Urysohn’s metrization theorem for higher cardinals

Joonas Ilmavirta

Department of Physics, University of Jyväskylä,
P.O. Box 35 (YFL) FI-40014 University of Jyväskylä, Finland

Abstract
In this paper a generalization of Urysohn’s metrization theorem is given for higher cardinals. Namely, it is shown that a topological space with a basis of cardinality at most \(|\omega_\mu|\) or smaller is \(\omega_\mu\)-metrizable if and only if it is \(\omega_\mu\)-additive and regular, or, equivalently, \(\omega_\mu\)-additive, zero-dimensional, and \(T_0\). Furthermore, all such spaces are shown to be embeddable in a suitable generalization of Hilbert’s cube.

Keywords: \(\omega_\mu\)-metric space, Urysohn’s metrization theorem, embedding theorem, \(\omega_\mu\)-additive space

2000 MSC: 54F65, 54C25, 54A25, 54D70, 54D10, 54D20

1. Introduction

In this section the concept of \(\omega_\mu\)-metric spaces is defined and briefly discussed. For a more elaborate description of \(\omega_\mu\)-metric spaces, see e.g. [1]. Section 2 is dedicated to some preliminary results which are then used to prove an extension of Urysohn’s metrization theorem in section 3.

A number of properties of a topological space equivalent with \(\omega_\mu\)-metrizability were given by Hodel [2] and by Nyikos and Reichel [1]. The special case of spaces with a basis of cardinality at most \(|\omega_\mu|\) seems not to have been considered. A complete characterization of such \(\omega_\mu\)-metrizable topological spaces is exhibited here in Theorem 2 in terms of simple topological properties which may be easier to verify than those required by more general metrization theorems.

Email address: joonas.ilmavirta@jyu.fi (Joonas Ilmavirta)
If G is an ordered abelian group, X is a nonempty set and $d : X \times X \to G$ is a function such that

1. $d(x, y) \geq 0$ for all $x, y \in X$,
2. $d(x, y) = 0$ only if $x = y$,
3. $d(x, y) = d(y, x)$ for all $x, y \in X$, and
4. $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$,

then d is a metric of X over G. Any such metric d gives rise to a topology of X whose basis consists of the open balls

$$B_d(x, r) = \{y \in X : d(x, y) < r\},$$

for all $x \in X$ and $r \in G$, $r > 0$. Where no confusion is possible, the subscript d is omitted. If X is a topological space and there is a metric d of X over G giving rise to the same topology, then X is G-metrizable and the pair (X, d) is a G-metric space.

Of special interest are the groups \mathbb{Z}^α and \mathbb{R}^α, where α is any non-zero ordinal, with lexicographical order and componentwise addition. Any element $x \in \mathbb{Z}^\alpha$ is a sequence $(x_\lambda)_{\lambda \in \alpha}$ indexed by α with each $x_\lambda \in \mathbb{Z}$, and similarly for \mathbb{R}^α.

For any $\lambda \in \alpha$, we define elements r^λ in \mathbb{Z}^α (or in \mathbb{R}^α) by setting $r^\lambda_\lambda = 1$ and $r^\lambda_\nu = 0$ for all $\nu \neq \lambda$. One can immediately see that if α is a regular ordinal and (X, d) is a \mathbb{Z}^α-metric (or \mathbb{R}^α-metric) space, then the collection

$$\{B_d(x, r^\lambda) : x \in X, \lambda \in \alpha\}$$

is a basis for the topology of X.

Proposition 1. If a topological space X is \mathbb{Z}^α-metrizable, it is also $\mathbb{Z}^{\text{cf}\alpha}$-metrizable, where $\text{cf} \alpha$ is the cofinality of α. Similarly, if X is \mathbb{R}^α-metrizable, it is also $\mathbb{R}^{\text{cf}\alpha}$-metrizable.

Proof. Let X be a \mathbb{Z}^α-metric space, and let $L \subset \alpha$ be a cofinal subset order isomorphic to $\text{cf} \alpha$. Then the topology given by the basis

$$\{B(x, r^\lambda) : x \in X, \lambda \in L\}$$

is immediately seen to be identical to the original metric topology of X. Thus X is \mathbb{Z}^L-metrizable. The same argument holds for \mathbb{R}^α-metrizable spaces. \qed
Proposition 2. Let \(\alpha \) be an infinite regular ordinal. A topological space \(X \) is \(\mathbb{Z}^\alpha \)-metrizable if and only if it is \(\mathbb{R}^\alpha \)-metrizable.

