PARTICLE KNOTS IN TORIC MODULAR SPACE

J.A.de Wet

Box 514, Plettenberg Bay, 6600, South Africa

Keywords: Compactification, Coxeter Graphs, GF(4), Torus Knots, QCD, Triality.

Abstract
The goal of this contribution is to relate quarks to knots or loops in a 6-space \mathbb{CP}^3 that then collapses into a torus in real 3-space \mathbb{CP}^3 instantaneously after the Big Bang, and massive inflation, when 3 quarks unite to form nucleons.

Introduction
Kedia et. al. in recent paper [10] investigate knotted structures in hydrodynamic fields such as current-guiding magnetic field lines in a plasma, or vortex lines of classical or quantum fields which arise naturally as excitations that carry helicity that is a measure of the knottedness of the field. In particular their Fig. 2g is a trefoil which is our Fig. 3 without the quadrupole (that will be seen in Section 2 to collapse into a point) and the color-coding.

Fig. 1

SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/
The torus shown in Fig.2 is due to Marcelis [13] whose calculations in a projective space with 24 vertices appear to be unpublished, but are supported to some extent by Westy [18] (from the same school) who provides a color-coded complex map of the Riemann surface z that incorporates the phases of $\omega=120$ degrees.
Murasagi [14] Ch.7 shows that Fig.2 is a trefoil (3,2) on a torus when we choose 3 points on the ends of a cylinder that can be joined to form the torus. This brings us to the goal of this contribution which is to relate the elementary particles to knots or loops in a 6-space. Here we will be guided by the work of Coxeter [5,6] who specifically labels the vertices of the torus appearing in Fig.1 by $0, \pm 1, \omega, \omega^2$ where $\omega = \exp(2i\pi/3)$ so that a knot crosses the longitude of a torus at $\omega=120$ degrees. Essentially this is a Galois Field GF(4) with permutations of ω raised to the powers $0,1,2,3$ that will be considered in more detail in the next Section where we will show how 3 quarks in 6-space unite to become a nucleon in the projective space \mathbb{CP}^3 which collapses to \mathbb{P}^3 immediately after the Big Bang. Section 3 will employ the color-coding of Fig.1 as a model for Quantum Chromodynamics or QCD. Finally according to Rovelli [15] knots or loops in the 6-space described by \mathbb{E}_6 employed by Coxeter may also describe Loop Quantum Gravity although details are beyond the scope of this contribution. Also Arvin [2] has considered knots on a torus as a model for elementary particles but excluding quarks. Again, Sundance O Billson Thompson, Smolin et.al. [17] also use knots as a model for Quantum Gravity and the Standard Model but utilize trinions instead of trefoils.

Coxeter Algebra

Fig.1 is a torus taken from Coxeter [5] which is an alternative to the graph $\mathfrak{su}(3)_{\text{c}} \times \mathfrak{su}(3)_{\text{isospin}} \times \mathfrak{su}(3)_{\text{spin}}$ which is a triality sub-algebra of \mathbb{E}_6. This graph is orbifolded with 27 vertices that according to Slansky [16] may be labeled by particles in the Standard Model or SM. However the actual labeling of the tritangent planes on a cubic surface (discussed by Hunt [10] Ch. 4) is new, but in line with Coxeter’s labels. For example the up-quark u in Fig.1 is labeled by (012) indicated by $0, \omega, \omega^2$. Then (023) on the same tritangent is simply a rotation through $\omega=120$ degrees and so on. In this way we find an equilateral triangle labeled by the 3 quarks uud comprising a proton and another dud on a torus which is precisely the model adopted by Green, Schwarz and Witten [8] Section 9.5.2.

The quarks at the vertices of Fig.1 are trefoils illustrated by Fig.2, but the torus in Fig.1 only becomes a trefoil after the collapse of the inner ring just after the Big Bang when quarks in the 6-space \mathbb{CP}^3 unite to build nucleons in the projective space \mathbb{P}^3.

This is supported by Barth and Nieto [3], where only the 12 outer vertices and the center of Fig.1 are in \mathbb{P}^3. Specifically these authors find 15 synthemes, where a symtheme has 6 ‘fix-lines’ that are the edges of an invariant tetrahedron, such as uud 0 representing a proton. However because there are only 3 vertices on the face of a symtheme the outer ring of Fig.1 carries the 4 stable particles proton, neutron and the anti-particles. Also since the tritangents are invariant under rotations there are actually 3x4=12 possible synthemes on the outer ring. Specifically each symtheme consists of 3 commuting operators. Thus 3 synthemes can be chosen for spin rotations about the 3 axes of 3-space. Thus introducing triality which is a characteristic of Toric-Calabi-Yau modular spaces that carry the Hessian Polyhedra in \mathbb{E}_6 as discussed by Lie-Yang [12] and analysed by Coxeter [5,6].

Specifically each rotation in 3-space is also accompanied by a corresponding rotation in a parity 4-space when we permute 1,2,3. Charge conjugation belongs to a second set of 3 synthemes with the same rotations in a 3-space but a parity 5-space in another charge space [7].

