Molecular Analysis of blaKPC-2-Harboring Plasmids: Tn4401a Interplasmid Transposition and Tn4401a-Carrying ColRNAI Plasmid Mobilization from Klebsiella pneumoniae to Citrobacter europaeus and Morganella morganii in a Single Patient

Kayoko Sugita,a,c Kôtarô Aoki,b Kohji Komori,a Tatsuya Nagasawa,a Yoshikazu Ishii,a,b Satoshi Iwata,d,e Kazuhiro Tateda,a,b

*Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
bDepartment of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
cDepartment of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
dDepartment of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
eDepartment of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan

ABSTRACT The spread of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales is a public health concern. KPC-encoding blaKPC is predominantly spread by strains of a particular phylogenetic lineage, clonal group 258, but can also be spread by horizontal transfer of blaKPC-carrying plasmids. Here, we report the transfer of a blaKPC-2-harboring plasmid via mobilization from K. pneumoniae to Citrobacter freundii complex and Morganella morganii strains in a single patient. We performed draft whole-genome sequencing to analyze 20 carbapenemase-producing Enterobacterales strains (15 of *K. pneumoniae*, two of *C. freundii* complex, and three of *M. morganii*) and all *K. pneumoniae* strains using MiSeq and/or MinION isolated from a patient who was hospitalized in New York and Montreal before returning to Japan. All strains harbored blaKPC-2-containing Tn4401a. The 15 *K. pneumoniae* strains each belonged to sequence type 258 and harbored a Tn4401a-carrying multireplcicon-type plasmid, IncN and IncR (IncN+R). Three of these *K. pneumoniae* strains also possessed a Tn4401a-carrying ColRNAI plasmid, suggesting that Tn4401a underwent interplasmid transposition. Of these three ColRNAI plasmids, two and one were identical to plasmids harbored by two *Citrobacter europaeus* and three *M. morganii* strains, respectively. The Tn4401a-carrying ColRNAI plasmids were each 23,753 bp long and incapable of conjugal transfer via their own genes alone, but they mobilized during the conjugal transfer of Tn4401a-carrying IncN+R plasmids in *K. pneumoniae*. Interplasmid transposition of Tn4401a from an IncN+R plasmid to a ColRNAI plasmid in *K. pneumoniae* and mobilization of Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in *C. europaeus* and *M. morganii*.

IMPORTANCE Plasmid transfer plays an important role in the interspecies spread of carbapenemase genes, including the Klebsiella pneumoniae carbapenemase (KPC)-coding gene, blaKPC. We conducted whole-genome sequencing (WGS) analysis and transmission experiments to analyze blaKPC-2-carrying mobile genetic elements (MGEs) between the blaKPC-2-harboring *K. pneumoniae*, Citrobacter europaeus, and Morganella morganii strains isolated from a single patient. blaKPC-2 was contained within an MGE, Tn4401a, WGS of blaKPC-2-carrying *K. pneumoniae*, *C. europaeus*, and *M. morganii* strains isolated from one patient revealed that Tn4401a-carrying ColRNAI plasmids were generated by plasmid-to-plasmid transfer of Tn4401a from a multireplcicon-type IncN and IncR (IncN+R) plasmid in *K. pneumoniae* strains. Tn4401a-carrying ColRNAI plasmids were incapable of conjugal transfer in *C. europaeus* and *M. morganii* but mobilized from *K. pneumoniae* to...
The spread of carbapenemase-producing Enterobacterales (CPE) is a public health concern (1). Klebsiella pneumoniae carbapenemase (KPC) genes (bla_{KPC}) have now spread worldwide and are particularly prevalent in North and South America, China, Greece, and Israel (1). K. pneumoniae strains belonging to clonal group 258 (CG258), including those of sequence type 11 (ST11), ST258, and ST512, are associated with the spread of bla_{KPC} (2–8).

The Tn3-family transposon Tn4401 is an important mobile genetic element for carrying bla_{KPC} (9–11). To date, nine Tn4401 isoforms have been reported (12–17). The IncF group pKpQIL-like plasmid carrying Tn4401 has been analyzed in detail (18–21). Furthermore, bla_{KPC}-carrying Inc plasmids, e.g., IncFIK1, IncFIK2, IncFIA, IncN, IncI2, IncX, IncA/C, IncR, and ColE1, have been detected in various ST258 clones (5, 18, 22).

