INTRODUCTION

Functional dyspepsia (FD) with a global prevalence ranging between 5% and 40% is among the most widely recognized functional gastrointestinal disorders.² Besides the prevalence reported by epidemiological studies, a large proportion of patients with uninvestigated dyspepsia are eventually diagnosed as FD patients.³ FD causes high direct and indirect health costs and thereby represents a significant financial burden on society.⁴ The main symptoms of FD are postprandial fullness, early satiety, epigastric pain and burning,
The combination STW 5-II is a fixed combination of six hydroethanolic herbal extracts from bitter candy tuft, peppermint leaf, chamomile flower, liquorice root, caraway fruit, and melissa leaf, thereby excluding three components present in STW 5, namely extracts from angelica root, greater celandine herb, and milk thistle fruit. STW 5-II differs from STW 5 (Iberogast®) not only by the number of herbs but also by the concentration of the ingredients (Table 1). Interestingly, STW 5-II has been shown to be as effective in clinical trials as STW 5 and both were not inferior to cisapride or metoclopramide. The mode of action of STW 5 in the stomach has been well studied in preclinical models and includes increase in antral contractility together with fundus relaxation, and a gastroprotective action based on antisecretory, cytoprotective, and anti-inflammatory actions. The effects on gastric motility remained in the presence of the neurotoxin tetrodotoxin and after neural target for STW 5 is present in submucous but not myenteric mucous neurons by the angelica extract. This suggested that the effects of STW 5 on gastric motility did not require enteric nerves but were likely due to direct myogenic actions. This does not exclude a drug effect on nerves. We previously showed that the pro-secretory action of STW 5 in human intestinal mucosa/submucous plexus preparations was partly tetrodotoxin-sensitive and mainly due to activation of human submucous neurons. The mode of action of STW 5 in the stomach has been well studied in preclinical models and includes increase in antral contractility together with fundus relaxation, and a gastroprotective action based on antisecretory, cytoprotective, and anti-inflammatory actions. The effects on gastric motility remained in the presence of the neurotoxin tetrodotoxin and after neural target for STW 5 is present in submucous but not myenteric plexus. STW 5 did not affect nerve-mediated responses evoked by electrical field stimulation in gastric muscle or intestinal mucosa preparations. The STW 5 evoked relaxation in guinea pig fundus muscle was also observed in human fundus preparations. Moreover, the fundus relaxation and the increased antral motility also occurred in healthy volunteers after they were given STW 5. These findings emphasized the translational relevance of in vitro studies in guinea pig stomach. In contrast to STW 5, the effects of STW 5-II on gastric motility are unknown. The three components lacking in STW 5-II have effects on gastric motility: Angelica root extract relaxes the fundus and contracts the antrum and thereby mimics the response to STW 5. In contrast, greater celandine herb and milk thistle fruit extracts increased antral and fundus motility and may thus contribute to motility-promoting effects of STW 5 in the antrum but not on its muscle tone decreasing actions. Of the remaining six extracts, liquorice root and chamomile flower mimic the effects of STW 5 on fundus and antrum. We therefore hypothesize that STW 5-II, despite the lack of three components, alters gastric motility comparable to STW 5. The rationale behind this is based on the findings that the individual components of STW 5 alter antrum and fundus motility and the clinical studies show similar efficacy of the two herbal preparations.

Keypoints

- STW 5-II (Iberogast® Advance) is used to treat functional dyspepsia but its action on gastric motility is unknown.
- Therefore, we studied the effects of STW 5-II on muscle activity in isolated muscle strips from guinea pig fundus and antrum.
- STW 5-II had a region-specific effect in guinea pig stomach: it relaxed the fundus but increased the contractility in the antrum. These actions may normalize fundus accommodation as well as increase antral pump activity and may thus explain its clinical efficacy.

2 | MATERIALS AND METHODS

2.1 | Experimental procedures

This in vitro study was performed on gastric muscle preparations from 62 male guinea pigs weighing 388-588 g (Charles River Wiga, Sulzfeld, Germany). The preparation and measurements of contractility were as previously described and were performed according to the German guidelines for animal protection and animal welfare and approved by the animal ethical committee of the Technical University of Munich. Briefly, after removal the stomach was opened, rinsed, and cleaned with ice cold Krebs. Muscle strips of ~1 cm² were cut in the longitudinal or circular direction from antrum and fundus regions. Strips were mounted in vertical organ baths (20 ml) and maintained at 37°C in carbogen-bubbled Krebs solution (in mmol/L: 117 NaCl, 4.7 KCl, 1.2 MgCl₂, 6H₂O, 1.2 NaH₂PO₄, 20 NaHCO₃, 2.5 CaCl₂, 2H₂O, and 11 glucose (all from Sigma-Aldrich, St. Louis, MO, USA). Initially, the strips were adjusted to a basal tension of 15 mN. After an equilibration period of 20 to 30 minutes, tissue viability was checked by electrical field stimulation (frequency 10 Hz, pulse duration 0.5 ms, total duration 10 s, 100 V) followed by wash out and renewal of the bathing Krebs solution. After 45-60 min, STW 5-II was added to the bathing solution at concentrations of 64, 128, 256, or 512 μg/ml, separated by wash out periods of at least 15 min. A new addition of a different concentration required that the pre-STW
5-II muscle tone was restored. Sensitization and desensitization effects were prevented by applying different concentrations in random order. As discussed before, the concentrations of STW 5-II are well below those expected in the stomach after a single therapeutic dose of 1 ml (51.3 mg/ml).

