Checklist on question design for mathematical literacy

Kemal ÖZGEN

Dicle University, Ziya Gokalp Faculty of Education, Diyarbakır/Turkey

Abstract

The aim of the first stage of the research was to examine the opinions of prospective mathematics teachers about what features a question prepared to develop and measure ML should have to be effective and qualified. Moreover, it was aimed to determine the degree to which prospective teachers apply these qualifications in questions they design to develop and measure ML. The aim of the second stage of the research was to develop a valid and reliable checklist that can be used in the design of the question to develop and measure ML and to show this tool with an application. The research was conducted as a case study model. The study group consisted of 20 prospective mathematics teachers and five mathematics teachers who took ML courses. Interview forms were applied in order to collect data from the teachers and teacher candidates who took the ML course. Content analysis was used in the analysis of the prospective mathematics teachers’ opinions about the qualifications of ML question. In the analysis of the data obtained, content, context, process, level and structure categories were formed for effective and qualified ML question. The checklist was decided to be in five categories and a total of 28 items and three options depending on them. It can be said that the checklist for the ML question design, which was developed and piloted in this study, is a valid and reliable measurement tool. Mathematics teachers and related researchers can use the developed checklist as a guide and guiding tool in designing ML questions.

Keywords: Checklist, Mathematical literacy, Prospective teacher, Question design.

Article Type: Research paper

Matematik okuryazarlığına yönelik soru tasarımında kontrol listesi

Öz

Bu araştırmanın birinci aşamasının amacı, matematik öğretmen adaylarının MOY’yi geliştirmeye ve ölçmeye yönelik hazırlanmış bir sorunun etkili ve nitelikli olması için hangi özelliklere sahip olması gerektiğiine yönelik görüşlerini incelermektir. Ayrıca öğretmen adaylarının MOY’yi geliştirmeye ve ölçmeye yönelik hazırlanmış sorularda bu özellikleri ne derece uyguladıklarını belirlemektir. Araştırmanın ikinci aşamasının amacı ise, MOY’yi geliştirmeye ve ölçmeye yönelik soru tasarımında kullanılabilircek geçerli ve güvenilir bir kontrol listesi geliştirmek ve bu aracını bir uygulama ile göstermektir. Araştırma önlü durum çalışması modeli ile yürütülmüştür. Bu araştırmanın çalışma grubunun, MOY dersi alınmış 20 matematik öğretmeni adayı ve beş matematik öğretmeni oluşturmaktadır. MOY dersini alınmış öğretmen ve öğretmen adayları olan katılımcılardan veri toplamak amacıyla elde edilen verilerin analizi, etkili ve nitelikli bir MOY sorusu için içerik, bağlam, süreç, düzeye ve yapı kategorileri oluşturulmuştur. Kontrol listesinin beş kategori ve bunlara bağlı toplam 28 madde ve üç seçenekli bir yapıda olmasına karar verilmiştir. Bu çalışmada geliştirilen ve pilot çalışması yapılan MOY soru tasarımına yönelik kontrol listesinin geçerli ve güvenilir bir ölçme aracı olup olduğu söylenebilir. Matematik öğretmenleri ve ilgili araştırmacılar geliştirilen kontrol listesini MOY soru tasarımında bir referat ve yönlendirici araç olarak kullanabilirler.
Introduction

Among the main objectives of the educational processes of individuals, the most general and comprehensive quality can be said to be literacy. In recent years, the concept of literacy appears to have an up-to-date approach with the changes in the traditional meaning. Basic reading, writing and calculating skills in the traditional approach of literacy have left their place in the current approach to more multiple and complex skills and capabilities (Özgen & Kutluca, 2013). For example, the concept of literacy in the Program for International Student Assessment (PISA) conducted by the Organization for Economic Co-operation and Development (OECD); students’ ability to describe, interpret, and solve the problems they face in the basic subject areas, to use their knowledge and skills, to analyze, to make logical inferences and to communicate effectively (Ministry of National Education [MoNE], 2016, p.1). In this context, it is understood that the concepts of literacy (science, mathematics, technology, finance literacy, etc.) which are intensely related to the discipline of education in recent years are investigated and discussed. One of the discipline-specific literacy types, as mathematics literacy (ML), has become more popular and discussed with the PISA and Trends in International Mathematics and Science Study (TIMSS) studies.

ML contains many concepts of mathematics education (Stacey, 2010), so it can be said that ML is an important framework in terms of learning-teaching processes. It is possible to say that the basic objectives of the mathematics education given in schools are directly related with ML and their reflections are included in the curricula (MoNE, 2018) and school mathematics standards (National Council of Teachers of Mathematics [NCTM], 2000). In other words, the task of schools is to create learning environments and opportunities for students to grow as a mathematics literate person (OECD, 2013). It can be said that there are factors such as education program, teacher, and student in achieving these educational goals for ML. One of the important factors among these is the teacher. Because, mathematics teachers need to be able to implement many pedagogical practices to improve students’ ML skills or competencies (Machaba, 2018). It is expected that the knowledge, skills and experiences of mathematics teachers and especially prospective mathematics teachers regarding ML are developed and at desired levels. In the study conducted by Genç and Erbaş (2020), the views of secondary school mathematics teachers about the obstacles to the development of ML were examined. In the related study, teachers’ views about the obstacles to ML development were categorized as follows: (i) conceptual challenges (what is ML?); (ii) educational challenges (how can we develop ML?); and (iii) systemic challenges (where is ML located?). For this purpose, it is considered important to examine the teachers’ approaches towards an effective problem to develop or measure the ML.

In recent years, there has been increasing interest and curiosity about ML in mathematics education. It is seen that questions similar to PISA questions are developed and applied in high school and university entrance exams in our country. It can be said that features such as connection with real world, having a contextual structure and focusing on mathematical process skills such as problem solving, reasoning, and connection are observed in the mentioned questions. In this respect, the design and implementation of ML questions similar to the PISA questions are attracted by many educators, teachers, policy makers and book authors. Especially in recent years, how should ML question design and the questions to be used for ML are investigated in related literature.

Theoretical Framework

The key concept for PISA studies is literacy skills in reading, science and mathematics. Accordingly, in PISA, students’ application of knowledge and skills learned at school to real-life difficulties is examined (Stacey, 2010). PISA forms the concept of measurement and evaluation in the field of mathematics around the concept of ML and builds on this concept.

The importance of the ML concept comes from the fact that one is not only gaining basic knowledge and skills, but also aims at thinking about mathematics, problem solving, positive attitude towards mathematics and appreciation of the importance of mathematics in real life (Özgen & Bindak, 2008). McCrone and Dossey (2007) summarized ML as the capacity to understand the role of mathematics in
daily life and to use mathematics in solving problems encountered in daily life. ML is the use of mathematical knowledge to deal with and guide our lives (Evans, 2017). ML focuses on the ability of students to analyze, validate, communicate, formulate, solve and interpret problems given in different shapes and situations (Lailiyah, 2017). Although ML is intended to emphasize mathematical skills and understanding that can be used in future life, intention is not only to refer to simple mathematics involved in simple activities such as shopping. It also includes preparation for using mathematics in the highest technical professions (Stacey, 2011).

There are some approaches to what skills and competences should be in an individual with mathematical literacy. For example; Kilpatric (2001) stated that mathematical ability was included conceptual understanding, operational fluency, strategic capabilities, adaptive reasoning and producer disposition. NCTM (2000) has demonstrated the importance of ML in standards published for school mathematics. Goos (2007) in the ML model; in a given case (context), the necessary knowledge and techniques (mathematical knowledge), self-confidence and willingness to use this information (temperament-disposition), to evaluate their results or information (critical orientation) and at the same time a person representations, physical and need to use a wide range of digital tools (as cited in Bennison, 2015, pp. 4-5). Processes such as representation, manipulation, reasoning and problem solving are stated as important processes in doing mathematics in Pugalee’s (1999) ML model. In addition, the model includes elements that facilitate doing mathematics such as communication, technology, and values.

The mathematical process, content and context elements within the scope of the ML in PISA studies are considered within the framework of measurement and evaluation (OECD, 2013). Within the scope of PISA 2012 ML, three mathematical processes are mentioned: (1) formulating mathematical concepts, (2) employing mathematical concept, phenomenon, process and reasoning, (3) interpreting, applying and evaluating mathematical outputs (OECD, 2013, pp.28-30). In PISA 2012, there are four subject areas or chapters that make up the mathematical content of ML (OECD, 2013, pp.33-35): Change - relationship, space - shape, quantity and uncertainty - data. In addition, the situations in which mathematics are used in the measurement of ML in the PISA study, that is, the context of the questions, are discussed. Personal, professional, social and scientific contexts are contexts considered under PISA ML (OECD, 2013). In the PISA 2012 mathematics test, three types of items were used for paper-pencil testing. These are; (i) open-ended or unstructured item; (ii) structured item; and (iii) multiple-choice item. In mathematics and science, test items are grouped into units that begin by defining the real-world situation or problem. This will include information in text, pictures, graphics or tables. Then a few items are related to this situation (Stacey, 2010).

The low level of success of students in ML may be affected by many factors, especially students, programs and teachers. Among these factors, the teacher is important in terms of both the person who implemented the program and the factor that can be taken easily (Altun & Akkaya, 2014). Bennison’s (2015) model suggests that teachers develop the ML in the following domains and features: 1) knowledge (mathematical content knowledge (MCK), pedagogical content knowledge (PCK), curriculum knowledge (CK)); 2) affective (personal conception of numeracy, attitude towards mathematics, perceived preparation to embed numeracy); 3) social (school communities, professional communities); 4) life history (past experiences of mathematics, pre-service program, initial teaching experiences) and 5) context (school policies, resources). Del Prado Hill, Friedland and McMillen (2016) presented 2 creative tools such as 1.) the ML planning framework and 2.) ML implementation checklist in their studies.

With the researches in the related literature, the opinions of the prospective mathematics teachers and mathematics teachers about what is ML, its definition, importance, development and teaching approaches have been put forward (Genç & Erbaş, 2017, Lestari, Juniati, & Suwarsono, 2017; Machaba, 2018; Özgen & Kutluca, 2013; Pilten, Divrik, Pilten, & Ebret, 2016, Şefik & Dost, 2016). In addition, the ML-oriented teaching program was examined in the studies and the reasons of low success in the ML
were investigated (Altun & Akkaya, 2014). However, it is observed that the studies on how to use the questions about the development or measurement of ML are limited.

In the related studies carried out, the questions and activity development processes related to ML were examined by various researchers (Julie, Sanjaya, & Anggoro, 2017; Kamaliyah, Zulkardi & Darmawijoyo, 2013; Kohar, Zulkardi, & Darmawijoyo, 2014; Malasari, Herman & Jupri, 2017; Novita & Putra, 2016; Novita, Zulkardi & Hartono, 2012; Oktiningrum, Zulkardi & Hartono, 2016; Somakim, Suharman, Madang, & Taufig, 2016). However, in most of the studies, question and activity development was done by the researchers, not by the teachers or prospective teachers. In this context, it was considered that it is important to test the opinions, knowledge and skills of teachers or prospective teachers within the scope of ML.

Because, it was determined that students (Güler, 2013; Setiawati, Herman, & Jupri, 2017), teachers or prospective teachers (Gürbüz, 2014; Kabael & Barak, 2016; Ozgen, 2019; Saenz, 2009) had difficulties with ML in the related literature. In addition, the study conducted by Altun and Bozkurt (2017) tried to explain the difficulties that Turkish students experienced while solving ML questions by means of the factors arising from the structural characteristics of the questions posed.

In the literature, it was determined that various opinions and skills of teachers and prospective teachers within the scope of ML were examined. However, it can be understood that there is a limited number of studies conducted with teacher or prospective teachers about how an effective and qualified questions to develop or measure ML. In this respect, it is considered that it is important to show how prospective teachers who received ML training in undergraduate education have knowledge, skills and approaches towards effective and qualified questions about ML. Because it is expected that teachers who are important factors in the development of ML levels of learners, will have sufficient theoretical knowledge and question development skills for ML questions.

Purpose of the Research

In PISA studies, concepts such as content, process, context and level are seen within the scope of measuring ML. (OECD, 2013). The ML questions used in the PISA studies go through a variety of scientific processes and are finalized by the examination of various experts and pilot applications in the field. (Tout & Spithill, 2015). The PISA test development process consists of one cycle in the following stages: the beginning (definition, preparation), training of item writers, writing of draft items by teams, review process: panels, cognitive laboratories / pilot studies, items revised, translation-review, decision of the final item, psychometric analysis, item selection, final decision - final items (Tout & Spithill, 2015, p.149).

In the PISA study, it is seen that ML question design has passed through many stages and participated by many experts. It is not possible for teachers to perform these item development processes on their own. However, it is seen that there is a need for teachers who are responsible for developing and measuring their MLs to design and implement effective ML questions in their classes. Because, it is very difficult for teachers to carry out a large-scale question design in PISA studies. In addition, the appropriateness of the questions given in the textbooks to the ML and the suitability to the students are seen as separate problems. For these reasons, a more feasible and effective approach is needed to enable teachers to have knowledge, skills and experiences in the design of questions about ML.

In some studies, questions similar to ML questions in PISA were developed and implemented. (Demir & Altun, 2018; Gürbüz, 2014; Julie et al., 2017; Kamaliyah et al., 2013; Kohar et al., 2014; Malasari et al., 2017; Novita & Putra, 2016; Novita et al., 2012; Oktiningrum et al., 2016; Ozgen, 2019; Somakim et al., 2016). In the studies, ML questions and activities were tried to be developed with methods such as taking expert opinion, pilot study and survey method. However, it is determined that there is no measurement tool to determine the quality and effectiveness of ML questions developed in these studies. However, based on the results of the studies, it was seen that mathematics educators need a guide to design the ML question. In other words, it can be said that there is a need for a tool to measure the effectiveness and appropriateness of the ML questions that can be used by educators, teachers or book, test and resource designers. A checklist that can be used in the design of the question to develop
and measure the ML is intended to guide the mathematics educators. It is thought that it will contribute to the development of effective and qualified ML questions.

The first aim of this study is to examine the opinions of prospective mathematics teachers about what features a question prepared to develop and measure ML should have to be effective and qualified. Moreover, it is aimed to determine the degree to which prospective mathematics teachers apply these qualifications in the questions they prepare to measure and evaluate ML. For this purpose, answers to the following questions were sought.

- What are the opinions of prospective teachers about the question design for developing and measuring the ML?
- What are the skills of prospective teachers to design question for developing and measuring the ML?

The aim of the second stage of the research is to develop a valid and reliable checklist that can be used in the design of the question to develop and measure the ML and to show this tool with an application.

Method

Research Design

This research is structured in two stages. The first phase of the research was conducted with case study model. In case studies, the aim is to reveal a valuable and in-depth understanding - that is, an understandable evaluation of the situations - based on learning something new about the behavior and its meaning in the real environment (Yin, 2017). The aim of this study is to examine the opinions of prospective mathematics teachers about characteristics of effective and qualified questions for the question design of ML. In the study, prospective mathematics teachers were asked for their opinions about the effective ML questions after examining the ML course given. They were also asked to design a ML question in order to examine the extent to which they reflect the designation of the ML question. In the second phase of the study, checklist design was made as a continuation of the first phase. The design stages of the checklist developed for use in the ML question design are determined as follows: reviewing the relevant literature, obtaining expert opinion, obtaining opinions from prospective teachers, draft form, taking opinions from experts and teachers, forming a final form and a sample application.

Participants

The first stage of this research was carried out during the "Mathematical Literacy" course, which is an elective course in the second year and fall semester of a state university mathematics education undergraduate program. The participants of this research consisted of a total of 20 prospective mathematics teachers, 11 women and 9 men, who attended the ML course in undergraduate education. Taking the mathematical literacy course with criterion sampling, one of the purposeful sampling methods, was determined as the criteria for the formation of the participants of the study. In this respect, it was determined that participants had taken ML course as a criterion. In the study, prospective mathematics teachers gave their opinions individually on the question of ML after the lesson, and in line with these opinions, the participants were asked to develop a question.

In the second phase of the study, five mathematics teachers, two women and three men, who took ML education in graduate education participated. In order to form the participants of the study, purposive sampling method was adopted and ML course was determined as a criterion. In addition, two experts in the field of mathematics education were asked for their opinions. Special attention was paid to the fact that the experts are experienced in mathematical literacy and activity development, that is, they are individuals with scientific research. It was stated that the participation of the participants in the research is not compulsory and is voluntary.
Data Collection Tools

In the process of ML course, theoretical basis related to ML was given and various activities were carried out. In this direction, a structured interview form consisting of a total of four questions was created in order to determine the opinions of teacher candidates in the question design for measuring mathematical literacy. With this form, we questioned the characteristics of an effective and qualified ML question.

What are the features to be effective and qualified for a problem designed to develop and measure mathematics literacy? How to write the question of mathematical literacy? Explain extensively and explain concrete mathematical examples.

With this question in the interview form, prospective teachers were asked to state the characteristics of the ML question they should have and why they should have these features and to explain them with concrete mathematical examples in detail. In addition, prospective mathematics teachers were asked to design a ML question as well as their opinions on ML questions.

Develop and solve a math problem that can measure mathematical literacy by considering the characteristics of an effective and qualified problem. Explain the reasons for which the developed problem includes the features to be effective and qualified? Explain the problem in terms of the measurement criteria in PISA.

