Elevated Nitric Oxide/Peroxynitrite Theory of Multiple Chemical Sensitivity: Central Role of N-Methyl-D-Aspartate Receptors in the Sensitivity Mechanism

Martin L. Pall
School of Molecular Biosciences, Washington State University, Pullman, Washington, USA

The elevated nitric oxide/peroxynitrite and the neural sensitization theories of multiple chemical sensitivity (MCS) are extended here to propose a central mechanism for the exquisite sensitivity to organic solvents apparently induced by previous chemical exposure in MCS. This mechanism is centered on the activation of N-methyl-D-aspartate (NMDA) receptors by organic solvents producing elevated nitric oxide and peroxynitrite, leading in turn to increased stimulating of and hypersensitivity of NMDA receptors. In this way, organic solvent exposure may produce progressive sensitivity to organic solvents. Pesticides such as organophosphates and carbamates may act via muscarinic stimulation to produce a similar biochemical and sensitivity response. Accessory mechanisms of sensitivity may involve both increased blood–brain barrier permeability, induced by peroxynitrite, and cytochrome P450 inhibition by nitric oxide. The NMDA hyperactivity/hypersensitivity and excessive nitric oxide/peroxynitrite view of MCS provides answers to many of the most puzzling aspects of MCS while building on previous studies and views of this condition.

Key words: excitatory neurotransmitters, glutamate, long-term potentiation, muscarinic, organic solvents, oxidative stress, reactive nitrogen species, retrograde messenger, synaptic transmission.

Environ Health Perspect 111:1461–1464 (2003). doi:10.1289/ehp.5935 available via http://dx.doi.org/[Online 9 April 2003]

Cases of multiple chemical sensitivity (MCS) are characterized by a series of puzzling features described by multiple research groups and individuals (Ashford and Miller 1998; Cullen 1987; Johnson 2000; Miller and Mitzel 1995; Rea 1992; Sorg 1999; Ziem and McTamney 1997). Although they are typically preceded by and presumably induced by exposure of the individual to one or more chemicals, there is no accepted view as to how those chemicals may act in inducing MCS. Chemical sensitivity appears to be progressive, increasing with increasing chemical exposure; however, there is no accepted mechanism by which such progressive sensitization may occur. The symptoms reported to be induced by chemical exposure in MCS patients are similar to those characteristic of chronic fatigue syndrome (CFS), but no plausible mechanism has been proposed as to how those symptoms are generated by such chemical exposure. Sensitivity to a wide variety of chemicals has been reported in MCS, most notably volatile organic solvents and organophosphates and other acetylcholineesterase inhibitors, but it is unclear why these types of compounds produce such sensitivity. Sensitivity is chronic, apparently decreasing slowly over time when MCS individuals avoid chemical exposure; however, there is no indication that this leads to a complete recovery for the condition, leaving the puzzle of why MCS is chronic. There are multiple overlaps between MCS and three related conditions—CFS, fibromyalgia (FM), and posttraumatic stress disorder (PTSD)—with both overlapping symptoms and the number of people being diagnosed with more than one of these disorders (Pall 2001b, 2002b). However, it is not clear why these overlaps occur.

In this article, I discuss a proposed etiologic mechanism that provides attractive solutions to each of the above-described puzzles. Such solutions do not allow us to infer that this proposal is necessarily correct, but they do suggest that we should look at it carefully. This mechanism was discussed previously in a different context (Pall 2002b) and goes to the heart of the most central puzzle of MCS: How can previous chemical exposure generate the exquisite chemical sensitivity reported in MCS, often two or more orders of magnitude greater sensitivity than is seen in normal people? Such sensitivity is shown, for example, when an MCS patient reports sensitivity to the perfume worn by someone walking by them, but the perfume wearer herself shows little sensitivity. Cullen (1987) suggested a sensitivity of two orders of magnitude as a diagnostic feature of MCS. The previous lack of any physiologically plausible mechanism for generating such exquisite sensitivity has been one of the weak points of the CFS literature.

