Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation

Shunsuke Ichikawa 1,* 1, Yoichiro Tsuge 2 and Shuichi Karita 3

1 Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan; Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan; ichikawa@edu.mie-u.ac.jp; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
2 Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan; 217112@m.mie-u.ac.jp
3 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan; karita@bio.mie-u.ac.jp
* Correspondence: ichikawa@edu.mie-u.ac.jp; Tel.: +89-59-231-9254; Fax: +89-59-231-9352

Abstract: The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulose biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, abpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulose biomass utilization.

Keywords: cellulose biomass utilization; membrane vesicle; cell–cell communication; Clostridium thermocellum; Bacillus subtilis; metabolome analysis

1. Introduction

Cellulose is one of the most abundant organic materials on Earth. Bacteria that can grow on cellulose have been isolated from many environments that include soil, hot springs, cow rumen, termite gut, and the human intestinal tract [1]. Clostridium thermocellum (Acetivibrio thermocellus) [2], a Gram-positive thermophilic anaerobic soil bacterium, is a candidate for cellulose biomass utilization. C. thermocellum completely degrades 4.4 g/L purified cellulose in one day [3]. It also degrades 65% of 5 g/L switchgrass in five days and 70% of 10 g/L corn hull in seven days [4,5].

C. thermocellum has been shown to produce 1.3% ethanol from 10% Avicel cellulose [6]. A strain of C. thermocellum multiply deleted for [FeFe] hydrogenase maturase, lactate dehydrogenase, pyruvate-formate lyase, Pfl-activating enzyme, phosphotransacetylase, and acetate kinase genes, which eliminated formate, acetate, and lactate production, and reduced H2 production, presented a titer of 2.2% ethanol from 6% Avicel cellulose [7]. The ethanol hyper-producing strain C. thermocellum I-1-B produced 2.4% ethanol from 8% cellulose [8]. A co-culture of a strain lacking the lactate dehydrogenase/phosphotransacetylase gene and Thermostreptococcus thermophilus produced 3.8% ethanol from 9.2% Avicel cellulose in 146 h [9]. These reports show that the cultivation of C. thermocellum can be simplified consolidated bioprocessing (CBP). This is a promising strategy because it eliminates the need to add lignocellulose-degrading enzymes that significantly increase the cost of biofuel production [10–12].
Some cellulolytic bacteria, including \textit{C. thermocellum}, form carbohydrate-active enzyme (CAZyme) complexes that are termed cellulosomes \cite{13–16}. The main product of enzymatic cellulose degradation is cellobiose, which leads to the feedback inhibition of cellulosomes. Supplementation with \(\beta\)-glucosidase (BGL) leads to the hydrolysis of cellobiose into two glucose molecules, thereby resolving the feedback inhibition. \textit{C. thermocellum} preferentially utilizes cellooligosaccharide, and glucose tends to accumulate in the culture broth \cite{17}. Supplementation with purified BGL increased glucose production by \textit{C. thermocellum} from 10\% cellulose or 12\% alkali pretreated rice straw by approximately 7.7\% over 10 days \cite{18}. This technology is referred to as biological simultaneous enzyme production and saccharification (BSES). BSES is similar to CBP, does not require the diverse CAZymes for the saccharification of cellulosic biomass.

We previously reported that \textit{C. thermocellum} produces extracellular membrane vesicles (MVs) that are released into the broth \cite{19}. MVs are produced in Gram-negative and Gram-positive bacteria. The latter possess a membrane that is overlaid by a relatively thick and resilient cell wall enriched in peptidoglycan \cite{20,21}. MVs have been isolated from the culture supernatant of Gram-positive bacteria that include \textit{Bacillus subtilis}, \textit{B. anthracis}, \textit{Streptomyces coelicolor}, \textit{Listeria monocytogenes}, \textit{Staphylococcus aureus}, \textit{Streptococcus mutans}, \textit{S. pneumoniae}, and \textit{Clostridium perfringens} \cite{22–28}. Klieve et al. reported the production of MVs by \textit{Ruminococcus} spp., a cellulolytic bacterium that resides in the ovine rumen. DNA molecules ranging in size from <20 to 49 kb, and from 23 to 90 kb are attached to MVs from \textit{Ruminococcus} sp. YE73 and \textit{Ruminococcus albus} AR67, respectively. Thus, MVs can function as vectors for horizontal gene transfer to confer cellulolytic activity, as documented in the mutant strain \textit{Ruminococcus} sp. YE71 \cite{29}. MVs from cellulolytic \textit{Bacteroides fragilis} and \textit{B. thetaiotaomicron} are equipped with hydrolytic enzymes and are important in polysaccharide degradation \cite{30,31}. MVs from \textit{Fibrobacter succinogenes} are enriched with CAZymes, and intact MVs are able to degrade a broad range of hemicelluloses and pectin \cite{32}. We have previously proposed that \textit{C. theromboellum} may utilize MVs to deliver cellulosomes, which enhance the cellulolytic activity of \textit{C. thermocellum} \cite{19}.

MVs contain various compounds that include DNA and RNA. These cargos are delivered to neighboring cells. MVs have several important functions related to cell–cell interactions. In \textit{Pseudomonas aeruginosa}, a hydrophobic cell–cell communication signal termed \textit{Pseudomonas} quinolone signal is released from the bacteria via MVs \cite{33,34}. MVs can also serve as organic carbon sources for heterotrophs. For example, MVs derived from cyanobacteria support the growth of \textit{Alteromonas} and \textit{Halomonas} as the sole carbon source, indicating that MVs should be considered in the marine food web and may have important roles in the carbon flux of the ocean \cite{35}. In \textit{Mycobacterium tuberculosis}, the causative agent of tuberculosis, increased MV production in response to iron restriction has been observed \cite{36}. These MVs contain a siderophore called mycobactin. Mycobactin can serve as an iron donor to support the growth of iron-starved \textit{M. tuberculosis}.

In this study, we demonstrated that the MV fractions collected from \textit{C. thermocellum} and \textit{B. subtilis} can promote \textit{C. thermocellum} growth. Metabolome analysis was also performed to identify the candidate compounds with the growth stimulation.

