The transformation of Hermite-Gauss beams with embedded optical vortex by lens system

E O Monin 1, A V Ustinov 1,2
1 Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia
2 Image Processing Systems Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS, 151, Molodogvardeyskaya street, Samara, 443001, Russia

Abstract. In this paper the transformation of Hermite-Gauss beams with embedded vortex phase by lens system is investigated theoretically and numerically. A particular attention is devoted to the formation of vortex phase singularities in focal area. It is shown, that under appointed relations between HG mode indices and the number of embedded optical vortex the vortex phase singularity in a focal plane centre may disappear.

1. Introduction
Vortex beams are laser beams with the vortex phase singularity which is characterized by zero intensity in a point of phase uncertainty [1-7]. Well known vortex beams are Laguerre-Gauss modes [8-12] and Bessel modes [13-18]. Hypergeometric modes [19-22] and Zernike functions [23-25] contain angular harmonic components also. All said distributions are separable in the polar coordinates system – they are representable as a product of the function depending on radius only, and angular harmonic component \(\exp(\text{imag}) \), \(m \) is optical vortex order.

Beams which are separable in Cartesian coordinates system, such as Hermite-Gauss modes (HG) [26-28]. Airy beams [29-34] are not vortex ones, but their certain superpositions are used for transformation to vortex beams [35, 36]. However, Airy beams with embedded vortex phase are examined lately [37-39]. Besides, in paper [40] vortex HG beams depending on complex argument were examined. In paper [41] the optical element matched with HG modes was used as a low-frequency grating for a multiplication of first-order phase singularity.

In this paper we investigate HG beams with embedded optical vortex of an arbitrary order. A particular attention is devoted to a picture in the focal plane and to the formation of vortex phase singularities depending on relation of HG mode indices and order of embedded optical vortex. We obtain an analytical condition of the disappearance of vortex phase singularity in the focal plane centre. Also we have examined a propagation of such beam through paraxial lens system on base of usage of fractional Fourier transformation.

2. Theoretical foundations.
Let us consider the Hermite-Gauss beams with embedded vortex phase (embedded vortex Hermite-Gaussian, EVHG):

\[
\Psi_{\text{evh}}(x, y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)H_n\left(\frac{x}{\sigma}\right)H_m\left(\frac{y}{\sigma}\right)(x + iy)^m,
\]

where \(H_n(x) \) is Hermite polynomial.

Hermite polynomials have a particular property, namely all terms have equal power parity. However, now we shall not take this in account, and, for commonness, we shall examine a case of the arbitrary polynomial of two variables. An individual term looks like \(P_{pq}(x, y) = A(r) x^p y^q (x + iy)^m \), where \(A(r) \) is an arbitrary axial-symmetric function depending on radius only. For a convenience of following analysis \(P_{pq}(x, y) \) is written in polar coordinates:
\[P_{pq}(r, \varphi) = A(r)(r \cos \varphi)^p (r \sin \varphi)^q r' \exp(i\varphi). \]

(2)

Let us consider the Fourier transformation of function (2):

\[F_{pq}(p, 0) = \frac{2\pi}{\lambda f} \int_0^\infty \int_0^{2\pi} P_{pq}(r, \varphi) \exp\left[-\frac{i2\pi}{\lambda f} pr \cos(\varphi - 0) \right] r \, dr \, d\varphi, \]

(3)

where \(\lambda \) is the wavelength of an illuminating light, \(f \) is focal length of a parabolic lens implementing the Fourier transformation.

It is well known that vortex beams retain the vortex phase singularity and the zero intensity on optical axis under propagation in homogeneous medium and under passing through parabolic lens [1-7]. However in anisotropic media [42, 43] or at an astigmatic transformation [35, 36, 44] such beams lose the axial symmetry of intensity distribution, in particular, non-zero value may appear on the axis. Since the beam (1) has not axial symmetry, then under its propagation or passing through lens it may undergo changes similar to anisotropic or astigmatic transformation.

Let us clarify whether zero value will be in the focal plane centre (on axis). For this purpose we may use results from Ref. [45]. Zero amplitude on axis will be under conditions:

\[
(s > p + q) \text{ or } (p + q + s \text{ is odd}) \quad s > 0 \\
p \text{ or } q \text{ is odd} \quad s = 0
\]

(4)

These conditions are sufficient, but the condition \((p + q + s \text{ is odd})\) may not be necessary (at its violation amplitude on axis may be zero).

