Multiuser MIMO Sequential Beamforming with Full-duplex Training

Xu Du, John Tadrous and Ashutosh Sabharwal

Abstract

Multiple transmitting antennas can considerably increase downlink spectral efficiency by beamforming to multiple users at the same time. However, multiuser beamforming requires channel state information (CSI) at the transmitter, which essentially leads to training overhead. In this paper, we propose and analyze a sequential beamforming strategy that utilizes full-duplex base station to implement downlink data transmission concurrently with CSI acquisition via in-band closed and open loop training. Our results demonstrate that full-duplex capability at a base station can be used to increase spectral efficiency significantly for multiuser downlink transmission. In moderate SNR regimes, we analytically derive tight approximations for the optimal training duration for closed and open loop training, and characterize the associated respective spectral efficiency. We further characterize the enhanced multiplexing gain performance in high SNR regime. In both regimes, the performance of our proposed full-duplex strategy is compared to half-duplex counterpart to quantify spectral efficiency improvement. With experimental data, in a typical 1.4 MHz LTE band, where the block length is around 500 symbols, the proposed sequential beamforming strategy attains a spectral efficiency improvement of 130% and 12% for 8×8 systems with closed and open loop training, respectively.

I. INTRODUCTION

Multiuser MIMO downlink systems have the potential to increase the spectral efficiency by serving multiple users at the same time with a multiple-antenna base station. A base station with M antennas can simultaneously support up to M half-duplex single-antenna users at full

Xu Du, John Tadrous, Ashutosh Sabharwal are with the Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005. E-mails: {xu.du, jiadrous, ashu}@rice.edu. The material in this paper was presented in part at the Asilomar conference on signals systems and computers, 2014 and 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications, 2015. This work was partially supported by a grant from Intel and Verizon Labs, and NSF Grant CNS-1314822.
multiplexing gain, if it has perfect channel information (CSI). Accurate channel knowledge at the transmitter is vital to achieve maximum spectral efficiency. For example, when no CSI is available at the base station, TDMA strategy is optimal \[1\]. Therefore, only one user can be supported with full-multiplexing gain.

In transmitter beamforming based systems, CSI is obtained by either closed or open loop training, which is defined as below.

- **In closed loop training** method, each user first estimates CSI by using the training pilots sent out by the base station. Then, the CSI is quantized and sent back to the base station \[1\].
- **In open loop training** method, base station learns downlink CSI by receiving training pilots from users through uplink channel; channel reciprocity is then leveraged to learn downlink CSI from uplink receptions.

In a half-duplex system, uplink training (closed or open loop) consumes time resources, which results in less downlink data transmission time. For time-varying systems with large number of users, overhead due to CSI acquisition can lead to significant spectral efficiency loss.

The recently developed full-duplex radios \[3\], \[4\] allow concurrent uplink and downlink data transmission. However, full-duplex transmission for small form-factor handsets still remains a challenging problem. Thus, we only assume a full-duplex base station. In \[5\], a full-duplex base station is used to increase spectral efficiency by serving half-duplex downlink and uplink traffic simultaneously. In this paper, we propose an alternative use of full-duplex, where full-duplex capability is harnessed to increase downlink spectral efficiency, by saving on the training time. In particular, our key contributions in this paper are as follows:

- We propose a sequential beamforming strategy for multiuser downlink transmissions with either closed or open loop training. Instead of waiting to receive all CSI before starting data transmission, the base station now begins transmitting to some users as it receives their CSI. In this scheme, only base station has to be full-duplex while **all mobiles are half-duplex**.
- The simultaneous transmission of feedback and data creates inter-node interference at receiving downlink users. Due to the relative low user training power\[2\], we show that inter-

\[1\]Closed loop training is also possible if each user sends channel coefficients through analog signal. Due to its sub-optimality compared to open loop training method \[2\], we do not consider closed loop analog feedback method in this paper.

\[2\]In current systems, the transmission power of users is usually limited due to lower power budget compared to a base station.
node interference only leads to a limited downlink rate reduction during training.

• Compared to half-duplex counterpart, proposed scheme is shown to significantly increase the downlink spectral efficiency. For example, in a typical 1.4 MHz LTE system with block length of around 500 symbols, the proposed strategy demonstrates a spectral efficiency improvement of 130% and 12% over its half-duplex counterpart, for a 8×8 multiuser MIMO system with closed and open loop training, respectively.

• We further derive the spectral efficiency of sequential beamforming in high SNR regime. For systems with closed loop training, the relative performance of the scheme to half-duplex counterpart is decided by training power. If low training power is used, proposed scheme can double the performance of half-duplex systems as if no inter-node interference exists. However, if users adopt a higher power than the base station for training, the strong inter-node interference prevent proposed scheme to achieve any benefit. In open loop systems, our strategy does not bring extra benefit asymptotically.

The rate loss due to imperfect CSI with different types of training has been studied in [2]. In [6], authors characterize the optimal training duration and its associated spectral efficiency for half-duplex systems. User selection [7], [8] has been proposed to reduce the number of training symbols needed by selecting users with larger distance in channel space. Our analysis has two main differences from prior research. First, we study how to utilize the full-duplex operation to obtain gains in spectral efficiency. Second, the influence of limited training power at the mobile user is modeled and studied throughout this paper.

We first proposed to utilize training time in systems composed of both full-duplex base station and full-duplex mobile in [9] and [10]. In this paper, we consider a system comprising a full-duplex base station and only half-duplex users.

The remainder of this paper is structured as follows. Section II describes the system model. Then a sequential beamforming strategy is proposed to utilize full-duplex radio in Section III. The optimal training duration is studied in Section IV for systems with both closed and open loop training. The associated spectral efficiency is then presented in Section V with both theoretical analysis and experimental data validation. High SNR analysis is provided in Section VI to evaluate the proposed strategy. We conclude this paper by summarizing the main results in Section VII.
II. SYSTEM MODEL

We consider a symmetric multiuser MIMO downlink consisting of an \(M \)-antenna full-duplex base station and \(M \) single-antenna half-duplex users. The base station aims at delivering downlink data to each user. Albeit sub-optimal, base station adopts zero-forcing (ZF) beamforming \([11]\) for simultaneous transmission to multiple users. In ZF, the base station projects the signal intended to one user on the null space of the others. Thus, if perfect CSI is available, each user only receives the intended signal without interference.

Since CSI is obtained from finite training, it is almost always inaccurate and thus results in inter-beam interference for ZF transmissions. During full-duplex training, the downlink data is communicated in the same band as the training signals sent by users, thus receiving users also suffer from inter-node interference. In this paper, we quantify the impact of inter-node interference on spectral efficiency for training-based ZF strategy.

![Fig. 1: A schematic of interference in a 3x3 multiuser MIMO downlink system when User 3 sends training and other users receive downlink data. The receiving users suffer inter-beam interference (side lobes) due to imperfect CSI. The receiving users also incur inter-node interference (dashed lines) resulting from User 3's training. Since users are half-duplex nodes, User 3 does not receive while it is sending the training signal.](image)

When User \(k \) sends training symbols and base station transmits downlink data to User 1, 2, \(\ldots \), \(k-1 \), the received signal of User \(i \) is immediately captured as

\[
y_i = h_i^* v_s + h_{ik} x_{tr_k} + n_i, \quad i = 1, \ldots, k-1.
\]

(1)

Here \(h_i \in \mathbb{C}^{1 \times M} \) and \(h_{ik} \) stands for the channel realization between User \(i \) to the base station and User \(k \), respectively. In this paper, block refers to \(T \) continuous symbols where the channel state unchanged. We assume a Rayleigh block fading environment, i.e., each element of \(h_i \) and \(h_{ik} \) is independently complex Gaussian distributed from block to block.

The term \(s \in \mathbb{C}^{k-1 \times 1} \) is the actual signal intended to User 1, 2, \(\ldots \), \(k-1 \) and \(v = [v_1, \ldots, v_{k-1}] \in \mathbb{C}^{M \times k-1} \) represents the precoding matrix generated by ZF method based on the quantized (estimated) CSI of users, which is presented as \(\hat{h}_i, i = 1, 2, \ldots, k-1 \). The precoded symbol is then \(v_s \),
which is constrained to an average power constraint of P. We consider equal power allocation among symbols, i.e., each of the downlink symbols has power P/M, which is mathematically captured as $\mathbb{E}[|v_is_i|^2] = P/M, \forall i$.

If only imperfect CSI is available, inter-beam interference is non-zero. The signal and the inter-beam interference both are contained in term $h_i^ivs_i$. Term x_{tr_k} is the uplink training symbol sent by User k. To account for limitations of both battery and size of user devices, we consider a more strict average power constraint for users, which is described as $\mathbb{E}[|x_{tr_k}|^2] \leq fP, f \in (0, 1]$. Term $h_{ik}x_{tr_k}$ captures the inter-node interference. We assume inter-node interference power to be proportional to the training power fP, i.e., it grows as $|h_{ik}x_{tr_k}|^2 = \alpha fP$, where $\alpha > 0$. The signal is degraded by an independent unit variance additive white complex Gaussian noise n_i.

