Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

Atanu Manna∗, Amit Maji†, P. D. Srivastava‡

Department of Mathematics, Indian Institute of Technology, Kharagpur
Kharagpur 721 302, West Bengal, India

Abstract

This paper presents new sequence spaces \(X(r, s, t; p; \Delta)\) for \(X \in \{l_\infty(p), c(p), c_0(p), l(p)\}\) defined by using generalized means and difference operator. It is shown that these spaces are complete under a suitable paranorm. Furthermore, the \(\alpha\)-, \(\beta\)-, \(\gamma\)- duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from \(X(r, s, t; p; \Delta)\) to \(X\). Finally, it is proved that the sequence space \(l(r, s, t, p; \Delta)\) is rotund when \(p_n > 1\) for all \(n\) and has the Kadec-Klee property.

2010 Mathematics Subject Classification: 46A45, 46A35, 46B45.

Keywords: Sequence spaces; Difference operator; Generalized means; \(\alpha\)-, \(\beta\)-, \(\gamma\)- duals; Matrix transformation.

1 Introduction

The study of sequence spaces play an important role in several branches of analysis, namely, the structural theory of topological vector spaces, summability theory, Schauder basis theory etc. Besides this, the theory of sequence spaces is a powerful tool for obtaining some topological and geometrical results with the help of Schauder basis.

Let \(w\) be the space of all real or complex sequences \(x = (x_n), n \in \mathbb{N}_0\). For an infinite matrix \(A\) and a sequence space \(\lambda\), the matrix domain of \(A\), which is denoted by \(\lambda_A\) and defined as \(\lambda_A = \{x \in w : Ax \in \lambda\}\) [10]. Basic methods, which are used to determine the topologies, matrix transformations and inclusion relations on sequence spaces can also be applied to study the matrix domain \(\lambda_A\). Recently, there is an approach of forming new sequence spaces by using matrix domain of a suitable matrix and characterize the matrix mappings between these sequence spaces.

Let \((p_k)\) be a bounded sequence of strictly positive real numbers such that \(H = \sup_k p_k\) and \(M = \max_k\{1, H\}\). The linear spaces \(l_\infty(p), c(p), c_0(p)\) and \(l(p)\) are introduced and studied by Maddox [1].
where

\[l_{\infty}(p) = \left\{ x = (x_k) \in w : \sup_k |x_k|^p < \infty \right\}, \]

\[c(p) = \left\{ x = (x_k) \in w : \lim_{k \to \infty} |x_k - l|^p = 0 \right\} \text{ and } , \]

\[c_0(p) = \left\{ x = (x_k) \in w : \lim_{k \to \infty} |x_k|^p = 0 \right\}, \]

\[l(p) = \left\{ x = (x_k) \in w : \sum_{k=0}^{\infty} |x_k|^p < \infty \right\}. \]

The linear spaces \(l_{\infty}(p), c(p), c_0(p) \) are complete with the paranorm \(g(x) = \sup_k |x_k|^{\frac{p}{k}} \) if and only if \(\inf p_k > 0 \) for all \(k \) while \(l(p) \) is complete with the paranorm \(\tilde{g}(x) = \left(\sum_k |x_k|^p \right)^{\frac{1}{p}} \). Recently, several authors introduced new sequence spaces by using matrix domain. For example, Başar et al. \[11\] studied the space \(bs(p) = \left[l_{\infty}(p) \right]_S \), where \(S \) is the summation matrix. Altay and Başar \[3\] studied the sequence spaces \(r^t(p) \) and \(r^t_1(p) \), which consist of all sequences whose Riesz transform are in the spaces \(l(p) \) and \(l_{\infty}(p) \) respectively, i.e., \(r^t(p) = [l(p)]_{R^t} \) and \(r^t_1(p) = [l_{\infty}(p)]_{R^t} \). Altay and Başar also studied the sequence spaces \(r^t_1(p) = [c(p)]_{R^t} \) and \(r^t_0(p) = [c_0(p)]_{R^t} \) in \[2\].

Kizmaz first introduced and studied the difference sequence space in \[12\]. Later on, many authors including Ahmad and Mursaleen \[13\], Çolak and Et \[14\], Başar and Altay \[2\] etc. studied new sequence spaces defined by using difference operator. Using Euler and difference operator, Karakaya and Polat introduced the paranormed sequence spaces \(e_0^p(p; \Delta) \), \(e_0^c(p; \Delta) \) and \(e_0^\infty(p; \Delta) \) in \[7\]. Mursaleen and Noman \[6\] introduced a sequence space of generalized means, which includes most of the earlier known sequence spaces.

In 2012, Demiriz and Çakan \[4\] introduced the new paranormed difference sequence spaces \(\lambda(u, v, p; \Delta) \) for \(\lambda \in \{ l_{\infty}(p), c(p), c_0(p), l(p) \} \), combining weighted mean and difference operator, defined as

\[\lambda(u, v, p; \Delta) = \left\{ x \in w : (G(u, v).\Delta)x \in \lambda \right\}, \]

where the matrices \(G(u, v) = (g_{nk}) \) and \(\Delta = (\delta_{nk}) \) are given by

\[g_{nk} = \begin{cases} u_nv_k & \text{if } 0 \leq k \leq n, \\ 0 & \text{if } k > n \end{cases} \]

and \(\delta_{nk} = \begin{cases} 0 & \text{if } 0 \leq k < n - 1, \\ (-1)^{n-k} & \text{if } n - 1 \leq k \leq n, \\ 0 & \text{if } k > n. \end{cases} \]

By using matrix domain, one can write \(c_0(u, v, p; \Delta) = [c_0(p)]_{G(u,v;\Delta)} \), \(c(u, v, p; \Delta) = [c(p)]_{G(u,v;\Delta)} \), \(l_{\infty}(u, v, p; \Delta) = [l_{\infty}(p)]_{G(u,v;\Delta)} \) and \(l(u, v, p; \Delta) = [l(p)]_{G(u,v;\Delta)} \).

The aim of this present paper is to introduce and study new sequence spaces \(X(r, s, t, p; \Delta) \) for \(X \in \{ l_{\infty}(p), c(p), c_0(p), l(p) \} \). It is shown that these spaces are complete paranormed sequence spaces under some suitable paranorm. Some topological results and the \(\alpha-, \beta-, \gamma- \) duals of these spaces are obtained. A characterization of some matrix transformations between these new sequence spaces is established. It is also shown that the sequence space \(l(r, s, t, p; \Delta) \) is rotund when \(p_n > 1 \) for all \(n \) and has the Kadec-Klee property.
2 Preliminaries

Let \(l_\infty, c \) and \(c_0 \) be the spaces of all bounded, convergent and null sequences \(x = (x_n) \) respectively, with norm \(\|x\|_\infty = \sup_n |x_n| \). Let \(bs \) and \(cs \) be the sequence spaces of all bounded and convergent series respectively. We denote by \(e = (1, 1, \ldots) \) and \(e_n \) for the sequence whose \(n \)-th term is 1 and others are zero and \(N_0 = \mathbb{N} \cup \{0\} \), where \(\mathbb{N} \) is the set of all natural numbers.

For any subsets \(U \) and \(V \) of \(w \), the multiplier space \(M(U, V) \) of \(U \) and \(V \) is defined as

\[
M(U, V) = \{ a = (a_n) \in w : au = (a_n u_n) \in V \text{ for all } u \in U \}.
\]

In particular,

\[
U^\alpha = M(U, l_1), \quad U^\beta = M(U, cs) \quad \text{and} \quad U^\gamma = M(U, bs)
\]

are called the \(\alpha \)-, \(\beta \)- and \(\gamma \)- duals of \(U \) respectively [10].

Let \(A = (a_{nk})_{n,k} \) be an infinite matrix with real or complex entries \(a_{nk} \). We write \(A_n \) as the sequence of the \(n \)-th row of \(A \), i.e., \(A_n = (a_{nk})_k \) for every \(n \). For \(x = (x_n) \in w \), the \(A \)-transform of \(x \) is defined as the sequence \(Ax = ((Ax)_n) \), where

\[
A_n(x) = (Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k,
\]

provided the series on the right side converges for each \(n \). For any two sequence spaces \(U \) and \(V \), we denote by \((U, V)\), the class of all infinite matrices \(A \) that map \(U \) into \(V \). Therefore \(A \in (U, V) \) if and only if \(Ax = ((Ax)_n) \in V \) for all \(x \in U \). In other words, \(A \in (U, V) \) if and only if \(A_n \in U^\beta \) for all \(n \) [10]. An infinite matrix \(T = (t_{nk})_{n,k} \) is said to be triangle if \(t_{nk} = 0 \) for \(k > n \) and \(t_{nn} \neq 0, n \in \mathbb{N}_0 \).

