Human papillomavirus prevalence in oral and oropharyngeal squamous cell carcinoma in South America: A systematic review and meta-analysis

Antônio Carlos Oliveira,1,* Israel Carlos Cavalcanti de Lima,1 Vitor Marcelo Frez Marques,1 Wudson Henrique Alves de Araújo,1 Chrystiano de Campos Ferreira2###

1Department of Medicine, Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; 2Department of Head and Neck Surgery, Hospital de Câncer de Barretos Unidade Porto Velho, RO, Brazil

*These authors contributed equally to this work
###Physician, responsible for the coordination and technical review of the research

Abstract

Some studies have addressed the prevalence of human papillomavirus (HPV) in head and neck cancer in South America; however, no studies have systematically gathered prevalence and conducted a meta-analysis. This study aims to estimate the prevalence of HPV in oral and oropharyngeal squamous cell carcinomas in South America. We performed a systematic review and meta-analysis using the following databases: PubMed, Embase, Lilacs, Medline, Scopus, and Web of Science. Data were extracted and analyzed using random-effects models to estimate the pooled prevalence of HPV. We identified 209 nonduplicated studies, of which 38 were selected. The overall prevalence of HPV was 24.31% (95% CI 16.87–32.64; I² = 96%, p heterogeneity <0.001). HPV prevalence in oropharyngeal cancer was 17.9% (95% CI 7.6–31.4; I² = 96%, p heterogeneity <0.001) and that in oral cavity cancer was 23.19% (95% CI 14.94–32.63; I² = 94%, p heterogeneity <0.001). We found an overall prevalence of HPV in 24.31% of oral and oropharyngeal squamous cell carcinomas in South American patients. The prevalence of HPV was 17.9% for oropharyngeal cancer and 23.19% for oral cavity cancer.

Introduction

In 2020, the International Agency for Research on Cancer (IARC) registered 476,125 new cases of oropharyngeal and oral cavity cancer worldwide, of which 98,412 belonged to oropharynx and 377,713 belonged to the oral cavity.1 In South America, with approximately 7292 new oropharyngeal cancer cases and 14,191 new oral cavity cancer cases, the combined incidence was estimated as 1.97% of all new cases recorded in 2020.1 According to the National Cancer Institute (INCA), cancers of the oral cavity and oropharynx had an incidence in Brazil of 10.69 per 100,000 inhabitants in 2020 and represented the fifth highest incidence among men.2

Squamous cell carcinoma (SCC) is the most common histological type of oral cancer,3,4 and even with advances achieved in treatment regimes, mortality remains high after 5 years.5 Despite recognizing a multifactorial process, the risk of developing head and neck cancer (HNC) is 30 times greater for individuals who smoke and drink.6 Several studies have reported human papillomavirus (HPV) as a relevant risk factor for HNC development, particularly for oropharynx.7–9

More than 170 types of HPV are known, and they are divided into two large groups: high-risk (hrHPV) and low-risk (lrHPV). The most common genotypes in head and neck cancers are HPV16 and HPV18.10,11 A meta-analysis published in 2014, with data from 44 countries, recorded a pooled prevalence of 29.5% for...
HPV DNA in HNCSCC; in the oral cavity and oropharynx, the pooled prevalences were 24.2% and 45.8%, respectively.\(^{11}\) Moreover, HPV16 DNA could contribute to 82.2% of all cases of HPV-positive DNA.\(^{11}\) A recent meta-analysis of Brazilian studies estimated an overall prevalence of 11.89% for different types of HPV in the oral cavity and 4.69% for hrHPVs.\(^{12}\)

Methods for detecting and diagnosing HPV can target viral DNA or RNA, oncoproteins, cellular proteins, and serum antibodies specific to HPV.\(^{13}\) The detection of messenger RNA E6/E7 (mRNA) is considered as gold standard for identifying HPV.\(^{13}\) Among DNA detection techniques, the most cited are direct hybridization, such as Southern blotting, \textit{in situ} hybridization (ISH), and polymerase chain reaction (PCR);\(^{13–15}\) whereas, among the biomarker detecting methods, the most common is immunohistochemical (IHC) detection of overexpression of p16\(^{INK4a}\).\(^{13–15}\)

Furthermore, the literature results vary for the association between HPV and oral cavity and oropharyngeal cancers. Few studies have verified the prevalence of HPV in HNCC in South American countries. Considering the need for studies that collate the data recorded in this region, as well as the variation of data from Brazil and other South American countries concerning the rest of the world, the present study aimed to conduct a systematic review and meta-analysis to estimate the prevalence of HPV in oral and oropharyngeal squamous cell carcinoma in South America.

Materials and methods

We performed a systematic review and meta-analysis, where three authors carried out the initial searches on the following databases: Embase, Lilacs, Medline, Scopus, and Web of Science. We searched for articles in the following languages: English, Portuguese, and Spanish.

The following terms were used to search in the titles, abstracts, and keywords: (“HPV” OR “papillomavirus” OR “papillomaviridae”) AND (“head” AND “neck”) OR “oropharynx” OR “oropharyngeal” OR “tongue” OR “mouth” OR “oral” OR “oral cavity”) AND (“cancer” OR “tumor” OR “neoplasms” OR (“carcinoma” AND “squamous” AND “cell”) AND (“Brazil” OR “Brazilian” OR “Argentina” OR “Bolivia” OR “Chile” OR “Colombia” OR “Ecuador” OR “Guyana” OR “Paraguay” OR “Peru” OR “Suriname” OR “Uruguay” OR “Venezuela”).

