Neonatal Resuscitation in the Delivery Room from a Tertiary Level Hospital: Risk Factors and Outcome

Seyyed-Abolfazl Afjeh1,2, MD; Mohammad-Kazem Sabzehei3, MD; Fatemeh Esmaili2, BS

1. Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2. Mahdieh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3. Hamedan University of Medical Sciences, Hamedan, Iran

Received: Nov 05, 2012; Accepted: Jun 28, 2013; First Online Available: Nov 27, 2013

Abstract

Objective: Timely identification and prompt resuscitation of newborns in the delivery room may cause a decline in neonatal morbidity and mortality. We try to identify risk factors in mother and fetus that result in birth of newborns needing resuscitation at birth.

Methods: Case notes of all deliveries and neonates born from April 2010 to March 2011 in Mahdieh Medical Center (Tehran, Iran), a Level III Neonatal Intensive Care Unit, were reviewed; relevant maternal, fetal and perinatal data was extracted and analyzed.

Findings: During the study period, 4692 neonates were delivered; 4522 (97.7%) did not require respiratory assistance. One-hundred seven (2.3%) newborns needed resuscitation with bag and mask ventilation in the delivery unit, of whom 77 (1.6%) babies responded to bag and mask ventilation while 30 (0.65%) neonates needed endotracheal intubation and 15 (0.3%) were given chest compressions. Epinephrine/volume expander was administered to 10 (0.2%) newborns. In 17 patients resuscitation was continued for >10 mins. There was a positive correlation between the need for resuscitation and following risk factors: low birth weight, preterm labor, chorioamnionitis, pre-eclampsia, prolonged rupture of membranes, abruptio placenta, prolonged labor, meconium staining of amniotic fluid, multiple pregnancy and fetal distress. On multiple regression; low birth weight, meconium stained liquor and chorioamnionitis revealed as independent risk factors that made endotracheal intubation necessary.

Conclusion: Accurate identification of risk factors and anticipation at the birth of a high-risk neonate would result in adequate preparation and prompt resuscitation of neonates who need some level of intervention and thus, reducing neonatal morbidity and mortality.

Key Words: Neonate; Delivery Room; Risk Factors; Resuscitation; Newborn; Respiratory Assistance

Introduction

Establishing an effective respiration at birth and transformation from fetal circulation to an independent extra uterine state is necessary to start and maintain life; a phenomenon that proceeds smoothly in 90% of neonates. However, approximately 10% of newborn babies fail to initiate effectual breathing; most of these start breathing after initial stimulation by the health personnel, about 3-5% need basic resuscitation, but <1% require advanced resuscitative effort to achieve efficient circulation to the vital organs[1-6]. According to recent estimates approximately 10 million of 136 million neonates born annually require some assistance to begin breathing at...
birth[5],

In order to prevent asphyxia which results in high morbidity and causes 19% of neonatal deaths, American Heart Association, (AHA) has issued guidelines that would identify babies needing respiratory assistance at birth[6].

According to recent authorities[5], neonatal resuscitation is categorized into 3 steps as follows:

1. Initial steps: Immediate assessment, providing warmth, drying the baby and tactile stimulation.
2. Basic resuscitation: Clearing airways, (suctioning if necessary), positioning the head and giving positive pressure ventilation via bag and mask.
3. Advanced Resuscitation: Basic resuscitation (as above) plus endotracheal intubation, chest compression and epinephrine/volume administration as required.

Recognition of risk factors, results in identification of high risk deliveries and attendance of the resuscitation team, before the baby is born.

Objective of this study was to identify perinatal risk factors in determining the need for resuscitation of newborn babies, and also to assess the effectiveness of prompt resuscitation in preventing neonatal mortality due to asphyxia.

Subjects and Methods

In this cross sectional retrospective study medical records of all deliveries and the newborns during a period of one year from April 2010 to March 2011 in a tertiary level hospital with Neonatal Intensive Care Unit (NICU) were selected. This center is a teaching hospital in south Tehran affiliated to Shahid Beheshti University of Medical Sciences, and referral center for high risk pregnancy and deliveries with about 5000 deliveries annually. Midwives, nurses and physicians of the center are trained and qualified in neonatal resuscitation program (NRP).

In this center, in all low risk deliveries a midwife or nurse who has been trained to provide initial care to the newborn, including bag and mask ventilation (BMV) is present. Neonatology fellows are present in delivery room for all high risk deliveries and perform initial assessment and resuscitation of the neonate according to (NRP) [6], the process of cardio pulmonary resuscitation (CPR) documented completely in chart of neonates step by step according to algorithm of American Academy of Pediatrics and American Heart Association[6].

