Amoebiasis: An Infectious Disease Caused by Entamoeba histolytica

Abu Md Ashif Ikbal¹, Bikash Debnath¹,², Amlanjyoti Rajkhowa¹, Kishan Paul¹, Rima Majumder¹ & Kuntal Manna¹

¹Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala-799022.
²Department of Pharmaceutics, Regional Institute of Pharmaceutical Science and Technology, Abhoynagar, Agartala-799 005.

DOI: http://doi.org/10.38177/AJBSR.2022.4202

Copyright: © 2022 Abu Md Ashif Ikbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article Received: 11 January 2022 Article Accepted: 20 March 2022 Article Published: 10 April 2022

ABSTRACT

Amoebiasis is an infectious disease caused by Entamoeba histolytica (E. histolytica), the common symptoms are cramping, abdominal pain, watery or bloody diarrhea, and weight loss. Sometimes patients suffer amoebiasis as an asymptomatic behavior. In 1859 scientist W.D. Lambl first described the amoebiasis vector E. histolytica. In developing countries, millions of people die due to amoebiasis. A doctor diagnosed the disease detection of E. histolytic antigen in stool or antibodies against the parasite in serum. Metronidazole, tinidazole, lodoquinol, diloxanide furoate are given for amoebiasis patients. In this review, we have summarized the statistics, pathogenesis, diagnosis, prevention, and treatment strategy of amoebiasis disease. It also gives information about the life cycle of E. histolytica.

Keywords: Amoebiasis, E. histolytica, Asymptomatic, Parasite, Infectious disease.

Introduction

Amoebiasis is an infection caused by the pseudopod-forming, non-flagellated protozoan parasite Entamoeba histolytica (E. histolytica). Synonyms include entamoebiasis, amoebiosis, amoebic dysentery, or bloody flux [1]. Entamoeba is derived from the Greek words Entos: within and Amoeba: Various species of Entamoeba viz., Entamoeba histolytica, Escherichia coli, E. gingivalis, E. dispar, E. hartmanni, E. Poleck [2],[3]. From these bacterial strains, only Entamoeba histolytica is pathogenic to man. Sometimes the infection is asymptomatic, but the invasive intestinal disease may occur manifesting with several weeks of cramping, abdominal pain, watery or bloody diarrhea, and weight loss [4]. The taxonomic hierarchy of E. histolytica describe in table 1. E. histolytica was first described by W.D. Lamb 1859 in the colonic autopsy of a child who died of diarrhoea. 1875-Fedor Loschin described the pathogenic nature of Entamoeba histolytica. He inoculated the parasite through the rectum of a dog and found that the dog had developed dysentery, thus proving the pathogenic nature of the parasite [5].

Table 1. The taxonomic hierarchy of Entamoeba histolytica

Kingdom	Protista
Class	Lobosea
Order	Amoebida
Family	Entamoebidae
Genus	Entamoeba
Species	Entamoeba histolytica

E. histolytica gets nutrients from the gut microbiota by phagocytosis of the host cell. E. histolytica gets nutrients from the gut microbiota by phagocytosis of the host cell. A fundamental component of E. histolytica is actin, which
involves changing cell shape and other pivotal processes like motility, phagocytosis, and parasite-substrate interaction. Two proteins Ehvps20 and Ehvps24, are essential for transport in erythrophagocytosis. During colonization, *E.* *histolytica* triggers an acute inflammatory process by releasing reactive oxygen species, nitric oxide, and cytokines from active cells of the immune system. *E. histolytic* possesses 10 phosphatidylinositol (PI) kinases and 23 phosphatidylinositol phosphatases [6],[7].

Epidemiology

Amoebiasis is a worldwide disease, mostly seen in developing countries (India, China, Mexico, Africa, and South America). It is the third most common cause of death from parasitic disease. Around 500 million people are infected every year, and around 0.1 million people are dying due to amoebiasis globally. Fifteen percent of the Indian population gets affected due to *E.histolytica*. The distribution of luminal amoebiasis as measured by a cyst in stool is a significant case throughout the world. Amoebiasis is mainly related to the sanitation and socioeconomic status of the country. Depending upon the age and body's immunity, this bacterial infection also varies. Children who are less than five years of age are affected mainly by amoebiasis. Approximate death rate of children in a year is represented fig.1. The rate of mortality found higher in males in comparison to females [8]-[10].

