Ichthyofauna from tributaries of Urubu and Amazonas rivers, Amazonas State, Brazil

Rayane da Silva Pereira1,2*, Rayanna Graziella Amaral da Silva1,2, Bruno Ferezim Morales1,4,5, Sidney dos Santos Souza2, Rafael Hinnah1,2, Erico Luis Hoshiba Takahashi1,2 & Rafaela Priscila Ota1

1Universidade Federal do Amazonas, Instituto de Ciências Exatas e Tecnologia, 69103128, Itacoatiara, AM, Brasil
2Instituto de Ciências Exatas e Tecnologia, Programa de Pós-graduação em Ciência e Tecnologia para Recursos Amazônicos, Itacoatiara, AM, Brasil
3Instituto Nacional de Pesquisas da Amazônia, 69067375, Manaus, AM, Brasil
4Universidade Estadual Paulista “Julio de Mesquita Filho”, Instituto de Biociências, 18618970, Botucatu, SP, Brasil
5Instituto de Biociências, Programa de Pós-graduação em Ciências Biológicas, Botucatu, SP, Brasil
*Corresponding author: Rayane da Silva Pereira, e-mail: rayanesp20@gmail.com

Abstract: The Amazonas River basin comprises the world’s highest fish species diversity. Anthropogenic interferences in aquatic environments represent a pressure over the maintenance of ecological stability and biodiversity. We inventoried the ichthyofauna of 13 disturbed/modified tributaries of Urubu and Amazonas rivers in the region of the middle Amazon River, between June 2018 and March 2019. A total of 164 species were captured, represented by 11 orders, 37 families and 96 genera. Characiformes was the richest order, followed by Cichliformes and Siluriformes. The most representative families in number of species were Cichlidae, Serrasalmidae, and Characidae. Hemigrammus levis was the most abundant species, and Acarichthys heckelii the most common, registered in all sampled sites. In the present study, species with economic interest were collected, as well as many species recently described and one still waiting for formal description, identified provisionally as Moenkhausia aff. colletii. Therefore, the high fish diversity registered, even in disturbed environments in Middle Amazonas River, denotes the makeable ecological importance of this region for fishes resources and supports the necessity of evaluation of other aquatic environments in the region, as well as the potential impacts on composition, maintenance, and survival of ichthyofauna in environments directly affected by human activities.

Keywords: Amazon fish, Environmental impacts, Ichthyofauna diversity, Inventory.

Ictiofauna de afluentes dos rios Urubu e Amazonas, Estado do Amazonas, Brasil

Resumo: A bacia do rio Amazonas compreende a maior diversidade de espécies de peixes do mundo. Interferências antropogênicas em ambientes aquáticos representam uma pressão sobre a manutenção da estabilidade ecológica e da biodiversidade. Inventariamos a ictiofauna de 13 afluentes perturbados/modificados dos rios Urubu e Amazonas na região do médio do rio Amazonas, entre junho de 2018 e março de 2019. Foram capturadas 164 espécies no total, representadas por 11 ordens, 37 famílias e 96 gêneros. Characiformes foi a ordem mais rica, seguida por Cichliformes e Siluriformes. As famílias mais representativas em número de espécies foram Cichlidae, Serrasalmidae e Characidae. Hemigrammus levis foi a espécie mais abundante e Acarichthys heckelii a mais comum, registrada em todos os locais amostrados. No presente estudo foram coletadas espécies de interesse econômico, bem como muitas espécies recentemente descritas e uma ainda aguardando descrição formal, identificada provisoriamente como Moenkhausia aff. colletii. Portanto, a alta diversidade de peixes registrada, mesmo em ambientes perturbados no médio rio Amazonas, denota a importância ecológica marcante dessa região para os recursos pesqueiros e suporta a necessidade de avaliação de outros ambientes aquáticos da região, bem como os possíveis impactos na composição, manutenção e sobrevivência da ictiofauna em ambientes diretamente afetados pelas atividades humanas.

Palavras-chave: Diversidade da ictiofauna, Impactos ambientais, Inventário, Peixes amazônicos.
Introduction

The Amazonas River basin is the world’s largest watershed (Goulding et al. 2003), and has an area over 8,000,000 km² (Sioli 1984). The associated channels and wetlands support high values of primary and secondary productivity (Junk 2013). This complex landscape harbors the highest diversity of freshwater fishes in the world, with more than 2,700 species currently considered valid (Dagosta & Pinna 2019). During the rain forest annual flooded pulse, the combination of flat terrain and variable rivers and streams discharge allows the presence of large areas of wetlands and floodplain forest (Junk 1970), resulting in a dynamic complex of seasonally flooded areas with marked ecological importance (Junk et al. 2011).

Unfortunately, the structure and function of Amazon freshwater ecosystems are being increasingly impacted by crecent human activities and territorial modifications (Castello et al. 2013). The main impacts evidenced are roads construction and expansion (Jones et al. 2000, Barber et al. 2014, Smith et al. 2018), deforestation (Renó et al. 2011, Barber et al. 2014, Inomata et al. 2018), construction and installation of hydroelectric dams (Junk et al. 2007, Alho 2015, Hurd et al. 2016, Reis et al. 2016, Inomata et al. 2018), pollution (Castello et al. 2013), and overfishing (Alho 2015, Inomata et al. 2018).

Itacoatiara is a municipality of Amazonas State, Brazil, situated on left bank of Amazon River, located downstream the confluences of Madeira and Urubu rivers, and upstream the confluence of Uatumã River. This region is drained by a complex fluvial system, composed of streams, channels, and lakes that integrate black and clearwater environments like igapós and campinaranas, as well as a vast area of floodplain enriched by alluvial deposits of rivers of white waters such as the Amazonas and Madeira (Cavallini 2014). The municipality is connected to Manaus by the road AM-010, which caused many impacts and even interrupted the course of some drainages of the region.

Despite the great diversity and the increase of anthropogenic pressures, studies on fish fauna of the region are usually concentrated on species with commercial interest. Smaller species, despite their high contribution of biomass and richness are subsampled, resulting in lack of knowledge to be filled with future studies (Barletta et al. 2010). Still, some rivers, like Urubu, remains poorly understood in terms of ichthyofauna composition, with few reports of species occurrence in the basin, rare cases of endemism and little information about species distribution (Dagosta & Pinna 2019). Thus, the aim of this investigation is to present an inventory of the ichthyofauna from watercourses from Urubu and Amazonas drainages near Itacoatiara.

