaming-invariant. $= \langle H' \chi | U | G' \rangle \rangle \langle H' \chi | G' \rangle \rangle
\]

\[\chi\text{-consistent-preserving.} = \langle H' | (U \otimes I) \left(|G'\chi\rangle \otimes |G'\chi\rangle \right) \rangle \]
\[
= \langle H' | R(U \otimes I) | G \rangle \rangle
\]

\[\square\]

V. CAUSAL OPERATORS OVER QUANTUM NETWORKS

Consider two restrictions χ, ζ over networks, a $\chi\zeta$-causal operator is one which restricts information propagation by imposing that region ζ at the next time step depends only upon region χ at the previous time step. Subject to this constraint, $\chi\zeta$-causal operator will be permitted to edit the entirety of the graphs they act on.

Definition 9 (Causality). U is $\chi\zeta$-causal if and only if

\[\langle U\rho U^\dagger \rangle_{\zeta} = \langle U\rho_{\chi} U^\dagger \rangle_{\zeta} \]

(4)
21

FIG. 10. Causal operators yielding superpositions of states. Left: Instead of simply iterating M, we could iterate MC, where C acts on every right-moving (resp. left-moving) particle by placing it in a superposition of being right-moving with amplitude $\cos(\theta)$ and left-moving with amplitude $\sin(\theta)$ (resp. left-moving with amplitude $\cos(\theta)$ and right-moving with amplitude $-\sin(\theta)$). Right: Instead of simply merging or splitting according to H, we could do so in a superposition. Here the splitting applies with amplitude $\sin(\varphi)$. Similarly the merge needs be applied with amplitude $-\sin(\varphi)$. Lastly, we may compose these, e.g. $U = H'MC$ makes for an interesting quantum causal graph dynamics.

U is name-preserving $\chi\zeta$-causal if and only if it is n.-p. and for all ρ n.-p., Eq. (4) holds.

Notice that it is not the case that n.-p. causality implies causality. In particular, the identity is n.-p. $\zeta^2\zeta^1$-causal, but not $\zeta^1\zeta^1$-causal, because $\chi^1\zeta^1 \nleq \chi^2\zeta^2$, as discussed in Fig. 6. That is unless we restrict ourselves to n.-p. superselected states as in Prop. 2. This suggests that n.-p. causality is potentially more relevant than causality.

A robust notion of causality ought to be composable.

Proposition 8 (Composability). Say that for all n, there exists m such that U,V are (n.-p.) $\zeta^n\zeta^n$-causal.

We have that for all n there exists m such that UV is (n.-p.) $\zeta^m\zeta^n$-causal.

Proof. $[\Rightarrow]$

For all ρ (n.-p.),

$$
\begin{align*}
(U (V \rho V^\dagger) U^\dagger)_{\zeta^n} &\leq (U (V \rho V^\dagger)_{\zeta^k} U^\dagger)_{\zeta^n} \\
U \text{ caus.} &\leq (U (V \rho V^\dagger)_{\zeta^k} U^\dagger)_{\zeta^n} \\
V \text{ caus.} &\leq (U (V \rho V^\dagger)_{\zeta^m} U^\dagger)_{\zeta^n} \\
U \text{ caus.} &\leq (U (V \rho V^\dagger)_{\zeta^m} U^\dagger)_{\zeta^n}
\end{align*}
$$

A. Causality in the Heisenberg picture

In the Heisenberg picture, it turns out that $\chi\zeta$-causality actually states that whatever can be ζ-locally observed at the next time step, could be χ-locally observed at the previous time step.

Proposition 9 (Dual causality). U is (n.-p.) $\chi\zeta$-causal if and only if (it is n.-p. and) for all A (n.-p.) ζ-local, $U^\dagger A U$ is (n.-p.) χ-local.

If U is (n.-p.) $\chi\zeta$-causal, then for all A (n.-p.) strictly ζ-local, $U^\dagger A U$ is (n.-p.) strictly χ-local.
Proof. [\Rightarrow]

For all ρ (n.-p.), $(U\rho U^\dagger)_{\chi} = (U\rho_{\chi} U^\dagger)_{\chi}$.

By Prop. 5, $A \zeta$-local entail $(AU\rho U^\dagger)_{\emptyset} = (AU\rho_{\chi} U^\dagger)_{\emptyset}$,

Thus, for all ρ, $(U^\dagger AU\rho)_{\emptyset} = (U^\dagger AU\rho_{\chi})_{\emptyset}$.

(For the name-preserving case, then U, A are n.-p., so $U^\dagger AU$ is n.-p., and so if ρ is not n.p.
both sides of the equation are zero, so the above does stand for all ρ.)

So, by Prop. 5, $B = U^\dagger AU$ is (n.-p.) χ-local.

[Strict \Rightarrow]

If A is strictly ζ-local then $A^\dagger A$ and AA^\dagger are ζ-local.

From the above it follows that $U^\dagger A^\dagger AU$ and $UAA^\dagger U$ are χ-local.

But $U^\dagger A^\dagger AU = U^\dagger A^\dagger UU^\dagger AU = B^\dagger B$ and $UAA^\dagger U = UAUU^\dagger A^\dagger U = BB^\dagger$.

So, $B = U^\dagger AU$ is strictly χ-local.

[\Leftarrow]

For all A (n.-p.) ζ-local, $U^\dagger AU$ is (n.-p.) χ-local. By Prop. 5, for all ρ, $(U^\dagger AU\rho)_{\emptyset} = (U^\dagger AU\rho_{\chi})_{\emptyset}$, from which it follows that for all A (n.-p.), for all ρ, $(AU\rho U^\dagger)_{\emptyset} = (AU\rho_{\chi} U^\dagger)_{\emptyset}$.

Finally by Prop. 6, for all ρ (n.-p.), we have $(U\rho U^\dagger)_{\chi} = (U\rho_{\chi} U^\dagger)_{\chi}$.

(In the name-preserving case, by taking ρ to be n.-p. we have that ρ_{χ}, $U\rho U^\dagger$, $U\rho_{\chi} U^\dagger$ are n.-p, so that n.-p. local tomography can still be used to reach the final equality.)

Thus U is (n.-p.) $\chi\zeta$-causal.

Often we are given a causal operator over \mathcal{H}_χ, and we want to extend it to a causal operator over \mathcal{H}, the above theorem on the dual notion of causality in the Heisenberg picture can be used to show that such an extension is always possible.

Proposition 10 (Causal extension). First consider U a $\chi'\zeta'$-causal operator and $\chi' \subseteq \chi$, $\zeta' \subseteq \zeta'$. Then U is an $\chi\zeta$-causal operator.

Second consider μ, ζ two restrictions such that $[\mu, \zeta] = [\mu, \chi] = [\mu, \zeta] = [\chi, \zeta] = 0$ and μ pointwise. Consider U an n.-p. $\chi\zeta$-causal unitary operator over \mathcal{H}_μ, and $U' := U \otimes I$ its unitary extension. Then U' is $\chi\zeta$-causal operator, w.r.t the restriction $\xi := \mu \chi \cup \mu \zeta$.

Proof. [First part]

Suppose U is $\chi'\zeta'$-causal and $\chi' \subseteq \chi$, $\zeta' \subseteq \zeta'$.

Prop. 8 and using Lem. 8, $A \zeta$-local implies $A \zeta'$-local implies $U^\dagger AU$ χ'-local implies $U^\dagger AU$ χ-local. Thus $A \zeta$-local implies $U^\dagger AU$ χ-local which by Prop. 9 is equivalent to $\chi\zeta$-causality.

[Second part]

From Lem. 5 we have $[\mu, \xi] = [\mu, \xi] = [\mu, \xi] = [\chi, \xi] = 0$, and ξ a restriction.
Any $A\zeta$-local is of the form $A = L \otimes I$ with $L = \sum \alpha_{G_{\zeta}H_{\zeta}} \langle G_{\zeta} \rangle \langle H_{\zeta} \rangle$.

$$|G_{\zeta}\rangle \langle H_{\zeta}| \otimes I = (|G_{\zeta}| \langle H_{\zeta}| \otimes |G_{\zeta}\rangle \langle H_{\zeta}|) \otimes (I_{\zeta} \otimes I_{\zeta})$$

Commut. & Lem. 7.

$$U'\left(|G_{\zeta}\rangle \langle H_{\zeta}| \otimes I\right)U'^{\dagger} = \left(U\left(|G_{\zeta}| \langle H_{\zeta}| \otimes |G_{\zeta}\rangle \langle H_{\zeta}|\right)U^{\dagger}\right) \otimes (|G_{\zeta}| \langle H_{\zeta}| \otimes I_{\zeta})^{\dagger}$$

(By dual caus.)

$$U \text{ over } \mathcal{H}_{\mu} = \left(M^{G_{\mu}H_{\mu}} \otimes I_{\mu}\right) \otimes \left(|G_{\zeta}| \langle H_{\zeta}| \otimes I_{\zeta}\right)^{\dagger}$$

Commut. & Lem. 7.

$$U'^{\dagger}AU^{\dagger} = \sum \alpha_{G_{\zeta}H_{\zeta}} \left(M^{G_{\mu}H_{\mu}} \otimes |G_{\zeta}\rangle \langle H_{\zeta}|\right) \otimes I_{\zeta}$$

By bilinearity

$$\sum \alpha_{G_{\zeta}H_{\zeta}} \left(M^{G_{\mu}H_{\mu}} \otimes |G_{\zeta}\rangle \langle H_{\zeta}|\right) \otimes I_{\zeta}$$

So, $U'^{\dagger}AU^{\dagger}$ is ζ-local by the Prop. 3. By Prop. 7, U' is name-preserving. By Prop. 8, U' is $\zeta\zeta$-causal.

\[\square\]

B. Operational causality

Causality is a basic Physics principle, anchored on the postulate that information-propagation is bounded by the speed of light. Yet causality is a top-down axiomatic constraint. When modelling an actual Physical phenomenon, we need a bottom-up, constructive way of expressing the dynamics. We usually proceed by describing it in terms of local interactions, happening simultaneously and synchronously.

