AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates

Q Lu1, TH Ganjawala1, E Ivanova2, JG Cheng3, D Troilo4 and Z-H Pan1,5

Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.

INTRODUCTION
Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy.1–4 For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired but challenging.5

Retinal bipolar cells comprise multiple types that are classified into rod and cone bipolar cells based upon their synaptic inputs and ON and OFF types based upon their light-response polarity.6 In mammals, there are multiple ON and OFF types of cone bipolar cells and a single ON type of rod bipolar cells (RBCs). Recently, there has been increasing interest in targeted gene expression in specific retinal bipolar cell types, notably for newly emerging optogenetic gene therapy for vision restoration.7–10

A well-known promoter for ON bipolar cell targeting is the mGluR6 promoter. A 10 kb, sequence upstream of the mGluR6 gene has been shown to be sufficient to drive transgene expression in ON bipolar cells in transgenic animals.11–16 Within the 10 kb sequence, a 200-bp mGluR6 enhancer, referred to as 200En hereinafter, was identified to be necessary for achieving ON bipolar cell targeting.16 Most previous studies for ON bipolar cell targeting were conducted using the 200En with a basal SV40 promoter;14,15 however, AAV-mediated expression with the mGluR6 promoter in retinal bipolar cells is low. Efforts have been continuously made to improve AAV-mediated gene delivery and expression efficiency to bipolar cells, especially for optogenetic gene therapy.15–17 Factors that have been suggested to contribute to the low transduction efficiency in bipolar cells include physical barrier especially via intravitreal delivery, viral tropism, proteasome-mediated degradation, intracellular trafficking and promoter strength.15–20

Promoters and enhancers are key cis-regulatory elements in the regulation of gene expression.21–24 In this study, we searched for additional regulatory elements of the mGluR6 gene for improving the AAV-mediated transduction efficiency in bipolar cells. We found that the use of the endogenous mGluR6 promoter and its intron sequences markedly enhanced the AAV-mediated transduction efficiency in RBCs in mice. For evaluating its potential clinical applications, we also examined the AAV vectors with the optimized promoter construct in a non-human primate. We showed that the AAV vectors with the improved promoter construct can target to ON bipolar cells with robust expression around the fovea and the far peripheral regions of the retina of common marmosets (Callithrix jacchus).

RESULTS
Bioinformatics analysis
To identify additional cis-regulatory elements of the mGluR6 gene, we conducted a bioinformatics analysis covering from a 10-kb upstream sequence through a 15-kb intrinsic sequence of the mouse mGluR6 gene (Figure 1a). The previously identified 200-bp mGluR6 enhancer (200En; yellow box)14 is located closed to the 5′ end of the 10 kb upstream sequence. First, a potential mGluR6 promoter sequence of 1095 bp (−1 to −1095; nucleotides relative to the translation start site), hereinafter referred to as...
mGluR1095P, was identified (orange arrow box) immediately upstream of the transcriptional start site of the mGluR6 gene. Second, the binding sites for p300, an important transcription co-activator that is usually associated with promoter and enhancers,24 were marked (red circles). Within p300 dense binding regions, the binding sites for major transcription factors were identified (pink circles). Most of these transcription factors are located within introns 3, 4, and 6. Third, four conserved regions (among mouse, rat, human and dog) were identified (blue boxes or lines). The longest one largely overlaps with the 200En. Among the other conserved regions, one is located in the proximal region of the mGluR1095P and two are located in the In4.

The use of endogenous mGluR6 promoter

The optimization of the mGluR6 promoter constructs was performed in the mouse retina in vivo via intravitreal injection. The intravitreal route was chosen because it has the advantage of producing less retinal damage during virus injection procedures and achieving a broad homogeneous expression across the whole retina. The virus vectors were made by packaging into AAV2 serotype 2 with an Y444F capsid mutation, referred to as AAV2/2-Y444F, that has been previously reported to facilitate the transduction of retinal neurons including bipolar cells through intravitreal injection.19,20,25 Promoter constructs containing the 200En and a varied combination of regulatory elements and promoters were evaluated by driving the transgene of mCherry (Figure 1b).

Because the previous studies for targeting ON bipolar cells were conducted by combining the 200En with a basal SV40 promoter, 200En-SV40,8,14,15 we first examined whether the AAV-mediated transduction efficiency to ON bipolar cells could be improved by using the endogenous mGluR6 promoter. For the purpose of comparison, the AAV2-mediated expression with the promoter construct of the 200En-SV40 was tested. Consistent with these previous reports, the expression of mCherry was predominantly observed in retinal bipolar cells in retinal whole mounts (Figure 2a, left and middle panels) and vertical sections (Figure 2a, right panel). At the border between inner plexiform layer and ganglion cell layer, many axon terminals of bipolar cells were observed (Figure 2a, middle panel). However, the expression was relatively weak (see Figure 2g). In addition, weak expression of mCherry was frequently observed in some cells located in the inner nuclear layer and ganglion cell layer after the enhancement of mCherry with antibody (see left panel in Figure 2a, marked by arrows). The latter indicates some off-targeting to retinal third-order neurons.

