Racial Disparities in Modifiable Risk Factors and Statin Usage in Black Patients With Familial Hypercholesterolemia

Anandita Agarwala MD, Nathan Bekele MD, Elena Deych MS, Michael W. Rich MD, Aliza Hussain MD, Laney K. Jones PharmD, MPH, Amy C. Sturm MS, Karen Aspry MD, MS, Elizabeth Nowak BS, Zahid Ahmad MD, Christie M. Ballantyne MD, Anne C. Goldberg MD

BACKGROUND: Black men and women are at higher risk for, and suffer greater morbidity and mortality from, atherosclerotic cardiovascular disease (ASCVD) compared with adults of European Ancestry (EA). Black patients with familial hypercholesterolemia are at particularly high risk for ASCVD complications because of lifelong exposure to elevated levels of low-density-lipoprotein cholesterol.

METHODS AND RESULTS: This retrospective study analyzed ASCVD prevalence and risk factors in 808 adults with heterozygous familial hypercholesterolemia from 5 US-based lipid clinics, and compared findings in Black versus EA patients. Multivariate logistic regression models were used to determine the strongest predictors of ASCVD as a function of race. No significant difference was noted in the prevalence of ASCVD in Black versus EA patients with familial hypercholesterolemia (39% versus 32%, respectively; \(P=0.15 \)). However, Black versus EA patients had significantly greater prevalence of modifiable risk factors, including body mass index (mean, 32±7 kg/m\(^2\) versus 29±6 kg/m\(^2\); \(P<0.001 \)), hypertension (82% versus 50%; \(P<0.001 \)), diabetes (39% versus 15%; \(P<0.001 \)), and current smoking (16% versus 8%; \(P=0.006 \)). Black versus EA patients also had significantly lower usage of statins (61% versus 73%; \(P=0.004 \)) and other lipid-lowering agents. In a fully adjusted multivariate model, race was not independently associated with ASCVD (odds ratio, 0.92; 95% CI, 0.60–1.49; \(P=0.72 \)).

CONCLUSIONS: The strongest predictors of ASCVD in Black patients with familial hypercholesterolemia were hypertension and cigarette smoking. These data support wider usage of statins and other lipid-lowering therapies and greater attention to modifiable risk, specifically blood pressure management and smoking cessation.

Key Words: familial hypercholesterolemia ■ hypertension ■ racial disparities ■ smoking
inequities in access to optimal health care, education, income, healthy food, and stable and healthy living environments, all of which negatively impact downstream behavioral and physiologic risk factors.

Familial hypercholesterolemia (FH) is a genetic lipoprotein disorder with a frequency of about 1 in 250 in the population. FH leads to lifelong elevation of low-density lipoprotein cholesterol (LDL-C) levels. Patients with heterozygous FH have about a 20-fold increased risk of ASCVD and its complications. However, racial differences in the risk of ASCVD and its predictors in Black patients with FH compared with those of European ancestry have not been well studied and might be higher in Black patients with FH because of higher baseline risk. We compared the prevalence of, and risk factors for, ASCVD in Black patients with FH with those of EA with FH.

METHODS

The data that support the findings of this study are available from the corresponding author upon reasonable request to anandita.kulkarni@bswhealth.org.

CLINICAL PERSPECTIVE

What Is New?
- The present study demonstrates disparities in lipid treatment and lipid medication usage in Black patients with familial hypercholesterolemia compared with those of European ancestry, and higher residual risk for future atherosclerotic cardiovascular disease in these patients attributable to racial differences in nearly all modifiable risk factors for atherosclerotic cardiovascular disease.

What Are the Clinical Implications?
- There is a need for greater attention to lipid medication usage and to reduction in residual risk in Black patients with familial hypercholesterolemia through aggressive prevention strategies focused on medication acquisition and adherence, smoking cessation, and blood pressure management.

