Abstract

Let K be a local field of characteristic p with perfect residue field k. In this paper we find a set of representatives for the k-isomorphism classes of totally ramified separable extensions L/K of degree p. This extends work of Klopsch, who found representatives for the k-isomorphism classes of totally ramified Galois extensions L/K of degree p.

1. Introduction and results

Let K be a local field with perfect residue field k and let K_s be a separable closure of K. The problem of enumerating finite subextensions L/K of K_s/K has a long history (see for instance [5]). Alternatively, one might wish to enumerate isomorphism classes of extensions. Say that the finite extensions L_1/K and L_2/K are K-isomorphic if there is a field isomorphism $\sigma : L_1 \to L_2$ which induces the identity map on K. In this case the extensions L_1/K and L_2/K share the same field-theoretic and arithmetic data; for instance their degrees, automorphism groups, and ramification data must be the same. In the case where K is a finite extension of the p-adic field \mathbb{Q}_p, Monge [6] computed the number of K-isomorphism classes of extensions L/K of degree n, for arbitrary $n \geq 1$.

One says that the finite extensions L_1/K and L_2/K are k-isomorphic if there is a field isomorphism $\sigma : L_1 \to L_2$ such that $\sigma(K) = K$ and σ induces the identity map on k. Such an isomorphism is automatically continuous (see Lemma 3.1). If the extensions L_1/K and L_2/K are k-isomorphic then they have the same field-theoretic and arithmetic properties. Let Aut$_k(K)$ denote the group of field automorphisms of K which induce the identity map on k. Then Aut$_k(K)$ is finite if char$(K) = 0$, infinite if char$(K) = p$. Since every k-isomorphism σ from L_1/K to L_2/K induces an element of Aut$_k(K)$, this suggests that k-isomorphisms should be more plentiful when char$(K) = p$. In
this paper we consider the problem of classifying k-isomorphism classes of finite totally ramified extensions of a local field K of characteristic p.

As one might expect, the tame case is straightforward: It is easily seen that if $n \in \mathbb{N}$ is relatively prime to p then there is a unique k-isomorphism class of totally ramified extensions L/K of degree n. We will focus on ramified extensions of degree p, which are the simplest non-tame extensions. Since any two k-isomorphic extensions have the same ramification data, it makes sense to classify k-isomorphism classes of degree-p extensions with fixed ramification break $b > 0$.

Let \mathcal{E}_b denote the set of all totally ramified subextensions of K_s/K of degree p with ramification break b, and let \mathcal{S}_b denote the set of k-isomorphism classes of elements of \mathcal{E}_b. Let \mathcal{S}_b^0 denote the set of k-isomorphism classes of Galois extensions in \mathcal{E}_b, and let \mathcal{S}_b^a denote the set of k-isomorphism classes of non-Galois extensions in \mathcal{E}_b. As we will see in Section 2, if b is the ramification break of an extension of degree p then $(p-1)b \in \mathbb{N} \smallsetminus p\mathbb{N}$. Hence \mathcal{S}_b is empty if $b \not\in \frac{1}{p-1} \cdot (\mathbb{N} \smallsetminus p\mathbb{N})$.

Theorem 1.1. Let $b \in \frac{1}{p-1} \cdot (\mathbb{N} \smallsetminus p\mathbb{N})$ and write $b = \frac{(m-1)p+1}{p-1}$ with $1 \leq \lambda \leq p-1$. Let $R = \{\omega_i : i \in I\}$ be a set of coset representatives for $k^x/(k^x)^{(p-1)b}$. For each $\omega_i \in R$ let $\pi_i \in K_s$ be a root of the polynomial $X^p - \omega_i \pi_K^m X^\lambda - \pi_K$. Then the map which carries ω_i onto the k-isomorphism class of $K(\pi_i)/K$ gives a bijection from R to \mathcal{S}_b. Furthermore, $K(\pi_i)/K$ is Galois if and only if $b \in \mathbb{N} \smallsetminus p\mathbb{N}$ and $\lambda \omega_i \in (k^x)^{p-1}$.

