Current State of Diabetes Mellitus Prevalence, Awareness, Treatment, and Control in Latin America: Challenges and Innovative Solutions to Improve Health Outcomes Across the Continent

M. Larissa Avilés-Santa 1 · Alberto Monroig-Rivera 2 · Alvin Soto-Soto 2 · Nangel M. Lindberg 3

Accepted: 10 September 2020
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Abstract
Purpose of Review Latin America is the scenario of great inequalities where about 32 million human beings live with diabetes. Through this review, we aimed at describing the current state of the prevalence, awareness, treatment, and control of diabetes mellitus and completion of selected guidelines of care across Latin America and identify opportunities to advance research that promotes better health outcomes.
Recent Findings The prevalence of diabetes mellitus has been consistently increasing across the region, with some variation: higher prevalence in Mexico, Haiti, and Puerto Rico and lower in Colombia, Ecuador, Dominican Republic, Peru, and Uruguay. Prevalence assessment methods vary, and potentially underestimating the real number of persons with diabetes. Diabetes unawareness varies widely, with up to 50% of persons with diabetes who do not know they may have the disease. Glycemic, blood pressure, and LDL-C control and completion of guidelines to prevent microvascular complications are not consistently assessed across studies, and the achievement of control goals is suboptimal. On the other hand, multiple interventions, point-of-care/rapid assessment tools, and alternative models of health care delivery have been proposed and tested throughout Latin America.
Summary The prevalence of diabetes mellitus continues to rise across Latin America, and the number of those with the disease may be underestimated. However, some local governments are embedding more comprehensive diabetes assessments in their local national surveys. Clinicians and public health advocates in the region have proposed and initiated various multi-level interventions to address this enormous challenge in the region.

Keywords Latin America · Diabetes prevalence · Diabetes treatment · Control · Diabetes complications · Interventions · Health care

Introduction

Within the last couple of decades, non-communicable diseases (NCDs) have gained worldwide attention, especially in low- and middle-income countries (LMIC), where they have been increasingly recognized and prevalent [1, 2]. Among the NCDs, diabetes mellitus has become a global health challenge [1, 3, 4]. Type 2 diabetes mellitus—the most common form of diabetes—due to its rather silent disruption may be a current uninvited companion to over 465 million persons worldwide. In 2019, it was estimated that the number of persons with diabetes in Latin America (LatAm) was 31.6 million [5, 6] and is predicted that by 2030, the number will increase to 40.2 million, and to 49.1 million by 2045 [6].

Because of its multi-organ and multi-system impact, diabetes has been associated with both acute and long-term complications that affect not only health care needs and costs but also wellbeing and productivity [7, 8]. Within the last decade, it has also been recognized as one of the leading causes of death in some LatAm countries [9–15] and an important risk factor...
for cardiovascular diseases (CVD), which is the leading cause of death in LatAm [14, 16].

Far from being a monolithic group, the LatAm population is highly heterogeneous, with various populations reflecting diverse genetic ancestry, ethnicity, culture of origin, sociopolitical contexts, environmental exposures, and beliefs and practices [17, 18]. Levels of inequality in LatAm remain among the highest in the world [19–22]. All these factors—coupled with biological susceptibility, income, education, access health care, cultural influences on nutrition, health, self-image, and self-care—influence the development of diabetes in LatAm.

We conducted a review of the most current publications on the state of prevalence, awareness, treatment, and control of diabetes mellitus across LatAm. By laying out a detailed accounting of what is known, we aim to identify population, clinical, and health care needs, and opportunities for future research studies and potential interventions.

Literature Search and Review

We conducted the search using the PubMed electronic database as the primary scientific literature source. LatAm was defined as the countries in the Western hemisphere which were previously colonized by Spain, Portugal, or France. A combination of keywords was used to define the scope of the searches: diabetes prevalence, awareness, treatment, control, guidelines of care, adherence, retinopathy, nephropathy, neuropathy, foot care, fundoscopic exam, and urine albumin, and searched under LatAm and by each individual country. Hispanics/Latinos living in the USA were not included in the search.

We limited the search to publications since 2000 to reflect the most recent research on the prevalence of diabetes across LatAm countries, assessments of awareness, treatment, and control of diabetes (glycemic control), blood pressure and low-density lipoprotein cholesterol (LDL-C), and adherence to guidelines for care recommended by the American Diabetes Association (ADA) [23–25] and the Latin American Diabetes Association (ALAD) [26], and specifically hemoglobin A1c (HbA1c) measurement, fundoscopic exam, foot exam, and urine albumin excretion test. We included literature written in English, Spanish, French, and Portuguese.

In addition to PubMed, when available, we manually searched each country’s Ministry of Health and the Pan American Health Organization (PAHO) websites and accessed published and downloadable national health surveys performed during the selected timeframe. Since most available studies did not distinguish between type 1 and type 2 diabetes mellitus, our review is centered on diabetes mellitus (diabetes, henceforth) in general. Because their specific mechanisms of disease and clinical implications, gestational diabetes mellitus, and type 1 diabetes merit separate reviews.

Prevalence of Diabetes Mellitus in Latin America

The earliest contemporary reports on the prevalence of diabetes mellitus among adults throughout LatAm date from the 1950s and 1960s [27–29], when most countries were beginning to experience epidemiologic transitions [30, 31]. In 2001, Barceló reported an incidence of type 1 diabetes in LatAm in the range 0.1 cases/100,000 in Venezuela to 17.4 cases/100,000 in Puerto Rico [32]. However, the authors highlighted a handful of reports on the prevalence of type 2 diabetes and underlined the near absence of surveillance for the disease throughout the LatAm region [32].

From 2005 to 2020, the prevalence of diabetes mellitus across LatAm has been assessed within individual countries and through multinational studies [33–114] and ranged between 3 and 36.3% (Fig. 1, Table 1). In our review, some national surveys assessed the prevalence of diabetes via population representative samples [33, 36, 38, 40, 42–44, 47, 49, 55, 60, 61, 65, 66, 68, 72, 85–87, 89, 91, 95, 98, 105, 107] and used similar population sampling methods (e.g., multi-stage, clustered, probabilistic sampling), whereas other studies focused on specific geographic regions or communities [34, 35, 37, 45, 46, 48–54, 56–58, 63, 67, 73–75, 77, 82–84, 92–95, 102, 110–112], recruited participants from clinical settings [51, 59, 62, 69, 95], or focused on specific age groups [37, 42, 56–58, 75, 109, 112]. Also, the age range of the population surveyed—and consequently, age-adjustment estimates—varied among surveys.

Most of the studies (especially national surveys) reported the overall prevalence of diabetes without differentiating between type 1 and type 2 diabetes mellitus and many estimated the prevalence of the disease based on self-report (being aware of having diabetes and/or taking antihyperglycemic medications) only. Some national surveys and independent studies estimated the prevalence based on the sum of self-report and identifying individuals without history of diabetes but hyperglycemia within the diabetes range [26, 115]. The latter group was considered to have “suspected,” “undiagnosed,” or “unknown” diabetes. Hyperglycemia within the diabetes range was assessed by measuring fasting blood or plasma glucose (FBG or FPG) only, FBG/FPG and 2-h oral glucose tolerance test (OGTT), FBG/FPG and hemoglobin A1c (HbA1c), HbA1c only, or the combination of FBG/FPG, OGTT, and HbA1c, or glucose levels in urine. Some studies measured capillary blood glucose (CBG), while most studies measured venous blood or plasma glucose. While multiple studies used the ADA/ALAD-recommended glucose/HbA1c cut points for
the diagnosis of diabetes [26, 115], some studies used different thresholds (e.g., fasting glucose ≥ 100 mg/dL (per CBG), random blood glucose ≥ 140 mg/dL, or random blood glucose ≥ 200 mg/dL).

Although the differences in the methodology described above limit the ability to perform cross-sectional or trend comparisons among countries, we note several commonalities. During 2005–2020, some countries reported an increase in the prevalence of diabetes [33, 36, 38–40, 66, 70–72, 79, 85, 86], consistent with previously published reviews [5, 15, 32, 116–123]. Compared with the rest of the region, and as previously reported [5, 15, 32, 124, 125], diabetes prevalence varies across the region, with higher prevalence in Mexico (13.7%), Haiti (14.1% in women and 8.2% in men), and Puerto Rico (12.5–12.7% in the population aged 18 ≥ years and 26.8% in the population aged ≥ 45 years), and lower in Colombia (3.0% in the population aged 18 ≥ years, but 11.2% in age group ≥ 60 years), Dominican Republic (3.5%), Ecuador (2.7%), Peru (3.7%), and Uruguay (5.5–6.0%) (Fig. 1, Table 1). Multiple studies reported a greater prevalence of diabetes among women [36, 38, 40, 42, 44, 47, 49–52, 57, 60, 62, 63, 65, 70, 72, 75, 78, 79, 83–86, 90, 95, 96, 110, 113], and with increasing age, especially over age 60 years [33, 36, 44, 47, 50, 55, 69–72, 78, 80, 81, 86, 91, 93, 110]. Some studies reported an inverse relationship between diabetes and socioeconomic status (SES) [33, 79, 103] or educational attainment [33, 44, 62, 63, 70, 72, 73, 75, 76, 78, 79, 86, 101]. Other studies reported a direct relationship between having health insurance and self-reported diabetes [42, 70, 97, 100], implying that persons who have health insurance—proxy of access to health care services—would be aware of their health issues and report them accordingly. This interaction also poses questions about not only the access to health care but also the timeliness and quality of the care, and health literacy (or the lack of) that persons in the lowest SES—and at the highest risk of diabetes—would experience. Some studies reported a lower prevalence of diabetes among indigenous populations [35, 48, 74], with one study proposing that exposure to urbanicity was associated with an increased prevalence of diabetes among some indigenous communities [83]. Indeed, rural to urban migration (or living in rural compared with urban areas) has been associated with increased prevalence or risk of developing diabetes in Peru [126, 127], and multiple countries reported a lower diabetes prevalence in rural compared with urban settings [33, 39, 47, 60, 65, 89–91, 99, 103].

The number of epidemiological studies published since 2005 indicates greater public health awareness about diabetes mellitus across LatAm. Multiple countries have performed at least one national survey on chronic non-communicable diseases in which self-reported diabetes mellitus and/or elevated

Fig. 1 Prevalence of diabetes mellitus in Latin America Based on national surveys from 2000 to 2020. Prevalence data was extracted from national surveys, when available. Prevalence was estimated either by self-report of diabetes exclusively or in combination with glycemic tests. References next to each country’s name in [brackets]...
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings
Olaiz-Fernandez, 2007 [33]	1999–2000	Mexico	National Health Survey - Encuesta Nacional de Salud 2000 (ENSA 2000))	N=45,294 (52% women) Age ≥ 20 years	Self-report and capillary fasting glucose levels ≥ 126 mg/dL or random ≥ 200 mg/dL	Total prevalence: 7.5%, of which 77.3% was self-reported. Men: 7.2% (5.5% self-reported). Women: 7.8% (6.2% self-reported). Increased with age urban: 8.1%; rural: 6.5%. Inverse relationship to educational attainment and income. Geographic differences > in the North and lower in the South.
Meaney, 2007 [34]	2001–2002	Mexico (Factores de Riesgo en México –FRIMEX)	Volunteer sample recruited via mobile clinics near public places in Monterrey, Tijuana, Guadalajara, Mexico City, Puebla, and León	N=140,017 (58% women) Age ≥ 18 years	Fasting blood glucose ≥ 126 mg/dL or random ≥ 200 mg/dL	Total prevalence of diabetes was 10.5%. Prevalence by sex and self-reported diabetes was not reported.
Stoddard, 2011 [35]	2002	Mexico (Mexican Family Life Survey)	Secondary analysis Stratified multi-stage sampling	N=19,577 (53% women) Age ≥ 20 years	Self-report and medication intake	Prevalence of diabetes among indigenous participants was 6%, and among non-indigenous participants was 9%. Indigenous participants were 3 times more physically active and reported half of the prevalence of smoking than non-indigenous participants but lived in settings with more fragile infrastructure.
Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP), 2006 [36]	2006	Mexico (National Health and Nutrition Survey - ENSANUT 2006)	Probabilistic, poly-stage, stratified and clustered sampling.	N=1476 households (planned) (52.1% women) Age: all	Self-report and blood tests	Prevalence (self-report): 7.0% Laboratory test results not available. Men: 6.5%, women: 7.3% Increased with age. No information on urban-rural differences.
Kumar, 2016 [37]	2012	Mexico (Mexican Health and Aging Study)	Sub-analysis Cross-sectional data from the 2012 cohort. Participants recruited in four Mexican states with different urban/rural concentration, U.S.-Mexico migration patterns and diabetes prevalence	N=2012 (sex breakdown not reported) Age ≥ 50 years	Self-report and HbA1c ≥ 6.5%	Prevalence of self-reported diabetes: 21.4% S Undiagnosed diabetes: 18%. Participants living in a high US migration state had decreased odds of prediabetes and undiagnosed diabetes.
Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP), 2012 [38]	2012	Mexico [Encuesta Nacional de Salud y Nutrición (ENSA-NUT 2012)]	National Health and Nutrition Survey Stratified probabilistic sampling	N=46,303 (52.7% women) age ≥ 20 years	Self-report and blood tests	Prevalence (self-report): 9.2% (blood test results not available). Men: 8.6%. Women: 9.7%. Increased with age. Urban.
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings
-----------------------------	--------------	---------------------------------	---	------------------------	---	---
Central America						
Brenes-Camacho, 2007 [42]	2004–2006	Costa Rica [Costa Rica: Estudio de Longevidad y Envejecimiento Saludable (CRELES)]	Nationally representative sample	\(N = 3000\) (sex breakdown not reported) \(A \geq 60\) years	Self-report, intake of antihyperglycemic medications and/or fasting blood glucose \(\geq 126\) mg/dL and HbA1c \(\geq 6.5\)	Total prevalence = 23.4\% (women = 27.5\%; men = 18.8\%) Self-reported = 21\%, Undiagnosed = 2.4\% among those with diabetes: 95.7\% participants had health insurance 61.2\% were women 54% lived in the metropolitan capital city area Total prevalence 10.8\% (women = 11.9\%; men = 9.5\%) Self-reported = 9.5\%, Undiagnosed = 1.3\% prevalence increased with age. Over 75\% participants had less than high school education.
Brenes-Camacho, 2008 [43]						
Wong-McClure, 2010 [44]	2010	Costa Rica (Costa Rican National Cardiovascular Risk Factors Surveillance System)	Probabilistic sampling	\(N = 3653\) (men = 1023; women = 2630) \(A \geq 20\) years	Previously diagnosed = self-report, use of insulin, or hypoglycemic oral treatment in past 2 weeks. Unknown diabetes = no self-report with fasting blood glucose \(\geq 125\) mg/dL	
Orantes, 2011 [45]	2009	El Salvador (Nefrolempa Study)	Assessment of risk factors for chronic kidney disease (CKD) Communities represented in this study are mostly poor and primarily work in agriculture.	\(N = 775\) (men = 343; women = 432) \(A \geq 18\) years	Self-report or fasting blood glucose \(\geq 126\) mg/dL	Total prevalence = 10.3\%
Orantes Navarro, 2015 [46]	2009–2011	El Salvador (Study related to the Nefrolempa Study)	Assessment of risk of CKD in women from low-income three agricultural communities	\(N = 1412\) all women \(A \geq 18\) years	Self-report and fasting plasma glucose \(\geq 126\) mg/dL	Total prevalence = 9.3\%
	2013–2014	El Salvador (Encuesta Nacional de	National Survey		Self-report and fasting plasma	Overall: 12.5\% Men: 10.6\%, women: 12.5\%

