Multiple myeloma gammopathies

Clinical features and survival outcomes in IgD myeloma: a study by Asia Myeloma Network (AMN)

Jin Liu1 · Xiaoxia Hu2 · Yanchun Jia1 · Jin Lu3 · Jae Hoon Lee4 · Kihyun Kim5 · Wenming Chen6 · Aijun Liu6 · Yang Liu3 · Qi Chen7 · Chunyang Zhang8,1,8 · Cheolwon Suh9 · Min Kyoung Kim10 · Fan Zhou11 · Wee Joo Chng12,13,14 · Shaji K. Kumar15 · Brian Durie16 · Jian Hou17 · Weijun Fu1 · Juan Du1

Received: 3 July 2020 / Revised: 21 August 2020 / Accepted: 5 October 2020 / Published online: 20 October 2020
© The Author(s) 2020. This article is published with open access

To the Editor:

Immunoglobulin D (IgD) myeloma is a rare isotype that comprises 1–2% of multiple myeloma (MM) patients [1–3], which has significantly inferior survival for a median overall survival (OS) between 13 and 21 months [4–6].

Given the lack of large cohort with comprehensive clinical and cytogenetic assessment, knowledge about IgD myeloma is obtained mostly from a limited sample size [7]. Therefore, we carried out a multicenter retrospective study to evaluate the prevalence, clinical features, prognosis, and to develop and validate a prognostic model, including 356 patients with IgD myeloma from 14 centers of Asian Myeloma Network (AMN).

Data were collected from China, Korea, and Singapore diagnosed from 2002 to 2019 (Supplementary Table 1). Ethical committee approvals were obtained and study protocol was approved by the Institutional Review Board of each institution. To avoid clinical information leak, and get

These authors contributed equally: Jin Liu, Xiaoxia Hu, Yanchun Jia
These authors contributed equally: Jian Hou, Weijun Fu, Juan Du

Supplementary information The online version of this article (https://doi.org/10.1038/s41375-020-01060-w) contains supplementary material, which is available to authorized users.
Table 1

Table 1 Characteristics of the study populations.

Variable	IgD MM (N = 356, %)	Non-IgD MM (N = 712, %)	P value	
Sex	Male	241 (67.7)	429 (60.3)	0.018
	Female	115 (32.3)	283 (39.7)	0.006
Age at diagnosis, years	Median (range)	56 (32–85)	62 (23–96)	<0.001
	<65	286 (80.3)	468 (65.7)	<0.001
	≥65	70 (19.7)	244 (34.3)	0.812
DS Stage	I	8 (2.2)	16 (2.2)	0.018
	II	23 (6.5)	54 (7.6)	0.006
	III	323 (91.3)	642 (90.2)	0.006
ISS stage	I	70 (19.7)	179 (25.1)	<0.001
	II	64 (17.9)	262 (36.8)	0.006
	III	222 (62.4)	271 (38.1)	0.006
Plasma cells of BM (%)	≥50	149 (41.9)	143 (20.1)	<0.001
	<50	207 (58.1)	569 (79.9)	0.006
Hemoglobin level (g/L)	<100	231 (64.9)	420 (59)	0.063
	≥100	125 (35.1)	292 (41)	0.006
Platelet count (10^9/L)	<100	76 (22.3)	91 (12.8)	<0.001
	≥100	280 (78.7)	621 (87.2)	0.006
Serum LDH (U/L)	≥245	136 (38.2)	177 (24.9)	<0.001
	<245	220 (61.8)	535 (75.1)	0.006
Serum creatinine level (mg/dL)	≥2	137 (38.5)	131 (18.4)	<0.001
	<2	219 (61.5)	581 (81.6)	0.006
Serum calcium level (mmol/L)	≥2.65	85 (23.9)	105 (14.7)	<0.001
	<2.65	271 (76.1)	607 (85.3)	0.006
Light chain restriction	Kappa	40 (11.2)	407 (57.2)	<0.001
	Lambda	316 (88.8)	305 (42.8)	0.006
Extramedullary plasmacytoma	Yes	68 (19.1)	106 (14.9)	0.079
	No	288 (80.9)	606 (85.1)	0.006
R-ISS stage	I	42 (11.8)	114 (16)	<0.001
	II	175 (49.2)	449 (63.1)	0.006
	III	115 (32.3)	149 (20.9)	0.006
	Data missing	24 (6.7)	0 (0)	0.006
FLCR	0.01–100	137 (38.5)	356 (50)	0.099

Table 1 (continued)

