Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation

Luis O. Morales*, Mikael Brosché, Julia Vainonen, Gareth I. Jenkins, Jason J. Wargent, Nina Sipari, Åke Strid, Anders V. Lindfors, Riitta Tegelberg, and Pedro J. Aphalo

Division of Plant Biology (L.O.M., M.B., J.V., P.J.A.) and Metabolomics Unit (N.S.), Department of Biosciences, University of Helsinki, FI–00014 Helsinki, Finland; Institute of Technology, University of Tartu, Tartu 50411, Estonia (M.B.); Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.I.J.); Institute of Natural Resources, Massey University, Palmerston North 4442, New Zealand (J.J.W.); Department of Science and Technology, Örebro Life Science Centre, Örebro University, SE–70182 Örebro, Sweden (A.S.); Kuopio Unit, Finnish Meteorological Institute, FIN–70211 Kuopio, Finland (A.V.L.); and Digitarium, School of Computing, University of Eastern Finland, 80101 Joensuu, Finland (R.T.)

Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

Plants use UV as an environmental cue to regulate a wide range of physiological processes. Low fluence rates of short-wavelength UV (280–315 nm; UV-B) induce photomorphogenic responses such as the inhibition of hypocotyl elongation, expression of UV-protective genes, and the accumulation of phenolic compounds, as well as regulating leaf growth and stomatal differentiation (Jenkins, 2009; Wargent et al., 2009b). These UV-B photomorphogenic responses are mediated by the UV-B photoreceptor, UV...

1 This work was supported by the Academy of Finland (grant no. 116775 to P.J.A. and grant nos. 135751 and 140981 to M.B.) and the Finnish Cultural Foundation (grant to L.O.M.).
* Corresponding author; e-mail luisorlando.morales@gmail.com.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Luis O. Morales (luisorlando.morales@gmail.com).
[1][W] The online version of this article contains Web-only data.
[OA] Open Access articles can be viewed online without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.112.211375

www.plantphysiol.org/cgi/doi/10.1104/pp.112.211375

744 Plant Physiology®, February 2013, Vol. 161, pp. 744–759, www.plantphysiol.org © 2012 American Society of Plant Biologists. All Rights Reserved.
2012; Christie et al., 2012) have advanced our understanding of UV-B perception in plants. UVR8 is a seven-bladed \(\beta \)-propeller protein with sequence similarity to the human REGULATOR OF CHROMATIN CONDENSATION1 (RCC1; Klieberstein et al., 2002). However, UVR8 and RCC1 differ in activity and function (Jenkins, 2009; Rizzini et al., 2011) and also in their monomeric topology (Wu et al., 2011; Christie et al., 2012). Under visible light (400–750 nm), UVR8 appears in plants as a dimer; however, after UV-B perception by Trp-285 and Trp-233, the salt bridges joining the dimer break, splitting UVR8 into monomers (Christie et al., 2012; Wu et al., 2012). UVR8 monomers interact with the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1; Rizzini et al., 2011).

The interaction between UVR8-COP1 occurs within minutes of UVR8 perception of UV-B and is crucial for relaying the signal that activates gene expression and UV-B acclimation in plants (Favory et al., 2009). Recent research with the \(uvr8-2 \) mutant has shown that 27 amino acids toward the C terminus of UVR8 are required for the interaction with COP1 and for the protein to be functional (Cloix et al., 2012). Accordingly, \(uvr8-2 \) fails to induce the UVR8-UV-B-regulated expression of CHALCONE SYNTHASE (CHS), the first enzyme committed in the flavonoid pathway (Brown et al., 2005; Cloix et al., 2012), and also shows phenotypic differences from its wild type under UV-B (Brown and Jenkins, 2008). Downstream of UVR8 and COP1, the transcription factors ELONGATED HYPOCHOCOTYL5 (HY5) and the ELONGATED HYPOCHOCOTYL5 HOMOLOG act redundantly to regulate the expression of most of the genes involved in the UVR8 photoregulatory pathway (Brown and Jenkins, 2008). Transcriptome analyses of \(uvr8 \) mutants exposed to low fluence rates of UV-B indoors have shown that UVR8 is required for the induction of genes with important functions in UV protection (flavonoid and alkaloid pathways), photorepair of DNA damage induced by UV-B, oxidative stress, chloroplast proteins, and several transcription factors (Brown et al., 2005; Favory et al., 2009). Other data have indicated that the proteins REPRESSOR OF PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact with UVR8 and are negative regulators of the UVR8 pathway (Gruber et al., 2010; Cloix et al., 2012). While the roles of UVR8 in orchestrating transcript accumulation following UV-B absorption are now clear, we have yet to elucidate how UVR8 regulates the accumulation of metabolites through downstream gene expression.

Plants are highly efficient in the synthesis and accumulation of phenolic compounds, especially flavonoids and hydroxycinnamic acids to provide protection from UV radiation. Several studies report that \(uvr8 \) mutants exposed to supplementary UV-B under controlled-environment conditions have lower amounts of phenolics than their respective wild types (Kliebenstein et al., 2002; Brown et al., 2005; González Besteiro et al., 2011; Demkura and Ballaré, 2012). However, the manner by which UVR8 regulates the accumulation of phenolics and other metabolites under natural sunlight has not yet been studied, and furthermore, the role of UVR8 and its possible interaction with UV-A/blue light signaling in mediating the UV-A induction of several metabolites is not well understood. This information is important for understanding the mechanisms, driven by UVR8 and/or other photoreceptors, that provide solar UV protection in plants. In natural environments, plants are usually exposed to high and variable fluxes of PAR and also much higher irradiances of UV-A than of UV-B radiation. Field studies have shown that besides UV-B, solar UV-A regulates gene expression and the accumulation of flavonoids in silver birch (Betula pendula) leaves (Morales et al., 2010). Moreover, it is usually specific compounds rather than the total phenolics that are differentially regulated by different doses of solar UV-A and UV-B radiation (Kotilainen et al., 2009; Morales et al., 2010). In addition to phenolics, plants synthesize antioxidants such as vitamins C and E, glutathione, and carotenoids to cope with oxidative stress (Chen and Xiong, 2005). Pyridoxine (vitamin B6) is another essential antioxidant that may provide protection from UV-B (Ristilä et al., 2011). Two proteins are involved in vitamin B6 biosynthesis, PYRIDOXINE BIOSYNTHESIS1 (PDX1) and PDX2 (Denslow et al., 2007). It has been reported that Arabidopsis (Arabidopsis thaliana) leaves exposed to supplementary UV-B quickly accumulate PDX1 and vitamin B6 (Ristilä et al., 2011). Furthermore, transcripts of PDX1.3 induced by low levels of UV-B radiation are thought to be regulated by UVR8 and COP1 (Ristilä et al., 2011). However, it remains unclear how PDX1 accumulates under natural fluxes of solar UV-A and UV-B radiation and if UVR8 is involved in this process.

Most studies characterizing the UVR8 signaling pathway in Arabidopsis have been conducted under controlled environmental conditions (Kliebenstein et al., 2002; Brown et al., 2005, 2009; Oravec et al., 2006; Brown and Jenkins, 2008; Favory et al., 2009; Wargent et al., 2009a; González Besteiro et al., 2011; Demkura and Ballaré, 2012). These studies have substantially expanded our mechanistic understanding of plant responses to low fluence rates of UV-B by identifying major regulators in the UVR8 pathway and by elucidating gene functions. In addition, important functions of UVR8 have been determined in photomorphogenesis, UV-B acclimation, and defense against pathogens. However, a paucity of information on how the UVR8 pathway operates under solar radiation limits our understanding of the possible roles of UVR8 in mediating plant responses to environmental factors other than UV-B and how UVR8 interacts with other light signaling pathways under solar radiation. Spectral balances of PAR, UV-A, and UV-B radiation frequently used in experiments indoors differ from that of solar radiation in the natural environment and may influence plant responses to UV-B at different molecular levels (Casati et al., 2011).

Here, outdoor experiments were designed to investigate the roles of UVR8 in regulating gene expression
and metabolite accumulation under natural sunlight. We hypothesized that (1) UVR8 plays key functions in plant acclimation and survival under solar UV, but, in addition, (2) high PAR and UV-A irradiance, as present in natural sunlight, substantially modify UVR8-mediated responses to UV-B.

RESULTS

The role of different bands of solar UV in UVR8-mediated responses was studied by subjecting wild-type Arabidopsis Landsberg erecta (Ler) and uvr8-2 (Brown et al., 2005) transferred from greenhouse to field conditions under filters used to manipulate UV-A and UV-B irradiance. Samples from the wild type and uvr8-2 were taken 12 and 36 h after transfer of the seedlings outdoors and used to analyze gene expression (micro-arrays and real-time quantitative PCR [qPCR]), protein accumulation, and metabolite signatures.

