Abstract. Let \((M, \omega)\) be a 6-dimensional closed symplectic manifold with a symplectic \(S^1\)-action with \(M^{S^1} \neq \emptyset\) and \(\dim M^{S^1} \leq 2\). Assume that \(\omega\) is integral with a generalized moment map \(\mu\). We first prove that the action is Hamiltonian if and only if \(b_2^+ (M_{\text{red}}) = 1\), where \(M_{\text{red}}\) is the reduced space with respect to \(\mu\). It means that if the action is non-Hamiltonian, then \(b_2^+ (M_{\text{red}}) \geq 2\). Secondly, we focus on the case when the action is semifree and Hamiltonian. We prove that if \(M^{S^1}\) consists of surfaces, then the number \(k\) of fixed surfaces with positive genera is at most four. In particular, if the extremal fixed surfaces are spheres, then \(k\) is at most one. Finally, we prove that \(k \neq 2\) and we construct some examples of 6-dimensional semifree Hamiltonian \(S^1\)-manifolds such that \(M^{S^1}\) contains \(k\) surfaces of positive genera for \(k = 0, 1, 3\) and 4.

1. Introduction

Let \((M^{2n}, \omega)\) be a \(2n\)-dimensional closed symplectic manifold with a symplectic \(S^1\) action. Many mathematicians tried to find some conditions on \(M\) which make a symplectic circle action to be Hamiltonian. One easy condition is that \(M\) is simply connected. Then any closed 1-form is exact, so any symplectic circle action is Hamiltonian. In 1959, Frankel discovered the condition in terms of the fixed point set in the Kähler category. The last statement of the following theorem will be referred as Frankel’s theorem throughout. Since any Hamiltonian action on the compact space has a fixed point, only if part is trivial.

Theorem 1.1. Assume that \(\omega\) is a Kähler form and the circle action is holomorphic. Then the symplectic \(S^1\) action is Hamiltonian if and only if it has fixed points.

Date: June 29, 2010.

Key words and phrases. symplectic manifold, circle action, Hamiltonian action, moment map.

The first and the second author were supported by the second stage of the Brain Korea 21 Project, the Development Project of Human Resources in Mathematics, KAIST in 2010.

The third author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0001651).
Ono extended Frankel’s theorem to the case when \((M^{2n}, \omega)\) is symplectic and satisfies the Lefschetz condition, i.e., \(\wedge \omega^{n-1}\) induces an isomorphism from \(H^1(M, \mathbb{R})\) to \(H^{2n-1}(M, \mathbb{R})\). Kähler manifolds are well-known to satisfy the Lefschetz condition. See [McS] p.154 or [O].

Unfortunately, Frankel’s theorem does not extend to the symplectic category in general. In 1988, McDuff proved that Frankel’s theorem holds for 4-dimensional symplectic manifolds. But she also found a 6-dimensional manifold with a symplectic non-Hamiltonian \(S^1\) action whose fixed point set is not empty. In her example, all fixed components are 2-tori and all reduced spaces are diffeomorphic to \(T^4\). Other such kind of examples are still unknown.

As McDuff showed, the existence of fixed points does not guarantee that the symplectic circle action is Hamiltonian. But, with some conditions about weights of tangential representations at each fixed points, Frankel’s theorem can be extended to the symplectic category.

In [TW], Tolman and Weitsman proved Frankel’s theorem in the case when the circle action is semifree and \(M^{S^1}\) is finite. The main tool of their proof is the localization theorem and they also proved that the cohomology and equivariant cohomology groups are isomorphic to those of the product of 2-spheres. Moreover, they proved that the total Chern class and the total equivariant Chern class are uniquely expressed in terms of elements in the image of injective \(H^*(BS^1)\)-algebra homomorphism \(i^* : H^*(M) \to H^*(M^{S^1})\) where \(i : M^{S^1} \to M\) is the inclusion. But the conjecture that \(M \cong (\mathbb{P}^1)^n\) remains open when \(n > 3\). In [Go] and [LO], more about Frankel’s theorem is discussed under some conditions.

In this paper, we assume that the cohomology class \([\omega]\) is integral so that there exists a generalized moment map \(\mu : M \to S^1\). The symplectic reduction with respect to \(\mu\) at \(t \in S^1\) is denoted by \(M_t\). When \(M_t\) is independent of the choice of \(t\), we denote it by \(M_{red}\). Now we state our main theorems.

Theorem 1.2. Let \((M, \omega)\) be a 6-dimensional closed symplectic \(S^1\)-manifold with a generalized moment map \(\Phi : M \to S^1\). Assume \(M^{S^1} \neq \emptyset\). If the reduced space \(M_\xi = \Phi^{-1}(\xi)/S^1\) has \(b^+_2 = 1\) for a regular value \(\xi \) of \(\Phi\), then the \(S^1\)-action is Hamiltonian.

Theorem 1.2 implies that if the action is non-Hamiltonian, then \(b^+_2(M_\xi) \geq 2\) for \(\xi \in S^1\). Theorem 1.2 can be obtained using the result of [Lin]. The proof is given in Section 4. When the \(S^1\)-action is semifree and the fixed point set consists of surfaces, we have the following theorem.

Theorem 1.3. Let \((M, \omega)\) be a 6-dimensional symplectic semifree \(S^1\)-manifold whose non-empty fixed point set \(M^{S^1}\) consists of surfaces. If there exists a generalized moment map such that \(M_{red}\) is diffeomorphic to an \(S^2\)-bundle over the compact Riemann surface \(\Sigma_g\) of genus \(g\), then
the action is Hamiltonian. Moreover, if the action is Hamiltonian, the number of fixed surfaces with positive genera is at most four and cannot be equal to two. In particular, if the extremal fixed surfaces are spheres, then the number is at most one. If the number is four, then all genera of the four fixed surfaces are equal to g.

Note that if the action is semifree and M^{S^1} is isolated, then $M \cong S^2 \times S^2 \times S^2$ and $|M^{S^1}| = 8$ as in [TW]. On the other hand if M^{S^1} consists of surfaces, we will see in Section 7 that the number of fixed components can be arbitrary. But the number of fixed surfaces with positive genera is bounded by four by Theorem 1.3.

Since any ruled surface has $b_2^+ = 1$, Theorem 1.2 implies the first statement of Theorem 1.3. However, to get the second part of Theorem 1.3 we need a different approach for the proof of the first part of Theorem 1.3. We need to study the change of the reduced symplectic form ω_t and the Euler class e on $H^2(M_{red})$ when ω_t and e pass through the critical level.

Note that if the action is semifree, Hamiltonian, and M^{S^1} consists of surfaces, then the reduced space M_{red} with respect to the moment map is always diffeomorphic to an S^2-bundle over Σ_g. Therefore Theorem 1.3 actually gives a necessary and sufficient condition for a symplectic action to be Hamiltonian. Indeed, if all fixed components in the non-extremal level of the moment map is of codimension 4, the diffeomorphism type of the reduced space does not change when passing through that critical level. Moreover, the reduced space at the critical level also becomes a smooth manifold. (See [Mc1] or [GS].) Therefore in order to find the diffeomorphism type of M_{red}, it is enough to look at the reduced space near the minimum. The regular level near the minimum is an S^3-bundle over the minimum, so M_{red} is a ruled surface.

To prove Theorem 1.3, we use the fact that each fixed surface is a symplectic submanifold of the reduced space at the level in which the fixed surface lies. This will be treated in Section 5 and Section 6.

In Section 7, we construct several examples of semifree Hamiltonian S^1-manifolds. In [L2], Li constructed some semifree Hamiltonian S^1-manifolds such that M^{S^1} consists of surfaces. In her examples, the number of fixed surfaces with positive genera could be one or three. In Example 7.11, we construct a family of examples of Hamiltonian S^1-manifold whose fixed set consists of four surfaces with nonzero equal genera and any number of spheres. We also construct an example with N fixed spheres for any $N \geq 4$ in Example 7.13. Therefore, the upper bound on the number of fixed surfaces with positive genera is optimal and there is no constraint on the number of fixed spheres. The construction follows that in [L2]. To construct such Hamiltonian S^1-manifolds, we first construct local pieces which are constructed by Guillemin and Sternberg [GS], namely simple cobordisms between
reduced spaces, and glue them together. A symplectic structure on the ruled surface is said to be compatible with the ruling if all fibers are symplectic. Since two cohomologous symplectic forms on the same ruled surface which are compatible with the ruling are isotopic \cite{LM}, we only need to check that two pieces have the same Euler classes and cohomologous symplectic forms on the gluing region. We discuss this in Section 7 in more detail.

In section 2 we give a brief review about symplectic circle actions with generalized moment maps. In section 3 we also introduce results about symplectic structures on ruled surfaces due to Li and Liu \cite{LL}, and study about the symplectomorphisms on ruled surfaces. In Section 4 we give the proof of Theorem 1.2. In Section 5 we give the proof of Theorem 1.3 when M_{red} is a trivial S^2-bundle. In Section 6 we give the proof of Theorem 1.3 when M_{red} is a non-trivial S^2-bundle.

Remark 1.4. Here is a remark on the sign convention. In \cite{Mc1}, McDuff regards the symplectic form ω on \mathbb{C}^n as $\sum_i dx_i \wedge dy_i$, the moment map H as $i_X \omega = dH$, the Euler class of each level set as $-d\alpha$ where α is a connection 1-form on a level set, and the gradient flow as JX. In contrast, in \cite{Au}, \cite{L1} and \cite{L2}, they assume that the symplectic form on \mathbb{C}^n is $\sum_i dy_i \wedge dx_i$ so that all information has opposite signs, i.e., they use the symplectic form $-\omega$ where ω is the one that McDuff used. In this paper, we use the sign setting of \cite{Au} and \cite{L1}.

2. Backgrounds

In this section we give some basic materials needed to state and prove the main theorems.

Let M^{2n} be a smooth closed connected manifold. A 2-form ω on M is called symplectic if it is closed and non-degenerate. Since ω is non-degenerate, (M, ω) has a natural orientation given by $\int_M \omega^n > 0$. We call such pair (M, ω) a symplectic manifold. An S^1-action on (M, ω) is called symplectic if it preserves the symplectic form ω. Let X be the fundamental vector field of the S^1-action. Then the condition that the action is symplectic is equivalent to that $i_X \omega$ is closed by the Cartan’s formula. Furthermore, if $i_X \omega$ is exact, we say the action is Hamiltonian.

If the action is Hamiltonian, there exists a function $H : M \to \mathbb{R}$ satisfying $i_X \omega = dH$ which is called a moment map of the action. It is a well-known fact that H is a perfect Morse-Bott function. Note that the critical point set of H is equal to the fixed point set M^{S^1}. Since M is compact, the fixed point set is not empty.

Choose an S^1-invariant ω-compatible almost complex structure J so that $g(\cdot, \cdot) = \omega(J\cdot, \cdot)$ defines a metric on M. Then $-JX$ is the gradient vector field of H with respect to the metric g. By the Morse theory, for any closed regular interval $[a, b]$, the gradient flow of H gives an
isotopy from $H^{-1}(a)$ to $H^{-1}(b)$. Furthermore, all critical points have even indices. In particular, the level set of H is connected.

Now assume that the cohomology class $[\varpi]$ is integral in $H^2(M, \mathbb{R})$. Then $i_X\varpi$ is also integral so that we can define a map $\mu : M \to S^1$ as follows (See [Mc1] and [Au]). Choose any point x_0 in M and define $\mu(x) = \int_{x_0}^x i_X\varpi$. For any paths σ_1 and σ_2 from x_0 to x, the difference of their path integrals $\int_{\sigma_1} i_X\varpi - \int_{\sigma_2} i_X\varpi$ is an integer, so μ is well-defined as an S^1-valued function $\mu : M \to \mathbb{R}/\mathbb{Z} \cong S^1$. This map is called a generalized moment map. A generalized moment map μ satisfies many properties of the moment map. Locally μ satisfies the equation $i_X\varpi = d\mu$. Note that for an ϖ-compatible almost complex structure J, the infinitesimal action of the vector field $-JX$ determines an orientation of $S^1 \cong \mathbb{R}/\mathbb{Z}$, which we call the induced orientation with respect to the S^1-action. Therefore we can define the index of the critical point. Note that if μ can be lifted to an \mathbb{R}-valued function, the lifted map is the moment map of the given action. Hence the action is Hamiltonian.

Remark 2.1. [R] Given a Hamiltonian S^1-action on (M, ϖ), consider another symplectic form ϖ' on M such that the given S^1-action is symplectic with respect to ϖ'. Then the action is also Hamiltonian with respect to ϖ'. This follows from Proposition 2.2 below, i.e., if we let C_0 be a fixed component which is sent to the minimum by the moment map with respect to ϖ, then any loop σ in M is homotopic to some loop in C_0. If we change an S^1-invariant symplectic structure by ϖ' and μ is a generalized moment map with respect to ϖ', then $\mu_\ast(\sigma)$ should be zero in $\pi_1(S^1)$ so that μ can be lifted to an \mathbb{R}-valued moment map. Thus, if we want to prove a symplectic S^1-action on (M, ϖ) to be Hamiltonian, it is enough to prove the claim with the assumption that $[\varpi]$ is integral.

Proposition 2.2. [R] Let M be a compact connected Riemannian manifold and f a Morse-Bott function with no critical manifold of index 1. Then, there is only one connected critical manifold C_0 of index 0 and $\pi_1(M/C_0) = 0$. In fact, for any loop $\sigma \in \pi_1(M)$, there is a homotopy from σ to some loop in C_0 relative to the points in $\sigma \cap C_0$ along the negative gradient flow of f.

