Epidemiological and clinical characteristics of inflammatory bowel diseases in Cairo, Egypt

Serag Esmat, Mohamed El Nady, Mohamed Elfekki, Yehia Elsherif, Mazen Naga

AIM: To study the natural history, patterns and clinical characteristics of inflammatory bowel diseases (IBD) in Egypt.

METHODS: We designed a case-series study in the gastroenterology centre of the Internal Medicine department of Cairo University, which is a tertiary care referral centre in Egypt. We included all patients in whom the diagnosis of ulcerative colitis (UC) or Crohn’s disease (CD) was confirmed by clinical, laboratory, endoscopic, histological and/or radiological criteria over the 15 year period from 1995 to 2009, and we studied their sociodemographic and clinical characteristics. Endoscopic examinations were performed by 2 senior experts. This hospital centre serves patients from Cairo, as well as patients referred from all other parts of Egypt. Our centre received 24156 patients over the described time period for gastro-intestinal consultations and/or interventions.

RESULTS: A total of 157 patients with established IBD were included in this study. Of these, 135 patients were diagnosed with UC (86% of the total), and 22 patients, with CD (14% of the total). The mean ages at diagnosis were 27.3 and 29.7, respectively. Strikingly, we noticed a marked increase in the frequency of both UC and CD diagnoses during the most recent 10 years of the 15 year period studied. Regarding the gender distribution, the male:female ratio was 1:1.15 for UC and 2.6:1 for CD. The mean duration of follow up for patients with UC was 6.2 ± 5.18 years, while the mean duration of follow up for patients with CD was 5.52 ± 2.83 years. For patients with UC we found no correlation between the severity of the disease and the presence of extraintestinal manifestations. Eleven patients had surgical interventions during the studied years: 4 cases of total colectomy and 7 cases of anal surgery.

CONCLUSION: We observed a ratio of 6:1 for UC to CD in our series. The incidence of IBD seems to be rising in Egypt.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Natural history of Inflammatory bowel diseases; Epidemiology of Ulcerative colitis; Epidemiology of Crohn’s disease; Epidemiology of inflammatory bowel diseases in Egypt; inflammatory bowel diseases Prevalence; Incidence of ulcerative colitis; Incidence of Crohn’s disease

Core tip: The precise aetiology of inflammatory bowel disease (IBD) remains obscure. In our study, the ratio of patients diagnosed with ulcerative colitis (UC) to those diagnosed with Crohn’s disease (CD) was approximately 6:1. The total colectomy rate in our study was 2.9%, after a follow up period of 5-15 years, which is far lower than the rates of Western countries. We found that the characteristics of IBD in the Egyptian popula-
Ulcereative colitis (UC) and Crohn’s disease (CD) are collectively referred to as inflammatory bowel diseases (IBD)\[^1\]. They mainly affect young populations, majorly altering their quality of life and increasing morbidity, compared to the general population. Although the exact aetiology of IBD has still not been exactly identified\[^2-5\], it is believed that the pathogenesis of IBD includes immune deregulation secondary to environmental factors in genetically susceptible individuals. This results in a mounted immune response to the normally existing intestinal flora or epithelial antigens\[^6-8\].

IBD occur with different frequencies around the world. The countries reporting the highest incidence of UC are the United States, the United Kingdom and Sweden\[^9-11\].

IBD have always seemed to be rare in the Middle East and Northern Africa. No accurate registry or cohort of patients had ever studied the exact prevalence of CD and UC in these populations. In Mediterranean countries, the prevalence of UC was estimated at 5/100000 in urban areas\[^12\].

Recent data from a few single-centre studies have pointed to a change in the disease incidence that is usually explained by lifestyle changes, such as urbanisation, and changes in alimentary habits, such as greater consumption of fast food, greater consumption of carbohydrates, and a lower daily intake of alimentary fibres.

In a recent review of the natural history of IBD, it was noted that as countries become Westernised, the incidence of UC increases first and is later followed by CD\[^12-15\]. Asia had a high ratio of UC/CD incidence in the 1980s and 1990s, but in 2000, the incidence of CD increased. Both diseases have emerged in countries in which they had rarely been previously reported, including Japan, South Korea, India, Iran, Lebanon, Thailand, the French West Indies, and North Africa\[^16-18\]. In these countries, the occurrence of UC preceded that of CD by approximately 10 years. The overall incidence of IBD can be broken down into several geographic zones: those with a high incidence, those with a moderate incidence, those with low incidence 15 years ago but with a consistently increasing incidence, and those with an unknown incidence\[^13\].