In the first stage of this study, data collection tool consisted of the opinions of prospective mathematics teachers about the question design of ML and the questions they designed as examples to the ML question. The prospective teachers were asked to develop the sample ML question individually. In the example of ML question designed by prospective teachers, there was no limitation in terms of any mathematical content, context and process. In this respect, they were asked to design a ML question to measure mathematical literacy.

In the second phase of the study, the opinions of the mathematics teachers on the draft form of the checklist developed for use in the ML question design were collected. An interview form was prepared to determine the views on the draft form of the checklist. In this form, each of the items in the draft form was asked to give an opinion on the eligibility (appropriate, partially appropriate, not appropriate) and to give their reasons and comprehensive explanations. A total of three questions and a checklist were applied to five mathematics teachers together after the final checklist developed for use in ML question design. One of the ML questions was the question in the PISA 2012 study (Revolving Door) and two of them (Race Track, Tea) were the questions included in the mathematics practice textbooks. The teachers were asked to examine three ML questions and to evaluate these questions in terms of the items in the checklist.

Data Collection

This research was carried out with prospective teachers within the scope of ML course in mathematics education undergraduate program. During the mathematical literacy lesson, the application was carried out by the researcher in the classroom environment and in a three-hour period per week for a period of 14 weeks. The data collection phase for the research was carried out in the last two weeks at the end of the term. In order to find an answer to the problem of the research, the participants were asked to provide their opinions individually and to design questions for ML.

In the course of ML, firstly, theoretical information about ML was presented. Theoretical information was given within the framework of PISA regarding the issues such as definition of ML, its components, process, context, content, level. Class discussions were generally made over the theoretical information about ML. In particular, the theoretical structure of the PISA study and the related measurement framework were examined. After that, various activities in-class and external were carried out by prospective teachers individually or in groups. In the PISA study in the past years, the questions used to measure ML were shown by the researcher and the prospective teachers asked them to design a variety
of ML questions. Within the scope of ML course; mathematics literacy definition, components, content, context, process components, importance, measurement, the relationship between other types of literacy and their reflections on mathematics curriculum. During the course, instructional applications for ML question design in the style of homework and application were made with the participants in and outside the classroom.

Data Analysis

The data obtained from prospective mathematics teachers were analyzed with content analysis technique. The purpose of content analysis is to first conceptualize the data obtained in the research and then to organize the concepts in a logical way, and from this to determine the themes that explain the data (Yıldırım & Şimşek, 2005). The opinions of prospective mathematics teachers about the characteristics of questions related to ML were examined by qualitative analysis. Content analysis technique was used in the analysis of prospective teachers’ views about the qualities of ML question. The aim of the analysis of the data obtained from the opinions of the prospective mathematics teachers about the ML question is to bring together similar data under certain concepts and themes and to interpret and interpret them with a systematic approach. In the content analysis of the data obtained from the views of the participants, operations were carried out such as coding of data, finding categories / themes, arranging codes and categories and identifying and interpreting the findings (Yıldırım & Şimşek, 2005). The participants’ views on the ML question were coded by adopting the coding approach in a general framework. According to this coding approach, a general conceptual structure is created and coded before data analysis. However, new codes may occur when coding (Yıldırım & Şimşek, 2005).

In the data analysis of the research, the theoretical foundations of PISA study were adopted as a framework. In the data analysis, mathematical content, context, process and level categories related to ML were taken as ready categories in PISA study (OECD, 2013). In addition, the category of structure that emerged as a result of the analysis of the data outside these categories was determined.

The frequency and percentage of descriptive statistics were used in the analysis of the opinions about ML. Expressions of prospective teachers about the identified categories and codes were directly quoted from the opinions. In addition, direct quotations from the ML questions that prospective mathematics teachers had designed in line with their opinions about the ML question were shown. In the research, direct quotations from ML questions designed by prospective teachers were given and explanatory comments were presented in order to understand the categories that emerged regarding the qualities that ML question should have. The names of prospective mathematics teachers are coded like S1, S2 ... and the mathematics teachers are given codes like T1, T2... and their real names are hidden. According to Creswell (2013), validity in qualitative research; some strategies, such as detailed intensive description, triangulation and external audit, can be used. In this study, it was tried to provide evidence from multiple and different sources for the validity of the data analysis (prospective teachers' opinions and question design skills). In addition, a rich and intensive description of the study was aimed to define the situation and to associate with each other. Finally, it was tried to be validated by taking expert opinion at the development stage of the checklist. In order to ensure the reliability of the study, the inter-encoder consensus (Creswell, 2003) was used to analyze the data transferred to the manuscript based on the use of multiple encoders. The views and opinions obtained from the prospective teachers about ML question were examined by the researcher at different times. A high percentage of the agreement between the encoders was achieved and the reliability of the analysis of the obtained data was tried to be ensured. As a result of the encodings made at different times from the opinions of the prospective teachers, it was determined that the percentage of coding conformity was %81.5. This percentage was seen as an acceptable percentage of the reliability of the data analysis.
Findings

Prospective Teachers’ Opinions and Skills on the Qualities of the ML Questions

According to Table 1, the most stated opinion of the prospective teachers in the content category was to present the mathematical content with a problem from daily life and to determine the type and scope of the ML question. The direct citation given below was evaluated in the category of type and scope.

Table 1.
Prospective Teachers’ Opinions on the Qualities of ML Questions.

Category	Codes	f	%
Content	Type and scope should be determined	11	55
	Should be presented with a problem from daily life	11	55
	Reflect mathematical thinking	8	40
	Different representations should be used	6	30
	Conceptual-procedural knowledge must be balanced	6	30
	It should reflect the application rather than the theory	5	25
	Should be suitable for pre-learning	4	20
Context	Type and scope should be determined	13	65
	Connected with daily life	11	55
	Conformity with content	5	25
	Connected with different disciplines	3	15
	Connected with school mathematics	3	15
Process	Reasoning-proof	15	75
	Type and scope should be determined	10	50
	Connection	9	45
	Formulation	7	35
	Problem solving	7	35
	Modeling	6	30
	Cognitive skills (analysis, synthesis, comparison)	6	30
	Mathematical language and communication	5	25
	Procedural skill	3	15
Level	Appropriate level of difficulty	9	45
	Appropriate level of complexity	8	40
	Transparent, clear and understandable	6	30
Structure	Open-ended	10	50
	Multiple choice	4	20
	True-false	4	20
	Different types of items should be included	4	20
	Interesting, intriguing, research-oriented	1	5

S16: Mathematical content should be clear (quantity, space-shape, change-relationship, uncertainty). For example, if we want to measure and improve the visual intelligence of a student in relation to mathematics, we can do this with a question that has space-shape content.

According to prospective teachers, in the design of ML question, mathematical content, i.e. the type and scope of content should be determined. In the opinions of many prospective teachers, the dimensions of mathematical content (quantity, space-shape, change-relationship, and data-uncertainty) in PISA are mentioned. However, more than half of the prospective mathematics teachers in this study expressed their views that mathematical content should be presented with a problem from daily life. In this respect, according to the prospective teachers, the question of ML was stated that it should reflect the practice rather than mathematical theory.
S6: The problem is to have more problems in daily life, the problem will be more effective and understandable.

S5: In mathematics literacy, practical applications rather than theoretical knowledge and aspects of facilitating our work in daily life are discussed.

However, according to prospective teachers, an effective ML question should reflect mathematical thinking. The prospective teachers S10 and S19 mentioned the suitability of the mathematical content to the pre-learning of the targeted students.

S10: The question should be prepared considering the level of the students.

S19: It must be appropriate to the class attainment level of the person to be asked.

Another issue to be considered in relation to mathematical content in ML design is that different representations are used in the questions. Finally, in the mathematical content category, prospective teachers mentioned that the ML question should reflect the conceptual and procedural knowledge in a balanced way.

S1: Questions with solutions using different representations.

S13: The field where mathematical literacy should be measured should not be limited. For example; whether the student's ability to process is measured, or whether it should be interpreted as graphical interpretation or how to relate a daily problem to mathematical processes should be limited.

The following is a direct quote from the ML question designed by the prospective teacher S12

Course	Time
Mathematics	13:00 – 15:00
Literature	11:50 – 13:50
Computer	12:30 – 14:00
Physics	10:15 – 12:15
Chess	09:50 – 11:50
English	10:30 – 12:00

S12: In the above table, a school's lessons and hours on Saturday are given to students. How many lessons can a student register? How many different ways can students choose the courses they want to attend?

It is presented as a problem related to daily life of ML question developed by the prospective teacher S12. In this question, it can be said that the application of mathematics rather than the rules, formulas and terms, i.e. the theory, has come to the fore. In addition, there is a problem to stimulate and reveal the students' mathematical thinking. The designed question is presented in the table in terms of different representations and allows the use of other representations for the solution.

In context category, prospective teachers' most stated opinion was related to the mathematical context related to daily life and determining the type and scope of the ML question.

S16: It must have a context (personal, professional, social, scientific).

S12: Have a certain context to connect the given problem with daily life.

S5: The situations faced in society, in professional life and in a person's life should be addressed (inflation, elections, shopping, weather).

In the research, it was seen that the participants in the research emphasized the contexts mentioned in the PISA study (personal, professional, social, scientific) in designing the ML question. Participants emphasized the nature of the context of the ML question as being more related to daily life. In addition, some of the prospective teachers in this study reported that the ML question was related to different
disciplines and school mathematics. Some of the participants stated that in the design of the ML question, the determined mathematical content and context should be compatible with each other.

S2: Mathematical literacy is the capacity of productive and questioning individuals to evaluate the problems they may face today and in the future through mathematical processes. Therefore, in order to measure mathematical literacy, questions should be asked to face the individual in daily life and push them to mathematical reasoning.

S10: The problem should be from daily life, although it is related to the mathematics learned at school.

S17: The questions prepared should be comprehensive, compatible with mathematics contents, processes and contexts.

The following is a direct quote from the ML question designed by the prospective teacher S14.

S14: Merve wants to place math, geometry, physics, chemistry, biology, history and geography books in a new shelter. She wants to make these books to be scattered as follows:

Up to 2 books will be placed in each shelf. On the third shelf, there will only be a math book. Physics and chemistry books will not be on the bottom shelves of the mathematics book. History and geography books will be on the same shelf and on top of the physics book. There will be no books next to the Turkish book. In which shelves can the geometry book be?

In the question of ML designed by the prospective teacher S14, there is a situation related to daily life. This ML question is presented as a problem related to daily life. It can be said that this ML question designed in terms of context is suitable for daily life contexts. In addition, mathematical contents such as counting, selecting and sorting are aimed at this question. The mathematical content targeted in this question is presented in an appropriate context.

The most stated opinion of the prospective teachers in process category was that they should include reasoning-proof process skills from mathematical process skills for ML question. Prospective mathematics teachers firstly stated that the type and scope of the targeted skills should be determined

S19: Should be aimed at measuring the skills (process, formulation, reasoning, reasoning, comparison, etc.) that students want to have.

It is observed that participants’ views on mathematical process skills are mostly related to the skills in the PISA study. In addition, it is understood that the opinions about the skills mentioned indirectly, even if not directly in the mentioned measurement framework. In the study, the majority of the participants emphasized the need to include reasoning-proof skills in a ML question.

S19: Question should include procedure, reasoning, comparison etc. skills.

In addition, the majority of prospective teachers expressed their views on the design of the ML in a way to reveal the mathematical connection skills of the students. Prospective mathematics teachers have an emphasis on problem solving, modeling and formulation skills to be considered in the design of ML.

S7: To be able to understand and interpret mathematics, to be able to connect to real life, that is, mathematics literacy knowledge.

S1: Questions should be focused on problem solving rather than using formulas.

Some of the participants reported that the effective use of mathematical language and communication is important in designing the ML question. Finally, in the mathematical process skills category, the prospective teachers expressed their opinions about the situations related to procedural skills in ML questions.
S18: Designed questions should include high-level cognitive processes as thinking, reasoning, critical thinking etc.

S12: It must be open-ended to measure the procedural skills.

The most stated opinion of the prospective teachers in the level category related to the question levels for the ML question; it has the form of having the appropriate level of complexity and difficulty. According to prospective teachers, the appropriate level of difficulty is understood as the rate at which the questions can be solved by the students. In addition, it can be said that prospective teachers emphasize appropriate level of complexity as the necessary strategies, solutions to be used in the solution of the questions and the number of steps to be taken in solution, and most importantly, the issues of innovation and originality in the questions.

S4: If we want to measure mathematics literacy in a question, this question should be inclusive.

S13: Knowing that each student is not at the same level in preparing the question and preparing the questions by separating them into their levels.

Moreover, prospective mathematics teachers have an emphasis on ML questions features as transparent, clear and understandable in the design of ML questions.

S4: The question should be clear and well-chosen words. When the student is confronted with the question, the dilemma should not fall. The question should be descriptive.

The following is a direct quote from the ML question designed by the prospective teacher S16.

S16: A triangle with three matchsticks is given. If we want to make a triangular prism with the matchsticks we have, how many matchsticks do we use?

The ML question developed by the prospective teacher S16 above is presented with a problem that is suitable for daily life contexts. Different representations are used in the presentation and solution of the problem. It can be said that the designed question requires reasoning, problem solving and modeling skills in terms of mathematical process skills. However, the question of ML is given in open-ended style. Moreover, since all the data needed for the solution are not given in the question, it can be said that the complexity and difficulty of the problem is high. The language and expression used in the question text cannot be said to be very effective. Because, there are some limitations to make the question clear and understandable. For example, do we have enough matchsticks? Are the matchsticks that we have are identical? Also, what is the minimum or maximum number of matchsticks to be used to make a triangular prism? How will matchsticks be combined? These and similar questions appear to have some limitations in terms of clarity and understanding.

The most stated opinions of the prospective teachers in the structure category, the question structure for the ML question was that it was open-ended type. According to them, the definition of ML, the nature of mathematics and targeted measurement and evaluation elements due to reasons such as ML questions more open-ended structure was preferred to be presented.

S9: Instead of thinking rote and doing the formulas, there should be questions that can be interpreted and commented on, and open-ended questions.

According to the prospective teachers in the study, the ML question can be designed in an open-ended structure as well as multiple-choice, true-false or different types of items.

S10: Questions can be in the form of questions, not a single type of items can be in the form of more than one type of item. Multiple choice, right-wrong, open-ended.

S13: The types of questions prepared may differ. It can be divided into open-ended, multiple choice, true-false types.
The pre-service teacher S8 seems to support this idea by developing a question containing different item types.

S8: Two work machines on soil and rocky ground start to work at the same time and it takes 3 and 4 days respectively to reach the water pipes of the same depth underground (The work machines work without interruption until they reach the water pipes).

Question-1: While the depth at which the earth moving machine landed is of the distance to the water pipes, what percentage of the total depth has been reached by the earth moving machine?

Question-2: How many hours after the work machines start to work, the ratio of the distance to the water pipes of the earth moving machine to the water pipes of the work machine on the rocky ground is 4/5?

A) 15 B) 18 C) 23 D) 36 E) 44

In addition, the prospective teacher S3 expressed the opinion that the questions designed to make ML questions more effective and qualified would be presented in an interesting, intriguing and research-oriented structure.

S3: The problem must be interesting by the student. It should be ensured that the student can relate the question to daily life and that there are problems related to daily life. To raise the sense of curiosity and research, to ask questions about the solution of the problem, should be qualified to do research.

The following is a direct quote from the ML question designed by the prospective teacher S1.

S1: Özge has 3 identical rods of the same length. The first rod is cut by a cm from the X end, it cuts b cm from the Y end (a > b). The second bar is cut the same amount at both ends. The third rod is cut by b cm from the X end, it cuts a cm from the Y end (a > b).

So how does the mid-point of the rod change in this process and in what direction?

The ML question designed by the prospective teacher S1 is presented in an open-ended structure. It aims to question and analyze the different situations that may exist in determining the midpoint of the rod. The question of ML is presented with a problem state consisting of daily life contexts. The question can be an interesting, intriguing and stimulating research environment for students. In addition, the question related to the center of gravity of the question is related to the situation in the question can be said to include the skills of connection with different disciplines. In terms of mathematical process skills, it can be seen as a question which involves the connection, problem solving, modeling and reasoning skills. In this question, the students are more dominant in modeling and interpreting the results. The question can be seen as a high-level question in terms of complexity and difficulty.

Findings for Developing a Checklist for ML Question Design

Based on the interview data with prospective mathematics teachers, five categories (content, context, process, level, structure) and a total of 30 items related to the design of the checklist were created. The draft checklist for the targeted ML question design was decided to be in a structure with 30 items and three options (yes, partly, no). Options were given to determine whether the feature in each item is included in the design question. In addition, it was decided that the feature targeted by each item should be scored as “2-1-0” according to the candidate ML question. After the drafting of the checklist for the ML question design was established, the evidence for the validity and reliability of this form was tried to be gathered. Two mathematics education experts and five mathematics teachers were consulted on the draft form of the checklist for ML question design. The selected mathematics teachers were trained to have a master’s degree in mathematics education and to have an education in ML. Some of the expert opinions about the checklist in the question design for measuring ML are given in Table 2.
Table 2.
Some of Expert Opinions for the Draft Checklist.

Expert-1	Expert-2
• What was meant by type?	• “Is it suitable for the use of different representations?” should be called.
• The sentence was not understood.	• Items 14, 21 and 22 may be removed.
• Does it require?	• Can contribute to related literature and discipline.
• Associated with item 14.	
• Must be removed.	