Interstrain and -species horizontal transfer of genes encoding carbapenemases is important for the spread of CPE (23, 24). bla_{KPC}-carrying plasmids can be transmitted to other strains or species, resulting in the emergence of new KPC-producing strains (25). In our case study, KPC-type CPE, which are rarely detected in Japan (1), were detected in one patient comprising not only bla_{KPC}-positive K. pneumoniae but also bla_{KPC}-positive Citrobacter freundii complex and Morganella morganii (Table 1). It was interesting that these KPC-type CPE were detected in a single patient. We hypothesized that interstrain transmission of the plasmid carrying bla_{KPC} occurred via a mechanism involving a mobile genetic element in the patient. In the present study, we conducted whole-genome sequencing (WGS) analysis and transmission experiments with Tn4401-carrying plasmids to elucidate the relationship between the bla_{KPC}-positive K. pneumoniae, C. freundii complex, and M. morganii strains isolated from a single patient.

RESULTS

Antimicrobial susceptibility and carbapenemase genes. Twenty-six ceftazidime-resistant strains (15 K. pneumoniae, eight C. freundii complex, and three M. morganii strains) were isolated from a single patient in a university hospital in Tokyo over 3 months from November 201X to January 201X+1 (Table 1) (for the protection of personal privacy, permission was not obtained from any of the ethics committees to specify the year of isolation in the paper). The patient had been previously hospitalized in New York and Montreal before returning to Japan. All 26 strains were resistant to tazobactam-piperacillin and ceftazidime and were susceptible to amikacin (see Table S1 in the supplemental material). All 15 K. pneumoniae and all three M. morganii strains were imipenem or meropenem resistant and were determined by PCR to be bla_{KPC} positive. Additionally, two of the eight C. freundii complex strains with reduced susceptibility to imipenem were determined by PCR to be bla_{KPC} positive.

PFGE. All of the strains within each species, including the 15 K. pneumoniae, eight C. freundii complex (regardless of bla_{KPC}-positive or -negative status), and three M. morganii strains, were derived from the same clone, as determined by pulsed-field gel electrophoresis (PFGE) (Fig. S1A to C).

Draft and complete WGS. Draft genome sequences were obtained using an Illumina sequencer, MiSeq, for 20 bla_{KPC}-positive strains with an average depth of 86.6 (standard deviation [SD], 40.3) (Table S2). Assembled genomes contained an average of 78.7 (SD, 18.9) contigs and an N₅₀ value of 176,169 bp (SD, 90,246 bp). Complete genome sequences were obtained using a Nanopore sequencer, MinION, for 15 bla_{KPC}-positive K. pneumoniae strains with an average depth of 332.0 (SD, 189.3) (Table S2).

Species identification and MLST. The strains identified as K. pneumoniae, C. freundii complex, and M. morganii in the primary biochemical identification were identified as K. pneumoniae, Citrobacter europaeeus, and M. morganii, respectively, by their average
nucleotide identity (ANI) scores. All of the \(K.\) \textit{pneumoniae} strains belonged to ST258. All of the \(C.\) \textit{europaeus} strains were ascribed to ST497, which was a newly discovered ST in this study. No multilocus sequence typing (MLST) scheme for \(M.\) \textit{morganii} is currently available.

Antimicrobial resistance genes. All of the \(\text{bla}_{KPC-2} \)-positive strains harbored \(\text{bla}_{KPC-2}\) located on Tn4401a. The \(K.\) \textit{pneumoniae} strains also possessed \(\text{bla}_{OXA-9} \), \(\text{bla}_{TEM-1} \), \(\text{aac(3')-IV} \), \(\text{aph(4)-Ia} \), \(\text{aadA1} \), \(\text{aadA2} \), \(\text{aac(6')-Ib-cr} \), and \(\text{cmI} \) (Table S1). The \(C.\) \textit{europaeus} and \(M.\) \textit{morganii} strains possessed \(\text{bla}_{KPC-2} \) and \(\text{aac(6')-Ib-cr} \) (Tables S1 and S3).

