Title
SARS-CoV-2-Associated T-Cell Responses in the Presence of Humoral Immunodeficiency.

Permalink
https://escholarship.org/uc/item/1kb4h6x1

Journal
International archives of allergy and immunology, 182(3)

ISSN
1018-2438

Authors
Gupta, Sudhir
Su, Houfen
Narsai, Tejal
et al.

Publication Date
2021-01-22

DOI
10.1159/000514193

Peer reviewed
SARS-CoV-2-Associated T-Cell Responses in the Presence of Humoral Immunodeficiency

Sudhir Gupta Houfen Su Tejal Narsai Sudhanshu Agrawal
Division of Basic and Clinical Immunology, University of California, Irvine, CA, USA

Abstract
We report perhaps the most comprehensive study of subsets of CD4+ and CD8+ and subsets of B cells in a mild symptomatic SARS-CoV-2+ immunocompetent patient and a common variable immunodeficiency disease (CVID) patient who had normal absolute lymphocyte counts and remained negative for SARS-CoV-2 IgG antibodies. Naïve (T_N), central memory (T_CML), effector memory (T_EM), and terminally differentiated effector memory (T_EMRA) subsets of CD4+ and CD8+ T cells, subsets of T follicular helper cells (cT_FH, T_FH1, T_FH2, T_FH17, T_FH1/T_FH17, and T_FH), CD4 Treg, CD8 Treg, mature B cells, transitional B cells, marginal zone B cells, germinal center (GC) B cells, CD21^{100} B cells, antibody-secreting cells (plasmablasts), and Breg cells were examined in patients and age-matched controls with appropriate monoclonal antibodies and isotype controls using multicolor flow cytometry. Different patterns of abnormalities (often contrasting) were observed in the subsets of CD4+ T, CD8+ T, B-cell subsets, and regulatory lymphocytes among the immunocompetent patient and CVID patient as compared to corresponding healthy controls. Furthermore, when data were analyzed between the 2 patients, the immunocompetent patient demonstrated greater changes in various subsets as compared to the CVID patient. These data demonstrate different immunological responses to SARS-CoV-2 infection in an immunocompetent patient and the CVID patient. A marked decrease in GC B cells and plasmablasts may be responsible for failure to make SARS-CoV-2 antibodies. The lack of SARS-CoV-2 antibodies with mild clinical disease suggests an important role of T-cell response in defense against SARS-CoV-2 infection.
storm" contributed predominantly by innate immune responses [2, 3]. However, adaptive immune responses may contribute to clinical outcomes and severity of disease in a majority of infected individuals. Both antibody and T-cell responses have been studied in patients with COVID-19; however, most of these studies have been reported in severe disease and recovered patients, and very limited data are available for mild disease [3–16].

A number of changes in CD4+ T cell and CD8+ T cell number and functions, including CD4+ and CD8+ T cell lymphopenia, presence of activated T cells, increased or reduced exhausted T cells, dysregulated immune responses, and impaired cytotoxic responses, have been reported [3–17]; however, the role of T cells in mild disease and asymptomatic subjects is poorly understood.

Following antigenic stimulation, naïve CD4+ and CD8+ T cells (T N) undergo activation and clonal expansion to generate effector CD4+ and CD8+ T cells. This clonal expansion phase is followed by a phase of contraction due to apoptosis of effector T cells. A subpopulation of effectors cells is retained as long-term memory cells. Based upon their homing properties, and expression of adhesion molecules and chemokine receptors, memory T cells are classified into central memory (T CM) and effector memory (T EM) CD4+ and CD8+ T cells [18–26]. A small population of T EM cells reacquires CD45RA and is termed as terminally differentiated effector memory T cells (T EMRA). These subsets differ with regard to proliferative response, cytokine production, effector properties, and sensitivity to apoptosis [27–29].

Similar to T cells, the role of antibodies in the pathogenesis and clinical outcome in COVID-19 is not well understood. The majority of patients develop COVID-19 antibodies 1–2 weeks following SARS-CoV-2 infection, and increased circulating plasma cells have been reported [14, 30–33].

B-cell development initiates in the bone marrow from common lymphoid progenitors and undergo activation, proliferation, and differentiation in the lymph nodes and spleen [34–36]. Immature B cells leave the bone marrow as transitional B cells. Transitional cells represent a crucial step in the differentiation and selection of the mature B-cell compartment. Transitional B cells migrate to lymphoid follicles and a minor population to the marginal zone. In the follicle, antigen binding to the B-cell receptor activates B cells. Antigen-activated B cells interact with follicular helper T (T FH) cells, where they undergo proliferation and form germinal centers (GCs). In the GCs, B cells undergo immunoglobulin class-switch recombination and selection of high-affinity B cells. Subsequently, B cells leave the GCs to differentiate into long-lived plasma cells homing into the bone marrow to produce antibodies of different isotypes. A small population of GC B cells leaves the GCs to become class-switched memory (CSM) B cells. The marginal zone (MZ) B cells after interacting with antigens differentiate into short-lived antibody-secreting plasma plasmablasts [37], and a small population is retained as IgM memory B cells. IgM memory B cells, after interacting with antigen, undergo proliferation and differentiation to plasmablasts [38].

In this study, we present a comprehensive analysis of various subsets of CD4+ and CD8+ T cells, subsets of B cells, and regulatory lymphocytes in an immunocompetent patient and a patient with common variable immunodeficiency disease (CVID) with mild COVID-19 disease and negative for SARS-CoV-2 antibodies.