We assume that the half-duplex Users i, $(i = 1, 2, ..., M)$ have perfect knowledge of their own channels h_i. However, the base station is required to obtain CSI by either closed or open loop training. We assume that self-interference due to the full-duplex operation at base station is reduced to near-noise floor by a combination of both active cancellation [12], [13] and passive suppression [14]. Unlike [9], [10], the proposed sequential beamforming strategy needs only half-duplex users, thus there is no concern of self-interference at end nodes.

III. SEQUENTIAL BEAMFORMING

In this section, we propose a sequential beamforming strategy that leverages the full-duplex capability at base station to send downlink data during CSI collection. First, we describe the sequential beamforming strategy in Section III-A Then we characterize the influence of inter-node and inter-beam interference on downlink rate.

A. Sequential Beamforming Strategy

The proposed strategy is referred to as sequential beamforming. In sequential beamforming, users send their channel state information in time orthogonal slots, and as the the base station receives a particular user’s information, it starts data transmission to that user. Thus, unlike half-duplex system, the base station does not wait for all the users to send their channel feedback. As noted before, the proposed strategy only requires the base station to be full-duplex and all the mobiles can be half-duplex. A sequential beamforming strategy with total T_{tr} training symbols from all users is described as follows
1) In the beginning of each block, no downlink data transmission is performed due to the lack of CSI knowledge. From Symbol 1 to Symbol $\frac{T_{tr}}{M}$, User 1 sends training symbols to the base station. We define Symbols $(j - 1) \frac{T_{tr}}{M} + 1$ to Symbol $j \frac{T_{tr}}{M}$ to be Cycle j where User j sends its training symbols.

2) In cycle $j + 1$, the base station transmits downlink data based on the updated ZF precoding matrix and beamform to User 1, 2, ..., j that relies on all the received training symbols over the previous j cycles. Users who have finished training, i.e., User 1, 2, ..., j, begin receiving downlink data. All receiving users decode the received signal by treating interference (both inter-beam and inter-node interference) as noise.

3) Repeat 2) till the end of T_{tr} symbols. The above full-duplex training part is referred to as training phase.

4) After all training are collected, only downlink data transmission takes place. This part is referred to as half-duplex phase. Fig. 2 provides an illustration of sequential beamforming.

![Diagram of sequential beamforming](image)

Fig. 2: A sequential beamforming is illustrated. Training cycles constitute T_{tr} symbols and half-duplex phase occupies the rest $T - T_{tr}$ symbols. At the end of cycles, the base station updates its precoding vectors and serves all users whose CSI have been collected.

We will compute the overall spectral efficiency (SE) for both phases as

$$SE_{SqBf} = \frac{T_{tr}}{MT} \sum_{j=2}^{M} \frac{1}{M} \sum_{i=1}^{j-1} R(i, j) + \frac{T - T_{tr}}{T} R_{\text{data}}. \quad (2)$$

The first and second terms capture the spectral efficiency achieved during and after training, respectively. Rate expression $R(i, j)$ stands for downlink rate achieved by User i during cycle j. And R_{data} is the rate achieved after training, i.e., during half-duplex phase. By only considering second term in Eq. (2), the spectral efficiency of half-duplex counterpart is immediate as

$$SE_{HF} = \frac{T - T_{tr}}{T} R_{\text{data}}. \quad (3)$$

\(^3\)For a given set of users, the user index 1, 2, ..., M may be randomly assigned in every coherence block to achieve fairness among users.
Our objective is to maximize the downlink spectral efficiency. We first quantify the influence of both inter-node and inter-beam interference on $R(i,j)$ and R_{data} in Section III-B for further analysis. During training, $i-1$ users are served on downlink in Cycle $i > 1$. Thus, the base station can either use P/M to serve each receiving user or adapt transmit power to each receiving user as $\frac{P}{i-1}$. We first focus on the former situation where no power adaptation is performed during training. In experiment validations in Section V, we will analyze the influence of power adaptation.

In this paper, performance of the following four systems is examined: sequential beamforming strategy with closed and open loop training, half-duplex with closed and open loop training. We differentiate between sequential beamforming and half-duplex systems through the subscripts SqBf and Hf, respectively. These are further detailed by the training type used by the system through another subscript Cl for closed loop and Op for open loop training. The superscript is used for the specification of system status. For example, $\text{SE}_{\text{SqBfCl}}$ stands for the spectral efficiency of system adopting sequential beamforming strategy with closed loop training.

B. Rate Performance with Inter-beam and Inter-node Interference

To optimize the spectral efficiency of proposed sequential beamforming strategy, we now quantify the influence of inter-node and inter-beam interference on downlink rate.

In ZF beamforming, v_i is chosen to be orthogonal to the channel realization of other users, i.e., $|v_i h_j| = 0, j \neq i$. In a genie-aided system where perfect CSI is immediately available, the base station beamforms to users without training, each user receives downlink data at rate R_{ZF} as

$$R_{\text{ZF}} = \mathbb{E} \left[\log_2 \left(1 + \frac{P}{M} \|h_i\|^2 \right) \right]. \quad (4)$$

Rate (4) can be viewed as an upper bound for all strategies that employ ZF, since neither training overhead nor inter-beam interference is included. When User k sends the training symbols, the received SINR of User i ($i < k$) is decided by both inter-beam and inter-node interference, which can be mathematically expressed as

$$\text{SINR}_i = \frac{|h_i^* v_i|^2 \frac{P}{M}}{1 + \sum_{j \neq i} \frac{P}{M} |h_j^* v_j|^2 + |h_{ik} x_{tr_k}|^2}, \quad i = 1, \ldots, k-1. \quad (5)$$

The (ergodic) rate of User i with SINR$_i$ is then described as

$$R_i = \mathbb{E} \left[\log_2 \left(1 + \text{SINR}_i \right) \right], \quad i = 1, \ldots, k-1.$$
We now characterize the downlink rate $R(i,j)$ with a unified lower bound that is independent of cycle number. In Cycle k of training phase, the base station beamforms to Users $1,\ldots,k-1$. Each receiving user suffers inter-beam interference from the signals intended to the other $k-2$ users. Our lower bound assumes that users receive additional inter-beam interference from signal intended to other $M-k$ users. Thus, in total, each receiving user suffers inter-beam interference coming from signals to $M-1$ users instead of $k-2$ users, and inter-node interference. The downlink rate of the receiving users in this scenario is denoted as R_{tr}, which is detailed as

$$R(i,j) \geq R_{tr}(T_{tr}), \quad j = 2,\ldots,M, \quad i = 1,\ldots,j.$$ \hspace{1cm} (6)

It should be stressed that this lower bound is the same for all the receiving users in all cycles during training phase. Therefore, the rate expression of (2) reduces to

$$\text{SE}_{\text{SqBf}} \geq \frac{M-1}{2M} T_{tr} R_{tr}(T_{tr}) + \left(1 - \frac{T_{tr}}{T}\right) R_{\text{data}}(T_{tr}), \hspace{1cm} (7)$$

where T_{tr} is the training duration of sequential beamforming strategy. Comparing to (3), we find in sequential beamforming strategy, on average, each user utilizes $\frac{M-1}{2M}$ fraction of training time to also receive downlink data while other users send training signal.

We now present the following lemma that quantifies the influence of interbeam and inter-node interference on downlink rate. The lemma enables further analysis in Sections IV, V and VI. Following the notations used in [2], ΔR_{tr} and ΔR_{data} denote the upper bound of downlink rate gap (compared to perfect zero-forcing) during and after training, respectively.

Lemma 1: In all cycles of training phase, the downlink data transmission rate of the receiving users, when another user is sending the training symbols are lower bounded as

$$R_{tr}(T_{tr}) \geq R_{ZF} - \log \left(1 + \frac{\mathcal{P}_{\text{IBI}}(T_{tr}) + \alpha f P}{1 + \frac{\alpha f P}{1+\frac{T_{tr}}{T}}}\right) = R_{ZF} - \Delta R_{tr}(T_{tr}), \hspace{1cm} (8)$$

where $\mathcal{P}_{\text{IBI}} = P(1+fP)^{-\frac{T_{tr}}{M(T_{tr}-1)}}$ and $P_{M = 1+\frac{T_{tr}}{T} f P}$ for closed and open loop training, respectively.

Proof. See Appendix A for detail.

In the rate gap term ΔR_{tr}, inter-beam and inter-node interference is reflected through terms \mathcal{P}_{IBI} and $\alpha f P$, receptively. If more training symbols are sent, \mathcal{P}_{IBI} decreases. The decrease suggests that by obtaining more training symbols, the base station has better CSI estimates, which leads to less inter-beam interference. The inter-node interference term $\alpha f P$ does not
change during the whole training phase. It is emphasized that the lower bound presented in Lemma \[1\] is independent to the user index and cycle index, due to the use of Eq. \(6\).

As \(T_{\text{tr}} \to \infty\), the rate loss due to inter-beam interference vanishes and rate gap bound becomes
\[
\log \left(\frac{1 + \alpha f P}{1 + \frac{\alpha f P}{1 + \frac{\alpha f P}{M}}} \right),
\]
which stands for the influence of inter-node interference and is noted as \(\Delta R_{\text{INI}}\). Term \(\Delta R_{\text{INI}}\) can be viewed as a constant rate loss caused by inter-node interference during training phase. We will study the impact of this term in following analysis. Even when \(\alpha \to \infty\), the rate loss term is still upper bounded by \(\log (1 + P/M)\), which is obviously finite. This finite rate loss suggests that positive downlink rate gain can still be achieved asymptotically under the influence of inter-node interference, which is later confirmed in Section \(\text{VI}\).

