Influence of PD source and AE sensor distance towards arrival time of propagation wave in power transformer

Khalid K N,2, Rohani M N K H,2, Ismail B,2, Isa M,2, Rosmi A S1,2, Wooi C L2 and Yii C C3

1Faculty of Engineering Technology, UniCITI Alam Campus, Universiti Malaysia Perlis, Sungai Chuchuh, Padang Besar, 02100 Perlis, Malaysia.
2High Voltage Transient and Insulation Health (HVTrans), Centre of Excellence Renewable Energy (CERE), School of Electrical System Engineering, Pauh Putra Campus, Universiti Malaysia Perlis, 02600 Pauh, Perlis, Malaysia
3School of Engineering (Electrical), International College of Advanced Technology, Kuching, Sarawak, Malaysia.

E-mail: nadiahkhalid@unimap.edu.my

Abstract: Partial discharge (PD) often begins with cracks or gas-filled voids in solid insulation or with gaseous bubbles in liquid insulation. These presences can degrade the quality of insulator. PD detection can identify these cracks at high voltage equipment such as power cables and power transformer at the early stage. One of PD detection methods is acoustic emission (AE) detection. PD produces an ultrasonic signal that can be captured by an AE sensor. The signal captured is then analysed by capturing the time of the receiving signal onto the sensor. The information related to time can be used for allocating the PD for maintenance purpose. This paper shows the influence of the distance between PD source and the AE sensor towards the arrival time of propagation wave in power transformer. In this study, the four placements of sensors were analysed by having three possible PD sources to represent the variety of distances between the PD source and the sensor. The simulated signal is generated by MATLAB and the arrival time is captured using time of arrival (TOA) method. The time captured and the distance between the PD source and arrival time showed that the relationship is proportional to one another.

Keywords: Partial discharge, AE sensor, arrival time, PD source, propagation wave.

1. Introduction

PD refers to electrical discharge occurring within a portion of dielectric material in between two electrodes that will open a circuit. PD can be initiated by floating microbubbles filled with methane or air in liquid dielectric and subjected to an electric field [1]. PD existence within the insulation is due to aging factor and electrical overstressing on the voids or cracks occurred during manufacturing. PD usually occurs in power transformer [2–12] and power cable [13–18] that lead to poor delivery of power supply to consumer. Thus, any sign of failure should be detected at earlier stage to avoid any economically destructive consequences. PD in power cable can effectively be detected by using a sensor called Rogowski Coi [19] and PD in power transformer is preferably detected using an AE sensor called piezoelectric [20–22].

The acoustical measurement of PD is based on the audible or ultrasonic noise generated from the PD. This technique uses piezoelectric sensors or transducers arranged outside the transformer wall [23,24]. For PD detection using acoustic method, some parameters must be observed and one of them is the velocity of wave propagation [25]. In allocating the PD source, it is commonly considered that the acoustic wave propagates in a direct line. In this paper, all the reflections and refractions of the acoustic waves in different materials that contribute to obstruction, are considered negligible.

To determine the PD location, the arrival time of propagation waves onto the sensor is referred to.
Hence, several sensors are installed on the external of the transformer wall. In this study, four AE sensors were installed to detect the signal. The arrival times of those sensors are then compared, and the location of the PD can be identified.

This simple acoustic system is more suitable for field use due to its immunity to electromagnetic interference [21]. However, the acoustic method is not noise-proof as the transformer itself will produce a mechanical vibration. Since the frequencies of these vibrations are smaller than those generated by the PD, hence their occurrences as well as other noises from outside of the tank are negligible in this study.

2. AE Sensor Placement

PD source is possible to occur in the transformer tank and can referred by using the coordinate \((x_{\text{act}}, y_{\text{act}}, z_{\text{act}})\) that is in meter (m). The three possible PD sources are identified as PD1 = (0.545, 0.68, 0.6) at core 1, PD2 = (0.258, 0.25, 0.35) at core 2 and PD3 = (0.248, 1.0, 0.55) at core 3. The analysis is based on the empty transformer tank filled with only transformer oil.