Table 1 (continued)
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
Ministerio de Salud de El Salvador, 2015 [47]	2015	Enfermedades Crónicas No Transmisibles y Factores de Riesgo en la Población Adulta de El Salvador, ENECA-ELS 2015	Two-stage probabilistic sampling (STEPS)	N = 4817 (56.4% women) Age ≥ 20 years	glucose ≥ 126 mg/dL	Prevalence increased with age and was higher in the metropolitan area (San Salvador).	
Chen, 2017 [48]	2012–2013	Guatemala (Non-Communicable Disease Surveillance Study in Santiago de Atitlán)	Indigenous populations Simple random sampling	N = 350 (72.3% women) Age not specified	Self-report and fasting blood glucose	Prevalence = 3% (1.3% previously known, 1.7% previously unknown) Despite high rates of poverty, hypertension, and dyslipidemia, there was a low rate of diabetes compared to other regions of the country.	
Ministerio de Salud Pública y Asistencia Social de Guatemala, 2018 [49]	2015	Guatemala (Encuesta Nacional de Prevalencia de Enfermedades No Transmisibles y sus Factores De Riesgo Dominio I: Urbano Metropolitan)	National Survey – Metropolitan Area only Random, stratified sampling (STEPS)	N = 2036 (77.4% women) Age ≥ 18 years	Self-report; fasting CBG ≥ 110 mg/dL	Women: 9.5% diagnosed within last 12 years (total 12.5%) Men: 7% diagnosed within last 12 years (9.9% total)	
Bream, 2018 [50]	2018	Guatemala	Geographic-randomized Focus on indigenous populations in the rural highland region of Atitlán.	N = 400 (69.1% women) Age ≥ 18 years	FBG > 7.0 mmol/L (≥ 126 mg/dL) HbA1c > 6.5%	Total: 13.81% (women = 14.56%; men = 12.20%) Prevalence increased with age, but not BMI (kg/m²).	
Montalván Sánchez, 2016–2017 [51]	2016–2017	Honduras	CVD burden in Copán First study on CV Risk Factors in Western Honduras Random volunteer-based, cross sectional descriptive study Attending both private and public medical institutions in the Department of Copán	N = 384 (62% women) Age: 45–75 years	Self-report and taking meds; fasting blood glucose >125 mg/dL	Self-reported diabetes: women = 22.1% and men =19% (overall 21%) 6.7% with abnormal blood glucose without a previous diagnosis of diabetes.	
Laux, 2012 [52]	2007–2009	Nicaragua	Study on the prevalence of diabetes and hypertension in one urban and five rural communities in Nicaragua Five communities in the northwest (Leon and Chinandega) and one community in central Nicaragua (Matagalpa)	N = 1355 (56.5% women) Age: 20–60 years	Self-report or glucosuria ≥ 100 mg/dL; uncontrolled diabetes solely diagnosed as glucosuria >100 mg/dL	Total prevalence = 3.0% (40/1355); 33 (82.5% women). Prevalence in persons with normal blood pressure = 1.6% Prevalence in persons with hypertension = 7.7%	
Lebov, 2015 [53]	2010–2011	Nicaragua (León Health and Demographic Surveillance System)	Randomly selected 50 of 208 pre-defined geographical clusters	N = 3000 (57.6% women) Age: 18–70 years	Self-report and?	Total prevalence = 7.2%; 5% of the total (69.4% of those with diabetes) reported previous history of diabetes. Most of the participants lived in poverty. Overall prevalence, based on self-report = 7%	
Ferguson, 2020 [54]	2012–2014	Nicaragua					
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
-------------------	--------------	---------------------------------	---------------	------------------------	------------------	---	
Caribbean							
Da Silva Coqueiro, 2010 [56]	1999–2000	Cuba	Subsample of participants from Cuba in the National Survey of Health, Wellbeing, and Aging - Encuesta Nacional de Salud, Bienestar, y Envejecimiento (SABE) study Probabilistic sampling in Havana	N= 1905 (62.8% women) Age ≥ 60 years	Self-report	Total prevalence based on self-report = 14.8% Diabetes was not associated with overweight.	
De Jesús Llibre, 2011 [57]	Two phases: 2003–2006 and 2007–2010	Cuba (10/66 Study recruited in Havana City and Matanzas)	Sub-sample analysis First-stage sampling five municipalities in Havana City Province and the city of Matanzas	N= 2944 (64.7% women) Age ≥ 65 years	Self-report (history and medications) and fasting glucose ≥7.0 mmol/L	Overall prevalence = 24.8% Prevalence in women = 27.5% Prevalence in men = 19.4%	
Herrera-Valdés, 2008 [58]	2004–2006	Cuba [Community-Based Epidemiological Study of Chronic Kidney Disease, Cardiovascular Disease, Diabetes Mellitus and Hypertension (ISYS)]	“Isle of Youth Study” Focus on prevalence of obesity and its association with other conditions	N= 14,322 (sex breakdown not reported) Age ≤ 60 years	Self-report and laboratory tests	Prevalence of diabetes in individuals aged ≤ 20 years: 1.3–9.5% for obese and 1.1% for non-obese Prevalence of diabetes in individuals aged ≥ 20 years: overall 4.7% in non-obese and 11.3% in obese persons. Prevalence ranged from 5.5 to 21%, by age group Overall = 21.8%	
Armas Rojas, 2008 [59]	2006	Cuba	CV risk among older women in the Havana area Cross-sectional, catchment area served by the Mártires del Corynthia Polyclinic in Havana Single-stage clustering	N= 3396 women Age ≥ 60 years	Self-report and on treatment		
McDonald Posso, 2013 [55]	2010–2011	Panama [Primera Encuesta de Factores de Riesgo de Enfermedad Cardiovascular (PREFREC)]	Diabetes sub-analysis Single-stage, probabilistic and randomized sampling Provinces of Panama and Colon, 5 health regions and city of Panama	N= 1227 (533 households) (56.3% women) Age range 17-101.8 years	Venous blood samples obtained, but unclear if blood glucose measurements used for assessment Self-report or FBG >126 mg/dL or HbA1c ≥ 6.5% (≥48 mmol/mol)	7.3% self-reported having diabetes and 2.2% were not aware of having diabetes; hence the estimated prevalence was 9.5%. The age-adjusted rate for the 2012 Panamanian population was 7.7%. Non-adjusted prevalence: 10.3% in men and 9.1% in women. Prevalence increased with age. Highest prevalence among Afro-Panamanians (11.9%), and lowest among indigenous (5.4%).	

Table 1 (continued)
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
Bonet-Gorbea, 2014 [60]	2010–2011	Cuba (III Encuesta Nacional de Factores de Riesgo y Actividades Preventivas de Enfermedades No Transmisibles. Cuba 2010–2011)	National Health Survey Clustered, multi-stage, stratified	N= 7928 persons, from 4150 households (50.3% women) Age ≥ 15 years	Self-report and fasting blood glucose (≥ 7.0 mmol/L)	Total prevalence: 10.0% (6.1% self-reported) Women: 12.9%, Men: 7.2% Urban: 11.1%, rural: 6.8%; Self-reported: 7.1% urban, and 3.0% rural Undiagnosed: 4.2% (4.3% urban, 3.9% rural) Prevalence based on skin color: “negra” (12.3%), “blanco” (10.2%) and “mulato” (8.6%)	
Ministerio de Salud Pública de la República Dominicana, 2014 [61]	2013	Dominican Republic (Encuesta Demográfica y de Salud - República Dominicana 2013)	National Health Survey Nationally representative, probabilistic, clustered, stratified and two-stage.	N= 39,564 (19,878 women) Age: women 15–49 years; men 15–59 years	Self-report	Prevalence: 3.5% (4% women and 3% men self-reported diagnosis of diabetes)	
Carrère, 2017 [62]	2014	Guadeloupe	Cross-sectional multicenter study Persons undergoing a periodic health examination on invitation from the general social security fund of Guadeloupe (CGSS).	N= 2252 (56.5% women) Age: 18–74 years	Self-report of antihyperglycemic treatment use, fasting blood glucose ≥ 7 mmol/L (≥ 126 mg/dL), HbA1c ≥ 6.5%	Total prevalence: women 8.2%, men 5% Previously diagnosed: 6.7% in women, 3.3% in men. Higher prevalence among those with lower education.	
Jean-Baptiste, 2006 [63]	2002–2003	Haiti (Prevalence of Diabetes and Hypertension in Haiti-PREDIAH)	Population-based survey Two-stage cluster method; representative sample of Port-au-Prince, and six surrounding cities	N= 1620 (331 men, 782 women) Age ≥ 20 years	Casual Blood Glucose 80 mg/dL (4.4 mmol/L) Fasting blood glucose ≥ 126 mg/dL (7 mmol/L), and 2-h post glucose load (OGTT) ≥ 200 mg/dL (11.1 mmol/L)	Age-standardized prevalence was 4.8% in men and 8.9% in women (77.3% men and 69.2% women known diabetes) Odds of diabetes were greater with age, abdominal obesity, hypertension, lower educational attainment, and higher income.	
Burkhalter, 2014 [64]	2012–2013	Haiti	Single -enter, prospective study in Deschapelles; assessment of prevalence of CKD and associated risk factors	N= 608 patients with full medical datasets (64.5% women) Age ≥ 18 years	Binary data – physician answered yes/no	Prevalence diabetes = 36.3% The authors explain that the high prevalence of diabetes may be due to selection bias.	
Ministère de la Santé Publique et de la Population, 2018 [65]	2016–2017	Haiti [Enquête Mortalité, Morbidité et Utilisation des Services (EMMUS-VI)]	Random sampling, two-stage, stratified	N= 14,371 women aged 15–49; 9795 men aged 15–64, 1142 women 50–64, and 2091 men 35–64	Hemoglobin A1c > 6.5%	In the 35–64 age group, the prevalence of diabetes based on HbA1c > 6.5% was 14.1% in women and 8.2% in men. Previously informed of having “hyperglycemia”: 3% of women and 2% of men. Prevalence Urban (Women 17%, men 12%) Prevalence Rural (Women 11%, men 7%) Prevalence increased with “bien-être économique du menage”	
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
--------------------	--------------	---------------------------------	---------------	------------------------	------------------	--	
Geiss, 2012 [66]	1995–2010	Puerto Rico (Behavioral Risk Factors Surveillance Systems [BRFSS])	Sub-analysis based on four cycles Random-digit-dialed telephone surveys of noninstitutionalized US civilian adults aged ≥18 years	N = Not reported Age ≥ 18 years	Self-reported only	Due to the high prevalence of iron-deficiency anemia, HbA1c may have been elevated. Prevalence (age-adjusted for adults aged ≥18 years) 1995: 11.7%, 2000: 9.3%, 2005: 12.5%, and 2010: 12.7%	
Pérez, 2015 [67]	2005–2007	Puerto Rico	Household survey in San Juan metropolitan area	N= 857 (65.7% women) Age: 21–79 years	Self-report and/or FPG ≥ 126 mg/dL and HbA1c ≥ 6.5%	Age-standardized: total 25.5% (11.4% undiagnosed) 89% had health insurance; 67.2% with annual income < $20 K They compared prevalence using FPG alone or combination of FPG and HbA1c to detect undiagnosed diabetes. FPG + HbA1c yielded a higher percentage than either one alone. Aged-adjusted prevalence in adults aged ≥45 years was 26.8%	
Pickens, 2019 [68]	2015	Puerto Rico (2015 BRFSS)	As described above	N= 3642 (sex breakdown not reported) Age ≥ 45 years	Self-report only	Prevalence = 21% but increased to 40% in patients aged ≥ 65 years. Statistically significant greater percent of complications and mortality for patients with diabetes.	
Cruz, 2016 [69]	2014	Puerto Rico	Analysis of surgical cases from various hospitals in the San Juan metropolitan area	N= 2603 surgical patients (56% women) Age: all	Medical records	Prevalence = 9.8% with no sex differences Prevalence of diabetes increased with age.	
South America							
Ministerio de Salud de Argentina, 2011 [70]	2009	Argentina (2nda Encuesta Nacional de Factores de Riesgo para Enfermedades No Transmisibles)	Second National Survey on Risk Factors for Non-Communicable Diseases 4-stage, probabilistic, clustered sampling of 24 jurisdictions	N= 34,732 (No sex breakdown) Age ≥ 18 years	Self-report only	Self-report of diabetes and/or elevated blood glucose = 9.6% (an increase from 8.4% in 2005). Prevalence of diabetes in women = 10.2%, and in men = 8.9%. Prevalence of diabetes increased with age and with lower educational attainment. Prevalence = 9.8% with no sex differences Prevalence of diabetes increased with age.	
Ministerio de Salud de Argentina, 2015 [71]	2013	Argentina (3ra Encuesta Nacional de Factores de Riesgo para Enfermedades No Transmisibles)	Third National Survey on Risk Factors for Non-Communicable Diseases 4-stage, probabilistic, clustered sampling	N= 32,365 (52.6% women) Age ≥ 18 years	Self-report only	Prevalence of diabetes increased with age and with lower educational attainment.	
Ministerio de Salud de Argentina, 2019 [72]	2018	Argentina (4ta Encuesta Nacional de Factores de Riesgo para Enfermedades No Transmisibles)	Fourth National Survey on Risk Factors for Non-Communicable Diseases 4-stage, probabilistic, clustered sampling	Three steps sampling and exam: Step 2: 16,577 and for Step 3: 5331 (No sex breakdown) Age ≥ 18 years	Self-report and fasting blood glucose (CBG ≥ 110 mg/dL)	Prevalence: 12.7% based on self-report (women: 13.7%, men: 11.6%) In addition, 5% who did not report having diabetes had CBG ≥ 110 mg/dL Diabetes prevalence increased with age, and with lower educational attainment. Total prevalence = 7.2%	
Barceló, 2001 [73]	1998	Bolivia	Population-based survey of households in four urban communities	N= 2948 adults (1036 men, 1974 women) Age ≥ 20 years	Fasting blood glucose ≥ 126 mg/dL and OGTT	Prevalence of diabetes increased with age and with lower educational attainment.	
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
-------------------	--------------	-------------------------------	---------------	------------------------	-------------------	--	
Kaplan, 2017 [74]	2014–2015	Bolivia	Assessment of CAD in the Tsimane population of Bolivia (Maniqui River)	$N=705$ (sex breakdown not specified)	Fasting blood glucose >6.9 mmol/L	Greater prevalence among those with more limited education. Greater prevalence among Aymara-speaking participants. Prevalence was almost zero. Other CV assessments revealed low to negligible presence of CAC, and other CV risk factors.	
Busch Mendes, 2003	Brazil	São Paulo	Probabilistic sampling, two-stage study of active or retired civil servants	$N=842$ (406 men; 436 women)	Self-report	Prevalence: 26.31% (15.54% in men, 18.89% in women) Inverse relationship with educational attainment Prevalence (by self-report or medication use): 19.7% Percent undiagnosed: 50.4% of the total Higher prevalence of diabetes among those with less than primary education, Asian, black, and indigenous participants.	
Schmidt, 2008–2010	Brazil	[Estudo Longitudinal da Saúde do Adulto (ELSA-Brasil)]	Prospective cohort study	$N=15,102$ (6685 men, 8217 women)	Self-report Fasting plasma glucose ≥ 126 mg/dL, 2 h-OGTT ≥ 200 mg/dL or HbA1c $\geq 6.5\%$	Prevalence (by self-report or medication use): 19.7% Percent undiagnosed: 50.4% of the total Higher prevalence of diabetes among those with less than primary education, Asian, black, and indigenous participants.	
Dal Fabbro, 2008–2012	Brazil	Descriptive study on health of Xavante Indians from Mato Grosso	Capillary sample, although venous samples were obtained for other biomarkers; HbA1c	$N=948$ (463 men; 485 women)	Total age-adjusted: 28.3% (18.4% in men, 40.6% in women)		
Ministério do Planejamento, Orçamento e Gestão, 2013	Brazil	Brazilian National Health Survey Random, clustered, three-stage sampling	Self-report; HbA1c was tested, but results not presented in this report	$N=62986$ households (no sex breakdown)	Prevalence based on self-report $= 6.2\%$ (7.0% in women, 5.4% in men) Prevalence increased with age and with lower educational attainment Prevalence (2016): 8.9% Increased from 5.5% in 2006 Higher prevalence among women, with lower income, and with lower education.		
de Oliveira, 2006–2016	Brazil	[Surveillance Systems of Risk and Protection Factors for Chronic Diseases by Telephone Survey (Vigitel)]	Secondary analysis National Telephone Survey Quantitative review	$N=572437$ adults (sum of all years) (no sex breakdown)	Self-report	Prevalence self-reported: 7.7% (8.1% in women, 7.1% in men) Diabetes prevalence increased with age.	
Ministério da Saúde do Brasil, 2018	Brazil	Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico (VIGITEL BRASIL 2018)	National Telephone Survey Capital cities of each of the 26 states and the Federal District, land lines Random, stratified	$N=52395$ 19,039 men, 33,356 women	Self-report only	Prevalence self-reported: 7.7% (8.1% in women, 7.1% in men) Diabetes prevalence increased with age.	
Ministério da Saúde do Brasil, 2019	Brazil	Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico (VIGITEL BRASIL 2019)	National Telephone Survey	$N=52443$ 18,354 men, 34,089 women	Self-report only	Prevalence self-reported: 7.4% (7.8% in women, 7.1% in men) Diabetes prevalence increased with age.	
Santos, 2001 [82]	1997	Chile		$N=196$ (78 men, 118 women)	Prevalence of 1.3% in men and 1.7% in women		
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
--------------------	--------------	---------------------------------	---------------	------------------------	-----------------	---	
Carrasco, 2004 [83]	NR	Chile	Aymara in Northern Chile living in rural areas in the highlands	Age ≥ 20 years	Fasting blood glucose and 2-h post glucose load (OGTT)	Assessed two indigenous groups, Aymara and Mapuche Prevalence among Aymara: 6.9% (2.4% in men, 8.5% in women) Prevalence among Mapuche: 8.2% (14.3% in men, 5.7% in women)	
Cuevas, 2008 [84]	1993–2001	Chile	Mapuche and Aymara living in four urban communities of Santiago and northern Chile volunteers	Age ≥ 20 years	Fasting plasma glucose ≥ 126 mg/dL and/or self-reported diagnosis	Total prevalence in 2001: 10.1% (10.7% women, 8.9% men) The total prevalence of diabetes in 1993 was 3.8%.	
Ministerio de Salud de Chile, 2010 [85]	2009–2010	Chile (Encuesta Nacional de Salud, ENS Chile 2009–2010)	Random sampling of households (multi-stage and stratified), representative of the national, regional, and urban/rural zones, cross-sectional analysis	N= 5,416 (59% women) Age ≥ 15 years	Self-report and FPG ≥ 126 mg/dL and HbA1c	Total prevalence = 9.4% (8.4% in men, 10.4% in women) based on self-report and FPG. Diabetes prevalence increased with age and with lower educational attainment. Greatest prevalence in women of the lowest educational level Total prevalence = 12.3% (10.6% in men, 14.0% in women) Diabetes prevalence increased with age (30.6% in persons aged ≥ 65 years) and with lower educational attainment (24.8% with < 8 years of education)	
Ministerio de Salud de Chile, 2017 [86]	2016–2017	Chile (Encuesta Nacional de Salud, ENS Chile 2016–2017)	National random sampling of households (multi-stage and stratified), representative of the national, regional, and urban/rural zones, cross-sectional analysis	N= 6233 (62.9% women) Age ≥ 15 years	Self-report and FPG ≥ 126 mg/dL	Prevalence = 3.0% based on self-report, per Executive Summary	
Rodríguez, 2009 [87]	2007	Colombia [Encuesta Nacional de Salud (ENS)]	National Health Survey Probabilistic, national representative including 41,543 households	N= 164,474 persons (52.5% women) Subsample of those in the 18–69-year age group had additional interviews and exams (glycemia)	Self-report	Prevalence: 5.7% (6.0% in women, 5.1% in men) Greater prevalence with lower education	
Camacho, 2020 [88]	2005–2009	Colombia [Prospective Urban Rural Epidemiology (PURE) Study]	Sub analysis of data from Colombia	N= 7485 (64.1% women) Age: 35–70 years	Self-report	Prevalence only reported for adults aged ≥ 60 years Self-reported prevalence: 11.2% (12.2% urban, 8.3% rural, 12.8% in women and 9.0% in men)	
Profamilia, 2011 [89]	2010	Colombia [Encuesta Nacional de Demografía y Salud (ENDS 2010)]	National Health Survey Nationally-representative, in urban and rural settings, probabilistic, clustered, stratified and poly-staged.	N= 17,574 No sex breakdown Age > 60 years	Self-report	Prevalence = 16.7%	
Orces, 2018 [90]	2010	Ecuador [National Survey of Health, Wellbeing, and Probability sampling in]	Secondary data analysis Probability sampling in	N= 2298 (1041 men, 1257 women)	Self-report or FPG ≥ 126 mg/dL		
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
-------------------	--------------	---------------------------------	--------------	-----------------------	------------------	---	
Aging - Encuesta Nacional de Salud, Bienestar, y Envejecimiento (SABE)]	2012	Andes Mountains and coastal regions, multi-stage sampling	Age ≥ 60 years	Higher among women, blacks, urban coastal, and obese individuals. Higher in urban coastal areas.			
Ministerio de Salud Pública de Ecuador [91]	2012	Ecuador [Encuesta de Salud y Nutrición del Ecuador (ENSANUT-ECU 2012)]	National Health and Nutrition Survey Probabilistic, stratified, three-stage, and cluster sampling	N = 15,916 (49% women) Age: 10–59 years	Self-report and FPG ≥ 126 mg/dL	Overall prevalence = 2.7% Diabetes prevalence increased with age. No sex differences. Higher prevalence among Afro-Ecuadorian: 3.1% Higher prevalence in urban (3.2%) compared to rural (1.6%) areas. Prevalence was higher in persons from coastal than mountain regions.	
Tufton, 2015 [92]	2012	Ecuador Santa Cruz Island, Galápagos	Medical history and fasting blood glucose > 126 mg/dL	Prevalence based on self-report: 16.3% Undiagnosed: 11.3% who had fasting blood glucose > 126 mg/dL.			
Alexander, 2017 [93]	2014	Ecuador Isabela, Galápagos	Fasting blood glucose, postprandial glucose	Prevalence in persons aged ≥ 50 years: 24% Prevalence in persons aged < 50 years: 8%			
Bonilla-Sierra, 2020 [94]	2019	Ecuador Loja, Ecuador 10th most populous town	Self-report	Total prevalence = 28.27%			
Chaves, 2015 [95]	2006–2013	Paraguay [Asunción, Modificación de Factores de Riesgo Cardiovascular (AsuRiesgo)]	Urban area of Asunción In-hospital and outpatient clinic patients, in waiting rooms invited to participate. Single-center, prospective study	N = 18,287 (67.5% women) Ages ≥ 18 years	Self-report and fasting blood glucose Overall Prevalence: 13.3% (14% in women, 11.8% in men)		
Ministerio de Salud Pública y Bienestar Social de Paraguay, 2012 [96]	2010–2011	Paraguay [Primera Encuesta Nacional de Factores de Riesgo de Enfermedades No Transmisibles en Población General]	First National Health Survey Probabilistic, three-stage sampling	N = 2538 (49.4% women) Ages: 15–74 years	Self-report	Overall: 9.7% (women 11.1%, men 7.9%) Increased with age	
Segura-Vega, 2006 [97]	2004	Peru (TORNASOL I)	Cross-sectional, random sampling in 26 cities across the whole country	N = 14,826 (50.5% women) Age ≥ 18 years	Self-report	Overall = 3.3% self-reported, with no lab assessment performed. Higher prevalence in men. Lower prevalence in the highlands. Prevalence increased with SES and having health insurance. Previous diagnosis: 3.7% Unaware: 2.8%	
Ministerio de Salud de Perú, 2006 [98]	2005	Peru [Encuesta Nacional de Indicadores Nutricionales, Bioquímicos,	National Survey Stratified and clustered sampling	N = 4206 (50.1% women) Age ≥ 20 years	Blood glucose ≥ 100 mg/dL with self-report, random		
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
-------------------	--------------	---------------------------------	---------------	------------------------	------------------	---	
Miranda, 2011 [99]	2007–2008	Peru (PERU MIGRANT)	Cross-sectional survey of three population-based groups: rural, rural-urban migrants, and urban	N = 1706 (52.8% women) Age > 30 years	Fasting glucose, HbA1c	Higher prevalence in men and with increasing age. Higher diabetes prevalence in metropolitan area Lima (6%) and lowest in the Sierra Urbana (0.9%)	
Segura-Vega, 2010–2011 Peru (TORNASOL II)	2010–2011	Peru (TORNASOL II)	Single-stage random sampling	N = 14,675 (50.8% women) Age ≥ 18 years	Self-report	Diabetes prevalence: 4.4% Prevalence increased with socioeconomic status and having health insurance. 7.0% (National), 8.4% in Lima (7.01% in men, 7.04% in women)	
Seclen, 2010–2012 Peru (PERUDIAB)	2010–2012	Peru (PERUDIAB)	Random cluster sampling of urban and suburban areas	N = 3393 (48.5% men) Age ≥ 25 years	Fasting blood glucose ≥ 126 mg/dL or self-report and taking meds	Diabetes prevalence was higher in coastal (8%) than in highlands (4%), and significantly higher among those without formal education.	
Bernabé-Ortiz, 2010–2011 Peru (CRONICAS)	2010–2011	Peru (CRONICAS)	Single-stage random sampling	N = 1677 (sex breakdown not reported)	Self-report	Baseline prevalence was 7.1%; 121 new cases in mean 2.4 years.	
Krishnadath, 2013 Suriname (Suriname Health Study)	2013	Suriname (Suriname Health Study)	Stratified multistage cluster sample of households	N = 3393 (48.5% men) Age: 15–65 years	Fasting blood glucose ≥ 7.0 mmol/L or self-reported diabetes medication use	Prevalence: 13.0% Highest prevalence for Hindustanis (23.3%). Higher prevalence for lower income. Lower prevalence in rural areas.	
Minderhoud, 2013–2014 Suriname [The Rapid Assessment of Avoidable Blindness (RAAB)]	2013–2014	Suriname [The Rapid Assessment of Avoidable Blindness (RAAB)]	Random clusters Survey; sub-analysis	N = 2806 689 had diabetes (274 men, 415 women) Age ≥ 50 years	Self-report; fasting blood glucose ≥ 110 mg/dL	Prevalence: 24.6% Highest prevalence for Hindustanis and urban dwellers	
Ministerio de Salud Pública de Uruguay, 2006 Uruguay (Primera Encuesta Nacional de Factores de Riesgo de Enfermedades Crónicas No Transmisibles - ENFRECNT)	2006	Uruguay (Primera Encuesta Nacional de Factores de Riesgo de Enfermedades Crónicas No Transmisibles - ENFRECNT)	National Health Survey Multi-stage Cluster stratification Representative sampling of urban areas	N = 2008 (1324 women) Age: 25–64 years	Self-report; fasting blood glucose ≥ 110 mg/dL	Total prevalence: 5.5% Men = 6.2%, Women = 4.7% No sex differences	
Fort, 2012 [106]	2008–2011 Uruguay	CVRF assessment of national health insurance card applicants Cross-sectional, electronic records	N = 74,420 patients (51% women) Age ≥ 15 years	Self-report and/or fasting blood glucose > 125 mg/dL	Prevalence in men: 2.4–20.2% (6.8%) Prevalence in women: 1.5–14.3% (6.1%)		
Ministerio de Salud Pública de Uruguay, 2013 Uruguay (Segunda Encuesta Nacional de Factores de Riesgo de Enfermedades)	2013	Uruguay (Segunda Encuesta Nacional de Factores de Riesgo de Enfermedades)	National Health Survey Representative sampling of urban areas Cluster stratification	N = 3204 (1539 women) Age: 15–64 years	Self-report and taking meds; fasting blood glucose ≥ 126 mg/dL	Total prevalence: 6.0% (25–64, men 7.4%, women 7.8%; 55–64 = 16.8%) Undiagnosed: 50.2% Non-diagnosed and non-treated 66.3% men, 30.7%	
Author (reference)	Study period	Place (study name, if available)	Type of study	Sample characteristics	Glycemic criteria	Diabetes prevalence and other key findings	
--------------------	--------------	----------------------------------	---------------	------------------------	------------------	---	
Nieto-Martínez, 2018 [108]	2006–2010	Venezuela [Venezuela Metabolic Syndrome, Obesity and Lifestyle Study (VEMSOLS)]	Multi-stage stratified random sampling Andes, Western and Capital District	N= 1334 (men = 419, women = 915) Age ≥ 20 years	Self-report and blood samples (plasma glucose)	women, overall 48.9%	
Menéndez, 2005 [109]	2000–2001	Argentina, Cuba, Mexico, Uruguay, Chile and Brazil [National Survey of Health, Wellbeing, and Aging- Encuesta Nacional de Salud, Bienestar, y Envejecimiento (SABE)]	Sub-analysis Multi-stage probabilistic sampling in capital cities	N= 10,891 (58.9–65.7% women across sites) Age ≥ 60 years	Self-report	Buenos Aires: 12.5%, São Paulo: 17.7%, Santiago: 13.3%, Mexico City: 21.9%, and Montevideo: 13.0%	
Escobedo, 2009 [110]	2003–2005	Venezuela, Colombia, Argentina, Peru, Mexico, Ecuador, and Chile [Cardiovascular Risk Factor Multiple Evaluation in Latin America (CARMELA)]	Cross-sectional, population-based, observational study. Equiprobabilistic sampling of households; only urban sites	N= 11,550 (38.58–49.53% men across sites) Age: 25–64 years	Fasting blood glucose ≥ 7.0 mmol/L or self-reported diagnosis	Prevalence of DM was 7% (range 4–9%) Weight adjusted: (Barquisimeto: 6.0%, Bogotá: 8.1%, Lima: 4.4%, Mexico City: 8.9%, Quito:5.9%, Santiago:7.2%) Generally higher in women, increasing prevalence with age.	
Barceló, 2012 [111]	2003–2006	Belize, Costa Rica El Salvador Guatemala Honduras Nicaragua [Central America Diabetes Initiative (CAMDI)]	Cross-sectional survey of six Central American Populations Probabilistic sampling; it included the entire population of Belize and samples from urban areas in the other countries.	N= 10,822 (50.2% women) 7234 underwent anthropometry measurement and laboratory tests	Self-report, fasting blood glucose ≥ 126 mg/dL, 2-h OGTT ≥ 200 mg/dL	Belize: 12.9% (men: 8.3%, women: 17.6%) Costa Rica: 8.8% (men: 9.6%, women: 8.0%) El Salvador: 7.6% (men: 8.7%, women: 6.8%) Guatemala: 7.3% (men: 7.8%, women: 6.8%) Honduras: 5.4% (men: 5.5%, women: 5.4%) Nicaragua: 9.8% (men: 9.1%, women: 10.5%) Total prevalence across all sites: 8.5% 40% were undiagnosed.	Self-report: Cuba: 18.3% (women > men) Dominican Republic: 14.0% (women > men) Peru Urban: 8.7% (men > women) Peru Rural: 10.3% (women > men) Venezuela: 16.2% (no difference) Mexico Urban: 24.9% (no difference) Mexico Rural: 19.2% (women > men) Puerto Rico: 32.2% (men > women) Undiagnosed: Cuba: 5.7% (men > women) Dominican Republic: 3.3% (women > men) Peru Urban: 3.3% (men > women) Venezuela: 4.9% (men > women) Mexico Urban: 2.5% (no difference) Mexico Rural: 4.8% (men > women) Puerto Rico: 11.6% (men > women)
glycemia has been included (Table 1). Some surveys have also included at least one laboratory test (i.e., fasting or random blood glucose measurement or HbA1c), which could identify individuals at risk of developing diabetes or those who may have it and are not aware of it. Because hyperglycemia may be mediated by at least two mechanisms of disease—increased hepatic glucose output manifested as fasting hyperglycemia and uncoupled postprandial insulin secretion manifested as postprandial hyperglycemia [115, 128]—a single blood test or measurement may not identify all or most of individuals affected by the disease [115]. Therefore, the actual prevalence of diabetes may still be underestimated in many countries, as highlighted in previous reviews [5, 15, 124].

