Decentralized robust control of a hydraulic driven parallel manipulator based on disturbance estimation

Chun Zhao¹, Cungui Yu¹, Qing He², Qiang Xu¹

¹ Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
² Shanghai Academy of Spaceflight Technology, Shanghai, 201109, China

Corresponding author: Chun Zhao; e-mail: zhaoc33@126.com

Abstract. Since the parallel robot manipulator is a nonlinear, coupling and time-varying dynamic system, it is difficult to synthesize a controller based on the dynamic model by using a centralized control method. Considering each driving unit as a subsystem and treating the coupling interconnection terms between the joints as a time-varying external disturbance of the driving unit, this paper presents a decentralized robust controller with extended state observer (ESO) in joint-space to implement the high-precision trajectory tracking of the robot manipulator. By constructing two extended state observers, not only matched uncertainties but also unmatched uncertainties can be estimated and then compensated in a feed-forward way. Consequently, high-gain feedback is avoided. In addition, the feedback robust laws ensure the global robustness of the proposed controller. Furthermore, the stability of the system is verified by constructing the Lyapunov function. The simulation results show that the proposed controller can estimate both matched and unmatched uncertainties of the driving unit accurately, and the system possesses high trajectory tracking performance and strong robustness.

1. Introduction

It is well known that hydraulic driven parallel manipulator is essentially a highly nonlinear, strongly coupled and time-varying dynamic system. Hence, it is challenging to design a high performance controller for the servo system [1-5]. In the laboratory environment, centralized control strategy (or so-called model-based multi-input-multi-output (MIMO) control) has been made to improve the tracking performance of robot manipulator [2-4]. However, since high computational loads as well as high sensitivity to the modeling errors are well-known shortcomings of these model-based schemes, their practical application is not very promising.

Differing from centralized control, since the time-varying coupling terms can be treated as an external disturbance of each joint, decentralized control strategy (or so-called independent joint control) decomposes the integrated dynamic model of robot manipulator into a set of interconnected subsystems with bounded uncertainties and synthesizes an independent high-performance controller for each joint using only local joint state feedback [5].

To handle the external disturbances and unmodeled dynamics, robust control schemes are applied to many plants. Sliding model control (SMC) [6-7] and adaptive robust control (ARC) [8-10] have been verified the effectiveness to handle the nonlinear uncertainties. However, in order to achieve high tracking performance, larger feedback gains are employed in practical implementations, which may cause instability of the system.
To overcome large time-varying coupling terms between joints, disturbance observer (DOB) can be introduced into the controller to estimate and cancel the disturbance terms. Early works of DOB-based decentralized control schemes can be found in [11-12]. In [13], an active disturbance rejection control (ADRC) strategy was proposed to deal with those plants with a large amount of uncertainties in both dynamics and external disturbances [14]. The core design of ADRC is that an extended state observer (ESO) is used to estimate the generalized disturbance and compensate them in a feed-forward way. The advantage of this control scheme has been verified by a lot of applications [15-16].

In this paper, a decentralized robust controller with ESOs is proposed for trajectory tracking of a hydraulic driven parallel manipulator. Unlike existing ESO-based controllers [15-16], in each local controller, two linear ESOs are constructed to estimate not only matched uncertainties but also unmatched uncertainties via full state back. Hence, uncertainties can be compensated in a feed-forward way and high-gain or high-frequency feedback is avoided. Then two robust terms are employed to handle the fast-changing components of the matched uncertainty and unmatched uncertainty beyond the pass-band of the ESOs respectively. Lyapunov function verifies the convergence and stability of the proposed controller. Simulation results are presented to confirm the established theoretical results.

The remainder of this paper is organized as follows. Section 2 gives the system models and problem formulation. Section 3 presents the proposed controller design procedure. Section 4 carries out the simulation results, and some conclusions can be found in Section 5.

2. System models and problem formulation

2.1. System layout and trajectory generation

As shown in Figure 1, it is a hydraulic driven 3-PSS parallel manipulator which is used for the rocket fuel filling. For the desired trajectory $r_d = [x_d, y_d, z_d]^T$ in Cartesian space, we can obtain the desired position trajectory q_{id} of each actuator through position inverse equation. The coordinate system definition and position inverse equation can be found in [17].