Based on suggestion from previous research [22], three different cases were defined for the placement of AE sensors mounted outside the transformer tank sized 0.936m\(^3\). Figure 1 shows the side of the transformer where all the sensors were placed.

![Figure 1. Illustration of the transformer tank include the side here the sensor are mounted, the dimension of the transformer and the possible PD sources.](image)

The sensors’ coordinates were shown in Table 1. As indicated in Table 1, the sensors for cases 1 and case 3 were placed at the four sides of the transformer in different heights. For case 2, the sensors were also placed at the four sides of the transformer but at the same height.

Sensor Coordinate	Case 1 (x (m))	Case 2 (x (m))	Case 3 (x (m))	Case 1 (y (m))	Case 2 (y (m))	Case 3 (y (m))	Case 1 (z (m))	Case 2 (z (m))	Case 3 (z (m))
x (m)	0.00	0.40	0.20	0.00	0.00	0.00	0.40	0.40	0.40
y (m)	0.00	0.40	0.20	0.00	0.00	0.00	0.40	0.40	0.40
z (m)	0.20	0.70	0.20	0.20	0.70	0.20	0.45	0.45	0.45

3. Simulated PD Signal

PD signal was simulated using MATLAB software according to Equation 1 [14,17,26].

\[
s(t) = A[e^{-a_1t}\cos \omega_d \theta - e^{-a_2t}\cos \theta] / I
\]

Where, \(A\) is the magnitude coefficient assumed to be 0.01, \(a_1 = 1 \times 10^6s^{-1}\), \(a_2 = 1 \times 10^7s^{-1}\), \(\theta = \tan^{-1}\frac{\omega_d}{a_2}\), \(\omega_d = 2\pi f_d\), and \(f_d = 1 MHz\). The simulative sampling frequency, \(f_s = 100 MHz\).

From previous research [27], it was found that the propagating velocity in the transformer oil differed
according to the temperature of the oil. The study showed that at a low temperature, a limiting maximum velocity appeared thus as the temperature rises, the propagation velocity drops off dramatically [27].

Propagation velocity of oil used in this paper is \(V_{oil} = 1431 \text{ms}^{-1} \) at 20\(^\circ\)C oil temperature [21,22,28]. The propagation velocity is used in computing the time delay for the simulated PD signal. The PD pulse was simulated by using mathematical model as shown in Equation 1. The time delay was recorded and measured in Table 2, based on the first arriving signal at the sensor.

PD Location	Case	Arrival Time (\(\mu\)s)			
		T1	T2	T3	T4
PD1	Case 1	420.41	481.89	500.72	559.89
	Case 2	207.80	395.57	457.13	497.15
	Case 3	332.16	450.41	472.89	490.88
PD2	Case 1	208.55	384.01	683.36	774.50
	Case 2	212.72	339.89	475.89	743.72
	Case 3	316.53	348.75	482.26	779.78
PD3	Case 1	236.78	458.08	603.78	748.22
	Case 2	245.19	307.80	462.06	710.28
	Case 3	257.33	386.88	518.11	714.57

Figure 2 and Figure 3 shows the simulated signals of PD1, PD2 and PD3 occurring at core 1, core 2 and core 3 for cases 1, 2 and 3. Each case comprises four sensors and each sensor is denoted as T1, T2, T3 and T4. The signals captured using 100MHz sampling frequency at 10000 sampling length and the amplitude of the PD signal for every case is set approximately at 4.16m \(V_p \).

Figure 2d - 2f show the simulated signals of PD2 that occurred at core 2 for cases 1, 2 and 3. Case 1 as shown in Figure 2d and case 2 in Figure 2e suggesting the distance between PD source and sensor were alike as the captured signals are almost identical. But for case 3 as shown in Figure 2f, the PD2 source is closer to T1, T2 and T3 but further away from T4.
Figure 2. Simulated PD1 signal (a-c) and PD2 signal (d-f) at each sensor for case 1, case 2 and case 3

Figure 3 shows the simulated PD3 signal that occurred at core 3 for cases 1, 2 and 3. Based on the arrival time for all the four sensors in case 1, 2 and 3, the PD source can be estimated as not far from all the four sensors in four different cases.

