On the Modes of Polynomials Derived from Nondecreasing Sequences

Donna Q. J. Dou¹, Arthur L. B. Yang²
¹School of Mathematics
Jilin University, Changchun 130012, P. R. China
²Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China
Email: ¹qjdou@jlu.edu.cn, ²yang@nankai.edu.cn

Abstract. Wang and Yeh proved that if \(P(x) \) is a polynomial with non-negative and nondecreasing coefficients, then \(P(x + d) \) is unimodal for any \(d > 0 \). A mode of a unimodal polynomial \(f(x) = a_0 + a_1x + \cdots + a_mx^m \) is an index \(k \) such that \(a_k \) is the maximum coefficient. Suppose that \(M_*(P, d) \) is the smallest mode of \(P(x + d) \), and \(M^*(P, d) \) the greatest mode. Wang and Yeh conjectured that if \(d_2 > d_1 > 0 \), then \(M_*(P, d_1) \geq M_*(P, d_2) \) and \(M^*(P, d_1) \geq M^*(P, d_2) \). We give a proof of this conjecture.

Keywords: Unimodal polynomials; The smallest mode; The greatest mode.

AMS Classification: 05A20, 33F10

Suggested Running Title: The mode conjecture

1 Introduction

This paper is concerned with the modes of unimodal polynomials constructed from nonnegative and nondecreasing sequences. Recall that a sequence \(\{a_i\}_{0 \leq i \leq m} \) is unimodal if there exists an index \(0 \leq k \leq m \) such that
\[
a_0 \leq \cdots \leq a_{k-1} \leq a_k \geq a_{k+1} \geq \cdots \geq a_m.
\]
Such an index \(k \) is called a mode of the sequence. Note that a mode of a sequence may not be unique. It is said to be spiral if
\[
a_m \leq a_0 \leq a_{m-1} \leq a_1 \leq \cdots \leq a_{\lfloor \frac{m-1}{2} \rfloor},
\]
where \(\lfloor \cdot \rfloor \) stands for the greatest integer less than \(\frac{m-1}{2} \). Clearly, the spiral property implies unimodality. We say that a sequence \(\{a_i\}_{0 \leq i \leq m} \) is log-concave if for \(1 \leq k \leq m-1 \),
\[
a_k^2 \geq a_{k+1}a_{k-1},
\]
and it is ratio monotone if
\[\frac{a_m}{a_0} \leq \frac{a_{m-1}}{a_1} \leq \cdots \leq \frac{a_{m-i}}{a_i} \leq \cdots \leq \frac{a_{m-[\frac{m-1}{2}]}^{(m-1)}}{a_{m-[\frac{m-1}{2}]]}} \leq 1 \]
(1.2)

and
\[\frac{a_0}{a_{m-1}} \leq \frac{a_1}{a_{m-2}} \leq \cdots \leq \frac{a_{i-1}}{a_i} \leq \cdots \leq \frac{a_{m-[\frac{m}{2}]-1}}{a_{m-[m/2]}} \leq 1. \]
(1.3)

It is easily checked that the ratio monotonicity implies both log-concavity and the spiral property.

Let \(P(x) = a_0 + a_1 x + \cdots + a_m x^m \) be a polynomial with nonnegative coefficients. We say that \(P(x) \) is unimodal if the sequence \(\{a_i\}_{0 \leq i \leq m} \) is unimodal. A mode of \(\{a_i\}_{0 \leq i \leq m} \) is also called a mode of \(P(x) \). Similarly, we say that \(P(x) \) is log-concave or ratio monotone if the sequence \(\{a_i\}_{0 \leq i \leq m} \) is log-concave or ratio monotone.

Throughout this paper \(P(x) \) is assumed to be a polynomial with nonnegative and nondecreasing coefficients. Boros and Moll [2] proved that \(P(x+1) \), as a polynomial of \(x \), is unimodal. Alvarez et al. [1] showed that \(P(x+n) \) is also unimodal for any positive integer \(n \), and conjectured that \(P(x+d) \) is unimodal for any \(d > 0 \). Wang and Yeh [6] confirmed this conjecture and studied the modes of \(P(x+d) \). Llamas and Martínez-Bernal [5] obtained the log-concavity of \(P(x+c) \) for \(c \geq 1 \). Chen, Yang and Zhou [4] showed that \(P(x+1) \) is ratio monotone, which leads to an alternative proof of the ratio monotonicity of the Boros-Moll polynomials [3].

