Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages

Kavitha Raju∗, Anjaly V∗, Ryan Lish, Joel Mathew
{kavitha.raju,anjaly.v,joel}@bridgeconn.com
rslish@cobaltspeech.com

Abstract

Automatic Speech Recognition (ASR) has increasing utility in the modern world. There are many ASR models available for languages with large amounts of training data like English. However, low-resource languages are poorly represented. In response we create and release an open-licensed and formatted dataset1 of audio recordings of the Bible in low-resource northern Indian languages. We setup multiple experimental splits and train and analyze two competitive ASR models to serve as the baseline for future research using this data.

1 Introduction

Automatic Speech Recognition (ASR) is a well-studied problem that is motivated by multiple popular use cases like voice assistants (e.g. Amazon Alexa, Apple Siri), live audio transcription and as a pre-processing step for conversational machine translation. Training models for ASR, however, are limited by the availability of training data. Thus, fewer ASR models are available for low resource languages which usually do not have a sizable collection of audio recording training data.

The Bible is a document that is translated into numerous languages including multiple low-resource languages with multiple ongoing translations. There is a parallel effort to produce audio-recordings for the text translations. This is especially important since many of the remaining languages where the Bible is translated are communities with primarily oral learners. In fact, there are translation projects underway that attempt to directly translate the Bible orally without using text.

Building ASR models for these very low resource languages is an important step to better represent and include these communities in the many technological advancements that are popular among speakers of well represented languages.

In response to this need, in this paper we describe and share freely-licensed audio recordings of 10 low resource languages of Northern India for The Bible and train two different ASR models using the dataset to serve as a baseline for future research.

2 Related Work

Efforts in the development of speech datasets in Tamil, Telugu and Marathi are discussed in (Anumanchipalli et al., 2005) where they collected data from about 560 speakers and trained acoustic models using the Sphinx 2 speech tool kit (Lamere et al., 2003) in the three languages.

(Shrishrimal et al., 2012) discusses various speech datasets developed in multiple Indian languages for ASR and Text-to-speech models. They collect domain specific data in agriculture, marketing, travel and emergency services. It uses Hindi training data recorded by 30 female speakers with approximately 26 hours of speech recordings. A speech dataset developed for Hindi from news bulletins is mentioned which is 3.5 hours and recorded by 19 speakers (6 Male, 13 Females). Various ongoing projects for creating speech corpora by Linguistic Data Consortium for Indian Languages (LDC-IL) are also underway.

A survey on the efforts made to develop speech corpora in Indian languages is done in (Kurian, 2015).

(Deka et al., 2018) present an ongoing effort in creation of speech corpora for under-resourced languages of North-East India, namely, Assamese, Bengali and Nepali.

Our dataset is unique in that it is the first audio recorded corpora available in some of the languages in the dataset while also being substantive in terms of hours of recording when compared with other audio recording datasets for low-resource languages.

1Equal contribution.
1https://huggingface.co/datasets/bridgeconn/snow-mountain
No.	Language	Bible Portion	Language Code	Speaker ID	Speaker Gender	Speaker Age
1	Hindi	OT	hin/hi	Speaker01	Female	43-45 yrs
2	Haryanvi	NT	bgc	Speaker02	Male	43-45 yrs
3	Bilaspuri	NT	kfs	Speaker03	Male	45-50 yrs
4	Dogri	NT	dgo	Speaker04	Male	29 yrs
5	Bhadrawahi	NT	bhd	Speaker05	Male	30 yrs
6	Gaddi	NT	gbk	Speaker06	Male	30 yrs
7	Kangri	NT	xnr	Speaker07	Male	28-29 yrs
8	Kulvi	NT	kfx	Speaker08	Female	35-40 yrs
9	Mandeali	NT	mjl	Speaker09	Female	20 yrs
10	Kulvi Outer Seraji	NT	kfx-x-OSJ	Speaker10	Male	68 yrs
11	Pahari Mahasui	NT	bfz	Speaker11	Male	26-27 yrs

Table 1: Details of the languages and speakers in the dataset. The listed languages belong to the Indo-Aryan language family. kfx-x-OSJ is a dialect of Kulvi dominant in the region of Outer Seraji in Himachal Pradesh.

