A potential role of salicylic acid in the evolutionary behavior of *Trichoderma* as a plant pathogen: from *Marchantia polymorpha* to *Arabidopsis thaliana*

Jorge Poveda1 · Patricia Abril-Urías2 · Julia Muñoz-Acero3 · Carlos Nicolás3

Received: 14 June 2022 / Accepted: 17 November 2022 / Published online: 28 November 2022
© The Author(s) 2022

Abstract

Main conclusion Recognition of the interaction of *Trichoderma* during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship.

Abstract *Marchantia polymorpha* is a common liverwort considered in recent years as a model plant for evolutionary studies on plant–microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of *M. polymorpha* with different species of the fungal genus *Trichoderma*. These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte *Dryopteris affinis* and the angiosperm *Arabidopsis thaliana*, as subsequent steps in plant evolution, together with the plant pathogen *Rhizoctonia solani* as a control of plant pathogenicity. *Trichoderma virens, T. brevicaulis* and *T. hamatum* are pathogens of *M. polymorpha*, while exudates of *T. asperellum* are harmful to the plant. The analysis of the expression of several defense genes in *M. polymorpha* and *A. thaliana* showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of *M. polymorpha* to *Trichoderma*. Moreover, exogenous SA provides resistance to the virulent *Trichoderma* species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.

Keywords *Arabidopsis* · *Dryopteris affinis* · Evolution · *Marchantia polymorpha* · Plant defense pathways · Plant–fungi interaction

Abbreviations

COI1 Coronatine-insensitive 1
dpi Days post-inoculation
GMB Gamborg B5 medium
ICS Isochorismate synthase
JA Jasmonic acid
LOX1 Lipoxygenase 1
SA Salicylic acid

Introduction

Marchantia polymorpha represents the most widely distributed common liverwort in temperate regions. Taxonomically, it belongs to the Marchantiales subclass, including
most of the 400 species, and in turn belongs to the Marchantiopsida class, the Marchantiophyta division and the Bryophyta sensu lato superdivision (Shimamura 2015). For almost 200 years, this species has been used as a model organism for the study of physiological and morphological changes in response to environmental factors. However, it is currently becoming increasingly important as a model plant (Shimamura 2015; Bowman 2016) due to its short life cycle (3–4 weeks from a spore to a mature thallus), ease of propagation and crossing, high frequency of transformation, haploidy and small genome size (approximately 280 Mb), low genetic redundancy and susceptibility to Agrobacterium-mediated transformation (Solly et al. 2017).

Marchantia polymorpha can also be used as a model plant to study the events that occurred during the transition from aquatic to terrestrial life, contributing to the understanding of the genetic bases of the evolutionary and developmental biology of land plants (Bowman et al. 2017). And, more recently, research has been conducted on this species as part of a new and interesting scientific area focused on the evolutionary interactions of molecular plant microbes (EvoMPMI) (Betxuyaku 2020). Although M. polymorpha has proven quite useful, few studies have been conducted on plant–fungi interactions involving M. polymorpha. Therefore, the use of this species as a model plant to study molecular plant pathology and plant–microorganism interactions, in the new scientific area of EvoMPMI, is gaining ground (Poveda 2020a).

Trichoderma is a genus of filamentous fungi that includes several widely studied species, some of which have been used as biological control agents due to their easy adaptation to diverse climatic and edaphic conditions and their different mechanisms of action. Trichoderma can protect the plant against different pathogens through mechanisms such as mycoparasitism (Guzmán–Guzmán et al. 2019), antibiotics (Estrada-Rivera et al. 2020) and competition with the pathogen for space, specific sites of infection and growth factors (Vinale et al. 2008). Likewise, the establishment of a Trichoderma-plant symbiotic relationship provides a series of indirect benefits such as the promotion of plant growth (Benítez et al. 2004; Contreras-Cornejo et al. 2018), increased tolerance against abiotic (Kashyap et al. 2017; Poveda 2020b) and biotic stresses caused by fungal pathogens (Poveda 2021a), nematodes (Poveda et al. 2020) and even insects (Poveda 2021b). For this symbiotic relationship to take place, Trichoderma has to establish a complex molecular dialogue with its host plant (Hermosa et al. 2012). Trichoderma acts as a symbiont capable of colonizing the roots, but without reaching the vascular bundle, limiting itself only to the outermost layers (Alonso-Ramírez et al. 2014). A comparative analysis of the genomes of several Trichoderma species has shown that mycoparasitism was the ancestral way of life for this genus. The subsequent colonization of the rhizosphere was probably due to the presence of pathogens in the soil and plant exudates (Kubicek et al. 2011, 2019).

The main goal of this work was to study the effect of different Trichoderma species on direct and indirect interaction with M. polymorpha; to determine the plant defense responses involved in this interaction, to check the similarities with more evolved vascular plants such as pteridophytes and angiosperms, and to increase our knowledge about the evolutionary development of plant defense responses against Trichoderma.

