STRONG AND SHIFTED STABILITY FOR THE COHOMOLOGY OF CONFIGURATION SPACES

BARBU BERCEANU AND MUHAMMAD YAMEEN

ABSTRACT. Homological stability for unordered configuration spaces of connected manifolds was discovered by Th. Church and extended by O. Randal-Williams and B. Knudsen: $H_i(C_k(M); \mathbb{Q})$ is constant for $k \geq f(i)$. We characterize the manifolds satisfying strong stability: $H^*(C_k(M); \mathbb{Q})$ is constant for $k \gg 0$. We give few examples of manifolds whose top Betti numbers are stable after a shift of degree.

CONTENTS

1. Introduction and statement of results 1
2. Weighted spectral sequences 5
3. Strong stability: odd dimensional manifolds 11
4. Strong stability: closed orientable even dimensional manifolds 11
5. Strong stability: open or non-orientable even dimensional manifolds 17
6. Shifted stability 19
7. Shifted stability: examples 22
References 30

1. INTRODUCTION AND STATEMENT OF RESULTS

For a topological space X we consider the k-points ordered configuration space $F_k(X)$ and the unordered configuration space $C_k(X)$ defined by

$$F_k(X) = \{(x_1, \ldots, x_k) \in X^k | x_i \neq x_j \text{ for } i \neq j\}, \quad C_k(X) = F_k(X)/S_k,$$

with the induced topology and quotient topology respectively.
One of the first results in the study of configuration spaces was the cohomological strong stability theorem of V. I. Arnold [1]: for $k \geq 2$

$$H^i(C_k(\mathbb{R}^2); \mathbb{Q}) = \begin{cases} \mathbb{Q}, & \text{if } i = 0, 1 \\ 0, & \text{if } i \geq 2. \end{cases}$$

The abelianization of Artin braid group is \mathbb{Z}; Arnold proved that higher cohomology groups are finite groups (they are trivial for $i \geq k$) and also he proved cohomological stability for the torsion part:

$$H^i(C_{2i-2}(\mathbb{R}^2); \mathbb{Z}) \cong H^i(C_{2i-1}(\mathbb{R}^2); \mathbb{Z}) \cong H^i(C_{2i}(\mathbb{R}^2); \mathbb{Z}) \cong \ldots$$

The isomorphisms (for k large depending on i)

$$H^i(C_k(M); \mathbb{Q}) \cong H^i(C_{k+1}(M); \mathbb{Q}) \cong H^i(C_{k+2}(M); \mathbb{Q}) \cong \ldots$$

were generalized for open manifolds by D. McDuff [24] and G. Segal [31]. Using representation stability, Th. Church [7] proved that

$$H^i(C_k(M); \mathbb{Q}) \cong H^i(C_{k+1}(M); \mathbb{Q}) \cong H^i(C_{k+2}(M); \mathbb{Q}) \cong \ldots$$

for $k > i$ and M a connected oriented manifold of finite type. This result was extended by O. Randal-Williams [27] and B. Kundsen [21].

We will define and study other stability properties of the rational cohomology of unordered configuration spaces of connected manifolds of finite type. Without a special mention, the (co)homology groups will have coefficients in \mathbb{Q}. For a manifold M of dimension n, its Betti numbers, its Poincaré polynomial and its total Betti number are defined by

$$\beta_i(M) = \dim_{\mathbb{Q}} H^i(M), \quad P_M(t) = \sum_{i=0}^{n} \beta_i(M) t^i, \quad \beta(M) = P_M(1).$$

The top Betti number $\beta_\tau(M)$ is the last non-zero Betti number of M, its cohomological dimension is $\text{cd}(M) = \tau$ and its q-truncated Poincaré polynomial contains the last q-Betti numbers:

$$P_{M}^{[q]}(t) = \beta_{\tau-q+1}(M) t^{\tau-q+1} + \ldots + \beta_\tau(M) t^{\tau}.$$

A space X has even cohomology if all its odd Betti numbers are zero, and a space Y has odd cohomology if all its positive even Betti numbers are zero (and it is path connected):

$$H^*(X) = H^{\text{even}}(X), \quad \text{respectively } \tilde{H}^*(Y) = H^{\text{odd}}(Y).$$

We say that a manifold M^{4m} is a homology projective plane if its Poincaré polynomial is $1 + t^{2m} + t^{4m}$.

Remark 1.1. There are classical results on topological spaces with three nonzero integral Betti numbers; see many example in the paper of J. Eells and N. Kupers "Manifolds which are like projective planes" [18]. In all of them m takes values 1, 2, 4. More rational projective planes are described in [26], [16], [20] and [33].
Some algebraic models for the configuration spaces are bigraded and this will give a bigrading on the cohomology of $C_k(M)$:

$$H^*(C_k(M)) = \bigoplus_{i \geq 0} H^i(C_k(M)), \quad H^i(C_k(M)) = \bigoplus_{j \geq 0} H^{i,j}(C_k(M))$$

and we will use the two-variables Poincaré polynomial

$$P_{C_k(M)}(t, s) = \sum_{i,j \geq 0} \dim \overline{H}^{i,j}(C_k(M)) t^i s^j = \sum_{i,j \geq 0} B_{i,j} t^i s^j$$

(of course we have $P_{C_k(M)}(1, 1) = P_{C_k(M)}(t, s)$).

We will prove a bigraded version of classical stability:

Theorem 1.2. For a manifold M^{2m} we have:

a) if $i \leq k$

$$H^i(C_k(M)) \cong H^{i+1}(C_{k+1}(M)) \cong H^{i+2}(C_{k+2}(M)) \cong \ldots$$

b) if $j \geq 1$ and $i \leq k + (2m - 2)j - 1$

$$H^{i,j}(C_k(M)) \cong H^{i,j}(C_{k+1}(M)) \cong H^{i,j}(C_{k+2}(M)) \cong \ldots$$

Here is our first definition:

Definition 1.3. A connected manifold satisfies the strong stability condition for its unordered configuration spaces $\{C_k(M)\}_{k \geq 1}$, with range r, if and only if the cohomology groups are eventually constant:

$$H^*(C_r(M)) \cong H^*(C_{r+1}(M)) \cong H^*(C_{r+2}(M)) \cong \ldots$$

In the literature there are few examples of manifolds satisfying this condition: \mathbb{R}^2-V. I. Arnold [1], \mathbb{R}^n-F. Cohen [9] (see also [28]), S^2-M. B. Sevryuk [32], S^n-P. Salvatore [29] (see also [28]), $\mathbb{C}P^2$-Y. Félix and D. Tanré [15] (see also [22]), $\mathbb{R}P^n$-B. Knudsen [21].

Remark 1.4. The (strong) stability property is missing in the torsion part of homology: E. Fadell and J. Van Buskirk [12] computed the first homology group of $C_k(S^2): \mathbb{Z}/(2k - 2)\mathbb{Z}$. Also D. B. Fuchs [17] proved that, for an arbitrary degree i, one can find a large k such that $H^{2i}(C_k(\mathbb{R}^2); \mathbb{Z})$ is non-zero, hence S^2 and \mathbb{R}^2 have not the strong stability property with integral cohomology.

The first results say the previous examples are essentially all manifolds with the strong stability property.

Theorem 1.5. A manifold of odd dimension has the strong stability property if and only if M has odd cohomology. In this case the range of stability is:

$$r = \begin{cases} 1, & \text{if } M \text{ is rationally acyclic}, \\ \beta(M) - 1, & \text{otherwise}. \end{cases}$$
Theorem 1.6. A closed oriented manifold of even dimension has the strong stability property if and only if M is a homology sphere or a homology projective plane and the ranges of stability are 3 and 4 respectively.

Corollary 1.7. A closed oriented manifold M has the strong stability property if and only if M is a homology sphere or a homology projective plane.

Various results and conjectures on stability of the top Betti number could be found in the literature: J. Miller and J. Wilson [25], Th. Church, B. Farb and A. Putman [8] or M. Maguire [23] and, recently, S. Galatius, A. Kupers and O. R. Williams [19]. Here is our second definition:

Definition 1.8. A connected manifold M satisfies the shifted stability condition for its unordered configuration spaces $\{C_k(M)\}_{k \geq 1}$, with range r, shift σ and length q ($r, \sigma, q \geq 1$), if and only if the q-truncated Poincaré polynomial is stable after a shift: for any $k \geq r$ we have

$$P_{C_{k+1}(M)}^{[q]}(t) = t^\sigma P_{C_k(M)}^{[q]}(t).$$

We give two examples, $\mathbb{CP}^1 \times \mathbb{CP}^1$ and \mathbb{CP}^3, where classical stability and shifted stability properties combined give the entire two variable Poincaré polynomials:

Proposition 1.9. The product of two projective lines, $\mathbb{CP}^1 \times \mathbb{CP}^1$, has the shifted stability property with range 8, shift 2 and length 5:

$$P_{C_{k+1}(\mathbb{CP}^1 \times \mathbb{CP}^1)}^{[5]}(t, s) = t^2 P_{C_k(\mathbb{CP}^1 \times \mathbb{CP}^1)}^{[5]}(t, s) \quad \text{for } k \geq 8.$$ More precisely, for $k \geq 8$, we have:

$$P_{C_k(\mathbb{CP}^1 \times \mathbb{CP}^1)}(t, s) = 1 + 2t^2 + 3t^4 + 2t^6 + 2t^8 + \ldots + 2t^{2k} +$$

$$+ s(2t^7 + 4t^9 + 5t^{11} + 4t^{13} + 4t^{15} + \ldots + 4t^{2k+1} + 2t^{2k+3}) +$$

$$+ s^2(t^{14} + 2t^{16} + 2t^{18} + \ldots + 2t^{2k+4}).$$

Proposition 1.10. The complex projective space, \mathbb{CP}^3, has the shifted stability property with range 8, shift 2 and length 6:

$$P_{C_{k+1}(\mathbb{CP}^3)}^{[6]}(t, s) = t^2 P_{C_k(\mathbb{CP}^3)}^{[6]}(t, s) \quad \text{for } k \geq 8.$$ More precisely, for $k \geq 8$, we have:

$$P_{C_k(\mathbb{CP}^3)}(t, s) = 1 + t^2 + 2t^4 + 2t^6 + 2t^8 + t^{10} + t^{12} + \ldots + t^{2k} +$$

$$+ s(t^{11} + 2t^{13} + 3t^{15} + 3t^{17} + 3t^{19} + 2t^{21} + 2t^{23} + \ldots + 2t^{2k+5} + t^{2k+7}) +$$

$$+ s^2(t^{24} + t^{26} + \ldots + t^{2k+12}).$$

More examples will be given in [4].

