Retiboletus Huanggangensis, A New Species of Retiboletus From China

Fan Zhou
Jiangxi Agricultural University

Yang Gao
Jiangxi Agricultural University

Hai-Yan Song
Jiangxi Agricultural University

Hai-Jing Hu
Jiangxi Agricultural University

Shuo-Xi Li
Jiangxi Agricultural University

Jin-Hao Liu
Jiangxi Agricultural University

Dian-Ming Hu (hudianming1@163.com)
Jiangxi Agricultural University
https://orcid.org/0000-0002-4750-2871

Research Article

Keywords: Boletaceae, phylogeny, morphology, Retiboletus, taxonomy

Posted Date: January 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1231505/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

A new species of the genus *Retiboletus*, *Retiboletus huanggangensis*, collected from Huanggang mountain, Wuyishan Nature Reserve, Yanshan County, Shangrao City, Jiangxi Province, China, is described based on morphological and phylogenetic analysis, nuclear ribosomal large subunit (nrLSU), the translation elongation factor1-α gene (*TEF1-α*) and the RNA polymerase II second largest subunit gene (*RPB2*) were used for phylogenetic analysis. *Retiboletus huanggangensis* is morphologically characterized by its white to grayish black to black pileus, white to pale yellow to black stipe, white to pale yellowish white hymenophore, white to grayish white or pale yellow context, prominently and coarsely reticulate over the upper 3/4 or overall, changing orange yellow to rusty yellow when its pileus injured. For phylogenetic analysis, the specimens from Huanggang mountain, grouped together with *Retiboletus fuscus*, but they have some morphological differences, *Retiboletus fuscus* has slightly narrower basidia, and pileipellis much narrower. Descriptions and hand drawings of the new species and comparisons with similar species are shown below.

Introduction

The genus *Retiboletus* Manfr. Binder & Bresinsky was established by Binder and Bresinsky (Binder and Bresinsky 2002), typified by a species from North America, *R. ornatipes* (Peck) Binder & Bresinsky. Before 2002, some species of *Retiboletus* were mistaken for *Boletus* spp., e.g. *R. fuscus* originally was described as *Boletus griseus var. fuscus* (Hongo 1974), *R. kauffmanii* (Lohwag) N.K. Zeng & Zhu L. Yang was regarded as *Boletus kauffmanii* (Lohwag 1937; Horak 1987), *R. flavoniger* was identified as *Boletus flavoniger* Halling, G.M. Muell & L.D. Gómez (1999). But DNA phylogenetic analyses and chemotaxonomical characters prompted Binder and Bresinsky (2002) to classified *Retiboletus* as a novel genus of Boletaceae. According to the results of chemotaxonomical characters (Hellwig 1999), the phylogenetic analysis of LSU sequence was proposed by Binder and Bresinsky, which proved Hellwig's findings.

Retiboletus is characterized by the following characters: basidiomata small to medium-sized, hymenophore pallid, grayish white or pall yellow, unchanging or yellowish brown or orange-brown when injured; stipe reticulate; context white, pall yellow or bright yellow, unchanging or changing light yellow to orange-brown; clamp connections absent in all tissues; spore greenish brown to yellow-brown in KOH, basidiospores smooth, ellipsoid to subsub fusoid to sub fusoid (Binder and Bresinsky 2002; Zeng et al. 2016; Liu et al. 2020).

So far, 16 species of *Retiboletus* have been described, of which 9 species have been reported from China (Binder and Bresinsky 2002; Wu et al. 2016; Zeng et al. 2016; Zeng et al. 2018; Liu et al. 2020).

Recently, we investigated the diversity of Macrofungi in Wuyishan Nature Reserve, Jiangxi Province, and collected several specimens of Boletaceae. Through morphological and phylogenetic analysis, we found a new species of *Retiboletus*.

Materials And Methods

Specimens collection

The specimens were collected on the ground of coniferous and broad-leaved mixed forest in Wuyishan Nature Reserve, on July 31 and August 23, 2021.
Firstly, clean up the sundries around the specimen, put a scale and label on the edge of the specimen, take photos, and finally dig out the specimen with a shovel and put it in the sampling box.