Remark 2.3. By the Morse theoretic argument, if M is a differentiable manifold of dimension n and if the Morse function $f : M \to \mathbb{R}$ has no critical point of index 1 or $n - 1$, then the number of connected components of $f^{-1}(t)$ is constant for all $t \in \text{Im } f \subset \mathbb{R}$. Moreover, the number of the connected components of the level set is equal to the connected components of M. In particular, if M is connected, then every level set is connected. (See [Au] p.112)
The following proposition seems to be known to people, but it is difficult to find proper references for the proof. We thereby provide the proof here.

Proposition 2.4. Let \((M, \omega)\) be a connected closed \(2n\)-dimensional symplectic \(S^1\)-manifold with the integral symplectic form \([\omega] \in H^2(M, \mathbb{Z})\). Then, there is a generalized moment map \(\mu : M \to S^1\) such that \(\mu^{-1}(t)\) is connected or empty for each \(t \in S^1\). In particular, if the action is non-Hamiltonian, then we have a generalized moment map \(\mu\) such that \(\mu^{-1}(t)\) is non-empty and connected for all \(t \in S^1\).

Proof. If the action is Hamiltonian, then \(\mu\) can be lifted to an \(\mathbb{R}\)-valued moment map \(\tilde{\mu}\). Therefore by Remark 2.3, \(\tilde{\mu}^{-1}(t)\) is connected or empty for each \(t \in \mathbb{R}\). Let \(m = \max \tilde{\mu} - \min \tilde{\mu}\) be an integer. For a covering map \(p : \mathbb{R} \to S^1\) given by \(\mathbb{R} \to \mathbb{R}/m\mathbb{Z}\), we get a generalized moment map \(\mu = p \circ \tilde{\mu}\) which satisfies the condition of Proposition 2.4.

Now assume that the action is non-Hamiltonian. Let \(\mu : M \to S^1\) be a generalized moment map as defined before Remark 2.1. Because all indices of the critical points are even, there is no critical point of index 1 or 2 in \(M\). It means that the number of connected components of \(\mu^{-1}(t)\) is constant for all \(t \in S^1\), and let the number be \(k\). Note that \(\mu\) induces a group homomorphism \(\mu_* : \pi_1(M) \to \pi_1(S^1) \cong \mathbb{Z}\).

We claim that \(\text{Im} \mu_* = k\mathbb{Z} \subset \mathbb{Z}\) so that \(\mu\) can be lifted to the \(k\)-fold covering of \(S^1\). Fix a regular value \(t_0 \in S^1 \cong \mathbb{R}/\mathbb{Z}\) and let \(L_1, L_2, \ldots, L_k\) be the components of \(\mu^{-1}(t_0)\). For a sufficiently small \(\epsilon\), consider a Hamiltonian \(S^1\)-manifold \(\mu^{-1}(S^1 - (t_0 - \epsilon, t_0 + \epsilon))\) with boundary, regarding \(S^1 - (t_0 - \epsilon, t_0 + \epsilon)\) as a closed interval in \(\mathbb{R}\) with the moment map \(\mu\). Note that \(\mu^{-1}((t_0 - \epsilon, t_0 + \epsilon)) \cong \coprod L_i \times (t_0 - \epsilon, t_0 + \epsilon)\). Then \(\mu^{-1}(t_0 - \epsilon) \cong \coprod L_i \times (t_0 - \epsilon)\) is the maximum of \(\mu\) and \(\mu^{-1}(t_0 + \epsilon) \cong \coprod L_i \times (t_0 + \epsilon)\) is the minimum of \(\mu\) in \(\mu^{-1}(S^1 - (t_0 - \epsilon, t_0 + \epsilon))\).

By Remark 2.3, \(\mu^{-1}(t)\) has \(k\) components for all \(t \in S^1 - (t_0 - \epsilon, t_0 + \epsilon)\). Let \(M_i\) be the connected component of \(\mu^{-1}(S^1 - (t_0 - \epsilon, t_0 + \epsilon))\) whose minimum is \(L_i \times (t_0 + \epsilon)\). Then \(M\) is decomposed by disjoint pieces \(\coprod L_i \times (t_0 - \epsilon, t_0 + \epsilon)\) and \(\coprod M_i\). If the maximum of \(M_i\) is \(L_i \times (t_0 - \epsilon)\), then it implies that there is no path in \(M\) from \(L_i \times (t_0 - \epsilon, t_0 + \epsilon)\) to \(L_j \times (t_0 - \epsilon, t_0 + \epsilon)\) for any \(j \neq i\), which contradicts to the assumption that \(M\) is connected. So, the maximum is \(L_{\sigma(i)} \times (t_0 - \epsilon)\) for some \(\sigma(i) \neq i\). By similar argument, we deduce that \(\sigma : [k] \to [k]\) is a permutation cycle of length \(k\).

Choose any loop \(\tau : [0, 1] \to M\) with \(\tau(0) = \tau(1) = x\) such that \(\mu_*(|\tau|) \neq 0\) in \(\pi_1(S^1)\). Without loss of generality, we may assume that \(x \in L_1\). If \(\tau\) goes around along the orientation preserving direction, then \(\tau\) passes through each \(L_i\) for all \(i = 1, \ldots, k\) and the numbers of intersection points with \(L_i\) are all equal by the previous argument. So, the image of \(\mu_*(\tau) \equiv 0\) (mod \(k\)). So, we need the following lemma to finish the proof of the claim.
Lemma 2.5. Let \((M, \omega)\) be a connected compact symplectic \(S^1\)-manifold.

(i) Suppose the action is Hamiltonian with the moment map \(\mu : M \to \mathbb{R}\). Let \(r\) be a regular value in \(\mathbb{R}\). For any points \(x, y\) which lie in \(\mu^{-1}(r)\) and for any path \(\alpha\) connecting \(x\) and \(y\) in \(M\), \(\alpha\) is homotopic to a path in \(\mu^{-1}(r)\) relative to \(x\) and \(y\).

(ii) With the same assumption, for any points \(x\) in the minimum and \(y\) in the maximum of \(\mu\), any path from \(x\) to \(y\) is homotopic to some path \(\beta : [0, 1] \to M\) relative to \(x\) and \(y\) such that \(\mu \circ \beta\) is non-decreasing.

(iii) Suppose the action is non-Hamiltonian with a generalized moment map \(\mu : M \to S^1\). Then any loop in \(M\) is homotopic to some loop \(\gamma : [0, 1] \to M\) relative to the base point such that \(\mu \circ \gamma\) is non-decreasing or non-increasing with respect to the induced orientation on \(S^1\).

Proof.

(i). For a regular value \(r \in \mathbb{R}\) with \(x, y \in \mu^{-1}(r)\), let \(\alpha : [0, 1] \to M\) be a path from \(x\) to \(y\). Because \([0, 1]\) is compact, we can find a partition \(0 = a_1 < a_2 < \ldots < a_k = 1\) such that \(\mu \circ \alpha|_{[a_i, a_{i+1}]} \geq r\) or \(\leq r\) and \(\mu(\alpha(a_i)) = r\) for \(i = 1, 2, \ldots, k-1\). Assume that \(\mu \circ \alpha|_{[a_i, a_{i+1}]} \geq r\). Because \(\mu^{-1}(r)\) is connected, there is a path \(\delta\) from \(\alpha(a_i)\) to \(\alpha(a_{i+1})\) on \(\mu^{-1}(r)\). Then \(\delta \circ \alpha|_{[a_i, a_{i+1}]}\) is a loop at \(\alpha(a_i)\) such that \(\mu (\delta \circ \alpha|_{[a_i, a_{i+1}]} \geq r\) where \(\circ\) is a product of paths. By Proposition 2.2, this loop \(\delta \circ \alpha|_{[a_i, a_{i+1}]}\) is homotopic to some loop in \(\mu^{-1}(r)\) by considering the manifold \(\mu^{-1}([r, \infty))\) and we can choose such homotopy fixing \(\delta\). It gives a homotopy from the path \(\alpha|_{[a_i, a_{i+1}]}\) to some path on \(\mu^{-1}(r)\) such that \(\alpha(a_i)\) and \(\alpha(a_{i+1})\) are fixed. Similarly, we can find the homotopy on each \((a_i, a_{i+1})\) for all \(i\).

(ii). Let \(\alpha\) be a path from \(x\) to \(y\). Then we may choose a partition \(0 = a_1 < a_2 < \ldots < a_k = 1\) such that \(\mu \circ \alpha\) is non-decreasing on \((a_i, a_{i+1})\), or \(\alpha(a_i) = \alpha(a_{i+1})\). In the latter case, we apply i) to get a non-decreasing path.

(iii). Consider the following diagram

\[
\begin{array}{ccc}
\tilde{M} & \xrightarrow{\tilde{\mu}} & \mathbb{R} \\
\downarrow{\pi} & & \downarrow{p} \\
M & \xrightarrow{\mu} & S^1
\end{array}
\]

where \(p\) is a universal cover of \(S^1\), and \(\tilde{M}\) is the pull-back manifold for \(\mu\). Then \(\tilde{M}\) is a \(\mathbb{Z}\)-fold covering and a non-compact manifold.

For any loop \(\alpha\) in \(M\), there is a unique path lifting \(\tilde{\alpha}\) on \(\tilde{M}\) for given starting point of \(\tilde{\alpha}\). Moreover \(\tilde{\mu}\) is a Morse function with critical
points of even indices on \(\widetilde{\gamma} \). By ii), we can get a path \(\tilde{\gamma} \) which is non-decreasing along the gradient flow of \(\tilde{\mu} \). It is easy to see that \(\gamma = \pi \circ \tilde{\gamma} \) is a loop we want.

\[\square \]

Now, back to the proof of Proposition 2.4. If we choose any generalized moment map \(\mu \), we get a lifting \(\tilde{\mu} : M \to S^1 \) whose level sets are all connected. If we regard the \(k \)-fold covering \(p \) of \(S^1 \) as a map \(\mathbb{R}/k \mathbb{Z} \to \mathbb{R}/\mathbb{Z} \), then \(p \) is a local isometry and we have \(\iota_{X_\omega} = d\mu = dp \circ d\tilde{\mu} = d\tilde{\mu} \) so that \(\tilde{\mu} \) satisfies the Hamiltonian equation locally. Hence \(\tilde{\mu} \) is a desired generalized moment map.

\[\square \]

From now on, we assume that the level set of the generalized moment map is connected. Assume that the symplectic \(S^1 \) action on \((M, \omega)\) is semifree, i.e., it is free on \(M \setminus M^{S^1} \). Let \(\mu : M \to S^1 \) be a generalized moment map. For any regular value \(t \in S^1 \) of \(\mu \), the inverse image \(\mu^{-1}(t) \) is a \((2n - 1)\)-dimensional free \(S^1 \)-manifold so that \(\mu^{-1}(t) / S^1 \) is a principal \(S^1 \)-bundle over \(\mu^{-1}(t) / S^1 \). Because the action is free on regular levels, \(\mu^{-1}(t) / S^1 \) is a connected smooth manifold with the induced symplectic structure. It is called a symplectic reduction or reduced space of \(M \) at \(t \), and denoted by \((M_t, \omega_t)\) where \(\omega_t \) is the reduced symplectic form on \(M_t \).

Assume that all fixed components in \(M \) are of codimension 4. Then all reduced spaces at any level \(t \) have the same diffeomorphism type (even though \(t \) is a critical value, see [GS]) and we denote their representative by \(M_{red} \). In fact, all reduced spaces are isotopic to each other along the Morse flow. So we may consider the set of all pairs \((M_t, \omega_t)\) as an \(S^1 \)-parametrized symplectic manifolds \((M_{red}, \omega_t)\). Moreover, each fixed component \(X_i \) is symplectically embedded in the reduced space at the critical level containing \(X_i \). When \(t \) varies in a regular interval \((a, b) \) \(\in S^1 \), by the Duistermaat-Heckman theorem, we have

\[[\omega_t] = [\omega_r] - e(t - r) \in H^2(M_{red}, \mathbb{R}). \]

where \(r, t \in (a, b), e \in H^2(M_{red}, \mathbb{Z}) \) is the Euler class of the \(S^1 \)-bundle \(\mu^{-1}(t) \to M_{red} \). (See [An] or [DH].) Let \(s \in S^1 \) be a critical value of \(\mu \), and let \(X_1, \ldots, X_k \) be the fixed components of codimension 4 contained in \(\mu^{-1}(s) \). Then the change of the Euler class for the principal \(S^1 \)-bundle over \(M_{red} \) is given by

\[e_{s+} = e_{s-} + \sum_{X_i \in \mu^{-1}(s)} D(X_i). \]

Here, \(e_{s-} \), respectively \(e_{s+} \), denotes the Euler class at level just below, respectively above, the critical level \(s \) and \(D(X_i) \in H^2(M_{red}, \mathbb{Z}) \).
denotes the Poincaré dual of \([X_t] \in H_{2n-4}(M_{\text{red}}, \mathbb{Z})\). See [GS] Theorem 13.2 for more details.

