Phenotypic and genotypic traits of vancomycin resistant enterococci from healthy food producing animals

Wist, Valerie
Phenotypic and genotypic traits of vancomycin resistant enterococci from healthy food producing animals

Inaugural-Dissertation

zur Erlangung der Doktorwürde der Vetsuisse-Fakultät, Universität Zürich

vorgelegt von

Valerie Wist
Tierärztin
von Bern, BE

genehmigt auf Antrag von

Prof. Dr. med. vet. Dr. h.c. Roger Stephan, Referent

2020
Contents

Abstract .. 5

Zusammenfassung ... 6

Manuscript ... 7

Tables ... 24

Figures ... 26

Acknowledgements

Curriculum vitae
Phenotypic and genotypic traits of vancomycin resistant enterococci from healthy food producing animals

Valerie Wist, Marina Morach, Marianne Schneeberger, Nicole Cernela, Marc J.A. Stevens, Katrin Zurfluh, Roger Stephan, Magdalena Nüesch-Inderbinen

Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Switzerland

Paper accepted in: Microorganisms

In Fulfillment of the Doctoral Thesis of Valerie Wist
Abstract

Background: Food producing animals may be a reservoir of vancomycin resistant enterococci (VRE) affecting veterinary and human medicine, either by horizontal transfer of resistance genes, or by clonal dissemination of strains. The aims of this study were to estimate the current occurrence of VRE among healthy cattle, pigs, poultry, and sheep in Switzerland, and to characterise phenotypic and genotypic traits of the isolates.

Methods: Caecal content from slaughtered cattle, pigs and sheep, and pooled faecal matter from poultry flocks at slaughter were cultured for VRE. Species identification and vancomycin genotyping were performed for all isolates. Antimicrobial resistance profiling, conjugation experiments and whole genome sequencing were carried out on a subset of the isolates.

Results: VRE was isolated from 2% of bovine and 3% of porcine samples, and from 16% of the poultry flock samples. All isolates harboured the vanA gene. Twenty-three isolates (one Enterococcus (E.) faecalis from cattle, six E. faecium from pigs, six E. faecium and 10 E. durans from poultry were further analysed. All porcine vancomycin resistant E. faecium (VREfm) isolates belonged to sequence type (ST)133, the majority thereof were resistant to penicillin (PEN) and tetracycline (TE). VREfm from poultry belonged to ST310, ST157 and ST13, and the majority was resistant to erythromycin (ERY). Most of the E. durans was resistant to ERY/TE. Conjugal transfer of vanA to human E. faecalis strain JH2-2 was observed for porcine isolates only. Three different types of Tn1546-like elements carrying the vanA operon were identified among the isolates. Type I corresponding to the prototype Tn1546-like element (identical to GenBank M97297) was detected in four E. durans strains from poultry and one vancomycin resistant E. faecalis (VREfc) from cattle. Type II carried the G8234T nucleotide point mutation in vanX and was the most prevalent structure (identified in 14 strains). Type III contained a reverse insertion (IS) element IS1252 upstream of vanR, and was observed exclusively in E. durans.

Conclusions: Among food producing animals we detected VRE belonging to STs, and harbouring Tn1546-like variants that have been found previously in food producing animals, in healthy and diseased humans, but not associated with nosocomial outbreaks.

Keywords

Enterococcus faecium, E. faecalis, E. durans, vanA, whole genome sequencing, Tn1546, cattle, pigs, poultry
Zusammenfassung

Ziel dieser Studie war es, das Vorkommen von Vancomycin-resistenten Enterokokken (VRE) in Nutztieren in der Schweiz zu eruieren, sowie die phäno- und genotypischen Eigenschaften der Isolate zu charakterisieren. Hierfür wurden Proben aus dem Zäkum geschlachteter Rinder, Schweine, Schafe und Mastgeflügelherden entnommen und auf das Vorkommen von VRE hin untersucht. Bei allen nachgewiesenen VRE-Isolaten wurden eine Speziesidentifikation und Vancomycin-Genotypisierung durchgeführt. Von einem Teil der Isolate wurden Resistenzprofile erstellt und Konjugationsexperimente sowie eine Gesamtgenomsequenzierung durchgeführt. VRE wurden aus 2% der bovinen und 3% der porcinen Proben isoliert, sowie aus 16% der Geflügelherden. Alle VRE-Isolate waren Träger des vanA Gens. 23 Isolate wurden weiter untersucht. Alle porcinen Vancomycin-resistenten E. faecium (VREfm) Isolate gehörten zum Sequenztyp (ST)133, davon war der grösste Teil resistent gegenüber Penicillin (PEN) und Tetracyclin (TE). VREfm von Geflügelherden gehörten zu ST310, ST157 und ST13, diese waren grösstenteils resistent gegenüber Erythromycin (ERY). Die meisten E. durans waren resistent gegenüber ERY/TE. Nur in den porcinen Isolaten konnte ein Gentransfer via Konjugation von vanA auf den humanen E. faecalis- Stamm JH2-2 beobachtet werden. Unter den Isolaten wurden drei verschiedene Typen der Tn1546-like Transposons als Träger des vanA Operons identifiziert.

