Employment of Patients With Kidney Failure Treated With Dialysis or Kidney Transplantation - A Systematic Review and Meta-Analysis

Lilli Kirkeskov (Lilli.kirkeskov@regionh.dk)
Bispebjerg-Frederiksberg Hospital

Rasmus Carlsen
Oslo University Hospital

Thomas Lund
Bispebjerg-Frederiksberg Hospital

Niels-Henrik Buus
Aarhus University Hospital

Research Article

Keywords: kidney failure, renal failure, end stage renal disease, ESRD, hemodialysis, peritoneal dialysis, kidney transplantation, renal transplantation, employment rate

Posted Date: January 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-147522/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Patients with kidney failure treated with dialysis or kidney transplantation experience difficulties maintaining employment due to the condition itself as well as the treatment. We aimed to establish the rate of employment before and after initiation of dialysis and after kidney transplantation and to identify predictors of employment during dialysis and post-transplant.

Methods: This systematic review and meta-analysis was carried out according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis, PRISMA, for studies that included employment rate in adults receiving dialysis or a kidney transplant. The literature search included cross sectional or cohort studies published in English in the period from January 1966 to August 2020 in the databases PubMed, Embase, and Cochrane Library. Data of employment rate, study population, age, gender, educational level, dialysis duration, kidney donor, ethnicity, dialysis modality, waiting time for transplantation, diabetes, and depression were extracted.

Quality assessment was performed using the Newcastle-Ottawa Scale. Meta-analysis for predictors for employment and odds ratio; confidence intervals; and test for heterogeneity were calculated using Chi-squared statistics and \(I^2 \). PROSPERO registration number: CRD42020188853.

Results. 33 studies with 162,059 participants during dialysis and 31 studies with 137,742 participants receiving kidney transplantation. Dialysis patients were on average 52.6 years old (range 16-79), 60.3% males and kidney transplant patients 46.7 years old (range 18-78), 59.8% males. The employment rate (weighted mean) for dialysis patients was 26.3% (range 10.5-59.7%); pre-transplant 36.9% (range 25-86%), and post-transplant 38.2% (range 14.2-85%). Predictors for employment during dialysis and post-transplant were male, non-diabetic, peritoneal dialysis, and higher educational level, and post-transplant: pre-transplant employment, younger age, transplantation with a living donor kidney, and without depression.

Conclusions: Patients with kidney failure had a low employment rate during dialysis, pre- and post-transplant. Kidney failure patients should be supported through a combination of clinical and social measures to ensure they remain in work.

Background

Kidney failure with a need of renal replacement therapy affects about 0.1% of the global population. According to the National Kidney Foundation statistics more than 2 million people world-wide receive chronic dialysis treatment or are living with a functioning kidney transplant [1, 2]. Kidney failure reduces quality of life, increases psychosocial problems and has profound implications on maintenance of normal employment [3, 4]. To a large extent this is a consequence of disease-related co-morbidity and uraemia-related symptoms, but it is also due to time-consuming treatments with hemo- or peritoneal dialysis. Therefore, kidney failure entails not only high costs because of the treatment itself but also results in lost productivity due to reduced labour force. A Canadian study stated that kidney diseases cost more than 217 billion Canadian dollars annually in health care services alone [5]. In addition to this comes loss of labour force.

Over the past decades, replacement therapy in kidney failure has improved in terms of home-based dialysis modalities with automated peritoneal dialysis or home hemodialysis rendering it easier for some patients to plan their time. Also, an increasing number of patients are receiving kidney transplants, and the survival rate is increased following transplantation [6]. Despite this, studies from all over the world have shown that many patients with kidney failure are not employed [7].

The employment rate in the general population of 15 to 64 years of age ranges between countries from 46–47% in South Africa and India to 85% in Iceland. The average employment rate in The Organization for Economic Co-operation and Development (OECD) countries is 69% [8]. The employment rate is lower in subjects below upper secondary educational level compared to upper secondary level or more [8]. For subjects suffering from chronic diseases, the employment rate is lower. Prognostic factors for employment include severity of the chronic disease, employment status before getting the condition and the educational level [9–11]. These somatic and social factors may also influence employment status in kidney failure patients.

Previous studies have reported employment rates and predictors for employment during dialysis or after kidney transplantation but the results have never been summarized in a systematic review for kidney failure patients receiving dialysis as well as after kidney transplantation [12–14]. The aims of this study were: First, to conduct a systematic review focusing on employment rate before and after initiation of dialysis (hemodialysis and peritoneal dialysis) and after kidney transplantation. The focus has been patients with kidney failure as they probably have the most difficulty maintaining a job. Second, to establish predictors of employment during dialysis and post-transplant. The predefined predictors - based on the authors’ general knowledge of the field both related to other chronic disorders and specific for kidney disorders - were socioeconomic factors such as age, gender, level of education, pre-employment and dialysis modality, time on dialysis, waiting-time for transplant, donor type as well as comorbidities such as diabetes and depression.

Methods

Protocol
This systematic review was carried out according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) [15] for studies that included employment rate in kidney failure patients during dialysis and after kidney transplantation. PROSPERO registration number: CRD42020188853.

Selection criteria and search strategies

The literature search included the period from January 1966 to August 2020 in the databases PubMed, Embase, and Cochrane Library using the following search terms: (chronic* kidney disease OR chronic* renal disease OR kidney transplant* OR renal transplant* OR dialysis OR hemodialysis OR peritoneal dialysis) AND (employment OR work ability OR disability pension). Articles in English and German were included. The search was done in the databases in the following order: PubMed, Embase, and Cochrane Library. Articles were selected primary based on the titles and abstracts if necessary. Studies worldwide were included. Articles including employment, work ability or disability, return to work or disability pension were selected and duplicates were excluded. Reference lists in the selected articles were reviewed, and more articles were included if relevant. Full-time and part-time employment, but not ‘working as housewives’ was included in our definition of employment.

Data extraction, quality assessment and risk-of-bias

The data collected included e.g. author names, year of publication, study design, date for data collection, employment rate, study population, age, gender, educational level, dialysis duration, kidney donor, ethnicity, dialysis modality, waiting time for transplantation, diabetes, and depression. Quality assessment was independently assessed by two reviewers (LK and RKC) using the Newcastle-Ottawa Scale (NOS) for cross-sectional and cohort studies [16] in order to assess risk of bias for all studies. Any disagreements were resolved by discussion until consensus was reached. The rating scale was based on 9 items dividing the studies into high (7–9), moderate (4–6) or low (1–3) quality. A low NOS score (range 1–3) indicated a high risk of bias and a high NOS score (range 7–9) indicated a lower risk of bias. For cross-sectional studies the quality assessment included: representativeness of the sample, sample size, non-respondents, ascertainment of the risk factor, comparability, assessment of outcome, and statistical testing. For cohort studies the assessment included: representativeness of the exposed cohort, selection of the non-exposed cohort, ascertainment of exposure, demonstration that the outcome of interest was not present at start of study, comparability; assessment of outcome, length of follow-up and adequacy of follow up.

