Proteomic Analysis of Cellular Response to Osmotic Stress in Thick Ascending Limb of Henle’s Loop (TALH) Cells*

Hassan Dihazi‡§¶, Abdul R. Asif§¶, Nitin K. Agarwal‡, Yuliana Doncheva‡, and Gerhard A. Müller‡

Epithelial cells of the thick ascending limb of Henle’s loop (TALH cells) play a major role in the urinary concentrating mechanism. They are normally exposed to variable and often very high osmotic stress, which is particularly due to high sodium and chloride reabsorption and very low water permeability of the luminal membrane. It is already established that elevation of the activity of aldose reductase and hence an increase in intracellular sorbitol are indispensable for the osmotic adaptation and stability of the TALH cells. To identify new molecular factors potentially associated with the osmotic stress-resistant phenotype in kidney cells, TALH cells exhibiting low or high levels of resistance to osmotic stress were characterized using proteomic tools. Two-dimensional gel analysis showed a total number of 40 proteins that were differentially expressed in TALH cells under osmotic stress. Twenty-five proteins were overexpressed, whereas 15 proteins showed a down-regulation. Besides the sorbitol pathway, enzymes aldose reductase, whose expression was 15 times increased, many other metabolic enzymes like glutathione S-transferase, malate dehydrogenase, lactate dehydrogenase, α-enolase, glyceraldehyde-3-phosphate dehydrogenase, and triose-phosphate isomerase were up-regulated. Among the cytoskeleton proteins and cytoskeleton-associated proteins vimentin, cytokeratin, tropomyosin 4, and annexins I, II, and V were up-regulated, whereas tubulin and tropomyosins 1, 2, and 3 were down-regulated. The heat shock proteins α-crystallin chain B, HSP70, and HSP90 were found to be overexpressed. In contrast to the results in oxidative stress the endoplasmic reticulum stress proteins like glucose-regulated proteins (GRP78, GRP94, and GRP96), calreticulin, and protein disulfide isomerase were down-regulated under hypertonic stress. Molecular & Cellular Proteomics 4: 1445–1458, 2005.

Elevation of extracellular osmolality induces a decrease in the cell volume in most cells. Mammalian kidneys are regularly exposed to steep osmotic gradients because of the urine concentration mechanism. Kidney cells, especially the epithelial cells, are protected from the osmotic effect of concentrated sodium ions, chloride ions, and urea in the interstitium by accumulating organic osmolytes such as sorbitol, betaine, inositol, glycerophosphocholine, and taurine (1). These organic osmolytes are involved in maintaining cell volume and electrolyte contents without perturbing the protein structure and function over a wide concentration range (2).

The cells of the renal medulla are exposed under normal physiological conditions to widely fluctuating extracellular solute concentrations (3). Outer medullary cells of the thick ascending limb of Henle’s loop (TALH)1 participate to a considerable degree in the regulation of the osmotic gradient due to their strong NaCl transport activity and low water conductivity. Thus, they have to possess specific osmoregulatory mechanisms to tolerate and counteract changes of extracellular osmolality (4).

Sorbitol is one of the principal organic osmolytes in the renal medulla. It is already established that a high extracellular concentration of NaCl or glucose induces sorbitol accumulation in the cells of the inner renal medulla and TALH cells. This increase of intracellular sorbitol content is accompanied and augmented by an induction of aldose reductase (AR), which reduces α-glucose in the polyl pathway (5, 6). Aldose reductase is present in a variety of tissues including kidney (7), liver (8), ocular lens, and retina (9) and in erythrocytes (10). In renal epithelial cells a 4-fold increase in AR mRNA expression was observed after 24 h of osmotic stress (11).

In addition, recent investigations on renal cells have disclosed that osmotic stress is also a trigger for enhanced expression of heat shock proteins (HSPs). So far five target HSPs for this kind of stress have been identified: two members of the HSP70 family, two small HSPs, HSP25/27, α-crystallin B chain, and a new member of the HSP110 subfamily, the so-called osmotic stress protein OSP94, which is highly inducible by hyperosmolality (12). Modulation of intracellular

1 The abbreviations used are: TALH, thick ascending limb of Henle’s loop; 2D, two-dimensional; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HSP, heat shock protein; GRP, glucose-regulated protein; AR, aldose reductase; BiP, binding protein; TM, tropomyosin; ER, endoplasmic reticulum.

From the Departments of ‡Nephrology and Rheumatology and §Clinical Chemistry, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany

Received, November 23, 2004, and in revised form, May 20, 2005
Published, MCP Papers in Press, June 22, 2005, DOI 10.1074/mcp.M400184-MCP200

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org
contents of organic osmolytes, elevated activity of AR, and the expression of specific HSPs are aspects of the complex response of medullary renal cells, including TALH cells, to widely fluctuating extracellular solute concentration (12).

Proteomics uniquely allows delineation of global changes in protein expression resulting from transcriptional and post-transcriptional control, post-translational modification, and shifts in protein between different cellular compartments and under different conditions. The purpose of the present study was to investigate the protein expression changes in the epithelial cells of the thick ascending limb of Henle’s loop under different conditions of osmotic stress using proteomic tools.

