Optical coherence tomography (OCT) is a non-invasive investigative technique that is used to obtain high-resolution three-dimensional (3D) images of biological structures. This method is useful in diagnosing diseases of specific organs like the eye, where a direct biopsy cannot be conducted. Since its inception, significant advancements have been made in its technology. Apart from its initial application in ophthalmology for retinal imaging, substantial technological innovations in OCT brought by the research community have enabled its utilization beyond its original scope and allowed its application in many new clinical areas. This review presents a summary of the clinical applications of OCT in the field of medicine (ophthalmology, cardiology, otology, and dermatology) and dentistry (tissue imaging, detection of caries, analysis of dental polymer composite restorations, imaging of root canals, and diagnosis of oral cancer). In addition, potential advantages and disadvantages of OCT are also discussed.

Keywords
Optical coherence tomography, OCT, Imaging, Medicine, Dentistry
Corresponding author: Imran Farooq (drimranfarooq@gmail.com)

Author roles: Ali S: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Gilani SBS: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Shabbir J: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Almulhim KS: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Bugshan A: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Farooq I: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Ali S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ali S, Gilani SBS, Shabbir J et al. Optical coherence tomography's current clinical medical and dental applications: a review [version 1; peer review: 3 approved] F1000Research 2021, 10:310 https://doi.org/10.12688/f1000research.52031.1

First published: 22 Apr 2021, 10:310 https://doi.org/10.12688/f1000research.52031.1
Introduction
Optical coherence tomography (OCT) is a non-invasive diagnostic method that can be utilized to acquire high-resolution three-dimensional (3D) images of a biological structure. OCT has quickly gained popularity among clinicians due to several advantages that include delivering quality images with quick imaging speed. This technique has several clinical applications that include (but are not limited to) detection of diabetic macular edema, epithelial mapping for refractive surgery, diagnosing and managing patients with neuro-ophthalmic conditions, imaging of retinal microcirculation to detect hemodynamic disturbances, detection of age associated changes in teeth, diagnosing dental caries and tooth wear, and post-treatment assessments in dentistry.

The aim of this review is to summarize the clinical applications of OCT in the field of medicine and dentistry, and highlight its potential advantages and disadvantages. Google Scholar and PubMed databases were searched using keywords including “optical coherence tomography,” “OCT,” and “OCT and its clinical applications.” Our search revealed 500+ hits; all the articles published in languages other than English and conference abstracts were excluded. Only the relevant articles published in the last 10 years (2011-2021) were included to keep the information recent and contemporary. Finally, 83 articles were selected for this study and included in our review.

Clinical applications of OCT

Medical applications
OCT has been utilized by medical professionals extensively for diagnostic purposes and has several medical applications in ophthalmology, cardiology, otology, and dermatology. These applications will now be discussed below.

Ophthalmology
This technique can be used to accurately analyze choroidal thickness in the eyes under conditions such as diabetic neuropathy and macular degeneration due to aging. In fact, it can be said with authority that this imaging tool is nowadays a routine part of ophthalmology practice to identify macular lesions. The role of OCT is also pivotal in detecting other eye-related conditions like hyper-reflectivity due to macular telangiectasia type-2, optic neuropathies, and glaucomatous retinal nerve fiber layer loss. Papilledema is a serious medical condition that leads to visual disturbances and occurs due to the optic disc's swelling because of increased intraocular pressure; OCT technique can be used to measure the amount of optic disc edema in this condition.

Cardiology
OCT can be used for various applications in the field of cardiology. In a recent study, it has been reported that OCT-based fractional flow reserve learning can be used for enhanced treatment of intermediate coronary artery stenosis. This technique can also be used for coronary imaging, guiding percutaneous coronary intervention, diagnosing myocardial infarction with non-obstructive coronary arteries, and observing healed coronary plaques.

Otology
OCT can be used to accurately diagnose otology conditions such as otitis media and conductive hearing loss. Other otology conditions where OCT has been used in the literature include diagnosis of middle ear effusions, visualizing middle ear exudate, observing microstructures of the middle and inner ear through an extra tympanic approach, visualization of intra-cochlear structures for future cochlear implant surgery, and to study endolymphatic hydrops that develops due to noise trauma.

