2020

Dynamic Pair-Breaking Current, Critical Superfluid Velocity, and Nonlinear Electromagnetic Response of Nonequilibrium Superconductors

Ahmad Sheikhzada
Old Dominion University, asheikhz@odu.edu

Alex Gurevich
Old Dominion University, agurevic@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Elementary Particles and Fields and String Theory Commons

Original Publication Citation
Sheikhzada, A., & Gurevich, A. (2020). Dynamic pair-breaking current, critical superfluid velocity, and nonlinear electromagnetic response of nonequilibrium superconductors. *Physical Review B, 102*(10), (15 pp.), Article 104507 https://doi.org/10.1103/PhysRevB.102.104507

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Dynamic pair-breaking current, critical superfluid velocity, and nonlinear electromagnetic response of nonequilibrium superconductors

Ahmad Sheikhzada and Alex Gurevich

Department of Physics and Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529, USA

(Received 20 April 2020; revised 19 June 2020; accepted 20 August 2020; published 15 September 2020)

We report numerical calculations of a dynamic pair-breaking current density \(J_d \) and a critical superfluid velocity \(v_c \) in a nonequilibrium superconductor carrying a uniform, large-amplitude AC current density \(J(t) = J_s \sin \Omega t \) with \(\Omega \) well below the gap frequency \(\omega \). The dependencies \(J_d(\Omega) \) and \(v_c(\Omega) \) which gradually increase from their static pair-breaking GL values \(J_s \) and \(v_c \) at \(\Omega \to \infty \) to \(\sqrt{2}J_s \) and \(\sqrt{2}v_c \) at \(\Omega \to 0 \). Here \(J_s \) and \(v_c \) are critical superheating field at which the Meissner state becomes unstable and a dynamic superheating field at which the Meissner state becomes unstable in different regimes of a fixed AC current and a fixed AC superfluid velocity induced by the applied AC magnetic field \(H = H_s \sin \Omega t \) in a thin superconducting filament or a type-II superconductor with a large GL parameter. We also calculated a nonlinear electromagnetic response of a nonequilibrium superconducting state, particularly a dynamic kinetic inductance and a dissipative quasiparticle conductivity, taking into account the oscillatory dynamics of superconducting condensate and the kinetics of quasiparticles driven by a strong AC current. It is shown that an AC current density produces multiple harmonics of the electric field, the amplitudes of the higher-order harmonics diminishing as \(\tau_d \) increases.

DOI: 10.1103/PhysRevB.102.104507

I. INTRODUCTION

Mechanisms of the maximum superfluid velocity \(v_c \) and the DC depairing current density \(J_c \), which a superconductor can carry in an equilibrium state, have been well established [1]. The first calculations [2] of \(v_c(T) \) and \(J_c(T) \) were based on the Ginzburg-Landau (GL) equations near the critical temperature \(T \approx T_c \). Furthermore, \(v_c(T) \) and \(J_c(T) \) have been calculated in the whole temperature range \(0 < T < T_c \) in the BCS model for clean [3–6] and dirty [5,6] superconductors with nonmagnetic and magnetic impurities [7] and taking into account strong electron-phonon coupling in the Eliashberg theory [8]. The DC depairing current densities have been measured for different superconducting materials [9–11]. These issues are closely related to a maximum superheating magnetic field \(H_s \), which can be sustained by a superconductor in the vortex-free Meissner state. Here \(H_s(T) \) near \(T_c \) has been calculated from the GL theory [12,13] and for type-II superconductors with a large GL parameter \(\kappa \gg 1 \) at \(T = 0 \) [14] and in the entire temperature range \(0 < T < T_c \) both in the clean limit [15] and for arbitrary concentrations of nonmagnetic and magnetic impurities [16]. Nonlinear screening and breakdown of superconductivity in proximity-coupled bilayers under a strong DC magnetic field have been calculated in Refs. [17–20].

Unlike the static \(v_c \) and \(J_c \), in equilibrium, the physics of the dynamic critical superfluid velocity \(v_d \) and the depairing current density \(J_d \) at which superconductivity is destroyed in a nonequilibrium state is not well understood. The dynamic \(v_d \) and \(J_d \) are controlled by both the nonlinear current pair-breaking effects and a complex kinetics of quasiparticles driven out of equilibrium by a time-dependent electromagnetic field [21]. For an oscillating superflow \(J(t) = J_s \sin \Omega t \), the dynamic \(v_d \) and \(J_d \) depend on the frequency \(\Omega \) and the relaxation time constants for the superfluid density \(\tau_{GL} \) and quasiparticles \(\tau_{\Phi} \).

\[\tau_{\Phi} \approx \tau_1 \left(\frac{T_c}{T} \right)^{1/2} e^{\Delta/T}, \quad \tau_2 \approx \tau_2 \left(\frac{T_c}{T} \right)^{1/2}, \]

where \(\tau_1 \) and \(\tau_2 \) are materials constants. Depending on the amplitude \(J_s \), the distribution function of quasiparticles \(f(E, t) \) can either deviate strongly from the Fermi-Dirac distribution \(f_0(E) \) at \((\tau_r, \tau_r) \Omega \gg 1 \) or relax to \(f_0(E) \) at \((\tau_r, \tau_r) \Omega \ll 1 \). Since both \(\tau_1 \) and \(\tau_2 \) increase as \(T \) decreases, nonequilibrium effects become more pronounced at \(T \ll T_c \). By contrast, \(\tau_{GL} \) increases as \(T \) increases and diverges at
\[T = T_c \ [21], \]
\[\tau_{GL}(T) \simeq \frac{\pi h}{8k_B(T_c - T)}, \quad T \approx T_c. \] (2)

At \(T < T_c \), the condition \(\Omega \tau_{GL} \lesssim 1 \) is satisfied up to 0.1–1 THz for most superconductors but breaks down at temperatures very close to \(T_c \). For instance, at 1 GHz we have \(\Omega \tau_{GL}(T) \simeq 1 \) at \(T_c - T \simeq \pi h \Omega / 8k_B \approx 10^{-2} \text{ K} \).

The physics of the dynamic critical velocity is relevant to many applications, for instance, microwave thin film superconducting resonators used in kinetic inductance detectors and astrophysical spectroscopy [30,31]. It is also essential for superconducting resonant cavities for particle accelerators, where the breakdown fields close to the thermodynamic superheating field \(H_s \) have been achieved at very high quality factors \(\approx 10^{10} \) at 2 K in the Meissner state [32,33]. These cavities operate at 0.1–3 GHz much lower than the gap frequency \(\Delta / h \approx 0.8 \text{ THz} \) for Nb, and the dynamic superheating field \(H_s \) sets a theoretical limit of the rf breakdown.

The dynamic superheating field was measured by Yogi et al. [34] who showed that for Sn, Pb, and In at 90–300 MHz, the breakdown field near \(T_c \) is close to \(H_s(T) \). Pulse measurements [35] on Nb and Nb_{50}Sn at GHz frequencies at 2 K \(< T < T_c \) have shown that the field onset of magnetic flux penetration is close to \(H_s(T) \) for Nb near \(T_c \) but is smaller than \(H_s(T) \) for Nb_{50}Sn at lower \(T \).

In this work we calculate the dynamic \(J_d(\Omega, T) \) and a critical phase gradient \(Q_d(\Omega, T) \) of the order parameter related to \(v_d \) by \(Q_d = mv_{d,i} \), where \(m \) is the electron mass [1] for a uniform AC superflow at \(T \approx T_c \). We focus here on the maximum amplitude of the AC current density \(J(t) = J_d \sin \Omega t \) which may be sustained in nonequilibrium Meissner states and do not consider nonuniform dissipative states at \(J_d > J_d \) due to proliferation of phase slip centers in narrow filaments [36–38] or penetration of vortices in bulk superconductors above the dynamic superheating field. TDGL simulations of thin filaments have shown that \(J_d \) can approach \(\sqrt{J_c} \) at \(\Omega T \gg 1 \) [38], while numerical simulations of kinetic equations [25,26] have shown [39] that superconductivity can persist during short current pulses with amplitudes above the static \(J_s \). Yet the calculations of \(J_d \) and \(Q_d \), taking into account both the nonlinear current pair-breaking and nonequilibrium kinetics of quasiparticles, have not yet been done. We also calculate a nonlinear electromagnetic response in a nonequilibrium state at \(J < J_d \) and its manifestations in the nonlinear Meissner effect, kinetic inductance and intermodulation which have been so far investigated in equilibrium superconductors [40–50].

