Anastomotic stricture after liver transplantation: It is not Achilles’ heel anymore!

Sung Ill Jang, Dong Ki Lee*

A B S T R A C T

Biliary-tract complications, such as biliary strictures, anastomotic leaks, choledocholithiasis, and biliary casts, can occur after liver transplantation (LT). Of these complications, biliary strictures are regarded as an Achilles’ heel. Recently, treatment of anastomotic biliary stricture (ABS) has transitioned from conventional surgical revision to a nonsurgical treatment modality. Endoscopic serial balloon dilatation and/or multiple plastic stent replacements are highly effective and are now regarded as the first-line treatments. However, if the patient has undergone anastomosis by means of a hepaticojejunostomy, percutaneous treatment is performed. With recent technological advances and the rendezvous method, the clinical success rates of endoscopic and percutaneous ABS treatments have increased, but these methods fail in some patients who have total obstruction of anastomotic stricture. For these patients, magnetic compression anastomosis (MCA) has been suggested as an alternative method. Animal and human studies have demonstrated the safety and efficacy of MCA, and advancements in these nonsurgical methods have increased the clinical success rate of ABS. This review focuses on ABSs that develop after LT and discusses the clinical results of various nonsurgical methods and future directions.

Keywords: Anastomosis; Bile duct obstruction; Complication; Liver transplantation; Stricture

Introduction

Although the incidence of complications after liver transplantation (LT) has decreased because of advancements in surgical techniques, organ preservation, and immunosuppressive management, biliary complications remain common. Of these, biliary stricture and leakage occur most frequently and are affected by various factors, including the type of graft, reconstruction technique, use of biliary stents, and other characteristics of the recipient and donor. Anastomotic biliary stricture (ABS) occurs because of ischemia at the end of the bile duct, causing a fibro-proliferative response and small bile leaks that induce perianastomotic fibro-inflammatory responses. The incidence of post-LT ABS is 5% to 10% in deceased-donor LT (DDLT) and 15% to 30% in living-donor LT (LDLT). Post-LT ABS is regarded as an Achilles’ heel, because often it is not resolved even by use of multiple treatment modalities. Treatment methods for ABS include both surgical and nonsurgical approaches, such as endoscopic or percutaneous procedures; nonsurgical management has recently become more popular. The use of magnetic compression anastomosis (MCA) for complete biliary obstruction or severe biliary benign strictures that cannot be treated by conventional nonsurgical methods has also been discussed, and its feasibility for post-LT ABS has been suggested. This review identifies effective treatment strategies for ABS by comparing the outcomes of the various methods.

Endoscopic Management

Endoscopic retrograde cholangiopancreatography (ERCP) has been attempted as the first-line treatment modality for post-LT biliary complications, particularly in patients undergoing LT with end-to-end anastomosis. Endoscopic treatment avoids liver puncture and enables access through a nondilated intrahepatic duct, making the procedure safe for patients with cirrhosis, ascites, or coagulopathy. Although endoscopic treatment for ABS can be successful in LT patients who receive Roux-en-Y choledochojejunostomy, it remains challenging, because of the anastomosis site must be approached using a balloon enteroscope or colonscope. Therefore, percutaneous therapy based on interventional radiology is usually performed for ABS that develops following...
LT in patients undergoing Roux-en-Y choledochojiunostomy. ABS treatment by ERCP involves balloon dilatation (BD), the placement of single or multiple plastic stents (MPS), and insertion of a retrievable self-expandable metal stent (SEMS). Standard endoscopic treatment can be summarized as the use of ERCP after sphincterotomy with various combinations of progressive pneumatic BD (from 4 to 10 mm) and/or plastic- or metal-stent insertion with periodic stent replacement.

BD and/or plastic-stent insertion in patients with ABS after LT

Although the optimal treatment strategy for ABS is unclear, multiple sessions of BD followed by endoscopic placement of multiple side-by-side plastic stents (BD with MPS) is the most common approach. These treatments have success rates of 70% to 100% in DDLT patients,10–12 and 60% to 75% in LDLT patients.

The incidence of recurrence is 0% to 20% and is usually managed by repeated endoscopic stent placement. Tables 1 and 2 summarize the results of BD with MPS in DDLT and LDLT patients.

The majority of patients with ABS undergo BD and long-term stenting by ERCP at three-month intervals for 12 to 24 months to prevent clogging, cholangitis, and stone formation. This method involves passing a guidewire across the stricture, after which 8.0- to 11.5-Fr plastic stents are inserted following BD to 6 to 8 diameters. If possible, the stent diameter or the number of stents is increased at each session. Although this technique usually requires sphincterotomy of the papilla, similar ABS success rates can be achieved without sphincterotomy by placing the stent above the sphincter of Oddi. The clinical success rate of BD alone is less than 50%, whereas that of BD with MPS is 75% to 100% in DDLT patients, and 60% to 75% in LDLT patients. Dual or multiple stents yield better results than a single stent by ensuring greater dilatation of the stricture. Zoepf et al reported that BD with maximal plastic-stent insertion is more effective and has a lower recurrence rate than does BD alone.