All live born infants (including those with major congenital anomaly) entered the study. We excluded only stillbirths.

Relevant information regarding mothers’ present and past medical history, details of labor, general condition of the newborn at birth, Apgar scores at 1 and 5 minutes, specification of resuscitative measures and clinical course of the mother and baby were collected from the notes and documented.

All pertinent data was analyzed by PASW statistics 18. Bivariate analyses between independent variables and study outcome (initial steps, basic or advanced resuscitation) were performed by Chi-square or ANOVA. All independent variables with P-values <0.15 were selected for modeling in polynomial regression analysis (with backward stepwise method). P<0.05 was considered as statistically significant.

Findings

During one year (April 2010-March 2011) 4629 live born neonates were delivered in the hospital; of these 51.5% were males. Mean birth weight was 2984±667 grams and mean gestational age 37.4±2.6 weeks; 23.7% were preterm, 18.6% low birth weight (LBW) and 4.3% very low birth weight (VLBW).

Four thousand five hundred and twenty two (97.7%) neonates received only initial steps of CPR; 107 (2.3%) newborns needed BMV in the delivery unit; of these 77 (1.6%) babies responded, while 30 (0.65%) neonates needed endotracheal intubation and 15 (0.3%) were given chest compressions. Epinephrine/volume expander was administered to 10 (0.2%).

Newborns. In 17 patients resuscitation was continued for >10 mins (Table 1).

Following high risk deliveries were identified: Pre-eclampsia 347 (7.5%), fetal distress 272
(5.9%), meconium stained liquor 246 (5.7%), PROM 211 (4.6%), maternal diabetes 137 (3%), history of infertility 128 (2.8%), maternal addiction 40 (0.9%), abruptio placenta 0.6%, chorioamnionitis and prolonged labor each 0.3%.

There was a positive correlation between the need for resuscitation and the following risk factors: low birth weight, preterm labor, chorioamnionitis, pre-eclampsia, prolonged rupture of membranes, abruptio placentae, prolonged labor, meconium staining of amniotic fluid, multiple pregnancy and fetal distress (Table 2).

Multiple regression revealed that, low birth weight, meconium staining of amniotic fluid and chorioamnionitis are primary risk factors for endotracheal intubation; in addition, low Apgar scores were associated with need for respiratory assistance, each one point decline in the score was accompanied by a 1.74 increase in the risk for need for resuscitation (74% increase in the odds of need for basic and 163% increase in the odds for advanced resuscitation) (Table 3).

Forty-seven newborns (10 per 1000 live births) died, 11 deaths were a direct result of asphyxia (23.4%) (Table 4).

Discussion

As far as we know this is the first report of neonatal resuscitation at birth from a tertiary level...
center in Iran, although workshops on CPR started nearly 20 years ago, there was no report to evaluate its effect on neonatal outcome.

Another important point is that, this study shows different problems regarding mothers and neonates in a perinatal center in this country.

Most neonates during the period of our study did respond to initial steps of resuscitation; however, about 2.3% needed basic resuscitation, the majority of this group responded to positive pressure ventilation with bag and mask. In advanced resuscitation 0.65% needed endotracheal intubation, chest compression was done in 0.3% and epinephrine/volume expander was administered in 0.2%. Majority of neonates did well by initial steps and most of them that needed basic resuscitation also recovered by BMV, but those with advanced resuscitation had different risk factors in less than 1% of our neonates.

Our findings are comparable to other studies in which chest compression was needed for resuscitation in 0.1–0.12% of live births and epinephrine was given in 0.08–0.1% of