The following shows that causal operators are always of that form.

Theorem 1 (Renaming-invariant block decomposition). Let ζ_{v} be the pointwise restriction such that $\zeta_{v}(\{\sigma',u\}) := \begin{cases} \{\sigma',u\} & \text{if } u = v \\ \emptyset & \text{otherwise} \end{cases}$.

Consider U a n.-p. unitary operator over \mathcal{H}, which for all $v \in \mathcal{V}$ is $\chi_{v}\zeta_{v}$-causal, with $\zeta_{v} \subseteq \zeta_{v}'$.

Let $\Sigma' = \{0,1\} \times \Sigma$, let \mathcal{G}' and let \mathcal{H}' be the corresponding Hilbert space.

Let μ be the pointwise restriction such that $\mu(\{b,v\}) := \begin{cases} \{0,\sigma,u\} & \text{if } b = 0 \\ \emptyset & \text{otherwise} \end{cases}$.

Let \mathcal{G}' be the set of finite subsets of $S' := \Sigma' \times \mathcal{V}$ and \mathcal{H}' the Hilbert space whose canonical o.n.b is \mathcal{G}'.

Over \mathcal{H}', there exists τ_{v} a renaming-invariant strictly ζ_{v}-local unitary and K_{v} a strictly ξ_{v}-local unitary such that

$$\forall |\psi\rangle \in \mathcal{H}'_{\mu} \equiv \mathcal{H}, \left(\prod_{v \in \mathcal{V}} \tau_{v}\right) \left(\prod_{v \in \mathcal{V}} K_{v}\right) |\psi\rangle = U |\psi\rangle$$

where $\xi_{v} := \mu_{v} \cup \bar{\mu}_{v}$. In addition, $[K_{x}, K_{y}] = [\tau_{x}, \tau_{y}] = 0$.

If moreover U is renaming-invariant, then so are U' and K_{v}.
Proof. Notice that μ is renaming-invariant.

Notice that ξ_v is renaming-invariant.

Clearly $[\mu, \xi] = [\eta, \xi] = [\mu, \xi] = [\eta, \xi] = 0$ as both are pointwise.

By Prop. 9 $U' := U \otimes I$ is unitary over H'.

Since μ is renaming-invariant, if U is renaming-invariant, so is U'.

By Prop. 10 and since U is $\chi_v\xi_v'$-causal, it is $\chi_v\xi_v'$-causal, and U' is $\xi_v\xi_v'$-causal, with $\xi_v := \mu\chi_v \cup \eta\xi_v'$ a restriction.

Let the toggle τ be the bijection over systems such that $\tau(b.\sigma.u) = -b.\sigma.u$.

Extend τ to G' by acting pointwise upon each system, and to H' by linearity.

Notice that it is unitary, name-preserving and renaming-invariant.

Notice that $\tau(|G_\mu \otimes |G_\eta|) = (|G_\eta| \otimes \tau |G_\mu|)$.

It is also unitary over H_{ξ_v}, thus $\tau_v := \tau \otimes_v I$ is unitary over H' by Prop. 7.

By Prop. 3 τ_v is ξ_v-local. By unitarity, it is strictly ξ_v-local.

Since τ and ξ_v are renaming-invariant, so is τ_v.

Moreover,

$$\left(\prod_{v \in V} \tau_v \right) = \tau$$

Notice also that $[\tau_u, \tau_v] = 0$.

Let $K_v := U'^{\tau} \tau_v U'$.

It is name-preserving as a composition of name-preserving operators.

If U' is renaming-invariant, since τ_v is renaming-invariant, so is K_v.

Since adjunction by a unitary is a morphism, $[K_u, K_v] = 0$.

By Prop. 9 it is ξ_v-local. By unitarity, it is strictly ξ_v-local.

Finally,

$$\left(\prod_{v \in V} \tau_v \right) \left(\prod_{v \in V} K_v \right) = \tau \ldots (U'^{\tau} \tau_v U') (U'^{\tau} \tau_v U') |G|$$

By unitarity of U', $\tau U'^{\tau} \left(\prod_{v \in V} \tau_v \right) U' |G|$

$$= \tau U'^{\tau} \tau U' |G|$$

By Prop. 7 = $\tau \left(U^\dagger \otimes I \right) \tau \left(U \otimes I \right) \left(|G_\mu \otimes |G_\eta| \right)$

$= \tau \left(U^\dagger \otimes I \right) \tau \left(U |G_\mu \otimes |G_\eta| \right)$

Since U preserves the range of $\mu = \tau \left(U^\dagger \otimes I \right) \left(|G_\mu \otimes |G_\eta| \right)$

$= \tau \left(U^\dagger \otimes I \right)$

Since U preserves the range of $\mu = U^\dagger \tau \left(|G_\mu \otimes |G_\eta| \right)$

Since τ involutive, $U \otimes \tau U^\dagger \tau |G_\eta|$

$$= \left(U |G_\mu \otimes |G_\eta| \right)$$

By n.-p., $U |G_\mu \otimes |G_\eta|$

$$= U |G_\mu |$$

\square
Notice that a similar theorem was proven in the particular case of $\mathcal{C}_v^\dagger\mathcal{C}_v$-causal operators over static networks first [5], and then for node-preserving but connectivity-varying networks [4], a.k.a 'quantum causal graph dynamics'. The point here is that the result carries through to arbitrary restrictions χ_v and over dynamical networks, both of which were non-trivial extensions. Moreover, from a methodological point of view, we used this theorem a test bench, to make sure that we had put together a set of mathematical tools that would be sufficient to combine and establish non-trivial results in this kernel of a quantum networks theory.

VI. CONCLUSION

Summary of contributions.

In this paper each node has an internal state and is identified by a unique name. The names are constructed by means of operators used for linking (e.g. node -y is understood as connected to node y), merging (e.g. nodes u and v may merge into node $u \lor v$), splitting (e.g. node w may split into $w \land w$). The fact that the inverse of a merger operation is required to split $w = u \lor v$ back into $w \land w = u$ and $w \land w = v$ imposes equalities such as $(u \lor v).l = u$, leading to a simple name algebra. Notice that splits and merges are name-preserving (up to algebraic closure) and that the names of nodes are used to carry edge information.

We place ourselves in the Hilbert space whose canonical basis are network configurations. We study operators over that space, including those leading to quantum superpositions of network configurations.

We then introduce the notion of restriction, a function χ mapping G a network into $G_\chi \subseteq G$ a subnetwork, fulfilling the condition that $G_\chi \subseteq H \subseteq G \Rightarrow H_\chi = G_\chi$. The weaker idempotency condition $G_{\chi\chi} = G_\chi$ is essential, but taking the stronger condition ensures stability under taking unions $\chi \cup \zeta$ and neighbourhoods χ^r of restrictions.

Each restriction leads to a partial trace $(|G\rangle\langle H|)_{\chi} = |G_\chi\rangle\langle H_\chi|G_\chi\rangle$ which is completely positive trace-preserving, as well as name-preservation preserving. This generalized partial trace is robust, e.g. comprehension $\zeta \subseteq \chi$ implies $(\rho_{|\chi}_{\zeta}) = \rho_{\zeta}$. The notion of comprehension is well-behaved over name-preserving states, e.g. $\zeta \subseteq \zeta^r$ holds.

Each restriction also defines a parallel composition a.k.a tensor $|L\rangle\otimes|R\rangle = \begin{cases} |G\rangle & \text{if } L = G_\chi \text{ and } R = G_\chi^r \\ 0 & \text{otherwise} \end{cases}$ which is unambiguous, at the cost of zeroing out inconsistent terms. The notion of χ-consistency becomes central: for instance the χ-consistency-preserving operators defined by $\langle H| A |G_\chi\rangle \neq 0 \Rightarrow |H\rangle \otimes |G_\chi\rangle \neq 0$ (plus the same for A^\dagger) are intuitively those which “do not break the χ-wall” and hence gently slide along the tensor: $(A^\dagger \otimes B^\dagger)(A \otimes B) = A^\dagger A \otimes B^\dagger B$.