Schlüsselwörter: Enterococcus faecium, E. faecalis, E. durans, vanA, Gesamtgenomsequenzierung, Tn1546, Rind, Schwein, Geflügel
Introduction

Antimicrobial resistance has now become a permanent aspect of human medicine with vancomycin resistant enterococci (VRE) gaining importance as nosocomial pathogens worldwide [1]. The World Health Organization (WHO) ranks vancomycin resistant *E. faecium* (VREfm) as a pathogen of high priority in its global list of important antibiotic-resistant bacteria [2]. For European countries, population-weighted mean percentage of resistance to vancomycin in invasive VREfm increased from 10.5% in 2015 to 17.3% in 2018 [3]. By contrast, in *E. faecalis*, vancomycin resistance remains infrequent in Europe [3].

Nosocomial VREfm may arise through independent events of introduction and subsequent dissemination within hospitals, but are also thought to generate within patients under antimicrobial therapy, most probably by the acquisition of resistance genes by means of horizontal gene transfer (HGT) [4, 5, 6, 7]. One of the most important genetic determinants of vancomycin resistance is represented by the vanA gene cluster, which is organised as an operon consisting of seven open reading frames, and is typically associated with transposons such as Tn1546 [8, 9]. Tn1546-type transposons play a key role in the acquisition and dissemination of vancomycin resistance among enterococci [9, 10]. Tn1546 transposons vary structurally, on account of point mutations, deletions or the presence of insertion sequence (IS) elements [11, 12]. These variations provide potential markers to type and trace the spread of vanA genes among enterococci isolated from different sources [13, 14, 15].

Most human clinical VREfm strains belong to the *E. faecium* lineage designated Clade A1 [16, 17]. This clade contains the vast majority of strains isolated from clinical settings, including isolates belonging to clonal complex (CC)17 [17, 18], and to the recently emerged sequence types (STs)203 and ST796 [4, 19, 20, 21]. Clade A2 contains strains that are predominantly associated with sporadic human infections and with livestock [18].
The proliferation of VRE in livestock in Europe is attributed to the past use of avoparcin, which was introduced in 1975 as a growth promoter, but which confers cross-resistance to vancomycin [22]. The EU ban on antimicrobial growth promoters enforced in 2006 (EC no. 1831/2003) lead to a decline of the prevalence of VRE among farm animals [22]. Nevertheless, VRE continues to be readily detected in samples from livestock when using selective media, and its persistence is suggested to be maintained by co-selection, i.e., the use of macrolides, tetracycline, or copper, or by the presence of plasmid addiction systems [22]. Accordingly, food producing animals may be considered a reservoir of VRE that affects veterinary and human medicine, either by horizontal transfer of vancomycin resistance genes between animal and human adapted enterococci, or by clonal dissemination of resistant strains [22].

This study aimed to assess the prevalence of VRE among healthy cattle, pigs, poultry, and sheep at slaughter and to characterise and compare phenotypic and genotypic traits of the isolates from these different sources.

Material and Methods

Sampling and bacterial isolation

For slaughter cattle (n=362), pigs (n=350), and sheep (n=218), swab samples were aseptically collected on 14 different days from caecal contents by cutting through the caecal wall with sterile scissors. Each caecum was swabbed once, avoiding an overload of fecal matter. Swabs were placed in sterile stomacher bags and transported to the laboratory. Animal and herd identification were collected along with each sample.

For poultry samples, fecal matter was collected on 9 different days at the entry of a poultry slaughterhouse from the crates of 102 poultry flocks (approximately 6,000 chicken per flock).
Pooled samples were placed in sterile bags and flock identification was noted for each sample.

In the case of caecum samples, the excess lengths of the swabs were broken off, and 20ml brain heart infusion (BHI) broth with 6.5% NaCl (Oxoid, Pratteln, Switzerland) was added to each bag. For poultry samples, broth was added directly to each bag. Samples were homogenised for 30-60’ using a stomacher and incubated for 18-24h at 37°C. From the pre-enrichment broth, one loopful was streaked onto VRE select agar (BioRad, Cressier, Switzerland) and incubated for 48h at 37°C.

From samples with presumptive enterococci positive colonies, colonies of different colony morphology were selected and purified on sheep blood agar (BioRad). In case of unclear identity, isolates were tested for catalase activity and catalase negative isolates were further analysed.

Species identification was performed by matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF-MS, Bruker Daltonics, Billerica, MA, USA) using Compass FlexControl version 3.4 software with the Compass database version 4.1.80.

All isolates were stored in 20% glycerol at -20°C for further analysis.

Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes

Bacterial DNA was prepared by a standard lysis and boiling method [23]. Multiplex PCR targeting vanA, vanB, vanC-1, and vanC-2/3 genes was carried out on all isolates using custom synthesised primers (Microsynth, Balgach, Switzerland) and conditions published previously [24]. Amplicons were visualised under ultraviolet light after electrophoresis in 1% agarose gel stained with ethidium bromide. *E. faecalis* ATCC51299 (vanB) and *E. casseliflavus* (vanC) [25] were used as positive controls.
Antimicrobial susceptibility testing

Determination of the minimal inhibitory concentrations (MICs) of vancomycin was performed using a gradient strip (Etest, Biomérieux, Geneva, Switzerland) according to the manufacturer’s instructions. Antimicrobial susceptibility profiling was performed using VITEK 2 Compact system with AST-GP69 cards (BioMérieux, Marcy l’Etoile, France) according to the manufacturer’s instructions. The MIC values were interpreted according to the CLSI susceptibility breakpoints, where available [26]. Antimicrobials with existing CLSI breakpoints included ampicillin (AMP), amoxicillin/clavulanate (AMC), erythromycin (ERY), penicillin G, (PEN) and tetracycline (TE).