Materials and Methods

A 22-year-old immunocompetent boy and a 63-year-old female CVID patient were studied simultaneously with age-matched healthy controls.

Sample Preparation

Peripheral blood was drawn from an immunocompetent patient (case #1) and the CVID patient (case #2) at 3 months after initial symptoms and when SARS-CoV-2 PCR was negative. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of patient and age-matched healthy subjects by density gradient lymphocyte separation media. Human Subject Committee of the Institution Review Board of the University of California, Irvine, approved the protocol. A signed written consent was obtained from each subject.

Antibodies and Reagents

The following anti-human monoclonal antibodies were purchased from BD Biosciences (San Jose, CA, USA): anti-IgM APC, CD27 FITC, CD38 FITC, anti-IgD PE, CD21 PE, CD27 APC, CD19 PerCP, CD38 APC, CD24 FITC, CD4 PerCP, CD8 PerCP, CD45RA APC, CCR7 FITC, CD183 PE, CD25 FITC, CD127 AL647, FoxP3 PE, CD278 (ICOS) AL647, CD183 BV421, CXCR5 AL488, PD1 APC, CD8 BV421, and CD45RA BV510 were purchased from BioLegend (San Diego, CA, USA).

Immunophenotyping

Approximately 1 million PBMCs were used per combination for antibody staining. Twenty microliter of antibody were added to PBMCs for 30 min. PBMCs were washed and fixed by 2% paraformaldehyde.

For regulatory cells: cells after surface staining were fixed and permeabilized by FoxP3 staining buffer set (BD Bioscience) as per manufacturer’s protocol and intracellular staining with anti-Foxp3-PE monoclonal antibody, and appropriate isotype control (mouse IgG1, k-PE) was used to evaluate nonspecific staining. All fluorescence minus one controls and isotype controls were stained.
Subsets of CD4, CD8 T Cells, B Cells, and Regulatory Lymphocytes in COVID-19

and fixed by 2% paraformaldehyde for flow cytometry. Cells were acquired by BD FACS Celesta (Becton-Dickinson, San Jose, CA, USA) equipped with BVR laser. Forward and side scatters and single cells were used to gate and exclude cellular debris. Thirty thousand cells were acquired and analyzed using FLOWJO software (Ashland, OR, USA).

B cell and B cell subsets were identified by following cell surface markers: naïve B cells – CD19+CD27−IgD+IgM+, transitional B cells–CD19+CD38+IgD+IgM+, MZB cells–CD19+CD27+IgD+IgM+, IgM memory B cells – CD19+CD27+IgM+, GC B cells – CD19+IgD−CD27+CD38+, class switch memory B cells – CD19+CD27+IgD−IgM−, plasmablasts – CD19+CD38+IgM−, mature B cells – CD21hiCD19+CD38+, CD21Low cells – CD19+CD38–CD21low, and Breg – CD19+CD24+CD38+. Following cell surface phenotypes identified subsets of CD4 T cells and CD8+ T cells: T N – CD4+/CD8+CD45RA+CCR7+, T CM – CD4+/CD8+CD45RA−CCR7+T EM , T EMRA – CD4+/CD8+CD45RA−CCR7−, CD8 Treg – CD8+CD183+CCR7+CD45RA−, and CD4 Treg – CD4+CD25+FoxP3+. T FH cells were identified with the following markers: circulating T FH cells (cT FH) – CD4+/CXCR5+CCR6−/CD45RA−/CD45RA−CCR6+/CXCR3+ T FH1 – CD4+/CXCR5+CD45RA−/CCR6−/CD45RA−CCR6+/CXCR3+, and T follicular regulatory cells (T FR) – CD4+CD25hiCD45RA−FoxP3+.

Results

Case 1

A 24-year-old Caucasian male with history of asthma, allergic rhinitis, and autism was referred to immunology clinic for evaluation of recurrent infections. He reported multiple episodes of otitis media and sinus infections as a child. More recently, he reported having multiple episodes of pneumonia over the previous 2 years, confirmed on various chest x-rays or CT chest. The consolidations would vary in location with resolution between episodes. He had no other infectious history and had never been hospitalized for infection previously. His asthma was well controlled on low inhaled corticosteroid and montelukast, and his allergic rhinitis was well controlled on nasal fluticasone. He had no family history of immunodeficiency. He was investigated for primary immunodeficiency.

Data of laboratory evaluation are shown in Table 1. No evidence of immune deficiency including specific antibody response was observed.

During the time he was undergoing immune evaluation, he developed 1 week of fever, cough, hoarseness of voice, and mild shortness of breath. Initially, he was given azithromycin with no improvement. A few days later, he was seen in the emergency room where chest x-ray showed mild peribronchial thickening with mild bibasilar atelectasis. Nasal-pharyngeal swab was positive for SARS-CoV-2. He was oxygenating well on room air and was discharged home with supportive care. Three weeks later, he continued to have worsening shortness of breath, cough, and fatigue. Repeat chest x-ray showed peribronchial thickening though CT chest was clear. At 6 weeks after his initial diagnosis of COVID-19, his respiratory symptoms persisted. Repeat nasal-pharyngeal swab was again positive for SARS-CoV-2. SARS-CoV-2 IgG antibodies were negative. CT chest was unremarkable. At 8 weeks after the initial positive SARS-CoV-2 test, he started to feel some improvement in symptoms; however, hoarseness of voice continued. Repeat nasal-pharyngeal swab was negative for SARS-CoV-2. However, SARS-