In contrast, the transduction efficiency of the AAV vectors using the promoter construct by replacing the basal SV40 promoter with mGluR1095P was found to be markedly increased. Higher expression of mCherry was observed in retinal bipolar cells as evidenced both in retinal whole mounts and vertical sections (Figure 2b). The average fluorescence intensity was increased by ~3.7 times in comparison with the control with the 200En-SV40 promoter (Figure 2g).

We next asked whether the promoter could be shortened. A short promoter containing the 3’ 500 bp sequence (2t o – 501), referred to as mGluR500P (see Figure 1a), was chosen based upon the presence of the p300 and a conserved region. The construct with this short promoter, 200En-mGluR500P, not only worked but also further improved transduction efficiency (Figure 2c). The average fluorescence intensity was increased by 87% as compared with that with mGluR1095P (see Figure 2g).

For both constructs with the mGluR1095P and mGluR500P promoter, the specificity to bipolar cells was also improved. Weak expression in other retinal neurons was only occasionally observed after the enhancement of mCherry with antibody. Thus, our results indicate that the combination of the 200En and the endogenous mGluR6 promoter can markedly increase transduction efficiency as well as improve the selectivity to bipolar cells.

Regulatory elements in the introns of mGluR6 gene

Because three introns of the mGluR6 gene contain several important transcription binding sites (see Figure 1a), we next tested whether these introns could regulate the transduction efficiency. First, the addition of a 1130-bp sequence (4677 to 5806) of the intron 4 (referred to as In4) and a 807-bp sequence (3029 to 3835) of the intron 3 (referred to as In3) to either the 200En-mGluR1095P or the 200En-mGluR500P were found to further increase the expression level of mCherry in bipolar cells.
by 69 or 61% in comparison with the corresponding constructs without adding introns, respectively (Figures 2d and e; see Figure 2g).

Because AAV has a limited packaging capacity of 4.7 kb, we also made efforts to shorten the In3 and In4. We found that the combination of a shorten In4, In4s (690 bp; its nucleotide sequence is shown in Supplementary Table S1), with the In3 further increased the average fluorescence intensity by 62% (Figure 2f; also see Figure 2g). Again, no significant off targeting was observed in other retinal neurons including the cells in the ganglion cell layer. On the other hand, the use of a shortened In3, In3s (587 bp; see Supplementary Table S1), by combining the In4s was found to decrease the expression level (data not shown). The addition of a 700-bp sequence (7457 to 8156) of the intron 6 (see Figure 1a) to In4s-In3s-200En-mGluR500P was not found to improve the expression (data now shown), thereby suggesting that In6 does not play a role in the regulation of mGluR6 gene expression.

As shown in Figure 2h, the transduced cell densities for the virus vectors with the improved promoter constructs were all increased compared with that with 200En-SV40 promoter, especially for the virus vectors with the promoter construct of In4s-In3-200En-mGluR500P. With the best optimized mGluR6 promoter construct, In4s-In3-200En-mGluR500P, the AAV-mediated expression could be achieved across the entire retina as a sample image shown in Figure 3a. The highest expression was usually observed in the peripheral regions of the retina.

Thus, we optimized two mGluR6 promoter constructs: a short version with 200En-mGluR500P and a longer version with In4s-In3-200En-mGluR500P. The AAV vectors with these two promoter constructs, especially the longer version, markedly increase transduction efficiency but maintain specificity to bipolar cells.

The expression was predominately in rod bipolar cells. The use of mGluR6 promoter would be expected to target the transgene to both ON cone bipolar cells and RBCs. However, the...
axon terminals of the mCherry-expressing bipolar cells with the above optimized mGluR6 promoter constructs appeared to have the morphological characteristics of RBCs; the labeled cells were stratified close to retinal ganglion cells with a few large terminal buttons. To confirm whether the targeted bipolar cells are RBCs, we performed double immunostaining with antibodies against protein kinase C (PKC), a marker of RBCs, and mCherry.

Indeed, as assessed in retinal whole mounts, 98% and 92% of the mCherry-positive bipolar cells were colabeled with PKC for the optimized short and long mGluR6 promoter constructs respectively (Figures 4a and c and Table 1), thereby indicating that the vast majority of them are RBCs. Only a few mCherry-positive bipolar cell terminals were observed not to be colabeled with PKC in retinal vertical sections (Figures 4b and d, pointed by arrows).

Figure 3. AAV-mediated expression of mCherry in retinal whole mounts in mice. The images of the retina whole mount injected with the virus vector carrying the promoter ln4s-In3-200En-mGluR500P with AAV2/2-Y444F (a) and AAV2.7m8-Y444F (b) capsid variants.