In order to guarantee the transient performance of the controller, the desired trajectory of each driving unit should be smooth enough. Thus, we can obtain the desired trajectory y_{id} and its derivatives \dot{y}_{id}, \ddot{y}_{id}, \dddot{y}_{id} of each driving unit from the actual reference trajectory through a third-order filter given by [18-19]

$$\dddot{y}_{id} + \kappa_1 \ddot{y}_{id} + \kappa_2 \dot{y}_{id} + \kappa_3 y_{id} = q_{id}$$

where κ_1, κ_2, κ_3 are design parameters of the filter.

![Figure 1. Mechanical structure of parallel manipulator](image1)

![Figure 2. Schematic diagram of hydraulic driving unit](image2)
2.2. Model of hydraulic driving unit

The hydraulic driving unit under consideration is depicted in Figure 2. The dynamic equation of each driving unit can be described as

\[m_i \ddot{q}_i = A_i P_{ii} - A_2 P_{i2} - B_i \dot{q}_i - \tau_i - D_i \]

where \(m_i \) is the mass of piston rod, \(B_i \) represents the ideal viscous friction coefficient, \(P_{ii} \) and \(P_{i2} \) are the pressure inside the two chambers of the cylinder, \(A_i \) and \(A_2 \) are the ram area of the two chambers respectively, \(\tau_i \) represents the coupling disturbances between the joints, \(D_i \) represents other disturbances, such as unmodeled friction, and/or unmodeled dynamics.

Neglecting the external leakage of hydraulic cylinder, the pressure dynamics of \(i \)th driving unit can be modeled as [9]

\[\dot{P}_{i1} = \frac{\beta_i}{V_{i1}} [-A_i \dot{q}_i - C_i P_{iL} + Q_{i1} + p_{i1d}] \quad \dot{P}_{i2} = \frac{\beta_i}{V_{i2}} [A_2 \dot{q}_i + C_i P_{iL} - Q_{i2} + p_{i2d}] \]

where \(V_{i1} = V_{i01} + A_i q_i \) and \(V_{i2} = V_{i02} - A_2 q_i \) represent the effective volumes of the two chambers, respectively, \(V_{i01} \) and \(V_{i02} \) are the original volumes of two chambers, \(\beta_i \) is the effective bulk modulus of hydraulic oil, \(C_i \) is the coefficient of the internal leakage of the cylinder, \(Q_{i1} \) is the supplied flow rate of the forward chamber, and \(Q_{i2} \) is the return flow rate of the return chamber, \(P_{iL} = P_{ii} - P_{i2} \) represents the load pressure, \(p_{i1d} \) and \(p_{i2d} \) are the modeling errors in the dynamics of \(P_{i1} \) and \(P_{i2} \), respectively.

\(Q_{i1} \) and \(Q_{i2} \) are related to spool valve displacement of the servo valve \(x_{iv} \) by [9]

\[Q_{i1} = k_q x_{iv} [s(x_{iv}) \sqrt{P_{i1} - P_{i}} + s(-x_{iv}) \sqrt{P_{i1} - P_{i2}}] \quad Q_{i2} = k_q x_{iv} [s(x_{iv}) \sqrt{P_{i2} - P_{r}} + s(-x_{iv}) \sqrt{P_{s} - P_{i2}}] \]

where \(k_q = C_d \omega \sqrt{2/\rho} \) is the flow gain, \(C_d \) is the discharge coefficient, \(\omega \) is the spool valve area gradient, \(\rho \) is the density of oil, \(P_s \) and \(P_r \) are the supply pressure and return pressure of the fluid, \(s(x_{iv}) \) is defined as

\[s(x_{iv}) = \begin{cases} 1, & \text{if } x_{iv} \geq 0 \\ 0, & \text{if } x_{iv} < 0 \end{cases} \]

Selecting the high-response servo valve, it can be assumed that spool displacement \(x_{iv} \) is directly proportional to the control input \(u_i \), i.e., \(x_{iv} = k_m u_i \), where \(k_m \) is a positive constant. Therefore, (4) can be transformed to

\[Q_{i1} = k_q x_{iv} [s(x_{iv}) \sqrt{P_{i1} - P_{i}} + s(-x_{iv}) \sqrt{P_{i1} - P_{i2}}] \quad Q_{i2} = k_q x_{iv} [s(x_{iv}) \sqrt{P_{i2} - P_{r}} + s(-x_{iv}) \sqrt{P_{s} - P_{i2}}] \]

where \(k_u = k_u k_m \) represents the total flow gain.

