An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion

Daxin Nie & Weihua Deng
School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P.R. China
E-mail: dengwh@lzu.edu.cn

Abstract. We study the inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion with Hurst index $H \in (0, 1)$. With the aid of a novel estimate, by using the operator approach we propose regularity analyses for the direct problem. Then we provide a reconstruction scheme for the source terms f and g up to the sign. Next, combining the properties of Mittag-Leffler function, the complete uniqueness and instability analyses are provided. It’s worth mentioning that all the analyses are unified for $H \in (0, 1)$.

Keywords: Stochastic fractional diffusion equation, inverse random source problem, Riemann-Liouville fractional derivative, reconstruction algorithm

1. Introduction

We consider the stochastic time-space fractional diffusion equation with a random source term

$$\begin{cases}
\partial_t u(x, t) + \partial_t^{1-\alpha} A^s u(x, t) = f(x)h(t) + g(x)\dot{W}^H(t) & (x, t) \in D \times (0, T], \\
u(x, 0) = 0 & x \in D, \\
u(x, t) = 0 & (x, t) \in \partial D \times (0, T],
\end{cases}$$

(1)

where D is a bounded domain with Lipschitz boundary; A^s with $s \in (0, 1)$ is the fractional Laplacian defined by

$$A^s u = \sum_{k=1}^{\infty} \lambda_k^s (u, \phi_k) \phi_k,$$

in which $\{\lambda_k, \phi_k\}_{k=1}^{\infty}$ are the nondecreasing eigenvalues and L^2-norm normalized eigenfunctions of $A = (-\Delta)$ with a zero Dirichlet boundary condition; $f(x), g(x) \in L^2(D)$ are deterministic terms with $\|g(x)\|_{L^2(D)} \neq 0$; $h \in L^\infty([0, T])$ and there exists
An inverse random source problem for the time-space fractional diffusion equation

A positive constant C_h satisfying $h(t) \geq C_h > 0$ with $t \in (0, T)$; $\partial_t^{1-\alpha}$ with $\alpha \in (0, 1)$ means Riemann-Liouville fractional derivative defined by 1

$$\partial_t^{1-\alpha} u = \frac{1}{\Gamma(\alpha)} \frac{\partial}{\partial t} \int_0^t (t-r)^{\alpha-1} u(r) dr;$$

$W^H(t)$ with Hurst index $H \in (0, 1)$ is the fractional Brownian motion (fBm) on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, in which Ω is a sample space, \mathcal{F} is a σ-algebra on Ω, and \mathbb{P} is a probability measure on the measurable space (Ω, \mathcal{F}).

It is well known that the fractional diffusion equation works well in describing the anomalous diffusion phenomena [2, 3, 4]. While the system (1) without source terms governs the probability density function of the subordinate killed Brownian motion [5]. More often, the practical physical system has deterministic and/or stochastic sources. The source terms for the system (1) are the deterministic one and the fractional Gaussian noise. In fact, considering the non-ignorable random disturbance, the stochastic fractional partial differential equations have already been widely concerned by scholars mathematically and numerically [6, 7, 8, 9, 10].

The inverse source problem is an important topic for anomalous dynamics, involving the inverse source problem in time, space, and time-space fractional diffusion equations and so on [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. As for the inverse random source problems of the fractional diffusion equations, the corresponding discussions seem to be few [21, 22, 23]. In [23], by the properties and the Itô isometry of Brownian motions, the authors propose the regularity of the fractional diffusion equations driven by Brownian motions and discuss the reconstruction of source terms and its instability. In [21], the authors consider the inverse random source problem of fractional diffusion equation with fBms, to be specific, by transforming the Wiener integral with respect to fBm into the one of Brownian motion, the authors provide the well-posedness of the direct problem and perform the instability analyses of the inverse problem for $H \in (0, \frac{1}{2})$ and $H \in (\frac{1}{2}, 1)$, separately.

In this paper, we first provide a unified discussion on the regularity of direct problem for all $H \in (0, 1)$. Then we propose a reconstruction scheme for f and $|g|$ and discuss the uniqueness. By extending the estimates of the stochastic integral with respect to fBms with $H \in (0, 1)$ in [24], a unified instability analysis for $H \in (0, 1)$ is proposed. Different from the instability discussions in [21], we not only show the instability of recovering g^2_k, but also for $g_k g_l$.

The rest of the paper is organized as follows. In Section 2, we provide some facts on fBms and Mittag-Leffler functions. The well-posedness of the direct problem is discussed in Section 3. Then, we propose the reconstructions of f and $|g|$ and the uniqueness and instability of the reconstructions are established. In Section 4, we perform some numerical experiments to validate the theoretical results. At last, we conclude the paper with some discussions.
2. Preliminaries

In this section, we provide some useful lemmas and present the solution of Eq. (1). In the following, denote \(\mathbb{E} \) as the expectation and \(\text{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] \) for variables \(X \) and \(Y \), \(\epsilon > 0 \) is arbitrarily small, and \(C \) is a positive constant, whose value may differ at different places.

Let us first recall the definitions of Riemann-Liouville fractional integrals.

Definition 2.1 ([1]) The left- and right-sided Riemann-Liouville fractional integrals of order \(\alpha \ (\alpha > 0) \) are defined by

\[
\alpha^\alpha_x u = \frac{1}{\Gamma(\alpha)} \int_a^x (x - \xi)^{\alpha - 1} u(\xi) d\xi,
\]

\[
\alpha^\alpha_b u = \frac{1}{\Gamma(\alpha)} \int_x^b (\xi - x)^{\alpha - 1} u(\xi) d\xi
\]

with \(a, b \in \mathbb{R} \).

