Picard solution of Painlevé VI and related tau-functions

Vladimir V. Mangazeev

Department of Theoretical Physics,
Research School of Physics and Engineering,
Australian National University,
Canberra, ACT 0200, Australia.

February 11, 2010

Abstract

In this paper we obtain explicit expressions for tau-functions related to Picard type solutions of the Painlevé VI equation in terms of theta functions and their derivatives.

1 Introduction

In this paper we study a special case of the Painlevé VI equation [1,2]

\[q''(t) = \frac{1}{2} \left(\frac{1}{q(t)} + \frac{1}{q(t) - 1} + \frac{1}{q(t) - t} \right) q'(t)^2 - \left(\frac{1}{t} + \frac{1}{t - 1} + \frac{1}{q(t) - t} \right) q'(t) + \]
\[\frac{q(t)(q(t) - 1)(q(t) - t)}{t^2(t - 1)^2} \left[\alpha + \beta - \frac{t}{q(t)^2} + \gamma \frac{t - 1}{(q(t) - 1)^2} + \delta \frac{t(t - 1)}{(q(t) - t)^2} \right] \]

(1)

when

\[\alpha = 0, \quad \beta = 0, \quad \gamma = 0, \quad \delta = \frac{1}{2}. \]

(2)

This case was originally considered by Picard [3]. Due to a special choice of parameters (2) a general solution of (1) is known

\[q_0(t) = \wp(c_1 \omega_1 + c_2 \omega_2; \omega_1, \omega_2) + \frac{t + \frac{1}{3}}{3}, \]

(3)

*email: Vladimir.Mangazeev@anu.edu.au
where $\wp(u; \omega_1, \omega_2)$ is the Weierstrass elliptic function with half-periods $\omega_{1,2}$, $c_{1,2}$ are complex constants and $\omega_{1,2}(t)$ are two linearly independent solutions of the hypergeometric equations
\[t(1-t)\omega''(t) + (1-2t)\omega'(t) - \frac{1}{4}\omega(t) = 0. \] (4)

The properties of the Picard solutions have been studied recently by M. Mazzocco [4]. In particular, she investigated its monodromy properties and algebraic solutions which correspond to c_1 and c_2 being rational numbers.

Algebraic solutions of Painlevé VI play an important role in many applications in theoretical physics (see, for example, [6, 7]). In such cases a calculation of related tau-functions can be simpler due to a presence of an algebraic relation between the solution $q(t)$ and the variable t.

The goal of this paper is different. We aim to present explicit expressions for tau-functions related to the Picard solutions and its images under birational canonical transformations [5] for generic values of complex parameters c_1 and c_2. To our knowledge this has not been done before.

More explicitly, we consider a sequence of tau-functions [5] obtained by a parallel shift l_3 from the Picard solution. We calculate the first two tau-functions and other members of the sequence can be obtained using the standard Toda-type second order relations.

2 Properties of the Painlevé VI equation

In this section we briefly review the main properties of the equation (1) which we denote as $P_{VI}(\alpha, \beta, \gamma, \delta)$.

Following [5] one can introduce two different parameterizations of parameters in the Painlevé VI equation: $(\kappa_0, \kappa_1, \kappa_\infty, \theta)$
\[\alpha = \frac{1}{2}\kappa_\infty, \quad \beta = -\frac{1}{2}\kappa_0^2, \quad \gamma = \frac{1}{2}\kappa_1^2, \quad \delta = \frac{1}{2}(1 - \theta^2), \] (5)
and (b_1, b_2, b_3, b_4)
\[\kappa_0 = b_1 + b_2, \quad \kappa_1 = b_1 - b_2, \quad \kappa_\infty = b_3 - b_4, \quad \theta = b_3 + b_4 + 1. \] (6)