In endoscopic treatment, differences in causes and treatment outcomes can be seen based on when stricture occurs. Generally, post-LT ABS is caused by an improper surgical technique, including excessive use of electrocoagulation, tension at the level of the anastomosis, and inappropriate bile duct dissection, as well as by small-caliber bile ducts, localized ischemia, infections, or fibrotic healing, with most cases occurring within 12 months after LT. ABS that occurs one or two months after LT may result from transient narrowing caused by postoperative edema and inflammation. This type of early ABS has a good response to BD with temporary stent placement. However, in contrast to early narrowing, treatment is more difficult in late strictures, which occur in most patients, because the strictures are more fibrotic and inherently more difficult to dilate than are early strictures because of fibrotic scarring from ischemia in the donor or recipient bile duct near the anastomosis. Therefore, late ABS is managed more aggressively, with ongoing ERCP sessions every two or three months, longer stent durations, and/or a greater number of stents inserted in situ for 12 to 24 months. The recurrence rate of ABS following BD with MPS is 18%, and the mean time for recurrence is 110 days. Because there is a negligible difference between BD alone and BD with MPS in early ABSs that develop within two months after LT, even BD alone can be effective. However, BD with MPS would likely be more effective than BD alone for late ABS.

The procedure-related complication rate in BD with MPS is 0% to 24%, and the complications tend to be minor to moderate, e.g., leakage cholangitis, pancreatitis, and bleeding related to sphincteroplasty. The success rate is based on the time of onset of the stricture, the complexity of the deformity at the anastomosis, and the number of stents placed during the initial procedure. In DDLT patients, a longer stent duration and greater maximal diameter versus a greater total number of stents per patient in MPS are associated with a greater likelihood of a successful outcome. The stricture resolution rate was 97% and 78% for MPS durations of < 12 and ≥ 12 months, respectively. More stents at initial ERCP and more total stents per patient are predictive of stricture resolution.

The outcomes of endoscopic treatment differ with the type of graft in which the stricture occurred. ABS is more common in LDLT patients than in DDLT patients, and treatment rates range from 60% to 75%, because the response to BD with MPS treatment is diminished. In most post-LDLT ABSs, the stricture resolution rate is lower than that for post-DDLT ABSs, because BD alone or BD followed by insertion of a single PS was performed. That is, in LDLT, the donor bile duct and strictures are smaller and anatomically more challenging, with generally more strictures in LDLT patients than in DDLT patients. Moreover, the risks of cholangitis and stent occlusion are higher in LDLT patients than in DDLT patients.

In one study, no differences in the clinical success, failure, complication, or recurrence rates were observed in patients with post-DDLT ABSs treated with BD alone and those treated with BD with endoprosthesis. However, that study lacked a well-designed randomized and controlled evaluation of BD alone and BD with MPS for post-DDLT ABS; so definitive conclusions could not be drawn, because of the small number of enrolled patients. However, such studies emphasize the need for further investigation of the utility of several sessions of BD with MPS.

SEMS insertion in patients with ABS after LT

A major disadvantage of endoscopic BD with MPS treatment is the need for multiple procedures over an extended period and the risk of cholangitis resulting from stent occlusion. Although endoscopic BD with MPS management is less invasive and has a high success rate, its disadvantage is that ERCP must be repeated every three or four months for up to two years. Early ABS (< six months post-LT) usually has a good response to a single endoscopic therapy session, but late ABS requires longer treatment, because it is associated with ischemic injury in bile-duct anastomosis. Consequently, frequent replacement and an increasing number of plastic stents are needed because of the development of occlusions within three to six months; thus, BD and plastic stent placement must be performed four or five times at three-month intervals.

There have been attempts to overcome the limitations of periodic plastic-stent replacement by placing temporary single-session SEMSs. Post-DDLT ABS has the following characteristics: (1) ABS at a high level, (2) an acute-angled bile duct, and (3) a narrow lumen of the intrahepatic duct above the ABS. Because of these characteristics of post-DDLT ABS, MPS insertions can be technically difficult within the limited space in the intrahepatic duct and because of the high rate at which plastic stents migrate when the proximal rather than the central portion of the plastic stent is placed at the stricture. SEMS has shown promise in post-LT patients. In benign biliary diseases, uncovered SEMSs are susceptible to reactive hyperplasia and consequence secondary stone formation above the stent, as well as difficult removal six to nine months after placement. Because of these limitations, partially covered or fully-covered SEMS (FCSEMS) is used for benign biliary stenosis. Recently, FCSEMS has been
Table 1 Outcomes of Endoscopic Treatment of ABS in Deceased-Donor LT