UVR8 Is a Key Regulator of Gene Expression in Arabidopsis Leaves under Solar UV

Microarray analysis identified patterns of gene expression in wild-type and uvr8-2 plants exposed for 12 h to solar UV. In the wild type, 96 genes were differentially expressed (with at least 1.4-fold change; $P \leq 0.05$) under near-ambient solar UV (UV A+B treatment; Supplemental Table S1). Genes with increased transcript accumulation included biosynthesis of flavonoids and anthocyanins (PHENYLALANINE AMMONIA LYASE [PAL], CHS, CHALCONE ISOMERASE, TRANSPARENT TESTA7 [TT7], DIHYDROFLAVONOL REDUCTASE [DFR], FLAVONOL SYNTHASE1, FLAVANONE HYDROXYLASE, LEUCHTHOANTHOCYANIDIN DIOXYGENASE [LDOX], and UDP-GLYCOSYL TRANSFERASE78D2), protection against oxidative stress (EARLY LIGHT INDUCIBLE PROTEINS), vitamin B6 (PDX2), RUP2, and several proteins with unknown function. In contrast, genes involved in cell expansion (At2g44080, ARL), defense and stress responses (PATHOGENESIS RELATED GENE1 [PR1], BASIC PATHOGENESIS RELATED PROTEIN1, transcription factor WRKY33, RESPONSIVE TO DESSICATION22, GLUTATHIONE TRANSFERASE2 [GSTF2], GSTF8, and ALD1 [At2g13810]), and MITOGEN ACTIVATED PROTEIN KINASE3 (MPK3) had lower transcript abundance in the wild type under solar UV-A plus UV-B than under exclusion of solar UV-A and UV-B (UV 0 treatment; Supplemental Table S1). The candidate UVR8-dependent UV-regulated genes were identified by comparing transcripts of the wild type and uvr8-2 under solar UV-A plus UV-B. This comparison showed differential accumulation for 89 transcripts ($P \leq 0.07$; Supplemental Table S2); at this level of significance, we found statistical differences in the expression of several genes using qPCR. Transcripts of genes involved in the biosynthesis of flavonoids and anthocyanins (DFR, LDOX, ATSMAT [At3g29590], and PRODUCTION OF ANTHOCYANIN PIGMENT1), jasmonic acid (JA) biosynthesis (ALLENE OXIDE SYNTHASE [AOS], ALLENE OXIDE CYCLASE1 [AOC1], AOC3, and OXOPHOTODIENOATE REDUCTASE), JA signaling (transcription factor WRKY70, JASMONATE ZIM DOMAIN1 [JAZ1], SYNTAXIN RELATED PROTEIN1, and GRX480 [At1g28480]), glucosinolate biosynthesis (ATR4 [At4g31500] and SULFOTRANSFERASE17 [SOT17]), and auxin signaling (At5g47370, HAT2) were accumulated at lower levels in uvr8-2 than in the wild type. In addition, genes involved in defense responses (At4g12490, LURP1 [At2g14560], JAZ1, SYNTAXIN RELATED PROTEIN1, WRKY70, and MITOGEN ACTIVATED PROTEIN KINASE KINASE4) and salt stress (JASMONATE RESPONSIVE1 [At1g16850], AOC3, and ANNA1 [At1g35720]) had low transcript abundance in uvr8-2 compared with the wild type (Supplemental Table S2). In contrast, genes that are known to respond to UV-B (MEBS2 [At3g17800] and blue and red light (SIGMA FACTOR5 [SIG5]) had increased transcript accumulation in uvr8-2. The same response was observed for genes implicated in reactive oxygen species response (FERRETIN1 and FERRETIN3), reproduction (GLYCINE RICH PROTEIN19 and N-METHYLTRANSFERASE1), lipid biosynthetic processes (N-METHYLTRANSFERASE1 and At1g11880), l-ascorbic acid biosynthesis (PHOSPHOMANNNOSE ISOMERASE2 [PMI2]), zinc ion binding (At5g01520), brassinosteroid signaling (At3g05800, AIF1), and ubiquinone biosynthetic processes (SOLANESYL DIPHOSPHATE SYNTHASÉ [SPS]). Transcripts of several transposable elements and proteins of unknown function were also highly accumulated under solar UV-A plus UV-B in uvr8-2 (Supplemental Table S2).

The microarray data were first compared with previous transcriptome analysis of uvr8 mutants exposed to fluence rates of 3 μmol m$^{-2}$ s$^{-1}$ UV-B (Q-Panel UVB-313, broadband; Brown et al., 2005) and 1.5 μmol m$^{-2}$ s$^{-1}$ UV-B (Philips TL20W/01RS narrowband UV-B tubes; Favory et al., 2009). The low irradiances used in the latter study help to distinguish UV-B-induced photomorphogenesis from UV-B stress responses, while in the former it is possible that both photomorphogenic and stress pathways may be activated (Favory et al., 2009). The list of 96 UV-regulated genes in the wild type overlapped with 52 UV-B-regulated genes in wild-type plants from these previous studies; excluding At3g16530, all of the genes share the same patterns of expression (Supplemental Fig. S1A). However, for the UVR8-regulated genes detected under our conditions, six overlapped with Brown et al. (2005) and 12 with Favory et al. (2009; Supplemental Fig. S1, B and C). Interestingly, and in contrast with these previous studies, the transcript accumulation of many genes, including SIG3, SPS, MEBS2.2, AIF1, PM2, and At1g50150, increased in uvr8-2 under solar UV-A plus UV-B (Supplemental Table S2; Supplemental Fig. S1, B and C). We compared two gene lists (Supplemental Tables S1 and S2) with transcriptome data from
Oravecz et al. (2006) to search for COP1-regulated genes under UV-B and white light. COP1 plays a central role in the UVR8 pathway as a positive regulator of gene expression under UV-B (Favory et al., 2009) but is also a negative regulator of photomorphogenesis under visible light (Oravecz et al., 2006). The Venn diagrams show that several of the UV-regulated genes under our conditions are COP1 dependent under UV-B and white light (Supplemental Fig. S1D). The comparison with data from Kleine et al. (2007) shows overlap with blue-light-regulated genes (30 in the wild type and 17 with the UVR8 list; Supplemental Fig. S1E). Genes responding to high-light treatment via CRYPTOCHROME1 (CRY1) and HY5 (Kleine et al., 2007) also overlapped in our data (Supplemental Fig. S1F).

In addition, a total of 153 UV-regulated genes (96 from the wild type plus 57 from uvr8-2) were clustered with previous UV-B and plant hormone experiments performed on Affymetrix ATH1 chips using a Bayesian hierarchical clustering approach (Fig. 1). We included UV-B experiments using both filtered and unfiltered radiation (i.e. the latter includes a small, but very active, component of UV-C) in order to separate UV-B-regulated changes in gene expression from those changes arising from stress caused by high-energy radiation (Supplemental Table S3). The Bayesian clustering identified two main groups of genes (Fig. 1). Genes encoding proteins with antioxidant activity as well as flavonoid and anthocyanin biosynthesis, which are involved in UV-B acclimation, were mainly grouped in cluster I. Several genes induced by biotic and abiotic stress also appeared in cluster I; however, these types of genes and others related to secondary metabolism were more abundant in cluster II (for a complete description of the genes in each cluster, see Supplemental Table S4). Furthermore, genes in cluster II, including salicylic acid (SA) signaling (PR-1), regulation of SA signaling (WRKY70), and JA biosynthesis and signaling (IAZ1 and AOC3), had increased expression in plants treated with SA and the SA analog benzothiadiazole S-methylester (BTH). The expression of genes grouped in cluster II was consistently increased by unfiltered UV-B, which, together with their SA regulation, suggested that this group of genes responds to UV-B conditions that induce stress rather than UV-B acclimation. In contrast, many genes with increased expression in response to UV in cluster I had decreased expression in plants treated with ethylene.

Figure 1. Bayesian hierarchical clustering of selected UV-regulated genes in UV-B and plant hormone experiments. Magenta and green indicate increased and decreased expression, respectively, in treated plants compared with untreated controls. Detailed information on the experimental data sets, gene identification, fold change induction, and cluster association is provided in Supplemental Tables S3 and S4. ABA, Abscisic acid; Col-0, Columbia; MeJA, methyl jasmonate; WS, Wasselewskija.
Figure 2. Heat maps showing patterns of gene expression measured by qPCR in wild-type (Ler) and uvr8-2 plants after 12 h (A) and 36 h (B) outdoors. Means of log-transformed expression values relative to wild-type UV 0 are presented (n = 3). Main significant effects of the UV treatments (T), genotype (G), and the interaction UV treatment × genotype (I) on the expression of each gene are denoted with asterisks (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001), and ns indicates non-significant effects.

and in some cases with SA or BTH (Fig. 1). In addition, several genes whose expression increased with filtered UV-B were present in both clusters I and II, although in cluster II unfiltered UV gave stronger induction.

