Daptomycin-induced eosinophilic pneumonia - a systematic review

Priyasha Uppal1, Kerry L. LaPlante1,2,3, Melissa M. Gaitanis1,3, Matthew D. Jankowich1,3 and Kristina E. Ward2*

Abstract

Purpose: Eosinophilic pneumonia comprises a group of lung diseases in which eosinophils appear in increased numbers in the lungs and sometimes in the bloodstream. Several case reports link daptomycin use to this phenomenon.

Summary: We performed a systematic literature review to identify cases of eosinophilic pneumonia associated with daptomycin use. Relevant studies were identified by searching Pubmed/Medline, EMBASE, Google Scholar, Cochrane Database of Systematic Reviews, and Clin-Alert from inception to May 2016, and manual searches of reference lists. All case reports that include information regarding patient age, indication, clinical and objective findings, treatment and outcome were evaluated. Abstracts from conference proceedings as well as case reports not in English were excluded. Descriptive statistics were used to analyze the data. Thirty-five patient-cases were included in the final analysis. Patients most likely to be identified with daptomycin-induced eosinophilic pneumonia were male (83%) and elderly (mean age 65.4 ± 15 years). The dose for daptomycin ranged from 4 to 10 mg/kg/day, but included a large number of patients with renal dysfunction. The average duration of daptomycin therapy upon onset of EP symptoms was 2.8 ± 1.6 weeks. Majority of patients presented with dyspnea (94%), fever (57%) and were also found to have peripheral eosinophilia (77%) and infiltrates/opacities of CT/CXR (86%). Symptom improvement was seen after daptomycin discontinuation (24 h to 1 week). The majority of patients were also prescribed treatment with corticosteroids (66%).

Conclusion: Clinicians should be aware of daptomycin-induced eosinophilic pneumonia and its symptoms along with its presentation and treatment.

Keywords: Daptomycin, Eosinophilia, Pneumonia

Background

Eosinophilic pneumonia is a rare, but serious respiratory syndrome that occurs when eosinophils accumulate in the lungs [1, 2]. It has been associated with several medications and chemicals, with antibiotics and nonsteroidal anti-inflammatory drugs among the most common [3, 4].

The pathophysiology of acute eosinophilic pneumonia is thought to be caused by detection of an antigen by alveolar macrophages which leads to recruitment of T-helper 2 lymphocytes and subsequent release of interleukin 5. Interleukin 5 promotes eosinophil production and migration to the lung. Additionally, eosinophil chemoattractant production by alveolar macrophages, pulmonary endothelial cells, airway smooth muscle cells, and alveolar epithelial cells leads to further accumulation of eosinophils in the lungs [5].

Daptomycin is a cyclic lipopeptide antibiotic derived from the fermentation of Streptomyces roseosporus. Daptomycin has activity against Gram-positive organisms including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) [6]. In 2007, pulmonary eosinophilia was added to the “Adverse Reactions, Post-Marketing Experience” section of the product label for daptomycin [2]. A review of the literature and the US FDA Adverse Event Reporting System database in 2012 revealed 7 definite, 13 probable, and 38 possible cases of daptomycin-induced eosinophilic pneumonia [1]. While the mechanism of daptomycin’s pulmonary toxicity is not known, the drug undergoes conformational change through interaction with calcium which allows binding to the cytoplasmic membrane, increased membrane permeability, and intracellular ion escape [7]. The antibacterial activity of
Daptomycin is decreased because of its binding to pulmonary surfactant. Some have speculated two potential mechanisms for daptomycin’s pulmonary toxicity: 1) chronic daptomycin administration results in drug accumulation near the epithelial alveolar surface causing epithelial injury and pneumonia, and 2) the daptomycin-surfactant interaction could alter lipid integrity which may stimulate an inflammatory response [3, 7, 8].

Per the FDA guidance, eosinophilic pneumonia is attributed to daptomycin when the following criteria are met: 1) concurrent exposure to daptomycin, 2) fever, 3) dyspnea with increased oxygen requirement or requiring mechanical ventilation, 4) new infiltrates on chest x-ray or computed tomography (CT) scan, 5) bronchoalveolar lavage (BAL) with > 25% eosinophils, and 6) clinical improvement following daptomycin withdrawal [2]. Solomon and Schwartz [4] have also developed criteria for drug- or toxin-induced eosinophilic pneumonia that is similar and includes 1) presence of simple, acute, or chronic eosinophilic pneumonia by diagnostic criteria which includes excess of eosinophils either on lung biopsy or BAL (usually ≥25%) in the setting of parenchymal infiltrates 2) presence of a potential candidate drug or toxin in an appropriate time frame 3) no other cause of eosinophilic pneumonia such as fungal or parasitic infection 4) clinical improvement after cessation of the drug or toxin, and 5) recurrence of eosinophilic pneumonia with re-challenge to the drug or toxin. However, re-challenge is often not recommended as it can be dangerous [4, 5].