Overall, a pattern can be drawn for IBD frequency in the developing world: first, a low UC incidence; then, an increase in UC, while the CD incidence remains low; and finally, a CD incidence that approaches UC levels.

In this study, we studied the sociodemographic and clinical characteristics of patients diagnosed with CD and UC in the gastroenterology centre of the Internal Medicine department of Cairo University, which is a tertiary care referral centre in Cairo. To the best of our knowledge, this is the first trial establishing a cohort of IBD patients and starting a registry for data collection and analysis in Egypt.

MATERIALS AND METHODS

The study aimed to identify the socio-demographic and clinical characteristics of IBD patients in a very diverse population (Cairo agglomeration).

In the Middle East, as well as in most of the African countries, data on IBD patients are lacking, and there are no solid databases or registries to follow up the pattern of the disease.

We included all patients in whom the diagnosis of UC or CD was confirmed by clinical, laboratory, endoscopic and histological examination over the 15 year period from 1995 to 2009.

Our hospital gastroenterology centre serves patients from Cairo and also patients referred from all other parts of Egypt. Our centre received 24156 patients over the same duration of time who were referred for gastrointestinal consultations and/or interventions.

First, we identified the presenting complaint of the patients who consulted our centre and the reason for which the endoscopic exploration was ordered. We considered patients presenting with chronic diarrhoea, rectal bleeding, recurrent abdominal pains or discomfort, meleena, weight loss, and/or perianal fistula or abscess. The diagnosis of IBD was established by clinical, endoscopic, histological, and/or radiological criteria.

CD was diagnosed if skip lesions were found at endoscopy; a cobblestone appearance was evident; mucosal ulceration was found upon colonoscopy; or aphthous lesions were found at endoscopy. Deep inflammation or chronic terminal ileal inflammation, with or without radiologic evidence of skip lesions, stricturing disease, fistulising disease, existence of perianal disease (skin tags, abscess, fistula), small intestinal involvement or non-caseating granulomas, was also included in the diagnosis. Endoscopic examinations were performed by 2 senior experts.

Extraintestinal manifestations included musculoskeletal, mucocutaneous, hepatic, ophthalmic, and urinary tract involvements.

UC was diagnosed when there was evidence of a diffuse mucosal disease of colon with different proximal extensions from the rectum, superficial inflammation, crypt abscess, cryptitis, and rectal involvement without any evidence of small bowel involvement other than backwash ileitis.

We included patients who had an established diag-
nosis of IBD over the 15 years from 1995 to 2009 and who were referred to our centre. The following data were gathered for assessment: demographics, clinical features, area of residency, living conditions (city or countryside), smoking, family history of IBD, disease characteristics, extraintestinal manifestations, medical treatment used, and surgical interventions. Clinical information was obtained from medical records and patient interviews.

A diagnosis of IBD was established according to the corresponding criteria. For cases of UC, the true love classification was used to assess severity, and the Montreal classification was used to assess the extent of the disease. Endoscopic grades were assigned in the form of mild (erythematous oedematous rectal mucosa, absent or distorted vascular pattern), moderate (marked oedema, spontaneously bleeding mucosa, purulent exudates) and severe (frank ulcerations) degrees. The histopathological findings included the following: vascular congestion, crypt abscesses, mucin depletion, cellular infiltrate, cryptitis, and crypt branching.

For the CD cases, the Crohn’s disease activity index was used to assess the disease activity. The Montreal classifications and endoscopic grades assessed the activity as follows: (1) inactive (the vascular pattern is only slightly distorted and there is, fine granularity without friability or epithelial defects); (2) mildly active (there is unequivocal erythema, either focal or confluent, and some friability without epithelial necrosis); (3) moderately active (a few aphthoid erosions or small ulcers are noted); or (4) severe (ulcers are larger and more numerous). The histopathological findings included the following: cellular infiltrate, focal inflammation, microfistulisation, non-caseating granulomas, cobblestoning, and lymphoid hyperplasia.

Finally, as Egypt is currently in an endemic for parasitic infestations, a stool analysis was performed for all patients; we only included patients with non-complicated or evolving parasitic infections.

Statistical analysis

Data analysis was performed by the χ^2 test, and statistical significance was set at a P value of 0.05. The protocol of this study was approved by the review board of the department of Internal Medicine, according to the Declaration of Helsinki.

