Integrating food webs with metabolic networks: modeling contaminant degradation in marine ecosystems

Georg Basler and Evangelos Simeonidis

1 Department of Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas, Granada, Spain
2 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
3 Institute for Systems Biology, Seattle, WA, USA
*Correspondence: evangelos.simeonidis@uni.lu

A commentary on

Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis
by Taffi, M., Paoletti, N., Angione, C., Pucciarelli, S., Marini, M., and Lü, P. (2014). Front. Genet. 5:319. doi: 10.3389/fgene.2014.00319

The seas are continuously pervaded by a broad range of contaminants entering the marine environment from polluted soils, the atmosphere, sewage, water transport or river streams (Shahidul Islam and Tanaka, 2004). Organic pollutants are of particular concern, because of their tendency to accumulate in specific organisms, thus threatening both ecosystem stability and human health (Fleming et al., 2006; Johnston and Roberts, 2009). Among those, polychlorinated biphenyls (PCBs) are synthetic compounds produced by the chemical industry and found throughout global environments (Beyer et al., 2007) with data of PCB concentration obtained from an extensive literature review (Taffi et al., in press). The resulting model allowed prediction of the flow rates of PCBs among ecological groups and reproduced the finding that PCBs accumulate mostly in species at higher trophic levels and with lower total biomass. Further, the model allowed estimation of the fate of contaminants, such as their bioaccumulation in marine species.

The described efforts facilitated generic estimations of contaminant flows in ecosystems, but largely neglected the contribution of microorganisms to pollutant degradation. Specifically, PCBs can be dechlorinated and degraded by a range of bacteria (Borja et al., 2005). Thus, biodegradation may be an important factor for the persistence of a pollutant within an ecosystem and, moreover, may provide hints for bioremediation strategies based on the aforementioned bacteria. The uptake, degradation and excretion of compounds by microorganisms can be predicted from the knowledge of their metabolic capabilities using constraint-based approaches (Bordbar et al., 2014). Today, detailed metabolic reconstructions are available for a broad range of organisms (Monk et al., 2014), including several bacteria known for their bioremediation capabilities, such as Geobacter spp. (Mahadevan et al., 2011), Shewanella oneidensis (Fredrickson et al., 2008), and Pseudomonas putida (Nogales et al., 2008); and new reconstructions for more organisms are published regularly. Thus, an intriguing challenge is the combination of ecological and metabolic modeling approaches to integrate population-level simulations of ecosystems with cellular modeling of microbial metabolism, similar to the previous integration of reactive transport models with metabolic models (Fang et al., 2011).

Taffi et al. (2014) have recently integrated a comprehensive food web of the Adriatic Sea with PCB concentration data and a metabolic model of P. putida. First, the authors conducted an extensive literature review to complement a food web reconstruction (Coll et al., 2007) with data of PCB concentrations among marine species (Taffi et al., in press). Next, linear inverse modeling was
used to infer unknown contaminant flows and concentrations based on the mass balance principle. Finally, the ecological network was integrated with the genome-scale metabolic network of *P. putida* for constraint-based simulation of microbial PCB degradation. The study integrated two methodologically similar modeling approaches within a reaction-based ecological/microbial network representation, relying on the parallels between representing PCB concentrations and flows on the ecosystem level, and metabolic concentrations and reaction fluxes on the microbial cellular level. Therein, marine species groups resemble the representation of metabolites, while contaminant flows are modeled as reactions. This approach enabled the seamless integration of ecological and metabolic modeling techniques, providing the basis for multi-scale simulations of ecosystems.

The modeling approach was used to predict the influence of different microbial bioremediation strategies on the fate and distribution of PCBs in marine species of the Adriatic Sea. The effect of varying oxygen levels on microbial PCB degradation revealed a tradeoff between PCB uptake and growth of *P. putida*. Further, the impact of different bioremediation scenarios on global and local network indices was assessed. Importantly, the generality of the proposed approach facilitates the integration of measured data, the incorporation of established techniques from ecological and metabolic modeling and the direct application of the methodology to other ecological and microbial networks. Thus, it can be used to guide the selection of appropriate bacteria and consortia (Thompson et al., 2005), or the design of genetically engineered bacteria for bioremediation (Singh et al., 2011). The approach will stimulate new developments in ecological modeling and offer insights into the multi-level interplay among ecosystems, microbial networks and biodegradation.

ACKNOWLEDGMENTS

We thank Alejandro Acosta-González for critical comments on the manuscript. Georg Basler is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme, ERC grant agreement number 329682. Evangelos Simeonidis is supported by the Luxembourg Centre for Systems Biomedicine.

