COVID-19 and Tobacco Use: A Review

Subodh BN¹, Tathagata Mahintamani²

Abstract

COVID-19 was acknowledged as a pandemic in March 2020. COVID-19 affected substance users by aggravation of stress and reduction of substance availability. This led to the proliferation of gray market, inadvertent consumption of toxic substances, withdrawal-related suicide attempts, and even completed suicide. Among these, a silver lining was an increased treatment-seeking behavior. Tobacco is a highly debated substance in the context of COVID-19, with contradictory and controversial evidence regarding the interrelationship between the two. Nicotine affects the expression of angiotensin-converting enzyme-2 (ACE-2), which acts as a cellular receptor for the entry of SARS-CoV-2. Cholinergic nicotinic stimulation to alveolar macrophages can also reduce cytokine release. This might be helpful during the cytokine storm phase of the illness. So nicotine may be a treatment option for COVID-19. Some counterintuitive data show a reduced prevalence of smoking among COVID-19 patients in comparison to the general population. Smoking and vaping-related lung injuries are proposed to be a contributory factor for increased mortality among adult males. Vaping may further increase vulnerability by acting as a fomite source for infection due to the sharing of the device. Lockdown has increased predilection for tobacco use and also restricted substance availability and treatment access. In this situation, various behavioral managements such as distraction techniques and relaxation exercises might be helpful to handle craving. Telemedicine and app-based interventions might also be helpful in some situations.

Keywords: COVID-19, Management, Substance use, Tobacco.

Introduction

COVID-19 was acknowledged as a pandemic in late March 2020 and is rapidly spreading worldwide.¹ The COVID-19 pandemic has posed a unique challenge to humankind. The unknown nature of the illness created uncertainty, fear, and panic among people. Various preventive measures are being implemented at the national and international level to contain the spread of the infection. These include, but are not limited to social distancing, suspension of public gathering and nationwide lockdown. At the individual level, maintenance of hand hygiene, use of protective gears (like face masks), healthy diet, and refraining from substances are stressed upon. Tobacco smoking, being one of the commonest risk factors for respiratory illnesses, is in the list of caution.²

Currently, COVID has spread in 215 countries worldwide, with around 9.8 million diagnosed cases and around 4.95 lakh deaths worldwide.³ The first case in India was reported on 30th of January, 2020. In the next three and half months, the number of infected persons rose to a daunting number of around 5.3 lakhs, with a death toll of around 16,000.⁴ Various models predict the peak of infection to occur between mid-July 2020 and October 2020, and the predicted total number of affected persons is around 120 million at the time of peak.⁵,⁶

Isolation, sustained lockdown, anxiety regarding job, loss of income, and infectivity of illness have gripped the psyche of commoners including substance users.⁷ These negative emotions can presumably push a vulnerable individual to take refuge to substances, but there was severe crunch in the availability of substance due to lockdown. This is reflected by google search trends and newspaper reports. There was also some increase in search trend about methods of quitting substance use.⁸ Simultaneously, there are reports of selling licit substances such as alcohol and tobacco in the gray market, poisoning with isopropyl alcohol in hand sanitizer in a desperate effort to substitute ethyl alcohol, and liquor theft at bars or liquor shops amid lockdown.⁹–¹¹

In this article, we will be reviewing the existing current literature regarding the co-occurrence of smoking and COVID-19.

Search Strategy

We wanted to review the literature about COVID-19, tobacco smoking, and their inter-relation. For this, we have conducted a PubMed search with the following search items: (tobacco OR nicotine) AND (“SARS-CoV-2” OR “COVID-19 infection”). This yielded 80 results. Most of the literature consisted of personal viewpoints and letter to the editor, and we have reviewed the existing data, after excluding the irrelevant articles.

