THE \((u, v)\)-CALKIN-WILF FOREST

SANDIE HAN, ARIANE M. MASUDA, SATYANAND SINGH,
AND JOHANN THIEL

Abstract. In this paper we consider a refinement, due to Nathanson, of
the Calkin-Wilf tree. In particular, we study the properties of such trees
associated with the matrices \(L_u = \begin{bmatrix} 1 & 0 \\ u & 1 \end{bmatrix}\) and \(R_v = \begin{bmatrix} 1 & v \\ 0 & 1 \end{bmatrix}\), where
\(u\) and \(v\) are nonnegative integers. We extend several known results
of the original Calkin-Wilf tree, including the symmetry, numerator-
denominator, and successor formulas, to this new setting. Additionally,
we study the ancestry of a rational number appearing in a generalized
Calkin-Wilf tree.

Keywords: Calkin-Wilf tree, continued fractions

1. Introduction

The Calkin-Wilf tree \([4]\) is an infinite binary tree generated by two rules.
The number 1, represented as 1/1, is the root of the tree and each vertex
\(a/b\) has two children: the left one is \(a/(a + b)\) and the right one is \((a + b)/b\)
(see Figure 1).

![Figure 1. The first four rows of the Calkin-Wilf tree.](image)

By following the breadth-first order, this tree provides an enumeration of
positive rational numbers:

\[1, \frac{1}{2}, 1, \frac{3}{2}, 1, 4, 3, 5, 2, 5, 3, 4, \ldots\]

Date: November 7, 2014.

The second and third authors were partially supported by PSC-CUNY grants (# 67111-
00 45 to Ariane Masuda, and # 67136-00 45 to Satyanand Singh).
In fact, Calkin and Wilf [4] showed that every reduced positive rational number appears in this list exactly once.

In addition to enumerating the positive rationals, the Calkin-Wilf tree has many interesting properties and generalizations that have been explored by various researchers (for example, [3 4 5 6 8 9 10 12 13 14 15]). In particular, as in [12], we highlight the following four properties. We denote by \(c(n, i) \) the vertex in the \(i \)th position (from left to right) of the \(n \)th row.

Property 1 (Successor formula, Newman [14]). For every nonnegative integer \(n \) and \(i = 1, \ldots, 2^n - 1 \), we have

\[
\frac{1}{2\lfloor c(n, i) \rfloor + 1 - c(n, i)}
\]

where \([x]\) denotes the integer part of \(x \).

Property 2 (Denominator-numerator formula, Calkin and Wilf [4]). For every nonnegative integer \(n \) and \(i = 1, \ldots, 2^n - 1 \), the denominator of \(c(n, i) \) is equal to the numerator of \(c(n, i + 1) \).

Property 3 (Symmetry formula, [12]). For every nonnegative integer \(n \) and \(i = 1, \ldots, 2^n \), we have \(c(n, i) \cdot c(n, 2^n - i + 1) = 1 \).

Property 4 (Depth formula, [7]). Let \(a/b \) be a positive reduced rational number. Let \(n \) and \(i \) be the unique pair such that \(c(n, i) = a/b \). If

\[
\frac{a}{b} = a_0 + \frac{1}{a_1 + \cdots + \frac{1}{a_k}} = [a_0, a_1, \ldots, a_{k-1}, a_k]
\]

is the finite continued fraction representation\(^3\) of \(a/b \), then

\[
n = a_0 + a_1 + \cdots + a_{k-1} + a_k - 1.
\]

In other words, the sum of the coefficients of the continued fraction representation encodes the row number where \(a/b \) appears, i.e. the depth, in the Calkin-Wilf tree.

Let \(z \) be a variable. In [12], Nathanson considers the infinite binary tree \(\mathcal{T}(z) \), whose root is \(z \), where each vertex \(w \) has two children: the left child is \(w/(w + 1) \), and the right child is \(w + 1 \) (see Figure 2).

The original Calkin-Wilf tree is clearly the special case of \(z = 1 \). For general \(z \), Properties [14] of the Calkin-Wilf tree extend\(^3\) to \(\mathcal{T}(z) \).

We can associate each vertex in \(\mathcal{T}(z) \) with a column vector as in Figure 3.

1Our convention is that the row containing the root is the zero row. So, for example, \(c(2, 3) = 2/3 \).

2For a rational number not equal to 1, we always take the shorter continued fraction representation where \(a_k \neq 1 \).

3Of independent interest, the generalization of Property 4 requires an appropriate definition of a continued fraction representation for linear fractional transformations.
Figure 2. The first four rows of $\mathcal{T}(z)$.

Figure 3. Association between rational numbers and vectors.

Letting $L_1 := \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $R_1 := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, we see that subsequent vertices in $\mathcal{T}(z)$ can be obtained by matrix multiplication. A vertex $\begin{bmatrix} a \\ b \end{bmatrix}$ has left child

$$(2) \quad L_1 \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ a+b \end{bmatrix}$$

and right child

$$(3) \quad R_1 \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ b \end{bmatrix}.$$

In particular, every vertex in $\mathcal{T}(z)$ is obtained by multiplying a matrix generated freely by the set $\{L_1, R_1\}$ with the vector associated with z. In this way, we can label the vertices of $\mathcal{T}(z)$ with matrices in $SL_2(\mathbb{N}_0) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{N}_0 \text{ and } ad - bc = 1 \right\}$ acting on z (see Figure 4). For ease of notation, we denote the left and right child of w by $L_1(w)$ and $R_1(w)$, respectively.