And they have the following properties.

Lemma 2.1 For \(u, v \in L^2(\mathbb{R}) \), \(\nu \in (0, \frac{1}{2}) \), and \(\text{supp} \ u, \text{supp} \ v \subset [a, b] \) with \(a, b \in \mathbb{R} \), we have

\[
\int_a^b \alpha_x^\nu u \alpha_b^\nu v dx + \int_a^b \alpha_x^\nu v \alpha_b^\nu u dx = \frac{1}{\Gamma(2\nu)} \int_a^b \int_a^b u(\xi) v(\eta) |\eta - \xi|^{2\nu - 1} d\eta d\xi,
\]

and

\[
\int_a^b \int_a^b u(\xi) v(\eta) |\eta - \xi|^{2\nu - 1} d\eta d\xi \leq C \| \alpha_x^\nu u \|_{L^2([a, b])} \| \alpha_b^\nu v \|_{L^2([a, b])},
\]

\[
\int_a^b \int_a^b u(\xi) v(\eta) |\eta - \xi|^{2\nu - 1} d\eta d\xi \leq C \| \alpha_b^\nu v \|_{L^2([a, b])} \| \alpha_x^\nu u \|_{L^2([a, b])}.
\]

Proof. For \(\text{supp} \ u, \text{supp} \ v \subset (a, b) \), simple calculations give

\[
\int_a^b \alpha_x^\nu u \alpha_b^\nu v dx
\]

\[
= \frac{1}{(\Gamma(\nu))^2} \int_a^b \int_a^x (x - \xi)^{\nu - 1} u(\xi) d\xi \int_x^b (\eta - x)^{\nu - 1} v(\eta) d\eta dx
\]

\[
= \frac{1}{(\Gamma(\nu))^2} \int_a^b \int_a^\xi \int_x^b (x - \xi)^{\nu - 1} (\eta - x)^{\nu - 1} u(\xi) v(\eta) d\eta d\xi dx
\]

\[
= \frac{1}{(\Gamma(\nu))^2} \int_a^b \int_\xi^b \int_x^b (x - \xi)^{\nu - 1} (\eta - x)^{\nu - 1} u(\xi) v(\eta) d\xi d\eta dx
\]

\[
= \frac{1}{(\Gamma(\nu))^2} \int_a^b \int_\xi^b \int_\xi^\eta (x - \xi)^{\nu - 1} (\eta - x)^{\nu - 1} du(\xi) v(\eta) d\eta d\xi
\]

\[
= \frac{1}{\Gamma(2\nu)} \int_a^b \int_\xi^b u(\xi) v(\eta) (\eta - \xi)^{2\nu - 1} d\eta d\xi.
\]
Similarly, one can get
\[
\int_a^b \partial_x^{-\nu} u \partial_x^{-\nu} v dx = \frac{1}{\Gamma(2\nu)} \int_a^b \int_\xi^b v(\xi) u(\eta) (\eta - \xi)^{2\nu - 1} d\eta d\xi
\]
\[
= \frac{1}{\Gamma(2\nu)} \int_a^b \int_\eta^b v(\xi) u(\eta) (\eta - \xi)^{2\nu - 1} d\xi d\eta.
\]
Thus
\[
\int_a^b \partial_x^{-\nu} u \partial_x^{-\nu} v dx + \int_a^b \partial_x^{-\nu} v \partial_x^{-\nu} u dx = \frac{1}{\Gamma(2\nu)} \int_a^b u(\xi) v(\eta) |\eta - \xi|^{2\nu - 1} d\eta d\xi.
\]
For \text{supp} u, \text{supp} v \subset [a, b], and \nu \in (0, \frac{1}{2}), Parseval’s equality leads to
\[
\int_a^b \partial_x^{-\nu} u \partial_x^{-\nu} v dx = \int_{-\infty}^\infty \partial_x^{-\nu} u \partial_x^{-\nu} v dx
\]
\[
= \cos(\nu\pi) \int_R |\omega|^{-2\nu} F(u)(\omega)F(v)(\omega) d\omega
\]
\[
\leq C \cos(\nu\pi) \left(\int_R |\omega|^{-2\nu}(F(u)(\omega))^2 d\omega \right)^{\frac{1}{2}} \left(\int_R |\omega|^{-2\nu}(F(v)(\omega))^2 d\omega \right)^{\frac{1}{2}}
\]
\[
\leq C \left(\int_a^b \partial_x^{-\nu} u \partial_x^{-\nu} v dx \right)^{\frac{1}{2}} \left(\int_a^b \partial_x^{-\nu} v \partial_x^{-\nu} u dx \right)^{\frac{1}{2}},
\]
where \(F(u) \) means the Fourier transform of \(u \). According to [24], we have for \text{supp} u \subset [a, b] and \nu \in (0, \frac{1}{2})
\[
\int_a^b \partial_x^{-\nu} u \partial_x^{-\nu} v dx \leq C \| \partial_x^{-\nu} u \|_{L^2([a, b])}^2.
\]
Combining (2), we get the first desired result and the second one follows by similar arguments.

Then, we provide some lemmas about one-dimensional fBm.