3 Sequence spaces \(X(r, s, t; \Delta) \) for \(X \in \{ l_\infty(p), c(p), c_0(p), l(p) \} \).

In this section, we first begin with the notion of generalized means given by Mursaleen et al. [6].

We denote the sets \(\mathcal{U} \) and \(\mathcal{U}_0 \) as

\[
\mathcal{U} = \left\{ u = (u_n)_{n=0}^{\infty} \in w : u_n \neq 0 \text{ for all } n \right\} \quad \text{and} \quad \mathcal{U}_0 = \left\{ u = (u_n)_{n=0}^{\infty} \in w : u_0 \neq 0 \right\}.
\]

Let \(r, t \in \mathcal{U} \) and \(s \in \mathcal{U}_0 \). The sequence \(y = (y_n) \) of generalized means of a sequence \(x = (x_n) \) is defined by

\[
y_n = \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k x_k \quad (n \in \mathbb{N}_0).
\]

The infinite matrix \(A(r, s, t) \) of generalized means is defined by

\[
(A(r, s, t))_{nk} = \begin{cases} \frac{s_{n-k} t_k}{r_n} & 0 \leq k \leq n, \\ 0 & k > n. \end{cases}
\]

Since \(A(r, s, t) \) is a triangle, it has a unique inverse and the inverse is also a triangle [15]. Take

\[
D_0^{(s)} = \frac{1}{s_0} \quad \text{and}
\]
such that

\[
D_n^{(s)} = \frac{1}{s_0} \begin{pmatrix}
 s_1 & s_0 & 0 & 0 \cdots & 0 \\
 s_2 & s_1 & s_0 & 0 \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 s_{n-1} & s_{n-2} & s_{n-3} & s_{n-4} \cdots & s_0 \\
 s_n & s_{n-1} & s_{n-2} & s_{n-3} \cdots & s_1
\end{pmatrix}
\]

for \(n \geq 1 \).

Then the inverse of \(A(r,s,t) \) is the triangle \(B = (b_{nk})_{n,k} \) which is defined as

\[
b_{nk} = \begin{cases}
(-1)^{n-k} \frac{D_k^{(s)}}{t_n} r_k & 0 \leq k \leq n, \\
0 & k > n.
\end{cases}
\]

Throughout this paper, we consider \(p = (p_k) \) be a bounded sequence of strictly positive real numbers such that \(H = \sup_k p_k \) and \(M = \max\{1, H\} \).

We now introduce the sequence spaces \(X(r,s,t,p;\Delta) \) for \(X \in \{l_\infty, c, c_0, l(p)\} \) as

\[
X(r,s,t,p;\Delta) = \left\{ x = (x_k) \in w : \left(\frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right)_n \in X \right\},
\]

which is a combination of generalized means and difference operator \(\Delta \) such that \(\Delta x_k = x_k - x_{k-1} \), \(x_{-1} = 0 \). By using matrix domain, we can write \(X(r,s,t,p;\Delta) = X_A(r,s,t,\Delta) = \{ x \in w : A(r,s,t;\Delta)x \in X \} \), where \(A(r,s,t;\Delta) = A(r,s,t)\Delta \), product of two triangles \(A(r,s,t) \) and \(\Delta \). These sequence spaces include many well known sequence spaces studied by several authors as follows:

I. if \(r_n = \frac{1}{s_n}, t_n = v_n \) and \(s_n = 1 \ \forall \ n \), then the sequence spaces \(X(r,s,t,p;\Delta) \) reduce to \(X(u,v,p;\Delta) \) for \(X \in \{l_\infty, c, c_0, l(p)\} \) introduced and studied by Demiriz and Çakan [4].

II. if \(t_n = 1, s_n = 1 \ \forall \ n \) and \(r_n = n + 1 \), then the sequence space \(l(r,s,t,p;\Delta) \) reduces to the non absolute type sequence space \(X_{\beta}(\Delta) \) studied by Başarir [5].

III. if \(r_n = \frac{1}{s_n}, t_n = \frac{a^n}{s_n}, s_n = \frac{(1-a)^n}{n!} \), where \(0 < \alpha < 1 \), then the sequence spaces \(X(r,s,t,p;\Delta) \) for \(X \in \{l_\infty, c, c_0, l(p)\} \) reduce to \(e_{\infty}^a(p;\Delta) \), \(e_0^a(p;\Delta) \) and \(e_0^a(p;\Delta) \) respectively introduced and studied by Karakaya and Polat [7].

IV. if \(r_n = n + 1, t_n = 1 + \frac{a^n}{n!} \), \(0 < \alpha < 1 \) and \(s_n = 1, p_n = 1 \ \forall \ n \), then the sequence spaces \(c(r,s,t,p;\Delta) \) and \(c_0(r,s,t,p;\Delta) \) reduce to the sequence spaces \(a_0^\alpha(\Delta) \) and \(a_0^\alpha(\Delta) \) respectively studied by Demiriz and Çakan [9].

4 Main results

Throughout the paper, we denote the sequence spaces \(X(r,s,t,p;\Delta) \) as \(l(r,s,t,p;\Delta), c_0(r,s,t,p;\Delta), c(r,s,t,p;\Delta) \) and \(l_\infty(r,s,t,p;\Delta) \) for \(X = l(p), c_0(p), c(p) \) and \(l_\infty(p) \) respectively.

Theorem 4.1. (a) The sequence space \(l(r,s,t,p;\Delta) \) is a complete linear metric space paranormed by \(\tilde{h} \) defined as

\[
\tilde{h}(x) = \left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^{p_n} \right)^{\frac{1}{p}}.
\]
(b) The sequence spaces $X(r, s, t, p; \Delta)$ for $X \in \{l_\infty(p), c(p), c_0(p)\}$ are complete linear metric spaces paranormed by \tilde{h} defined as

$$h(x) = \sup_n \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p.$$

Proof. We prove the part (a) of this theorem. In a similar way, we can prove the part (b).

Let $x, y \in l(r, s, t, p; \Delta)$. Using Minkowski's inequality

$$\left(\sum_{n=0}^{\infty} \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta (x_k + y_k) \right|^p \right)^{\frac{1}{p}} \leq \left(\sum_{n=0}^{\infty} \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p \right)^{\frac{1}{p}} + \left(\sum_{n=0}^{\infty} \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta y_k \right|^p \right)^{\frac{1}{p}} < \infty,$$

so we have $x + y \in l(r, s, t, p; \Delta)$.

Let α be any scalar. Since $|\alpha|^p \leq \max\{1, |\alpha|^M\}$ for any scalar α, we have $\tilde{h}(\alpha x) \leq \max\{1, |\alpha|\} \tilde{h}(x)$. Hence $\tilde{h}(\theta) = 0$, $\tilde{h}(-x) = \tilde{h}(x)$ for all $x \in l(r, s, t, p; \Delta)$ and subadditivity of \tilde{h}, i.e., $\tilde{h}(x + y) \leq \tilde{h}(x) + \tilde{h}(y)$ follows from (4.1).