Intuitively, local operators alter only a part χ of the network, and ignore the rest. In this paper we say that an operator is χ-local whenever $\langle H| A |G_\chi\rangle = \langle H_\chi| A |G_\chi\rangle \langle H_\chi^r|G_\chi^r\rangle$ and prove the equivalence with the requirement that $A = A \otimes I$ and $\text{Tr}(A\rho) = \text{Tr}(A\rho_\chi)$. We say that an operator A is strictly χ-local whenever $A^\dagger A$ and AA^\dagger are also χ-local. Interestingly this corresponds to A being both χ-local and χ-consistency-preserving, from which it follows that every χ-local unitary is automatically χ-consistency-preserving.

Intuitively, causal operators act over the entire network, yet respecting that effects on region ζ be fully determined by causes in region χ. In this paper we say that operator U is causal when $(U\rho U^\dagger)_{\zeta} = (U\rho_\chi U^\dagger)_{\zeta}$ and prove equivalence with asking for A ζ-local to imply $U^\dagger AU$ χ-local.
Causality refers to the physical principle according to which information propagates at a bounded speed, localizability refers to the principle that all must emerge constructively from underlying local mechanisms, that govern the interactions of closeby systems. The two notions of causality and localizability are related by our final theorem which shows that for fully quantum networks, causality implies localizability.

Further work.

A number of mathematical results seem within reach and many more questions have yet to be considered, as we had to end somewhere.

- The examples provided in Figs 7, 9 and 10 are intuitive enough, but in all rigour they should be formalised and their corresponding properties proven. To this end we may need to show that causality is preserved under simple encodings/decodings such as splitting/merging all nodes.

- Schmidt decomposition, purification, Stinespring dilation, are all fundamental results of quantum theory that crucially rely on properties of the tensor product. Important next steps should include phrasing and assessing the validity of these result in terms of generalized tensor products of quantum networks.

- In our formalism edges are not given explicitly, rather they are induced from the information contained in the names of nodes. However, Appendix B suggests a precise alternative formalism where edges are given explicitly. Although likely heavier, the formalism ought to be evaluated: if successful, renaming-invariance would then imply full name-preservation, as used throughout the paper.

Other mathematical challenges where left aside simply because they seemed difficult. For instance we have shown that if U is $∀m∃nζ^mζ^n$-causal, so is U^2, see Prop. 8. But what if U is just $∀mζ^m$-causal? Does the final theorem presented help to provide an answer to this question? In the realm of static networks, so is U^2. This works because knowing UA_vU^\dagger with A_v is local upon some node v in some region R, induces knowing $UA_RU^\dagger = \sum_k \prod_{v\in R} A_v^{(k)}U^\dagger$ since A_R has to be of the form $\sum_k \otimes_{v\in R} A_v^{(k)}$. But how does this generalise? Are splits and merges the only new generators of the quasi-local algebras A_v? We leave such mathematical challenges as open problems.

Perspectives.

In the introduction we mentioned our original motivations for providing a theory of quantum networks:

- to provide rigorous kinematics and fully quantum dynamics for networks, equipped with rigorous notions of locality and causality;

- for the sake of taking networks models of complex systems, into the quantum realm.

For instance, in the field of Quantum Gravity we are now in a position to provide discrete-time versions of quantum graphity [28, 32], thereby placing space and time on an equal footing, and demanding strict causality, instead of approximations à la Lieb-Robinson bound [22]. We are also in a better position to study the statuses of causality and unitarity in LQG [43] and CDT [2]: are these jeopardized by the Feynman path-based dynamics used in these theories? Similarly, in the field of Quantum Computing, we now have a framework in which to model fully-quantum distributed computing devices, including dynamics over indefinite causal orders [16], e.g. by means of causal unitary operators over superpositions of directed networks.

In order to reach this theory we have had to generalize the tensor product and partial trace in a
rather modular way, and this per se suggests a whole range of unexpected perspective applications:

\textit{Decomposition techniques, causal-to-local.} These generalized operators were essential to the theorem representing causal unitary operators by means of local unitary gates. Many variants of this question are still open however, even for static networks over a handful of systems \cite{11, 34, 44}, as soon as we demand that the representation be exact. Recent approaches \cite{46} to phrasing the answers to these questions make the case for annotating wires with a type system specifying which subspace will flow into them; this in turn has the flavour of a generalized tensor product. This suggests that the generalized operators, by means of their increased expressiveness, may be key to reexpress and prove a number of standing conjectures. The idea of piecing together decompositions of the universe is also emerging in the setting of categorical quantum mechanics \cite{26}, where it was suggested to be appropriate for the discussion of causality in field theories \cite{27}.

\textit{Construction techniques, local-to-causal.} In \cite{6} the authors provide a hands-on, concrete way of expressing a family of unitary evolutions over network configurations allowing for quantum superpositions of connectivities. One may wonder whether these addressable quantum gates, if extended to become able to split and merge, could be proven universal in the class of causal operators over quantum networks.

\textit{Flexible notions of entanglement, between logical spaces.} The generalized tensor \(\otimes\) allows us to define the entanglement between its the left factor and the right factor according to an almost arbitrary logical criterion \(\chi\). For a bipartite pure state we may take the Von Neumann entropy of its partial trace on \(\chi\) in order to quantify this entanglement.

\textit{Modelling delocalized observers, quantum reference frames.} Decoherence theory \cite{40} models the observer as a quantum system interacting with others; and the post-measurement state as that obtained by tracing out the observer. But since the observer is quantum, it could be delocalized, raising the question of what it means to take the trace out then. Here we can model a delocalized observer by delocalized black particles, and trace them out. This ability to “take the vantage point of delocalized quantum system” is in fact a feature in common with quantum reference frames.

\textit{Ad hoc notions of causality, emergence of space.} The notion of \(\chi\zeta\)-causality allows us to define causality constraints according to almost arbitrary families of logical criteria \((\chi, \zeta)\). This includes scenarios where all black particles communicate whatever their network distance, say. In fact the very notion of network connectivity is arbitrary in the theory, i.e. \(\chi^*\) can in principle be redefined in order to better fit ad hoc causality constraints, possibly emerging in a similar way to pointer states in decoherence theory \cite{40}.

\section*{ACKNOWLEDGEMENTS}

This publication was made possible through the support of the ID# 61466 grant from the John Templeton Foundation, as part of the “The Quantum Information Structure of Spacetime (QISS)” Project \texttt{qiss.fr}. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation. MW was supported by University
College London and the EPSRC [grant number EP/L015242/1].

[1] Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard. Communication through coherent control of quantum channels. *Quantum*, 4:333, Sep 2020.

[2] Jan Ambjørn, Jerzy Jurkiewicz, and Renate Loll. Emergence of a 4d world from causal quantum gravity. *Physical review letters*, 93(13):131301, 2004.

[3] Mateus Araújo, Fabio Costa, and Časlav Brukner. Computational advantage from quantum-controlled ordering of gates. *Physical review letters*, 113(25):250402, 2014.

[4] P. Arrighi and S. Martiel. Quantum causal graph dynamics. *Physical Review D.*, 96(2):024026, 2017. Pre-print arXiv:1607.06700.

[5] P. Arrighi, V. Nesme, and R. Werner. Unitarity plus causality implies localizability. *J. of Computer and Systems Sciences*, 77:372–378, 2010. Local proceedings of QIP 2010 (long talk).

[6] Pablo Arrighi, Christopher Cedzich, Marin Costes, Ulysse Rémond, and Benoît Valiron. Addressable quantum gates. *arXiv preprint arXiv:2109.08050*, 2021.

[7] Pablo Arrighi, Marios Christodoulou, and Amélie Durbec. On quantum superpositions of graphs. *arXiv preprint arXiv:2010.13579*, 2020.

[8] Pablo Arrighi, Nicolas Durbec, and Aurélien Emmanuel. Reversibility vs local creation/destruction. In *Proceedings of RC 2019, LLNCS*, volume 11497, pages 51–66. Springer, 2019.

[9] Pablo Arrighi, Nicolas Durbec, and Aurélien Emmanuel. Reversibility vs local creation/destruction. In *Proceedings of RC 2019, LLNCS*, volume 11497, pages 51–66. Springer, 2019.

[10] Pablo Arrighi, Simon Martiel, and Simon Perdrix. Reversible causal graph dynamics: invertibility, block representation, vertex-preservation. *Natural Computing*, 19(1):157–178, 2020. Pre-print arXiv:1502.04368.

[11] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill. Causal and localizable quantum operations. *Phys. Rev. A.*, 64(052309), 2001.

[12] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. Training deep quantum neural networks. *Nature communications*, 11(1):1–6, 2020.

[13] Ginestra Bianconi and Christoph Rahmede. Network geometry with flavor: From complexity to quantum geometry. *Phys. Rev. E*, 93:032315, Mar 2016.