Dermatology
OCT has the potential to be used to image skin layers and associated structures. In a recent study, Kato et al. utilized OCT to measure sweating and reported that this technique could be used successfully to measure and quantify sweating in the body. Other OCT uses related to dermatology include characterization of micro-environment of facial pores, aiding in the diagnosis of basal cell carcinoma, observing the treatment response of inflammatory dermatoses, and to detect non-melanoma skin cancers.

Dental applications
In the past, the use of OCT was only limited to the assessment of dental hard and soft tissue morphology; however, as knowledge related to the mechanics and use of OCT increased, it led to more widespread use of OCT for different objectives. Nowadays, OCT is being used in various clinical and research applications related to dentistry. The uses of OCT in the field of dentistry are discussed in detail below.
Tissue imaging

Many dental tissues such as enamel and dentin can be easily visualized utilizing OCT.35 The optical characteristics of enamel and dentin are different, so these structures can be distinguished from each other. Hariri \textit{et al.} reported that OCT signals in dentin vary due to the presence of dentinal tubules and are also different from enamel.36 The direction of the OCT beam to the examined surface can affect the signal intensity. The sharp slope of the enamel surface may appear bright compared to the less steep surface.37 This technique has also been applied previously in various studies to detect the presence of enamel cracks.37,38 Imai \textit{et al.} visualized enamel cracks utilizing OCT and demonstrated their extension beyond dentin-enamel junction.38 To detect tooth fracture in the coronal region, swept-source OCT (SS-OCT) is a useful technique.39

Detection of dental caries and demineralization of teeth

There has been a paradigm shift in caries management recently, and this change indicates that caries should be managed conservatively.40 However, it requires detection of early, un-noticeable caries activity at the earliest for it to be truly conservative. Radiography is an unreliable method of detection of carious activity. Moreover, radiography cannot distinguish properly between active and arrested lesions.31 In an earlier study, it was reported that when physicians used OCT, they could detect tooth volumetric and thickness changes earlier compared with other conventional methods.42 Detecting initial changes in the tooth structure could be useful in hindering the progress of dental caries. In another study, the OCT technique effectively observed the depths of carious demineralization of dentin.43 Tooth demineralization can be differentiated from healthy tooth tissue by increasing light scattering in porous demineralized tooth tissue while performing OCT.44 SS-OCT possesses an advantage in cases where higher resolution and penetration depth are required for cavitated caries or deeper lesion detection.45 In enamel caries, the images appear brighter on grayscale OCT, and this could be the result of increased brightness due to the light reflection occurring between two homogenous structures with different refractive indices.46 The demineralized mineral crystals and water in the pores cause increased reflectivity resulting in characteristic brightness in the OCT image.46 SS-OCT can image dentin caries as a continuous bright area that extends from enamel into the dentin.44 The signal attenuation is considered as an object parameter to differentiate between sound and demineralized enamel.47 However, this attenuation can be affected by the wavelength of the incident light. The wavelength suggested to be used to detect demineralization is 1310-nm.48

Analysis of defective dental polymer composite restorations

Conventional OCTs are considered useful in detecting the cavitated border, fracture lines, and interfacial gaps in the tooth-restoration interface.49 This property appears to be due to strong reflection from the material surface in conventional OCT setups for detecting the reflective surface from the defects.50 Concerning dental polymer composites, the polymer’s composition could affect signal attenuation of OCT and depends on the refractive index difference between polymers resin and the filler.51 OCT imaging can detect the air bubbles or void within the composite restoration52 and evaluate bonding interface.53 This assessment becomes easy as poorly sealed polymer composites demonstrate brightly clustered images (revealing gaps), whereas tightly fit boundaries do not exhibit too much scattering.54 Ishibashi \textit{et al.} performed a study previously and reported that SS-OCT could detect resin-based polymer composite restorations defects as it provides a much higher resolution than other conventional techniques.55 The OCT technique is also a useful tool to analyze volumetric polymerization shrinkage (VPS). Sampio \textit{et al.} performed a study to measure the VPS of different polymer composites via micro-computed tomography, and to qualitatively compare the gap formation through OCT.56 It was concluded from the results of their study that while both techniques were useful, VPS assessment was largely material dependent.56

