Nečas-Lions lemma revisited: An L^p-version of the generalized Korn inequality for incompatible tensor fields

Peter Lewintan$^1,^*$ and Patrizio Neff1

June 4, 2020

Abstract

For $1 < p < \infty$ we prove an L^p-version of the generalized Korn inequality for incompatible tensor fields P in $W^{1,p}_0(\text{Curl}; \Omega, \mathbb{R}^{3\times3})$. More precisely, let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain. Then there exists a constant $c = c(p, \Omega) > 0$ such that

$$\|P\|_{L^p(\Omega, \mathbb{R}^{3\times3})} \leq c(\|\text{sym} P\|_{L^p(\Omega, \mathbb{R}^{3\times3})} + \|\text{Curl} P\|_{L^p(\Omega, \mathbb{R}^{3\times3})})$$

holds for all tensor fields $P \in W^{1,p}_0(\text{Curl}; \Omega, \mathbb{R}^{3\times3})$, i.e., for all $P \in W^{1,p}_0(\text{Curl}; \Omega, \mathbb{R}^{3\times3})$ with vanishing tangential trace $P \times \nu = 0$ on $\partial \Omega$ where ν denotes the outward unit normal vector field to $\partial \Omega$.

For compatible $P = D u$ this recovers an L^p-version of the classical Korn’s first inequality and for skew-symmetric $P = A$ an L^p-version of the Poincaré inequality.

AMS 2010 subject classification: Primary: 35A23; Secondary: 35B45, 35Q74, 46E35.

Keywords: $W^{1,p}_0(\text{Curl})$-Korn’s inequality, Poincaré’s inequality, Lions lemma, Nečas estimate, gradient plasticity, dislocation density, relaxed micromorphic model

1 Introduction

In this paper we generalize the main result from [64] for $n = 3$ to the L^p-setting. This is, we prove

$$\|P\|_{L^p(\Omega, \mathbb{R}^{3\times3})} \leq c(p, \Omega) (\|\text{sym} P\|_{L^p(\Omega, \mathbb{R}^{3\times3})} + \|\text{Curl} P\|_{L^p(\Omega, \mathbb{R}^{3\times3})}) \quad \forall P \in W^{1,p}_0(\text{Curl}; \Omega, \mathbb{R}^{3\times3}),$$

where, in the classical sense, the vanishing tangential trace reads $P \times \nu = 0$ on $\partial \Omega$ and ν denotes the outward unit normal vector field on the boundary of a bounded Lipschitz domain Ω.

The original proof of (1) in L^2, cf. [64], is rather technical and uses the classical Korn’s inequality, the Maxwell-compactness property and suitable Helmholtz-decompositions of tensor fields together with a restricting assumption on the domain to be “slicable” and is, moreover, not directly amenable to the L^p-case. Our new argument essentially uses only the Lions lemma resp. Nečas estimate (Theorem 2.6), the compactness of $W^{1,p}_0(\Omega) \subset \subset L^p(\Omega)$ and the algebraic identity

$$(\text{Anti} a) \times b = b \otimes a - \langle b, a \rangle 1 \quad \forall a, b \in \mathbb{R}^3,$$

where $\text{Anti} : \mathbb{R}^3 \to \mathfrak{so}(3)$ is the canonical identification of vectors with skew-symmetric matrices, see Section 2. For a Lipschitz domain (i.e. open connected with Lipschitz boundary) $\Omega \subset \mathbb{R}^n$, the Lions lemma states that $f \in L^p(\Omega)$ if and only if $f \in W^{-1,p}(\Omega)$ and $\nabla f \in W^{-1,p}(\Omega, \mathbb{R}^n)$, which is equivalently expressed by the Nečas estimate

$$\|f\|_{L^p(\Omega)} \leq c(\|f\|_{W^{-1,p}(\Omega)} + \|\nabla f\|_{W^{-1,p}(\Omega, \mathbb{R}^n)})$$

with a positive constant $c = c(p, n, \Omega)$.

1Chair for Nonlinear Analysis and Modeling, Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
*Corresponding author, email: peter.lewintan@uni-due.de.
Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. In this text, we refer to Korn’s first inequality (in L^p) with vanishing boundary values\footnote{In fact, the estimate is true for functions with vanishing boundary values on a relatively open (non-empty) subset of the boundary.} as the statement

$$\exists c > 0 \ \forall u \in W_0^{1,p}(\Omega, \mathbb{R}^n) : \quad \|Du\|_{L^p(\Omega,\mathbb{R}^{n\times n})} \leq c \|\text{sym } \text{D}u\|_{L^p(\Omega,\mathbb{R}^{n\times n})}. \quad (4)$$

It can be obtained from Korn’s second inequality (in L^p), which does not require boundary conditions and which reads

$$\exists c > 0 \ \forall u \in W^{1,p}(\Omega, \mathbb{R}^n) : \quad \|u\|_{W^{1,p}(\Omega,\mathbb{R}^n)} \leq c \left(\|u\|_{L^p(\Omega,\mathbb{R}^n)} + \|\text{sym } \text{D}u\|_{L^p(\Omega,\mathbb{R}^{n\times n})} \right). \quad (5)$$

A further consequence of the latter inequality is the quantitative version

$$\exists c > 0 \ \forall u \in W^{1,p}(\Omega, \mathbb{R}^n) : \quad \|\text{D}u - \tilde{A}\|_{L^p(\Omega,\mathbb{R}^{n\times n})} \leq c \|\text{sym } \text{D}u\|_{L^p(\Omega,\mathbb{R}^{n\times n})}. \quad (6)$$

These inequalities are crucial for a priori estimates in linear elasticity and fluid mechanics and hence cornerstones for well-posedness results in linear elasticity (L^2-setting) and the Stokes-problem (L^p-setting).