DNA extraction, amplification, and sequencing

The whole genome DNA was extracted from dried specimens (HFJAU10002, HFJAU10003, HFJAU10004) by optimized CTAB method (Doyle 1987; Huang et al. 2000). The primer pairs LR0R–LR5 and TEF1-983F–TEF1-1567R were used to amplify the large ribosomal subunit sequence region (Vilgalys and Hester 1990; James et al. 2006) and the translation elongation factor 1-α region (Wu et al. 2014), respectively. The RNA polymerase II second largest subunit gene (*RPB2*) was amplified following the method described by Réblová et al. (2011). PCR products were detected in 1% agarose gels, and then sent to TSINGKE Biological Technology for sequencing.

Macroscopic and microscopic studies

Macroscopic features were mainly made from the field records and photographs of the basidiomata, color codes followed Kornerup & Wanscher (1981). Micromorphological descriptions are based on dried materials rehydrated in 5% KOH and stained in ammoniacal Congo red. Freehand sections were done on Nikon SMZ1270 following the standard method described in previous studies (Li et al. 2011; Zeng et al. 2012; Hosen et al. 2013; Zeng et al. 2013). Microstructures were observed by Nikon Y-TV55.

The number of measured basidiospores is given as n/m/p, which means that the measurements were made on n basidiospores from m basidiomata of p collections. The sizes of basidiospores are given using the notation (a)b–c(d), where the range b–c represents a minimum of 90% of the measured values, and extreme values (a and d) are given in parentheses. Q represents the ratio of length/width of the spores. \(Q_m\) refers to the average Q of basidiospores \(\pm\) sample standard deviation.

Phylogenetic analysis

Visualization and editing of the sequences were done with BioEdit v7.0.9 (Hall 1999), and submitted to NCBI online website for Nucleotide BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to determine which genus the species belongs to. Based on BLASTn results, all available sequences of this genus used in recent studies and closely related to *Retiboletus* were downloaded from GenBank, shown in Table 1.

Sequence datasets were aligned on the online website MAFFT version 7 (http://mafft.cbrc.jp/alignment/server/Katoh and Standley 2013), misaligned sequences and gaps were sent to PhyloSuite (Zhang et al. 2020), and reduced by Gblocks (Gerard and Jose 2007). The data was then analyzed using RAxML version 8 (Stamatakis 2014) and MrBayes v3.2 (Ronquist et al. 2012) for Maximum Likelihood (ML) and Bayesian Inference (BI), respectively.

For ML analyses, based on the evaluation of nrLSU dataset, using GTRGAMMA1 as evolutive model (Stamatakis 2006), choosing the rapid bootstrap analysis with the supports were calculated, using nonparametric bootstrapping with 1000 replicates (Joseph 1985).

For BI analyses, substitution models of partition in the datasets were determined using the Akaike Information Criterion (AIC) implemented in PartitionFinder 2 (Lanfear et al. 2016). For the combined dataset GTR+I+G, SYM+G and SYM+G were chosen as best-fit likelihood models for LSU, *TEF1*-α and *RPB2* partitions, respectively. Two
MCMC runs with four chains each were run for 4,000,000 generations and sampled every 1000 generations. At the end of the runs, the average deviation of split frequencies was 0.005509; Other parameters were kept at their default settings; Trees were summarized and posterior probabilities (PPs) were calculated after discarding the first 25% generations as burn-in.

Branches that received bootstrap support for Maximum Likelihood (ML) and Bayesian posterior probabilities (BPP) greater than or equal to 50% (BS) and 0.95 (PP), respectively, were considered credible.

All phylogenetic trees were visualized using FigTree v1.4.4.

Result

Molecular phylogenetic results

Eight sequences (3 of nrLSU, 2 of *TEF1-α*, 3 of *RPB2*) from 3 collections were newly generated.