With this perspective in mind, it is natural to consider an analogous infinite binary tree generated by other pairs of matrices in $SL_2(\mathbb{N}_0)$. Let u and v be integers such that $u, v \geq 2$,

$L_u := \begin{bmatrix} 1 & 0 \\ u & 1 \end{bmatrix}$ and $R_v := \begin{bmatrix} 1 & v \\ 0 & 1 \end{bmatrix}.$
Nathanson [11, 12] proposed to investigate the infinite binary tree associated to \(\{L_u, R_v\} \) obtained by replacing \(L_1 \) in (2) and \(R_1 \) in (3) by \(L_u \) and \(R_v \), respectively (see Figure 5 for the generation rule).

We refer to this generalization as a \((u, v)\)-Calkin-Wilf tree and denote it by \(T^{(u,v)}(z) \), where \(z \) is the root (see Figure 6). Note that by setting \(u = v = 1 \) and \(z = 1 \), we obtain the original Calkin-Wilf tree, \(T(1) \). From now on, we assume that \(u \) and \(v \) are integers such that \(u, v \geq 1 \), and so \(T^{(1,1)}(1) \) is \(T(1) \).

As an example, consider the tree \(T^{(2,3)}(5/2) \) (see Figure 7). One can immediately notice that the denominator-numerator and the symmetry formulas (Properties 2 and 3) do not hold in \(T^{(2,3)}(5/2) \). Furthermore, many rational numbers appearing in \(T(1) \) seem to be missing in \(T^{(2,3)}(5/2) \). In fact, it is not too difficult to show that 1 does not appear in any tree \(T^{(u,v)}(z) \) unless \(z = 1 \). In the next section we will address this issue, and define the \((u, v)\)-Calkin-Wilf forest which will enumerate positive rational numbers.
The first four rows of $T^{(2,3)}(5/2)$.

We have already shown by example that Properties 1-4 do not, in general, hold for a (u, v)-Calkin-Wilf tree. However, (u, v)-Calkin-Wilf trees share enough of a similar structure with $T(1)$ that we are able to provide some appropriate, universal generalizations (see Theorem 1 and Corollary 3, for example). In other cases, we will show that some of Properties 1-4 completely characterize the Calkin-Wilf tree (see Proposition 4 and Corollary 1, for example).

2. Global Properties

For a fixed u and v, consider the set of all positive reduced rational numbers that are not the children of any rational number appearing in any (u, v)-Calkin-Wilf tree. We refer to such numbers as (u, v)-orphans (when the context is clear, we may refer to such numbers simply as orphans). A straightforward proof shows that the set of (u, v)-orphans is

$$\left\{ \frac{a}{b} : \frac{1}{u} \leq \frac{a}{b} \leq \frac{v}{u} \right\}$$

(see [12]). It follows that the set of (u, v)-orphans is finite if and only if $u = v = 1$. Furthermore, it can be seen that every left child in a (u, v)-Calkin-Wilf tree is strictly bounded above by $1/u$ and every right child is strictly bounded below by v. In the case of the original Calkin-Wilf tree 1 is the only orphan. In $T^{(2,3)}(5/2)$, the vertex $5/2$ satisfies the condition $1/2 \leq 5/2 \leq 3$, and so it is one of the many $(2,3)$-orphans.

Lemma 1. Let z and z' be distinct (u, v)-orphans. Then the vertices of $T^{(u,v)}(z)$ and $T^{(u,v)}(z')$ form disjoint sets.

Proof. Suppose that w is a rational number that appears as a vertex in both $T^{(u,v)}(z)$ and $T^{(u,v)}(z')$. Without loss of generality, we can assume that w is such that no other ancestor of it (in either tree) holds this property. It follows w is not a root and must be the child of vertices in both trees. Furthermore, w cannot be a left child (right child, resp.) in both $T^{(u,v)}(z)$ and $T^{(u,v)}(z')$. So w is a left child in, say, $T^{(u,v)}(z)$ and a right child in $T^{(u,v)}(z')$. This implies that $w < 1/u \leq 1$ and $w > v \geq 1$, a contradiction. □
Since every positive reduced rational number is either a \((u, v)\)-orphan or the descendant of a \((u, v)\)-orphan, Lemma 1 shows that the set of \((u, v)\)-orphans enumerates a forest of trees that partitions the set of positive rational numbers, the \((u, v)\)-Calkin-Wilf forest.

Lemma 2. Let \(u\) and \(v\) be positive integers. Then \(L_u = L_1^u\) and \(R_v = R_1^v\).

Proof. We show that \(L_u = L_1^u\) by induction on \(u\). This is clearly true when \(u = 1\). Suppose it is true for \(u \geq 1\). Then

\[
L_{u+1} = L_u \cdot L_1 = [1 \ 0] \cdot [1 \ 0] = \begin{bmatrix} 1 & 0 \\ u & 1 \end{bmatrix} = L_{u+1}.
\]

A similar argument shows that \(R_v = R_1^v\). \(\square\)

When comparing \(T^{(u,v)}(z)\) to \(T(1)\), one can see from Lemma 2 that the vertices of \(T^{(u,v)}(z)\) can be obtained by starting with the vertex \(z\) in \(T(1)\) and skipping over \(u - 1\) generations of left children or \(v - 1\) generations of right children to arrive at the children of \(z\) in \(T^{(u,v)}(z)\). For example, compare Figure 4 and Figure 8 in the case where \(u = 2\) and \(v = 3\). In other words, the vertex set of \(T^{(u,v)}(z)\) is a submonoid of \(\mathbb{Q}\) or, equivalently, the vertex set of \(T(1)\). More generally, we have the following two results as other immediate consequences of Lemma 2.

Proposition 1. The vertex set of \(T^{(u,v)}(z)\) is a submonoid of the vertex set of \(T^{(u',v')}(z')\) if and only if \(z \in T^{(u',v')}(z')\), \(u' \mid u\), and \(v' \mid v\).