They can be generalized to many different settings, including the geometrically nonlinear counterpart \cite{35, 52}, mixed growth conditions \cite{22}, incompatible fields (also with dislocations) \cite{6, 57, 63, 64} and trace-free infinitesimal strain measures \cite{25, 42, 70, 72}. Other generalizations are applicable to Orlicz-spaces \cite{10, 52}, mixed growth conditions \cite{22}, incompatible square tensor fields \cite{35, 52}, see e.g. \cite{12, 50}. Korn’s inequalities fail for $p = 1$ and $p = \infty$, see \cite{23, 49, 68}.

There exist many different proofs of the classical Korn’s inequalities, see the discussions in \cite{4, 18, 29, 38} as well as \cite{19, Sect. 6.15} and the references contained therein. A rather concise and elegant argument uses the well-known representation of the second distributional derivatives of the displacement u by a linear combination of the first derivatives of the symmetrized gradient:

$$\partial_i \partial_j u_k = \partial_j (\text{sym } \text{D}u)_{ik} + \partial_i (\text{sym } \text{D}u)_{jk} - \partial_k (\text{sym } \text{D}u)_{ij}, \quad (7a)$$

i.e.

$$\text{D}(\text{D}u) = L(\text{sym } \text{D}u), \quad \text{with a linear operator } L. \quad (7b)$$

Then $\text{sym } \text{D}u = 0$ implies that u is a first order polynomial. Furthermore, for $1 < p < \infty$, the Lions lemma resp. Nečas estimate (Theorem 2.6) applied to (7) yields a variant of Korn’s second inequality in $W^{1,p}(\Omega)$ from which, in turn, the first Korn’s inequality (with boundary conditions) can be deduced \cite{4, 18, 29, 38} using an indirect argument together with the compactness of the dual spaces

$$W_0^{1,p}(\Omega) \subset L^p(\Omega) = \left(L^{p'}(\Omega) \right)' \subset \left(W_0^{1,p'}(\Omega) \right)' = W^{-1,p'}(\Omega); \quad \frac{1}{p} + \frac{1}{p'} = 1. \quad (8)$$

Furthermore, such an argumentation scheme also applies to obtain Korn-type inequalities on surfaces \cite{17, 20, 27}, in Sobolev spaces with negative exponents \cite{2} and in weighted homogeneous Sobolev spaces \cite{26}.

Korn’s inequalities can be generalized to incompatible square tensor fields P if one adds a term in $\text{Curl } P$ on the right hand side, cf. \cite{64}, thus extending Korn’s first inequality to incompatible tensor fields having vanishing restricted tangential trace on (a relatively open subset of) the boundary. For recent refined estimates which involve only the deviatoric (i.e. trace free) part of $\text{sym } P$ and $\text{Curl } P$, see \cite{6}. In the two-dimensional case, an even stronger estimate holds true for fields $P \in L^1(\Omega, \mathbb{R}^{2\times 2})$ with $\text{Curl } P \in L^1(\Omega, \mathbb{R}^2)$; then $P \in L^2(\Omega, \mathbb{R}^{2\times 2})$ and

$$\|P\|_{L^2(\Omega,\mathbb{R}^{2\times 2})} \leq c \left(\|\text{sym } P\|_{L^2(\Omega,\mathbb{R}^{2\times 2})} + \|\text{Curl } P\|_{L^1(\Omega,\mathbb{R}^2)} \right) \quad (9)$$

under the normalization condition $\int_{\partial \Omega} \text{skew } P \, dx = 0$, cf. \cite{37}. However, for applications, it is preferable to work in the three-dimensional case and under more natural tangential boundary conditions.
Our new inequality (1) is originally motivated from infinitesimal gradient plasticity with plastic spin. There, one introduces the additive decomposition
\[Du = e + P \]
of the displacement gradient \(Du \in \mathbb{R}^{3 \times 3} \) into incompatible non-symmetric elastic distortion \(e \) and incompatible plastic distortion \(P \). Then the thermodynamic potential generically has the form
\[
\int \frac{1}{2} \| \text{sym} \, e \|^2 + \frac{1}{2} \| \text{sym} \, P \|^2 + \frac{1}{2} \| \text{Curl} \, e \|^2 - \langle f, u \rangle \, dx
\]
\[
= \int \frac{1}{2} \| \text{sym}(Du - P) \|^2 + \frac{1}{2} \| \text{sym} \, P \|^2 + \frac{1}{2} \| \text{Curl} \, P \|^2 - \langle f, u \rangle \, dx,
\] where \(f \in L^2(\Omega, \mathbb{R}^3) \) describes the body force, see e.g. [30, 31, 60, 71]. Here, \(\| \text{sym} \, e \|^2 \) represents the elastic energy, \(\| \text{sym} \, P \|^2 \) induces linear hardening and \(\| \text{Curl} \, P \|^2 \) is known as the dislocation density tensor. The \(L^2 \)-generalized Korn’s inequality establishes coercivity of (10) with respect to displacements and plastic distortions, for example, if Dirichlet boundary condition \(u|_{\partial D} = 0 \) and consistent tangential boundary conditions \(P \times \nu|_{\partial D} = 0 \) are prescribed. Crucial for plasticity theories with spin is that the plastic contribution cannot be reduced to a dependence on the symmetric plastic strain \(\varepsilon_p \) alone, as can be done in classical plasticity. The system of equations connected to (10) reads
\[
\text{Div}(\text{sym}(Du - P)) = f, \quad \text{(balance of forces)}
\]
\[
\dot{P} \in \partial I_K(\text{sym}(Du - P) - \text{sym} \, P - \text{Curl} \, P), \quad \text{(plastic flow law)}
\]
together with appropriate initial and boundary conditions, where \(I_K \) is the indicator function of a convex domain \(K \). The \(L^p \)-version presented in this article may then serve to show well-posedness results for nonlinear dislocation mediated hardening. Notably, analytic examples suggest to use \(\| \text{Curl} \, P \|^q \) with \(1 < q < 2 \) for the nonlocal dislocation backstress, cf. [24, 37].