Material and Methods

1. Study area

The city of Itacoatiara is drained by a complex fluvial system directly affected by the flood pulse (Figure 1). It is located in the left margin of...
Amazon River, upstream of the main connection between the Amazonas River and Canaçari Lake, and just downstream of the Amazonas-Madeira rivers confluence (Abril et al. 2014). The Canaçari Lake possesses clearwater and connects the Amazonas and Urubu rivers. It is disconnected from flooded forest most of the year, but during high water levels of Amazonas and Madeira rivers it is reconnected to these rivers (Polsenenare et al. 2013). Approximately 12 km from its confluence with the Amazonas River, the Urubu River suffers a 90° inflection and its main course becomes parallel to the Amazonas River. On left margin it receives two tributaries, Caru and Anebá rivers, that drain into the Canaçari Lake. This lake is, in turn, connected to Uatumã River (Cavallini, 2014) (Figure 1). Both the Urubu and Uatumã rivers are clearwater basins that originate from the old plateaus of Guyana Shield and carry a lighter sediment load, are more acid and less productive than whitewater rivers (Hurd et al. 2016).

The west border of urban area of Itacoatiara is also influenced upstream by Serpa Lake, which is a tributary of Amazonas River. However, most of the connections between Serpa Lake and Amazonas River were barred due to roads construction (AM-010 and local roads), and the main connection with Amazonas River was barred and limited to a small artificial channel (close to site 4, Figure 2). In the flooded season the water flows from Amazonas River to Serpa Lak through this channel, and in the dry season the water flow suffers an inversion. During flood season connections between Serpa and Canaçari lakes can also appear. Most of the lakeshore has steep edges and is occupied by rural population.

The sampling occurred in 13 sites in the rural area of Itacoatiara (Figures 2 and 3, and Table 1). Sites 1 to 4 are located in Serpa Lake. Site 1 is the farthest from Amazon River and the nearest from Urubu River. This site is isolated from other parts of the lake during dry season, by coverage of aquatic plants (*Montrichardia arborescens* Schott). Sites 2 and 3 represent intermediate portions of the lake, and site 4 is closer to the lake connection with Amazonas River and farthest from Urubu River.

The remaining seven sampled sites (5, 7, 9, 10, 11, 12, and 13) are watercourses dammed by AM0-010 road, since its construction in the late 1960s. Trees stumps and wood debris are found in the bottom of these sites, the margins are flat and are subject to different impacts, such as deforestation, pasture, overfishing and recreational use. All these sites are tributaries of Urubu River (5, 6, 9, 10, and 11) or Canaçari Lake (7, 8, 12, and 13). Sites 6 and 8 are stream stretches downstream the barrier from sites 5 and 7, respectively.

Figure 2. Map of the study area showing the sampled sites (black dots) on tributaries of Amazonas and Urubu rivers, in Middle Amazonas river basin, in Itacoatiara, Amazon State, Brazil.
Figure 3. Collecting sites (a) Serpa lake 1 (Site 1), (b) Serpa lake 2 (Site 2), (c) Serpa lake 3 (Site 3), (d) Serpa lake 4 (Site 4), (e) Km 24 stream (Site 5), (f) Km 24 stream (Site 6), (g) Km 8 lake (Site 7), (h) Km 8 stream (Site 8), (i) Km 13 lake (Site 9), (j) Km 13 lake (Site 10), (k) Km 13 lake (Site 11), (l) Almeida lake (Site 12) and (m) Km 6 lake (Site 13).
Table 1. Description of sampling sites on tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil.

Site	Local	Coordinates	Characteristics/ use of the margin areas	Deep and extension
1	Serpa lake	3°05'11.9”S 58°30'25.3”W	Lake’s northwest side; connection to Urubu river (water input); emerging aquatic macrophytes; subsistence fisheries; moderate humans impacts	5.48 meters deep and 170 meters between the shores in samplings station
2	Serpa lake	3°04'55.6”S 58°29'47.2”W	Northwest-middle section of the lake; subsistence fisheries; marginal and floating habitations; intense navigation.	5.90 meters deep and 270 meters between the shores in samplings station
3	Serpa lake	3°05'53.4”S 58°28'47.6”W	Middle section of the lake; subsistence fisheries; marginal and floating habitations.	8.10 meters deep and 170 meters between the shores in samplings station
4	Serpa lake	3°07'12.3”S 58°28'12.6”W	Southeast section of the lake; connection to Amazonas river (water output in droughts and water input in floods).	5.20 meters deep and 120 meters between the shores in samplings station
5	AM-010 km 24	3°02'39.1”S 58°35'40.8”W	Artificial lake connected to Caru river (stream dammed by AM-010 road).	2.5 meters deep and 53,800 m² of surface area
6	AM-010 km 24	3°02'34.4”S 58°35'41.3”W	Tributary of Caru river; moderate human impacts.	1.50 meters deep and 10 meters between the shores in samplings station
7	AM-010 km 8	3°04'03.3”S 58°28'05.4”W	Artificial lake connected to Canaçari lake (stream dammed for recreational use).	1.7 meters deep and 12,700 m² of surface area
8	AM-010 km 8	3°03'30.2”S 58°27'35.9”W	Tributary of Canaçari lake; moderate human impacts.	1.50 meters deep and 5 meters between the shores in samplings station
9	AM-010 km 13	3°02'49.1”S 58°29'53.5”W	Artificial lake connected to Urubu river (stream dammed by AM-010 road).	3.1 meters deep and 336,700 m² of surface area
10	AM-010 km 13	3°02'53.3”S 58°29'47.4”W	Artificial lake connected to Urubu river (stream dammed by local road); disabled aquaculture site; pastures on lakeshore.	2.9 meters deep and 59,900 m² of surface area
11	AM-010 km 13	3°02'41.6”S 58°29'44.5”W	Artificial lake connected to Urubu river (stream dammed by local road); suppressed riparian forest; pastures on lakeshore.	2.2 meters deep and 20,600 m² of surface area
12	Almeida lake	3°04'27.6”S 58°26'27.7”W	Artificial lake connected to lake Canaçari (stream dammed by local road); recreational use.	2.5 meters deep and 71,100 m² of surface area
13	AM-010 km 6	3°05'19.0”S 58°27'42.8”W	Artificial lake connected to lake Canaçari; seasonally connected to Serpa lake (on floods); suppressed riparian forest; pastures on lakeshore.	4.5 meters deep and 96,000 m² of surface area

2. Data collection and analysis

The samples were taken in June, September and November 2018, and March 2019. In sites 5, 7, 9, 10, 11, and 12 the fishes were collected using gill nets with different mesh sizes (20, 30, 40, 60, 80, 100, and 120 mm), and also a seine net (1.3 high and 10-meter-long, mesh size 5 mm) was used in the shallow littoral habitats of these sites. In sampling sites in Serpa lake (sites 1, 2, 3, and 4) only the gill nets were used, and in sample sites 6 and 8 (streams stretch) seine net and/or sieves with mesh size of 2 mm were used. All the specimens collected were anesthetized in benzocaine hydrochloride, fixed with formalin 10% solution and preserved in 70% ethanol for taxonomic identification. Voucher specimens were deposited in fish collection of Instituto National de Pesquisas da Amazônia (INPA).