![Death rate of amoebiasis between 0-15 year age group](chart.png)

Fig.1. Death rate of amoebiasis between 0-15 year age group

The infection begins when the host swallows the mature quadrinucleate cyst along with the contaminated food or water. As the cyst wall is resistant to the acidic content of the stomach, the quadrinucleate cyst passes unaltered into the small intestine, where excitation takes place. In the intestine, the cyst wall is digested by the action of trypsin in an alkaline medium at a temperature of 37°C. The cytoplasmic body retracts and loosens from the cyst wall during this process. Pseudopodia are formed at various points, and vigorous amoeboid movements occur within the cyst. Frequently, the pseudopodia press against the wall at certain spots as though the imprisoned organism were searching for the exit. Eventually, a tetranucleate amoeba known as metacyst (with four nuclei) emerges. Immediately on emergence, four nuclei of the metacyst undergo division to form eight nuclei. Each nuclei gets surrounded by a bit of its cytoplasm and leads an independent existence. Thus, eight amoebulae are formed. These are known as metacystic or metacyclic trophozoites which are actively motile [11],[12]. The metacystic
trophozoites move down to the caecum and ileocolonic region of the intestine. The young amoebulae being actively motile invade the tissues and finally lodge themselves in the mucosa and submucosa of the large intestine-its final abode. They prefer this site as the organic material (food), pH and gases in this part of the large intestine are more stable and ideal for *E. histolytica* trophozoites. Here, the trophozoites grow at the expense of living tissues and multiply by simple binary fission. The trophozoites secrete histolysin, which causes necrosis and destruction of the host’s tissue and helps the parasite derive nourishment from the dissolved dead tissues [13].

However, some non-invasive trophozoites remain in the lumen of the large intestine and multiply by binary fission. These trophozoites feed on the host’s nutrients from the surrounding medium. Some of the trophozoites from the cells of the mucosa and submucosa after repeated binary fission move back into the lumen of the intestine. When the conditions become unfavorable for the trophozoites in the lumen of the large intestine, they start to develop a cyst wall. A pre-cyst is first formed, which soon becomes a uninucleated immature cyst. The nucleus within the cyst divides first to create a binucleate cyst. The nucleus divides again for the second time to form a quadrinucleate/tetranucleate mature cyst (infective stage). The transformation of trophozoite into a mature quadrinucleate cyst is called encystations and is a means of protection of a species from extinction [14],[15].

Encystation does not occur in man's tissues, neither in the intestinal mucosa nor in the liver, lungs, etc. Thus, the metastatic invasion of the trophozoite for all biological purposes is a dead-end for the parasite. Encystation takes only a few hours, and the mature quadrinucleate cyst can remain viable in the lumen of the large intestine for only two days. Mature quadrinucleate cysts are passed out along with the feces of the host. About 45 million cysts may be voided out from one infective person in a day. The cysts are resistant to environmental conditions and can live for a few weeks to a few months depending on the temperature (thermal death occurs at 50°C). Moisture is essential for the long existence of the cyst. They can live up to 10 days in a moist stool. The human feces also expel trophozoites, but they cannot survive outside the host's body for more than one hour, and another human ingests even them before one hour they are killed in the host's body by acid juice in the host stomach [16],[17].

Pathogenesis

The infection due to *E. histolytica* typically occurs with the injection of mature, quadrinucleated cysts found in physically contaminated food or water. Excystation begins at the small intestine by releasing motile trophozoites, then migrating to the large intestine. Through binary fission, the trophozoites form a new cyst. Both the stages are found in feces, but only cysts can cause disease due to the protection conferred by their wall [18]. The trophozoites can adhere to the colonic epithelium, lyse it, and subsequently spread through the portal vein system to distant sites such as the liver, brain, lung, and peritoneum [19],[20].

