Machine learning applied to asteroid dynamics

V. Carruba · S. Aljbaae · R. C. Domingos · M. Huaman · W. Barletta

Received: 13 October 2021 / Revised: 2 June 2022 / Accepted: 4 June 2022 / Published online: 2 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Machine learning (ML) is the branch of computer science that studies computer algorithms that can learn from data. It is mainly divided into supervised learning, where the computer is presented with examples of entries, and the goal is to learn a general rule that maps inputs to outputs, and unsupervised learning, where no label is provided to the learning algorithm, leaving it alone to find structures. Deep learning is a branch of machine learning based on numerous layers of artificial neural networks, which are computing systems inspired by the biological neural networks that constitute animal brains. In asteroid dynamics, machine learning methods have been recently used to identify members of asteroid families, small bodies images in astronomical fields, and to identify resonant arguments images of asteroids in three-body resonances, among other applications. Here, we will conduct a full review of available literature in the field and classify it in terms of metrics recently used by other authors to assess the state of the art of applications of machine learning in other astronomical subfields. For comparison, applications of machine learning to Solar System bodies, a larger area that includes imaging and spectrophotometry of small bodies, have already reached a state classified as progressing. Research communities and methodologies are more established, and the use of ML led to the discovery of new celestial objects or features, or new insights in the area. ML applied to asteroid dynamics, however, is still in the emerging phase, with smaller groups, methodologies still not well-established, and fewer papers producing discoveries or insights. Large observational surveys, like those conducted at the Zwicky Transient Facility or at the Vera C. Rubin Observatory, will produce in the next years very substantial datasets of orbital and physical properties for asteroids. Applications of ML for clustering, image
identification, and anomaly detection, among others, are currently being developed and are expected of being of great help in the next few years.

Keywords Celestial mechanics · Asteroid belt · Chaotic motions · Statistical methods

1 Introduction

Astronomical datasets are rapidly growing in size and complexity, ushering in the era of big data science in Astronomy (Ball and Brunner 2010; Pesenson et al. 2010). As discussed in the recent review paper by Baron (2019), the sheer magnitude of recent datasets in astronomy demands the introduction of techniques other than the visual inspection by a human researcher. Clustering methods to identify groups of objects sharing similar properties, like galaxies, asteroids, or variable stars, can now be performed with much simpler to write software, yielding faster results. New possible members of known groups in large databases can be automatically assigned to their most likely class. Anomaly detection algorithms can now identify outliers and new classes of astronomical objects with minimal training from a human observer. To stand up to the challenges of modern astronomy, many new techniques in machine learning (ML) have been recently adopted by more and more subfields in astronomy.

Machine learning is a subfield of Engineering and Computer Science. Machine learning explores the study and construction of algorithms that can learn from data. Algorithms for machine learning are often split into two main categories. Supervised machine learning algorithms are used to learn a mapping from a set of features to a target variable based on provided examples of input-output pairs. Unsupervised learning algorithms are utilized to learn relationships that exist in the dataset without using labels.

Fluke and Jacobs (2020) recently reviewed the then-current status of applications of ML to various subfields of astronomy, like Planetary studies, Active Galactic nuclei, Solar Astronomy, and Variable Stars, among others. Applying a set of metrics to the scientific outcome of the available literature, the authors were able to classify fields for applications of ML into emerging, progressing, and established. Fields like Solar Astronomy and Variable Stars were classified as established by Fluke and Jacobs (2020), with large groups operating in the field, a substantial body of literature available, and scientific outcomes reaching the more advanced phases of discovery and insight, where new scientific knowledge is demonstrated as a consequence of applying ML.

While applications of machine learning in other astronomical subfields have recently flourished, the number of papers that applied such methods in asteroids dynamics has been more limited, with just 12 papers that tried to use such approaches in the last three years. The main goal of this paper is to review recent applications of ML to the field of asteroid dynamics and to use Fluke and Jacobs (2020) metrics to assess the impact that the use of existing algorithms has had in the field. Once this task is done, we will then assess open problems and some possible future lines of research.

Many of the revised papers used ML algorithms developed in the Python language (van Rossum 1995), or, less frequently, in R (R Core Team 2013) or Julia (Bezanson et al. 2017). Here, we will cover three main areas of applications of ML to asteroid dynamics, mostly associated with applications of three popular Python libraries: i) supervised and unsupervised learning, scikit-learn (Pedregosa et al. 2012), ii) time series analysis, statsmodels (Seabold and Perktold 2010) and iii) deep learning, Tensorflow (Abadi et al. 2015) and Keras (Chollet 2018).
The most commonly used approaches in asteroid dynamics and application to small bodies will be covered in the next sections. Please note that the purpose of these sections is not to provide a full description of all available algorithms in the literature, and of the theory behind them, but rather to offer a review of the field and to provide resources where interested readers could find an additional material. Interested readers can find a more broad review of the statistical methods discussed in this work in Baron (2019). We will start our review by discussing the most commonly used methods in ML. Less popular techniques, like time series analysis, will be discussed in Sect. 2.3. Finally, applications of deep learning and the use of Artificial Neural Networks will be covered in Sect. 2.4. After a full review of existing literature in the field has been performed, we will apply the metrics used by (Fluke and Jacobs 2020) to assess the impact, use, and current level of diffusion of existing algorithms in the field in Sect. 4. Section 5 will cover what we consider some likely future trends in the field. Finally, in Sect. 6 we will present our conclusions.

2 Machine learning

Machine learning approaches used in applications to small bodies are divided into two main categories:

1. Supervised learning: “The computer is presented with the task of learning a function that maps an input to an output based on example input-output pairs” (Russell and Norvig 2010).

2. Unsupervised learning: no label is given to the learning algorithm, leaving the method alone to find the structure at its entrance (Wang 2001).

Another category of ML, reinforcement learning, has not yet had applications in the area of interest of this work and will not be further discussed. ML algorithms can either predict a label for classification problems, or a quantity, and in this case, one has regression problems. We will start our review by looking into supervised training algorithms.

2.1 Supervised learning

Concerning supervised learning, several algorithms have been developed in the Python language in recent years. They are freely available to the scientific community (scikit-learn package, (Pedregosa et al. 2012)). Supervised learning is defined by the use of labeled datasets to train algorithms that classify data or predict outcomes accurately. Supervised learning algorithms can either be standalone or ensemble methods.

Standalone methods are approaches based on a single algorithm. Some of the most used standalone methods in astronomy are Linear regression, Logistic regression, and Decision tree.

Linear regression looks for a linear relationship between an independent variable, x or the input, and a dependent variable, y or the output. The algorithm fits a linear model to minimize the residual sum of squares difference between observed and predicted data, as shown in Fig. 1. In this method, it is possible to force the coefficients to be positive, which could be useful for some physical problems.

Logistic regression is a statistical method applied to cases where the input data need to be labeled into different categories (Dalpiaz et al. 2021). It is a special case of linear regression where the output variable is a single value. Logistic regression uses probability theory to
predict whether anything belongs to a group or not. This type of problem is known as a “binary classification problem” as one classifies an object as either belonging to a group or not. In this case, there are two possible results: “yes” and “no”. Usually, a positive result points to the presence of some identity separate from those of its members while a negative result points to the absence of it. Thus, one needs to predict the probability that identity is present. In practice, the binary responses variable is coded using 1 and 0 for “yes” and “no”, respectively.

To do so, we fit the function logit to the set of training data to map any real value to value in the interval between 0 and 1 based on a linear combination of dependent predictor variables as:

\[
\text{logit} P_i = \log \left(\frac{P_i}{1 - P_i} \right) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \beta_k x_{k,i},
\]

(1)

where \(P_i \) is the probability of the event i term, and the coefficients \(\beta_i (i = 1, 2, \ldots, k) \) are parameters of the model usually estimated through the maximum likelihood estimation (MLE) and \(x_i (i = 1, 2, \ldots, k) \) is a vector containing discrete or continuous values (Cramer 2004; Gudivada et al. 2016). An example of logit function is shown in Fig. 2.