Mobile genetic element and plasmid similarity. All 15 of the \(K.\) \textit{pneumoniae} strains shared similarly structured IncN- and IncR-type multireplicon (hereafter called IncN+R) plasmids that carried Tn4401a (Fig. S2A and Table S3). These 15 IncN+R plasmids showed 97% to 100% coverage and 99.90% to 100% similarity to each other. In three of these \(K.\) \textit{pneumoniae} strains (TUM12137, TUM12139, and TUM12140), two copies of Tn4401a were present on each IncN+R plasmid. No plasmids resembling the Tn4401a-carrying IncN+R multireplicon plasmid harbored by \(K.\) \textit{pneumoniae}, represented by pMTY12126_IncN+R from TUM12126, were reported in the GenBank database prior to September 2021. The highest coverage for pMTY12126_IncN+R was 59% for \(K.\) \textit{pneumoniae} BWHC1 plasmid unnamed2 (GenBank accession number CP020500.1). The IncN and IncR portions of the multireplicon pMTY12126_IncN+R were similar to plasmid 9 (IncN, GenBank accession number FJ236607.1) and pKPC484 (IncR, GenBank accession number CP008798.1), respectively (Fig. S2B). Plasmid 9 and pKPC484 showed 52% and 55% coverage of the length of pMTY12126_IncN+R, respectively (Fig. S2B). Interestingly, plasmid 9 and pKPC484 each possessed a copy of Tn4401, and pMTY12126_IncN+R was structured such that their copies of Tn4401a merged (Fig. S2B).

In addition, three strains of \(K.\) \textit{pneumoniae} (TUM12128, TUM12134, and TUM12135) harbored Tn4401a-carrying ColRNAI plasmids. The Tn4401a-carrying ColRNAI plasmid of \(K.\) \textit{pneumoniae} TUM12128 (pMTY12128_ColRNAI) had a structure identical to that of the ColRNAI plasmids of \(C.\) \textit{europaeus} TUM12147 (pMTY12147_ColRNAI) and TUM12148 (pMTY12148_ColRNAI) (Fig. S2C). Six \(\text{bla}_{KPC} \)-negative \(C.\) \textit{europaeus} strains (from TUM12141 to TUM12146) were ColRNAI plasmid-specific PCR (mobB) negative.

TABLE 1 Ceftazidime-resistant CPE isolated from the single patient in this study

Strain ID	Species	Specimen	\(\text{bla}_{KPC-2} \)	Isolation date (YYYY-MM-DD)
TUM12126	\(K.\) \textit{pneumoniae}	Bile	+	201X.11.8
TUM12127	\(K.\) \textit{pneumoniae}	Bile	+	201X.11.8
TUM12128	\(K.\) \textit{pneumoniae}	Bile	+	201X.11.15
TUM12129	\(K.\) \textit{pneumoniae}	Stool	+	201X.12.22
TUM12130	\(K.\) \textit{pneumoniae}	Bile	+	201X.12.22
TUM12131	\(K.\) \textit{pneumoniae}	Bile	+	201X.12.22
TUM12132	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.1
TUM12133	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.1
TUM12134	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.8
TUM12135	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.8
TUM12136	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.8
TUM12137	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.8
TUM12138	\(K.\) \textit{pneumoniae}	Bile	+	201X+1.1.8
TUM12139	\(K.\) \textit{pneumoniae}	Blood	+	201X+1.1.8
TUM12140	\(K.\) \textit{pneumoniae}	Blood	+	201X+1.1.8
TUM12141	\(C.\) \textit{europaeus}	Stool	−	201X.12.15
TUM12142	\(C.\) \textit{europaeus}	Bile	−	201X.12.22
TUM12143	\(C.\) \textit{europaeus}	Bile	−	201X.12.22
TUM12144	\(C.\) \textit{europaeus}	Bile	−	201X+1.1.1
TUM12145	\(C.\) \textit{europaeus}	Bile	−	201X+1.1.1
TUM12146	\(C.\) \textit{europaeus}	Bile	−	201X+1.1.8
TUM12147	\(C.\) \textit{europaeus}	Blood	+	201X+1.1.8
TUM12148	\(C.\) \textit{europaeus}	Blood	+	201X+1.1.8
TUM12149	\(M.\) \textit{morganii}	Bile	+	201X+1.1.1
TUM12150	\(M.\) \textit{morganii}	Bile	+	201X+1.1.1
TUM12151	\(M.\) \textit{morganii}	Blood	+	201X+1.1.15
Similarly, the Tn4401a-carrying ColRNAI plasmids of TUM12134 (pMTY12134_ColRNAI) and TUM12135 (pMTY12135_ColRNAI) had structures identical to those of the ColRNAI plasmids of M. morganii TUM12149, TUM12150, and TUM12151 (pMTY12149_ColRNAI, pMTY12150_ColRNAI, and pMTY12151_ColRNAI, respectively) (Fig. S2D). The backbone structures of the Tn4401a-carrying ColRNAI plasmids in this study were all identical, the only difference being the Tn4401a insertion site (Fig. S2E). The structures of the Tn4401a-carrying ColRNAI plasmids, pMTY12147_ColRNAI and pMTY12150_ColRNAI, were similar only to that of plasmid 15S (GenBank accession number FJ223606.1) among the identified plasmids, differing only in the position in which Tn4401a was inserted (Fig. S2F). The coverage of pMTY12147_ColRNAI, pMTY12150_ColRNAI, and plasmid 15S was 100%, with the only difference being the insertion site of Tn4401a. In addition, plasmids with structures that appear to be integrations of the Tn4401a-carrying ColRNAI plasmid into the IncFIB/FII, IncFII, or IncR plasmid are registered in the GenBank database (Fig. S2F).

