A tiny host galaxy for the first giant black hole: \(z = 7.5 \) quasar in BlueTides

Ananth Tenneti\(^1\star\), Stephen M. Wilkins\(^2\dagger\), Tiziana Di Matteo\(^1\ddagger\), Rupert A.C. Croft\(^1\) and Yu Feng\(^3\)

\(^1\) McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
\(^2\) Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
\(^3\) Berkeley Center for Cosmological Physics, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA

4 June 2018

ABSTRACT

The most distant known quasar recently discovered by Bañados et al. (2018) is at \(z = 7.5 \) (690 Myr after the Big Bang), at the dawn of galaxy formation. We explore the host galaxy of the brightest quasar in the large volume cosmological hydrodynamic simulation BlueTides, which in Phase II has reached these redshifts. The brightest quasar in BlueTides has a luminosity of \(\sim \) few \(10^{13}L_\odot \) and a black hole mass of \(6.4 \times 10^8 M_\odot \), comparable to the observed quasar (the only one in this large volume). The quasar resides in a rare halo of mass \(M_H \sim 10^{12}M_\odot \) and has a host galaxy of stellar mass of \(4 \times 10^9 M_\odot \) with an ongoing (intrinsic) star formation rate of \(\sim 20M_\odot yr^{-1} \). The corresponding intrinsic UV magnitude of the galaxy is \(-23.2\), which is roughly 2.7 magnitudes fainter than the quasar’s magnitude of \(-25.9\). We find that the galaxy is highly metal enriched with a mean metallicity equal to the solar value. We derive quasar and galaxy spectral energy distribution (SED) in the mid and near infrared JWST bands. We predict a significant amount of dust attenuation in the rest-frame UV corresponding to \(A_{1500} \sim 1.7 \) giving an UV based SFR of \(\sim 14M_\odot yr^{-1} \).

We present mock JWST images of the galaxy with and without central point source, in different MIRI and NIRCam filters. The host galaxy is detectable in NIRCam filters, but it is extremely compact (\(R_E = 0.35 \) kpc). It will require JWST’s exquisite sensitivity and resolution to separate the galaxy from the central point source. Finally within the FOV of the quasar in BlueTides there are two more sources that would be detectable by JWST.

Key words: cosmology: early universe – methods: numerical – hydrodynamics – galaxies: high-redshift – quasars: supermassive black holes

1 INTRODUCTION

There are many unsolved problems in our quest to understand the first billion years of cosmic structure formation and the formation of the first galaxies and black holes. Supermassive black holes, as massive as those in galaxies today, are known to exist in the early universe, even up to \(z \sim 7 \). Luminous, extremely rare, quasars at \(z \sim 6 \) have been discovered in the Sloan Digital Sky Survey (Fan et al. 2006; Jiang et al. 2009) and, until recently, the highest redshift quasar known was (Wu et al. 2015) at \(z = 7.09 \) (Mortlock et al. 2011).

Excitingly, Bañados et al. (2018) (hereafter B18) reported the discovery of a bright quasar at \(z = 7.54 \), J1342+0928 which is currently the record holder for known high redshift quasars. The observed quasar is found to have a bolometric luminosity of \(4 \times 10^{13}L_\odot \) and an inferred black hole mass of \(8 \times 10^8 M_\odot \). However, the properties of the galaxy hosting this quasar are currently completely unknown. In this paper, we focus on predicting the host galaxy properties of such a luminous and massive early quasar using the cosmological hydrodynamic simulation BlueTides Feng et al. (2016). More specifically, we make predictions for the Spectral Energy Distributions (SED’s) of the quasar host galaxy and the AGN in the James Webb Space Telescope (JWST) (Gardner et al. 2006) filters. In a companion paper (Ni et al. 2018), we study the feedback around the most
luminous quasar, and in particular, the properties of the outflow gas in the host halo of the quasar.

The upcoming launch of JWST will facilitate the observational study of the properties of a large number of high redshift galaxies at $z \sim 8-10$. In particular, JWST will make observations in the rest-frame optical/near-IR wavelengths of high redshift galaxies including the massive quasar host galaxies. Volonteri et al. (2017) predicted the properties of high-redshift galaxies and AGN in JWST bands by developing a population synthesis model based on empirical relations. The volume and resolution of BlueTides simulation facilitates a direct study of AGN and host galaxy properties of rare objects such as most massive quasars at high redshift ($z \sim 7.5$). In this paper, we compare the SED’s of galaxies which are directly calculated based on the stellar age and metallicity that are then compared with the quasar’s SED obtained based on luminosity and accretion rate.

Recently, Venemans et al. (2017) reported observations from IRAM/NOEMA and JVLA to obtain some constraints on the host galaxy of the quasar, J1342+0928 of B18. The dynamical mass of the host is determined to be $< 1.5 \times 10^{11} M_\odot$ and star formation rates are in the range, $85 - 545 M_\odot$ yr$^{-1}$. Venemans et al. (2017) also report a dust mass of $0.6 - 4.3 \times 10^5 M_\odot$, a metal enriched gas ($\sim 5 \times 10^6 M_\odot$) with implied stellar mass of $\sim 2 \times 10^{10} M_\odot$.