A Decision tree is a model that is described by a top-to-bottom tree-like graph. It can be used in both classification and regression. Decision tree algorithms make decisions in a tree-shaped form, as consecutive nodes. The lowest nodes in the tree are called leaves or
Fig. 3 Decision tree regressor. 7406 objects from the Gaia Data Release 2 (Collaboration et al. 2018) are used to train a decision tree algorithm to found correlations between the relative flux uncertainties and the diameter measurements of the object (de Souza et al. 2021).

Fig. 4 An example of the procedure used by Random Forest to reach decisions.

terminal nodes. They are not associated with a condition, but instead, carry the label of a path within the tree. The number of decision nodes, or the maximum depth, “max_depth”, is a free parameter of the model. An example of a tree diagram for a Decision tree is shown in Fig. 3, where we display the path to classify a sample of asteroids from the Gaia Data Release 2 (Collaboration et al. 2018), as used by (de Souza et al. 2021). In the first node of this regressor, all the objects with relative flux uncertainties ≤ 9, in a logarithmic scale, will follow the arrow marked as True, and the rest will follow the False arrow. Other decisions will follow as marked.

Ensemble methods use several standalone algorithms to obtain a result. We can distinguish between:

1. **Bootstrap aggregation (bagging):** the training data are divided into several samples, called bootstrap samples, obtained by selecting a random sample with replacement of the training set. Each model is counted with the same weight.

2. **Boosting:** emphasizes the training cases where the previous models made fewer mistakes in the classification, and the autonomous models that had a better performance.

Examples of Bagging Classifiers are the Random Forest and the Extremely Randomized Trees. For Random Forest, a multitude of decision trees is created at training time. For classification tasks, the Random forest’s output is the class chosen by the majority of trees (Ho 1995, 1998). The mean or average prediction of the individual trees is returned for regression tasks. Extremely Randomized Trees, or ExtraTree, follows a similar procedure, but the bagging process is performed without substitutions. An example of the procedure used by Random Forest to reach an outcome is shown in Fig. 4.

Examples of Boosting algorithms are Adaptive Boosting (AdaBoost), Gradient Boosting (Gboost), and eXtreme Gradient Boosting (XGBoost). In the AdaBoost method (Freund and Schapire 1995), the reinforcement algorithms track the models that provided the least accurate forecast and give them lesser weights. The final result is achieved as a weighted average of the result of each autonomous model, as also shown in Fig. 5. GBoost differs from AdaBoost because it employs a gradient descent algorithm in the process of assigning weights to the
standalone models’ outcome (Boehmke and Greenwell 2019). The gradient algorithm was regularized and optimized in $XGBoost$ by Chen and Guestrin (2016).

Another example of ensemble tree-based methods are the Bayesian additive regression trees ($BART$) (Chipman et al. 2010; Hill et al. 2020). $BART$ is a model in which each tree is limited by a regularization before being a weak learner, and fitting and inference are carried out using an iterative Bayesian back-fitting algorithm that generates samples a posterior. While not a part of the standard $Python$ scikit-learn package, $BART$ is available in Python at the GitHub repository “https://github.com/JakeColtman/bartpy”, last accessed on June 1st 2022.

$Naive$ $Bayes$ is a simple approach for creating classifiers, which are models that offer class labels to problem cases represented as vectors of feature values, with the class labels selected from a limited set. There is no single technique for training such classifiers; rather, there are several algorithms based on the same principle: all $Naive$ $Bayes$ classifiers assume that the value of one feature is independent of the value of any other feature, given the class variable.
For example, a fruit is called an apple if it is red, round, and has a diameter of roughly 10 cm. A robust Naive Bayes classifier considers each of the color, roundness, and diameter features to contribute independently to the likelihood that this fruit is an apple (Piryonesi and El-Diraby 2020), regardless of any possible correlations between them. The continuous values associated with each class are assumed to follow a normal distribution in the Gaussian Naive Bayes method.

Finally, Support-Vector Machines (SVM) have also been recently used for classification and regression problems (Cortes and Vapnik 2009). Assume that some data points are assigned to one of two classes, and the purpose is to determine which class a new data point will be assigned to. A data point is seen as a p-dimensional vector (a list of p numbers) in support-vector machines, and we want to know if we can separate such points with a $(p - 1)$-dimensional hyperplane. Numerous hyperplanes might be used to categorize the data. The hyperplane that represents the greatest separation, or margin, between the two classes is a viable choice as the best hyperplane. The algorithm upon which SVMs are based automatically selects the best hyperplane.

2.2 Unsupervised learning

Unsupervised learning is a general term that incorporates a large set of statistical tools used to perform data exploration. Here we are going to review mostly algorithms used for clustering, which is the problem of arranging a set of items so that objects in the same group (called a cluster) are more comparable (in some sense) to those in other groups (clusters), and for anomaly detection, which is a step in data mining that identifies data points, events, or observations that deviate from a dataset most observed behavior. Concerning clustering, K-Nearest-Neighbors (KNN), k-means, and the Hierarchical Clustering Method (HCM) were the most used methods in recent literature, while recently published papers that worked with anomaly detection used Isolation forests. All the algorithms that we outline in this section are available in the Python library scikit-learn (Pedregosa et al. 2012).

The basic idea behind KNN is to predict the status of a point based on its closest neighbors. If most of the closest neighbors belong to a class, the point is also classified as such. A free parameter of this algorithm is the number of neighbors used for the classification. Figure 6 shows a case where, if we use three as a number of neighbors, the central point will be
classified as belonging to class B, while for a larger sample of 7 the point is classified as belonging to class A. KNN can be used for both supervised and unsupervised learning. Most recent applications used for problems of unsupervised learning, which is why we decided to list it in this section.

K-means, a centroid-based clustering technique, is one of the most extensively used clustering methods (MacQueen 1967). The distance assignment between the objects in the sample is the first stage in K-means. The Euclidean metric is the default distance, however other metrics that are better relevant for the dataset at hand can be utilized. The algorithm then chooses \(k \) random items from the dataset to act as the initial centroids, with \(k \) being an external free parameter. The closest of the \(k \) centroids is then allocated to each object in the dataset. The average position of the objects associated with the specified cluster is then used to construct new cluster centroids. These two procedures, re-assigning objects to clusters based on their distance from the centroid and recomputing cluster centroids, are performed until convergence is achieved. Convergence can be described in a variety of ways, such as when the vast majority of objects (90 percent or more) are no longer reassigned to various centroids, or when the cluster centroids converge to a single position. The cluster centroids and an association of the individual objects to the different clusters are the algorithm’s output.

HCM is the most commonly used method for identifying families of asteroids (Bendjoya and Zappalà 2002). First, it checks for objects closer to a parent body than to a distance cut-off. If a new object is found, the new body is used as the parent body and the process is repeated until no new members are identified. Results of HCM are usually displayed in form of a dendrogram, as shown in Fig. 7, where HCM has been used to find groups in a domain of three non-periodic quantities of asteroid light curves. Each vertical line in the dendrogram represents a cluster, while each horizontal line is associated with the merging of groups. The vertical axis displays the distance cut-off.

Finally, concerning anomaly detection algorithms, Isolation forest is the first anomaly detection algorithm to use isolation to identify anomalies. It was first conceived and developed by Liu et al. (2008). Anomalies are described as those instances in the dataset that do not conform to the normal profile, according to the most common methodologies for anomaly detection. Isolation forest takes a different approach: instead of attempting to construct a model of normal examples, it separates anomalous points in the dataset explicitly. The key benefit of this approach is the ability to use sampling techniques in ways that profile-based methods cannot, resulting in a fast algorithm with low memory requirements.

In the next sub-section we are going to review ML methods recently applied in the fields of time-series analysis.
2.3 ML application in time-series analysis

Time-series analysis studies data points collected over a period of time. This form of study, on the other hand, is more than just gathering data over time. The ability to depict how variables change over time distinguishes time-series data from other types of data. In other words, time is an important variable since it reveals how the data changes through time as well as the final outcomes.