Corollary 1.2. Let $b \in \frac{1}{p-1} \cdot (\mathbb{N} \smallsetminus p\mathbb{N})$ and assume that $|k| = q < \infty$. Then

$$|\mathcal{S}_b| = \gcd(q-1, (p-1)b).$$

Furthermore, if $b \in \mathbb{N} \smallsetminus p\mathbb{N}$ then

$$|\mathcal{S}_b^0| = \gcd\left(\frac{q-1}{p-1}, b\right),$$

$$|\mathcal{S}_b^a| = (p-2) \cdot \gcd\left(\frac{q-1}{p-1}, b\right).$$

Proof. This follows from Theorem 1.1 and the formulas

$$|k^x/(k^x)^{(p-1)b}| = \gcd(q-1, (p-1)b),$$

$$|(k^x)^{p-1}/(k^x)^{(p-1)b}| = \gcd\left(\frac{q-1}{p-1}, b\right) \quad \text{for} \ b \in \mathbb{N} \smallsetminus p\mathbb{N}.$$

The proof of Theorem 1.1 relies heavily on the work of Amano, who showed in [1] that every degree-p extension of a local field of characteristic 0 is generated by a root of an Eisenstein polynomial with a special form, which we call an *Amano polynomial* (see Definition 2.3). In Section 2 we show how Amano’s results can be adapted to the characteristic-p setting. In Section 3 we prove Theorem 1.1 by computing the orbits of the action of $\text{Aut}_k(K)$ on the set of Amano polynomials over K.

2
2. Amano polynomials in characteristic p

Let F be a finite extension of the p-adic field \mathbb{Q}_p and let E/F be a totally ramified extension of degree p. In [1], Amano constructs an Eisenstein polynomial $g(X)$ over F with at most 3 terms such that E is generated over F by a root of $g(X)$. In this section we reproduce a part of Amano’s construction in characteristic p. We associate a family of 3-term Eisenstein polynomials to each ramified separable extension of L/K of degree p, but we don’t choose representatives for these families. Many of the proofs from [1] remain valid in this new setting.

Let K be a local field of characteristic p with perfect residue field k. Let K_s be a separable closure of K and let ν_K be the valuation of K_s normalized so that $\nu_K(K_s) = \mathbb{Z}$. Fix a prime element π_K for K; since k is perfect we may identify K with $k((\pi_K))$. Let U_K denote the group of units of K, and let $U_{1,K}$ denote the subgroup of 1-units. If $u \in U_{1,K}$ and $\alpha \in \mathbb{Z}_p$ is a p-adic integer then u^α is defined as a limit of positive integer powers of u. This applies in particular when α is a rational number whose denominator is not divisible by p.

Let L/K be a finite totally ramified subextension of K_s/K and let ν_L be the valuation of K_s normalized so that $\nu_L(L^\times) = \mathbb{Z}$. Let π_L be a prime element for L and let $\sigma : L \to K_s$ be a K-embedding of L into K_s, such that $\sigma \neq \mathrm{id}_L$. We define the ramification number of σ to be $\nu_L(\sigma(\pi_L) - \pi_L) - 1$. It is easily seen that this definition does not depend on the choice of π_L. We say that b is a (lower) ramification break of the extension L/K if b is the ramification number of some nonidentity K-embedding of L into K_s.

Suppose L/K is a separable totally ramified extension of degree p. Then Lemma 1 of [1] shows that L/K has a unique ramification break. Every prime element π_L of L is a root of an Eisenstein polynomial

$$f(X) = X^p - \sum_{i=0}^{p-1} c_i X^i$$

over K, with $\nu_K(c_0) = 1$ and $\nu_K(c_i) \geq 1$ for $1 \leq i \leq p - 1$. Let $\pi'_L \neq \pi_L$ be a conjugate of π_L in K_s. Then the ramification break of L/K is given by

$$b = \nu_L \left(\frac{\pi'_L}{\pi_L} - 1 \right).$$

Since L/K is separable, we have $c_i \neq 0$ for some i with $1 \leq i \leq p - 1$. Therefore

$$m = \min\{\nu_K(c_1), \ldots, \nu_K(c_{p-1})\}$$

is finite. Let λ be minimum such that $\nu_K(c_\lambda) = m$ and let $\omega \in k^\times$ satisfy $c_\lambda \equiv \omega \pi_K^m \pmod{\pi_K^{m+1}}$. We say that the Eisenstein polynomial $f(X)$ is of type $\langle \lambda, m, \omega \rangle$. Note that while ω depends on the choice of π_K, the positive integers m and λ do not. If $f(X)$ is of type $\langle \lambda, m, \omega \rangle$ then by Lemma 1 of [1] the ramification break b of L/K is given by