The exquisite chemical sensitivity mechanism proposed here is not only an extension of the previous elevated nitric oxide/peroxynitrite theory of MCS, but also shares the central tenets of the neural sensitization theory of MCS etiology (Bell et al. 1992, 1996, 1999) that were the focus of the recent New York Academy of Science volume on neural sensitization and MCS (Bell and Sorg 2001).
caused partly by variation in tissue distribution of the underlying biochemistry.

Fusion of the Nitric Oxide/Peroxynitrite Theory with the Neural Sensitization Theory of MCS

As discussed above, neural sensitization was first proposed by Bell et al. (1992, 1996, 1998, 1999) as a central mechanism in MCS, and such neural sensitization is produced by the process of long-term potentiation (LTP). LTP has been most studied in the hippocampus, where it involves stimulation of the N-methyl-d-aspartate (NMDA) receptors. It is well known that NMDA stimulation produces increased levels of both nitric oxide and peroxynitrite (Haley et al. 1990; Lafon-Cazal et al. 1993; Murray et al. 1991; Reynolds and Hastings 1995). It may be immediately seen from this that the neural sensitization theory overlaps with the nitric oxide/peroxynitrite theory. Furthermore, nitric oxide has an important role in LTP, acting as a retrograde messenger (Bliss and Collingridge 1993; Prast and Phillips 2001; Snyder 1992), increasing the release of neurotransmitters including glutamate, which in turn stimulate the NMDA receptors. Thus, we have a potential vicious cycle in the nervous system, with excessive NMDA activity producing excessive nitric oxide leading to excessive NMDA activity (Figure 1). Furthermore, the peroxynitrite product of nitric oxide depletes ATP pools via two different mechanisms (Boczkowski et al. 2001; Szabo and Billiar 1999), and when cells containing NMDA receptors become ATP depleted, these receptors become hypersensitive to stimulation (Novelli et al. 1988; Schultz et al. 1997; Turski and Turski 1993). Thus, there is potential for additional input into the proposed vicious cycle, with nitric oxide producing increased NMDA stimulation and peroxynitrite producing increased NMDA receptor sensitivity (Figure 1).

Normally, LTP is thought to be triggered on a highly selective basis in learning and memory, increasing the sensitivity and activity of specific synapses. If chemical stimulation produces increased nitric oxide and peroxynitrite in large regions of the brain, the diffusion of these compounds over several cell diameters from their sites of synthesis could lead to massive neural hyperactivity and hypersensitivity.

So how may chemicals feed into these proposed mechanisms? As discussed above, two classes of chemicals are implicated in the initiation of cases of MCS; organophosphate and carbamate pesticides and hydrophobic organic solvents. The pesticides here are known acetylcholinesterase inhibitors, leading to increased levels of acetylcholine. Acetylcholine stimulation of muscarinic receptors will produce increases in nitric oxide, as discussed earlier (Pall 2002b; Pall and Satterlee 2001), thus feeding into the proposed NMDA mechanism (Figure 1). There are three suggested roles for hydrophobic organic solvents; two are predicted to produce increases in nitric oxide, and one is predicted to lead to decreased ATP synthesis (Pall 2002b), any of which may lead into the proposed mechanism (Figure 1, arrows with question marks). Thus, although the target(s) of action of hydrophobic organic solvents is uncertain, several plausible targets are consistent with the overall mechanism discussed above.

The major evidence supporting the above-described mechanism includes 10 types of evidence supporting the nitric oxide/peroxynitrite theory of MCS (Pall 2002b; Pall and Satterlee 2001); 10 “remarkable similarities” between neural sensitization and MCS (Ashford and Miller 1998); and five types of evidence suggesting NMDA hyperactivity in MCS (Pall 2002b).

