Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas

Aleksandra I Krawczyk1, Arieke Docters van Leeuwen1, Wilma Jacobs-Reitsma1, Lucas M Wijnands1, El Bouw1, Setareh Jahfari1,2, Angela H A M van Hoek1, Joke W B van der Giessen1, Jeroen H Roelfsema2, Michiel Kroes2, Jenny Kleve3, Yolanda Dullemont3, Hein Sprong1* and Arnout de Bruin1*

Abstract

Background: European hedgehogs (Erinaceus europaeus) are hosts for Ixodes hexagonus and I. ricinus ticks, which are vectors for zoonotic microorganisms. In addition, hedgehogs may carry several enteric zoonoses as well. It is unclear to what extent a presence of pathogens in hedgehogs poses a risk to public health, as information on the presence of zoonotic agents in hedgehogs in urban areas is relatively scarce.

Methods: Engorged ticks and hedgehog faeces were collected from rehabilitating hedgehogs. Ticks were screened individually for presence of Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum, and Candidatus Neoehrlichia mikurensis using PCR-based assays. Faecal samples were screened for presence of Campylobacter, Salmonella, Giardia, Cryptosporidium, and extended-spectrum cephalosporin-resistant-Escherichia coli (ESC)-resistant E. coli, using both culture-based and PCR-based methods.

Results: Anaplasma phagocytophilum and Borrelia genospecies B. afzelii, B. spielmani, B. garinii, and B. burgdorferi sensu stricto were detected in both I. hexagonus and I. ricinus ticks. Despite their widespread distribution in the Netherlands, B. miyamotoi and Candidatus N. mikurensis were not detected in collected ticks. Analysis of hedgehog faecal samples revealed the presence of Salmonella enterica subspecies enterica and Campylobacter jejuni. In addition, ESC-resistant E. coli were observed in high prevalence in faecal samples, but no Shiga-toxin producing-Ecoli were detected. Finally, potentially zoonotic protozoan parasites were observed in hedgehog faecal samples as well, including Giardia duodenalis assemblage A, Cryptosporidium parvum subtypes IlaA17G1R1 and IlcA5G3, and C. hominis subtype IbA10G2.

Conclusions: European hedgehogs in (sub)urban areas harbor a number of zoonotic agents, and therefore may contribute to the spread and transmission of zoonotic diseases. The relatively high prevalence of B. burgdorferi s.l. and A. phagocytophilum in engorged ticks, suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. To what extent can hedgehogs maintain the enteric zoonotic agents in natural cycles, and the role of (spill-back from) humans remains to be investigated.

Keywords: Hedgehogs, Ticks, Zoonoses, Borrelia, Anaplasma, Campylobacter, Salmonella, Antibiotic resistance, Giardia, Cryptosporidium
Background
Hedgehogs are host to a wide variety of bacterial and protozoan pathogens [1-3], of which a number have become a matter of concern to public health. Since hedgehogs often dwell in (sub)urban areas, people who rescue or rehabilitate hedgehogs can be exposed to a variety of these pathogens by contact with hedgehogs, their excrements, and vectors. European hedgehogs (Erinaceus europaeus) are a reservoir host for Borrelia burgdorferi, which causes granulocytic anaplasmosis in humans [2]. Both Borrelia genospecies and A. phagocytophilum are transmitted by ixodid ticks, such as Ixodes ricinus that feed on various hosts and I. hexagonus that feed predominantly on European hedgehogs [5]. All three life stages of these tick species can feed on humans [6].

In addition to vector-borne agents, hedgehogs are a potential reservoir for enteric bacteria (such as Salmonella and Campylobacter), and protozoan parasites (Giardia and Cryptosporidium), which may cause enteritis in humans, livestock, and pets [1,7-9]. The primary transmission route to humans is believed to be food-borne, however, (indirect) contact with an animal reservoir can be an alternative source of infection [9,10]. For instance, a study carried out in Denmark reported that strains of Salmonella Enteritidis, isolated from European hedgehogs, belong to the same clonal lineage as strains isolated from infected humans [11].

