Cooper pair transfer in nuclei

G Potel1, A Idini2,3,4, F Barranco5, E Vigezzi4 and R A Broglia3,4,6,7

1 CEA-Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
2 Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt, Germany
3 Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
4 INFN, Sezione di Milano, Milano, Italy
5 Departamento de Física Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
6 The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
7 FoldLESs S.r.l. via Valosa di Sopra 9, I–20052 Monza (MB), Italy

Received 9 April 2013, in final form 26 July 2013
Published 3 October 2013
Online at stacks.iop.org/RoPP/76/106301

Abstract
The second-order distorted wave Born approximation implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects, is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations.

This article was invited by Paul-Henri Heenen.

Contents

1. Introduction
2. Cooper pairs
2.1. Pairing correlations
2.2. Fluctuations
2.3. Pairing rotations
2.4. Pairing vibrations
3. Nuclear field theory
4. Reaction mechanism
5. Conclusions
Acknowledgments

1. Introduction

Cooper pairs are the building blocks of pairing correlations in many-body fermionic systems \[1\]. In particular in atomic nuclei (see \[2–4\] and references therein). As a consequence, nuclear superfluidity, similarly to condensed matter superconductivity, can be specifically and quantitatively probed through Cooper pair tunneling (see \[3,5–8\] and references therein). To do so in the nuclear case, one should be able to predict, making use of nuclear structure spectroscopic amplitudes, absolute differential cross-sections, sole quantities which can be directly compared with the experimental observations. In what follows we review some of the central developments which eventually made this requirement operative. In this quest, which took short
potentials (non-orthogonality transfer). In the limit of independent particle motion, in which all of the nucleon–nucleon interaction is assumed to be used up in generating a mean field, both contributions to the transfer process (simultaneous and non-orthogonality) cancel out exactly (see appendix A).

In keeping with the fact that nuclear Cooper pairs are weakly bound, this cancellation is, in actual nuclei, quite strong. Consequently, successive transfer, a process in which the mean field acts twice as, a rule, the main mechanism at the basis of Cooper pair transfer (figure 1). Due to the same reason (weak binding), the correlation length of Cooper pairs is larger than nuclear dimensions, a fact which allows the two members of a Cooper pair to move between target and projectile, essentially as a whole, also in the case of successive transfer. Within this context, it is of notice that, while one-particle transfer is a rather local process, Cooper pair tunneling is highly non-local (see figure 2).

The condensation of these extended and thus strongly overlapping, bosonic objects gives rise to a highly correlated, coherent, quasiclassical superfluid states displaying overall phase coherence and essentially exhausting two-nucleon transfer sum rules [9]. Consequently, they are amenable to an accurate theoretical description in terms of simple models, in particular that resulting from the BCS approximation.

In the case of pairing correlations around closed shell nuclei, the associated pairing vibrational modes are also amenable to a quite accurate nuclear structure description in terms of the random phase approximation (RPA) for nuclei along the stability valley and of nuclear field theory (NFT) for light nuclei along the drip lines taking into account, in both cases, ground state correlations and coupling to the continuum, in particular in the case of halo nuclei.

In other words, ground state correlations and medium polarization effects, together with the associated renormalization (self-energy and vertex correction phenomena) and induced interaction processes, are essential to obtain an accurate description of the nuclear structure in general and of nuclear pairing phenomena in particular (see e.g. chapters 5, 8, 9 and 10 of [4] and references therein). Such effects become the dominant ones in the case of light nuclei along the neutron drip lines, in which case the glue binding the halo nucleons to the core is essentially all of dynamic origin, continuum effects playing also an important role (see e.g. chapter 11 of [4] and references therein).

With the help of the corresponding essentially ‘exact’, two-nucleon transfer spectroscopic amplitudes associated with the superfluid state and of empirical, global optical potentials describing the three elastic channels involved in the process \((a(=b+2)+A \rightarrow f(=b+1)+F(=A+1) \rightarrow b+B(=A+2))\), one can stringently test two-nucleon transfer reaction theory.

It is found that a reaction description, which takes into account the successive and simultaneous contributions within the framework of the second-order distorted wave Born approximation (DWBA), properly corrected by non-orthogonality effects (Potel, private communication [10], see also [11] concerning the formalism), provides a quantitative description of Cooper pair transfer, within uncertainties lying below the 10% level (regarding the use of DWBA see [12, 13] and references therein). These results thus testify to the fact that pairing studies and the way they are revealed through two-nucleon transfer reactions have become quantitative, allowing to systematically compare, within experimental errors, theory with observations in terms of absolute differential cross-sections and not only relative ones as done before.

2. Cooper pairs

The pairing interaction correlates pairs of nucleons moving in time reversal states over lengths of the order of \(\xi = \hbar \nu \delta / E_{\text{corr}}\), much larger than nuclear dimensions (see e.g. [3]), in keeping with the fact that the associated two-nucleon correlation energy is \(E_{\text{corr}} \approx 0.5–2\text{MeV}\). These extended, strongly overlapping virtual objects, known as Cooper pairs, affect most of the properties of nuclei close to their ground state as well as of their decay. A textbook example of this last assertion is provided by the exotic decay \(^{223}\text{Ra} \rightarrow ^{209}\text{Pb} + ^{14}\text{C}\). The measured decay constant \(\lambda = 4.3 \times 10^{-16} \text{s}^{-1}\), implies that the wavefunction describing the ground state of the superfluid nucleus \(^{223}\text{Ra}\) has a component of amplitude of about \(10^{-5}\) corresponding to a shape closely resembling \(^{209}\text{Pb}\) in contact with \(^{14}\text{C}\). But this requirement can be fulfilled only if this exotic, strongly deformed system, is superfluid. In other words, only if pairs of nucleons are correlated over distances of the order of 20 fm, the sum of the Pb and C diameters [14].

2.1. Pairing correlations

Nuclear superfluidity can be studied at profit in terms of the mean field, BCS diagonalization of the pairing Hamiltonian [15], namely,

\[
H = H_{\text{sp}} + V_p, \tag{1}
\]

where

\[
H_{\text{sp}} = \sum_\nu (\epsilon_\nu - \lambda) a_\nu^\dagger a_\nu, \tag{2}
\]

while

\[
V_p = -\Delta (P_+^* + P_0) + \frac{\Delta^2}{G}, \tag{3}
\]

and

\[
\Delta = G \phi_0 \tag{4}
\]

is the pairing gap \((\Delta \approx 12\text{MeV}/\text{A}^{1/2})\), \(G (\approx 25\text{MeV}/\text{A})\) being the pairing coupling constant [3] and

\[
P_+^* = \sum_{\nu=0} \sum_{\nu=0} P_{\nu}^* = \sum_{\nu=0} \sum_{\nu=0} a_\nu^\dagger a_\nu^+, \tag{5}
\]

\[
P = \sum_{\nu=0} a_\nu^\dagger a_\nu \tag{6}
\]

are the pair addition and pair removal operators, \(a_\nu^\dagger\) and \(a_\nu\) being single-particle creation and annihilation operators, \((\nu \bar{\nu})\) labeling pairs of time reversal states.

The BCS ground state wavefunction describing the most favorable configuration of pairs able to profit from the pairing
Figure 1. Schematic representation of single-particle and of pairing vibration elementary modes of nuclear excitation. (I): (a) Cartoon (semiclassical) representation of a nucleon moving in the mean field produced by the other nucleons; (b) the specific probe to test the validity of the nuclear independent-particle model is to be found in one-particle transfer reactions (circled numerals 1, 2. . . indicating different milestones of the transfer process), as testified by (c) the sharp peaks observed in e.g. \((N_0 + 1)(p, d)N_0 \) neutron pick-up reactions (\(N_0 \): neutron magic number), peaks which provide information concerning: (d) the single-particle levels of the mean field potential \(U(r') = \int d^3 r \rho(r)v(|r - r'|) \), (e) the interaction \(v \) acting in the process in which a neutron moves from \(N_0 \) to the deuteron. (II): (a) Schematic representation of the fact that pairing correlations in nuclei are specifically probed by two-nucleon transfer processes. Cooper’s model associated with a pair of correlated fermions moving in time reversal states \((k \uparrow, -k \downarrow) \) on top of the Fermi surface. (b) In keeping with the fact that the correlation length is larger than nuclear dimensions (see figure 2) and that \(U(R_0) \gg G(\approx 25/A \text{ MeV}) \), the natural mechanism for pair transfer is successive transfer (circled numerals 1, 2. . . indicating different milestones of the transfer process), as exemplified in the case of the reaction \((A_0 + 2)(p, t)A_0(g.s.) \), and testified by (c) the \(L = 0 \) levels observed experimentally (see figure 3). This is also in keeping with the fact that the mode studied is: (d) a linear combination of 2p, 4p–2h, etc. excitations. (e) Because the Cooper pair correlation is weak, in the main contribution to the two-nucleon transfer process the interaction acts twice (see also figure 7(III)).
Figure 2. Schematic representation of the modulus square of the form factors associated with one-particle transfer and with Cooper-pair tunneling (two-particle transfer). (I) Cartoon emphasizing the local aspect of (a) one-particle pick-up, where the process \((N_0 + 1)(p, d)N_0\) is mediated by the interaction \(v_{np}\), and the form factor \(\phi_j(\vec{r})\); (b) the square modulus \(|\phi_j(\vec{r})|^2\) is the probability of finding a neutron moving above the Fermi surface in the mean field of the closed shell system \(N_0\). (II) Making use of an uniform set of single-particle levels and allowing neutrons to interact in terms of a schematic (density-dependent) pairing force whose strength is adjusted so that \(E_{\text{corr}} \approx 400\) keV, one obtains (a) Cooper pair wavefunctions whose modulus squared testifies to the fact that the two-neutrons are correlated over distances of \(\approx 30\) fm. (b) Introducing an external field parametrized as a standard Saxon–Woods potential (see e.g. [25]) with \(N = 8\) and \(Z = 3\) the above probability density is strongly modified, a modification which is repeated as shown in (c) by switching on another external field (standard Saxon–Woods potential) associated with a \(N = 6\) and \(Z = 3\) nucleus, placed at a distance of 15 fm from the first one. The very non-local aspect of the resulting single Cooper pair density probability, shared by two \(^9\)Li cores, can be probed in e.g. the reaction \(^{11}\text{Li} + ^9\text{Li} \rightarrow ^7\text{Li} + ^{11}\text{Li}\).

interaction, can be written in terms of the product of the occupancy probabilities \(h_\nu\) for individual pairs,

\[
|\text{BCS}\rangle = \Pi_\nu((1 - h_\nu)^{1/2} + h_\nu^{1/2}a_\nu^\dagger a_\nu)|0\rangle,
\]

where \(|0\rangle\) is the fermion vacuum.