The etiologies of diabetes mellitus are complex. Thus, the increasing prevalence of diabetes experienced across LatAm may reflect the convergence or interaction of multiple factors [18, 125, 129]. For instance, the increasing prevalence of overweight and obesity documented across LatAm has paralleled the increasing prevalence of diabetes in the region [84, 125, 130, 131]. In addition to increased adiposity, type 2 diabetes mellitus and insulin resistance have also been linked to malnutrition (at different life stages) in some LMICs [130, 132–134]. Stress associated with chronic poverty, intergenerational poverty, natural disasters, and other adverse events [1, 129, 132, 135] has been linked to chronic systemic inflammation and epigenetic changes, potential common denominators of multiple NCDs [136, 137]. Many LatAm major cities may be epicenters where a fragile built environment and infrastructure and changes in lifestyle and nutrition intersect increasing the cumulative risk of developing diabetes in low-income communities [30, 126, 127, 129, 135, 138, 139]. Increased life expectancy has been associated with increased diabetes prevalence [4, 16, 30, 125, 140], whereas higher educational attainment, increased access to health care, and higher health literacy level are associated with increased awareness of the disease [117]. These are all factors to consider upon designing comprehensive diabetes prevention and treatment strategies across LatAm countries.

In addition, the growing prevalence of diabetes mellitus across LatAm and the complexity of the disease suggest opportunities to create or strengthen collaborations towards its prevention and early detection [141–144]. For example, multinational and multidisciplinary research–public health–health care policy–clinical care partnerships which already exist in formal or informal platforms may be well-positioned to evaluate the impact of nutrition, health insurance, housing, and other public policies [79, 141, 143, 145–154] on health outcomes and assess their potential translation into preventive strategies at the public health and clinical care levels. At the same time, the eventual implementation of such strategies will be strengthened by
local governments’ commitment to prioritize the prevention and treatment of NCDs, in this case, diabetes, as previously voiced by experts and advocates in the region [79, 141, 155–158].

Diabetes Awareness, Treatment, and Control

Diabetes Awareness

Although fewer than studies focused on prevalence, a considerable number of reports centered on diabetes awareness, treatment, and control across LatAm were published between 2005 and 2020 (Table 2) [33, 37, 40, 41, 43, 44, 49, 51, 60–63, 65, 72, 73, 87, 98, 101, 103, 104, 111, 112, 159–189]. A few of the studies evaluated diabetes awareness, treatment, and control altogether [85, 185, 189]. Most studies did not use the term “diabetes awareness,” but equated it (or more appropriately, diabetes unawareness) to “suspected,” “undiagnosed,” “unknown,” or “new” diabetes or “elevated glycemia.”

“Undiagnosed” diabetes—a proxy for lack of diabetes awareness—ranged widely from 10.3 to 50% across studies and countries (Table 2). The prevalence of undiagnosed diabetes was higher in Guatemala (48.8%), Uruguay (48.7%), Puerto Rico (37.7–50%), Honduras (31.9–53.7% range), Mexico (29.9–50% range), and Nicaragua (43.3%) and lower in Colombia (Bogota) (23.5%), the southernmost countries of South America (20.2%), and Costa Rica (10.3–28.4%). Irazola et al. [189] described that diabetes awareness slightly increased with educational attainment. However, associations between undiagnosed diabetes with age, sex, educational attainment, SES, or geographic location were not published by most studies.

The observed range of undiagnosed diabetes suggests that the actual prevalence of diabetes across LatAm could exceed previous estimates [6, 124] and that a potentially significant proportion of persons with diabetes for whom both macro- and microvascular complications may be present but not assessed and treated. Therefore, current estimates of the prevalence of diabetes across continents may not fully account for the necessary resources to provide adequate health care for Latin Americans with diabetes [7, 8, 190, 191]. Considering the workforce and resources needed to screen the millions of persons across the region who are at risk of diabetes or have the disease and are not aware, experts have proposed diabetes predictive models requiring specific easily obtained clinical data points that could be readily used in primary care settings [192–194]. Also, the Finnish Diabetes Risk Score (FINDRISC) has been proposed, tested, or modified to screen and identify individuals at high risk of developing diabetes in Latin America [195–199]. Point-of-care tests for HbA1c and urine microalbumin have also been proposed as alternatives to identify persons with “undiagnosed diabetes” and/or those at risk of chronic kidney disease (CKD) in low-resource and remote settings in LatAm [200–203]. The standardization, reliability, and repeatability of some of these tests, as well as the clinical and public health benefit derived from their integration into the health care systems, may need to be determined [204]. However, these and other emerging diagnostic technologies [205, 206] are promising alternatives that could be incorporated to assess the prevalence of diabetes and implement timely interventions.

Treatment and Control of Diabetes, Blood Pressure, and LDL-C

The percent of persons with diabetes following any treatment for diabetes ranged from 52.6 to 99% across studies (Table 2). Prescription and/or use of antihyperglycemic medications was mostly assessed via interviews, although a few studies evaluated medical records. Most individuals reported taking oral antihyperglycemic medications either as monotherapy or as a combination of oral medications, while a smaller percent reported using insulin alone or in combination with oral medications. Five (5%) to 12.9% only followed diet/exercise prescription [161, 163, 167, 176, 179, 186], and 3.2 to 10.1% were not taking any medications [41, 104, 168, 169, 175]. Receiving or adhering to pharmacological treatment was positively associated with having health insurance [71], and receiving medical care in private rather than public health care settings [71, 187]. At least one study observed better pharmacologic treatment adherence with female sex [185].

Achievement of ADA/ALAD-recommended glycemic goals [23, 207] was assessed by multiple studies. The percentage of persons attaining HbA1c < 7% ranged from 3.5 to 54%. However, some studies defined glycemic control based on fasting or random blood glucose thresholds and reported attainment of glycemic control in the 31.4 to 61.4% range. Attainment of glycemic control was associated with higher socioeconomic status (SES) [160], having health insurance [160], and better access and services [208]. Not attaining glycemic control was associated with longer duration of diabetes [163, 187, 209], taking insulin (alone or in combination with oral antihyperglycemic medications) [176], forgetfulness (e.g., taking multiple medication for more than one condition) [185], complex therapeutic regimes [209], inadequate access to health care services [22], and availability or health insurance coverage of medications [187], among other factors.

