CONNECTIVITY OF SINGLE-ELEMENT COEXTENSIONS OF A BINARY MATROID

GANESH MUNDHE¹ AND Y. M. BORSE²

Abstract. Given an n-connected binary matroid, we obtain a necessary and sufficient condition for its single-element coextensions to be n-connected.

Keywords: coextension, element splitting, point-splitting, binary matroids, n-connected

Subject Classification (2010): 05B35, 05C50

1. Introduction

For undefined terminologies, we refer to Oxley [6]. The point-splitting operation is a fundamental operation in respect of connectivity of graphs. It is used to characterize 3-connected graphs in the classical Tutte’s Wheel Theorem [9] and also to characterize 4-connected graphs by Slater [8]. This operation is defined as follows.

Definition 1.1 ([8]). Let G be a graph with a vertex v of degree at least $2n - 2$ and let $T = \{v_1, v_2, \ldots, v_{n-1}\}$ be a set of $n - 1$ edges of G incident to v. Let G'_T be the graph obtained from G by replacing v by two adjacent vertices u and w such that u is adjacent to v_1, v_2, \ldots, v_{n-1}, and w is adjacent to the vertices which are adjacent to v except v_1, v_2, \ldots, v_{n-1}. We say G'_T arises from G by n-point splitting (see the following figure).

Slater [8] obtained the following result to characterize 4-connected graphs.

Theorem 1.2 ([8]). Let G be an n-connected graph and let T be a set of $n - 1$ edges incident to a vertex of degree at least $2n - 2$. Then the graph G'_T is n-connected.

In this paper, we extend the above theorem to binary matroids.

Azadi [1] extended the n-point splitting operation on graphs to binary matroids as follows.

Definition 1.3 ([1]). Let M be a binary matroid with standard matrix representation A over the field $GF(2)$ and let T be a subset of the ground set $E(M)$ of M. Let A'_T be the matrix obtained from A by adjoining one extra row to matrix A whose entries are 1 in the columns labeled by the elements of T and 0 otherwise and also having one extra column labeled by a with 1 in the last row and 0 elsewhere. Denote the vector matroid of A'_T by M'_T. We say M'_T is obtained from M by element splitting with respect to the set T.

For example, the following matrices A and A'_T represent the Fano matroid F_7 and its element splitting matroid with respect to the set $T = \{1, 2, 3\} \subset E(F_7)$.

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1
\end{pmatrix}, \quad A'_T = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & a \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

Given a graph H, let $M(H)$ denote the circuit matroid of H. A matroid N is a single-element coextension of a matroid M if $N/e = M$ for some element e of N.

1
Definition \[\text{(3)} \] is an extension of Definition \[\text{(1)} \] as \(M(G'_T) = M(G'_T) \) for a set \(T \) of edges incident to a vertex of a graph \(G \). Note that if \(M \) is a binary matroid, then the element splitting matroid \(M'_T \) is also binary and it is a coextension of \(M \) by the element \(a \) as \(M'_T/a = M \). In fact, we prove in Lemma \[\text{2.1} \] that every coextension of a binary matroid \(M \) by a non-loop and non-coloop element is the element splitting matroid \(M'_T \) for some \(T \subset E(M) \).

Dalvi et al. \[\text{[4, 5]} \] characterized the graphic (cographic) matroids \(M \) whose single-element coextensions \(M'_T \) are again graphic (cographic). Let \(M \) be an \(n \)-connected binary matroid. Borse and Mundhe \[\text{[3]} \] obtained sufficient conditions for the matroid \(M'_T \setminus a \) to be \(n \)-connected. In this paper, we obtain a necessary and sufficient condition for \(M'_T \) to be \(n \)-connected. The following is the main theorem of the paper.

Main Theorem 1.4. Let \(n \geq 2 \) be an integer and \(M \) be an \(n \)-connected binary matroid with \(|E(M)| \geq 2n-2 \). Suppose \(T \subset E(M) \) with \(|T| = n-1 \). Then \(M'_T \) is \(n \)-connected if and only if \(|Q| \geq 2|Q \cap T| \) for every cocircuit \(Q \) of \(M \) intersecting \(T \).

We also prove that Theorem \[\text{1.2} \] follows from Main Theorem \[\text{1.4} \] under a mild restriction.

Azadi \[\text{[1]} \] obtained the following result for \(M'_p \) to be \(n \)-connected, in terms of the circuits of \(M \) containing an odd number of elements of \(T \).