EXPERIMENTAL PROCEDURES

Materials— Dulbecco’s modified Eagle’s medium was from Invitrogen. L-Glutamine, urea, DTT, and monoclonal anti-β-actin antibody were from Sigma. Culture flasks were from Falcon. CHAPS was from Merck. Precision Plus protein marker and Bio-Lyte® were from Bio-Rad. Bovine serum albumin was from Roche Applied Science. Protease Inhibitor Mix 100 was from Amersham Biosciences. The Lambda2 UV/visible spectrophotometer was from PerkinElmer Life Sciences. The Sequazym™ peptide mass standard kit was from Applied Biosystems. Colloidal Coomassie Blue stain (Roti-Blue) was from Carl-Roth. Monoclonal mouse anti-vimentin antibody and monoclonal mouse anti-human cytokeratin antibody were from Dako. Rabbit anti-tropomyosin 4 polyclonal antibody was from Chemicon International. Mouse anti-HSP70 monoclonal antibody, mouse anti-Hsp90 monoclonal antibody, and rabbit anti-ERP72 (protein-disulfide isomerase) polyclonal antibody were from Stressgen. Mouse anti-β-actin monoclonal antibody and rabbit anti-GRP78/BIP polyclonal antibody were from Sigma. Mouse anti-calcitrocin monoclonal antibody was from BD Biosciences.

Cell Line and Culture Procedure—The epithelial cell line used in these experiments was derived from a rabbit kidney’s outer medulla. Cultured cells were immortalized by SV40 early region DNA. They show a high degree of differentiation and specialization and provide a suitable model to study TALH cell function in vitro.

The TALH cell line was maintained as a monolayer culture in Dulbecco’s modified Eagle’s medium including 5.5 mmol/l d-glucose supplemented with 10% fetal calf serum, 1% minimum Eagle’s medium with nonessential amino acids, 1% l-glutamine, and 1% penicillin/streptomycin. Cells were routinely cultured in 75-cm² tissue culture flasks at 37 °C in a humidified 5% CO₂, 95% air atmosphere.

Osmotic Stress Experiments—After reaching 70% confluence, TALH cells cultivated in 300 mosmol/kg medium (TALH-STD) were stressed with 600 mosmol/kg medium. TALH cell lines exhibiting a high resistance to osmolarity (600 mosmol/kg) (TALH-NaCl) were established. The osmolarity was controlled routinely. All osmotic stress experiments were repeated three times.

Sample Solubilization and Protein Determination—Confluent cultures were scraped and washed three times with PBS of different osmolarity (300 or 600 mosmol/kg). The cells were harvested by centrifugation at 1800 rpm for 10 min, the pellet was treated with 0.3–0.5 ml of lysis buffer containing 9.5 mm urea, 2% (w/v) CHAPS, 2% (w/v) amphoteries, 1% DTT, and 10 mM PMSE. Aliquots of 500 μl of urea buffer were frozen till use; Ampholine, DTT, pepstatin (to a final concentration of 1.4 μM), and Complete™ from Roche Diagnostic (according to the manufacturer’s protocol) were freshly added. After adding the lysis buffer the samples were incubated for 30 min at 4 °C. For removing the cell debris sample centrifugation was carried out at 15,000 rpm and 4 °C for 45 min. Supernatant was recentrifuged at 15,000 rpm and 4 °C for an additional 45 min to get maximal purity. The resulting samples were used immediately or stored at –80 °C until used. Protein concentration was measured according to Bradford (13) using bovine serum albumin as a standard.

Two-dimensional Electrophoresis—Each sample was diluted in rehydration buffer (8 M urea, 1% (w/v) CHAPS, 0.2% amphoteries pH 3–10, 15 mM DTT, and a trace of bromphenol blue) to a final volume of 350 μl. The mixture containing 400 μg of proteins from cell lysate was used for the hydration of IPG strips. The strips (pH 3–10, 17 cm) were allowed to rehydrate for 1 h before adding mineral oil. The passive hydration of the gels was carried out overnight for at least 12 h at room temperature in a focusing chamber. Isoelectric focusing with a Protean IEF cell was performed at 20 °C using the following multistep protocol: 500 V for 1 h, 1000 V for 1 h, and 8000 V for 4 h. After the first dimension, the individual strips were equilibrated in 6 M urea, 30% (w/v) glycerol, 2% SDS (w/v), 0.05 M Tris-HCl, pH 8.8, and 15 mM DTT for 20 min. An additional incubation in the same buffer supplemented with iodoacetamide (40 mg/ml) was carried out for another 20 min. The second dimension was performed overnight at 120 V using a homogenous acrylamide gel (12% T, 200 × 230 × 1.5 mm) applying a continuous Laemmli buffer system.

Protein Visualization and Image Analysis—Gels were stained with colloidal Coomassie Brilliant Blue G-250 as described by previously Neuhoff et al. (14). Image analysis was performed using the PDQuest system according to the protocols provided by the manufacturer. To account for experimental variation three gels were prepared for each experiment. The gel spot pattern of each gel was summarized in a standard after spot matching. Thus, we obtained one standard gel for each experiment. These standards were then matched to yield information about new spots related to the stress resistance in TALH cells (up- or down-regulation of spots).

In-gel Digestion and MALDI-TOF MS Analysis of Protein Spots—Coomassie Brilliant Blue-stained spots were manually excised from the gels and then washed with distilled water for 15 min. The destaining procedure was carried out by washing the spots alternately with 50% ACN and 100 mM ammonium bicarbonate three times for 5 min. After dehydrating the spots with ACN for 15 min, they were dried in a vacuum centrifuge for 15 min. Thereafter the gel spots were rehydrated for digestion with 40 μl of trypsin (10 ng/μl in 100 mM ammonium bicarbonate) and incubated at 37 °C overnight. The peptide samples were extracted with different concentrations of ACN and TFA. The peptide samples were then co-crystallized with matrix (α-cyano-4-hydroxycinnamic acid) on a stainless steel target using 1 l of matrix and 1 μl of sample. An Applied Biosystems Voyager-DE STR time-of-flight mass spectrometer, operating in delayed reflector mode with an accelerated voltage of 20 kV, was used to generate peptide mass maps. Mass spectra were obtained by averaging 50 individual laser shots. All samples were externally calibrated with a peptide mixture of des-Arg-bradykinin ([M + H]⁺ 904.46), angiotensin I ([M + H]⁺ 1296.68), Glu1-fibrinopeptide B ([M + H]⁺ 1570.67), ACTH-(1–17) ([M + H]⁺ 2093.08), and ACTH-(18–39) ([M + H]⁺ 2465.19), and the resulting mass spectra were internally calibrated with trypsin autolysis products (m/z 842.50 and m/z 2211.10). Monoisotopic peptide masses were assigned and then used in Mascot database searches.

