Hepatoprotective phenylethanoid glycosides from *Cirsium setosum*

Qinge Ma\(^a\), Yongming Guo\(^a\), Baomin Luo\(^a\), Wenmin Liu\(^a\), Rongrui Wei\(^b\), Chunxia Yang\(^a\), Chenghua Ding\(^a\), Xuefeng Xu\(^a\) and Minghui He\(^a\)

\(^a\)Department of Graduate Students, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, 473061, Nanyang, Henan, China.

\(^b\)Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.

※Corresponding author. Email: maqinge2006@163.com

Abstract: Two new phenylethanoid glycosides, namely \(\beta\)-D-glucopyranoside, \(1''\)-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3''\)-\(\alpha\)-L-rhamnopyranosyl-4''\)-[(8E)-7-(3-methoxyl-4-hydroxyphenyl)-8-propenoate] (1) and \(\beta\)-D-glucopyranoside, \(1''\)-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3''\)-\(\alpha\)-L-rhamnopyranosyl-4''\)-[(8E)-7-(4-hydroxyphenyl)-8-propenoate] (2), together with six phenylethanoid glycosides were isolated from *Cirsium setosum*. Their structures were elucidated by their spectroscopic data and references. Compounds 2, 4, 5, 7, and 8 (10μM) exhibited moderate hepatoprotective activities. Compounds (3-8) were obtained from this plant for the first time.

Keywords: *Cirsium setosum*; phenylethanoid glycoside; hepatoprotective activity
Contents:

Figure S1. Structures of compounds 1-8
Figure S2. Key HMBC (H→C), NOESY, and 1H-1H COSY correlations of compounds 1 and 2
Table S1. 1H NMR (400 MHz, CD3OD), 13C NMR (100 MHz, CD3OD), and HMBC correlations of compounds 1 and 2
Table S2. Hepatoprotective effects of selective compounds (10μM)
Figure S1. Structures of compounds 1-8
Figure S2. Key HMBC (H→C), NOESY, and 1H-1H COSY correlations of compounds 1 and 2
Table S1. 1H NMR (400 MHz, CD$_3$OD), 13C NMR (100 MHz, CD$_3$OD) and key HMBC correlations of compounds 1 and 2

No.	1H NMR	13C NMR	HMBC(1H-13C)	1H NMR	13C NMR	HMBC(1H-13C)
1	-	130.9	-	-	130.7	-
2	6.79(1H,d,1.5)	113.6	-	6.81(1H,d,1.5)	113.5	-
3	-	148.7	-	-	149.0	-
4	-	147.1	-	-	146.9	-
5	6.68(1H,d,8.0)	116.7	-	6.67(1H,d,8.0)	116.5	-
6	6.63(1H,dd,8.0,1.5)	122.2	C-4	6.64(1H,dd,8.0,1.5)	122.3	C-4
7	4.46(1H,d,7.5)	83.4	C-2,C-6	4.46(1H,d,7.5)	83.6	C-2,C-6
8	3.95(2H,m)	72.9	-	3.96(2H,m)	73.1	-
1'	-	127.5	-	-	127.9	-
2'	7.16(1H,d,1.5)	111.6	-	7.40(2H,d,8.0)	132.0	C-4'
3'	-	149.3	-	6.78(2H,d,8.0)	117.8	-
4'	-	151.9	-	-	160.5	-
5'	6.80(1H,d,8.0)	117.0	-	6.78(2H,d,8.0)	117.8	-
6'	7.02(1H,dd,8.0,1.5)	123.9	C-4'	7.40(2H,d,8.0)	132.0	C-4'
7'	7.64(1H,d,15.8)	146.2	C-6', C-9'	7.63(1H,d,15.8)	147.1	C-6', C-9'
8'	6.39(1H,d,15.8)	116.0	-	6.40(1H,d,15.8)	115.8	-
9'	-	169.1	-	-	169.2	-
1''	4.56(1H,d,7.8)	103.8	C-8	4.53(1H,d,7.8)	103.9	C-8
2''	3.37(1H,m)	75.2	-	3.35(1H,m)	75.6	-
3''	3.60(1H,m)	83.3	-	3.58(1H,m)	83.6	-
4''	3.53(1H,m)	71.0	C-9'	3.53(1H,m)	71.1	C-9'
5''	3.56(1H,m)	75.4	-	3.57(1H,m)	75.6	-
6a''	3.93(1H,dd,11.5,2.4)	62.6	C-5''	3.94(1H,dd,11.5,2.4)	62.5	C-5''
6b''	3.68(1H,dd,11.5,5.6)	62.6	C-5''	3.68(1H,dd,11.5,5.6)	62.5	C-5''
1'''	5.01(1H,d,1.5)	101.8	C-3''	5.03(1H,d,1.5)	101.5	C-3''
2'''	3.68(1H,m)	72.3	-	3.67(1H,m)	72.3	-
3'''	3.70(1H,m)	72.4	-	3.71(1H,m)	72.5	-
4'''	3.39(1H,t,9.0)	74.0	-	3.40(1H,t,9.0)	73.9	-
5'''	3.96(1H,m)	70.1	-	3.95(1H,m)	70.3	-
6'''	1.24(3H,d,6.2)	18.1	-	1.24(3H,d,6.2)	18.2	-
3-OCH$_3$	3.86(3H,s)	56.8	-	3.85(3H,s)	56.6	-
3'-OCH$_3$	3.86(3H,s)	56.8	-	-	-	-
7-OCH$_3$	3.23(3H,s)	56.5	-	3.24(3H,s)	56.6	-
Table S2. Hepatoprotective effects of selective compounds (10μM)

Compound	Cell survival rate (% of normal)	Inhibition (% of control)
normal	100.0 ± 4.5	-
control	51.1 ± 5.9	-
bicyclol	62.9 ± 7.2^a	24.1
2	67.7 ± 6.0^a	33.9
4	70.6 ± 3.6^a	39.9
5	61.0 ± 5.7^a	20.2
7	79.8 ± 7.1^a	58.7
8	75.2 ± 5.2^a	49.3

Results were expressed as means ± SD (n=3; for normal and control, n = 6); bicyclol was used as positive control (10μM). ^p< 0.05.