Effect of metformin and detorsion treatment on serum anti-Müllerian hormone levels and ovarian histopathology in a rat ovarian torsion model

Sema KARAKAŞ¹, Cihan KAYA²*, Hakan GÜRASLAN², Damla SAKIZ², Sema SÜZEN ÇAYPINAR², Hüseyin CENGİZ², Murat EKİN², Levent YAŞAR²

¹Department of Obstetrics and Gynecology, University of Health Sciences, Gaziosmanpaşa Taksim Training and Research Hospital, Istanbul, Turkey
²Department of Obstetrics and Gynecology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
³Department of Pathology, University of Health Sciences, Bakırköy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey

Background/aim: Adnexal torsion is a common gynaecological emergency, and considered to be a problem mostly in reproductive-age women. To evaluate the effect of metformin and detorsion treatment on reducing ovarian reserve in an ovarian torsion model.

Materials and methods: Twenty-four nonpregnant, Wistar Hannover rats were included in the study. Animals were divided into 3 groups: the control group, the detorsion only group, and the metformin + detorsion group. The first group received only laparotomy. In the second group, ovaries were fixed to the abdominal wall after performing 360° ovarian torsion, followed by detorsion after a 3-h period of ischemia. The third group underwent the same torsion and detorsion procedures as the second group, and received 50 mg/kg metformin by gavage for 14 days. Ovarian damage scores, follicle counts, and AMH levels were evaluated.

Results: The total damage score was significantly increased in the detorsion only group compared to the metformin+detorsion and control groups. Pre-operative/post-operative AMH decreases were statistically significant in negative direction in the detorsion only group when compared to the metformin+detorsion and control groups (P = 0.001).

Conclusion: Metformin+detorsion treatment may be effective in protecting the ovarian reserve after ovarian torsion.

Key words: anti-Müllerian hormone, detorsion, metformin, ovarian reserve, ovarian torsion

1. Introduction

Ovarian torsion is defined as partial or complete rotation of the ovary around its pedicle or vascular axis [1,2]. Torsion of adnexal structures can result in massive parenchymal congestion, infarcts, and haemorrhagic necrosis after arterial and venous blockade [2]. Adnexal torsion is the fifth most common gynaecological emergency, with a reported incidence of 2.7% in the United States [3,4]. Although ovarian torsion is considered to be a problem mostly in reproductive-aged women, it can occur from early foetal life to the postmenopausal period [5].

Owing to its nonspecific symptoms, such as nausea, vomiting, and pelvic pain, there is almost always a delay in diagnosis. Ultrasound imaging may be helpful in the diagnosis. However, even Doppler sonography is successful in diagnosing only 40% of surgically confirmed cases [6]. This difficulty in diagnosing ovarian torsion leads to loss of ovarian tissue and function. A total of 50%–90% of adnexal torsion cases are caused by physiological cysts, endometriosis, dermoid cysts, fibromas, and other benign or malignant ovarian neoplasms [7,8]. Traditionally, the suggested treatment is salpingoophorectomy or oophorectomy. However, evaluating tissue perfusion intraoperatively and leaving the tissue in its anatomical place is a common and reliable approach, especially for reproductive-aged women [9,10]. There is no relation between the variable colours (purple to black) of the adnexal structures and tissue viability.

It has also been reported that detorsion of the adnexa has no effect on the risk of thromboembolism [10, 11]. After the detorsion of tissue, ischemia may resolve, resulting in tissue recirculation and reperfusion. However, this procedure also has adverse effects, including reperfusion injury [12]. Ischemia followed by reperfusion of the tissue...
Metformin, a biguanide group agent, is used as an insulin sensitizer for the treatment of diabetes. In a few reported studies, it has been speculated that metformin has antioxidant and anti-inflammatory effects [14]. It enhances the use of glucose in peripheral tissues and increases cyclic adenosine mono phosphate kinase (AMPK) which plays a major regulatory role in the balance of cellular energy by switching cells from the anabolic state to the catabolic state [15]. It has been reported that metformin has an ability to decrease inflammation by reducing ROS, by decreasing the activity of mitochondrial complex I [16]. Besides, its anti-inflammatory effects rely on inhibition of the activation of NF-κB and activation of AMPK [17].

