Review Paper

Investigation of Biomechanical and Anthropometric Variables of Football Players According to Their Playing Position: Review Article

'Rasool Ferasat'

1. Department of Sport Biomechanics, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Citation: Ferasat R. [Investigation of Biomechanical and Anthropometric Variables of Soccer Players According to Their Playing Position: Review Article (Persian)]. Journal of Sport Biomechanics. 2021; 7(1):2-13. https://doi.org/10.32598/biomechanics.7.1.5

Article Info:
Received: 16 Feb 2021
Accepted: 19 Apr 2021
Available Online: 01 Jun 2021

Keywords:
Football, Biomechanical variables, Anthropometric variables, Playing position

Abstract

Objective Football activities may be directly related to the playing position of the players on the field; so, football players develop their specific physical characteristics based on the demands of individual positions. This study aimed to investigate the biomechanical and anthropometric variables of football players according to the playing position.

Methods This review study reviewed Google Scholar, PubMed and Science Direct search engines for articles related to the keywords from 1996 to 2020.

Results According to the reviewed articles, it was found that biomechanical and anthropometric variables in football players are different according to the playing position.

Conclusion It seems that biomechanical and anthropometric variables can have a direct impact on the performance of players during the game, so special attention to these variables in the field of talent identification and selection of football players in different playing positions should be considered.

Extended Abstract

1. Introduction

Approximately 4.1% of the people in the world play football, which has led to the sport becoming very popular in various communities. Football is a popular global sport and many studies have tried to discover the reasons for the success of players in this popular sport [1, 2].

In recent years, football has transformed from a fascinating sport to one of the most widely accepted games in the world, which has led coaches and players to constantly seek new scientific approaches to better prepare for training and potential performance during competitions [3].

In football, the players are placed in certain positions to perform their specific tasks. Both the tactics and the position of the players on the field are essential for organizing a football match. In most studies, football players are divided into four groups: Strikers or forwards, midfielders, defenders, and goalkeepers [4-7], who perform various technical and tactical skills in the game [8, 9]. It has been suggested that football sports activities may be directly related to the position of players on the field [10-12].

Accordingly, it is not easy to identify who and in what position can play a role in football. Today, there are so many talents in football that due to the lack of knowledge of coaches about their biomechanical conditions and employing them in non-specialist positions, they are either injured or left out playing football. Football players have...
different roles such as Strikers or forwards, defenders and playmakers, which is directly related to the position of the players on the field. Each of these players can have different percentages of offensive, defensive and playful roles due to different biomechanical conditions of the body. Accordingly, sufficient knowledge of the biomechanical conditions of the players can be very helpful in better understanding the conditions or the dominant role of the player on the field and make the player the most efficient on the field. Accordingly, it is hoped that by reviewing these studies we will become more familiar with the importance of biomechanical studies in football considering the positions of the players.

2. Methods

The study is a review of the field of biomechanical studies of football players according to the game position. For this purpose, Google Scholar, PubMed and Science Direct search engines were used to search for articles related to the keywords of football, football player, biomechanics, assessment, and analysis. All articles from 1996 to 2020 were reviewed (Table 1).

Initially, 428 articles were found and after reviewing the titles and abstracts of articles, considering that the approach of this research was related to the position of players on the playing field, 52 articles were selected. Inclusion criteria were articles that performed biomechanical and anthropometric assessments in players according to the game position, and exclusion criteria were articles that did not have this trend. Then, after reviewing the full text, 8 articles were selected considering the objectives of the research. A total of 3 articles were selected by reviewing the sources in the 8 articles which selected and added; finally, 11 articles were approved.

3. Results

According to the purpose of the research and considering that the results of the reviewed articles have different aspects, the section related to the findings of this research was presented in two parts: Anthropometric evaluations and biomechanical evaluations.