Suppose that \((M, \omega)\) is a non-Hamiltonian \(S^1\)-manifold with a generalized moment map \(\mu: M \to S^1\). Fix a regular value \(r\). Then \((M, \omega)\) can be reconstructed as follows. Consider the pull-back manifold

\[
\begin{align*}
\tilde{\omega} &= \pi^* \omega, \\
\omega' &= \pi^* \omega = \pi^* \pi_* \omega, \\
\mu' &= \pi^* \mu, \\
\end{align*}
\]

where \(\tilde{\omega} = \pi^* \omega\). Let \([t_{\min}, t_{\max}] \subset \mathbb{R}\) be a closed interval such that \(p(t_{\min}) = p(t_{\max}) = r\) and \(p([t_{\min}, t_{\max}])\) is a generator of \(\pi_1(S^1)\). Let \(\tilde{M}' = \tilde{\mu}^{-1}([t_{\min}, t_{\max}]) \subset \tilde{M}\). Then \((\tilde{M}', \tilde{\omega}|_{\tilde{M}'})\) is a Hamiltonian \(S^1\)-manifold with two boundary components \(M_+ = \tilde{\mu}^{-1}(t_{\max})\) and \(M_- = \tilde{\mu}^{-1}(t_{\min})\). Note that \(\pi|_{M_+}\), respectively \(\pi|_{M_-}\), is an \(S^1\)-equivariant diffeomorphism from \(M_+\), respectively \(M_-\), to \(\mu^{-1}(r)\) and the induced map \(\pi|_{M_+}/S^1\), respectively \(\pi|_{M_-}/S^1\), is a symplectomorphism from \(M_+/S^1\), respectively \(M_-/S^1\), to \((\mu^{-1}(r)/S^1, \omega_r)\) where \(\omega_r\) is the reduced symplectic form at level \(r\). Now, define \(M' = \tilde{M}'/\phi\) to be the quotient space where \(\phi: M_+ \to M_-\) is defined by \(\phi = \pi|_{M_-}^{-1} \circ \pi|_{M_+}\).

Proposition 2.6. The above map \(\pi|_{\tilde{M}'}: \tilde{M}' \to M\) induces an \(S^1\)-equivariant symplectomorphism \(\pi|_{\tilde{M}'}/\phi: M' \to M\).

Proof. To show that \(\pi|_{\tilde{M}'}/\phi\) is well-defined, we only need to check that \(\pi|_{\tilde{M}'}(\phi(x)) = \pi|_{\tilde{M}'}(\phi(x))\) for any \(x \in M_+\). For \(x \in M_+\),

\[
\pi|_{\tilde{M}'}(\phi(x)) = \pi|_{\tilde{M}'} \circ \pi|_{M_+}^{-1} \circ \pi|_{M_+}(x) =
\]

\[
\pi|_{M_-} \circ \pi|_{M_-}^{-1} \circ \pi|_{M_+}(x) = \pi|_{M_+}(x) = \pi|_{\tilde{M}'}(x).
\]

The rest of the proof is straightforward. \(\square\)

So we can regard the closed non-Hamiltonian \(S^1\)-manifold \((M, \omega)\) as a pair \((M', \phi)\) where \(M'\) is a Hamiltonian \(S^1\)-manifold with two boundary components \(M_+, M_-\) which are the maximum and the minimum of the moment map respectively, and \(\phi\) is an \(S^1\)-equivariant diffeomorphism which induces a symplectomorphism on their reduced spaces.

3. Symplectic Ruled Surfaces

In this section, let \((M, \omega)\) be a 6-dimensional closed symplectic \(S^1\)-manifold with a generalized moment map such that \(M_{\text{red}}\) is a ruled surface. A **ruled surface** is an \(S^2\)-bundle over a compact Riemann surface \(\Sigma_g\) of genus \(g\). Note that the structure group of an oriented \(S^2\)-bundle over a compact Riemann surface \(\Sigma_g\) is \(SO(3)\) whose fundamental group \(\mathbb{Z}_2\). So we can see easily that there are only two diffeomorphism types.
in the set of oriented S^2-bundle over Σ_g: the trivial bundle $\Sigma_g \times S^2$ and the non-trivial one denoted by E_{Σ_g}. A ruled surface is called rational if the base manifold is a sphere, and irrational otherwise. A ruled surface with a symplectic structure is called a symplectic ruled surface.

A symplectic form on a ruled surface is said to be compatible with the ruling (or with the fiber) if its restriction to the fiber is non-degenerate. This means that the fiber of a ruled surface is a symplectic submanifold. The following theorem is due to Li and Liu. Using this theorem, we may assume that the fiber of a ruled surface is symplectic.

Theorem 3.1. ([LL], [McS] p.448) Let $\pi : M \to \Sigma_g$ be a smooth S^2-bundle over a compact Riemann surface Σ_g. For any symplectic form ω on M, (M,ω) is symplectomorphic to (M,ω') for some symplectic form ω' which is compatible with the given ruling π. Moreover, we can assume that this symplectomorphism acts trivially on homology.

Let $(M_{\text{red}},\omega_{\text{red}})$ be a symplectic ruled surface. Choose a basis of $H^2(M_{\text{red}},\mathbb{Z})$ as follows. When M_{red} is trivial, let u be the dual of the class represented by a symplectic fiber $pt \times S^2$, and let v be the dual of the class represented by a trivial section $\Sigma_g \times pt$ such that $\int_{M_{\text{red}}} uv = 1$. For the nontrivial case, let u be the dual of the class represented by a symplectic fiber and v be the dual of the class represented by a section with self-intersection -1 with $\int_{M_{\text{red}}} uv = 1$. Note that $\int_{M_{\text{red}}} u^2 = \int_{M_{\text{red}}} v^2 = 0$ and $\int_{M_{\text{red}}} uv = 1$ in the trivial case, and $\int_{M_{\text{red}}} u^2 = 0$, $\int_{M_{\text{red}}} v^2 = -1$ and $\int_{M_{\text{red}}} uv = 1$ in the non-trivial case.

We compute the first Chern class $c_1(M_{\text{red}})$ as follows. Let $c_1(M_{\text{red}}) = xu + yv$ for some $x,y \in \mathbb{Z}$. Let $F \cong S^2$ be the fiber representing the dual of u, and $B \cong \Sigma_g$ be the section of M_{red} representing the dual of v. In the trivial case $M_{\text{red}} \cong \Sigma_g \times S^2$, the normal bundles $\nu(F)$ and $\nu(B)$ in M are trivial.

\[
\int_F c_1(M_{\text{red}})|_F = \int_{M_{\text{red}}} c_1(M_{\text{red}}) \cdot u = \int_{M_{\text{red}}} (xu + yv) \cdot u = y.
\]

On the other hand, $c_1(M_{\text{red}})|_F = c_1(TF \oplus \nu(F)) = c_1(TF) = c_1(S^2)$. Therefore $y = \int_F c_1(M_{\text{red}})|_F = 2$. Similarly

\[
\int_B c_1(M_{\text{red}})|_B = \int_{M_{\text{red}}} c_1(M_{\text{red}}) \cdot v = \int_{M_{\text{red}}} (xu + yv) \cdot v = x.
\]

On the other hand, $c_1(M_{\text{red}})|_B = c_1(TB \oplus \nu(B)) = c_1(TB) = c_1(\Sigma_g)$. Therefore $x = \int_B c_1(M_{\text{red}})|_B = 2 - 2g$. Hence

\[
(3) \quad c_1(M_{\text{red}}) = (2 - 2g)u + 2v.
\]

In the non-trivial case $M_{\text{red}} \cong E_{\Sigma_g}$, the normal bundle $\nu(F)$ is trivial, but the normal bundle $\nu(B)$ is the complex line bundle whose first
Chern number is equal to -1. A similar computation shows that
\[
2 = \int_F c_1(M_{\text{red}})|_F = \int_{M_{\text{red}}} c_1(M_{\text{red}}) \cdot u = y.
\]
Since \(\int_B c_1(M_{\text{red}})|_B = \int_B c_1(TB \oplus \nu(B)) = 1 - 2g, \)
\[
1 - 2g = \int_B c_1(M_{\text{red}})|_B = \int_{M_{\text{red}}} c_1(M_{\text{red}}) \cdot v = x - y.
\]
Therefore \(x = 3 - 2g \) and
\[
(4) \quad c_1(M_{\text{red}}) = (3 - 2g)u + 2v.
\]

Now, assume that \((M, \omega)\) is a 6-dimensional non-Hamiltonian symplectic semifree \(S^1\)-manifold with a generalized moment map \(\mu\). Assume \(M^3 = \bigsqcup_{i=1}^k X_i\) where \(X_i\)'s are connected surfaces for all \(i\), and assume that the reduced space \(M_{\text{red}}\) is a ruled surface. By Proposition\(2.6\) identify \((M, \omega)\) with \((M', \phi)\). Here, \(M'\) is a Hamiltonian \(S^1\)-manifold with two boundary components \(M_+\) and \(M_-\) with \((M')^3 = \bigsqcup_{i=1}^k X_i\), and \(\phi : M_+ \to M_-\) is an \(S^1\)-equivariant diffeomorphism described as in Proposition\(2.6\). Because \(M_{\text{red}}\) is a ruled surface, \(M_+\) and \(M_-\) are \(S^1\)-bundles over the ruled surface \(M_{\text{red}}\).

Let \(e_-\), respectively \(e_+\), be the Euler class of the \(S^1\)-bundle \(M_-\), respectively \(M_+\). The \(S^1\)-equivariant diffeomorphism \(\phi : M_+ \to M_-\) induces a symplectomorphism \(M_+ / S^1 \to M_- / S^1\), still denoted by \(\phi\). Then \(\phi^* e_- = e_+\) and the equation (2) implies
\[
(5) \quad \phi^* e_- = e_- + \sum_i D(X_i)
\]
In particular, if \(\phi\) acts on \(H^*(M_{\text{red}})\) trivially, then \(\sum_i D(X_i) = 0\).

Proposition 3.2. Let \(M_{\text{red}}\) be a ruled surface with the basis \(\{u, v\}\) of \(H^2(M_{\text{red}}, \mathbb{Z})\) as above. Let \(\omega_1\) and \(\omega_2\) be two symplectic forms on \(M_{\text{red}}\) which are both compatible with the ruling. Let \(\psi : (M_{\text{red}}, \omega_1) \to (M_{\text{red}}, \omega_2)\) be a symplectomorphism. Then \(\psi\) acts trivially on \(H^2(M_{\text{red}}, \mathbb{Z})\) if \(M_{\text{red}} \not\cong S^2 \times S^2\). If \(M_{\text{red}} \cong S^2 \times S^2\), then \(\psi\) acts on \(H^2(M_{\text{red}}, \mathbb{Z})\) either trivially, or \(\psi^* u = v, \psi^* v = u\).

Proof. Assume \(M_{\text{red}} \cong E_g\) is a non-trivial \(S^2\)-bundle first. Then \(u^2 = 0, v^2 = -1, uv = 1\). Let \(\psi^* u = au + bv\) and \(\psi^* v = cu + dv\). Since \(\psi\) is a symplectomorphism, it preserves the intersection form. Hence \(\psi^* u^2 = (au + bv)^2 = 0, \psi^* v^2 = (cu + dv)^2 = -1, \) and \(\psi^* u \cdot \psi^* v = (au + bv)(cu + dv) = 1\). It implies that the only integral solutions are \((a, b, c, d) = (1, 0, 0, 1), (-1, -2, 0, 1), (-1, 0, 0, -1),\) and \((1, 2, 0, -1)\). Note that for any 2-dimensional submanifold \(Z \subset M_{\text{red}}, \text{genus}(Z) = \text{genus}(\psi(Z))\). Assume \((a, b, c, d) = (-1, -2, 0, 1)\), i.e., \(\psi^* u = -u - 2v\) and \(\psi^* v = v\). Let \(Z\) be a symplectic 2-sphere which represents \(u\). Apply the adjunction formula to the 2-sphere \(Z\) so that
\[
(6) \quad \langle \psi^* u \cdot \psi^* u, [M_{\text{red}}]\rangle - \langle c_1(M_{\text{red}}) \cdot \psi^* u, [M_{\text{red}}]\rangle = 2g(\psi(Z)) - 2 = -2.
\]
Here, $LHS = (-u - 2v)^2 - ((3 - 2g)u + 2v)(-u - 2v) = 4 - 4g$. It implies that $4 - 4g = -2$ which is impossible. Therefore $(a, b, c, d) \neq (-1, -2, 0, 1)$.

Similarly $(a, b, c, d) = (1, 2, 0, 1)$ and $(a, b, c, d) = (-1, 0, 0, -1)$ are not possible. This proves the result for $M_{\text{red}} \cong E_{\Sigma g}$ case.

Now, assume $M_{\text{red}} \cong \Sigma_g \times S^2$. Then $u^2 = 0$, $v^2 = 0$, and $uv = 1$. Hence $\psi^* u^2 = (au + bv)^2 = 0$, $\psi^* v^2 = (cu + dv)^2 = 0$, and $\psi^* u \cdot \psi^* v = (au + bv)(cu + dv) = 1$. Equivalently, $ab = 0$, $cd = 0$, and $ad + bc = 1$. The only possible integral solutions are $(a, b, c, d) = (0, \pm 1, \pm 1, 0), (\pm 1, 0, 0, \pm 1)$, i.e., $\psi^* u = \pm v, \psi^* v = \pm u$, or $\psi^* u = \pm u, \psi^* v = \pm v$.

If $(a, b, c, d) = (0, -1, -1, 0)$ or $(-1, 0, 0, -1)$, then the fiber cannot be symplectic with respect to ω_2. So, $(a, b, c, d) \neq (0, -1, -1, 0), (-1, 0, 0, -1)$.

Assume $M_{\text{red}} \cong \Sigma_g \times S^2$ and Z be a symplectic surface of genus g which represents v. If $(a, b, c, d) = (0, 1, 1, 0)$, then $\psi^* u = v, \psi^* v = u$.

By applying the adjunction formula to the surface $\psi(Z)$,

\[
\langle \psi^* v \cdot \psi^* v, [M_{\text{red}}] \rangle - \langle c_1(M_{\text{red}}) \cdot \psi^* v, [M_{\text{red}}] \rangle = 2g(\psi(Z)) - 2 = 2g - 2.
\]

$LHS = u^2 - ((2 - 2g)u + 2v)u = -2$. Therefore we get $g = 0$. Consequently $\psi^* = id$ if $g \geq 1$, and $\psi^* = id$ or $\psi^* u = v$ and $\psi^* v = u$ if $g = 0$.

\[\square\]

If ψ acts non-trivially on $H^2(M_{\text{red}})$, we say M is twisted. So, for a non-Hamiltonian S^1-manifold (M, ω) with the generalized moment map $\mu : M \to S^1$, if M_{red} is a ruled surface not diffeomorphic to $S^2 \times S^2$, we can parametrize the cohomology classes of the reduced symplectic forms $\{[\omega_t] = c_t u + d_t v \mid t \in S^1 \}$ and c_t, d_t are continuous on S^1.

