Mercury content of *Sardinella lemuru* caught in East Java and Bali waters

A Sartimbul¹²*, J A Amandani¹, D Yona¹² and M A Z Fuad¹²

¹ Faculty of Fisheries and Marine Science, Brawijaya University, Malang 65145, Indonesia
² Marine Resources Exploration and Management (MEXMA) Research Group, Brawijaya University, Malang 65145, Indonesia

aida@ub.ac.id

Abstract. *Sardinella lemuru* is a small pelagic fish which is mostly caught in Java and Bali waters. It is important because of its high Omega-3 fatty acid. As pelagic fish that are found in relatively shallow waters and near the coast, it could be contaminated from the land. The purpose of this study is to analyse the mercury content of *S. lemuru* caught in three fishing ground in East Java (Prigi and Muncar) and Bali (Kedonganan). Fish samples were taken by random sampling and collected from November 2019 to March 2020 and analysed for mercury content using the Cold Rapoun Atomic Fluorescence method using the Atomic Absorption Spectroscopy (AAS) Shimadzu AA-6200. Furthermore, the Estimated Daily Intake (EDI) and Maximum Tolerable Intake (MTI) are calculated. The results showed that mercury concentration in *S. lemuru* were 0.938 ± 0.45 mg / kg and 0.58 ± 0.65 mg / kg for Kedonganan and Prigi, respectively. While, there is undetected mercury for Muncar fish samples. The mercury concentration identified are above the Indonesia standards (SNI and BPOM = 0.5mg / kg). Moreover, the EDI value was higher than Provisional Tolerable Daily Intake -WHO. The mean value of MTI is 0.121 mg / week. If fish contaminated mercury was consumed in one week exceeds the MTI value, the heavy metal could affect the human health.

1. **Introduction**

Pelagic fish is one of the fish that is very popular in Indonesian because of its abundant and cheap price. This fish is easy to find as well because of its presence in shallow waters and close to the coast. This fish is a schooling species and forms high biomass around the upwelling area, such as Bali Strait to South Java [1]. Upwelling is the process of rising seawater mass from the bottom to the sea surface which carries a lot of nutrients for fish life [2].

In addition to being abundant, *S. lemuru* has benefits because it contains high Omega-3 fatty acids [3] which are the 3rd highest after mackerel and salmon [4]. Omega-3 is known to be useful for human health, such as preventing coronary heart disease, preventing stunting [5], maintaining immunity [6], and many other benefits. Although *S. lemuru* has high benefits, due to its presence on the surface of the water, it is necessary to be aware of the presence of heavy metal pollutants (such as mercury) which are harmful to human health.

It has been documented that mercury causes the death of many people in Minamata Japan due to intake of mercury-tainted seafood [7]. Mercury, a poisonous metal, has been shown to accumulate biologically in the tissues of fish, and humans who consume it [8]. Previous studies reported that
mercury is found in some waters and sediments where there is a lot of human activity [9]. Mercury is also found in various marine products, such as Crassostrea cuculata oysters and Crassostrea glomerate [10]. However, information on mercury content in pelagic fish in East Java and Bali waters is very limited, for example monitoring of mercury in several fish species including pelagic fish in Gresik waters (East Java) [11].

Limited information regarding the content of heavy metals in S. lemuru is the reason for this study. The purpose of this study was to determine the concentration of mercury contained in lemuru fish and to determine the safe level for lemuru consumption based on Estimated Daily Intake (EDI) and Maximum Tolerable Intake (MTI) values so that it might be as one information for the government in food safety policy.

2. Material and methods
Sardinella lemuru used in this study represented commercially available fish species most consumed by the community and the most abundant catch of the season. The study sites are in the South of East Java and the Bali Strait which is known as the fishing ground of *S. lemuru* in Indonesia. There were three sampling sites of this study, i.e. Prigi Water (South of East Java), Muncar Water (East of East Java) and Kedonganan (Bali Water) (Figure 1). Sampling was conducted from November 2019 to March 2020. Fish samples put in a plastic bag and stored in the refrigerator, then soon analyzed in the laboratory. Sample preparation was conducted by separating the digestive tract, gills, and flesh from each fish then mashed and weighed up to ± 10gr. The sample was then subjected to a wet digestion process using Aquaregia reagent and analysis using Cold Rapoun Atomic Fluorescence method in Atomic Absorption Spectroscopy (AAS) Shimadzu AA-6200.

