Review Article

Identifying the shortfalls of crude protein-reduced, wheat-based broiler diets

Peter H. Selle a, b, *, Shemil P. Macelline a, c, Shiva Greenhalgh a, c, Peter V. Chrystal a, c, d, Sonia Y. Liu a, c, *

* Corresponding authors.
E-mail addresses: sonia.liu@sydney.edu.au (P.H. Selle), peter.selle@sydney.edu.au (S.Y. Liu).

Abstract

The objective of this review is to identify the shortfalls of wheat-based, crude protein (CP)-reduced diets for broiler chickens as wheat is inferior to maize in this context but to inconsistent extents. Inherent factors in wheat may be compromising gut integrity; these include soluble non-starch polysaccharides (NSP), amylase trypsin inhibitors (ATI) and gluten. Soluble NSP in wheat induce increased gut viscosities, which can lead to compromised gut integrity, which is not entirely ameliorated by NSP-degrading feed enzymes. Wheat ATI probably compromise gut integrity and may also have the capacity to increase endogenous amino acid flows and decrease apparent starch and protein digestibilities. Gluten inclusions of 20 g/kg in a maize-soy diet depressed weight gain and feed intake and higher gluten inclusions have been shown to activate inflammatory cytokine-related genes in broiler chickens. Further research is required, perhaps particularly in relation to wheat ATI. The protein content of wheat is typically higher than maize; importantly, this results in higher inclusions of non-bound amino acids in CP-reduced broiler diets. These higher inclusions could trigger post-enteral amino acid imbalances, leading to the deamination of surplus amino acids and the generation of ammonia (NH3) which, if not adequately detoxified, results in compromised growth performance from NH3 overload. Thus, alternatives to non-bound amino acids to meet amino acid requirements in birds offered CP-reduced broiler diets merit evaluation. The digestion of wheat starch is more rapid than that of maize starch which may be a disadvantage as the provision of some slowly digestible starch in broiler diets may enhance performance. Alternatively, slowly digestible starch may result in more de novo lipogenesis. Therefore, it may prove instructive to evaluate CP-reduced diets based on maize-wheat and/or sorghum–wheat blends rather than entirely wheat. This would reduce non-bound amino acid inclusions by lowering dietary CP derived from feed grains and may enhance starch digestive dynamics by retarding starch digestion rates. Also, the use of biomarkers to monitor gut integrity in broiler chickens is examined where calprotectin, ovo-transferrin and possibly citrulline appear to hold promise, but their validation requires further research.

Article history:
Received 27 March 2022
Received in revised form 7 June 2022
Accepted 27 July 2022
Available online 10 August 2022

Keywords:
Biomarkers
Broiler chickens
Reduced-crude protein diets
Wheat

1. Introduction

There is an active quest to develop crude protein (CP)-reduced diets that will meet practical acceptance as this, in many countries of the world, would reduce the chicken-meat industry’s dependence on imported soybean meal. CP-reduced diets have the potential to halve the industry’s dependence on imported soybean meal; thereby, enhancing its sustainability. However, the idea of reducing dietary CP is certainly not new; perhaps unwittingly, it has
been practiced for decades following the introduction of synthetic DL-methionine more than 60 years ago. The inclusion of 4.3 g/kg non-bound amino acids (lysine-HCl, methionine, threonine) was shown to reduce the CP content of a maize-soy diet from 356 to 200 g/kg with a radical reduction in the dietary soybean meal from 709 to 293 g/kg as demonstrated by Pesti (2009).

Moreover, CP-reduced broiler diets have the potential to provide additional advantages extending to the environment with reduced nitrogen and ammonia emissions, litter quality, bird welfare and flock health (Greenhalgh et al., 2020a) and may extend to food safety. The impacts of reducing dietary CP levels from 225 to 205 and 185 g/kg in diets on faecal microflora were investigated by Laudadio et al. (2012). Faecal concentrations of Escherichia coli were reduced by 23.7% (2.97 versus 3.89 log<sub>10</sub> colony forming units [CFU]/g) at 42 d post–hatch, which is advantageous from the standpoint of food safety.

Broiler diets are frequently based on maize or wheat; however, wheat is less suitable than maize as the basis of reduced CP (Chrysal et al., 2021), which complicates the tangible challenges to their further development (Chrysal et al., 2020a; Liu et al., 2021a). Thus, this review is an attempt to identify the factors underlying the shortfalls of wheat-based diets in relation to broiler growth performance following reductions in dietary CP concentrations, so that they may be addressed. Importantly, the effects of any shortfalls in wheat will be only amplified in CP-reduced diets because of increased dietary wheat and starch inclusions.

2. Background: maize versus wheat

Maize and wheat are the 2 commonly used feed grains in global chicken-meat production. However, wheat has a higher CP content (118 versus 91 g/kg) than maize and their amino acid profiles differ. Relative to lysine (100), wheat grown in Australia contains more glutamic acid (145) and glycine (117), but less aspartic acid (79), methionine (75), leucine (51) and alanine (47) than maize (Fickler et al., 2016). As a consequence of these differences, wheat-based, CP-reduced diets contain more non-bound amino acids with greater proportions relative to protein-bound amino acids, which is probably disadvantageous (Selle et al., 2022).

The impact of dietary CP concentrations in maize-based versus wheat-based diets have been directly compared in 2 studies (Chrysal et al., 2021; Greenhalgh et al., 2022a, b). In both studies, wheat supported better weight gain and FCR in standard CP diets, but this position was reversed following dietary CP-reductions, as shown in Table 1, although the reductions differed in magnitude. Maize was clearly superior to wheat in terms of growth performance, but not fat deposition, in Chrysal et al. (2021) following dietary CP reductions and the same pattern was evident, but to far less pronounced extents, in Greenhalgh et al. (2022). The dietary CP reduction in wheat-based diets from 222 to 165 g/kg compromised weight gain by 35.5% (1,549 versus 2,403 g/kg) and FCR by 26.6% (1,840 versus 1,453) in Chrysal et al. (2021). In contrast, the dietary CP reduction from 220 to 180 g/kg in wheat-based diets depressed weight gain by 7.72% (2,510 versus 2,720 g/bird) and FCR by 9.82% (1.840 versus 1.453) in Chrysal et al. (2021). The more modest advantages held by maize over wheat in Greenhalgh et al. (2022) and the quite reasonable performance of birds offered 165 g/kg CP, wheat-based diets in Yin et al. (2020b) suggest that NH<sub>3</sub> overload may not have been involved and that other factors may have been engaged in relatively moderately depressed growth performance.

