Optimum Implementation Renewable Energy Systems in Remote Areas

Mahdi Mozaffarilegha*1, Sanaz Rashidifard2, Mohammad Mozaffarilegha1
1 Department of Electrical Engineering, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
2 Department of Computer Engineering, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran

Correspondence
* Mahdi Mozaffarilegha
Department of Electrical Engineering, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
Email: mozaffarilegha.m@gmail.com

Abstract
The growth in energy consumption and the lack of access to the electricity network in remote areas, rising fossil fuel prices, the importance of using renewable energy in these areas is increasing. The integration of these resources to provide local loads has introduced a concept called microgrid. Optimal utilization of renewable energy systems is one of their most important issues. Due to the high price of equipment such as wind turbine, solar panels and batteries, capacity sizing of the equipment is vital. In this paper, presents an algorithm based on techno-economic for assessment optimum design of a renewable energy system including photovoltaic system, batteries and wind turbine is presented.

KEYWORDS: renewable energy systems, photovoltaic, wind turbine, batteries, techno-economic.

I. INTRODUCTION

The pollution caused by fossil fuels and their scarcity has led to focus on utilization of renewable resources in recent years. Historically, renewable energy sources as sources of electricity supply in power systems has been taking human’s attention. renewable energy systems consist of loads, distributed generators, and energy storage systems that operate as a single-controllable load or generator and can provide power and heat to a local area [1]. Most of the people having no access to electricity live in remote areas. So, one of the best alternatives is to build an independent electricity production unit at such sites consisting of locally available renewable energy resources such as wind, solar and batteries. Various ways and solutions has been presented in order to reduce the cost of solar and wind power plants. In article [2], these resources are used as a power supply in hybrid and islanded grids, and in others, they are used in the grid connected to the upstream network to supply and sell. An off-grid hybrid system includes a wind, solar, fuel cell source in which the fuel cell, along with an electrolyzer and a hydrogen tank, has been considered as a storage facility for improving the performance of wind and solar resources. In [3], the authors used nonlinear programming to select the optimal location and capacity of grid-connected wind power plants to optimize energy density and minimize costs. In order to encourage consumers towards smart energy consumption and use of smart equipment, there is another important parameter to reducing the cost of consumption, which is called cost risk. This cost is in the form of anticipated cost deviation in the presence of uncertainty such as uncertainty in forecasting energy production and consumption. Now, studies show that the lower the cost and risk of a predicted cost, the faster the penetration of smart grids will increase among consumers [4]. In [5], energy management techniques for commercial consumers of a renewable energy systems have been discussed. This reference proposes an energy management system for micro-networks including solar cells, energy storage units, and gas micro turbines. This system consists of two parts: the first part is based on central energy management and the second part is based on local energy management on the consumer side. Local and central management systems transmit their information through a communication network. In [6], most use of RESs by grid-connected vehicles has been proposed to reduce the pollution and cost of power generation networks and the electric transportation industry. The PSO optimization method has been used to develop a successful vehicle control program. Also, a fuzzy-PSO algorithm has been presented for load propagation in a specific renewable energy systems considering economic and environmental issues. The results show that with the high penetration of renewable energy resources, pollution reduction and renewable energy systems costs are serious, and the energy exchange between the renewable energy systems and the upstream grid connected to it has a lot of advantages. In [7] a multi-agent system for
II. PROBLEM STATEMENT

Providing the required load at any time by power generation and storage resources at the lowest annual cost is an issue that is addressed in this study.

A. Objective Function Problem Statement

This section presents some of the important details about each component of the renewable energy systems. The goal of assessment techno-economic is to optimum design of a renewable energy system consisting of wind, batteries and solar as primary energy sources and minimize the total operating cost. The objective function of this problem is expressed by Equation (1).

\[
 f(x) = \sum_{t=1}^{NT} \left[\sum_{i=1}^{Ngpv} A_{Gi}(P_{tPV Gi}) + \sum_{i=1}^{Ngwt} B_{Gi}(P_{tWT Gi}) + \sum_{i=1}^{Ngbt} C_{Gi}(P_{tBT Gi}) \right]
\]

(1)

Where, NT the total number of hours, Ngpv the total number of solar panels generation resources, \(P_{tPV Gi} \) power solar panels output of the source i, Ngwt the total number of wind turbine generation resources, \(P_{tWT Gi} \) power wind turbine output of the source i, Ngbt the total number of batteries generation resources, \(P_{tBT Gi} \) power batteries output of the source i. Also \(A_{Gi}, B_{Gi} \) and \(C_{Gi} \) cost of the power generation ever unit i.

