Ameliorative effects of ginseng and ginsenosides on rheumatic diseases

Young-Su Yi*

Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea

Abstract

Background: Inflammation is a host-defense innate immune response to protect the body from pathogenic agents and danger signals induced by cellular changes. Although inflammation is a host-defense mechanism, chronic inflammation is considered a major risk factor for the development of a variety of inflammatory autoimmune diseases, such as rheumatic diseases. Rheumatic diseases are systemic inflammatory and degenerative diseases that primarily affect connective tissues and are characterized by severe chronic inflammation and degeneration of connective tissues. Ginseng and its bioactive ingredients, ginsenosides, have been demonstrated to have antiinflammatory activity and pharmacological effects on various rheumatic diseases by inhibiting the expression and production of inflammatory mediators.

Methods: Literature in this review was searched in a PubMed site of National Center for Biotechnology Information.

Results: The studies reporting the preventive and therapeutic effects of ginseng and ginsenosides on the pathogenesis of rheumatic diseases were discussed and summarized.

Conclusion: Ginseng and ginsenosides play an ameliorative role on rheumatic diseases, and this review provides new insights into ginseng and ginsenosides as promising agents to prevent and treat rheumatic diseases.

© 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inflammation is an innate immune mechanism to protect the body from invading pathogens and cellular danger signals [1–3]. Although an inflammatory response is a host-defense mechanism, chronic inflammation, defined as repeated and prolonged inflammation, is considered a major risk factor for the development of inflammatory and autoimmune diseases. Rheumatic diseases are chronic inflammatory and degenerative autoimmune diseases that primarily affect connective tissues such as cartilage and bones, ligaments, tendons, and muscles but can also affect nonconnective tissues and internal organs, leading to substantial morbidity [4]. More than 100 rheumatic diseases have been identified, and there are numerous patients who suffer from these diseases worldwide. This has resulted in extensive investigation of the mechanisms of disease pathogenesis and development of effective therapeutics. Representative rheumatic diseases include rheumatoid arthritis (RA), osteoarthritis (OA), systemic lupus erythematosus (SLE), ankylosing spondylitis, and Sjögren’s syndrome. Despite uncertainty regarding the etiology of rheumatic diseases, chronic inflammation and autoimmunity are known to play critical roles in both the onset and progression of rheumatic diseases. Ginsengs and their active components, ginsenosides, have strong antiinflammatory properties; they may therefore have an ameliorative effect on the pathogenesis of rheumatic diseases. Indeed, many studies have investigated the therapeutic effects of ginsengs and ginsenosides on rheumatic diseases in vitro and in vivo.

Abbreviations: ACAN, Aggrecan; ACLT, Anterior cruciate ligament transection; BMP, Bone morphogenetic protein; CIA, Collagen-induced arthritis; CK, Compound K; COL, Collagen; DAMP, Danger-associated molecular pattern; LTMMR, Ligament transection and medial meniscus resection; OA, Osteoarthritis; PAMP, Pathogen-associated molecular pattern; PPD, Protopanaxadiol; PPT, Protopanaxatriol; PRR, Pattern-recognition receptor; RA, Rheumatoid arthritis; RNAKL, Receptor activator of NF-κB ligand; SLE, Systemic lupus erythematosus.

* Corresponding author. Department of Pharmaceutical Engineering, Cheongju University, 298 Daesung-Ro, Cheongwon-Gu, Cheongju-Si, Chungcheongbuk-Do 28503, Republic of Korea.

E-mail address: yysi@cju.ac.kr.
Ginseng refers to species of slow-growing plants in the genus *Panax* and has been used to ameliorate and cure various human diseases for thousands of years. Many efforts have been made to purify and identify the bioactive components of ginseng, and ginsenosides have been identified as the main bioactive compounds. A large number of studies have investigated the pharmacological roles of various ginsenosides on the pathogenesis of human diseases, and many studies have reported that various ginsenosides exert an antiinflammatory effect during the inflammatory response and in inflammatory autoimmune diseases [5].

