An analytically solvable model of probabilistic network dynamics

M.A.M. de Aguiar1,2, Irving R. Epstein1,3 and Yaneer Bar-Yam1

1 New England Complex Systems Institute, Cambridge, Massachusetts 02138
2 Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil
3 Department of Chemistry, MS015, Brandeis University, Waltham, MA 02454

We present a simple model of network dynamics that can be solved analytically for uniform networks. We obtain the dynamics of response of the system to perturbations. The analytical solution is an excellent approximation for random networks. A comparison with the scale-free network, though qualitatively similar, shows the effect of distinct topology.

PACS numbers: 87.10.+e,02.50.Ey,84.35.+i

Recent advances in the understanding of complex social1, biological2, and technological3 systems have revealed widespread if not universal properties of the topology of networks of association, interaction and communication. These properties, include small-world global connectivity4, scale-free local connectivity distribution5, and characteristic local motif structures6. Central to our understanding of complex systems7 is characterizing their response to environmental stimuli. While these relations, we obtain the following master equation for the network dynamics:

\[
P_{t+1}(x) = pP_t(x) + \frac{(1-p)}{N} \sum_k \{P_t(x) \text{Prob}[\sigma_k \rightarrow \sigma_k] + P_t(\tilde{x}_k) \text{Prob}[\sigma_k \rightarrow \sigma_k]\}.
\]

The probability \(\text{Prob}[\sigma_k \rightarrow \sigma_k]\) is just the number of neighbors of node \(k\) in the state \(\sigma_k\) divided by the total number of neighbors (the degree) \(d_k = \sum_{i=0}^{N-1} C_{ik}\), where \(C_{ik}\) is the connectivity (or adjacency) matrix. This can be written as

\[
\frac{1}{d_k} \sum_{i=0}^{N-1} C_{ik}[1 - \sigma_i - \sigma_k]
\]

The probability \(\text{Prob}[\tilde{x}_k \rightarrow \sigma_k]\) is also given by this formula, since \(\tilde{x}_k = 1 - \sigma_k\) and \(\tilde{x}_i = \sigma_i\) for \(i \neq k\). Using these relations, we obtain the following master equation for the network dynamics:

\[
P_{t+1}(x) = pP_t(x) + \frac{(1-p)}{N} \sum_{k=0}^{N-1} \frac{1}{d_k} \sum_{i=0}^{N-1} C_{ik} \times [1 - \sigma_i - \sigma_k][P_t(x) + P_t(\tilde{x}_k)].
\]

Finding \(P_t(x)\) for networks with arbitrary topologies can be very difficult. However, the problem can be
completely solved for fully connected networks, where \(d_k = N - 1 \). In this case the nodes are indistinguishable from each other and the states of the network can be labeled simply by counting the number of nodes in the internal state \(n \), given by \(n(x) = \sum_i \sigma_i \). The probability of finding the network in the state labeled by \(n \) is related to \(P(x) \) by

\[
P(n(x)) = P(x) B(N, n) \tag{2}
\]

where \(B(N, n) = \frac{N!}{n!(N-n)!} \) is a binomial coefficient. We now simplify the last two terms on the right of Eq. (1).

To do this we separate the sum over \(k \) into the cases \(\sigma_k = 1 \) and \(\sigma_k = 0 \). For the first of these terms we obtain

\[
\frac{1-p}{N(N-1)} \sum_k [C_{ik} \sigma_i + C_{ik}(1-\sigma_i)] P_t(x) = \frac{1-p}{N(N-1)} \left[n(n-1) + (N-n)(N-n-1) \right] P_t(x). \tag{3}
\]

For the third term we observe that \(P_t(\tilde{x}_k) \) corresponds to the state \(n-1 \) if \(\sigma_k = 1 \) and to \(n+1 \) if \(\sigma_k = 0 \). We separate the sum over \(k \) into the cases \(\sigma_k = 1 \) and \(\sigma_k = 0 \) and write \(P_t(\tilde{x}_k; 1) \) and \(P_t(\tilde{x}_k; 0) \) respectively. We obtain

\[
\frac{(1-p)}{N(N-1)} \left[n(n-1) P_t(\tilde{x}_k; 1) + (N-n)(N-n-1) P_t(\tilde{x}_k; 0) \right].
\]

Substituting these terms into the master equation and multiplying both sides by \(B(N, n) \) we obtain, after some simplification,

\[
P_t+1(n) = \frac{(1-p)}{N(N-1)} \times \left[\left\{ n(n-1) + (N-n)(N-n-1) \right\} P_t(n) \right.
\]

\[
+ (N-n+1)(n-1) P_t(n-1)
\]

\[
+ (N-n-1)(n+1) P_t(n+1) \right].
\]