The computation of $H^*(C_k(M))$, using cohomology algebra of M, is easy in the odd dimensional case (see [5] and [15]):
Theorem 1.11. (C-F. Bödigheimer, F. Cohen, L. Taylor – Y. Félix, D. Tanré)
For a manifold M^{2m+1} we have
$$H^*(C_k(M)) = \text{Sym}^k(H^*(M)).$$

In the even dimensional case, the cohomology groups $H^*(C_*(M))$ are given by the
cohomology of a differential bigraded algebra $(\Omega^*(*) (V^*, W^*), \partial)$ introduced by Y. Félix
and J. C. Thomas [14] and extended by B. Knudsen [21] (the two graded vector spaces V^*, and W^*, and the differential ∂ depend on various cohomology groups of M and cohomology product):

Theorem 1.12. (Y. Félix, J. C. Thomas – B. Knudsen)
For a manifold M^{2m} we have
$$H^*(C_k(M)) \cong H^*(\Omega^*(k) (V^*, W^*), \partial).$$

We recall the definition of V^*, W^* and ∂ in Section 4, for a closed oriented manifold M^{2m}, and in Section 5, for an arbitrary even dimensional manifold. In Section 2 we introduce the algebraic tool to analyze Félix-Thomas model and Knudsen model, a sequence of weighted spectral sequences. As a first application we give the proof of Theorem 1.2 and an improved version of it. The proof of Theorem 1.5 is given in Section 3 and the proof of Theorem 1.6 in Section 5. Partial results for even dimensional manifolds, open or non-orientable, are presented in Section 5. In Section 6 we introduce three new notions of shifted stability and we describe their relations. Two necessary conditions for these shifted stability conditions are given. Section 7 contains stability properties of $\mathbb{C}P^1 \times \mathbb{C}P^1$ and $\mathbb{C}P^3$ and the proofs of Propositions 1.9 and 1.10.

2. Weighted spectral sequences

In this section we analyze algebraic properties of the differential bigraded algebra
$(\Omega^*(*) (V^*, W^*), \partial)$ introduced by Y. Félix and J. C. Thomas [14] and extended by B. Knudsen [21].

Let us introduced some notation. For a graded \mathbb{Q}-vector space $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ we will use the notation
$$A^\geq q = \bigoplus_{i \geq q} A^i, \quad A^{\text{even}} = \bigoplus_{i \in \mathbb{Z}} A^{2i}, \quad \tilde{A}^* = \bigoplus_{i \neq 0} A^i,$$
and similarly $A^{\leq q}$ and A^{odd}; the degree i component of the shifted graded space $A^*[r]$ is A^{i+r}. We suppose that A^* is connected: if $A^0 \neq 0$, then $A^0 \cong \mathbb{Q}$. The symmetric algebra $\text{Sym}(A^*)$ is the tensor product of a polynomial algebra and an exterior algebra:
$$\text{Sym}(A^*) = \bigoplus_{k \geq 0} \text{Sym}^k(A^*) = \text{Polynomial}(A^{\text{even}}) \otimes \text{Exterior}(A^{\text{odd}}),$$
where Sym^k is generated by the monomials of length k (without any other convention, the elements in A^* have length 1).
Fix a positive even number $2m$, the “geometric” dimension, and consider two graded vector spaces V^*, W^*, and a degree 1 linear map $\partial_W :$

$$V^* = \bigoplus_{i=0}^{2m} V^i, \quad W^* = \bigoplus_{j=2m-1}^{4m-1} W^j, \quad \partial_W : W^* \rightarrow \text{Sym}^2 V^*.$$

By definition, the elements in V^* have length 1 and weight 0 and the elements in W^* have length 2 and weight 1. We choose bases in V^i and W^j as

$$V^i = \mathbb{Q}\langle v_{i,1}, v_{i,2}, \ldots \rangle, \quad W^j = \mathbb{Q}\langle w_{j,1}, w_{j,2}, \ldots \rangle$$

(the degree of an element is marked by the first lower index; x_i^n stands for the product $x_i \wedge x_i \wedge \ldots \wedge x_i$ of q-factors). Always we take $V^0 = \mathbb{Q}\langle v_0 \rangle$. The graded vector space V^* is $(h-1)$-connected if $V^* = V^0 \oplus V^{\geq h}$.

The definition of the bigraded differential algebra $\Omega^*(k)$ is

$$\Omega^*(*) (V^*, W^*) = \bigoplus_{k \geq 1} \Omega^* (k)(V^*, W^*),$$

$$\Omega^*(k)(V^*, W^*) = \bigoplus_{i \geq 0} \Omega^i (k)(V^*, W^*) = \text{Sym}^k (V^* \oplus W^*),$$

where the total degree i is given by the grading of V^* and W^* and the length degree k is the multiplicative extension of length on V^* and W^*. The differential is defined by $\partial|_{V^*} = 0, \partial|_{W^*} = \partial_W$ and it has bidegree $(1, 0)$. For instance,

$$H^*(\Omega^*(1)(V^*, W^*), \partial) = H^*(\text{Sym}^1(V^*), \partial = 0) = V^*.$$

We are interested in the stability properties of the sequence of cohomology spaces $\{H^*(\Omega^*(k)(V^*, W^*), \partial)\}_{k \geq 1}$ i.e. we have to compare $H^*(\Omega^*(k-1)(V^*, W^*), \partial)$ with $H^*(\Omega^*(k)(V^*, W^*), \partial)$, and for this we introduce a sequence of weighted spectral sequences.

The subspace of $\Omega^* (k)$ containing the elements of weight ω is denoted $\omega^\omega \Omega^*(k)$ and we have

$$\Omega^*(k)(V^*, W^*) = \bigoplus_{\omega \geq 0} \omega^\omega \Omega^*(k), \quad 0\Omega(k) = \text{Sym}^k (V^*),$$

$$\partial : \omega^\omega \Omega^*(k) \rightarrow \omega^{\omega-1} \Omega^{\omega+1}(k).$$

We define an increasing filtration of subcomplexes $\{F^i \Omega^*(k)(V^*, W^*)\}_{i=0, \ldots, 2m}$:

$$F^i \Omega^*(k) = [V^{\leq i} \otimes \Omega^*(k-1)(V^*, W^*)] + [W^{\leq 2i} \otimes \Omega^*(k-2)(V^*, W^*)].$$

Obviously we have

$$\partial (V^{\leq i} \otimes \Omega^*(k-1)) \subseteq V^{\leq i} \otimes \Omega^*(k-1) \text{ and }$$

$$\partial (W^{\leq 2i} \otimes \Omega^*(k-2)) \subseteq V^{\leq i} \otimes \Omega^*(k-1) + W^{\leq 2i} \otimes \Omega^*(k-2).$$
The filtration \(\{F^i\}_{i=0,...,2m} \) and the weight decomposition \(\{\omega \Omega^*(k)\}_{\omega=0,...,\lfloor \frac{k}{2} \rfloor} \) are compatible:

\[
F^i\Omega^*(k) = F^i \cap 0\Omega^*(k) \oplus F^i \cap 1\Omega^*(k) \oplus \ldots \oplus F^i \cap \lfloor \frac{k}{2} \rfloor \Omega^*(k) = \bigoplus_{\omega=0}^{\lfloor \frac{k}{2} \rfloor} F^i\Omega^*(k),
\]

hence the spectral sequence \(E^*,*(k) \) associated with the filtration \(\{F^i\Omega^*(k)\}_{i=0,...,2m} \) is weight-splitted at any page:

\[
E^*,*(k) = \bigoplus_{\omega=0}^{\lfloor \frac{k}{2} \rfloor} \omega E^*,*(k),
\]

with differential

\[
d_r^{i,j} : \omega E_r^{i,j}(k) \longrightarrow \omega^{-1} E_r^{i-r,j+r+1}(k).
\]

Some general properties of these spectral sequences are obvious:

Proposition 2.1. Every \(E^*,*(k) \) is a first quadrant spectral sequence; as \(E_r^{2m+1,q}(k) = 0 \), the spectral sequence degenerate at \(2m + 1 \).

Here are few pictures of the polygons containing the support of the weighted components of the first page of the spectral sequences \(E^*,*(k) \):

The equations of the lines are \(\alpha : q = p \) and \(\beta : q = p - 1 \).
The equations of the lines are \(\gamma : q = 2p \) and \(\delta : q = p - 1 \).

The equations of the lines are \(\varepsilon : q = 3p \), \(\theta : q = p + 2m - 1 \), \(\eta : q = 3p - 1 \) and \(\varphi : q = p + 4m - 1 \).
The equations of the lines are \(\lambda : q = 4p, \mu : q = 4p - 1 \) and \(\nu : q = 2p + 2m - 1 \). Using the definition of the filtration \(F^p \), one can describe the support of \(\omega E^*_0(k) \), in general:

Proposition 2.2. a) If \(2\omega > k \), then \(\omega E^*_0(k) = 0 \).

b) The support of the weighted components of \(\omega E^*_0(k) \) are contained in the following regions:

\(\omega = 0 \) : the triangle defined by \(0 \leq (k - 1)p \leq q \leq 2(k - 1)m \);
\(\omega = 1 \) : if \(k = 2 \), the trapezoid defined by \(m - 1 \leq p - 1 \leq q \leq \min(p, 2m - 1) \);
if \(k \geq 3 \), the quadrilateral defined by
\(\max((k - 3)p + 2m - 1, (k - 1)p - 1) \leq q \leq 2(k - 1)m - 1 \);
\(\omega \geq 2 \) : if \(k = 2\omega \), the trapezoid defined by \(m \leq p \leq 2m - 1 \) and
\((k - 1)p - 1 \leq q \leq p + (2k - 4)m - k + 3 \);
if \(k \geq 2\omega + 1 \), the pentagon defined by
\(\max((k - 2\omega - 1)p + 2\omega m - 1, (k - 1)p - 1) \leq q \leq 2(k - 1)m - 2\omega + 1 \)
and the exterior point \((p, q) = (2m - 1, 2(k - 1)m - 2) \).

