Matrix Metalloproteinase-3 Genotypes Influence Recovery from Hepatitis B Virus Infection

The reasons for the viral persistence of hepatitis B virus (HBV) infection are unknown, but are probably related to host immune factors. Several matrix metalloproteinases (MMPs) can regulate an inflammatory response. The aim of this study was to assess the effects of the single nucleotide polymorphisms (SNPs) of MMP-3 and -9 genes on the susceptibility to persistent HBV infection. We studied 489 Korean patients with HBV infection (144 inactive carriers, 182 chronic hepatitis, and 163 liver cirrhosis) and 174 healthy individuals who had recovered from HBV infection. MMP-3 gene SNPs were identified at two polymorphic sites (codon 45 [E45K] and codon 96 [D96E]) and MMP-9 gene SNPs at three polymorphic sites (codon 279 [R279Q], codon 607 [G607G], and codon 668 [Q668R]) in study subjects. The frequency of T allele at third position of codon 96 in the MMP-3 gene was higher in HBV persistence patients when analyzed by co-dominant model (age- and sex-adjusted OR=1.242, 95% CI=1.001-1.540, p=0.049). In conclusion the T allele at the third position of codon 96 in the MMP-3 gene might be associated with persistent HBV infection.

Key Words: Hepatitis B; Matrix Metalloproteinase; Polymorphism; Single Nucleotide
Korea) between March 2002 and December 2003. Of these, 489 patients who had been positive for both HBsAg and anti-HBc IgG for more than 6 months were defined as the persistent HBV infection (M=364, F=125, aged 16-77 yr, mean ± SD; 41.84 ± 10.98). They were regularly followed up with blood tests for serum transaminase, HBeAg/anti-HBe and alpha-fetoprotein (AFP), and with ultrasonography or computed tomography of the liver at an interval of every 6 months for more than 12 months. Of the 489, 144 patients were considered to be inactive HBsAg carriers based on sustained normal alanine aminotransferase (ALT) levels and positivity for anti-HBe and an undetectable level of HBV DNA in serum. A total of 182 patients were found to have chronic hepatitis, manifested by elevated ALT (≥2 twice the upper limit of normal) at least once during the follow-up period and positivity for HBsAg and HBV-DNA. A total of 163 patients were diagnosed as liver cirrhosis based on the typical morphologic findings on computed tomography/ultrasound and corresponding laboratory features or evidence of portal hypertension. None of them had hepatocellular carcinoma. In addition, we evaluated 174 healthy individuals (M=128, F=46, aged 26-75 yr, mean ± SD; 48.73 ± 9.13) who had recovered from HBV infection (HBsAg [-], anti-HBc IgG [+], anti-HBs [-]) and visited the Center for Health Promotion of Ajou University Hospital during the period of the study as a control group.

Patients who were positive for anti-HBs and negative for anti-HBc IgG, and patients with other types of chronic liver disease such as alcoholic liver disease, chronic hepatitis C, steatohepatitis, and Wilson’s disease were excluded from the study. All the subjects were Korean, a single ethnic group. Informed consent was obtained from each subject, and the Institutional Review Board of Human Research of Ajou University Hospital approved the study protocol.

Genotyping

We screened 40 Koreans to identify polymorphisms in the MMP3 and MMP9 genes. Among the identified polymorphisms, five were selected for larger scale genotyping (n=663) for the HBV association study based on frequencies and/or location. We assessed SNPs at two polymorphic sites in the MMP3 gene (the first position of codon 45 [E45K, G to A, rs679620] and the third position of codon 96 [D96D, C to T, rs602128]) and at three polymorphic sites in the MMP9 gene (the second position of codon 279 [R279Q, G to A, rs17576], third position of codon 607 [G607G, G to A, rs13969], and the second position of codon 668 [Q668R, A to G, rs227475]) in study subjects.

