Recomputation Enabled Efficient Checkpointing

Ismail Akturk
University of Missouri, Columbia
akturki@missouri.edu

Ulya R. Karpuzcu
University of Minnesota, Twin Cities
ukarpuzcu@umn.edu

ABSTRACT
Systematic checkpointing of the machine state makes restart of execution from a safe state possible upon detection of an error. The time and energy overhead of checkpointing, however, grows with the frequency of checkpointing. Amortizing this overhead becomes especially challenging, considering the growth of expected error rates, as checkpointing frequency tends to increase with increasing error rates. Based on the observation that due to imbalanced technology scaling, recomputing a data value can be more energy efficient than retrieving (i.e., loading) a stored copy, this paper explores how recomputation of data values (which otherwise would be read from a checkpoint from memory or secondary storage) can reduce the machine state to be checkpointed, and thereby reduce the checkpointing overhead. Specifically, the resulting amnesic checkpointing framework AmnesiCHK can reduce the storage overhead by up to 23.91%; time overhead, by 11.92%; and energy overhead, by 12.53%, respectively, even in a relatively small scale system.

1. INTRODUCTION
Scalable checkpointing is the key to enable emerging high-performance computing applications. Ready to expand their problem sizes as more hardware resources (e.g., more cores under weak scaling) become available, these applications challenge processing capabilities. More hardware resources translate into more components subject to errors, which, along with a higher expected component error rate as an artifact of technology scaling, results in a higher probability of (system-wide) errors. Therefore, proper error detection and recovery becomes a must for successful completion of any execution.

Systematic (often, periodic) checkpointing of the machine state enables backward error recovery (BER) upon detection of an error, by rolling back to and restarting execution from a safe (i.e., error-free and consistent) machine state. Energy and time overhead of checkpointing the machine state, however, grow with the frequency of checkpointing. The expected increase in error rates makes amortization of this overhead especially challenging, as a higher probability of error directly implies more frequent checkpointing.

The overhead of BER spans the overhead of checkpointing and the overhead of recovery (which entails roll-back + restart). The time or energy overhead of checkpointing, \(o_{chk} \), applies every time the system generates a checkpoint; the time and energy overhead of recovery, \(o_{rec} \), every time the execution restarts from the most recent checkpointed (safe) state after detection of an error. Depending on the interaction among parallel tasks of execution during checkpointing and recovery, BER schemes typically form two major classes: coordinated and uncoordinated [1, 2]. Coordinated schemes enforce tight lock-step coordination (i.e., synchronization) among all parallel tasks every time the system generates a checkpoint or triggers recovery, and hence, generally incur a higher overhead. Uncoordinated schemes address this overhead by omitting coordination or confining it only to tasks interacting with each other during computation, which as a downside complicates the establishment of a consistent error-free global state.

The checkpointing overhead, \(o_{chk} \) is proportional to the time or energy spent on storing the checkpointed state (to memory or secondary storage), \(\#_{wr,chk} \), and the number of checkpoints, \(\#_{chk} \) (which represents a proxy for the checkpointing frequency). Putting it all together,

\[o_{chk} = \#_{chk} \times o_{wr,chk} \] (1)

applies. The recovery overhead, \(o_{rec} \), on the other hand, includes the time or energy (spent on useful work and) lost since the most recent safe checkpoint, \(o_{waste} \), and the time or energy spent on restoring the state captured by the most recent safe checkpoint, \(o_{roll-back} \). Under an error probability of \(perr \), which dictates the number of recoveries, the recovery overhead becomes:

\[o_{rec} = perr \times (o_{waste} + o_{roll-back}) \] (2)

Imbalances in technology scaling render the energy consumption (and latency) of data storage and communication significantly higher than the energy consumption (and latency) of actual data generation, i.e., computation [3, 4]. As a result, whenever a data value is needed (i.e., has to be loaded from memory), re-generating (i.e., recomputing) the respective value can easily become more energy-efficient than retrieving the stored copy from memory [5]. During recovery, recomputation of a data value, which otherwise would be read from a checkpoint, can therefore be less energy hungry and time consuming than retrieving the respective checkpoint from main memory or secondary storage. This can further eliminate the need for checkpointing such recomputable data values, which would never be retrieved from memory or secondary storage, but recomputed. The result is an amnesic BER framework, AmnesiCHK, which can opportunistically omit checkpointing of (recomputable) data values,
and thereby can reduce the machine state to be checkpointed, by relying on the ability to recompute the respective data values when needed during recovery.

Under recomputation, time or energy spent on storing the checkpointed state, \(o_{chk} \), can decrease since a (recomputable) subset of the updated memory values would be omitted from checkpointing. This in turn can decrease \(o_{chk} \), even if \(#_{chk} \) remains the same. However, the recovery overhead \(o_{rec} \), now has to incorporate the overhead of recomputation (of the values which were omitted from checkpointing), \(o_{rcmp} \). Still, we expect the time or energy spent on restoring the state of the most recent safe checkpoint, \(o_{roll-back} \) to decrease, since the size of checkpoints would simply reduce under recomputation. Putting it all together, the recovery overhead under recomputation becomes:

\[
o_{rec,rcmp} = perr \times (o_{waste,rcmp} + o_{roll-back,rcmp} + o_{rcmp})
\]

Therefore, for AmnesiCHK to hold recovery overhead at bay, \(o_{rec,rcmp} \leq o_{rec} \) should be the case, which implies:

\[
o_{roll-back,rcmp} + o_{rcmp} \preceq o_{roll-back}
\]

Recomputation in this case is fundamentally different than classic replay: recomputation refers to the recalculation of a data value to cut any energy-hungry memory access associated with the respective value. This can be regarded as restricted replay of a small backward slice of instructions just to generate that respective data value.