The inclusion of antibiotic growth promoters (AGP) in poultry diets is declining, which was initiated by the banning of the practice in Europe in 2006. The declining global usage of AGP represents a challenge to the sustainability of chicken-meat production (Cervantes, 2015). This situation has prompted a search for viable alternatives to AGP and has increased the focus on ‘gut integrity’ in broiler chickens. Indeed, Adedokun and Olojede (2019) contended that maintaining gut integrity in broiler chickens would continue to be a challenge for the foreseeable future. It is possible that wheat-based, CP-reduced diets compromise gut integrity to greater extents than maize. Therefore, in this review, initial consideration is given to the inherent factors in wheat which may be compromising gut integrity, which include soluble NSP, amylase trypsin inhibitors (ATI) and gluten. Therefore, the feasibility of using biomarkers to monitor gut integrity in broiler chickens is examined. This is followed by a consideration of the relatively high protein content of wheat and its implications, including NH<sub>3</sub> overload, and starch digestive dynamics.

3. Influential factors and biomarkers for gut integrity

Since the AGP ban in Europe, the chicken-meat industry has experienced a rise in gut integrity problems under the rather nebulous collective description of ‘dysbacteriosis’. Dysbacteriosis has been defined as the presence of abnormal microbiota in the proximal small intestine, capable of reducing nutrient digestibility, impairing intestinal barrier function and increasing the risk of inflammatory responses (Teirlynck et al., 2011). Interestingly, NSP were given priority as a feed component that triggers gut inflammation in poultry by Dal Pont et al. (2020), the genesis of which appears to stem mainly from increases in gut viscosity. In this section the focus is on soluble NSP, ATI and gluten contents in wheat.

3.1 Soluble non-starch polysaccharides

Soluble NSP are hydrocolloids that strongly interact with water and effectively act as a thickening agent (Karaman et al., 2014). In
broiler chickens this water holding capacity increases digesta viscosity along the gastrointestinal tract. Decades ago, β-glucan, a soluble NSP in barley, was shown to increase digesta viscosity and compromise broiler performance but this could be counteracted by exogenous enzymes as demonstrated by Burnett (1966). Wheat, rye, barley and oats have high soluble NSP levels which increase digesta viscosity, decrease digesta passage depress digestive enzymatic activities and nutrient digestibility and compromise growth performance (Yegani and Korver, 2008). Increased digesta retention time facilitates bacterial colonisation and activity in the small intestine (Vahjen et al., 1998).

Importantly, wheat contains higher levels of soluble NSP than maize by a 2.8-fold factor of (25 versus 9 g/kg) on a dry matter basis (Bach Knudsen, 1997) and this is a critical difference between the 2 feed grains. Extraordinary efforts have been devoted to the anti-nutritive effects of soluble NSP in wheat in broiler chickens and, ostensibly, their anti-nutritive effects can be counteracted by inclusions of NSP-degrading feed enzymes, which is routinely practiced. The capacity of soluble NSP to increase ileal viscosity linearly ($P = 0.011$) was recently reported by Nguyen et al. (2021). However, it is noteworthy that Munyaka et al. (2016) found that wheat-based diets generated higher average gut viscosities by 61.3% (3.08 versus 1.91 mPa s) than maize-based diets in broiler chickens, irrespective of NSP-degrading enzyme inclusions. Therefore, while the routine inclusion of NSP-degrading enzymes in reduced-CP, wheat-based diets will attenuate the anti-nutritive properties of soluble NSP and reduce gut viscosity, the likelihood is that corresponding maize-based diets will retain an advantage in this respect.

Both the morphology of the gastrointestinal tract and the gut microbiota in boiler chickens are impacted by dietary NSP (Nguyen et al., 2022). The inclusion of an NSP-degrading enzyme in wheat-based diets offered to broiler chickens significantly increased intestinal villus height by 22.6% (1.668 versus 1.360 μm) and decreased crypt depth by 6.09% (108 versus 115 μm) as reported by Yaghobfar and Kalantar (2017). Enzyme inclusion significantly reduced digesta viscosity by 26.3% (1.60 versus 2.17 cP; 1 cP = 0.001 Pa s), significantly increased feed intake by 2.14% (4,253 versus 4,164 g/bird) and numerically improved weight gain and FCR from 1 to 42 d post–hatch in this study. Thus, soluble NSP have the capacity to alter gut morphometry, presumably by increased gut viscosity. Elevating dietary soluble NSP levels increased ileal viscosity in broilers by 24.3% (3.493 versus 4.343 cP) in Nguyen et al. (2021), which was associated with an increase (7.541 versus 7.247 log10 genomic data commons DNA copies/g; 1 cP = 0.001 Pa s) in Lactobacillus in ileal digesta. Interestingly, Lactobacilli constituted 84.2% of total anaerobic bacteria in the ileum in this study. A similar Lactobacilli majority in ileal digesta was in birds offered wheat-based diets was reported by Munyaka et al. (2016).

The likelihood is that increased gut viscosities are associated with increases in gut microbiota and in the small intestine where Lactobacilli are dominant. Broilers offered rye-based diets, a more ‘viscous’ cereal grain than maize, had greater ileal anaerobe counts than maize-based diets by 2 or 3 logarithmic cycles in Wagner and Thomas (1977). Accordingly, Hübener et al. (2002) found that a wheat/rye diet supported more CFU of mucosa associated bacteria in comparison to a maize diet with notable increases in enterobacteria and enterococci CFU. These researchers concluded that dietary cereals producing high intestinal viscosities lead to increased overall bacterial activity in the small intestine. Rye inclusions of 50 and 100 g/kg in maize-based broiler diets were investigated by Van Krimpen et al. (2017). The study reported that ileal gut morphology, microbiota composition of jejunal digesta, and jejunal gene expression profiles were impacted by rye inclusions. Also, Choc et al. (1996) found that there was extensive small intestinal fermentation in birds offered NSP-enriched diets from microscopic examinations and considered that this is partly responsible for the anti-nutritive effects soluble NSP.