In this review paper, we are going to discuss two ML methods that have been recently used for studies of asteroid dynamics, ARIMA models and the use of auto-correlation functions ACF. Other methods, like the use of exponential smoothing models (ETS) or the use of deep learning approaches based on artificial neural networks will not be treated in this section. Interested readers can find further details on these topics in Brownlee (2020). Numerical methods discussed in this section are available in the Python library statsmodels (Seabold and Perktold 2010).

One exciting area where ML has been recently applied is time-series analysis. Auto-regressive (AR), integrated (I), moving average (MA), or ARIMA models have been developed to predict stock prices behavior (Mills 1999). Recent applications of ARIMA models include Fraud detection in Credit Card transactions (Moschini et al. 2020), studies of variable stars light curves (Feigelson et al. 2018), and studies of coronal index solar cycles (Akhter et al. 2020), among others.

In an auto-regressive (AR) process current values depend on past ones through a relationship:

\[x_t = a_1 x_{t-1} + a_2 x_{t-2} + \ldots + a_p x_{t-p} + \epsilon_t, \]

(2)

where \(\epsilon_t \) is a normally distributed error with constant variance and zero mean, \(p \) is the process order (i.e., how many time lags are employed in the model), and \(a_i (i = 1, 2, \ldots, p) \) are the model coefficients for each lag up to order \(p \). Current values in a moving average (MA) process are influenced by recent errors, or shocks, via the following relationship:

\[x_t = \epsilon_t + b_1 \epsilon_{t-1} + b_2 \epsilon_{t-2} + \ldots + b_q \epsilon_{t-q}, \]

(3)

where \(\epsilon_t \) is the error term for the \(t \)-th term, and the coefficients \(b_i (i = 1, 2, \ldots, q) \) quantify the response to the previous shocks up to order \(q \). Adding the two equations produces an ARMA\((p,q)\) model. The coefficients \(a_i \) and \(b_i \) are estimated using regression procedures, like the maximum likelihood estimation.

The ARMA model operates under several assumptions, that include the series being stationary, i.e., with constant mean and variance. A stationary series presents the same behavior at all times. Stationarity in a time series can be checked by performing tests such as the Dickey-Fuller, also known as Adfuller test (Dickey and Fuller 1979). This test can be used by verifying the null hypothesis that a unit root is present in an AR model. If the probability \(p_{AF} \) associated with the null hypothesis is less than 0.05, the series can be assumed to be stationary. A non-stationary series can be transformed into a stationary one by taking the difference of all elements with respect to their previous ones. If the new difference series is stationary, a modelization of this new series can then be carried out. If that is not the case, a new difference series can be computed from the order 1 difference series, and then checked for stationarity. The process can be then repeated until stationarity is achieved.

ARIMA models depend on three free parameters, \((p, d, q)\). These are the order \(p \) of the autoregressive part of the model, the order \(d \) of series differentiation by which stationarity is achieved, and the order \(q \) of the moving average part. These coefficients can be determined using the Box-Jenkins approach (Box, Jenkins 1976).
On the left, we have a plot of a sinusoidal wave’s time behavior (top panel) and its autocorrelation function (bottom panel). We have simulated white noise (top panel) and its ACF on the right side (bottom panel). In the ACF plots, the area between dashed horizontal lines represents the region where autocorrelation coefficients are less than 5% and represent negligible autocorrelation. Adapted from Fig. 1 of (Carruba et al. 2021)

Other astronomical applications based on time series analysis were based on the autocorrelation function. Chaos in dynamical systems can be identified using an approach based on the autocorrelation function of time series, the ACF index ($ACFI$). The Pearson correlation coefficient (Pearson 1895) measures how strong two time series are related. R is near to 1, the maximum value, if the two variables depicted by the series are tightly connected. R will be close to the minimal value of -1 if they are significantly anti-correlated, and $R \approx 0$ if there is no correlation at all. A correlation coefficient can be defined in a variety of ways, but Pearson’s approach is the most frequent. If the i-th term of the series in x and y is defined as x_i and y_i, then:

$$R = \frac{cov(X, Y)}{\sigma_X \sigma_Y},$$

where $cov(X, Y)$, which is the covariance of the two series, is defined as:

$$cov(X, Y) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} (x_i - x_j)(y_i - y_j).$$

N is the number of terms in the two series, and σ_X is the standard deviation of the x_i series, defined as:

$$\sigma_X = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2},$$

where $\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$ is the average value of the series. For σ_Y, a similar expression exists. The correlation function of a time series with a lagged copy of the series is the autocorrelation coefficient of the series. Assume we have built a time series with a lag of one, $y_i = x_{i-1}$. Equation (4) will be used to calculate the autocorrelation coefficient for this y_i. For lags of 2 ($y_i = x_{i-2}$), 3 ($y_i = x_{i-3}$), and so on, analogous autocorrelation coefficients can be found. The spectrum of autocorrelation coefficients for various values of the time lag is the autocorrelation function (ACF) of x_i. The autocorrelation function is useful for determining the predictability of a series’ temporal behavior.

For a function that periodically repeats itself, all its auto-correlation coefficients are equal to 1 (see Fig. 8). It is always possible to predict its future behavior. For white noise time
series, such as random variables, all its auto-correlation coefficients are around 0. It is not possible to predict the series future behavior.

We can define a chaos indicator using the ACF, the auto-correlation function indicator (ACFI), as:

$$ACFI = \frac{1}{i_{fin} - i_{init}} \sum_{i=i_{init}}^{i_{fin}} n_i(|R|) > 0.05,$$

(7)

where $n_i(|R|) > 0.05)_i$ is the number of autocorrelation coefficients larger, in absolute value, than 5%, the null hypothesis for auto-correlation. $ACFI$ is computed over the interval $i_{fin} - i_{init}$ to avoid including auto-correlation at short timescales.

2.4 Deep learning

Deep learning is part of a larger family of machine learning methods based on artificial neural networks. There are three types of learning for deep learning methods: supervised, semi-supervised, and unsupervised. Artificial neural networks (ANNs) were inspired by biological systems’ neuron networks. A typical ANN has numerous layers between the input and output layers, as shown in Fig. 9, which depicts a neural network with an input, a hidden layer, and an output layer. Neural networks come in a variety of shapes and sizes, but they all include the same basic components: neurons, weights, biases, and activation functions. These components function in a similar way to the human brain and may be trained in the same way as any other conventional ML method. While the terms deep learning and artificial neural networks are often used interchangeably in some literature, there is a significant difference between the two. Neural networks use neurons to convey data in the form of input values and output values through connections, while deep learning is connected with feature transformation and extraction, which aims to build a relationship between stimuli and the corresponding neural responses. For the sake of simplicity, here we are going to use the term deep learning in a broader sense, which includes simple applications of neural networks. The reader is advised that this may not be a generally accepted practice.

Three types of neural networks are among the most used in astronomy:

1. Multilayer perceptron (MLP).
2. Long short-term memory (LSTM).
3. Convolutionary neural networks (CNN)
A MLP is a type of feedforward ANN and is typically composed by a network of multiple layers of perceptrons. A single perceptron is a function that can decide whether or not an input, represented by a vector of numbers, belongs to some specific class (Freund and Schapire 1999). A feedforward ANN is a network in which nodes do not form a cycle of connections, but only propagate forward. There are at least three levels of nodes in an MLP: an input layer, a hidden layer, and an output layer (see also Fig. 9). Each node, except for the input nodes, is a neuron with a nonlinear activation function. Backpropagation is a supervised learning technique used by MLP during training (Rosenblatt 1963). MLP were very popular in the 1980s for problems like speech and image recognition, but other methods like CNN have been more commonly used for the latter applications more recently (Duev et al. 2019). The latest applications of MLP are in the field of time series forecasting (see Brownlee (2020)).

LSTM is a deep learning architecture based on an artificial recurrent neural network (RNN). Unlike normal feedforward neural networks, LSTM has feedback connections, which allows them to handle not only individual data points (such as photos), but also complete data streams (such as speech or video). Applications of LSTM in astronomy include time series forecasting (Brownlee 2020) and time series anomaly detection (Malhotra et al. 2015).

