UNIFORM QUASI-MULTIPLICATIVITY OF LOCALLY CONSTANT COCYCLES AND APPLICATIONS

REZA MOHAMMADPOUR, KIHO PARK

Abstract. In this paper, we show that a locally constant cocycle A is k-quasi multiplicative under the irreducibility assumption. More precisely, we show that if A^t and A^m are irreducible for every $t \mid d$ and $1 \leq m \leq d - 1$, then A is k-uniformly spannable for some $k \in \mathbb{N}$, which implies that A is k-quasi multiplicative. We apply our results to show that the unique subadditive equilibrium Gibbs state is ψ-mixing and calculate the Hausdorff dimension of cylindrical shrinking target and recurrence sets.

1. Introduction and statement of the results

A matrix cocycle A on a compact metric space X is a continuous map $A : X \to \text{GL}_d(\mathbb{R})$ over a topological dynamical system (X, T). For $n \in \mathbb{N}$ and $x \in X$, we define the product of A along the length n orbit of X as

$$A^n(x) := A(T^n-1(x)) \ldots A(x).$$

The submultiplicativity of the norm $\| \cdot \|$ implies that $\|A\|$ is submultiplicative in the sense that for any $m, n \in \mathbb{N},$

$$0 \leq \|A^{n+m}(x)\| \leq \|A^n(T^m(x))\| \|A^m(x)\|.$$

Such submultiplicative sequence gives rise to a norm potential $\Phi_A := \{\log \|A^n\|\}_{n \in \mathbb{N}}$.

We will focus on locally constant cocycles A, which are matrix cocycles $A : \Sigma \to \text{GL}_d(\mathbb{R})$ over a one sided shift (Σ, σ) that depends only on the zero-th symbol x_0 of $x = (x_i)_{i \in \mathbb{Z}}$. We say a locally constant cocycle $A = (A_1, \ldots, A_\ell) : \Sigma \to \text{GL}_d(\mathbb{R})$ is irreducible if there does not exist a proper subspace $V \subset \mathbb{R}^d$ preserved under A. We also say that $A = (A_1, \ldots, A_\ell)$ is strongly irreducible if there does not exist a finite collection V_1, \ldots, V_m of non-zero proper subspaces V_j such that $A_i \left(\bigcup_{j=1}^m V_j\right) = \bigcup_{j=1}^m V_j$ for every i.

For any length n word $I = i_1 \ldots i_n$, (see Section 2 for the definition) we denote

$$A_I := A_{i_1} \ldots A_{i_n}.$$

Denoting by L the set of all words, we say a locally constant cocycle $A = (A_1, \ldots, A_\ell)$ is quasi-multiplicative if there exist $k \in \mathbb{N}$ and $c > 0$ such that for any $I, J \in L$, there exists...
$K = K(I, J) \in \mathcal{L}$ with $|K| \leq k$ such that
$$\|A_{IKJ}\| \geq c\|A_I\|\|A_J\|.$$ Notice that quasi-multiplicativity of A resembles Bowen’s specification property [Bow74] in some respects. Feng [Fen03] showed that the quasi-multiplicativity property implies the uniqueness of the Gibbs equilibrium measure for the norm of the cocycle A. Feng [Fen09] also proved that if A is a locally constant $\operatorname{GL}_d(\mathbb{R})$-cocycle over a full shift generated by an irreducible set of matrices, then A is quasi-multiplicative. Unfortunately, the lack of control on the length of the connecting word K from quasi-multiplicativity is a limitation in studying important applications such as Bernoulli property on a class of subadditive equilibrium states and shrinking target and recurrence sets; see Section 4. When the connecting word K in the quasi-multiplicativity property has a fixed length $k \in \mathbb{N}$, we say A is k-quasi-multiplicative; see Definition 2.2.

There are a few results along this line in the literature. In the same setting of locally constant cocycles, Bárány and Troscheit [BT22, Proposition 2.5] and Morris [Mor21, Theorem 7] proved that A is k-quasi-multiplicative when A is (strongly) irreducible and proximal. In this paper, we generalize their results. A distinction in our result from similar results is that we only require versions of irreducibility as our assumptions, while many recent similar results additionally need some form of proximality to obtain k-quasi-multiplicativity property. In fact, our result is inspired by a recent result of Bochi and Garibaldi [BG19, Proposition 3.9] in a more general setting; see Remark 2.6 for further comments on their work.

We say that a locally constant cocycle $A: \Sigma \to \operatorname{GL}_d(\mathbb{R})$ is k-uniformly spannable (See Subsection 2.2 for more information) if there exists $k \in \mathbb{N}$ such that for any nonzero vector $u \in \mathbb{R}^d$,
$$V_{u,k} = \mathbb{R}^d,$$
where $V_{u,k} := \operatorname{Span}\{A_Iu: I \in \mathcal{L} \text{ with } |I| = k\} \subseteq \mathbb{R}^d$.

As spannable cocycles are quasi-multiplicative, the following corollary is immediate of the above theorem.

Corollary 1.2. Let $A: \Sigma \to \operatorname{GL}_d(\mathbb{R})$ be a locally constant cocycle. Suppose A and A^m are irreducible for every $t \mid d$ and $1 \leq m \leq d - 1$. Then A is k-quasi-multiplicative for some $k \in \mathbb{N}$.

Corollary 1.2 has nice applications in subadditive thermodynamic formalism and number theory, which we discuss in more detail in Section 4.
The paper is organized as follows. In Section 2, we introduce relevant notations and prove Corollary 1.2. In Section 3, we prove Theorem 1.1, and in Section 4, we show some applications of Corollary 1.2.

1.1. Acknowledgements. R. Mohammadpour was supported by the Knut and Alice Wallenberg Foundation.

2. Preliminary

2.1. Set up. Let $\ell \in \mathbb{N}$ be given. The one sided shift Σ_ℓ of ℓ symbols is a space $\{1, 2, \ldots, \ell\}^\mathbb{N}$ equipped with a norm d that is, for all $x \neq y$, $d(x, y) = 2^{-N(x, y)}$, where