STW 5-II stock solution (12.8 mg/ml) was prepared by adding Krebs solution to dry lyophilisates provided by Steigerwald Arzneimittel GmbH, Darmstadt, Germany, and stored at +4°C in a desiccator. The stock solution was renewed every three days. The therapeutic dose of STW 5-II is 1 ml (20 drops) 3 times daily.

The experiments to compare the strength of the effects of STW 5-II and STW 5 were performed on muscle strips taken from immediately adjacent regions from the same stomach, on the same day, under the same conditions (see Table 1 for composition of STW5 and STW 5-II).

2.2 Data and statistical analysis

All values are presented as medians and their 25% and 75% quartiles (given in brackets in the text). The statistical tests were carried out with Sigmastat 3.10 (Systat Software Inc, Erkrath, Germany). Results were considered significant for p-values <0.05. The motility traces were recorded and analyzed with the Chart 4.2 software (ADInstruments, Spechbach, Germany). For the analysis of differences in fundus muscle tone, the average mN values during 2 min periods just before adding STW 5-II or STW 5 and during the maximal response to either of the drugs were calculated as in our previous study.

Table 1 Composition of STW 5 and STW5-II

Medicinal Plant or Drug	STW 5-II	STW 5
Caraway fruit (Carvi fructus)	20 ml/610 mg	10 ml/305 mg
Peppermint leaf (Mentha piperita)	10 ml/877 mg	5 ml/438 mg
Lemon balm leaf (Melissae folium)	15 ml/1050 mg	10 ml/702 mg
Chamomile flower (Matricariae flos)	30 ml/2020 mg	20 ml/1350 mg
Liquorice root (Liquiritiae radix)	10 ml/940 mg	10 ml/940 mg
Candytuft (Iberis amara totalis)	15 ml/265 mg	15 ml/265 mg
Angelica root (Angelica archangelica)	-	10 ml/1040 mg
Milk thistle fruit (Silybum marianum L. Gaertn.)	-	10 ml/162 mg
Greater Celandine (Chelidonium majus)	-	10 ml/785 mg

* Extraction agent for Iberis amara was 50% ethanol (V/V); for all other 30% ethanol (V/V).
2.3 | Animal welfare statement

All animal work was conducted according to the German guidelines for animal care and welfare (Deutsches Tierschutzgesetz) and approved by the Bavarian state ethics committee (Regierung Oberbayern, which serves as the Institutional Care and Use Committee for the Technische Universität München) according to §4 and §11 Deutsches Tierschutzgesetz under reference number 32-568-2.

3 | RESULTS

3.1 | Effects of STW 5-II on gastric motility

STW 5-II relaxed both the circular and longitudinal muscle preparations of the fundus (Figure 1A). The relaxation was sustained till wash out of STW 5-II (Figure 1A). The decrease in muscle tone was concentration dependent and significant at all concentrations (Figure 1A, p = 0.0001-0.01 for circular and p = 0.0002-0.006 for longitudinal muscle). There was no difference in the degree of relaxation between circular as well as longitudinal muscle (Figure 1A, p = 0.08-0.24).

In the antrum, STW 5-II increased contractile amplitude (Figure 1B). These motility-promoting effects were concentration dependent and significant at all concentrations (Figure 1B, p = 0.003-0.03 for circular and p = 0.001-0.02 for longitudinal muscle). The enhancement of the contraction amplitude was comparable between the two muscle layers (Figure 1B, p = 0.5-1).

3.2 | Comparison between effects of STW 5-II and STW 5 on the gastric motility

Comparing results from our previous study with the present one suggested that the effects of STW 5 and STW 5-II on muscle tone in the proximal and contractile activity in the distal stomach were comparable. We wanted to know whether this impression was true and performed paired experiments with a concentration of 512 µg/ml for both drugs. We used preparations from the same guinea pig and applied either STW 5 or STW 5-II. In muscle strips from the fundus, both drugs evoked almost identical relaxations with no differences in the amplitude of the response between circular and longitudinal muscle (Figure 1C). Likewise, both drugs enhanced antral contraction amplitude almost to the same extent; the circular and longitudinal muscle layers responded equally (Figure 1D).

