Non-linear optical response of bulk chalcogenide glasses near the fundamental absorption band edge

E A Romanova¹, A I Konyukhov¹, V I Kochubey¹, T M Benson², E Barney³, N Abdel-Moneim³, D Furniss³, A B Seddon² and S Guizard³

¹ Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia
² University of Nottingham, University Park, NG72RD Nottingham, UK
³ Ecole Polytechnique, 91128 Palaiseau Cedex, France

E-mail: romanova@optics.sgu.ru

Abstract. Magnitudes of the non-linear coefficients of absorption and refraction have been evaluated near the bandgap wavelengths of chalcogenide glasses of the system As-S-Se by using the interferometric pump-probe method and are compared with literature data. Photo-excited plasma dynamics and long-time scale variation of the dielectric constant have been studied by comparison with the results of numerical modelling of the behaviour of the glasses when heated by the ultra-short laser pulses.

1. Introduction

As other amorphous semiconductors, chalcogenide glasses have a disordered lattice and localised states of electrons in their bandgaps. Due to these specific structural and electronic properties, fundamental absorption band edge of amorphous semiconductors is not sharp. It has a spectral range of exponential decay of the single-photon absorption coefficient α that is usually referred to as the Urbach tail. Chalcogenide glasses have also weak absorption tails with $\alpha < 1 \text{ cm}^{-1}$ [1].

Using of chalcogenide glasses, as highly non-linear materials transparent in the mid-infrared, can enhance non-linear optical effects and reduce the dimensions of integrated and fibre optical devices. However a theory of the non-linear optical response of chalcogenide glasses has not yet been fully developed. For direct-gap crystalline semiconductors, the values of non-linear refractive index n_2 in the low-frequency limit have been obtained by using the bond-orbital approximation [2]. The non-linear Kramers-Kronig relation has been applied to obtain spectral dependencies of n_2 and of the two-photon absorption coefficient β_2 near the bandgap frequencies of the direct-gap and indirect-gap crystalline semiconductors in [3] and [4], respectively, by using two-band models. For amorphous semiconductors, only some experimental results of measurements of n_2 and β_2 are currently available. In particular, for chalcogenide glasses, these parameters have been measured mostly in the spectral range above their two-photon bandgap wavelengths [5-8].

In this paper, we study the non-linear optical response of chalcogenide glasses of the compositions As$_{40-x}$Se$_{60-x}$S$_x$ ($x = 0,10,15,20,30,40,45,60$) (atomic %) by using the time-resolved interferometric pump-probe method [9]: evaluate n_2 and β_2 near their bandgap wavelengths and characterise plasma dynamics at the Urbach tail. Different compositions fit the pump pulse peak wavelength of 790 nm (the photon energy is shown in figure 1 as a dashed line) at different points of their Urbach tails.

1 To whom any correspondence should be addressed.
2. Non-linear optical response at low energies of the pump pulse

In the experiment, a glass sample (hot pressed between two precision aligned tungsten carbide plates with flatness of 0.08 µm and a surface finish of 0.009 µm at ~25 °C above its glass transition temperature in an in-house-built vacuum rig) was probed with two collinear 50 fs pulses separated by a fixed time delay. When a high intensity pump pulse was focused on the sample (by a lens with a focal distance of 300 mm after a 3 mm aperture) at some time between the two probe pulses, the second probe pulse experienced a disturbed dielectric constant. The induced phase shift φ and absorbance were measured by a spectrometer as a function of time by changing the delay Δt between the pump pulse and the second probe pulse. At relatively low pump energies E, the phase shift was induced by non-linear refraction and two-photon absorption (figure 2a) or single- and two-photon absorption (figure 2b) of the pump pulse. The effect of cross-phase modulation is described by the system of differential equations for the pump pulse intensity I_{pu} and the probe pulse intensity I_p:

$$\frac{\partial I_{pu}}{\partial z} = -(\alpha + \beta_2 I_{pu})I_{pu}; \quad \frac{\partial I_p}{\partial z} = -(\alpha + 2\beta_2 I_{pu})I_p; \quad \frac{\partial \varphi}{\partial z} = 2kn_2I_{pu}$$

(1)

Parameters n_2 and β_2 evaluated by solution of Eqs.(1) are shown in figure 3 for some compositions (filled circles at 790 nm). For comparison, the wavelength dependencies of n_2 and β_2 have been plotted by using the spectral function obtained in [3] for direct-gap crystalline semiconductors.

Figure 1. Logarithm of the absorption coefficient of the compositions $\text{As}_x\text{Se}_{60-x}\text{S}_x$, $x = 0$ (1), 10 (2), 20 (3), 30 (4), 40 (5), 60 (6). The linear parts of the curves correspond to the Urbach tails, $\alpha_0 = 1 \text{ cm}^{-1}$.