Superfluidity is tantamount to the existence of a finite average value of the operators (5), (6) in this state, that is, to a finite value of the order parameter

\[
\alpha_0 = \langle \text{BCS}|P^\dagger|\text{BCS}\rangle = \langle \text{BCS}|P|\text{BCS}\rangle^*,
\]

which is equivalent to Cooper pair condensation. In fact, \(\alpha_0\) gives a measure of the number of correlated pairs in the BCS ground state. While the pairing gap (4) is an important
quantity relating theory with experiment, α_0 provides the specific measure of superfluidity. In fact, the matrix elements of the pairing interaction may vanish for specific regions of space, or in the case of specific pairs of time reversal orbits, of the pairing interaction may vanish for specific regions of specific measure of superfluidity. In fact, the matrix elements (9) two-nucleon transfer sum rule, a sum rule which is essentially exhausted by the superfluid nuclear [BCS] ground state (see figure 3). Within the above context, one can posit that two-nucleon transfer reactions are the specific probes of pairing in nuclei.

2.2. Fluctuations

The BCS solution of the pairing Hamiltonian was recasted by Bogoliubov [16] and Valatin [17] in terms of quasiparticles,

$$a^+_\nu U_\nu a_\nu - V_\nu a_\nu,$$

a linear transformation inducing the rotation in (a^+, a)-space which diagonalizes the Hamiltonian (1).

The variational parameters U_ν, V_ν appearing in the above relation indicate that a^+_ν acting on $|0\rangle$ creates a particle in the state $|\nu\rangle$ which is empty with a probability $U^2_\nu \equiv (1 - h_\nu)$, and annihilates a particle in the time reversal state $|\bar{\nu}\rangle$ (creates a hole) which is occupied with probability $V^2_\nu \equiv h_\nu$. Thus,

$$|\text{BCS}\rangle = \Pi_{\nu>0}(U^\dagger_\nu + V_\nu a^+_\nu a_\nu)|0\rangle,$$

is the quasiparticle vacuum, as $|\text{BCS}\rangle \sim \Pi_\nu a_\nu|0\rangle$, the order parameter being

$$\alpha_0 = \sum_{\nu>0} U_\nu V_\nu.$$

Making use of these results we collect in table 1 the spectroscopic amplitudes associated with the reactions $^{122}\text{Sn}(p,t)^{120}\text{Sn}$, for A in the interval 112–126, as well as the spectroscopic amplitudes of pairing vibrational modes (see below as well as [18, 19]).

The BCS number and gap equations are,

$$N = 2 \sum_{\nu>0} V^2_\nu,$$

$$\frac{1}{G} = \sum_{\nu>0} \frac{1}{2E_\nu},$$

where

$$V_\nu = \frac{1}{\sqrt{2}} \left(1 - \frac{\epsilon_\nu - \lambda}{\epsilon_\nu} \right)^{1/2},$$

$$U_\nu = \frac{1}{\sqrt{2}} \left(1 + \frac{\epsilon_\nu - \lambda}{\epsilon_\nu} \right)^{1/2},$$

while the quasiparticle energy is defined as

$$E_\nu = \sqrt{\left(\epsilon_\nu - \lambda \right)^2 + \Delta^2}.$$

2.3. Pairing rotations

The phase of the ground state BCS wavefunction may be chosen so that $U_\nu = |U_\nu| = U'_\nu$ is real and $V_\nu = V'_\nu e^{-2i\phi} (V'_\nu \equiv |V_\nu|)$. Thus [15, 20, 21],

$$|\text{BCS}(\phi)\rangle_K = \Pi_{\nu>0}(U'_\nu + V'_\nu e^{-2i\phi} a^+_\nu a_\nu)|0\rangle = \Pi_{\nu>0}(U'_\nu + V'_\nu a^+_\nu a_\nu)|0\rangle = |\text{BCS}(\phi = 0)\rangle_K,$$

where $a^+_\nu = e^{-\phi} a^+_\nu$ and $a^\nu = e^{-\phi} a^\nu$. This is in keeping with the fact that a^+_ν and a^ν are single-particle creation operators which under gauge transformations (rotations in the 2D-gauge space of angle ϕ) induced by the operator $G(\phi) = e^{-i\lambda(\phi)}$ and connecting the intrinsic and the laboratory frames of reference K' and K respectively, behave according to $a^+_\nu = G(\phi)a^+_\nu G^{-1}(\phi) = e^{-i\lambda(\phi)} a^+_\nu$ and $a^\nu = G(\phi)a^\nu G^{-1}(\phi) = e^{-i\lambda(\phi)} a^\nu$, a consequence of the fact that N is the number operator and that $[N, a^+_\nu] = a^+_\nu$.

The fact that the mean field ground state (BCS(ϕ)$|K)$ is a product of operators—one for each pair state—acting on the vacuum, implies that (17) represents an ensemble of ground state wavefunctions averaged over systems with $\ldots N = 2, N, N + 2 \ldots$ even number of particles. In fact, (17) can also be written in the form

$$|\text{BCS}\rangle_K = \left(\Pi_{\nu>0} U'_\nu \right) \left(1 + \cdots + e^{-i(N-2)\phi} \left(\frac{\epsilon_\nu - \lambda}{\epsilon_\nu} \right) \right)^{N-2} \left(\sum_{\nu>0} c_\nu a^+_\nu a^\nu \right)^{N-2} + \cdots |0\rangle,$$

where $c_\nu = V'_\nu / U'_\nu$.

By adjusting the Lagrange multiplier λ (chemical potential, see equations (12)–(16)), one can ensure that the mean number of fermions (equation (12)) has the desired value N_0. Summing up, the BCS ground state is a wavepacket in the number of particles. In other words, it is a deformed state in gauge space defining a privileged orientation in this space and thus an intrinsic coordinate system K' [22–24]. The magnitude of this deformation is measured by α_0.
All the above arguments point to a static picture of nuclear superfluidity which results from BCS theory. This is quite natural, as one is dealing with a mean field approximation. The situation is radically changed taking into account the interaction acting among the Cooper pairs (quasiparticles) which has been neglected until now, that is the term $-G(P^+ - \alpha_0)(P - \alpha_0)$ left out in the mean field (BCS) approximation leading to (3) [22, 24]. This interaction can essentially be written as (for details see e.g. [4] appendix J)

$$H_{\text{residual}} = H'_p + H''_p,$$

where

$$H'_p = -\frac{G}{4} \left(\sum_{\nu>0} (U^\dagger_\nu - U_\nu^\dagger)(P^+_\nu + P^-_\nu) \right)^2$$

and

$$H''_p = \frac{G}{4} \left(\sum_{\nu>0} (P^+_\nu + P^-_\nu) \right)^2.$$

The term H''_p gives rise to vibrations of the pairing gap which (virtually) change the particle number in ±2 units. The energy of these pairing vibrations cannot be lower than 2Δ. They are, as a rule, little collective, corresponding essentially to almost pure two-quasiparticle excitations (see the excited 0* states of figure 3).

The term H''_p leads to a solution of particular interest, displaying exactly zero energy, thus being degenerate with the ground state. The associated wavefunction is proportional to the particle number operator and thus to the gauge operator inducing an infinitesimal rotation in gauge space. The fluctuations associated with this zero frequency mode diverge, although the Hamiltonian defines a finite inertia. A proper inclusion of these fluctuations (of the orientation angle ϕ in gauge space) restores gauge invariance in the [BCS(ϕ)]$_k$ state

Table 1. (a) Two-nucleon spectroscopic amplitudes $\langle{BCS(A)|P^+|BCS(A + 2)}\rangle = \sqrt{2J_e + 1}/2 U_e(A) V_e(A + 2)$, associated with two-nucleon pick-up reactions connecting the ground states (members of a pairing rotational band) of two superfluid Sn-nuclei (112Sn(p_2t)6Sn(gs)); (b) two-nucleon spectroscopic amplitudes associated with the pair removal modes $|r\rangle$ of the $N_0 = 6$ closed shell systems 3Li and 10Be

$$<r|P^+_e|N_0 = 6> = \begin{cases} X_{\text{even}}(r), & \epsilon_0 \leq \epsilon_F \\ Y_{\text{even}}(r), & \epsilon_0 > \epsilon_F \end{cases}$$

(c) two-nucleon spectroscopic amplitude associated with the pair addition mode $|\text{a}\rangle$ of the closed shell system 46Ca,

$$<\text{a}|P^+_e|N_0 = 28> = \begin{cases} X_{\text{odd}}(\nu), & \epsilon_0 > \epsilon_F \\ Y_{\text{odd}}(\nu), & \epsilon_0 \leq \epsilon_F \end{cases}$$

(d) same as (b) but for the case of the closed shell $N_0 = 126$ nucleus 208Pb; (e) Same as (c) but for the closed shell nucleus ($N_0 = 8$) 16O. In the bottom part of the table the ground state wavefunctions associated with the pair addition mode of the $N_0 = 6$ closed shell systems 10Be and 3Li are displayed. For details concerning these wavefunctions see [18, 19].

(a)	112Sn	114Sn	116Sn	118Sn	120Sn	122Sn	124Sn
1d5/2	0.664	0.594	0.393	0.471	0.439	0.394	0.352
0g7/2	0.958	0.852	0.542	0.255	0.591	0.504	0.439
2s1/2	0.446	0.477	0.442	0.487	0.451	0.413	0.364
1d7/2	0.542	0.590	0.695	0.706	0.696	0.651	0.582
0h1/2	0.686	0.720	1.062	0.969	1.095	1.175	1.222
(b) 7Li 8Be & 0s1/2 & 0.0575 & 0.128 & 0.10491 & 1.076 & 0.2437 & 0.232 & 0.2111 & 0.214 & 0.272							
0p1/2	0.89	0.396	0.223	0.89	0.396	0.223	
0p3/2	0.542	0.590	0.695	0.706	0.696	0.651	0.582
0d5/2	0.686	0.720	1.062	0.969	1.095	1.175	1.222
50Ca	0.063	0.0894	0.2041	0.9797	0.1628	0.177	
(d) 208Pb & cf table XVI of [8] and/or table 2 of [56]							
(e)	0d3/2	1s1/2	0d3/2				
18O	0.89	0.396	0.223				
12Be(gs) & $	0\rangle + \alpha	p_{1/2},s_{1/2}\rangle	1^-;0^+\rangle + \beta	p_{1/2},s_{1/2}\rangle	2^+\rangle$		
$	0\rangle = 0.10, \beta = 0.35, \gamma = 0.33, \alpha = 0.37	s_{1/2}(0)\rangle + 0.50	p_{1/2}(0)\rangle + 0.60	d_{1/2}(0)\rangle$			
14Li(gs) & $	0\rangle + \alpha	p_{1/2},s_{1/2}\rangle	1^-;0^+\rangle + \beta	p_{1/2},s_{1/2}\rangle	2^+\rangle$		
$	0\rangle = 0.45	s_{1/2}(0)\rangle + 0.55	p_{1/2}(0)\rangle + 0.04	d_{1/2}(0)\rangle$			
leading to states with a fixed particle number

\[|N_0\rangle \sim \int_0^{2\pi} d\phi e^{iN_0\phi} \langle \text{BCS}(\phi) | \sim \left(\sum_{i=0}^{N} c_i a_i^\dagger a_i^\dagger \right)^{N_0/2} |0\rangle. \]

These are the members of the pairing rotational band, e.g. the ground states of the superfluid Sn-isotope nuclei. These states provide the nuclear embodiment of Schrieffer’s ensemble of ground state wavefunctions which is at the basis of the BCS theory of superconductivity. This subject has been extensively discussed in the literature (see e.g. \[20–23\] and references therein). For a recent discussion within the field of nuclear physics see \[11\].