2. Materials and Methods

2.1. Strains and Culture Conditions of \textit{C. thermocellum} and \textit{B. subtilis}

One hundred microliters of \textit{C. thermocellum} DSM 1313 (DSMZ, Braunschweig, Germany) culture was inoculated in 5 mL of CTFUD medium (3 g/L sodium citrate tribasic dehydrate, 1.3 g/L \(\text{(NH}_4\text{)}_2\text{SO}_4\), 1.5 g/L \text{KH}_2\text{PO}_4, 130 mg/L \text{CaCl}_2 \cdot 2\text{H}_2\text{O}, 500 mg/L \text{L-cysteine-HCl}, 11.56 g/L 3-morpholinopropanesulfonic acid, 2.6 g/L \text{MgCl}_2 \cdot 6\text{H}_2\text{O}, 1 mg/L \text{FeSO}_4 \cdot 7\text{H}_2\text{O}, 4.5 g/L \text{Bacto yeast extract}, 1 mg/L \text{resazurin}, \text{pH} \text{7.0}) containing 0.5\% cellobiose (Tokyo Chemical Industry, Tokyo, Japan) with 16 \times 125 mm Hungate tubes (Chemiglass Life Sciences, Vineland, NJ, USA), and cultured at 60 °C under anaerobic conditions with nitrogen gas \cite{37}.
B. subtilis KAO/NAIST chromosomal deletion mutants [38] and BKE genome-scale deletion mutants [39] were obtained from the National BioResource Project B. subtilis (National Institute of Genetics, Shizuoka, Japan). B. subtilis strains were aerobically cultured in Luria Bertani broth at 37 °C.

2.2. Preparation of MV Fraction of C. thermocellum

Five milliliters of C. thermocellum and B. subtilis culture was centrifuged at 10,000×g for 2 min at 4 °C, and the supernatant was filtered through a 0.22-µm syringe filter to remove cells. The filtrate was centrifuged at 179,000×g for 1 h at 4 °C and the pellet was washed twice with 2 mL of sterile phosphate-buffered saline (PBS). The pellet was resuspended in PBS and used as the MV fraction. The MV fraction was kept on ice before use.

MVs were visualized using transmission electron microscopy. Six microliter aliquots of the MV fraction was added to 300-mesh carbon and formvar-coated copper grids and incubated for 1 min. After removing the extra solution with filter paper, each specimen was stained with 2% phosphotungstic acid. The sample was observed with a JEM-1011 microscope (JEOL, Tokyo, Japan) at an accelerating voltage of 80 kV.

2.3. Growth Evaluation of C. thermocellum with MV Supplementation

One hundred microliters of C. thermocellum DSM 1313 culture was inoculated in 5 mL of CTFUD medium containing 0.5% cellobiose with the supplementation of the collected MV fraction. C. thermocellum was cultured at 60 °C under anaerobic conditions with nitrogen gas. The C. thermocellum growth was evaluated with optical density of the broth at 600 nm.

2.4. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis of C. thermocellum MV and B. subtilis Broth

The C. thermocellum MV fraction was treated with 10 mg/L surfactin, and the filtrate obtained after ultrafiltration with Vivaspin 2-100 K (Cytiva, Marlborough, MA, USA) was used to obtain the constituents in MVs. Cell-free supernatants of B. subtilis trpC2 and trpC2 yxeJ broth were prepared by centrifugation and filtration with a 0.22-µm syringe filter. These specimens were homogenized with zirconia beads in 75% methanol, and the supernatants were collected after centrifugation at 15,000×g rpm for 10 min. The supernatants were applied to a MonoSpin C18 column (GL Science, Tokyo, Japan) and were filtered through a 0.22-µm syringe filter.

LC-MS analysis was performed on an Ultimate 3000 rapid separation LC (RSLC) and the Q Exactive system (Thermo Fisher Scientific, Waltham, MA, USA). Ultimate 3000 RSLC analysis was performed with the following parameters: column, InertSustain AQ-C18 (GL Science); column temperature, 40 °C; injection volume, 2 µL; solvent flow rate, 200 µL/min. The eluting solution was 0.1% formic acid containing 2% acetonitrile. The Q Exactive system had the following parameters: measurement time, 3–30 min; ionization method, electrospray ionization; measurement mass range, m/z: 80–1200; full scan resolution, 70,000; and MS/MS scan resolution, 17,500. The obtained data were analyzed with PowerGetBatch and MFSearcher [40]. The LC-MS analysis was performed in triplicate.

3. Results and Discussion

3.1. MV Constituents Promote C. thermocellum Growth

A previous study reported that the co-culture of the engineered C. thermocellum and T. saccharolyticum strains produced 3.8% ethanol from cellulose for 6 days [9]. C. thermocellum cultivation with BGL supplementation for 10 days reportedly produced 76.7 g/L glucose from alkali pretreated rice straw [18]. It seems that the growth rate of C. thermocellum is an important factor in improving the efficiency of CBP and BSES. In this study, we collected MVs from C. thermocellum broth (Figure S1). MVs contain various compounds, such as DNA and RNA, which function in cell–cell communication. When C. thermocellum was grown in the presence of the MV fraction, the growth rate did not change.
However, when the MVs were lysed using the lipopeptide surfactin [41] the cell density of *C. thermocellum* had significantly increased at 24 h after the inoculation (Figure 1). The surfactin supplementation alone did not affect the *C. thermocellum* growth rate. The final growth yield in each sample had not changed significantly. These results suggest that the constituents in the MV fraction could promote the growth rate of *C. thermocellum*.

![Figure 1](image-url)
Figure 1. *C. thermocellum* growth stimulation by the MV constituents. *C. thermocellum* was cultured in CTFUD medium for 24 h with the supplementation of water, the MV fraction, or the surfactin-supplementation alone did not affect the *C. thermocellum* growth rate (Figure 2a). Mukamolova et al. purified the resuscitation promoting factor (Rpf) from the broth of the Gram-positive bacterium, *Micrococcus luteus*. The purified Rpf promoted the growth of this bacterium as well as *Mycobacterium avium*, *M. bovis*, *M. kansasii*, *M. smegmatis*, and *M. tuberculosis* [42]. Genes homologous to the *rpf* gene were found to be widespread in a number of *Mycobacterium* species, as well as in Gram-positive bacteria with a high GC content, such as *Corynebacterium gultamicum* and *Streptomyces rimosus*. The Rpf protein shows peptidoglycan degradation activity [43]. Shah et al. reported that muropeptide fragments released from the peptidoglycan of the Gram-positive bacterium, *B. subtilis*, stimulate the germination of bacterial spores. Stauroporine, which inhibits related eukaryotic kinases in bacteria, blocks muropeptide-dependent bacterial spore germination [44]. We evaluated the effect of stauroporine on *C. thermocellum* growth with cell-free *B. subtilis* broth, however no significant inhibition was observed.

