Significant Subgraph Mining with Multiple Testing Correction

Mahito Sugiyama (Osaka University, JST PRESTO)
Joint work with Felipe Llinares López¹, Niklas Kasenburg², Karsten Borgwardt¹ (¹ETH Zürich, ²Univ. Copenhagen)
Summary

• **Problem:** Given a collection of graphs with class labels, find all subgraphs whose occurrences are significantly enriched in a particular class
 – A central step for deep understanding

• **Difficulty:** The number of subgraphs is massive (often more than a billion!)
 – Computationally expensive
 – Need of multiple testing correction to control false positive rate

• **Solution:** Only examining testable subgraphs
 – The number of candidate subgraphs dramatically reduced
 – Rigorous multiple testing correction
Find Associated Subgraphs

Active

Inactive
Find Associated Subgraphs

Active

Inactive

3/21
Find Associated Subgraphs

Active

Inactive

3/21
Find Associated Subgraphs

Active

Inactive

3/21
Multiple Testing

	Occur.	Non-occur.	Total
Active	4	0	4
Inactive	0	4	4
Total	4	4	8

Fisher's exact test: P value = 0.029
Multiple Testing

Fisher's exact test:
P value = 0.029

Fisher's exact test:
P value = 0.143
Multiple Testing

	Occur.	Non-occur.	Total
Active	0	4	4
Inactive	3	1	4
Total	3	5	8

Fisher’s exact test: P value = 0.143

Fisher’s exact test: P value = 0.143

Fisher’s exact test: P value = 0.029
Multiple Testing

Occur.	Non-occur.	Total	
Active	1	3	4
Inactive	0	4	4
Total	1	7	8

Fisher’s exact test: P value = 1

Fisher’s exact test: P value = 0.143

Fisher’s exact test: P value = 0.143

Fisher’s exact test: P value = 0.029
Task: Detect all significant subgraphs

Active
Inactive
Occur.
Total
Fisher's exact test: P value = 0.029

Active
Inactive
Occur.
Total
Fisher's exact test: P value = 0.143

Active
Inactive
Occur.
Total
Fisher's exact test: P value = 1
Multiple Testing Correction

- If we test m subgraphs, am subgraphs are false positives
 - α: Significance level (predetermined by the user)

- FWER: Probability of having more than one false positives among all subgraphs
 - FWER = $\Pr(FP > \alpha)$
 - FP: Number of false positives

- To achieve FWER = α, change the significance level for each test from α to δ
 - δ: corrected significance level
 - $\delta \leq \alpha$
 - Bonferroni correction is popular: $\delta^{*}_{Bon} = \alpha/m$
Counting the Frequency of Subgraphs

Frequency

\[f(\text{subgraph}) = 7 \]
Counting the Frequency of Subgraphs

Frequency
$f(\) = 6$

7/21
The Minimum P Value

- The minimum achievable P value is determined from the frequency $f(H)$ of a subgraph H:

$$P_{\text{min}} = \frac{n}{f(H)} \bigg/ \frac{n + n'}{f(H)}$$

	Occ.	Non-occ.	Total
Active	$f(H)$	$n - f(H)$	n
Inactive	0	n'	n'
Total	$f(H)$	$(n - f(H)) + n'$	$n + n'$

Most biased case ($f(H) < n$)

$$\chi_{\text{min}} = \max\{0, f(H) - n'\}$$

$$\chi_{\text{max}} = \min\{f(H), n\}$$
Testability

- The **minimum achievable P value** is determined from the frequency $f(H)$ of a subgraph H:

$$P_{\text{min}} = \left(\frac{n}{f(H)} \right) \bigg/ \left(\frac{n + n'}{f(H)} \right)$$

- Tarone (1990) pointed out (and Terada et al. (2013) revisited):

 *For a hypothesis H, if its minimum P value is larger than the significance threshold, this is **untestable** and we can ignore it*

 - Untestable hypotheses (subgraphs) do not increase the FWER
 - The Bonferroni factor reduces to the number of testable hypotheses
Finding the Optimal Correction Factor

- \(m(k) \): \# of subgraphs whose minimum \(P \) values < \(a/k \)
 - \(k \): the correction factor, \(a/k \): the corrected significance level