This paper is organized as follows. In Section 2, we provide the details of the BlueTides-II simulation along with the methods to identify galaxies and compute spectral energy distributions (SED’s). In Section 3, we provide details of the properties of the most luminous quasar and its host galaxy in BT-II. We show the distribution of gas, dark matter and stellar matter in BT-II corresponding to a region of JWST field-of-view (FOV) in Section 4. In Section 5, we discuss the AGN and host galaxy SED’s along with their band luminosities in the JWST filters. The mock JWST images of the host galaxy, sampled at JWST resolution and including PSF effects of the filters are shown in Section 6. Finally, we conclude in Section 7.

2 BLUETIDES-II SIMULATION

The BlueTides simulation (Feng et al. 2016) was the first phase in the BlueTides project, and involved the evolution of a cosmological volume to $z = 8$. In this paper we report on some of the first results from BlueTides-II (BT-II), the second phase of the project, which continued the evolution of the BlueTides volume to redshifts $z < 8$. Here we focus on redshifts $z = 7.5-8$, close to the redshift of the J1342+0928 quasar in B18.

2.1 MP-Gadget SPH code

Both phases of the BlueTides simulation have been performed using the Smoothed Particle Hydrodynamics code, MP-Gadget1 (Feng et al. 2016) in a cubical periodic box of volume $(400 h^{-1} \text{Mpc})^3$. The simulation was evolved from initial conditions at $z = 99$ with 2×7040^3 dark matter and gas particles. The cosmological parameters in the simulation were chosen according to those in the WMAP 9 year data release (Hinshaw et al. 2013). The details of phase I of the simulation and various properties of the simulated galaxies till $z = 8$ are described in Feng et al. (2016).

We provide a brief description of the feedback model adopted in the BlueTides simulation. The MP-Gadget code adopts the pressure-entropy formulation of smoothed particle hydrodynamics (pSPH) (Read et al. 2010; Hopkins 2013) to solve the Euler equations. Star formation is implemented based on the multi-phase star formation model (Springel & Hernquist 2003) and also includes several modifications following Vogelsberger et al. (2013). The gas cooling is modeled based on radiative processes (Katz et al. 1996) and also via metal cooling (Vogelsberger et al. 2014). The formation of molecular hydrogen and its effect on star formation at low metallicities is modeled according to the prescription by Krumholz & Gnedin (2011). A type II supernovae wind feedback model (Okamoto et al. 2010), which assumes that the wind speeds are proportional to the local one dimensional dark matter velocity dispersion is also incorporated. Finally, the black hole growth and feedback from active galactic nuclei (AGN) is incorporated based on the super-massive black hole model developed in Di Matteo et al. (2005).

2.2 Galaxies

We identify galaxies from the snapshots of BT-II using a friends of friends (FOF) algorithm (Davis et al. 1985) with linking length 0.2 times the mean interparticle separation. We have shown in Feng et al. (2016) that at these redshifts, there is a good correspondence between FOF defined objects and galaxies selected using sExtractor (Bertin & Arnouts 1996) from mock imaging. In the simulation at redshift $z = 7.5$ there are 4.7×10^5 galaxies with stellar mass $> 5 \times 10^7 M_\odot$.

Each galaxy contains from $60 - 2.3 \times 10^5$ star particles, each with an age and metallicity. We use the information

1 https://github.com/MP-Gadget/MP-Gadget
from these to compute spectra for the galaxies, and also for the visualization of galaxy images in different bands.

2.3 Galaxies SEDs

The spectral energy distribution of the AGN host is constructed by attaching the SED of simple stellar population (SSP) to each star particle based on its mass, age, and, metallicity. Specifically, we employ version 2.1 of the Binary Population and Spectral Populations Synthesis (SPS) (BPASS Eldridge et al. 2017) model utilizing a modified Salpeter IMF (Salpeter high-mass slope with a break at $< 0.5 M_\odot$) and a high-mass cut-off of $300 M_\odot$. See (Wilkins et al. 2016) for a discussion of the impact of assuming alternative SPS models. Attenuation by dust is modeled for each star particle individually by determining the line-of-density of metals and assuming a linear relation to the dust optical depth. This is calibrated to reproduce the bright end of the rest-frame UV luminosity function at $z \sim 8$ (see Wilkins et al. 2017).

2.4 Quasar spectrum

The spectral energy distribution of the AGN is determined by the black hole mass and accretion rate using the functional form of the spectrum adopted in the spectral synthesis code, *Cloudy* (Ferland et al. 2013), given by

$$f_\nu = \nu^{\alpha_{UV}} e^{-\frac{h\nu}{kT_{BB}}} e^{-\frac{h\nu}{kT_{IR}}} + a\nu^{\alpha_{X}}$$

where $\alpha_{UV} = -0.5$, $\alpha_{X} = -1$, $kT_{IR} = 0.01$ Ryd. We note that this procedure to obtain the theoretical AGN spectrum is the same as the method used in Volonteri et al. (2017).