Analytical approach

For outcomes reported in numbers or percentages, the odds ratio and 95% confidence intervals (CI) were calculated if possible. Meta-analysis for the pre-defined potential important predictors for employment before and during dialysis and after kidney transplantation: age, gender, level of education, pre-employment, dialysis modality, time on dialysis, waiting-time for transplant, donor type as well as comorbidities such as diabetes and depression were carried out. In addition to the predefined predictors, attempts have been made to find information on ethnicity, health insurances, self-assessed ability to work and quality of life, but there were only enough data on ethnicity for analysis. Test for heterogeneity was done using Chi-squared statistics and I^2, where I^2 below 40% might not be important; 30–60% may represent moderate heterogeneity; 50–90% substantial heterogeneity; and 75–100% considerable heterogeneity.

Meta-analysis for predictors for employment and odds ratio; confidence intervals; and test for heterogeneity were calculated using the software Review Manager (RevMan, version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).

Results

General description of included studies

The search yielded 2,310 references addressing kidney failure and employment. From the titles 133 studies were considered relevant for evaluation, and of those 58 met the inclusion criteria. Figure 1 shows the results of the systematic search strategy.

Table 1 summarizes the general characteristics of the studies. In total 27 studies described employment in kidney failure-patients during dialysis [17–43]; 25 after kidney transplantation [3, 4, 12, 13, 44–64]; and 6 [14, 65–69] addressed both dialysis and kidney transplantation. In total 33 studies regarding dialysis, and 31 regarding kidney transplantation were included with a total of 162,059 and 137,742 participants, respectively. The publication year of the included studies ranged from 1981 to 2020 (median 2013). Most of the studies (81%) were cross-sectional in design, analysing data at a specific point in time. The cross-sectional studies [3, 12–14, 17–19, 21, 22, 24–39, 41–49, 51, 54, 55, 57, 59, 61–64, 66–69] were small to medium sized with a median of 139–233 participants for kidney transplant and dialysis patients, respectively, while the cohort studies [4, 20, 23, 40, 50, 52, 53, 56, 58, 60, 65] were mainly larger population studies (median 2,103 for dialysis patients and 1,254 for kidney transplant patients). More than half of the studies were single-center studies, and the studies were mainly from high income countries. Study details are shown in Tables 1 to 3.
Table 1
General characteristics of the included studies, by dialysis and kidney transplantation

Geography	Dialysis (n = 33)	Kidney transplantation (n = 31)
Europe	10	13
North America	11	14
Others (Asia, South America, New Zealand)	12	4
Study design		
Cross sectional	29	23
Cohort study	4	8
Study sampling method		
Single centre	13	24
Multicentre	13	2
Registry	7	5
Type of dialysis*		
Hemodialysis	15	
Peritoneal dialysis	10	
Dialysis-modality unknown	17	
Number of participants		
Cross sectional studies		
median	233	139
range	43–105,636	34 – 1,278
SD	22,449	255
Cohort studies		
median	2,103	1,253
range	359–4,734	358 – 71,976
SD	1,997	27,826

*Does not sum up to 33 because some studies included more than one type of dialysis
Reference	Country	Study design	Study population	Study period	Participation rate	Age years (mean)	Sex (Male) %	Results	Quality assessment
Albatineh 2019	Kuwait	Cross sectional	336 HD patients from six dialysis centers	n.a	n.a.	> 21	43.5	Employed 17.9%	4
Al -Jumaih 2011	Saudi Arabia	Cross sectional	100 HD patients selected randomly from 3 centers	n.a	n.a.	(53.4)	68	Employed 28%	3
AlShahrani 2018	Saudi Arabia	Cross sectional	233 patients from all hemodialysis centers	2016-17	n.a.	> 20	78.5	Employed 26.6%	3
Curtin 1996	U.S.	Cross sectional	359 stratified from 31 centers	n.a	n.a.	18–62 (43)	50	Employed: before dialysis 73%; during dialysis 24%	7
Ghani 2018	Sweden	Cohort	4734 patients; HD = 2667; PD = 2067	1995–2012	96%	HD/PD (48/47)	HD 65; PD 62	Employed before dialysis: total 65.3%; HD/PD 57%/76%; during dialysis: total 59.7%; HD/PD 51%/71%	6
Grubman-Nowak 2020	Poland	cross sectional	60 HD patients	2016-19	(60)	60	Employed 25%	3	
Gutman 1981	U.S.	Cross sectional	2481 from 17 dialysis centers	1979	n.a.	21–59 (49)	55	Employed 24%	8
Helanterá 2012	Finland	Cross sectional	819 from Finnish Kidney and Liver Association registry	2007	n.a.	15–64	62	Employed: total 23.9%; HD 19%; homeHD 44%; APD 39%; CAPD 16%	7
Holley 1994	U.S.	Cross sectional	77 patients; HD = 46; PD = 31	1993	21–54	47	Employed: 42.8%	5	
Huang 2017	China	Cross sectional	166 patients in working age from 4 dialysis centers in Shanghai	2015	n.a.	(48.5)	64	Employed 15.7%	5
Imanishi 2017	Japan	Cohort	3151 dialysis patients in working age < 60	1999–2011	n.r.	18–59	n.a.	Employed 51%	5
Jarl 2018	Sweden	Cohort	1056 on dialysis from Swedish Kidney Registry	1995–2012	n.r.	20–60 (50.3)	63.5	Pre-dialysis:28%; during dialysis 18%	6

n.a: not analyzed; n.r.: not relevant; HD: hemodialysis; PD: peritoneal dialysis; yr: year; APD: Automated Peritoneal Dialysis; CAPD: Continuous Ambulatory Peritoneal Dialysis; NHHD: nocturnal home hemodialysis
Reference	Country	Study design	Study population	Study period	Participation rate	Age years (mean)	Sex (Male) %	Results	Quality assessment
Julian Mauro 2013	Spain	Cross sectional	161 in dialysis (HD = 83; PD = 78) from 8 centers in Spain in working age	2007-9	n.a.	16–65 (41)	61.5	Employed: total 30.4%; HD 41%; PD 35.9%	3
Kasiske 1998	U.S.	Cross sectional	36646 receiving dialysis placed on a waiting list for kidney transplant.	1994-96	n.r.	all ages	59	Employed pre-dialysis: Fulltime 53.4%; part-time 6.5%; during dialysis: Fulltime 34.5%; part-time 8.2%	5
Kutner 1991	U.S.	Cross sectional	283 dialysis patients, 15 patents from each of 81 treatment facilities	1987	99% of invited	18–59 (44.7)	n.a.	Employed 11%	4
Kutner 2008	U.S.	Cross sectional	105636 dialysis patients from ESRD Facility Survey	2004	n.r.	18–54	n.a.	Employed 18.9%	6
Kutner 2010	U.S.	Cross sectional	1643 from US Renal Data System	2009	n.r.	>18 (59.6)	55	Pre-dialysis 35.6%; During dialysis 11.6% (4 months after start)	5
Kwan 2013	Hong Kong	Cross sectional	All new consecutive automated PD-patients matched to CAPD-controls; 270; APD/CAPD 90/180	1995–2001	n.a.	APD/CAPD (50.5/57.8)	ADP 67; CAPD 54	Employed: Total 35.2%; APD/CAPD 71.2%/17%	5
Li 2018	Hong Kong	Cross sectional	101 (20 NHHD; 81 CAPD)	2009-14	87%	18–64 (47/52)	55	Employed: total 42.6%; NHHD: 80%; CAPD: 33.3%	4
Molsted 2004	Denmark	Cross sectional	112 from one university hospital; 59 in working age < 60 year:	n.a.	75%	>18 (57.8)	64	Employed (in working age): 22%	4
Nakayama 2015	Japan	Cross sectional	179 (102 PD; 77 HD) from 5 dialysis centers	2013	n.a.	(63)	68	Pre-dialysis: 63%; during dialysis 49.2%.	7
Neumann 2018	Germany	Cross sectional	353 (1 year follow-up) stratified sample of 153 PD; 200 HD from 55 dialysis unit 6–24 months after initiation of dialysis	2014–2015	74%	>18 (63.1)	68	Employed: total 17.1%; (PD 26.9%; HD 13.2%)	4

