First-line eradication of *H pylori* infection in Europe: A meta-analysis based on congress abstracts, 1997-2004

György M Buzás, Jolán Józan

Abstract

AIM: To meta-analyse the European abstracts presented between 1997-2004 at the European *H pylori* Study Group, United European Gastroenterology Week meetings and World Congresses of Gastroenterology.

METHODS: The abstracts of randomized/controlled prospective studies were classified into groups based on first-line eradication schedules. The quality of the abstracts was checked by a validated score system. The pooled eradication rates (PER) and combined odds ratios (OR) were calculated and compared with the published meta-analyses.

RESULTS: The PER of proton pump inhibitor-based (PPI) one week triple therapies was 81.4% (confidence interval, 95% CI: 78.5-84.5). Ranitidine bismuth citrate-based (RBC) triple regimens have an efficiency rate of 78.5% (95% CI: 70.5%-84.3%) (*P* = 0.28 vs PPI). The OR for PPI effect vs RBC regimens was 1.1 (95% CI: 0.92-1.30). H₂ receptor antagonist-based triple therapies achieved 64.1% (95% CI: 52.6-75.6) (*P* = 0.02 < 0.05 vs PPI), the OR vs PPI regimens was 1.55 (95% CI: 0.72-3.78). PPI-based double combinations were less efficient than triple regimens (PER: 55.0%, OR: 4.90, 95% CI: 2.36-9.70). Quadruple regimens were successful in 82.6% (95% CI: 76.0-89.7), the OR vs triple therapies was 0.80 (0.62-1.03). Clarithromycin + amoxicillin or nitromidazole combinations were efficient in 80.5% (95% CI: 77.2-84.2) and 83.8% (95% CI: 81.7-85.9), respectively. Amoxicillin + nitromidazole therapies eradicated the infection in 73.5% (66.6-78.5) (*P* = 0.01 < 0.05 vs clarithromycin-based regimens).

CONCLUSION: PPI/RBC-based triple therapies achieved comparable results with the meta-analyses. H₂-receptor antagonists and PPI-based double combinations were less efficient. Triple and quadruple regimens were equally effective. Clarithromycin + either amoxicillin or nitromidazole containing regimens were more effective than amoxicillin + nitromidazole combinations. High quality congress abstracts constitutes a valuable pool of data which is suitable for meta-analytical workup.

© 2006 The WJG Press. All rights reserved.

Key words: Antimicrobials; Eradication; *H pylori*; Proton pump Inhibitors; Ranitidine bismuth citrate

Buzás GM, Józan J. First-line eradication of *H pylori* infection in Europe: A meta-analysis based on congress abstracts, 1997-2004. *World J Gastroenterol* 2006; 12(33): 5311-5319

http://www.wjgnet.com/1007-9327/12/5311.asp

INTRODUCTION

Numerous treatment regimens have been tested for their efficacy in curing *H pylori* infection worldwide[1-3]. Meta-analysis has become a frequently used method for resolving such uncertainties and obtaining sound data in evidence-based medicine. The purpose of a meta-analysis is to statistically combine the results of similar trials and such studies are aimed at improving the estimation of treatment effects and minimizing the potential biases of such estimations. Following the increased rate of randomized controlled trials (RCT) published, the importance of meta-analyses has risen and its methodology has become more and more sophisticated. This is particularly true for *H pylori* eradication where we see an exponential rise of studies published worldwide. As a part of the evidence-based medicine, most of the meta-analyses only addressed the RCTs. However, it was rapidly realized, that RCTs do not come close to covering the complete range of studies and therefore, the inclusion of studies representing lower levels of evidence or congress abstracts was also accepted in some of the studies[4,5]. Score systems for assessing the quality of meta-analyses, RCTs[6] and abstracts[8] have also been worked out. Participation at scientific meetings represents a popular opportunity to disseminate results which, because of linguistic barriers would hardly be published in peer-reviewed journals.

The aim of our study was the meta-analysis of the European abstracts dealing with the first-line treatment of the...
The eradication regimens were pooled into groups shown in meta-analyses based on the data of RTCs in order to assess the relative merits of various regimens. The regimens were classified into six groups:

1. PPI-based one week triple regimens:
 - PPI-based one week triple combinations;
 - Ranitidine bismuth citrate (RBC)-based one week triple combinations;
 - H2-receptor antagonist-based triple regimens;
 - Double combinations (PPI/RBC + 1 antimicrobial);
 - Quadruple therapies (PPI + bismuth compound + 2 antimicrobials);
 - Antimicrobial-based analysis: - PPI + clarithromycin + amoxicillin or a nitroimidazole, - PPI + amoxicillin + nitroimidazole, - RBC + clarithromycin + amoxicillin or a nitroimidazole.

2. Ranitidine bismuth citrate (RBC)-based one week triple combinations;

3. H2-receptor antagonist-based triple regimens;

4. Double combinations (PPI/RBC + 1 antimicrobial);

5. Quadruple therapies (PPI + bismuth compound + 2 antimicrobials);

6. Antimicrobial-based analysis: - PPI + clarithromycin + amoxicillin or a nitroimidazole, - PPI + amoxicillin + nitroimidazole, - RBC + clarithromycin + amoxicillin or a nitroimidazole.

The treatment arms of the abstracts were classified and groups of similar regimens were constructed as follows:

- PPI-based one week triple combinations;
- Ranitidine bismuth citrate (RBC)-based one week triple combinations;
- H2-receptor antagonist-based triple regimens;
- Double combinations (PPI/RBC + 1 antimicrobial);
- Quadruple therapies (PPI + bismuth compound + 2 antimicrobials);
- Antimicrobial-based analysis: - PPI + clarithromycin + amoxicillin or a nitroimidazole, - PPI + amoxicillin + nitroimidazole, - RBC + clarithromycin + amoxicillin or a nitroimidazole.

The results obtained were compared with the available meta-analyses based on the data of RTCs in order to assess whether the results of abstracts overlap with the latest data of the evidence-based medicine.

RESULT

General information

In the post-Maastricht period, between 1997-2004, 877 papers dealing with the therapy of Helicobacter pylori infection were presented during the selected meetings, from which 75 met the inclusion criteria. The accepted abstracts included 188 study arms and 15,634 patients. Eight hundred and one abstracts were excluded for the reasons shown in the flow-chart. The accepted abstracts had a mean quality score under 0.50 were not accepted.