Imaging of root canals

In an earlier \textit{in-vitro} study, Lino \textit{et al.} reported that SS-OCT could be used to locate the second mesiobuccal canal in maxillary molars.57 Rashed \textit{et al.} also reported similar findings in their study and reported that SS-OCT has the potential to accurately measure residual dentin thickness (RDT) and image root canals along with other internal tooth anatomic structures like pulp horns and isthmus.58 The SS-OCT technique is a useful tool to accurately observe fractures of tooth roots and root canal endoscopy.59 Krause \textit{et al.} utilized OCT to monitor the pulp chamber’s roof and RDT and reported that this technique could be useful in preserving the pulp’s vitality while preparing deep cavities in dentin.60

Detection of oral cancer

Oral cancer is one of the most fatal and prevalent cancers in the world. In India, it is the third most typical form of cancer,61 and among those, 90% are oral squamous cell carcinomas.62 Lee \textit{et al.} earlier reported that OCT is a reliable technique to
diagnose oral precancerous lesions with high sensitivity and specificity. OCT has been successfully applied previously to diagnose oral malignancies in the hamster cheek pouch model. Adegun et al. used OCT to diagnose epithelial dysplasia and reported that this technique could offer non-invasive method to locate the appropriate site of biopsy and thus could be useful in the early diagnosis of oral cancer.

Other dental uses

Peri-implantitis is the inflammation of structures around the implant, which may lead to bone resorption around the implant and eventual failure of the implant. OCT can detect and prevent peri-implant diseases. Kim et al. used OCT to measure peri-implant bone defects and reported that OCT was useful in assessing peri-implant bone levels and identifying bone defects. Luca et al. used OCT to analyze bone the bone following low-level laser therapy and reported that OCT could quantitatively measure bone regeneration. OCT is also a reliable tool to diagnose dental erosion, assess sealing performance of resin cements, detect invisible internal fractures of dentures non-invasively, and monitor resin-dentin gaps.

Advantages and disadvantages of OCT

OCT is a novel technique with diagnostic abilities used currently in different medical fields. High-resolution image acquisition of the biological tissue has enabled this modern technology to embed itself in the field of biomedical science, where researchers have been testing it for maximum possible utilization of its potential. The advantages and disadvantages of OCT have been summarized in Tables 1 and 2, respectively.

Future clinical applications

Considering the potential benefits of OCT, it can be predicted that its use in the medical field will increase further in the coming years. The combination of OCT with other techniques like scanning laser ophthalmoscopy (SLO) could prove to be useful for eye imaging when compared with the former approach alone. The use of OCT angiography (OCTA) technique to observe human vasculature could increase in the future as unlike SLO-based angiography methods; OCTA can provide depth information and isolation of vascular retinal and various choroidal layers. It will be interesting to discover the role of artificial intelligence (AI) while using OCT to diagnose skin diseases, particularly basal cell carcinoma. Deep learning algorithms have been applied previously to the OCT technique, but AI's role in improving OCT has not yet gained clinical maturity. It would be exciting to see the part of AI-related to OCT in the future, as it can decrease the cost and time required to train an operator.

Table 1. Showing distinct advantages of OCT.

Advantages	References
No radiation	Shimada et al.
Non-invasiveness	Chang et al.
Repeatable	Bayer et al.
Patient-friendly	Mirzaei et al.
Gives high-resolution cross-sectional images	Hagag et al.
Rapid and safe	Chopra et al.
Portability (comes with some models)	Maloney

Table 2. Showing potential disadvantages of OCT.

Disadvantages	References
Low contrast images obtained for rough surfaces	Hsieh et al.
Low imaging quality due to faster imaging speed	Hsieh et al.
Increased cost	Chopra et al.
Increased skill required to operate OCT	Chopra et al.
Limited penetration depth	Israelsen et al.
Conclusions
OCT is a non-invasive technique that has several clinical applications and distinct advantages. It is an explorative diagnostic method that provides clinically pertinent data, is fast, and thus it is appropriate for research and clinical practice. OCT is still an emerging technology, and considering its potential benefits, its use in medical and dental clinics should be encouraged.