We further evaluated the *C. thermocellum* growth promotion effect of the broth of *B. subtilis* genome deletion mutants [38]. All the mutants, especially six mutants in which the *pdp-rocR* genomic region, were deleted (MGB723, MGB773, MGB822, MGB834, MGB860, MGB874) promoted *C. thermocellum* growth by accelerating the growth rate (Figure 2b, Table S1). Subsequently, we evaluated the *C. thermocellum* growth promotion effect of 100 *B. subtilis* mutants in which single genes within the *pdp-rocR* genomic region were deleted under a *trpC2* gene deletion background (Table S2) [39]. We did not find *B. subtilis* mutants that promoted *C. thermocellum* growth more than *trpC2* strain as the parent strain. Contrary to our expectation, the effect of 23 *B. subtilis* mutants was significantly lower than that of the parent strain (Figure 2c).
Among these 23 genes, the functions of several genes have been experimentally evaluated. The *asnH* operon, which comprises *yxbB, yxbA, yxbN, asnH*, and *yxaM*, might be involved in the biosynthesis of asparagine [45]. The *iolJ, iolG, iolE, iolC, iolB*, and *iolR* genes in the *iolABCDEFGHII* and *iolRS* operon are responsible for *myo*-inositol catabolism involving multiple and stepwise reactions [46–48]. We observed a slight growth inhibition of *C. thermocellum* in the presence of *myo*-inositol, however this required a high concentration (1 mg/mL) of *myo*-inositol (Figure S2). YydF is predicted to be an exported and modified peptide that has antimicrobial and/or signaling properties [49,50]. YxaL, which contains a repeated pyrrolo-quinoline quinone (PQQ) domain that forms a beta-propeller structure, interacts with the DNA helicase PcrA in *B. subtilis* [51]. Kim et al. reported that treatment of *Arabidopsis thaliana* and *Oryza sativa* L. seeds with 1 mg/L purified YxaL was effective in improving root growth [52]. PQQ, which was first recognized as an enzyme cofactor in bacteria, displays bioactivities for various eukaryotes and prokaryotes. For many bacterial species, PQQ has growth stimulation effect and serves as a cofactor for a special class of dehydrogenases/oxidoreductases [53]. PQQ has been described as an essential growth factor for various microbes [54–56]. We observed a slight *C. thermocellum* growth promotion effect by PQQ. This effect was not enough to explain the effect of *B. subtilis* broth (Figure S3). More than 50 proteins are involved in *B. subtilis* spore coat assembly. Of these, YxeE is an inner spore coat protein [57,58]. *ahlpC* encodes thiol-specific peroxidase that plays a role in protecting cells against oxidative stress by detoxifying peroxides [59]. Utilization of a hydroxamate siderophore, ferrioxamine, requires the FhuBGC ABC transporter together with a ferrioxamine-binding protein, YxeB [60]. A range of siderophores can act
as growth factors for various previously uncultured bacteria [61]. YxdK is assumed to be a subunit of the two-component sensor histidine kinase, with its potential cognate response regulator, YxdJ [62]. Co-cultivation with *B. subtilis* allows the growth of *Synechococcus leopoliensis* CCAP1405/1 on solid media. However, the *yxdK* deletion mutant reportedly loses this ability [63]. The *yxeK* gene, which encodes FAD-dependent monooxygenase, contributes to the metabolism of S-(2-succino)cysteine to cysteine [64].

3.3. Metabolome Analysis of the Constituents in *C. thermocellum* MV and *B. subtilis* Broth

We collected the constituents in *C. thermocellum* MVs and analyzed them using LC-MS/MS. Among the 534 detected peaks, the intensities of seven peaks were significantly higher in the fraction where MVs had been disrupted by surfactin compared to MVs not disrupted using surfactin (Table S3). The structure of five significantly detected compounds in surfactin-treated *C. thermocellum* MVs specimen can be estimated by MS/MS analysis (Table 1 and Table S5).

Table 1. The constituents in *C. thermocellum* MVs detected by LC-MS/MS analysis.

No.	Formula	Exact Mass	Name	Database	Database ID
3203	C₁₆H₃₁O₅N₁	253.241	EX-HR2		
3013	C₁₂H₂₂O₂	198.162	Ethyl 2-decenoate	UC2	HMDB0037329
	C₁₂H₂₂O₂	198.162	Ethyl 4-decenoate	UC2	HMDB0039220
	C₁₂H₂₂O₂	198.162	Methyl 9-undecenoate	UC2	HMDB0037305
	C₁₂H₂₂O₂	198.162	Methyl 10-undecenoate	UC2	HMDB0029585
	C₁₂H₂₂O₂	198.162	Allyl nonanoate	UC2	HMDB0029763
	C₁₂H₂₂O₂	198.162	cis-3-Hexenyl hexanoate	UC2	HMDB0033378
	C₁₂H₂₂O₂	198.162	2-Hexenyl hexanoate	UC2	HMDB0038924
	C₁₂H₂₂O₂	198.162	Hexyl 2E-hexenoate	UC2	HMDB0038269
	C₁₂H₂₂O₂	198.162	Hexyl 2-methyl-3-pentenoate	UC2	HMDB0040158
	C₁₂H₂₂O₂	198.162	Hexyl 2-methyl-4-pentenoate	UC2	HMDB0040163
	C₁₂H₂₂O₂	198.162	1-Ethenylhexyl butanoate	UC2	HMDB0037498
	C₁₂H₂₂O₂	198.162	2-Octenyl butyrate	UC2	HMDB0038081
	C₁₂H₂₂O₂	198.162	cis-4-Decenyl acetate	UC2	HMDB0032214
	C₁₂H₂₂O₂	198.162	Menthyl acetate	UC2	C0036314
	C₁₂H₂₂O₂	198.162	Rhodinyl acetate	UC2	HMDB0037186
	C₁₂H₂₂O₂	198.162	Citronellyl acetate	UC2	C0035564
	C₁₂H₂₂O₂	198.162	2-Dodecenoic acid	UC2	HMDB0010729
	C₁₂H₂₂O₂	198.162	4-dodecenoic acid	UC2	C0051284
	C₁₂H₂₂O₂	198.162	5-dodecenoic acid	UC2	HMDB0000529
	C₁₂H₂₂O₂	198.162	11-Dodecenoic acid	UC2	HMDB0032248
	C₁₂H₂₂O₂	198.162	5-dodecalactone	UC2	HMDB0037742
	C₁₂H₂₂O₂	198.162	gamma-Dodecalactone	UC2	C0030347
	C₁₂H₂₂O₂	198.162	epsilon-Dodecalactone	UC2	HMDB0038895
	C₁₂H₂₂O₂	198.162	alpha-Heptyl-gamma-valerolactone	UC2	HMDB0037813
	C₁₂H₂₂O₂	198.162	4-butyl-4-hydroxyoctanoic acid lactone	UC2	HMDB0036182
	C₁₂H₂₂O₂	198.162	2,6-Dimethyl-5-heptenal propyleneglycol acetal	UC2	HMDB0032235
	C₁₂H₂₂O₂	198.162	citral dimethyl acetal	UC2	HMDB0040361
An aliphatic compound with the chemical formula C$_{12}$H$_{22}$O$_2$ was specifically detected in surfactin-treated C. thermocellum MVs (Table 1). Cis-2-decenoic acid was reported to decrease persister formation and revert dormant cells to a metabolically active state. Wang et al. demonstrated that three medium-chain unsaturated fatty acid ethyl esters (ethyl trans-2-decenoate, ethyl trans-2-octenoate, and ethyl cis-4-decenoate) decreased persister formation in Escherichia coli, P. aeruginosa, and Serratia marcescens, suggesting that fatty acid ethyl esters disrupt bacterial dormancy [65].