CNN are regularized versions of multilayer perceptrons. Multilayer perceptrons are typically completely connected networks, meaning that each neuron in one layer is linked to all neurons in the following layer. These networks’ “complete connectedness” makes them vulnerable to data overfitting. Regularization, or preventing overfitting, can be accomplished in a variety of methods, including punishing parameters during training (such as weight loss) or reducing connectivity (skipped connections, dropout, etc.). To create patterns of increasing complexity, CNNs employ a different method of regularization: they take advantage of the hierarchical structure in data and use smaller and simpler patterns imprinted in their filters. CNNs have shown to be effective on difficult computer vision issues, reaching state-of-the-art results on tasks like picture classification while also serving as a component in hybrid models for completely new problems like object localization, image captioning, and more (Brownlee 2020). Because of their effectiveness, they are the most commonly used ANN architecture for image detection of Solar System small bodies (Duev et al. 2019, 2021).

Finally, more complex architecture involving combinations of LSTM and CNN are also possible and have been discussed in Brownlee (2020). Deep learning Python routines are available in the Tensorflow (Abadi et al. 2015) and Keras packages (Chollet 2018). Because of their applications to image processing, convolutional neural networks (CNN) can also very efficiently run on graphics processing unit (GPUs) (Strigl et al. 2010), and, more recently, have found applications in Tensor Processing Units (TPUs) (Yazdanbakhsh et al. 2021). Interested readers can find more information on the subject in the above references.

3 Applications to solar system small bodies

Smirnov and Markov (2017) applied KNN, Decision tree, Gradient boosting, and Logistic regression to identify resonant three-body asteroids in the main belt. The results of identification by machine learning methods were accurate and take much less time than numerical integration (seconds versus days). The authors identified 404 new asteroids in the 4J-2S-1A three-body resonance using a machine-learning methodology (see Fig. 10).
The subdivision of the observed objects of the Kuiper Belt (KBOs) into different dynamic classes is based on their orbits. Smullen and Volk (2020) used a GBoost model to automatically classify newly discovered objects into four classes.

Some families of asteroids may also be the result of spin-up-induced fission of a parent body in critical rotation (fission clusters, Pravec et al. (2010)). In at least four young groups of fission, more than 5% of its members belong to subfamilies. K-means can be used to automatically identify these groups (Carruba et al. 2020).

Carruba et al. (2019) applied hierarchical clustering algorithms HCM for supervised learning to identify families of asteroids. This approach can find family members with scores above 89.5%. The authors identify 6 new families and 13 new clusters in regions where the method can be applied.

Carruba et al. (2020) used machine learning classification algorithms to identify new family members based on the orbital distribution in \((a, e, \sin(i))\) of previously known family members. They compared the result of nine classification algorithms for autonomous and joint approaches. The Extremely Randomized Trees (ExtraTree) method had the highest precision, allowing to recover up to 97% of the family members identified with the standard HCM method. An application of this method to the Hansa asteroid family is shown in Fig. 11.
where previously known family members are shown as black dots, and members predicted by the ExtraTree approach are red circles.

Selecting the ideal machine learning model and its hyperparameters can be a difficult task, especially when the domain of hyperparameters to be optimized is vast. Genetic algorithms (Chen et al. 2004) have this name because they mimic the process of genetic evolution. They have recently been used to select the ideal algorithm for predicting the asteroid population in the secular resonances z_1 and z_2, which are resonances involving the commensurabilities $g - g_6 + s - s_6$ and $2(g - g_6) + s - s_6$, where g is the precession frequency of the longitude of pericenter, s is the precession frequency of the longitude of nodes, and the suffix 6 identify Saturn, the sixth planet (Carruba et al. 2021).

If we extend the field to general applications to asteroids, including observations, imaging, and taxonomy, three more works were produced in the last few years.

de Souza et al. (2021) used a logistic Bayesian additive regression tree model (BART) to find correlations between relative large flux uncertainties and systematic right ascension errors and large diameters in the Gaia database.

Taxonomic classification of NEA (Erasmus et al. 2017) and MBA (Erasmus et al. 2018) based on VRI spectrophotometry data was recently obtained with algorithms using KNN, SVM, and a Gaussian Naive Bayes method developed by Mommert et al. (2016).

Chen et al. (2018) used an algorithm developed by Lin et al. (2018) and based on Random forest and Isolation forest for the supervised and unsupervised learning to detect moving objects, including asteroids, from images obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP).

Asteroid’ brightness is not generally constant, but presents time variations that depend on the asteroid shape, albedo, rotation period, and other factors. ARIMA models can fit the light curve shapes with an error of less than 1%, even for very complex shapes. Based on the order of the best-fitting model (p, d, q), a new classification scheme for asteroid light curves can be introduced (Carruba and Aljbaae 2021).

ACFI can be applied to well-known systems, like the Hénon-Heiles Hamiltonian (see Fig. 12). For Solar System small bodies, it can be used to separate the effects of resonance overlapping from close encounters with massive bodies (Carruba et al. 2021).
Neural networks can be used to predict the orbital stability of asteroids in the main belt. Liu et al. (2021) used ANN to fit data obtained from the integration of 151,000 orbital initial conditions. A temporal stability map in the \((a, e)\) plane was obtained as a result.

Neural networks can also be used to automatically recognize images from time series. This allows one to automatically determine whether an asteroid is in resonance or not, as performed by (Carruba et al. 2021) for asteroids near the \(M1 : 2\) mean-motion resonance. Figure 13 displays a set of 20 images of resonant arguments for 20 such asteroids. The first panel displays the time behavior of an argument for an asteroid in a circulating orbit, the seventeenth one that of an asteroid in a librating state, and the third panel shows the case of an asteroid alternating phases of libration and circulation. Similar sets of images can be used to train artificial neural networks so that the process of identifying the resonant state is performed automatically.

Fig. 13 A set of 20 images of asteroids in or near resonant states of the 1:2 MMR (mean-motion resonance) with Mars. The x-axes display the predicted classification (0 for circulating orbits, 1 for switching and 2 for librating ones) and their probabilities of belonging to a given class. The titles of each figure panel are the asteroid identifications.
Aljbaae et al. (2021) applied a Time-Series prediction with Neural Networks in Python with Keras to identify non-chaotic behavior of spacecraft close to the asteroid (99942) Apophis during its exceptionally close approach with Earth on 2029 April 13, at about 38 000 km from the Earth’s center. The authors classify orbits based on a relationship between the difficulty in the prediction and the stability. This method can isolate the most regular orbits that could be stable in the system. A good correlation was found between the Time-Series prediction approach and MEGNO (Cincotta and Simó 2000) or the Perturbation Map of type II (PMap) (Sanchez and Prado 2017, 2019). Pugliatti and Topputo (2020) adopted a CNN approach for the small-body shape recognition task. The authors obtained very good performances of their model, with a precision of 98.52%. Meaningful results are also presented with varying illumination conditions.

Finally, Li et al. (2022) recently used ANN to predict the trajectories of the 2:3 Neptune resonators over periods of ≈ 20000 yrs. The outcome of the model can predict the resonant angle with an accuracy as small as of a few degrees. This approach, faster than standard numerical methods, can help in identifying populations of KBOs to be discovered in future surveys.

If we extend the field to include the detection and imaging of small bodies, a series of related papers have been published in the last years. Duev et al. (2019) created DeepStreaks in 2019, a convolutional neural network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects identified in the Zwicky Transient Facility (ZTF), a wide-field, time-domain survey. The method cut human involvement in the streak detection process by orders of magnitude, from several hours to less than 10 minutes every day.

Duev et al. (2021) also developed Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF). Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near-real-time (see Fig. 14 for an example of images used to train the ANN. Information on the ANN architecture is available in Fig. 1 of Duev et al. (2021)). This includes the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).