The paper is organized as follows. In Sec. II we specify the main equations and discuss the theoretical assumptions under which the equations have been derived. These equations were solved for a uniform AC superflow in Sec. III, where the dynamic \(Q_d(\Omega, T) \) and \(J_d(\Omega, T) \) were calculated. In Sec. IV we address a nonlinear response and calculate the current-dependent kinetic inductance both in equilibrium and nonequilibrium states. The conclusions and broader implications of our results are presented in Sec. V.

II. MAIN EQUATIONS

We consider a dirty \(s \)-wave superconductor exposed to time-dependent electromagnetic potentials \(A(\mathbf{r}, t) \) and \(\varphi(\mathbf{r}, t) \). The dynamic \(Q_d(\Omega, T) \) and \(J_d(\Omega, T) \) at \(T \approx T_c \) are calculated using the equations for the order parameter \(\Psi(\mathbf{r}, t) = \Delta \exp(-i\theta) \) and the current density \(\mathbf{J}(\mathbf{r}, t) \) along with a kinetic equation for the distribution function of quasiparticles [23–26]. The cases of a fixed AC superfluid velocity \(v(t) \) and a fixed AC current density \(J(t) \) are investigated. These cases can be realized in the geometries shown in Fig. 1, where a thin film cylinder (a) and a ring filament (b) exposed to the AC magnetic field \(H(t) \) correspond to the regime of fixed \(v(t) \), whereas a thin wire connected to an AC power supply shown in Fig. 1(c) or a semi-infinite superconductor with \(\kappa \gg 1 \) corresponds to the regime of fixed \(J(t) \). It is assumed that the thickness \(d \) of films and filaments is much smaller than the magnetic penetration depth \(\lambda_L \), so that the induced current

![FIG. 1. Geometries for which \(Q_d(\Omega, T) \) and \(J_d(\Omega, T) \) are calculated: (a) A thin film cylinder in a parallel AC magnetic field, (b) a thin filament ring in a perpendicular magnetic field, and (c) a thin wire connected to an AC power supply.](image-url)
density is uniform over the cross section. We focus here on the stability of a uniform Meissner state and do not consider thermally activated or quantum proliferation of vortices or phase-slip centers [51–54] and the influence of AC current [55,56] on their dynamics at $J < J_d(\Omega, T)$, or the effects of inhomogeneities [57] and current leads on the nucleation of vortices or phase slips. The condition that vortices do not nucleate at $J \sim J_d$ requires $d \leq \xi(T)$, where ξ is the coherence length. It is also assumed that the magnetic flux threading the samples shown in Fig. 1(a) is much greater than the flux quantum ϕ_0 and the Little-Parks oscillations [1] are washed out. Here the self-field is smaller than the applied field by the factor $d/\xi_E \ll 1$.

The dynamic $Q_d(\Omega, T)$ and $J_d(\Omega, T)$ for both fixed electric field and fixed current are calculated by first solving the TDGL equations. The TDGL approach is useful to address qualitative mechanisms of destruction of superconductivity by an AC current, even though the TDGL theory, strictly speaking, is not applicable for the calculations of $J_d(\Omega, T)$. We then calculate $Q_d(\Omega, T)$ and $J_d(\Omega, T)$ by solving the full set of dynamic equations of Ref. [24]. Comparing the TDGL results with a more adequate theory of Refs. [23–26] shows the effects of nonequilibrium kinetics of quasiparticles and the extent to which the TDGL approach is applicable. We then proceed with the calculations of the kinetic inductance and the nonlinear electromagnetic response in nonequilibrium states.

A. TDGL equations

Slow temporal and spatial variations of $\Psi(\mathbf{r}, t)$ and $\mathbf{J}(\mathbf{r}, t)$ in a dirty s-wave superconductor at $T \approx T_c$ can be described by the TDGL equations [25,26]:

$$
\frac{\pi}{8\tau_c e} \left(1 + 4\tau_c^2 \Delta_0^2 \right)^{-1/2} \left(\frac{\partial}{\partial t} + 2ie\mathbf{\varphi} + 2\tau_c^2 \frac{\partial}{\partial t} \right) \Psi = \left(1 - \frac{\Delta_0^2}{\Delta_0^2} \right) \Psi + \frac{\xi}{\Delta_0} (\nabla - 2ie\mathbf{A})^2 \Psi,
$$

(3)

$$
\mathbf{J} = \frac{\pi \sigma_0}{4\tau_c e} \Delta_0^2 \mathbf{Q} - \sigma_0 \nabla \mathbf{\varphi} + \frac{\partial \mathbf{A}}{\partial t}.
$$

(4)

Here $\xi = (\pi h D/8k_B T_c)^{1/2}$ is the coherence length, $D = v_F l/3$ is diffusion constant, v_F is the Fermi velocity, l is the mean free path, $\epsilon = 1 - T/T_c$, τ_c is an energy relaxation time due to inelastic scattering of quasiparticles on phonons [21], $\Delta_0^2 = 8\pi^2 k_B^2 T_c^2/\gamma(3)$, $\sigma_0 = 2e^2 DN(0)$ is the normal state conductivity, $N(0)$ is the density of states on the Fermi surface, $-e$ is the electron charge, and $\mathbf{Q} = -(\nabla \theta + 2\pi n A/\phi_0)$ is a gauge-invariant phase gradient. Equations (3) and (4) in which the units with $\hbar = k_B = 1$ are used were derived from the kinetic BCS theory under the condition of local equilibrium, assuming that $\mathbf{Q}(\mathbf{r}, t)$ and $\Delta(\mathbf{r}, t)$ vary slowly over ξ_0, the diffusion length $L_d = (\partial \tau_c)^{1/2}$ and τ_c [21,25,26], where

$$
\tau_c = \frac{8\hbar}{\gamma(3) 3\lambda} \left(\frac{4}{\gamma(3)} \right) \frac{c_s}{v_F} \left(\frac{2T_c}{T} \right)^2.
$$

(5)

Here c_s is the speed of longitudinal sound, λ is a dimensionless electron-phonon coupling constant, and $T_F = \epsilon_F / k_B$ is the Fermi temperature. For Pb we have [58,59] $c_s \approx 1.32$ km/s, $v_F \approx 1830$ km/s, $T_F = 1.1 \times 10^5$ K, $T_c = 7.3$ K, and $\lambda = 1.55$, which yields $\tau_c^{PB}(T_c) \approx 2.52 \times 10^{-11}$ s. For Al with $c_s \approx 5.1$ km/s, $v_F \approx 2030$ km/s, $T_F = 1.36 \times 10^5$ K, $T_c = 1.2$ K, and $\lambda = 0.43$, Eq. (5) gives $\tau_c^{PB}(T_c) \approx 3.64 \times 10^{-7}$ s.

For a uniform superflow, Eqs. (3) and (4) in the gauge $\varphi = 0$ can be written in the following dimensionless form:

$$
(1 + 4\tau_c^2 \psi^2) \frac{\partial \psi}{\partial t} = (1 - q^2) \psi - \psi^3,
$$

(6)

$$
\dot{j} = u \psi^2 q + \frac{\partial q}{\partial t},
$$

(7)

where $\psi = \Delta/\Delta_0$, $q = Q_\xi$, $\tau = \Delta_0 T_c/\hbar$, $j = J/J_0$, t is in units of τ_{GL}, $J_0 = \sigma_0 / 2e\xi \tau_{GL}$, and $u = \pi^2/14\xi(3) \approx 5.79$.