In addition to glycemic control, a smaller number of studies examined the attainment of ADA/ALAD-recommended blood pressure and LDL-C—blood pressure < 130/80 mmHg and LDL-C < 100 mg/dL—for patients with diabetes [24, 207]. The percentage achieving blood pressure goals ranged from 25 to 67%, and the percent achieving LDL-C goals ranged from 12 to 52.6%
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)
Olaiz, 2007 [33]	2000	Mexico	ENSA 2000 – study described in Table 1	77.3	NR	Only insulin: 2006: 6.8 2012: 6.5 2016: 11.1	NR 55.9 on treatment had random BG > 200
Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP), 2016 [40]	2006-2016	Mexico	ENSANUT 2016 MC (study described in Table 1)	Only self-reported available: In 2006: 7.2 In 2012: 9.2 In 2016: 9.4	Only insulin: 2006: 6.8 2012: 6.5 2016: 11.1	Only oral meds 2006: 84.8 2012: 72.4 2016: 67.9	NR 55.9 on treatment had random BG > 200
López-López, 2012 [159]	2001–2008	Mexico	Sub-analysis 2000 and 2006 ENSANUT data for the state of Hidalgo and comparison with local diabetes program, n = 2856 (73.1% women)	All participants had diabetes	HbA1c < 7%: 2006: 7.2 2012: 7.2	Only insulin: 2006: 6.8 2012: 6.5 2016: 11.1	NR In 2016, NR 87.8
Kumar, 2016 [37]	2012	Mexico	Based on the Mexican Health and Aging Study (Study described in Table 1)	Self-reported: 21.4%	NR	NR	NR
Flores-Hernández, 2015 [160]	2006, 2012	Mexico	Cross-sectional analysis based on ENSANUT 2006 and 2012 data from participants who self-reported diabetes N = 2965 in 2006 and N = 4483 in 2012; Age ≥ 20 years	All participants had self-reported diabetes	HbA1c < 7%: 2006: 7.2 2012: 7.2	HbA1c < 7%: 2006: 7.2 2012: 7.2	NR In 2016, NR
Fanghänel Salmon, 2011 [161]	2006, 2012	Mexico	Secondary analysis using data for Mexico from the International Diabetes Management Practices Study	All participants had diabetes	Oral meds: 66.0 Insulin only: 11.0 Both: 18.0 Diet only: 5.0	HbA1c < 7%: 31.1 25.2	NR

NR: Not reported.
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)			
Hernández-Romieu, 2011 [162]	2005 Mexico	Total world-wide N = 17,232 N = 2620 from Mexico Probabilistic sampling N = 937 of self-reported diabetes (65.85% women, and mean age = 56) HbA1c was measured. The study was performed in urban and rural zones of seven Mexican states All participants had diabetes	85.0	HbA1c < 7%: 30.0 HbA1c > 9.5%: 50.0	NR	NR	NR			
Lavalle-González, 2012 [163]	2007 Mexico	Secondary analysis using data for Mexico from the International Diabetes Management Practices Study) N = 2642 from Mexico (91% patients with type 1 and 89% patients with type 2 diabetes living in urban areas) All patients had diabetes	Type 2 Oral only: 63.0 Insulin only: 10.9 Both: 22.3 Diet and exercise: 3.8	HbA1c < 7%: 67.3 Type 1: 20.9 Type 2: 41.3	NR	4.0				
Wacher, 2016 [164]	2000–2003 and 2006–2009 Mexico City	Family Medicine Clinics under the Instituto Mexicano del Seguro Social in the Mexico City’s metropolitan area Secondary data analysis of a database of 1170 patients with type 2 diabetes with disease diagnosed within 3 years N = 638 (women 68.2%), mean age = 51.8 years All participants had diabetes	In 2003: 59.2 In 2006: 71.9	HbA1c < 7%: In 2003: 38.9 In 2006: 46.9	In 2003: 12.2					
Basto-Abreu, 2020 [41]	2016 Mexico	Encuesta Nacional de Salud y Nutrición de Medio Camino (ENSANUT-MC 2016) (Study described in Table 1.) Total prevalence: 13.8 (4.1 undiagnosed) 70.1 aware	10.1 were not taking medications	HbA1c < 7%: 31.8 HbA1c 7–8%: 16.4	NR	NR	NR			
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)			
-------------------	--------------	-------	---	------------------------	------------------------	--	-------------------------------			
						Glycemic (%)	Blood pressure < 130/80 mmHg (%)	LDL-C < 100 mg/dL (%)		
						NR	NR	NR		
Central America						Glycemic control “good only for 26%”				
Gough, 2009 [165]	2006 Belize		CAMDI – Belize (Study described in Table 1.)	Total prevalence: 13.1 (5.4 undiagnosed) 58.8 aware	69.1 on prescribed treatment; 95.9 taking medications	NR	NR	LDL-C ≤ 130 mg/dL: 120	NR	
Dekker, 2017 [166]	2014–2015 Belize		Toledo, Belize Hillside Health Care International Clinic	Diverse population, poorest district in Belize	Mixed methods: medical chart review and health care provider and patient interviews	Ages ≥ 18 years	5.4 awareness	58.8 awareness	NR	
Ministerio de Salud Pública de Costa Rica, 2009 [167]	2004 Costa Rica		CAMDI – San Jose, Costa Rica	Total prevalence: 7.9 (1.9 undiagnosed) 75.9 aware	Oral meds: 57.2 Insulin: 24.5 Diet: 12.9	29.2 uncontrolled	NR	NR	NR	
Brenes-Camacho, 2007 [42]	2004–2006 Costa Rica		Costa Rica Estudio de Longevidad y Envejecimiento Saludable (CRELES)	Total prevalence: 23.4 (2.4 undiagnosed) 89.7 aware	Oral meds: 69.4 Insulin: 31.0	HbA1c ≥ 7%: 37.0 SBP ≥ 130 mmHg: 78.0 DBP ≥ 80 mmHg: 66.0	LDL-C ≥ 100 mg/dL: 78.0	NR		
Brenes-Camacho, 2008 [43]	2010 San Jose, Costa Rica		Costa Rican National Cardiovascular Risk Factor Surveillance System (study described in Table 1)	Total prevalence: 10.8 (1.3 undiagnosed) 88.0 aware	NR	NR	NR	NR		
Wong-McClure, 2016 [44]	2016					Glycemic control				
Organización Panamericana de la Salud [168]	2004 Honduras		CAMDI – Tegucigalpa (study described in Table 1)	Total prevalence: 6.4 (3.1 undiagnosed) 90 aware	On meds: 85.5 On no treatment: 77.4	LDL-C, 130 mg/dL: 65.4	NR			
Montalván Sánchez, 2016–2017 [51]	2016–2017 Honduras		Western Honduras (study described in Table 1)	Total prevalence: 6.4 (3.1 undiagnosed) 90 aware	On meds: 85.5 On no treatment: 77.4	LDL-C, 130 mg/dL: 65.4	NR			
Orellana-Pontaza, 2007 [169]	2006 Guatemala		CAMDI – Villa Nueva, Guatemala (study described in Table 1)	Total prevalence: 51.2 aware	Taking meds: 77.7 On med: 58.3 Insulin: 8.2 Both: 2.0 None: 26.1	BG ≥ 130 mg/dL: 61.7	26.5	LDL-C < 130 mg/dL: 69.6	NR	
Ministerio de Salud Pública y Asistencia Social de Guatemala, 2018 [49]	2015 Guatemala		National Survey – Urban region	NR	Taking meds: 56.1 Insulin: 19.0	37.7	HTN: 26.5	LDL-C < 130 mg/dL: 69.6	NR	
	2004 Managua, Nicaragua									
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)			
--------------------	--------------	-------	---	------------------------	-----------------------	---	-------------------------------			
Amador Velazquez, 2010 [170]	CAMDI – Nicaragua (study described in Table 1)	Total prevalence: 9.0 (3.9 undiagnosed, or 43.3 of those with diabetes)	56.7 aware	BG < 130 mg/dL: 43.4	LDL-C < 130 mg/dL: 46.1					
Caribbean Ministerio de Salud Pública de Cuba [60]	2010–2011 Cuba	III Encuesta Nacional de Factores de Riesgo y Actividades Preventivas de Enfermedades No Transmisibles, Cuba 2010-2011	61 aware	On med: 75.5	Control based on glycemia: NR	NR	NR	NR		
Dethlefs, 2019 [171]	Dominican Republic	Study of the implementation of diabetes and hypertension program in two rural clinics serving 30 communities in the Dominican Republic. The program was implemented 2010-2012, N = 1191	All patients had diabetes	NR	50% of patients had A1c < 9% at baseline	NR	NR	NR		
Ministerio de Salud Pública de la República Dominicana, 2014 [61]	Dominican Republic	National Survey “Encuesta Demográfica y de Salud - República Dominicana 2013” Study described in Table 1.	NR	On oral med: women: 25.0 men: 51.0	NR	NR	NR	NR		
Carrère, 2017 [62]	Guadeloupe	Cross-sectional multicenter study-Persons undergoing a periodic health examination on invitation from the general social security fund of Guadeloupe (CGSS).	Aware: Women: 84.5 Men: 67.3	HbA1c < 7% Women: 97.7 Men: 97.0	NR	NR	NR	NR		
Jean-Baptiste, 2006 [63]	Haiti	Population-based survey PREDIAH	Aware: Men: 77.3 Women: 69.2	On insulin: 10.0	< 10.0 normal BP	NR	NR	NR		
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)			
-------------------	--------------	-------	---	------------------------	------------------------	--	-----------------------------			
Ministère de la Santé Publique et de la Population, 2018 [65]	2016–2017	Haiti	Enquête Mortalité, Morbidité et Utilisation des Services (EMMUS- VI) Random sampling, two-stage, stratified	65.4% of women aged 35–64 years knew they had diabetes	No information on other medications Women: 76.5 prescribed medications, but 54.2 taking them. Men:	HbA1c > 6.5 Women: 64.5 Men: 62.7	NR NR NR			
Pérez, 2012 [172]	2005–2007	Puerto Rico	Three-stage cluster sampling design random selection N = 859 Secondary analysis of a previous epidemiologic study	50 aware	Oral meds only: 64.7 Insulin only: 8.1 Both: 12.3	HbA1c < 7.0%: 41.2 28.7	47.8 6.6			
Rodríguez-Vigil, 2014 [173]	2010	Puerto Rico	Descriptive study of patients with diabetes based on a random sampling throughout the five health regions. Age ≥ 18 years, N = 600	All participants had diabetes	Oral meds only: 64.5 Insulin only: 11.7 Both: 19.0	HbA1c < 7.0%: 34.0 37.3	59.9 9.9			

South America

Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
Ministerio de Salud de Argentina, 2011 [70]	2009	Argentina (2da Encuesta Nacional de Factores de Riesgo para Enfermedades No Transmisibles)	Second National Survey on Risk Factors for Non-Communicable Diseases- 4 stage, probabilistic sampling of 24 jurisdictions	NR	On treatment: 55.2 On medical treatment: 39.5	No pharmacologic treatment: 16.9	NR NR NR		
Ministerio de Salud de Argentina, 2015 [71]	2013	Argentina (3ra Encuesta Nacional de Factores de Riesgo para Enfermedades No Transmisibles)	Third National Survey on Risk Factors for Non-Communicable Diseases 4 stage probabilistic sampling	NR	On treatment: 61.3 (65.8% on insurance, 44.9% public system) Pharmacologic treatment: 34.1 No pharmacologic treatment: 14.4	Both: 51.5	NR NR NR		
Ministerio de Salud de Argentina, 2019 [72]	2018	Fourth National Survey National Survey of	60.7 aware						
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
-------------------	--------------	-------	---	------------------------	-----------------------	--	--------------------------------		
Gagliardino, 2019 [174]	2006–2012	Argentina	Risk Factors for Non-communicable Diseases - Enfermedades No Transmisibles	47.4% women Medications only: 24.8 Diet only: 22.5 Both: 52.7	Oral meds only: 65.0 Insulin only: 13.0 Both: 22.0	Glycemic (%)	31.4% had elevated CBG (≥110 mg/dL)		
Santero, 2018 [175]	NR	Argentina	Analysis of the implementation of an mHealth program in public primary clinics in the province of Corrientes. Quasi-experimental study with outcome measurements at baseline, 6 and 12 months N = 947 patients with diabetes (92.9% with Type 2	Oral meds only: 79.4 Insulin only: 5.8 Both: 8.9 No treatment: 5.9	Oral meds only: 40.4 Insulin only: 34.5 Both: 38.2	HbA1c ≥ 8%: 44.4 BP ≥ 140/90: 48.2	NR		
Barceló, 2001 [73]	1998	Bolivia	Population-based survey of households in four cities (study described in Table 1)	Aware: Men: 73.6 Women: 69.8	NR	BP 140–159/90–99 mmHg: 21.4	NR		
Gomes, 2006 [176]	2000–2001	Brazil	13 public endocrine clinics in 8 Brazilian cities Review of medical charts of patients with type 2 diabetes N = 2233 (60% women), All patients had diabetes and received health care from the National Brazilian Health Care System	Oral meds (monotherapy): 33.2 Insulin monotherapy or in combination: 55.2 Unknown treatment:	Oral meds (women 42.8%, men 50.9%)	HbA1c < 7%: 46.0 all	Women 13.2 Men 25.7	NR	
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
-------------------	--------------	-------	---	------------------------	-----------------------	--	-------------------------------		
Busch Mendes, 2011 [75]	2003 Brazil	Study described in Table 1 Health centers located in ten large cities in Brazil Cross-sectional study, nationwide survey Review of medical charts of 20 centers in 10 cities in four Brazilian regions; the largest cities in their regions and most populous. Sample of consecutive patients with diabetes attending each center during a 30-day period. N = 6671 patients with either type 1 or type 2 diabetes, Age ≥ 18 years	11.6 Diet only: 11.6 Oral meds: 60.8 Insulin: 15.1 NR	NR	NR	NR	NR		
Valverde Mendes, 2010 [177]	2006–2007 Brazil	All participants had diabetes	Awareness was not determined Inadequate control: 76 (type 1: 90, type 2: 73)	NR	NR	NR	NR		
Moraes, 2020 [178]	2008–2010 Brazil	Secondary analysis based on Estudo Longitudinal da Saude do Adulto (ELSA-Brasil) Prospective cohort study of active or retired civil servants from six public higher education institutions Analysis of sample of participants with previously diagnosed diabetes (N = 1242)	“Low/medium adherence to medications”: 60.2 Oral meds only: 86.5 Insulin only: 5.7 Both: 7.8	HbA1c ≥ 6.5%: 54.2 NR	NR	NR	NR		
Viana, 2013 [179]	2006–2011 Brazil	5750 patients with type 2 diabetes from 14 centers in five regions of Brazil, including primary care units and outpatient clinics of	On treatment: 99.0 Oral meds: 57.0 Insulin only: 13.0 Both: 22.0 Diet: 6.0	HbA1c < 7%: 26.0 -Those who performed more SMBG had lower A1c “non-white” had HbA1c	NR	NR	NR		
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
--------------------	--------------	-------	---	------------------------	------------------------	--	-------------------------------		
Baptista, 2015 [180]	2012–2013	Brazil	University hospitals: Public outpatient clinic at a university hospital in Curitiba, Paraná. Adults ≥18 years, and elderly adults ≥60 years with type 1 or type 2 diabetes; 1031 records: 299 type 1 (55.2% women) and 732 type 2 (68% women). All patients received care from the National Brazilian Health Care System and at the same endocrine clinic.	All patients had either type 1 or type 2 diabetes	Type 2 diabetes Oral meds and/or oral meds/insulin: 47.1 Diet alone: 2.1 Type 1 diabetes Insulin/oral meds: 12.1	HbA1c < 7%: 9.5	NR	NR	NR
Ministério da Saúde do Brasil, 2018 [80]	2018	Brazil	VIGITEL BRASIL 2018 study described in Table 1. All self-reported	On meds: 88.7 (89.7 men, 88.0 women)	NR	NR	NR	NR	
Ministério da Saúde do Brasil, 2019 [91]	2019	Brazil	VIGITEL BRASIL 2019 study described in Table 1. All self-reported	On meds: 89.3 (90.8 women, 87.4 men)	NR	NR	NR	NR	
Ministerio de Salud de Chile, 2010 [85]	2009–2010	Chile	Encuesta Nacional de Salud, ENS Chile 2009–2010 study described in Table 1. Total aware: 78.49 (women 84.07, men 71.32)	All: 52.05 (women 53.08, men 50.7)	HbA1c < 7%: 34.32 of all with diabetes (women 38.52, men 29.33) (44% of those on pharmacological treatment had HbA1c < 7%)	NR	NR	NR	
Ministerio de Salud de Chile, 2016–2017 [86]	2016–2017	Chile	Encuesta Nacional de Salud, ENS Chile 2016–2017 study described in Table 1.	NR	NR	58.2	NR	NR	NR
Ministerio de Salud y Protección Social de Colombia [87]	2007	Colombia	National survey “Encuesta Nacional de Salud (ENS) 2007” (study described in Table 1)	NR	50.7	NR	NR	NR	NR
Alba, 2009 [181]	2008	Colombia	Cross-sectional study of type 2 diabetes patient population attending a clinic associated with a university hospital in Bogotá	All participants had diabetes	On insulin: 54.0	HbA1c < 7%: 49.0	47.0	52.6	NR
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
--------------------	--------------	-------	---	------------------------	------------------------	---	-------------------------------		
Machado-Alba, 2009 [182]	2006–2007 Colombia	N = 150 Retrospective study, N = 19,704 patients treated by the national social security health system Age ≥30 years	All patients had type 2 diabetes	45.8	HbA1c < 7%: 42.9 66.2	NR	NR		
Ministerio de Salud Pública y Bienestar Social de Paraguay, 2012 [96]	2010–2011 Paraguay (Primera Encuesta Nacional de Factores de Riesgo de Enfermedades No Transmisibles en Población General)	First National Health Survey Probabilistic, three-stage sampling Study described in Table 1.	All self-reported	During the last 2 weeks: On oral meds only: 53.7 On insulin only: 53.3 On insulin or oral meds: 54.8	NR	NR	NR	NR	
Ministerio de Salud de Perú, 2006 [96]	2005 Peru	National Survey 2005 (study described in Table 1)	Aware: Close to 50.0	65.4	NR	NR	NR	NR	
Seclen, 2015 [101]	2010–2012 Peru	PERUDIAB Study described in Table 1	Aware: 60.0	NR	NR	NR	NR	NR	
Minderhoud, 2015 [104]	2013–2014 Republic of Suriname	The Rapid Assessment of Avoidable Blindness (RAAB) survey method (Study described in Table 1.)	Aware: 89.6	Oral meds only: 77.3 Insulin: 15.6 No medical treatment: 6.9	58.5% were considered well-controlled (based on random blood sugar ≥ 200 mg/dL)	NR	NR	NR	NR
Krishnadath, 2016 [103]	2013 Suriname	Secondary data analysis from the Suriname Health Study Stratified multistage cluster sample of households	Aware: 60.0	NR	NR	NR	NR	NR	
Fort, 2012 [183]	2008–2011 Uruguay	CVRF assessment of national health insurance card applicants Cross-sectional, electronic records	Awareness: 50.3 (men: 39.3, women: 64.3)	NR	All: 14.4 (men: 6.0, women: 25.2)	NR	NR	NR	
Multinational studies									
Gagliardino, 2001 [184]	1999- Argentina Brazil Chile Colombia Paraguay Uruguay	Analysis of 13,513 records from the diabetes network QUALIDDAB	All participants had diabetes.	Type 2: Oral meds monotherapy: 42.0 Combination oral meds: 14.0 Insulin only: 14.0	HbA1c < 8.0%; 33.0 BP < 140/90 mmHg; 38.0	NR	NR	NR	NR
Baredó A, 2012 [111]	2003–2006 Belize, Costa Rica El Salvador	Overall Undiagnosed: 40.0							
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
--------------------	--------------	-------	---	------------------------	-----------------------	---	---------------------------		
Guatemala	2003–2009	Belize: 41.1	Central America Diabetes Initiative (CAMDI) (study described in Table 1)	62.0	70.0	Blood pressure < 130/80 mmHg (%)	61.4		
Honduras		El Salvador: 28.9				LDL-C < 100 mg/dL (%)			
Nicaragua									
Salas, 2016 [112]		Cuba: 53.7	Sub-analysis of data from the 10/66 Dementia Research Group Population-based studies in 13 catchment areas in six Latin American countries (study described in Table 1)	62.0	70.0	Blood pressure < 130/80 mmHg (%)	61.4		
		Dominican Rep: 43.1 (men > women)				LDL-C < 100 mg/dL (%)			
		Urban Rep: 43.1 (men > women)							
		Venezuela: 30.2 (men > women)							
		Urban Mexico: 9.6 (no sex difference)							
		Rural Mexico: 25 (men > women)							
		Puerto Rico: 37.7 (men > women)							
		Undiagnosed Cuba: 51.1 (men > women)							
		Dominant: 24.3 (women > men)							
		Urban Peru: 41.3 (men > women)							
		Urban Mexico: 9.6 (no sex difference)							
		Rural Mexico: 25 (men > women)							
		Puerto Rico: 37.7 (men > women)							
		Awareness: 78.0							
		Highest in Bogota (87.5) and lowest in Lima (61.7)							
		Not on treatment: 67.0							
		Oral meds only: 56.0							
		Insulin only: 13.0							
		Both: 26.0							
		Diet: 5.0							
Silva, 2010 [185]	2003–2005	Argentina: 78.0	Sub-analysis from Cardiovascular Risk Factor Multiple Evaluation in Latin America study CARMELA (study described in Table 1)	78.0	63%	HbA1c < 7% Oral meds only: 76.0	44%		
		Colombia: 61.4				Insulin only: 54.0			
		Ecuador: 34.6				Both: 27.0			
		Uruguay: 56.9							
		Mexico: 45.7							
		Peru: 40.0							
		Puerto Rico: 34.6							
		Based on fasting plasma glucose ≥ 126 mg/dL: 16.0							
Commendatore, 2013 [186]		Argentina: 78.0	Analysis of subsample from the Registry of medical data from patients with diabetes (QUALIDIA). Six specialized diabetes centers in 3 countries N = 1118 Country data combined	76%					
		Colombia: 76%							
		Peru: 44%							
		Oral meds only: 76.0							
		Insulin only: 54.0							
		Both: 27.0							
López Stewart, 2007 [187]	October 2004	Argentina: 78.0	Multicenter, cross-sectional study, epidemiological study N = 3592 patients with type 2 diabetes interviewed with physicians	78.0	63%	HbA1c < 7% Oral meds only: 76.0	44%		
		Brazil: 43.2				Insulin only: 54.0			
		Chile: 6.5%				Both: 27.0			
		Costa Rica: 30.0							
		Argentina, and Chile had the largest % of							
Author (reference)	Study period	Place	Type of Study and participant characteristics	Diabetes awareness (%)	Diabetes treatment (%)	Glycemic, blood pressure, and LDL-C goals	Attainment of three goals (%)		
--------------------	--------------	-------	---	------------------------	-----------------------	---	-----------------------------		
Duarte, 2019 [188]	February 2006- June 2007	Brazil and Venezuela	Cross-sectional study based on nationwide survey on prevalence of glycemic control, 20 centers in Brazil and 32 in Venezuela Charts from consecutive patients attending the clinic during a 30-day period N = 5692 in Brazil, and N = 3726 in Venezuela Age ≥ 18 years	All patients had diabetes	NR	patients with HbA1c < 7%	NR		
Irazola, 2017 [189]	2010–2011	Argentina Chile Uruguay	Centro de Excelencia en Salud Cardiovascular para el Cono Sur I (CESCAS I) (study described in Table 1)	Awareness: 79.8 Marcos Paz 64.5, Bariloche 78.9, Temuco 81, Barros Blancos 85.2, Awareness slightly increased with educational attainment Awareness and control higher in women	Treatment at the time of the home interview: 58.8 overall Marcos Paz 77.6 Bariloche 69.3 Temuco 78.9 Barros Blancos 60.9	Blood pressure < 130/80 mmHg (%)	NR		