The basal contraction frequency was 4.6 ± 0.3 per min and 4.8 ± 0.2 per min in the circular and longitudinal muscle, respectively, and remained more or less unchanged in STW 5 or STW 5-II. The difference in the frequency was 0.01 Hz or 0.0 Hz for STW 5 and STW 5-II (for both n = 5) in the circular muscle and 0.02 Hz for both STW 5 and STW 5-II (for both n = 5) in the longitudinal muscle.

Both the relaxation in the fundus and the increase in contraction amplitude in the antrum started within 1-2 min after application of STW 5 or STW 5-II. The maximal decrease in muscle tone was reached for circular 32 min [10/96] or 32 min [11/93] after STW 5 or STW 5-II (n = 5; p = 0.2), respectively, and for longitudinal muscle 15 min [9/49] or 25 min [12/44] after STW 5 or STW 5-II (n = 5, p = 0.3), respectively. The maximal increase in contraction amplitude in the antrum was observed for circular muscle 12 min [4/13] or 7 min [1/36] after STW 5 or STW 5-II (n = 6, p = 0.6), respectively, and for longitudinal muscle 5 min [2/20] or 3 min [2/7] after STW 5 or STW 5-II (n = 6, p = 0.2), respectively.

4 | DISCUSSION

The results of our study suggested that STW 5-II relaxed smooth muscle in the fundus but enhanced contraction amplitude in the antrum. These region-specific but layer-independent effects were identical to those described for STW 5. This was confirmed by dedicated experiments in the present study comparing the effects of STW 5 and STW 5-II. Thus, the muscle-relaxing effects in the proximal stomach and the contraction-enhancing effects in the antrum were similar for the two drugs. We believe that both drugs act on circular and longitudinal muscle but cannot rule out that contraction of the longitudinal muscle could cause passive interactions with the circular muscle and vice versa.

Our findings provide a mechanistic rationale for the efficacy of STW 5-II in the treatment of FD patients. The fundus region serves to store the food and adapt its volume to the meal size. The muscle-relaxing effects of STW 5-II in the fundus should improve this accommodation reflex which was shown to be impaired in FD patients. Functional dyspepsia is also associated with antral hypomotility. The stimulating effect of STW 5-II in the antrum may improve the impaired antral motility.

It is noteworthy that STW 5-II inhibitory effects on muscle tone in the fundus were as strong as those of STW 5 although STW 5-II lacked angelica, one component that evoked a strong relaxation of the fundus. An explanation for the comparable inhibitory effects on the proximal stomach motility may be the lack of the contractile action of greater celandine (not present in STW 5-II) together with a higher concentration of chamomile flower in STW 5-II, which had a potent muscle-relaxing effect. The higher concentration of lemon balm and caraway may explain the still strong increase in antral motility by STW 5-II. Both extracts increased contractile amplitude in the antrum and may compensate for the lack of angelica, greater celandine, and milk thistle extracts which all increased antral motility.

In summary, our study revealed region-specific effects of STW 5-II in guinea pig stomach in vitro, a concentration-dependent relaxation of the fundus but increased antrum contractility. This action of STW 5-II resembles that of STW 5 and may explain the beneficial effect of STW 5-II in FD patients. Impaired accommodation may be normalized through relaxation of the fundus, while the motility-promoting effects leading to an increase in antral motility may activate the gastric pump.
ACKNOWLEDGEMENTS
The authors thank Birgit Kuch and Marlene Redl for excellent technical assistance. This study was, in part, funded by a research grant from Steigerwald Arzneimittelwerk GmbH, and Bayer Consumer Health. The authors declare that they had full control over the data and full access to the data. The company did not influence data collection, analysis, or interpretation. Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
Ramy M. Ammar and Olaf Kelber are employees of Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, and Darmstadt. All other authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
ML, DK, and OK performed experiments and data analysis, KM performed statistical analysis, MS designed and finalized manuscript, RA drafted manuscript, and all authors accepted final manuscript.