Although the mechanism of daptomycin-induced eosinophilic pneumonia is unknown, some have speculated that daptomycin may bind to human surfactant and accumulate in the alveolar space causing injury to the epithelium with resulting inflammation [7, 8]. The purpose of this review is to systematically evaluate the published literature describing daptomycin-induced eosinophilic pneumonia.

Methods
All relevant cases and studies were identified by systematically searching of the PubMed, EMBASE, Google Scholar, Cochrane Database of Systematic Reviews, and Clin-Alert databases by two reviewers from inception through May 2016. The truncated terms “daptomycin”, “eosinophil”, and “pneumon” were searched in each database. All case reports that included information regarding patient age, indication, clinical and objective findings, treatment, and outcome were evaluated. Reports not published in English were excluded as well as abstracts from conference proceedings. Descriptive analysis was used to present pooled demographic information and other data where applicable.

Results
No clinical or observational trials assess daptomycin-induced eosinophilic pneumonia; only case reports and case series are published. In 2012, Kim et al. identified 7 definite, 13 probable, and 38 possible cases of daptomycin-induced eosinophilic pneumonia via review of literature and FDA Adverse Event Reporting System Reports (AERS) as defined in Table 1 [1]. Details regarding the 38 possible cases reported through AERS were not described. Of the 20 cases that were identified as definite or probable, 9 have been published in the literature, the remaining 11 were summarized by Kim [1, 3, 9–13]. We also identified 39 additional cases of eosinophilic pneumonia attributed to daptomycin for a total of 59 cases described in the literature [7, 14–24]. Of those, 21 were excluded from this systematic review because they were abstract presentations at international meetings and did not go through the peer review publishing process [25–41]. Another three were excluded because they were not published in English [42–44]. Currently available data on a total of 35 cases of daptomycin-induced eosinophilic pneumonia is summarized in Table 2.

Table 1 Criteria for inclusion as definite, probably, possible, and unlikely cases of daptomycin-induced eosinophilic pneumonia [1, 2]

Definite	Probable	Possible	Unlikely
Concurrent exposure to daptomycin	Concurrent exposure to daptomycin	Concurrent exposure to daptomycin	All other cases that did not meet criteria
Dyspnea with increased oxygen requirement or requiring mechanical ventilation	Dyspnea with increased oxygen requirement or requiring mechanical ventilation	New infiltrates on CXR or CT	
New infiltrates on CXR or CT	New infiltrates on chest x-ray or CT	Clinical improvement following daptomycin withdrawal OR the patient died	
BAL with > 25% eosinophils	BAL with ≤ 25% eosinophils OR peripheral eosinophilia		
Clinical improvement following daptomycin withdrawal	Clinical improvement following daptomycin withdrawal		
Fever			

Adapted from references 1 and 2

Abbreviation: BAL bronchoalveolar lavage; CT computed tomography; CXR chest x-ray
Table 2: Summary of 35 cases of presumed daptomycin-induced eosinophilic pneumonia

