Sinus Pericranii with Dominant Venous Outflow in the Superior Eyelid

Eiji ITO,1 Syuntaro TAKASU,2 and Kenichi HATTORI3

1Department of Neurosurgery, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu, Japan; 2Department of Neurosurgery, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Aichi, Japan; 3Department of Neurosurgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan

Abstract

Sinus pericranii (SP) located in the superior eyelid is an unusual clinical presentation. Here, we report a case of 72-year-old woman with an unruptured cerebral aneurysm presented with an SP located in the left superior eyelid. The SP was found to have a dominant venous outflow from the bilateral frontal region with an arterialized blood flow pattern on color Doppler ultrasonography (CDUS). During the aneurysmal surgery, intraoperative monitoring of the dominant venous outflow with CDUS was useful for the prevention of venous outflow obstruction. Physicians should carefully consider intracranial vascular anomalies in the differential diagnosis of vascular lesions of the superior eyelid.

Key words: sinus pericranii, superior eyelid, dominant venous outflow, color Doppler ultrasonography

Introduction

Sinus pericranii (SP) is a venous anomaly that represents a transosseous communication between the intracranial and extracranial venous drainage pathways.1–3) SP is usually asymptomatic and most commonly occurs in the midline communicating with the superior sagittal sinus (SSS).4) Off-midline locations are less common and have been reported to include the lateral,5,6) parietal,1) and occipital regions.7) SP venous outflow patterns are classified as either dominant or accessory.8) In some cases of SP with accessory venous outflow, surgical excision or endovascular embolization have been performed for cosmetic reasons, to prevent hemorrhage, or to minimize the risk of air embolism.3,9,10) Although rare cases of SP in the superior eyelid have been reported, most of these have had an accessory venous outflow.11,12) In this report, we present a case of SP with dominant venous outflow located in the superior eyelid. The dominant venous outflow of the SP was monitored with color Doppler ultrasonography (CDUS) during aneurysmal clipping.

Case Report

History and examination

A 72-year-old woman with no previous head trauma or significant medical history was diagnosed with an unruptured left middle cerebral artery aneurysm by magnetic resonance imaging and referred to us for surgical treatment. Contrast-enhanced three-dimensional computed tomography (3DCT) reconstruction imaging was used to confirm the presence of the aneurysm and subsequently revealed unusual vascular structures under the left superior eyelid and in the skin over the left temporal area (Fig. 1A). The patient’s left superior eyelid did not exhibit abnormal skin color, erosion, or swelling, but became enlarged when the patient’s head was held in a downward position. Ultrasonography revealed compressible and hypoechoic tubular structures under the left superior eyelid. On CDUS, phasic flow under the left superior eyelid was detected communicating with the left temporal subcutaneous vein. Digital subtraction angiography in the venous phase demonstrated an unusual venous drainage route from the bilateral frontal region and occlusion of the anterior third of the superior sagittal sinus (SSS) (Figs. 2A-2C). The venous blood of the SP drained into the left cervical vein (Fig. 2D). Cranial radiography revealed an osseous route in the left frontal bone (Fig. 1B). A three-dimensional digital subtraction angiography surface-rendering image of the left carotid artery demonstrated a saccular aneurysm with wide neck and bleb arising from the bifurcation of the left middle cerebral artery (Fig. 3A). The aneurysm was 6 mm in diameter. Bilateral carotid angiography in the arterial phase did not indicate signs of any other vascular disease, such as ethmoidal or cavernous sinus dural arteriovenous fistula (Figs. 3B and 3C). Based on these findings, we concluded...
that the observed osseous venous route provided primary
drainage from the bilateral frontal region leading to the left
temporal subcutaneous vein, and the patient was diagnosed
with a dominant SP located in the superior eyelid. For the
treatment of the aneurysm, we selected surgical clipping
rather than endovascular coiling based on the patient’s age
and medical history, and the location and configuration
of the aneurysm.