Figure 4. Immunostaining for the characterization of mCherry-expressing bipolar cells transduced by the virus vectors with AAV2/2-Y444F capsid variant in mice. The expression of mCherry was driven by the promoter construct of 200E-mGluR500P (a, b) and ln4s-In3-200En-mGluR500P (c, d). Retinal whole-mount (a, c) and vertical section (b, d) were colabeled for mCherry (red; left panels) and PKC, a rod bipolar cell marker (green; middle panels). The merged images are shown in the right panels. Arrows point to the mCherry-positive and PKC-negative axon terminals (b, d).
In the best transduced regions by the virus vector with the In4s-In3-200En-mGluR500P promoter, almost all RBCs were transduced based upon PKC and mCherry colabeling (see Figure 4c). On average, 58% and 86% of RBCs were transduced in the peripheral retinas for the short and long mGluR6 promoter constructs, respectively (Table 1), under our conditions (with the injection of 1.5 μl virus vectors at the titer of 1 x 10^{13} vg ml^{-1}).

To address whether the predominant targeting to RBCs is because of the property of the endogenous mGluR6 promoter, we performed colabeling of PKC and mCherry in the retina that was transduced by the virus vectors with the 200En-SV40 promoter. The majority of the transduced cells were also RBCs, although mCherry-positive but PKC-negative bipolar cells were frequently observed (Supplementary Figure S1). Our results thus suggest the virus vectors with the 200En-SV40 promoter also preferably target RBCs but the virus vectors with the endogenous mGluR6 promoter appear to be more selective to RBCs.

As a new AAV2 capsid variant named 7m8, developed through in vivo-directed evolution in the mouse retina, was recently reported to be able to improve transduction efficiency via intravitreal injection in both mouse and primate retinas, we therefore also produced the virus vector for the promoter construct of In4s-In3-200En-mGluR500P with the 7m8 capsid plus Y444F mutation, referred to as AAV2.7m8-Y444F hereinafter. Its expression was first examined in the mouse retina. Consistently, the overall expression was improved as evidenced by the increase of the mCherry-positive bipolar cells in retinal whole mounts (Figures 3b and 5a). Quantitatively, a higher percentage of PKC-positive cells (96%) was colabeled with mCherry (Table 1). However, the percentage (86%) of PKC and mCherry colabeled cells in the mCherry-positive bipolar cells was decreased compared with that of the virus vector with the AAV2/2-Y444F capsid, suggesting that bipolar cells other than RBCs were transduced. Indeed, in retinal vertical sections, more PKC-negative and mCherry-positive bipolar cells were observed (Figures 5b–d). Most of these PKC-negative bipolar cells were colabeled with antibody against Gγ13, a marker of both ON cone bipolar cells and RBCs (Figures 5e–g, pointed by arrows in Figure 5g), indicating that they are mainly ON cone bipolar cells. In addition, more weakly transduced retinal ganglion cells or amacrine cells were observed (pointed by arrowheads in Figure 5g). Together, these results indicate that the virus vector

Table 1. Comparison of the transduction efficiency and selectivity of virus vectors in the mouse retina

Virus vector capsid	Promoter construct	mCherry(+) BC number/mm²	PKC(+) BC number/mm²	% of mCherry(+) -PKC(+)	% of mCherry(+) -PKC(+)	Number of retinas
AAV2/2-Y444F 200En-mGluR500P	200En-mGluR500P	5916 ± 985	10400 ± 685	98 ± 21	58 ± 12	4
AAV2/2-Y444F In4s-In3-200En-mGluR500P	8952 ± 1085	10034 ± 505	92 ± 11	86 ± 7.0	3	
AAV2.7m8-Y444F In4s-In3-200En-mGluR500P	12426 ± 964	11096 ± 995	86 ± 9.0	96 ± 1.0	4	

The data are presented as mean ± s.d.

Figure 5. Immunostaining for the characterization of mCherry-expressing bipolar cells transduced by the virus vector with AAV2.7m8-Y444F capsid variant in mice. The expression of mCherry was driven by the promoter construct of In4s-In3-200En-mGluR500P. (a) Retinal whole mounts were colabeled for mCherry (red; left panels) and PKC (green; middle panels). The merged images are shown in the right panels. (b–g) Triple immunolabeling in vertical sections with antibodies against mCherry (b), PKC (c) and Gγ13 (e). The merged images for mCherry/PKC (d), mCherry/Gγ13 (f) and mCherry/Gγ13/PKC (g) are shown. Arrows point to the mCherry-positive, PKC-negative, but Gγ13-positive, axon terminals. Arrowheads indicate weakly mCherry-labeled retinal ganglion cells (RGCs) and/or amacrine cells.
with the AAV2.7m8-Y444F capsid improves the transduction efficiency but is slightly less selective to RBCs compared with that of the virus vector with the AAV2/2-Y444F capsid in the mouse retina.