This adherence is through the Gal/GalNAc lectin, which targets galactose and L-acetyl-D-galactosamine residues found on mucins’ O-linked sugar side chain. Mammals that do not have N-acetyl-D-galactosamine or N-terminal galactose are resistant to the adherence, providing some degree of immunization against the disease. Specific enzymes have been found to increase the risk factor for invasive disease [21],[19]. Glycosidases enzyme like sialidase, N-acetylglucosaminidase, N-acetylgalactosaminidase are needed to remove the branched polysaccharides from the mucin cells and causes the trophozoites to degrade the protective mucus layer and
subsequently to penetrate the colonic epithelium increasing the risk of transfer to distant sites. The production of mucosal immunoglobulin, mostly IgA, plays a significant role in the host gut immune system by preventing pathogens from adhering and entering the mucosal barrier. Mucosal anti-Gal/GalNAc lectin IgA plays a critical role in resistance against pathogen colonization and invasion. Pathogenesis of *E. histolytica* is representing fig.2 [19].

Other Effects of Entamoeba Histolytica

Dephosphorylation: *E. histolytica* alters host cell tyrosine phosphorylation by dephosphorylating it, and host phosphatases appear to be responsible for it. This mechanism is responsible for killing because pre-treatment of the host cell with a protein tyrosine phosphatase inhibitor prevents death [22].

Calcium Influx: Intracellular calcium influx is critical for target cell killing because it is found that the treatment of inhibitors and chelators of calcium blocks the cytotoxicity. After parasitic contact, intracellular calcium in the host cell increases tremendously and causes death. Pretreatment with a calcium channel blocker prevents killing. Calcium-regulated transcription factor, URE3-BP, modulates expression of known virulence factors, and URE3-BP mutant that binds DNA results in enhanced parasite invasion in vivo [23].

Apoptosis: Caspase-3 dependent apoptosis is the principal mechanism both in vivo and in vitro. Caspase-3, activated in the host cell in a contact-dependent manner, that killing is blocked by the caspase-3 inhibitor AC-DEVD-CHO. *E. histolytica* induces apoptosis in SW-480 cells [24].

Formation of amoebapores: Cause cytolysis of infected cells. These are pore-forming proteins having sequence similar to the mammalian membrane permeabilizing proteins NK-lysin and granulysin [25],[26].

![Fig.2. Pathogenesis of Entamoeba histolytica](image)

Clinical Manifestation

Mostly clinical manifestations are insidious and intermittent, occurs with abdominal discomfort, bloating, irregular bowel habit, cramping, bloody stool, fever, abdominal tenderness, intermittent dysentery with or without blood/mucous., appetite disturbance, weight loss, breathlessness occur. In case of complication, there may be toxic megacolon, liver abscess, ameboma, perianal rectal pistulas, amebic dysentery, and rupture of hepatic abscess. The
The fatality rate for amebic dysentery is 2%, and overall complication is 3-4%. The extraintestinal form of manifestation is primarily of hepatic involvement. The extraintestinal indication involves pain in the right lower chest related to respiration, fever, breathlessness, cough, and appetite disturbance [27],[28].

Diagnosis

Diagnosis is mainly confirmed by detecting *E. histolytica* antigen or DNA in stool or antibodies against the parasite in serum. Fresh liquid stools have to show hematophagous trophozoites with Charcoal-Leydon crystals in characteristics [29]. Cyst of *E. dispar* is non-invasive and harmless but ten times common than *E. histolytica*, so three consecutive days test is advocated. Ultrasound scan of the abdomen helps in the delineation of hepatic abscesses. X-ray of the chest helps detect whether the infection is spread to the pleura, lung, or pericardium. X-ray of abdomen detects peritonitis and toxic megacolon. X-ray, Computer tomography/magnetic resonance imaging help diagnose intracranial spread. For antibody detection IHA (indirect hemagglutination assay) ELISA and confirmatory PCR can also occur. PCR in advance centers is confirmatory [30],[31].