Operation and postoperative course

Surgical clipping of the left middle cerebral aneurysm via
a left pterional approach was performed to preserve dominant
venous outflow from the SP. Under general anesthesia, the
patient’s head was rotated to the right with the vertex facing
downward. A left semicoronal skin incision was made, and
the skin flap was reflected anteriorly. A hockey stick CDUS
probe (Hitachi, Ltd, Tokyo, Japan) fixed to a Sugita head
frame was positioned on the left superior eyelid to monitor
venous outflow from the SP (Fig. 4). Upon CDUS examination,
both continuous flow and phasic flow were observed in the
hypoechoic vascular structures. An arterialized phasic flow
pattern was detected in a bone hole of the supraorbital rim
with a peak systolic velocity of 34.9 cm/s, an end diastolic
velocity of 14.1 cm/s, a time-averaged maximum velocity
of 21.5 cm/s, and a pulsatility index of 0.966 (Fig. 5a). A
strong reflection of the skin flap compressed the vascular
structures and abolished phasic flow (Fig. 5B), whereas
gentle reflection of the skin flap during surgery permitted
consistent venous outflow. The left middle cerebral aneurysm
was successfully clipped and the postoperative course was
uneventful. Postoperative 3DCt demonstrated the preserva-
tion of the venous structures of the SP (Fig. 1C).

Discussion

The present case had two unusual vascular findings. First,
SP in the superior eyelid is rare, as the most frequent site
of SP associated with venous outflow from the SSS is the
cranial midline. In addition, venous outflow of the SP in
the present case provided a dominant venous drainage route
from the bilateral frontal regions. Only two previous reports
have documented SPs involving the superior eyelid. One of these reports described an unusual location of an
accessory SP in the frontal region involving the superior
eyelid. If dominant venous drainage had been affected
by trauma or thrombosis, a life-threatening complication
may have occurred, such as venous congestion and/or
infarction, brain swelling, or hemorrhage. Several vascular
diseases involving lesions of the superior eyelid have been
described, including dilated subcutaneous eyelid vessels
caused by a carotid-cavernous sinus fistula, cavernous
hemangioma associated with Sturge-Weber syndrome,
capillary hemangioma (the most common childhood benign
periorbital tumor), and Kaposi sarcoma (most often seen
in patients with acquired immune deficiency syndrome).
Vascular entities, such as SP, should be carefully consid-
ered in the differential diagnosis of vascular lesions of
the superior eyelid.

Second, an interesting point of focus in the present case
was that SP outflow visualized on ultrasonography revealed
an arterialized blood flow pattern, while cerebral angiog-
raphy studies showed venous blood flow back into the SP
(Figs. 2A and 2B). Considering that the volume of blood
flow from the intracranial region back to the extracranial
region was constant in the present case, it can be argued
that the flow velocity becomes larger when passing from
the SSS with a large diameter through an osseous route.

Fig. 3 Digital subtraction angiography in the arterial phase. (A) A three-dimensional digital subtraction angiography surface-
rendering image of the left carotid artery, anteroposterior view, showing a saccular aneurysm with wide neck and bleb arising
from the bifurcation of the left middle cerebral artery. (B) Right carotid angiography, anteroposterior view, showing no abnormal
findings. (C) Left carotid angiography, anteroposterior view, showing a left middle cerebral artery aneurysm.

Fig. 4 Setup for monitoring the venous outflow from the sinus pericranii. A hockey stick probe for color Doppler ultrasonog-
raphy (black arrowhead) was fixed to a Sugita head frame and positioned on the left superior eyelid. The skin flap (asterisk)
was retracted with scalp hooks (white arrowhead).

Fig. 5 Venous outflow from the sinus pericranii on color Doppler ultrasonography. Upper panel: An arterialized phasic
pattern was detected in the left superior eyelid. The arrowhead indicates a bone hole in the left supraorbital rim. Lower
panel: The vascular structures in the left superior eyelid were compressed by strong retraction of the skin flap, leading the
temporary disappearance of venous flow and the phasic pattern.
with a smaller diameter penetrating the left frontal bone. Moreover, in the presence of cerebral pulsation, an arterial blood flow pattern could reasonably be indicated on CDUS. Generally, evidence of an arterial blood flow pattern on CDUS can indicate a superficial temporal artery aneurysm and/or a soft tissue tumor with an arteriovenous shunt; an SP exhibiting an arterIALIZED blood flow pattern might be overlooked or misdiagnosed in these cases. Thus, if an SP is identified, ultrasonography alone cannot fully inform the extent of venous drainage that is accounted for or influenced by the SP. Accordingly, cerebral angiography is required to determine whether a SP is dominant or accessory.