After training, each user continues to receive data till the end of the block. Thus, only the effect of inter-beam interference exists. We can conveniently obtain the rate expression \(R_{\text{data}}\) by setting \(\alpha = 0\) in Lemma \([1]\) which characterizes inter-beam interference with the help of \([2]\).

Proposition 1: The downlink transmission rate of User \(i\) after training is lower bounded by
\[
R_{\text{data}} \geq R_{\text{ZF}} - \Delta R_{\text{data}} = R_{\text{ZF}} - \log (1 + P_{\text{IBI}}),
\]
where \(P_{\text{IBI}} = P(1 + f P)^{-\frac{P_{\text{tr}}}{M(M-1)}}\) and \(P = \frac{M - 1}{1 + \frac{2}{M} f P}\) for closed and open loop training, respectively. Similar to the influence of inter-beam interference during training, we find that the influence of inter-beam interference also decreases as training symbols amount increases.

IV. TRAINING TIME OPTIMIZATION

In sequential beamforming strategy described in Section \(\text{III-A}\) base station obtains CSI from training symbols sent by users. While sending more training symbols helps designing a more accurate precoder and reduce inter-beam interference, longer training also implies higher overall inter-node interference. Thus, to obtain the best spectral efficiency performance, there has to be a balance between inter-beam and inter-node interference achieved by optimizing training duration. In this section, we analyze optimal training duration for sequential beamforming and traditional half-duplex strategy with both closed and open loop training. The optimization
\[
T_{\text{tr}}^{s*} = \arg \max \text{SE}_s (T_{\text{tr}}),
\]
is implemented for \(s = \text{SqBf}_{\text{Cl}}, \text{SqBf}_{\text{Op}}, \text{Hf}_{\text{Cl}}\) and \(\text{Hf}_{\text{Op}}\). We use superscript \(*\) to denote optimal solution. The optimality in this paper is under the criteria of maximum spectral efficiency. We
consider T^{tr} to be continuous in the characterization of both training duration and spectral efficiency. The accent \sim is used to represent approximation in Sections [IV-A] [IV-B] where closed form analytical solutions are not feasible.

A. Optimal Training Duration of Sequential Beamforming

In this subsection, we solve the optimization problem posed in (10) by applying a Marginal Analysis [15] technique. As shown below, marginal analysis allows accurate closed form approximation for systems with both closed and open loop training.

Proposition 2: The optimal training duration of sequential beamforming strategy happens at the point where the spectral benefit of adding training symbols equals to loss, i.e.,

$$\frac{\partial SE_{SqBf}(T^{tr})}{\partial T^{tr}} = 0.$$ \hfill (11)

Proof. Since the mobile nodes are half-duplex, more training implies less time for downlink data reception. The influence of inter-beam interference on rate in Proposition 1 suggests that the increase in rate with respect to training increase is monotonically decreasing. Combining with the facts above, we conclude that the benefit in spectral efficiency from M additional training symbols is monotonically decreasing as training grows. From Lemma 1, the influence of longer inter-node interference duration is monotonically increasing. Thus, the spectral efficiency SE_{SqBf} is concave in T^{tr}. Therefore, a unique T^{tr*}_{SqBf} exists to optimize the spectral efficiency. ■

Since solving (11) is challenging, we then apply Taylor’s expansion to and ignore all the expansion terms, which yields

$$SE_{SqBf}(\tilde{T}^{tr*}_{SqBf}) \approx SE_{SqBf}(\tilde{T}^{*}_{SqBf} + M).$$ \hfill (12)

With the help of spectral efficiency characterization provided in Lemma 1 expanding both sides of (12) leads to

$$\frac{M - 1}{2M} \frac{T^{tr}_{SqBf}}{T} \left[R^{tr}(\tilde{T}^{tr}_{SqBf} + M) - R^{tr}(\tilde{T}^{tr}_{SqBf}) \right] + \frac{T - \tilde{T}^{tr}_{SqBf}}{T} \left[R^{data}(\tilde{T}^{tr}_{SqBf} + M) - R^{data}(\tilde{T}^{tr}_{SqBf}) \right]$$

$$= \frac{M - 1}{2T} \left[R^{data}(\tilde{T}^{tr}_{SqBf} + M) - R^{tr}(\tilde{T}^{tr}_{SqBf} + M) \right] + \frac{M + 1}{2T} R^{data}(\tilde{T}^{tr}_{SqBf} + M).$$ \hfill (13)

The left side in (13) is the benefit obtained in spectral efficiency by adding M training symbols. We note this benefit as Marginal Utility (MU). The MU comes from two facts: more training
can reduce inter-beam interference both during and after training, which corresponds to the first and second term on left side of (13), respectively.

More training symbols results in lower inter-beam interference in half-duplex phase. By using Proposition 1, it can be expressed as rate increase of

\[
R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tf}} + M) - R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) = \log \left(1 + \frac{P_{\text{IBI}} \left(\tilde{T}_{\text{tr}}^{\text{tr}} + M \right)}{1 + P_{\text{IBI}} \left(\tilde{T}_{\text{tr}}^{\text{tr}} + M \right)} \right). \tag{14}
\]

We refer the rate improvement due to less inter-beam interference as \(\delta R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M)\). In the same spirit, the rate increase of \(R_{\text{tr}}^{\text{tr}}\) by lower inter-beam interference during training phase is

\[
R_{\text{tr}}^{\text{tr}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) - R_{\text{tr}}^{\text{tr}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) \approx \delta R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M).
\]

We find that, the rate improvement due to less inter-beam interference is almost constant during and after training. Applying the two results above, the marginal utility is then

\[
MU = \left(1 - \frac{M + 1/2}{2M} \right) \delta R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) \approx \left(1 - \frac{1/2}{T} \right) \delta R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M), \tag{15}
\]

which suggests a rate increase of \(\delta R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M)\) in \(1 - \frac{1/2}{T}\) fraction of the whole block is achieved by adding \(M\) training symbols. Later we further obtain the marginal utility of half-duplex counterparts by the same process with \(SE_{\text{SqBf}}\) substituted as \(SE_{\text{Hf}}\).

On the right side of (13) is the loss of spectral efficiency, referred as Marginal Cost (MC), due to longer training and comprises two parts. The first term corresponds to the fact that additional inter-node interference is suffered in \(\frac{M-1}{2}\) of the \(M\) symbols suffer. The second term reflects that the rest \(\frac{M+1}{2}\) training symbols are still not able to be utilized for downlink. With the help of Lemma 1 and Proposition 1, the rate loss due to additional inter-node interference is

\[
R_{\text{data}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) - R_{\text{tr}}^{\text{tr}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M) = \log \left(1 + \frac{\alpha f P}{1 + P_{\text{IBI}}(\tilde{T}_{\text{tr}}^{\text{tr}} + M)} \right) \approx \Delta R^{\text{INI}}.
\]

The downlink rate loss due to inter-node interference in training phased is almost independent of training duration. The downlink rate is immediate as \(R^{\text{ZF}}\). The marginal cost is then

\[
MC = \frac{M-1}{2T} \Delta R^{\text{INI}} + \frac{M+1}{2T} R^{\text{ZF}} \approx \frac{M}{2T} \left[\Delta R^{\text{INI}} + R^{\text{ZF}} \right], \tag{16}
\]

which is independent of training symbol amount. The approximation made in Eq. (16) holds for large \(T\). In training phase, Eq. (16) suggests that, on average, each user receives downlink data during half of the training time.
The unique optimal point T_{SqBf}^{tr*} happens at the point where the spectral efficiency benefit (marginal utility) and cost (marginal cost) break even, i.e., $MU = MC$. Using (15) and (16), it is mathematically captured as

$$
\left(1 - \frac{M + 1}{2M} \tilde{T}_{SqBf}^{tr} \right) \delta R_{data} \left(\tilde{T}_{SqBf}^{tr}\right) = \frac{M - 1}{2T} \Delta R_{INI}^{IN} + \frac{M + 1}{2T} R_{ZF}^{ZF}.
$$

(17)

The optimal training duration of sequential beamforming strategy with closed and open loop training is then obtained by the inter-beam interference characterization provided in Proposition 1.

Theorem 1: The approximation of optimal training duration T_{SqBfCl}^{tr*} of sequential beamforming strategy with closed loop training is

$$
\tilde{T}_{SqBfCl}^{tr*} = M (M - 1) \frac{\log (TP) - \log (c) + \log \left((1 + fP)^{\frac{1}{M-1}} - 1\right)}{\log (1 + fP)},
$$

(18)

where $c = \frac{M-1}{2} \Delta R_{INI}^{IN} + \frac{M+1}{2} R_{ZF}^{ZF}$.

Proof. See Appendix B.