AAV-mediated expression in the marmoset retina
To begin evaluating its potential clinical applications, we examined the AAV-mediated specificity and transduction efficiency in the marmoset retina using virus vectors with the In4s-In3-200En-mGluR500P promoter packaged by both AAV2/2-Y444F and AAV2.7m8-Y444F capsids. The virus vectors were administered via intravitreal injection in four eyes of four animals: three eyes were injected with the AAV2/2-Y444F capsid and one eye was injected with the AAV2.7m8-Y444F capsid. As shown in Figures 6a and b, for both virus vectors, the expression of mCherry was observed in the regions surrounding the fovea (labeled as 1; also pointed by arrows), the far peripheral retinas (labeled as 2) first occurring ~ 5–6 mm away from the fovea, and along retinal blood vessels (labeled as 3; the insertions show the high magnification for the labeled areas). The expression was more robust with the vectors carrying the AAV2.7m8-Y444F capsid (also see Table 2). At a higher magnification, the mCherry-positive cells with the morphological appearance of bipolar cells formed a dense ring surrounding the center of the fovea (Figures 6c and d). The highest transduction efficiency was observed in the far peripheral regions of the retina.

To determine the transduced bipolar cell types, we performed triple immunolabeling in retinal whole mounts in the peripheral retina of 6–8 mm away from the fovea with antibodies against mCherry, PKC and Gγ13. For the virus vector with the AAV2.7m8-Y444F capsid, 95% of the mCherry-positive bipolar cells were colabeled with Gγ13 (Figures 7a–c and Table 2), indicating that the vast majority of the transduced bipolar cells were ON bipolar cells. PKC colabeling indicated that only 17% of the transduced bipolar cells were RBCs (Figures 7d–f and Table 2). Based upon the colabeling of PKC and Gγ13 in the examined regions, 24–25% of the ON bipolar cells were RBCs (see Table 2), consistent with the previously reports that only a small portion of the ON bipolar cells is RBCs in the marmoset retina.29,30 The vast majority (93%) of the Gγ13-positive cells (ON bipolar cells), and the majority (72%) of the PKC-positive cells (RBCs) were transduced (see Table 2). Together, these results indicate that in the peripheral marmoset retina the virus vector with AAV2.7m8-Y444F capsid can efficiently target the majority of the ON cone bipolar cells and RBCs with high transduction efficiency. This was also confirmed by double labeling of mCherry with Gγ13 or PKC in retinal vertical sections. The mCherry-positive cells were almost all colabeled with Gγ13 (Figure 8a). The mCherry-positive but Gγ13-negative bipolar cells were only occasionally observed. In addition, the vast majority of Gγ13-positive cells and the majority of PKC-positive cells were transduced with mCherry (Figures 8a and b).

For the virus vector with AAV2/2-Y444F capsid, the specificity is similar to that of the virus vector with AAV2.7m8-Y444F capsid (Supplementary Figure S2). That is, the virus vectors were observed to predominantly target both ON cone bipolar cells and RBCs, but the overall transduction efficiency is reduced (Table 2).

DISCUSSION
In this study, we have improved the mGluR6 promoter constructs for AAV-mediated retinal bipolar cell targeting via intravitreal administration in the mouse retina. The AAV vectors with the best optimal promoter construct, In4s-In3-200En-mGluR500P, increased the expression level by over 20× in comparison with that of the 200En-SV40 promoter. The maximal genome that could be packaged into AAV vectors is ~ 4.7 kb.31 The In4s-In3-200En-mGluR500P construct is ~ 2.2 kb in length, and hence for

Figure 6. AAV-mediated expression patterns in the marmoset retina. The whole-mount retinas show the mCherry expression with AAV vectors driving by In4s-In3-200En-mGluR500P promoter construct with AAV2/2-Y444F mutation (a) and AAV2.7m8-Y444F (b) capsid variant, respectively. The three insertions on the right are the magnified images: (1) the fovea as indicated by arrows; (2) the representative regions of the far periphery as enclosed by dashed squares; (3) the representative regions containing blood vessels. (c, d) The higher magnification images of the fovea.
AAV-mediated expression, it can still hold a transgene of up to 2.0 kb, assuming the use of a 0.5 kb poly(A) sequence. For longer transgenes, the short version of the mGluR6 promoter construct, 200En-mGluR500P, could be used that can hold a transgene of up to 3.5 kb. In addition, the optimized promoter construct also reduced off-targeting to other retinal neurons. The increase in the transduction efficiency was achieved using the endogenous mGluR6 promoter and by incorporating the mGluR6 gene introns. Our results indicate that the endogenous mGluR6 promoter is more effective than the basal SV40 promoter. In addition, our results indicate the presence of the additional enhancers in the introns of 3 and 4 of mGluR6 gene. Interestingly, the shortened mGluR6 promoter and the shortened In4 were found to be more effective than the long versions. The latter suggests the presence of suppressors in these sequences. It may be possible to further improve the transduction efficiency by fine-tuning these sequences or by searching for additional regulatory elements.