Materials and methods

Plants and fungi used

Marchantia polymorpha Tak-1 (subsp. ruderalis) was kindly provided by Dr. Isabel Monte from the laboratory of Dr. Roberto Solano (National Center for Biotechnology-CSIC, Madrid, Spain). The pteridophyte Dryopteris affinis sp. affinis was kindly provided by Dr. Elena María Fernández González (Area of Plant Physiology, University of Oviedo). Plants were continuously maintained in active asexual growth in Gamborg B5 (GMB) (Duchefa, Haarlem, The Netherlands) solid medium (agar 1%) in a growth chamber at 22 °C, 40% relative humidity (RH) and a 16 h light/8 h dark photoperiod at 80–100 µmol photons m⁻² s⁻¹. Arabidopsis thaliana Columbia ecotype (Col-0) was obtained from the Arabidopsis collection Information Service (AIS), which is integrated within the European collection of the Nottingham Arabidopsis Stock Center (NASC).

Different species of the genus Trichoderma were used in this study, kindly provided by the Recognized Research Group (GIR) “Plant Pathology and Biological Control” of the Institute for Agrobiotechnology Research (CIALE), University of Salamanca. T. parareesei (named as T6), T. atroviride (named as T11), T. asperellum (named as T25), T. harzianum (named as T34), T. koningii (named as T77), T. virens (named as T87), T. brevicompactum (named as T120) and T. hamatum (named as T123) were the species used in this work. Furthermore, the fungus R. solani, anastomosis group 8 (AG8), was used as a broad host range pathogen, which was gifted by the Regional Diagnostic Center of the Regional Government of Castile and Leon (Salamanca, Spain). All fungi were grown on potato dextrose agar (PDA) medium (Sigma-Aldrich, St. Louis, MO, USA).

Direct interaction in vitro

Fragments of approximately 1 cm² of M. polymorpha thalli were placed inside Petri dishes containing GMB medium, with a total of 6 plants placed along the entire edge of each plate. After 3 weeks of growth in a culture chamber, under...
the conditions previously described, each Petri dish was inoculated with one of the fungal species used in the study by placing one agar cylinder loaded with mycelium from 2-week-old PDA dishes in the center of each plate. All plants and fungi were kept in a growth chamber for a total of 9 days.

For the *A. thaliana* assay, seeds were surface-sterilized by vigorous sequential shaking in 70% ethanol and 1% Triton X-100 solutions for 20 min each, followed by washes in 2.5% sodium hypochlorite and 0.005% Triton X-100 solutions for 10 min each. The seeds were then plated on Petri dishes containing GMB solid medium and kept in a growth chamber for 2 weeks.

Four seedlings of *A. thaliana* and *D. affinis* were transferred to Phytatray I boxes (Sigma) containing 40 mL of GMB solid medium. The boxes were kept in a growth chamber for 1 week in the case of *A. thaliana* and for 2 months in the case of *D. affinis*. These species were inoculated with the different fungal strains as previously indicated for *M. polymorpha*. The plants and fungi were again kept in a growth chamber for 7 days. All assays were maintained until *Trichoderma* completely colonized the entire surface of the culture medium, 9 days in the case of *M. polymorpha* and 7 days in the case of *A. thaliana* and *D. affinis*.

Direct interaction on a growing substrate

For *M. polymorpha*, *D. affinis* and *A. thaliana*, Phytatray II boxes (Sigma) containing 100 mL of peat and vermiculite (1:3), 15 mL of sterile water and 3 mL of liquid GMB were used, following the AtCube system method (Poveda 2022a). Fragments of approximately 1 cm² of *M. polymorpha* thalli and seedlings from *A. thaliana* and *D. affinis* were placed inside Phytatray II boxes. Six plants per box were analyzed and placed in a growth chamber for 3 weeks (*M. polymorpha*), 8 weeks (*D. affinis*) or 1 week (*A. thaliana*), at 22 °C, 40% relative humidity (RH) and a 16 h light/8 h dark photoperiod at 80–100 µmol photons m⁻² s⁻¹.

Fungal inoculation was carried out in the same way for all experimental assays, following the method described by Poveda (2021c). *Trichoderma* spores were harvested from 2-week-old PDA dishes and each plant was inoculated with 1 mL of a conidial suspension containing 2 × 10⁷ spore mL⁻¹.

For *R. solani*, all mycelium present on a 2-week-old PDA dish was collected, crushed and diluted to an absorbance of 0.17 mL⁻¹ at 520 nm and applied to each plant. The plants and fungi were again kept in a growth chamber for 30 days (*M. polymorpha*) or 10 days (*D. affinis* and *A. thaliana*).

Indirect interaction through fungal exudates

To evaluate the impact of fungal exudates on *M. polymorpha*, two types of 30-mL liquid cultures were prepared: GMB and GMB + 0.3% (w/v) of *M. polymorpha* tissue (previously lyophilized and ground in a Falcon tube). To each tube, either a 1 mL of a spore solution, diluted to a 2 × 10⁷ mL⁻¹ in the case of *Trichoderma* or a homogeneous suspension of *R. solani* mycelium with 0.17 absorbance at 520 nm was added. The 0.3% (w/v) *M. polymorpha*-medium was prepared to check for the production of fungal metabolites only in the presence of plant tissues. All tubes were maintained at 28 °C and 200 rpm for 48 h. The tubes were then centrifuged and the medium was harvested by filtration through a sterile 0.22 µm filter. Fragments of approximately 1 cm² of *M. polymorpha* thalli were placed in Petri dishes containing GMB and 1 mL of the fungal filtrate. Seven plants per dish were used and placed in a growth chamber for 2 weeks. This method was initially developed using tomato callus and fungal filtrates from the pathogenic fungus *Leptosphaeria maculans* and has proven to be effective for carrying out in vitro studies (Poveda 2022b).