2.5 The most luminous quasar in BlueTides-II

The quasar, J1342+0928 found by B18 was discovered using data that cover a significant fraction of the sky. Three large area surveys were used, the Wide-field Infrared Survey Explorer (ALLWISE), the United Kingdom Infrared Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey, and the DECam Legacy Survey (DECaLS)\(^2\). The overlap between these is up to 4000 square degrees, which leads to a potential search volume of up to 5.5 (Gpc/h)\(^3\) between $z = 7.5$ and $z = 8$. Although the BlueTides volume is large for a cosmological hydrodynamic simulation, the observational search volume could be up to two orders of magnitude larger. This should be kept in mind when comparing the simulation and observational results. When searching for a luminous quasar in the simulation, however, we do allow ourselves to search over a slightly wider redshift range than the single snapshot $z = 7.54$ corresponding to the observed quasar’s redshift. Because of the variability in black hole accretion, and therefore quasar luminosity, by picking a redshift where the luminosity is high we are increasing the effective simulation volume.

We choose the object in BT-II to compare to the B18 quasar, J1342+0928 on the basis of its luminosity. In Figure 1 we show black hole mass against AGN luminosity for the entire simulation at redshift $z = 7.6$. We can see that there is a clear relationship between the two quantities, and also that the brightest AGN also has the most massive black hole. The black hole mass, accretion rate and other parameters related to the host galaxy are given in Table 1. The black hole mass is within the 1σ observational uncertainty quoted by B18, and its luminosity is smaller by a factor of

\(^2\) http://legacysurvey.org/decamls

Figure 2. The absolute magnitude of AGN in the BTII simulation at redshift $z = 7.6$ plotted against galaxy absolute magnitude. The solid black circle is plotted at the position of the most luminous quasar in BT-II. The red line shows the observed luminosity of J1342+0928 quasar in B18. The solid blue line shows where galaxy and AGN are equally luminous. The host galaxy is predicted to have $M_{uv} = -23.24$

Figure 3. Redshift evolution of the black hole mass (*Top*), and black hole accretion rate.
3 QUASAR AND GALAXY PROPERTIES

The most luminous AGN in BT-II at $z \sim 7.5$ is hosted by a galaxy with FoF halo mass $\sim 10^{12} M_\odot$, and stellar mass $4 \times 10^{10} M_\odot$ (see Table 1). It is however not the most massive galaxy in the volume, as can be seen from the top panel of Figure 4, where we show the stellar mass of all galaxies against AGN luminosity. There are about 10 other galaxies with stellar masses which are similar or greater, including some with AGN luminosities 5 orders of magnitude smaller. The most massive galaxy has a stellar mass ~ 5 times larger than the host of the most luminous AGN.

When considering galaxy luminosity, the quasar host is even less exceptional, which can be seen in Figure 2. Here we plot the absolute restframe UV magnitude of the AGN and their host galaxies. We can see that the host of brightest AGN is about 3 magnitudes fainter than the brightest galaxies in BT-II. Only a handful of galaxies lie to the right of the $M_{UV,AGN} = M_{UV,Galaxy}$ line, indicating that the vast majority of accreting black holes do not outshine their hosts. The main locus of points in Figure 2 is approximately 3 magnitudes to the left of (fainter than) the $M_{UV,AGN} = M_{UV,Galaxy}$ line, indicating that for most galaxies the AGN is 3 magnitudes fainter the galaxy. The brightest quasar is the opposite, on the other hand, being about 3 magnitudes more luminous than its host.

The galaxy UV luminosity is closely related to the star formation rate. The star formation rate of the host galaxy is computed from the sum of the SFRs of all particles in the halo. From the middle panel of 4 we can see that the star formation rate of the brightest quasar host is about 1 order of magnitude smaller than the most star forming. The star formation history of this host galaxy does include episodes of much higher activity. For example, in Figure 3 of Di Matteo et al. (2017), the same galaxy is shown at much higher redshifts, where at $z = 10$, the star formation rate was as high as $300 M_\odot/yr$. Even at redshifts closer (within $\Delta z \sim 0.5$) to the one we are considering, the star formation rate was an order of magnitude higher, as we see below (Figure 5).

Figure 4 also shows the stellar mass of the galaxies as a function of AGN luminosity. In this case, the AGN host is again in the top few galaxies, consistent with the fact that it underwent a very significant earlier burst of star formation. This star formation episode resulted in metal production, which is evident in the bottom panel of Figure 4, where it is also among the top few galaxies by mean metallicity (computed from the star particles). We note that the solar metallicity is defined to be $Z_\odot = 0.02$ in the simulation.

We show the SFR as function of redshift over the interval of interest in the middle panel of Figure 5. The sampling is relatively coarse in time because of the timing of the simulation snapshots, but we can see that it has varied by a factor of around two over the 150 Myr before $z = 7.5$. The growth in the stellar mass of the galaxy is shown in the top panel.