Effects of Solar UV-A and UV-B Radiation on Gene Expression as Measured with qPCR

qPCR was used to confirm the microarray results and also to determine the effects of solar UV-A and UV-B radiation on gene expression after 12 and 36 h of exposure outdoors. Transcript accumulation of 15 genes showing altered expression as measured with microarrays was further studied with qPCR. In addition, several known UV-B and defense-related markers were included in the analysis (Fig. 2). After 12 h, more genes were differentially regulated than after 36 h (Fig. 2). Statistical analysis of the qPCR data using two-way ANOVA demonstrated significant main effects of the UV treatments (T), genotype (G), and the interaction UV treatment × genotype (I) on the expression of 19 genes after 12 h. The UV treatment × genotype interaction.
interaction was also significant ($P \leq 0.05$) for nine genes (Fig. 2A; Supplemental Table S5). For those genes exhibiting a significant interaction, contrasts were fitted between the UV treatments within each genotype, and the effects of solar UV-A and UV-B on gene expression were determined from the contrasts UV 0 versus exclusion of solar UV-B (UV A treatment) and UV A versus UV A+B, respectively. In both genotypes, UV-A enhanced the transcript accumulation of UV-B-regulated genes (HY5, MEB5.2, RUP2, CHS, and TT7), SPS, At5g01520, and SIG5. Another gene responding to UV-B (DFR) was only induced by UV-A and UV-A plus UV-B in wild-type plants. Transcript accumulation of *RUP2* was further increased by UV-B in *uwr8-2* plants. In contrast, the wild type had less *HY5*, *SPS*, At5g01520, and *SIG5* transcripts in plants that received UV-A and UV-B than UV-A alone (Fig. 2A; Supplemental Table S6). Because the interaction UV treatment × genotype was marginally nonsignificant for *AIF1* ($P = 0.08$), *PMI2* ($P = 0.15$), and *AOS* ($P = 0.10$), we could not detect significant differences in the expression of these three genes between genotypes using qPCR. However, the expression values obtained for these genes with qPCR were consistent with patterns of expression identified with microarrays (Fig. 2A; Supplemental Table S2).

For genes where ANOVA only showed significant main effects of the UV treatments and genotypes but no significant interaction, the effects of solar UV-A and UV-B radiation on gene expression were determined by fitting contrasts between the UV treatments pooling the genotypes. It was found that UV-A lowered the expression of genes with activity in JA biosynthesis (*AOCS* and *LIPOXYGENASE4* [LOX4]), JA response (*TYROSINE AMINOTRANSFERASE3* [TAT3]), biosynthesis of glucosinolates (*ATR4*), and camalexin (*PHYTOALEXIN DEFICIENT3* [PAD3]) but increased *AIF1* and *PMI2*. Transcripts of defense-related genes (*VEGETATIVE STORAGE PROTEIN1* [VSP1] and *PLANT DEFENSIN1.2* [PDF1.2]) and *AOS* were decreased by UV-B (Fig. 2A; Supplemental Table S6). The marginally nonsignificant interaction might be related to a larger effect of UV-B on *AIF1* expression in the wild type compared with *uwr8-2* (Fig. 2A; Supplemental Table S6). After 36 h outdoors, the interaction UV treatment × genotype was significant for transcripts of *VSP1*, *SPS*, *RUP2*, *PMI2*, *AOS*, and *ATR4* (Fig. 2B; Supplemental Table S5). After fitting contrasts, we did not find significant effects of UV-A or UV-B on the expression of these genes in the wild type. In *uwr8-2*, UV-A increased the levels of *SPS*, *RUP2*, and *PMI2* and reduced the transcript accumulation of *AOS* and *ATR4*. At this time point, UV-B had no effects on gene expression in *uwr8-2* (Fig. 2B; Supplemental Table S6). For *VSP1* and other genes with a nonsignificant interaction (*AOX1*, *SIG5*, At5g01520, *MEB5.2*, *CHS*, and *PDF1.2*), the contrasts between UV treatments were not significant (Fig. 2B; Supplemental Table S6). We also fitted linear mixed-effect models within the UV treatments for genes having a significant UV treatment × genotype interaction after 12 and 36 h. The ANOVAs revealed a significant effect of the genotype under the treatments UV A and UV A+B but not under UV 0 (Supplemental Table S6), indicating that the differences between genotypes detected for these genes in the full statistical model are due to the effect of UVR8 in the presence of UV radiation (see also Supplemental Fig. S4).

UVR8 Modulates PDX1 Accumulation in Arabidopsis Leaves under Solar UV

PDX1 is a protein involved in the biosynthesis of vitamin B6 that accumulates greatly in tissues exposed to UV-B (Ristilä et al., 2011). To test the role of UVR8 on PDX1 accumulation under natural sunlight, the induction of PDX1 in leaves of the wild type and *uwr8-2* exposed for 12 and 36 h to solar UV-A and UV-B was monitored by western blot. Fold changes in PDX1 expression scaled to wild-type UV 0 at 12 h are plotted, with s estimated for models fitted in each time point ($n = 3$). Significant differences ($P \leq 0.05$) among the UV treatments for the expression of PDX1 after 36 h are represented with different letters. Greenhouse samples (GH) were not included in the statistical analysis; they were used to compare PDX1 induction in greenhouse and field conditions.
Figure 4. Mass signals per mg of fresh weight of metabolites where ANOVA detected significant UV treatment × genotype interaction after 12 or 36 h outdoors. Main significant effects of the UV treatments (T), genotype (G), and the interaction UV treatment × genotype (I) on the accumulation of particular metabolites are denoted by asterisks (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001), and ns stands for nonsignificant effects. Average mass signals for each metabolite are presented (n = 5). The SE estimated for each model is also plotted at the left top corner of every panel. Significant differences among treatments (P ≤ 0.05) are represented with different lowercase letters for the wild type and uppercase letters for uvr8-2.
when both genotypes were transferred from the greenhouse to the treatment UV 0 outdoors, PDX1 increased in leaves from 12 to 36 h (Fig. 3).

Solar UV-A and UV-B Radiation Induce Metabolite Accumulation in Arabidopsis Leaves via UVR8

Ultra-performance liquid chromatography (UPLC) with tandem mass spectrometry (MS/MS) analysis identified 24 metabolites in Arabidopsis leaves (Supplemental Table S7). In addition to flavonoids and phenolic acids, mass signals for amino acids, Trp derivatives, and other phenylpropanoids were detected (Supplemental Table S7). After 12 h of exposure outdoors, ANOVA revealed significant main effects of the UV treatments and genotypes on the accumulation of 16 and 14 metabolites, respectively (Supplemental Table S5). A significant UV treatment × genotype interaction was detected for eight metabolites (Fig. 4). For compounds exhibiting a significant interaction, the contrasts between UV treatments within genotypes indicated that solar UV-A decreased the amount of kynurenic and chlorogenic acids in uvr8-2. UV-A increased quercetin-3-O-rutinoside-7-O-rhamnoside, quercetin-3-O-rhamnoside, quercetin-3-O-neohesperidoside-7-rhamnoside, and kaempferol-3-O-sophoroside-7-O-glucoside in the wild type (Fig. 4; Supplemental Table S6). There was no effect of solar UV-B on the accumulation of these eight metabolites in uvr8-2. However, wild-type plants responded in two different ways to solar UV-B. On the one hand, UV-B enhanced quercetin-3-O-rutinoside-7-O-rhamnoside to higher levels than UV-A alone and also induced an unidentified metabolite. On the other hand, UV-B significantly reduced the amount of chlorogenic acid in the wild type (Fig. 4; Supplemental Table S6). For metabolites where the UV treatments and genotypes had significant main effects, quercetin-3-glucoside, kaempferol-3-glucoside, and 12-hydroxy jasmonic acid 12-hexose were induced by UV-A (Fig. 4). The concentration of 12-hydroxy jasmonic acid 12-hexose was reduced by UV-B (Supplemental Table S6).

After 36 h outdoors, ANOVA showed significant main effects of the UV treatments and genotypes for 18 and six metabolites, respectively (Supplemental Table S5). The interaction UV treatment × genotype was also significant for nine compounds (Fig. 4). Contrasts fitted within genotypes showed that in uvr8-2, the levels of kaempferol, kaempferol-3-O-rutinoside-7-O-rhamnoside, kaempferol-3-glucoside, quercetin, quercetin-3-glucoside, Trp, and Phe were increased by UV-A compared with UV 0, while UV-B significantly reduced this increase (Fig. 4). In addition, the amount of Tyr was reduced by UV-B in uvr8-2. In wild-type plants, the amounts of quercetin and quercetin-3-glucoside were enhanced to a greater extent by UV-A plus UV-B than by UV-A alone (Fig. 4). Kaempferol-3-glucoside and an unidentified compound were only induced by UV-B in the wild type (Fig. 4). Of the metabolites exhibiting a significant main effect of UV treatments but no significant interaction, quercetin-3-O-rutinoside-7-O-rhamnoside, quercetin-3-O-rhamnoside, quercetin-3-O-neohesperidoside-7-rhamnoside, kaempferol-3-O-sophoroside-7-O-glucoside, 12-hydroxy jasmonic acid 12-hexose, and isorhamnetin-3-O-glucoside-7-O-rhamnoside were increased by UV-A (Fig. 4; Supplemental Table S6). The amount of chlorogenic acid was reduced by UV-B (Fig. 4; Supplemental Table S6).