Proof. Since \(\mathbb{Z}^\alpha \) is a subgroup of \(\mathbb{R}^\alpha \), any \(\mathbb{Z}^\alpha \)-metric space is trivially an \(\mathbb{R}^\alpha \)-metric space.

Let then \((X, d) \) be a \(\mathbb{R}^\alpha \)-metric space. For any points \(x, y \in X \), let \(n_{xy} = \min\{\lambda \in \alpha : d_{\lambda}(x, y) \neq 0\} \). One can define a \(\mathbb{Z}^\alpha \)-metric \(\delta \) for \(X \) by setting \(\delta(x, x) = 0 \) and \(\delta(x, y) = r^{n_{xy}} \) when \(x \neq y \).

Let \(x, y, z \in X \) be any three distinct points. Because \(d \) obeys the triangle inequality, one has \(\min\{n_{xz}, n_{yz}\} \leq n_{xy} \), and so \(\max\{\delta(x, z), \delta(y, z)\} \geq \delta(x, y) \), and hence \(\delta(x, z) + \delta(y, z) \geq \delta(x, y) \).

Thus \(\delta \) obeys the triangle inequality; the other conditions for a metric are obviously fulfilled. Since \(B_\delta(x, r^{\lambda}) \supset B_d(x, r^{\lambda+1}) \) and \(B_d(x, r^{\lambda}) \supset B_\delta(x, r^{\lambda+1}) \) for all \(x \in X \) and \(\lambda \in \alpha \), the two metric topologies are the same.

Due to Proposition 1 only regular ordinals \(\alpha \) need to be considered. Every infinite regular ordinal \(\alpha \) is an initial ordinal, that is \(\alpha = \omega_\mu \) for some ordinal \(\mu \). Moreover, for a finite \(\alpha \) one has cf \(\alpha = 1 \), which yields either the discrete \(\mathbb{Z}^1 \)-metric or the usual \(\mathbb{R}^1 \)-metric.

Definition 1. A topological space \(X \) is an \(\omega_\mu \)-metric space if it is a \(\mathbb{Z}^{\omega_\mu} \)-metric space (equivalently \(\mathbb{R}^{\omega_\mu} \)-metric space by Proposition 2).

Unless otherwise stipulated, every \(\omega_\mu \)-metric will be assumed to take values in \(\mathbb{Z}^{\omega_\mu} \) instead of \(\mathbb{R}^{\omega_\mu} \).

2. Preliminaries

Let \(\kappa \) be a cardinal. A topological space \(X \) is \(\kappa \)-additive if for any collection \(\{U_i : i \in I\} \) of open sets in \(X \) the intersection \(\bigcap_{i \in I} U_i \) is open whenever \(|I| < \kappa \). An \(\omega_\mu \)-additive space is also called an \(\omega_\mu \)-additive space.

Proposition 3. Let \(X \) be topological space with a basis of cardinality \(\kappa \) or smaller. Then

1. \(X \) contains a dense set whose cardinality is at most \(\kappa \), and
2. every open cover of \(X \) has a subcover whose cardinality is at most \(\kappa \).

Proof. Let \(\mathcal{B} \) be a basis for the topology of \(X \) such that \(|\mathcal{B}| \leq \kappa \).

1. For every set \(A \in \mathcal{B} \) there is an element \(x_A \in A \). The set \(\{x_A : A \in \mathcal{B}\} \) is obviously dense and its cardinality cannot exceed \(\kappa \).
2. Let \(C \) be any open cover of \(X \). If \(B' \) is the collection of sets \(B \in \mathcal{B} \) such that \(B \subseteq U \) for some \(U \in \mathcal{C} \), one can choose for every \(B \in \mathcal{B}' \) a set \(U_B \) with \(B \subseteq U_B \in \mathcal{C} \). The collection \(\mathcal{C}' = \{ U_B : B \in \mathcal{B}' \} \) is the subcover sought for: indeed, each \(x \in X \) is an interior point of some \(U \in \mathcal{C} \), and so \(x \in B \subseteq U \) for some \(B \in \mathcal{B} \) and thus \(\bigcup_{B \in \mathcal{B}'} U_B = X \).

Proposition 4. In any \(\omega_\mu \)-metric space \(X \) either one of the following two conditions is sufficient to guarantee that the topology of \(X \) have a basis of cardinality \(|\omega_\mu| \) or smaller:

1. \(X \) contains a dense subset whose cardinality is at most \(|\omega_\mu| \).
2. Every open cover of \(X \) has a subcover whose cardinality is at most \(|\omega_\mu| \).