Summing up, while the correlations associated with \(H'_p \) lead to divergent fluctuations which eventually restore symmetry \(\{H_{\text{sp}} + H'_p, \hat{N}\} = 0 \), \(H'_p \) essentially gives rise to non-collective particle number fluctuations, which are essentially pure two-quasiparticle states (see \[4, 24\]).

The situation depicted above is quite different in the case of normal systems, where pairing vibrations, namely the pair addition and pair removal modes \([3, 6, 24]\), are strongly excited in two-particle transfer reactions (see figure 4). Let us elaborate on this point, making use of the so-called two-level model, in which the single-particle levels associated with occupied (empty) states are assumed to be degenerate and separated by an energy \(D \). The parameter which measures the interplay between pairing correlations and shell effects is

\[x = \frac{2G\Omega}{D}. \]

where \(G (\approx 25/A \text{ MeV}) \) is the pairing coupling constant, while \(\Omega = (2j + 1)/2 \) is the pair degeneracy of each of the two levels, assumed to be equal. With the help of the simple estimate of the spacing \(D = 2/\rho \) between levels close to the Fermi energy in terms of the level density (for one type of nucleons, e.g. neutrons) \(\rho = 3A/2\pi^2 \) \[25\], one obtains \(D = 4\epsilon_p/3A \) which for \(^{120}\text{Sn} \) leads to \(D \sim 0.4 \text{ MeV} \) (see e.g. \[4\] chapter 2 and references therein). Making use of the fact that the average pair degeneracy of the valence orbitals of \(^{120}\text{Sn} \) is approximately 3, one obtains \(x \approx 3 \), implying that pairing effects overwhelm shell effects and the static (pairing rotational) view of Cooper pair condensation is operative.

On the other hand, in a closed shell system like, e.g. \(^{208}\text{Pb} \), \(D \approx 3.4 \text{ MeV} \). Making use of the fact that the last occupied orbit is a \(p_{1/2} \) orbit, the first unoccupied being a \(g_{9/2} \) level, one can use \(\Omega = 5 \) in calculating the value of \(x \), which becomes \(x = 0.35 \). This value indicates that, in the present case, shell effects are dominant.

This does not mean that Cooper pairs are not present in the ground state of \(^{208}\text{Pb} \). It means that they break as soon as they are created as virtual states through ground state correlations. Testifying to this scenario is the fact that the expected 2\(p_{1/2} \) 0\(^+ \) state in \(^{208}\text{Pb} \) at an energy of \(2D \approx 6.8 \text{ MeV} \), is observed at 4.9 MeV. The difference between these two numbers corresponds almost exactly to the sum of the correlation energy of \(^{208}\text{Pb} \) (gs) (0.640 MeV) and of \(^{210}\text{Pb} \) (gs) (1.237 MeV). Thus, the first 0\(^+ \) excited state of \(^{208}\text{Pb} \) corresponds to a two-phonon pairing vibrational state, the product of the pair addition \((\mid 10^{10}\text{Pb}(\text{gs})) \) and of the pair removal \((\mid 10^{0}\text{Pb}(\text{gs})) \) modes of \((\mid 10^{0}\text{Pb}(\text{gs})) \).

In other words, we are in the presence of an incipient attempt of condensation in terms of two correlated Cooper pairs, which, forced to be separated in two different nuclides by particle conservation, get together in the highly correlated two-phonon pairing vibrational state of \(^{208}\text{Pb} \). No surprise that its microscopic structure can also be, rather easily, calculated almost exactly, by diagonalizing a schematic pairing force \(H_p = -G P P^\dagger \), in the harmonic approximation (RPA). The two-nucleon transfer spectroscopic amplitudes associated with the reactions \(^{206}\text{Pb}(t,p)^{208}\text{Pb}(\text{gs})\), \(^{208}\text{Pb}^{(16}\text{O},16\text{O})^{208}\text{Pb}(\text{gs})\), \(^{48}\text{Ca}(t,p)^{50}\text{Ca}(\text{gs})\), \(^{10}\text{Be}(p,t)^{8}\text{Be}(\text{gs})\) and \(^{4}\text{He}(p,t)^{6}\text{Li}(\text{gs})\), and thus with the excitation (deexcitation) of pair addition and pair subtraction modes, are collected in table 1. For details, see \[8\].

3. Nuclear field theory

Elementary modes of nuclear excitation, namely rotations, vibrations and single-particle motion constitute a choice basis for a compact and economic description of the nuclear structure, as these states incorporate many of the nuclear correlations \[3\]. The price to be paid for using a correlated basis, is that these modes are non-orthogonal to each other, reflecting the fact that all the nuclear degrees of freedom are already exhausted by the single-particle degrees of freedom. In fact, nuclear elementary modes of excitation are not free, but interact with each other through a coupling term (\(H_c \)) linear in the single-particle and collective coordinates. Within this (non-orthogonality) context we refer to the similar situation
encountered in the case of the two-particle transfer reaction mechanism (see above as well as appendix A).

A theoretical self-consistent field treatment of this coupling can provide, to each order of perturbation chosen, the solution of the nuclear many-body problem, eliminating in the process overcompleteness and Pauli principle violation of the basis states. Propagating these interactions and corrections to infinite order through the Dyson (Nambu–Gor’kov [26] in the superfluid case) equation, one can carry out a full diagonalization of the many-body problem, provided the rules of the game have been worked out and proved to be right.

A possible answer to such a quest was provided by NFT [27–33]. With four rules which allow to select the interactions (particle–vibration coupling and four-point vertices ν), calculate the collective (e.g. RPA for vibrations in spherical, normal nuclei) and the single-particle degrees of freedom (mean field associated with ν), and eliminate non-allowed processes (diagrams), it was possible to prove that NFT propagators provided the same answer as the Feynman–Goldstone (F–G) many-body propagators to any order of perturbation (see appendix B). Such a proof is tantamount to the statement that the use of NFT techniques for solving nuclear many-body problems, lead to the correct solution to any given order of perturbation. In particular to the exact solution in the case in which the different contributions are summed to infinite order.

Within this scenario and provided one has experimental information concerning the collective modes which dress the single-particle states and renormalize the nucleon–nucleon (pairing) interaction, NFT is expected to provide accurate predictions concerning the nuclear structure in general and single-particle spectroscopic amplitudes in particular.

This is in fact the case concerning 11Li and 12Be, two systems studied in much detail with the help of NFT. The two-nucleon transfer spectroscopic amplitudes associated with the reactions 4He(11Li,3He)4He(Jπ = 3/2− (gs) and Jπ = 1/2− (E* = 2.69 MeV)), 3Li(t,p)6Li(gs) and 10Be(t,p)12Be(gs) are collected in table 1. For details of the calculations of the wavefunctions we refer to [18, 19].

4. Reaction mechanism

Through the single action of the nucleon–nucleon interaction on one nucleon, a two-particle transfer reaction can take place, the second particle being able to follow the first one profiting of the particle–particle (Cooper pair) correlation. Although this is correct, it does not reflect the whole story. To explain why this is so, let us make use of the independent particle model, in which case nucleons do not interact with each other but because of the Pauli principle. Nonetheless, also in this limit two-particle transfer can still take place as a first-order process in the nucleon–nucleon interaction, the second nucleon going over, profiting this time from the fact that the single-particle wavefunctions are not orthogonal. But this result depends on the single-particle basis used and can thus hardly be correct.

In fact, within the framework of the two-center shell model basis of reaction theory (see e.g. [34]), the non-orthogonality term is by definition zero. This is in keeping with the fact that the overlaps ⟨φi(0)|φj(A)⟩ = ⟨φi(0)|φj(A)⟩ = 0. Thus, in the independent particle limit, two-particle simultaneous transfer, in which ν acts only once, is non-operative.

Consequently, in a non-orthogonal basis like the one used in the present paper, the above parlance implies that, in the lowest-order in the nucleon–nucleon interaction, there must be two contributions: the simultaneous transfer and another one known as the non-orthogonality correction which exactly cancels the first-order in the independent particle limit (see e.g. [35] p 424). Because in nuclei the correlations between Cooper pair partners are weak, cancellation is rather strong and successive transfer, is, as a rule, the main contribution to two-particle transfer in the lowest (second)-order in the nucleon–nucleon interaction. It constitutes a further check of the consistency of such a description that in the limit of strong correlations between Cooper pair partners, the non-orthogonality correction is needed to ensure that successive transfer vanishes as the Cooper binding energy becomes large, ensuring simultaneous transfer to be the dominant, lowest-order transfer mechanism of the bosonic dinuclear system (see appendix A).

The theory of two-nucleon transfer reactions involving superfluid nuclei essentially started with the work of Yoshida [5] who pointed out that the differential cross-sections connecting the ground states of two superfluid nuclei is proportional to (Δ/G)2, that is do(gs → gs) ∼ (a0)2. Shortly after, Glendenning [36] provided a microscopic description in terms of effective form factors and DWBA, followed by the seminal work of Bayman [37]. In all these cases use was made of the zero-range approximation (no-recoil effects) and simultaneous transfer was the only process considered.

Work started in the seventies and carried on to the present day (see [11–13, 35–91, 109–127] and appendix C), has provided the basis, developed the formalism and worked out the tests for a consistent second-order DWBA description of two-nucleon transfer process.