Indirect interaction by volatiles

For the analysis of the effect of *Trichoderma* spp. and *R. solani* volatile compounds on *M. polymorpha*, four open 55 cm Ø Petri dishes were placed into a 150 cm Ø Petri dish. Two of the plates, containing PDA medium, were inoculated with either *Trichoderma* spp. or *R. solani* by placing a circle of agar from previous cultures. In the remaining two plates, containing GMB medium, three fragments of *M. polymorpha* were seeded. This 150 cm Ø Petri dish was placed in a growth chamber for 2 weeks.

Plant growth analysis

The quantification of the plant biomass of *M. polymorpha* was carried out using the different pictures taken at the end of each assay, following the method described by Poveda (2020c). The plants were photographed inside Phytatray II boxes or in the Petri dishes and the images obtained were analyzed by quantifying the percentage of existing plants using the MulticolorEngine software (TinEye, Toronto, Ontario, Canada) (https://labs.tineye.com/color/). In this way, we quantified each plant according to the space it occupied within a 2D plane. The same method was used for *D. affinis* and *A. thaliana*.

Vitality test

A vitality test was carried out as described by Poveda (2020c). One plant from a *M. polymorpha-Trichoderma* direct interaction assay was collected per Petri dish (8 plants per condition and repetition). Due to the activity of the mitochondrial respiratory chain of living plant cells, the reduction of triphenyltetrazolium chloride (TTC) to the red-colored insoluble triphenylformazan (TF) occurs (Ruf
and Brunner 2003). Therefore, only living cells can reduce TTC to TF. In total, 100 mg of fresh tissue were transferred to 1 mL of 1% TTC in triplicate and incubated for 48 h at 37 °C. After incubation, 200 mg of Ballotini Glass Balls (100 mg with a diameter of 0.15–0.25 mm and 100 mg with a diameter of 1 mm) were added to each sample in 1.5 mL Eppendorf tubes, which were shook vigorously using a 20-s pulse in a Silamat S6 (Ivoclar Vivadent, Madrid, Spain). After centrifuging the samples for 15 min at 16,770 g, each supernatant was removed and 1 mL of isopropanol was added per tube. Subsequently, the samples were shaken again in a Silamat and centrifuged. The absorbance of each supernatant at 620 nm was quantified, being an indirect measurement of the vitality of M. polymorpha tissue.

Analysis of Trichoderma colonization

For the molecular analysis of colonization, one plant was collected per Petri dish (8 per condition and repetition) from the M. polymorpha–Trichoderma in vitro direct interaction. Each plant was superficially washed with sterile water and immediately frozen in liquid nitrogen and ground with a mortar and pestle. The quantification of Trichoderma DNA in M. polymorpha tissue was performed by qPCR as previously described by Poveda et al. (2019a), with some modifications. DNA was extracted from the tissues using a cetyl-trimethyl-ammonium bromide (CTAB) extraction method, as reported previously (Dellaporta et al. 1983). A mix was prepared in a 10 μL volume using 5 μL of Brilliant SYBR Green QPCR Master Mix (Roche, Penzberg, Germany), 10 ng of DNA, the forward and reverse primers at a final concentration of 100 nM and nuclease-free PCR-grade water to adjust the final volume. The actin gene of Trichoderma and the Elongation Factor 1 (EF1) gene of M. polymorpha were used; their corresponding primer pairs are indicated in Table 1. Amplifications were performed in an ABI PRISM 7000 Sequence Detection System (Applied Biosystems, Foster City, CA, USA) programmed for 40 cycles under the following conditions: denaturation, 95 °C for 15 s; annealing, 60 °C for 1 min; extension, 72 °C for 1 min. Each PCR was performed in triplicate by using the DNA extracted from 3 pools of tissue collected from 8 plants per condition. Cycle threshold (Ct) values served to calculate the amount of fungal DNA using standard curves. The values obtained for Trichoderma DNA were referred to the amount of M. polymorpha DNA.

Gene expression studies

The analysis of the expression of defense-related genes in M. polymorpha tissue and A. thaliana roots was carried out by RT-qPCR, using the methodology described by Poveda

Table 1 Primers used in this work

Code	Sequence (5′–3′)	Use	References
T-Act-F	ATGGTATGGGTTCAGAAGGA	Actin to Trichoderma quantification	Poveda (2021c)
T-Act-R	ATGTCAACACGAGCAATGG		
Mp-ICS-F	GACTATGAGAGGTCTTTTCTCC	Synthesis gene of SA in M. polymorpha	Gimenez-Ibanez et al. (2019)
Mp-ICS-R	GCTACATTTACTGCAAGTGGG		
Mp-PR1-F	TAACAACTTCAGTCAGAAGACC	Response gene of SA in M. polymorpha	Gimenez-Ibanez et al. (2019)
Mp-PR1-R	CTCCAGACACCTGAGTGAAG		
Mp-LOX1-F	GGCATATGGATTTACACACAGCGAG	Synthesis gene of JA in M. polymorpha	Kanamoto et al. (2012)
Mp-LOX1-R	CCGATCTCTAGATGGAAATGCTCAAG		
Mp-COI1-F	AGGACAGAAGGCACACTGAGTTTC	Response gene of JA in M. polymorpha	Monte et al. (2018)
Mp-COI1-R	CTGTCTCTGCAGAACGCTCATGC		
At-ACT-F	CTTCGCCGATAGTATGTGGGCC	Endogenous A. thaliana gene	Poveda et al. (2019b)
At-ACT-R	TTGGGACTATGGTGAGACAC		
At-ICS1-F	GATCTGAGCTAAGCAGAAGG	Synthesis gene of SA in A. thaliana	Poveda et al. (2019b)
At-ICS1-R	CATTAAACTCAACGCTGAGG		
At-PR1-F	GGCTAACTACACACTGCTG	Response gene to SA in A. thaliana	Poveda et al. (2019b)
At-PR1-R	GCCCTCTGCTACATAACCTT		
At-LOX1-F	GTAAGCTCTGATGTATGATTC	Synthesis gene of JA in A. thaliana	Poveda et al. (2019b)
At-LOX1-R	CTGGGGTACAGCAGTGATGGTC		
At-VSP2-F	GTAGGGGACCGGACCATCAA	Response gene to JA in A. thaliana	Poveda et al. (2019b)
At-VSP2-R	TCAATCCCAGGCTCTATGAGTGT		
Exogenous application of salicylic acid