Some aliphatic acids function as diffusible signal factors (DSFs). These include cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris and cis-2-dodecenoic acid from Burkholderia cenocepacia, among others [66]. DSFs are synthesized by and interact with a diverse group of microbes, including fungi, suggesting a broad conservation of cell-cell communication among these organisms [67–70]. Mutation of the DSF biosynthesis gene in B. cenocepacia results in substantially impaired growth in minimal medium [71]. Dean et al. demonstrated that Burkholderia DSF inhibits the formation and disperses Francisella biofilms. Furthermore, Burkholderia DSF was reported to upregulate the genes involved in iron acquisition in F. novicida, which increased siderophore production [72].

Subsequently, we compared the metabolites in the broth of B. subtilis trpC2 and trpC2 yxeJ (Figure 2). Among the 3150 detected peaks, the intensities of 40 peaks were significantly higher in the broth of B. subtilis trpC2 compared to that of trpC2 yxeJ (Table S4). The structures of 32 significantly detected compounds in B. subtilis trpC2 broth were estimated by MS/MS analysis (Table 2 and Table S5). Diverse peptides were detected in B. subtilis trpC2 broth. Nicotinamide reportedly enhances growth of both Gram-negative and Gram-positive bacteria, such as M. avium, Propionibacterium acnes, S. aureus, and B. macerans [73–76]. Indole-3-carboxaldehyde was shown to efficiently inhibit biofilm formation by Vibrio cholerae O1 [77]. The utilization of urocanic acid by Pseudomonas and Aeromonas strains has been reported [78,79]. Nopaline is a carbon and nitrogen source.
metabolized by *Agrobacterium*. 6-Paradol was reported to have significant anti-adhesive activity against *S. aureus* [80].

Table 2. The constituents in *B. subtilis trpC2* broth detected by LC-MS/MS analysis.