RESULTS

PPI-based one week triple regimens: Most of the authors adhered to the provisions of the Maastricht 1 consensus and administered PPI-based triple regimens as first-line therapy. The PERs of the PPI-
Table 1 Effect of PPI-based 1 wk triple therapies on the eradication of H pylori in European countries (pooled estimation of all treatment arms)

PPI+2AB	Cases (n)	Studies (n)	Treatment arms (n)	PER (%)	95% CI	P	References
Omeprazole+2AB	7234	42	78	78.9	77.8-81.1	0.16	13-15, 17-19, 21-24, 26, 29, 37, 41, 43, 44, 49, 53, 57-63, 66-68, 73-76, 78-85
Lansoprazole	1048	12	17	82.9	79.2-81.1	0.95	12, 18, 22, 24, 25, 28, 32-38, 65
Pantoprazole	1216	9	13	80.1	76.5-83.6	0.84	27, 39-42, 63-65, 77
Ranitidine	884	8	15	83.9	79.1-88.8	0.88	39, 49-56
Esmoprazole	752	6	14	81.1	80.3-88.0	0.80	4-58
All PPI	11134	77	136	81.4	78.5-84.5		43-48

1 Omeprazole vs other PPIs; Test of homogeneity: Omeprazole, \(\chi^2 = 6.12, P = 0.08 \); Lansoprazole, \(\chi^2 = 5.56, P = 0.09 \); Pantoprazole, \(\chi^2 = 1.46, P = 0.22 \); Ranitidine, \(\chi^2 = 3.45, P = 0.33 \); Esmoprazole, \(\chi^2 = 1.96, P = 0.38 \).

Table 2 Results of the direct comparative trials of the PPI-based 1-wk triple combinations

PPI comparation	Cases (n)	Studies (n)	Treatment arms (n)	PER (%)	95% CI	P	OR (95% CI)	References
Omeprazole vs	601	5	9	87.3	81.7-92.3	0.22	0.83 (0.6-1.1)	32-37,39
Lansoprazole vs	567	5	9	83.9	75.0-92.3	0.24	0.61 (0.27-1.40)	39
Pantoprazole vs	83	1	1	89.0	80.9-97.6	0.24	0.61 (0.27-1.40)	39
Esmoprazole vs	253	2	2	90.5	84.6-96.4	0.71	0.91 (0.53-1.55)	43,44
Esmeprazole vs	256	2	2	91.5	86.3-96.7	0.61	1.24 (1.00-1.48)	53
Ranitidine vs	163	1	2	82.5	74.2-90.8	0.61	1.24 (1.00-1.48)	53
All PPI	163	1	2	88.5	81.3-95.7			

Test of homogeneity: Omeprazole/Lansoprazole, \(\chi^2 = 2.76, P = 0.1 \); Omeprazole/Pantoprazole, \(\chi^2 = 2.69, P = 0.12 \); Omeprazole/Ranitidine, \(\chi^2 = 2.45, P = 0.12 \); Omeprazole/Esmoprazole, \(\chi^2 = 0.12, P = 0.72 \).

Table 3 Changes over time of the eradication rates of PPI-based one-triple therapies between 1997-2004

Year references	Cases (n)	Studies (n)	Treatment arms (n)	PER (%)	95% CI	P	References
1997	3216	16	34	80.2	75.8-84.7	0.59	12,13,49,58,61,65,71-73,77,78,85
1998	1117	11	18	82.0	76.4-87.4	0.59	15,17,21-23,34-36,39
1999	1771	9	14	77.2	71.6-82.7	0.34	24-26,28,40,41,60,67,74
2000	1683	10	13	82.1	78.0-86.1	0.56	27,29,30,37,38,42,43,50,70
2000	1002	8	11	80.7	73.4-87.9	0.9	51-54,68,69,75,84
2002	904	4	7	87.1	80.8-93.4	0.12	41,55,57,76
2003	553	2	4	78.2	67.2-89.4	0.67	45,46
2004	468	3	5	82.6	73.5-91.6	0.65	47,48,56

1 P: 1997 vs other years; \(P = 0.04 < 0.05 \) 2002 vs 1999; no other significant difference in between-year comparisons; Test of homogeneity: 1997, \(\chi^2 = 9.98, P = 0.19 \); 1998, \(\chi^2 = 0.71, P = 0.39 \); 1999, \(\chi^2 = 3.0, P = 0.08 \); 2000, \(\chi^2 = 5.17, P = 0.15 \); 2001, \(\chi^2 = 0.15, P = 0.72 \); 2002, \(\chi^2 = 0.2, P = 0.7 \); 2003, \(\chi^2 = 0.14, P = 0.8 \); 2004, \(\chi^2 = 0.14, P = 0.8 \).

Based regimens and homogeneity values are given in Table 1. The overall efficacy of the PPI-based one-week triple therapies was 81.4% (95% CI: 78.5-84.5). Therapeutic experience was gained with all 5 commercially available PPI. There was no statistically significant difference of the PERs between the groups. All PPIs obtained eradication rates around 80% on ITT basis. In comparative studies, using omeprazole as the index drug, the combined ORs showed equivalence to the other PPIs (Table 2). An example is given in Figure 2 representing the results of comparative trials using omeprazole and lansoprazole-based triple regimens. The rates of H pylori eradication by the PPI-based triple therapies from 1997 to 2004 are presented in Table 3. No change over time of the eradication rates was recorded.

RBC-based triple regimens: They were administered to 2051 patients in 24 studies/27 treatment arms and obtained a PER of 78.5% (95% CI: 70.5-84.3) (11-31). (Test for homogeneity: \(\chi^2 = 2.79, P = 0.16 \). The OR for the effect of PPI’s vs RBC in triple combinations was 1.10 (0.92-1.30). Including all treatment arms, there was no significant difference of the PERs between PPI- and RBC-based triple regimens (\(P = 0.28 \)).

H₂-receptor antagonist-based triple regimens: They
were given to 374 cases for 7-10-14 d in 4 studies/8 treatment arms [36,40,76] and obtained 61.1% (52.6-75.6) eradication, which was significantly lower as compared to PPI-based regimens (74.4%, 95% CI: 59.5-84.8) \(P = 0.028 < 0.05\). (Test for homogeneity: \(\chi^2\): 0.21, \(P = 0.56\).) The OR for the effect of PPI vs H2-RA based regimens was 1.55 (0.72-3.78) (Figure 3). However, these groups were heterogeneous (Figure 3).