Variable	IgD MM (N = 356, %)	Non-IgD MM (N = 712, %)	P value	
	≥0.01, ≥100	138 (38.8)	356 (50)	0.006
	Data missing	81 (22.7)	0 (0)	0.006
Del (13q) in FISH	Yes	77 (21.7)	261 (36.7)	0.001
	No	224 (62.9)	451 (63.3)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
Del (17p) in FISH	Yes	35 (9.9)	75 (10.5)	0.006
	No	266 (74.7)	637 (89.5)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
Ig21 gains in FISH	Yes	91 (25.6)	368 (51.7)	<0.001
	No	179 (50.2)	344 (48.3)	0.006
	Data missing	86 (24.2)	0 (0)	0.006
t (11;14) in FISH	Yes	88 (24.7)	96 (13.5)	<0.001
	No	213 (59.9)	616 (86.5)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
t (4;14) in FISH	Yes	4 (1.1)	136 (19.1)	<0.001
	No	297 (83.5)	576 (80.9)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
iq21 gains in FISH	Yes	20 (5.6)	116 (16.3)	<0.001
	No	251 (70.5)	596 (83.7)	0.006
	Data missing	85 (23.9)	0 (0)	0.006
t (11;14) and Del (13q) in FISH	Yes	28 (7.9)	28 (3.9)	0.006
	No	273 (76.7)	684 (96.1)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
t (11;14) and Del (17p) in FISH	Yes	10 (2.8)	5 (0.7)	0.006
	No	291 (81.8)	707 (99.3)	0.006
	Data missing	55 (15.4)	0 (0)	0.006
t (11;14) and 1q21 gains in FISH	Yes	27 (7.6)	39 (5.5)	0.012
	No	243 (68.2)	673 (94.5)	0.006
	Data missing	86 (24.2)	0 (0)	0.006
Table 1 (continued)

Variable	IgD MM (N = 356, %)	Non-IgD MM (N = 712, %)	P value
t (11;14) and t (4;14) in FISH			
Yes	1 (0.3)	0 (0)	0.124
No	300 (84.3)	712 (100)	
Data missing	55 (15.4)	0 (0)	
t (11;14) and t (14;16) in FISH			
Yes	0 (0)	0 (0)	NA
No	301 (84.6)	712 (100)	
Data missing	55 (15.4)	0 (0)	
t (11;14) and double hit in FISH			
Yes	6 (1.7)	2 (0.3)	0.003
No	265 (74.4)	710 (99.7)	
Data missing	85 (23.9)	0 (0)	
t (11;14) and triple hit in FISH			
Yes	0 (0)	0 (0)	NA
No	270 (75.8)	712 (100)	
Data missing	86 (24.2)	0 (0)	

MM multiple myeloma, Ig immunoglobulin, DS Durie Salmon, ISS international staging system, R-ISS revised ISS, LDH Lactate dehydrogenase, BM bone marrow, FISH fluorescence in situ hybridization, Del deletion, FLCR free light chains ratio, NA not available.

*aThe cooccurrence of any 2 of the following: t(4;14), t(14;16), gain (1q), del(17p).

*bThe cooccurrence of 3 or more of the following: t(4;14), t(14;16), gain(1q), del(17p).

a real sense of the accurate model’s outcomes, we split existing 356 IgD MM to three parts, namely training cohort (one center from Shanghai, n = 212), validation cohort 1 (two centers from Beijing, n = 81), and validation cohort 2 (centers from Korea and Singapore, n = 63). The Least Absolute Shrinkage and Selector Operation (LASSO) Cox regression model to determine prognostic factors from the variables with P < 0.05 in the log-rank tests was performed as described [8, 9]. The quality of the prediction model was measured using the concordance index (C-index) and areas under the time-dependent receiver-operating characteristics (ROC) curves (AUCs). A bootstrap with 1000 re-samples was used for internal validation. SAS 9.4 and R 3.5.1 were used for the statistical analysis.

A total of 356 patients with IgD myeloma represented 2–8.8% of all myeloma patients, especially over 5% IgD myeloma prevalence in Chinese centers. We compared the clinical characteristics of IgD myeloma with 712 (1:2) non-IgD myeloma patients random selected as control matched for year of diagnosis and systemic therapy from Shanghai Changzheng Hospital. Baseline characteristics of total cohort are listed on Table 1 and different centers are shown in Supplementary Table 2. IgD myeloma patients had a higher frequency in male, younger than 65 years, advanced R-ISS stage III, hypercalcemia, elevated creatinine levels, and elevated LDH. Cytogenetic information was available for 301 patients (84.6%), while the 1q21 probe was only performed in 75.8% patients. Notably, 29.2% frequency of t(11;14) was predominantly higher compared to those in non-IgD subtypes (P < 0.001). Among the 88 IgD patients harbored t(11;14), the most frequent chromosome abnormalities (CA) coupled with t(11;14) were 13q- (31.8%), 1q21 + (30.7%), and followed 17p- (11.4%). ‘Double-hit’ or ‘triple-hit’ [10, 11] only occurred 5.6% and 0.3% patients, respectively.