This review provides a brief summary of ginseng and ginsenosides and discusses recent studies that have investigated their pharmacological roles in the pathogenesis of rheumatic diseases. The aim of this review is not only to enhance understanding of the effects of ginseng and ginsenosides in rheumatic diseases but also to provide new insights that may spur the development of ginseng-containing remedies to prevent and treat rheumatic diseases.

2. Ginseng and ginsenosides

Ginseng refers to perennial plant species in the genus *Panax* in the family Araliaceae. Plants in this genus are found worldwide and are cultivated in Eastern Asia and North America. Ginseng has long been used as a traditional herbal medicine and as a health food to improve vitality and physical performance and to reduce or cure spiritlessness and fatigue [6]. There are 13 species in the genus *Panax*, of which the pharmacological properties of five have been investigated: *Panax ginseng* (Asian or Korean ginseng), American ginseng, Vietnamese ginseng, Japanese ginseng, and Pseudo-ginseng. Among these, *Panax ginseng*, also known as Korean...
ginseng, is the most popular and commonly used species for therapeutic purposes [7]. The meaning of “Panax” is “all healing,” which originates from traditional Oriental medicine beliefs that ginseng could treat all human diseases. A number of studies have demonstrated that ginseng can alleviate the symptoms of various diseases and conditions such as diabetes [8,9], hypertension [10,11], gastric ulcers [12], neuronal disease [13,14], pain [15,16], inflammatory diseases [5,17], and cancers [18,19]. Further studies have revealed the pharmacologically active compounds of ginseng: ginsenosides, ginsengosides, polysaccharides, peptides, phytosterols, polyacetylenes, polyacetylenic alcohols, and fatty acids [20,21]. Among these, ginsenosides are the main bioactive compounds in ginseng, and most studies of the pharmacological and medicinal effects of ginseng have focused on ginsenosides. Ginsenosides are steroidal triterpenoid saponins [22]. More than 100 different types of ginsenosides have been identified, and ginsenosides are presented by G-Rx, where x is determined by the distance moved on thin layer chromatography from the polar segment marked “A” to the least polar segment marked “H” [23]. Ginsenosides are classified as protopanaxadiol, protopanaxatriol, or rare ginsenosides based on the backbone structure (Fig. 1), and various reactive groups and sugars are attached to the different areas of the backbone to generate distinctive ginsenoside molecules. A number of studies have successfully demonstrated that many types of ginsenosides have pharmacological effects in various human diseases, such as cardiovascular diseases [24,25], neuronal diseases [14], diabetes [26], obesity [27], skin diseases [28], and cancers [29,30]. Ginsenosides have also been reported to have antiinflammatory effects during inflammatory responses and in inflammatory diseases [5], and many studies have demonstrated that ginsenosides have a pharmacological effect on rheumatic diseases, which are the most common inflammatory autoimmune diseases.

3. Effects of ginseng and ginsenosides in rheumatic diseases

3.1. Rheumatoid arthritis

RA is a long-term inflammatory autoimmune disease that causes chronic joint inflammation with the symptoms of pain, swelling, and stiffness in the hands, feet, knees, and wrists. RA is generally characterized by chronic synovial inflammation of the joints, resulting in the degradation and destruction of cartilages and bones, and has poor outcomes with limited treatment options [31,32]. Despite the lack of robust epidemiological studies in some regions and the difference in RA prevalence between ethnicities, the prevalence of RA is the highest among the inflammatory autoimmune diseases, ranging from 0.5 to 1% of the population worldwide [33,34]. The exact causes of RA pathogenesis remain unknown, but chemokines, pro-inflammatory cytokines [e.g., tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6], and inflammatory mediators [e.g., reactive oxygen/nitrogen species, prostaglandins, cyclooxygenase-2, matrix metalloproteinases (MMPs)], and the influx of inflammatory immune cells (e.g., macrophages, neutrophils) are thought to play a critical role in RA pathogenesis [32,35]. Therefore, many efforts have been made to develop RA therapies by suppressing these inflammatory products.