Anthropometric assessments

Abdullah et al. (2016) in a study entitled “Relationship Between Physical Characteristics in Performance According to Play Position, Parameters Such As Weight, Height, Sitting Height, Fat Percentage and Body Mass Index” in 209 elite Malaysian footballers including 20 goalkeepers, 78 defenders, 71 midfielder, and 40 strikers were examined [3]. The results of this study showed that goalkeepers and defenders are taller and heavier than midfielders and attackers and the fat content of goalkeepers and defenders is higher than that of midfielders [3].

Biomechanical assessments

Jadczak et al. (2019) conducted a study on static and dynamic analysis with respect to the game position in 101 elite footballers [19]. The tests were performed with eyes open and eyes closed with superior and non-superior legs. There was a significant difference in static and dynamic balance with respect to game position. In the static balance, this difference was seen between goalkeepers and full-backs and midfielders. In the dynamic balance, this difference was observed between midfielders and center-backs, goalkeepers, strikers and midfielders. Midfielders had a better dynamic balance, and this balance was better at the non-superior foot of the players [19].

4. Discussion and Conclusion

It has recently been suggested that the anthropometric variables of elite footballers in different positions of the game may be predictors that players of a certain size and shape are appropriate for specific positions in the game [24]. Athletes may develop specific physical characteristics based on the demands of individual positions [11]. The role of players on the field, for example speed or power players, causes them to adjust their characteristics based on the demands in the desired role. Accordingly, the isokinetic strength of the muscles of football players in different positions can be different. It was observed that the static and dynamic balance of the players also showed a significant difference and the midfielders had a better balance [19].

As mentioned before, one of the reasons for better balance can be attributed to the distance from the center of gravity to the ground, which can be considered logical considering the results of anthropometric variables in relation to the short stature of midfielders compared to players in other positions.

It seems that biomechanical evaluations are very important in selecting players for different football positions on the field, as well as identification of the football talents sport, which leads to sufficient knowledge of players’ performance in providing specific training programs according to specific characteristics in individuals to improve the performance of players. However, the lack of a comprehensive biomechanical evaluation, including anthropometric, kinetic, kinematic, and electromyographic studies was observed in the studies.
Researcher	Subjects	Test Protocol	Variables	Results
Tourney et al. (2000) [28]	21 amateur male footballers average age 22 years	Isokinetic	Average concentric and eccentric torque of quadriceps and hamstrings at angular speeds of 60, 120, and 240 degrees per second	Forwards have a higher concentric power of the hamstring muscle
Khorasani et al. (2009) [20]	15 professional male Olympic footballers with an average age of 20 years	Shoot on the football foot	Angular velocity and net torque of the lower limbs and thighs and ball velocity	Significant difference between midfielders and defenders and attackers with defenders in the sharpness of the lower limb angles. There is also a significant difference in midfield torque between defenders, defenders and attackers.
Ruas et al. (2015) [29]	102 professional male footballers 26-28 years old	Isokinetic	Maximum torque peak and common functional ratio of hamstring to quadriceps	Goalkeepers have the highest concentric torque peak of hamstring and quadriceps in superior and non-superior legs, and the ratio of hamstring to quadriceps in superior and non-superior legs was less than normal.
Harry et al. 2017 [18]	25 20-year-old male footballers	Vertical landing jump	Jump heights and reaction force components	There was no significant difference in jump height. Vertical force defenders had a higher reaction rate, loading rate and force reduction rate than midfielders and attackers when landing.
Śliwowski et al. (2017) [21]	111 elite male footballers with an average age of 26 years	Isokinetic power	Torque peak and total hamstring and quadriceps work	There is a significant difference. Goalkeepers and midfielders showed the lowest level of isokinetic power
Jadzak et al. (2019) [19]	101 elite male footballers with an average age of 23 to 26 years	Static and dynamic balance test	Open eyes and closed eyes, superior foot and non-superior foot	Static and dynamic balance varies according to the game post. The midfielders had a better dynamic balance, and this balance was better at the non-superior foot of the players.