In the present case, intraoperative monitoring with CDUS was useful for preventing the obstruction of dominant venous outflow from the SP. Awareness of both the patency and direction of flow in a dominant emissary vein is important for preventing life-threatening complications during surgery. Although intraoperative cerebral angiography or indocyanine green video-angiography can be used to evaluate the venous flow, these are invasive methods that only provide intermittent monitoring. Alternatively, ultrasonography is non-invasive and inexpensive relative to other imaging modalities, and can provide continuous evaluation of venous flow during surgery. As in the present case, ultrasonography can also detect extracranial venous tubular structures and visualize the emissary vein. Moreover, CDUS can confirm venous flow in these tubular structures and reveal both the direction and pattern of venous flow in the emissary vein. Recent advances in technology have yielded a variety of ultrasonography probes suitable for diverse operative situations. The technique described herein may be useful for the real-time monitoring of blood flow during surgical as well as interventional endovascular procedures.

Three possible causes have been postulated with regard to the pathogenesis of SP: congenital, spontaneous, and traumatic. The etiology of the present case may have been congenital given the observed occlusion of the anterior third of the SSS, which possibly led to the development of a transossseous venous route in the left frontal bone during the prenatal period.

Although the frequency of cerebral aneurysm is high in patients with connective tissue diseases, such as polycystic kidney disease, Ehlers-Danlos type IV, and neurofibromatosis type I, the relationship between cerebral aneurysm and SP remains unknown. Coexisting diseases associated with SP have been reported, such as cerebellar venous angioma, blue rubber bleb nevus syndrome, arteriovenous malformation, dural sinus malformation, vein of Galen aneurysmal malformation, cavernous hemangioma, aneurysmal malformation of the internal cerebral vein, vein of Galen aplasia, PHACE syndrome, craniosynostosis, and subcutaneous venous cavernoma. To this end, physicians should be vigilant for possible congenital vascular anomalies in patients with cerebrovascular disease.

Conflicts of Interest Disclosure

The authors report no conflicts of interest concerning the materials or methods used in this study or the findings specified in this paper.

References

1. Ota T, Waga S, Handa H, Nishimura S, Mitani T: Sinus pericranii. *J Neurosurg* 42: 704–712, 1975
2. Rizvi M, Behari S, Singh RK, Gupta D, Jaiswal AK, Jain M, Phadke RV: Sinus pericranii with unusual features: multiplicity, associated dural venous lakes and venous anomaly, and a lateral location. *Acta Neurolochir (Wien)* 152: 2197–2204, 2010
3. Spektor S, Weinberger G, Constantini S, Gomori JM, Beni-Adani L: Giant lateral sinus pericranii. Case report. *J Neurosurg* 88: 145–147, 1998
4. David LR, Argenca LC, Venes J, Wilson J, Glazier S: Sinus pericranii. *J Craniofac Surg* 9: 3–10, 1998
5. Ivetic D, Pavlicevic G, Antic B, Kostic D: Multiple lateral sinus pericranii—A case report. *Vojnosanit Pregl* 72: 845–849, 2015
6. Vaquero J, de Sola KG, Martinez R: Lateral sinus pericranii. Case report. *J Neurosurg* 58: 139–140, 1983
7. Frassanito P, Massili L, Tammurri G, Caldarelli M, Pedicelli A, Di Rocco C: Occipital sinus pericranii superseding both jugular veins: description of two rare pediatric cases. *Neurosurgery* 72: E1054–E1058, 2013
8. Gandollo C, Krings T, Alvarez H, Ozanne A, Schaaf M, Baccin CE, Zhao WY, Lasjaunias P: Sinus pericranii: diagnostic and therapeutic considerations in 15 patients. *Neuroradiology* 49: 505–514, 2007
9. Brook AL, Gold MM, Farinhas JM, Goodrich JT, Bello JA: Endovascular transvenous embolization of sinus pericranii. Case report. *J Neurosurg Pediatr* 3: 220–224, 2009
10. Kimiwada T, Hayashi T, Sanada T, Shirane T, Tomina T: Surgical treatment of scaphocephaly with sinus pericranii. *Neurol Med Chir (Tokyo)* 53: 121–125, 2013
11. Grahovac G, Rajappa P, Vilendecic M, Zic R, Lambasa S, Prigemot S: Sinus pericranii in the left frontal region involving the superior eyelid: a case report. *J Neurosurg A Cent Eur Neurosurg* 74 Suppl 1: e166–e169, 2013
12. Nikiforov BM, Nikitin PI: [Developmental defect of the veins of the cranial vault (sinus pericranii) involving the upper eyelid]. *Vestn Oftalmol* 107: 61–62, 1991 (Russian)
13. Miller NR: Carotid-cavernous sinus fistulas, in Miller NR, Newman NJ, Biousse V, Kerrison JB (eds): *Walsh & Hoyt's Clinical Neuro-Ophthalmology*, ed 6. Philadelphia, Lippincott Williams & Wilkins, 2005, pp 2263–2296
14. Enjolras O, Riche MC, Merland JJ: Facial port-wine stains and Sturge-Weber syndrome. *Pediatrics* 76: 48–51, 1985
15. Haig BG, Karcigolu ZA, Gordon RA, Pechous BP: Capillary hemangioma (infantile periocular hemangioma). *Surv Ophthalmol* 38: 399–426, 1994

