Clinical prediction scores for venous thromboembolism in patients with a hematological malignancy

Frits I. Mulder,1,2 Nick van Es1

1Department of Vascular Medicine, Academic Medical Center, Amsterdam; 2Department of Internal Medicine, Tergooi hospital, Hilversum, The Netherlands

Introduction

Venous thromboembolism (VTE) is a common complication in patients with hematological malignancy with an overall incidence of approximately 3.5% per 100 person years.1 The risk of VTE varies substantially across different types of hematological malignancy, and also depends on cancer treatment, presence of a central venous catheter, and cancer stage.2 International guidelines recommend routine thromboprophylaxis in patients with multiple myeloma treated with immunomodulatory chemotherapy,3,4 but not in those with other hematological malignancies. Several risk scores have been developed to identify cancer patients at high risk of VTE prior to cancer therapy based on five clinical and laboratory parameters: primary tumor site (e.g. +1 point for lymphoma), platelet count of 350×10^9/L or more (+1 point), hemoglobin concentration of less than 10 g/dL and/or use of erythropoiesis-stimulating agents (+1 point), leukocyte count of more than 11×10^9/L (+1 point), and body mass index of 35 kg/m^2 or more (+1 point).7 The score was derived in a prospective cohort of 2,701 cancer patients, of whom 12% patients had lymphoma. In the internal validation cohort of 1,365 patients, the observed 3-month VTE risk was 6.7% in patients with a high-risk score (≥3 points) compared to 1.5% in patients with a low or intermediate risk score (0-1 points), corresponding to a relative risk (RR) of 4.5 (95% confidence interval [CI], 2.1-9.6; Table 1). Results were not reported separately for lymphoma patients, which limits the generalizability of the findings for this particular group. In addition, the score was not intended to be used in patients with other types of hematological malignancies. In the past 3 years, several studies addressed these issues by evaluating the performance of the Khorana score in patients with various hematological malignancies, as summarized in Table 1. Taken together, these external validation studies show that the relative risk of VTE in patients with a hematological malignancy and a high-risk Khorana score is lower (RR 1.2 to 2.4) than reported in the original derivation study. Whether this is due to differences in case-mix, study design, or follow-up duration, or reflects a lower performance in patients with a hematological malignancy in general remains unknown. Another concern is the low proportion of patients classified as high risk, ranging between 5 and 15%, which, in combination with the modest relative risks, limits the clinical utility of the score in selecting patients for thromboprophylaxis. The reported positive predictive values (7 to 19%) may be high enough to justify thromboprophylaxis, but differences in follow-up duration and types of included cancers make it difficult to translate these findings to clinical practice (Table 1). The score has not been validated in patients with acute leukemia, because these patients often have abnormal blood counts. Whether extending the Khorana score with D-dimer and soluble
P-selectin levels, as proposed by Ay and colleagues, improves risk stratification in lymphoma patients is unknown.8

ThroLy score

The ThroLy score was developed by Antic and colleagues for predicting venous and arterial thrombotic events in ambulatory lymphoma patients.9 The score is composed of seven clinical and laboratory variables and was derived in 1,236 patients with lymphoma or chronic lymphocytic leukemia receiving chemotherapy. In the internal validation cohort of 384 patients, the risk of arterial or venous thromboembolism was 29% in patients with an intermediate or high-risk score (≥2 points) compared to 2.4% in those with a low risk score (0-1 points). The c-statistic of the score was 0.86. However, important information needed to fully appreciate the score’s performance, such as follow-up duration and proportion of patients classified as being at risk, were unfortunately not reported. Both venous and arterial thromboembolic events, including superficial thrombophlebitis, were part of the outcome, which limits the use of the score when deciding about primary VTE prevention. Although the ThroLy score appears promising, it needs to be validated in external patient cohorts before it can be implemented in clinical practice.

IPSET-thrombosis score

The International Prognostic Score for Essential Thrombocythemia (IPSET) score was developed to predict arterial or venous thrombotic events in patients with essential thrombocythemia (ET).10 The score is based on four variables: age 60 years or older (+1 point), cardiovascular risk factors (+1 point), previous thrombosis (+2 points), and JAK2V617F mutation (+2 points). The risk of arterial or venous thrombotic event in the high-risk group (≥3 points) ranged between 13 and 23% in the original derivation, internal validation, and external validation cohorts. Several external validation studies confirmed the discriminatory performance of the IPSET score with reported relative risks of thrombosis between 3.0 and 15 in high risk patients (Table 1). The group that introduced the IPSET-score subsequently proposed a ‘practice-relevant revision’ by stratifying patients into four groups based on age, previous thrombosis, and JAK2V617F mutation.11 Although the score appeared to perform well in an external validation study,12 its ability to improve risk-adapted prophylaxis needs to be confirmed in prospective studies.