In addition to the expert opinions on the checklist that can be used in the ML question design, the teachers who had received ML training were asked for their opinions. Some of the teachers' opinions regarding the draft checklist prepared are given below and in Table 3.

T2: When more than one process skill is used, an item can be added to determine which process skill is decisive.

T5: I think it would be more appropriate to ask, which one reflects more for the third item.

Below is a candidate checklist and items that can be used in the design of the question to measure mathematical literacy. Please check each item for convenience and explain if there are items that need to be corrected or replaced.

In line with the opinions received from the mathematics education experts and teachers for the draft checklist, problems with the items of the checklist for the ML question design were solved in terms of changes, corrections and meanings. The final form of the checklist was then decided. In the design of the question to measure ML, the checklist is based on the opinions of experts and teachers. After making changes and corrections in spelling, language-expression and form, it was decided to consist of 28 items. The final version of the checklist was decided to be in the form of 28 items and three options (yes, partly, no). In addition, it was considered that it would be appropriate to score “2-1-0” according to the target ML question for each item.

In order to collect evidence for the validity and reliability of the checklist, a case study was carried out with five mathematics teachers who had recently taken a master’s degree and took a ML course. In this study, a total of three questions and checklist for mathematics teachers were directed to each question separately. The teachers were asked to examine three ML questions and evaluate the question in relation to the items listed in the checklist.

The majority of the teachers reported that the question of the “Revolving Door” in the PISA exam provided completely or partly the criteria in the checklist. It can be said that the criteria determined in the checklist were applicable to the ML question. Especially the question of the “Revolving Door” is a question that is put out in the PISA exam is important for the implementation of the checklist. It can be said that this ML question is evaluated in terms of the criteria in the checklist and the opinions presented are an important basis for the developed checklist.

“Race Track” question which was taken part in the 8th grade mathematics practice were asked to the teachers together with the checklist from the textbook. The teachers stated that this question did not provide some or all of the criteria in the checklist. It can be said that the findings on the checklist indicated that the criteria determined for the ML question were also obtained in the “Race Track” question. In particular, because the question of the race track is a question in a book used in the course of mathematics practice in our schools, it can be interpreted as the criteria in the checklist and the opinions presented are an important basis for the developed checklist.

“Tea” question which was taken part in the 8th grade mathematics practice were asked to the teachers together with the checklist from the textbook. The teachers stated that this question did not provide some or all of the criteria in the checklist. The “Tea” question, which is applied together with the checklist, is also a question from the book of mathematics practice. Because it is thought that the
questions in the PISA exam and questions in the mathematical practice book are examined by the teachers with a checklist and that they provide important information about the validity and reliability of the checklist. The questions in the PISA exam are subject to extensive expert supervision and many processes. According to the teachers in this study, it was stated that the PISA question applied with the checklist was more effective and qualified than other questions in mathematics practice book. These views were considered as evidence for the validity and reliability of the checklist developed in a way.

Table 3.

T3 Prospective Teacher’s Draft Checklist Interview Form.

ML question	Content	Item	Appropriate	Partially	Inappropriate	Explanation/Justification
1	Is the type and scope appropriate in terms of content?	X				
2	Is it presented with a problem from daily life?	X				
3	Does it reflect more practice than theory?	X				
4	Is it suitable for pre-learning?	X				
5	Does it reflect mathematical thinking?	X				
6	Are different representations used?	X				
7	Is conceptual-procedural knowledge balanced?	X	The sentence is not clear and understandable.			
8	Is the type and scope appropriate in terms of context?	X				
9	Is it connected to daily life?	X				
10	Is it connected to different disciplines?	X				
11	Is it connected to school mathematics?	X				
12	Is the context and content appropriate to each other?	X				
13	Are the type and scope appropriate in terms of process skills?	X	The questions in this section can be made the same as the roots. The question of process skills in the different structures of the roots of the integrity has broken.			
14	Is there the skill to formulate?	X				
15	Is the problem-solving process skill reflected?	X				
16	Does it involve modeling process skills?	X				
17	Are the reasoning process skills reflected?	X				
18	Are the connection process skills involved?	X				
19	Are mathematical language and communication skills used effectively?	X				
20	Are there cognitive skills such as analysis, synthesis, and comparison?	X				
21	Does it include procedural processes?	X				
22	Are there skills to make inferences and interpretations?	X				
23	Does it have appropriate level of complexity?	X				
24	Does it have the appropriate level of difficulty?	X				
25	Does it have an appropriate level of understanding?	X				
26	Is it given in open-ended item type?	X				
27	Are different types of items used?	X	It may be more appropriate to ask the different types of items mentioned in different questions.			
28	Is it interesting, intriguing?	X				
29	Is it focused on doing research?	X				
30	Has effective expression and language been used?	X				
Discussion and Results

In this study, the opinions of prospective mathematics teachers about the qualifications required for effective ML questions after the course were examined. In addition, they were asked to design the ML question to determine the extent to which they expressed their opinions on the question of ML design. In the second phase of the study, a checklist has been developed which can be used in the design of effective and qualified ML question.

The most stated opinion of the prospective teachers in the content category related to the ML question; the type and the scope of the problem should be determined and presented with a problem of daily life. In addition, in the ML question, qualifications such as reflecting mathematical thinking, using different representations and balance of conceptual-procedural knowledge are mentioned. The opinions such as the content of the questions appropriateness with the pre-learning and the reflection of the practice rather than the theory were stated. It can be said that the types of information (MCK, PCK, and CK) in Bennison's (2015) model for improving teachers’ ML skills emphasize important issues in terms of designing questions. Because, in ML question design, teachers should have a high level of knowledge and skills about mathematical content types. It was determined that the prospective mathematics teachers in this research had different contents in their ML questions after the training they took. In addition, the majority of the prospective teachers stated that ML questions should be presented with a problem condition from daily life. This view overlaps with the theoretical foundations of ML (OECD, 2013). In many studies, problem solving questions similar to ML questions in PISA were developed and implemented (Novita & Putra, 2016; Novita et al., 2012). However, Sari, Yandari and Fakhrudin (2017) stated that the problem-based learning model has positive effects on developing students’ ML skills and being independent learners.

Although the participants in this study said that the question of ML should be given in case of problem, some of them did not reflect this to the question design. This can be interpreted as a sign of difficulties in writing daily life-based ML problems. Similar results were found in the study conducted by Gürbüz (2014). In the study, it was found that the prospective mathematics teachers’ writing skills and self-efficacy were low. In a study by Özgen (2019), it was reported that teachers and prospective mathematics teachers were less willing to reflect the content of uncertainty-data and quantity in ML problems than other contents. In the study conducted by Setiawati et al. (2017), the errors in the use of arithmetic were observed mostly in the ML problems of the secondary school students in Level 1-2. Furthermore, understanding of the concepts of algebra, application of arithmetic operations in algebraic explanations and difficulties in interpreting the symbols in representing the unknown were seen. The students used their prior knowledge in solving ML problems, but sometimes were not related to the question.

In the study conducted by Altun and Bozkurt (2017), it is observed that there are content related factors as a result of factor analysis on the structural characteristics of ML questions. In particular, the predominance of rich mathematical content can be said to coincide directly with the results of this research. Because the first stage of the design of an ML question can be considered as content determination. The type, scope, and compliance with the targeted skills appear as important issues. In the present study, the ML question design included the following features for the content: type-scope, presenting with a problem state from daily life, reflecting mathematical thinking, using different representations and the balance of conceptual-procedural knowledge, pre-learning appropriateness and reflection practice rather than theory. These qualities can be interpreted as indicators of an effective and qualified ML question having a rich content. However, although the participants in this study stated these views about the ML question, it cannot be said that these qualifications reflect the highest level in the question design.

In the opinions of prospective mathematics teachers about the context category, determining the type-scope and being related to daily life take the most place. It was also stated that the question context should be related to different disciplines, school mathematics and content. According to the
participants, the type and scope of context (personal, occupational, social and scientific) should be determined in the design of questions and mathematical situations especially related to daily life should be preferred. Goos (2007) and Bennison (2015) describe the context in which teachers propose to develop ML. Machaba (2018) stated that context is important in the teachers teaching of ML and that the situations related to daily life should be used. Oktiningrum et al. (2016) developed valid and useful activities in the context of the natural and cultural heritage of Indonesia, which is similar to PISA mathematical activities in measuring MLs of students. Participants in this study also observed that they tried to reflect their daily life situations in their opinions and question design after the ML training. However, there were no differences in terms of context types and scope and it was determined that their opinions such as connecting with different disciplines were not reflected in the question design. Similar situation in the study conducted by Özgen (2019), it was reported that the contexts of the problems of teachers and prospective mathematics teachers were not as effective and qualified as the problems in the PISA study.

In contextual analysis of ML questions, there are such qualities as type-scope, connected daily life, different disciplines, with school mathematics and compatibility with content. Effective and comprehensive use of these qualifications in question design will contribute positively to learning-teaching mathematics in context. This is because it may not be possible for students to learn, understand, connect and value math in ML questions, which are formed from purely mathematical content and situations. According to primary prospective mathematics teachers, it is stated that ML is important because of their individual, social and cognitive benefits (Özgen & Kutluca, 2013). The importance of ML can be caused by the use of effective contexts.

It is seen that the type and scope of the process skills are stated in the opinions of the prospective teachers about the process category. In addition, mathematical processes in the design of the ML question; it should include formulation, problem solving, modeling, reasoning, proofing, mathematical language and communication, cognitive skills (analysis, synthesis, comparison) and procedural skills. It can be said that the views of prospective teachers on mathematical processes are in great agreement with the theoretical foundations in the PISA study (OECD, 2013). It is also possible to say that their views reflect the NCTM (2000) process standards. In a study conducted by Özgen and Kutluca (2013), primary school prospective mathematics teachers stated that factors such as concretization of mathematics, interest, interaction and directing to thinking were effective in the development of ML. Pilten et al. (2016), elementary teacher candidates' perceptions of the concept of "mathematical literacy" were tried to be determined through metaphors. When the metaphors produced are evaluated, it is seen that many of them require high-level thinking skills (analysis, synthesis, evaluation, etc.). In a study by Kohar et al. (2014), activities similar to PISA with practical, potential and potential impacts were developed. Activities were determined to affect students’ communication, reasoning, argumentation, representation, mathematization, problem solving, using formal / symbolic language, and interest-attention. In the study conducted by Altun and Bozkurt (2017), structural characteristics of ML questions were determined. Among these features, algorithmic processing, dominance of mathematical content, mathematical inference, mathematical suggestion development and / or interpretation of the proposed proposal, understanding of the mathematical equivalence of the life situation, understanding the equivalence of the mathematical language in life are determined. In the findings of this study, reasoning and proof were found as the subcategory with the highest frequency in the process category. However, it cannot be said that these process skills are sufficiently emphasized in the mathematics course curricula in our country. The importance of process skills such as reasoning and proof in terms of the development of ML skills was also revealed in this study.

Teachers should be able to determine competency requirements in mathematical activities, which they want to use for teaching or measurement purposes (Pettersen & Nortvedt, 2018). In this context, targeted process skills should be reflected in an effective approach to the problem activities used for the development or measurement of ML. The participants in this study expressed quite comprehensive and effective opinions regarding the mathematical process skills related to ML questions. However, it can be
said that there are various difficulties and limitations in the application of process skills in question design.

In the opinions of prospective teachers on the level category, appropriate complexity, difficulty and comprehensibility characteristics were indicated. In the PISA study, problems were discussed at six levels in terms of difficulty level and the characteristics of each level were defined (OECD, 2013). Difficulty, complexity and comprehensibility in ML questions to be designed in this direction are important qualities. Prospective teachers’ views and skills about ML in this study are similar with Turkey’s results in PISA studies. Students in Turkey were determined to score in PISA 2012 and 2015 an average of ML exam corresponds to Level 2 and 3 intervals (MoNE, 2012, 2016). Similarly, Iskenderoğlu and Baki (2011) classify the questions in one of the 8th grade textbooks by examining them according to the PISA mathematics proficiency scale. According to the results of this classification, it is seen that 8th grade textbook does not include questions at all levels. Questions, problems, exercises and examples were found at levels 1, 2, 3 and 4. At these levels, there are at most 2 level questions. Also Iskenderoğlu, Erkan and Serbest (2013) classified and examined mathematics questions that were asked to pass exams in high school between 2008-2013 in Turkey according to the PISA proficiency scale. In the study, it was seen that mathematics questions in their exams were not appropriate to all levels. It was seen that the questions were in the 2nd, 3rd and 4th levels in general, and there was no problem in level 5 in the top level and no problem in the 6th level. In this context, it is understood that an important element that should be considered in the design of the question to measure or improve the ML is the level category. It was determined that the participants in this study had various difficulties in terms of difficulty, complexity and clarity in the design of ML questions.

In the opinions of the prospective mathematics teachers about the structure category, the question structure was specified to be open-ended, multiple choice, true false, containing different types of items and interesting, intriguing, research-oriented. The vast majority of the prospective teachers considered the problem they had designed to be open-ended. However, interesting, intriguing, research-oriented qualities are not reflected in many questions. It is known that the questions are prepared as multiple choice in many important exams such as the entrance exam to universities and high schools in our country. The limitations of multiple choice questions in terms of ML are also revealed in this study. Especially in this study, it was emphasized that open-ended questions and the use of different types of questions are important for ML question design. In a similar study, Özgen (2019) reported that teacher and prospective teachers’ problems with ML were more structured problems than other types. Although there are positive implications of the ML education that the participants in this study have received for the question design, there are several structural problems. In the relevant literature, it is understood that mathematics teachers have limitations and difficulties regarding the questions they use in exams and lessons. In the study conducted by Bekdemir and Baş (2017), the questions used by mathematics teachers in exams were analyzed in terms of conceptual and operational knowledge. As a result of the research, it was determined that mathematics teachers mostly used multiple choice questions, focused on procedural knowledge, and similar questions from other sources. Bozkurt, Kılıç Kırcalı, and Özmantar (2017) reported that middle school mathematics teachers mainly include validation, calculation and feature determination questions that require short answers in their lessons. As Demir (2015) stated, ML questions can be used for many important purposes other than assessment and evaluation, such as putting students at the center of the course, motivating them, determining their incomplete learning and misconceptions, and creating a discussion environment in the classroom. Therefore, by emphasizing the strengths of different types of questions in ML question design, interesting, intriguing and research-oriented questions can be designed.

Structure category was also determined as an important factor in the checklist for ML question design developed in this study. In a sample application conducted with mathematics teachers, it was observed that the problems given were tested for compliance with the criteria in terms of being ML questions. In this direction, it was revealed with the application that the criteria included in the checklist for the structure category are important and effective issues in question design. It was determined that
the criteria determined for the structure category are as important as other criteria and should be considered in order to design effective and qualified ML questions.

The opinions of the pre-service mathematics teachers participating in the research about the qualities of the ML question were analyzed with content analysis. As a result of the analysis, the qualities of the ML questions were presented under five categories. Content, process, context, level and structure categories were the elements for the qualifications of the ML questions. In the second stage of the study, a checklist was created for the design of the ML question. Content, process, context, level and structure categories that emerged in the first stage formed the checklist. After the expert opinions and the opinions of mathematics teachers, a checklist was developed that can be used in the design of ML questions, which consists of a five-factor structure with 28 items and 3 options (yes, partly, no). Del Prado et al. (2016) developed a ML implementation checklist, but it was determined that there was no similar checklist in the ML question design. It can be said that the categories that appeared in the checklist are in accordance with the measurement framework in PISA studies conducted by OECD (2013). It can be said that the developed ML question design checklist has the opportunity to be a tool that researchers and practitioners can use as a guideline and guide they need.

Recommendations

In this study, it can be said that the qualities that need to be considered for the ML question design have emerged in a way. Because the five categories mentioned in the question design cannot be considered in a discrete manner and it is possible to see the reflections of each other. In the design of the questions, five categories and sub-categories of the items identified in this study should be supported by more comprehensive and applied studies. Thus, the qualifications for ML question design can be clarified and guidelines, models and approaches can be put forward.

In this research, it can be said that the prospective mathematics teachers have a high level of opinion about the question design with the ML education. However, it cannot be said that these positive reflections in the opinions of prospective teachers are fully realized in the question design. The majority of prospective teachers are not aware of the concepts of PISA and mathematics literacy. In this context, the theoretical basis for prospective teachers’ ML and question design, their awareness and approach being positive and high level shows that there are difficulties in the design of the question, i.e. question design. The short duration of the ML education given in this study and the deficiencies and limitations in the types of knowledge that the prospective teachers should have might have led to these results. However, the ML training and question design applications carried out in this study will have positive reflections with longer and more comprehensive activities.