Let \(M_*(P,d) \) and \(M^*(P,d) \) denote the smallest and the greatest mode of \(P(x+d) \) respectively. Our main result is the following theorem, which was conjectured by Wang and Yeh [6].

Theorem 1.1 Suppose that \(P(x) \) is a monic polynomial of degree \(m \geq 1 \) with nonnegative and nondecreasing coefficients. Then for \(0 < d_1 < d_2 \), we have \(M_*(P,d_1) \geq M_*(P,d_2) \) and \(M^*(P,d_1) \geq M^*(P,d_2) \).

From now on, we further assume that \(P(x) \) is monic, that is \(a_m = 1 \). For \(0 \leq k \leq m \), let
\[b_k(x) = \sum_{j=k}^{m} \binom{j}{k} a_j x^{j-k}. \]
(1.4)

Therefore, \(b_k(x) \) is of degree \(m - k \) and \(b_k(0) = a_k \). For \(1 \leq k \leq m \), let
\[f_k(x) = b_{k-1}(x) - b_k(x), \]
(1.5)

which is of degree \(m - k + 1 \). Let \(f_k^{(n)}(x) \) denote the \(n \)-th derivative of \(f_k(x) \).
Our proof of Theorem 1.1 relies on the fact that \(f_k(x) \) has only one real zero on \((0, +\infty)\). In fact, the derivative \(f_k^{(n)}(x) \) of order \(n \leq m - k \) has the same property. We establish this property by induction on \(n \).

2 Proof of Theorem 1.1

To prove Theorem 1.1, we need the following three lemmas.

Lemma 2.1 For any \(0 \leq k \leq m \), we have \(b_k'(x) = (k + 1)b_{k+1}(x) \).

Proof. It can be checked that

\[
\begin{align*}
b_k'(x) &= \sum_{j=k}^{m} \binom{j}{k} a_j (x^{j-k})' \\
&= \sum_{j=k+1}^{m} (j - k) \binom{j}{k} a_j x^{j-k-1} \\
&= \sum_{j=k+1}^{m} (j - k) \frac{j!}{(j-k)!} a_j x^{j-(k+1)} \\
&= \sum_{j=k+1}^{m} \frac{j!}{(j-(k+1))!} a_j x^{j-(k)} \\
&= (k + 1)b_{k+1}(x),
\end{align*}
\]

as required. \(\blacksquare \)

Lemma 2.2 For \(n \geq 1 \) and \(1 \leq k \leq m \), we have

\[
f_k^{(n)}(x) = (k + n - 1)b_{k+n-1}(x) - (k + n)b_{k+n}(x),
\] (2.6)

where \((m)_j = m(m - 1) \cdots (m - j + 1) \).

Proof. Use induction on \(n \). For \(n = 1 \), we have

\[
f_k^{(1)}(x) = f'(x) = kb_k - (k + 1)b_{k+1}.
\]

Assume that the lemma holds for \(n = j \), namely,

\[
f_k^{(j)}(x) = (k + j - 1)b_{k+j-1}(x) - (k + j)b_{k+j}(x).
\]
Thus, \(f(x) = n \)

Proof of Theorem 1.1.

In view of (1.4), we have

Lemma 2.3 For \(1 \leq k \leq m \) and \(0 \leq n \leq m - k \), the polynomial \(f_k^{(n)}(x) \) has only one real zero on the interval \((0, +\infty)\). In particular, \(f_k(x) \) has only one real zero on the interval \((0, +\infty)\).

Proof. Use induction on \(n \) from \(m - k \) to 0. First, we consider the case \(n = m - k \). Recall that

\[
f_k(x) = \sum_{j=k-1}^{m} \binom{j}{k-1} a_j x^{j-k+1} - \sum_{j=k}^{m} \binom{j}{k} a_j x^{j-k}.
\]

Thus \(f_k(x) \) is a polynomial of degree \(m - k + 1 \). Note that

\[
f_k^{(m-k)}(x) = (m-k+1)! \left(\binom{m}{k-1} a_m x + \left[\binom{m-1}{k-1} a_{m-1} - \binom{m}{k} a_m \right] (m-k) \right).
\]

Clearly, \(f_k^{(m-k)}(x) \) has only one real zero \(x_0 \) on \((0, +\infty)\). So the lemma is true for \(n = m - k \).