B. Constraints

The sum of the output power of the distributed generation units along with the main grid must cover the total demand load at each time interval t. Equation (2) shows this power equation [9]:

\[
 \sum_{t=1}^{Ns} P_{tGi} + P_{tGrid} = \sum_{t=1}^{ND} P_{tLD}
\]

(2)

For stabilized operation, the actual output power of the distributed generation units along with the main grid is in the range indicated by inequalities (4) [11]:

\[
 P_{tGi,min} \leq P_{tGi} \leq P_{tGi,max}
\]

\[
 P_{tGrid,min} \leq P_{tGrid} \leq P_{tGrid,max}
\]

III. MATHEMATICAL MODELING

In the MILP method, all mathematical relations, including constraints and head functions, must be programmed linearly. In the continuation of this section, the mathematical model of the equipment along with their technical and economic specifications and geographical data are explained [10].

A. SOLAR PANEL

Power output of a PV array is based on solar irradiance and ambient temperature. The power output in this model is calculated as:

\[
 P_{PV} = \eta_{PVg} A_{PVg} G_t
\]

(4)

Where \(\eta_{PVg} \) is PV generation efficiency, \(A_{PVg} \) is PV generator area (m²), and \(G_t \) is solar irradiation in tilted module plane (W/m²).

Fig. 1 shows the license plate module plate installed in the case study and Table (I) shows their technical and economic specifications.

For stabilized operation, the actual output power of the distributed generation units along with the main grid is in the range indicated by inequalities (4) [11]:

\[
 P_{tGi,min} \leq P_{tGi} \leq P_{tGi,max}
\]

\[
 P_{tGrid,min} \leq P_{tGrid} \leq P_{tGrid,max}
\]

III. MATHEMATICAL MODELING

In the MILP method, all mathematical relations, including constraints and head functions, must be programmed linearly. In the continuation of this section, the mathematical model of the equipment along with their technical and economic specifications and geographical data are explained [10].

A. SOLAR PANEL

Power output of a PV array is based on solar irradiance and ambient temperature. The power output in this model is calculated as:

\[
 P_{PV} = \eta_{PVg} A_{PVg} G_t
\]

(4)

Where \(\eta_{PVg} \) is PV generation efficiency, \(A_{PVg} \) is PV generator area (m²), and \(G_t \) is solar irradiation in tilted module plane (W/m²).

Fig. 1 shows the license plate module plate installed in the case study and Table (I) shows their technical and economic specifications.
TABLE I
TECHNICAL AND ECONOMIC SPECIFICATIONS OF THE SOLAR PANEL

Specifications	Value
Rated power	200 watts
Module efficiency	% 15.4
Temperature coefficient of	% -0.42
maximum power	
Open circuit voltage	23.7 volt
Voltage at maximum power	30.3 volt
Current at a maximum power	8.59 amps

B. WIND TURBINE

The fundamental equation governing the mechanical power of the wind turbine is given by:

\[P_w = \frac{1}{2} \cdot C_p(\lambda, \beta) \cdot \rho \cdot A \cdot v^3 \]

Where \(\rho \) is air density (kg/m³), \(C_p \) is power coefficient, \(A \) is intercepting area of the rotor blades (m²), \(V \) is average wind speed (m/s), \(\lambda \) is tip speed ratio. The theoretical maximum value of the power coefficient \(C_p \) is 0.593, also known as Betz’s coefficient [12].

Fig. 2 shows the license wind turbine plate installed in the case study and Table (II) shows their technical and economic specifications.