Figure 3. Simulated PD3 signal at each sensor for (a) case 1, (b) case 2 and (c) case 3.

4. Distances between PD Source and AE Sensor

This section analysed the distances between the PD source and the sensor. The distance between two nodes which are PD source and the sensor, is shows by Equation 2.

\[
\text{Distance} = \text{Velocity (ms}^{-1}\text{)} \times \text{Arrival Time (s)}
\]

(2)

According to Equation 2, velocity is the wave propagation of light in the oil which is \(1431\text{ ms}^{-1}\) within \(20^\circ\text{C}\) [22] and the arrival time is recorded in Table 1, the distance between the PD source and the sensor is shown in Table 3.

PD Location	Case	Distance (m)
PD1	Case 1	0.6016
	Case 2	0.5661
	Case 3	0.6445
PD2	Case 1	0.2974
	Case 2	0.4864
	Case 3	0.4991
PD3	Case 1	0.3388
	Case 2	0.4056
	Case 3	0.3065
Based on Table 2 and Table 3, the value of time is increased based on the distance. The increment of the values can be further determined based on Figures 4a, 4b and 4c for PD1, PD2 and PD3, respectively.

The further the distance between PD source and the sensor, the longer the signal took to arrive to the sensor. Hence, the arrival time indicates that the PD source is further away from the sensor.

5. Conclusion

This study theoretically investigated the relationship between the distance and the arrival time of the PD propagation wave. In particular, the study focused on the correlation between the different arrival time due to the distance between the PD source and the AE sensor. The propagating wave speed is set constantly at 1431 m s^{-1} at $20^\circ C$. Consequently, this study found that the results of the arrival time is proportional to the change of distance. Therefore, the time of signal arrival is depending on the distance between the PD source and the AE sensor placement. However, the accuracy of this study strongly depends on the cumulative energy captured by the AE sensor since the AE sensor converts the signal into an electrical energy.

Acknowledgement

The authors would like to thank the Ministry of Higher Education Malaysia for financially supported under the Fundamental Research Grant Scheme (FRGS/1/2018/TK04/UNIMAP/02/14).

References

[1] Azharudin Mukhtaruddin, Muzamir Isa, Mazlee Mohd Noor, Mohd Rafi Adzman, Baharuddin ismail, M. N. K. H. Rohani and Mohd Fadzil Ain 2018 Simulation on the
conditions affecting partial discharge initiation in microbubble immersed in dielectric liquid. J. Teknol. (Sciences Eng.80 69–75

[2] Zhang G, Zhang X, Tang J and Cheng H 2018 Study on localization of transformer partial discharge source with planar arrangement UHF sensors based on singular value elimination AIP Adv.8 11

[3] Judd M D, Yang L and Hunter I B B 2005 Partial discharge monitoring for power transformers using UHF sensors part I: Sensors and signal interpretation IEEE Electr. Insul. Mag.21 5–14

[4] Tang L, Luo R, Deng M and Su J 2008 Study of partial discharge localization using ultrasonics in power transformer based on particle swarm optimization IEEE Trans. Dielectr. Electr. Insul.15 492–5

[5] Mirzaei H R, Akbari A, Gockenbach E, Zanjani M and Miralikhani K 2013 A novel method for ultra-high-frequency partial discharge localization in power transformers using the particle swarm optimization algorithm IEEE Electr. Insul. Mag.29 26–39

[6] Markalous S M, Tenbohlen S and Feser K 2008 Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals IEEE Trans. Dielectr. Electr. Insul.15 1576–83

[7] Chakravorti S, Dey D and Chatterjee B 2013 Recent Trends in the Condition Monitoring of Transformers (India: Springer)

[8] Tan X, Hu X and Lu Y 2002 PD detection and localisation by acoustic measurements in an oil-filled transformer IEE Proc. - Sci. Meas. Technol.147 81–5

[9] Sarathi R, Singh P D and Danikas M G 2007 Characterization of partial discharges in transformer oil insulation under AC and DC voltage using acoustic emission technique J. Electr. Eng.58 91–7