Nonstandard Abbreviations and Acronyms

Abbreviation	Description
ARIC	Atherosclerosis Risk in the Community
CASCADE-FH	Cascade Screening for Awareness and Detection of Familial Hypercholesterolemia
EA	European ancestry
FH	familial hypercholesterolemia

Laboratory Values and Medical History Variables

Demographic data, medical history, and laboratory values were ascertained by retrospective chart review for current patients from the respective lipid clinics that provided their information. Age was reported from the most recent clinic visit to the time of data collection. Lipid measurements were obtained through standardized commercial or institutional laboratories. Laboratory measurements were reported as the most recent on-treatment values. Treated lipid values are reported for patients receiving pharmacologic lipid-lowering therapy. A history of ASCVD was defined through objective testing for coronary, peripheral, or cerebrovascular disease or a cardiovascular event, including angina, myocardial infarction, coronary angioplasty, peripheral arterial surgery, claudication,
peripheral angioplasty, transient ischemic attack, stroke, or carotid endarterectomy. Premature ASCVD was defined as age <55 years in men and <65 years in women. The presence of ASCVD was comprehensively assessed at the initial visit as well as readressed at subsequent visits.

Statistical Analysis

The prevalence of ASCVD was evaluated in the entire cohort and stratified by race, that is, Black versus EA patients. Patients who did not identify as either Black or of EA were excluded from the analysis. The association of race with demographic and clinical variables was assessed univariately using a chi-squared test for categorical variables and a t test for continuous variables. Triglycerides were compared using the Mann-Whitney U test because of nonnormal distribution. Prediction of ASCVD was assessed in a generalized linear mixed-effects model with binomial distribution, where study center was modeled as a random effect to account for within-site correlation. Missing data were imputed using multiple imputation methodology (See Table S1 for missing data variables). Multiple imputation was performed using the Multivariate Imputation by Chained Equations algorithm in R (https://www.jstatsoft.org/article/view/v045i03), which allows for the imputation of both continuous and categorical variables. Missing values were imputed for body mass index (BMI), smoking, diabetes, and hypertension. The missing imputation values model included these variables, in addition to age, sex, and race. The imputation was done with 5 imputed data sets. (Cholesterol values could not be imputed because they were not missing at random. Imputation of these values may have resulted in a biased estimate, as subjects who were not on treatment were more likely to have missing both treated and untreated LDL-C values.) Two multivariable regression models were fitted. The first model included age, sex, and race. The second model included race, age, sex, BMI, diabetes, hypertension, and current smoking. In separate exploratory, hypothesis-generating models, the interaction of race with each clinical covariate was tested (data from this analysis are shown in the Figure). In addition, we assessed for the predictors of ASCVD stratified by race including all covariates. Standard regression diagnostics were performed. The results of the models using imputed data were confirmed in a sensitivity analysis including complete cases only (not shown). The standard criteria of a 2-sided P value <0.05 for statistical significance was used in this study. The analyses were performed using R statistical software version 4.0 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Baseline characteristics of the 175 Black adult patients compared with 633 patients of EA are shown in Table 1. There was no significant difference in mean age between the 2 groups, and women outnumbered men in both. The absolute LDL-C was above recommended thresholds in both Black and EA patients with FH. Fewer Black versus EA patients were on statins (61% versus 73%, respectively; P=0.004), ezetimibe (29% versus 38%, respectively; P=0.03), and PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors (1% versus 12%, respectively; P<0.001). Approximately 23% of patients in our study were not reported to be on any lipid-lowering therapy; 33% of Black patients were not on lipid-lowering therapy, while 21% of patients of EA were not on lipid-lowering therapy.

No significant difference was noted in the prevalence of ASCVD and premature ASCVD in Black versus EA patients with FH (39% compared with 33%, P=0.15; and 26% versus 21%, P=0.17, respectively). Nonlipid risk factors for ASCVD were significantly higher in Black patients with FH, who had higher mean BMI (32±7 kg/m² versus 29±6 kg/m² in EAs; P<0.001), hypertension (82% versus 50% in EA; P<0.001), diabetes (39% versus 15% in EAs; P<0.001), and rate of current smoking (16% of Black patients versus 8% of
In this cohort of 808 patients (175 Black adult patients compared with 633 adult patients of EA) with FH treated in specialized lipid clinics across several regions of the United States, Black patients with FH did not have a statistically significant higher prevalence of documented ASCVD compared with patients of EA. However, Black patients had a significantly higher prevalence of nonlipid risk factors for future ASCVD events, including hypertension, diabetes, and current smoking. Also, fewer Black versus EA patients with FH were on lipid-lowering medications, including statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors. After multivariate adjustment for hypertension, smoking status, BMI, and diabetes, race was not a significant predictor of ASCVD. On the other hand, traditional risk factors in Black patients with FH, including hypertension and current cigarette smoking, were significant predictors of ASCVD in multivariate models. These findings have important implications, as they show that traditional and modifiable nonlipid risk factors, including hypertension and current smoking, are highly prevalent and significant drivers of ASCVD risk in Black patients with FH.