NR indicates data not reported.
The percent achieving optimal glycemic, blood pressure, and LDL-C levels altogether was reported by a handful of studies and up to 9.9% (Table 2). The findings described above denote critical aspects of the state of diabetes care in Latin America. The achievement of glycemic goals reported by the studies included in our review is similar to previously published studies [164, 179, 180, 187, 210]. This implies seriously chronic and inadequate glycemic control at the population level across the region.

The inclusion of questions on treatment for glycemic control, medical, and self-care in some national surveys increases our understanding of health-seeking behaviors, both patients’ and clinicians’ adherence to recommended guidelines of care, and challenges related to the utilization of health care services and availability of medications. The smaller number of studies reporting on the attainment of blood pressure and LDL-C goals and the proportion of patients achieving those goals also poses questions about the prevention of macrovascular complications in persons with diabetes in Latin America, considering the raising prevalence of CVD in the region [16, 211]. Of note, most national surveys report prevalence and treatment and/or control of diabetes, hypertension, and blood cholesterol and the prevalence of tobacco use individually. Since diabetes involves multiple organs and deserves a holistic care approach, reporting on the co-existence of other CV risk factors with diabetes would enhance critical understanding of CV risk and health care needs. Also, some surveys collected biospecimens, but the test results were not included in the reports. It is possible that they are analyzed and published later. Yet including test results in the surveys would offer a more comprehensive picture of the status of diabetes prevention and care needs [180, 212, 213] to plan interventions accordingly.

Following Guidelines of Care for the Prevention of Microvascular Disease

Various studies included in our review reported on participants’ receiving or following ADA/ALAD-recommended guidelines of care [25] for early detection and prevention of microvascular disease—annual fundoscopy exam, examination for peripheral neuropathy and comprehensive foot examination, annual function/urine albumin excretion testing, and HbA1c tested at least 3 times per years [38–40, 72, 96, 159, 160, 165, 166, 168, 169, 171, 172, 175, 176, 180, 182, 186, 214] (Table 3). Some studies assessed the completion of several guidelines, whereas most studies focused on a few. The completion of the selected ADA guidelines varied, ranging from 14.7 to 97.5% for the foot exam, from 8.6 to 92% for the fundoscopic exam, and from 1.1 to 51.1% for the urine albumin excretion test. Most studies (especially national surveys) inquired about having HbA1c checked within the previous 12 months. The affirmative response ranged from 3.7 to 90.0%. In addition to inquiring about HbA1c testing, some surveys asked whether the participant’s blood glucose had been tested (by a health care professional). Having private health insurance was associated with a greater number of affirmative responses to the latter [70, 71, 91].

Despite the smaller number of studies evaluating the completion of the ADA guidelines for foot care and prevention of microvascular disease, and the varied guideline completion rates previously described (Table 3), the prevalence of long-term microvascular complications associated with diabetes has been documented across LatAm. For instance, in the studies included on our review and others published during the same time frame, the rate of foot ulcers ranged from 1.2 to 14.8% [40, 214–216], and non-traumatic lower extremity amputations attributable to diabetes ranges from 1.2 to 7.3% [40, 184, 214, 215, 217–221], and the prevalence of diabetic retinopathy ranged from 11.2 to 48% [40, 184, 214, 222, 223]. CKD has become a major public health concern across Central America [224–226], and the increasing prevalence of diabetes could exacerbate the incidence of CKD—and eventually end-stage renal disease and its associated health complications—in the region [227–229].

Innovative Solutions: Emerging Research and Alternative Models of Care

The findings described above underline not just the urgent need to prevent diabetes but also to prevent complications among those with established disease, and the potentially underestimated burden on patients, societies, and health care systems across LatAm. In this regard, several innovative models of health care for patients with diabetes have been proposed and tested throughout LatAm. Combining care of diabetes and other chronic conditions would be expected to maximize time and resources and improve health outcome. Although combining diabetes and chronic pulmonary disease care did not demonstrate a difference in outcomes [230], this model could be revisited. Also, interventions at the health care system element of the chronic care model might need to be adapted to the local health care system [231] or synchronized with interventions at other levels. Improvement of health care system structure and processes [232] would assure timely access to patient information and enhance clinician decision-making. Integrating social determinants of health into diabetes care demonstrated objective improvements in patient knowledge and cardiometabolic parameters [233]. Enhancing medical continuing education [234], an intervention combining diabetes prevention and self-management [235], co-creating interventions with community stakeholders and other countries [141, 144] are other examples of alternatives to improve diabetes care throughout the region. Another major regional example of efforts to implement better care for patients with
Table 3 Completion of selected ADA-recommended guidelines of care across Latin America on reports published from 2005 to 2020

Study (reference)	Study period	Place	Study type	A1c checked as recommended (ADA guidelines) (%)	Foot exam at least once a year (%)	Annual fundoscopic Exam (%)	Urinary albumin and renal function test at least once a year (%)	
Mexico								
López-López, 2012 [159]	2000 and 2006	Mexico, State of Hidalgo	Based on the 2000 and 2006 National Survey (ENSANUT) data subsamples for the state of Hidalgo. (study described in Table 2.)	35.6	97.5	92.0	1.1	
Flores-Hernández, 2015 [160]	2006 and 2012	Mexico (National Survey)	Analysis based on two cycles of ENSANUT (Study described in Table 2.)	2006: 3.7	2006: 9.4	2006: 12.3	2006: 6.6	
Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP), 2016 [40]	2016	Mexico	National Health and Nutrition Survey (ENSANUT-MC 2016) (Study described in Table 1.)	15.2 within the last 12 months	20.9 within the last 12 months	13.1 within last 12 months	4.7 within the last 12 months	
Central America								
Gough, 2009 [165]	2006	Belize	CAMDI–Belize Study described in Tables 1 and 2.	1.7% reported having it checked	NR	NR	NR	
Dekker, 2017 [166]	2014–2015	Belize	Study described in Table 2.	41.0	41.0	39% serum creatinine	28% urinalysis	
Orellana-Pontaza, 2007 [169]	2006	Guatemala	CAMDI – Villa Nueva, Guatemala Study described in Tables 1 and 2.	7.6	27.1	3.0	NR	
Organización Panamefricana de la Salud [168]	2004	Tegucigalpa, Honduras	Study described in Tables 1 and 2.	NR	NR	NR	NR	
Caribbean								
Duthiefs, 2019 [171]	2010–2012	Dominican Republic	Study described in Table 2.	51.3	20.0	NR	NR	
Pérez, 2012 [172]	2005–2007	Puerto Rico	Study described in Table 2.	52.3	43.8	NR	NR	
South America								
Ministerio de Salud de Argentina, 2019 [72]	2018	Argentina	Fourth National Survey- Study described in Table 2.	NR	30.0	40.0	NR	
Santero, 2018 [175]	--	Argentina	Quasi-experimental study (Study described in Table 2.)	16.9	69.1	29.0	NR	
Gomes, 2006 [176]	2000–2001	Brazil	Study described in Table 2.	84.3	58.2	46.9	38.9	
Baptista, 2015 [180]	2012–2013	Brazil	Public outpatient clinic at a university hospital in Curaçao, Parana. (Study described in Table 2.)	NR	59.9	43.2	NR	
Ministerio de Salud de Chile, 2010 [85]	2009–2010	Chile (Encuesta Nacional de Salud, ENS Chile 2009–2010)	Study described in Table 2.	NR	6.7 in the last year	34.8 (7.6 with retinopathy)	NR	
Machado-Alba, 2009 [182]	2006–2007	Colombia	Study described in Table 2.	NR	55.5	17% had their feet checked within the last year; 78.3% had not ever had their feet examined.	3.5	31.5% had an exam within the last 2 years, and 55.8% had not ever had an eye exam
Ministerio de Salud Pública y Bienestar Social de Paraguay, 2012 [96]	2010–2011	Paraguay	Study described in Table 2.	NR	55.5	31.5% had an exam within the last 2 years, and 55.8% had not ever had an eye exam	57.0	51.1% within the last 2 years, and 36.2% had not ever had a 24-hr urine test done.
Multinational studies								
Commendatore, 2015 [186]	--	Argentina Colombia Peru	Analysis based on QUALIDIAM Registry. Study described in Table 2.	90.0	60.0	62.0	NR	

NR, not reported; HbA1c, hemoglobin A1c
diabetes has been led by the Latin American Diabetes Association (ALAD in Spanish) to engage 17 medical associations and wrote a consensus statement on the treatment of type 2 diabetes in LatAm [207]. Kaselitz et al. published a scoping review of policies and interventions for diabetes in LatAm [147], telehealth, mobile clinics, and other non-traditional health care delivery models. In addition, a non-exhaustive list of examples of past or current interventions, policies, and initiatives is provided in Table 4 [184, 186, 234, 236–252]. Interventions in the list include tele-ophthalmology [249, 250, 253, 254], team-based foot self-care education [236], diabetic retinopathy education and screening at a community pharmacy [255], rapid assessment/diagnostic tools to screen for or detect retinopathy, nephropathy, and risk of developing foot ulcers [201, 256–262] and are examples of clinical research and/or implementation activities designed to strengthen the prevention and early detection of diabetes-associated complications and improve health outcomes throughout LatAm.

Many interventions on diabetes care have focused on patients and/or clinicians as the primary recipients or enablers of the interventions. Because of the complex nature of the disease and the multiple factors that mediate treatment effectiveness, interventions involving other levels or elements within the health care organization or system [155, 157, 232, 263–265] or the health care workforce [158, 263, 266] could be considered. Interventions involving other sectors (e.g., housing, infrastructure, national or local policies) could uncover very valuable and needed strategies to enhance treatment effectiveness and potentially reduce health care costs in the long-term. The feasibility and sustainability of such research efforts—and subsequent policies—would need to be demonstrated and supported locally [143].

Additional Observations

Women

Multiple studies in our review reported a higher prevalence of diabetes among women [36, 38, 40, 42, 44, 47, 49–52, 57, 60, 62, 63, 65, 70, 72, 75, 78, 79, 83–86, 90, 95, 96, 110, 113]. While the mediating factors for this sex difference need further study (e.g., history of GDM, which was outside of the scope of this review), the increased prevalence of diabetes among women in some LatAm countries would be expected to have implications for health and health care, and potentially future generations [267–269]. Since diabetes may increase women’s risk for CVD, including stroke [270], cognitive decline [271, 272], or some cancers [273, 274], timely and comprehensive preventive care for women of all ages would need to be prioritized.

Older Adults

Due to the epidemiologic transition already experienced by some countries throughout LatAm, the population pyramid is also shifting towards a greater proportion of older adults. Studies included in our review consistently reported an increased prevalence of diabetes with age. Diabetes care challenges specific to this age group include risk of obesity or undernutrition [42, 56], increased risk for disability [57], economic barriers to appropriate access to health care [42], disruption in funding of health insurance [275], disparate completion of diabetes care guidelines based on health insurance coverage [276], inequalities in access to and utilization of health care services [277–279], complex medical care needs and frailty [280], cultural beliefs, mental health, and lack of family or social support [281], among others. Prevention of diabetes and its complications and reliable continuity of care and social support [282] need to be especially tailored for this population across the region.