Another field of application of the generalized Korn’s inequality for incompatible tensor fields is the so-called relaxed micromorphic model, see [53, 54, 61]. In this generalized continuum model, the task is to find the macroscopic displacement \(u : \Omega \subset \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) and the (still macroscopic) micro-distortion tensor \(P : \Omega \subset \mathbb{R}^3 \rightarrow \mathbb{R}^{3 \times 3} \) minimizing the elastic energy
\[
\int \frac{1}{2} \| \text{sym}(Du - P) \|^2 + \frac{1}{2} \| \text{sym} \, P \|^2 + \frac{1}{2} \| \text{Curl} \, P \|^2 - \langle f, u \rangle \, dx \rightarrow \min,
\]
\[(u, P) \in H^1(\Omega, \mathbb{R}^3) \times H(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3}) \quad \text{with} \quad u|_{\partial D} = g, \quad P \times \nu|_{\partial D} = Du \times \nu|_{\partial D}.
\] The equilibrium equations are the Euler-Lagrange equations to (12), which read
\[
\text{Div} \, \text{sym}(Du - P) = f \quad \text{(balance of forces)},
\]
\[
\text{Curl} \, \text{Curl} \, P + \text{sym} \, P = \text{sym}(Du - P) \quad \text{(generalized balance of angular momentum)}.
\] Here, (13), represents a tensorial Maxwell problem in which, due to the appearance of \(\text{sym} \, P \) (instead of \(P \)), the equations are strongly coupled. Note that the appearance of \(\| \text{sym} \, P \|^q \) in (10) and (12) is dictated by invariance of the model under infinitesimal rigid body motions. The well-posedness of the weak formulation depends on Korn-type inequalities for incompatible tensor fields, see [6, 64]. Dynamic versions of this model allow for the description of frequency band-gaps as observed in metamaterials, cf. [54]. The band-gap property crucially depends on using Curl \(P \) in the model.

Let us mention as third application the \(p \)-Curl problem [46, 48, 55] appearing in modeling the magnetic field in a high-temperature superconductor. By the definition of the Banach space \(W^{1,p}(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3}) \) it is clear that
\[
\text{Curl}(\| \text{Curl} \, P \|^p - 2 \, \text{Curl} \, P) + P = G, \quad P \times \nu|_{\partial D} = 0
\]
with \(G \in L^p(\Omega, \mathbb{R}^{3 \times 3}) \) admits a unique solution for \(1 < p \leq 2 \), since (14) is the Euler-Lagrange equation to the strictly convex minimization problem
\[
\int \frac{1}{2} \| P \|^2 + \frac{1}{p} \| \text{Curl} \, P \|^p - \langle G, P \rangle \, dx \rightarrow \min.
\]
Our new a-priori estimate (1) then allows us to show existence and uniqueness for $1 < p \leq 2$ of weak solutions $P \in W^{1,p}(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3})$ to
\[
\text{Curl}(|\text{Curl} P|^{p-2} \text{Curl} P) + \text{sym} P = G, \quad P \times \nu_{\partial \Omega} = 0
\]
resp.
\[
\int_{\Omega} \frac{1}{2} \text{sym} P|^2 + \frac{1}{p} |\text{Curl} P|^p - \langle G, P \rangle \, dx \to \min.
\]

2 Notation and preliminaries

We denote by $\langle \cdot, \cdot \rangle$ the scalar product and by $\cdot \otimes \cdot$ the dyadic product. In \mathbb{R}^3 we moreover make use of the cross product $\times \cdots \times$. Since for a fixed vector $a \in \mathbb{R}^3$ the vector product $a \times \cdot$ is linear in the second component there exists a unique matrix $\text{Anti}(a)$ with the property
\[
a \times b =: \text{Anti}(a) b \quad \forall b \in \mathbb{R}^3.
\]
For $a = (a_1,a_2,a_3)^T$ the matrix $\text{Anti}(a)$ has the form
\[
\text{Anti}(a) = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix},
\]
so that $\text{Anti} : \mathbb{R}^3 \to \mathfrak{so}(3)$ identifies \mathbb{R}^3 with the space of skew-symmetric matrices $\mathfrak{so}(3)$ canonically, and allows for a generalization towards a vector product of a matrix $P \in \mathbb{R}^{3 \times 3}$ and a vector $b \in \mathbb{R}^3$ via
\[
P \times b := P \text{Anti}(b)
\]
which is seen as taking the row-wise cross product with b. Of crucial importance in our considerations is the relation
\[
(\text{Anti}(a)) \times b = \begin{pmatrix} -a_2 b_2 - a_3 b_3 \\ a_1 b_2 - a_3 b_1 \\ a_1 b_3 - a_2 b_1 \end{pmatrix} = b \otimes a - \langle b, a \rangle 1.
\]
An easy consequence is

Observation 2.1. For $a, b \in \mathbb{R}^3$ we have
\[
\|a\| \|b\| \leq \|(\text{Anti}(a)) \times b\| \leq \sqrt{2} \|a\| \|b\|. \tag{22}
\]

Proof. Taking the squared norm on both sides of (2) we obtain
\[
\|(\text{Anti}(a)) \times b\|^2 = \|b \otimes a\|^2 + 3\langle b, a \rangle^2 - 2\langle b, a \rangle^2 = \|a\|^2 \|b\|^2 + \langle a, b \rangle^2
\]
and the right hand side is bounded from below by $\|a\|^2 \|b\|^2$ and from above by $2 \|a\|^2 \|b\|^2$. These bounds are sharp if a is perpendicular to b and if a is parallel to b, respectively. \hfill \blacksquare

Remark 2.2. By the identification of skew-symmetric matrices with vectors in \mathbb{R}^3 the estimate (22) also reads
\[
\frac{1}{2} \|A\| \|\tilde{A}\| \leq \|A \tilde{A}\| \leq \frac{\sqrt{2}}{2} \|A\| \|\tilde{A}\| \quad \forall A, \tilde{A} \in \mathfrak{so}(3). \tag{24}
\]

Indeed, with the choice of $a, \tilde{a} \in \mathbb{R}^3$ such that $A = \text{Anti}(a)$ and $\tilde{A} = \text{Anti}(\tilde{a})$, we have $A \tilde{A} = \text{Anti}(a) \times \tilde{a}$, so that in regard with $\|A\|^2 = 2\|a\|^2$ and $\|\tilde{A}\|^2 = 2\|\tilde{a}\|^2$ the estimate follows.
2.1 Basic considerations from Clifford analysis