Several interesting observations are made here. First, as T grows, for closed loop training based sequential beamforming strategy, the optimal training duration scales as $\log T$. We later observe similar scaling law for its half-duplex counterpart. This scaling law, to our best knowledge, has not been reported before. Second, as inter-node interference becomes stronger, less training is sent to account for the higher cost of training. Third, The optimal training symbols amount scales as $\log P$ with respect to P, which is less than $\log P$. From Theorem 4 in [16], we conclude that full multiplexing is not obtained as P grows. Fourth, the number of training symbols increases almost quadratically with respect to the number of users M, which lies well with the intuition that training symbols number scales with the number of total channel coefficient.

Fig. 3a provides both optimal training duration and its approximation of sequential beamforming strategy with closed loop training. Since optimal training duration scales as $\log T$, the fraction of training duration actually scales as $\frac{\log T}{T}$ and is further confirmed numerically.

In the same spirit, the optimal training duration of sequential beamforming strategy with open loop training is obtained as below.

Theorem 2: The approximation of optimal training duration T_{SqBfOp}^{tr*} of sequential beamforming
strategy with open loop training is

\[T_{\text{SqBfOpt}} = \sqrt{\frac{(M - 1)T}{f(M-1)\Delta R_{\text{INI}} + (M+1)R_{ZF}}} \approx \sqrt{\frac{(M - 1)T}{f\Delta R_{\text{INI}} + R_{ZF}}} \cdot \]

Proof. See Appendix C.

In Theorem 2, we observe that for large \(T \), the optimal training duration scales as \(\sqrt{T} \). The optimal fraction of time resource devoted into training then decreases as \(\frac{1}{\sqrt{T}} \), which is slower than that of closed loop training systems. The scaling rate of \(\sqrt{T} \) has been observed in various open loop training based systems. For example, similar scaling has been observed for both half-duplex MIMO broadcast channels with analog feedback [6] and point-to-point MIMO [17]. Such scaling rate has also been observed in MIMO downlink with full-duplex base station and full-duplex node [10]. We find an identical scaling law is shared by open loop training based systems. In Section IV-B, we find that the half-duplex counterparts also follow the respective scaling laws. Numerical results presented in Fig. 3b confirm our observation.

For sequential beamforming strategy with open loop training, as the number of transmitting antennas \(M \) increases, the optimal training duration scales as \(\sqrt{M} \), unlike \(M^2 \) scaling in closed loop training based systems. The slower scaling rate in open loop training systems suggest a lower overhead cost in systems with large number of users. Further analysis results in Section VI confirm this observation.

Similar to closed loop systems, as inter-node interference increases, larger rate loss during training is expected in open loop training systems. Thus, one should use fewer symbols for
training to account for this effect. Another interesting finding is that even when no inter-node interference exists, the optimal training duration is not T. The reason is that sequential beamforming strategy is only able to partially recover the training overhead.

B. Optimal Training Duration of Half-duplex Strategy

In this subsection, we apply the marginal analysis method developed in Section IV-A to obtain approximations of optimal training duration of half-duplex systems. As a by-product of analysis in section IV-A we find the marginal utility, which stands for the gain in spectral efficiency of adding M more training symbols, for half-duplex systems is

$$MU = \frac{T - \tilde{T}_{tr}^{Hf}}{T} \left[R_{data}^{\text{data}} (\tilde{T}_{tr}^{Hf} + M) - R_{data}^{\text{data}} (\tilde{T}_{tr}^{Hf}) \right] = \frac{T - \tilde{T}_{tr}^{Hf}}{T} \delta R_{data}^{\text{data}} (\tilde{T}_{SqBf}^{tr}).$$

(19)

The marginal cost of half-duplex strategy is conveniently obtained by ignoring inter-beam interference after training as

$$MC = \frac{M}{T} R_{ZF}^{ZF}. \quad (20)$$

The approximation is obtained by letting marginal cost and utility be equal in half-duplex systems. We further proceed by applying the rate characterization provided in Proposition I. The result regarding closed loop training based systems is first presented with open loop result as follows.

Theorem 3: The approximation of optimal training duration T_{HfCl}^{tr} of half-duplex strategy with closed loop training is

$$\tilde{T}_{SqBfCl}^{tr} = M (M - 1) \frac{\log (TP) - \log (c) + \log \left(\frac{1}{1 + fP}\frac{1}{M - 1} - 1\right)}{\log (1 + fP)},$$

(21)

where $c = MR_{ZF}^{ZF}$.

Proof. See Appendix D. □

We observe the optimal training duration \tilde{T}_{SqBfCl}^{tr} and fraction $\frac{\tilde{T}_{SqBfCl}^{tr}}{T}$ of half-duplex counterpart to share the same scaling law as sequential beamforming strategy in Theorem I. It should also be noted that as the number of antenna M increases, the optimal number of training symbols also increases quadratically. Comparing to Theorem I the only difference lies in the $\log (c)$ term in the numerator, which can be viewed as the normalized marginal cost of the strategy. This finding also suggests that the optimal training duration difference between sequential beamforming strategy
and half-duplex is a constant gap which is independent of block length. Therefore, the difference in the fraction of training time decreases as T increases.

Theorem 4: The approximation of training duration $T_{\text{Hf Op}}^{tr^*}$ that optimizes spectral efficiency of open loop training half-duplex systems is

$$
\tilde{T}_{\text{Hf Op}}^{tr^*} = \sqrt{\frac{(M - 1) T}{f R_{\text{ZF}}}}.
$$

Proof. See Appendix E.

Similar to sequential beamforming system with open loop training, the optimal training duration scales with T and M at the rate of \sqrt{T} and $\sqrt{M - 1}$, respectively, as block length and number of antennas grows. It should also be noted that by substituting the normalized marginal cost term $\frac{\Delta R_{\text{IN}} + R_{\text{ZF}}}{2}$ as the half-duplex system’s normalized marginal cost term R_{ZF}, we can also obtain Theorem 4. Instead of assuming each user has the same power constraint P of the base station, our approximation results further take the limitation of user power into consideration.

Remark 1: By comparing the training duration of closed and open loop systems, we find that training type dominates the scaling of optimal training time with respect to both block length and number of antennas. For example, as block length T grows, optimal training duration for both sequential beamforming and half-duplex systems with open loop training scale as \sqrt{T} while the closed loop training counterparts scale as $\log T$.

The closed-form approximations are further applied in Section V to characterize the spectral efficiency of sequential beamforming and half-duplex strategy with optimal training duration.

V. Spectral Efficiency Evaluation

In multiuser MIMO downlink systems where base station obtains CSI through training, spectral efficiency is reduced due to imperfect CSI and training overhead resulting from its acquisition. To quantify the spectral efficiency loss of different systems, we compare the spectral efficiency of different systems with optimal training duration to a system where perfect CSI is available for base station at no cost. It can be visualized as a genie provides perfect CSI to base station at the beginning of each block, thus it serves as an upper bound for systems’ performance with ZF; we label the perfect CSI system as genie-aided system. The spectral efficiency achieved is $\text{SE}_{\text{ZF}} = R_{\text{ZF}}$, which is presented in (4). The rate loss due to training overhead is then

$$
\Delta \text{SE}_s = \text{SE}_{\text{ZF}} - \text{SE}_s, \quad s \in \{\text{SqBf Cl}, \text{SqBf Op}, \text{Hf Cl}, \text{Hf Op}\}.
$$
In our investigation, we also consider inter-node interference free scenario to gain further insights on the sequential beamforming performance. We use notation INI to describe inter-node interference free systems in figure legends. The spectral efficiency of half-duplex counterparts are also analyzed for comparison.

Theorem 5: The spectral efficiency loss of closed loop training based sequential beamforming system with respect to genie-aided system is upper-bounded as

\[
\Delta \text{SE}_{\text{SqBfCl}} (T_{\text{SqBfCl}}^{\text{tr}}) \leq \left(\frac{M-1}{2M} \Delta R_{\text{INI}} + \frac{M+1}{2M} R_{\text{ZF}} \right) \frac{M (M-1) \log T}{\log (1+fP)} + o \left(\frac{\log T}{T} \right). \tag{24}
\]

Proof. See Appendix [F].

Here \(o \left(\frac{\log T}{T} \right) \) is a term that vanishes as \(T \) increases, i.e., \(\lim_{T \to \infty} \frac{\log T}{\log (T/T)} = 0 \). It can be observed that by employing higher training power \(f \), or by using longer block length \(T \), the spectral efficiency overhead decreases. However, in a more realistic scenario where user power and block length are inherently limited, the spectral efficiency loss cannot be neglected. Based on expression (24), some observations are made for sequential beamforming strategy with closed loop training. i) The spectral efficiency loss scales quadratically as \(M \) increases, which indicates sequential beamforming strategy with closed loop training is not a good choice for systems with large number of antennas. ii) The spectral efficiency loss decreases rapidly as \(\log T/T \) as \(T \) increases. Fig. 4 presents the spectral efficiency policy for different strategy versus \(T \). We observe that as \(T \) grows, spectral efficiency loss drops rapidly for systems with closed loop training, which agrees with our analysis. iii) As inter-node interference level decreases, smaller term \(\Delta R_{\text{INI}} \) suggests less spectral efficiency loss which is confirmed in Fig. 4.