- For each \(k \), FWER is controlled as (Tarone 1990):
 \[
 \text{FWER} \leq m(k) \frac{a}{k} = \frac{m(k)}{k}a
 \]

- Our task is to optimize \(k \):
 \[
 k^* = \arg\max_k m(k) \text{ s.t. } m(k) \leq k
 \]
 - Enumerate testable subgraphs whose min. \(P \) values < \(a/k^* \)
 \[
 \delta_{\text{Bon}}^* = a/(\# \text{ of all subgraphs})
 \]
 \[
 \delta_{\text{Tar}}^* = a/(\# \text{ of testable subgraphs})
 \]
Subgraphs Are Testable Iff Frequent

- Our task:

\[
 k^* = \arg\max_k m(k) \quad \text{s.t. } m(k) \leq k
\]

- \(m(k) \) = \# of subgraphs whose minimum \(P \) values < \(\alpha/k \)
Subgraphs Are Testable Iff Frequent

Our task:

\[k^* = \arg\max_k m(k) \quad \text{s.t. } m(k) \leq k \]

\[\downarrow \]

\[\sigma^* = \arg\max_\sigma m'(\sigma) \quad \text{s.t. } m'(\sigma) \leq \alpha / \psi(\sigma) \]

- \(m(k) \): # of subgraphs whose minimum P values < \(\alpha / k \)
- \(m'(\sigma) \): # of subgraphs whose frequency \(\geq \sigma \)
 - # of “frequent subgraphs”
- \(\psi(\sigma) \): the minimum P value at \(\sigma \), \(\psi(\sigma) = \binom{n}{\sigma} / \binom{n + n'}{\sigma} \)
Our task:

\[k^* = \arg\max_k m(k) \quad \text{s.t.} \quad m(k) \leq k \]

\[\downarrow \]

\[\sigma^* = \arg\max_{\sigma} m'(\sigma) \quad \text{s.t.} \quad m'(\sigma) \leq \alpha / \psi(\sigma) \]

- \(m(k) \): # of subgraphs whose minimum \(P \) values < \(\alpha / k \)
- \(m'(\sigma) \): # of subgraphs whose frequency \(\geq \sigma \)
 - # of “frequent subgraphs”
- \(\psi(\sigma) \): the minimum \(P \) value at \(\sigma \), \(\psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma} \)

Testable subgraphs = Frequent subgraphs
How to Use Subgraph Mining

of subgraphs

Frequency

12/21
Decremental Search (LAMP)

Terminate if # of subgraphs is larger than $\alpha / (P_{\text{min at } \sigma})$.
Incremental Search

Terminate if # of subgraphs detected so far exceeds $\alpha / (P_{\text{min}} \text{ at } \sigma)$
Datasets

| Dataset | Size | #positive | avg. $|V|$ | avg. $|E|$ | max $|V|$ | max $|E|$ |
|--------------|-------|-----------|-------|-------|-------|--------|--------|
| PTC (MR) | 584 | 181 | 31.96 | 32.71 | 181 | 181 |
| MUTAG | 188 | 125 | 17.93 | 39.59 | 28 | 66 |
| D&D | 1178 | 691 | 284.32| 715.66| 5748 | 14267 |
| NCI1 | 4208 | 2104 | 60.12 | 62.72 | 462 | 468 |
| NCI167 | 80581 | 9615 | 39.70 | 41.05 | 482 | 478 |
| NCI220 | 900 | 290 | 46.87 | 48.52 | 239 | 255 |
Correction Factor

PTC(MR)

MUTAG

D&D

NCI1

NCI167

NCI220

Correction factor

10⁵

10⁷

Correction factor

10⁴

10⁶

Correction factor

10⁸

10⁹

Max. size of subgraph nodes

5 10 15 Limitless

Max. size of subgraph nodes

5 10 15 Limitless

Max. size of subgraph nodes

5 10 15 Limitless

Max. size of subgraph nodes

5 10 15 Limitless

Max. size of subgraph nodes

5 10 15 Limitless

Correction factor

Bonferroni

Testable
Number of Significant Subgraphs

- PTC(MR)
- MUTAG
- D&D
- NCI1
- NCI167
- NCI220

The graphs show the number of significant subgraphs as a function of the maximum size of subgraph nodes. The data is grouped by datasets: PTC(MR), MUTAG, D&D, NCI1, NCI167, and NCI220. Each dataset has a unique set of data points indicating the number of significant subgraphs at different node sizes, ranging from 5 to Limitless.
Running Time (second)

