SOME REMARKS ABOUT THE ZARISKI TOPOLOGY OF THE CREMONA GROUP

IVAN PAN AND ALVARO RITTATORE

Abstract. For an algebraic variety X we study the behavior of algebraic morphisms from an algebraic variety to the group $\text{Bir}(X)$ of birational maps of X and obtain, as application, some insight about the relationship between the so-called Zariski topology of $\text{Bir}(X)$ and the algebraic structure of this group, in the case where X is rational.

1. Introduction

Let k be an algebraically closed field and denote by \mathbb{P}^n the projective space of dimension n over k. The set $\text{Bir}(\mathbb{P}^n)$ of birational maps $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ is the so-called Cremona group of \mathbb{P}^n. For an element $f \in \text{Bir}(\mathbb{P}^n)$ there exist homogeneous polynomials of the same degree $f_0, \ldots, f_n \in k[x_0, \ldots, x_n]$, without nontrivial common factors, such that if $x = (x_0 : \cdots : x_n)$ is not a common zero of the f_i’s, then $f(x) = (f_0(x) : \cdots : f_n(x))$. The (algebraic) degree of f is the common degree of the f_i’s, and is denoted by $\text{deg}(f)$.

A natural way to produce an “algebraic family” of birational maps is to consider a birational map $f = (f_0 : \cdots : f_n) \in \text{Bir}(\mathbb{P}^n)$ and to allow the coefficients of the f_i’s to vary in an affine (irreducible) k-variety T. That is, we consider polynomials $f_0, \ldots, f_n \in k[T] \otimes k[x_0, \ldots, x_n]$, homogeneous and of the same degree in x and we define $\varphi : T \to \text{Bir}(\mathbb{P}^n)$ by

$$\varphi(t, x) = (f_0(t, x) : \cdots : f_n(t, x));$$

in particular we assume that for all $t \in T$ the map $\varphi_t := \varphi(t, \cdot) : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ is birational.

As pointed out by Serre in [Ser08, §1.6] the family of the topologies on $\text{Bir}(\mathbb{P}^n)$ which make any such algebraic family a continuous function, has a finest element, designed in loc. cit as the Zariski Topology of $\text{Bir}(\mathbb{P}^n)$. Moreover, we can replace \mathbb{P}^n with an irreducible algebraic variety X of dimension n and the same holds for $\text{Bir}(X)$.

The aim of this work is to study the behavior of these “morphisms” $T \to \text{Bir}(X)$ and obtain, as application, some insight about the relationship between the topology and the algebraic structure of the group $\text{Bir}(X)$, where X is a rational variety.

More precisely, in Section 2 we present some basic results about $\text{Bir}(X)$ that show the relationship between the algebraic structure and the Zariski topology.

Both authors are partially supported by the ANII, MathAmSud and CSIC-Udelar (Uruguay).
In Section 3, the main one, we deal with the case $X = \mathbb{P}^n$, or more generally the case where X is a rational variety (see Lemma [2]). We begin by stating two deep results about the connectedness and simplicity of $\text{Bir}(\mathbb{P}^n)$ proved in [Bl2011] and [CaLa2011] (Proposition [16]) and extract as an easy consequence that a nontrivial normal subgroup of $\text{Bir}(\mathbb{P}^2)$ has trivial centralizer. Next we prove that for a morphism $\varphi : T \to \text{Bir}(\mathbb{P}^n)$, the function $t \mapsto \deg(\varphi_t)$ is lower semicontinuous (\S 3.2). This result has some nice consequences:

(a) every Cremona transformation of degree d is a specialization of Cremona transformations of degree $> d$ (Corollary [29]);
(b) the degree map $\deg : \text{Bir}(\mathbb{P}^n) \to \mathbb{Z}$ is lower semicontinuous (\S 3.3);
(c) a morphism $T \to \text{Bir}(\mathbb{P}^n)$ maps constructible sets into constructible sets (\S3.5);
(d) the Zariski topology of $\text{Bir}(\mathbb{P}^n)$ is not Noetherian (\S3.6);
(e) there exist (explicit, non canonical) closed immersions of $\text{Bir}(\mathbb{P}^{n-1}) \hookrightarrow \text{Bir}(\mathbb{P}^n)$ (\S3.7);
(f) the subgroup consisting of the elements $f \in \text{Bir}(\mathbb{P}^n)$ which stabilize the set of lines passing through a fixed point is closed (\S3.7).

2. Generalities

Following [De1970, §2] we have:

Definition 1. A birational map $\varphi : T \times X \dashrightarrow T \times X$, where T and X are k-varieties and X is irreducible, is said to be a pseudo-automorphism of $T \times X$, over T, if there exists a dense open subset $U \subset T \times X$ such that:

(a) φ is defined on U;
(b) $U_t := U \cap \{t\} \times X$ is dense in $\{t\} \times X$ for all $t \in T$, and
(c) there exists a morphism $f : U \to X$ such that $\varphi|_U(t,x) = (t,f(t,x))$, and $\varphi|_{U_t} : U_t \to \{t\} \times X$ is a birational morphism.

In particular, a pseudo-automorphism φ as above induces a family $T \to \text{Bir}(X)$ of birational maps $\varphi_t : X \dashrightarrow X$. Following [Bl2011] we call this family an algebraic family in $\text{Bir}(X)$ or a morphism from T to $\text{Bir}(X)$.

We will identify a morphism $\varphi : T \to \text{Bir}(X)$ with its corresponding pseudo-automorphism and denote $\varphi_t = \varphi(t)$.

Note that if $\varphi : T \to \text{Bir}(X)$ is a morphism, the map $\psi : T \to \text{Bir}(X)$ defined by $\psi_t = \varphi_t^{-1}$ is also a morphism where φ_t^{-1} denotes the inverse map of φ_t.

We say $F \subset \text{Bir}(X)$ is closed if its pullback under every morphism $T \to \text{Bir}(X)$ is closed in T, for all T. This defines the so-called Zariski topology on $\text{Bir}(X)$ ([Mu1974], [Ser08, §1.6], [Bl2011]).

In order to define the Zariski topology, as above, it suffices to consider morphisms from an affine variety T. Indeed, notice that a subset $F \subset T$ is closed if and only if there exists
a cover by open sets \(T = \bigcup V_i \), with \(V_i \) affine, such that \(F \cap V_i \) is closed in \(V_i \), for all \(i \). Then we may restrict a pseudo-automorphism \(\varphi : T \times X \rightarrow T \times X \) to each \(V_i \times X \) and obtain a pseudo-automorphism \(\varphi_i : V_i \times X \rightarrow V_i \times X \), for every \(i \). The assertion follows easily from the previous remark. Clearly, we may also suppose \(T \) is irreducible.

Unless otherwise explicitly stated, in the sequel we always suppose \(T \) is affine and irreducible.

Lemma 2. Let \(F : X \rightarrow Y \) be a birational map between two algebraic varieties. Then the map \(F^* : \text{Bir}(Y) \rightarrow \text{Bir}(X) \) defined by \(F^*(f) = F^{-1} \circ f \circ F \) is a homeomorphism, with inverse \((F^{-1})^* \).

Proof. The result follows once we observe that \(\varphi : T \times Y \rightarrow T \times Y \) is a pseudo-automorphism if and only if \((\text{id} \times F^{-1}) \circ \varphi \circ (\text{id} \times F) : T \times X \rightarrow T \times X \) is a pseudo-automorphism.

We consider \(\text{Bir}(X) \times \text{Bir}(Y) \subset \text{Bir}(X \times Y) \) by taking \((f, g) \in \text{Bir}(X) \times \text{Bir}(Y) \) into the rational map \(F : X \times Y \rightarrow X \times Y \) defined as \(F(x, y) = (f(x), g(y)) \).

Lemma 3. Let \(X, Y \) be algebraic varieties and \(F \in \text{Bir}(X \times Y) \) a birational map; write \(F(x, y) = (F_1(x, y), F_2(x, y)) \) for \((x, y) \in X \times Y \) in the domain of \(F \). Then \(F \in \text{Bir}(X) \times \text{Bir}(Y) \subset \text{Bir}(X \times Y) \) if and only if there exist dense open subsets \(U \subset X, V \subset Y \) such that \(F \) is defined on \(U \times V \) and \(F_1(x, y) = F_1(x, y') \), \(F_2(x, y) = F_1(x', y) \) for \(x, x' \in U \), \(y, y' \in V \).