Core-genome-based SNP analysis of K. pneumoniae strains and their Tn4401a-carrying plasmids. Phylogenetic analysis of the 15 K. pneumoniae strains from this study and 20 unrelated blaKPC-positive ST258 K. pneumoniae strains isolated overseas for which genomic data are available from the GenBank database (Table S4) revealed that the 15 strains from this study form a cluster (Fig. S3A). The average substitution rate in the core genome was estimated to be 1.32 single nucleotide polymorphisms (SNPs) (95% highest posterior density interval, 0.19 to 2.46 SNPs) per genome per year, and the time of divergence of the 15-strain cluster in this study from the other analyzed strains was estimated to be approximately 100 months (approximately 8 years) before the time when these strains were isolated in a Japanese hospital (Fig. S3A). Phylogenetic analysis of only the 15 K. pneumoniae strains from this study showed that these strains can be divided into four subclades (subclades A, B, C, and D) (Fig. 1). The maximum number of SNPs among all 15 strains was 18, and the maximum number of SNPs among each subclade was only two (Fig. S3B). Two of the three strains in
subclade A and one of the seven strains in subclade D harbored two copies of Tn4401a on their IncN1 plasmid (Fig. 1). All strains in subclade B (TUM12134 and TUM12135) and one strain not belonging to a subclade (TUM12128) harbored a ColRNAI plasmid carrying Tn4401a (Fig. 1).

Plasmid transfer and similarity. The Tn4401a-carrying IncN+R plasmids from all except one of the *K. pneumoniae* strains (pMTY12128_IncN+R from TUM12128) were successfully transferred to *Escherichia coli* by conjugation. Interestingly, the pMTY12128_IncN+R plasmid, which was unable to be transferred by conjugation, had an approximately 20-kb inversion in the region of the conjugative transfer-associated gene cluster (Fig. S2A).

MOB-suite software detected the *mobC* gene in all ColRNAI plasmids with or without Tn4401a, which could not be detected by DFAST, and determined it to be a mobilizable plasmid. Conjugative transfer experiments revealed that the pMTY12133_ColRNAI and pMTY12134_ColRNAI plasmids could be successfully mobilized from *K. pneumoniae* TUM12133 and TUM12134, respectively, into *E. coli* via the conjugative transfer of an IncN+R plasmid. Plasmids pMTY12148_ColRNAI and pMTY12151_ColRNAI were also successfully mobilized by transforming the ColRNAI plasmid in *E. coli* harboring a self-transferable IncW plasmid, as we previously reported (*bla*IMP-1-carrying plasmid, pMTY10660_IncW, GenBank accession number AP018350.1) (26). The *E. coli* harboring a *bla*IMP-1-carrying IncW plasmid and a *bla*KPC-2-carrying ColRNAI plasmid showed resistance to both moxalactam (>4 mg/liter) and aztreonam (>4 mg/liter) on selective agar plates.

DISCUSSION

In this study, we estimated the transposition of Tn4401a from an IncN+R plasmid to a ColRNAI plasmid in *K. pneumoniae* strains and found that the Tn4401a-carrying ColRNAI plasmid mobilized via conjugal plasmid transfer to the recipient. Furthermore, the mobilization of Tn4401a-carrying ColRNAI plasmids was confirmed by the results of in vitro conjugation experiments using *E. coli* as the recipient.

The Tn4401a-carrying IncN+R and ColRNAI plasmids that we analyzed were both found to be novel structures with low similarity to plasmids currently registered in the GenBank database. The IncR plasmid has been reported to form a multireplicon with the IncA/C and IncN plasmids (27). To the best of our knowledge, no IncR plasmid with conjugal ability has been reported, and we speculate that the IncN+R plasmid described in this study acquired conjugal ability by forming a multireplicon, as previously reported (28). The Tn4401a-carrying IncN+R plasmid may have acquired conjugal transfer ability by inheriting the *tra* gene from an ancestral IncN plasmid similar to plasmid 9.