RESULTS

A total of 157 patients with established IBD were inud-
The pathological interpretation of the examined biopsies taken during endoscopic examinations for all the patients concluded with changes typical of the disease (Tables 5 and 6).

In our series, only 11 patients had surgical interventions during the years of follow up, which were either a total colectomy (4 UC patients) or an anal surgery (7 CD patients). The type of medical treatment, number of relapses and laboratory findings at the time of diagnosis are shown in Tables 5 and 6.

Only two patients had family history of IBD, and only 18 patients had previous history of appendicectomy prior to the presentation of UC. Neither of these was correlated with the age at presentation, the gender of the patient or the area of residency.

We did not confirm any malignant changes in the series of patients followed in our centre, except for one patient who developed colorectal carcinoma on follow-up. In our series, 40 patients had a non-evolving and non-progressed disease, which could have reflected either a weak incidence or a misdiagnosis of patients presenting with symptoms suggestive of IBD (trying to find another explanation for such a presentation).

The mean age of diagnosis for UC patients residing in Cairo was 27.9, while the mean age for those living outside Cairo was 25.9, with no significant difference. However, these findings cannot allow us to conclude that differences exist in the incidence of the disease between the urban and rural populations of Egypt.

The male: female ratio was 1:1.15 for UC, which is similar to most other studies (with a slight increase of the female prevalence, denoting an increased number of affected females compared to other parts of the world). However, for CD, the male: female ratio was 2.6:1, denoting a male predominance similar to the results of epidemiological studies from Japan and China. In contrast, studies from North America, Sweden and Northern France showed a female predominance in CD, and a recent study from Kuwait concluded that CD is equally common in males and females. Several reasons may explain these differences, including the possibility that the gender ratios in CD are highly dependent on age, as well as geographic region.

In our study, the ratio of patients diagnosed with UC to patients diagnosed with CD was approximately 6:1. This was similar to results observed from different parts of the world, where UC is much more common than CD. In northeastern Poland, this ratio was approximately 15:1, and an increase in the total number of cases diagnosed with IBD has been reported. Additionally, reports from Greece, Hungary, China and Lebanon confirm that CD is diagnosed less frequently.

Lifestyles may contribute to the expression of UC.

The mean age of diagnosis for UC patients residing in Cairo was 27.9, while the mean age for those living outside Cairo was 25.9, with no significant difference. However, these findings cannot allow us to conclude that differences exist in the incidence of the disease between the urban and rural populations of Egypt.

The male: female ratio was 1:1.15 for UC, which is similar to most other studies (with a slight increase of the female prevalence, denoting an increased number of affected females compared to other parts of the world). However, for CD, the male: female ratio was 2.6:1, denoting a male predominance similar to the results of epidemiological studies from Japan and China. In contrast, studies from North America, Sweden and Northern France showed a female predominance in CD, and a recent study from Kuwait concluded that CD is equally common in males and females. Several reasons may explain these differences, including the possibility that the gender ratios in CD are highly dependent on age, as well as geographic region.

In our study, the ratio of patients diagnosed with UC to patients diagnosed with CD was approximately 6:1. This was similar to results observed from different parts of the world, where UC is much more common than CD. In northeastern Poland, this ratio was approximately 15:1, and an increase in the total number of cases diagnosed with IBD has been reported. Additionally, reports from Greece, Hungary, China and Lebanon confirm that CD is diagnosed less frequently.

Lifestyles may contribute to the expression of UC.

The mean age of diagnosis for UC patients residing in Cairo was 27.9, while the mean age for those living outside Cairo was 25.9, with no significant difference. However, these findings cannot allow us to conclude that differences exist in the incidence of the disease between the urban and rural populations of Egypt.

The male: female ratio was 1:1.15 for UC, which is similar to most other studies (with a slight increase of the female prevalence, denoting an increased number of affected females compared to other parts of the world). However, for CD, the male: female ratio was 2.6:1, denoting a male predominance similar to the results of a study from Tunisia, which showed a male predominance in CD, and similar to the results of epidemiological studies from Japan and China. In contrast, studies from North America, Sweden and Northern France showed a female predominance in CD, and a recent study from Kuwait concluded that CD is equally common in males and females. Several reasons may explain these differences, including the possibility that the gender ratios in CD are highly dependent on age, as well as geographic region.