Proof. First suppose there exist \(f \in \text{Bir}(X) \) and \(g \in \text{Bir}(Y) \) such that \(F(x, y) = (f(x), g(y)) \). Consider nonempty open sets \(U \subset X \) and \(V \subset Y \) such that \(f \) and \(g \) are defined on \(U \) and \(V \) respectively. Hence, \(F_1 \) and \(F_2 \) are defined on \(U \times V \) and we have that \(F_1(x, y) = f(x) \) and \(F_2(x, y) = g(y) \), from which the “only if part” follows.

Conversely, suppose there exist nonempty open sets \(U \) and \(V \) as stated. Then \(F_1 \) and \(F_2 \) induce morphisms \(f : U \rightarrow X \) and \(g : V \rightarrow Y \) such that \(F(x, y) = (f(x), g(y)) \) for \((x, y) \in U \times V \). Since \(U \times V \) is dense in \(X \times Y \), this completes the proof.

Proposition 4. If \(X, Y \) are algebraic (irreducible) varieties, then \(\text{Bir}(X) \times \text{Bir}(Y) \subset \text{Bir}(X \times Y) \) is a closed subgroup.

Proof. In view of Lemma 2 we can assume that \(X \subset \mathbb{A}^n \), \(Y \subset \mathbb{A}^m \) are affine varieties. Let \(\varphi : T \times X \times Y \rightarrow T \times X \times Y \) be a pseudo-automorphism (over \(T \)). Then

\[
\varphi(t, x, y) = (f_1(t, x, y), \ldots, f_n(t, x, y), g_1(t, x, y), \ldots, g_m(t, x, y)),
\]

where \(f_i, g_j \in \mathbb{k}(T \times X \times Y) \) are rational functions on \(T \times X \times Y \) (of course, \(f_i, g_j \) verify additional conditions).

Let \(A := \varphi^{-1}(\text{Bir}(X) \times \text{Bir}(Y)) \) and denote by \(\overline{A} \) the closure of \(A \) in \(T \). Following Lemma 3 it suffices to prove that the restrictions of the \(f_i \)’s (resp. the \(g_j \)’s) to \(\overline{A} \times X \times Y \) do not depend on \(y \) (resp. on \(x \)), which implies \(A = \overline{A} \).
Up to restrict ϕ to each irreducible component of A we may suppose that A is dense in T. By symmetry we only consider the case relative to the f_i’s and write f = f_i for such a rational function.

Since the poles of f are contained in a proper subvariety of T × X × Y, we deduce that there exists y_0 ∈ Y such that the restriction of f to T × X × {y_0} induces a rational function on this subvariety. If p : T × X × Y → T × X × {y_0} denotes the morphism (t, x, y) ↦→ (t, x, y_0) we conclude f ◦ p is a rational function on T × X × Y.

Our assumption implies f coincides with f ◦ p along A × X × Y, which is dense in T × X × Y, so f = f ◦ p and the result follows.

Remark 5. Two pseudo-automorphisms ϕ : T × X → T × X and ψ : T × Y → T × Y induce a morphism (ϕ, ψ) : T → Bir(X) × Bir(Y), that is, an algebraic family in Bir(X) × Bir(Y). As in the proof of Proposition 4 it follows from Lemma 3 that F ⊂ Bir(X) × Bir(Y) is closed if and only if (ϕ, ψ)^{-1}(F) is closed for every pair ϕ, ψ. Moreover, it is easy to prove that the topology on Bir(X) × Bir(Y) induced by the Zariski topology of Bir(X × Y) is the finest topology for which all the morphisms (ϕ, ψ) are continuous.

Observe that the Zariski topology of Bir(X) × Bir(Y) is finer than the product topology of the Zariski topologies of its factors, as it is the case for algebraic varieties.

Proposition 6. If ϕ, ψ : T → Bir(X) are morphisms, then t ↦→ ϕ_t ◦ ψ_t defines an algebraic family in Bir(X). Moreover, the product homomorphism Bir(X) × Bir(X) → Bir(X) and the inversion map Bir(X) → Bir(X) are continuous.

Proof. To prove the first assertion it suffices to note that the family t ↦→ ϕ_t ◦ ψ_t corresponds to the pseudo-automorphism ϕ ◦ ψ : T × X → T × X. Applying Remark 5 the first part of the second assertion follows. Indeed, if F ⊂ Bir(X) is a closed subset, then (ϕ, ψ)^{-1}(m^{-1}(F)) = (ϕ ◦ ψ)^{-1}(F). For the rest of the proof it suffices to note that for a family ψ as above the map t ↦→ ψ_t^{-1} defines an algebraic family.

Lemma 7. The Zariski topology on Bir(X) is T1. In particular, if ϕ, ψ : T → Bir(X) are two morphisms, then the subset \{t ∈ T; ϕ(t) = ψ(t)\} is closed.

Proof. It suffices to show that id ∈ Bir(X) is a closed point. Without loss of generality we may suppose X ⊂ P^m is a projective variety. Then a morphism ϕ : T → Bir(X) may be represented as

ϕ_t = (f_0(t, x) : ⋯ : f_m(t, x)), (t, x) ∈ U,
where U is as in Definition 1 and $f_i \in k[T][x_0, \ldots, x_m]$, $i = 0, \ldots, m$, are homogeneous of same degree in the variables x_0, \ldots, x_m. Therefore

$$\{ t \in T; \varphi(t) = id \} = \bigcap_{i,j=0}^m \{ t \in T : x_j f_i(t, x) - x_i f_j(t, x) = 0, \forall(t, x) \in U_t \}$$

$$= \bigcap_{i,j=0}^m \{ t \in T : x_j f_i(t, x) - x_i f_j(t, x) = 0, \forall x \in X \}$$

$$= \bigcap_{i,j=0,x \in X} \{ t \in T : x_j f_i(t, x) - x_i f_j(t, x) = 0 \}.$$

Since for all i,j the equations

$$x_j f_i(t, x) - x_i f_j(t, x) = h_1(x) = \cdots = h_\ell(x) = 0$$

define a closed set in $T \times X$, and X is projective we deduce $\{ t \in T; \varphi(t) = id \}$ is closed in T.

Corollary 8. Let $\psi : Y \to Bir(X)$ be a morphism, where Y is a projective variety. Then $\psi(Y)$ is closed.

Proof. A morphism $\varphi : T \to Bir(X)$ induces a morphism $\phi : T \times Y \to Bir(X)$ defined by $(t, y) \mapsto \varphi(t) \circ \psi(y)^{-1}$. Then $\phi^{-1}(\{id\}) = \{(t, y); \varphi(t) = \psi(y)\}$ is closed in $T \times Y$. The projection of this set onto the first factor is exactly $\phi^{-1}(\psi(Y))$ which is closed. \hfill \Box

Corollary 9. The centralizer of an element $f \in Bir(X)$ is closed. In particular, the centralizer $C_{Bir(X)}(G)$ of a subgroup $G \subset Bir(X)$ is closed.

Proof. Since the commutator map $c_f : Bir(X) \to Bir(X)$, $c_f(h) = hfh^{-1}f^{-1}$, is continuous, $c_f^{-1}(\{id\})$ is closed. \hfill \Box

Another consequence of Lemma 4 (and Remark 5) is that for an arbitrary topological subspace $A \subset Bir(X)$ and a point $f \in Bir(X)$, the natural identification map $\{f\} \times A \to A$ is an homeomorphism. As in [Sha, Chap.I, Thm. 3] we obtain:

Corollary 10. If $A, B \subset Bir(X)$ are irreducible subspaces, then $A \times B$ is an irreducible subspace of $Bir(X) \times Bir(X)$.

Proposition 11. The irreducible components of $Bir(X)$ do not intersect. Moreover, $Bir(X)^0$, the unique irreducible component of $Bir(X)$ which contains id, is a normal (closed) subgroup.

Proof. Let A, B be irreducible components containing id. Corollary 10 implies $A \cdot B$ is irreducible. Since $id \in A \cap B$ then $A \cup B \subset A \cdot B$ from which it follows $A = A \cdot B = B$. This proves the uniqueness of $Bir(X)^0$.

The rest of the proof works as in [FSRi, Chapter 3, Thm. 3.8]. \hfill \Box
We have also the following easy result:

Proposition 12. Let $H \subset \text{Bir}(X)$ be a subgroup.

(a) The closure \overline{H} of H is a subgroup. Moreover, if H is normal, then \overline{H} is normal.

(b) If H contains a dense open set, then $H = \overline{H}$.