This study also demonstrated significant gaps in the use of statins and other lipid-lowering therapies in Black patients versus EA patients with FH, suggesting lower treatment and/or adherence. This finding is particularly concerning since observational data have shown that statin treatment is associated with significant reductions in ASCVD risk in FH, and randomized trials of proprotein convertase subtilisin/kexin type 9 inhibitors in patients with FH have demonstrated further reductions in ASCVD risk.

Racial and ethnic disparities in the treatment and management of cardiovascular disease and its risk factors have long been recognized as major contributors to health inequities.6,7 Our study is unique in that it uncovered gaps in care even among Black patients at high risk for ASCVD attributable to FH. A prior analysis from the CASCADE-FH (Cascade Screening for Awareness
and Detection of Familial Hypercholesterolemia) registry demonstrated that Black patients with FH are nearly 50% less likely to achieve target LDL-C levels compared with patients with FH of EA.\(^8\) Our study demonstrated no significant differences in on-treatment LDL-C levels, but significant disparities in the usage of lipid-lowering therapies in Black patients with FH. Reasons for these disparities may include patient factors (differences in access to care and/or medication adherence attributable to socioeconomic and/or psychological factors), provider factors (including treatment biases), and/or health system factors.

Our findings extend those of others to show that Black patients with FH have multiple traditional risk factors for ASCVD (hypertension, diabetes, and smoking), and this higher risk factor burden is associated with a higher prevalence of ASCVD in Black patients with FH. Hypertension and cigarette smoking were found to be key risk factors for ASCVD in FH patients, suggesting that primary and secondary prevention efforts aimed at targeting these risk factors could mitigate future ASCVD risk in Black patients with FH. Future studies might explore the socioeconomic links between medication usage and nonusage in Black patients with FH, whether there may be a benefit from lower therapeutic blood pressure and/or LDL-C targets in this group of patients, and which self-management support and care delivery strategies lead to greater smoking cessation rates in Black patients.

Strengths and Limitations

Our study has several limitations. Our analysis was retrospective, and residual confounding may have contributed to our findings. Additionally, patients in our study were selected from specialized preventive cardiology and lipid clinics around the United States and treated by experts within the field and subsequently compiled together, which may have introduced bias in our findings.

Table 2. Baseline Characteristics of Patients With Heterozygous FH With and Without ASCVD by Race

	Black ASCVD	Black No ASCVD	P Value	European ancestry ASCVD	European ancestry No ASCVD	P Value
N	68	107	...	207	426	
Age, y	56±11	56±11	0.83	62±12	53±16	<0.001*
BMI	31±6	33±8	0.046*	30±7	29±6	0.07
Treated total cholesterol, mg/dL	196±70	201±53	0.25	196±74	202±52	0.27
Treated LDL-C, mg/dL	122±60	121±45	0.88	120±62	121±47	0.84
Treated HDL-C, mg/dL	50±17	56±18	<0.001	50±17	56±16	<0.001*
Treated triglycerides, mg/dL	52 (36–84)	46 (34–68)	0.003*	55 (38–98)	46 (34–72)	<0.001*
Female sex	40 (59)	74 (69)	0.22	103 (50)	296 (70)	0.001*
Hypertension, Y/N (%Y/%N)	59/7 (89/11)	63/19 (77/23)	0.075	161/45 (78/22)	138/252 (35/65)	<0.001*
Current smoking, Y/N (%Y/%N)	17/49 (26/74)	7/75 (9%/92%)	0.009*	21/179 (11/90)	27/352 (7/93)	0.21
Diabetes, Y/N (%Y/%N)	30/38 (44/56)	38/69 (36/65)	0.33	56/151 (27/73)	41/385 (10/90)	<0.001*

ASCVD indicates atherosclerotic cardiovascular disease; BMI, body mass index; FH, familial hypercholesterolemia; HDL-C, high-density lipoprotein cholesterol; and LDL-C, low-density lipoprotein cholesterol.

*P value of statistical significance.