The Maximum likelihood and Bayesian phylograms have no conflict in topology, so only the ML trees with both BS and PP values are shown (Fig.1). The nrLSU, *TEF1-α* and *RPB2* datasets consisted of 48 sequences (including 45 from GenBank and 3 new generated), 40 sequences (including 38 from GenBank and 2 new generated), 24 sequences (including 21 from GenBank and 3 new generated), respectively. The combined nuclear dataset (nrLSU+ *TEF1-α*+*RPB2*) contains 112 sequences with 2182 nucleotide sites after reducing gaps by Gblocks.

In the three-gene phylogenetic analysis, *R. huanggangensis* was sister to *R. fuscus* with bootstrap support (BS = 73%) (Fig. 1) but was independented from the collection from southwest China. And it formed a large clades with *R. ater, R. griseus, R. nigerrimus, R. nigrogriseus, R. pseudogriseus, R. sinogriseus and R. zhangfeii* with higher statistical support (BS = 67%, PP = 1).

Table 1. Specimens used in molecular phylogenetic study and their GenBank accession numbers.
Species	Voucher	Locality	Accession	Reference		
Leccinum duriusculum	HKAS101160	Austria	MZ675541	Meng et al. 2021		
L. parascabrum	HKAS:99903T	China	MW413911	Meng et al. 2021		
L. versipelle	HKAS97997	China	MZ675545	Meng et al. 2021		
L. versipelle	HKAS99380	China	MZ675546	Meng et al. 2021		
Retiboletus ater	Li1215T	SW China	MT010611	Liu et al. 2020		
R. ater	Li1224	SW China	MT010612	Liu et al. 2020		
R. brevibasidiatus	OR0570	Thailand	MT085476	Chuankid Boontiya et al. 2021		
R. brunneolus	LC_LJW23	SW China	MT010615	Liu et al. 2020		
R. brunneolus	HKAS 52680	SE China	KF112424	Wu et al. 2016		
R. flavoniger	RH7247T	Costa Rica	AF456828	Binder and Bresinsky 2002		
R. flavoniger	RH7189	Costa Rica	AF456829	Binder and Bresinsky 2002		
R. fuscus	FHMU1403	Yunnan, SW China	MH367473	Zeng et al. 2018		
R. fuscus	HKAS63624	China	KT990635	Wu et al. 2016		
R. fuscus	OR0738	Thailand	MT085472	Chuankid Boontiya et al. 2021		
R. fuscus	OR0231	China	MG212600	Vadthanarat et al. 2018		
R. fuscus	HKAS74756	SW China	KT990636	Wu et al. 2016		
R. fuscus	HKAS:63590	USA	KF112417	Wu et al. 2016		
R. griseus	MB03-079	USA	KT824030	Vadthanarat et al. 2016		
Species	Voucher	Locality	Accession	Reference		
-----------------	--------------	----------------	-----------------	----------------------------		
			nrLSU	TEF1-α	RPB2	
R. griseus	snBoth	USA	KF030308	KF030414	—	Binder and Bresinsky 2002
	Halling10162	USA	MT010608	MT010618	—	Liu et al. 2020
R. huanggangensis	HFJAU10002	China	OL744444	OL963527	OL963530	This study
R. huanggangensis	HFJAU10003T	China	OL744445	OL963526	OL963528	This study
R. huanggangensis	HFJAU10004	China	OL744446	—	OL963529	This study