The vector differential operator ∇ behaves algebraically like a vector, so that the gradient, the divergence and curl of a vector field $a \in \mathcal{F}(\Omega, \mathbb{R}^3)$ can be formally viewed as

$$ Da = a \otimes \nabla = (\nabla \otimes a)^T, \text{ div } a = \langle a, \nabla \rangle = \langle \nabla a, 1 \rangle = \text{tr} Da \text{ and curl } a = a \times (-\nabla) = \nabla \times a. \quad (25) $$

These operations generalize to (3×3)-matrix fields row-wise. (In fact, we understand by DP the full gradient of $P \in \mathcal{F}(\Omega, \mathbb{R}^{3 \times 3}).$) So, especially, the matrix Curl is introduced as

$$ \text{Curl } P := P \times (-\nabla) = P \text{ Anti}(-\nabla). \quad (26) $$

The fundamental relation (2) implies that the full gradient of a skew-symmetric matrix is already determined by its Curl, comparable with the classical representation of the second derivatives of the displacement by linear combinations of first derivatives of its symmetrized gradient, cf. (7).

Corollary 2.3. For $A \in \mathcal{F}(\Omega, \mathfrak{so}(3))$ the entries of the derivative DA are linear combinations of the entries from Curl A.

Proof. Setting $A = \text{Anti}(a)$, we find

$$ \text{Curl } A = (\text{Anti } a) \times (-\nabla) \overset{(2)}{=} \text{tr}(Da) \mathbb{1} - (Da)^T, \quad (27) $$

thus

$$ Da = \frac{1}{2}(\text{tr}[\text{Curl } A])\mathbb{1} - (\text{Curl } A)^T. \quad (28) $$

Therefore, the entries of $DA = D\text{Anti}(a)$ are linear combinations of the entries from Curl A:

$$ DA = L(\text{Curl } A) \quad \text{for any skew-symmetric matrix field } A. \quad \blacksquare $$

Remark 2.4. Equation (27) is also known as Nye’s formula, cf. [67, eq. (7)], but is, in fact, a special case of the algebraic relation (2). Interestingly, relation (27) admits also a counterpart on $\text{SO}(3)$ and even in higher spatial dimensions, see [62].

Corollary 2.5. For $A \in \mathcal{F}(\Omega, \mathfrak{so}(3))$ we have $\text{Curl } A \equiv 0$ if and only if $A \equiv \text{const.}$

Proof. Follows from the expression $DA = L(\text{Curl } A). \quad \blacksquare$

2.2 Function spaces and equivalence of norms

By definition of the norm in the dual space, it is clear that for $u \in L^p(\Omega, \mathbb{R}^d)$ we have $u \in W^{-1,p}(\Omega, \mathbb{R}^d)$ and $Du \in W^{-1,p}(\Omega, \mathbb{R}^{d \times n})$ in the distributional sense, since for all $\varphi \in W_0^{1,p'}(\Omega, \mathbb{R}^d)$, with $\frac{1}{p} + \frac{1}{p'} = 1$, it holds

$$ \left| \int_\Omega \langle u, \varphi \rangle \, dx \right| \leq \|u\|_{L^p(\Omega, \mathbb{R}^d)} \|\varphi\|_{W^{1,p'}(\Omega, \mathbb{R}^d)}, \quad \text{and} \quad (29a) $$

$$ \left| \int_\Omega \langle \partial_i u, \varphi \rangle \, dx \right| = \left| \int_\Omega \langle u, \partial_i \varphi \rangle \, dx \right| \leq \|u\|_{L^p(\Omega, \mathbb{R}^d)} \|\varphi\|_{W^{1,p'}(\Omega, \mathbb{R}^d)} \quad . \quad (29b) $$

It is remarkable and a deep result that a converse implication holds true as well.

Theorem 2.6 (Lions lemma and Nečas estimate). *Let $\Omega \subseteq \mathbb{R}^n$ be a bounded Lipschitz domain. Let $m \in \mathbb{Z}$ and $p \in (1, \infty)$. Then $f \in \mathcal{D}'(\Omega, \mathbb{R}^d)$ and $Df \in W^{m-1,p}(\Omega, \mathbb{R}^{d \times n})$ imply $f \in W^m,p(\Omega, \mathbb{R}^d)$. Moreover,

$$ \|f\|_{W^m,p(\Omega, \mathbb{R}^d)} \leq c \left(\|f\|_{W^{m-1,p}(\Omega, \mathbb{R}^d)} + \|Df\|_{W^{m-1,p}(\Omega, \mathbb{R}^{d \times n})} \right), \quad (30) $$

with a constant $c = c(m, p, n, d, \Omega) > 0$.*
For the proof see [5, Proposition 2.10 and Theorem 2.3], [7]. In our following discussions, the heart of the matter is the estimate (30), see Nečas [58, Théorème 1]. In fact, the case \(m = 0 \) is already contained in [14]; for an alternative proof, see [56, Lemma 11.4.1] and [8, Chapter IV] as well as [9]. For further historical remarks, see the discussions in [4, 18] and the references contained therein.

Remark 2.7. Note that in the case \(d = n \) it suffices to consider the symmetrized gradient operator \(\text{sym} D \) instead of the full gradient \(D \), since one can express the second distributional derivatives of a vector field by a linear combination of its first derivatives of the symmetrized gradient, see (7). Moreover, we deduce the estimate

\[
\|f\|_{W^{m-1,p}(\Omega,\mathbb{R}^n)} \leq c \left(\|f\|_{W^{m-1,p}(\Omega,\mathbb{R}^n)} + \|\text{sym} Df\|_{W^{m-1,p}(\Omega,\mathbb{R}^{n\times n})} \right)
\]

which is Korn’s second inequality in \(L^p \) or \(W^{1,p} \) with \(m = 0 \) resp. \(m = 1 \), cf. [3, 21] for the case \(p = 2 \).