Data availability
No data is associated with this article.

References
1. Podoleanu AG: Optical coherence tomography, J. Microsc. 2012; 247(3): 209-219. PubMed Abstract | Publisher Full Text | Free Full Text
2. Ilbire MM: Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research, J Med Eng. 2017; 2017: 3409327. PubMed Abstract | Publisher Full Text | Free Full Text
3. Gurrea A, Pazzaglia A: Diabetic Macular Edema: State of Art and Intravascular Pharmacological Approaches. Adv Exp Med Biol. 2021; 1307: 375-389. PubMed Abstract | Publisher Full Text
4. Khamar P, Rao K, Wadia K, et al.: Advanced epithelial mapping for refractive surgery. Indian Ophthalmol. 2020; 68(12): 2819–2830. PubMed Abstract | Publisher Full Text | Free Full Text
5. Maldonado RS, Mettu P, El-Dairi M, et al.: The application of optical coherence tomography in neurologic diseases. Neural Clin Pract. 2015; 5(5): 460–469. PubMed Abstract | Publisher Full Text | Free Full Text
6. Courtie E, Veerath T, Logan A, et al.: Retinal blood flow in critical illness and systemic disease: a review. Ann Intensive Care. 2020; 10(1): 152. PubMed Abstract | Publisher Full Text | Free Full Text
7. Shimada Y, Yoshiyama M, Tagami J, et al.: Evaluation of dental caries, tooth crack, and age-related changes in tooth structure using optical coherence tomography. Jpn Dent Sci Rev. 2020; 56(1): 109–118. PubMed Abstract | Publisher Full Text | Free Full Text
8. Shimada Y, Burrow MF, Araki K, et al.: 3D imaging of proximal caries in posterior teeth using optical coherence tomography. Sci Rep. 2020; 10(1): 11254. PubMed Abstract | Publisher Full Text | Free Full Text
9. Kashiwa M, Shimada Y, Sadar A, et al.: Diagnosis of Occlusal Tooth Wear Using 3D Imaging of Optical Coherence Tomography Ex Vivo. Sensors (Basel). 2020; 20(21): 6016. PubMed Abstract | Publisher Full Text | Free Full Text
10. Erdelyi RA, Durna VF, Sincescu C, et al.: Dental Diagnosis and Treatment Assessments: Between X-rays Radiography and Optical Coherence Tomography. Materials (Basel). 2020; 9(2): 4825. PubMed Abstract | Publisher Full Text | Free Full Text
11. Adhi M, Duker JS: Optical coherence tomography: current and future applications. Curr Opin Ophthalmol. 2013; 24(3): 213–221. PubMed Abstract | Publisher Full Text | Free Full Text
12. Bhende M, Shetty S, Parthasarathy MK, et al.: Optical coherence tomography: A guide to interpretation of common macular diseases. Indian J Ophthalmol. 2018; 66(1): 20–35. PubMed Abstract | Publisher Full Text | Free Full Text
13. Tziridis S, Hess K, Heeren TFC, et al.: Hyper-reflectivity on optical coherence tomography in macular telangiectasia type 2. Retina. 2021; PubMed Abstract | Publisher Full Text
14. Jorga RE, Moraru A, Ozturk MR, et al.: The role of Optical Coherence Tomography in optic neuropathies. Rom J Ophthalmol. 2018; 62(1): 3–14. PubMed Abstract | Publisher Full Text | Free Full Text
15. Jammal AA, Beruchuck SJ, Thompson AG, et al.: The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma. Invest Ophthalmol Vis Sci. 2020; 61(13): 8. PubMed Abstract | Publisher Full Text | Free Full Text
16. Rig M, Almarzouqi S, Morgan ML, et al.: Papilledema: epidemiology, etiology, and clinical management. Eye Brain. 2015; 7: 47–57. PubMed Abstract | Publisher Full Text | Free Full Text