Next we show that the scalar multiplication is continuous. Let (x^m) be a sequence in $l(r, s, t, p; \Delta)$, where $x^m = (x^m_k) = (x^m_0, x^m_1, x^m_2, \ldots) \in l(r, s, t, p; \Delta)$ for each $m \in \mathbb{N}_0$ such that $\tilde{h}(x^m - x) \rightarrow 0$ as $m \rightarrow \infty$ and (α_m) be a sequence of scalars such that $\alpha_m \rightarrow \alpha$ as $m \rightarrow \infty$. Then $\tilde{h}(x^m)$ is bounded that follows from the following inequality

$$\tilde{h}(x^m) \leq \tilde{h}(x) + \tilde{h}(x - x^m).$$

Now consider

$$\tilde{h}(\alpha_m x^m - \alpha x) = \left(\sum_{n=0}^{\infty} \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta (\alpha_m x^m_k - \alpha x_k) \right|^p \right)^{\frac{1}{p}}$$

$$= \left(\sum_{n=0}^{\infty} \left| \frac{1}{r^n} \sum_{k=0}^{n} s_{n-k} t_k \Delta ((\alpha_m - \alpha) x^m_k + \alpha(x^m_k - x_k)) \right|^p \right)^{\frac{1}{p}}$$

$$\leq |\alpha_m - \alpha| \tilde{h}(x^m) + |\alpha| \tilde{h}(x^m - x) \rightarrow 0 \text{ as } m \rightarrow \infty.$$

This shows that the scalar multiplication is continuous. Hence \tilde{h} is a paranorm on the space $l(r, s, t, p; \Delta)$.

Now we show that the completeness of the space $l(r, s, t, p; \Delta)$ with respect to the paranorm \tilde{h}. Let (x^m) be a Cauchy sequence in $l(r, s, t, p; \Delta)$. So for every $\varepsilon > 0$ there is a $n_0 \in \mathbb{N}$ such that

$$\tilde{h}(x^m - x^l) < \frac{\varepsilon}{2} \text{ for all } m, l \geq n_0.$$

Then by definition of \tilde{h}, we have for each n

$$\left| (A(r, s, t; \Delta) x^m)_n - (A(r, s, t; \Delta) x^l)_n \right| \leq \left(\sum_{n=0}^{\infty} \left| (A(r, s, t; \Delta) x^m)_n - (A(r, s, t; \Delta) x^l)_n \right|^p \right)^{\frac{1}{p}} < \frac{\varepsilon}{2}$$

for all $m, l \geq n_0$, which implies that the sequence $((A(r, s, t; \Delta) x^m)_n)$ is a Cauchy sequence of scalars for each fixed n and hence converges for each n. We write

$$\lim_{m \rightarrow \infty} (A(r, s, t; \Delta) x^m)_n = (A(r, s, t; \Delta) x)_n \quad (n \in \mathbb{N}_0).$$
Now taking \(l \to \infty \) in (4.2), we obtain

\[
\left(\sum_{n=0}^{\infty} \left| (A(r, s, t; \Delta)x^m)_n - (A(r, s, t; \Delta)x)_n \right|^p \right)^\frac{1}{p} < \epsilon
\]

for all \(m \geq n_0 \) and each fixed \(n \). Thus \((x^m)\) converges to \(x \) in \(l(r, s, t, p; \Delta) \) with respect to \(\tilde{h} \).

To show \(x \in l(r, s, t, p; \Delta) \), we take

\[
\left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p \right)^\frac{1}{p} = \left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta (x_k - x_k^m + x_k^m) \left| \right|^p \right)^\frac{1}{p}
\]

\[
\leq \left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p \right)^\frac{1}{p}
\]

\[
+ \left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p \right)^\frac{1}{p}.
\]

Thus \(\tilde{h}(x - x^m) + \tilde{h}(x^m) < \infty \) for all \(m \geq n_0 \).

Therefore \(x \in l(r, s, t, p; \Delta) \). This completes the proof. \(\square \)

Theorem 4.2. The sequence spaces \(X(r, s, t, p; \Delta) \) for \(X \in \{l_\infty(p), c(p), c_0(p), l(p)\} \) are linearly isomorphic to the spaces \(X \in \{l_\infty(p), c(p), c_0(p), l(p)\} \) respectively, i.e., \(l_\infty(r, s, t, p; \Delta) \cong l_\infty(p), c(r, s, t, p; \Delta) \cong c(p), c_0(r, s, t, p; \Delta) \cong c_0(p) \) and \(l(r, s, t, p; \Delta) \cong l(p) \).

Proof. We prove the theorem only for the case when \(X = l(p) \). For this, we need to show that there exists a bijective linear map from \(l(r, s, t, p; \Delta) \) to \(l(p) \). Now we define a map \(T : l(r, s, t, p; \Delta) \to l(p) \) by \(x \mapsto Tx = y = (y_n) \), where

\[
y_n = \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k.
\]

Since \(\Delta \) is a linear operator, the linearity of \(T \) is trivial. It is easy to see that \(Tx = 0 \) implies \(x = 0 \). Thus \(T \) is injective. To prove \(T \) is surjective, let \(y \in l(p) \). Since \(y = (A(r, s, t; \Delta)x)_n \), i.e.,

\[
x = (A(r, s, t; \Delta))^{-1} y = \Delta^{-1} A(r, s, t)^{-1} y,
\]

we can get a sequence \(x = (x_n) \) as

\[
x_n = \sum_{j=0}^{n} \sum_{k=0}^{n-j} (-1)^k \binom{n}{k+j} y_j \quad (n \in \mathbb{N}_0).
\]

(4.3)

Then

\[
\tilde{h}(x) = \left(\sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p \right)^\frac{1}{p} = \left(\sum_{n=0}^{\infty} \left| y_n \right|^p \right)^\frac{1}{p} = \tilde{g}(y) < \infty.
\]

Thus \(x \in l(r, s, t, p; \Delta) \) and this shows that \(T \) is surjective. Hence \(T \) is a linear bijection from \(l(r, s, t, p; \Delta) \) to \(l(p) \). Also \(T \) is paranorm preserving. This completes the proof. \(\square \)
4.1 The α, β, γ-duals of $X(r, s, t, p; \Delta)$ for $X \in \{l_\infty(p), c(p), c_0(p), l(p)\}$

In 1999, K. G. Grosse-Erdmann [5] has characterized the matrix transformations between the sequence spaces of Maddox, namely, $l_\infty(p), c(p), c_0(p)$ and $l(p)$. To compute the α, β, γ-duals of $X(r, s, t, p; \Delta)$ for $X \in \{l_\infty(p), c(p), c_0(p), l(p)\}$ and to characterize the classes of matrix mappings between these spaces, we list the following conditions.

Let L, N be any two natural numbers, F denotes finite subset of \mathbb{N}_0 and α, α_k are complex numbers. Let $p = (p_k), q = (q_k)$ be bounded sequences of strictly positive real numbers and $A = (a_{nk})_{n,k}$ be an infinite matrix. We put $K_1 = \{k \in \mathbb{N}_0 : p_k \leq 1\}$ and $K_2 = \{k \in \mathbb{N}_0 : p_k > 1\}$ and $p'_k = \frac{p_k}{p_k - 1}$ for $k \in K_2$.

\begin{align*}
\sup_F \sup_{k \in K_1} \left| \sum_{n \in F} a_{nk} p_k \right| < \infty \quad & (4.4) \\
\exists L \sup_F \sum_{k \in K_2} \left| \sum_{n \in F} a_{nk} L^{-1} \right| p'_k < \infty \quad & (4.5) \\
\lim_n |a_{nk}|^{q_n} = 0 \text{ for all } k \quad & (4.6) \\
\forall L \sup_{n} \sup_{k \in K_1} \left| a_{nk} L^{-1} \right|^{p_k} < \infty \quad & (4.7) \\
\forall L \exists N \sup_{n} \sum_{k \in K_2} \left| a_{nk} L^{-1} \right|^{p_k} < \infty \quad & (4.8) \\
\sup_{n} \sup_{k \in K_1} \left| a_{nk} \right|^{p_k} < \infty \quad & (4.9) \\
\exists N \sup_{n} \sum_{k \in K_2} \left| a_{nk} N^{-1} \right|^{p_k} < \infty \quad & (4.10) \\
\exists (\alpha_k) \lim_n |a_{nk} - \alpha_k|^{q_n} = 0 \text{ for all } k \quad & (4.11) \\
\exists (\alpha_k) \forall L \sup_{n} \sup_{k \in K_1} \left(|a_{nk} - \alpha_k| L^{-1} \right)^{p_k} < \infty \quad & (4.12) \\
\exists (\alpha_k) \forall L \exists N \sup_{n} \sum_{k \in K_2} \left(|a_{nk} - \alpha_k| L^{-1} \right)^{p_k} < \infty \quad & (4.13) \\
\exists L \sup_{n} \sup_{k \in K_1} \left| a_{nk} L^{-1} \right|^{p_k} < \infty \quad & (4.14) \\
\exists L \sup_{n} \sum_{k \in K_2} \left| a_{nk} L^{-1} \right|^{p_k} < \infty \quad & (4.15) \\
\exists N \sup_{n} \sum_{k \in F} \left| \sum_{n \in F} a_{nk} N^{-1} \right| < \infty \quad & (4.16) \\
\forall L \exists N \sup_{n} L^{-1} \sum_{k} \left| a_{nk} N^{-1} \right| < \infty \quad & (4.17) \\
\exists N \sup_{n} \sum_{k} \left| a_{nk} N^{-1} \right| < \infty \quad & (4.18) \\
\exists (\alpha_k) \forall L \exists N \sup_{n} L^{-1} \sum_{k} \left| a_{nk} - \alpha_k \right| N^{-1} \quad & (4.19)
\end{align*}
Lemma 4.3.