To determine the effect of exogenous application of SA on M. polymorpha- Trichoderma interaction, the in vitro direct interaction was carried out again by irrigating each plant-thalli superficially with 20 µL of 0.25 mM SA (Sigma-Aldrich) immediately before fungal inoculation.

Statistical analysis

The statistical analysis of the data was carried out using the Statistix 8.0 software. One-way ANOVA using Tukey’s multiple range test at $P < 0.05$ was used for pairwise comparisons; the different letters indicate the significant differences.

Results

Trichoderma-plant direct interaction in vitro

Trichoderma species T25, T87, T120 and T123 produced symptoms of plant damage 9 days post-inoculation (dpi) in the in vitro M. polymorpha- Trichoderma interaction assay (Fig. 1), a result that was not observed with the rest of Trichoderma species or with the plant pathogen R. solani (Fig. 1a, b, d and e). By contrast, the application of T11 and T77 seemed to have a positive effect on M. polymorpha growth (Fig. 1a). Through the quantification of plant growth in a 2D plane, the application of T25, T87, T120 and T123 lead to a significant reduction in plant biomass, compared to the non-inoculated plants, which was even more significant after the application of T123. Furthermore, inoculations using T11 and T77 induced a significant increase in M. polymorpha biomass (Fig. 1c).

Regarding the vitality of M. polymorpha tissue (Fig. 1d), the application of T25 and T120 significantly reduced the vitality of M. polymorpha tissue compared to the non-inoculated plants; this reduction was even more significant after the application of T25 and T123 (Fig. 1d).

Conversely, in the in vitro D. affinis–Trichoderma interaction (Fig. 2a, b) assay, the application of different Trichoderma species did not cause symptoms of damage to the pteridophyte, which were observed after inoculation with R. solani (Fig. 2a). These symptoms were accompanied by a significant decrease in plant biomass after R. solani inoculation compared to the non-inoculated plants, while a significant increase in plant biomass was observed after the application of T34 and T120.

The inoculation of R. solani resulted in disease symptoms in A. thaliana plants, while no disease symptoms were observed after inoculation with different Trichoderma species (Fig. 2c). These results were consistent with the significant reduction in the biomass of A. thaliana plants provoked by R. solani and its significant increase after T6, T34 and T77 inoculation (Fig. 2d).

The quantification of Trichoderma colonization in M. polymorpha tissue showed that the best colonizers were T87, T120 and T123 (Table 2).
Trichoderma–plant direct interaction on a growing substrate

No harmful effects were observed in *M. polymorpha* after *R. solani* inoculation or after inoculation with T6, T11, T25, T34 and T77 (Fig. 3a). On the contrary, T87, T120 and T123 inoculation produced disease symptoms in *M. polymorpha*. These results were accompanied by a significant decrease in *M. polymorpha* growth compared to non-inoculated plants or those inoculated with the other fungal strains (Fig. 3b).

The inoculation of *Trichoderma* species did not result in disease symptoms in the case of the pteridophyte *D. affinis*. Moreover, the application of T34 and T120 had a beneficial effect on growth promotion, whereas *R. solani* inoculation was clearly detrimental to *D. affinis* (Fig. 4a, b).

In the case of *A. thaliana*, *Trichoderma* inoculation did not seem to have a negative effect, whereas disease symptoms were observed after *R. solani* challenge (Fig. 4c). The quantification of plant biomass confirmed the negative effect of *R. solani* on *Arabidopsis* plants, as well as the beneficial effects on plant growth of different *Trichoderma* species, such as T6, T34 and T77 (Fig. 4d).

Fig. 1 *Trichoderma–M. polymorpha* interaction on in vitro culture. Photographs of Petri dishes (a) and individual details of plants (b) were taken 9 at dpi, and plant biomass analyzed by visual quantity of the plant (c) of *M. polymorpha* without fungi (C) and inoculated with *T. parareesei* (T6), *T. atroviride* (T11), *T. asperellum* (T25), *T. harzianum* (T34), *T. koningii* (T77), *T. virens* (T87), *T. brevicompactum* (T120), *T. hamatum* (T123) and *R. solani* (Rs). Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, eight dishes were used. In tissue vitality by the triphenyltetrazolium chloride (TTC) test (d) in tissues of *M. polymorpha*, the absorbance at 620 nm (TTC test) was analyzed. Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, tissues from eight plants were used. One-way analysis of variance (ANOVA) was performed, followed by the Tukey’s test. Different letters represent significant differences ($P<0.05$).
Defense-gene expression

The expression of SA-related genes, such as ICS related to SA-biosynthesis and PR-1, related to SA-action, increased significantly in M. polymorpha plants inoculated with T6, T11, T25, T34 and T77, both at 10 and 30 dpi. By contrast, no changes were observed in the expression of JA-related genes (LOX1, involved in JA-biosynthesis and COI1, involved in JA-action) compared with the non-inoculated plants. In addition, a significant decrease in SA-related genes and a significant increase in JA-related genes were detected after inoculation with T87, T120 and T123, as well as in the case of the pathogenic fungi R. solani (Fig. 5).