If $M_{\text{red}} \cong S^2 \times S^2$, we can also parametrize the cohomology classes of the reduced symplectic forms $\{[\omega_t] = c_t u + d_t v \mid t \in S^1 \}$. In this case, c_t, d_t may not be continuous at one point.

For each fixed component X_i, if we write $D(X_i) = a_i u + b_i v$ for $a_i, b_i \in \mathbb{Z}$, then

\begin{equation}
\sum_i a_i = \sum_i b_i = 0.
\end{equation}

if $M_{\text{red}} \not\cong S^2 \times S^2$ or $M_{\text{red}} \cong S^2 \times S^2$ but M is not twisted.

If $M_{\text{red}} \cong S^2 \times S^2$, By (5) and Proposition 3.2 we have

\begin{equation}
b u + a v = a u + b v + \sum_i D(X_i) = (a + \sum_i a_i) u + (b + \sum_i b_i) v.
\end{equation}

Hence from (7) and (8), we always have the following equation

\begin{equation}
\sum_i (a_i + b_i) = 0.
\end{equation}
4. Proof of Theorem [1.2]

We start with the following theorem due to [Lin].

Theorem 4.1. [Lin] Assume that the action of a torus T on a connected compact symplectic manifold M is an effective Hamiltonian action of complexity two with moment map $\Phi : M \to \mathfrak{t}^*$. And assume that for any regular value $\xi \in \mathfrak{t}^*$ of Φ, the symplectic reduced space $M_\xi = \Phi^{-1}(\xi)/T$ has $\dim^{\mathfrak{t}^*} b^+_2 = 1$. Then the Duistermaat-Heckman function f is log-concave.

Note that the Duistermaat-Heckman function $f : \mathfrak{t}^* \to \mathbb{R}$ is defined to be the symplectic volume $f(\xi) = \int_{M_\xi} \omega^{\dim_{\mathfrak{t}^*}}$, where M_ξ is a reduced space at level ξ and ω_ξ is the corresponding reduced symplectic form. Duistermaat and Heckman proved that f is a piecewise polynomial function and it is a polynomial on any open region $U \in \mathfrak{t}^*$ consisting of regular values for Φ. We sketch the proof of Theorem 4.1 in the case when $T = S^1$.

Let I be an open interval consisting of the regular values for Φ and let e be the Euler class of the S^1-fibration over M_ξ for $\xi \in I$. Choose a fixed $\xi_0 \in I$. By (1), $\int_{M_\xi} (\omega_{\xi_0} - e(\xi - \xi_0))^2$. By assumption, the reduced space M_ξ is of dimension 4, so the function f is given by $f(\xi) = \int_{M_\xi} (\omega_{\xi_0} - e(\xi - \xi_0))^2$. The condition $b^+_2 = 1$ implies that there is a basis $\{u, v_1, ..., v_k\}$ on $H^2(M_\xi, \mathbb{R})$ such that $\int_{M_\xi} u^2 = 1$, $\int_{M_\xi} v_i^2 = -1$, and $\int_{M_\xi} uv_i = \int_{M_\xi} v_iv_j = 0$ for all $i \neq j$. After expressing $[\omega_{\xi_0}]$ and e by the basis chosen above, we can prove that $f'' f - f'^2 \leq 0$ which says that log f is concave on I. Moreover, W. Graham proved that the log-concavity holds near the neighborhood of the critical values. (See [Gr]). Therefore f is log-concave. For more detail, see [Lin].

Let (M, ω) be a 6-dimensional closed non-Hamiltonian symplectic S^1-manifold with a generalized moment map $\Phi : M \to S^1$. If the fixed point set M^S_ξ is non-empty, Theorem [1.2] states that the reduced space $M_\xi = \Phi^{-1}(\xi)/S^1$ should have $b^+_2 \geq 2$ for any choice of the generalized moment map Φ and the regular value ξ. Now we start the proof of Theorem 1.2 with the following lemma.

Lemma 4.2. Let (N, σ) be a 6-dimensional Hamiltonian S^1-manifold with the moment map $\mu : N \to (a, b) \subset \mathbb{R}$. Assume that there is exactly one fixed point z of index 2 with the weight $(p, q, -r)$ for some $p, q, r \in \mathbb{Z}^+$ and $\mu(z) = c \in (a, b)$. Then

$$\int_{N_{c+\epsilon}} e^2_{c+\epsilon} = \int_{N_{c-\epsilon}} e^2_{c-\epsilon} = \frac{1}{pqr}$$

where $e_{c\pm\epsilon}$ is the Euler class of the S^1-fibration $\mu^{-1}(c \pm \epsilon) \to N_{c\pm\epsilon}$.
Proof. It is an easy consequence of the localization formula for the symplectic cut near c. See Section 3 of [L2] for more detail.

Proof of Theorem 1.3. Assume that $b^2 = 1$. For any generalized moment map $\Phi : M \to S^1$, Duistermaat-Heckman function $F_\Phi : S^1 \to \mathbb{R}$ is also defined. By the similar proof to the previous theorem, one can see that F_Φ is log-concave on S^1. It means that F_Φ should be constant on S^1.

Let Z be a connected component of M^{S^1} and let $I = (a, b)$ be an open interval in $S^1 \cong \mathbb{R}/\mathbb{Z}$ which contains exactly one critical value $c = F_\Phi(Z) \in I$. Fix a regular value $\xi_0 \in (a, c) \subset S^1$. Since $F_\Phi(\xi) = \int_{M_\xi} (\omega_{\xi_0} - \varepsilon(\xi - \xi_0))^2$ is constant, we get $\int_{M_\xi} \varepsilon^2 = 0$, $\int_{M_\xi} \omega_{\xi_0} = 0$ and $\int_{M_\xi} \omega_{\xi}^2 = \int_{M_\xi} \omega_{\xi_0}^2$ on (a, c). Here, ε is the Euler class of the principal S^1-bundle over M_ξ.

Now, we show that F_Φ cannot be constant if M^{S^1} is non-empty. Let M_+ be the reduced space on (c, b) and M_- be the one on (a, c). If Z is an isolated fixed point of index 2 with the weight (p, q, r) for some $p, q, r \in \mathbb{Z}^+$, then M_+ is one-point blow-up of M_-. By Lemma 1.2 for the Euler class ε_+ of the principal S^1-bundle over M_+ for $\xi_+ \in (c, b)$, $\int_{M_\xi} \rho_2 = \int_{M_-} \varepsilon^2 - \frac{1}{pqr} < 0$. Hence F_Φ is not constant on (c, b).

If Z is an isolated fixed point of index 4, then we have blow-down instead of blow-up. But in this case, if we consider the symplectic structure $-\omega$ instead of ω, then we may consider Z as a fixed point of index 2. So the case when Z is an isolated fixed point is settled.

If Z is a surface of index 2, then M_+ is diffeomorphic to M_- so that we can identify their cohomology rings. The diffeomorphism above is given by an isotopy along the Morse flows. In this case, $\varepsilon_+ = \varepsilon + D(Z)$ where $D(Z)$ is the class represented by the Poincaré dual of Z in $H^2(M_\xi)$ by [2]. Note that Z is symplectically embedded in (M_ξ, ω_{ξ_0}). So, $\int_{M_\xi} D(Z)[\omega_{\xi_0}]$ should be positive. Consider the derivative of the Duistermaat-Heckman function F_Φ. On (c, b), $F_\Phi'(\xi) = 2(\xi - c) \int_{M_\xi} \varepsilon_+^2 - 2 \int_{M_\xi} \omega_{\xi} \varepsilon_+$ for $\xi \in (c, b)$. Because F_Φ is constant, $F_\Phi' \equiv 0$. But

$$
\lim_{\xi \to c} F_\Phi'(\xi) = 2 \int_{M_\xi} \omega_{\xi} \varepsilon_+ = 2 \int_{M_\xi} \omega_{\xi_0} - (c - \xi_0) \varepsilon_+(e + D(Z))
$$

$$
= 2 \int_{M_\xi} \omega_{\xi_0} - (c - \xi_0) \varepsilon_+ D(Z) = 2 \int_{M_\xi} \omega_{\xi_0} D(Z) > 0
$$

which contradicts that $F_\Phi' \equiv 0$.

If Z is a surface of index-0 or 4 or 4-dimensional, then the action is automatically Hamiltonian so that we need not consider those cases. This finishes the proof.

\qed
5. **Proof of Theorem 1.3: The trivial fibration cases**

We first prove the following proposition which is the first statement of Theorem 1.3 for the trivial fibration case using different approach from Theorem 1.2.

Proposition 5.1. Let (M, ω) be a 6-dimensional symplectic semifree S^1-manifold with non-empty fixed point set M^{S^1} consisting of surfaces. Let $\mu : M \to S^1$ be a generalized moment map. If M_{red} is diffeomorphic to $\Sigma_g \times S^2$, then the action is Hamiltonian.

Proof. Recall that the orientations on M and M_{red} are given by ω so that ω^3, respectively ω^3_{red}, represents positive volume form on M, respectively M_{red}. Let $M^{S^1} = \coprod_{i=1}^k X_i$, where X_i are connected surfaces. Because the reduced spaces are all diffeomorphic to $\Sigma_g \times S^2$ for each $t \in \mu(M) \subset S^1$, we can identify $\mu^{-1}(t)/S^1$ with $(\Sigma_g \times S^2, \omega_t)$ where ω_t is the reduced symplectic form at level t. Let u and v be the basis of $H^2(M_{\text{red}}, \mathbb{Z})$ as chosen in Section 3 after Theorem 3.1. Then $u^2 = 0$, $uv = 1$, and $v^2 = 0$. Then the cohomology class of ω_t can be written as $[\omega_t] = c_t u + d_t v \in H^2(M_{\text{red}}, \mathbb{R})$ for $t \in \mu(M) \subset S^1$. Note that if μ is surjective, as was mentioned in Section 3, c_t and d_t are continuous on S^1 if $M_{\text{red}} \not\cong S^2 \times S^2$, and they may be discontinuous at most one point in S^1 if $M_{\text{red}} \cong S^2 \times S^2$. Since $\int_{M} [\omega_t]^2 > 0$, we have $c_t d_t > 0$ for all $t \in \text{int}(\mu(M)) \subset S^1$. Therefore c_t and d_t are non-vanishing in the interior of $\mu(M)$, and since $\mu(M)$ is connected, the signs of c_t and d_t in $\text{int}(\mu(M))$ do not change. By Theorem 5.1 (M_t, ω_t) is symplectomorphic to some $(M_{\text{red}}, \omega')$ which is compatible with fiber and $[\omega_t] = [\omega'] \in H^2(M_{\text{red}})$, so $\int_{pt \times S^2} \omega_t = d_t > 0$. Therefore we get

$$
(10) \quad c_t > 0, \quad d_t > 0, \quad \forall t \in \text{int}(\mu(M)).
$$

For a fixed component X_i with $D(X_i) = a_i u + b_i v$, $a_i, b_i \in \mathbb{Z}$, let $s = \mu(X_i)$ be a critical value. Then X_i is a symplectically embedded surface in $(\Sigma_g \times S^2, \omega_s)$. By Poincaré duality,

$$
(11) \quad \int_{X_i} \omega_s = \int_{M_{\text{red}}} D(X_i) \cdot \omega_s = a_i d_s + b_i c_s > 0.
$$

In particular, at least one of a_i and b_i should be positive.

By (10), the first Chern class $c_1(M_{\text{red}}) = (2 - 2g)u + 2v$. By the adjunction formula (10), $D(X_i)^2 - c_1(M_{\text{red}}) \cdot D(X_i) = 2g_i - 2$ where g_i is the genus of the embedded surface X_i. Hence

$$(a_i u + b_i v)^2 - (a_i u + b_i v)((2 - 2g)u + 2v) + 2 = 2g_i.$$

Therefore, we get

$$
(12) \quad (a_i - (1 - g))(b_i - 1) = g_i - g.
$$
CASE 1: $g \geq 1$

If $g \neq g_i$, by (12), $b_i \neq 1$ and $a_i = 1 + \frac{g}{b_i - 1} - \frac{b}{b_i - 1}g$. If we assume $b_i < 0$, then $a_i < 1$ and thus a_i is non-positive, which contradicts to (11). Therefore, $b_i \geq 0$. If $g = g_i$, then $a_i = 1 - g$ or $b_i = 1$. Since $g \geq 1$, $a_i \leq 0$ or $b_i = 1$. By (11), $b_i \geq 0$. In any case, b_i is non-negative for each i. If we assume that the given action is non-Hamiltonian, then $b_i = 0$ for all i by (7). Hence by (11), all a_i should be positive which contradicts to (7).

CASE 2: $g = 0$

In this case, $M_{red} \cong S^2 \times S^2$. As discussed in Section 3, M can be twisted. So, the parametrization of ω_t may not be continuous at one regular value $r \in S^1$. Define a function f on $\mu(M)$ by

$$f(t) = \frac{d}{dt} [\min(c_t, d_t)].$$

Even though c_t and d_t might not be continuous at r for twisted M, by the definition f is well-defined at r. Note that from (1), we have

$$e_t = \frac{d}{dt} c_t u + \frac{d}{dt} d_t v. \quad (13)$$

We claim that f is a non-increasing step function defined on a finite complement of $\mu(M)$. This is divided into Lemma 5.2 to 5.7.