3 Dataset

The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription. Details of the dataset are shown in tables 1 and 2, including the languages’ information (Eberhard et al., 2022), speaker details and duration of audio.

The protestant Bible is composed of 66 canonical books which are portions of text of various sizes. These are split into two parts or testaments: the Old Testament (OT) consists of 39 books and the New Testament (NT) consists of 27 books. In the dataset, in the place of using full Bible book names, a 3-letter code is used. The tables 5 and 6 in appendix lists the Books in the Bible and the code used for them (Societies, 2018). Each book is further divided into chapters in which the text is split into sentences known as verses. For example, shown below are all the verses (marked at the beginning of sentences) of chapter 23 of the Biblical book of ‘Psalms’ part of the Old Testament (OT).

Psalms 23:
1 The Lord is my shepherd; I shall not want.
2 He maketh me to lie down in green pastures: he leadeth me beside the still waters.
3 He restoreth my soul: he leadeth me in the paths of righteousness for his name’s sake.
4 Yea, though I walk through the valley of the shadow of death, I will fear no evil: for thou art with me; thy rod and thy staff they comfort me.
5 Thou preparest a table before me in the presence of mine enemies: thou anointest my head with oil; my cup runneth over.
6 Surely goodness and mercy shall follow me all the days of my life: and I will dwell in the house of the Lord for ever.

To make the dataset easier to use for training automatic models, we perform some post-processing steps and make the data available in the following ways (kept in separate directories):

3.1 Raw Data

The original audio recordings of the Bible in different languages are stored as one .mp3 file per chapter of each Bible book. They are named in the pattern `<Book-code_chapter-number.mp3>`. The recordings, along with the Bible text, sometimes contain brief introductions to books and chapters as well as recordings of section headings within the chapters. We provide a timestamp file for each chapter’s audio recording file that demarcates the start times of different parts within. The timestamp files have the same name as their corresponding chapter recording file except that they have the .tsv file extension.

The corresponding Bible text is stored in the Universal Scripture Format Markers (USFM) format which is a popular format among Bible translation agencies. For ease of consuming this data, we parse the USFM file and provide the textual content in a .csv format. This data is kept in the raw/text directory, one file per book, named with the 3-letter book code.
No.	Language	Chapters	Duration	Cleaned-verses	Duration (cleaned)	Short-verses	Duration (short)
1	Hindi	928	71.41	22751	67.62	11511	22.60
2	Haryanvi	260	27.41	7702	25.64	3037	6.29
3	Bilaspuri	260	26.26	7163	22.67	3022	6.19
4	Dogri	260	22.28	7735	20.57	4578	9.14
5	Gaddi	260	21.81	7731	20.10	4769	9.31
6	Bhadrawahi	260	22.16	6891	18.36	4114	8.10
7	Kangri	260	22.28	7241	19.20	4368	8.65
8	Kulvi	260	25.30	7033	21.22	3319	6.76
9	Mandeali	260	25.38	6763	20.20	3353	6.83
10	Pahari Mahasui	260	21.33	6929	17.72	4430	8.68
11	Kulvi Outer Seraji	260	23.64	6995	19.62	3816	7.49

Table 2: Language wise data size

3.2 Cleaned Data

In order to train ASR models with this data we perform the following pre-processing steps. First, we remove instances of the recordings where we found inconsistencies between the timestamps, text and the audio recording file. Then, we break-up each chapter recording file into separate verse recording files which we store in the `.wav` format. The audio files are named in the pattern `<book-code_chapter-number_verse-number.wav>`, and are referenced in the path field of every dataset file in the experiments and the cleaned directories. Finally, we remove any verse recording file which is more than 10 seconds in duration, in the short_verses, to support training ASR models that may hit ‘Out of memory’ errors during training otherwise. These are kept in the cleaned directory.

3.3 Experiment Splits

One of our goals in creating this dataset is to use it to build ASR systems for very low resource languages. We want such a model to be trained with minimal data so as to be useful in cases where Bible translations are done orally first. In such a scenario, we assume the recordings of the Bible are available but the text version needs to be produced. Thus, eliciting little manual transcription, we desire to train a reasonable ASR model that can then aid the transcribers with the remaining work while being able to incrementally re-train the model to steadily improve output quality using manually corrected data.