ORCID
Michael Schemann https://orcid.org/0000-0003-1007-9843

REFERENCES
1. Enck P, Azpiroz F, Boeckxstaens G, et al. Functional dyspepsia. Nat Rev Dis Primers. 2017;3:17081.
2. Madisch A, Andresen V, Enck P, Labenz J, Frieling T, Schemann M. The diagnosis and treatment of functional dyspepsia. Dtsch Arztebl Int. 2018;115:222–232.
3. Ford AC, Marwaha A, Sood R, Moayyedi P. Global prevalence of, and risk factors for, uninvestigated dyspepsia: a meta-analysis. Gut. 2015;64:1049–1057.
4. Talley N. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol Motil. 2008;20:121–129.
5. Madisch A, Melderis H, Mayr G, Sassin I, Hotz J. Ein Phytotherapeutikum und seine modifizierte Rezeptur bei funktioneller Dyspepsie. Ergebnisse einer doppellblindigen placebokontrollierten Vergleichsstudie [A plant extract and its modified preparation in functional dyspepsia. Results of a double-blind placebo controlled comparative study]. Z Gastroenterol. 2001;39(7):511–517.
6. Buchert D. Wirkung einer fixen Kombination bei gesicherter Non-Ulcus-Dyspepsie. Z Phytother. 1994;15:24–25.
7. Madisch A, Vinson BR, Abdel-Aziz H, et al. Modulation of gastrointestinal motility beyond metoclopramide and domperidone: Pharmacological and clinical evidence for phytotherapy in functional gastrointestinal disorders. Wien Med Wochenschr. 2017;167:160–168.
8. Raedsch R, Vinson B, Ottillinger B, Holtmann G. Early onset of efficacy in patients with functional and motility-related gastrointestinal disorders: a noninterventional study with Iberogast(R). Wien Med Wochenschr. 2018;168:89–98.
9. Raedsch R, Hanisch J, Bock P, Sibaev A, Vinson B, Gundermann KJ. Assessment of the efficacy and safety of the phytopharmacon STW 5 versus metoclopramide in functional dyspepsia—a retrospective cohort study. Z Gastroenterol. 2007;45:1041–1048.
10. Braden B, Caspy W, Borner N, Vinson B, Schneider AR. Clinical effects of STW 5 (Iberogast) are not based on acceleration of gastric emptying in patients with functional dyspepsia and gastroparesis. Neurogastroenterol Motil. 2009;21:632–638.
11. von Arnim U, Peitz U, Vinson B, Gundermann KJ, Malferttheiner P. STW 5, a phytopharmacon for patients with functional dyspepsia: results of a multicenter, placebo-controlled double-blind study. Am J Gastroenterol. 2007;102:1268–1275.
12. Rösch W, Vinson B, Sassin I. A randomised clinical trial comparing the efficacy of a herbal preparation STW 5 with the prokinetic drug cisapride in patients with dysmotility type of functional dyspepsia. Z Gastroenterol. 2002;40:401–408.
13. Madisch A, Holtmann G, Mayr G, Vinson B, Hotz J. Treatment of functional dyspepsia with a herbal preparation. A double-blind, randomized, placebo-controlled, multicenter trial. Digestion. 2004;69:45–52.
14. Hohenester B, Ruhl A, Kelber O, Schemann M. The herbal preparation STW5 (Iberogast) has potent and region-specific effects on gastric motility. Neurogastroenterol Motil. 2004;16:765–773.
15. Schemann M, Michel K, Zeller F, Hohenester B, Ruhl A. Region-specific effects of STW 5 (Iberogast) and its components in gastric fundus, corpus and antrum. Phytomedicine. 2006;13(Suppl 5):90–99.
16. Khayyal MT, el-Ghazaly MA, Kenawy SA, et al. Antilucerogenic effect of some gastrointestinally acting plant extracts and their combination. Arzneimittelforschung. 2001;51:545–553.
17. Krueger D, Gruber L, Buhner S, et al. The multi-herbal drug STW 5 (Iberogast) has prosecretory action in the human intestine. Neurogastroenterol Motil. 2009;21:1203–e1110.
18. Pilichiewicz AN, Horowitz M, Russo A, et al. Effects of Iberogast on proximal gastric volume, antropyloroduodenal motility and gastric emptying in healthy men. Am J Gastroenterol. 2007;102:1276–1283.
19. Spencer NJ, Smith TK. Simultaneous intracellular recordings from longitudinal and circular muscle during the peristaltic reflex in guinea-pig distal colon. J Physiol. 2001;533:787–799.
20. Tack J, Piessevaux H, Coulie B, Caenepeel P, Janssens J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology. 1998;115:1346–1352.
21. Hveem K, Hausken T, Svebak S, Berstad A. Gastric antral motility in functional dyspepsia. Effect of mental stress and cisapride. Scand J Gastroenterol. 1996;31:452–457.

How to cite this article: Schemann M, Landmann M, Kelber O, et al. Effects of the herbal preparation STW 5-II on in vitro muscle activity in the guinea pig stomach. Neurogastroenterology & Motility. 2021;33:e13984. https://doi.org/10.1111/nmo.13984