Theorem 1.5 (\[\text{1} \]). Let \(n \geq 2 \) be an integer and \(M \) be an \(n \)-connected binary matroid with \(|E(M)| \geq 2n-2 \). Suppose \(T \subset E(M) \) with \(|T| = n-1 \). Then \(M'_T \) is \(n \)-connected if and only if for any set \(A \subset E(M) \) with \(|A| = n-2 \), there exists a circuit \(C \subset T \) containing an odd number of elements of \(T \) and is contained in \(E(M) \setminus A \).

We provide an alternate shorter proof of Theorem \[\text{1.5} \] in the third section.

In Section 2, we provide some properties of \(M'_T \). Main Theorem \[\text{1.4} \] is proved in Section 3. In the last section, we discuss consequences of Main Theorem \[\text{1.4} \] to the graphs.

2. Preliminaries

We prove below that the single-element coextension of a binary matroid \(M \) by a non-loop and non-coloop element is nothing but an element splitting matroid \(M'_T \) for some \(T \subset E(M) \).

Lemma 2.1. Let \(M \) and \(N \) be binary matroids. Then \(N \) is a coextension of \(M \) by a non-loop and non-coloop element if and only if \(N = M'_T \) for some \(T \subset E(M) \).

Proof. Suppose \(N = M'_T \) for some \(T \subset E(M) \). Then the ground set of \(N \) is \(E(M) \cup \{a\} \) and \(N/a = M \). Hence \(N \) is a coextension of \(M \) by the element \(a \). Let \(A \) be the standard matrix representation of \(M \) over \(GF(2) \). By Definition \[\text{(3)} \] in the matrix \(A'_T \) of \(M'_T \), the column labeled by \(a \) has 1 in the last row and 0 elsewhere, and the columns labeled by the elements of \(T \) have 1 in the last row. This shows that \(a \) is neither a loop nor a coloop of \(N \).

Conversely, suppose \(N \) is a coextension of \(M \) by a non-loop and non-coloop element \(a \). Let \(T_1 \) be a cocircuit of \(N \) containing \(a \) and let \(T = T_1 \setminus \{a\} \). Then \(T \) is a non-empty subset of \(E(M) \). We can write the standard matrix representation \(B \) of \(N \) such that the column of \(B \) labeled by \(a \) has entry 1 in the last row and 0 elsewhere. Since \(T_1 \) is a cocircuit of \(N \), the last row of \(B \) contains 1 in the columns corresponding to \(T_1 \) and 0 elsewhere. Let \(C \) be the matrix obtained from \(B \) by deleting the last row and the column corresponding to \(a \). Then \(M[C] = N/a = M \). Thus \(B \) can be obtained from \(C \) by adding one extra row which has entries 1 below the elements corresponding to \(T \) and then adding a column labeled by \(a \) which has entry 1 in the last row and 0 elsewhere. Therefore, by Definition \[\text{(3)} \], \(B = C'_T \). Hence \(N = M[B] = M[C'_T] = M'_T \). \(\Box \)

Henceforth, we use the notation \(M'_T \) for a single-element coextension of a binary matroid \(M \).

We need the following results.

Lemma 2.2 (\[\text{1} \]). Let \(M \) be a binary matroid and \(T \subset E(M) \). If \(\mathcal{C} \) is the collection of circuits of \(M \), then every circuit of \(M'_T \) belongs to one of the following type.

(i). \(\mathcal{C}_1 = \{C \in \mathcal{C}: |C \cap T| \text{ is even} \} \)

(ii). \(\mathcal{C}_2 = \{C \cup \{a\} : C \in \mathcal{C} \text{ and contains an odd number of elements of } T \} \)

(iii). \(\mathcal{C}_3 = \text{ set of minimal members of } \{C_1 \cup C_2 : C_1, C_2 \in \mathcal{C}, C_1 \cap C_2 = \emptyset \text{ and } C_1 \text{ and } C_2 \text{ each contains an odd number of elements of } T \text{ such that } C_1 \cup C_2 \text{ does not contain any member of } \mathcal{C}_1 \} \)
Lemma 2.3 ([4]). Let M be a binary matroid. Suppose r and r' are the rank functions of M and M'_T, respectively. If $A \subset E(M) \cup \{a\}$, then rank of A is given by

(i). $r'(A) = r(A - \{a\}) + 1$ if $a \in A$.
(ii). $r'(A) = r(A) + 1$ if $a \notin A$ and A contains a circuit C of M with $|C \cap T|$ odd.
(iii). $r'(A) = r(A)$ if $a \notin A$ and A does not contain any circuit C of M with $|C \cap T|$ odd.