B. Nonequilibrium kinetic equations

For a uniform current flow, the full set of nonequilibrium kinetic equations [24–26] given in Appendix A can be reduced to a single kinetic equation for the odd in energy E part of the quasiparticle distribution function $f(E, t)$, and dynamic equations for $\psi(t)$ and $j(t)$:

$$
R_2 \frac{\partial f}{\partial E} \frac{\partial \psi}{\partial t} + N_1 \left(\frac{\partial}{\partial t} + \frac{s}{2\tau} \right) \delta f = \frac{N_2 R_2}{s} \frac{\partial f}{\partial E} \frac{\partial q^2}{\partial t},
$$

(8)

$$
\frac{\partial \psi}{\partial t} - \frac{1}{\epsilon} \int_0^\infty \frac{R_2 \delta f}{q} dE = (1 - q^2) \psi - \psi^3,
$$

(9)

$$
\dot{j} = u \psi^2 q + \frac{\partial q}{\partial t} \int_0^\infty \left(N_1 + N_2^2 \right) \frac{\partial f}{\partial E} dE + 2qs \int_0^\infty N_2 R_2 \delta f dE, \quad s = (u/\epsilon)^{1/2}.
$$

(10)

Here $\delta f(E, t) = f(E, t) - f_0(E)$, $f_0 = \tanh(E/2T)$, the quasiparticle energy E and temperature T are in units of Δ_0, and the scaling factor $(u/\epsilon)^{1/2} = 2\tau_{GL} \Delta_0/\hbar$ results from the same normalization of the parameters as in Eqs. (6) and (7). If $\Omega \tau_{GL} \ll 1$ the spectral functions N_1, N_2, R_1, and R_2 are defined by the normal $\alpha(E) = N_1(E) + iR_1(E)$ and anomalous $\beta(E) = N_2(E) + iR_2(E)$ Green’s functions which satisfy the quasistatic Usadel equation for 1D current flow [25,26]:

$$
\left(\frac{1}{2\tau} - i\epsilon \right) \beta + \frac{q^2}{2} \alpha \beta = \psi \alpha,
$$

(11)

where $\alpha^2 + \beta^2 = 1$. Equation (11) reduces to a quartic equation for α, the solutions of which are given in Appendix A. The term $1/2\tau$ in Eq. (11) defines a finite quasiparticle lifetime due to scattering on phonons, resulting in subgap states at $|E| < \psi$. We do not consider here other contributions to the subgap states [60–62].

We solved the integro-differential Eqs. (8)–(10) numerically using the method of lines [63]. By discretizing the energy, Eqs. (8)–(10) were reduced to coupled ordinary differential equations in time which were solved by the Adams-Bashforth-Moulton method [64] with the error tolerances below 10^{-6}. Results of the calculations of the dimensionless $j_d = J_d / J_0$ and $q_d = Q_d / \xi$ as functions of the dimensionless frequency $\omega = \Omega / \Delta_0$, and the quasiparticle relaxation time $\tau = \tau_{GL} \Delta_0 / \hbar$ are given below.
III. DYNAMIC PAIR-BREAKING CURRENT

A. TDGL results

The stationary Eqs. (6) and (7) have the solution $\psi = 0$ at $q > 1$ and $\psi = \sqrt{1 - q^2}$ at $q < 1$. Stability of this solution with respect to small perturbations $\delta \psi(t)$ and $\delta q(t)$ depends on the way by which the superflow is generated. In the regime of fixed q the stationary solution $\psi(q)$ is stable in the whole region of $q < q_1 = 1$, but in the regime of fixed j the solution $\psi(q)$ is stable if q is smaller than $q_1 = 1/\sqrt{3}$ at which $j = uq(1 - q^2)$ reaches maximum [1,2]. This gives the GL depairing current density $j_c = 2u/3\sqrt{3}$ above which $\psi(j_c) = \sqrt{2/3}$ to zero.

1. Fixed $Q(t)$

Figure 2 shows $\psi(t)$ calculated from Eq. (6) with $q(t) = q_0 \sin \omega t$ at $\omega = \Omega_TGL = 0.1$, $\tau = 100$, and the initial condition $\langle \psi(0) \rangle = 0$. Here $\psi(t)$ relaxes after a transient period $t \gtrsim \sqrt{1 + 4\tau^2}$ to an oscillating steady state with a nonzero mean $\langle \psi \rangle$ if $q_0 < q_0(\omega, T)$ or to the normal state with $\psi(t) = 0$ at $t \gg 1$ if $q_0 > q_0(\omega, T)$. The mean $\langle \psi(q_0) \rangle$ decreases with q_0 and vanishes at $q_0 = q_d$.

The calculated dependencies of q_d on ω and τ are shown in Fig. 3. Here $q_d(\omega)$ at $\omega = 0.01$ increases from $q_d(0) \approx 1.097$ at $\tau = 0$ to $q_d(\tau) \to \sqrt{2}$ at $\tau \gg 1$. At higher frequency $\omega = 0.1$, the dynamic $q_d(\tau)$ is nearly equal to $\sqrt{2}$ at all τ. However, if τ is fixed but the frequency changes, $q_d(\omega)$ varies from $q_1 = 1$ at $\omega = 0$ to $q_d(\omega) \to \sqrt{2}$ at $\omega \sqrt{1 + 4\tau^2} \gtrsim 1$. The universal value of $q_d = \sqrt{2}$ is achieved at $\omega \tau \gtrsim 1$, that is, for Ω exceeding a crossover frequency $\Omega_c \simeq \hbar/TGL\Delta_0\tau_T$ given by

$$\Omega_c \simeq \frac{k_B}{\Delta_0\tau_T}(T_c - T) \sim \frac{k_B T^3}{\hbar T_D^2} \sqrt{1 - \frac{T}{T_c}},$$

where T_D is the Debye temperature. Here $\Omega_c(\tau)$ vanishes at T_c, reaches maximum $\Omega_m = \Omega_c(6T_c/7)$ at $T/T_c \approx 0.86$ and decreases with T at $T < 0.8T_c$, as shown in Fig. 4.

The increase of $Q_d(\Omega, T)$ at $\Omega \gtrsim \Omega_c(T)$ by the factor $\sqrt{2}$ can be understood as follows. As follows from Fig. 2, $\psi(t)$ oscillates rapidly around a mean $\langle \psi \rangle$. Here $\langle \psi \rangle \approx \sqrt{1 - q_0^2}$ is determined by Eq. (6) with the time-averaged $\langle q^2(t) \rangle = q_0^2/2$ so $\langle \psi \rangle$ vanishes at $q_d = \sqrt{2}$. A small-amplitude AC correction $\delta \psi(t)$ was calculated in Appendix B. The superconducting state remains stable in the whole region $0 < q_d < q_0$.

The temperature dependence of $Q_d(\Omega, T)$ shown in Fig. 5 is affected by the ratio $\Omega/\Omega_m(T)$. If $\Omega > \Omega_m = \Omega_c(6T_c/7)$ (see Fig. 4), the dynamic $Q_d(T) \to \sqrt{2}/\xi(T)$ has the same temperature dependence as the static $Q_c = 1/\xi(T)$. However, if $\Omega \ll \Omega_m$, we obtain that $Q_d(T) \to \xi_0^{-1}\sqrt{2(1 - T/T_c)}$ at T close to T_c and crosses over to the static $Q_c(T)$ at lower T. There is also a range of frequencies $\Omega < \Omega_m$ but $\Omega \gtrsim \Omega_m(T/2)$ (see Fig. 4) in which $Q_d(T)$ evolves from $\sqrt{2}Q_c(T)$ at $T \to T_c$ to $Q_d \approx Q_c(T)$ at $T \lesssim 0.8T_c$ and back to $\approx \sqrt{2}Q_c(T)$.

![Figure 2](image-url)
Fig. 2. Dynamics of $\psi(t)$ calculated at $q = q_0 \sin \omega t$, $\tau = 100$, and $\omega = 0.1$. Here $\psi(t)$ eventually vanishes at $q_0 = \sqrt{2}$.

![Figure 3](image-url)
Fig. 3. The calculated dependencies of q_d on τ (top) and ω (bottom). Here $q_d \to \sqrt{2}$ at $\omega \tau \gtrsim 1$.

![Figure 4](image-url)
Fig. 4. Temperature dependence of $\Omega_c(T)$. The dashed lines show the levels of fixed Ω at $\Omega > \Omega_m$ and $\Omega < \Omega_m$, where Ω_m is the maximum value of $\Omega_c(T)$ corresponding to the point m.

104507-4
shows different from the regime of fixed q which makes it comes unstable and ψ. The temperature dependence of $\tau\sqrt{\omega_0}$ is characteristic of the AC current as well, which makes it unstable and ψ. Here the dynamic $Q_d = \sqrt{\omega(1-T/T_c)}/\xi_0$ at $\Omega \gg \Omega_c(T)$ has the same temperature dependence as the static $Q = \sqrt{1-T/T_c}/\xi_0$. If $\Omega \sim \Omega_c(T)$ the behavior of $Q_d(T)$ is affected by the temperature dependence of $\tau_e(T)$, as shown for the case of $\omega_0 = 0.001$ and $\tau_0 = 100$.