Proposition 2. Let \(U\) and \(V\) be finite sets of nonnegative integers. Set \(u := \text{lcm}\{u' : u' \in U\}\) and \(v := \text{lcm}\{v' : v' \in V\}\). Then

\[
T^{(u,v)}(z) = \bigcap_{u' \in U, v' \in V} T^{(u',v')}(z).
\]

Lemma 1 and Lemma 2 show that the \((u, v)\)-orphans partition the set of positive rational numbers into a collection of trees with a similar structure derived from \(T(1)\). This idea serves as the main motivation for this paper.

3. The Successor and the Numerator-Denominator Formulas

We begin this section by establishing some immediate properties of \((u, v)\)-Calkin-Wilf trees related to Properties 1-2. We denote by \(c^{(u,v)}_z(n, i)\) the \(i\)th element, from left to right, in the \(n\)th row of the \((u, v)\)-Calkin-Wilf tree
whose root is z. For any integer $n \geq 0$, the first and the last elements of the nth row with root z are readily seen to be

\[c_z^{(u,v)}(n,1) = \frac{z}{nuz + 1} \quad \text{and} \quad c_z^{(u,v)}(n,2^n) = z + nv, \]

respectively. Furthermore, since z is assumed to be in reduced form, then all vertices of $T_z^{(u,v)}(z)$ are also in reduced form.

Proposition 3 (Generalized successor formula). Consider the (u,v)-Calkin-Wilf tree with root z. For every nonnegative integer n and $i = 1, \ldots, 2^n - 1$, let $\alpha_i = c_z^{(u,v)}(n,i)$. Then we have

\[\alpha_{i+1} = \frac{v\alpha_i + v^2(1 - u\alpha_i)}{u[\alpha_i](\{\alpha_i\} + v(1 - u\alpha_i)) + v(1 - u\alpha_i)} \]

where $[x]$ and $\{x\}$ denote the integer and fractional parts of the real number x, respectively.

Proof. Our proof is a generalization of an argument by Newman \[1\] in the case where $u = v = 1$.

If α_i and α_{i+1} are adjacent siblings in a (u,v)-Calkin-Wilf tree, then they share a common ancestor w (see Figure 9) such that, for some $k \geq 0$, α_i is the kth right child of the left child of w and α_{i+1} is the kth left child of the right child of w. (This is not a feature that is unique to (u,v)-Calkin-Wilf trees; it is common to all full binary trees.) It follows that $\alpha_i = \frac{w}{kw+1} + kw$ and $\alpha_{i+1} = \frac{w+v}{kw(w+v)+1}$. Note that since $\frac{w}{kw+1} < 1$, then $\{\alpha_i\} = \frac{w}{kw+1}$ and $[\alpha_i] = kw$.

![Figure 9. Successors in a (u,v)-Calkin-Wilf tree with common ancestor w.](image)

In order to complete the proof, we must eliminate the dependence of α_{i+1} on k and w. This can be accomplished by taking the formula for $\{\alpha_i\}$ and solving for w. This gives that

\[w = \frac{\{\alpha_i\}}{1 - u\{\alpha_i\}}. \]
It follows that

$$\alpha_{i+1} = \frac{w + v}{ku(w + v) + 1} = \frac{w + v}{kv\left(\frac{wu}{v} + u\right) + 1} = \frac{w + v}{\alpha_i(\frac{wu}{v} + u) + 1}. \quad (6)$$

Inserting (5) into the right-hand side of (6) and simplifying gives the desired result. \qed

While (4) does collapse down to (1) when \(u = v = 1\), something is lost in this generalization. Iterating (1) not only gives successive elements in a fixed row of the Calkin-Wilf tree. When it is applied to the rightmost element of a row, it returns the leftmost element of the next row. The same is not true of (4).

It follows from Proposition 3 that if we consider successive terms in each row of a \((u, v)\)-Calkin-Wilf tree, the denominator-numerator formula (Property 2) holds only in the original Calkin-Wilf tree.

Proposition 4. The denominator-numerator formula holds if and only if \(u = v = 1\).

Proof. Using the same notation in the proof of Proposition 3, for a common ancestor \(w\),

$$\alpha_i = \frac{w' + kv(uw' + w'')}{uw' + w''} \quad \text{and} \quad \alpha_{i+1} = \frac{w' + vw''}{ku(w' + vw'') + w''},$$

where \(w = w'/w''\) is in lowest terms. It is easy to see that the above representations of \(\alpha_i\) and \(\alpha_{i+1}\) are also in lowest terms. So we can let \(d_i = uw' + w''\) be the denominator of \(\alpha_i\) and \(n_{i+1} = w' + vw''\) be the numerator of \(\alpha_{i+1}\). It quickly follows that

$$vd_i + (1 - uv)w' = n_{i+1}. \quad (7)$$

\((\Leftarrow)\) If \(u = v = 1\), then \(d_i = n_{i+1}\) follows from (7).

\((\rightarrow)\) If \(d_i = n_{i+1}\), then it follows from (7) that

$$(uv - 1)w' = (v - 1)n_{i+1}$$

$$= (v - 1)(w' + vw'').$$

Collecting like terms on either side of the equality shows that

$$(u - 1)w' = (v - 1)w''.$$

If \(u = 1\) and \(v \neq 1\), then \(w'' = 0\), a contradiction. A similar argument works for the case where \(u \neq 1\) and \(v = 1\). If \(u, v \neq 1\), then \(w = w'/w'' = (v - 1)/(u - 1)\). This would imply that \(w\) is fixed for all pairs of successors, another contradiction. Therefore, \(u = v = 1\). \qed

We see from (7) that the relationship between successive denominators and numerators in a row of a \((u, v)\)-Calkin-Wilf tree is significantly more complicated than in the statement of Property 2. In order to generalize the denominator-numerator formula, one would need to know more about the common ancestors of successive terms. At this time, no clear generalization of Property 2 is evident.
4. Symmetry Properties

In this section, we study symmetry properties of \((u, v)\)-Calkin-Wilf trees closely related to Property 3. As in the previous section, we are able to find some appropriate generalizations, in some sense, while showing that Property 3 completely characterizes \(T(1)\). We begin with a lemma which will be used in the theorems that follow.

