Early-Onset Fulminant Sepsis in a Preterm Neonate due to *Streptococcus gallolyticus*: A Case Report and Literature Review

Chandler Williams, DNP1 Rishika P. Sakaria, MBBS1 Massroor Pourcyrous, MD1

1 Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee

Address for correspondence Rishika Sakaria, MBBS, FAAP, Division of Neonatal-Perinatal Medicine, The University of Tennessee Health Science Center, 853 Jefferson Avenue, Suite 201, Memphis, TN 38103 (e-mail: rsakaria@uthsc.edu; rishika.sakaria@gmail.com).

Abstract

Streptococcus gallolyticus is an uncommon cause of neonatal infections. We describe the first case of fulminant lethal neonatal sepsis due to *S. gallolyticus* reported in literature. Our patient was an extremely low birth weight premature infant born to a mother with prolonged rupture of amniotic membranes and chorioamnionitis. We also review the cases of neonatal *S. gallolyticus* infections reported in literature. Fifty-eight percent neonatal *S. gallolyticus* infections presented in the first week of life. Importantly, *S. gallolyticus* meningitis is more commonly reported with early-onset infections compared with group B streptococcal meningitis, which is more common with late-onset infections. *Streptococcus gallolyticus* should be included in differential for neonatal sepsis, particularly in the presence of meningitis in the first week of life. Most cases are sensitive to penicillin; however, cases of reduced sensitivity to penicillin have also been reported.

Keywords

► neonatal sepsis
► *Streptococcus bovis*
► *Streptococcus gallolyticus*
► *Streptococcus pasteurianus*
► neonatal meningitis
► chorioamnionitis
► preterm

Streptococcus gallolyticus is a group of bacteria that belong to the nonenterococcal group D streptococci previously known as *S. bovis/S. equinus* complex (SBSEC).1 *Streptococcus gallolyticus* has been reported as a cause of adult gastrointestinal tract infections and infective endocarditis for decades but is an uncommon cause of neonatal infections.1,2 However, over the past decade, there have been increasing reports of neonatal sepsis, meningitis, and intrauterine infections due to *S. gallolyticus*. Here, we report an unusual case of a preterm, extremely low birth weight (ELBW) male neonate who developed fulminant early-onset sepsis due to *S. gallolyticus*. To the best of our knowledge, no prior cases of fulminant lethal sepsis due to *S. gallolyticus* have been reported to date. We also review the cases of neonatal *S. gallolyticus* infections reported in literature.

Case Presentation

A male infant was born at 26 weeks of gestation to a 25-year-old G5 P5 mother with good prenatal care. Pregnancy was complicated by chronic hypertension and premature prolonged rupture of membranes 12 days before delivery for which the mother received 7 days of latency antibiotics (48 hours of intravenous ampicillin followed by 5 days of oral amoxicillin and a single dose of azithromycin) that was completed 5 days prior to delivery. She developed chorioamnionitis prior to delivery for which she received one dose of ampicillin.

Mother had a history of trichomonas infection during pregnancy which was treated. Her other prenatal infectious laboratories including group B streptococcal (GBS) culture

© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical Publishers, Inc., 333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
were negative. The infant was born via spontaneous vaginal delivery with a birth weight of 950 g. In the delivery room, the infant required positive pressure ventilation and intubation. APGAR scores were 6, 3, and 4 at 1, 5, and 10 minutes, respectively. The infant was then admitted to the neonatal intensive care unit (NICU).

The infant’s arterial cord blood gas pH was 6.96 with a pCO2 of 76 mm Hg and a base excess of -15.9 mmol/L. His venous cord blood gas pH was 7.17 with a pCO2 of 42 mm Hg and a base excess of -12.7 mmol/L.

The infant had mixed metabolic and respiratory acidosis on admission (pH 6.9) and required high ventilator support. The respiratory acidosis improved with ventilator adjustments and surfactant administration; however, he had persistent metabolic acidosis. He also had leukopenia (white blood cell count 1.5 × 10^3/mm^3), thrombocytopenia (platelet count was 89 × 10^3/mm^3), and an elevated C-reactive protein level of 21.1 mg/L. Blood culture was sent on admission and the infant was prescribed ampicillin and gentamicin.

Around 4.5 hours of life, the infant became hypotensive and rapidly deteriorated despite fluid resuscitation and receiving pressors (dopamine and dobutamine). A repeat blood culture and tracheal aspirate were obtained, but the infant died at 5.5 hours of life after he remained unresponsive to resuscitative efforts.