Making use of an implementation ([10], see also [11, 51]) of such second-order DWBA which includes successive and simultaneous transfer, corrected from non-orthogonality, of the spectroscopic amplitudes collected in table 1, and of global optical parameters from the literature (see table 2), a number of two-nucleon transfer absolute differential cross-sections have been calculated. They are compared with the experimental findings in figures 5 and 6. In table 3 the corresponding integrated absolute cross-sections are collected in comparison with observations. It is fair to state that theory provides an overall account of the experimental findings.

In an attempt at setting the different calculations of the absolute two-particle transfer cross-sections on an equal footing, global sets of optical parameters, taking also into account spin–orbit terms when reported in the literature, were used. The only exception to this protocol is associated with the analysis of the 4He(11Li,3He)4He data. In this case, the optical parameters quoted in the paper reporting the inverse kinematic measurement and used to fit the transfer data [49] were employed in the analysis discussed in [50]. This is also in keeping with the fact that it is unlikely that the optical parameters associated with the elastic scattering in the channels p+11Li, d+10Li and t+9Li will smoothly fall
within the systematics of a global fit. At the basis of this expectation one finds the high polarizability of 11Li and the fact that 10Li is not bound. The way to proceed in such a case is by calculating microscopically [92–104], both the real and imaginary part of the potential, which is likely to be strongly energy (ω)-dependent. This project is, within the present context, to be carried out making use of the nuclear spectroscopic amplitudes [18] and associated modified form factors used in the analysis of the transfer data in [50] (see figure 6 and table 3). Such a program and its related outcome constitutes one of the basic open problems in the probing of nuclear correlations with two particle transfer reactions. In any case, it is of notice that in the case of $^1\text{H}(^{11}\text{Li},^{9}\text{Li}(g.s.))^3\text{H}$ both FRESCO and the formalism discussed in the present paper (see appendix A) give very similar absolute cross-sections [49, 50].

Let us now address a second question. Given the importance of successive transfer, one may argue that the deuteron breakup couplings may play a role in the intermediate stage of the reaction. Within this context we refer to section 4.2.2.1 of [47], where this issue has been treated in
Figure 5. Absolute cross-sections associated with a number of two-particle transfer reactions. Making use of the two-nucleon spectroscopic amplitudes and of the optical potentials collected in tables 1 and 2, and of a two-nucleon transfer software developed by Potel [10] within the framework of second-order DWBA taking into account non-orthogonality corrections, the absolute differential cross-sections associated with a number of reactions were calculated and are displayed (continuous curves) in comparison with the experimental data (see also table 3). The conclusion of this study in a nutshell is that the contribution of the unbound states of the deuteron in the intermediate states is rather small regarding the differential cross-sections.

Let us conclude this section by mentioning that throughout it we have dealt, essentially on equal footing, with light (i.e. (p,t) and (t,p)) and heavy ion (e.g. \((^{18}\text{O},^{16}\text{O})\)) reactions, without much further ado. This is in keeping with the fact that the formalism to treat each of these type of reactions, as well as to work out the connection and differences between them, is well-known in the literature (see e.g. [8, 11, 35, 48, 51, 78], and references therein).

5. Conclusions

With the help of spectroscopic amplitudes which provide an accurate description of the structure, in particular the pairing aspects of it, of nuclei covering essentially the whole mass table, and of empirical, global optical potentials, we have tested two-nucleon transfer reaction theory. Second-order DWBA which includes simultaneous and successive transfer properly corrected with non-orthogonality effects, provides a quantitative account of the absolute differential cross-sections, essentially within experimental errors and below the 10% level. While the physics which is at the basis of this quantitative analysis of the data is quite interesting and in some cases also exciting, we restrain here from commenting on it, so as to better emphasize the sheer technical achievement. The interested reader is referred to appendix C as well as to the references. In particular concerning the results reported in figures 5 and 6 and table 3 see [11, 49–51, 61, 62, 71].

Acknowledgments

Discussions and collaboration with B Bayman are gratefully acknowledged. We want also to thank L Zetta and P Guazzoni for clarification and access regarding their systematic, state-of-the-art (p,t) data. RAB wants to acknowledge a lifelong collaboration with D R Bes on the subjects of nuclear structure and reactions. GP acknowledges support from CEA, Espace...
Appendix A. Relative importance of successive and simultaneous transfer and non-orthogonality corrections

In what follows we discuss the relative importance of successive and simultaneous two-neutron transfer and of non-orthogonality corrections associated with the reaction

\[\alpha \equiv a(= b + 2) + A \rightarrow b + B(= A + 2) \equiv \beta, \quad (A1) \]

in the limits of independent particles and of strongly correlated Cooper pairs, making use, for simplicity, of the semiclassical approximation (for details see [35, 53] and references therein).

In this case the two-particle transfer differential cross-section can be written as,

\[\frac{d\sigma_{\alpha \rightarrow \beta}}{d\Omega} = P_{\alpha \rightarrow \beta}(t = +\infty) \sqrt{\left(\frac{d\sigma_{\alpha}}{d\Omega}\right)_{el} \left(\frac{d\sigma_{\beta}}{d\Omega}\right)_{el}}, \quad (A2) \]

where \(P \) is the absolute value squared of a quantum mechanical transition amplitude. It gives the probability that the system at \(t = +\infty \) is found in the final channel. The quantities \(\left(\frac{d\sigma}{d\Omega}\right)_{el} \) are the classical elastic cross-sections in the center of mass system, calculated in terms of the deflection function, namely the functional relating the impact parameter and the scattering angle.

The transfer amplitude can be written as

\[a(t = +\infty) = a^{(1)}(\infty) - a^{(NO)}(\infty) + \tilde{a}^{(2)}(\infty), \quad (A3) \]

where \(\tilde{a}^{(2)}(\infty) \) labels the successive transfer amplitude expressed in the post–post representation (see below). The simultaneous transfer amplitude is given by (see figure 7(I))

\[a^{(1)}(\infty) = \frac{1}{i\hbar} \int_{-\infty}^{\infty} dt (\phi^{b}(\psi^{B}_{r'} - \langle \psi^{B}_{r'} \rangle)\psi^{a}\psi^{A}) \times \exp \left[\frac{i}{\hbar} (E^{B} - E^{A})t \right] \]

\[\approx \frac{2}{i\hbar} \int_{-\infty}^{\infty} dt (\phi^{b}(\psi_{r'}^{A})\phi^{a}(\psi_{r'}^{A})) \times \exp \left[\frac{i}{\hbar} (E^{b} - E^{a})t + \gamma(t) \right], \quad (A4) \]

in keeping with the fact that \(\exp(i(\sigma_{1} + \sigma_{2})) \) takes care of recoil effects (Galilean transformation associated with the mismatch between entrance and exit channels), the phase \(\gamma(t) \) being related to the effective \(Q \)-value of the reaction.

In the above expression, \(\phi \) indicates an antisymmetrized, correlated two-particle (Cooper pair) wavefunction, \(S(2n) \) being the two-neutron separation energy (see figure 8), \(U(r_{1b}) \) being the single-particle potential generated by nucleus \(b \) \((U(r) = \int d^{3}r' \rho_b(r')v(|r - r'|)) \). The contribution arising from non-orthogonality effects can be written as (see figure 7(II))

\[a^{(NO)}(\infty) = \frac{1}{i\hbar} \int_{-\infty}^{\infty} dt (\psi^{b}\psi^{B}_{r'} - \langle \psi^{B}_{r'} \rangle)\psi^{a}\psi^{F}) \times \psi^{F} \psi^{F} \exp \left[\frac{i}{\hbar} (E^{B} - E^{A})t \right] \]
energy (see figure 8). The summation over introduced, the quantity
the reaction channel
10Be(t,p)\(^{7}\)Be
\[\text{gs} \quad 2.3 \quad 1.9 \pm 0.57 \quad 4.4^+ \quad 57.4^+ \]
48Ca(t,p)\(^{44}\)Ca
\[\text{gs} \quad 0.55 \quad 0.56 \pm 0.17 \quad 4.5^+ \quad 174^+ \]
\[\text{Table} \quad 3. \quad \text{Absolute value of two-nucleon transfer cross-sections.} \quad \text{The number in parenthesis (last column) corresponds to the statistical errors.} \]

\begin{tabular}{lccc}
\hline
\text{f} & \text{Theory} \(^{a,b}\) & \text{Experiment} \(^{\text{ex}}\) & \text{\(\theta \equiv \theta_{\text{cm}}\)} \\
\hline
\text{\(^{7}\)Li(t,p)\(^{7}\)Li} & gs & 14.3 & 14.7 \pm 4.4 \quad 9.4^+ \quad 108.7^+ \\
\text{\(^{1}\)H(\(^{7}\)Li,\(^{1}\)Li)\(^{1}\)H} & gs & 6.1 & 5.7 \pm 0.9 \quad 20^+ \quad 154.5^+ \\
& & 1/2^- & 0.7 \quad 1.0 \pm 0.36 \quad 30^+ \quad 100^+ \\
\text{\(^{10}\)Be(t,p)\(^{12}\)Be} & gs & 2.3 & 1.9 \pm 0.57 \quad 4.4^+ \quad 57.4^+ \\
\text{\(^{48}\)Ca(t,p)\(^{44}\)Ca} & gs & 0.55 & 0.56 \pm 0.17 \quad 4.5^+ \quad 174^+ \\
\hline
\end{tabular}

\(^{a}\) See [11, 71].

\(^{b}\) See [50].

\(^{c}\) mb

\(^{d}\) \(\mu b / \text{sr} \left(\sum_{n=1}^{N} (d\sigma/d\Omega) \right) \); differential cross-section summed over the few (3–7) experimental points.

\(^{e}\) See [51].

\(^{f}\) See [115].

\(^{g}\) See [116].

\(^{h}\) See [117].

\(^{i}\) See [118].

\(^{j}\) See [119].

\(^{k}\) See [120].

\(^{l}\) See [121].

\(^{m}\) See [122].

\(^{n}\) See [123].

\[^{\text{et al}}\] See [124].

\[^{\text{et al}}\] See [125].

\[^{\text{et al}}\] See [126].

\[^{\text{et al}}\] See [127].

\[^{\text{et al}}\] See [128].

\[^{\text{et al}}\] See [129].

To gain insight into the relative importance of the three terms contributing to equation (A3) we discuss two situations, namely, the independent-particle and the strong-correlation limits.