As discussed earlier, a number of studies have demonstrated the antiinflammatory properties of ginseng and ginsenosides, and their ameliorative effects on RA pathogenesis have also been studied. Joint-protective effects of compound K (CK) on RA pathogenesis were investigated in vitro. Choi et al demonstrated that CK significantly decreased the production of MMP-1 and MMP-3 from RA fibroblast-like synoviocytes by inhibiting janus kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways [36]. In vivo studies have also investigated the effects of ginseng and ginsenosides on RA pathogenesis using RA animal models. Kim et al demonstrated the antiarthritic effects of ginsenoside Rb1 (G-Rb1) in collagen-induced arthritic (CIA) mice and reported that oral administration of G-Rb1 markedly ameliorated clinical arthritis scores and also reduced immune cell infiltration and cartilage destruction by suppressing TNF-α expression, which is upregulated during inflammatory responses in CIA mice [37]. This study also demonstrated that G-Rb1 significantly inhibited TNF-α expression induced by interferon-γ in peripheral blood mononuclear cells, chondrocytes, and fibroblast-like synoviocytes isolated from human RA patients [37]. Chang et al investigated the anti-inflammatory effects of BT-201, a Panax notoginseng butanol extract, in CIA mice and reported that BT-201 attenuated the onset and progression of arthritic symptoms and reduced arthritic histological scores [38]. The antiarthritic effects of BT-201 were achieved by inhibiting TNF-α and IL-1β secretion from THP-1 cells, inhibiting inducible nitric oxide synthase production in RAW264.7 cells, MMP-13 production in SW1353 cells by suppressing nuclear factor-kappa B, and mitogen-activated protein kinase signaling pathways [38]. Antiarthritic effects of ginseng were also investigated in 84 RA patients. Zhang et al demonstrated that Panax notoginseng saponin significantly improved the clinical symptoms and reduced arthritic indexes in RA patients [39]. Although protein-based antiarthritic blockbuster drugs, such as TNF-blockers, IL-1-blockers, and IL-6-blockers, are currently used to treat RA, alternative approaches are in great demand because of the instability of the protein drugs and existence of TNF-failure patient groups. Collectively, the studies described previously strongly suggest that ginseng and ginseng-derived components can suppress inflammatory responses and ameliorate RA pathogenesis (Fig. 2) and could therefore potentially be used as antiarthritic agents to prevent and treat RA.

3.2. Osteoarthritis

OA is a complex and multifactorial joint degenerative disease resulting from the breakdown of cartilage and the underlying
Fig. 3. Schematic summary of the ameliorative effects of ginsenosides on OA pathogenesis. CK, G-Rg1, G-Rg3, G-Rg5, and G-Rb1 ameliorate OA by decreasing RANKL, ROS, NO, iNOS, MMP-1, MMP-13, Notch1/JAG1, COLII & ACAN, osteoclast activity, osteoblast differentiation markers alkaline phosphatase and type I collagen and reduced the production of reactive oxygen species and nitric oxide, which are critical molecules required for the development of OA, in H2O2-stimulated mouse osteoblast precursor cells (MC3T3-E1 cells) [51]. Another in vitro study investigated the protective effects of ginsenoside Rg3 (G-Rg3) on human osteoarthritic chondrocytes. So et al isolated chondrocytes from OA patients and demonstrated that G-Rg3 markedly reduced the expression of MMP-1 and MMP-13, which are chondrodegenerative proteins, and increased the expression of type 2 collagen (COLII) and aggrecan, which are chondroprotective proteins, in IL-1β-stimulated chondrocytes [52]. Moreover, G-Rg3 suppressed the expression of senescence-associated β-GAL, a biomarker of cellular senescence, and increased telomerase activity, which is known to be reduced during cellular aging, in chondrocytes [52].