Proof. In the table there is a list of elements of minimal degree (in bottom position) and elements of maximal degree (in top position) in the column \(F^p / F^{p-1} \) of the spectral sequence \(\omega E^*_0(k) \):

Table 1

\((\omega, k) \)	\(0 \leq p \leq m - 1 \)	\(m \leq p \leq 2m - 1 \)	\(p = 2m \)	
\(\omega = 0 \)	\(v_p, v_p^{k-1}, v_p^{k-1} \)	\(v_p, v_p^{k-1} \)	\(v_p^{k-1} \)	
\(\omega = 1 \)	\(k = 2 \)	\(k > 2 \)	\(k = 2\omega \)	\(k > 2\omega \)
\(\omega = 2 \)	\(\omega = 2\omega \)	\(\omega = 2\omega + 1 \)	\(\omega = 2\omega + 2 \)	\(\omega = 2\omega + 3 \)
\(\omega = \infty \)				

There is a unique exception: if \(p = 2m - 1, \omega \geq 2 \) and \(k \geq 2\omega + 1 \), the element of maximal degree is \(v_2^{k-2\omega-1}w_2^{\omega-1} \).

Proof of Theorem 1.2. Let us define

\[
k(j) = \begin{cases}
 k, & \text{if } j = 0 \\
 k + (2m - 2)j - 1, & \text{if } j \geq 1.
\end{cases}
\]
On the 0-th page of the spectral sequence \(^*E^*_0(k + 1) \) we find that \(E^0_{p,q}(k + 1) \) has no element under the line \(p + q = k + 1 \) for \(j = 0 \) and nothing under the line \(p + q = k + (2m - 2)j \) for \(j \geq 1 \).

\[
\begin{array}{c}
\text{\(j = 0 \)} \\
0^*E^*_0(k + 1) \\
\Lambda^{k+1}V^1 \\
p + q = k + 1 \\
\hline
1 \\
p \\
\end{array}
\quad
\begin{array}{c}
\text{\(j \geq 1 \)} \\
j^*E^*_0(k + 1) \\
\Lambda^{k+1-2j}/\Lambda^{k+1}V^1w_{2m-1}S\text{ym}^{j-1}W^m \\
p + q = k + (2m - 2)j \\
\hline
1 \\
p \\
\end{array}
\]

On the column 0 we have \(E^0_{p,q}(k + 1) = H^*(C(M)) \) and also
\[
H^{<k,j}(C(M)) = E^0_{p,q}(k + 1) \approx \cdots \approx H^{<k,j}(C_{k+1}(M)).
\]

\(\square \)

Theorem 2.3. For a \((h-1)\)-connected closed orientable manifold \(M^{2m} \) we have:

1. If \(i \leq h(k + 1) - 1 \), then
 \[
 H^i(\Sigma_k^j) \cong H^i(\Sigma_{k+1}^j) \cong H^i(\Sigma_{k+2}^j) \cong \cdots
 \]

2. If \(j \geq 1 \) and \(i \leq hk + (2m - h - 1)j - 1 \), then
 \[
 H^i(\Sigma_k^j) \cong H^i(\Sigma_{k+1}^j) \cong H^i(\Sigma_{k+2}^j) \cong \cdots
 \]

Proof. In this case the two graded spaces \(V^* \) and \(W^* \) are given by
\[
V^* = V^0 \oplus V^h \oplus V^{h+1} \oplus \cdots \oplus V^{2m-h-1} \oplus V^{2m},
\]
\[
W^* = W^{2m-1} \oplus W^{2m+h-1} \oplus W^{2m+h} \oplus \cdots \oplus W^{4m-h-1} \oplus W^{4m-1},
\]
where the first (and last) components are one dimensional: \(V^0 = \langle v_0 \rangle \), \(W^{2m-1} = \langle w_{2m-1} \rangle \) (see [14] or Section 4). As in the previous proof we find out the lowest lines:
\[
p + q = h(k + 1) \text{ for } j = 0 \text{ and } p + q = hk + (2m - h - 1)j \text{ for } j \geq 1.
\]

\[
\begin{array}{c}
\text{\(j = 0 \)} \\
0^*E^*_0(k + 1) \\
\text{Sym}^{k+1}V^h \\
p + q = h(k+1) \\
\hline
h \\
p \\
\end{array}
\quad
\begin{array}{c}
\text{\(j \geq 1 \)} \\
j^*E^*_0(k + 1) \\
\text{Sym}^{k+1-2j}V^h w_{2m-1} \text{Sym}^{j-1}W^{2m+h} \\
p + q = h(k+(2m-h-1))j \\
\hline
h \\
p \\
\end{array}
\]

\(\square \)
Corollary 2.4. (Th. Church)
For a \((h - 1)\)-connected closed oriented manifold \(M^{2m}\) we have
\[H^i(C_k(M)) \cong H^i(C_{k+1}(M)) \cong H^i(C_{k+2}(M)) \cong \ldots \]
for \(i \leq hk + h - 2\).

Proof. If \(M^{2m}\) is not a homology sphere, we have the relation \(m \geq h\) and the Theorem 2.3 gives the inequality \(\min\{\text{h}(k + 1) - 1, hk + (2m - h - 1)j - 1\} \geq hk - h - 2\). □

3. Strong stability: odd dimensional manifolds

In this section the manifold \(M\) has odd dimension.

Proof of Theorem 1.5. If there is a non-zero cohomology class (of positive degree) \(x \in H^{2i}(M)\), then \(x \wedge x \wedge \ldots \wedge x = x^k\) will give a non-zero cohomology class in \(H^{2ki}(C_k(M))\), with arbitrary high degree, hence \(H^*(C_k(M))\) cannot be stable.

If \(M\) has odd cohomology, with total Betti number \(\beta(M) = \beta\), and a basis \(\{1 = x_0, x_{1,1}, x_{1,2}, \ldots\\} \) of \(H^*(M)\), then the highest degree of a product of length \(\beta + q - 1\) is \(\sum_{i=0}^{\beta} i\beta_i(M)\), the degree of the product \(x_0^{\beta} \wedge (\wedge_{i \geq 0, x_{2i+1,d}})\). We have the sequence of isomorphisms:
\[
\begin{align*}
H^*(C_{\beta-1}(M)) & \cong H^*(C_\beta(M)) \cong H^*(C_{\beta+1}(M)) \\
\text{Sym}^{\beta-1}(H^*(M)) & \cong \text{Sym}^\beta(H^*(M)) \cong \text{Sym}^{\beta+1}(H^*(M)) \\
\end{align*}
\]
□

Proof of Corollary 1.7. If \(M^{2m+1}\) is a closed oriented manifold, by Poincaré duality we find that \(\beta_{2i+1}(M) \neq 0\) implies \(\beta_{2m-2i}(M) \neq 0\); if \(M\) has the strong stability property, this implies \(m = i\).

If \(M\) has even dimension, the statement is a direct consequence of Theorem 1.6. □

4. Strong stability: closed orientable even dimensional manifolds

First we give a necessary condition for the strong stability property.

Proposition 4.1. If \(M^{2m}\) has negative Euler-Poincaré characteristics, then \(M^{2m}\) cannot have the strong stability property.

Proof. From [14] and [13] we have
\[
1 + \sum_{k=1}^{\infty} \chi(C_k(M)) t^k = (1 + t)\chi(M),
\]
hence, if \(\chi(M)\) is negative, the sequence \(\{\chi(C_k(M))\}_{k \geq 1}\) is not eventually constant. □
In this section we analyze the strong stability property for a closed oriented manifold of even dimension M^{2m}.

The DG-algebra introduced by Y. Félix and J. C. Thomas [14] is defined by

$$V^* = H_*(M), \quad W^* = H_*(M)[2m - 1]$$

and the differential ∂ is dual to the cup product

$$H^*(M) \otimes H^*(M) \to H^*(M).$$

Lemma 4.2. If M^{2m} is a homology sphere, then M has the strong stability property with the range of stability 3.

Proof. As $H^*(M) = \mathbb{Q}[x]/(x^2)$, the two graded vector spaces are $V^* = \mathbb{Q}\langle v_0, v_{2m} \rangle$, and $W^* = \mathbb{Q}\langle w_{2m-1}, w_{4m-1} \rangle$ with differential

$$\partial w_{2m-1} = 2v_0v_{2m}, \quad \partial w_{4m-1} = v_{2m}^2.$$

The second spectral sequence is

and this implies that $P_{C_2(M)}(t, s) = 1$.

The third spectral sequence is

and therefore $P_{C_3(M)}(t, s) = 1 + st^{4m-1}$.

By induction on k, we suppose that $P_{C_k(M)}(t, s) = 1 + st^{4m-1}$. In the $(k+1)$-th spectral sequence we have
The differential d_0 kills the $2m$-th column; the 0-th column has the cohomology of $C_k(M)$:

The case $m = 1$ in the following lemma, that is $M = \mathbb{C}P^2$, was obtained by Y. Félix and D. Tanré [15].

Lemma 4.3. If M^{4m} is a homology projective plane, then M has the strong stability property with the range of stability 4.