In contrast, the zoonotic potential of some enteric protozoan parasites has not been fully recognized. Many studies designed to determine genetic groups of protozoan parasites in various hosts, suggest a limited zoonotic potential for Giardia, since strains isolated from people were infrequently found in animals [12,13]. Although zoonotic transmission of livestock-associated Cryptosporidium has frequently been described [14], the extent to which wildlife (e.g. hedgehogs) act as a source for Cryptosporidium infection in humans remains unclear.

Finally, little is known about the potential reservoir competence of the European hedgehog for other pathogens transmitted by ixodid ticks, such as Candidatus Neoehrlichia mikurensis, an agent of human neoehrlichiosis, and B. miyamotoi, a recently discovered agent belonging to the relapsing fever group. A number of studies detected Candidatus N. mikurensis in Northern white-breasted hedgehog (Erinaceus roumanicus) tissue samples in Hungary, and in I. hexagonus feeding on hedgehogs and dogs in the Netherlands and Germany, respectively [15-17]. However, the role of European hedgehogs and their ectoparasites in maintenance of this pathogen in an enzootic cycle is unknown. Borrelia miyamotoi is present in questing I. ricinus in the Netherlands [18], however, it has never been investigated in I. hexagonus before.

In the current study, the presence of a number of zoonotic vector-borne and enteric bacteria and two protozoan parasites was investigated in engorged ticks, obtained from European hedgehogs and hedgehog faeces. In addition, the presence of extended-spectrum cephalosporin (ESC)-resistant E. coli was investigated in faeces, since ESC-resistant E. coli are found in many animal and environmental reservoirs.

Methods
Collection of Ixodes ticks and DNA extraction procedures
Ixodes hexagonus and I. ricinus ticks were collected from European hedgehogs, rehabilitating in a hedgehog shelter in the city of Naarden, and obtained via the Dutch Wildlife Health Centre (DWHC, Utrecht) in 2010, 2011, and 2012. All hedgehogs originated from five different provinces in the Netherlands: Flevoland, Gelderland, Noord-Holland, Utrecht, and Zuid-Holland. In addition, 15 I. hexagonus ticks were collected from dead hedgehogs near the city of Ede (province of Gelderland), and from a zoo in the city of Emmen (province of Drenthe) in 2014. Collected samples included ticks of both sexes and all developmental stages with a majority of adult female ticks.

DNA from partially engorged ticks was extracted with ammonium hydroxide as described previously [19]. DNA from fully engorged ticks was extracted using the Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s protocol for the purification of total DNA from ticks (Qiagen, Venlo, the Netherlands).

Detection of tick-borne pathogens using qPCR, conventional PCR, and sequencing procedures
Ticks were tested individually for presence of B. burgdorferi s.l., B. miyamotoi, A. phagocytophilum and Candidatus N. mikurensis using (q)PCR assays, followed by sequencing for species identification when necessary. For the detection of B. burgdorferi s.l., a duplex real-time PCR was used, based on the detection of fragments of ospA and flagellin genes [20]. A conventional PCR assay, targeting the 5S-23S intergenic region [(IGS) was performed, for Borrelia genospecies identification [21]. Both strands of PCR products were sequenced by BaseClear (Leiden, The Netherlands), using the same forward and reverse primers as in conventional PCR. Borrelia genospecies identification was determined by comparison of sequences to isolates in-house molecular databases (PMID: 23602839). For detection of B. miyamotoi, a real-time PCR assay was used that targets a region of the flagellin gene, specific for B. miyamotoi [18]. For detection of A. phagocytophilum and Candidatus N. mikurensis a single duplex real-time PCR assay was used that targets a region of the A. phagocytophilum major surface protein (msp2) gene [22], and a region specific for
Candidatus* N. mikurensis of the heat shock protein gene

groEL [17]. Due to limitations of available DNA, not all
ticks (n = 628) were tested for all pathogens. For numbers
of ticks tested for each vector-borne pathogen, see Table 1.

