Fermi-Dirac Integrals in terms of Zeta Functions

Michael Morales

Abstract
This paper shows the Fermi-Dirac Integrals $F_{\frac{1}{2}}(\eta)$ and $F_{\frac{3}{2}}(\eta)$ expressed in terms of Riemann and Hurwitz Zeta functions. This is done by defining an auxiliary function that permits rewrite the Fermi-Dirac integral in terms of simpler and known integrals resulting in the Zeta functions mentioned. The approach used here evades the use of iterative methods for the integrals and presents a clever procedure for around $\eta \leq 5$, complementing Sommerfeld lemma, one that can be generalized for any integer k in $F_{\frac{k}{2}}(\eta)$ in the refereed interval.

1 Introduction.

The motivation of this paper is to find expressions in order to calculate the Fermi-Dirac integrals specifically for $\eta \leq 5$, values that so far had been calculated using iterative methods as the trapezoidal method, [5]. This integrals appears in partial degenerate stars, [2], thermal conductions by electrons [4], and condensed matter physics. The Fermi-Dirac integral $F_{\frac{k}{2}}(\eta)$ is defined by

$$F_{\frac{k}{2}}(\eta) = \int_0^\infty \frac{\xi^{\frac{k}{2}}}{1 + e^{\xi - \eta}} d\xi$$

(1)

Where $\eta = \frac{\mu}{k_B T}$, k_B is the Boltzmann constant and μ the chemical potential.

In this paper we focus on the Fermi-Dirac integral $F_{\frac{1}{2}}(\eta)$, and the procedure and result can be extended to the $F_{\frac{k}{2}}(\eta)$ and generalized for any integer k in equation (1). This procedure involves an auxiliary function that relates $F_{\frac{k}{2}}(\eta)$ with $F_{\frac{1}{2}}(0)$, and based on their (graphical) relation will permit to write the auxiliary function in simple terms and make the integral $F_{\frac{1}{2}}(\eta)$ easier to calculate obtaining Riemann and Hurwitz Zeta functions. That is, with almost no need for iterative methods.

2 Fermi-Dirac $F_{\frac{1}{2}}(\eta)$ and the auxiliary function

As we mentioned, we work on the Fermi-Dirac integral $F_{\frac{1}{2}}(\eta)$, defined by
\(F_{\frac{1}{2}}(\eta) = \int_{0}^{\infty} \frac{\xi^{\frac{1}{2}}}{1 + e^{\xi - \eta}} d\xi \) \hspace{1cm} (2)

Actually, we focus on the term defined here by \(f_{\frac{1}{2}}(\xi, \eta) \):

\[f_{\frac{1}{2}}(\xi, \eta) = \frac{\xi^{\frac{1}{2}}}{1 + e^{\xi - \eta}} \] \hspace{1cm} (3)

and define the function \(f_{\frac{1}{2}}(\xi) \):

\[f_{\frac{1}{2}}(\xi) = \frac{\xi^{\frac{1}{2}}}{1 + e^{\xi}} \] \hspace{1cm} (4)

We define a function, denoted as \(f(\xi, \eta) \), that is the ratio of both functions:

\[f(\xi, \eta) = \frac{f_{\frac{1}{2}}(\eta)}{f_{\frac{1}{2}}(0)} = \frac{1 + e^{\xi}}{1 + e^{\xi - \eta}} \] \hspace{1cm} (5)

this function, graphically, behaves as \(a - be^{-c\xi} \) for \(\eta \leq 5 \). That is, we assume that we can model and define the function \(f(\xi, \eta) \) as:

\[f(\xi, \eta) = a - be^{-c\xi} \] \hspace{1cm} (6)

where \(a, b, \) and \(c \) are constants. The \(a \) and \(b \) can be found considering some aspects of equation (5):

\[f(0, \eta) = \frac{2}{1 + e^{\eta}} \]

and

\[\lim_{x \to \infty} f(0, \eta) = e^{\eta} \]

this implies that \(a = e^{\eta} \) and \(b = \frac{e^{\eta} - 1}{e^{\eta} + 1} \). This means that