Theorem 6: The spectral efficiency loss of open loop training based sequential beamforming system with respect to genie-aided system is upper-bounded as

\[
\Delta \text{SE}_{\text{SqBfOp}} (T_{\text{SqBfOp}}^{\text{tr}}) \leq 2 \sqrt{\left(\frac{M-1}{2M} \Delta R_{\text{INI}} + \frac{M+1}{2M} R_{\text{ZF}} \right) \frac{fT}{M (M-1)}} + o \left(\frac{1}{\sqrt{T}} \right). \tag{25}
\]

Proof. See Appendix [G].

In (25), the term \(o \left(\frac{1}{\sqrt{T}} \right) \) shows that the additional spectral efficiency loss term vanishes in systems with large \(T \). Interestingly, we observe a different scaling law with respect to both block length and antenna number. For sequential beamforming with open loop training, the spectral efficiency loss grows only at the rate of \(\sqrt{M-1} \), which is slower than \(M(M-1) \) in
Theorem [5] Thus, for systems with large number of users, sequential beamforming with open loop training is advisable.

On the other hand, the spectral efficiency loss decreases as $\frac{1}{\sqrt{T}}$, which is confirmed from Fig. 4. It should be further noted that the decreasing rate (w.r.t. T) is slower than that of systems with closed loop training ($\log T/T$). From Fig. 4, an increase spectral efficiency is achieved by sequential beamforming strategy at low inter-node interference level.

Fig. 4 plots closed and open loop training based system with power controlled sequential beamforming, sequential beamforming and half-duplex strategy. We observe a further spectral efficiency increase by allowing power adaptation during training. Having established performance bounds for the spectral efficiency loss of sequential beamforming policy, we now investigate the performance of the half-duplex counterpart to compute the gains of proposed sequential beamforming strategy.

Theorem 7 (Half-duplex system): The spectral efficiency loss of half-duplex systems with closed loop training respect to genie-aided system is upper bounded as

$$
\Delta S_E^{Hf_{Cl}} \left(T_{Hf_{Cl}}^* \right) \leq R_{ZF}^{M \left(M - 1 \right)} \log \frac{T}{T} + o \left(\frac{\log T}{T} \right).
$$

(26)

Proof. See Appendix [H].

Here we observe the same scaling of spectral efficiency loss with respect to number of antennas M and block length T as in sequential beamforming strategy with closed loop training. Actually,
we can obtain Theorem 7 by replacing the normalized marginal cost term $\frac{M-1}{2M} \Delta R_{\text{INI}} + \frac{M+1}{2M} R_{\text{ZF}}$ in Theorem 5 with R_{ZF}. The main reason is the similarity between the marginal utility term in sequential beamforming and half-duplex system.

Theorem 8: The spectral efficiency loss of half-duplex systems with open loop training respect to genie-aided system is upper bounded as

$$\Delta SE_{\text{HfOp}} \left(T_{\text{HfOp}}^* \right) \leq 2\sqrt{(M - 1) R_{\text{ZF}}} fT.$$ (27)

Proof. See Appendix I. □

The spectral efficiency loss scaling with both block length T and number of antennas M is identical to that of sequential beamforming system with open loop training. Theorem 8 can be viewed as changing the normalized marginal cost of sequential beamforming strategy into its half-duplex counterpart.

![Fig. 5: Spectral efficiency improvement percentage of 8 × 8 system with sequential beamforming strategy at $P = 15$dB with $f = 0.1$ and $\alpha = 0.3$. Here experiment here refers to the simulation results obtained with experimental data. Theory refers to results in Fig. 4.](image)

Comparing Theorem 7 and Theorem 8 to their sequential beamforming counterparts, spectral efficiency loss is substantially reduced by adopting sequential beamforming strategy. Sequential beamforming strategy improves spectral efficiency performance significantly.

We now further validate sequential beamforming strategy for a 8 × 8 systems with experimental data from [21]. The base station antenna number is chosen to be 8, which is the maximal number currently supported by LTE. In the experiment, the authors measure the channel realization between a 8 × 9 two-dimensional antenna array and 12 randomly located users. The measurement is conducted in both indoor and outdoor environment.
The spectral efficiency of both sequential beamforming and half-duplex counterparts are evaluated through Monte Carlo method with 3000 iterations for each systems. In each iteration, 8 random users and first 8 antenna in a random horizontal antenna array is selected. In systems with closed loop training, feedback bits are equally divided to real and imaginary part with 3 bits for integer part and rest for fractional part. In the simulation, we further assumed that the base station will adapt the downlink transmit power in training phase, which is not allowed in previous theoretical analysis. Thus, in cycle $i > 1$, when Users $1, \ldots, i - 1$ receive data on downlink, each receiving user signal will be precoded with power constraint $\frac{P_i}{i-1}$.

Fig. 5 confirms the spectral efficiency improvement achieved by sequential beamforming. The spectral efficiency improvement achieved in Fig. 4 is also shown for reference. Similar to results in Fig. 4, sequential beamforming demonstrates a significant spectral efficiency improvement.

For example, in a typical LTE system, there are around 500 to 2100 symbols in each slot depending on the available bandwidth (1.4 MHz to 5 MHz). When the block length equals 500 symbols, proposed sequential beamforming strategy attains a over 130% and 12% spectral improvement under the influence of inter-node interference for closed and open loop training systems, respectively. As T grows, the performance of half-duplex counter parts grows, thus the improvement by sequential efficiency decreases. From Fig. 4 we conclude that a notable spectral efficiency improvement is still observed even for systems with long block length ($T = 3000$). Lower inter-node level does show a better spectral efficiency improvement in Fig. 5.

Remark 2: For closed loop systems, sequential beamforming demonstrates a higher spectral efficiency compared to the results in Fig. 4a, where the downlink power for each user is fixed to be P/M in training phase. This suggests that proper power adaptation can increase the performance of sequential beamforming dramatically. On the other hand, we find power adaptation does not influence the spectral efficiency improvement of open loop system.

In this section, we observe significant spectral efficiency improvement by adopting sequential beamforming. Power adaptation influences the spectral efficiency of closed loop systems significantly. In Section VI, we further compare the spectral efficiency asymptotically to remove the influence of power adaptation and obtain more general results. As a byproduct of our analysis, a comparison between closed and open loop training method in high SNR regime is also presented.
VI. HIGH SNR ANALYSIS

In Section IV and Section V with optimized training duration, sequential beamforming strategy exhibits significant spectral efficiency improvement in finite SNR regime. In this section, we further continue our investigation of sequential beamforming strategy in the high SNR regime.

Notation.

\(g(P) \doteq P^\zeta \Leftrightarrow \lim_{P \to \infty} \frac{\log g(P)}{\log P} = \zeta. \)

Since \(fP \doteq P \), we now assume the power constraint for training is \(P^\zeta \) to account for the limitation of training power. In order to capture the spectral efficiency asymptotically, we use the multiplexing gain metric \(r \), which can be mathematically captured as

\[
\lim_{P \to \infty} \frac{\text{SE}_S(\zeta, T^{tr})}{\log P} \doteq r_s, \quad s \in \{\text{SqBfCl}, \text{SqBfOp}, \text{HfCl}, \text{HfOp}\}. \tag{28}
\]

Our objective is to maximize the spectral efficiency asymptotically under certain training power constraint, which is mathematically captured as, for \(s = \text{SqBfCl}, \text{SqBfOp}, \text{HfCl} \) and \(\text{HfOp} \),

\[
\max_{T^{tr}} r_s(\zeta, T^{tr}). \tag{29}
\]

We first present the results regarding sequential beamforming system with closed loop training. The results for sequential beamforming strategy with open loop training then follows. In the asymptotic characterization of sequential beamforming strategy, for mathematical concision, we consider the fraction of full-duplex transmission term \(\frac{M-1}{2M} \) in (7) to be \(\frac{1}{2} \). This approximation is validate for systems with large numbers of antennas.

A. Sequential Beamforming with Closed Loop Training

In this subsection, we consider the relationship between multiplexing gain \(r \) and training power constraint \(\zeta \). Similar to the approach in finite SNR regime, we first present a lemma capturing the influence of inter-beam and inter-node interference in high SNR regime, then the spectral efficiency will be characterized. We define \(\theta = (M (M - 1)) / T \), which is useful in analysis.

Lemma 2: In closed loop systems, the downlink data transmission rate during training phase, under the influence of inter-beam and inter-node interference, is

\[
\lim_{P \to \infty} \frac{R^{tr} (T^{tr})}{\log P} = \max \left(\min \left(\frac{\zeta T^{tr}}{\theta T}, 1 - \zeta \right), 0 \right). \tag{30}
\]
Proof. The proof is obtained by substituting the training power in Appendix A with P^*. ■

Interestingly, we observe the impact of inter-node interference in high SNR regime to be divided into two scenarios. If only coarse CSI is available, the influence of inter-beam interference dominates the rate performance during training, i.e., there is no impact of inter-node interference on performance. Otherwise, the influence of inter-node interference dominates the rate performance during training. Now we present the maximal multiplexing gain as a function of training power constraint ζ for different closed loop training systems.