n.a: not analyzed; n.r.: not relevant; HD: hemodialysis; PD: peritoneal dialysis; yr: year; APD: Automated Peritoneal Dialysis; CAPD: Continuous Ambulatory Peritoneal Dialysis; NHHD: nocturnal home hemodialysis
Reference	Country	Study design	Study population	Study period	Participation rate	Age years (mean)	Sex (Male)	Results	Quality assessment
Panagopoulou	Greece	Cross sectional	40 HD; 36 PD	n.a.	n.a.	HD/PD (57/59)	PD 58;	Employed before dialysis: HD: 78%; PD 43%; During dialysis: total 25%; HD: 20%; PD 31%	3
Parajuli 2016	U.S.	Cross sectional	200 from one kidney transplant center; dialysis > 1 year before transplant	n.a.	48%	>18 (57)	PD 58;	Employed before dialysis: HD 93.5%; During dialysis HD 35%	4
Ravindan 2020	India	Cross sectional	503 HD patients from 11 centers	2015	95%	13-	74	Employed:11.1%	3
Takaki 2006	Japan	Cross sectional	317 HD patients from 4 dialysis centers	n.a.	n.a.	18–64 (54.2)	66	Employed: Total 42.3%; Male 54.1%; Female 19.4%	5
Tanaka 2020	Japan	Cross sectional	229; 36 PD + HD; 103 HD; 90 PD	2012-15	69.9%	PD + HD (57.4);			
						HD (62.7); PD (65.5)			
							PD + HD 75; HD 80; PD 69		
							Employed: Total 52.8%; PD + HD 63.9%; HD 53.4%; PD 47.8%	4	
Theorell 1991	Sweden	Cross sectional	470 patients in Sweden on dialysis	1988	65.5%	25–64	59.8	Employed: 20%	6
Walker 2016	New Zealand	Cross sectional	43; a part of a larger study	2014-15	n.a.	22–79	48	Employed: 27.9%	3
van Manen 2001	The Netherlands	Cohort	659 consecutive patients on dialysis; 359 completed follow-up	1997-99	54.5%	18–65 (48.7)	60	Employed: before dialysis 35%; 1 year on dialysis: 29.8%	3
Wilk 2019	U.S.	Cross sectional	759 from one dialysis centers	2010-18	65%	HD (59)	n.a.	Employed 10.5%	5
Wolcott 1988	U.S.	Cross sectional	33 PD; 33 HD matched by sex, age and diabetic status	n.a.	n.a.	20–65	70	Employed: 19.7%; PD:30%; HD:9%	5
Zimmerman 2006	Canada	Cross sectional	81 patients randomly selected from a waiting list for donor transplant (1/3 not in dialysis)	n.a.	66%	(48.4)	56.2	Employed: 32.9%	4

n.a: not analyzed; n.r.: not relevant; HD: hemodialysis; PD: peritoneal dialysis; yr: year; APD: Automated Peritoneal Dialysis; CAPD: Continuous Ambulatory Peritoneal Dialysis; NHHD: nocturnal home hemodialysis
Table 3
Characteristics of the Individual Studies Among Kidney Failure Patients Receiving a Kidney Transplantation.

Reference	Country	Study design	Study population	Study period	Participation rate (%)	Age years (mean)	Sex (Male) %	Results	Quality assessment
Bohike 2008	Brazil	cross-sectional	272 with kidney transplant-a systematic random sampling of 1512 kidney transplant patients from 11 centers stratified by transplantation centers	2003-4	97%	>18 (40.8)	n.a.	Pre-transplant employed: Full-time 11.8%; part-time 13.2%; Post-transplant employed: Full-time 23.2%; part-time 6.3%	9
Chen 2007	Taiwan	cross-sectional	113 with kidney transplant	5 months (2003-4)	98%	>18 (43.7)	54.9	Post-transplant employed: Full-time 50.4%; part-time 8%	3
Chisholm-Burnes 2011	U.S.	cross-sectional	75>1 year post-transplant	n.a.	90%	21-65 (47.6)	57.3	Post-transplant employed 39%	8
Danuser 2017	Switzerland	cohort	689 from the Swiss Transplant Cohort Study	2008-12	65%	18-65	65	Pre-transplant employed 58.9%; Post-transplant employed 56.2%	7
De Baere 2010	Belgium	cross-sectional	79 with kidney transplant	n.a.	77.3%	18-65	62	Pre-transplant employed 63.1%; Post-transplant employed 58.6%	4
De Pasquale 2019	Italy	cross-sectional	81 consecutive kidney transplant patients from one center	2016-17	72%	(46.3)	58	Pre-transplant employed 68%; Post-transplant employed 38%	5
Eng 2012	U.S.	cross-sectional	204 with graft survival >1 yr	2002-7	55%	18-65 (48.1)	57	Post-transplant employed 56%	7
Epenberger 2015	Switzerland	cross-sectional	354 with kidney transplant in one hospital; 282 in working age	2000-11	58%	42-61 (53.5)	71	Pre-transplant employed: Full-time 33%; part-time 21%; 1 year post-transplant: full-time 36%; part-time 20%	7
Grubman-Nowak 2020	Poland	cross-sectional	101 patients with kidney transplant	2016-19	n.a.	(48)	60	Post-transplant employed 57%	3
Helanterá 2012	Finland	cohort	1818 with kidney transplant from Finnish Kidney and Liver Association registry	2007	n.r.	15-64 (49)	62	Post-transplant employed 40%	7
Jarl 2018	Sweden	cohort	3247 with kidney transplant from Swedish Kidney Registry	1995-2012	n.r.	20-60 (43.3)	64.5	Pre-transplant employed 62%; Post-transplant employed 61.1%	6

