The Effect of Quality of Life on Medication Compliance Among Dialysis Patients

Hiroyuki Nagasawa 1,2, Tomoya Tachi 2*, Ikuto Sugita 2, Hiroki Esaki 2, Aki Yoshida 2, Yuta Kanematsu 2, Yoshihiro Noguchi 2, Yukio Kobayashi 3, Etsuko Ichikawa 4, Teruo Tsuchiya 2,5 and Hitomi Teramachi 2,6 *

1 Department of Pharmacy, Secomedic Hospital, Funabashi, Japan, 2 Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan, 3 Department of Pharmacy, Chiba Central Medical Center, Chiba, Japan, 4 Department of Pharmacy, Chuno Kosai Hospital, Gifu, Japan, 5 Community Health Support and Research Center, Gifu, Japan, 6 Laboratory of Community Healthcare Pharmacy, Gifu Pharmaceutical University, Gifu, Japan

OPEN ACCESS

INTRODUCTION

Globally, an estimated 1.4 million patients received renal replacement therapy, including dialysis treatment, in 2001 (World Health Organization, 2017). In the U.S., approximately 680,000 patients are reported to have undergone dialysis or received a kidney transplant at the end of 2014 (United States Renal Data System, 2017). In Japan, the number of dialysis patients per 1 million individuals was 1,830 in 2001, which is the highest in the world (Moeller et al., 2002), and the number of dialysis patients exceeded 300,000 in 2011 (The Japanese Society for Dialysis Therapy, 2017).

Most patients with chronic kidney failure are treated with dialysis (either hemodialysis or peritoneal dialysis). In recent years, through the continued development of medical technology, materials, and medications for dialysis treatment, medical professionals have begun to emphasize both prolonging patients’ lives and maintaining and improving their quality of life (QOL), including their activities of daily living, health, role functioning, and social functioning. As dialysis treatment generally involves visiting the hospital two to three times per week for upwards of around
3 h each time, it is believed to have a large effect on patients’ QOL. To date, research on dialysis patients has indicated that some aspects of QOL are lowered in dialysis patients (Perlman et al., 2005; Kalender et al., 2007; Mazairac et al., 2012; Erez et al., 2016).

As secondary symptoms of the underlying disease of kidney failure frequently are exhibited during the introduction, maintenance, and terminal periods of dialysis (Chiu et al., 2009; Tessari et al., 2009; Li et al., 2013), many dialysis patients undergo multidrug therapy. The complexity of multidrug therapy in dialysis patients makes them aware of the high risk of adverse events, which leads to subsequent non-compliance. Medication non-compliance averts patients from gaining the full benefit of the prescribed medications and is associated with increased mortality and hospitalizations (Saran et al., 2003; Denhaerynck et al., 2007). Therefore, compliance with medication therapy is a key component of the effective management of dialysis patients. A number of studies have focused on the medication management situation of dialysis patients, particularly their medication adherence (Loghman-Adham, 2003; Karamanidou et al., 2008; Lindberg and Lindberg, 2008; Schmid et al., 2009; Browne and Merighi, 2010; Neri et al., 2011; Rosenthal Asher et al., 2012; Garcia-Llana et al., 2013; Chan et al., 2014; Van Camp et al., 2014; Burnier et al., 2015; Ghimire et al., 2015; Wileman et al., 2015; Freire de Medeiros et al., 2017; Jalal et al., 2017; Tohme et al., 2017). At present, however, the relationship between the QOL of dialysis patients and their oral medication management status has not been clarified. Understanding this is extremely important for providing appropriate treatment and care for such patients. Accordingly, in this study, a survey of dialysis patients was conducted, with the objective of clarifying the effect of QOL of dialysis patients on medication compliance.

METHODS

Study Design

This cross-sectional survey study was implemented using a self-administered questionnaire. Completion of the questionnaire took approximately 10 min and was thus quick and easy for respondents to complete.

Participants and Implementation Period

Of the patients who received dialysis treatment at Secomedic Hospital and Chiba Central Medical Center in Japan between June 1, 2015 and December 31, 2015, 92 patients who self-managed their medication were selected as study participants.