Author (year)	No. of patients	Type of report	Interval of ABS after LT	Technique	No. of procedures per patient	Technical success rate (%)	Interval of stenting (wk)	Ratio of stent insertion (%)	Stent-free follow-up (mo)	Clinical success rate (%)	Recurrence rate (%)	Complication (%)	Recurrence treatment
Mahajani et al (2000)	30 R	6.9 wk	BD ± stent	BD	2	100	14	-	17.9	100	10	6.4	T-tube, PTBD
Schwartz et al (2000)	15 R	19.9 wk	BD	BD	1.87	73.3	-	-	25.2	80	27.7	17.4	Surgery, ERCP
Chabini et al (2001)	22 R	-	BD + stent	BD	-	100	3–4 mo	12	68.8	9	13.6	-	
Morelli et al (2003)	25 R	7.8 wk	BD + stent	BD	3.1	88	13	-	54	80	0	3.7	None
Graziedi et al (2006)	65 P	-	BD ± stent	BD	4.1	89.2	4 mo	71	42.2	76.9	-	1.2	-
Akay et al (2006)	20 R	-	BD ± stent	BD	1.65	75	3 mo	73.3	22	53.3	10	20	Surgery, ERCP
Holt et al (2007)	53 P	-	BD + stent	BD	3.2	92	-	100	18	69	3	20.7	Surgery
Pasha et al (2007)	25 R	2 mo	BD + stent	BD	3.5	88	2–3 mo	100	21.5	91	18.1	5	Surgery, ERCP
Elmi and Silverman (2008)	15 R	29 days	Stent ± BD	BD	3.5	100	-	73.4	17.5	87	6.7	33.3	-
Barriga et al (2008)	22 R	53 mo	BD + stent	BD	3.6	95.5	2–4 mo	100	24	67	13.6	4.2	Surgery
Morelli et al (2008)	38 P	88.9 days	BD + stent	BD	3.45	100	2 wk	100	11.8	87	13.1	5.2	Surgery, ERCP
Tabibian et al (2010)	83 R	20 mo	BD + stent	BD	3	83.1	3 mo	100	11	94	3	5.7	ERCP
Sanna et al (2011)	34 R	-	BD ± stent	BD	-	90.7	-	-	-	64.7	17.6	-	Surgery
Cai et al (2012)	38 R	6.73 mo	BD + stent	BD	4.86	83.9	3 mo	100	10	83.9	27.7	16.1	-
Poley et al (2013)	31 R	-	BD + stent	BD	5	100	3 mo	100	28	80.6	19.3	67.7	Surgery, FCSEMS
Albert et al (2013)	47 R	16.25 mo	BD ± stent	BD	4.2	100	-	57.4	37.5	95.7	34	16	ERCP
Faleschini et al (2015)	79 R	-	BD + stent	BD	3	100	2–3 mo	100	-	68	-	4	-
Tringali et al (2016)	51 R	6.8 mo	Additive stenting	BD	4	100	4 mo	100	5.8 yr	98	6	5.4	-
Tal et al (2017)	58 RCT	5.4 mo	FCSEMS	BD	7.4	95.8	6–12 wk	100	17.1	95.8	20.8	4.1	-
Barakat et al (2018)	32 P	-	Additive stenting	BD	4.1	100	2.5–3 mo	100	6	96.9	1.1	3.1	-
Martins et al (2018)	32 RCT	7.7 mo	FCSEMS	BD	7.4	95.8	6 mo	100	36.4	83.3	23.3	32	-
32 RCT	9.3 mo	MPS	4.9	100	12 mo	100	32.9	36.4	83.3	23.3	32	-	

ABS, anastomotic biliary stricture; LT, liver transplantation; R, retrospective; P, prospective; RCT, randomized controlled trial; BD, balloon dilatation; FCSEMS, fully-covered self-expandable metal stent; MPS, multiple plastic stents; PTBD, percutaneous transhepatic biliary drainage; ERCP, endoscopic retrograde cholangiopancreatography.
Table 2 Outcomes of Endoscopic Treatment of ABS in Living-Donor LT

No. of procedures per patient (mean)	Technique of ABS after LT	Initial interval of stenting (mo)	Ratio of technical success rate (%)	Initial interval of follow-up (mo)	Clinical success rate (%)	Recurrence rate (%)	Complication rate (%)	Recurrence treatment
1	R + stent*	3	77.8	77.8	100	19.2	92.8	Surgery
14	186 days	6	71	71	100	31	64.5	ERCP
17	8.6 mo	10	73.3	73.3	100	21.5	51	PTBD
26	0.5	10	57.6	57.6	100	22	45	ERCP
41	6.6 mo	10	85	85	100	23	45	ERCP
41	6.6 mo	10	52	52	100	23	45	ERCP
41	6.6 mo	10	46.7	46.7	100	23	45	ERCP
41	6.6 mo	10	56.8	56.8	100	23	45	ERCP
41	6.6 mo	10	55.8	55.8	100	23	45	ERCP
41	6.6 mo	10	79.7	79.7	100	23	45	ERCP
41	6.6 mo	10	90.1	90.1	100	23	45	ERCP
41	6.6 mo	10	99.9	99.9	100	23	45	ERCP
41	6.6 mo	10	9.9	9.9	100	23	45	ERCP
41	6.6 mo	10	18.8	18.8	100	23	45	ERCP

*Inside stent was placed within the choledochus above the sphincter of Oddi without performing endoscopic sphincterotomy.

Although SEMSs are reportedly effective in patients who are refractory to plastic-stent treatment, there are arguments for its use as the initial method. Unfortunately, a comparative study on BD with MPS and SEMS lacked a large randomized and controlled trial directly comparing the two, and there are limitations in drawing conclusions from other existing studies because of the heterogeneity of the SEMSs used. In previous studies, SEMSs had a stricture-resolution rate very similar to that for MPS. However, because SEMSs have higher migration rates and differing results, their efficacy in patients with ABS compared to that of maximal plastic-stent therapy is unclear. The ABS resolution rate is 80% to 95% when SEMS patency is ≥3 months and 94% to 100% when dilatation and plastic-stent treatments last for 12 months.