For the subsequent considerations, we shall focus on the three-dimensional case \(n = 3 \). We will work in the Banach-space

\[
W^{1,p}(\text{Curl};\Omega,\mathbb{R}^{3\times3}) := \{ P \in L^p(\Omega,\mathbb{R}^{3\times3}) \mid \text{Curl} \, P \in L^p(\Omega,\mathbb{R}^{3\times3}) \}
\]

equipped with the norm

\[
\|P\|_{W^{1,p}(\text{Curl};\Omega,\mathbb{R}^{3\times3})} := \left(\|P\|_{L^p(\Omega,\mathbb{R}^{3\times3})}^p + \|\text{Curl} \, P\|_{L^p(\Omega,\mathbb{R}^{3\times3})}^p \right)^{\frac{1}{p}}.
\]

The density of \(\mathcal{D}'(\Omega,\mathbb{R}^{3\times3}) \) in \(W^{1,p}(\text{Curl};\Omega,\mathbb{R}^{3\times3}) \) follows by standard arguments. Furthermore, we consider the subspace

\[
W_0^{1,p}(\text{Curl};\Omega,\mathbb{R}^{3\times3}) := \{ P \in W^{1,p}(\text{Curl};\Omega,\mathbb{R}^{3\times3}) \mid P \times \nu = 0 \text{ on } \partial \Omega \},
\]

where \(\nu \) denotes the outward unit normal vector field to \(\partial \Omega \), and the tangential trace \(P \times \nu \) is understood in the sense of \(W^{-\frac{1}{2},p}(\partial \Omega,\mathbb{R}^{3\times3}) \) which is justified by integration by parts, so that its trace is defined by

\[
\forall Q \in W^{-\frac{1}{2},p}(\partial \Omega,\mathbb{R}^{3\times3}) : \quad \langle P \times (\nu), Q \rangle_{\partial \Omega} = \int_{\Omega} \langle \text{Curl} \, P, \tilde{Q} \rangle - \langle P, \text{Curl} \, \tilde{Q} \rangle \, dx,
\]

where \(\tilde{Q} \in W^{1,p'}(\Omega,\mathbb{R}^{3\times3}) \) denotes any extension of \(Q \) in \(\Omega \). Here, \(\langle \cdot , \cdot \rangle_{\partial \Omega} \) indicates the duality pairing between \(W^{-\frac{1}{2},p}(\partial \Omega,\mathbb{R}^{3\times3}) \) and \(W^{1,p'}(\partial \Omega,\mathbb{R}^{3\times3}) \).

3 Main results

We shall start with the following

Lemma 3.1. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded Lipschitz domain and \(1 < p < \infty \). Then \(P \in \mathcal{D}'(\Omega,\mathbb{R}^{3\times3}) \), \(\text{sym} \, P \in L^p(\Omega,\mathbb{R}^{3\times3}) \) and \(\text{Curl} \, P \in W^{-1,p}(\Omega,\mathbb{R}^{3\times3}) \) imply \(P \in L^p(\Omega,\mathbb{R}^{3\times3}) \). Moreover, we have the estimate

\[
\|P\|_{L^p(\Omega,\mathbb{R}^{3\times3})} \leq c \left(\|\text{skew} \, P\|_{W^{-1,p}(\Omega,\mathbb{R}^{3\times3})} + \|\text{sym} \, P\|_{L^p(\Omega,\mathbb{R}^{3\times3})} + \|\text{Curl} \, P\|_{W^{-1,p}(\Omega,\mathbb{R}^{3\times3})} \right),
\]

with a constant \(c = c(p, \Omega) > 0 \).

Remark 3.2. In the proof of our generalized Korn-type inequalities (Theorem 3.3 and Theorem 3.6) we make use of the compact embedding \(L^p(\Omega) \subset \subset W^{-1,p}(\Omega) \), see (8), so that the \(W^{-1,p} \)-norm of the first term on the right hand side is of crucial importance and will not be estimated by the \(L^p \)-norm.

Proof of Lemma 3.1. It suffices to deduce that skew \(P \in L^p(\Omega,\mathbb{R}^{3\times3}) \) from the assumption of the lemma. We have

\[
\|\text{Curl} \, \text{skew} \, P\|_{W^{-1,p}(\Omega,\mathbb{R}^{3\times3})} = \|\text{Curl} (P - \text{sym} \, P)\|_{W^{-1,p}(\Omega,\mathbb{R}^{3\times3})} \\
\leq c \left(\|\text{Curl} \, P\|_{W^{-1,p}(\Omega,\mathbb{R}^{3\times3})} + \|\text{sym} \, P\|_{L^p(\Omega,\mathbb{R}^{3\times3})} \right),
\]

(35)
hence Curl skew $P \in W^{-1, p}(Ω, \mathbb{R}^{3×3})$, so that by Corollary 2.3 we deduce $D\text{skew} P \in W^{-1, p}(Ω, \mathbb{R}^{3×3})$.

Now, we can apply the above Lions lemma resp. Nečas estimate (Theorem 2.6) to skew P. We arrive at skew $P \in L^p(Ω, \mathbb{R}^{3×3})$ and, moreover,

$$\|\text{skew} P\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq c \left(\|\text{skew} P\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} + \|D\text{skew} P\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} \right)$$

By eliminating the first term on the right-hand side of (34) we will arrive at our generalized Korn type inequalities, cf. Theorem 3.3 and Theorem 3.6.

Theorem 3.3. Let $Ω \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $1 < p < \infty$. There exists a constant $c = c(p, Ω) \geq 0$ such that for all $P \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$

$$\inf_{\tilde{A} \in \mathfrak{so}(3)} \|P - \tilde{A}\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq c \left(\|\text{sym} P\|_{L^p(Ω, \mathbb{R}^{3×3})} + \|\text{Curl} P\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} \right).$$

Proof. We first start with the characterization of the kernel of the right-hand side,

$$K := \{P \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3}) \mid \text{sym} P \equiv 0 \text{ and } \text{Curl } P \equiv 0\},$$

by observing that $P \in K$ if and only if $P = \text{skew} P$ and $P \equiv 0$ by virtue of Corollary 2.5. Hence, $K = \{P \equiv \tilde{A} \mid \tilde{A} \in \mathfrak{so}(3)\}$ and $M := \text{dim } K = 3$.