In this study, we aimed to evaluate the efficacy of metformin therapy in addition to detorsion for preserving ovarian reserve and ovarian structure.

2. Materials and methods
This study was performed at a tertiary medical centre named Bağcılar Training and Research Hospital Experimental Laboratory, İstanbul after the approval by the ethics committee of the animal studies of the same institution. A power analysis was performed to calculate the minimum sample size required for animal studies, considering anti-Müllerian hormone (AMH) results, (alpha error: 0.05; beta: 0.8) suggested that ≥12 ovaries were required for each study group. Because 10% of study animals are lost during procedures, we included 16 ovaries per surgery group. We planned to include 8 rats in each group, and 24 female, nonpregnant, Wistar Hannover rats (reproductive age, 8 weeks; weight, 180–260 g; with 2 menstrual cycles in humans, 1 mL of blood samples were drawn from the jugular vein of the each rat for a second AMH analysis. Laparotomy was performed in each rat, and bilateral oophorectomies were performed for histopathological analysis. Each rat was euthanized by means of cervical dislocation after the operations.

2.1. Histopathology
The excised ovaries were kept in 10% formalin solution and evaluated after 24 h by a pathologist from Bakirköy Dr Sadi Konuk Training and Research Hospital who was blinded to the study groups. The tissue samples were embedded in paraffin blocks, cut into 4-μm slices, and prepared for haematoxylin and eosin staining. Follicle counting was performed according to a study by Ozler et al. [19]. At least 5 microscopic areas were evaluated with light microscopy (Nikon Eclipse 80i AS Amstelveen, The Netherlands). The follicles were divided into 4 groups according to diameter: primordial (<20 μm),
preantral (20–220 μm), small antral (221–310 μm), and large antral (311–370 μm). Atretic follicles were defined according to the study by Osman et al. [20]. The ovarian damage score was evaluated on the basis of the following parameters: follicle cell degeneration, vascular congestion, haemorrhage, and inflammation for both ovaries (0: none, 1: mild, 2: moderate, 3: severe) (Figure 3,4).

2.2. AMH analysis
All blood samples were centrifuged for 10 min at 4000 rpm to obtain serum samples. The samples were kept at −80 °C in Eppendorf tubes until analysis. Serum AMH levels were analysed with an automatic ELISA kit (Omentin ELISA kit; Hangzhou Eastbiopharm Co., Hangzhou, China).

2.3. Statistical analysis
Statistical analyses were performed by using NCSS (Number Cruncher Statistical System) 2007 statistical software (Kaysville, UT, USA). Descriptive statistical analysis, such as mean, standard deviations, and one-way analysis of variance, was used for continuous data with a normal distribution. A valid chi-squared test is used for categorical variables. The Tukey test was used for post hoc analysis of normally distributed parametric data. A paired sample t-test was used to evaluate the preoperative and postoperative AMH levels. The Kruskal–Wallis test was used to compare continuous data with skewed distribution, and the Dunn test was used for post hoc analysis. The chi-
square test was used for qualitative data. P values of <0.05 were considered statistically significant.

3. Results
The ovarian damage scores were evaluated for each rat, and there was a statistically significant difference in the follicular damage scores between the control, detorsion only, and metformin and detorsion groups (P = 0.048). There was a mildly increased damage score in the control and metformin and detorsion groups. However, a severe score was observed in the detorsion only group, which was statistically significant in comparison with the other groups. There was also a statistically significant difference in the inflammation scores among the study groups (P = 0.002). No inflammation was observed in the control and metformin and detorsion groups. However, moderate and severe scores were observed in the detorsion only group. The total damage scores were statistically different among the study groups. The total damage scores were higher in the detorsion only group than in the control and metformin and detorsion groups (P = 0.005 and P = 0.021, respectively). However, there was no statistical difference in the total damage score between the control group and the metformin and detorsion group. There was no statistically significant difference in vascular congestion and haemorrhage scores among the study groups (Table 1, 2).