COVID-19 and Smoking

COVID-19 pandemic affected tobacco users as a double-edged sword. On one hand, the drive to use tobacco can increase due to stress, and on the other hand, the restrictions (lockdown, isolation, etc.) reduced the availability. A study consisting of 6,800 tobacco users across 5 countries (USA, Italy, UK, India, and South Africa) further elucidated this scenario. There were marginal increase in e-cigarette use, but at the same time, there was increase in the attempt to quit, which was due to the combined effect of fear of increased vulnerability and reduced availability. Reduced

¹,²Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India

Corresponding Author: Subodh BN, Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India, Phone: +91 9914207105, e-mail: drsubodhbn2002@gmail.com

How to cite this article: Subodh BN, Mahintamani T. COVID-19 and Tobacco Use: A Review. J Postgrad Med Edu Res 2020;54(3):108–111.

Source of support: Nil

Conflict of interest: None

The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
COVID-19 and Tobacco Use: A Review

availability also promoted stockpiling in some consumers, and restricted movement increased smoking at home, that may aggravate harm due to passive smoking.\(^2\)

The role of tobacco use as well as that of nicotine—the main ingredient of tobacco in pathogenesis and management of COVID-19—is highly debated. We will be discussing these aspects along with the current understanding of the same as follows.

Potential Treatment Target—ACE-2 and Nicotinic Cholinergic Receptor: Is Nicotine a Suitable Arrow?

Till now, there is no proven treatment for this illness, and at present, there is a desperate search for treatment options. Along with viricidal agents and vaccines, a wide array of approaches such as immunomodulator (monoclonal antibody, steroid, etc.), passive immunotherapy (convalescent plasma), decoy molecule (ACE-2) are being explored to enhance our armamentarium against this novel threat.\(^{13,34}\)

COVID-19 Pathogenesis in Terms of ACE-2 and Nicotinic Receptor

SARS-CoV-2 is a single-stranded RNA virus that uses ACE-2 as a receptor for cellular entry. The alveolar epithelial cells and macrophages are abundant in ACE-2 receptors. Lung is the commonest and most severely affected organ, and acute respiratory distress syndrome (ARDS) is one of the severe and potentially fatal complications of COVID-19 infection. It occurs due to the rapid release of cytokines from alveolar macrophages. Vagal nerve inhibition may inhibit the cytokine release by its action on nicotinic acetylcholine receptor (nAChR) a7 subunit on macrophages.\(^{15}\)

Now there is a dilemma: on one hand, tobacco smoking is considered to be a risk factor for the complicated COVID-19 infection, whereas the active ingredient nicotine is a potential therapeutic target for the same. So where do we stand?

Evidence of Nicotine in COVID-19 Management

The above observation simultaneously opens up the possibility of use of nicotine in COVID-19 treatment. Nicotine was found to downregulate ACE-2, and as a result, nicotine was thought to inhibit ACE-2-mediated virus entry in the susceptible cells. This postulation is questioned when recent studies pointed toward upregulation of ACE-2 in smokers. This actually points toward increased susceptibility to COVID-19 among persons using tobacco but still suggests that ACE-2 might become a possible therapeutic target.\(^{16}\)

Another postulation suggests that SARS-CoV-2 like many other neurotrophic viruses competes with nicotine in binding with ACE-2, and as a result, in spite of ACE-2 upregulation, nicotine actually reduces virus entry at the cellular level.\(^{17}\)

An alternative proposed mechanism of action of smoked tobacco in protecting from COVID is squamous cell metaplasia, which is almost always present among smokers. It is proposed that due to metaplastic epithelial changes, the SARS-CoV-2 cannot penetrate the epithelial cell membrane in the smokers, which exerts the protective effect.\(^{18}\)

Nicotine acts upon the nicotinic acetylcholine receptor (nAChR) a7 subunit on macrophages to exert its anti-inflammatory effect. As a result, nicotine or its congeners might be a potential therapeutic modality especially in the cytokine storm of COVID-19 infection.\(^{19}\)

Does Smoking Reduce COVID Infection?