Laboratory test	Value	Reference range
Immunoglobulins, mg/dL		
IgG	1,301	610–1,616
IgM	90	35–242
IgA	259	84–499
IgG subclasses, mg/dL		
IgG1	662	382–929
IgG2	490	242–700
IgG3	40	22–176
IgG4	36	5–125
Protective antibody titers (≥1.3 mg/mL) against Streptococcus pneumoniae post Pneumovax-23 administration		
Diptheria Ab IgG, IU/mL	≥0.1 protective	
Tetanus Ab IgG, IU/mL	≥0.1 protective	

Table 1. Immunological features of case 1

Subsets of CD4, CD8 T Cells, B Cells, and Regulatory Lymphocytes in COVID-19
CoV-2 IgG antibodies remained undetected. Sixteen weeks after his initial COVID-19 diagnosis, repeat SARS-CoV-2 IgG antibodies were checked at a different lab and was still not detected; however, hoarseness of voice still persisted.

Case 2

A 64-year-old female was evaluated for recurrent sinus infections and urinary tract infections. She had no family history of immunodeficiency. Immunologic workup was consistent with a diagnosis of CVID (Table 2). No evidence of comorbidity including bronchiectasis was present. She was started on IVIG treatment. Three weeks after her first IVIG infusion, she developed malaise, cough, and nasal congestion. Nasal-pharyngeal swab was positive for SARS-CoV-2. She had 3 positive nasal-pharyngeal swabs for SARS-CoV-2 over the next 2 months. However, her symptoms completely resolved. Three months after initial infection, she had 2 nasal-pharyngeal swabs negative for SARS-CoV-2. SARS-CoV-2 IgG antibody test was performed 3 times over a 3-month period and remained negative. Throughout this time, she continued to receive her IVIG treatments. The patient received no other treatments.

Alterations in Subsets of CD4+ T Cells and CD4 Treg in SARS-CoV-2 Infection

T cells, based upon expression of chemokine receptors, homing pattern and function have been identified as naïve, central memory, effector memory, and terminally differentiated effector memory cells [18–24]. Therefore, we examine various subsets in both patients and age and gender-matched healthy controls. A flow cytograph is shown in Figure 1. Increased CD4+ T cells and T N cells were observed in both immunocompetent and CVID patients, as compared to simultaneously analyzed age and gender-matched healthy controls. However, decreased T CM cells and increased T EMRA cells were observed in the immunocompetent patient and not in the CVID patient. CD4+ Treg cells were similar in both patients as compared to controls.

Alterations in CD8+ T and CD8+ T Cell Subsets and CD8 Treg in SARS-CoV-2 Infection

Similarly to CD4+ T cells, we analyzed various subsets of CD8+ T cells. CD8+ T N cells were increased in the immunocompetent patient; however, they were comparable to control in the CVID patient. CD8+ T EM cells were decreased in both patients; however, CD8+ T EMRA cells were increased in the CVID patient and decreased in the immunocompetent patient. CD8+ Treg cells were comparable to controls in both patients. CD8+ Treg cells were similar in both patients as compared to controls.

Table 2. Immunological features of case 2 (CVID)

Laboratory test	Value	Reference range
Immunoglobulins, mg/dL		
IgG	599 a	610–1,616
IgM	159	35–242
IgA	73 a	84–499
IgG subclasses, mg/dL		
IgG1	373 a	382–929
IgG2	152 a	242–700
IgG3	14 a	22–176
IgG4	11	5–125
Protective antibody titer (≥1.3 mg/mL) against *Streptococcus pneumoniae* post Pneumovax-23 administration	7/23	12–22/23
Lymphocyte subsets, /mm³		
Lymphocyte%	20	14–44
Absolute lymphocytes	1,780	900–3,300
CD3+CD4+%	78 a	31–61
CD3+CD4+ number	1,388 a	338–1,194
CD3+CD8+%	17	10–38
CD3+CD8+ number	303	85–729
CD4+/CD8+ ratio	4.38 a	0.9–3.7
CD3%	94 a	62–84
CD3+ number	1,673	619–1,847
CD19+ B%	3 a	5–26
CD19+ number	53	51–473
CD56+ NK%	3	1–17
CD3–CD16+CD56+ NK number	53	12–349
Isohemagglutinin titer		
Anti-B IgM titer	1:8	>1:32
Anti-B IgG titer	1:8	>1:32

CVID, common variable immunodeficiency disease. a Abnormal results.
Therefore, we examined all subsets of T_{FH}. Pattern of changes is distinct between the immunocompetent patient and CVID patient. A flow cytograph is shown in Figure 3. Immunocompetent subject (case 1) had increased T_{FH1}, T_{FH2}, and T_{FR} cells and decreased cT_{FH}, T_{FH17} cells and T_{FH1}/T_{FH17} cells. In the CVID patient, cT_{FH} and T_{FH2} cells were decreased, whereas T_{FH1} cells were increased. T_{FR} cells were comparable to controls.

Fig. 1. A CD4 subsets: CD4+ gated cells in PBMCs, gated CD4+ cell subsets are characterized by different makers. B Gated CD4+ cells naïve: T_N (CCR7+CD45RA+), central memory: T_{CM} (CCR7+CD45RA–), effector memory: T_{EM} (CCR7–CD45RA–), and T effector memory RA: T_{EMRA} (CCR7–CD45RA+). C CD4 Treg gated CD4+ cells for CD25+CD127–. D CD4+CD25+CD127–FoxP3+ cells. Abnormal values are circled in red. PBMCs, peripheral blood mononuclear cells; T_N, T naïve; T_{EM}, T effector memory; T_{CM}, T central memory; T_{EMRA}, T effector memory RA.