Defining the state variables as \(\mathbf{x}_i = [x_{i1}, x_{i2}, x_{i3}]^T = [q_i, \dot{q}_i, A_1 P_{i1} - A_2 P_{i2}]^T \) and treating \(\tau_i \) and \(D_i \) as the total external disturbances, the hydraulic driving unit can be expressed in a state-space form as

\[
\begin{align*}
\dot{x}_{i1} &= x_{i1} - \frac{m_i}{A_i} \dot{x}_{i2} + d_{i1} (t) \\
\dot{x}_{i2} &= \frac{A_1}{V_{i1}} - \frac{b_i}{m_i} + d_{i2} (t) \\
\dot{x}_{i3} &= k_i \beta_i \left(\frac{A_1 P_{i1}}{V_{i1}} + \frac{A_2 P_{i2}}{V_{i2}} \right) u_i - \beta_i \left(\frac{A_1^2}{V_{i1}^2} + \frac{A_2^2}{V_{i2}^2} \right) x_{i2} - \beta_i C_i \left(\frac{A_1}{V_{i1}} + \frac{A_2}{V_{i2}} \right) P_{iL} + p_{i1d}
\end{align*}
\]
where \(b_i = B_i / m_i \), \(\dot{d}_{12}(t) = -(r_i + D_i) / m_i \), \(R_{1i} = s(u_i)\sqrt{P_s - P_{1i}} + s(-u_i)\sqrt{P_{1i} - P_r} \),
\(R_{2i} = s(u_i)\sqrt{P_{2i} - P_r} + s(-u_i)\sqrt{P_s - P_{2i}} \), \(P_{1i} = \beta_s A_{i1} P_{a1} / V_{1i} - \beta_e A_{i2} P_{a2} / V_{12} \).

To simplify the system state equations, we can define
\[
\dot{x}_{i1} = x_{i2}, \quad \dot{x}_{i2} = \frac{x_{i3}}{m_i} - b_i x_{i2} + d_{i2}(t), \quad \dot{x}_{i3} = f_i u_i + f_{i2} + d_{i3}(t) \quad (8)
\]
where \(f_{i1} = k_i \beta_e \left(A_{i1} / V_{1i} + A_{i2} / V_{12} \right), \)
\(d_{i3}(t) = p_{\text{dne}}, \)
\(f_{i2} = -\beta_e \left(\frac{A_{i1}}{V_1} + \frac{A_{i2}}{V_{12}} \right) x_{i2} - \beta_s C_i \left(A_{i1} / V_{1i} + A_{i2} / V_{12} \right) P_{1i}. \)

Assumption 1: The desired trajectory \(\mathbf{r}_d = [x_d, y_d, z_d]^T \) in Cartesian space is smooth enough and bounded. In practical hydraulic systems under normal working conditions, \(P_{1i} \) and \(P_{2i} \) are both bounded by \(P_r \) and \(P_s \), i.e., \(0 \leq P_r < P_s \), \(0 \leq P_r < P_s \).

Assumption 2: The external disturbances of manipulator and the matched disturbance \(d_{i3}(x,t) \) of each driving unit are both bounded with first-order derivative.

Since the unmatched disturbance \(d_{i2}(x,t) \) and its derivative \(\dot{d}_{i2}(x,t) \) are both the functions of the state variables and the external disturbances, meanwhile, the motions of hydraulic cylinders are all bounded, combining Assumption 2, we can obtain that the unmatched disturbance \(d_{i2}(x,t) \) of each driving unit is bounded with its first-order derivative.

The design objective of decentralized controller is to synthesize an input \(u_i \) to make the output \(y_i \) track \(y_{id} \) as closely as possible.

3. Controller Design

3.1. Extended state observer design

In order to observe the uncertainties for each driving unit, by referring to [20], extended state disturbance observer can be designed for each driving unit.