Although the clinical success rate of biliary stricture treatment using SEMS is 86.4% to 100%, the rates of migration rate (4%–37%) and complications (0%–41%) are high. The main concern in using covered SEMS is migration and the risk of occluding secondary branch ducts or the pancreatic duct, which could cause cholangitis and pancreatitis. SEMSs have a high rate of migration, and mucosal hyperplasia-induced stricture can occur at the proximal uncovered end of partially covered SEMSs. Moreover, SEMS removal is labor-intensive and can occasionally cause mucosal ulceration and bleeding because of the use of traumatic anti-migration systems (e.g., anchor fins). Therefore, a FCSEMS without a traumatic anti-migration system is recommended for treating BBSs, and new types of SEMSs are needed. For the treatment of post-LT ABS, although the efficacy of SEMS and MPS has been used in ABS after DDLT in place of an aggressive approach (MPS insertions with several sessions of ERCP).
evaluated, a large randomized and controlled trial and more data are needed to reach definitive conclusions about SEMSs as compared to BD with MPS in terms of deciding on the optimal stenting protocol, duration, indications, and cost-effectiveness, and whether they should be the primary or secondary treatment modality after MPS replacement.
Percutaneous Treatment

Endoscopic methods are generally accepted as the first-line treatment for post-LT biliary complications, although these treatments are virtually impossible in patients receiving LT with hepaticejunoanastomosis (HJ). Although endoscopic access to the HJ site has become possible with advances in small-bowel endoscopy and balloon endoscopy, its use is limited to hospitals because of the long case times, considerable operator expertise, consistent caseloads required, limited availability of balloon enteroscopes, smaller channel size, and fewer endoscopic accessories; furthermore, its efficacy has not yet been firmly established. In duct-to-duct anastomosis, recanalization using ERCP can fail if the anastomosis is pouch-shaped. Moreover, because the success rate of percutaneous treatment is 40% to 80%, like that of endoscopic treatment, it is considered an important treatment method for biliary complications. A meta-analysis of ABS in DDLT patients revealed no significant differences in the successful intervention rate (60% vs 59.3%; P = 1.00), time to recurrence after successful intervention (44.8 ± 7.4 months vs 41.9 ± 3.4 months; P = 0.47), or complication rate (24% vs 23%) between endoscopic treatment and percutaneous treatment. However, the number of intervention sessions was higher for percutaneous treatment (7.2 ± 0.6) than for endoscopic treatment (2.9 ± 0.6) (P < 0.01). A retrospective study of 498 patients who underwent percutaneous treatment for post-LD LT ABS reported a success rate of 98%, clinical success rate of 88.4%, and recurrence rates of 5% to 17.1%. The success rate of percutaneous treatment has increased because of advances in cannulation techniques, such as the conventional 0.035-inch guidewire, microcatheter, and rendezvous techniques. However, although percutaneous treatment yielded a success rate of 40% to 85%, the procedure is invasive and associated with complications, including hemorrhage, bile leakage, and significant morbidity. Cannulation is difficult if the intrahepatic ducts are not dilated sufficiently, and it involves a 2.2% risk of hepatic-artery injury. Furthermore, prolonged use of percutaneous drainage catheters can cause discomfort in patients; hence, percutaneous treatment can be considered a second-line option for post-LT ABS. For this reason, it is important to increase the treatment rate of ABS by performing percutaneous treatment in ABS patients who failed endoscopic treatment. The rendezvous technique, which combines percutaneous transhepatic biliary drainage and ERCP, involves support from an external drainage catheter. Its success rate is very high, and it is especially useful in angulated and twisted strictures. In a study using the rendezvous technique to treat ABS by means of an ordinary guidewire, such as the Kumpe® access catheter (Cook Medical, Bloomington, IN, USA), the procedural time was reduced. Therefore, in cases with technically difficult biliary access via an endoscopic approach, a percutaneous approach can be useful as an endoscopic and percutaneous/surgical method.

MCA in Patients with Totally Occluded ABS

Endoscopic and percutaneous procedures have high success rates in post-LT ABS. However, recanalization is impossible with conventional endoscopic and percutaneous methods in cases of a severe stricture or complete obstruction that prevents passage of the guidewire. In such cases, surgical revision must be performed, or external drainage catheters must be maintained. Surgical revision of BBSs has morbidity and mortality rates of 9.1% to 28% and 0% to 2.6%, respectively. Moreover, the rate of recurrent strictures requiring further interventions following surgical revision is 10% to 30%. Catheter-related complications can arise when percutaneous external drainage catheters are maintained, and the patient’s quality of life can be compromised. MCA was developed as a nonsurgical alternative for patients with BBSs in whom conventional endoscopic or percutaneous methods failed. The attractive force from the two magnets on both sides of the ABS creates compression, which induces ischemia in the ABS tissue. As the two magnets approach each other, complete necrosis of ABS tissues occurs, and a new fistula is formed to complete the recanalization (Fig. 3). An animal study of anastomoses formed by MCA and surgical hand-suturing revealed no differences in gross appearance, histology, functionality, or mechanical integrity. Histologically, MCA-formed anastomoses exhibited continuity of the serosal, submucosal, and mucosal layers, but neither ischemia nor necrosis. Thus, MCA is safe and equivalent or superior to anastomoses created by traditional suturing or stapling techniques. Overall, 22 MCA procedures for bili-biliary anastomosis and eight MCA procedures for bili-enteric anastomosis have been performed in patients with BBSs. One study observed a stricture resolution rate of 83.3% without complications after MCA performed in patients with post-LT ABS that was refractory to conventional methods, demonstrating the safety and feasibility of MCA. Another limitation is the lack of a noninvasive modality to evaluate the probability of success of MCA. Even if the length of the stricture is measured before MCA by computed tomography, magnetic resonance cholangiopancrea-
tography, and ERCP, MCA can fail if the distance is too great or the axes of the magnet are in parallel. The greater the distance between the magnets, the weaker the attractive power, and magnetic approximation may not occur. In one case, two magnets on the intrahepatic side were used to increase the attractive power, which resulted in successful MCA (Fig. 4). In MCA, various endoscopic and percutaneous methods, along with a surgically made fistula, are used to deliver the magnets. Endoscopic and percutaneous tracts are used primarily in post-LT ABS, but in other types of ABS, the delivery route appropriate for each case was used, indicating that no magnet-delivery system has been firmly established. Therefore, development of a pre-MCA assessment method for predicting outcomes, smaller and more powerful magnets, and an effective magnet-delivery system are needed, as are long-term follow-up data obtained from large-scale studies.