We have also computed the galaxy’s disk to total ratio using star particle kinematics. We have used a standard technique (Governato et al. 2007) to determine the fraction of stars in each galaxy that are on planar circular orbits and that are associated with a bulge. In Di Matteo et al. (2017) (where more details are given) we found that the majority of massive galaxies at these high redshifts are disks. In fact, at $z = 8$, 70% of galaxies above a mass of $10^{10} M_\odot$ were kinematically classified as disks (using the standard thresh-
old of disk stars to total stars (D/T) ratio of 0.2 (Governato et al. 2007). In the present case, the quasar host galaxy is below this threshold, and is becoming even less disk-like towards lower redshifts. Some of the galaxies in Di Matteo et al. (2017) were extremely disk-like in visual appearance as well as kinematically. As we shall see later (Section 6.1), this galaxy is not. This is consistent with the general expectation for galaxies hosting the most massive black holes which are often in areas with low tidal fields Di Matteo et al. (2007). In the present case, the quasar host galaxy is below this threshold, and is becoming even less disk-like towards lower redshifts. Some of the galaxies in Di Matteo et al. (2017) were extremely disk-like in visual appearance as well as kinematically. As we shall see later (Section 6.1), this galaxy is not. This is consistent with the general expectation for galaxies hosting the most massive black holes which are often in areas with low tidal fields Di Matteo et al. (2017), and are less likely to be disks.

With the large number of particles in the quasar host galaxy, the metallicity of the stars as a function of age can be examined in detail. We do this in Figure 6, where we show a two dimensional histogram of these properties. The median metallicity of the stars that formed at redshifts z > 12 can be seen to be about log(Z) ≃ −2.5 and this increases to log(Z) ≃ −1.75 by redshift z = 8. As expected for these early sites of vigorous star formation (e.g., Venemans et al. 2016; Wang et al. 2013, 2011; Maiolino et al. 2005; Walter et al. 2003), the median metallicity is high, reaching solar values for stars forming at z ∼ 9. The burst of star formation at z ∼ 10 in this galaxy can be clearly seen in the age histogram above the main plot, and also as a concentration of pixels in the main panel at these redshifts and metallicity log(Z) ≃ −2.1.

![Figure 5.](image1)

Figure 5. The host galaxy’s stellar mass (*Top*), star formation rate (*Middle*) and the Disk to Total ratio (*Bottom*) as a function of redshift.

![Figure 6.](image2)

Figure 6. The metallicity of star particles in the quasar host galaxy as a function of their age (or equivalently formation redshift). Solar metallicity is Z = 0.02.

Table 1.

Property	z=8	z=7.85	z=7.6	z=7.54
M_{BH} (×10^9 M_{⊙})	4.1	5.2	6.4	6.7
D/T	0.19	0.20	0.14	0.13
L_{BH} (×10^{12} L_{⊙})	5.7	5.9	11.8	3.6
M_{BH} (M_{⊙}/yr)	3.8	4.0	7.9	2.5
SFR (M_{⊙}/yr)	67.80	73.19	82.55	83.96
M_{D/T} (×10^{11}h^{-1}M_{⊙})	5.9	6.1	9.1	9.4
M_{gas} (×10^{11}h^{-1}M_{⊙})	3.7	3.9	4.3	4.4
M_{H2} (×10^{10}M_{⊙})	3.75	3.86	4.18	4.23
M_{gas} (M_{H2}/M_{gas})	4.9	4.8	9.3	9.5
M_{dyn} (M_{gas})	0.65	0.64	0.76	0.76

4 LARGE SCALE ENVIRONMENT: THE JWST FIELD-OF-VIEW (FOV)

The most luminous quasar in BT-II is located in a high density environment which will make it an interesting target for observations of the surrounding sky area. We are most interested in follow-up observations with the JWST, and in this section we present images of the dark matter, gas and stellar in the entire JWST field of view, before concentrating on mock images of the host galaxy in detail in Section 6.

JWST’s Mid-Infrared Instrument (MIRI) and Near Infrared Camera (NIRCam) have different FOV sizes. The NIRCam instrument has 2 modules each with a FOV of 4′′ × 132′′ with filters in the wavelength range, 0.6 – 5.0µm. MIRI has a FOV of 74′ × 113′ and provides broadband imaging in the wavelength range, 5.0 – 27.0µm. The physical scale corresponding to 1′′ at z = 7.6 is 5.1kpc, so that the NIRCam and MIRI FOV’s are approximately 4h^{-1}Mpc across their longest dimensions. We therefore choose to plot images of a 4h^{-1}Mpc × 4h^{-1}Mpc simulation. We also restrict ourselves to a depth of 4h^{-1}Mpc to only show physically associated structure. The volume considered is therefore 10^{-6} of the entire BT-II simulation box.