Double combinations: PPI + 1 antimicrobial schedules given for 7-14 d were administered to 1051 cases in 10 studies/14 treatment arms and achieved PER of 55.0% (38.6-71.4) [67-77]. (Test for homogeneity: \(\chi^2\): 2.47, \(P = 0.12\).) In comparative trials, triple combinations were efficient in 82.48% (75.4-89.3) \(P = 0.000 < 0.05\), the combined OR favoring triple combinations (4.90, 95% CI: 2.36-9.70) (Figure 4). The groups were heterogeneous (see Figure 4). RBC-based dual therapies lasting 7-14 d were given to 268 cases in 4 studies/4 treatment arms [12,17,77,78] and obtained 77.6% (69.6-85.5) PER, which was not significantly lower than the rates of triple RBC combinations (80.8%, 72.9-88.5) \(P = 0.43\). (Test for homogeneity: \(\chi^2\): 0.16 \(P = 0.60\).) In direct comparative trials, the OR for the effect of RBC double \(vs\) triple combinations was 0.83 (0.51-1.33).

Quadruple therapies: They were administered as first-line regimens to 611 cases in 10 treatment arms, and the PER was 82.6% (76.0-89.2) [76,79,82]. (Test for homogeneity: \(\chi^2\): 0.13, \(P = 0.61\).) In comparative trials, triple therapy’s PER was 81.2% (76.4-86.0) \(P = 0.07\). The combined OR for the effect of triple \(vs\) quadruple therapies was 0.80 (0.62-1.03) (80-82).

Antibiotic combinations: The eradication rates obtained with PPI + clarithromycin or either amoxicillin or nitroimidazole regimens compared with PPI + nitroimidazole + amoxicillin are presented in Table 4 (all treatment arms). Clarithromycin + amoxicillin or a nitroimidazole containing regimens were significantly more efficient than amoxicillin + nitroimidazole combinations \(P = 0.01 < 0.05\) and \(P = 0.001 < 0.05\), respectively (Table 4) and the OR favored the former therapies over the latter (Table 5). There was no significant difference in the efficiency rate of RBC + clarithromycin + amoxicillin and RBC + clarithromycin + nitroimidazole regimens \(P = 0.90\), the combined OR values indicating these combinations were equivalent (OR:1.03, 95% CI: 0.65-1.38).

DISCUSSION

In the present study, we assessed the eradication rates of different anti-\textit{H. pylori}-regimens given in European countries in the post-Maastricht period. Several meta-analyses evaluated the efficacy of the eradication regimens [1-3,87,91,93,95,96]. To our knowledge, this is the first meta-analysis based solely on abstracts coming from the European countries, thus exploring a previously unexplored database. Our purpose was to assess whether or not these

Figure 2 Omeprazole vs lansoprazole-based triple therapies: results of the comparative trials (Peto graph of the individual and combined ORs).

Figure 3 H2-receptor antagonists and PPI-based triple regimens: results of the comparative trials (Peto graph of the individual and combined ORs).

Figure 4 PPI-based double and triple regimens: results of the comparative trials (Peto graph of the individual and combined ORs).
results are comparable with the results of the latest meta-analyses. According to our data most of the European authors followed the recommendations of the Maastricht 1-2 consensus meetings\(^\text{[92]}\). Thus, the PPI-based triple therapies were the most frequently used regimens. The PER of all treatment branches using these combinations was comparable with the earlier meta-analyses. In the first such review evaluating the pre-Maastricht era studies (1992-1996), a PER of 78.3% (64.6%-88.4%) was obtained\(^\text{[88]}\). In the largest meta-analyses published thus far, 666 publications summarizing 53,228 patients were reviewed and the PERs of the available PPI’s were observed in the eradication of *H pylori* in European countries (pooled estimation of all treatment arms) and in direct comparative trials, the OR values indicated these therapies were equivalent, which is in accordance with the meta-analysis\(^\text{[93]}\), and is in agreement with the Maastricht consensus recommendations.

According to our data, H₂-receptor antagonist-based therapies were inferior to either PPI or RBC-containing regimens and the ORs favored the later schedules. The heterogeneity of the groups, however, needs caution in the interpretation of these results. In a meta-analysis, the overall efficacy of H₂ receptor antagonists and PPI’s as adjuvants for *H pylori* therapy was similar (78% vs 81% on ITT basis); including clarithromycin in the regimens, a non-significant trend favoring H₂ receptor antagonists was observed (OR: 1.31, 95% CI: 1.09-1.58); however, as shown in Table 3, such changes over time could not be confirmed in our analysis. The PER of RBC-based triple regimens is similar with that of PPI’s and in comparative trials, the OR values indicated these therapies were equivalent, which is in accordance with the meta-analysis\(^\text{[93]}\), and is in agreement with the Maastricht consensus recommendations.

Table 4 The effect of antibiotic combinations on the eradication of *H pylori* in European countries (pooled estimation of all treatment arms)

Antibiotic combination	Cases (n)	Studies (n)	Treatment arms (n)	PER %	95% CI	P	References
PPI + C + A	5610	40	49	81.3	77.8-84.8		12,14,22,24,26,31-34,36,39,42, 44,46,48,52,54-56,58,60-70,72-79,79
PPI + C + N	2080	25	27	83.8	81.7-85.9	0.96\(^1\)	14,23,25,27,28,32-34,39,43,44,47,48, 57,62,67,71-73,76,78
PPI + A + N	1577	15	19	73.5	66.6-78.5	0.01\(^2\) < 0.05, 0.001\(^2\) < 0.05	11,16,33,38,39,41,54,56,68,69,73, 78-79
RBC + C + A	589	8	9	82.6	76.2-89.0		12-14,17-22,26,30
RBC + C + N	1285	15	17	78.0	71.4-84.6	0.74\(^1\)	10,11,13-15,17-19,21,23-25,27-28,30
RBC + A + N	186	1	1	76.5	67.3-88.7	0.72\(^2\)	16,17

Test of homogeneity: PPI + C + A, \(\chi^2 = 1.13, P = 0.28\); PPI + C + N, \(\chi^2 = 4.47, P = 0.03 < 0.05\); PPI + A + N, \(\chi^2 = 1.07, P = 0.29\); RBC + C + A, \(\chi^2 = 2.58, P = 0.11\); RBC + C + N, \(\chi^2 = 1.49, P = 0.47\); RBC + A + N, \(\chi^2 = 3.12, P = 0.1\). C: clarithromycin; A: amoxicillin; N: nitroimidazoles; RBC: ranitidine bismuth citrate.