This equation is equivalent to the Hamiltonian system $H_{VI}(t; q, p)$ described by the equations
\[\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}, \] (7)
with the Hamiltonian function
\[H_{VI}(t; q, p) = \frac{1}{t(t-1)}[q(q-1)(q-t)p^2 - \{\kappa_0(q-1)(q-t) + \kappa_1q(q-t)+(\theta-1)q(q-1)\}p + \kappa(q-t)], \] (8)
where $q \equiv q(t)$, $p \equiv p(t)$ and
\[\kappa = \frac{1}{4}(\kappa_0 + \kappa_1 + \theta - 1)^2 - \frac{1}{4}\kappa_\infty^2. \] (9)
One can introduce an auxiliary Hamiltonian $h(t)$,

$$h(t) = (t-1)H(t) + e_2(b_1, b_3, b_4) t - \frac{1}{2} e_2(b_1, b_2, b_3, b_4),$$

where $e_i(x_1, \ldots, x_n)$ is the i-th elementary symmetric function in n variables and a set of x_i's can be a subset of b_i's as in (10).

Okamoto [5] showed that for each pair $\{q(t), p(t)\}$ satisfying (7), the function $h(t)$ solves the E_{VI} equation which is

$$h'(t) \left[t(1-t)h''(t) \right]^2 + h'(t)[2h(t) - (2t-1)h'(t)] + b_1 b_2 b_3 b_4 = \prod_{k=1}^{4} \left(h'(t) + b_k^2 \right)$$

and $q(t)$ solves $P_{VI}(\alpha, \beta, \gamma, \delta)$.

Conversely, for each solution $h(t)$ of (11), such that $\frac{\partial^2}{\partial t^2} h(t) \neq 0$, there exists a solution $\{q(t), p(t)\}$ of (7), where $q(t)$ solves (1). An explicit correspondence between three sets $\{q(t), q'(t)\}$, $\{q(t), p(t)\}$ and $\{h(t), h'(t), h''(t)\}$ is given by birational transformations, which can be found in [5].

The group of Backlund transformations of P_{VI} is isomorphic to the affine Weyl group of the type F_4: $W_a(F_4)$. It contains the following transformations of parameters (only five of them are independent)

$$w_1 : b_1 \leftrightarrow b_2, \quad w_2 : b_2 \leftrightarrow b_3, \quad w_3 : b_3 \leftrightarrow b_4, \quad w_4 : b_3 \rightarrow -b_3, \quad b_4 \rightarrow -b_4, \quad (12)$$

and the parallel transformation

$$l_3 : b \equiv (b_1, b_2, b_3, b_4) \rightarrow b^+ \equiv (b_1, b_2, b_3 + 1, b_4). \quad (14)$$

The auxiliary function $h_+(t)$ corresponding to parameters $b^+ = l_3(b)$ is given in [5]

$$h_+(t) = h(t) - q(q-1)p + (b_1 + b_4)q - \frac{1}{2}(b_1 + b_2 + b_4). \quad (15)$$

Following [5] one can calculate $h_+(t)$ in terms of $h(t)$ and its first and second derivatives

$$h_+(t) = \frac{t(t-1)h''(t) + 2h(t)[b_3(b_3 + 1) + h'(t)] + b_3(1-2t)h'(t) - b_1 b_2 b_4}{2(h'(t) + b_3^2)} \quad (16)$$

and vice versa

$$h(t) = \frac{t(t-1)h''(t) + 2h_+(t)[b_3(b_3 + 1) + h_+'(t)] - (b_1 + 1)(1-2t)h'_+(t) + b_1 b_2 b_4}{2(h'_+(t) + (b_3 + 1)^2)} \quad (17)$$

For each solution of the P_{VI} equation one can introduce a corresponding tau-function via

$$H(t, q(t), p(t); b) = \frac{d}{dt} \log T(t, b). \quad (18)$$
Obviously tau-functions are defined up to an arbitrary normalization factor.

Following [5] let us introduce a family of tau-functions $T_m(t)$

$$T_m(t) = \exp \left\{ \int dt H(t, q(t), p(t); b_m) \right\},$$

(19)

where

$$b_m \equiv l^m_3(b) = (b_1, b_2, b_3 + m, b_4), \quad m \in \mathbb{Z}.$$

(20)

As shown in [5] they satisfy the second order Toda-type equation

$$\frac{dt}{dt} \left[t(t-1) \frac{d}{dt} \log T_m(t) \right] + (b_1 + b_3 + m)(b_3 + b_4 + m) = c(m) \frac{T_{m+1}(t)T_{m-1}(t)}{T_m^2(t)},$$

(21)

where $c(m)$ is a nonzero constant.