In our study, the ratio of patients diagnosed with UC to patients diagnosed with CD was approximately 6:1. This was similar to results observed from different parts of the world, where UC is much more common than CD. In northeastern Poland, this ratio was approximately 15:1, and an increase in the total number of cases diagnosed with IBD has been reported. Additionally, reports from Greece, Hungary, China and Lebanon confirm that CD is diagnosed less frequently.

Lifestyles may contribute to the expression of UC.

The mean age of diagnosis for UC patients residing in Cairo was 27.9, while the mean age for those living outside Cairo was 25.9, with no significant difference. However, these findings cannot allow us to conclude that differences exist in the incidence of the disease between the urban and rural populations of Egypt.

The male: female ratio was 1:1.15 for UC, which is similar to most other studies (with a slight increase of the female prevalence, denoting an increased number of affected females compared to other parts of the world). However, for CD, the male: female ratio was 2.6:1, denoting a male predominance similar to the results of a study from Tunisia, which showed a male predominance in CD, and similar to the results of epidemiological studies from Japan and China. In contrast, studies from North America, Sweden and Northern France showed a female predominance in CD, and a recent study from Kuwait concluded that CD is equally common in males and females. Several reasons may explain these differences, including the possibility that the gender ratios in CD are highly dependent on age, as well as geographic region.

In our study, the ratio of patients diagnosed with UC to patients diagnosed with CD was approximately 6:1. This was similar to results observed from different parts of the world, where UC is much more common than CD. In northeastern Poland, this ratio was approximately 15:1, and an increase in the total number of cases diagnosed with IBD has been reported. Additionally, reports from Greece, Hungary, China and Lebanon confirm that CD is diagnosed less frequently.

Lifestyles may contribute to the expression of UC.
Esmat S et al. Epidemiology of IBD in Egypt

Table 4 Clinical scoring of the endoscopic findings of ulcerative colitis patients according to the Montreal classification

Number of patients/extent of colitis	E1 (Proctitis)	E2 Left side colitis	E3 Pancolitis
(endoscopic grading according to the Montreal classification)	(25 patient, 18.5%)	(88 patient, 65.2%)	(22 patient, 16.3%)
Number of patients/severity of colitis	Mild	Moderate	Severe
(endoscopic grading according to the Montreal classification)	(25 patient, 18.5%)	(94 patient, 69.6%)	(16 patient, 11.9%)
Follow up endoscopic grading	Stationary/improved/progressed/did not do		

Table 5 Type of treatment, relapses, histopathological and laboratory findings of ulcerative colitis patients

Treatment used: (single drug or combinations)	Oral 5-ASA ±, 5-ASA enemas or supp., prednisone, azathioprine, corticosteroids enemas. (Infliximab was used in 2 cases)
Surgical intereference (yes/no)	4/131
Relapses (mean ± SD)	1.51 ± 1.575
Relapses (median/minimum/maximum)	1/0/10
Malignant transformation	1
Mean ESR 1° hour (mean ± SD)	36.37 ± 24.73
CRP (positive/negative/not done)	39/34/6
ANCA (positive/negative/not done)	12/28/95
ASCA (positive/negative/not done)	8/31/96
Pathological findings included: Vascular congestion, Crypt abscesses, Mucin depletion, Cellular infiltrate, Cryptitis, Crypt branching Pathology	78/43/14
(diagnostic/suggestive/non conclusive)	
Mean Hemoglobin concentration, gm/dL (mean ± SD)	11.2 ± 2.8
Mean PLT count (mean ± SD)	335428.6 ± 140119.1
Mean TLC (mean ± SD)	8875 ± 4059.67

ASA: Aminosalicylic acid; CRP: C-reactive protein; ANCA: Anti-neutrophil cytoplasmic antibodies; ASCA: Anti-Saccharomyces cerevisiae antibodies.

Table 6 Type of treatment, relapses, histopathological and laboratory findings of Crohn’s disease patients

CDAI (mean ± SD)	108.21 ± 53.84
CDAI (median/minimum/maximum)	103.33/38/259.5
Treatment used: (single drug or combinations) Oral 5-ASA ± Metronidazole, ciprofloxacin, azathioprine, prednisone, infliximab, surgical interference (yes/no)	7/15
Relapses (mean ± SD)	1.68 ± 2.21
Relapses (median/minimum/maximum)	1/0/8
Malignant transformation	None
Mean ESR 1° hour (mean ± SD)	49.52 ± 30.98
CRP (positive/negative/not done)	7/5
ANCA (positive/negative/not done)	6/16
ASCA (positive/negative)	4/18
Pathological findings included: cellular infiltrate, focal inflammation, microfistulization, non caseating granulomas, cobblestoning, lymphoid hyperplasia Pathology (diagnostic/suggestive/non conclusive)	7/8/7
Mean hemoglobin concentration, gm/dL (mean ± SD)	11.95 ± 2.14
Mean PLT count (mean ± SD)	296227.72 ± 146308.60
Mean TLC (mean ± SD)	7868.57 ± 2708.17