Proof. The proof of this result follows the same arguments that the analogous case for algebraic groups (see [FSRi, Chapter 3, Section 3]). For example, in order to prove the second part of (a) it suffices to note that since $g \mapsto fgf^{-1}$ is an homeomorphism, then $fHf^{-1} = Hf^{-1}$.

\[\square\]

3. The Cremona group

In this section we consider the case $X = \mathbb{P}^n$; we fix homogeneous coordinates x_0, \ldots, x_n in \mathbb{P}^n. As in the introduction, if $f : \mathbb{P}^n \to \mathbb{P}^n$ is a birational map, the degree of f is the minimal degree $\deg(f)$ of homogeneous polynomials in $\mathbb{k}[x_0, \ldots, x_n]$ defining f.

3.1. Connectedness and simplicity.

In [Bl2011, Thms. 4.2 and 5.1] Jérémie Blanc proves the following two results:

Theorem 13 (J. Blanc). $\text{Bir}(\mathbb{P}^2)$ does not admit nontrivial normal closed subgroups.

Theorem 14 (J. Blanc). If $f, g \in \text{Bir}(\mathbb{P}^n)$, then there exists a morphism $\theta : U \to \text{Bir}(\mathbb{P}^n)$, where U is an open subset of \mathbb{A}^1 containing 0, 1, such that $\theta(0) = f, \theta(1) = g$. In particular $\text{Bir}(\mathbb{P}^n)$ is connected.

In Theorem 14 the open set U is irreducible and the morphism θ is continuous. Hence we deduce that $\text{Bir}(\mathbb{P}^n)$ is irreducible.

On the other hand, in [CaLa2011] Serge Cantat and Stéphane Lamy prove the following result:

Theorem 15 (S. Cantat-S. Lamy). $\text{Bir}(\mathbb{P}^2)$ is not a simple (abstract) group, i.e., it contains a non trivial normal subgroup.

In fact they prove that for a “very general” birational map $f \in \text{Bir}(\mathbb{P}^2)$ of degree d, with $d \gg 0$, the minimal normal subgroup containing f is nontrivial. From Theorems 13 and 14 it follows that all non trivial normal subgroup in $\text{Bir}(\mathbb{P}^2)$ are dense.

Putting all together we obtain:

Proposition 16. Let $G \subset \text{Bir}(\mathbb{P}^2)$ be a nontrivial normal subgroup. Then $C_{\text{Bir}(\mathbb{P}^2)}(G) = \{id\}$.

Proof. Suppose $C_{\text{Bir}(\mathbb{P}^2)}(G) \neq \{id\}$. The closure \overline{G} of G is a normal subgroup, then it coincides with the entire Cremona group. If $f \in C_{\text{Bir}(\mathbb{P}^2)}(G)$, then G is contained in the centralizer of f, which is closed. We deduce that f commute with all the elements.
of Bir(\mathbb{P}^2), that is $C_{\text{Bir($\mathbb{P}^2$)}}(G)$ coincides with the center $Z(\text{Bir($\mathbb{P}^2$)})$ of Bir(\mathbb{P}^2). Since $Z(\text{Bir($\mathbb{P}^2$)}) = \{id\}$, the result follows. For the convenience of the reader we give a proof of the well known fact that $Z(\text{Bir($\mathbb{P}^2$)}) = \{id\}$.

Recall that Bir(\mathbb{P}^2) is generated by quadratic transformations of the form $g_1\sigma g_2$ where $g_1, g_2 \in \text{PGL}(3, \mathbb{k})$ and $\sigma = (x_1x_2 : x_0x_2 : x_0x_1)$ is the standard quadratic transformation. Take $f \in Z(\text{Bir($\mathbb{P}^2$)})$. If $L \subset \mathbb{P}^2$ is a general line, then we may construct a quadratic transformation σ_L which contracts L to a point and such that f is well defined in this point. Since $f\sigma_L = \sigma_L f$ and we may suppose f is well defined and injective on an open set of L we deduce f transforms L into a curve contracted by σ_L, that is, the strict transform of L under f is a line, and then $f \in \text{PGL}(3, \mathbb{k})$, so $f \in Z(\text{PGL}(3, \mathbb{k})) = \{id\}$. \hfill \square

3.2. Writings and degree of a pseudo-morphism.

Let $\varphi : T \to \text{Bir(\mathbb{P}^n)}$ be a morphism, where T is an irreducible variety. Denote by $\pi : T \times \mathbb{P}^n \to T$ the projection onto the first factor. Then the pseudo-automorphism φ (Definition 1) verifies the following commutative diagram

$$
\begin{array}{ccc}
T \times \mathbb{P}^n & \xrightarrow{\varphi} & T \times \mathbb{P}^n \\
\pi \downarrow & & \downarrow \pi \\
T & & T
\end{array}
$$

In other words, φ induces a commutative diagram

$$
\begin{array}{ccc}
\mathbb{k}(T \times \mathbb{P}^n) & \xrightarrow{\varphi^*} & \mathbb{k}(T \times \mathbb{P}^n) \\
\pi^* \downarrow & & \downarrow \pi^* \\
\mathbb{k}(T) & & \mathbb{k}(T)
\end{array}
$$

We deduce that there exist rational functions $\varphi_0, \ldots, \varphi_n \in \mathbb{k}(T \times \mathbb{P}^n)$ such that

$$
\varphi(t, x) = (\varphi_0(t, x) : \cdots : \varphi_n(t, x)),
$$

where the formula above holds for (t, x) in an open set $U \subset T \times \mathbb{P}^n$. Moreover, we may suppose $U \cap (\{t\} \times \mathbb{P}^n) \neq \emptyset$ for all $t \in T$. Observe that we are assuming that U is contained in the domain of definition of φ_i, for all i. Hence, for all $t \in T$, there exists an open set $U_t \subset \{t\} \times \mathbb{P}^n$ where all $\varphi_i|_{U_t}$ are well defined. We can also assume that there exists i_t such that φ_{i_t} does not vanish in U_t.

Let $V \subset T$ be an affine nonempty open subset. From the remarks above, we deduce that there exists a (non necessarily unique) representation of φ of the form

$$
\varphi(t, x) = (f_0(t, x) : \cdots : f_n(t, x)), (t, x) \in U' \subset U \cap (V \times \mathbb{P}^n),
$$

where $U' \subset U \cap (V \times \mathbb{P}^n)$ is an open subset and $f_0, \ldots, f_n \in \mathbb{k}[V \times \mathbb{A}^{n+1}] = \mathbb{k}[V] \otimes \mathbb{k}[x_0, \ldots, x_n]$ are homogeneous polynomials in x_0, \ldots, x_n, of the same degree. In particular,
if $U' \cap \{ (t_0) \times \mathbb{P}^n \} \neq \emptyset$, then

$$\varphi_{t_0}(x) = (f_0(t_0, x), \ldots, f_n(t_0, x))$$

for x in an open set $U'_{t_0} \subset \mathbb{P}^n$; that is, there exist $x_0 \in U'_{t_0}$ and i_0 such that $f_{i_0}(t_0, x_0) \neq 0$. Observe that $\{ t_0 \} \times U'_{t_0} \subset U_{t_0}$.

Definition 17. With the notations above, consider the $(n + 1)$-uple (f_0, \ldots, f_n) satisfying (i) and let $\ell = \deg(f_i)$. We say that $w_V^\varphi = (f_0, \ldots, f_n)$ is a writing of φ on V. The positive integer $\deg(w_V^\varphi) := \ell$ is said to be the degree of w_V^φ.

Remark 18. Let $w = w_V^\varphi = (f_0, \ldots, f_n)$ be a writing of φ on an affine open subset $V \subset T$. We introduce the ideal $I(w) \subset \mathbb{k}[V] \otimes \mathbb{k}[x]$ generated by f_0, \ldots, f_n. Then $I(w)$ defines a subvariety $X^w \subset V \times \mathbb{A}^{n+1}$. Notice that X^w is stable under the action of \mathbb{k}^* on $V \times \mathbb{A}^{n+1}$ defined by $\lambda \cdot (t, x) \mapsto (t, \lambda x)$. Moreover, the projection $\pi : X^w \to V$ onto the first factor is equivariant and, by definition, surjective. The function $t \mapsto \dim \pi^{-1}(t)$ is upper-semicontinuous, from which we deduce $V_i := \{ t ; \dim \pi^{-1}(t) \geq i \}$ is closed in V for all $i = 1, \ldots, n + 1$.