Database Search—A database search with the peptide masses was performed against the Mass Spectrometry Protein Sequence Database (MSDB) or the National Center for Biotechnology non-redundant (NCBI) database using the Mascot peptide mass fingerprint software provided by Matrix Science (Oxford, UK, www.matrixscience.com/search_form_select.html) (15). Carboxyamidomethylation and methionine oxidation were considered as variable modifications. A database search was performed so that after identification each hit was inspected visually to match as much spectral information as
possible. The quality criteria encompassed optimized mass accuracy (~50 ppm), minimal mass deviation (in the mDa range), maximized sequence coverage, and highest possible probability score had to be assigned to the identified protein.

Peptide Sequence Analysis—To confirm and accomplish the data obtained from mass finger print analysis, all samples were subjected to peptide sequence analysis. After in-gel digestion the extracted peptides were dissolved in 0.1% formic acid. One microliter of sample was introduced using a CapLC autosampler (Waters) onto a μ-pre-column™ cartridge, a C18 pepMap (300 μm × 5 mm, 5-μm particle size), and further separated through a C18 pepMap100 nano-Series™ (75 μm × 15 cm, 3-μm particle size) analytical column (LC Packings).
Table I

List of all identified proteins (pH 3–10) in TALH cell lines using MALDI-TOF, microsequencing, and database comparisons

