EQUIDISTRIBUTION OF HECKE POINTS
ON THE SUPERSINGULAR MODULE

RICARDO MENARES

(Communicated by Matthew A. Papanikolas)

Abstract. For a fixed prime p, we consider the (finite) set of supersingular elliptic curves over \mathbb{F}_p. Hecke operators act on this set. We compute the asymptotic frequency with which a given supersingular elliptic curve visits another under this action.

1. Introduction

Let p be a prime number. We denote by $E = \{E_1, \ldots, E_n\}$ the set of isomorphism classes of supersingular elliptic curves over \mathbb{F}_p. We denote by $S := \bigoplus_{i=1}^{n} \mathbb{Z}E_i$ the supersingular module in characteristic p (i.e. S is the free abelian group spanned by the elements of E). Hecke operators act on S by

$$T_1 := \text{id}, \quad T_m(E_i) = \sum_C E_i/C, \quad m \geq 2,$$

where C runs through the subgroup schemes of E_i of rank m. This definition is extended by linearity to S and to $S_R := S \otimes \mathbb{R}$. For an integer $m \geq 1$ we put

$$B_{i,j}(m) = |\{C \subset E_i, |C| = m \text{ and } E_i/C \cong E_j\}|.$$

We have that $T_m E_i = \sum_{j=1}^{n} B_{i,j}(m) E_j$. The matrix $(B_{i,j}(m))_{i,j=1}^{n}$ is known as the Brandt matrix of order m.

For a given $D = \sum_{i=1}^{n} a_i E_i \in S_R$, we put $\deg D = \sum_{i=1}^{n} a_i$. We have that (4, Proposition 2.7)

$$\deg T_m E_i = \sum_{d \mid m \text{ \& p \nmid d}} d =: \sigma(m)_p,$$

leading to define $\deg T_m := \sigma(m)_p$.

Let M be the set of probability measures on E. For every $i = 1, \ldots, n$, we denote by $\delta_{E_i} \in M$ the Dirac measure supported on E_i. Let

$$S^+ := \left\{ \sum_{i=1}^{n} a_i E_i \in S_R \text{ such that } a_i \geq 0 \right\} - \{0\}.$$

For any $D = \sum_{i=1}^{n} a_i E_i \in S^+$, we put

$$\Theta_D := \frac{1}{\deg D} \sum_{i=1}^{n} a_i \delta_{E_i}.$$
We have that Θ_D is a probability measure on E, and every element of M has this form. Hence, there is a natural action of the Hecke operators on M, given by

$$T_m \Theta_D := \Theta_{T_m D}.$$

Each E_i has a finite number of automorphisms. We define

$$w_i := |\text{Aut}(E_i)/\{\pm 1\}|, \quad W := \sum_{i=1}^{n} \frac{1}{w_i}.$$

The element $e := \sum_{i=1}^{n} \frac{1}{w_i} E_i \in S \otimes \mathbb{Q}$ is Eisenstein ([4], p. 139), i.e.

$$T_m(e) = \deg T_m e.$$

We denote $\Theta := \Theta_e$. Equation (1.1) implies that $T_m \Theta = \Theta$ for all $m \geq 1$.

Let $C(E) \cong \mathbb{C}^n$ be the space of complex valued functions on E. For $f \in C(E)$, we denote $\|f\| = \max_i |f(E_i)|$ and

$$\Theta_D(f) := \int_E f \Theta_D = \frac{1}{\deg D} \sum_{i=1}^{n} a_i f(E_i).$$

For a positive integer m, we write $m = p^k m_p$ with $p \nmid m_p$. In this paper, we will prove the following result:

Theorem 1.1. For all $i = 1, \ldots, n$, the sequence of measures $\{\Theta_{T_m E_i}\}$, where m runs through a set of positive integers such that $m_p \to \infty$, is equidistributed with respect to Θ. More precisely, for all $\varepsilon > 0$ there exists $C_\varepsilon > 0$ such that for every $f \in C(E)$, and for every sequence of integers m such that $m_p \to \infty$, we have that

$$|\Theta_{T_m E_i}(f) - \Theta(f)| \leq C_\varepsilon \|f\| n m^{-\frac{1}{2}} + \varepsilon.$$

We study the asymptotic frequency of the multiplicity of E_j inside $T_m E_i$. That is, we investigate the behavior of the ratio $B_{i,j}(m)/\deg(T_m)$ when m varies. We will prove Theorem 1.1 in the equivalent formulation:

Theorem 1.2. For all $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that for every sequence of integers m such that $m_p \to \infty$, we have that

$$\left| \frac{B_{i,j}(m)}{\deg T_m} - \frac{12}{w_j (p - 1)} \right| \leq C_\varepsilon m^{-\frac{1}{2}} + \varepsilon.$$

In particular,

$$\lim_{m_p \to \infty} \frac{B_{i,j}(m)}{\deg T_m} = \frac{12}{w_j (p - 1)}.$$

The proof of this assertion is found in section 1.2.