No.	Formula	Exact Mass	Name	Database	Database ID
1938	C₁₂H₂₂O₈N	309.142	4-O-beta-D-Glucopyranosylagomine	UC2	C00049954
1980	C₁₅H₂₃O₂₂S₂	445.233		EX-HR2	
453	C₁₄H₃₀O₆N₆	402.223		EX-HR2	
2242	C₁₂H₃₁O₄N₃	341.231	Diprotin A	UC2	C00018579
1607	C₂₅H₄₀O₇	452.277	Briarellin P	UC2	C00044586
799	C₁₀H₂₉O₂N₂S₂	248.119	Valyl-Methionine	UC2	HMDB0029133
1607	C₁₀H₂₉O₂N₂S₂	248.119	Methionyl-Valine	UC2	HMDB0028986
510	C₁₁H₂₂O₄N₄	274.164	Glutaminyllysine	UC2	HMDB0028802
2242	C₁₁H₂₂O₄N₄	274.164	Lysyl-Gamma-glutamate	UC2	HMDB0028965
960	C₂₁H₄₀O₃N₃P₃	443.238		EX-HR2	
2575	C₆H₁₃N₂P₂	213.058		EX-HR2	
2345	C₁₉H₂₅N₃O₅S	395.188	V1M1F1	Pep1000	
2536	C₂₅H₃₆O₅N₄	520.269	Lotusine F	UC2	C00027221
2536	C₂₅H₃₆O₅N₄	520.269	Nummularine S	UC2	C00029150
2237	C₃₃H₄₄O₃₁	616.288	Neoazedarachin A	UC2	C00039833
2633	C₂₃H₅₃O₁₂N₁P₂	599.320		EX-HR2	
2673	C₄₆H₆₇O₂₃N¹₃P₁S₁	854.491		EX-HR2	
1271	C₂₇H₄₄O₇	512.299	Butyrolactol B	UC2	C00016754
1271	C₂₇H₄₄O₇	512.299	Integristerone B	UC2	C00048431
1271	C₂₇H₄₄O₇	512.299	Platenolide B mycarose	UC2	C00018288
162	C₄H₄ON₂	122.048	Nicotinamide	UC2	C00000209
162	C₄H₄ON₂	122.048	2-Acetylpyrazine	UC2	HMDB0031861
1710	C₁₅H₂₄O₄N₄	324.180		EX-HR2	
211	C₄H₄O₃N	143.058	SQ 26517	UC2	C00018434
211	C₄H₄O₃N	143.058	Trimethadione	UC2	HMDB0014491
211	C₄H₄O₃N	143.058	6-Oxopiperidine-2-carboxylic acid	UC2	HMDB0061705
211	C₄H₄O₃N	143.058	5-ethyl-5-methyl-2,4-oxazolidinedione	UC2	HMDB0061082
211	C₄H₄O₃N	143.058	Vinylacetylglycine	UC2	HMDB0000894
211	C₄H₄O₃N	143.058	Methyl pyroglutamate	UC2	C00051578
1258	C₂₂H₆₆N₂₃P₃S₆	612.303		EX-HR2	
994	C₂₀H₃₃N₅O₈	471.233	G2[I;I]I[E1P1, G1A1V1E1P1, G1A1[I;I]I[D1P1, G1T2P2, A2V1D1P1, A1S1T1P2, V1E1Q1P1, [L;I]I]I]1Q1P1, [L;I]I]2E1N1P1	Pep1000	
655	C₁₆H₂₇N₃O₆	385.196	G3V1P1, G1A3P1, G1V1N1P1, A2Q1P1	Pep1000	
No.	Formula	Exact Mass	Name	Database	Database ID
-----	---------	------------	------	----------	-------------
1034	C₁₀H₁₆O₃N₂	212.116	Butabarbital	UC2	HMDB0014382
	C₁₀H₁₆O₃N₂	212.116	L-prolyl-L-proline	UC2	HMDB0011180
	C₁₀H₁₆O₃N₂	212.116	Butethal	UC2	HMDB0015442
457	C₃₂H₄₄O₅N₂S₁	572.328	EX-HR2		
2755	C₄H₇O	145.053	Indole-3-carboxaldehyde	UC2	C00000112
	C₄H₇O	145.053	2-Quinolone	UC2	C00044432
2680	C₆₇H₁₉₈O₉N₂S₅	1196.681	EX-HR2		
115	C₉H₆O₂N₂	138.043	4-Methoxylonchocarpin	UC2	HMDB0031338
	C₉H₆O₂N₂	138.043	2-Aminonicotinic acid	UC2	HMDB0061680
	C₉H₆O₂N₂	138.043	Urocanic acid	UC2	HMDB0062562
	C₆H₆O₂N₂	138.043	Nicotinamide N-oxide	UC2	HMDB0002730
2949	C₁₁H₁₂O	183.162	Tecostanin	UC2	C00001984
	C₁₁H₁₂O	183.162	Incarvilline	UC2	C00050294
1600	C₂₀H₂₅O₄N₂S₅	583.370	EX-HR2		
1727	C₁₇H₂₀O₄N₄	304.138	Nopaline	UC2	C00001548
526	C₃₁H₅₆O₁₄N₁₀P₂	734.345	EX-HR2		
3061	C₁₇H₂₅O₃	278.188	1-Acetoxy-3,15-epoxygymnomitrane	UC2	C00021889
	C₁₇H₂₅O₃	278.188	Litsealactone B	UC2	C00044889
	C₁₇H₂₅O₃	278.188	9beta-Acetoxy-10(14)-aromadendren-4beta-ol	UC2	C00021235
	C₁₇H₂₅O₃	278.188	Furoscrobiculin C	UC2	C00021531
	C₁₇H₂₅O₃	278.188	[S-[R *,S *-(E)]]-3,7,11,11-Tetramethylbicyclo[8.1.0]undeca-2,6-diene-4,5-diol 4-acetate	UC2	C00049252
	C₁₇H₂₅O₃	278.188	Panaxytriol	UC2	C00030923
	C₁₇H₂₅O₃	278.188	Panaxacol	UC2	HMDB0039251
	C₁₇H₂₅O₃	278.188	Parahigginol C	UC2	C00009500
	C₁₇H₂₅O₃	278.188	8alpha-Hydroxygymnomitrinylacetate	UC2	C00021248
	C₁₇H₂₅O₃	278.188	Lincomolide B	UC2	C00047968
	C₁₇H₂₅O₃	278.188	4alpha-Hydroxystrobilurin	UC2	C00021894
	C₁₇H₂₅O₃	278.188	4-{(4E)-3-hydroxydec-4-en-1-yl}-2-methoxyphenol	UC2	HMDB0137260
	C₁₇H₂₅O₃	278.188	Ro 09-1544	UC2	C00017230
In this study, we demonstrated that constituents in membrane vesicles significantly promoted the growth rate of \textit{C. thermocellum}. Additionally, the MV constituents with growth stimulation were described by LC-MS/MS analysis. These findings suggest that the constituents in membrane vesicles could promote \textit{C. thermocellum} growth, leading to improved efficiency of cellulosic biomass utilization.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2607/9/3/593/s1, Figure S1: MVs from \textit{C. thermocellum} and \textit{B. subtilis}. Figure S2: Effect of myo-inositol on \textit{C. thermocellum} growth. Figure S3: Effect of pyrrolo-quinoline quinone on \textit{C. thermocellum} growth. Table S1: Genotypes of \textit{B. subtilis} genome deletion mutants. Table S2: \textit{B. subtilis} single gene deletion mutants used in this study. Table S3: Intensities of detected peaks in the MV fraction of \textit{C. thermocellum} by LC-MS/MS. Table S4: Intensities of the detected peaks in cell-free \textit{B. subtilis trpC2} broth by LC-MS/MS. Table S5: Structures of constituents detected by LC-MS/MS in this study.

Author Contributions: Conceptualization, investigation, methodology, writing, review, editing, project administration, funding acquisition, S.I.; investigation, methodology, review, Y.T.; conceptualization, review. S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by Japan Society for the Promotion of Science KAKENHI (grant number JP18K18218), Foundation of Public Interest of Tatematsu, Steel Foundation for Environmental Protection Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in insert article or supplementary material here.