Spot	Protein name	Molecular mass (Daltons)	pI	Score MS/MS	Score fingerprint
1	14-3-3 protein β	28,054	4.81	483	95
2	14-3-3 protein ϵ renal	29,155	4.64	342	102
3	14-3-3 protein ζ	27,728	4.73	187	119
4	3-Hydroxy-CoA dehydrogenase	27,140	8.45	197	85
5	3-Ketoacyl-CoA thiolase	41,844	175	96	
6	5-Aminomidazole-4-carboxamide ribonucleotide formyltransferase	64,117	6.65	221	68
7	Aconitase 2	85,410	8.08	125	90
8	Aconitase hydratase	82,473	7.12	156	86
9	Actin β	41,579	5.25	419	163
10	Actin β	41,579	5.25	325	145
11	Actin β	41,579	5.25	156	125
12	Actin γ	41,579	5.25	212	158
13	Adenylate kinase 3	25,595	8.69	228	
14	Alcohol dehydrogenase class III	39,439	7.57	79	
15	Aldose reductase	35,763	6.48	296	204
16	Aldose reductase	35,763	6.48	165	151
17	Aldose reductase	35,763	6.48	98	
18	Aldose reductase	35,763	6.48	74	115
19	Aldose reductase	35,609	6.40	221	
20	Aldose reductase	35,609	6.48	290	
21	Aldose reductase	35,609	6.48	112	
22	α enolase	47,172	6.16	616	122
23	α enolase	47,040	5.84	810	71
24	α enolase	47,008	6.99	187	110
25	α enolase	47,008	6.99	221	
26	α-Crystallin chain B	20,024	6.76	205	110
27	α-Crystallin chain B	20,024	6.76	103	98
28	Annexin I	38,711	6.28	336	111
29	Annexin II (lipocortin II, calpactin I)	38,448	8.36	360	100
30	Annexin II (lipocortin II, calpactin I)	38,448	8.36	194	99
31	Annexin V	35,914	4.94	49	98
32	Annexin VIII	35,914	4.94	89	120
33	ATP synthase β chain	36,657	5.53	128	
34	A-X-actin (γ actin-like protein)	41,667	5.21	236	85
35	A-X-actin (γ actin-like protein)	41,667	5.21	95	96
36	Bat 1	48,944	5.43	49	98
37	Bicaudal D protein	93,334	5.26	119	
38	BiP protein dnak-type molecular chaperone	72,302	5.07	408	80
39	Calmodulin	16,884	4.11	255	114
40	Calreticulin	67,277	4.30	321	102
41	Calreticulin	67,277	4.30	254	89
42	Chaperonin groEL	60,903	5.67	270	162
43	Creatine kinase B	42,648	5.34	193	119
44	Cytokeratin 19	44,609	5.21	668	101
45	Cytokeratin 8	54,018	5.80	320	
46	Dnak-type molecular chaperone grp75	73,744	5.87	562	227
47	Dnak-type molecular chaperone hsc73	73,808	6.04	699	132
48	Desmin	34,726	4.90	120	
49	Dihydrolipoamide dehydrogenase	54,143	7.59	110	
50	Dnak-type molecular chaperone HSPA5	72,423	5.01	329	
51	Elongation factor 1	95,335	6.31	165	102
52	Elongation factor 2	95,146	6.41	308	109
53	EndoA' cytoxin	53,210	5.42	173	116
54	ERP57 protein	56,761	5.98	215	
55	Ezrin (p81, cytovillin)	69,046	6.09	182	
56	GRP78	73,744	5.78	133	
57	GRP94	82,557	4.90	246	120
Spot	Protein name	Molecular mass	pl	Score MS/MS	Score fingerprint (p < 0.05)
------	--------------	----------------	-----	-------------	-----------------------------
58	Glutathione S-transferase	26,617	6.82	175	152
59	Glutathione S-transferase	25,678	6.45	272	102
60	GAPDH	35,827	8.51	512	120
61	G-protein β subunit-like protein	34,504	7.72	141	
62	GTP-binding protein Ran	22,339	9.16	111	
63	Guanosine diphosphate dissociation inhibitor 2	50,236	6.30	122	
64	H+ -transporting two-sector ATPase	50,770	4.90		123
65	Heat shock cognate protein 70 kDa	42,081	6.62	326	
66	HSPA6	70,828	5.28	345	98
67	Heat shock cognate protein 70 kDa	42,081	6.62	579	
68	Heat shock protein 60 kDa	60,950	5.84	102	
69	Heat shock protein 8	70,828	5.28	129	120
70	Heat shock protein 8	70,828	5.28	129	120
71	HSP84	83,229	4.97	159	110
72	Heat shock protein 90-α	84,480	4.96	143	95
73	Heat shock protein 90-α	84,480	4.96	216	125
74	Heat shock 20-KDa-like protein p20	20,024	7.67	115	
75	Heme-binding protein 1	21,039	5.18		110
76	Heterogeneous nuclear ribonucleoprotein G	42,208	9.96	125	
77	HSP 70-kDa protein 5	70,038	5.48	155	
78	Hspa1 protein	70,050	5.53	302	
79	Hspa1a protein	70,050	5.53	239	
80	Hypothetical protein leucine-rich repeat signature	34,223		165	
81	Isocitrate dehydrogenase	50,877	518	80	
82	Lactate dehydrogenase	36,564	8.17	303	132
83	Lamin A	74,279	6.53	251	121
84	Lamin C	65,096	6.54	210	152
85	Long-chain-acyl-CoA dehydrogenase	47,842	7.63	210	89
86	Malate dehydrogenase	35,589	8.93	467	82
87	Methyltransferase	55,992	8.76	166	
88	Modulator recognition factor 1	65,948	9.40	135	
89	Moesin	67,584	6.22	156	
90	Moesin	67,584	6.22	141	
91	Mortalin-2 (HSP70 9B)	70,827	5.37	163	
92	Myosin phosphatase target subunit 1	108,719	5.30		110
93	Nebulin-related anchoring protein isoform S	195,791	9.24	123	
94	Nucleophosmin	32,540	4.62	161	
95	p60 protein (Hsp70/Hsp90 organizing protein)	62,611	6.40	102	
96	p66 mot1 (hsp70 family)	73,528	5.91	165	91
97	Phosphoglycerate kinase	44,377	7.54	136	191
98	Phosphoglycerate mutase	28,655	6.67	163	
99	Phosphatidylethanolamine-binding protein	20,913	7.42	115	
100	Peptidyl-prolyl cis-trans isomerase A	17,166	8.44		120
101	Protein-disulfide isomerase	56,761	4.77	838	218
102	Protein-disulfide isomerase	57,203	4.80	568	147
103	Protein-disulfide isomerase A4 (ERp72)	72,932	4.96	692	139
104	Protein phosphatase 1 regulatory subunit 12A	109,654	5.35	213	
105	Pyrophosphatase-5-peptidase I	22,439	5.21	321	
106	Pyruvate kinase	57,737	7.96	745	
107	S-Adenosylhomocysteine hydrolase	47,663	5.88	101	
108	Stress-induced phosphoprotein 1	62,528	6.40	125	98
109	Stathmin (phosphoprotein p19)	17,166	5.76	252	132
110	Superoxide dismutase	23,221	8.18	283	70
111	Thioredoxin peroxidase	22,096	8.27	261	
112	Transforming protein VAV	98,031	6.31		98
113	Transketolase	60,545	6.54	107	
114	Translation initiation factor eIF-4A.I	45,262	5.20	228	
115	Triose-phosphate isomerase	26,609	7.10	242	100
116	Tropomyosin 1	32,708	4.71	1065	122
The mobile phase consisted of solution A (5% ACN in 0.1% formic acid) and solution B (95% ACN in 0.1% formic acid). The total sample run time was 60 min. The first step consisted of injecting onto a precolumn and washing for 5 min with 0.1% formic acid. The washing step was followed by an elution step with an exponential flow rate down-regulated by a flow splitter from 5 μl/min to 0.25 μl/min. The precolumn was reequilibrated with 0.1% formic acid (30 μl/min) for 5 min. The nanospray needle was held at 2 kV, and the source temperature was held at 40 °C. After chromatographic separation, peptide sequencing was performed on a Q-TOF Ultima Global (Micromass, Manchester, UK) mass spectrometer equipped with a nanoflow ESI Z-spray source in positive ion mode. Multiple charged peptide parent ions were automatically marked and selected in the quadrupole and fragmented in the hexapole collision cell, and their fragment patterns were analyzed by time-of-flight. The data acquisition was performed using MassLynx (Version 4.0) software on a Windows NT PC, while data were further processed on Protein-Lynx-Global-Server (Version 2.1), (Micromass). The raw data files were deconvoluted and deisotoped using the Max Ent™ lite algorithm.

processed data were searched against MSDB and Swiss-Prot database searches 132 proteins were identified (Table I). For Western blot analysis after SDS-PAGE, a standard protocol of Towbin et al. (16) was used.