Genomic DNA was extracted from 300 μL whole blood using a DNA Purification kit (GENTRA, Minneapolis, MN, U.S.A.), according to the manufacturer’s instructions. The SNPs were detected by polymerase chain reaction (PCR) amplification. The sequence of the primers and probes used in the assays are provided in Table 1. The parameters for thermocycling were as follows: an initial activation step of 95 °C for 10 min preceded the cycling program, followed by 35 cycles of denaturation for 95 °C, annealing at 72 °C for 1 min, and final extension at 72 °C for 7 min. Each PCR product was purified by a Qiagen PCR purification kit, and the polymorphisms were detected by single base primer extension assay (SNP IT™) using the method as previously described (9). Briefly, the genomic DNA region spanning the polymorphic site was PCR-amplified using one phosphorothiolated primer and one regular PCR primer. The amplified PCR products were digested with exonuclease. The 5'-phosphorothiolates protect one strand of the PCR product from exonuclease digestion, resulting in the generation of a single-stranded PCR template. The single-stranded PCR template is overlaid onto a 384-well plate that contains covalently attached SNP-IT™ extension primer designed to hybridize immediately adjacent to the polymorphic site. The SNP-IT™ primer is extended for a single base with DNA polymerase and mixture of appropriate acycloterminator that is labeled with either FITC or biotin and complementary to the polymorphic nucleotide. The identity of the incorporated nucleotide is determined with serial colorimetric reactions with anti-FITC-AP and streptavidin-HRP, respectively. The results of yellow and/or blue color developments were analyzed with an ELISA reader, and the final genotype calls were made with the QCR-view™ program.

All genotyping results were quality controlled by includ-

Table 1. Sequences of PCR-amplifying primers and extension primers used in the SNP-IT assays

Gene	PCR-amplifying primers	Extension primers
MMP3-E45K	F: 5′-ATATTCAGACATTCAACATGATT-3′	TTATAXCTTACAAACAAATCAATC
	R: 5′-TATATTATACAGACTTCTTTAAGATAGGTTCTCC-3′	
MMP3-D96D	F: 5′-ACAGAGCCTCGTCTCACCAC-3′	CGGCGTGTGGGGCGAGCCAGACCACG
	R: 5′-ACGGTGCTGCTGCTCCCAAC-3′	
MMP9-R279Q	F: 5′-AGTGTTCCACTGAGAGG-3′	CCGCAAGTGGCCGGGCGGATCCCCTC
	R: 5′-ATCTTTTTACCTCTCCTGC-3′	
MMP9-G607G	F: 5′-AGTGTTCCACTGAGAGG-3′	CCGCAAGTGGCCGGGCGGATCCCCTC
	R: 5′-ATCTTTTTACCTCTCCTGC-3′	
MMP9-Q668R	F: 5′-AGTGTTCCACTGAGAGG-3′	CCCCTACCTCGGGTCTGXXGGAGATATACC
	R: 5′-CTCCTGCGGGCCTTCTTT-3′	

SNP, single nucleotide polymorphism; PCR, polymerase chain reaction; MMP, matrix metalloproteinases.
ing duplicate samples. We included 6 replicate samples for each of 96 well plates and checked concordances. We accepted data from a plate only if they have less than one mismatch per each plate. Overall concordances were over 99.9% throughout the experiments.

Statistical analysis

For univariate analysis, the χ^2 test was used for Hardy-Weinberg equilibrium of alleles at individual loci and independent sample t-test for normally distributed continuous variables. For multivariate analysis, multiple logistic regression analysis was performed to determine which factor(s) was the most discriminating for HBV persistence after HBV infection, where age, sex, cytokine, and its related gene polymorphisms were independent variables. Odds ratios (ORs) with 95% confidence intervals were computed by logistic regression using SPSS version 11.0 software (Chicago, IL, U.S.A.). All p values were two-tailed, and a p value <0.05 was considered to indicate statistical significance throughout the study.

RESULTS

The clinical and demographic characteristics of the case-control populations were compared. There was no significant difference between HBV persistence and clearance subjects in terms of sex (M:F=364:125 vs. 128:46, respectively). Although an effort was made to obtain an age-matched cases and controls, the age was younger in the persistence group than that in the clearance group (41.84±10.98 vs. 48.73±9.13, mean±SD, respectively, $p=0.00$).

Table 2 shows the summarized data regarding the genotype distributions in the HBV persistence and HBV clearance groups. In an analyzing model in which a co-dominant (additive) effect of the variant (V) allele was assumed, the genotypes Wild (W)/W, W/V and V/V were coded as 0, 1, and 2, respectively. When a dominant effect was assumed, genotype W/W was coded as 0, and W/V and V/V combined were coded as 1. Accordingly, scores of 0 for W/W and W/V combined and of 1 for V/V were used in a model that assumed a recessive effect.