Lemma 3. For every vertex in the \((u, v)\)-Calkin-Wilf tree with root \(z\) there are nonnegative integers \(a, b, c,\) and \(d\) with \(ad - bc = 1\) such that the vertex is represented as

\[\frac{az + b}{cz + d}. \]

Proof. The statement follows from induction on the row number of the \((u, v)\)-Calkin-Wilf tree \(T^{(u,v)}(z)\) (see Figure 6). □

Note that the integers \(a, b, c,\) and \(d\) in Lemma 3 depend on \(u, v,\) and the position of the vertex in the tree. See (14) in Section 5 for an example on how to compute \(a, b, c,\) and \(d\) for \(2147/620\) in \(T^{(2,3)}(5/2)\). Furthermore, Lemma 3 shows that every vertex in a \((u, v)\)-Calkin-Wilf tree can be written as some linear fractional transformation of the root (see Figures 6 and 11).

Theorem 1 (General symmetry formula). For every nonnegative integer \(n\) and \(i = 1, 2, \ldots, 2^n\), if \(c^{(u,v)}_z(n, i) = \frac{az + b}{cz + d}\) where \(a, b, c, d\) are nonnegative integers, then

\[c^{(u,v)}_z(n, 2^n + 1 - i) = \frac{dz + cv}{bu} \frac{u}{z + a}. \]

Proof. The proof is by induction on the row number \(n\). Since \(c^{(u,v)}_z(1, 1) = \frac{z}{uz + 1}\), we have that \(c^{(u,v)}_z(1, 1) = \frac{az + b}{cz + d}\) with \(a = 1, b = 0, c = u,\) and \(d = 1,\) and so

\[\frac{dz + cv}{bu} \frac{u}{z + a} = z + v = c^{(u,v)}_z(1, 2). \]

On the other hand, starting from \(c^{(u,v)}_z(1, 2) = z + v,\) we get that \(c^{(u,v)}_z(1, 2) = \frac{az + b}{cz + d}\) with \(a = 1, b = v, c = 0,\) and \(d = 1.\) Hence

\[\frac{dz + cv}{bu} \frac{u}{z + a} = \frac{z}{uz + 1} = c^{(u,v)}_z(1, 1). \]

This shows that the statement is true when \(n = 1.\) Suppose that the theorem is true for some row \(n \geq 1.\) An element in the row \(n + 1\) is either of the
form $c_z^{(u,v)}(n+1,2i-1)$ or $c_z^{(u,v)}(n+1,2i)$ for some integer i, $1 \leq i \leq 2^n$. If $c_z^{(u,v)}(n+1,2i-1) = \frac{az + b}{cz + d}$ (we know that such a representation exists by Lemma 3) then it is the left child of

$$c_z^{(u,v)}(n,i) = \frac{az + b}{(c - ua)z + (d - ub)}.$$

Thus, by using the symmetry on row n, we obtain

$$c_z^{(u,v)}(n+1,2^{n+1} + 2 - 2i) = R_v \left(c_z^{(u,v)}(n,2^n + 1 - i) \right)$$

$$= R_v \left(\frac{(d - ub)z + (c - ua)v}{bu/v z + a} \right) = \frac{dz + cv}{bu/v z + a}.$$

Similarly, if $c_z^{(u,v)}(n+1,2i) = \frac{az + b}{cz + d}$ then it is the right child of

$$c_z^{(u,v)}(n,i) = \frac{(a - cv)z + (b - vd)}{cz + d}.$$

Hence

$$c_z^{(u,v)}(n+1,2^{n+1} + 1 - 2i) = L_u \left(c_z^{(u,v)}(n,2^n + 1 - i) \right)$$

$$= L_u \left(\frac{dz + cv}{(b - vd)u/v z + (a - cv)} \right) = \frac{dz + cv}{bu/v z + a}.$$

As a consequence, we obtain necessary and sufficient conditions for the symmetry formula (Property 3) to hold in a (u,v)-Calkin-Wilf tree.

Corollary 1 (Symmetry formula). The symmetry formula,

$$c_z^{(u,v)}(n,i) \cdot c_z^{(u,v)}(n,2^n + 1 - i) = 1,$$

holds if and only if $u = v$ and $z = 1$.

Proof. Suppose, using Lemma 3, that $c_z^{(u,v)}(n,i) = \frac{az + b}{cz + d}$ where a, b, c, d are nonnegative integers and $ad - bc = 1$. By Theorem 4 we obtain that (5) is equivalent to

$$\left(\frac{az + b}{cz + d}\right) \cdot \left(\frac{dz + cv}{bu/v z + a}\right) = 1,$$

or

$$\left(ad - \frac{bcu}{v} \right) z^2 + \left[bd \left(1 - \frac{u}{v} \right) - ac \left(1 - \frac{v}{u} \right) \right] z + \left(\frac{bcv}{u} - ad \right) = 0$$
It follows that \(ad - \frac{bcu}{v} = 0 \) and \(bcv - ad = 0 \), from which we get
\[
\frac{v}{u} = \frac{bc}{ad} \quad \text{and} \quad \frac{v}{u} = \frac{ad}{bc},
\]
thus \(v^2 = u^2 \). Since \(u, v > 0 \), this implies that \(u = v \). By substituting \(u = v \) into (10), we obtain that
\[
(ad - bc)(z^2 - 1) = 0.
\]
Since \(ad - bc = 1 \) and \(z > 0 \), we conclude that \(z = 1 \). \(\square \)

We remark that Corollary 1 can be also proved using induction on the row number. The result explains why the symmetry formula does not hold in \(T^{(2,3)}(5/2) \) (see Figure 7), as we had observed earlier.