Table 2. Comparison of the transduction efficiency and selectivity of virus vectors in the marmoset retina

Virus vector capsid	Promoter construct	mCherry(+) BC number/mm²	Gγ13(+) BC number/mm²	PKC(+) BC number/mm²	% Of mCherry (+)-Gγ13(+)/mCherry(+)	% Of mCherry (+)-PKC(+)/mCherry(+)	% Of mCherry (+)-Gγ13(+)	% Of mCherry (+)-PKC(+)	Number of retinas
AAV2/2-Y444F	In4s-In3-200En-mGluR500P	4340 ± 383	6137 ± 769	1567 ± 286	86 ± 3.4	18 ± 2.4	78 ± 9.3	50 ± 7.3	1
AAV2.7m8-Y444F	In4s-In3-200En-mGluR500P	5992 ± 856	6026 ± 588	1455 ± 101	95 ± 4.2	17 ± 3.1	93 ± 1.9	72 ± 5.6	1

The data are presented as mean ± s.d.

Figure 7. Immunostaining for the characterization of mCherry-expressing bipolar cells in the retinal whole mounts of the marmoset with the virus vector carrying AAV2.7m8-Y444F capsid variant. Triple immunolabeling with antibodies against mCherry (a), Gγ13 (b) and PKC (d). The merged images for mCherry/Gγ13 (c), mCherry/PKC (e) and mCherry/Gγ13/PKC (f) are shown. Inset in the upper right corner shows magnification of boxed area. The region is from the far periphery (6–8 mm from the fovea) of the retina.

Figure 8. Immunostaining for the characterization of mCherry-expressing bipolar cells in the retinal vertical sections of the marmoset. (a) Double immunolabeling with antibodies against mCherry and Gγ13. (b) Double immunolabeling with antibodies against mCherry and PKC. The merged images are shown in the right panels. The region is from the far periphery (6–8 mm from the fovea) of the retina transduced with the virus vector carrying AAV2.7m8-Y444F capsid variant.
Our results show that the use of endogenous mGluR6 promoter also results in the improvement of the selectivity to bipolar cells. This is important because an increase in the transduction efficiency is usually associated with an increase in off-targeting. Interestingly, in the mouse retina, the promoter constructs with the endogenous mGluR6 promoter were found topredominantly target to RBCs. Our results indicate that the 200En-SV40 construct also preferably targeted to RBCs, suggesting that this property is in part because of the property of the 200En. However, the use of the endogenous mGluR6 promoter appeared to make the virus vectors more selective to RBCs. Because the 10 kb sequence upstream to the translation start site was shown to be capable of targeting to all ON bipolar cells in transgenic animals, it is possible that there is additional regulatory element(s) within the 10 kb sequence that may regulate the transgene expression in ON cone bipolar cells. Further studies would be interesting to search such regulatory elements.

It should be noted that in addition to the commonly used 200En-SV40 promoter, an enhanced mGluR6-based promoter containing multiple 200Ens, 4×200En, was used to improve the transduction efficiency to ON bipolar cells in the mouse retina. A bipolar cell-selective MiniPromoter was also reported to target ON bipolar cells in the mouse retina. However, as different AAV capsids and variants were used in these studies, a side-by-side comparison would be required to determine the selectivity and transduction efficiency of the constructs developed in this study over these recently reported promoters.

Nevertheless, the predominant selectivity of our improved constructs for RBCs will offer a valuable tool for genetic manipulation in RBCs in the mouse model. Because of the low transduction efficiency and the lack of high selectivity of virus-mediated delivery in general, cell type-specific targeted genetic manipulation was commonly achieved by using transgenic lines, especially Cre lines. However, creating transgenic mouse lines is both costly and time consuming. In fact, no highly RBC-selective Cre mouse lines are currently available. Thus, with the improved targeting selectivity and transduction efficiency for RBCs, the AAV-mediated gene delivery would be a more feasible and cost-efficient approach for introducing Cre or transgenes directly in RBCs in the mouse retina. This approach would be particularly advantageous for cell targeting in species in which the transgenic strategy is not applicable.

Our results show that the AAV vectors with the optimized promoter construct can selectively target bipolar cells in the marmoset retina with intravitreal injection. Robust transduction efficiency can be achieved in the regions surrounding the fovea and in the far peripheral retina. The vast majority of the ON bipolar cells in the far peripheral retina could be transduced, indicating the promoter construct is highly effective in the primate.