2. Fixed $J(t)$

We calculated $\psi(t)$ at a fixed $j(t) = j_0 \sin \omega t$ by solving the coupled Eqs. (6) and (7). The GL DC depairing current density $j_c = 2u/3\sqrt{3} \approx 2.228$ is reached at $q = 1/\sqrt{3}$ and $\psi^2 = 2/3$, while at $q > 1/\sqrt{3}$ the superconducting state becomes unstable and $\psi(q)$ vanishes abruptly [1]. This feature is characteristic of the AC current as well, which makes it different from the regime of fixed $q(t)$. For instance, Fig. 6 shows $\psi(t)$ calculated at $\tau = 10$ and $\omega = 0.1$. At $j_a = 1.38j_c$ the order parameter abruptly vanishes after a transient period. For large τ, this transition to the normal state occurs at $j_d = \sqrt{2}\omega_0$, as shown in the inset for $\tau = 100$ and $\omega = 0.1$. Here the dynamic pair-breaking current $j_{d\omega}(\omega, \tau)$ shown in Fig. 7 exhibits similar dependencies on ω and τ as $q_d(\omega, \tau)$ at a fixed $q(t)$. If $\omega \tau \gg 1$ both the dynamic $j_{d\omega}(\omega, \tau)$ and $q_d(\omega, \tau)$ are larger by the factor $\sqrt{2}$ than their respective GL values.

The temperature dependence of $J_d(\Omega, T)$ is affected by the temperature dependencies of $\tau(T)$ and $\Omega(T)$. At $T \rightarrow T_c$ and $\Omega \gg \Omega_c(T)$ the dynamic pair-breaking current J_d is $\sqrt{2}$ times larger than the static $J_0(T)$ and is independent of τ. As T decreases $J_d(\Omega, T)$ can evolve to $J_0(T)$ at temperatures for which $\Omega \lesssim \Omega_e(T)$. This behavior of $J_d(\Omega, T)$ is illustrated in Fig. 8.
kinetics of quasiparticles. Both the dynamic current pair breaking and nonequilibrium terms in Eqs. (6) and (7) were derived from the BCS equation (6) and the full nonequilibrium equations (8)–(11) for Ω_1 and ω_1.

Consider first solutions of Eqs. (8)–(11) at $T = 100$ and $t = 0$. As shown in Fig. 9, the qualitative behavior of $\psi(t)$ calculated from Eqs. (8) and (9) turns out to be similar to that of TDGL, except that the nonequilibrium integral term in Eq. (9) accelerates relaxation of $\psi(t)$ at $q_0 \simeq 1$. In both cases superconductivity is destroyed at $q_0 = 1$.

Shown in Fig. 10 are snapshots of a nonequilibrium part of the distribution function $\delta f(E, t)$ induced by the stepwise $q(t)$. Here the magnitude of $\delta f(E, t)$ calculated at $t = 100$ increases as q_0 increases but remains relatively small up to $q_0 = 1$. As the quasiparticle relaxation time τ increases, the magnitude of $\delta f(E, t)$ also increases. The peak in $\delta f(E, t)$ shifts to lower energies as q_0 increases, consistent with the decrease of the quasiparticle gap due to the DC current pair breaking.

C. Fixed $q(t)$

Solutions of Eqs. (8) and (9) with $q(t) = q_0 \sin \omega t$ are shown in Fig. 11 along with the TDGL results obtained for the same input parameters. At $q_0 = 1$ the order parameters $\psi(t)$ oscillate around nearly the same mean values $\langle \psi \rangle$ but the amplitude of oscillations $\delta \psi(t)$ calculated from Eqs. (8) and (9) is noticeably larger than the TDGL $\delta \psi(t)$. Relaxation of $\psi(t)$ from the initial value $\psi(0) = 1$ to the steady-state oscillations described by Eqs. (8) and (9) is also faster than the TDGL transient time, consistent with the above results for $q(t) = q_0 \tan \tau$ shown in Fig. 9. These features become more pronounced at the dynamic critical momentum $q_d \simeq \sqrt{2}$ at $\omega \tau \gg 1$, where the amplitudes of oscillations $\delta \psi(t)$ grow significantly larger so that $\psi(t)$ touches zero but then recovers. Yet, despite a rather different dynamics of $\psi(t)$ described by Eqs. (8) and (9) and the TDGL equations, superconductivity gets destroyed at the same critical value $q_d \to \sqrt{2}$ at $t = 100$ and $\omega = 0.1$ in both cases. The calculated dependencies of

FIG. 9. Comparison of $\psi(t)$ calculated from the TDGL equation (6) and the full nonequilibrium equations (8)–(11) for $q(t) = q_0 \tanh \tau$ at $q_0 = 0.75$ and $q_0 = 1$. Here we took $\tau(T) = 100$ and $T = 0.9 T_c$.

FIG. 10. The nonequilibrium correction $\delta f(E)$ at the times when the magnitude $\delta f(E, t)$ reaches maximum after the stepwise increase of $q(t)$. Taking $T = 0.9 T_c$, here the top panel shows $\delta f(E, t)$ calculated for different q_0 at $\tau = 100$ and the bottom panel shows $\delta f(E, t)$ calculated for different values of τ at $q_0 = 1$.

FIG. 11. Comparison of $\psi(t)$ calculated from the TDGL equations and Eqs. (8) and (9) for $q(t) = q_0 \sin \omega t$, $\tau = 100$, $\omega = 0.1$, and $T = 0.9 T_c$.
q_d on ω at $\omega \approx 0.1$ and ω shown in Fig. 12 appear similar to the TDGL results shown by Fig. 3.

Our solutions of Eqs. (8) and (9) have revealed a dynamic state in which $\psi(t)$ periodically vanishes but then recovers to $\psi(t) \sim 1$. This state appears as the frequency decreases, as shown in Fig. 13. For instance, in the case of $\omega = 0.1$ and $\tau = 10$ shown in the top panel Fig. 13, $\psi(t)$ drops down to $\sim 2 \times 10^{-3}$ at the minimum but remains finite. As $\psi(t)$ goes through the minimum the amplitude of $\delta f(E, t)$ decreases and changes sign. However, at $\omega = 0.01$ in the bottom panel, $\psi(t)$ at the minimum drops below the numerical tolerance level of $\sim 10^{-7}$ during a significant portion of the AC period. This case corresponds to a true transition to the normal state with $\psi = 0$ in which all terms in Eq. (9) vanish and Eq. (8) describes an exponential relaxation of $\delta f(E, t) \propto \exp(-t/\tau)$ until the superconductivity recovers as $q(t)$ decreases. This behavior is physically transparent: at very low frequencies the quasistatic $q(t)$ is determined by the instantaneous $q(t) = q_d \sin \omega t$, resulting in periodic transitions to the normal state and the subsequent recovery of superconductivity once $|q(t)|$ exceeds 1. At higher frequencies $\omega \gtrsim 0.1$, the superconducting state does not have enough time to disappear during the parts of the AC period in which $|q(t)| > 1$, so that $\psi(t)$ at the minimum remains finite all the way to $t \rightarrow q_d$.

The calculated $Q_d(T)$ curves shown in Fig. 14 are similar to the TDGL results but generally fall below them: $Q_d(\Omega, T) \rightarrow \sqrt{2}Q_c(\Omega, T)$ at $\Omega \gtrsim \Omega_c(T)$ but $Q_d(\Omega, T) \rightarrow Q_c(T)$ at $\Omega \ll \Omega_c(T)/2$. The temperature dependence of $\tau(T) \propto T^{-3}$ results in a crossover of $Q_d(T, \Omega)$ from $Q_c(T)$ to $\sqrt{2}Q_c(T)$ as T decreases.