Table 5 Results of the direct comparative trials of different antibiotic combinations on the eradication of *H pylori* in European countries

Antibiotic combination	Cases (n)	Studies (n)	Treatment arms (n)	PER %	95% CI	P \(^1\)	OR	References
PPI + C + A vs PPI + C + N	2155	18	22	80.8	76.8-84.8	0.61	1.0 (0.90-1.20)	14,17,21,23,32-35,41,48, 49,76,5
PPI + C + N	2389	18	22	80.1	75.0-85.1		68,69,71-74,78	
PPI + C + A vs PPI + C + A	1172	10	12	81.5	77.7-85.3	0.000 < 0.05, 1.78 (1.46-2.16)	26,29,44,54-56,68,69, 73,79	
PPI + A + N	1184	10	13	71.9	65.8-77.9		73,79	
PPI + C + N vs PPI + A + N	476	5	5	70.9	56.3-85.4	0.96	0.99 (0.77-1.29)	41,54,68,69,74
PPI + A + N	592	5	5	70.6	61.3-80.0		73,79	
RBC + C + A vs RBC + C + A	122	2	3	82.4	73.6-91.1	0.90	1.03 (0.61-1.75)	13,30
RBC + C + N	166	2	2	80.9	72.4-89.4		73,79	

Test of homogeneity: PPI + C + A vs PPI + C + N, \(\chi^2 = 0.01, P = 0.92\); PPI + C + A vs PPI + A + N, \(\chi^2 = 3.26, P = 0.07\); PPI + C + N/PPI + A + N, \(\chi^2 = 0.01, P = 0.99\); RBC + C + A/RBC + C + N, \(\chi^2 = 2.58, P = 0.11\). PPI: proton pump inhibitors; A: amoxicillin; C: clarithromycin; N: nitroimidazoles; RBC: ranitidine bismuth citrate.
blocks would have pharmaco-economic advantages. PPI-based double combinations[81-71] were clearly inferior to triple regimens, which is in accordance with the evidence-based data[2] and they are probably not more recommended in the first-line treatment of the infection. Interestingly, RBC-based double combinations have similar efficacy with the triple regimen.[11,16,71,72] However, no meta-analysis addressed this issue. Here again, heterogeneity of the groups might influence the results. Quadruple therapies have been demonstrated to be very effective and safe either as first or second-line therapies. Concerns have been raised regarding the optimal duration of treatment, efficiency and side effects, because prolonging the therapy is not cost-effective, the gain in effectiveness is modest and the tolerability could be impaired. Overall, quadruple regimens were not better than triple therapies[70-78] and this is in agreement with a recent meta-analysis, where these therapies seem to be roughly equivalent (81% vs 78%, OR: 0.81, 95% CI: 0.55-1.20)[97]. The Maastricht 2 Consensus recommended their use as a second-line treatment but, and according to a recent meta-analysis, they could equally be used as first-line, based on their efficacy.[3]

The choice of antimicrobials is of crucial importance while resistance to antibiotics is a major determinant of the eradication outcome.[375] In our study, clarithromycin + amoxicillin or a nitroimidazole combination have a superior yield as compared to amoxicillin + a nitroimidazole combination, which is in accordance with a meta-analysis.[87]

We conclude, that selection of high-quality abstracts of major gastroenterologic meetings constitutes a valuable pool of data for meta-analysis. The results obtained by us are mainly in accordance with the existing data. Some discrepancies must be resolved by further studies. Primary treatment for \textit{H pylori} infection is usually successful in over 80% of the patients; however, there is no ideal first-line regimen.[8,99] Nevertheless, it was not our intention to analyze all aspects of the eradication therapy, which would be far beyond the scope and extent of this work. Other details, i.e. data on the influence of initial diagnosis (i.e. gastric or duodenal ulcer, functional dyspepsia), treatment duration, antimicrobial resistance, newer antibiotic combinations, rescue treatments, geographical distribution of the eradication results merit further analysis and updated research.

ACKNOWLEDGMENTS

The correction of the English manuscript by Mr.Douglas Arnott (EDMF Translation Bureau, Budapest, Hungary) is highly acknowledged.

REFERENCES

1. Laheij RJ, Rossum LG, Jansen JB, Straatman H, Verbeek AL. Evaluation of treatment regimens to cure \textit{Helicobacter pylori} infection-a meta-analysis. \textit{Aliment Pharmacol Ther} 1999; 13: 857-864

2. Houben MH, van de Beek D, Hensen EF, de Craen AJ, Rauws EA, Tytgat GN. A systematic review of \textit{Helicobacter pylori} eradication therapy-the impact of antimicrobial resistance on eradication rates. \textit{Aliment Pharmacol Ther} 1999; 13: 1047-1055

3. Fischbach LA, van Zanten S, Dickson J. Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-\textit{Helicobacter pylori} quadruple therapies. \textit{Aliment Pharmacol Ther} 2004; 20: 1071-1082

4. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? \textit{Control Clin Trials} 1996; 17: 1-12

5. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. QUOROM Group. \textit{Br J Surg} 2000; 87: 2558-2564

6. Timmer A, Sutherland LR, Hilsden RJ. Development and evaluation of a quality score for abstracts. \textit{BMC Med Res Methodol} 2003; 3: 2

7. Malfertheiner P, Megraud F, O’Morain C, Bell D, Bianchi Porro G, Deltenre M, Forman D, Gasbarrini G, Jaup B, Misiewicz JJ, Pajares J, Quina M, Rauws E. Current European concepts in the management of \textit{Helicobacter pylori} infection—the Maastricht Consensus Report. The European \textit{Helicobacter pylori} Study Group (EHPSG). \textit{Eur J Gastroenterol Hepatol} 1997; 9: 1-2

8. Malfertheiner P, Megraud F, O’Morain C, Hungin AP, Jones R, Axon A, Graham DY, Tytgat G. Current concepts in the management of \textit{Helicobacter pylori} infection—the Maastricht 2-2000 Consensus Report. \textit{Aliment Pharmacol Ther} 2002; 16: 167-180