Indigenous and Other Ethnic Underserved Populations

A few studies in our review reported a low prevalence of diabetes among some indigenous populations in LatAm [55, 74, 82], in parallel to some previous reports [283–286] about other indigenous groups in the region and in contrast with the higher prevalence of diabetes among American Indians in the USA [287] and the First Nations in Canada [288]. However, other studies in our review and in the current literature have documented elevated diabetes prevalence or risk among indigenous and other socioeconomically disadvantaged ethnic groups [48, 50, 73, 76, 77, 83, 90, 91, 166, 289–293]. Some of the diabetes prevalence studies included in our review focused on or mentioned participants from indigenous groups [35, 48, 50, 74, 83] and other underrepresented groups (e.g., Garifuna, Afro-Panamanian, Afro-Peruvian, Afro-Ecuadorian) [55, 76, 90, 91, 166]. However, a few studies have evaluated diabetes care, prevalence, and/or prevention of macro- or microvascular complications, diabetes management interventions, other health care needs and access to health care among indigenous populations [241, 244, 246, 294–302], and none on the other groups (that we could identify through our search). Understanding the protective mechanisms (e.g., biochemical, immune, epigenetic) against diabetes experienced by some indigenous populations would be relevant to millions at high risk of developing diabetes. At the same time, the increased prevalence of the metabolic syndrome and diabetes experienced by some indigenous groups and other ethnic groups may increase their risk not only for CVD and other diabetes long-term complications but also for re-emerging...
Author [reference]	Year of Study	Place	Key findings
Batista, 2010 [236]	2000-2010	São Paulo, Brazil	A multidisciplinary health care team was established aiming at increasing limb salvage
Barceló, 2010 [237]	2002-2004	Mexico	The VIDA project - RCT to test improvement of quality of diabetes care in primary health care centers using the chronic care model and the breakthrough series collaborative methodology. The proportion of patients attending the clinics under the intervention with HbA1c <7% increased from 28% to 39%, and the proportion of patients who achieved 3 or more quality improvement goals increased from 16.6% to 69.7%.
Lerario, 2010 [238]	2009	Brazil	The Brazilian Diabetes Society developed a new algorithm for the treatment of type 2 diabetes
Piette, 2013 [239]	2009-2011	Mexico, Honduras	Interactive Voice Response (IVR) support calls for chronic disease management for Spanish speakers. The investigators report cumulative findings in Honduras, Mexico, and Spanish-speakers in the U.S. Involvement of caregivers enhanced engagement. By self-report, there was improved medication adherence and self-management was similar across sites.
Piette, 2011 [240]	2010	Honduras	Cloud-Computing Model - The investigators tested a mobile phone-based intervention of weekly VoIP calls and IVR with patients with diabetes and automated emails to clinicians and voicemail reports to family caregivers for six weeks. Improved self-care and diabetes management and significant improvement in glycemic control were reported.
Piette, 2016 [241]	2013	Bolivia	Structured caregiver feedback – The investigators assessed whether automated telephone feedback to caregivers (“CarePartners”) increased engagement in mobile-health support among patients with diabetes and hypertension in Bolivia. Significantly greater engagement was observed. Patients who spoke indigenous languages at home were more than 3X as likely to complete the IVR calls.
Piette, 2014 [242]	2013	Bolivia	Mobile health program for chronic disease self-management in Bolivia – Assessment and implementation of IVR for 12 weeks. It was associated with improved medication adherence, self-reported health status, and satisfaction.
Prestes, 2017 [243]	2016-2017	Argentina	DIAPREM – integrated diabetes care program including systemic changes education, registry and disease management
Flood, 2016 [244]	2010	Guatemala	Implementation and outcomes of a comprehensive type 2 diabetes program in rural Guatemala through a non-government organization and involving nurse-directed care
Flood, 2017 [245]	2012	Rural Guatemala	Implementation of a multi-level quality improvement program for ambulatory diabetes care based on input from patients and other stakeholders
Flood, 2017 [246]	2014-2016	Rural Guatemala	Home-based type 2 diabetes self-management – intervention delivered by diabetes educator at home and synchronized with clinic follow-up. Mayan communities
Tapia-Conyer, 2016 [247]	2012 to present	Mexico	CASALUD Model – a comprehensive primary health care model implemented in Mexico that enables proactive prevention and disease management using innovative technologies and a patient-centered approach. The program was pilot tested in 2009 and implemented nationwide in 2012.
infectious diseases, like tuberculosis [303–305]. Therefore, disease prevention and health care models that account and reach these populations need to be considered.

Conclusion

Through this review, we have highlighted the most current reports on prevalence, awareness, treatment, control, and adherence to recommended guidelines of care for diabetes mellitus across LatAm published from 2000 to 2020. During that time frame, a considerable number of surveys assessing the prevalence of the disease and an increasing body of reports on the achievement of treatment and care goals were identified. Such reports demonstrate the imperative need to garner a more comprehensive understanding of the extent of diabetes across countries, and both past and ongoing efforts to establish effective and sustainable models of prevention and high-quality care able to reach and serve all peoples across the region.

During the writing of this manuscript, Latin America had been recognized as the new epicenter of the SARS-CoV-2 (COVID-19) pandemic [306]. The effects of the disease in persons with diabetes in the region are beginning to be uncovered [307–309], while some solutions are proposed [310, 311]. The magnitude of the impact of the pandemic on the health and health care needs of persons with diabetes mellitus and other NCDs—let alone on the health care systems infrastructures—in the region are yet to be known. The task ahead is substantial and will require multidisciplinary and cross-sectoral strategies and collaborations to reduce diabetes burden and improve health outcomes across Latin America.

Acknowledgments The authors would like to thank Ms. Jill Pope (Kaiser Permanente Center for Health Research) for her valuable review of the manuscript and the Ponce Health Sciences University for creating the opportunity for AM-R and AS-S to work in this review.

Authors’ Contributions MLAS conceptualized the review. MLAS and NML co-led the literature search and the discussion of findings. AMR performed part of the literature search, summarized and discussed findings, and contributed to the writing. MLAS performed part of the literature search and wrote the manuscript. NML provided critical review to the manuscript. All authors approved the final version of the manuscript.

Data Availability NA

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

Disclaimer The views expressed in this manuscript are those of the authors and do not necessarily reflect the official views of the National Institute on Minority Health and Health Disparities, the National Institutes of Health, or the U.S. federal government.

Code Availability NA

References

1. Bukhman G, Bavuma C, Gishoma C, Gupta N, Kwan GF, Laing R, et al. Endemic diabetes in the world’s poorest people. Lancet
1. Aschner P, Aguilar-Salinas C, Aguirre L, Franco L, Gagliardino CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011;378(9785):31–40. https://doi.org/10.1016/s0140-6736(11)60679-x.

2. Aschner P, Aguilar-Salinas C, Aguirre L, Franco L, Gagliardino JJ, de Lapertosa SG, et al. Diabetes in South and Central America: an update. Diabetes Res Clin Pract. 2014;103(2):238–43. https://doi.org/10.1016/j.diabres.2013.11.010.

3. Saedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.

4. Colón-Ramos U, Rodríguez-Ayuso I, Gebrekristos HT, Roess A, Pérez CM, Simonens L. Transnational mortality comparisons between archipelago and mainland Puerto Ricans. J Immigr Minor Health. 2017;19(5):1009–17. https://doi.org/10.1007/s10903-016-0448-5.

5. Alegre-Díaz J, Herrington W, López-Cervantes M, Gnatuić L, Ramirez R, Hill M, et al. Diabetes and cause-specific mortality: a systematic review and meta-analysis of population-based cohort studies. Diabetes Metab Res Rev. 2016;32(5):561–79. https://doi.org/10.1002/dmrr.280.

6. Braumoeller B. Why is there no peace in the Americas? 2008. https://www.paho.org/salud-en-las-americas-2017/?tag=Revista-ACLA-

7. Paniagua M, Vizcarrondo R. Diabetes mellitus in Puerto Rico; statistical survey of 700 cases. Diabetes. 1952;1(5):373–88. https://doi.org/10.2337/diabets.15.1.9.

8. Avilés-Santa ML, Colón-Ramos U, Lindberg NM, Mattei J, Pasquet FJ, Pérez CM. From Sea to Shining Sea and the Great Plains to Patagonia: A Review on Current Knowledge of Diabetes Mellitus in Hispanics/Latinos in the US and Latin America. Front Endocrinol (Lausanne). 2017;8:298. https://doi.org/10.3389/fendo.2017.00298.

9. Rodríguez-Castelan C, Lopez-Calva LF, Lustig N, Valderrama D. Understanding the dynamics of labor income inequality in Latin America (http://repec.tulane.edu/RePEc/pdf/mdl1608.pdf). Tulane Economics Working Paper Series 2016. Accessed 4 August 2020 and 5 October 2020.

10. Åström M, Hallberg S, Starke-Lindblad J, Lundström M, Wickström M, et al. Type 2 diabetes and health care costs in Latin America and the Caribbean in 2015: the growing epidemic. Prog Cardiovasc Dis. 2014;57(3):262–7. https://doi.org/10.1016/j.pcad.2014.07.007.

11. Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al. Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet. 2016;98(1):165–84. https://doi.org/10.1016/j.ajhg.2015.12.001.

12. Villalpando S. Diabetes Mellitus en adultos mexicanos. Notas Poblacion. 1994;22(60):79–84. https://doi.org/10.26633/rpsp.2018.127.

13. Passuello C, Del Riego A. Diabetes and cause-specific mortality attributable to diabetes in Brazil. J Glob Health. 2020;10(1):010401. https://doi.org/10.26633/rpsp.2020.11.

14. Aschner P, Aguilar-Salinas C, Aguirre L, Franco L, Gagliardino JJ, de Lapertosa SG, et al. Diabetes in South and Central America: exploring the need for greater preventive medicine. BMC Med. 2014;12:136. https://doi.org/10.1186/s12916-014-0136-z.

15. Barceló A, Rajpathak S. Incidence and prevalence of diabetes mellitus in the Americas. Rev Panam Salud Publica. 2001;10(5):547–58. https://doi.org/10.1590/s1020-49892001001100002.

16. Asociación Latino Americana de Diabetes (ALAD). Guías ALAD sobre Diagnóstico, Control y Tratamiento de la Diabetes Mellitus Tipo 2 con Medicina Basada en Evidencia, Edición 2019—standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S111-S34. https://doi.org/10.2337/dc20-S006.

17. 10.26633/rpsp.2019.25(5):1587–98. https://doi.org/10.1590/1413-81232020255.32802019.

18. Greene J, Guanais F. An examination of socioeconomic equity in health experiences in six Latin American and Caribbean countries. Rev Panam Salud Publica. 2018;42:e127. https://doi.org/10.26633/rpsp.2018.127.

19. American Diabetes Association. 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S115-S51. https://doi.org/10.26633/rpsp.2020.11.

20. Frenk J, Lozano R, Bobadilla JL. The epidemiological transition in Latin America. Notas Poblacion. 1994;22(60):79–84. https://doi.org/10.26633/rpsp.2019.127.

21. Neri R. Panorama of chronic disorders in the República Oriental del Uruguay. Salud Publica Mex. 1967;9(5):687–707.

22. Omran AR. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem Fund Q. 1971;49(4):599–38.

23. Frenk J, Lozano R, Bobadilla JL. The epidemiological transition in Latin America. Notas Poblacion. 1994;22(60):79–84. https://doi.org/10.26633/rpsp.2019.127.

24. Barceló A, Rajpathak S. Incidence and prevalence of diabetes mellitus in the Americas. Rev Panam Salud Publica. 2001;10(5):547–58. https://doi.org/10.26633/rpsp.2019.127.

25. American Diabetes Association. 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S115-S51. https://doi.org/10.26633/rpsp.2020.11.
34. Meaney E, Lara-Esqueda A, Ceballos-Reyes GM, Asbun J, Vela A, Martinez-Marroquin Y, et al. Cardiovascular risk factors in the urban Mexican population: the FRIMEX study. Public Health. 2007;121(5):378–84. https://doi.org/10.1016/j.puhe.2006.11.008.

35. Stoddard P, Handley MA, Vargas Bustamante A, Schilling D. The influence of indigenous status and community indigenous composition on obesity and diabetes among Mexican adults. Soc Sci Med. 2011;73(11):1635–43. https://doi.org/10.1016/j.socscimed.2011.09.006.

36. Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP). Encuesta Nacional de Salud y Nutrición - 2006 (ENSANUT 2006) (https://ensanut.insp.mx/encuestas/ensanut2006/index.php). In: Instituto Nacional de Salud Publica SdSm, editor. Mexico2006. [Last Accessed on August 6, 2020.]

37. Kumar A, Wong R, Ottenbacher KJ, Abarca-Gomez L, et al. Prevalence of diabetes and undiagnosed diabetes, and diabetes among Mexican adults: findings from the Mexican Health and Aging Study. Ann Epidemiol. 2016;26(3):163–70. https://doi.org/10.1016/j.amepi.2015.12.006.

38. Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP). Encuesta Nacional de Salud y Nutrición - 2012 (ENSANUT 2012) (https://ensanut.insp.mx/encuestas/ensanut2012/index.php). In: Instituto Nacional de Salud Publica SdSm, editor. Mexico2012. [Last Accessed on August 6, 2020.]

39. Bello-Chavolla OY, Rojas-Martínez R, Aguilar-Salinas CA, Hernández-Avila M. Epidemiology of diabetes mellitus in Mexico. Nutr Rev. 2017;75(suppl 1):4–12. https://doi.org/10.1093/nutriv/nwu030.

40. Secretaría de Salud de México, Instituto Nacional de Salud Pública (INSP). Encuesta Nacional de Salud y Nutricion de Medio Camino 2016 (ENSANUT 2016) (https://ensanut.insp.mx/encuestas/ensanut2016/doctos/informes/ENSANUT2016ResultadosNacionales.pdf) (https://www.gob.mx/salud). Mexico, D. F., Mexico2016. [Last Accessed on August 6, 2020.]

41. Basto-Abreu A, Barrientos-Gutiérrez T, Rojas-Martínez R, Aguilar-Salinas CA, López-Oñedro N, De la Cruz-Góngora V, et al. Prevalence of diabetes and poor glycemic control in Mexico: results from Ensanut 2016. Salud Publica Mex. 2020;62(1):50–9. https://doi.org/10.21149/10752.

42. Brenes-Camacho G, Rosero-Bixby L. Diabetes mellitus en adultos mayores costarricenses. Poblacion y Salud en Mesoamerica - Revista Electronica (https://revistas.ucr.ac.cr/index.php/psm). 2007;5(1). Article number 2, jul-dic 2007:12. [Last Accessed on October 5, 2020.]

43. Brenes-Camacho G, Rosero-Bixby L. Metabolic control in a nationally representative diabetic elderly sample in Costa Rica: patients at community health centers vs patients at other health care settings. BMC Int Health Hum Rights. 2008;8:5. https://doi.org/10.1186/1472-698X-8-5.

44. Wong-McClure R, Gregg EW, Barcelo A, Sanabria-Lopez L, Lee K, Abarca-Gomez L, et al. Prevalence of diabetes and impaired fasting glucose in Costa Rica: Costa Rican National Cardiovascular Risk Factors Survey. 2010. J Diabetes. 2016;8(5):686–92. https://doi.org/10.1111/j.1753-0407.12348.

45. Orantes CM, Herrera R, Almaguer M, Brizuela EG, Núñez L, Alvarado NP, et al. Epidemiology of chronic kidney disease in adults of Salvadoran agricultural communities. MEDICC Rev. 2014;16(2):23–30.

46. Orantes Navarro CM, Herrera Valdés R, López MA, Calero DJ, Fuentes de Morales J, Alvarado Ascencio NP et al. Epidemiological characteristics of chronic kidney disease of non-traditional causes in women of agricultural communities of El Salvador. Clin Nephrol. 2015;83(7 Suppl 1):24–31. https://doi.org/10.5414/cnp83s024.

47. Ministerio de Salud de El Salvador. Encuesta Nacional Sobre Enfermedades Crónicas No Transmisibles en la Población Adulta de El Salvador (ENECA-ELS 2015) (https://www.salud.gob.mx/archivos/comunicaciones/archivos_comunicados2017/pdf/presentaciones_evento20032017/01-ENECA-ELS-2015.pdf) (https://www.salud.gob.mx/). San Salvador, El Salvador2015. [Last Accessed on August 6, 2020.]

48. Chen D, Rivera-Andrade A, González J, Burt D, Mendoza-Montano C, Patrje J, et al. Prevalence of risk factors for noncommunicable diseases in an indigenous community in Santiago Atitlán, Guatemala. Rev Panam Salud Publica. 2017;41:e7. https://doi.org/10.26633/rpsp.2017.7.

49. Ministerio de Salud Pública y Asistencia Social de Guatemala. Encuesta Nacional de Prevalencia de Enfermedades No Transmisibles y sus Factores de Riesgo en Población de 18 años o más. Dominio I: Urbano Metropolitana, Departamento de Guatemala, diciembre 2015 (http://epidemiologia.mspas.gob.gt/files/Publicaciones%202019/ENT/STEP%20ENT%20MSPAS%202018.pdf) (https://www.mspas.gob.gt/). Guatemala, Guatemala2018. [Last Accessed on August 6, 2020.]

50. Bream KDW, Breyre A, García K, Calgua E, Chuc JM, Taylor L. Diabetes prevalence in rural Indigenous Guatemala: a geographic-randomized cross-sectional analysis of risk. PLoS One. 2018;13(8):e0200434. https://doi.org/10.1371/journal.pone.0200434.

51. Montalvan Sanchez EE, Urrutia SA, Rodriguez AA, Duarte G, Murillo A, Rivera R, et al. Cardiovascular risk assessment in the resource limited setting of Western Honduras: an epidemiological perspective. Int J Cardiol Heart Vasc. 2020;27:100476. https://doi.org/10.1016/j.ijchv.2020.100476.

52. Laux TS, Bert PJ, González M, Unruh M, Aragon A, Lacourt CT. Prevalence of hypertension and associated risk factors in six Nicaraguan communities. Ethn Dis. 2012;22(2):129–35.

53. Lebov JF, Valladares E, Peña R, Peña EM, Sanoff SL, Cisneros EC, et al. A population-based study of prevalence and risk factors of chronic kidney disease in León, Nicaragua. Can J Kidney Health Dis. 2015;2:6. https://doi.org/10.1181/14697890-00401-1.

54. Fergusson R, Leatherman S, Fiore M, Minnings K, Mosco M, Kaufman J, et al. Prevalence and risk factors for CKD in the general population of southwestern Nicaragua. J Am Soc Nephrol. 2020;31(7):1585–93. https://doi.org/10.1681/asn.2019050521.

55. Mc Donald PA, Montenegro GJ, Cruz GC, Moreno de Rivera AL, Cumbera OA, Prevalence, sociodemographic distribution, treatment and control of diabetes mellitus in Panama. Diabetol Metab Syndr. 2013;5(1):69. https://doi.org/10.1186/1758-5996-5-69.

56. Da Silva Coqueiro R, Rodrigues Barbosa A, Ferretti Borgatto A. Nutritional status, health conditions and socio-demographic factors in the elderly of Havana, Cuba: data from SABE survey. J Nutr Health Aging. 2010;14(10):803–8. https://doi.org/10.1007/s12603-010-0126-6.

57. Llibre Jd I, Valhuerti A, Calvo M, Garcia RM, Guerra M, Lauerque T, et al. Dementia and other chronic diseases in older adults in Havana and Matanzas: the 10/66 study in Cuba. MEDICC Rev. 2011;13(4):30–7.

