Supporting Information

for

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

Laura Holzhauer, Chloé Liagre, Olaf Fuhr, Nicole Jung and Stefan Bräse

Beilstein J. Org. Chem. **2022**, 18, 1088–1099. doi:10.3762/bjoc.18.111

Experimental part
Contents
1. General remarks ... S2
2. Synthetic results .. S5
3. Absorption measurements .. S86
4. Electrochemical measurements ... S86
5. Crystallographic data .. S87
6. References ... S89
1. General remarks

The starting materials and reagents were purchased from ABCR, ACROS, ALFA AESAR, CHEMPUR, FLUKA, FLUOROCHM, MERCK, SIGMA ALDRICH, STREM, TCI, or THERMO FISHER SCIENTIFIC and are used without further purification unless stated otherwise. Solvents of technical grade were purified via distillation prior to use (ethyl acetate, dichloromethane, cyclohexane), solvents of p.a. quality were purchased from ACROS, FISHER SCIENTIFIC, SIGMA ALDRICH, ROTH, or RIEDEL-DE HAËN and were used without further purification.

Air- and moisture-sensitive reactions were carried out under nitrogen or argon atmosphere in oven-dried glassware using standard Schlenk techniques. Reactions in vials were sealed with Crimp caps; both vials and caps were purchased at CHROMA GLOBE.

Solvents were evaporated under reduced pressure at 40 °C using a rotary evaporator. For solvent mixtures, each solvent was measured volumetrically.

Flash chromatography:

Purifications via flash chromatography were performed using silica gel (SiO₂, 0.040 mm × 0.063 mm, MERCK) and quartz sand (glowed and purified with hydrochlorid acid). After removing the solvent under reduced pressure, the crude products were immobilized on Celite (SIGMA ALDRICH) and applied to the column as a solid.

For automatic flash chromatography, an INTERCHIM PuriFLASH XS 400, INTERCHIM PuriFLASH 4125 or INTERCHIM PuriFLASH 5.125 was used in combination with hand-packed silica columns (SiO₂, 0.040 mm × 0.063 mm, MERCK) as well as prepacked SIHP (silica high performance, 15 µm, 4 g/12 g/40 g) columns from INTERCHIM. Fractions were separated and collected using a diode array detector (DAD).

Thin-layer chromatography (TLC):

Reactions were monitored by thin-layer chromatography (TLC) using silica-coated aluminum plates (MERCK, silica gel 60, F₂₅₄). UV active compounds were detected with a UV-lamp (HANAU QUARZLAMPEN, Typ 204 AC) at 254 nm and 366 nm excitation. Moreover Seebach solution (2.5 % phosphomolybdic acid, 1.0 % Cerium(IV)sulfate tetrahydrate, 6,0 % conc. H₂SO₄ in H₂O) with subsequent heating of the TLC plate was used to stain the spots.

Liquid-chromatography mass spectrometry (LC-MS) was conducted using a device from AGILENT with HP 1100 MSD G1946 Mass Detector and a Kinetex XB-C18 column (2.6 µm, 100 x 4.60 mm) from PHENOMENEX. API-ES was used as a method of ionization and the following program was applied:

10_99_P (positive polarity): injector volume 10.0 µl, flow rate 1.0 ml/min, run time 20.0 min, solvent: water (bidistilled) 50%, acetonitrile 20%.

Melting points:

Melting points were detected on an OptiMelt MPA100 device from STANFORD RESEARCH SYSTEM.

Nuclear magnetic resonance spectroscopy (NMR):

A BRUKER Ascend 400 was used to record NMR spectra; H NMR spectra were measured at 400 MHz, C NMR spectra at 100 MHz and F NMR spectra at 376 MHz. All measurements
were conducted at room temperature using CDCl₃ or DMSO-d₆ acquired from EURISOTOP and SIGMA ALDRICH as solvents and accordingly referenced to CDCl₃ (¹H 7.27 ppm, s / ¹³C 77.0 ppm, t) or DMSO-d₆ (¹H 2.50 ppm, s / ¹³C 39.52 ppm, sep).