[14] Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Tornos, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn. Spin Entanglement Witness for Quantum Gravity. *Physical Review Letters*, 119(24), December 2017.

[15] Sougato Bose and Gavin W Morley. Matter and spin superposition in vacuum experiment (massive). October 2018.

[16] Esteban Castro-Ruiz, Flaminia Giacomini, and Časlav Brukner. Dynamics of quantum causal structures. *Phys. Rev. X*, 8:011047, Mar 2018.

[17] Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoît Valiron. Quantum computations without definite causal structure. *Physical Review A*, 88(2):022318, 2013.

[18] Giulio Chiribella and Hlér Kristjánsson. Quantum shannon theory with superpositions of trajectories. *Proceedings of the Royal Society A*, 475(2225):20180903, 2019.

[19] Marios Christodoulou and Carlo Rovelli. On the possibility of laboratory evidence for quantum superposition of geometries. *Physics Letters B*, 792:64–68, May 2019.

[20] Marios Christodoulou and Carlo Rovelli. On the possibility of experimental detection of the discreteness of time. *Front. in Phys.*, 8:207, 2020.

[21] Daniel Ebler, Sina Salek, and Giulio Chiribella. Enhanced communication with the assistance of indefinite causal order. *Physical review letters*, 120(12):120502, 2018.
[22] Jens Eisert and David Gross. Supersonic quantum communication. Physical review letters, 102(24):240501, 2009.
[23] Stefano Facchini and S. Perdrix. Quantum circuits for the unitary permutation problem. In International Conference on Theory and Applications of Models of Computation, pages 324–331. Springer, 2015.
[24] Nicolai Friis, Vedran Dunjko, Wolfgang Dür, and Hans J. Briegel. Implementing quantum control for unknown subroutines. Phys. Rev. A, 89:030303, Mar 2014.
[25] Simon J Gay. Quantum programming languages: Survey and bibliography. Mathematical Structures in Computer Science, 16(4):581–600, 2006.
[26] Stefano Gogioso. A process-theoretic church of the larger hilbert space. arXiv preprint arXiv:1905.13117, 2019.
[27] Stefano Gogioso, Maria E. Stasinou, and Bob Coecke. Functorial evolution of quantum fields. Frontiers in Physics, 9:24, 2021.
[28] A. Hamma, F. Markopoulou, S. Lloyd, F. Caravelli, S. Severini, K. Markstrom, C. Brouder, Â. Mestre, F.P. JAD, A. Burinskii, et al. A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime. Arxiv preprint arXiv:0911.5075, 2009.
[29] B. Hasslacher and D. A. Meyer. Modelling dynamical geometry with lattice gas automata. Expanded version of a talk presented at the Seventh International Conference on the Discrete Simulation of Fluids held at the University of Oxford, June 1998.
[30] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008.
[31] A. Klales, D. Cianci, Z. Needell, D. A. Meyer, and P. J. Love. Lattice gas simulations of dynamical geometry in two dimensions. Phys. Rev. E., 82(4):046705, Oct 2010.
[32] T. Konopka, F. Markopoulou, and L. Smolin. Quantum graphity. Arxiv preprint hep-th/0611197, 2006.
[33] Balazs Kozma and Alain Barrat. Consensus formation on adaptive networks. Phys. Rev. E, 77:016102, Jan 2008.
[34] Robin Lorenz and Jonathan Barrett. Causal and compositional structure of unitary transformations. Quantum, 5:511, Jul 2021.
[35] Chiara Marletto and Vlatko Vedral. When can gravity path-entangle two spatially superposed masses? arXiv:1803.09124 [quant-ph], March 2018.
[36] Ryan J. Marshman, Anupam Mazumdar, and Sougato Bose. Locality & Entanglement in Table-Top Testing of the Quantum Nature of Linearized Gravity. arXiv:1907.01568 [gr-qc, physics:quant-ph], July 2019.
[37] James Dickson Murray. Mathematical biology. ii: Spatial models and biomedical applications. In Biomathematics, volume 18. Springer Verlag, third edition, 2003.
[38] Ognyan Oreshkov, Fabio Costa, and ˇCaslav Brukner. Quantum correlations with no causal order. Nature Physics, 6(7):539–543, 2010.
[39] C. Papazian and E. Remila. Hyperbolic recognition by graph automata. In Automata, languages and programming: 29th international colloquium, ICALP 2002, Málaga, Spain, July 8-13, 2002: proceedings, volume 2380, page 330. Springer Verlag, 2002.
[40] J. P. Paz and W. H. Zurek. Environment-induced decoherence and the transition from quantum to classical. Lecture Notes in Physics, pages 77–140, 2002.
[41] Sébastien Perseguers, Maciej Lewenstein, A Acín, and J Ignacio Cirac. Quantum random networks. Nature Physics, 6(7):539–543, 2010.
[42] Lorenzo M. Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati Alonso Calafell, Emma G. Dowd, Deny R. Hamel, Lee A. Rozema, Caslav Brukner, and Philip Walther. Experimental superposition of orders of quantum gates. Nature Communications, 6(1), Aug 2015.
[43] Carlo Rovelli. Simple model for quantum general relativity from loop quantum gravity. In Journal of Physics: Conference Series, volume 314, page 012006. IOP Publishing, 2011.
[44] B. Schumacher and M. D. Westmoreland. Locality and information transfer in quantum operations. Quantum Information Processing, 4(1):13–34, 2005.
Appendix A: Lemmas

Lemma 1 (Complement names). Let G, H, χ be such that $V(G) \supseteq V(H)$ and $V(G_{\chi}) \supseteq V(H_{\chi})$, then it follows that $V(G) \setminus V(G_{\chi}) \supseteq V(H) \setminus V(H_{\chi})$.

Proof. In this proof we write $V \land W$ if and only if $\mathcal{N}[V] \cap \mathcal{N}[W] \neq \emptyset$.

First note the following law

$$(V \land W \text{ and } W \equiv Z) \Rightarrow V \land Z$$

It follows that if $(V(G) \setminus V(G_{\chi})) \land V(H_{\chi})$ then $(V(G) \setminus V(G_{\chi})) \land V(G_{\chi})$ which is in turn a contradiction with Eq. [1].

Consider $u \in \mathcal{N}[V(G) \setminus V(G_{\chi})]$. Because $\mathcal{N}[V(G)] = \mathcal{N}[V(H)]$, this u can be expressed by means of the operator \lor applied on elements of $\mathcal{N}[V(H)]$. Suppose that u lies beyond $\mathcal{N}[V(H) \setminus V(H_{\chi})]$, in $\mathcal{N}[V(H)] \setminus \mathcal{N}[V(H) \setminus V(H_{\chi})]$. Then the expression for u must contain at least one element of v in $\mathcal{N}[V(H_{\chi})]$. As a consequence there exists $t \in \{l, r\}^*$ such that $v = u.t$. But because the operator $t \in \{l, r\}^*$ preserves inclusion within $\mathcal{N}[V(G) \setminus V(G_{\chi})]$, v also lies in $\mathcal{N}[V(G) \setminus V(G_{\chi})]$. It follows that $(V(G) \setminus V(G_{\chi})) \land V(H_{\chi})$—leading to the contradiction of the previous paragraph.

We conclude that the expression for u in terms of elements of $\mathcal{N}[V(H)]$ must only include elements of $\mathcal{N}[V(H) \setminus V(H_{\chi})]$ and so u itself lies inside $\mathcal{N}[V(H) \setminus V(H_{\chi})]$. By reversing the above it must be that every $u \in \mathcal{N}[V(H) \setminus V(H_{\chi})]$ also exists in $\mathcal{N}[V(G) \setminus V(G_{\chi})]$ and so $\mathcal{N}[V(G) \setminus V(G_{\chi})] = \mathcal{N}[V(H) \setminus V(H_{\chi})]$ in other words it must be the case that $V(G) \setminus V(G_{\chi}) \supseteq V(H) \setminus V(H_{\chi})$.

Lemma 2 (Tensor-bracket). For every restriction $\chi : G \mapsto G_{\chi} \subseteq G$, inner products factorise with respect to χ, i.e. $\langle H|G \rangle = \langle H_{\chi}|G_{\chi} \rangle \langle H_{\chi}^{|G_{\chi}} \rangle$.

Proof. Either of the RHS and LHS are either zero or one. The RHS is 1 if and only if both $G_{\chi} = H_{\chi}$ and $G_{\chi}^{|} = H_{\chi}^{|}$. Since $G := G_{\chi} \cup G_{\chi}^{|}$ and $H := H_{\chi} \cup H_{\chi}^{|}$ this is equivalent to simply requiring that $G = H$. The LHS being $\langle G|H \rangle$ is also 1 if and only if $G = H$, so the RHS is always equal to the LHS.

Lemma 3 (Properties of restrictions). Let χ be a restriction, then it follows that

- χ is idempotent, meaning that $\chi \chi = \chi$.
- χ does not overlap with its complement, meaning that $\chi \chi^{|} = \emptyset$.
- Every disk $\chi^{|}$ is a restriction.