Another requirement for us to be able to use this model effectively is that it should perform well on a test set that is not similar to the dataset it has been built from in terms of Bible books. The vocabulary and style of language can vary considerably across Bible Books. Thus, it becomes relevant to ensure stable performance of the model when trained on one type of text and then tested on a different type.

We create splits of the cleaned data (3.2) for training and analysing the performance of ASR models. The splits are available in the experiments directory. The file names indicate the experiment and the split category (see Table 7).

The first category of the splits is based on the size of the training data. For this we create training splits of the sizes 500, 1000 and 2500 verses respectively. Similarly, we create a split with all short verses (those with less than or equal to 10 seconds in length) which contain _short in their filenames. We also create a split with the full data (_full). Each of these are further divided into training and evaluation sets with an 8:2 ratio (e.g. train_1000 and val_1000). For these experiments we use a single disjoint test set of 500 verses (~1 hour) which is specified by the file test_common.csv.

The other category for the splits is based on the difference in writing styles between the Biblical books. For this we create a training (and evaluation) set using only the Gospels (MAT, MRK, LUK and JHN) all of which describe the life of Jesus on earth and then create different test sets from the book of The Acts of the Holy Spirit (ACT-describes events after the resurrection; testActs.csv), the epistles (ROM, 1CO, 2CO, GAL; testLetters.csv) and the last books in the NT (1JN, 2JN, 3JN, JUD, REV; testLastBooks). These splits have been created after analyzing the word overlap between the books and identifying groups of most dissimilar books in
the NT of these languages. See table 7, for more information on number of verses in each experiment split.

4 Experiments

We train two different ASR models and compare results on the training splits defined in section 3.3.

4.1 Methodology

4.1.1 Wav2vec XLS-R

We use the pretrained wav2vec2 2.0 (Baevski et al., 2020) based XLS-R model (Babu et al., 2021) that was released on HuggingFace and fine-tune it on our data. XLS-R used almost half a million hours of audio data in 128 languages for self-supervised pre-training and provides pre-trained models with 300 million up to two billion parameters. XLS-R learns contextualized speech representations by randomly masking feature vectors before passing them to a transformer network during self-supervised pre-training. For fine-tuning, a single linear layer is added on top of the pre-trained network to train the model on labelled data of the downstream tasks such as speech recognition, speech translation and audio classification. In our use case, which is ASR, we fine-tune the base model separately for each language.

Tokenizer: After basic pre-processing and cleaning of text data, we create a CTC-tokenizer (Hori et al., 2017) with the following characteristics in its vocabulary: contains all unique letters of the language, the space character replaced by “|”, “UNK” token for unknown characters and “PAD” for blank-token as required by the CTC algorithm.

Feature Extractor: Wav2vec2FeatureExtractor is used with the following configuration, similar to or as required by the base models: Sampling rate 16kHz, feature size 1, padding with 0.0 for shorter inputs, with normalizing and returning attention mask.

Data Collator: The data collator pads the input dynamically to match sequence size to the longest input in a batch and also treats the input values and labels differently since they are of different modalities.

Evaluation Metric: Word error rate (WER) is used as the evaluation metric which is the predominant metric in ASR.

The pre-trained checkpoint of base model is loaded with attention, hidden and feature projection dropout = 0.0, mask time probability=0.05, no layer drops and setting the CTC loss reduction=“mean”.

And the model’s feature extractor is frozen to avoid further fine-tuning the initial CNN layers that extract acoustically meaningful but contextually independent features from the raw speech signal.

Training: The following values were used alike across all experiments: batches were grouped by length with 8 batches per device, gradient accumulation steps=2, evaluation strategy=‘steps’, gradient checkpointing=True, fp16 training with a learning rate of 3e-4.

The following values were adjusted as per the size of input dataset: training epochs; save, eval and warmup steps.

Long input sequences require a lot of memory. Since XLS-R is based on self-attention, the memory requirements scale quadratically with the input length. In all our experiments we use only verses that are 10 seconds or less in duration except in the ‘Full dataset’ using which we were not able to train the XLS-R model successfully.

The results shown in table 3 are those using the 1billion model which gave better results than the 300million model even though for training speed and GPU memory usage the 300million model was found to be better.