Case	Age/Sex	Indication	Dose (mg/kg/day)	DAP Duration (wks)	Clinical Findings	Objective Findings	Treatment	Outcome
Kim [1] (2012)	63/F	MSSA spinal osteomyelitis	6	3	• Fever	• BAL = 60–70%	• DAP d/c	Recovered
					• Cough, hypoxemia	• Peripheral eosinophilia	• Corticosteroids	
					• Elevated CPK			
	64/M	Osteomyelitis with bacteremia	5.7	4	• Fever	• BAL = 44%	• DAP d/c	Recovered
					• Dyspnea, hypoxia	• Peripheral eosinophilia		
					• Pulmonary infiltrates			
	79/M	Endocarditis	6	6	• Fever, cough, night sweats	• BAL = 9–13%	• DAP d/c	Improved
					• Dyspnea requiring MV	• Peripheral eosinophilia		
					• CT = ground glass opacities	• Lung biopsy = eosinophilic pneumonia		
	26/M	MRSA bacteremia	7.35	1.4	• Dyspnea requiring MV	• BAL not performed	• DAP d/c	Improved
						• Peripheral eosinophilia		
					• Pulmonary infiltrates	• Eosinophils in tracheal aspirate		
	43/M	MRSA osteomyelitis	6	1–2	• Pleuritic pain	• BAL with eosinophils (not quantified)	• DAP d/c	Improved
					• Hypoxia requiring O2	• Peripheral eosinophilia	• Given NSAIDs, meperidine	
					• Hematemesis	• CT = bilateral infiltrates		
	66/M	MSSA bacteremia	6	1	• Dyspnea requiring O2	• BAL = 70%	• DAP d/c	Recovered
						• Peripheral eosinophilia	• Corticosteroids	
					• Hematemesis			
	71/M	MRSA diabetic foot infection	4	7.7	• Dyspnea requiring O2	• Peripheral eosinophilia	• DAP d/c	Improved
						• Elevated CRP		
					• Elevated ESR	• CT = bilateral interstitial opacities		
	77/F	Bacteremia (enterococcal)	5	1	• Dyspnea requiring O2	• Peripheral eosinophilia	• DAP d/c	Improved
						• CXR = pneumonitis	• Corticosteroids	
	67/M	MRSA endocarditis	6	4.3	• Dyspnea requiring MV	• BAL = 9%	• DAP d/c	Improved
						• Peripheral eosinophilia	• Corticosteroids	
					• CT = bilateral pulmonary infiltrates			
	73/M	Prosthetic joint infection	5	3.7	• Fever	• Peripheral eosinophilia	• DAP d/c	Recovered
					• Dyspnea requiring MV	• CT = bilateral ground glass appearance	• Corticosteroids	
	81/F	MRSA paraspinal abscess	6	1.6	• Dyspnea requiring MV	• BAL = 2% (s/p corticosteroid)	• DAP d/c	Improved
						• CXR = bilateral mid-lung infiltrates	• Corticosteroids	
	84/M	Infection of left knee prosthesis	4	4	• Decreased appetite	• Elevated ESR	• DAP d/c	Improved within 2 weeks
					• CT with infiltrates	• CT with infiltrates		
					• Lung biopsy = eosinophilic pneumonia			

Cobb [6] (2007)
Table 2 Summary of 35 cases of presumed daptomycin-induced eosinophilic pneumonia (Continued)