CDAI: Crohn’s disease activity index; ASA: Aminosalicylic acid; CRP: C-reactive protein; ANCA: Anti-neutrophil cytoplasmic antibodies; ASCA: Anti-Saccharomyces cerevisiae antibodies.

Such factors as smoking, drinking tea and adhering to vegetarian diets have a protective effect against UC, while ex-smoking, psychological stress and family history of UC are shown to be risks for an increased incidence of IBD.[20,28-31]

In our study, we did not find any correlation between smoking habits and the occurrence or severity of UC because most of our patients in this study did not have a history of smoking at the time of diagnosis. Additionally, there was no correlation between smoking and the occurrence of extra-intestinal manifestations.

It is generally thought that a family history of UC increases an individual’s risk of developing UC. We failed to find this in our study, as a family history was reported in only two patients.

This may be explained by the under diagnosis of these diseases due to a low disease awareness; to the confusion of IBD with the causes of infectious diarrhoea, which is common in our country; and to limited access to diagnostic tools as a result of the limited resources available in community health centres.

The clinical characteristics of the disease in our study showed that most of our patients with UC had mild distal or left-sided colitis (approximately 85%), confirmed clinically and endoscopically, and that most responded well to medical treatment. Only a few patients were referred for surgical intervention. Throughout the follow up period for UC, 83 patients (61.5%) showed an improvement in the disease activity; 20 patients retained the same activity score (14.8%); the disease activity progressed in 6 patients (4.4%); and 26 (19.2%) patients did not submit to a follow up endoscopy but also did not show any clinical relapse. The total colectomy rate in our study was 2.9% after 5-15 years, which is far lower than the total colectomy rates in studies from Western countries, which ranged from 24% to 34% after 10 years.[32-37] On the other hand, the total colectomy rate after 5-15 years in a study from South Korea was 3.3%.[38] These data indicate that the behaviour of UC in our Egyptian patients is milder than its behaviour in Western countries, more closely approximating that in the Asian population.

Although a recent study from the Middle East showed a different pattern of clinical characteristics, with more patients having pancolitis 45.5%[37], most of the data from the Asian and European regions reflected a very similar population description.[26,39-41]

We also noted in our series that the rectal form of UC represented approximately 30% of cases—not far from 40%—which may indicate a good recruitment of all cases of UC, including those with the early forms of the...
disease (not only the advanced or complicated cases).

Importantly, our data showed that a marked increase in the diagnoses of both UC and CD occurred in the past 5 years, resulting in an incidence greater than the previous 5 years and much greater than that of the 5 years before that. These data are shown in Figure 1, which indicates the increasing incidence of IBD in Egypt. This increasing incidence is also supported by a recent study in 2012 by Molodecky et al[42], who concluded that the incidence and prevalence of IBD have been increasing with time in different regions around the world, even in developing countries as they became more industrialised. The increased awareness of IBD and improvements in the necessary diagnostic tools, especially endoscopes, over the last 10 years in Egypt may be an additional factor affecting the increased frequency of IBD diagnoses.

Ruysers et al[43] discussed in depth the hygiene hypothesis, which proposes a converse relationship between parasitic infections and the incidence of IBD. Epidemiological, experimental, and clinical data corroborate the knowledge that helminthes provide protection against IBD. Therefore, the use of helminth-derived molecules may result in a protective effect[43].

In our study, the parasites identified among the IBD patients (157) were Entameba histolytica (19.1%), Giardiasis (3.2%), and Schistosomiasis (3.2%), while the parasites identified in patients without IBD (23998) were Entameba histolytica (20.1%), Enterobius vermicularis (8.3%), Giardiasis (7.2%), Schistosomiasis (5.4%), Ascars lumbricoides (2.1%), Ancylostoma duodenale (2.1%), Trichuris trichiura (1.1%), Hymenolepis nana (1%) and mixed infections (3%). These data support the hygiene hypothesis, as the exposure to helminthes in patients without IBD was much higher than in those with IBD. The findings of several recent studies provide evidence for the role of helminthes in protecting against IBD[44-49].