After obtaining heavy metal data, the following analysis were done such as Estimated Daily Intake (EDI) and Maximum Tolerable Intake (MTI). EDI is used to determine the estimation of heavy metals that enter the body within 1 day obtained by formula 1 [12]:

\[
EDI = C \times \text{daily fish consumption (g/day)}
\]

C is the heavy metal concentration found in the sample; The daily fish consumption of the people of East Java is 45.2 grams/day in Bali Province, which is 37.7 grams/day [13]. MTI is used to determine the value of weekly consumption that can be tolerated by the body in units of mg/kg. Before looking for the MTI value, first, the Maximum Weekly Intake (MWI) value is calculated using formula 2:
MWI = BW × PTWI (Provisional Tolerable Weekly Intake) (2)

BW is the estimated body weight of adults in Indonesia, which is 60kg. The PTWI value is the maximum tolerance limit per week issued by the WHO (World Health Organization). The PTWI value of the heavy metal mercury is 0.004 mg/kg body weight. The maximum weight limit for *S. lemuru* meat that the body can tolerate in one week (MTI) can then be calculated using the formula 3 [14]:

\[\text{MTI} = \frac{\text{MWI}}{\text{heavy metal concentrations in fish samples}} \] (3)

The results of MTI calculations can then become a consideration for the community in consuming *S. lemuru* in a week.

3. Results and discussion

The concentration of mercury obtained in *S. lemuru* samples is shown in Figure 2. The concentration of mercury obtained at the Prigi fishing ground is 0.58 ± 0.65 mg/kg, Kedonganan fishing ground is 0.938 ± 0.45 mg/kg, and fishing ground Muncar is undetectable. If a comparison is made with the concentration of mercury in fish in other locations in the world (Table 2), the mercury concentration obtained in this study is quite high. The mercury concentration obtained is above the threshold value issued by BPOM and SNI, which is 0.5 mg/kg. In general, Mercury enters the waters due to human activities such as the gold craft industry around the estuarine of Mati River, Badung Regency, Bali Province [15] and can also be sourced from gold mining activities that produce mercury waste and are carried by rivers and toward into the sea [16], a mixture of facial / skin whitening ingredients (cosmetics), gold mining/gold processing waste, electrical equipment, antiseptic, diuretic, anti-fungal, insect repellent, and can be used as a preservative in vaccines [17].

In present study, a negative correlation was found between the concentration of heavy metals in *S. lemuru* and fish size (Figure 3). The Pearson coefficient value obtained is 0.392 which means that there is a weak correlation. The negative correlation between heavy metal concentrations and fish size does not necessarily mean that fish do not receive heavy metal concentrations at the beginning of their life phase, and absorb heavy metals when they are large; conversely, it is determined by the variation in feeding rate with the developmental stages of individual fish [18]. The concentration of heavy metals contained in fish depends on the balance between absorption and release of heavy metals, both of which are influenced by various factors such as habitat, location, feeding behavior, and life stage of the fish. Young individuals with high dietary and metabolic activity showed a higher accumulation of heavy metals when compared to older fish [19]. High concentrations of mercury were also present in a study conducted by Yusa et al., [20] on Luvar fish (*Luvarus imperialis*) and tuna fish (*Thunnus spp.*), heavy metals can accumulate in the fish body through the bioaccumulation process.

![Figure 2](image-url)
Figure 3. Weak correlation between fish length and mercury concentration.

The estimated daily intake (EDI) obtained was above the PTDI (Provisional Tolerable Daily Intake) value issued by WHO as 0.00057 mg/kg/day (Table 1). This value states that the concentration of heavy metals that enter the body in one day is already above the body's tolerance value for heavy metal mercury, of course, this can affect the health of the consumer's body [21].

The Maximum Tolerable Intake (MTI) obtained in the sample has very lightweight. This indicates that *S. lemuru* contains very high concentrations of mercury. The maximum value of mercury concentration that can enter the body (MWI) for adults assuming a weight of 60kg is 0.24 mg Hg/week. If people consume *S. lemuru* that exceeds the MTI value, the heavy metal is toxic in the human body [21].

Table 1. EDI (Estimated Daily Intake) and MTI (Maximum Tolerable Intake) value.

Fishing ground	Estimated Daily Intake Mercury (Hg)	MTI Mercury / Hg (mg fish /week)
Prigi	0.026	0.414
Muncar	0	0.000
Kedonganan	0.035	0.256
Average	0.031	0.223

Table 2. Comparison of heavy metal concentration from different locations in the world.