In this paper, we explore how AmnesiCHK can help reduce the overhead of checkpointing without compromising the overhead of recovery in terms of time, energy, and storage. AmnesiCHK is:

- **hybrid (hardware/software)**: AmnesiCHK relies on a compiler pass to generate (and embed into the binary) instructions required to recompute the respective data values, which can be excluded from checkpointing. Under recovery, AmnesiCHK’s runtime scheduler in turn triggers recomputation of these values.
- **transparent**: Both, amnesic binary generation and triggering recomputation upon recovery are transparent to the application developer and user.
- **low overhead**: AmnesiCHK trades the data storage and retrieval overhead of checkpointing for the overhead of recomputing the respective data values. AmnesiCHK can significantly reduce the overhead of checkpointing, while holding recomputation-incurred overheads (particularly during recovery) at bay.
- **scalable**: Traditional checkpointing and recovery becomes more challenging at larger scale. AmnesiCHK can effectively reduce the checkpoint size, hence, is by construction more scalable.

In the following, we will detail a proof-of-concept AmnesiCHK implementation. Specifically, Section 2 provides the background; Section 3 discusses AmnesiCHK basics; Sections 4 and 5 provide the evaluation; Section 6 covers the related work; and Section 7 concludes the paper.

2. BACKGROUND

2.1 Backward Error Recovery (BER)

Checkpointing: Checkpointing serves establishment of a safe (i.e., error-free and consistent) machine state to roll-back to and recover from upon detection of an error, thereby ensuring forward progress in execution in the presence of errors. Without loss of generality, we consider shared memory many-cores featuring directory-based cache coherence. We start our analysis with global coordinated checkpointing and recovery [6, 7, 8, 9], but provide a sensitivity study for local coordinated schemes [10, 11], as well. Under global checkpointing, all cores periodically cooperate to checkpoint the respective machine state. Specifically, at the beginning of each checkpointing period, all cores stop computation to participate in checkpoint generation.

As a running example (and a relatively lower-overhead baseline for comparison, not to favor AmnesiCHK), we will use a log-based incremental in-memory checkpointing variant similar to [12, 8, 9], where upon each memory update, a record for the old value goes into a log stored in memory. This log corresponds to the checkpoint. The log constitutes a record of values updated only within the time window between two consecutive checkpointing events, as opposed to the entire machine state. Establishing a checkpoint involves writing all dirty cache lines back to memory and recording (the rest of) each core’s architectural state. For dirty lines, the memory controller only updates the log with the corresponding old value, if the update represents the very first modification since the last checkpoint. Thus, similar to [8], a modified cache line gets logged only once between a pair of consecutive checkpoints. The directory controller keeps an additional bit per memory line to keep track of whether the line has already been logged for the current checkpoint interval. The controller sets this bit upon logging the line, and clears it upon establishing a new checkpoint. In the following, we will refer to this bit as \(\log_{\text{chk}} \).

In-memory checkpointing, by construction, incurs a lower time and energy overhead when compared to (more traditional) checkpointing to secondary storage. In-memory checkpointing may correspond to a stand-alone checkpointing scheme or represent the first level in a hierarchical checkpointing framework. Our observations generally apply under both options.

![Figure 1: Recovery from an error.](image)

Error Detection and Recovery:

In the following, we assume a fail-stop error model, where data memory and checkpoint logs do not suffer from any errors, similar to [12]. Various protection mechanisms such as ECC [13] or memory raiding [14] can achieve this. To
detect errors, the system can rely on modular redundancy [15] or error detection codes (e.g., CRC). Error detection is not instantaneous, therefore, a lag between the occurrence of an error and its detection generally applies, which is referred to as error detection latency. As a consequence, corrupted state may get checkpointed, even if the error detection latency is no longer than the checkpoint period. Figure 1 illustrates an example, where an error occurs right before Ckpt2 gets taken, and is detected only after Ckpt2 is established, thereby corrupting the respective checkpointed state. In this particular case, the time elapsed between establishment of Ckpt2 and the detection of the error is less than the error detection latency, hence, there is no guarantee for Ckpt2 to be error-free. To recover from the error, the system should roll-back to the second most recent checkpoint at hand, i.e., Ckpt1, instead of the most recent Ckpt2. If the error detection latency is no longer than the checkpoint period, which applies throughout this study, keeping most recent two checkpoints suffices.

2.2 Data Recomputation for Energy Efficiency

Imbalances in technology scaling render the energy consumption (and latency) of data storage and communication significantly higher than the energy consumption (and latency) of actual data generation, i.e., computation [3, 4]. As a result, whenever a data value is needed (i.e., has to be loaded from memory), re-generating (i.e., recomputing) the respective value can easily become more energy-efficient than retrieving the stored copy from memory [5]. The basic idea behind data recomputation is to eliminate memory accesses (be it a read, or a write) by relying on the ability to recalculate the respective data values, when needed. To this end, the system has to record the sequence of instructions which can produce the respective data values. As a representative example, the recently proposed Amnesiac machine [5] details compiler and (micro)architecture support for opportunistic substitution of memory reads with a sequence of arithmetic/logic instructions to recomputed the data values which would otherwise be retrieved from the memory hierarchy. Following Amnesiac’s terminology, we will refer to these sequences of instructions as RSlices, each forming a backward slice of arithmetic/logic instructions. To perform recomputation along an RSlice, its input operands should be available at the expected time of recomputation. Not all RSlice input operands suit themselves to (re)generation by recomputation, particularly, if input operands correspond to read-only values residing in memory (e.g., program inputs), or register values which are overwritten at the time of recomputation. Amnesiac refers to such input operands as non-recomputable inputs, and to make sure that they are available at the anticipated time of recomputation, stores them in designated buffers. To facilitate recomputation, we assume similar hardware-software support as Amnesiac, with Section 3 detailing the fundamental differences.

3. AmnesiCHK BASICS

In this section, we cover the basics and execution semantics of a practical AmnesiCHK implementation under checkpointing, and recovery upon the onset of an error.