Acknowledgments: We would like to thank Satoru Ogawa, Mie University, for his technical support in electron microscopic observations.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Koeck, D.E.; Pechtl, A.; Zverlov, V.V.; Schwarz, W.H. Genomics of cellulolytic bacteria. *Curr. Opin. Biotechnol.* 2014, 29, 171–183. [CrossRef] [PubMed]
2. Tindall, B.J. The names *Hungateiclostridium* Zhang et al. 2018, *Hungateiclostridium thermocellum* (Viljoen et al. 1926) Zhang et al. 2018, *Hungateiclostridium cellulolyticum* (Patel et al. 1980) Zhang et al. 2018, *Hungateiclostridium aldrichii* (Yang et al. 1990) Zhang et al. 2018, *Hungateiclostridium alkaliscellosus* (Zhilina et al. 2006) Zhang et al. 2018, *Hungateiclostridium clariflavum* (Shiratori et al. 2009) Zhang et al. 2018, *Hungateiclostridium straminisolsvens* (Kato et al. 2004) Zhang et al. 2018 and *Hungateiclostridium saccincola* (Koeck et al. 2016) Zhang et al. 2018 contravene Rule 51b of the International Code of Nomenclature of Prokaryotes and require replacement names in the genus *Acetivibrio* Patel et al. 1980. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 3927–3932. [CrossRef]
3. Izquierdo, J.A.; Pattathil, S.; Guseva, A.; Hahn, M.G.; Lynd, L.R. Comparative analysis of the ability of Clostridium clariflavum strains and *Clostridium thermocellum* to utilize hemicellulose and unpretreated plant material. *Biotechnol. Biofuels* 2014, 7, 136. [CrossRef]
4. Ichikawa, S.; Nishida, A.; Yasui, S.; Karita, S. Characterization of lignocellulose particles during lignocellulose solubilization by *Clostridium thermocellum*. *Biosci. Biotechnol. Biochem.* 2017, 81, 2028–2033. [CrossRef]
5. Paye, J.M.; Guseva, A.; Hammer, S.K.; Gjersing, E.; Davis, M.F.; Davison, B.H.; Olstad, J.; Donohoe, B.S.; Nguyen, T.Y.; Wyman, C.E.; et al. Biological lignocellulose solubilization: Comparative evaluation of biocatalysts and enhancement via cotreatment. *Biotechnol. Biofuels* 2016, 9, 8. [CrossRef]
6. Holwerda, E.K.; Thorne, P.G.; Olson, D.G.; Amador-Noguez, D.; Engle, N.L.; Tschaplinski, T.J.; van Dijken, J.P.; van Dijken, J.P.; Lynd, L.R. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. *Biotechnol. Biofuels* 2016, 9, 116. [CrossRef] [PubMed]
7. Tian, L.; Papanek, B.; Olson, D.G.; Rydzak, T.; Holwerda, E.K.; Zheng, T.; Zhou, J.; Maloney, M.; Jiang, N.; Giannone, R.J.; et al. Simultaneous achievement of high ethanol yield and titer in *Clostridium thermocellum*. *Biotechnol. Biofuels* 2016, 9, 8. [CrossRef] [PubMed]
8. Sato, K.; Goto, S.; Yonemura, S.; Sekine, K.; Okuma, E.; Takagi, Y.; Hon-Nami, K.; Saiki, T. Effect of yeast extract and vitamin B (12) on ethanol production from cellulose by *Clostridium thermocellum* I-1-B. *Appl. Environ. Microbiol.* 1992, 58, 734–736. [CrossRef] [PubMed]
9. Argyros, D.A.; Tripathi, S.A.; Barrett, T.F.; Rogers, S.R.; Feinberg, L.F.; Olson, D.G.; Foden, J.M.; Miller, B.B.; Lynd, L.R.; Hogsett, D.A.; et al. High ethanol titers from cellulose by metabolically engineered thermophilic, anaerobic microbes. *Appl. Environ. Microbiol.* 2011, 77, 8288–8294. [CrossRef] [PubMed]
10. Lynd, L.R.; van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. *Curr. Opin. Biotechnol.* 2005, 16, 577–583. [CrossRef] [PubMed]
11. Mazzoli, R.; Lamberti, C.; Pessone, E. Engineering new metabolic capabilities in bacteria: Lessons from recombinant cellulolytic strategies. *Trends Biotechnol.* 2012, 30, 111–119. [CrossRef] [PubMed]
12. Olson, D.G.; McBride, J.E.; Shaw, A.J.; Lynd, L.R. Recent progress in consolidated bioprocessing. *Curr. Opin. Biotechnol.* 2012, 23, 396–405. [CrossRef] [PubMed]
13. Bayer, E.A.; Kenig, R.; Lamed, R. Adherence of *Clostridium thermocellum* to cellulose. *J. Bacteriol.* 1983, 156, 818–827. [CrossRef] [PubMed]
14. Lamed, R.; Setter, E.; Bayer, E.A. Characterization of a cellulose-binding, cellulase-containing complex in *Clostridium thermocellum*. *J. Bacteriol.* 1983, 156, 828–836. [CrossRef] [PubMed]
15. Bayer, E.A.; Belaich, J.P.; Shoham, Y.; Lamed, R. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. *Annu. Rev. Microbiol.* 2004, 58, 521–554. [CrossRef] [PubMed]
16. White, B.A.; Lamed, R.; Bayer, E.A.; Flint, H.J. Biomass utilization by gut microbiomes. *Annu. Rev. Microbiol.* 2014, 68, 279–296. [CrossRef] [PubMed]
17. Nataf, Y.; Yaron, S.; Stahl, F.; Lamed, R.; Bayer, E.A.; Scheper, T.H.; Sonenshein, A.L.; Shoham, Y. Cellodextrin and laminaribiose ABC transporters in *Clostridium thermocellum*. *J. Bacterial.* 2009, 191, 203–209. [CrossRef] [PubMed]
18. Prawitt Wong, P.; Waemukul, R.; Tachaipaikoon, C.; Pason, P.; Ratanaokhokchai, K.; Deng, L.; Sermphanasawadi, J.; Septhintrung, K.; Mori, Y.; Kosugi, A. Direct glucose production from lignocellulose using *Clostridium thermocellum* cultures supplemented with a thermostable β-glucosidase. *Biotechnol. Biofuels* 2013, 6, 184. [CrossRef] [PubMed]
19. Ichikawa, S.; Ogawa, S.; Nishida, A.; Kobayashi, Y.; Kurosawa, T.; Karita, S. Cellulosomes localize on the surface of membrane vesicles from the cellulolytic bacterium *Clostridium thermocellum*. *FEMS Microbiol. Lett.* 2019, 366. [CrossRef] [PubMed]
20. Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. *Nat. Rev. Microbiol.* 2015, 13, 620–630. [CrossRef] [PubMed]
21. Kim, J.H.; Lee, J.; Park, J.; Gho, Y.S. Gram-negative and Gram-positive bacterial extracellular vesicles. *Semin. Cell Dev. Biol.* 2015, 40, 97–104. [CrossRef] [PubMed]
22. Jiang, Y.; Kong, Q.; Roland, K.L.; Curtiss, R. Membrane vesicles of *Clostridium perfringens* type A strains induce innate and adaptive immunity. *Int. J. Med. Microbiol.* 2014, 304, 431–443. [CrossRef]
23. Lee, E.Y.; Choi, D.Y.; Kim, D.K.; Kim, J.W.; Park, J.O.; Kim, S.; Kim, S.H.; Desiderio, D.M.; Kim, Y.K.; Kim, K.P.; et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of *Staphylococcus aureus*-derived membrane vesicles. *Proteomics* 2009, 9, 5425–5436. [CrossRef]

24. Lee, J.H.; Choi, C.W.; Lee, T.; Kim, S.I.; Lee, J.C.; Shin, J.H. Transcription factor eB plays an important role in the production of extracellular membrane-derived vesicles in *Listeria monocytogenes*. *PLoS ONE* 2013, 8, e73196. [CrossRef]

25. Liao, S.; Klein, M.I.; Heim, K.P.; Fan, Y.; Bitoun, J.P.; Ahn, S.J.; Burne, R.A.; Koo, H.; Brady, L.J.; Wen, Z.T. *Streptococcus mutans* extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. *J. Bacteriol.* 2014, 196, 2355–2366. [CrossRef] [PubMed]

26. Olaya-Abril, A.; Prados-Rosales, R.; McConnell, M.J.; Martín-Peña, R.; González-Reyes, J.A.; Jiménez-Munguía, I.; Gómez-Gascón, L.; Fernández, J.; Luque-García, J.L.; García-Lidón, C.; et al. Characterization of protective extracellular vesicles produced by *Streptococcus pneumoniae*. *J. Proteom.* 2014, 106, 46–60. [CrossRef]