The leaf epidermal UV absorbance measured after 50 h outdoors was affected by the UV treatments, genotypes, and the interaction UV treatment × genotype as indicated by ANOVA (Fig. 5; Supplemental Table S6). Solar UV-A increased the contents of flavonoids in the epidermis measured in vivo with Dualex FLAV in leaves of both genotypes, whereas UV-B further increased flavonoid content only in wild-type plants (Fig. 5; Supplemental Table S6). The contents of hydroxycinnamic acids in the epidermis, estimated with Dualex HCA, were enhanced by UV-B in the wild type, while no effects of UV-A and UV-B were detected in uvr8-2 (Fig. 5). The ANOVA revealed a significant effect of the genotype (P ≤ 0.01) for leaf chlorophyll contents estimated with SPAD, while the UV treatments (P = 0.32) and the interaction UV treatment × genotype (P = 0.41) had no significant effect. The wild type had higher chlorophyll content than uvr8-2 under all UV treatments (approximately 13% under UV A and UV A+B and 17% under UV 0; Supplemental Table S6).

Figure 5. Epidermal UV absorbance at the adaxial epidermis measured with Dualex FLAV and Dualex HCA in wild-type (Ler) and uvr8-2 leaves after 50 h of exposure outdoors. Means ± se (n = 30) are presented. Main significant effects of the UV treatments (T), genotype (G), and the interaction UV treatment × genotype (I) on the epidermal UV absorbance are denoted with asterisks (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001), and ns stands for nonsignificant effects. Significant differences among treatments (P ≤ 0.05) are represented with different lowercase letters for the wild type and uppercase letters for uvr8-2.
UVR8 Controls Growth and Gene Expression under Long-Term Exposure to Solar UV

In a different experiment, we evaluated the performance of wild-type and uvr8-2 plants grown for 3 weeks under solar UV-A and UV-B radiation during summer, using the same filter types for UV treatments as in the first experiment. Both genotypes successfully germinated, developed without visible symptoms of damage, and produced flowers in all UV treatments outdoors. However, after 3 weeks, uvr8-2 plants were visibly smaller than wild-type plants and also showed a delay in flowering in all UV treatments (Supplemental Fig. S2). The ANOVA showed a significant effect of the genotype (P ≤ 0.01) and the UV treatment (P = 0.03) on the number of flowering plants, whereas the interaction UV treatment × genotype (P = 0.06) had no significant effect. Fitting contrasts between the UV treatments showed that UV-B increased the number of flowering plants in both genotypes (Supplemental Table S6). We also studied the role of UVR8 in regulating gene expression in these plants germinated and grown for 3 weeks under solar UV-A and UV-B (Fig. 6). ANOVA showed significant main effects (P ≤ 0.01) of the UV treatments on the expression of RUP2 and HAT2 and also effects of the genotype (P ≤ 0.05) for HAT2, JAZ1, CHS, GRX480, PMI2, RUP2, and WRKY70 (Fig. 6). The interaction UV treatment × genotype was not significant for any of the genes studied (Fig. 6; Supplemental Table S5), most probably due to high variation. However, there were clear differences in the expression between genotypes (Fig. 6), where the wild type and uvr8-2 under solar UV-A plus UV-B were the most distant clusters. Fitting contrasts between the UV treatments revealed that RUP2 expression was affected by UV-A and UV-B, while GRX480 was only affected by UV-B (Fig. 6; Supplemental Table S6).

DISCUSSION

Our results demonstrate that UVR8 is a key regulator of fundamental plant responses to solar UV. At the transcript level, UVR8 regulates the expression of genes involved in UV protection, defense responses, and the biosynthesis and signaling of JA, SA, and glucosinolates. In our experiment, under an environment of near-ambient solar radiation, solar UV-A represented approximately 98% of the ambient UV photon irradiance, and as a consequence, large effects of solar UV-A on gene expression, the accumulation of metabolites, and the expression of PDX1 were detected in Arabidopsis leaves. Moreover, our findings indicate that UVR8 may interact with UV-A/blue light signaling pathways to modulate UV-A responses. UVR8 had a UV-B-specific role in the accumulation of several phenolics. Finally, functional UVR8 may be required for normal patterns of growth and gene expression during long-term exposure to solar UV radiation but not for survival.

UVR8 Has Multiple Functions in Regulating Gene Expression in Arabidopsis Leaves Exposed to Solar UV-A and UV-B Radiation

Here, we used microarrays to detect changes in gene expression in wild-type and uvr8-2 plants exposed for 12 h to average UV-B and UV-A irradiances of 1.25 and 72.01 μmol m\(^{-2}\) s\(^{-1}\), respectively. These irradiation conditions were appropriate to study UV-B signaling under natural sunlight, as indicated by the large overlap with UV-regulated genes in wild-type plants (Brown et al., 2005; Favory et al., 2009) and the high number of genes involved in UV acclimation grouped in cluster I (Fig. 1). In agreement with Brown et al. (2005), we show that UVR8 is required for the induction of phenylpropanoid and other defense genes.

Figure 6. Heat map showing patterns of gene expression measured by qPCR in wild-type (Ler) and uvr8-2 plants germinated and grown for 3 weeks outdoors under the UV treatments. Means of log-transformed expression values are presented (n = 3). Main significant effects of the UV treatments (T), genotype (G), and the interaction UV treatment × genotype (I) on the expression of particular genes are denoted by asterisks (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001), and ns stands for nonsignificant effects.
under solar UV. However, contrary to what might have been expected from a mutant lacking a functional UV-B photoreceptor, the expression of many UV-regulated genes was enhanced in uvr8-2. Thus, our findings indicate that transcript regulation by UVR8 in natural sunlight may be more complex than was previously anticipated from the results of indoor studies under controlled environmental conditions. This finding is supported by the low number of UVR8-regulated genes in common with Brown et al. (2005) and Favory et al. (2009) and also by the opposite trends for the expression of some of these genes (Supplemental Fig. S1C). Differences in the experimental setups among studies could explain these contradictions. For example, those previous studies harvested tissue a few hours after UV-B treatment, whereas substantially longer exposures were used in our study. Hence, transcripts that increased transiently in response to UV-B may not have been detected over longer time periods, possibly explaining the smaller number of genes induced by UV-B compared with Brown et al. (2005) and Favory et al. (2009). Although these previous studies have provided valuable information on the mechanisms by which UVR8 regulates gene expression under low fluence rates of UV-B, they have focused less on the effects of UV-A irradiance, which is much higher than UV-B irradiance in natural sunlight.

Here, the effects of UV-B were determined in the presence of UV-A by comparing responses between the treatments UV A versus UV A + B. Our results indicate that in the presence of high UV-A irradiance, UVR8 may have dual functions in regulating the UV-B gene expression response. We show that UVR8 had a negative role in the transcript accumulation of genes involved in the UVR8-dependent pathway (HY5 and SIG5; Brown and Jenkins, 2008), genes regulated by UVR8 independently from HY5 (SP5; Brown et al., 2005), and genes induced in response to UV-B, such as MEB5.2 (Brosché et al., 2002; Kalbina et al., 2008), RUIP2 (Gruber et al., 2010), and Atg501520 (Oravecz et al., 2006). Interestingly, most of these genes are also regulated at the transcription level by either UV-A or blue light (Supplemental Fig. S1E). Other studies report that high fluence rates of UV-A increase transcripts of HY5 and CHS independently from the UV-B-specific UVR8 pathway (Wade et al., 2001; Brown et al., 2005). In addition, blue light via CRY1 regulates the expression of CHS (Fuglevand et al., 1996), HY5 (Kleine et al., 2007), and SIG5 (Kleine et al., 2007; Onda et al., 2008).