3. The numerical simulation

In this section we present simulation results for EVHG beams prescribed by expression (1).

3.1 Field distribution in the focal plane.

Table 1 contains distribution in the focal plane obtained on base of expression (3) for different values \(n, m \) and \(s \).

\(n \) \(=0, m=1 \)	\(n=1, m=1 \)	\(n=1, m=2 \)	\(n=2, m=2 \)	\(n=3, m=3 \)
\(s=0 \)	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)
\(s=1 \)	![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)
\(s=2 \)	![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)
The first row of Table 1 contains distributions for Fourier-images of conventional HG modes \((s=0)\). In this case distributions are similar to initial functions and they have a binary phase. According to formula (4) value in centre is zero if at least one index is odd.

The second row of Table 1 contains distributions of spatially-spectral picture for HG beams with embedded optical vortex of order one \((s=1)\). In this case we have set of separated optical vortex of order one instead of singular lines (linear phase jumps) Number of vortices is defined by formula:

\[N_{v1} = (n+1)(m+1) + nm. \] (5)

For determining what value will be in centre (zero or nonzero) one may use formula (4).

The third row of Table 1 contains focal pictures for HG beams with embedded optical vortex of order two \((s=2)\). As we see, in this case the distinction between sufficient and necessary condition takes place at \(n=2, m=2, s=2\).

Thus, theoretical discussions listed above are conformed to calculation results completely.

An interesting result is obtained at embedding of the optical vortex into HG modes with one index equal zero (columns 1 and 2). In this case the number of zero intensity points which are easily found out by sight, is connected with the vortex order unambiguously:

\[N_s = m + s. \] (6)

Formula (6) is true for vortex orders \(s<m+2\). Consequently, Hermite-Gauss modes with one zero and other large enough index may be used for determination of the optical vortex order.

3.2 The beam propagation through lens system.

In conclusion let us consider the propagation of beam (1) through paraxial lens system. This process may be described with usage of fractional Fourier transformation [46, 47]. In polar coordinates its expression looks like [48]:

\[
E(r, \varphi, z) = \frac{ik}{2\pi \sin(\alpha z)} \exp\left(ikz\right) \exp\left(\frac{ikr^2}{2f \tan(\alpha z)}\right) \times
\]

\[
\times \int_{0}^{2\pi} \int_{0}^{\pi} E_0(\rho, \theta) \exp\left(\frac{ik\rho^2}{2f \tan(\alpha z)}\right) \exp\left(-\frac{ik}{f \sin(\alpha z)} \rho \cos(\theta - \varphi)\right) \rho \ d\rho \ d\theta,
\] (7)

where \(\alpha = \pi/(2f)\); \(k = 2\pi/\lambda\) is the wavenumber, \(\lambda\) is the wavelength of an illuminating light.

Table 2. Longitudinal distributions (diagonal sections as shown by red line in Table 1) for different values of \(n, m\) and \(s\) (amplitudes are shown).
The operator (7) allows to obtain a beam shape (taking into account a scale) in any paraxial domain – both in Fresnel diffraction domain and in far domain. Table 2 shows passing of field (1) from input plane \((z=0)\) through focal plane \((z=f)\) to output plane \((z=2f)\).

In output plane \((z=2f)\) in common case the distribution which is centrally symmetrical to initial one is being formed, but the amplitude of beam (1) is symmetrical initially, therefore the distribution coincides with initial \((z=0)\). This explains a symmetry of longitudinal pictures in Table 2 relative to the plane \(z=f\), so as examination of changes from \(z=0\) to \(z=f\) is quite enough.

An analysis of images in Table 2 allows us to arrive at the following conclusions. At vortex absence the distribution is similar to initial one along the whole length from \(z=0\) to \(z=f\).

At vortex presence there is passing between the domain with distribution similar to initial one, and the domain with distribution similar to one in focal plane. The fact itself is obvious, but the longitudinal distribution shows that domains with other structure are absent.

4. Conclusion

In this paper we have examined HG modes with embedded vortex phase. As against axially symmetrical distributions the vortex phase (and zero intensity value on optical axis) for such beams is not remained under propagation or under passing through parabolic lens.