It can be said that the checklist for the ML question design, which was developed and piloted in this study, is a valid and reliable measurement tool. Research can be conducted with different mathematics teachers and prospective teachers to reinforce the validity and reliability of the checklist. In particular, it is considered that the checklist will be a guiding tool for mathematics educators in ML question design processes and will make the question design process more effective. In addition, it is inevitable that ML questions of measurement tools developed with this checklist can have more effective and qualified features. It is thought that researchers who study and investigate ML question design processes can also benefit from providing valid and reliable information. It can be said that the ML education given to the participants in this study has a positive effect on the ML question in terms of their effective and qualified characteristics. In particular, it has been determined that they have ideas that are expected and compatible with theoretical foundations in the content, context, process, level and structure categories related to ML questions. With this approach, the development of knowledge, skills and experiences of mathematics teachers about ML and question design can be provided. Opportunities should be provided for teachers, prospective teachers and mathematics education researchers to think more about how the design of effective and qualified ML questions should be.
Giriş

Bireylerin eğitim süreçlerinin temel hedefleri arasında en genel ve kapsamlı olan niteliğin okuryazarlık olduğu söylenebilir. Son yıllarda okuryazarlık kavramında ise geleneksel anlamındaki niteliklerin değişmesiyle birlikte güncel yaklaşımlara sahip olduğu görülüzmektedir. Okuryazarlığın geleneksel yaklaşımındaki temel okuma, yazma ve hesap yapma becerileri, güncel yaklaşımda ise çoklu ve karmaşık becerilere ve yeteneklere bırakılmış (Özgen & Kutluca, 2013). Organisation for Economic Co-operation and Development (OECD) tarafından yürütülen Programme for International Student Assessment (PISA) çalışmasında “okuryazarlık kavramı; öğrencilerin temel konular arasındaki çeşitli durumlarla karşılaştıkları problemleri tanımlarken, yorumlarken ve çözerek, bilgi ve becerilerini kullanma, analiz etme, mantıksal çıkarımlar yapma ve etkili iletişim kurma yeteneklerini” ifade edilmektedir (Milli Eğitim Bakanlığı [MEB], 2016, p:1). Bu doğrultuda, eğitim alanında yoğun biçimde alana özgü okuryazarlık (fen, matematik, teknoloji, finans okuryazarlığı vb.) kavramlarının araştırıldığı ve tartışıldığı anlaşılmaktadır. Alana özgü okuryazarlık türlerinden biri de matematik okuryazarlığı (MOY) kavramıdır. MOY, matematik okuryazarlığı açısından önemli bir çerçeve kavram olduğu söylenebilir. Matematik eğitimi alanında son yıllarda matematik okuryazarlığına yönelik artan ilgi ve merak olduğu söylenebilir. Ülkemizde lise ve üniversiteye giriş sınavlarında PISA, TIMSS ve OECD gibi standartların hazırlanması ve uygulanması, matematik okuryazarlığı kavramının önemi artmıştır. Bu durum, matematik öğretmenlerinin öğrencilere MOY beceri ve yetenekleri öğretmesinin önemini ve zorlamlarını ortaya koymaktadır. Bu bağlamda MOY becerilerinin öğretilmesi ve değerlendirilmesi, öğrencilerin matematik okuryazarlığını geliştirmeleri için önemli bir etkinlik olarak öne çıkarılmaktadır. Matematik okuryazarlığı kavramının önemi, öğrencilerin matematik konularında problem çözme, analiz etme, mantıksal çıkarımlar yapma ve etkili iletişim kurma yeteneklerinin önemi artmıştır.
uygulama durumları incelenir (Stacey, 2010). PISA çalışmasında matematik alanında ölçü ve değerlendirme, MOY kavramı etrafında şekillendirmektedir ve bu kavram üzerine inşa etmektedir.

MOY kavramının önemi; kişinin temel bilgi ve becerileri kazanmasının yanında matematik ile ilgili düşünüme, problem çözmeye, matematiğe karşı olumlu tutum içinde olmayı ve matematiğin gerçek yaşamda yer alıp olmamasını belirlemektedir (Ozgen & Bindak, 2008). McCrone ve Dossey (2007) MOY'yi matematiğin günlük hayatının rolünü anlama, günlük hayat huzur sağlamak amacıyla matematiksel bilginin kullanımına odaklanmıştır. MOY, yaşam duygu ile ugrayışma ve yararlanma matematiksel bilginin kullanılmak (Laliyah, 2017). MOY'nin matematiğin matematikçi ve gelecekteki yaşamda kullanılabilecek anlayışı vurgulama amacı, matematiğin gerçek yaşamda önemini takdir etmesine odaklanır (Lailiyah, 2017).

Matematik okuyuculüğuna sahip bir bireyde olması gereken becerilerin ve yeteneklerin ne olduğu konusunda bazı yaklaşımlar görülmektedir. Örneğin; Kilpatric (2001) matematiksel yetenek olarak; kavramsal anlama, işlemsel akıcılık, stratejik yetenekler, uyarlama yetenekleri, matematiksel bilginin kullanılmak (NCTM, 2000), okul matematiği için hazırlanmış standardlarda MOY yeteneklerinin önemini ortaya koymustur. Goos (2007) ise MOY modellenin, MOY'nin matematiksel becerilerine odaklanır, MOY'nın matematiksel becerilerini ve gelecekteki yaşamda kullanılabilcek anlayışı vurgulama amacı, matematiğin gerçek yaşamda önemini takdir etmesine odaklanır (Lailiyah, 2017).

Matematik okuyuculüğuna sahip bir bireyde olması gereken becerilerin ve yeteneklerin ne olduğu konusunda bazı yaklaşımlar görülmektedir. Örneğin; Kilpatric (2001) matematiksel yetenek olarak; kavramsal anlama, işlemsel akıcılık, stratejik yetenekler, uyarlama yetenekleri, matematiksel bilginin kullanılmak (NCTM, 2000), okul matematiği için hazırlanmış standardlarda MOY yeteneklerinin önemini ortaya koymustur. Goos (2007) ise MOY modellenin, MOY'nin matematiksel becerilerine odaklanır, MOY'nın matematiksel becerilerini ve gelecekteki yaşamda kullanılabilcek anlayışı vurgulama amacı, matematiğin gerçek yaşamda önemini takdir etmesine odaklanır (Lailiyah, 2017).

Matematik okuyuculüğuna sahip bir bireyde olması gereken becerilerin ve yeteneklerin ne olduğu konusunda bazı yaklaşımlar görülmektedir. Örneğin; Kilpatric (2001) matematiksel yetenek olarak; kavramsal anlama, işlemsel akıcılık, stratejik yetenekler, uyarlama yetenekleri, matematiksel bilginin kullanılmak (NCTM, 2000), okul matematiği için hazırlanmış standardlarda MOY yeteneklerinin önemini ortaya koymustur. Goos (2007) ise MOY modellenin, MOY'nin matematiksel becerilerine odaklanır, MOY'nın matematiksel becerilerini ve gelecekteki yaşamda kullanılabilcek anlayışı vurgulama amacı, matematiğin gerçek yaşamda önemini takdir etmesine odaklanır (Lailiyah, 2017).
İlgili literatürde yapılan araştırmalar ile MOY’nin ne olduğu, tanımı, önemi, geliştirilmesi ve öğretimindeki yaklaşımlara yönelik matematik ve matematik öğretmeni adaylarının görüşleri ortaya konmuştur (Genç & Erbaş, 2017; Machaba, 2018; Lestari, Juniati & Suwarsono, 2017; Pilten, Divrik, Pilten & Ebret, 2016; Şeflik & Dost, 2016; Özgen & Kutluca, 2013). Ayrıca yapılan çalışmalarda MOY’ye uygun öğretim programı ve MOY’daki başarı düzeyinin nedenlerini sorgulamaya çalışmıştır (Altun & Akkaya, 2014). Ancak yapılan çalışmalarla MOY’nin geliştirilmesi veya ölçülmesine yönelik soruların kullanılması gerektiği iliskin araştırmaların sınırlı kaldıgı görülmektedir.

Yapılan çalışmalarla, MOY’ye yönelik soru ve etkinlik geliştirme süreçleri çeşitli araçtırmaçılardan incelemiş (Julie, Sanjaya & Anggoro, 2017; Kamaliyah, Zulkardi & Darmawijoyo, 2013; Kohar, Zulkardi & Darmawijoyo, 2014; Malasari, Herman & Jupri, 2017; Novita & Putra, 2016; Novita, Zulkardi & Hartono, 2012; Oktiningrum, Zulkardi & Hartono, 2016; Somakim, Suharman, Madang & Taufiq, 2016). Ancak yapılan çalışmaların çoğunda soru ve etkinlik geliştirme uygulayıcılar yani öğretmen ya da öğretmen adayları tarafından geliştirilirken, bu bağlamda, MOY kapsamındaki öğretmen ya da öğretmen adaylarının görüş, bilgi ve becerilerinin sınanması önemlidir.

Çünkü ilgili literatürde öğrenci (Güler, 2013; Setiawati, Herman & Jupri, 2017) ve öğretmen ya da öğretmen adaylarının (Gürbüz, 2014; Kabael & Barak, 2016; Saenz, 2009; Özgen, 2019) MOY’ye yönelik güçlü klerinin olduğu belirlenmiştir. Ayrıca, Altun ve Bozkurt (2017) tarafından yürütülen çalışmada, Türk öğrencilerin MOY sorularını çözerken yaşadıkları güçlükler, yöneltilen soruların yapısal özellikleri üzerinden oluşan faktörler aracılığıyla açıklanmıştır.

İlgili literatürde öğretmen ve öğretmen adaylarının MOY kapsamında çeşitli görüşlerin ve becerilerin incelendiği belirlenmiştir. Ancak MOY’yi geliştirme ve ölçme yönelik etkili ve nitelikli bir sorunun nasıl olabileceği yönünde öğretmen ya da öğretmen adayları ile yapılan araştırmaların sınırlı olduğu anlaşılmaktadır. Bu doğrultuda, lisans eğitiminde MOY sorularının oluşturulması ve nitelikli soruların nasıl oluşturulacağını ortaya koymak önemlidir. Çalışmaların MOY düzeylerinin geliştirilmesinde önemli faktör olan öğretmenlerin MOY sorularına yönelik yeterli düzeyde kuramsal bilgi ve soru geliştirme becerilerine sahip olmalarını beklenmektektedir.

Araştırmanın Amacı

PISA çalışmalarında MOY’yi ölçme kapsamında içerik, süreç, bağlam ve düzey gibi kavramların karşıma çıktığı görülmektedir (OECD, 2013). PISA çalışmalarında kullanılan MOY soruları çeşitli bilimsel süreçlerden geçmektedir ve arasında çeşitli uzmanların incelemesi ve pilot uygulamalar sonucu hazırlanmıştır (Tout & Spithill, 2015). PISA test geliştirme süreci birçok dalda henüz başlamamıştır. Başlangıç (tanimlama, hazırlık), madde yazarlarının eğitim, takımlar tarafından taslak maddelerin yazımı, inceleme süreci; paneller, bilgisel laboratuvarlar / pilot çalışmaları, madde düzeltme, çeviri-inceleme, nihai maddeye konar verme, psikometrik analizler, madde seçimi, son karar- nihai maddeleri (Tout & Spithill, 2015, s.149). PISA çalışmalarında MOY soru tasarımı birçoğuz uzmanın katılması ve birçoğuz aşamadan geçtiği görülmektedir. Öğretmenlerin bu test geliştirme süreçlerini olduğu gibi tek bölümler yapmaları çok mümkün değildir. Ancak öğrencilerin MOY’larını geliştirmede ve ölçmede sorunlu olan öğretmenlerin sınıflarında etkili MOY sorularını tasarlamalarını ve uygulamalarını için bir ihtiyaç olduğu görülmektedir. Çünkü PISA çalışmalarda yapılan büyük ölçekli ölçümlerin öğretmenlerin MOY’larını geliştirmede ve ölçmede sorunlu olan öğretmenlerin sınıflarında etkili MOY sorularını tasarlamalarını ve uygulamalarını için bir ihtiyacı olduğu görülmektedir. Ayrıca öğretmenlerin MOY’larını geliştirme ve ölçme süreçlerinde etkili bir bakış açısı ihtiyaç vardır.

Yapılan bazı çalışmalarla PISA’dan uygulanan MOY sorularına benzer soruların geliştirildiği ve uygulandığı belirlenmiştir (Demir & Altun, 2018; Gürbüz, 2014; Julie et al., 2017; Kamaliyah et al. 2013; Kohar et al., 2014; Malasari et al., 2017; Novita & Putra, 2016; Novita, Zulkardi & Hartono, 2012; Oktiningrum et al., 2016; Somakim et al., 2016). Yapılan çalışmalarla MOY soru ve etkinlikleri, uzman...
görüşü alma, ön uygulama, alan taraması gibi yöntemler ile geliştirilmeeye çalışılmıştır. Ancak bu çalışmalarla geliştirilen MOY sorularının niteliğini ve etkililiğini belirlemeye yönelik bir ölçme aracı olmadığı belirlenmiştir. Ancak çalışmaların sonuçlarından yola çıkarak matematik eğitimcilerin MOY sorusunu tasarımı için bir kilavuz ya da rehberde ihtiyaçları olduğu görülmüştür. Başka bir devişle, eğitimcilerin, öğretmenlerin ya da kitap, sınav ve kaynak tasarlayıcılardan MOY sorusunun etkili ve uygunlüğunu ölçmeye yönelik bir arac a ihtiyaç olduğunu belirtmiştir. MOY'yi geliştirme ve ölçme yönelik soru tasarımında kullanılabilecek bir kontrol listesinin matematik eğitimcilerine rehberlik yapacağı ve etkili, nitelikli MOY sorularının geliştirilmesine katkı sağlayabileceği düşünülmektedir.

Bu araştırmaın birinci aşamasının amacı, matematik öğretmeni adaylarının MOY'yi geliştirmeye ve ölçmeye yönelik hazırlanan bir sorunun etkili ve nitelikli olması için hangi özelliklere sahip olması gerektiğini incelemektedir. Ayrıca öğretmen adaylarının MOY'yi geliştirmeye ve ölçmeye yönelik hazırladıkları sorularda bu özelliklere ne derece uyguladıkları belirlemektir. Bu amaç doğrultusunda aşağıdaki problemlere yanıt aranmıştır.

- Öğretmen adaylarının MOY'yi geliştirmeye ve ölçmeye yönelik soru tasarımına ilişkin görüşleri nedir?
- Öğretmen adaylarının MOY'yi geliştirmeye ve ölçmeye yönelik soru tasarımına ilişkin becerileri nedir?

Araştırmanın ikinci aşamasının amacı ise, MOY'yi geliştirmeye ve ölçmeye yönelik soru tasarımında kullanılabilecek geçerli ve güvenilir bir kontrol listesi geliştirmek ve bu aracı bir uygulama ile göstermektedir.

Yöntem

Araştırma Modeli

Bu araştırma iki aşamalı olarak yapılandırılmıştır. Yapılan araştırmanın birinci aşaması özel durum çalışması modelli ile yürütülmüştür. Özel durum çalışmalarda gerçek ortamda davranış ve anlamları konusunda yeni bir şeyler öğrenmesini dayalı değerli ve derinlemesine anlamayı -yani durumların anlaşılabilmesini- ortaya çıkarmayı amaçlar (Yin, 2017, s.4). Araştırmanın amacı, matematik öğretmeni adaylarının MOY'ye yönelik soru tasarımının etkili ve nitelikli olabilmesi için hangi özelliklere sahip olması gerektiğini incelemektedir. Çalışmada matematik öğretmeni adaylarına verilen “Matematik Okuryazarlığı” dersi eğitimi sonrasında etkili MOY sorusunun sahip olması gereken niteliklere yönelik görüşleri sorgulanmaktadır. Ayrıca MOY sorusu tasarısının etkili belirtilikleri görüşlerini soru tasarımına ne derece yansıttığı incelemek için bir MOY sorusu tasarlamaları istenmiştir.

Araştırmanın ikinci aşamasında ise birincı aşamının devamı olarak kontrol listesi tasarımı yapılmıştır. MOY sorusu tasarısında kullanılabilecek nitelikli geliştirilen kontrol listesinin tasarım aşamaları şu şekilde belirlenmiştir: ilgili literatürü inceleme, uzman görüş alma, öğretmen adaylarından görüş alma, taslaq formu oluşturma, uzman ve öğretmenlerden görüşme, nihai formu oluşturma ve örnek bir uygulama.

Katılcılar

Bu araştırmanın birinci aşaması, bu devlet üniversitesinin matematik eğitimi lisans programının 2. sınıf ve güzdökünde seçmeli dersi olarak yer alan “Matematik Okuryazarlığı” dersi sürecinde yürütülmüştür. Bu araştırmanın çalışma grubunun, lisans eğitiminde yer alan matematik okuryazarlığı dersine katılan 11 bayan ve dokuz erkek toplam 20 matematik öğretmeni adayı oluşturduktadır. Araştırmanın katılımcılarının oluşturulmasında amaçlı örneklemelerden ölçülmüş örneklemeler ile matematik okuryazarlığı dersini almış olmaları ölçülmüş olanlar olarak belirlenmiştir. Araştırma matematik öğretmeni adayları, matematik okuryazarlığı dersi sürecinden sonra birleşmesi olarak matematik okuryazarlığı sorusuna yönelik görüş bildirmelelerdir ve bu görüşler doğrultusunda adaylardan birer soru geliştirmeleri istenmiştir.

280
Araştırmanın ikinci aşamasında ise, lisansüstü eğitiminde yer alan matematik okuryazarlığı eğitimi almış ikili bayan ve üç erkek toplam beş matematik öğretmeni katılıp göstermiştir. Araştırmanın katılımcılarının oluşturulmasında amaçlı örneklem yöntemi ile matematik okuryazarlığı dersini almış olmaları ölçüt olarak belirlenmiştir. Ayrıca uzman görüşü için matematik eğitimi alanında uzman iki kişiye görüşleri sorulmuştur. Uzman kişilerin matematik okuryazarlığı ve etkinlik geliştirme alanlarında deneyimlilik olmalarını yanı bilimsel araştırmaları sahip bireyler olmasına dikkat edilmiştir. Katılımcıların araştırmasıya katılımını zorunlu olmadığı ve gönüllülük esasına dayandığı belirtilmiştir.