The prevalence of smoking among hospitalized COVID-19 patients was first assessed in China. Increased prevalence of tobacco smoking was expected among these patients, but the result was counterintuitive. In a systematic review of 13 studies (11 were from China), the prevalence of current smoking among hospitalized patients with COVID-19 ranged from 1.4% to 12.6% across 13 studies, which is significantly lower than the usual prevalence of smoking in the Chinese population. This difference retained its significance even when the former smokers were also included as current smokers in the analysis.\(^{20}\) Similarly, lower than general population prevalence of tobacco use was found among hospitalized and nonhospitalized COVID-19 patients in USA.\(^{21}\)

These data are not beyond question, and there is always a possibility of under-reporting of actual prevalence of smoking. On the other hand, the presence of multiple toxic compounds in the cigarette smoke undoubtedly increases the risk of pulmonary damage and makes the possibility of recommendation of tobacco smoking for COVID-19 indefensible.\(^{22}\) The data on smokeless tobacco use are not available. Smokeless tobacco is put to mouth by hand, and there is frequent sharing of substance, and the users frequently spit the saliva-laden substance after attaining the kick. These habits may pose a threat of increased spread of COVID-19.\(^{8}\)

Can Smoking Act the Other Way Around?

In spite of some evidence about the protective role of nicotine, we cannot turn a blind eye upon the mounting evidence in the contrary. Various studies show a significantly higher mortality among adult males with respect to females and pediatric COVID-19 patients, and one of the proposed factors for this difference was higher rates of smoking among males.\(^{23–25}\) A relatively early meta-analysis, assessing relationship between adverse outcome and smoking in patients with COVID-19, showed that smokers were around 1.4 times more likely to have severe symptoms of COVID-19 and around 2.4 times more likely to require ICU admission or mechanical ventilation or die with respect to nonsmokers.\(^{26}\) A recent meta-analysis of 19 studies across the globe assessed the progression of COVID-19 and smoking behavior of the patient. Smoking was found to be significantly associated with the progression to a severe disease (OR 1.91, 95% confidence interval [CI] 1.42–2.59, p = 0.001), which may lead to the need for ICU admission, mechanical ventilation, or to death.\(^{27}\) The proposed mechanisms for the adverse outcomes are more serious systemic conditions, including cardiovascular and respiratory comorbidities along with immunological disturbances among regular smokers.\(^{28}\)

There are some concerns regarding the role of vaping in COVID-19. There is a dearth of literature regarding the outcome of COVID-19 in relation to vaping. The current knowledge about the detrimental effect of vaping on respiratory and cardiovascular system makes it a potential aggravating factor for COVID-19. There are some claims about the protective roles of vaping by increasing humidity or acting as vehicle for the delivery of some drugs (like oregano oil, etc.) in the lung. None of these claims is substantiated by scientific evidence. Besides these, as a result of frequent sharing, vaping device may actually act as a source of virus contamination.\(^{29}\)

COVID-related Lockdown and Use of Tobacco

In India, the prevalence of tobacco smoking was around 11% and of smokeless tobacco use was around 21.4% in 2016–2017.\(^{30}\) In spite of a gradual decreasing trend, this number is quite alarming considering the population in India, and the potential synergistic effect of COVID-19 and smoking may be more worrisome. The nationwide protracted lockdown increased worry, tension, and frustration among people (due to the pandemic itself, limitation of movement, isolation, unemployment, etc.), which is a known cause...
for a surge in addictive behavior including smoking. The problem is further complicated by the sudden announcement of lockdown leading to severe supply crunch, and this opened the road to gray market, where cigarettes were being sold at much higher rate than the printed price. Those who want to access treatment for tobacco use disorder find themselves in a deeper problem, as many of the nonemergency health facilities including addiction services were closed to contain the spread of infection.

Treatment of Nicotine Dependence Amid Lockdown

In spite of the mounting stress, lockdown may be viewed as an opportunity to get rid of problematic substance use, especially nicotine. The stringent supply reduction compelled almost everyone to cut down the amount of smoking.

Several agencies, including WHO, came up with materials advocating various behavioral management techniques for the control of tobacco craving. Besides the behavioral management, WHO also advocates the use of nicotine replacement therapy wherever applicable. The behavioral management strategies can also be used for smokeless tobacco users.