Nomenclatural arrangement and classification of family and higher levels followed Betancur-R. et al. (2017). Sub-families of Acestrorhynchidae, Characidae, Auchenipteridae, and Loricariidae followed Oliveira et al. (2011), Mirande (2018), Birindelli (2014), and Armbruster (2004), respectively. The classification of families and subfamilies were presented in alphabetical order as consequence of incogluence between molecular and morphological phylogenetic proposes, or lack of resolution of relationships between them. Identification follows Géry (1960), Weitzman & Cobb (1975), Kullander (1986), Ploeg (1991), Vari (1992), Langeani (1996), Weitzman & Palmer (1997), Zarske & Géry (1999), Lasso & Machado-Allison (2000), Merckx et al. (2000), Toledo-Piza (2000), Machado-Allison (2002), Staeck (2003), López-Fernández & Taphorn (2004), Malabarba (2004), Chernoff & Machado-Allison (2005), Santos et al. (2006), Bleher et al. (2007), Sarmento-Soares & Martins-Pinheiro (2008), Sousa (2010), Costa (2011), Mendonça & Wosiacki (2011), Queiroz et al. (2013), Menezes & Lucena (2014), Peixoto et al. (2015), Walsh et al. (2015), Marinho & Langeani (2016), Ota et al. (2016), Marinho & Menezes (2017), Melo & Oliveira (2017), Ribeiro et al. (2017), Mateussi et al. (2018), and de Souza et al. (2019).
All collect individuals and species were listed and quantified for each sampling site. The relative abundance in percentage was estimated for each site through the percentage of fish collected in each site in relation of the total collected. Richness for each sampling site was defined by the total number of species registered in each site.

Results
A total of 164 species were captured (Table 2), distributed in 11 orders, 37 families and 96 genera. The orders with the highest number of species were Characiformes (56.7%, 93 species) followed by Cichliformes (17.1%, 28 species) and Siluriformes (16.4%, 27 species).

Table 2. Taxonomic classification of fishes collected in tributaries of Amazonas and Urubu rivers, in middle Amazonas river basin, Brazil. Localities: 1 – Serpa lake, 2 – Serpa lake, 3 – Serpa lake, 4 – Serpa lake, 5 – Km 24 stream, 6 – Km 24 stream, 7 – Km 8 lake, 8 – Km 8 stream, 9 – Km 13 lake, 10 – Km 13 lake, 11 – Km 13 lake, 12 – Almeida lake and 13 – Km 6 lake.

Classification	Locality	Voucher INPA
TELEOSTEI		
ACTINOPTERI		
OSTEOGLOSSIFORMES		
Osteoglossidae		
Osteoglossum bicirrhosum (Cuvier, 1829)	3,4	58811
CLUPEIFORMES		
Engraulidae		
Anchoviella carrikeri Fowler, 1940	4	58810
Anchoviella guianensis (Eigenmann, 1912)	4, 5, 6, 9, 10, 11	57918
Lycengraulis batesii (Günther, 1868)	4	58883
Pristigasteridae		
Pellona flavipinnis (Valenciennes, 1837)	4	58875
CHARACIFORMES		
Acestrorhynchiidae		
Acestrorhynchinae		
Acestrorhynchus falcatus (Bloch, 1794)	8	58827
Acestrorhynchus falcirostris (Cuvier, 1819)	1, 2, 3, 4, 5, 12, 13	58971
Acestrorhynchus salinae Menezes & Géry, 1983	8	58825
Acestrorhynchus microlepis (Jardine, 1841)	5, 6, 8, 13	58790
Acestrorhynchus minimus Menezes, 1969	5, 6, 8, 9, 13	57902
Acestrorhynchus cf. pantaneiro	4	58850
Heterocharacinidae		
Gnathocharax steindachneri Fowler, 1913	6	58844
Heterocharax macrolepis Eigenmann, 1912	12, 13	57882
Heterocharax virgulatus Toledo-Piza, 2000	5, 8, 9, 10, 13	57922
Hoplocharax goethei Géry, 1966	8	58834
Anostomidae		
Laemolyta taeniata (Kner, 1858)	2, 3, 4	58817
Leporinus fasciatus (Bloch, 1794)	2, 3, 4, 6, 8	58814
Leporinus friderici (Bloch, 1794)	1, 2	58867
Leporinus klausswitzi Géry, 1960	6, 8	58831
Rhytiodus microlepis Kner, 1858	2, 3, 4	58880
Schizodon fasciatus Spix & Agassiz, 1829	2, 3, 4	58881
Bryconidae		
Brycon amazonicus (Agassiz, 1829)	3	58922
Brycon melanopterus (Cope, 1872)	3, 4	58857
Chalceidae		
Chalteaus erythrurus (Cope, 1870)	2, 3, 4	58813
Classification	Locality	Voucher INPA
----------------------	----------	--------------
Characidae		
Characinae		
Charax condei (Géry & Knöppel, 1976)	6, 8, 9	57921
Roeboides myersii Gill, 1870	4, 6	58830
Stethaprioninae		
Hemigrammus analis Durbin, 1909	5, 6, 8, 9, 12, 13	57891
Hemigrammus bellottii (Steindachner, 1882)	6, 8, 9, 10, 12	57917
Hemigrammus coerules Durbin, 1908	5, 6, 7, 8	58826
Hemigrammus diagonalis Mendonça & Wosiacki, 2011	5, 8, 12	57881
Hemigrammus levis Durbin, 1908	5, 6, 7, 8, 9, 10, 11, 12, 13	57912
Hemigrammus aff. melanochrous	12	57880
Hemigrammus ocellifer (Steindachner, 1882)	12	58803
Hemigrammus stictus (Durbin, 1909)	6, 7, 8, 5, 9, 10, 12, 13	57915
Hyphessobrycon bentosi Durbin, 1908	6	58836
Hyphessobrycon eques (Steindachner, 1882)	4	57924, 58846
Moenkhausia aff. colletti	12	LBP 26690
Moenkhausia cf. cotinho	6	58835
Moenkhausia lepidura (Kner, 1858)	9	58805
Moenkhausia mikia Marinho & Langeani, 2010	8	57932
Chilodontidae		
Chilodus punctatus Müller & Troshel, 1844	6, 8	57930, 58824
Crenuchidae		
Crenuchus spirarius Günther, 1863	8	58842
Ctenoluciidae		
Boulengerella maculata (Valenciennes, 1850)	3, 4, 5, 6	58792
Curimatidae		
Curimatella alburnus (Müller & Troshel, 1844)	6	58829
Curimatopsis cryptica Vári, 1982	5	57933
Curimatopsis evelynaes Géry, 1964	6, 7	58821
Curimatopsis macrolepis (Steindachner, 1876)	5, 6, 7, 8, 12	57883
Curimatopsis pallida Melo & Oliveira, 2017	8	58833
Cyphocharax abramoides (Kner, 1858)	9, 5, 10, 11	57900
Cyphocharax leucostictus (Eigenmann & Eigenmann, 1889)	4	58860
Cyphocharax plumbeus (Eigenmann & Eigenmann, 1889)	5, 6, 8	57927
Cyphocharax spiluros (Eigenmann & Eigenmann, 1889)	8, 9	58804, 58849
Potamorhina latior (Spix & Agassiz, 1829)	4	58877
Psectrogaster essequibensis (Günther, 1864)	2, 3, 4	58878
Cynodontidae		
Rhaphiodon vulpinus Spix & Agassiz, 1829	2, 3, 4	58812
Erythrinidae		
Hoplias malabaricus (Bloch, 1794)	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	58795
Gasteropelecidae		
Carnegella strigata (Günther, 1864)	8	58843
Classification	Locality	Voucher INPA
-----------------------	----------	--------------
Hemiodontidae		
Anodus elongatus	2, 4	58852
Hemiodus argenteus	4	58867
Hemiodus gracilis	6, 8, 9, 13	57919
Hemiodus immaculatus	2, 3, 4	58815
Hemiodus unimaculatus	6, 9	58802
Hemiodus sp. 1	2, 3, 4	58864
Hemiodus sp. 2	4	58865
Iguanodictidae		
Bryconops caudomaculatus	5, 6, 7, 8	57895
Bryconops giacopinii	4	58808
Bryconops melanurus	6, 7, 8, 9, 13	57896
Iguanodectes spilurus	8	58846
Lebiasinidae		
Copella callolepis	12	57894
Copella nattereri	5, 6, 7, 8	58807
Nannostomus digrammus	5, 6, 8, 9, 10, 12, 13	57892
Nannostomus eques	5, 6, 8, 9, 10, 12, 13	57901
Nannostomus harrisoni	6, 8, 10, 12	57893
Pyrrhulina cf. australis	5, 6, 8, 9, 10, 11, 12, 13	57885
Prochilodontidae		
Semaprochilodus	2, 4	58927
Semaprochilodus	2, 3	58928
Serrasalmidae		
Catoprion mento	3, 4, 5, 8, 9, 10, 13	57920
Colossoma macropomum	12	58793
Metynnis altidorsalis	3, 4	57911
Metynnis guaporensis	3	58938
Metynnis hypsauchen	3	57910
Metynnis lippincottianus	1, 3, 4, 7, 8, 9, 10, 12, 13	57884, 58818
Metynnis luna	4	57909
Metynnis maculatus	7, 8	58818
Metynnis melanogrammus	6, 8, 9	57925
Myloplus aff. asterias	3	58873
Mylossoma albiscopum	3, 4	58874
Pygocentrus nattereri	2, 3, 4	58879
Pygopristis denticulata	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	57899
Serrasalmus altispinis	3, 4	58929
Serrasalmus compressus	2, 3, 4	58931
Serrasalmus eigenmanni	4, 8	58820
Serrasalmus maculatus	4	58933
Serrasalmus rhombeus	2, 3	58932
Serrasalmus spilopleura	3, 4	58930
Triportheidae		
Triportheus albus	3, 4	58935
Triportheus auritus	2, 3, 4	58937
Triportheus rotundatus	3, 4	58936
Classification