Define \(x_{i1} = d_{i1}(t) \) and \(x_{i2} = d_{i3}(t) \) as the traditional states of unmatched uncertainty and matched uncertainty. According to the Assumption 2, \(s_{i1}(t) \) and \(s_{i2}(t) \) can be defined as the derivatives of \(x_{i1} \) and \(x_{i2} \), i.e., \(\dot{x}_{i1} = s_{i1}(t), \quad \dot{x}_{i2} = s_{i2}(t) \). Hence, the original plant can be rewritten as
\[
\begin{align*}
\dot{x}_{i1} &= x_{i2} \\
\dot{x}_{i2} &= \frac{x_{i3}}{m_i} - b_i x_{i2} + x_{i1} \\
\dot{x}_{i3} &= f_i u_i + f_{i2} + x_{i2} \\
\dot{s}_{i1} &= s_{i2}(t)
\end{align*}
\quad (9)
\]

For the disturbances \(x_{i1} \) and \(x_{i2} \), two linear ESOs can be constructed as
\[
\begin{align*}
\dot{\hat{x}}_{i1} &= \hat{x}_{i2} + 3 \omega_{i1} (x_{i1} - \hat{x}_{i1}) \\
\dot{\hat{x}}_{i2} &= \frac{x_{i3}}{m_i} - b_i \hat{x}_{i2} + \hat{x}_{i1} + 3 \omega_{i2} (x_{i1} - \hat{x}_{i1}) \\
\dot{\hat{x}}_{i3} &= f_i u_i + f_{i2} + \hat{x}_{i2} + 2 \omega_{i2} (x_{i3} - \hat{x}_{i3}) \\
\dot{\hat{x}}_{i4} &= \omega_{i2}^2 (x_{i3} - \hat{x}_{i3})
\end{align*}
\quad (10)
\]

where \(\hat{x}_{i1}, \hat{x}_{i2}, \hat{x}_{i3}, \hat{x}_{i4} \) and \(\hat{x}_{i3} \) are the state estimates, \(\omega_{i1} > 0 \) and \(\omega_{i2} > 0 \) can be thought as the bandwidths of the linear ESOs.
Let $\hat{x}_j = x_j - \hat{x}_j$ $(j = 1, 2, 3)$ and $\hat{x}_{ik} = x_{ik} - \hat{x}_{ik}$ $(k = 1, 2)$ denote the estimation errors. The dynamic equations of the state estimation errors can be given as

$$
\dot{\eta}_i = \omega_{w1} A_i \eta_i + B \frac{q_i(t)}{\omega_{w1}} + \chi = \omega_{w2} A_i x_i + D \frac{s_i(t)}{\omega_{w2}}
$$

where $\eta_i = [\eta_{i1}, \eta_{i2}, \eta_{i3}]^T = [\hat{x}_{i1}, \hat{x}_{i2}, \hat{x}_{i3}]^T / \omega_{w1}$, $x_i = [x_{i1}, x_{i2}]^T$, $x = [x_{i3}, x_{i2}]^T$.

$$
A_i = \begin{bmatrix}
-3 & 1 & 0 \\
-3 & 0 & 1 \\
-1 & 0 & 0
\end{bmatrix},
A_2 = \begin{bmatrix}
-2 & 1 & 0 \\
-1 & 0 & 0
\end{bmatrix},
B = [0, 0, 1]^T, D = [0, 1]^T.
$$

Solving (11), we can obtain

$$
\eta_i = e^{\omega_{w1} A_i t} \eta_i(0) + \int_0^t e^{\omega_{w1} A_i (t-\tau)} B \frac{s_i(t)}{\omega_{w1}} d\tau,
$$

$$
X_i = e^{\omega_{w2} A_i t} X_i(0) + \int_0^t e^{\omega_{w2} A_i (t-\tau)} D \frac{s_i(t)}{\omega_{w2}} d\tau,
$$

$$
\dot{x}_{w1} = \omega_{w1} \eta_{i3}, \dot{x}_{w2} = \omega_{w2} X_{i2}.
$$

Lemma 1 [21]: Since $s_i(t)$ and $s_i(t)$ are all bounded, then the estimated states are always bounded and there exists a constant $\sigma_y > 0$ and a finite time $T_1 > 0$ such that

$$
|\hat{x}_j| \leq \sigma_y, \sigma_y = O \left(\frac{1}{\omega_y} \right), \forall t \geq T_1 (i = 1, 2, 3, j = 1, 2, 3, e_1, e_2)
$$

for some positive integer c.