Collection of hedgehog faeces, DNA extraction, detection
of enteric pathogens, protozoan parasites, and anti-
microbial resistance genes

No ethical approval is required for the experimental
methods used in this study. The hedgehog shelter has a
permit for handling and rehabilitating hedgehogs by the
State Secretary for Economic Affairs, Agriculture and
Innovation, according article 75 of the Dutch ‘Animal
Health and Welfare Act’. Hedgehog faeces were col-
clected from 90 hedgehogs, rehabilitating in the hedgehog
shelter in the city of Naarden in April (n = 58) and Octo-
ber (n = 32) of 2013. Hedgehogs originated from five dif-
ferent provinces in the Netherlands, described before,
and were brought to the shelter due to apparent sickness
or injury. Hedgehog faecal material was examined for
the presence of *Campylobacter* by standard microbi-
ological methods, according to ISO/DIS 10272–1 [23].
Confirmation was based on typical microscopic appear-
ance of suspect colonies on mCCDA plates, and by PCR
in order to distinguish between *C. coli*, *C. jejuni*, *C. lari*
and *C. upsaliensis* isolates [24].

Faecal samples were also tested for the presence of
Salmonella according to Annex D of ISO 6579 [25], and
Shiga toxin-producing *E. coli* according to ISO/TS
13136 [26]. After the presence of *Salmonella* was con-
firmed, serotyping was performed using the method of
Grimont and Weill [27].

Expanded spectrum cephalosporin-resistant *E. coli*
(ESC-resistant *E. coli*) were isolated by direct streaking
of a loop (10 μl) of hedgehog faeces on Brilliance *E. coli/*
coliform Selective Agar (Oxoid), supplemented with
1 μg/ml cefotaxime (Sigma). Suspected ESC-resistant *E.
coli* were phenotypically confirmed with a combination
disc-diffusion test according to CLSI guidelines [28].
Cefotaxime and ceftazidime discs, with and without
clavulanic acid, were used to identify ESBL-producing
E. coli. A cefoxitin disc was used to detect isolates with an
AmpC phenotype.

For detection of protozoan parasites, DNA was isolated
from faecal samples using the High Pure PCR template
DNA isolation kit from Roche (Almere, The Netherlands),
according to the manufacturer’s instructions. Detection of
Giardia duodenalis, *Cryptosporidium parvum*, and *C. homi-
nis* was performed using a multiplex real-time PCR [29].
Molecular typing of *Cryptosporidium* species was performed
by sequencing an amplified fragment of the GP60 gene [30].
The assemblage of *G. duodenalis* was established using a
PCR on marker 4E1-HP, specific for either assemblage A or
B [31], which are associated with human infections.

Results and discussion

Regarding tick-borne pathogens, we detected *B. burgdorferi*
s.l. in 14% (60/435) of *I. hexagonus* ticks and 28% (7/25)
of *I. ricinus* ticks feeding on European hedgehogs (Table 1).

Intergeneric spacer (IGS) sequencing of 49 PCR-positive *I.
hexagonus* ticks revealed several known *Borrelia* genospe-
cies: *B. afzelii* (76%), *B. spielmani* (14%), *B. garinii* (6%),
and *B. burgdorferi* s.s. (4%; Table 1). These findings are con-
istent with previous studies, which revealed the presence
of the same *Borrelia* genospecies in ticks feeding on hedge-
hogs in Germany and Switzerland [3,4]. This suggests that
the European hedgehog may be a reservoir host for *B. burg-
dorferi* s.l. also in the Netherlands as, and may influence
local Lyme borreliosis risk.

In addition to *B. burgdorferi* s.l. genospecies, *A. phago-
cytophilum* was detected as well in *Ixodes* ticks feeding
on European hedgehogs. DNA was detected in 27% (68/
251) of *I. hexagonus* ticks and in 24% (6/25) of *I. ricinus*
ticks (Table 1). The relatively high prevalence of *A. phago-
cytophilum* found in the current study supports the
idea, proposed by other researchers, that *E. europaeus* is
a reservoir host for this pathogen [2,4,32].

Ixodes hexagonus as a nidicolous species, rarely bites
humans and its direct epidemiological importance is
unknown [5,6]. However, it seems to contribute to the
circulation of both *B. burgdorferi* s.l., and *A. phagocyto-
philum* in nature [2,33]. In addition its predominant
host, *E. europaeus*, may harbour all life stages of gener-
alist *I. ricinus* ticks, which successfully infect hedgehogs
with at least one major group of zoonotic agents: *B.
burgdorferi* s.l. [34]. In certain habitats, hedgehogs may
be the main host for *I. ricinus* ticks, which may acquire
pathogens via either co-feeding or systemic transmis-
sion [35]. Subsequently, *I. ricinus* ticks may transmit a
number of bacterial pathogens (e.g. *A. phagocytophilum*
and *B. burgdorfei* s.l.) to other vertebrates as well, including humans.

