Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The clinical spectrum of coronavirus disease 2019 (COVID-19) is wide, ranging from minor, nonspecific symptoms to severe pneumonia, acute respiratory distress syndrome, multiorgan involvement, and shock. In severe cases, the acute systemic inflammatory response, coagulation activation, and diffuse endothelial damage may, in combination with hypoxia, immobilization, and underlying risk factors, result in potentially life-threatening venous and arterial thrombotic events. The first data from single-center retrospective studies suggest that thrombotic events are a key aspect of COVID-19-associated morbidity and mortality. We have planned and will be launching the COvid REgistry on THROMBOSIS (CORE-THROMBOSIS), a large online registry of previously or currently hospitalized patients with COVID-19. The study aims to (i) determine the rate of acute thrombotic events in consecutive hospitalized patients with coronavirus (COVID-19); (ii) investigate the current use and trends in thromboprophylaxis regimens; and (iii) describe the use of imaging tests for the detection of cardiovascular events in patients with COVID-19.

KEYWORDS
COVID-19, registry, SARS-CoV-2, thrombosis, venous thromboembolism

The clinical spectrum of coronavirus disease 2019 (COVID-19) is wide, ranging from minor, nonspecific symptoms to severe pneumonia, acute respiratory distress syndrome, multiorgan involvement, and shock. In severe cases, the cytokine storm following the viral infection precipitates an acute systemic inflammatory response and diffuse endothelial damage, which may, in combination with hypoxia, immobilization, and underlying risk factors, result in potentially life-threatening venous and arterial thrombotic events. In fact, clinical and laboratory findings reported in patients with COVID-19 since the beginning of this outbreak frequently include hemostatic abnormalities, which have been associated with an unfavorable in-hospital outcome in preliminary reports. Physicians involved in the care of patients with COVID-19 in large-volume centers keep emphasizing that they have "never seen so many patients with deep vein thrombosis or pulmonary embolism" as they do right now. First retrospective studies appear to support this assumption, although it is currently debated whether the thrombosis risk among severely ill COVID-19 patients requiring intensive care is significantly higher than that in patients with sepsis and shock related to other bacterial or viral pathogens. In parallel, evidence is beginning to accumulate on cardiac injury, cardiovascular mortality, and stroke in COVID-19.
Taken together, the first publications summarized above suggest that thrombotic events are a key aspect of COVID-19-associated morbidity and mortality.16 It is therefore now imperative to move beyond individual and small-group observations to systematic large-scale data collection at a multinational level. Randomized controlled trials, or even single-arm prospective management studies for diagnosing and managing thrombosis and thromboembolism in the hospital setting, are at least theoretically the best way to generate high-level evidence, but they appear unfeasible at the present stage for several reasons. First, performing serial diagnostic tests, such as computed tomography coronary angiography, as part of study protocols may pose insurmountable logistical challenges to emergency and radiology departments of hospitals overwhelmed by admissions during the outbreak. Second, the large majority of patients with COVID-19 are, and will increasingly be, expected to enter treatment trials targeted at the viral disease itself, and competition for patients will be counterproductive for all those involved in these efforts. Finally, a purely prospective trial will essentially miss the very large number of patients hospitalized over the past months during the first wave of the infection. In light of all the above, we have planned and will be launching in the next few days Covid REgistry on THROMBOSIS (CORE-THROMBOSIS), a large online registry of previously or currently hospitalized patients with COVID-19. The study aims to (i) determine the rate of acute arterial or venous thrombotic events in consecutive hospitalized patients with coronavirus (COVID-19); (ii) investigate the current use and trends in thromboprophylaxis regimens; and (iii) describe the use of imaging tests for the detection of cardiovascular events in patients with COVID-19. The electronic case report form of the study will include strictly anonymized data, permitting rapid, unbureaucratic approval by local ethics committees and online data entry. Past "closed" as well as current and future cases will be included, and participating investigators will commit themselves to do their best to not miss any case of confirmed arterial or venous thrombosis related to COVID-19 in their institution. Being purely observational and having a user-friendly, fast-to-complete data entry form, CORE-THROMBOSIS will not devour the time of clinical researchers or study teams, and it will not interfere with any parallel therapeutic trials or even other registries. We believe that by including a large number of both prevalent and incident cases within a short time period, CORE-THROMBOSIS will provide observational but nevertheless representative data on the magnitude of the problem, and it will enable us to formulate robust hypotheses to be tested in future prophylaxis and management trials.

We ask interested investigators to join this effort and actively participate in CORE-THROMBOSIS by contacting us at s.barco@uni-mainz.de.

ACKNOWLEDGMENTS

The work of Stefano Barco and Stavros V. Konstantinides was supported by the German Federal Ministry of Education and Research [BMBF 01EO1003 and 01EO1503].

RELATIONSHIP DISCLOSURE

SB reports personal fees from Biocompatibles Group UK and Bayer HealthCare, nonfinancial support from Bayer HealthCare and Daiichi Sankyo, outside the submitted work. SVK reports grants and nonfinancial support from Bayer AG, grants and personal fees from Boehringer Ingelheim, personal fees from Bayer AG, grants and personal fees from Actelion, grants and personal fees from Daiichi-Sankyo, grants and personal fees from Biocompatibles Group UK, personal fees from Pfizer-Bristol-Myers Squibb, and grants and personal fees from MSD, outside the submitted work.

ORCID

Stefano Barco https://orcid.org/0000-0002-2618-347X

TWITTER

Stefano Barco @stebarco

REFERENCES

1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.
2. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061.
3. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.
4. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4.
5. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;S1931-5244(20)30070-0. https://doi.org/10.1016/j.trsl.2020.04.007
6. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020. doi:https://doi.org/10.1111/jth.14849 Epub ahead of print
7. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9.
8. Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020. https://doi.org/10.1002/ajh.25774 Epub ahead of print
9. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with covid-19. N Engl J Med. 2020;382:e38.
10. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;S0049-3848(20)30120-1. https://doi.org/10.1016/j.thromres.2020.04.013
11. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14.
12. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020. doi:https://doi.org/10.1111/jth.14830 Epub ahead of print
13. Helms J, Tacquard C, Severac F. High risk of thrombosis in patients in severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020. https://doi.org/10.1007/s00134-020-06062-x Epub ahead of print
14. Kaplan D, Casper TC, Elliott CG, Men S, Pendleton RC, Kraiss LW, et al. VTE incidence and risk factors in patients with severe sepsis and septic shock. Chest. 2015;148:1224–30.
15. Shorr AF, Williams MD. Venous thromboembolism in critically ill patients. Observations from a randomized trial in sepsis. Thromb Haemost. 2009;101:139–44.
16. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020;80:735-1097(20):35008-7. https://doi.org/10.1016/j.jacc.2020.04.031
17. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.0950 Epub ahead of print
18. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.1017 Epub ahead of print

How to cite this article: BarcoS, Konstantinides SV. Thrombosis and thromboembolism related to CoVID-19: A clarion call for obtaining solid estimates from large-scale multicenter data. Res Pract Thromb Haemost. 2020;4:741–743. https://doi.org/10.1002/rth2.12364