In vivo studies have also investigated the therapeutic potential of ginseng and ginsenosides for treating OA in animal models. Wang et al generated an OA rat model by anterior cruciate ligament transection (ACLT) and demonstrated that intraarticular injection of G-Rb1 lowered levels of Notch1 and its ligand, jagged 1, which are overexpressed in OA [53], in the cartilage [54]. G-Rb1 treatment was strongly associated with decrease in levels of Notch1, jagged 1, and MMP-13 and increased level of COLII in IL-1β-stimulated human osteosarcoma cells (SW1353 cells) [53]. In addition, Zhang investigated the effect of ginsenoside Rg5 (G-Rg5) on the degrada-

tion of articular cartilage in an OA rat model prepared by liga-

tment transection and medial meniscus resection. Histopathological analysis showed that G-Rg5 significantly alleviated OA symptoms by preventing cartilage degradation, synovial membrane disintegra-

tion, and apoptotic cell death in the knee joints in ligament transec-

tion and medial meniscus resection OA rats [55]. An in vitro study revealed that G-Rg5 increased proteoglycan, collagen, and bone morphogenetic protein 2 levels and decreased MMP-13, IL-1β,
TNF-α, nitric oxide, and inducible nitric oxide synthase levels in the chondrocytes of OA rats [55]. Chang et al investigated the chondroprotective effects of ginsenoside Rg1 (G-Rg1) in human OA patients and an OA rat model by preparing articular chondrocytes from OA patients and an OA rat model that underwent ACLT.

3.3. Systemic lupus erythematosus

SLE, the most common form of lupus, is a chronic autoimmune disease in which the immune system attacks healthy self-tissues in almost any part of the body. It is characterized by a wide range of clinical manifestations, including painful and swollen joints, fever, hair loss, chest pain, feeling tired, and malar “butterfly” rash. Despite the wide range of symptoms, one of the common clinical hallmarks of SLE is circulating autoantibodies and immune complexes that recognize host-derived substances, such as nucleic acids and insufficiently removed apoptotic bodies [57,58]. The prevalence of SLE varies according to geographical region, study design, age, sex, and ethnicity, and SLE is much more common in women than in men (ratio of approximately 6:1) [59]. The highest prevalence of SLE was reported in North America (214 cases per 100,000 people).

Table 1

Disease	Compound	Effects	Experimental models
RA	CK	Decreases MMP-1 and MMP-9 production	Human RA fibroblast-like synoviocytes [36]
	G-Rb1	Decreases TNF-α expression	Human RA fibroblast-like synoviocytes [37]
		Ameliorates clinical arthritic scores	Human PBMCs
		Reduces immune cell infiltration and cartilage destruction	Human chondrocytes
	Ph-BE	Inhibits TNF-α, IL-1β, iNOS, and MMP-13 expression	Human THP-1 cells [38]
		Suppresses NF-κB and MAPK signaling pathways	Mouse RAW264.7 cells
		Attenuates onset and progression of CIA	Human SW1353 cells
	PNS	Improves clinical symptoms	Human RA patients [39]
		Reduces arthritic indexes	Human RA patients
OA	CK	Reduces RANKL expression	Human RA fibroblast-like synoviocytes [36]
		Inhibits RANKL-induced osteoclastogenesis/osteoclast activity	Mouse RAW264.7 cells
		Increases ALP and COL1 levels	Human CD14+ monocytes [51]
		Reduces ROS and NO levels	Mouse MC3T3-E1 cells
	G-Rg3	Decreases MMP-1 and MMP-13 expression	Human chondrocytes [52]
		Increases COLII and ACAN expression	Human chondrocytes
	G-Rb1	Decreases Notch1, JAG1, and MMP-13 expression	Human SW1353 cells
		Increases COLII expression	Human SW1353 cells
	G-Rg5	Prevents cartilage destruction, synovial membrane disintegration, and apoptotic cell death in knee joints	Human OA chondrocytes
		Increases proteoglycan, collagen, and BMP-2 expression	LTMMR OA chondrocytes
		Decreases MMP-13, IL-1β, TNF-α, NO, and iNOS expression	LTMMR OA rats
	G-Rg1	Decreases MMP-13, COX-2, and PGE2 expression	Human OA chondrocytes
		Increases COLII and ACAN expression	Human OA chondrocytes
		Attenuates cartilage destruction	LTMMR OA rats
SLE	SPGF	Decreases disease activity scores	Human SLE patients
	Ginsenosides + prednisone	Improves clinical SLE indexes	Human SLE patients