MNRAS 000, 000–000 (0000)
4.1 Gas and dark matter

In Figure 7 (left panel), we plot the distribution of gas in this region of $4 h^{-1}$Mpc centered on the most massive black hole in the BT-II simulation. The filamentary structure of the gas is readily visible, with the quasar itself lying at the intersection of four filaments. The distribution of matter is visually fairly symmetric around the center, indicating that the asymmetry in the tidal field will be fairly low, consistent with the low D/T ratio of the host galaxy Di Matteo et al. (2017). The gas in the image is color coded by temperature, with the IGM far from the galaxy being at a temperature of $\sim 10^4$ K. The BT-II simulation includes a patchy model for reionization, but such a high density region has already been reionized (heating the IGM to this temperature) by this redshift. The red-orange color of gas close to the quasar indicates that it has been heated by AGN feedback to temperatures of $10^6 - 10^7$ K. This feedback and the associated winds are studied in more detail in Ni et al. (2018).

The dark matter distribution around the quasar (Figure 7, left panel), traces the gas distribution, as expected. A large filament is more visible in dark matter than gas, entering from the top left, and in general throughout the image many subhalos are visible along the filaments.

4.2 Stars

An interesting question we would like to address is whether any companion galaxies are expected close to the location of the highest redshift quasar. Deep JWST imaging may be able to detect close neighbors or even satellite galaxies. In Figure 8, the intensity of the red region represents the stellar density. We also label the rest frame UV magnitudes of three most luminous galaxies in the region. Here, the galaxy with the most massive black hole has the highest luminosity in this field of view with a $M_{UV} = -23$. We can see two more luminous galaxies, one slightly above this galaxy with a magnitude of $M_{UV} = -21.2$ and another one further above at the left with a magnitude of $M_{UV} = -20.7$. The second brightest galaxy is within 300 kpc of the quasar in projected separation and the host halos seen in Figure are close to merging.

If the extinction for the other galaxies is assumed to be the same as for quasar host galaxy, then their luminosities will be fainter by 1.5 magnitudes for each galaxy. The extincted UV magnitudes of the galaxies labeled in the figure will therefore be $-21.5, -19.7, -19.2$ respectively in the decreasing order of their luminosities. All three of the galaxies visible and labeled in Figure 7 (right panel) would be visible in JWST imaging, for example using JWST’s NIRCam F070W filter (see below) and an apparent magnitude limit of $m_{AB} \sim 28$ for an integration time of 10ks. The galaxy with the most massive black hole has apparent magnitude of $m_{AB} = 24.1$. The other two labeled galaxies visible in this FOV have magnitudes of $m_{AB} = 26.9$ and $m_{AB} = 27.5$.

5 QUASAR AND GALAXY SED’S

We determine the luminosities of the quasar host galaxy in each JWST MIRI and NIRCam filters by summing the Spectral Energy Distributions (SED’s) of each star particle computed from the method described in Section 2.3 and convolved with the given filter. The SED of the quasar is obtained using the spectral synthesis code, Cloudy (Ferland et al. 2013) based on the black hole mass and accretion rate as described in Section 2.4. The rest frame quasar spectrum is shown in the left panel of Figure 9. Here, we show both the AGN continuum (green lines) and the emission spectrum (black line). The filter responses of the different mid and near infrared JWST bands in the quasar rest frame are also shown at the bottom of the plot. We can see that the peak

https://jwst-docs.stsci.edu/display/JTI/NIRCam+Sensitivity
Figure 8. Galaxies in the field of view of JWST. Stellar densities are shown increasing from red to yellow. The labels indicate the absolute magnitudes of the brightest three galaxies in the restframe UV.

Figure 9. Left: The figure shows the SED’s of AGN and the star particles in the galaxy hosting the brightest quasar at $z = 7.6$. The green and black lines show the continuum and emission spectrum of the quasar obtained from the Cloudy software. The red line shows the galaxy’s intrinsic spectrum obtained by summing the individual SED’s of star particles in the galaxy. The cyan line shows the dust-attenuated spectrum of the galaxy. Right: The figure shows the ratio of the galaxy luminosity to that of the AGN as a function of wavelength. The red and cyan line correspond to the intrinsic and dust-attenuated spectrum of the galaxy respectively. The gray horizontal line represents the value at which the AGN luminosity is about 30 times brighter than the galaxy.
of the AGN SED is captured by the near infrared filters, as is the Lyman break and Lyman-alpha absorption.

The AGN outshines the host galaxy considerably in all JWST wavebands. In the left panel of Figure 9 the SED of the quasar is compared against the galaxy spectrum obtained by summing the individual SED’s of star particles in the galaxy. We show both the galaxy’s intrinsic spectrum (red line) and the dust-attenuated spectrum (cyan line). To understand the relative brightness of the host galaxy when compared to that of its quasar at different wavelengths, we plot the ratio of the SED’s of the galaxy and the quasar in the right panel of Figure 9. As seen from the figure, at rest frame wavelengths above 8 μm, the dust attenuated luminosity of the galaxy is smaller than that of the quasar by up a factor of ~30. More specifically the dust attenuation in the rest-frame UV gives an extinction \(A_{1500} \approx 1.7 \) and, compared to the SFR based on the intrinsic stellar UV luminosity of \(SFR_{\text{int}}(L_{1500}) \approx 65M_\odot/yr \), the resulting SFR based on the attenuated stellar UV luminosity \(SFR_{\text{obs}}(L_{1500}) \approx 14M_\odot/yr \).