Remark 1: By increasing the bandwidths of ω_{w1} and ω_{w2}, the estimation errors can be compressed to a prescribed range after a finite time.

According to Lemma 1, there exist

$$
|\hat{x}_{ik}| \leq D_{ik}, (k = 1, 2)
$$

where D_{ik} is a bounded positive define function which is known.

3.2. Controller design based on ESOs

Step 1. Define the following errors

$$
z_{i1} = x_{i1} - x_{i1}, z_{i2} = \dot{x}_{i1} + k_{i1} z_{i1} = x_{i2} - \alpha_{i1}
$$

where z_{i1} is the output tracking error, $\alpha_{i1} = \dot{x}_{i1} - k_{i1} z_{i1}$ is the virtual control law of the state x_{i2}, k_{i1} is a positive feedback gain.

Differentiating z_{i2} and considering (8), (15), we have

$$
m_z z_{i2} = m_i (\dot{x}_{i2} - \dot{\alpha}_{i1}) = x_{i3} - m_b x_{i2} - m_d i_{i2} - m_{i1}
$$

Based on the unmatched uncertainty estimation by ESOs, the virtual control law α_{i2} of the state x_{i3} can be designed as
\[\alpha_{i2} = \alpha_{i2u} + \alpha_{i2s} , \quad \alpha_{i2u} = m_1 (\dot{\alpha}_{i1} + bx_{i2} - \hat{x}_{i1}) , \quad \alpha_{i2s} = \alpha_{i2u} + \alpha_{i2s2} , \quad \alpha_{i2s2} = -k_{i2s2}z_{i2} \]

(17)

where \(k_{i2s2} > 0 \) is a linear feedback gain.

In (17), \(\alpha_{i2u} \) is a model compensation term, and \(\alpha_{i2s} \) is a robust control law consisting of two terms: \(\alpha_{i2u} \) is the proportional feedback part of \(z_{i2} \) and \(\alpha_{i2s2} \) is used as the robust feedback part to inhibit the affection of model uncertainties.

Define \(z_{i3} = x_{i3} - \alpha_{i3} \) to be the input discrepancy and substitute (17) into (16), we obtain

\[m_i \dot{z}_{i2} = z_{i3} - k_{i2}z_{i2} + \alpha_{i2s2} - m_i \hat{x}_{i3} \]

(18)

Design \(\alpha_{i2s2} \) to suffice the following conditions [10]

\[-k_{i2s2}z_{i2} \leq e_{i2} ; \quad z_{i2} \alpha_{i2s2} \leq 0 \]

(19)

where \(e_{i2} > 0 \) is a design parameter. One example of \(\alpha_{i2s2} \) satisfying (19) is given by

\[\alpha_{i2s2} = -k_{i2s2}z_{i2} \hat{=} \frac{h_{i2}^2 z_{i2}}{(4e_{i2})} \]

(20)

where \(k_{i2s2} > 0 \) can be thought as a nonlinear feedback gain and \(h_{i2} \) can be any smooth function satisfying \(h_{i2} \geq D_{i3} \).

Step 2: Differentiating \(z_{i3} \) and noting the last equation of (8) yields

\[\dot{z}_{i3} = \dot{x}_{i3} - \dot{\alpha}_{i3} = f_{i3}u_i + f_{i3}d_{i3} - \alpha_{i2e} - \alpha_{i2u} \]

(21)

where

\[\dot{\alpha}_{i2e} = \frac{\partial \alpha_{i2e}}{\partial t} + \frac{\partial \alpha_{i2e}}{\partial x_2} \dot{x}_2 + \frac{\partial \alpha_{i2e}}{\partial x_{i1}} \dot{x}_{i1} \]

\[\dot{\alpha}_{i2u} = \frac{\partial \alpha_{i2u}}{\partial x_2} \hat{x}_2 + \frac{\partial \alpha_{i2u}}{\partial x_{i1}} \hat{x}_{i1} \]

\[\hat{x}_2 = \dot{x}_2 - \hat{x}_2 \]

\[\hat{x}_{i1} = m_i / \hat{x}_{i3} \]

in which \(\dot{\alpha}_{i2e} \) represents the calculable part of \(\alpha_{i2e} \), \(\dot{\alpha}_{i2u} \) is the incalculable part of \(\alpha_{i2u} \), \(\hat{x}_2 \) is the estimation error of \(\hat{x}_2 \).