$$N(x, y) = \min\{n, x_n \neq y_n\}.$$

For each $n \in \mathbb{N}$, we define $L(n)$ be the set of all length n words of Σ_ℓ, and we define $L := \bigcup_{n \in \mathbb{N}} L(n)$ to be the set of all words. If $i = i_1 i_2 \cdots \in L$, then we define $i|_n = i_1 \cdots i_n$ for all $n \in \mathbb{N}$. The empty word $i|_0$ is denoted by \emptyset. The length of $i \in L$ is denoted by $|i|$. The longest common prefix of $i, j \in L \cup \Sigma_\ell$ is denoted by $i \wedge j$. The concatenation of two words $i \in L \cup \Sigma_\ell$ and $j \in L$ is denoted by ij. Let σ be the left shift operator defined by $\sigma i = i_2 i_3 \cdots$ for all $i = i_1 i_2 \cdots \in \Sigma_\ell$. If $i \in L(n)$ for some n, then we set $[i] = \{j \in \Sigma_\ell : j|_n = i\}$. The set $[i]$ is called a cylinder set. A cylinder containing $x = (x_i)_{i \in \mathbb{Z}} \in \Sigma$ of length $n \in \mathbb{N}$ is defined by $[x]_n := \{(y_i)_{i \in \mathbb{Z}} \in \Sigma_\ell : x_i = y_i \text{ for all } 1 \leq i \leq n\}$. Moreover, the cylinder sets are open and closed in this topology and they generate the Borel σ-algebra. The shift space Σ_ℓ is compact in the topology generated by the cylinder sets. We denote by $M(\Sigma_\ell, \sigma)$ the space of all σ-invariant Borel probability measures on Σ_ℓ. We also define $\hat{\Sigma}_\ell := \{1, 2, \ldots, \ell\}^\mathbb{Z}$ equipped with a norm d, $\hat{\sigma} \left((x_k)_{k \in \mathbb{Z}}\right) := (x_{k+1})_{k \in \mathbb{Z}}$ and $M(\hat{\Sigma}_\ell, \hat{\sigma})$ the space of all $\hat{\sigma}$-invariant Borel probability measures on $\hat{\Sigma}_\ell$.

We define the natural projection $\pi : \Sigma_\ell \to \Sigma_\ell$ by $\pi \left((x_k)_{k \in \mathbb{Z}}\right) := (x_k)_{k=1}^\infty$ that is continuous and surjective. Clearly $\hat{\mu} \mapsto \pi_* \hat{\mu}$ defines a continuous function $M(\Sigma_\ell, \hat{\sigma}) \to M(\Sigma_\ell, \sigma)$ and since shift-invariant measures on Σ_ℓ and on $\hat{\Sigma}_\ell$ are both characterized by their values on cylinder sets this map is bijective. Let $\mu \in M(\Sigma_\ell, \sigma)$, we will write $\hat{\mu}$ for the unique element of $M(\hat{\Sigma}_\ell, \hat{\sigma})$ such that $\mu = \pi_* \hat{\mu}$, and we call $\hat{\mu}$ the natural extension of the measure μ. Since properties such as mixing, ergodicity and total ergodicity can be characterized in terms of correlations between cylinder sets it is not difficult to see that each of those properties holds for an invariant measure $\mu \in M(\Sigma_\ell, \sigma)$ if and only if the corresponding property holds for $\hat{\mu} \in M(\hat{\Sigma}_\ell, \hat{\sigma})$.

We say that a measure $\hat{\mu}$ on $\hat{\Sigma}_\ell$ is a Bernoulli measure if it has the form $\hat{\mu} = \left(\sum_{i=1}^\ell p_i \delta_i\right)^\mathbb{Z}$ for some probability vector (p_1, \ldots, p_ℓ) and that $\hat{\mu}$ has the Bernoulli property if there exist a Bernoulli measure \hat{v} on $\hat{\Sigma}_\ell$ and a measure-space isomorphism $\phi : \hat{\Sigma}_\ell \to \hat{\Sigma}_\ell$ such that $\phi \circ \hat{\sigma} = \hat{\sigma} \circ \phi$ and $\phi_* \hat{\mu} = \hat{v}$; see Section 4 for details. It is clear that every Bernoulli measure has the Bernoulli property, but the reverse is in general false.
For every integer $n \geq 1$, assume that $B_{1,n}$ is the finite σ-algebra on $\hat{\Sigma}_\ell$ generated by the set
$$\left\{ [I] \subset \hat{\Sigma}_\ell : |I| = n \right\}.$$

For every pair of integers $n, m \in \mathbb{Z}$ such that $n \leq m$, we define $B_{n,m} := \hat{\sigma}^{m-1}B_{1,m+1-n}$. Thus $B_{n,m}$ is precisely the σ-algebra generated by cylinders of the form
$$\{(x_k)_{k \in \mathbb{Z}} : x_i = y_i \text{ for all } i = n, \ldots, m\},$$
where the finite sequence $(y_i)_{i=n}^{m}$ varies over $\{1, \ldots, \ell\}^{m-n+1}$. For every $n \in \mathbb{Z}$, we also define
$$B_{-\infty,n} := \bigvee_{m=-\infty}^{n} B_{m,n}, \quad B_{n,\infty} := \bigvee_{m=n}^{\infty} B_{m,n}.$$

2.2. Quasi-multiplicativity and Spannability. Let Σ_ℓ be a one-sided shift and σ be the left shift operator. Given a finite set of matrices $A = \{A_1, \ldots, A_\ell\} \subset GL(d, \mathbb{R})$, we define the function $A = (A_1, \ldots, A_\ell) : \Sigma_\ell \rightarrow GL(d, \mathbb{R})$ by $A(x) = A_{x_0}$. In this case, we say that A is a locally constant cocycle.

Definition 2.1. We say a locally constant cocycle $A : \Sigma_\ell \rightarrow GL_d(\mathbb{R})$ is quasi-multiplicative if there exist $k \in \mathbb{N}$ and $c > 0$ such that for any $I, J \in \mathcal{L}$, there exists $K = K(I, J) \in \mathcal{L}$ with $|K| \leq k$ such that
$$\|A_{IKJ}\| \geq c\|A_I\|\|A_J\|. \tag{2.1}$$

Quasi-multiplicativity is a desirable property for a cocycle have as it has many applications. For instance, Feng [Fen03] showed that quasi-multiplicativity implies the uniqueness of the equilibrium state for the norm potential Φ_A defined by A. In his proof, quasi-multiplicativity played a role of Bowen’s specification property [Bow74]. Recently, there has been further study in quasi-multiplicativity (see [KM18, Par20, BT22, Mor21] for instance), and more can be said about the cocycle A when the connecting word $K = K(I, J)$ can be chosen to have a uniform length, as described in the following definition.

Definition 2.2. We say a locally constant cocycle $A : \Sigma_\ell \rightarrow GL_d(\mathbb{R})$ is k-quasi-multiplicative for some $k \in \mathbb{N}$ if there exists $c > 0$ such that for any $I, J \in \mathcal{L}$, there exists $K = K(I, J) \in \mathcal{L}(k)$ such that (2.1) holds.