Interestingly, in contrast to the results observed in the mouse retina, the AAV vectors with the optimized mGluR6 promoter construct in the marmoset retina were found to transduce not only RBCs but also ON cone bipolar cells. This species difference could not be explained by the difference in the ratios of RBCs versus ON cone bipolar cells between these two species. In the mouse retina, the majority of the transduced bipolar cells (92% and 82% for the virus vectors with AAV2/2-Y444F and AAV2/7m8-Y444F capsid, respectively; Table 1) are RBCs. The ratio of RBCs and ON cone bipolar cells was reported to be ~ 1:3.1,34 The density of our counted RBCs (10 000–11 000 mm−2, see Table 1) is close to the low end of the previously reported range (11 000–15 000 mm−2).34,35 In contrast, in the marmoset retina, only 17–18% of the transduced bipolar cells are RBCs. The ratio of RBCs and ON cone bipolar cells based on our counting is 1:4 in the examined far peripheral region (6–8 mm away from the fovea) (see Table 2). As a note, this ratio appears to be higher than that previously reported (1 or 3 mm away from the fovea),29,30 and this could be overestimated under our conditions, possibly because of the weak labeling of some types of ON bipolar cells with Gy13. The latter may suggest that there is no preferable transduction in RBCs in the marmoset retina. Together, our results clearly indicate that the virus vectors predominate target RBCs in the mouse retina but target both RBCs and ON cone bipolar cells in the marmoset retina.

The difference in targeting between mice and marmosets could be because of a different transcriptional regulation between these two species. Further studies of the differences in the transcription binding sites between the mouse and marmoset could be performed to determine the regulatory components for RBCs and ON cone bipolar cells. Nevertheless, the ability of the optimized mGluR6 promoter construct to target all ON bipolar cells by AAV vectors offers an effective promoter for ON bipolar cell targeting in the marmosets.

To our knowledge, this study is the first to demonstrate the ability of AAV-mediated expression of targeting retinal bipolar cells in non-human primates. The marmoset has become increasing popular as a non-human primate model for gene therapy and eye and vision research because the anatomical properties of the marmoset eye and retina are similar to those of humans. Thus, the improved mGluR6 promoter constructs developed in this study could facilitate preclinical testing and applications for the ON bipolar cell-based gene therapies, especially optogenetic gene therapy for vision restoration.

Our results showed that the transduction efficiency in the marmoset retinas was varied in different retinal regions. The transduction efficiency was very low or none beyond the regions of the parafovea and the far peripheral retina, except around blood vessels. A similar expression pattern was previously reported by AAV vectors with strong ubiquitous promoters, for example, CAG and cytomegalovirus, that nonselectively transduced inner retinal neuron in the marmoset28 and the macaque retina.27,48 Such uneven transduction efficiency may be because of the presence of certain retinal barriers, mainly the inner limiting membrane.

Our results also showed that AAV vectors that use AAV2/7m8 capsid variant resulted in a marked increase in the overall expression in both mice and marmosets. An increase of transduction efficiency in bipolar cells in mice using the AAV2/7m8 capsid was recently reported using the 200En-SV40 promoter.17 This was proposed to be because of improvement of the overall virus penetration in the retina.24 Further improving the virus penetration in the primate retinas is needed. This could be achieved by the combination of optimizing capsid variants, enzymatic treatments or surgery to remove the inner limiting membrane to facilitate the virus penetration in the primate retina. Further improvement of the transduction efficiency in primates could also be achieved by including additional capsid mutations to reduce proteasome-mediated degradation.

MATERIALS AND METHODS

Bioinformatics analysis

Using Ensembl genome browser (www.ensembl.org), mouse mGluR6 (Grm6) gene sequence of 25 kb was downloaded from the National Institutes of Health (NIH) gene database (GenBank accession number NC_000077.6). Cis-RED (Nucleic Acid Research; http://www.cisred.org/) and Promoter Scan (http://www-bimas.cit.nih.gov/molbio/promscan/) programs were used to define the proximal promoter of mGlur6. The transcriptional binding site analysis program (TFSEARCH; Parallel Application TREC Laboratory, Tsukuba, Japan) and the Ensembl genome browser (www.ensembl.org) were used to mark the p300 binding site, an important transcription co-activator, and search-specific transcriptional factor binding sites. For selection of potential regulatory elements, preference was given to conserved DNA sequences and the region with dense p300 binding sites.
Virus vector constructs and virus vectors

A series of AAV2 expression cassettes were constructed to contain the 200E and a variety of the combinations of potential regulatory elements and promoters of the mGluR6 gene to drive the transgene of mCherry. The DNAs of the mGluR6 regulatory sequences were synthesized (Genescript, Piscataway, NJ, USA). All virus vectors in the mouse experiments were made by packaging into serotype 2 with an Y444F capsid mutation. The virus vectors for the marmoset experiments were also made by packaging into AAV2.7m8 capsid construct with the addition of the Y444F capsid mutation. The AAV2.7m8 capsid construct was kindly provided by John Flannery at UC Berkeley (Berkeley, CA, USA). The Y444F capsid mutation was introduced by site-directed mutagenesis (Agilent Technologies, Santa Clara, CA, USA). Viral vectors were packaged and affinity purified by Virotek (Hayward, CA, USA).