Theoretical and numerical analysis of Fourier transformation for HG modes with embedded vortex phase has been implemented. We have verified theoretical conditions for zero intensity value in the centre of focal plane by the numerical simulation.

With aid of the fractional Fourier transformation the modeling of HG beams passing through paraxial lens system is implemented. Results show that even at the vortex presence, there is a continuous transformation from initial distribution to focal one.

5. Acknowledgements.

This work was financially supported by the Russian Foundation for Basic Research (grants 16-07-00825, 16-47-630546).

6. References

[1] Nye J F and Berry M V 1974 Dislocations in wave trains. (Proc. R. Soc. London vol 336) pp 165-190
[2] Coulet P, Gil G and Rocca F 1989 Optical vortices, Opt. Commun. 73 pp 403–408
[3] Bazhenov V, Vasnetsov M V and Soskin M S 1990 Laser-beam with screw dislocations in the wavefront, JETP Lett. 52 pp 429–431
[4] Khonina S N, Kotlyar V V, Soifer V A, Jefimovs K and Turunen J 2004 Generation and selection of laser beams represented by a superposition of two angular harmonics, Journal of Modern Optics 51 pp 761–773
[5] Soskin M S 2001 Progress in Optics (Amsterdam, North Holland: Elsevier Science vol 42) pp 219–276
[6] Molina-Terriza G, Torres J P and Torner L 2007 Twisted photons, Nat. Phys. 3 pp 305–310
[7] Andrews D L 2008 Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, Elsevier Inc. p 373
[8] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45 pp 8185–8189
[9] Kotlyar V V, Soifer V A and Khonina S N 1997 Rotation of Gauss-Laguerre multimodal light beams in free space, Technical Physics Letters 23 pp 657-658
[10] Kennedy S A, Szabo M J, Teslow H, Porterfield J Z and Abraham E R I 2002 Creation of Laguerre-Gaussian laser modes using diffractive optics. Physical Review A 66 043801
[11] Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N and Hara T 2008 Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators J. Opt. Soc. Am. 25 pp 1642-1651

[12] Vallone G 2015 On the properties of circular beams: normalization, Laguerre-Gaussian expansion, and free-space divergence, Opt. Lett. 40 p 1717

[13] Arlt J and Dholakia K 2000 Generation of high-order Bessel beams by use of an axicon, Opt. Commun. 177 pp 297–301

[14] Khonina S N, Kotlyar V V, Skidanov R V, Soifer V A, Jefimovs K, Simonen J and Turunen J 2004 Rotation of microparticles with Bessel beams generated by diffractive elements, Journal of Modern Optics 51 pp 2167–2184

[15] McGloin D and Dholakia K 2005 Bessel beams: diffraction in a new light, Contemp. Phys. 46 pp 15–28

[16] Kotlyar V V, Kovalev A A, Khonina S N, Skidanov R V, Soifer V A, Elfstrom H, Tossavainen N and Turunen J 2006 Diffraction of conic and Gaussian beams by a spiral phase plate, Appl. Opt. 45 pp 2656-2665

[17] Duocastella M and Arnold C B 2012 Bessel and annular beams for materials processing, Laser Photonics Rev. 6 pp 607–621

[18] Vaity P. and Rusch L. 2015 Perfect vortex beam: Fourier transformation of a Bessel beam, Optics Letters 40 pp 597-600

[19] Kotlyar V V, Skidanov R V, Khonina S N and Soifer V A 2007 Hypergeometric modes, Optics Letters 32 pp 742-744

[20] Karimi E, Zito G, Piccirillo B, Marrucci L and Santamato E 2007 Hypergeometric-Gaussian modes. Opt. Lett. 32 pp 3053-3055

[21] Kotlyar V V, Kovalev A A, Skidanov R V, Khonina S N and Turunen J 2008 Generating hypergeometric laser beams with a diffractive optical element, Applied Optics 47 pp 6124–6133

[22] Skidanov R V, Khonina S N and Morozov A A 2013 Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief, Journal of Optical Technology 80 pp 585–589

[23] Khonina S N, Kotlyar V V, Soifer V A, Wang Y, Zhao D 1998 Decomposition of a coherent light field using a phase Zernike filter Proceedings of SPIE 3573, pp 550-553

