Supplementary Material for “RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation”

Mu He, Le Hui, Yikai Bian, Jian Ren, Jin Xie*, and Jian Yang*

Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education
Jiangsu Key Lab of Image and Video Understanding for Social Security
PCA Lab, School of Computer Science and Engineering
Nanjing University of Science and Technology, China
{muhe,le.hui,yikai.bian,renjian,csjxie,csjyang}@njust.edu.cn

A Overview

In this documentation, we provide additional technical details, quantitative results, and qualitative results for our method RA-Depth. In Sec. B, we first give the details of the monocular depth estimation network. Then, we provide additional evaluation for RA-Depth in Sec. C. Finally, we show more visualization results on the KITTI dataset [2] and internet photos in Sec. D.

B Network Details

We use our proposed Dual HRNet as the monocular depth estimation network. Dual HRNet uses HRNet18 [9] as the encoder named as HREncoder and the proposed HRDecoder as the decoder. The implementation details of HRDecoder are shown in Fig. 1.

C Additional Evaluation

Ranges of Scale Factors s^L and s^H. As shown in Table 1, we report how the ranges of scale factors s^L and s^H in the arbitrary-scale data augmentation component affect the results. Specifically, Range2 represents the scale range used in the main paper, while Range1 and Range3 represent smaller and larger scale variation ranges, respectively. All models are trained at the resolution of 640×192 on the KITTI dataset [2] using the Eigen split [1]. Experiments show that in terms of varying resolutions, the setting of Range2 achieves the best results for depth estimation in most cases.

* Corresponding authors.
Monodepth2 With Arbitrary-Scale Data Augmentation. As shown in Table 2, we use the arbitrary-scale data augmentation (dubbed AS-Aug) on Monodepth2 [3] for depth estimation. Experimental results show that the proposed arbitrary-scale data augmentation can boost the performance of Monodepth2.

Comparisons With Other Individual Models. As shown in Table 3, we compare our single model RA-Depth trained at the fixed resolution of 640×192 on the KITTI dataset [2] with other individual models [3,5,10] trained separately at each test resolution. It can be observed that the performance of our RA-Depth significantly outperforms other state-of-the-art methods. Although our model is trained only once at a fixed resolution, our model can achieve the best results across different test resolutions.

C.1 Improved Ground Truth

[8] has introduced a set of high-quality depth maps for the KITTI dataset [2], resulting in 652 improved ground-truth depth maps for testing. These 652 improved ground-truth depth maps are provided for 652 (or 97%) of the 697 test frames contained in the Eigen test split [1]. As shown in Table 4, we evaluate our RA-Depth on these 652 improved ground-truth depth maps. Note that for a fair comparison, we use the same evaluation criteria and metrics as Monodepth2 [3]. It can be observed that RA-Depth still significantly outperforms existing state-of-the-art self-supervised approaches [11,4,3,5,10].

D More Visualization Results

Visualization Results of Public Datasets. As shown in Fig. 2, we show more visualization results on the KITTI dataset [2] using the Eigen test split [1].
Table 1. Experiments for the ranges of scale factors s_L and s_H. Range1: $s_L \in [0.8, 0.9]$, $s_H \in [1.1, 1.5]$. Range2: $s_L \in [0.7, 0.9]$, $s_H \in [1.1, 2.0]$. Range3: $s_L \in [0.5, 0.9]$, $s_H \in [1.1, 3.0]$. All models are trained at the resolution of 640 × 192 and then tested at five different resolutions including 416×128, 512×160, 640×192, 832×256, and 1024×320. The best results are in bold for each test resolution.

Range	Test Resolution	Error Metric ↓	Accuracy Metric ↑
		AbsRel SqRel RMSE RMSElog $\delta_{<1.25}$ $\delta_{<1.25}$ $\delta_{<1.25}$	
Range1	416×128	0.113 0.732 4.632 0.185	0.876 0.963 0.984
Range2	416×128	0.111 0.723 4.768 0.187	0.874 0.961 0.984
Range3	416×128	0.119 0.758 4.960 0.193	0.861 0.958 0.983
Range1	512×160	0.103 0.694 4.404 0.177	0.892 0.965 0.984
Range2	512×160	0.101 0.658 4.373 0.175	0.895 0.967 0.985
Range3	512×160	0.107 0.668 4.500 0.180	0.885 0.965 0.985
Range1	640×192	0.099 0.662 4.302 0.174	0.898 0.966 0.984
Range2	640×192	0.096 0.632 4.216 0.171	0.903 0.968 0.985
Range3	640×192	0.100 0.641 4.281 0.174	0.896 0.967 0.985
Range1	832×256	0.102 0.641 4.236 0.176	0.895 0.965 0.984
Range2	832×256	0.095 0.613 4.106 0.170	0.906 0.969 0.985
Range3	832×256	0.098 0.610 4.135 0.171	0.901 0.968 0.985
Range1	1024×320	0.112 0.669 4.310 0.185	0.878 0.964 0.984
Range2	1024×320	0.097 0.608 4.131 0.174	0.901 0.969 0.985
Range3	1024×320	0.103 0.611 4.126 0.175	0.898 0.969 0.985

Table 2. We perform experiments on Monodepth2 [3] by using our proposed arbitrary-scale augmentation.

Method	Train Resolution	Test Resolution	AbsRel SqRel RMSE RMSElog
Monodepth2	640×192	416×128	0.184 1.365 6.146 0.268
Monodepth2 + AS-Aug	640×192	416×128	0.116 0.900 4.902 0.193
Monodepth2	640×192	1024×320	0.193 1.335 6.058 0.271
Monodepth2 + AS-Aug	640×192	1024×320	0.106 0.853 4.607 0.182

In addition, Fig. 3 shows the visualization results of depth estimation on the Make3D and NYU-V2 datasets.