Ethical Considerations

Compliance with ethical guidelines

This article is a meta-analysis with no human or animal sample.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
مقاله موردی

بررسی متغیرهای بیومکانیکی و آنتروپومتریکی بازیکنان فوتبال با توجه به پست بازی

رسول فراست

1. گروه بیومکانیک ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران

مقدمه

درصد از مردم جهان به ورزش فوتبال می پردازند که این امر باعث شده تا این ورزش به محبوبیت بالایی در جوامع امروزی برسد. فوتبال یک ورزش محبوب جهانی است و پژوهش‌های زیادی تلاش کرده‌اند تا ویژگی‌های موفقیت بازیکنان این رشته را کشف کنند.

در سال‌های اخیر، بازی فوتبال از یک ورزش کاملاً جذاب به مهم‌ترین بازی‌های دنیا تبدیل شده‌است. فوتبالیست‌ها، با توجه به پست بازی خود، ویژگی‌های فیزیکی خود را بر پایه خواسته‌های مربیان، به‌طور مستقیم در ارتباط با پست بازیکنان، در زمین بازی توانسته‌اند توسعه دهند. نتایجی که در مورد بالغ‌سالان ورزشکاران ثبت شده‌اند، تأکید کرده‌اند که شرایط، ظروف و حالت بازیکنان در فوتبال با توجه به پست بازیکنان تأثیر می‌گذارد.

نظر به اینکه بازیکنان در فوتبال در پست‌های مشخصی قرار می‌گیرند تا وظایف خاص خود را انجام دهند، این موضوع با اینکه از بخشی از فنون ورزش تازه‌آموزی، از بخشی از فنون ورزش تازه‌آموزی است. هنگامی که توانایی‌ها و ویژگی‌های فیزیکی بازیکنان متفاوت است، که می‌تواند اثرات مهمی در عملکرد بازیکنان فوتبال داشته باشد.

مجله بیومکانیک ورزشی

کلیدواژه‌ها: فوتبال، ورزشکاران، پست بازی، بیومکانیک، آنتروپومتریکی
روش‌شناسی

این پژوهش از نوع مطالعات مروری در زمینه بررسی‌های بیومکانیکی بازیکنان فوتبال با توجه به پست بازی در زمین 1400 بهار و قدرت ایزوکنتیک [20]، بیومکانیک شوت فوتبال [21] و قدرت ارزیابی‌های آنتروپومتریکی بازکنُای با توجه به پست بازی در زمین [17] متمرکز می‌شود.

با توجه به پژوهش‌های پیشین نشان داده شده است که بازیکنان فوتبال در پست‌های مختلف به شرایطی متفاوتی از نظر ایزوکنتیک، بیومکانیک شوت فوتبال و قدرت ارزیابی‌های آنتروپومتریکی عضلانی با توجه به پست بازی در زمین متفاوت هستند.

مورد بررسی قرار گرفته در جستجوی لولایی، ۲۵۳ مقاله پایه شد و پس از بررسی عنوان و خلاصه مقالات یا توجه به اینکه رویکرد این پژوهش ارتباط با یکست بازکنای در زمین بازی بود، تعداد ۴۲ مقاله از بین مقالات انتخاب شد.

می‌توان به این پژوهش مقالاتی از پژوهش‌های بیومکانیکی و آنتروپومتریکی در بازیکنان با توجه به پست بازی به همراه انجام داده و تحلیل خروج از پژوهش نیز مقالاتی بودند که این رویداد نبوده سپاسی و مقالات مربوط به بررسی‌های بیومکانیکی و آنتروپومتریکی در بین بازکنای مربوط به سه‌گانه و نیزی روابط میان بازیکنان و معیار اصلی بایستد که یکی از این پژوهش‌ها با توجه به دقت و روش‌های استفاده شده.

در ادامه به این پژوهش افرادی مربوط به پست‌های مختلف در بازیکنان با توجه به پست بازی مقایسه گردیدند و بیش از گذشته مقالات با توجه به اینکه روش‌های مختلف در بازیکنان با توجه به پست بازی متفاوت است و این تفاوت در بازیکنان با توجه به پست بازی نیز با توجه به مشخصات مختلف داشته باشد.