Remark 1.3. The equality $\sum_{j=1}^{n} \frac{B_{i,j}(m)}{\deg T_m} = 1$ combined with equation (1.3) implies the mass formula of Deuring and Eichler:

$$W = \sum_{j=1}^{n} \frac{1}{w_j} \frac{p - 1}{12}.$$

Theorem 1.1 can be deduced from Theorem 1.2 as follows: Remark 1.3 implies that $\Theta = \sum_{j=1}^{n} \frac{12}{w_j (p - 1)} \delta_{E_j}$. Take $f \in C^0(E)$. We have that

$$|\Theta_{T_m E_i}(f) - \Theta(f)| \leq \|f\| \sum_{j=1}^{n} \left| \frac{B_{i,j}(m)}{\deg T_m} - \frac{12}{w_j (p - 1)} \right|. $$
Hence, inequality (1.2) implies Theorem 1.1.

Let $h : E \to E$ be a function. Then h defines an endomorphism of S and of $S_\mathbb{R}$ by the rule

$$h \left(\sum a_i E_i \right) := \sum a_i h(E_i).$$

We will also consider the action induced on M by $h^* \Theta_D := \Theta_{h(D)}$.

Corollary 1.4. Let $q \neq p$ be a prime number. Let $h : E \to E$ be a function such that $h \circ T_q = T_q \circ h$. Then $h^* \Theta = \Theta$. In other words, h can be identified with a permutation $\tau \in S_n$ by $h(E_i) = E_{\tau(i)}$, and we have that $w_i = w_{\tau(i)}$ for all $i = 1, \ldots, n$.

Proof. Since T_q^k is a polynomial in T_q, we also have that $h \circ T_q^k = T_q^k \circ h$. Let $f \in C(E)$. We have that

$$h^* \Theta(f) = \lim_{k \to \infty} h^* \Theta_{T_q^k} E_i (f) = \lim_{k \to \infty} \Theta_{h \circ T_q^k} E_i (f) = \lim_{k \to \infty} \Theta_{T_q^k (h(E_i))} (f) = \Theta(f),$$

where we have used Theorem 1.1 in (1.4) and (1.5). \hfill \Box

Statement of Theorem 1.1 using the Hecke invariant measure Θ, has been included to emphasize the analogy with the fact that Hecke orbits are equidistributed on the modular curve $SL_2(\mathbb{Z}) \backslash \mathbb{H}$ with respect to the hyperbolic measure, which is Hecke invariant (e.g. see [1], Section 2).

1.1. **Weight 2 Eisenstein series for $\Gamma_0(p)$**. The modular curve $X_0(p)$ has two cusps, represented by 0 and ∞. We denote by Γ_∞ (resp. Γ_0) the stabilizer of ∞ (resp. 0). The associated weight 2 Eisenstein series are given by

$$E_\infty(z) = \frac{1}{2} \lim_{\epsilon \to 0^+} \sum_{\gamma \in \Gamma_\infty \backslash \Gamma_0(p)} j_\gamma(z)^{-2} |j_\gamma(z)|^{-2\epsilon},$$

$$E_0(z) = \frac{1}{2} \lim_{\epsilon \to 0^+} \sum_{\gamma \in \Gamma_0 \backslash \Gamma_0(p)} j_{\sigma_0^{-1} \gamma}(z)^{-2} |j_{\sigma_0^{-1} \gamma}(z)|^{-2\epsilon},$$

where $\sigma_0 = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix}$ and $j_\eta(z) = cz + d$ for $\eta = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

The functions E_∞ and E_0 are weight 2 modular forms for $\Gamma_0(p)$, and they are Hecke eigenforms. The Fourier expansions at $i \infty$ are ([1], Theorem 7.2.12, p. 288)

$$E_\infty(z) = 1 - \frac{3}{\pi y(p+1)} + \frac{24}{p^2 - 1} \sum_{n=1}^{\infty} b_n q^n,$$

$$E_0(z) = -\frac{3}{\pi y(p+1)} - \frac{24p}{p^2 - 1} \sum_{n=1}^{\infty} a_n q^n,$$

with the sequences a_n and b_n given by:

- if $p \nmid n$, then $a_n = b_n = \sigma_1(n) = \sum_{d \mid n} d$;

- if $k \geq 1$, then $b_p^{i} = p + 1 - p^{k+1}$ and $a_p^{i} = p^{k}$.

HECKE POINTS ON THE SUPERSINGULAR MODULE 2689
• if \(p \nmid m \) and \(k \geq 1 \), then \(b_{p^km} = -b_{p^k}b_m \) and \(a_{p^km} = a_{p^k}a_m \).