Proof. For any restriction χ then by definition $G_{\chi} \subseteq H \subseteq G \Rightarrow H_{\chi} = G_{\chi}$, noting that the assignment $H = G_{\chi}$ always satisfies the LHS of this statement the right hand side must also hold for $H = G_{\chi}$, meaning that $G_{\chi} = G_{\chi \chi}$.
The second point follows immediately from the first since $G_{\chi \bar{\chi}} := G_{\chi} \setminus G_{\chi \chi} = G_{\chi} \setminus G_{\chi} = \emptyset$.

Finally for disks, let $G_{\chi'} \subseteq H \subseteq G$, then $G_{\chi} \subseteq G_{\chi'} \subseteq H \subseteq G$. Because χ is a restriction, $H_{\chi} = G_{\chi} = K$. Since $H \subseteq G$, we have that $H_{\chi'} \subseteq G_{\chi'}$ because the neighbours of K in H are also in G. Since $G_{\chi'} \subseteq H$, we have that $G_{\chi'} \subseteq H_{\chi'}$ because the neighbours of K in G are also in H. Since $H_{\chi'} \subseteq G_{\chi'}$ and $G_{\chi'} \subseteq H_{\chi'}$ then $H_{\chi'} = G_{\chi'}$.

Lemma 4 (Special restrictions). Every order-preserving idempotent function $\nu : G \mapsto G_{\nu} \subseteq G$ is a restriction and as a corollary every pointwise function μ (and its complement function $\overline{\mu}$) is a restriction.

Proof. Let ν be an order-preserving idempotent function. It follows that for any $G_{\nu} \subseteq H \subseteq G$ then since ν is order-preserving $G_{\nu \nu} \subseteq H_{\nu} \subseteq G_{\nu}$ and so since ν is idempotent $G_{\nu} \subseteq H_{\nu} \subseteq G_{\nu}$, in other words $G_{\nu} = H_{\nu}$.

Every pointwise function preserves the order: $G \subseteq H \Rightarrow \bigcup_{\sigma, v \in G} \{\sigma, v\}_{\mu} \subseteq \bigcup_{\sigma, v \in H} \{\sigma, v\}_{\mu} \Rightarrow G_{\mu} \subseteq H_{\mu}$. Furthermore every pointwise function is idempotent. Since every order-preserving idempotent is a restriction it then follows that every pointwise function is a restriction.

Finally for every pointwise restriction μ its complement function $\overline{\mu}$ for single-node graphs satisfies $\{\sigma, v\}_{\overline{\mu}} := \{\sigma, v\} \setminus \{\sigma, v\}_{\mu}$ and for generic graphs satisfies

\[G_{\overline{\mu}} := G \setminus \bigcup_{\sigma, v \in G} \{\sigma, v\}_{\mu} = \bigcup_{\sigma, v \in G} \{\sigma, v\} \setminus \{\sigma, v\}_{\mu} = \bigcup_{\sigma, v \in G} \{\sigma, v\}_{\overline{\mu}}. \]

It follows that $\overline{\mu}$ is also pointwise function. By the previous section of the lemma μ must be a (pointwise) restriction.

Lemma 5 (Combining restrictions). Let χ, ζ be restrictions, then $\chi \cup \zeta$ is a restriction. Furthermore let μ be a pointwise function, then $\mu \chi$ and $\xi := \mu \chi \cup \overline{\mu \zeta}$ are restrictions. The restrictions μ, ξ and their complements furthermore commute, satisfying $[\mu, \xi] = [\overline{\mu}, \overline{\xi}] = [\mu, \overline{\xi}] = [\overline{\mu}, \overline{\xi}] = 0$.

Proof. Let $G_{\chi \cup \zeta} \subseteq H \subseteq G$ then since $G_{\chi} \subseteq G_{\chi \cup \zeta}$ we have $G_{\chi} \subseteq G_{\chi \cup \zeta} \subseteq H \subseteq G$ which since χ is a restriction implies that $H_{\chi} = G_{\chi}$. Similarly $G_{\zeta} \subseteq G_{\chi \cup \zeta} \subseteq H \subseteq G$ implies $H_{\zeta} = G_{\zeta}$. The above equalities imply equalities for the union, $H_{\chi \cup \zeta} = H_{\chi} \cup H_{\zeta} = G_{\chi} \cup G_{\zeta} = G_{\chi \cup \zeta}$.

For any pointwise restriction μ and restriction χ we have $\mu \chi \mu = \mu \chi$. As a result:

\[G_{\mu \chi} \subseteq H \subseteq G \]
\[\Rightarrow G_{\mu \chi \mu} \subseteq H_{\mu} \subseteq G_{\mu} \]
\[\Rightarrow G_{\mu \chi} \subseteq H_{\mu} \subseteq G_{\mu} \]
\[\Rightarrow H_{\mu \chi} = G_{\mu \chi} \]

Let $\xi := \mu \chi \cup \overline{\mu \zeta}$ and notice that $\overline{\xi} = \mu \chi \cup \overline{\mu \zeta}$. The function ξ is a restriction since $\mu \chi$ and $\overline{\mu \zeta}$ are restrictions by the previous part, and their union is a restriction by the first part.

We now show that $[\mu, \xi] = [\overline{\mu}, \overline{\xi}] = [\mu, \overline{\xi}] = [\overline{\mu}, \overline{\xi}] = 0$. First since μ is pointwise, then for any ν we have $\nu \mu = \nu \mu$. Similarly, $\overline{\mu} \overline{\nu} = \overline{\nu}$ and $\nu \overline{\mu} = \overline{\nu} \mu = \emptyset$. We also have $(\nu \cup \nu') \mu = \nu \mu \cup \nu' \mu$ and as always $\mu(\nu \cup \nu') = \nu \mu \cup \nu' \mu$. This is enough to derive the commutation rules by the following steps:

\[\xi \mu = \mu \chi \mu \cup \overline{\mu \zeta} \mu = \mu \chi \quad \text{and} \quad \mu \xi = \mu \chi \mu \cup \overline{\mu \zeta} = \mu \chi \]
\[\xi \overline{\nu} = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} \overline{\nu} = \mu \chi \quad \text{and} \quad \overline{\nu} \xi = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \mu = \mu \chi \mu \cup \overline{\mu \zeta} \mu = \mu \chi \quad \text{and} \quad \mu \xi = \mu \chi \mu \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \overline{\nu} = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} \overline{\nu} = \mu \chi \quad \text{and} \quad \overline{\nu} \xi = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \mu = \mu \chi \mu \cup \overline{\mu \zeta} \mu = \mu \chi \quad \text{and} \quad \mu \xi = \mu \chi \mu \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \overline{\nu} = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} \overline{\nu} = \mu \chi \quad \text{and} \quad \overline{\nu} \xi = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \mu = \mu \chi \mu \cup \overline{\mu \zeta} \mu = \mu \chi \quad \text{and} \quad \mu \xi = \mu \chi \mu \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \overline{\nu} = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} \overline{\nu} = \mu \chi \quad \text{and} \quad \overline{\nu} \xi = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \mu = \mu \chi \mu \cup \overline{\mu \zeta} \mu = \mu \chi \quad \text{and} \quad \mu \xi = \mu \chi \mu \cup \overline{\mu \zeta} = \mu \chi \]

\[\xi \overline{\nu} = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} \overline{\nu} = \mu \chi \quad \text{and} \quad \overline{\nu} \xi = \mu \chi \overline{\nu} \cup \overline{\mu \zeta} = \mu \chi \]
Lemma 6 (Tensor). For all $A : G^4 \rightarrow \mathbb{C}$,

$$
\sum_{G,H \in \mathcal{G}} A_{G,H} G_{\mathcal{G}H} |G\rangle \langle H| = \sum_{G,H \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= \sum_{G,H \in \mathcal{G}} \sum_{G',H' \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= \sum_{G,H \in \mathcal{G}} \sum_{G',H' \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

In particular,

$$
\sum_{G,H \in \mathcal{G}} A_{G,H} B_{G_{\mathcal{G}H}} |G\rangle \langle H| = A \otimes B \quad I = I_{\chi} \otimes I_{\overline{\chi}} \quad A \otimes I_{\overline{\chi}} = A \otimes I
$$

Proof. [First part]

$$
\sum_{G,H \in \mathcal{G}} A_{G,H} G_{\mathcal{G}H} |G\rangle \langle H| = \sum_{G,H \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= \sum_{G,H \in \mathcal{G}} \sum_{G',H' \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= \sum_{G,H \in \mathcal{G}} \sum_{G',H' \in \mathcal{G}} A_{G,H} \sum_{G',H' \in \mathcal{G}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

where the last line is obtained by summing also over those G, G', H, H' that are such that $|G\rangle \otimes |G'| = 0$ or $|H\rangle \otimes |H'\rangle = 0$, since for them $|G\rangle \langle H| \otimes |G'| \langle H'| = 0$. For the same reason we can sum also over those $G', H' \in \mathcal{G} \setminus \mathcal{G}_{\chi}$ and obtain the second stated equality, and over those $G, H \in \mathcal{G} \setminus \mathcal{G}_{\chi}$ to obtain the third.