Proof. The two graded spaces are $V^* = \mathbb{Q}\langle v_0, v_{2m}, v_{4m} \rangle$, $W^* = \mathbb{Q}\langle w_{4m-1}, w_{6m-1}, w_{8m-1} \rangle$, with differential

$$
\partial w_{4m-1} = 2v_0v_{4m} + v_{2m}^2, \quad \partial w_{6m-1} = 2v_{2m}v_{4m}, \quad \partial w_{8m-1} = v_{4m}^2.
$$

The sequence of spectral sequences starts with:

$$
E_0^{,*}(1) = *E_\infty^{*,0}(1) \simeq V^*
$$

and
so \(P_{C_1(M)(t, s)} = P_{C_2(M)(t, s)} = 1 + t^{2m} + t^{4m} \). The result for the spectral sequences \(*E_{s,*}^q(k) \), \(k = 3, 4, 5 \), are given in the following table.

\(k \)	non-zero terms	\(*E_{s,*}^{1,q}(k) = *E_{s,*}^{1,q}(k) \)
3	\(E_{2m, t}^{2m, 0} \) = \(\langle v_{4m} W_{4m-1} \rangle \), \(E_{2m, t}^{4m, 0} \) = \(\langle v_{4m} W_{6m-1} \rangle \)	
4	\(E_{2m, t}^{2m, 0} \) = \(\langle 2v_{4m} W_{4m-1} - v_{2m} v_{4m} W_{6m-1} \rangle \)	
5		

hence

\[
P_{C_3(M)(t, s)} = 1 + t^{2m} + t^{4m} + s(t^{8m-1} + t^{10m-1})
\]

and

\[
P_{C_4(M)(t, s)} = P_{C_4(M)(t, s)} = 1 + t^{2m} + t^{4m} + s(t^{8m-1} + t^{10m-1} + t^{12m-1}).
\]

From \(k = 6 \) the spectral sequences become stable at \(*E_{1,*}^q(k) \):

\[
\begin{align*}
4m(k - 1) & \\
4m & 2m(2k - 2) - 1 \\
2m & 2m(2k - 3) - 1 \\
2m & 2m(2k - 4) - 1 \\
2m & 2m(2k - 5) - 1 \\
2m & 2m(2k - 6) - 1 \\
0 & k^2 - 1(k - 1) \\
2m & 4m & p & 2m & 3m & 4m & p
\end{align*}
\]
The differential \(d_0 \) is given by \(d_0(w_{4m-1}, w_{8m-1}) = (v_{2m}^2, v_{4m}^2) \) and

\[
d_0(v_{2m}^\alpha v_{4m}^\beta w_{6m-1}) = \begin{cases}
0, & \text{if } \alpha = 0 \\
2v_{2m}^\alpha v_{4m}^{\beta+1} & \text{if } \alpha \geq 1.
\end{cases}
\]

On the column \(p = 0 \) we get \(^wH^*(C_{k-1}) \) and nothing on the last two columns, \(p = 3m \) and \(p = 4m \); the differential \(d_0 \) is also an isomorphism in the cases:

\[
E_0^{2m,2m(k-1)-1}(k) \xrightarrow{\cong} E_0^{2m,2m(k-1)}(k) \quad \text{and} \quad E_0^{2m,2m(k-2)-1}(k) \xrightarrow{\cong} E_0^{2m,2m(k-2)}(k).
\]

In general, we have the exact sequence \((j = k + 2, k + 3, \ldots, 2k - 4)\)

\[
E_0^{2m,2m(j-3)}(k) \rightarrow E_0^{2m,2m(j-2)}(k) \xrightarrow{d_0} E_0^{2m,2m(j-1)}(k) \rightarrow E_0^{2m,2m(j)}(k) : [1] \rightarrow [3] \rightarrow [3] \rightarrow [1]
\]

(the dimensions are given in the square brackets) where the matrix of \(d_0 \) is

\[
d_0 = \begin{pmatrix} -2 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}
\]

For small values \((j = k, k + 1)\) and for \(j = 2k - 3 \) we have short exact sequences

\[
E_0^{2m,2m(k-2)}(k) \rightarrow E_0^{2m,2m(k-1)}(k) \rightarrow E_0^{2m,2m(k)}(k) : [1] \rightarrow [2] \rightarrow [1]
\]

\[
E_0^{2m,2m(k+1)-2}(k) \rightarrow E_0^{2m,2m(k+1)-1}(k) \rightarrow E_0^{2m,2m(k+1)}(k) : [2] \rightarrow [3] \rightarrow [1]
\]

\[
E_0^{2m,2m(2k-3)-2}(k) \rightarrow E_0^{2m,2m(2k-3)-1}(k) \rightarrow E_0^{2m,2m(2k-3)}(k) : [2] \rightarrow [3] \rightarrow [1]
\]
In conclusion, we get

\[*E_{1}^*(k) = E_{2}^{0, *}(k) = 0E_{2}^{0, *}(k) \oplus \gamma E_{1}^{0, *}(k), \]

with Poincaré polynomial \((k \geq 4)\):

\[P_{C_{i}(M)}(t, s) = 1 + t^{2m} + t^{4m} + s(t^{8m-1} + t^{10m-1} + t^{12m-1}). \]

\[\Box \]

\textbf{Proof of Theorem 1.6.} Lemmas 4.2 and 4.3 give one implication of the theorem. For the opposite implication, we show in the next three lemmas that \(M \) cannot have the strong stability property in the following cases:

Case 1) the Poincaré polynomial of \(M^{4m} \) is \(1 + \beta_{2m} t^{2m} + t^{4m}, \beta_{2m} \geq 2; \)

Case 2) there is a non-zero odd Betti number \(\beta_{2i+1}; \)

Case 3) there is a non-zero even Betti number of \(M^{2m}, \beta_{2i}, i \neq 0, \frac{m}{2}, m. \)

\[\Box \]

\textbf{Lemma 4.4.} If \(M^{4m} \) has the Poincaré polynomial \(1 + bt^{2m} + t^{4m}, \) with \(b \geq 2, \) then \(M \) cannot have the strong stability property.

\textbf{Proof.} The associated graded spaces are \(V^{*} = Q(v_{0}, v_{2m+1}, v_{2m+2}, \ldots, v_{2m+b}, v_{4m}) \) and \(W^{*} = Q(w_{0}; w_{2m+1}, w_{2m+2}, \ldots, w_{2m+b}, w_{4m}) \) (although irrelevant for the argument, one can choose the basis such that \(\hat{\epsilon} w_{4m-1} = 2v_{0}v_{4m} + \sum_{i=1}^{b} v_{2m,i}, \hat{\epsilon} w_{6m-1,i} = 2v_{2m,i}v_{4m}, \hat{\epsilon} w_{8m-1} = v_{4m}^{2} \).

In the \(k \)-th spectral sequence, the domain and the range of the differential

\[d_{0} : 1E_{0}^{2m, 2m(k-1)-1}(k) \rightarrow 0E_{0}^{2m, 2m(k-1)}(k) \]

have dimensions \(\binom{k+b-3}{b-1} \) and \(\binom{k+b-1}{b-1} \) respectively. Obviously \(d_{0}(0E_{0}^{*, *}(k)) = 0 \) and \(d(v_{4m}^{k-2} \otimes W^{*}) \subset V_{4m}^{k-2} \otimes \wedge^{2} V^{*} \), therefore we have non-zero elements in \(0E_{\infty}^{2m, 2m(k-1)}(k) \) of arbitrary large degree.

\[\Box \]

\textbf{Lemma 4.5.} If \(M^{2m} \) has a non-zero odd Betti number, then \(M \) cannot have the strong stability property.

\textbf{Proof.} Choose the non-zero odd Betti number of the highest degree, \(2i + 1. \) The graded spaces \(V^{*} \) and \(W^{*} \) are

\[V^{*} = Q(v_{0}, \ldots, v_{2i+1}, v_{2i+1}', \ldots, v_{2p}, \ldots, v_{2q}, \ldots, v_{2m}), \]

\[W^{*} = Q(w_{2m-1}, \ldots, w_{2m+2i}, w_{2m+2i}', \ldots, w_{2m+2p-1}, \ldots, w_{2m+2q-1}, \ldots, w_{4m-1}). \]

The differential of \(w_{2m+2i} \) contains a unique term, \(2v_{2i+1}v_{2m}, \) for degree reason (a quadratic product \(v_{s}v_{t} \) with \(2i + 1 < s, t < 2m \) has even degree). The spectral sequence \(kE_{s}^{*, *}(2k+1) \) contains the product \(z = v_{2i+1}w_{2m+2i}^{*}, \) which is a permanent cocycle. Its is never a coboundary:

\[d(\wedge^{*} V^{*} \otimes \wedge^{*} W^{*}) \subset \wedge^{2} V \otimes \wedge^{*} W^{*}. \]

The degree of \(z \) is arbitrary large, therefore \(M \) has not the strong stability property. \[\Box \]
Remark 4.6. C. Schliessl [30] computed all Betti numbers of \(C_k(T^2) \). Its top Betti number is \(\beta_{r=k+1}(C_k(T^2)) = \frac{2k - 1 - 3(-1)^k}{4} \) (see also [11] and [23]).

Lemma 4.7. If \(M^{2m} \) has a non-zero even Betti number \(\beta_{2i} \) (with \(2i \neq 0 \), \(m \) and \(2m \)), then \(M \) cannot have the strong stability property.

Proof. Using Poincaré duality we can choose a positive \(i \) satisfying \(0 < 2i < m \) : \(V_\ast = \mathbb{Q}\langle v_0, \ldots, v_{2i}, \ldots, v_{2m} \rangle \). In the spectral sequence \(^0E_{\ast, \ast}^k(2k) \), the product \(v_{2i}^2 \) is a permanent cocycle and it is never a coboundary:

\[
d(Sym^{k-2} V^{\geq 2i+1} \otimes W^\ast) \subset Sym^{k-2} V^{\geq 2i+1} \otimes Sym^2 V.
\]

\(\Box \)

Remark 4.8. M. Maguire [23] computed all Betti numbers of \(C_k(\mathbb{CP}^3) \). Its top Betti number is \(\beta_{r=2k+12}(C_k(\mathbb{CP}^3)) = 1 \) \((k \geq 11) \).