Parents declined an autopsy. Both blood cultures resulted positive for gram-positive coccii within 12 hours of incubation, which were further identified as S. galolyticus using MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) biotyper. Unfortunately, genotyping was not possible in our laboratory, and hence, we were unable to further classify this pathogen. The tracheal aspirate culture was negative. Placental pathology confirmed acute chorioamnionitis of the fetal membranes.

Discussion

This is the first case of S. galolyticus in an ELBW infant leading to fulminant sepsis. Streptococcus galolyticus has been often used interchangeably with S. bovis in literature. Over the years, SBSEC has undergone numerous taxonomical changes. Based on their ability to ferment mannitol, S. bovis has been classified in the older literature into two biotypes, mannitol-fermenting biotype I and mannitol nonfermenting biotype II. Biotype II has been divided further into subtypes 1 and 2 based on starch and bile-esculin hydrolysis and trehalose acidification. The most recent taxonomic classification uses genetic methodology to classify SBSEC into four species S. galolyticus (further divided into subsp. galolyticus, pasteurianus, and macedonicus), S. alactolyticus, S. infantarius (divided into subsp. infantarius and colt), and S. equinus.

Fig. 1 shows a simplified taxonomical classification of S. bovis.

Fig. 1 Taxonomical classification of S. bovis: This figure shows the correlation between the previously used biochemical/phenotypic classification and the new genetic classification of nonenterococcal group D Streptococcus. Reconstructed based on the description by Dekker and Lau, Schlegel et al, and Jans et al. Methods used for analysis include MALDI-TOF (proteomic-based), 16s rRNA, sodA, and groEL sequencing (single-gene-based) and/or whole genome sequencing. Streptococcus equinus and S. macedonicus likely belong to biotype II/1 based on phenotypic data. Phenotypic data for S. alactolyticus is variable, and hence, biotypic classification is not possible. BE, bile-esculin; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; SBSEC, Streptococcus bovis/Streptococcus equinus complex; SG, Streptococcus galolyticus; subsp., subspecies.
Streptococcus gallolyticus is prevalent in the bowel flora in humans. In adults, *S. gallolyticus* subsp. *gallolyticus* is commonly associated with infective endocarditis, bacteremia, gastrointestinal infections including hepatobiliary infections, and colon cancer. 1–3 *Streptococcus pasteurianus* has been commonly associated with meningitis.1 Although uncommon, *S. gallochyticus* subsp. *gallochyticus* and *S. pasteurianus* have emerged as important causes of neonatal sepsis in recent years. *Streptococcus gallochyticus* subsp. *macedonicus* has not been associated with infections in humans. *Streptococcus infantarius* has been associated with non-colon cancers and is an uncommon cause of adult sepsis. Only two cases of neonatal infections with *S. infantarius* subsp. *coli* (also known as *S. lutetiensis*) have been reported in literature.6

To review the cases of neonatal invasive *S. gallochyticus* infections reported in the English literature, we performed a MEDLINE search and found 66 cases of neonates (<28 days old) reported to be infected by *S. bovis*. Twenty-nine cases were classified only as *S. bovis* and four cases as *S. bovis* biotype II. Infections with *S. pasteurianus* (*S. bovis* biotype II/2) have been much more commonly reported compared with that with *S. infantarius* (*S. bovis* biotype II/1) in both neonates and adults, thus making it likely that the cases without further identification beyond *S. bovis*/*S. bovis* biotype II belong to the *S. gallochyticus* species. However, due to lack of certainty, these cases (n = 33) were not included in this review. Of the remaining 33 cases, two cases were reported as *S. lutetiensis* infection and one case as *S. alactolyticus* infection and hence were also not included. We analyzed the remaining 30 cases of neonatal *S. gallochyticus* infections reported in literature before November 30, 2021, and the present case (n = 31) (Table 1).2,7–21 Of the 30 cases reported in literature, only 10 cases were reported from the United States.10,13,14,21

Fifty-eight percent of the patients presented during the first week of life. There was a slightly higher incidence of early-onset (<6 days) (n = 17; 55%) and late-onset infections (>6 days) (n = 14; 45%) due *S. gallochyticus*. Gestational age was unknown for one infant and 12 of 30 (40%) infants were premature (gestational age 26–36 weeks). Presenting symptoms included respiratory distress, apnea, metabolic acidosis, fever, lethargy, abdominal distension, loose stools, congestion, poor feeding, and seizures. In five cases, further identification beyond *S. gallochyticus* was not performed. When classification was available, *S. pasteurianus* was more common than *S. gallochyticus* subsp. *gallochyticus* (25 vs. 1). Meningitis was reported in 19 patients (18 due to *S. pasteurianus* and 1 due to *S. gallochyticus* subsp. *gallochyticus*). Hede et al13 hypothesized that *S. gallochyticus* infection in neonates follows the pattern of early- and late-onset GBS diseases. However, unlike GBS infection, *S. gallochyticus* infection was associated with a higher rate of meningitis (63%), and early-onset *S. gallochyticus* infection was more likely to be associated with meningitis compared with late-onset infection (76 vs. 43%).22 Meningitis was more commonly reported in term neonates (16 of 18; 89%) compared with preterm neonates (2 of 12; 17%). In one patient, bacteremia was associated with infective endocarditis, and in another patient with liver abscess.2,18 Park et al15 reported a case of urinary tract infection due to *S. pasteurianus* in the absence of pyuria.