Proof.

1. Let \(A \subset X \) be a dense subset such that \(|A| \leq |\omega_\mu| \). The collection \(\mathcal{B} = \{ B(a, r^\lambda) : a \in A, \lambda \in \omega_\mu \} \) has obviously cardinality \(|\omega_\mu| \) or smaller. It remains to show that \(\mathcal{B} \) is also a basis for the topology. Let \(U \subset X \) be any nonempty open set and let \(x \in U \). Then there is \(\lambda \in \omega_\mu \) such that \(B(x, r^\lambda) \subset U \), and one can find a point \(a \in A \cap B(x, r^{\lambda+1}) \). Now \(x \in B(a, r^{\lambda+1}) \subset B(x, r^\lambda) \subset U \) and \(B(a, r^{\lambda+1}) \in \mathcal{B} \). Hence \(\mathcal{B} \) indeed is a basis.

2. For every \(\lambda \in \omega_\mu \) the collection \(\{ B(x, r^\lambda) : x \in X \} \) is an open cover of \(X \). Therefore there is a set \(A_\lambda \subset X \) such that \(|A_\lambda| \leq |\omega_\mu| \) and \(\{ B(x, r^\lambda) : x \in A_\lambda \} \) is an open cover of \(X \). The union \(A = \bigcup_{\lambda \in \omega_\mu} A_\lambda \) is dense in \(X \) and has cardinality \(|A| \leq |\omega_\mu| \times |\omega_\mu| = |\omega_\mu| \).

Lemma 1. Let \(X \) be a \(T_3 \)-space and let \(\kappa \) be a cardinal. Assume that \(X \) is \(\kappa \)-additive and every open cover of \(X \) has a subcover of cardinality \(\kappa \) or smaller. Then \(X \) is a \(T_4 \)-space.

Proof. Let \(E \) and \(F \) be disjoint nonempty closed sets in \(X \). Since \(X \) is \(T_3 \), for every \(e \in E \) one can find a neighborhood \(U_e \subset X \setminus \overline{E} \). Similarly every \(f \in F \) has a neighborhood \(V_f \) with \(E \subset X \setminus \overline{V_f} \). Since

\[
\mathcal{C} = \{ X \setminus (E \cup F) \} \cup \{ U_e : e \in E \} \cup \{ V_f : f \in F \}
\]

is an open cover of \(X \), the assumed covering property guarantees that \(\mathcal{C} \) has a subcover

\[
\mathcal{C}' = \{ X \setminus (E \cup F) \} \cup \{ U_{e_\lambda} : \lambda \in \alpha \} \cup \{ V_{f_\lambda} : \lambda \in \alpha \},
\]

where each \(e_\lambda \in E \) and \(f_\lambda \in F \), and where \(\alpha \) is the initial ordinal of the cardinal \(\kappa \).
For every $\lambda \in \alpha$ the sets
\[A_\lambda = U_{e_\lambda} \setminus \bigcup_{\nu < \lambda} V_{f_\nu} \quad \text{and} \]
\[B_\lambda = V_{f_\lambda} \setminus \bigcup_{\nu < \lambda} U_{e_\nu} \]
(6)
are open by hypothesis, and hence the sets
\[A = \bigcup_{\lambda \in \alpha} A_\lambda \quad \text{and} \quad B = \bigcup_{\lambda \in \alpha} B_\lambda \]
(7)
are neighborhoods of E and F, respectively. These neighborhoods are disjoint; for if $\nu \leq \lambda$, then $B_\nu \subset X \setminus A_\lambda$, and so $A_\lambda \cap B_\nu = \emptyset$ and similarly in the case $\nu \geq \lambda$. \qed

The following two known lemmas are elementary, and they are included only for the sake of an easy reference.

Lemma 2. If a topological space X is zero-dimensional and T_0, then it is also T_2 and T_3.

Lemma 3. Let X be a topological T_3-space with a basis \mathcal{B} and let $x \in X$. Then for each neighborhood U of x there are $B, B' \in \mathcal{B}$ such that $x \in B \subset \overline{B} \subset B' \subset U$.

3. The metrization theorem

In order to extend Urysohn’s metrization theorem to higher cardinals and thus to ω_μ-metric spaces, a generalization of Hilbert’s cube is needed. The product topology of $\{0, 1\}^{\omega_\mu}$ is not suitable for this purpose, since it is not ω_μ-additive for $\mu > 0$.