n.a: not analyzed; n.r.: not relevant; yr: year
Reference	Country	Study design	Study population	Study period	Participation rate (%)	Age (mean)	Sex (%)	Results	Quality assessment
Jordakieva 2020	Austria	cross sectional	139 with kidney transplant in a multi-center questionnaire study	2012	n.a.	18–55	58	Post-transplant employed: Full-time 36%; part-time 13.7%	5
Julian Mauro 2013	Spain	cross sectional	82 with kidney transplant from 8 centers in Spain in working age	2007-9	n.a.	16–65	58.5	Post-transplant employed: 39%	3
Markell 1997	U.S.	cross sectional	58 with kidney transplant patients from one outpatient clinic	1994	58%	20–67	50	Post-transplant employed: 43%	6
Matas 1996	U.S.	Cohort	636 with functioning kidney transplant	1985–1993	83%	>18	62	Pre-transplant employed: Full-time 39%; part-time 5%	5
Matas 2001	U.S.	Cross sectional	1278 with primary living donor kidney transplant	1990–98	n.a.	(32)	62	Post-transplant employed: Full-time 41%; part-time 4%	5
Messias 2014	Brazil	Cohort	358 with primary kidney transplants	2005-9	61.7	17–72	67	Post-transplant employed: 26%	6
Miyake 2019	Japan	Cohort	515 from one outpatient clinic being in paid employment at the time of transplant	2017-18	98%	20–64	68	Post-transplant employed: Full-time 76%; part-time 9%	5
Monroe 2005	U.S.	Cross sectional	78 with kidney transplant; in working age; a stratified sample from one center during a 10 year period	n.a.	33%	23–62	52	Post-transplant employed: 49%	4
Nour 2015	Canada	Cross sectional	60 with kidney transplant and functioning graft from one clinic	2003-8	41.7%	18–65	63.5	Pre-transplant employed 68.3%; Post-transplant employed 38.3%	6
Panagopoulou 2009	Greece	Cross sectional	124 patients with kidney failure and 48 with kidney transplant	n.a.	n.a.	(39)	67	Pre-transplant employed: 86%; Post-transplant employed 56%	3
Parajuli 2016	U.S.	Cross sectional	200 form one kidney transplant center; dialysis >1 year before transplant; investigated > 1 year after transplant	n.a.	48%	28–82	60	Employed: Prior to dialysis 93.5%; during dialysis 35%; Post-transplant 35.5%	4

n.a: not analyzed; n.r.: not relevant; yr: year
Reference	Country	Study design	Study population	Study period	Participation rate (%)	Age (years) (mean)	Sex (Male) %	Results
Petersen 2008	U.S.	Cohort	47123 1 year post kidney transplant from United States Renal Data System	1995–2002	n.r.	>18 (45.9)	60	Employed: Pre-transplant: Fulltime 34.2%; part-time 6%; Post-transplant: Fulltime 38.1%; part-time 4.3%
Raiz 1997	U.S.	Cross sectional	180 with kidney transplant from one transplant center	n.a.	61.4%	>19	53	Employed: Prior to kidney failure: 86%; Pre-transplant 53%; 1 year post-transplant: 58%
Sangalli 2014	U.S.	Cross sectional	227 with kidney transplant; in working age; 6 months follow-up from two outpatient clinics	2007-9	67%	18–65	59	Post-transplant employed: 56.5%
Slakey 2007	U.S.	cross sectional	70 at least 48 months after kidney transplant; questionnaire study	1998–2000	47.9%	20–75 (47)	51	Post-transplant employed or in school 28.6%
Tzvetanov 2014	U.S.	Cohort	94,511 with kidney failure (baseline); N = 71,976 post-transplant from the United Network for Organ sharing database	2004–11	n.r.	18–64	n.a.	Employed: Pre-transplant: 33% 1 year post-transplant 32.1%
van der Mei 2006	Netherlands	Cross sectional	239 with kidney transplant; 210 in working age	1996–2001	76.8%	19–71 (50.3)	n.a.	Employed: 52.4%
van der Mei 2007	Netherlands	Cross sectional	61 (3-month post-transplant); 58 (1 year post-transplant)	2002-3	79%	18–64 (44.2)	52.5	Employed: Pre-dialysis: 72%; 1 year post-transplant: 52%
van der Mei 2011	Netherlands	Cross sectional	34 (T3) from one outpatient clinic in paid employment at the time of transplant	2002-3	n.a.	18–64 (50.5)	55.9	Employed 6 year post-transplant: 67%
Whitlock 2017	U.S.	Cross sectional	325 from one kidney transplant center	2011-15	n.a.	(52.3)	60.9	Post-transplant employed 14.2%

n.a: not analyzed; n.r.: not relevant; yr: year

General description of study participants

Dialysis patients were on average 52.6 (16–79) years old and kidney transplant patients 46.7 (18–78) years old. More than half of dialysis and kidney transplant patients were males, 60.3% and 59.8%, respectively.

Employment rate during dialysis, pre- and post-transplant

Before and during dialysis

The weighted mean for the employment rate during dialysis was 26.3% (range 10.5–59.7) in- and between continents as shown in Table 4. The employment rate was 21.6% in the 16 studies which excluded patients more than 65 years of age [14, 20, 22, 23, 25, 26, 29, 30, 33, 35, 39–42, 65, 66,
In general, the employment rate decreased after initiation of dialysis. In 9 studies data before and after initiating dialysis were available [20, 24, 27, 31, 39, 40, 65, 67, 68]. In these studies, the change in the employment rate decreased 16.4% (weighted mean) ranging from a decrease of 5.2–58.5% in- and between countries. In a study from U.S. of 1,643 dialysis patients 36% were employed before dialysis and 11.6% after start of dialysis [27]. In a Japanese study, 63% were employed before dialysis and 49% after start of dialysis; 50.7% of HD-patients and 48% of PD-patients were employed [31].

Patients receiving peritoneal dialysis had a higher employment rate, 58.8% [14, 20, 28, 29, 31, 32, 34, 39, 41, 42, 66, 67] compared to patients in hemodialysis, 39.5% [14, 17–20, 22, 23, 29–34, 37, 39, 41, 42, 66–69].

Pre- and post-transplant

The employment rate pre-transplant was 36.9% (weighted mean) ranging from 25 to 86% in-between continents. The post-transplant employment rate was 38.2% (weighted mean, all studies) ranging between 14.2% and 85% in- and between continents as shown in Table 4. The employment rate was 34.4% when only including the 18 studies of kidney transplant patients, which had excluded patients 65 years or more (not in working age) [3, 4, 12–14, 46, 49, 52–55, 58, 60, 61, 63, 65, 66].

In 14 studies data pre- and post-transplant were available [4, 13, 44, 46, 47, 50, 55, 57, 60, 62, 65, 67, 68]. In these studies, the change in the employment rate pre- and post-transplant ranged from a decrease of 30% to an increase of 3.5% in- and between countries.

A Swiss study including 354 patients identified 32.9% working full-time one year before transplantation, 20.9% part-time and 11.9% part-time with part disability pension; in total, 65.7% were employed. One-year post-transplant 36.2% worked full-time, 19.5% part-time, and 10.6% part-time with part-time disability pension, in total 66.3% [13]. Another Swiss study found approximately the same relatively high rate of employment pre- and post-transplant [4]. In a cohort study performed in the U.S among 105,181 post-kidney transplant patients, 34.2% worked full-time, and 6% part-time pre-transplant.

One year post-transplant, 38.1% worked full-time, and 4.3% part-time [56]. In another U.S study from 2014 among 27,981 kidney failure-patients in the working age (18–64 years) a total of 33% worked pre-transplant and 32.1% one-year post-transplant [60].