We will elaborate more on the applications of k-quasi-multiplicativity in Section 4. In the remaining part of this subsection, we describe a notion of spannability, that is closely related to quasi-multiplicativity. In what follows, we will repeatedly make use of the following notation: given a locally constant cocycle A, a vector $u \in \mathbb{R}^d$ and an integer $k \in \mathbb{N}$, we define
$$V_{u,k} := \text{Span}\{A_{Il}u : I \in \mathcal{L}(k)\} \subseteq \mathbb{R}^d. \tag{2.2}$$

Definition 2.3. We say a locally constant cocycle $A : \Sigma_\ell \rightarrow GL_d(\mathbb{R})$ is spannable if for any nonzero vector $u \in \mathbb{R}^d$, there exists $k = k(u) \in \mathbb{N}$ such that $V_{u,k} = \mathbb{R}^d$. If $k = k(u)$ can be chosen uniformly in u, then we say A is k-uniformly spannable.
Remark 2.4. We note that if $V_{u,k}$ is equal to the entire subspace \mathbb{R}^d for some $u \in \mathbb{R}^d$ and $k \in \mathbb{N}$, from continuity so does $V_{v,k}$ for all $v \in \mathbb{R}^d$ in a small neighborhood of u. Moreover, if $V_{u,k}$ is equal to \mathbb{R}^d, then so does $V_{u,k+1}$. In particular, if A is k-uniformly spannable for some k, then it is k'-uniformly spannable for any $k' \geq k$.

Throughout the paper, when we measure the angle between nonzero vectors, we mean the angle between the lines spanned by the vectors. The following statement can be found in [BP21, Proposition 8] which states that spannability implies quasi-multiplicativity.

Proposition 2.5. Suppose a locally constant cocycle $A: \Sigma_\ell \rightarrow GL_d(\mathbb{R})$ is k-uniformly spannable, then A is k-quasi-multiplicativity.

Proof. The proof is similar to [BP21, Proposition 8] for fiber-bunched cocycles. We give a sketch of the proof here for the convenience of the readers.

For any $A \in GL_d(\mathbb{R})$, let $v_{A,1} \in \mathbb{R}^d$ be a unit vector such that $\|Av_{A,1}\| = \|A\|$, and let $v_{A,2}$ be the unit vector in the direction of $Av_{A,1}$.

From k-uniform spannability, we begin by finding $\varepsilon > 0$ such that for given arbitrary $I, J \in \mathcal{L}$, we can find $K \in \mathcal{L}(k)$ such that $\angle(A_Kv_{A,2}, (v_{A,1})^\perp) \geq \varepsilon$. By [Par20, Lemma 4.5], that translates to the existence of $c > 0$ satisfying the k-quasi-multiplicativity (2.1).

Proof of Corollary 1.2. It follows from the combination of Theorem 1.1 and Proposition 2.5.

We end this subsection by commenting on a class of cocycles that generalize the class of locally constant cocycles and by comparing how the notions defined above relates to such cocycles.

Remark 2.6. Beyond locally constant cocycles, there exists a subset of Hölder continuous cocycles that are nearly conformal. We call them fiber-bunched cocycles. The most useful property of fiber-bunched cocycles is the existence of holonomies and often we tend to think them as generalizations of locally constant cocycles; see [BV04, Par20, Moh22].

The properties introduced above, such as quasi-multiplicativity and spannability, can be successfully extended, and sufficient conditions have been found which imply such properties. For instance, above mentioned result of Feng [Fen03] on the uniqueness of the equilibrium state using quasi-multiplicativity remains to hold for fiber-bunched cocycles. Moreover, Park [Par20] showed that typicality, an assumption introduced by Bonatti and Viana [BV04] to replicate the effect of strong irreducibility and non-compactness from the classical work of Furstenberg [Fur63] implies quasi-multiplicativity. The k-uniform spannability introduced above was motivated by the work of Bochi and Garibaldi [BG19] who showed that irreducibility, along with an extra assumption on how close the cocycle is from being conformal, implies uniform spannability. They use the term uniform spannability, when translated to our setting of locally constant cocycles, to roughly mean $\bigcup_{k=1}^n V_{u,k} = \mathbb{R}^d$ for some $n \in \mathbb{N}$. In order to distinguish from their version of uniform spannability, we have decided to use k-spannability to denote the stronger statement that $V_{u,k} = \mathbb{R}^d$.
3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Whenever we write \(V = W \) for two \(m \)-dimensional subspaces of \(\mathbb{R}^d \), we mean they are equal considered as elements of the Grassmannian \(Gr(m, \mathbb{R}^d) \). Moreover, for \(I \in \mathcal{L} \) we define

\[
\mathcal{A}_I V := \text{Span}\{ \mathcal{A}_I v : v \in V \}.
\]

Proof of Theorem 1.1. Suppose on the contrary that there does not exist \(k \in \mathbb{N} \) such that \(\mathcal{A} \) is \(k \)-uniformly spannable, meaning that for every \(k \in \mathbb{N} \) there exists \(u = u_k \in \mathbb{R}^d \) such that \(V_{u,k} \) is a proper subspace of \(\mathbb{R}^d \). Defining an open set

\[
S_k := \{ u \in \mathbb{R}^d : V_{u,k} = \mathbb{R}^d \},
\]

this means that its complement \(T_k := \mathbb{R}^d \setminus S_k \) is a closed non-empty set for every \(k \in \mathbb{N} \). Moreover, it is clear from the definition that \(S_k \subseteq S_{k+1} \), meaning that \(T_k \) satisfies the reverse inclusion \(T_{k+1} \subseteq T_k \). Therefore, the nested intersection \(\bigcap_{k \in \mathbb{N}} \mathbb{P}T_k \) is necessarily non-empty. In particular, we can choose a vector \(u \in \mathbb{R}^d \) which belongs to \(T_k \), meaning that \(V_k := V_{u,k} \) is a proper subspace of \(\mathbb{R}^d \), for every \(k \in \mathbb{N} \).

As \(n \mapsto \dim(V_n) \) is a bounded non-decreasing function, the dimension of \(V_k \) has to stabilize to some \(m \in \mathbb{N} \) strictly smaller than \(d \). By dropping the first few subspaces from the sequence \(\{V_k\}_{k \in \mathbb{N}} \) we may assume that the dimension of \(V_k \) is equal to \(\gamma \) for all \(k \in \mathbb{N} \). Moreover, from the definition (2.2) of \(V_k \), we have

\[
V_{k+n} = \mathcal{A}_I V_k = \mathcal{A}_J V_k
\]

for every \(k, n \in \mathbb{N} \) and \(I, J \in \mathcal{L}(n) \). This is the defining characteristic of the sequence \(\{V_k\}_{k \in \mathbb{N}} \). Now, by choosing a possibly different sequence of subspaces we may assume that the common dimension \(\gamma \) of \(\{V_k\}_{k \in \mathbb{N}} \) is the smallest such number; that is, if \(\{W_k\}_{k \in \mathbb{N}} \) is another sequence of subspaces of common dimension satisfying (3.1), then its dimension is at least \(\gamma \).