Neural networks can also be used to automatically classify asteroids into their taxonomic spectral classes. Penttilä et al. (2021) used feed-forward neural networks to predict asteroid taxonomies with the Bus-DeMeo classification using datasets simulating GAIA observations, and, more recently, simulating Legacy Survey of Space and Time (LSST) observations (Penttilä et al. 2022). Results show that neural networks can identify taxonomic classes of asteroids in a robust manner.
Fig. 14 A set of images used by Tails for the purpose of training ANNs to recognize comets image data. Image adapted from the Fig. 1 of Duev et al. (2021) and reproduced with permission of the American Astronomical Society (©AAS)
4 From classification to insight: assessing the impact of machine learning applications to asteroid dynamics

Fluke and Jacobs (2020) utilized seven categories to assess recently published literature, where the last two are those with a higher scientific outcome.

1. **Classification**: objects or features are assigned to one of several categories or labels. The machine learning algorithm learns the properties that link an instance to a category based on a training set (labeled or unlabeled). When the algorithm is applied to a new instance, it assigns the most likely category label.

2. **Regression**: The assignment of a numerical value (or values) based on the characteristics that the machine learning algorithm has learned or otherwise predicted. A training set, similar to classification, can be utilized, or the features might be deduced from the dataset.

3. **Clustering**: these techniques assess if an object or feature is a part of (or a member of) anything. This could be a physical structure or association, like an asteroid family, or a region within an N-dimensional parameter space.

4. **Forecasting**: The machine learning algorithm’s goal is to learn from prior occurrences and anticipate or forecast the occurrence of a similar event. The forecast has an inherent time dependence.

5. **Generation and Reconstruction**: Missing information is generated and reconstructed, with the expectation that it will be consistent with the underlying truth. The absence of information could be caused by noise, processing artifacts, or other astronomical events, all of which conspire to obfuscate the required signal.

6. **Discovery**: New celestial objects, features, or relationships are discovered as a result of using a machine learning or artificial intelligence technology.

7. **Insight**: New scientific knowledge is demonstrated as a result of applying machine learning, which goes beyond the finding of astronomical objects. This includes situations where information about the suitability of using machine learning, dataset selection, hyperparameters, and comparisons to human-based classification is gathered.

Classification, regression, and clustering methods are frequently compared to a comparable human-centered approach, but with the need to “scale-up” either the size of the dataset to be studied or the time it takes to complete the work. The results of classification and regression can be the culmination of an investigation or the input to a forecasting, generating, finding, or insight process.

These seven categories, which constitute a loose hierarchy of sophistication, provide an assessment of the maturity of the use of machine learning and artificial intelligence within a subfield of astronomy. Using a machine learning technique to conduct a classification, regression, or clustering problem is a frequent starting point. Machine learning can be used to estimate expected future outcomes, like future solar flares (Florios et al. 2018), or produce discoveries, like the identification of new candidates of rare objects (Zhang et al. 2018), once it has been established as being comparable to, or exceeding, a more traditional approach.

How can papers published in the field of asteroid dynamics and Solar System small bodies be classified in terms of these categories? We can divide the field into five main types of subfields:

1. **Resonant and chaotic dynamics**: in this subfield we consider papers that deal with the identification and classification of asteroidal populations in mean-motion and secular resonances, or deal with the effects of chaotic motions either caused by resonant dynamics or stochastic effects, like close encounters with massive bodies.
Table 1 A qualitative summary of the categories of ML algorithms and the most common subareas of research for asteroid dynamics (first four rows) and for the extended area of applications to small bodies (second set of five rows)

Nature/type	Classification	Regression	Clustering	Forecasting	Generation	Discovery	Insight
Res. & Chaotic Dyn	6	2	1	7	3	2	0
Ast. Fam. Id.	1	0	2	3	1	2	0
Time series An.	3	1	1	3	2	1	0
Image recognition	1	0	0	1	1	0	0
Res. & Chaotic Dyn	6	3	1	7	3	3	0
Ast. Fam. Id.	1	0	2	3	1	2	0
Time series An.	3	2	1	4	4	2	0
Image recognition	1	1	0	4	4	4	2
Ast. Tax. Phys	4	1	0	4	1	1	0

2. **Asteroid families’ identification**: articles that deal with identifying new members of known or newly identified asteroid groups, which could either be dynamical families or groups produced by rotational fission.

3. **ML applications to time series analysis**: articles that focus on the prediction and classification of a time series, which could be a time series of orbital elements, an asteroid light curve, or other applications.

4. **Image recognition**: these are papers that mostly use *Artificial Neural Networks (ANN)* to recognize patterns or images. Applications include asteroid or comets images, asteroid spectra, and asteroid resonant arguments, among others.

5. **Asteroid taxonomy and physical properties**: papers that focus on obtaining taxonomical information from spectral or spectrophotometric data, or physical properties like masses, shapes, and densities, using *ML*.

These categories are not mutually exclusive. For instance, papers that deal with resonant dynamics can use ANN to recognize images of resonant arguments (Carruba et al. 2021). Articles that focus on chaos may use time series analysis techniques to identify regular and chaotic orbits (Carruba et al. 2021). Once the number of papers in the field increases, other divisions into subfields may appear to be more useful for classifying research done in this area. For the time being, however, we will use this scheme to organize current papers in the field.

Table 1 displays our analysis of 12 papers in the field of machine learning applied to asteroid dynamics, and 21 in the broader area of Solar System small bodies. For each of the sub-areas that we introduced in this section, we classify if a paper covers one or more of the seven categories of scientific outcomes introduced by (Fluke and Jacobs 2020). Results are also summarized for the whole subareas of asteroid dynamics and small bodies in Fig. 15. A more detailed classification, article by article, is also presented in Table 2 in “Appendix 1”.

What can be learned from this analysis? Fluke and Jacobs (2020) used a hierarchy of three categories to evaluate the maturity of ML within a subfield of astronomy: *emerging, progressing, and established*.

The *emerging* stage is used for astronomy and astrophysics subfields that are beginning to study the use of machine learning and artificial intelligence, generally by attacking easier to solve problems. This could be a challenge that necessitates a classification or regression strategy, or a comparison of machine learning and another, well-known method. For *emerging*
communities, the ML methodologies best suited to a given problem may have not yet been encountered, or the community is tiny.

In a progressing stage, a greater range of approaches are utilized, or a single technique is used several times, or there is an immediate jump to the forecasting, discovery, or insight phases in fields regarded as progressing in their usage of ML.

Finally, a subfield reached an established stage if the application of machine learning has become essential in established subfields, there is a considerable body of research, and the focus is mostly on predicting, discoveries, or insight. It is no longer necessary to assess the applicability of machine learning because its application has become of wide use.

Fluke and Jacobs (2020) classified the study of Small bodies objects as having reached a progressing stage. Based on our analysis, we agree on this result: there is a wider community already studying Small bodies, which has produced works that produced scientific outcomes reaching the categories of discovery and insight, like the articles from Duev et al. (2019) and Duev et al. (2021), with the first ML-assisted discovery of a comet (C/2020 T2). More advanced techniques, like the use of neural networks for image recognition, are becoming more and more common in the area, almost reaching the status of an established method, associated with the (Fluke and Jacobs 2020) progressing stage.

This is less true if we consider the subfield of asteroid dynamics. The community working in the area is less established, with six groups with published papers so far, fewer papers produced scientific outcomes that can be categorized as belonging to generation or discovery, and none reached the stage of insight. Overall, we believe that ML applied to asteroid dynamics may be classified as still being in the emerging phase, but already approaching a progressing phase.

5 Future trends

Having reviewed recent literature in the field, it is now time to attempt to look for possible future trends in the area. In performing such a task one always runs the risk of painting a biased portrait, influenced by personal experiences and expectations. Yet, we think that this could be a useful thought experiment, and could at least form the base for a more educated discussion on the subject.
Most recent efforts have focused on the use of ANNs, either for classification of images of asteroid resonant arguments (Carruba et al. 2021), for the detection of images of Solar System small bodies (Duev et al. 2019, 2021), or for classifying asteroids into their taxonomic spectral classes Penttilä et al. (2021, 2022). The use of more and more complex architecture of ANNs, as described in Sect. 2.4, could significantly improve the speed and efficiency of the models currently used by the scientific community. It is reasonable to expect that some of the next scientific advancements may occur in this area.