In the case of A. thaliana, Trichoderma-root inoculation produced a significant increase in SA-related genes and a significant decrease in the expression levels of JA-related genes. Moreover, root infection with R. solani provoked a significant decrease in the expression of SA-related genes and a significant increase in the expression of JA-related genes (Fig. 6).

Trichoderma–M. polymorpha indirect interaction

The application of fungal exudates did not lead to the appearance of disease symptoms in any of the treatments (Fig. 7a, b). However, the analysis of plant biomass showed that the application of exudates from T25 significantly reduced the growth of M. polymorpha compared with plants without exudate application. In the case of the application of (T123) and R. solani (Rs). Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, five boxes were used. One-way analysis of variance (ANOVA) was performed, followed by the Tukey’s test. Different letters represent significant differences (P < 0.05).
exudates from T11 and T77, a significant increase in plant growth was observed (Fig. 7c).

The application of fungal volatiles from different Trichoderma strains and R. solani did not produce disease symptoms in M. polymorpha. However, a significant decrease in plant growth was observed in M. polymorpha in contact with R. solani volatiles, compared to the untreated plants (Fig. 8b).

SA exogenous application

After SA exogenous application in M. polymorpha plants, non-inoculated or inoculated with the different fungi, disease symptoms were only observed in plants inoculated with R. solani (Fig. 9a). This result was consistent with plant biomass quantification. The inoculation with R. solani was the only fungal treatment that resulted in a reduction in plant growth, compared with the non-inoculated plants (Fig. 9b).

Discussion

Currently, there are only a few examples of microorganisms pathogenic to M. polymorpha, which makes this species rather interesting from the perspective of its use as a model plant in evolutionary interactions of molecular plant microbes (EvoMPMI) (Poveda 2020a). Several studies have been performed regarding the interaction of beneficial fungi, such as arbuscular mycorrhizal fungi, but not for M. polymorpha (Ligrone et al. 2007). Moreover, even possible adverse effects have not been reported (Poveda 2020c). The analysis of the endophytic fungal diversity from different samples of M. polymorpha revealed the presence of aggressive plant pathogens, such as Colletotrichum truncatum, which appear to have no harmful or beneficial effects to M. polymorpha (Nelson et al. 2018).

Trichoderma is a well-known genus of filamentous fungi beneficial to vascular plants, which has been widely used in agriculture (Ghazanfar et al. 2018; Mendoza-Mendoza et al. 2018). However, in this work, several species, such as T. virens, T. brevicolpactum and T. hamatum, were tested for their potential to act as liverwort pathogens in direct interaction, since these species have been described as being parasitic on plant pathogenic fungi, as plant growth promoters, as activators of systemic plant resistance and capable of enhancing tolerance to abiotic stresses (Studholme et al. 2013; Trushina et al. 2013; Babu et al. 2014; Jogaiah et al. 2018; Mahesh et al. 2018; Racić et al. 2018). Other species such as T. atroviride and T. koningii have been found to have beneficial effects on M. polymorpha growth, being similar to those described for vascular plants including tomato (Macías-Rodríguez et al. 2018), rapeseed (Maag et al. 2014), radiate pine (Regliński et al. 2012) and rice (Lauinio et al. 2020).

As expected, most of the Trichoderma species tested have a positive effect on A. thaliana, as previously described for other plant species such as tomato (Rubio et al. 2014), rapeseed (Poveda et al. 2019b), maize (Vargas et al. 2009), as well as A. thaliana (Poveda et al. 2019b). The absence of a positive effect caused by the other Trichoderma species applied may result from the fact that the biostimulant effect depends on the species assayed, the amount of inoculum

Trichoderma species	Plant Ct	SD	Qty	Fungi Ct	SD	Qty	Ratio
T6	19.38	0.08	2.35	23.07	0.12	0.42	0.18±0.04
T11	18.72	0.13	2.98	22.61	0.25	1.01	0.34±0.01
T25	19.63	0.02	2.11	23.07	0.18	0.42	0.20±0.03
T34	19.17	0.19	2.55	23.08	0.14	0.41	0.16±0.06
T77	19.37	0.12	2.36	22.72	0.22	0.87	0.37±0.05
T87	19.32	0.04	2.41	21.84	0.19	2.00	0.83±0.07
T120	18.72	0.16	2.98	21.45	0.05	2.50	0.84±0.14
T123	19.08	0.09	2.63	21.18	0.24	2.45	0.93±0.05
used and the plant species (Fiorentino et al. 2018). Similarly, the inoculation with *T. harzianum* and *T. brevicompactum* increased plant growth in *D. affinis*.