[10] Hoek S and Ranninger U 2015 Acoustic localisation of partial discharge in power transformers Transform. Mag.2 88–95

[11] Liu H L 2016 Acoustic partial discharge localization methodology in power transformers employing the quantum genetic algorithm Appl. Acoust.102 71–8

[12] Soomro I A and Ramdon N 2014 Study on different techniques of partial discharge (PD) detection in power transformers winding : Simulation between paper and EPOXY resin using UHF method Int. J. Conceptions Electr. Electron. Eng.2 57–61

[13] Yui C C, Rohani M N K H, Isa M, Hassan S I S, Ismail B and Hussin N 2015 Multi-end partial discharge location algorithm based on trimmed mean data filtering technique for MV underground cable 2015 IEEE Student Conf. Res. Dev. SCOReD 2015 345–50

[14] Isa M, Elkalashy N I, Lehtonen M, Hashmi G M and Elmusrati M S 2012 Multi-end correlation-based PD location technique for medium voltage covered-conductor lines
[15] Montanari G C 2016 Partial discharge detection in medium voltage and high voltage cables: Maximum distance for detection, length of cable, and some answers IEEE Electr. Insul. Mag. 32 41–6

[16] Yusoff N A, Isa M, Hamid H, Adzman M R, Rohani M N K H, Yii C C and Ayop N N 2017 Denoising technique for partial discharge signal: A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform PECON 2016 - 2016 IEEE 6th Int. Conf. Power Energy, Conf. Proceeding 311–6

[17] Yii C C, Rohani M N K H, Isa M and Hassan S I S 2017 Multi-end PD location algorithm using segmented correlation and trimmed mean data filtering techniques for MV Underground Cable IEEE Trans. Dielectr. Electr. Insul. 24 92–8

[18] Ghaedi A, Moeni-Aghtaie M and Ghaffari A 2016 Detection of online PD signals in XLPE cables using the Bhattacharyya distance Turkish J. Electr. Eng. Comput. Sci. 24 3552–63

[19] Rohani M N K H, Yii C C, Isa M, Hassan S I S, Mukhtaruddin A, Yusof N A and Ismail B 2017 Evaluation of Rogowski coil sensor performance using EMTP-ATP software 2016 3rd Int. Conf. Electron. Des. ICED 2016 446–51

[20] Castro B, Clerice G, Ramos C, Andreoli A A, Baptista F, Campos F and Ulson J J 2016 Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors. Sensors (Basel). 16

[21] Hekmati A and Hekmati R 2017 Optimum acoustic sensor placement for partial discharge allocation in transformers IET Sci. Meas. Technol. 11 581–9

[22] Auni W N, Mohammad W, Khalid K N, Khairul M N, Rohani H, Rosmi A S, Muzamir I, Ismail B and Mustafa W A 2019 Preliminary Result on Multiple Acoustic Sensor Placement for PD Location Based on TDOA Technique J. Adv. Res. Eng. Knowl. J. homepage 6 15–22

[23] Rosmi A S, Isa M, Ismail B, Rohani M N K H and Wahab Y 2018 An Optimization of Electrical Output Power for Piezoelectric Energy Harvester using Different Micro-Cantilever Beam Geometries J. Phys. Conf. Ser. 1019

[24] Hang T, Glaum J, Genenko Y A, Phung T and Hoffman M 2016 Investigation of partial discharge in piezoelectric ceramics Acta Mater. 102 284–91

[25] Wotzka D, Boczar T and Zmarzly D 2009 Analysis of acoustic wave propagation in a power transformer model Acta Phys. Pol. A 116 428–31

[26] Li J, Jiang T, Grzybowski S and Cheng C 2010 Scale dependent wavelet selection for denoising of partial discharge detection IEEE Trans. Dielectr. Electr. Insul. 17 1705–14

[27] Howells E, Norton E T, Member S, Norton E T, Thomas A and Alto P 1984 Parameters
affecting the velocity of sound in transformer oil IEEE Trans. Power Appar. Syst. PAS-103 1111–5

[28] Hekmati A 2015 Proposed method of partial discharge allocation with acoustic emission sensors within power transformers Appl. Acoust.100 26–33