[Second part]

$$
\sum_{G,H \in \mathcal{G}} A_{G,H} B_{G_{\mathcal{G}H}} |G\rangle \langle H| = \sum_{G,H \in \mathcal{G}} A_{G,H} B_{G'_{\mathcal{G}H'}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
I = \sum_{G,H \in \mathcal{G}} \delta_{G,H} \delta_{G_{\mathcal{G}H}} |G\rangle \langle H| = I_{\chi} \otimes I_{\overline{\chi}}
$$

$$
A \otimes I_{\overline{\chi}} = \sum_{G,H \in \mathcal{G}} A_{G,H} \delta_{G'_{\mathcal{G}H'}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= \sum_{G,H \in \mathcal{G}} A_{G,H} \delta_{G'_{\mathcal{G}H'}} |G\rangle \langle H| \otimes |G'| \langle H'|
$$

$$
= A \otimes I_{\overline{\chi}} = A \otimes I
$$
Lemma 7 (Tensor-tensor). Write \(E^G_{(k)} := |G^{(k)}| \langle H^{(k)} \rangle \). For all \(A : G^8 \to C \), if \([\chi, \zeta] = [\bar{\chi}, \bar{\zeta}] = 0\),

\[
\sum_{G^{(0)}, G^{(1)} \ldots \in G} A_{G^{(0)}H^{(0)}G^{(1)}H^{(1)} \ldots} \left(E^G_{(0)} \otimes E^G_{(1)} \right) \odot \left(E^G_{(2)} \otimes E^G_{(3)} \right)
\]

and let

\[
\sum_{G^{(0)}, G^{(1)} \ldots \in G} A_{G^{(0)}H^{(0)}G^{(1)}H^{(1)} \ldots} \left(E^G_{(0)} \otimes E^G_{(1)} \right) \odot \left(E^G_{(2)} \otimes E^G_{(3)} \right)
\]

Proof.

\[
\left(E^G_{(0)} \otimes E^G_{(1)} \right) \odot \left(E^G_{(2)} \otimes E^G_{(3)} \right) \neq 0
\]

Moreover, when they are non-zero,

\[
\left(E^G_{(0)} \otimes E^G_{(1)} \right) \odot \left(E^G_{(2)} \otimes E^G_{(3)} \right)
\]

Indeed write \(A = \sum_{G^{(0)} \in G} A_{G^{(0)}H^{(0)}} \langle G^{(0)} \rangle \langle G^{(0)} \rangle \), \(B = \ldots \) and let \(A'_{G^{(0)}H^{(0)}G^{(1)}H^{(1)} \ldots} := A_{G^{(0)}H^{(0)}} B_{G^{(1)}H^{(1)} \ldots} \) in the Lemma.
Lemma 8 (Trace-trace). If $\zeta \in \chi$, then $(\rho|_\chi)_\zeta = \rho_\zeta$ and any ζ-local A is also χ-local.

Partial trace.

$$\left((|G\rangle\langle H|)_{|\chi} \right)_{\zeta} = (|G_\chi\rangle\langle H_\chi|)_{\zeta} (H_\chi^|G_\chi^|)$$

$$= |G_\chi\rangle \langle H_\chi| (H_\chi^|G_\chi^|)$$

When $\zeta \in \chi$. $|G_\zeta\rangle \langle H_\zeta| (H_\zeta^|G_\zeta^|) = (|G\rangle\langle H|)_{|\zeta}$

[Locality]

$$\langle H| A |G\rangle = (H_\chi \langle A |G_\chi\rangle \langle H_\chi |G_\chi\rangle)$$

When $\zeta \in \chi$. $\langle H_\chi \langle A |G_\chi\rangle \langle H_\chi |G_\chi\rangle = (|G\rangle\langle H|)_{|\zeta}$

By ζ-loc. $\langle H_\chi \langle A |G_\chi\rangle \langle H_\chi |G_\chi\rangle$

\[\square \]

Lemma 9 (Tensor-trace 1). If ρ, σ χ-consistent, $(\rho \otimes \sigma)|_{|\chi} = \rho \otimes \sigma|_{|\emptyset}$.

If $\zeta \in \chi$, ρ, σ χ-consistent, $(\rho \otimes \sigma)|_{\zeta} = \rho_\zeta \otimes \sigma|_{\emptyset}$.

First part. Notice that $|G\rangle \otimes |G'\rangle \neq 0$ implies $(|G\rangle \otimes |G'\rangle)_{|\chi} = |G\rangle$ and $(|G\rangle \otimes |G'\rangle)_{|\chi} = |G'\rangle$.

Similarly if $|G\rangle \otimes |G'\rangle \neq 0 \neq |H\rangle \otimes |H'\rangle$,

$$\left((|G\rangle \langle H| \otimes |G'\rangle \langle H'|)\right)_{|\chi} = (|G\rangle \otimes |G'\rangle)_{|\chi} \left((|H\rangle \otimes |H'|)\right)_{|\chi}$$

$$= |G\rangle \langle H|$$

$$\left(|G\rangle \langle H| \otimes |G'\rangle \langle H'|\right)_{|\chi} = (|G\rangle \otimes |G'\rangle)_{|\chi} \left((|H\rangle \otimes |H'|)\right)_{|\chi}$$

$$= |G'\rangle$$

Next assume ρ, σ χ-consistent, i.e. $\rho_{GH\sigma G'H'} \neq 0$ implies $|G\rangle \otimes |G'\rangle \neq 0 \neq |H\rangle \otimes |H'\rangle$.

$$\rho \otimes \sigma = \sum_{G,H,G',H' \in \mathcal{G}} \rho_{GH\sigma G'H'} |G\rangle \langle H| \otimes |G'\rangle \langle H'|$$

$$(\rho \otimes \sigma)|_{|\chi} = \sum_{G,H,G',H' \in \mathcal{G}} \rho_{GH\sigma G'H'} \left((|G\rangle \langle H| \otimes |G'\rangle \langle H'|)\right)_{|\chi}$$

$$= \sum_{G,H,G',H' \in \mathcal{G}} \rho_{GH\sigma G'H'} |G\rangle \langle H| \langle H'|G'\rangle$$

By consistency $= \sum_{G,H \in \mathcal{G}} \rho_{GH} |G\rangle \langle H| \sum_{G',H' \in \mathcal{G}} \sigma_{G'H'} \langle H'|G'\rangle$

$$= \rho \otimes \sigma|_{|\emptyset}$$
[Second part]

Next assume $\zeta \subseteq \chi$ and ρ, σ χ-consistent. By Lem. 8

$$(\rho \otimes \sigma)_{\chi} = ((\rho \otimes \sigma)_{\chi\chi})_{\chi}$$

By first part. $= (\rho_{\chi\chi} \otimes \sigma_{\chi\chi})_{\chi\chi}$

\[\square\]

Lemma 10 (Tensor-trace 2). If $[\chi, \zeta] = [\overline{\chi}, \zeta] = [\chi, \overline{\zeta}] = [\overline{\chi}, \overline{\zeta}] = 0$, and ρ, σ χ-consistent,

$$(\rho \otimes \sigma)_{\chi} = \rho_{\chi\chi} \otimes \sigma_{\chi\chi}$$

Proof. Assume ρ, σ χ-consistent, i.e. $\rho_{GH} \sigma_{G'H'} = 0$ implies $|G) \otimes |G') = 0 \neq |H) \otimes |H'|$.

By Lem. 8

$$\rho \otimes \sigma = \sum_{G, H \in \mathcal{G}} \rho_{G, H} \sigma_{G'H'} |G) \langle H| \otimes |G') \langle H'|

By Lem. 2

$$= \sum_{G, H \in \mathcal{G}} \rho_{G, H} \sigma_{G'H'} |G) \langle H| \otimes |G') \langle H'|

By commut. $= \sum_{G, H, G', H' \in \mathcal{G}} (\rho_{G, H} \sigma_{G'H'})_{\chi\chi} \otimes \sigma_{G'H'} |G) \langle H| \otimes |G') \langle H'|

By consistency $= \sum_{G, H, G', H' \in \mathcal{G}} (\rho_{G, H} |G) \langle H|)_{\chi\chi} \otimes \sigma_{G'H'} |G') \langle H'|

\[\square\]

Lemma 11 (Interchange laws). $(A \otimes I) |G) = A \sigma_{G_{\chi\chi}} |G_{\overline{\chi}})$.
If A χ-consistent-preserving or $B \overline{\chi}$-consistent-preserving, $(A \otimes I)(I \otimes B) = (A \otimes B)$.
If A, A' χ-consistent-preserving, $(A' \otimes I)(A \otimes I) = (A' A \otimes I)$.
If A, A' χ-consistent-preserving, $A'A$ is χ-consistent-preserving.
If moreover B', B' are χ-consistent-preserving, $(A' \otimes B')(A \otimes B) = A'A \otimes B'B$.