Treatment

Two drug categories, luminal amebicides and tissue amebicides have been used to treat amoebiasis (Table 2). Luminal amebicides drugs are iodoquinol, and diloxanide furoate. Tissue amebicides drugs are metronidazole, tinidazole, chloroquine, emetine, and dehydroemetine. Symptomatic patients required electrolytes with metronidazole and iodoquinol [32]. Chloroquine is mostly useful for amoebic liver abscesses. For extra intestinal combined therapy, mostly metronidazole, dehydroemetine, and chloroquine have been given [33]. Surgery is sometimes required to treat massive gastrointestinal bleeding, toxic megacolon, liver abscess [34]. In the case of home remedies, we must increase fluid intake, coconut water, garlic, apple cider vinegar, cloves, also used for the amebiasis. A home remedy of a combination of 1-2 tablespoons of raw apple cider vinegar to a glass of warm water can be an effective solution. Also, mixing raw honey with lemon juice in warm water and drinking it twice a day can fight against infection and maintain good health [35].

Nature of amoebiasis	Used drug	Dosing (Adult)	References
Asymptomatic	Paromomycin	25 to 35 mg PO	36
	Iodoquinol	650 mg PO	37
	Diloxanide furonate	500 mg PO	38
Intestinal disease	Metronidazole	500 to 750 mg PO	40
	Tinidazole	2g PO	41
Liver abscess or severe intestinal disease	Metronidazole	750 mg PO	42
	Tinidazole	2g PO	43
Prevention

Public education about personal hygiene and sanitary disposal of feces is essential. Testing of drinking water resources is necessary. Advice infected individuals to avoid food preparation. Educate about the risk of sexual practices that permit fecal-oral contact. Advice infected people not to use the public swimming pools; contaminated water can be a source [36]-[44].

Conclusion

E. histolytica continues to be a threat to human health in many developing countries, mainly found in children. Since amoebiasis is a communicable disease so emigration from endemic area is one of the major factors which continues incidence and prevalence of amoebiasis. The asymptomatic cases are challenging to be diagnosed by clinicians, which leads to continuous spread of disease. Surprisingly, we could be able to know very little about the immune response underlying invasive amoebiasis. More evidence should be gathered to elucidate pathogenesis of *E. histolytica*, and the immune response working on it, so that more potential target proteins can be investigated for the development of vaccine. Asymptomatic patients can be able to mount partial immunity against intestinal infection can be a key for developing successful vaccine. A combination of target protein (galectin—which prevent adhesion of pathogen) and adjunct protein that harnesses both humoral and cell mediated immune response can facilitate development of successful vaccine. More research should be done on how immune response exactly works against the invasion of pathogen.

Abbreviations

URE3-BP = Upstream regulatory element 3-binding protein

DNA = Deoxyriboneucleic acid

ELISA = Enzyme-linked Immunosorbent Assay

PCR = Polymerase chain reaction

Declarations

Source of Funding

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing Interests Statement

The authors declare no competing financial, professional and personal interests.

Consent for publication

Authors declare that they consented for the publication of this research work.

Copyright and Permission Statement

We confirm that the materials included in this paper do not violate copyright laws. Where relevant, appropriate permissions have been obtained from the original copyright holder(s). All original sources have been appropriately acknowledged and/or referenced.
Acknowledgement

The authors are grateful for the e-resources provided by Tripura University (A Central University).