9. Rosner B. Fundamentals of Biostatistics. Pacific Grove: Duxbury, 2001: 584-605

10. Knapp R, Clinton Miller III M. Clinical epidemiology and biostatistics. Malvern, Pennsylvania: Harwal Publishing Company, 1992: 209-275

11. Gudjonsson H, Bardhan KD, Hoie O, Kristenssen ES, Schuetz E, Klebe-Frisch C, Duggan AE. High \textit{H pylori} eradication rate with one week triple regimens containing ranitidine bismuth citrate (RBC) [abstract] \textit{Gut} 1997; 41 Suppl 1: 99

12. Spadaccini A, De Fanis C, Sciampa G, Pantaleone U, Di Virgilio M, Pizzicannella G. Lansoprazole or ranitidine bismuth citrate triple therapies for \textit{Helicobacter pylori} eradication: result of an open randomized study [abstract]. \textit{Gut} 1997; 41 Suppl 1: 105

13. Catalano F, Catanzaro R, Gentilevica C, Branciforte G, Brogna A, Liberti R, Blasi A. Helicobacter pylori positive duodenal ulcer treated with omeprazole vs ranitidine bismuth citrate triple therapy [abstract]. \textit{Gut} 1997; 41 Suppl 3: 213

14. Cannizzaro O, D’Angelo A, Ederle A, Gerace G, Iaquinto I, Reina C, Ricardiello L, Scarpulla G, Spadaccini A, Olivieri A, Tosatto R, R, Roda E. Assessment of the efficacy and safety of three 7 days eradication regimens containing ranitidine bismuth citrate: results of an Italian study [abstract]. \textit{Gut} 1997; 41 Suppl 3: 206

15. Susi D. The best treatment for \textit{Helicobacter pylori} infection among four different 7-day triple therapies [abstract]. \textit{Gut} 1998; 43 Suppl 2: 80

16. Cestari R, Corti G, Formenti A, Galli F, Gatti M, Marotta F, Milesi F, Paterlini A, Prubello W, Raveli R, Toni G, Ubiali P, Valenghi D, Fina P, Olivieri A, Tosatto R. Ranitidine bismuth citrate (RBC) based triple therapy for 7 days is more effective than RBC plus clarithromycin for 14 days in dyspeptic patients with \textit{H pylori} infection [abstract]. \textit{Gut} 1998; 43 Suppl 2: 83

17. Ell C, Röllinghoff M, Stolte M, Moser W. Amoxicillin and metronidazole together with either omeprazole or ranitidine in eradication of \textit{Helicobacter pylori} infection [abstract]. \textit{Gut} 1998; 43 Suppl 2: 91

18. Ravizza M, Suriani R, Puglisi F, Giacobbe, Gay E, Cappelletti F, Mazzucco D, Dusio R. \textit{Helicobacter pylori} eradication: RBC plus different antibiotic regimens evaluation in short-term therapy [abstract]. \textit{Gut} 1998; 43 Suppl 2: 85

19. Geisserle A, Montanari R, Marchetta A, Benini M, Fratton A. Ranitidine bismuth citrate based 7-day triple therapy is as effective as a PPI-based short term regimens in eradicating \textit{H pylori} [abstract]. \textit{Digestion} 1998; 59 Suppl 3: 408

20. Hendel I, Pap A, Forres JC, Wurzer H, Roberts PM. Ranitidine bismuth citrate with clarithromycin and metronidazole twice daily for 7 days eradicates \textit{H pylori} and heals duodenal
Ulcers [abstract]. Digestion 1998; 59 Suppl 3: 412

21 Karatapanis S, Keticoglou I, Georgopoulos, Manolatos D, Papamarkos D, Prevedorou D, Arkis V. Ranitidine bismuth citrate plus clarithromycin vs omeprazole plus clarithromycin in the eradication of Hp in patients with DU. A randomized study [abstract]. Digestion 1998; 59 Suppl 3: 414

22 Peyre S, Rizzi R, Bertello OPD. Two antisecretory drugs based on one week regimen for eradication of Helicobacter pylor (HP) in duodenal ulcer (DU) patients [abstract]. Digestion 1998; 59 Suppl 3: 426

23 Spini G, Bortoli A, Corbellini A, Colombo E, Lanzì G, Mianpoli G. One-week therapy with omeprazole (PPI) or ranitidine bismuth citrate (RBC) and two clarithromycin for eradication of Helicobacter pylor in duodenal ulcer: a preliminary report [abstract]. Digestion 1998; 59 Suppl 3: 432

24 Susi C. Cost and efficacy of 7-day triple therapies for Hp eradication: PPI vs RBC-based treatments [abstract]. Gut 1999; 45 Suppl 5: 106

25 Georgopoulos S, Karatapanis S, Ladaz S, Papamarkos D, Vretou N, Artikis V, Mentis A, Raptis S: Lansoprazole (Lan) vs ranitidine bismuth citrate (RBC) based short-term triple therapies for Helicobacter pylor (Hp) eradication: a randomised study with 6 month follow-up [abstract]. Gut 1999; 45 Suppl 5: 120

26 Van’t Hoff BW, van der Hulst A, van der Ende A, ten Kate FJW, Houben MHMG, Raus EDJ, Tytgat GNJ. One week ranitidin bismuth citrate VS omeprazole in combination with clarithromycin and metronidazole for eradication of H pylor infection [abstract]. Digestion 1999; 45 Suppl 1: 131

27 Gisbert JP, Carpio D, Marcos S, Gisbert JL, Cabrera MM, Cruzado AI, Garcia Gravolos R, Pajares JM. Pantoprazole vs clarithromycin and metronidazole for eradication of Hp in the eradication of Hp pylori in patients with DU [abstract]. Gut 2000; 47 Suppl 1: 100

28 Buzás GM, Székely E, Illyés Gy, Széles I.: One week triple therapy with clarithromycin and metronidazole or amoxicillin for the cure of Hp pylori infection in the absence of antimicrobial resistance: a prospective randomised trial [abstract]. 2002; 50 Suppl 2: 101

29 Iacopini F, Crispino P, Consolazio A, Paoluzzl OA, Pica R, Rivera M et al. Once daily 1-week triple therapy with levofloxacin and azithromycin for Hp pylori eradication [abstract]. Gut 2003; 52 Suppl 6: 204