R. kauffmanii	HKAS68590	Yunnan, SW China	KP739283	—	—	Zeng et al. 2016
R. kauffmanii	HKAS 63584E	Yunnan, SW China	KT990634	KT990828	KT990465	Wu et al. 2016
R. kauffmanii	OR0278	Yunnan, SW China	—	MG212601	MG212643	Vadthanarat et al. 2018
R. kauffmanii	HKAS63584	SW China	KP739282	KP739301	KP739299	Zeng et al. 2016
R. nigerrimus	Tyni1	Japan	AF456832	—	—	Binder and Bresinsky 2002
R. nigrogriseus	BC0179	Thailand	—	MT085474	MT085478	Chuankid Boontiya et al. 2021
R. nigrogriseus	OR049	Thailand	—	KT824033	KT824000	Vadthanarat et al. 2016
R. nigrogriseus	FHMU2045	Southern Chin	MH367475	MH367487	—	Zeng et al. 2018
R. nigrogriseus	FHMU2800T	Southern Chin	MH367476	MH367488	—	Zeng et al. 2018
R. ornatipes	201/97T*	USA	AF456815	—	—	Binder and Bresinsky 2002
R. ornatipes	Halling10163	USA	MT010617	MT010626	—	Liu et al. 2020
R. ornatipes	MBsn	USA	—	MT219516	MT219515	Chuankid Boontiya et al. 2021
Species	Voucher	Locality	nrLSU	TEF1-α	RPB2	Reference
--------------------	---------	-------------------	---------	--------	------	----------------------------
R. ornatipes	93/97	USA	AF456825	—	—	Binder and Bresinsky 2002
R. pseudogriseus	Zeng647	Southern Chin	MT010613	MT010623	—	Liu et al. 2020
R. pseudogriseus	FHMU375	Southern Chin	MH367477	MH367489	—	Zeng et al. 2018
R. pseudogriseus	FHMU2205	Fujian, SE China	MH367478	MH367490	—	Zeng et al. 2018
R. pseudogriseus	HKAS 83950^T	SE China	KP739285	—	—	Zeng et al. 2016
R. retipes	96/97	USA	AF456830	—	—	Binder and Bresinsky 2002
R. retipes	22/97	USA	AF456831	—	—	Binder and Bresinsky 2002
R. retipes	116/96	USA	AF456823	—	—	Binder and Bresinsky 2002
R. sinensis	HKAS83957	SE China	KP739291	KP739303	—	Zeng et al. 2016
R. sinensis	HKAS59832	SE China	KT990633	KT990827	KT990464	Wu et al. 2016
R. sinensis	HKAS83955	SE China	KP739289	KP739302	—	Zeng et al. 2016
R. sinogriseus	LJ258	NE China	MT010610	MT010620	—	Liu et al. 2020
R. sinogriseus	LJ260^T	NE China	MT010609	MT010619	—	Liu et al. 2020
R. aff. kauffmanii	HY56	NE China	MT010616	—	—	Liu et al. 2020
R. vinaceipes	CFMR:DR-1035^T	Dominican Republic	MN250180	—	—	Ortiz-Santana et al. 2007
R. vinaceipes	CFMR:BZ-2386	Belize	MN250190	—	—	Ortiz-Santana et al. 2007
R. zhangfeii	HKAS59699	SE China	JQ928627	JQ928582	JQ928603	Wu et al. 2016
Species | Voucher | Locality | Accession | Reference
---|---|---|---|---
R. zhangfeii | HKAS 83963 | Fujian, SE China | KP739297 | Zeng et al. 2016
R. zhangfeii | HKAS 83961 | Fujian, SE China | KP739295, KP739305 | Zeng et al. 2016
R. zhangfeii | HKAS53418 | China | KT990630, KT990824, KT990462 | Wu et al. 2016
Tylopilus sp. | 204/97 | USA | AF456813 | Binder and Bresinsky 2002