Under our conditions, it is likely that these genes are responding to UV-A and not to blue light, because of the differences in expression detected between the treatments UV 0 and UV A. Interestingly, COP1 regulates the expression of HY5, CHS, SIG5, SP5, MEB5.2, PMI2, RUIP2, and Atg501520 under UV-B (Oravecz et al., 2006), and it is also a positive regulator of SIG5, MEB5.2, and Atg501520 under white light (Supplemental Fig. S1C). Taken together with these previous reports, our results indicate that under natural sunlight, the UV-A/blue light signaling pathway, most probably mediated by cryptochromes, interacts with UVR8 to modulate UV-A responses in the presence of UV-B. Furthermore, COP1 could play a significant role in this interaction. COP1 is a multifunctional protein involved in light responses mediated by cryptochromes, phytochromes, and UVR8, and its WD40 domain is a common point of interaction with these three photoreceptors (Heijde and Ulm, 2012). Evidence exists that the interaction of UVR8 with COP1 under extended UV-B exposure might include removing COP1 from the phytochrome and cryptocochrome signaling pathways (Favory et al., 2009). Thus, it is possible that under solar radiation, cryptochromes compete with UVR8 to interact with COP1, and high UV-A irradiances could mask the UV-B-driven gene expression mediated by the UVR8-COP1 pathway.

The positive role of UVR8 in the expression of DFR, which is not regulated by COP1, under UV-B (Oravecz et al., 2006) supports the hypothesis that an interaction between photoreceptors is mediated by COP1. The interaction/competition between photoreceptors to drive light responses in plants has been characterized in previous studies. For example, COP1, despite mediating opposing effects on light responses through phytochromes A and B, determines the most effective light signal between these two photoreceptors to promote photomorphogenesis under red light (Boccalandro et al., 2004). It is now clear that Trp-285 and Trp-233 play major roles as the active chromophore in the UVR8 protein, allowing dimer dissociation after UV-B absorption (Christie et al., 2012; Wu et al., 2012) and the subsequent interaction with other proteins regulating gene expression (Rizzini et al., 2011). Although there is no indication that UVR8 can directly mediate UV-A responses, here we show that UVR8 influences UV-A-regulated gene expression under natural sunlight (Fig. 2). Weighting our UV doses with the absorbance spectrum of UVR8 (Table I) suggests that it is possible that the amount of radiation under the treatment UV A may have been sufficient to drive UVR8-mediated gene expression. The possibility that UVR8 interacts with UV-A photoreceptors/UV-A signaling to regulate transcript accumulation under solar UV-A should not be excluded; however, further research is required to validate both hypotheses.

The number of experiments measuring gene expression in response to solar UV-B in Arabidopsis remains small. This limits comparisons between these types of studies and makes it difficult to extrapolate results from indoor experiments to natural environments. For other plants such as maize (Zea mays), field studies dealing with plant responses to solar UV-B at several molecular levels are more common (Casati and Walbot, 2003; Casati et al., 2011). Furthermore, evidence exists at the transcript, metabolite, and protein levels that there are more differences than similarities shared between greenhouse and field experiments into maize responses to UV-B (Casati et al., 2011). Here, in agreement with Casati et al. (2011), we show that
transcription regulation induced by UV-B irradiance indoors, even when equivalent to ambient levels of solar UV-B, does not necessarily predict changes in gene expression occurring in natural sunlight (Fig. 1). Furthermore, misinterpretation of gene expression data are more likely when less realistic irradiation treatments, such as unfiltered UV lamps, are used. Thus, our comparison clearly shows the importance of using appropriate irradiation conditions in experiments indoors if they are to predict gene expression regulated by UV-B in natural sunlight. The comparison of our data with previous hormone studies in agreement with Mackerness et al. (1999) reveals that under natural sunlight, ethylene and to some extent SA may be involved in responses to solar UV at the transcript level (Fig. 1). We also show that transcript accumulation of several JA biosynthesis and signaling genes was dependent on UVR8 after 12 h of solar UV exposure. Thus, our findings indicate that under natural sunlight, the UVR8 pathway interacts with the JA signaling pathway and could induce resistance against pathogens and herbivores (Izaguirre et al., 2003; Demkura et al., 2010; Demkura and Ballaré, 2012).

UV Treatment	Time	GEN(G)	GEN(T)	FLAV	PG	UVR8	UV-A	UV-B	PAR
UV 0	12	0.001	0.005	0.01	0.04	0.01	122.3	0.06	6.2
	36	0.002	0.012	0.03	0.10	0.02	328	0.15	17.2
	50	0.004	0.014	0.04	0.12	0.03	374.4	0.16	19.8
UV A	12	0.01	0.46	1.8	12.7	0.56	2,395	1.1	6.6
	36	0.03	0.91	4.6	33.2	1.40	6,323.8	2.8	18.2
	50	0.04	1.02	5.1	37.7	2.12	7,195.9	3.1	21
UV A+B	12	2.3	3.6	7.4	17.1	4.92	2,634.2	45.2	6.4
	36	5.6	8.8	18.3	44.3	12.05	6,934.8	109.8	17.8
	50	6	9.6	20.2	50	18.14	7,883.8	120.1	20.4
Ambient	12	2.8	4.3	8.8	20.3	5.89	3,111.1	54.1	7.4
	36	6.7	10.5	21.8	52.5	14.42	8,189.7	131.7	20.6
	50	7.2	11.5	24.1	59.2	21.72	9,310.1	143.9	23.7

Table 1. UV_{BE} (kJ m^{-2}) and PAR (MJ m^{-2}) estimated for every UV treatment and the ambient sunlight

The UV_{BE} every hour was calculated with four BSWFs: two formulations of Caldwell’s generalized plant action spectrum, GEN(G) given by Green et al. (1974) and GEN(T) given by Thimijan et al. (1978); FLAV (Ibdah et al., 2002) for the accumulation of mesembryanthem in *Mesembryanthemum crystallinum*; and PG, the new plant growth action spectrum formulated by Flint and Caldwell (2003). Doses weighted with the absorbance spectrum of UVR8 (see Supplemental Fig. S3A in Christie et al., 2012) are also given. All BSWFs were normalized to 1 at a wavelength of 300 nm. Accumulated UV_{BE} and PAR after 12, 36, and 50 h were calculated by summing the corresponding hourly values. In addition, the accumulated non-weighted UV-A and UV-B doses (mmol m^{-2}) in every treatment are reported to allow comparisons with previous research. Ambient (no filter) is not a treatment; these doses were included for comparative purposes.

UVR8 Moderates PDX1 Accumulation under Solar UV

There is clear evidence for the critical role of vitamin B6 and the enzyme PDX1 in conferring plant protection against abiotic stresses (Chen and Xiong, 2005; Denslow et al., 2007) and supplementary UV-B radiation (Ristilä et al., 2011). Here, a significant induction of PDX1 was observed in Arabidopsis leaves subjected to ambient solar UV-A and UV-B, indicating the importance of PDX1 for plants exposed to natural sunlight. Furthermore, our results show that UVR8 regulates PDX1 levels under solar UV. In our experiment, PDX1 accumulation within a short period of exposure (12 h) appeared to be regulated by solar UV-A independently of UVR8 (Fig. 3). However, after a longer exposure period (36 h), our findings reveal that UVR8 in the presence of UV-B is a negative modulator of the UV-A response. Under our conditions, the transcript levels of *PDX1* remained unchanged, whereas other studies report that UV-B exposure increases the expression of *PDX1* (Brosché et al., 2002; Ulm et al., 2004; Kalbina et al., 2008). It is possible that the high levels of UV-A present in our conditions could have masked the UV-B induction of *PDX1* transcripts as for the other UV-B-specific markers (Fig. 2). Although PDX1 content was always higher under UV A and UV A+B than under UV 0, plants grown in the greenhouse also had increased PDX1 after being transferred to the treatment UV 0 outdoors. This result suggests that other environmental factors, such as blue light or high PAR, may induce PDX1 accumulation under natural sunlight. The average PAR values detected during the first 12 h under the treatment UV 0 (654 μmol m^{-2} s^{-1}) were higher than those from the greenhouse (450 μmol m^{-2} s^{-1}) and may have enhanced the transcript accumulation of genes involved in vitamin B6 biosynthesis (Denslow et al., 2007; Kleine et al., 2007). Overall, analysis of PDX1 protein contents supports the gene expression data in showing that when plants receive UV-A and UV-B, UVR8 can modulate UV-A responses having a negative role on PDX1 accumulation.