Health-Related Quality of Life Instruments

Patient background information included age, sex, dialysis period, disease causing hemodialysis, and comorbidities. The comorbidities were classified according to International Statistical Classification of Diseases and Related Health Problems (ICD-10) (World Health Organization, 2016).

To assess patient QOL, we used the EuroQol 5-dimension questionnaire (EQ-5D) (Nishimura et al., 1998) for general QOL, and the Kidney Disease Quality of Life Instrument Short Form version 1.3 (KDQOL-SF) (Green et al., 2001) for kidney disease-specific QOL. Registration of use of EQ-5D and KDQOL-SF was performed prior to study implementation. EQ-5D and SF-36 are used in numerous countries. For SF-36, national standard values (national norms) are published for each country, enabling determinations as to whether a QOL score is higher or lower than the relevant national standard values.

The EQ-5D is a QOL survey that comprises a 5-item scale and a visual analog scale (VAS). It is widely used in clinical research and to examine the health status of the general population as a comprehensive scale for cardinally evaluating changes in health status (Nishimura et al., 1998). For the 5-item scale, health conditions are classified into five areas of “mobility,” “self-care,” “usual activities,” “pain/discomfort,” and “anxiety/depression,” and participants are asked to rate each on three levels: “no problems” (Level 1), “some problems” (Level 2), and “problems” (Level 3). A utility value is calculated by combining the five item scores and converting this sum using the Japanese version of a utility value conversion table. The VAS utilizes a 20-cm line ranging from 0 (“the worst health condition imaginable”) to 100 (“the best health condition imaginable”) (Nishimura et al., 1998).

The KDQOL-SF comprises a kidney disease-specific scale, a non-health-related QOL scale, and a comprehensive QOL scale (Fukuhara et al., 1998a,b). The kidney disease-specific scale comprises 40 items divided into eight subscales: “symptoms,” “effect of kidney disease,” “burden of kidney disease,” “work status,” “cognitive function,” “social interaction,” “sexual function,” and “sleep.” The non-health-related QOL scale comprises four items divided into the three subscales: “social support,” “dialysis staff encouragement,” and “patient satisfaction.” For both, scoring is done at the subscale level, with a minimum value of 0 and a maximum value of 100. Higher scores indicate higher QOL. The comprehensive QOL scale is used to assess health-related QOL, and is composed of 36 items divided into eight subscales: “physical functioning,” “role physical,” “bodily pain,” “general health,” “vitality,” “social functioning,” “role emotional,” and “mental health.” Using the subscale scores, it is possible to calculate a norm-based scoring (NBS) score based on the national standard and three summary scores (physical component summary) (PCS), “mental component summary” (MCS), and “role-social component summary” (RCS). Note that the NBS score and summary scores are displayed as deviation scores using a mean of 50 and a standard deviation of 10 as the national standard value.

Medication Compliance Tool

Medication management situation was investigated using an original questionnaire form (Figure 1). This form contained items of “occupation,” “medication management,” “medication storage,” “medication storage state,” “medication administration situation,” “knowledge of effects,” and “knowledge of side effects.” The number of medications being taken and the frequency of administration were extracted from patients’ electronic medical charts.

In our study, we evaluated medication compliance (whether patients took prescribed medicines or not) and not medication adherence. As a tool to evaluate medication compliance,
we used an original self-reported questionnaire, “Medication Administration Situation” (Question No. 5 in Figure 1). The question was “What is your medication administration situation?” and the answer choices were “take it without forgetting,” “sometimes forget to take it (1 or 2 times per week),” “often forget to take it (about once per 2 days),” “almost never take it in line with physician instructions,” or “other.”