References

[1] Haque R, Huston CD, Hughes M, Houpt E., Petri Jr WA, 2003. Amebiasis. N Engl J Med. 348, 1565-1573.
[2] Verweij JJ, Laeijendecker D, Brienen EA, van Lieshout L, Polderman AM, 2003. Detection and identification of Entamoeba species in stool samples by a reverse line hybridization assay. J Clin Microbiol. 41, 5041-5045.
[3] Fotedar R, Stark D, Beebe N, Marriott D, Ellis J, Harkness J, 2007. Laboratory diagnostic techniques for Entamoeba species. Clin Microbiol Rev. 20, 511-532.
[4] Nowak P, Mastalska K, Loster J, 2015. Entamoeba histolytica-pathogenic protozoan of the large intestine in humans. J Microb Biochem Technol. 1, 010-017.
[5] Reeves RE, 1985. Metabolism of Entamoeba histolytica schaudinn. Adv Parasitol. 23, 105-142.
[6] Nakada-Tsukui K, Nozaki T, 2016. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica. Front Immunol. 7, 175, DOI: 10.3389/fimmu.2016.00175.
[7] Vicente JB, Ehrenkaufer GM, Saraiva LM, Teixeira M, Singh U, 2009. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol. 11, 51-69.
[8] WHO, 2015. WHO estimates of the global burden of foodborne diseases.
[9] Uribe E, Rosales C, 2020. Immune response to the enteric parasite Entamoeba histolytica. Physiol. 35, 244-260.
[10] Rodriguez-Morales AJ, 2012. Current topics in tropical medicine. IntechOpen, pp. 201-226.
[11] Ali IKM, Haque R, Siddique A, Kabir M, Sherman NE, Gray SA, Cangelosi GA, Petri Jr WA, 2012. Proteomic analysis of the cyst stage of Entamoeba histolytica. PLoS Negl Trop Dis. 6, e1643.
[12] Mi-Ichi F, Ishikawa T, Tam VK, Deloer S, Hamano S, Hamada T, Yoshida H, 2009. Characterization of Entamoeba histolytica adenosine 5’-phosphosulfate (APS) kinase; validation as a target and provision of leads for the development of new drugs against amoebiasis. PLoS Negl Trop Dis. 13, e0007633.
[13] Luna-Nacar M, Navarrete-Perea J, Moguel B, Bobes RJ, Laclette JP, Carrero JC, 2016. Proteomic study of Entamoeba histolytica trophozoites, cysts, and cyst-like structures. PLoS One. 11, e0156018.
[14] Stanley Jr SL, 2005. The Entamoeba histolytica genome: something old, something new, something borrowed and sex too?. Trends Parasitol. 21, 451-453.
[15] Assafa D, Kibru E, Nagesh S, Gebresellassie S, Deribe F, Ali J, 2006. Medical parasitology, 1-138.
[16] Begum S, Gorman H, Chadha A, Chadee K., 2021. Entamoeba histolytica. Trends in Parasitology. 37, 676-677.
[17] Mi-Ichi F, Yoshida H, Hamano S, 2016. Entamoeba encystation: new targets to prevent the transmission of amebiasis. PLoS Pathog. 12, e1005845.
[18] Uribe-Querol E, Rosales C, 2020. Immune response to the enteric parasite Entamoeba histolytica. Physiol. 35, 244-260.

[19] Kantor M, Abrantes A, Estevez A, Schiller A, Torrent J, Gascon J, Hernandez R, Ochner C, 2018. Entamoeba histolytica: updates in clinical manifestation, pathogenesis, and vaccine development. Can J Gastroenterol Hepatol. Article ID 4601420, DOI: https://doi.org/10.1155/2018/4601420.

[20] Stanley Jr SL, 2003. Amoebiasis. Lancet. 361, 1025-1034.

[21] Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, 2009. Essentials of Glycobiology. 2nd ed., Cold Spring Harbor Laboratory Press.

[22] Teixeira JE, Mann BJ, 2002. Entamoeba histolytica-induced dephosphorylation in host cells. Infect. Immun. 70, 1816-1823.

[23] Docampo R, Ralston KS, Petri WA, 2011. The ways of a killer: how does Entamoeba histolytica elicit host cell death?. Essays Biochem. 51, 193-210.

[24] Huston CD, Houpt ER, Mann BJ, Hahn CS, Petri Jr WA, 2000. Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cell Microbiol. 2, 617-625.

[25] Bruhn H, Riekens B, Berninghausen O, Leippe M, 2003. Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem J. 375, 737-744.

[26] Leippe M, Herbst R, 2004. Ancient Weapons for Attack and Defense: the Pore-forming Polypeptides of Pathogenic Enteric and Free-living Amoeboid Protozoa 1. J Eukaryot Microbiol. 51, 516-521.