Corollary 2.4. Let M be a binary matroid and $T \subseteq E(M)$. Then $r'(M'_T) = r(M) + 1$.

Lemma 2.5 ([7]). Let M be a binary matroid and \mathcal{C} be the collection of cocircuits of M. Suppose $T \subseteq E(M)$ does not contain a cocircuit of M. Then every cocircuit of M'_T belongs to one of the following type.

(i). $\mathcal{Q}_1 = \{(C^* - T) \cup \{a\}: C^* \in \mathcal{C}^* \text{ and } T \text{ is a proper subset of } C^*\}$,
(ii). $\mathcal{Q}_2 = \{C^* : C^* \in \mathcal{C}^*\}$,
(iii). $\mathcal{Q}_3 = \{(C^* \Delta T) \cup \{a\}: C^* \in \mathcal{C}^*, 1 \leq |C^* \cap T| < |T| \text{ and } C^* \text{ does not contain } D^* - T \text{ for any } D^* \in \mathcal{C}^* \text{ and } T \subset D^*\}$,
(iv). $\mathcal{Q}_4 = \{(C^*_1 \cup C^*_2 \cup \ldots \cup C^*_k - T) \cup \{a\}: k \geq 2, C^*_i \in \mathcal{C}^*, C^*_i \cap T \neq \emptyset, C^*_i \text{ are mutually disjoint and } (C^*_1 \cup C^*_2 \cup \ldots \cup C^*_k - T) \text{ does not contain } D^* - T \text{ for any } D^* \in \mathcal{C}^* \text{ and } T \subset D^*\}$,
(v). $\mathcal{Q}_5 = \{T \cup \{a\}\}$.

3. Proofs

In this section, we prove Main Theorem [14] and also provide an alternate shorter proof of Theorem [15].

We need the following result.

Lemma 3.1 ([4], pp 296). If $n \geq 2$ and M is an n-connected matroid with $|E(M)| \geq 2(n - 1)$, then all circuits and all cocircuits of M have at least n elements.

Suppose M is an n-connected binary matroid with $|E(M)| \geq 2(n - 1)$ and $T \subset E(M)$. By Definition [13], there is a cocircuit of M'_T contained in $T \cup \{a\}$. Therefore, if $|T| < n - 1$, then M'_T contains a cocircuit of size less than n by Lemma [2.5] and hence M'_T is not n-connected by Lemma [3.1]. Hence we assume that $|T| \geq n - 1$.

We obtain below an obvious necessary condition for M'_T to be n-connected.

Lemma 3.2. Let $n \geq 2$ be an integer and M be an n-connected binary matroid with $|E(M)| \geq 2n - 2$. Suppose $T \subset E(M)$ with $|T| = n - 1$. If M'_T is n-connected, then $|Q| \geq 2|Q \cap T|$ for every cocircuit Q of M intersecting T.

Proof. Suppose M'_T is n-connected. Assume that there is a cocircuit Q of M intersecting T such that $|Q| < 2|Q \cap T|$. By Lemma [2.5] (iii), $Q \Delta T \cup \{a\}$ contains a cocircuit, say X, of M'_T. Then $|X| \leq |Q \Delta T \cup \{a\}| = |Q| + |T| - 2|Q \cap T| + 1 < |T| + 1 = n$, a contradiction by Lemma 3.1. □

We now prove that the obvious necessary condition for M'_T to be n-connected stated in the above lemma is sufficient also.

Proposition 3.3. Let $n \geq 2$ be an integer and M be an n-connected binary matroid with $|E(M)| \geq 2n - 2$. Suppose $T \subset E(M)$ with $|T| = n - 1$. If $|Q| \geq 2|Q \cap T|$ for every cocircuit Q of M intersecting T, then M'_T is n-connected.