ACAN, aggrecan; ACLT, anterior cruciate ligament transection; ALP, alkaline phosphatase; BMP-2, bone morphogenetic protein 2; C3, complement 3; CIA, collagen-induced arthritis; CK, compound K; COLI, type I collagen; COLII, type II collagen; COX-2, cyclooxygenase-2; dsDNA, double-stranded DNA; ESR, erythrocyte sedimentation rate; SLE, systemic lupus erythematosus; SLEDAI, SLE disease activity index; SPGF, saponins of ginseng fruit; TNF-α, tumor necrosis factor-α.
whereas the lowest prevalence was reported in Northern Australia (0 cases per 847 people) [60]. Current treatment options for SLE include inflammation-directed treatment, immune cell—targeted therapies, costimulatory signaling—targeted therapies, cytokine therapies, anti-ILg therapy, and antikinase therapies [61]. Nevertheless, adverse effects related to treatment of SLE and active SLE refractory to traditional therapies remain major challenges, highlighting the need for complementary and alternative strategies to treat SLE.

Several studies have reported that ginseng had an ameliorative effect on SLE pathogenesis. Yang and Zhang investigated the therapeutic effect of saponins of ginseng fruit on SLE pathogenesis in patients with active disease and demonstrated that saponins of ginseng fruit significantly decreased disease activity scores and ameliorated SLE symptoms by improving the clinical efficacy of current medications in SLE patients [62]. You et al evaluated the efficacy of ginsenosides combined with prednisone, a synthetic corticosteroid immunosuppressant drug used for SLE treatment, and reported that the clinical efficacy of the combined therapy was better than that of the corticosteroid alone, as evidenced by a significant improvement in SLE disease activity index, erythrocyte sedimentation rate, and complement 3 and anti-double-stranded DNA levels [63]. In another study, the same research group reported that combined prednisone and ginsenoside therapy significantly decreased disease syndrome scores and improved disease symptoms compared with the prednisoni plus placebo group [64]. These studies suggest that ginseng itself as well as combined ginsenoside and current anti-SLE drug therapy could alleviate SLE symptoms and improve clinical outcomes of SLE patients (Fig. 4).

4. Conclusions and perspectives

Inflammation is an innate immune response to defend the host from infectious agents and alter cellular homeostasis. Although inflammation is a defensive response, chronic inflammation has been implicated in the development of several human inflammatory autoimmune diseases, among which rheumatic diseases are some of the most common. Ginseng and its main bioactive ingredients, ginsenosides, have well-documented pharmacological effects on the pathogenesis of inflammatory autoimmune diseases and rheumatic diseases such as RA, OA, and SLE, as described in Table 1. No studies to date have investigated the effects of ginseng and ginsenosides on the pathogenesis of other types of rheumatic diseases, such as ankylosing spondylitis, spondylarthropathies, and Sjögren’s syndrome. Moreover, the effects of other types of ginsenosides and ginseng-derived ingredients on the pathogenesis of RA, OA, and SLE have not been explored. Future studies that address these knowledge gaps are required if ginseng and ginsenosides are to be used as novel therapeutics to treat rheumatic diseases.

Conflicts of interest

The author declares no conflicts of interest.