Lemma 5.2. The function f is locally constant, and defined on $\mu(M)$ except possibly for finitely many points. In particular if f is not defined at a point r in a regular interval $(\alpha, \beta) \subset \mu(M)$, then f is well-defined on $(\alpha, \beta) - \{r\}$.

Proof. The functions c_t and d_t are linear on t in every regular interval of $\mu(M) \subset S^1$ by the Duistermaat-Heckman theorem (1). Hence the derivatives c'_t and d'_t are locally constants in a regular interval, so is f. Therefore in a regular interval $(\alpha, \beta) \subset \mu(M)$, either $c_t \equiv d_t$ or $c_t = d_t$ possibly at only one point r in (α, β). Therefore the function $\min\{c_t, d_t\}$ is differentiable on (α, β) except possibly at one point r where $c_r = d_r$, but $c_t \neq d_t$.

On the other hand, c_t and d_t may not be differentiable at critical values of μ. Therefore there are only finitely many points of $\mu(M)$ where $f(t) = \frac{d}{dt} [\min(c_t, d_t)]$ is not defined. □

Lemma 5.3. If $f(t)$ is not defined at a regular value r of μ, then for a sufficiently small ϵ,

$$f(r - \epsilon) > f(r + \epsilon).$$
Proof. Let \(r \) be a regular value on which \(f \) is not defined. For a small \(\epsilon \), choose \(t_1 \in (r - \epsilon, r) \) and \(t_2 \in (r, r + \epsilon) \). If \(\min(c_t, d_t) = c_t \) on \((r - \epsilon, r)\), then \(\min(c_t, d_t) \) should be \(d_t \) on \((r, r + \epsilon)\). This happens when \(d'_t \) is smaller than \(c'_t \) on \((r - \epsilon, r + \epsilon)\). This means that \(f(t_1) = c'_t > f(t_2) = d'_t \). Therefore \(f \) decreases when it passes through the level \(\mu^{-1}(r) \). Similarly, we can prove that \(f \) decreases when it passes through the level \(\mu^{-1}(r) \) in the case when \(\min(c_t, d_t) = d_t \). \(\square \)

Let \(s \) be a critical value of \(\mu \), and let \(M^{S^1} \cap \mu^{-1}(s) = \bigsqcup_{i=1}^k X_i \) where \(X_i \) is a fixed surface with genus \(g_i \) for \(i = 1, \ldots, k \). By (11) and (2), we can easily see that

\[
e_{s+\epsilon} = e_{s-\epsilon} + \left(\sum_{i=1}^k a_i \right)u + \left(\sum_{i=1}^k b_i \right)v.
\]

where \(e_{s+\epsilon} \) is the Euler class of the principal \(S^1 \)-bundle over \(M_{s+\epsilon} \) for a sufficiently small \(\epsilon \). Therefore by (13),

\[
c'_{i+\epsilon} = c'_{i-\epsilon} - \left(\sum_{i=1}^k a_i \right), \quad \text{and} \quad d'_{i+\epsilon} = d'_{i-\epsilon} - \left(\sum_{i=1}^k b_i \right).
\]

By equation (12), we have

\[
(a_i - 1)(b_i - 1) = g_i.
\]

for all \(i \). So if \(X_i \) has genus \(g_i > 0 \), then

\[
a_i \geq 2, \quad b_i \geq 2.
\]

If \(g_i = 0 \),

\[
a_i = 1 \quad \text{or} \quad b_i = 1.
\]

Now, assume that \(f \) is not defined at \(s \). Then we have three possibilities; \(c_s < d_s \), \(c_s = d_s \), or \(c_s > d_s \). Choose a sufficiently small \(\epsilon > 0 \) so that \(f \) is defined on \(s - \epsilon \leq t < s \) and \(s < t \leq s + \epsilon \).

Lemma 5.4. Assume \(c_s < d_s \) so that \(f(t) = c'_t \) on \((s - \epsilon, s + \epsilon) - \{s\} \). Then

\[f(s - \epsilon) \geq f(s + \epsilon).
\]

The equality holds if and only if \(g_i = 0 \) and \(a_i = 0, b_i = 1 \) for all \(i \). If \(g_i > 0 \) for some \(i \), then \(f \) decreases by at least 2 when it passes through the critical value \(s \).

Proof. If \(g_i > 0 \), then \(a_i, b_i \geq 2 \) by (17). If \(g_i = 0 \), then \(a_i = 1 \) or \(b_i = 1 \) by (18). If \(b_i = 1 \) and \(a_i < 0 \), by (11),

\[0 < a_i d_s + b_i c_s = a_i d_s + c_s < a_i d_s + d_s < d_s(a_i + 1) \leq 0.
\]

which is a contradiction. So, if \(b_i = 1 \), then \(a_i \) must be non-negative. Therefore if \(c_s < d_s \), then \(a_i \) is non-negative for all \(i \). Note that by (15), \(f \) decreases by \(\sum_{i=1}^k a_i \) when it passes through the level \(\mu^{-1}(s) \). Hence we are done. \(\square \)
Similarly, we have

Lemma 5.5. Assume $c_s > d_s$ so that $f(t) = d'_t$ on $(s - \epsilon, s + \epsilon) - \{s\}$. Then
\[
f(s - \epsilon) \geq f(s + \epsilon).
\]
The equality holds if and only if $g_i = 0$ and $a_i = 1, b_i = 0$ for all i. If $g_i > 0$ for some i, then f decreases by at least 2 when it passes through the critical level $\mu^{-1}(s)$.

Remark 5.6. Different from the case when $g \geq 1$, if $a_i = 1$, then b_i may be negative in Lemma 5.4. Similarly, if $b_i = 1$, then a_i may be negative in Lemma 5.5.

Lemma 5.7. Assume $c_s = d_s$. Then
\[
f(s - \epsilon) \geq f(s + \epsilon).
\]
In particular, $a_i, b_i \geq 0$ and one of a_i and b_i is positive for all i. If $g_i > 0$ for some i, then f decreases by at least 2 when it passes through the critical level $\mu^{-1}(s)$.

Proof. If $g_i > 0$, then $a_i, b_i \geq 2$ by (17). If $g_i = 0$, then $a_i = 1$ or $b_i = 1$ by (18). On the other hand, $0 < a_id_s + b_ic_s = c_s(a_i + b_i)$ by (11). Therefore if $a_i = 1$, then $b_i \geq 0$. Similarly, $a_i \geq 0$ if $b_i = 1$. Hence
\[
\sum_{i=1}^{k} a_i \geq 0, \sum_{i=1}^{k} b_i \geq 0
\]
Hence c'_t and d'_t do not increase when they pass through the critical value s by (15).

Assume that $c_t < d_t$ on $(s - \epsilon, s)$. Then $f(t) = c'_t > d'_t$ on $(s - \epsilon, s)$. Hence $f(t)$ does not increase when it passes through s. Similarly, f does not increase in the case when $c_t > d_t$ on $(s - \epsilon, s)$.

If $c_t = d_t$ on $(s - \epsilon, s)$, because c'_t and d'_t do not increase when they pass through s by (15), f does not increase.

Now, back to the proof of Proposition 5.1. By the previous lemmas, f is a non-increasing step function on the complement of a finite set in $\mu(M)$. Assume the action is non-Hamiltonian so that μ is surjective. Then f is defined on S^1 except for finitely many points. Since f is a non-increasing function, f should be a constant. By Lemma 5.4, Lemma 5.5 and Lemma 5.7, $g_i = 0$ and $a_i + b_i > 0$ for all i. This contradicts to (9). Hence the S^1-action should be Hamiltonian. This proves Proposition 5.1.

Now, let (M, ω) be a 6-dimensional closed Hamiltonian semifree S^1-manifold with the moment map $\mu : M \to [t_{\min}, t_{\max}] \subset \mathbb{R}$. Assume that M^{S^1} consists of surfaces. Let Σ_{\min} and Σ_{\max} be two fixed components such that $\mu(\Sigma_{\min}) = t_{\min}$ and $\mu(\Sigma_{\max}) = t_{\max}$. Note that Σ_{\min} and
\(\Sigma_{\text{max}} \) are diffeomorphic to the Riemann surface \(\Sigma_g \) of genus \(g \). We give a basis of \(H^2(M_{\text{red}}, \mathbb{Z}) \) as follows. By Morse theory, the level set \(\mu^{-1}(r) \) near the minimum of \(\mu \) is an \(S^3 \)-bundle over \(\Sigma_{\text{min}} \) and \(S^1 \) acts on \(\mu^{-1}(r) \) fiberwise. Therefore the \(S^3 \)-bundle \(\mu^{-1}(r) \to \Sigma_{\text{min}} \) induces an \(S^2 \)-fibration \(\pi : M_{\text{red}} \to \Sigma_{\text{min}} \). By Theorem 3.1 we may assume the reduced symplectic form \(\omega \) to be compatible with the ruling given by \(\pi \). Let \(u \) be dual to the class represented by a symplectic fiber \(F \). When \(M_{\text{red}} \) is trivial, let \(v \) be dual to the class represented by the base \(B = [\Sigma_g \times pt] \) such that \(\int_{M_{\text{red}}} uv = 1 \). For the non-trivial case, let \(v \) be dual to the class represented by a section with self-intersection \(-1\) with \(\int_{M_{\text{red}}} uv = 1 \). Then \(u \) and \(v \) form a basis of \(H^2(M_{\text{red}}, \mathbb{Z}) \) and we can express \([\omega_t] = c_t u + d_t v\) for all \(t \in (t_{\text{min}}, t_{\text{max}}) \).

Remark 5.8. [L1] Consider the \(S^3 \)-fibration \(\mu^{-1}(r) \to \Sigma_{\text{max}} \) near the maximum of \(\mu \). It also induces an \(S^2 \)-fibration \(\pi' : M_{\text{red}} \to \Sigma_{\text{max}} \). Similarly, we can choose a basis \(u', v' \) of \(H^2(M_{\text{red}}, \mathbb{Z}) \) with respect to \(\pi' \) as above. If \(M_{\text{red}} \not\cong S^2 \times S^2 \), then we can show that \(u = u' \) and \(v = v' \) in \(H^2(M_{\text{red}}, \mathbb{Z}) \). In the case when \(M_{\text{red}} \cong S^2 \times S^2 \), there are only two possibilities; \(u = u' \), \(v = v' \), or \(u = v' \) and \(v = u' \). If \(u = u' \) and \(v = v' \), we say that \(M \) is not twisted. If \(u = v' \) and \(v = u' \), we say that \(M \) is twisted. If \(M \) is twisted, then the isotopy between the reduced spaces near the minimum and the maximum along the Morse flow maps a fiber of \(M_{\text{red}} \to \Sigma_{\text{min}} \) representing the dual of \(u \) to a section of \(M_{\text{red}} \to \Sigma_{\text{max}} \) representing the dual of \(v \), and a section of \(M_{\text{red}} \to \Sigma_{\text{min}} \) representing the dual of \(v \) to a fiber of \(M_{\text{red}} \to \Sigma_{\text{max}} \) representing the dual of \(u \).

See [L1] for more details.

To prove the second statement of Theorem 1.3 in the trivial fibration cases, we need the following lemma due to Li.

Lemma 5.9. [L1] Let \((M, \omega) \) be a 6-dimensional closed Hamiltonian semifree \(S^1 \)-manifold with the moment map \(\mu : M \to \mathbb{R} \).

i) If the minimum is a surface \(\Sigma_g \) with the first Chern number of its normal bundle equal to \(b_{\text{min}} \), then the reduced space \(M_{\text{red}} \) near the minimum is diffeomorphic to \(\Sigma_g \times S^2 \) if and only if \(b_{\text{min}} = 2k \) is even, and it is diffeomorphic to \(E_{\Sigma_g} \) if and only if \(b_{\text{min}} = 2k + 1 \) is odd. In either case, the Euler class of the principal \(S^1 \)-bundle over \(M_{\text{red}} \) near the minimum is \(ku - v \).

ii) If the maximum is a surface \(\Sigma_g \) with the first Chern number of its normal bundle equal to \(b_{\text{max}} \), then the reduced space \(M_{\text{red}} \) near the maximum is diffeomorphic to \(\Sigma_g \times S^2 \) if and only if \(b_{\text{max}} = 2k' \) is even, and it is diffeomorphic to \(E_{\Sigma_g} \) if and only if \(b_{\text{max}} = 2k' + 1 \) is odd. In either case, the Euler class of the principal \(S^1 \)-bundle over \(M_{\text{red}} \) near the maximum is \(-k'u + v \) if \(M_{\text{red}} \not\cong S^2 \times S^2 \) near the maximum. In the case when \(M_{\text{red}} \cong S^2 \times S^2 \) near the maximum, the Euler class of the principal \(S^1 \)-bundle over \(M_{\text{red}} \) near the maximum is \(-k'v + u \) or \(-k'u + v \).
Proposition 5.10. Let M be a 6-dimensional Hamiltonian semifree S^1-manifold whose fixed point set consists of surfaces, and let $\mu : M \to [t_{\text{min}}, t_{\text{max}}] \subset \mathbb{R}$ be the moment map. Suppose M_{red} is diffeomorphic to $\Sigma_g \times S^2$. Then the number of the fixed surfaces with positive genera is at most four. If the maximal fixed surface is a sphere, then there is at most 1 fixed surface with positive genus. Moreover if there are four fixed surfaces with positive genera, these genera are all equal to g.

Proof. Let $M^{S^1} = \bigsqcup X_i$ be the set of fixed surfaces, and let g_i be the genus of X_i for each i. Let $D(X_i) = a_i u + b_i v$ for each i, where $\{u, v\}$ is the basis as mentioned before Remark 5.8. Let Σ_{mid} denote a subset of M^{S^1} consisting of non-extremal fixed surfaces, Σ_{min} the minimal fixed surface, and Σ_{max} the maximal fixed surface.