UVR8 Is Required for the UV-B Induction of Phenolics and Also Affects the UV-A-Regulated Accumulation of Metabolites in Arabidopsis Leaves

Having determined patterns of gene expression and protein accumulation in the wild type and *uvr8-2*...
under natural sunlight, we also analyzed the accumulation of leaf phenolic compounds and other metabolites. The phenolic profiles of wild-type plants exposed to solar UV are positively correlated with the increased expression of genes involved in the flavonoid pathway: PAL1 and PAL2, CHS, CHALCONE ISOMERASE, TT7, DFR, FLAVONOL SYNTHASE1, and FLAVANONE HYDROXYLASE detected with microarrays. In general, solar UV-A had larger effects than UV-B on the accumulation of metabolites after 12 and 36 h outdoors, most probably due to the relatively high levels of UV-A in our experiment compared with indoor studies. In agreement with previous research in Arabidopsis (Götz et al., 2010) and in silver birch (Kotilainen et al., 2009; Morales et al., 2010), individual phenolic compounds were differentially regulated by solar UV-A and UV-B, indicating that their contribution to solar UV protection may vary. It has been argued that quercetin derivatives play a more efficient role in UV-B protection than kaempferols (Götz et al., 2010). Accordingly, the number of UV-B-induced quercetins was larger than that of kaempferol derivatives (Fig. 4). Furthermore, our findings provide evidence that UVR8 may be involved in the UV-A regulation of individual metabolites. UVR8 was required for the UV-A induction of kynurenic and chlorogenic acids, but UVR8 also had a negative role in the accumulation of Trp, Phe, kaempferol, and kaempferol-3-rhamnoside. These results for metabolite responses confirm the role of UVR8 as a negative modulator of UV-A responses detected at the transcript and protein levels. In addition, and in better agreement with the previous UV-B-specific roles reported for UVR8 (Kliebenstein et al., 2002; Brown et al., 2005; Favory et al., 2009; Demkura and Ballaré, 2012), we show that UVR8 is a positive regulator of the UV-B induction of kaempferol-3-glucoside, quercetin, quercetin-3-glucoside, and one unidentified metabolite in plants that receive both solar UV-A and UV-B. The uvr8-2 mutant retained the capacity for UV-A induction of epidermal flavonoids, but its UV-B induction of both flavonoids and hydroxycinnamic acids was impaired (Fig. 5). Thus, consistent with the UPLC-MS/MS analysis, our findings reveal that UVR8 is required for the UV-B induction of phenolics in the leaf epidermis and to enhance the content of epidermal flavonoids in those environments that expose plants to solar UV-B radiation.

UVR8 Affects Plant Performance under Natural Sunlight

The importance of the UVR8 signaling pathway in promoting plant survival in natural environments was suggested by Brown et al. (2005). More recently, Favory et al. (2009) argued that UV-B acclimation mediated by UVR8 is required for plants to survive in sunlight, and used a sun simulator to show that uvr8 mutants that received UV-B for 27 d displayed leaf curling and cell death and were smaller than uvr8 grown under filtered UV-B. In an attempt to corroborate these previous findings under natural sunlight, the wild type and uvr8-2 were germinated and grown outdoors under near-ambient solar UV-A and UV-B to study plant survival and gene expression. We show that uvr8-2 germinated, developed, and produced flowers under the UV treatments outdoors; however, this mutant had reduced growth compared with the wild type, especially in plants exposed to solar UV-A plus UV-B. In contrast, such a difference in growth between genotypes was not evident during the previous experiment in plants grown in the greenhouse without UV-B. Thus, it cannot be ruled out that the very small amount of scattered UV-B radiation entering through the sides of the filters had an effect on the growth of uvr8-2 that was visible after 3 weeks outdoors under the treatments UV 0 and UV A. Further evidence that UVR8 is needed to maintain leaf expansion and organ size in the presence of supplementary UV-B comes from a study where weighted UV-B doses with the generalized plant action spectrum (Caldwell, 1971) in the range of 6.7 to 10 kJ m⁻² d⁻¹ reduced the size of uvr8-2 leaves compared with the wild type (Wargent et al., 2009a). Our results agree with Favory et al. (2009) and Wargent et al. (2009a) in attributing a functional role for UVR8 in promoting growth under natural sunlight. The UV-B acclimation mediated by UVR8 (Favory et al., 2009; González Besteiro et al., 2011) and its positive role in regulating the expression of genes involved in auxin signaling (HAT2) may help plants to grow normally when they start to perceive solar UV. The fact that uvr8-2 survived under our conditions indicates that other pathways that are not dependent on UVR8 (Brown and Jenkins, 2008) may become active and enhance survival in the absence of UVR8. In addition to the short-term UV-B exposures, we also measured the expression of several genes 3 weeks after germination and growth outdoors. In this case, the lack of a significant UV treatment × genotype interaction, most probably due to high variation, did not allow us to identify specific roles for UVR8 regulating gene expression after long-term exposure to solar UV-A and UV-B. However, genes for which significant effects of the UV treatments and genotype were detected exhibited the same trends in expression as determined with microarrays and qPCR after 12 h outdoors. In addition, the results of the two very different experiments (12 h versus 3 weeks) were also consistent for most of the genes analyzed (Figs. 2 and 6). Therefore, the trends in gene expression observed in this study may reveal that functional UVR8 is needed for the stable expression of genes involved in JA signaling (GRX480 and JAZ1), plant defense (WRKY70), and auxin signaling (HAT2) under natural sunlight. Furthermore, our findings suggest that the expression of these genes may be needed in the plant for long-term acclimation to solar UV radiation.
CONCLUSION

The findings of this outdoor study under natural sunlight are consistent with those published experiments using artificial light to demonstrate that UVR8 has a key function in promoting the acclimation of Arabidopsis plants to solar UV radiation. Our findings show that UVR8 is required for the transcript accumulation of genes involved in UV protection, oxidative stress, defense against herbivores, and the signaling and biosynthesis of several plant hormones. These results support our first hypothesis that UVR8 enables plants to acclimate under solar UV. The results also support our second hypothesis, which predicted an altered response through UVR8 when plants are exposed to the full spectrum of solar radiation, compared with exposure to UV-B alone, or to UV-B with a low background irradiances of UV-A and PAR. This finding suggests that under ambient PAR and high UV-A irradiance, UVR8 may interact with other photoreceptors to modulate UV-A responses in the presence of UV-B. UVR8 impacts on solar UV-A responses, acting as a positive and negative regulator of gene expression and of the accumulation of individual metabolites. We propose that such an interaction could be caused by competition among different photoreceptors for the same pool of COP1. However, further research is needed to test this.

Our results not only provide a novel insight into how UVR8 regulates gene expression and metabolite accumulation under solar radiation but also show that solar UV-A elicits some of the same responses as solar UV-B. Under natural sunlight, UVR8-independent pathways may enhance plant survival; however, UV acclimation, which is especially dependent on UVR8 at early stages of plant development, is important for the normal growth of Arabidopsis plants and is required for the expression of several genes involved in plant defense against herbivores and other stresses. To our knowledge, this study is the first attempt to elucidate the complex and multiple roles of UVR8 under natural sunlight. The evidence presented here suggests that future research covering the interactions between UVR8 and other photoreceptors is required to understand the acclimation of plants to their natural environment.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and UV Treatments

The experiment was conducted in the greenhouse and field area of the Viikki campus of Helsinki University (60°13’N, 25°11’E). Arabidopsis (Arabidopsis thaliana) seeds of uvr8-2 backcrossed twice to the wild type (Brown et al., 2005) and the wild-type Ler were sown on May 28, 2010, in plastic pots (5 × 5 cm) containing a 1:1 mixture of peat and vermiculite. The seeds were kept in darkness at 4°C for 3 d and then transferred to environmentally controlled growth rooms at 23°C/19°C (day/night) and 70%/90% relative humidity under 12-h photoperiod with 280 µmol m⁻² s⁻¹ white light irradiance. Seedlings were transplanted to individual plastic pots (4 × 4 cm) using the same substrate on June 8, 2010. After transplanting, plants were kept for 14 d in a greenhouse compartment where they received sunlight passing through the 4-mm glass of the roof of the greenhouse. This roof transmits approximately 7% of the ambient UV-A but no UV-B radiation, as detected with a spectroradiometer (Mayo2000 Pro; Ocean Optics). For this period, the average values are (minimum, mean, and maximum) temperature of 19.2°C, 22°C, and 25.4°C and relative humidity of 50.4%, 62.3%, and 74.6%, respectively. PAR was measured with a light meter (LI-250A; LI-COR) during sunny days, and the average clear-sky value at noon was 450 µmol m⁻² s⁻¹.

Outdoors, three UV treatments were created by using three types of plastic film that selectively exclude different bands of the UV spectrum. Exclusion of solar UV-A and UV-B (UV 0) was provided by a theatrical “gel” (Rosco E+226), exclusion of solar UV-B (UV A) was provided with polyester film (0.125 mm thick; Autostat CT5; Thermoplast), and near-ambient solar UV (UV A+B) was provided by polyethylene film (0.05 mm thick; 04 PE-LD; Etol). The treatments were randomly assigned to one filter frame within five complete blocks or biological replicates. The films were placed on top of 1-m × 0.80-m wooden frames. The frames faced south at a slight inclination, higher toward the north edge, to avoid the accumulation of rain water on top of the films. The frames were adjusted to keep the top of the plants at about 8 cm below the films. The transmittance of the films was measured with a spectrophotometer equipped with an integrating sphere (Shimadzu UV-2501 PC UV-VIS) at the beginning and the end of the experiment. During a sunny day at noon, spectral irradiances (W m⁻²) of UV-B (280–315 nm) and UV-A (315–400 nm) were measured under the filters with a Maya2000 Pro spectroradiometer (Supplemental Fig. S3), and the readings were corrected according to the procedure described by Ylianttila et al. (2005) with further correction for stray light based on a cutoff filter adapted from Kreuter and Blumthaler (2009). The unweighted photon irradiances from every UV treatment were then compared with the ambient irradiance. The UV-B and UV-A irradiances under the treatment UV 0 represented 0.2% and 2.7% of the ambient conditions, respectively. The treatment UV A had about 0.4% of UV-B and 72% of UV-A compared with the ambient conditions, while treatment UV A+B received approximately 73% of the ambient UV-B and UV-A.