Lemma 3.1. For any \(i \neq j \), the subspaces \(V_i \) and \(V_j \) either coincide or intersect trivially.

Proof. Suppose there exists \(i \neq j \) such that \(W := V_i \cap V_j \) is a non-trivial proper subspace of both \(V_i \) and \(V_j \). Then for any \(n \in \mathbb{N} \) and \(I \in \mathcal{L}(n) \) we have

\[
\mathcal{A}_I W = \mathcal{A}_I (V_i \cap V_j) = V_{i+n} \cap V_{j+n},
\]

where the resulting subspace \(V_{i+n} \cap V_{j+n} \) does not depend on \(I \). In particular, this allows us to define a sequence of subspace \(\{W_k\}_{k \in \mathbb{N}} \) satisfying (3.1) where \(W_k := \mathcal{A}_I W \) for any \(I \in \mathcal{L}(k) \), but this is a contradiction to the choice of \(\{V_k\}_{k \in \mathbb{N}} \) being the sequence of subspaces of the smallest dimension satisfying (3.1). \(\square \)

Following the lemma, we will now consider two separate cases, and conclude that both cases will lead to a contradiction, and hence deduce that \(\mathcal{A} \) must be \(k \)-uniformly spannable for some \(k \in \mathbb{N} \).
Case 1: The first case is when $V_i = V_j$ for some distinct $i, j \in \mathbb{N}$. Since every V_k has the same dimension, the sequence $\{V_k\}_{k \in \mathbb{N}}$ must be periodic with some period $t \in \mathbb{N}$; that is, $t \in \mathbb{N}$ is a smallest integer such that $V_1 = V_{i+1}$. Moreover, V_i and V_j have a trivial intersection for distinct $1 \leq i, j \leq t$. Recalling that each V_k has dimension γ, the subspace $W := \text{Span}\{v \in V_i : i = 1, 2, \ldots, n\}$ is a γ-dimensional subspace of \mathbb{R}^d preserved under A. Since A is irreducible from the assumption, this implies that W must be the entire subspace \mathbb{R}^d, and that t divides d. However, this implies that A^t, which preserves a nontrivial subspace V_1 (or any one of V_k), is reducible; a contradiction.

Case 2: The second case is any two subspaces from $\{V_k\}_{k \in \mathbb{N}}$ have a trivial intersection for any distinct $i, j \in \mathbb{N}$. We will show that we also arrive at a contradiction in this case.

We begin by choosing a decomposable vector $w_k = v_{1,k} \wedge \ldots \wedge v_{m,k} \in (\mathbb{R}^d)^\wedge m$ where $\text{Span}\{v_{1,k}, \ldots, v_{m,k}\}$ coincides with V_k. Since $A_i V_k = A_j V_k = V_{k+1}$ from (3.1) for any A_i, A_j in the image of A, decomposable vectors $A_i^m w_k$ and w_{k+1} differ by a multiplicative constant. Moreover, each w_k is an eigenvector of $B_{i,j} := (A_i^m)^{-1} A_j^m$. We now fix any $i \neq j$ such that $B := B_{i,j}$ is not a scalar multiple of the identity transformation. Such choice of i, j is possible because otherwise every A_i would be a scalar multiple of one another, which contradicts the assumption that A^m is irreducible for all $1 \leq m \leq d - 1$. Now let λ_k be the corresponding eigenvalue of w_k.

Considered as a subspace of $(\mathbb{R}^d)^\wedge m$, let $W_k := \text{Span}\{w_1, \ldots, w_k\}$ for each $k \in \mathbb{N}$. We claim that the subspace W_N where $N := \binom{d}{m}$ is equal to the entire $(\mathbb{R}^d)^\wedge m$ because otherwise there would exist some $k < N$ such that $W_k = W_{k+1}$, meaning that w_{k+1} belongs to W_k. However, this would imply that A^m preserves a proper subspace W_k of $(\mathbb{R}^d)^\wedge m$ because we can inductively show that w_l (which is a scalar multiple of $A_i^m w_{l-1}$ for any A_i) belongs to W_k for every $l > k$, and this contradicts the assumption that A^m is irreducible for all $1 \leq m \leq d - 1$.

Therefore, W_N coincides with $(\mathbb{R}^d)^\wedge m$, and $\{w_1, \ldots, w_N\}$ forms a basis of $(\mathbb{R}^d)^\wedge m$. Now choose any $l > N$ so that w_l can be written as

$$w_l = c_1 w_1 + \ldots + c_N w_N$$

with $c_i \neq 0$ for each i. Applying B on both sides and using the fact that each w_k is an eigenvector of B with eigenvalue λ_k, we get $\lambda_l w_l = \sum_{i=1}^N c_i \lambda_i w_i$. Substituting the above equation for w_l into $\lambda_l w_l$ and equating coefficients gives $\lambda_1 = \lambda_1 = \ldots = \lambda_N$, and this means that B must be a scalar multiple of the identity transformation. However, it is a contradiction to the choice of B.

Since both cases lead to a contradiction, this completes the proof. \qed

4. Applications

This section is devoted to showing some applications of our main theorems.
4.1. **Gibbs matrix equilibrium states have the Bernoulli property.** For any matrix cocycle $A : X \to \text{GL}_d(\mathbb{R})$ over a topological dynamical system (X, T), and $s \geq 0$, the potential $\Phi_A^s := \{ s \log \| A^n \| \}_{n \in \mathbb{N}}$ is subadditive. Therefore, the theory of subadditive thermodynamic formalism applies. For instance, the subadditive variational principle (see [CFH08]) states that

$$P(\Phi_A^s) = \sup_{\mu \in \mathcal{M}(X,T)} \left\{ h_\mu(T) + s \lim_{n \to \infty} \frac{1}{n} \int \log \| A^n(x) \| d\mu \right\}.$$

Any invariant measures achieving the supremum are called the **equilibrium states** of Φ_A^s. We note that the subadditive variational principle remains valid if the supremum is taken over all ergodic measures $\mathcal{E}(X, T)$ instead of all invariant measures $\mathcal{M}(X, T)$.