B Cells and B Cell Subsets, and Breg in SARS-CoV-2 Infection

Since both patients did not make antibodies to SARS-CoV-2, we analyzed B cells and various subsets of B cells in both patients and compared with healthy controls. A flow cytograph is shown in Figure 4a (case #1) and Figure 4b (case #2). CD19+ B cells in both patients were comparable to healthy controls. The immunocompetent patient...
Fig. 2. A CD8 subsets CD8+ gated cells in PBMCs, gated CD8+ cell subsets are characterized by different makers. B Gated CD8+ cells T_N (CCR7+ CD45RA+), T_CM (CCR7+CD45RA−), T_EM (CCR7−CD45RA−), and T_EMRA (CCR7−CD45RA+). C CD8 Treg: gated CCR7+CD45RA− CD8 T cells expressing CD183 (CXCR3). Abnormal values are circled in red. PBMCs, peripheral blood mononuclear cells; T_N, T naïve; T_EM, T effector memory; T_CM, T central memory; T_EMRA, T effector memory RA.
and CVID patient had contrasting changes in B cell subsets. The immunocompetent patient had increased naïve B cells and decreased MZ, IgM memory, CSM, and CD21low B cells. In contrast, the CVID patient had increased transitional, MZ, and IgM memory B cells but CD21low B cells comparable to healthy control. Both patients had decreased GC B cells and plasmablasts. Breg were increased in both immunocompetent patient and CVID patient as compared to healthy controls.

Comparison of Changes in CD4+ and CD8+ T Cell Subsets and CD4+ Treg and CD8+ Treg between the Immunocompetent Patient and CVID Patient

To determine whether immunophenotypic changes were different among the immunocompetent patient and immunodeficiency (CVID) patient, we compared data of subsets of CD4+, CD8+, and cT FH cells among both patients. Among CD4+ T cells (Table 3), CD4+ and CD4+ TCM cells were decreased in the immunocompetent subject as compared to the CVID patient. Furthermore, CD4+ T N, T EM, and T EMRA, and CD4 Treg were increased in the immunocompetent subject as compared to the CVID patient. Among CD8+ T cells (Table 3), CD8+ T cells and CD8+ T EM were comparable between both patients. However, CD8+ T N cells were increased and CD8+ T EM, T EMRA, and CD8 Treg were decreased in the immunocompetent patient as compared to the CVID patient. Among T FH subsets (Table 3), cT FH and T FH1 were comparable among both patients. T FH2 and T FR cells were increased and T FH17 were decreased in the immunocompetent patient as compared to the CVID patient.

Changes in B Cell Subsets between the Immunocompetent Patient and CVID Patient

When data were analyzed for B cell and B cell subsets (Table 3), CD19+ GC B cells, plasmablasts, and CD21 high mature B cells were comparable between both patients. Transitional, MZ, IgM memory, and CSM B cells were decreased in the immunocompetent patient as compared to the CVID patient. CD21low and Breg were increased in the CVID patient as compared to immunocompetent patient.
Discussion

Here we report distinct and often contrasting alterations in various lymphocyte subpopulations in a SARS-CoV-2+ immunocompetent patient and CVID patient with relatively mild disease that did not require hospitalization, oxygen supplementation, or any other specific treatment, and both were negative for anti-SARS-CoV-2 IgG antibodies. Our patients were different from those reported in the literature. First, both patients were SARS-CoV-2 antibody negative, and 1 patient has a diagnosis of primary antibody immunodeficiency, the CVID patient, and both patients had normal T cell functions as demonstrated by normal proliferative response to mitogens and antigens (data not shown). The immunocompetent patient appears to have mild disease but continues to have some residual symptoms of cough and hoarseness, where the CVID patient has completely recovered. This is the first report of comprehensive analysis of various lymphocyte subpopulation in primary immunodeficiency disease.

Progressive lymphopenia is a common feature of COVID-19 that is often associated with severe disease [47, 48]. Our both patients with mild disease had normal absolute lymphocyte counts.

![Figure 4](Image)
SARS-CoV-2-specific T cells have been identified in T\textsubscript{CM}, T\textsubscript{EM}, and T\textsubscript{EMRA} subsets [9]; however, their role in infection and pathogenesis has not been explored. There are limited studies of various subsets including naïve and memory subsets of CD4+ T cells and CD8+ T cells in COVID-19. Zang et al. [49] compared T cell subsets in severe and mild to moderate COVID-19 cases with healthy controls. They observed no difference in CD8+ T\textsubscript{N} cells among 3 groups; however, both groups of patients exhibited increased percentage of CD8+ T\textsubscript{EM} cells as compared to healthy controls. Furthermore, CD8+ T\textsubscript{EMRA} were higher in severe cases as compared to mild to moderate COVID-19 cases and healthy controls. Mathew et al. [31] also reported increased CD8+ T\textsubscript{EMRA}; however, they observed decreased CD8+ T\textsubscript{EM} cells in recovered patients as compared to healthy controls. In our study, CD8+ T\textsubscript{EMRA} cells were increased in CVID patient; however, they were decreased in the immunocompetent patient. These differences could be age related. CD8+ T\textsubscript{EMRA} cells are increased with age [24, 26, 28]. Our CVID patient is 64 years old, whereas immunocompetent patient is 24 years old. Mathew et al. [31] and Zhang et al. [49] did not provide the ages of patients with increased CD8+ T\textsubscript{EMRA}. The significance of increased CD8+ T\textsubscript{EMRA} in COVID-19 remains unclear. Zhang et al. [49] observed increased in CD8+ T\textsubscript{EMRA} in severe cases, whereas we observed increase in the CVID patient who had a mild course of COVID-19. Similar to Mathew et al. [31], both our patients had decreased CD8+ T\textsubscript{EM} cells. In contrast to Zhang et al. [49] who observed no changes in CD8+ T\textsubscript{N} cells, our immunocompetent COVID-19 patient had increased CD8+ T\textsubscript{N} cells.