Applying Lemma 2 to characterization (7), we have

$$\lim_{P \to \infty} \frac{SE_{SqBf_{cl}}}{\log P} = \frac{1}{2} T_{tr}^{\max} \left(\min \left(\frac{T_{tr}^\zeta}{T}, 1 - \zeta \right), 0 \right) + \left(1 - T_{tr}^\zeta \right) \min \left(\frac{T_{tr}^\zeta}{T}, 1 \right).$$

(31)

The results regarding Sequential Beamforming system without inter-node interference are first presented as an upper bound for the performance of proposed strategy. Then the results regarding the half-duplex systems are presented for comparison. Finally, the performance of sequential beamforming system with inter-node interference is presented.

Theorem 9 (Inter-node interference free sequential beamforming strategy): The maximal multiplexing gain of sequential beamforming strategy with closed loop training, without inter-node interference, under training power constraint ζ is

$$r^{\star}_{SqBf_{cl,INT}}(\zeta) = \begin{cases} \frac{1}{2} \zeta, & \zeta < \theta \\ 1 - \frac{1}{2} \theta, & \zeta \geq \theta \end{cases}.$$

Proof. The multiplexing gain of sequential beamforming without inter-node interference is

$$r^{\star}_{SqBf_{cl,INT}}(\zeta, T_{tr}) = \left(1 - \frac{1}{2} T_{tr}^{\zeta} \right) \min \left(\frac{\zeta T_{tr}}{\theta T}, 1 \right).$$

By maximizing the multiplexing gain in the cases of $\frac{\zeta T_{tr}}{\theta T} \geq 1$ and $\frac{\zeta T_{tr}}{\theta T} < 1$ by choosing the optimal training duration, the theorem is directly obtained. ■

The multiplexing gain is composed of two regimes. When ζ is small, spectral efficiency increases linearly as training power increases. In this regime, the increase of rate performance during and after training is the major reason. As more training power is allowed, users send training symbols until no spectral efficiency loss is observed due to inter-beam interference after training. The spectral efficiency improvement now attributes to use less time to send the same amount of training information. Thus, lower spectral efficiency performance increase as
training power grows is achieved. Now the asymptotic performance of half-duplex counterpart is presented for comparison.

Theorem 10 (Half-duplex system): The maximal multiplexing gain of closed loop training half-duplex system under training power constraint \(\zeta \) is

\[
 r_{HfCl}^*(\zeta) = \begin{cases}
 \frac{1}{4} \frac{\zeta}{\theta}, & \zeta < 2\theta \\
 1 - \frac{\theta}{\zeta}, & \zeta \geq 2\theta
 \end{cases}
\]

Proof. Similar to inter-node interference free sequential beamforming strategy, omitting the extra spectral obtained during full-duplex training (31), we first express the multiplexing gain of half-duplex system as

\[
 r_{HfCl}(\zeta, T^{tr}) = \left(1 - \frac{T^{tr}}{T}\right) \min\left(\frac{\zeta}{\theta} \frac{T^{tr}}{T}, 1\right).
\]

Directly optimizing training duration in two cases of \(\frac{\zeta T^{tr}}{\theta T} \geq 1 \) and \(\frac{\zeta T^{tr}}{\theta T} < 1 \) leads to the proof. \(\blacksquare \)

It should be noted that, similar to sequential beamforming strategy with closed loop training, its half-duplex counterpart’s spectral efficiency is consisted with two regimes. Actually compared to Theorem 9, a significant multiplexing gain improvement is observed. Thus, the proposed sequential beamforming strategy doubles spectral efficiency of a unidirectional downlink communication asymptotically when \(\zeta < \theta \). Finally, we look at the influence of inter-node interference on the asymptotic spectral efficiency of sequential beamforming strategy.

Theorem 11 (Sequential beamforming strategy with inter-node interference): The maximal multiplexing gain of closed loop training sequential beamforming strategy under training power constraint \(\zeta \) is

\[
 r_{SqBfCl}^*(\zeta) = \begin{cases}
 r_{SqBfClINI}^*(\zeta), & \zeta \leq \frac{\theta}{2+3\theta} \\
 r_{SqBfCl}^*(\zeta), & \frac{\theta}{2+3\theta} < \zeta < \min\left(1, \max\left(\frac{\theta}{2+3\theta}, \frac{\theta}{2-\theta}\right)\right) \\
 r_{HfCl}^*(\zeta), & \min\left(1, \max\left(\frac{\theta}{2+3\theta}, \frac{\theta}{2-\theta}\right)\right) \leq \zeta
 \end{cases}
\]

where

\[
 r_{SqBfClINI}^*(\zeta) = \begin{cases}
 \frac{(1-\theta)(\zeta+\theta)^2}{16\theta}, & \zeta \leq \frac{\theta}{2-\theta} \\
 1 - \frac{\theta}{2} - \frac{\theta}{2\zeta}, & \frac{\theta}{2-\theta} \leq \zeta
 \end{cases}
\]

Proof. Detailed proof can be found in Appendix J. \(\blacksquare \)
The influence of inter-node interference on the spectral efficiency, interestingly, can be divided into three regimes. For systems targeting small multiplexing gain, only small amount of training power is needed. In this regime, inter-beam interference dominates the downlink performance during full-duplex training and no inter-node interference penalty is observed. However, if higher multiplexing gain is targeted, the inter-node interference dominates the downlink performance during full-duplex training. In this case, inter-node interference will reduce the potential benefit obtained from sequential beamforming strategy. Finally, if a really high training power ($\zeta > 1$) is used to achieve high spectral efficiency. The high inter-node interference level leads to no benefit from the downlink transmission during training phase. This observation is confirmed by simulation shown in Fig. [6]

Remark 3: As the number of antennas increases (with respect to block length), θ increases. Interestingly, we observe that higher θ actually increases the regime that sequential beamforming strategy does not suffer from inter-node interference. As $\theta \to \infty$, sequential beamforming strategy suffers no inter-node interference as long as training power constraint is smaller than 1. The proposed strategy is very useful in systems with large number of users.

B. Sequential Beamforming with Open Loop Training

Following the same approach in Section VI-A, we now investigate the spectral efficiency for different open loop training based systems. The influence of inter-beam interference in high SNR regime is first characterized, which is followed by the multiplexing gain analysis.

Lemma 3: For open loop training based systems, the rate performance under inter-beam interference after training is

$$\lim_{P \to \infty} \frac{R_{\text{data}}}{\log P} = \lim_{P \to \infty} \frac{R_{\text{ZF}} - \log \left[1 + \frac{P}{M} \frac{M-1}{1+\frac{T_{\text{tr}}}{P}} \right]}{\log P} = \max (1 - \zeta, 0).$$

Proof. Substituting the training power to P^c in Proposition I leads to the theorem.

The rate performance achieved after training, surprisingly, is only decided by the training power constraint ζ. More training symbols does not help to deduce inter-beam interference after training. Thus, the optimal training duration goes to zero in high SNR regime. Therefore, the maximal multiplexing gain performance can be easily obtained as follows.
Theorem 12: For open loop training based systems, the multiplexing gain of both sequential beamforming and half-duplex strategy is only decided by training power constraint as

$$ r_{\text{SqBfOp}}^* = r_{\text{HfOp}}^* = \zeta. \quad (32) $$

Special attention should be given to the fact that this theorem is valid for both half-duplex and sequential beamforming strategy with open loop training. Our proposed sequential beamforming strategy does not provide extra spectral benefit in high SNR regime. It should be emphasized that in low-to-moderate SNR regime, from analysis in Section V, sequential beamforming does obtain significant spectral efficiency gain. This is different for closed loop training systems, where significant spectral efficiency improvement is observed in all SNR regime.

Before comparing the spectral efficiency performance of closed and open loop system asymptotically, we first validate the influence of the assumption that each user has a perfect knowledge of its own channel on both closed and open loop training. This is crucial for the decoding at user side and for closed training’s quantization. It has been shown [2] that, asymptotically, 1 training pilots from each base station antenna is both necessary and good enough for the influence of imperfect CSI on downlink rate to vanish for both closed and open loop training.

With the help of maximal multiplexing gain characterization obtained in this section, we compare the spectral efficiency of systems with different types of training. For systems with longer block length and less users, in general, closed loop training outperforms open loop training. The major reason is that the closed loop training significantly reduces inter-beam interference by learning from more training symbols. Despite the longer training duration, closed loop training
is still more advantageous. However, if there are many antennas and block length is short, then it is better to use open loop training, whose training duration is asymptotically short.

Remark 4: Based on our analysis, we conclude the following about half-duplex systems. For systems with large numbers of antennas and short block length, which can be mathematically captured as \(\theta \geq \frac{1}{2} \), open loop training outperforms closed loop training systems despite the choice of training power. Otherwise, training method should be picked based on the training power. When a strict training power constraint is imposed on users, closed loop training is more favorable by leveraging the training time. Evaluating Theorems 10 and 12 gives the decision region as \(\zeta < \frac{1-\sqrt{1-2\eta}}{2} \). However, if more training power is available, open loop training becomes more favorable due to shorter available training time. In general, training method should be chosen wisely to maximize the spectral efficiency.