By taking an appropriate linear combination, we obtain a noncuspidal, holomorphic at \(i\infty \) modular form
\[
f_0(z) := E_\infty(z) - E_0(z)
= 1 + \frac{24}{p^2 - 1} \sum_{n=1}^\infty (pa_n + b_n)q^n.
\]
Since we have that
\[
E_\infty|_{\sigma_0}(z) = E_0(z),
E_0|_{\sigma_0}(z) = E_\infty(z),
\]
this shows that \(f_0 \) is holomorphic at \(\Gamma_0(p)0 \) as well. Since
\[
dimc M_2(\Gamma_0(p)) = 1 + \dimc S_2(\Gamma_0(p))
\]
and since \(f_0 \) is holomorphic, nonzero and noncuspidal, we have the decomposition
\[
(1.6) \quad M_2(\Gamma_0(p)) = S_2(\Gamma_0(p)) \oplus \mathbb{C}f_0.
\]

1.2. Proof of Theorem 1.2. Recall that we write \(m = p^km_p \) with \(p \nmid m_p \). We have that \(B(p^k) \) is a permutation matrix of order dividing 2 and that \(B(m) = B(p^k)B(m_p) \) (\([H] \), Proposition 2.7). It follows that \(\deg(T_m) = \deg(T_{m_p}) \) and that we can define, for each \(i = 1, \ldots, n \), an index \(i(k) \in \{1, \ldots, n\} \) such that \(B_{i,i}(p^k) = \delta_{i(k),i} \). Furthermore, \(i(k) = i \) if \(k \) is even. We have that
\[
\frac{B_{i,j}(m)}{\deg T_m} = \sum_{k=1}^n \frac{B_{i,i}(p^k)B_{i,j}(m_p)}{\deg T_{m_p}}
= \frac{B_{i(k),j}(m_p)}{\deg T_{m_p}}.
\]

Hence, to prove Theorem 1.2 we may assume \(p \nmid m \), which is what we will do in what follows.

Our method is based on the interpretation of the multiplicities \(B_{i,j}(m) \) as Fourier coefficients of a modular form.

Theorem 1.5. For every \(0 \leq i, j \leq n \), there exists a weight 2 modular form \(f_{i,j} \) for \(\Gamma_0(p) \) such that its \(q \)-expansion at \(\infty \) is
\[
f_{i,j}(z) := \frac{1}{2w_j} + \sum_{m=1}^\infty B_{i,j}(m)q^m, \quad q = e^{2\pi iz}.
\]

Proof. This fact is stated in \([H] \), p. 118. It is a particular case of \([3] \), Chapter II, Theorem 1 (\(D = p, H = 1, l = 0 \) in Eichler’s notation). We remark that the theorem in \([3] \), Chapter II, states the modularity of a theta series constructed from an order in a quaternion algebra. The fact that this theta series is the same as our \(f_{i,j} \) is a consequence of \([H] \), Proposition 2.3. \(\square \)

Using (1.6), we can decompose
\[
f_{i,j} = g_{i,j} + c_{i,j}f_0, \quad g_{i,j} \in S_2(\Gamma_0(p)), \quad c_{i,j} \in \mathbb{C}.
\]

Using (1.6), we can decompose
\[
f_{i,j} = g_{i,j} + c_{i,j}f_0, \quad g_{i,j} \in S_2(\Gamma_0(p)), \quad c_{i,j} \in \mathbb{C}.
\]
Comparing the q-expansions, we get $c_{i,j} = \frac{1}{2w_j}$. We have that

$$g_{i,j} = f_{i,j} - c_{i,j}f_0 = \sum_{m=1}^{\infty} c_m q^m,$$

where

$$c_m = B_{i,j}(m) - \frac{12}{w_j(p^2 - 1)} (pa_m + b_m).$$

The coefficient c_m depends on (i,j), but we do not include this dependence in the notation in order to simplify it. Since $p \nmid m$, we have that $\deg(T_m) = \sigma_1(m)$ and

$$c_m = B_{i,j}(m) - \frac{12}{w_j(p-1)} \sigma_1(m).$$

Hence,

$$\left| \frac{B_{i,j}(m)}{\deg T_m - \frac{12}{w_j(p-1)}} \right| = \frac{|c_m|}{\sigma_1(m)} \leq \frac{|c_m|}{m}.$$

Using Deligne’s theorem ([2], théorème 8.2, previously Ramanujan’s conjecture), we have that $c_m = O_\varepsilon(m^{1/2+\varepsilon})$, concluding the proof.

References

[1] Laurent Clozel and Emmanuel Ullmo. Équidistribution des points de Hecke. In *Contributions to automorphic forms, geometry, and number theory*, pages 193–254. Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR2058609 (2005f:11090)

[2] Pierre Deligne. La conjecture de Weil. I. *Inst. Hautes Études Sci. Publ. Math.* (43):273–307, 1974. MR0340258 (49:5013)

[3] M. Eichler. The basis problem for modular forms and the traces of the Hecke operators. In *Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972)*, pages 75–151. Lecture Notes in Math., Vol. 320. Springer, Berlin, 1973. MR0485698 (58:5521a)

[4] Benedict H. Gross. Heights and the special values of L-series. In *Number theory (Montreal, Que., 1985)*, volume 7 of CMS Conf. Proc., 7, pages 115–187. Amer. Math. Soc., Providence, RI, 1987. MR894322 (89c:11082)

[5] Toshitsune Miyake. *Modular forms*. Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR2194815 (2006g:11084)

Facultad de Matematicas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile

E-mail address: remeneses@mat.puc.cl