Conclusion

The proposed treatment modality for post-LT ABS is as follows (Fig. 5). The initial treatment modality is endoscopic for duct-to-duct anastomosis or percutaneous for HJ anastomosis. If endoscopic treatment fails for duct-to-duct anastomosis, one could try to convert to percutaneous treatment. If percutaneous treatment fails for HJ anastomosis, recanalization by an endoscopic procedure and/or the rendezvous method is a possibility, as they are for duct-to-duct anastomosis. In cases of failed endoscopic and percutaneous therapy for ABS, MCA is an alternative method. Application of these various modalities is expected to increase the success rate of ABS treatment.

For ABS occurring after LT, the clinical success rates of endoscopic and percutaneous methods have been increased by
novel ERCP techniques, advances in endoscopy, better guidewire techniques, and improvements in stent design. Moreover, use of the organic rendezvous technique, which encompasses these two methods, can increase the success rate in patients in whom one of the methods has failed. Furthermore, because MCA has been proposed as an effective and safer alternative for cases that cannot be treated by endoscopic and percutaneous methods, the treatment rate of ABS is expected to increase, whereas reliance on surgical modalities is expected to decrease. In conclusion, ABS after LT is no longer an Achilles’ heel, and adverse events are effectively manageable.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

Authors’ contributions: Jang SI reviewed the literature, collected data, and wrote the first draft of this manuscript; Lee DK designed, reviewed the literature, revised the paper, and performed significant editing.