VII. Conclusion

Multiuser MIMO downlink has the potential to increase spectral efficiency tremendously with the help of accurate CSI. In systems with many users, CSI acquisition leads to unavoidable training overhead. In this paper, we aim at reducing the overhead of multiuser MIMO downlink systems by utilizing full-duplex radios. Instead of requiring both base station and mobile users to be full-duplex capable [9] [10], we propose a sequential beamforming strategy that requires only half-duplex users and less precoder updating.

With characterization of inter-node interference due to full-duplex training, we optimize the training duration of sequential beamforming strategy with both closed and open loop training. The proposed sequential beamforming strategy demonstrates significant spectral efficiency improvement compared to its half-duplex counterpart. Sequential beamforming strategy can also be applied in frequency-division duplex systems where uplink and downlink are orthogonal by nature. The orthogonality will also prevent the generation of inter-node interference.

The closed and open loop training methods exhibit distinct spectral efficiency performance. Asymptotically, we find that number of users, block length and training power jointly decide which type of training should be adopted. It has been observed in [19] that closed loop training is more favorable than open loop training to reduce estimation error, while common sense suggests that open loop training is preferable for large systems. Our results quantify the decision region of training method and bridge these two observations.
We close this paper by noting some important issues not considered. Perfect CSI is assumed instantaneously available at each users for closed loop training. To obtain CSI, in general, each user needs to estimate pilots sent by base station, which consumes time. However, since the power limitation at the base station is less severe, high quality CSI is much easier to achieve at the user side. Base station can also increase the quality of CSI by increasing the pilot power. In [2], the authors demonstrate that even without high power pilots, one pilot sent by each base station antenna is enough for the system to obtain full-multiplexing gain. Another assumption we made is that the number of training symbols is symmetric among users. Since the downlink receiving time is decreasing from User 1 to User M, it is clear that extra spectral efficiency can be obtained by allocating training symbols decreasingly from User 1 to User M. In addition, we considered a $M \times M$ system where users are pre-selected without CSI input. Past study has revealed that picking users wisely from a large sets of users helps yield better spectral efficiency [7] [20]. Finally, we consider channel realization to be independent and identically distributed Rayleigh fading, which could be viewed as a worst case and serves as performance lower bounded. Determining how to efficiently utilize the spatial information and the channel correlation between users is still an open question.

ACKNOWLEDGMENT

We will to thank the authors of [21] for providing the measurement data used in Section V.

APPENDIX A

PROOF OF LEMMA 1

Since perfect CSI is assumed available at each user, the rate loss can be upper bounded by

$$\Delta R^{tr} \leq \sqrt{\mathbb{E}} \left[\log \left(1 + \| h_{i}v_{i} \|^2 \frac{P}{M} \right) - \mathbb{E} \left[\log \left(1 + \frac{\| h_{i}v_{i} \|^2 \frac{P}{M}}{1 + \sum_{j \neq i} \frac{P}{M} \| h_{j}v_{j} \|^2 + \| h_{ik}x_{trk} \|^2} \right) \right] \right]$$

$$\leq \mathbb{E} \left[\log \left(1 + \| h_{i}v_{i} \|^2 \frac{P}{M} \right) - \mathbb{E} \left[\log \left(1 + \| h_{i}v_{i} \|^2 \frac{P}{M} + \| h_{ik}x_{trk} \|^2 \right) \right] \right]$$

$$+ \mathbb{E} \left[\log \left(1 + \sum_{j \neq i} \frac{P}{M} \| h_{j}v_{j} \|^2 + \| h_{ik}x_{trk} \|^2 \right) \right].$$

(33)

The first step is obtained following the same recipe in [2], and ignoring the positive term $\sum_{j \neq i} \frac{P}{M} \| h_{j}v_{j} \|^2$ in the minus term leads us to the result above. Term $\sum_{j \neq i} \frac{P}{M} \| h_{j}v_{j} \|^2$ and $\| h_{ik}x_{trk} \|^2$
stands for the interference due to imperfect precoding and full-duplex training, i.e., inter-beam and inter-node interference respectively. We refer them as P_{IBI} and P_{INI}. Note the concavity of logarithm function, we apply Jensen’s inequality and apply the characterization of P_{IBI} from Section V and Remark 4.2 in \cite{2} to obtain the theorem.

APPENDIX B

PROOF OF THEOREM 1

The rate increase term $\delta R^{data}(T^{tr})$ of (17) is characterized by applying Proposition 1 as

$$\delta R^{data}(T^{tr}) \approx P(1 + fP)^{-\frac{T^{tr}}{M(M-1)}} \left[\log (1 + fP)^{\frac{1}{M-1}} - 1 \right].$$

Here the last step is directly obtained by using Taylor expansion. Substituting into (17), we have

$$\left(1 - \frac{M + 1}{2M} \frac{T^{tr}}{T}\right) P (1 + fP)^{-\frac{T^{tr}}{M(M-1)}} \left[(1 + fP)^{\frac{1}{M-1}} - 1 \right] = \frac{M - 1}{2T} \Delta R^{INI} + \frac{M + 1}{2T} R^{ZF}.$$

Noticing that it is an transcendental equation which is challenging to solve. Then omitting the $\frac{M + 1}{2M} \frac{T^{tr}}{T}$ term leads us to the theorem. This approximation is valid for large T.

APPENDIX C

PROOF OF THEOREM 2

For open loop training based systems, the rate improvement due to more training symbols can be obtained by using Proposition 1 as

$$\delta R^{data}(T^{tr}) \approx (M - 1)M \left(1 - \frac{M + 1}{2M} \frac{T^{tr}}{T} \right) f \left(\frac{T^{tr}}{T^{tr}} \right)^{2},$$

where the last step is the direct result of Maclaurin series. Combining with (17) leads to

$$\left(1 - \frac{M + 1}{2M} \frac{T^{tr}}{T} \right) f \left(\frac{T^{tr}}{T^{tr}} \right)^{2} = \frac{M - 1}{2T} \Delta R^{INI} + \frac{M + 1}{2T} R^{ZF},$$

whose solution leads to the theorem.
APPENDIX D

PROOF OF THEOREM 3

The rate increase term $\delta R_{\text{data}}^{\text{Ttr}}$ is immediately approximated by using results from Appendix B. Applying this rate characterization term to evaluate (19) gives

$$
\left(1 - \frac{T_{\text{tr}}}{T}\right) \frac{(1 + fP)^{\frac{1}{M-1}} - 1}{P(1 + fP)^{\frac{1}{M(M-1)}}} = \frac{M}{T} R_{\text{ZF}}^{\text{R}}
$$

which is an transcendental equation. Following the same step in Appendix B, we omit the $\frac{T_{\text{tr}}}{T}$ to obtain the theorem.

APPENDIX E

PROOF OF THEOREM 4

Using the rate increase characterization term $\delta R_{\text{data}}^{\text{Ttr}}$ in Appendix C and further applying (19), (20) gives

$$
\left(1 - \frac{T_{\text{tr}}}{T}\right) \frac{(M - 1)M}{f \left(\frac{T_{\text{tr}}}{T_{\text{SqBf}}}\right)^2} = \frac{M}{T} R_{\text{ZF}}^{\text{R}}
$$

whose solution is the theorem.

APPENDIX F

PROOF OF THEOREM 5

Evaluating the achieved spectral efficiency of sequential beamforming strategy with approximated optimal training duration $\tilde{T}_{\text{SqBfCl}}^{\text{Ttr}}$ obtained in Theorem 2 gives

$$
\Delta SE_{\text{SqBfCl}} \left(\tilde{T}_{\text{SqBfCl}}^{\text{Ttr}}\right) \leq R_{\text{ZF}}^{\text{R}} + \frac{M - 1}{2M} \frac{T_{\text{SQBFCl}}}{T} \Delta R_{\text{INI}}
$$

$$
- \left(1 - \frac{M + 1}{2M} \frac{T_{\text{SQBFCl}}}{T}\right) \left[R_{\text{ZF}}^{\text{R}} - \log \left(1 + P(1 + fP)^{-\frac{\tilde{T}_{\text{SQBFCl}}}{M(M-1)}}\right)\right].
$$

Omitting negative term $-\frac{M + 1}{2M} \frac{T_{\text{SQBFCl}}}{T} \log \left(1 + P(1 + fP)^{-\frac{\tilde{T}_{\text{SQBFCl}}}{M(M-1)}}\right)$ and sorting the small term with respect to $\frac{1}{\sqrt{T}}$ lead to the theorem.
APPENDIX G

PROOF OF THEOREM 6

Following similar analysis as that of Appendix F, we substitute approximation of optimal training duration from Theorem 2 into (7) to characterize the spectral efficiency loss as

$$\Delta SE_{\text{SqBf}} \left(T_{\text{SqBf}}^{\text{tr*}} \right) \leq R_{\text{ZF}} + \frac{M - 1}{2M} \frac{T_{\text{SqBf}}^{\text{tr*}}}{T} \Delta R_{\text{INI}} - \left(1 - \frac{M + 1}{2M} \right) \left[R_{\text{ZF}} - \log \left(1 + \frac{(M - 1)P}{1 + fT_{\text{SqBf}} P/M} \right) \right].$$

Then dropping negative term $-\frac{M + 1}{2M} \frac{T_{\text{SqBf}}^{\text{tr*}}}{T} \log \left(1 + \frac{(M - 1)P}{1 + fT_{\text{SqBf}} P/M} \right)$ and sorting small term with respect to $\log T$ lead to the theorem.