Thromboprophylaxis risk assessment tool for multiple myeloma

A VTE risk assessment tool was developed by the International Multiple myeloma Working Group (IMWG) for patients with multiple myeloma receiving immunomodulatory drugs.4 The tool consists of a list of 17 patient-, myeloma-, and treatment-specific risk factors. If no or any one of the risk factors are present in a patient receiving thalidomide or lenalidomide, aspirin once daily is recommended. If two or more risk factors are present, a prophylactic dose of low-molecular-weight heparin or warfarin targeted at an INR of 2 to 3 is recommended. The IMWG risk score is based on expert opinion without any validation studies, and should therefore not be regarded a firm guideline.

Future perspectives

The Khorana score has now been evaluated in several studies of patients with hematological malignancies, but results are not unambiguous. Given the uncertainty, clinicians should be cau-
tious to use the score to select patients for thromboprophylaxis. The lymphoma-specific ThroLy score and ET-specific (revised) IPSET-scores are promising, but need additional external validation before they can be used in clinical practice. Future studies need to focus either on validating existing scores in different settings or on developing new models that more accurately select patients with a high short-term risk of VTE. Ideally, scores should then be used to guide risk-adapted thromboprophylaxis in randomized trials to confirm their performance and clinical benefit.

References

1. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systemic review and meta-analysis. PLoS Med 2012;9:e1001275.
2. Caruso V, Di Castelnuovo A, Meschengieser S, et al. Thrombotic complications in adult patients with lymphoma: A meta-analysis of 29 independent cohorts including 18 018 patients and 1149 events. Blood 2010;115:5322-8.
3. Terpos E, Kleber M, Engelhardt M, et al. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica 2015;100:1254-66.
4. International Myeloma Working Group (IMWG). IMWG Guidelines for the Prevention of Thalidomide- and Lenalidomide-Associated Thrombosis in Myeloma 2010. Expert-opinion based list of risk factors for venous thromboembolism in patients with multiple myeloma receiving immunomodulatory drugs that is used to guide decisions about primary prevention with aspirin, low-molecular-weight heparin, or vitamin K antagonists.
5. Lyman GH, Bohlke K, Khorana AA, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American society of clinical oncology clinical practice guideline update 2014. J Clin Oncol 2015;33:654-56.
6. Streiff MB, Holmstrom B, Ashrani A, et al. Cancer-associated venous thromboembolic disease, version 1.2015: Updated features to the NCCN Guidelines. JNCCN J Natl Compr Cancer Netw 2015;13:1079-95.
7. Khorana AA, Kuderer NM, Culakova E, et al Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008;111:4902-7.
8. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood 2010;116:5377-82.
9. Antic D, Milic N, Nikolovski S, et al. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients. Am J Hematol 2016;91:1014-1019. Derivation and internal validation of a novel risk score (ThroLy) for arterial and venous thromboembolism in patients with lymphoma, which requires external validation before it should be used in clinical practice.
10. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocytemia (IPSET-thrombosis). Blood 2012;120:5128-33.
11. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocytemia. Blood Cancer J 2015;5:2-4. A revision of the IPSET-score that aims to further improve risk stratification and simplify clinical decision making about aspirin in patients with essential thrombocytemia.
12. Haider M, Gangar N, Lasho T, et al. Validation of the revised international prognostic score of thrombosis for essential thrombocytemia (IPSET-thrombosis) in 585 Mayo clinic patients. Am J Hematol 2016;91:390-4.
13. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008;111:4902-7.
14. Lim SH, Woo SY, Kim S, et al. Cross-sectional Study of patients with diffuse large B-cell lymphoma: Assessing the effect of host status, tumor burden and inflammatory activity on venous thromboembolism. Cancer Res Treat 2015;1:10.
15. Antic D, Milic N, Nikolovski S, et al. Comparative analysis of predictive models for thromboembolic events in lymphoma patients. Hematol Oncol 2017;35:416.
16. Rupa-Matyssek J, Gil L, Ka mierczak M, et al. Prediction of venous thromboembolism in newly diagnosed patients treated for lymphoid malignancies: validation of the Khorana Risk Score. Med Oncol 2018;35:1-8.
17. Santi RM, Ceccarelli M, Bernoccol E, et al. Khorana score and histotype predicts incidence of early venous thromboembolism in non-Hodgkin lymphomas. Thromb Haemost 2017;117:1615-21.
18. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization – essential thrombocytemia (IPSET-thrombosis). Blood 2015;120:5128-34.
19. Fu R, Xuan M, Lv C, et al. External validation and clinical evaluation of the International Prognostic Score of Thrombosis for Essential Thrombocytemia (IPSET-thrombosis) in a large cohort of Chinese patients. Eur J Haematol 2014;92:502-9.
20. Sevindik OG, Mersin S, Karşi A, et al. IPSET-thrombosis better identifies thrombosis-free survival: A Turkish cohort. Clin Lymphoma, Myeloma Leuk 2015;15:e101-4.
21. Navarro LM, Trufelli DC, Bonito DR, et al. Application of prognostic score IPSET-thrombosis in patients with essential thrombocytemia of a Brazilian public service. Rev Assoc Med Bras 2016;62:647-51.