Sequences obtained in this study are shown in bold. SW = southwestern; NE = northeastern; SE = southeastern.

T= holotype, E= epitype, T* = type species

Taxonomy

Retiboletus huanggangensis F. Zhou, Y. Gao, HJ. Hu, HY.Song & DM. Hu, sp. nov.

MycoBank No: 842302

Figures. 2 and 3

Etymology: "huanggangensis" referring to the collection site of this species (Huanggang Mountain).

Type: China. Jiangxi Province: Shangrao City, Yanshan County, Wuyishan Nature Reserve, Huanggang mountain, alt. 1600 m, August 23, 2021, Fan Zhou, WYS236 (holotype: HFJAU10003).

Description

Basidiomata small to medium-sized. *Pileus* 18.4–72.2 mm diam, hemispherical to applanate, surface dry, densely subtomentose, pale yellowish white (3A1) to grayish black (5E4) at the margin and black (30F1) towards center; context 4–15 mm in thickness in the center of the pileus, pale yellow (4A2), changing orange yellow (2B6) to rusty yellow (5B7) when injured. *Hymenophore* always adnate around the stipe; pores angular, tubes up to 11 mm long, white (29A2) when young and yellowish white (1A2) in age, becoming brownish yellow (30B4) when injured. *Stipe* 13–30 × 26–150 mm, central, clavate to flexuous, solid; surface dry, prominently and coarsely reticulate over the upper 3/4 or overall, pale yellow (2A2) in the upper part and black (1F3) downwards when young, white (3A1) on upper part and lower part black (3F4) in age, changed to pale yellow (5A2) when injured; basal mycelium white. Odor indistinct.

Basidia 30–36 × 10.5–13 μm, thin-walled, clavate, four-spored; sterigmata 2–5 μm long. *Basidiospores* [60/3/3] (7.0–)10–13.5 × 3.5–5.5 μm, Q = (1.75–)2.00–3.00(–3.33), Q_m = 2.40 ± 0.34, amygdaloid to subfusiform to ellipsoid, grayish yellow to pale yellow to yellowish brown in KOH, smooth. *Hymenophoral trama* boletoid. *Cheilo- and Pleurocystidia* 27–46 × 8–10.5 μm, abundant, ventricose to fusiform or ellipsoid, thin-walled, hyaline or with golden yellow contents, without encrustations. *Pileipellis* a trichoderm about 130–220 μm thick.
Composed of intertwined hyphae, brown to grayish brown in KOH, thin-walled hyphae 5–12 µm diam; terminal cells 22–74 × 4–12 µm, clavate or subterete, with obtuse apex. *Pilea trama* composed of thin-walled hyphae 3–11 µm diam. *Stipitipellis* hymeniform about 30–80 µm thick, composed of smooth, hyaline or grayish brown hyphae, narrowly or broadly clavate, ventricose or subfusiform; terminal cells 20–45 × 5–12.5 µm and occasionally with clavate, four-spored basidia 22–42 × 9–12 µm. *Stipe trama* composed of cylindrical, slightly thick-walled (up to 0.5 µm) parallel or interlaced hyphae 5–11 µm diam. *Clamp connections* absent in all tissues.

Habitat: Solitary or group on the ground in forests of Pinaceae and Fagaceae.

Distribution: Jiangxi Province, China.

Additional specimens examined: China. Jiangxi Province: Shangrao City, Yanshan County, Wuyishan Nature Reserve, Huanggangshan, alt. 1300 m, 31 July 2021 WYS083 and alt. 1650 m August 23, 2021, WYS277 (HFJAU10002; HFJAU10004).

Discussion

Retiboletus huanggangensis is characterized by the white to grayish black to black pileus, white to pale yellow to black stipe, white to pale yellowish white hymenophore, white to grayish white context. It generally shares the same colored pileus and hymenophore with *R. nigerrimus* (R. Heim) Manfr. Binder & Bresinsky and *R. ater* Hai Y. Liu, Yan C. Li & Tolgor Bau. However, *R. ater* can be easily differentiated by its context unchanging when injured (Liu et al. 2020). *Retiboletus huanggangensis* has slightly longer basidiospores than *R. ater* (8–10.5 × 3–4.5 µm), and slightly wider basidia (26–38 × 6–10 µm). *Retiboletus nigerrimus* differs from *Retiboletus huanggangensis* by having a distinctive blue tinge on the pileus, a lemon yellow pileal context and longer basidiospores (11.5–14.5 × 3.6–4.6 µm) (Heim 1963).