Most patients were treated with a penicillin and/or a third-generation cephalosporin and the duration of antimicrobial therapy ranged from 7 days to 8 weeks (median: 14 days; average: 15 days). Although all patients had a severe clinical course, most patients had a favorable outcome. All patients, except this case, survived the acute infection. One patient had to be rehospitalized 2 weeks postdischarge due to partially treated meningitis but had no long-term neurological sequelae.15 Only one patient with meningitis was reported to have long-term neurological deficits.13

This is the first reported case of fulminant lethal sepsis due to *S. gallochyticus*. Our patient was an ELBW preterm infant with history of prolonged rupture of amniotic membranes (12 days) and acute chorioamnionitis which may have resulted in the particularly severe course in this case. The exact route of *S. gallochyticus* infection in neonates remains uncertain. It is presumed that like GBS, *S. gallochyticus* infection occurs either vertically via transvaginal transmission or postnatal horizontal transmission.13 Fikar and Levy23 reported positive rectal and vaginal cultures from the patient’s mother 2 weeks following the onset of symptoms in a neonate with *S. bovis* meningitis. In another report, mother of the infant with *S. pasteurianus* meningitis grew *Escherichia coli* and Group D *Streptococcus* in the urine culture collected on fourth postpartum day.12 A case of intrapartum infection and postpartum bacteremia without neonatal infection has also been reported.24 Floret et al25 and Saegeman et al16 reported clusters of neonatal infections due to *S. pasteurianus* in their respective NICUs, likely due to horizontal transmission from health care workers. In one case series, one of the four patients had history of maternal contact with chicken who died 1 week prior to patient’s birth; however, postmortem testing of chickens was not performed.10

Similar to GBS, *S. gallochyticus* is often sensitive to penicillin; however, cases with reduced susceptibility to penicillin have been reported including two cases of neonatal meningitis due to *S. pasteurianus*.3,8,10 This organism is also susceptible to aminoglycosides, cephalosporin, and vancomycin, and high rates of resistance to quinolones, macrolides, and tetracyclines have been reported.3