Impact on Checkpointing: At the end of each checkpointing interval, AmnesiCHK identifies and omits the recomputable subset of data values (which otherwise would be included in the checkpoint being taken) from checkpointing. Thereby, AmnesiCHK can reduce the checkpoint size, which in turn reduces the \(o_{rcp_{chk}} \) component of the checkpointing overhead per Equation 1, i.e., the time or energy spent on storing the checkpointed state to memory. At the extreme, all values which otherwise would be included in a checkpoint may be recomputable. If this is the case, AmnesiCHK would also be able to eliminate a subset of checkpoints entirely, and thereby reduce the \(n_{chk} \) component of the checkpointing overhead per Equation 1, i.e., the number of checkpoints.

Impact on Recovery: Upon the onset of an error, the amnesic recovery handler triggers the recomputation of any data value which was omitted from the checkpoint being restored. Such recomputation incurs the overhead captured by \(o_{rcmp} \) in Equation 3, but, at the same time, can cut back on the time or energy spent on restoring the checkpointed state from memory (i.e., \(o_{roll_back} \) in Equation 2).

Overview: AmnesiCHK trades the checkpoint storage and retrieval overhead from memory for the overhead of recomputing the respective data values. Accordingly, any practical AmnesiCHK implementation has to address:

- how to identify recomputable data values in a checkpoint interval;
- how to omit recomputable data values from a checkpoint;
- and how to trigger recomputation of the respective data values during recovery.

3.1 Amnesic Checkpointing

We will first cover how to identify recomputable data values which can be omitted from checkpointing.

Compiler Support: AmnesiCHK relies on a compiler pass to identify recomputable data values, which can be omitted from checkpointing. Under incremental in-memory checkpointing (Section 2.1), only a subset of the store instructions would trigger checkpointing (specifically, only the first updates to the same memory address). The compiler pass therefore tracks store instructions, and using data dependency graphs, extracts backward slices, i.e., sequences of arithmetic/logic instructions which produce the respective data values to be stored. Following the terminology from [5], we refer to each such backward slice as an RSlice. Fig. 2 shows an example, where the arrows point to the direction of dataflow, and each node corresponds to an instruction. Instructions i3, i4, i5 are producers of the (input operands of) instruction i2; instructions i1 and i2, of the value v to be stored by the store instruction st(v). Depending on the specifics of the instruction set architecture (ISA), such backward slices can take different forms.

In selecting which RSlices to embed into the binary, the compiler has choice. One option is, using probabilistic analysis, estimating the anticipated cost of recomputation along each RSlice when compared to reading, i.e., loading the respective data value from a checkpoint in memory, and including the RSlice only if more cost-effective (where cost can be delay, energy or a combination of both, without loss of generality). In this study, we instead take a more greedy approach of minimal complexity, and consider all RSlices.
which have a lower number instructions than a preset threshold (which typically remains less than 10, and in Section 5 we quantify the impact). The insight is that the overhead of recomputation along an RSlice increases with its number of instructions. Therefore, capping the instruction count can effectively hold recomputation overhead under control (as we will further demonstrate in Section 5.5.1).

The next question is how to embed RSlices into the binary, to facilitate invocation upon recovery. The only critical piece of information is associating the start address of each RSlice (i.e., the address of the first instruction in the backward slice) with the memory address of the respective data value (which will be regenerated by recomputation along the RSlice). Such memory addresses correspond to the destination memory addresses of the stores, and the compiler uses each such store as a proxy in identifying target values for recomputation. One way to communicate this information to the runtime is introducing a special instruction to associate these two effective addresses (and enforcing atomic execution of it with the corresponding store). We will refer to this instruction as ASSOC-ADDR.

While the compiler analysis to bake recomputing instructions into the binary looks similar to the compiler pass in [5], there is a fundamental difference: The goal in [5] is swapping each energy-hungry load with an RSlice to recompute the respective data value (which otherwise would be loaded from the memory hierarchy). In this case, the swapped load instructions are never performed. In exploiting recomputation for checkpointing, on the other hand, AmnesiaCHK leaves load instructions intact, and only tracks store instructions to identify data values which can be omitted from checkpointing. In this case, the corresponding store instructions are always performed; what is omitted is the inclusion of the respective (recomputable) data value into the corresponding checkpoint.

Amnesic Checkpoint Handler: Each time an ASSOC-ADDR instruction is encountered, amnesic checkpoint handler records the corresponding <memory address, RSlice address> association into a dedicated buffer called Address Map, AddrMap. Next, the handler asks the memory controller to exclude the corresponding (recomputable) value from the next checkpoint (which is achieved by setting the dedicated 1og bit, as explained in Section 2.1). Eventually, the size of the next checkpoint reduces as more (recomputable) values are excluded from checkpointing via ASSOC-ADDR instructions. Such <memory address, RSlice address> pairs have to remain in AddrMap as long as the established checkpoint for the corresponding interval remains in memory, such that upon detection of an error, recomputation along RSlices can restore the values omitted from checkpointing, in coordination with the established checkpoint for roll-back. As covered in Section 2.1, under the assumption that the error detection latency does not exceed the checkpointing period, retaining two most recent checkpoints suffices. Therefore, ASSOC-ADDR should only record the mappings for the two most recent checkpoints.

3.2 Amnesic Recovery

Upon detection of an error, amnesic recovery handler orchestrates roll-back to the most recent safe global recovery line, by triggering recomputation along RSlices for each value excluded from checkpointing, in coordination with the restoration of the most recent safe checkpoint. There is no need for separate bookkeeping for the values missing from the most recent safe checkpoint, since AddrMap contains all the necessary information to fire recomputation of these values along the respective RSlices. After recomputing the missing values and storing them back to their destination addresses, amnesic recovery handler restores the remaining states in the checkpoint, and resumes execution from this point onward.