In conclusions, in our experience, we found that the epidemiological characteristics of IBD in Egyptian population closely resembled those of the Asian and African patterns of IBD. UC was more common than CD, and the mean age at presentation was in the late twenties. UC was more common in females, while CD was more common in males. No correlation with active smoking was found at the time of presentation. We noticed a marked increase in the frequency of IBD diagnoses in the last 10 years. We observed a ratio of 6:1 for UC to CD in our series, although the global natural course of IBDs in other countries may predict a future rise in IBD incidence in Egypt and other Middle East countries. This work should direct further studies with more exhaustive data base and registry documentation of IBD patients and their characteristics in Egyptian, Arab and Asian population.

Research frontiers

The available data in the literature regarding IBD in North Africa are limited; therefore, the aim was to study the natural history of IBD in Egypt and to compare its clinical pattern with those in other regions including Western countries. Studies showed that the incidence of IBD is now increasing in developing countries.

Innovations and breakthroughs

In the present study, the authors showed a marked increase in the frequency of diagnosis of both UC and CD in the last 10 years. These results suggest that the characteristics of IBD in Egyptian population are near to Asian and African pattern of IBD and the behavior of the disease is milder than in Western countries.

Applications

The study results suggest that the incidence of IBD seems to be rising in Egypt and may predict a future rise in IBD incidence in Egypt and other Middle East countries. This work should direct further studies with more exhaustive database and registry documentation of IBD patients and their characteristics in Egyptian, Arab and Asian population.

Terminology

True love classification: Classify the severity of UC according to the severity of symptoms to mild, moderate, and severe. Montreal classification: Classify the severity of IBD and the behavior of the disease is milder than in Western countries.

Peer review

It is a very informative epidemiology study, worth of being published.

REFERENCES

1. Button LA, Roberts SE, Goldacre MJ, Akbari A, Rodgers SE, Williams JG. Hospitalized prevalence and 5-year mortality for IBD: record linkage study. *World J Gastroenterol* 2010; 16: 431-438 [PMID: 20101767 DOI: 10.3748/wjg.v16.i4.431]
2. Mikhaillov TA, Turner SE. Breastfeeding and genetic factors in the etiology of inflammatory bowel disease in children. *World J Gastroenterol* 2009; 15: 270-279 [PMID: 19140226 DOI: 10.3748/wjg.v15.i1.270]
3. Jones OT, Osterman MT, Bewtra M, Lewis JD. Passive smoking and inflammatory bowel disease: a meta-analysis. *Am J Gastroenterol* 2008; 103: 2382-2393 [PMID: 18844625 DOI: 10.1111/j.1572-0241.2008.01999.x]
4. Abraham C, Cho JH. Inflammatory bowel disease. *N Engl J Med* 2009; 361: 2066-2078 [PMID: 19923578 DOI: 10.1056/NEJMra0804647]
5. Molodecky NA, Kaplan CG. Environmental risk factors for inflammatory bowel disease. *Gastroenterol Hepatol* (N Y) 2010; 6: 339-346 [PMID: 20567592]
6. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. *Annu Rev Immunol* 2010; 28: 573-621 [PMID: 20192811 DOI: 10.1146/annurev-immunol-030409-101225]
7. Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. *Autoimmun Rev* 2004; 3: 394-400 [PMID: 15288007 DOI: 10.1016/j.autrev.2004.03.002]
8. Podolsky DK. Inflammatory bowel disease. *N Engl J Med* 2002; 347: 417-429 [PMID: 12167685 DOI: 10.1056/NEJM-
Esmat S et al. Epidemiology of IBD in Egypt

ra028831

Ehlin AG, Montgomery SM, Ekborn A, Pounder RE, Wakefield AJ. Prevalence of gastrointestinal diseases in two British national birth cohorts. Gut 2003; 52: 1117-1121 [PMID: 12865268 DOI: 10.1136/gut.52.11.1117]

Logan RF. Inflammatory bowel disease incidence: up, down or unchanged? Gut 1998; 42: 309-311 [PMID: 9577327 DOI: 10.1136/gut.42.3.309]

Trallori G, Palli D, Saieva C, Bardazzi G, Bonanomi AG, d'Albisano G, Galli M, Vannozzi G, Milla M, Tarantino O, Renai F, Messori A, Amorosi A, Pacini F, Morettini A. A population-based study of inflammatory bowel disease in Florence over 15 years (1978-92). Scand J Gastroenterol 1996; 31: 802-809 [PMID: 8888437 DOI: 10.3109/00365529609159998]