After the analysis of fungal colonization in the direct interaction of *M. polymorpha* and *Trichoderma*, we examined whether the *Trichoderma* species producing the disease symptoms (*T. virens, T. brevicompactum* and *T. hamatum*) were those with the highest level of fungal colonization (Fig. 1 and Table 2). Furthermore, the analysis of the expression of defense-related genes showed that no changes in SA-related genes were detected after 10 days of interaction in these three species, while an increase in the expression levels of JA-related genes was detected (Fig. 5). The *Trichoderma* species that did not exhibit a pathogenic effect against *M. polymorpha* (*T. parareesei, T. atroviride, T. harzianum, T. koningii* and *T. virens*) induced an SA-response, while a decrease in JA-related genes was observed after 30 days of interaction (Fig. 5). These results highlight the key role of SA in plant-*Trichoderma* interaction. In *Arabidopsis* plants with impaired SA biosynthesis, *Trichoderma* was able to colonize the vascular bundles of the plant and behave as a systemic pathogen, starting with root rot (Alonso-Ramírez et al. 2018).
et al. 2014). In this study, we have shown that the different *Trichoderma* species applied have no harmful effect on the *A. thaliana* plants colonized, as expected. In all cases, *Trichoderma* induced the expression of SA-related genes whereas no changes in JA-related genes were observed (Fig. 6). Thus, the activation of the SA pathway in plant tissues seems to play a key role in the molecular dialogue established between *Arabidopsis* and *Trichoderma* for avoiding uncontrolled colonization of its tissues. Exogenous application of SA to *M. polymorpha* (Fig. 9) prevents disease symptoms produced by *T. virens*, *T. brevicompactum* and *T. harzianum*, underlining again the main role of SA signaling in the plant defense response during *Trichoderma*-plant interaction. SA pathway plays an important role against biotrophic pathogens, and it has been proposed that this mechanism of action may be an ancient and evolutionarily pathway conserved between bryophytes and angiosperms and, therefore, likely appeared in the common ancestor of land plants (Giménez-Ibáñez et al. 2019). SA-biosynthetic and signaling genes are present in *Marchantia* (Bowman et al. 2017), other liverworts (Drabkova et al. 2015) and other bryophytes (Ponce de León et al. 2012), but not in algae (Giménez-Ibáñez et al. 2019). Given our results, *M. polymorpha*, a basal land plant, seems unable to recognize the chemical signals derived from the interaction with some *Trichoderma* species. The ability of different *Trichoderma* species to produce different type of metabolites could explain why *Marchantia* is not able to recognize microbe-specific molecules known as...
microbe-associated molecular patterns (MAMPs) derived from the pathogenic Trichoderma species and could explain the behavior of Marchantia when challenged with different Trichoderma species. This mechanism would prevent the activation of the SA pathway and lead to the subsequent invasion by these Trichoderma species that behave as plant pathogens; however, more studies are needed to understand exactly how this molecular dialogue takes place. At a higher level of the evolutionary scale, including pteridophytes (D. affinis) and angiosperms (A. thaliana), this mechanism of defense must have been completely developed, since none of the Trichoderma species used in this work produced disease symptoms (Fig. 4). This statement would have allowed the establishment of a mutualistic interaction between Trichoderma and plants.

Interestingly, T. asperellum caused disease symptoms in the direct interaction in vitro but not on a growth substrate (Fig. 1), while the colonization level was one of the lowest compared with other Trichoderma strains. However, the plant defense response was similar to other non-pathogenic strains. This could suggest that the detrimental effect of T25 is not due to direct interaction. Exposure of M. polymorpha plants to Trichoderma exudates would explain the mechanism by which T. asperellum would act negatively on plant biomass (Fig. 7).

As expected, R. solani acts as a pathogen for A. thaliana, as previously reported (Foley et al. 2013; Li et al. 2019), as well as for D. affinis (Fig. 4). However, no harmful effect for this pathogen was observed after M. polymorpha inoculation (Fig. 3). Moreover, the analysis of the expression of SA- and JA-responsive genes showed a similar pattern to that observed in the pathogenic Trichoderma strains. A significant reduction of ICS1 and PR-1 (SA-related), as well as a significant increase in LOX1 and COI1 (JA-related) levels, was observed after 10 and 30 days after fungal inoculation (Fig. 5). This SA-JA balance has an important role in the synthesis and accumulation of different defense chemical compounds (Gahtori and Chaturvedi 2011; Mewari and Kumar 2011). This result proved that the correct defense response against the pathogenic Trichoderma strains is through the SA and JA pathways against R. solani. The latter result is reinforced by the fact that exogenous application of SA, which would inhibit JA response, produced disease symptoms in M. polymorpha after R. solani inoculation. Similar results were observed in Marchantia after Irpex lacteus infection (Matsui et al. 2020). This SA/JA antagonism represents a pivotal role in plant defense responses, which may have arisen in the evolution of bryophytes such as M. polymorpha (Thaler et al. 2012; Berens et al. 2017). Despite this, we found that the volatiles produced by R. solani had only a detrimental effect on M. polymorpha plants, while in A. thaliana the volatiles enhanced growth and accelerated development (Cordovez et al. 2017). Microbial volatile...
organic compounds (MVOCs) can have general or very specific biological functions in some plant species. In this sense, there are pathogens whose MVOCs can have extremely beneficial effects on plants, promoting their growth, activating their systemic defenses, stimulating antifungal, oomycetidal and nematicidal activities, and even repel insect pests (Poveda 2021d).