References

1. Chok KS, Lo CM. Prevention and management of biliary anastomotic stricture in right-lobe living-donor liver transplantation. J Gastroenterol Hepatol. 2014;29:1756-63.
2. Williams ED, DraganoV PJ. Endoscopic management of biliary strictures after liver transplantation. World J Gastroenterol. 2009;15:3725-33.
3. Graziadei IW, Schwagrhoff H, Koch R, Nachsaur K, Koenigsrauer A, Margreiter R, et al. Long-term outcome of endoscopic treatment of biliary strictures after liver transplantation. Liver Transpl. 2006;12:702-4.
4. Koneru B, Sterngil MJ, Bahramiopour Fd. Bile duct strictures after liver transplantation: a changing landscape of the Achilles heel. Liver Transpl. 2006;12:702-4.
5. Chahal P, Baron TH, Poterucha JJ, Rosen CB. Endoscopic retrograde cholangiography in post-orthotopic liver transplant population with Roux-en-Y biliary reconstruction. Liver Transpl. 2007;13:1168-73.
6. Haruta H, Yamanoto H, Mizuta K, Kitagawa Y, Uno T, Egami S, et al. A case of successful enteroscopic balloon dilation for late anastomotic stricture of choledochojejunostomy after living donor liver transplantation. Liver Transpl. 2005;11:1608-10.
7. Knoennis H, Weiss KH, Gotthardt D, Adler G, Stremmel W, Schlabbe A, et al. Is stenting necessary after balloon dilation of post-transplantation biliary strictures? Results of a prospective comparative study. Endoscopy. 2008;40:746-51.
8. Lee SH, Ryu JK, Woon SM, Park JK, Yoo JW, Kim YI, et al. Optimal interventional treatment and long-term outcomes for biliary stricture after liver transplantation. Clin Transplant. 2008;22:488-93.
9. Tarantino I, Traina M, Mocciaro F, Barresi L, Curcio G, Di Pisa M, et al. Fully covered metallic stents in biliary stenosis after orthotopic liver transplantation. Endoscopy. 2012;44:246-50.
10. Chok KS, Chan SC, Cheung TT, Sharr WW, Chan AC, Fan ST, et al. A retrospective study on risk factors associated with failed endoscopic treatment of biliary anastomotic stricture after right-lobe living donor liver transplantation with duct-to-duct anastomosis. Ann Surg. 2014;259:767-72.
11. Kao D, Zepeda-Gomez S, Tandon P, Bain VG. Managing the post-liver transplantation anastomotic biliary stricture: multiple plastic versus metal stents: a systematic review. Gastrointest Endosc. 2013;77:679-91.
12. Fernández-Simon A, Díaz-Gonzalez A, Thuluvath PJ, Cárdenas A. Endoscopic retrograde cholangiography for biliary anastomotic strictures after liver transplantation. Clin Liver Dis. 2014;18:913-26.
13. Seo JK, Ryu JK, Lee SH, Park JK, Yang KY, Kim YT, et al. Endoscopic treatment for biliary stricture after adult living donor liver transplantation. Liver Transpl. 2009;15:369-80.
14. Kato H, Kawanomoto H, Tsutsui K, Harada R, Fujii M, Hiraoka K, et al. Long-term outcomes of endoscopic management for biliary strictures after living donor liver transplantation with duct-to-duct reconstruction. Transpl Int. 2002;15:1014-19.
15. Kim TH, Lee SK, Han JH, Park DH, Lee SS, Seo DW, et al. The role of endoscopic retrograde cholangiography for biliary stricture after adult living donor liver transplantation: technical aspect and outcome. Scand J Gastroenterol. 2011;46:188-96.
16. Chang JH, Lee IS, Choi JY, Yoon SK, Kim DG, You YK, et al. Biliary stricture after right-lobe living-donor liver transplantation with duct-to-duct anastomosis: long-term outcome and its related factors after endoscopic treatment. Gut Liver. 2010;4:226-31.
17. Perri V, Familiar P, Tringali A, Boskoski I, Costamagna G. Plastic biliary stents for benign biliary diseases. Gastrointest Endosc Clin N Am. 2011;21:405-33, viii.
18. Elini F, Silverman WB. Outcome of ERCP in the management of duct-to-duct anastomotic strictures in orthotopic liver transplant. Dig Dis Sci. 2007;52:2346-50.
19. Gómez CM, Dumonceau JM, Marcologono M, de Santibañes E, Ciardullo M, Pekolj J, et al. Endoscopic management of biliary complications after adult living-donor versus deceased-donor liver transplantation. Transplantation. 2009;88:1280-5.
20. Zopf T, Maldonado-Lopez EJ, Hilgard P, Malago M, Broelsch CE, Tretzel U, et al. Balloon dilatation vs. balloon dilation plus bile duct endoprosthesis for treatment of anastomotic biliary strictures after liver transplantation. Liver Transpl. 2006;12:88-94.
21. Tabibian JH, Asham EH, Han S, Saab S, Tong MJ, Goldstein L, et al. Endoscopic treatment of postorthotopic liver transplantation anastomotic biliary strictures with maximal stent therapy [with video]. Gastrointest Endosc. 2010;71:505-12.
22. Akay S, Karasu Z, Ensiz G, Kilic M, Akyüzdüz M, Günsar F, et al. Results of endoscopic management of anastomotic biliary strictures after orthotopic liver transplantation. Turk J Gastroenterol. 2006;17:159-63.
23. Morelli J, Mulcahy HE, Willner IR, Cunningham JT, Draganov P. Long-term outcomes for patients with post-liver transplant anastomotic biliary strictures treated by endoscopic stent placement. Gastrointest Endosc. 2003;58:374-9.
24. Polese L, Cillo U, Brolese A, Boccaleg P, Neri D, Bassi D, et al. Endoscopic treatment of bile duct complications after orthotopic liver transplantation. Transplant Proc. 2007;39:1942-4.
25. Alazmi WM, Fogel EL, Watkins JI, McHenry L, Tector JA, Fridell J, et al. Recurrence rate of anastomotic biliary strictures in patients who have had previous successful endoscopic therapy for anastomotic narrowing after orthotopic liver transplantation. Endoscopy. 2006;38:57-4.
26. Mahajani RV, Cotler SJ, Uzer MF. Efficacy of endoscopic management of anastomotic biliary strictures after orthotopic liver transplantation. Endoscopy. 2006;38:57-4.
27. Schwartz DA, Petersen BT, Poterucha JJ, Gostout CJ. Endoscopic therapy of anastomotic bile duct strictures occurring after liver transplantation. Gastrointest Endosc. 2000;51:169-74.
28. Chahin NJ, De Carlis I, Slim AO, Rossi A, Giroso CA, Rondinara GF, et al. Long-