Proof. Assume that $|Q| \geq 2|Q \cap T|$ for every cocircuit Q of M intersecting T. We proceed by contradiction. Suppose M'_T is not n-connected. Then there exists an $(n - 1)$-separation (A, B) of M'_T. Therefore

$$\min\{|A|, |B|\} \geq n - 1 \text{ and } r'(A) + r'(B) - r'(M'_T) \leq n - 2. \ldots (*)$$

Suppose $|A| \geq n$ and $|B| \geq n$. Without loss of generality, we may assume that $a \in B$. By Lemma [2.3] and by (*),

$$r(A) + r(B - \{a\}) - r(M) \leq r'(A) + r'(B) - 1 - (r'(M'_T) - 1) \leq n - 2.$$

Therefore $(A, B - \{a\})$ forms an $(n - 1)$-separation of M, a contradiction.
Therefore $|A| = n - 1$ or $|B| = n - 1$. We may assume that $|A| = n - 1$. Then A is independent in M by Lemma 3.1. Hence, by Lemma 2.2 A is independent in M'_T also.

Claim: A is a coindependent in M'_T.

Assume that A is not coindependent in M'_T. Then A contains some cocircuit Q of M'_T. Therefore $|Q| \leq |A| = n - 1$. By Lemma 3.1, Q is not a cocircuit of M. Further, by Lemma 2.5, Q does not belong to \mathcal{Q}_3. Hence Q belongs to one of the four classes \mathcal{Q}_1^*, \mathcal{Q}_2^*, \mathcal{Q}_3^* and \mathcal{Q}_4^*.

(1). Suppose $Q \in \mathcal{Q}_1^*$. Then $Q = (C^* - T) \cup \{a\}$, where C^* is a cocircuit of M containing T. Then, by hypothesis, $|C^*| \geq 2|C^* \cap T| = 2|T| = 2n - 2$. Therefore

$$n - 1 \geq |Q| = |C^*| - |T| + 1 \geq (2n - 2) - (n - 1) + 1 = n,$$

a contradiction.

(2). Suppose $Q \in \mathcal{Q}_2^*$. Then $Q = ((C_1^* \cup C_2^* \cup \cdots \cup C_k^*) - T) \cup \{a\}$, where $k \geq 2$ and C_i^* are mutually disjoint cocircuits of M and each of them contains at least one element of T. Since M is n-connected, $|C_i^*| \geq n$ for each i by Lemma 3.1. Hence, we have

$$|Q| \geq |(C_1^* \cup C_2^*) - T| + 1 \geq |C_1^*| + |C_2^*| - |T| + 1 \geq 2n - (n - 1) + 1 = n + 2 > n - 1 \geq |Q|,$$

again a contradiction.

(3). Suppose $Q \in \mathcal{Q}_3^*$. Then $Q = (C^* \Delta T) \cup \{a\}$, where C^* is a cocircuit of M intersecting T. Hence

$$|Q| = |C^* \Delta T| + 1 = |C^*| + |T| - 2|C^* \cap T| + 1 \geq |T| + 1 = n > n - 1 \geq |Q|,$$

a contradiction.

(4). Suppose $Q \in \mathcal{Q}_4^*$. So $Q = T \cup \{a\}$. This gives $|Q| = n$, a contradiction.

Thus in all the four cases, we get a contradiction. This proves the claim.

Therefore A is independent and coindependent in the matroid M'_T. Hence $r'(A) = |A|$ and $r'(B) = r'(M'_T)$. This gives $n - 1 = |A| = r'(A) = r'(A) + r'(B) - r'(M'_T) \leq n - 2$, a contradiction. Thus we get a contradiction in each case. Therefore M'_T is n-connected.

□

Main Theorem 1.4 follows obviously from Lemma 3.2 and Proposition 3.3.

For $2 \leq n \leq 4$, we get the following weaker sufficient conditions for M'_T to be n-connected.

Corollary 3.4. Let $n \in \{2, 3, 4\}$ and let M be n-connected binary matroid. Suppose $T \subseteq E(M)$ with $|T| = n - 1$. If $|Q| \geq 2n - 2$ for every cocircuit Q containing T, then M'_T is n-connected.

Proof. Let Q be a cocircuit of M intersecting T. By Proposition 3.3, it is sufficient to prove that $|Q| \geq 2|Q \cap T|$. If $T \subseteq Q$, then $|Q| \geq 2n - 2 = 2|T| = 2|Q \cap T|$. Suppose $T \not\subseteq Q$. Then $|Q \cap T| < |T| = n - 1$ and hence $|Q \cap T| \leq n - 2$. Since $2 \leq n \leq 4$, we have $2|Q \cap T| \leq 2(n - 2) = 2n - 4 \leq n$. By Lemma 3.1, $|Q| \geq n$ and so $|Q| \geq 2|Q \cap T|$.