D. Fixed $J_d(t)$

Solutions of Eqs. (8)–(10) for $j = j_d \sin \omega t$, $\omega = 0.1$, at $\tau = 10$ and $\tau = 100$ shown in Fig. 15 are qualitatively similar to that of $\psi(t)$ for a fixed $q(t)$. Here $\psi(t)$ vanishes abruptly at $j_d = j_d(\omega, T)$, the amplitude of oscillations of $\psi(t)$ essentially depends on ω and τ, as shown in Fig. 16. The calculated $j_d = 1.35j_c$, at $\tau(T) = 10$ turned out to be slightly smaller than the TDGL value, but at $\tau(T) = 100$ both TDGL theory and Eqs. (8)–(10) give the same $j_d = \sqrt{2}j_c$. The dependencies of $j_d(\omega, \tau)$ on τ and ω shown in Fig. 17 appear similar to those for $q_{sd}(\omega, \tau)$ in Fig. 12 and clearly demonstrate that $j_d \rightarrow \sqrt{2}j_c$ at $\omega \tau \gg 1$. The temperature dependence of $J_d(\Omega, T)$ shown in Fig. 18 is similar to the TDGL results only at $T \rightarrow T_c$: $J_d(\Omega, T) \rightarrow \sqrt{2}J_c(0)(1 - T/T_c)^{3/2}$ at $\Omega \gtrsim \Omega_c(T)$ and $J_d(\Omega, T) \rightarrow J_c(T)$ at $\Omega < \Omega_c(T)$. As T decreases, the $J_d(\Omega, T)$ curves tend toward $J_c(T)$ even at $\Omega > \Omega_c(T)$.
a frequency-dependent complex conductivity, current considered here, the linear response is quantified by of a nonequilibrium superconductor. For a nearly uniform \(2\bar{l} \) is the London penetration depth. Here \(\sigma \) vanishes abruptly. The inset shows \(\psi(t) \) calculated at \(\tau = 100 \), \(\omega = 0.1 \) and \(j_a = \sqrt{2}j_c \). All calculations were performed at \(T = 0.9T_c \).

IV. NONLINEAR ELECTROMAGNETIC RESPONSE

In this section we address an electromagnetic response of a nonequilibrium superconductor. For a nearly uniform current considered here, the linear response is quantified by a frequency-dependent complex conductivity,

\[
J = (\sigma_1 - i\sigma_2)E,
\]

(13) where \(\sigma_1(\Omega) \) describes a dissipative quasiparticle response, \(\sigma_2(\Omega) = 1/\mu_0\Delta_1^2/k_B \) accounts for the Meissner effect, and \(\lambda_L \) is the London penetration depth. Here \(\sigma_2 \) also determines the kinetic inductance \(L_k = (d\Omega\sigma_2)^{-1} = \mu_0\lambda_L^2/d \) per unit length of a film of thickness \(d \) \cite{46–50}. Using \(\lambda_L^2(T) = 2\hbar k_B T_c/\pi\mu_0\sigma_0\Delta_0^2 \) near \(T_c \) \cite{21} yields

\[
L_k = \frac{2\hbar k_B T_c}{\pi\sigma_0 d\Delta_0^2}.
\]

(14)

At high current densities the conductivity \(\sigma = \sigma_1 - i\sigma_2 \) depends on \(\Omega(t) \), causing the nonlinear Meissner effect, intermodulation and generation of higher order harmonics of the electric field \(E(t) \) in response to the AC current \(J(t) = J_0 \sin \omega t \). Defining the kinetic inductance by Eq. (14), where \(\Delta(t) \) is given by the solutions of Eqs. (6) or Eqs. (8) and (9), we can expect strong oscillations of \(L_k \) at large \(J_a \) due to the nonequilibrium current pair breaking. Shown in Fig. 19 is the dynamics of \(L_k(\tau) \) calculated at a fixed \(q_a = q_a \sin \omega t \) with \(q_a = 0.9\sqrt{2} \), \(\omega = 0.01 \), and \(\tau = 100 \). Here the amplitudes of \(L_k(\tau) \) increase with \(q_a \) and diverge at \(q_a \rightarrow q_a \), the peaks in \(L_k(\tau) \) getting higher as \(\omega \tau \) decreases. Figure 19 also shows that the amplitudes of \(L_k(\tau) \) calculated from the full Eqs. (8)–(11) can be orders of magnitude higher as compared

\[
\sqrt{2(1 - T/T_c)^3}
\]

(15)
and τψlations of to the TDGL results. This reflects larger amplitudes of oscillations at small ωτ and Eqs. (8)–(11) are larger than the TDGL results, although not by orders of magnitude.

Shown in Fig. 20 is Lk(t) calculated from Eqs. (6) and (7) and Eqs. (8)–(11) at a fixed AC current j = ja sin ωt and τ = 100. Here Lk(t) can exhibit large-amplitude oscillations at small ωt. The amplitudes of Lk(t) calculated from Eqs. (8)–(11) are larger than the TDGL results, although not by orders of magnitude.

The above calculations of Lk(t) pertain to low frequencies ωτ ≪ 1 at which Lk(t) follows instantaneously to the time-varying order parameter Ψ(t). Generally, the nonlinear electromagnetic response at a fixed q(t) = qa sin ωt causes generation of multiple current harmonics:

\[
 j(t) = \sum_n [j_{1n} \sin \omega t + j_{2n} \cos \omega t].
\]

Likewise, the AC current j = ja sin ωt produces multiple harmonics of the electric field ε = q:

\[
 \varepsilon(t) = \sum_n [\varepsilon_{1n} \sin \omega t + \varepsilon_{2n} \cos \omega t].
\]

Here the frequencies ωn and the Fourier amplitudes j1n(qa), j2n(qa), ε1n(ja), and ε2n(ja) are to be calculated self-consistently from Eqs. (8)–(10), as shown below.

A. Fixed q(t)

Shown in Fig. 21 are the current Fourier spectra calculated at different τ at qa = 0.95√2 and ω = 0.1. Here the multimode spectrum of j(ω) consisting of equidistant peaks at ωn = nω, n = 1, 3, 5, . . . changes markedly as τ increases and the amplitudes of high-frequency harmonics diminish. The latter is consistent with the results of the previous sections which showed that at ωτ ≫ 1 the amplitude of oscillations of superfluid density responsible for the generation of higher harmonics diminishes and the fundamental harmonic in j(t) dominates. Here the nonequilibrium effects described by Eqs. (8) and (9) significantly increase the amplitudes of higher order harmonics as compared to the respective TDGL results.

Of particular interest is the dependence of the in-phase and out-of-phase parts of the amplitude of the main harmonic j0(t) = j1 sin ωt + j2 cos ωt on qa, where j2 determines the mean dissipative power p = ωqa j2/2. Shown in Fig. 22 are steady-state oscillations of j(t) at τ = 1 and τ = 100. At qa = 2−1/2 and τ = 100, the current response is nearly in-phase with q(t) but at τ = 1 the current has dips when q(t) is maximum. The latter comes from pair-breaking effects which mostly reduce the superfluid density and the supercurrent when q(t) reaches maximum. This effect becomes more
pronounced for a larger amplitude \(q_a = 0.95\sqrt{2} \) represented in Fig. 22(b). In this case \(\psi(t) \) is much reduced during a considerable part of the AC period so \(j_1 \ll j_2 \) and the current response becomes nearly ohmic.

The dependencies of the in-phase \(j_1(q_a) \) and out-of-phase \(j_2(q_a) \) amplitudes of the current main harmonic on \(q_a \) are shown in Fig. 23 at \(\tau = 1 \) and \(\tau = 100 \). At \(\tau = 100 \) the response is mostly in-phase with \(q(t) \) up to the critical \(q_a \approx \sqrt{2} \), while at \(\tau = 1 \), the out-of-phase part of \(j_m(t) \) is essential and significantly increases with \(q_a \) and the supercurrent decreases.

B. Fixed \(j(t) \)

To calculate the Fourier harmonics of the dimensionless electric field \(\varepsilon(t) \) with \(E(t)/E_0 = \partial q/\partial t \) with \(E_0 = (2\varepsilon \tau_{\text{dil}})^{-1} \), we solved Eqs. (8)–(10) for \(\psi(t) \) and \(q(t) \) at a fixed AC current \(j = j_a \sin \omega t \). Shown in Fig. 24 are the Fourier spectra \(\varepsilon(\omega) \) at \(j_a = 0.77\sqrt{2} j_c, \omega = 0.1 \), and different \(\tau \). Like in the case of a fixed \(q(t) \), the Fourier spectra of the electric field contain equidistant peaks at \(\omega n = n\omega \) with \(n = 1, 3, 5, \ldots \), the amplitudes of higher order harmonics decreasing as \(\tau \) increases.