To our knowledge, this is the first study that has tested ticks feeding on hedgehogs for *B. miyamotoi*, a spirochete belonging to the relapsing fever group. The absence of this pathogen in *I. hexagonus* may indicate that this specialist tick species is not a competent vector, or that *E. europaeus* is not a competent host for *B. miyamotoi*. However, it was shown that 4% of questing *I. ricinus* ticks were positive for *B. miyamotoi* in the Netherlands [36]. Therefore, it is also possible that the number of investigated *I. ricinus* ticks in the current study was not sufficient to detect this bacterium.

Finally, no *Candidatus* N. mikurensis DNA was detected in either *I. ricinus* or *I. hexagonus* ticks feeding on *E. europaeus*. This finding is consistent with another study, in which this pathogen was also not detected in *I. hexagonus* feeding on Dutch hedgehogs [17]. Human and animal cases of *Candidatus* N. mikurensis infections have (as of yet) not been reported in the Netherlands, and the prevalence of this pathogen in questing *I. ricinus* ticks is relatively low [17]. Therefore, it is still unclear whether this pathogen may pose risk to public health in the Netherlands.

We detected *Salmonella* in 10% (9/90) of hedgehog faecal samples (Table 2). Salmonellosis is a zoonosis that has already been associated with hedgehogs, including *E. europaeus*. Several studies reported at least three different serotypes in hedgehogs that are pathogenic to humans: *Salmonella* Typhimurium and *Salmonella* Enteritidis [1,11]. Three isolates obtained from these faecal samples were characterized as *Salmonella enterica* subsp. *enterica* serotype Enteritidis, which is a common serotype pathogenic to humans [37].

One faecal sample (1%) contained *Campylobacter*, which is the second most common food-borne bacterium worldwide [10]. Further genotyping revealed *C. jejuni*, which is recognized as one of the main causes of human gastroenteritis. A study in Denmark also reported the presence of *C. jejuni* in hedgehogs, which were rehabilitating in private homes, or fed in gardens [9]. No Shiga toxin-producing *E. coli* were detected in the faecal samples investigated.

In addition to zoonotic enteric bacteria, 11% (10/90) of hedgehog faecal samples were positive for *Giardia* species (Table 2). *Giardia* is a genus of flagellated protozoan parasites divided into eight major genetic groups (A-H) called assemblages, which slightly differ in morphology and may cause disease in diverse vertebrate hosts [13]. We detected *G. duodenalis* assemblage A in hedgehog faecal samples, which is responsible for human infections worldwide [12]. However, data regarding the presence of *Giardia* in hedgehogs are scarce, and until now no *Giardia* assemblages were found associated with these animals.

We detected *Cryptosporidium* species in 9% (8/90) of hedgehog faecal samples as well. *Cryptosporidium* is another genus of protozoan parasites of vertebrates, which causes enteric infections in humans. In this study, two genospecies, *C. parvum* (subtype: IIfA17G1R1 and IIcA5G3) and *C. hominis* (subtype: Iib1A0G2) were observed. These subtypes cause the majority of cryptosporidiosis in humans [14]. *Cryptosporidium hominis* subtype Ib is primarily transmitted anthroponotically and, to the best of our knowledge, it has never been detected in hedgehog faeces before. In addition, *C. parvum* subtype IIfA17G1R1 has never been detected in these animals either, but was described in calves, which may play a role in the transmission of human cryptosporidiosis [38]. Interestingly, subtype IIcA5G3, which is considered to be human specific, has been isolated from hedgehog faeces previously [7]. The presence of those subtypes in hedgehog faeces may indicate transmission of the pathogen within hedgehog populations, as suggested before [7].