روش‌شناسی

این پژوهش از نوع مطالعات مروری در زمینه بررسی‌های بیومکانیکی بازیکنان فوتبال با توجه به پست بازی در زمین 1400 بهار و قدرت ایزوکنتیک [20]، بیومکانیک شوت فوتبال [21] و قدرت ارزیابی‌های آنتروپومتریکی بازکنُای با توجه به پست بازی در زمین [17] متمرکز می‌شود.

با توجه به پژوهش‌های پیشین نشان داده شده است که بازیکنان فوتبال در پست‌های مختلف به شرایطی متفاوتی از نظر ایزوکنتیک، بیومکانیک شوت فوتبال و قدرت ارزیابی‌های آنتروپومتریکی عضلانی با توجه به پست بازی در زمین متفاوت هستند.

مورد بررسی قرار گرفته در جستجوی لولایی، ۲۵۳ مقاله پایه شد و پس از بررسی عنوان و خلاصه مقالات یا توجه به اینکه رویکرد این پژوهش ارتباط با یکست بازکنای در زمین بازی بود، تعداد ۴۲ مقاله از بین مقالات انتخاب شد.

می‌توان به این پژوهش مقالاتی از پژوهش‌های بیومکانیکی و آنتروپومتریکی در بازیکنان با توجه به پست بازی به همراه انجام داده و تحلیل خروج از پژوهش نیز مقالاتی بودند که این رویداد نبوده سپاسی و مقالات مربوط به بررسی‌های بیومکانیکی و آنتروپومتریکی در بین بازیکنان و نیزی روابط میان بازیکنان و معیار اصلی بایستد که یکی از این پژوهش‌ها با توجه به دقت و روش‌های استفاده شده.

در ادامه به این پژوهش افرادی مربوط به پست‌های مختلف در بازیکنان با توجه به پست بازی مقایسه گردیدند و بیش از گذشته مقالات با توجه به اینکه روش‌های مختلف در بازیکنان با توجه به پست بازی متفاوت است و این تفاوت در بازیکنان با توجه به پست بازی نیز با توجه به مشخصات مختلف داشته باشد.

روش‌شناسی

این پژوهش از نوع مطالعات مروری در زمینه بررسی‌های بیومکانیکی و آنتروپومتریکی بازیکنان فوتبال با توجه به پست بازی در زمین 1400 بهار و قدرت ایزوکنتیک [20]، بیومکانیک شوت فوتبال [21] و قدرت ارزیابی‌های آنتروپومتریکی بازکنُای با توجه به پست بازی در زمین [17] متمرکز می‌شود.

با توجه به پژوهش‌های پیشین نشان داده شده است که بازیکنان فوتبال در پست‌های مختلف به شرایطی متفاوتی از نظر ایزوکنتیک، بیومکانیک شوت فوتبال و قدرت ارزیابی‌های آنتروپومتریکی عضلانی با توجه به پست بازی در زمین متفاوت هستند.

مورد بررسی قرار گرفته در جستجوی لولایی، ۲۵۳ مقاله پایه شد و پس از بررسی عنوان و خلاصه مقالات یا توجه به اینکه رویکرد این پژوهش ارتباط با یکست بازکنای در زمین بازی بود، تعداد ۴۲ مقاله از بین مقالات انتخاب شد.

می‌توان به این پژوهش مقالاتی از پژوهش‌های بیومکانیکی و آنتروپومتریکی در بازیکنان با توجه به پست بازی به همراه انجام داده و تحلیل خروج از پژوهش نیز مقالاتی بودند که این رویداد نبوده سپاسی و مقالات مربوط به بررسی‌های بیومکانیکی و آنتروپومتریکی در بین بازیکنان و رابطه‌های این بازیکنان و فیزیولوژیکی فوتبالیست‌های مختلف بازیکنیکی متفاوت هستند. [17], [18], [19] اولین ترتیب سریال شش مورد اصلی حدودی با بازیکنان با توجه به پست بازی در زمین، [19], [18], [17] دومین ترتیب سریال شش مورد اصلی حدودی با بازیکنان با توجه به پست بازی در زمین.
در زمان‌های مختلف و سنگین‌ترین بازیکنان هستند و شاخص توده بدنی آنها بیشتر از بازیکنان دیگر است. اما اختلاف معناداری مشاهده نمی‌شود. مهاجمان کمترین درصد چربی را نسبت به دروازه‌بان‌ها در تمام ناحیه‌ها نشان می‌دهند. در مقایسه با بازیکنان بالایی ناحیه پایدار‌گیری درصد چربی توده بدنی کمتری داشته‌اند. در مقایسه با بازیکنان بالایی ناحیه پایدار‌گیری درصد چربی بالا
از رایی‌های بیومکانیکی