A.1. Independent particle limit

In the independent particle limit, the two transferred particles do not interact among themselves but for antisymmetrization. Thus, the separation energies fulfill the relations (see figure 8)

\[S^B(2n) = 2S^B(n) = 2S^F(n) \] (A8)

and

\[S^F(2n) = 2S^F(n) = 2S^F(n) \] (A9)

In this case

\[\phi^{B(L)}(S^B(n) ; \vec{r}_{1A}, \vec{r}_{2A}) = \sum_{a_1, a_2} \phi^{B(L)}_a(S^B(n) ; \vec{r}_{1A}) \phi^{F(A)}_{a_2}(S^F(n) ; \vec{r}_{2A}) \] (A10)

and

\[\phi^{(b)}(S^F(2n) ; \vec{r}_{1b}, \vec{r}_{2b}) = \sum_{a'_1, a'_2} \phi^{(b)}_{a'_1}(S^F(n) ; \vec{r}_{2b}) \phi^{(b)}_{a'_2}(S^F(n) ; \vec{r}_{1b}) \] (A11)
Figure 7. Graphical representation of the lowest-order ((I), (II) and (III) first- and second-order in v respectively), two-nucleon transfer processes, which correctly converge to the strong-correlation (only simultaneous transfer), and to the independent-particle (only successive transfer) limits. The time arrow is assumed to point upward: (I) Simultaneous transfer, in which one particle is transferred by the nucleon–nucleon interaction (note that $U(r) = \int d^3 r' \rho(r') v(|\vec{r} - \vec{r}'|)$ acting either in the entrance $\alpha \equiv a + A$ channel (prior) or in the final $\beta \equiv b + B$ channel (post), while the other particle follows suit making use of the particle–particle correlation (grey area) which binds the Cooper pair (see upper inset labeled (a)), represented by a solid arrow on a double line, to the projectile (curved arrowed lines) or to the target (opened arrowed lines). The above argument provides the explanation why when e.g. v_1b acts on one nucleon, the other nucleon also reacts instantaneously. In fact a Cooper pair displays generalized rigidity (emergent property in gauge space). A crossed open circle represents the particle–pair vibration coupling. The associated strength, together with an energy denominator, determines the amplitude $X_{a_1'a_1}$ (see table 1) with which the pair mode (Cooper pair) is in the (time reversed) two-particle configuration $a_1'a_2$. In the transfer process, the orbital of relative motion changes, the readjustment of the corresponding trajectory mismatch being operated by a Galilean operator $\exp(i \vec{k} \cdot (\vec{r}_1 + \vec{r}_2))$. This phenomenon, known as the recoil process, is represented by a jagged line which provides simultaneous information on the two transferred nucleons (single time appearing as argument of both single-particle coordinates r_1 and r_2; see inset labeled (b)). In other words, information on the coupling of structure and reaction modes. (II) Non-orthogonality contribution. While one of the nucleons of the Cooper pairs is transferred under the action of v, the other goes, uncorrelated over by profiting from the non-orthogonality of the associated single-particle wavefunctions (see inset (c)). In other words from the non-vanishing values of the overlaps, as shown in the inset. (III) Successive transfer. In this case, there are two time dependences associated with the action of the nucleon–nucleon interaction (see inset (d)).
where \((a_1, a_2) \equiv F\) and \((a'_1, a'_2) \equiv f\) span, as mentioned above, shells in nuclei \(B\) and \(a\) respectively.

Inserting equations (A8)–(A11) in (A4) one can show that

\[
a(\infty) = a^{(NO)}(\infty).
\]

(A12)

It can be further demonstrated that, within the present approximation, Im \(\tilde{a}^{(2)} = 0\) and that

\[
\tilde{a}^{(2)}(\infty) = \frac{1}{\hbar} \int_{-\infty}^{\infty} dt \langle \psi_b \bar{\psi}^B, (V_{bb} - \langle V_{bb} \rangle) e^{i\sigma_1} \psi_f \bar{\psi}^F > \times \exp \left[\frac{i}{\hbar} (E_b - E_f) t + \gamma_1(t) \right]
\]

\[
x \times \exp \left[\frac{i}{\hbar} \int_{-\infty}^{\infty} dt' (\psi_f \bar{\psi}^f, (V_{ff} - \langle V_{ff} \rangle) e^{i\sigma_2} \psi_a \bar{\psi}^A > \times \exp \left[\frac{i}{\hbar} (E_f - E_a) t' + \gamma_2(t') \right].
\]

(A13)

The total absolute differential cross-section (A2), where \(P = |a(\infty)|^2 = |\tilde{a}^{(2)}|^2\), is then equal to the product of two one-particle transfer cross-sections (see figure 9), associated with the (virtual) reaction channels

\[
\alpha \equiv a + A \rightarrow f + F \equiv \gamma
\]

(A14)

and

\[
\gamma \equiv f + F \rightarrow b + B \equiv \beta.
\]

(A15)

In fact, equation (A13) involves no time ordering and consequently the two processes above are completely independent of each other. This result was expected because being \(\nu_{12} = 0\), the transfer of one nucleon cannot influence, aside from selecting the initial state for the second step, the behavior of the other nucleon.

Figure 7. Continued.
Figure 8. One- and two-neutron separation energies $S(n)$ and $S(2n)$ associated with the channels $\alpha \equiv a(= b + 2) + A \rightarrow \gamma \equiv f(= b + 1) + F(= A + 1) \rightarrow \beta \equiv b + B(= A + 2)$.

Figure 9. One-particle transfer reactions $a(= b + 1) + A \rightarrow b + B(= A + 1)$. The different symbols have been defined in the caption to figure 7.

A.2. Strong correlation (cluster) limit

The second limit to be considered is the one in which the correlation between the two nucleons is so strong that (see figure 8)

$$S'(2n) \approx S'(n) \gg S'(n)$$ \hspace{1cm} (A16)

and

$$S''(2n) \approx S''(n) \gg S''(n).$$ \hspace{1cm} (A17)

That is, the magnitude of the one-nucleon separation energy is strongly modified by pair breaking.

There is a different, although equivalent way to express (A3) which is more convenient to discuss the strong coupling limit. In fact, making use of the post–prior representation one can write

$$a^{(2)}(t) = \tilde{a}^{(2)}(t) - a^{(N\Lambda)}(t)$$

$$= \frac{1}{\hbar} \int_{-\infty}^{\infty} dt' \langle \gamma | \psi^f \psi^f, (V_{aA} - \langle V_{aA} \rangle) | \psi^a \psi^A \rangle \times \exp \left[\frac{i}{\hbar} (E_{BB} - E_{FF}) t' + \gamma(t') \right].$$ \hspace{1cm} (A18)

The relations (A16), (A17) imply

$$E_{FF} - E_{aA} = S'(n) - S''(n) \gg \frac{\hbar}{\tau},$$ \hspace{1cm} (A19)

where τ is the collision time. Consequently the real part of $a^{(2)}(\infty)$ vanishes exponentially with the Q-value of the intermediate transition, while the imaginary part vanishes inversely proportional to this energy. One can thus write

$$\text{Re } a^{(2)}(\infty) \approx 0$$ \hspace{1cm} (A20)

and

$$a^{(2)}(\infty) \approx \frac{1}{\hbar} \frac{\tau}{E_{BB} - E_{aA}} \times \sum_{ff} \langle \psi^b \psi^f, (V_{bb} - \langle V_{bb} \rangle) \psi^f \psi^f \rangle t = 0$$

$$\times \langle \psi^a \psi^f, (V_{aA} - \langle V_{aA} \rangle) \psi^a \psi^A \rangle t = 0,$$ \hspace{1cm} (A21)

where one has made use of the fact that $E_{BB} \approx E_{aA}$. For $v_{12} \rightarrow \infty$, $(E_{FF} - E_{BB}) \rightarrow \infty$ and, consequently,

$$\lim_{v_{12} \rightarrow \infty} a^{(2)}(\infty) = 0.$$ \hspace{1cm} (A22)

Thus the complete two-nucleon transfer amplitude is equal, in the strong coupling limit, to the amplitude $a^{(1)}(\infty)$.

Summing up, only when successive transfer and non-orthogonal corrections are included in the description of the two-nucleon transfer process, does one obtain a consistent description of the process, which correctly converges to both the weak and the strong correlation limiting values.

Appendix B. Equivalence between NFT and F–G propagators

In what follows we briefly recall the proof of equivalence of NFT and of F–G propagators. In the case of the Tamm–Dancoff propagator of particle–hole collective modes, calculated in terms of a separable interaction, such a proof consisted in demonstrating (for details see [29, 30, 32]) that

$$\sum_{n} \frac{\Lambda_n^2}{\omega - W_n + i\eta} = \frac{V^2}{1 + \sum_{\omega} \frac{q^2(\omega, \omega)}{\omega \omega - e_{\omega} e_{\omega}}},$$ \hspace{1cm} (F–G) \hspace{1cm} (B1)

where Λ_n is the particle–vibration coupling strength and W_n is the energy of the collective modes, V is the four-point vertex, ϵ_{ω} the particle–hole excitations and $q(\omega, \omega)$ the particle–hole matrix element of the operator Q of the separable interaction.

Because of the unitary transformation relating the particle–hole (k, i) and collective degrees of freedom (n) basis [3], the dispersion relations

$$\frac{1}{V} = \sum_{\omega} \frac{q^2(\omega)}{\epsilon_{\omega} - W_n},$$ \hspace{1cm} (B2)
structure. The explicit evaluation of the interweaving of finite range and recoil effects with nuclear (t,p) reactions. This function is thus intimately related to the interaction between the centers-of-mass of this system and of the incoming isotopes. Using (p,t) data on Ca, Sn and Pb and a different set of optical parameters than those used in [58] and [59], a reaction process. It is a function of the center-of-mass coordinate \vec{R} of the dineutron, and of the relative distance $\vec{\rho}$ between the centers-of-mass of this system and of the incoming or outgoing proton, depending whether one is studying (p,t) or (t,p) reactions. This function is thus intimately related to the interweaving of finite range and recoil effects with nuclear structure correlations. The explicit evaluation of $\langle bB|V_f|aA \rangle$ leads to the effective two-nucleon (simultaneous) transfer form factor.

The method proposed by Glendenning [36] employs single-particle harmonic oscillator wavefunctions and the Moschinsky transformation brackets, providing a convenient framework to study the coherence properties of the two-nucleon transfer reactions’ form factors. Because for strongly absorbed particles, the two-nucleon transfer cross-section is approximately proportional to the square of the form factor amplitude near the nuclear surface, the method of [36] was instrumental to provide a microscopic validation of the assertion that two-nucleon transfer is the specific probe of nuclear pairing. A projection method to calculate the six-dimensional integral appearing in $\langle bB|V_f|aA \rangle$, more convenient to treat finite range and recoil effects, was introduced by Bayman and Kallio [55].

These approaches allowed for a systematic and detailed comparison between experimental and theoretical relative cross-sections. They were instrumental in helping to understand the coherence properties which are at the basis of nuclear correlations. Most outstanding pairing correlations [56], but also particle–hole correlations (see e.g. [8] and references therein).