Conjugation experiments

Transfer experiments were performed using a modified solid mating protocol and *E. faecalis* JH2-2 (rifampicin resistant, vancomycin susceptible) as a recipient [27]. In brief, 40µl volumes of overnight cultures of donor and recipient cells grown in BHI broth were mixed, concentrated by centrifugation, and resuspended in 20µl of BHI broth. The mixture was dispensed onto BHI agar plates and incubated at 37°C for 18-20 hours. One loopful of cells were collected in 400 µl BHI broth. Serial dilutions were plated on BHI supplemented with 6 mg/L vancomycin and 50 mg/L rifampicin. The resulting transconjugants were purified and subjected to identification by MALDI-TOF-MS.

Conjugation frequency was expressed as number of transconjugants per recipient cell. Transconjugants were tested by singleplex PCR to confirm the presence of *vanA* using primers and conditions described previously [24].
Whole genome sequencing

Bacterial cultures were grown over night in 5 ml BHI with 6.5% NaCl. Chromosomal DNA was isolated from 1 mL overnight cultures using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). Sequencing was done on an Illumina MiniSeq (Illumina, San Diego, CA, USA) and reads were assembled using Spades 3.12.0 [28] and Shovill [29], as described previously [30]. Species were identified using SpeciesFinder2.0 [31] available at https://cge.cbs.dtu.dk/services/SpeciesFinder/.

Draft genomes were annotated using Prokkka using standard settings [32]. Resistance genes were identified using the resistance gene identifier RGI from the comprehensive antibiotic resistance database [33, 34]. Searches were performed with standard setting and performed locally against the CARD database downloaded in September 2019.

Variations of the Tn1546 element were identified based on what is considered the Tn1546 prototype (GenBank M97297) [15, 35]. Tn1546 sequences were compared by using average nucleotide identity (ANI). The ANI was calculated according to Richter et al [36] using the python script PyANI.py [37].

An ANI-base tree was constructed using an in-house R script. Shortly, the Euclidian distance in the relative-identity matrix produced by PyANI.py was calculated using the function “dist” from the package cluster [38] und subsequently clustered using the function “hclust”.

Core-genome multilocus sequence typing (cgMLST) was performed in the software package SeqSphere 4.1.9 (Ridom, Münster, Germany), and the Enterococcus faecium MLST database (https://pubmlst.org/efaecium/) and the Enterococcus faecalis MLST database (https://pubmlst.org/efaecalis/), respectively, to determine sequence types (STs).

Alignments of the vanA-operon were visualised using CLC Main Workbench 8.1.3.
Results

Prevalence of VRE among healthy food producing animals

Overall, VRE were isolated from six (2%) of the cattle samples, 12 (3%) of the swine samples, and 16 (16%) of the poultry flocks. No VRE were isolated from sheep samples, and the six cattle samples were restricted to one herd. A total of 34 vanA positive enterococci isolates were identified. No vanB, vanC-1, or vanC-2/3 genes were detected.

A subset of 23 strains were selected for further analysis. To avoid sample clustering, isolates from different cattle and pig herds were taken. Strains included E. faecalis isolated from cattle (n=1), E. faecium isolated from pigs (n=6), E. faecium (n=6) and E. durans (n=10) isolated from poultry. Taken together, 12 E. faecalis, 10 E. durans, and one E. faecalis were analysed in this study.

AST and detection of resistance genes

All isolates exhibited MICs of vancomycin of > 32 µg/ml (Table 1). Susceptibility profiling for additional antimicrobials with existing CLSI breakpoints showed that among the E. faecium isolated from pigs, the resistance phenotype PEN/TE represented the most common pattern (83%), followed by ERY/PEN/TE (17%).

Among the E. faecium from poultry, ERY (67%) predominated over PEN (17%), and one isolate remained susceptible. For E. durans isolates, the resistance pattern ERY/TE was observed in 70%, while TE was found in 30% of the isolates, respectively.

The E. faecalis isolated from cattle did not exhibit an additional resistance phenotype.

Other antimicrobials included in the Vitek 2 panel to which enterococci are intrinsically resistant, or for which no breakpoints are available had MIC values that are listed in Additional file 1.
Regarding the resistance genotype, aminoglycoside resistance genes were detected among 22 (95.7%) of the isolates, corresponding to all the *E. faecium* and *E. durans* strains and excluding the *E. faecalis* isolate. Tetracycline resistance genes were observed uniformly among *E. faecium* from pigs, in eight (80%) of the *E. durans*, but were absent in *E. faecium* for poultry and in the *E. faecalis* isolate (Table 1). Erythromycin genes were detected in eight (80%) of the *E. durans* strains. Notably, the lincomamide, streptogramin A and pleuromutilin (LS₃P) resistance gene *eat(A)* was identified uniformly in *E. faecium* from pigs and from poultry (Table 1).