30 Nista C, Candelier M, Cazzato MA, Fini L, Gabrielli M, Zocchi MA et al. Moxifloxacin-based treatments: a new chance for Hp pylori eradication [abstract]. Gut 2003; 52 Suppl 6: 204

31 Fini L, Nista EC, Candelier M, Cazzato IA, Franceschi F, Santoro M et al. First-line treatment for Helicobacter pylori eradication: levofloxacin/azithromycin-based strategies [abstract]. Helicobacter 2004; 9: 571

32 Zullo A, Scacchianoce G, Hassa C, Panarese A, Pigliodona D, Morin S. Helicobacter pylori eradication with 7-day triple therapy, 10-day regimens, and sequential therapy [abstract]. Gut 2004; 3 Suppl 6: 120

33 Stack WA, Knifton A, Jenkins D, Cockayne A, Jolly M, Bell N, Humphries T, Hawkey CJ, Atherton JC. Rabeprazole is effective and safe when used in combination with antibiotics for the eradication of Helicobacter pylori [abstract]. Gut 1997; 40 Suppl 3: 205

34 Karatapanis S, Georgopoulos S, Papakonstantinou L, Papamarkos D, Mentis A, Artikis V. Rabeprazole 7-days vs eradication regimens in the treatment of Helicobacter pylori infection [abstract]. Gut 2000; 47 Suppl 3: 127

35 Pilotto A, Dal Bò N, Francheschini M, Bozzola L, Salandion S, Novello R, Leandro G, Mell S, DiMario F, Valerio G. Comparison of three proton pump inhibitors in combination with amoxicillin and metronidazole for one week to cure Helicobacter pylori in the elderly [abstract]. Gut 1998; 48 Suppl 2: 91

36 DiMario F, Dal Bò N, Battaglia G, Benedetti E, Bottone E, Caroli A, Chivoli F, Costan F, De Bastiani R, De Berardinis F, De Pretis G. Pantoprazole in eradication of peptic ulcer in H pylori positive patients: a multicenter randomised prospective study by GISU (Interdisciplinary Ulcer Study Group) [abstract]. Gut 1999; 45 Suppl 3: 121

37 Malfertheiner P, Kirchner T, Kist M, Leodoltor A, Peitz, U, Strobel S, The Bagus Study Group. BAGUS: Byk Advances Gastrointestinal Study - Pantoprazole for Hp pylori eradication and healing in patients with gastric ulcer [abstract]. Gut 2000; 47 Suppl 1: 100

38 Tulassay Zs. 7-day treatment with esomeprazole-based triple therapy eradicates Hp and heals patients with DU [abstract]. Gut 2000; 47 Suppl 1: 100

39 Bayerdörffer E, Ebert S, Kirsch C, Schneider-Brechwart W, Bastlein E, Haferland C, Neumeyer M, Vietlh M, Stolfe M, Neln E. Effective one-week triple therapy with esomeprazole, clarithromycin and metronidazole for eradication of Helicobacter pylori in the absence of antimicrobial resistance: a prospective randomised trial [abstract]. Gut 2002; 50 Suppl 2: 101

40 Iacopini F, Crispino P, Consolazio A, Paoluzzl OA, Pica R, Rivera M et al. One-week ranitidin bismuth citrate containing triple therapies for eradication of Helicobacter pylori (Hp) eradication. Gut 1999; 45 Suppl 5: 270

41 Farup PG, Thoflsen J, Wetterhus S, Torp R, Hoie O, Lange OJ. Hp-eradication: ranitidine bismuth citrate vs omeprazole in triple based regimens form one week [abstract]. Gut 2000; 47 Suppl 3: 127

42 Kupcsinskas L. Helicobacter pylori (HP) recurrcence is related to efficacy of eradication regimens in high Hp prevalence area [abstract]. Gut 2000; 45 Suppl 3: 104

43 Takatis A, Gerg G, Szemtihalyi A, Szamosi S, Csiki Z. Efficacy of one-week ranitidine bismuth citrate containing triple therapies for eradication of Helicobacter pylori [abstract]. Gut 2000; 45 Suppl 3: 129

44 Buda A, Dal Bò N, Kusstacher S, Grassi SA, Crestani B, Battalina G, Pilloet O, Francheschini M, De Bona M, Saladin S, Di Mario M. Different omeprazole dosages in Hp pylori eradication therapy: a prospective multicenter, randomised study comparing 30 mg b.i.d. vs 15 mg b.i.d. [abstract]. Gut 1997; 41 Suppl 1: 92

45 Jaup BH, Stenquist B, Norrby A. One-week bid therapy forHp pylori: A randomized comparison of three clinical outcome and side-effects [abstract]. Gut 1997; 41 Suppl 3: 209

46 Gisbert JP, Boixeda D, Aller R, de la Serna C, Sanz E, Martin de Argila C, Abraira V, Garcia Plaza A. Bleeding ulcer: Hp pylori infection prevalence and role of eradication in recurrent haemorrhage [abstract]. Gut 1998; 48 Suppl 2: 85

47 Bazzoli F, Zagari RM, Pozzato P, Fossi S, Ricciardiello L, Nicola-L, Alampi G, Roda E. Efficacy of lansoprazole in association with clarithromycin and metronidazole or amoxicillin for Hp pylori eradication [abstract]. Digestion 1998; 59 Suppl 3: 400

48 Rinaldi V, Zullo A, Hassan C, Moscatteli R, Lauria V, Attili AF. Management of Helicobacter pylori with consecutive triple therapies [abstract]. Digestion 1998; 59 Suppl 3: 428

49 Colin L, Laurence M, Granjot-Viellard F: Helicobacter pylori infection in duodenal ulcer: comparison of two one week triple eradication therapies using lansoprazole or omeprazole [abstract]. Gut 2000; 47 Suppl 3: 126

50 Herszényi L, Prónai L, Juhász M, Tulassay Zs.: Evaluation of a short-term and seven days Lansoprazole based triple therapy

www.wjgnet.com
H pylori eradication [abstract]. Gut 2001; 49 Suppl: 2: 105

Cammarota G, Cianci R, Vero V, Urgesi R, Gasbarini G. Ef- ficacy of rabeprazole/levofloxacin-based triple therapy for Helicobacter pylori eradication [abstract]. Gut 2002; 50 Suppl: 2: 85