For uniform networks where \(d_k = d_0 \) is the same for all nodes, if \(d_0 < N - 1 \) states with the same \(n(x) \) can be distinguished by the way the internal states with \(\sigma_k = 1 \) are distributed among those with \(\sigma_k = 0 \). However, if we combine states with the same \(n(x) \), the procedure described above can still be applied. In this case the factor \(d_k \) in the denominator is replaced by \(d_0 \). However, on the average (with respect to the different states labeled by \(n \)), the counting of the number of neighbors must be multiplied by \(d_0/(N-1) \), so that \(d_0 \) cancels and we get \((N-1) \) back in the denominator. Therefore equation (3) holds in this case as well. For random networks the degree of each node is nearly constant, and we can still use equation (3) as an approximation for the dynamics.

We now proceed to the calculation of the transition probabilities. The probabilities \(P_t(n) \) define a vector \(P_t \) of \(N + 1 \) components. The master equation (2) can be written in matrix form as \(P_{t+1} = U P_t \) where the evolution matrix \(U \) is tridiagonal. The propagation of an initial probability vector requires the calculation of powers of \(U \). Alternatively, we can diagonalize \(U \) and use its eigenvectors as a basis. This approach has been used to calculate the eigenvalues of the transition matrix for certain population models. Here we shall calculate not only the eigenvalues but also the eigenvectors, obtaining the complete solution of the dynamical problem.

The eigenvalues of \(U \) can be calculated for small matrices and extrapolated to matrices of arbitrary size. They are given by

\[
\lambda_r = 1 - \frac{1-p}{N(N-1)} r(r-1).
\]

with \(r = 0, 1, \ldots, N \). The only degeneracy occurs for \(\lambda_0 = \lambda_1 = 1 \). The other eigenvalues are all smaller than 1 and decrease towards \(\lambda_N = p \).

Since \(U \) is not symmetric, its eigenvectors do not form an orthogonal set. Let \(|ar\rangle \) and \(|br\rangle \) be the right and left eigenvectors of \(U \), with components \(a_{rm} \) and \(b_{rm} \). Then

\[
\sum_{r=0}^{N} \frac{1}{\Gamma_r} |ar\rangle \langle br| = 1.
\]

where \(\langle br|ar\rangle = \Gamma_r \delta_{rr} \) and \(\Gamma_r = \sum_m a_{rm} b_{rm} \).

An initial vector \(|v(0)\rangle \) containing the information about the probability of the different states at time zero can be projected using this resolution of unity and easily evolved:

\[
|v(t)\rangle = U^{t} |v(0)\rangle = \sum_{r=0}^{N} \frac{1}{\Gamma_r} |b_{r}\rangle |v(0)\rangle \lambda_{r}^{t} |ar\rangle.
\]

The transition probability between two network states with \(n = M \) and \(n = L \) after a time \(t \) can now be calculated by taking the components of the initial vector as \(v_m(0) = \delta_{M,m} \) and projecting the evolved state onto the state with components \(\delta_{L,m} \):

\[
P(L, t; M, 0) = \sum_{r=0}^{N} \frac{1}{\Gamma_r} b_{rM} a_{rL} \lambda_{r}^{t}.
\]

The coefficients \(a_{rm} \) follow a recursion relation that can be derived directly from the eigenvalue equation for \(U \). For \(r = 0 \) and \(r = 1 \) the eigenvectors can be found immediately:

\[
|a_0\rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad |a_1\rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}
\]

and

\[
|b_0\rangle = \begin{pmatrix} 1 & 1 & \ldots & 1 & 1 \end{pmatrix}, \quad |b_1\rangle = \begin{pmatrix} N & N-2 & N-4 & \ldots & -N+2 & -N \end{pmatrix}.
\]

In order to calculate the remaining eigenvectors, we define the auxiliary eigenvalues \(\mu_r \) by

\[
\mu_r = (1 - \lambda_r) \frac{N(N-1)}{1-p} = r(r-1)
\]

where
we obtain the differential equation
\[A_{r m} = m(N - m)a_{r m} \quad m = 1, 2, \ldots, N - 1. \] (7)

The recursion relation for the \(A_{r m} \) can be written explicitly as:
\[A_{r m+1} - 2A_{r m} + A_{r m-1} = -\mu_x (\frac{A_{r m}}{m} + \frac{A_{r m}}{N - m}). \] (8)

A generating function is now defined as
\[f_r(x) = \sum_{m=1}^{N-1} A_{r m} x^m \]
(note that \(A_{r 0} = A_{r N} = 0 \)). Multiplying eq. (8) by \(x^m \) and summing over \(m \) we get, on the left side,
\[\frac{f_r}{x} (1 - x)^2 - A_{r 1} + A_{r N-1} x^N. \]