Veri Toplama Araçları

Matematik okuryazarlığını dersi sürecinde MOY ile ilişkili teorik yapı verilmiştir ve uygulamalı olarak çeşitli etkinlikler gerçekleştirilmiştir. Bu doğrultuda öğretmen adaylarının matematik okuryazarlığını ölçme yönelik soru tasarımındaki görüşleri belirlemek için toplam dört soruda oluşan yapılandırılmış görüşme formu oluşturulmuştur. Bu form ile etkili ve nitelikli bir MOY sorusunun sahip olması gereken niteliklerin neler olduğu sorgulanmıştır.

Matematik okuryazarlığını geliştirmeye ve ölçmeye yönelik hazırlanan bir sorunun etkili ve nitelikli olması için hangi özelliklere sahip olmalıdır? Matematiksel okuryazarlık sorusu nasıl yazılmalıdır? Gereçleri ile kapsamlı olarak açıklayın ve somut matematiksel örnekler gösteriniz.

Görüşme formundaki bu soru ile öğretmen adaylarının MOY sorusunun sahip olması gereken özelliklerini belirlemeleri ve neden bu özelliklere sahip olması gerektiğini belirlemeleri ile kapsamlı olarak somut matematiksel örnekler yardımıyla açıklamaları istenmiştir. Ayrıca matematik öğretmeni adaylarının MOY sorularında ilişkin kültürlerinin yanında bir MOY sorusunun tarsalamalarını istenmiştir.

Etkili ve nitelikli bir sorunun özelliklerini düşünecek matematik okuryazarlığını ölçebilecek bir matematik problemi geliştiriniz ve çözünüz? Geliştirilen sorunun etkili ve nitelikli olması için hangi özelliklere üzeridir? Gereçleri ile açıklayınız? Problemi PISA’ da ki ölçme kriterleri açısından açıklayın.

Bu çalışmanın birinci aşamasında veri toplama aracı, matematik öğretmeni adaylarının MOY’ye yönelik soru tasarımına ilişkin görüşleri ve MOY sorusuna örnek olabilecek tasarladıkları soruların bir araya getirilmiştir. Öğretmen adaylarının MOY sorusunu bireysel olarak geliştirmeleri istenmiştir. Öğretmen adaylarının tasarladıkları MOY sorusu karşılaştırılırken, herhangi bir matematiksel içerik, bağlam ve süreç açısından sınırlama yapılmamıştır. Bu doğrultuda matematik okuryazarlığını ölçmeye yönelik bir MOY sorusunun taslamları sorgulanmıştır.

Ayrıca araştırmanın ikinci aşamasında, matematik öğretmenlerinin, MOY sorusunun tasarlamada kullanıma yönelik geliştirilen kontrol listesinin taslak formuna yönelik görüşleri toplanmıştır. Kontrol listesinin taslak formuna yönelik görüşleri belirlemek amacıyla bir görüşme formu hazırlanmıştır. Bu formda taslak formda yer alan her bir maddenin uygulanığı (uygun, kısmen, uygun değil) açısından görüş bildirmeleri ve gereçleri ile kapsamlı açıklamaları istenmiştir. MOY sorusunun tasarlamada kullanıma yönelik geliştirilen nihai kontrol listesi oluşturulduktan sonra beş matematik öğretmenine bir adet PISA 2012 çalışmasında çıkan MOY sorusunu (Döner Kapı) ve iki adet (Yarış Pisti, Çay) matematik uygulamaları dersi kitaplarında yer alan toplam üç soru ve kontrol listesi birlikte öncelendirilmiştir. Öğretmenlerden üç MOY sorusunu incelemele ve bu soruları kontrol listesindeki maddeler açısından değerlendirilmesi istenmiştir.

Verilerin Toplanması

Bu araştırma, matematik eğitimi lisans programında yer alan matematik okuryazarlığı dersi kapsamında öğretmen adayları ile yapılmıştır. Matematik okuryazarlığı dersi sürecinde uygulama araştırmacısı tarafından sınıflar ortamında ve 14haftalık bir döne boyunca haftada üç saatlik bir zaman diliminde gerçekleştirilmiştir. Araştırma için veri toplama aşaması dönem sonundaki son iki haftada gerçekleştirilmiştir. Araştırmanın problemine yanıt aramak için katılımcılardan bireysel olarak görüş bildirmeleri ve MOY’yeye yönelik soru tasarlama maddeleri istenmiştir.

281
Araştırmanın gerçekleştiriltiliği MOY dersi sürecinde öncelikle matematik okuryazarlığı ile ilgili kuramsal bilgiler sunulmuştur. MOY’nin tanımı, bileşenleri, süreç, bağlam, içerik, düzey gibi hususlara yönelik PISA çerçevesinde kuramsal bilgiler verilmiştir. Ayrıca MOY’nin önemi ve öğretim programlarında yer ve yansımlarına değinilmiştir. MOY ile ilgili kuramsal bilgiler üzerinden genellikle sınıf tartışması yapılmıştır. Özellikle PISA çalışmasının kuramsal yapısi ve buna bağlı ölçme çerçevesi incelenmiştir. Bundan sonra öğretmen adaylarının MOY’ye yönelik soruları sunulmuştur ve MOY’ın önemi ve öğretim programlarındaki yeri ve yansımlarına değinilmiştir. MOY ile ilgili kuramsal bilgiler üzerinden genellikle sınıf tartışması yapılmıştır. Özellikle PISA çalışmasının kuramsal yapısı ve buna bağlı ölçme çerçevesi incelenmiştir. Bundan sonra öğretmen adaylarının MOY’ye yönelik soruları sunulmuştur ve MOY’ın önemi ve öğretim programlarındaki yeri ve yansımlarına değinilmiştir. MOY ile ilgili kuramsal bilgiler üzerinden genellikle sınıf tartışması yapılmıştır. Özellikle PISA çalışmasının kuramsal yapısı ve buna bağlı ölçme çerçevesi incelenmiştir. Bundan sonra öğretmen adaylarının MOY’ye yönelik soruları sunulmuştur ve MOY’ın önemi ve öğretim programlarındaki yeri ve yansımlarına değinilmiştir. MOY ile ilgili kuramsal bilgiler üzerinden genellikle sınıf tartışma

yüksek oranda anlaşma yüzdesi elde edilmiştir ve elde edilen verilerin analizinin güvenirliği sağlanmaya çalışılmıştır. Öğretmen adaylarının görüşlerinden farklı zamanlarda yapılan kodlamalar sonucunda %81.5 gibi bir yüzde ile kodlama uyum yüzdesinin olduğu belirlenmiştir. Bu uyum yüzdesi veri analizinin güvenirliği açısından kabul edilebilir bir yüzde olarak görülmektedir.

Bulgular

Öğretmen Adaylarının MOY Sorusunun Niteliklerine Yönelik Görüşleri ve Becerileri

Tablo 1’e göre öğretmen adaylarının içerik kategorisinde en fazla belirtikleri görüş; MOY sorusu için matematiksel içeriğin günlük hayattan bir problem ile sunulması, tür ve kapsamların belirlenmesi şeklinde olmuştur. Aşağıda verilen doğrudan alıntı tür ve kapsam kategorisinde değerlendirilmiştir.

Tablo 1.

Kategori	Kod	f	%
İçerik			
Türü ve kapsamı belirlenmeli	11	55	
Günlük hayatдан bir problem ile sunulmalı	11	55	
Matematiksel düşünmeyi yansıtmalı	8	40	
Farklı temsiller kullanmalı	6	30	
Kavramsal-işlemsel bilgi dengelenmeli	6	30	
Teoriden çok uygulamayı yansıtmalı	5	25	
Ön öğrenmelere uygun olmalı	4	20	
Bağlam			
Türü ve kapsamı belirlenmeli	13	65	
Günlük hayat ile ilişkili	11	55	
İçerik ile uygunluk	5	25	
Farklı disiplinler ile ilişkili	3	15	
Okul matematiği ile ilişkili	3	15	
Süreç			
Akıl yürütme - ispat	15	75	
Türü ve kapsamı belirlenmeli	10	50	
İlişkilendirme	9	45	
Formülleştirme	7	35	
Problem çözme	7	35	
Modelleme	6	30	
Bilişsel becerciler (anализ, sentez, karşılaştırma)	6	30	
Matematiksel dil ve iletişim	5	25	
İşlemsel beceri	3	15	
Düzen			
Uygun düzeyde güçlük	9	45	
Uygun düzeyde karmaşıklık	8	40	
Saydam, açık, net, anlaşılmış	6	30	
Yapı			
Açık-uçlu	10	50	
Çoktan seçmeli	4	20	
Doğru Yanılış	4	20	
Farklı madde tipleri içermeli	4	20	
İlgi çekici, merak uyandırıcı, araştırma odaklı	1	5	

S16: Matematiksel içerik belli olmalı (nicelik, uzay-şekil, değişim-ilişki, belirsizlik). Örnek olarak eğer bir öğrencinin matematikle bağlantılı olarak gorsel zekasını ölçmek ve geliştirmek istiyorsak bunu uzay şekil içeriği ile sahip bir soruya yapabiliriz.

Öğretmen adaylarına göre MOY sorusunun tasarımında öncelikle matematiksel içerik yanı içerikin türü ve kapsamı belirlenmeliidir. Birçoq öğretmen adayının görüşlerinde de PISA’daki matematiksel içerik (nicelik, uzay-şekil, değişim-ilişki, veri-belirsizlik) boyutlarından söz edilmektedir. Bununla birlikte bu
çalışmadaki matematik öğretmeni adaylarının yanından fazlası, matematiksel içerikin günlük hayattan bir problem ile sunulması gerektiğini yönündede görüşlerini açıklamışlardır. Bu doğrultuda öğretmen adayları MOY sorusunun matematiksel teoriden çok uygulamayi yansıtmayı gerektirdiğini söylerler.

S6: Etkisi olması için de yazılıp problemin daha çok günlük hayat kapasayı problemler olmasının daha etkili ve anlaşılmış olması sağlanmalıdır.

S5: Matematik okuryazarlığında teorik bilgiden ziyade pratiğe dökülmesi, gündelik hayatta işlevini kolaylaştıracı yönleri ele alınmaktadır.

Bununla birlikte öğretmen adaylarına göre etkili bir MOY sorusunun matematiksel düşünmeyi yansıtmamasını gerektirdiğini söylüyor. Öğretmen adaylarından S10 ve S19 ise tasarlanacak MOY sorusunda matematiksel içeriğin hedeflenen öğrencilere uygunluklu uygulama edinmesini söz etmişlerdir.

S10: Soruyu öğrencilere seviyesini göz önünde bulundurularak hazırlanmalıdır.

S19: Soru sorulacak kişinin sınıf kazanım seviyesine uygun olmalıdır.

Araştırmanın adayları MOY tasarımında matematiksel içerik ile ilişkili dikkat edilmesi gereken bir diğer husus ise sorularda farklı temsillerin kullanılması şeklinde olmuştur. Matematiksel içerik kategorisinde son olarak öğretmen adayları, MOY sorusunun kavrumsal ve işlemel bilgileri dengeli biçimde yansıtması gerektiğini belirtmişlerdir.

S1: Farklı temsiller kullanılarak çözümü olan sorular.

S13: Matematik okuryazarlığının ölçülmek istediğiniz alanı sınırlanmamalıdır. Örneğin; öğrencinin işlem yeteneği mi ölçülmek isteniyor yoksa grafik yorumlamasını mı veya günlük bir problem matematiksel süreçler halinde nasıl ilişkilendirileceği mi ölçülmek isteniyor şeklinde sorunun sınırları olmalıdır.

Aşağıda S12 matematik öğretmeni adayının tasarladığı MOY sorusunu doğrudan alıntıya yer vermiştir.

Ders	Saat
Matematik	13:00 – 15:00
Edebiyat	11:50 – 13:50
Bilgisayar	12:30 – 14:00
Fizik	10:15 – 12:15
Satranç	09:50 – 11:50
İngilizce	10:30 – 12:00

S12: Yukarıdaki tabloda bir okulun Cumartesi günü öğrencilere verdiği kurslardaki dersler ve saatleri yer almaktadır. Bir öğrenci en fazla kaç derse kayıt olabilir? Öğrenci katılmak istediği dersleri kaç farklı şekilde seçebilir?

S12 matematik öğretmeni adayını tarafından geliştirilen MOY sorusunun günlük hayat ile ilişkili bir problem durumu şeklinde sunulmuştur. Bu soruda matematiksel kurallar, formülleri ve terimleri yanı teorisinde çok uygulamasının ön plana çıktığı söylenebilir. Ayrıca verilen durum ile öğrencilerin matematiksel düşüncelerini canlandıracak ve ortaya çıkaran bir problem söz konusudur. Tasarlanan soru farklı temsiller açısından tablo ile sunulmuş ve çözümü için diğer temsillerin kullanılmasına fırsat vermektedir.

Öğretmen adaylarının bağlam kategorisinde en fazla belirttilkileri görüş; MOY sorusu için matematiksel bağlanın günlük hayatla ilişkili olması ve tür ve kapsamın belirlenmesi şeklinde olmuştur.

S16: Bir bağlamı olmadığı (kişisel, mesleki, toplumsal, bilimsel).
S12: Öğrencinin problemi günlük hayatla bağdaştırması için belli bir bağlama sahip olmalıdır.

S5: Toplumda, meslek hayatında ve kişinin hayatında karşılaştığı durumlar ele alınmalıdır (Enflasyon, seçimler, alışveriş, hava durumu ...).

Araştırmadaki katılımcıların görüşlerinden MOY sorusu tasarlamada öncelikle bir bağlanın türü ve kapsamının karar verilmesinde PISA çalışmasında sözcü edilen百强lamaları (kişisel, mesleki, toplumsal, bilimsel) vurguları yer almaktadır. Katılımcılar MOY sorusunun百强lamasını ise daha çok günlük yaşamda ilişkili niteliğini ön planda görmektedir. Ayrıca bu çalışmadaki öğretmen adaylarının hazırladığı百强lamalar ise MOY sorusunun farklı disiplinler ve okul matematiği ile ilişkili olmasına yönelik görüş bildirdikleri yansıtmaktadır. Adaylardan bazıları ise MOY sorusunun百强laması ile belirlenen百强ların birbirine uyumlu olması gerektiği yönünde görüş belirtmişlerdir.

S2: Matematik okuryazarlığı, üretken, sorgulayan bireylerin bugün ve gelecekte karşılaşabilecekleri sorunları matematiksel süreçlerden geçirecek değerlendirdiği ve çözüme ulaşabilme kapasitesidir. Dolayısıyla Matematik okuryazarlığını ölçmek için bireye günlük yaşamda karşılaştığı durumların anlaşılmaması ve onu matematiğin uygulaması ile ele almakta.

S10: ... sorunun okula öğrenilen matematik ile ilgili olmakla birlikteushing hayat olan sağlanmalıdır.

S17: Yani bir kişinin matematik okuryazar olduğu olduğu anlayabilmek için hazırlanan soru kapsamlı, matematik içerikleri, süreçleri,百强lamaları birbirine uyumlu şekilde olmalıdır.

Aşağıda S14 matematik öğretmeni adayının tasarladığı MOY sorusundan doğrudan alınan bir örnektir.

S14: Merve yeni aldığı bir rafa matematik, geometri, fizik, kimya, biyoloji, tarih ve coğrafya kitaplarını yerleştirmek istemektedir. 5 katlı rafa bu kitapları aşağıdaki gibi yerleştirmek istemektedir. Her rafa en fazla 2 kitap yerleştirilecek. 3. rafta sadece matematik kitabı olacak. Fizik ve kimya kitapları matematik kitabının alt raflarında olmayacak. Tarih ve coğrafya kitapları aynı rafa ve fizik kitabının üstünde olacak. Türkçe kitabının yanında da hiçbir kitap olmayacaktır. Buna göre geometri kitabı hangi raflarda olabilir?

Yukarıda S14 öğretmen adayı tarafından tasarlanan MOY sorusunda günlük hayatla ilişkili bir durum söz konusudur. Bu MOY sorusunun günlük hayatla ilişkili bir problem durum şeklinde sunulmuştur. Bağımsal açıdan tasarlanan bu MOY sorusunun günlük hayat百强lamalarına uygun olduğu söylenebilir. Ayrıca bu soruda matematiğin百强laması açısından daha da önem verilmiştir.饔 şeyi ve sıralama gibi matematiğin百强lamaları içerisinde anlaşılmaktadır. Tasarlanan bu soruda hedeflenen matematiğin百强 lamaları ile uygun bir百强lamayı ortaya konmuştur.

Öğretmen adaylarının süreç kategorisinde en fazla belirttilerini görüş: MOY sorusu için matematiğin百强lamaları ve becerileri için analizde gerçekleştirilmiştir. Öğretmen adaylarının MOY sorusunun百强lamaları ve becerilerin türü ve kapsamının belirlenmesi gerektiğine ait bir görüş ortaya konmuştur. Bununla birlikte aile ve arkadaşlar vb.百强lamalarına katılan eğitmenlerin büyük çoğunluğu akıl yürütme-ispat becerilerine yer verilmesi gerektiğini vurgulamışlardır.