Feng and Käenmäki [FK11] showed that if A is a locally constant $\text{GL}_d(\mathbb{R})$-cocycle over a full shift generated by an irreducible set of matrices, then Φ_A^s has a unique equilibrium state μ_s for all $s \geq 0$. Moreover, μ_s has the subadditive **Gibbs property**: there exists $C_0 > 1$ such that for any $n \in \mathbb{N}$ and $x \in \Sigma_\ell$, we have

$$C_0^{-1} \leq \frac{\mu_s([x]_n)}{e^{-nF(\Phi_A^s)}\| A^n(x) \|^s} \leq C.$$

Note that if μ satisfies a Gibbs inequality with respect to Φ_A^s, then μ is fully supported on Σ_ℓ.

Morris [Mor18, Mor19] showed that total ergodicity of equilibrium states implies mixing and that the failure of mixing can be characterized by certain structures of the cocycle. Recently, he [Mor21] improved his own result by showing that total ergodicity implies Bernoullicity. Piraino [Pir20, Theorem 3.3] showed that for any $s \geq 0$, a unique Gibbs state for A, μ_s, is weak Bernoulli when A is proximal and strongly irreducible. By using Corollary 1.2, we generalize their results, which some parts of our techniques are inspired by their results.

Theorem 4.1. Let $A : \Sigma_\ell \to \text{GL}_d(\mathbb{R})$ be a locally constant cocycle. Suppose that A^t and $A^{\pm m}$ are irreducible for every $t \mid d$ and $1 \leq m \leq d - 1$. Then for any $s > 0$, the unique Gibbs state μ_s for the norm potential Φ_A^s is ψ-mixing:

$$\lim_{n \to \infty} \sup_{I,J \in \mathcal{L}} \left| \frac{\mu_s([I] \cap \sigma^{-n}[-|I||J|])}{\mu_s([I]) \mu_s([J])} - 1 \right| = 0,$$

and its natural extension $\hat{\mu}$ has the Bernoulli property.

In order to prove Theorem 4.1, we need to define weak Bernoulli partition. We recall that a measure space (X, \mathcal{F}, m) is called a Lebesgue space if there is a measure space isomorphism between (X, \mathcal{F}, m) and Lebesgue measure on a bounded interval equipped with the σ-algebra of Lebesgue measurable sets. If (X, \mathcal{F}, m) is a Lebesgue space, $Z \subseteq X$ has nonzero measure, $\mathcal{F}_Z := \{ A \cap Z : A \in \mathcal{F} \}$ and m_Z is the measure on (X, \mathcal{F}_Z) defined by $m_Z(A) := m(Z \cap A)$ then (Z, \mathcal{F}_Z, m_Z) is also a Lebesgue space.
Let T be an invertible measure-preserving transformation of a Lebesgue probability space (X, \mathcal{F}, m). A partition \mathcal{P} of X is any finite set $\mathcal{P} = \{P_1, \ldots, P_n\} \subset \mathcal{F}$ such that, up to measure zero, X is the disjoint union of the sets P_1, \ldots, P_n. Let \mathcal{P} be a partition, for each $k \in \mathbb{Z}$, one can define a new partition $T^k \mathcal{P} := \{T^k P_1, \ldots, T^k P_n\}$ of X. Assume that P_1, \ldots, P_k are partitions, then we denote by $\bigvee_{j=1}^{k} P_j$ the partition $\{A_1 \cap A_2 \cap \cdots \cap A_k : A_j \in P_j\}$. A partition \mathcal{P} of X will be called ε-independent of a partition \mathcal{Q} of X if there exists a subset Q_ε of \mathcal{Q} such that

$$m\left(\bigcup_{Q \in Q_\varepsilon} Q\right) > 1 - \varepsilon \quad \text{and} \quad \max_{P \in \mathcal{P}} \max_{Q \in Q_\varepsilon} \left|\frac{m(P \cap Q)}{m(Q)} - m(P)\right| < \varepsilon.$$

We say that a partition \mathcal{P} is a weak Bernoulli partition if for every $\varepsilon > 0$ there exists an integer $k_\varepsilon \geq 0$ such that for all $n \geq 1$ the partition $\bigvee_{j=k_\varepsilon+1}^{k_\varepsilon+n} T^j \mathcal{P}$ is ε-independent of $\bigvee_{j=1-n}^{0} T^j \mathcal{P}$, or equivalently if $\bigvee_{j=1-n}^{0} T^j \mathcal{P}$ is ε-independent of $\bigvee_{j=-n-k_\varepsilon}^{-k_\varepsilon+1} T^j \mathcal{P}$. The following theorem rephrases a result of N.A. Friedman and D.S. Ornstein [FO70]:

Theorem 4.2. Let $\mathcal{P} = \left(\sum_{i=1}^{\ell} p_i \delta_i\right)^Z$ be a Bernoulli measure on Σ_ℓ for some $\ell \geq 2$ and some nondegenerate probability vector (p_1, \ldots, p_ℓ) and denote by $\mathcal{B}_\mathcal{P}$ the completion of the Borel σ-algebra on Σ_ℓ with respect to \mathcal{P}. Let T is an invertible measure that preserving transformation of a Lebesgue probability space (X, \mathcal{F}, m) that admits a weak Bernoulli partition. Then there exists a measure space isomorphism $\phi : X \rightarrow \hat{\Sigma}_\ell$ such that $\hat{\phi} \circ T = \hat{\sigma} \circ \phi$.

Proof of Theorem 4.1. Denote $\mu := \mu_\varepsilon$. Since μ is the unique Gibbs equilibrium state for $\Phi^s_{A_\varepsilon}$, there exists $C_0 > 0$ such that

$$C_0^{-1} \|A_I\|^s \leq e^{\|IP(\Phi^s_{A_\varepsilon})\mu([I])} \leq C_0 \|A_I\|^s$$

for every $I \in \mathcal{I}$. By Corollary 1.2, there exist an integer $m \in \mathbb{N}$ and constant $C_1 > 0$ such that for all $I, J \in \mathcal{I}$ there exists $K \in \mathcal{L}(m)$ such that

$$\|A_{IKJ}\| \geq C_1 \|A_I\| \|A_J\|.$$

Therefore, by (4.1) and (4.2), for every $I, J \in \mathcal{I}$ we have

$$C_1 \mu([I]) \mu([J]) \leq C_0^2 C_1 e^{-(|I| + |J|)P(\Phi^s_{A_\varepsilon})} \|A_I\|^s \|A_J\|^s$$

so that

$$\mu \left(\left[I\right] \cap \sigma^{-m-|I|}\left[J\right]\right) \geq \kappa \mu([I]) \mu([J]).$$
where \(\kappa := C_0^{-3} C_1 e^{-mP(\Phi_A)} \).