APPENDIX H

PROOF OF THEOREM 7

Similar to systems adopting sequential beamforming strategy, the spectral efficiency gap of the half-duplex counterparts with respect to the genie-aided scenario can be immediately upper bounded by evaluating the sub-optimal scheme $SE_{\text{HfCl}} \left(T_{\text{HfCl}}^{\text{tr*}} \right)$

$$\Delta SE_{\text{HfCl}} \left(T_{\text{HfCl}}^{\text{tr*}} \right) \leq R_{\text{ZF}} + \log \left(1 + P \left(1 + fP \frac{\tilde{T}_{\text{HfCl}}^{\text{tr*}}}{M(M-1)} \right) \right) = R_{\text{ZF}} + \log \left(1 + P \left(1 + fP \frac{\tilde{T}_{\text{HfCl}}^{\text{tr*}}}{M(M-1)} \right) \right).$$

Inequality (a) is the result of dropping negative term $-\frac{\tilde{T}_{\text{HfCl}}^{\text{tr*}}}{T} \log \left(1 + P \left(1 + fP \frac{\tilde{T}_{\text{HfCl}}^{\text{tr*}}}{M(M-1)} \right) \right)$.

Applying training time approximation in Theorem 3 gives the final step.

APPENDIX I

PROOF OF THEOREM 8

Inspired by [6], spectral efficiency gap with respect to genie-aided situation can be immediately upper bounded by evaluating $SE_{\text{HfOpt}} \left(T_{\text{HfOpt}}^{\text{tr*}} \right)$

$$\Delta SE_{\text{HfOpt}} \left(T_{\text{HfOpt}}^{\text{tr}} \right) \leq R_{\text{ZF}} - SE_{\text{HF}} \left(\tilde{T}_{\text{HfOpt}}^{\text{tr*}} \right) \leq R_{\text{ZF}} + \log \left(1 + \frac{(M - 1)P}{1 + fT_{\text{HfOpt}} P/M} \right) \leq \sqrt{\frac{(M - 1)R_{\text{ZF}}}{fT}} + \sqrt{\frac{R_{\text{ZF}} (M - 1)}{fT}} = 2 \sqrt{\frac{(M - 1)R_{\text{ZF}}}{fT}}.$$
Inequality (a) is obtained by dropping negative term \(-\frac{\tilde{R}_{\text{Bf}}}{T} \log \left(1 + \frac{(M-1)p}{1+f\tilde{T}_{\text{OP}}^M P/M} \right)\). The next step is the result of Maclaurin expansion of the logarithm term, which is tight for large \(T\).

APPENDIX J

PROOF OF THEOREM 11

Studying (31) in different regimes of operation gives the following.

1) When \(\zeta \geq 1\), the multiplexing gain is the same as the multiplex gain of half-duplex systems. Thus,

\[r_{\text{SqBfC}}^*(\zeta) = r^*_HfCl(\zeta), \quad \zeta \geq 1. \]

2) \(\zeta < 1\)

- \(\frac{T_{\text{tr}}}{T} \leq \frac{\theta}{\zeta}\zeta\): \(r_{\text{SqBfC}}^*(\zeta, T_{\text{tr}}) = \frac{T_{\text{tr}}}{T} \zeta - \frac{1}{2} \left(\frac{T_{\text{tr}}}{T}\right)^2 \zeta = r_{\text{SqBfC}}^*(\zeta, T_{\text{tr}})\)
- \(\theta \frac{\zeta}{\zeta} < \frac{T_{\text{tr}}}{T} < \frac{\theta}{\zeta}\zeta\): \(r_{\text{SqBfC}}^*(\zeta, T_{\text{tr}}) = \frac{1}{2} \left(1 - \frac{T_{\text{tr}}}{T}\right) \frac{T_{\text{tr}}}{T} \zeta\)
- \(\frac{\theta}{\zeta} \leq \frac{T_{\text{tr}}}{T}\): \(r_{\text{SqBfC}}^*(\zeta, T_{\text{tr}}) = \frac{1}{2} \left(1 - \frac{T_{\text{tr}}}{T}\right) + \left(1 - \frac{T_{\text{tr}}}{T}\right) \frac{T_{\text{tr}}}{T} \zeta\)

By carefully evaluating the derivative in different regimes and applying the optimized training duration into equation (31) lead to the theorem.

REFERENCES

[1] Syed Ali Jafar and Andrea J Goldsmith, “Isotropic fading vector broadcast channels: The scalar upper bound and loss in degrees of freedom,” *Information Theory, IEEE Transactions on*, vol. 51, no. 3, pp. 848–857, 2005.

[2] Giuseppe Caire, Nihar Jindal, Mari Kobayashi, and Niranjan Ravindran, “Multiuser MIMO achievable rates with downlink training and channel state feedback,” *Information Theory, IEEE Transactions on*, vol. 56, no. 6, pp. 2845–2866, 2010.

[3] Melissa Duarte, Chris Dick, and Ashutosh Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” *Wireless Communications, IEEE Transactions on*, vol. 11, no. 12, pp. 4296–4307, 2012.

[4] Mayank Jain, Jung Il Choi, Taemin Kim, Dinesh Bharadia, Siddharth Seth, Kannan Srinivasan, Philip Levis, Sachin Katti, and Prasun Sinha, “Practical, real-time, full duplex wireless,” in *Proceedings of the 17th annual international conference on Mobile computing and networking*, ACM, 2011, pp. 301–312.

[5] Jingwen Bai and Ashutosh Sabharwal, “Distributed full-duplex via wireless side-channels: Bounds and protocols,” *Wireless Communications, IEEE Transactions on*, vol. 12, no. 8, pp. 4162–4173, 2013.

[6] Mari Kobayashi, Nihar Jindal, and Giuseppe Caire, “Training and feedback optimization for multiuser MIMO downlink,” *Communications, IEEE Transactions on*, vol. 59, no. 8, pp. 2228–2240, 2011.

[7] Taesang Yoo, Nihar Jindal, and Andrea Goldsmith, “Multi-antenna downlink channels with limited feedback and user selection,” *Selected Areas in Communications, IEEE Journal on*, vol. 25, no. 7, pp. 1478–1491, 2007.

[8] Ansuman Adhikary, Jinyoung Nam, Jae-Young Ahn, and Giuseppe Caire, “Joint spatial division and multiplexing the large-scale array regime,” *Information Theory, IEEE Transactions on*, vol. 59, no. 10, pp. 6441–6463, 2013.
[9] Xu Du, John Tadrous, Chris Dick, and Ashutosh Sabharwal, “MIMO broadcast channel with continuous feedback using full-duplex radios,” in Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers, Nov 2014.

[10] Xu Du, John Tadrous, Chris Dick, and Ashutosh Sabharwal, “MU-MIMO beamforming with full-duplex open-loop training,” in Proceedings of IEEE 16th Workshop on Signal Processing Advances in Wireless Communications. IEEE, June 2015.

[11] Quentin H Spencer, A Lee Swindlehurst, and Martin Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” Signal Processing, IEEE Transactions on, vol. 52, no. 2, pp. 461–471, 2004.

[12] Melissa Duarte and Ashutosh Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on. IEEE, 2010, pp. 1558–1562.

[13] Mayank Jain, Jung Il Choi, Taemin Kim, Dinesh Bharadia, Siddharth Seth, Kannan Srinivasan, Philip Levis, Sachin Katti, and Prasun Sinha, “Practical, real-time, full duplex wireless,” in Proceedings of the 17th annual international conference on Mobile computing and networking. ACM, 2011, pp. 301–312.

[14] Evan Everett, Anant Sahai, and Ashutosh Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” Wireless Communications, IEEE Transactions on, vol. 13, no. 2, pp. 680–694, 2014.

[15] William J Baumol and Prentice Hall, “Economic theory and operations analysis,” 1977.

[16] Nihar Jindal, “MIMO broadcast channels with finite-rate feedback,” Information Theory, IEEE Transactions on, vol. 52, no. 11, pp. 5045–5060, 2006.

[17] Babak Hassib and Bertrand M Hochwald, “How much training is needed in multiple-antenna wireless links?,” Information Theory, IEEE Transactions on, vol. 49, no. 4, pp. 951–963, 2003.

[18] Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas Marzetta, Richard Yang, and Lin Zhong, “Argos: Practical many-antenna base stations,” in Proceedings of the 18th annual international conference on Mobile computing and networking. ACM, 2012, pp. 53–64.

[19] Thomas L Marzetta and Bertrand M Hochwald, “Fast transfer of channel state information in wireless systems,” Signal Processing, IEEE Transactions on, vol. 54, no. 4, pp. 1268–1278, 2006.

[20] Goran Dimic and Nicholas D Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” Signal Processing, IEEE Transactions on, vol. 53, no. 10, pp. 3857–3868, 2005.

[21] Evan Everett, Clayton Shepard, Lin Zhong, and Ashutosh Sabharwal, “Measurement-driven evaluation of all-digital many-antenna full-duplex communication,” arXiv preprint arXiv:1508.03765, 2015.