Genes potentially conferring metal-resistance including cadmium resistance genes *cad(A)* and *cad(C)*, the copper resistance gene *cop(Z)*, the metal transport repressor gene *czr(A)*, mercury resistance genes *mer(A)* and *mer(R)*, and the putative zinc transporter gene *zos(A)*, were detected exclusively in isolates from pigs.

Mating Experiments

Sixteen strains, including one *E. faecalis* from cattle, six *E. faecium* from pigs, six *E. faecium* from poultry, and three *E. durans* from poultry were selected as donors for conjugative transfer to the recipient *E. faecalis* JH2-2. Transconjugants were obtained from five donors, all of which were *E. faecium* isolates from pigs. Vancomycin resistance was transferred with frequencies of 1.7×10^{-7} (donor Sw245), 4.3×10^{-7} (donor Sw253), 5×10^{-6} (donor Sw290), 2×10^{-6} (Sw292), and 1.5×10^{-5} (Sw342), per recipient, respectively.

Characterization of the Tn1546 structures

Analysis of the Tn1546 structures distinguished three different Tn1546-like types I-III, respectively (Table 1). A cluster dendrogram showing the Tn1546 types of all the isolates analyzed in this study and the prototype Tn1546 (M97297) is presented in Figure 1.
The structure of the \textit{van} operon in type I was identical to the prototype described previously (GenBank M97297), and included four \textit{E. durans} isolates from poultry and the \textit{E. faecalis} isolate from cattle (Table 1).

Type II Tn1546-like elements carried a G to T point mutation in \textit{vanX} at position 8234 of the \textit{van} operon and were identified in the six \textit{E. faecium} from poultry, in the six \textit{E. faecium} from pigs, and in two \textit{E. durans} isolates from poultry (Table 1 and Figure 1). The Tn1546-like type II elements identified in \textit{E. faecium} from poultry contained an \textit{aadK} gene downstream of \textit{vanZ}, whereas those found in pigs carried \textit{mer(A)} and those detected in \textit{E. durans} contained a topoisomerase gene. Examples of type II Tn1546-like elements are shown in Figure 2.

Finally, type III Tn1546 was identical to the type II structure, but disrupted by IS1252 in the \textit{orf2-vanR} intergenic region. Type III elements were detected in four \textit{E. durans} isolates from poultry and carried a topoisomerase gene located downstream of \textit{vanZ} (Figure 2).

Multilocus sequence typing

MLST analysis of the 12 VRE\textit{fm} revealed the occurrence of four different STs. The most frequent ST was ST133, which was found in the six isolates from pigs. ST310 was identified in three, ST157 in two, and ST13 in one isolate from poultry, respectively (Table 1).

MLST further assigned the \textit{E. faecalis} from cattle to ST29 (Table 1).

Accession numbers

The whole genome shotgun sequences have been deposited at GenBank numbers VYUB00000000 to VYUX00000000.
Discussion

The use of antimicrobials as growth promoters was banned by law in Switzerland in 1999 [39]. During the decades that followed, VRE was detected at very low levels in the context of resistance monitoring of livestock [40]. However, between 2013 and 2016, one E. faecalis isolate from cattle, one E. faecalis from broilers, and two E. faecium isolates from fattening pigs were resistant to vancomycin, indicating that VRE are present in food animals in Switzerland [40, 41].

The present study demonstrates the occurrence of vanA-type E. faecalis, E. faecium and E. durans among Swiss cattle, pigs, and poultry flocks 20 years after the ban on avoparcin use. The persistence of VRE in the absence of an obvious selective pressure has been observed previously and is thought to be a consequence of co-selection through the therapeutic use of other antimicrobial agents such macrolides or tetracycline, and the use metals such as copper or zinc as feed additives [42, 43, 44]. Accordingly, a high rate of phenotypic resistance to erythromycin and tetracycline was observed among the isolates in this study. Genetically, macrolide resistance encoded by ermB and tetracycline resistance encoded by tet genes, has been linked to the transposons of the Tn1546 family that contain the vanA gene [42, 45, 46]. Correspondingly, erm(B), and tet(W) were frequently detected among the isolates. Furthermore, the E. faecium isolated from pigs in this study contained typical adaptations to the porcine environment, such as zinc and copper resistance genes [47].

Other resistance genes identified among the E. faecium isolates included the aac(6')-Ii gene which is ubiquitous in E. faecium and thought to contribute to intrinsic aminoglycoside resistance [48]. Similarly, aac(6')-Iid which likewise is species specific [49], was found uniformly among the E. durans isolates in this study. E. faecalis is intrinsically resistant to lincosamide, streptogramins A, and pleuromutilins (LSAP) due to the presence of linA, which was accordingly observed in the E. faecalis isolate R277 from cattle in this study. By contrast, in E.
faecium, LSAP resistance is acquired by a C1349T point mutation in the Enterococcus ABC transporter gene eat(A) [50]. In human isolates, the mutated allelic variant eat(A)v has been reported in 23% of a collection of epidemiologically unrelated clinical isolates, including isolates corresponding to colonization or fecal carriage [50, 51]. In the present study, eat(A), was identified uniformly in E. faecium from poultry and from pigs. To our knowledge, eat(A), has not been described previously among porcine and poultry associated E. faecium isolates. Its significance as a potential marker for epidemiological studies could be investigated in future studies.