Neurol Med Chir (Tokyo) 57, March, 2017
16) Shuler JD, Holland GN, Miles SA, Miller BJ, Grossman I: Kaposi sarcoma of the conjunctiva and eyelids associated with the acquired immunodeficiency syndrome. Arch Ophthalmol 107: 858–862, 1989

17) Yanik B, Keyik B, Conkbayir I, Kuru AA, Hekimodlu B: Sinus pericranii: color Doppler ultrasonographic findings. J Ultrasound Med 25: 679–682, 2006

18) Bollar A, Allut AG, Prieto A, Gelabert M, Becerra E: Sinus pericranii: radiological and etiopathological considerations. Case report. J Neurosurg 77: 469–472, 1992

19) Chapman AB, Rubinstein D, Hughes R, Stears JC, Earnest MP, Johnson AM, Gabow PA, Kaehny WD: Intracranial aneurysms in autosomal dominant polycystic kidney disease. N Engl J Med 327: 916–920, 1992

20) Schievink WI, Limburg M, Oorthuys JW, Fleury P, Pope FM: Cerebrovascular disease in Ehlers-Danlos syndrome type IV. Stroke 21: 626–632, 1990

21) Schievink WI, Riedinger M, Maya MM: Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. Am J Med Genet A 134A: 45–48, 2005

22) Nomura S, Kato S, Ishihara H, Yoneda H, Ideguchi M, Suzuki M: Association of intra- and extradural developmental venous anomalies, so-called venous angioma and sinus pericranii. Childs Nerv Syst 22: 428–431, 2006

23) Sakai K, Namba K, Meguro T, Mandai S, Gohda Y, Sakurai M, Matsumoto Y: Sinus pericranii associated with a cerebellar venous angioma—case report. Neurol Med Chir (Tokyo) 37: 464–467, 1997

24) Gabikian P, Clatterbuck RE, Gailloud P, Rigamonti D: Developmental venous anomalies and sinus pericranii in the blue rubber-bleb nevus syndrome. Case report. J Neurosurg 99: 409–411, 2003

25) Poppel MH, Roach JF, Hamlin H: Cavernous hemangioma of the frontal bone with report of a case of sinus pericranii. Am J Roentgenol Radium Ther 59: 505–510, 1948

26) Nakayama T, Matsukado Y: Sinus pericranii with aneurysmal malformation of the internal cerebral vein. Surg Neurol 3: 133–137, 1975

27) Drosou A, Benjamin L, Linfante I, Mallin K, Trowers A, Wakhloo AK, Thaller SR, Schachner LA: Infantile midline facial hemangioma with agenesis of the corpus callosum and sinus pericranii: another face of the PHACE syndrome. J Am Acad Dermatol 54: 348–352, 2006

28) Mitsukawa N, Satoh K, Hayashi T, Furukawa Y, Suse T, Uemura T, Hosaka Y: Sinus pericranii associated with craniosynostosis. J Craniofac Surg 18: 78–84, 2007

Address reprint requests to: Eiji Ito, MD, Department of Neurosurgery, Gifu Prefectural Tajimi Hospital, 5-161 Maehata, Tajimi, Gifu 507-8522, Japan. e-mail: eito754@yahoo.co.jp