Classification	Locality	Voucher INPA
GYMNOTIFORMES		
Hypopomidae		
Brachyhypopomus brevirostris (Steindachner, 1868)	5, 7, 8, 10	57929
Brachyhypopomus sp.	1, 3, 4	58934
Sternopygidae		
Eigenmannia mairapinima Peixoto, Dutra & Wosiacki, 2015	7, 8, 9, 10, 11	57907
SILURIFORMES		
Auchenipteridae		
Auchenipterinae		
Ageneiosus dentatus Kner, 1858	4	58855
Ageneiosus inermis (Linnaeus, 1766)	4	58863
Ageneiosus lineatus Ribeiro, Rapp Py-Daniel & Walsh, 2017	1, 2, 3, 4	58882
Auchenipterichthys coracoideus (Eigenmann & Allen, 1942)	9, 11	58800
Auchenipterus nuchalis (Spix & Agassiz, 1829)	4	58853
Trachelyichthys exilis Greenfield & Glodek, 1977	5, 6, 9, 13	57923
Trachelyopterichthys taeniatua (Kner, 1858)	3	58868
Trachychoristis porosus Eigenmann & Eigenmann, 1888	2, 3, 4	58876
Tympanopleura atronasus (Eigenmann & Eigenmann, 1888)	4	58854
Tympanopleura rondoni (Miranda Ribeiro, 1914)	2, 4	58862
Centromochilinae		
Tatia nigra Sarmento-Soares & Martins-Pinheiro, 2008	2	57906
Tatia strigata Soares-Porto, 1995	58840	
Callichthyidae		
Hoplosternum litorale (Hancock, 1828)	2, 4	58816
Doradidae		
Anadoras grypus (Cope, 1872)	3	58856
Oxydoras niger (Valenciennes, 1821)	9, 11	58787
Heptapteridae		
Rhamdia quelen (Quoy & Gaimard, 1824)	10, 11	58801
Loricariidae		
Hypostominae		
Ancistrus dolichopterus Kner, 1854	1, 2, 4	58851
Dekeyseria amazonica Rapp Py-Daniel, 1985	3	58861
Loricariinae		
Loricariichthys acutus (Valenciennes, 1840)	2, 3	58871
Loricariichthys sp.	2, 4	58872
Pimelodidae		
Calophysus macropterus (Lichtenstein, 1819)	4	58925
Hemisorubim platyrhynchos (Valenciennes, 1840)	4	58924
Hypophthalmus edentatus Spix & Agassiz, 1829	2, 3, 4, 11	58789
Pimelodus blochii Valenciennes, 1840	4	58869
Pinirampus pirinampu (Spix & Agassiz, 1829)	4	58926
Pseudoplatystoma tigrinum (Valenciennes, 1840)	2	58923
Sorubim elongatus Littmann, Burr, Schmidt & Isern, 2001	2, 4	58884
GOBIIFORMES		
Eleotridae		
Microphilypnus ternetzi Myers, 1927	5, 8, 13	57928
Classification