$$b = \frac{(m - 1)p + \lambda}{p - 1}. \quad (2.1)$$
Conversely, given \(b \in \frac{1}{p} \cdot (\mathbb{N} \searrow p\mathbb{N}) \), equation (2.1) uniquely determines \(m \) and \(\lambda \), and we can easily construct Eisenstein polynomials of type \(\langle \lambda, m, \omega \rangle \) for every \(\omega \in k^\times \).

For Eisenstein polynomials \(f(X), g(X) \in K[X] \), write \(f(X) \sim g(X) \) if there is a \(K \)-isomorphism

\[
K[X]/(f(X)) \cong K[X]/(g(X)).
\]

Then \(\sim \) is an equivalence relation on Eisenstein polynomials over \(K \).

Theorem 2.1. Suppose \(f(X), g(X) \in K[X] \) are Eisenstein polynomials of degree \(p \) such that \(f(X) \sim g(X) \). Then \(f(X) \) and \(g(X) \) are of the same type.

Proof. The proof of Theorem 1 of [1] applies here, except that in characteristic \(p \) we don’t have to consider polynomials of type \(\langle 0 \rangle \).

Henceforth we say that an extension \(L/K \) has type \(\langle \lambda, m, \omega \rangle \) if \(L/K \) is \(K \)-isomorphic to \(K[X]/(f(X)) \) for some Eisenstein polynomial \(f(X) \) of type \(\langle \lambda, m, \omega \rangle \).

Theorem 2.2. Let \(L/K \) be an extension of type \(\langle \lambda, m, \omega \rangle \). Then \(L/K \) is Galois if and only if \(b = \frac{(m-1)p+\lambda}{p-1} \) is an integer and \(\lambda \omega \in (k^\times)^{p-1} \).

Proof. The proof of Theorem 3(ii) of [1] applies without change.

Theorem 2.3. Suppose \(L/K \) is an extension of type \(\langle \lambda, m, \omega \rangle \). Then there exists a prime element \(\pi_L \in L \) which is a root of a polynomial

\[
A_{\omega,u}^b(X) = X^p - \omega \pi_K^m X^\lambda - u \pi_K
\]
for some \(u \in U_{1,K} \).

Proof. The proof of Theorem 4 of [1] applies here, except that we don’t have to consider extensions of type \(\langle 0 \rangle \). Briefly, one defines a function \(\phi : L \to K \) by

\[
\phi(\alpha) = \alpha^p - \omega \pi_K^m \alpha^n - N_{L/K}(\alpha),
\]
where \(N_{L/K} \) is the norm from \(L \) to \(K \). Using an iterative procedure one gets a prime element \(\pi \) in \(L \) such that \(\nu_L(\phi(\pi)) > p(\lambda + 1) \) and \(N_{L/K}(\pi) = u \pi_K \) for some \(u \in U_{1,K} \). Let \(\pi^{(1)}, \ldots, \pi^{(p)} \in K_s \) be the roots of \(A_{\omega,u}^b(X) \). Then

\[
\phi(\pi) = A_{\omega,u}^b(\pi) = \prod_{i=1}^p (\pi - \pi^{(i)}), \quad (2.2)
\]
so we have

\[
\sum_{i=1}^p \nu_L(\pi - \pi^{(i)}) = \nu_L(\phi(\pi)) > p(\lambda + 1). \quad (2.3)
\]

Hence \(\nu_L(\pi - \pi^{(j)}) > \lambda + 1 \) for some \(j \), so we get \(L \subset K(\pi^{(j)}) \) by Krasner’s Lemma. Since \([K(\pi^{(j)}) : K] = [L : K] = p \), it follows that \(L = K(\pi^{(j)}) \). Therefore \(\pi_L = \pi^{(j)} \) satisfies the conditions of the theorem. \(\square \)
Definition 2.4. We say that \(A^b_{u,\nu}(X) \) is an *Amano polynomial* over \(K \) with ramification break \(b \).