Genotype frequencies in the MMP3 and MMP9 exon regions were analyzed in patients with HBV persistence and HBV clearance subjects. Among the five SNP sites analyzed, T allele carriers at the third position of codon 96 in the MMP3 gene had a weak correlation with HBV persistence in a co-dominant model (age- and sex-adjusted ORs; 1.242, $p=0.049$).

On the basis of unconditional logistic regression analysis with adjustment for age and sex, no statistically significant association was observed with other SNP sites in terms of the susceptibility to persistent HBV infection.

DISCUSSION

We examined the polymorphisms in exon regions of MMP3 and MMP9 genes in 663 Korean subjects and analyzed the association of these polymorphisms with HBV persistence after HBV infection. The T allele at the third position of codon 96 in the MMP3 gene was associated with HBV persistence in a co-dominant model ($p=0.049$). This is the first study to demonstrate that genetically determined differences in the MMP3 gene may be a determinant of recovery from HBV infection.

Recovery after HBV infection is known to be dependent on

Loci	Genotype	HBV persistence (n=489)	HBV clearance (n=174)	Co-dominant	Dominant	Recessive			
		OR (95% CI)	p	OR (95% CI)	p	OR (95% CI)	p		
MMP3-E45K	GG	201 (41.10%)	74 (42.53%)	1.199 (0.964-1.490)	0.103	1.227 (0.926-1.625)	0.154	1.331 (0.827-2.143)	0.239
	AG	237 (48.47%)	88 (50.57%)						
	AA	51 (10.43%)	12 (6.90%)						
MMP3-D96D	CC	210 (42.94%)	83 (47.70%)	1.242 (1.001-1.540)	0.049	1.306 (0.988-1.726)	0.061	1.331 (0.827-2.143)	0.239
	CT	228 (46.63%)	79 (45.40%)						
	TT	51 (10.43%)	12 (6.90%)						
MMP9-R279Q	GG	215 (43.97%)	72 (41.38%)	0.906 (0.722-1.136)	0.392	0.930 (0.703-1.230)	0.609	0.746 (0.435-1.277)	0.285
	AG	243 (49.69%)	86 (49.43%)						
	AA	31 (6.34%)	16 (9.20%)						
MMP9-G607G	AA	275 (56.24%)	110 (63.22%)	1.140 (0.898-1.447)	0.281	1.118 (0.845-1.481)	0.435	1.484 (0.759-2.901)	0.249
	AC	189 (38.65%)	59 (33.91%)						
	CC	25 (5.11%)	5 (2.87%)						
MMP9-Q668R	GG	382 (78.12%)	131 (75.29%)	0.988 (0.754-1.296)	0.931	0.947 (0.680-1.318)	0.746	1.183 (0.552-2.535)	0.666
	AG	87 (17.80%)	40 (22.98%)						
	AA	20 (4.09%)	3 (1.72%)						

MMP, matrix metalloproteinases; HBV, hepatitis B virus; OR, odds ratio; CI, confidence interval.
the integrated activities of the patients’ immune systems and the cytokine network. Recent studies have shown that several immunoregulatory cytokines such as interferon-γ and tumor necrosis factor-α (TNF-α) inhibit HBV replication through the non-cytopathic process (10). We previously reported that the association between various cytokines and HBV persistence. We showed specific interleukin-10 and TNF-α promoter SNPs were associated with HBV persistence (11), but there was no association between mannose binding lectin gene SNPs and HBV infection (12).

MMPs represent a family of at least 20 zinc-dependent proteolytic enzymes that are important in physiological and disease-related ECM remodeling (5). As our knowledge of this family continues to grow, we are learning that their activities are not limited to matrix degradation (6). MMPs directly modulate chemokine activity. Processing by MMP-9 leads to a loss of chemotactic activity of various chemokines, such as CXCL5, CXC6, and mouse CXCL5 (13). By contrast, the processing of CXCL8 by MMP-9 markedly increases its chemotactic activity (14). MMP-2, -3, and -9 can cleave and activate the IL-1β precursor (15). Furthermore, after activating IL-1β, MMP-3 degrades the biologically active cytokine, which can also be inactivated in vitro by MMP-1, -2, and -9. These data indicate a dual role for MMPs in biphasic modulation of inflammatory mediator activity (16).