Consider the $M = 3$ linear forms $ℓ_{i+j-2}(P) := \int_Ω (e_i, P e_j) \, dx = \int_Ω P_{ij} \, dx$ on $W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$,

$$1 \leq i < j \leq 3.$$ Then $P \in K$ is equal to 0 if and only if $ℓ_α(P) = 0$ for all $α = 1, 2, 3$. We claim that there exists a constant $c = c(p, Ω) > 0$, such that for all $P \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$ we have

$$\|P\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq c \left(\|\text{sym} P\|_{L^p(Ω, \mathbb{R}^{3×3})} + \|\text{Curl} P\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} + \sum_{α=1}^3 ℓ_α(P) \right).$$

Assume that (39) does not hold.

Then there would exist for each integer $k \in \mathbb{N}$ a function $P_k \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$ satisfying

$$\|P_k\|_{L^p(Ω, \mathbb{R}^{3×3})} = 1 \quad \text{and} \quad \left(\|\text{sym} P_k\|_{L^p(Ω, \mathbb{R}^{3×3})} + \|\text{Curl} P_k\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} + \sum_{α=1}^3 ℓ_α(P_k) \right) < \frac{1}{k}. \quad (40)$$

Thus, there exists a subsequence, which converges weakly to some P^* in $L^p(Ω, \mathbb{R}^{3×3})$. It follows that $\text{sym } P^* \equiv 0$, $\text{Curl } P^* \equiv 0$ in the distributional sense and also $ℓ_α(P^*) = 0$ for all $α = 1, 2, 3$. Thus, $P^* \equiv 0$.

Furthermore due to the compact embedding $L^p(Ω, \mathbb{R}^{3×3}) \subset⊂⊂ W^{-1, p}(Ω, \mathbb{R}^{3×3})$ there exists a subsequence, again denoted by P_k, so that skew P_k strongly converges to 0 in $W^{-1, p}(Ω, \mathbb{R}^{3×3})$. However, this conclusion is at variance with (34):

$$1 = \|P_k\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq \|\text{skew } P_k\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} + \|\text{sym } P_k\|_{L^p(Ω, \mathbb{R}^{3×3})} + \|\text{Curl } P_k\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} \quad (41)$$

This contradiction establishes estimate (39) for all $P \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$ and we arrive at the desired estimate:

For $P \in W^{1, p}(Curl; Ω, \mathbb{R}^{3×3})$, let $\tilde{A}_P \in K$ be chosen in such a way that $|Ω| \left(\tilde{A}_P \right)_{ij} = \int_Ω P_{ij} \, dx$ for $1 \leq i < j \leq 3$; in other words, $ℓ_α(P - \tilde{A}_P) = 0$ for all $α = 1, 2, 3$. Then

$$\inf_{\tilde{A} \in \mathfrak{so}(3)} \|P - \tilde{A}\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq \|P - \tilde{A}_P\|_{L^p(Ω, \mathbb{R}^{3×3})} \leq c \left(\|\text{sym} P\|_{L^p(Ω, \mathbb{R}^{3×3})} + \|\text{Curl } P\|_{W^{-1, p}(Ω, \mathbb{R}^{3×3})} \right).$$
Remark 3.4. For compatible displacement gradients $P = Du$ we get back from (37) the quantitative version of the classical Korn’s inequality (6) and for skew-symmetric matrix fields $P = A$ the corresponding Poincaré inequality since $DA = L(Curl A)$.

Remark 3.5. To deduce the kernel of the right hand side of (37), we used Corollary 2.3 resp. 2.5. Interestingly, on simply connected domains one can argue also in the following way:

$$\text{Curl} \, P \equiv 0 \; \Rightarrow \; P = D\vartheta,$$

so, one can apply the classical Korn’s inequality (6) to infer from $\text{Sym} \, D\vartheta \equiv 0$ that $D\vartheta \equiv \text{const} \in \mathfrak{so}(3)$. However, the kernel is killed by tangential boundary conditions:

Theorem 3.6. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $1 < p < \infty$. There exists a constant $c = c(p, \Omega) > 0$, such that for all $P \in W_0^{1,p}(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3})$ we have

$$\|P\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} \leq c \left(\|\text{Sym} \, P\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} + \|\text{Curl} \, P\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} \right).$$ \hspace{1cm} (42)

Proof. We argue again by contradiction and assume that the estimate (42) does not hold. Then there exist functions $P_k \in W_0^{1,p}(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3})$ with the properties

$$\|P_k\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} = 1 \quad \text{and} \quad (\|\text{Sym} \, P_k\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} + \|\text{Curl} \, P_k\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})}) < \frac{1}{k}.$$

Again $P_k \rightarrow P^*$ in $L^p(\Omega, \mathbb{R}^{3 \times 3})$ with $P^* \in K$. We now use the vanishing tangential trace condition to deduce that $P^* \equiv 0$. In fact, since $\text{Curl} \, P^* \equiv 0$, for all $Q \in W^{1,\frac{3}{5}}(\partial \Omega, \mathbb{R}^{3 \times 3})$ we have

$$\langle P^* \times \nu, Q \rangle_{\partial \Omega} = \lim_{k \to \infty} \left| \int_{\Omega} (P_k, \text{Curl} \, \tilde{Q}) \, dx \right| \leq \lim_{k \to \infty} \|\text{Curl} \, P_k\|_{L^p(\Omega, \mathbb{R}^{3 \times 3})} \|\tilde{Q}\|_{W^{1,\frac{3}{5}}(\partial \Omega, \mathbb{R}^{3 \times 3})} = 0$$ \hspace{1cm} (43)

where we have used $P_k \in W_0^{1,p}(\text{Curl}; \Omega, \mathbb{R}^{3 \times 3})$ and $\tilde{Q} \in W^{1,\frac{3}{5}}(\partial \Omega, \mathbb{R}^{3 \times 3})$ denotes any extension of Q in Ω. In other words, P^* has vanishing tangential trace $P^* \times \nu = 0$. Moreover, since $P^* \in K$ by (38) there exists an $a^* \in \mathbb{R}^3$ such that

$$P^* \equiv \text{Anti}(a^*) \in \mathfrak{so}(3).$$

Hence, the boundary condition $P^* \times \nu = \text{Anti}(a^*) \times \nu = 0$ is also defined in the classical sense. By Observation 2.1 we deduce $a^* = 0$. We can now conclude as in the proof of Theorem 3.3.