5. Strong stability: open or non-orientable even dimensional manifolds

In this section we use B. Knudsen’s model [21]: the differential graded algebra computing the cohomology of \(C_k(M) \) for an even dimensional manifold \(M^{2m} \) is given by

\[
H^\ast (\Omega^\ast (k)(V^\ast, W^\ast), \partial),
\]

where the graded spaces \(V^\ast \) and \(W^\ast \) are

\[
V^\ast = H_{c}^{-\ast} (M; \mathbb{Q}^\omega)[2m], \quad W^\ast = H_{c}^{-\ast} (M; \mathbb{Q})[4m - 1],
\]

and the differential is the shifted dual of the product

\[
H_{c}^{-\ast} (M; \mathbb{Q}^\omega) \otimes H_{c}^{-\ast} (M; \mathbb{Q}^\omega) \longrightarrow H_{c}^{-\ast} (M; \mathbb{Q})
\]

(here \(H_{c}^{-\ast} \) is cohomology with compact supports and \(\mathbb{Q}^\omega \) is the orientation sheaf; as before \(A^\ast [q] \) is the graded space \(A^\ast \) shifted by \(q \)).

In the same paper B. Knudsen computed the cohomology of \(C_k(M) \) for three even dimensional manifolds with odd cohomology: Klein bottle \(\mathbb{K} \), the punctured Euclidean space \(\mathbb{R}^n = \mathbb{R}^n \setminus \{pt\} \) and the punctured torus \(\hat{T} = T \setminus \{pt\} \). He found that their top Betti numbers are

\[
\beta_{r=k}(C_k(\mathbb{K})) = 2,
\]

\[
\beta_{r=k}(C_k(\mathbb{R}^n)) = 1,
\]

\[
\beta_{r=k}(C_k(\hat{T})) = \frac{3 + (-1)^{k+1}}{4} k + 1,
\]

so these three spaces do not have the strong stability property.

We will describe few cases of manifolds of even dimensions with the strong stability property.
Proposition 5.1. Let M^{2n} be a closed non-oriented manifold with $\beta_r(M) \leq \left\lfloor \frac{4m-2}{3} \right\rfloor$. Then M has the strong stability property if and only if M is acyclic.

Proof. For a closed manifold non-orientable manifold we have $H^{-\ast}_c(M) = H^{-\ast}(M)$ and $H^{-\ast}(M; \mathbb{Q}) = H_{2m-\ast}(M)$ and these imply that

$$V^\ast = V^0 \oplus V^1 \oplus \ldots \oplus V^{\beta_r(M)}, \quad W^\ast = W^{4m-\beta_r(M)} \oplus W^{4m-\beta_r(M)} \oplus \ldots \oplus W^{4n-1}.$$

The product $V^\ast \otimes V^\ast \to W^\ast$ is zero by degree reason:

$$2\beta_r(M) < 4m - \beta_r(M) - 1 \quad \text{or} \quad \beta_r(M) \leq \frac{4m - 2}{3},$$

hence the differential ∂ is also zero. If M^{2m} is not acyclic, then there is a non-zero $x \in H^{2+1}(M).$ If the degree of x is even, then there is a corresponding non-zero $\nu \in V^{\text{even}}$; otherwise, there is a corresponding non-zero $w \in W^{\text{even}}.$ Therefore ν^k, respectively w^k, are non-zero cohomology classes of arbitrary large degree, and this contradicts the strong stability property. \quad \Box

Proposition 5.2. Let M^{2n} be a closed non-orientable manifold with odd cohomology. Then M has the strong stability property if and only if M is acyclic.

Proof. For a closed non-orientable manifold we have $H^{-\ast}_c(M) = H^{-\ast}(M), H^{-2m}(M) = 0, H^0(M) = \mathbb{Q}$, hence $W^\ast = W^{\geq 2m}$ and $W^{4m-1} = \mathbb{Q}\langle x_{4m-1} \rangle$.

If M has odd cohomology, we have

$$W^\ast = W^{\text{even}} \oplus W^{4m-1}$$

by Poincaré duality (see [6] or [10]), $H^{-\ast}(M^{2n}; \mathbb{Q}) \cong H_{2m-\ast}(M; \mathbb{Q})$, hence

$$V^\ast = V^{\leq 2m-1} = \mathbb{Q}\langle v_0 \rangle \oplus V^{\text{odd}}.$$

A non-zero (odd) Betti number of M^{2m} will give a non-zero $w \in W^{\text{even}}$. Its differential ∂w is in $(\bigwedge^2 V)^{\text{odd}} = v_0 \wedge V^{\text{odd}}$, the degree of w is at least $2m$, and the degree of an element in $v_0 \wedge V^{\text{odd}}$ is at most $2m - 1$, therefore $\partial w = 0$. The product w^k gives a permanent cocycle in $E^\ast_k(2k)$, and it is never a coboundary:

$$\partial(SymV^\ast \otimes SymW^\ast) \subset Sym^{\geq 2} V^\ast \otimes SymW^\ast.$$

The degree of w^k is arbitrary large, hence M cannot have the strong stability property.

If M^{2m} is acyclic, the cohomology of $C_k(M)$ is reduced to

$$H^\ast(C_k(M)) \cong \mathbb{Q}\langle v_0^k, v_0^{k-2} w_{4m-1} \rangle$$

and this is stable. \quad \Box

Proposition 5.3. Let M^{2n} be an open orientable manifold with odd cohomology. Then M has the strong stability property if and only if M is acyclic.
Proof. For an open oriented manifold M^{2m} we have, by Poincaré duality,

$$H^*_c(M;\mathbb{Q}^\omega) = H^*_c(M;\mathbb{Q}) \cong H_{2m-*}(M;\mathbb{Q}),\ H_{2m}(M) = 0,\ H_0(M) = \mathbb{Q},$$

hence $W^* = \mathbb{Q}\langle w_{2m-1}\rangle \oplus \mathcal{W}^{2m}$. If M has odd cohomology, we also have

$$W^* = \mathbb{Q}\langle w_{2m-1}\rangle \oplus \mathcal{W}^{\text{even}}\text{ and } V^* = \mathbb{Q}\langle v_0\rangle \oplus \mathcal{V}^{\text{odd}}\mathcal{W}^{2m-1}.$$

Now we can repeat the argument in the proof of Proposition 5.2. □

Remark 5.4. It seems that the sequence of Betti numbers $\{\beta_i(C_k(M))\}_{k\geq 1}$ is increasing for any $i \geq 0$ and for any manifold M, with the exception of S^{2m}. For other peculiar properties of the cohomology of configuration spaces of S^2, see [2] and [3].

6. Shifted stability

We start to analyse the odd dimensional case.

Proposition 6.1. A manifold M^{2m+1} satisfies the shifted stability condition if and only if the top positive even Betti number is one.

Proof. Let β_{2a} the top even Betti number ($a \geq 1$). For $k \geq \Sigma_{t=2a} \beta_i + 1 = \beta + 1$ we have

$$H^{top}(C_k(M)) = \text{Sym}^{k-\beta}V^{2a} \bigotimes \bigwedge V^{2a+1},$$

hence M has the shifted stability property if and only if, for any M^{2m+1} has the shifted stability property if and only if, for any $\text{dim}\text{Sym}^{k-\beta}V^{2a}$ does not depend on k, therefore β_{2a} should be one. □

Now, for an even dimensional manifold M, we give three new definitions for shifted stability of the sequence $\{C_k(M)\}_{k\geq 1}$. In the first definition, the spectral sequences $\{\omega E_{\omega}^{\sigma}(k)\}_{k\geq 1}$ are those defined in Section 2. We suppose that M satisfies the condition $\omega E_{\omega}^{\sigma}(k+1) = \omega H^{\sigma}(C_k(M))$.

Definition 6.2. The manifold M satisfies the **spectral shifted stability condition** with range r and shift $\sigma (r, \sigma \geq 1)$ if and only if, for any $k \geq r$, any $p \geq 1$ and any $\omega \geq 0$, we have

$$\omega E_{\omega}^{p,q}(k+1) = \omega E_{\omega}^{p,q}(k)$$

and this is non-zero.

Definition 6.3. The manifold M satisfies the **Poincaré polynomial shifted stability condition** with range r, shift $\sigma (r, \sigma \geq 1)$ and ratio $R(s,t) \neq 0$ if and only if, for any $k \geq r$, we have

$$P_{C_{k+1}(M)}(t,s) = P_{C_k(M)}(t,s) + t^{(k+1-r)\sigma}R(t,s).$$
Definition 6.4. The manifold M satisfies the extended shifted stability condition with rang r and shift σ ($r, \sigma \geq 1$) if and only if, for any $k \geq r$, we have
\[P_{C_{k+1}(M)}^{[(k-r+1)\sigma]}(t, s) = t^\sigma P_{C_k(M)}^{[(k-r+1)\sigma]}(t, s). \]

The relation between these shifted stability properties are given by:

Proposition 6.5. Spectral shifted stability \Rightarrow Poincaré polynomial shifted stability \Rightarrow extended shifted stability \Rightarrow shifted stability.

Proof. First implication: Let us define the polynomial $R(s, t)$, the ratio of an arithmetical sequence, as the two-variables Poincaré polynomial of $\omega E_\infty^{[1, \ast]}(r)$:
\[R(s, t) = \sum_{\omega \geq 0} \sum_{\rho+q=i}^{\rho \geq 1} \dim \omega E_\infty^{p,q}(r)t^\rho s^\omega. \]

By induction we get
\[\omega E_\infty^{p,q}(r) = \omega E_\infty^{p,q+(k-r)\sigma}(k) \quad \text{(for a positive p and $k \geq r$)} \]
and this implies that Poincaré polynomial of $\omega E_\infty^{[1, \ast]}(k)$ is constant, for $k \geq r$, up to a shift with t^σ. Therefore we have:
\[P_{C_{k+1}(M)}(t, s) = P_{*E_\infty^{0,k+1}}(t, s) + P_{*E_\infty^{1,k+1}}(t, s) = P_{C_k(M)}(t, s) + t^{(k+1-\sigma)}R(t, s), \]
hence the spectral shifted stability condition with range r and shift σ gives the Poincaré polynomial shifted stability condition with the same range r and shift σ.