Since $\pi^{-1}(t) = X^w \cap (\{ t \} \times \mathbb{A}^{n+1})$, it follows that $\dim \pi^{-1}(t) > n$ if and only if $\pi^{-1}(t) = \{ t \} \times \mathbb{A}^{n+1}$. In other words, an element $t \in V$ belongs to V_{n+1} if and only if $\{ t \} \times \mathbb{P}^n \cap U' = \emptyset$, where $U' \subset V \times \mathbb{P}^n$ is the domain of definition of the rational map $(t, x) \mapsto (t, (f_0(t, x), \ldots, f_n(t, x)))$. Observe that $V_{n+1} \subset V$.

The preceding remark motivates the following

Definition 19. Let $\varphi : T \to \text{Bir}(\mathbb{P}^n)$ be a morphism and $t \in T$. A writing passing through t is a writing w_V^φ of φ such that $t \in V \setminus V_{n+1}$.

Lemma 20. Let $\varphi : T \to \text{Bir}(\mathbb{P}^n)$ be a morphism and $t_0 \in T$. Then there exists a writing w_V^φ passing through t_0.

Proof. By definition, there exists $x_0 \in \mathbb{P}^n$ such that φ is defined in (t_0, x_0). Hence, there exist $f_0, g_0, \ldots, f_n, g_n \in \mathbb{k}[T] \otimes \mathbb{k}[x]$ such that $(g_0 \cdots g_n)(t_0, x_0) \neq 0$ and $\varphi(t, x) = \left(f_0/g_0(t, x), \ldots, f_n/g_n(t, x) \right)$, where the equality holds in an open neighborhood A of (t_0, x_0) in $T \times \mathbb{P}^n$. Eliminating denominators, we deduce that

$$\varphi(t, x) = \left(h_0(t, x), \ldots, h_n(t, x) \right),$$

where $h_i \in \mathbb{k}[T] \otimes \mathbb{k}[x]$ and the above formula holds in an open subset $A' \subset A$, containing (t_0, x_0). If $V \subset T$ is an affine open subset such that for all $t \in V$ there exists $x \in \mathbb{P}^n$ with $(t, x) \in A'$, it is clear that $w_V^\varphi = (h_0, \ldots, h_n)$ is a writing of φ through t_0.

Definition 21. Let $\varphi : T \to \text{Bir}(\mathbb{P}^n)$ be a morphism, where T is an irreducible variety. Denote by \mathcal{V} the family of nonempty affine open sets in T on which there exists, at most, a writing of φ. The degree of φ is the positive integer

$$\text{Deg}(\varphi) := \min\{ \deg(w_V^\varphi) : V \in \mathcal{V} \}.$$
Note that two \(n \)-uples \((f_0, \ldots, f_n)\) and \((f'_0, \ldots, f'_n)\), with \(\deg(f_i) = \deg(f'_i) = \text{Deg}(\varphi)\) define the same writing on an open set \(V\) if and only if they coincide up to multiplication by a nonzero element in \(k(V) = k(T)\).

For \(t \in T\) we denote by \(\deg(\varphi_t)\) the usual algebraic degree of the map \(\varphi_t : \mathbb{P}^n \rightarrow \mathbb{P}^n\); it is the minimal degree of components among the \((n+1)\)-uples of homogeneous polynomials defining \(\varphi_t\).

By applying (1) we obtain that if \(t \in T\), then \(\deg(\varphi_t) \leq \deg(w^\varphi_t)\) for every writing \(w^\varphi_t\) passing through \(t\). Moreover, we have the following

Lemma 22. Let \(w = w^\varphi_t\) be a writing for the morphism \(\varphi : T \rightarrow \text{Bir}(\mathbb{P}^n)\) and \(t \in V \setminus V_{n+1}\). Then the following assertions are equivalent:

(a) \(t \in V_n\).

(b) There is a codimension 1 subvariety \(X^w_t \subset \mathbb{A}^{n+1}\) such that \(\pi^{-1}(t) = \{t\} \times X^w_t\).

(c) \(\deg(\varphi_t) < \deg(w)\).

Proof. The equivalence of assertions (a) and (b) is obvious. In order to prove that (b) is equivalent to (c) let \(w = (f_0, \ldots, f_n)\); then for every \(t \in V \setminus V_{n+1}\) the rational map

\[
x \mapsto (f_0(t, x) : \ldots : f_n(t, x))
\]

coincides with \(\varphi_t\). Therefore \(\deg(\varphi_t) < \deg(f_i)\) if and only if the polynomials \(g_0, \ldots, g_n \in \mathbb{k}[x]\) defined by \(g_i(x) = f_i(t, x)\), where \(t\) is fixed and \(i = 0, \ldots, n\), admit a nontrivial factor. \(\square\)

The following example is taken from [BlFu2013 Lemma 2.13]

Example 23. Let \(T \subset \mathbb{P}^2\) be the projective nodal cubic curve of equation \(a^3 + b^3 - abc = 0\), with singular point \(o = (0 : 0 : 1)\), and consider the morphism \(\varphi : T \rightarrow \text{Bir}(\mathbb{P}^n)\) defined by

\[
\varphi(a : b : c) = (x_0f : x_1g : x_2f : \ldots : x_nf),
\]

where

\[
f = bx_0^2 + cx_0x_2 + ax_2^2, \quad g = (a + b)x_0^2 + (b + c)x_0x_2 + ax_2^2;
\]

note that \(\varphi_o = (x_0^2x_2 : x_0x_1x_2 : x_0^2x_2 : \ldots : x_0^2x_n)\) is the identity map.

Set \(f' = abf\) and \(g' = abg\), that is

\[
f' = ab^2x_0^2 + (a^3 + b^3)x_0x_2 + a^2bx_2^2, \quad g' = ab(a + b)x_0^2 + (ab^2 + a^3 + b^3)x_0x_2 + a^2bx_2^2.
\]

If \(V \subset T\) is the affine open set defined by \(c = 1\), then \(w^\varphi_V = (x_0f', x_1g', x_2f', \ldots, x_nf')\) is a writing of \(\varphi\) on \(V\) with degree 3. Clearly \(o \in V_{n+1}\) and \(w^\varphi_V\) is through all non-singular point in \(T\). As it follows from loc. cit the polynomial \(ax_0 + bx_2\) defines (locally) a higher common divisor for \(f'\) and \(g'\) in \(\mathbb{k}[V'] \otimes \mathbb{k}[x]\) where \(V' = V \setminus \{o\}\). Hence \(V = V_n\). Dividing all components in \(w^\varphi_V\) by \(ax_0 + bx_2\) we obtain a new writing on \(V\) of degree 2. One deduces \(\text{Deg}(\varphi) = 2\).
Remark 24. Consider a morphism \(\varphi: T \to \text{Bir}(\mathbb{P}^n) \) and let \(U \) and \(f: U \to \mathbb{P}^n \) be as in Definition 1. If \(\sigma: S \to T \) is a birational morphism it follows that the morphism

\[(\sigma \times \text{id})^{-1}(U) \to S \times \mathbb{P}^n, (s, x) \mapsto (s, f(\sigma(s), x)) \]

induces a morphism \(\varphi \circ \sigma: S \to \text{Bir}(\mathbb{P}^n) \).

If \(s \in S \), then \(((\sigma \times \text{id})^{-1}(U))_s \simeq U_{\sigma(s)} \) and up to this isomorphism the birational map \(\varphi_{\sigma(s)} \) coincides with \((\varphi \circ \sigma)_s \).

Lemma 25. Let \(\varphi: T \to \text{Bir}(\mathbb{P}^n) \) be a morphism and consider a birational morphism \(\sigma: S \to T \). Then \(\text{Deg}(\varphi) = \text{Deg}(\varphi \circ \sigma) \).

Proof. Notice that if \(\varphi: T \to \text{Bir}(\mathbb{P}^n) \) is a morphism and \(U \subset T \) is an open subset, then \(\varphi|_U: U \to \text{Bir}(\mathbb{P}^n) \) is also a morphism, and clearly \(\text{Deg}(\varphi) = \text{Deg}(\varphi|_U) \). Then it suffices to prove the result when \(\sigma \) is an isomorphism, in which case the result is trivial.

3.3. Degree and semicontinuity.

Proposition 26. Let \(\varphi: T \to \text{Bir}(\mathbb{P}^n) \) be a morphism. Consider the set \(U_\varphi := \{ t \in T : \text{deg}(\varphi_t) = \text{Deg}(\varphi) \} \). Then

(a) \(U_\varphi \) is a nonempty open subset of \(T \).