In this study, we confine recomputation to memory values only. Therefore, upon recomputation of a missing value from the checkpoint, we have to access memory to store the respective value. Register values are checkpointed, as well, as part of the architectural state, but are not considered for recomputation. This is likely to render the proof-of-concept AmnesiaCHK implementation conservative, as a register value would not incur an expensive memory write upon recomputation. In the end, during recovery, AmnesiaCHK can only cut the overhead of retrieving (i.e., loading) the checkpointed state from memory (due to the omission of recomputable values from the checkpoint), which can be easily masked by the overhead of writing such omitted (memory) values back to memory upon recomputation.

3.3 Microarchitecture Support

To facilitate amnesic checkpointing, the memory controller takes a similar form to [8], and maintains the 1og bit to determine if the old value of a given write-back should be logged (i.e., checkpointed). For each write-back request, the memory controller has to decide (i) whether the request would result in the first update to the respective memory line since the last checkpoint was taken, and (ii) whether the current data value v of the respective memory line (i.e., the value before the write-back takes place) can be recomputed. While the memory controller can manage the 1og bit itself for (i), it should coordinate with amnesic checkpoint handler for (ii). As explained in Section 3.1, upon encountering a recomputable value, the amnesic checkpoint handler sends a request to the memory controller to let it know that the respective value v can be recomputed, and therefore, should be omitted from checkpointing. The memory controller sets the 1og bit accordingly, when it receives such requests from the amnesic checkpoint handler.

The number of (stores corresponding to the) values that can be excluded from checkpointing depends on the size of AddrMap, specifically, on how many RSlices AddrMap can keep track of. Fortunately, we do not need an excessively large AddrMap to this end: Recall that we only need to check-

![Figure 2: Backward recomputation slice (RSlice).](image-url)
point the old values upon the very first write-backs (to unique addresses) when a new checkpoint is established. Therefore, the number of RSlices is not a function of how many times an address is updated, but how many unique memory addresses are updated within a given checkpoint interval. Naturally, the latter is bounded by the period of checkpointing. As the period gets longer, the probability of having a higher number of unique memory addresses updated increases. At the same time, as the period gets longer, the amount of useful work lost upon detection of an error increases. The checkpointing period cannot get too long to reduce this amount of useful work lost. The checkpointing period hence puts an upper bound on how many unique RSlices we should keep track of at runtime. Finally, to prevent corruption of architectural state during recomputation, AmnesiCHK relies on a similar renaming scheme as [5].

3.4 Putting It All Together
AmnesiCHK can reduce the number of values to be logged for checkpointing, and thereby reduce both the performance and energy overhead of checkpointing. AmnesiCHK can also reduce the size of each checkpoint, and thereby the storage overhead, by cutting the number of values to be checkpointed in each interval. A reduction in checkpoint size can easily translate into energy savings, as well as performance gain, due to the lower number of expensive memory read (during recovery) and write operations (during checkpointing), respectively.

Recovery upon detection of an error involves recomputation of missing values from the checkpoint and restoring the rest of the state using the established checkpoint. Recomputation along each RSlice incurs a performance and energy overhead; however, it is not prohibitive since the number of instructions in RSlices are bounded. During recovery, AmnesiCHK introduces the extra overhead of recomputation, but at the same time, it reduces the number of values to be read from the checkpoint in memory for restoration. The benefit of the latter may or may not be comparable to the overhead of recomputation. However, considering the anticipated frequency of checkpointing and recovery, one can argue that recovery is a much less frequent event compared to checkpointing, thus AmnesiCHK’s gain under checkpointing is more likely to outweigh its potential loss under recovery.

4. EVALUATION SETUP
To evaluate the impact of amnesic checkpointing and recovery on execution time and energy, we experimented with eight benchmarks from the NAS [16] suite1. We ran these benchmarks with 8-32 threads on a simulated 8-32 core system. We implemented recomputation, checkpointing, and recovery under AmnesiCHK in SniperSim [17]. We extracted energy estimates from McPAT [18] integrated with SniperSim. Table 1 summarizes the configuration for the simulated architecture.

We implemented AmnesiCHK’s compiler pass to embed RSlices into the binary as a Pin [19] tool. Recall that SniperSim relies on a Pin-based front-end, which facilitated seamless integration. We used a predetermined threshold for

Table 1: Simulated architecture.

Technology node	22nm
Operating frequency	1.09 GHz
4-issue, in-order, 8 outstanding ld/st	
L1-I (LRU)	32KB, 4-way, 3.66ns
L1-D (LRU, WB)	32KB, 8-way, 3.66ns
L2 (LRU, WB)	512KB, 8-way, 24.77ns
Main Memory	120ns, 7.6 GB/s/controller
1 mem. contr. per 4-cores	
Network Bandwidth	128 GB/s

1 With the exception of ep due to simulation complications

RSlice length: RSlices exceeding threshold are excluded from the binary to prohibit excessive recomputation overhead along RSlices. In Section 5.5.1, we will discuss the impact of the threshold value on checkpointing overhead.

We considered the following configurations:

- **NoCkpt**: Error-free execution without any checkpointing or recovery support. This baseline does not incur any checkpointing or recovery overhead.

- **CkptNE**: Periodic coordinated global checkpointing under error-free execution, which incurs no recovery overhead. Only checkpointing overhead becomes visible.

- **CkptE**: Periodic coordinated global checkpointing in the presence of errors, such that recovery overhead becomes visible on top of checkpointing overhead.

- **AmnNE**: AmnesiCHK incorporated into coordinated global checkpointing, under error-free execution, which incurs no recovery overhead. Only checkpointing overhead becomes visible. AmnesiCHK can reduce checkpoint size by omitting data values from checkpointing.

- **AmnE**: AmnesiCHK incorporated into coordinated global checkpointing, in the presence of errors, such that recovery overhead becomes visible on top of checkpointing overhead.

- **NE**: Periodic coordinated global checkpointing, under error-free execution, which incurs no recovery overhead. Only checkpointing overhead becomes visible.

- **Loc**: AmnesiCHK incorporated into coordinated local checkpointing, under error-free execution, which incurs no recovery overhead. Only checkpointing overhead becomes visible.