Chemical shifts are given in ppm (parts per million) and the spectra were analyzed following first order spectra. The signal area was given for multiplets whereas the signal center was used for centrosymmetric signals. The signal splitting was characterized using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), bs (broad singlet), dd (doublet of the doublet), td (triplet of the doublet) etc. For ¹³C spectra the peaks were observed as singlet if not specifically stated otherwise.

Coupling constants \(J \) are given in Hz (Hertz) and the number of bonds between the coupling cores is indicated as superscripted index in front of the coupling constant. Signals of the ¹³C spectra were assigned using DEPT90 and DEPT135 spectra (distortionless enhanced polarization transfer) as well as HSQC (heteronuclear single quantum coherence) and HMBC (heteronuclear multiple bond correlation).

Infrared spectroscopy (IR):
IR spectra were measured via ATR (Attenuated Total Reflection) on a BRUKER IFS 88. The positions of the absorption bands are given in wavenumbers \(\tilde{\nu} \) in cm\(^{-1}\) and were measured in the range from 3600 cm\(^{-1}\) to 500 cm\(^{-1}\).

Characterization of the absorption bands was done in dependence of the absorption strength with the following abbreviations: vs (very strong, 0–9%), s (strong, 10–39%), m (medium, 40–69%), w (weak, 70–89%), vw (very weak, 90–100%).

Mass spectrometry (MS):
EI-MS (electron ionization mass spectroscopy) and FAB-MS (fast atom bombardment mass spectrometry) were conducted on a FINNIGAN MAT 95 with 3-nitrobenzyl alcohol (3-NBA) as matrix and reference for high resolution. The intensity of the signals is given relative to the intensity of the highest peak (100%). For the interpretation of the spectra, molecular peaks \([M]+\), peaks of protonated molecules \([M + H]^+\) and characteristic fragment peaks are indicated with their mass-to-charge ratio \((m/z)\) and their intensity in percent, relative to the base peak (100%) is given. In case of high-resolution measurements, the maximum tolerated error is ±5 ppm.

ESI-MS (electron spray ionization mass spectrometry) was conducted with a THERMOFISHER Q EXACTIVE PLUS in positive mode with a voltage of 4 kV. The tolerated error is ±5 ppm of the molecular mass. The spectra were interpreted by molecular peaks \([M]^+\), peaks of protonated molecules \([M + H]^+\) and characteristic fragment peaks and indicated with their mass-to-charge ratio \((m/z)\).

Elemental analysis (EA):
Elemental analysis was conducted using an ELEMENTAR VARIO MICRO and a SARTORIUS M2P analytical balance. Calculated and found percentage for carbon (C), hydrogen (H), sulfur (S) and nitrogen (N) are indicated in fractions of 100%.
High-performance liquid chromatography (HPLC):
Preparative reversed-phase high performance liquid chromatography (RP-HPLC) was performed on the PuriFLASH 4125 system from INTERCHIM. A VDSpher® C18-M-SE precolumn (10 µm, 40 x 16 mm) followed by a PuriFLASH C18-AQ separation column (10 µm, 250 x 21.2 mm) was used as the stationary phase. A gradient of acetonitrile and double distilled water at a flow rate of 15 mL/min served as the mobile phase.

Absorption spectroscopy:
UV–vis spectra were recorded on a HORIBA DuettA spectrometer at 20 °C in glass cuvettes with a path length of 1 cm. For quantitative measurements, 1 mg of the compound was diluted in the appropriate amount of acetonitrile to a concentration of 18 µM. To calculate the molar extinction coefficient ε, the Beer-Lambert Law [1] was used:

$$A = \varepsilon \ast c \ast d$$

with $A = \text{absorbance}, c = \text{concentration of the analyte} \text{ and } d = \text{length of the beam in the absorbing medium (path length of the cuvette)}$ [1].