Mathew et al. [31] reported decreased CD4+ T\textsubscript{N} and increased CD4+ T\textsubscript{EMRA} recovered patients as compared to healthy controls. Zhang et al. [49] also observed increased CD4+ T\textsubscript{EMRA} cells; however, no changes were ob-
served in CD4+ T N cells. Our immunocompetent patient also had increased CD4+ T EMRA as well as CD4+ T N and decreased CD4+ T EM cells. In contrast, all subsets of CD4+ T cells in CVID patients were comparable to healthy controls.

T FH cells are major CD4+ T helper subsets that are essential for B-cell differentiation into immunoglobulin-producing plasma cells, and for GC formation and generation of memory B cells [39–44]. GC is the primary site for class-switched DNA recombination and affinity maturation. T FH cells in the GC regulate class-switched DNA recombination, and selection of high-affinity antibody-producing B cells. T FH cells are characterized by the expression of CXCR5 and transcription factor B-cell lymphoma 6, and production of their signature cytokine, the interleukin 21 (IL-21). According to the expression of CXCR3 and CCR6 on CD4+CXCR5+ cTFH cells, they are divided into 3 different subsets of cTFH cells with different functions [45]. In addition to IL-21, these different cTFH subsets can also produce, albeit in lower amounts, IL-4, interferon γ, and IL-17. cTFH1 (CXCR5+CXCRI3+CCR6+) produce IL-21 and interferon γ, cTFH2 (CXCR5+CXCRI3+CCR6+) produce IL-21 and IL-4, and cTFH17 (CXCR5+CXCRI3+CCR6+) produce IL-21 and IL-17A; all of them are able to efficiently induce antibody response by memory B cells. T FH17 cells are able to induce in vitro naïve and memory B cells to produce IgG and IgA, and their increase is associated with expansion of plasmablasts [50]. In our immunocompetent patient, cTFH17 cells were decreased as compared to control, which would be consistent with decreased plasmablasts and negative anti-SARS-CoV-2 antibodies. In the CVID patient, decreased plasmablasts and negative anti-SARS-CoV-2 antibodies may be due to intrinsic B-cell defect.

Table 3. Comparison of lymphocyte subsets between 2 patients

	CD4+	T N	T CM	T EM	T EMRA	CD25+CD127−FoxP3+ (CD4 Treg)
Subpopulations						
of CD4+ T cells						
Patient #1	48.30	51.60	28.50	18.20	1.76	3.25
Patient #2	57.70	25.80	64.20	9.76	0.16	2.12
CD8+ T N T CM T						
TEM T EMRA CC						
CCR7+CD45RA−CX						
CR3+ (CD8 Treg)						
Subpopulations						
of CD8+ T cells						
Patient #1	26.40	48.70	5.39	26.40	19.50	0.04
Patient #2	24.00	18.60	15.80	25.00	40.50	0.10
CD4+ cTFH T FH						
T FH1 T FH2 T FH						
FH17 T FH1/T FH						
17 CCR5+						
CD25+FoxP3+ (T FR)						
Subpopulations						
of TFH cells						
Patient #1	44.40	10.70	29.00	39.40	25.90	5.66
Patient #2	56.00	8.59	28.8	22.70	38.50	10.10
CD19+ Naive						
Transition MZ						
IgM mem CSM						
GC Plasmablast						
CD21+ CD21Low B						
Reg						

Subpopulations						
of B cells						
Patient #1	4.30	84.20	5.67	7.61	6.19	5.66
Patient #2	4.18	65.20	16.80	15.00	13.10	15.10
T FH , follicular helper T; T N, T naïve; T EM , T effector memory; T CM , T central memory; T EMRA , T effector memory RA; T FH , follicular helper T; GC, germinal center; MZ, marginal zone; CSM, class-switch memory.						
Subsets of CD4, CD8 T Cells, B Cells, and Regulatory Lymphocytes in COVID-19

Regulatory lymphocytes play a critical role in immune homeostasis and immunological tolerance. There are several members of immunoregulatory club including CD4+ Treg, CD8+ Treg, B reg, and TFR cells. CD4+ Treg and CD8+ Treg were originally described in 1982 [61]. Sakaguchi and his group further characterized CD4+ Treg by the expression of CD25 and FoxP3 [62]. The role of CD4+ Treg in immune tolerance is well established [63]. In both patients, CD4+ Treg were comparable to healthy controls. This is in agreement with observations of Zhang et al. [49], who did not find any difference in CD4+ Treg between mild, severe cases, and healthy controls; however, this is in contrast to Qin et al. [64], who reported decreased CD4+ Treg in severe cases of COVID-19.