PTC(MR)

MUTAG

D&D

NCI1

NCI167

NCI220

Running time (s)

Max. size of subgraph nodes

5 10 15 Limitless

5 10 15 Limitless

5 10 15 Limitless

Brute-force

Decremental

Incremental
Running Time Summary

- RMSD (root mean square deviation) of running time (seconds) to the best (fastest) running time on all datasets

Method	Brute-force	Decremental (LAMP)	Incremental
	6.994×10^4	2.410×10^4	1.230×10^2

- **Incremental search is the fastest**
 - More than two orders of magnitude faster than brute-force
 - Much faster than decremental (LAMP) as the final minimum support is usually small (~20)
Final Minimum Frequencies

Dataset	Maximum size of subgraph nodes					Limitless			
	5	7	9	11	13	15	Limitless		
PTC(MR)	9	10	11	11	11	11	11		
MUTAG	8	10	11	12	14		—		
D&D	20	22	22	22	22	22	22		
NCI1	17	20	22	25	27	29		—	
NCI167	7	8	9	10	11		—		
NCI220	10	11	13	14	15	16	18		

	n
PTC(MR)	181
MUTAG	125
D&D	691
NCI1	2104
NCI167	9615
NCI220	290
Conclusion

• We achieved to enumerate all significant subgraphs
 – The first work that considers multiple testing correction in graph mining

• Efficient and more powerful (less false negatives) using testability and frequent subgraph mining

• Pattern mining, a classical yet central topic in data mining, can be enriched by introducing statistical assessment
 – Can be applied in scientific fields such as biology
Appendix
Papers about Testability

• Tarone, R.E.:
 A modified Bonferroni method for discrete data
 Biometrics (1990)

• Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.:
 Statistical significance of combinatorial regulations,
 Proc. Natl. Acad. Sci. USA (2013).

• Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.:
 Fast Statistical Assessment for Combinatorial Hypotheses
 Based on Frequent Itemset Mining
 ECML PKDD 2014

• Sugiyama, M., Llinares, F., Kasenburg, N., Borgwardt, K.:
 Significant Subgraph Mining with Multiple Testing Correction,
 SIAM SDM 2015 (http://arxiv.org/abs/1407.0316)
 – Code: http://git.io/N126
Hypothesis Test for Each Subgraph

	Alternative hypothesis is true	Null hypothesis is true
Declared significant	True Positive	False Positive
		(Type I Error)
Declared non-significant	False Negative (Type II Error)	True Negative

Null hypothesis: The occurrence of the subgraph is **independent** from the activity

Alternative hypothesis: The occurrence of the subgraph is **associated with** the activity
Testing the Independence of Subgraph

- Given two sets of graphs \mathcal{G} and \mathcal{G}'
 - $|\mathcal{G}| = n$, $|\mathcal{G}'| = n'$ ($n \leq n'$)

- The P value of each subgraph $H \subseteq G$ with $G \in \mathcal{G} \cup \mathcal{G}'$ is determined by the Fisher's exact test

	Occ.	Non-occ.	Total
\mathcal{G}	x	$n - x$	n
\mathcal{G}'	x'	$n' - x'$	n'
Total	$x + x'$	$(n - x) + (n' - x')$	$n + n'$

Fisher's exact test formula:

$$x \cdot n' - x' \cdot n$$

Fisher's exact test table:

Occ.	Non-occ.	Total
x	$n - x$	n
x'	$n' - x'$	n'
$x + x'$	$(n - x) + (n' - x')$	$n + n'$

A-4/A-16
Fisher's Exact Test

- The probability \(q(x) \) of obtaining \(x \) and \(x' \) is given by the hypergeometric distribution:

\[
q(x) = \frac{\binom{n}{x} \binom{n'}{x'}}{\binom{n + n'}{x + x'}}
\]