By (4.3), for any \(n \geq m \) we have that

\[
\mu \left([I] \cap \sigma^{-n-|I|}[J] \right) = \sum_{|K'|=n-m} \mu \left([IK'] \cap \sigma^{-m-|K'|-|I|}[J] \right)
\geq \kappa^{-1} \sum_{|K'|=n-m} \mu([IK']) \mu([J])
= \kappa^{-1} \mu([J]) \sum_{|K'|=n-m} \mu([IK'])
= \kappa^{-1} \mu([I]) \mu([J]).
\]

Thus we have by an approximation argument that

\[
\liminf_{n \to \infty} \mu \left(X \cap \sigma^{-n} Y \right) \geq \kappa^{-1} \mu(X) \mu(Y)
\]

for all \(X, Y \) Borel measurable. The above inequality implies that \(\mu \) is totally ergodic. On the other hand,

\[
\mu \left([I] \cap \sigma^{-m-|I|}[J] \right) = \sum_{|K|=m} \mu([IKJ])
\leq C_0 \sum_{|K|=m} e^{-(|I|+|K|+|J|)P(\Phi_A)} \|A_{IKJ}\|^s
\leq C_0 e^{-(|I|+|J|)P(\Phi_A)} \|A_I\|^s \|A_J\|^s \left(\sum_{|K|=m} e^{-|K|P(\Phi_A)} \|A_K\|^s \right)
\leq C_0^4 \mu([I]) \mu([J]) \left(\sum_{|K|=m} \mu([K]) \right)
= C_0^4 \mu([I]) \mu([J])
\]

so that

\[
(4.4) \quad \mu \left([I] \cap \sigma^{-m-|I|}[I] \right) \leq \delta \mu([I]) \mu([J]),
\]

where \(\delta := C_0^4 \).
Let $\hat{\mu} \in \mathcal{M} \left(\hat{\Sigma}_\ell, \hat{\sigma} \right)$ be the natural extension of the Gibbs state μ satisfying

$$\inf_{A \in B_{-\infty,0}, B \in B_{m+1,\infty} \atop \hat{\mu}(A), \hat{\mu}(B) \neq 0} \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)} = \inf_{n_1,n_2 \geq 1} \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)} = \inf_{n_1,n_2 \geq 1} \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)}$$

by (4.3). Similarly,

$$\sup_{A \in B_{-\infty,0}, B \in B_{m+1,\infty} \atop \hat{\mu}(A), \hat{\mu}(B) \neq 0} \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)} = \sup_{n_1,n_2 \geq 1} \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)} \leq \delta < \infty$$

by (4.4).

By [Bra05, Theorem 4.1(2)], therefore,

$$\lim_{n \to \infty} \sup_{A \in B_{-\infty,0}, B \in B_{n,\infty} \atop \hat{\mu}(A), \hat{\mu}(B) \neq 0} \left| \frac{\hat{\mu}(A \cap B)}{\hat{\mu}(A)\hat{\mu}(B)} - 1 \right| = 0.$$

Then, it implies the following result

$$\lim_{n \to \infty} \sup_{I,J \in \mathcal{L}} \left| \frac{\mu \left(\{ x_k \in \mathbb{Z} \colon x_1 = i \} \right) - \mu(\{x_k\}) - \mu(\{j\})}{\mu(\{x_k\})\mu(\{j\})} \right| = 0,$$

which is the first assertion of Theorem 4.1.

We recall that μ is a totally ergodic Gibbs state on $\hat{\Sigma}_\ell$ for some $\ell \geq 2$. Denote by $\hat{\mu}$ the natural extension to $\hat{\Sigma}_\ell$ and denote by \mathcal{P} the completion of the Borel σ-algebra on $\hat{\Sigma}_\ell$ with respect to $\hat{\mu}$. μ is not a Dirac measure as it is fully supported on $\hat{\Sigma}_\ell$, and since it is also totally ergodic, it has no atoms. This implies the corresponding properties for $\hat{\mu}$ on $\hat{\Sigma}_\ell$ and it follows that $\left(\hat{\Sigma}_\ell, \mathcal{P}, \hat{\mu} \right)$, being the completion of an atomless Borel probability measure on a complete metric space, is a Lebesgue probability space. We also denote by \mathcal{P} the partition of $\hat{\Sigma}_\ell$ into the ℓ sets $\{ x_k \in \mathbb{Z} \colon x_1 = i \}$ for $i = 1, \ldots, \ell$. Since

$$\lim_{n \to \infty} \sup_{I,J \in \mathcal{L}} \left| \frac{\hat{\mu}(\{ I \cap \hat{\sigma}^n \} \cap \{ J \})}{\hat{\mu}(\{ I \})\hat{\mu}(\{ J \})} - 1 \right| = 0,$$

for every $\varepsilon > 0$ we may choose $k_\varepsilon \geq 1$ such that

$$\sup_{I,J \in \mathcal{L}} \left| \frac{\hat{\mu}(\{ I \cap \hat{\sigma}^{k_\varepsilon} \} \cap \{ J \})}{\hat{\mu}(\{ I \})\hat{\mu}(\{ J \})} - 1 \right| < \varepsilon.$$
For each $n \geq 1$ the partitions $\bigvee_{j=1-r}^{0} \hat{\sigma}^{j} \mathcal{P}$ and $\bigvee_{j=-2n-k_{e}+1}^{-n-k_{e}} \hat{\sigma}^{j} \mathcal{P}$ are simply the partitions into sets of the form $[I]$ and into sets of the form $\sigma^{-k_{e}+1}I$ respectively, where $|I| = n$. The ε-independence of the first partition from the second is immediate and we conclude that \mathcal{P} is a weak Bernoulli partition for the transformation $\hat{\sigma}$ of $\left(\hat{\Sigma}_{e}, \mathbb{F}_{\mu}, \hat{\mu}\right)$. By Theorem 4.2, we prove the second assertion of Theorem 4.1.

4.2. **Shrinking target and recurrence sets.** Let $T : X \to X$ be a topological dynamical system on a compact metric space (X, d). Assume that μ is an T-invariant ergodic measure. By Birkhoff ergodic theorem, for any ball B in X of positive μ-measure, the set

$$S := \{x \in X : T^{n}x \in B, \text{ for infinitely many } n \in \mathbb{N}\}$$

has full μ-measure.

Now consider from the above definition of the set S that both the center and the radius of the ball B are allowed to vary in n; given a function $h : \mathbb{N} \to \mathbb{R}_{+}$ tending to 0 as $n \to \infty$ and a sequence of points $\{z_{n}\}_{n \geq 1}$ in X, the set S can be generalized to

$$S(h) = \{x \in X : T^{n}x \in B(z_{n}, h(n)), \text{ for infinitely many } n \in \mathbb{N}\}.$$

This set $S(h)$ is called the **shrinking target**. Then one can ask how large the size of $S(h)$ is in the sense of measure and in the sense of dimension. This is called the **shrinking target** problem by Hill and Velani [HV95] which concerns what happens if the target B shrinks with time and more generally if the target also moves around with time. The points in $S(h)$ can be thought of as trajectories which hit a shrinking, moving target infinitely often.