Visualization Results of Internet Photos. As shown in Fig. 4, we use the RA-Depth model trained on the KITTI dataset to predict the depth maps for these images from the ‘Wind Walk Travel Videos’ YouTube channel\(^1\). These images are captured with a monocular hand-held camera and are quite different from the car-mounted videos of the KITTI dataset [2]. It can be observed that our RA-Depth can predict higher quality depth maps than existing methods [3,5,10] on these internet photos.

\(^1\) https://www.youtube.com/channel/UCPur06mx78RtwgHJzpxpu2ew
Table 3. Comparisons with other individual models on the KITTI dataset using the Eigen split [1]. Our model RA-Depth is trained at the resolution of 640 × 192 and then test at five different test resolutions including 416 × 128, 512 × 160, 640 × 192, 832 × 256, and 1024 × 320. Existing superior methods [3,5,10] train an individual model for each test resolution. In each category of test resolution, the best results are in **bold** and the second are **underlined**.

Method	Train Resolution	Test Resolution	Error Metric ↓	Accuracy metric ↑	δ<1.25	δ<1.25	δ<1.25
Monodepth2	416 × 128	416 × 128	0.126 1.026 5.143 0.263	0.855 0.954 0.979			
HR-Depth	416 × 128	416 × 128	0.119 0.920 4.924 0.196	0.866 0.957 0.980			
DIFFNet	416 × 128	416 × 128	0.114 0.884 4.829 0.191	0.874 0.958 0.981			
RA-Depth	640 × 192	416 × 128	0.111 0.725 4.768 0.187	0.874 0.961 0.984			
Monodepth2	512 × 160	512 × 160	0.119 0.946 4.969 0.197	0.868 0.959 0.980			
HR-Depth	512 × 160	512 × 160	0.113 0.852 4.766 0.190	0.875 0.959 0.982			
DIFFNet	512 × 160	512 × 160	0.108 0.778 4.605 0.184	0.885 0.963 0.983			
RA-Depth	640 × 192	512 × 160	0.101 0.658 4.373 0.175	0.895 0.967 0.985			
Monodepth2	640 × 192	640 × 192	0.115 0.931 4.863 0.183	0.877 0.959 0.981			
HR-Depth	640 × 192	640 × 192	0.109 0.792 4.632 0.185	0.884 0.962 0.983			
DIFFNet	640 × 192	640 × 192	0.102 0.764 4.483 0.180	0.896 0.965 0.983			
RA-Depth	640 × 192	832 × 256	0.096 0.632 4.216 0.171	0.903 0.968 0.985			
Monodepth2	832 × 256	832 × 256	0.111 0.859 4.689 0.187	0.885 0.962 0.982			
HR-Depth	832 × 256	832 × 256	0.108 0.781 4.563 0.183	0.887 0.964 0.983			
DIFFNet	832 × 256	832 × 256	0.101 0.761 4.441 0.177	0.899 0.966 0.983			
RA-Depth	640 × 192	1024 × 320	0.095 0.613 4.106 0.170	0.906 0.969 0.985			
Monodepth2	1024 × 320	1024 × 320	0.108 0.863 4.647 0.186	0.892 0.963 0.982			
HR-Depth	1024 × 320	1024 × 320	0.106 0.755 4.472 0.181	0.892 0.966 0.984			
DIFFNet	1024 × 320	1024 × 320	0.097 0.722 4.345 0.174	0.907 0.967 0.984			
RA-Depth	640 × 192	1024 × 320	0.097 0.608 4.131 0.174	0.901 0.968 0.985			

Table 4. Results on improved ground truth depth. Comparison to existing self-supervised approaches on the KITTI dataset [2] using 93% of the Eigen split [1] and the improved ground truth from [8].

Method	Resolution	Error Metric ↓	Accuracy metric ↑	δ<1.25	δ<1.25	δ<1.25
SIM Learner	640 × 192	0.176 1.532 6.129 0.244	0.768 0.921 0.971			
EPC++	832 × 256	0.120 0.789 4.755 0.177	0.856 0.961 0.987			
Monodepth2	640 × 192	0.090 0.545 3.942 0.137	0.914 0.983 0.995			
HR-Depth	640 × 192	0.079 0.421 3.603 0.123	0.928 0.987 0.997			
DIFFNet	640 × 192	0.076 0.414 3.492 0.119	0.936 0.988 0.996			
RA-Depth	640 × 192	0.074 0.362 3.345 0.113	0.940 0.990 0.997			
Fig. 2. Additional qualitative results on the KITTI dataset using Eigen split.

Fig. 3. Visualization results on the Make3D [6] and NYU-V2 [7] datasets. All models are trained on the KITTI dataset [2].

Fig. 4. Additional qualitative results on the internet photos captured with a monocular hand-held camera.
References

1. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283 (2014)
2. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti dataset. The International Journal of Robotics Research (2013)
3. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)
4. Luo, C., Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R., Yuille, A.: Every pixel counts++: Joint learning of geometry and motion with 3D holistic understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)
5. Lyu, X., Liu, L., Wang, M., Kong, X., Liu, L., Liu, Y., Chen, X., Yuan, Y.: Hr-depth: High resolution self-supervised monocular depth estimation. AAAI (2020)
6. Saxena, A., Sun, M., Ng, A.Y.: Make3D: Learning 3D scene structure from a single still image. IEEE transactions on pattern analysis and machine intelligence (2008)
7. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)
8. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant cnns. In: 3DV (2017)
9. Wang, J., Sun, K., Cheng, T.: Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)
10. Zhou, H., Greenwood, D., Taylor, S.: Self-supervised monocular depth estimation with internal feature fusion. In: BMVC (2021)
11. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)