Occ.	Non-occ.	Total	
\(G \)	\(x \)	\(n - x \)	\(n \)
\(G' \)	\(x' \)	\(n' - x' \)	\(n' \)
Total	\(x + x' \)	\(n + n' \)	

Probability \(q(x) \)

\[
\begin{align*}
\text{max} & = \max \{0, x + x' - n'\} \\
\text{min} & = \min \{x + x', n\}
\end{align*}
\]

\(P \text{ value} \)

A-5/A-16
Testable Subgraphs

Minimum P value

Frequency is large

A-6/A-16
Testable Subgraphs

$k = 10, \ m(10) = 1$ (this k is the Bonferroni factor)

Minimum P value

$\alpha / 10$

Frequencty is large

Significance level

Untestable subgraphs

Testable subgraphs
Testable Subgraphs

\[k = 9, \quad m(9) = 4 \]

Minimum P value

Frequency is large

Significance level \(\alpha / 9 \)

Untestable subgraphs

Testable subgraphs
Testable Subgraphs

$k = 8, \ m(8) = 6$

Minimum P value

$\alpha / 8$

Frequency is large

Significance level

Untestable subgraphs

Testable subgraphs
Testable Subgraphs

\[k = 7, \quad m(7) = 8 \]

Minimum \(P \) value

\[\alpha / 7 \]

Frequency is large

Significance level

Untestable subgraphs

Testable subgraphs
Testable Subgraphs

Minimum P value

Significance level

$k = 8$, $m(8) = 6$

The reduced Bonferroni factor

Testable subgraphs

Compute the (exact) P values of these testable subgraphs

Untestable subgraphs

Frequency is large
Effective Number of Tests

- Many subgraphs are expected to be highly correlated due to subgraph-supergraph relationships.
- Use the effective number of tests to exploit the dependence between subgraphs and increase the power.
- In the Šidák correction, the significance level
 \[a' = 1 - (1 - a)^{1/m} \]
 for \(m \) independent tests.
- Only \(m_{\text{eff}} \) tests are effective for controlling the FWER.
 \[m_{\text{eff}} := \frac{\log(1 - \alpha)}{\log(1 - a')} \]
Estimation of Effective Number

• We directly estimate the level a' by random permutations of class labels
 – Optimal estimation of m_{eff} in theory
 – The drawback is the high computational cost $O(mh)$
 ○ m: # of subgraphs, h: # of iterations

• Overcome by considering only testable subgraphs
 – We apply the above permutation-based estimation to only testable subgraphs
 – The complexity is $O(\tau(m)h)$ ($\tau(m)$: # of testable subgraphs)

• Moskvina, V. and Schmidt, K. M. On multiple-testing correction in genome-wide association studies. *Genetic epidemiology*, 32(6):567–573, 2008.
Detected Significant Subgraphs

PTC (MR) (carcinogenicity)

NCI 220 (anti-cancer activity)
Frequent Subgraph Miners

- [AGM] Inokuchi, A. and Washio, T. and Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, PKDD 2000

- [gSpan] Yan, X. and Han, J.: gSpan: Graph-based substructure pattern mining, ICDM 2002

- [GASTON] Nijssen, S. and Kok, J. N.: A Quickstart in Frequent Structure Mining Can Make a Difference, KDD 2004

- (comparison) Wörlein, M. and Meinl, T. and Fischer, I. and Philippsen, M. A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston, PKDD 2005
 - We used GASTON as it is the fastest
Related work: LAMP version 2

• Minato et al. proposed a faster version of LAMP in itemset mining
 – Minato, S., Uno, T., Tsuda, K., Terada, A. and Sese, J.: *Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining*, ECML PKDD 2014

• The idea is almost the same with our incremental search
 – Start from $\sigma = 1$, every time an item is added, the condition $|\mathcal{I}(\sigma)| \leq a/\psi(\sigma)$ is checked
 ○ $\mathcal{I}(\sigma)$: the set of itemsets found so far with the frequency $\geq \sigma$
 – As soon as $|\mathcal{I}(\sigma)| > a/\psi(\sigma)$, the current σ is too large and we decrement it