In this way the 12 unstable particles $sss, \tilde{u}, v, \mu, \tau, \nu$ do not appear in the compactification of \mathbb{CP}^3 to \mathbb{P}^3. This may be visualised as a collapse of the inner vertices to a point which carries the remaining 3 synthemes e^{\pm}, ν, labeled by $\{011,022,033\},\{110,220,330\}$ and $\{101,202,303\}$ for the muon. In this process the masses m_τ, m_μ of the τ, μ reappear as stable deuterium 3 according to the relationship

$$m_\tau + m_\mu = m_p + m_n + m_e$$

(1)
There is no heavy-ion decay and the same relation holds for the anti-particles. This equation is accurate if we assume that \(m_\tau = 1777 \text{ MeV} \) and \(m_\mu = 101.4 \text{ MeV} \) instead of the Fermi decomposition of muon decay in the weak interaction yielding 106 MeV. However in a recent publication Benjamin Brau et al.\[4\] find a value of approximately 100 MeV for the mass of cosmic-ray muons so there is as yet some experimental uncertainty.

Quantum Chromodynamics, QCD

Returning again to Fig.1, when the inner vertices are contracted to a point at the origin the red, green and blue lines could serve as gluons on a new torus where a red upper path passes through the center before emerging at the circumference and giving way to a green gluon that in turn passes under the torus and then over to connect with a down quark and so on. The 3 color complex dimensions vanish when \(\text{CP}^3 \to \text{P}^3 \) but a torus knot remains in 3-space.

However Marcelis [13] calculates the dual set of 3 paths for the anti-gluons overline (r,g,b) which appear in Fig.3 (without the quadrupole) so the gluon, antigluon linked trefoil give us the \(SU(3)_c \) color symmetry underlining QCD as described by Griffiths [9], Section 9.1. For example when another quark is added after a rotation \(\omega \) a red gluon may unite with an anti-blue to find \(r \) anti-b, then a following rotation would bring \(r \) to anti-\(r \), and so on before blow down to \(P^3 \). In this way we can find 9 gluon pairs \(r \) anti-\(r \), \(r \) anti-\(b \), \(r \) anti-\(g \), \(b \) anti-\(r \), \(b \) anti-\(b \), \(b \) anti-\(g \), \(g \) anti-\(b \), \(g \) anti-\(g \) that are a basis for \(SU(3)_c \) symmetry.

Finally Adams [1] p 273 also envisages the 3 colors \(r, b, g \) as three extra dimensions in a 6-space.

Acknowledgement

This contribution is a revision of a paper already submitted to BMSA 178X that was unfortunately published without the Figures.

Fig.1 The Coxeter Polytope
Fig.2 Cayley Surface in Elliptic Space
Fig.3 Interior of Cayley Surface

4 Bibliography

References

[1] C.C. Adams, The Knot Book, Freeman, 1994.
[2] J.S.Arvin, Knot on a Torus: A Model of Elementary Particles, symmetry, 4(2013)39-115.
[3] W.B., and D.C., Abelian Surfaces of Type (1,3) and Quartic Surfaces, J. Algebraic Geometry 3(1994)173-212. Benjamin Brau, Determining the Muon Mass in an Instructional Laboratory, Am. J. Phys. 73(2010)64-70; arXiv:0907.5641.
[4] Benjamin Brau, Determining the Muon Mass in an Instructional Laboratory, Am. J. Phys. 73(2010)64-70; arXiv:0907.5641.
[5] H.S.M. Coxeter, The Polytope 221 whose 27 Vertices Correspond to the Lines on the General Cubic Surface, Am. Mathematical Soc. 62(1940)467486.
[6] H.S.M. Coxeter, Regular Complex Polytopes, Camb.Univ.Press, Second Edition(1991).
[7] J.A. de Wet, Icosahedral Symmetry in the MSSM, International Mathematical Forum 5(2010) 291-300. Available on-line under Hikari.Ltd.
[8] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Camb.Univ.Press (1998).
[9] David Griffiths, Introduction to Elementary Particles, WILEY-VCH(2004).
[10] H. Kedia, I. Bialynicki, D. Peralta-Salas and William Irvine, Tying Knots in LightFields, arXiv:1302.0342.
[11] Bruce Hunt, The Geometry of Some Arithmetic Quotients, Lecture Notes in mathematics, 1637, Springer (1996).
[12] Lei-Yang, Hessian Polyhedra Invariant Theory and Appell Hypergeometric Partial Differential Equations, arXiv:math/0412065v2.
[13] http://members.home.nl/fg.marcelis/ellip-cayley.html.
[14] Kunio Murasugi, Knot Theory and its Applications, Birkhauser, Boston (1996).
[15] Carlo Rovelli, Loop Quantum Gravity, arXiv:gr-qc/971008.
[16] R. Slansky, Group Theory for Unified Model Building, Reprinted in 'Unity of Forces in the Universe' Ed. A. Lee, World Scientific (1997).
[17] Sundance O. Billson Thompson, Fotini Markopoulou and Lee Smolin, Quantum Gravity and the Standard Model, On-Line (2014)
[18] Westy, Platonic Tessellations of Riemann Surfaces, http://westy31.xs4all.nl/Geometry/Geometry.html.