In sum, our study has revealed how several Trichoderma species can behave as pathogens of M. polymorpha, but not of D. affinis or A. thaliana. This Trichoderma plant–pathogen behavior is a consequence of non-recognition by the host and the subsequent absence of response mediated by SA in M. polymorpha. Evolutionarily, it has been determined how Trichoderma has shifted from an ancestral way of life based on mycoparasitism to being a symbiont-plant thanks to the presence of exudates and pathogenic fungi in the rhizosphere (Kubicek et al. 2011, 2019). We hypothesize that between both evolutionary stages, Trichoderma behaved as a plant pathogen until SA-mediated plant-defense response was developed by land plants. Once the plant became able to recognize Trichoderma, a molecular dialogue may have been generated with the subsequent establishment of a mutualistic relationship between both organisms.

Author contribution statement JP, PAU and JMA conducted the laboratory work; JP and CN conceived and designed the experiments; JP, PAU, JMA and CN analyzed the data; JP and CN wrote the paper.
Fig. 7
Trichoderma–M. polymorpha indirect interaction by exudates. Photographs of Petri dishes (a and b) were taken 2 weeks after contacting exudates-plants, and plant biomass analyzed by visual quantity of the plant (c) of M. polymorpha without fungi (C) and inoculated with T. pararecesi (T6), T. atroviride (T11), T. asperellum (T25), T. harzianum (T34), T. koningii (T77), T. virens (T87), T. brevicompactum (T120), T. hamatum (T123) and R. solani (Rs). Plants contacted with exudates from fungal liquid culture in GMB (a) and in GMB-0.3% W/V M. polymorpha-tissues (b). Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, eight dishes were used. One-way analysis of variance (ANOVA) was performed, followed by the Tukey’s test. Different letters represent significant differences ($P<0.05$).
Fig. 8 Trichoderma–M. polymorpha indirect interaction by volatiles. Photographs of Petri dishes (a) were taken 2 weeks in fungal-volatiles-contacting, and plant biomass analyzed by visual quantity of the plant (b) of *M. polymorpha* without fungi (C) and inoculated with *T. parareesei* (T6), *T. atroviride* (T11), *T. asperellum* (T25), *T. harzianum* (T34), *T. koningii* (T77), *T. virens* (T87), *T. brevicompactum* (T120), *T. hamatum* (T123) and *R. solani* (Rs). Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, ten dishes were used. One-way analysis of variance (ANOVA) was performed, followed by the Tukey’s test. Different letters represent significant differences ($P < 0.05$).
Fig. 9 *Trichoderma–M. polymorpha* interaction on in vitro culture with exogenous application of SA 0.25 mM. Photographs of Petri dishes (a) were taken at 9 dpi, and plant biomass analyzed by visual quantity of the plant (b) of *M. polymorpha* without fungi (C) and inoculated with *T. pararosei* (T6), *T. atroviride* (T11), *T. asperellum* (T25), *T. harzianum* (T34), *T. koningii* (T77), *T. virens* (T87), *T. brevicompactum* (T120), *T. hamatum* (T123) and *R. solani* (Rs). Data are the mean of three biological replicates for each condition with the corresponding standard deviation, and for each biological replicate and condition, eight dishes were used. One-way analysis of variance (ANOVA) was performed, followed by the Tukey’s test. Different letters represent significant differences ($P < 0.05$).

Acknowledgements This work was supported by the Regional Government of Castile and Leon, Escalera de Excelencia CLU-2018-04 co-funded by the P.O. FEDER 2014-2020 and the Project SA094P20. Authors thank Dra. Isabel Monte and Dr. Enrique Monte for kindly providing both materials and ideas.
Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability All data generated or analyzed during this study are included in this published article.

Declarations

Conflict of interest We have no conflicts of interest to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolás C (2014) Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 15:823–831. https://doi.org/10.1111/mpp.12141

Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009

Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evo-phyto-07-18-0218-RVW

Betsuyaku S (2020) The rise of evolutionary molecular plant–microbe interactions (EvoMPMI). Plant Cell Physiol 61:223–224. https://doi.org/10.1016/j.pcrv.2019.05.079

Bowman JL (2016) A brief history of Marchantia from Greece to genomics. Plant Cell Physiol 57:210–229. https://doi.org/10.1093/pcp/pcv044

Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304. https://doi.org/10.1016/j.cell.2017.09.030

Contreras-Cornej HA, del Val E, Maclas-Rodriguez L, Alarcon A, Gonzalez-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy derma virens. Tricho-putative chromatin remodeler/helicase-related protein of Trichoderma virens plays important roles in resistance against Rhizoc-tonia solani and induction of Arabidopsis systemic disease resistance. Mol Plant Microbe Interact 33:808–824. https://doi.org/10.1094/MPMI-04-19-0092-R

Fiorentino N, Ventorino V, Woo SL, Pepe O, de Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743. https://doi.org/10.3389/fpls.2018.00743

Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB (2013) Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS ONE 8:e56814. https://doi.org/10.1371/journal.pone.0056814

Gahtori D, Chaturvedi P (2011) Antifungal and antibacterial potential of methanol and chloroform extracts of Marchantia polymorpha L. Arch Phytopathol Plant Prot 44:726–731. https://doi.org/10.1007/s12864-019-5680-7

Ghazanfar MU, Raza M, Raza W, Qamar MI (2018) Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant J 2:109–135