4.1.2 Kaldi Toolkit

Kaldi (Povey et al., 2011) is a free and open-source speech recognition toolkit licensed under the Apache 2.0 License. It is primarily written in C++. Important features of Kaldi are: finite state transducer-based framework (using OpenFst toolkit (Allauzen et al., 2007)), extensive linear algebra support with BLAS (Blackford et al., 2002) and LAPACK (Anderson et al., 1999), extensible design, non-restrictive license, availability of complete recipes for building speech recognition systems and thorough test routines. Adding new feature without modifying the existing modules makes Kaldi’s design extensible.

We used the tedlium s5_r2 recipe to train our Hindi acoustic model. Specifically, we used the local/chain/tuning/run_tdnn_1g.sh script for preparing the pre-trained checkpoint of base model is loaded with attention, hidden and feature projection dropout = 0.0, mask time probability=0.05, no layer drops and setting the CTC loss reduction=“mean”.

And the model’s feature extractor is frozen to avoid further fine-tuning the initial CNN layers that extract acoustically meaningful but contextually independent features from the raw speech signal.

Training: The following values were used alike across all experiments: batches were grouped by length with 8 batches per device, gradient accumulation steps=2, evaluation strategy=‘steps’, gradient checkpointing=True, fp16 training with a learning rate of 3e-4.

The following values were adjusted as per the size of input dataset: training epochs; save, eval and warmup steps.

Long input sequences require a lot of memory. Since XLS-R is based on self-attention, the memory requirements scale quadratically with the input length. In all our experiments we use only verses that are 10 seconds or less in duration except in the ‘Full dataset’ using which we were not able to train the XLS-R model successfully.

The results shown in table 3 are those using the 1billion model which gave better results than the 300million model even though for training speed and GPU memory usage the 300million model was found to be better.

4.1.2 Kaldi Toolkit

Kaldi (Povey et al., 2011) is a free and open-source speech recognition toolkit licensed under the Apache 2.0 License. It is primarily written in C++. Important features of Kaldi are: finite state transducer-based framework (using OpenFst toolkit (Allauzen et al., 2007)), extensive linear algebra support with BLAS (Blackford et al., 2002) and LAPACK (Anderson et al., 1999), extensible design, non-restrictive license, availability of complete recipes for building speech recognition systems and thorough test routines. Adding new feature without modifying the existing modules makes Kaldi’s design extensible.

We used the tedlium s5_r2 recipe to train our Hindi acoustic model. Specifically, we used the local/chain/tuning/run_tdnn_1g.sh script for prepar-
Table 3: WER for the experiments using datasets of different sizes

Language	Dataset	Wav2vec XLS-R Eval	Wav2vec XLS-R Test w/o LM	Wav2vec XLS-R Test w/ LM	Kaldi Eval	Kaldi Test w/ LM
Hindi	Full data	-	-	2.93	3.36	
	Short verses	3.59	3.66	2.38	5.22	5.18
	2500	8.40	8.31	6.23	14.08	12.12
	1000	10.83	11.35	9.07	22.87	21.23
	500	12.58	14.49	12.14	37.06	36.31
Bilaspuri	Full data	-	-	10.10	10.26	
	Short verses	14.40	16.08	13.02	15.31	16.16
	2500	16.08	17.92	13.9	15.47	16.21
	1000	18.45	21.64	17.96	21.64	23.58
	500	23.56	25.74	22.94	30.20	31.79
Dogri	Full data	-	-	11.89	11.91	
	Short verses	13.74	13.59	11.72	14.62	14.63
	2500	18.68	17.26	14.05	17.09	16.63
	1000	18.35	19.32	16.56	21.26	22.95
	500	23.81	25.25	21.65	29.91	30.26
Haryanvi	Full data	-	-	16.84	18.79	
	Short verses	25.63	23.87	20.65	28.85	24.14
	2500	25.67	24.13	20.28	25.98	25.07
	1000	33.67	29.78	25.43	34.48	30.45
	500	33.15	30.90	27.70	39.94	37.66

Table 3: WER for the experiments using datasets of different sizes

and training the TDNN-f(Povey et al., 2018) model. We used the Hindi AM as a base model for transfer learning to train the other languages. For transfer learning, we roughly followed the approach used in Kaldi’s rm s5 recipe, namely the local/chain/tuning/run_tdnn_wsj_rm_1c.sh script. The following steps were involved in building an ASR system using Kaldi.