Corollary 2 (Skew symmetry). Using the same hypothesis as Theorem 1, it follows that
\[
c_{z}^{(u,v)}(n,i) \cdot c_{z-1}^{(v,u)}(n,2^n+1-i) = \frac{v}{u}.
\]

Proof. Suppose, using Lemma 3, that \(c_{z}^{(u,v)}(n,i) = \frac{a(z+b)}{cz+d} \) where \(a, b, c, d \) are nonnegative integers. Replacing \(z \) by \(\frac{v}{u} \) in (8) yields that
\[
c_{z}^{(u,v)}(n,2^n+1-i) = \frac{v}{u} \left(\frac{b + az}{cz} \right) = \frac{v}{u} \cdot \frac{cz + d}{az + b},
\]
which is equivalent to the desired result. \(\square \)

Corollary 1 shows that the symmetry formula does not hold for \((u, v)\)-Calkin-Wilf trees in general. However, Corollary 2 (above) and Theorem 2 (below) show that other symmetry formulas do hold when comparing either pairs of \((u, v)\)-Calkin-Wilf trees or \((u, v)\)- and \((v, u)\)-Calkin-Wilf trees, respectively. For examples, see Table 1.

Row 2 of \(T^{(2,3)}(5/2) \)	5/22	41/12	11/24	17/2
Row 2 of \(T^{(2,3)}(3/5) \)	3/17	36/11	18/41	33/5
Row 2 of \(T^{(3,2)}(2/5) \)	2/17	24/11	12/41	22/5

Table 1. Examples of Corollary 2 and Theorem 2

Theorem 2 (Nathanson’s symmetry, \([13]\)). Let \(z \) be a variable, and let \(u \) and \(v \) be positive integers. For all nonnegative integers \(n \) and \(i = 1, 2, \ldots, 2^n \),
\[
c_{z}^{(u,v)}(n,i) \cdot c_{z-1}^{(v,u)}(n,2^n+1-i) = 1.
\]
If \(u = v \geq 1 \), then Theorem 2 gives one of the directions of Corollary 1. If \(u = v = 1 \), then this is the familiar symmetry of the Calkin-Wilf tree.

Nathanson's symmetry was proved in [13] using induction on the row number. We conclude this section with two alternative proofs of Theorem 2. The first one is a consequence of Theorem 1, and only holds when \(u = v \).

First Proof of Theorem 2 when \(u = v \). By Lemma 3, let \(c_z^{(u,u)}(n,i) = az + b \) for some nonnegative integers \(a, b, c, \) and \(d \). By Theorem 1, we have

\[
 c_z^{(u,u)}(n, 2^n + 1 - i) = \frac{dz + c}{bz + a} = \frac{cz + d}{az + b},
\]

which is the reciprocal of \(c_z^{(u,u)}(n,i) \). \(\square \)

The identity presented in Theorem 1 only holds in a \((u,v)\)-Calkin-Wilf tree where \(u \) and \(v \) are fixed. Therefore we cannot use it to derive Nathanson's symmetry in the case \(u \neq v \). In order to show the desired relationship between \((u,v)\)- and \((v,u)\)-Calkin-Wilf trees, we will use a lemma that shows the following:

![Figure 10. Relating \(T^{(v,u)}(z) \) and \(T^{(u,v)}(z^{-1}) \).](image)

Lemma 4. Let \(\sigma : \mathbb{Q}^* \to \mathbb{Q}^* \) be defined by \(\sigma(x) = x^{-1} \). Then

(a) \(\sigma \circ L_u \circ \sigma = R_u \)

(b) \(\sigma \circ R_u \circ \sigma = L_u \)

Proof. Part (a) of the lemma follows from the following straightforward computation:

\[
(\sigma \circ L_u \circ \sigma)(x) = \sigma \left(\frac{x^{-1}}{ux^{-1} + 1} \right) = \sigma \left(\frac{1}{ux} \right) = x + u = R_u(x).
\]

Part (b) follows from (a) since \(\sigma^2 = id \) \(\square \)

Comparing Figures 6 and 11 we can see that if we view \(c_z^{(u,v)}(n,i) \) as the result of a (unique) word \(w(L_u, R_v) \) on two letters acting on \(z \), then \(c_z^{(v,u)}(n, 2^n + 1 - i) = w(R_u, L_v) \). Specifically, the vertex \(c_z^{(u,v)}(n,i) \) is \(w(L_u, R_v)(z) \) where \(w \) is the \(i \)th word of length \(n \) on the letters \(R_u \) and \(L_v \) in the reverse lexicographic order. We will use this approach to prove Nathanson’s symmetry in its general form.
Second Proof of Theorem 2. Let $c_z^{(u,v)}(n, i) = w(L_u, R_v)(z)$ where w is the ith word of length n on the letters R_v and L_v in the reverse lexicographic order. For $\sigma(z) = z^{-1}$, it follows from Lemma 4 that

$$\sigma \circ w(L_u, R_v) \circ \sigma = w(\sigma \circ L_u \circ \sigma, \sigma \circ R_v \circ \sigma) = w(R_u, L_v).$$

Therefore $\sigma \circ w(L_u, R_v) = w(R_u, L_v) \circ \sigma$, which means that $(c_z^{(u,v)}(n, i))^{-1} = c_z^{(v,u)}(n, 2^n + 1 - i)$. □

5. The Descendant Conditions and the Depth Formula

In a full binary tree, each vertex can be assigned a binary representation by enumerating the vertices in a breadth-first order. For example, the root of the tree is assigned the number 1; its left child is 2 and right child is 3, or 10_2 and 11_2 in their respective binary representations. In the next row, the vertices are 4, 5, 6, 7, or 100_2, 101_2, 110_2, 111_2, in binary representation form (See Figure 12).