We combine Main Theorem 1.4 and Theorem 1.5 and provide a shorter proof of Theorem 1.5.

Theorem 3.5. Let $n \geq 2$ be an integer and M be an n-connected binary matroid with $|E(M)| \geq 2n - 2$. Suppose $T \subset E(M)$ with $|T| = n - 1$. Then the following statements are equivalent.

(i). M'_T is n-connected.

(ii). $|Q| \geq 2|Q \cap T|$ for every cocircuit Q of M intersecting T.

(iii). For any subset $A \subseteq E(M)$ with $|A| = n - 2$, there exists a circuit C of M containing an odd number of elements of T and is contained in $E(M) - A$.

Proof. (i) \implies (ii) follows from Lemma 3.2 and (ii) \implies (i) follows from Proposition 3.3.

(i) \implies (iii). Suppose (i) holds but (iii) does not hold. Then there is a subset $A \subseteq E(M)$ with $|A| = n - 2$ such that no circuit of M containing an odd number of elements of T is contained in $E(M) - A$. Let $A' = A \cup \{a\}$ and $B = E(M) - A$. Then $|A'| = n - 1$ and $|B| \geq n - 1$. Let r and r' be the rank function of M and M'_T, respectively. By Lemma 3.1, A contains neither a cocircuit of M nor a cocircuit of M'_T. Hence $r(B) = r(M)$ and $r'(B) = r'(M'_T)$. Also, by Lemma 2.3 (iii), $r(B) = r'(B)$. This gives $r(M) = r'(M'_T)$, a contradiction by Corollary 2.4. Hence (ii) implies (iii).

(iii) \implies (i). Suppose (iii) holds but (i) does not hold. Then M'_T has an $(n - 1)$-separation (A, B). Therefore

$$\min\{|A|, |B|\} \geq n - 1$$

and $r'(A) = r'(B) = r'(M'_T) \leq n - 2$. (∗)
Without loss of generality, assume that $a \in A$. By Lemma 2.3(i), $r'(A) = r(A - \{a\}) + 1$. If $|A| \geq n$, then, by (*),

$$r(A - \{a\}) + r(B) - r(M) \leq r'(A) - 1 + r'(B) - (r'(M_T) - 1) \leq n - 2.$$

Therefore $(A - \{a\}, B)$ is an $(n - 1)$-separation of M, a contradiction. Hence $|A| = n - 1$. Then $|A - \{a\}| = n - 2$. By (iii) and Lemma 2.3(ii), $r'(B) = r(B) + 1$. Therefore

$$r(A - \{a\}) + r(B) - r(M) \leq r'(A) - 1 + r'(B) - 1 - (r'(M_T) - 1) = n - 3.$$

This shows that (A, B) is an $(n - 2)$-separation of M, a contradiction. Thus (iii) implies (i). □

4. Consequences to Graphs

In this section, we prove that Proposition 3.3 is a matroid extension of Theorem 1.2. We need the following result.

Theorem 4.1 ([6], pp. 328). For $n \geq 2$, let G be a graph without isolated vertices and with at least $n + 1$ vertices. Then the circuit matroid $M(G)$ is n-connected if and only if G is n-connected and has no cycle with fewer than n edges.

By Theorem 4.1, the circuit matroid $M(G)$ of an n-connected graph G is not n-connected if G contains a cycle of length less than n. Therefore we derive Theorem 1.2 from Proposition 3.3 by assuming that G has girth at least n.

Theorem 4.2. Suppose G is an n-connected graph of girth at least n, where $n \geq 2$. Let T be a set of $n - 1$ edges incident to a vertex of degree at least $2n - 2$ in G. Then the n-point splitting graph G'_T is n-connected.