In the phylogenetic analysis (Fig. 1), the materials of *R. huanggangensis* from Jiang xi, China clustered with Japanese and southwestern China collections named “*R. fuscus*” (Hongo 1974). And formed a large clades with *R. ater*, *R. griseus*, *R. nigerrimus*, *R. nigrogriseus*, *R. pseudogriseus*, *R. sinogriseus* and *R. zhangfeii*. However, *R. fuscus* has narrower basidia (21–30 × 7–8 µm), and pileipellis much narrower (100–120 µm) (Zeng et al. 2016). *R. griseus* has grayish Pileus, stipe with yellow tinge, and known from North/Central America (Zeng et al. 2016). *R. nigrogriseus* has shorter stipe (4.5–6 × 1–2.5 cm) and basidia (26–31 × 6–9 µm), context white, staining brownish to fuliginous when injured (Zeng et al. 2018). *R. pseudogriseus* has wider pileus (5.5–9 cm), context white, changing brown when injured, has shorter stipe (6–7 × 1–1.5 cm) and slightly narrower basidia (23–29 × 8–10 µm), and pileipellis thick than *R. huanggangensis* (Zeng et al. 2016). *R. sinogriseus* has grayish-brown to brown pileus, always cracked into small squamules on grayish to whitish background, has shorter and narrower stipe (6–8 × 1.1–1.5 cm), and pileipellis thinner than *R. huanggangensis* (Liu et al. 2020). *R. zhangfeii* has wider pileus (5–10 cm), dark purple when young, context gray-white, changing brown to blackish brown when injured (Zeng et al. 2016).

Declarations

Acknowledgements
The author thanks Dr. Gang Wu (Kunming Institute of Botany, CAS) for his suggestions on this paper. Funds for research were provided by the National Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Key Projects of Youth Fund of Jiangxi Science and Technology Department of China (20192ACBL21017), Natural Science Foundation of Education Department of Jiangxi Province of China (GJJ190168), the foundation of Advantages of Technological Innovation Teambuilding Program of Nanchang City, and the Foundation of Modern Agricultural Industrial System.

References

1. Binder M, Bresinsky A (2002) *Retiboletus*, a new genus for a species-complex in the Boletaceae producing retipolides. Feddes Repertorium 113:30–40. https://doi.org/10.1002/1522-239X(200205)113:1/2%3C30::AID-FEDR30%3E3.0.CO;2-D

2. Chuankid Boontiya, Vadthanarat S, Thongbai B, Stadler M, Raspé O (2021) *Retiboletus* (Boletaceae) in northern Thailand: one novel species and two first records. Mycoscience 62:1–10. https://doi.org/10.47371/mycosci.2021.05.003

3. Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

4. Gerard T, Jose C (2007) Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164

5. Hall TA (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98 https://doi.org/10.1021/bk-1999-0734.ch008

6. Halling RE, Mueller GM (1999) New Boletes from Costa Rica. Mycologia 91:893–899. https://doi.org/10.1080/00275514.1999.12061095

7. Heim R (1963) Diagnoses latines des espèces de champignons, ou nonda, associés à la folie du komugl tai et dundaaal. Revue mycologique 28:277–283

8. Hellwig V (1999) Isolierung, Strukturaufklärung und chemotaxonomische Untersuchung von Sekundärmetaboliten aus Pilzen. Universität München, München

9. Hongo T (1974) Notes on Japanese larger fungi 21. Jap Bot 49:294–305

10. Horak E (1987) Boletales and Agaricales (fungi) from northern Yunnan, China I. Revision of material collected by H. Handel-Mazzetti (1914–1916) in Lijiang. Acta Botanica Yunnanica 9:65–80

11. Hosen MI, Bang F, Gang W, Xue TZ, Yan CL (2013) *Borofutus*, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy. Fungal Divers 58:215–226. https://doi.org/10.1007/s13225-012-0211-8

12. Huang J, Ge X, Sun M (2000) Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. Biotechniques 28:432434. https://doi.org/10.1006/biot.1999.0237

13. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822. https://doi.org/10.1038/nature05110

14. Joseph F (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678
15. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

16. Kornerup A, Wanscher J (1981) Taschenlexikon der Farben 3. Muster-Schmidt Verlag, Göttingen, Germany, pp 1–242

17. Lanfear R, Frandsen P, Wright A, Senfeld T, Calcott B (2016) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

18. Li YC, Yang FBang ZL (2011) Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Divers 49:125–143. https://doi.org/10.1007/s13225-011-0096-y

19. Liu HY, Li YC, Bau T (2020) New species of Retiboletus (Boletales, Boletaceae) from China based on morphological and molecular data. MycoKeys 67:33–44. https://doi.org/10.3897/mycokeys.67.51020