Stratifications

To investigate the effect of each variable on medication compliance, we performed the following stratifications. Participants were stratified into groups of high and low medication compliance based on their responses to the medication administration situation item (Figure 2A). Specifically, individuals who responded that they "take it without forgetting" were classified into the high medication compliance group, while those who answered that they "sometimes forget to take it (1 or 2 times per week),” “often forget to take it (about once per 2 days),” “almost never take it in line with physician instructions,” or “other” were classified into the low medication compliance group. We also stratified patient characteristics, EQ-5D scores, KDQOL-SF scores, number of medications taken, and frequency of administration according to the criteria in Table 1. The standard utility value was set as the utility value obtained by Fujikawa et al. (0.877) for members of the general population (Fujikawa et al., 2011).

Statistical Analysis

The univariate analysis was performed with Fisher's exact test to investigate the differences in patients’ medication management situation (excluding “medication administration situation” and “medication management”), QOL, and characteristics between the high and low medication compliance groups. For the multivariate analysis, we used multiple logistic regression analysis, with “medication administration situation” as the dependent variable and characteristics, EQ-5D utility value, kidney disease-specific scale scores, non-health-related QOL scale scores, summary scores, the medication management situation items (excluding “medication administration situation” and “medication management”) with \(P < 0.20 \) in the univariate analysis as independent variables. A \(P < 0.05 \) was set as the level of significance. All statistical analyses were conducted using IBM SPSS 24.0J (IBM Corp., Armonk, New York).

Ethical Considerations

This study was conducted in compliance with the Declaration of Helsinki and Ethical Guidelines for Research Involving Human Subjects after receiving approval from the ethical review board of Gifu Pharmaceutical University (Approval No.: H27-13), Secomedic Hospital (Approval No.: SM2015-27-2), and Chiba Central Medical Center (Approval No.: H27-K2). This survey
A high group for medication compliance
- Take it without forgetting

A low group for medication compliance
- Sometimes forget to take it (1 or 2 times per week)
- Often forget to take it (about once per two days)
- Almost never take it in line with physician instructions
- Other

B

Occupation (What is your current occupation?)
- Unemployed
- Employed
 - Part-time
 - Full-time employee
 - Other

Medication storage (How is your medication being stored?)
- Medication bag
 - Storage in a medicine bag from the pharmacy
- Other than a medication bag
 - Storage in a different container (empty can, bottle, plastic bag, etc.)
 - Storage in a medication-specific container (container that separates medication for each usage, medication calendar, etc.)
 - Other

Medication storage state (When storing the medication, what state is it in?)
- Sheet
 - In the sheet that it was received in, popping the pills out each time
 - In the sheet but cut into small pieces (1 tablet each or 1 dosage each)
- Other than a sheet
 - Storage after removal from sheet (can be taken immediately as is)
 - Had pharmacy package it individually (divided packages for each use)
 - Other

Knowledge of effects (Do you know the effects of the medication?)
- Do not know much
 - Do not know at all
 - Do not know much
 - Normal
- Know a certain amount or above
 - Know somewhat
 - Know very well

Knowledge of side effects (Do you know about the side effects of the medication?)
- Do not know much
 - Do not know at all
 - Do not know much
 - Normal
- Know a certain amount or above
 - Know somewhat
 - Know very well

FIGURE 2 | Stratification criteria for medication compliance and medication management situation. (A) Medication compliance. (B) Medication management situation.
TABLE 1 | Stratification criteria.

Characteristics	≥65	<65
Age (years)	≥65	<65
Sex	Male	Female
Dialysis period (months)	≥Median	<Median
Causative disease	Diabetes mellitus	Kidney disease
QOL	EQ-SD	KDQOL-SF
Utility value (EQ-SD)	≥Standard value	<Standard value
Kidney disease-specific scale	Symptoms/Problems	Effects of kidney disease
	≥Mean	<Mean
	Burden of kidney disease	Work status
	≥Mean	<Mean
	Cognitive function	Quality of social interaction
	≥Mean	<Mean
Non-health related QOL scale	Social support	Dialysis staff encouragement
	≥Mean	<Mean
	Patient satisfaction	Summary scores
	≥Mean	<Mean
PCS	≥50	<50
MCS	≥50	<50
RCS	≥50	<50
Number of medications	≥7	<7
Frequency of administration	≥6	<6
(times/day)		

QOL, Quality of life; PCS, Physical component summary; MCS, Mental component summary; RCS, Role-social component summary.