Figure 25 shows the in-phase and out-of-phase amplitudes \(\varepsilon_1(j_a) \) and \(\varepsilon_2(j_a) \) of the main harmonic \(\varepsilon_m(t) = \varepsilon_1 \sin \omega t + \varepsilon_2 \cos \omega t \) as functions of \(j_a \) at \(\omega = 0.1 \) and two values of \(\tau = 1 \) and \(\tau = 100 \). Here \(\varepsilon_1(j_a) \) describing the superfluid response dominates at all \(j_a \) and is nearly linear in \(j_a \), indicating that the dynamic differential resistivity \(\rho_2 = \partial \varepsilon_2/\partial j_a \) is weakly dependent on \(j_a \) except for a sharp increase in a narrow region at \(j_a \rightarrow j_c \) for both \(\tau = 1 \) and \(\tau = 100 \). By contrast, \(\varepsilon_1(j_a) \) is linear in \(j_a \) at \(j_a \lesssim j_c/2 \) but then increases sharply as \(j_a \) approaches \(j_c \). The differential resistivities \(\rho_1(j_a) = \partial \varepsilon_1/\partial j_a \) and \(\rho_2(j_a) = \partial \varepsilon_2/\partial j_a \) are weakly dependent on \(j_a \).
\[\frac{\partial \varepsilon_{2}}{\partial j_{a}} \text{ as well as the resulting dissipated power } p = P / P_{0} = \varepsilon_{1} j_{a} / 2 \text{ as functions of } j_{a} \text{ where } P_{0} = E_{0} j_{0} \text{ are shown in Figs. 26 and 27, respectively. At } J > J_{d} \text{ the supercurrent density vanishes jumpwise, resulting in the ohmic response } J = \sigma_{0} E \text{ in the normal state. Notice that both } \rho_{1} \text{ and } \rho_{2} \text{ turned out to be much smaller than the normal state resistivity } \rho_{0} = 1 / \sigma_{0} \text{ in the whole region of } 0 < J_{a} < J_{d}. \]

V. DISCUSSION

In this work we address the breakdown of superconductivity by strong rf currents at \(h\Omega \ll \Delta_{0} \ll k_{B} T_{c} \). Here the deviation of the quasiparticle distribution function \(f(E, t) \) from equilibrium is controlled by the amplitude of rf current and the inelastic electron-phonon scattering time \(\tau_{E} \), which can be much larger than \(\tau_{GL} \) and the rf period \(\Omega \tau_{E} \gg 1 \). Because Eqs. (8)–(10) are applicable at \(h\Omega \ll k_{B} T_{c} \) [24–26], they do not describe a microwave stimulation of superconductivity which occurs at \(h\Omega \gtrsim k_{B} T \) [27]. Yet the kinetic equations (8)–(10) in which \(\delta f / \delta E \) is replaced with its equilibrium value \(\delta f_{0} / \delta E \) for a weak rf field [25,26] can have spurious solutions corresponding to stimulated superconductivity. We did observe these solutions of the linearized equations (8)–(10) but only at large rf amplitudes producing unphysical \(\delta f(E, t) > 1 \). The results presented above are obtained using the Larkin-Ovchinnikov form of Eqs. (8)–(10) which include the exact \(\delta f / \delta E \) [24]. In this case the nonequilibrium correction \(\delta f(E, t) \) was always smaller than 1 and no stimulated superconductivity was observed.

The temperature and frequency dependencies of \(Q_{d} \) and \(J_{d} \) calculated from either the TDGL equations or Eqs. (8)–(10) turned out to be similar. Namely, both \(Q_{d} \) and \(J_{d} \) tend to their respective static GL values at \(\Omega \tau_{E} \ll 1 \) and gradually increase with frequency, approaching the universal values \(Q_{d} \rightarrow \sqrt{2} Q_{c} \) and \(J_{d} \rightarrow \sqrt{2} J_{c} \) at max(\(\tau_{GL}, \tau_{E} \))/\(\Omega \gg 1 \). The physics of this effect is rather transparent: at \(\Omega \tau_{E} \gg 1 \), the pair potential \(\psi(t) = \langle \psi \rangle + \delta \psi(t) \) undergoes small-amplitude rapid oscillations of \(\delta \psi(t) \) around a mean value \(\langle \psi \rangle \) which is determined by quasistatic equations with the time-averaged \(\langle Q^{2} \rangle = Q_{c}^{2} / 2 \). Thus, the solutions for the mean order parameter \(\langle \psi \rangle \) disappear above the same pair-breaking critical value of \(Q^{2} \) as for a DC current. This result can also be used to evaluate the dynamic superheating field \(H_{d} \) at which the Meissner state in a large-\(\kappa \) superconductor becomes absolutely unstable:

\[
H_{d}(T) \rightarrow H_{s}(T), \quad \Omega \tau_{E}(T) \ll 1, \quad (17)
\]

\[
H_{d}(T) \rightarrow \sqrt{2} H_{s}(T), \quad \Omega \tau_{E}(T) \gg 1, \quad (18)
\]

\[
H_{s}(T) = \left(\frac{\sqrt{2}}{3} + \frac{0.545}{\kappa} \right) H_{c}, \quad \kappa \gg 1, \quad (19)
\]

where \(H_{s}(T) \) is the DC superheating field at \(T \approx T_{c} \) [65]. At \(\kappa \gg 1 \) the screening current density varies slowly over \(\xi \), so \(Q(x, t) \) and \(\Delta(x, t) \) are nearly independent of the coordinate \(x \) perpendicular to the surface.
The relation between the dynamic superheating field $H_d(T)$ and the DC superheating field $H_s(T)$ at low temperatures $T \ll T_c$ and frequencies $\hbar \Omega \ll \Delta_0 k_B T_c$ has not yet been calculated from a microscopic theory. Yet based on the known dependence of the quasiparticle gap ϵ_q on the mean free path at $H = H_s$ [16], we can make qualitative conclusions [66] regarding the essential effect of impurities on $H_s(T)$ at $T \ll T_c$. In the dirty limit $l \ll \xi_0$ at $T \ll T_c$, the quasiparticle gap $\epsilon_q(H)$ diminishes as the field increases but remains finite all the way to H_s at which $\epsilon_q(H_s) \approx 0.38 \Delta_0$ [16], where $H_s = 0.84 H_s$. [14]. In this case the density of thermally activated quasiparticles remains exponentially small $n_{QP}(T) \lesssim n_0(\Delta_0/k_BT)^{1/2}\exp(-\epsilon_q/k_BT)$ in the entire field range of stability of the Meissner state, $0 < H < H_s$. A low frequency field $\hbar \Omega \ll \Delta_0$ can produce nonequilibrium quasiparticles which can affect dissipative kinetic coefficients and the surface resistance [66], but the effect of an exponentially small density of quasiparticles at $T \ll T_c$ on the dynamics of the superconducting condensate would be negligible, unlike the case of $T \approx T_c$ considered in this work. As a result, the condensate at $T \ll T_c$ reacts nearly instantaneously to the rf field with $\hbar \Omega \ll \Delta_0/k_BT$, despite slow kinetics of sparse quasiparticles, so the superconductivity would be destroyed under the same pair-breaking condition as in the absence of quasiparticles. Thus, the dynamic superheating field H_d of a dirty superconductor at $\hbar \Omega \ll \Delta_0$ and $T \ll T_c$ may be close to the static superheating field $H_s \approx 0.84 H_s$ even if $\hbar \Omega T \gg 1$.

For cleaner materials, the quasiparticle gap $\epsilon_q(H)$ vanishes before the DC depairing limit $H = H_s$ or $J = J_c$ is reached if $l \gtrsim 8.7 \xi_0$ [16]. In this case the density of quasiparticles at $H = H_s$ is no longer so slow that their kinetic effects at $T \ll T_c$ may increase H_d relative to H_s even at $\hbar \Omega \ll \Delta_0$. A similar situation can also occur in superconductors with a nanostructured surface [62] or inhomogeneous density of impurities [67], where the quasiparticle gap at the surface can be reduced by both the current pair breaking and the proximity effect. Complex effects of impurities on the electron-phonon and electron-electron energy relaxation have been a subject of many experimental investigations in recent years [68–71].