Name	Age	Gender	Diagnosis	Symptoms	Signs	Treatment	Outcome	
Hayes [7] (2007)	60	M	MSSA endocarditis	Fever, rigors, diaphoresis, Required MV	BAL 16% initially	DAP d/c then re-challenged, DAP d/c plus corticosteroids	Rechallenge failed within 4 h, Improved within 24 h after DAP d/c	
Kakish [8] (2008)	65	M	MRSA vertebral osteomyelitis, epidural abscess	Low-grade fever, Dyspnea, Cough, Hypoxemia requiring MV	BAL = 33%	DAP d/c, Corticosteroids	Improved within 72 h, Normal CT at 3 months	
Shinde [9] (2009)	54	M	Complicated inguinal hernia repair	Low grade fever, Cough, Hypoxemia requiring MV	BAL = 14%	DAP d/c, Corticosteroids	Improved within 24 h, Normal CT at 4 weeks	
Lal [10] (2010)	82	M	Prosthetic joint infection	Fever, Hypoxia requiring O2	BAL = 40%	DAP d/c, Corticosteroids	Recovered after 5 days, Recurrent symptoms, Low dose steroids required	
Miller [11] (2010)	60	M	MSSA prosthetic hip infection	Cough, fever, Hypoxia requiring O2	BAL = 81% after rechallenge, Peripheral eosinophilia, CT = bilateral scattered ground-glass opacities, Lung biopsy = acute fibrinous and organizing pneumonia, reactive alveolar and interstitial epithelial changes	DAP d/c, Rechallenged, DAP d/c, Corticosteroids	Improved within 48 h, Rechallenge failed within 24 h	
Kalogeropoulos [12] (2011)	78	M	Endocarditis	Non-productive cough, Dyspnea, Low-grade fevers, Chills	BAL = 13%	DAP d/c, Corticosteroids	Resolution within 96 h, Recurrence with re-challenge at 5 months	
	83	M	Diskitis of lumbar spine	Progressive dyspnea, Cough, pleuritic chest pain	BAL = 13%	DAP d/c, Corticosteroids	Improved within 6 days	
	60	M	MRSA osteomyelitis, septic arthritis	Cough, fever, Hypoxia requiring O2	BAL = 13%	DAP d/c, Corticosteroids	Resolution within 24 h	
	83	M	Diskitis of lumbar spine	Non-productive cough, Dyspnea, Low-grade fevers, Chills	BAL = 13%	DAP d/c, Corticosteroids	Resolution within 24 h	
	60	M	MRSA osteomyelitis, septic arthritis	Fever, Chills, Diaphoresis, Hypoxemia requiring O2	BAL = 27.5%	DAP d/c, Corticosteroids	Resolution within 24 h	
	60	M	MSSA endocarditis	Fever, rigors, diaphoresis, Required MV	BAL 16% initially	DAP d/c then re-challenged, DAP d/c plus corticosteroids	Rechallenge failed within 4 h, Improved within 24 h after DAP d/c	
	65	M	MRSA vertebral osteomyelitis, epidural abscess	Low-grade fever, Dyspnea, Cough, Hypoxemia requiring MV	BAL = 33%	DAP d/c, Corticosteroids	Improved within 72 h, Normal CT at 3 months	
	54	M	Complicated inguinal hernia repair	Low grade fever, Cough, Hypoxemia requiring MV	BAL = 14%	DAP d/c, Corticosteroids	Improved within 24 h, Normal CT at 4 weeks	
	82	M	Prosthetic joint infection	Fever, Hypoxia requiring O2	BAL = 40%	DAP d/c, Corticosteroids	Recovered after 5 days, Recurrent symptoms, Low dose steroids required	
	87	M	Prosthetic knee infection	Dyspnea, dry cough requiring O2, Malaise, Chills, Anorexia, Fever	BAL = 40%	DAP d/c, Corticosteroids	Recurrence s/p steroid taper, Low dose steroids for 2 years	
	60	M	MSSA prosthetic hip infection	Cough, fever, Hypoxia requiring O2	BAL = 81% after rechallenge, Peripheral eosinophilia, CT = bilateral scattered ground-glass opacities, Lung biopsy = acute fibrinous and organizing pneumonia, reactive alveolar and interstitial epithelial changes	DAP d/c, Rechallenged, DAP d/c, Corticosteroids	Improved within 48 h, Rechallenge failed within 24 h	
	60	M	MRSA osteomyelitis, septic arthritis	Non-productive cough, Dyspnea, Low-grade fevers, Chills	BAL = 13%	DAP d/c, Corticosteroids	Resolution within 96 h, Recurrence with re-challenge at 5 months	
	83	M	Diskitis of lumbar spine	Progressive dyspnea, Cough, pleuritic chest pain	BAL = 13%	DAP d/c, Corticosteroids	Improved within 6 days	
	83	M	Diskitis of lumbar spine	Non-productive cough, Dyspnea, Low-grade fevers, Chills	BAL = 13%	DAP d/c, Corticosteroids	Resolution within 24 h	
Reference	Age/Gender	Diagnosis	Case #	Initial Symptoms	Laboratory Findings	Treatment	Outcome	
----------------------------	------------	------------------------------------	--------	---------------------------	---	-----------	------------------	
Rether [13] (2011)	69/M	Spondylo-discitis with lumbar epidural and bilateral psoas abscesses	6	Fever, Dyspnea requiring O₂	BAL = 30% Elevated CRP CXR = extensive patchy infiltrates in RLL and entire left lung	DAP d/c	Improved within 24 h	
Patel [14] (2014)	61/F	Osteomyelitis	NR 1	Dry cough, Dyspnea requiring MV	BAL = 30% Peripheral eosinophilia CT = bilateral pleural effusion, diffuse bilateral patchy infiltrate	DAP d/c	Improved within 72 h	
Phillips [15] (2014)	48/M	Osteomyelitis	6	Fever, Dyspnea requiring MV	BAL = 17% Peripheral eosinophilia CXR = patchy bilateral airspace opacities	DAP d/c	Improved	
	28/M	Osteomyelitis	6	Dyspnea requiring MV	BAL = 74% Peripheral eosinophilia CT = diffuse multi-lobar infiltrates	DAP d/c	Resolution within 1 week	
Yamamoto [16] (2014)	82/M	MRSA bacteremia	10	Low grade fever, Hypoxia	CT = bilateral ground glass opacities Sputum negative for eosinophils	DAP d/c	Improved	
Yusuf [17] (2014)	64/M	Prosthetic joint infection	10	Fever	BAL = 47% Peripheral eosinophilia Elevated CRP CT = diffuse bilateral ground-glass opacities	DAP d/c	Improved within 24 h	
	61/M	Prosthetic joint infection	10	Fever, Dyspnea requiring MV	BAL = 3% Peripheral eosinophilia Elevated CRP CT = ground-glass consolidation, bilateral pleural effusion	DAP d/c	Improved within 24 h	
Chiu [18] (2015)	77/M	Osteomyelitis	6	Pleuritic chest pain	BAL = 18% Elevated CRP CXR = diffuse bilateral airspace disease	DAP was d/c 1 day before symptoms	Corticosteroids	Improved within 60 h
	74/F	Infected hip reconstruction	6	Dry cough, Dyspnea requiring O₂	CXR – bilateral airspace disease	DAP d/c	Improved within 24 h	
Hagiya [19] (2015)	34/M	Endocarditis	10	Cough with mild hypoxemia	Peripheral eosinophilia Elevated CRP CT = consolidation in peripheral field of right upper lobe	DAP d/c	Resolved within 6 weeks	
Hatipoglu [20] (2015)	67/F	MRSA diabetic foot ulcer	NR c	Cough, Dyspnea requiring BPAP, Fever, fatigue, decreased appetite	Peripheral eosinophilia Elevated CRP CT = right lobe infiltration	DAP d/c	Improved within 72 h	
Roux [21] (2015)	67/M	MSSA prosthetic hip infection	6	Dry cough, hypoxemia	BAL = 10% Peripheral eosinophilia	DAP d/c	Improved within 96 h	