Lemma 2.2 ([25, 26, 27]) For \(H \in (0, 1/2) \) and \(q_1(t), q_2(t) \in H_0^{1-2H} ([0, T]) \)
\(H_0^{1-2H} ([0, T]) = \{ v \in H^1(\mathbb{R}), \text{supp} v \in [0, T] \} \), we have
\[
\mathbb{E} \left[\int_0^T q_1(r) dW^H(r) \int_0^T q_2(r) dW^H(r) \right] = \frac{1}{2} H(1 - 2H) \int_R \int_R \frac{(q_1(r_1) - q_1(r_2))(q_2(r_1) - q_2(r_2))}{|r_1 - r_2|^{2-2H}} dr_1 dr_2,
\]
where \(W^H \) means one-dimensional fBm.

Lemma 2.3 ([28, 29]) For \(H \in (1/2, 1) \) and \(g_1(t), g_2(t) \in L^2([0, T]) \), there holds
\[
\mathbb{E} \left[\int_0^T q_1(r) dW^H(r) \int_0^T q_2(r) dW^H(r) \right] = H(2H - 1) \int_0^T \int_0^T q_1(r_1)q_2(r_2)|r_1 - r_2|^{2H-2} dr_1 dr_2,
\]
where \(W^H \) is one-dimensional fBm.
Lemma 2.4 Let \(q_1, q_2 \in L^2([0,T])\), \(\partial_t^{\frac{1-2H}{2}}q_1, \partial_t^{\frac{1-2H}{2}}q_2 \in L^2([0,T])\), and \(H \in (0,1)\). Then we have

\[
\mathbb{E} \left(\int_0^T q_1(r) dW^H(r) \int_0^T q_2(r) dW^H(r) \right) \leq C \left\| \partial_t^{\frac{1-2H}{2}}q_1 \right\|_{L^2([0,T])} \left\| \partial_t^{\frac{1-2H}{2}}q_2 \right\|_{L^2([0,T])}.
\]

Proof. When \(H \in (\frac{1}{2},1)\), the desired results can be got by Lemmas 2.1 and 2.3 directly. For \(H = \frac{1}{2}\), the desired results can be got by Itô isometry and Cauchy-Schwarz inequality. When \(H \in (0,\frac{1}{2})\), using Lemma 2.2 Parseval’s equality and Cauchy-Schwarz inequality, one has

\[
\mathbb{E} \left(\int_0^T q_1(r) dW^H(r) \int_0^T q_2(r) dW^H(r) \right) \leq C \left(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{(q_1(r_1) - q_1(r_2))^2}{|r_1 - r_2|^{2-2H}} dr_1 dr_2 \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{(q_2(r_1) - q_2(r_2))^2}{|r_1 - r_2|^{2-2H}} dr_1 dr_2 \right)^{\frac{1}{2}}.
\]

Following the facts that the equivalence of \(H^s(a,b)\) and \(H_0^s(a,b)\) with \(s \in (0,\frac{1}{2})\), one can get the first desired results. As for the second one, it can be obtained similarly.

Next, we give the expression of mild solution. To get the mild solution of Eq. (11), we introduce the Mittag-Leffler function \(E_{\alpha,\beta}(z)\),

\[E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k\alpha + \beta)}\]

for \(z \in \mathbb{C}\). According to [32], the Laplace transform of \(t^{\beta-1}E_{\alpha,\beta}(\pm t^\alpha)\) with \(\alpha, \beta > 0\) can be written as

\[
\int_0^\infty e^{-zt} t^{\beta-1}E_{\alpha,\beta}(\pm t^\alpha) dt = \frac{z^{\alpha-\beta}}{z^\alpha \mp \lambda}.
\]

For the Mittag-Leffler function, we have the following lemma.

Lemma 2.5 ([8]) The function \(E_{\alpha,1}(t)\) with \(\alpha \in (0,1)\) is completely monotonic, i.e.,

\((-1)^n \frac{d^n}{dt^n} E_{\alpha,1}(-t) \geq 0, \quad t \geq 0, \quad n \in \mathbb{N}.
\]

Introduce

\[E(t) = \frac{1}{2\pi i} \int_{\Gamma_{\alpha,\beta}} e^{zt} z^{\alpha - 1}(z^\alpha + A)^{-1} dz,
\]

which can also be written as

\[E(t)u = \sum_{k=1}^{\infty} E_{\alpha,1}(-\lambda_k t^\alpha)(u, \phi_k)\phi_k.
\]
Let $\Gamma_{\theta, \kappa}$ with $\theta \in (\frac{\pi}{2}, \pi)$ and $\kappa > 0$ be a contour defined by
\[\Gamma_{\theta, \kappa} = \{ re^{i\theta} : r \geq \kappa \} \cup \{ ke^{i\psi} : |\psi| \leq \theta \} \cup \{ re^{-i\theta} : r \geq \kappa \}. \]
By the interpolation properties [30], it is easy to verify that for $z \in \Sigma_{\theta} = \{ z \in \mathbb{C}, \Re z \neq 0, |\arg z| \leq \theta \}$ (\(\theta \in (\frac{\pi}{2}, \pi) \)), one has
\[\| A^{\alpha} \tilde{E} \| \leq C |z|^{|\alpha|-1}, \tag{5} \]
where $\sigma \in [0, 1]$ and $\| \cdot \|$ means the operator norm from $L^2(D)$ to $L^2(D)$. Thus by Laplace transform, we can write the solution of Eq. (1) as
\[u(x, t) = \int_{0}^{t} E(t - r)h(r)dr f(x) + \int_{0}^{t} E(t - r)dW^H(r)g(x). \tag{6} \]

3. The direct problem

In this section, we consider the well-posedness of Eq. (1). Different from the discussions in [21, 23], we develop the regularity theory by operator approach (one can refer to [33]) and Lemma 2.4, which help us give a unified proof for all $H \in (0, 1)$ and simplify the proof significantly.