TABLE 2 | Patient characteristics.

n = 92
Age (years)
Average ± standard deviation
Sex
n (%)
Male
Female
Dialysis period (months)
Median value
(interquartile range)
Causative disease
Diabetes mellitus
Kidney disease
Comorbidities (ICD-10)
1. Certain infectious and parasitic diseases
2. Neoplasms
3. Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism
4. Endocrine, nutritional, and metabolic diseases
5. Mental and behavioral disorders
6. Diseases of the nervous system
7. Diseases of the eye and adnexa
8. Diseases of the ear and mastoid process
9. Diseases of the circulatory system
10. Diseases of the respiratory system
11. Diseases of the digestive system
12. Diseases of the skin and subcutaneous tissue
13. Diseases of the musculoskeletal system and connective tissue
14. Diseases of the genitourinary system
15. Pregnancy, childbirth, and the puerperium
16. Certain conditions originating in the perinatal period
17. Congenital malformations, deformations, and chromosomal abnormalities
18. Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified
19. Injury, poisoning, and certain other consequences of external causes
20. External causes of morbidity and mortality
21. Factors influencing health status and contact with health services
22. Codes for special purposes

Education

- Elementary or junior high graduate | 26 (28.3) |
- High school graduate or university entrance exam | 40 (43.5) |
- Technical school graduate or university drop-out | 12 (13.0) |
- Junior college graduate | 0 (0.0) |
- University graduate (4 years or more) | 14 (15.2) |
- Graduate school completed | 0 (0.0) |

Married

- Yes | 73 (79.3) |
- No | 19 (20.7) |

Housemates

- Lives alone | 18 (19.6) |

(Continued)
can, bottle, plastic bag, etc.); for medication storage state, 36 participants (39.1%) indicated “in the sheet but cut into small pieces (1 tablet each or 1 dosage each);” and for medication administration situation, 63 participants (68.5%) indicated “take it without forgetting.” As for knowledge of effects, 19 participants (20.7%) indicated that they “know very well” and 33 individuals (35.9%) indicated that they “know somewhat.” Meanwhile, for side effects, only 5 participants (5.4%) indicated “know very well” and 15 (16.3%) indicated “know somewhat.” The mean number of medications taken was 9.8 ± 3.8, and the frequency of administration in 1 day was 5.6 ± 2.2 times.

QOL Evaluation
The EQ-5D results are indicated in Table 4. The item with the highest response rate of “no problems” (level 1) was “physical functioning” with 88 participants (95.7%). Conversely, the item with the lowest response rate for “no problems” was “pain/discomfort” with 54 individuals (58.7%). The mean utility value and VAS score were 0.809 ± 0.184 and 66.6 ± 18.3, respectively.

Table 5 indicates the results of the KDQOL-SF. On the kidney-disease-specific scale and the non-health-related QOL scale, the mean scores for “social interaction” (95.9 ± 8.3) and “cognitive function” (94.1 ± 11.8) were high, while that for “burden of kidney disease” (47.4 ± 25.3) was rather low. We did not conduct an analysis for “sexual function,” as there was considerable missing data for this variable (due to a refusal to answer). As for the comprehensive QOL scale, “vitality” (53.0 ± 12.2) and “mental health” (55.9 ± 9.9) scores were higher than the national standard value, while “physical functioning” (37.4 ± 25.3), “role physical” (37.5 ± 20.6), “general health,” (44.3 ± 11.1), and “role emotional” (46.8 ± 16.7) were lower than the national standard. As for the summary scores, the MCS score (58.8 ± 9.9) was higher than the national standard value, while the PCS (34.8 ± 15.9) and RCS (47.7 ± 16.0) scores were below it.