\[\exists N \sup_n \left(\sum_k |a_{nk}| N^{-\frac{1}{p_k}} \right)^{q_n} < \infty \] \hspace{1cm} (4.20)

\[\sum_n \left| \sum_k a_{nk} \right| < \infty \] \hspace{1cm} (4.21)

\[\lim_n \left| \sum_k a_{nk} \right|^{q_n} = 0 \] \hspace{1cm} (4.22)

\[\exists \alpha \lim_n \left| \sum_k a_{nk} - \alpha \right|^{q_n} = 0 \] \hspace{1cm} (4.23)

\[\sup_n \left| \sum_k a_{nk} \right|^{q_n} < \infty \] \hspace{1cm} (4.24)

\[\forall N \sup_F \sum_n \left| \sum_{k \in F} a_{nk} N^{\frac{1}{p_k}} \right| < \infty \] \hspace{1cm} (4.25)

\[\forall N \lim_n \left(\sum_k |a_{nk}| N^{\frac{1}{p_k}} \right)^{q_n} = 0 \] \hspace{1cm} (4.26)

\[\forall N \sup_n \left| \sum_k a_{nk} N^{\frac{1}{p_k}} \right| < \infty \] \hspace{1cm} (4.27)

\[\exists(\alpha_k) \forall N \lim_n \left(\sum_k |a_{nk} - \alpha_k| N^{\frac{1}{p_k}} \right)^{q_n} = 0 \] \hspace{1cm} (4.28)

\[\forall N \sup_n \left(\sum_k |a_{nk}| N^{\frac{1}{p_k}} \right)^{q_n} < \infty. \] \hspace{1cm} (4.29)

Lemma 4.1.

(i) \(A \in (l(p), l_1) \) if and only if (4.4) and (4.5) hold.

(ii) \(A \in (l(p), c_0(q)) \) if and only if (4.6), (4.7) and (4.8) hold.

(iii) \(A \in (l(p), c(q)) \) if and only if (4.9), (4.10), (4.11), (4.12) and (4.13) hold.

(iv) \(A \in (l(p), l_\infty(q)) \) if and only if (4.14) and (4.15) hold.

Lemma 4.2.

(i) \(A \in (c_0(p), l_1) \) if and only if (4.16) holds.

(ii) \(A \in (c_0(p), c_0(q)) \) if and only if (4.6) and (4.17) hold.

(iii) \(A \in (c_0(p), c(q)) \) if and only if (4.11), (4.18) and (4.19) hold.

(iv) \(A \in (c_0(p), l_\infty(q)) \) if and only if (4.20) holds.

Lemma 4.3.

(i) \(A \in (c(p), l_1) \) if and only if (4.16) and (4.21) hold.

(ii) \(A \in (c(p), c_0(q)) \) if and only if (4.6) and (4.17) and (4.22) hold.

(iii) \(A \in (c(p), c(q)) \) if and only if (4.11), (4.18), (4.19) and (4.23) hold.

(iv) \(A \in (c(p), l_\infty(q)) \) if and only if (4.20) and (4.24) hold.

Lemma 4.4.

(i) \(A \in (l_\infty(p), l_1) \) if and only if (4.25) holds.

(ii) \(A \in (l_\infty(p), c_0(q)) \) if and only if (4.26) holds.

(iii) \(A \in (l_\infty(p), c(q)) \) if and only if (4.27) and (4.28) hold.

(iv) \(A \in (l_\infty(p), l_\infty(q)) \) if and only if (4.29) holds.
We consider the following sets to obtain α-duals of the spaces $X(r, s, t; \Delta)$.

\[
H_1(p) = \bigcup_{L \in \mathbb{N}} \left\{ a = (a_n) \in w : \sup_{F} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n L^{\frac{r+k}{r}} \right| < \infty \right\}
\]

\[
H_2(p) = \left\{ a = (a_n) \in w : \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n \right| < \infty \right\}
\]

\[
H_3(p) = \bigcap_{L \in \mathbb{N}} \left\{ a = (a_n) \in w : \sup_{F} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n L^{\frac{r+k}{r}} \right| < \infty \right\}
\]

\[
H_4(p) = \left\{ a = (a_n) \in w : \sup_{F} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n \right|^{\frac{r_k}{p_k}} < \infty \right\}
\]

\[
H_5(p) = \bigcup_{L \in \mathbb{N}} \left\{ a = (a_n) \in w : \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n L^{\frac{r+k}{r}} \right|^{\frac{r_k}{p_k}} < \infty \right\}
\]

Theorem 4.3. (a) If $p_k > 1$, then $[l(r, s, t, p; \Delta)]^\alpha = H_5(p)$ and $[l(r, s, t, p; \Delta)]^\alpha = H_4(p)$ for $0 < p_k \leq 1$.

(b) For $0 < p_k \leq H < \infty$, then

(i) $[c_0(r, s, t, p; \Delta)]^\alpha = H_1(p)$,

(ii) $[c(r, s, t, p; \Delta)]^\alpha = H_1(p) \cap H_2(p)$,

(iii) $[l_\infty(r, s, t, p; \Delta)]^\alpha = H_3(p)$.

Proof. (a) Let $p_k > 1 \ \forall k, a = (a_n) \in w, x \in l(r, s, t, p; \Delta)$ and $y \in l(p)$. Then for each n, we have

\[
a_n x_n = \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n y_k = (Cy)_n,
\]

where the matrix $C = (c_{nk})_{n,k}$ is defined as

\[
c_{nk} = \begin{cases}
\sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n & \text{if } 0 \leq k \leq n \\
0 & \text{if } k > n
\end{cases}
\]

and x_n is given by (4.3). Thus for each $x \in l(r, s, t, p; \Delta)$, $(a_n x_n)_n \in l_1$ if and only if $(Cy)_n \in l_1$ where $y \in l(p)$. Therefore $a = (a_n) \in [l(r, s, t, p; \Delta)]^\alpha$ if and only if $C \in (l(p), l_1)$. By using Lemma 4.1(i), we have

\[
sup_{F} \sum_{k=0}^{\infty} \left| \sum_{n \in F} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n \right|^{\frac{r_k}{p_k}} < \infty.
\]

Hence $[l(r, s, t, p; \Delta)]^\alpha = H_5(p)$.

If $0 < p_k \leq 1 \ \forall k$, then by using Lemma 4.1(i), we have

\[
sup_{F} \sup_{k \in \mathbb{N}} \left| \sum_{n \in F} \sum_{j=0}^{n-k} (-1)^j \frac{D(s)}{l_j+k} r_k a_n \right|^{p_k} < \infty.
\]

Thus $[l(r, s, t, p; \Delta)]^\alpha = H_4(p)$.

(b) In a similar way, using Lemma 4.2(i), Lemma 4.3(i) and Lemma 4.4(i), we obtain $[c_0(r, s, t, p; \Delta)]^\alpha =
where the matrix $E = (e_{nk})$ is defined as

$$E = (e_{nk}) = \begin{cases} r_k \left[\frac{a_k}{s \ell_k} + \left(\frac{D_0^{(s)}}{t_k} - \frac{D_1^{(s)}}{t_{k+1}} \right) \sum_{j=1}^{k} a_j + \sum_{l=1}^{n} (-1)^{l-k} \frac{D_1^{(s)}}{t_l} \left(\sum_{j=l}^{n} a_j \right) \right] & 0 \leq k \leq n, \\ 0 & k > n. \end{cases} \quad (4.30)$$

Note: We mean $\sum_k a_k y_k = 0$ if $n > k$.