Order	Family	Species	Locality	Voucher INPA
SYNBRANCHIFORMES	Synbranchidae	Synbranchus sp.	5, 6, 9, 10	57903
	CICHLIFORMES			
	Cichlidae	Acarichthys heckelii (Müller & Troschel, 1849)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	57914
		Acaronia nassa (Heckel, 1840)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	57887
		Aequidens pallidus (Heckel, 1840)	5	58806
		Aequidens tetramerus (Heckel, 1840)	10, 11, 12, 13	58798
		Apistogramma agassizii (Steindachner, 1875)	7, 10, 12 13	57904
		Apistogramma gephyra Kullander, 1980	8	58839
		Apistogramma pertensis (Haseman, 1911)	8, 10, 11, 12	57908
		Biotocclus opercularis (Steindachner, 1875)	8, 10, 11, 12, 13	57905
		Cichla monoculus Spix & Agassiz, 1831	2, 5, 7, 8, 9, 10, 11, 12, 13	58796
		Cichla temensis Humboldt, 1821	2, 3, 4, 5, 9, 10, 12, 13	58794
		Crenicichla lenticulata Heckel, 1840	1, 5, 10, 13	58797
		Crenicichla lugubris Heckel, 1840	4	58858
		Crenicichla regani Ploeg, 1989	7	58823
		Crenicichla sp.	4	58859
		Geophagus altifrons Heckel, 1840	2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	57886
		Heros spurtus Heckel, 1840	4, 10, 11, 12, 13	57890
		Hypelecura coryphaenoides (Heckel, 1840)	8	58838
		Hypelecura temporalis (Günther, 1862)	5, 8, 9, 10, 11, 12	58799
		Laetacara thayeri (Steindachner, 1875)	6, 7, 8, 5, 9, 10, 11, 12, 13	57888
		Mesonauta festivus (Heckel, 1840)	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	57916
		Pterophyllum scalare (Schultz, 1823)	4, 8	58809
		Satanoperca acuticeps (Heckel, 1840)	1, 3, 4, 8, 9, 10, 11, 13	57888
		Satanoperca jurupari (Heckel, 1840)	2, 4, 5, 9, 12, 13	57931
		Satanoperca lilith Kullander & Ferreira, 1988	1, 2, 3, 4, 5, 6, 7, 9, 10,11, 12	57898
		Symphysodon discus Heckel, 1840	1	57897
		Taeniacara candidi Myers, 1935	7, 8, 13	57926
		Uaru amphiacanthoides Heckel, 1840	11, 12	58788
	CYPRINODONTIFORMES			
	Fluviphylacidae			
		Fluviphylax pygmaeus (Myers & Carvalho, 1955)	5, 6, 8	58819
	Rivulidae			
	Anablepsoides ornatus (Garman, 1895)	8	58837	
	BELONIFORMES			
	Belonidae			
		Belonion dibranchodon Collette, 1966	6	58828
		Potamorrhaphis guianensis (Jardine, 1843)	8	58832
	PERCIFORMES			
	Polycentridae			
		Monocirrhus polyacanthus Heckel, 1840	8	58822
		Sciaenidae		
		Plagioscion squamosissimus (Castelnau, 1855)	4	5887
The most representative families were Cichlidae (28 species), Serrasalmidae (19 species), and Characidae (16 species). In terms of genera, the families that were most representative were Cichlidae (17 genera), Serrasalmidae and Auchenipteridae (both with eight genera).

The most common species were Acarichthys heckelii, Geophagus altifrons, Mesonauta festivus, Satanoperca lilith, and Pygopristis denticulata (Figure 3). Important species for commercial aquarium trade like Monocirrhus polyacanthus (site 8), Symphysodon discus (site 1), Pterophyllum scalare (sites 4 and 8) (Figure 4) and species of genera Apistogramma (sites 7, 8, 10, 11, and 13), and Nannostomus (sites 5, 6, 8, 9, 10, 12 and 13) were registered. Additionally, important species for fisheries were captured, like Brycon amazonicus, Cichla monoculus, C. temensis, Colossoma macropomum, Osteoglossum bicirrhosum, Semaprochilodus insignis, and S. taeniurus. One species that remains unknown for science, but is in process of formal description, identified as Moenkhausia aff. colletii was registered in site 12 (Figure 4).

The most abundant species in this study were Hemigrammus levis (62.1%), Hemigrammus stictus (8.7%), and Acarichthys heckelii (3.3%), the last one was very abundant in the barred watercourses (sites 5, 7, 9, 11, 12, and 13). The sites with the lowest relative abundance were located in Serpa Lake. The site 12 presented the highest relative abundance (Figure 5). In number of species, the sites with the highest and lowest number were site 4 and 1, respectively (Figure 6).

Discussion

The predominance of Characiformes, Siluriformes and Cichliformes corroborates the pattern observed for freshwater environments in South America (Lowe-Mcconnell 1999, Siqueira-Souza & Freitas 2004, Fernandes et al. 2012, Freitas et al. 2013, Queiroz et al. 2013,
Hemigrammus ocellifer, popularly known as tetras or piabas, were captured in the present study, as rivers (Anjos et al. 2009). Besides the ciclids, many species of Characidae, such as Semaprochilodus fish markets, as the popularly known as jaraquis (registered by us in this study, some of them very common in Itacoatiara Pimelodus of only 6 to 12 species, such as Hyphessobrycon eques, Hyphessobrycon rosaceus, and Apistogramma and market like filamentous algae and terrestrial invertebrates (Bayley 1988).

Approximately 100 million ornamental fish were exported from the beautiful color patterns, small size and are commonly found in aquariums. Many species having opportunistic diet resistant to environmental disturbances standing out over other species sensitive to disorders (Santos & Ferreira 1999, Oliveira & Bennemann 2005). A representative species of this pattern is Acarichthys heckelii that was registered in all sampling sites, with makeable abundance in the barred watercourses (sites 4, 5, 7, 9, 11, 12, and 13). Thus, the habitat changing due to damming and flow modification in sites along AM-010 and the connection between Serpa Lake and Amazonas River may provide favorable conditions to ciclids survival. Nevertheless, sampling using seine nets in the shallow littoral habitats in these sites should increased the number of ciclids, due to its feeding habitats that includes aquatic invertebrates, detrital macrophytes, filamentous algae and terrestrial invertebrates (Bayley 1988).

Among the ciclids collected, some species are important in aquarium market like Symphysodon discus, Pterophyllum scalare, Mesonauta festivus, and Apistogramma spp. Species of this family are exported from the middle Solimões (Reserva Mamirauá and Anamã), Madeira and Uatumã rivers (Anjos et al. 2009). Besides the ciclids, many species of Characidae, popularly known as tetras or piabas, were captured in the present study, as Hemigrammus ocellifer, Hemigrammus stictus, Hyphessobrycon bentosi, Hyphessobrycon eques, and Hyphessobrycon roscaceus, which possess beautiful color patterns, small size and are commonly found in aquariums. Approximately 100 million ornamental fish were exported from the Amazonas State between 2002 and 2005 (Anjos et al. 2009).