Lemma 3.1 Let u be the solution of Eq. (1), $f(x), g(x) \in L^2(D)$, and $h(t) \in L^\infty([0, T])$. Then we have
\[\mathbb{E}\|u\|_{L^2(D \times [0, T])}^2 \leq C\|h\|_{L^\infty([0, T])}^2 \|f(x)\|_{L^2(D)}^2 + C T^{2H+1} \|g(x)\|_{L^2(D)}^2 \]
and
\[\mathbb{E}\|A^{\alpha} u(t)\|_{L^2(D)}^2 \leq C\|h\|_{L^\infty([0, T])}^2 \|f(x)\|_{L^2(D)}^2 + C T^{2H-2\alpha} \|g(x)\|_{L^2(D)}^2, \]
where $\sigma \in [0, \min(1, \frac{H}{\alpha} - \epsilon)]$ with $\epsilon > 0$ arbitrarily small.

Proof. According to [30], we have
\[\mathbb{E}\|u\|_{L^2(D \times [0, T])}^2 = \mathbb{E}\int_{0}^{T} \|u\|_{L^2(D)}^2 dt \]
\[\leq C \int_{0}^{T} \left(\int_{0}^{t} E(t - r)h(r)dr \right)^2 \|f(x)\|_{L^2(D)}^2 dt \]
\[+ C \int_{0}^{T} \mathbb{E}\left(\int_{0}^{t} E(t - r)dW^H(r) \right)^2 \|g(x)\|_{L^2(D)}^2 dt \]
\[\leq C \int_{0}^{T} \partial_1(t)\|f(x)\|_{L^2(D)}^2 dt + C \int_{0}^{T} \partial_2(t)\|g(x)\|_{L^2(D)}^2 dt. \]
By the resolvent estimate [5], we have $\|\tilde{E}(z)\| \leq C |z|^{-1}$, which leads to $\|E(t)\| \leq C$. Thus
\[\partial_1 \leq C \left(\int_{0}^{t} |h(r)|dr \right)^2 \leq C \|h\|_{L^\infty([0, T])}^2. \]
As for ∂_2, using Lemma 2.4, we have
\[\partial_2 \leq \int_{0}^{t} \left\| \partial_{t} \frac{1}{t^{\frac{3H}{2}}} E(r) \right\|^2 dr. \]
The definition of E and the resolvent estimate (5) give

$$
\vartheta_2 \leq C \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} |e^{zr}| |z|^{\alpha-1}(z^{\alpha} + A^{s})^{-1} |dz| \right)^2 dr \\
\leq C \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} |e^{zr}||z|^{-\frac{1}{2} - H}|dz| \right)^2 dr \\
\leq C \int_0^t r^{2H-1}dr \\
\leq Ct^{2H}.
$$

As for $E\|A^{s\alpha}u\|^2_{L^2(D)}$, we can get

$$
E\|A^{s\alpha}u\|^2_{L^2(D)} \leq C \left\| \int_0^t A^{s\alpha}E(t-r)h(r)f(x)dr \right\|_{L^2(D)}^2 \\
+ C\| \int_0^t A^{s\alpha}E(t-r)g(x)dW^H(r) \|_{L^2(D)}^2 \\
\leq \vartheta_3 + \vartheta_4.
$$

The resolvent estimate gives

$$
\vartheta_3 \leq C \left(\int_0^t \left\| \int_{\Gamma_{\theta,\kappa}} e^{z(r-t)} A^{s\alpha}z^{\alpha-1}(z^{\alpha} + A^{s})^{-1} dz \right\| \|h(r)|dr\right) \|f(x)\|_{L^2(D)}^2 \\
\leq C \left(\int_0^t \left\| \int_{\Gamma_{\theta,\kappa}} |e^{z(r-t)}| A^{s\alpha}z^{\alpha-1}(z^{\alpha} + A^{s})^{-1} |dz||h(r)|dr\right) \|f(x)\|_{L^2(D)}^2 \\
\leq C \left(\int_0^t \left\| \int_{\Gamma_{\theta,\kappa}} |e^{z(t-r)}| z^{\alpha-1}|dz||h(r)|dr\right) \|f(x)\|_{L^2(D)}^2 \\
\leq C \left(\int_0^t (t-r)^{-\sigma\alpha}||h(r)||dr\right) \|f(x)\|_{L^2(D)}^2 \\
\leq C\|h\|_{L^\infty([0,T])}^2 \|f(x)\|_{L^2(D)},
$$

where $\sigma \in [0, 1]$. As for ϑ_4, with the help of Lemma 1.4 and resolvent (5), we obtain

$$
\vartheta_4 \leq C \int_0^t \left\| \int_{\Gamma_{\theta,\kappa}} e^{zr}z^{\frac{1-2H}{2}} A^{s\alpha}z^{\alpha-1}(z^{\alpha} + A^{s})^{-1} dz \right\| \|g(x)\|_{L^2(D)}^2 \\
\leq C \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} |e^{zr}| |z^{\frac{1-2H}{2}} A^{s\alpha}z^{\alpha-1}(z^{\alpha} + A^{s})^{-1} |dz| \right)^2 dr\|g(x)\|_{L^2(D)}^2 \\
\leq C \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} |e^{zr}||z|^{\frac{1-2H}{2}+\sigma\alpha-1} |dz| \right)^2 dr\|g(x)\|_{L^2(D)}^2 \\
\leq C \int_0^t r^{2H-1-2\sigma\alpha}dr\|g(x)\|_{L^2(D)}^2,
$$

where we need to require $2H - 2\sigma\alpha > 0$ to preserve the boundedness of ϑ_4, i.e.,

$$
\sigma \leq \min(1, \frac{H}{\alpha} - \varepsilon) \text{ with } \varepsilon > 0 \text{ arbitrary small.}
$$
4. The inverse problem