Conclusion

Streptococcus gallochyticus must be considered an important differential for neonatal sepsis particularly, in the presence of meningitis in the first week of life when maternal GBS is negative. Appropriate identification and classification of the organism are important to further understand the epidemiology of neonatal infections due to *S. gallochyticus*. Culture sensitivity should be performed to determine appropriate antibiotic for treatment due to the increasing rates of reduced susceptibility to penicillin. Although no mortality was reported in previous cases of neonatal *S. gallochyticus* infections, this case shows that *S. gallochyticus* in ELBW infants may be lethal.
Reference	Number of reported pts	GA (wk)	Delivery type	Birthweight (kg)	Reference Number of pts reported	Birthweight (kg)	GA (wk)	Delivery type	Age of presentation	Diagnosis	Site(s) organism isolated from	Clinical symptoms	Organism	Final antibiotic therapy course	Final disposition
Gavin et al (2003)	21	Term	Vaginal	3.925	1	Term	4	Vaginal	3 d	SG subsp. pasteurianus	Fever, seizures	Blood þ CSF	Bacteremia, meningitis	Survived	
Onoyama et al (2009)	7	Term	Vaginal	3.19	1	Term	4	Vaginal	4 d	SG subsp. pasteurianus	Fever, decreased activity	Blood þ CSF	Bacteremia, meningitis	Survived	
Khan (2009)	8	Not reported	Not reported	Not reported	3	Not reported	3	Not reported	Blood þ CSF	CSF	Bacteremia, meningitis	Penicillin and gentamicin/C2	Survived		
Floret et al (2010)	9	Not reported	Preterm	Not reported	3	Not reported	3	Not reported	Blood þ CSF	CSF	Bacteremia	Penicillin/C2	Survived		
Klatte et al. (2012)	4	Not reported	Term	Not reported	3	Not reported	2 – 13 d	Vaginal	Blood þ CSF	CSF	Bacteremia	Penicillin/C2	Survived		
Nagamatsu et al (2012)	1	Term	Vaginal	3.092	1	Term	4	Vaginal	3 d	SG subsp. pasteurianus	Fever, seizures	Blood þ CSF	Cefotaxime/C2	Survived	
Thimmann et al. (2012)	1	Term	Vaginal	3.188	1	Term	3	Vaginal	3 d	SG subsp. pasteurianus	Fever, lethargy, poor feeding, decreased oral intake, abdominal distension	Blood þ CSF	Cefotaxime/C2	Survived	
Hede et al (2015)	2 (twins)	32	C-section	Not reported	2	Not reported	2 – 13 d	Vaginal	Blood þ CSF	CSF	Bacteremia	Penicillin/C2	Survived		
Williams et al. (2016)	1	Term	Vaginal	3.05	1	Term	3	Vaginal	4 d	SG subsp. gallolyticus	Fever, lethargy, irritability, cold extremities	Blood þ CSF	Cefotaxime/C2	Survived	
Nagamatsu et al (2012)	1	Not reported	Term	Not reported	3	Not reported	36	Vaginal	3 d	SG subsp. pasteurianus	Fever, lethargy, cold extremities	Blood þ CSF	Cefotaxime/C2	Survived	
Park et al. (2015)	1	Not reported	Term	3.6	1	Term	3	Vaginal	27 d	SG subsp. pasteurianus	Fever, lethargy, cold extremities	Blood þ CSF	Cefotaxime/C2	Survived	
Saegeman et al. (2016)	2	Not reported	Term	3.25 – 4.19	2	Not reported	2 – 24 h	Vaginal	Blood þ CSF	CSF	Bacteremia	Penicillin/C2	Survived		
Table 1 (Continued)

Reference	GA (wk)	Birthweight (g)	Age of presentation	Symptoms	Sepsis, meningitis	Organism	Sites of infection	Final antibiotic therapy	Number of neonates reported	Delivery type	Diagnosis	Final disposition
Chen et al (2021)	36	1300–1500	2–5 d	Respiratory distress, fever	Sepsis	*Streptococcus pasteurianus*	Ampicillin	Survived	1	Vaginal	Sepsis	Died at 5 h
Geetha et al (2021)	26	1200–1500	3–5 d	Respiratory distress, fever	Sepsis	*Streptococcus pasteurianus*	Ampicillin	Survived	4	Vaginal	Sepsis	Died at 5 h
Williams et al.	36	1300–1500	2–5 d	Respiratory distress, fever	Sepsis	*Streptococcus pasteurianus*	Ampicillin	Survived	1	Vaginal	Sepsis	Died at 5 h
Saegeman V, Cossey V, Loens K, Schuermans A, Glaser P.	36	1300–1500	2–5 d	Respiratory distress, fever	Sepsis	*Streptococcus pasteurianus*	Ampicillin	Survived	4	Vaginal	Sepsis	Died at 5 h

Conflict of Interest
None declared.