VanA-type resistance is generally mediated by Tn1546-like transposons that are frequently carried by self-transferable plasmids [9]. However, under the experimental conditions applied in this study, transfer of vancomycin resistance was obtained only from porcine donors. Our data confirm the possibility of vanA transfer from porcine E. faecium to human E. faecalis, as demonstrated previously in vitro and in vivo in the intestines of mice [52].

The Tn1546 structures among the enterococci from this study were very similar. The majority contained the G8234T point mutation within vanX which has been found in enterococcal isolates from healthy and hospitalised humans, in pig isolates, in food isolates, and in environmental enterococci [53, 54, 55, 56]. This indicates that this transposon type is widely disseminated and shared between different enterococcal species and ecological niches.

Many vanA type Tn1546-like structures contain IS elements that likely play a role in the evolution of vancomycin resistance [9]. IS1216V is one of the main IS elements frequently observed in the orf2-vanR and the vanX–vanY intergenic regions within Tn1546 from different sources worldwide [14, 53, 57]. The absence of IS1216V within the Tn1546 elements of the isolates from this study is characteristic for VREfm identified previously in strains in Europe in the late 1990s and 2000s, indicating that the vanA-type resistance mechanism may be very conserved among livestock enterococci in Switzerland. The lack of
the diversity observed in Tn1546 structures which is typical for human clinical isolates suggests a limited sharing of resistance genes between livestock and human VRE, as observed previously for livestock and human enterococci isolates analysed in the UK [58].

Using cgMLST indicated that the *E. faecalis* and the *E. faecium* isolates belonged to STs typically identified among livestock-associated strains [55]. *E. faecium* isolated from pigs in this study were represented by a distinct population belonging to ST133. ST133 clusters within subgroup complex-5 (ST5) which contains STs that been identified in pigs and human hosts in Europe, including pigs from Denmark, Portugal, Spain, Switzerland, in healthy and in hospitalised patients in Denmark, Germany and Portugal, notably however, unrelated to nosocomial spread [17, 54]. These findings suggest a limited potential for transmission of VRE between humans and pigs. Similarly, *E. faecium* ST310, detected in three poultry isolates, is a poultry-adapted ST that is prevalent among broilers in Sweden [59, 60], and *E. faecium* ST13 and ST157 have been reported in poultry in Sweden, Denmark and Korea [55]. Taken together, MLST analysis did not reveal any close relationship to typical nosocomial strains belonging to CC17, or to recently emerged endemic strains ST203 and ST796. Likewise, *E. durans* is detected frequently in healthy poultry, but is reported only sporadically in human clinical infections [55]. *E. durans* of human and animal origin have been found to contain similar genetic arrangements of the vanA gene cluster, and it has been shown in vitro that *E. durans* transfers vanA to human clinical *E. faecium* at a high frequency [61, 62]. Conversely, in our study, the *E. durans* did not result in transferability to *E. faecalis*, at least under the given experimental circumstances.
Conclusions

Our study provides further evidence of the occurrence of vanA-type VRE in livestock, including healthy cattle, pigs, and poultry. Our results suggest that porcine *E. faecium* may be prone to transfer vanA genes to human related *E. faecalis*. Furthermore, our data confirm previous studies that show that there is limited sharing of livestock-associated VRE strains with strains associated with sporadic human disease, and we did not identify any clones related to hospital-related outbreak strains such as CC17.

Authors’ contributions

RS designed the study. VW was responsible for sample collection. MM, KZ, SS and VW carried out the microbiological and molecular biological tests and contributed to analysis and interpretation of the data. VW, RS, SS, and MNI analyzed and interpreted the data. MJAS was responsible for bioinformatics, analysis of the WGS data, and contributed to writing the manuscript. MNI drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We gratefully acknowledge the support and assistance of the staff of the Veterinary Service at the slaughterhouse in Zürich, and the staff of the Bell company slaughterhouse in Zell, Switzerland. We thank professor Christian Lacroix, Institute of Food Science and Nutrition, ETH Zürich, for providing the *E. faecalis* JH2-2 strain. This study was partly funded by the Federal Office of Public Health.
References

1. Puchter L, Chaberny I F, Schwab F, Vonberg R P, Bange F C Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7:1.

2. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet D L et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318-27.

3. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.

4. Wassilew N, Seth-Smith H M, Rolli E, Fietze Y, Casanova C, Führer U et al. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Euro Surveill. 2018;23:1800351.

5. Howden B P, Holt K E, Lam M M C, Seemann T, Ballard S, Coombs G W et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio. 2013;4:e00412-13.

6. Pinholt M, Gumpert H, Bayliss S, Nielsen J B, Vorobieva V, Pedersen M et al. Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark. Journal of Antimicrobial Chemotherapy. 2016;72:40-7.

7. Raven K E, Gouliouris T, Brodrick H, Coll F, Brown N M, Reynolds R et al. Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing. Clinical infectious diseases. 2017;64:886-93.