The study groups were also evaluated for follicle counts. There was a statistically significant difference in the numbers of preantral follicles, large antral follicles, and corpora lutea among the control, detorsion only, and metformin and detorsion groups (P = 0.0001, P = 0.041, P = 0.023, respectively) (Table 3). The preantral follicle, large antral follicle, and corpora lutea counts were lower in the detorsion only group than in the control and metformin and detorsion groups. There was no significant difference in preantral follicle, large antral follicle, and corpora lutea counts between the control group and the metformin and detorsion group (Table 4). There was also no significant difference in the counts of primordial, small antral, and atretic follicles between the study groups. There was a statistically significant difference in the preoperative vs. postoperative anti-Müllerian hormone (AMH) level changes between the control, detorsion only, and

Follicle cell degeneration	Control Group (n,%)	Detorsion Only Group (n,%)	Metformin and detorsion Group (n,%)	P-value
None	1 7.14%	2 14.29%	2 14.29%	0.048
Mild	8 57.14%	5 35.71%	7 50.00%	
Moderate	5 35.71%	2 14.29%	5 35.71%	
Severe	0 0.00%	5 35.71%	0 0.00%	
Vascular congestion	None	1 7.14%	0 0.00%	0.069
Mild	9 64.29%	5 35.71%	5 35.71%	
Moderate	4 28.57%	6 42.86%	9 64.29%	
Severe	0 0.00%	3 21.43%	0 0.00%	
Haemorrhage	None	2 14.29%	4 28.57%	0.075
Mild	10 71.43%	3 21.43%	10 71.43%	
Moderate	2 14.29%	3 21.43%	1 7.14%	
Severe	0 0.00%	4 28.57%	1 7.14%	
Inflammation	None	12 85.71%	4 28.57%	0.002
Mild	2 14.29%	2 14.29%	3 21.43%	
Moderate	0 0.00%	6 42.86%	0 0.00%	
Severe	0 0.00%	2 14.29%	0 0.00%	

*Total damage score 3.64 ± 1.34 6.5 ± 3.32 4.14 ± 1.46 0.004

Chi-square test, *One Way ANOVA
(0: none, 1: mild, 2: moderate, 3: severe).
P-value of <0.05 was considered to be statistically significant.
metformin and detorsion groups (P = 0.0001) (Table 5). The detorsion only group showed negatively statistically different changes in this parameter compared with the other groups (P = 0.001) (Table 6). However, there was no statistically significant difference for this parameter between the control group and the metformin and detorsion group.

4. Discussion
In present study, our aim was to evaluate the efficacy of metformin considering its antioxidant and antiinflammatory benefits in addition to detorsion for preserving ovarian reserve and ovarian structure and we revealed that Metformin and detorsion treatment may be effective in protecting the ovarian reserve after ovarian torsion.

Excision of the adnexa is the traditional approach for treating ovarian torsion. However, recent studies do not recommend this treatment approach, considering the importance of the ovary for women of reproductive age [21,22]. Moreover, there is still some concern about leaving necrotic tissue in situ and complications such as infection,
increased risk of malignancy, and systemic problems such as pulmonary embolism or thrombosis in other organs [23]. In our study, our main goal was to determine the ovarian reserve after ovarian detorsion and we did not observe any signs of pelvic infection.