Results of Univariate Analysis
The results of the univariate analysis of patient characteristics and QOL in the high and low medication compliance groups are indicated in Table 6. In the high medication compliance group, the percentage of patients with above average sleep scores was significantly higher than that in the low compliance group (P = 0.043).
Results of Multivariate Analysis

The results of the multiple logistic analysis conducted with “medication compliance” as the dependent variable and “causative disease,” “burden of kidney disease,” “sleep,” “social support,” and “dialysis staff encouragement” as independent variables (as they all had a $P < 0.20$ in the univariate analysis) are indicated in Figure 3. A significant association was observed for sleep (≥mean) (odds ratio, 3.36; 95% confidence interval, 1.26–8.96; $P = 0.016$).

DISCUSSION

The response rate of questionnaire in the patients in our study was high, which would be owing to the fact that patients could fill the questionnaire during dialysis (about 3).

The results of the medication management situation indicate dialysis patients who use creative methods such as switching containers or cutting the medication sheet, while approximately 1 in 3 had low medication compliance. Further, while over half of patients knew about the effects of the medications, comparatively few patients knew about the side effects. From the results of the mean number of medications being taken and the mean frequency of administration in 1 day, the daily number of medications taken, and the frequency of administration appeared to be high among dialysis patients in this study. Because dialysis patients have lowered kidney function, professionals generally believe it best to avoid polypharmacy. However, polypharmacy is often necessary to manage the many secondary symptoms of the disease causing the kidney failure during dialysis treatment (Chiu et al., 2009; Tessari et al., 2009; Li et al., 2013; St Peter, 2015). The same was found in the present study. Medication compliance is important for hemodialysis patients because many hemodialysis patients are non-adherent to medication therapy. It has been reported that the rates of non-adherence to oral medications in chronic hemodialysis patients ranged from 3 to 80% (Schmid et al., 2009) and that approximately half of hemodialysis patients are non-adherent to medication therapy (Neri et al., 2011). However, non-adherence rates have been reported to be lower in Japan than in the U.S. (Miyata et al., 2017). The same was found in the present study. The results would be due to many hemodialysis patients who use creative methods such as switching containers or cutting the medication sheet, which were recommended by pharmacists.
Dialysis patients have been found to show decreases in some areas of QOL compared to healthy individuals (Yoshiya et al., 2001; Erez et al., 2016; Raspovic et al., 2017). In response to evaluation of QOL using the EQ-5D, most individuals indicated that they have no problems in “physical functioning,” whereas comparatively fewer participants had no problems with “pain/discomfort.” Thus, many dialysis patients retain their physical functioning, many of who appear to have pain or discomfort. The utility index value we obtained was close to the value (0.754) (Katayama et al., 2014) obtained by Katayama et al. but lower than the value (0.877) (Fujikawa et al., 2011) obtained in the survey of the general population by Fujikawa et al.

On the kidney-disease-specific scale and the non-health-related QOL scale of the KDQOL-SF, scores for “cognitive function” and “social interaction” were high, while that for “burden of kidney disease” was low. On the comprehensive QOL scale, the scores of “vitality,” “mental health,” and “MCS” were higher than the national standard value, while the score for “physical functioning,” “role physical,” “general health,” “role emotional,” “PCS,” and “RCS” were lower. Similar to our study, past QOL research on dialysis patients in foreign countries using the kidney-disease-specific scale revealed that the “burden of kidney disease” scores were low (Mazairac et al., 2012; Erez et al., 2016). Furthermore, compared to a control group, scores for all items on the 36-item Short Form Health Survey (which makes up the comprehensive QOL scale in this study) were significantly lower among patients receiving dialysis (Perlman et al., 2005; Kalender et al., 2007). Our findings are consistent with previous studies that have similarly reported that patients with kidney disease have scores below the national standards for PCS, but

TABLE 6 | Univariate analysis results.