Proof. [First part]

\[
A \otimes I = \sum_{G', H, K \in \mathcal{G}} A_{G' H} |G' \rangle \langle H| \otimes |K \rangle \langle K|
= \sum_{G', H, K \in \mathcal{G}} A_{G' H} \left(|G' \rangle \otimes |K \rangle \right) \left(\langle H| \otimes \langle K| \right)
\]

\[
(A \otimes I) |G \rangle = \sum_{G', H, K \in \mathcal{G}} A_{G' H} \left(|G' \rangle \otimes |K \rangle \right) \left(\langle H| \otimes \langle K| \right) \left(|G_\chi \rangle \otimes |G_{\bar{\chi}} \rangle \right)
= \sum_{G' \in \mathcal{G}} A_{G' G_\chi} \left(|G' \rangle \otimes |G_{\bar{\chi}} \rangle \right)
= (A |G_\chi \rangle) \otimes |G_{\bar{\chi}} \rangle
\]

[Second part]

\[
I \otimes B = \sum_{G^{(1)}, H^{(1)}, L \in \mathcal{G}} B_{G^{(1)} H^{(1)}} \left(|L \rangle \otimes |G^{(1)} \rangle \right) \left(\langle L| \otimes \langle H^{(1)}| \right)
\]

\[
(A \otimes I)(I \otimes B) = \sum_{G^{(0)}, L = H^{(0)}, K = G^{(1)}, H^{(1)} \in \mathcal{G}} A_{G^{(0)} H^{(0)}} B_{G^{(1)} H^{(1)}} |G^{(0)} \rangle \langle H^{(0)}| \otimes |G^{(1)} \rangle \langle H^{(1)}|
\]

\[
= \sum_{G^{(0)}, L = H^{(0)}, K = G^{(1)}, H^{(1)} \in \mathcal{G}} A_{G^{(0)} H^{(0)}} B_{G^{(1)} H^{(1)}} |G^{(0)} \rangle \langle H^{(0)}| \otimes |G^{(1)} \rangle \langle H^{(1)}|
\]

By consist. preserv. \[
= \sum_{G^{(0)}, H^{(0)}, G^{(1)}, H^{(1)} \in \mathcal{G}} A_{G^{(0)} H^{(0)}} B_{G^{(1)} H^{(1)}} |G^{(0)} \rangle \langle H^{(0)}| \otimes |G^{(1)} \rangle \langle H^{(1)}|
= A \otimes B
\]
By consist. pres. = \sum_{G^{(0)}, H^{(0)}, K \in \mathcal{G}} A'_{G^{(0)}, H^{(0)} H^{(0)}} \left(G^{(0)} \right) \left(H^{(0)} \right) \left(\left(K \right) \right)

= (A' A \otimes I)

When \(A'_{G^{(0)}, H^{(0)} H^{(0)}} \neq 0 \) and \(A_{H^{(0)} H^{(0)}} \neq 0, \left| H^{(0)} \right| \otimes \left| K \right| \neq 0 \) is entailed by \(A' \chi\)-consistent-preserving and \(\left| G^{(0)} \right| \otimes \left| K \right| \neq 0 \), or by \(A \chi\)-consistent-preserving and \(\left| H^{(0)} \right| \otimes \left| K \right| \neq 0 \).

[Fourth part]

\[
\text{Say } \langle H | A' A | G_\chi \rangle \neq 0 \\
\iff \sum_K \langle H | A' | K \rangle \langle K | A | G_\chi \rangle \neq 0 \\
\implies \exists K, \langle H | A' | K \rangle \langle K | A | G_\chi \rangle \neq 0 \\
\implies \exists K, \langle H | A' | K \rangle \neq 0 \text{ and } \langle K | A | G_\chi \rangle \neq 0 \\
\text{By consist. pres. } \implies \exists K, \langle H | A' | K \rangle \neq 0 \text{ and } \langle K | \otimes | G_\chi \rangle \neq 0 \\
\text{By consist. pres. quad } \implies \langle H | \otimes | G_\chi \rangle \neq 0
\]

Similarly for \(\langle H | (A' A)^+ | G_\chi \rangle \neq 0 \).
Then,\[\begin{align*}
(A' \otimes B')(A \otimes B) &= (I \otimes B')(A' \otimes I)(A \otimes I)(I \otimes B) \\
&= (I \otimes B')(A'A \otimes I)(I \otimes B) \\
&= (A'A \otimes B')(I \otimes B) \\
&= (A'A \otimes I)(I \otimes B')(I \otimes B) \\
&= (A'A \otimes I)(I \otimes B'B) \\
&= (A'A \otimes B'B)
\end{align*}\]

\[\square\]

Appendix B: Renaming-invariance

As always, in order to implement a symmetry \(R : \rho \mapsto R\rho R^\dagger \) in a quantum theory, one can symmetrize states, i.e. demanding \([R, \rho] = 0\), so that
\[
(AR\rho R^\dagger)|_\emptyset = (A\rho R R^\dagger)|_\emptyset = (A\rho)|_\emptyset.
\]
But one can also symmetrize observables, i.e. demanding \(RA = AR\), so that
\[
(AR\rho R^\dagger)|_\emptyset = (R\rho AR^\dagger)|_\emptyset = (R^\dagger RA\rho)|_\emptyset = (A_v\rho)|_\emptyset.
\]
The first option was that taken for name-preservation, in order to obtain Prop. 2.

The second option is that taken for renaming-invariance in Def. 3, because it is more expressive. For instance, think of \(A\) as an observable asking the question whether vertex \(v\) is connected or isolated. The question would make no sense on a rename-invariant state \(\rho\), because the question itself is not rename-invariant. Still we can make the question rename-invariant by parametrizing it by \(v\) in a way that \(RA_v = A_{R(v)} R\), and letting it transform according to \(R : A_v \mapsto A_{R(v)}\). Then the question make sense on a generic \(\rho\), whilst maintaining name-invariance:
\[
(AR_v\rho R^\dagger)|_\emptyset = (RA_v\rho R^\dagger)|_\emptyset = (R^\dagger RA_v\rho)|_\emptyset = (A_v\rho)|_\emptyset.
\]

Here are a few helpful facts to help us tame the notion of renaming.

Lemma 12 (Inverse renamings). Let \(R : \mathcal{V} \rightarrow \mathcal{V} \) be a homomorphism of the name algebra. The test condition that \(R(x).t = R(y).t' \) implies \(x = y \) and \(t = t' \), is equivalent to injectivity. If \(R \) is a renaming, so is \(R^{-1} \). If \(A_v \) is renaming-invariant, so is \(A_v^t \).

injectivity condition. Notice that \(R(x).t = R(y).t' \) is equivalent to \(R(x.t) = R(y.t') \) and that \(x.t = y.t' \) is equivalent to \(x = y \) and \(t = t' \).

Thus the injectivity of \(R \) implies the test condition.

Conversely assume the test condition is satisfied. \(u \neq v \) implies there exists \(s \) such that \(u.s = x.t \neq y.t' = v.s \).

Then, \(R(u).s = R(u.s) = R(x.t) = R(x).t \neq R(y).t' = R(y.t') = R(v.s) = R(v).s \).

Thus \(R(u) \neq R(v) \).

Thus \(R \) is injective.
Let \(R \) be a renaming. We need to check that \(R^{-1} \) is a homomorphism of the name algebra. For any \(u', v' \) take \(u, v \) such that \(u' = R(u) \) and \(v' = R(v) \).

\[
R^{-1}(u'.t) = R^{-1}(R(u).t) = R^{-1}(R(u.t)) = u.t = R^{-1}(u').t
\]

\[
R^{-1}(u' \lor v') = R^{-1}(R(u) \lor R(v)) = R^{-1}(R(u \lor v)) = u \lor v = R^{-1}(u') \lor R^{-1}(v').
\]

\[
\text{[Adjoint renaming-invariance]}
RA_v = (A_v R) \uparrow = (R \uparrow A_{R(v)}) \uparrow = A_{R(v)} R.
\]

The renaming-invariant operator \(A_v := \emptyset \{0,v\} \) may destroy name \(v \). The renaming-invariant operator \(A_v \) may create it. But this is only because they are parameterized by \(v \). Other than that, renaming-invariant operators preserve support up to \(\pm \).

Proposition 11 (Renaming-invariance implies \(\pm \)-name-preservation). We define the \(\pm \)-vertices of \(G \) to be \(V^{\pm}(G) := V(G) \cup \{v \mid \sigma(v) \in G \} \).