Let \(b = \frac{(m-1)p+\lambda}{p-1} \) with \(1 \leq \lambda \leq p-1 \). We denote the set of Amano polynomials over \(K \) with ramification break \(b \) by

\[
\mathcal{P}_b = \{ X^p - \omega \pi_k^m X^\lambda - u \pi_K : \omega \in k^\times, u \in U_{1,K} \}.
\]

Let \(\mathcal{P}_b/\sim \) denote the set of equivalence classes of \(\mathcal{P}_b \) with respect to \(\sim \). For \(f(X) \in \mathcal{P}_b \), we denote the equivalence class of \(f(X) \) by \([f(X)] \). It follows from Theorem \(2.3 \) that these equivalence classes are in one-to-one correspondence with the elements of \(\mathcal{E}_b \).

3. The action of \(\text{Aut}_k(K) \) on extensions

In this section we show how \(\text{Aut}_k(K) \) acts on the set of equivalence classes of Amano polynomials with ramification break \(b \). We determine the orbits of this action, and give a representative for each orbit. This allows us to construct representatives for the elements of \(\mathcal{S}_b \), and leads to the proof of Theorem \(1.1 \).

The following lemma is certainly well-known (see, for instance, the answers to \([10]\)) but we could find no reference for it.

Lemma 3.1. Let \(L_1 \) and \(L_2 \) be local fields. Assume that \(L_1 \) and \(L_2 \) have the same residue field \(k \), and that \(k \) is a perfect field of characteristic \(p \). Let \(\sigma : L_1 \to L_2 \) be a field isomorphism. Then \(\nu_{L_2} \circ \sigma = \nu_{L_1} \).

Proof. The group \(U_{1,L_1} \) is \(n \)-divisible for all \(n \) prime to \(p \), so we have \(\sigma(U_{1,L_1}) \subset U_{1,L_2} \). For \(i = 1, 2 \) the group \(T_i \) of nonzero Teichmüller representatives of \(L_i \) is equal to \(\bigcap_{n=1}^\infty (L_i^\times)^p \), so we have \(\sigma(T_1) = T_2 \). Since \(U_{L_1} = T_1 \cdot U_{L_1,1} \) this implies \(\sigma(U_{L_1}) \subset U_{L_2} \). The same reasoning shows that \(\sigma^{-1}(U_{L_2}) \subset U_{L_1} \), so we get \(\sigma(U_{L_1}) = U_{L_2} \). It follows that \(\nu_{L_2} \circ \sigma \), like \(\nu_{L_1} \), induces an isomorphism of \(L_1^\times/U_{L_1} \) onto \(\mathbb{Z} \). Let \(\pi_{L_1} \) be a prime element of \(L_1 \). Then \(1 + \pi_{L_1} \in U_{L_1,1} \), so \(\nu_{L_2}(\sigma(1 + \pi_{L_1})) = 0 \). Hence \(\nu_{L_2}(\sigma(\pi_{L_1})) \geq 0 \). Since \(\nu_{L_2}(\sigma(\pi_{L_1})) \) generates \(\mathbb{Z} \), it follows that \(\nu_{L_2}(\sigma(\pi_{L_1})) = 1 \). We conclude that \(\nu_{L_2} \circ \sigma = \nu_{L_1} \).

For \(f(X) \in K[X] \) and \(\varphi \in \text{Aut}_k(K) \) we let \(f^\varphi(X) \) denote the polynomial obtained by applying \(\varphi \) to the coefficients of \(f(X) \). The following lemma is a straightforward “transport of structure” result:

Lemma 3.2. Let \(f(X) \) and \(g(X) \) be Eisenstein polynomials with coefficients in \(K \) such that \(f(X) \sim g(X) \), and let \(\varphi \in \text{Aut}_k(K) \). Then \(f^\varphi(X) \sim g^\varphi(X) \).