Currently available data suggest that MMPs may have important roles in liver fibrosis and cirrhosis development, but a comprehensive description of MMP regulation in chronic hepatitis B is still lacking. Recent investigation suggested that the replication of HBV might cause increased secretion of MMP-2 that might, in turn, enhance the inflammation of liver tissue and lead to chronic hepatitis, since an elevated activity of MMP-2 has been related to inflammation in several systems (17). Previous reports showed that plasma activity of MMP-2 has been related to inflammation in several systems (17). Further work is needed to determine the precise contribution of MMP-2 to the control of HBV infection.

It would have been helpful to be able to correlate the precise levels of MMP-3 in our subjects. However, the MMP levels in sera would not be expected to be the representative of serum levels at the time when HBV persistence or recovery from infection was determined. A meaningful measurement of serum MMP levels in our cohort would require a sample taken prior to HBV infection, which was not available.

In conclusion, the carriers of T allele at the third position of codon 96 in the MMP3 gene have higher risk of viral persistence after HBV infection. The information about SNPs in MMP genes might be useful for host genetic studies, especially in HBV infection.

REFERENCES

1. Ahn SH, Han KH, Park JY, Lee CK, Kang SW, Chon CY, Kim YS, Park K, Kim DK, Moon YM. Association between hepatitis B virus infection and HLA-DR type in Korea. Hepatology 2000; 31: 1371-3.
2. Thursz MR, Kwiatkowski D, Allsopp CE, Greenwood BM, Thomas HC, Hill AV. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N Engl J Med 1995; 332: 1065-9.
3. Ben-Ari Z, Mor E, Papo O, Kfir B, Sulkes J, Tambur AR, Tur-Kaspa R, Klein T. Cytokine gene polymorphisms in patients infected with hepatitis B virus. Am J Gastroenterol 2003; 98: 144-50.
4. Miyazoe S, Hamasaki K, Nakata K, Kajiy A, Kitajima K, Nakao K, Diakoki M, Yatsuhashi H, Koga M, Yano M, Eguchi K. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. Am J Gastroenterol 2002: 97: 2086-92.
5. Nagase H, Woessner Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491-4.
6. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617-29.
7. Haro H, Crawford HC, Fingleton B, MacDougall JR, Shinomiya K, Spengler DM, Matrias LM. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest 2000; 105: 133-41.
8. Liu Z, Zhou X, Shapiro SD, Shipley JM, Twining SS, Diaz LA, Senior RM, Werb Z. The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 2000; 102: 647-55.
9. Syvanen AC. From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 1999; 13: 1-10.
10. Guidotti LG, Ando K, Hobbs MV, Ishikawa T, Runkel RD, Chisari FV. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci USA 1994; 91: 3764-8.
11. Cheong JY, Cho SW, Hwang IL, Yoon SK, Lee JH, Park CS, Lee JE, Hahn KB, Kim JH. Lack of association between hepatitis B virus infection and interleukin-10, tumor necrosis factor-alpha gene promoter polymorphisms. J Gastroenterol Hepatol 2006; 21: 1163-9.
12. Cheong JY, Cho SW, Lim SK, Shin do H, Yoon SK, Lee JH, Hahn KB, Kim JH. Lack of association between hepatitis B virus infection and polymorphism of mannose-binding lectin gene in Korean population. J Korean Med Sci 2005; 20: 65-9.
13. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503-8.
14. Van Den Steen PE, Wuys A, Husson SI, Proost P, Van Damme J, Opdenakker G. Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 2003; 270: 3739-49.
15. Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 1998; 161: 3340-6.
16. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, Sasaguri Y, Mori Y. Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 1996; 271: 14657-60.
17. Kuo WH, Chou FP, Lu SC, Chu SC, Hsieh YS. Significant differences in serum activities of matrix metalloproteinase-2 and -9 between HCV- and HBV-infected patients and carriers. Clin Chim Acta 2000; 294: 157-68.
18. Hayasaka A, Suzuki N, Fujimoto N, Iwama S, Fukayama E, Kanda Y, Saisho H. Elevated plasma levels of matrix metalloproteinase-9 (92-kd type IV collagenase/gelatinase B) in hepatocellular carcinoma. Hepatology 1996; 24: 1058-62.
19. Ahn SH, Kim do Y, Chang HY, Hong SP, Shin JS, Kim YS, Kim H, Kim JK, Paik YH, Lee KS, Chon CY, Moon YM, Han KH. Association of genetic variations in CCR5 and its ligand, RANTES with clearance of hepatitis B virus in Korea. J Med Virol 2006; 78: 1564-71.