Let \(A_v \) be a renaming-invariant operator over \(\mathcal{H} \), parameterized by \(v \in \mathcal{V} \). Then,

\[
\langle H \rangle A_v | G \neq 0 \Rightarrow V^{\pm}(G) \cup \{v, -v\} \equiv V^{\pm}(H) \cup \{v, -v\}
\]

Proof. \(\mathcal{N}[V^{\pm}(H)] \subseteq \mathcal{N}[V^{\pm}(G) \cup \{v, -v\}] \)

By contradiction. Say there exists \(\langle H \rangle A_v | G = \alpha \neq 0 \) such that \(u \in \mathcal{N}[V^{\pm}(H)] \) and \(u \notin \mathcal{N}[V^{\pm}(G) \cup \{v, -v\}] \).

Pick \(R \) such that \(RG = G \), \(R(v) = v \), \(R(u) \notin \mathcal{N}[V^{\pm}(H)] \), i.e. map \(u \) into a fresh name \(u' \) whilst preserving \(v \) and \(G \). We have:

\[
\alpha = \langle H \rangle A_v | G
= \langle RH \rangle RA_v | G
\]

By renaming-inv. \(= \langle RH \rangle A_{R(v)} R | G \)

By choice of \(R = \langle RH \rangle A_v | G \)

There are infinitely many such \(R \), and since \(u \in \mathcal{N}[V^{\pm}(H)] \), there are infinitely many such \(RH \). It follows that \(A_v | G \) is unbounded, hence the contradiction. The result follows, from which we also have that \(\mathcal{N}[V^{\pm}(H) \cup \{v, -v\}] \subseteq \mathcal{N}[V^{\pm}(G) \cup \{v, -v\}] \).

\[
\mathcal{N}[V^{\pm}(G)] \subseteq \mathcal{N}[V^{\pm}(H) \cup \{v, -v\}]
\]

\[
\langle H \rangle A_v | G \neq 0 \iff \langle G \rangle A_v | H \neq 0 \iff \langle G \rangle A_v | H \neq 0.
\]

Moreover, by Lem. 12 \(A_v \) is also renaming-invariant.

So, the same reasoning applies.

We therefore have that \(\mathcal{N}[V^{\pm}(G) \cup \{v, -v\}] \subseteq \mathcal{N}[V^{\pm}(H) \cup \{v, -v\}] \)

\[
[V^{\pm}(G) \cup \{v, -v\}] \equiv V^{\pm}(H) \cup \{v, -v\} \text{ by definition } \mathcal{N}[V^{\pm}(G) \cup \{v, -v\}] = \mathcal{N}[V^{\pm}(H) \cup \{v, -v\}].
\]

In order to obtain full name-preservation as used the core of the paper, as a consequence of renaming-invariance, we could have restricted our attention to graphs that have no half-edges, i.e. such that if \(c.t \in V(G) \), then \(-c.t \notin V(G) \). Indeed for such closed graphs, full name-preservation amounts to \(\pm \)-name-preservation, and is therefore entailed by renaming-invariance. However the operations that we study in the paper do not preserve closed graphs. For instance, \(G \) may be closed, but not \(G_X \). This is why we have treated name-preservation as a independent assumption.
Similarly let V denote odd numbers in their binary notation. As a consequence for all ζ with $u \in V$, consider $U\zeta$. Since G is renaming-invariant, then by Prop. 11, we have $G\chi \equiv G\chi'$. Overall, this is a legitimate route to take, but we chose not to clutter this paper.

Finally, notice that a number of results in the core of the paper held without name-preservation. At the cost of name-preservation, we can even reach an interesting version of Th. 1 which does not require an extra bit of information per system.

Proposition 12 (Unitary restriction). A restriction is namewise if and only if there exists S such that $G\chi = \{\sigma.v \in G \mid v \notin N[V^*(S)]\}$.

If χ is namewise, and U is renaming-invariant, then U preserves $H\chi$.

If moreover U is unitary, then it is unitary over $H\chi$.

Proof. Since χ is namewise, there exists S such that $G = G\chi$ if and only if $-(N[V(G)] \cap N[V^*(S)])$.

Since U is renaming-invariant, then by Prop. 11, we have $N[V^*(U|G)] \subseteq N[V^*(|G)]$, i.e. for all $u, v \in N[V^*(U|G)] \implies u \in N[V^*(|G)]$, and so $N[V^*(U|G)] \cap N[V^*(S)]$ implies $N[V^*(|G)] \cap N[V^*(S)]$.

As a consequence $-(N[V^*(|G)] \cap N[V^*(S)])$ implies $-(N[V^*(U|G)] \cap N[V^*(S)])$.

Say $G = G\chi$. We therefore have $-(N[V^*(U|G)] \cap N[V^*(S)])$. As a consequence for any H such that $\langle H | U | G \rangle \neq 0$, we have $-(N[V^*(H)] \cap N[V^*(S)])$. Thus $H = H\chi$.

[Unitary case]

If U is renaming-invariant and unitary, then by Lemma Inverse renaming and renaming-invariance, so is U^\dagger. It follows that U^\dagger preserves $H\chi$. Therefore, U is unitary when restricted to $H\chi$.

Theorem 2 (Block decomposition without ancilla). Let ζ_v be the pointwise restriction such that $\zeta_v(\{\sigma.u\}) := \begin{cases} \{\sigma.u\} & \text{if } N[u] \cap N[v] \\ \emptyset & \text{otherwise} \end{cases}$. Consider U a renaming-invariant unitary operator over H, which for all $v \in V$ is $\chi_v\zeta_v$-causal with $\zeta_v \equiv \zeta_v'$. Let μ be the namewise restriction such that $\mu(\{\sigma.u\}) := \begin{cases} \{\sigma.u\} & \text{if } u \notin N[Z^*.1] \text{ where } Z.1 \\ \emptyset & \text{otherwise} \end{cases}$ denotes odd numbers in their binary notation.

Similarly let $V.0$ denote those names built out of even numbers.
There exists τ_x a non-name-preserving ζ_x-local unitary and K_x a non-name-preserving ξ_x-local unitary such that

$$\forall |\psi\rangle \in \mathcal{H}_\mu \cong \mathcal{H}, \left(\prod_{x \in \mathbb{N}} \tau_x \right) \left(\prod_{x \in \mathbb{N}} K_x \right) |\psi\rangle = U |\psi\rangle$$

where $\xi_x := \mu \chi_x \cup \overline{\mu} \zeta_x$. In addition, $[K_x, K_y] = [\tau_x, \tau_y] = 0$.

Proof. Clearly $[\mu, \zeta] = [\overline{\mu}, \zeta] = [\mu, \overline{\zeta}] = [\overline{\mu}, \overline{\zeta}] = 0$ as both are pointwise.

By Prop. 7 since μ is namewise, and U is a renaming-invariant unitary, it is unitary over \mathcal{H}_μ, and $U' := U \oplus I$ is unitary over \mathcal{H} with $U^{\dagger} = U^{\dagger} \oplus I$.

By Prop. 10 and since U is $\chi_v \zeta_v$-causal, it is $\chi_v \zeta_v$-causal, and U' is $\xi_v \zeta_v$-causal, with $\xi_v := \mu \chi_v \cup \overline{\mu} \zeta_v$.

Let the toggle τ_x be the renaming such that $\tau_x(y,b) = \begin{cases} \tau_x(x,\neg b) & \text{if } x = y \\ y & \text{otherwise} \end{cases}$.

I.e. τ_x toggles the last by of $x.0$ and $x.1$.

Notice that it is unitary and ζ_x-local, and that $[\tau_x, \tau_y] = 0$.

Moreover,

$$\left(\prod_{x \in \mathbb{N}} \tau_x \right) = \tau$$

where τ is the renaming such that $\tau(y,b) = \tau(y,\neg b)$.

Let $K_x := U^{\dagger} \tau_x U'$.

Since adjunction by a unitary is a morphism, $[K_x, K_y] = 0$.

By Prop. 9 is ξ_x-local.

Finally,

$$\left(\prod_{x \in \mathbb{N}} \tau_x \right) \left(\prod_{x \in \mathbb{N}} K_x \right) |G_\mu\rangle = \tau \ldots \left(U^{\dagger} \tau_1 U' \right) \left(U^{\dagger} \tau_0 U' \right) |G_\mu\rangle$$

By unitarity of U', $= \tau U^{\dagger} \left(\prod_{x \in \mathbb{N}} \tau_x \right) U' |G_\mu\rangle$

$$= \tau U^{\dagger} \tau U' |G\rangle$$

By Prop. 7 $= \tau \left(U^{\dagger} \oplus I \right) \tau \left(U \oplus I \right) (|G_\mu\rangle \oplus \emptyset) \rangle$

$$= \tau \left(U^{\dagger} \oplus I \right) \tau \left(U |G_\mu\rangle \oplus \emptyset \right)$$

Since U preserves the range of μ, $= \tau \left(U^{\dagger} \oplus I \right) (|\emptyset\rangle \oplus \tau U |G_\mu\rangle)$

By Prop. 11 $= \tau (|\emptyset\rangle \oplus \tau U |G_\mu\rangle)$

$$= \tau^2 U |G_\mu\rangle$$

Since τ involutive, $= U |G_\mu\rangle$.

\qed