In order to write down the right side of eq. (8) we define the auxiliary functions
\[g_r(x) = \sum_{m=1}^{N-1} \frac{A_{r m}}{m} x^m, \quad h_r(x) = \sum_{m=1}^{N-1} \frac{A_{r m}}{N - m} x^m. \] (9)

It is easy to check that \(\frac{d g_r}{dx} = f_r/x \) and \(\frac{dh_r}{dx} = N h_r/x - f_r/x \). After multiplying this equation by \(x^m \) and summing over \(m \), we differentiate both sides with respect to \(x \) to obtain
\[\frac{d}{dx} \left[\frac{(1 - x)^2}{x} f_r(x) - A_{r N-1} x^N \right] = -\mu_x h_r(x). \] (10)

The solution of the differential equation for \(h_r \) can be obtained in terms of its Green function, satisfying \(dG/dx - NG/x = \delta(x - y) \). In this case \(G \) is given by \((x/y)^N \) if \(x > y \) and zero otherwise. Therefore,
\[h_r(x) = x^N \left(\alpha - \int_{-\infty}^{x} \frac{f_r(y)}{y^{N+1}} dy \right). \] (11)

Substituting Eq. (11) into (10), re-arranging the terms and differentiating once again with respect to \(x \), we obtain
\[\frac{d}{dx} \left[\frac{1}{x^{N-r}} \frac{d}{dx} \left(\frac{(1 - x)^2}{x} f_r(x) \right) \right] = \mu_x \frac{f_r(x)}{x^{N+1}}. \]

Finally, defining
\[F_r(x) = \frac{(1 - x)^2}{x} f_r(x) \] (12)
we obtain the differential equation
\[F''_r - \frac{N - 1}{x} F'_r - \mu_x \frac{F_r}{(1 - x)^2} = 0. \] (13)

Letting \(\phi_r(x) = \sum a_{r m} x^m \) then
\[\phi_r(x) = \sum \frac{A_{r m}}{m(N - m)} x^m = \frac{1}{N} (g_r + h_r). \]

Differentiating with respect to \(x \), using Eq. (11), dividing by \(x^{N-1} \) and differentiating again, we find
\[\phi''_r - \frac{N - 1}{x} \phi'_r - \frac{1}{x} \frac{F_r}{(1 - x)^2} = 0. \]

Comparing with Eq. (13) we see that \(\phi_r = -F_r/\mu_x \). Therefore, except for a normalization, the generating function for the coefficients \(a_{r m} \), \(\phi_r(x) \), is equal to \(F_r(x) \).

For \(r = 0 \) or \(r = 1 \), \(\mu_x = 0 \) and the two independent solutions of eq. (13) are \(F_0(x) = 1 + x^N \) and \(F_1(x) = 1 - x^N \), which correspond to the two degenerate eigenvectors \(|a_0 \rangle \) and \(|a_1 \rangle \). For \(r = 2 \) and \(r = 3 \) the solution can also be found explicitly; the general formula can then be extrapolated from these simple cases. We find
\[F_r(x) = (1 - x)^{1-r} \left[1 + \sum_{p=1}^{r-1} d_{r p} x^p \right]. \] (14)

with
\[d_{r p} = (-1)^p \frac{B(r - 1, p) B(N + r - 1, p)}{B(N - 1, p)}. \]

Finally, the coefficients of the \(r \)-th eigenvector are given by
\[a_{r m} = \frac{1}{m!} \left. \frac{d^m F_r(x)}{dx^m} \right|_{x=0}. \]

Since \(F_r \) is the product of two simple functions, its derivative can be calculated explicitly at \(x = 0 \). Writing \(F_r(x) = N_r(x) Q_r(x) \) with
\[Q_r(x) = (1 - x)^{1-r} \quad \text{and} \quad N_r(x) = 1 + \sum d_{r p} x^p \]
we find
\[a_{r m} = \frac{1}{m!} \sum_{p=0}^{m} B(m, p) \left. \frac{d^{m-p} N_r}{dx^{m-p}} \right|_{x=0} \left. \frac{d^p Q_r}{dx^p} \right|_{(x=0)}. \]

Working out the derivatives we find the explicit formula valid for \(r \geq 2 \).
\[a_{r m} = \sum_{p=0}^{r-1} B(m - p + r - 2, r - 2) d_{r p} \] (15)
for \(m = 1, 2, \ldots, N - 1 \), with \(a_{r 0} = 1 \) and \(a_{r N} = (-1)^r \).