Medication compliance	Low group ($n = 29$)	High group ($n = 63$)	P
Characteristics			
Age (≥ 65 years)	17 (58.6)	43 (68.3)	0.480
Sex (female)	6 (20.7)	15 (23.8)	0.796
Dialysis period (\geq median)	14 (48.3)	33 (52.4)	0.823
Causative disease (kidney disease)	11 (37.9)	35 (55.6)	0.178
EQ-5D			
Utility value (\geq standard value)	9 (31.0)	29 (46.0)	0.254
KDQOL-SF			
Kidney disease-specific scale			
Symptoms (\geq mean)	15 (51.7)	40 (63.5)	0.361
Effect of kidney disease (\geq mean)	15 (51.7)	34 (54.0)	1.000
Burden of kidney disease (\geq mean)	18 (62.1)	29 (46.0)	0.182
Work status (\geq mean)	7 (24.1)	12 (19.0)	0.589
Cognitive function (\geq mean)	21 (72.4)	52 (82.5)	0.280
Quality of social interaction (\geq mean)	20 (69.0)	46 (73.0)	0.804
Sleep (\geq mean)	11 (37.9)	39 (61.9)	0.043*
Non-health related QOL scale			
Social support (\geq mean)	20 (69.0)	33 (52.4)	0.175
Dialysis staff encouragement (\geq mean)	19 (65.5)	31 (49.2)	0.179
Patient satisfaction (\geq mean)	14 (48.3)	21 (33.3)	0.248
Summary score			
PCS (\geq50)	4 (13.8)	13 (20.6)	0.568
MCS (\geq50)	25 (86.2)	51 (81.0)	1.000
RCS (\geq50)	16 (55.2)	38 (60.3)	0.656
Medication management situation			
Occupation (employed)	17 (58.6)	42 (66.7)	0.489
Medication storage (medication bag)	8 (27.6)	20 (31.7)	0.809
Medication storage state (sheet)	18 (62.1)	40 (63.5)	1.000
Knowledge of effects (Know a certain amount or above)	18 (62.1)	34 (54.0)	0.505
Knowledge of side effects (Know a certain amount or above)	7 (24.1)	13 (20.6)	0.787
Number of types of medication (\geq7)	23 (79.3)	53 (84.1)	0.567
Frequency of administration (\geq6 times/day)	13 (44.8)	37 (58.7)	0.262

*P < 0.05. QOL, Quality of life; EQ-5D, EuroQol 5 dimension; PCS, Physical component summary; MCS, Mental component summary; RCS, Role-social component summary.
scores close to national norms for patient MCS (Mazairac et al., 2012; Erez et al., 2016). However, prior research has reported that many dialysis patients suffer depression. Depression constitutes a portion of the mental-health QOL items (depending on extent of depressive symptoms) (Palmer et al., 2013), but does not necessarily entail low patient MCS. While prior reports have shown values for patient MCS that are close to the national norm (Mazairac et al., 2012; Erez et al., 2016), in our study, patient MCS was higher which may be a finding specific to the Japanese sample.

As for the multivariate analysis, we found, when compared to patients with low sleep-related QOL, that patients with high sleep-related QOL had significantly better medication compliance. One potential reason for this is that patients with high sleep QOL tend to be living properly regulated lives, which means that they are perhaps more likely to properly regulate their medication administration as well. Previous studies reported, among patients with schizophrenia, that a decrease in quality of sleep was related to a decrease in adherence (Afonso et al., 2014). The same was found among HIV-positive patients (Saberi et al., 2011). Therefore, improving quality of sleep might help to improve medication compliance for dialysis patients as well.

Factors associated with non-adherence in hemodialysis patients have been reported, including socio-demographic variables such as age and gender; clinical variables such as long-term on hemodialysis and comorbidity; psycho-social variables such as depressive symptoms and belief about medicine; medication-related factors such as knowledge about medicine and numbers of prescribed medicines (Ghimire et al., 2015). In our study, age, gender, dialysis period, causative disease, numbers of prescribed medicines were not found to be factors associated with medication non-compliance. However, the limitations of this study include the fact that all the dialysis patients we analyzed were on hemodialysis and that none were on peritoneal dialysis. The study sample was small and limited to a specific locality. The high response rate might represent the population with effective medication compliance and influence our study results. The method to measure medication compliance was self-reported questionnaires but not direct methods including pill count and use of electronic monitoring devices. Furthermore, there might be unmeasured confounding factors in the multivariate analysis. Further large studies might be required to reach a robust conclusion.