Second implication: The recurrence formula $P_{C_{k+1}} = P_{C_k} + t^{(k+1-\sigma)}R$ gives
\[P_{C_{k}(M)}(t, s) = P_{C_{k}(M)}(t, s) + (t^\sigma + t^{2\sigma} + \ldots + t^{(k-\sigma)\sigma})R(t, s). \]

Take ρ such that the strip $[0, \rho] \times \mathbb{R}$ contains the support of $P_{C_{k}(M)}(t, s)$ and h big enough such that support of $t^\sigma R(s, t)$ is contained in $[\rho + 1, \infty) \times \mathbb{R}$.

For $\rho = r + h - 1$ we have $P_{\rho+1}^{[\sigma]}(t, s) = t^\sigma P_{\rho}^{[\sigma]}(t, s)$, next we have $P_{\rho+2}^{[2\sigma]}(t, s) = t^\sigma P_{\rho+1}^{[2\sigma]}(t, s)$, and in general, for $k \geq \rho$,
\[P_{k+1}^{[(k+1-\rho)\sigma]}(t, s) = t^\sigma P_{k}^{[(k+1-\rho)\sigma]}(t, s). \]

Third implication: This is obvious. \qed
Remark 6.6. In order to have “weight stability at 0” in the sequence of spectral sequences \(\{ E_{s,s}^k \} \) (i.e., there is a range \(r \) and a weight \(\omega_{\text{max}} \) such that \(\omega E_{s,s}^k(k) = 0 \) for any \(k \geq r \) and any \(\omega > \omega_{\text{max}} \)), we have to consider only manifolds with even cohomology: a non-zero odd cohomology class \(x \in H^{\text{odd}}(M) \) will give a non-zero \(\omega \in W^{\text{even}} \) and infinitely many non-zero terms \(\omega^s \in sE_{s,s}^k(2s) \) of arbitrary large weights.

In fact, if the manifold \(M \) has the spectral shifted stability property, then \(M \) should have even cohomology.

Proposition 6.7. If there is a non-zero cohomology class \(x \in H^{\text{odd}}(M) \), then \(M \) cannot have the spectral shifted stability property.

Proof. Take a maximal odd degree element \(v_{2i+1} \in V^s = \langle v_0, \ldots, v_{2m} \rangle \) and the corresponding \(w_{2m+2i} \in W^s \). The relations

\[
d(w_{2m+2i}) = 2v_{2i+1}v_{2m} \quad \text{and} \quad d(w_{4m-1}) = v_{2m}^2
\]

give the infinite (non-zero) cocycle

\[
2hv_{2m+1}w_{2m+2i}^{h-1}w_{4m-1} + v_{2m}w_{2m+2i}^h \in E_{\infty}^s(2h + 1)
\]
of arbitrary large weight. Definitely, the spectral shifted stability condition implies the “weight stability condition at \(\infty \)”: there is a range \(r \) and a weight \(\omega_{\text{max}} \) such that \(\omega E_{s,s}^k(k) = 0 \) for \(k \geq r \) and \(\omega > \omega_{\text{max}} \).

For the Poincaré polynomial shifted stability condition, a weaker condition is needed.

Proposition 6.8. If \(\chi(M) \leq -2 \), then the manifold \(M \) does not satisfy the Poincaré polynomial shifted stability condition.

Proof. The recurrence relations \((k \geq r) \)

\[
P_{C_{k+1}(M)}(t, s) = P_{C_k(M)}(t, s) + t^{(k+1-r)}R(t, s),
\]

\[
P_{C_{k+2}(M)}(t, s) = P_{C_{k+1}(M)}(t, s) + t^{(k+2-r)}R(t, s)
\]

imply that, for large \(k \), \(\chi(C_k(M)) \) is an arithmetic sequence (if \(\sigma \) is even) or \(\chi(C_k(M)) = \chi(C_{k+2}(M)) = \chi(C_{k+4}(M)) = \ldots \) (if \(\sigma \) is odd).

If \(\chi(M) \leq -2 \), the Euler characteristics \(\{ \chi(C_k(M)) \} \), that is the coefficients in the expansion of \((1 + t)^{\chi(M)} \), have a polynomial growth (at least quadratic) for \(\chi(M) \leq -3 \) and, for \(\chi(M) = -2 \), \(\chi(C_k(M)) = (-1)^{k+1}(k + 1) \).

In the case of a manifold \(M^{2m} \) with Poincaré polynomial shifted stability, Propositions 1.2 and 2.3 give some restriction for the shift \(\sigma \) and ratio \(R(t, s) \). For instance, we have:

Proposition 6.9. For a \((h - 1) \)-connected closed orientable manifold \(M^{2m} \) satisfying the Poincaré polynomial shifted condition with shift \(\sigma \), we have the inequality \(h \leq \sigma \).
Proof. Choose \(j \geq 0 \) such that there is a non-zero coefficient \(r^i j \) of the ratio polynomial \(R(s, t) \). From Proposition 2.3

\[
(k + 1 - r)\sigma + i \geq \begin{cases}
 h(k + 1) & \text{if } i = 0 \\
 hk + (2m - h - 1) j & \text{if } i \geq 1,
\end{cases}
\]

and, for large \(k \), this implies \(\sigma \geq h \). \(\square \)

Remark 6.10. In the following examples, \(\mathbb{C}P^1 \times \mathbb{C}P^1 \) and \(\mathbb{C}P^3 \), we have \(h = \sigma = 2 \); the same is true for \(\mathbb{C}P^4 \). For \(\mathbb{C}P^5 \) and \(\mathbb{C}P^6 \) we have \(h = 2, \sigma = 4 \).

The shifted stability property gives a formula for \(\text{cd}(k) \), the cohomological dimension of \(C_k(M) \).

Proposition 6.11. For a manifold \(M \) satisfying the shifted stability condition with range \(r \) and shift \(\sigma \) we have, for any \(k \geq r \),

\[\text{cd}(k) = \text{cd}(r) + (k - r)\sigma. \]

Proof. This is clear from the definition. \(\square \)

Example 6.12. The cohomological dimension of \(C_k(\mathbb{C}P^1 \times \mathbb{C}P^1) \) is given by

\[
\text{cd}(1) = \text{cd}(2) = 4, \quad \text{cd}(3) = 9, \quad \text{cd}(4) = 11, \quad \text{cd}(k) = 2k + 4 \text{ if } k \leq 5.
\]

For large \(k \), the classical stability property and the extended shifted stability property give all the Betti numbers of \(C_k(M) \).

Proposition 6.13. Let \(M^{2m} \) be a \((h - 1)\)-connected closed orientable manifold satisfying the extended shifted stability condition with the range \(r \) and shift \(\sigma \). Then, for any \(k \) satisfying the inequality \(\max\{r, \text{cd}(r)\} \leq hk + h - 2 \), we have the recurrence relation

\[H^*(C_{k+1}(M)) = H^{\leq \text{cd}(r)}(C_k(M)) \bigoplus H^{\geq \text{cd}(r) - \sigma + 1}(C_k(M))[\sigma]. \]

Proof. If \(\text{cd}(r) \leq hk + h - 2 \), from Corollary 2.4, we have the initial equality

\[H^{\leq \text{cd}(r)}(C_k(M)) = H^{\leq \text{cd}(r)}(C_k(M)) \]

and, if \(r \leq k \), using the extended shifted stability property, we have the final equality

\[H^{\geq \text{cd}(r) + 1}(C_{k+1}(M)) = H^{\geq \text{cd}(r) - \sigma + 1}(C_k(M))[\sigma]. \] \(\square \)

7. Shifted stability: examples

The first example is the product \(\mathbb{C}P^1 \times \mathbb{C}P^1 \). In this case the graded spaces \(V^*, W^* \) and the differential \(\partial_\omega \) are

\[
V^* = \langle v_0, v_2, \bar{v}_2, v_4 \rangle, \quad W^* = \langle w_3, w_5, \bar{w}_5, w_7 \rangle
\]

\[
\partial_\omega(w_3, w_5, \bar{w}_5, w_7) = (2v_0v_4 + v_2^2, 2v_2v_4, 2\bar{v}_2v_4, v_4^2).
\]
New cocycles in \(*E_0^{*,*}(k), k \geq 3,\) are generated by
\[
\gamma = v_2\tilde{w}_5 - v_4w_3, \quad \tilde{\gamma} = \tilde{v}_2w_5 - v_4w_3,
\]
\[
\varepsilon = v_4w_5 - v_2w_7, \quad \tilde{\varepsilon} = v_4\tilde{w}_5 - \tilde{v}_2w_7,
\]
\[
\eta = v_4w_5\tilde{w}_3 - \tilde{v}_2w_5w_7 + v_2\tilde{w}_5w_7 \quad (\tilde{\eta} = -\eta).
\]

Proposition 7.1. The product of two projective lines, \(\mathbb{C}P^1 \times \mathbb{C}P^1,\) satisfies the spectral shifted stability condition with range 6 and shift 2. More precisely, the non-zero pieces \(*E_\infty^{\geq 1,*}(k)\) (for \(k \geq 6\)) are:
\[
0E_\infty^{2,2k-2}(k) = \langle v_2^k, \tilde{v}_2^k \rangle,
\]
\[
1E_\infty^{2,2k-1}(k) = \langle v_2^{k-3}, \tilde{v}_2^{k-3} \rangle, \quad 1E_\infty^{2,2k+1}(k) = \langle v_2^{k-3}, \tilde{v}_2^{k-3} \rangle,
\]
\[
2E_\infty^{2,2k+2}(k) = \langle v_2^{k-5}, \tilde{v}_2^{k-5} \rangle.
\]