(b) \(\text{deg}(\varphi_t) \leq \text{Deg}(\varphi) \) for all \(t \in T \).

Proof. We may reduce the proof to the case where \(T \) is smooth. Indeed, if \(T \) is singular we consider a proper birational surjective morphism \(\sigma: S \to T \), where \(S \) is smooth, and set \(\psi := \varphi \circ \sigma \); assume that assertions (a) and (b) hold on \(S \). Then Remark 24 implies (b) holds on \(T \) and that remark together with Lemma 25 imply \(U_\psi = \sigma^{-1}(U_\varphi) \). Since \(\sigma \) is proper and surjective it follows that \(\sigma \) is an open morphism; hence \(\sigma(U_\psi) = U_\varphi \) is a nonempty open subset of \(T \) which proves that (a) also holds on \(T \).

Now assume \(T \) is smooth. In order to prove that \(U_\varphi \) is not empty we consider a writing \(w^\varphi_t \) such that \(\text{deg}(w^\varphi_t) = \text{Deg}(\varphi) \). By Lemma 22 it suffices to prove that \(V \setminus V_n \neq \emptyset \). Assume that \(V_n = V \) and consider the variety \(X^w \subset V \times \mathbb{A}^{n+1} \) defined by the ideal \(I(w) \) generated by the components of \(w \). Since \(V_{n+1} \subset V \), it follows that \(X^w \) has codimension 1; denote by \(Z \) the union of codimension 1 irreducible components of \(X^w \) which project onto \(V \). If \(t_0 \in V \setminus V_{n+1} \), then the ideal \(I(Z)_{t_0} \subset \mathcal{O}_{V,t_0}[x] = \mathcal{O}_{T,t_0}[x] \) of elements in \(\mathcal{O}_{V,t_0}[x] \) vanishing in a neighborhood of \(\{(t_0) \times \mathbb{A}^{n+1} \} \cap Z \) is principal; let \(g \in \mathcal{O}_{V,t_0}[x] \) be a polynomial, homogeneous in \(x_0, \ldots, x_n \), which generates \(I(Z)_{t_0} \). Hence there exist a positive integer \(\ell \), an index \(0 \leq j \leq n \) and homogeneous polynomials \(h_0, \ldots, h_n \in \mathcal{O}_{V,t_0}[x] \) such that \(f_i = g^j h_i \), for all \(i = 0, \ldots, n \), and \(h_j \notin I(Z)_{t_0} \).

There exists an affine open neighborhood \(V' \) of \(t_0 \) in \(V \setminus V_{n+1} \) such that \(f_i, g, h_i \in k[V'] \otimes k[x] \). Then \(w^\varphi_{t_0} := (h_0, \ldots, h_n) \) defines a writing of \(\varphi \) on \(V' \) through \(t_0 \), with \(\text{deg}(w^\varphi_{t_0}) < \text{deg}(w^\varphi_t) = \text{Deg}(\varphi) \), and we obtain a contradiction.

In order to prove that \(U_\varphi \) is open, let \(t_0 \in U_\varphi \) and consider a writing \(w' = w_U^\varphi = (f'_0, \ldots, f'_n) \) passing through \(t_0 \).
If \(U \setminus U_n \neq \emptyset \) then \(A = (V \setminus V_n) \cap (U \setminus U_n) \neq \emptyset \) and it follows from Lemma 22 that for all \(t \in A \)
\[
\deg(w') = \deg(\varphi_t) = \deg(w) = \deg(\varphi) = \deg(\varphi_{t_0}).
\]
Hence \(t_0 \in U \setminus U_n \subset U \varphi \).

If \(U = U_n \), by arguing as in the preceding part of the proof we deduce the existence of an affine open neighborhood \(U' \subset U \setminus U_{n+1} \) of \(t_0 \) and a writing \(w_{U'}^e = (h'_0, \ldots, h'_n) \), with \(f_i = g_i' h'_i \) for some \(g', h'_i \in k[U'] \otimes k[x] \). Since \(h'_j \) does not belong to \(I(Z')_t_0 \) (obvious notations), Lemma 22(c) implies \(\deg(w_{U'}^e) \leq \deg(\varphi_{t_0}) \), and thus \(\deg(w_{U'}^e) = \deg(\varphi) \). Hence \(t_0 \in U' \setminus U_{n+1} \subset U \varphi \) which completes the proof of (a).

In order to prove that \(U \varphi \) is open, let \(t_0 \in U \varphi \) and consider a writing \(w_{\tilde{U}}^e = (f'_0, \ldots, f'_n) \) passing through \(t_0 \). If \(t_0 \notin U \setminus U_n \) there is nothing to prove. Otherwise \(\deg(w_{\tilde{U}}^e) > \deg(\varphi_{t_0}) = \deg(\varphi) \), hence \(U = U_n \). By arguing as in the preceding part of the proof we deduce the existence of an affine open neighborhood \(U' \subset U \setminus U_{n+1} \) of \(t_0 \) and a writing \(w_{U'}^e = (h'_0, \ldots, h'_n) \), with \(f_i = g_i' h'_i \) for some \(g', h'_i \in k[U'] \otimes k[x] \). Since \(h'_j \) does not belong to \(I(Z')_t_0 \) (obvious notations), Lemma 22(c) implies \(\deg(w_{U'}^e) \leq \deg(\varphi_{t_0}) \), and thus \(\deg(w_{U'}^e) = \deg(\varphi) \). Hence \(t_0 \in U' \setminus U_{n+1} \subset U \varphi \) which completes the proof of (a).

To prove (b) we consider a writing \(w = w_{U}^e = (g_0, \ldots, g_n) \) such that \(\deg(w) = \deg(\varphi) \). Since \(g_i \in k[V] \otimes k[x] \subset k(T)[x] \) for all \(i \), there exists \(a \in k[T] \) such that \(a g_i \in k[T] \otimes k[x] \) for \(i = 1, \ldots, n \). Write
\[
ag_i = \sum_{I \in J} a_I^i x^I, \quad J = \{ I = (i_0, \ldots, i_n); i_0 + \cdots + i_n = \deg(\varphi) \}, a_I^i \in k[T],
\]
for \(i = 0, \ldots, n \).

If \(t \in T \) we take an irreducible smooth curve \(C \subset T \) passing through \(t \) such that \(C \cap U \varphi \neq \emptyset \). If \(\alpha \) is a local parameter for the local ring \(O_{C,t} \) of \(C \) at \(t \), there exists \(m \) such that \(\alpha^m \) does divide the restriction of \(a_I^i \) to \(C \), for all \(I \) and all \(i \), but \(\alpha^{m+1} \) does not; set
\[
g'_i := \sum_{I \in J} b_I^i x^I,
\]
where \(b_I^i := (a_I^i)|_C/\alpha^m \in O_{C,t}, i = 0, \ldots, n \). By construction \((g'_0, \ldots, g'_n) \) defines a writing of the morphism \(\varphi|_C : C \to Bir(\mathbb{P}^n) \) on an open neighborhood of \(t \) in \(C \). It follows \(\deg(\varphi) \leq \deg(g'_i) = \deg(\varphi_t) = \deg(\varphi) \).

As a consequence of (the proof of) Proposition 26 we have the following:

Corollary 27. Let \(\varphi : T \to Bir(\mathbb{P}^n) \) be a morphism, then:

(a) \(\deg(\varphi) = \max \{ \deg(\varphi_t) : t \in T \} \). Moreover, a writing \(w_{U}^e \) is of minimum degree, that is \(\deg(w_{U}^e) = \deg(\varphi) \), if and only if \(V \setminus V_n \neq \emptyset \).

(b) If \(t \in T \) is such that \(\deg(\varphi_t) = \deg(\varphi) \), then there exists a writing \(w = w_{U}^e \) through \(t \), with \(\deg(w) = \deg(\varphi) \).
Clearly the function \(t \mapsto \deg(\varphi_t) \) takes finitely many values, say \(d_1 = \text{Deg}(\varphi) > d_2 > \cdots > d_\ell \geq 1 \). Consider the decomposition \(T \setminus U_\varphi = X_1 \cup \cdots \cup X_r \) in irreducible components. We may restrict \(\varphi \) to each \(X_i \) and apply Proposition \[26\] to conclude \(\deg(\varphi_t) = d_2 \) for \(t \) in an open set (possibly empty for some \(i \)) \(U_i \subset X_i \) and \(\deg(\varphi_t) < d_2 \) on \(X_i \setminus U_i, i = 1, \ldots, r \). Repeating the argument with \(d_3 \), and so on, we deduce:

Theorem 28. Let \(\varphi : T \to \text{Bir}(\mathbb{P}^n) \) be a morphism. Then

(a) There exists a stratification by locally closed sets \(T = \bigcup_{j=1}^\ell V_j \) such that \(\deg(\varphi_t) \) is constant on \(V_j \), for all \(j = 1, \ldots, \ell \).