Initially, the search in each database resulted in 494 records. After the first screening and exclusion of duplications, 209 studies were selected to read the titles and abstracts. Of these, 52 studies were selected from a review of titles and abstracts. After analyzing these 52 articles’ references, another 2 were selected for detailed assessment. To control the data collection process, each of the 54 studies selected for detailed assessment received a sequential code ranging from A01 to A54. After reading the full texts, 38 articles were selected for qualitative and quantitative reviews.

The search and selection stages of the studies are presented in Appendix A and are illustrated in Figure 1.

Exclusion criteria

The following exclusion criteria were established: articles not written in English, Portuguese, or Spanish; articles in which the correlation between HPV and oral cavity squamous cell carcinoma (OSCC) or oropharynx squamous cell carcinoma (OPSCC) were not found; review articles with or without meta-analysis or case reports; animal studies; search results with incomplete information or those without access to full text; studies with incomplete or inaccurate information that would make it impossible to extract the necessary information reliably; duplicate studies; studies that revealed strong evidence of sample overlap; and studies whose samples had less than five cases of OSCC or OPSCC per country.

Data extraction

In articles where the lesion subsites were not classified into the oropharynx and oral cavity, the following grouping was applied, according to the ICD-O classification:\(^{16}\) oropharynx (C01.9, 02.4, 09.0–10.9), oral cavity (C00.0–00.9, 02.0–02.3, 02.8–03.1, 03.9–04.1, 04.8–05.0, 05.8–06.2, 06.8–06.9).

Data collection was performed only for viral DNA detection techniques in studies where HPV diagnostic technique involved more than one detection method and the criterion for diagnosis did not include combination of results.

Data analysis

The collected data were tabulated using STATA IC version 16.\(^{17}\) The combined prevalence was estimated using the R metaprop package, version 3.6.1,\(^{18}\) via the Rstudio interface, version 1.2.1335.\(^{19}\) The following parameters were used for statistical analysis: inverse variance method, DerSimonian-Laird estimator for the variance between studies, Jackson’s method for calculating confidence intervals, arcsine transformation for gross proportions,
Results

We identified 209 unduplicated records. After reading the titles and abstracts, 52 studies were included. The references of these 52 articles were revised, and another two studies were added, adding up to 54 full texts selected for reading. After reading, 38 articles were selected for the qualitative and quantitative reviews. The selected studies were published between 1998 and August 2020 and included patients assessed between 1970 and 2019. Brazil has the largest number of studies (n=28), followed by Colombia (n=24), Argentina (n=23), Chile (n=2), and Venezuela (n=2).56,57 presented only two studies each.

The patients’ sample resulting from the studies included 2788 individuals—1643 cases of OSCC and 1145 of OPSCC. Brazil had the highest number of cases (2329 cases), followed by Colombia (190 cases), Chile (102 cases), and Argentina (101 cases), and Venezuela had the lowest number (66 cases) (Table 1).

The pooled prevalence of HPV for OSCCs (33 studies)20-23,25-27,30-40,42-57 and OPSCC (14 studies)20-24,25-27,30-40,42-57 was estimated at 24.31% (95% CI 16.87–32.64) (Figure 2). In Brazil, this prevalence was estimated to be 21.15% [95% CI, 12.83–30.90]. The highest prevalence was observed in Venezuela (57.6% [95% CI 45.57–69.18]), Argentina (42.57% [95% CI 33.13–52.30]), and Colombia (30.27% [95% CI 16.14–46.63]). Chile had the lowest prevalence (10.77% [95% CI 5.53–17.48]) (Table 2). Nevertheless, not only the exception of Brazil, all other countries presented few studies for analysis and a reduced number of cases (Table 2).

The pooled prevalence for HPV16 in OSCC and OPSCC was 12.8% (95% CI 8.7–17.5) (Figure 3) (23 studies).20-25,27,30,40,46,48-50,52,53,55,56 In Brazil (16 studies),20-25,27,30,40,46,48-50,52,53,55,56 the prevalence was estimated at 9.6% (95% CI 6.1–13.9). Chile55 (6.2% [95% CI 2.0–12.6]) and Venezuela55 (44% [95% CI 30.5–57.8]) presented only one study each for this criterion. Argentina considered two studies52,53 (9.9% [95% CI 4.8–16.4]) and Colombia presented three studies48-50 (38.6% [95% CI 13.8–67.2]). In the meta-regression analysis, studies from Colombia and Venezuela, using the data obtained from Argentinian studies as a reference, revealed statistical significance for heterogeneity moderated in the pooled prevalence of HPV16 in OPSCCs and OSCCs, thereby contributing positively to the calculated percentage (p<0.05). Except for countries’ stratification in the set of studies that investigated HPV16 infection, none of the other stratifications revealed significant results for moderating heterogeneity (p<0.05). This information is presented in Table 2.

The pooled prevalence of HPV in OPSCCs was estimated at 23.19% (95% CI 14.94–32.63) (Figure 5) (33 studies).20,22,23,25-27,30,40,42-57 In Brazil (23 studies),20,22,23,25-27,30,40,42-57 this prevalence was 18.71% (95% CI 9.51–31.15) (Table 2). Argentina22,23 (42.57% [95% CI 33.13–52.30]), Chile54,55 (10.77% [95% CI 5.53–17.48]), and Venezuela6,57 (57.60% [45.57–69.18]) presented only two studies each. Colombia48-51 (31.80% [95% CI 17.61–48.97]) maintained the four initial studies (Table 2).

