Clinical Evaluation of 188 Patients with Contracted Socket

Didem Serin1, Şafak Karslioğlu2, Müslime Akbaba2, Ibrahim Bülent Buttanrı1* and Korhan Fazıl2

1Haydarpaşa Numune Education and Research Hospital, 2nd Eye Clinic, Istanbul, Turkey
2Istanbul Oculoplastics, Oculoplastic Surgery and Ocular Oncology Center, İstanbul, Turkey

*Corresponding author: Ibrahim Bülent Buttanrı, Haydarpaşa Numune Training and Research Hospital, 2nd Eye Clinic, Caddesi No: 40 Uskudar/Istanbul Istanbul, Turkey, Tel: 90 0 505 579 2566, Fax: 90 216 337 7877; E-mail: bulent_bu@yahoo.com

Rec date: Jul 29, 2014; Acc date: Aug 23, 2014; Pub date: Aug 25, 2014

Copyright: © 2014 Serin D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Purpose: To evaluate our results in the management of socket contraction.

Design: Case series

Method: One hundred and eighty eight patients with contracted sockets were retrospectively analyzed. Reasons for eye removal, type of initial surgery, presence of an implant, time of onset of contraction, degree of contraction, additional pathologies accompanying contraction, type of surgery for the contracted socket, additional interventions, number of surgeries, and final status were recorded and evaluated.

Results: There were 101 (53.72%) male and 87 (46.28%) female patients, with an age range between 1 and 78 years (mean 35.46 years). Mean follow-up was 45.6 ± 22.34 months (range 5-120 months). Trauma was the reason for eye removal in 80(42.55%) patients. Enucleation performed in 146(77.66%) patients was the most common initial surgery. An implant was absent in 143(76.06 %) patients. Time of onset of contraction was longer than 5 years in 56 (29.79%) patients. Moderate or severe contraction was recorded in 134(71.28%) patients. Totally 229 procedures were performed for socket surface expansion and 30.32% of patients required more than one surgery. 151(80.32%) patients had additional pathologies. At the final visit, 138 (73.4%) patients had a good or acceptable result.

Conclusion: Contracted socket remains to be a challenging entity of oculoplastic surgery. It may develop at any time following removal of the eye. Additional pathologies frequently accompany the contracted socket. Even though wearing an artificial eye eventually becomes possible in the majority of cases, it is still hard for some patients even after a series of reconstructive interventions.

Keywords: Contracted socket, Socket surgery, Anophthalmia

Introduction

Anophthalmia leads to cosmetic deformity and may affect patients’ psychology [1]. Fitting an ocular prosthesis is mandatory in the management of anophthalmia. Socket contraction is the main problem in the anophthalmic patients and characterized by scarring, granulation tissue formation and loss of fornices [2]. Histopathological changes are infiltration of inflammatory cells, metaplasia of conjunctival epithelial cells, keratinization and goblet cell count reduction [3]. The aim of socket surgery is to form a socket which is able to carry an ocular prosthesis which simulates normal fellow eye [4,5]. In an anophthalamic socket, to fit prosthesis, presence of adequate fornices and lining is mandatory. Socket contraction leads to fornix and lining deficiency (Figure 1). Many factors, including fibrosis due to initial trauma, poor surgical technique, multiple socket procedures, irradiation, alkali burns, cicatrizing disease of conjunctiva may be the reason of socket contraction [6]. In moderate or severe forms of socket contraction, it may be impossible to fit prosthesis (Figures 2-4) [7].
In this study we aim to present our 17-year experience with patients having contracted sockets. Our series of 188 cases is one of the largest in the literature to evaluate demographic features of patients with contracted socket, additional pathologies accompanying contraction, management, and cosmetic results.

Methods

One hundred and eighty eight eyes of 188 patients with contracted sockets referred to our oculoplastic department between October 1993 and October 2010 were retrospectively analyzed. 4 surgeons performed the surgeries (DS,SK,MA,IBB). Degree of contraction was classified as mild, moderate, and severe (Table 1). Reasons for eye removal, type of initial surgery, presence of an implant, time of onset of contraction were recorded. Time of onset of contraction was considered as the time interval between the primary surgery and the time that the patient was not able to fit the ocular prosthesis. All eyes underwent detailed oculoplastic examination. Additional pathologies accompanying contraction were detected. Surgeries performed for the contracted socket and for additional pathologies were recorded. Final status was classified as good, acceptable and poor (Table 2). Tenets of Helsinki were followed in the study and all patients gave informed consent.

The categorized data were analyzed with the chi-square test. A probability level of <0.05 was considered statistically significant.

Table 1: Grading of socket contraction

Category	Description
Mild	Scarring or shortening of usually one fornix, mild contraction of the conjunctival surface, patient can still wear an artificial eye
Moderate	Shortening of both fornices Some contraction in the central socket Patient can wear an artificial eye with difficulty or not at all
Severe	Total or near total contraction of the socket. Fornices usually indiscernible. Patient can not wear an artificial eye

Table 2: Grading of final status

Category	Description
Good	Adequate fornices, mild or no conjunctival surface contraction, patient can easily wear the prosthesis.
Acceptable	Some residual shortening of fornices and contraction of the conjunctival surface that allows the patient to wear the prosthesis, usually with some difficulty.
Poor	Shortening of fornices and contraction of the conjunctival surface. Patient cannot wear the prosthesis.