Table 3. Mixed Effects Model of the Strongest Predictors of ASCVD for All Patients With Random Site Adjustment

	Model 1 Odds ratio (95% CI)	P Value	Model 2 Odds ratio (95% CI)	P Value	
Age, y	1.04 (1.03–1.06)	<0.001*	Age	1.03 (1.01–1.04)	<0.001*
Black race	1.60 (1.06–2.44)	0.028*	Black race	0.99 (0.96–1.02)	0.52
Female sex	0.39 (0.28–0.54)	<0.001*	Female sex	0.46 (0.32–0.65)	<0.0001*
BMI			BMI	0.99 (0.96–1.02)	0.41
Hypertension			Hypertension	4.09 (2.73–6.20)	<0.0001*
Current smoker			Current smoker	2.69 (1.54–4.74)	0.001*
Diabetes			Diabetes	1.59 (1.05–2.42)	0.03*

ASCVD indicates atherosclerotic cardiovascular disease; and BMI, body mass index.

Covariates in model 1 include age, race, and female sex. Covariates in Model 2 include age, race, female sex, BMI, hypertension, current smoking, and diabetes.

*P value of statistical significance.
selection bias as well as limited the availability of certain information, including consistent data on plasma lipoprotein(a) levels, which are higher among Black individuals. Furthermore, our relatively small sample size may have limited our ability to demonstrate between-group differences in LDL-C control and/or ASCVD as well its risk factors. Of note, ≈23% of patients in our cohort were not on treatment with lipid-lowering therapy. There may be several reasons for this: Many of the patients referred to lipid clinics have either declined or not been able to tolerate standard therapy leading to a much more complex patient population. There are multiple reasons for the lower rates of treatment, which include statin intolerance and patient preference against using lipid-lowering therapy. Furthermore, the data presented in the current study are cross-sectional in nature. Patients who may not have been on lipid-lowering therapy at the time of this data collection may have been new to the clinic and requested trials of lifestyle modifications initially, followed by lipid treatment at a later date. However, a strength of our study is that our cohort was enriched with Black patients, a demographic group that historically has been understudied in FH care. To our knowledge, our cohort contains the largest proportion of Black patients with FH studied in this manner. The proportional increase in Black patients with FH in our cohort likely helped demonstrate differences in their usage of lipid-lowering medications and residual risks from hypertension and cigarette smoking, which were found even though our cohort was receiving care at specialized preventive cardiology and lipid clinics. Given these findings, one may presume that these racial disparities are greater among Black patients with FH who have inadequate access to either primary or lipid specialty care.

Conclusions

FH is a common lipoprotein disorder with an estimated prevalence of 1 in 250 US adults, in whom the relative risks of cardiovascular morbidity and mortality are high. Black patients also have a higher risk of ASCVD that has been linked to a higher burden of some physiologic risk factors and to socioeconomic determinants. The present study has demonstrated disparities in lipid treatment and lipid medication usage in Black patients with FH and higher residual risk for future ASCVD in this cohort. The latter has been found to be attributable to racial differences in nearly all modifiable risk factors for ASCVD, particularly hypertension and cigarette smoking, which are highly prevalent and associated with elevated risk of ASCVD in Black patients with FH. These finding support the need for greater attention to lipid medication usage and to reduction in residual risk in Black patients with FH through aggressive prevention strategies focused on medication acquisition and adherence, smoking cessation, and blood pressure management.

ARTICLE INFORMATION

Received January 13, 2021; accepted August 3, 2021.

Affiliations

Division of Cardiology, Baylor Scott and White Health Heart Hospital Baylor Plano, Plano, TX (A.A.); Department of Medicine (N.B.), and Division of Cardiology (E.D., M.W.R.), Washington University School of Medicine, St. Louis, MO; Sections of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX (A.H., C.M.B.); Genomic Medicine Institute Geisinger, Danville, PA (L.K.J., A.C.S.); Lipid and Prevention Program, Lifespan Cardiovascular Institute, and Brown University, Alpert Medical School, Providence, RI (K.A., E.N.); Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (Z.A.); and Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO (A.C.G.).

Sources of Funding

None.