Note: DAP = daptomycin, BAL = bronchoalveolar lavage, CRP = C-reactive protein, CT = computed tomography, MV = mechanical ventilation, BPAP = bilevel positive airway pressure, MSSA = methicillin-sensitive Staphylococcus aureus, MRSA = methicillin-resistant Staphylococcus aureus.
Name	Age/Sex	Diagnosis	Labs	Symptoms	Imaging	Treatment	Resolution
Wojtaszczyk [22] (2015)	76/M	Septic arthritis and pacemaker vegetation	NR	Dyspnea requiring O₂, cough, Fever, fatigue	CT = diffuse alveolar and interstitial opacities	DAP d/c	Resolved within 72 h
Akcaer [23] (2016)	60/M	MSSA post-amputation abscess	5	Tachypnea, hypoxia requiring O₂, Peripheral eosinophilia, Elevated CRP, Elevated ESR	HRCT = right pleural effusion, bilateral tree-in-bud pattern, bilateral scattered ground-glass opacities	DAP d/c	Resolved within 72 h

KEY: BAL bronchoalveolar lavage, BPAP bilevel positive airway, CPR creatine phosphokinase, CRP C-reactive protein, CT computed tomography scan, CXR chest x-ray, DAP daptomycin, d/c discontinued, ESR erythrocyte sedimentation rate, F female, HRCT high resolution computed tomography, M male, MRSA methicillin resistant Staphylococcus aureus, MSSA methicillin susceptible Staphylococcus aureus, MV mechanical ventilation, NR not reported, NSAID nonsteroidal anti-inflammatory drug, O₂ oxygen, RLL right lower lobe, s/p status post, wks weeks

* = DAP given for 1 week, then held for 2 weeks, and restarted. Symptom onset in 72 h after restarting. ** = not included in analysis. *** = DAP 500 mg/day given (dose mg/kg unknown)
Analysis of the 35 cases shows eosinophilic pneumonia resulting from daptomycin use is most likely to be reported in males with a mean age of 65.4 ± 15 years and a mean length of therapy of 2.8 ± 1.6 weeks at symptom onset. The most common indication for daptomycin use was osteomyelitis and/or diabetic foot infection closely followed by prosthetic joint infection. Daptomycin dose ranged from 4 to 10 mg/kg/day depending on renal function; therefore, the adverse effect does not appear to be dose dependent, but time dependent exposure. The most common symptoms of eosinophilic pneumonia included fever and dyspnea often requiring either oxygen supplementation or mechanical ventilation. Other clinical findings included malaise, elevated ESR (4/35 cases), or elevated C-reactive protein (11/35 cases). Peripheral eosinophilia was also present in approximately 77% (27/35 cases) of patients. Many cases also had computed tomography scans or chest x-rays which revealed opacities (12/35 cases) and bilateral infiltrates (13/35 cases). Symptom improvement was seen within 24 h through one week after daptomycin discontinuation. The majority of patients were also prescribed treatment with corticosteroids (23/35 cases); however, all patients were reported to recover (See Table 3).

Discussion
While the criteria developed by Solomon and Schwartz differ from the FDA guidance, they are largely similar in that an offending agent (here, daptomycin) must be present, >25% eosinophils are present, and that clinical improvement is seen after discontinuation of the drug. The FDA guidance also includes some measures of symptomatology such as fever and dyspnea [2, 4]. Overall, dyspnea was the most common documented symptom associated with eosinophilic pneumonia followed by the presence of either pulmonary infiltrates or opacities on chest x-ray or CT. A total of 10 cases specifically mentioned the characteristic finding of ground glass opacities on CT. A potential limitation of this review is that some of the daptomycin-induced eosinophilic pneumonia used lung biopsy in place of BAL as part of the diagnostic criteria which is not part of the FDA guidance, but is included in the Solomon and Schwartz criteria. In addition, since some patients had BAL < 25% eosinophils but lung biopsy revealed eosinophilia [1, 13], a 25% cut off may be too strict in certain situations.