Cyclic voltammetry:
Cyclic Voltammetry experiments were performed at 25 °C using a GAMRY Interface 1010B potentiostat in a three-electrode electrochemical cell. A glassy carbon working electrode, platinum counter electrode and Ag/AgNO$_3$ reference electrode were employed. The working electrode was treated with a 0.05 µM slurry of polishing alumina before experiments were conducted. Scans were run at 100 mV/s under nitrogen and dry acetonitrile was used as a solvent in all cases; the solvent was deaerated with nitrogen for 5-10 minutes prior to use. As the electrolyte, 0.1 M of NBu$_4$PF$_6$ (electrochemical grade, SIGMA ALDRICH) was used. The analyte was added in a concentration of 0.5 mM; ferrocene (Fc/Fc$^+$, 0.46 vs saturated calomel electrode (SCE)[2]) was added as an internal standard with the same concentration after the experiment.

Single crystal X-ray diffraction (XRD):
Single crystal X-ray diffraction data were collected on a STOE STADI VARI diffractometer with monochromated Mo Kα ($\lambda = 0.71073$ Å) or Ga Kα (1.34143 Å) radiation at low temperature. Using Olex2 [3], the structures were solved with the ShelXT [4] structure solution program using Intrinsic Phasing and refined with the ShelXL [5] refinement package using Least Squares minimization. Refinement was performed with anisotropic temperature factors for all non-hydrogen atoms; hydrogen atoms were calculated on idealized positions. Disordered atoms were refined isotropically.

Crystallographic data for compounds 25b, 27a–d, 29 and 30 reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary information no. CCDC-2129160–2129166. Copies of the data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/.

Crystal data and structure refinement details of 25b, 27a–d, 29 and 30 are summarized in Table S7.
2. Synthetic results

Synthesis of starting materials:

Scheme S1: Synthesis of starting materials for the CuAAC reaction.

Synthesis of triazole library:

Scheme S2: Synthesis of 1,2,3-triazole-substituted quinoxalines via CuAAC from tetrazolo[1,5-a]quinoxaline (11a), full results.

Table S1: Synthesis of 1,2,3-triazole-substituted quinoxalines via CuAAC with or without addition of DIPEA. Reaction conditions: (CuOTf)$_2$·C$_6$H$_6$, toluene, 16 h, 100 °C.
Synthesis of pyrazole-substituted quinoxaline-triazoles/imidazoles:

Scheme S3: Conversion of tetrazolo[1,5-a]quinoxalines 11b–l, S3 and S4 under CuAAC conditions: 1.1–5 equiv hexyne, 10 mol % (CuOTf)_2·C_6H_6 (7), toluene, 100 °C, 3 d.

Table S2: Full results of the reaction of different tetrazolo[1,5-a]quinoxalines 9b–e, 12 and 13a–f with hexyne (4k) after 3 d. Further results for starting material 9d available in Table S2.

Entry	Number of starting material	R	Equiv of hexyne (4k)	Additives	Yield [%]		
					15	16	17
1	11b	Me	5	-	31	0	18
2	11b	Me	2	-	17	0	nd
3	11b	Me	2	2 equiv DIPEA	7	0	27
4	11b	Me	1.1	-	15	0	33
5	11c	iPr	5	-	8	17	11
6	11c	iPr	2.5	-	0	13	34
7	11c	iPr	1.1	-	0	22	41
8	11d	CF_3	8	-	0	17	66
9	11d	CF_3	2	-	0	17	66
10	11e	Ph	5	-	11	0	11
11	11e	Ph	2	-	11	0	24
12	11e	Ph	1.1	-	9	0	31
13	11f	Cl	5	-	0	4	23
14	11f	Cl	2	-	0	3	34
15	11g	OMe	2	-	49	0	0
16	11h	OH	2.5	-	0	0	0
17	11i	NMe_2	2.5	-	0	0	0
18	11j	NHC_6H_4COCH_3	2.5	-	8	0	9
19	11k	O(CH_2)_2(CF_2)_2CF_3	15	-	62	13	0
20	11k	O(CH_2)_2(CF_2)_2CF_3	5	-	50	15	21
21	11k	O(CH_2)_2(CF_2)_2CF_3	2	-	10	19	55
22	11k	O(CH_2)_2(CF_2)_2CF_3	1.1	-	0	22	29
For entries 16 and 17, no conversion to the desired product was observed; for entry 17, 80% of starting material were reisolated. When testing entries 23 and 24, decomposition of the starting material occurred. For entry 24, 44% of starting material were reisolated whereas no compound was successfully reisolated for entry 21.