Results

There were 101 (53.72%) male and 87 (46.28%) female patients, with an age range between 1 and 78 years (mean 35.46 years). Mean follow-up was 45.6 ± 22.34 months (range 5-120 months). Trauma was the reason for eye removal in 80 (42.55%) patients (Table 3). Enucleation performed in 146 (77.66%) patients was the most common initial surgery (Table 4). An implant was absent or extruded in 143 (76.06%) patients (Table 5). Time of onset of contraction was longer than 5 years in 56 (29.79%) patients (range 6 months-53 years) (Table 6). Moderate or severe contraction was recorded in 134 (71.28%) patients (Table 7). One hundred and fifty one (80.32%) patients had additional pathologies and required additional interventions. Most common additional pathology was cosmetically significant volume deficit (Figure 5 and Table 8). Totally 159 interventions for additional pathologies were performed. 92 (57.86%) were for volume deficit which was overcome by secondary implantation, implant replacement or implant revision. Totally 229 procedures were performed for socket surface expansion (Table 9) and 30.32% of patients required more than one surgery (Table 10). At the final visit, 138 (73.4%) patients had good or acceptable results (Table 11).

In statistical analysis, severe contraction (p=0.02) and onset of contraction during the first year after primary surgery (p=0.03) were found to be significantly correlated with poor outcome.
Figure 5: A patient with volume deficit

Figure 6: A patient with good outcome (Preoperative)

Figure 7: A patient with good outcome (Postoperative)

Figure 8: Even though wearing an artificial eye eventually becomes possible in the majority of cases, it is still hard for some patients even after a series of reconstructive interventions (preoperative, left)

Figure 9: Even though wearing an artificial eye eventually becomes possible in the majority of cases, it is still hard for some patients even after a series of reconstructive interventions (postoperative, right)

Etiology	Number of patients	%
Trauma	80	42.55
Tumor	31	16.49
Infection	19	10.11
Ocular	12	6.38
Unknown	46	24.47
Total	188	100

Table 3: Reasons for eye removal

Initial surgery	Number of patients	%
Enucleation	146	77.66
Evisceration	14	7.45
No surgery (Phtisis)	16	8.51
Table 4: Type of initial surgery

Implant	Number of patients	%
Absent	143	76.06
Present	35	18.62
Extruded	10	5.32
Total	188	100

Table 5: Presence of an implant

Time of onset	Number of patients	%
<1 year	48	25.53
1-5 years	24	12.77
5-10 year	28	14.89
>10 years	28	14.89
Unknown	60	31.92
Total	188	100

Table 6: Time of onset of contraction

Degree of contraction	Number of patients	%
Mild	54	28.72
Moderate	115	61.37
Severe	19	10.11
Total	188	100

Table 7: Degree of contraction

Additional pathologies	Number of patients	%
Volume deficit (cosmetically significant)	122	64.89
Entropion	16	8.51
Contour deformity	16	8.51
Ptosis	14	7.45
Lower lid laxity	13	6.91
Symblepharon	9	4.79
Ectropion	9	4.79
Lid defect	5	2.66
Orbital flor fracture	5	2.66
Upper lid retraction	5	2.66
Conjunctival granuloma	2	1.06
Traumatic telecanthus	2	1.06
Orbital deformity	2	1.06
Lower lid retraction	2	1.06

Table 8: Additional pathologies accompanying contraction

Procedure	Number of patients	%
Mucous membrane graft	114	49.78
Dennis-fat graft	19	8.30
Skin graft	8	3.49
Hard palata graft	11	4.81
Fornix sutures	24	10.48
Other	53	23.14
Total	229	100

Table 9: Procedures for socket surface expansion (primary interventions)

Number of interventions	Number of patients	%
1	85	45.21
2	37	19.68
3	12	6.38
4	6	3.19
5	2	1.06
None	46	24.47
Total	188	100

Table 10: Number of interventions for socket contraction

Final status	Number of patients	%
Good	41	21.81
Acceptable	97	51.59
Poor	14	7.45
Refused treatment	36	19.15
Total	188	100

Table 11: Final Status of the patients

Discussion

Socket contraction is one of the main problems following eye removal [1,8]. Contraction is a progressive process that reduces socket volume [9,10]. It makes the patient unable to keep the ocular prosthesis in the socket. Adequate conjunctival surface and deep fornices are crucial in supporting the prosthesis. Management of contracted socket is challenging. As oculoplastic surgeons, our aim is to achieve good cosmetic results by forming a socket with adequate fornices and conjunctival surface and correction of volume deficit and
additional lid pathologies such as eyelid laxity, ptosis, entropion, and ectropion. In this study, we present our 17-year experience with patients having contracted sockets.