The subgroup analysis by type of material collected and HPV investigated did not reveal any statistical significance between the pooled prevalence (p>0.05). About 22.64% of the tissue samples fixed by frozen or paraffin embedding techniques (35 studies)20-41,43-46,48-52,54-57 presented a positive diagnosis for some type of HPV (95% CI 15.13–31.17). In the samples of mucosa scraping or swab (3 studies),24,47,53 this percentage was 44.22% (95% CI 24.15–65.32). In studies that investigated only hrHPV (9 studies),20,24,25,27-30,35,50 the calculated prevalence was 16.45% (95% CI 0.53–32.75), those that investigated infection for both hrHPV and lrHPV (29 studies),21-23,25-27,30-49,51-57 the pooled prevalence was 27.14% (18.31–36.99). In studies where data collection considered only the results of molecular tests to detect HPV DNA (34 studies),21-23,25-27,30-57 the combined prevalence of HPV DNA was 24.67% (95% CI 17.13–33.10). Moreover, only two studies applied the combined methodology between PCR and IHC to diagnose HPV, considering only positive cases in which the p16 biomarker and viral DNA were present.20,24 The pooled prevalence of HPV was 4.15% (95% CI 1.37–8.34). In study A16,29 detection of HPV involved viral DNA molecular detection techniques and IHC to detect the p16 biomarker; however, it was not specified which technique tested cases, and the pooled HPV prevalence in that study, in the random-effects model, was estimated at 59.07% (95% CI 52.18–65.71). Furthermore, Study A228 was the only one included in this review in which HPV was diagnosed only via IHC; the pooled prevalence of the cases in this study, in the random-effects model, was 35.29% (95% CI 22.89–48.80). This information is detailed in Table 2.

Eventually, Table 2 details the stratification by sex and profile of the cases analyzed (smokers and alcoholics). In studies where cases were stratified by sex, the pooled prevalence of HPV in OPSCC and OSCC for men (19 studies)20,21,23,24,26,27,29,31,39,41,44,46,49,50,53,57 was 19.11% (95% CI 9.37–31.29), and for women (19 studies),20,21,23,24,26,27,29,31,39,41,44,46,49,50,54,57 it was 22.35% (95% CI 11.85–35.04). Among smokers considering 947 cases (13 studies),20,21,23,24,27,29,38,39,41,44,49,56 the pooled prevalence was 20.75% (95% CI 9.21–35.44) and for alcoholics, with 720 cases (10 studies),20,21,23,24,27,29,41,44,49,56 the pooled prevalence of HPV was 22.23% (95% CI 8.23–40.62).

Discussion

This review included 38 studies that examined the prevalence of HPV DNA and p16NR4 positivity, alone or in combination, in OPSCC and OSCC in patients from South American countries. Based on 2788 cases, 1145 OPSCC and 1643 OSCC, we found that approximately 25% of the cases were associated with HPV infection. The highest pooled prevalence was observed in
Table 1. General panel of studies selected for review.

Study by country	Code	Period	Collected material	Diagnostic method	N.	HPV+	HPV16+	OS SCC/HPV+	OS SCC/HPV-	OP SCC/HPV+	OP SCC/HPV-
Argentina	A48	2007	FFPE	PCR, Dot blt	16	7	2				
Mosmann et al, 2019	A38	2019	Swab	PCR	85	36	8				
Brazil	A37	1970-2006	FFPE	IHC, PCR, Dot blt	114	22e	22e	9e			
A16	1984-2014	FFPE	IHC, PCR, Reverse blot	215	127	...	127	88			
A03	1991-2012	FFPE	PCR	PCR	120	27e	19e	69e	4e	24e	
A42	1991-2007	FFPE	PCR	PCR	50	13	...	13	...		
A45	1991-2005	FFPE	PCR	PCR	29	5	5	24	
A01	2002-2015	FFPE	PCR	PCR	278	7	7	107	7	164	
A50	1992-2005	FFPE	PCR	PCR	17	5	...	12	...		
A17	1990-2002	FFPE	PCR	PCR	87	17	3	17	7	...	
A05	1999-2010	FFPE	PCR	PCR	154	16e	11e	58e	3e	13e	
A20	1998-2009	FFPE	PCR	PCR	90	3	3	87	...		
A22	2009-2017	FFPE	PCR	PCR	27	4	4	1	20	3	
A25	1993-1998	FFPE	PCR	PCR	17	3	3	87	...		
A42	2005-2007	FFPE	PCR	PCR	82	21	7	10	29	11	32
A14	1995-1996	FFPE	PCR	PCR	80	3	3	87	...		
A51	2013-2014	FFPE	PCR	PCR	90	3	3	87	...		
A28	2005-2007	FFPE	PCR	PCR	27	4	4	1	20	3	
A52	2004	FFPE	PCR	PCR	17	3	3	87	...		
A29	2004	FFPE	PCR	PCR	30	4	4	1	10	3	18
A31	2006	FFPE	PCR	PCR	90	0	0	40	...		
A13	2010	FFPE	PCR	PCR	90	0	0	40	...		
A16	2012	FFPE	PCR	PCR	17	8	6	8	9	...	
A23	2012	FFPE	PCR	PCR	45	3	3	38	0	4	
A35	2017	FFPE	PCR	PCR	40	23	19	...	23	17	
A06	2018	FFPE	PCR	PCR	13	0c	0c	13c	
Chile	A34	2000-2014	FFPE	IHC, PCR	80	9c	5c	9c	71c	...	
Pennacchio et al, 2016	A44	2016	Frozen	PCR	22	2	...	2	20	...	
Colombia	A32	1999-2008	FFPE	PCR	112	22	...	16	51	6	39
A49	1996-2001	FFPE	PCR	PCR	6	5	5	5	1	...	
Mancilla et al, 2011	A19	2005-2007	FFPE	PCR	26	8	8	8	18	...	
A18	2013-2014	Fixed	PCR	PCR	46	10	9	10	36	...	
Venezuela	A30	2001	FFPE	PCR	50	30	22	30	20	...	
A39	2004	FFPE	PCR	PCR	16	8	...	8	...		