3 Elliptic functions and useful identities

In this section we list all definitions and properties of elliptic functions used later in the text. Following [8] we will use the standard theta functions $\theta_i(x|\tau)$ with quasi-periods π and $\pi\tau$.

The elliptic modulus k and its complement k' are defined in a standard way by

$$k = \frac{\theta_2(0|\tau)^2}{\theta_3(0|\tau)^2}, \quad k' = \frac{\theta_4(0|\tau)^2}{\theta_3(0|\tau)^2}, \quad k^2 + k'^2 = 1.$$

(22)

It will be more convenient to use the parameter $t = k^2$ as the second argument of elliptic functions and hereafter we will follow this notation (except for the theta-functions), i.e.

$$\tau = i \frac{K'(t)}{K(t)}, \quad q = e^{i\pi\tau}, \quad K(t) = \frac{\pi}{2} \theta_3^2(0|\tau), \quad K'(t) = K(1-t)$$

(23)

where $K(t)$ and $K'(t)$ are the complete elliptic integrals of the first kind of the parameters t and $1-t$.

We introduce Jacobi elliptic functions

$$\text{sn}(u, t) = \frac{1}{k^{1/2}} \frac{\theta_1(v|\tau)}{\theta_4(v|\tau)}, \quad \text{cn}(u, t) = \frac{(k')^{1/2} \theta_2(v|\tau)}{k^{1/2} \theta_4(v|\tau)}, \quad \text{dn}(u, t) = (k')^{1/2} \frac{\theta_3(v|\tau)}{\theta_4(v|\tau)}.$$

(24)

where

$$u = \frac{2K(t)}{\pi} v$$

(25)

and define the fundamental elliptic integral of the second kind [8] by

$$\mathcal{E}(u, t) = \int_0^u \text{dn}^2(x, t)dx.$$

(26)

It satisfies

$$\mathcal{E}(K(t), t) = E(t),$$

(27)
where \(E(t) \) is the complete elliptic integral of the second kind.

Using (23) and identities for complete elliptic integrals of the first and second kind

\[
\rho_t K(t) = \frac{E(t) - K(t)}{2t}, \quad \rho_t E(t) = \frac{E(t) + K(t)}{2t}
\]

one can obtain

\[
\rho_t \tau(t) = \frac{i\pi}{4t(t-1)K^2(t)}.
\]

We also need the derivatives of Jacobi elliptic functions with respect to the parameter \(t \). Differentiating the formula

\[
u = \int_0^\infty \frac{dx}{\sqrt{(1-x^2)(1-tx^2)}}
\]

with respect to \(t \) and calculating the remaining integral we get

\[
\frac{d}{dt}\text{sn}(u,t) = -\frac{\text{sn}(u,t)\text{cn}^2(u,t)}{2(t-1)} + \frac{\text{cn}(u,t)\text{dn}(u,t)}{2t(t-1)}[u(t-1) + \mathcal{E}(u,t)].
\]

From (32) it is easy to obtain

\[
\frac{d}{dt}\text{cn}(u,t) = \frac{\text{sn}^2(u,t)\text{cn}(u,t)}{2(t-1)} - \frac{\text{sn}(u,t)\text{dn}(u,t)}{2t(t-1)}[u(t-1) + \mathcal{E}(u,t)]
\]

and

\[
\frac{d}{dt}\text{dn}(u,t) = \frac{\text{sn}^2(u,t)\text{dn}(u,t)}{2(t-1)} - \frac{\text{sn}(u,t)\text{cn}(u,t)}{2t(t-1)}[u(t-1) + \mathcal{E}(u,t)].
\]

Integrating the well known formula between a logarithmic derivative of \(\theta_4(x|\tau) \) and \(\mathcal{E}(u,t) \) we obtain

\[
\theta_4(x|\tau) = \theta_4(0|\tau) \exp \left\{ -\frac{2x^2}{\pi^2} E(t) K(t) + \int_0^{2xK(t)/\pi} \mathcal{E}(y,t) dy \right\}.
\]

We can use (35) for calculation of the derivatives \(\theta_4(x|\tau)' \) and \(\theta_4(x|\tau)'' \).