\[f(\xi, \eta) = e^{\eta} - \frac{e^{\eta} - 1}{e^{-\eta} + 1} e^{-c\xi} \] \hspace{1cm} (7)
This leaves the issue of finding \(c\). We take the following approach, perhaps the only one in this procedure that needs iterative methods: we find the maximum of \(f_2(\xi, \eta)\), equation (3). That is, after the algebra, we must solve for \(\xi\) in:

\[
e^{\eta} + e^{\xi}(1 - 2\xi) = 0
\]

and call this value \(\xi_m\), that depends on \(\eta\). Using equations (4) and (7), and substituting \(\xi_m\), we can solve for \(c\):

\[
c = -\frac{1}{\xi_m} \ln \left[\frac{(e^{\eta} - 1) (e^{\eta} - \frac{1 + e^{\xi_m}}{1 + e^{\xi_m} - \eta})}{e^{\eta} - 1} \right]
\]

(9)

It can be shown that calculating the two maximums, of equation (3) and \(f(\xi, \eta) * f_4(\xi)\) will lead basically to the same result. Having found the constants in equation (6), we can write equation (2) as follows:

\[
\int_{0}^{\infty} \frac{\xi^\frac{3}{2}}{1 + e^{\xi}} d\xi = \int_{0}^{\infty} \left(e^{\eta} - \frac{e^{\eta} - 1}{e^{-\eta} + 1} e^{-ct} \right) \frac{\xi^\frac{3}{2}}{1 + e^{\xi}} d\xi
\]

\[
= e^{\eta} \int_{0}^{\infty} \frac{\xi^\frac{3}{2}}{1 + e^{\xi}} d\xi - \frac{e^{\eta} - 1}{e^{-\eta} + 1} \int_{0}^{\infty} e^{-ct} \xi^\frac{3}{2} \frac{1}{1 + e^{\xi}} d\xi
\]

where the first integral in the equality we know from Arfken,\[1\], can be written as:

\[
\int_{0}^{\infty} \frac{\xi^\frac{3}{2}}{1 + e^{\xi}} d\xi = \Gamma \left(\frac{3}{2} \right) \left(1 - 2^{-\frac{3}{2}} \right) \zeta \left(1 + \frac{1}{2} \right)
\]

where \(\zeta(p)\) is the well known Riemann Zeta function. For the second integral, after expanding some terms:

\[
\int_{0}^{\infty} e^{-ct} \xi^\frac{3}{2} \frac{1}{1 + e^{\xi}} d\xi = \Gamma \left(\frac{3}{2} \right) \sum_{n=0}^{\infty} \frac{(-1)^n}{(c + 1 + n)^{1 + \frac{3}{2}}}
\]

\[
= \Gamma \left(\frac{3}{2} \right) \left[2^{-\frac{3}{2}} \zeta \left(1 + \frac{1}{2}, \frac{c+1}{2} \right) - \zeta \left(1 + \frac{1}{2}, c + 1 \right) \right]
\]

In the last equality we recognize \(\zeta(p, q)\) as the Hurwitz Zeta function, where we used the identity as appears in Williams & Nan-yue, \[6\]. With these results, we can finally write \(F_2(\eta)\) as:

\[
F_2(\eta) = \Gamma \left(\frac{3}{2} \right) \left[e^{\eta} \left(1 - 2^{-\frac{3}{2}} \right) \zeta \left(1 + \frac{1}{2} \right) - \frac{e^{\eta} - 1}{e^{-\eta} + 1} \left[2^{-\frac{3}{2}} \zeta \left(1 + \frac{1}{2}, \frac{c+1}{2} \right) - \zeta \left(1 + \frac{1}{2}, c + 1 \right) \right] \right]
\]

(10)
3 Some results

Using equation (10), we elaborate in Table 1, for some \(\eta \), a comparison with values taken from [2], which were based on McDougall & Stoner, *Phil. Trans. Roy. Soc.*, 237:67(1938), including some values for positive \(\eta < 1 \), used in electron conduction opacity, [4], showing how reliable and potentially applicable this method is.