Our calculations of a nonlinear electromagnetic response of a nonequilibrium superconductor show that the amplitudes of higher order harmonics diminish as the quasiparticle energy relaxation time τ_E increases. Typically τ_E near T_c is about 2 orders of magnitude higher than τ_{GL}, except a narrow region of T very close to T_c. Given that strong disorder can significantly reduce τ_E [68–71], one could expect that generation of higher order harmonics and intermodulation effects would be more pronounced in dirty superconductors. The moderate dependence of the dynamic differential resistivity $\rho_2(j_s)$ which defines a nonequilibrium kinetic inductance on j_s shown in Fig. 26 is qualitatively similar to that of $\mathcal{L}(j_s)$ under the condition of the DC nonlinear Meissner effect [40,41,43,45]. At the same time, the dissipative differential resistivity $\rho_1(j_s)$ shown in Fig. 26 has a more pronounced dependence on j_s than $\rho_2(j_s)$. Both $\rho_1(j_s)$ and $\rho_2(j_s)$ have strong peaks as j_s approaches the dynamic depairing current density but remain much smaller than the normal state resistivity at low frequencies $\hbar \Omega \ll \Delta$. The nonlinearity of $\epsilon_q(j_s)$ in a nonequilibrium state manifests itself in a strong dependence of the rf dissipated power on the current amplitude, as shown in Fig. 27.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy under Grant DE-SC0010081-020 and by the National Science Foundation under Grant PHY 1734075.

APPENDIX A: NONEQUILIBRIUM EQUATIONS

The equations obtained in Refs. [23–26] for a nonequilibrium dirty s-wave superconductor at $T \approx T_c$ and $\hbar \Omega \ll \Delta_0$ include the quasistationary Usadel equation:

$$
\frac{D}{2} [\alpha(\nabla - 2ieA)^2 \beta - \beta \nabla^2 \alpha] = \left(\frac{1}{2\tau_E} - i\Omega \right) \beta - \Psi \alpha, \quad (A1)
$$

where the normal and anomalous retarded Green’s functions $\alpha(E) = N_1(E) + iR_1(E)$ and $\beta(E) = N_2 + iR_2(E)$ satisfy $\alpha^2 + \beta^2 = 1$. Equation (A1) is supplemented by the kinetic equations for the odd $f(E)$ and even $f_1(E)$ distribution functions of quasiparticles:

$$
D \nabla \cdot \left((N_1^2 - N_2^2) \nabla f_1 - e \frac{\partial f}{\partial \frac{\partial A}{\partial E}} \right) + 2D N_2 R_2 Q \cdot \left(\nabla f_1 - e \frac{\partial f}{\partial \frac{\partial A}{\partial E}} \right) - N_2 |\Psi| \left(2f_1 + e \frac{\partial f}{\partial \frac{\partial \Theta}{\partial \frac{\partial A}{\partial E}}} \right) = 0, \quad (A3)
$$

where $f = f_0 + \delta f$ and $f_0 = \tanh(E/2T)$. The equations for $\Psi(r,t) = \Delta \exp(-it\varphi)$ and $J(r,t)$ are expressed in terms of $N_1, N_1^2 + N_2^2$ and f_1 as follows [25,26]:

$$
\left[\frac{\pi}{8 \tau_{E, e}} \frac{\partial}{\partial t} - \frac{1}{\Delta \epsilon} \int_0^\infty dE (R_2 \delta f + iN_2 f_1) \right] \Psi = \xi^2 (\nabla - 2i e A)^2 \Psi + \left(1 - \frac{\Delta^2}{\Delta_0^2} \right) \Psi, \quad (A4)
$$

$$
J = \frac{\pi \sigma_0}{4e T_c} \Delta^2 Q f + \frac{\sigma_0}{e} \int_0^\infty dE \left[(N_1^2 + N_2^2) \left(\nabla f_1 - e \frac{\partial f}{\partial \frac{\partial A}{\partial E}} \right) + 2N_2 R_2 Q \delta f \right]. \quad (A5)
$$

If $\delta f(E,r,t)$ and $\Psi(r,t)$ vary slowly over τ_E, ξ, and $L_E = (D \tau_E)^{1/2}$, the derivatives in Eqs. (A2) and (A3) can be neglected. In this local equilibrium approximation Eqs. (A1)–(A5) reduce to Eqs. (3) and (4) [25,26].

If the spatial derivatives in Eqs. (A1)–(A5) are negligible we readily obtain $f_1 = -i e \Phi / \partial E$ and $\Phi = -2 e \psi + \partial \psi / \partial t = 0$ from Eq. (A3), giving $\nabla f_1 - e (\delta f / \partial E) (\partial A / \partial t) = 1/2 (\partial f / \partial E) (\partial Q / \partial t)$. In turn, Eq. (A1) reduces to the quartic
quadratic terms in $\delta \psi$

where

The solution of Eq. (B3) is then

From Eqs. (B1) and (B4) we obtain the following self-consistency equation for $\psi(t)$:

$$r \dot{\psi} = \left(1 - \frac{q_a^2}{2}\right) \psi - \psi^3 + \frac{q_a^2 A}{4} - \frac{3}{2} \psi (A^2 + B^2).$$ (B6)

At $4\omega^2 r^2 \gg g^2$, Eqs. (B5) and (B6) reduce to

$$r \dot{\psi} = \left(1 - \frac{q_a^2}{2}\right) \left(1 - \frac{q_a^3}{32\omega^2 r^2}\right) \psi - \psi^3. \quad (B7)$$

Hence, the mean steady-state ψ is given by

$$\psi = \left(1 - \frac{q_a^2}{2}\right)^{1/2} \left(1 - \frac{q_a^3}{64\omega^2 r^2}\right). \quad (B8)$$

This state is stable with respect to small perturbations of $\psi(t)$ if $q_a < q_d = \sqrt{2}$.

2. **Fixed $J(t)$**

For a fixed $j(t) = j_a \sin \omega t$, we linearize Eq. (7) with respect to an oscillating correction $\delta \psi(t) \ll 1$:

$$j_a \sin \omega t = q u \psi^2 + 2 u \psi \delta \psi + \dot{q}.$$ (B9)

Setting here $q(t) = q_1 \sin \omega t + q_2 \cos \omega t$ and $\delta \psi = A \cos 2\omega t + B \sin 2\omega t$, we obtain $\langle q \delta \psi \rangle = 0$, and $q(t) = -(j_a/u \psi^2) \sin \omega t$ in leading order in $\omega/t \ll 1$ and $(\omega r)^{-2} \ll 1$. Substituting this $q(t)$ into Eq. (6) and averaging gives the equation for the mean $\psi(t)$:

$$(1 + 4\tau^2 \psi^2)^{1/2} \dot{\psi} = \left(1 - \frac{j_a^2}{2u^2 \psi^4}\right) \psi - \psi^3. \quad (B10)$$

The right-hand side of Eq. (B10) has the GL form for a fixed current except that the time averaging of $\langle q^2(t) \rangle = j_a^2/2u^2 \psi^4$ reduces the current pair-breaking term in half as compared to the DC current. As a result,

$$j_a^2 = 2u^2 \psi^4 (1 - \psi^2). \quad (B11)$$

Stability of the above steady state with respect to slow perturbations $\psi_1(t)$ can be addressed by setting $\psi(t) = \psi + \psi_1(t)$ and linearizing Eq. (B10) with respect to ψ_1:

$$r \dot{\psi}_1 = \left[1 + \frac{3 j_a^2}{2u^2 \psi^4} - 3 \psi^2\right] \psi_1. \quad (B12)$$

Hence, $\psi_1 \propto \exp(\gamma t)$, where the decrement γ is given by

$$\gamma = \frac{2}{r^2} (2 - 3 \psi^2). \quad (B13)$$

Here j_a^2 in Eq. (B12) was expressed in terms of ψ^2 using Eq. (B11). This state becomes unstable ($\gamma > 0$) at $j_a = \sqrt{2} j_c$ for which $j_a(\psi)$ reaches maximum at $\psi^2 = 2/3$.