Theorem 4.4. (a) If $p_k > 1$, then $[l(r, s, t, p; \Delta)]^\gamma = \Gamma_5(p)$ and $[l_\infty(r, s, t, p; \Delta)]^\gamma = \Gamma_4(p)$ if $0 < p_k \leq 1$.

(b) If $0 < p_k \leq H < \infty$, then

(i) $[c_0(r, s, t, p; \Delta)]^\gamma = \Gamma_1(p)$,

(ii) $[c(r, s, t, p; \Delta)]^\gamma = \Gamma_1(p) \cap \Gamma_2(p)$,

(iii) $[l_\infty(r, s, t, p; \Delta)]^\gamma = \Gamma_3(p)$.

Proof. (a) Let $p_k > 1 \forall k$, $a = (a_k) \in w$, $x \in l(r, s, t, p; \Delta)$ and $y \in l(p)$. Then by using (4.3), we have

$$\sum_{k=0}^{n} a_k x_k = \left[\frac{D_0^{(s)}}{t_0} - \frac{D_1^{(s)}}{t_1} \right] \sum_{j=1}^{n} a_j + \sum_{l=2}^{n} (-1)^{l-1} \frac{D_1^{(s)}}{t_l} \left(\sum_{j=2}^{n} a_j \right) r_l y_l + \cdots + \frac{r_n a_n}{t_n} D_0^{(s)} y_n$$
where the matrix E is defined in 4.30.

Thus $a \in \{l(r, s, t, p; \Delta)\}^\top$ if and only if $ax = (a_k x_k) \in bs$, where $x \in l(r, s, t, p; \Delta)$ if and only if $
\sum_{k=0}^n a_k x_k \in l_\infty$, i.e., $(Ey)_n \in l_\infty$, where $y \in l(p)$. Hence by using Lemma 4.1(iv) with $q_n = 1 \forall n$, we have

$$\sup_{n \in \mathbb{N}_0} \sum_{k=0}^\infty |e_{nk} L^{-1}|^{p_k} < \infty,$$

for some $L \in \mathbb{N}$.

Hence $[l(r, s, t, p; \Delta)]^\top = \Gamma_3(p)$.

If $0 < p_k \leq 1 \forall k$, then using Lemma 4.1(iv), we have

$$\sup_{n \in \mathbb{N}_0} \sup_{k \in \mathbb{N}_0} |e_{nk} L^{-1}|^{p_k} < \infty$$

for some $L \in \mathbb{N}$.

Thus $[l(r, s, t, p; \Delta)]^\top = \Gamma_4(p)$.

(b) In a similar way, using Lemma 4.2(iv), Lemma 4.3(iv) and Lemma 4.4(iv), we obtain $[c_0(r, s, t, p; \Delta)]^\top = \Gamma_1(p)$, $[c(r, s, t, p; \Delta)]^\top = \Gamma_1(p) \cap \Gamma_2(p)$ and $[l_\infty(r, s, t, p; \Delta)]^\top = \Gamma_3(p)$ respectively.

To find the β-duals of $X(r, s, t, p; \Delta)$, we define the following sets:

$$B_1 = \{a = (a_n) \in w : \sum_{j=k+1}^\infty a_j \text{ exists for all } k\},$$

$$B_2 = \{a = (a_n) \in w : \sum_{j=k+2}^\infty (-1)^j D_j (s) \sum_{l=1}^\infty a_l \text{ exists for all } k\},$$

$$B_3 = \{a = (a_n) \in w : \left(\frac{r_k a_k}{t_k}\right) \in l_\infty(p)\},$$

$$B_4 = \bigcup_{L \in \mathbb{N}} \left\{a = (a_n) \in w : \sup_{n \in \mathbb{N}_0} \sum_{k=0}^\infty |e_{nk} L^{-1}|^{p_k} < \infty\right\},$$

$$B_5 = \{a = (a_n) \in w : \sup_{n, k \in \mathbb{N}_0} |e_{nk}|^{p_k} < \infty\},$$

$$B_6 = \{a = (a_n) \in w : \exists (\alpha_k) \lim_{n \to \infty} e_{nk} = \alpha_k \forall k\},$$

$$B_7 = \bigcap_{L \in \mathbb{N}} \left\{a = (a_n) \in w : \exists (\alpha_k) \sup_{n, k \in \mathbb{N}_0} |e_{nk} - \alpha_k L|^{p_k} < \infty\right\},$$

$$B_8 = \bigcap_{L \in \mathbb{N}} \left\{a = (a_n) \in w : \exists (\alpha_k) \sup_{n \in \mathbb{N}_0} \sum_{k=0}^\infty |e_{nk} - \alpha_k L|^{p_k} < \infty\right\},$$

11
Proof. (a) Let $p_k > 1$ for all k. We have from (4.31)

$$\sum_{k=0}^{n} a_k x_k = (Ey)_n,$$

where the matrix E is defined in (4.30). Thus $a \in \{l(r, s, t; p; \Delta)\}^\beta$ if and only if $ax = (a_k x_k) \in cs$ where $x \in l(r, s, t; p; \Delta)$ if and only if $(Ey)_n \in c$ where $y \in l(p)$, i.e., $E \in (l(p), c)$. Hence by Lemma 4.1(iii) with $q_n = 1 \forall n$, we have

$$\exists L \in \mathbb{N} \sup_{n \in \mathbb{N}_0} \sum_{k=0}^{\infty} |e_{nk} L^{-1} p_k^r| < \infty,$$

$$\exists (\alpha_k) \lim_{n \to \infty} e_{nk} = \alpha_k \text{ for all } k,$$

$$\exists (\alpha_k) \sup_{n \in \mathbb{N}_0} \sum_{k=0}^{\infty} (|e_{nk} - \alpha_k| L^p_k) < \infty.$$

Therefore $[l(r, s, t; p; \Delta)]^\beta = B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_6 \cap B_8.$

If $0 < p_k \leq 1 \forall k$, then using Lemma 4.1(iii) with $q_n = 1$, $\forall n$, we have

$$\sup_{n, k \in \mathbb{N}_0} |e_{nk}| p_k \infty,$$

$$\exists (\alpha_k) \lim_{n \to \infty} e_{nk} = \alpha_k \text{ for all } k,$$

$$\forall L \in \mathbb{N} \exists (\alpha_k) \sup_{n, k \in \mathbb{N}_0} (|e_{nk} - \alpha_k| L^p_k) < \infty.$$

Thus $[l(r, s, t; p; \Delta)]^\beta = B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_6 \cap B_8.$

(b) In a similar way, using Lemma 4.2(iii), Lemma 4.3(iii) and Lemma 4.4(iii), we can obtain the
\(\beta \)-duals of \(c_0(r, s, t; \Delta) \), \(c(r, s, t, p; \Delta) \) and \(l_\infty(r, s, t, p; \Delta) \) respectively.

4.2 Matrix mappings

Theorem 4.6. Let \(\tilde{E} = (\tilde{e}_{nk}) \) be the matrix which is same as the matrix \(E = (e_{nk}) \) defined in (4.30), where \(a_j \) is replaced by \(a_{nj} \) and \(a_k \) by \(a_{nk} \).