The results of a core-genome SNP-based phylogenetic analysis conducted on 15 *bla*KPC-2-positive *K. pneumoniae* strains from this study and representative ST258 strains from the GenBank database suggested that the strains from our patient diverged and evolved independently approximately 8 years prior to their time of isolation (see Fig. S3A in the supplemental material). This result strongly suggests that the patient may have already been carrying *bla*KPC-2-positive ST258 *K. pneumoniae* strains at the time of medical treatment in New York, USA, and/or Montreal, Canada. Tn4401a detected in this study has the same structure as the IncFII-like plasmids pKpQIL (GenBank accession number GU595196.1) and pNYC (GenBank accession number EU176011.1) (21). Tn4401a is a transposon belonging to the Tn3 family and has been reported to be actively translocated in bacteria (29).

The WGS analysis of our 15 *K. pneumoniae* strains revealed that Tn4401a replicated on the IncN+R plasmid, leading to the generation over a 3-month period of bacteria harboring two copies, which it replicatively transferred to ColRNAI plasmids (Fig. S2A). Because ColRNAI plasmids carrying *bla*KPC-2 were found to be incapable of conjugal transduction themselves due to the lack of conjugal transfer element (*tra*) genes (Fig. S2C), it is likely that the conjugal transduction ability of the IncN+R plasmid helped *K. pneumoniae* to transmit Tn4401a to *C. europaeus* and *M. morganii*. However,
the IncN+R plasmid was not detected in *C. europaeus* or *M. morganii*, suggesting that the plasmid was not adapted to these hosts. Transposition of Tn4401a to CoIRNAI must have been essential for the strains of *C. europaeus* and *M. morganii* in this patient to acquire *bla*\(_{OXA-48}\). From the WGS data, we speculate that Tn4401a on the CoIRNAI plasmids may have been sourced from an IncN+R plasmid in *K. pneumoniae*; however, to date, we have not experimentally demonstrated that Tn4401 was transferred.

This study revealed novel IncN+R and CoIRNAI plasmids carrying Tn4401a. The data suggest that the interplasmid transposition of Tn4401a from an IncN+R plasmid to a CoIRNAI plasmid in *K. pneumoniae* and the mobilization of Tn4401a-carrying CoIRNAI plasmids contributed to the acquisition of *bla*\(_{OXA-48}\) in strains of *C. europaeus* and *M. morganii*.

MATERIALS AND METHODS

Bacterial strains. The bacterial strains used in the present study were isolated from a single patient in a university hospital in Tokyo over the 3-month period from November 201X to January 201X+1. The strains comprised 26 ceftazidime-resistant strains (15 *K. pneumoniae*, eight *C. freundii* complex, and three *M. morganii*) isolated from a patient who was hospitalized in New York and Montreal before returning to Japan. The strains were isolated during routine testing of bile and blood samples using sheep blood agar (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) and MacConkey II agar (Becton, Dickinson, Franklin Lakes, NJ, USA), and during active surveillance of extended-spectrum cephalosporins or carbapenem-resistant *Enterobacterales* in stool samples using ChromID ESBL agar (bioMérieux, Lyon, France). The patient had multiple antibiotics, including meropenem, during the previous month.

Ethics. The study protocol was approved by the Ethics Committee of the Toho University School of Medicine (no. 27037 and A17023) and the Keio University School of Medicine (no. 20150090).

Primary bacterial species identification and antimicrobial susceptibility testing. Primary bacterial species identification and antibiotic susceptibility testing were performed with NBpcom6.23J and Neg MIC6.31J of MicroScan WalkAway Plus (Beckman Coulter, Brea, CA, USA). Strains showing MICs of 4 mg/liter or higher for ceftazidime were judged as potential carbapenemase producers. The MICs were measured using the broth microdilution method in accordance with the CLSI guidelines (M07, 11th edition) (30). The following antimicrobial agents were used for antimicrobial susceptibility testing: piperacillin, ceftazidime, and imipenem (Sigma Chemical, St. Louis, MO, USA); ciprofloxacin (LKT Laboratories, St Paul, MN, USA); aztreonam (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan); tazobactam (Toyama Chemical Co., Ltd., Toyama, Japan); meropenem, amikacin, and gentamicin (Wako Pure Chemical Industries, Ltd., Tokyo, Japan); and ertapenem (Merck & Co., Inc., Kenilworth, NJ, USA). The MIC measurement range was 0.125 to 256 mg/liter. *E. coli* ATCC 25922 and *Pseudomonas aeruginosa* ATCC 27853 were used as quality control strains for antibiotic susceptibility testing. The results were interpreted in accordance with the CLSI guidelines (M100, 31st edition) (31).