AmnesiCHK can reduce checkpoint size by omitting data values from checkpointing.

- **AmnNE, Loc**: AmnesiCHK incorporated into coordinated local checkpointing, in the presence of errors, such that recovery overhead becomes visible on top of checkpointing overhead.

- **AmnE, Loc**: AmnesiCHK incorporated into coordinated local checkpointing, in the presence of errors, such that recovery overhead becomes visible on top of checkpointing overhead.

AmnesiCHK can reduce checkpoint size by omitting data values from checkpointing.

We adjust the checkpointing frequency to the expected error rates and the execution times of the applications. Without loss of generality, we distribute the checkpoint intervals
uniformly over the execution time. As a result, applications with longer execution times checkpoint more.

5. EVALUATION

5.1 Checkpointing Overhead
We start the evaluation with a characterization of the checkpointing overhead under AmnesiCHK. For a crisp comparison, we use the configurations from Section 4 under error-free execution, which only incur the overhead of checkpointing. Specifically, we use $N_{0_{chk}}$ as a baseline for comparison, where no checkpointing takes place. Fig. 3 shows the execution time overhead of checkpointing and recovery. The first and third columns in each group show the execution time overhead of checkpointing for the evaluated benchmarks under CkptNE and AmnNE, respectively. As expected, CkptNE and AmnNE perform consistently worse than $N_{0_{chk}}$ due to the checkpointing overhead. However, via recomputation, AmnNE is very effective in reducing the CkptNE’s time overhead due to checkpointing, by up to 28.81% (for is), and 11.92%, on average. The smallest reduction is 2.12% for cg, where CkptNE’s time overhead is already relatively low. This is because cg’s checkpoint size per checkpointing interval is relatively small and the % of time spent in checkpointing accounts for only ≈ 9% of the total execution time.

Fig. 4 shows the corresponding energy overhead of checkpointing and recovery, normalized to $N_{0_{chk}}$. The first and third columns in each group show the energy overhead of checkpointing for the evaluated benchmarks under CkptNE and AmnNE, respectively. The general trend is similar to the time overhead. AmnNE reduces the energy overhead of CkptNE by up to 26.93% (for is), and 12.53%, on average. Among the benchmarks, is is very amenable to recomputation: as the majority of the updated memory values can be recomputed (in case of recovery), AmnNE can exclude these from checkpoints, which leads to a higher reduction in checkpointing overhead w.r.t. CkptNE. The smallest energy reduction is 1.75% (for cg), in line with Fig. 3.

5.2 Recovery Overhead
In Section 5.1, we characterized purely the overhead of checkpointing by assuming error-free execution where periodic checkpointing still takes place. In this section, the goal is quantifying the overhead of recovery, in the presence of errors. Recovery requires the establishment of a globally consistent state among all cores. For Ckpte, this translates into each core rolling back to restore the machine state corresponding to the most recently established checkpoint. This also applies to AmnE, but AmnE needs to recompute the data values omitted from checkpointing, on top. Such data values have the corresponding RSlices baked into the binary. Therefore, although AmnE can reduce the checkpointing overhead, it incurs an extra overhead due to recomputation during recovery. Fig. 3, the second and fourth columns in each group show the execution time overhead of CkptE and AmnE, respectively (w.r.t $N_{0_{chk}}$). Notice that in CkptE and AmnE, we have an error during execution. As expected, we observe higher time overhead under CkptE and AmnE than under CkptNE and AmnNE, respectively. CkptE and AmnE both incur the recovery overhead on top of the checkpointing overhead, as shown in the Fig. 3. Still, AmnE is very effective in reducing the time overhead of CkptE: although AmnE needs to recompute the omitted values (from checkpointing), thus incurs additional recovery overhead, reduction of checkpointing overhead (due to the reduced checkpoint size) and reduction of the restore overhead (again, due to the reduced checkpoint size) outweighs the corresponding overhead of recomputation. As a result, AmnE reduces the time overhead of CkptE by up to 26.68% (for is), and 12.39%, on average. The smallest reduction is 1.9% for cg, in line with our previous observations.

The second and fourth columns of each group in Fig. 4 show the percentage of the energy overhead of CkptE and AmnE (w.r.t $N_{0_{chk}}$). The energy overhead follows the very same trend as the time overhead. AmnE reduces the energy overhead of CkptE by up to 30% (for dc), and 13.47%, on average. The smallest energy reduction is 1.86% (for cg).

Putting it all together, Fig. 5 shows the percentage reduction of energy-delay product (EDP) of AmnNE and AmnE w.r.t. CkptNE and Ckpte respectively, as a proxy for energy efficiency. EDP provides a notion of balance between the time overhead and energy consumption. We observe that AmnNE reduces EDP by up to 47.98% (for is), and 22.47%, on average, when compared to CkptNE. Similarly, AmnE reduces EDP by up to 48.07% (for dc), and 23.41%, on average, when compared to Ckpte. Although is benefits more from AmnNE in terms of performance, dc has a higher energy reduction due to AmnE, which in turn leads to a higher EDP reduction.

Overall, we observe that AmnesiCHK can effectively reduce the overhead of checkpointing, as well as, of recovery. The effectiveness highly depends on the overhead of recomputation along RSlices and on how many values can be omitted from checkpointing. We will revisit the impact of RSlice length on checkpoint size reduction in Section 5.5.1.

5.3 Storage Complexity
The main benefit of AmnesiCHK stems from the reduction of checkpoint size, which has two critical implications: reducing the data size to be (i) moved to (and retrieved from); (ii) stored in the designated memory area for checkpointing. In addition to (i), (ii) can also reduce the energy consumption, e.g., due to less leakage or refresh in case of DRAM. At the same time, a reduction in checkpoint sizes can lead to a reduction in the memory footprint of checkpointing, reducing storage complexity.