Disclosures

Dr Aspy has contracted research paid to institution from Amgen, Akcea, Esperion, and Novartis. She received speaker honoraria in 2020–2021 from MedScape/WebMD, and the National Lipid Association. Dr Ahmad serves on the advisory board for Esperion. Dr Ballantyne receives significant grant/research support that is paid to the institution from Abbott Diagnostic, Akcea, Amgen, Esperion, Novartis, Regeneron, Roche

Table 4. The Strongest Predictors of ASCVD in Black Patients vs Patients of European Ancestry with FH

	Black patients		European ancestry	
	Odds ratios (95% CI)	P Value	Odds ratios (95% CI)	P Value
Age, y	0.99 (0.95–1.03)	0.53	1.03 (1.02–1.05)	<0.001*
Female sex	0.77 (0.36–1.61)	0.48	0.40 (0.26–0.59)	<0.001*
BMI	0.95 (0.90–1.00)	0.06	1.00 (0.97–1.03)	0.95
Hypertension	3.25 (1.11–10.62)	0.04*	4.04 (2.62–6.32)	<0.001*
Current smoking	3.65 (1.40–10.38)	0.01*	2.27 (1.11–4.60)	0.02*
Diabetes	1.04 (0.50–2.16)	0.92	2.06 (1.23–3.48)	0.001*

ASCVD indicates atherosclerotic cardiovascular disease; BMI, body mass index; and FH, familial hypercholesterolemia. Covariates include age, sex, BMI, hypertension, current smoking, and diabetes.

*P value of statistical significance.
Supplementary Material

Table S1

REFERENCES

1. (CDC) CfDCaP. Prevalence of coronary heart disease--United States, 2006-2010. MMWR Morb Mortal Wkly Rep. 2011;60:1377–1381
2. Carnethon MR, Pu J, Howard G, Albert MA, Anderson CAM, Bertoni AG, Mujahid MS, Palaniappan L, Taylor HA, Willis M, et al. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation. 2017;136:e393–e423. doi: 10.1161/CIRCULATIONAHA.113.001559
3. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIRCULATIONAHA.119.035328
4. Shay CM, Ning H, Daniels SR, Rooks CR, Gidding SS, Lloyd-Jones DM. Status of cardiovascular health in US adolescents: prevalence estimates from the National Health and Nutrition Examination Surveys (NHANES) 2005–2010. Circulation. 2013;127:1369–1376. doi: 10.1161/CIRCULATIONAHA.113.001559
5. Khera AV, Hegele RA. What is familial hypercholesterolemia, and why does it matter? Circulation. 2020;141:1760–1763. doi: 10.1161/CIRCULATIONAHA.120.020890
6. Leigh JA, Alvarez M, Rodriguez CJ. Ethnic minorities and coronary heart disease: an update and future directions. Curr Atheroscler Rep. 2016;18:9. doi: 10.1007/s11883-016-0559-4
7. Peng JA, Ancock BP, Conell C, Almers LM, Chau Q, Zaroff JG. Nonutilization of statins in a community-based population with a history of coronary revascularization. Clin Ther. 2016;38:288–296.e2. doi: 10.1016/j.clinthera.2015.11.020
8. Amrock SM, Duell PB, Knickelbine T, Martin SS, O’Brien EC, Watson KE, Mitri J, Knadt I, Shrader P, Baum SJ, et al. Health disparities among adult patients with a phenotypic diagnosis of familial hypercholesterolemia in the CASCADE-FH™ patient registry. Atherosclerosis. 2017;267:19–26. doi: 10.1016/j.atherosclerosis.2017.10.006
9. Tsimikas S, Fazio S, Ferdinand KC, Ginsberg HN, Koschinsky ML, Marcovina SM, Moriarty PM, Rader DJ, Remaley AT, Reyes-Soffer G, et al. NHLBI Working Group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis. J Am Coll Cardiol. 2018;71:177–192. doi: 10.1016/j.jacc.2017.11.014
10. Ahmad Z, Adams-Huet B, Chen C, Garg A. Low prevalence of mutations in known loci for autosomal dominant hypercholesterolemia in a multiethnic patient cohort. Circ Cardiovasc Genet. 2012;5:666–675. doi: 10.1161/CIRCGENETICS.112.963587
11. Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-Jauregui C, O’Dushlaine C, Leader JB, Lester Kirchner H, Lindbuchler DM, et al. Genetic identification of familial hypercholesterolemia within a single US. health care system. Science. 2016;354:aaf7000. doi: 10.1126/science.aaf7000
Supplemental Material
Table S1. Missing Variables.

Variable	N Missing	% Missing
Age	0	0
Sex	0	0
Hypertension	64	8
Current Smoking	81	10
Diabetes Mellitus	0	0
BMI	73	9
Treated Total Cholesterol	174	22
Treated LDL-C	173	21
Treated HDL-C	174	22
Treated Triglycerides	180	22
Statin	0	0