Tezel A, Dőkme ci E, Eskićak M, Umit H, Soylu AR. Epidemiological features of ulcerative colitis in Trakya, Turkey. J Int Med Res 2003; 31: 141-148 [PMID: 12760318 DOI: 10.1177/00222156030310121]

Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011; 140: 1785-1794 [PMID: 21507045 DOI: 10.1053/j.gastro.2010.11.055]

Lowe AM, Roy PO, B-Poulin M, Michel P, Bitton A, St-Onge L, Brassard P. Epidemiology of Crohn's disease in Québec, Canada. Inflamm Bowel Dis 2009; 15: 429-435 [PMID: 18942744 DOI: 10.1002/ibd.20756]

Danese S, Fiocchi C. ULCerative colitis. N Engl J Med 2011; 365: 1713-1725 [PMID: 22047562 DOI: 10.1056/NEJMra1102492]

Yang SK, Hong WS, Min Y, Kim HY, Yoo JY, Rhee PL, Rhee JC, Chang DK, Song J, Jung SA, Park EB, Yoo HM, Lee DK, Kim YK. Incidence and prevalence of ulcerative colitis in the Songpa-Kangdong District, Seoul, Korea, 1986-1997. J Gas troenterol Hepatol 2000; 15: 1037-1042 [PMID: 11059934 DOI: 10.1046/j.1440-1746.2000.01225.x]

Sood A, Midha V, Sood N, Baradke AM, Avasthi G. Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut 2003; 52: 1587-1590 [PMID: 14570727 DOI: 10.1136/gut.52.11.1587]

Edouard A, Paillaud L, Merle S, Orhan C, Chenayer-Pan elatti Dagger M. Incidence of inflammatory bowel disease in the French West Indies (1997-1999). Gastroenterol Clin Biol 2005; 29: 779-783 [PMID: 16294145 DOI: 10.1016/S0399-8520(05)86347-X]

Satsangi J, Silverberg MS, Vermeire S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 2003; 52: 745-480 [PMID: 12706270 DOI: 10.1136/gut.52.8.1117]

Logan RF, King RL, Frolkis A, Dieleman LA, Barkema H, Panaccione R, Ghosh S, Fedorak RN, Madsen K, Kaplan GC. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27: e18-e24 [PMID: 23516681]

Lakatos PL, Vegh Z, Lovasz BD, David G, Pandur T, Erdelyi Z, Szita I, Mester G, Balogh M, Szipocs I, Molnar C, Kom aromei E, Golovics PA, Mandel M, Horvath A, Szathmari M, Kiss LS, Lakatos L. Is current smoking still an important environmental factor in inflammatory bowel diseases? Results from a population-based incident cohort. Inflamm Bowel Dis 2013; 19: 1010-1017 [PMID: 23399739 DOI: 10.1097/ MIB.0b013e3182802b3e]

Leijonmarck CE, Persson PG, Hellers G. Factors affecting colectomy rate in ulcerative colitis: an epidemiologic study. Gut 1990; 31: 329-333 [PMID: 2325599 DOI: 10.1136/gut.31.3.329]

Langholz E, Munkholm P, Davidsen M, Binder V. Course of ulcerative colitis: analysis of changes in disease activity over years. Gastroenterology 1994; 107: 3-11 [PMID: 8020674]

Hendriksen C, Kreiner S, Binder V. Long term prognosis in ulcerative colitis--based on results from a regional patient group from the county of Copenhagen. Gut 1985; 26: 158-163 [PMID: 396834 DOI: 10.1136/gut.26.2.158]

Farmer RG, Easley KA, Rankin GB. Clinical patterns, natural history, and progression of ulcerative colitis. A long-term follow-up of 167 patients. Dig Dis Sci 1993; 38: 1137-1146 [PMID: 8508710 DOI: 10.1007/BF01295733]

Sjöberg D, Holmström T, Larsson M, Nielsen AL, Holmquist E, Ekborn A, Rönnblom A. Incidence and natural history of ulcerative colitis in the Uppsala Region of Sweden 1985-2005 - results from the IBD cohort of the Uppsala Region (ICURE). Int J Crohns Colitis 2013; 7: e351-e357 [PMID: 23491313 DOI: 10.1038/ijcc.2013.20006]