The Overall columns in Fig. 6 show % reduction in the overall checkpoint size (i.e. total amount of data to be checkpointed) under AmnNE w.r.t. to CkptNE. Among all benchmarks, is benefits the most from recomputation, where the overall checkpoint size reduces by 75.74% under AmnNE. On the other hand, cg is less responsive, and the checkpoint size reduces by only 6.99%. The average checkpoint size reduction over all benchmarks is 38.31%.

Recall that, per Section 2.1, if the error detection latency is no longer than the checkpoint period, which applies throughout this study, keeping most recent two checkpoints suffices to have ability of recovering the global state (in case of error in execution). Therefore, the size of the largest checkpoint under AmnesiCHK represents a more accurate proxy for the anticipated memory footprint reduction than the total size of all checkpoints (as Overall columns in Fig. 6 capture). The
5.4 Coordinated Local Checkpointing

In our discussion so far we covered coordinated global checkpointing. As explained in Section 2.1, a viable alternative is coordinated local checkpointing [20, 9], which does not force all cores to participate in checkpointing; only cores that have been communicating in a given checkpoint interval check-point and rollback (in case of an error) together. Coordinated
local checkpointing is generally more scalable as the overhead of checkpointing and recovery evolves with the number of communicating cores (as opposed to all cores under coordinated global checkpointing). Identifying communicating cores in a checkpointing interval, however, necessitates a mechanism to track inter-core data dependencies, which usually translates into continuous and dynamic monitoring and recording of inter-core interactions that may challenge scalability. We next investigate recomputation-enabled coordinated local checkpointing. In the following, we use the global coordinated checkpointing correspondent for each configuration as a baseline for normalization.

Fig. 7 shows the normalized execution time under coordinated local checkpointing, specifically, CkptNE.Loc, CkptE.Loc, AmnNE.Loc and AmnE.Loc w.r.t. their global checkpointing counterparts (i.e. CkptNE, CkptE, AmnNE and AmnE, respectively). We observe that coordinated local checkpointing results in a lower time overhead for CkptNE.Loc as indicated by a y-intercept < 1 for the majority of the benchmarks. The lower overhead is due to the lower number of cores checkpointing together. However, this is not the case for bt, cg, and sp, where practically all cores communicate with one another each checkpointing interval. For the rest of the benchmarks the time overhead of CkptNE.Loc reduces by up to \approx 42\% for ft, 17\% for dc, 36\% for is, 32\% for mg, and 10\% for lu w.r.t. CkptNE.

AmnesiCHK incorporated into coordinated local checkpointing remains as effective as in global checkpointing. For all the benchmarks, the checkpointing (time) overhead under AmnNE.Loc remains below (or at most the same as) the overhead under the global checkpointing correspondent AmnNE. The reductions under AmnNE.Loc are not as pronounced as under CkptNE.Loc, mainly because the potential for recomputation does not change considerably under local schemes w.r.t global.

Specifically, bt, cg, lu, and sp do not observe any sizable reduction (\approx 1\%) of the time overhead under AmnNE.Loc w.r.t. the global checkpointing counterpart AmnNE. For the rest of the benchmarks, the time overhead of AmnNE.Loc reduces by up to \approx 8\% for dc, 33\% for ft, 15\% for is, and 26\% for mg w.r.t. the global checkpointing counterpart AmnNE.

We observe similar trends for CkptE.Loc and AmnE.Loc. One difference is that the gap in the time overhead w.r.t. to the global checkpointing counterparts shrinks. We do not observe any sizable reduction in the time overhead of bt, cg, lu and sp under CkptE.Loc. For the rest of the benchmarks the performance overhead of CkptE.Loc reduces by up to \approx 14\% for ft, 6\% for dc, 31\% for is, and 2\% for mg w.r.t. the global checkpointing counterpart CkptE. On the other hand, the time overhead of AmnE.Loc reduces up to \approx 8\% for dc, 10\% for ft, 9\% for is, and 26\% for mg w.r.t. the global checkpointing counterpart AmnE.

The reduction of execution time overhead under coordinated local checkpointing is followed by the EDP reduction. EDP reduces under CkptNE.Loc by up to 35.68\% for dc, 67.15\% for ft, 58.26\% for is, 19.99\% for lu, and 57.92\% for mg w.r.t. the global checkpointing counterpart CkptNE. On the other hand, EDP reduces under AmnNE.Loc by up to 15.85\% for dc, 55.68\% for ft, 26.24\% for is, and 49.75\% for mg w.r.t. AmnNE. Similarly, EDP reduces under CkptE.Loc by up to 18.33\% for dc, 33.24\% for ft, 51.46\% for is, and 11.29\% for mg w.r.t. the global checkpointing counterpart CkptE. On the other hand, EDP reduces under AmnE.Loc by up to 15.80\% for dc, 23.81\% for ft, 17.99\% for is, and 47.32\% for mg w.r.t. AmnE.

Based on this outcome, we can conclude that recomputation-enabled checkpointing and recovery incorporated into coordinated local checkpointing is at least as effective as its global checkpointing counterpart.

5.5 Sensitivity Analysis

5.5.1 Impact of RSlice Length on Checkpoint Size

RSlice length (in terms of instructions) dictates the overhead of recomputation. Longer RSlices incur a higher recomputation overhead. The overhead of recomputation is invisible under error-free execution, as recomputation may be necessary only during recovery upon detection of an error. Throughout the evaluation, we used a threshold of 10 instructions (except for sp, where threshold is 5) to identify the RSlices to be embedded into the binary.

A higher threshold usually translates into being able to include more RSlices into the binary, and therefore, a higher likelihood for any value to find a corresponding RSlice in the

![Figure 7: Normalized execution time of CkptNE.Loc, CkptE.Loc, AmnNE.Loc and AmnE.Loc.](image-url)
Table 2 shows the impact of RSlice length on the overall checkpoint size under AmnNE. As an example, for bt, we observe that the total checkpoint size reduces by up to 89.91% when the threshold for RSlice length is allowed to grow up to 50 instructions, and 36.54% when the threshold for RSlice length remains less than or equal to 10. Threshold is a critical design parameter which dictates the overhead of recomputation (during recovery in case of an error), and the storage complexity of the microarchitectural support for AmnesiCHK (as larger buffers are necessary to keep track of larger RSlices).