Table 2: Bivariate analysis of risk factors for need to resuscitation

Characteristic	Level of neonatal resuscitation	P. Value (Chi-2 for categoricals)		
	Initial steps	Basic (Bag ventilation)	Advanced (intubation...)	
Birth. Weight(gr)	3020 (621)	1426 (608)	1642 (1168)	<.001
Gestational. Age(w)	37.6 (2.3)	30.8 (3.5)	30.5 (5.4)	<.001
Apgar score at 1 min	8.9 (0.6)	6.1 (1.7)	3.9 (1.7)	<.001
Apgar score at 5 min	9.9 (0.4)	7.9 (1.3)	6 (1.7)	<.001
Sex	Female	Male		
Birth weight (gr)	2203 (98.2%)	30 (1.3%)	11 (0.5%)	
Gestational age <37w	No	Yes		
Delivery. type	NVD	C/S		
Maternal addiction	No	Yes		
Chtioamnionitis	No	Yes		
Preeclamcia	No	Yes		
Premature Rupture of Membrane	No	Yes		
Abruption Placenta.	No	Yes		
Infertility	No	Yes		
Prolonged. labor	No	Yes		
Diabetes	Clear	Meconium		
Fetal distress	No	Yes		
Gravidity	Single	M.P		
Apgar score at 1 min	4517 (98.2%)	68 (1.5%)	13 (0.3%)	<.001
Apgar score at 5 min	5 (17.2%)	9 (31%)	15 (51.7%)	<.001
resuscitation in 0.1–0.12% of live births and epinephrine was given in 0.08-0.1% of neonates\cite{12,7,9}. In a study by Wyckoff et al it was shown that 0.47% of 37972 neonates were resuscitated at birth, with 0.39% needing bag and mask ventilation and only 0.08 requiring endotracheal intubation\cite{10}. In Trevisanuto’s study 1.48% of their babies were intubated at birth and 0.25% required chest compression\cite{11}.

In our study, low birth weight (especially VLBW), meconium staining of liquor, and chorioamnionitis were major factors that placed neonates at risk of asphyxia. In different studies, preterm labor, meconium staining of liquor, breech presentation, maternal hypertension, multiple pregnancy, oligohydramnios, and cesarean section have been identified as risk factors for need for neonatal resuscitation at birth\cite{12-15}. In Molkenboer’s study it was found that the need for bag and mask ventilation was 4 times higher in newborns with breech presentation\cite{14}.

Since this study was performed in a Level III center that accepts pregnant women with various co-morbid conditions and high risk newborns, the mortality rate was significant at 10/1000, although it was considerably lower than the figure of 30/1000, which is the neonatal mortality rate worldwide as announced by the WHO\cite{16,17}. Although during the last two decades, the global NMR has declined from 33.2 deaths per 1,000 live births to 23.9/1000; but greatest decline has been noticed in Europe and the USA. Similar to other studies, most common cause of mortality in our study was neonatal asphyxia\cite{6,17-22}.

Limitations of our study were its being retrospective and without long term follow up for those newborns with basic and advanced resuscitation.

Conclusion

Our study identified low birth weight, chorioamnionitis and meconium stained liquor as

Characteristic	Initial steps vs. Basic Bag ventilation OR (95%CI)	Initial steps vs. Advanced Resuscitation OR (95%CI)	Basic Bag ventilation vs. Advanced resuscitation OR (95%CI)	P. Value
Apgar-1	1.74 (1.22-2.48)	2.63 (1.57-4.40)	1.51 (0.92-2.48)	0.002
Apgar-5	1.72 (1.05-2.81)	2.74 (1.48-5.09)	1.60 (0.90-2.82)	0.03
Birth weight (x100 gm)	1.19 (1.13-1.24)	1.15 (1.08-1.22)	0.97 (0.90-1.03)	<0.001
MSAF	4.53 (1.93-10.63)	4.50 (1.75-11.25)	1.63 (0.40-6.69)	0.001
Chorioamnionitis	10.47 (1.14-96.41)	44.47 (2.57-768.32)	4.25 (0.44-41.02)	0.04
Multi-gravidity	1.98 (0.97-4.06)	0.82 (0.23-2.97)	0.41 (0.13-1.36)	0.06

CI: Confidence Interval; MSAF: Meconium Stained Amniotic Fluid

Table 4: Outcome of neonates with and without needing resuscitation at birth

Characteristic	Level of neonatal resuscitation	Initial steps	Basic (Bag ventilation)	Advanced (intubation)	Total
Ward					
Rooming in		2725 (60.3%)	1 (1.3%)	0 (0%)	2726 (58.9%)
SCN\(^1\)		1467 (32.4%)	0 (0%)	0 (0%)	1467 (31.7%)
NICU\(^2\)		330 (73.3%)	76 (98.7%)	30 (100%)	436 (9.4%)
Outcome					
survived	4509 (99.7%)	58 (75.3%)	15 (50%)	4582 (99%)	
expired	13 (0.3%)	19 (24.7%)	15 (50%)	47 (1%)	
Causes of death					
Asphyxia	0 (0%)	1 (5.3%)	10 (66.7%)	11 (23.4%)	
Others	13 (100%)	18 (94.7%)	5 (33.3%)	36 (76.6%)	

SCN: Special Care Nursery; NICU: Neonatal Intensive Care Unit
the salient risk factors for birth of neonates who would require resuscitation in the delivery room. Accurate anticipation at the birth of a high-risk baby, presence of skilled personnel at the time of delivery of all neonates and adequate preparation would result in a significant decline in neonatal outcome.