An engine for progress in the field of ML has been in the recent past Kaggle competitions (see also https://www.kaggle.com/competitions, last accessed on June 1st 2022). Kaggle competitions are machine learning tasks made by Kaggle or other companies, like Google or WHO. Competitions range in types of problems and complexity, but they are generally open to novices. They usually award a monetary prize for the best problem solution. A recent example of a Kaggle-like competition in the field of asteroid dynamics has been a challenge hosted in Kelvins about the prediction of the effects of an impact while deflecting asteroids in the context of the HERA mission (https://kelvins.esa.int/-planetary-defence/, last accessed on August 5th, 2021). A dataset is provided to explore a way to do this task in a purely ML-driven way.

Another way in which the field could advance is by using algorithms that have found applications in other fields, but are not yet of common use among the small bodies community. Examples of these are density-based clustering algorithms, like $DBSCAN$ and $GDBSCAN$, which can cluster point objects, as well as spatially extended objects according to both, their spatial and their non-spatial attributes (Sander et al. 1998).

Concerning deep learning algorithms, a very promising method is the Transformer architecture (Vaswani et al. 2017). Complex recurrent or convolutional neural networks with an encoder and a decoder are the most common sequence transduction models. The finest models additionally use an attention mechanism to connect the encoder and decoder. The Transformer is a new simple network architecture model purely based on attention processes, with no recurrence or convolutions. Experiments on two machine translation tasks reveal that these models are superior in quality, parallelizable, and take much less time to train.

Another area where applications of ML are most likely to be of great importance is the analysis of data produced by next-generation astronomical surveys. We already saw that large databases produced by space missions like GAIA will need ML methods to fully take advantage of the information available in the data (Penttilä et al. 2021). Ongoing observational robotic surveys, like those produced by the Zwicky Transient Facility (ZTF) (Dekany et al. 2020) have already produced modeling efforts in the ML area, with the already discussed papers on the DeepStreaks (Duev et al. 2019) and Tails (Duev et al. 2021) software packages for the identification of fast-moving near-Earth objects and comets. ZTF is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. ML is already commonly used for the analysis of such data, and plans to expand its implementations are already underway (Mahabal et al. 2019).

Data produced by ZTF are, however, estimated to be just $\approx 10\%$ of what is expected from the Vera C. Rubin Observatory. This 8.4-meter three-mirror design telescope, currently under construction in Chile, is expected to start operations in October 2023. Jones et al. (2015) estimated that the catalogs generated by the Vera C. Rubin Observatory will increase the known number of small bodies in the Solar System by a factor of 10-100 times, among all populations, with ≈ 1 million new asteroid discoveries predicted in just the first year of operations. The need to handle such a massive amount of data has already caused the development of new methods, like the use of Lomb-Scargle algorithm on Graphics Processing
Units (Gowanlock et al. 2021). More ML-oriented software development is expected in the next years.

6 Conclusions

In this work, we reviewed 21 papers with applications of ML to Solar System bodies, 12 of which had a focus on ML applied to asteroid dynamics. A brief outline of the methods used in the reviewed references has been first provided, with references to the theoretical papers most relevant to each approach, and links to some of the most commonly used software packages for each method. Current references were then classified in terms of metrics recently used by Fluke and Jacobs (2020) to assess the impact of applications of ML algorithms in other astronomical subfields.

ML applications to Solar System bodies, which include imaging and spectrophotometry of small bodies have already reached the progressing stage, with established research communities and methodologies, as well as papers describing how the use of ML led to the discovery of new celestial objects, or features, or to new insights in the field. ML applied to asteroid dynamics has seen many recent developments, especially in the Space missions to asteroids area. However, since fewer papers producing discoveries or insights are still produced, we believe that this area may be still considered as an emerging field, moving on to the progressing phase.

As discussed in Sect. 5, the most recent efforts have focus on the use of ANNs, either for classification of images of asteroid resonant arguments, for the detection of images of Solar System small bodies, or for classifying asteroids into their taxonomic spectral classes Developments on the line of what was discussed in Sect. 2.4, could in the next year significantly improve the speed and efficiency of methods currently used by the scientific community.

Finally, the development of new, more advanced, ML algorithms, and the need to develop new methods able to handle the massive amount of data expected to be produced by robotic astronomical surveys, like the Zwicky Transient Facility (ZTF) and the Vera C. Rubin Observatory have already been a powerful motivation to develop new ML methods for data analysis, as discussed in Sect. 5. It is fair to expect many new exciting developments and discoveries in the field in the next few years.

Acknowledgements We are grateful to two anonymous reviewers for helpful and constructive comments that much increased the quality of this work. We would like to thank the Brazilian National Research Council (CNPq, grant 304168/2021-1), the São Paulo Research Foundation (FAPESP, grant 2016/024561-0), and the Institutional Training program (PCI/INPE, subproject 6.8.1, Public Call 01/2021). We are grateful to Dr. E. Smirnov and Dr. D. Duev for allowing us to use figures from their papers (Smirnov and Markov 2017; Duev et al. 2021), and to Dr. E. Smirnov for reading a preliminary version of this paper and for useful comments and suggestions. VC and RC are part of “Grupo de Dinâmica Orbital & Planetologia (GDOP)” (Research Group in Orbital Dynamics and Planetology) at UNESP, campus of Guaratinguetá. This is a publication from the MASB (Machine-learning applied to small bodies, https://valeriocarruba.github.io/Site-MASB/) research group. Questions on this paper can also be sent to the group email address: mlasb2021@gmail.com

Author Contributions All authors contributed to the study conception and design. Material preparation and data collection were performed by Valerio Carruba, Safwan Aljbaae and Rita Cassia Domingos. The first draft of the manuscript was written by Valerio Carruba and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Appendix 1: data on current applications of ML in asteroid dynamics

In this section we report the data used to classify current literature according to Fluke and Jacobs (2020) category scheme, as discussed in Sect. 4. Our data are shown in Table 2.

Article number	Reference	ML application	Article field	Subject subfield	Category
1	Smirnov and Markov (2017)	SL	AD	RD	C,R,F
2	Smullen and Volk (2020)	SL	AD	AFI	R,CLF
3	Carruba et al. (2020)	UL	AD	AFI	CL,F
4	Carruba et al. (2019)	UL	AD	AFI	CL,F
5	Carruba et al. (2020)	SL	AD	AFI	C,F,D
6	Carruba et al. (2021)	SL	AD	AFI,RD	R,F,G,D
7	de Souza et al. (2021)	SL	SL	ATP	C,F
8	Erasmus et al. (2017)	SL	SL	ATP	C,F
9	Erasmus et al. (2018)	SL	SL	ATP	C,F
10	Chen et al. (2018)	UL	SL	IR	R,D,I
11	Carruba and Aljbaae (2021)	TSA	AD	TSA	C,R,CL,F,G
12	Carruba et al. (2021)	TSA	AD	RD,TSA	C,F,D
13	Liu et al. (2021)	DL	AD	RD	C,F,G
14	Carruba et al. (2021)	DL	AD	RD,IR	C,F,G
15	Aljbaae et al. (2021)	DL	AD	RD,TSA	C,F,G
16	Duev et al. (2019)	DL	SL	IR	F,D,G
17	Duev et al. (2021)	DL	SL	IR	F,D,G,I
18	Penttilä et al. (2021)	DL	SL	ATP	C,F,G
19	Penttilä et al. (2022)	DL	SL	ATP	C,F,G
20	Pugliatti and Topputo (2020)	DL	AD	ATP	C,G
21	Li et al. (2022)	DL	SL	RD,TSA	R,F,G,D