Finally, viable ESC-resistant *E. coli* were detected in 71% (64/90) of hedgehog faecal samples (Table 2). AmpC-producing *E. coli* were only found in the samples collected in April, but at a high prevalence of 86% (50/58). A lower prevalence of 41% (13/32) of ESBL-producing *E. coli* was observed in samples collected in October. Only one isolate collected in April had the same phenotype. To the best of our knowledge this is the first description of ESC-resistant *E. coli* in hedgehogs. In the literature, an ESBL-producing isolate from hedgehog faeces was reported, however, this isolate was later identified as a *Klebsiella pneumoniae* strain [39]. The relatively high prevalence of ESC-resistant *E. coli* in tested hedgehog faeces, especially in the April samples is intriguing. If this might pose a risk to humans, handling rehabilitating hedgehogs has to be investigated. It is very likely that these enteric pathogens, protozoan parasites, and ESC-resistant *E. coli* detected in hedgehog faecal samples were acquired by ingestion of contaminated materials found in the habitat of hedgehogs, and originates from other animals or humans (waste, food, etc.).

Table 2 Prevalence of enteric pathogenic bacteria, protozoan parasites, and ESC-resistant *E. coli* in hedgehog faeces

	April 2013	October 2013	Total			
n = 58	**n = 32**	**n = 90**				
Salmonella spp.	1	2	8	25	9	10
Campylobacter spp.	0	0	1	3	1	1
Shiga toxin-producing E.coli	0	0	0	0	0	0
Giardia spp.	3	5	7	22	10	11
Cryptosporidium spp.	3	5	5	16	8	9
ESC-resistant E. coli	51	88	13	41	64	71
AmpC-producing E. coli	50	86	0	0	50	56
ESBL-producing E. coli	1	2	13	41	14	16
Conclusions

Although hedgehog blood or tissue samples were not available for examination, a relatively high prevalence of vector-borne pathogens *B. burgdorferi* s.l. genospecies and *A. phagocytophilum* in engorged ticks obtained from *E. europea*, indicates that hedgehogs contribute to pathogen maintenance in natural cycles in (sub)urban areas in the Netherlands.

A number of enteric pathogenic bacteria, protozoan parasites, and ESC-resistant *E. coli* are present in faecal material, obtained from Dutch *E. europea*. This may pose a risk for people handling diseased and wounded animals, because they can come into contact with contaminated hedgehog faeces. However, to understand the transmission of infection between wildlife and humans, a thorough understanding of the population genetics of pathogens and hosts is required. To investigate this issue more in depth, isolates obtained from wildlife should be compared with human isolates, which represent serotypes that are epidemiologically important with regard to public health.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK and AD analyzed data, and wrote the final manuscript. JK and YD collected engorged ticks from hedgehogs and hedgehog faeces. ADvL and SJ performed laboratory tests and analyzed laboratory results on all data obtained for vector-borne pathogens. SJ provided additional data as well on *A. phagocytophilum* and *Candidatus Neoehrlichia mikurensis*. Laboratory tests and analyses of results regarding enteric pathogens were performed by WJR (Campylobacter), LW (Salmonella), and EB (Shiga toxin-producing *E. coli*). Laboratory tests and data analyses regarding ESC-resistant *E. coli* were performed by AVH. Laboratory tests and data analyses regarding protozoan parasites were performed by JR (Giardia), and MK (Cryptosporidium). HS designed and supervised the study. All authors read and approved the final manuscript.

Acknowledgments

We would like to thank the general public for bringing injured or sick hedgehogs to the hedgehog shelter in Naarden. In addition, we would like to thank all volunteers of the hedgehog shelter in Naarden for taking care of the animals and sample collection. This study was financially supported by the Dutch Food and Consumer Product Safety Authority (NVWA) and by the Ministry of Health, Welfare and Sport (WVS). This work was done under the frame of EurNegVec Cost Action TD1303.

Author details

1. Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
2. Centre for Research Infectious Diseases Diagnostics and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
3. Stichting Egelbescherming Nederland, Naarden, the Netherlands.