From the recursion relations we find that the coefficients of the left eigenvectors are given by
\[b_{r m} = a_{r m} [m(N - m)/N]. \] (16)
and finding it at a later time. The only two possible asymptotic states are $n = 0$ and $n = N$, whose transition probabilities from an initial state $n = M$ are $(N - M)/N$ and M/N respectively. A typical transition probability $P(L, t; M, 0)$ for $L, M \neq 0, N$ starts at zero if $L \neq M$, reaches a maximum and decreases back to zero. This represents the probability that a perturbation initially affecting M nodes will lead to a response by L nodes at a time t later. Figure 1 shows an example for a network with $N = 101$ nodes and $p = 0.1$. The estimate $\tau \approx 11000$ works well for all the transition probabilities shown. These results show that the theoretical model for fully connected networks is an excellent approximation for the average behavior of sparsely connected random networks. The theory also reproduces qualitatively the behavior of scale-free networks. The deviations from the theory in this case reflect the significant topological differences between the two networks. As a final remark we note that the case of more internal states per node can in principle be treated in a similar fashion. However, although Eq. 11 can be easily generalized, Eq. 8 would be more complicated, since it would take more than a single integer $n(x)$ to describe the network state.

Since all eigenvalues (except for λ_0 and λ_1) are smaller than one, in the limit of long times the transition probability is dominated by $\lambda_0 = \lambda_1 = 1$ and by the largest non-trivial eigenvalue, λ_2, whose contributions we have written down explicitly. For large networks we can approximate $\lambda_2 \approx \exp[-2(1-p)t/N^2]$, so that the characteristic duration of the transition process is $\tau = N^2/(1-p)$, which increases with the square of the network size.

The only two possible asymptotic states are $n = 0$ and $n = N$, whose transition probabilities from an initial state $n = M$ are $(N - M)/N$ and M/N respectively. A typical transition probability $P(L, t; M, 0)$ for $L, M \neq 0, N$ starts at zero if $L \neq M$, reaches a maximum and decreases back to zero. This represents the probability that a perturbation initially affecting M nodes will lead to a response by L nodes at a time t later. Figure 1 shows an example for a network with $N = 101$ nodes and $p = 0.1$. The estimate $\tau \approx 11000$ works well for all the transition probabilities shown. These results show that the theoretical model for fully connected networks is an excellent approximation for the average behavior of sparsely connected random networks. The theory also reproduces qualitatively the behavior of scale-free networks. The deviations from the theory in this case reflect the significant topological differences between the two networks. As a final remark we note that the case of more internal states per node can in principle be treated in a similar fashion. However, although Eq. 11 can be easily generalized, Eq. 8 would be more complicated, since it would take more than a single integer $n(x)$ to describe the network state.

M.A.M.A. acknowledges financial support from CNPq and FAPESP. I.R.E. was supported in part by the David and Lucile Packard Foundation.

[1] S. Wasserman, and K. Faust, Social Network Analysis (Cambridge Univ. Press, Cambridge, UK, 1994); D. J. de S. Price, Science 149, 510 (1965); M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001); Phys. Rev. E 64, 016131 (2001); 016132 (2001); D. Braha and Y. Bar-Yam, Phys. Rev. E 69, 016113 (2004).
[2] J. Cohen, F. Briand, C. Newman, Community Food Webs: Data and Theory (Springer, Berlin, 1990); C. Koch and G. Laurent, Science 284, 96 (1999); H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, Nature 406, 651 (2000).
[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Computer Communications Review 29, 251 (1999); R. Albert, H. Jeong, and A.-L. Barabási, Nature 401, 130 (1999).
[4] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[5] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74 (2002).
[6] R. Milo et al, Science 298, 824 (2002).
[7] Y. Bar-Yam, Dynamics of Complex Systems, (Perseus, Cambridge, MA., 1997).
[8] R. Albert, H. Jeong and A.-L. Barabasi, Nature 406, 378 (2000); B. Shargel, H. Sayama, I. R. Epstein and Y. Bar-Yam, Phys. Rev. Lett. 90, 068701 (2003).
[9] Y. Bar-Yam and I. Epstein, Proc. Natl. Acad. Sci. U.S.A. 101, 4341 (2004).
[10] D.H. Zanette, Phys. Rev. E 64, 50901 R (2001); M. Kuperman and G. Abramson, Phys. Rev. Lett. 86, 2909 (2001); M. A. de Menezes and A.-L. Barabási, Phys. Rev. Lett. 92, 28701 (2004).
[11] E. M. Rauch and Y. Bar-Yam, Nature 431, 449 (2004).
[12] C. Cannings, Adv.Appl.Prob. 6, 260 (1974).