That soluble NSP in wheat-based diets increase gut viscosities and, in turn, increase gut microbiota, which has important implications for the apparent digestibility coefficients of amino acids. Importantly, CP-reduced diets generate perturbations in apparent amino acid digestibility coefficients (Liu et al., 2021a) and any increases in microbial amino acids in distal ileal digesta, relative to dietary and endogenous amino acids, would compromise apparent digestibility coefficients. In Greenhalgh et al. (2022), where 180 g/kg CP maize-based diets outperformed wheat, maize supported higher apparent amino acid digestibilities than wheat. This appeared to be related to estimated increases microbial amino acid proportions in distal ileal digesta in birds offered wheat-based diets as deduced by the Dubaux et al. (1990) model. Significant, negative Pearson correlations between microbial amino acid proportions in distal ileal digesta and apparent ileal digestibility coefficients of all 16 amino acids assessed were detected. Pearson correlations ranged from proline ($r = −0.421; P = 0.001$) to alanine ($r = −0.833; P < 0.001$) in the Greenhalgh et al. (2022) study in which both phytate- and NSP-degrading enzymes were included across all dietary treatments. Thus, it appears that soluble NSP in wheat-based, CP-reduced diets, despite NSP-degrading enzyme inclusions, remain a threat to gut integrity and may have a negative impact on

---

### Table 1

| CP, g/kg | Weight gain, g/bird | FCR | Relative fat-pad weight, g/kg |
|---------|---------------------|-----|-----------------------------|
|         | Maize | Wheat | Response | Maize | Wheat | Response | Maize | Wheat | Response |
| 2221    | 2,214 | 2,403 | −7.87% | 1,453 | 1,453 | 0.00% | 6.40 | 6.40 | 0.00% |
| 193     | 2,396 | 2,386 | +0.42% | 1,415 | 1,471 | −3.81% | 11.10 | 8.50 | +30.60% |
| 165     | 2,370 | 1,549 | +53.00% | 1,473 | 1,840 | −19.90% | 12.80 | 7.50 | +70.70% |
| 2202    | 2,490 | 2,720 | −1.10% | 1,338 | 1,314 | +1.83% | 8.02 | 6.19 | +29.60% |
| 180     | 2,598 | 2,510 | +3.51% | 1,385 | 1,443 | −4.02% | 10.16 | 7.78 | +30.60% |

1 From Chrystal et al. (2021).
2 From Greenhalgh et al. (2022a).

### Table 2

| CP, g/kg | Weight gain, g/bird FCR | Fat-pad weight, g/kg |
|---------|-------------------------|---------------------|
|         | Maize | Wheat | Response | FCR | Response | Maize | Wheat | Response |
| 215.01  | 2,096 | 1,476 | 7.32 | 180.0 | 2,598 | 48.40% | 2,426 | +44.10% | 6.79 | −18.90% |
| 165.00  | 2,106 | +0.48% | 1,546 | +4.74% | 8.67 | +21.20% | 180.0 | 2,370 | +1.54% | 1,546 | +4.74% | 8.67 | +21.20% |
| 197.50  | 1,958 | 1,684 | 8.37 | 180.0 | 1,451 | −25.90% | 1,878 | +11.50% | 8.14 | −2.75% | 180.0 | 1,451 | −25.90% | 1,878 | +11.50% | 8.14 | −2.75% |
| 162.50  | 1,010 | −48.40% | 2,426 | +44.10% | 6.79 | −18.90% | 162.50 | 1,010 | −48.40% | 2,426 | +44.10% | 6.79 | −18.90% |

1 From Yin et al. (2020).
2 From Greenhalgh et al. (2020b).
amino acid digestibilities. Soluble NSP can compromise amino acid digestibilities directly because increased digesta viscosity in the small intestine impedes the digestion of protein and absorption of amino acids and indirectly from increases in microbial amino acids in distal ileal digesta (Ravindran et al., 1999; Selle et al., 2009). Nevertheless, the use of NSP-degrading enzyme should remain routine and the most appropriate inclusion rates should be given consideration.

3.2. Amylase trypsin inhibitors

The capacity of wheat ATI to inhibit mammalian digestive enzymes, specifically α-amylase and trypsin, under in vitro conditions has been reported by Cuccioloni et al. (2016). Amylase trypsin inhibitors were detected and quantified in a wide range of wheat cultivars via discovery proteomics and data mining by Bose et al. (2020) and the synthesis and accumulation of amylase-trypsin inhibitors during grain development of bread wheat has been documented by Call et al. (2021). Amylase trypsin inhibitors are low-molecular-weight proteins (12,000 to 15,000 Da) and make up about 4% of the wheat proteome. Wheat ATI were reported to drive intestinal inflammation via activation of toll-like receptor 4 (TLR4) in human and murine cells by Junker et al. (2012). Similarly, Zevallos et al. (2017) found that wheat ATI activate TLR4 and increase intestinal inflammation by activating gut and mesenteric lymph node myeloid cells in mice. These researchers also reported that gluten-containing cereals have by far the highest concentrations of ATI and orally ingested ATI are largely resistant to proteases.

In theory, wheat ATI could cause compensatory increases in pancreatic secretions of amylase and trypsin which would increase endogenous amino acid flows and may even depress starch and protein digestibility. Soy trypsin inhibitor activity has been shown to depress digestibilities of all essential and non-essential amino acids assessed in a linear manner in broiler chickens (Kuenz et al., 2022). The inherent phytase activity of wheat is resistant to both thermal processing and proteolysis (Call et al., 2019). It is likely that wheat ATI trigger gut inflammation in poultry and it is possible that ATI depress starch and protein digestibility given sufficient concentrations in wheat. Arguably, both aspects merit further investigations.

3.3. Gluten

Gluten is an insoluble storage protein, or prolamin, in wheat and is subdivided into gliadins and glutenins. Gluten comprises 80% to 85% of the wheat proteome (Van Der Borght et al., 2005), so wheat would typically contain in the order of 100 g/kg gluten. The amino acid composition of gluten, glutenin and gliadin have been determined by Rombouts et al. (2009), as shown in Table 3, where it is evident that gluten contains a paucity of lysine. Gluten contains relatively high levels of glutamate, glutamine, serine, proline and phenylalanine in respect of amino acid requirements for broiler chickens.

Ingestion of wheat gluten elicits an immune response and small intestinal inflammation in genetically predisposed human subjects (Schuppan et al., 2009), which has been the subject of considerable research. However, more specifically, gliadin has the capacity to compromise the integrity of small intestinal tight junctions by inducing inflammation and increasing intestinal permeability (De Punder and Pruimboom, 2013). Gliadin, a component of gluten, has been demonstrated to increase permeability in human Caco-2 intestinal epithelial cells to small molecules (4 kDa) by reorganizing actin filaments and altering expression of junctional complex proteins in humans with Coeliac disease (Sander et al., 2005).