Similar to (17), the actual control input of each driving unit can be synthesized as

\[u_i = u_{i3} + u_{i3} \]

(22)

where \(k_{i3u1} \) is a positive feedback gain.

In (22), \(u_{i3} \) is the model compensation term, \(u_{i3} \) is a robust control law consisting of two terms: \(u_{i3} \) is the proportional feedback part of \(z_{i3} \), and \(u_{i32} \) is used to inhibit the affection of model uncertainties.

By applying the resulting control law (22) into (21), we have

\[\dot{z}_{i3} = -k_{i3}z_{i3} + u_{i3} + \hat{x}_{i3} - \dot{\alpha}_{i2u} \]

(23)

\[u_{i3} \]

is designed to satisfy the following conditions

\[z_{i3} (u_{i3} + \hat{x}_{i3} + \frac{\partial \alpha_{i2e}}{\partial x_2} \hat{x}_{i1}) \leq e_{i3} ; \quad z_{i3} u_{i3} \leq 0 \]

(24)

where \(e_{i3} > 0 \) is a design parameter that may be arbitrarily small. One example of \(u_{i3} \) satisfying (24) is given by
\[u_{i2} = -k_{i32}z_{i3} \triangleq -h_{i3}^2z_{i3} / (4\varepsilon_{i3}) \] (25)

where \(k_{i32} > 0 \) can be thought as a nonlinear feedback gain and \(h_{i3} \) can be any smooth function satisfying \(h_{i3} \geq \left| \frac{\partial \alpha_{i2}}{\partial x_{i2}} \right| + D_{i2} \).

3.3. Main results

Theorem 1: The proposed control law (22) guarantees that all closed loop system signals are bounded, and the positive define Lyapunov function

\[V_i = \frac{1}{2} \left(z_{i1}^2 + m_i z_{i1}^2 + z_{i2}^2 \right) \] (26)

is bounded by

\[V'_i \leq e^{-\lambda_i}V_i(0) + \frac{\xi_i}{\lambda_i} \left[1 - e^{-\lambda_i} \right] \] (27)

where \(\lambda_i = 2 \min \left\{ k_{i1} - \frac{1}{2}, k_{i2} - 1, k_{i3} \right\} \).

Proof: Differentiating (26) and substituting (18), (23) into it, we can obtain

\[\dot{V}_i = z_{i1} \left(z_{i2} - k_{i1}z_{i1} \right) + z_{i2} \left(z_{i3} - k_{i2}z_{i2} + \alpha_{i2} + \tilde{\chi}_{i1} \right) + z_{i3} \left(-k_{i3}z_{i3} + u_{i62} + \tilde{\chi}_{i2} - \dot{\alpha}_{i20} \right) \] (28)

Integrating (19), (24) and noting the definition of \(\lambda_i \), we can obtain

\[\dot{V}_i \leq -k_{i1}z_{i1}^2 + |z_{i1}||z_{i2}| + |z_{i2}|z_{i3} - k_{i2}z_{i2}^2 + \varepsilon_{i2} - k_{i3}z_{i3}^2 + \varepsilon_{i3} \leq -\lambda_i V'_i + \xi_i \] (29)

where \(\xi_i = \varepsilon_{i2} + \varepsilon_{i3} \).

The solution of (29) is

\[V'_i \leq e^{-\lambda_i}V_i(0) + \frac{\xi_i}{\lambda_i} \left[1 - e^{-\lambda_i} \right] \] (30)

Integrating (30) and noting (26), it is clear that as the Lyapunov function \(V_i \) above is globally bounded, then \(z_{i1} \), \(z_{i2} \) and \(z_{i3} \) are all bounded. According to Lemma1, the estimated state \(\hat{x}_{ij} \) is bounded. From Assumption 1, it can be inferred that the state \(x_{ij} \) is bounded. Combining Assumption 2 and noting (22), we obtain that the control input \(u_i \) is bounded. Hence, the Theorem 1 is proved.