Corticosteroids are believed to be beneficial at halting clinical manifestations of daptomycin-induced eosinophilic pneumonia and were used in the majority of reported cases. Steroids exert action through eosinophilic apoptosis and through accelerating intracellular signaling involved in eosinophil death [45]. No dose or length of corticosteroid treatment is established in guidelines for eosinophilic pneumonia; however, a commonly employed regimen is intravenous methylprednisolone 60–125 mg every 6 h, with conversion to prednisone 40–60 mg oral daily and taper over 2–6 weeks. Use of a 2- or 4-week course appears to have similar time to resolution of clinical symptoms and radiological abnormalities [46].

Conclusion
As use of daptomycin continues to increase, it is important for clinicians to recognize and appropriately manage daptomycin-induced eosinophilic pneumonia. Although symptoms may resolve upon discontinuation of daptomycin, use of corticosteroid may be beneficial for recovery. Further research is needed to determine the exact mechanism of daptomycin-induced eosinophilic pneumonia and identify the optimal treatment course.
Abbreviations
AERS: Adverse Event Reporting System; BAL: Bronchoalveolar lavage; CT: Computed tomography; CXR: Chest x-ray; EP: Eosinophilic pneumonia; ESR: Erythrocyte sedimentation rate; FDA: Food and Drug Administration; MRSA: Methicillin resistant Staphylococcus aureus; VRE: Vancomycin resistant enterococcus

Acknowledgements
Not applicable.

Funding
The views expressed are those of the authors and do not necessarily reflect the position or policy of the United States Department of Veterans Affairs. This material is based upon work supported, in part, by the Office of Research and Development, Department of Veterans Affairs.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Authors’ contributions
PJ initiated the project, participated in review of literature, and was a major contributor in writing of the manuscript. KW participated in review of literature, and was a major contributor in writing of the manuscript. KL provided analysis of intellectual content and writing the manuscript. PU initiated the project, participated in review of literature, and was a major contributor in writing of the manuscript. KL provided analysis of intellectual content and writing the manuscript. KW participated in review of literature, writing the manuscript, and critical revision. All authors read and approved the final manuscript.

Competing interests
The views expressed are those of the authors and do not necessarily reflect the position or policy of the United States Department of Veterans Affairs. Kerry L. LaPlante has received research funding or acted as an advisor, or consultant for Cubist, Davol, Forest, and Pfizer Inc. Kristina Ward has received research funding from Pfizer Inc. Melissa Gaitanis, Matthew Jankowich, consultan for Cubist, Davol, Forest, and Pfizer Inc. Kristina Ward has received research funding or acted as an advisor, or consultant for Cubist, Davol, Forest, and Pfizer Inc. Kerry L. LaPlante has received research funding or acted as an advisor, or consultant for Cubist, Davol, Forest, and Pfizer Inc. Kristina Ward has received research funding or acted as an advisor, or consultant for Cubist, Davol, Forest, and Pfizer Inc.

Consent for publication
Not applicable

Ethics approval and consent to participate
Not applicable—systematic review of published literature.

Author details
1Providence Veterans Affairs Medical Center, Providence, RI, USA.
2Department of Pharmacy Practice, University of Rhode Island, 7 Greenhouse Rd, Suite 295, J, Kingston, RI 02881, USA. 3Warren Alpert Medical School of Brown University, Providence, RI, USA.

Received: 12 August 2016 Accepted: 29 November 2016
Published online: 12 December 2016