In broiler chickens, dietary additions of 50 and 75 g/kg gluten have been shown to depress growth performance (Afshar and Moslehi, 2006). In this study, 75 g/kg gluten depressed weight gain by 38.2% (1,373 versus 2,220 g/bird) to 49 d post-hatch. The addition of 20 g/kg gluten to a maize-soy broiler diet was investigated by Fang et al. (2017). Gluten significantly depressed feed intake by 6.21% (3,656 versus 3,898 g/bird) and numerically depressed weight gain by 8.37% (1,882 versus 2,054 g/bird) and FCR by 2.65% (1.94 versus 1.89) from 1 to 42 d post-hatch. In the Chrystal et al. (2021) study, the stepwise reduction of dietary CP from 222 to 193 and 165 g/kg CP increased wheat inclusions from 525 to 637 and 751 g/kg. This would correspond to approximate increases of 21% and 43% glutelin in the 2 reduced-CP diets; thus, the Fang et al. (2017) assessment of 20 g/kg gluten is relevant. Substantially higher gluten inclusions in broiler diets of 0, 250 and 500 g/kg were investigated by Kang et al. (2019) from d 1 to 7 and from d 21 to 28 post-hatch. Growth performance was seriously compromised and was accompanied by increased mRNA expression of genes related to inflammation including interleukins and tumour necrosis factor-α (TNF-α). This infers that gluten may have the capacity to trigger gut inflammation and compromise growth performance in poultry.

3.4. Biomarkers for gut integrity

The identification of biomarkers to monitor gut integrity in broiler chickens would be a distinct advantage (Ducatelle et al., 2018). This probably particularly applies when gut integrity is challenged by the inherent contents of soluble NSP, ATI and gluten in wheat. However, Banerjee (2014) argued that a void still exists for a robust gastrointestinal damage marker in poultry, despite the very real need for such agents, and Niewold (2015) suggested that a greater research effort needs to be invested in this field. Biomarkers of gastrointestinal functionality in poultry and livestock were considered by Celi et al. (2019). Their contention was that the use of a single biomarker might not be feasible because of the complexity of the interactions between the key components of gastrointestinal functionality. Therefore, the development of a suite of biomarkers of may be required to monitor the functionality and health of the gastrointestinal tract, but also of animal performance, health and welfare.

### Table 3

| Amino acid, μmol/g | Gluten | Glutelin | Gliadin | Gluten profile |
|--------------------|--------|----------|---------|----------------|
| Arginine           | 245    | 240      | 215     | 223            |
| Histidine          | 130    | 135      | 125     | 118            |
| Isoleucine         | 315    | 305      | 345     | 286            |
| Leucine            | 550    | 550      | 580     | 500            |
| Lysine             | 110    | 155      | 45      | 100            |
| Methionine         | 100    | 105      | 90      | 91             |
| Phenylalanine      | 335    | 310      | 380     | 305            |
| Threonine          | 215    | 255      | 170     | 190            |
| Valine             | 415    | 425      | 395     | 377            |
| Alanine            | 270    | 315      | 225     | 245            |
| Aspartate/asparagine| 215    | 250      | 170     | 196            |
| Cysteine           | 170    | 150      | 180     | 155            |
| Glutamate/glutamine| 2450   | 2180     | 2510    | 2227           |
| Glycine            | 420    | 560      | 215     | 382            |
| Proline            | 1080   | 965      | 1275    | 982            |
| Serine             | 440    | 620      | 320     | 400            |
| Tyrosine           | 220    | 235      | 195     | 200            |

1 From Rombouts et al. (2009).
The capacity of enteric pathogens to disrupt the intestinal barrier via the alteration of tight junctions in chickens has been reviewed by Awad et al. (2017). De Meyer et al. (2019) sought to identify intestinal biomarkers in a gut leakage model in broilers. Twelve candidate protein biomarkers were identified in ileal contents and ten candidates in colonic contents. Serum endotoxin and z1-1-acid glycoprotein may be potential biomarkers for gut barrier health (Chen et al., 2015). Fibronectin, intestinal alkaline phosphatase and lipocalin-2 were reported to show promise by Barekatain et al. (2020) as biomarkers in this context and are non-invasive and quantifiable in excreta by ELISA kits. Inflammatory metabolites in excreta that could be potential biomarkers nominated by Shini and Bryden (2021) include ovotransferrin, cloacal immunoglobulin A, fibronectin, intestinal alkaline phosphatase and lipocalin-2.

Ovotransferrin is an acute phase, hepatic protein in chickens (Xie et al., 2002a) and serum ovotransferrin levels in chickens have been shown to respond to experimentally induced inflammation (Xie et al., 2002b). A subsequent study by Rath et al. (2009) showed that when chickens were infected with E. coli, or Eimeria maxima and Eimeria tenella, there were significant increases in ovotransferrin serum concentrations. The researchers concluded that ovotransferrin could be used as a diagnostic marker of infection and inflammation in chickens. More recently, Goossens et al. (2018) proposed that elevated ovotransferrin levels in excreta are indicative of intestinal barrier failure in broiler chickens. In this study, faecal ovotransferrin concentrations were correlated to the severity of intestinal barrier failure induced by either Coccidiosis or Necrotic Enteritis.

The potential role of citrulline as a gastrointestinal biomarker in human medicine has attracted substantial interest (Crenn et al., 2000, 2003; Kaore and Kaore, 2014; Fragkos and Forbes, 2018). Initial research into the source and fate of circulating citrulline was completed by Windmueller and Spaeth (1981) and citrulline has been reviewed in considerable detail by Maric et al. (2021). Initial research into the source and fate of circulating citrulline was completed by Windmueller and Spaeth (1981) and citrulline has been reviewed in considerable detail by Maric et al. (2021). Citrulline is a non-proteinogenic amino acid which is released into the circulation from duodenal and jejunal enterocytes where it is synthesised de novo from glutamine derived from the gut lumen and/or the arterial blood supply to the gut mucosa (Curris et al., 2007). The kidneys take up the circulating citrulline and convert it into arginine and it is recognised that citrulline has an arginine sparing effect in poultry (Dao and Swick, 2021). Maric et al. (2021) concluded that citrulline is a suitable functional biomarker for severe intestinal disease and intestinal function in human patients. Physiological increases in citrulline were associated with improved intestinal absorption capacity and any condition associated with reduced absorptive intestinal capacities was associated with reduced citrulline levels.