We focus in more detail in the NIR part of the spectrum in Figure 10, where we plot the observed frame monochromatic luminosities of the quasar and galaxy as a function of wavelength. At observed wavelengths above 3μm, (NIRCam F356W, F444W filters, MIRI F560W, F770W, F1000W filters) the luminosities are separated by ~1.5dex. Point source subtraction techniques are slightly more likely to be successful at long wavelengths. Based on the galaxy-AGN luminosity ratio, this is likely to be challenging if the host galaxy of the observed quasar, J1342+0928 in B18 is similar to the equivalent host in the simulation.

6 MOCK JWST IMAGES OF HOST GALAXY

With an angular resolution of ~0.1′, JWST will be able to image the host galaxy of J1342+0928. The BT-II simulation has a resolution (force softening) of 250 pc at this redshift, which corresponds to 0.05″, so the simulation is well matched to the potential of JWST, and can be used to predict how the galaxy will appear in JWST imaging. Here, we first show native images (without convolution with telescope angular or spectral characteristics) and them move on to mock JWST images of the individual host galaxy of the bright quasar at \(z = 7.6 \).

6.1 Native images without PSF convolution and filter selection

Before plotting the images of the galaxy in different JWST filters, we show the distribution of only the stellar component of the galaxy in the left panel of Figure 11. The image shows a region of width, 10kpc in physical units. The inner circle in the images has a radius of 1kpc, while the outer circle is of radius 5kpc, corresponding to a size of 1″. We note that the galaxy is centrally concentrated, but it is visible out to ~8kpc. It is ellipsoidal and rather featureless. We show only one orientation, but the other views are similar - it exhibits no flattening or disk-like structure.

As we move from the left to the right panels of Figure 11, the intensity of the pixels in the images represents the distribution of stellar mass, intrinsic UV luminosity, observed UV luminosity (i.e. with dust attenuation) and observed frame R-band luminosity respectively. We note that the effects of PSF and the contribution from quasar luminosity are not included here. The effects of dust attenuation are clearly visible in the middle two panels. We have already seen in Figure 10 that dust can decrease the relevant luminosity by a factor of ~5 – 10. Given that the luminosity and black hole mass of the observed quasar, J1342+0928 in B18 are extremely high, it is unlikely to be very attenuated. So, here we assume that the dust attenuation can be ignored for the quasar luminosity.

6.2 Mock JWST images in NIRcam and MIRI filters

We show mock JWST images of the host galaxy of the brightest quasar in Figure 12 and Figure 13 where the luminosity has been computed using the individual band luminosities of the star particles in the NIRCam and JWST filters. All the mock JWST images shown in Figure 12 and Figure 13 are of width 10kpc in physical units and the PSF’s for these images were generated using the WebbPSF python package (Perrin et al. 2015).

In Figure 12, the luminosities were obtained from the dust attenuated SED’s of the star particles. The figure shows the galaxy image in each of NIRCam filters: F115W, F150W, F200W, F277W, F350W, F444W and MIRI filters: F560W, F770W. In the top panel of the figure, the images show the combined luminosity from the AGN and stellar component, when taking the relevant filter-dependent PSF effects into account. These images can be compared with those in the bottom panel, where only the distribution of stellar luminosity in the galaxy is plotted after convolution with the PSF, and AGN contribution is not included. As expected, when the AGN is included the AGN dominates in all filters. The FWHM of the PSF is approximately in the range 0.04′ – 0.15′, increasing as we go to longer wavelengths for the NIRCam filters shown and ~0.2′ – 0.25′ for the MIRI filters. Comparison of the top and bottom rows reveal that the PSF is indeed much more centrally concentrated than the galaxy light, indicating that point source subtraction should be possible in principle. The color scale is different in the top and bottom rows (in order to make the galaxy visible in the bottom row), so that the galaxy in the top row is largely below the lower end of the scale (but it is included, together with the AGN). The elliptical shape of the galaxy in the bottom panels can be compared to that in the native images (e.g., of the stellar mass distribution) in Figure 11, indicating that if AGN subtraction is carried out it may be possible to extract this aspect of galaxy morphology from observations.

It is obvious from Figure 12 that the galaxy is extremely compact. In order to give a quantitative value for the galaxy effective radius \(R_e \), we first exclude star particles > 10 kpc away from the center of the galaxy. We find the exact center by minimizing the second moment of the smoothed galaxy image. We then compute the galaxy size using a pixel based technique (summing the area of the brightest pixels that sum to to 50% of the total light). This yields an effective radius of \(R_e = 0.35 \) kpc. This can be compared to the half-stellar mass radius, which is similar,
Figure 10. The Top panel in the figure shows the observed-frame spectra of the brightest quasar (gray line) and the host galaxy (black line). The Bottom panel shows the filter curves of JWST’s NIRCam F115W, F150W, F200W, F277W, F356W, F444W filters and MIRI F560W, F770W, F1000W filters. The corresponding band luminosities of the quasar (Circular markers) and the host galaxy (Star markers) are shown at the mean wavelengths in the top panel.