Screening carbapenemase genes by PCR. The main carbapenemase genes, *bla*\(_{OXA-48}\), *bla*\(_{IMP-1}\), *bla*\(_{VIM}\), and *bla*\(_{PER-1}\) were screened using conventional PCR (32). Carbapenemase gene-positive strains were used in the following analyses in this study.

PFGE. *K. pneumoniae*, *C. freundii* complex, and *M. morganii* genomic DNAs, in gel-embedded form, were digested with *XbaI* (TaKaRa Bio, Shiga, Japan). Pulsed field gel electrophoresis (PFGE) was performed using CHEF Mapper (Bio-Rad, Hercules, CA, USA) in 1× Tris-borate-EDTA (TBE) buffer, along with Lambda Ladder PFGE marker (New England Biolabs, Hertfordshire, United Kingdom). Fingerprinting II software (Bio-Rad) was used to analyze the electrophoretic patterns, and the analysis parameters were as follows: the Dice coefficient, the unweighted pair group method with averages, 1% position tolerance, and 1% optimization.

Draft WGS and analysis. DNA was extracted from bacterial cultures, grown in LB medium using phenol-chloroform, and was purified using a QIAamp PCR purification kit (Qiagen, Valencia, CA, USA). DNA libraries were created using the Nextera XT DNA sample preparation kit (Illumina, Inc., San Diego, CA, USA). The DNA libraries were sequenced with the MiSeq platform (Illumina) for paired-end reads of 300 bp using a MiSeq reagent kit v3 600-cycle kit. MiSeq output reads were assembled with SPAdes v3.13.1 (33). Species identification was performed using the ANI with the type strain database gcType (34) and the compareketch command in the BBMap package (https://sourceforge.net/projects/bbmap/) (35). We used a cutoff value of ≥96% (36) of the ANI value compared with the genomic sequences of the type strain for species identification. The DNA Data Bank of Japan Fast Annotation and Submission Tool (DFAST) was used for open reading frame (ORF) and gene annotation (37). ResFinder and Plasmid Finder from the Center for Genomic Epidemiology (https://cge.csbs.dtu.dk/services/) were used to detect acquired antimicrobial resistance genes and plasmid replicons. Multilocus sequence typing (MLST) was performed using the PubMLST scheme for *K. pneumoniae* and *Citrobacter* spp. (https://pubmlst.org/). In silico relaxase typing (MOB typing) was performed with MOB-suite (38).

MiniON sequencing and hybrid de novo assembly with MiSeq reads. To determine the complete sequences of *bla*\(_{OXA-48}\)-carrying plasmids, genomic DNA was sequenced using MiniION (Oxford Nanopore Technologies, Oxford, United Kingdom). DNA extraction and library preparation were performed using a NucleoBond AXG 20 column (TaKaRa Bio) combined with NucleoBond buffer set III (TaKaRa Bio) and rapid barcoding kit SQK-RBK004 (Oxford Nanopore Technologies), respectively. MiniION flow cell R9.4 (Oxford Nanopore Technologies) was used for sequencing. Basecalling and demultiplexing were performed by Guppy v3.4.1. Hybrid de novo assembly, using both MiSeq and MiniON reads, was conducted...
with Unicycler (39) after the reads were quality trimmed with the Trimmomatic tool (version 0.38) (40) and NanoFilt (41).

Core-genome SNP-based phylogenetic analysis. Core-genome single nucleotide polymorphism (SNP)-based phylogenetic analysis was performed with MiSeq sequencing data. The MiSeq sequencing data were aligned to the genomic sequence of the reference isolate, *K. pneumoniae* KPN1H1 ST258 (GenBank accession number NZ_CP008827.1), using the Burrows-Wheeler Aligner (BWA) with the “SW” option (42). We constructed a core-genome alignment using SAMtools (version 1.3) mpileup (43), and VarScan (version 2.3.7) mpileup2cns (44) and then a maximum-likelihood tree using PhyML (45). Using this as the starting tree, we inferred homologous recombination events that imported DNA fragments from beyond the phylogenetic clade and constructed a clonal phylogeny with corrected branch lengths using ClonalFrameML (46). The core genome, excluding homologous recombination sequences estimated using ClonalFrameML, was subjected to SNP detection and used for phylogenetic analysis by RaXML (47). We used the bootstrap 1,000 times and the gamma site model (GTR) substitution model. In addition, we estimated the evolutionary rate and timing of phylogenetic divergence of the 15 *K. pneumoniae* strains isolated over 3 months by BEAST (version 2.4.7) (48). BEAST was run for 20 million generations, sampling every 200 states, using the GTR substitution model.