Two accessory mechanisms are also suggested to be involved in MCS, one involving nitric oxide and the other peroxynitrite:nitric oxide inhibition of cytochrome P450 activity and peroxynitrite-mediated increased permeability of the blood–brain barrier (BBB) (Pall 2002b; Pall and Satterlee 2001). Each of these is expected to lead to increased chemical sensitivity through decreased metabolism of hydrophobic chemicals and increased accessibility of chemicals to the central nervous system (CNS), respectively. Consequently, after initiation of increased NMDA receptor activity, nitric oxide levels, and peroxynitrite levels by organic solvent exposure, four mechanisms are expected to act synergistically to produce the exquisite chemical sensitivity reported in MCS:

- Increased neurotransmitter (glutamate) release stimulated by nitric oxide acting as a retrograde messenger
- Increased NMDA sensitivity, produced by peroxynitrite via postsynaptic ATP depletion and consequent increased sensitivity of NMDA receptors
- Nitric oxide inhibition of cytochrome P450s, leading to decreased degradation of organic solvents
- Peroxynitrite-mediated increased BBB permeability, leading to increased access of chemicals to the CNS.

It should be noted that Abou-Donia et al. (2001) reported increased permeability of the BBB in an animal model of MCS.

Relation to Other Previous Hypotheses of MCS

As mentioned above, the NMDA/nitric oxide/peroxynitrite view of MCS is derived partly from both the elevated nitric oxide/peroxynitrite and the neural sensitization theories of MCS. However, it may also be compatible with evidence supporting two other views of MCS.

The nitric oxide/peroxynitrite biochemistry proposed to underlie the current mechanism is basically inflammatory, i.e., induced by inflammatory cytokines and found at the sites of inflammation in many overtly inflammatory conditions. Therefore, the mechanism proposed above may be related to and possibly linked to the neurogenic inflammation mechanism suggested by Meggs and coworkers to be involved in MCS (Bascom et al. 1997; Meggs 1993, 1995). Evidence for a causal role of nitric oxide in such neurogenic inflammation has been reported by several groups (Kajekar et al. 1995; Ruocco et al. 2001; Yonehara and Yoshimura 1999), providing important support for this view. Furthermore, mast cell degranulation, an important aspect of the neurogenic inflammation mechanism, is reported to be stimulated by nitric oxide and/or peroxynitrite (Deschoolmeester et al. 1999; Forsyth et al. 2001; Kawauski et al. 2001; Konopka et al. 2001). These observations provide some support for the view that a possible role of neurogenic inflammation in MCS may be seen as a consequence of elevated nitric oxide and peroxynitrite.

An additional type of aberrant biochemistry that may be implicated in MCS concerns evidence for elevated levels of porphyrin pathway intermediates and their products, as well as possible low levels of porphyrin pathway enzymes (Downey 2001; Matthews 1998; Morton 1997; Ziem and McTamney 1997; see also Hahn and Bonkovsky 1997). These observations have led to the proposal that
MCS may be a form of porphyria. My comments here will be limited to two of the more puzzling features of the porphyrin/MCS observations—apparently several intermediates of the porphyrin pathway tend to accumulate in MCS, and several of the pathway biosynthetic enzymes tend to be low (Downey 2001; Matthews 1998; Morton 1997; Ziem and McTamney 1997). This pattern is distinguished from what may be viewed as classical porphyria produced either by mutation of one of the genes encoding a biosynthetic enzyme in the porphyrin pathway or in lead toxicity (Jacob et al. 1999), each of which are limited to lowered activity of a single enzyme in the pathway. Is there a mechanism whereby elevated nitric oxide/peroxynitrite might be expected to lead to a deficiency in several porphyrin biosynthetic enzymes? There may be such a mechanism. Most porphyrin synthesis is located in either the liver or blood-forming tissue, and blocks in either of these may lead to symptoms of porphyria. Reports show that nitric oxide leads to loss of some of these porphyrin biosynthetic enzymes (Kim et al. 1995; Rafferty et al. 1996), suggesting that nitric oxide may interact with a regulatory mechanism regulating the synthesis of these enzymes. One specific mechanism that may be particularly relevant to the blood-forming cells is the control of the initiation factor eIF2 by phosphorylation, which is stimulated by nitric oxide, thus leading to decreased protein synthesis, presumably including the porphyrin biosynthetic enzymes (Uma et al. 2001). The nitric oxide/eIF2 mechanism cited here may be accompanied by a more specific mechanism. The last enzyme in the porphyrin biosynthetic pathway is ferrochelatase, an iron-sulfur protein (Daiyle et al. 2000), and such iron-sulfur proteins are inactivated by peroxynitrite. It is possible, therefore, that a combination of mechanisms involving nitric oxide and peroxynitrite may lead to lowered levels of several porphyrin biosynthetic enzymes, leading, in turn, to accumulation of porphyrin precursors and their side products.