Despite the high number of fish species in the Amazon region, the fisheries are concentrated in few species, in which about 80% is composed of only 6 to 12 species, such as Brycon, Hypophthalmus, Pellona, Pinemus, Pseudoplatsyton, Semaprochilodus, and Tripotheus (Barthem & Fabrè 2004). Representatives of all these genera were registered by us in this study, some of them very common in Itacoatiara fish markets, as the popularly known as jaraquis (Semaprochilodus insignis and S. taeniurus), matrixxã (Brycon amazonicus and B. melanopterus), sorubim (Pseudoplatsyton tigrinum), and sardinhas (Tripotheus albus, T. auritus, and T. rotundatus), with the addition of aruã (Osteoglossum bicirrhosum), pacu (Mylossoma albiscopum), and tucunãres (Cichla monoculus and C. temensis), also appreciated by local population. This indicates that besides environmental disturbances caused mainly by human activities in this region, the sampling areas are important resources of commercial fish species, and more attention to conservation and management efforts should be addressed to this region.

The lowest values of relative abundance were registered in the four Serpa lake sampling sites, possibly due to the use of a unique sampling method (gill net). Moreover, in Serpa lake were registered the highest richness (almost 70 species in site 4 - nearest to Amazonas river) and lowest richness (a little more than 10 species in site 1- nearest to Urubu river). However, Symphysodon discus, popularly known as disco, was exclusively caught in the site with the lowest abundance and lowest richness (site 1). Disco is an endemic ciclild from the Amazon basin, and is one of the most popular ornamental fish species, extensively used in aquarium (Ferraz 1999). Sequentially, the second (approximately 70 species in site 8) and the third (approximately 70 species in site 6) sites with the highest richness comprise small streams, located downstream the barrier from sites 5 and 7, respectively, suggesting less habitat changing and flow modification downstream the damming. Moreover, all barred water courses registered no more than 40 species. Changes in connectivity (Hurd et al. 2016, Benoni et al. 2018) and damming (Anderson et al. 2018) are well-reported causes of modification in structure and composition of fish fauna.

About 28% of South America’s known fauna has been described in the last 11 years, due to the unique environmental aspects of the Amazon basin, which contribute to new species discoveries (Reis et al. 2016). We recorded six species described for the Amazonas river basin in the last decade, Moenkhausia nikia, Hemigrammus diagnosicus, Eigenmannia muirapinima, Metynnis melanogrammus, Curimatopsis pallida, and Ageneiosus lineatus (Marinho & Langeani, 2016, Mendonça & Wosiacki 2011, Peixoto et al. 2015, Ota et al. 2016, Melo & Oliveira 2017, Ribeiro et al. 2017), along with a common species that was recently redescribed as Mylossoma albiscopum (Mateussi et al. 2017). Still, a new species for science, identified here as Moenkhausia aff. colletti is being formally described by one of the authors of this investigation (RPO) and I. M. Soares.

The sampled region is composed by a complex fluvial system river system with channels, holes, paranas and lakes that integrate both black and clearwater environments such as igapós and campinaranas, as well as a vast floodplain area enriched by alluvial deposits of whitewater rivers such as the Amazonas and Madeira rivers (Cavallini 2014). The Madeira river drains one-third of the Amazonian lowlands and is the richest tributary of Amazonas river (Dagosta & Pinna 2019). Therefore, the confluence of Madeira and Amazonas rivers just upstream the studied area and the proximity to Urubu and Uatumã rivers may explain the high number of fish species recorded in this study, due the hydrological connectivity and biological exchanges among these lowland aquatic environments, mainly in high waters. Additionally, attention to the different anthropogenic impacts that occur in the sampling sites, evolving human occupancy, emission of effluents without sanitary treatment, barrage for construction of artificial beaches for recreational use, and disruption of water body flow for AM-010 road construction should be reinforced. In this way, cataloging fish fauna in modified environments in order to access the fish diversity is a fundamental step to support investigation on the potential impacts of fish fauna composition, maintenance, and survival in these environments directly affected by human activities.
Acknowledgments

We are grateful to UFAM and ICMBio for field support. Thank to Lúcia H. Rapp Py-Daniel and Renildo R. de Oliveira (INPA) for curatorial assistance and identification of Loricariidae species. We are in debt to Marcelo Sales Rocha (UEA) for identification of Heptapteridae and Pimelodidae, and Leandro Sousa (UFOPA) for identification of Doradididae, Alessandro Gasparetto Biff (INPA) for identification of Centromochlinae, Bárbara Calegari (PUC-RS) for identification in some species of Auchenipteridae, Renata Rúbia Ota and Gabriel Deprá (NUP), Priscila Madoka Ito (UFRGS) and Douglas Aviz Bastos (INPA) for identification of Cichlidae. This results were part of the subject of Rayane da Silva Pereira and Rayanna Graziella Amaral da Silva master dissertation. RSP and RGAS was supported by a M.Sc. scholarship from Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). RPO is funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant #12002011001-P7).

Author Contributions

Rafaela Prsicila Ota: Substantial contribution in the concept and design of the study; Contribution to data analysis and interpretation; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content.

Rayane da Silva Pereira: Substantial contribution in the concept and design of the study; Contribution to data collection; Contribution to data analysis and interpretation; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content.

Rayanna Grazziiela Amaral da Silva: Substantial contribution in the concept and design of the study; Contribution to data collection; Contribution to data analysis and interpretation; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content.

Bruno Ferezim Morales: Substantial contribution in the concept and design of the study; Contribution to data analysis and interpretation; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content.

Sidney Souza Santos: Substantial contribution in the concept and design of the study; Contribution to data collection; Contribution to data analysis and interpretation; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content.

Rafael Hinnah Amaral da Silva: Substantial contribution in the concept and design of the study; Contribution to data collection; Contribution to data analysis and interpretation.

Erico Luis Hoshiba Takahashi: Substantial contribution in the concept and design of the study; Contribution to manuscript preparation; Contribution to critical revision, adding intellectual content

Conflicts of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

ABRIL, G. MARTINEZ, J.M., ARTIGAS, L.F., MOREIRA-TURCQ, P., BENEDETTI, M.F., VIDAL, L., MEZIANE, T., KIM, J.H., BERNARDES, M.C., SAVOYE, N., DEBORDE, J., SOUZA, E.L., ALBERIC, P., SOUZA, M.F.L. & ROLAND, F. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature. 505:395-398.