S19: ... öğrencilerin sahip olmasını istediğimiz becerileri (işlem, formüleleştirmeye, akıl yürütme, muhakeme, kıyas vb.) ölçmeye dönüştürülmesi sağlanmalıdır.

Katılımcıların matematiğin百强lamaları ve becerilerine yönelik görüşlerinde daha çok PISA çalışmasındaki ölçme çerçevesiyle birlikte durumlar ele alınacaktır. Ayrıca bu sorularda ölçme çerçevesinde doğrudan olmamakla dolaylı söz edilen百强lamalar ve becerilerin ortaya çıkığına ait bir görüş ortaya konmamıştır. Araştırma katılmaları büyük çoğunluğu bir MOY sorusunda akıl yürütme-ispat百强lamaları ve becerilerine yer verilmesi gerektiğine vurgulamamışlardır.

S19: İşlem, akıl yürütme, muhakeme, karşılaştırma vb.百强lamaları kapsayacak nitelikte olmalıdır.

Bununla birlikte aile ve arkadaşlar vb.百强lamalarına katılan eğitmenlerin büyük çoğunluğu da MOY sorusunda öğrencilerin matematiğin百强lamaları ve becerilerini ortaya çıkarak özellikte tasarımında nitelikli opiniónerin...
bildirmiştirler. Ayrıca matematik öğretmeni adaylarının problem çözme, modellerle ve formülleştirmeye becerilerinin MOY sorusunun tasarımında göz önüne alınmasına yönelik vurguları bulunmaktadır.

S7: Matematik anlayıp, yorumlayabilmeli, gerçek hayatla ilişkilendirebilmeli yani matematik okuryazarlık bilgisi olmalıdır.

S1: Formül kullanmadan ziyade problem çözme odaklı olmalıdır.

Katılamıçlardan bazıları ise matematiksel dil ve iletişimin etkili kullanılmasını MOY sorusu tasarlamada önemli olduğunu bildirmiştirlerdir. Matematiksel süreç becerileri kategorisinde son olarak öğretmen adaylarının MOY sorularında işlevsel becerilere yönelik durumların olması yönünde görüş bildirmiştirlerdir.

S18: Bireyi düşünmeye, muhakeme yapmaya, eleştirel gözle bakmaya gibi üst düzey bilişsel süreçleri içeren özelliklere sahip olmalıdır.

S12: İşlem yapabilme yeteneğinin de ölçülmesi için açık-uçlu olmalıdır.

Öğretmen adaylarının düzey kategorisinde en fazla belirtilenlerin görüş; MOY sorusu için soru düzeylerine ilişkin; uygun düzeyde karmaşık bir şekilde sahip olması şeklinde olmuştur. Öğretmen adaylarının “uygun düzeyde güçlük” ile soruların öğrencilere tarafından çözülebilme sağlamasının yanı çözülebilme oranına vurgu yapmaları konusunda vurgu yapmışlardır. Ayrıca öğretmen adaylarının “uygun düzeyde karmaşık” ile sorunun çözümünde gerekli stratejileri, kullanılacak bilgileri ve çözümde atılan adımların sayısına ve en önemlisi sorulardaki yenilik ve özgürkült konularına vurguları bulunmaktadır.

S4: Bir soruda matematik okuryazarlığını ölçmek istiyorsak öncelikle bu soru kapsayıcı olmalıdır.

S13: Soru hazırlanırken her öğrencinin aynı seviyede olmadığını bilinmek ve soruları düzeylerine ayırt etmek önemlidir.

Ayrıca katılımcıların MOY sorusunun tasarımında sorunun açık, net ve anlaşılır olması gibi niteliklere dikkat edilmesi şeklinde görüşlerinin olduğu anlaşılmaktadır.

S4: Soru anlaşılır olmalı, net ve iyi seçilmiş kelimelerden oluşmalıdır. Öğrenci soruya karşılaştırıldığında iki kelimeden biri seçilebilir. Bu soru açık Açılımlı olmalıdır. Matematiksel okuryazarlık sorusu hitap edecek yaşa aralığı göz önünde bulundurularak kelimeler net seçildikten sonra, anlaşılmış bir biçimde hazırlanmalıdır.

Aşağıda S16 matematik öğretmeni adayının tasarladığı MOY sorusundan doğrudan alıntıya yer verilmiştir.

S16: Üç adet kibrit çöpüyle yapılmış bir üçgen verilmiştir. Kibrit çöpleri bir prizma yapmak için kaç adet kullanılmış olur?

Yukarıda S16 matematik öğretmeni adayı tarafından geliştirilen MOY sorusunun, günlük hayat bağlamlarına uygun bir problem ile sunulmuştur. Sorunun sunumu ve çözümünde farklı temsillerin kullanımı zorunlu olmaktadır. Tasarlanan soru matematiksel süreç becerileri açısından akıl yürütme, problem çözme ve modellerile becerilerini gerektirdiği söyleyebilir. Bununla birlikte MOY sorusun açık uçlu tarzda verilmiştir. Ayrıca soruda çözüm için gerekli olan bütün veriler verilmemiştedir sorunun karmaşığı olmaga ve güçlüsünün üst düzeyde olduğu söyleyebilir. Sorunun metnindeki kelimelerin dikkate alınması ve anlatımın çok etkili olduğu söylenemektedir. Çünkü sorunun açık, net ve anlaşılır olması yönünde bazı sınırlılıklar bulunmaktadır. Örneğin; elimizdeki bir kibrit çöpü var mıdır? Elimizde bulunan kibrit çöpleri örneğine göre verilmememiş. Ayrıca üçgen prizma yapacak şekilde kullanılacak kibrit çöplerinin en ya da en çok olması durumu ne olur? Kibrit çöpleri nasılsın birleştirilecek? Bu ve buna benzer sorularda açık ve netlik açısından bazı sınırlılıklar olduğu görülmektedir.

Öğretmen adaylarının yapı kategorisinde en fazla belirtilenlerin görüş; MOY sorusu için soru yapının açık-uçlu madde tipinde olmasına yönelik vurguları gibi nedenlerden dolayı MOY sorularının daha çok açık-uçlu yapida sunulması yönünde tercih bildirmiştirler.
S9: Ezbere düşünmek ve formüllerle işlem yapmak yerine soruya kendi yorunumu catıp, yorumlayıp o şekilde çözümü olan sorular olmalıdır ve sorular bu yüzden açık uçlu olmalıdır.

Araştırmadaki öğretmen adaylarına göre MOY sorusu açık-uçlu yapida verilmesinin yanında çoktan seçmeli, doğru-yanlış ya da farklı madde türlerini içeren bir yapıda da tasarlanabilir.

S10: Soru hazırlanırken sorular tek tip değil de birden fazla soru tipi şeklinde olabilir. Çoktan seçmeli, doğru-yanlış, açık-uçlu.

S13: Hazırlanan soruların çeşitleri farklılık gösterebilir. Açık uçlu, çoktan seçmeli, doğru-yanlış şeklinde türle jaylayabilir.

S8 öğretmen adayı farklı madde türlerini içeren bir MOY sorusunun geliştirilmesinde bu düşüncesi desteklediği görulmüştür.

S8: Toprak ve kayalık zemin üzerindeki iki iş makinesi aynı anda çalışmaya başlıyor ve yeraltında bulunan aynı derinlikteki su borularına ulaşmaları sırasıyla 3 ve 4 gün sürmektedir (İş makineleri su borularına ulaşana kadar ara vermeden çalışmaktadır).

Soru-1: Toprak zemindeki iş makinesinin indiği derinlik, su borularına kalan mesafesinin ¾’ü iken, kayalık zemindeki iş makinesi inmesi nedeniyle toplam derinliğin yüzde kaçına erişmiştir?

A)15 B)18 C)23 D)36 E)44

Ayrıca S3 öğretmen adayı MOY sorularının daha etkili ve nitelikli olması için tasarlanan soruların ilgi çekici, merak uyandıran ve araştırma yapmaya vaadetkili bir yapıda sunulması yönünde görüş bildirmiştir.

S3: Sorunun öğrenci tarafından ilgi çekici olması lazim. Öğrencinin, soruyu günlük hayatla ilişkilendirebileceğini ve günlük hayatla ilgili sorunların olabildiğini duygusunu gerektirmelidir. Merak ve araştırma duyguysunu artırmak, sorunun çözümüne ilişkin sorular sorup, araştırma yapabileceğini nitelikte olmalıdır.

Aşağıda S1 matematik öğretneni adayının tasarladığı MOY sorusundan doğrudan alıntısı yer verilmiştir.

S1: Özge’nin elinde aynı uzunlukta 3 tane özdeş 9 cm uzunlukta bir çubuk vardır. Birinci çubuğun X ucundan a br, Y ucundan b br kesiyor (a>b). İkinci çubuğun her iki ucundan aynı miktarda kesiyor. Üçüncü çubuğun X ucundan b br, Y ucundan a br kesiyor (a>b). Buna göre bu işlemede çubuğun orta noktası nasıl değişir ve hangi yönde kayar?

Yukarıda S1 matematik öğretmeni adayından tasarlanan MOY sorusunun açık-uçlu bir yapıda sunulmuştur. Çubuğun orta noktasının belirlenmesinde var olabilecek farklı durumlara olması ve incelenmesi amacıyla olacaktır. MOY sorusu günlük hayat bağlamında olunmuş bir problem durumu ile sunulmuştur. Soru öğrencilerin için ilgi çekici, merak uyandırıcı ve araştırma yapmalarına fırsat tanıyı bir ortam sağlayabilir. Ayrıca soruda orta nokta aynı merkeze girdiği ilgili durum söz konusu olduğundan soruda farklı disiplinler ile ilişkilendirme becerilerinin yer aldığı söyleyilebilir. Matematiksel süreç becerileri açısından ilişkilendirme, problem çözme, modellerde ve akıl yürütme becerilerin yer aldığı bir soru olarak görülebilir. Bu soruda işlemel becerilerden çok öğrencinin modellere yapma ve çıkar sonuçları nolu elde becerileri daha baskındır. Tasarlanan soru karmaşık ve güçlük açısından üst düzey bir soru olarak görülebilir.

MOY Soru Tasarımına Yönelik Kontrol Listesi Gelişirmeye Yönelik Bulgular

Matematik öğretmeni adayları ile yapılan görüşme verilerinden yola çıkarak kontrol listesinin tasarmını için 5 kategori (icerik, bağlam, süreç, düzey, yapı) ve bunlara bağlı toplam 30 madde oluşturulmuştur. Hedeflenen MOY soru tasarımına yönelik kontrol listesinin taslak halı 30 madde ve 3
seçenekli (evet, kısmen, hayır) bir yapıda olmasına karar verilmiştir. Burada her biraddenın tasarımını yapılan soruda bulunup bulunmadığına yönelik seçenekler verilmiştir. Ayrıca her biraddenin hedeflediği nitelikin aday MOY sorusunda olup olmamada durumuna göre “2-1-0” şeklinde puanlanmasına karar verilmiştir. MOY soru tasarımını yönelik kontrol listesinin taslak hali oluşturulduktan sonra bu formun geçerligi ve güvenirliliğine yönelik kantlar toplanmaya çalışılmıştır. MOY soru tasarımını yönelik kontrol listesinin taslak formuna yönelik 2 matematik eğitimi uzmanı ve 5 matematik öğretmeninin görüşü alınmıştır. Seçilen matematik öğretmenleri matematik eğitimi alanında yüksek lisans eğitimli alan ve MOY’ye yönelik ders yanı eğitim almış olmasına dikkat edilmiştir. Matematik okuryazarlığını ölçmeye yönelik soru tasarımında kontrol listesine yönelik uzman görüşlerinden bazıları Tablo 2’dede belirtilmiştir.

Tablo 2.

Taslak Kontrol Listesine Yönelik Uzman Görüşlerinden Bazıları.

Uzman-1	Uzman-2
“Türü” ile ne kastedildi?	“Farklı temsillerin kullanmasına uygun mudur?”
Cümle anlaşılması olmadı.	denilmelidir.
“Gerektiriyor mu?”	14, 21 ve 22. maddeler çıkarılabilir.
14. madde ile ilişkili.	Literatüre, alana katkı sağlayabilir.
Çıkarılması gerekir.	

MOY’ye soru tasarımında kullanılabilecek kontrol listesine yönelik uzman görüşlerinin yanında MOY eğitimi almış olan öğretmenlerden de görüş istenmiştir. Hazırlanan taslak kontrol listesine yönelik öğretmen görüşleri bazıları aşağıdaki ve Tablo 3’de belirtilmiştir.

T2: Birden fazla sürec becerisi kullanıldığında hangi sürec becerisinin belirleyici olduğu ile ilgili madde eklenbilir diyerek düzenliyoruz.

T5: 3. madde için hangisini daha çok yansıtırırsa daha uygun parece olur sanırım.

“Aşağıda matematik okuryazarlığını ölçmeye yönelik soru tasarımında kullanılan beceri aday kontrol listesinde maddeler bulunmaktadır. Sizlerde her bir maddeyi uygunluk açısından inceleyiniz ve düzeltmesi ya da değiştirilmesi gereken maddeler var ise gerekçeleri ile açıklayınız.” yönergesi öğretmenlere yöneltilmiştir ve öğretmenlerin taslak kontrol listesine yönelik görüşleri alınmıştır.

Taslak kontrol listesine yönelik matematik eğitimi uzmanları ve öğretmenlerden alınan görüşler doğrultusunda MOY soru tasarımına yönelik kontrol listesine maddelerde değişiklik, düzeltme ve anlam açısından sorunlar giderilmiştir ve kontrol listesinin nihai formuna karar verilmiştir (Ek 1).

Matematik okuryazarlığını ölçmeye yönelik soru tasarımında listeye alınan uzman ve öğretmen görüşleri doğrultusunda; yazım, dil-anlatım ve biçim bakımından değişiklik ve düzeltmeler yapıldıktan sonra 28 maddenin oluşturulmasına karar verilmiştir. Kontrol listesinin nihai hali 28 madde ve üç seçenekli (evet, kısmen, hayır) bir yapıda olmasına karar verilmiştir. Ayrıca her biraddenin hedeflediği nitelikin aday MOY sorusunda olup olmama durumuna göre “2-1-0” şeklinde puanlanmasının uygun olacağı düşünülmüştür.

Kontrol listesinin geçerlik ve güvenirliliğine kanıtlar toplanmak amacıyla son olarak yüksek lisans yapan ve MOY dersi alan beş matematik öğretmeni ile bir durum çalışması yapılmıştır. Bu çalışmada, matematik öğretmenlerine bir adet PISA çalışmasında çıkan MOY sorusu ve iki adet matematik uygulamaları dersi (8. sınıf) kitaplarında yer alan toplam üç soru ve kontrol listesi her bir soru için ayrı ayrı yöntemli ve geliştirilmiştir. Önemli olan MOY sorusunun incelemeleri ve sonrasında sorunun incelemesi üzerindeki değişiklikler ve geliştirilmesi istenmiştir.

PISA sınavlarında çıkan örnek bir soru olan “Döner Kapı” sorusuna yönelik öğretmenlerin çoğunlukla kontrol listesindeki kriterleri tamamen ya da kısmen sağladığı şeklinde görüşler bildirmiştir. Kontrol listesinde belirlenen kriterlerin MOY sorusu için uygulanabilir olduğuna yönelik bulguların edilediği söylenehilir. Özellikle “Döner Kapı” sorusunun PISA sınavında çıkmış bir soru olmasına dolaylı kontrol
listesindeki kriterler açısından değerlendirilmesi ve sunulan görüşlerin geliştirilen kontrol listesi açısından önemli bir dayanak olduğu söylenebilir.

Tablo 3.
T3 Öğretmeninin Taslak Kontrol Listesine Yönelik Görüşme Formu.