4. Simulation results

4.1. Simulation parameters

In the simulation, the hydraulic system parameters are: \(m_i = 25 \text{ kg} \), \(B_i = 45 \text{ N} \cdot \text{m} / \text{s} \), \(V_{i01} = 1.2 \times 10^{-4} \text{ m}^3 \), \(V_{i02} = 2.96 \times 10^{-4} \text{ m}^3 \), \(P_1 = 12 \text{ MPa} \), \(P_2 = 0 \text{ MPa} \), \(\beta_1 = 2 \times 10^8 \text{ Pa} \), \(A_1 = 1.26 \times 10^{-3} \text{ m}^2 \), \(A_2 = 6.4 \times 10^{-4} \text{ m}^2 \), \(C_i = 9 \times 10^{-12} \text{ m}^5 / (\text{N} \cdot \text{s}) \), \(k_i = 4 \times 10^{-8} \text{ m}^4 / (\text{s} \cdot \text{V} \cdot \sqrt{\text{N}}) \).

Meanwhile, in order to verify the observation performance of ESOs and tracking performance of
proposed controller, a joint simulation scheme based on Matlab and Adams is adopted. Adams calculates and provides the load force for each hydraulic cylinder in simulation.

4.2. Simulation analysis

The following three controllers are compared.

1) DRCESO: This is the decentralized robust controller with ESO. The controller parameters are chosen as \(k_1 = 800 \), \(k_2 = k_{2a1} + k_{2a2} = 500 \), \(k_3 = k_{3a1} + k_{3a2} = 300 \). The observer gains are given by \(\omega_{\alpha 1} = 800 \), \(\omega_{\alpha 2} = 500 \).

2) DRC: This is the decentralized robust controller, which is obtained by using the same control law as in DRCESO but without disturbance estimation, i.e., \(\omega_{\alpha 1} = \omega_{\alpha 2} = 0 \).

3) VFPID: This is the velocity feed-forward PID controller. The controller gains tuned via error-and-try method are chosen as \(k_p = 180 \), \(k_i = 25 \), \(k_d = 2 \), \(k_v = 10 \).

The desired trajectory in Cartesian space is given by \(x_d = 0.05\sin\left(2\pi t\left(1 - \exp\left(-0.1t^3\right)\right)\right) \), \(y_d = 0 \), \(z_d = 0.05 - 0.05\cos\left(2\pi t\left(1 - \exp\left(-0.1t^3\right)\right)\right) \).

In order to test the tracking performance of the controller mentioned above, at 8 seconds, a sinusoidal external disturbance \(D_x = 300\sin(2\pi t) \) N is applied in x-axis, meanwhile, the matched uncertainty \(P_{\text{match}} = 63 \) \(\sin(\pi t) \) m/s is added into the actuator 1 at 5 seconds.

Comparative simulation results are shown in Figure 3-6. As seen, the proposed DRCESO controller has better tracking performance than the other two controllers in terms of both transient and final tracking error. When the manipulator is subjected to a sinusoidal disturbance in x-axis (8-20s), the tracking error in x-axis which the DRCESO controller is used is amplified slightly. Since the DRC controller doesn’t have the ability to estimate and compensate the disturbances, comparing with DRCESO, the tracking errors of DRC controller are larger. In addition, it can be seen that, although VFPID controller has some robustness against uncertainties, it has significantly poorer tracking performance than the other two model-based controllers.
In Figure 7-9, the external disturbance (unmatched uncertainty) estimation and its error of each driving unit is shown respectively, which presents pretty good observation performance of ESOs. As seen, most of the time, the estimation errors are nearly close to zero which can be almost neglected. Figure 10 shows the estimation error of matched uncertainty of actuator 1. Obviously, the ESOs can estimate the matched uncertainty with high accuracy.
5. Conclusions
In this paper, a decentralized robust control strategy for trajectory tracking has been proposed for a hydraulic driven parallel manipulator. A third-order filter is used to generate the desired trajectory of each driving unit in joint-space. In each local joint, treating the large time-varying coupling terms as the external disturbances, the controller uses two linear ESOs to estimate and compensate both matched and unmatched uncertainties without high feedback gains. The convergence and stability of the control scheme are analyzed via a Lyapunov method. Extensive comparative simulation results show that the higher tracking accuracy and stronger robustness are obtained due to the introduction of the ESOs into the robust controller, which reveal the effectiveness of the proposed controller.