The parent-child relation is clearly demonstrated by the binary representation. Each left child is represented by the binary representation of its parent followed by a 0, while each right child is represented by the binary representation of its parent followed by a 1. Moreover, for each vertex, its binary representation encodes the binary representations of all of its ancestors back to the root.
We construct a 1-1 correspondence between the binary representations of the vertices in a full-binary tree and the words associated with each vertex in the Calkin-Wilf tree. Begin with the binary representation of a vertex. Truncate the leftmost 1 digit (all such representations begin with a 1), reverse the order of the string and map 0 → \(L_1 \) and 1 → \(R_1 \). For example, the vertex in position 1100_2 corresponds to the word \(L_2^3 R_1 \), which corresponds to the number \(2/5 = L_2^3 R_1(1) \) in the Calkin-Wilf tree.

In the \((u, v)\)-Calkin-Wilf tree, if we use the same binary representation as those in the original Calkin-Wilf tree, we can easily see that the left child is represented by the binary representation of its parent followed by \(u \) consecutive 0s and the right child is represented by the binary representation of its parent followed by \(v \) consecutive 1s. Let \(B \) be the binary representation of the position of \(w \) in the original Calkin-Wilf tree. Figure 13 shows the first three rows of \(T^{(2,3)}(w) \) in binary form.

\[
\begin{array}{c}
B \\
B00_2 \quad B11_2 \\
B0000_2 \quad B0011_2 \quad B1100_2 \quad B111111_2
\end{array}
\]

Figure 13. Binary representation tree for \(T^{(2,3)}(w) \).

The \((u, v)\)-ancestor-descendant relation is clearly demonstrated by the sequence of \(u \) consecutive 0s or \(v \) consecutive 1s. We give a few examples related to \((2, 3)\)-Calkin-Wilf trees:

- We have that \(2/5 \mapsto 1100_2 \), which is the left child of \(11_2 \mapsto 2 \). Incidentally, 2 is an orphan root in the \((2, 3)\)-Calkin-Wilf forest.
- The rational number corresponding to \(11001110000_2 \) in the Calkin-Wilf tree is a descendant of the orphan root \(110_2 \). One can trace from the right, a sequence of four 0s, three 1s, two 0s, and then it offers neither two consecutive 0s nor three consecutive 1s.
- The rational number corresponding to the position \(110001110001_2 \) in the Calkin-Wilf tree is an orphan in the \((2, 3)\)-Calkin-Wilf forest.

The following result formalizes the above criterion for an element to be an orphan or a child of a \((u, v)\)-Calkin-Wilf tree.

Proposition 5. Let \(w \) be a vertex of a \((u, v)\)-Calkin-Wilf tree, and \(B(w) \) be the binary representation of its corresponding position in the original Calkin-Wilf tree.

(a) Suppose that \(B(w) = B_1 0 \ldots 0_2 \), i.e., the binary representation \(B(w) \) ends in exactly \(i \) 0s. If \(i \geq u \), then \(w \) is the left child of the vertex whose position is \(B_1 0 \ldots 0_{i-u} \). Otherwise, \(w \) is an orphan.
Suppose that \(B(w) = B_0 1 \ldots 1 \), i.e., the binary representation \(B(w) \) ends in exactly \(j \) 1s. If \(j \ge v \), then \(w \) is the right child of the vertex whose position is \(B_0 1 \ldots 1 \). Otherwise, \(w \) is an orphan.

Another viewpoint for understanding the relationship between descendants in a \((u, v)\)-Calkin-Wilf tree is via continued fractions. We begin the study of the relationship between continued fractions and \((u, v)\)-Calkin-Wilf trees with the following useful lemma (see [2] for the case \(u = v = 1 \)).

Lemma 5 (Continued fraction relationship). Let \(\frac{a}{b} \) be a positive rational number with continued fraction representation \(\frac{a}{b} = [q_0, q_1, \ldots, q_r] \). It follows that

(a) if \(q_0 = 0 \), then \(\frac{a}{ua+b} = [0, u+q_1, \ldots, q_r] \);
(b) if \(q_0 \neq 0 \), then \(\frac{a}{ua+b} = [0, u, q_0, q_1, \ldots, q_r] \);
(c) and \(\frac{a+vb}{b} = [v + q_0, q_1, \ldots, q_r] \).

Proof. Let

\[
\frac{a}{b} = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cdots + \cfrac{1}{q_r}}}.
\]

Note that \(\frac{a}{ua+b} = (u + \frac{b}{a})^{-1} \), so

\[
\frac{a}{ua+b} = \cfrac{1}{u + \cfrac{1}{q_0 + \cfrac{1}{q_1 + \cdots + \cfrac{1}{q_r}}}.
\]

By considering the cases when \(q_0 = 0 \) and \(q_0 \neq 0 \), we get (a) and (b). The remaining case follows from the fact that \(\frac{a+vb}{b} = \frac{a}{b} + v \). \(\square \)

Lemma 5 shows that the continued fraction representations of rationals appearing in a \((u, v)\)-Calkin-Wilf tree follow a nice pattern. In fact, in the case where \(u = v = 1 \), we can recover several of the properties of the original Calkin-Wilf tree listed in Section 1.

The next theorem gives more insight into the properties of coefficients in the continued fraction representation of rational numbers appearing in a \((u, v)\)-Calkin-Wilf tree.