In broiler chickens, citrulline was 1 of 3 candidates considered indicative of intestinal inflammation by Baxter et al. (2019) in an investigation into plasma biomarkers for intestinal integrity in a malabsorption model. Birds were offered diets based on maize, rye or maize–rye combinations where maize supported superior 20 d weight gains to rye by 81.7% (716 versus 394 g/bird); however, plasma citrulline levels in maize-based (0.09 ng/mL) and rye-based birds (6.67 ng/mL) were remarkably different. These researchers attributed the higher citrulline plasma concentrations observed to a higher epithelial turnover and an increase in villus height to compensate for poor digestibility of the rye-based diet. However, Niewold (2015) expressed reservations about the use of citrulline as a biomarker in poultry, which stemmed from work completed by Wu et al. (1995). These researchers found that glutamine was metabolised to glutamate, alanine and aspartate in chick enterocytes, but not to citrulline, arginine, proline and ornithine. The lack of citrulline synthesis from glutamine in avian enterocytes was attributed to the absence pyrroline-5-carboxylase synthase in these cells. This raises the obvious question as to the source of the elevated plasma citrulline levels in the Baxter et al. (2019) study.

Calprotectin was identified by Dal Pont et al. (2021) as a potential biomarker for chronic intestinal inflammation in poultry and calprotectin has been used for the same purpose in human subjects (Canani et al., 2008; Bjarnason, 2017). Calprotectin is a soluble protein that originates from neutrophil activation in an acute inflammatory response and calprotectin has a regulatory role in inflammatory processes. Following inflammatory damage to the intestinal mucosa, calprotectin levels increase and it is released into the intestinal lumen. Therefore, calprotectin may have potential as a non-invasive biomarker of intestinal inflammation as it is stable in faeces (Chang et al., 2014). Sfriz and Trevichavsky (2004) suggested that calprotectin plasma concentrations may be a very sensitive non-specific inflammatory marker. In the Dal Pont et al. (2021) study, broiler chickens were subject to intestinal challenges including dextran sodium sulphate (DSS) to induce intestinal inflammation and NSP derived from rice bran. At 14 d post–hatch, DSS significantly increased plasma calprotectin concentrations by 135% (39.68 versus 16.86 ng/mL) and NSP resulted in a numerical increase of 60.9% (27.13 versus 16.86 ng/mL) in calprotectin concentrations.

Thus, the quest to find an appropriate biomarker for gut integrity in poultry is complicated and may prove elusive. However, calprotectin and ovotransferrin do appear to merit further investigation as confirmation of their validity is required. Also, despite the reservations expressed, citrulline remains of interest as citrulline could be synthesised from glutamine within enterocytes. Glutamine is an important energy substrate in avian enterocytes (Watford et al., 1979; Porteous, 1980) and it may be that increased glutamine plasma concentrations are indicative of the extent of amino acid catabolism within enterocytes to generate energy for gut function. Therefore, citrulline could possibly serve as a marker for this key parameter because amino acid that are catabolised by the gut mucosa are denied entry to the portal and systemic circulations.

4. Protein content of wheat and its consequences

As mentioned, the protein content of wheat typically exceeds that of maize. As a result, there are higher concentrations of non-bound amino acids and lower concentrations of ‘intact’ soy protein in wheat-based diets than in corresponding maize-based diets pursuant to dietary CP reductions. For example, in Chryстал et al. (2021) wheat and maize contained 107 and 81 g/kg CP, respectively. The transition from 222 to 165 g/kg CP in maize-based diets resulted in an increase in non-bound amino acid inclusions from 7.2 to 38.5 g/kg and a decrease in soybean meal inclusions from 334 to 113 g/kg. In wheat-based diets the same transition resulted in corresponding increases from 7.5 to 41.6 g/kg and decreases from 300 to 48 g/kg. Thus, the CP-reduced, wheat-based diet contained 57.5% less soybean meal, and 28.3% more non-bound amino acids, than the nutritionally-equivalent maize-based diet. The different ratios of non-bound to protein-bound amino acids would not be an issue if both forms were bioequivalent, but this is probably unlikely (Selle et al., 2022). It may be argued that just the more rapid intestinal uptakes of non-bound amino acids effectively preclude bioequivalence. In broilers fed on a once daily basis, Zamani et al. (2021) found that utilisation of protein-bound methionine was better than either non-bound methionine or a methionine dipeptide, which indicates that the 3 forms of methionine were not bioequivalent in restricted fed birds. Thus, rather ironically, the relatively high protein content of wheat could be seen as a shortfall in the context of CP-reduced diets as the higher inclusion levels of...
non-bound amino acids may ultimately lead to NH₃ overload, as discussed in the next section.

Wheat and sorghum were compared as the feed grain basis of 187.5 g/kg CP diets with standard and elevated branch-chained amino acid (BCAA) levels by Greenhalgh et al. (submitted for publication). Relative to lysine (100), isoleucine was increased from 65 to 75, leucine from 105 to 150 and valine from 75 to 85. Elevated BCAA levels in sorghum-based diets significantly increased weight gain by 9.26% (1,451 versus 1,328 g/bird) and numerically improved FCR by 0.86% (1.378 versus 1.390) from 7 to 28 d post-hatch. In contrast, elevated BCAA additions to wheat-based diets significantly compromised both weight gain by 9.49% (1,288 versus 1,423 g/bird) and FCR by 8.33% (1.665 versus 1.537). There was noticeably higher non-bound BCAA inclusions in the elevated wheat-based diet than the sorghum-based diet (17.84 versus 11.09 g/kg), which may have contributed to these marked differences in growth performance in response to elevated BCAA inclusions because of a lack of bioequivalence. It is noteworthy in the Greenhalgh et al. (submitted for publication) study that wheat-based diets generated lighter relative fat-pad weights by 57.9% (5.68 versus 13.48 g/kg) than in birds offered sorghum-based diets. It is then relevant that sorghum is more similar to maize than wheat in terms of both amino acid profile, starch digestion rate and soluble NSP content.