In our series, there were many etiologies for eye loss and trauma was the most common factor (42.55%). Etiology of eye removal is differing from area to area and from country to country. In Hirako’s study [11], traumatic cause of eye removal was noted in 40% of the patients. Trauma may play a role in contracture by causing tissue loss, promoting inflammation, or disturbing the vascular supply of the socket. And also financial and education level factors affect largely on the degree of contraction, as poor uneducated countries have more contraction of the sockets than others.

Contraction may occur after enucleation, evisceration or ptosis. Enucleation was the primary surgery in 77.66% of our patients with contracted sockets. Enucleation itself is reported to be a possible cause for contraction [1]. Intraorbital structures are disrupted more in enucleation surgery than in evisceration; and this may play a role in contraction. Two problems have to be addressed after enucleation. First problem is volume loss and the second problem is shortening of the conjunctiva. Cosmetically significant volume loss was the most common additional pathology in our study group. In 76.06% of our patients, an implant was not present and in anophthalmic sockets, especially in those without implants, it is reported that myofibroblasts may lead to progressive contraction and the degree of contraction of the socket affected largely by the timing for eye ball implantation [9].

Volume deficit should be corrected before any lid surgery [1]. After management of volume deficit, we performed surgeries for socket surface expansion, then we performed surgeries for lid pathologies which prevented fitting of the prosthesis. After fitting the ocular prosthesis, we performed lid surgeries to achieve better cosmetic results.

In conclusion, contracted socket remains to be a challenging entity of oculoplastic surgery. It may develop at any time following removal of the eye. Additional pathologies frequently accompany the contracted socket. Even though wearing an artificial eye eventually becomes possible in the majority of cases, it is still hard for some patients even after a series of reconstructive interventions [Figure 8 and 9].

References

1. Tawfik HA, Raslan AO, Talib N (2009) Surgical management of acquired socket contracture. Curr Opin Ophthalmol 20: 406-411.
2. Silverstone PJ, Beyer-Machule CK, Schaefer DP, Della Rocca RC (1987) Treatment of anophthalmos and socket reconstruction, Ophthalmic Plastic Reconstructive Surgery: St. Louis: CV Mosby.
3. Putterman AM, Karesh JW (1988) A surgical technique for the successful and stable reconstruction of the totally contracted ocular socket. Ophthalmic Surg 19:193-201.
4. Schaefer D (1979) Evaluation and management of the anophthalmic socket and socket contracture. Smith’s ophthalmic plastic and reconstructive surgery. (2nd edn). St. Louis: Mosby.
5. Migliori ME (1996) Evaluation and management of the anophthalmic socket, Principles and Practice of Ophthalmic Plastic Reconstructive Surgery, Philadelphia: WB Saunders.
6. Quaranta-Leoni FM (2008) Treatment of the anophthalmic socket. Curr Opin Ophthalmol 19: 422-427.
7. Colin JRO (2006) Enucleation, evisceration and, and socket surgery. A manual of systematic eyelid surgery. (3rd edn). London: Elsevier-Heinemann.
8. Abood MH, Weyes MM (2006) Post-traumatic reconstruction of the enucleated contracted eye socket: a comparative study. J Craniofac Surg 17: 224-230.

9. Papel ID, Frodel J, Holt R (2002) Facial Plastic and Reconstruction Surgery. (2nd edn). New York: Thieme Medical Publishers.

10. Fox SA (1970) Socket repairs. (4th edn). Ophthalmic Plastic Surgery.

11. Yanaga H, Mori S (2001) Eyelids and eye socket reconstruction using the expanded forehead flap and scapha composite grafting. Plast Reconstr Surg 108: 8-16.

12. Ozgur OR, Akcay L, Dogan OK (2007) Primary implant placement with evisceration in patients with endophthalmitis. Am J Ophthalmol 143: 902-904.

13. Tawfik HA, Budin H (2007) Evisceration with primary implant placement in patients with endophthalmitis. Ophthalmology 114: 1100-1103.

14. Mai C, Bertelmann E (2013) Oral mucosal grafts: old technique in new light. Ophthalmic Res 50: 91-98.

15. Bajaj MS, Pushker N, Singh KK, Chandra M, Ghose S (2006) Evaluation of amniotic membrane grafting in the reconstruction of contracted socket. Ophthal Plast Reconstr Surg 22: 116-120.

16. Kumar S, Sugandhi P, Arora R, Pandey PK (2006) Amniotic membrane transplantation versus mucous membrane grafting in anophthalmic contracted socket. Orbit 25: 195-203.

17. Tseng SC, Di Pascaule MA, Liu DT, Gao YY, Baradaran-Rafii A (2005) Intraoperative mitomycin C and amniotic membrane transplantation for fornix reconstruction in severe cicatricial ocular surface diseases. Ophthalmology 112: 896-903.

18. Klein M, Menneking H, Bier J (2000) Reconstruction of the contracted ocular socket with free full-thickness mucosa graft. Int J Oral Maxillofac Surg 29: 96-98.