The first column shows the article number, which refers to the order of citation in this work. The second column yields the reference to the cited work. The third column displays the types of machine learning applications, which could be either an application of supervised (SL) or unsupervised (UL) learning, time-series analysis (TSA), or deep learning (DL). The fourth column show if the article is in the field of asteroid dynamics (AD) or small bodies in the Solar System (SB). The fifth column shows the article field, which can be resonant and chaotic dynamics (RD), asteroid families’ identification (AFI), time-series analysis (TSA), Image recognition (IR), asteroid taxonomy and physical properties (ATP), or space missions to asteroids (ASM). Finally, the sixth column shows the Fluke and Jacobs (2020) categories by which the scientific outcomes of the paper were classified in this work: Classification (C), Regression (R), Clustering (CL), Forecasting (F), Generation and Reconstruction (G), Discovery (D), and Insight (I). Multiple categories may apply to a single work.
References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, GS., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. software available from https://www.tensorflow.org/(2015)

Akhter, M.F., Hassan, D., Abbas, S.: Predictive ARIMA Model for coronal index solar cyclic data. Astron. Comput. 32, 100403 (2020). https://doi.org/10.1016/j.ascom.2020.100403

Aljbaae, S., Souchay, J., Carruba, V., Sanchez, DM., Prado, AFBA.: Influence of Apophis’ spin axis variations on a spacecraft during the 2029 close approach with Earth. Accepted by the Romanian Astronomical Journal (2021) arXiv:2105.14001

Ball, N.M., Brunner, R.J.: Data mining and machine learning in astronomy. Int. J. Modern Phys. D 19(7), 1049–1106 (2010). https://doi.org/10.1142/S0218271810017160

Baron, D.: Machine learning in astronomy: a practical overview. (2019) arXiv e-prints arXiv:1904.07248

Bendjoya, P., Zappalà, V.: Asteroid Family Identification, Arizona Univ. Press, pp. 613–618 (2002)

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

Boehmke, B., Greenwell, B.: Gradient Boosting. Hands-On Machine Learning. Chapman and Hall, London (2019)

Box, Jenkins (ed.): Time series analysis. Holden-Day, Forecasting and control, San Francisco (1976)

Brownlee, J.: Deep Learning for Time Series, Forecasting Machine Learning Mastery, San Juan, PR, USA (2020)

Carruba, V., Aljbaae, S.: Predicting asteroid lightcurves using ARIMA models. In: European Planetary Science Congress, pp. EPSC2021–36 (2021) https://doi.org/10.5194/epsc2021-36

Carruba, V., Aljbaae, S., Lucchini, A.: Machine-learning identification of asteroid groups. MNRAS 488(1), 1377–1386 (2019). https://doi.org/10.1093/MNRAS/stz1795

Carruba, V., Aljbaae, S., Domingos, R.C., Lucchini, A., Furlaneto, P.: Machine learning classification of new asteroid families members. MNRAS 496(1), 540–549 (2020). https://doi.org/10.1093/MNRAS/staa1463

Carruba, V., Spoto, F., Barletta, W., Aljbaae, S., Fazenda, A.L., Martins, B.: The population of rotational fission clusters inside asteroid collisional families. Nat. Astron. 4, 83–88 (2020). https://doi.org/10.1038/s41550-019-0887-8

Carruba, V., Aljbaae, S., Domingos, R.C.: Identification of asteroid groups in the z1 and z2 nonlinear secular resonances through genetic algorithms. Celest. Mech. Dyn. Astron. 133(6), 24 (2021). https://doi.org/10.1007/s10569-021-10021-z

Carruba, V., Aljbaae, S., Domingos, R.C., Barletta, W.: Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars. MNRAS 504(1), 692–700 (2021). https://doi.org/10.1093/MNRAS/stab914

Chen, P.W., Wang, J.Y., Lee, H.: Model selection of svms using ga approach. 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat No04CH37541) vol. 3, pp. 2035–2040 (2004)

Chen, T., Guestrin, C.: Xgboost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) https://doi.org/10.1145/2939672.2939785

Chen, Y.T., Lin, H.W., Alexandersen, M., Lehner, M.J., Wang, S.Y., Wang, J.H., Yoshida, F., Komiyama, Y., Miyazaki, S.: Searching for moving objects in HSC-SSP: Pipeline and preliminary results. Publ. Astron. Soc. Jpn. 70, S38 (2018). https://doi.org/10.1093/pasj/psx145

Chipman, H.A., George, E.I., McCulloch, R.E.: Bart: Bayesian additive regression trees. Appl. Stat, Ann (2010). https://doi.org/10.1214/09-AOAS285

Chollet, F. et al.: Keras: The Python Deep Learning library (2018)

Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials - I. Astron. Astrophys. Suppl. 147, 205–228 (2000). https://doi.org/10.1051/aas:2000108

Cortes, C., Vapnik, V.: Support-vector networks. Chem. Biol. Drug Des. 297, 273–297 (2009). https://doi.org/10.1007/978-2-88905-509-208

Cramer, J.: The early origins of the logit model. Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci. 35(4), 613–626 (2004). https://doi.org/10.1016/j.shpsb.2004.09.003

Dalpiaz, et al.: Applied Statistics with R, STA T 420. University of Illinois at Urbana-Champaign, (2021) https://daviddalpiaz.github.io/appliedstats/

de Souza, R.S., Krone-Martins, A., Carruba, V., de Cassia, D.R., Ishida, E.E.O., Aljbaae, S., Huanan Espinoza, M., Barletta, W.: Probabilistic modeling of asteroid diameters from Gaia DR2 errors. Res. Notes Am. Astron. Soc. 5(8), 199 (2021). https://doi.org/10.3847/2515-5172/ac205e
Dekany, R., Smith, R.M., Riddle, R., Feeney, M., Porter, M., Hale, D., Zolkower, J., Belicki, J., Kaye, S., Henning, J., Walters, R., Cromer, J., Delacroix, A., Rodriguez, H., Reiley, D.J., Mao, P., Hover, D., Murphy, P., Burruss, R., Baker, J., Kowalski, M., Reif, K., Mueller, P., Bellm, E., Graham, M., Kulkarni, S.R.: The Zwicky transient facility: observing system. Publ. Astron. Soc. Pac. 132(1009), 038001 (2020). https://doi.org/10.1088/1538-3873/ab4ca2

Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366a), 427–431 (1979). https://doi.org/10.1080/01621459.1979.10482531

Duev, D.A., Mahabal, A., Ye, Q., Tirumala, K., Belicki, J., Dekany, R., Frederick, S., Graham, M.J., Laher, R.R., Masci, F.J., Prince, T.A., Riddle, R., Rosnet, P., Soumagnac, M.T.: DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning. MNRAS 486(3), 4158–4165 (2019). https://doi.org/10.1093/MNRAS/stz1096

Duev, D.A., Bolin, B.T., Graham, M.J., Kelley, M.S.P., Mahabal, A., Bellm, E.C., Coughlin, M.W., Dekany, R., Helou, G., Kulkarni, S.R., Masci, F.J., Prince, T.A., Riddle, R., Soumagnac, M.T., van der Walt, S.J.: Tails: chasing comets with the Zwicky transient facility and deep learning. AJ 161(5):218, (2021) https://doi.org/10.3847/1538-3881/abea7b/meta

Erasmus, N., Mommert, M., Trilling, D.E., Sickafoose, A.A., van Gend, C., Hora, J.L.: Characterization of near-earth asteroids using KMTNET-SAAO. AJ 154(4):162, (2017) https://doi.org/10.3847/1538-3881/aa88be

Erasmus, N., McNeill, A., Mommert, M., Trilling, D.E., Sickafoose, A.A., van Gend, C.: Taxonomy and light-curve data of 1000 serendipitously observed main-belt asteroids. Astrophys. J. Suppl. Ser. 237(1), 19 (2018). https://doi.org/10.3847/1538-4365/aac38f

Florios, K., Kontogiannis, I., Park, S.H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.: Forecasting solar flares using magnetogram-based predictors and machine learning. Sol. Phys. 293(2), 28 (2018). https://doi.org/10.1007/s11207-018-1250-4