Location	Species	Hg	Reference
Arabian Gulf	*Stolephorus indicus*	0.053	[22]
Black Sea, Turkey	*Scomber scombrus*	0.060 ± 0.03	[23]
Black Sea, Turkey	*Merlangius merlangus*	0.084 ± 0.05	
Black Sea, Turkey	*Mugil cephalus*	0.070 ± 0.04	
Black Sea, Turkey	*Pomatomus saltor*	0.062 ± 0.03	
Black Sea, Turkey	*Trachurus*	0.078 ± 0.05	
The Congolese Atlantic Coastal, Republic of Congo	*Arias latiscutatus*	0.41±0.23	[24]
Black Sea, Turkey	*Pentanemus quinquarius*	0.47±0.32	
Black Sea, Turkey	*Pseudotolithus elongatus*	0.49±0.32	
Tunisian Sea	*Sardinella aurita*	0.339 x 10^{-3}	[25]
Tunisian Sea	*Sardinella pilchardus*	0.647 x 10^{-3}	
Atlantic Ocean, Southeast Brazil	*Sardinella brasiliensis*	0.128 ± 0.045	[26]
Atlantic Ocean, Southeast Brazil	*Caranx latus*	0.211 ± 0.113	
Tunisian Sea	*Katsuwonus pelamis*	0.210 ± 0.362	
Atlantic Ocean, Southeast Brazil	*Sardinella brasiliensis*	0.128 ± 0.045	
Peninsular, Malaysia	*Selar boops*	0.555	
Peninsular, Malaysia	*Atule mate*	0.458	
Peninsular, Malaysia	*Decapterus macrosoma*	0.354	
Prigi (Indonesia)	*Sardinella lemuru*	0.58±0.65	This study
Muncar (Indonesia)	*Sardinella lemuru*	0	This study
Kedonganan (Indonesia)	*Sardinella lemuru*	0.938±0.45	This study
4. Conclusion

The heavy metal mercury found in *S. lemuru* is above the threshold issued by BPOM and SNI. Heavy metal concentrations were also found to be above average mercury in fish in other countries. There is a negative correlation between fish size and the concentration of heavy metal mercury, this is influenced by the habitat, location, feeding behavior, and life stage of the fish. Estimated Daily Intake (EDI) is above the PTDI provisions issued by WHO. The Tolerable Weekly Intake (TWI) obtained has a small weight because it contains a very high concentration of mercury for consumption. This study provides important information for the community so that people are more alert and know the safe limits of consuming *S. lemuru* and can become one of the government inputs in food safety policy.

Acknowledgement

The author would like to thank all those who helped in the preparation of this article, especially the Ministry of Research and Technology-National Research and Innovation Agency of the Republic of Indonesia and the Ministry of Education and Culture - Higher Education of the Republic of Indonesia for publication funding.

References

[1] Sartimbul A, Rohadi E, Ikhsani S N and Listiyaningisih D 2018 Morphometric and meristic variations among five populations of Sardinella lemuru Bleeker, 1853 from waters of Bali Strait, northern and southern-east Java and their relation to the environment. *AACL Bioflux* **11** 744–52

[2] Susanto R D, Moore T S and Marra J 2006 Ocean color variability in the Indonesian Seas during the SeaWiFS era *Geochemistry, Geophys. Geosystems* **7**

[3] Mahrus S S B, Widodo N and Sartimbul A 2012 The association between genetic variations and omega-3 production on Sardinella lemuru in Lombok Strait *J. Agric. Vet. Sci.* **1** 12–6

[4] Rubio-Rodriguez N, Beltrán S, Jaime I, Sara M, Sanz M T and Carballido J R 2010 Production of omega-3 polyunsaturated fatty acid concentrates: A review *Innov. Food Sci. Emerg. Technol.* **11** 1–12

[5] Muslihah N, Khomsan A, Briawan D and Riyadi H 2016 Complementary food supplementation with a small-quantity of lipid-based nutrient supplements prevents stunting in 6-12-month-old infants in rural West Madura Island, Indonesia *Asia Pac. J. Clin. Nutr.* **25** s36–42

[6] Gutiérrez S, Svahn S L and Johansson M E 2019 Effects of omega-3 fatty acids on immune cells *Int. J. Mol. Sci.* **20** 5028

[7] Clark R B, Frid C and Attrill M 1989 *Marine pollution* (Oxford: Clarendon Press)