Figure 11. Images of the host galaxy of brightest quasar in a region of size 10 kpc in physical units with a resolution of 0.1 kpc. The inner circle is of radius 1 kpc (0.2”) and the outer circle depicts a radius of 5 kpc (1”). From Left to Right, the images show the distribution of stellar mass, intrinsic UV-band luminosity, observed UV-band luminosity and observed R-band luminosity. It is interesting this host galaxy is among the most compact of all galaxies with stellar mass $\sim 10^{10} M_\odot$ (see Figure 4 of (Feng et al. 2015)). We investigate the size distribution of galaxies and the relationship to their black holes in other work (Wilkins et al., in preparation).

Figure 13 is similar to Figure 12, but the band luminosities of the star particles are obtained from their intrinsic SED’s (i.e., without dust attenuation). As we have seen in the rest frame UV images in Figure 11, the intrinsic luminosity distribution of the galaxy is much more centrally concentrated. The dust attenuation towards the galaxy center makes a large difference to the visual impression when comparing the bottom rows of Figure 13 and Figure 12. The top rows including the AGN are barely affected on the other hand, showing again that point source subtraction will be important.
A. Tenneti et al.

Figure 12. Dust attenuated mock JWST images. We show the host galaxy of brightest quasar, plotting the distribution of dust-attenuated luminosities of star particles in NIRCam’s F115W, F150W, F200W, F277W, F356W, F444W filters and MIRI’s F560W, F770W filters. The images show a region of size 10 kpc in physical units, sampled at JWST resolution of 0.032′′ – 0.111′′, depending on the filter and include the effects of PSF. The Top panel shows the images with the contribution from AGN luminosity included. The Bottom panel images have do not have AGN.

Figure 13. Intrinsic (no dust) mock JWST images. We show the host galaxy of brightest quasar, plotting the distribution of intrinsic luminosities of star particles in NIRCam’s F115W, F150W, F200W, F277W, F356W, F444W filters and MIRI’s F560W, F770W filters. The images show a region of size 10 kpc in physical units, sampled at JWST resolution and include the effects of PSF. The Top panel shows the images with the contribution from AGN luminosity included. The Bottom panel images do not have AGN.

6.3 Composite image

In Figure 14, we show a galaxy image where the star particles are color coded by their respective luminosities in the K-band, V-band and B-band to form an RGB composite image. The pixelization reflects the pixel resolution of 0.02′′, but the image does not include PSF effects. The AGN is not included. The image is fairly featureless, with small color gradients. We expect the host galaxy of the brightest quasar, J1342+0928 in B18 to have such an aspect when observed by JWST.

7 CONCLUSIONS

In this paper, we studied the properties of the host galaxy of the most luminous quasar in the BlueTides-II (BT-II) simulation at redshift, z ~ 7.5. The first quasar observed at these redshifts was reported by Bañados et al. (2018) (hereafter B18). This quasar, J1342+0928 has a luminosity of 4 \times 10^{13} L_{\odot} and black hole mass of 8 \times 10^{8} M_{\odot}. The volume and resolution of the BT-II simulation makes it possible to study the properties of rare objects in the early universe comparable to the B18 quasar. The brightest quasar in the simulation has a luminosity of \sim 1.2 \times 10^{13} L_{\odot} and a black hole mass of 6.4 \times 10^{8} M_{\odot}, at z = 7.6 which is comparable to the observed quasar, J1342+0928 in B18. However, the host galaxy properties of the observed quasar are not completely known, except for some constraints reported by Venemans et al. (2017) on the host dynamical mass (< 1.5 \times 10^{11} M_{\odot}), star formation rate (85 – 545 M_{\odot} yr^{-1}) and dust mass (~ 10^{8} M_{\odot}) using observations from IRAM/NOEMA and JVLA. JWST will make observational measurements of high redshift galaxies including the J1342+0928 quasar of B18 in rest-frame optical/near-IR wavelengths. Here, in addition to reporting the properties of the host galaxy of brightest quasar in BT-II, we also make predictions for the properties of high redshift galaxies based on their AGN luminosity. Further, we compare the spectral energy distributions of the galaxy with that of the underlying quasar and

MNRAS 000, 000–000 (0000)
Finally, we presented mock images of the host galaxy in JWST bands by taking into account the filter-dependent PSF effects and the pixelization corresponding to each JWST filter. The BT-II simulation has a resolution of $\sim 0.05''$ at $z = 7.6$, while JWST has an angular resolution of $\sim 0.1''$. Given that the simulation resolution is well matched to that of JWST, BT-II is ideal to make predictions for the visual appearance of the host galaxy. We also looked at images showing the stellar distribution around the quasar, covering a region of size $4h^{-1}$Mpc corresponding to JWST’s field-of-view (FOV), as well as studying the stellar distribution in the host galaxy without including PSF effects.