The ratio of non-bound to protein-bound amino acids will be higher in wheat-based, CP-reduced diets than those based on maize or sorghum and this probably impacts on starch and protein digestive dynamics. The likelihood is that the higher ratios in wheat-based diets may place wheat at a disadvantage. The higher inclusions of non-bound amino acids in wheat-based diets may become a problem as their inclusions may become excessive (Liu et al., 2021b). An equilateral triangular response surface design was used by Macelline et al. (2022) to evaluate 3 wheat-based diets offered to broiler from 14 to 35 d post-hatch. Different protein sources and non-bound amino acid inclusions, which ranged from 6.75 to 19.43 and 66.84 g/kg, were incorporated into the formulations of the 3 apical diets which all had true protein concentrations of 203 g/kg. Maximum weight gain and minimal FCR were supported by the diet containing 13.41 g/kg non-bound amino acids. While not conclusive, this relatively moderate level suggests that there may be a ‘ceiling’ on non-bound amino acid inclusions in CP-reduced, wheat-based diets above which growth performance is compromised. One implication is that non-bound and protein-bound amino acids are not fully bioequivalent and that high inclusions of non-bound amino acids generate post-enteral imbalances to the detriment of broiler performance.

4.1. Consequences: ‘ammonia overload’

The higher non-bound amino acid inclusions in wheat-based, reduced-CP diets, because of wheat’s higher protein content, are probably pivotal in triggering NH₃ overload, which is more likely to be declared in birds offered wheat-based diets. Importantly, the intravenous 50% lethal dose of ammonium acetate in broiler chickens is half that of mice (2.72 versus 5.64 mmol/kg), as recorded by Wilson et al. (1968), which suggests that poultry may be more susceptible to NH₃ overload than mammalian species.

From first principles, intestinal uptakes of non-bound amino acids are more rapid than their protein-bound counterparts (Wu, 2009) and this was demonstrated in broilers offered sorghum-based diets by Liu et al. (2013). Non-bound amino acids are more likely to be subject to postprandial oxidation because of their rapid intestinal uptakes and post-enteral amino acid imbalances (Schreurs et al., 1997; Bujko et al., 2007; Nolles et al., 2009), which involves either deamination or decarboxylation. Deamination generates NH₃, which is inherently toxic (Stern and Mordziak, 2019); however, NH₃ is detoxified and ultimately NH₂—N is excreted in urine as uric acid-N. Initially, NH₃ and glutamic acid are condensed by glutamine synthetase to generate glutamine (Minet et al., 1997) and then glutamine enters the Krebs acid cycle, in which glycine is a prerequisite, and uric acid is excreted (Salway, 2018). Instructively, the need to fortify CP-reduced diets with glycine or glycine equivalents is established (Siegert and Rodehutsisrd, 2019).

Plasma NH₃ concentrations have been determined in 3 broiler studies with maize-based diets (Namroud et al., 2008; Ospina-Rojas et al., 2013, 2014) where increasing NH₃ concentrations were associated with compromised growth performance. The transition from 220 to 190 g/kg CP diets in Ospina-Rojas et al. (2014) increased plasma NH₃ concentrations from 4.56 to 7.27 mg/dL, which was associated with a depressed weight gain (781 versus 909 g/bird) and compromised FCR (1.57 versus 1.43) from 1 to 21 d post-hatch. Namroud et al. (2008) concluded that high inclusions of non-bound essential amino acids in reduced-CP diets increased plasma NH₃ concentrations, which, due to the negative effects of NH₃ on tissue metabolism, contributed to retarded growth and depressed feed intake in diets containing less than 190 g/kg CP. It was suggested in both the Greenhalgh et al. (2020b) and Chystal et al. (2021) studies that NH₃ overload contributed to the highly unsatisfactory growth performance observed. As discussed, this proposal was supported by Selle et al. (2021a) in which retrospective determinations of uric acid concentrations in excreta from the Chystal et al. (2021) study were completed. In Selle et al. (2021a) linear relationships between proportions of uric acid-N to total N in excreta in birds offered the three 165 g/kg CP diets were detected for weight gain (r = 0.587; P = 0.010), feed intake (r = 0.526; P = 0.025) and feed conversion ratios (r = 0.635; P = 0.005). It was suggested that increasing uric acid-N proportions in excreta were indicative of excessive systemic NH₃ levels compromising growth performance. The three 165 g/kg CP diets in question contained 38.5 g/kg non-bound amino acids when based on maize but 49.4 g/kg non-bound amino acids when based on either all ground wheat or diets with 150 g/kg whole wheat. It is likely that the higher non-bound amino acid inclusions in reduced-CP wheat-based triggered more deamination and higher NH₃ levels. The proportion of uric acid N of total excreta N in standard, 165 g/kg CP, ground-wheat diets was significantly higher by a factor of 1.39 (38.0% versus 27.4%) than in the corresponding maize-based diet.

Indirect support for the NH₃ overload proposal is provided in the review by Visek (1978) of the mode of action of AGP. This researcher argued that AGP suppress the generation of NH₃ in the gut lumen by microbiota and that this is fundamental to their mode of action. Thus, the identification of a biomarker that is indicative of NH₃ intoxication would be advantageous. This is because taking blood samples for accurate determinations of plasma NH₃ concentrations require special care. Blood samples should be chilled immediately they are taken, centrifuged as quickly as possible and plasma samples held at −80 °C prior to analysis, otherwise NH₃ concentrations will increase spontaneously at room temperature (Da Fonseca-Wollheim, 1990) and confound the results.

5. Starch digestive dynamics

The starch digestion rates for several feed grains are presented in Table 4 where rates in unprocessed grains were determined in vitro (Giuberti et al., 2012) or in vivo after incorporation into standard diets offered to broiler chickens (Selle et al., 2021b). As can be gleaned from Table 4, wheat starch was more rapidly digested than maize starch by 106% in vitro and by 36.0% in broilers offered
standard diets. That the digestion rate of wheat starch is more rapid than maize starch is an important distinction as there is evidence that the dietary provision of some slowly digestible starch is advantageous (Weurding et al., 2003a; Herwig et al., 2019). Moreover, starch digestive dynamics inevitably impact starch-protein digestive dynamics that are critical to broiler growth performance (Liu and Selle, 2015, 2017).

There are indications that slowly digestible starch spares amino acids from catabolism in the gut mucosa in broiler chickens (Weurding et al., 2003b; Enting et al., 2005). In rats, glucose and glutamine provide similar proportions of energy to the gut mucosa (Fleming et al., 1997); thus, the inference is that sites of glucose absorption along the small intestine impact on the catabolism of glucose relative to amino acids for energy provision. Slowly digestible maize starch may spare amino acids from catabolism in the posterior small intestine which would increase their post-enteral availability and the likelihood is that glucose is a more efficiently utilised energy source (Fleming et al., 1997). Consequently, the relatively rapid wheat starch digestion rate is probably disadvantageous in this respect.