The shrinking target problem has intricate links to number theory when using naturally arising sets in Diophantine approximation as the shrinking targets; e.g. see [AB21, BR18, PR17].

The above works mostly concern conformal dynamics or dynamical systems in \mathbb{R}^{1} and transitioning to higher dimensional non-conformal dynamics presents severe challenges. To overcome the extreme challenges that affinities pose, a common approach is to “randomise” the affine maps by considering typical translation parameter. Koivusalo and Ramirez [KR18] gave an expression for the Hausdorff dimension of a self-affine shrinking target problem. They show that for a fixed symbolic target with exponentially shrinking diameter and well-behaved affine maps, the Hausdorff dimension is typically given by the zero of an appropriate pressure function. Strong assumptions are made on the affine system, as well as the fixed target.

Let $\mathcal{A} = (A_{1}, A_{2}, \cdots, A_{\ell})$ be a collection of non-singular 2×2 contracting matrices. Let $t = \{t_{1}, t_{2}, \cdots, t_{\ell}\}$ be a collection of k vectors in \mathbb{R}^{2}. Let $D_{t} = \{f_{i}(x) = A_{i}x + t_{i}\}_{i=1}^{\ell}$ be an iterated function system formed by affine maps on \mathbb{R}^{2}.

For a finite word $i \in \mathcal{L}$, let $\mathcal{A}_{i} = A_{i_{1}} \cdots A_{i_{n}}$ and $f_{i} = f_{i_{1}} \circ \cdots \circ f_{i_{n}}$. There exists a unique non-empty compact set $\Lambda \subset \mathbb{R}^{2}$ such that

$$\Lambda = \bigcup_{i=1}^{\ell} f_{i}(\Lambda);$$
See [Hut81]. Suppose that \(\ell \geq 2 \). Let us denote by \(\pi_t \) the natural projection from \(\Sigma_\ell \) to the attractor of \(\Lambda \), that is,

\[
\pi_t(i) = \lim_{n \to \infty} f_{i_1} \circ \cdots \circ f_{i_n}(0) = \sum_{k=1}^{\infty} A_{i_1} \cdots A_{i_{k-1}}t_{i_k}
\]

Clearly, \(\pi_t(i) = f_{i_1}(\pi_t(\sigma(i))) \).

We denote by \(\sigma_1, \sigma_2 \) the singular values of the matrix \(A \), which are the square roots of the eigenvalues of the positive semi-definite matrix \(A^*A \) listed in decreasing order according to multiplicity. We define the singular value function as follows

\[
\varphi^s(A) = \begin{cases}
\|A\|^s, & \text{if } 0 \leq s < 1 \\
\|A\|\|A^{-1}\|^{-(s-1)}, & \text{if } 1 \leq s < 2 \\
|\det(A)|^{s/2}, & \text{if } 2 \leq s < \infty.
\end{cases}
\]

The pressure of the self-affine system is defined as

\[
P(\log \varphi^s(A)) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{I \in \mathcal{L}(n)} \varphi^s(A_I),
\]

whose existence of the limit is guaranteed from the subadditivity of \(\varphi^s(A) \).

Let \((J_k)_{k \in \mathbb{N}} \in (\mathcal{L})^\mathbb{N} \) be a sequence of target cylinders. We are interested in the shrinking target set

\[
S_t((J_k)_{k \in \mathbb{N}}) = \pi_t \left\{ i \in \Sigma_\ell : \sigma^k_i \in [J_k] \text{ for infinitely many } k \in \mathbb{N} \right\}.
\]

For our sequence of target cylinders, we define the following inverse lower pressure:

\[
\alpha(s) := \liminf_{k \to \infty} \frac{-1}{|J_k|} \log \varphi^s(A_{J_k})
\]

Let

\[
s_0 := \inf \{ s > 0 : P(\log \varphi^s(A)) \leq \alpha(s) \}.
\]

Unfortunately, the uncertainty of the length of the connecting word \(K \) in the quasi-multiplicativity property does not let us to study shrinking target and recurrence sets effectively. In order to study shrinking target and recurrence sets, Bárány and Troscheit [BT22] prove that \(A \) is uniform \(k \)-quasi-multiplicativity for every \(s \in (1, d) \) when \(A \) is fully strongly irreducible and fully proximal. In the two dimensional case, we can improve their results [BT22, Corollaries 2.7 and 2.8] by using Corollary 1.2.

Lemma 4.3. Assume that \(A = (A_1, \ldots, A_\ell) \) is a collection of non-singular \(2 \times 2 \) matrices. Suppose that \(A \) is \(k \)-quasi-multiplicative. Then, for every \(s \in [0, 2] \), there exist \(k \in \mathbb{N} \) and \(C > 0 \) such that for any \(I, J \in \mathcal{L} \), there exists \(K = K(I, J) \in \mathcal{L}(k) \) such that

\[
\varphi^s(A_{IKJ}) \geq C \varphi^s(A_I)\varphi^s(A_J).
\]
Proof. Since \mathcal{A} is is k-quasi multiplicative, there exist $k \in \mathbb{N}$ and $c > 0$ such that for any $I, J \in \mathcal{L}$, there exists $K \in \mathcal{L}(k)$ such that
\[\|A_{IKJ}\| \geq c\|A_I\|\|A_J\|. \]
When $s \in [0, 1]$, the proof follows by raising from k-quasi multiplicity of \mathcal{A} by power s. Now, we are going to prove it when $1 < s \leq 2$. Since the second singular value $\sigma_2(\mathcal{A})$ is supermultiplicative, we raise the inequality from supermultiplicity of $\sigma_2(\mathcal{A})$ by power $s - 1$: there exists $\kappa > 0$ such that
\[\sigma_2(\mathcal{A}_{IKJ})^{s-1} \geq \kappa \sigma_2(\mathcal{A}_I)^{s-1} \sigma_2(\mathcal{A}_J)^{s-1}. \]
Multiplying the two inequalities gives k-quasi-multiplicativity of $\varphi^s(\mathcal{A})$. □

Corollary 4.4. Assume that $\mathcal{A} = (A_1, \ldots, A_\ell)$ is a collection of 2×2 contracting matrices and $(J_k)_{k \in \mathbb{N}}$ is a sequence of target cylinders. Suppose that \mathcal{A} and \mathcal{A}^2 are irreducible and $\|A_i\| < 1/2$ for all $i \in \{1, \ldots, \ell\}$. Then
\[\dim_H S_t((J_k)_k) = \min\{2, s_0\} \text{ for Lebesgue-almost every } t. \]
Moreover, $\mathcal{L}_2(S_t((J_k)_k)) > 0$ for Lebesgue-almost every t if $s_0 > 2$.