Currently, telemedicine is a proposed alternative for face-to-face consultation, and various deaddiction services, including ours are trying to explore the potential of teledmedicine. Counselling and nicotine replacement therapy (NRT) may be accessible through telesultation. Bupropion, the other widely prescribed medication, can only be continued through follow-up teleconsultation, as per current guidelines, but the guidelines are changing depending upon the changing scenario.

Although the final aim is to be completely tobacco-free, but that seems to be a distant dream, given the intricate web of monetary investment, lobbying, and job. As a result, the fight against tobacco is fought in a different front, where the individual is to be assisted.

Conclusion

The current knowledge about the relationship between tobacco use and COVI-19 is in an evolving phase. As a result, there is a lot of contradictory data and information available, and the interpretation of the data often varies widely when seen from different point of view. Currently, the researches are mostly small-scale ones and, in many a cases, are limited within personal viewpoints or hypothesis. More robust researches may actually come to a more defendable conclusion. As a matter of fact, smoking, smokeless, and vaping have deleterious effects on respiratory system, and this must not be undermined while assessing the so-called potential therapeutic role of nicotine in COVID-19 infection. Regarding the treatment of nicotine dependence including substance use disorders during the trying time of pandemic, there is a lot of unmet needs. Addiction services are still struggling with the newly evolving challenges.

References

1. WHO Director-General’s opening remarks at the media briefing on COVID-19—11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020.

2. Smoking and COVID-19. Scientific brief. Available from: https://www.who.int/news-room/commentaries/detail/smoking-and-covid-19.

3. WHO Coronavirus Disease (COVID-19) Dashboard Data last updated: 2020/6/24, 4:44pm CEST Available from: https://covid19.who.int/ (accessed on 29.06.2020).

4. #IndiaFightsCorona COVID-19. Available from: https://www.mygov.in/covid-19/?target=webview&type=campaign&nid=0 (accessed on 29.06.2020).

5. Wagh CS, Mahalle PN, Wagh SJ. Epidemiic peak for COVID-19 in India, 2020. Preprints 2020. 2020050176. DOI: 10.20944/preprints202005.0176.v1.

6. Prinja S, Bahuguna P, Chugh Y, et al. A model based analysis for COVID-19 pandemic in India: implications for health systems and policy for low-and middle-income countries. medRxiv 2020. DOI: 10.1101/2020.06.11.20128231.

7. Rani S, Sahoo S, Parveen S, et al. Alcohol-related self-harm due to COVID-19 pandemic: might be an emerging crisis in the near future: a case report. Indian J Psychiatry 2020;62(3):333.

8. Dubey MJ, Ghosh R, Chatterjee S, et al. COVID-19 and addiction. Diabetes Metab Syndr 2020;14(5):817–823. DOI: 10.1016/j.dsx.2020.06.008.

9. Mumbai Man Earns Rs 49 Lakh Through Illegal Tobacco Sale During Lockdown: Cops. June 21, 2020. Available from: https://www.ndtv.com/mumbai-news/mumbai-man-earns-rs-49-lakh-through-illegal-tobacco-sale-during-lockdown-cops:2249617.

10. Alcohol craving? Liquor shop broken into, bottles stolen amid COVID-19 lockdown. Available from: https://indianexpress.com/article/cities/delhi/delhi-lockdown-coronavirus-wine-shop-robery-6347124/.

11. From Aftershave to Paint varnish: Alchohlics take desperate measures to get their daily dose. Deccan Herald. April 6, 2020. Available from: https://www.deccanherald.com/national/south/from-aftershave-to-paint-varnish-alchohlics-take-desparate-measures-to-get-their-daily-dose–822068.html.

12. Yach D. Tobacco use patterns in five countries during the COVID-19 Lockdown. Nicotine Tob Res 2020. ntaa079. DOI: 10.1093/ntt/ntaa079.

13. Jee S, Lee PI, Hseuh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53(3):436–443. DOI: 10.1016/j.jmii.2020.03.034.

14. Hossein-Khannazer N, Shokohian B, Shpichka A, et al. Novel therapeutic approaches for treatment of COVID-19. J Mol Med (Berl) 2020;98(6):789–803. DOI: 10.1007/s00109-020-01927-6.