In addition, phenylacetylene 4a as an aromatic alkyne was tested under analogous conditions. Denitrogenative annulation to compound S9 could be observed as expected and in similar yields to the reaction with hexyne (see entry 9, Table S2).

\[
\begin{align*}
\text{Scheme S4: Conversion of tetrazolo[1,5-a]quinoxaline 11d under CuAAC conditions with an aromatic alkyne: 2 equiv. phenylacetylene, 10 mol\% (CuOTf)_2\cdot C_6H_6, toluene, 100 °C, 6 d.}
\end{align*}
\]

Optimization of imidazole formation:

\[
\begin{align*}
\text{Scheme S5: Conversion of tetrazolo[1,5-a]quinoxalines 11d under CuAAC conditions: 1.1–5 equiv hexyne, 10 mol \% (CuOTf)_2\cdot C_6H_6, toluene, 100 °C, 3 d.}
\end{align*}
\]

Indications for a pressure-dependancy of the reaction were found when using different reaction vessels such as vials and flasks (see entries 1, 2 and 3 in Table S3); however, no conclusive result could be obtained when applying this method to other derivatives. To ensure proper reproducability, reaction vessels are given below.
Table S3: Full results for screening of different reaction conditions regarding the denitrogenative annulation with tetrazolo[1,5-a]quinoxaline 11d. Standard conditions: argon atmosphere, 0.1 equiv. of (CuOTf)$_2$·C$_6$H$_6$, 2 equiv hexyne, toluene, 100 ºC, 3 d.

Entry	Catalyst	Reaction vessel	Other varied conditions	Solvent	Yield [%] $16c$	Yield [%] $11d$ (reisolated)	
1	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	-	toluene	17	66	0
2	(CuOTf)$_2$·C$_6$H$_6$	50 mL vial	-	toluene	242	59	0
3	(CuOTf)$_2$·C$_6$H$_6$	flask	-	toluene	28	11	26
4	(CuOTf)$_2$·C$_6$H$_6$	flask	Under air	DMF	01	52	0
5	(CuOTf)$_2$·C$_6$H$_6$	flask	0.2 equiv. catalyst	toluene	3	23	53
6	(CuOTf)$_2$·C$_6$H$_6$	flask	0.5 equiv. catalyst	toluene	26	29	6
7	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	8 equiv. hexyne	toluene	01	41	43
8	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	+ 0.4 equiv. Zn	toluene	30	53	01
9	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	+ 0.4 equiv. Zn(OTf)$_2$	toluene	15	68	0
10	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	+ 3 equiv. DIPEA	toluene	01	55	0
11	(CuOTf)$_2$·C$_6$H$_6$	vial	+ 2 equiv. AlCl$_3$	toluene	0	58	18
12	AgOTf	5 mL vial	-	toluene	0	0	92
13	CuI	5 mL vial	-	toluene	0	7	78

1potential traces, 2repeated with lower yield of $16c$: see Table S5, Entry 1

Table S4: Results for screening of reaction conditions regarding the denitrogenative annulation with tetrazolo[1,5-a]quinoxaline 11f. Standard Conditions: argon atmosphere, 0.1 equiv. of (CuOTf)$_2$·C$_6$H$_6$, 2 equiv hexyne, toluene, 100 ºC, 3 d.

Entry	Catalyst	Reaction vessel	Other varied conditions	Solvent	Yield [%] $16e$	Yield [%] $11f$ (reisolated)	
1	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	-	toluene	3	34	34
2	(CuOTf)$_2$·C$_6$H$_6$	flask	-	toluene	6	6	19
3	(CuOTf)$_2$·C$_6$H$_6$	5 mL vial	+ 0.4 equiv. Zn	toluene	0	0	72

Mechanical studies:

The denitrogenative annulation was conducted with 11d and addition of TEMPO in comparison to the reaction without any additives. No changes in the yield of the imidazole product 16c were observed, indicating that the reaction does not occur via a radical pathway as described by Roy et al. [7].