Proof. The sequence of spectral sequences starts with
\[
E_0^{,*}(1) = *E_\infty^{*,0}(1) \cong V^*
\]
and

\[
\begin{array}{ccc}
\omega = 0 & \omega = 1 & \omega = 0 \\
4 & \text{Iv}_4 & \text{Iv}_4 \\
2 & \text{I}^2 & \text{I}^2
\end{array}
\]

Here and in the following computations we use the notation
\[
\text{I} = \langle v_2, \tilde{v}_2 \rangle, \quad \text{J} = \langle w_5, \tilde{w}_5 \rangle \text{ and also } \text{I}^k = \langle v_2^k, \tilde{v}_2^{k-1}, \ldots, \tilde{v}_2^k \rangle,
\]
\[
\text{J}^2 = \langle w_5, \tilde{w}_5 \rangle, \quad \text{IJ} = \langle v_2w_5, \tilde{v}_2w_5, v_2\tilde{w}_5, \tilde{v}_2\tilde{w}_5 \rangle \text{ and so on.}
\]

The results for the spectral sequences \(*E_\ast^{*,*}(k), k = 3, 4, \ldots, 7,\) the “weight unstable part,” are given in the table (\(\Delta_k = P_{C_k}(t, s) - P_{C_{k-1}}(t, s)\)):
For $k \geq 8$ the sequence \(\{ *E^{\omega,*}_{\omega}(k) \} \) is “weight stable at 0” \(\cong E^0_{\omega,*}(k) = 0 \) and we have the following picture of the first page of the k-th term \(*E^{\omega,*}_{\omega}(k) \):
On the column $p = 2$ we have a five components cochain complex $e(q)$, where q takes values in the interval $[k - 2, 2k - 3]$:

\[
\begin{array}{c}
\oplus \\
\oplus \\
\oplus \\
\oplus \\
\oplus
\end{array}
\]

The differential d_0 is $d_0(w_3, w_7) = (2v_2v_4, v_4^2)$ and

\[
d_0(v_2^a v_4^b v_5^c, v_2^a v_4^b v_5^c) = \begin{cases}
(0, 0) & \text{if } \alpha = \beta = 0 \\
(2v_2^a v_4^b v_5^c, 2v_2^a v_4^b v_5^c) & \text{if } \alpha + \beta \geq 1.
\end{cases}
\]

On the column $p = 0$ we get $\alpha H^*(C_{k-1})$ and nothing on the columns $p = 3$ and $p = 4$: the differential d_0 is an isomorphism in the following case:

\[
\begin{align*}
2^{E_{0,4k-7}}(k) &= v_4^{k-4}Jw_7 \\
3^{E_{0,4k-10}}(k) &= v_4^{k-6}J^2w_7 \\
1^{E_{0,4k-5}}(k) &= v_4^{k-2}w_7
\end{align*}
\]
In the generic case, \(q \in [k + 2, 2k - 6] \), all the five components are non-zero and \(e(q) \) is acyclic; the matrices of the differentials are

\[
a = \begin{pmatrix} \text{id} & * \\ * & \text{id} & 0 \\ 0 & \text{id} & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \quad b = \begin{pmatrix} * & \text{id} & 0 \\ * & \text{id} & 0 \\ 0 & \text{id} & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \quad c = \begin{pmatrix} * & 0 & \text{id} & 0 \\ * & 0 & \text{id} & 0 \\ * & * & 0 & \text{id} \\ * & * & 0 & \text{id} \end{pmatrix} \quad d = \begin{pmatrix} * & * & \text{id} \end{pmatrix}.
\]

For the last values of \(q \) the cochain complex \(e(q) \) is shorter and still acyclic:

\[
q = 2k - 5
\]

\[
\begin{array}{c}
\xrightarrow{I_{4}^{2k-6}w_{3}J_{7}} \quad \xrightarrow{b} \quad \xrightarrow{I_{4}^{2k-5}w_{3}J_{2}} \quad \xrightarrow{c} \quad \xrightarrow{I_{4}^{2k-3}w_{3}J_{2}} \quad \xrightarrow{d} \quad \xrightarrow{I_{4}^{2k-3}}
\end{array}
\]

\[
q = 2k - 4
\]

\[
\begin{array}{c}
\xrightarrow{I_{4}^{2k-6}w_{3}J_{7}} \quad \xrightarrow{b} \quad \xrightarrow{I_{4}^{2k-5}w_{3}J_{2}} \quad \xrightarrow{c} \quad \xrightarrow{I_{4}^{2k-3}w_{3}J_{2}} \quad \xrightarrow{d} \quad \xrightarrow{I_{4}^{2k-2}}
\end{array}
\]

\[
q = 2k - 3
\]

\[
\begin{array}{c}
\xrightarrow{I_{4}^{2k-3}w_{3}J_{7}} \quad \xrightarrow{b} \quad \xrightarrow{I_{4}^{2k-5}w_{3}J_{2}} \quad \xrightarrow{c} \quad \xrightarrow{I_{4}^{2k-3}w_{3}J_{2}} \quad \xrightarrow{d} \quad \xrightarrow{I_{4}^{k-1}}
\end{array}
\]

For the first values of \(q \) we obtain non-zero cohomology classes.

\[
q = k - 2
\]

\[
\begin{array}{c}
\xrightarrow{I_{4}^{2k-3}w_{3}J_{7}} \quad \xrightarrow{b} \quad \xrightarrow{I_{4}^{2k-3}w_{3}J_{2}} \quad \xrightarrow{c} \quad \xrightarrow{I_{4}^{2k-3}w_{3}J_{2}} \quad \xrightarrow{d} \quad \xrightarrow{I_{4}^{k}}
\end{array}
\]
and this gives $0E_{1}^{2k-2}(k) = \langle v_{2}^{k}, v_{2}^{k} \rangle$.

$q = k - 1$

\[
\begin{array}{cccc}
\mathbb{I}^{k-4}w_{3}J & \mathbb{I}^{k-4}v_{4}w_{3}J & \mathbb{I}^{k-2}v_{4} & \\
\mathbb{I}^{k-3}v_{4}w_{3}J & \mathbb{I}^{k-3}v_{4}J & \mathbb{I}^{k-2}w_{7} & \\
\mathbb{I}^{k-2}J &
\end{array}
\]

Obviously, the first differential is injective and the second is surjective, the Euler characteristic is $(2k - 6) - (3k - 4) + k = -2$ and $\langle v_{2}^{k-3}, v_{2}^{k-3} \rangle$ is a complement for the image of c, hence $1E_{1}^{2k-1}(k) = \langle v_{2}^{k-3}, v_{2}^{k-3} \rangle$.

$q = k$

\[
\begin{array}{cccc}
\mathbb{I}^{k-6}w_{3}J & \mathbb{I}^{k-5}v_{4}w_{3}J & \mathbb{I}^{k-4}w_{3}w_{7}J & \\
\mathbb{I}^{k-5}v_{4}w_{3}J & \mathbb{I}^{k-4}v_{4}w_{3}J & \mathbb{I}^{k-3}v_{4}J & \\
\mathbb{I}^{k-4}w_{3}w_{7}J & \mathbb{I}^{k-4}w_{3}w_{7}J & \mathbb{I}^{k-2}w_{7} & \\
\mathbb{I}^{k-4}J &
\end{array}
\]

Definitely, $\langle v_{2}^{k-3}, v_{2}^{k-3} \rangle \subset \ker(d)$ and its intersection with Im(e) is 0. The subcomplex $f(k) \subset e(k)$ generated by v_{4}^{2} and w_{7} is acyclic ($\alpha v_{4}^{2} \mapsto \alpha w_{7}$ gives a homotopy $\text{id}_{f(k)} \simeq 0$) and the quotient complex $e(k)/f(k)$ is

$\mathbb{I}^{k-6}w_{3}J \rightarrow \mathbb{I}^{k-5}v_{4}w_{3}J \oplus \mathbb{I}^{k-4}w_{3}w_{7} \rightarrow \mathbb{I}^{k-3}v_{4}J$ with dimensions $k - 5$, $3k - 11$ and $2k - 4$ respectively. Therefore $1E_{1}^{2,2k+1}(k)$ has dimension 2 and it is equal to $\langle v_{2}^{k-3}, v_{2}^{k-3} \rangle$.

$q = k + 1$

\[
\begin{array}{cccc}
\mathbb{I}^{k-7}v_{4}w_{3}J & \mathbb{I}^{k-6}v_{4}w_{3}J & \mathbb{I}^{k-5}v_{4}J & \\
\mathbb{I}^{k-6}w_{3}J & \mathbb{I}^{k-5}v_{4}w_{3}w_{7}J & \mathbb{I}^{k-5}v_{4}w_{3}w_{7}J & \\
\mathbb{I}^{k-5}v_{4}w_{3}w_{7}J & \mathbb{I}^{k-4}v_{4}w_{3}w_{7}J & \mathbb{I}^{k-3}v_{4}w_{7} & \\
\mathbb{I}^{k-4}Jw_{7} &
\end{array}
\]
As in the previous case, \(\langle v_2^{k-5} \eta, v_2^{k-5} \tilde{\eta} \rangle \subset \ker(e) \) and its intersection with \(\text{Im}(b) \) is 0. The same subcomplex \(f(k + 1) \subset e(k + 1) \) is acyclic and in the quotient subcomplex
\[
I^{k-3}v_4w_3I^2 \rightarrow I^{k-5}v_4J^2
\]
the dimensions are \(k - 6 \) and \(k - 4 \). Hence \(E^{2,2k+2}_2(k) = \langle v_2^{k-5} \eta, v_2^{k-5} \tilde{\eta} \rangle \).