Theorem 3 (Descendant conditions). Suppose that \(w \) and \(w' \) are positive rational numbers with continued fraction representations \(w = [q_0, q_1, \ldots, q_r] \)
and \(w' = [p_0, p_1, \ldots, p_s] \). Then \(w' \) is a descendant of \(w \) in the \((u,v)\)-Calkin-Wilf tree with root \(w \) if and only if the following conditions all hold:

(a) \(s \geq r \) and \(2 \mid (s-r) \);
(b) for \(0 \leq j \leq s-r-1 \), \(v \mid p_j \) when \(j \) is even and \(u \mid p_j \) when \(j \) is odd;
(c) for \(2 \leq i \leq r \), \(p_{s-r+i} = q_i \);
(d) and
 (i) if \(q_0 \neq 0 \), then \(p_{s-r} \geq q_0 \), \(v \mid (p_{s-r} - q_0) \) and \(p_{s-r+1} = q_1 \);
 (ii) otherwise, if \(q_0 = 0 \), then \(v \mid p_{s-r}, p_{s-r+1} \geq q_1, \) and \(u \mid (p_{s-r+1} - q_1) \).

Proof. (\(\Rightarrow \)) We prove the first direction by induction. Note that (a) holds by Lemma 5, so our main concern will involve the remaining conditions.

Let \(A_n \) be the set of descendants of \(w \) of depth \(n \). Then \(A_1 \) consists of both children of \(w \). If \(w' \) is the left child of \(w \) and \(q_0 = 0 \), then, by Lemma 6, \(w' \) has a continued fraction representation \(w' = [0, u + q_1, \ldots, q_r] \). In this case, \(s = r \), so (b) is vacuously true and (c) immediately holds. (Note that (c) is also vacuously true if \(r = 1 \).) Since \(s = r = 0 \), it follows that \(p_{s-r} = p_0 = q_0 \), which implies that \(v \mid (p_{s-r} - q_0) \). Also, it is clear that \(p_{s-r+1} \geq q_1 \) and \(u \mid (p_{s-r+1} - q_1) \) since \(p_{s-r+1} = u + q_1 \). This shows that part (ii) of condition (d) holds. The two remaining cases, where \(w' \) is a left child of \(w \) with \(q_0 \neq 0 \) and where \(w' \) is a right child of \(w \), can be handled in a similar way using Lemma 5. This shows that the theorem holds for \(A_1 \).

Now suppose that the desired result holds for \(A_k \) for some \(k \geq 1 \) and assume that \(w' \in A_{k+1} \). Furthermore, assume that \(w' \) is the left child of some \(w'' \in A_k \), where \(w'' \) has a continued fraction representation \(w'' = [d_0, d_1, \ldots, d_t] \). By Lemma 5 if \(d_0 = 0 \), then \(s = t \) and \(w' = [0, u + d_1, \ldots, d_t] \). Since \(p_k = d_k \) for \(0 \leq k \leq t \) with \(k \neq 1 \), then, with the exception of one coefficient, the result holds. For the case \(k = 1 \), notice that if \(t > r \), then \(u \mid d_1, \) so \(u \mid (u + d_1) \). If \(t = r \), then \(u + d_1 - q_1 > d_1 - q_1 \geq 0 \) and \(u \mid (d_1 - q_1) \), so \(u \mid (u + d_1 - q_1) \). This implies the desired result.

As was the case with \(A_1 \), there are two remaining cases to handle. The proofs of the statement when \(d_0 \neq 0 \) and when \(w' \) is the right child of some \(w'' \in A_k \) are both similar to the argument presented above. We omit the details.

(\(\Leftarrow \)) Using Lemma 5, a simple computation shows that when \(q_0 \neq 0 \),

\[
(12) \quad w' = P_{-r}^{p_0/u} L_u^{p_1/u} \cdots R_{-r}^{p_{s-r-2}/u} L_u^{p_{s-r-1}/u} R_{-r}^{p_{s-r+1}/u}(w).
\]

A similar formula gives the desired result when \(q_0 = 0 \). \(\square \)
Corollary 3 (Depth formula). Using the same hypothesis as Theorem 3, if \(n \) is the depth of \(w' \), then

\[
(13) \quad n = \frac{1}{v} \left(\sum_{0 \leq j \leq s-r-1 \text{ even}} p_j + \sum_{0 \leq i \leq r \text{ even}} (p_{s-r+i} - q_i) \right) + \frac{1}{u} \left(\sum_{0 \leq j \leq s-r-1 \text{ odd}} p_j + \sum_{0 \leq i \leq r \text{ odd}} (p_{s-r+i} - q_i) \right).
\]

The proof of Corollary 3 follows from Theorem 3 by induction. Note that the majority of the terms in the sum (13) are actually zero. In the case where \(u = v = 1 \), Corollary 3 recovers the formula from Property 4.

From Lemma 5 and Theorem 3, we can construct a recursive algorithm that determines the orphan ancestor of \(w' \) in the \((u, v)\)-Calkin-Wilf that contains it. The algorithm makes heavy use of the continued fraction representation of \(w' \).