APPENDIX B: **HIGH-FREQUENCY LIMIT, $\omega t \gg 1$**

At high frequencies $\psi(t) = \psi + \delta \psi(t)$ has a small-amplitude oscillating component $\delta \psi(t) \ll \psi$ around a mean value $\langle \delta \psi \rangle = 0$, where $\langle \cdots \rangle$ denotes time averaging. In this case Eqs. (6) and (7) can be solved by the standard methods which have been developed for dynamic equations with rapidly oscillating parameters [72,73].

1. **Fixed $Q(t)$**

For a fixed $q(t) = q_a \sin \omega t$ we expand Eq. (6) up to quadratic terms in $\delta \psi$ and average over the rf period:

$$r \dot{\psi} = (1 - \langle q^2 \rangle) \psi - \psi^3 + \langle h \delta \psi \rangle - 3 \langle \delta \psi \psi \rangle \psi,$$ (B1)

$$h(t) = \langle q^2 \rangle - q^2(t) = \frac{q_a^2}{2} \cos 2\omega t,$$ (B2)

where $r = (1 + 4\tau^2 \psi^2)^{1/2}, \langle q^2 \rangle = q_a^2/2$, and $\langle \delta \psi \delta \psi \rangle = 0$. The dynamic equation for $\delta \psi(t)$ is obtained by expanding Eq. (6) up to linear terms in $\delta \psi$:

$$r \dot{\psi} - g \delta \psi = h(t) \psi, \quad g = 1 - q_a^2/2 - 3 \psi^2.$$ (B3)

The solution of Eq. (B3) is then

$$\delta \psi(t) = A \cos 2\omega t + B \sin 2\omega t.$$ (B4)

$$A = -\frac{q_a^2 g}{2(4\omega^2 r^2 + g^2)}, \quad B = \frac{q_a^2 \omega \psi}{4\omega^2 r^2 + g^2}.$$ (B5)

From Eqs. (B1) and (B4) we obtain the following self-consistency equation for $\psi(t)$:

$$r \dot{\psi} = \left(1 - \frac{q_a^2}{2}\right) \psi - \psi^3 + \frac{q_a^2 A}{4} - \frac{3}{2} \psi (A^2 + B^2).$$ (B6)
[1] M. Tinkham, *Introduction to Superconductivity*, 2nd ed. (McGraw-Hill, New York, 1995).

[2] V. L. Ginzburg, Dokl. Akad. Nauk SSSR **118**, 464 (1958) [Sov. Phys.-Doklady 3, 102 (1958)].

[3] R. H. Parmenter, RCA Rev. **26**, 23 (1962).

[4] J. Bardeen, Rev. Mod. Phys. **34**, 667 (1962).

[5] K. Maki, Prog. Theor. Phys. **29**, 333 (1963).

[6] K. Maki, Gapless superconductivity, in *Nonequilibrium Superconductivity*, edited by R. D. Parks (Marcel Dekker, New York, 1969).

[7] M. Yu. Kupriyanov and V. F. Lukichev, Fiz. Nizk. Temp. **6**, 445 (1980) [Sov. J. Low Temp. Phys. 6, 210 (1980)].

[8] E. J. Nicol and J. P. Carbotte, Phys. Rev. B **43**, 10210 (1991).

[9] N. M. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, Phys. Rev. Lett. **72**, 752 (1994).

[10] N. M. Kunchur, J. Phys. Condens. Matter **16**, R1183 (2004).

[11] V. Rouco, C. Navau, N. Del-Valle, D. Massarotti, G. P. Papari, D. Stirniaiulo, X. Obradors, T. Puig, F. Tafuri, A. Sanchez, and A. Palau, Nano Lett. **19**, 4174 (2019).

[12] J. Matricon and D. Saint-James, Phys. Lett. A **24**, 241 (1967).

[13] S. J. Chapman, SIAM J. Appl. Math. **55**, 1233 (1995).

[14] V. P. Galaiko, Zh. Eksp Teor. Fiz. **50**, 717 (1966) [Sov. Phys. JETP **23**, 475 (1966)].

[15] G. Catelani and J. P. Sethna, Phys. Rev. B **78**, 224509 (2008).

[16] F. P.-J. Lin and A. Gurevich, Phys. Rev. B **85**, 054513 (2012).

[17] W. Belzig, C. Bruder, and G. Schön, Phys. Rev. B **53**, 5727 (1996).

[18] A. L. Fauchere and G. Blatter, Phys. Rev. B **56**, 14102 (1997).

[19] W. Belzig, C. Bruder, and A. L. Fauchere, Phys. Rev. B **58**, 14531 (1998).

[20] A. V. Galaktionov and A. D. Zaikin, Phys. Rev. B **67**, 184518 (2003).

[21] N. B. Kopnin, *Theory of Nonequilibrium Superconductivity* (Oxford University Press, Oxford, England, 2001).

[22] S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B **14**, 4854 (1976).

[23] A. Schmid and G. Schön, J. Low Temp. Phys. **20**, 207 (1975).

[24] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. **73**, 299 (1977) [Sov. Phys. JETP **46**, 1 (1977)].

[25] L. Kramer and R. J. Watts-Tobin, Phys. Rev. Lett. **40**, 1041 (1978).

[26] L. Kramer, J. Phys. Condens. Matter **23**, R1183 (2019).

[27] S. Posen, N. Valles, and M. Liepe, Phys. Rev. Lett. **115**, 047001 (2015).

[28] W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. Low Temp. Phys. **16**, 145 (1974).

[29] J. Zmuidzinas, Nature (London) **417**, 229 (1995).

[30] R. Gurevich, Phys. Rev. B **58**, 648 (1997).

[31] R. Gurevich, Phys. Rev. B **59**, 16233 (1999).

[32] N. W. Ashcroft and N. D. Mermin, *Solid State Physics*, 2nd ed. (Holt, Rinehart and Winston, Philadelphia, 1976).

[33] J. P. Carbotte, Rev. Mod. Phys. **62**, 1027 (1990).

[34] R. Meservey and P. M. Tedrow, J. Appl. Phys. **40**, 2028 (1969).

[35] J. R. Clem and E. H. Brandt, Phys. Rev. B **72**, 174511 (2005).

[36] K. Enpuku, H. Moritaka, H. Inokuchi, T. Kisu, and M. Takeo, Jpn. J. Appl. Phys. **34**, L675 (1995).

[37] M. Yu. Kupriyanov and V. F. Lukichev, Fiz. Nizk. Temp. **6**, 445 (1980) [Sov. J. Low Temp. Phys. 6, 210 (1980)].

[38] R. Gurevich, Phys. Rev. B **51**, 10210 (1995).

[39] T. Dahm and D. J. Scalapino, J. Appl. Phys. **62**, 4174 (2008).

[40] T. Dahm and D. J. Scalapino, J. Appl. Phys. **62**, 4174 (2008).

[41] N. Groll, A. Gurevich, and I. Chiorescu, Phys. Rev. B **81**, 020504(R) (2010).

[42] K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep. **464**, 1 (2008).

[43] E. H. Brandt, Phys. Rev. B **2**, 169 (2006).

[44] M. Sahu, M-H. Bae, A. Rogachev, D. Pekker, T-C. Wei, N. Shah, P. M. Goldbart, and A. Bezryadin, Nat. Phys. **5**, 503 (2009).

[45] L. F. Shampine and M. K. Gordon, *Computer Solution of Ordinary Differential Equations: The Initial Value Problem* (W. H. Freeman, San Francisco, 1975).

[46] A. Leo, G. Grimaili, R. Citro, A. Nigro, S. Pace, and R. P. Huebner, Phys. Rev. B **84**, 014536 (2011).
[69] M. V. Sidorova, A. G. Kozorezov, A. V. Semenov, Yu. P. Korneeva, M. Yu. Mikhailov, A. Yu. Devizenko, A. A. Korneev, G. M. Chulkova, and G. N. Goltsman, Phys. Rev. B 97, 184512 (2018).

[70] L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, Sci. Rep. 8, 1486 (2018).

[71] Yu. P. Korneeva, N. N. Manova, I. N. Florya, M. Yu. Mikhailov, O. V. Dobrovolskiy, A. A. Korneev, and D. Yu. Vodolazovs, Phys. Rev. Appl. 13, 024011 (2020).

[72] L. D. Landau and E. M. Lifshitz, Mechanics (Elsevier, Boston, 1976).

[73] N. N. Bogoliubov and Y. A. Mitropolksi, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961).