At the same time, data values that have the corresponding RSlices baked into the binary (and hence are recomputable) are not necessarily uniformly distributed over the checkpoint intervals. Therefore, for each checkpoint interval, the impact of recomputation may vary (if recomputation is possible at all). Fig. 8 shows this effect for bt, by capturing how % reduction in checkpoint size changes over the execution time, considering different threshold values. We observe that AmnNE reduces checkpoint size more in certain checkpoint intervals when compared to others. Such temporal variation points to more optimization opportunities for AmnesiCHK: for example, instead of checkpointing periodically, adjusting the time to checkpoint to exploit more recomputation opportunities. We leave the exploration of this to future work.

Table 2: Total checkpoint size reduction as a function of RSlice Length.

Benchmark	10	20	30	40	50
bt	36.54	45.14	85.36	88.36	89.91
cg	6.99	67.06	89.71	89.82	89.82
ft	23.27	70.65	88.45	99.53	99.70
ft	23.27	70.65	88.45	99.53	99.70
is²	97.39	97.42	99.54	99.54	99.70
lu	42.69	46.65	64.43	74.69	81.11
mg	11.58	19.65	87.96	90.34	90.22
sp	37.43	47.93	71.83	93.83	96.08

5.5.2 Impact of Error Rate

The expected (system-wide) error rate (perr) dictates the rollback and recovery overhead, as captured by Equations 2 and 3. Our discussion so far characterized the recovery overhead under CkptE and AmnE assuming a single error within the course of execution. In this section we expand this analysis to execution under more frequent onset of errors.

With increasing error rates, the expected number of errors within the course of execution increases, which in turn increases the recovery overhead due to more frequent recoveries within the course of execution. Fig. 9 shows the % execution time overhead of CkptE and AmnE w.r.t. NoCkpt, considering different numbers of (up to 5) errors within the course of execution. We assume that the errors in each case are uniformly distributed over the execution time. Not surprisingly, the execution time overhead increases with increasing number of errors. Some benchmarks experience very high time overhead as the error rate increases. This is mainly because the execution time under NoCkpt is relatively small such that the overhead of rollback and recovery becomes proportionally higher. Among the benchmarks, ft suffers the most as its per recovery overhead is relatively high.

While the execution time overhead patterns are very similar for CkptE and AmnE, the overheads are lower in AmnE since overall recovery overhead (including restoring the checkpointed values and recomputing missing values on top) is considerably low in AmnE. Specifically, the time overhead reduces by up to 26.68% (for is) for a single error, 25.35% (for dc) for two errors, 26.87% (for dc) for three errors, 21.58% (for dc) for four errors, and 19.92% (for is) for five errors, respectively, in AmnE w.r.t. CkptE. On average, execution time overhead reduction ranges from ≈9% up to 12% for different error rates under AmnE.

EDP also increases with increasing error rates. The general trend is similar to the time overhead, but more pronounced. Under AmnE EDP reduces by up to 48.07% (for is) for a single error, 47.77% (for dc) for two errors, 50.04% (for dc) for three errors, 42.99% (for dc) for four errors, and 34.99% (for is) for five errors. On average, EDP reduction ranges from ≈18% up to 24% for different error rates under AmnE.

5.5.3 Impact of Checkpointing Frequency

As captured by Equation 1, the time or energy overhead of checkpointing is a function of the frequency of checkpointing,
as well as the amount of machine state being updated during each checkpointing interval. In Section 5.5.2, we evaluated the impact of the error rate on recovery overhead under a fixed checkpointing frequency. In this section, we evaluate the impact of the checkpointing frequency on checkpointing overhead under a fixed error rate. To do so, we vary the checkpointing frequency for each benchmark to yield 25, 50, 75 and 100 checkpoints within the course of execution. These checkpoints are uniformly distributed over the execution time. Fig. 10 shows the execution time overhead of Ckpt_{NE} and Amn_{NE} (w.r.t. NoCkp), considering different number of checkpoints. Naturally, the time overhead of checkpointing increases with the number of checkpoints. Among all the benchmarks, ft experiences the largest time overhead.

The general trend for Amn_{NE} is very similar to Ckpt_{NE}, however, Amn_{NE} considerably reduces the time overhead of checkpointing. An interesting point in Fig. 10 is the lower overhead of 75-checkpointed runs when compared to 50-checkpointed. Although it seems unintuitive at first, there is a catch: when we change the checkpointing frequency, the start time of each checkpoint interval becomes different (since we uniformly distribute the checkpoints over the execution time). The ability of recomputation to reduce the checkpoint size (and thereby the checkpoint overhead) depends on whether the corresponding RSlice{s} in a given checkpoint interval exist (i.e., were baked into the binary). If the checkpoints fall into the intervals of execution with a small number of recomputable values, AmnesiCHK cannot reduce the checkpointing overhead significantly. Such a corner case is is, where the 50-checkpointed run has very limited RSlice coverage w.r.t. the 75-checkpointed. As the data size that can be recomputed (i.e., excluded from checkpointing) is smaller, the time overhead is higher for the 50-checkpointed run. The time overhead reduces by up to 28.81% (for is) for 25; 25.3% (for dc) for 50; 50.86% (for is) for 75; and 43.52% (for is) for 100 checkpoints in Amn_{NE} w.r.t. Ckpt_{NE}. On average, the time overhead reduction ranges from ≈10% up to 14% for different checkpoint counts in Amn_{NE}.