In conclusion, the spectral sequences \(\{*E_*^\bullet(k)\}_{k \geq 8} \) degenerate at \(*E_1^\bullet, \) with the described eight cohomology classes in \(*E_2^1, *E_2^\bullet \).

As a consequence of the computation we have the following table of the two-variables Poincaré polynomials (for each \(k \), the first line contains the coefficients corresponding to \(s = 0 \), the second line those with \(s = 1 \) and the third line corresponds to \(s = 2 \)) and the proofs of Corollaries 7.2, 7.3 and Proposition 1.9.

Table 4

\(k \)	0	2	4	6	8	10	12	14	16	18	
1	1	2	1								
2	1	2	3								
3	1	2	3	2		2					
4	1	2	3	2	2	4					
5	1	2	3	2	2	4	5	2			
6	1	2	3	2	2	2	2	4	5	4	2
7	1	2	3	2	2	2	2	4	5	4	2

Corollary 7.2. The space \(\mathbb{C}P^1 \times \mathbb{C}P^1 \) satisfies the Poincaré polynomial shifted stability condition with range 6, shift 2 and recurrence relation
\[
P_{C_{k+1}(\mathbb{C}P^1 \times \mathbb{C}P^1)}(t,s) = P_{C_{k}(\mathbb{C}P^1 \times \mathbb{C}P^1)}(t,s) + 2t^{2k+2}[1 + s(t + t^2) + s^2t^4] \quad (k \geq 6).
\]

Corollary 7.3. The space \(\mathbb{C}P^1 \times \mathbb{C}P^1 \) satisfies the extended shifted stability condition with range 6 and shift 2. For any \(k \geq 6 \) we have:
\[
P_{C_{k+1}(\mathbb{C}P^1 \times \mathbb{C}P^1)}^{[2(k-5)]}(t,s) = t^2P_{C_{k}(\mathbb{C}P^1 \times \mathbb{C}P^1)}^{[2(k-5)]}(t,s).
\]

Proof of Proposition 1.9. Obvious from Corollaries 7.2 and 7.3. \(\Box \)

With a different terminology, that of “stable instability,” M. Maguire proved in [23] the shifted stability property for the complex projective space \(\mathbb{C}P^3 \). Using our method one can obtain M. Maguire’s result as Proposition 7.4 and Corollaries 7.5, 7.6.
Proposition 7.4. The complex projective space \mathbb{CP}^3 satisfies the spectral sequence shifted stability condition with range 6 and shift 2. More precisely, the non-zero pieces $E^r_{\infty, k}(k)$ (for $k \geq 6$) are:
\[
\begin{align*}
0 &E^2_{\infty, 2k-2}(k), & 1 &E^2_{\infty, 2k+3}(k), & 1 &E^2_{\infty, 2k+5}(k) & \text{and} & 2 &E^2_{\infty, 2k+10}(k)
\end{align*}
\]
and all these spaces have dimension one.

The next table contains the coefficients of the two-variables Poincaré polynomials of the first configuration spaces $C_k(\mathbb{CP}^3)$ (we use the convention of Table 4):

k	0	2	4	6	8	10	12	14	16	17	19	21	24	26
1	1	1	1	1										
2	1	1	2	1	1									
3	1	1	2	1	1									
4	1	1	2	2	1	1								
5	1	1	2	2	1	1								
6	1	1	2	2	1	1								
7	1	1	2	2	1	1								

Corollary 7.5. The space \mathbb{CP}^3 satisfies the Poincaré polynomial shifted stability condition with range 5, shift 2 and recurrence relation
\[
P_{C_{k+1}(\mathbb{CP}^3)}(t, s) = P_{C_k(\mathbb{CP}^3)}(t, s) + t^{2k+2}[1 + s(t^5 + t^7) + s^2t^{12}] (k \geq 5).
\]

Corollary 7.6. The spaces \mathbb{CP}^3 satisfies the extended shifted stability condition with range 6 and shift 2. For any $k \geq 6$ we have:
\[
P_{[2(k-5)]}^{C_{k+1}(\mathbb{CP}^3)}(t, s) = t^2 P_{[2(k-5)]}^{C_k(\mathbb{CP}^3)}(t, s).
\]

The complete details of the proofs of these and other results for the unordered configuration spaces of \mathbb{CP}^n will be given in [4].

Proof of Proposition 1.10. Obvious from Corollaries 7.5 and 7.6. □

Remark 7.7. In these two examples, $\mathbb{CP}^1 \times \mathbb{CP}^1$ and \mathbb{CP}^3, the sequence of odd Betti numbers is unimodal for any k. This is not true for the sequence of even Betti numbers, but the sequences of Betti numbers $\{\beta_{i,j}\}_{i\geq 1}$ are unimodal too, for each $j \in \{0, 1, 2\}$.

References

[1] V. I. Arnold, *On some topological invariants of algebraic functions*, Trans. Moscow Math. Soc. Vol 21 (1970), 30-52.

[2] S. Ashraf, H. Azam, B. Berceanu, *Representation theory for the Križ model*, Algebraic and Geometric Topology, 14, 1 (2014), 57–90.

[3] B. Berceanu, D. A. Măcinic, Ş. Papadima, C. R. Popsču, *On the geometry and topology of partial configuration spaces of Riemann surfaces*, Algebraic and Geometric Topology, 17, 2 (2017), 1163-1188.

[4] B. Berceanu, M. Yameen, *Unordered configuration spaces of projective spaces*, in preparation.

[5] C. F. Bödigheimer, F. Cohen, L. Taylor, *On the homology of configuration spaces*, Topology, 28, 2 (1989), 111-123.

[6] G. Bredon, *Sheaf Theory*, GTM 170, Springer-Verlag (1997).

[7] Th. Church, *Homological stability for configuration spaces of manifolds*, Invent. Math, 188, 2 (2012), 465-504.

[8] Th. Church, B. Farb, A. Putnam, *A stability conjecture for the unstable cohomology of $SL_n(\mathbb{Z})$, mapping class groups, and $\text{Aut}(\mathbb{F}_n)$*, Algebraic topology: applications and new directions, Contemp. Math., 620 (2014), 55-70.

[9] F. Cohen, *The homology of τ_{n+1}-spaces, $n \geq 0$*, in *Homology of Iterated Loop Spaces*, LNM 533 (1976), 207-351.

[10] A. Dimca, *Sheaves in Topology*, Universitext Springer-Verlag (2004).

[11] G. C. Drummond-Cole, B. Knudsen, *Betti numbers of configuration spaces of surfaces*, J. London Math. Soc. 96, 2 (2017) 367-393.

[12] E. Fadell, J. Van-Buskirk, *The braid groups of E^2 and S^2*, Duke Math. Journal, 29, 2 (1962), 243-258.

[13] M. Farber, *Invitation to Topological Robotics*, EMS, (2008).

[14] Y. Félix, J. C. Thomas, *Rational Betti numbers of configuration spaces*, Topology and its Application, 102, 2 (2000), 139-149.

[15] Y. Félix, D. Tanré, *The cohomology algebra of unordered configuration spaces*, J. London Math. Soc. 72, 2 (2005), 525-544.

[16] J. Fowler, Z. Su, *Smooth manifolds with prescribed rational cohomology ring*, Geometriae Dedicata 182, 1 (2016), 215-232.

[17] D. B. Fuchs, *Cohomology of the braid group mod 2*, Funct. Anal. i Prilozhen. 4, 2 (1970), 62-73.

[18] J. Eells, N. Kuiper, *Manifolds which are like projective planes*, Publ. Math. de IHES 14 (1962), 5-46.

[19] S. Galatius, A. Kupers, O. R. Williams, *E_2-cells and mapping class groups*, preprint arXiv:1805.07187v1 [math.AT], (2018).

[20] L. Kennard, Z. Su, *On dimensions supporting a rational projective plane*, Journal of Topology and Analysis (2017), 1-21.

[21] B. Knudsen, *Betti numbers and stability for configuration spaces via factorization homology*, Algebraic and Geometric Topology, 17, 5 (2017), 3137-3187.

[22] A. Kupers, J. Miller, *Some stable calculations and Occam’s razor for Hodge structures*, J. Pure Appl. Algebra, 218, 7 (2014), 1219-1223.

[23] M. Maguire, *Computing cohomology of configuration spaces*, with an appendix by M. Christie and D. Francour, preprint arXiv:1612.06314v1 [math.AT], (2016).

[24] D. McDuff, *Configuration spaces of positive and negative particles*, Topology 14, 1 (1975), 91-107.
[25] J. Miller, J. Wilson, Higher order representation stability and ordered configuration spaces of manifolds, preprint arXiv1611.01920v1[math AT], (2016).
[26] G. Prasad, S. K. Yeung, Fake projective planes, Invent. Math, 168, 2 (2007), 321-370.
[27] O. Randal-Williams, Homological stability for unordered configuration spaces, Q. J. Math. 64, 1 (2013), 303-326.
[28] O. Randal-Williams, “Topological chiral homology” and configuration spaces of spheres, in Morphisms (MIMS proceedings issue), 17, 2 (2013), 57-70.
[29] P. Salvatore, Configuration spaces on the sphere and higher loop spaces, Math. Z., 248, 3 (2004), 527-540.
[30] C. Schiessl, Betti numbers of unordered configuration space of the torus, preprint arXiv1602.04748v2[math. AT], (2016).
[31] G. Segal, The topology of spaces of rational functions, Acta Math., 143, 1-2 (1979), 39-72.
[32] M. B. Sevryuk, The cohomology of projective compactified complex swallow-tails and their complements, Russian Math. Surveys, 39, 5 (1984), 285-286.
[33] Z. Su, Rational analogues of projective planes, Algebraic and Geometric Topology, 14, 1 (2014), 421-438.

Simion Stoilow Institute of Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania,
Abdus Salam School of Mathematical Sciences GCU Lahore, Pakistan
E-mail address: Barbu.Berceanu@imar.ro

Abdus Salam School of Mathematical Sciences GCU Lahore, Pakistan
E-mail address: yameen99khan@gmail.com