RESULTS

Morphology Changes of TALH Cells under Osmotic Stress—To investigate the effect of elevated osmolarity on the cell morphology, TALH cells were exposed to physiological osmolarity of 300 mosmol/kg or an increased extracellular toxicity of 600 mosmol/kg. The osmotic stress resulted in shrinkage of the cell as a consequence of osmotically induced water loss (Fig. 1, A–C). Morphological changes in TALH-STD cells were already observed after 8 h of exposition, and significant distinctive changes were observed after 35 h. We also investigated whether TALH cells exhibiting resistance to 600 mosmol/kg were able to adapt to higher osmolarity or not. For this purpose, the cells were exposed to an external osmolarity of 900 mosmol/kg (Fig. 1, D and E). Under these conditions morphological changes occurred later (first after 12 h) than these changes of TALH cells shifted to 600 mosmol/kg, and furthermore they were less intense. After 35 h of incubating the cells in 900 mosmol/kg, these cells also showed a marked change in forms.

Conventional 2D Electrophoresis—The morphological changes of the TALH cells under osmotic stress are very intense. In our study we investigated whether these modifications were accompanied by changes in the cell proteome. For this purpose cell extracts were prepared from TALH-STD and -NaCl cells and separated by 2D gel electrophoresis. Comparison of protein expression in 2D gel images was carried out using the PDQuest software. An analysis of TALH imaged gels derived from conventional 2D gel electrophoresis in the pH range 3–10 identified more than 2000 (2552 for TALH-NaCl and 2654 for TALH-STD) protein spots in both stressed and non-stressed cells when 20,000 pixels were used as the filter limit. The pixel volume of each spot was calculated based on spot intensity and spot area and was followed by the normalization with the total pixel volume of all the spots in the gel image. The pixel volume of each spot provides the basis for comparison of protein expression between NaCl-stressed and non-stressed cells. A representative electropherogram from TALH-NaCl is shown in Fig. 2; all proteins that were found to be differentially expressed in these cells are numbered. Using mass spectrometry and database searches 132 proteins were identified (Table I).

Further examination of the gels showed significant differences between the protein compositions from stressed and non-stressed TALH cells. In the high molecular mass region, prominent differences in protein expression (Fig. 3A) were
recorded for protein spots 40, 57, and 101 that were only present in non-stressed cells as strongly expressed proteins. In stressed cells, these spots were either completely absent or much less intensely expressed. By contrast, in the middle molecular mass regions, new prominent protein spots (Fig. 3D, spots 15, 29, 61, and 82) were exclusively observed in gels derived from stressed cells. The same results were also observed in the low molecular mass regions for spots 15 and 26 (Fig. 3E).

Changes of Protein Expression Pattern between Stressed and Non-stressed TALH Cells—Software analysis of the gel spot images showed that 40 proteins were differently expressed in the stressed TALH cells. Twenty-five proteins from three different protein classes, namely HSPs, metabolism proteins, and structure proteins, were differentially overexpressed (Table II). Fifteen proteins belonging to endoplasmic reticulum stress proteins, structure proteins (tubulin), and other proteins were differentially down-regulated (Table III). Fig. 3 (A–G) shows gel sections of each cell line in comparison. The differentially expressed proteins are numbered corresponding to Tables I–III. The expression quantification is presented as a grouped bar chart with error bars. Each bar represents the intensity means ± S.D. of gels from three independent experiments. As a representative example of our MS/MS analysis Fig. 4A shows a representative MS/MS spectrum from the peptide fragment 345–356 of α enolase (P25704), while Fig. 4B shows a MS/MS spectrum from the peptide fragment 158–171 of creatine kinase (KIRBCB).

Western Blot Analysis of Up- or Down-regulated Proteins—To highlight the protein expression changes after osmotic stress and to confirm the results obtained in 2D gels especially in the case of endoplasmic reticulum and cytoskeleton proteins, Western blot analysis was carried out for prominent proteins (Fig. 5). The Western blot data correlate with the 2D gel results for the analyzed proteins.

DISCUSSION

Renal TALH cells are exposed to a highly variable extracellular environment in which NaCl and urea concentrations regularly reach high levels. The cells adjust osmotically by accumulating large amounts of sorbitol (17, 18). Accumulation of sorbitol protects the cells, and its level varies with extracellular osmolyte concentrations (19). In the present study we used proteomic tools to investigate the impact of the osmolarity change on the proteome pattern in TALH cells. Forty proteins were found to be differentially expressed in TALH cells under osmotic stress. Fifteen were down-regulated, and 25 up-regulated. Only some of these proteins have been linked previously to renal osmotic stress resistance (20–23). This highlights the importance of proteomic approaches, which allow new protein targets for osmotic stress resistance to be defined.

Impact of Osmotic Stress on Metabolic Protein Expression—To avoid excessive alterations in volume, cells have developed regulatory mechanisms including ion transport across the membrane and changes in metabolism. The ability of cells to resist osmotic shrinkage by cell volume regulation parallels their resistance to apoptosis after osmotic shock (24). Cells adapt to hyperosmotic stress by a variety of mechanisms that restore cell volume by restoring intracellular salt and osmolyte concentrations (19). The most evident change observed in our results was represented by overexpression of AR. However, the extent in the increase in protein expression (more than 15-fold) was surprising when compared with the increase in mRNA expression in inner medulla cells (more than 4-fold) reported previously (11). High extracellular osmolarity induces renal sorbitol synthesis and accumulation in inner medullary collecting duct cells by increasing the AR activity and decreasing membrane permeability (25, 26). The expression of the AR gene in the mammalian renal medulla has been shown to be osmotically regulated. In this tissue, AR mRNA and sorbitol content increase during dehydration or antidiuresis and decrease during diuresis (27). Moreover experiments on PAP-H25 cells derived from rabbit renal papillae demonstrated that external hyperosmolarity enhances transcription of the AR gene (28) resulting in a rapid increase in AR mRNA (29) followed by an increase in AR activity and sorbitol content (30).