Let \(\mathcal{A} = \text{Aut}_k(K) \) denote the group of \(k \)-automorphisms of \(K \). Since all \(k \)-automorphisms of \(K = k((\pi_K)) \) are continuous by Lemma \(3.1 \) every \(\varphi \in \mathcal{A} \) is determined by the value of \(\varphi(\pi_K) \). Furthermore, \(\mathcal{A} \) acts transitively on the set of prime elements of \(K \). It follows that the group consisting of the power series

\[
\left\{ \sum_{i=1}^{\infty} a_i t^i : a_i \in k, \ a_1 \neq 0 \right\}
\]
with the operation of substitution is isomorphic to the opposite group \mathcal{A}^{op} of \mathcal{A}. For every $\varphi \in \mathcal{A}$ there are $l_\varphi \in k^\times$ and $v_\varphi \in U_{1,K}$ such that $\varphi(\pi_K) = l_\varphi \cdot v_\varphi \cdot \pi_K$.

Let

$$\mathcal{N} = \{ \sigma \in \mathcal{A} : \sigma(\pi_K) \in U_{1,K} \cdot \pi_K \}$$

be the group of wild automorphisms of K. Then \mathcal{N}^{op} is isomorphic to the Nottingham Group over k (see [4]). Furthermore, \mathcal{N} is normal in \mathcal{A}, and $\mathcal{A} / \mathcal{N} \cong k^\times$.

Let $\varphi \in \mathcal{A}$ and let $A^b_{\omega,u}(X) \in \mathcal{B}_b$. Then by Theorem 2.3 there exist $\omega' \in k^\times$ and $u' \in U_{1,K}$ such that

$$K[X]/((A^b_{\omega,u})^\varphi(X)) = K[X]/(X^p - \varphi(\omega \pi_K^m)X^\lambda - \varphi(\pi_K u))$$

$$\cong K[X]/(A^b_{\omega',u'}(X)).$$

It follows from Lemma 3.2 that

$$\varphi \cdot [A^b_{\omega,u}(X)] = [A^b_{\omega',u'}(X)] \quad (3.1)$$

gives a well-defined action of \mathcal{A} on \mathcal{B}_b / \sim. The following theorem computes explicit values for ω' and u' in (3.1). Note that since k is perfect, l_φ has a unique pth root $l_\varphi^{1/p}$ in k.

Theorem 3.3. Let $\varphi \in \mathcal{A}$ and $A^b_{\omega,u}(X) \in \mathcal{B}_b$. Then $\varphi[A^b_{\omega,u}(X)] = [A^b_{\omega',u'}(X)]$, with $\omega' = \omega \cdot l_\varphi^{(p-1)/p}$, $u' = \varphi(u) \cdot v_\varphi^p$, and $h = \frac{p - \lambda - pm}{p - \lambda}$.

Proof. By applying φ to the coefficients of $A^b_{\omega,u}(X)$ we get

$$(A^b_{\omega,u})^\varphi(X) = X^p - \omega l_\varphi^m v_\varphi^m \pi_K^m X^\lambda - \varphi(u) l_\varphi v_\varphi \pi_K.$$

Set $X = l_\varphi^b v_\varphi^{-m} Z$. Then

$$l_\varphi^{-1} v_\varphi^{-m} (A^b_{\omega,u})^\varphi(X) = Z^p - \omega l_\varphi^{(p-1)/p} \pi_K^m Z^\lambda - \varphi(u) l_\varphi^h \pi_K$$

$$= Z^p - \omega \pi_K^m Z^\lambda - u' \pi_K.$$

Since $l_\varphi^b v_\varphi^{-m} \in K$, it follows that

$$K[X]/(A^b_{\omega,u}(X)) \cong K[X]/(A^b_{\omega',u'}(X)).$$

□

To determine the orbit of $[A^b_{\omega,u}(X)]$ under the action of \mathcal{A} we need the following lemmas. Let \mathbb{Z}_p^\times denote the unit group of the ring of p-adic integers.

Lemma 3.4. Let $u \in U_{1,K}$, and $h \in \mathbb{Z}_p^\times$. Then

$$U_{1,K} = \left\{ \sigma(u) \cdot \left(\frac{\sigma(\pi_K)}{\pi_K}\right)^h : \sigma \in \mathcal{N} \right\}.$$
Proof. Let \(v = u^\frac{1}{h} \in U_{1,K} \). Then \(\pi'_K = v\pi_K \) is a prime element of \(K \). We have

\[
U_{1,K} = \left\{ \frac{v\sigma(\pi'_K)}{\pi_K} : \sigma \in \mathcal{N} \right\}
\]

\[
= \left\{ \frac{\sigma(v\pi_K)}{\pi_K} : \sigma \in \mathcal{N} \right\}
\]

\[
= \left\{ \sigma(u)^\frac{1}{h} \cdot \frac{\sigma(\pi_K)}{\pi_K} : \sigma \in \mathcal{N} \right\}.
\]