Data preparation: Kaldi needs the input audio files and their corresponding transcripts in a particular format for training and testing. For recordings of around 10 seconds duration, we need three files: **wav.scp**, **text**, and **utt2spk**. For recordings of longer duration an additional **segments** file is required. The details of each of these files are:

- **text** file contains the transcriptions of each utterance
 Format: <utterance-id> <transcript>

- **utt2spk** file says, for each utterance, which speaker (denoted by an ID) spoke it
 Format: <utterance-id> <speaker-id>

- **wav.scp** file
 Format: <recording-id> <extended-filename>

where the "extended-filename" may be an actual filename, or a command that produces a .wav file

- **Segments** file
 Format: <utterance-id> <recording-id> <segment-begin> <segment-end>
 where the segment-begin and segment-end are measured in seconds.

Lexicon and Language Model: Typical pronunciation dictionaries map between the orthographical representation of a word and the sequence of phones in its broad phonetic transcription. Typically symbols from systems such as ARPABet or X-SAMPA are used to represent the phones, but creating a pronunciation dictionary from scratch is a potentially time-consuming and expensive undertaking. Annotators trained in phonetics and the target language must manually write thousands of entries, which can be used to train a grapheme-to-phoneme (G2P) model that can generate automatic pronunciations for the rest of the words in the dataset. Noting that northern Indian languages are quite consistent in their orthography and pronunciation, we decided to use the Unicode(Consortium,
Table 4: WER for the Book-wise experiments

Language	Trainset	Wav2vec XLS-R	Kaldi						
		Eval	Acts	Letters	Lastbooks	Eval	Acts	Letters	Lastbooks
Bilaspuri	Gospels	14.58	22.92	18.57	24.80	17.02	25.66	22.78	32.1
Dogri	Gospels	12.66	16.90	17.38	26.90	15.11	22.24	21.7	30.0
Haryanvi	Gospels	23.24	34.90	27.14	64.37	22.65	38.04	26.9	58.1

2021) characters for Devanagari as our phone set. This allows us to generate the entire lexicon with a simple script, without the potential inconsistencies and errors human annotators and G2P models might introduce.

The Bible text is used to create a lexicon (or the pronunciation dictionary) by listing all words in the Bible along with its pronunciation, which are its Unicode characters separated by a space character.

The language model is built using the MIT Language Modelling Toolkit (MITLM) using the Bible text after removing punctuation and normalizing white space. This toolkit is a set of tools designed for the efficient estimation of statistical n-gram language models. We exclude the evaluation and test set from the language model training and for the low resource languages, we include the Hindi data for training the language model since these are closely related.

Feature extraction: Kaldi’s feature extraction and waveform-reading module creates standard MFCC (Mel-frequency Cepstral Coefficients) features. Since this module requires the audio recordings in the .wav format we convert the .mp3 files with a 16 KHz sampling frequency.

Acoustic modelling: Once the features are extracted, we train a GMM-HMM based acoustic model to generate alignments (phoneme-to-audio alignments) for the training audio. Using this alignment data, a DNN (Deep Neural Network) based acoustic model is trained. The acoustic model is a factorized time delay neural network (TDNN-f) (Povey et al., 2018) with 13 hidden layers, 9882368 parameters, and 3456 outputs. It is a "chain" model, which uses the sequence-level objective function known as lattice-free MMI (Povey et al., 2016).

4.2 Results

The Word Error Rate (WER) for the ASR models trained on the different data splits are shown in Tables 3 and 4. Due to an 'Out of Memory' error the 'Full data' experiment could not be run using the Wav2vec XLS-R model.

5 Discussion

Overall, both the trained ASR models show comparable results for the larger sized datasets (Table 3). Wav2vec XLS-R outperforms Kaldi on smaller sized datasets. Also, for Hindi, Wav2vec XLS-R shows significant improvements over Kaldi. We attribute both of these observations to the power of pre-training on a large corpus including Hindi data. Also, using a language model, even if not trained on any extraneous text (only the train set) reasonably improves the WER.

We observe lower results in the experiments run for Haryanvi language which we understand is due to the poor data quality, specifically mismatches between the timestamp and audio files.