تورنی و همکاران، در پژوهشی قدرت ایزوکنیتیک عضلات زانو را در فوتبالیست مرد ایرانی‌تبار با توجه به پست بازی بررسی کردند. آنها در این پژوهش، گشتاور متوسط کانسنتریک و اکسنتریک عضلات چهارسر و همسترینگ را در بین بازیکنان در سرعت‌های زاویه‌ای مختلف در پای برتر و غیر برتر مقایسه کردند و نتیجه گرفتند که گشتاور متوسط عضله همسترینگ در سرعت‌های زاویه‌ای کم و متوسط بین پست‌های مختلف معنادار است.

در سرعت زاویه‌ای شصت درجه بر ثانیه عضله همسترینگ، مهاجمان نسبت به هافبک‌ها قدرت کانسنتریک بالاتر معناداری را در پای برتر و غیر برتر نشان دادند. در قدرت اکسنتریک در تمام سرعت‌های زاویه‌ای بین پست‌های مختلف تفاوت معناداری مشاهده نشد.

خراسانی و همکاران، پاسخ بیومکانیکی شوت روی پای فوتبال را در بین فوتبالیست‌های ایرانی‌تبار با توجه به پست بازی بررسی کردند. آنها در این پژوهش، پاسخ‌های بیومکانیکی در پیشنهاد شوت روی پای فوتبال را در بین بازیکنان در سرعت‌های زاویه‌ای بررسی کردند. نتایج نشان داد که در سرعت‌های زاویه‌ای مختلف، بازیکنان در پست‌های متفاوت معناداری را در پاسخ‌های بیومکانیکی نشان دادند.

ارزیابی های بیومکانیکی و آنتروپومتریکی

در پژوهشی با عنوان ارزیابی های بیومکانیکی و آنتروپومتریکی انجام شده که به منظور بررسی ارزیابی‌های بیومکانیکی و آنتروپومتریکی بازیکنان فوتبالیست‌های مختلف، در پست‌های مختلف، در زمینه‌های مختلف انجام شده است. این پژوهش بررسی قدرت ایزوکنیتیک و قدرت اکسنتریک عضلات زانو را در فوتبالیست‌های مختلف با توجه به پست بازی بررسی کرده است.

جدول 1: مقادیر معنی‌داری بازیکنان با توجه به پست بازی

پرونده	اندازه	تیپ بدنی	درصد چربی	توده بدنی	نتایج
1	2	سیاه	10	پایین	ناکاردار
2	3	سرخ	20	بالا	کاردار
3	4	سبز	30	نسبت	ناکاردار
4	5	قهوه‌ای	40	ناکاردار	کاردار
5	6	نارنجی	50	ناکاردار	کاردار

در این پژوهش، با توجه به نتایج، بیشترین قدرت ایزوکنیتیک در فوتبالیست‌های سرخ و قهوه‌ای بود و کمترین قدرت ایزوکنیتیک در فوتبالیست‌های سیاه بود. نتایج نشان داد که بیشترین قدرت اکسنتریک در فوتبالیست‌های سبز و نارنجی بود و کمترین قدرت اکسنتریک در فوتبالیست‌های سیاه بود.

روکس و همکاران، در پژوهشی با عنوان بررسی تفاوت عملکرد بین بازیکنان با توجه به پست بازی، نتایج مشابهی از کمترین تفاوت عملکرد در سطح معناداری نشان دادند.