Suppose that the lemma holds for \(n = j \), where \(m - k \geq j \geq 1 \). We proceed to show that \(f_k^{(j-1)}(x) \) has only one real zero on \((0, +\infty)\). From the inductive hypothesis it follows that \(f_k^{(j)}(x) \) has only one real zero on \((0, +\infty)\).

In light of (2.6), it is easy to verify that \(f_k^{(j)}(+\infty) > 0 \) and

\[
f_k^{(j)}(0) = (k+j-1)j a_{k+j} - (k+j)j a_{k+j} \leq 0.
\]

It follows that the polynomial \(f_k^{(j-1)}(x) \) is decreasing up to certain point and becomes increasing on the interval \((0, +\infty)\). Again by (2.6) we find \(f_k^{(j-1)}(+\infty) > 0 \) and

\[
f_k^{(j-1)}(0) = (k+j-2)j a_{k+j-2} - (k+j-1)j a_{k+j-1} \leq 0.
\]

So we conclude that \(f_k^{(j-1)}(x) \) has only one real zero on \((0, +\infty)\). This completes the proof.

Proof of Theorem 1.1. In view of (1.4), we have

\[
P(x + d) = \sum_{k=0}^{m} a_k (x + d)^k = \sum_{k=0}^{m} b_k d x^k.
\]
Let us first prove that $M^*(P, d_1) \geq M^*(P, d_2)$. Suppose that $M^*(P, d_1) = k$. If $k = m$, then the inequality $M^*(P, d_1) \geq M^*(P, d_2)$ holds. For the case $0 \leq k < m$, it suffices to verify that $b_k(d_2) > b_{k+1}(d_2)$. By Lemma 2.2, $f_{k+1}(x)$ has only one real zero on $(0, +\infty)$. Note that

$$f_{k+1}(0) \leq 0 \quad \text{and} \quad f_{k+1}(+\infty) > 0.$$

From $M^*(P, d_1) = k$ it follows that $b_k(d_1) > b_{k+1}(d_1)$, that is $f_{k+1}(d_1) > 0$. Therefore, $f_{k+1}(d_2) > 0$, that is, $b_k(d_2) > b_{k+1}(d_2)$.

Similarly, it can be seen that $M^*(P, d_1) \geq M^*(P, d_2)$. Suppose that $M^*(P, d_2) = k$. If $k = 0$, then we have $M^*(P, d_1) \geq M^*(P, d_2)$. If $0 < k \leq m$, it is necessary to show that $b_{k-1}(d_1) < b_k(d_1)$. Again, by Lemma 2.2, we know that $f_k(x)$ has only one real zero on $(0, +\infty)$. From $M^*(P, d_2) = k$, it follows that $b_{k-1}(d_2) < b_k(d_2)$, that is $f_k(d_2) < 0$. By the boundary conditions

$$f_k(0) \leq 0 \quad \text{and} \quad f_k(+\infty) > 0,$$

we obtain $f_k(d_1) < 0$, that is $b_{k-1}(d_1) < b_k(d_1)$. This completes the proof.

Acknowledgments. This work was supported by the 973 Project, the PC-SIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] J. Alvarez, M. Amadis, G. Boros, D. Karp, V.H. Moll and L. Rosales, *An extension of a criterion for unimodality*, Electron. J. Combin. 8 (2001), #R30.

[2] G. Boros and V.H. Moll. *A criterion for unimodality*, Electron. J. Combin. 6 (1999), #R10.

[3] W.Y.C. Chen and E.X.W. Xia, *The ratio monotonicity of the Boros-Moll polynomials*, Math. Comput. 78 (2009), 2269–2282.

[4] W.Y.C. Chen, A.L.B. Yang and E.L.F. Zhou, *Ratio monotonicity of polynomials derived from nondecreasing sequences*, arXiv:math.CO/1007.5017.

[5] A. Llamas, J. Martínez-Bernal, *Nested log-concavity*, Commun. Algebra 38 (2010), 1968–1981.

[6] Y. Wang and Y.-N. Yeh, *Proof of a conjecture on unimodality*, European J. Combin. 26 (2005), 617–627.