8. Ahmed M O Baptiste K E. Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24:590-606.

9. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42 Suppl 1:S25-34.

10. Sletvold H, Johansen P J, Wikmark O-G, Simonsen G S, Sundsfjord A Nielsen K M. Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. J Antimicrob Chemother. 2010;65:1894-906.

11. Acar J, Casewell M, Freeman J, Friis C Goossens H. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin Microbiol Infect. 2000;6:477-82.

12. Yu H S, Seol S Y Cho D T. Diversity of Tn1546-like elements in vancomycin-resistant enterococci isolated from humans and poultry in Korea. J Clin Microbiol. 2003;41:2641-3.

13. Willems R J L, Top J, van den Braak N, van Belkum A, Mevis D J, Hendriks G et al. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob Agents Chemother. 1999;43:483-91.

14. Wardal E, Kuch A, Gawryszewska I, Żabicka D, Hryniewicz W Sadowy E. Diversity of plasmids and Tn1546-type transposons among vanA Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis. 2017;36:313-28.
15. López M, Sáenz Y, Alvarez-Martínez M J, Marco F, Robredo B, Rojo-Bezares B et al. Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin. J Antimicrob Chemother. 2010;65:1570-5.

16. Bayjanov J R, Baan J, Rogers M R C, Troelstra A, Willems R J L van Schaik W. Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization. bioRxiv. 2019550244.

17. Willems R J L, Top J, Marga van Santen D, Coque T M, Baquero F, Grundmann H et al. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis. 2005;11:821.

18. Lebreton F, van Schaik W, McGuire A M, Godfrey P, Griggs A, Mazumdar V et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio. 2013;4:e00534-13.

19. Hammerum A M, Baig S, Kamel Y, Roer L, Pinholt M, Gumpert H et al. Emergence of vanA Enterococcus faecium in Denmark, 2005-15. J Antimicrob Chemother. 2017;72:2184-90.

20. Mahony A A, Buultjens A H, Ballard S A, Grabsch E A, Xie S, Seemann T et al. Vancomycin-resistant Enterococcus faecium sequence type 796 - rapid international dissemination of a new epidemic clone. Antimicrob Resist Infect Control. 2018;7:44.

21. Buultjens A H, Lam M M, Ballard S, Monk I R, Mahony A A, Grabsch E A et al. Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium. PeerJ. 2017;5:e2916.

22. Nilsson O. Vancomycin resistant enterococci in farm animals - occurrence and importance. Infect Ecol Epidemiol. 2012;2:16959.

23. Sambrook J Russell D W. Molecular cloning: a laboratory manual (3-volume set). Cold Spring Harbor Laboratory Press; 2001.

24. Dutka-Malen S, Evers S Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995;33:1434.

25. Wambui J, Tasara T, Njage P M K Stephan R. Species distribution and antimicrobial profiles of Enterococcus spp. isolates from Kenyan small and medium enterprise slaughterhouses. J Food Prot. 2018;81:1445-9.

26. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; Wayne, PA; 2018.

27. Jacob A E Hobbs S J. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol. 1974;117:360-72.

28. Bankevich A, Nurk S, Antipov D, Gurevich A A, Dvorkin M, Kulikov A S et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455-77.

29. Seemann T. Shovill. (https://githubcom/tseemann/shovill). 2019.

30. Stevens M J A, Cernela N, Corti S Stephan R. Draft genome sequence of Streptococcus parasuis 4253, the first available for the species. Microbiol Res Announc. 2019;8.
31. Larsen M V, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H et al. Benchmarking of methods for genomic taxonomy. J Clin Microbiol. 2014;52:1529-39.

32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinform. 2014;30:2068-9.

33. Jia B, Raphenya A R, Alcock B, Waglechner N, Guo P, Tsang K K et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016gkw1004.

34. McArthur A G, Waglechner N, Nizam F, Yan A, Azad M A, Baylay A J et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348-57.

35. Arthur M, Depardieu F, Molinas C, Reynolds P Courvalin P. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene. 1995;154:87-92.

36. Richter M Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. PNAS. 2009;106:19126-31.

37. Pritchard L, Glover R H, Humphris S, Elphinstone J G Toth I K. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12-24.

38. Maechler M, Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. cluster: cluster analysis basics and extensions. R package version 2.1.0. 2019.

39. Arnold S, Gassner B, Giger T Zwahlen R. Banning antimicrobial growth promoters in feedstuffs does not result in increased therapeutic use of antibiotics in medicated feed in pig farming. Pharmacoepidemiol Drug Saf. 2004;13:323-31.

40. Federal Office of Public Health and Federal Food Safety and Veterinary Office. Swiss antibiotic resistance report 2018. Usage of antibiotics and occurrence of antibiotic resistance in bacteria from humans and animals in Switzerland. November 2018. FOPH publication number:2018-OEG-87. 2018.

41. Federal Office of Public Health and Federal Food Safety and Veterinary Office. Swiss antibiotic resistance report 2016. Usage of antibiotics and occurrence of antibiotic resistance in bacteria from humans and animals in Switzerland. November 2016. FOPH publication number:2016-OEG-30. 2016.