در این پژوهش، با توجه به نتایج، بیشترین قدرت ایزوکنیتیک در فوتبالیست‌های سرخ و قهوه‌ای بود و کمترین قدرت ایزوکنیتیک در فوتبالیست‌های سیاه بود. نتایج نشان داد که بیشترین قدرت اکسنتریک در فوتبالیست‌های سبز و نارنجی بود و کمترین قدرت اکسنتریک در فوتبالیست‌های سیاه بود.
پژوهش
هدف از پژوهش حاضر بررسی متغیرهای بیومکانیکی و‌آنتروپومتریکی در بازیکنان فوتبال با توجه به پست بازی‌های آنالیز استاتیک و داینامیک با توجه به پست بازی در انجام می‌باشد. نحوه انجام تست‌ها به صورت چشم باز و چشم بسته با پای برتر و غیر برتر بود.

در تعادل ایستا و پویا با توجه به پست بازی تفاوت معنی‌داری وجود داشت. در تعادل استاتیک این تفاوت بین دروازه‌بان‌ها با مدافعان کناری و هافبک‌های میانی دیده شد. در تعادل داینامیک این تفاوت بین هافبک‌های میانی با مدافعان میانی و کناری، دروازه‌بان‌ها، مهاجمان و هافبک‌های کناری مشاهده شد. هافبک‌های میانی تعادل پویایی داشتند و این تعادل در

جدول ۱: بررسی متغیرهای استاتیک و داینامیک با توجه به پست بازی

پست بازی	متغیرهای استاتیک	متغیرهای داینامیک
دروازه‌بان	تعادل	دوپردازی
مدافع کناری	تعادل	دوپردازی
هافبک میانی	تعادل	دوپردازی
هافبک کناری	تعادل	دوپردازی
مهاجم	تعادل	دوپردازی

در مقاله‌های بالاترین لیست گزارش‌ها و همکاران، بررسی متغیرهای استاتیک و داینامیک با توجه به پست بازی، بررسی‌ها به صورت چشم باز و چشم بسته، با پای برتر و غیر برتر بود.
دروازه‌بان‌ها را بلندترین و سنگین‌ترین بازیکنان با دارد. چربی بیشتر [28] و هافبک‌ها را به عنوان کوتاه‌ترین بازیکنان و درصد قدرت کمتر معرفی کردند. در یکی از مقالات نیز مهاجمان را به عنوان دیگر بازیکنان معرفی کردند [7].

به‌طور کلی، مشخص شده که متغیرهای آنتروپومتریک فوتبالیست‌هایی را مطابق با مکان استحکام یا ملکیت استحکام که پیش‌پردازی کننده‌ای این بازی که بازیکنان با اندازه و شکل مشخص، مناسب برای پست‌های خاصی در بازی می‌باشد [29].

به‌طور کلی، مشخص شده که متغیرهای آنتروپومتریک فوتبالیست‌هایی را مطابق با مکان استحکام یا ملکیت استحکام که پیش‌پردازی کننده‌ای این بازی که بازیکنان با اندازه و شکل مشخص، مناسب برای پست‌های خاصی در بازی می‌باشد [29].

به‌طور کلی، مشخص شده که متغیرهای آنتروپومتریک فوتبالیست‌هایی را مطابق با مکان استحکام یا ملکیت استحکام که پیش‌پردازی کننده‌ای این بازی که بازیکنان با اندازه و شکل مشخص، مناسب برای پست‌های خاصی در بازی می‌باشد [29].

به‌طور کلی، مشخص شده که متغیرهای آنتروپومتریک فوتبالیست‌هایی را مطابق با مکان استحکام یا ملکیت استحکام که پیش‌پردازی کننده‌ای این بازی که بازیکنان با اندازه و شکل مشخص، مناسب برای پست‌های خاصی در بازی می‌باشد [29].
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مقاله از لحث فراخی تهیه، نسخه اصلی و حیواگی نداشته است.