Now, we first provide the reconstructions of \(f \) and \(|g|\), and then show the uniqueness and instability of the reconstructions.

4.1. Reconstruction of \(f \) and \(|g|\)

Introduce \(u_k(t) = (u(t), \phi_k) \) and denote \((\cdot, \cdot)\) as \(L^2\) inner product. Using Eq. (6), one can get

\[
u_k(t) = \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)drf_k + \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r)g_k,
\]

where \(f_k = (f, \phi_k) \) and \(g_k = (g, \phi_k) \). Thus we have

\[
\mathbb{E}(u_k(t)) = \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)drf_k
\]

and the covariance between \(u_k \) and \(u_l \) is

\[
\text{Cov}(u_k(t), u_l(t)) = g_kg_l\mathbb{E}\left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right).
\]

Then we provide some lemmas, which play key roles in the discussion of the uniqueness.

Lemma 4.1 Let \(h(t) \geq C_h > 0 \) for \(t \in (0, T) \). Then for each fixed \(k \in \mathbb{N}^* \), there exists a positive constant \(C_1 \) such that

\[
\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)dr \geq C_1 > 0.
\]

Proof. According to Lemma 2.5 and the property of \(h(t) \), one can get

\[
\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)dr \\
\geq Ce_{\alpha,1}(-\lambda_k^s t^\alpha) \int_0^t h(r)dr \\
\geq C_1 > 0.
\]

\(\Box \)

Lemma 4.2 For each fixed \(k \), \(l \in \mathbb{N}^* \), there exists a positive constant \(C_2 \) such that

\[
\mathbb{E}\left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right) \geq C_2 > 0.
\]

Proof. For \(H = \frac{1}{2} \), from the Itô isometry one can obtain

\[
\mathbb{E}\left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right) \\
= \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dr
\geq Ce_{\alpha,1}(-\lambda_k^s t^\alpha)E_{\alpha,1}(-\lambda_l^s t^\alpha) \geq C > 0.
\]
For $H \in (\frac{1}{2}, 1)$, Lemma 2.3 shows

\[
\mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_k^s(t - r)^\alpha) dW^H(r) \right) \mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_l^s(t - r)^\alpha) dW^H(r) \right) = H(2H - 1) \int_0^t \int_0^t E_{\alpha, 1}(-\lambda_k^s(t - r_1)^\alpha) E_{\alpha, 1}(-\lambda_l^s(t - r_2)^\alpha) |r_1 - r_2|^{2H - 2} dr_1 dr_2
\]

\[
\geq C E_{\alpha, 1}(-\lambda_k^s t^\alpha) E_{\alpha, 1}(-\lambda_l^s t^\alpha) \int_0^t \int_0^t |r_1 - r_2|^{2H - 2} dr_1 dr_2
\]

\[
\geq C > 0.
\]

As for $H \in (0, \frac{1}{2})$, introducing

\[
E_k(r) = \begin{cases}
E_{\alpha, 1}(-\lambda_k^s(t - r)^\alpha), & r \in [0, t]; \\
0, & r \in [0, t]^C,
\end{cases}
\]

one can obtain

\[
\mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_k^s(t - r)^\alpha) dW^H(r) \right) \mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_l^s(t - r)^\alpha) dW^H(r) \right) = \frac{1}{2} H(1 - 2H) \int \int_{\mathbb{R} \times \mathbb{R}} \frac{(E_k(r_1) - E_k(r_2))(E_l(r_1) - E_l(r_2))}{|r_1 - r_2|^{2-2H}} dr_1 dr_2
\]

\[
= \frac{1}{2} H(1 - 2H) \int \int_{[0, t] \times [0, t]} \frac{(E_k(r_1) - E_k(r_2))(E_l(r_1) - E_l(r_2))}{|r_1 - r_2|^{2-2H}} dr_1 dr_2
\]

\[+ H(1 - 2H) \int \int_{[0, t] \times [0, t]^C} \frac{E_k(r_1) E_l(r_1)}{|r_1 - r_2|^{2-2H}} dr_1 dr_2.
\]

Combining Lemma 2.5, we have

\[
\frac{1}{2} H(1 - 2H) \int \int_{[0, t] \times [0, t]} \frac{(E_k(r_1) - E_k(r_2))(E_l(r_1) - E_l(r_2))}{|r_1 - r_2|^{2-2H}} dr_1 dr_2 \geq 0,
\]

and

\[
\mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_k^s(t - r)^\alpha) dW^H(r) \right) \mathbb{E} \left(\int_0^t E_{\alpha, 1}(-\lambda_l^s(t - r)^\alpha) dW^H(r) \right) \geq H(1 - 2H) E_k(t) E_l(t) \int \int_{[0, t] \times [0, t]^C} \frac{1}{|r_1 - r_2|^{2-2H}} dr_1 dr_2
\]

\[
\geq C_2 > 0.
\]

Combining Eqs. (7), (8), and Lemmas 4.1, 4.2, one can get the uniqueness of the inverse problem.