The experiments on the books with different writing styles show poorer results. Factors that contribute to this include the low word-level overlap and the shift in discourse/content styles between the train and test splits.

6 Future Work

We plan to run experiments for the remaining languages in the dataset and continue to release more data in other languages as it becomes available to us from partnering Bible translation agencies. Another direction is training multi-lingual ASR models to overcome limitations of the dataset being single-speaker.
References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. 2007. Openfst: A general and efficient weighted finite-state transducer library. In Implementation and Application of Automata, pages 11–23, Berlin, Heidelberg. Springer Berlin Heidelberg.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide, third edition. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Gopalakrishna Anumanchipalli, Rahul Chitturi, Sachin Joshi, Rohit Kumar, Satinder Pal Singh, RNV Sitaram, and SP Kishore. 2005. Development of indian language speech databases for large vocabulary speech recognition systems. In Proc. SPECOM.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhota, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Commeau, and Michael Auli. 2021. Xls-r: Self-supervised cross-lingual speech representation learning at scale.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A framework for self-supervised learning of speech representations.

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. 2002. An updated set of basic linear algebra subprograms (blas). ACM Transactions on Mathematical Software, 28(2):135–151.

The Unicode Consortium. 2021. The unicode standard, version 14.0.0.

Barsha Deka, Joyshree Chakraborty, Abhishek Dey, Shikhmoni Nath, Priyankoo Sarmah, SR Nirmala, and Samudra Vijaya. 2018. Speech corpora of under resourced languages of north-east india. In 2018 Oriental COCOSDA-International Conference on Speech Database and Assessments, pages 72–77. IEEE.

David M. Eberhard, Gary F. Simons, and Charles D Fennig. 2022. Ethnologue: Languages of the World twenty-fifth edition.

Takaaki Hori, Shinji Watanabe, and John Hershey. 2017. Joint CTC/attention decoding for end-to-end speech recognition. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 518–529, Vancouver, Canada. Association for Computational Linguistics.

Cini Kurian. 2015. A review on speech corpus development for automatic speech recognition in indian languages. International Journal of Advanced Networking and Applications, 6(6):2556.

Paul Lamere, Philip Kwok, Evandro Gouvêa, Bhiksha Raj, Rita Singh, William Walker, Manfred Warmuth, and Peter Wolf. 2003. The cmu sphinx-4 speech recognition system.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Haiman Xu, Mahsa Yarmohammadi, and Sanjeev Khudanpur. 2018. Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks. In Proc. Interspeech 2018, pages 3743–3747.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Nagendra Goel, Mirko Hannemann, Yannin Qian, Petr Schwarz, and Georg Stemmer. 2011. The kald speech recognition toolkit. In In IEEE 2011 workshop.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and Sanjeev Khudanpur. 2016. Purely sequence-trained neural networks for asr based on lattice-free mmi. In Interspeech, pages 2751–2755.

Pukhraj P Shrishrimal, Ratnadeep R Deshmukh, and Vishal B Waghmare. 2012. Indian language speech database: A review. International journal of Computer applications, 47(5):17–21.

United Bible Societies. 2018. USFM Documentation.
A Bible Books and 3-letter Codes

The tables 5 and 6 show the books in the protestant Bible, and their codes used in the dataset.