حمایت مالی

این تحقیق هیچ گونه کمک مالی از سازمان‌های تأمین مالی در بخش‌های عمومی، تجاری یا غیرانتفاعی دریافت نکرده است.

مشارکت نویسندگان

تمام نویسندگان در طراحی، اجرا و نگارش همه بخش‌های پژوهش حاضر مشارکت داشته‌اند.

تعارض منافع

بدین اظهار توهیم‌گران این مقاله تعارض منافع تدارد.
Reference

[1] Bangsbo J, Mohr M, Poulsen A, Perez-Gomez J, Krustrup P. Training and testing the elite athletes. 2006; J Exerc Sci Fit. 4(1):1-14. https://cites.exer.ist.psu.edu/viewdoc/download?doi=10.1.1.578.5352&rep=rep1&type=pdf

[2] Padua DA, DiStefano LJ, Beutler AL, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train. 2015; 50(6):589-95. [DOI:10.4085/1062-6050-50.1.10] [PMID] [PMCID]

[3] Abdullah MR, Musa RM, Maliki AB, Suppiah PK, Kosni NA. Relationship of physical characteristics, mastery and readiness to perform with position of elite soccer players. Int J Adv Engine Appl Sci. 2016; 1(1):8-11. https://www.researchgate.net/profile/Rabiul-Musa-2/publication/304245552_Relationship_of_Physical_Characteristics_Mastery_and_Readiness_to_Perform_with_Position_of_Elite_Soccer_Players/ pdf

[4] Casajús JA, Aragonés MT. Estudio cineantropométrico del futbolista profesional español. Archivos de Medicina del deporte. 1997; 14(59):177-84.

[5] Malina RM, Peña Reyes ME, Eisenmann JC, Horta L, Rodrigues J, Casajús JA, Aragonés MT. Anthropometric and work-rate profiles of elite South American international soccer players. J Sports Med Phys Fitness. 2000; 40:162-9. [PMID]

[6] Rampini E, Drust B, Reilly T, Carter JE, Martin A. Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J Sports Med Phys Fitness. 2000; 40:162-9. [PMID]

[7] Wisloff U, Helgerud J, Hoff J. Strength and endurance of elite soccer players. Med Sci Sports Exerc. 1998; 30(3):462-7. [DOI:10.1097/00005768-199803000-00019] [PMID]

[8] Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri FM. Variations in top level soccer match performance. Int J Sports Med. 2007; 28(12):1018-24. [DOI:10.1055/s-2007-965158] [PMID]

[9] Stalen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: An update. Sports Med. 2005; 35(6):501-36. [DOI:10.2165/00007256-200535060-00004] [PMID]

[10] Carvalho P, Cabri J. Isokinetic assessment of muscle strength of the thigh in soccer players. Revista Portuguesa de Fisioterapia no Desporto. 2007; 1:4-13.

[11] Magalhães J, Oliveira J, Ascensão A, Soares JMC. Isokinetic strength assessment in athletes of different sports, ages, gender and positional roles. Rev Port Cienc Desporto. 2001; 1:13-21. https://www.researchgate.net/publication/313532147_Isokinetic_strength_assessment_in_athletes_of_different_sports_ages_gender_and(positional_roles

[12] Mohr M, Krustrup P, Bangsbo J. Match performance of highstandard soccer players with special reference to development of fatigue. J Sports Sci. 2003; 21(7):519-28. [DOI:10.1080/0264041.1994.12059727] [PMID]

[13] Al-Hazzaa HM, Almuzaini KS, Al-Rafeea SA, Sulaiman MA, Daferdar MY, Al-Ghamdi E, et al. Aerobic and anaerobic power characteristics of Saudi elite soccer players. J Sports Med Phys Fitness. 2001; 41(1):54-61. [PMID]

[14] Bangsbo J. Energy demands in competitive soccer. J Sport Sci. 1994; 12:55-62. [DOI:10.1080/0264041.1994.12059727] [PMID]