Recent interest in CD8+ Treg lead to their phenotypic and functional characterization [65–67]. CD8+ Treg have shown to play an important role in immune homeostasis, including inhibition of B-cell proliferation and differentiation of B cells into immunoglobulin-secreting plasmablasts [67, 68]. Since both our patients continued to be SARS-CoV-2 antibodies negative, we examined CD8+ Treg. CD8+ Treg in both patients were comparable to healthy controls. Therefore, CD8+ Treg appear not to play a role in SARS-CoV-2 antibody responses in our patients. The negative SARS-CoV-2 antibodies in COVID-19 patient are likely due to intrinsic B cell defect. There are no published data on CD8+ Treg in COVID-19.

TFR cells regulate the differentiation of cT\textsubscript{FH} cells [46]. Our immunocompetent patient had increased TFR however, cT\textsubscript{FH} cells were comparable to healthy control. In contrast, the COVID patient had decreased cT\textsubscript{FH} cells but TFR were comparable to control. Furthermore, Cunill et al. [69] reported decreased TFR cells in COVID patients with <2% CD27+IgD– B cells. Therefore, significance of increased TFR in immunocompetent patient remain unclear.

There has been increasing interest in understanding the role and mechanism of Breg [70–74]. Breg regulate immune responses including inflammatory responses in a variety of autoimmune diseases [72] and regulate the generation of peripheral CD4+ Treg cells [75, 76]. Both patients had increased Breg cells. No relationship was observed with CD4+ Reg. There are no published data on
Breg in COVID-19. It remains to be determined if increased Breg play a role in decreased plasmablasts and negative anti-SARS-CoV-2 antibodies.

When alterations in various lymphoid subpopulations were compared between 2 patients, the immunocompetent patient demonstrated greater and often contrasting changes as compared to the CVID patient. Subsets of CD4+ T cells and B cells revealed greater changes than in subpopulations of CD8+ T cells, which would be consistent with negative antibody responses.

Neutralizing antibodies inhibit SARS-CoV-2 both in vitro and in vivo [77, 78]. Chen et al. [79] observed that patients recovered from severe illness mounted the most robust neutralizing antibody responses. They have demonstrated a positive correlation between the magnitude of neutralizing antibody responses and disease severity in patients recovered from COVID-19. These investigators also reported that asymptomatic patients fail to generate neutralizing antibodies. Our immunocompetent patient was 24 years young with mild disease and had undetectable anti-SARS-CoV-2 antibodies. The CVID patient was also negative for SARS-CoV-2 antibodies yet had mild course. COVID-19 disease has been reported in patients with primary immunodeficiency; however, no comprehensive immunological analyses have been published [80, 81]. Myets et al. [82], in an international study, reported that the majority of COVID-19 patients in primary immunodeficiency were X-linked agammaglobulinemia (no B cells) and CVID and had either mild to moderate disease severity or recovered completely. There were no deaths in those without high-risk morbidity factors. Quinti et al. [80] reported 7 COVID-19 patients with antibody deficiency (2 with agammaglobulinemia and 5 with CVID). Interestingly, patients with agammaglobulinemia had mild course of the disease and recovered, whereas patients with CVID presented with a severe form of disease and required multiple drugs including antiviral agents. Since a subset of CVID patients also have T-cell defects, it is possible that severe disease in few CVID patients was related to T-cell dysfunctions. Soresina et al. [81] also reported 2 patients with X-linked agammaglobulinemia (no B cells) with COVID-19 who developed pneumonia; however, they did not require oxygen ventilation or admission to intensive care and both patients recovered. In patients with antibody deficiency diseases, mild disease and complete recovery could be because of lack of cytokine storm response and/or lack of antibodies-dependent enhancement (ADE) of SARS-CoV-2 infection [83]. Similarly, a role of ADE could be made in severe COVID-19 patients with high titers of antibodies and poor clinical outcome. However, there is no evidence of SARS-CoV-2 ADE. Quinlan et al. [84] reported that sera from rats vaccinated with SARS-CoV-2 RBD in vitro failed to demonstrate any ADE of SARS-CoV-2. Gao et al. [85] reported failure to ADE in macaques immunized with an inactivated SARS-CoV-2 vaccine candidate. Furthermore, there are conflicting data for the beneficial effect of convalescent plasma transfusion on the clinical course of COVID-19; both beneficial effect [86] as well as lack of beneficial effects have been observed [87]. Li et al. [87] reported that among patients with severe or life-threatening COVID-19, convalescent plasma therapy added to standard treatment, compared with standard treatment alone, did not result in a statistically significant improvement in time to clinical improvement within 28 days. Therefore, mild to moderately severe disease in patients with X-linked agammaglobulinemia with complete absence of B cells and specific antibody response as well in our patients with negative anti-SARS-CoV-2 antibodies strongly suggest an important role of T cells in SARS-CoV-2 infection.

In summary, our patient with primary immunodeficiency disease (CVID) and the immunocompetent patient demonstrate different changes in cells of the immune system during SARS-CoV-2 infection. It is unknown as to the protective immunity that prevents asymptomatic patients from progressing to more severe disease. Failure to produce anti-SARS-CoV-2 antibodies yet a mild to moderate clinical course strongly suggests a critical role of T cells in defense against SARS-CoV-2. Patients with primary immunodeficiency diseases are “experiments of nature” and because of specific gene mutations provide unique opportunities to study protective immune responses to SARS-CoV-2. Changes in subsets of various lymphocytes in the COVID-19 CVID patient were different than those observed in CVID patients without SARS-CoV-2 infection, suggesting that those alterations are most likely due to SARS-CoV-2 infection. Our study also highlights that alteration in lymphocyte subsets persist long after SARS-CoV-2 infection. Studies of both phenotypic and functional changes in large cohort of patients with primary immunodeficiency with defined gene mutations SARS-CoV-2 infection are needed.