CONCLUSION

This study revealed that high sleep-related QOL is associated with better medication compliance. Therefore, utilizing dialysis treatment and care that supports patients’ lifestyle habits, including sleep, may help improve their medication compliance.

AUTHOR CONTRIBUTIONS

All authors contributed to the study design. All authors participated in collecting and interpreting the data. HN, TT, and IS analyzed data and drafted the manuscript. TT confirmed the analyzed data and revised the manuscript. All authors reviewed and approved the final manuscript.

REFERENCES

Afonso, P., Brissos, S., Canas, F., Bobes, J., and Bernardo-Fernandez, I. (2014). Treatment adherence and quality of sleep in schizophrenia outpatients.

Browne, T., and Merighi, J. R. (2010). Barriers to adult hemodialysis patients’ self-management of oral medications.
Am. J. Kidney Dis. 56, 547–557. doi: 10.1053/ajkd.2010.03.002

Burnier, M., Pruitt, M., Wuerzner, G., and Santisci, V. (2015). Drug adherence in chronic kidney diseases and dialysis. Nephrol. Dial. Transplant. 30, 39–44. doi: 10.1093/ndt/gfu015

Chan, K. E., Thadhani, R. I., and Maddux, F. W. (2014). Adherence barriers to chronic dialysis in the United States. J. Am. Soc. Nephrol. 25, 2642–2648. doi: 10.1681/ASN.2013111160

Chiu, Y. W., Teitelbaum, I., Misra, M., De Leon, E. M., Adzize, T., and Mehrrota, R. (2009). Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1089–1096. doi: 10.2215/CINN0290109

Denhaerynck, K., Manhaeve, D., Dobbels, F., Garzoni, D., Nolte, C., and De Geest, S. (2007). Prevalence and consequences of nonadherence to hemodialysis regimens. Am. J. Crit. Care 16, 222–235.

Erez, G., Selman, L., and Murtagh, F. E. (2016). Measuring health-related quality of life in patients with conservatively managed stage 5 chronic kidney disease: limitations of the Medical Outcomes Study Short Form 36: SF-36. Qual. Life Res. 25, 2799–2809. doi: 10.1007/s11136-016-1313-7

Freire de Medeiros, C. M., Arantes, E. P., Tajra, R. D., Santiago, H. R., Carvalho, A. F., and Libório, A. B. (2017). Resilience, religiosity and treatment adherence in hemodialysis patients: a prospective study. Psychol. Health Med. 22, 570–577. doi: 10.1080/13548506.2016.1191638

Fukikawa, A., Sozne, T., Jisunari, F., and Hirao, T. (2011). Evaluation of health-related quality of life using EQ-5D in Takamatsu, Japan. Environ. Health Prev. Med. 16, 25–35. doi: 10.1007/s12199-010-0162-1

Fukuhara, S., Bito, S., Green, J., Hsiao, A., and Kurokawa, K. (1998a). Translation, in chronic kidney diseases and dialysis. Nephrol. Dial. Transplant. 13, 547–557. doi: 10.1093/ndt/17-1512-8 [Epub ahead of print].

Miyata, K. N., Shen, J. I., Nishio, Y., Haneda, M., Dadzie, K. A., Sheth, N. R., et al. (2017). Patient knowledge and adherence to maintenance hemodialysis: an International comparison study. Clin. Exp. Nephrol. doi: 10.1007/s10157-017-1512-8

Moeller, S., Gieberge, S., and Brown, G. (2002). ESRD patients in 2001: global overview of patients, treatment modalities and development trends. Nephrol. Dial. Transplant. 17, 2071–2076. doi: 10.1093/ndt/17.12.2071

Neri, L., Martini, A., Andreucci, V. E., Gallieni, M., Rey, L. A., and Brancaccio, D. (2011). Regimen complexity and prescription adherence in dialysis patients. Am. J. Nephrol. 34, 71–76. doi: 10.1159/000328391

Nishimura, S., Tsuchiya, A., Hissahige, A., Ikegami, N., and Ikeda, S. (1998). The development of the Japanese EuroQol Instrument. J. Health Care Soc. 8, 109–123. doi: 10.4091/iken1998.8.1109