15. Farsalinos K, Niaura R, Le Houezec J, et al. Editorial: nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep 2020;7:658–663. DOI: 10.1016/j.toxrep.2020.04.012.

16. Brake SJ, Barnsley K, Lu W, et al. Smoking Upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (COVID-19). J Clin Med 2020;9(3):841. DOI: 10.3390/jcm9030841.

17. Changeux JP, Amoura Z, Rey FA, et al. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications. Comptes Rendus Biologies 2020;343(1):33–39.

18. Rajput DV. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option?: comment. Intern Emerg Med 2020. 1–2. DOI: 10.1007/s11739-020-02355-7.

19. Kloc M, Gholbrial RM, Kubiak JZ. How nicotine can inhibit cytokine storm in the lungs and prevent or lessen the severity of COVID-19 infection? Immunol Lett 2020;224:28–29. DOI: 10.1016/j.imlet.2020.06.008.

20. Farsalinos K, Barbouri A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med 2020. 1–8. DOI: 10.1007/s11739-020-02355-7.

21. Pettrielli CM, Jones SA, Yang J, et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in new york city. MedRxiv 2020.

22. Polosa R, Caci G. COVID-19: counter-intuitive data on smoking prevalence and therapeutic implications for nicotine. Intern Emerg Med 2020. 1–4. DOI: 10.1007/s11739-020-02361-9.

23. Vázquez JC, Redolar-Ripoll D. Epidemiological data from the COVID-19 outbreak in Spain for the Promotion of tobacco smoking cessation policies. Tob Use Insights 2020;13.101177/177917X20924028.
COVID-19 and Tobacco Use: A Review

24. Cai H. Sex difference and smoking predisposition in patients with COVID-19. Lancet Respir Med 2020;8(4):e20. DOI: 10.1016/S2213-2600(20)30117-X.
25. Dhochak N, Singhal T, Kabra SK, et al. Pathophysiology of COVID-19: why children fare better than adults? Indian J Pediatr 2020;87(7):537–546. DOI: 10.1007/s12098-020-03322-y.
26. Vardavas CI, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis 2020;18:20.
27. Patanavanich R, Glantz SA. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob Res 2020. ntaa082. DOI: 10.1093/nttr/ntaa082.
28. Q and A: Tobacco and COVID-19. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-on-smoking-and-covid-19.
29. Majmundar A, Allem JP, Cruz TB, et al. Public health concerns and unsubstantiated claims at the intersection of vaping and COVID-19. Nicotine Tob Res 2020. ntaa064. DOI: 10.1093/nttr/ntaa064.
30. Tata Institute of Social Sciences (TIISS), Mumbai and Ministry of Health and Family Welfare, Government of India. Global Adult Tobacco Survey GATS 2 India 2016-17.
31. Cigarette prices on fire in grey market, smokers in Pune choke. May 14, 2020. Available from: https://timesofindia.indiatimes.com/city/pune/cigarette-prices-on-fire-in-grey-market-smokers-choke/articleshow/75727007.cms (accessed on 19/06/2020).
32. Arya S, Gupta R. COVID-19 outbreak: challenges for addiction services in India. Asian J Psychiatr 2020;51:102086. DOI: 10.1016/j.ajp.2020.102086.
33. WHO statement: Tobacco use and COVID-19. Available from: https://www.who.int/news-room/detail/11-05-2020-who-statement-tobacco-use-and-covid-19.
34. Murthy P, Subodh BN, Sinha D, et al. Smokeless tobacco (SLT) use and cessation in India: lessons from user and health care provider perspectives. Asian J Psychiatr 2018;32:137–142. DOI: 10.1016/j.ajp.2017.11.009.
35. Math SB, Manjunatha N, Kumar CN, et al. Telepsychiatry Operational Guidelines-2020. Bengaluru-560 029: Pub; NIMHANS; 2020 ISBN No: 978-81-945815-2-9.
36. van Zyl-Smit RN, Richards G, Leone FT. Tobacco smoking and COVID-19 infection. Lancet Respir Med 2020. DOI: 10.1016/S2213-2600(20)30239-3.