TABLE II
TECHNICAL AND ECONOMIC SPECIFICATIONS OF THE WIND TURBINE

Specifications	Value
Rated power	1200W
Rated voltage	12V
Number of blades	5
Rated wind speed	13m/s
Survival wind speed	50m/s
Start-up wind speed	2.0m/s
Wheel diameter	1.3m
Blade length	58cm

C) BATTERIES

The maximum and minimum charge and discharge energy of the batteries are as follows:

\[Ch(t) \leq E_{ch\text{,}rated} \times S_{B1}(t) \]
\[Disch(t) \leq E_{disch\text{,}rated} \times S_{B2}(t) \]

Where \(E_{ch\text{,}rated} \) maximum charge power (kwh), \(E_{disch\text{,}rated} \) maximum discharge power (kwh), \(Ch(t) \) charge variable with limit \(0 \leq Ch(t) \leq E_{ch\text{,}rated} \), \(Disch(t) \) discharge variable with limit \(0 \leq Disch(t) \leq E_{disch\text{,}rated} \).

Considering that only charging or discharging takes place at any moment, it is mathematically mentioned in Equation (7) [14].

\[S_{B1}(t) + S_{B2}(t) \leq 1 \]

The battery charge has a minimum and maximum limit and is as follows.

\[SOC_{min} \leq SOC(t) \leq SOC_{max} \]
\[SOC_{min} = N_{bt} \times (V_{bt} \cdot M_{Ah} \cdot (1 - dod))/1000 \]
\[SOC_{max} = N_{bt} \times (V_{bt} \cdot M_{Ah})/1000 \]

Where \(SOC_{min} \) the minimum charge of the battery pack (kW), \(SOC_{max} \) the maximum charge of the battery pack (kW), \(V_{bt} \) the nominal voltage of the battery (V), \(M_{Ah} \) the subtlety of each battery (Ah), dod the depth of discharge of the battery (in this study dod = 0.5).

Fig. 3 shows the license batteries plate installed in the case study and Table (III) shows their technical and economic specifications.

Fig. 2: Wind turbine plate studied.

Fig. 3: Batteries plate studied.
TABLE III
TECHNICAL AND ECONOMIC SPECIFICATIONS OF THE BATTERIES

Type	sealed acid
Capacity	133 Ah
Nominal voltage	12 V
Maximum charging current	33 A
Life time at discharge of depth 50%	653 cycles
Purchase cost	$ 112
Replacement cost	$ 112
maintenance cost	0

IV. SIMULATION AND RESULTS

In this research, planning and determining the optimal capacity of hybrid renewable energy systems in remote areas has been formulated, during which the optimal capacity of solar panels, wind turbines and batteries is determined and the optimal planning is done over a period of one year. The project life period is 15 years and the inflation interest rate is 10%. For convenience, planning the use of renewable energy has been formulated in two scenarios for a period of one year. Table (IV) shows results of the simulated scenarios.

TABLE IV
THE RESULTS OF THE SIMULATED SCENARIOS

Title	unit	Scenario1	Scenario2
Solar module - 200 w	Number	16	0
wind turbine - 1200 w	Number	1	0
Converter	Kw	4	0
Battery - 100 amp-hour	Number	25	0
Net costs life cycle	$	16395	25262
maintenance cost	$	1533	17762
Energy prices	$	0.276	0.426
Total renewable energy	Kwh/y	8993	0
Total diesel function	h/y	112	8760
Total energy load	Kwh/y	7801	7801

As shown in Table 4, Scenario 1 includes a combined solar panel / wind turbine / battery / diesel system. Net life cycle costs are much lower than in Scenario 2. The energy price in the first scenario is COE = $ 0.276 / kWh and the energy price in the second scenario is COE = $ 0.426 / kWh. This is due to the lower life cycle cost in scenario 1.

V. PRACTICAL IMPLEMENTATION OF THE PROJECT

The practical implementation of the renewable energy system faces limitations. Due to the operating voltage of the 42V converter, it is necessary for the batteries to be sealed as a 48V bus. It is also necessary that the input voltage of the solar modules is always within the allowable range of the converter. Therefore, for the practical implementation of the renewable energy system, the required equipment is considered according to Table (V).

TABLE V
THE RESULTS OF THE PRACTICAL SCENARIOS

Title	unit	Practical Scenario
Solar module - 200 w	Number	20
wind turbine - 1200 w	Number	1
Converter	Kw	4
Battery - 100 amp-hour	Number	28

Fig. 4 shows the exterior space and Fig. 5 and 6 the interior space of the combined renewable energy system under study.