B Sizes of each experiment set

Table 7 shows the number of verses in each experiment split. The training and validation dataset are split in an 8:2 ratio.
No.	Book Code	Book Name	Comments
1	GEN	Genesis	‘1 Moses’ in some Bibles
2	EXO	Exodus	‘2 Moses’ in some Bibles
3	LEV	Leviticus	‘3 Moses’ in some Bibles
4	NUM	Numbers	‘4 Moses’ in some Bibles
5	DEU	Deuteronomy	‘5 Moses’ in some Bibles
6	JOS	Joshua	
7	JDG	Judges	
8	RUT	Ruth	
9	ISA	1 Samuel	1 Kings or Kingdoms in Orthodox Bibles
10	2SA	2 Samuel	2 Kings or Kingdoms in Orthodox Bibles
11	1KI	1 Kings	3 Kings or Kingdoms in Orthodox Bibles
12	2KI	2 Kings	4 Kings or Kingdoms in Orthodox Bibles
13	1CH	1 Chronicles	1 Paralipomenon in Orthodox Bibles
14	2CH	2 Chronicles	2 Paralipomenon in Orthodox Bibles
15	EZR	Ezra	This is for Hebrew Ezra (1 Ezra, 1 Esdras)
16	NEH	Nehemiah	Sometimes appended to Ezra; called 2 Esdras in the Vulgate
17	EST	Esther (Hebrew)	This is for Hebrew Esther; for the longer Greek LXX Esther use ESG
18	JOB	Job	
19	PSA	Psalms	150 Psalms in Hebrew
20	PRO	Proverbs	31 Proverbs, but 24 Proverbs in the Ethiopian Bible
21	ECC	Ecclesiastes	3Qoholeth in Catholic Bibles; for Ecclesiasticus use SIR
22	SNG	Song of Songs	Song of Solomon, or Canticles of Canticles in Catholic Bibles
23	ISA	Isaiah	
24	JER	Jeremiah	The Book of Jeremiah; for the Letter of Jeremiah use LJE
25	LAM	Lamentations	The Lamentations of Jeremiah
26	EZK	Ezekiel	
27	DAN	Daniel (Hebrew)	This is for Hebrew Daniel; for the longer Greek LXX Daniel use DAG
28	HOS	Hosea	
29	JOL	Joel	
30	AMO	Amos	
31	OBA	Obadiah	
32	JON	Jonah	
33	MIC	Micah	
34	NAM	Nahum	
35	HAB	Habakkuk	
36	ZEP	Zephaniah	
37	HAG	Haggai	
38	ZEC	Zechariah	
39	MAL	Malachi	

Table 5: Books contained in the Old Testament (OT) of The Bible
No.	Book Code	Book Name	Comments
40	MATH	Matthew	The Gospel according to Matthew
41	MRK	Mark	The Gospel according to Mark
42	LUK	Luke	The Gospel according to Luke
43	JHN	John	The Gospel according to John
44	ACT	Acts	The Acts of the Apostles
45	ROM	Romans	The Letter of Paul to the Romans
46	1CO	1 Corinthians	The First Letter of Paul to the Corinthians
47	2CO	2 Corinthians	The Second Letter of Paul to the Corinthians
48	GAL	Galatians	The Letter of Paul to the Galatians
49	EPH	Ephesians	The Letter of Paul to the Ephesians
50	PHP	Philippians	The Letter of Paul to the Philippians
51	COL	Colossians	The Letter of Paul to the Colossians
52	1TH	1 Thessalonians	The First Letter of Paul to the Thessalonians
53	2TH	2 Thessalonians	The Second Letter of Paul to the Thessalonians
54	1TI	1 Timothy	The First Letter of Paul to Timothy
55	2TI	2 Timothy	The Second Letter of Paul to Timothy
56	TIT	Titus	The Letter of Paul to Titus
57	PHM	Philemon	The Letter of Paul to Philemon
58	HEB	Hebrews	The Letter to the Hebrews
59	JAS	James	The Letter of James
60	1PE	1 Peter	The First Letter of Peter
61	2PE	2 Peter	The Second Letter of Peter
62	1JN	1 John	The First Letter of John
63	2JN	2 John	The Second Letter of John
64	3JN	3 John	The Third Letter of John
65	JUD	Jude	The Letter of Jude
66	REV	Revelation	The Revelation to John; called Apocalypse in Catholic Bibles

Table 6: Books contained in the New Testament (NT) of The Bible

Dataset	Hindi	Bilaspuri	Dogri	Haryanvi
all_verses.csv	22751	7163	7735	7702
short_verses.csv	11511	3022	4578	3037
test_common.csv	500	500	500	500
train_full.csv	17800	5328	5786	5757
val_full.csv	4451	1333	1447	1440
train_short.csv	8808	2017	3261	2029
val_short.csv	2203	505	816	508
train_2500.csv	2000	2000	2000	2000
val_2500.csv	500	500	500	500
train_1000.csv	800	800	800	800
val_1000.csv	200	200	200	200
train_500.csv	400	400	400	400
val_500.csv	100	100	100	100
train_gospels.csv	-	1360	1926	1482
val_gospels.csv	-	340	482	371
testActs.csv	-	396	517	334
testLetters.csv	-	370	730	356
testLastbooks.csv	-	137	232	132

Table 7: Number of verses in each dataset file