58. Herrera-Valdés R, Almaguer M, Chipi J, Toirac X, Martínez O, Castellanos O, et al. Prevalence of obesity and its association with chronic kidney disease, hypertension and diabetes mellitus. Isle of Youth Study (ISYS), Cuba. MEDICC Rev. 2008;10(2):14–20.

59. Armas NB, Hernández Yde L, Dueñas AF, García Rde L, Castillo A. Cardiovascular risk among older women in a Havana Health Area. MEDICC Rev. 2008;10(2):21–6.

60. Bonet-Gorbea M, Varona P, Chang La Rosa M, García Rocha RG, Suárez-Medina R, Montes de Oca M et al. III Encuesta Nacional de factores de riesgo y actividades preventivas de enfermedades no transmisibles. Cuba 2010–2011 (https://www.
73. Barceló A, Daroca MC, Ribera R, Duarte E, Zapata A, Vohra M. Diabetes in Bolivia. Rev Panam Salud Publica. 2001;10(5):318–23. https://doi.org/10.1590/s1020-49892001001100004.

74. Kaplan H, Thompson RC, Trumble BC, Wann LS, Allam AH, Beheim B, et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet. 2017;389(10080):1730–9. https://doi.org/10.1016/s0140-6736(17)30752-3.

75. Mendes Tde A, Goldbaum M, Segri NJ, Barros MB, Cesar CL, Carandina L, et al. Diabetes mellitus: factors associated with prevalence in the elderly, control measures and practices, and health services utilization in São Paulo, Brazil. Cad Saude Publica. 2011;27(6):1233–43. https://doi.org/10.1590/s0102-311x2011000600020.

76. Schmidt MI, Hofmann JP, de Fátima Sander Diniz M, Lotufo PA, Gries PF, Bensenor IM, et al. High prevalence of diabetes and intermediate hyperglycemia - The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Diabet Metab Syndr. 2014;6:123. https://doi.org/10.1016/j.dsx.2014.02.021.

77. Dal Fabbro AL, Franco LJ, da Silva AS, Sartorelli DS, Soares LP, Franco LF, et al. High prevalence of type 2 diabetes mellitus in Xavante Indians from Mato Grosso, Brazil. Etnicidad 2014;24(1):35–40.

78. Ministério do Planejamento Orçamento e Gestão. - IBGE. Pesquisa Nacional de Saúde 2013. Percepção do estado de saúde, estilos de vida e doenças crônicas. (https://www.saude.gov.br/vigilancia-em-saude/vigilancia-de-doencas-cronicas-nao-transmissivas-dcnt/pesquisa-nacional-de-saude-pns). Rio de Janeiro, Brazil: Instituto Brasileiro de Geografia e Estatística - IBGE; 2014. [Last Accessed on August 6, 2020].

79. de Oliveira AP, Maia EG, Silva FM, Martins APB, Claro RM. Needed Improvements in Diabetes Prevention and Management in Brazil. Prev Chron Dis. 2018;15:E153. https://doi.org/10.5888/pchd15.180269.

80. Ministério da Saúde do Brasil. Vigilância de Doentes Crônicas por Inquérito Telefônico (VIGITEL BRASIL 2018) (https://portalarquivos2.saude.gov.br/images/pdf/2019/julho/25/vigitel-brasil-2018.pdf) (http://bsvms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2018_vigilancia_fatores_risco.pdf). Brasilia, Brazil: 2019. [Last Accessed on August 6, 2020].

81. Ministério da Saúde do Brasil. Vigilância de Doentes Crônicas por Inquérito Telefônico (VIGITEL BRASIL 2019) (https://portalarquivos2.saude.gov.br/images/pdf/2020/April/27/vigitel-brasil-2019-vigilancia-fatores-risco.pdf) (http://bsvms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2019_vigilancia_fatores_risco.pdf). Brasilia, Brazil: 2019. [Last Accessed on August 6, 2020].

82. Santos JL, Pérez-Brafo V, Carrasco E, Calvillán M, Albala C. Low prevalence of type 2 diabetes despite a high average body mass index in the Aymara natives from Chile. Nutrition. 2001;17(4):305–9. https://doi.org/10.1016/s0899-9007(00)00551-7.

83. Carrasco EP, Pérez FB, Angel BB, Albala CB, Santos JL, Larenas PG, et al. Prevalence of type 2 diabetes and obesity in two Chilean aboriginal populations living in urban zones. Rev Med Chil. 2004;132(10):1189–97. https://doi.org/10.4067/s0034-98872004001000005.

84. Caevas A, Molina A, Rigotti A, Miquel JF, Marshall G, Reyes S, et al. Trends in obesity and diabetes prevalence in a Chilean urban population: 1993–2011. Metab Syndr Relat Disord. 2008;6(3):219–22. https://doi.org/10.1089/met.2008.0018.

85. Ministério de Salud de Chile. Encuesta Nacional de Salud, ENS Chile 2009–2010 (https://cursoemergencia.files.wordpress.com/2013/04/encuesta-nacional-de-salud-2009-2010.pdf).
112. Salas A, Acosta D, Ferri CP, Guerra M, Huang Y, Jacob KS, et al. The Prevalence, correlates, detection and control of diabetes among older people in low and middle income countries. a 10/66 Dementia Research Group Population-Based survey. PLoS One. 2016;11(12):e0149616. https://doi.org/10.1371/journal.pone.0149616.

113. Rubinstein AL, Irazola VE, Calandrelli M, Elorriaga N, Gutierrez L, Lanas F, et al. Multiple cardiometabolic risk factors in the Southern Cone of Latin America: a population-based study in Argentina, Chile, and Uruguay. Int J Cardiol. 2015;183:82–8. https://doi.org/10.1016/j.ijcard.2015.01.062.

114. Macinko J, Andrade FCD, Nunes BP, Guanais FC. Primary care and multimorbidity in six Latin American and Caribbean countries. Rev Panam Salud Publica. 2019;43:e8. https://doi.org/10.2337/dc19-0502.

115. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S14–S31. https://doi.org/10.23233/dc20-0502.

116. Camejo M, García A, Rodríguez E, Carrizales M. E., Chique, J. Vision Epidemiologica de la Diabetes Mellitus en Venezuela. Registro Epidemiologico y Propuesta de Registro. Programas de Deteccion Precoz. Rev Venez Endocrinol Metabol. 2012;10:2–6.

117. Rubinstein A, Gutierrez L, Beratarrechea A, Irazola VE. Increased prevalence of diabetes in Argentina is due to easier health care access rather than to an actual increase in prevalence. PLoS One. 2014;9(4):e92245. https://doi.org/10.1371/journal.pone.0092245.

118. Coutinho WF, Silva Júnior WS. Diabetes Care in Brazil. Ann Glob Health. 2015;81(6):754–64. https://doi.org/10.1016/j.aogh.2015.12.014.

119. Nieto-Martínez R, González-Rivas JP, Lima-Martínez M, Stepken V, Ríosquez A, Mechinick JI. Diabetes Care in Venezuela. Ann Glob Health. 2015;81(6):776–91. https://doi.org/10.1016/j.aogh.2015.11.002.

120. Mc Donald Posso AJ, Bradshaw Meza RA, Mendoza Morales EA, Jaen Y, Cumbera Ortega A, Mendoza Posada EJ. Diabetes in Panama: epidemiology, risk factors, and clinical management. Ann Glob Health. 2015;81(6):754–64. https://doi.org/10.1016/j.aogh.2015.12.014.

121. Villena JE. Diabetes Mellitus in Peru. Ann Glob Health. 2015;81(6):765–75. https://doi.org/10.1016/j.aogh.2015.12.018.

122. Telo GH, Cureau FV, de Souza MS, Andrade TS, Copês F, Schaan BD. Prevalence of diabetes in Brazil over time: a systematic review with meta-analysis. Diabetol Metab Syndr. 2016;8(1):65. https://doi.org/10.1186/s13098-016-0181-1.

123. Carrillo-Larco RM, Bernabé-Ortiz A. Type 2 diabetes mellitus in peru: a systematic review of prevalence and incidence in the general population. Rev Peru Med Exp Salud Publica. 2019;36(1):26–36. https://doi.org/10.17843/rpmesp.2019.361.4027.

124. Barceló A. Diabetes in the Americas. Epidemiol Bull. 2001;22(2):1–3.

125. Bello-Chavolla OY, Aguilar-Salinas CA. Diabetes in Latin America. In: Dagogo-Jack S, editor. Diabetes mellitus in developing countries and underserved communities. Cham: Springer International Publishing; 2017. p. 101–26.

126. Burroughs Pena MS, Bernabé-Ortiz A, Carrillo-Larco RM, Sánchez JF, Quispe R, Pillay TD, et al. Migration, urbanisation and mortality: 5-year longitudinal analysis of the PERU MIGRANT study. J Epidemiol Community Health. 2015;69(7):715–8. https://doi.org/10.1136/jech-2015-205657.

127. Ruiz-Alejos A, Carrillo-Larco RM, Miranda JJ, Anderson CAM, Gilman RH, Smeeth L, et al. Addressing the impact of urban exposure on the incidence of type 2 diabetes mellitus: The PERU MIGRANT Study. Sci Rep. 2018;8(1):5512. https://doi.org/10.1038/s41598-018-23812-6.

128. Carrera Boada CA, Martínez-Moreno JM. Pathophysiology of diabetes mellitus type 2: beyond the duo "insulin resistance-secretion deficit". Nutr Hosp. 2013;28(Suppl 2):78–87. https://doi.org/10.3305/nh.2013.28.sup2.6717.

129. Mendenhall E, Kohrt BA, Norris SA, Ndeite D, Prabhakaran D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet. 2017;389(10072):951–63. https://doi.org/10.1016/s0140-6736(17)30402-6.

130. Albala C, Vio F, Kain J, Uaury Y. Nutrition transition in Latin America: the case of Chile. Nutr Rev. 2001;59(6):170–6. https://doi.org/10.1111/j.1753-4878.2001.tb00700.x.

131. Carrillo-Larco RM, Pearson-Stuttard J, Bernabe-Ortiz A, Gregg EW. The Andean Latin-American burden of diabetes attributable to high body mass index: a comparative risk assessment. Diabetes Res Clin Pract. 2020;160:107978. https://doi.org/10.1016/j.diabres.2019.107978.

132. Abu-Bakare A, Taylor R, Gill GV, Alberti KG. Tropical or malnutrition-related diabetes: a real syndrome? Lancet. 1986;1(8490):1135–8. https://doi.org/10.1016/s0140-6736(86)91846-5.

133. Morrison EY, Ragoobirsingh D, Peter SA. The unitarian hypothesis for the aetiology of diabetes mellitus. Med Hypotheses. 2006;67(5):1115–20. https://doi.org/10.1016/j.mehy.2006.04.061.

134. Llanos G, Libman I. Diabetes in the Americas. Bull Pan Am Health Organ. 1994;28(4):285–301.

135. Wissow LS. Diabetes, poverty, and Latin America. Patient Educ Couns. 2006;61(2):169–70. https://doi.org/10.1016/j.pec.2006.03.007.

136. McCurley JL, Mills PJ, Roesch SC, Carmethon M, Giacinto RE, Issai CR, et al. Chronic stress, inflammation, and glucose regulation in U.S. Hispanics from the HCHS/SOL Sociocultural Ancillary Study. Psychophysiology. 2015;52(8):1071–9. https://doi.org/10.1111/psyp.12430.

137. Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis. 2011;5(2):119–31. https://doi.org/10.1177/1759344711403189.

138. Frenk J, Frejka T, Bobadilla JL, Stern C, Lozano R, Sepúlveda J, et al. The epidemiologic transition in Latin America. Bol Oficina Sanit Panam. 1991;111(6):485–96.

139. Mendoza W, Miranda JJ. Global shifts in cardiovascular disease, the epidemiologic transition, and other contributing factors: toward a new practice of global health cardiology. Cardiol Clin. 2017;35(1):1–12. https://doi.org/10.1016/j.cll.2016.08.004.

140. Meslé F, Vallin J. From epidemiological transition to health transition. Med Trop (Mars). 2007;67(6):545–51.

141. Barreto SM, Miranda JJ, Figueroa JP, Schmidt MI, Munoz S, Kuri-Morales PP, et al. Epidemiology in Latin America and the Caribbean: current situation and challenges. Int J Epidemiol. 2012;41(2):557–71. https://doi.org/10.1093/ije/dys017.

142. Chomsky-Higgins K, Miclau TA, Mackechnie MC, Aguilar D, Avila JR, Dos Reis FB, et al. Barriers to Clinical Research in Latin America. Front Public Health. 2017;5:301. https://doi.org/10.3389/fpubh.2017.00057.

143. Oswalbi M, Miranda JJ, Yaria J, Orbiaguele B. Controlling cardiovascular diseases in low and middle income countries by placing proof in pragmatism. BMJ Glob Health. 2016;1(3). https://doi.org/10.1136/bmjgh-2016-000105.

144. Lazo-Porras M, Perez-Leon S, Cardenas MK, Pesantes MA, Miranda JJ, Suggs LS, et al. Lessons learned about co-creation: developing a complex intervention in rural Peru. Glob Health Action. 2020;13(1):1754016. https://doi.org/10.1080/16549716.2020.1754016.
145. Afshin A, Micha R, Webb M, Capewell S, Whitsel L, Rubinstein A, et al. Effectiveness of dietary policies to reduce noncommunicable diseases. In: Prabhakaran D, Anand S, Gaziano TA, Mbanya JC, Wu Y, Nugent R, editors. Cardiovascular, Respiratory, and Related Disorders. Washington: The International Bank for Reconstruction and Development / The World Bank © 2017 International Bank for Reconstruction and Development / The World Bank; 2017.

146. Franco M, Orduñez P, Caballero B, Tapia Granados JA, Lazo M, Bernal JL, et al. Impact of energy intake, physical activity, and population-wide weight loss on cardiovascular disease and diabetes mortality in Cuba, 1980–2005. Am J Epidemiol. 2007;166(12):1374–80. https://doi.org/10.1093/aje/kwm226.

147. Kaselitz E, Rana GK, Heisler M. Public Policies and Interventions to Prevent and Control CVD in Low- and Middle-Income Countries: A Report from CESCAS in Argentina. Glob Heart. 2016;11. https://doi.org/10.1016/j.ghart.2016.08.007.

148. Posner BM, Quatromoni PA, Franz M. Nutrition policies and interventions for chronic disease risk reduction in international settings: the INTERHEALTH nutrition initiative. Nutr Rev. 1994;52(5):179–87. https://doi.org/10.1111/j.1753-4887.1994. tb01417.x.

149. Rubinstein AL, Irazola VE, Poggiro R, Gulayin P, Nejamis A, Beratureche A. Challenges and opportunities for implementation of interventions to prevent and control CVD in low-resource settings: a report from CESCAS in Argentina. Glob Heart. 2015;10(1):21–9. https://doi.org/10.1016/j.ghart.2014.12.011.

150. Siqueira-Catania A, Cezaletto A, de Barros CR, Salvador EP, Dos Santos TC, Ferreira SR. Cardiometabolic risk reduction through lifestyle intervention programs in the Brazilian public health system. Diabetes Metab Syndr. 2013;5:21. https://doi.org/10.1016/j.1758-5996-5-21.

151. Solomons NW. Programme and policy issues related to promoting positive early nutritional influences to prevent obesity, diabetes and cardiovascular disease in later life: a developing countries view. Matern Child Nutr. 2005;1(3):204–15. https://doi.org/10.1111/j.1753-4887.2005.tb01418.x.

152. Fishberg M, Kovalskys I, Fisberg M, Salas GG, Pareja Torres RG, Yépez Garcia MC, Cortés Sanabria LY, et al. Developing a cooperative multicenter study in Latin America: lessons learned from the Latin American Study of Nutrition and Health Project. Rev Panam Salud Publica. 2017;41:e111. https://doi.org/10.26633/rsp.2017.111.

153. Wermack AO, Baldew SS, Miranda JJ, Diaz Arnesto O, Stubbs B, Silva DR. Physical activity and sedentary behavior patterns and sediometric correlates in 116,982 adults from six South American countries: the South American physical activity and sediometric behavior network (SAPASEN). Int J Behav Nutr Phys Act. 2019;16(1):68. https://doi.org/10.1186/s12966-019-0839-9.

154. Diez Roux AV, Slesinski SC, Alazraki M, Caiaffa WT, Frenz P, Jordán Fuchs R, et al. A novel international partnership for action: positive early nutritional influences to prevent obesity, diabetes, and cardiovascular disease. Paper presented at the Pan American Health Organization Global Conference, San José, Costa Rica, 2004. (https://www.paho.org/hq/index.php?option=com_docman&view=list&format=html&layout=default&slug=reports-4402&Itemid=270&lang=fr).

155. Fayte-Rondon A, Lazo-Porras M, Moscoso-Porras M, Moreano-Saenz M, Miranda JJ. Inadequate glycaemic control in LMIC: health system failures in Peru. Br J Gen Pract. 2016;66(645):197. https://doi.org/10.3399/bjgp16X684541.

156. Beran D, Miranda JJ, Cardenas MK, Bigdeli M. Health systems research for policy change: lessons from the implementation of rapid assessment protocols for diabetes in low- and middle-income settings. Health Res Policy Syst. 2015;13:41. https://doi.org/10.1186/s12961-015-0029-4.

157. Cardenas MK, Miranda JJ, Beran D. Delivery of Type 2 diabetes care in low- and middle-income countries: lessons from Lima, Peru. Diabet Med. 2016;33(6):752–60. https://doi.org/10.1111/dme.13099.
(CAMDI): Encuesta de Diabetes, Hipertension y Factores de Riesgo de Enfermedades Cronicas, Villa Nueva, Guatemala, 2006 (https://www.paho.org/hq/dmdocuments/2012/PAHO-CAMDI-Guatemala-2009.pdf) (https://www.paho.org/hq/index.php?option=com_docman&view=list&flag=html&layout=default&slug=reports-4402&Itemid=270&lang=es). Washington, D.C.: Organizacion Panamericana de la Salud; 2007. [Last Accessed on August 6, 2020].