Animals and virus injection

C57BL/6J mice of either sex were purchased from Jackson Laboratory (Bar Harbor, ME, USA). The marmosets were bred and housed at the State University of New York (SUNY) College of Optometry (New York, NY, USA). The mouse-related experiments and procedures were approved by the institutional animal care and use committee at Wayne State University and the marmoset-related experiments and procedures were approved by the institutional animal care and use committee at SUNY College of Optometry. All animal use in this study was in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

Virus injections were performed in mice at the age of ~1 month. The mouse was anesthetized by intraperitoneal injection of a mixture of 120 mg kg\(^{-1}\) ketamine and 15 mg kg\(^{-1}\) xylazine. Under a dissecting microscope, a small perforation was made in the temporal sclera region with a sharp needle. A total of 1.5 ml of virus vector suspension in saline at a concentration of ~1 × 10\(^{13}\) vg ml\(^{-1}\) was injected into the intravitreal space through the perforation with a 32-gauge Hamilton syringe. The expression was examined ~1 month after the viral injection.

Virus injections were performed in four juvenile female marmosets at the age of 6–9 months. The animals were anesthetized by intramuscular injection of alfaxalone (2 mg per 100 g body weight). A total of 30 ml of virus vector suspension in saline at a concentration of ~1 × 10\(^{13}\) vg ml\(^{-1}\) was injected into the intravitreal space with a 0.5 ml syringe with a 32-gauge sharp-point needle. The injection site was chosen on the temporal side of the eyeball, 2 mm posterior to the limbus. The animals were given an analgesic nonsteroidal anti-inflammatory drug (carprofen, 5–10 mg kg\(^{-1}\) subcutaneous) after surgery. The expression was examined 1–2 months after the viral injection.

Immunohistochemistry

Mice were killed by CO\(_2\) asphyxiation followed by decapitation. Marmosets were killed by CO\(_2\) asphyxiation followed by decapitation. Mice and marmosets were perfused with a solution containing 4% paraformaldehyde in phosphate buffer for 20 min.

For immunostaining of retinal vertical sections, the retinas were incubated for 2 h in a block solution containing 5% ChemiBLOCK (Millipore Corp., Bedford, MA, USA), 0.5% Triton X-100 and 0.05% sodium azide (Sigma-Aldrich, St Louis, MO, USA). The primary antibodies were diluted in the same solution and applied for 2 days for mouse retinas and 7 days for marmoset retinas at room temperature. The retinas were then washed several times, followed by incubation in the secondary antibodies for 1 day for mouse retina and 5 days for marmoset retinas at room temperature.

For immunostaining of retinal vertical sections, the retinas were cryoprotected in graded sucrose (10, 20 and 30% wt/vol, respectively, in phosphate buffer) and cut at 20 μm. The retinal sections were incubated for 1 h in the block solution. The primary antibodies were diluted in the same solution and applied overnight at room temperature, followed by incubation for 2 h in the secondary antibodies. The secondary antibodies were conjugated to Alexa 546 (1:1000) or Alexa 555 (1:1000) or Alexa 488 (1:600; Thermo Fisher Scientific, Waltham, MA, USA) or AMCA (1:200; JacksonImmunoResearch, West Grove, PA, USA). The following primary antibodies were used in this study: rabbit anti-mCherry (1:500; Clontech, Mountain View, CA, USA), goat anti-mCherry (1:2000; Biorbyt, Cambridge, UK), rabbit anti-PKC (1:20 000; Cell Signal, Danvers, MA, USA), mouse anti-PKC (1:10 000; Santa Cruz, Dallas, TX, USA) and rabbit anti-G\(_y3\) (1:1000; Santa Cruz).

All images were acquired using a Zeiss Axio Imager 2 microscope with an Apotome 2 oscillating grating to reduce out-of-focus stray light (Apotome; Carl Zeiss Microscopy GmbH, Jena, Germany). Image projections were constructed by collapsing individual z-stacks of optical sections onto a single plane in ZEN software (Carl Zeiss). The brightness and the contrast were adjusted using Adobe Photoshop (Photoshop CS4; Adobe Systems, San Jose, CA).