Statement of Ethics

The investigation was carried out following the rules of the Declaration of Helsinki of 1975 revised in 2013. Institutional Review Board (human subject committee), University of California in Irvine approved the protocol (HS# 2001-l). Each and all subjects gave written consent.
None of the authors declare any conflict of interest.

This work was supported by unrestricted funds from the Division of Basic and Clinical Immunology, University of California, Irvine.

References

1 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506.
2 Yang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020 Jul; 108(1): 17–41.
3 Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Nat Sci Rev. 2020; 7(6): 998–1002.
4 Chen Z, John Wherry E. T cell responses in COVID-19. Nat Rev Immunol. 2020; 20(9): 529–36.
5 Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner-Weisman CAGAR, Weisman AR, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020 Jul 15; 5(49): eabd7114.
6 Giamarellos-Bourboulis EJ, Netea MG, Rovinna N, Akinosoglu K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020; 27(6): 992–1003.e3.
7 Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020; 26(7): 1070–6.
8 Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 11: 827.
9 Weiskopf D, Schmitz KS, Raasdonk MP, Grironi A, Okba NMA, Endeman H, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020; 5(48): eabd2071.
10 Endeman G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–9.
11 Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020; 130(9): 4694–703.
12 Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5): 541–3.
13 Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020; 6(6): 31.
14 Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, Zhao H, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020; 52(6): 971–77.e3.
15 Dong T, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4 and CD8 T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients. bioRxiv. 2020 Jun 8.
16 Siracusano G, Pastorì C, Lopalo C. Humoral immune responses in COVID-19 patients. A window on the State of the Art. Front Immunol. 2020 May; 11: 1049.
17 Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020 Jul 48; 71(5): 762–8.
18 Sallusto F, Lenig D, Förster R, Lipp M, Lanza Vecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999; 401(6754): 708–12.
19 Masopust D, Vezys Y, Marzo AL, LeFrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001; 291(5512): 2413–7.
20 Wening W, Crowley MA, Manjunath N, von Andriane UH. Migratory properties of CD4(+) and CD8(+) T cells: changes in aged humans. Exp Gerontology. 2004; 20: 545–9.
21 Tomiyama H, Matsuda T, Takiguchi M. Differentiation of human CD8(+) T cells from a memory to memory/effector phenotype. J Immunol. 2002; 168(11): 5538–50.
22 Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003; 100(11): 4260–6.
23 Van Lier RA, ten Berge IJ, Gamadia LE. Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol. 2003; 3(12): 931–9.
24 Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive/memory effector subsets of CD8+ T cells: changes in aged humans. Exp Gerontology. 2004; 39(4): 540–50.
25 Gupta S, Gollapudi S. Molecular mechanisms of TNF-alpha-induced apoptosis in naive and memory T cell subsets: effect of age. Immunol Rev. 2005; 205: 114–25.
26 Gupta S. Molecular mechanisms of TNF-alpha-induced apoptosis in naive and memory T cell subsets: effect of age. Immunol Rev. 2005; 205: 114–25.
27 Gupta S. Molecular mechanisms of TNF-alpha-induced apoptosis in naive and memory T cell subsets: effect of age. Immunol Rev. 2005; 205: 114–25.
28 Gupta S, Su H, Bi R, Gollapudi S. Differential sensitivity of naive and memory subsets of human CD8+ T cells to TNF-alpha-induced apoptosis. J Clin Immunol. 2006; 26(3): 193–203.
29 Gupta S, Bi R, Gollapudi S. Central memory and effector memory subsets of human CD4(+) and CD8(+) T cells display differential sensitivity to TNF-[alpha]-induced apoptosis. Ann N Y Acad Sci. 2005; 1050: 108–14.
30 Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses: (Trends in Immunology 41, 355–359, 2020). Trends Immunol. 2020 Jun; 41(6): 545–9.
31 Mathew D, Giles JR, Baxter AE, Greenplate AR, Wu JE, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immune phenotypes with implications for therapeutic interventions. bioRxiv [Preprint]. 2020 May 23.
32 Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020; 26: 453–5.
33 Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020;6:31.

34 LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008 Sep; 112(5):1570–80.

35 Kurosaki T. B-lymphocyte biology. Immunol Rev. 2010 Sep;237(1):5–9.

36 Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013 Apr;131(4):959–71.

37 Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol. 2002;2(5):323–35.

38 Seifert M, Przekopowitz M, Taudien S, Lollies K. Human circulating T follicular helper cell subsets in health and disease. J Clin Immunol. 2016;36(Suppl 1):1–9.

39 Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:635–67.

40 Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, et al. Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjögren’s syndrome. Biochem Biophys Res Commun. 2012;422(2):238–44.

41 Kasahara T, de M, Bento CAM, Gupta S. Phenotypic and functional analysis of T-follicular cells in common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(8):635–47.

42 Tan L, Wang Q, Zhang D, Ding J, Huang Q, Gu C, Wu Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin infect dis. 2020;71:762–8.