a Studies did not mention the exact date of the research in the text, so the date in the column “Period” refers to the date of publication of the study. bThe study does not specify which fixation technique was adopted, informing only that the genetic material was an AllPrep DNA/RNA ProteinQuagen® kit. cResults for HPV DNA only. N = Total cases was 2788. HPV+ = HPV positive, the total number of cases was 630. HPV16+ = HPV type 16 positive, the total number of cases was 360. OS SCC/HPV+ = Squamous cell carcinomas of the oral cavity with HPV+, the total number of cases was 388. OS SCC/HPV- = Squamous cell carcinomas of the oral cavity with HPV negative, the total number of cases was 1640. OP SCC/HPV+ = Squamous cell carcinomas of the oropharynx with HPV+, the total number of cases was 389. OP SCC/HPV- = Squamous cell carcinomas of the oropharynx with HPV negative, the total number of cases was 1469.
Table 2. Pooled prevalence of human papillomavirus in squamous cell carcinomas of the oral cavity (OSCC) and oropharynx (OPSCC) in South American countries by stratification variables.

OPSCC and OSCC by country	Studies	Cases	HPV positive cases	Pooled Prevalence (95% CI)	Test for subgroup differences	Test of Moderators	I²	P-value
Argentina	2	101	43	42.57% (33.13-52.30)	<0.0001	0.2644	0.9175	0.0001
Brazil	28	2329	493	21.15% (12.83-30.90)	94.5%	<0.0001
Chile	2	102	11	10.77% (5.53-17.48)	...	0.1816	0%	0.7664
Colombia	4	190	45	30.27% (16.14-46.63)	...	0.7388	74.4%	0.0084
Venezuela	2	66	38	57.60% (45.57-69.18)	...	0.6747	0%	0.4833
OPSCC by country*								
Brazil	13	1100	236	18.31% (7.33-32.82)	...	0.8270	96.2%	<0.0001
Colombia	1	45	6	13.33% (5.10-24.68)	
OSCC by country								
Argentina	2	101	43	42.57% (33.13-52.30)	<0.0001	0.2341	0.9175	<0.0001
Brazil	23	1229	257	18.71% (9.51-30.15)	...	0.2383	95.4%	<0.0001
Chile	2	102	11	10.77% (5.53-17.48)	...	0.2041	0%	0.7664
Colombia	4	145	39	31.80% (17.61-47.97)	...	0.8028	69.9%	0.0189
Venezuela	2	66	38	57.60% (45.57-69.18)	...	0.6905	0%	0.4833
HPV16 by country								
Argentina	2	101	10	9.88% (4.85-16.42)	<0.0001	0.0027	0%	0.7161
Brazil	16	1789	147	9.61% (6.06-13.88)	...	0.8969	86.3%	<0.0001
Chile	1	80	5	6.25% (2.03-12.56)	...	0.6533
Colombia	3	78	22	38.65% (13.84-67.17)	...	0.0433	80.7%	0.0057
Venezuela	1	50	22	44.00% (30.65-57.81)	...	0.0263
Collected material								
Fixed	35	2657	578	22.64% (15.13-31.17)	0.0530	0.1364
Exfoliated or swab mucos						
HPV investigation								
HR	9	1591	417	16.45% (5.03-32.75)	0.2433	0.2356	75.6%	0.0165
LR & HR	29	1197	213	27.14% (18.31-36.99)	...	0.2356	94.2%	<0.0001
Diagnostic method								
HPV DNA and IHC	2	624	28	4.15% (1.37-8.08)	<0.0001	0.1296	79.8%	0.0261
HPV DNA	34	1898	457	24.67% (17.13-33.10)	...	0.0775	93.7%	<0.0001
HPV DNA or IHC	1	215	127	59.07% (52.18-65.71)	...	0.0249
IHC	1	51	18	35.29% (22.89-48.80)	...	0.1579
Profile								
Smoker	13	947	169	20.75% (9.21-35.44)	...	95.5%	<0.0001	
Drinker	10	720	122	22.23% (8.23-40.62)	...	95.7%	<0.0001	
Sex								
Male	19	1213	270	19.11% (9.37-31.29)	...	95.5%	<0.0001	
Female	19	326	87	22.35% (11.85-35.04)	...	82.7%	<0.0001	