27. Rivera, J.; Cordero, R.J.; Nakouzi, A.S.; Frases, S.; Nicola, A.; Casadevall, A. *Bacillus anthracis* produces membrane-derived vesicles containing biologically active toxins. *Proc. Natl. Acad. Sci. USA* 2010, 107, 19002–19007. [CrossRef] [PubMed]

28. Schrepf, H.; Koebsch, I.; Walter, S.; Engelhardt, H.; Meschke, H. Extracellular *Streptomyces* vesicles: Amphorae for survival and defence. *Microb. Biotechnol.* 2011, 4, 286–299. [CrossRef]

29. Klieve, A.V.; Yokoyama, M.T.; Forster, R.J.; Ouwerkerk, D.; Bain, P.A.; Mawhinney, E.L. Naturally occurring DNA transfer system associated with membrane vesicles in *Ruminococcus* spp. of ruminal origin. *Appl. Environ. Microbiol.* 2005, 71, 4248–4253. [CrossRef]

30. Elhenawy, W.; Debely, M.O.; Feldman, M.F. Preferential packing of acidic glycosidases and proteases into *Bacteroides* outer membrane vesicles. *mbio* 2014, 5, e00909–e00914. [CrossRef]

31. Rakoff-Nahoum, S.; Coyne, M.J.; Comstock, L.E. An ecological network of polysaccharide utilization among human intestinal symbionts. *Curr. Biol.* 2014, 24, 40–49. [CrossRef] [PubMed]

32. Arntzen, M.; Vázquez-López, J.; Fernández-Reyes, J.A.; Jiménez-Munguía, I.; Gómez-Gascón, L.; Fernández, J.; Luque-García, J.L.; García-Lidón, C.; et al. Characterization of protective extracellular vesicles produced by *Streptococcus pneumoniae*. *J. Proteom.* 2014, 106, 46–60. [CrossRef]

33. Schertzer, J.W.; Boulette, M.L.; Whiteley, M. More than a signal: Non-signaling properties of quorum sensing molecules. *Trends Microbiol.* 2009, 17, 189–195. [CrossRef] [PubMed]

34. Biller, S.J.; Schubotz, F.; Ruggensack, S.E.; Thompson, A.W.; Summons, R.E.; Chisholm, S.W. Bacterial vesicles in marine ecosystems. *Science* 2014, 343, 183–186. [CrossRef]

35. Prados-Rosales, R.; Weinrick, B.C.; Piqué, D.G.; Jacobs, W.R.; Casadevall, A.; Rodriguez, G.M. Role for *Mycobacterium tuberculosis* membrane vesicles in iron acquisition. *J. Bacteriol.* 2014, 196, 1250–1256. [CrossRef]

36. Mori, Y. Characterization of a symbiotic cooluture of *Clostridium thermohydrodsulfuricum* YM3 and *Clostridium thermocellum* YM4. *Appl. Environ. Microbiol.* 1990, 56, 37–42. [CrossRef]

37. Morimoto, T.; Kadoya, R.; Endo, K.; Tohata, M.; Sawada, K.; Liu, S.; Ozawa, T.; Kodama, T.; Kakeshita, H.; Kageyama, Y.; et al. Enhanced recombinant protein productivity by genome reduction in *Bacillus subtilis*. *DNA Res.* 2008, 15, 73–81. [CrossRef]

38. Koo, B.M.; Kritikos, G.; Farelli, J.D.; Todor, H.; Tong, K.; Kimsey, H.; Wapinski, I.; Galardini, M.; Cabal, A.; Peters, J.M.; et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of *Staphylococcus aureus*-derived membrane vesicles. *Proteomics* 2009, 9, 5425–5436. [CrossRef]

39. Yoshida, K.I.; Shibayama, T.; Fujita, Y. Organization and transcription of the *nys*-inositol operon, *iol*, of *Bacillus subtilis*. *J. Bacteriol.* 1997, 179, 4591–4598. [CrossRef]

40. Yoshida, K.I.; Shibayama, T.; Aoyama, D.; Fujita, Y. Interaction of a repressor and its binding sites for regulation of the *Bacillus subtilis* isd divergon. *J. Mol. Biol.* 1999, 285, 917–929. [CrossRef]
Yoshida, K.; Yamaguchi, M.; Morinaga, T.; Kinehara, M.; Ikeuchi, M.; Ashida, H.; Fujita, Y. myo-Inositol catabolism in *Bacillus subtilis*. *J. Biol. Chem.* 2008, 283, 10415–10424. [CrossRef]

Butcher, B.G.; Lin, Y.P.; Helmann, J.D. The *ygdFGHJ* operon of *Bacillus subtilis* encodes a peptide that induces the LiaRS two-component system. *J. Bacteriol.* 2007, 189, 8616–8625. [CrossRef]

Popp, P.F.; Benjdia, A.; Strahl, H.; Berteau, O.; Mascher, T. The epipeptide YydF intrinsically triggers the cell envelope stress response of *Bacillus subtilis* and causes severe membrane perturbations. *Front. Microbiol.* 2020, 11, 151. [CrossRef]

Noirot-Gros, M.F.; Soultanas, P.; Wigley, D.B.; Ehrlich, S.D.; Noirot, P.; Petit, M.A. The beta-propeller protein YxaL increases the processivity of the PcrA helicase. *Mol. Genet. Genom.* 2002, 267, 391–400. [CrossRef] [PubMed]

Kim, Y.H.; Choi, Y.; Oh, Y.Y.; Ha, N.C.; Song, J. Plant growth-promoting activity of beta-propeller protein YxaL secreted from *Bacillus telegensis* strain GH1–13. *PloS ONE* 2019, 14, e0207968. [CrossRef] [PubMed]

Rucker, R.; Chowanadisai, W.; Nakano, M. Potential physiological importance of pyrroloquinoline quinone. *Altern. Med. Rev.* 2009, 14, 268–277. [PubMed]

Ameayama, M.; Shinagawa, E.; Matsushita, K.; Adachi, O. Growth stimulating substance for microorganisms produced by *Escherichia coli* causing the reduction of the lag phase in microbial growth and identity of the substance with pyrroloquinoline quinone. *Agric. Biol. Chem.* 1984, 48, 3099–3107. [CrossRef]

Ameayama, M.; Shinagawa, E.; Matsushita, K.; Adachi, O. Growth stimulating activity for microorganisms in naturally occurring substances and partial characterization of the substance for the activity as pyrroloquinoline quinone. *Agric. Biol. Chem.* 1985, 49, 699–709.