REFERENCES

Arnott, I. A., and Gobas, F. A. P. C. (2004). A food web bioaccumulation model for organic chemicals in aquatic ecosystems. *Environ. Toxicol. Chem.* 23, 2343–2355. doi: 10.1897/03-438

Berlow, E. L., Dunne, J. A., Martinez, N. D., Stark, P. B., Williams, R. J., and Brose, U. (2009). Simple prediction of interaction strengths in complex food webs. *Proc. Natl. Acad. Sci. U.S.A.* 106, 187–191. doi: 10.1073/pnas.0806823106

Beyer, A., and Biziuk, M. (2009). Environmental fate and global distribution of polychlorinated biphenyls. *Rev. Environ. Contam. Toxicol.* 201, 137–158. doi: 10.1007/978-1-4419-0032-6_5

Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. Ø. (2014). Constraint-based models predict metabolic and associated cellular functions. *Nat. Rev. Genet.* 15, 107–120. doi: 10.1038/nrg3643

Borja, J., Taleon, D. M., Aurensen, J., and Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. *Process Biochem.* 40, 1999–2013. doi: 10.1016/j.procbio.2004.08.006

Breivik, K., Sweetman, A., Pacyna, J. M., and Jones, K. C. (2007). Towards a global historical emission inventory for selected PCB congeners - A mass balance approach: 3. An update. *Sci. Total Environ.* 377, 296–307. doi: 10.1016/j.scitotenv.2007.02.026

Coll, M., Santojanni, A., Palomera, I., Tudela, S., and Arneri, E. (2007). An ecological model of the Northern and Central Adriatic Sea: analysis of ecosystem structure and fishing impacts. *J. Mar. Syst.* 67, 119–154. doi: 10.1016/j.jmarsys.2006.10.002

Fang, Y., Scheibe, T. D., Mahadevan, R., Garg, S., Long, P. E., and Lovley, D. R. (2011). Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. *J. Contam. Hydrol.* 122, 96–103. doi: 10.1016/j.jconhyd.2010.11.007

Fleming, L. E., Broad, K., Clement, A., Dewailly, E., Elmir, S., Knap, A., et al. (2006). Oceans and human health: emerging public health risks in the marine environment. *Mar. Pollut. Bull.* 53, 545–560. doi: 10.1016/j.marpolbul.2006.08.012

Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscoll, M. E., Gardner, T. S., et al. (2008). Towards environmental systems biology of Shewanella. *Nat. Rev. Microbiol.* 6, 592–603. doi: 10.1038/nrmicro1947

Johnston, E. L., and Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. *Environ. Pollut.* 157, 1745–1752. doi: 10.1016/j.envpol.2009.02.017

Kelly, B. C., Ikonomou, M. G., Blair, J. D., Morin, A. E., and Gobas, F. A. P. C. (2007). Food web-specific biomagnification of persistent organic pollutants. *Science* 317, 236–239. doi: 10.1126/science.1138275

Mahadevan, R., Palsson, B. Ø., and Lovley, D. R. (2011). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. *Nat. Rev. Microbiol.* 9, 39–50. doi: 10.1038/nrmicro2456

Monk, J., Nogales, J., and Palsson, B. Ø. (2014). Optimizing genome-scale network reconstructions. *Nat. Biotechnol.* 32, 447–452. doi: 10.1038/nbt.2870

Nichols, J. W., Bonnell, M., Dimitrov, S. D., Escher, B. I., Han, X., and Kramer, N. I. (2009). Bioaccumulation assessment using predictive approaches. *Integr. Environ. Assess. Manag.* 5, 577–597. doi: 10.1897/IEAM_2008-088.1

Nogales, J., Palsson, B. Ø., and Thiele, I. (2008). A genome-scale metabolic reconstruction of *Pseudomonas putida* KT2440: iN746 as a cell factory. *BMC Syst. Biol.* 2:79. doi: 10.1186/1752-0509-2-79

Perugini, M., Cavaliere, M., Giammarino, A., Mazzone, P., Olivieri, V., and Amorena, M. (2004). Levels of polychlorinated biphenyls and organochlorine pesticides in some edible marine organisms from the Central Adriatic Sea. *Chemosphere* 57, 591–400. doi: 10.1016/j.chemosphere.2004.03.034

Shahidul Islam, M., and Tanaka, M. (2009). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. *Mar. Pollut. Bull.* 48, 624–649. doi: 10.1016/j.marpolbul.2003.12.004

Singh, J. S., Abhilash, P. C., Singh, H. B., Singh, R. P., and Singh, D. P. (2011). Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. *Gene* 480, 1–9. doi: 10.1016/j.gene.2011.03.001

Taffi, M., Paioletti, N., Angione, C., Pucciarelli, S., Marini, M., and Liò, P. (2014). Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis. *Front. Genet.* 5:319. doi: 10.3389/fgene.2014.00319

Taffi, M., Paioletti, N., Liò, P., Pucciarelli, S., and Marini, M. (in press). Bioaccumulation assessment using predictive approaches within a reaction-based ecological network model and a groundwater reactive transport model. *Ecol. Model.* (in press). doi: 10.1016/j.ecolmodel.2014.11.030

Thompson, I. P., Van Der Gast, C. J., Cirlc, L., and Singer, A. C. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. *Environ. Microbiol.* 7, 909–915. doi: 10.1111/j.1462-2920.2005.00804.x

Tyagi, M., Da Fonseca, M. M. R., and De Carvalho, C. C. C. R. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. *Biodegradation* 22, 231–241. doi: 10.1007/s10532-010-9394-4

Wania, F., and Mackay, D. (1999). The evolution of mass balance models of persistent organic pollutant fate in the environment. *Environ. Pollut.* 100, 223–240. doi: 10.1016/S0269-7491(99)00093-7

Yodzis, P., and Innes, S. (1992). Body size and consumer-resource dynamics. *Am. Nat.* 139, 1151–1175. doi: 10.1086/283580

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