Conjugation experiments. The conjugation experiments were performed by applying the filter mating method. A sodium azide- and rifampin-resistant, lactose-nonfermenting *E. coli* strain (ML4909 with added sodium azide resistance) was used as the recipient (26). Transconjugants were selected on modified Drigalski agar (Eiken Chemical Co., Ltd., Tokyo, Japan) containing both ceftazidime (4 mg/liter) and sodium azide (100 mg/liter; Fujifilm Wako Pure Chemical Corporation, Osaka, Japan). The carriage of *bla*_{APC}-_C by transconjugants was confirmed by PCR (32). Confirmation of the transmitted plasmid replicon type was performed by IncI- and IncI-specific PCR (23, 49).

Mobilization experiments. The procedure applied for confirming that the horizontal transfer to recipient cells occurred by the mobilization modality of a ColRNAI plasmid carrying *bla*_{APC}-_C, which did not appear to be self-transmissible by conjugation, was as follows. First, the test plasmids (*bla*_{APC}-_C-carrying ColRNAI plasmids designated pMTY12148_ColRNAI and pMTY12151_ColRNAI) were introduced by electroporation into *E. coli* cells carrying a conjugative *bla*_{AP}-_R-carrying plasmid (pMTY10660_IncW). The *E. coli* cells were washed three times with ice-cooled sterilized water as a pretreatment for electroporation. The *E. coli* Pulser (Bio-Rad, Munich, Germany) was used at a voltage of 1.5 kV. Second, a conjugation experiment was performed using an *E. coli* strain harboring a *bla*_{APC}-_C-carrying IncW plasmid and a *bla*_{APC}-_C-carrying ColRNAI plasmid as the donor and rifampin-resistant *E. coli* ML4909 as the recipient. If the *bla*_{AP}-_{APC}-_C- and *bla*_{APC}-_C-carrying plasmids were transferred at the same time, mobilization was considered to have occurred. Therefore, the *bla*_{APC}-_C-carrying mobilized cells were selected by their growth on modified Drigalski agar containing the three antibiotics aztreonam (4 mg/liter), moxalactam (4 mg/liter; Shionogi & Co., Ltd., Osaka, Japan), and rifampin (50 mg/liter; Fujifilm Wako Pure Chemical Corporation, Osaka, Japan). Confirmation of the transmitted *bla*_{APC}-_{AP} and *bla*_{APC}-_C genes (32) and ColRNAI plasmid was performed by PCR. Transfer of the ColRNAI plasmid was confirmed by PCR of *mobB*, which is specifically retained by the ColRNAI plasmid. The primers used for this amplification were *mobB*-Fw (5′-ATCTGTCCCGGACTCGAC-3′) and *mobB*-Rv (5′-CCCCAGTGCGTTCAGTACAT-3′). Accession number(s). The draft and whole-genome sequencing data were deposited under the GenBank BioProject accession number PRJDB11646. The accession numbers for each strain and plasmid are shown in Tables S1 and S3 in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

FIG S1, TIF file, 0.5 MB.

FIG S2, TIF file, 1.4 MB.

FIG S3, TIF file, 1.1 MB.

TABLE S1, PDF file, 0.03 MB.

TABLE S2, PDF file, 0.02 MB.

TABLE S3, PDF file, 0.02 MB.

TABLE S4, PDF file, 0.01 MB.

ACKNOWLEDGMENTS

This study was supported by the Ministry of Health, Labour and Welfare, Food Safety Promotion Research Program grant number 30190801.

We thank Edanz for editing a draft of this manuscript.

REFERENCES

1. Logan LK, Weinstein RA. 2017. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215:528–536. https://doi.org/10.1093/infdis/jiw282.

2. Woodford N, Turton JF, Livermore DM. 2011. Multiresistant gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755. https://doi.org/10.1111/j.1574-6976.2011.00268.x.

3. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J,
Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. https://doi.org/10.1016/S1473-3099(13)70190-7.

4. Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591. https://doi.org/10.1128/CMR.00116-14.

5. Chen L, Mathema B, Chavda KD, LeDeo FR, Bonomo RA, Kreiswirth BN. 2014. Enhanced Klebsiella pneumoniae ST258 is a hybrid strain. mBio 5:e01535-14. https://doi.org/10.1128/mBio.01535-14.