Theorem 4.1 Let $f(x), g(x) \in L^2(D), \text{ and } \|g(x)\|_{L^2(D)} \neq 0$. Then one can determine the source terms f and $|g|$ uniquely by the data set

\[
\{(\mathbb{E} u_k(T), \text{Cov}(u_k(T), u_l(T))) : k, l \in \mathbb{N}^* \}.
\]

Proof. According to (7), f_k can be got by

\[
f_k = \frac{\mathbb{E}(u_k)}{\int_0^t E_{\alpha, 1}(-\lambda_k^s(t - r)^\alpha) h(r) dr}.
\]
Thus there exists \(f = \sum_{k=1}^{\infty} f_k \phi_k \). Further from (8), there is

\[
g_k g_l = \frac{\text{Cov}(u_k(t), u_l(t))}{\mathbb{E} \left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right)},
\]

which can help us to obtain \(g^2 \).

\[\square\]

4.2. Instability

In this subsection, we show the instability of the inverse source problem. Different from the discussions in [21], we show the instability of recovering \(g_k g_l \).

Theorem 4.2 Let \(f(x), g(x) \in L^2(D) \) and \(\|g(x)\|_{L^2(D)} \neq 0 \). Then the following estimates hold

\[
\left| \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)dr \right| \leq C\lambda_k^{-\sigma_1 s}
\]

and

\[
\mathbb{E} \left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right) \leq C\lambda_k^{-\sigma_2 s}\lambda_l^{-\sigma_2 s},
\]

where \(\sigma_1 \in [0, 1] \) and \(\sigma_2 \in [0, \min(\frac{\lambda}{\alpha}, 1)] \).

Proof. The resolvent estimate and simple calculations imply

\[
\left| \int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)h(r)dr \right| \\
\leq C \int_0^t \left| \int_{\Gamma_{\theta,\kappa}} e^{rz\gamma^{-1}(z^\alpha + \lambda_k^s)}dz \right| dr \|h(r)\|_{L^\infty([0,T])} \\
\leq C\lambda_k^{-\sigma_1 s} \int_0^t \left| \int_{\Gamma_{\theta,\kappa}} e^{rz\gamma^{-1}(z^\alpha + \lambda_k^s)}dz \right| dr \|h(r)\|_{L^\infty([0,T])} \\
\leq C\lambda_k^{-\sigma_1 s} \int_0^t \left| \int_{\Gamma_{\theta,\kappa}} |z|^{\sigma_1 \alpha - 1}dz \right| dr \|h(r)\|_{L^\infty([0,T])} \\
\leq C\lambda_k^{-\sigma_1 s} \int_0^t r^{-\sigma_1 \alpha}dr,
\]

where we need to require \(\sigma_1 \in [0, 1] \). According to Lemma 2.4 and the resolvent estimate,
one can obtain
\[
\mathbb{E}\left(\int_0^t E_{\alpha,1}(-\lambda_k^s(t-r)^\alpha)dW^H(r) \int_0^t E_{\alpha,1}(-\lambda_l^s(t-r)^\alpha)dW^H(r) \right) \\
\leq C \left(\int_0^t \left| \partial_r \cdot \frac{1-2H}{2} E_{\alpha,1}(-\lambda_k^s r^\alpha) \right|^2 dr \right)^{\frac{1}{2}} \left(\int_0^t \left| \partial_r \cdot \frac{1-2H}{2} E_{\alpha,1}(-\lambda_l^s r^\alpha) \right|^2 dr \right)^{\frac{1}{2}} \\
\leq C \left(\int_0^t \int_{\Gamma_{\theta,\kappa}} e^{\alpha z} \cdot \frac{1-2H}{2} \cdot \frac{z^{\alpha-1}(z^\alpha + \lambda_k^s)}{2} \left| dz \right|^2 dr \right)^{\frac{1}{2}} \\
\cdot \left(\int_0^t \int_{\Gamma_{\theta,\kappa}} e^{\alpha z} \cdot \frac{1-2H}{2} \cdot \frac{z^{\alpha-1}(z^\alpha + \lambda_l^s)}{2} \left| dz \right|^2 dr \right)^{\frac{1}{2}} \\
\leq C \lambda_k^{\sigma_2 s} \lambda_l^{\sigma_2 s} \left(\int_0^t \int_{\Gamma_{\theta,\kappa}} e^{\alpha z} \cdot \frac{1-2H}{2} \cdot \frac{z^{\alpha-1}(z^\alpha + \lambda_k^s)}{2} \left| dz \right|^2 dr \right)^{\frac{1}{2}} \\
\cdot \left(\int_0^t \int_{\Gamma_{\theta,\kappa}} e^{\alpha z} \cdot \frac{1-2H}{2} \cdot \frac{z^{\alpha-1}(z^\alpha + \lambda_l^s)}{2} \left| dz \right|^2 dr \right)^{\frac{1}{2}} \\
\leq C \lambda_k^{\sigma_2 s} \lambda_l^{\sigma_2 s} \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} |z| \cdot \frac{1-2H + \sigma_2 \alpha - 1}{2} \cdot |dz| \right)^2 dr \\
\leq C \lambda_k^{\sigma_2 s} \lambda_l^{\sigma_2 s} \int_0^t r^{2H-2\sigma_2 \alpha} dr,
\]
where we need to require $2H - 2\sigma_2 \alpha > 0$, i.e., $\sigma_2 < \frac{H}{\alpha}$.
\[\square\]

5. Numerical experiments

In this section, we provide some examples to validate the developed theory. Here, we choose $D = (0,1)$. Thus the eigenvalues and eigenfunctions of $-\Delta$ are
\[
\lambda_k = k^2 \pi^2, \quad \phi_k(x) = \sqrt{2} \sin(k \pi x), \quad k = 1, 2, \ldots.
\]

5.1. Numerical scheme for direct problem

To get synthetic data for inverse problem, we propose a numerical scheme to solve direct problem numerically.