17. Crum OM, Kilgore KP, Sharma R, et al.: Etiology of Papilledema in Patients in the Eye Clinic Setting. JAMA Opthalmol. 2020; 3(6): e200662S. PubMed Abstract | Publisher Full Text | Free Full Text
18. Kardon R: Optical coherence tomography in papilledema: what am I missing? J Neuroophthalmol. 2014; 34(Suppl): S10–S17. PubMed Abstract | Publisher Full Text | Free Full Text
19. Cha JJ, Son TD, Ha J, et al.: Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study. Sci Rep. 2020; 10(1): 20421. PubMed Abstract | Publisher Full Text | Free Full Text
20. Terashima M, Kaneda H, Honda Y, et al.: Current status of hybrid intravascular ultrasound and optical coherence tomography catheter for coronary imaging and percutaneous coronary intervention. J Cardiovasc. 2020; 259:1–13. PubMed Abstract | Publisher Full Text | Free Full Text
21. Amabile N, Rangé G, Souteyrand G, et al.: Optical Coherence Tomography to Guide Percutaneous Coronary Intervention of the Left Main Coronary Artery: the LEMON study. EuroIntervention. 2020; 15(20–21): 1063–1071. PubMed Abstract | Publisher Full Text
22. Reynolds HR, Maehara A, Kwon SY, et al.: Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Nonobstructive Coronary Arteries in Women. Circulation. 2021; 143(7): 624–640. PubMed Abstract | Publisher Full Text | Free Full Text
23. Araki M, Yonetsu T, Russo M, et al.: Predictors for layered coronary plaques: an optical coherence tomography study. J Thromb Thrombolysis. 2020; 50(4): 886–894. PubMed Abstract | Publisher Full Text | Free Full Text
24. Tan HEI, Santa Maria PL, Wijesinghe P, et al.: Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngol Head Neck Surg. 2018; 159(3): 424–438. PubMed Abstract | Publisher Full Text | Free Full Text
25. Won J, Moonay GL, Huang PC, et al.: Assessing the Effect of Middle Ear Diffusion on Wideband Acoustic Impedance Using Optical Coherence Tomography. Ear Hear. 2020; 41(6): 811–824. PubMed Abstract | Publisher Full Text | Free Full Text
26. Novozhilov AA, Shilyagin PA, Abubakirov TE, et al.: Non-contact optical coherence tomography - an effective method for visualizing the exudate of the middle ear. Vestn Otorinolaryngol. 2020; 205(4): 16–23. PubMed Abstract | Publisher Full Text | Free Full Text
27. Oh SJ, Lee JW, Wang SG, et al.: Extratympanic Observation of Middle and Inner Ear Structures in Rodents Using Optical Coherence Tomography. Clin Exp Otorhinolaryngol. 2020; 13(2): 106–112. PubMed Abstract | Publisher Full Text | Free Full Text
28. Starovoyt A, Putzeys T, Wouters J, et al.: High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography. Sci Rep. 2019; 9(1): 14271. PubMed Abstract | Publisher Full Text | Free Full Text
29. Badash I, Applegate BE, Oghalai JS: In Vivo Cochlear imaging provides a tool to study endolymphatic hydrops. J Vestib. Res. 2020, In Press.
30. Kato K, Al-Sobaihi S, Al-Busani H, et al.: Analysis of sweating by optical coherence tomography in patients with palmoplantar
69. Luca RE, Todea CD, Duma VF, et al.: Quantitative assessment of rat bone regeneration using complex master-slave optical coherence tomography. Quant Imaging Med Surg. 2019; 9(5): 782–798. PubMed Abstract | Publisher Full Text | Free Full Text