α enolase was described as a heat shock protein in yeast because it shares some degree of homology with DNAK (31). Interestingly it has already been demonstrated to be an early target of oxidative damage by carbonylation in different cell systems, ranging from yeast (32) to humans (33). An involvement of enolase in oxidative stress in lens cells has been suggested previously by Paron et al. (34). The role of the overexpression of α enolase under osmotic stress remained unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central glycolytic protein with a pivotal role in energy production. However, studies have demonstrated that GAPDH or some of its isoforms display a number of activities that are unrelated to its glycolytic function (35–39). Its importance in oxidative stress and apoptosis has already been demonstrated (40). In the case of osmotic stress the pivotal role in energy production may be the main function of GAPDH. Lactate dehydrogenase and malate dehydrogenase are enzymes involved in carbohydrate metabolism. One of the reasons for the overexpression of these proteins is the activation of the gluconeogenesis pathway to provide enough glucose for the synthesis of sorbitol in the polyol pathway.

Among the overexpressed proteins adenylate kinase and creatine kinase are known to maintain the ATP level in tissues with high energy demands like brain and muscle (41). The overexpression of these proteins in TALH-NaCl highlights the higher energy needed in stressed TALH cells and the role of the energy balance under hyperosmotic stress conditions.

Changes in Cytoskeleton and Cytoskeleton-associated Protein Expression—Based on its properties and subcellular organization, vimentin is considered to be the major contributor
FIG. 3. Close-up of the region of the gels showing differential expression of proteins in non-stressed TALH-STD and their stressed counterparts, TALH-NaCl, in the range of pH 3–10. A–G, close-ups of different regions of the gels showing up- or down-regulated proteins. The protein spots are numbered corresponding to Tables I–III. The names of the proteins differentially expressed are shown in Tables II and III. The degree of differential expression in the TALH cell lines is shown in the histogram on the right side of the corresponding gel part. The expression quantification is presented as a grouped bar chart with error bars. Each bar represents the intensity means ± S.D. of gels from three independent experiments.
Proteomics, Renal Epithelial Cells, Osmotic Stress

D

TALH-STD

TALH-NaCl

E

TALH-STD

TALH-NaCl

F

TALH-STD

TALH-NaCl

G

TALH-STD

TALH-NaCl

Fig. 3—continued
to the mechanical integrity of cells and tissue. The unique viscoelastic properties of vimentin render it more resistant than either microtubules or microfilaments to deformation and other external physical stress (42). The increase in vimentin expression in stressed TALH cells seems to play an important role by stabilization and reinforcement of the cells exposed to high salt concentration. Further studies are needed to investigate the role of vimentin in osmotic stress resistance.

Tropomyosins encompass a large family of actin-regulatory proteins that are expressed by muscle and non-muscle cells. The transition of lens epithelial cells from the undifferentiated to the differentiated state is characterized by a shift in tropo-
FIG. 4. Representative example of MS/MS analysis. A, a representative MS/MS spectrum from the peptide fragment 345–356 of α enolase (P25704), B, a MS/MS spectrum from the peptide fragment 158–171 of creatine kinase (KIRBCB).
myosin isoform expression from high molecular weight (TM1, TM2, TM3, and TM4) to low molecular weight (TM5) and by a resulting reorganization of actin (43–45). The down-regulation of TM1–3 and up-regulation of TM4 seem to be an indication of the necessity of reorganization of actin in TALH cells under osmotic stress condition.

Fig. 5. Western blot analysis of proteins found to be up- or down-regulated. TALH cells cultivated in 300 mosmol (TALH-STD) or 600 mosmol (TALH-NaCl) medium were tested for protein expression changes with antibodies against the appropriate proteins. A, blots probed with antibodies against the appropriate protein. B, blots quantification. The degree of differential protein expression in the TALH cell lines is shown in the histogram. The expression quantification is presented as a grouped bar chart with error bars. Each bar represents the intensity means ± S.D. of blots from three independent experiments. PDI, protein-disulfide isomerase.
Molecular Chaperones—One of the major protein groups found to be influenced by osmotic stress in TALH cells is the group of chaperones, including HSPs. HSPs are a group of highly conserved proteins, some of which are expressed constitutively and/or induced by stress. Constitutively expressed HSPs participate in protein folding and assembly, elimination of misfolded proteins, and stabilization of newly synthesized proteins in various intracellular compartments. Exposure of cells to diverse physical or chemical stressors such as heat, heavy metals, hypoxia, arsenite, and amino acid analogues evokes string induction of HSP synthesis. Our results obtained from TALH-STD and its counterpart TALH-NaCl show differential expression in several major HSPs. In TALH-NaCl cells there was an increased expression of the small stress protein α-crystallin chain B and an up-regulation of members of the HSP70 family (HSC73 and HSP8a). Furthermore proteome analysis revealed up-regulation of HSP90-α in TALH-NaCl cells. HSPs enhance survival of the stressed cells by acting as molecular chaperones when normal cellular protein synthesis is inhibited through denaturation. Recent investigations on both renal and non-renal cells have reported similar effects of osmotic stress concerning the expression of α crystallin B chain and HSP70 under stress situation (48–50).

Down-regulated Proteins—In addition to up-regulated proteins, osmotic stress resulted in down-regulation of 15 proteins. Nucleophosmin that serves as a shuttle protein for the nuclear transport of ribosomal components and presumably collaborates with other nucleolar proteins in ribosome assembly (51) is known to be up-regulated under oxidative stress in lens cells (35) or as a response to genotoxic stress (52). The role of expression changes of nucleophosmin in the context of osmotic stress is still unclear.