20. Lohwag H (1937) Hymenomycetes. In: Handel-Mazzetti H (ed) Symbolae Sinicae 2. Julius Springer, Vienna, Austria, pp 37–66

21. Meng X, Wang GS, Wu G, Wang PM, Li YC (2021) The Genus Leccinum (Boletaceae, Boletales) from China Based on Morphological and Molecular Data. Journal of Fungi 7:732. https://doi.org/10.3390/jof7090732

22. Ortiz-Santana B, Lodge D, Baroni T, Both E (2007) Boletes from Belize and the Dominican Republic. Fungal Divers 27:247–416

23. Réblová M, Gams W, Seifert KA (2011) Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 68:163–191. https://doi.org/10.3114/sim.2011.68.07

24. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

25. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446

26. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

27. Vadthanarat S, Raspé. O, Lumyong S (2018) Phylogenetic affinities of the sequestrate genus Rhodactina (Boletaceae), with a new species, R. rostratispora from Thailand. Mycokeys 29:63–80. https://doi.org/10.3897/mycokeys.29.22572

28. Vadthanarat. S, Kevin LSaisamornH, Kesel D, Andre. D, Raspe., Olivier (2016) Pulveroboletus fragrans, a new Boletaceae species from Northern Thailand, with a remarkable aromatic odor. Mycological Progress 15:1538. https://doi.org/10.1007/s11557-016-1179-7

29. Vilgalys H (1990) Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr Genet 18:277–280

30. Wu G, Feng B, Xu J, Zhu X-T, Li Y-C, Zeng N-K, Hosen MI, Yang ZL (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers 69:93–115. https://doi.org/10.1007/s13225-014-0283-8

31. Wu G, Li YC, Zhu XT, Zhao K, Han LH, Cui YY, Li F, Xu JP, Yang ZL (2016) One hundred noteworthy boletes from China. Fungal Divers 81:25–188. https://doi.org/10.1007/s13225-016-0375-8
32. Zeng NK, Cai Q, Yang ZL (2012) *Corneroboletus*, a new genus to accommodate the southeastern Asian Boletus indecorus. Mycologia 104:1420–1432. https://doi.org/10.3852/11-326
33. Zeng NK, Chai H, Jiang S, Xue R, Wang Y, Hong D, Liang ZQ (2018) *Retiboletus nigrogriseus* and *Tengioboletus fujianensis*, two new boletes from the south of China. Phytotaxa 367:45-54 https://doi.org/10.11646/phytotaxa.367.1.5
34. Zeng NK, Liang ZQ, Wu G, Li YC, Yang ZL (2016) The genus *Retiboletus* in China. Mycologia 108:363–380. https://doi.org/10.3852/15-072
35. Zeng NK, Tang LP, Li YC, Tolgor B, Zhu XT, Zhao Q, Yang ZL (2013) The genus *Phylloporus* (Boletaceae, Boletales) from China: morphological and multilocus DNA sequence analyses. Fungal Divers 58:73–101. https://doi.org/10.1007/s13225-012-0184-7
36. Zhang D, Gao F, Jakovli I, Zou H, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348–355. https://doi.org/10.1111/1755-0998.13096

Figures

Figure 1

Maximum likelihood phylogenetic tree of *Retiboletus* inferred from the combined nuclear dataset (nrLSU+*TEF1*-α*+RPB2*). Bootstrap frequencies ≥ 50% and posterior probabilities ≥ 0.95 are shown above supported branches. Newly sequenced collections are boldfaced in black. Species vouchers are provided after the species name.
Figure 2

Habitat of the new *Retiboletus* species. A-B: HFJAU10004. C: HFJAU10002. D: HFJAU10003. Bars = 2 cm. Photos by Fan Zhou.
Figure 3

Microscopic features of *R. huanggangensis* (HFJAU10003). a: Basidiospores. b: Basidia. c: Cheilo- and Pleurocystidia. d: Pileipellis. e: Stipitipellis. Bars = 10 μm. Drawings by Fan Zhou.