Proof. By Corollary 1.2, \mathcal{A} is k-quasi multiplicative. Then, the statement follows from the combination of [BT22, Theorem 2.2] and Lemma 4.3. □

Suppose that $\psi : \mathbb{N} \to \mathbb{N}$, and $\beta := \lim \inf_{n \to \infty} \frac{\psi(n)}{n}$. We consider the recurrent set
\[R_t(\psi) := \pi_t \{ i \in \Sigma : \sigma^k i \in [i_{\psi(k)}] \text{ for infinitely many } k \in \mathbb{N} \}. \]
We define the square-pressure function
\[P_2(s) := \lim \sup_{n \to \infty} \frac{-1}{n} \log \sum_{i \in \mathcal{L}(n)} (\varphi^s(\mathcal{A}_i))^2, \]
where the limit exists because of the subadditivity of $\varphi^s(\mathcal{A})$. Moreover, the pressure is continuous in s, strictly increasing, and satisfies $P_2(0) = -\log N$ and $P_2(s) \to \infty$ as $s \to \infty$.

Corollary 4.5. Assume that $\mathcal{A} = (A_1, \ldots, A_\ell)$ is a collection of 2×2 contracting matrices. Suppose that \mathcal{A} and \mathcal{A}^2 are irreducible and $\|A_i\| < 1/2$ for all $i \in \{1, \ldots, \ell\}$. Let $\psi : \mathbb{N} \to \mathbb{N}$ with $\beta := \lim \inf_{n \to \infty} \frac{\psi(n)}{n} < \infty$, then
\[\dim_H R_t(\psi) = \min\{2, r_0\} \text{ for Lebesgue-almost every } t, \]
where r_0 is the unique solution of the equation
\[(1 - \beta)P(\log \varphi^{r_0}(\mathcal{A})) = \beta P_2(r_0). \]
Moreover, $\mathcal{L}_2(R_t((\psi)_k)) > 0$ for Lebesgue-almost every t if $r_0 > 2$.

Proof. By Corollary 1.2, \mathcal{A} is k-quasi multiplicative. Thus, the proof follows from the combination of [BT22, Theorem 2.4] and Lemma 4.3. □
UNIFORM QUASI-MULTIPLICITY OF LOCALLY CONSTANT COCYCLES

References

[AB21] D. Allen and B. Bárány, Hausdorff measures of shrinking target sets on self-conformal sets, Mathematika 67 (2021), no. 4, 807–839.

[BG19] J. Bochi and E. Garibaldi, Extremal norms for fiber-bunched cocycles, Journal de l’École polytechnique—Mathématiques 6 (2019), 947–1004.

[Bow74] R. Bowen, Some systems with unique equilibrium states, Math. Syst. Theory 8 (1974), no. 3, 193–202.

[BP21] C. Butler and K. Park, Thermodynamic formalism of GL_2(\mathbb{R})-cocycles with canonical holonomies, Discrete and Continuous Dynamical Systems 41 (2021), no. 5, 2141–2166.

[BR18] B. Bárány and M. Rams, Shrinking targets on bedford-mcmanus sets, Proc. London Math. Soc. 117 (2018), no. 5, 951–995.

[Bra05] R.C. Bradley, Basic properties of strong mixing conditions: a survey and some open questions, Probability Surveys 2 (2005), 107–144.

[BT22] B. Bárány and S. Troscheit, Dynamically defined subsets of generic self-affine sets, to appear in Nonlinearity (2022).

[BV04] C. Bonatti and M. Viana, Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory and Dynamical Systems 24 (2004), no. 5, 1295–1330.

[CFH08] Y. Cao, D. Feng, and W. Haung, The thermodynamic formalism for sub-additive potentials, Discrete and Continuous Dynamical Systems 20 (2008), no. 3, 639–657.

[Fen03] D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. part i: Positive matrices, Israel Journal of Mathematics 138 (2003), no. 1, 353–376.

[Fen09] , Lyapunov exponents for products of matrices and multifractal analysis. part ii: General matrices., Israel J. Math. 170 (2009), 355–394.

[FK11] D. Feng and A. Käenmäki, Equilibrium states of the pressure function for products of matrices, Discrete and Continuous Dynamical Systems 30 (2011), no. 3, 699–708.

[FO70] N.A. Friedman and D.S. Ornstein, On isomorphism of weak bernoulli transformations, Advances in Mathematics 5 (1970), 365–394.

[Fur63] H. Furstenberg, Noncommuting random products, Transactions of the American Mathematical Society 108 (1963), no. 3, 377–428.

[Hut81] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.

[HV95] R. Hill and S. L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175–198.

[KM18] A. Käenmäki and I.D. Morris, Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension, Proc. London Math. Soc. 116 (2018), no. 3, 929–956.

[KR18] H. Koivusalo and F. Ramirez, Recurrence to shrinking targets on typical self-affine fractals, Proc. Edinburgh Math. Soc. 61 (2018), 367–400.

[Moh22] R. Mohammadpour, Lyapunov spectrum properties and continuity of the lower joint spectral radius, Journal of Statistical Physics 189 (2022), no. 3, 23.

[Mor18] I. Morris, Ergodic properties of matrix equilibrium states, Ergodic Theory and Dynamical Systems 38 (2018), no. 6, 2295–2320.

[Mor19] , A necessary and sufficient condition for a matrix equilibrium state to be mixing, Ergodic Theory and Dynamical Systems 39 (2019), no. 8, 2223–2234.

[Mor21] , Totally ergodic generalised matrix equilibrium states have the bernoulli property, Communications in Mathematical Physics 387 (2021), no. 2, 995–1050.

[Par20] K. Park, Quasi-multiplicativity of typical cocycles, Communications in Mathematical Physics 376 (2020), no. 3, 1957–2004.

[Pir20] M. Piraino, The weak bernoulli property for matrix gibbs states, Ergodic Theory and Dynamical Systems 40 (2020), no. 8, 2219–2238.

[PR17] T. Persson and M. Rams, On shrinking targets for piecewise expanding interval maps, Ergodic Theory and Dynamical Systems 37 (2017), no. 2, 646–663.
Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden
Email address: reza.mohammadpour@math.uu.se

School of Mathematics, KIAS, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Korea.
Email address: kihopark12@kias.re.kr