Evidence supporting four different views of MCS centered on nitric oxide/peroxynitrite, neural sensitization, neurogenic inflammation, and porphyrin pathway aberrations may be compatible with the NMDA/nitric oxide/peroxynitrite view presented here, and this may be a way of integrating a variety of observations into a single view of this condition.

Explanations for Puzzling Features of MCS

This hypothesis involving excessive nitric oxide and peroxynitrite and NMDA hyperactivity provides answers to many of the most puzzling questions about MCS:

• How is the exquisite sensitivity to chemicals produced in MCS? Previous chemical exposure produces increases in nitric oxide and peroxynitrite in the nervous system, leading to four interacting and synergistic mechanisms of sensitivity: a) nitric oxide inhibition of cytochrome P450 activity; b) peroxynitrite-mediated increased permeability of the BBB; c) nitric oxide stimulation of neurotransmitter (glutamate) release, leading to increase NMDA activity; and d) peroxynitrite-mediated ATP depletion and consequent increased sensitivity of NMDA receptors.

• How do chemicals initiate MCS and exacerbate the symptoms characteristic of MCS? Such chemicals act via two neurotransmission systems, both of which increase nitric oxide levels, with organic solvents acting through the nitric oxide/peroxynitrite, and NMDA receptors and pesticides including organophosphates and carbamates acting through the muscarinic receptors. These same neurotransmitter systems may act both in initiation of MCS and in upregulating the symptoms of MCS.

• Why is MCS chronic? The multiple positive feedback loops are proposed to act such that once peroxynitrite levels are elevated, they may remain elevated. Synaptic changes produced by LTP are also long-lasting and therefore these may produce chronic effects as well.

• How does chemical exposure generate the characteristic symptoms of MCS? These symptoms are similar to the chronic symptoms of CFS and may be generated by the same mechanisms proposed for CFS—by elevated levels of nitric oxide, peroxynitrite, and other associated biochemical changes (Pall 2000b).

Why does MCS overlap with other conditions, including CFS, FM, and PTSD? These may all be proposed to have an identical central etiologic mechanism involving elevated nitric oxide/peroxynitrite, albeit with somewhat different tissue distribution, leading to some variation in symptoms.

• How should MCS be treated? In addition to avoidance of chemical exposure, treatments might include the use of antioxidants to lower the consequences of peroxynitrite elevation and lower action of the positive feedback loops; drugs and nutrients to lower the activity of NMDA and muscarinic receptors; and oxygen and other therapies that could possibly improve mitochondrial function and ATP generation.

Hypothesis-Driven Research on MCS

Our knowledge of MCS has been mainly a product of observational studies by a number of dedicated physicians who described in detail the case histories of thousands of patients. These studies have raised many of the puzzling issues discussed above. However, unlike most areas of modern medicine, there has been very little in the way of hypothesis-driven research, largely because of a lack of any overarching hypothesis or theory susceptible to experimental test. The lack of such a theory has also led some to disregar the inferences drawn from careful observational studies. Various predictions of the proposed nitric oxide/peroxynitrite/NMDA view of CFS are testable, and it is my hope that they will help motivate hypothesis-driven research to test some of these predictions.

As stated by Alfred North Whitehead, mathematician and philosopher, “Seek simplicity but distrust it.” We may have made a start in seeking here, but have not yet proceeded to distrust.