We first prove the case when $g \geq 1$. Then $b_i \geq 0$ for all i by the proof of Proposition 5.1. For a principal S^1-bundle $\mu^{-1}(r) \to M_{\text{red}}$ for a regular value $r \in S^1$, let e_{min} be the Euler class of principal S^1-bundle near the minimum of μ and e_{max} be the one near the maximum of μ. By (2),

$$e_{\text{max}} = e_{\text{min}} + \sum_{X_i \subset M_{\text{mid}}} D(X_i).$$

By Lemma 5.9, $e_{\text{min}} = ku - v$ and $e_{\text{max}} = -k' u + v$ for some $k, k' \in \mathbb{Z}$. Hence

$$\sum_{X_i \subset M_{\text{mid}}} b_i = 2. \tag{19}$$

Therefore, the possible value of b_i is 0, 1 or 2. If $b_i = 0$, then (12) implies that $a_i = 1 - g_i$. Since a_i and b_i cannot be both non-positive by (11), a_i should be positive so that $g_i = 0$. If $b_i = 1$, then $g_i = g$ by (12). If $b_i = 2$, then $b_j = 0$ for all $j \neq i$ by (19). Therefore there are at most 2 fixed surfaces X_i which have $b_i \neq 0$ and are neither maximal nor minimal with respect to μ. So, the number of the fixed surfaces which are interior with respect to μ and have positive genera is at most 2. With the minimal and the maximal fixed surfaces, there are at most 4 fixed surfaces with positive genera. In particular, if there are 4 fixed surfaces having non-zero genera, then these genera are all equal to g.

We now prove the case when $g = 0$. In this case, $M_{\text{red}} \cong S^2 \times S^2$ and b_i may be negative as we mentioned in Remark 5.8. So we need another approach. Remember that $[\omega_i] = c_t u + d_t v$. Let $F \cong pt \times S^2$ be a fiber of $M_{\text{red}} \to \Sigma_{\text{min}}$ which represents the dual of u, and let $B \cong S^2 \times pt$ be a section of $M_{\text{red}} \to \Sigma_{\text{min}}$ which represents the dual of v as mentioned before Remark 5.8. Since the volume of the fiber tends to 0 and the volume of the section B tends to the symplectic volume of the minimal fixed surface as t approaches t_{min},

$$0 = \lim_{t \to t_{\text{min}}} \int_F \omega_i = \lim_{t \to t_{\text{min}}} \int_{M_{\text{red}}} [\omega_i] \cdot u = \lim_{t \to t_{\text{min}}} d_t.$$
So, \(c_t \) and \(\max \) near \(\Sigma \). Hence \(f \) near \(\max \Sigma \) and \(v \) dual of \(e \). By Lemma 5.9, \(e \) represents the dual of \(u \) and \(\max \Sigma \) dual of \(u \). Therefore

\[
0 = \lim_{t \to t_{\min}} \int_{F'} \omega_t = \lim_{t \to t_{\min}} \int_{\text{M}^{\text{red}}} [\omega_t] \cdot v = \lim_{t \to t_{\min}} c_t.
\]

and

\[
0 < \lim_{t \to t_{\max}} \int_{B'} \omega_t = \lim_{t \to t_{\min}} \int_{\text{M}^{\text{red}}} [\omega_t] \cdot u = \lim_{t \to t_{\min}} d_t.
\]

Hence \(f(t) = \frac{d}{dt} c_t \) which is equal to the negative coefficient of \(u \) of \(e_{\max} \) near \(\max M \). By Lemma 5.9, \(e_{\max} = k'v \) for some integer \(k' \) so that \(f(t) = -1 \) near \(\max M \).

If \(M \) is twisted, then \(u = v' \) and \(v = u' \) so that \(B' \) represents the dual of \(u \) and \(F' \) represents the dual of \(v \). Therefore

\[
0 = \lim_{t \to t_{\max}} \int_{F'} \omega_t = \lim_{t \to t_{\min}} \int_{\text{M}^{\text{red}}} [\omega_t] \cdot u = \lim_{t \to t_{\min}} d_t.
\]

and

\[
0 < \lim_{t \to t_{\max}} \int_{B'} \omega_t = \lim_{t \to t_{\min}} \int_{\text{M}^{\text{red}}} [\omega_t] \cdot v = \lim_{t \to t_{\min}} c_t.
\]

Hence \(f(t) = \frac{d}{dt} d_t \) which is equal to the negative coefficient of \(v \) of \(e_{\max} \) near \(\max \Sigma \). By Lemma 5.9, \(e_{\max} = -k'u + v \) for some integer \(k' \) so that \(f(t) = -1 \) near \(\max \Sigma \). So if \(\text{M}^{\text{red}} \cong S^2 \times S^2 \), then \(f(t) = 1 \) near \(\min \Sigma \) and \(f(t) = -1 \) near \(\max \Sigma \).

Note that \(f \) is a non-increasing function, and if the fixed surface \(X_i \) has genus \(g_i \), then \(f \) decreases by at least 2 when it passes through the critical level containing \(X_i \) by Lemma 5.4, 5.5, and 5.7. Hence there exists at most one fixed surface \(X_i \) with \(g_i \neq 0 \). Because \(\min \Sigma \) and \(\max \Sigma \) are spheres, there is at most 1 interior fixed surface \(X_i \) with \(g_i \neq 0 \).

To sum up, if \(\text{M}^{\text{red}} \cong \Sigma_g \times S^2 \) with \(g \geq 1 \), then there are at most four fixed surfaces having non-zero genera in \(M \). In particular, if there are 4 fixed surfaces having non-zero genera, then these genera are all equal to \(g \). And if \(\text{M}^{\text{red}} \cong S^2 \times S^2 \), then there is at most 1 fixed surface having non-zero genus.

\[\square \]
In fact, the number of fixed surfaces with positive genera cannot be two. This will be proved in the next section. See Proposition \[6.3\]

6. Proof of Theorem \[1.3\]: Non-trivial Fibration Cases

Let E_Σ denote a non-trivial S^2-bundle over a Riemann surface Σ_g of genus g. In this section, we assume that $M_{\text{red}} \cong E_\Sigma$. Let u and v be the basis of $H^2(M_{\text{red}}, \mathbb{Z})$ chosen as in Section 3 so that $\int_{M_{\text{red}}} u^2 = 0$, $\int_{M_{\text{red}}} uv = 1$ and $\int_{M_{\text{red}}} v^2 = -1$. Let $M^{S^1} = \bigsqcup_i X_i$ be the fixed point set consisting of surfaces, and let $D(X_i) = a_i u + b_i v$ for each i. By Proposition \[3.2\], we can parametrize the classes of reduced symplectic forms by $t \in S^1$ so that $[\omega_t] = c_t u + d_t v$, where c_t and d_t are continuous for all $t \in \mu(M)$. By Theorem \[3.1\], we may assume that the fiber $F \cong S^2$ is symplectic. Hence $\int_F \omega_t = d_t > 0$.

Before we prove Theorem \[1.3\] we give some remark on symplectic 4-manifolds. A symplectic 4-manifold (M, ω) is called minimal if it has no symplectically embedded sphere with the self-intersection -1. It is well-known that any irrational ruled surface is minimal.

The following theorem due to McDuff tells us which cohomology class in $H^2(M_{\text{red}}, \mathbb{Z})$ can be represented by a symplectic form when M_{red} is a non-trivial rational ruled surface, i.e., a Hirzebruch surface.

Theorem 6.1. (Mc\[3\], Mc\[S\] p.204) Let M_{red} be a non-trivial rational ruled surface. For the basis $\{u, v\}$ chosen above, there is a symplectic form ω on M_{red} which is compatible with the given ruling with $[\omega] = cu + dv$ if and only if $c > d > 0$.

Now, we prove the first part of Theorem \[1.3\] for the non-trivial cases.

Proposition 6.2. Let (M, ω) be a 6-dimensional closed symplectic semifree S^1-manifold with non-empty fixed point set M^{S^1} consisting of surfaces. Let $\mu : M \to S^1$ be a generalized moment map. If M_{red} is diffeomorphic to E_Σ, then the action is Hamiltonian.

Proof. Let $M^{S^1} = \bigsqcup_i X_i$ be the fixed surfaces and $g_i \geq 0$ be the genus of X_i for each i. Because all reduced spaces for μ are diffeomorphic to E_{Σ_g} for each $t \in \mu(M)$, we can identify $\mu^{-1}(t) / S^1$ with (E_{Σ_g}, ω_t) where ω_t is the reduced symplectic form at level t. Remember that $D(X_i) = a_i u + b_i v$ denotes the class represented by the Poincaré dual of X_i in $H^2(E_{\Sigma_g}, \mathbb{Z})$.

Since ω_t is the reduced symplectic form for every $t \in \mu(M) \subset S^1$. Hence we have $\int_{E_{\Sigma_g}} [\omega_t]^2 > 0$. For each i, X_i is a symplectic submanifold of the reduced space at a critical value $s = \mu(X_i)$. So we have $\int_{E_{\Sigma_g}} [\omega_s] \cdot D(X_i) > 0$. Because $\int_F \omega_t = d_t > 0$, we have

\begin{equation}
\int_{E_{\Sigma_g}} (c_t u + d_t v)^2 = (2c_t - d_t) d_t > 0 \iff 2c_t > d_t > 0,
\end{equation}
(21) \[
\int_{E_{\Sigma}g} (c_s u + d_s v)(a_i u + b_i v) = a_i d_s + b_i c_s - b_i d_s > 0.
\]

Recall that \(c_1(E_{\Sigma}g) = (3 - 2g)u + 2v\) by (11). The adjunction formula for \(X_i\) implies that
\[
(a_i u + b_i v)^2 - (a_i u + b_i v)((3 - 2g)u + 2v) + 2 = 2g_i.
\]
Therefore
\[
(a_i - b_i \frac{1}{2} - (1 - g))(b_i - 1) = g_i - g.
\]

If we use the substitution
\[
\alpha_i = a_i - b_i \frac{1}{2}, \quad \beta_i = b_i,
\]
the above expressions (20), (21), and (22) are written in the following familiar forms. (Compare with (10), (11) and (12)).

\[
\gamma_t = c_t - d_t \frac{1}{2}, \quad \delta_t = d_t,
\]

(23) \(
\gamma_t > 0, \quad \delta_t > 0, \quad \forall t \in \mu(M),
\)

(24) \(
\alpha_i \delta_s + \beta_i \gamma_s > 0,
\)

(25) \[
(\alpha_i - (1 - g))(\beta_i - 1) = g_i - g.
\]

In particular, (23) and (24) imply that \(\alpha_i\) and \(\beta_i\) cannot be both non-positive simultaneously. Since \(\alpha_i \in \frac{1}{2} \mathbb{Z}\) and \(\beta_i \in \mathbb{Z}\), the situation is different from the previous section.

CASE 1: \(g \geq 1\)

If \(g_i \neq g\), by (25) \(\beta_i \neq 1\) and \(\alpha_i = 1 + \frac{\alpha_i}{\beta_i - 1} - \frac{\beta_i}{\beta_i - 1}g\). Assume \(\beta_i < 0\). Then \(-\frac{\alpha_i}{\beta_i - 1} \leq 0\) and \(-\frac{\beta_i}{\beta_i - 1} < 0\). Since \(\alpha_i\) should be positive by (24), the only possible value for \(\alpha_i\) is \(\frac{1}{2}\). Therefore, the equation (25) is written as
\[
\beta_i = \frac{2g_i - 1}{2g - 1}.
\]

Since we assume \(\beta_i\) is a negative integer and \(g \geq 1\), \(g_i = 0\) and \(g = 1\). So the only possible case is \(\alpha_i = \frac{1}{2}\) and \(\beta_i = -1\). Therefore \(a_i = 0\) and \(b_i = -1\) so that \(X_i\) is a sphere with \(D(X_i) = -v\) and is symplectically embedded in \(E_{\Sigma}1\). This means that \(X_i\) is an exceptional sphere in \(E_{\Sigma}1\). Since any irrational ruled surface is minimal, it is a contradiction. Therefore, \(\beta_i \geq 0\).

If \(g_i = g\), then \(\alpha_i = 1 - g\) or \(\beta_i = 1\). Since \(g \geq 1\), \(\alpha_i \leq 0\) or \(\beta_i = 1\). By (21), \(\beta_i \geq 0\). Hence if \(g \geq 1\), then \(b_i = \beta_i \geq 0\) for all \(i\).

Now suppose that the action is not Hamiltonian. By (17), \(b_i = 0\) for all \(i\). So \(\alpha_i = a_i - \frac{b_i}{2} = a_i\) should always positive for all \(i\) by (21). It
contradicts to (7).

CASE 2: \(g = 0 \)

Note that Theorem 3.1 allows us to assume \(\omega \) is compatible with the ruling. Hence by Theorem 6.1, we have \(c_t > d_t > 0 \) for all \(t \in \mu(M) \subset S^1 \). By (21), we have

\[
\text{(26)} \quad a_i d_s + b_i (c_s - d_s) > 0,
\]

which implies that \(a_i > 0 \) or \(b_i > 0 \) for each \(i \). By (25), we have

\[
\text{(27)} \quad (\alpha_i - 1)(\beta_i - 1) = g_i.
\]

In the case when \(g_i = 0 \), we have \(\alpha_i = 1 \) or \(\beta_i = 1 \). If \(\alpha_i = 1 \) and \(b_i = \beta_i < 0 \), then \(a_i = \frac{b_i}{2} + \alpha_i < 1 \). Since \(a_i \in \mathbb{Z} \), \(a_i \leq 0 \) which contradicts to (26). Therefore \(b_i = \beta_i \geq 0 \).