Introduce $\mathbb{H}_N = \text{span}\{\phi_1, \phi_2, \ldots, \phi_N\}$ with $N \in \mathbb{N}^*$ and define the projection operator $P_N: L^2(\Omega) \rightarrow \mathbb{H}_N$ by
\[
P_N u = \sum_{i=1}^N (u, \phi_i) \phi_i \quad \forall u \in L^2(\Omega).
\]
Define $A_N^s : \mathbb{H}_N \rightarrow \mathbb{H}_N$ as
\[
A_N^s v_N = \sum_{k=1}^N \lambda_k^s (v_N, \phi_k) \phi_k \quad v_N \in \mathbb{H}_N.
\]
Let $\tau = T/L$ with $L \in \mathbb{N}^*$ and $t_k = k\tau$ $(k = 0, 1, 2, \cdots, L)$. Then the numerical solution of $u(x, t_n)$, i.e., $u_N^{n,k}$, can be approximated by

$$\frac{u_N^n - u_N^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} A_N^s u_N^{n-i} = P_N f(x) h(t_n) + P_N g(x) \frac{W^H(t_n) - W^H(t_{n-1})}{\tau},$$

where

$$\sum_{i=0}^{\infty} d_i^{(\alpha)} \xi^i = \left(\frac{1 - \xi}{\tau}\right)^\alpha.$$

Further introduce $v_{1,k}(t)$ and $v_{2,k}(t)$ as

$$v_{1,k}(t) = \int_0^t E_{\alpha,1}(-\lambda_k^s (t-r)^\alpha) h(r)dr,$$

$$v_{2,k}(t) = \int_0^t E_{\alpha,1}(-\lambda_k^s (t-r)^\alpha) dW^H(r).$$

It is easy to verify that $v_{1,k}(t)$ and $v_{2,k}(t)$ are the solutions of

$$\begin{align*}
\partial_t v_{1,k}(t) + \partial_t^{1-\alpha} \lambda_k^s v_{1,k}(t) &= h(t) \quad t \in (0, T], \\
v_{1,k}(0) &= 0
\end{align*}$$

and

$$\begin{align*}
\partial_t v_{2,k}(t) + \partial_t^{1-\alpha} \lambda_k^s v_{2,k}(t) &= \dot{W}^H(t) \quad t \in (0, T], \\
v_{2,k}(0) &= 0.
\end{align*}$$

The $v_{1,k}(t_n)$ and $v_{2,k}(t_n)$ can be respectively approximated by $v_{1,k}^n$ and $v_{2,k}^n$, which are the solutions of

$$\frac{v_{1,k}^n - v_{1,k}^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} \lambda_k^s v_{1,k}^{n-i} = h(t_n)$$

and

$$\frac{v_{2,k}^n - v_{2,k}^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} \lambda_k^s v_{2,k}^{n-i} = \frac{W^H(t_n) - W^H(t_{n-1})}{\tau}.$$

5.2. Numerical results

In the numerical experiments, we take $T = 0.5$, $N = 20$, and $L = 1024$. As for $f(x)$, $g(x)$, and $h(t)$, we choose

$$h(t) = t + 1, \quad f(x) = 4x(1-x)(1-2x), \quad g(x) = x(1-x)^2.$$

We generate 1000 trajectories to approximate the $\mathbb{E}(u_k)$ and Cov(u_k, u_l), which can help us to recover f and $|g|$.

Here, we take (α, s, H) as $\{\alpha = 0.4, s = 0.3, H = 0.2\}$, $\{\alpha = 0.6, s = 0.7, H = 0.2\}$, $\{\alpha = 0.6, s = 0.3, H = 0.5\}$, $\{\alpha = 0.4, s = 0.7, H = 0.5\}$, $\{\alpha = 0.3, s = 0.4, H = 0.8\}$, and $\{\alpha = 0.7, s = 0.6, H = 0.8\}$, respectively. The corresponding results are shown in Figures 1-3. From these results, it can be seen that both f and $|g|$ can be well recovered.
An inverse random source problem for the time-space fractional diffusion equation

Figure 1. The exact and reconstructed solutions with $\alpha = 0.4$, $s = 0.3$, and $H = 0.2$.

Figure 2. The exact and reconstructed solutions with $\alpha = 0.6$, $s = 0.7$ and $H = 0.2$.

6. Conclusion

We study the inverse random source problem for the time-space fractional diffusion equation driven by fBm with Hurst index $H \in (0, 1)$. We first provide the well-posedness of the direct problem; and then show the uniqueness of the inverse problem. With the help of Lemma 2.4 we give the instability of recovering f and $|g|$. Numerical experiments validate the theoretical predictions.
An inverse random source problem for the time-space fractional diffusion equation

Figure 3. The exact and reconstructed solutions with $\alpha = 0.6$, $s = 0.3$, and $H = 0.5$.