Ischemia-reperfusion injury is generally explained by the hypothesis that there is an accumulation of neutrophils and thrombocytes due to the activated complement and other inflammatory components around the inflammation site. This aggregation of inflammatory cells enhances the production of ROS. In addition, glycolysis, increased lactic acid concentration, and intracellular Ca accumulation result in decreased intracellular pH and acidosis. This results in increased intracytoplasmic lysozyme enzymes causing damage to proteins and the cell membrane [24]. Enzymes such as glutathione peroxidase and catalase play a protective role against cellular ROS. Moreover, cysteine, glutathione, ceruloplasmin, and vitamins A/C/E also act as intracellular and extracellular antioxidants and protect the cell structure from ROS [25]. The balance between oxidants and antioxidants is lost in ischemia-reperfusion injury. In this case, enzymes such as lipid peroxidase, superoxide dismutase, inducible nitric oxide synthase, and myeloperoxidase levels increase [26,27]. In a study by Bostanci et al. [28], granulocyte colony-stimulating factor (G-CSF), a glycoprotein commonly used to treat neutropenia by mobilizing bone marrow-derived hematopoietic cells into peripheral blood, was used in an experimental model of ischemia-reperfusion injury. The authors administered intraperitoneal injections of G-CSF (100 IU/kg) and evaluated the mean total oxidant status (TOS), oxidative stress index (OSI), and the total histopathological scores of rats with ischemia-reperfusion injury. G-CSF administration decreased the mean TOS and OSI levels significantly when compared with the controls. Moreover, there was a decrease in total histopathological scores for rats conservatively treated with G-CSF compared with the control groups. Bakacak et al. [29] used platelet-rich plasma, which is clinically used to promote wound healing, in an experimental ischemia-reperfusion injury model. They found that the TOS, OSI, and total ovarian histopathological scores were higher in the nontreated group than in the group treated with 0.5 mL platelet-rich plasma. Halici et al. [27] evaluated the long-acting calcium channel blocker amlodipine in an experimental model of ischemia-reperfusion injury. They administered 3 and 5 mg/kg doses of amlodipine, and concluded that amlodipine is effective in preventing ovarian damage. Kuntepe et al. [30] studied the angiotensin 2 type 1 receptor blocker telmisartan, which is used as an antihypertensive agent in daily practice, in an experimental ischemia-reperfusion model. Telmisartan, at doses of 10 and 20 mg/kg,
References

1. Huchon C, Fauconnier A. Adnexal torsion: a literature review. European Journal of Obstetrics & Gynecology and Reproductive Biology 2010; 150 (1): 8-12. doi: 10.1016/j.ejogrb.2010.02.006

2. Vijayalakshmi K, Reddy GM, Subbiah VN, Sathiya S, Arjun B. Clinico-pathological profile of adnexal torsion cases: a retrospective analysis from a tertiary care teaching hospital. Journal of Clinical and Diagnostic Research 2014; 8(6): OC04-OC07. doi:10.7860/JCDR/2014/8167.4456

3. Hibbard LT. Adnexal torsion. American Journal of Obstetrics & Gynecology 1985; 152 (4): 456-461. doi: 10.1016/s0002-9378(85)80157-5

4. Houry D, Abbott JT. Ovarian torsion: a fifteen-year review. Annals of Emergency Medicine 2001; 38 (2): 156-159. doi: 10.1067/mem.2001.114303

5. Genç M, Şahin N, Karaarslan S, Güçlü S. The evaluation of clinical, radiological, pathological profile of ovarian torsion cases. Yeni Tip Dergisi 2015; 32: 79-82.

6. Ekin M, Kaya C, Cengiz H, Yasar L, Dogan K. A rare case: ruptured ectopic pregnancy with contralateral adnexal torsion. Bakırköy Tip Dergisi 2015; 11: 29-32.

7. Pedrosa I, Zeikus EA, Levine D, Rofsky NM. MR imaging of acute right lower quadrant pain in pregnant and nonpregnant patients. Radiographics 2007; 27 (3): 721-753. doi: 10.1148/rg.273065116

8. Lee EJ, Kwon HC, Joo HJ, Suh JH, Fleischer AC. Diagnosis of ovarian torsion with color Doppler sonography: depiction of twisted vascular pedicle. Journal of Ultrasound in Medicine 1998; 17 (2): 83-89. doi: 10.7863/jum.1998.17.2.83