Finally, combining (35) with the differential equation satisfied by theta-functions

\[
\frac{4}{i\pi} \frac{\partial}{\partial \tau} \theta_i(u|\tau) + \frac{\partial^2}{\partial u^2} \theta_i(u|\tau) = 0, \quad i = 1, 2, 3, 4,
\]

one can calculate the derivative \(\rho_t \theta_4(x|\tau) \) in terms of theta-functions and \(\mathcal{E}(u,t) \).

We notice that formula (35) is convenient for expansion of \(\theta_4(x|\tau) \) in a series in \(x \) up to any required order. Say,

\[
\theta_4(x|\tau) = \theta_4(0|\tau) \exp \left\{ -\frac{2x^2}{\pi^2} E(t) K(t) \right\} \left[1 + 2\frac{x^2K^2(t)}{\pi^2} + \frac{2(3-2t)x^4K^4(t)}{3\pi^4} + O(x^6) \right].
\]
4 Picard solution and tau-functions

The restriction on parameters (2) for the Picard solution (3) can be rewritten in terms of parameters b_i (6) as

$$b_1 = b_2 = 0, \quad b_3 = b_4 = -1/2.$$ \hfill (38)

It is convenient to fix a particular branch of the Picard solution (3) by choosing two linearly independent solutions of equation (4)

$$\omega_1(t) = \frac{\pi}{2} \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; t\right) = K(t), \quad \omega_2(t) = \frac{i\pi}{2} \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - t\right) = iK'(t) = iK(1 - t),$$ \hfill (39)

where $K(t)$ and $K'(t)$ are the complete elliptic integrals of the first kind as defined in the previous section.

With a choice of half-periods (39) for the Weierstrass function the expressions for the invariants e_1, e_2, e_3 take the following form

$$e_1 = 1 - \frac{t + 1}{3}, \quad e_2 = t - \frac{t + 1}{3}, \quad e_3 = -\frac{t + 1}{3}.$$ \hfill (40)

After some simple calculations we can rewrite the Picard solution of P_{VI} as

$$q_0(t) = \frac{1}{\text{sn}^2(c_1 K(t) + i c_2 K'(t), t)},$$ \hfill (41)

where c_1 and c_2 are the same parameters as in (3).

Let us make a change of variables

$$c_1 = \frac{2x}{\pi} + 1, \quad c_2 = \frac{2y}{\pi} + 1,$$ \hfill (42)

where x, y are new parameters. A reason for this is that the resulting tau-functions look simpler in x and y.

With a substitution (42) formula (41) takes the form

$$q_0(t) = t \frac{\text{cn}^2(z, t)}{\text{dn}^2(z, t)},$$ \hfill (43)

where we defined a new variable z

$$z = \frac{2K(t)}{\pi} (x + \tau y).$$ \hfill (44)

The hamiltonian $H_0(t)$ for the choice of parameters (38) can be calculated from (7-8) in terms of $q_0(t)$ and its first derivative

$$H_0(t) = \frac{t^2 + (1 - 2t)q_0(t)}{4t(t - 1)(q_0(t) - t)} + \frac{t(t - 1)q_0'(t)^2}{4q_0(t)(q_0(t) - 1)(q_0(t) - t)}.$$ \hfill (45)

Using formulas from section 3 one can explicitly calculate the derivative $q_0'(t)$
\[
\frac{d}{dt}q_0(t) = q'_0(t) = \frac{1}{dn^2(z,t)} + \frac{sn(z,t)cn(z,t)}{dn^3(z,t)} \left[\frac{\pi}{2K(t)} \log \theta_2(x + \tau y|\tau) \right]'_x + \frac{iy}{K(t)}. \tag{46}
\]

Substituting (46) into (45) we produce the following expression for the function \(H_0(t)\):

\[
H_0(t) = -\frac{1}{4(t-1)} - \frac{cn^2(z,t)}{4t(t-1)sn^2(z,t)} + \frac{\mathcal{E}(x,y,t)^2}{4t(t-1)}, \tag{47}
\]

where

\[
\mathcal{E}(x,y,t) = \frac{\pi}{2K(t)} [\log \theta_1(x + \tau y|\tau)]'_x + \frac{iy}{K(t)} \tag{48}
\]

and \(z\) is defined by (44).