Figure 2. Time-resolved non-linear optical response of the compositions:
(a) $\text{As}_{40}\text{Se}_{60}, E = 1.0 \mu\text{J}$ and (b) $\text{As}_{40}\text{Se}_{50}\text{S}_{10}, E = 0.7 \mu\text{J}$.
The curves in figure 3b were obtained by fitting the values of n_2 calculated in the low-frequency limit [2]. Each curve ends at the bandgap wavelength λ_g of a particular composition. In some range of wavelengths near λ_g, these curves exhibit negative values of n_2. In our measurements, only positively-valued n_2 have been obtained for all the glass compositions. In estimations of n_2 and β_2, maximum magnitudes of the measured phase shift and absorbance at the probe beam axis have been used.

3. Non-linear optical response at high energies of the pump pulse

At higher energies, the effect of plasma formation due to the single- and two-photon absorption is to be taken into account. In [10], three basic scenarios of the plasma dynamics have been distinguished depending on the ratio $P=\hbar \nu/E_g$ of the irradiating photon energy to the bandgap energy. In figure 4, the positive-valued maximum corresponding to the self-induced refraction of the pump pulse is followed by the fast phase shift decrease in $\text{As}_{40}\text{S}_{60}$ sample ($P=0.65$) due to plasma formation and a subsequent slow phase shift increase due to the recombination of carriers. The effect of plasma formation is weakening when partially replacing S by Se. For the $\text{As}_{40}\text{S}_{20}\text{Se}_{40}$ sample, $P=0.74$ and for the $\text{As}_{40}\text{S}_{15}\text{Se}_{45}$ sample, $P=0.77$. In the latter sample, there were no free electrons after the pump pulse.

Permanent positive variation Δn_p of the refractive index observed at the long-time scale and associated with photodarkening or the formation of excitons, has been compared with the results of numerical simulations of the glass heating [11]. A correlation with a sample surface heating above the glass transition temperature (T_g) and energy threshold of Δn_p observation has been revealed (figure 5).
4. Conclusions
Study of the non-linear optical response of chalcogenide glass samples of the system As-S-Se has demonstrated that all the samples have the positive-valued n_2 unlike the direct-gap crystalline semiconductors having the negative-valued n_2 near their bandgap wavelengths. By comparison with the available literature data we have shown that the spectral curve obtained in [3] for the direct-gap crystalline semiconductors, agrees with the spectral dependence of the non-linear coefficients of chalcogenide glasses at wavelengths more than the two-photon bandgap wavelength.

A scenario of the photo-excited plasma dynamics depends on the ratio of the photon energy to the bandgap energy. If $P > 0.75$, fast trapping of carriers results in the lack of free electrons after the pump pulse. By numerical simulation of the glass sample heating in the irradiated zone, we have found a correlation between the permanent change of the dielectric constant at the long-time scale and glass heating above the glass transition temperature.

Acknowledgments
The research leading to these results has received funding from LASERLAB-EUROPE (grant agreement no. 284464, EC's Seventh Framework Programme) and The Royal Society (IES-2013/R2). E.Romanova and S.Guizard are grateful to S.Klimentov for taking part in the measurements.

References
[1] Zakery A, Elliot S R 2007 Optical nonlinearities in chalcogenide glasses and their applications (Springer-Verlag, Berlin, Heidelberg, New York)
[2] Lines M E 1990-II Phys. Rev. B. 41 3383
[3] Sheik-Bahae M, Van Stryland E W, Hagan D J, Hutchings D C 1991 IEEE J. of Quantum Electron. 27 1296
[4] Dinu M 2003 IEEE J. of Quantum Electron. 39 1498
[5] Sanghera J S, Shaw L B, Pureza P, Nguyen V Q, Gibson D, Busse L, and Aggarwal I D 2010 Int. Journ. of Applied Glass Science 1 296
[6] Boudebs G, Sanchez F, Troles J, Smektala F 2001 Opt. Commun. 199 425
[7] Qian Z G, Shen W Z, Ogawa H and Guo Q X 2002 J. Appl. Phys. 92 3683
[8] Blonskyi I, Kadan V, Shpotyuk O, Iovu M, Pavlov I 2010 Opt. Materials 32 1553
[9] Mao S S, Quere F, Guizard S, Mao X, Russo R E, Petite G, Martin P 2004 Appl. Phys. A 79 1695
[10] Romanova E, Chumakov K, Mouskeftaras A, Guizard S, Abdel-Moneim N, Furniss D, Seddon A B, Benson T M 2013 15th International Conference on Transparent Optical Networks 1-4
[11] Romanova E A, Kuzytikina Yu S, Konyukhov A I, Abdel-Moneim N, Seddon A B, Benson T M, Guizard S and Mouskeftaras A 2014 Opt. Engineering 53 071812