Predictors for employment during dialysis and post-transplant

During dialysis

Twelve studies had information of normative comparison data to use for meta-analysis of predictors for employment during dialysis and only for few of the predictors wanted: dialysis modality (peritoneal vs hemodialysis), diabetics vs non-diabetics, educational level (more than vs high school or less), and gender (male vs female) [4, 20, 22, 23, 27, 33, 34, 39, 40, 42, 55, 58]. Predictors for employment during dialysis was non-diabetics, educational level more than high school, peritoneal dialysis, and male. Heterogeneity was small for non-diabetics, moderate for educational level and substantial/high for peritoneal dialysis and gender as indicted by the I^2 values, Table 5 and Fig. 2a-d (Supplementary).
Table 4.b. Employment Rate in Patients Pre-dialysis and During Dialysis, by Continent (Weighted Mean, Standard deviation, SD, and Range)

Continent	Pre-dialysis		During Dialysis			
	Weighted mean	SD	range	Weighted mean	SD	range
Europe	57.1	16.7	28.0-65.3	45.8	12.3	17.1-59.7
North America	59.1	21.9	35.6-93.5	24.8	12.0	10.5-42.9
Other (Asia, South America, New Zealand)	63.0	41.4	17.1-59.7	24.8	12.0	10.5-42.9
Total	59.0	22.0	28.0-93.5	26.3	13.5	10.5-59.7

Table 4.b. Employment Rate in Patients Pre- and Post-kidney Transplantation, by Continent (Weighted Mean, SD, Range)

Continent	Pre-transplant		Post-transplant			
	Weighted mean	SD	range	Weighted mean	SD	range
Europe	61.3	11.1	54.0-86.0	53.7	8.9	38.0-67.0
North America	36.0	21.2	33.0-85.6	36.3	9.7	14.2-58.0
Other (Asia)	25.0	53.8	26.0-85.0	27.6		
Total	36.9	19.3	25.0-86.0	38.2	14.6	14.2-85.0
Table 5. Predictors for Employment During Dialysis and Post-transplant

DIALYSIS	Studies	Participants	Heterogeneity	Meta-analysis		
Diabetes (non-diabetic/diabetic)	7	479	6.34	0.39	5%	1.68 (1.46, 1.93)
Education (>high school/<=high school)	6	1704	10.0	0.08	50%	2.57 (2.06, 3.21)
Dialysis type (peritoneal dialysis/hemodialysis)	6	6081	19.3	0.002	74%	2.24 (2.01, 2.51)
Gender (male/female)	6	215	128	<0.001	96%	4.09 (3.59, 4.67)

POST TRANSPLANT	Studies	Participants	Heterogeneity	Meta-analysis		
Gender (male/female)	12	253	13.1	0.29	16%	1.41 (1.19, 1.67)
Education (>high school/<=high school)	10	2139	11.9	0.22	24%	2.25 (1.85, 2.75)
Kidney donor (living donor/deceased donor)	10	2597	8.7	0.47	0%	2.74 (2.30, 3.27)
Pre-transplant employed (employed/unemployed)	8	74408	26.8	<0.001	74%	13.63 (13.1, 14.2)
Diabetes (non-diabetic/diabetic)	8	3114	15.2	0.03	54%	1.62 (1.36, 1.92)
Ethnicity (white/other than white)	5	944	5.1	0.28	21%	1.95 (1.44, 2.64)
Age (<50 yr/>=50 yr)	5	1566	6.5	0.17	38%	2.29 (1.85, 2.84)
Dialysis type (peritoneal/hemodialysis)	4	749	2.7	0.45	0%	1.55 (1.02, 2.35)
Waiting time (<2 yr/>=2 yr)	4	1226	0.2	0.98	0%	1.82 (1.37, 2.42)
Depression (no depression/depression)	3	1084	2.2	0.33	9%	2.24 (81.5, 3.27)
Dialysis duration (<2 yr/>=2 yr)	2	477	3.2	0.08	68%	3.82 (2.51, 5.83)

Post-transplant
Fifteen of the studies reporting employment rate post-transplant also had information of normative comparison data to use for a meta-analysis of predictors for employment post-transplant [3, 4, 12, 13, 44, 48–52, 55, 58–60, 63, 69]. There was only enough normative data for some of the wanted predictors: pre-employment, educational level, donor type, dialysis modality, diabetics, waiting time for transplant, time on dialysis, depression, gender, age, and ethnicity. The predictors for employment post-transplant with low heterogeneity was having a living donor, educational level more than high school, peritoneal dialysis, male, younger age, being white, waiting-time for transplant, and depression, and with moderate heterogeneity pre-transplant employment, non-diabetics, and shorter time in dialysis (<2 years), Table 5 and Fig. 3a-k (Supplementary).

Assessment of quality of included studies
The studies addressing employment during dialysis were assessed as of low quality (n = 8; 24.2%) [18, 19, 36, 40, 43, 66, 67, 69] medium quality (n = 20; 60.6%) [17, 20, 22–30, 32–35, 37, 41, 42, 65, 68]; and high quality (n = 4; 12.1%) [14, 21, 31, 39].

According to The Newcastle-Ottawa criteria of assessment, studies of post-transplant employment were assessed of low quality (score 1–3) (n = 4; 12.9%) [45, 66, 67, 69]; medium (score 4–6) (n = 19; 61.3%) [46–55, 58–65, 68]; and high quality (score 7–9) (n = 8; 25.8%) [3, 4, 12–14, 44, 56, 57].

Many studies were cross-sectional single center studies, with a relatively small number of participants and self-reported patient data. Only 3 studies were prospective cohort studies [4, 40, 50]. When only including the high-quality studies in the analyses the employment for dialysis patients changed from 26.3% (weighted mean, all studies) to 25.2% (weighted mean, high quality studies). The post-transplant employment rate changed from 36.9% (weighted mean, all studies), to 42.5% (weighted mean, high quality studies). The quality assessment is shown in Supplementary Tables 6a-6d.

Discussion
Key Findings
This is the first quantitative systematic review focusing on employment rate in kidney failure-patients during chronic dialysis treatment as well as kidney transplantation. In the systematic review we found that the employment rate decreased considerably during dialysis compared to pre-dialysis, likely because the treatment constitutes a barrier to full- or part-time employment. However, the post-transplantation employment rate decreased or
increased only slightly compared to pre-transplant and dialysis conditions. Our analyses support that it is very difficult to remain employed during dialysis and that employment depends on a combination of personal, clinical and work-related factors.

In the meta-analysis the strongest predictor of post-transplant employment was shown to be pre-transplant employment [4, 12, 13, 44, 49, 50, 52, 60] but with high heterogeneity between studies. Danuser et al. found that 81% of patients who worked pre-transplant were still employed post-transplant. [4] Sandhu et al. showed that among a US population, employment gave a privileged access to and shortened the waiting time for transplantation [70]. In the two prospective cohort studies [4, 50] employment status before transplant was also the most important predictor for employment 12 months after kidney transplant which support the results of this study and the result from Sandhu et al.

Educational level was also a predictor of post-transplant employment as patients with a higher educational level were more likely to be employed post-transplant [3, 4, 12, 13, 44, 48, 55, 58, 59, 63]. Persons with a higher educational level may have more job opportunities and flexibility, lower physical workload, good insurances, and better health care which may influence both the possibilities for employment before kidney-failure, during dialysis and post-transplant.

Being younger was also a predictor of post-transplant employment [4, 12, 13, 58, 59]. Danuser et al. found that younger patients were more likely to be employed before dialysis [4], which increases the chances of being in jobs during dialysis and post-transplant.