[27] Sweetser S, 2012. Evaluating the patient with diarrhea: a case-based approach. Mayo Clin Proc. 87, 596-602.

[28] Larsen CM, Nakamura KM, Bhagra A, 2012. 34-year-old woman with abdominal pain and blood-streaked diarrhea. Mayo Clin Proc. 87, 905-908.

[29] Tanyuksel M, Petri Jr WA, 2003. Laboratory diagnosis of amebiasis. Clin Microbiol Rev. 16, 713-729.

[30] Marenga G, Traficante S, Ragonici S, Vincenzi C, Rocchetti M, De Rito G, Fonsi GB, Messineo D, 2019. Successful diagnosis of a longstanding Giant amoebic liver abscess using contrast-enhanced ultrasonography (CEUS): a case report in a Western country. Am J Med Case Rep. 20, 493.

[31] Kaushal-Deep SM, Anees A, Khan S, Khan MA, Lodhi M, 2018. Primary cecal pathologies presenting as acute abdomen and critical appraisal of their current management strategies in emergency settings with review of literature. Int J Crit Illn Inj Sci. 8, 90-99.

[32] Li J, Cui Z, Li X, Zhang L, 2021. Review of zoonotic amebiasis: Epidemiology, clinical signs, diagnosis, treatment, prevention and control. Res Vet Sci. 136, 174-181.

[33] Gonzales MLM, Dans LF, Sio-Aguilar J, 2019. Antiamoebic drugs for treating amoebic colitis. Cochrane Database Syst Rev. DOI: 10.1002/14651858.CD006085.pub3.
[34] Desai J., Elnaggar M., Hanfy A.A., Doshi R., 2020. Toxic megacolon: background, pathophysiology, management challenges and solutions. Clin Exp Gastroenterol. 13, 203-210.

[35] Home Remedies for Loose Motion: Simple and Effective Ways to Get Rid of This Problem. Available at: https://www.india.com/photos/health/home-remedies-for-loose-motion-simple-and-effective-ways-to-get-rid-of-this-problem-183159/loose-motion-183166/ (Accessed 22 June 2021).

[36] Kikuchi T, Koga M, Shimizu S, Miura T, Maruyama H, Kimura M, 2013. Efficacy and safety of paromomycin for treating amebiasis in Japan. Parasitol Int 62, 497-501.

[37] Becker S, Hoffman P, Houpt ER, 2011. Efficacy of antiamoebic drugs in a mouse model. Am J Trop Med Hyg. 84, 581-586.

[38] Tasanor O., Brem B., Leitsch D., Binder M., Duchêne M., Greger H., Wernsdorfer W.H., 2007. Development of a pharmacodynamic screening model with Entamoeba histolytica. Wien Klin Wochenschr. 119, 88-95.

[39] Guz L, Szczepaniak K, 2009. Intestinal amoebiasis in Heckel discus Symphysodon discus-A case report. Bull Eur Assoc Fish Pathol. 29, 28-33.

[40] Bernstein LH, Frank MS, Brandt LJ, Boley SJ, 1980. Healing of perineal Crohn's disease with metronidazole. Gastroenterology. 79, 357-365.

[41] Sawyer PR, Brogden RN, Pinder RM, Speight TM, Avery GS, 1976. Tinidazole: a review of its antiprotozoal activity and therapeutic efficacy. Drugs. 11, 423-440.

[42] Powell SJ, MacLeod I, Wilmot AJ, Elsdon-Dew R, 1966. Metronidazole in amoebic dysentery and amoebic liver abscess. Lancet. 1329-1331.

[43] Pandey S, Gupta GK, Wanjari SJ, Nijhawan S, 2018. Comparative study of tinidazole versus metronidazole in treatment of amebic liver abscess: A randomized control trial. Indian J Gastroenterol. 37, 196-201.

[44] Davis A, Pawlowski ZS, 1985. Amoebiasis and its control. Bulletin of the World Health Organization. 63, 417-426.