MOY sorusu,....	İçerik	Uygun	Kısmen	Değil	Açıklama/ Gereçleriniz
İÇERİK					
1	İçerik açısından türü ve kapsamı uygun mudur?	X			
2	Günlük hayatdan bir problem ile sunulmuş mudur?	X			
3	Teoriden çok uygulamayı yansıtmakta mıdır?	X			
4	Ön öğretmelerde uygun mudur?	X			
5	Matematiksel düşünmeyi yansıtmakta mıdır?	X			
6	Farklı temsilleri kullanılmaktak mıdır?	X			
7	Kavramsal-ışlemsel bilgi dengelenmekte midir?	X	Cümle tam olarak açık ve anlaşılır değil.		
BAGLAM					
8	Bağlam açısından türü ve kapsamı uygun mudur?	X			
9	Günlük hayat ile ilişkili mıdır?	X			
10	Farklı disiplinlerle ilişkili midir?	X			
11	Okul matematiği ile ilişkili midir?	X			
12	Bağlam ile içerik birbirine uygun mudur?	X			
SÜREÇ					
13	Süreç becerileri açısından türü ve kapsamı uygun mudur?	X			
14	Formülleştirmeye becerisi yer almaktak mıdır?	X			
15	Problem çözme süreç becerisi yansıtılmış mıdır?	X			
16	Modelleme süreç becerilerini içeremekte midir?	X			
17	Aklı yürütme ve muhakeme süreç becerileri yansıtılmış mıdır?	X			
18	Matematiksel dil ve iletişim becerilerini etkili kullanılmaktak mıdır?	X			
19	Matematiksel dil ve iletişim becerilerini etkili kullanılmaktak mıdır?	X			
20	Analiz, sentez, karşılaştırma gibi bilissel becerilere yer verilmiş mi?	X			
21	İşlensel süreçleri içermekte midir?	X			
22	Çıkarım yapma, yorumlama becerilere yer verilmiş midir?	X			
DÜZEY					
23	Uygun düzeyde karmaşılığa sahip midir?	X			
24	Uygun düzeyde güclüğe/zorluğa sahip midir?	X			
25	Uygun düzeyde anlaşıla bilirliğe sahip midir?	X			
YAPI					
26	Açık uçlu matde tipinde verilmiş midir?	X		Burada bawahedilen farklı madde tiplerinin farklı sorularda sorulması daha uygun olabilir.	
27	Farklı türlerdeki madde tipleri kullanılmış mıdır?	X			
28	İlişkilendirme ve dil kullanılmış mıdır?	X			
29	Araştırma yapıpmaya odaklı midir?	X			
30	Etik anlatım ve dil kullanılmış mıdır?	X			

8. sınıf matematik uygulamaları ders kitabında yer alan örnek bir soru olan “Yarış Pisti” sorusuna yönelik öğretmenlerin kontrol listesindeki kriterlerin bazalarını kısmen ya da hiç sağalamadığı şeklinde görüşler bildirmişlerdir. Kontrol listesinde belirilen kriterlerin MOY sorusu için uygulanabilir olduğuna yönelik bulguların “Yarış Pisti” sorusunda da elde edildiği söylenebilir. Özellikle “Yarış Pisti” sorusunun
okullarımızda matematik uygulamaları dersinde kullanılan bir kitaptaki soru olmasından dolayı kontrol listesindeki kriterler açısından değerlendirilmesi ve sunulan görüşlerin geliştirilen kontrol listesi açısından önemi bir dayanak olduğu şeklinde yorumlanabilir.

8. sınıf matematik uygulamaları ders kitabında yer alan örnek bir soru olan “Çay” sorusuna yönelik öğretmenlerin kontrol listesindeki kriterlerin bazılarını kısmen ya da hiç sağlamadığı şeklinde görüşler bildirmişlerdir. Kontrol listesi ile birlikte uygulanan “Çay” sorusunda da matematik uygulamaları dersi kitabından bir soru yer alır. Çünkü PISA sınavında çıkan soru ve diğer matematik uygulamaları kitabındaki iki soruyu kontrol listesi ile öğretmenler tarafından incelenmesi, kontrol listesinin geçerliği ve güvenilirlüğü hakkında önemli bilgiler verdiğini düşünülmektedir. PISA sınavında çıkan soruları kapsamlı uzman denetimi ve birçok süreçten geçmektedir. Bu çalışmada da öğretmenlerle göre kontrol listesi ile PISA sorusunun diğer sorulara göre daha etkili ve nitelikli olduğu yönünde görüşler belirtilmiştir. Bu görüşler bir bakıma geliştirilen kontrol listesinin geçerliği ve güvenilirliği yönündeki kanıtlar olarak kabul edilmiştir.

Tartışma ve Sonuçlar

Bu araştırmada matematik öğretmeni adaylarına verilen MOY dersi eğitimini sonrasında etkili matematik okuryazarlığı sorusunun sahip olması gereken niteliklere yönelik görüşleri incelenmiştir. Ayrıca MOY sorusu tasarımına yönelik belirtilikleri görüşleri soru tasarımına ne derece yansıttıklarını belirlemek için MOY sorusu tasarlamaları istenmiştir. Araştırmaın ikinci aşamasında ise etkili ve nitelikli MOY sorusunun tasarımında kullanılabilicek bir kontrol listesi geliştirilmiştir.

Öğretmen adayları tarafından MOY sorusuna yönelik içerik kategorisinde en çok belirtilen görüş; sorunun türü, kapsamlı belirlenmeli ve günlük hayatattan bir problem ile sunulmalı görüşü olmuştur. Ayrıca MOY sorusunda, matematiksel düşünmeyi yansıtan, farklı temsilleri kullanma ve kavramsal işlemel bilginin dengesi gibi niteliklere yönelik belirtilikler verilmiştir. Soruların çelişkisini öne çıkaran öğretmenler uygulayış ve teoriden çok uygulamayı yansıttığı gibi niteliklere de belirtildi. Öğretmenlerin MOY becerilerini geliştirmelerinde, literatürdeki önemli bir hedef, MOY sorusunun kapsamlı ileri düzey bilgiler ve becerilerin üst düzeye ulaşması olması gerekir. Bu çalışmadaki öğretmen adayları aldıkları eğitim sonrasında tasarladıkları MOY sorularında farklı içeriklere yer verdikleri belirlenmiştir. Ayrıca bir diğer önemli sonuc ise öğretmen adaylarının bilgi çıktı MOY sorularının günlük hayatattan bir problem durumu ile sunulması görüşünü belirlemişlerdir. Bu görüş MOY’nin kuramsal temelleri (OECD, 2013) ile örtüştüğü düşünülebilir. Yapılan birçok çalışmada PISA’da çıkan MOY sorularına benzer problem çözme becerilerin geliştirildiği ve uygulandığı belirlenmiştir (Novita & Putra, 2016; Novita vd., 2012). Bununla birlikte Sari, Yandari ve Fakhrudin (2017) öğrencilerin MOY becerilerini geliştirmelerinde ve bağımsız öğrenenler olmalarında probleme dayalı öğrenme modelinin olumsuz etkileri olduğunu belirtmişlerdir.

Bu araştırmdaki katılımcılar MOY sorusunun problem durumunda verilmesini gerektirebilecek temsillerine rağmen bazıları bu durumu soru tasarlamalarında yansıtmadıkları belirlemişlerdir. Bu durumda günlük hayatта dayalı MOY problemlerini yazmada güçlüklüleriinin ise öğretmenlerin öğrencilerin bu soruların da etkisini belirtmişlerdir. Yazar (2019) tarafından yapılan çalışmadan ise öğretmen ve öğretmen adaylarının MOY problemlerinde belirsizlik-veri ve çokluk içeriklerini yansıttığına göre daha az istekli oldukları bildirilmiştir. Setiawati vd. (2017) tarafından yapılan araştırmada ise ortak olun MOY becerilerinin düzey 1 ve 2 deki MOY problemlerindeki en çok așılı olduğu kullanmıştır. Ayrıca cebir kavramları hakkında anlama, cebirsel açıklamaları arıtmik işlemleri uygulama ve bilinmemeyen temsil etmekte bilgilerini sunulmuştur. MOY problemlerini çözümde öğrencilerin ön bilgilerini kullanması, ancak bazı sorulara ilşikli olmalıdır.
Altun ve Bozkurt (2017) tarafından yapılan çalışmada MOY sorularının yapısal üzerine yapılan faktör analizi sonucunda içerikle ilişkili faktörlerin olduğu görülmektedir. Özellikle “zengin matematiksel içeriğe hakim olma” faktörü bu araştırmının sonuçları ile doğrudan ortıştığı söylenebilir. Çünkü bir MOY sorusunun tasarımının ilk aşamasının içerik belirleme şeklinde düşünülebilir. Belirlenen içerikin türü, kapsamı ve beceriler ile olan uyumun önemlidir. Ancak bu araştırmadaki katılımcıların MOY sorusunun zengin içeriklerle sahip oluşunun göstergeleri olarak yorumlanabilir. Ancak bu araştırmadaki katılımcıların MOY sorusuna yönelik görüşleri belirtmelerinin rağmen soru tasarımında üst düzeyde bu niteliklerin yansımalarının olduğu söylenemez.

Öğretmen adaylarının bağlam kategorisine ilişkin görüşlerinde en fazla tür-kapsamın belirlenmesi ve günlük hayatla ilgili olması yer almaktadır. Ayrıca soru bağlamının farklı disiplinlerle, okul matematiğine ilgi ve çeşitli yaşamları ile ilgili olduğu görülmektedir. Katılımcılarla göre, soru tasarımında bağlamın türü (kişisel, mesleki, toplumal ve bilimsel) ve kapsamı belirlenmelidir ve özellikle günlük hayatla ilişkili matematiksel durumlar tercih edilmelidir. Goos (2007) ve Bennison’un (2015) öğretmenlerin MOY’yu geliştirmelerine yönelik önerileri modelde bağlam yer almaktadır. Machaba (2018), öğretmenlerin MOY öğretimlerinde bağlamın önemini vurgulayan ve özellikle günlük yaşam ile ilişkili durumların kullanımı gerektiği belirtmiştir. Kortininger vd. (2016), öğrencilere MOY’ların öncelikle PISA matematik etkinliklerine benzer Endonezya doğal ve kültürel mirası bağlamında geçerli ve kullanılan etkinlikler geliştirmeleridir. Bu araştırmadaki katılımcılarla karşılık gelen MOY sorularının bağlamı önemini vurgulayan ve özellikle günlük yaşam ile ilişkili durumların kullanılması gerektiği belirtmiştir. Benzer durum Yazar (2019) tarafından yapılan çalışmada da öğretmenin ve öğretmen adaylarının problemlerindeki bağlamların PISA çalışması ile ilişkili problemlerin yaşanması üzerine belirtmiştir. MOY sorularının bağlamsal açıdan “tür-kapsam, günlük hayat, farklı disiplinler, okul matematiği ile ilişki ve içerikle uygun olması” olarak görülmektedir. Soru tasarımında bu niteliklerin etkili ve kapsamlı kullanıldığı, bağlamsal açıdan matematik öğretmene olumlu katkıları olacaktır. Çünkü pür matematiksel içerik ve durumlarından yararlanarak MOY sorularında öğrencinin matematikleri öğrenmesi, anlaşılanması, ilgilendirilmesi ve değer vermesi mümkün olmamalıdır. Yazar (2013), ilköğretim öğretim adaylarının MOY’ının önemini ve etkili bağlamların kullanılması ile ortaya çıkarmaktadır.

Öğretmen adaylarının süreç kategorisine ilişkin görüşlerinde de tür ve kapasite belirlendiği görülmektedir. Ayrıca MOY sorusunun tasarımında matematiksel süreçlerin; formülleştirme, problem çözme, modellenme, akıl yürütme-ispat, ilkelleştirme, matematiksel dil ve iletişim, bilimsel beceriler ve işlemler becerileri açısından içerikli bir şekilde değerlendirilmiştir. Öğretmen adaylarının matematiksel süreçlerle ilişkin görüşlerinin PISA çalışması kurumsal temeller (OECD, 2013) ile büyük ölçüde uyumlu olduğu söylenebilir. Ayrıca görüşlerinin NCTM’in (2000) süreç standartlarını yansıttığını da söylemek mümkündür. Benzer şekilde Yazar (2013), ilköğretim öğretim adaylarının MOY’ının geliştirilmesinde matematikleri somutlaştırma, ilgi, etkileşim ve düşünmeye yönlendirme gibi faktörlerin etkili olduğu belirtmiştir. MOY’ın öne mi etkili bağlamların kullanılması ile ortaya çıkarmaktadır.

Üretilen metaforlar değerlendirildiğinde, bunların pek çoğunun üst düzey düşünme becerilerini (anализ, sentez, değerlendirme vb.) gerektirdiği gözlendi. Kortininger vd. (2016) tarafından yapılan çalışmada ise öğrencilere MOY’ların geliştirilmesinde geçerli, pratik ve potansiyel etkileri olan PISA’ya benzer geliştiren etkinlikler öğrencilere interior, muhakeme, argümantasyon, temsil etme, matematiksel etkinleştirme, problem çözme, formal/simbolik dili kullanma ve öğrencinin ilgi ve dikkatlerine etkilediği belirttilmiştir. Bu arastırmada Altun ve Bozkurt (2017), MOY sorularının yapısal özellikleri arasında algoritmlık işlem yapma, zengin matematiksel içeriğe hakim olma, matematiksel çıkarıldığında bulunan, matematiksel önerisi geliştirme ve/veya geliştirilmiş öneriyi yorumlama, yaşamsal durumun matematik dilindeki
karşılığını anlama, matematik dilinin yaşamdaki karşılığını anlama gibi nitelikler belirlemişlerdir. Bu arastırmının bulgularında süreç kategorisinde akıl yürütme ve ispat en fazla frekansa sahip alt kategori olarak bulunmuştur. Ancak ülkemizdeki matematik dersi öğretim programlarında bu süreç becerilerine yeterince vurgu yapılmadığı söylenemektedir. MOY becerilerinin gelişimi açısından akıl yürütme ve ispat gibi süreç becerilerinin öne mini bu çalışmada da ortaya çıkmıştır.

Öğretmenler matematiksel etkinliklerde öğretim ya da ölçme amaçlı kullanmak istedikleri yeterlik ihtiyaçlarını belirleyebilmelidir. (Pettersen & Nortvedt, 2018). Bu bağlamda hedeflenen süreç becerileri MOY’nin gelisimi ya da ölçülmek için kullanılan problem etkinliklerine etkili bir yaklaşım ile yansıtılmakta. Bu arastırmadaki katılımcılar soruların matematiksel süreç becerileri açısından oldukça kapsamlı ve etkili görüşleri belirlemektedir. Ancak süreç becerilerini soru tasarlarından uygulama konusunda çeşitli güçlüklерin ve sınırlıkların olduğu söylemildir.

Öğretmen adaylarının düzey kategorisine yönelik görüşlerinde uygun düzeyde karmaşık, güçlük ve anlayışırlık nitelikler belirtilmiştir. PISA çalışmasında problemler zorlu düzey açısından altı düzeyde ele alınmıştır ve her bir düzeyde ait karakteristikler tanımlanmıştır (OECD, 2013). Bu doğrultuda tasarlanacak MOY sorularında güçlü, karmaşık ve anlayışırlık önemli nitelikler olarak kabul görmekte. Arastırmacıların adaylarının MOY’ye yönelik görüşleri ve becerileri ile Türkiye’nin PISA çalışmasındaki MOY sonuçlarının benzerlik gösterdiğini söylemek. Türkiye’deki öğrenciler PISA 2012 ve 2015 sınavlarından MOY puanlarının ortalama 2. ve 3. düzey aralığında en fazla dağılmıştır (MEB, 2012, 2016). Benzer şekilde İlkokul ve 8. sınıf (2011), 8. sınıfders kitaplarından birinde yer alan soruların matematik yeterlik ölçeğine göre incelenerek sınıflandırılmıştır. Bu sınıfların sonuçlarına göre 8. sınıfders kitaplarında bütün düzeylerde sorulara yer verilmediği görülmektedir. Kitapta, 1. ve 2. düzeyde soru, problem, alıştırma ve örneklerle rastlanmıştır. Bu düzeylerden de ağırlıklı olarak 2. düzeydeki sorular bulunmaktadır. Ayrıca İlkokul, Erkan ve Serbest (2013), Türkiye’de uygulanan lisede geçmiş sınavlarında 2008-2013 yılları arasında sorulan matematik sorularını PISA yeterlik ölçüğine göre sınıflayıp incelemiştir. Çalışmada sorunlara matematik becerilerinin bütün seviyeleri uygun sorular olmalıdırı göstermiştir. Soruların genel olarak 2. ve 3. sıralarda yer almaktaydı, en üst sıralarda ise 5. sıralarda bir tane, 6. sıralarında ise herhangi bir sorunun bulunmadığı görülmüşdür. Bu bağlamda MOY’yu ölçmeye ya da geliştirmeye yönelik soru tasarımına dair bir durumda gerekli olması gerektiği vurgulanmıştır. Bu arastırmacıların MOY’ye yönelik görüşleri, becerileri ve anlayışırlık açısından çeşitli güçlüklereki öne mini bu çalışmadan da ortaya çıkmıştır.
sınıfta tartışma ortamı oluşturmak gibi birçok önemli amaç için kullanılabilir. Bu yüzden MOY soru tasarımıda farklı türlerdeki soruların güçlü yanlarını ön plana çıkararak, ilgi çekici, merak uyandırıcı ve araştırma odaklı sorular tasarlanabilir.

Bu araştırmada geliştirilen MOY soru tasarımına yönelik kontrol listesinde yapı kategorisi de önemli bir faktör olarak belirlenmiştir. Matematik öğretmenleri ile yapılan bir örnek uygulamada da verilen sorunun MOY sorusu olma açısından kriterlere uygunluğunun test edildiği görülüştür. Bu doğrultuda, yapıcı kategorisi denklik ve öğrenme sürecinde-peer alan kriterlerin MOY tasarımında önemli ve etkili hususlar olduğu yapılan uygulama ile ortaya konmuştur. Etkili ve nitelikli MOY soru tasarımının yapılaması için yapıcı kategorisinde denklik belirlenen kriterlerin de diğer kriterler kadar önemli olduğu ve üzerinde düşünülmemesi gerektiği belirlenmiştir.

Araştırmaya katılan matematik öğretmen adaylarının MOY sorusunun niteliklerine yönelik belirttilerleri görüşleri için analizde incelenmiştir. Yapılan analiz sonucunda MOY öğretmenlerinin nitelikleri beş kategori altında ortaya konmuştur. İçerik, süreç, bağlam, düzey ve yapı kategorileri MOY sorununun niteliklerine yönelik unsurlar olmuştur. Araştırmacının incelemesinde ise MOY sorusunun tasarım için bir kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturulmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Öneriler
Bu araştırmada MOY soru tasarımına yönelik dikkat edilmesi gereken niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusunun MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesi oluşturulmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Bu araştırmada MOY soru tasarımına yönelik niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Bu araştırmada MOY soru tasarımına yönelik niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Bu araştırmada MOY soru tasarımına yönelik niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Bu araştırmada MOY soru tasarımına yönelik niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.