Concerning the absolute value of the cross-sections it was shown in [58] that the experimental findings could be accounted for, within the framework of the zero-range approximation $\langle bB|\Phi_{\alpha}(\vec{\rho})|V_f(\vec{\rho})|aA \rangle = D_0 b^2(\vec{\rho}), D_0 = N_0 W, W = 10^4 \text{MeV}^2 \text{fm}^3, N_0 = (\sum d\sigma/d\Omega)_\text{exp}/(\sum d\sigma/d\Omega)_\text{th}$, using a common value $N_0 = 23$ quite close to that reported in [59] in connection with the analysis of (p,t) data on Zr isotopes. Using (p,t) data on Ca, Sn and Pb and a different set of optical parameters than those used in [58] and [59], a value $N_0' = 32$ was quoted in [9].

Theoretical estimates [9, 60] gave values of N_0' near 1, i.e. about 25–30 times too small as compared to the empirical normalizations. The main reasons for this significant discrepancy were: (a) the use of oversimplified triton wavefunctions, (b) the use of the zero-range approximation, (c) the use of only simultaneous transfer. Shortcomings (a) and (b) were eliminated in the work of Bayman [61, 62], who calculated the $L = 0$ transition in the Ca nuclei, by numerical evaluation of the six-dimensional DWBA integral. He obtained for the case of $^{48}\text{Ca}(t,p)^{50}\text{Ca}(gs)$ a value of $N_0' = 3.2$. That is, the theoretical cross-section underpredicted the absolute value of the experimental cross-section by a factor of three, in spite of the fact that a correlated wavefunction was used in which two neutrons outside the ^{48}Ca-core are allowed to correlate in the six valence orbitals through a pairing force whose coupling constant was adjusted to reproduce the ground state correlation energy.

As a result of the work of a number of groups, in particular that of Bayman, starting in the seventies and carrying on to the present day [9, 10, 12, 13, 35–91] we now know that the above discrepancy is mainly associated with the neglect of successive transfer and of non-orthogonality corrections (see figure 7). In fact, making use of the same two-particle wavefunction to describe $^{50}\text{Ca}(gs)$ used in [51], one obtains for the reaction $^{48}\text{Ca}(t,p)^{48}\text{Ca}(gs)$ an absolute differential cross-section which reproduces the data within experimental errors (see figure 6 and table 3).

In the early seventies, first attempts were made to take into account multi-step processes in several contexts. Schaeffer and Bertsch [80] considered the ^4He channel in the charge exchange reaction $^1\text{He} \rightarrow ^3\text{He} \rightarrow ^3\text{H}$. Igarashi et al (see [47] and references therein) took into account the role of virtual triton formation in the one-neutron transfer reaction $^1\text{H} \rightarrow ^2\text{H} \rightarrow ^2\text{He}$. Successive transfer processes were considered by Toyama [81] and the importance of non-orthogonality terms was discussed in [38, 82] for light-ion reactions, based on the second-order approximation to the coupled reaction channel (CRC) equations for two-particle transfer. A reaction formalism which included simultaneous, successive and non-orthogonality terms within the context of two-nucleon transfer between heavy ions was presented in [42, 83], developing a semiclassical approximation that has been successfully applied to a number of reactions [65, 66, 84]. The fully quantum treatment based on second-order DWBA has been applied to the $^{208}\text{Pb}(^{16}\text{O},^{18}\text{O})^{206}\text{Pb}$ heavy ion reaction in [51]. By describing the two valence neutrons of ^{18}O with a mixing of $d_{3/2}$ and $s_{1/2}$ configurations, theory underestimated experimental results by a factor of two. These results may be compared with the calculations, reported in table 3 and displayed in figure 5, where one has included a significant amount of $d_{3/2}$ mixing, thus improving the agreement with experimental data (see also [66]). In a very detailed paper, Igarashi et al [47] addressed the issue of the relative importance of simultaneous and successive contributions to the two-step DWBA transfer amplitude in (p,t) reactions, developing the computer code TOWFNR and emphasizing the role of successive transfer in the reaction mechanism. Using a spin-dependent proton–neutron interaction both to generate the triton and deuteron wavefunction and the transfer potential, they were able to account for unnatural as well as for natural
parity transitions absolute cross-sections. They also studied the effect of the coupling to unbound states of the deuteron with the discretized continuum channel method, concluding that their contribution to the total cross-section is small.

8 Comments to figure 10. While it took the condensed matter community slightly over a decade from the publication of the BCS paper to make Cooper pair tunneling a quantitative tool to probe pairing correlations in metals with uncertainties well below the 10% level, half a century elapsed after the publication of the BMP paper (reference (b)), which started the field of nuclear BCS, before the same level of accuracy was achieved with two-nucleon transfer reactions. A partial explanation of this fact can be found in the development which took place in the late seventies in which nuclear reactions were tantamount to heavy ion reactions. Such a situation discouraged the continuation of studies of two-nucleon transfer to single, individual states in terms of absolute cross sections and determined the closing of essentially all of the (t,p) facilities. One could furthermore argue that within the first community one found the likes of Bardeen, Cooper, Schrieffer, Josephson, Anderson, Gavur, Pines, Bogolyubov, Frölich, Falicov, Cohen and Valatin, among others. This is true, as it is also true that among nuclear practitioners one counted Bohr, Mottelson, Brown, Weißkopf, Feshbach, Nilsson, Winther, Thouless, Arima, Hansen and Nathan, among others.

More recently, two-nucleon transfer reactions have been analyzed within the CRC formalism, mostly with the computer code FRESCO [48, 49, 67, 68, 70, 85–88]. In [85], the authors describe p–6He scattering at very low energy (0.97 MeV in the CM frame) including explicitly elastic, inelastic and transfer channels. The interplay of the different channels appears to be essential for a correct description of the two-neutron transfer process. Similar conclusions are drawn from the 6He–12C scattering with a 5.9 MeV He beam [67]. On the other hand, the analysis of the interference of elastic 6He–4He scattering with the two-neutron transfer process at 151 MeV [68] showed a much smaller influence of the excited 2+ state of 6He. The recent analysis of the 1H(11Li,9Li)3H reaction [49, 50, 89] showed that data could be reproduced by a two-step DWBA calculation with a description of the structure of 11Li based on [65]. (m) See [48]. (n) See [49]. (o) See [105]. (p) See [119]. (II) See [120]. (III) See [121]. (IV) See [122]. (V) See [123]. (VI) See [70]. (VII) See [124]. (VIII) See [125]. (IX) See [126]. (X) See [127]. (XI) See [65]. (XII) See [66]. (XIII) See [51]. (XIV) See [78].
on a NFT wavefunction for ^{11}Li [18], with a proper inclusion of the continuum states in the intermediate $^{10}\text{Li} - {\text{d}}$ channel. The calculation reproduced the experimental yields of both the 3/2− ground state and the first 1/2− excited state of ^{9}Li [50]. In this work, the role of inelastic and breakup channels was estimated to be negligible. In [70, 87], the study of a complete set of data (elastic, one-neutron transfer and two-neutron transfer to ground and excited states) at 15.7 A MeV for the system $^4\text{He} - p$ was reported. A CRC analysis including the excited 2+ state of ^6He and the breakup states of the deuteron provides an overall account of the experimental data. The availability of tritium targets, recently developed at ISOLDE (T-REX setup [90]), will make possible the study of new reaction channels in a consistent manner. A recent and similar setup [90] will make possible the study of new reaction channels in a consistent manner.

Recapitulating, two main inputs helped at making two-nucleon transfer reactions a quantitative tool to study nuclear correlations (figure 10). The first, was the fact that non-orthogonality corrections entered reaction theory, already at the level of first-order DWBA (see e.g. [38, 42] and references therein), in a similar way in which non-orthogonality of elementary modes of nuclear excitation leads to a first-order particle–vibration coupling vertex ([3]). The second was associated with the study of multi-step processes in connection with direct nuclear reactions.

Very early in the study of two-nucleon transfer reactions in deformed nuclei [72–77], let alone of one-particle transfer and inelastic processes, the need to consider second-order (multi-step) inelastic channels was clear. Softwares developed in this connection were eventually modified to take successive transfer into account. Within this context one can mention the software FRESCO [78] and e.g. its application to the detailed study of the $^{40}\text{Ca} (t, p)^{42}\text{Ca}$ absolute reaction cross-section [48], taking into account both one-step and two-step reaction channels in a consistent manner. A recent and similar analysis of the inverse kinematic reaction $^{12}\text{H} (^{11}\text{Li}, ^3\text{Li})^3\text{H}$ [49] provided important insight into the origin of pairing correlation in nuclei (see [50, 79] and references therein). A number of such types of analyses, namely the CRC method implemented in FRESCO, in particular concerning the properties of light, neutron rich nuclei have been reported in the literature during the last years, e.g. [67–70].

References

[1] Cooper L N 1956 Bound electron pairs in a degenerate Fermi gas Phys. Rev. 104 1189

[2] Bohr A, Mottelson B R and Pines D 1958 Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state Phys. Rev. 110 936

[3] Bohr A and Mottelson B R 1975 Nuclear Structure vol II (New York: Benjamin)

[4] Brink D and Broglia R A 2005 Nuclear Superfluidity (Cambridge: Cambridge University Press)

[5] Yoshida S 1962 Note on the two-nucleon stripping reaction Nucl. Phys. 33 685

[6] Bohr A 1964 Comptes Rendus du Congrès International de Physique Nucléaire, vol 1 Centre National de la Recherche Scientifique p 487

[7] Broglia R A 1973 The pairing model Ann. Phys. 80 60

[8] Broglia R A, Hansen O and Riedel C 1973 Two-neutron transfer reactions and the pairing model Adv. Nucl. Phys. 6 287 (see www.mi.infn.it/~vigezzi/BHR/BrogliaHansenRiedel.pdf)

[9] Broglia R A, Riedel C and Udagawa T 1972 Son rules and two-particle units in the analysis of two-neutron transfer reactions Nucl. Phys. A 184 23

[10] Potel G Second-order DWBA two-nucleon transfer software, unpublished

[11] Potel G, Idini A, Barranco F, Vigezzi E and Broglia R A 2013 Quantitative study of coherent pairing modes with two neutron transfer: Sn-isotopes Phys. Rev. C 87 054321

[12] Austern N 1970 Direct Nuclear Reaction Theories (Interscience Monographs and Texts in Physics and Astronomy) (New York: Wiley-Interscience)

[13] Satchler G R 1983 Direct Nuclear Reactions (Oxford: Oxford University Press)

[14] Barranco F, Broglia R A and Bertsch G F 1988 Exotic radioactivity as a superfluid tunneling phenomenon Phys. Rev. Lett. 60 507