(a) Let \(p_k > 1 \) for all \(k \), then \(A \in (l(r, s, t, p; \Delta), l_\infty) \) if and only if there exists \(L \in \mathbb{N} \) such that

\[
\sup_n \sum_k |\tilde{e}_{nk}|^p_k < \infty \quad \text{and} \quad (a_{nk})_k \in B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_8.
\]

(b) Let \(0 < p_k \leq 1 \) for all \(k \). Then \(A \in (l(r, s, t, p; \Delta), l_\infty) \) if and only if

\[
\sup_{n, k \in \mathbb{N}_0} \left| \tilde{e}_{nk} \right|^{p_k} < \infty \quad \text{and} \quad (a_{nk})_k \in B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_8.
\]

Proof. (a) Let \(p_k > 1 \) for all \(k \). Since \((a_{nk})_k \in [l(r, s, t, p; \Delta)]^\beta \) for each fixed \(n \), \(Ax \) exists for all \(x \in l(r, s, t, p; \Delta) \). Now for each \(n \), we have

\[
\sum_{k=0}^{m} a_{nk} x_k = \sum_{k=0}^{m} r_k \left[\frac{a_{nk}}{s_0 l_k} + \frac{D_j(s)}{t_k} - \frac{D_j(s)}{t_k+1} \right] \sum_{j=0}^{n} a_{nj} + \sum_{j=k+1}^{n} (-1)^{j-k} \frac{D_j(s)}{t_j} \left(\sum_{l=j}^{n} a_{nl} \right) y_k
\]

Taking \(m \to \infty \), we have

\[
\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \tilde{e}_{nk} y_k \quad \text{for all} \quad n.
\]

We know that for any \(T > 0 \) and any complex numbers \(a, b \)

\[
|ab| \leq T \left(\|a T^{-1}\|^{p'} + |b|^p \right),
\]

where \(p > 1 \) and \(\frac{1}{p} + \frac{1}{p'} = 1 \). Using (4.32), we get

\[
\sup_n \left| \sum_{k=0}^{\infty} a_{nk} x_k \right| \leq \sup_n \sum_{k=0}^{\infty} |\tilde{e}_{nk}| y_k \leq T \left[\sup_n \sum_{k=0}^{\infty} |\tilde{e}_{nk}| T^{-1} |y_k|^{p'} + \sum_{k=0}^{\infty} |y_k|^{p} \right] < \infty.
\]

Thus \(Ax \in l_\infty \). This proves that \(A \in (l(r, s, t, p; \Delta), l_\infty) \).

Conversely, assume that \(A \in (l(r, s, t, p; \Delta), l_\infty) \) and \(p_k > 1 \) for all \(k \). Then \(Ax \) exists for each \(x \in l(r, s, t, p; \Delta) \), which implies that \((a_{nk})_k \in [l(r, s, t, p; \Delta)]^\beta \) for each \(n \). Thus \((a_{nk})_k \in B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_8 \cap B_8 \). Also from \(\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \tilde{e}_{nk} y_k \), we have \(\tilde{E} = (\tilde{e}_{nk}) \) is a matrix with \((a_{nk})_k \in (l(p), l_\infty) \), i.e., for some natural number \(L \), \(\sup_n \sum_{k=0}^{\infty} |\tilde{e}_{nk}| L^{-1} |y_k|^{p} < \infty \). This completes the proof.

(b) We omit the proof of this part as it is similar to the previous one.

Theorem 4.7. (a) Let \(p_k > 1 \) for all \(k \), then \(A \in (l(r, s, t, p; \Delta), l_1) \) if and only if
\[\sup_{F} \sum_{k=0}^{\infty} \left| \sum_{n \in F} \bar{e}_{nk} L^{-p_{k}} \right| < \infty \text{ for some } L \in \mathbb{N} \text{ and } (a_{nk})_{k \in \mathbb{N}_{0}} \in B_{1} \cap B_{2} \cap B_{3} \cap B_{4} \cap B_{5} \cap B_{6} \cap B_{7}. \]

(b) Let \(0 < p_{k} \leq 1 \) for all \(k \). Then \(A \in (l(r, s, t; \Delta), l_{1}) \) if and only if
\[\sup_{F} \sup_{k} \left| \sum_{n \in F} \bar{e}_{nk} \right|^{p_{k}} < \infty \text{ and } (a_{nk})_{k \in \mathbb{N}_{0}} \in B_{1} \cap B_{2} \cap B_{3} \cap B_{5} \cap B_{6} \cap B_{7}. \]

Proof. We omit the proof as it follows in a similar way of Theorem 4.6. \(\square \)

Corollary 4.1. (a) \(A \in (c_{0}(r, s, t; \Delta), c_{0}(q)) \) if and only if (4.6), (4.17) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c_{0}(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (c_{0}(r, s, t; \Delta), c(q)) \) if and only if (4.11), (4.18), (4.19) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c_{0}(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (c_{0}(r, s, t; \Delta), l_{\infty}(q)) \) if and only if (4.20) holds with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c_{0}(r, s, t; \Delta)]^{\beta} \).

Corollary 4.2. (a) \(A \in (c(r, s, t; \Delta), c_{0}(q)) \) if and only if (4.6), (4.17), (4.22) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (c(r, s, t; \Delta), c(q)) \) if and only if (4.11), (4.18), (4.19), (4.23) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (c(r, s, t; \Delta), l_{\infty}(q)) \) if and only if (4.20), (4.24) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [c(r, s, t; \Delta)]^{\beta} \).

Corollary 4.3. (a) \(A \in (l_{\infty}(r, s, t; \Delta), c_{0}(q)) \) if and only if (4.26) holds with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [l_{\infty}(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (l_{\infty}(r, s, t; \Delta), c(q)) \) if and only if (4.27), (4.28) hold with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [l_{\infty}(r, s, t; \Delta)]^{\beta} \),
(b) \(A \in (l_{\infty}(r, s, t; \Delta), l_{\infty}(q)) \) if and only if (4.29) holds with \(\bar{e}_{nk} \) in place of \(a_{nk} \) and \((a_{nk}) \in [l_{\infty}(r, s, t; \Delta)]^{\beta} \).

5 Kadeck-Klee property and rotundity of \(l(r, s, t; \Delta) \)

In many geometric properties of Banach spaces, Kadeck-Klee property and rotundity play an important role in metric fixed point theory. These properties are extensively studied in Orlicz spaces (see [16], [17], [18]) and also studied in difference sequence spaces by Kananthai [19]. In this section, we discuss these properties in the sequence space \(l(r, s, t; \Delta) \).

Throughout the paper, for any Banach space \((Y, \| \cdot \|)\), we denote \(S(Y) \) and \(B(Y) \) as the unit sphere and closed unit ball respectively.

A point \(x \in S(Y) \) is called an extreme point if \(x = \frac{y + z}{2} \) implies \(y = z \) for every \(y, z \in S(Y) \). A Banach space \(Y \) is said to be rotund (strictly convex) if every point of \(S(Y) \) is an extreme point.

Let \(X \) be a real vector space. A functional \(\sigma : X \to [0, \infty] \) is called a modular if
(i) \(\sigma(x) = 0 \) if and only if \(x = 0 \),
(ii) \(\sigma(-x) = \sigma(x) \),
(iii) \(\sigma(\alpha x + \beta y) \leq \sigma(x) + \sigma(y) \) for all \(x, y \in X \) and \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).

A modular \(\sigma \) is said to be convex if
(iv) \(\sigma(\alpha x + \beta y) \leq \alpha \sigma(x) + \beta \sigma(y) \) for all \(x, y \in X \) and \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).
For any modular \(\sigma \), the modular space \(X_\sigma \) is defined by

\[
X_\sigma = \{ x \in X : \sigma(\lambda x) \to 0 \text{ as } \lambda \to 0^+ \}.
\]

We define \(X_\sigma^* = \{ x \in X : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0 \} \). It is clear that \(X_\sigma \subseteq X_\sigma^* \). Orlicz \cite{21} prove that if \(\sigma \) is convex then \(X_\sigma = X_\sigma^* \).

A modular \(\sigma \) is said to be

(i) Right continuous if \(\lim_{\lambda \to 1^+} \sigma(\lambda x) = \sigma(x) \),

(ii) Left continuous if \(\lim_{\lambda \to 1^-} \sigma(\lambda x) = \sigma(x) \),

(iii) Continuous if it is both left and right continuous.

A modular \(\sigma \) is said to satisfy \(\Delta_2 \)-condition \cite{20}, denoted by \(\sigma \in \Delta_2 \) if for any \(\varepsilon > 0 \), there exist constants \(K \geq 2 \) and \(a > 0 \) such that \(\sigma(2x) \leq K \sigma(x) + \varepsilon \) for all \(x \in X_\sigma \) with \(\sigma(x) \leq a \).

If \(\sigma \) satisfies \(\Delta_2 \)-condition for any \(a > 0 \) with \(K \geq 2 \) dependent on \(a \), we say that \(\sigma \) satisfies strong \(\Delta_2 \)-condition, denoted by \(\sigma \in \Delta_2^s \) \cite{20}.