Bu araştırmada MOY soru tasarımına yönelik niteliklerin de bir bakıma ortaya çıktığı söylenebilir. Çünkü soru tasarımında belirttiilen beş kategorisinin ayrı bir biçimde düşünülemeyeceği ve bunların birbiriyle olan ilişkilerine yönelik yansımlar görmek mümkündür. MOY sorusuna yönelik kontrol listesi oluşturulmuştur. Birinci aşamada ortaya çıkan içerik, süreç, bağlam, düzey ve yapı kategorileri kontrol listesini oluşturmuştur. Uzman görüşleri ve matematik öğretmenlerinden alınan görüşler sonrasında beş faktörlü ve 28 maddeden ve 3 seçeneğli (evet, kesin, hayır) bir yapıdan oluşan MOY sorusuna yönelik kontrol listesi geliştirilmiştir. Del Prado vd. (2016) tarafından MOY uygulama kontrol listesi geliştirilmiştir fakat MOY soru tasarımında benzer bir kontrol listesinin olmadığı belirtilmiştir. Kontrol listesinde ortaya çıkan kategorilerin OECD (2013) tarafından yapılan PISA çalışmalarındaki ölçme çerçevesine uygun olduğu söylenebilir. Geliştirilen MOY soru tasarımının araştırılacağı ve uygulanabileceği ihtiyaç duydukları bir yönergeler ve rehber olarak kullanılabilir.
sorunun etkili ve nitelikli olmadığı belirtilmesi sağlanabilirdi. Özellikle MOY sorularına yönelik içerik, bağlam, süreç, düzey ve tür kategorilerinde beklenen ve kuramsal temeller ile uyumlu görüşlere sahip oldukları belirlenmiştir. Bu çalışmadaki öğretmen ve öğretmen adaylarına verilen bu MOY eğitiminin meslekte çalışan matematik öğretmenlerine de verilmesi düşünülebilir. Bu yaklaşım ile matematik öğretmenlerinin MOY ve soru tasarımına yönelik bilgi, beceri ve deneyimlerinde gelişim sağlanabilir. Etkili ve nitelikli MOY sorununun tasarımının nasıl olması gerektiğini üzerinde öğretmen, öğretmen adayı ve matematik eğitimi araştırmacıların daha fazla düşünmeleri için fırsatlar sağlanmalıdır.
References

Altun, M., & Akkaya, R. (2014). Mathematics teachers’ comments on PISA math questions and our country’s students’ low achievement levels. Hacettepe University Journal of Education, 29(1), 19-34.

Altun, M., & Bozkurt, I. (2017). A new classification proposal for mathematical literacy problems. Education and Science, 42(190), 171-188. Doi: 10.15390/EB.2017.6916

Bennison, A. (2015). Developing an analytic lens for investigating identity as an embedder-of-numeracy. Mathematics Education Research Journal, 27, 1-19.

Bekdemir, M., & Baş, F. (2017). Matematik öğretmenlerinin sınavlarda kullandıkları soruların kavramsal ve işlemel bilgi boyutunda analizi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 36(1), 95-113. Doi: 10.7822/omuefd.327392

Bozkurt, A., Kılıç, P., & Özmantar, M.F. (2017). Ortaokul matematik sınıflarında öğretime yönelik öğretmen soru türlerinin incelenmesi. Yıldız Journal of Educational Research, 2(1), 1-29.

Creswell, J.W. (2013). Nitel araştırma yöntemleri – Beş yaklaşma göre nitel araştırma ve araştırma deseni [Qualitative research methods - qualitative research and research design according to five approaches] (M. Büttün & Ş.B. Demir, Çev. Ed.). Ankara, Turkey: Siyasal Kitabevi.

Del Prado Hill, P. M., Friedland, E. S., & McMillen, S. E. (2016). Mathematics-Literacy Checklists: A Pedagogical Innovation to Support Teachers as They Implement the Common Core. Journal of Inquiry and Action in Education, 8(1), 24-38. Retrieved from https://digitalcommons.buffalostate.edu/jiae/vol8/iss1/2

Demir, F. (2015). Matematik okuryazarlığı soru yazma süreç ve becerilerinin gelişimi. Yayınlanmamış Doktora Tezi, Uludağ Üniversitesi, Eğitim Bilimleri Enstitüsü, Bursa.

Demir, F., & Altun, M. (2018). Matematik okuryazarlığı soru yazma süreç ve becerilerinin gelişimi [Development of mathematical literacy question writing process and skills]. Eğitim ve Bilim, 43(194), 19-41. Doi:10.15390/EB.2018.7111

Evans, D. (2017). Examining the literacy within numeracy to provide access to the curriculum for all. International Perspectives on Inclusive Education, 11, 35-51.

Genç, M., & Erbaş, A.K. (2020). Secondary mathematics teachers’ conceptions of the barriers to the development of mathematical literacy. International Journal for Mathematics Teaching and Learning, 21(2), 143-173.

Genç, M., & Erbaş, A.K. (2017, Mayıs). Lise matematik öğretmenlerinin matematik okuryazarlığı bağlamında matematik öğretim programına ilişkin görüşleri [High school mathematics teachers' views on the mathematics curriculum in the context of mathematics literacy]. Türk Bilgisayar ve Matematik Eğitimi Sempozyumu - 3'te sunulan bildiri. 17-19 May 2017, Afyon, pp. 547-551.

Güler, H.K. (2013). Türk öğrencilerin PISA’da karşılaştıkları güçlüklerin analizi [Analysis of Turkish students’ difficulties encountered in PISA]. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 26(2), 501-522.

Gürbüz, M.C. (2014). PISA matematik okuryazarlık öğretiminin PISA sorusu yazma ve matematik okuryazarlık düzeyleri üzerine etkisi [The effect of PISA mathematical literacy teaching on writing PISA questions and mathematical literacy] (Master’s thesis, Uludağ University, Bursa, Turkey). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/.

İskendoroğlu, T.A., & Baki, A. (2011). İlköğretim 8. sınıf matematik ders kitaplarındaki soruların pısa matematik yeterlik düzeylerine göre sınıflandırılması [Classification of the questions in an 8th grade mathematics textbook with respect to the competency levels of PISA]. Eğitim ve Bilim, 36(161), 287-301.

İskenderoğlu, T.A., Erkan, İ., & Serbest, A. (2013). 2008-2013 yılları arasındaki SBS matematik sorularının PISA matematik yeterlik düzeylerine göre sınıflandırılması [Classification of SBS mathematics
questions between 2008-2013 years with respect to PISA competency levels]. *Turkish Journal of Computer and Mathematics Education*, 4(2), 147-168.

Julie, H., Sanjaya, F., & Anggoro, A.Y. (2017). The students’ ability in the mathematical literacy for uncertainty problems on the PISA adaptation test. *The 4th International Conference on Research, Implementation, and Education of Mathematics and Science (4th ICRiEMS)*, pp.1-9. Doi: 10.1063/1.4995153

Kabael, T., & Barak, B. (2016). Ortaokul matematik öğretmeni adaylarının matematik okuryazarlık becerilerinin PISA soruları üzerinden incelenmesi [Research of middle school pre-service mathematics teachers’ mathematical literacy on PISA items]. *Turkish Journal of Computer and Mathematics Education*, 7(2), 321-349.

Kamaliyah, K., Zulkardi, Z., & Darmawijoyo, D. (2013). Developing the sixth level of PISA-like mathematics problems for secondary school students. *Journal on Mathematics Education*, 4(1), 9-28.

Kilpatrick, J. (2001). Understanding mathematical literacy: The contribution of research. *Educational Studies in Mathematics*, 47, 101–116.

Kohar, A.W., Zulkardi, Z., & Darmawijoyo, D. (2014). Developing PISA-like mathematics tasks to promote students’ mathematical literacy. In: Ratu Ilma (Eds) *The Second South East Asia Design/Development Research (SEA-DR) International Conference* April 26-27, 2014 Unsri Palembang April 26th-27th 2014 Palembang, pp. 14-26.

Lailiyah, S. (2017). Mathematical literacy skills of students’ in term of gender differences. *The 4th International Conference on Research, Implementation, and Education of Mathematics and Science (4th ICRiEMS)*. Doi: 10.1063/1.4995146.

Lestari, N.D.S., Juniati, D., & Suwarsono, S. (2017). Preliminary study: Mathematics’ teacher conception in supporting the integration of mathematics’ literacy and mathematics teaching and learning. *International Conference on Mathematics: Education, Theory, and Application (ICMETA)*, Proceeding ICMETA: Vol. 1/2017, June 27th 2017, pp.76-83.

Machaba, F.M. (2018). Pedagogical demands in mathematics and mathematical literacy: A case of mathematics and mathematical literacy teachers and facilitators. *EURASIA Journal of Mathematics, Science and Technology Education, 14*(1), 95-108.

Malasari, P.N., Herman, T., & Jupri, A. (2017). The construction of mathematical literacy problems for geometry. *International Conference on Mathematics and Science Education (ICMScE)*, pp.1-7. Doi: 10.1088/1742-6596/895/1/012071

McCrone, S.S., & Dossey, J.A. (2007). Mathematical literacy – It’s become fundamental. *Principal Leadership*, 7(5), 32-37.

Milli Eğitim Bakanlığı [MEB]. (2012). *PISA Türkiye [PISA Turkey]*. Ankara: EARGED Yayınları.

Milli Eğitim Bakanlığı [MEB]. (2016). *Uluslararası öğrenci değerlendirme programı - PISA 2015 ulusal raporu* [International student assessment program. PISA 2015 national report]. Ankara: EARGED Yayınları.

Milli Eğitim Bakanlığı [MEB]. (2018). *Ortaöğretim matematik dersi (9, 10, 11 ve 12. Siniflar) öğretim programı* [Mathematics curriculum and guidance (grades 9-12)]. Ankara: MEB.

National Council of Teachers of Mathematics [NCTM]. (2000). *Principles and standards for school mathematics*. Reston, VA: Author.

Novita, R., & Putra, M. (2016). Using task like PISA’s problem to support student’s creativity in mathematics. *Journal on Mathematics Education, 7*(1), 31-42.

Novita, R., Zulkardi, Z., & Hartono, Y. (2012). Exploring primary student’s problem-solving ability by doing tasks like PISA’s question. *Journal on Mathematics Education, 3*(2), 133-150.
Oktiningrum, W., Zulkardi, Z., & Hartono, Y. (2016). Developing PISA-like mathematics task with Indonesia natural and cultural heritage as context to assess students mathematical literacy. *Journal on Mathematics Education*, 7(1), 1-10.

Organisation for Economic Co-Operation and Development [OECD]. (2013). *PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy*. Paris: OECD Publishing. Doi: 10.1787/9789264190511-en.

Özgen, K., & Bindak, R. (2008). Matematik okuryazarlığı öz-yeterlik ölçeğinin geliştirilmesi. *Kastamonu Üniversitesi Kastamonu Eğitim Dergisi*, 16(2), 517-528.

Özgen, K., & Kutluca, T. (2013). İlköğretim matematik öğretmen adaylarının matematik okuryazarlığına yönelik görüşlerinin incelenmesi. *Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 5(10), 1-21.

Özgen, K. (2019). Problem posing skills for mathematical literacy: The sample of teachers and pre-service. *Eurasian Journal of Educational Sciences*, 84, 179-214, DOI: 10.14689/ejer.2019.84.9

Pettersen, A., & Nortvedt, G.A. (2018). Identifying competency demands in mathematical tasks: Recognising what matters. *International Journal of Science and Mathematics Education*, 16(5), 949-965. doi:10.1007/s10763-017-9807-5.

Pilten, P., Divrik, R., Pilten, G., & Ebret, A. (2017). Sınıf öğretmeni adaylarının matematiksel okuryazarlık kavramına ilişkin metaforik algıları [Prospective primary teachers’ metaphorical perceptions about the concept of mathematical literacy]. *Trakya University Journal of Education, Special Issue*, 47-67.

Pugalee, D. K. (1999). Constructing a model of mathematical literacy. *The Clearing House*, 73(1), 19-22.

Saenz, C. (2009). The role of contextual, conceptual and procedural knowledge in activating mathematical competencies (PISA). *Educational Studies in Mathematics*, 71, 123–143.

Sari, F.A., Yandari, I.A.V., & Fakhrudin, F. (2017). The application of problem based learning model to improve mathematical literacy skill and the independent learning of student. *IOP Conf. Series: Journal of Physics: Conf. Series* 812 (2017) 012013, pp. 1-6. Doi:10.1088/1742-6596/812/1/012013

Setiawati, S., Herman, T., & Jupri, A. (2017). Investigating middle school students’ difficulties in mathematical literacy problems level 1 and 2. *International Conference on Science and Applied Science 2017*, pp. 1-9. Doi:10.1088/1742-6596/909/1/012063

Somakim, S., Suharman, A., Madang, K., & Taufig, T. (2016). Developing teaching materials pisa-based for mathematics and science of junior high school. *Journal of Education and Practice*, 7(13), 73-77.

Stacey, K. (2010). Mathematical and scientific literacy around the world. *Journal of Science and Mathematics Education in Southeast Asia*, 33(1), 1-16.

Stacey, K. (2011). The PISA view of mathematical literacy in Indonesia. *Journal on Mathematics Education in Southeast Asia*, 2(2), 95-126.

Şefik, Ö., & Dost, Ş. (2016). Ortaöğretim matematik öğretmen adaylarının matematik okuryazarlığı hakkındaki görüşleri [Secondary preservice mathematics teachers' views on mathematical literacy]. *Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education*, 10(2), 320-338.

Tout, D., & Spithill, J. (2015). The challenges and complexities of writing items to test mathematical literacy. In K. Stacey & R. Turner (Eds.), *Assessing mathematical literacy: The PISA experience* (pp. 145-171). Switzerland: Springer International Publishing.

Yıldırım, A., & Simsek, H. (2005). *Sosyal bilimlerde nitel araştırma yöntemleri* [Qualitative research methods in the social sciences]. Ankara, Turkey: Seckin Yayıncılık.

Yin, R.K. (2017). *Durum çalışması araştırması uygulamaları*. Çev. İ. Günbay. Ankara, Turkey: Nobel.
Appendix

Ek 1.
Matematik Okuryazarlığını Ölçmeyev Yönelik Soru Tasanında Kontrol Listesi

Madde	Evet	Kısmen	Hayır
İçerik			
1	MOY sorusunun içerik açısından türü (nicelik, değişim-ilişki, uzay-şekil, belirsizlik-veri) ve kapsamı uygun mudur?		
2	MOY sorusu günlük hayattan bir problem ile sunulmuş mudur?		
3	MOY sorusu teoriden çok uygulama yansıtma etkisi midir?		
4	MOY sorusu ön öğrenmeler ile uygun mudur?		
5	MOY sorusu matematiksel düşünmeyi yansıtmakta midir?		
6	MOY sorusu farklı temsillerin kullanılamasına uygun mudur?		
7	MOY sorusu kavramsal-işlemsel bilgileri dengelenme midir?		
Bağlam			
8	MOY sorusunun bağlam açısından türü (kisiel, toplumsal, mesleki, bilimsel) ve kapsamı uygun mudur?		
9	MOY sorusu günlük hayat ile ilişkili mi?		
10	MOY sorusu farklı disiplinler ile ilişkili mi?		
11	MOY sorusu okul matematiği ile ilişkili mi?		
12	MOY sorusunda bağlam ile içerik birbirine uygun mudur?		
Süreç			
13	MOY sorusunun süreç becerileri açısından türü (formülleştirmeye, yürütme, yorumlama) ve kapsamı uygun mudur?		
14	MOY sorusu problem çözme becerileri kullanmayı gerektiriyor mu?		
15	MOY sorusu modellleme süreç becerilerini kullanmayı gerektiriyor mu?		
16	MOY sorusu ahlak yürütme ve muhakeme becerilerini kullanmayı gerektiriyor mu?		
17	MOY sorusu ilişkilendirme becerilerini kullanmayı gerektiriyor mu?		
18	MOY sorusu matematiksel dil ve iletişim becerilerini etkili kullanmayı gerektiriyor mu?		
19	MOY sorusu analiz, sentez, karşılaştırma gibi bilişsel becerileri kullanmayı gerektiriyor mu?		
20	MOY sorusu işlemel süreçleri kullanmayı gerektiriyor mu?		
Düzey			
21	MOY sorusu uygun düzeyde karmaşıklığı sahip midir?		
22	MOY sorusu uygun düzeyde güçlüğü/zorluğa sahip midir?		
23	MOY sorusu uygun düzeyde anlaşılabilirliğe sahip midir?		
Yapı			
24	MOY sorusu açık uçlu madde tipinde verilmiş mi?		
25	MOY sorusunda farklı türlerdeki madde tipleri kullanılmış mı?		
26	MOY sorusu ilgi çekici, merak uyandırıcı mı?		
27	MOY sorusu araştırma yapmaya odaklı mı?		
28	MOY sorusu etkili anlatım ve dil kullanılmış mı?		