ALHO, C.J.R., REIS, R.E. & AQUINO, P.P.U. 2015. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio: A Journal of the Human Environment. 44(5):412-425.

ANDERSON, E.P., JENKINS, C.N., HEILPERN, S., MALDONADO-O-CAMPO, J.A., CARVAJAL-VALLEJOS, F.M., ENCALADA, A.C., & RIVADENEIRA, J.F. 2018. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4:1-8.

ANJOS, H.D.B., AMORIM, R.M.S., SIQUEIRA, J.A. & ANJOS, C.R. 2009. Exportação de Peixes Ornamentais do Estado do Amazonas, Bacia Amazônica, Brasil. B. Inst. Pesca. 35(2):259-274.

ARMBRUSTER, J.W. 2004. Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zool. J. Linn. Soc. 141:1-80.

BARBER, C.P., COCHRANE, M.A., SOUZA JR., C.M. & LAURENCE, W.F. 2014. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177:203-209.

BARTHETM, R.B. & FABRÉ, N.N. 2004. Biologia e diversidade dos recursos pesqueiros da Amazônia. In: A pesca e os recursos pesqueiros na Amazônia Brasileira (M. L. Ruffino. Ed.). ProVárzea, Manaus – AM, p.11-55.

BARLETTA, M., JAUREGUIZAR, A.J., BAIGUN, C., FONTOURA, N.F., AGOSTINHO, A.A., ALMEIDA-VAL, V.M.F., VAL, A.L., TnRES, R., JIMENES SEGURA, L.F., GIARRizzo, T., FEBRÉ, N.N, BATISTA, V.S., LASSO, C., TAPHORN, D.C., COSTA, M.F., CHAVES, P.T., VIEIRA, J.P. & CORREA, M.F.M. 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J. Fish Biol. 76(9):2118-2176.

BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. & FRANA, V.A. 2012. Peixes do Baixo rio Iguazu. I ed. EDUEM, Maringá.

BAYLEY, P.B. 1988. Factors affecting growth rates of young tropical floodplain fishes: seasonality and density-dependence. Environ. Biol. Fish. 21(2):127-142.

BENONE, N.L., LIGEIRO, R., JUEN, L. & MONTAG, L.F.A. 2018. Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Marine and Fresh Res. 69(2):243-252.

BETANCUR-R, R., WILEY, E.O., ARRACTIA, G., ACERO, A., BAILLY, N., MIYA, M., LECOINTRE, G. & ORTÍ, G. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162.

BLEHER, H., STÖLTING, K.N., SALZBURGER, W. & MEYER, A. 2007. Revision of the genus Symphysodon Heckel, 1840 (Teleostei: Perciformes: Cichlidae) based on molecular and morphological characters. Aqua. 12(4):133-174.
BIRINDELLI, J.L.O. 2014. Phylogenetic relationships of the South American Doradoide (Ostariophysi: Siluriformes). Neotrop Ichthyol. 12(3):451-564.

CHERNOFF, B. & MACHADO-ALLISON, A. 2005. Bryconops magoi and Bryconops collettei (Characiformes: Characidae), two new freshwater fish species from Venezuela, with comments on B. caudomaculatus (Günther). Zootaxa. (1094):1-23.

CASTELLO, L., MCGRATH, D.G., HESS, L.L., COE, M.T., LEFEBVRE, P.A., PETRY, P., MACEDO, M.N., RENÓ, V.F. & ARANTEES, C.C. 2013. The Vulnerability of Amazon Freshwater Ecosystems. Conservation Letters. 6(4):217-229.

CAVALLINI, M.S. 2014. As gravuras rupestres da bacia do rio Urubu: levantamento e análise gráfica do sítio de Caretas, Itacoatiara - Estado do Amazonas: Uma proposta de contextualização. Dissertação de Mestrado em Arqueologia da Universidade de São Paulo, São Paulo.

COSTA, W.J.E.M. 2011. Phylogenetic position and taxonomic status of Anablepsoides, Atlantirivulus, Cyronodichthys, Laimosemion and Melanorivulus (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 22(3):233-249.

DAGOSTA, F.C.P. & PINNA, M. 2019. The fishes of the amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1-163.

FERNANDES, R., LOURENÇO, L.S., OTA, R.P., MOREIRA, M.M.M. & ZAWADZKI, C.H. 2012. Effects of local and regional factorson the fish assemblage structure in Meridional Amazonian streams. Environ. Biol. Fishes. 96(7):837-848.

FERRAZ, E. 1999. Management and diseases of the ornamental fish exported from the rio Negro basin. In: Biology of Tropical Fish. (Eds. A.L. VAL & V.M.F. ALMEIDA-V AL). Manaus: INPA. 99-111.

LEFEVRE, P.A., PETRY , P., MACEDO, M.N., RENÓ, V.F. & ARANTEES, C.C. 2013. The Vulnerability of Amazon Freshwater Ecosystems. Conservation Letters. 6(4):217-229.

O. 1994. (sensu Roberts, 1974) (Ostariophysi, Characiformes). Tese de doutorado, Universidade de São Paulo, São Paulo.

LASSO, C.A. & MACHADO-ALLISON, A. 2000. Sinopsis de las especies de peces de la familia Cichlidae presentes en la cuenca del Rio Orinoco. Claves, diagnosis, aspectos bio-ecologicos e ilustraciones. Serie Peces de Venezuela. Universidad Central de Venezuela, Caracas: Consejo Nacional de Investigaciones Científicas y Tencológicas (CONICIT).

LEITE, G.F.M., SILVA, F.T.C., GONÇALVES, J.F.J. & SALLES, R. 2015. Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia. 762(1):223-238.

LÓPEZ-FERNÁNDEZ, H. & TAPHORN, D.C. 2004. Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: Cichlidae), three new species from Venezuela. Zootaxa. (439):1-27.

LOWE-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.

MACHADO-ALLISON, A. 2002. Los peces caribes de Venezuela: una aproximación a su estudio taxonómico. Bol. Acad. C. Fís., Mat. y Nat. 62(1):35-88.

MALABARBA, M.C.S.L. 2004. Revision of the neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotrop Ichthyol. 2(4):167-204.

MARINHO, M.M.F. & MENEZES, N.A. 2017. Taxonomic review of Copella (Characiformes: Lethrisidae) with an identification key for the species. PLoS ONE. 12(8):1-53.

MATEUSSI, N.T.B., OLIVEIRA, C. & PAVANELLI, C.S. 2018 Taxonomic revision of the Cis-Andean species of Mylossoma Eigenmann & Kennedy, 1903 (Teleostei: Characiformes: Serrasalmidae). Zootaxa. 4387(2):275-309.