Table S5: Results for mechanical studies regarding the denitrogenative annulation with tetrazolo[1,5-a]quinoxaline 11d. Standard Conditions: argon atmosphere, 0.1 equiv of (CuOTf)$_2$·C$_6$H$_6$, 2 equiv hexyne, toluene, 100 ºC, 3 d.

Entry	Catalyst	Reaction vessel	Additives	Solvent	Yield [%] $16c$	Yield [%] $11d$ (reisolated)	
1	(CuOTf)$_2$·C$_6$H$_6$	50 mL vial	-	toluene	15	74	0
NMR of triazole vs imidazole products:

Triazole and imidazole products show noticeable differences in the 1H NMR chemical shift of the triazole and imidazole hydrogen atoms (Figure S1). Whereas the imidazole signals are usually located around 7.5 ppm, the triazole signals can be found at 8 ppm and higher with the exception of 15c (signal at 7.66 ppm). The shifts are in accordance with the shifts reported in literature for similar products.[6, 7]

![Figure S1](image)

Figure S1: Excerpt from the aromatic region of the 1H NMR spectra of two respective imidazole (16b, 16h) and triazole products (15b, 15h). The signals of the triazole H (green frame) are shifted into the deep-field significantly compared to their imidazole counterparts (blue frame).

The same behavior could be observed for the signals of the obtained triazoloimidazoquinoxalines (see Figure S2). In the 1H NMR spectrum, both triazole and imidazole signals could be differentiated—whereas the triazole signal was located at 9.07 ppm, the imidazole singulet signal could be observed at 7.66 ppm for derivate 25a.
Figure S2: Excerpt from the aromatic region of the 1H NMR spectra of TIQ 25a. The signals of the triazole H (green frame) are shifted into the deep-field significantly compared to their imidazole counterparts (blue frame).

Results for TIQ formation:

Scheme S6: Full results for the TIQ formation including all minor side products that could be isolated. No definite conclusion regarding the mechanism and the order of the triazole and imidazole formation could be drawn with the obtained products.

Table S6: Influence of reaction time, varied amounts of catalyst and alkyne on the yield of the TIQ formation.

Entry	Equiv of catalyst	Equiv of hexyne (4k)	Reaction Time	Yield [%] TIQ 25b
1	0.1	2.5	3 d	22
2	0.1	2.5	3.5 h	20
3	0.1	10	1 d	25
4	0.2	10	1 d	01

111% of S6b isolated instead.
Complexation:

Figure S3: Colour of standard rhenium tricarbonyl triazoloquinoxaline complex 27b (left, red) versus TIQ complex 30 (middle, orange) and side-chain complex 29 (right, yellow).
Synthesis of the compounds:

1H-Quinoxalin-2-one (S2a)

Benzene-1,2-diamine (5.00 g, 46.2 mmol, 1.0 equiv) and ethyl 2-oxoacetate (50% in toluene, 10.4 g, 10.1 mL, 50.9 mmol, 1.10 equiv) in 80 mL of THF was stirred at 75 °C for 2 h. The reaction mixture was cooled to 25 °C; the resulting white-yellow precipitate was isolated by filtration and THF was evaporated from the filtrate under reduced pressure. The remaining solid was rinsed out with DCM and added to the solid residue. Subsequently the combined solid precipitate was washed 3x with distilled water, transferred to a flask and dried under high vacuum. The product 1H-quinoxalin-2-one (6.66 g, 45.6 mmol, 99% yield) was obtained as a white solid.