Giménez-Ibáñez S, Zamarreño AM, García-Mina JM, Solano R (2019) An evolutionarily ancient immune system governs the interactions between Pseudomonas syringae and an early-diverging land plant lineage. Curr Biol 29:2270–2281. https://doi.org/10.1016/j.cub.2019.05.079

Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma species: versatile plant symbionts. Phytopathology 109:6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW

Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0

Jogaiath S, Abdelrahman M, Tran LSP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19:870–882. https://doi.org/10.1111/mpp.12571

Kanamoto H, Takemura M, Ohyama K (2012) Cloning and expression of its genes. Microbiology 158:17–25. https://doi.org/10.1016/j.mib.2013.10.009

Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155. https://doi.org/10.1007/s11274-017-2319-1

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40. https://doi.org/10.1186/gb-2011-12-4-r40

Kubicek CP, Steindorff AS, Chenthamara K et al (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20:485. https://doi.org/10.1186/s12866-019-5680-7

Launio CC, Labon KO, Bañez AM, Batani RS (2020) Adoption and economic analysis of using biological control in Philippine highland farms: Case of Trichoderma koningi strain KA. Crop Prot 136:e105177. https://doi.org/10.1016/j.cropro.2020.105177

Drabkova LZ, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS ONE 10:e0125411. https://doi.org/10.1371/journal.pone.0125411

Estrada-Rivera M, Hernández-Oñate MA, Dautt-Castro M, Gallardo-Negrete JDJ, Rebollo-Prudencio OG, Uresti-Rivera EE, Arenas-Huerto C, Herrera-Estrella A, Casas-Flores S (2020) IPA-1 a putative chromatin remodeler/helicase-related protein of Trichoderma virens plays important roles in resistance against Rhizoc-tonia solani and induction of Arabidopsis systemic disease resistance. Mol Plant Microbe Interact 33:808–824. https://doi.org/10.1094/MPMI-04-19-0092-R
Poveda J (2021a) Biological control of *Fusarium oxysporum* f. sp. ciceri and *Ascochyta rabiei* infecting protected geographical indication Fuenestasuco-Chickpea by *Trichoderma* species. Eur J Plant Pathol 160:825–840. https://doi.org/10.1007/s10658-021-02286-9

Poveda J (2021b) *Trichoderma* as biocontrol agent against pests: new uses for a mycoparasite. Biol Control 159:104634. https://doi.org/10.1016/j.biocontrol.2021.104634

Poveda J (2021c) Glucosinolates profile of *Arabidopsis thaliana* modified root colonization of *Trichoderma* species. Biol Control 155:104522. https://doi.org/10.1016/j.biocontrol.2020.104522

Poveda J (2021d) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118. https://doi.org/10.1016/j.apsoil.2021.104118

Poveda J (2022a) AtCube: Performing pathogen-root infection tests on *Arabidopsis thaliana* in a completely controlled way. Physiol Mol Plant Pathol 117:101780. https://doi.org/10.1016/j.pmpp.2021.101780

Poveda J (2022b) Effect of volatile and non-volatile metabolites from *Leptosphaeria maculans* on tomato calli under abiotic stresses. Plant Stress 3:100054. https://doi.org/10.1016/j.stress.2021.100054

Poveda J, Hermosa R, Monte E, Nicolás C (2019a) *Trichoderma harzianum* favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-48269-z

Poveda J, Hermosa R, Monte E, Nicolás C (2019b) The *Trichoderma harzianum* Kelch protein ThKEL1 plays a key role in root colonization and the induction of systemic defense in Brassicaceae plants. Front Plant Sci 10:1478. https://doi.org/10.3389/fpls.2019.01478

Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungal inducers of resistance: *Trichoderma*, mycorrhizal and endophytic fungi. Front Microbiol 11:992. https://doi.org/10.3389/fmicb.2020.00992

Racić G, Vukelić I, Prokić L, Ćurčić N, Zorić M, Jovanović L, Panković D (2018) The influence of *Trichoderma brevicompactum* treatment and drought on physiological parameters, abscisic acid content and signalling pathway marker gene expression in leaves and roots of tomato. Ann Appl Biol 173:213–221. https://doi.org/10.1111/aab.12454

Regliński T, Rodenburg N, Taylor JT, Northcott GL, Ah Chee A, Spierers TM, Hill RA (2012) *Trichoderma atroviride* promotes growth and enhances systemic resistance to *Diplodia pini* in radiata pine (*Pinus radiata*) seedlings. For Pathol 42:75–78. https://doi.org/10.1128/AEM.03375-13

Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R (2015) Biological control of *Trichoderma harzianum* for sustainable agriculture insights from genomics. Front Plant Sci 4:258. https://doi.org/10.3389/fpls.2013.00258
Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270. https://doi.org/10.1016/j.tplants.2012.02.010

Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013) PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14:138. https://doi.org/10.1186/1471-2164-14-138

Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. https://doi.org/10.1104/pp.109.141291

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10. https://doi.org/10.1016/j.soilbio.2007.07.002

Yoshikawa M, Luo W, Tanaka G, Konishi Y, Matsuura H, Takahashi K (2018) Wounding stress induces phenylalanine ammonia lyases, leading to the accumulation of phenylpropanoids in the model liverwort Marchantia polymorpha. Phytochemistry 155:30–36. https://doi.org/10.1016/j.phytochem.2018.07.014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.