Danaei M, Rodrigues A, Vieira AL, Portela F, Cremer I, Cot ter J, Correia L, Duarte MA, Tavares ML, Lago P, Ministro P, Peixe P, Lopes S, Garcia EB. Review of the disease course among adult ulcerative colitis population-based longitudinal cohorts. Inflamm Bowel Dis 2012; 18: 573-588 [PMID: 21793126 DOI: 10.1002/ibd.21815]

Park SH, Kim YM, Yang SK, Kim SH, Byeon JS, Myung SJ, Cho YK, Yu CS, Choi KS, Chung JW, Kim B, Choi KD, Kim JH. Clinical features and natural history of ulcerative colitis in Korea. Inflamm Bowel Dis 2007; 13: 278-283 [PMID: 17206722 DOI: 10.1002/ibd.20022]

Thia KT, Loftus EV, Sandborn WJ, Yang SK. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol 2008; 103: 3167-3182 [PMID: 19086963 DOI: 10.1111/j.1572-0241.2008.01218.x]
raphy and clinical course of ulcerative colitis in a multiracial Asian population: a nationwide study from Malaysia. J Dig Dis 2009; 10: 15-20 [PMID: 19236542 DOI: 10.1111/j.1751-2980.2008.00357.x]

41 Niriella MA, De Silva AP, Dayaratne AH, Ariyasinghe MH, Navarathe MM, Peiris RS, Samarasekara DN, Sathamasinghe RL, Rajindrajith S, Dassanayake AS, Wickramasinghe AR, de Silva HJ. Prevalence of inflammatory bowel disease in two districts of Sri Lanka: a hospital based survey. BMC Gastroenterol 2010; 10: 32 [PMID: 20302651 DOI: 10.1186/1471-230X-10-32]

42 Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142: 46-54.e42; quiz e30 [PMID: 22001864 DOI: 10.1053/j.gastro.2011.10.001]

43 Ruyssers NE, De Winter BY, De Man JG, Loukas A, Herman AG, Pelckmans PA, Moreels TG. Worms and the treatment of inflammatory bowel disease: are molecules the answer? Clin Dev Immunol 2008; 2008: 567314 [PMID: 18509490 DOI: 10.1155/2008/567314]

44 Donskow-Łysoniewska K, Bien J, Brodaçõeska K, Krawczak K, Doligalska M. Colitis promotes adaptation of an intestinal nematode: a Heligmosomoides polygyrus mouse model system. PLoS One 2013; 8: e78034 [PMID: 24167594 DOI: 10.1371/journal.pone.0078034]

45 Chu KM, Watermeyer G, Shelly L, Janssen J, May TD, Brink K, Benefeld G, Li X. Childhood helminth exposure is protective against inflammatory bowel disease: a case control study in South Africa. Inflamm Bowel Dis 2013; 19: 614-620 [PMID: 2380935 DOI: 10.1097/MIB.0b013e31827f2714]

46 Kron MA, Metwali A, Vodanovic-Jankovic S, Elliott D. Nematode asparaginyl-tRNA synthetase resolves intestinal inflammation in mice with T-cell transfer colitis. Clin Vaccine Immunol 2013; 20: 276-281 [PMID: 23254300 DOI: 10.1128/CVI.00594-12]

47 Weinstock JV, Elliott DE. Translatability of helminth therapy in inflammatory bowel diseases. Int J Parasitol 2013; 43: 245-251 [PMID: 23178819 DOI: 10.1016/j.ijpara.2012.10.016]

48 Whelan RA, Hartmann S, Rausch S. Nematode modulation of inflammatory bowel disease. Protozoon 2012; 249: 871-886 [PMID: 22086188 DOI: 10.1007/s00709-011-0342-x]

49 Sun S, Wang X, Wu X, Zhao Y, Wang F, Liu X, Song Y, Wu Z, Liu M. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease. Parasite Vectors 2011; 4: 186 [PMID: 21943110 DOI: 10.1186/1756-3305-4-186]

50 Lin J, Hackam DJ. Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis Model Mech 2011; 4: 447-456 [PMID: 21669933 DOI: 10.1242/dmm.007252]

51 Ruyssers NE, De Winter BY, De Man JG, Loukas A, Pearson MS, Weinstock JV, Van den Bossche RM, Martinet W, Pelckmans PA, Moreels TG. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009; 15: 491-500 [PMID: 19023900 DOI: 10.1002/ibd.20787]

P-Reviewers: Castiglione F, Yan Y S-Editor: Song XX L-Editor: A E-Editor: Wang CH