(b) The function \(\deg \circ \varphi : T \to \mathbb{N}, t \mapsto \deg(\varphi_t) \), is lower-semicontinuous. \(\square \)

Corollary 29. If \(d, e \in \mathbb{Z} \) are positive integers numbers with \(d \leq e \), then every Cremona transformation of degree \(d \) is specialization of Cremona transformations of degrees \(\geq e \).

Proof. Let \(f \) be a Cremona transformation of degree \(d \). Consider a morphism \(\theta : T \to \text{Bir}(\mathbb{P}^n) \), where \(T \) is a dense open set in \(\mathbb{A}^1 \) containing \(0, 1 \) such that \(\theta(0) = f \) and \(\theta(1) \) is a Cremona transformation of degree \(e \) (Theorem \[13\]). The proof follows from Proposition \[26\] applied to the morphism \(\theta \). \(\square \)

Corollary 30. The degree function \(\deg : \text{Bir}(\mathbb{P}^n) \to \mathbb{N} \) is lower-semicontinuous, i.e. for all \(d \) the subset \(\text{Bir}_{\leq d}(\mathbb{P}^n) \) of birational maps of degree \(\leq d \) is closed. In particular, a subset \(\mathcal{F} \subset \text{Bir}(\mathbb{P}^n) \) is closed if and only if \(\mathcal{F} \cap \text{Bir}_{\leq d}(\mathbb{P}^n) \) is closed for all \(d > 0 \).

Proof. The assertion relative to semicontinuity is a direct consequence of Theorem \[28\](b). For the last assertion we note that if \(\varphi : T \to \text{Bir}(\mathbb{P}^n) \) is a morphism and \(e = \text{Deg}(\varphi) \), then \(\varphi^{-1}(\mathcal{F}) = \varphi^{-1}(\mathcal{F} \cap \text{Bir}(\mathbb{P}^n)_{\leq e}) \). \(\square \)

Remark 31. Note that \(\text{Bir}(\mathbb{P}^n) = \bigcup_{d \geq 1} \text{Bir}_{\leq d}(\mathbb{P}^n) \), with \(\text{Bir}_{\leq d}(\mathbb{P}^n) \subsetneq \text{Bir}_{\leq d+1}(\mathbb{P}^n) \) and \(\text{Bir}(\mathbb{P}^n)_1 = \text{PGL}(n+1, \mathbb{k}) \).

3.4. Algebraization of morphisms.

In this paragraph we deal with the morphisms \(\varphi : T \to \text{Bir}(\mathbb{P}^n) \) and their relationship with the stratification described in Theorem \[28\]. We consider the locally closed sets \(\text{Bir}(\mathbb{P}^n)_d := \text{Bir}(\mathbb{P}^n)_{\leq d} \setminus \text{Bir}(\mathbb{P}^n)_{\leq d-1} \), where \(d \geq 2 \). If \(\text{Deg}(\varphi) = d \), then \(U_\varphi = \varphi^{-1}(\text{Bir}(\mathbb{P}^n)_d) \).

Nguyen has shown in his doctoral thesis (\[Ngu2009\]) that \(\text{Bir}(\mathbb{P}^n)_d \) (with the induced Zariski topology) supports a structure of algebraic variety (see also \[BlFu2013\] Prop.2.15]). We give here some details on this construction, as a preliminary result for Theorem \[33\].

For integers \(d, n, r \), with \(d, n > 0 \) and \(r \geq 0 \), we consider the vector space \(V = k[x_0, \ldots, x_n]_{d+1}^r \) of \((r+1)\)-uples of \(d \)-forms. Notice that the projective space \(\mathbb{P}(d, n, r) = \mathbb{P}(V) \) consisting of dimension 1 subspaces in \(V \) has dimension \(N(d, n, r) = \binom{n+d}{d}(r + 1) - 1 \).

The following lemma shows how to identify \(\text{Bir}(\mathbb{P}^n)_d \) with a locally closed subset of \(\mathbb{P}(d, n, n) \). In particular, \(\text{Bir}(\mathbb{P}^n)_d \) is a quasi-projective variety and \(\text{Bir}(\mathbb{P}^n)_{\leq d} \) is a finite
union of quasi-projective varieties. The reader should be aware that the topology induced by Bir(\mathbb{P}^n) on Bir($\mathbb{P}^n)_{\leq d}$ is not the one given by this union.

Lemma 32. There exists a canonical bijection between Bir($\mathbb{P}^n)_d$ and a locally closed subset of $\mathbb{P}_{(d,n,n)}$. In particular, Bir($\mathbb{P}^n)_d$ is a quasi-projective variety.

Proof. Let $e < d$ be a non-negative integer number. Consider the projective spaces $\mathbb{P}_{(d,n,n)}$, $\mathbb{P}_{(d-e,n,n)}$ and $\mathbb{P}_{(e,n,0)}$. Then there exists a “Segre type” morphism $s : \mathbb{P}_{(d-e,n,n)} \times \mathbb{P}_{(e,n,0)} \to \mathbb{P}_{(d,n,n)}$ which to a pair of elements $(g_0 : \cdots : g_n) \in \mathbb{P}_{(d-e,n,n)}$, $(f) \in \mathbb{P}_{(e,n,0)}$ it associates $(g_0 f : \cdots : g_n f)$. We denote by $W_e \subset \mathbb{P}_{(d,n,n)}$ the image of s, which is a projective subvariety.

Now consider the open set $U \subset \mathbb{P}_{(d,n,n)}$ consisting of points $(f_0 : f_1 : \cdots : f_n)$ where the Jacobian determinant $\partial(f_0,f_1,\ldots,f_n)/\partial(x_0,\ldots,x_n)$ is not identically zero. Clearly, an element $(f_0 : f_1 : \cdots : f_n) \in \mathbb{P}_{(d,n,n)} \cap U$ can be identified with a dominant rational map $\mathbb{P}^n \to \mathbb{P}^n$ defined by homogeneous polynomials (without common factors) of degree $\leq d$, and any such dominant rational map can be described in this way. Under this identification, points in $U_d := \left[\mathbb{P}_{(d,n,n)} \setminus \left(\cup_{e<n} W_e\right)\right] \cap U$ are in one-to-one correspondence with dominant rational maps defined by polynomials of degree exactly d.

As it follows readily from [RPV2001, Annexe B, Pro. B], the (bijective) image of Bir($\mathbb{P}^n)_d$ under the correspondence above is closed in U_d. Hence it is a quasi-projective variety. □

The topology given by the preceding construction coincides with the Zariski topology, inducing a structure of algebraic variety on Bir($\mathbb{P}^n)_d$:

Theorem 33 (Blanc and Furter). Let $\varphi : T \to \text{Bir}(\mathbb{P}^n)$ be a morphism with $d = \text{Deg}(\varphi)$, and let U_φ be as in Proposition 24. Then we have:

(a) the induced map $U_\varphi \to \text{Bir}(\mathbb{P}^n)_d$ is a morphism of algebraic varieties.

(b) the topology on Bir($\mathbb{P}^n)_d$ induced by Bir($\mathbb{P}^n)$ coincides with the topology of Bir($\mathbb{P}^n)_d$ induced by $\mathbb{P}_{(d,n,n)}$ as in Lemma 32. □

3.5. Chevalley type Theorem.

Theorem 34. Let X be a rational variety. If $\varphi : T \to \text{Bir}(X)$ is a morphism and $C \subset T$ is a constructible set, then $\varphi(C)$ is constructible and contains a dense open subset of $\varphi(C)$.

Proof. By Lemma 2 we may suppose $X = \mathbb{P}^n$ and φ with degree $d = \text{Deg}(\varphi)$. Hence $\varphi(T) \subset \text{Bir}(\mathbb{P}^n)_{\leq d}$; we consider the morphism $\varphi_0 : U_0 = U_\varphi \to \text{Bir}(\mathbb{P}^n)_d$ induced by φ.

On the other hand, Theorem 28 gives a stratification $T \setminus U_0 = \cup V_j^f$ by locally closed sets such that $d_j := \text{deg}(\varphi(t))$ is constant on each V_j; set $\varphi_j : V_j \to \text{Bir}(\mathbb{P}^n)_{d_j}$ the morphism induced by φ on V_j.