42. Aarestrup F M. Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol. 2000;38:2774-7.

43. Cattoir V Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother. 2013;68:731-42.

44. Hammerum A M. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect. 2012;18:619-25.

45. Silva V, Igrejas G, Carvalho I, Peixoto F, Cardoso I, Pereira J E et al. Genetic characterization of vanA Enterococcus faecium isolates from wild red-legged partridges in Portugal. Microbial Drug Resistance. 2018;24:89-94.
46. Lozano C, Gonzalez-Barrio D, Camacho M C, Lima-Barbero J F, de la Puente J, Höfle U et al. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol. 2016;72:813-20.

47. Yazdankhah S, Rudi K Bernhoft A. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis. 2014;25:25862.

48. Wright G D Ladak P. Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. Antimicrob Agents Chemother. 1997;41:956-60.

49. del Campo R, Galán J C, Tenorio C, Ruiz-Garbajosa P, Zarazaga M, Torres C et al. New aac (6′)-I genes in Enterococcus hirae and Enterococcus durans: effect on β-lactam/aminoglycoside synergy. J Antimicrob Chemother. 2005;55:1053-5.

50. Isnard C, Malbruny B, Leclercq R Cattoir V. Genetic basis for in vitro and in vivo resistance to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) in Enterococcus faecium. Antimicrob Agents Chemother. 2013;57:4463-9.

51. Bérenger R, Bourdon N, Auzou M, Leclercq R Cattoir V. In vitro activity of new antimicrobial agents against glycopeptide-resistant Enterococcus faecium clinical isolates from France between 2006 and 2008. Med Mal Infect. 2011;41:405-9.

52. Bourgeois-Nicolaos N, Moubareck C, Mangene N, Butel M Douet-Populaire F. Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice. FEMS Microbiol Lett. 2006;254:27-33.

53. Novais C, Freitas A R, Sousa J C, Baquero F, Coque T M Peixe L V. Diversity of Tn1546 and its role in the dissemination of vancomycin-resistant enterococci in Portugal. Antimicrob Agents Chemother. 2008;52:1001-8.

54. Freitas A R, Coque T M, Novais C, Hammerum A M, Lester C H, Zervos M J et al. Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol. 2011;49:925-31.

55. Torres C, Alonso C A, Ruiz-Ripa L, León-Sampedro R, Del Campo R Coque T M. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr. 2018;6

56. Guardabassi L Dalsgaard A. Occurrence, structure, and mobility of Tn1546-like elements in environmental isolates of vancomycin-resistant enterococci. Appl Environ Microbiol. 2004;70:984-90.

57. Cha J O, Yoo J I, Kim H K, Kim H S, Yoo J S, Lee Y S et al. Diversity of Tn1546 in vanA-positive Enterococcus faecium clinical isolates with VanA, VanB, and VanD phenotypes and susceptibility to vancomycin. J Appl Microbiol. 2013;115:969-76.

58. Gouliouris T, Raven K E, Ludden C, Blane B, Corander J, Horner C S et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. MBio. 2018;9:e01780-18.

59. Nilsson O, Greko C, Top J, Franklin A Bengtsson B. Spread without known selective pressure of a vancomycin-resistant clone of Enterococcus faecium among broilers. J Antimicrob Chemother. 2009;63:868-72.
60. Nilsson O, Alm E, Greko C Bengtsson B. The rise and fall of a vancomycin-resistant clone of *Enterococcus faecium* among broilers in Sweden. J Glob Antimicrob Resist. 2019;17:233-5.

61. Robredo B, Torres C, Singh K V Murray B. Molecular analysis of Tn1546 in *vanA*-containing *Enterococcus* spp. isolated from humans and poultry. Antimicrob Agents Chemother 2000;44(9):2588-9.

62. Vignaroli C, Zandri G, Aquilanti L, Pasquaroli S Biavasco F. Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an *Enterococcus durans* to a human *Enterococcus faecium*. Curr Microbiol. 2011;62:1438-47.
Table 1: Phenotypic and genotypic features of vancomycin resistant *Enterococcus* spp. isolated from cattle, pigs, and poultry