6. Pitout JDD, Nordmann P, Poirel L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884. https://doi.org/10.1128/AAC.001091-15.

7. Wright MS, Perez F, Brinkac L, Jacobs MR, Kaye K, Cober E, van Duin D, Pitout JDD, Nordmann P, Poirel L. 2015. Carbapenemase-producing Enterobacteriaceae colonizing patients in Europe and New York hospitals. Antimicrob Agents Chemother 59:4493–4496. https://doi.org/10.1128/AAC.00175-10.

8. He S, Chandler M, Varani AM, Hickman AB, Dekker JP, Dyda F. 2016. Mechanisms of evolution in high-consequence drug resistance plasmids. mBio 7:e00197-16. https://doi.org/10.1128/mBio.00197-16.

9. Rosswandowicz M, Brouwer MSM, Fischer J, Wagenaa JA, Gonzalez-Zorn B, Smeesters R, Bara B, Mevius D, Horváth J. 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73:1121–1137. https://doi.org/10.1093/jac/dkx488.

10. Aoki K, Harada S, Yahara K, Ishii Y, Motooka D, Akeda Y, Iida T, Tomono K, Iwata S, Moriya K, Tateda K. 2018. Molecular characterization of IMP-1-producing Enterobacter cloacae complex isolates in Tokyo. Antimicrob Agents Chemother 62:e02091-17. https://doi.org/10.1128/AAC.02091-17.

11. Papagiannitsis CC, Miriagou V, Giakoupaki P, Tzouveleakis LS, Vatopoulos AC. 2013. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-

b-lactamase. J Antimicrob Chemother 68:2259–2262. https://doi.org/10.1093/jac/dkt196.

12. Qu D, Shen Y, Hu L, Jiang X, Yin Z, Gao B, Zhao Y, Yang W, Yang H, Han J, Zhou D. 2019. Comparative analysis of KPC-2-encoding chimeric plasmids with multi-replicon IncKPC:IncKPC:IncND1 or IncKPC:IncKPC:IncND1:IncND1. Infect Drug Resist 12:285–296. https://doi.org/10.2147/IDR.S198169.

13. He S, Hickman AB, Varani AM, Sigueri P, Chandler M, Dekker JP, Dyda F. 2013. Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. mBio 6:e00762-15. https://doi.org/10.1128/mBio.00762-15.

14. CLSI. 2018. CLSI M07. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

15. CLSI. 2021. CLSI M100-S31:2021. Performance standards for antimicrobial susceptibility testing, 21st ed. Clinical and Laboratory Standards Institute, Wayne, PA.

16. Doyle D, Peirano G, Laclos C, Lloyd T, Church DL, Pitout JDD. 2012. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 50:3877–3880. https://doi.org/10.1128/JCM.02117-12.

17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesnikowski A, Nikolenko I, Pham S, Pyrorovskiy A, Siyabov AS, Sorokina E, Sirotkin A, Yorsh A, Lesnyski M, MOSAR WP2, WP3, and WPS Study Groups. 2015. KPC-like carbapenemase-producing Enterobacteriaceae colonizing patients in Europe and Israel. Antimicrob Agents Chemother 60:912–1917. https://doi.org/10.1128/AAC.02756-15.

18. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tai Y-C, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Boufford GG, Blakesley RW, NISC Comparative Sequencing Program, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TM, Segre JA. 2014. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6:254ra126. https://doi.org/10.1126/scitranslmed.aaa0965.

19. Stoesser N, Phan HTT, Seale AC, Aiken Z, Thomas S, Smith M, Wylie D, George R, Sebra R, Mathers AJ, Vaughan A, Peto TEA, Ellington MJ, Hopkins KL, Crook DW, Orlek A, Welfare W, Cawthorne J, Lenney C, Dodgson A, Woodford N, Walker AS, TRACE Investigators’ Group. 2020. Genomic epidemiology of complex, multispecies, plasmid-borne blacarb基础知识 database for microbial phylogenetic and functional research. Nucleic Acids Res 49:D694–D705. https://doi.org/10.1093/nar/gkaa957.
35. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131. https://doi.org/10.1073/pnas.0906412106.

36. Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351. https://doi.org/10.1099/ijs.0.059774-0.

37. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. 2016. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 35:173–184. https://doi.org/10.12938/bmfh.16-003.

38. Robertson J, Nash JHE. 2018. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 4:e000206. https://doi.org/10.1099/mgen.0.000206.

39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

40. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324.

41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

42. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.