Since \(h \in \mathbb{Z}_p^\times \), we have \(U_{h,1,K} = U_{1,K} \). Hence by raising to the power \(h \) we obtain

\[
U_{1,K} = \left\{ \sigma(u) \cdot \left(\frac{\sigma(\pi_K)}{\pi_K} \right)^h : \sigma \in \mathcal{N} \right\}.
\]

Lemma 3.5. Let \(c \in k^\times \) and define \(\tau_c \in \mathfrak{A} \) by \(\tau_c(\pi_K) = c\pi_K \). Let \(\mathcal{N}_c = \mathcal{N}\tau_c \) be the right coset of \(\mathcal{N} \) in \(\mathfrak{A} \) represented by \(\tau_c \). Then for \(u \in U_{1,K} \) and \(h \in \mathbb{Z}_p^\times \) we have

\[
U_{1,K} = \left\{ \varphi(u) \cdot v^h : \varphi \in \mathcal{N}_c \right\}.
\]

Proof. Let \(u' = \tau_c(u) \in U_{1,K} \). Then

\[
\left\{ \varphi(u) \cdot v^h : \varphi \in \mathcal{N}_c \right\} = \left\{ \sigma\tau_c(u) \cdot v^h : \sigma \in \mathcal{N} \right\}
\]

\[
= \left\{ \sigma(u') \cdot v^h : \sigma \in \mathcal{N} \right\}
\]

\[
= U_{1,K},
\]

where the last equality follows from Lemma 3.3.

Theorem 3.6. The orbit of \([A_{\omega,1,u}(X)] \) under \(\mathfrak{A} \) is

\[
\mathfrak{A} \cdot [A_{\omega,1,u}(X)] = \{ [A_{\omega,\theta,u}(X)] : \theta \in (k^\times)^{(p-1)b}, \ v \in U_{1,K} \}.
\]

Proof. Let \(c \in k^\times \) and \(\varphi \in \mathcal{N}_c \). Then \(l_{\varphi} = c \), so by Theorem 3.3 we have

\[
\varphi \cdot [A_{\omega,1,u}(X)] = [A_{\omega',u'}],
\]

with \(\omega' = \omega c^{\frac{(p-1)b}{p-1}}, u' = \varphi(u)v^h \), and \(h = \frac{p-\lambda-m}{p-1} \). Hence by Lemma 3.5 we have

\[
\mathcal{N}_c \cdot [A_{\omega,1,u}(X)] = \{ [A_{\omega',v'}] : \omega' = \omega c^{\frac{(p-1)b}{p-1}}, v \in U_{1,K} \}.
\]

Since \(\mathfrak{A} \) is the union of \(\mathcal{N}_c \) over all \(c \in k^\times \), and \(k \) is perfect, the theorem follows.

We now give the proof of Theorem 1.1. Let \(R = \{ \omega_i : i \in I \} \) be a set of coset representatives for \(k^\times / (k^\times)^{(p-1)b} \). For each \(\omega_i \in R \) let \(\pi_i \in K^\times \) be a root of the Amano polynomial

\[
A_{\omega_i,1}(X) = X^p - \omega_i \pi_K^m X^\lambda - \pi_K.
\]
It follows from Theorem 3.6 that for every equivalence class $C \in S_k$ there is $i \in I$ such that $K(\pi_i)/K \in C$. On the other hand, if $K(\pi_i)/K$ is k-isomorphic to $K(\pi_j)/K$ then by Theorem 3.3 for some $\varphi \in \mathcal{A}$ we have
\[[A^b_{\omega_j,1}(X)] = \varphi \cdot [A^b_{\omega_i,1}(X)] = [A^b_{\omega_i,1}(X)]. \]
with $\omega'_j = \omega_j l_{\varphi} \cdot p^b$. It follows from Theorem 2.1 that $A^b_{\omega_j,1}(X)$ and $A^b_{\omega_i,1}(X)$ have the same type, so we have $\omega_j = \omega_i l_{\varphi} \cdot p^b$. Since ω_i and ω_j are coset representatives for $k^\times/(k^\times)^{(p-1)b}$, we get $\omega_i = \omega_j$. This proves the first part of Theorem 1.1. The second part follows from Theorem 2.2.