We deduce that \(\varphi(C) \) is constructible by using Theorem 33 and applying the standard Chevalley Theorem to the morphisms \(\varphi_0, \varphi_1, \ldots, \varphi_\ell \). The last assertion of the theorem is a general topology result: since \(\varphi(C) \) is constructible, then \(\varphi(C) = \bigcup_{i=1}^\ell Z_i \), where \(Z_i \) is a locally closed subset for all \(i = 1, \ldots, \ell \). Then

\[
\varphi(C) \setminus \bigcup_i (Z_i \setminus Z_i) = \overline{\varphi(C)} \setminus \bigcup_i (\overline{Z_i} \setminus \overline{Z_i})
\]
is a dense open subset of \(\overline{\varphi(C)} \). \(\square \)

3.6. Cyclic closed subgroups.

Corollary 35. Let \(\{f_m\} \subset \text{Bir}(\mathbb{P}^n) \) be an infinite sequence of birational maps. Then \(\{f_m\} \) is closed if and only if \(\lim_{m \to \infty} \deg(f_m) = \infty \). In particular, the Zariski topology on \(\text{Bir}(\mathbb{P}^n) \) is not Noetherian.

Proof. Let \(\varphi : T \to \text{Bir}(\mathbb{P}^n) \) be a morphism, with \(\text{Deg}(\varphi) = d \). Then there exists \(m_0 \) such that \(\deg(f_m) \geq d \) for all \(m \geq m_0 \), and thus \(\varphi^{-1}(\{f_m\}) \) is finite. Hence, the if follows from Corollary 30 and Theorem 33.

Conversely, suppose that \(\liminf_{m \to \infty} \deg(f_m) = d < \infty \). Then there exist infinitely many \(f_i \) whose degree is \(d \). Hence, \(\{f_m\} \cap \text{Bir}(\mathbb{P}^n)_d \) is an infinite countable subset of the algebraic variety and thus it is not closed. \(\square \)

Corollary 36. Let \(f \in \text{Bir}(\mathbb{P}^n) \) be a birational map of degree \(d \). The cyclic subgroup \(\langle f \rangle \) generated by \(f \) is closed if and only if either \(f \) is of finite order or \(\lim_{m \to \infty} \deg(f^m) = \infty \).

Proof. Indeed, following [DiFa2001], if \(\langle f \rangle \) is infinite, then the sequence \(\deg(f^m) \) either is bounded or grows with order at least \(m \). Hence, the infinite cyclic group \(\langle f \rangle \) is not closed only when the sequence \(\deg(f^m) \) is bounded. The remaining equivalence follows from [BlDe2013, Thm. A]. \(\square \)

3.7. Some big closed subgroups.

Let \(o \in \mathbb{P}^n \) be a point. Consider the subgroup \(\text{St}_o(\mathbb{P}^n) \subset \text{Bir}(\mathbb{P}^n) \) of birational transformations which stabilize (birationality) the set of lines passing through \(o \). If \(o' \) is another point \(\text{St}_o(\mathbb{P}^n) \) and \(\text{St}_{o'}(\mathbb{P}^n) \) may be conjugated by mean of a linear automorphism; in the sequel we fix \(o = (1 : 0 : \cdots : 0) \). In [Do2011] the group \(\text{St}_o(\mathbb{P}^n) \) is introduced in a different form and is called the de Jonquières subgroup of level \(n - 1 \) (see also [Pa2000]).
Let $\pi : \mathbb{P}^n \rightarrow \mathbb{P}^{n-1}$ be the projection of center o defined by

$$x_0 : x_1 : \cdots : x_n \mapsto (x_1 : \cdots : x_n).$$

Then $\text{St}_o(\mathbb{P}^n) = \{ f \in \text{Bir}(\mathbb{P}^n) : \exists \tau \in \text{Bir}(\mathbb{P}^{n-1}), \pi f = \tau \pi \}$. Moreover, note that $\text{St}_o(\mathbb{P}^n)$ is the semidirect product

$$1 \longrightarrow \text{Jon}_o(\mathbb{P}^n) \longrightarrow \text{St}_o(\mathbb{P}^n) \longrightarrow \text{Bir}(\mathbb{P}^{n-1}) \longrightarrow 1$$

where $\text{Jon}_o(\mathbb{P}^n) = \{ f \in \text{Bir}(\mathbb{P}^n) : \pi f = \pi \}$ and ρ is the evident homomorphism, and $\tau = \rho(f)$. Indeed, the morphism $\sigma : \text{Bir}(\mathbb{P}^{n-1}) \rightarrow \text{Bir}(\mathbb{P}^n)$ given by

$$(h_1 : \cdots : h_n) \mapsto (x_0h_1 : x_1h_1 : \cdots : x_nh_n)$$

is injective and such that $\sigma(\text{Bir}(\mathbb{P}^{n-1})) \subset \text{St}_o(\mathbb{P}^n)$. Clearly, $\rho \circ \sigma = \text{id}$.

Moreover, we affirm that ρ is continuous, and σ is a continuous closed immersion. Indeed, if $\varphi : T \rightarrow \text{Bir}(\mathbb{P}^n)$ is a morphism then the composition $\rho \circ \varphi$ defines a morphism $T \rightarrow \text{Bir}(\mathbb{P}^{n-1})$; therefore ρ is a continuous function. Clearly, σ is continuous. In order to prove, among other things, that σ is a closed immersion we need the following:

Lemma 38. Let $f \in \mathbb{k}[T] \otimes \mathbb{k}[x_0, \ldots, x_n]$ be a polynomial, homogeneous in x; denote by $\deg_{x_0}(f)$ its degree in x_0. Then for all integer $m \geq 0$ and $i = 0, \ldots, n$ the sets

$$R = \{ t \in T : x_i|f(t, x) \} , \ S_m = \{ t \in T : \deg_{x_0}(f) \leq m \}$$

are closed in T.

Proof. Let $a_1, \ldots, a_N \in \mathbb{k}[T]$ be the coefficients of f as polynomial in x_0, \ldots, x_n. It is clear that R and S_m are defined as common zeroes of a subset of the polynomials $\{a_1, \ldots, a_N\} \subset \mathbb{k}[T]$. \(\square\)

Theorem 39. The subgroups $\text{Jon}_o(\mathbb{P}^n)$ and $\text{St}_o(\mathbb{P}^n)$ are closed and $\sigma(\text{Bir}(\mathbb{P}^{n-1}))$ is closed in $\text{Bir}(\mathbb{P}^n)$. In particular, σ is a closed immersion.

Proof. Let $\varphi : T \rightarrow \text{Bir}(\mathbb{P}^n)$ be a morphism, say with $\text{Deg}(\varphi) = d$. In order to prove that $\varphi^{-1}(\text{Jon}_o(\mathbb{P}^n))$ is closed it suffices to consider a net (t_ξ) in $\varphi^{-1}(\text{Jon}_o(\mathbb{P}^n))$, where ξ varies in a directed set, and show that every limit point $t_\infty \in T$ of that net satisfies $\varphi(t_\infty) \in \text{Jon}_o(\mathbb{P}^n)$. Let t_∞ be such a limit point and $T = \bigcup_{j=0}^d V_j$ be the stratification given by Theorem $\text{(28)}(a)$, where $V_0 = U_\varphi$ is the open set introduced in Proposition (26); ξ is the semidirect product

Then there exists j such that the subnet $(t_\xi) \cap V_j$ has t_∞ as limit point. Thus, we may assume $t_\xi \in U_\varphi$ for all ξ, that is that $\deg(\varphi(t_\xi)) = d$. By shrinking T, if necessary, we may assume

$$\varphi(t, x) = (f_0(t, x) : \cdots : f_n(t, x)),$$

where $f_i \in \mathbb{k}[T] \otimes \mathbb{k}[x]$ are homogeneous in $x = \{x_0, \ldots, x_n\}$ of degree d (see Corollary $\text{(27)}(b)$). From the description given in $\text{(P2000)} \S 2$ it follows that for all ξ there exists a homogeneous polynomial $q_\xi \in \mathbb{k}[x]$ such that:

(a) $f_i(t_\xi, x) = x_iq_\xi(x)$, for $i > 0$;
(b) \(f_0(t_ξ, x) \) and \(q_ξ(x) \) have degrees \(\leq 1 \) in \(x_0 \);
(c) \(f_0(t_ξ, x)q_ξ(x) \) has degree \(\geq 1 \) in \(x_0 \).