References

1. Dekker JP, Lau AF. An update on the *Streptococcus bovis* group: classification, identification, and disease associations. J Clin Microbiol 2016;54(07):1694–1699
2. Geetha O, Cherie C, Natalie TWH, Merchant K, Chien CM, Chandran S. *Streptococcus galloxyticus* subspecies *pasteurianus* causing early onset neonatal sepsis complicated by solitary liver abscess in a preterm infant. Access Microbiol 2021;3(03):000200
3. Pompilio A, Di Bonaventura G, Gherardi G. An overview on *Streptococcus bovis/Streptococcus equinus* complex isolates: identification to the species/subspecies level and antibiotic resistance. Int J Mol Sci 2019;20(03):480
4. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A. Reappraisal of the taxonomy of the *Streptococcus bovis/Streptococcus equinus* complex and related species: description of *Streptococcus galloxyticus* subsp. *galloxyticus* nov., *S. galloxyticus* subsp. *macedonicus* nov., and *S. galloxyticus* subsp. *pasteurianus* subsp. nov. Int J Syst Evol Microbiol 2003;53(Pt 3):631–645
5. Jans C, Meile L, Lacroix C, Stevens MJ. Genomics, evolution, and molecular epidemiology of the *Streptococcus bovis/Streptococcus equinus* complex (SBSEC). Infect Genet Evol 2015;33:419–436
6. Yu AT, Shapiro K, Beneri CA, Wilks-Gallo LS. *Streptococcus lutensis* neonatal meningitis with empyema. Access Microbiol 2021;3(09):000264
7. Onoyama S, Ogata R, Wada A, Saito M, Okada K, Harada T. Neonatal bacterial meningitis caused by *Streptococcus galloxyticus* subsp. *pasteurianus*. J Med Microbiol 2009;58(Pt 9):1252–1254
8. Khan A. Relative penicillin resistance in *Streptococcus bovis*. A case of neonatal meningitis. J Paediatr Child Health 2009;45(7-8):474–475
9. Floret N, Bailly P, Thouerez M, et al. A cluster of bloodstream infections caused by *Streptococcus galloxyticus* subspecies *pasteurianus* that involved 5 preterm neonates in a university hospital during a 2-month period. Infect Control Hosp Epidemiol 2010;31(02):194–196
10. Klatte JM, Claridge JE III, Bratcher D, Selvarangan R. A longitudinal case series description of meningitis due to *Streptococcus galloxyticus* subsp. *pasteurianus* in infants. J Clin Microbiol 2012;50(01):57–60
11. Nagamatsu M, Takagi T, Ohyanagi T, et al. Neonatal meningitis caused by *Streptococcus galloxyticus* subsp. *pasteurianus*. J Infect Chemother 2012;18(02):265–268
12. Thatrimontrichai A, Chanvit P, Janjindamai W, Dissaneevate S, Maneenil G. Early onset neonatal bacterial meningitis caused by *Streptococcus galloxyticus* subsp. *pasteurianus*. Southeast Asian J Trop Med Public Health 2012;43(01):145–151
13. Hede SV, Olarte L, Chandramohan L, Kaplan SL, Hulten KG. *Streptococcus galloxyticus* subsp. *pasteurianus* infection in twin infants. J Clin Microbiol 2015;53(04):1419–1422
14. Kennedy GJ, Kavanagh KL, Cripe PJ, Steele RW. An unlikely cause of neonatal sepsis. Clin Pediatr (Phila) 2015;54(10):1017–1020
15. Park JW, Eun SH, Kim EC, Seong MW, Kim YK. Neonatal invasive *Streptococcus galloxyticus* subsp. *pasteurianus* infection with delayed central nervous system complications. Korean J Pediatr 2015;58(01):33–36
16. Saegeman V, Cossey V, Loens K, Schuermans A, Glaser P. *Streptococcus galloxyticus* subsp. *pasteurianus* infection in a neonatal intensive care unit. Pediatr Infect Dis J 2016;35(11):1272–1275
17. Yamamura Y, Mihara Y, Nakatani K, Nishiguchi T, Ikebe T. Unexpected ventriculitis complication of neonatal meningitis caused by *Streptococcus galloxyticus* subsp. *pasteurianus*: a case report. Jpn J Infect Dis 2018;71(01):68–71

Abbreviations: CSF, cerebrospinal fluid; GA, gestational age; GBS, group B streptococcus; S., Staphylococcus; SG, Streptococcus gallolyticus; subsp., subspecies; UTI, urinary tract infection.
18 Nguyen MT, Idriss S, Guzman E, De Oliveira ER. Neonatal meningitis, endocarditis, and pneumonitis due to *Streptococcus galloyticus* subsp. *pasteurianus*: a case report. BMC Pediatr 2019;19(01):265

19 Chen WC, Lee PI, Lin HC, et al. Clustering of *Streptococcus galloyticus* subspecies *pasteurianus* bacteremia and meningitis in neonates. J Microbiol Immunol Infect 2021;54(06):1078–1085

20 Sim JY, Wang LW, Chow JC, et al. *Streptococcus galloyticus* - a potentially neglected pathogen causing neonatal sepsis not covered by routine group B *Streptococcus* screening. J Microbiol Immunol Infect 2021;54(06):1190–1192

21 Gavin PJ, Thomson RB Jr, Horng SJ, Yogev R. Neonatal sepsis caused by *Streptococcus bovis* variant (biotype II/2): report of a case and review. J Clin Microbiol 2003;41(07):3433–3435

22 Puopolo KM, Lynfield R, Cummings JJ. COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES. Management of Infants at Risk for Group B Streptococcal Disease. [published correction appears in *Pediatrics* 2019 Oct;144(4):e20192350] Pediatrics 2019;144(02):e20191881

23 Fikar CR, Levy J. *Streptococcus bovis* meningitis in a neonate. Am J Dis Child 1979;133(11):1149–1150

24 Binghuai L, Wenjun S, Xinxin L. Intrauterine infection and post-partum bacteraemia due to *Streptococcus galloyticus* subsp. *pasteurianus*. J Med Microbiol 2013;62(Pt 10):1617–1619