Quantitative fluorescence and cell density measurements

All quantifications for fluorescent intensity and cell density were performed using ImageJ software (NIH, Bethesda, MD, USA). In mice, each virus construct was injected in both eyes of 4–6 animals. Good transgene expression that exhibited relatively even expression across the retina could be achieved in about half of the injected eyes. Therefore, randomization or blinding methods were not used for comparison. Instead, the best transduced retinas (2–3 retinas for each construct) were chosen for the analysis. The images were taken from whole mounts without antibody enhancement. In each retina, 6–12 images were taken from the peripheral regions (~2 mm from the optic disc) with the same fixed exposure time.

The fluorescence intensity was calculated based upon a method previously described.\(^1\) The ‘Image – Adjust – Threshold’ function of the software was used to select the cells. The ‘Analyze – Analyze particles’ function was used to obtain the cell number and the total fluorescence intensity of each cell (the sum of the fluorescence values of all pixels within a cell). The average fluorescence intensity for each cell was calculated with the following formula: total intensity of the cell/the area of the cell – background signal, where background signal = average signal for a region without cells. Overlapped cells could be counted as a single cell by the software, and hence all sections were inspected and cell counts were corrected manually. The fluorescence intensity was presented as the mean ± s.d. of the average fluorescence intensity of all measured cells. In marmosets, the double and triple immunostaining and cell counting were performed in the periphery retina 6–8 mm away from the fovea.

CONFLICT OF INTEREST

Q Lu, TH Ganjawala, JG Cheng and Z-H Pan are inventors of the improved promoter constructs. Z-H Pan services as Scientific Advisor to RetroSense Therapeutics.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health (NIH) Grant EY17130 (to Z-HP), Core Grant EY00468 to Department of Anatomy and Cell Biology at Wayne State University, Dryer Foundation, the Ligon Research Center of Vision and Research to Prevent Blindness to Department of Ophthalmology at Wayne State University.

REFERENCES

1. Zhu Y, Xu J, Hauswirth WW, DeVries SH. Genetically targeted binary labeling of retinal neurons. J Neurosci 2014; 34: 7845–7861.
2. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.
3. Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21: 509–519.
4. Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinal degeneration. Prog Retin Eye Res 2014; 43: 108–128.
5. Vandenbergh LH, Auricchio A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 2012; 19: 162–168.
6. Euler T, Haverkamp S, Schubert T, Baden T. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 2014; 15: 507–519.
7. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50: 23–33.
8. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11: 667–675.
9. Busskamp V, Picaud S, Sahel JA, Roska B. Optogenetic therapy for retinitis pigmentosa. Gene Therapy 2012; 19: 169–175.
10 Pan Z-H, Lu Q, Bi A, Dizhoor AM, Abrams GW. Optogenetic approaches to restoring vision. Annu Rev Vis Sci 2015; 1: 185–210.

11 Ueda Y, Iwakabe H, Masu M, Suzuki M, Nakanishi S. The mGlur6 5’ upstream transgene sequence directs a cell-specific and developmentally regulated expression in retinal rod and ON-type cone bipolar cells. J Neurosci 1997; 17: 3014–3023.

12 Morgan JL, Dhingra A, Vardi N, Wong RO. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neuroscience 2006; 9: 85–92.

13 Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Vardi N. Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 2008; 510: 484–496.

14 Kim DS, Matsuda T, Cepko CL. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neuroscience 2008; 28: 7764–7764.

15 Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boydens ES, Lockridge JA et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19: 1220–1229.

16 Cronin T, Vandenbergh LH, Hantz P, Juttner J, Reimann A, Kacsó AE et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

17 Lu Q, Ivanova E, Ganjawala HT, Pan Z-H. Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 2013; 19: 1310–1320.

18 Butler JE, Kadonaga JT. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 2002; 16: 2583–2592.

19 Papadakis ED, Nicklin SA, Baker AH, White SJ. Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89–113.

20 Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet 2013; 14: 288–295.

21 Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009; 457: 854–858.

22 Petsis-Silva H, Dinculescu A, Li Q, Dong WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

23 Dalkara D, Kolstadt KD, Caporale N, Visel M, Klimczak RR, Schaffer DV et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009; 17: 2096–2102.

24 Petris-Silva H, Dinculescu A, Li Q, Dong WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

25 Petsis-Silva H, Dinculescu A, Li Q, Min SH, Chioldo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

26 Greferath U, Grünert U, Wäsche H. Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 1990; 301: 433–442.

27 Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH et al. In vivo directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013; 5: 189ra76.

28 Huang L, Max M, Margolakes RF, Su H, Masland RH, Euler T. G protein subunit Gγ13 is coexpressed with Gao, Gβ3, and Gγ4 in retinal bipolar cells. J Comp Neurol 2003; 455: 1–10.

29 Chan TL, Martin PR, Clunas N, Grünert U. Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. J Comp Neurol 2001; 437: 219–239.

30 Weltzien F, Percival KA, Martin PR, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol 2015; 523: 313–334.

Supplementary Information accompanies this paper on Gene Therapy website (http://www.nature.com/gt)