Let \(p_n > 1 \) for all \(n \in \mathbb{N}_0 \). Then for \(x \in l(r, s, t; \Delta) \), we define

\[
\sigma_p(x) = \sum_{n=0}^{\infty} \left| \frac{1}{p_n} \sum_{k=0}^{n} s_{n-k} t_k x_k \right|^{p_n} = \left(\sum_{n=0}^{\infty} \left| \frac{1}{p_n} \sum_{k=0}^{n} s_{n-k} t_k x_k \right|
ight)^{p_n} (n \in \mathbb{N}_0).
\]

By the convexity of the function \(t \mapsto |t|^{p_n} \) for each \(n \in \mathbb{N}_0 \), we have \(\sigma_p \) is a convex modular on \(l(r, s, t; \Delta) \).

We consider \(l(r, s, t; \Delta) \) equipped with the so called Luxemburg norm given by

\[
\|x\| = \inf \left\{ c > 0 : \sigma_p \left(\frac{x}{c} \right) \leq 1 \right\}.
\]

A normed sequence space \(X \) is said to be \(K \)-space if each coordinate mapping \(P_k \) defined by \(P_k(x) = x_k \) is continuous for each \(k \in \mathbb{N}_0 \). If \(X \) is a Banach space as well as \(K \)-space, it is called a BK space. Let \(p_k \geq 1 \ \forall k \in \mathbb{N}_0 \) and \(M = \sup_k p_k \). It is easy to verify that \(\sigma_p \) satisfies the strong \(\Delta_2 \)-condition, i.e., \(\sigma_p \in \Delta_2^s \).

Proposition 5.1. For \(x \in l(r, s, t; \Delta) \), the modular \(\sigma_p \) on \(l(r, s, t; \Delta) \) satisfies the following:

(i) if \(0 < \alpha \leq 1 \), then \(\alpha M \sigma_p \left(\frac{x}{\alpha} \right) \leq \sigma_p(x) \) and \(\sigma_p(\alpha x) \leq \sigma_p(x) \).

(ii) if \(\alpha \geq 1 \), then \(\sigma_p(x) \leq \alpha M \sigma_p \left(\frac{x}{\alpha} \right) \).

(iii) if \(\alpha \geq 1 \), then \(\sigma_p(x) \leq \alpha \sigma_p(x) \leq \sigma_p(\alpha x) \).

Proof. (i) We have

\[
\sigma_p \left(\frac{x}{\alpha} \right) = \sum_{n=0}^{\infty} \left| \frac{1}{\alpha p_n} \sum_{k=0}^{n} s_{n-k} t_k x_k \right|^{p_n} \leq \frac{1}{\alpha^M} \sum_{n=0}^{\infty} \left| \frac{1}{p_n} \sum_{k=0}^{n} s_{n-k} t_k x_k \right|^{p_n} = \frac{1}{\alpha^M} \sigma_p(x),
\]

i.e., \(\alpha M \sigma_p \left(\frac{x}{\alpha} \right) \leq \sigma_p(x) \) and using convexity of \(\sigma_p \), we have \(\sigma_p(\alpha x) \leq \sigma_p(x) \) for \(0 < \alpha \leq 1 \).

Statements (ii) and (iii) can be proved in a similar way. So, we omit the details. \(\square \)

Proposition 5.2. The modular \(\sigma_p \) is continuous.
Proof. Let $\lambda > 1$. From Proposition 5.1 we have

\[
\sigma_p(x) \leq \lambda \sigma_p(x) \leq \sigma_p(\lambda x) \leq \lambda^M \sigma_p(x).
\]

Taking $\lambda \rightarrow 1^+$, we obtain $\lim_{\lambda \rightarrow 1^+} \sigma_p(\lambda x) = \sigma_p(x)$. So σ_p is right continuous.

If $0 < \lambda < 1$, then we have $\lambda^M \sigma_p(x) \leq \sigma_p(\lambda x) \leq \lambda \sigma_p(x)$. Taking $\lambda \rightarrow 1^-$, we obtain $\lim_{\lambda \rightarrow 1^-} \sigma_p(\lambda x) = \sigma_p(x)$. So σ_p is left continuous. Thus σ_p is continuous. \hfill \Box

Now we give some relationship between norm and modular.

Proposition 5.3. For any $x \in l(r, s, t, p; \Delta)$, we have

(i) if $\|x\| < 1$ then $\sigma_p(x) \leq \|x\|$,
(ii) if $\|x\| > 1$ then $\sigma_p(x) \geq \|x\|$,
(iii) $\|x\| = 1$ if and only if $\sigma_p(x) = 1$,
(iv) $\|x\| < 1$ if and only if $\sigma_p(x) < 1$,
(v) $\|x\| > 1$ if and only if $\sigma_p(x) > 1$,
(vi) if $0 < \alpha < 1$ and $\|x\| > \alpha$ then $\sigma_p(x) > \alpha^M$,
(vii) if $\alpha \geq 1$ and $\|x\| < \alpha$ then $\sigma_p(x) < \alpha^M$.

Proof. (i) Suppose $\|x\| < 1$. Let u be a positive number such that $\|x\| < u < 1$. Then by the definition of norm $\|\|$, we have $\sigma_p\left(\frac{x}{u}\right) \leq 1$. Using convexity of σ_p, we have $\sigma_p(x) = \sigma_p\left(\frac{ux}{u}\right) < u \sigma_p\left(\frac{x}{u}\right) \leq u$. Since u is arbitrary, this implies that $\sigma_p(x) \leq \|x\|$.

(ii) Let u be a positive number such that $\|x\| > u > 1$. Then $\sigma_p\left(\frac{x}{u}\right) > 1$ and $1 < \sigma_p\left(\frac{x}{u}\right) < \frac{1}{u} \sigma_p(x)$, i.e., $\sigma_p(x) > u$. Taking $u \rightarrow \|x\|$, we obtain $\sigma_p(x) \geq \|x\|$.

(iii) Since $\sigma_p \in \Delta_s^*$, so the proof follows from Corollary 2.2 in [20] and Proposition 5.2 (iv) and (v) follows from (i) and (iii).

(vi) and (vii) follows from Proposition 5.1(i) and (ii). \hfill \Box

Proposition 5.4. For any (x^m) be a sequence of elements of $l(r, s, t, p; \Delta)$.

(i) If $\|x^m\| \rightarrow 1$ then $\sigma_p(x^m) \rightarrow 1$ as $m \rightarrow \infty$,
(ii) If $\|x^m\| \rightarrow 0$ if and only if $\sigma_p(x^m) \rightarrow 0$ as $m \rightarrow \infty$.

Proof. (i) Suppose that $\|x^m\| \rightarrow 1$ as $m \rightarrow \infty$. Then for every $\epsilon \in (0, 1)$ there exists $N \in \mathbb{N}_0$ such that $1 - \epsilon < \|x^m\| < 1 + \epsilon$ for all $m \geq N$. Thus by Proposition 5.3 (vi) and (vii), we have $(1 - \epsilon)^M < \sigma_p(x^m) < (1 + \epsilon)^M$ for all $m \geq N$. Hence $\sigma_p(x^m) \rightarrow 1$ as $m \rightarrow \infty$.

(ii) Since $\sigma_p \in \Delta_s^*$, so the proof follows from Lemma 2.3 in [20]. \hfill \Box

Lemma 5.1. The space $l(r, s, t, p; \Delta)$ is a BK space.

Proof. Since the space $l(r, s, t, p; \Delta)$ equipped with the Luxemburg norm $\|\|$ is a Banach space, so it is enough to prove that $l(r, s, t, p; \Delta)$ is a K-space. Suppose $(x^m) \in l(r, s, t, p; \Delta)$ such that $x^m \rightarrow 0$ as $m \rightarrow \infty$. By Proposition 5.4(ii), we have $\sigma_p(x^m) \rightarrow 0$ as $m \rightarrow \infty$. This implies that

\[
\frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta x^m_k \rightarrow 0 \text{ as } m \rightarrow \infty \text{ and for each } n \in \mathbb{N}_0.
\]

By induction, we have $x^m_k \rightarrow 0$ as $m \rightarrow \infty$ for each $k \in \mathbb{N}_0$. Hence the coordinate mappings $P_k(x^m) = x^m_k \rightarrow 0$ as $m \rightarrow \infty$ which implies that P_k’s are continuous for each k. \hfill \Box
Lemma 5.2. Let \(x \in l(r, s, t, p; \Delta) \) and \((x^m) \subseteq l(r, s, t, p; \Delta)\). If \(\sigma_p(x^m) \rightarrow \sigma_p(x) \) and \(x_k^m \rightarrow x_k \) as \(m \to \infty \) for each \(k \) then \(x^m \rightarrow x \).