Algorithm 1 \((u, v)\)-Calkin-Wilf tree orphan ancestor

1: procedure ANCESTOR([\(p_0, p_1, \ldots, p_s \]), u, v)
2: \hspace{1em} if \(s = 0 \) then
3: \hspace{2em} if \(p_0 \leq v \) then return [\(p_0 \)]
4: \hspace{2em} else return ANCESTOR([\(p_0 - v \)], u, v)
5: \hspace{1em} else if \(s = 1 \) then
6: \hspace{2em} if \(0 < p_0 < v \) then return [\(p_0, p_1 \)]
7: \hspace{2em} else if \(p_0 > v \) then
8: \hspace{2em} \hspace{1em} return ANCESTOR([\(p_0 - v, p_1 \)], u, v)
9: \hspace{2em} else if \(p_0 = 0 \) and \(p_1 \leq u \) then return [\(0, p_1 \)]
10: \hspace{2em} else return ANCESTOR([\(0, p_1 - u \)], u, v)
11: \hspace{1em} else
12: \hspace{2em} if \(p_0 < v \) then return [\(p_0, p_1, \ldots, p_s \)]
13: \hspace{2em} else if \(p_0 \geq v \) then
14: \hspace{2em} \hspace{1em} return ANCESTOR([\(p_0 - v, p_1, \ldots, p_s \)], u, v)
15: \hspace{2em} else if \(p_0 = 0 \) and \(0 < p_1 < u \) then
16: \hspace{2em} \hspace{1em} return ANCESTOR([\(0, p_1, \ldots, p_s \)], u, v)
17: \hspace{2em} else if \(p_0 = 0 \) and \(p_1 > u \) then
18: \hspace{2em} \hspace{1em} return ANCESTOR([\(0, p_1 - u, \ldots, p_s \)], u, v)
19: \hspace{2em} else return ANCESTOR([\(p_2, \ldots, p_s \)], u, v)

For example, let \(u = 2 \) and \(v = 3 \). The continued fraction representation of \(2147/620 \) is given by \([3, 2, 6, 4, 5, 2]\). Using the above algorithm, we can compute the list of ancestors of \(2147/620 \) as: \(287/620 = [0, 2, 6, 4, 5, 2] \), \(287/46 = [6, 4, 5, 2] \), \(149/46 = [3, 4, 5, 2] \), \(11/46 = [0, 4, 5, 2] \), \(11/24 = [0, 2, 5, 2] \), \(11/2 = [5, 2] \), and \(5/2 = [2, 2] \). Since \(1/2 \leq 5/2 \leq 3 \), then \(5/2 \) is the orphan ancestor of \(2147/620 \).
By [12], we see that the coefficients of the continued fraction of 2147/620 encode the path taken from the orphan 5/2 to the descendant 2147/620. This can be computed as follows. Consider the continued fraction representation \[3, 2, 6, 4, 5, 2 \] as a row vector. Extend the continued fraction representation of 5/2 to a row vector of the same length by adding zeros at the front, \[0, 0, 0, 0, 2, 2 \]. Take the difference between both vectors, \[3, 2, 6, 4, 5, 2 \]. Divide the even-indexed (note that the leading term is indexed by 0) terms by 3 and the odd-indexed terms by 2, \[1, 3, 2, 2, 1, 0 \]. Corollary 3 states that the sum of the terms in this vector gives the depth of 2147/620. The terms also show that 2147/620 = \(R_u L_u R_v^2 L_v^2 R_v(5/2) \). In particular, since
\[
R_u L_u R_v^2 L_v^2 R_v = \begin{bmatrix} 187 & 606 \\ 54 & 175 \end{bmatrix},
\]
then \(a = 187 \), \(b = 606 \), \(c = 54 \), and \(d = 175 \) in Lemma 3 for this case.

When \(u = v = 1 \), the above discussion shows that every positive rational number appears in the original Calkin-Wilf tree (see [4]).

REFERENCES

[1] M. Aigner and G. Ziegler, *Proofs from The Book*, fourth ed., Springer-Verlag, Berlin, 2010.
[2] B. Bates, M. Bunder, and K. Tognetti, *Linking the Calkin-Wilf and Stern-Brocot trees*, European J. Combin. 31 (2010) no. 7, 1637-1661
[3] B. Bates and T. Mansour, *The \(q \)-Calkin-Wilf tree*, J. Combin. Theory Ser. A 118 (2011), no. 3 1143-1151.
[4] N. Calkin and H. S. Wilf, *Recounting the rationals*, Amer. Math. Monthly 107 (2000), no. 4, 360-363.
[5] A. De Luca and C. Reutenauer, *Christoffel words and the Calkin-Wilf tree*, Electron. J. Combin. 18 (2011), no. 2, Paper 22, 10pp.
[6] A. S. Fraenkel, *RATWYT*, College Math. J. 43 (2012), no. 2, 160-164.
[7] J. Gibbons, D. Lester, and R. Bird, *Functional pearl: Enumerating the rationals*, J. Funct. Programming 16 (2006), 281-291.
[8] S. P. Glasby, *Enumerating the rationals from left to right*, Amer. Math. Monthly 118 (2011) no. 9, 830-835.
[9] R. A. Kucharczyk, *Enumerating Trees*, arXiv: 1201.1851v1, 2012.
[10] T. Mansour and M. Shattuck, *Two further generalizations of the Calkin-Wilf tree*, J. Comb. 2 (2011), no. 4, 507-524.
[11] S. J. Miller, *Combinatorial and Additive Number Theory Problem Sessions*, arXiv:1406.3558v3, 2014.
[12] M. B. Nathanson, *A forest of linear fractional transformations*, International J. Number Theory (2015), to appear, arXiv:1401.0012v3, 2014.
[13] M. B. Nathanson, *Free monoids and forest of rational numbers*, Discrete Applied Math. (2015), to appear, arXiv:1406.2054v1, 2014.
[14] M. Newman, *Recounting the rationals, continued, solution to problem 10906*, Amer. Math. Monthly 110 (2003), 642-643.
[15] J. Sander, J. Steuding, Jörn, and R. Steuding, *Diophantine aspects of the Calkin-Wilf iteration*, Elem. Math. 66 (2011) no. 2, 45-55.

Department of Mathematics, New York City College of Technology, 300 Jay Street, Brooklyn, New York 11201
E-mail address: {shan,amasuda,ssingh,jthiel}@citytech.cuny.edu