[15] Boone J, Vaeysens R, Steyaert A, Vanden Bossche L, Bourgeois J. Physical fitness of elite Belgian soccer players by player position. J Strength Cond Res. 2012; 26(8):2051-7. [DOI:10.1519/JSC.0b013e3182398b4f] [PMID]

[16] Bradley PS, Sheldon WC, Wooster B, Olsen PE, Boaner P, Krustrup P. High-intensity running in English FA Premier League soccer matches. J Sports Sci. 2009; 27(2):159-68. [DOI:10.1080/02640410802152775] [PMID]

[17] Lago-Peñas C, Casais L, Dellal A, Rey E, Domínguez E. Anthropometric and physiological characteristics of young soccer players according to their playing positions: Relevance for competition success. J Strength Cond Res. 2011; 25(12):3358-67. [DOI:10.1519/JSC.0b013e318216305d] [PMID]

[18] Harry JR, Barker LA, James R, Dufek JS. Performance differences among skilled soccer players of different playing positions during vertical jumping and landing. J Strength Cond Res. 2018; 32(2):304-12. [DOI:10.1519/JSC.0b013e318000253] [PMID]

[19] Jadczak L, Grygorowicz M, Wieczorek A, Slivorski R. Analysis of static balance performance and dynamic postural priority according to playing position in elite soccer players. Gait & Posture. 2019; 74:148-53. [DOI:10.1016/j.gaitpost.2019.09.008] [PMID]

[20] Khorasani M, Osman N, Yusof A. Biomechanical responds of instep kick between different positions in professional soccer players. J Human Kinet. 2009; 22(1):21-7. [DOI:10.2478/v81078-009-0019-0]

[21] Slivorski R, Grygorowicz M, Hojzyk R, Jadczak L. The isokinetic strength profile of elite soccer players according to playing position. PLoS One. 2017; 12(7):e0182177. [DOI:10.1371/journal.pone.0182177] [PMID]

[22] Butler RJ, Southers C, Gorman PP, Kiesel KB, Plisky PJ. Differences in soccer players’ dynamic balance across levels of competition. J Athl Train. 2012; 47(6):616-20. [DOI:10.4085/1062-6050-47.5.14] [PMID]

[23] Wong P, Mujika I, Castagna C, Chamari K, Lau W, Wisloff U. Characteristics of world cup soccer players. Soccer J - Binghamton - National Soccer Coaches Association of America. 2008; 53(1):57-62. https://repository.hku.hk/pe_ja/113/

[24] Wong PL, Chamari K, Dellal A, Wisloff U. Relationship between anthropometric and physiological characteristics in youth soccer players. J Strength Cond Res. 2009; 23(4):1204-10. [DOI:10.1519/JSC.0b013e31819f1e52] [PMID]

[25] Gill SM, Gill J, Ruiz F, Irazusta A, Irazusta J. Physiological and anthropometric characteristics of young soccer players according to their playing position: Relevance for the selection process. J Strength Cond Res. 2007; 21(2):438-45. [DOI:10.1519/JSC.0b013e318075000-00026] [PMID]

[26] Matković BR, Misigoj-Duraković M, Matković B, Janković S, Ružić L, Leko G, et al. Morphological differences of elite Croatian soccer players according to the team position. Coll Antropol. 2003; 27(Suppl 1):167-74. [PMID]

[27] Sporis G, Jukic I, Ostojc SM, Milanovic D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J Strength Cond Res. 2009; 23(7):1947-53. [DOI:10.1519/JSC.0b013e3181e13e141] [PMID]

[28] Tourny-Chollet C, Leroy D, Léger H, Beuret-Blanquart F. Isokinetic knee muscle strength of soccer players according to their position. Isokinetics Exercise Scie. 2000; 8(4):187-93. [DOI:10.3233/IES-2000-0050]

[29] Ruas CV, Minozzo F, Pinto MD, Brown LE, Pinto RS. Lower-extremity strength ratios of professional soccer players according to field position. J Strength Cond Res. 2015; 29(5):1220-6. [DOI:10.1519/JSC.0b013e318276766] [PMID]