Acknowledgment

The authors are grateful to the Director and personnel of the Pediatric Infections Research Center for their efforts in collection and documentation of the data. We also express thanks to Dr. Ahmad Reza Shamshiri for performing the statistical analysis.

Conflict of Interest: None

References

1. Perlman JM, Risser R. Cardiopulmonary resuscitation in delivery room: associated clinical events. Arch Pediatr Adolesc Med 1995;149(1):20-5.
2. Barber CA, Wyckoff MH. Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 2006;118(3):1028-34.
3. Kattwinkel J, Perlman JM, Aziz K, et al. special report neonatal resuscitation :2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Pediatrics 2010;126(5):1400-10.
4. Fanaroff and Martin’s Neonatal-Perinatal Medicine, 9thed. Ineseases of the Fetus and Infant. Philadelphia: Elsevier. 2011; Pp :456-60.
5. Lee AC, Cousens S, Wall NS, et al. Neonatal resuscitation and immediate newborn assessment and stimulation for prevention of neonatal deaths: a systematic review, meta-analysis and Delphi estimation of mortality effect. BMC Public Health 2011;11(Suppl 3):S12.
6. American Academy of Pediatrics and American Heart Association. Textbook of neonatal resuscitation, 5th ed. Dallas, TX: American Heart Association 2006; Pp:14-22.
7. Aziz K, Chadwick M, Downton G, et al. The development and implementation of multidisciplinary neonatal resuscitation team in a Canadian perinatal center. Resuscitation 2005; 66(1):45-51.
8. Wall SN, Lee AC, Niermeyer S, et al. Neonatal resuscitation in low-resource setting: What, Who and How to overcome challenges to scale up? Int J Gynaecol Obstet 2009;107(Suppl 1):S47-62, S63-4.
9. Frazier MD, Werthammer J. Post-resuscitation complications in term neonates. J Perinatol 2007; 27(2):82-4.
10. Wyckoff MH, Perlman JM, Laptook AR. Use of volume expansion during delivery room resuscitation in near-term and term infants. Pediatrics 2005;115(4):950-5.
11. Trevisanuto D, Ferrarere P, ZanardoV, et al. Laryngeal mask airway in neonatal resuscitation: a survey of current practice and perceived role by anaesthesiologists and paediatricians. Resuscitation 2004;60(3):291-6.
12. Aziz K, Chadwick M, Baker M, et al. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation 2008;79(3):444-52.
13. de Almeiola MF, Guinburg R, DaCosta JO, et al. Resuscitation procedures at birth in late preterm Infants, J Perinatol 2007;27(12):761-5.
14. Molkenboer JF, Vencken PM, Sonnemans LG, et al. Conservative management in breech deliveries leads to similar results compared with cephalic deliveries. J Matern Fetal Neonatal Med 2007;20(8):599-603.
15. Vain NE, Szylt EG, Prudent LM, et al. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulder: multicenter, randomized controlled trial. Lancet 2004;364(9434):597-602.
16. Hole MK, Olimsted K, Kiromera A, et al. A neonatal resuscitation curriculum in Malawi, Africa: Did it change in-hospital mortality? Int J Pediatr 2012; 408689.
17. WHO. World Health Report, 2005. Make Every Mother and Child Count. Geneva Switzerland: WHO 2005.
18. Bang AT, Paul VK, Reddy HM, et al. Why do neonates die in rural Gadchiroli, India? (Part I): Primary causes of death assigned by neonatologist based on prospectively observed records. J Perinatol 2005; 25(Suppl 1): 29-34.
19. Jehan I, Harris H, Salat S, et al. Neonatal mortality, risk factors and causes: a prospective population-based cohort study in urban Pakistan. Bull World Health Organ 2009; 87(2):130-8.
20. Oestergaard MZ, Inoue M, Yoshida S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: A systematic analysis of progress, projections, and priorities. PLoS Med 2011; 8(8): e1001080.
21. Lawn JE, Lee AC, Kinney M, et al. Two million intrapartum-related stillbirths and neonatal deaths: Where, why, and what can be done? Int J Gynecol Obstet 2009;107(Suppl 1):S 5-19.
22. Lawn JE, Cousens S, Zupan J. Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet 2005; 365(9462):891-900.