Calvet X. Helicobacter pylori working group of the Asociación Española de Gastroenterología (AEG): Randomised controlled trial comparing 7 vs 10 days of triple therapy using rabepra- zole, clarithromycin and amoxicillin for Helicobacter pylori (Hp) eradication. Preliminary results [abstract]. Helicobacter 2004; 9: 572

Castro GM, Dal Bó N, Franchesci M, Maino M, Man- tovano N, Campi L, Pilotto A, Lenardo G, Rugge M, DiMario F: Comparison of different dosages of PPI in one-week Helico- bacter pylori eradication therapy [abstract]. Gut 2002; 50 Suppl: 2: 92

Ruszniewski P, Lamouliatte H, Flejou JF, Mégraud F, Slama A. Evaluation of short-term ranitidine vs omeprazole triple therapy regimens for eradication of Helicobacter pylori (Hp) in duodenal ulcer (DU patients (pts)) [abstract]. Gut 1997; 41 Suppl: 1: 94

Popovic N, Bujacic M, Glisic M, Popovic P, Milosavljevic T, Popovic N, Matej O. Comparison of two triple therapies (ran- nitidine plus amoxicillin plus tinidazol vs omeprazole plus amoxicillin plus tinidazol) in patients with Helicobacter pylori positive duodenal ulcer [abstract]. Gut 1997; 41 Suppl: 1: 102

Jonalits L, Kucipskas L, Kuidoels G, Gciozaukas A. Insufficient results of eradication in high Helicobacter pylori prevalence region [abstract]. Gut 1999; 45 Suppl: 3: 117

Pieramico O, Zanetti MV, Innerhofer M. Outcome of omepra- zole-based dual and triple therapy for Helicobacter pylori eradication: do gastroduodenal diseases and age play a role? [abstract]. Gut 1997; 41 Suppl: 1: 91

Marusic M, Katic M, Presecki V, Prskalo M, Ticolor M, Sabaric B, Kalenic S, Papa, Colic-Cvrlje V, Namuvoski-Mihalic S, Plecko V. Eradication of H pylori infection in hospitalized and non-hospitalized patients [abstract]. Gut 1997; 41 Suppl: 3: 166

Tchernev K, Michailov G, Kandilarov N, Hubaveshka M, Bo- neva I. Comparison of two different therapeutic regimens for eradication of Helicobacter pylori in patients with “penetrant” duodenal ulcers [abstract]. Gut 1997; 41 Suppl: 3: 195

Wittelem EM, Hazenberg BP, Haec PWE, Tan TG, Kock PHT, Dekkers CPM, Steen H, Jansen JBM. Comparison of pantoprazole-based dual and triple therapies for H pylori eradication: effect on symptoms in non-ulcer dyspepsia patients [abstract]. Gut 1997; 41 Suppl: 1: 199

Di Mario F. GISU Interdisciplinary Ulcer Study Group: A one week triple therapy vs two week dual therapy for eradication and healing of Helicobacter pylori positive duodenal ulcers (DU): results from a randomised double clinical trial [abstract]. Gut 1997; 41 Suppl:3: 212

Calvet X, Cuibells MJ, Lopez Lorente T, Baré M, Galvez E, Mo- linia E, Esteve MR. Clarithromycin based dual and triple thera-pies for treatment of Helicobacter pylori infection in primary care: a multicenter comparative, randomized study [abstract]. Gut 1998; 43 Suppl: 2: 82

Bazzoli F, Bianchi Porro G, Fiocca R, Gasbarrini G, Roda E, Zagari RM. Eradication of Hp with omeprazole plus amoxicil- lin or amoxicillin and clarithromycin for 1 or 2 weeks in pa- tients with duodenal ulcer [abstract]. Gut 1999; 45 Suppl: 5: 6

De Francesco V, Sgarro C, Cela E, Stoppano V, Minenna F. Helicobacter pylori eradication rates in non-ulcer dyspepsia (NUD) and duodenal ulcer (DU) patients [abstract]. Gut 2001; 49 Suppl: 2: 94

Bago J, Belosic Jale Z, Strinic D, Bilic A. Antimicrobial resis- tance of H pylori to the outcome of dual vs triple lansoprazol based therapy for eradication [abstract]. Gut 2001; 49 Suppl: 3: 98

Arkilla P, Farkkila M, Kosunen T, Nuuutinen H, Sipponen P, Seppala K. Safety of peptic ulcer treatment with only Helico- bacter pylori eradication without the following proton pump inhibitor treatment [abstract]. Gut 2000; 47 Suppl: 3: 135

Mégraud F, Fichavant R, Palegry D, Ferenc PC, Roberts PM, Williamson R. Ranitidine bismuth citrate (RBC) co-prescribed with clarithromycin is more effective in the eradication of Helico- bacter pylori than omeprazole with clarithromycin [abstract]. Gut 1997; 41 Suppl: 1: 912

Cardelli A, Cordiano C, Giglio A, Lami F, Pilotto A, Pozzat P, Scarpulla G, Spadaccini A, Susi D, Olivieri A, Tosato R, Roda E. A new dual 7-day therapy is effective in eradicating Helico- bacter pylori in duodenal ulcer patients [abstract]. Gut 1997; 41 Suppl: 1: 96

Huelin Benitez J, Jimenez Perez M, Sanchez Galdón S, Durán Campos A, Cárdenas Martínez A, Espina Contreras P, de la Cruz J, Lozano JM, Matamaco GO. Short course treatment to eradicate H pylori in 246 patients with peptic ulcer disease [abstract]. Gut 1997; 41 Suppl: 1: 105

Manzaris GJ, Tzathas H, Petrai K, Spilades Ch, Archavlis E, Ameriadios P, Kourtousas D, Christoforidis P, Trianafyllos G. A prospective study comparing various anti-H pylori treatment regimens for patients with peptic ulcer disease [abstract]. Gut 1999; 45 Suppl: 5: 192

Kashin S, Polizov IJ, Agamov A, Levina A, Gruzdeva T, Nade- zhin A, Lupov V, Shchebakov P. Evaluation of different 7-day therapies for H pylori eradication in patients with peptic ulcer disease. A 6 year experience [abstract]. Gut 1999; 45 Suppl: 2: 94