Fig. 4: Overview of the system under study.

Fig. 5: Converter and controller charger of the studied system.
Given the lack of access to the electricity distribution network in remote areas, rising fossil fuel prices and transportation costs, the importance of using renewable energy in these areas is increasing. Due to the high price of equipment such as wind turbine, solar panels and batteries, capacity sizing of the equipment is vital. In this research, the optimal design of practical implementation of renewable energy systems and mathematical modeling of various system equipment’s were done. The system was implemented in practice by 4 kW solar panel, 28 sealed acid batteries with 4 kW converter and 1.2 kW wind turbine. Economic analysis shows that renewable energy systems will be utilized by a 35% reduction in costs relative to energy from diesel generators.

ACKNOWLEDGMENT

The authors would like to express their gratitude to The Islamic Azad University, Kahnooj Branch, Iran for financial, administrative, and technical support.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

REFERENCES

[1] Hee-Jun Cha, Jin-Young Choi, Dong-Jun Won, “Smart Load Management in Demand Response using Microgrid EMS”, IEEE 8 energy conference (ENERGYCON), pp. 833-837, 2014.

[2] Emad G. Shehata, Maged S. Gaber, Khalil Ali Ahmed, Gerges M. Salama, “Implementation of an energy management algorithm in DC MGs using multi-agent system”, Int. Trans. Electr. Energ. Syst., 2018.

[3] N. L. Diaz, A. C. Luna, J. C. Vasquez, J. M. Guerrero, “Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC Microgrids”, IEEE Trans. Power Electron, Vol. 32, pp. 5202–5213, 2017.

[4] M. Marzband, A. Sumper, J. L. Domínguez-García, and R. Gumara-Ferret, “Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP”, Energy Convers. Manag., Vol. 76, no. July 2015, pp. 314–322, 2013.

[5] M. Marzband, F. Azarinejad, M. Savaghebi, and J. M. Guerrero, “An Optimal Energy Management System for Islanded Microgrids Based on Multi-period Artificial Bee Colony Combined With Markov Chain”, 2014.

[6] K. Shimomachi, M. Noritake, R. Hara, H. Hoshi, H. Kita, K. Hirose, M. Noritake, H. Hoshi, and K. Hirose, “Development of energy management system for DC microgrid for office building: Day Ahead operation scheduling considering weather scenarios”, in Power Systems Computation Conference (PSCC), pp. 1–6, 2014.

[7] B. Lin, M. Zhou, W. Du, and C. Liu, “Improved PSO algorithm for microgrid energy optimization dispatch,” in Power and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-Pacific, pp. 1–6, 2013.

[8] T. A. Tarique, M. A. Zamee, and M. I. Khan, “A new approach for pattern recognition with Neuro-Genetic system using Microbial Genetic Algorithm,” in Electrical Engineering and Information & Communication Technology (ICEEICT), pp. 1–4, 2014.

[9] Farzin, H., et al., A market mechanism to quantify emergency energy transactions value in a multi-microgrid system. IEEE Transactions on Sustainable Energy, 2017.

[10] Mahdi Mozaffarilegha, Ebrahim Farjah, “Implementation of energy management of a microgrid using HMAS”, 2018 Smart Grid Conference (SGC), 2018.

[11] A. M. Turky, S. Abdullah, and N. R. Sabar, “A Hybrid Harmony Search Algorithm for Solving Dynamic Optimisation Problems”, Procedia Comput. Sci., vol. 29, pp. 1926–1936, 2014.

[12] M. Mozaffari Legha, E. Farjah, “IOT Based Load Management of a Micro-Grid Using Arduino and HMAS”, Iranian Journal of Electrical and Electronic Engineering, 2019. http://ijeee.iust.ac.ir/article-1-1402-en.html

[13] Moataz Elsied, Amrane Oukaour and Hamid Gualous, Radwan Hassan, Amr amin, “An Advanced Energy Management of Microgrid System Based on Genetic Algorithm”, Industrial electronic(ISIE), 2014.

[14] Lida Darvish Bandar, Mahdi Mozaffarilegha “Decentralized power management of a hybrid microgrid consisting of solar panel and storage device”, European Journal of Electrical Engineering, 2019.