References
1. Kim FW, Sorbello AF, Wassel RT, et al. Eosinophilic pneumonia in patients treated with daptomycin: review of the literature and US FDA adverse event reporting system records. Drug Saf. 2012;35:447–57.
2. US Food and Drug Administration. FDA drug safety communication: eosinophilic pneumonia associated with the use of Cubicin (daptomycin). http://www.fda.gov/Drugs/DrugSafety/ PostmarketDrugSafetyInformationforPatientsandProviders/ucm220273.htm. (Accessed 30 Nov 2016).
3. Allen JN. Drug-induced eosinophilic lung disease. Clin Chest Med. 2004;25:77–88.
4. Cubicin (daptomycin) package insert. Lexington, MA: Cubist Pharmaceuticals. 2006 May.
5. Silverman JA, Mortin LI, Vanpraagh AD, et al. Inhibition of daptomycin by pulmonary surfactant in vitro modeling and clinical impact. J Infect Dis. 2005;191:2149–52.
6. Cobl E, Kimbrough RC, Nugent KM, Phy MP. Organizing pneumonia and pulmonary eosinophilic infiltration associated with daptomycin. Ann Pharmacother. 2007;41:696–701.
7. Hayes Jr D, Anstead MJ, Kuhn RJ. Eosinophilic pneumonia induced by daptomycin. J Infect. 2007;54:e211–3.
8. Kakish E, Wiesner AM, Winstead PS, Bansdoun ES. Acute respiratory failure due to daptomycin induced eosinophilic pneumonia. Respir Med. 2008;1:235–7.
9. Shinde A, Seiffi A, DelRe S, et al. Daptomycin-induced pulmonary infiltrates with eosinophilia. J Infect. 2009;58:173–4.
10. Lal Y, Assimacopoulos AP. Two cases of daptomycin induced eosinophilic pneumonia and chronic pneumonitis. Clin Infect Dis. 2010;50:377–80.
11. Miller BA, Gray A, Leblanc TW, Sexton DJ, et al. Acute eosinophilic pneumonia secondary to daptomycin: a report of three cases. Clin Infect Dis. 2010;50:e63–8.
12. Kalarogeropoulos AS, Tsilodros S, Loverdos D, et al. Eosinophilic pneumonia associated with daptomycin: a case report and a review of the literature. J Med Case Rep. 2011;5:13. doi:10.1186/1752-1947-5:13.
13. Rether C, Conen A, Grossenbacher M, Allbrich WC. A rare cause of pulmonary infiltrates one should be aware of: a case of daptomycin-induced acute eosinophilic pneumonia. Infection. 2011;39:583–5.
14. Patel JJ, Atony A, Herrera M, Liptich RJ. Daptomycin-induced acute eosinophilic pneumonia. WMJ. 2014;113:199–201.
15. Phillips J, Cardile AP, Gatterson TF, Lewis II JS. Daptomycin-induced acute eosinophilic pneumonia: Analysis of the current data and illustrative case reports. Scand J Infect Dis. 2013;45:804–8.
16. Yamamoto K, Hayakawa K, Ohmagari N. Daptomycin-induced pneumonitis in a patient with chronic obstructive pulmonary disease (COPD). Intern Med. 2014;53:2559–60. doi:10.2169/internalmedicine.53.3058.
17. Yusuf E, Perrottedt N, Otash C, et al. Daptomycin-associated eosinophilic pneumonia in Two patients with prosthetic joint infection. Surg Infect. 2014;15:834–7.
18. Chiu SY, Faust AC, Dand HM. Daptomycin-induced eosinophilic pneumonia treated with intravenous corticosteroids. J Pharm Pract. 2015;28:275–9.
19. Hagiya H, Hasegawa K, Asano K, et al. Myopathy and eosinophilic pneumonia coincidently induced by treatment with daptomycin. Intern Med. 2015;54:252–9. doi:10.2169/internalmedicine.54.3397.
20. Hatipoglu M, Memis A, Turhan V, et al. Possible daptomycin-induced acute eosinophilic pneumonia in a patient with diabetic foot infection. Int J Antimicrob Agents. 2016;47:414–5. doi:10.1016/j.ijantimicag.2016.02.014
21. Roux S, Ferry T, Chidia C, Valour F. Daptomycin-induced eosinophilic pneumonia. Int J Infect Dis. 2015;35:95–6.
22. Wojtaszczyk A, Jankowich M. Dyspnea on daptomycin: eosinophilic pneumonia. RI Med J. 2015;58:641–3.
23. Akcaer M, Karakas A, Tok D, et al. Eosinophilic pneumonia: daptomycin-induced lung complication. Med Mal Infect. 2016 http://dx.doi.org/10.1016/j.medmal.2016.01.006
24. Prahl JD, Tripp MS, Stafford CM. Organizing pneumonia and pneumothorax associated with daptomycin use. Chest. 2010;138 (4 Suppl: 77A1-2. American College of Chest Physicians Annual Meeting October 30 – November 4, 2010; Vancouver, British Columbia, Canada. doi:10.1378/chest.1015593
25. Brwey AG, Willers ED, Ferrel P. Light RW. Daptomycin-induced eosinophilic pneumonia. Am J Resp Crit Care Med. 2011; 183(1): A3876. American Thoracic Society: 2011 International Conference, May 13–18, 2011; Denver, CO doi:10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A3876
26. Chow L, Gorga J, Zein J. Development of new pulmonary infiltrates in a patient treated with daptomycin. Chest. 2011;140(4_Meeting Abstracts):77A1-2. American College of Chest Physicians Annual Meeting October 30 – November 4, 2010; Vancouver, British Columbia, Canada. doi:10.1378/chest.1101930
27. Brwey AG, Willers ED, Ferrel P. Light RW. Daptomycin-induced eosinophilic pneumonia. Med Mal Infect. 2016 http://dx.doi.org/10.1016/j.medmal.2016.01.006
28. Prahl JD, Tripp MS, Stafford CM. Organizing pneumonia and pneumothorax associated with daptomycin use. Chest. 2010;138 (4 Suppl: 77A1-2. American College of Chest Physicians Annual Meeting October 30 – November 4, 2010; Vancouver, British Columbia, Canada. doi:10.1378/chest.1015593
29. Brwey AG, Willers ED, Ferrel P. Light RW. Daptomycin-induced eosinophilic pneumonia. Med Mal Infect. 2016 http://dx.doi.org/10.1016/j.medmal.2016.01.006
31. Tolle LB, Hyzy RC. A 73-year-old man with acute eosinophilic pneumonia owing to daptomycin. Am J Resp Crit Care Med. 2012;185:A4620. American Thoracic Society 2012 International Conference, May 18–23, 2012; San Francisco, California. doi: 10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4620