Shimao, M.; Yamamoto, H.; Ninomiya, K.; Hato, N.; Adachi, O.; Ameayama, M.; Sakazawa, C. Pyrroloquinoline quinone as an essential growth factor for a poly (vinyl alcohol)-degrading symbiont, *Pseudomonas sp*. VM15C. *Agric. Biol. Chem.* 1984, 48, 2873–2876. [CrossRef]

Imamura, D.; Kuwana, R.; Takamatsu, H.; Watabe, K. Localization of proteins to different layers and regions of *Bacillus subtilis* spore coats. *J. Bacteriol.* 2010, 192, 518–524. [CrossRef]

Kuwana, R.; Takamatsu, H.; Watabe, K. Expression, localization and modification of YxeE spore coat protein in *Bacillus subtilis*. *J. Biochem.* 2007, 142, 681–689. [CrossRef] [PubMed]

Antelmann, H.; Engelmann, S.; Schmid, R.; Hecker, M. General and oxidative stress responses in *Bacillus subtilis*: Cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. *J. Bacteriol.* 1996, 178, 6571–6578. [CrossRef] [PubMed]

Ollinger, J.; Song, K.B.; Antelmann, H.; Hecker, M.; Helmann, J.D. Role of the Fur regulon in iron transport in *Bacillus subtilis*. *J. Bacteriol.* 2006, 188, 3664–3673. [CrossRef]

D’Onofrio, A.; Crawford, J.M.; Stewart, E.J.; Witt, K.; Gavrish, E.; Epstein, S.; Clardy, J.; Lewis, K. Siderophores from neighboring organisms promote the growth of uncultured bacteria. *Chem. Biol.* 2010, 17, 254–264. [CrossRef] [PubMed]

Pietiäinen, M.; Gardemeister, M.; Mecklin, M.; Leskelä, S.; Sarvas, M.; Kontinen, V.P. Cationic antimicrobial peptides elicit a complex stress response in *Bacillus subtilis* that involves ECF-type sigma factors and two-component signal transduction systems. *Microbiology* 2005, 151, 1577–1592. [CrossRef]

Hayashi, S.; Itoh, K.; Suyama, K. Genes of *Bacillus subtilis* 168 that support growth of the cyanobacterium, *Synechococcus leopoliensis* CCAP1405/1 on agar media. *Microbiol. Microcosm.* 2009, 2, 749–852. [CrossRef]

Niehaus, T.D.; Folz, J.; McCarty, D.R.; Cooper, A.J.L.; Moraga Amador, D.; Fiehn, O.; Hanson, A.D. Identification of a metabolic disposal route for the oncometabolite. *J. Biol. Chem.* 2018, 293, 8255–8263. [CrossRef] [PubMed]

Wang, M.; Fang, K.; Hong, S.M.C.; Kim, I.; Jang, I.S.; Hong, S.H. Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of *Escherichia coli* via antitoxin HipB. *Appl. Microbiol. Biotechnol.* 2018, 102, 8511–8524. [CrossRef] [PubMed]

Ryan, R.P.; Dow, J.M. Communication with a growing family: Diffusible signal factor (DSF) signaling in bacteria. *Trends Microbiol.* 2011, 19, 145–152. [CrossRef]

Boon, C.; Deng, Y.; Wang, L.H.; He, Y.; Xu, J.L.; Fan, Y.; Pan, S.Q.; Zhang, L.H. A novel DSF-like signal from *Burkholderia cepacia* interferes with *Candida albicans* morphological transition. *ISME J.* 2008, 2, 27–36. [CrossRef]

Davies, D.G.; Marques, C.N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. *J. Bacteriol.* 2009, 191, 1393–1403. [CrossRef]

Deng, Y.; Boon, C.; Eberl, L.; Zhang, L.H. Differential modulation of *Burkholderia cepacia* virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. *J. Bacteriol.* 2009, 191, 7270–7278. [CrossRef]

Twomey, K.B.; O’Connell, O.J.; McCarthy, Y.; Dow, J.M.; O’Toole, G.A.; Plant, B.J.; Ryan, R.P. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of *Pseudomonas aeruginosa*. *ISME J.* 2012, 6, 939–950. [CrossRef]

Deng, Y.; Wu, J.; Eberl, L.; Zhang, L.H. Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the *Burkholderia cepacia* complex. *Appl. Environ. Microbiol.* 2010, 76, 4675–4683. [CrossRef]

Dean, S.N.; Chung, M.C.; van Hoek, M.L. Burkholderia diffusible signal factor signals to *Francisella novicida* to disperse biofilm and increase siderophore production. *Appl. Environ. Microbiol.* 2015, 81, 7057–7066. [CrossRef] [PubMed]

Ferguson, D.A.; Cummins, C.S. Nutritional requirements of anaerobic coryneforms. *J. Bacteriol.* 1978, 135, 858–867. [CrossRef] [PubMed]

Greenstein, R.J.; Su, L.; Brown, S.T. Growth of *M. avium* subspecies paratuberculosis in culture is enhanced by nicotinic acid, nicotinamide, and α and β nicotinamide adenine dinucleotide. *Dig. Dis. Sci.* 2011, 56, 368–375. [CrossRef]
75. Iandolo, J.J.; Clark, C.W.; Bluhm, L.; Ordal, Z.J. Repression of Staphylococcus aureus in associative culture. *Appl. Microbiol.* 1965, 13, 646–649. [CrossRef] [PubMed]
76. Sacks, L.E.; Thompson, P.A. Germination requirements of *Bacillus macerans* spores. *J. Bacteriol.* 1971, 105, 739–746. [CrossRef]
77. Rajalaxmi, M.; Beema Shafreen, R.; Iyer, P.M.; Sahaya Vino, R.; Balamurugan, K.; Pandian, S.K. An in silico, in vitro and in vivo investigation of indole-3-carboxaldehyde identified from the seawater bacterium *Marinomonas* sp. as an anti-biofilm agent against *Vibrio cholerae* O1. *Biofouling* 2016, 32, 439–450. [CrossRef]
78. Kaznowski, A. Identification of *Aeromonas* strains of different origin to the genomic species level. *J. Appl. Microbiol.* 1998, 84, 423–430. [CrossRef]
79. Zhang, X.X.; Chang, H.; Tran, S.L.; Gauntlett, J.C.; Cook, G.M.; Rainey, P.B. Variation in transport explains polymorphism of histidine and urocanate utilization in a natural *Pseudomonas* population. *Environ. Microbiol.* 2012, 14, 1941–1951. [CrossRef]
80. El Dine, R.S.; Elfaky, M.A.; Asfour, H.; El Halawany, A.M. Anti-adhesive activity of *Aframomum melegueta* major phenolics on lower respiratory tract pathogens. *Nat. Prod. Res.* 2019, 35, 539–547. [CrossRef]