And then, we compared IgD myeloma patients with IgG, IgA, and light chain patients random selected as matched control (Supplementary Table 3). The median age was younger in IgD compared with others myeloma subtypes. Notably, the frequency of t(11;14) was significantly higher than non-IgD subtypes (IgD 29.2% vs IgG 10.6% vs IgA 8.4%, P < 0.001), but was a slight higher than light chain subtype (29.2 vs 24.9%). ‘Double-hit’ phenotype was significant lower in IgD myelomas than others subtypes.

Frontline treatment modalities used are shown in Supplementary Table 4. The overall response rate (ORR) was 88.8%, and very good partial response or better was 58.6% (Supplementary Table 5). After a median follow-up of 8.2, 7.3, and 4.9 years for the three cohorts, the median OS were 36.5 months for the total cohort and 31.2 months in training cohort, 52.2 months in validation cohort 1, and 45.7 months in validation cohort 2 (Supplementary Fig. 1 and Supplementary Table 6). Patients received IMiDs showed a relatively longer median OS than others regimens, however, which untranslated into a significant survival benefit (P = 0.17, Supplementary Fig. 2a), and might be the subgroups limitation. Patients received ASCT had a median OS of 45.7 months, which was a slightly longer than 35 months for non-ASCT patients (P = 0.4, Supplementary Fig. 2b). We subsequently investigated whether cytogenetic aberration was a prognostic factor [12], which showed that CA did not have an impact on OS, suggesting other molecular events overcame initial CA risk features and impact prognosis.

Subsequently, the LASSO Cox regression model to determine prognostic factors from the univariate analysis was performed (Supplementary Table 7). Five clinical parameters with statistically relevant, including lambda light chain, plasma cells in BM >50%, hemoglobin <100 g/L, LDH >245 U/L, and extramedullary plasmacytoma, were integrated into multivariate LASSO regression model (Supplementary Table 8). A nomogram was developed and the risk score was computed as follows: 0.9215 × lambda light chain + 0.6376 × plasma cells in BM (≥50%) + 0.5203 × anemia (<100 g/L) + 0.6864 × LDH (≥245 U/L) + 0.4484 × extramedullary plasmacytoma (variable present = 1, absent = 0, Fig. 1a, b). The predictive accuracy for OS calculated using the C-index was 0.705 (95% CI, 0.663–0.747). In the internal
validation, the corrected C-index of OS was 0.696. Similarly, the C-index for OS in validation cohort 1 was 0.690 (95% CI, 0.612–0.768) and 0.703 (95% CI, 0.608–0.798) in validation cohort 2. The calibration curves of the alternative nomogram to predict the 3-year OS presented in Fig. 1c–e suggested a good fit for the observed nomogram, when compared with the ideal nomogram. The panel displayed an AUC value at 1-year, 3-year, and 5-year OS, and the validation sets had a similar high AUC values at these timepoints (Fig. 1f–h).

On the basis of the distribution of the risk scores and the 3-year survival probability, two categories of risk were created with the cut-off point at 1.56: standard risk (risk score ≤ 1.56, n = 156) and high-risk subgroup (risk score > 1.56, n = 200). The clinical characteristics between derivations were presented in Supplementary Table 6. Patients with IgD myeloma at standard risk were significantly better than high-risk subgroup (Fig. 1i). Similar results were obtained in training and validation cohorts respectively (Fig. 1j–l). Notably we
identified that ASCT showed a survival advantage in high-risk group, while it did not improve the survival in standard risk group (Supplementary Fig. 3). Moreover the prediction value of the model was independent of induction modalities. This risk model improves the classification of IgD myeloma and may facilitate the development of risk-adapted treatment strategies.

In conclusion, we described the clinical features of 356 IgD myeloma patients, as well as developed and validated a predictive model containing five baseline clinical variables that could group the IgD patients into standard risk and high risk. Meanwhile, we demonstrated that IMiDs therapy might be a trend to benefit for the patient’s outcome, and ASCT could benefit patient with high risk within the predictive model. These findings may provide guidance for management of IgD myeloma and better prognostic stratification for development of risk-adapted treatment strategies.

Acknowledgements We are grateful to all investigators for recruiting patients to AMN. We acknowledge the work of Aijie Huang (Institute of Hematology, Changhai Hospital, Shanghai, China) and Hao Yu (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonose, Yangzhou University, Yangzhou, China) in data analyses. Finally, we are grateful to all patients whose participation made this study possible. This work was supported in part by National Natural Science Foundation of China (NFSC 81372543, NFSC 81870164), and Scholarship from Shanghai Health Bureau (2017BR012).