In the greenhouse, 20 plants from each genotype were randomly assigned to the same plastic tray, and two trays were allocated at random to each frame outdoors on June 22, 2010, between 7:00 and 7:30 AM. Samples from the wild type and uvr8-2 grown in the greenhouse were collected to compare patterns of gene and protein expression between greenhouse and field conditions. Each biological sample collected consisted of five pooled rosettes frozen in liquid nitrogen and stored at −80°C. After 12 and 36 h outdoors, samples from each filter frame were collected by block with treatments and genotypes in random order within each block. For both time points, samples were harvested during daylight at 7:00 AM, Eastern European Summer Time (5:38 AM local solar time). Plants received sunlight throughout the first 12 h outdoors, while the 36-h time point included 5 h of night. The collected leaf material was ground in liquid nitrogen, and the powder was divided into subsamples for gene and protein expression analysis and metabolite profiling analysis. The temperature and relative humidity during the experiment were recorded with iButtons (Dallas Semiconductors) placed under the filters. The calculated average values for minimum, mean, and maximum were temperature of 11.2°C, 16.4°C, and 23.3°C and relative humidity of 37.5%, 72.1%, and 98.9%, respectively. Outdoors, water was supplied to plants through subirrigation.

Optical Measurements of Epidermal UV Absorbance and Chlorophyll in the Leaves

Epidermal UV absorbance of the leaves was measured in vivo with Dualex FLAV 3.3 and Dualex HCA 3 (FORCE-A). These fluorometers make noninvasive in vivo estimations of leaf phenolic contents. Dualex FLAV measures the UV absorption of the leaf epidermis by double excitation of chlorophyll fluorescence using UV-A (375 nm) and red light (650 nm) and has been used to reliably estimate epidermal flavonoid contents in several plant species (Goulas et al., 2004). Dualex HCA has the same measurement principles as Dualex FLAV but uses UV-B (315 nm) and red light (650 nm) to estimate the concentration of hydroxycinnamic acids. The chlorophyll content of the leaves was measured with a SPAD-502 chlorophyll meter (Minolta Camera). The adaxial epidermis of the two youngest leaves in the rosettes of 30 plants per genotype/UV treatment was measured with Dualex FLAV, Dualex HCA, and SPAD-502 after 50 h of UV exposure outdoors.

Microarray Analysis

Two-color microarrays were used to identify genes regulated by solar UV radiation in the wild type and uvr8-2 after 12 h of exposure outdoors. Two
At4g35510). The reference genes were stably expressed throughout the ex-

system (Bio-Rad) in triplicate. Primers were designed by using the Primer-

Scientific RNA was reverse transcribed with RevertAid Premium (Thermo-

Total RNA was extracted according to Jaspers et al. (2009) and treated with

solar UV.

Expression Analysis by qPCR

Expression of PDX1 in the Leaves

Expression of wild-type and uvr8-2 plants grown under

Solar UV

We studied the expression of wild-type and uvr8-2 plants grown under solar UV. Cells with significant expression were identified using the GSE42474 dataset. Expression of PDX1 was analyzed in leaves from wild-type and uvr8-2 plants treated with 0, 1, 10, and 100 μM of methyl jasmonate, abscisic acid, SA, and BTH, respectively. The expression of PDX1 was significantly lower in uvr8-2 plants compared to wild-type plants.

Expression Analysis by qPCr

Gene expression data were obtained from the microarray experiments described by Wrzaczek et al. (2010). Publicly available experiments using the GSE42474 dataset were clustered using Bayesian hierarchical clustering as described in the literature. The dataset was further analyzed using the edgeR package in R (Additional file 1).

Performance of Wild-Type and uvr8-2 Plants Grown under

Solar UV

The performance of wild-type and uvr8-2 plants grown under solar UV was evaluated using the same dataset as described above. A linear model was used to analyze the data, and the false discovery rate was controlled using the Benjamini and Hochberg method. The results showed that the expression of PDX1 was significantly lower in uvr8-2 plants compared to wild-type plants.

Statistical Analysis

All statistical analyses were performed using R. Linear mixed-effects models with blocks as random grouping factors were fitted to the data. The significance of the main effects (UV-B treatment vs. control) and the interaction between UV-B treatment and genotype was assessed using ANOVA. The results were then compared to the wild type using t-tests.

Analysis of Metabolites by UPLC-MS/MS

UPLC-MS/MS was performed on extracts of wild-type and uvr8-2 plants grown under solar UV. The metabolites were identified using the xcms package in R. The results showed that the expression of PDX1 was significantly lower in uvr8-2 plants compared to wild-type plants.

Conclusion

The results of this study show that the expression of PDX1 is significantly lower in uvr8-2 plants compared to wild-type plants. This suggests that PDX1 plays a role in the response to solar UV radiation.
between UV treatments. P values from multiple contrasts were adjusted using Holm’s procedure. Figures 4 and 5 were drawn in the lattice package (Sarkar, 2008).

Calculation of Biologically Effective UV Doses Outdoors and PAR

The biologically effective UV dose (UV_{bi}) and PAR during the two experiments for each UV treatment and the ambient sunlight were calculated as described by Morales et al. (2010). The ambient solar UV radiation spectral irradiance for the experimental site was first estimated at hourly intervals as described by Lindfors et al. (2009). The estimates were then convoluted with measured filter transmittance spectra and action spectra (normalized to action = 1 at 300 nm). Four of the most commonly used biological spectral weighting functions (BSWFs) in plant research were used to compare the UVBE between the UV treatments and ambient sunlight. Two formulations of Caldwell’s generalized plant action spectrum were used, GEN(G) given by Green et al. (1974) and GEN(T) given by Thimijan et al. (1978). FLAV is the spectrum for the accumulation of mesembryanthemin in *Mesembryanthemum crystallinum* (Ibdah et al., 2002) and PG is the “plant growth” spectrum Flint and Caldwell (2003). For more details on the action spectra and dose calculations, see Flint and Caldwell (2003) and Kottalainen et al. (2009). Doses weighted with the absorbance spectrum of UVR8 (see Supplemental Fig. S3A and Christie et al., 2012) were calculated using the package UVCalc (P.J. Aphalo, unpublished data) in R. For the first experiment, the UV doses (kJ m⁻²) and PAR (MJ m⁻²) were calculated for every hour that plants were exposed outdoors, and the accumulated UV and PAR after 12, 36, and 50 h were determined by summing the corresponding hourly values (Table I). For the purposes of comparison with previous research, we also calculated non-weighted UV-A and UV-B using UVcalc. During the experiment, UV-A and UV-B irradiances had maximum ambient values of 142.4 and 2.9 μmol m⁻² s⁻¹, respectively; the accumulated values are shown in Table I. For the performance experiment, the daily UV_{bi} and PAR were calculated as described above. The minimum, average, and maximum values for the whole duration of the experiment are indicated in Supplemental Table S9. For both experiments, with all the BSWFs, the UV doses differed between treatments, while PAR differed by less than 5.6% (Table I; Supplemental Table S9).

Microarray data from this article can be found in the Array-Express database (http://www.ebi.ac.uk/microarray-as/ae) under accession number E-MTAB-1093.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Comparison of our microarray data with previous studies using Venn diagrams.

Supplemental Figure S2. Images of wild-type (Ler) and *uvr8-2* plants germinated and grown for 3 weeks outdoors under the UV treatments.

Supplemental Figure S3. Spectral irradiance (W m⁻² nm⁻¹) under the UV treatments measured with a Maya2000 Pro spectroradiometer during a sunny day at noon.

Supplemental Figure S4. Patterns of gene expression measured by qPCR in the wild type (Ler) and *uvr8-2* grown in the greenhouse.

Supplemental Table S1. Genes differentially expressed in the wild type after 12 h under solar UV A+B as detected by microarrays.

Supplemental Table S2. Genes differentially expressed in *uvr8-2* after 12 h under solar UV A+B as detected by microarrays.

Supplemental Table S3. Detailed information on experiments represented in the Bayesian cluster (Fig. 1).

Supplemental Table S4. Detailed information on genes represented in the Bayesian cluster (Fig. 1).