Remark 3.7. In [4], Klopsch uses a different method to compute the cardinality of S_k. Let $L = k((\pi^\infty))$ be a local function field with residue field k, and set $\mathcal{F} = \text{Aut}_k(L)$. Then there is a one-to-one correspondence between cyclic subgroups $G \leq \mathcal{F}$ of order p and subfields $M = L^G$ of L such that L/M is a cyclic totally ramified extension of degree p. For $i = 1, 2$ let G_i be a cyclic subgroup of \mathcal{F} of order p and set $K_i = L^{G_i}$. Say the extensions L/K_1 and L/K_2 are k^\times-isomorphic if there exists $\eta \in \mathcal{F} = \text{Aut}_k(L)$ such that $\eta(K_1) = K_2$; this is equivalent to $\eta^{-1}G_1 \eta = G_2$.

For $i = 1, 2$ let $\psi_i : K \to L$ be a k-linear field embedding such that $\psi_i(K) = K_i$. We can use ψ_i to identify K with K_i, which makes L an extension of K. We easily see that the extensions $\psi_1 : K \hookrightarrow L$ and $\psi_2 : K \hookrightarrow L$ are k-isomorphic if and only if L/K_1 and L/K_2 are k^\times-isomorphic. Therefore classifying k-isomorphism classes of degree-p Galois extensions of K is equivalent to classifying conjugacy classes of subgroups of order p in \mathcal{F}.

For $i = 1, 2$ let $G_1 = \langle \gamma_i \rangle$. If G_1 and G_2 have ramification break b then
\[
\begin{align*}
\gamma_1(\pi_L) &\equiv \pi_L + r_{b+1}\pi_L^{b+1} \pmod{\pi_L^{b+2}} \\
\gamma_2(\pi_L) &\equiv \pi_L + s_{b+1}\pi_L^{b+1} \pmod{\pi_L^{b+2}}
\end{align*}
\]
for some $r_{b+1}, s_{b+1} \in k^\times$. Hence for $1 \leq j \leq p - 1$, we have
\[
\gamma_j^i(\pi_L) \equiv \pi_L + jr_{b+1}\pi_L^{b+1} \pmod{\pi_L^{b+2}}.
\]
By Proposition 3.3 of [4], γ_1^i and γ_2 are conjugate in \mathcal{F} if and only if $s_{b+1} = jtr_{b+1}^{-1}1^b$, for some $t \in k^\times$. Therefore the subgroups G_1 and G_2 are conjugate in \mathcal{F} if and only if $s_{b+1} \equiv r_{b+1}^{-1}\pi_L^{-b} \cdot (k^\times)^{b}$. It follows that the number of conjugacy classes of subgroups of order p with ramification break b is
\[
|k^\times/(\pi_L^{-b} \cdot (k^\times)^b)| = |(k^\times)^{p-1}/(k^\times)^{(p-1)b}|.
\]
In particular, if $|k| = q < \infty$ then there are $\gcd\left(\frac{q-1}{p-1}, b\right)$ such conjugacy classes, in agreement with Corollary 1.2.
References

[1] Shigeru Amano, Eisenstein equations of degree p in a p-adic field, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21.

[2] Ivan Fesenko and Sergei Vostokov, Local Fields and Their Extensions, Translation of Mathematical Monographs V. 121, (AMS, 2002).

[3] Kevin Keating, Automorphisms of k((X)),
http://mathoverflow.net/questions/193757 (2015).

[4] Benjamin Klopsch, Automorphisms of the Nottingham Group, Journal of Algebra 223 (2000) 37–56.

[5] Marc Krasner, Nombre des extensions d’un degré donné d’un corps p-adique. (French) 1966 Les Tendances Géom. en Algèbre et Théorie des Nombres pp. 143–169 Editions du Centre National de la Recherche Scientifique, Paris.

[6] Maurizio Monge, Determination of the number of isomorphism classes of extensions of a p-adic field. J. Number Theory 131 (2011), no. 8, 1429–1434.