Remark 3.7. The same argumentation scheme applies to show that (42) also holds true for functions with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.

Remark 3.8. It is well known, that Korn’s inequality does not imply Poincaré’s inequality, however, due to the presence of the Curl-part we get back both estimates from our generalization. Indeed, for compatible $P = Du$ we recover a tangential Korn inequality and for skew-symmetric $P = A$ a Poincaré inequality.

Remark 3.9. The proof of Korn’s inequality for the gradient of the displacement or for general incompatible tensor fields is mainly based on suitable representation formulas, cf. (7) and Corollary 2.3, respectively. Cross-combining both conditions we obtain only infinitesimal rigid body motions:

$$DP = L(\text{Sym} \, P) \quad \text{for} \quad P = Du \quad \& \quad P \in \mathfrak{so}(3)$$

$$DA = L(Curl \, A), \quad \text{for} \quad A \in \mathfrak{so}(3) \quad \& \quad A = Du$$

$$\implies u = \tilde{A} \times \tilde{b}, \text{ with constant } \tilde{A} \in \mathfrak{so}(3), \tilde{b} \in \mathbb{R}^3.$$ \hspace{1cm} (44)

See [73] for comparable representation formulas and deduced coercive inequalities.

Remark 3.10. It is clear how to extend the present results to $(n \times n)$-square tensor fields with $n > 3$. The corresponding generalized Curl and tangential trace operation have already been presented in [62, 63]. This will be subject of a forthcoming note.
3.1 Open problems

An interesting question is whether our result holds on domains more general than Lipschitz. For example the domain cannot have external cusps; indeed, both the classical Korn’s inequality and the Lions lemma fail on such domains, cf. [39, 74]. On the other hand, John domains support Korn-type inequalities, cf. [1, 26, 28, 34]. John domains generalize the concept of Lipschitz domains, allowing certain fractal boundary structures but excluding the formation of external cusps. However, there exist domains which are not John but allow for Korn and Poincaré inequalities, see the discussions in [13, 28, 43].

A similar result concerning the validity of the Lions lemma resp. Necas estimate would be interesting.

Acknowledgment

The authors are grateful for inspiring discussions with Stefan Müller (Hausdorff Center for Mathematics, Bonn, Germany). Peter Lewintan was supported by DFG grant NE 902/8-1.

References

[1] G. Acosta, R.G. Durán, and M.A. Muschietti. “Solutions of the divergence operator on John domains”. Advances in Mathematics 206.2 (2006). Pp. 373–401.
[2] C. Amrouche, P.G. Ciarlet, and P. Ciarlet Jr. “Weak vector and scalar potentials: applications to Poincaré’s theorem and Korn’s inequality in Sobolev spaces with negative exponents”. Analysis and Applications 8.1 (2010). Pp. 1–17.
[3] C. Amrouche, P.G. Ciarlet, L. Gratie, and S. Kesavan. “On the characterizations of matrix fields as linearized strain tensor fields”. Journal de Mathématiques Pures et Appliquées (9) 86.2 (2006). Pp. 116–132.
[4] C. Amrouche, P.G. Ciarlet, and C. Mardare. “On a lemma of Jacques-Louis Lions and its relation to other fundamental results”. Journal de Mathématiques Pures et Appliquées (9) 104.2 (2015). Pp. 207–226.
[5] C. Amrouche and V. Girault. “Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension”. Czechoslovak Mathematical Journal 44(119).1 (1994). Pp. 109–140.
[6] W. Borchers and H. Sohr. “On the equations rot \(\mathbf{v} = \mathbf{g} \) and div \(\mathbf{u} = f \) with zero boundary conditions”. Hokkaido Mathematical Journal 19.1 (1990). Pp. 67–87.
[7] S. Bauer, P. Neff, D. Pauly, and G. Starke. “Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions”. ESAIM: Control, Optimisation and Calculus of Variations 22.1 (2016). Pp. 112–133.
[8] F. Boyer and P. Fabrie. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Vol. 183. Applied Mathematical Sciences. Springer, New York, 2013.
[9] J.H. Bramble. “A proof of the inf-sup condition for the Stokes equations on Lipschitz domains”. Vol. 13. 3. 2003, pp. 361–371.
[10] D. Breit, A. Cianchi, and L. Diening. “Trace-free Korn inequalities in Orlicz spaces”. SIAM Journal on Mathematical Analysis 49.4 (2017). Pp. 2496–2526.
[11] D. Breit and L. Diening. “Sharp conditions for Korn inequalities in Orlicz spaces”. Journal of Mathematical Fluid Mechanics 14.3 (2012). Pp. 565–573.
[12] S.C. Brenner. “Korn’s inequalities for piecewise \(H^1 \) vector fields”. Mathematics of Computation 73.247 (2004). Pp. 1067–1087.
[13] S. Buckley and P. Koskela. “Sobolev-Poincaré implies John”. Mathematical Research Letters 2.5 (1995). Pp. 577–593.
[14] L. Cattabriga. “Su un problema al contorno relativo al sistema di equazioni di Stokes”. Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova 31 (1961). Pp. 308–340.
[15] A. Chambolle, S. Conti, and G. Francfort. “Korn-Poincaré inequalities for functions with a small jump set”. Indiana University Mathematics Journal 65.4 (2016). Pp. 1373–1399.
[16] A. Cianchi. “Korn type inequalities in Orlicz spaces”. Journal of Functional Analysis 267.7 (2014). Pp. 2313–2352.
[17] P.G. Ciarlet. “Un lemme de J.-L. Lions et les inégalités de Korn sur les surfaces”. Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 357–382.
[18] P.G. Ciarlet. “On Korn’s inequality”. Chinese Annals of Mathematics. Series B 31.5 (2010). Pp. 607–618.
[19] P.G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.
[20] P.G. Ciarlet, Y. Hou, and C. Mardare. “On Korn’s inequalities on a surface”. Analysis and Applications 14.3 (2016). Pp. 415–447.
Y.-M. Law and M. Laforest. “A nonlinear relaxation formulation of the p-curl problem modelling high-temperature superconductors: a modified Yee’s scheme”. *Journal of Computational Physics* 378 (2019). Pp. 591–614.