References

[1] Jancewicz JF, Drzewiótko D. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.
[2] Yi YS. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw 2016;16:337–43.
[3] Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017;152:207–17.
[4] Yi YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J Physiol Pharmacol 2018;22:1–15.
[5] Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2007;31:413–43.
[6] Chong SK, Oberholzer VG. Ginseng—is there a use in clinical medicine? Postgrad Med J 1986;62:416–6.
[7] Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci 2001;18(Suppl):s3–5.
[8] Deng J, Liu Y, Duan Z, Zhu C, Hui J, Mi Y, Ma P, Ma X, Fan D, Yang H. Pro-panaxadial and propanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice. Front Pharmacol 2017;8:506.
[9] Jiang S, Ren D, Li J, Yuan G, Li H, Xu G, Han X, Du P, An L. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Vitropharma 2014;95:58–64.
[10] Zhao Q, Zheng MX, Choi HE, Wu CY, Wang WT. Effect of panax notoginseng saponins injection on the p38MAPK pathway in lung tissue in a rat model of hypoxic pulmonary hypertension. Chin J Integr Med 2015;21:147–51.
[11] Lee HW, Lim HJ, Jun JH, Choi J, Lee MS. Ginseng for treating hypertension: a systematic review and meta-analysis of double-blind, randomized, placebo-controlled trials. Curr Vasc Pharmacol 2017;15:549–56.
[12] Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH et al. Ginsenoside Rc from Korean red ginseng (panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am J Chin Med 2016;44:595–615.
[13] Lee S, Youn K, Jeong WS, Ho CT, Jun M. Protective effects of red ginseng oil against abeta25-35-induced neuronal apoptosis and inflammation in PC12 cells. Int J Mol Sci 2017;18:1024.
[14] Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.
[15] Zhu EJ, Choi GJ, Kang H, Baek CW, Jung YH, Woo YC, Bang SR. Antinociceptive effects of ginsenoside Rg3 in a rat model of incisional pain. Eur Surg Res 2016;57:211–23.
[16] Kim WJ, Kang H, Choi GJ, Shin HY, Baek CW, Jung YH, Woo YC, Kim JY, Yon JH. Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J Surg Res 2014;187:169–75.
[17] Osada-Oka M, Hirai S, Izumi Y, Misumi K, Samukawa K, Tomita S, Miura K, Ninamurai Y, Iwao H. Red ginseng extracts attenuate skin inflammation in atopic dermatitis through p70 ribosomal protein S6 kinase activation. J Pharmacol Sci 2018;136:9–15.
[18] Wang C, Anderson S, Du W, He TC, Yuan CS. Red ginseng and cancer treatment. Chin J Nat Med 2016;14:7–16.
[19] Dai D, Zhang CF, Williams S, Yuan CS, Wang C. Ginseng on cancer: potential role in modulating inflammation-mediated angiogenesis. Am J Chin Med 2017;45:13–22.
[20] Gillis CH. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1–4.
[21] Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685–93.
[22] Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153–7.
[23] Liu CX, Xiao PC. Recent advances on ginseng research in China. J Ethnopharmacol 1999;64:77–88.
[24] Sun Y, Liu Y, Chen C. Roles and mechanism of ginsenosin in cardiovascular diseases: progress and perspectives. Sci China Life Sci 2016;59:292–8.
[25] Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161–6.
[26] Yi YS, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;36:27–39.
[27] Zhang L, Virgous C, Shi H. Ginseng and obesity: observations and understanding in cultured cells, animals and humans. J Nutr Biochem 2017;44:1–10.
[28] Sabouri-Rad S, Sahebkar A, Tayanari-Najarian Z. Ginseng in dermatology: a review. Curr Pharm Des 2017;23:1649–66.
[29] Choi YD, Wang C, Chen X, Du J, Sun H. Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. OncoTarget 2018;9:2931–50.
[30] Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol ginsenosides, the metabolite of Panax ginseng, in in vitro, animal and human models. Cancer Lett 2017;395:1–9.
[31] Smeden JS, Alethia D, Barton A, Burmester GR, Emery P, Firestone GS, Kavaanah A, McIntees IB, Solomon DH, Strand V, et al. Rheumatoid arthritis. Nat Rev Dis Primers 2018;4:18001.
[32] Yi YS, Ayala-Lopez W, Kulartane W, Low PS. Folate-targeted hapten immunotherapy of adjuvant-induced arthritis: comparison of hapten potencies. Mol Pharm 2009;6:1228–36.
[33] Myasoedova E, Crousson CS, Kremers HM, Termeau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum 2010;62:1576–82.
[34] Tobon GJ, Youinou P, Saraua A. The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. J Autoimmun 2010;35:10–4.
[35] Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 2007;19:289–95.
[36] Choi YS, Kang EH, Lee EY, Gong HS, Kang HS, Shin K, Lee EB, Song YY, Lee YJ. Joint-protective effects of compound K, a major ginsenoside metabolite, in rheumatoid arthritis: in vitro evidence. Rheumatol Int 2013;33:1981–90.