\(\eta \)	\(F_{\frac{1}{2}} \)	\(F_{\frac{1}{2}} \)	error (%)
eq. (10)	Clayton		
-4	0.0161393	0.0161277	0.0715548
-3	0.0434453	0.0433664	0.181969
-2	0.11506	0.114588	0.411671
-1	0.292405	0.290501	0.655385
0	0.678094	0.678094	6.95512E-11
.1	0.732034	.733403	0.18664
.5	0.977945	.990209	1.23858
1	1.35129	1.39638	3.22903
2	2.30003	2.50246	8.08906
3	3.58315	3.97699	9.90297
4	5.5495	5.77073	3.83358
5	8.99919	7.83798	14.8152

4 Observations

For \(\eta = 1 \), the approach here presented is an improvement for the Trapezoidal scheme, [5], where their method gives an 6.4% error. The model according to equation (6) is reliable for \(\eta \leq 5 \), specially with negative \(\eta \). Yet, as the ratio of the functions in equation (5) shows a higher inflexion point, for \(\eta > 5 \), the model needs an improvement. The reason for the limitation around this value appears when analyzing the equation (10), where a simple examination shows a dependency of order \(e^\eta \), as it happens in Sommerfeld lemma.

5 Conclusion

The equation (10) gives an expression for calculating the Fermi-Dirac integrals \(F_{\frac{1}{2}}(\eta) \) in terms of the Riemann and Hurwitz Zeta functions. Using the same procedure we find expressions for \(F_{\frac{k}{2}}(\eta) \) and \(F_{\frac{k}{2}}(\eta) \), for general integer \(k \), valid for \(\eta \leq 5 \). This approach complements that of Sommerfeld lemma, giving a nearly complete expression for Fermi-Dirac integrals.
\[F_2(\eta) = \Gamma \left(\frac{5}{2} \right) \left[e^\eta \left(1 - 2^{-\frac{3}{2}} \right) \zeta \left(1 + \frac{3}{2} \right) - \frac{e^\eta - 1}{e^{-\eta} + 1} \left[2^{\frac{5}{2}} \zeta \left(1 + \frac{3}{2}, \frac{c + 1}{2} \right) - \zeta \left(1 + \frac{3}{2}, c + 1 \right) \right] \right] \] (11)

and for general \(k \):

\[F_2(\eta) = \Gamma \left(1 + \frac{k}{2} \right) \left[e^\eta \left(1 - 2^{-\frac{k}{2}} \right) \zeta \left(1 + \frac{k}{2} \right) - \frac{e^\eta - 1}{e^{-\eta} + 1} \left[2^{\frac{k}{2}} \zeta \left(1 + \frac{k}{2}, \frac{c + 1}{2} \right) - \zeta \left(1 + \frac{k}{2}, c + 1 \right) \right] \right] \] (12)

with the remark that \(\xi_m \), equation (8), in order to find \(c \) (notice that \(c \) and \(f(\xi, \eta) \) are \(k \)-independent), must be generalized too:

\[ke^\eta + e^\xi(k - 2\xi) = 0 \] (13)

References

[1] Arfken, G. & Weber, H. *Mathematical Methods for physicists*, sixth ed., Elsevier Academic Press, 2005.

[2] Clayton, D. *Principles of stellar evolution and nucleosynthesis*, 2nd ed., McGraw-Hill, 1983.

[3] Gong, Z., Zejda, L., Däppen, W. & Aparicio, J. *Generalized Fermi-Dirac Functions and derivatives: properties and evaluation* Comp. Phys. Commun. 136(2001), 294-309

[4] Khalfaoui, A. & Bennaceur, D. *Thermal conduction by electrons in hot dense plasmas*. Astrophys. J. March 20; 478(1997), 326-331.

[5] Mohankumar, N. & Natarajan, A., *A note on the evaluation of the generalized Fermi-Dirac integral*, Astrophys. J. Feb. 10; 458(1996), 233-235.

[6] Williams, K & Nan-yue, Z., *Special values of the Lerch Zeta Function and the evaluation of certain integrals*, Proc. Amer. Math. Soc. 119 (1993), 35-49.

Michael Morales is member of the Universidad del Valle de Guatemala, teaching for Physics Department and the Mathematics Department.

Department of Physics, Universidad del Valle de Guatemala, Guatemala City, 01015

mikael.mm@gmail.com