Having a living donor kidney may also influence the employment status [3, 4, 12, 13, 44, 49, 50, 52, 55, 63]. However, the association of receiving a living donor kidney and post-transplant employment may not be causal, but to a greater extent depend on the resources of the recipient and their surroundings [71, 72]. Having diabetes, and ethnicity other than white was also associated with a lower rate of living donor kidney transplantation [4, 71, 73] and influence the employment level [3, 4, 12, 44, 49–52, 58], supporting this assessment. A shorter waiting time for kidney transplantation increased the possibility of post-transplant employment [4, 12, 13, 55] which was shown especially for patients receiving a living donor kidney [4]. All these factors may therefore affect whether you receive a living donor and the employment status. The differences in employment rates may also be explained by the fact that the employment status determines the choice of dialysis modality and that employed with a higher level of education may have an increased interest and access to transplantation compared to unemployed [39, 40].

In general, employment constitutes a large and important part of our well-being and quality of life and persons with a high depression score have a lower well-being and quality of life and lower employment rates [4, 55, 58]. Studies have also shown that the depression scores decreased in patients who were employed post-transplant [4, 44]. Therefore, less depression may be related to employment and not having a transplantation per se.

The employment rate for kidney-failure-patients differs between studies and countries, but in general it is lower than the employment rate in the general population [8]. The variation between countries and continents may be related to differences in the mentioned predictors. Other factors may also cause some of the differences such as whether you have private or public health insurance. Kutner et al. from U.S showed that patients remaining employed after initiation of dialysis were twice as likely to have an employer-paid group insurance as those who did not remain employed [27]. Likewise, an Italian study by Sangalli et al. showed that employed more often had private health insurances than unemployed [58]. Contrary, a Chinese investigation found no effect on the employment level of having a medical insurance [22]. Other studies have shown that the probability of returning to work is reduced if you have already a disability pension [49], but receiving a disability pension may also be explained by being more handicapped and probably therefore unable to work. In countries without disability pension, patients may either be forced to work, or they are dependent on support from their relatives.

This study has identified potential factors which may increase the employment rate during dialysis pre- and post-transplant, including maintenance of pre-transplantation employment. Educational support, support in maintaining a job during dialysis, and early return to work after transplantation seem important for post-transplantation employment.

Comparison with existing reviews

Only one earlier review has investigated employment rate post-transplant in all adult patients [7]. However, this review only included 9 studies and a population of only 23,059. They found an employment rate of 39.4% (weighted mean) post-transplant while our review included 137,742 individuals with an employment rate of 38.2% (weighted mean- all studies) and 34.4% (weighted mean- only studies of patients below 65 years of age). The small differences in employment rates between the two reviews may be explained by the number of included studies, and the large variation in employment rates between the individual studies.

A review of 16–30 year old kidney failure-patients showed that those in dialysis were more likely to be unemployed than patients having a kidney transplant, corresponding to the findings in our review [74]. Overall, the previous studies support the findings in the present study that dialysis and post-transplant patients have a lower employment rate than the general population.

Strengths and limitations

The strengths of this review and meta-analysis are the wide search criteria ensuring inclusion of relevant studies and summarizes the knowledge of employment rate for kidney failure-patients during dialysis, pre- and post-transplant. However, there are some limitations. First, nearly all studies were without a control group and had no comparisons of employment rates with a background population. Second, most of the studies were cross-
sectional in design which limits the evidence of causality between employment and dialysis or kidney transplantation. Third, only few studies had independent results of the employment rate and many employment rates were self-reported, inducing a high risk of recall bias. Furthermore, 70% of the studies on dialysis and 45% of kidney transplantation included subjects more than 65 years old which can lead to an underestimation of the real employment rate. However, excluding studies with patients > 65 years of age did not change the employment rate very much. Finally, many studies did not include all the relevant risk factors for unemployment. Moreover, each country has their own social laws and social and health insurance systems to support kidney failure-patients staying at work or returning to work, which may also influence the employment rate, making it difficult to compare results across countries.

Implications for and future research and management of return to work

This review has identified areas of concern among adults with kidney failure. However, it is necessary to be cautious regarding the limitations mentioned. As is the case for other diseases and health in general, kidney failure-patients are also subject to social inequality regarding employment opportunities. There is a need for larger prospective cohort studies of kidney failure which ideally should include more detailed information about social and educational circumstances before and during replacement therapy and comparison of similar data with a relevant general background population from the same country.

Further studies should focus more on the predictors for staying employed to better understand the barriers and facilitation possibilities to support people with kidney failure to remain employed including clarifying the importance of dialysis duration, time since diagnosis of severe chronic kidney disease, the importance of family resources and specific social measures taken in each country. Future research should also focus on intervention through education, social support systems, and workplace and work task adaptation to find the best support systems to help kidney failure-patients to stay at work during dialysis as well as after transplantation. Also, studies should only focus on patients of working age with data on employment from independent sources such as tax or social benefits registries.

Conclusion

Kidney failure-patients have a low employment rate during dialysis as well as pre- and post-transplant. Pre-dialysis employment, a higher education, not having diabetes or depression, being younger, male, white, receiving a living donor kidney, and a short waiting time before transplantation were all predictors for post-transplant employment. It is important to support kidney failure-patients through a combination of clinical and social measures to ensure they remain in work.

Abbreviations

PD: peritoneal dialysis; HD: hemodialysis; APD: Automated Peritoneal Dialysis; CAPD: Continuous Ambulatory Peritoneal Dialysis; NHHD: nocturnal home; Yr: year; NOS: Newcastle Ottawa Quality Assessment Scale; SD: standard deviation; n.a.: not analysed; n.r.: not relevant

Declarations

Acknowledgements

None.

Funding

The study is supported by Augustinus Foundation (journal number 19-2321).

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Authors’ contributions

LK made the systematic research including reading articles, made the blinded quality assessment and the meta-analysis, drafting and revising the article. RC made the blinded quality assessment and the discussion afterwards of articles to be included in the research and the scores. Drafting and revising the article. TL drafted and revised the article; NHB drafted and revised the article.

All authors provided the intellectual content and critical discussion on the assessment and conclusions. Final approval of the version to be published.

Competing interests

None.
Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable as this is a systematic review. All the studies that are included have obtained ethical approval and consent as appreciated by the journal that they have been published in.

Author details
- Centre of Social Medicine, University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark
- Department of Transplantation Medicine, Oslo University Hospital, Norway
- Department of Public Health, University of Copenhagen, Denmark