Figure 4. The exact and reconstructed solutions with $\alpha = 0.4$, $s = 0.7$, and $H = 0.5$.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant No. 12071195, and the AI and Big Data Funds under Grant No. 2019620005000775.

References

[1] Podlubny I 1999 Fractional Differential Equations (San Diego and London: Academic)
An inverse random source problem for the time-space fractional diffusion equation

Figure 5. The exact and reconstructed solutions with $\alpha = 0.3$, $s = 0.4$, and $H = 0.8$.

Figure 6. The exact and reconstructed solutions with $\alpha = 0.7$, $s = 0.6$, and $H = 0.8$.

[2] Barkai E 2001 Fractional Fokker-Planck equation, solution, and application Phys. Rev. E 63 046118
[3] Metzler R, Barkai E and Klafter J 1999 Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach Phys. Rev. Lett. 82 3563–3567
[4] Metzler R, Klafter J and Sokolov I M 1998 Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended Phys. Rev. E 58 1621–1633
[5] Liu X and Deng W 2021 Higher order approximation for stochastic space fractional wave equation forced by an additive space-time Gaussian noise J. Sci. Comput. 87 11
[6] Gunzburger M, Li B and Wang J 2019 Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise Math. Comp. 88 1715–1741
[7] Gunzburger M, Li B and Wang J 2019 Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise Numer. Math. 141 1043–1077
An inverse random source problem for the time-space fractional diffusion equation

[8] Sakamoto K and Yamamoto M 2011 Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems J. Math. Anal. Appl. 382 426–447
[9] Wu X, Yan Y and Yan Y 2020 An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise Appl. Numer. Math. 157 69–87
[10] Yan L and Yin X 2019 Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion Discrete Contin. Dyn. Syst. Ser. B 24 615–635
[11] Babaei A and Banihashemi S 2019 Reconstructing unknown nonlinear boundary conditions in a time–fractional inverse reaction–diffusion–convection problem Numer. Methods Partial Differential Equations 35 976–992
[12] Huang X, Li Z and Yamamoto M 2019 Carleman estimates for the time-fractional advection-diffusion equations and applications Inverse Problems 35 045003
[13] Jin B and Zhou Z 2021 An inverse potential problem for subdiffusion: Stability and reconstruction Inverse Problems 37 015006
[14] Kaltenbacher B and Rundell W 2019 On an inverse potential problem for a fractional reaction–diffusion equation Inverse Problems 35 065004
[15] Li Z, Cheng X and Li G 2019 An inverse problem in time-fractional diffusion equations with nonlinear boundary condition J. Math. Phys. 60 091502
[16] Qasemi S, Rostamy D and Abdollahi N 2019 The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method Bit 59 183–212
[17] Thach T N, Huy T N, Tam P T M, Minh M N and Can N H 2019 Identification of an inverse source problem for time-fractional diffusion equation with random noise Math. Methods Appl. Sci. 42 204–218
[18] Tuan N H, Hoan L V C and Tatar S 2019 An inverse problem for an inhomogeneous time-fractional diffusion equation: a regularization method and error estimate Comp. Appl. Math. 38 32
[19] Yan X B and Wei T 2019 Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach J. Inverse Ill-Posed Probl. 27 1–16
[20] Zhang Z and Zhou Z 2017 Recovering the potential term in a fractional diffusion equation IMA J. Appl. Math. 82 579–600
[21] Feng X, Li P and Wang X 2020 An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion Inverse Problems 36 045008
[22] Liu C, Wen J and Zhang Z 2020 Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation Inverse Probl. Imaging 14 1001–1024
[23] Niu P, Helin T and Zhang Z 2020 An inverse random source problem in a stochastic fractional diffusion equation Inverse Problems 36 045002
[24] Nie D and Deng W A unified convergence analysis for the fractional diffusion equation driven by fractional Gaussian noise with Hurst index $H \in (0,1)$ URL http://arxiv.org/pdf/2104.13676v1
[25] Bardina X and Jolis M 2006 Multiple fractional integral with Hurst parameter less than 1/2 Stochastic Process. Appl. 116 463–479
[26] Cao Y, Hong J and Liu Z 2017 Approximating stochastic evolution equations with additive white and rough noises SIAM J. Numer. Anal. 55 1958–1981
[27] Cao Y, Hong J and Liu Z 2018 Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion IMA J. Numer. Anal. 38 184–197
[28] Kloeden P E and Platen E 1992 Numerical Solution of Stochastic Differential Equations (Berlin and New York: Springer-Verlag)
[29] Mishura I S 2008 Stochastic Calculus for Fractional Brownian Motion and Related Processes (Berlin: Springer)
[30] Adams R A and Fournier J J F 2003 Sobolev Spaces 2nd ed (Amsterdam and London: Academic Press)
[31] Ervin V J and Roop J P 2006 Variational formulation for the stationary fractional advection dispersion equation Numer. Methods Partial Differential Equations 22 558–576
[32] Gorenflo R, Kilbas A A, Mainardi F and Rogosin S V 2014 *Mittag-Leffler Functions, Related Topics and Applications* 1st ed (Berlin Heidelberg: Springer Berlin Heidelberg)

[33] Prüss J 2012 *Evolutionary integral equations and applications* (Basel and New York: Springer Verlag)