Another interesting finding is the involvement of the endoplasmic reticulum stress proteins in osmotic stress resistance. The glucose-regulated proteins (GRPs) are a family of endoplasmic reticulum (ER) molecular chaperones and Ca\(^{2+}\)-binding stress proteins. These proteins are also induced under ER stress (53–55). Induction of GRPs by ER stress protects cells against a variety of toxic insults including Ca\(^{2+}\) ionophores, oxidative stress, toposomerase inhibitors, and cytotoxic T-cells (56–59). In our case the GRP78, GRP94, GRP96, protein-disulfide isomerase, and calreticulin were found to be down-regulated. The role of the down-regulation of ER stress proteins in the context of hyperosmolarity is still unclear. One possible aspect is that the down-regulation of these proteins leads to an increase of free calcium and so prevents disturbance of intracellular Ca\(^{2+}\) homeostasis under osmotic stress.

The use of proteomic tools to study global changes of protein expression under osmotic stress provides a more complete picture of protein targets of hypertonic stress resistance in TALH cells. This information is very important and will lead to better understanding of the urinary concentrating mechanism in renal epithelial cells. Our results provide a stage from which mechanistic and biological aspects of proteins involved in hyperosmotic stress resistance can be examined.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¶ Both authors contributed equally to this work.

§ To whom correspondence should be addressed. Tel.: 49-551-3991221; Fax: 49-551-3991039; E-mail: dihazi@med.uni-goettingen.de.

REFERENCES

1. Garcia-Perez, A., and Burg, M. R. (1991) Renal medullary organic osmolytes. Physiol. Rev. 71, 1081–1115
2. Yancey, P. H., Clark, M. E., Hand, S. C., Bowls, R. D., and Somero, G. N. (1985) Living with water stress: evolution of osmolyte systems. Science 227, 1214–1222
3. Cohen, D. M., and Gullans, S. R. (1993) Urea selectively induces DNA synthesis in renal epithelial cells. Am. J. Physiol. 264, F601–F607
4. Grunewald, R. W., Fahr, M., Fiedler, G. M., Jehle, P. M., and Müller, G. A. (2001) Volume regulation of thick ascending limb of Henle cells: significance of organic osmolytes. Exp. Nephrol. 9, 81–89
5. Gullans, S. R., Blumenfield, J. D., Balaschi, J. A., Kaleta, M., Brenner, R. M., Heilig, C. W., and Herbert, S. C. (1988) Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am. J. Physiol. 255, F626–F634
6. Bagnasco, S. M., Balaban, R., Fales, H. M., Yang, Y. M., and Burg, M. B. (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem. 261, 5872–5877
7. Chinta, M., Tanimoto, T., and Tanaka, A. (1991) Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney. Biochim. Biophys. Acta 1078, 395–403
8. Petras, J. M., and Srivastava, S. K. (1982) Purification and properties of human liver aldehyde reductases. Biochim. Biophys. Acta 707, 105–114
9. Srivastava, S. K., Ansari, N. H., Hair, G. A., and Das, B. (1984) Aldose and aldehyde reductases in human tissues. Biochim. Biophys. Acta 800, 220–227
10. Das, B., and Srivastava, S. K. (1985) Purification and properties of aldose reductase and aldehyde reductase III from human erythrocyte. Biochim. Biophys. Acta 238, 670–679
11. Grunewald, R. W., Wagner, M., Schubert, I., Franz, H. E., Müller, G. A., and Steffgen, I. (1998) Rat renal expression of mRNA coding for aldose reductase and sorbitol dehydrogenase and its osmotic regulation in inner medullary collecting duct cells. Cell. Physiol. Biochem. 8, 293–303
12. Beck, F. X., Burger-Kentischer, A., and Müller, E. (1998) Cellular response to osmotic stress in the renal medulla. Pluerners Arch.-Eur. J. Physiol. 436, 814–827
13. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254
14. Neuhoff, V., Arol, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262
15. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567
16. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76, 4350–4354
17. Yancey, P. H., and Burg, M. B. (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am. J. Physiol. 257, F602–F607
18. Bagnasco, S. M., Uchida, S., Balban, R. S., and Kador, P. F. (1987) Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl. Acad. Sci. U. S. A. 84, 1718–1720
19. Burg, M. B. (1995) Molecular basis of osmotic regulation. Am. J. Physiol. 268, F393–F996
20. Woo, S. K., Lee, S. D., Na, K. Y., Park, W. K., and Kwon, H. M. (2002) TonEBP/NFAT5 stimulates transcription of HS70 in response to hypotonicity. *Mol. Cell. Biol.* 22, 5753–5760

21. Schüttler, J. B., Fiedler, G. M., Grupp, C., Blaschke, S., and Grunewald, R. W. (2002) Sorbitol transport in rat renal inner medullary interstitial cells. *Kidney Int.* 61, 1407–1415

22. Grunewald, R. W., Eckstein, A., Reisse, C. H., and Müller, G. A. (2001) Characterization of aldose reductase from the tick ascending limb of Henle’s loop of rabbit kidney. *Nephron* 89, 73–81

23. Beck, F. X., Gründlein, R., Lugmayr, K., and Neuhofer, W. (2000) Heat shock proteins and the cellular response to osmotic stress. *Cell. Physiol. Biochem.* 10, 303–306

24. Bortner, C. D., and Cidlowski, J. A. (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. *Am. J. Physiol.* 271, C950–C961

25. Grunewald, R. W., and Kinne, R. K. (1989) Intracellular sorbitol content in isolated rat inner medullary collecting duct cells. *Pfluegers Arch.* 414, 178–184

26. Bagnasco, S. M., Murphy, H. R., Bedford, J. J., and Burg, M. B. (1988) Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. *Am. J. Physiol.* 254, C788–C792