To calculate the tau-function \(T_0(t)\) for the Picard solution (43) we have to calculate the indefinite integral of (47) with respect to the variable \(t\) which looks like a hopeless problem.

Now we formulate the central result of this paper.

Theorem 4.1 The tau-function for the Picard solution (43) is given by

\[
T_0(t) = \exp \left\{ \int H_0(t) dt \right\} = c_0(x,y) q^{y^2/\pi^2} t^{-1/4} \frac{\theta_1(x + \tau y|\tau)}{\theta_4(0|\tau)}, \tag{49}
\]

where \(c_0(x,y)\) is an integration constant.

Proof:

First we rewrite \(T_0(t)\) as

\[
T_0(t) = c_0(x,y) q^{y^2/\pi^2} \frac{sn(z,t)\theta_4(x + \tau y|\tau)}{\theta_4(0|\tau)}. \tag{50}
\]

The proof is straightforward and reduces to differentiations. We shall do this in a few steps. Taking logarithmic derivative of (50) we obtain

\[
\frac{\partial}{\partial t} \log T_0(t) = \frac{i y^2}{\pi} \partial_t \tau(t) + \frac{cn(z,t)dn(z,t)}{sn(z,t)} \left[\frac{2(x + \tau y)}{\pi} \partial_t K(t) + \frac{2yK(t)}{\pi} \partial_t \tau(t) \right] + \frac{\partial_t \log \theta_4(u|\tau)}{\theta_4(0|\tau)} \left|_{u=x+\tau y} \right. - \frac{\partial_x \theta_4(0|\tau)}{\theta_4(0|\tau)} \partial_t \tau(t). \tag{51}
\]

Using (28-30) one can evaluate the first two terms in (51). The derivative \(\partial_t \log \theta_4(u|\tau)\) was calculated in (32). Differentiating (35) twice and using the equation (36) one can evaluate all derivatives in the last term of (51). Combining all contributions and using a simple formula

\[
\log \theta_1(x + \tau y|\tau)]'_x = \log \theta_4(x + \tau y|\tau)]'_x + \frac{2K(t) cn(z,t)dn(z,t)}{\pi} \frac{sn(z,t)}{sn^3(z,t)} \tag{52}
\]

we obtain after simplifications the expression (47) for \(H_0(t)\).
It is quite remarkable that the indefinite integral of the function \((47)\) gives such a simple answer \((49)\). We were able to produce this expression by expanding \((47)\) in a series in \(x\) at \(y = 0\) and integrating term by term. Analyzing the resulting series we compared it to the expansion of \(\theta_1(x|\tau)\) in \(x\) which is similar to the expansion \((37)\). This allowed us to arrive at the final answer \((49)\).

To solve the equation \((21)\) for \(T_m(t)\) we need to calculate the second tau-function \(T_1(t)\) corresponding to the solution with parameters

\[
b_1 = (0, 0, 1/2, -1/2).
\]

First we have from \((10)\)

\[
h_0(t) = t(t - 1)H_0(t) + t/4 - 1/8
\]

for the Picard solution with \(b_0 = (0, 0, -1/2, -1/2)\) and

\[
h_1(t) = t(t - 1)H_1(t) - t/4 + 1/8
\]

for the solution with parameters \((53)\).

Now \(h_1(t)\) is obtained using the birational canonical transformation \((16)\) with parameters \((38)\) and \(h(t)\) replaced with \(h_0(t)\). Using \((54-55)\) one can arrive at the following answer:

\[
H_1(t) = -\frac{\text{sn}^2(z, t)}{4\text{dn}^2(z, t)} + \frac{1}{4t(t - 1)} \left[\frac{\pi}{2K(t)} \log \theta_4(x + \tau y|\tau) \right] + \frac{iy}{K(t)} - t \frac{\text{sn}(z, t)\text{cn}(z, t)}{\text{dn}(z, t)} \right]^2.
\]

In fact, the equation satisfied by \(h_0(t)\) and \(h_1(t)\) is the same and it is easy to check that

\[
h_1(t, x, y) = h_0(t, x + \frac{\pi}{2}, y + \frac{\pi}{2})
\]

and

\[
H_1(t, x, y) = H_0(t, x + \frac{\pi}{2}, y + \frac{\pi}{2}) + \frac{1}{4t} + \frac{1}{4(t - 1)},
\]

where we show explicitly a dependence on the fixed parameters \(x\) and \(y\).