Author contributions JL, XH and YJ collected and analyzed the data, and wrote the first draft, and approved the final version of the paper; JL, CS, MKK, FZ, and WC performed patient management and approved the final version of the paper; YJ, AL, LY and ZY, performed patients’ follow-up, participated in final data analysis and approval of the final version of the paper; QC analyzed the data and approval of the final version of the paper; JL, KK, and WJC, performed patient management revised the paper critically, and approved the final version of the paper; SKK and BD revised the paper critically, and approved the final version of the paper; WF, and JH designed the study, performed patient management, and approved the final version of the paper, and; JD designed the study, performed patient management, analyzed the data, wrote the first draft, approved the final version of the paper.
Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Jancelewicz Z, Takatsuki K, Sugai S, Pruzanski W. IgD multiple myeloma. Review of 133 cases. Arch Intern Med. 1975;135:87–93.
2. Morris C, Drake M, Apperley J, Iacobelli S, van Biezen A, Bjorkstrand B, et al. Efficacy and outcome of autologous transplantation in rare myelomas. Haematologica. 2010;95:2126–33.
3. Blade J, Lust JA, Kyle RA. Immunoglobulin D multiple myeloma: presenting features, response to therapy, and survival in a series of 53 cases. J Clin Oncol. 1994;12:2398–404.
4. Zagouri F, Kastritis E, Symeonidis AS, Giannakoulas N, Katodritou E, Delimpasi S, et al. Immunoglobulin D myeloma: clinical features and outcome in the era of novel agents. Eur J Haematol. 2014;92:308–12.
5. Wechalekar A, Amato D, Chen C, Keith Stewart A, Reece D. IgD multiple myeloma-a clinical profile and outcome with chemotherapy and autologous stem cell transplantation. Ann Hematol. 2005;84:115–7.
6. Kuliszkiwicz-Janus M, Zimny A, Sokolska V, Sasiadek M, Kuliczkowski K. Immunoglobulin D myeloma-problems with diagnosing and staging (own experience and literature review). Leuk Lymphoma. 2005;46:1029–37.
7. Selene II, Jose JA, Khalil MJ, Faisal MS, Malik MN. Presentation patterns, diagnostic markers, management strategies, and outcomes of IgD multiple myeloma: a systematic review of literature. Cureus. 2019;11:e4011.
8. Ternes N, Rotolo F, Michiels S. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Stat Med. 2016;35:2561–73.
9. Liu Y, Huang A, Chen Q, Chen X, Fei Y, Zhao X, et al. A distinct glycerophospholipid metabolism signature of acute graft versus host disease with predictive value. JCI Insight. 2019;5:e129494.
10. Boyd KD, Ross FM, Chieccio L, Dagrrada GP, Konn ZJ, Tapper WJ, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26:349–55.
11. Shah V, Sherborne AL, Walker BA, Johnson DC, Boyle EM, Ellis S, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32:102–10.
12. Kumar SK, Rajkumar SV. The multiple myelomas - current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15:409–21.
13. An G, Xu Y, Shi L, Zou D, Deng S, Sui W, et al. t(11;14) multiple myeloma: a subtype associated with distinct immunological features, immunophenotypic characteristics but divergent outcome. Leuk Res. 2013;37:1251–7.
14. Chen L, Fan F, Deng J, Xu J, Xu A, Sun C, et al. Clinical characteristics and prognosis of immunoglobulin D myeloma in the novel agent era. Ann Hematol. 2019;98:963–70.
15. Swan D, Delaney C, Nutoni A, O’Dwyer M, Krawczyk J. Successful venetoclax salvage in the setting of refractory, dialysis-dependent multiple myeloma with t(11;14). Haematologica. 2019;105:e141–e143.
16. Smith D, Yong K. Advances in understanding prognosis in myeloma. Br J Haematol. 2016;175:367–80.
17. Goyal G, Rajkumar SV, Lacy MQ, Gertz MA, Buadi FK, Dispenzieri A, et al. Impact of prior diagnosis of monoclonal gammopathy on outcomes in newly diagnosed multiple myeloma. Br J Haematol. 2016;175:367–80.
18. Fibbe WE, Jansen J. Prognostic factors in IgD myeloma: a study of 21 cases. Scand J Haematol. 1984;33:471–5.
19. Kim MK, Suh C, Lee DH, Min CK, Kim SJ, Kim K, et al. Immunoglobulin D multiple myeloma: response to therapy, survival, and prognostic factors in 75 patients. Ann Oncol. 2011;22:411–6.