Host	Species	MIC [µg/ml] vancomycin	Additional resistances	Resistance phenotype	Resistance genotype
Cattle	R227	E. faecalis	≥128	–	dfrE, emeA, efrA, efrB, lsaA, vanA
	Sw253	E. faecium	≥256	PEN, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
	Sw245	E. faecium	≥256	PEN, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
	Sw290	E. faecium	≥256	PEN, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
	Sw292	E. faecium	≥256	PEN, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
	Sw342	E. faecium	≥256	PEN, ERY, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
	Sw348	E. faecium	≥256	PEN, TE	aac(6')-I, eat(A), cadA, cadC, copZ, crzA, merA, merR, tetW/N/W, vanA, zosA
Poultry	GH14	E. faecium	≥256	PEN	aac(6')-I, aadK, eat(A), vanA
	GH24	E. faecium	≥256	ERY	aac(6')-I, aadK, eat(A), vanA
	GH32	E. faecium	≥256	ERY	aac(6')-I, aadK, eat(A), vanA
	GH58	E. faecium	≥256	ERY	aac(6')-I, aadK, eat(A), vanA
	GH76	E. faecium	≥256	ERY	aac(6')-I, aadK, eat(A), vanA
	GH98	E. faecium	≥256	–	aac(6')-I, aadK, eat(A), vanA
	GH27	E. durans	≥256	TE	aac(6')-Iid, tetW/N/W, vanA
	GH29	E. durans	≥256	ERY, TE	aac(6')-Iid, ermB tetW/N/W, vanA
	GH34	E. durans	≥256	ERY, TE	aac(6')-Iid, ermB tetW/N/W, vanA
	GH44	E. durans	≥256	ERY, TE	aac(6')-Iid, ermB tetW/N/W, vanA
---	---	---	---	---	---
GH48	*E. durans*	256	ERY, TE	*aac(6')-lid, ermB tetW/N/W, vanA*	I –
GH50	*E. durans*	≥256	ERY, TE	*aac(6')-lid, ermB, vanA*	I –
GH61	*E. durans*	≥256	TE	*aac(6')-lid, tetW/N/W, vanA*	I –
GH63	*E. durans*	≥256	ERY, TE	*aac(6')-lid, ermB tetW/N/W, vanA*	II –
GH73	*E. durans*	≥256	ERY, TE	*aac(6')-lid, ermB, vanA*	I –
GH102	*E. durans*	≥256	TE	*aac(6')-lid, ermB, tetW/N/W, vanA*	II –

Abbreviations: *aac(6')-li* and *aac(6')-lid*: genes for aminoglycoside N-acetyltransferases; *aadK*, aminoglycoside 6-adenyllyltransferase; *cad(A), cad(C)*, cadmium resistance genes; *cop(Z)*, copper resistance gene; *czrA*, metal transport repressor gene; *dfrE* dihydrofolate reductase gene; *eat(A)*, allelic variant of *eat(A)* gene for resistance to lincosamides, streptogramins A, and pleuromutilins (LS₃P); *emeA*, enterococcal multidrug resistance efflux gene; *efrA, efrB*, ABC multidrug efflux pump genes; *ermB*, gene for 23S ribosomal RNA methyl-transferase; *lsaA*, active efflux ABC transporter gene for intrinsic LS₃P resistance; *mer(A), mer(R)*, mercury resistance genes; *tetW/N/W*, mosaic tetracycline resistance gene and ribosomal protection protein; *zosA*, zinc transporter gene.
Figure 1: Average nucleotide identity (ANI) based cluster dendrogram showing three types of Tn1546-like elements carrying vanA operons identified in 23 vanA- type vancomycin resistant enterococci from healthy food producing animals. Type I corresponds to the prototype Tn1546 (GenBank M97297) from human *E. faecium* B4147 [35]. Type II carries the G to T nucleotide point mutation at position 8234 in vanX. Tn1546-like element type III additionally carries an IS1252 in the orf2-vanR intergenic region.
Figure 2: Linear maps of vanA encoding regions of the prototype Tn1546 (GenBank M97297) from human *E. faecium* B4147 [35], and of vancomycin resistant enterococci from healthy food producing animals. Yellow stars indicate the G to T nucleotide point mutation at position 8234 in vanX; aadK, aminoglycoside 6-adenylyltransferase; merA, mercury resistance gene; *, putative open reading frames.
Acknowledgments

First of all, I thank Prof. Dr. Dr. h.c. Roger Stephan for the opportunity to perform this doctoral thesis at the Institute for Food Safety and Hygiene at the University of Zurich. I am especially thankful for his very valuable advices and support throughout the whole time of the study.

My special thanks goes to Dr. Marina Morach for her excellent guidance of my doctoral thesis. I much appreciated her professional support, her motivational manner and her willingness to help at any time.

I gratefully acknowledge the support and assistance of the staff of the Veterinary Service at the slaughterhouse in Zürich, the staff of the slaughterhouse company in Zürich and the staff of the Bell company slaughterhouse in Zell, Switzerland.
Curriculum Vitae

Vorname Name Valerie Wist

Geburtsdatum 21/05/1991

Geburtsort Bern Stadt

Nationalität Schweizer

Heimatort Bern BE

08/1998 – 07/2003 Primarschule, Subingen, Solothurn, Schweiz

08/2003 – 07/2006 Untergymnasium der Kantonsschule Solothurn, Schweiz

08/2006 – 07/2011 Kantonsschule Solothurn, Schweiz

08/2007 – 07/2008 Austauschjahr in Uruguay mit „Youth for Understanding“

29/06/2011 Erlangung der Maturität an der Kantonsschule Solothurn, Schwerpunkt Spanisch

09/2012 – 07/2013 Studium der Biologie und Philosophie an der Universität Zürich, Schweiz

09/2013 – 08/2018 Studium der Veterinärmedizin an der Vetsuisse-Fakultät Universität Zürich, Schweiz

30/12/2019 Erlangung des Tierärztediploms an der Vetsuisse-Fakultät Universität Zürich, Schweiz

04/2019 – 04/2020 Anfertigung der Dissertation

unter der Leitung von Prof. Dr. med. vet. Dr. h.c. Roger Stephan

am Institut für Lebensmittelsicherheit und –hygiene der Vetsuisse-Fakultät Universität Zürich

Direktor: Prof. Dr. med. vet. Dr. h.c. Roger Stephan