K. de Leeuw and H. Mirkil. “A priori estimates for differential operators in L_∞ norm”. *Illinois Journal of Mathematics* 8 (1964). Pp. 112–124.

A. Lew, P. Neff, D. Sulsky, and M. Ortiz. “Optimal BV estimates for a discontinuous Galerkin method for linear elasticity”. *Applied Mathematics Research Express* 2004.3 (2004). Pp. 73–106.

M. Lewicka and S. Müller. “The uniform Korn-Poincaré inequality in thin domains”. *Annales de l’Institut Henri Poincaré. Analyse Non Linéaire* 28.3 (2011). Pp. 443–469.

M. Lewicka and S. Müller. “On the optimal constants in Korn’s and geometric rigidity estimates, in bounded and unbounded domains, under Neumann boundary conditions”. *Indiana University Mathematics Journal* 65.2 (2016). Pp. 377–397.

A. Madeo, M. Collet, M. Miniaci, K. Billon, M. Ouisse, and P. Neff. “Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia”. *Journal of Elasticity* 130.1 (2018). Pp. 59–83.

A. Madeo, P. Neff, I.-D. Ghiba, and G. Rosi. “Reflection and transmission of elastic waves at interfaces embedded in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model”. *Journal of the Mechanics and Physics of Solids* 95 (2016). Pp. 441–479.

F. Miranda, J.-F. Rodrigues, and L. Santos. “On a p-curl system arising in electromagnetism”. *Discrete and Continuous Dynamical Systems. Series S* 5.3 (2012). Pp. 605–629.

M. Mitrea and M. Wright. *Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains*. Vol. 344. Paris: Société Mathématique de France (SMF), 2012, pp. viii + 241.

S. Müller, L. Scardia, and C. I. Zeppieri. “Geometric rigidity for incompatible fields, and an application to strain-gradient plasticity”. *Indiana University Mathematics Journal* 63.5 (2014). Pp. 1365–1396.

J. Nečas. “Sur les normes équivalentes dans $W^{k,p}_0(\Omega)$ et sur la coercivité des formes formellement positives”. *Équations aux dérivées partielles*. Les Presses de l’Université de Montréal, 1966, pp. 102–128.

P. Neff. “On Korn’s first inequality with non-constant coefficients”. *Proceedings of the Royal Society of Edinburgh Section A: Mathematics* 132.01 (2002). Pp. 221–243.

P. Neff, K. Chehlínský, and H.-D. Alber. “Notes on strain gradient plasticity: finite strain covariant modelling and global existence in the infinitesimal rate-independent case”. *Mathematical Models and Methods in Applied Sciences* 19.02 (2009). Pp. 307–346.

P. Neff, I.-D. Ghiba, M. Lazar, and A. Madeo. “The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations”. *The Quarterly Journal of Mechanics and Applied Mathematics* 68.1 (2015). Pp. 53–84.

P. Neff and I. Münch. “Curl bounds Grad on $SO(3)$”. *ESAIM: Control, Optimisation and Calculus of Variations* 14.1 (2008). Pp. 148–159.

P. Neff, D. Pauly, and K.-J. Witsch. “Maxwell meets Korn: A new coercive inequality for tensor fields in $\mathbb{R}^{n \times 3}$ with square-integrable exterior derivative”. *Mathematical Methods in the Applied Sciences* 35.1 (2012). Pp. 65–71.

P. Neff, D. Pauly, and K.-J. Witsch. “Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor fields”. *Journal of Differential Equations* 258.4 (2015). Pp. 1267–1302.

P. Neff and W. Pompe. “Counterexamples in the theory of coerciveness for linear elliptic systems related to generalizations of Korn’s second inequality”. *Zietschrift für Angewandte Mathematik und Mechanik* 94.9 (2014). Pp. 784–790.

J. A. Nitsche. “On Korn’s second inequality”. *RAIRO Analyse Numérique* 15.3 (1981). Pp. 237–248.

J. F. Nye. “Some geometrical relations in dislocated crystals”. *Acta Metallurgica* 1 (1953). Pp. 153–162.

D. Ornstein. “A non-equality for differential operators in the k-curl problem modelling high-temperature superconductors”. *Journal of Differential Equations* 258.4 (2019). Pp. 591–614.

W. Pompe. “Korn’s first inequality with variable coefficients and its generalization”. *Commentationes Mathematicae Universitatis Carolinae* 44.1 (2003). Pp. 57–70.

Y. G. Reshetnyak. “Estimates for certain differential operators with finite-dimensional kernel”. *Siberian Mathematical Journal* 11.2 (1970). Pp. 315–326.

M. Röger and B. Schweizer. “Strain gradient visco-plasticity with dislocation densities contributing to the energy”. *Mathematical Models and Methods in Applied Sciences* 27.14 (2017). Pp. 2595–2629.

O. D. Schirra. “New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient”. *Calculus of Variations and Partial Differential Equations* 43.1 (2012). Pp. 147–172.

K. T. Smith. “Formulas to represent functions by their derivatives”. *Mathematische Annalen* 188 (1970). Pp. 53–77.

N. Weck. “Local compactness for linear elasticity in irregular domains”. *Mathematical Methods in the Applied Sciences* 17.2 (1994). Pp. 107–113.