43 Safinia N, Scotta C, Vaikuntanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.

44 Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin infect dis. 2020;71:197–209.

45 Rifa’I M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in maintenance of T cell homeostasis. J Exp Med. 2004;200:1123–34.

46 Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8+ regulatory T cells in immune tolerance. Immunol Rev. 2019 Nov;292(1):209–24.

47 Gupta S, Su H, Agrawal S. CD8 Treg cells inhibit B cell proliferation and immunoglobulin production. Int Arch Allergy Immunol. 2020;181(12):947–55.

48 Gupta S, Agrawal S. In vitro effects of CD8 Treg on human B cell subpopulations. Int Arch Allergy Immunol. 2020;181:476–80.

49 Cunill V, Clemente A, Lanio N, Barceló C, Andreu V, Pons J, et al. Follicular T cells from smB. Front Immunol. 2017;8:174.

50 Ding T, Yan F, Cao S, Ren X. Regulatory B cell: new member of immunosuppressive cell club. Human Immunol. 2015;76:615–21.

51 Filatreau S. Regulatory functions of B cells and regulatory plasma cells. Biomed J. 2019 Aug;42:233–42.

52 Mauri C, Blair PA. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol. 2010;6:636–43.

53 Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

54 Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176:705–10.

55 Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. Coronavirus vaccine: a snapshot of vaccine-induced immune responses. Curr Opin Immunol. 2020;65:1–7.

56 Fukuda K, Arimura S, Kikutani H. Rearrangements of B cell receptor gene joinings and the antibody repertoire of the germline. Science. 2000;288:469–73.

57 Watanabe Y, Ueno H, Nakauchi H. Phenotype and functions of memory T cells in human blood. Trends Immunol. 2014;35(9):436–42.

58 Schaefer P, Willimmann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1533–62.

59 Schmitt N, Bentebibel SE, Ueno H. Phenotypic and functional properties of memory T cells in man. Nat Rev Immunol. 2002;2(9):470–81.

60 Corominas F, Cervera S, de la Luz Martinez-Rubio P, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 responses. J Immunol. 2017;199:101–10.

61 Arumugakani G, Wood PM, Carter CR. Follicular helper CD4(+) T cell: new member of immunosuppressive cell club. Human Immunol. 2015;76:615–21.

62 Safinia N, Scotta C, Vaikuntanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.

63 Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin infect dis. 2020;71:762–8.

64 Rifa’I M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in maintenance of T cell homeostasis. J Exp Med. 2004;200:1123–34.

65 Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8+ regulatory T cells in immune tolerance. Immunol Rev. 2019 Nov;292(1):209–24.

66 Gupta S, Su H, Agrawal S. CD8 Treg cells inhibit B cell proliferation and immunoglobulin production. Int Arch Allergy Immunol. 2020;181(12):947–55.

67 Gupta S, Agrawal S. In vitro effects of CD8 Treg on human B cell subpopulations. Int Arch Allergy Immunol. 2020;181:476–80.

68 Cunill V, Clemente A, Lanio N, Barceló C, Andreu V, Pons J, et al. Follicular T cells from smB. Front Immunol. 2017;8:174.

69 Ding T, Yan F, Cao S, Ren X. Regulatory B cell: new member of immunosuppressive cell club. Human Immunol. 2015;76:615–21.

70 Filatreau S. Regulatory functions of B cells and regulatory plasma cells. Biomed J. 2019 Aug;42:233–42.

71 Mauri C, Blair PA. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol. 2010;6:636–43.

72 Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

73 Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176:705–10.

74 Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. Coronavirus vaccine: a snapshot of vaccine-induced immune responses. Curr Opin Immunol. 2020;65:1–7.

75 Fukuda K, Arimura S, Kikutani H. Rearrangements of B cell receptor gene joinings and the antibody repertoire of the germline. Science. 2000;288:469–73.

76 Watanabe Y, Ueno H, Nakauchi H. Phenotype and functions of memory T cells in human blood. Trends Immunol. 2014;35(9):436–42.

77 Schaefer P, Willimmann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1533–62.

78 Corominas F, Cervera S, de la Luz Martinez-Rubio P, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 responses. J Immunol. 2017;199:101–10.

79 Arumugakani G, Wood PM, Carter CR. Frequency of Treg cells is reduced in COVID patients with autoimmunity and splenomegaly and is associated with expanded CD21lo B lymphocytes. J Clin Immunol. 2020;10(7):490–500.
79 Chen X, Pan Z, Shuai Yue S, Fei Yu F, Zhang J, Yang Y, et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther, 2020;180:5.

80 Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lessons from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146:211.

81 Sorensina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Foca E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as Covid-19 manifestation but recover. Ped Allergy Immunol. 2020 Jul;31(5):565–9.

82 Myets I, Bucciol G, Quinti I, Neven B, Fisher A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity. J Allergy Clin Immunol. 2020;32(5):1704–13.

83 Tirado SMC, Yoon K-J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003;16:69–86.

84 Quinlan BD, Mou H, Zhang L, Guo Y, He W, Ojha A, et al. The SARS-CoV2-receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. bioRxiv. 2020.04.10.03641.8 202.

85 Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine for SARS-CoV-2. Science. 2020 Jul 3; 369(6499):77–81.

86 Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe Covid-19 patients. Proc Natl Acad Sci U S A. 2020;117:9490–6.

87 Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19 a randomized clinical trial. JAMA. 2020 Aug 4; 324(5):460–70.