Iakovenko EP, Grigoriev P, Yakovenko AV, Bikkavora R, Anashkin V, Anaeva T, Aldiyarov A, Soluyanova I. Bismuth based regimens should be the first line therapy for Helicobacter pylori pylori eradication [abstract]. Gut 2002; 51 Suppl: 2: 92

Frenkel M, Daake H, Janisch HD, Kelner HU, Krezdorn H, Tanneberger D, Wack R, Gatz G. Pantoprazole plus clarithromycin and metronidazole versus pantoprazole plus clarithromycin and amoxicillin for therapy of H pylori infection [abstract]. Gut 1997; 41 Suppl: 1: 103

Michopoulos S, Bouzakis H, Mavropoulou M, Tasi- bouris P, Papaspyrou L, Vougadiotis I, Markaki S. Randomised study comparing three different triple regimens containing clarithromycin for H pylori (HP) eradication in patients with duodenal ulcer (DU) [abstract]. Gut 1997; 41 Suppl: 3: 209

Passigato N, Biti L, Marconzi I, Benedetti S, Negri A, Dotto E. Comparison of three alternative strategies for Helicobacter pylori eradication in patients with chronic gastritis [abstract]. Gut 1997; 41 Suppl: 3: 210

Houben MHMG, Hensen EF, van’aHoff BWM, van der Hulst RWM, Rauws EA Van der Ende A, ten Kate FJW, Tytgat GNJ. Randomized trial of omeprazole and clarithromycin combined with either metronidazole or amoxicillin in patients with metronidazole resistant or sensitive Helicobacter pylori strains [abstract]. Gut 1998; 43 Suppl: 2: 87

Perri P, Festa V, Clemente R, Quistanto M, Andriulli A. Failure of standard triple therapies for H pylori eradication in dyspeptic patients [abstract]. Gut 1999; 45 Suppl: 3: 113

Pieramico O, Zanetti MV. Role of metronidazole and clar- ithromycin resistance on the outcome of omeprazole-based triple therapies for H pylori eradication [abstract]. Gut 1999; 45 Suppl: 3: 116

Idda M, Piatta A, Carta M, Ave BM, Mura I, Dore MP, Realdi G. Pre-treatment susceptibility vs blinded treatment: a ran- domized trial of antimicrobial therapy for H pylori infection [abstract]. Gut 2000; 47 Suppl: 1: 101

Pauluzzi P, Iacopini F, Consolazio A, Pauluzzi OA, Rossi P, Rivera M, Crispino P, Pica R, Nardi F, Pauluzzi P. Two week PPI-based triple therapy with amoxicillin and clarithromycin has a higher efficacy in Helicobacter pylori eradication [abstract]. Gut 2001; 49 Suppl: 3: 254

Katic M, Presecki V, Marusic M, Prskalo M, Ticolor M, Sabaric B, Dominis M, Kalenic S, Dzebro S, Colic-Cvrlje V, Papa B, Namuvoski-Mihalic S, Plecko V. Eradication of H pylori infec- tion with two triple-therapy regimens of 7,10 and 14 days [abstract]. Gut 1997; 41 Suppl: 1: 100

Unge P. Antimicrobial treatment of H pylori infection—a pool- ed efficacy analysis of eradication therapies. Eur J Surg Suppl 1998; 59: 26

Gisbert JP, González L, Calvet X, García N, López T, Roqué M, Gabriel R, Pajas EM. Proton pump inhibitor, clarithromycin
and either amoxicillin or nitroimidazole: a meta-analysis of eradication of Helicobacter pylori. Aliment Pharmacol Ther 2000; 14: 1319-1328

88 Vergara M, Vallve M, Gisbert JP, Calvet X. Meta-analysis: comparative efficacy of different proton-pump inhibitors in triple therapy for Helicobacter pylori eradication. Aliment Pharmacol Ther 2003; 18: 647-654

89 Gisbert JP, Khorrami S, Calvet X, Pajares JM. Pantoprazole based therapies in Helicobacter pylori eradication: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2004; 16: 89-99

90 Gisbert JP, Khorrami S, Calvet X, Pajares JM. Systematic review: Rabeprazole-based therapies in Helicobacter pylori eradication. Aliment Pharmacol Ther 2003; 17: 751-764

91 Gisbert JP, Pajares JM. Esomeprazole-based therapy in Helicobacter pylori eradication: a meta-analysis. Dig Liver Dis 2004; 36: 253-259

92 De Francesco V, Zullo A, Hassan C, Della Valle N, Pietrini L, Minenna MF, Winn S, Monno R, Stoppino V, Morini S, Panella C, Ierardi E. The prolongation of triple therapy for Helicobacter pylori does not allow reaching therapeutic outcome of sequential scheme: a prospective, randomised study. Dig Liver Dis 2004; 36: 322-326

93 Gisbert JP, Gonzalez L, Calvet X. Systematic review and meta-analysis: proton pump inhibitor vs. ranitidine bismuth citrate plus two antibiotics in Helicobacter pylori eradication. Helicobacter 2005; 10: 157-171

94 Graham DY, Hammoud F, El-Zimaity HM, Kim JG, Osato MS, El-Seraq HB. Meta-analysis: proton pump inhibitor or H2-receptor antagonist for Helicobacter pylori eradication. Aliment Pharmacol Ther 2003; 17: 1229-1236

95 Gisbert JP, Khorrami S, Calvet X, Gabriel R, Carballo F, Pajares JM. Meta-analysis: proton pump inhibitors vs. H2-receptor antagonists—their efficacy with antibiotics in Helicobacter pylori eradication. Aliment Pharmacol Ther 2003; 18: 757-766

96 Gené E, Calvet X, Azagra R, Gisbert JP. Triple vs. quadruple therapy for treating Helicobacter pylori infection: a meta-analysis. Aliment Pharmacol Ther 2003; 17: 1137-1143

97 Broutet N, Tchamgoué S, Pereira E, Lamouliatte H, Salamon R, Mégraud F. Risk factors for failure of Helicobacter pylori therapy—results of an individual data analysis of 2751 patients. Aliment Pharmacol Ther 2003; 17: 99-109

98 Bytzer P, O’Morain C. Treatment of Helicobacter pylori. Helicobacter 2005; 10 Suppl 1: 40-46

99 Calvet X. Helicobacter pylori infection: treatment options. Digestion 2006; 73 Suppl 1: 119-128

S- Editor Pan BR L- Editor Rippe RA E- Editor Bai SH