By Lemma 38, when \(t_ξ \) specializes to \(t_∞ \), then \(ϕ_ξ = ϕ(t_ξ) \) specializes to the birational map \(ϕ_{t∞} = (f : x_1q : \cdots : x_nq) : \mathbb{P}^n −→ \mathbb{P}^n \), where \(f(x) \) and \(x_1q(x) \), \(i > 0 \), are polynomials in \(x \) of degree \(d \) and with degree \(\leq 1 \) in \(x_0 \). Suppose that \(f \) and \(q \) admit a common factor \(h \in \mathbb{K}[x_0, \ldots, x_n] \), of degree \(\geq 0 \). Since the limit map \(ϕ_{t∞} \) is birational (of degree \(\leq d \)) we deduce that \(h \in \mathbb{K}[x_1, \ldots, x_n] \); otherwise \(h \) would have degree \(1 \) in \(x_0 \) and the map \(ϕ_{t∞} \) would be defined by polynomials in \(x_1, \ldots, x_n \) contradicting birationality. Hence \(f' := f/h \) and \(q' := q/h \) satisfy the conditions (b) and (c) above. We conclude \(ϕ_{t∞} = (f' : x_1q' : \cdots : x_nq') \). Applying again the description of [Pa2000 §2], we deduce that \(πϕ_{t∞} = π \), that is \(ϕ_{t∞} ∈ \text{Jon}_o(\mathbb{P}^n) \), which proves \(\text{Jon}_o(\mathbb{P}^n) \) is closed.

In order to prove that \(σ(\text{Bir}(\mathbb{P}^{n−1})) \) is closed, consider a net \((t_ξ) ∈ ϕ^{-1}(σ(\mathbb{P}^{n−1})) \), with limit point \(t_∞ \). As before, we can assume that \(t_ξ ∈ U_ϕ \) for all \(ξ \). With the notation introduced above we have that

(a) \(f_i(t_ξ, x) = x_1h_i,ξ(x) \), for \(i > 0 \), and
(b) \(f_0(t_ξ, x) = x_0h_1,ξ(x) \),

where \(τ_ξ = (h_1,ξ : \cdots : h_n,ξ) : \mathbb{P}^{n−1} −→ \mathbb{P}^{n−1} \) is birational. From Lemma 38 we obtain that \(h_i,ξ \) specializes to a polynomial \(h_i \in \mathbb{K}[x_1, \ldots, x_n] \), \(i > 0 \) and that \(ϕ_{t∞} = (x_0h_1 : x_1h_1 : \cdots : x_nh_n) \). Since \(πϕ_{t∞} = τ_ξπ \) we conclude that \(ϕ_{t∞} ∈ \text{St}_o(\mathbb{P}^n) \) and thus \((h_1 : \cdots : h_n) ∈ \text{Bir}(\mathbb{P}^{n−1}) \) ([Pa2000 Prop. 2.2]). Since \(σ((h_1 : \cdots : h_n)) = ϕ_{t∞} \), it follows that \(σ(\text{Bir}(\mathbb{P}^{n−1})) \) is closed.

Finally, since for elements \(f ∈ \text{Jon}_o(\mathbb{P}^n) \) and \(h ∈ \text{Bir}(\mathbb{P}^{n−1}) \) the product \(f × h \) is the composition \(f_0σ(h) \), then \(\text{St}_o(\mathbb{P}^n) = \text{Jon}_o(\mathbb{P}^n)/\text{Im}(σ) \) (product in \(\text{Bir}(\mathbb{P}^n) \)). The fact that \(\text{St}_o(\mathbb{P}^n) \) is closed follows then from the two assertions we have just proved together with the continuity of the functions \(ρ : \text{St}_o(\mathbb{P}^n) −→ \text{Bir}(\mathbb{P}^{n−1}) \), the group product and the group inversion. Indeed, let \((f_ξ × h_ξ) \) be a net in \(\text{St}_o(\mathbb{P}^n) \) which specializes to \(s ∈ \text{Bir}(\mathbb{P}^n) \). Then \(ρ(f_ξ × h_ξ) = ρ(1 × h_ξ) = h_ξ \) specializes to \(ρ(s) = h ∈ \text{Bir}(\mathbb{P}^{n−1}) \). Since \((f_ξ × h_ξ)(1 × h_ξ) = f_ξ × 1 ∈ \text{Jon}_o(\mathbb{P}^n) \), the net \((f_ξ × 1) \) specializes to \(sσ(h) ∈ \text{Jon}_o(\mathbb{P}^n) \). Thus \(s ∈ \text{St}_o(\mathbb{P}^n) \).

Remark 40. More generally, for \(ℓ = 1, \ldots, n \), the map \(σ_ℓ : \text{Bir}(\mathbb{P}^{n−1}) −→ \text{Bir}(\mathbb{P}^n) \) defined by

\[
σ_ℓ((h_1 : \cdots : h_n)) = (x_0h_ℓ : x_1h_1 : \cdots : x_nh_n)
\]

is a continuous, closed, homomorphism whose image is contained in \(\text{St}_o(\mathbb{P}^n) \) and such that \(ρσ_ℓ = id \). In this notation, the map \(σ \) of Theorem 39 is \(σ_1 \). Moreover, one has

\[
\bigcap_{ℓ=1}^n σ_ℓ(\text{Bir}(\mathbb{P}^{n−1})) = \{id\}.
\]

If \(U_ℓ \) is the dense open set \(\text{Bir}(\mathbb{P}^n) \setminus σ_ℓ(\text{Bir}(\mathbb{P}^{n−1})) \), then \(\text{Bir}(\mathbb{P}^n) \setminus \{id\} = \bigcup_{ℓ=1}^n U_ℓ \).
References

[Bl2011] J. Blanc, *Groupes de Cremona, connexité et simplicité*, Ann. Sci. Éc. Norm. Supér. 43 (2010), no. 2, pp. 357-364.

[BlDe2013] J. Blanc and J. Dserti, *Degree growth of birational maps of the plane*, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.

[BlFu2013] J. Blanc and J.-Ph. Furter, *Topologies and Structures of Cremona Groups*, Ann. of Math. 178 (2013), no. 3, 1173-1198.

[CaLa2011] S. Cantat and S. Lamy, *Normal subgroups of the Cremona group*, Acta Math, Vol. 210, 1 (2013), pp 31-94.

[De1970] M. Demazure, *Sous-groupes algébriques de rang maximum du groupe de Cremona*, Ann. Sci. Éc. Norm. Supér. 4e série, t. 3, no 4 (1970), 507-588.

[DiFa2001] J. Diller and C. Favre, *Dynamics of Bimeromorphic Maps of Surfaces*, American Journal of Mathematics Vol. 123, No. 6 (Dec., 2001), pp. 1135-1169.

[Do2011] I. Dolgachev, *Lectures on Cremona transformations*, Ann Arbor-Rome, preprint 2011.

[FaWu11] Ch. Favre and E. Welc, *Degree Growth of Monomial maps and McMullen’s Polytope Algebra*, Indiana Univ. Math. J. 61 (2012), 493-524.

[FSRI] W. Ferrer-Santos and A. Rittatore, *Actions and Invariants of Algebraic Groups*, CRC Press, 2005.

[Mu1974] D. Mumford, *Algebraic Geometry in Mathematical developments arising from Hilbert problems. Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society held at Northern Illinois University*, De Kalb, Ill., May, 1974. 4445.

[Ngu2009] D. Nguyen *Groupe de Cremona*, PhD thesis, Université de Nice-Sophia Antipolis 2009.

[RPV2001] F. Ronga, I. Pan and T. Vust, *Transformation quadratiques de l’espace projective à trois dimensions*, Ann. Inst. Fourier, Grenoble 51, 5 (2001), 1153-1187.

[Pa2000] I. Pan, *Les transformations de Cremona stellaires*, Proc. American Math. Soc, V. 129, N. 5, 12571262.

[Sha] I. R. Shafarevich, *Basic Algebraic Geometry 1*, Springer-Verlag, 1988.

[Ser08] J. P. Serre, *Le groupe de Cremona et ses sous-groups finis*, Séminaire BOURBAKI, No 1000, 2008-2009. 2008-2009.

Ivan Pan, Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 - Montevideo - URUGUAY

E-mail address: ivan@cmat.edu.uy

Alvaro Rittatore, Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 - Montevideo - URUGUAY

E-mail address: alvaro@cmat.edu.uy