term efficacy of endoscopic stenting in patients with stricture of the biliary anas-
29. tomis after orthotopic liver transplantation. Transplant. Proc. 2001:33:2738-40.
30. Holt AP, Thorburn D, Mirza D, Gunson B, Wong T, Hayden G. A prospective study of the immediate and long-term outcome after the endoscopic management of bile duct strictures complicating liver transplantation. Transplant. 2007:84:857-63.
31. Pasha SF, Harrison ME, Das A, Nguyen CC, Vargas HE, Balan V, et al. Endoscopic treatment of anastomotic biliary strictures after deceased donor liver transplantation: a single-center experience. Gastrointest Endosc. 2007:66:84-51.
32. Barriga J, Thompson R, Shokouh-Amiri H, Davilla R, Ismael MM, Waters B, et al. Biliary strictures after liver transplantation. Predictive factors for response to endoscopic management and long-term outcome. Am J Med Sci. 2008;335:49-53.
33. Matsuyama R, Iwashita Y, Ichikawa T, Kojima T, Ohno H, Takeyama H, et al. Endoscopic management of posttransplantation anastomotic biliary strictures. Gastrointest Endosc. 2008;67:879-85.
34. Cai XB, Zhu F, Wen JJ, Li L, Zhang RL, Zhou H, et al. Endoscopic treatment for post-liver transplantation biliary strictures: a retrospective analysis. Endoscopy. 2017;49:131.e1-13.
35. Poley JW, Lekkerkerker MN, Metselaar HJ, Kuipers EJ, Bruno MJ. Clinical outcome and cost analysis in biliary strictures referred for endoscopic treatment after liver transplantation. J Clin Gastroenterol. 2011;45:567-70.
36. Albert JG, Filbey N, Elser J, Moench C, Trojan J, Bojunga J, et al. Long-term follow-up of endoscopic therapy in stenosis of the bilio-hilar anastomosis as associated with orthotopic liver transplantation. Liver Transpl. 2013. doi: 10.1002/lt.23039.
37. Faleschini G, Vadala di Prampero SF, Bulajic M, Baccarani U, Toniutto P, Panic N, et al. Predictors of endoscopic treatment outcome in the management of biliary complications after orthotopic liver transplantation. Eur J Gastroenterol Hepatol. 2010;22:150-4.
38. Tringali A, Barbaro F, Pizizzannella M, Bolloski I, Familiar P, Perri V, et al. Endoscopic management with multiple plastic stents of anastomotic biliary strictures following liver transplantation. Endoscopy. 2011;43:607-10.
39. Tal AA, Finkelmeier J, Filiann M, Syllagila L, Udd M, Parzanese I, et al. Multiple plastic stents versus covered metal stent for treatment of anastomotic biliary strictures after liver transplantation: a prospective, randomized, multicenter trial. Gastrointest Endosc. 2017:86:1303-45.
40. Banat MK, Huang RJ, Thosani NC, Choudhary A, Ginsot M, Banerjee S. Liver transplant-related anastomotic biliary strictures: a novel, rapid, safe, radiation-sparing, and cost-effective management approach. Gastrointest Endosc. 2018;87:510-1.
41. Martus PP, De Paula GA, Contini MLC, Ferrari AP. Metal versus plastic stents for anastomotic biliary strictures after liver transplantation: a randomized controlled trial. Gastrointest Endosc. 2018:87:131.e1-13.
42. Hisatsune H, Yazumi S, Egawa H, Asada M, Hasegawa K, Kodama Y, et al. Endoscopic management of biliary strictures after duct-to-duct biliary reconstruction in right-lobe living-donor liver transplantation. Transplantation. 2003:76:810-5.
43. Tsujino T, Bayama H, Sugawara Y, Sasaki T, Kogure H, Nakai Y, et al. Endoscopic management of biliary complications after adult living donor liver transplantation. Am J Gastroenterol. 2006;101:2380-6.
44. Yazumi S, Yoshimoto T, Hisatsune H, Hasegawa K, Kida M, Tada S, et al. Endoscopic treatment of biliary complications after right-liver-living donor transplantation in comparison with duct-to-duct biliary anastomosis. Hepatobiliary Pancreat Surg. 2016;3:502-10.
45. Lee YY, Gwak GY, Lee KH, Lee JK, Lee KT, Kwon CH, et al. Predictors of the feasibility of primary endoscopic management of biliary strictures after adult living donor liver transplantation. Liver Transplant. 2011;17:1462-73.
46. Kurita A, Kodama Y, Minami R, Sakuma Y, Kuriyama Y, Tanabe W, et al. Endoscopic stent placement above the intact sphincter of Oddi for biliary strictures after living donor liver transplantation. J Gastroenterol. 2011;48:1097-104.
47. Hsieh TH, Mekel KL, Crowell MD, Nguyen CC, Das A, Aqel BA, et al. Endoscopic treatment of anastomotic biliary strictures after living donor liver transplantation: outcomes after maximal stent therapy. Gastrointest Endosc. 2013;77:47-54.
48. Costamagna G, Fandolfi M, Mutignani M, Spada C, Perri V. Long-term results of endoscopic management of posttransplant biliary strictures with increasing numbers of stents. Gastrointest Endosc. 2001;54:162-8.
49. Verdonck RC, Buis CI, Porte RJ, Haagsma EB. Biliary complications after liver transplantation: a review. Scand J Gastroenterol Suppl. 2006;(243):89-101.
50. Thalavath PJJ, Pfuß PR, Kimmy MB, Ginsberg GG. Biliary complications after liver transplantation: the role of endoscopy. Endoscopy. 2005;37:857-63.
51. Pascher A, Neuhaus P. Bile duct complications after liver transplantation. Transpl Int. 2005;18:627-42.
52. Shimada H, Endo I, Shimada K, Matayama R, Kobayashi N, Kubota K. The current diagnosis and treatment of benign biliary stricture. Surg Today. 2012;42:1143-53.
53. Nacif LS, Bernardo WM, Bernardo L, Andraus W, Torres L, Chaib E, et al. Endoscopic treatment of post-liver transplantation anastomotic biliary strictures: systematic review and meta-analysis. Gastrointest Endosc. 2013;78:1969-78.
54. Verdonck RC, Buis CI, Porte RJ, van der Jagt EJ, Limburg AJ, van der Berg AP, et al. Anastomotic biliary strictures after liver transplantation: causes and consequences. Liver Transpl. 2006;12:736-35.
55. Lee YS, Chahoud F, Jouve D, Stremmel W, Weiss KH, Büchler M, et al. Temporar-
82. Odemis B, Oztas E, Yurdakul M, Torun S, Suna N, Kayacitetin E. Interesting rendezvous location in a liver transplantation patient with anastomosis stricture. World J Gastroenterol. 2014;20:15916-9.