*Only Brazil and Colombia presented eligible studies. Reference value for the moderator test. HR = high-risk; LR = low-risk. HPV = human papillomavirus. HPV DNA = HPV DNA detection techniques. IHC = immunohistochemical detection of overexpression of p16. HPV DNA or IHC = HPV DNA or IHC, non-combined techniques. HPV DNA and IHC = HPV DNA and IHC, combined techniques.
Study	n/N	Prevalence (95% CI)
Gonzalez et al., 2007	7/16	43.75% (19.75-70.12)
Mosmann et al., 2019	36/85	42.35% (31.70-53.55)
Kaminagakura et al., 2012	22/114	19.30% (12.51-27.75)
De Cicco et al., 2018	127/215	59.07% (52.18-65.71)
Oliveira et al., 2008	17/87	19.54% (11.81-29.43)
Simonato et al., 2008	5/29	17.24% (5.85-35.77)
Demathe et al., 2010	13/30	43.33% (25.46-62.57)
Betiol et al., 2016	27/120	22.50% (15.38-31.02)
Soares et al., 2002	0/10	0.00% (0.00-30.85)
Fregonezi et al., 2012	5/17	29.41% (10.31-55.96)
Miguel et al., 1998	4/27	14.81% (4.19-33.73)
López et al., 2014	14/212	6.60% (3.66-10.83)
Bueym et al., 2020	21/346	6.07% (3.80-9.13)
Anantharaman et al., 2017	7/278	2.52% (1.02-5.12)
Cortezi et al., 2004	4/32	12.50% (3.51-28.99)
Vidal et al., 2004	11/40	27.50% (14.60-43.89)
Soares et al., 2007	18/75	24.00% (14.89-35.25)
Petito et al., 2017	21/82	25.61% (16.60-36.44)
Rivero e Nunes, 2006	0/40	0.00% (0.00-8.81)
Hauck et al., 2015	19/154	12.34% (7.59-18.59)
da Silva et al., 2007	37/50	74.00% (59.66-85.37)
de Carvalho et al., 2020	18/51	35.29% (22.43-49.93)
de Spíndula-Filho et al., 2011	0/39	0.00% (0.00-9.03)
Lira et al., 2010	61/70	87.14% (76.99-93.95)
de Abreu et al., 2018	3/90	3.33% (0.69-9.43)
Brew et al., 2012	8/17	47.06% (22.98-72.19)
de Freitas Cordeiro-Silva et al., 2012	3/45	6.67% (1.40-18.27)
Ribeiro et al., 2017	5/6	83.33% (35.88-99.58)
Piña et al., 2016	0/13	0.00% (0.00-24.71)
Barros-Filho et al., 2018	23/40	57.50% (40.89-72.96)
Reyes et al., 2015	9/80	11.25% (5.28-20.28)
Pennacchiotti et al., 2016	2/22	9.09% (1.12-29.16)
Castillo et al., 2011	5/6	83.33% (35.88-99.58)
Quintero et al., 2013	22/112	19.64% (12.74-28.22)
Mancilla et al., 2011	8/26	30.77% (14.33-51.79)
Erira et al., 2015	10/46	21.74% (10.95-36.36)
Premoli-De-Percoco et al., 2001	30/50	60.00% (45.18-73.59)
Correnti et al., 2004	8/16	50.00% (24.65-75.35)

Pooled Prevalence

| 630/2788 | 24.31% (16.87-32.64) |

Heterogeneity P=95.6%; p<0.0001

HPV = human papillomavirus. n = number of HPV-positive cases. N = total number of cases.

Figure 2. Pooled prevalence of human papillomavirus in squamous cell carcinomas of the oral cavity and oropharynx in South American countries.
Venezuela (57.6%), and Chile had the lowest percentage (10.77%). Nevertheless, notably, the number of cases registered for countries, except for Brazil, was reasonably low, making the sample more subject to random variations.

In Europe, in 2014, the pooled prevalence of HPV in HNCs was estimated at 40%, and the highest and lowest percentages were observed in one of the oropharynx and oral cavity subites, that is tonsil (66.4%) and tongue (25.7%), respectively.58 In another meta-analysis that analyzed records from 43 countries, the prevalence of HPV in non-oropharyngeal cancers was 21.8%.59 Although they did not specifically mention the term oral cavity, we can infer that the prevalence observed in the present study (24.2%) was relatively closer to the averages recorded in our study.

In contrast to other studies, the pooled prevalence of OPSCCs in our meta-analysis was low. A recent study investigating the global prevalence of HPV in OPSCC patients reported a pooled percentage of 44.8%. Among the countries analyzed, Brazil was the only representative of South America, with the lowest prevalence (11.1%);60 however, notably, the aforementioned study analyzed only 15 cases worldwide, and data from Brazil were collected from a single article with 63 cases.34 In 2015, a meta-analysis was published that demonstrated the increased prevalence of HPV in OPSCCs over four periods in 23 countries: i) pre 1995: 32.3%; 1995–1999: 37%; 2000–2004: 51.8%; and 2005–2014: 52.9%.9 Another meta-analysis with the same theme, published in 2013, calculated a global prevalence of 47.7% for HPV infection in

Study	n/N	Prevalence (95% CI)
Gonzalez et al., 200752	2/16	12.50% (1.55-38.35)
Mosmann et al., 201953	8/85	9.41% (4.15-17.71)
Kaminagakura et al., 201255	22/114	19.30% (12.51-27.75)
Oliveira et al., 200859	3/87	3.45% (0.72-9.75)
Betiol et al., 201622	19/120	15.83% (9.81-23.62)
Miguel et al., 199848	4/27	14.81% (4.19-33.73)
López et al., 201437	8/212	3.77% (1.64-7.30)
Bueno et al., 202044	21/346	6.07% (3.80-9.13)
Anantharaman et al., 201720	7/278	2.52% (1.02-5.12)
Cortecci et al., 200423	4/32	12.50% (3.51-28.99)
Soares et al., 200766	1/75	1.33% (0.03-7.21)
Petito et al., 201769	7/82	8.54% (3.50-16.80)
Hauck et al., 201514	11/154	7.14% (3.62-12.42)
Lira et al., 201036	9/70	12.86% (6.05-23.01)
de Abreu et al., 201837	3/90	3.33% (0.69-9.43)
Brew et al., 201221	6/17	35.29% (14.21-61.67)
de Freitas Cordeiro-Silva et al., 201226	3/45	6.67% (1.40-18.27)
Barros-Filho et al., 201831	19/40	47.50% (31.51-63.87)
Reyes et al., 201555	5/80	6.25% (2.06-13.99)
Castillo et al., 201148	5/6	83.33% (35.88-99.58)
Mancilla et al., 201130	8/26	30.77% (14.33-51.79)
Eira et al., 201549	9/46	19.57% (9.36-33.91)
Fremoli-De-Percoco et al., 200156	22/50	44.00% (29.99-58.75)

Pooled Prevalence: 206/2098 = 12.77% (8.70-17.48)

HPV16 = human papillomavirus genotype 16. n = number of HPV16-positive cases. N = total number of cases.