The prediction from BlueTides is that there are likely to be some companion galaxies in the JWST FOV around J1342+0928. In the particular example from the simulation that we have studied there were two that were above the magnitude limit for reasonable JWST observations. As can be seen from Figure 2, any that are seen are unlikely to host bright AGN, and so there may an opportunity for galaxy imaging without the difficulties of point source subtraction. Turning to the host of the brightest BT-II quasar itself, by looking at the stellar images without PSF effects, we observe that the galaxy emission is visible up to ~ 8 kpc from the quasar. The galaxy effective radius is however much less than this, $r_E = 0.35$ kpc. The galaxy surface brightness is fairly featureless with an ellipsoidal shape, consistent with the low kinematically measured D/T ratio. Point source subtraction of the AGN from the host galaxy images of the B18 quasar in JWST bands should be possible but will be challenging. This because the AGN outshines the host galaxy by so much and because we expect the host galaxy to be extremely compact, even though it is as massive as the Milky Way. Follow-up HST observations of $z > 6$ quasars have been elusive at revealing the underlying UV stellar light of their host galaxies (e.g., Decarli et al. 2012; Mechtley et al. 2012). JWST’s exquisite sensitivity, resolution and wide wavelength coverage will be essential (and hopefully sufficient) to constrain the stellar mass of these tiny host galaxies.

ACKNOWLEDGEMENTS

We acknowledge funding from NSF ACI-1614853, NSF AST-1517593, NSF AST-1616168, NASA ATP NNX17AK56G and NASA ATP 17-0123 and the BlueWaters PAID program. The BlueTides simulation was run on the BlueWaters facility at the National Center for Supercomputing Applications.

REFERENCES

Bañados E., et al., 2018, Nature, 553, 473
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Decarli R., et al., 2012, ApJ, 756, 150
Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
Di Matteo T., Croft R. A. C., Feng Y., Waters D., Wilkins S., 2017, MNRAS, 467, 4243
Eldridge J. J., Stanway E. R., Xiao L., McClelland L. A. S., Taylor G., Ng M., Greis S. M. L., Bray J. C., 2017, Publ. Astron. Soc. Australia, 34, e058
Fan X., et al., 2006, AJ, 132, 117
Feng Y., Di Matteo T., Croft R., Tenneti A., Bird S., Battaglia N., Wilkins S., 2015, ApJ, 808, L17
Feng Y., Di-Matteo T., Croft R. A., Bird S., Battaglia N., Wilkins S., 2016, MNRAS, 455, 2778
Ferland G. J., et al., 2013, Rev. Mex. Astron. Astrofis., 49, 137
Gardner J. P., et al., 2006, Space Sci.Rev., 123, 485
Governato F., Willman B., Mayer L., Brooks A., Stinson G., Valenzuela O., Wadsley J., Quinn T., 2007, MNRAS, 374, 1479
Hinshaw G., et al., 2013, ApJS, 208, 19
Hopkins P. F., 2013, MNRAS, 428, 2840
Jiang L., et al., 2009, AJ, 138, 305
Katz N., Weinberg D. H., Hernquist L., 1996, ApJ, 105, 19
Krumholz M. R., Gnedin N. Y., 2011, ApJ, 729, 36
Maiolino R., et al., 2005, A&A, 440, L51
Mechtley M., et al., 2012, ApJ, 756, L38
Mortlock D. J., et al., 2011, Nature, 474, 616
Ni Y., Di-Matteo T., Feng Y., Croft R. A., Tenneti A., 2018, Submitted to MNRAS
Okamoto T., Frenk C. S., Jenkins A., Theuns T., 2010, MNRAS, 406, 208
Perrin M. D., Long J., Sivaramakrishnan A., Lajoie C.-P., Elliot E., Pueyo L., Albert L., 2015, WebbPSF: James Webb Space Telescope PSF Simulation Tool, Astrophysics Source Code Library (ascl:1504.007)
Read J. I., Hayfield T., Agertz O., 2010, MNRAS, 405, 1513
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Venemans B. P., Walter F., Zschaechner L., Decarli R., De Rosa G., Findlay J. R., McMahon R. G., Sutherland W. J., 2016, ApJ, 816, 37
Venemans B. P., et al., 2017, ApJ, 851, L8
Vogelsberger M., Genel S., Sijacki D., Torrey P., Springel V., Hernquist L., 2013, MNRAS, 436, 3031
Vogelsberger M., et al., 2014, MNRAS, 444, 1518
Volonteri M., Reines A. E., Atek H., Stark D. P., Trebitsch M., 2017, ApJ, 849, 155
Walter F., et al., 2003, Nature, 424, 406
Wang R., et al., 2011, AJ, 142, 101
Wang R., et al., 2013, ApJ, 773, 44
Wilkins S. M., Feng Y., Di Matteo T., Croft R., Stanway E. R., Bunker A., Waters D., Lovell C., 2016, MNRAS, 460, 3170
Wilkins S. M., Feng Y., Di Matteo T., Croft R., Lovell C. C., Waters D., 2017, MNRAS, 469, 2517
Wu X.-B., et al., 2015, Nature, 518, 512

MNRAS 000, 000–000 (0000)