Development of W-band Waveguide based on Additive Manufacturing

Kohei Takizawa, Kohei Fujiwara, Yuta Watanabe, Ryuichi Kobayashi, Satoshi Kuwahara, Shota Takemura

Tokyo Metropolitan Industrial Technology Research Institute
2-4-10, Aomi, Koto-ku, Tokyo, 135-0064, Japan

Abstract: In general, a millimeter-wave component, such as a waveguide, is made of metal, therefore, it is heavy weight and expensive. In this development, a W-band waveguide based on an additive manufacturing with an electroless plating was demonstrated. We confirmed that the performance of the transmission is approximately \(-2\) dB in 75—110 GHz on a 50 mm long WR-10 waveguide.

Keywords: Millimeter-wave, Waveguide, Additive Manufacturing, Electroless plating
Classification: Antennas and propagation

References

[1] P. Rousseau, Y. Avelino, R. Lacoste, “How Can 3D-Printed Plastic Waveguides Enable V-band Applications?”, *Microwaves & RF*, Jan 2019.

[2] M. D’Auria et al., “3-D Printed Metal-Pipe Rectangular Waveguides”, *IEEE transactions on components, packaging and manufactureng technology*, Vol. 5, No. 9, pp.1339−1349, Sep 2015.

[3] C. Tomassoni, O. A. Peverini, G. Addamo, F. Paonessa, G. Virone, “3D Printing of Microwave and Millimeter-Wave Filters”, *IEEE microwave magazine*, Vol. 21, No. 6, pp.24−45, Jun 2020.

[4] I. Kojima, “Process Contol Technology of Stereolithography Apparatus and Its Application” *Journal of the Society of Instrument and Control Engineers*, Vol. 54, No. 6, pp.416−420, Jun 2015.

[5] T. Hagiwara, “Current Status of 3D Printing Material and its Future Aspect”, *Journal of the Imaging Society of Japan*, Vol. 54, No.4, pp.293−300, Aug 2015.

[6] K. Takizawa, K. Fujiwara, Y. Watanabe, R. Kobayashi, S. Kuwahara, S. Takemura, ”Fabrication of millimeter-wave band waveguides by using additive manufacturing and plating technique”, *IEICE*, C2-73, Oct 2019.
1 Introduction

In recent years, a millimeter-wave industry has been developed because the millimeter-wave is used for, for example, an anti-collision radar and an ultra-high-speed telecommunications. Millimeter-wave circuit components, such as a waveguide, are generally made of metal. Therefore, the millimeter-wave circuit is heavy. Furthermore, since the metal parts are manufactured by precision milling, the manufacturing cost tends to being higher. The deployment of millimeter-wave technology requires lightweight and inexpensive millimeter-wave components. In order to solve these issues, an additive manufacturing (AM) technology is suitable method. AM is a simpler method than milling or die casting and can reduce prototyping costs. Several researches have been previously conducted on manufacturing millimeter-wave components by the metal AM and stereolithography [1, 2]. However, the metal AM is not lightweight, and stereolithography has a problem of mechanical strength [4, 5].

In this development, we demonstrated a WR-10 waveguide in the length of 50 mm based on an AM technology using nylon 11 and Ni electroless plating.

2 AM based waveguide fabrication

The plated AM based waveguide and metal waveguide are shown in Fig. 1. The AM based waveguide is compliant with the WR-10 standard with the UG-387/U flange, and the length is 50 mm. The cross section is 2.54 mm × 1.27 mm. In the plastic modeling with nylon 11, we employed an Aspect RaFaEl 300F, which has an ability to form a 100-μm-thickness-layer with a 10 W fiber laser (λ = 1064 nm) output. A Ni electroless plating process on the waveguide surface involves the following three steps, first, a sensitizer process for 30 minutes at 30 °C, next, an activator process for 30 minutes at 30 °C, in final, a Ni electroless plating process for 100 minutes at 70 °C.

Fig. 1. Photograph of AM based waveguide and metal waveguide.
3 Experimental setup and result
S-parameters were evaluated using a vector network analyzer (Keysight N5247A) with a waveguide extender (OML V10VBA2-T/R-A). The measurement

![Graph showing S21 (dB) vs. Frequency [GHz]](a)

![Graph showing S11 (dB) vs. Frequency [GHz]](b)

Fig. 2. (a) is comparison of measured transmission losses of metal, current, and previous trial. (b) is comparison of measured reflection of metal, current, and previous trial.
frequency range was 75—110 GHz. Fig. 2 (a) shows transmission losses (S21). The transmission loss in the current trial is improved by more than 5 dB comparison with the previous trial[6]. The difference between the current trial and the metal waveguide is approximately 2 dB. Fig. 2 (b) shows reflections (S11). The difference between the maximum reflection of the current trial and the metal waveguide is approximately 13 dB. Fig. 3 shows group delays. It is confirmed that group delay of the current trial waveguide has stable phase characteristic.

In the current trial, the plating thickness was increased in the waveguide in order to improve the conductivity. The plating temperature is increased from 50 °C to 70 °C and the plating time is changed from 70 minutes to 100 minutes. The difference of the metal and the current trial in the S-parameter characteristics might be caused a defect of Ni electroless plating inside the AM based waveguide. Therefore, it is necessary to observe the inside of the waveguide with a non-destructive inspection, such as an X-ray computed tomography and improve a plating quality.

4 Conclusion

In this development, a 50 mm long WR-10 waveguide was developed based on the AM technology and Ni electroless plating. The transmission loss of approximately −2 dB and the reflection of approximately −17 dB was obtained in the frequency range of 75—110 GHz. It is improved than the previous trial by longer plating time of 30 minutes. The group delay of the AM based waveguide is comparable with a metal waveguide. The performance difference might be caused that the non-plated area is existing inside the AM based waveguide. In the future, we will improve the plating quality and analyze the inside plating layer using a non-destructive inspection instrument.