Figure 3. Pooled prevalence of human papillomavirus genotype 16 in squamous cell carcinomas of the oral.
A recently published meta-analysis revealed that the IHC tests for p16INK4a and PCR for detecting HPV DNA are highly sensitive (94% and 98%, respectively), but with moderate specificity (83% and 84%, respectively), and that the combination of these two revealed high sensitivity (98%) and high specificity (96%) for HPV diagnosis in OPSCC. In the present study, the cases tested by IHC or HPV DNA had the highest prevalence of HPV (59.07%) in the random-effects model, followed by cases tested by only IHC (35.29%); however, it is relevant to note that these two situations only presented one study (A1629 and A2228). The lowest prevalence was observed in studies in which HPV was diagnosed using a combination of DNA and IHC techniques (4.15%), but only two studies presented this diagnostic methodology (A0120 and A0524).

In our meta-analysis, the pooled prevalence of HPV among smokers was 20.75% and 22.23% for alcoholics. The consumption of beverages and smoking increases the risk of developing cancers of the oropharynx and oral cavity. Evidence suggests an association between smoking and HPV carcinogenesis and a worse prognosis in smokers’ overall survival with HNC HPV positive cases.61,62

The main limitation of our study is the heterogeneity of the sample. Nevertheless, even if more factors were stratified, heterogeneity would undoubtedly be maintained. Despite a broad research tactic, the initial number of 209 records without duplication, of which only 52 complete studies were selected for reading, is reasonably low if we consider that no filter was included to limit the period of publication. Another factor to be highlighted as limiting a more effective analysis was the deficiency of information presented in a considerable part of the analyzed studies, of 38 studies, 15 did not mention the period corresponding to the collection of the samples, making any analysis impossible about the evolution of prevalence over time. Data that could support heterogeneity analysis could not be extracted from many of the studies analyzed because the data presented did not provide sufficient detail to stratify the information. Cofactors such as sex, age, smoking, alcoholism, and risky sexual behavior have not been reported in many reviewed articles. Even when approached, they did not present sufficient details for the quantitative analysis. Indeed, the simple provision of raw data with metadata would be sufficient to improve the information collected. However, only three of the studies analyzed provided supplementary material for consultation.

In conclusion, we found an overall prevalence of HPV in 24.31% of oral and oropharyngeal squamous cell carcinomas in South American patients. The prevalence of HPV was 17.9% for oropharyngeal cancer and 23.19% for oral cavity cancer in South American patients.

Study	n/N	Prevalence (95% CI)
De Cicco et al., 2018	127/215	59.07% (52.18-65.71)
Bettiol et al., 2016	4/28	14.29% (4.03-32.67)
Miguel et al., 1998	3/6	50.00% (11.81-88.19)
López et al., 2014	6/91	6.59% (2.46-13.80)
Bucx et al., 2020	21/346	6.07% (3.80-9.13)
Anantharaman et al., 2017	7/171	4.09% (1.66-8.25)
Cortezzi et al., 2004	3/21	14.29% (3.05-36.34)
Petitot et al., 2017	11/43	25.58% (13.52-41.17)
Hauck et al., 2015	13/71	18.31% (10.13-29.27)
de Carvalho et al., 2020	18/51	35.29% (22.43-49.93)
de Freitas Cordeiro-Silva et al., 2012	0/4	0.00% (0.00-60.24)
Piña et al., 2016	0/13	0.00% (0.00-24.71)
Barros-Filho et al., 2018	23/40	57.50% (40.89-72.96)
Quintero et al., 2013	6/45	13.33% (5.05-26.79)

Pooled Prevalence

242/1145 17.93% (7.63-31.40)

Heterogeneity I² = 95.9%; p<0.0001

HPV = human papillomavirus. **n** = number of HPV-positive cases. **N** = total number of cases.

Figure 4. Pooled prevalence of human papillomavirus in squamous cell carcinomas of the oropharynx in South American countries.
Study	n/N	Prevalence (95% CI)
Gonzalez et al., 2007⁵²	7/16	43.75% (19.75-70.12)
Mosmann et al., 2019⁵³	36/85	42.35% (31.70-53.55)
Kaminagakura et al., 2012²⁵	22/114	19.30% (12.51-27.75)
Oliveira et al., 2008⁵⁹	17/87	19.54% (11.81-29.43)
Simenato et al., 2008⁴⁴	5/29	17.24% (5.85-35.77)
Demathe et al., 2010³²	13/30	43.33% (25.46-62.57)
Betti et al., 2016²²	23/92	25.00% (16.55-35.11)
Soares et al., 2002⁴⁵	0/10	0.00% (0.00-30.85)
Fregonezi et al., 2012²³	5/17	29.41% (10.31-55.96)
Miguel et al., 1998³⁸	1/21	4.76% (0.12-23.82)
López et al., 2014³⁷	8/121	6.61% (2.90-12.61)
Anantharaman et al., 2017²⁰	0/107	0.00% (0.00-3.39)
Cortezzi et al., 2004⁵⁵	1/11	9.09% (0.23-41.28)
Vidal et al., 2004⁴⁷	11/40	27.50% (14.60-43.89)
Soares et al., 2007⁴⁶	18/75	24.00% (14.89-35.25)
Petitio et al., 2017⁴⁰	10/39	25.64% (13.04-42.13)
Rivero e Nunes, 2006⁴³	0/40	0.00% (0.00-8.81)
Hauck et al., 2015⁵⁴	6/83	7.23% (2.70-15.07)
da Silva et al., 2007²⁶	37/50	74.00% (59.66-85.37)
de Spindula-Filho et al., 2011³¹	0/39	0.00% (0.00-9.03)
Lira et al., 2010⁵⁶	61/70	87.14% (76.99-93.95)
de Abreu et al., 2018²⁷	3/90	3.33% (0.69-9.43)
Brcw et al., 2012²³	8/17	47.06% (22.98-72.19)
de Freitas Cordeiro-Silva et al., 2012⁵⁰	3/41	7.32% (1.54-19.92)
Ribeiro et al., 2017⁵⁵	5/6	83.33% (35.88-99.58)
Reyes et al., 2015⁵⁵	9/80	11.25% (5.28-20.28)
Pennacchiotto et al., 2016⁵⁴	2/22	9.09% (1.12-29.16)
Castillo et al., 2011⁴⁶	5/6	83.33% (35.88-99.58)
Quintero et al., 2013⁵¹	16/67	23.88% (14.31-35.86)
Mancilla et al., 2011⁵⁰	8/26	30.77% (14.33-51.79)
Erira et al., 2015⁵⁹	10/46	21.74% (10.95-36.36)
Premoli-De-Percoco et al., 2001⁶⁵	30/50	60.00% (45.18-73.59)
Correnti et al., 2004⁵⁷	8/16	50.00% (24.65-75.35)