[15] Bardeen J, Cooper L N and Schrieffer J R 1957 Microscopic theory of superconductivity Phys. Rev. 100 162

[16] Bardeen J, Cooper L N and Schrieffer J R 1957 Theory of Superconductivity Phys. Rev. 108 1175

[17] Bogoljubov N 1958 On a new method in the theory of superconductivity Il Nuovo Cimento 7 794

[18] Valatin J 1958 Comments on the theory of superconductivity Il Nuovo Cimento 7 843

[19] Barranco F, Bortignon P F, Broglia R A, Colò G and Vigezzi E 2001 The halo of the exotic nucleus ^{11}Li: a single Cooper pair Eur. Phys. J. A 11 365

[20] Gori G, Barranco F, Vigezzi E and Broglia R A 2004 Parity inversion and breakdown of shell closure in Be isotopes Phys. Rev. C 69 041302

[21] Schrieffer J R 1964 Superconductivity (New York: Benjamin)

[22] Schrieffer J R 1973 Macroscopic quantum phenomena from pairing in superconductors Phys. Today 26 23

[23] Anderson P W 1958 Random–phase approximation in the theory of superconductivity Phys. Rev. 112 1900

[24] Bohr A and Ulffbek O 1988 Quantal structure of superconductivity. Gauge angle. 1st Toposse Summer School, AUK Risø, Denmark (unpublished)

[25] www.risoe.dtu.dk/rispubl/reports_INIS/RISOM2756.pdf

[26] Bès D R and Broglia R A 1966 Pairing vibrations Nucl. Phys. 80 289

[27] Bohr A and Mottelson B R 1969 Nuclear Structure vol I (New York: Benjamin)

[28] Gorkov L P 1959 Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity Sov. Phys.—JETP 9 1364

[29] Bès D R, Broglia R A, Dussel G G, Liotta R J and Sofia H M 1976 The nuclear field treatment of some exactly soluble models Nucl. Phys. A 260 1

[30] Bès D R, Broglia R A, Dussel G G, Liotta R J and Sofia H M 1976 Application of the nuclear field theory to monopole

18
interactions which include all the vertices of a general force.

[29] Bös D R, Broglia R A, Dussel G G, Liotta R J and Perazzo R P J 1976 On the many-body foundation of the Nuclear Field Theory. Nucl. Phys. A 260 77

[30] Bös D R and Broglia R A Equivalence between Feynman–Goldstone and particle–phonon diagrams for finite many body systems Problems of Vibrational Nuclei, Proc. Topical Conf. on Problems of Vibrational Nuclei (Zagreb) ed G Alaga et al (Amsterdam: North Holland) p 1

[31] Mottelson B R 1976 Elementary Modes of Excitation in Nuclei, Le Prix Nobel en 1975 (Stockholm: Imprimerie Royalle Norstedts Tryckeri) p 80

[32] Bortignon P F, Broglia R A, Bès D R and Liotta R 1977 Nuclear field theory. Phys. Rep. 30 305

[33] Broglia R A, Mottelson B R, Bös D R, Liotta R and Sofia H M 1976 Treatment of the spurious state in nuclear field theory Phys. Lett. B 64 29

[34] Maruhn J and Greiner W 1972 Spin-orbit and orbit–orbit strengths for the reactive neutron-rich doubly magic nucleus Z. Phys. 251 431

[35] Broglia R A and Winther A 1991 Heavy Ion Reactions (Redwood City, CA: Addison-Wesley).

[36] Glendenning N K 1965 Nuclear spectroscopy with two–nucleon transfer reactions Phys. Rev. 137 102

[37] Bayman B F and Hintz N M 1968 Analysis of two–nucleon transfer reactions Nucl. Phys. 433 295

[38] Bayman B F and Hintz N M 1968 Analysis of two–nucleon transfer reactions Nucl. Phys. 433 295

[39] Chien W S, King C H, Nolen J A and ShahabuddinMAM 1968 On the forbidden (p, t) reaction Phys. Lett. 285 190

[40] Schneider M J, Burch J D and Kunz P D 1976 Competition of two–nucleon transfer reactions with lead isotopes Nucl. Phys. A 151 33

[41] Bayman B F 1970 Finite-range calculation of the (t,p) reaction Phys. Lett. B 31 135

[42] Bayman B F 1971 Finite-range calculation of the two–nucleon transfer reaction Nucl. Phys. A 168 1

[43] Bayman B F 1971 Finite-range calculation of the two–nucleon transfer reaction Nucl. Phys. A 168 1

[44] Broglia R A and Riedel C 1967 Pairing vibration and pairing–rotational regimes between heavy ions Phys. Rep. 16C 115

[45] De Takacsy N B 1974 On the contribution from a two–step mechanism, through the sequential transfer of two neutrons, to the calculation of (p, t) reaction cross sections Nucl. Phys. A 213 243

[46] Hashimoto N and Kawai M 1978 The (p,d) (d,t) process in (p, t) reactions Prog. Theor. Phys. 59 1245

[47] Kato K I and Amakawa H 1978 Energy dependence of two-step (p,t) cross sections Phys. Rev. C 17 1271

[48] Yagi K, Kunori S, Aoki Y, Nagano K, Toba Y and Kubo K I 1979 Anomalous analyzing powers for strong (p,α,t) ground-state transitions and interference between direct and (p,d) (d,t) sequential processes Phys. Rev. Lett. 43 1087

[49] Igarashi M, Kubo K-I and Yagi K 1991 Two–nucleon transfer reaction mechanisms Phys. Rep. 199 1

[50] Becta M B et al 1997 The 106Ca(p,α)Ca reaction at triton energies near 10 MeV per nucleon. Phys. Rev. C 56 1960

[51] Tanhata I et al 2008 Measurement of the two–halo neutron transfer reaction 18H(11Li,11Li)H at 3 MeV Phys. Rev. Lett. 100 192502

[52] Potel G, Barranco F, Vigezzi E and Broglia R A 2010 Evidence for phonon mediated pairing interaction in the halo of the nucleus 11Li Phys. Rev. Lett. 105 172502

[53] Bayman B F and Chen J 1982 One-step and two-step contributions to two–nucleon transfer reactions Phys. Rev. C 26 1509

[54] Glendenning N K 1962 Table of structure amplitudes for (p, t) reactions Lawrence Radiation Laboratory Report UCRL-18268, unpublished

[55] Broglia R A 1975 Heavy ion reaction, notes of lectures delivered during the academic years 1974–1976 at SUNY, Stony Brook at Brookhaven National Laboratory, and at The Niels Bohr Institute, unpublished

[56] Glendenning N K 1963 Nuclear stripping reactions Annu. Rev. Nucl. Sci. 13 191

[57] Bayman B F and Kallio A 1967 Relative-angular-momentum-zero part of two–nucleon wave functions Phys. Rev. 156 1121

[58] Broglia R A and Riedel C 1967 Pairing vibration and particle–hole states excited in the reaction 208Pb(t, p)208Pb Nucl. Phys. 92 145

[59] Satchler G R 1964 The distorted–waves theory of direct nuclear reactions with spin–orbit effects Nucl. Phys. 55 1

[60] Flynn E R and Hansen O 1970 An empirical normalization of the (t,p) reaction Phys. Lett. B 31 135

[61] Ball J B, Auble R L and Roos P G 1971 Study of the Zirconium isotopes with the (p, t) reaction Phys. Rev. C 4 196

[62] Hering W R, Becker H, Wiedner C A and Thompson W J 1970 Experimental determination of the normalization for (a, t) reactions and comparison with the theoretical normalization factor Nucl. Phys. A 151 33

[63] Bayman B F 1970 Finite-range calculation of the two–nucleon transfer reaction Nucl. Phys. Rev. Lett. 25 1768

[64] Bayman B F 1971 Finite-range calculation of the two–nucleon transfer reaction Nucl. Phys. A 168 1

[65] Bayman B F 1971 Finite-range calculation of the two–nucleon transfer reaction Nucl. Phys. A 168 1

[66] Riedel C, Broglia R A and Miranda A 1968 Two–nucleon transfer reactions with lead isotopes Nucl. Phys. A 113 503

[67] Barz H W, Hehl K, Riedel C and Broglia R A 1969 The structure of 42Ca and 42Sc investigated by two–nucleon transfer reactions Nucl. Phys. A 126 577

[68] Franey M A, Bayman B F, Lilley J S and Phillips W R 1978 Two–nucleon transfer reaction mechanism with heavy ions at sub–Coulomb energies Phys. Rev. Lett. 41 837

[69] Maglione E, Pollaro G, Vituri A, Broglia R A and Winther A 1985 Absolute cross sections of two–nucleon transfer reactions induced by heavy ions Phys. Lett. B 162 59

[70] Krouglov I V and Oertzen W 2000 One- and two–nucleon transfer reactions on 12C with the weakly bound 6He projectile Eur. Phys. J. A 8 501

[71] Krouglov I V, Avrigeanu M and von Oertzen W 2001 Two–nucleon elastic transfer 4He(4He,4He) at E = 151 MeV Eur. Phys. J. A 12 399

[72] Alkhazov G D et al 2002 Nuclear matter distributions in the 6He and 4He nuclei from differential cross sections for small-angle proton elastic scattering at intermediate energy Nucl. Phys. A 712 269

[73] Keeley N et al 2007 Probing the 4He ground state via the 4He(4He,4He) reaction Phys. Lett. B 646 222

[74] Potel G, Barranco F, Marin F, Idini A, Vigezzi E and Broglia R A 2011 Calculation of the transition from pairing vibrational to pairing rotational regimes between magic nuclei 106Sn and 132Sn via two–nucleon transfer reactions Phys. Rev. Lett. 107 092501

[75] Potel G, Barranco F, Marin F, Idini A, Vigezzi E and Broglia R A 2012 Calculation of the transition from pairing vibrational to pairing rotational regimes between magic nuclei 106Sn and 132Sn via two–nucleon transfer reactions Phys. Rev. Lett. 108 069004 (Erratum)