Taking \((58)\) into account it is easy to integrate \(H_1(t)\) using formula \((49)\).

The answer is given by the following

Theorem 4.2 The \(\tau\)-function \(T_1(t)\) is given by

\[
T_1(t) = \exp\int H_1(t)dt = c_1(x, y) q^{\sigma^2/\pi^2}(1 - t)^{1/4} \frac{\theta_3(x + \tau y|\tau)}{\theta_4(0|\tau)},
\]

where \(c_1(x, y)\) is an arbitrary integration constant.

If we define the sequence of tau-functions \(T_m(t)\) corresponding to Picard type solutions with parameters

\[
b_m = (0, 0, -1/2 + m, -1/2), \quad m \in \mathbb{Z}
\]

8
and two initial conditions

\[T_0(t) = q^{\nu^2/\pi^2} t^{-1/4} \frac{\theta_1(x + \tau y|\tau)}{\theta_4(0|\tau)}; \quad T_1(t) = q^{\nu^2/\pi^2} (1 - t)^{1/4} \frac{\theta_3(x + \tau y|\tau)}{\theta_4(0|\tau)}, \]

(61)

then other tau-functions \(T_m(t) \), for \(m > 1 \) or \(m < 0 \) can be calculated from the difference-differential equation

\[\frac{d}{dt} \left[t(t - 1) \frac{d}{dt} \log T_m(t) \right] + \left(m - \frac{1}{2} \right)^2 = c(m) \frac{T_{m+1}(t)T_{m-1}(t)}{T_m^2(t)}, \]

(62)

where \(c(m) \) is determined by a normalization of tau-functions.

Note that the expressions for \(T_m(t) \), \(m \neq 0, 1 \) will be more complicated and involve explicitly the function \(\mathcal{E}(u, t) \) defined in (26). We will not calculate them here.

5 Conclusion

In this paper we constructed a sequence of tau-functions for the Picard type solutions of Painlevé VI equation with parameters (60). In fact, starting with the tau-function for the Picard solution (49) one can write many different birational canonical transformations and calculate corresponding sequences of tau-functions. We have successfully applied this approach to sum up some infinite form factor expansions for the 2D Ising model. All details will be given in forthcoming publications.

Acknowledgments

I would like to thank M.T. Batchelor, J. De Gier, S.M. Sergeev for useful remarks and V.V. Bazhanov, A.J. Guttmann for stimulating discussions and careful reading of the manuscript. This work has been supported by the Australian Research Council.

References

[1] Painlevé, P. Sur les Équations Différentielles du Second Ordre et d’Ordre Supérieur, dont l’Intégrable Générale est Uniforme. Acta Math. 25 (1902) 1–86.

[2] Gambier, B. Sur le Équations Différentielles du Second Ordre et du Premier Degré dont l’Intégrale Générale est a Points Critiques Fixes. Acta Math. 33 (1910) 1–55.

[3] Picard, E. Mémoire sur la théorie des functions algébriques de deux variables”, Journal de Liouville. Journal de Liouville 5 (1889) 135–319.

[4] Mazzocco, M. Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321 (2001) 157–195.

[5] Okamoto, K. Studies on the Painlevé equations. I. Sixth Painlevé equation \(P_{VI} \). Ann. Mat. Pura Appl. (4) 146 (1987) 337–381.
[6] Dubrovin, B. Geometry of 2D topological field theories. In *Integrable systems and quantum groups (Montecatini Terme, 1993)*, *Lecture Notes in Math.*, 1620, pages 120–348. Springer, Berlin, 1996.

[7] V.V. Bazhanov and V.V. Mangazeev, “The eight-vertex model and Painlevé VI”, J. Phys. A: Mathematical and General, 39, no. 39, 12235-12244.

[8] Whittaker, E. and Watson, G. *A course of modern analysis*. “Cambridge University Press”, Cambridge, 1996.