Acknowledgments
This work is supported in part by National Natural Science Foundation (NNSF) of China under Grant 51675279.

References
[1] Yang Z, Fukushima Y and Qin P, “Decentralized adaptive robust control of robot manipulators using disturbance observers”, IEEE Trans. Control Syst. Technol., 20, pp. 1357-1365, 2012.
[2] Pi Y and Wang X, “Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances”, Control Eng. Pract., 20, pp. 648-655, 2010.
[3] Mohanty A and Yao B, “Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates”, IEEE Trans. Control Syst. Technol., 19, pp. 567-575, 2011.
[4] Mohanty A and Yao B, “Integrated direct/indirect adaptive robust control of hydraulic manipulators with valve deadband”, IEEE/ASME Trans. Mechatron., 16, pp. 707-715, 2011.
[5] Wang J and Wend H, “Robust decentralized control of robot manipulators”, Int. J. Syst. Sci., 30, pp. 323-330, 1999.
[6] Laghrouches, Plestan F and Glumineau A, “Higher order sliding mode control based on integral sliding mode”, Automatica, 43, pp. 531-537, 2007.
[7] Chen M, Wu Q and Cui R, “Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems”, ISA Trans., 52, pp. 198-206, 2013.
[8] Yao J, Jiao Z, Ma D and Yan L, “High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties”, IEEE/ASME Trans. Mechatron., 19, pp. 633-641, 2014.
[9] Yang G, Yao J, Le G and Ma D, “Adaptive integral robust control of hydraulic systems with asymptotic tracking”, Mechatron., 40, pp 78-86, 2016.
[10] Yao J, Jiao Z and Yao B, “Nonlinear adaptive robust backstepping force control of hydraulic load simulator”, Journal of Mechanical Science and Technology, 28, pp. 1499-1507, 2014.
[11] Jain S, Machii N and Hori T, “Control of redundant manipulators considering order of disturbance observer”, IEEE Trans. Ind. Electron., 47, pp. 413-420, 2000.
[12] She J, Fang M, Ohyama Y, Hashimoto H and Wu M, “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach”, IEEE Trans. Ind. Electron., 55, pp. 380-389, 2008.
[13] Han J, “From PID to active disturbance rejection control”, IEEE Trans. Ind. Electron., 55, pp. 900-906, 2009.
[14] Gao Z, Huang Y, Han J, “An alternative paradigm for control system design”, in Proc. IEEE Conf. Decision and Control, 2001, pp. 4578–4585.
[15] Yao J, Jiao Z and Ma D, “Adaptive robust control of DC motors with extended state observer”, IEEE Trans. Ind. Electron., 61, pp. 3630-3637, 2014.
[16] Liu H and Li S, “Speed control for PMSM servo system using predictive functional control and extended state observer”, IEEE Trans. Ind. Electron., 59, pp. 1171-1183, 2012.
[17] Yang Z, Huang T and Ni Y, “Dynamic modeling and trail tracking robust control of 3-HSS parallel kinematic machine”, *Chinese Journal of Mechanical Engineering*, 40, pp. 75-81, 2004.

[18] Zhu X, Tao G, Yao B and Cao J, “Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles”, *Automatica*, 44, pp. 2248-2257, 2008.

[19] Xu L and Yao B, “Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments”, *IEEE/ASME Trans. Mechatron*, 6, pp. 444-452, 2001.

[20] Gao Z, “Scaling and bandwidth-parameterization based control tuning”, in *Proc. American Control Conf.*, 2003, pp. 4989–4996.

[21] Zheng Q, Chen Z and Gao Z, “A practical approach to disturbance decoupling control”, *Control Eng. Pract.*, 17, pp. 1432-1438, 2009.