[76] Glendenning N K 1969 Proc. Int. Conf. on Properties of Nuclear States (Montreal, Canada) Presses de l’Universite’ de Montreal p 245
[73] Ascuitt o R J and Glendenning N K 1969 Inelastic processes in particle transfer reactions Phys. Rev. 181 1396
[74] Ascuitt o R J and Glendenning N K 1970 Assessment of two-step processes in (p,t) reactions Phys. Rev. C 2 1260
[75] Tamura T, Bè e D R, Broglia R A and Landow n e S 1970 Coupled-channel Born-approximation calculation of two-nucleon transfer reactions in deformed nuclei Phys. Rev. Lett. 25 1507
[76] Ascuitt o R J, Glendenning N K and Sørense n B 1971 Confirmation of strong second-order processes in (p,t) reactions on deformed nuclei Phys. Lett. B 34 17
[77] Ascuitt o R J and Sørense n B 1972 Coupling effects in 208 Pb Nucl. Phys. A 186 641
[78] Thompso n I J 1988 Coupled reaction channels calculations in nuclear physics Comput. Phys. Rep. 7 167
[79] Potel G and Broglia R A 2013 Pairing correlations with single Cooper pair transfer to individual quantal states Fifty Years of Nuclear BCS ed R A Broglia and V Zelevinsky (Singapore: World Scientific) p 479
[80] Schaeffer R and Bertsch G 1972 The pickup-stripping mechanism for inelastic and quasi-inelastic scattering Phys. Lett. B 38 159
[81] Toyama M 1972 The effect of a two step process in (t, t′) reaction Phys. Lett. B 38 147
[82] Kunz P D and Rost E 1973 On two-step processes via particle transfer channels Phys. Lett. B 47 136
[83] Broglia R A, Gotz U, Ichimura M, Kammuri T and Toyama M 1972 The effect of a two step process in (τ, τ′) processes in particle transfer reactions Nucl. Phys. A 208 361
[84] Potel G and Broglia R A 2013 Pairing correlations with single Cooper pair transfer to individual quantal states Fifty Years of Nuclear BCS ed R A Broglia and V Zelevinsky (Singapore: World Scientific) p 479
[85] Schaeffer R and Bertsch G 1972 The pickup-stripping mechanism for inelastic and quasi-inelastic scattering Phys. Lett. B 38 159
[86] Wimmer K et al 2010 Discovery of the shape coexisting 0+ state in 48 Mg by a two neutron transfer reaction Nucl. Phys. Lett. 105 252501
[87] Mougeot X et al 2012 New excited state in the halo nucleus 4He Phys. Lett. B 718 441
[88] Thompso n I J 2013 Reaction mechanisms of pair transfer Fifty Years of Nuclear BCS ed R A Broglia and V Zelevinsky (Singapore: World Scientific) p 455
[89] Tanihata I, Savajohs H and Kanungo R 2013 Recent experimental progress in nuclear halo structure studies Prog. Part. Nucl. Phys. 68 215
[90] Bildstein V, Gernhauser R, Kröll T, Krücke r C, Wimmer K, Van Duppen P, Huyse M, Patronis N and Raabe R 2012 T-REX a new setup for transfer experiments at REX-ISOLDE Euc. Phys. J. A 48 85
[91] Fortune H T 2012 Two-neutron transfer in the ‘island of inversion’ Phys. Rev. C 85 064615
[92] Love W G, Terasawa T and Satchler G R 1977 A dynamic polarization potential for heavy-ion scattering Nucl. Phys. A 291 183
[93] Broglia R A, Pollarolo G and Winther A 1981 On the absorptive potential in heavy ion scattering Nucl. Phys. A 361 307
[94] Quesada J M, Broglia R A and Bragin V 1984 Single-particle and collective aspects of the absorptive potential for heavy-ion reactions Nucl. Phys. A 428 305c
[95] Pollarolo G 1985 Absorptive potentials Semiclassical Descriptions of Atomic and Nuclear Collisions ed J Bang and J de Boer (Amsterdam: Elsevier) p 87
[96] Dasso C H, Landow n e S, Pollarolo G and Winther A 1986 On the nuclear polarization potential for heavy-ion scattering Nucl. Phys. A 459 134
[97] Ellis P J, El-Ia ou i Z and Franey M A 1986 Inelastic excitation and the nucleon optical potential Nucl. Phys. A 458 269
[98] Thompson I J, Nagarajan M A, Lilley J S and Smithsonian M J 1978 The threshold anomaly in 136Os+208Pb scattering Nucl. Phys. A 505 S4
[99] Bonaccorso A and Cartaio F 2002 Optical potentials of halo and weakly bound nuclei Nucl. Phys. A 706 322
[100] Moro A M, Crespo R, Garcia-Martinez H, Aguiler a E F, Martinez-Quiroz E, Gómez-Camacho J and Nunes F M 2003 Reaction mechanism in the scattering of 4Li on 208 Pb around the Coulomb barrier Phys. Rev. C 68 034614
[101] Barbieri C and Jennings B K 2005 Nucleon-nucleus optical potential in the particle–hole approach Phys. Rev. C 72 014613
[102] Lubian J and Nune s F M 2007 Searching for a polarization potential in the breakup of 4 B J. Phys. G: At. Mol. Opt. Phys. 34 513
[103] Dickhoff W H, van Neck D, Waldecker S J, Charity T J and Sobotka L G 2010 Nonlocal extension of the dispersive optical model to describe data below the Fermi energy Phys. Rev. C 82 054306
[104] Nobre G, Dietrich F S, Escher J E, Thompson I J, Dupuis M, Terasaki J and Engell J 2011 Toward a microscopic reaction description based on energy-density-functional structure models Phys. Rev. C 84 064609
[105] Guazzoni P, Zetta L, Covello A, Garag no A, Bayman B F, Graw G, Hertenberger R, Wirth H-F and Jaskola M 2006 Spectroscopy of 112Sn via the high-resolution 112Sn(p,t) 110Sn reaction Phys. Rev. C 74 054605
[106] An H and Cai C 2006 Global deuteron optical model potential for the energy range up to 185 MeV Phys. Rev. C 73 054605
[107] Li X, Liang C and Cai C 2007 Global triton optical model potential Nucl. Phys. A 789 103
[108] Koning J and Delaroche J-P 2003 Local and global nucleon optical models from 1 keV to 200 MeV Nucl. Phys. A 713 231
[109] Fortune H T, Liu G B and Alburger D E 1994 (sd)2 states in 17 Be Phys. Rev. C 50 1355
[110] Guazzoni P et al 1999 Level structure of 120Sn: high resolution (p,t) reaction and shell model description. Phys. Rev. C 60 054603
[111] Guazzoni P, Zetta L, Covello A, Garag no A, Graw G, Hertenberger R, Wirth H-F and Jaskola M 2004 High-resolution study of the 120Sn(p,t) reaction and shell model structure of 118Sn Phys. Rev. C 69 024619
[112] Guazzoni P, Zetta L, Covello A, Garag no A, Bayman B F, Faestermann T, Graw G, Hertenberger R, Wirth H-F and Jaskola M 2008 120Sn levels studied by the 120Sn(p,t) reaction: high-resolution measurements, shell model, and distorted-wave Born approximation calculations Phys. Rev. C 78 064608
[113] Guazzoni P, Zetta L, Covello A, Garag no A, Bayman B F, Faestermann T, Graw G, Hertenberger R, Wirth H-F and Jaskola M 2011 High-resolution measurement of the 120Sn(p,t)118Sn(p,t)116Sn reactions: shell-model and microscopic distorted-wave Born approximation calculations Phys. Rev. C 83 044614
[114] Guazzoni P, Zetta L, Covello A, Garag no A, Bayman B F, Graw G, Hertenberger R, Wirth H-F, Faestermann T and Jaskola M 2012 High resolution spectroscopy of 112Sn through the 112Sn(p,t)110Sn reaction Phys. Rev. C 85 054609
[115] Bassani G, Hintz N M, Kavaloski C D, Maxwell J R and Reynolds G M 1995 (p,t) Ground-state L = 0 transitions in the even isotopes of Sn and Cd at 40 MeV, N = 62 to 74 Phys. Rev. 139 B830
[116] Young P G and Stokes R H 1971 New States in 9Li from the reaction 7Li(t,p)9Li Phys. Rev. C 4 1597
[117] Bjerregaard J H, Hansen O, Nathan O and Hinds S 1966 States of 208Pb from double triton stripping Nucl. Phys. 89 337
[118] Bjerregaard J H, Hansen O, Nathan O, Chapman R, Hinds S and Middleton R 1967 The (t,p) reaction with the even isotopes of Ca Nucl. Phys. A 103 33
[119] Corradi L et al 2011 Single and pair neutron transfers at sub-barrier energies Phys. Rev. C 84 034603
[120] DeYoung P A et al 2005 Two-neutron transfer in the 6He+208 Bi reaction near the coulomb barrier Phys. Rev. C 71 051601
[121] Chatterjee A et al 2008 1n and 2n transfer with the borromean nucleus 6He near the Coulomb barrier Phys. Rev. Lett. 101 032701
[122] Lemasson A et al 2010 Reactions with the double-Borromean nucleus 6He Phys. Rev. C 82 044617
[123] Lemasson A et al 2011 Pair and single neutron transfer with Borromean 7He Phys. Lett. B 697 454
[124] Charlton L A 1976 Finite–range evaluation of (p–d, d–t) with momentum space techniques Phys. Rev. C 14 506
[125] Yasue M, Yokomizo H, Kubono S, Koyama K, Takeuchi S and Ohnuma H 1977 12C(p, t)10C and 12C(p, 3He)10B Reactions at $E_p = 51.9$ MeV J. Phys. Soc. Japan 42 367
[126] Takemasa T, Tamura T and Udagawa T 1979 Exact finite range calculations of light–ion induced two-neutron transfer reactions Nucl. Phys. A 321 269
[127] Kurokawa M, Aoki Y, Tagishi Y and Yagi K 1987 One- and two-step processes in natural- and unnatural-parity 208Pb(p,t)206Pb reaction at $E_p = 22$ MeV Nucl. Phys. A 470 377
[128] Josephson B D 1962 Possible new effects in superconductive tunnelling Phys. Lett. 1 251
[129] Bardeen J 1962 Tunneling into superconductors Phys. Rev. Lett. 9 147
[130] Cohen M H, Falicov L M and Phillips J C 1962 Superconductive tunneling Phys. Rev. Lett. 8 316
[131] Anderson P W 1964 Special effects in superconductivity The Many-Body Problem ed E R Caianello vol 2 (New York: Academic) p 113
[132] Scalapino D J 1968 The electron–phonon interaction and strong-coupling superconductors Superconductivity ed R Parks (New York: Marcel Dekker) p 449
[133] McMillan L and Rowell J M 1968 Tunneling and strong-coupling superconductivity Superconductivity ed R Parks (New York: Marcel Dekker) p 561
[134] De Takacsy N B 1973 Two-step mechanism in the reaction 208Pb(p, t) 206Pb Rev. Lett. 31 1007
[135] Giaver I Electron tunnelling and superconductivity Le Prix Nobel 1973, Norstedt, Stockholm p 86
[136] Anderson P W 1968 Superconductivity in the past and the future Superconductivity ed R Parks (New York: Marcel Dekker) p 1343