32. Edukulla J, Choudhary S, Glick A, DeSouza D. Eosinophilic pneumonia, rare but fatal side effect of daptomycin: A case report. J Gen Intern Med. 2013;28 (Suppl 1):S324. 36th Annual Meeting of the Society of General Internal Medicine April 24–27, 2013; Denver, Colorado. doi: 10.1007/s11606-013-2436-y.

33. Azam M, Asghar S, Aggen D et al. Acute eosinophilic pneumonia: A rare side effect of daptomycin. Chest. 2014; 146 (4_Meeting Abstracts):179A. American College of Chest Physicians Annual Meeting October 25–30, 2014; Austin, Texas. doi:10.1378/chest.1989619.

34. Folkard C, Munoz R. Daptomycin-induced eosinophilic pneumonia. J Gen Intern Med. 2014;29 (Suppl 1): S341-342. 37th Annual Meeting of the Society of General Internal Medicine, April 23–26, 2014; San Diego, California. doi: 10.1007/s11606-014-2834-9.

35. Neyra K, Rahman A, Gupta, V, Cohen Z, Naefes. Acute eosinophilic pneumonia due to exposure to daptomycin leading to ventilator-dependent respiratory failure. Chest. 2014;148 (4_Meeting Abstracts):635A. American College of Chest Physicians Annual Meeting October 25–28, 2015; Montreal, Quebec, Canada. doi: 10.1378/chest.2247139

36. Rajagopal A, Mintz E, Reese L. Daptomycin-induced eosinophilic pneumonia without Peripheral eosinophilia. Chest. 2014;145(3_MeetingAbstracts):127A. CHEST World Congress 2014, March 21–24, 2014; Madrid, Spain. doi: 10.1378/chest.1775453

37. Kuchlean D, le S, Foroozesh M. Daptomycin a pulmonary foe. Am J Respir Crit Care Med. 2015;191:A1661. American Thoracic Society 2015 International Conference, May 15–20, 2015; Denver, Colorado. doi: 10.1164/ajrccm-conference.2015.191.1_MeetingAbstracts.A1661

38. Hilal T, Khosravi M. Daptomycin-induced acute eosinophilic pneumonia. Am J Respir Crit Care Med. 2015;191:A1533. American Thoracic Society 2015 International Conference, May 15–20, 2015; Denver, Colorado. doi: 10.1164/ajrccm-conference.2015.191.1_MeetingAbstracts.A1533

39. Goyal P, Breen MJ, Hountras P et al. Daptomycin-induced acute eosinophilic pneumonia: Case report and review of literature. Am J Respir Crit Care Med. 2016; 193:A1658. American Thoracic Society 2016 International Conference, May 13–18, 2016; San Francisco, California. doi: 10.1164/ajrccm.conference.2016.193.1_MeetingAbstracts.A1658.

40. Hilal J, Kinjo T, Hagihara M et al. Eosinophilic pneumonia caused by daptomycin: Five case reports and review of the literature. Am J Respir Crit Care Med. 2016;193:A1586. American Thoracic Society 2016 International Conference, May 13–18, 2016; San Francisco, California. doi: 10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A1586

41. Komur S, Ulu A, Kurtaran B et al. [Sudden respiratory failure and eosinophilic pneumonia in patients treated with daptomycin: a report of five cases]. Cukurova Med J. 2016; 41): 396–399. doi:10.17826/cutf:208261. Turkish

42. Montenegro O, Del Campo R, Del Rio JJ, Ambrós Checa A. [Acute eosinophilic pneumonia secondary to daptomycin]. Enferm Infecc Microbiol Clin. 2015 Oct 31. doi: 10.1016/j.eimc.2015.08.010. Spanish.

43. Søndergaard TS, Schumacher H, Norup K. Possible daptomycin-induced organizing pneumonia. Ugeskr Laeger. 2010;172:2172–4. Danish.

44. Solomon J, Schwarz M. Drug-, toxin-, and radiation therapy induced eosinophilic pneumonia. Semin Respir Crit Care Med. 2006;27:192–7.

45. Drulhe A, Lebué B, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophil; mechanism of action. Apoptosis. 2003;8:481–95.

46. Rhee CK, Min KH, Yim NY, et al. Clinical characteristics and corticosteroid treatment of acute eosinophilic pneumonia. Eur Respir J. 2013;41:402.