70. Attin T, Wegehaupt FJ: Methods for assessment of dental erosion. Monogr Oral Sci. 2014; 25: 123–142. PubMed Abstract | Publisher Full Text

71. Sumi Y, Ozawa N, Nagaosa S, et al.: Application of optical coherence tomography (OCT) to nondestructive inspection of dentures. Arch Gerontol Geriatr. 2011; 53(2): 237–241. PubMed Abstract | Publisher Full Text

72. Bakhsh TA, Sadr A, Shimada Y, et al.: Non-invasive quantification of resin–dentin interfacial gaps using optical coherence tomography: Validation against confocal microscopy. Dent Mater. 2011; 27(9): 915–925. PubMed Abstract | Publisher Full Text | Free Full Text

73. Chang CJ, Huang YM, Hsieh MH, et al.: Flow signal change in polyps after anti-vascular endothelial growth factor therapy. PloS One. 2020; 15(10): e0241230. PubMed Abstract | Publisher Full Text | Free Full Text

74. Bayer A, Akman A: Artifacts and Anatomic Variations in Optical Coherence Tomography. Turk J Ophthalmol. 2020; 50(2): 99–106. PubMed Abstract | Publisher Full Text | Free Full Text

75. Mirzaei N, Shi H, Ovatii M, et al.: Alzheimer’s retinopathy: Seeing disease in the eyes. Front Neurosci. 2020; 14: 921. PubMed Abstract | Publisher Full Text | Free Full Text

76. Haung AM, Gao SS, Jia Y, et al.: Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017; 7(3): 115–129. PubMed Abstract | Publisher Full Text | Free Full Text

77. Chopra R, Wagner SK, Keane PA: Optical coherence tomography in the 2020s—outside the eye clinic. Eye (Lond). 2020; 9: 1–8. PubMed Abstract | Publisher Full Text | Free Full Text

78. Maloney R: The Optovue iVue OCT System from Grafton Optical: the possibilities of hand-held OCT devices in ophthalmic practice. J Vis Commun Med. 2012; 35(2): 76–81. PubMed Abstract | Publisher Full Text

79. Israelien NM, Petersen CR, Barh A, et al.: Real-time high-resolution mid-infrared optical coherence tomography. Light Sci Appl. 2019; 8(1): 1–3. PubMed Abstract | Publisher Full Text | Free Full Text

80. Poddar R, Migacz JV, Schwartz DM, et al.: Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate. J Biomed Opt. 2017; 22(10): 106018. PubMed Abstract | Publisher Full Text | Free Full Text

81. Choi W, Mohler KJ, Potsaid B, et al.: Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PloS one. 2013; 8(12): e81499. PubMed Abstract | Publisher Full Text | Free Full Text

82. Kurokawa K, Liu Z, Miller DT: Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris. Biomed Opt express. 2017; 8(3): 1803–1822. PubMed Abstract | Publisher Full Text | Free Full Text

83. De Fauw J, Ledsam JR, Romera-Paredes B, et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018; 24(9): 1342–1350. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Version 1

Reviewer Report 30 April 2021

https://doi.org/10.5256/f1000research.55257.r83916

© 2021 Marya A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Anand Marya
1 Department of Orthodontics, Faculty of dentistry, University of Puthisastra, Phnom Penh, Cambodia
2 Department of Orthodontics, Saveetha dental college, Chennai, India

First of all I would like to thank you for the editorial invitation and secondly I would like to complement the authors on their hard work and reading through it I found it to be a very well written review paper. Optical coherence tomography is slowly gaining popularity in the dental field and will surely gain more ground in future with an increased use. The authors have compiled the data associated with the uses of OCT well in this paper.

My suggestion would be to include the types of OCT and their uses along with a brief historical perspective that would add more value to this paper. Other than that it is a very well written paper and with few additions should be indexed.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Orthodontics, dental diagnosis, dentistry

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 29 April 2021

https://doi.org/10.5256/f1000research.55257.r83915

© 2021 Raj A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A. Thirumal Raj
Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India

The article is interesting and summarizes various medical and dental applications of the optical coherence tomography (OCT) technique. I have reviewed it and would like to have it indexed. Few suggested improvements from my side are as follows:

1. The introduction section can be expanded further.
2. More medical applications of the OCT technique can be included.
3. Future work section can be more detailed.
4. More references can be added, which would help to expand different sections.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Oral pathology
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 27 April 2021
https://doi.org/10.5256/f1000research.55257.r83913

© 2021 Chaudhary F. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Farooq Ahmad Chaudhary
School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan

The article deals with the clinical applications of optical coherence tomography. It's well-written and I just have few minor comments:
1. Introduction could be expanded to include basics of the OCT technique.
2. An image showing the working principle of the OCT technique could be useful in the introduction section.
3. It would be easier for the readers if the article contained a flowchart of the search strategy.
4. Dental applications are well-written, but a little more explanation of medical applications could attract more readers.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Dentistry, Oral Health, and Preventive Dentistry

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com