A similar trend holds for EDP. Amn_{NE} reduces the EDP (w.r.t. Ckpt_{NE}) by up to 47.98% (for is) for 25; 47.74% (for dc) for 50; 74.19% (for is) for 75; and 63.45% (for is) for 100 checkpoints, respectively. On average, EDP reduction ranges from ≈20% up to 26% for different checkpoint counts under Amn_{NE}.

5.5.4 Scalability

The number of threads involved in execution affect the overhead of checkpointing, due to both an increase in the cost of coordination (among threads) and a potential increase in the machine state to be checkpointed. As a consequence, the memory bandwidth requirement tends to increase, as well. We next look into the scalability of AmnesiCHK with increasing thread count. We experiment with 8-, 16-, and 32-threaded executions where each thread is pinned to a separate core.

We observe that the checkpointing overhead always ex-
ceeds 9% for any thread count. On average, the checkpointing overhead is ≈ 45%, 55%, and 60% for 8-, 16-, and 32-threaded executions, respectively, under Ckpt_{NE}. We also observe that Amn_{NE} can reduce the checkpointing overhead by up to 28.81% (for is), 17.78% (for is), and 19.12% (for mg) when running with 8-, 16-, and 32-threads, respectively. Average reduction is ≈ 12% for 8-threaded, and ≈ 11% for 16- and 32-threaded executions.

The corresponding EDP reduction under Amn_{NE} reaches up to 47.98% (for is), 31.81% (for dc), and 33.8% (for mg) when running with 8-, 16-, and 32-threads, respectively. Average EDP reduction under Amn_{NE} becomes ≈ 22%, 21% and 20% for 8-, 16-, and 32-threaded executions. The corresponding reductions under Amn_{E} closely follow the trends Amn_{NE}.

6. RELATED WORK

Checkpointing and recovery solutions are extensively studied over the decades. The proposed solutions can be categorized into software-based or hardware-based checkpointing; and application or system level checkpointing. Software-based proposals use periodic barriers to perform system-level [21], application-level [22], or hybrid checkpoints [23].

Hardware proposals [12, 8, 9] reduce the checkpoint and restart penalties, but can increase hardware complexity. For example, in Rebound [12] when a core is checkpointing, the L2 controller writes dirty lines back to main memory while keeping clean copies in L2, and the memory controller logs the old values of the updated memory addresses. In addition, between checkpoint times, when a dirty cache line is written back to memory, the memory controller has to log the old value, as well. This is done for the first write-back and consecutive writes to the same memory address can be excluded from being logged. SafetyNet [9], on the other hand, explicitly checkpoints the register file, and incrementally checkpoints the memory state by logging the old values.

Compiler-assisted checkpointing [24] improves the performance of automated checkpointing by presenting a compiler analysis for incremental checkpointing, aiming to reduce checkpoint size. In incremental checkpointing, memory updates are monitored and are omitted from checkpointing if a particular memory location has not been modified between two adjacent checkpoints. This mechanism reduces the amount of data to be checkpointed, and is widely used in many checkpointing schemes. We also employ incremental checkpointing in our analysis. In [24], instead of using runtime mechanisms (such as exploiting cache coherency protocol to identify updates memory locations), they rely on compiler analysis to track the memory updates that can be excluded from checkpoints. To facilitate the compiler analysis, the source code should be manually annotated, indicating the starting point of each checkpoint. However, it has limited applicability in practice, since it may not always be feasible to obtain and/or annotate the source code.

A relevant work presented in [25], introduces the notion of idempotent execution that does not need explicit checkpoints to recover from errors. Instead, in case of an error, reexecuting the idempotent region suffices for recovery. Such idempotent regions are constructed by the compiler. As the name suggests, idempotent regions regenerate the same output regardless of how many times they are executed with the given program state. In comparison to AmnesiCHK, idempotent execution has limited flexibility. Generally, idempotent regions are large, and therefore incur high overhead during recovery, while we employ fine-grained data recomputation (along a short separate RSlice for each value), and each RSlice contains only the necessary instructions to generate a single value. Identifying idempotent regions is also a daunting task, and it may not be easy to find fine-grained idempotent regions for a large class of applications. RSlices provide more flexibility on values to be checkpointed and be recomputed in this regard.

A recent work demonstrates the applicability of recomputation to loop-based code [26] to reduce the checkpointing overhead. Similar to our approach, they try to reduce the checkpoint size by logging enough state to enable recomputation in case of error in execution. When error occurs, they determine which parts of the computation were not completed and they eventually recompute them by reexecuting the corresponding loop iterations. Although, it is very similar to our approach in spirit, their approach is more restricted to loop-based code, whereas our approach can target arbitrary data as long as its corresponding RSlice exist.

Similar to [26], the authors of [27] exploit the regularity of workloads, such as matrix-vector multiplication and iterative linear solver to reduce the performance overhead of checkpointing by relying on partial recomputation. Their fundamental observation is that although error occurs in computation, most of the results are still correct for those types of workloads. So, instead of simply rolling back and repeating the entire segment of computation, they employ algorithmic error localization and partial recomputation to efficiently correct the erroneous results.

In [28], authors explore energy concerns for checkpointing and evaluate a wide-range checkpointing policies to understand their respective energy, performance and I/O tradeoffs. They provide detailed insights into the energy overhead, as well as the performance impact, associated with different checkpointing policies.

7. CONCLUSION

In the presence of errors, systematic checkpointing of the machine state makes recovery of execution from a safe state possible. The performance and energy overhead, however, can become overwhelming with increasing frequency of checkpointing and recovery, as dictated by the growth in the frequency of anticipated errors. In this paper, we discuss how recomputation of data values which otherwise would be read from a checkpoint (from main memory or secondary storage) can help reduce these overheads. We observe that recomputation can reduce the memory footprint by up to 23.91%, which is accompanied by a reduction in time, energy and EDP overhead by up to 11.92%, 12.53%, and 23.41%, respectively, even considering a relatively small-scale system. We expect the reduction to become much higher and more visible in larger scale systems, where checkpointing overhead becomes more prominent.

8. REFERENCES