Received: 5 February 2015 Accepted: 18 March 2015

Published online: 09 April 2015

References

1. Riley PY, Chomel BB. Hedgehog zoonoses. Emerg Infect Dis. 2005;11(1):1–5.
2. Silaghi C, Skuballa J, Thiel C, Pfister K, Petney T, Paffke M, et al. The European hedgehog (*Erinaceus europaeus*) – a suitable reservoir for variants of Anaplasma phagocytophilum? Ticks Tick Borne Dis. 2012;3(1):49–54.
3. Gern L, Rouxvinez E, Toutouni LN, Godfroid E. Transmission cycles of *Borrelia burgdorferi* sensu lato involving *Ixodes ricinus* and/or *I. hexagonus* ticks and the European hedgehog, *Erinaceus europaeus*, in suburban and urban areas in Switzerland. Folia Parasitol (Prague). 1997;44(4):309–14.
4. Skuballa J, Dehme R, Hartelt K, Petney T, Bucher T, Kimmig P, et al. European Hedgehogs as Hosts for Borrelia spp., Germany. Emerg Infect Dis. 2007;13(9):952–3.
5. Paffke M, Petney T, Skuballa J, Taraschewski H. Comparative population dynamics of a generalist (*Ixodes ricinus*) and specialist tick (*I. hexagonus*) species from European hedgehogs. Exp Appl Acarol. 2011;54(2):151–64.
6. Estrada-Pena A, Jongean F. Ticks feeding on humans: a review of records on human-feeding Ixodidae with special reference to pathogen transmission. Exp Appl Acarol. 1999;23(9):685–715.
7. Dyachenko V, Kuhnert Y, Schmaeschke R, Ertzold M, Pantchev N, Daugschies A. Occurrence and molecular characterization of Cryptosporidium spp. genotypes in European hedgehogs (*Erinaceus europaeus*) in Germany. Parasitology. 2010;137(2):205–16.
8. Chilvers BL, Cowan PE, Waddington DC, Kelly PJ, Brown TJ. Identification of *Anaplasma marginale* in field and experimental ticks. Parasites & Vectors. 2013;6(1):200.
9. Petersen L, Nielsen EM, Engberg J, On SL, Dietz HH. Comparison of genotypes and serotypes of Campylobacter jejuni isolated from Danish wild mammals and birds and from broiler flocks and humans. Appl Environ Microbiol. 2001;67(7):3115–21.
10. Sahin O, Fitzgerald C, Stroka S, Zhao S, Sipply RJ, Kwan P, et al. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States. J Clin Microbiol. 2012;50(3):680–7.
11. Nauerby B, Pedersen K, Dietz HH, Monsen M. Comparison of Danish isolates of *Salmonella enterica* serovar *enteritidis* PT19a and PT11 from hedgehogs (*Erinaceus europaeus*) and humans by plasmid profiling and pulsed-field gel electrophoresis. J Clin Microbiol. 2003;38(10):3631–5.
12. Sprong H, Caccio SM, van der Giessen JW, network Z, partners. Identification of zoonotic genotypes of *Giardia duodenalis*. PLoS Negl Trop Dis. 2009;3(12):e558.
13. Ruan Y, Caccio SM. Zoonotic potential of *Giardia*. Int J Parasitol. 2013;43(12–13):943–56.
14. Morris PT, Thompson RC. Cryptosporidium and Giardia-zoonoses: fact or fiction? Infect Genet Evol. 2003;3(6):233–44.
15. Kruecken J, Schreiber C, Maaz D, Kohn M, Demecker J, Beck S, et al. A novel high-resolution melt PCR assay discriminates *Anaplasma phagocytophilum* and *Candidatus Neoehrlichia mikurensis*. J Clin Microbiol. 2013;51(6):1958–61.
16. Foldvari G, Jahfari S, Rigo K, Jablonzsky M, Szerkeres S, Majorsz G, et al. *Candidatus Neoehrlichia mikurensis* and *Anaplasma phagocytophilum* in urban hedgehogs. Emerg Infect Dis. 2014;20(3):498–9.
17. Jahfari S, Fonville M, Hengerveld P, Reuker C, Scholte EJ, Takken W, et al. Prevalence of *Neoehrlichia mikurensis* in ticks and rodents from North-west Europe. Parasites & vectors. 2012;5:747.
18. Hovius JW, de Wever B, Sohne M, Brouwer MC, Coumou J, Wagemakers A, et al. A case of meningococcal meningitis due to the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. Lancet. 2013;382(9912):658.
19. Weliging PR, Gassenbeek C, Fonville M, de Boer A, de Vries A, Dimmers W, et al. Longitudinal analysis of tick densities and *Borrelia*, *Anaplasma*, and *Ehrlichia* infections of *Ixodes ricinus* ticks in different habitat areas in The Netherlands. Appl Environ Microbiol. 2006;72(12):7594–601.
20. Heylen D, Tjisse E, Fonville M, Mathysens E, Sprong H. Transmission dynamics of *Borrelia burgdorferi* s.l. in a bird tick community. Environ Microbiol. 2013;15(2):663–73.
21. Coipan EC, Jahfari S, Fonville M, Hengerveld P, Reuker C, Scholte EJ, Takken W, et al. Spatiotemporal dynamics of emerging pathogens in questing *Ixodes ricinus*. Environ Microbiol. 2013;15(2):663–73.
22. Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of anaplasma phagocytophilum and *Borrelia burgdorferi*. J Clin Microbiol. 2004;42(7):3164–5.
23. Anonymous. Microbiology of the food chain – Horizontal method for detection and enumeration of Campylobacter–Part 1: Detection method. ISO/DIS 10272.
Anonymous. Amd1 Annex D: Detection of Salmonella spp. in animal faeces and in environmental samples from the primary production stage. International Organization for Standardisation, Geneva, Switzerland. ISO 6579. 2002.