Fluke, C.J., Jacobs, C.: Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIREs Data Min. Knowl. Discov. 10(2), e1349 (2020). https://doi.org/10.1002/widm.1349

Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. Mach. Learn. (1999). https://doi.org/10.1023/A:1007662407062

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting (1995)

Collaboration, G., Spoto, F., Tanga, P., et al.: Gaia data release 2. Observations of solar system objects. A&A 616, A13 (2018). https://doi.org/10.1051/0004-6361/201832900

Gowanlock, M.G., Kramer, D.A., Trilling, D.E., Butler, N.R., Donnelly, B.: Fast period searches using the Lomb-scargle algorithm on graphics processing units for large datasets and real-time applications. Astron. Comput. 36, 100472 (2021)

Gudivada, V., Irfan, M., Fathi, E., Rao, D.: Chapter 5 - cognitive analytics: Going beyond big data analytics and machine learning. In: Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C. (eds) Cognitive Computing: Theory and Applications, Handbook of Statistics, vol. 35, Elsevier, pp. 169–205, (2016) https://doi.org/10.1016/bs.host.2016.07.010

Hill, J., Linero, A., Murray, J.: Bayesian additive regression trees: a review and look forward. Ann. Rev. Stat. Appl. 7(1), 251–278 (2020). https://doi.org/10.1146/annurev-statistics-031219-041110

Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1, IEEE Computer Society, M, ICDAR ‘95, pp. 278–282 (1995)

Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998). https://doi.org/10.1109/34.709601

Jones, R.L., Jurić, M., Ivezic, V.: Asteroid discovery and characterization with the large synoptic survey telescope. Proc. Int. Astron. Union 10(S318), 282–292 (2015). https://doi.org/10.1017/s1743921315008510

Li, X., Li, J., Xia, Z.J., Georgakarakos, N.: Machine-learning prediction for mean motion resonance behaviour - The planar case. MNRAS 511(2), 2218–2228 (2022). https://doi.org/10.1093/MNRAS/stac166

Lin, H.W., Chen, Y.T., Wang, J.H., Wang, S.Y., Yoshida, F., Ip, W.H., Miyazaki, S., Terai, T.: Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline. Publ. Astron. Soc. Jpn. 70, S39 (2018). https://doi.org/10.1093/pasj/psx082

Liu, C., Gong, S., Li, J.: Stability time-scale prediction for main-belt asteroids using neural networks. MNRAS 502(4), 5362–5369 (2021). https://doi.org/10.1093/MNRAS/stab080

Liu, E.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17
MacQueen, JB.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds) Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

Mahabal, A., Rebbapragada, U., Walters, R., Masci, F.J., Blagorodnova, N., van Roestel, J., Ye, Q.Z., Biswas, R., Burdge, K., Chang, C.K., Duev, D.A., Golkhou, V.Z., Miller, A.A., Nordin, J., Ward, C., Adams, S., Bellm, E.C., Branton, D., Bue, B., Cannella, C., Connolly, A., Dekany, R., Feindt, U., Hung, T., Fortson, L., Frederic, S., Fremling, C., Gezari, S., Graham, M., Groom, S., Kasiwal, M.M., Kulkarni, S., Kupfer, T., Lin, H.W., Lintott, C., Lunnan, R., Parejko, J., Prince, T.A., Riddle, R., Rusholme, B., Saunders, N., Sedaghat, N., Shupe, D.L., Singer, L.P., Soumagnac, M.T., Szkody, P., Tachibana, Y., Tirumala, K., van Velzen, S., Wright, D.: Machine learning for the zwicky transient facility. Publ. Astron. Soc. Pac. 131(997), 038002 (2019). https://doi.org/10.1088/1538-3873/aaf3fa

Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2015)

Mills, T.C. (ed.): Economic Forecasting, 1–2, vol Two volume set. Edward Elgar Publishing, (1999) https://EconPapers.repec.org/RePEc:elg:eebook:1506

Mommert, M., Trilling, D.E., Borth, D., Jedicke, R., Butler, N., Reyes-Ruiz, M., Pichardo, B., Petersen, E., Axelrod, T., Moskovitz, N.: First results from the rapid-response spectrophotometric characterization of near-earth objects using UKIRT. AJ 151(4):98 (2016) https://doi.org/10.3847/0004-6256/151/4/98

Moschini, G., Houssou, R., Bovay, J., Robert-Nicoud, S.: Anomaly and fraud detection in credit card transactions using the ARIMA model. (2020) arXiv e-prints arXiv:2009.07578

Pearson, K.: Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. Ser. I 58, 240–242 (1895)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Machine Learning in Python. (2012) arXiv e-prints arXiv:2011.04190

Penttilä, A., Hietala, H., Muinonen, K.: Asteroid spectral taxonomy using neural networks. A&A 649, A46 (2021). https://doi.org/10.1051/0004-6361/202038545

Penttilä, A., Fedorets, G., Muinonen, K.: Taxonomy of asteroids from the legacy survey of space and time using neural networks. Front. Astron. Space Sci. (2022) https://doi.org/10.3389/fspas.2022.816268

Pesenson, M.Z., Pesenson, I.Z., McCollum, B.: The data big bang and the expanding digital universe: high-dimensional, complex and massive data sets in an inflationary epoch. Adv. Astron. 2010, 350891 (2010). https://doi.org/10.1155/2010/350891

Piryonesi, S.M., El-Diraby, T.: Data analytics in asset management: Cost-effective prediction of the pavement condition. J. Infrastruct. Syst. (2020). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512

Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D.J., Harris, A.W., Galád, A., Vaduescu, O., Pozo, F., Barr, A., Longa, P., Vachier, F., Colas, F., Pray, D.P., Pollock, J., Reichart, D., Ivarsen, K., Haislip, J., Lacluyze, A., Kušnirák, P., Henych, T., Marchis, F., Macomber, B., Jacobson, S.A., Krugly, Y.N., Sergeev, A.V., Leroy, A.: Formation of asteroid pairs by rotational fission. Nature 466(7310), 1085–1088 (2010). https://doi.org/10.1038/nature09315

Pugliatti, M., Topputo, F.: Small-body shape recognition with convolutional neural network and comparison with explicit features based methods. AAS/AIAA Astrodynamics Specialist Conference, pp. 1–20 (2020)

R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

Rosenblatt, F.: Principles of neurodynamics perception and the theory of brain mechanisms. Am. J. Psychol. 76, 705 (1963)

Seabold, S., Perktold, J.: Statsmodels: Econometric and statistical modeling with python. In: 9th Python in Science Conference (2010)
Smirnov, E.A., Markov, A.B.: Identification of asteroids trapped inside three-body mean motion resonances: a machine-learning approach. MNRAS 469(2), 2024–2031 (2017). https://doi.org/10.1093/MNRAS/stx999

Smullen, R.A., Volk, K.: Machine learning classification of Kuiper belt populations. MNRAS 497(2), 1391–1403 (2020). https://doi.org/10.1093/MNRAS/staa1935

Strigl, D., Kofler, K., Podlipnig, S.: Performance and scalability of gpu-based convolutional neural networks. In: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2010), IEEE Computer Society, Los Alamitos, CA, USA, (2010) https://doi.org/10.1109/PDP.2010.43

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, AN., Kaiser, L., Polosukhin, I.: Attention is all you need. (2017) arXiv:1706.03762

Wang, D.: Unsupervised learning: foundations of neural computation. AI Magaz. 22(2), 101 (2001). https://doi.org/10.1609/aimag.v22i2.1565

Yazdanbakhsh, A., Seshadri, K., Akin, B., Laudon, J., Narayanaswami, R.: An evaluation of edge TPU accelerators for convolutional neural networks. (2021) arXiv e-prints arXiv:2102.10423

Zhang, J., Zhang, Y., Zhao, Y.: Imbalanced learning for RR lyrae stars based on SDSS and GALEX databases. AJ 155(3):108, (2018) https://doi.org/10.3847/1538-3881/aaa5b1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.