There is the distinct possibility that glucose and amino acids compete for intestinal uptakes via their respective Na+-dependent transport systems. In maize-based, CP-reduced diets with high starch levels, Moss et al. (2018) detected numerous negative relationships between apparent digestibility coefficients of glucose and amino acids along the small intestine. For example, starch digestibility coefficients were negatively correlated with digestibility coefficients of twelve amino acids to significant extents in the proximal ileum. In this study it was also suggested that non-bound amino acids may be less prone to undergo catabolism in the gut mucosa. The extent to which the findings of the Moss et al. (2018) study apply to CP-reduced broiler diets with more typical starch concentrations is problematic.

Curiously, wheat enjoys an advantage over maize in the context of CP-reduced diets in that it generates less fat deposition, as is evident in Table 1. For example, the transition from 210 to 165 g/kg CP in maize-based diets prompted an increase of 69.2% (14.62 versus 8.64 g/kg) in relative abdominal fat-pad weights in Crystal et al. (2020b), which were quadratically \( r = 0.606; P = 0.003 \) associated with compromised FCR. The likelihood is that slowly digestible maize starch increases fat deposition via de novo lipogenesis to greater extents than rapidly digestible wheat starch. Essentially, starch is digested in the gut lumen and absorbed as glucose. The metabolic disposal of glucose involves direct oxidation, glycogen synthesis and hepatic de novo lipogenesis (Jequier, 1994). Glucose can be stored as glycogen but carbohydrate overfeeding in humans has been shown to trigger de novo lipogenesis once glycogen stores in liver and skeletal muscle have been saturated (Acheson et al., 1988). In hepatic de novo lipogenesis glucose is catabolised to acetyl-CoA which is converted into fatty acids and cholesterol. Cholesterol and triacylglycerol are incorporated into very low-density lipoproteins and transported to adipose via the circulation (Wang et al., 2017). Thus, excess carbohydrate is converted into fatty acids that are then esterified to storage triacylglycerols (Ameer et al., 2014). It seems possible that the more sustained glucose and insulin blood levels generated by maize-based diets is promoting more de novo lipogenesis than in birds offered wheat-based diets containing more rapidly digestible starch. Glucose derived from rapidly digestible starch may be directly catabolised for energy provision; whereas, glucose from slowly digestible starch is being converted to glycogen and then fat via de novo lipogenesis to greater extents. However, any consideration of starch digestive dynamics is frustrated by an imperfect comprehension of the starch–glucose–insulin axis in poultry relative to mammalian species (Tesseraud et al., 2007).

### 6. Conclusions

The successful development of CP-reduced diets is a tangible challenge, which is only complicated by the selection of the feed grain on which these diets are based. There is certainly a real need to identify the shortfalls of wheat in the context of CP-reduced diets for countries in which wheat is the dominant feed grain. However, a substantial research effort is clearly required if this objective is to be realised. It appears that the presence of soluble NSP, even with NSP-degrading enzyme inclusions, wheat ATI and gluten may all constitute shortfalls by compromising gut integrity in wheat-based, CP-reduced diets. There is also the possibility wheat ATI may increase endogenous flows of amino acids and compromise starch and protein digestibility. The recognition of viable biomarkers to monitor gut integrity would be ideal and calprotectin, ovo-transferrin and citrulline appear to be among the candidates that merit further investigations. Relatively high non-bound amino acid inclusions in CP-reduced, wheat-based diets appear to be another shortfall as, in worse case scenarios, they may trigger NH₃ overload, thereby compromising broiler growth performance. Therefore, alternatives to non-bound amino acids to meet amino acid requirements in birds offered CP-reduced, wheat-based diets merit evaluation and such alternatives include protein isolates or concentrates and oligopeptides. Carnosine, a histidine–alanine dipeptide, is one example of an oligopeptide that deserves evaluation. One advantage reduced-CP, wheat-based diets hold is that they generate less fat deposition than corresponding diets based on maize and sorghum. Consequently, it may prove fruitful to evaluate CP-reduced diets based on maize-wheat and/or sorghum–wheat blends.

### Author contributions

All co-authors contributed to the compilation of this review and were involved in generating the research on which this review is based.

### Declaration of competing interest

We declare that we have no financial and personal relationships with other people or organizations that can appropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

---

**Table 4**

| Feed grain | In vitro¹ | In vivo² |
|------------|-----------|---------|
|            | Digestion rate | Number of samples | Digestion rate | Number of samples |
| Maize      | 0.017      | 14       | 0.086      | 2          |
| Barley     | 0.024      | 14       | 0.104      | 3          |
| Wheat      | 0.035      | 12       | 0.117      | 4          |
| Triticale  | 0.036      | 11       | 0.093      | 2          |
| Sorghum    | 0.018      | 11       | 0.075      | 7          |

¹ From Giuberti et al. (2012); ² From Selle et al. (2021b).
Acknowledgements

This review did not receive and direct financial support. Nevertheless, the authors wish to acknowledge the support and encouragement received from the, AgriFutures Australia Chicken Meat and Evonik Operations GmbH over several years.

References

Acheson KJ, Schutz Y, Besser T, Anantharaman K, Flat JP, Jéquier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Gastroenterology 1988;94:1218–24.

Adedokun SA, Olojede OC. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Front Vet Sci 2019;5:348.

Afshar M, Moslehi H. Investigation in the effect of using wheat gluten meal on broiler performance. In: XII European poultry conference. Verona, Italy: WPSA; 2006.

Ameer F, Scandizzi L, Hainain S, Kalbacher K, Zaidi H. De novo lipogenesis in health and disease. Metabolism. 2014;63:895–902.

Awad WA, Hess C, Hess M. Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 2017;9:60.

Bach Knudsen KE. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 1997;67:319–38.

Banerjee A. Biomarkers in toxicology. In: Gupta RC, editor. Biomarkers in toxicology. Elsevier Inc; 2014. p. 269–77.

Baretkas R, Howarth GS, Wilson N-L, Cadogan D, Wilkinson S. Excercita biomarkers in presence of dietary defense barrier dysfunction models and probiotic supplementation in broiler chickens. PLoS One 2015;10:e0237505.