We now consider the case when \(g_i > 0 \). Assume \(\beta_i = b_i < 0 \). Then \(a_i \) should be positive by (26). But by (27), \(\alpha_i < 1 \). Hence \(a_i = \frac{b_i}{2} + \alpha_i < 1 \). Since \(a_i \) is an integer, it cannot be positive. It contradicts to (26).

Therefore \(b_i \geq 0 \) for all \(i \). Now assume the action is non-Hamiltonian. Then \(b_i = 0 \) for all \(i \) by (7), and \(a_i > 0 \) for all \(i \) by (26). It contradicts to (7) again.

\[
\square
\]

Proposition 6.3. Let \(M \) be a 6-dimensional closed Hamiltonian semi-free \(S^1 \)-manifold whose fixed point set consists of surfaces. Suppose \(M_{\text{red}} \) is diffeomorphic to \(E_{\Sigma_g} \). Then the number of the fixed surfaces with positive genera is at most four. If the maximal fixed surface is a sphere, then there is at most 1 fixed surface with positive genus. If there are four fixed surfaces with positive genera, then these genera are all equal to \(g \).

Proof. Let \(e_{\text{min}} \) be the Euler class of principal \(S^1 \)-bundle \(\mu^{-1}(r) \rightarrow M_{\text{red}} \) for some regular value \(r \) near the minimum value of \(\mu \), and let \(e_{\text{max}} \) be the one near the maximum value of \(\mu \). By Lemma 5.9 the Euler class of the principal \(S^1 \)-bundle over \(M_{\text{red}} \) near the minimum is \(ku - v \) and the Euler class near the maximum is \(-k' u + v \) for some integers \(k \) and \(k' \). By the proof of Proposition 6.2, \(b_i \geq 0 \) for all \(i \). Moreover \(\sum_i b_i = 2 \) by (19). So the only possible value of \(b_i \) is 0, 1 or 2.

Consider the case when \(g \geq 1 \) first. If \(b_i = \beta_i = 0 \), then (25) implies that \(\alpha_i = 1 - g_i \). Since \(\alpha_i \) and \(\beta_i \) cannot be both non-positive by (24), \(\alpha_i \) should be positive so that \(g_i = 0 \). If \(b_i = \beta_i = 1 \), then \(g_i = g \) by (25). If \(b_i = 2 \), then \(b_j = 0 \) for all \(j \neq i \) by (19). By the previous argument, \(b_j = 0 \) implies \(g_j = 0 \), and hence all \(X_j \)'s are spheres for \(j \neq i \).

In case when \(g = 0 \), the minimum and the maximum are 2-spheres. If \(g_i \geq 1 \), then \(\beta_i = b_i \geq 2 \) by (27). Therefore \(b_i = 2 \) and the other \(b_j \)'s are zero for \(j \neq i \).
So, the number of the interior fixed surfaces which have positive genera is at most 2. With the minimal and the maximal fixed surfaces, there are at most four fixed surfaces with positive genera, and these genera are all equal to g. In particular, if the minimal and the maximal surfaces are spheres, then there is at most 1 fixed surface with non-zero genus.

The last statement is clear because this is the case $b_i = 1$ or $b_i = 0$ for all i with $\sum_i b_i = 2$.

The following proposition says that the number of the fixed surfaces with positive genera cannot be two. This finishes the proof of Theorem 1.3.

Proposition 6.4. There is no 6-dimensional closed semifree Hamiltonian S^1-manifold such that M^{S^1} consists of surfaces and the number of surfaces with positive genera is two.

Proof. Assume that there exists a closed semifree Hamiltonian S^1-manifold such that M^{S^1} consists of surfaces and the number of surfaces with positive genera is two. Let $\mu : M \to \mathbb{R}$ be the moment map with respect to the given action. If the maximal fixed set is a sphere, then there is at most 1 fixed surface with positive genus by Proposition 5.10 and Proposition 6.3. So we assume that the genus g of the extremal fixed surfaces is positive and the interior fixed surfaces are all spheres. By Lemma 5.9, the Euler class of the principal S^1-bundle $\mu^{-1}(r) \to M_{\text{red}}$ near the minimum is $ku - v$ and the Euler class near the maximum is $-k'u + v$ for some integers k and k'. Since $e_{\text{max}} = e_{\text{min}} + \sum_{X_i \subset M_{\text{mid}}} D(X_i)$.

by (2), there is an interior fixed sphere Z whose dual class is $au + bv$ in $H^2(M_{\text{red}}, \mathbb{Z})$ for some integer $b \neq 0$.

Let $i : Z \hookrightarrow M_{\text{red}}$ be the inclusion and let $\pi : M_{\text{red}} \to \Sigma_g$ be the given fibration. Then the degree of the composition map $f = \pi \circ i : S^2 \to \Sigma_g$ is not zero. Indeed, let σ be the volume form on Σ_g. Since $\pi^*\sigma$ is zero on the fiber F, we have $\int_{M_{\text{red}}} [\pi^*\sigma]u = \int_F \pi^*\sigma = 0$. Hence $[\pi^*\sigma] = cu$ for some integer c. Recall that v is represented by a section $s : \Sigma_g \to M_{\text{red}}$. Since $s^*\pi^* = (\pi \circ s)^* = id|_{H^2(\Sigma_g)}$, π^* is injective. Therefore $c \neq 0$. Now $\int_Z f^*(\sigma) = \int_Z i^*(\pi^*(\sigma)) = \int_Z i^*(cv) = \int_{M_{\text{red}}} (au + bv)cv = bc \neq 0$.

But f is a continuous map $S^2 \to \Sigma_g$ and hence it has degree zero. To see this, choose $x, y \in H^1(\Sigma_g)$ so that $xy \in H^2(\Sigma_g)$ is a fundamental class. Then $f^*(xy) = f^*(x)f^*(y) = 0$ since $H^1(S^2) = 0$. So we are done. \qed
7. Construction of 6-dimensional examples

In this section we construct some 6-dimensional closed Hamiltonian semifree S^1-manifolds whose fixed components are all surfaces; Example 7.11 is the case when M^{S^1} contains four fixed surfaces whose genera are non-zero, and Example 7.13 is the case when M^{S^1} consists of N fixed spheres for an arbitrary integer $N \geq 4$. Example 7.11 implies that the maximal number of fixed surfaces with positive genera is 4 and it is optimal. Example 7.13 shows that there is no upper bound on the number of fixed components while there are exactly 8 fixed points in the case when M^{S^1} consists of isolated fixed points. See [TW].

Let M be a closed Hamiltonian semifree S^1-manifold with the moment map μ. Denote the critical values of μ by $c_0 < \cdots < c_k = \text{maximum}$. For sufficiently small $\epsilon > 0$, we can divide M into compact submanifolds with boundaries as follows:

$\mu^{-1}[c_i - \epsilon, c_i + \epsilon] : \text{critical piece}$

$\mu^{-1}[c_i + \epsilon, c_{i+1} - \epsilon] : \text{regular piece}$

Each piece is a Hamiltonian semifree S^1-manifolds with boundary. So, we will construct these pieces and glue them together along their boundaries.

To construct regular pieces, we need the following proposition.

Proposition 7.1. ([McS] p.156) For given smooth manifold B, let $I \subset \mathbb{R}$ be an interval and $\{\omega_t\}_{t \in I}$ be a family of symplectic forms on B such that

$[\omega_t] = [\omega_r] - (t - r)e$

for $t, r \in I$ where $e \in H^2(B, \mathbb{Z})$. Moreover, let $\pi : P \to B$ be a circle bundle with the first Chern class e. Then there is an S^1-invariant symplectic form ω on the manifold $P \times I$ with the moment map μ equal to the projection $P \times I \to I$ whose reduced spaces is (B, ω_t).

Now, we will construct a regular piece using Proposition 7.1. The construction is as follows. Let $B = \Sigma_g \times S^2$ and let I be a closed interval in \mathbb{R}. Let $\{u, v\}$ be a basis of $H^2(B, \mathbb{Z})$ as in Section 3. Then any class $cu + dv$ with $c > 0$ and $d > 0$ can be represented by a standard split symplectic form $c\pi_1^* \sigma_1 + d\pi_2^* \sigma_2$ where $\pi_1 : \Sigma_g \times S^2 \to \Sigma_g$ and $\pi_2 : \Sigma_g \times S^2 \to S^2$ are the canonical projections and σ_1, σ_2 are the normalized area forms on Σ_g and S^2 respectively. Hence if we have $\{\omega_t = c_t \pi_1^* \sigma_1 + d_t \pi_2^* \sigma_2\}_{t \in I}$ with $c_t, d_t > 0$ for $t \in I$ satisfying $[\omega_t] = [\omega_r] - (t - r)e$ for some $e \in H^2(B, \mathbb{Z})$, then we can construct a Hamiltonian semifree S^1-manifold $(P \times I, \omega)$ with the moment map μ which is equal to the projection $P \times I \to I$ and with reduced spaces (B, ω_t) where P is the principal S^1-bundle over B whose first Chern class is $e \in H^2(B, \mathbb{Z})$.
Next we construct critical pieces. First, we construct a Hamiltonian S^1-manifold with boundary such that there is only one fixed component B as a minimal fixed set with respect to the moment map. The following proposition is due to Weinstein. See [McS] p.209.

Proposition 7.2. Let $B = \Sigma_{\text{min}}$ be a compact Riemann surface with symplectic form ω_B and let $E \to B$ be a \mathbb{C}^2-bundle with the first Chern number $\langle c_1(E), B \rangle = b_{\text{min}} \in \mathbb{Z}$. Then there is a symplectic structure ω_E on E such that $\omega_E|_B = \omega_B$ and the restriction of ω_E to the fiber is equal to the standard symplectic form ω_{st}. Moreover there is a Hamiltonian circle action on (E, ω_E) such that the zero section is the unique fixed component and minimal.

We sketch the construction of ω_E and the Hamiltonian S^1-action on E as follows. Choose a Hermitian metric on E and consider the unitary frame bundle F of E. It is a principal $U(2)$-bundle over B. If we choose a connection on F, then it gives a projection $TF \to VF$ from the tangent bundle of F to the bundle of vertical tangent vectors and this gives the dual map $i : V^*F \to T^*F$. Let ω_F be the canonical symplectic form on the cotangent bundle T^*F. Then $\omega = i^*\omega_F + \pi^*\omega_B$ is a symplectic form on V^*F, where $\pi : V^*F \to B$ is the projection map. Note that (T^*F, ω_F) has a canonically lifted Hamiltonian $U(2)$-action, and (V^*F, ω) is a (V^*F)-invariant subbundle of T^*F. Since the interior product $i_X \pi^*\omega_B = 0$ for each fundamental vector field $X \in u(2)$, the $U(2)$-action on (V^*F, ω) is Hamiltonian. Let $\Phi : (V^*F \times \mathbb{C}^2, -\omega \oplus \omega_{st}) \to u(2)^*$ be a moment map of the $U(2)$-action, where ω_{st} denotes a standard symplectic structure on \mathbb{C}^2, and $U(2)$ acts on \mathbb{C}^2 in the canonical way. Define a Hamiltonian S^1-action on $(V^*F \times \mathbb{C}^2, -\omega \oplus \omega_{st})$ such that it acts on the first factor trivially and acts on the second factor as the standard diagonal action with a weight $(1, 1)$ with respect to the orientation on \mathbb{C}^2 given by ω_{st}.

For a local trivialization $\mathcal{U} = \bigcup U_i$ where $U_i \subset B$, V^*F is locally isomorphic to $U_i \times U(2) \times u(2)^*$ and the moment map for $U(2)$-action on $U_i \times U(2) \times u(2)^*$ is just a projection onto $u(2)^*$. Therefore $0 \in u(2)^*$ is a regular value of Φ and we can identify E with

$$E = F \times_{U(2)} \mathbb{C}^2 = \Phi^{-1}(0)/U(2).$$

Then, the reduced symplectic form ω_E defines a symplectic structure on E. Note that the S^1-action commutes with the $U(2)$-action on $V^*F \times \mathbb{C}^2$. Hence the S^1-action descends to E, and it is easy to check that the action is Hamiltonian with the moment map $\mu(x, z_1, z_2) = \frac{1}{2}(|z_1|^2 + |z_2|^2)$ on a local trivialization $U_i \times \mathbb{C}^2$ of E for each i. Therefore E is a Hamiltonian semifree S^1-manifold with $E^{S^1} = B$ and the moment map μ has a minimum at B.

Remark 7.3. By Lemma 5.9, the Euler class e_{min} of the principal S^1-bundle $\mu^{-1}(t)$ over E_{red} near the minimum value is determined by the
first Chern number b_{\min}. Moreover, the above construction is valid for arbitrary b_{\min}. Therefore we can construct such a critical piece E with any given e_{\min}.

Similarly, we can construct a Hamiltonian S^1-manifold with boundary such that there is only one fixed component B as a maximal fixed set with respect to the moment map with any given e_{\max}.

To construct non-extremal critical pieces containing fixed components of index 2, we need the following theorem due to Guillemin and Sternberg.

Theorem 7.4. [GS] Let (M_0, ω) be a symplectic manifold, X a symplectic submanifold of M_0, and $\pi : P \to M_0$ a principal S^1-bundle over M_0. Then for a given small open interval $I = (-\epsilon, \epsilon)$, there is a unique semifree Hamiltonian S^1-manifold M_I with moment map $\Phi : M_I \to \mathbb{R}$ satisfying the following.

i) Φ is proper and $\Phi(M_I) = I$.

ii) For $-\tau < 0$, $\Phi^{-1}(-\tau)$ is S^1-equivariantly diffeomorphic to P.

iii) For $-\tau < 0$, the reduction of M_I at $-\tau$ is the manifold M_0 with symplectic form $\omega + \tau d\alpha$ where α is a connection 1-form on P.

iv) X is the only fixed set of index 2 with respect to Φ.

v) For $\tau > 0$, the reduction of M_I at τ is the blow up, M_+ of M_0 along X with symplectic form $\mu_+ - \beta^* \tau d\alpha$ where μ_+ is the τ-blow up form and β is the blowing down map.