Department of Renal Medicine, Aarhus University Hospital, Denmark

References
1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.
2. Levey AS, Eckardt KU, Dorman NM, Christiansen SL, Hoorn EJ, Ingelfinger JR et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020;97:1117-29.
3. Chisholm-Burns MA, Ericson SR, Spivey CA, Kaplan B. Health-related quality of life and employment among renal transplant recipients. Clin Transplant. 2012;26:411–7.
4. Danuser B, Simcox A, Studer R, Koller M, Wild P. Employment 12 months after kidney transplantation: An in-depth bio-psycho-social analysis of the Swiss Transplant Cohort. PLoS One. 2017;12:1–17.
5. Manns B, McKenzie SQ, Au F, Gignac PM, Geller LI, for the Canadians Seeking Solutions and Innovations to Overcome Chronic Kidney Disease (Can-SOLVE CKD) Network. The financial impact of advanced kidney disease on Canada pension plan and private disability insurance costs. Can J Kidney Health Dis. 2017;4:1–11.
6. Kramer A, Pipias M, Noordzij M, Stel VS, Andrusev AM, Aparicio-Madre MI et al. The European Renal Association - European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2016: a summary. Clin Kidney J 2019;12:702 – 20.
7. D'Egidio V, Mannocci A, Ciaccio D, Sestili C, Cocchiara RA, Del Cimmuto A et al. Return to work after kidney transplant: a systematic review. Occup Med. 2019;69:412–8.
8. OECD. Employment rate (indicator). https://dataoecd.org/emp/employment-rate.htm 2020. Assessed on 11. May
9. Hannerz H, Pedersen B, Poulsen OM, Humle F, Andersen LL. A nationwide prospective cohort study on return to gainful occupation after stroke in Denmark 1996–2006. BMJ Open. 2011;1:1–5.
10. Tumin D, Chou H, Hayes D Jr, Tobias JD, Galantowicz M, McConnell PI. Employment after heart transplantation among adults with congenital heart disease. Congenit Heart Dis. 2017;12:794–9.
11. Islam T, Dahlui M, Majid HA,Nahar AM, Mohd Taib NA, Su TT, MyBCC study group. Factors associated with return to work of breast cancer survivors: a systematic review. BMC Public Health. 2014;14:1–13.
12. Eng M, Zhang J, Cambon A, Marvin MR, Gleason J. Employment outcomes following successful renal transplantation. Clin Transplant. 2012;26:242–6.
13. Eppenberger L, Hirt-Minkowski P, Dickenmann M. Back to work? Socioeconomic status after kidney transplantation. Swiss Med Wkly. 2015;145:1–8.
14. Helanterä I, Haapio M, Koskinen P, Grönhagen-Risca C, Finne P. Employment of patients receiving maintenance dialysis and after kidney transplant: A cross-sectional study from Finland. Am J Kidney Dis. 2012;59:700–6.
15. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group Preferred Reporting Items for Systematic reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:1–6.
16. Wells GA, Shea B, O'Connell D, Peterson J, V Welch V, Losos M et al. Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. http://wwwohricaprograms/clinical_epidemiology/oxfordasp. 2009.
17. Albatineh AN, Ibrahimou B. Factors associated with quality-of-life among Kuwaiti patients on maintenance hemodialysis. Psychol Health Med. 2019;24:1005–13.
18. Al-Jumaih A, Al-Onazi K, Binsalih S, Hejaili F, Al-Sayyari A. A study of quality of life and its determinants among hemodialysis patients using the KDQOL-SF instrument in one center in Saudi Arabia. Arab J Nephrol Transplant. 2011;4:125–9.
19. AlShahrani MA, Alayed A, AlShehri AH, Solaiman O, Awadalla NJ, Alhomrany M. Depression and impaired work productivity. Saudi J Kidney Dis Transpl. 2018;29:1133–7.

20. Ghanzi Z, Rydell H, Jarl J. The effect of peritoneal dialysis on labor market outcomes compared with institutional hemodialysis. Perit Dial Int. 2019;39:59–65.

21. Gutman RA, Stead W, Robinson RR. Physical activity and employment status of patients on maintenance dialysis. N Engl J Med. 1981;304:309–13.

22. Huang B, Lai B, Xu L, Wang Y, Cao Y, Yan P et al. Low employment and low willingness of being reemployed in Chinese working-age maintained hemodialysis patients. Ren Fail. 2017;39:607–12.

23. Imanishi Y, Fukuma S, Karabayos A, Bruce M Robinson BM, Ronald L et al. Associations of employment status and educational levels with mortality and hospitalization in the dialysis outcomes and practice patterns study in Japan. PLoS One. 2017;12:1–11.

24. Kasiske BL, London W, Ellison MD. Race and socioeconomic factors Influencing early placement on the kidney transplant waiting list. J Am Soc Nephrol. 1998;9:2142–7.

25. Kutner NG, Brogan D, Fielding B. Employment status and ability to work among working-age chronic dialysis patients. Am J Nephrol. 1991;11:334–40.

26. Kutner N, Bowles T, Zhang R, Huang Y, Pastan S. Dialysis facility characteristics and variation in employment rates: A national study. Clin J Am Soc Nephrol. 2008;3:111–6.

27. Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol. 2010;5:2040–5.

28. Kwan BCH, Chow K, Ma TKW, Yu V, Law MC, Leung CB et al. Automated peritoneal dialysis in Hong Kong: There are two distinct groups of patients. Nephrology. 2013;18:356–64.

29. Li JW, Wong J, Chak WL, Chau KF. Effect of incident nocturnal home hemodialysis versus incident continuous ambulatory peritoneal dialysis on employment rate, clinical, and laboratory outcomes: A 1-year retrospective observation study. Hemodial Int. 2018;22:308–17.

30. Molsted S, Aadahl M, Schou L, Eidemak I. Self-rated health and employment status in chronic haemodialysis patients. Scand J Urol Nep. 2004;38:174–8.

31. Nakayama M, Ishida M, Ogihara M, Hanaka K, Tamura M, Kanai H, Tonozuka Y, Marshall MR. Social functioning and socioeconomic changes after introduction of regular dialysis treatment and impact of dialysis modality: A multi-centre survey of Japanese patients. Nephrology. 2015;20:523–30.

32. Neumann D, Lamprecht J, Robinski M, Mau W, Gimdt M. Social relationships and their impact on health-related outcomes in peritoneal versus haemodialysis patients: a prospective cohort study. Nephrol Dial Transplant. 2018;33:1235–44.

33. Takaki J, Yano E. The relationship between coping with stress and employment in patients receiving maintenance haemodialysis. J Occup Health. 2006;48:276–83.

34. Tanaka M, Ishibashi Y, Hamasaki Y, Kamijo Y, Idei M, Kawahara T et al. Health-related quality of life on combination therapy with peritoneal dialysis and hemodialysis in comparison with hemodialysis and peritoneal dialysis: A cross-sectional study. Peri Dial Int. 2020;1–8.

35. Theorell T, Konarski-Svensson JK, Ahlén J, Perski A. The role of paid work in Swedish chronic dialysis patients–a nation-wide survey: paid work and dialysis. J Int Med. 1991;230:501–8.

36. Walker RC, Howard K, Tong A, Palmer SC, Marshall MR, Morton RL. The economic considerations of patients and caregivers in choice of dialysis modality. Hemodial Int. 2016;20:634–42.

37. Wilk AS, Tang Z, Hoge C, Plantinga LC, Lea JP. Association between patient psychosocial characteristics and receipt of in-center nocturnal hemodialysis among prevalent dialysis patients. Hemodial Int. 2019;23:479–85.

38. Zimmerman D, Albert S, Llewellyn-Thomas H, Hawker GA. The influence of socio-demographic factors, treatment perceptions and attitudes to living donation on willingness to consider living kidney donor among kidney transplant candidates. Nephrol Dial Transplant. 2006;21:2569–76.

39. Curtin RB, Oberley E, Sacksteder P, Friedman A. Differences between employed and nonemployed dialysis patients. Am J Kidney Dis. 1996;27:533–40.

40. van Manen JG, Korevaar J, Dekker FW, Reuselaars MC, Boeschoten EW, Krediet RT, and NECOSAD Study Group. Changes in employment status in end-stage renal disease patients during their first year of dialysis. Peri Dial Int. 2001;21:595–601.

41. Wolcott DL, Nissenson A. Quality of life in chronic dialysis patients: A critical comparison of continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis. Am J Kidney Dis. 1988;11:402–12.