Baxter MFA, Latorre JD, Dridi S, Merino-Guzman R, Hernandez-Velasco X, Harigs BM, Tellez-Itzas G. Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front Vet Sci 2019;6:144.

Bjarnason I. The use of fecal calprotectin in inflammatory bowel disease. Gastroenterol 2003;124:1210–14.

Chang MH, Chou JW, Chen SM, Tsai MC, Sun YS, Lin CC, Lin CP. Faecal calprotectin as a novel biomarker for differentiating between in inflammatory bowel disease and Crohn’s disease in elderly patients. J Gastroenterol Hepatol 2017;32:13–6.

Boe U, Juhasz A, Broadbent JA, Byrne K, Howitt CA, Colgrieve ML. Identification and quantification of amylase trypsin inhibitors across cultivars representing the diversity of bread wheat. J Proteome Res 2020;19:2136–48.

Bujko J, Schreurs VVAM, Nolles JA, Verreijen AM, Koopmanschap RE, Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B. Postabsorptive plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterol 2003;124:1210–9.
guar gum: characterization using principal component analysis and viscous synergism index. Int J Food Prop 2014;17:1655–67.

Kuentz S, Unternehr S, Kraf D, Kors G, Martin D, Damme K, et al. Effects of gradual differences in triphasic inhibitor activity on the estimation of digestible amino acids in soybean expellers for broiler chickens. Poultry Sci 2022;101:101740.

Lauderdale V, Dambrasevicius A, Normanno G, Khan RJ, Nas S, Rowghani E, Tufarelli V. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol Res 2012;5:88–92.

Liu SY, Selle PH, Composto RJ, van Eijden AJ. Protease supplementation of sorghum-based broiler diets enhances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion. Anim Feed Sci Technol 2013;183:75–85.

Liu SY, Selle PH. A consideration of starch and protein digestive dynamics in chicken-meat production. World's Poultry Sci J 2015;71:297–310.

Liu SY, Selle PH, Starch and protein digestive dynamics in low-protein diets supplemented with crystalline amino acids. Anim Prod Sci 2017;57:2250–6.

Liu SY, Macelline SP, Chrystal PV, Selle PH, Liu SY. The impact of digestive dynamics on the bioavailability of amino acids in broiler chickens. Front Bioi Sci 2022;7:227–12.

Shini S, Bryden WL. Probiotics and gut health: linking gut homeostasis and poultry productivity. Anim Prod Sci 2021, https://doi.org/10.1071/AN20701.

Siegert W, Rodehutscord M. The relevance of glycine and serine in poultry nutrition: a review. Br Poultry Sci 2019;60:59–79.

Stern RA, Mozdiak PE. Differential amino acid metabolism and toxicity between avian and mammalian species, and effect of amino acid on skeletal muscle: a comparative review. J Anim Physiol Anim Nutr 2019;103:774–85.

Stoil T, Trebuchovsky I, Lavecchia C, Sichel H. Amino acid and protein in dietary responses in acute and chronic inflammation. Physiol Rev 2004;53:245–53.

Teirlynck E, Guisset MDE, Dewulf J, Haeberg K, Van Immerzeel F. Postprandial metabolism of “dysbacteriosis” in broilers. Avian Pathol 2011;40:139–44.

Tessaroad S, Metayer D, Duchene S, Bigot K, Grizard J, Dupont J. Regulation of protein metabolism by insulin: value of different approaches and animal models. Domest Anim Endocrinol 2007;33:123–42.

Vahjen W, Glaeser K, Schafers K, Simon O. Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J Agric Sci 1998;130:489–500.

van Der Boogt A, Goesed H, Veraverbeke WS, Delcopar JA. Fractionation of wheat and wheat four into starch and gluten: overview of the main processes and the factors involved. J Cereal Sci 2005;41:221–37.

van Krimpen MM, Toki M, Schokker D. Effects of eye inclusion in grower diets on nutrient intake and body composition-related parameters and performance in broilers. Poultry Sci 2017;96:3324–37.

Visek WJ. The mode of growth promotion by antibiotics. J Anim Sci 1978;46:1447–69.

Wagner DD, Thomas P. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poultry Sci 1977;57:971–5.

Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: a review. Poultry Sci 2017;96:3687–99.

Watford M, Lund P, Krebs KA. Isolation and protein characteristics of rat and chick enterocytes. Biochim Biophys Acta 1979;178:589–96.

Weurding RE, Eting H, Verstegen MWA. The effect of site of starch digestion on performance of broiler chickens. Anim Feed Sci Technol 2003a;110:175–84.

Weurding RE, Eting H, Verstegen MWA. The relation between starch digestion rate and amino acid level in broiler chicken. Animal Sci 1998;29:279–86.

Wilson R, Muhirr B, Mboofand R. Comparative amino acid toxicity. Comp Biochem Physiol 1968;25:295–301.

Windmueller HG, Spero AE. Source and fate of circulating citrulline. Am J Physiol 1998;275:C187–89.

Wu G, Flynn NE, Yan W, Barstow D. Glutamine metabolism in chick enterocytes: absence of pyrroline-5-carboxylate synthase and citrulline synthase. Biochem J 1995;306:717–21.

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009;37:1–17.

Xie H, Newberry L, Clark KD, Huff WE, Huff GR, Balog JM, Rath NC. Changes in serum cytokinin levels in chickens with experimentally induced inflammation and diseases. Avian Dis 2002b;46:122–31.

Yegani M, Korver DR. Factors affecting intestinal health in poultry. Poultry Sci 2011;90:67–73.

Zamani M, Karimi M, Ghaziyan F. Comparison of absorption kinetics and utilisation of DL-methionine (DL-Met), Met-Met product (AjuVial®-Met Met), and protein-bound methionine (PB-Met) by female broiler chickens. Br Poultry Sci 2011;52:379–84.

Zamani M, Zaghari M, Khazani M. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol Res 2012;5:88–92.

Zamani M, Zaghari M, Ghaziani F. Comparison of absorption kinetics and utilisation of DL-methionine (DL-Met), Met-Met product (AjuVial®-Met Met), and protein-bound methionine (PB-Met) by female broiler chickens. Br Poultry Sci 2011;52:379–84.

Zevallos RV, Vaker R, Tenzer S, Jimenez-Calvente A, Ashfaq K-M, Rüssel N, Pickert G, Schild H, Steinhkink K, Schuppan D. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 2017;152:1100–13.