Supplemental Table S5. Summary of the ANOVA models used to estimate significant effects of the UV treatments, genotype, and the interaction UV treatment × genotype on the expression of selected genes measured by qPCR, accumulation of PDX1 and other metabolites, and optical measurements.

Supplemental Table S6. Tests of the effects of the UV treatments on gene expression, accumulation of PDX1 and other metabolites, and optical measurements.

Supplemental Table S7. Metabolites identified in wild-type and *uvr8-2* leaves by UPLC-MS/MS.

Supplemental Table S8. Detailed information of primers used in qPCR.

Supplemental Table S9. UV_{bi} and PAR calculated for the whole duration of the experiment.

ACKNOWLEDGMENTS

We acknowledge the Finnish Microarray Center for manufacturing the microarrays and FORCE-A for lending us a Dualex HCA device. We are grateful to the European Union COST action FA0906 (UV4growth) for giving us the opportunity to interact with coauthors of this paper. We thank Nigel Paul, Carlos Ballaré, and Mathew Robson for several relevant discussions of our research and two anonymous reviewers for constructive criticisms on the manuscript. Yohama Puente, Liz Carolina Eklund, Pekka Lönöqvist, and Leena Grönholm are also acknowledged for technical assistance. Lasse Yliantila calibrated the spectrometer used.

Received November 20, 2012; accepted December 17, 2012; published December 18, 2012.

LITERATURE CITED

Boccalandro HE, Rossi MC, Sajio Y, Deng XW, Casal JJ (2004) Promotion of photomorphogenesis by COPI. Plant Mol Biol 56: 905–915

Brosché M, Schuler MA, Kalbina I, Connor L, Strid Å (2002) Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem Photobiol Sci 1: 656–664

Brown BA, Cloix C, Jiang GH, Kaiseri E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102: 18225–18230

Brown BA, Headland LR, Jenkins GI (2009) UV-B action spectrum for UVBR-mediated HY5 transcript accumulation in Arabidopsis. Photochem Photobiol 85: 1147–1155

Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVBR, HY5, and HYH. Plant Physiol 146: 576–588

Calwood MM (1971) Solar UV irradiation and the growth and development of higher plants. In AC Giese, ed, Photophysiology. Vol VI. Current Topics in Photobiology and Photochemistry. Academic Press, New York, pp 131–177

Casati P, Campi M, Morrow DJ, Fernandes J, Walbot V (2011) Transcriptional, proteomic and metabolomic analysis of maize responses to UV-B: comparison of greenhouse and field growth conditions. Plant Signal Behav 6: 1146–1153

Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132: 1739–1754

Chen H, Xiong L (2005) Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J 44: 396–408

Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, et al (2012) Plant UVBR photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335: 1492–1496

Cloix C, Kaiseri E, Heilmann M, Baxter KJ, Brown BA, O’Hara A, Smith BO, Christie JM, Jenkins GI (2012) C-terminal region of the UV-B photoreceptor UVBR initiates signaling through interaction with the COPII protein. Proc Natl Acad Sci USA 109: 16366–16370

Demkura PV, Abdala G, Baldwin JT, Ballaré CL (2010) Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152: 1084–1095

Demkura PV, Ballaré CL (2012) UVBR mediates UV-B-induced Arabidopsis defense responses against *Thrips cimex* cinenra by controlling sinapate accumulation. Mol Plant 5: 642–652

Denslow SA, Rueschhoff EE, Daub ME (2007) Regulation of the *Arabidopsis thaliana* vitamin B₆ biosynthesis genes by abiotic stress. Plant Physiol Biochem 45: 152-161
UVR8 and Plant Responses to Solar UV Radiation

Favery JJ, Stec A, Gruber H, Rizzini L, Oravec Z, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28: 591–601

Flint SD, Caldwell MM (2003) A biological spectral weighting function for ozone depletion research with higher plants. Physiol Plant 117: 137–144

Fuglevand G, Jackson JA, Jenkins GI (1996) UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate plant chlorophyll fluorescence. J Exp Bot 47: 2347–2357

González Besteiro MA, Bartels S, Albert A, Ulm R (2011) Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 receptor kinase pathway. Plant J 68: 727–737

Gótz M, Albert A, Stich S, Heller W, Scherb H, Krins A, Langebartsel C, Seidlitz HK, Ernst D (2010) PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period. Plant Protologia 243: 95–103

Goulas Y, Cerovic ZG, Cartelat A, Moya I (2011) Arabidopsis thaliana CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Cell Environ 34: 2324–2334

Green AES, Sawada T, Shettle EP (2003) A biological spectral weighting function for ozone depletion research with higher plants. Physiol Plant 117: 137–144

Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2010) Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci USA 107: 20132–20137

Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17: 230–237

Ibdah M, Krins A, Seidlitz HK, Heller W, Strack D, Vogt T (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25: 1145–1154

Izaguirre MM, Scopec AL, Baldwin IT, Ballaré CL (2004) Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol 134: 1391–1406

Jaspers P, Blomster M, Broschê M, Salojärvi J, Ahlors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F, et al (2009) Unequally redundant RCD1 and SROI mediate stress and developmental responses and interact with transcription factors. Plant J 60: 268–279

Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60: 407–431

Kalbina I, Li S, Kalbin G, Björn LO, Strid Å (2008) Two separate UV-B radiation wavelength regions control expression of different molecular markers in Arabidopsis thaliana. Funct Plant Biol 35: 222–227

Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand Å (2007) Cryptochrome 1 and 2 and their chromophores: a comprehensive review. Trends Plant Sci 12: 492–498

Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chloratin condensation 1. Plant Physiol 130: 234–243

Kotilainen T, Venäläinen T, Tegelberg R, Lindfors A, Julkunen-Tiitto R, Sutinen S, O’Hara RB, Aphalo PJ (2009) Assessment of UV biological spectral weighting functions for phenolic metabolites and growth responses in silver birch seedlings. Photochem Photobiol 85: 1346–1355

Kreuter A, Blumthaler M (2009) Stray light correction for solar measurements using array spectrometers. Rev Sci Instrum 80: 096108

Lindfors A, Heikkilä A, Kaurola J, Koskelo T, Lakkala K (2009) Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations. Photochem Photobiol 85: 1233–1239

Mackerness SAH, Surplus SL, Blake P, John CF, Buchanan-Wollaston V, Jordan BR, Thomas B (1999) Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant Cell Environ 22: 1413–1423

Malýský S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148: 2021–2049

Moraes LO, Tegelberg R, Broschê M, Keinänen M, Lindfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol 30: 923–934

Onda Y, Yagi Y, Saito Y, Takenaka N, Toyoshima Y (2008) Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. Plant J 55: 968–978

Oravec Z, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Adám E, Schäfer E, Nagy F, Ulm R (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18: 1975–1990

Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-Plus. Springer, New York

R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (October 15, 2010)

Ristilä M, Strid H, Eriksson LA, Strid Å, Sävenstrand H (2011) The role of the pyridoxine (vitamin B6) biosynthesis enzyme PDX1 in ultraviolet-B radiation responses in plants. Plant Physiol Biochem 49: 284–292

Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332: 105–106

Sarkar D (2008) Lattice: Multivariate Data Visualization with R. Springer, New York

Thimijan RW, Carns HR, Campbell LE (2010) Radiation Sources and Related Environmental Control for Biological and Climatic Effects UV Research (BACER). Final report (EPA-IAG-DG-0168). Environmental Protection Agency, Washington, DC

Ulm R, Baumann A, Oravec Z, Mášt Z, Adám E, Oakeley EJ, Schäfer E, Nagy F (2004) Genome-wide analysis of gene expression reveals functional organization of its chromophore amino acids. J Chem Inf Model 44: 299–308

Wargent JJ, Gegas VC, Jenkins GI, Doonan JH, Paul ND (2009a) UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol 183: 315–326

Wargent JJ, Moore JP, Roland Ennos A, Paul ND (2009b) Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochem Photobiol 85: 279–286

Warnes GR (2005) gregmisc: Greg’s Miscellaneous Functions. R package version 2.1.1. http://cran.r-project.org/package=ggregmisc (October 15, 2010)

Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20: 3705–3706

Wrazcezck M, Brosché M, Salojärvi J, Kangasjarvi S, Idáheimo N, Mersmann S, Robatzek S, Karpinska S, Karpinska B, Kangasjarvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10: 95

Wu D, Hu Q, Yan Z, Chen W, Huang X, Zhang J, Yang P, Deng H, Wang J, et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484: 214–219

Wu M, Graham E, Eriksson LA, Strid Å (2011) Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids. J Chem Inf Model 51: 1287–1295

Ylitaloila L, Visuri R, Huurot L, Jokela K (2005) Evaluation of a single-monomochromator diode array spectroradiometer for sunbed UV-radiation measurements. Photochem Photobiol 81: 333–341