[24] Carpenter J, Thomsen B and Wilkinson T 2012 Mode division multiplexing of modes with the same azimuthal index, IEEE Photon. Technol. Lett. 24 pp 1969–1972

[25] Porfirev A P and Khonina S N 2016 Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions Proc. SPIE 9807 98070E-9p

[26] Khonina S N, Kotlyar V V, Soifer V A, Lautanen J, Honkanen M and Turunen J 2000 Generation of Gauss–Hermite modes using binary DOEs, Proceedings of SPIE Int. Soc. Opt. Eng. 4016 pp 234-239

[27] Bastiaans M J and Alieva T 2005 Generating function for Hermite–Gaussian modes propagating through first-order optical systems, Journal of Physics A: Mathematical and General 38 L73

[28] Ren Y-X, Fang Z-X, Gong L, Huang K, Chen Y and Lu R-D 2015 Digital generation and control of Hermite–Gaussian modes with an amplitude digital micromirror device, J. Opt. 17 p 125

[29] Grossman J G, Caspersion L W, Stafsudd O M and Sutter Jr. L V 1984 Propagation of Airy-Hermite-Gaussian waveguide modes in free space, Appl. Opt. 23 pp 48–52

[30] Siviloglou G A and Christodoulides D N 2007 Accelerating finite energy Airy beams, Opt. Lett. 32 pp 979–981

[31] Banders M A and Gutierrez-Vega J C 2007 Airy-Gauss beams and their transformation by paraxial optical systems, Opt. Express 15 pp 16719–16728

[32] Khonina S N and Volotovsky S G 2008 Bounded 1D Airy beams: laser fan, Computer Optics 32 pp 168–174
[33] Khonina S N 2011 Specular and vortical Airy beams, Opt. Commun. 284 pp 4263–4271
[34] Khonina S N and Ustinov A V 2017 Fractional Airy beams, Journal of the Optical Society of America A 34 pp 1991-1999
[35] Abramochkin E G and Volostnikov V G 1991 Beam transformation and nontransformed beams, Opt. Commun. 83 pp 123–135
[36] Beijersbergen M W, Allen L, Van der Veen H E and Woerdman J P 1993 Astigmatic laser mode converters and transfer of orbital angular momentum, Opt. Commun. 96 pp 123 –132
[37] Mazilu M, Baumgartl J, Cizmar T and Dholakia K 2009 Accelerating vortices in Airy beams. Proc. SPIE, p 7430
[38] Dai H T, Liu Y J, Luo D and Sun X W 2010 Propagation dynamics of an optical vortex imposed on an Airy beam. Opt Lett 35 p 4075
[39] Rui-Pin C, Khian-Hooi C, Sailing H 2013 Dynamic control of collapse in a vortex Airy beam, Scientific Reports 3 p 1406-1415
[40] Kotlyar V V, Kovalev A A and Porfírev A P 2015 Vortex Hermite–Gaussian laser beams, Optics Letters 40 pp 701-704
[41] Porfírev A P and Khonina S N 2017 Simple method for efficient reconfigurable optical vortex beam splitting, Optics Express 25 pp 18722-18735
[42] Hacyan S and Jáuregui R 2009 Evolution of optical phase and polarization vortices in birefringent media, Journal of Optics A: Pure and Applied Optics 11 085204
[43] Khonina S N, Paranin V D, Ustinov A V and Krasnov A P 2016 Astigmatic transformation of Bessel beams in a uniaxial crystal, Optica Applicata 46 pp 5-18
[44] Khonina S N, Kotlyar V V, Soifer V A, Jefimovs K, Paakkonen P and Turunen J 2004 Astigmatic Bessel laser beams, Journal of Modern Optics 51 pp 677–686
[45] Ustinov A V 2017 An analysis of the spatial spectrum of Hermite-Gauss beams with embedded optical vortex, Computer Optics 41 pp 617–625
[46] Alieva T, Bastiaans M J and Calvo M L 2005 Fractional transforms in optical information processing, J. Appl. Signal Processing 10 pp 1-22
[47] Kirilenko M S, Zubtsov R O and Khonina S N 2015 Calculation of eigenfunctions of a bounded fractional Fourier transform, Computer Optics 39 pp 332-338
[48] Mossoulina O A, Kirilenko M S and Khonina S N 2016 Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform, Journal of Physics 741 pp 12142-12148