42. Holley JL, Nespor S. An analysis of factors affecting employment of chronic dialysis patients. Am J Kidney Dis. 1994;23:681–5.

43. Ravindran A, Sunny A, Kunnath RP, Divakaran B. Assessment of quality of life among end-stage renal disease patients undergoing maintenance hemodialysis. Indian J Palliat Care. 2020;26:47–53.

44. Bohlke M, Marini S, Gomes RH, Terhorst L, Rocha M, Poli de Figueiredo CE, et al. Predictors of employment after successful kidney transplantation – a population-based study. Clin Transplant. 2008;22:405–10.
45. Chen WC, Chen C, Lee PC, Wang WL. Quality of life, symptom distress, and social support among renal transplant recipients in Southern Taiwan: A correlational study J Nurs Res. 2007;15:319–28.

46. De Baere C, Delva D, Kloeck A, Remans K, Vanreenterghem Y, Verleden G et al. Return to work and social participation: Does type of organ transplantation matter? Transplantation. 2010;89:1009–2015.

47. De Pasquale C, Veroux M, Pistoriob ML, Papottoa A, Basileb G, Patanèb M et al. Return to work and quality of life: A psychosocial survey after kidney transplant. Transplant Proc. 2019;51:153-6.

48. Jordakieva G, Grabovac I, Steiner M, Winnicki W, Zitta S, Stefanac S et al. Employment status and associations with workability, quality of life and mental health after kidney transplantation in Austria. Int J Environ Res Public Health. 2020;17:1254–66.

49. Markell MS, DiBenedetto A, Maursky V, Sumrani N, Hong JH, Distant DA, et al. Unemployment in inner-city renal transplant recipients: Predictive and sociodemographic factors. Am J Kidney Dis. 1997;29:881–8.

50. Matas AJ, Lawson W, McHugh L, Gillingham K, Payne WD, Dunn DL, et al. Employment patterns after successful kidney transplantation. Transplantation. 1996;61:729–33.

51. Matas AJ, Payne W, Sutherland DE, Humar A, Gruessner RW, Kandaswamy R, et al. 2,500 living donor kidney transplants: A single-center experience. Ann Surg. 2001;234:149–64.

52. Messias AA, Reichelt AJ, dos Santos EF, Galton C Albuquerque GC, Kramer JSP, et al. Return to work after renal transplantation. A study of the Brazilian public social security system. Transplantation. 2014;98:1199–204.

53. Miyake K, Endo M, Okumi M, Unagami K, Kakuta Y, Furusawa M, et al. Predictors of return to work after kidney transplantation: a 12-month cohort of the Japan Academic Consortium of Kidney Transplantation study. BMJ Open. 2019;9:e031231.:1–8.

54. Monroe J, Raiz L. Barriers to employment following renal transplantation. Implications for the social work professional. Soc Work Health Care. 2005;40:61–81.

55. Nour N, Heck CS, Ross H. Factors related to participation in paid work after organ transplantation: Perceptions of kidney transplant recipients. J Occup Rehabil. 2015;25:38–51.

56. Petersen E, Baird B, Barenbaum LL, Leviatov A, Koford JK, Shihab F, et al. The impact of employment status on recipient and renal allograft survival Clin Transplant. 2008;22:428–38.

57. Raiz L. The Transplant Trap. The Impact of Health Policy on Employment Status Following Renal Transplantation. J Health Soc Policy. 1997;8:67–87.

58. Sangalli V, Dukes J, Doppalapudi SB, Costa G, Neri L. Work ability and labor supply after kidney transplantation. Am J Nephrol. 2014;40:353–61.

59. Slakey DP, Rosner M. Disability following kidney transplantation: the link to medication coverage. Clin Transplant. 2007;21:224–8.

60. Tzvetanov I, D’Amico G, Walczak D, Jeon H, Garcia-Roca R, Oberholzer J, et al. High rate of unemployment after kidney transplantation: Analysis of the United Network for Organ Sharing Database. Transplant Proc. 2014;46:1290-4.

61. van der Mei SF, Groothoff J, van Sonderen EL, van den Heuvel WJA, de Jong PE, van Son WJ. Clinical factors influencing participation in society after successful kidney transplantation. Transplantation. 2006;82:80–5.

62. van der Mei SF, van Son WJ, van Sonderen EL, de Jong PE, Groothoff JW, van den Heuvel WJA. Factors determining social participation in the first year after kidney transplantation: A prospective study. Transplantation. 2007;84:729–37.

63. van der Mei SF, Kuiper D, Groothoff JW, van den Heuvel WJA, van Son WJ, Brouwer S. Long-term health and work outcomes of renal transplantation and patterns of work status during the end-stage renal disease trajectory. J Occup Rehabil. 2011;21:325–34.

64. Whitlock RS, Seals S, Seawright A, Wynn JJ, Anderson C, Earl TM. Socioeconomic factors associated with readmission after deceased donor renal transplantation. Am Surg. 2017;83:755–60.

65. Jarl J, Gerdtham U, Desatnik P, Prütz KG. Effects of kidney transplantation on labor market outcomes in Sweden. Transplantation. 2018;102:1375–581.

66. Julián-Mauro JC, Cuervo J, Rebollo P, Callejo D. Employment status and indirect costs in patients with renal failure: differences between different modalities of renal replacement therapy. Nefrologia. 2013;33:133–41.

67. Panagopoulou A, Hardalias A, Berati S, Fourtounas C. Psychosocial issues and quality of life in patients on renal replacement therapy Saudi J Kidney Dis Transpl. 2009;20:212–8.

68. Parajuli S, Singh J, Sandal S, Liebman SE, Demme RA. Self-reported employment status and social participation after successful kidney transplantation. Prog Transplant. 2016;26:92–8.

69. Grubman-Nowak M, Jezewksa M, Szafran-Dobrowolska J, Silzien AD, Renka M. Occupational activity after renal transplantation vs quality of life, personality profile, and stress coping styles. Transplant Proc. 2020;52:0041-1345(20)30180-9:1–7.

70. Sandhu GS, Khattak M, Pavlakis M, Woodward R, Hanto DW, Wasilewski MA, Dimitri N, Goldfarb-Rumyantzevet A. Recipient's unemployment restricts access to renal transplantation. Clin Transplant. 2013;27:598–6.
72. Bos M. Can disparity in access to living-donor kidney transplants between ethnic groups be mitigated? Transpl Int. 2019;32:1028–9.
73. Vedadi A, Bansal A, Yung P, Famure O, Mitchell M, Waterman AD, et al. Ethnic background is associated with no live kidney donor identified at the time of first transplant assessment—an opportunity missed? A single-center retrospective cohort study. Transpl Int. 2019;32:1030–43.
74. Hamilton AJ, Clissold RL, Inward CD, Caskey FJ, Ben-Shlomo Y. Sociodemographic, psychological health, and lifestyle outcomes in young adults on renal replacement therapy. Clin J Am Soc Nephrol. 2017;12:1951–60.

Figures

Figure 1
Flow chart illustrating the systematic search for studies examining employment outcome in patients with kidney failure receiving dialysis or transplantation.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Titlepagesupplmat.docx
- Figure2adpredictorsdialysissupplmat.pdf
- PRISMA2009checklistkidney.doc
- Figure3akpredictorstransplantsupplmat.pdf
- Table6adsupplmat.docx