Definition 2. Let \mathbb{Z}^{ω_μ} be given an ω_μ-metric d by defining $d(x, y)_\lambda = |x_\lambda - y_\lambda|$ for every $\lambda \in \omega_\mu$. The set $Q_\mu = \{0, 1\}^{\omega_\mu} \subset \mathbb{Z}^{\omega_\mu}$ with the ω_μ-metric inherited from \mathbb{Z}^{ω_μ} is the generalized Hilbert’s cube.

A basis for the topology of the cube Q_μ consists of the products $\prod_{\lambda \in \omega_\nu} U_\lambda$, where there is $\nu \in \omega_\mu$ such that U_λ is a singleton when $\lambda < \nu$ and $U_\lambda = \{0, 1\}$ when $\lambda \geq \nu$. The cardinality of this basis is $|\omega_\mu|$.

The embedding theorem which will be stated and proven shortly, will make use of the classical Urysohn’s lemma:
Lemma 4 (Urysohn’s lemma). Let X be a T_4-space and let E and F be disjoint nonempty closed sets in X. Then there is a continuous mapping $f : X \to [0, 1]$ which satisfies $f(E) = \{0\}$ and $f(F) = \{1\}$.

Lemma 5. Let X be a T_4-space and let E and F be disjoint nonempty closed sets in X. If X is ω_1-additive, there is a continuous mapping $f : X \to \{0, 1\}$ which satisfies $f(E) = \{0\}$ and $f(F) = \{1\}$.

Proof. Let $g : X \to [0, 1]$ be a mapping given by Urysohn’s lemma. Define $f : X \to \{0, 1\}$ by setting $f(x) = 0$ when $g(x) = 0$ and $f(x) = 1$ otherwise. Every set $g^{-1}([0, 1/n])$, $n \in \mathbb{N}$, is open in X and therefore, by hypothesis, so is the intersection $f^{-1}(\{0\}) = g^{-1}(\{0\}) = \bigcap_{n \in \mathbb{N}} g^{-1}([0, 1/n])$. Thus f is continuous.

Theorem 1. Let X be a topological T_1- and T_3-space. If X is ω_1-additive and has a basis of cardinality $|\omega_\mu|$ or smaller for a regular ordinal ω_μ, $\mu > 0$, then X can be embedded in the generalized Hilbert’s cube Q_μ.

Proof. It follows from Proposition 3 and Lemma 1 that X is also T_4.

Let $\{B_j \subset X : j \in J\}$ be a basis for X such that $|J| \leq |\omega_\mu|$. Let P be the set of pairs $(i, j) \in J \times J$ for which $\overline{B_i} \subset B_j$. Since $|P| \leq |J|$, the elements of P can be indexed so that $P = \{(i_\lambda, j_\lambda) : \lambda \in \omega_\mu\}$.

For every $\lambda \in \omega_\mu$ a continuous mapping $f_\lambda : X \to \{0, 1\}$ is chosen such that $f_\lambda(\overline{B_{i_\lambda}}) = \{1\}$ and $f_\lambda(X \setminus B_{i_\lambda}) = \{0\}$. This is possible by Lemma 5. We define $f : X \to Q_\mu = \{0, 1\}^{\omega_\mu}$ componentwise by the mappings f_λ and show that f embeds X in Q_μ.

The mapping f is continuous: Let $x \in X$ be a point and let U be a neighborhood of $f(x)$. Then there exist $\nu \in \omega_\mu$ and sets $U_\lambda \subset \{0, 1\}$ with $f_\lambda(x) \in U_\lambda$ for all $\lambda \in \omega_\mu$ and $U_\lambda = \{0, 1\}$ when $\lambda \geq \nu$, so that U contains the product $\prod_{\lambda \in \omega_\mu} U_\lambda$. Because each f_λ is continuous, for every $\lambda < \nu$ one can find an open set $V_\lambda \subset X$ so that $f_\lambda(V_\lambda) \subset U_\lambda$. Since X is ω_μ-additive, the set $V = \bigcap_{\lambda < \nu} V_\lambda$ is a neighborhood of x. Obviously $f(V) \subset \prod_{\lambda \in \omega_\mu} U_\lambda \subset U$.

The mapping f is one-to-one: Let $x, y \in X$ be two distinct points. By the T_4-property and Lemma 3 there are $i, j \in J$ such that $x \in B_i \subset \overline{B_j} \subset B_j$. Thus $(i, j) = (i_\lambda, j_\lambda)$ for some $\lambda \in \omega_\mu$. Now $f_\lambda(x) = 1$ and $f_\lambda(y) = 0$, and so $f(x) \neq f(y)$.