9. Mashiach S, Bider D, Moran O, Goldenberg M, Ben-Rafael Z. Adnexal torsion of hyperstimulated ovaries in pregnancies after gonadotropin therapy. Fertility and Sterility 1993; 53 (1): 76-80. doi: 10.1016/s0015-0282(16)35219-1

10. Oelsner G, Bider D, Goldenberg M, Admon D, Mashiach S. Long-term follow-up of the twisted ischemic adnexa managed by detorsion. Fertility and Sterility 1993; 60 (6): 976-979. doi: 10.1016/s0015-0282(16)56395-x

11. Wagaman R, Williams RS. Conservative therapy for adnexal torsion. A case report. Journal of Reproductive Medicine 1990; 35 (8): 833-834.

12. Rangan U, Bulkley GB. Prospects for treatment of free radical-mediated tissue injury. British Medical Bulletin 1993; 49 (3): 700-718. doi: 10.1093/oxfordjournals.bmb.a072641

13. Hartmann RM, Licks F, Schemitt EG, Colares JR, do Couto Soares M et al. Protective effect of glutamine on the main and adjacent organs damaged by ischemia-reperfusion in rats. Protoplasm 2017; 254 (6): 2155-2168. doi: 10.1007/s00709-017-1102-3
14. Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 2006; 47 (6): 1183-1188. doi: 10.1161/01.HYP.0000221429.94591.72

15. Zhou G, Myers R, Li Y, Chen Y, Shen X et al. Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation 2001; 108 (8): 1167-1174. doi: 10.1172/JCI13505

16. Esteghamati A, Esfandari D, Mirmiranpour H, Noshad S, Mousavizadeh M et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clinical Nutrition 2013; 32 (2): 179-185. doi: 10.1016/j.cnu.2012.08.006

17. Li SN, Wang X, Zeng QT, FENG YB, Cheng X et al. Metformin inhibits nuclear factor kappaB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits. Heart Vessels 2009; 24 (6): 446-453. doi: 10.1007/s00380-008-1137-7

18. Oral A, Odabasoglu F, Halici Z, Keles ON, Unal B et al. Protective effects of montelukast on ischemia-reperfusion injury in rat ovaries subjected to torsion and detorsion: biochemical and histopathologic evaluation. Fertility and Sterility 2011; 95 (4): 1360-1366. doi: 10.1016/j.fertnstert.2010.08.017

19. Ozler A, Turgut A, Soydinc HE, Sak ME, Evsen MS et al. The biochemical and histologic effects of adnexal torsion and early surgical intervention to unwind detorsion on ovarian reserve: an experimental study. Reproductive Science 2013; 20 (11): 1349-1355. doi: 10.1177/1933719113485300

20. Osman P. Rate and course of atresia during follicular development in the adult cyclic rat. Journal of Reproduction and Fertility 1985; 73 (1): 261-270. doi: 10.1530/jrf.0.0730261

21. Chen M, Chen CD, Yang YS. Torsion of the previously normal uterine adnexa. Evaluation of the correlation between the pathological changes and the clinical characteristics. Acta Obstetricia et Gynecologica Scandinavica 2001; 80 (1): 58-61. doi: 10.1034/j.1600-0412.2001.800111.x

22. Taskin O, Birincigiloglu M, Aydin A, Buhrur A, Burak F et al. The effects of twisted ischaemic adnexa managed by detorsion on ovarian viability and histology: an ischaemia-reperfusion rodent model. Human Reproduction 1998; 13 (10): 2823-2827. doi: 10.1093/humrep/13.10.2823

23. Borekci B, Gundogdu C, Altunkaynak BZ, Calik M, Altunkaynak ME et al. The protective effect of dehydroepiandrosterone on ovarian tissues after torsion-detorsion injury: a stereological and histopathological study. Eurasian Journal of Medicine 2009; 41 (1): 22-27.

24. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. The American Journal of Physiology: Cell Physiology 2002; 282 (2): C227-C241. doi: 10.1152/ajpcell.00112.2001

25. Kaya C, Turgut H, Cengiz H, Turan A, Ekin M et al. Effect of detorsion alone and in combination with enoxaparin therapy on ovarian reserve and serum antimullerian hormone levels in a rat ovarian torsion model. Fertility and Sterility 2014; 102 (3): 878-884.e1. doi: 10.1016/j.fertnstert.2014.06.007

26. Yigitser M, Halici Z, Odabasoglu F, Keles ON, Atalay F et al. Growth hormone reduces tissue damage in rat ovaries subjected to torsion and detorsion: biochemical and histopathologic evaluation. European Journal of Obstetrics & Gynecology and Reproductive Biology 2011; 157 (1): 94-100. doi: 10.1016/j.ejogrb.2011.02.012

27. Halici Z, Karaca M, Keles ON, Borekci B, Odabasoglu F et al. Protective effects of amiodipine on ischemia/reperfusion injury of rat ovary: biochemical and histopathologic evaluation. Fertility and Sterility 2008; 90 (6): 2408-2415. doi: 10.1016/j.fertnstert.2007.10.007

28. Bastanci MS, Bakacak M, İnanç F, Yavralı A, Serin S et al. The protective effect of G-CSF on experimental ischemia/reperfusion injury in rat ovary. Archives of Gynecology and Obstetrics 2016; 293 (4): 789-795. doi: 10.1007/s00404-015-3878-8

29. Bakacak M, Bastanci MS, İnanç F, Yavralı A, Serin S et al. Protective Effect of Platelet Rich Plasma on Experimental Ischemia/Reperfusion Injury in Rat Ovary. Gynecologic and Obstetric Investigation 2016; 81 (3): 225-231. doi: 10.1159/000440617

30. Kumtepe Y, Odabasoglu F, Karaca M, Polat B, Halici MB et al. Protective effects of telmisartan on ischemia/reperfusion injury of rat ovary: biochemical and histopathologic evaluation. Fertility and Sterility 2010; 93 (4): 1299-1307. doi: 10.1016/j.fertnstert.2008.12.016

31. Dayanar Sayan C, Karaca G, Sema Ozkan Z, Tulmac OB, Isik AC et al. What is the protective effect of metformin on rat ovary against ischemia-reperfusion injury? Journal of Obstetrics and Gynaecology Research 2018; 44 (2): 278-285. doi: 10.1111/jog.13524

32. Coll B, van Wijk JP, Parra S, Castro Cabezás M, Hoepelman IM et al. Effects of rosiglitazone and metformin on postprandial paraoxonase-1 and monococyte chemoattractant protein-1 in human immunodeficiency virus-infected patients with lipodystrophy. European Journal of Pharmacology 2006; 544 (1-3): 104-110. doi: 10.1016/j.ejphar.2006.06.014

33. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005; 54 (7): 2179-2187. doi: 10.2337/diabetes.54.7.2179

34. Gómez-García A, Martínez Torres G, Ortega-Pierres LE, Rodríguez-Ayala E, Alvarez-Aguilar C. Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia. Revista Española de Cardiología 2007; 60 (12): 1242-1249. doi: 10.1157/13113929
35. Ouslimani N, Peynet J, Bonnefont-Rousselot D, Théond P, Legrand A et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 2005; 54 (6): 829-834. doi: 10.1016/j.metabol.2005.01.029

36. Wang ZS, Liu XH, Wang M, Jiang GI, Qiu T et al. Metformin attenuated the inflammation after renal ischemia/reperfusion and suppressed apoptosis of renal tubular epithelial cell in rats. Acta Cirúrgica Brasileira 2015; 30 (9): 617-623. doi: 10.1590/S0102-86502015009000006

37. Riggs RM, Duran EH, Baker MW, Kimble TD, Hobeika E et al. Assessment of ovarian reserve with anti-Müllerian hormone: a comparison of the predictive value of anti-Müllerian hormone, follicle-stimulating hormone, inhibin B, and age. American Journal of Obstetrics & Gynecology 2008; 199 (2): 202.e1-202.e2028. doi: 10.1016/j.ajog.2008.05.004