REFERENCES

Abou-Doria MB, Goldstein LB, Dechovskia A, Bullman S, Jones KH, Herrick EA, et al. 2001. Effects of daily dermal application of DEET and permethrin alone and in combination, on sensoromotor performance, blood-brain barrier, and blood-testis barrier in rats. J Toxicol Environ Health A 62:523–541.
Ashford NA, Miller CS. 1998. Chemical Exposures: Low Levels and High Stakes. 2nd ed. New York:John Wiley and Sons.
Basscom R, Meggs WJ, Frampton M, Hudnell K, Kilburn K, Kobal G, et al. 1997. Neurogenic inflammation: with additional discussion of central and perceptual integration of nonneurogenic inflammation. Environ Health Perspect 105(suppl 2):531–537.
Bell IR, Baldwin CM, Schwartz GE. 1998. Illness from low levels of environmental chemicals: relevance to chronic fatigue syndrome and fibromyalgia. Am J Med 105(A):745–755.
Bell IR, Miller CS, Schwartz GE. 1992. An allatory-limitic model of multiple chemical sensitivity syndrome: possible relationships to kindling and effective spectrum disorders. Biol Psychiatry 32:218–242.
Bell IR, Schwartz GE, Baldwin CM, Hardin EE. 1996. Neural sensitization and physiological markers in multiple chemical sensitivity. Regul Toxicol Pharmacol 24:539–547.
Bell IR, Sorg BA, eds. 2001. The Role of Neural Plasticity in Chemical Intolerance. Ann NY Acad Sci 923.
Bell IR, Szarek MJ, Dicensor DR, Baldwin CM, Schwartz GE, Bostom RR. 1999. Patterns of waking EEG spectral power in chemically intolerant individuals during repeated chemical exposures. Int J Neurosci 96:138–144.
Bliss TV, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.
Bozczkowski J, Lisdero CL, Lanone S, Carreras MC, Aubier M, Poderoso JJ. 2001. Peroxynitrite-mediated mitochondrial dysfunction. Biol Signals Rep 6:46–90.
Cullen MR, ed. 1987. Workers with multiple chemical sensitivities. Occup Med 24(4):355–366.
Daiyle HA, Dailey TA, Wu C-K, Medlock AE, Wang X-F, Rose JP, et al. 2000. Ferrochelatase at the millennium: structures, mechanisms and [2Fe-2S] clusters. Cell Mol Life Sci 57:1909–1926.
Deschoomesselaer ML, Easmond NC, Dearnan RJ, Kimber I, Basketter DA, Coleman JW. 1999. Reciprocal effects of interleukin-4 and interferon-γ on immunoglobulin E-mediated mast cell degranulation: a role for nitric oxide but not peroxynitrite or cyclic guanosine monophosphate. Immunology 95:138–144.
Downey D. 2001. Porphyrina: the road not traveled. Med Hypotheses 56:73–76.
Dudley DL. 1998. MCS: trial by science. In: Defining Multiple Chemical Sensitivity (Matthews BL, ed). Jefferson, NC:McFarland & Company, 9–26.
Forsyth P, Gilchrist M, Kulk M, Bellus AD. 2001. Mast cells and nitric oxide: control of production, mechanisms of response. Int Immunopharmacol 1:1523–1541.
Hahn M, Bankovsky H. 1997 Multiple chemical sensitivity syndrome and porphyria. A note of caution and concern. Arch Intern Med 157:281–285.
Hales JE, Sullivan AF, Dickerson AH. 1990. Evidence for spinal A-beta-methyl-D-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226.
Jacob K, Egel E, Gross U, Doss MD. 1999. Investigations on the neurochemical basis of severe chronic pain in patients with fibromyalgia. Pain 81:27–37.
Knight GL, Snyder RL, Sullivan AF. 1999. A new model of a testable clinical chemical sensitivity syndrome: multiple chemical sensitivity syndrome. J Neuroimmunol 92:159–163.
Lee RM, Appel BA, Jones KH, McLean J, Annalora K, Pall M. 1999. Analysis of DEET and permethrin alone and in combination, on the rat blood-brain barrier. J Toxicol Environ Health A 61:145–157.
formation of urinary coproporphyrin isomers I-IV in 5-
aminolevulinic acid dehydratase deficiency porphyria, acute lead intoxication and after oral 5-aminolevulinic acid loading. Clin Biochem 32:119–123.

Johnson A, ed. 2000. Casualties of Progress. Brunswick, ME: MCS Information Exchange.