Let $g : f(X) \to X$ be the inverse of f. It remains to show that g is continuous. Fix $x \in X$ and let U be a neighborhood of x. By Lemma 3 there is $\lambda \in \omega_\mu$ for which $x \in B_{i_\lambda}$ and $B_{j_\lambda} \subset U$. Now $f_\lambda(x) = 1$ and the set
\[V = \prod_{\nu \in \omega} V_{\nu}, \text{ where } V_{\lambda} = \{1\} \text{ and } V_{\nu} = \{0,1\} \text{ for } \nu \neq \lambda, \text{ is a neighborhood of } f(x) \text{ in } Q_{\mu}. \] For every \(y \in g(V \cap f(X)) \) we have \(f(y) \in V, f_{\lambda}(y) = 1 \), and so \(y \in B_{j,\lambda} \subset U \). Thus \(g(V \cap f(X)) \subset U \) and \(g \) is continuous.

Theorem 2. For any topological space \(X \) and any regular ordinal \(\omega_{\mu} > \omega_0 \) the following are equivalent:

1. \(X \) is \(\omega_{\mu} \)-additive, \(T_0 \), zero-dimensional and has a basis of cardinality \(|\omega_{\mu}| \) or smaller.
2. \(X \) is \(\omega_{\mu} \)-additive, \(T_1 \) and \(T_3 \), and has a basis of cardinality \(|\omega_{\mu}| \) or smaller.
3. \(X \) is \(\omega_{\mu} \)-metrizable and has a basis of cardinality \(|\omega_{\mu}| \) or smaller.
4. \(X \) is \(\omega_{\mu} \)-metrizable and contains a dense set of cardinality \(|\omega_{\mu}| \) or smaller.
5. \(X \) is \(\omega_{\mu} \)-metrizable and every open cover of \(X \) has a subcover of cardinality \(|\omega_{\mu}| \) or smaller.
6. \(X \) can be embedded in \(Q_{\mu} \).

Proof. Lemma 2 and Theorem 1 provide the implications \(1 \Rightarrow 2 \) and \(2 \Rightarrow 6 \). The generalized Hilbert’s cube \(Q_{\mu} \) is \(\omega_{\mu} \)-metrizable by definition and has a basis of cardinality \(|\omega_{\mu}| \), whence \(6 \Rightarrow 3 \). By Propositions 3 and 4 the conditions \(3,4 \) and \(6 \) are equivalent.

The implication \(4 \Rightarrow 1 \) is seen as follows. Let \(A \) be a dense subset of \(X \) such that \(|A| \leq |\omega_{\mu}| \). The collection \(\{B(a,r^{\lambda}) : a \in A, \lambda \in \omega_{\mu}\} \) can easily be verified to be a clopen basis for \(X \), and its cardinality is manifestly \(|\omega_{\mu}| \) or smaller.

Remark 1. The set \(Q_{\mu} \) is considered to be a generalization of Hilbert’s cube due to its role in Theorem 2. The cube \(Q_0 \), however, is a Cantor set with its usual topology, and so the theorem does not hold for \(\mu = 0 \).

Remark 2. Let \(\omega_{\mu}, \mu > 0 \), be a regular ordinal. Consider a topological space \(X \) which has two bases, one of cardinality \(|\omega_{\mu}| \) or smaller and the other consisting of clopen sets. Does \(X \) have a basis which has both of these properties?

First, \(X \) can be assumed to be a \(T_0 \)-space; it is sufficient to consider the bases for the Kolmogorov quotient \(KQ(X) \) of \(X \), and \(KQ(X) \) is a \(T_0 \)-space. By Theorem 2 \(\omega_{\mu} \)-additivity is sufficient for such a basis to exist. If \(X \) is strongly zero-dimensional, every open cover of \(X \) has a refinement where the covering sets are disjoint. Any such refinement of the basis for \(X \) that has
cardinality $|\omega_\mu|$ or smaller is a suitable clopen basis. Without any further assumptions, however, it is unclear whether or not such a basis exists.

4. Acknowledgements

The author wishes to acknowledge the suggestions offered to him by conversations with Heikki Junnila.

References

[1] P. Nyikos, H. Reichel, Topological characterizations of ω_μ-metrizable spaces, Topology and its Applications 44 (1992) 293–308.

[2] R. Hodel, Extensions of metrization theorems to higher cardinality, Fundamenta Mathematicae 87 (1975) 219–229.