Pooled Prevalence

| 388/1643 | 23.19% (14.94-32.63) |

Heterogeneity $I^2=94.5%$; $p<0.0001$

HPV = human papillomavirus. **n** = number of HPV-positive cases. **N** = total number of cases.

Figure 5. Pooled prevalence of human papillomavirus in squamous cell carcinomas of the oral cavity in South American countries.
11. Ndiaye C, Mena M, Alemany L, et al. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck carcinomas: a systematic review and meta-analysis. Lancet Oncol 2014;15:1319–31.

12. Colpani V, Soares Falcetta F, Bacelo Bidinotto A, et al. Prevalence of human papillomavirus (HPV) in Brazil: A systematic review and meta-analysis. PLoS One 2020;15:e0229154.

13. Westra WH. Detection of human papillomavirus (HPV) in clinical samples: Evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral Oncol 2014;50:771–9.

14. Lewis JS, Beadle B, Bishop JA, et al. Human papillomavirus testing in head and neck carcinomas guideline from the college of American pathologists. Arch Pathol Lab Med 2018;142:559–97.

15. Prigge E-S, Arbyn M, von Knebel Doeberitz M, et al. Diagnostic accuracy of p16 INK4a immunohistochemistry in oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Int J Cancer 2017;140:1186–98.

16. World Health Organization. 2013. International Classification of Diseases for Oncology (ICD-O). 3rd ed. Available at: https://apps.who.int/classifications/icd10/data郲/download/106659/96612

17. StataCorp. 2019. Stata Statistical Software: Release 16. College Station, USA: StataCorp LLC.

18. R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria.

19. PS Studio Team. 2018. RStudio: Integrated Development Environment for R. RStudio PBC, Boston, USA.

20. Anantharaman D, Abedi-Ardelkani B, Beachler DC, et al. Geographic heterogeneity in the prevalence of human papillomavirus in head and neck cancer. Int J Cancer 2017;140:1968–75.

21. Barros-Filho MC, Reis-Rosa LA, Hatakeyama M, et al. Oncogenic drivers in 11q13 associated with prognosis and response to therapy in advanced oropharyngeal carcinomas. Oral Oncol 2018;83:81–90.

22. Betiol JC, Siclito L, Costa HO de O, et al. Prevalence of human papillomavirus types and variants and p16INK4a expression in head and neck squamous cell carcinomas in São Paulo, Brazil. Infect Agent Cancer 2016;11:20.

23. Brew MC, Trapp R, Hilgert JB, et al. Human papillomavirus and oral squamous cell carcinoma in a south Brazilian population. Exp Mol Pathol 2012;93:61–5.

24. Buxem LA, Soares-Lima SC, Brennan P, et al. HPV impact on oropharyngeal cancer patients treated at the largest cancer center from Brazil. Cancer Lett 2020;477:70–5.

25. Cortezzi SS, Provazzi PJ, Sobrinho JS, et al. Analysis of human papillomavirus prevalence and TP53 polymorphism in head and neck squamous cell carcinomas. Cancer Genet Cyto genet 2004;150:44–9.

26. Da Silva CEX dos SR, Da Silva IDCG, CERRI A, et al. Prevalence of human papillomavirus in squamous cell carcinoma of the tongue. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology 2007;104:497–500.

27. de Abreu PM, Cô ACG, Azevedo PL, et al. Frequency of HPV in oral cavity squamous cell carcinoma. BMC Cancer 2018;18:324.

28. de Carvalho AC, Perdomo S, dos Santos W, et al. Impact of geographic region with a low prevalence of HPV-related cancer: A retrospective cohort study. Head Neck 2020;42:93–102.

29. de Freitas Cordeiro-Silva M, Stur E, Agostini LP, et al. Impact of human papillomavirus types and variants and p16INK4a expression in oral squamous cell carcinoma in a south Brazilian population. J Bras Patol e Med Lab 2014;50:75–84.

20. INCA. Estimativa 2020: incidência de câncer no Brasil.[Article in Portuguese.] Available at: https://www.inca.gov.br/publicacoes/livros/estimativa-2020-incidencia-de-cancer-no-brasil.[Article in Portuguese.]