Perlman, R. L., Finkelstein, F. O., Liu, L., Roys, E., Kiser, M., Eisele, G., et al. (2005). Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. Am. J. Kidney Dis. 45, 658–666. doi: 10.1053/j.ajkd.2004.12.021

Raspovic, K. M., Ahn, J., La Fontaine, J., Lavery, L. A., and Wukich, D. K. (2017). End-Stage renal disease negatively affects physical quality of life in patients with diabetic foot complications. Int. J. Low. Extrem. Wounds 16, 135–142. doi: 10.1177/1537434617707081

Rosenthal Asher, D., Ver Halen, N., and Cakor, D. (2012). Depression and nonadherence predict mortality in hemodialysis treated end-stage renal disease patients. Hemodial. Int. 16, 387–393. doi: 10.1111/j.1542-4758.2012.00688.x

Sabi, P., Neilands, T. B., and Johnson, M. O. (2011). Quality of sleep: associations with antiretroviral nonadherence. AIDS Patient Care STDS 25, 517–524. doi: 10.1089/apc.2010.037

Saran, R., Bragg-Gresham, J. L., Rayner, H. C., Goodkin, D. A., Keen, M. L., Van Dijk, P. C., et al. (2003). Nonadherence in hemodialysis: associations with mortality, hospitalization, and practice patterns in the DOPPS. Kidney Int. 64, 254–262. doi: 10.1046/j.1523-1755.2003.00064.x

Schmid, H., Hartmann, B., and Schiff, H. (2009). Adherence to prescribed oral medication in adult patients undergoing chronic hemodialysis: a critical review of the literature. Eur. J. Med. Res. 14, 185–190. doi: 10.1186/1747-738X-14-5-185

St Peter, W. L. (2015). Management of polypharmacy in dialysis patients. Semin. Dial. 28, 427–432. doi: 10.1111/sd.12377

Tessari, G., Dalle Vedove, C., Loschiavo, C., Tessitore, N., Rugiu, C., Lupo, A., et al. (2009). The impact of pruritus on the quality of life of patients undergoing dialysis: a single centre cohort study. J. Nephrol. 22, 241–248.

The Japanese Society for Dialysis Therapy (2017). Available online at: http://www.jsdt.or.jp/therapy/overview/pdf/2016/pdf003.pdf

Tome, F., Mor, M. K., Pena-Polanco, J., Green, J. A., Fine, M. J., Palevsky, P. M., et al. (2017). Predictors and outcomes of non-adherence in patients receiving maintenance hemodialysis. Int. Urol. Nephrol. 49, 1471–1479. doi: 10.1007/s11255-016-1604-0

United States Renal Data System (2017). 2016 Trends in Kidney Disease. Kidney Disease Hospitalization and Mortality Rates Continue to Decline in the U.S. Available online at: https://www.usrds.org/adthritis.php

Van Camp, Y. P., Vrijens, B., Abraham, I., Van Rompaey, B., and Elseviers, M. M. (2014). Adherence to phosphate binders in hemodialysis patients.
prevalence and determinants. *J. Nephrol.* 27, 673–679. doi: 10.1007/s40620-014-0062-3

Wileman, V., Farrington, K., Wellsted, D., Almond, M., Davenport, A., and Chilcot, J. (2015). Medication beliefs are associated with phosphate binder non-adherence in hyperphosphatemic haemodialysis patients. *Br. J. Health Psychol.* 20, 563–578. doi: 10.1111/bjhp.12116

World Health Organization (2017). Available online at: http://www.who.int/bulletin/volumes/86/3/07-041715/en/

Yoshiya, K., Hasunuma, Y., Oka, N., Ohmae, H., and Kamidono, S. (2001). Quality of life in patients on chronic hemodialysis. *Jpn. Soc. Dial. Ther.* 34, 201–205. doi: 10.4009/jsdt.34.201

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Nagasawa, Tachi, Sugita, Yoshida, Kanematsu, Noguchi, Kobayashi, Ichikawa, Tsuchiya and Teramachi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.