Anonymous. Microbiology of food and animal feed – Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens – Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups. ISO/TS 13136. 2012.

Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. 9th ed. Institute Pasteur, Paris, France: WHO Collaborating Centre for Reference and Research on Salmonella, 2007.

Anonymous. CLSI Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement M100-21. Wayne, PA, USA. 2011.

Verweij JJ, Blange RA, Templeton K, Schinkel J, Brienen EA, van Rooyen MA, et al. Simultaneous detection of Entamoeba histolytica, Gardia lamblia, and Cryptosporidium parvum in faecal samples by using multiplex real-time PCR. J Clin Microbiol. 2004;42(3):1220–3.

Strong WB, Gut J, Nelson RG. Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infect Immun. 2000;68(7):4117–34.

Vanni I, Caccio SM, van Lith L, Lebbad M, Svard SG, Pozio E, et al. Detection of Giardia duodenalis assemblages A and B in human faeces by simple, assemblage-specific PCR assays. PLoS Negl Trop Dis. 2012;6(8):e1776.

Nijhof AM, Bodaan C, Postigo M, Nieuwenhuijzi H, Opsteegh M, Franssen L, et al. Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector Borne Zoonotic Dis. 2007;7(4):585–95.

Estrada-Pena A, Oteo JA, Estrada-Pena R, Gortazar C, Osacar JJ, Moreno JA, et al. Borrelia burgdorferi sensu lato in ticks (Acari: Ixodidae) from two different foci in Spain. Exp Appl Acarol. 1995;19(3):173–80.

Gray JS, Kahl O, Janetski-Mittman C, Stein J, Gay E. Acquisition of Borrelia burgdorferi by ixodes ricinus ticks fed on the European hedgehog. Erinaceus europaeus L. Exp Appl Acarol. 1994;18(8):485–91.

Randolph SE, Gem L, Nuttall PA. Co-feeding ticks: Epidemiological significance for tick-borne pathogen transmission. Parasitol Today. 1996;12(2):472–9.

Forville M, Friesema IH, Hengeveld PD, van Docters Leeuwen A, Jahfari S, Harms MG, et al. Human exposure to tickborne relapsing fever spirochete Borrelia miyamotoi, the Netherlands. Emerg Infect Dis. 2014;20(7):1244–5.

Baumler AJ, Hargis BM, Tolls RM. Tracing the origins of Salmonella outbreaks. Science. 2000;287(5450):50–2.

Li N, Xiao L, Cama VA, Otteya G, Gilman RH, Guo M, et al. Genetic recombination and Cryptosporidium hominis virulent subtype Ba10G2. Emerg Infect Dis. 2013;19(10):1573–82.

Poirel L, Nordmann P, Ducroz S, Boulouis HJ, Arne P, Millemann Y. Extended-spectrum beta-lactamase CTX-M-15-producing Klebsiella pneumoniae of sequence type ST274 in companion animals. Antimicrob Agents Chemother. 2013;57(9):3725–5.

Jahfari S, Copan EC, Forville M, van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites & vectors. 2014;7:365.