MELO, B.F. & OLIVEIRA, C. 2017. Three new species of Curimatopsis (Characiformes: Curimatidae) from the Amazon basin. J. Fish Biol. 91(2):528-544.
MENDONÇA, M.B. & WOSIACICKI, W.B. 2011. A new species of *Hemigrammus* from the Lower Amazon floodplain (Characiformes: Characidae). Copeia. 2011(2):211-215.

MENEZES, N.A. & de LUCENA, C.A.S. 2014. A taxonomic review of the species of *Charax* Scopoli, 1777 (Teleostei: Characidae: Characinae) with description of a new species from the rio Negro bearing superficial neuromasts on body scales, Amazon basin, Brazil. Neotropic Ichthyol. 12(2):193-228.

MERCKX, A., JÉGU, M. & dos SANTOS, G.M. 2000. Une nouvelle espèce de *Serrasalmus* (Teleostei: Characidae: Serrasalminae), *S. altispinis* n. sp., décrite du Rio Uatunã (Amazonas, Brésil) avec une description complémentaire de *S. rhombeus* (Linnaeus, 1766) du plateau guyanais. Cybium. 24(2):181-201.

MIRANDA, J.M. 2018. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. (2018):1-19.

NELSON, J.S., GRANDE, T.C., & WILSON, M.V. 2016. Fishes of the World. John Wiley & Sons, p. 342-344.

OLIVEIRA, C., AVELINO, G.S., ABE, K.T., MARIGUELA, T.C., BENINE, R.C., ORTI, G., VARI, R.P. & CORRÊA & CASTRO R.M. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol. Biol. 11(275):1-25.

OLIVEIRA, D.C. & BENNEMANN, S.T. 2005. Ictiofauna, Reursos Alimentares e Relações com as Interferências Antrópicas em um Riacho Urbano no Sul do Brasil. Biota Neotropica. 5(1):95-107.

OTA, R.P., RAPP PY-DANIEL, L.H. & JÉGU, M. 2016. A new Silver Dollar species of *Metynnis* Cope, 1878 (Characiformes: Siluriformes: Auchenipteridae) with the description of four new species. J. Fish Biol. 90(4):1388-1478.

SANTOS, G.M & FERREIRA, E.J.G. 1999. Peixes da Bacia Amazônica. In: Estudo ecológico de comunidades de peixes tropicais (R. H. Lowe-McConnel ed.). São Paulo: Editora da Universidade de São Paulo, p. 345-373.

SANTOS, G.M., FERREIRA, E.J.G. & ZUANON, J.A.S. 2006. Peixes comerciais de Manaus. Manaus: Ibama/AM, ProVárzea.

SARMENTO-SOARES, L.M. & MARTINS-PINHEIRO, R.F. 2008. A systematic review of *Tatia* (Siluriformes: Auchenipteridae: Centromochlinae). Neotropic Ichthyol. 6(3):495-542.

SILVA, F.G. 1997. Ictiofauna: Roteiro de uma cidade. Manaus: Imprensa Oficial de Estado Amazonas.

SIOLI, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In The Amazon: limnology and landscape ecology (H. Sioli ed.). Dr. W. Junk Publishers, Boston. p. 127-165.

SIQUEIRA-SOUZA, F.K. & FREITAS, C.E.C. 2004. Fish diversity of floodplain lakes on the lower stretch of the Solimões River. Braz. J. Biol. 64(3A):501-510.

SMITH, W.S., LIMA, R.C.R., SILVA, L.C.M., CORRÊA, C.S., TEODORO, C.C., SOINSKI, T.A., COSTA, M.S. & STEFANI, M.S. 2018. A duplicação de rodovias no Brasil sob o olhar da Ictiofauna. Bol. Soc. Bras. Ictio. (125):16-23.

SOUSA, L.M. 2010. Revisão taxonômica e filogenia de Astrodoradinae (Siluriformes, Doradidae). Tese de doutorado, Instituto de Biociências, Universidade de São Paulo, São Paulo.

de SOUZA, L.S., TAPHORN, D.C. & ARMBRUSTER, J.W. 2019. Review of Ancientus (Siluriformes: Lorciaridae) from the northwestern Guiana Shield, Orinoco Andes, and adjacent basins with description of six new species. Zootaxa. 4552:1-67.

STAEC, W. 2003. Cichliden-Lexikon, Teil 3: Südamerikanische Zwergbuntbarsche. Dähne Verlag, Klassifizierung: Artenübersicht.

TOLEDO-PIZA, M., 2000. Two new *Heterorchax* species (Teleostei: Ostariophysi: Characidae), with a redescription of *H. macrolepis*. Ichthyol. Explor. Freshw. 11(4):289-304.

VARI, R.P. 1992. Systematics of the neotropical Characiform genus *Cyphocharax* Fowler (Pisces, Ostariophysi). Smithson Contrib Zool. 529:1-137.

WALSH, S.J., RIBEIRO, F.R.V. & RAPP PY-DANIEL, L.H. 2015. Revision of *Tympanopleura* Eigenmann (Siluriformes: Auchenipteridae) with description of two new species. Neotropic Ichthyol. 13(1):1-46.

WEITZMAN, S.H. & COBB, J.S. 1999. A duplication of rodovias no Brasil sob o olhar da Ictiofauna. Bol. Soc. Bras. Ictio. (125):16-23.

WEITZMAN, S.H. & PALMER, L.M. 2000. Two new *Heterorchax* species (Teleostei: Ostariophysi: Characidae), with a redescription of *H. macrolepis*. Ichthyol. Explor. Freshw. 11(4):289-304.

VARI, R.P. 1992. Systematics of the neotropical Characiform genus *Cyphocharax* Fowler (Pisces, Ostariophysi). Smithson Contrib Zool. 529:1-137.

WALSH, S.J., RIBEIRO, F.R.V. & RAPP PY-DANIEL, L.H. 2015. Revision of *Tympanopleura* Eigenmann (Siluriformes: Auchenipteridae) with description of two new species. Neotropic Ichthyol. 13(1):1-46.

WEITZMAN, S.H. & COBB, J.S. 1975 A revision of the South American fishes of the genus *Namnostomus* Günther (family Lebiasinidae). Smithson Contrib Zool. 186:1-36.

WEITZMAN, S.H. & PALMER, L.M. 1997 The rosy tetra, *Hyphessobrycon rosaceus*, its identification and brief history as an aquarium fish. Tropical Fish Hobbyist. 45(11):158-166.

ZARKE, A. & GÉRY, J. 1999. Revision of the neotropical Gattung *Metynnis* Cope, 1878. Evaluation of the Typosynonyma and the nominelle Arten (Teleostei: Characiformes: Serrasalminae). Zool. Abh. Mus. Tierkd. Dresden Bd. 50(13):169-216.