Proof. Since \(x \in l(r, s, t, p; \Delta) \) i.e., \(\sigma_p(x) < \infty \), so for a given \(\epsilon > 0 \) there exists \(n_0 \in \mathbb{N} \) such that

\[
\sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n < \frac{\epsilon}{3} 2^{-M+1}. \tag{5.1}
\]

Again since \(\sigma_p(x^m) \rightarrow \sigma_p(x) \) and \(x_k^m \rightarrow x_k \) as \(m \to \infty \) for each \(k \), so there exists \(m_0, n_0 \in \mathbb{N} \) such that for \(m \geq m_0 \)

\[
\begin{align*}
\sigma_p(x^m) - \left(\sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p_n \right) & < \sigma_p(x) - \left(\sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n \right) + \frac{\epsilon}{3} 2^{-M} \tag{5.2} \\
& \quad + \frac{1}{M} \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n
\end{align*}
\]

and

\[
\begin{align*}
\left(\sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k (\Delta x_k^m - \Delta x_k) \right|^p_n \right) & < \frac{\epsilon}{3}. \tag{5.3}
\end{align*}
\]

Thus for \(m \geq m_0 \), we have

\[
\begin{align*}
\sigma_p(x^m - x) & = \sum_{n=0}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k (\Delta x_k^m - \Delta x_k) \right|^p_n \\
& = \sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k (\Delta x_k^m - \Delta x_k) \right|^p_n + \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k (\Delta x_k^m - \Delta x_k) \right|^p_n \\
& < \frac{\epsilon}{3} + 2^M \sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p_n + \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n \\
& < \frac{\epsilon}{3} + 2^M \left\{ \sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p_n + \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n \right\} \\
& = \frac{\epsilon}{3} + 2^M \left\{ \sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p_n + \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n \right\} \\
& < \frac{\epsilon}{3} + 2^M \left\{ \sum_{n=0}^{n_0} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k^m \right|^p_n + \sum_{n=n_0+1}^{\infty} \left| \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k} t_k \Delta x_k \right|^p_n \right\} \\
& < \frac{\epsilon}{3} + 2^M \frac{\epsilon}{3} 2^{-M+1} + \frac{\epsilon}{3} + \frac{\epsilon}{6} = \epsilon.
\end{align*}
\]

This shows that \(\sigma_p(x^m - x) \to 0 \) as \(m \to \infty \). Therefore by Proposition 5.3 we have \(x^m \to x \) in norm. \(\square \)

Theorem 5.1. The space \(l(r, s, t, p; \Delta) \) has the Kadec-Klee property.

Proof. Let \(x \in S(l(r, s, t, p; \Delta)) \) and \((x^m)\) be a sequence in \(l(r, s, t, p; \Delta) \) such that \(\|x^m\| \to 1 \) as \(m \to \infty \) and \(x^m \to x \) weakly as \(m \to \infty \). Since \(\|x\| = 1 \) so by Proposition 5.3(iii), we have \(\sigma_p(x) = 1 \). By the continuity of the functional \(\sigma_p \), we have \(\sigma_p(x^m) \to \sigma_p(x) \) as \(m \to \infty \). It is known that weak convergence implies the coordinate wise convergence, i.e., \(x_k^m \to x_k \) as \(m \to \infty \) for each \(k \), so by the Lemma 5.2 we obtain \(x^m \to x \) as \(m \to \infty \). \(\square \)
Theorem 5.2. The space \(l((r, s, t, p; \Delta)) \) is rotund if \(p_n > 1 \) for each \(n \).

Proof. Let \(x \in S(l((r, s, t, p; \Delta))) \) and \(y, z \in B(l((r, s, t, p; \Delta))) \) with \(x = \frac{y + z}{2} \). We have to show that \(y = z \).

Since \(\sigma_p(x) = 1 \) and

\[
1 = \sigma_p(x) = \sigma_p\left(\frac{y + z}{2}\right) \leq \frac{1}{2}(\sigma_p(y) + \sigma_p(z)) \leq 1,
\]

we have \(\sigma_p(y) = \frac{1}{2}(\sigma_p(y) + \sigma_p(z)) \) and \(\sigma_p(z) = 1 \).

Therefore, we have

\[
\sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta x_k |p_n| = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta y_k |p_n| + \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta z_k |p_n|.
\]

Since \(x = \frac{y + z}{2} \), we have from above

\[
\sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta y_k + \Delta z_k |p_n| = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta y_k |p_n| + \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta z_k |p_n|.
\]

By the strict convexity of the function \(f(t) = |t|^p, p_k > 1 \) for each \(k \), from above, we obtain for each \(n \)

\[
\frac{1}{2r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta y_k = \frac{1}{2r_n} \sum_{k=0}^{n} s_{n-k}t_k \Delta z_k.
\]

By induction, we obtain \(y_k = z_k \) for each \(k \in \mathbb{N}_0 \), i.e., \(y = z \). \(\square \)

References

[1] I. J. Maddox, Parapnormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968) 335-340.

[2] B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30 (4) (2006), 591-608.

[3] B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(5)(2003), 701-715.

[4] S. Demiriz, C. Çakan, Some new paranormed difference sequence spaces and weighted core, Comput. Math. Appl. 64 (6)(2012), 1726-1739

[5] K.G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1)(1993), 223-238.

[6] M. Mursaleen, A.K. Noman, On generalized means and some related sequence spaces, Comput. Math.Appl. 61(4)(2011), 988-999.

[7] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler and difference operators, Acta Sci. Math. (Szeged) 76(1-2)(2010), 87-100.

[8] M. Başarır, Paranormed Cesàro difference sequence space and related matrix transformations, Doğa Mat. 15(1)(1991), 14-19.

[9] S. Demiriz, C. Çakan, Some topological and geometrical properties of a new difference sequence space, Abstr. Appl. Anal. 2011, Art. ID 213878, 14 pp.
[10] A. Wilansky, *Summability through Functional Analysis*, North-Holland Math. Stud., vol. 85, Elsevier Science Publishers, Amsterdam, New York, Oxford, 1984.

[11] F. Başar, B. Altay, *Matrix mappings on the space bs(p) and its α-, β-, γ- duals*, Aligarh Bull. Math. 21(1)(2002), 79-91.

[12] H. Kizmaz, *On certain sequence spaces*, Canad. Math. Bull. 24(2)(1981), 169-176.

[13] Z. U. Ahmad, M. Mursaleen, *Köthe-Toeplitz duals of some new sequence spaces and their matrix maps*, Publ. Inst. Math.(Beograd), 42(56)(1987) 57-61.

[14] R. Çolak, M. Et, *On some generalized difference sequence spaces and related matrix transformations*, Hokkaido Math. J., 26(3)(1997) 483-492.

[15] A. M. Jarrah, E. Malkowsky, *Ordinary, absolute and strong summability and matrix transformations*, Filomat 17(2003), 59-78.

[16] S. T. Chen, *Geometry of Orlicz spaces*, Dissertationes Math., 1996, p.356.

[17] H. Hudzik and D. Pallaschke, *On some convexity property of Orlicz sequence spaces*, Math. Nachr. 186 (1997), 167-185.

[18] C. Wu, S. Chen and Y. Wang, *H-property of sequence Orlicz spaces*, J. Harbin Inst. Tech. Math Issue (1985), 6-11.

[19] A. Kananthai, M. Mursaleen, W. Sanhan and S. Suantai, *On property (H) and rotundity of difference sequence spaces*, Journal of Nonlinear and Convex analysis, 3(3)(2002), 401-409.

[20] Y. Cui, H. Hudzik, *On the Uniform Opial property in some modular sequence spaces*, Func. Approx. Comment. 26(1998), 93-102.

[21] W. Orlicz, *A note on modular spaces I*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.9(1961), 157-162.