Kajekar R, Moore PK, Brain SD. 1995. Essential role for nitric oxide in neurogenic inflammation in rat cutaneous microcirculation. Evidence for an endothelium-independent mechanism. Circ Res 76:441–447.

Kawachi S, Sugamoto S, Furuikawa O, Mimaki H, Takeuchi K. 2001. Stimulation by nitric oxide of gastric secretion in belfrug fundic mucosa. J Physical Pharmaco 52:93–105.

Kim YN, Bergonia HA, Muller C, Pitt DR, Watkins WD, Lancaster JR. 1995. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 270:5710–5713.

Konopka TE, Barker JE, Bamford TL, Guida E, Anderson RL, Stewart AG. 2000. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res 61:3182–3187.

Lafon Cazal M, Culcassi M, Gaven F, Pietri S, Bockaert J. 1993. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar cells. Neuropharmacology 32:1259–1266.

Matthews BL. 1998. Porphyria, cytochrome P-450, and toxic exposure. In: Defining Multiple Chemical Sensitivity (Matthews BL, ed.) Jefferson, NC: McFarland & Company, 31–58.

Murray CW, Cowan A, Larson AA. 1991. Neurokinin and NMDA receptors of NMDA-induced cell death in cerebellar cells. Neuropharmacology 32:1259–1266.

Novelli A, Reilly JA, Lysko PG, Henneberry RC. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels become reduced. Brain Res 451:205–212.

Pall ML. 2000a. Elevated peryoxynitrite as the cause of chronic fatigue syndrome. Med Hypotheses 54:115–125.

———. 2000b. Elevated peryoxynitrite as the cause of chronic fatigue syndrome: Other inducers and mechanisms of symptom generation. J Chronic Fatigue Syndr 7(4):45–58.

———. 2001a. Cobalamin used in chronic fatigue syndrome therapy is a nitric oxide scavenger. J Chronic Fatigue Syndr 8(2):39–44.

———. 2001b. Common etiology of posttraumatic stress disorder, fibromyalgia, chronic fatigue syndrome and multiple chemical sensitivity via elevated nitric oxide/peroxynitrite. Med Hypotheses 57:139–145.

———. 2002a. Levels of the nitric oxide synthase product, citrulline, are elevated in sera of chronic fatigue syndrome patients. J Chronic Fatigue Syndr 10(3/4):37–42.

———. 2002b. NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity. FASEB J 16:1407–1417.

Pal M, Satterlee JD. 2001. Elevated nitric oxide/peroxynitrite mechanism for the common etiology of multiple chemical sensitivity, chronic fatigue syndrome and posttraumatic stress disorder. Ann NY Acad Sci 933:323–329.

Prast H, Phillips A. 2001. Nitric oxide as a modulator of neuronal function. Prog Neurobiol 64:51–68.

Rafferty SP, Dozeman JB, Johnson RS, Lipstein G. 2003. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor protein expression. J Biol Chem 278:14875–14883.

Sorensen J, Bengtsson A, Backman E, Henriksson KG, Bengtsson M. 1995. Pain analysis in patients with fibromyalgia. Effects of intravenous morphine, lidocaine, and ketamine. Scand J Rheumatol 24:360–365.

Sorg BA. 1999. Multiple chemical sensitivity: potential role for neural sensitization. Crit Rev Neurobiol 13:283–316.

Szabo C, Billiar TR. 1999. Novel roles of nitric oxide in hemorrhagic shock. Shock 12:1–9.

Turski L, Turski WA. 1993. Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neurodegeneration. Exp Brain Res 99:1064–1072.

Um S, Yoo BG, Mats RL. 2001. The heme-regulated eukaryotic initiation factor 2α kinase. A potential regulatory target for control of protein synthesis by diffusible gases. J Biol Chem 276:14875–14883.

Yonehara N, Yoshimura M. 1999. Effect of nitric oxide on substance P release from the peripheral endings of primary afferent neurons. Neurosci Lett 271:199–201.

Ziem G, McNammy J. 1997. Profile of patients with chemical injury and sensitivity. Environ Health Perspect 105(suppl 2):417–436.