Here, τ-blow up form μ_+ is a symplectic form on blown-up space of τ-amount.

Therefore, if we have a symplectic manifold (M_0, ω), an integral cohomology class $e \in H^2(M_0, \mathbb{Z})$, and a symplectic submanifold $X \subset M_0$, then we can construct a non-extremal critical piece M with the moment map $\mu : M \to (-\epsilon, \epsilon)$ such that $M_{\text{red}} \cong M_0$, $e_- = e$ where e_- is the Euler class of the principal S^1-bundle $\mu^{-1}(-\frac{\tau}{2})$ over M_{red}, and $M^{S^1} = X$ of index 2. Moreover, such critical piece is unique up to S^1-equivariant symplectomorphism.

Remark 7.5. Note that M_I in Theorem 7.4 is constructed from $P \times I$ by removing a small neighborhood U of $\pi^{-1}(X) \times I$, and by gluing some open set along the boundary of $P \times I - U$. Moreover, this surgery does not change the symplectic structure outside of U. Hence X need not be connected. For more detail, see [GS] Chapter 12.

It remains to glue these “local pieces” along their boundaries. Let (M, ω) and (N, ω') be two local pieces with moment maps $\mu_M : M \to [a, b] \subset \mathbb{R}$ and $\mu_N : N \to [b, c] \subset \mathbb{R}$. Let (M_b, ω_b), respectively (N_b, ω'_b), be a reduced space at b with respect to μ_M, respectively μ_N. Assume that there is a symplectomorphism $\phi : (M_b, \omega_b) \to (N_b, \omega'_b)$ such that $\phi^* e_N = e_M$ where e_N is the Euler class of the principal S^1-bundle $\mu_N^{-1}(b)$ and e_M is the one of $\mu_M^{-1}(b)$.
Lemma 7.6. [L2][Mc6] The symplectomorphism ϕ induces an S^1-equivariant diffeomorphism $\tilde{\phi} : \mu_M^{-1}(b) \to \mu_N^{-1}(b)$.

In the case when the reduced spaces of “local pieces” are diffeomorphic to a ruled surface, we need the following theorem.

Theorem 7.7. [LM] Let ω_0 and ω_1 be two cohomologous compatible symplectic forms on a ruled surface. Then they are isotopic.

Combining Theorem 3.1 and Theorem 7.7, we have the well-known theorem which classifies symplectic structures on a ruled surface.

Corollary 7.8. There is a symplectomorphism between two cohomologous symplectic forms on a ruled surface. In particular, we may choose a symplectomorphism which acts on homology trivially.

Hence if $M \cong N$ is a ruled surface and if $[\omega] = [\omega']$ and $e_N = e_M$, then we can glue M and N along $\mu_M^{-1}(b)$.

Remark 7.9. Although what we need is the existence, we can also think about the uniqueness. By the result of Gonzalez [Gon], a Hamiltonian S^1-manifold (M, ω) is uniquely determined by its fixed point data up to equivariant symplectomorphism when $(M_{\text{red}}, \{\omega_t\})$ is rigid.

Definition 7.10. [Gon] Let B be a manifold and $\{\omega_t\}$ be a smooth family of symplectic forms on B. The pair $(B, \{\omega_t\})$ is said to be rigid if

(i) $\text{Symp}(B, \omega_t) \cap \text{Diff}_0(B)$ is path connected for all t.
(ii) Any deformation between any two cohomologous symplectic forms which are deformation equivalent to ω_t on B may be homotoped through deformations with fixed endpoints into an isotopy.

According to Proposition 1.6 in [Mc5], (i) holds for $(B = \Sigma_g \times S^2, \omega_t)$ when $\frac{g}{2} \geq \lceil g/2 \rceil$, where $[\omega_t] = au + bv$. By Theorem 1.2 in [Mc4], (ii) holds for any ruled surfaces. Combining these results, we can see that following examples with given data are uniquely determined up to equivariant symplectomorphism.

Example 7.11. Let $(\Sigma_{\text{min}}, \omega_{\text{min}}) = (\Sigma_g, \sigma)$ with $g \geq 1$, where σ is the normalized symplectic form on Σ_g. Consider a trivial \mathbb{C}^2-bundle E_{min} over Σ_{min}. By Proposition 7.2, there is a symplectic form on E and a Hamiltonian S^1-action on E with the moment map μ with $\mu(\Sigma_{\text{min}}) = 0$. Then for a sufficiently small ϵ, $\{x \in E_{\text{min}} | \mu(x) \leq \epsilon\}$ gives a minimal critical piece, still denoted by E_{min}. By Lemma 5.9, we have the reduced space $M_{\text{red}} = \Sigma_g \times S^2$ and $e_{\text{min}} = -v$, where $\{u, v\}$ is the basis of $H^2(\Sigma_g \times S^2, \mathbb{Z})$ chosen in Section 3. Therefore, the boundary of E_{min} is symplectomorphic to a principal S^1-bundle over $(\Sigma_g \times S^2, \omega_t)$ whose Euler class is $-v$ and $[\omega_t] = u + \epsilon v$.
Now, let \(P \) be a principal \(S^1 \)-bundle over \(\Sigma_g \times S^2 \) whose Euler class is \(-v \). And let \(\{ \omega_t = \sigma + t\tau \}_{t \in [\epsilon, 1 - \epsilon]} \) be a family of symplectic forms on \(\Sigma_g \times S^2 \) where \(\tau \) is the normalized symplectic form on \(S^2 \). By Proposition 7.1, we have a regular piece \(E = (P \times [\epsilon, 1 - \epsilon], \omega) \) such that \([\omega_t] = u + tv\) and it is well-glued to \(E_{\text{min}} \) by Corollary 7.8.

For \((\Sigma_g \times S^2, \sigma + \tau), P\), and a submanifold \(X = \Sigma_g \times \{ p_1, p_2 \} \) for \(p_1 \neq p_2 \), we have a critical piece \(E_{\text{mid}} \) for an open interval \((1 - \epsilon, 1 + \epsilon)\) by Theorem 7.4. It is easy to check that this critical piece can be well-glued to the regular piece \(E \).

Note that \(D(X) = 2v \). Hence, the Euler class of the principal \(S^1 \)-bundle \(\mu^{-1}(1 + \epsilon) \) is \(v \). Let \(Q \) be a principal \(S^1 \)-bundle over \(\Sigma_g \times S^2 \) whose first Chern class is \(v \), and let \(\{ \omega_t = \sigma + (2 - t)\tau \}_{t \in [1+\epsilon, 2-\epsilon]} \) be a family of symplectic forms on \(\Sigma_g \times S^2 \). Again by Proposition 7.1, we have a regular piece \(E' = (P' \times [1 + \epsilon, 2 - \epsilon], \omega') \) such that \([\omega_t'] = u + (2 - t)v\). Of course it is well-glued to \(E_{\text{mid}} \) by Corollary 7.8.

Finally, consider a trivial \(\mathbb{C}^2 \)-bundle over \((\Sigma_g, \sigma)\). By a similar construction of a minimal critical piece, except for considering a diagonal \(S^1 \)-action on \(\mathbb{C}^2 \) with weight \((-1, -1)\), we have a maximal critical piece which can be well-glued to \(E' \). This finishes the construction. We choose \(K \geq g/2 \) to guarantee the uniqueness.

\[
0 < t < 1, \quad [\omega_t] = Ku + tv, \quad e = -v.
\]
\[
t = 1, \quad X = \Sigma_g \times \{ p_1, p_2 \}, \quad D(X) = 2v.
\]
\[
1 < t < 2, \quad [\omega_t] = Ku + (2 - t)v, \quad e = v.
\]

The above Hamiltonian semifree \(S^1 \)-manifold has the fixed point set consisting of four surfaces of genus \(g \), and \(M_{\text{red}} \cong \Sigma_g \times S^2 \).

Similarly, we can construct a 6-dimensional closed Hamiltonian semifree \(S^1 \)-manifold \(M \) with the information below. In this case, \(M \) has a fixed point set consisting of \(N \) spheres for any \(N \geq 1 \) and four surfaces of genus \(g \). Here \(M_{\text{red}} = \Sigma_g \times S^2 \) with \(g \geq 1 \). Fix a positive number \(K \geq N + g \).

\[
0 < t < 2, \quad [\omega_t] = Ku + tv, \quad e = -v.
\]
\[
t = 2, \quad X_1 = \Sigma_g \times \{ p_1, p_2 \}, \quad D(X_1) = 2v.
\]
\[
2 \leq t < 3, \quad [\omega_t] = Ku + (4 - t)v, \quad e = v.
\]
\[
t = 3, \quad X_2 = \{ q_1, \ldots, q_N \} \times S^2, \quad D(X_2) = Nu.
\]
\[
3 \leq t < 4, \quad [\omega_t] = (K - (t - 3)N)u + (4 - t)v, \quad e = Nu + v.
\]

Remark 7.12. Let \((M, \omega)\) be a 6-dimensional closed Hamiltonian semifree \(S^1 \)-manifold whose fixed point set consists of \(N \) surfaces. Then with the maximal and the minimal fixed surfaces, \(N \) should be at least 2. The examples with \(N = 2 \) and \(N = 3 \) are given in \([L1]\) and \([L2]\).
Example 7.13. This example shows that there is a 6-dimensional closed Hamiltonian semifree S^1-manifold M whose fixed point set consists of N spheres for arbitrary $N \geq 4$, with $M_{\text{red}} = S^2 \times S^2$.

1. $0 < t < 2$, $[\omega_t] = (N + 1)u + tv$, $e = -v$.
2. $2 \leq t < 3$, $[\omega_t] = (N + 1)u + (4 - t)v$, $e = v$.
3. $t = 3$, $X_2 = \{ q_1, \ldots, q_N \} \times S^2$, $D(X_2) = Nu$.
4. $3 \leq t < 4$, $[\omega_t] = ((4 - t)N + 1)u + (4 - t)v$, $e = Nu + v$.

References

[Au] M. Audin, The topology of torus actions on symplectic manifolds, Progress in Mathematics, 93. Birkhäuser Verlag, Basel, 1991.

[DH] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–268.

[F] T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. Math. 70 (1959), 1–8.

[Go] E. Godinho, On certain symplectic circle actions, J. Symplectic Geom. 3 (2005), no. 3, 357–383.

[Gon] E. Gonzalez, Classifying semi-free Hamiltonian S^1-manifolds, arXiv:math/0502364v2, to appear in Int. Mat. Res. Not.

[Gr] W. Graham, Logarithmic convexity of push-forward measures, Invent. Math. 123 (1996), 315–322.

[GS] V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, Invent. Math. 97 (1989), no. 3, 485–522.

[Le] E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247–258.

[L1] H. Li, Semi-free Hamiltonian circle actions on 6-dimensional symplectic manifolds, Trans. Amer. Math. Soc. 355 (2003), no. 11, 453–458.

[L2] H. Li, On the construction of certain 6-dimensional symplectic manifolds with Hamiltonian circle actions, Trans. Amer. Math. Soc. 357 (2005), no. 3, 983–998.

[LL] T. J. Li and A. Liu, Symplectic structure on ruled surfaces and generalized adjunction formula, Math. Res. Lett. 2 (1995), no. 4, 453–471.

[LM] F. Lalonde and D. McDuff, The classification of ruled symplectic 4-manifolds, Math. Res. Lett. 3 (1996), no. 6, 769–778.

[Lin] Y. Lin, The log-concavity conjecture for the Duistermaat-Heckman measure revisited, Int. Math. Res. Not. (2008), no. 10, Art. ID rnn027, 19 pp.

[LO] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), no. 1, 261–288.

[Mc1] D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), no. 2, 149–160.

[Mc2] D. McDuff, The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679–712.

[Mc3] D. McDuff, Notes on ruled symplectic 4-manifolds, Trans. Amer. Math. Soc. 345 (1994), no. 2, 623–639.

[Mc4] D. Mcduff, From symplectic deformation to isotopy, Topics in symplectic 4-manifolds (Irvine, CA, 1996), 85–99, First Int. Press Lect. Ser., 1, Int. Press, Cambridge, MA, 1998.
[Mc5] D. Mcduff, *Symplectomorphism groups and almost complex structures*, Essays on geometry and related topics, Vol. 1, 2, 527–556, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001.

[Mc6] D. McDuff, *Some 6-dimensional Hamiltonian S^1-manifolds*, J. Topol. 2 (2009), no. 3, 589–623.

[McS] D. McDuff and D. Salamon, *Introduction to Symplectic Topology*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.

[O] K. Ono, *Some remarks on group actions in symplectic geometry*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 3, 431–437.

[R] F. Rochon, *Rigidity of Hamiltonian actions*, Canad. Math. Bull. 46 (2003), no. 2, 277–290.

[TW] S. Tolman and J. Weitsman, *On semifree symplectic circle actions with isolated fixed points*, Topology 39 (2000), no. 2, 299–309.

Department of Mathematical Sciences, KAIST, 335 Gwahangno, Yuseong Gu, Daejeon 305-701, Korea

E-mail address: yhcho@kaist.ac.kr

Department of Mathematical Sciences, KAIST, 335 Gwahangno, Yuseong Gu, Daejeon 305-701, Korea

E-mail address: hwangtaekkyu@kaist.ac.kr

Department of Mathematical Sciences, KAIST, 335 Gwahangno, Yuseong Gu, Daejeon 305-701, Korea

E-mail address: dysuh@math.kaist.ac.kr