83. Kabar I, Cicinnati VR, Beckebaum S, Cordesmeyer S, Avsar Y, Reinecke H, et al. Paclitaxel-eluting balloons for endotherapy of anastomotic strictures following liver transplantation. Endoscopy. 2012;44:1158-60.

84. Hüsing A, Reinecke H, Cicinnati VR, Beckebaum S, Wilms C, Schmidt HH, et al. Paclitaxel-eluting balloon dilation of biliary anastomotic stricture after liver transplantation. World J Gastroenterol. 2015;21:977-81.

85. Wright H, Sharma S, Gurakar A, Sebastian A, Kohli V, Jabbour N. Management of biliary stricture guided by the Spyglass Direct Visualization System in a liver transplant recipient: an innovative approach. Gastrointest Endosc. 2008;67:1201-3.

86. Chen YK, Pleskow DK. SpyGlass single-operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile-duct disorders: a clinical feasibility study (with video). Gastrointest Endosc. 2007;65:832-41.

87. Judah JR, Draganov PV. Intraductal biliary and pancreatic endoscopy: an expanding scope of possibility. World J Gastroenterol. 2008;14:3129-36.

88. Atar E, Bachar GN, Bartal G, Mor E, Neyman H, Graif F, et al. Use of peripheral cutting balloon in the management of resistant benign ureteral and biliary strictures. J Vasc Interv Radiol. 2005;16:241-5.

89. Ginsberg G, Cope C, Shah J, Martin T, Carty A, Habecker P, et al. In vivo evaluation of a new bioabsorbable self-expanding biliary stent. Gastrointest Endosc. 2003;58:777-84.

90. Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci Mater Med. 2006;17:611-7.

91. Jang SI, Kim JH, Lee DK. Treatment of completely obstructed benign biliary strictures with magnetic compression anastomosis: follow-up results after recanalization. Gastrointest Endosc. 2017;85:1057-66.

92. Oya H, Sato Y, Yamanouchi E, Yamamoto S, Hara Y, Kokai H, et al. Magnetic compression anastomosis for bile duct stenosis after donor left hepatectomy: a case report. Transplant Proc. 2012;44:806-9.

93. Itoi T, Kasuya K, Sofuni A, Itokawa F, Tsuchiya T, Kurihara T, et al. Magnetic compression anastomosis for biliary obstruction: review and experience at Tokyo Medical University Hospital. J Hepatobiliary Pancreat Sci. 2011;18:357-65.

94. Itoi T, Yamanouchi E, Ikeshi N, Kasuya K, Iwamoto H, Tsuchiya A. Magnetic compression duct-to-duct anastomosis for biliary obstruction in a patient with living donor liver transplantation. Gut Liver. 2010;4(Suppl 1):S96-9.

95. Matsuoka N, Uchiyama M, Nakamura Y, Iwamoto H, Hama K, Ashizawa T, et al. A nonsuture anastomosis using magnetic compression for biliary stricture after living donor liver transplantation. Hepatogastroenterology. 2009;56:47-9.

96. Akita H, Hikita H, Yamanouchi E, Maruhashi S, Nagano H, Umeshita K, et al. Use of a metallic-wall stent in the magnet compression anastomosis technique for bile duct obstruction after liver transplantation. Liver Transpl. 2008;14:1148-20.

97. Okajima H, Koteru A, Takeichi T, Ueno M, Ishiko T, Hiresa M, et al. Magnet compression anastomosis for bile duct stenosis after duct-to-duct biliary reconstruction in living donor liver transplantation. Liver Transpl. 2005;11:473-5.

98. Muraoka N, Uematsu H, Yamanouchi E, Kinoshita K, Takeda T, Ihara N, et al. Yamanouchi magnetic compression anastomosis for biliary anastomotic stricture after living-donor liver transplantation. J Vasc Interv Radiol. 2005;16:1263-7.

99. Jamshidi R, Stephenson JT, Clay JG, Pichakron KO, Harrison MR. Magnamosis: magnetic compression anastomosis with comparison to suture and staple techniques. J Pediatr Surg. 2009;44:222-8.

100. Itoi T, Yamanouchi E, Ikeuchi N, Kasuya K, Iwamoto H, Tsuchiya A. Magnetic compression duct-to-duct anastomosis for bile duct obstruction after left hepatectomy. J Vasc Interv Radiol. 1999;10:546-52.

101. Cope C. Evaluation of compression cholecystogastric and cholecystojejunal anastomoses in swine after peroral and surgical introduction of magnets. J Vasc Interv Radiol. 1995;6:545-52.

102. Cope C. Creation of compression gastroenterostomy by means of the oral, percutaneous, or surgical introduction of magnets: feasibility study in swine. J Vasc Interv Radiol. 1995;6:539-45.
SGI is a unique multidisciplinary society to encourage and facilitate clinical and scientific collaboration between radiologists, surgeons and gastroenterologists.

Our Goals:

- **Multi-disciplinary Collaboration to promote world-wide Expertise**
 Establish a comprehensive GI intervention network among endoscopists, interventional radiologists and gastrointestinal surgeons for multidisciplinary collaboration and interaction

- **Sharing and advancing technological Innovations**
 Inform, promote and globalize the many outstanding technological innovations of each of the specialties

- **Foster future Specialists**
 Aid young brilliant doctors to make an early debut on the international stage through SGI

- **Become a Role Model**
 Showcasing the benefits of multi-disciplinary collaboration in science, education and clinical practice