27. Cowley, B. D., Ferraris, J. D., Jr., Carper, D., and Burg, M. (1990) In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. *Am. J. Physiol.* 258, F154–F161

28. Sinard, F. L., Burg, M. B., Jr., and Garcia-Perez, A. (1992) Kidney aldose reductase gene transcription is osmotically regulated. *Am. J. Physiol.* 262, C776–C782

29. Garcia-Perez, A., Martin, B., Murphy, H. R., Uchida, S., Murer, H., Cowley, B. D., Jr., Handler, J. S., and Burg, M. B. (1989) Molecular cloning of cDNA coding for kidney aldose reductase: regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. *J. Biol. Chem.* 264, 16815–16821

30. Uchida, S., Garcia-Perez, A., Murphy, H., and Burg, M. (1989) Signal for induction of aldose reductase in renal medullary cells by osmolytes. *NaCl.* *Am. J. Physiol.* 256, C614–C620

31. Tamarit, J., Cabiscol, E., and Ros, J. (1998) Identification of the major molecular targets of oxidative stress in human epithelial lens cells. *J. Biol. Chem.* 273, C7993–C7998

32. Cabiscol, E., Piulats, E., Echave, P., Herrero, E., and Ros, J. (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. *J. Biol. Chem.* 275, 27393–27398

33. Castegna, A., Akenson, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., Markesbery, W., and Butterfield, D. A. (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydroxyphenylalanine-related protein 2, α-enolase and heat shock cognate 71. *J. Neurochem.* 82, 1524–1532

34. Paron, J., I. D’Elia, A., D’Ambrosio, C., Scaloni, A., D’Auria, F., Prescott, A., Damante, G., and Tell, G. (2004) A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. *Biochem. J.* 378, 929–937

35. Kawamoto, R. M., and Caswell, A. H. (1987) Microtubules bind glyceraldehyde-3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. *Arch. Biochem. Biophys.* 252, 32–40

36. Glaser, P. E., and Gross, R. W. (1995) Rapid plasmamylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. *Biochemistry* 34, 12193–121203

37. Brune, B., and Lapetina, E. G. (1996) Nitric oxide-induced covalent modification of glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. *Methods Enzymol.* 269, 400–407

38. Nagy, E., and Rigby, W. F. (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD⁺-binding region (Ross-mann fold). *J. Biol. Chem.* 270, 2755–2763

39. Dastoor, Z., and Dreyer, J. L. (2001) Potential role of nuclear translation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. *J. Cell Sci.* 114, 1643–1653

40. Janssen, E., Terzic, A., Wieringa, B., and Dzeja, P. P. (2003) Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-C/4K1) double knock-out mice. *J. Biol. Chem.* 278, 30441–30449

41. Mountain, I., Waelkens, E., Missiaen, L., and van Driessche, W. (1998) Changes in actin cytoskeleton during volume regulation in C6 glial cells. *Eur. J. Cell Biol.* 77, 196–204

42. Tilly, B. C., Edixhoven, J. M., Tertoelen, L. G., Mori, N., Saitoh, Y., Narumiya, S., and de Jonge, H. (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. *Mol. Cell. Biol.* 17, 1419–1427

43. Kegel, K. B., Iwaki, A., Iwaki, T., and Goldman, J. E. (1996) α-B-crystallin protects gial cells from hypertonic stress. *Am. J. Physiol.* 270, C903–C909

44. Borer, R. A., Lehner C. F., Eppenberger, H. M., and Nigg, E. A. (1989) Major nuclear proteins shuttle between nucleus and cytoplasm. *Cell* 56, 379–390

45. Yang, C., Maiguel, D. A., and Carrier, F. (2002) Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. *Nucleic Acids Res.* 30, 2251–2260

46. Black, A. R., and Subjeck, J. R. (1991) The biology and physiology of the heat shock and HSP70 expression in hyperosmotic stress in MDCK cells. *Am. J. Physiol.* 261, C594–C601

47. Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein gene and HSP70 expression in response to physiological stress. *J. Cell. Physiol.* 159, 41–50

48. Borer, R. A., Lehner C. F., Eppenberger, H. M., and Nigg, E. A. (1989) Major nuclear proteins shuttle between nucleus and cytoplasm. *Cell* 56, 379–390

49. Black, A. R., and Subjeck, J. R. (1991) The biology and physiology of the heat shock and HSP70 expression in stress systems. *Methods Enzymol.* 15, 126–166

50. Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. *Curr. Opin. Cell Biol.* 4, 267–273

51. Brostrom, M. A., Cade, C., Prostko, C. R., Gmitter-Yellen, D., and Brostrom, C. O. (1990) Accommodation of protein synthesis to chronic deprivation of intracellular sequesetered calcium. A putative role for GRP78. *J. Biol. Chem.* 265, 20539–20546

52. Little, E., and Lee, A. S. (1995) Generation of a mammalian cell line deficient in glucose-regulated protein stress induction through targeted ribozyme driven by a stress-inducible promoter. *J. Biol. Chem.* 270, 9526–9534

53. Gorner, C., J., Ferrario, A., Rucker, N., Wong, S., and Lee, A. S. (1991) Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photossensitization. *Cancer Res.* 51, 6574–6579

54. Hughes, C. S., Shen, J. W., and Subjeck, J. R. (1998) Resistance to etoposide induced by three glucose-regulated stresses in Chinese hamster ovary cells. *Cancer Res.* 49, 4452–4454

55. Shen, J., Hughes, C., Chao, C., Cai, J., Bartels, C., Gessler, T., and Subjeck, J. (1987) Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. *Proc. Natl. Acad. Sci. U. S. A.* 84, 3278–3282