Proof. Let $M = M(G)$. Then $M'_T = M(G'_T)$. We prove that M'_T is n-connected. By Theorem 4.1, M is n-connected. Let Q be a cocircuit of M intersecting T. By Proposition 3.3, it is sufficient to prove that $|Q| \geq 2|Q \cap T|$. On the contrary, assume that $|Q| < 2|Q \cap T|$. As $Q = (Q - T) \cup (Q \cap T)$,

$$|Q| = \frac{|Q|}{2} + \frac{|Q|}{2} = |Q - T| + |Q \cap T|$$

and hence $|Q - T| < \frac{|Q|}{2} < |Q \cap T|$. Let u be the vertex of G of degree at least $2n - 2$ such that the edges of G belonging to T are incident to u. Since Q is a cocircuit of $M(G)$, the graph $G - Q$ is disconnected and it has two components, say C_1 and C_2. We may assume that C_2 contains the vertex u. Let $Q \cap T = \{w_1u_1, w_2u_2, \ldots, w_ku_k\}$. Then v_1, v_2, \ldots, v_k are vertices of C_1. Let v_1, v_2, \ldots, v_r be the end vertices of the edges belonging to $Q - T$ in C_1. Then $r \leq |Q - T| < |Q \cap T|$. Since $|Q| < 2|Q \cap T| \leq 2|T| = 2n - 2$ and degree of u is at least $2n - 2$, there is at least one edge uw incident to u in $G - Q$. Then the edge uw is in C_2. Let $A = \{v_1, v_2, \ldots, v_r, u\}$. Then $G - A$ is a disconnected component, leaving u_i for some $i \in \{1, 2, \ldots, k\}$ in one component and the vertex w is in another component. However, $|A| = r + 1 \leq |Q \cap T| \leq |T| = n - 1$, a contradiction to the fact that G is n-connected. Thus M'_T is n-connected. By Theorem 4.1, G'_T is n-connected. □

Corollary 4.3. Let G be a 3-connected simple graph and T be a set of two edges incident to a vertex of G of degree at least four. Then the graph G'_T is 3-connected.

We now prove that one can obtain a 3-regular, 3-connected graph from the given 3-connected simple graph by repeated applications of 3-point splitting operation.

Corollary 4.4. A 3-regular, 3-connected simple graph can be obtained from the given 3-connected simple graph by a finite sequence of the 3-point splitting operation.

Proof. Let G be a 3-connected simple graph. Then degree of every vertex of G is at least three. Suppose G contains a vertex v of degree $k > 3$. Let $T = \{x, y\}$ be a set of two edges incident at v. By Corollary 4.3, G'_T is 3-connected. The vertex of v of G is replaced by two vertices v' and v'' with degrees 3 and $k - 1$, respectively in G'_T. Thus one application of 3-point splitting on a vertex of degree $t > 3$ results into a 3-connected graph with one additional vertex of degree less than t. By a finite sequence of 3-point splitting operation we can get a 3-connected graph with no vertex of degree greater than three. Clearly, this graph will be 3-regular. □
REFERENCES

[1] G. Azadi, *Generalized splitting operation for binary matroids and related results*, Ph. D. Thesis, University of Pune, 2001.

[2] H. Azanchiler, *Some new operation on matroids and related results*, Ph. D. Thesis, University of Pune, 2005.

[3] Y. M. Borse and Ganesh Mundhe, *On n-connected splitting matroids*, *AKCE Int. J. Graphs Comb.* (2017) 7 pages, doi.org/10.1016/j.akcej.2017.12.001.

[4] K. Dalvi, Y. M. Borse and M. M. Shikare, *Forbidden-minor characterization for the class of graphic element splitting matroids*, *Discuss. Math. Graph Theory* 29 (2009), 629-644.

[5] K. V. Dalvi, Y. M. Borse and M. M. Shikare, *A note on forbidden minor characterization for the class of cographic element splitting matroids*, *Discuss. Math. Graph Theory* 31 (2011), 601-606.

[6] J. G. Oxley, *Matroid Theory*, Second Edition, Oxford University Press, Oxford, 2011.

[7] M. M. Shikare, H. Azanchiler and B. N. Waphare, *The cocircuits of splitting matroids*, *Ind. Indian Math. Soc.* 74 No. 3-4 (2007), 185-202.

[8] P. J. Slater, *A classification of 4-connected graphs*, *J. Combin. Theory Ser. B* 17 (1974), 281-298.

[9] W. T. Tutte, *A theory of 3-connected graphs*, *Indag. Math.* 23 (1961), 441-455.

1. Army Institute of Technology, Pune-411015, INDIA.
 E-mail address: ganumundhe@gmail.com

2. Department of Mathematics, Savitribai Phule Pune University, Pune-411007, INDIA.
 E-mail address: ymborse11@gmail.com