170. Amador Velazquez JJ, Pastora Arogegui M, Barcelo A, Aldighieri S, Gregg EW, Pena R et al. Iniciativa Centroamericana de Diabetes (CAMDI). Encuesta de Diabetes, Hipertension y Factores de Riesgo de Enfermedades Cronicas. Managua, Nicaragua, 2010. (https://www.paho.org/hq/index.php?option=com_content&view=article&id=3070:2010-survey-on-diabetes-hypertension-chronic-disease-risk-factors-central-america&Itemid=135&lang=en#surveys) (https://www.paho.org/hq/index.php?option=com_content&view=article&id=3040:2010-encuesta-diabetes-factores-managua-nicaragua&Itemid=1353&lang=en). Washington, D.C.: Pan American Health Organization; 2010. [Last Accessed on August 6, 2020].

171. Dethlefs HJ, Walker EA, Schechter CB, Dowd R, Filippi L, Garcia JF, et al. Evaluation of a program to improve intermediate diabetes outcomes in rural communities in the Dominican Republic. Diabetes Res Clin Pract. 2019;148:212–21. https://doi.org/10.1016/j.diabres.2019.01.010.

172. Pérez CM, Febo-Vázquez I, Guzmán M, Ortiz AP, Suárez E. Are adults diagnosed with diabetes achieving the American Diabetes Association clinical practice recommendations? P R Health Sci J. 2012;31(1):18–23.

173. Rodríguez-Vigil E, Rodríguez-Chacón M, Trabanco C, Irizarry-Ramos J. Achievement of national clinical practice recommendations among those in the Puerto Rican population with diabetes mellitus. P R Health Sci J. 2014;33(4):157–62.

174. Gagliardino JJ, Elgart J, Forti L, Guaita MS, Chantelot JM. Treat-to-target HbA1c and lipid profile to prolong β-cell mass/function and optimize treatment goal attainment. Diabetes Metab Res Rev. 2019;35(6):e3166. https://doi.org/10.1002/dmrr.3166.

175. Santero M, Morelli D, Nejams M, Gibbons L, Irazola V, Beratarrechea A. Using mHealth strategies in a Diabetes Management Program to improve the quality of care in Argentina: Study design and baseline data. Prim Care Diabetes. 2018;12(6):510–6. https://doi.org/10.1016/j.pcd.2018.07.014.

176. Gomes MB, Gianella D, Faria M, Tambascia M, Fonseca RM, Rêa R, et al. Prevalence of Type 2 diabetic patients within the targets of care guidelines in daily clinical practice: a multi-center study in Brazil. Rev Diabet Stud. 2006;3(2):82–7. https://doi.org/10.10900/revds.2006.3.82.

177. Mendes AB, Fittipaldi JA, Neves RC, Chacra AR, Moreira ED Jr. Prevalence and correlates of inadequate glycemic control: results from a nationwide survey in 6,671 adults with diabetes in Brazil. Acta Diabetol. 2010;47(2):137–45. https://doi.org/10.1007/s00592-009-0138-z.

178. Moraes HAB, Mengue SS, Molina M, Cade NV. Factors associated with glycemic control in a sample of individuals with Diabetes Mellitus taken from the Longitudinal Study of Adult Health, Brazil, 2008–2010. Epidemiol Serv Sao Paulo, 2020;29(3): e2018500. https://doi.org/10.5123/e1s479-49742020000300017.

179. Viana LV, Letiño CB, Kramer CK, Zucatti AT, Jezini DL, Felicio J, et al. Poor glycemic control in Brazilian patients with type 2 diabetes attending the public healthcare system: a cross-sectional study. BMJ Open. 2013;3(9):e003336. https://doi.org/10.1136/bmjopen-2013-003336.

180. Baptista DR, Thieme RD, Reis WC, Pontarolo R, Correr CJ. Proportion of Brazilian diabetes patients that achieve treatment goals: implications for better quality of care. Diabetol Metab Synthr. 2015;7:113. https://doi.org/10.1186/s13098-015-0107-3.

181. Alba LH, Bastidas C, Vivas JM, Gil F. Prevalence of glycemic control and associated factors in type 2 diabetes mellitus patients at the Hospital Universitario de San Ignacio, Bogotá-Colombia. Gac Med Mex. 2009;145(6):469–74.

182. Machado-Alba JE, Moncada-Escobar JC, Gaviria H. Quality and effectiveness of diabetes care for a group of patients in Colombia. Rev Panam Salud Publica. 2009;26(6):529–35. https://doi.org/10.1590/s1020-49822009001200008.

183. Fort Z. Factores de riesgo cardiovascular en 74.420 solicitan tes de carne de salvo. Rev Urg Cardiol. 2012;27:150–61.

184. Gagliardino JJ, de la Hera M, Siri F. Evaluation of the quality of care for diabetic patients in Latin America. Rev Panam Salud Publica. 2001;10(5):309–17. https://doi.org/10.1590/s1020-498200101000003.

185. Silva H, Hernandez-Hernandez R, Vinueza R, Velasco M, Boissonnet CP, Escobedo J, et al. Cardiovascular risk awareness, treatment, and control in urban Latin America. Am J Ther. 2010;17(2):159–66. https://doi.org/10.1097/MJT.0b013e3181a84ec5.

186. Commendatore V, Dieuzende G, Faingold C, Fuente G, Luján D, Aschner P, et al. Registry of people with diabetes in three Latin American countries: a suitable approach to evaluate the quality of health care provided to people with type 2 diabetes. Int J Clin Pract. 2013;67(12):1261–6. https://doi.org/10.1111/jcpc.12208.

187. Lopez Stewart G, Tambascia M, Rosas Guzmán J, Etcheogany F, Ortega Carrión J, Artemenko S. Control of type 2 diabetes mellitus among general practitioners in private practice in nine countries of Latin America. Rev Panam Salud Publica. 2007;22(1):12–20. https://doi.org/10.1590/s1020-49822007000600002.

188. F GD, da Silva Moreira S, Almeida M, de Souza Teles CA, Andrade CS, Reingold AL, et al. Sex differences and correlates of poor glycaemic control in type 2 diabetes: a cross-sectional study in Brazil and Venezuela. BMJ Open. 2019;9(3):e023401. https://doi.org/10.1136/bmjopen-2018-023401.

189. Irazola V, Robinstein A, Bazzano L, Calandrelli M, Chung-Shuan C, Elorriaga N, et al. Prevalence, awareness, treatment and control of diabetes and impaired fasting glucose in the Southern Cone of Latin America. PLoS One. 2017;12(9): e0183953. https://doi.org/10.1371/journal.pone.0183953.

190. Arredondo A, Azar A, Recamán AL. Diabetes, a global public health challenge with a high epidemiological and economic burden on health systems in Latin America. Glob Public Health. 2018;13(7):780–7. https://doi.org/10.1080/17441692.2017.1316414.

191. Gagliardino JJ, Olivera EM, Etcheogany GS, González C, Guidi ML. Evaluation and cost of the health care process of diabetic patients. Medicina (B Aires). 2000;60(6):880–8.

192. Olivera AR, Roesler V, Iochpe C, Schmidt MI, Vigo Á, Barreto SM, et al. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brazil: accuracy study. Sao Paulo Med J. 2017;135(3):234–46. https://doi.org/10.1590/1516-3180.2016.0309010217.

193. Arellano-Campos O, Gómez-Velasco DV, Bello-Chavolla OY, Beratarrechea A. Using mHealth strategies in a Diabetes Management Program to improve the quality of care in Argentina: Study design and baseline data. Prim Care Diabetes. 2018;12(6):510–6. https://doi.org/10.1016/j.pcd.2018.07.014.

194. Milton EC, Herman WH, Aiello AE, Danielson KR, Mendoza-Jiménez RL, et al. Validation of a type 2 diabetes screening tool in rural Honduras. Diabetes Care. 2010;33(2):275–7. https://doi.org/10.2337/dc09-1021.

195. Bernabe-Ortiz A, Perel P, Miranda JJ, Smeeth L. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for
undiagnosed T2DM in Peruvian population. Prim Care Diabetes. 2018;12(6):517–25. https://doi.org/10.1016/j.pcd.2018.07.015.

196. Muñoz-González MC, Lima-Martínez MM, Nava A, Trierguda G, Paoli M, Cabrera-Regó JO, et al. FINDRISC modified for Latin America as a screening tool for persons with impaired glucose metabolism in Ciudad Bolívar. Venezuela Med Princ Pract. 2019;28(4):324–32. https://doi.org/10.1016/j.vmp.2019.04.006.

197. Nieto-Martínez R, González-Rivas JP, Ugel E, Marulanda MI, Durán M, Méndez-Padrón A, Gómez-Díaz RA, Valdez-González LA, Méndez-Padrón A, Gómez-Díaz RA, et al. Comparison of three methods for diabetes screening in a rural clinic in Honduras. Rev Panam Salud Publica. 2010;28(1):87–93. https://doi.org/10.1080/1020-4989201000176008.

198. Carrillo-Larco RM, Aparcana-Granda DJ, Mejía JR, Beran D, Chappuis F, Damasceno A, Jha N, Pesantes MA, Singh WH. Comparison of three methods for diabetes screening in a primary health care in Argentina: qualitative research based on a behavioral economics approach. Transl Behav Med. 2019. https://doi.org/10.1093/tbm/biz040.

199. Valdez-González LA, Méndez-Padrón A, Gómez-Díaz RA, Valdárraras-Salgado A, Sánchez-Becerra MC, Mondragón-González R, et al. Agreement between the ‘point of care’ tests for microalbuminuria and HbA1c performed in Mexican family medicine units and the results of standard laboratory tests. Scand J Clin Lab Invest. 2018;78(1–2):87–93. https://doi.org/10.1080/00365515.2017.1416604.

200. Piette JD, Milton EC, Aiello AE, Mendoza-Avalera MO, Herman WH. Comparison of three methods for diabetes screening in a rural clinic in Honduras. Rev Panam Salud Publica. 2010;28(1):49–57. https://doi.org/10.1595/2010.099201000176008.

201. Cortés-Sanabria L, Martínez-Ramírez HR, Hernández JL, Rojas-Campos E, Canales-Muñoz JL, Cueto-Manzano AM, Utility of the Dipstick Micraltest II in the screening of microalbuminuria of diabetes mellitus type 2 and essential hypertension. Rev Investig Clin. 2006;58(3):190–7.

202. Beran D, Chappuis F, Damasceno A, Jha N, Pesantes MA, Singh WH, et al. High-quality health systems: time for a revolution in diabetes mellitus in adults. Colomb Med (Cali). 2016;47(2):109–31.

203. Saxton AT, Miranda JJ, Ortiz EJ, Pan W. Assessment of two diabetes point-of-care analyzers measuring hemoglobin Alc in the Peruvian Amazon. Ann Glob Health. 2018;84(4):618–24. https://doi.org/10.9204/aogh.2368.

204. Bethell DE, Tancredi DJ, Salazar LM, Hamilton SR, Zun E, Baddour LM, et al. ‘Point of care’ testing for microalbuminuria and HbA1c performed in Mexican family medicine units and the results of standard laboratory tests. Scand J Clin Lab Invest. 2018;78(1–2):87–93. https://doi.org/10.1111/tb.13951.

205. Piepte JD, Milton EC, Aiello AE, Mendoza-Avalera MO, Herman WH, et al. Comparison of three methods for diabetes screening in a rural clinic in Honduras. Rev Panam Salud Publica. 2010;28(1):49–57. https://doi.org/10.1595/2010.099201000176008.

206. Muñoz-González MC, Lima-Martínez MM, Nava A, Trierguda G, Paoli M, Cabrera-Regó JO, et al. FINDRISC modified for Latin America as a screening tool for persons with impaired glucose metabolism in Ciudad Bolívar. Venezuela Med Princ Pract. 2019;28(4):324–32. https://doi.org/10.1016/j.vmp.2019.04.006.

207. Nieto-Martínez R, González-Rivas JP, Ugel E, Marulanda MI, Durán M, Méndez-Padrón A, Gómez-Díaz RA, Valdez-González LA, Méndez-Padrón A, Gómez-Díaz RA, et al. Comparison of three methods for diabetes screening in a rural clinic in Honduras. Rev Panam Salud Publica. 2010;28(1):87–93. https://doi.org/10.1080/1020-4989201000176008.

208. Silva AD, Rosa T, Baitse LA, Kalckmann S, Louvissen MCP, Teixeira D, et al. Racial inequities and aging: analysis of the 2010 cohort of the Health, Welfare and Aging Study (SABE). Rev Bras Epidemiol. 2019;21Suppl 02(Suppl 02):e180004. https://doi.org/10.1590/1980-549720180004.supl2.
251. Cani CG, Lopes Lda S, Queiroz M, Nery M. Improvement in medication adherence and self-management of diabetes with a clinical pharmacy program: a randomized controlled trial in patients with type 2 diabetes undergoing insulin therapy at a teaching hospital. Clinics (Sao Paulo). 2015;70(2):102–6. https://doi.org/10.6061/clinics/2015(02)06.

252. Gagliardino JJ, Lapertosa S, Pfirter G, Villagra M, Caporale JE, Gonzalez CD, et al. Clinical, metabolic and psychological outcomes and treatment costs of a prospective randomized trial based on different educational strategies to improve diabetes care (PRODIACOR). Diabet Med. 2013;30(9):1102–11. https://doi.org/10.1111/dme.12230.

257. Polack S, Yorston D, López-Ramos A, Lepe-Orta S, Baia RM, Limburg H, Espinoza R, Lansingh VC, Silva JC. Functional low vision in adults from Latin America: findings from population-based surveys in 15 countries. Rev Panam Salud Publica. 2011;30(5):408–14.

254. Villena JE, Yoshiyama CA, Sánchez JE, Hilario NL, Merin LM. Prevention of diabetic retinopathy in Peruvian patients with type 2 diabetes: results of a hospital-based retinal screening program. Rev Panam Salud Publica. 2011;30(5):408–14. https://doi.org/10.1590/1980-54972011-0014.

255. Jiménez-Ramírez F, Pérez R. Diabetic retinopathy education and screening at the community pharmacy in Puerto Rico. P R Health Sci J. 2011;30(3):139–44.

256. Acevedo Castellón RI, Carranza Vargas E, Cortés Chavarría RE, Rodríguez Vargas GA. Rapid assessment of avoidable blindness and diabetic retinopathy in individuals aged 50 years or older in Costa Rica. PLOS One. 2019;14(2):e0212660. https://doi.org/10.1371/journal.pone.0212660.

257. Ministerio de Salud de Argentina. Encuesta Rapida de Ceguera Evitable, Argentina, 2013 (http://www.msal.gob.ar/images/stories/bases/graficos/00000000603cnt-2015-01_encuesta-rapida-ceguera-evitable.pdf) Argentina13. [Last Accessed on August 6, 2020].

258. Limburg H, Espinoza R, Lansingh VC, Silva JC. Functional low vision in adults from Latin America: findings from population-based surveys in 15 countries. Rev Panam Salud Publica. 2015;37(6):371–8.

259. Polack S, Yorston D, López-Ramos A, Lepe-Orta S, Baia RM, Alves L, et al. Rapid assessment of avoidable blindness and diabetic retinopathy in Chiapas. Mexico Ophthalmology. 2012;119(5):1033–40. https://doi.org/10.1016/j.ophtha.2011.11.002.

260. Martínez J, Hernandez-Bogantes E, Wu L. Diabetic retinopathy screening using single-field digital fundus photography at a district level in Costa Rica: a pilot study. Int Ophthalmol. 2011;31(2):83–8. https://doi.org/10.1007/s10792-010-9413-9.

261. Mendoza-Herrera K, Quezada AD, Pedroza-Tobías A, Hernández-Alcaraz C, Fromow-Guerra J, Barquera S. A Diabetic Retinopathy Screening Tool for Low-Income Adults in Mexico. Prev Chronic Dis. 2017;14:E95. https://doi.org/10.5888/pcd14.170157.

262. Lazo-Porras M, Bernabe-Ortiz A, Sackskeder KA, Gilman RH, Malaga G, Armstrong DG, et al. Implementation of foot thermometry plus mHealth to prevent diabetic foot ulcers: study protocol for a randomized controlled trial. Trials. 2016;17(1):206. https://doi.org/10.1186/s13063-016-1333-1.

263. Jimenez MM, Bui AL, Mantilla E, Miranda JJ. Human resources for health in Peru: recent trends (2007–2013) in the labour market for physicians, nurses and midwives. Hum Resour Health. 2017;15(1):69. https://doi.org/10.1186/s12960-017-0243-y.
306. Pablos-Méndez A, Vega J, Aranguren FP, Tabish H, Raviglione MC. Covid-19 in Latin America. Bmj. 2020;370:m2939. https://doi.org/10.1136/bmj.m2939.

307. Barone MTU, Harnik SB, de Luca PV, Lima BLS, Wieselberg RJP, Ngongo B, et al. The impact of COVID-19 on people with diabetes in Brazil. Diabetes Res Clin Pract. 2020;166:108304. https://doi.org/10.1016/j.diabres.2020.108304.

308. Bello-Chavolla OY, González-Díaz A, Antonio-Villa NE, Fermín-Martínez CA, Márquez-Salinas A, Vargas-Vázquez A, et al. Unequal impact of structural health determinants and comorbidity on COVID-19 severity and lethality in older Mexican adults: Considerations beyond chronological aging. J Gerontol A Biol Sci Med Sci. 2020. https://doi.org/10.1093/gerona/glaa163.

309. Barone MTU, Villarroel D, de Luca PV, Harnik SB, Lima BLS, Wieselberg RJP, et al. COVID-19 impact on people with diabetes in South and Central America (SACA region). Diabetes Res Clin Pract. 2020;166:108301. https://doi.org/10.1016/j.diabres.2020.108301.

310. Díaz de León-Martínez L, de la Sierra-de la Vega L, Palacios-Ramírez A, Rodriguez-Aguilar M, Flores-Ramírez R. Critical review of social, environmental and health risk factors in the Mexican indigenous population and their capacity to respond to the COVID-19. Sci Total Environ. 2020;733:139357. https://doi.org/10.1016/j.scitotenv.2020.139357.

311. Teles M, Sacchetta T, Matsumoto Y. COVID-19 Pandemic Triggers Telemedicine Regulation and Intensifies Diabetes Management Technology Adoption in Brazil. J Diabetes Sci Technol. 2020;14(4):797–8. https://doi.org/10.1177/1932296820930033.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.