References
34. Hauck F, Oliveira-Silva M, Dreyer JH, et al. Prevalence of HPV infection in head and neck carcinomas shows geographical variability: a comparative study from Brazil and Germany. Virchows Arch 2015;466:685–93.
35. Kaminagakura E, Villa LL, Andreoli MA, et al. High-risk human papillomavirus in oral squamous cell carcinoma of young patients. Int J Cancer 2012;130:1726–32.
36. Lira RCP, Miranda FA, Guimarães MCM, et al. BUBR1 expression in benign oral lesions and squamous cell carcinomas: A correlation with human papillomavirus. Oncol Rep 2010;23:1027–36.
37. López RVM, Levi JE, Eluf-Neto J, et al. Human papillomavirus (HPV) 16 and the prognosis of head and neck cancer in a geographical region with a low prevalence of HPV infection. Cancer Causes Control 2014;25:461–71.
38. Miguel REV, Villa LL, Cordeiro AC, et al. Low prevalence of human papillomavirus in a geographic region with a high incidence of head and neck cancer. Am J Surg 1998;176:428–9.
39. Oliveira LR, Ribeiro-Silva A, Ramalho LN, et al. HPV infection in Brazilian oral squamous cell carcinoma patients and its correlation with clinicopathological outcomes. Mol Med Rep 2008;1:123–9.
40. Petito G, Carneiro MA dos S, Santos SH de R, et al. Human papillomavirus in oral cavity and oropharynx carcinomas in the central region of Brazil. Braz J Otorhinolaryngol 2017;83:38–44.
41. Piña AR, Jimenez LS, Mariano FV, et al. Human papillomavirus in tonsillar squamous cell carcinomas from Guatemala and Brazil. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;121:412–8.
42. Ribeiro MGM, Marcolino LD, Ramos BR de A, et al. High prevalence of human papillomavirus (HPV) in oral mucosal lesions of patients at the Ambulatory of Oral Diagnosis of the Federal University of Sergipe, Northeastern Brazil. J Appl Oral Sci 2017;25:69–74.
43. Rivero ERC, Nunes FD. HPV in oral squamous cell carcinomas of a Brazilian population: amplification by PCR. Braz Oral Res 2006;20:21–4.
44. Simonato LE, Garcia JF, Sundefeld MLMM, et al. Detection of HPV in mouth floor squamous cell carcinoma and its correlation with clinicopathologic variables, risk factors and survival. J Oral Pathol Med 2008;37:593–8.
45. Soares CP, Malavazi I, Reis RJ dos, et al. [Presença do papilomavírus humano em lesões malignas de mucosa oral.][Article in Portuguese.] Rev Soc Bras Med Trop 2002;35:439–44.
46. Soares RC, Oliveira MC, Souza LB, et al. Human papillomavirus in oral squamous cells carcinoma in a population of 75 Brazilian patients. Am J Otolaryngol 2007;28:397–400.
47. Vidal AK de L, Cádiz Júnior A de F, Mello RJV de, et al. HPV detection in oral carcinomas. J Bras Patol e Med Lab 2004;40.
48. Castillo A, Koriyama C, Higashi M, et al. Human papillomavirus in upper digestive tract tumors from three countries. World J Gastroenterol 2011;17:5295.
49. Ezira A, Motta LA, Chala A, et al. [Genotipificación, niveles de expresión y estado físico del virus del papiloma humano en pacientes colombianos con cáncer de células escamosas en la cavidad oral.][Article in Spanish.] Biomédica 2015;36:14.
50. Mancilla LI, Carrascal E, Mario Tamayo O, et al. Role of Human Papillomavirus Type 16 in Squamous Cell Carcinoma of Upper Aerodigestive Tracts in Colombian Patients. Int J Cancer Res 2011;7:222–32.
51. Quintero K, Giraldo GA, Uribe ML, et al. Human papillomavirus types in cases of squamous cell carcinoma of head and neck in Colombia. Braz J Otorhinolaryngol 2013;79:375–81.
52. Gómez Z J V, Gutiérrez RA, Kesler A, et al. [Virus papiloma humano en lesiones orales.][Article in Spanish.] Med (Buenos Aires) 2007;67:363–8.
53. Mosmann JP, Talavera AD, Criscuolo M, et al. Sexually transmitted infections in oral cavity lesions: Human papillomavirus, Chlamydia trachomatis, and Herpes simplex virus. J Oral Microbiol 2019;11:1632129.
54. Pennacchiotti G, Sáez R, Martínez MJ, et al. [Prevalencia del virus papiloma humano en pacientes con diagnóstico de carcinoma escamoso de la cavidad oral.][Article in Spanish.] Rev Chil Cirugía 2016;68:137–42.
55. Reyes M, Rojas-Alcayaga G, Pennacchiotti G, et al. Human papillomavirus infection in oral squamous cell carcinomas from Chilean patients. Exp Mol Pathol 2015;99:95–9.
56. Premoli-De-Percoco G, Ramírez JL. High risk human papillomavirus in oral squamous carcinoma: evidence of risk factors in a Venezuelan rural population. Preliminary report. J Oral Pathol Med 2001;30:355–61.
57. Correnti M, Rivera H, Cavazza M. Detection of human papillomaviruses of high oncogenic potential in oral squamous cell carcinoma in a Venezuelan population. Oral Dis 2004;10:163–6.
58. Abougurnin S, Di Tanna GL, Keeping S, et al. Prevalence of human papillomavirus in head and neck cancers in European populations: a meta-analysis. BMC Cancer 2014;14:968.
59. Mehanna H, Beech T, Nicholson T, et al. Prevalence of human papillomavirus in oropharyngeal and non-oropharyngeal head and neck cancer-systematic review and meta-analysis of trends by time and region. Head Neck 2013;35:747–55.
60. Mariz BAL, Kowalski LP, William WN, et al. Global prevalence of human papillomavirus-driven oropharyngeal squamous cell carcinoma following the ASCO guidelines: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020;156:103116.
61. Chen SY, Massa S, Mazul AL, et al. The association of smoking and outcomes in HPV-positive oropharyngeal cancer: A systematic review. Am J Otolaryngol 2020;41:102592.
62. Sinha P, Karadaghy OA, Doering MM, et al. Survival for HPV-positive oropharyngeal squamous cell carcinoma with surgical versus non-surgical treatment approach: A systematic review and meta-analysis. Oral Oncol 2018;86:121–31.