[8] Adams D H and Onorato G V 2005 Mercury concentrations in red drum, *Sciaenops ocellatus*, from estuarine and offshore waters of Florida *Mar. Pollut. Bull.* **50** 291–300

[9] Velez D and Montoro R 1998 Arsenic speciation in manufactured seafood products *J. Food Prot.* **61** 1240–5

[10] Hertika A M S, Kusriani K, Indrayani E, Yona D and Putra R B D S 2019 Metallothionein expression on oysters (*Crassostrea cuniculata* and *Crassostrea glomerata*) from the southern coastal region of East Java *F1000Research* **8**

[11] Soegianto A, Moehammadi N, Irawan B, Affandi M and Hamami M 2010 Mercury concentrations in edible species harvested from Gresik coast, Indonesia and its health risk assessment *Cah. Biol. Mar.* **51** 1

[12] Junqué E, Gari M, Arce A, Torrent M, Sunyer J and Grimalt J O 2017 Integrated assessment of infant exposure to persistent organic pollutants and mercury via dietary intake in a central western Mediterranean site (Menorca Island) *Environ. Res.* **156** 714–24

[13] Kementerian Pertanian 2019 *Direktori Perkembangan Konsumsi Pangan* (Badan Ketahanan Pangan Kementerian Pertanian)

[14] Türkmen M, Türkmen A, Tepe Y, Ateş A and Gökkuş K 2008 Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish
species *Food Chem.* **108** 794–800

[15] Sumekar H, Suprihatin I E and Irdhawati I 2015 Kandungan logam pb dan hg dalam sedimen di muara sungai matikabupaten badung bali *cakra Kim. (Indonesian E-Journal Appl. Chem.)* **3** 45–9

[16] Junaidi M, Krisnayanti B D, Juharfa J and Anderson C 2019 Risk of mercury exposure from fish consumption at artisanal small-scale gold mining areas in West Nusa Tenggara, Indonesia *J. Heal. Pollut.* **9**

[17] Clarkson T W and Magos L 2006 The toxicology of mercury and its chemical compounds *Crit. Rev. Toxicol.* **36** 609–62

[18] Farkas A, Salánki J and Specziár A 2003 Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site *Water Res.* **37** 959–64

[19] Liu J-L, Xu X-R, Ding Z-H, Peng J-X, Jin M-H, Wang Y-S, Hong Y-G and Yue W-Z 2015 Heavy metals in wild marine fish from South China Sea: levels, tissue-and species-specific accumulation and potential risk to humans *Ecotoxicology* **24** 1583–92

[20] Yusa V, Suelves T, Ruiz-Atienza L, Cervera M L, Benedito V and Pastor A 2008 Monitoring programme on cadmium, lead and mercury in fish and seafood from Valencia, Spain: levels and estimated weekly intake *Food Addit. Contam.* **1** 22–31

[21] Rayyan M F, Yona D and Sari S H J 2019 Health risk assessments of heavy metals of perna viridis from banyuuirip waters in ujung pangkah, Gresik *JFM (Journal Fish. Mar. Res.)* **3** 135–43

[22] Alizada N, Malik S and Muzaffar S Bin 2020 Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf *Mar. Pollut. Bull.* **154** 111033

[23] Tuzen M 2009 Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey *Food Chem. Toxicol.* **47** 1785–90

[24] Suami R B, Sivalingam P, Kabala C D, Otamonga J-P, Mulaji C K, Mpiana P T and Poté J 2018 Concentration of heavy metals in edible fishes from Atlantic Coast of Muanda, Democratic Republic of the Congo *J. Food Compos. Anal.* **73** 1–9

[25] Joiris C R and Holsbeek L 1999 Total and methylmercury in sardines Sardinella aurita and Sardina pilchardus from Tunisia *Mar. Pollut. Bull.* **38** 188–92

[26] Silva C A da, Tessier E, Küttur V T, Wasserman J C, Donard O F X and Silva-Filho E V 2011 Mercury speciation in fish of the Cabo Frio upwelling region, SE-Brazil *Brazilian J. Oceanogr.* **59** 259–66

[27] Ahmad N I, Noh M F M, Mahiyuddin W R W, Jaafar H, Ishak I, Azmi W N F W, Veloo Y and Hairi M H 2015 Mercury levels of marine fish commonly consumed in Peninsular Malaysia *Environ. Sci. Pollut. Res.* **22** 3672–86