$R_f = 0.23$ (cyclohexane/ethyl acetate 1:1). 1H NMR (400 MHz, DMSO-d_6, ppm) δ = 12.41 (bs, 1H, NH), 8.16 (s, 1H, NCHCO), 7.77–7.75 (m, 1H, CH$_{ar}$), 7.56–7.52 (m, 1H, CH$_{ar}$), 7.31–7.28 (m, 2H, CH$_{ar}$); 13C NMR (100 MHz, DMSO-d_6, ppm) δ = 154.9 (1C, C$_{q}$O), 151.6 (1C, CH$_{ar}$), 132.0 (1C, C$_{q}$), 131.8 (1C, C$_{q}$), 130.8 (1C, CH$_{ar}$), 128.8 (1C, CH$_{ar}$), 123.3 (1C, CH$_{ar}$), 115.7 (1C, CH$_{ar}$); EI (m/z, 70 eV, 80 °C): 147 (10) [M+1]$^+$, 146 (100) [M]$^+$, 119 (17), 118 (66), 91 (24), 64 (10), 63 (11). HRMS (EI, C$_8$H$_6$O$_1$N$_2$): calcd 146.0475, found 146.0473; IR (ATR, $\tilde{\nu}$) = 3077 (w), 2997 (w), 2976 (s), 2870 (m), 2816 (s), 2745 (m), 2680 (m), 1696 (s), 1672 (vs), 1636 (vs), 1612 (vs), 1537 (vs), 1494 (s), 1472 (s), 1424 (vs), 1373 (s), 1353 (m), 1332 (m), 1262 (m), 1254 (m), 1200 (m), 1124 (m), 1125 (m), 1021 (m), 963 (m), 950 (s), 924 (m), 891 (vs), 779 (s), 751 (vs), 724 (vs), 681 (m), 606 (vs), 554 (m), 531 (m), 510 (vs), 493 (s), 470 (vs), 399 (vs) cm$^{-1}$.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-FFRYUAVNPB-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/FFRYUAVNPBUEIC-UHFFFAQYSA-N.2

The synthesis of this compound has been previously described and the NMR data corresponds with the literature [8].
3-Methyl-1H-quinoxalin-2-one (S2b)

![Chemical structure of 3-Methyl-1H-quinoxalin-2-one](image)

Name {P1|S2b}: 3-methyl-1H-quinoxalin-2-one; Formula: C₉H₈N₂O; Molecular Mass: 160.1726; Exact Mass: 160.0637; Smiles: O=c1[nH]c2cccccc2nc1C; InChIKey: BMIMNRPAEPIYDN-UHFFFAOYSA-N

To a solution of 1,2-phenylenediamine (3.02 g, 28 mmol, 1.00 equiv) in THF (50.0 mL) was added methyl 2-oxopropanoate (3.40 g, 3.01 mL, 33 mmol, 1.19 equiv). The solution was then heated to 80 °C for 2 h. After cooling down to room temperature, the formed precipitate was filtered; the remaining solution was reduced by half and filtered again (3x). The solid was then washed with methylene chloride and transferred to a flask. Traces of solvent were removed under reduced pressure. The product 3-Methyl-1H-quinoxalin-2-one was obtained as a white solid (4.37 g, 27 mmol, 98% yield).

Rᵣ = 0.10 (cyclohexane/ethyl acetate 4:1). ¹H NMR (400 MHz, DMSO-d₆, ppm) δ = 2.40 (s, 3H, CH₃), 7.23–7.28 (m, 2H, C₆H₄), 7.44–7.48 (m, 1H, C₆H₄), 7.67–7.69 (m, 1H, C₆H₄), 12.29 (s, 1H, NH); ¹³C NMR (400 MHz, DMSO-d₆, ppm) δ = 20.5 (1C, CH₃), 115.2 (1C, C₆H₄), 123.0 (1C, C₆H₄), 127.8 (1C, C₆H₄), 129.2 (1C, C₆H₄), 131.6 (1C, C₆H₄), 131.9 (1C, C₆H₄), 154.9 (1C, CNCH₃/CONH), 159.1 (1C, CNCH₃/CONH); EI (m/z, 70 eV, 100 °C): 161 (11) [M+H]⁺, 160 (94) [M]⁺, 132 (100), 131 (70); HRMS (CsH₉O+N₂): calcld 160.0637, found 160.0637; IR (ATR, ν) = 418, 453, 469, 476, 561, 584, 599, 691, 725, 751, 779, 853, 888, 928, 945, 1007, 1122, 1156, 1188, 1208, 1276, 1285, 1344, 1380, 1422, 1432, 1485, 1502, 1567, 1601, 1659, 2707, 2769, 2836, 2881, 2958, 3003, 3098 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-BMIMNRPAEP-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/BMIMNRPAEPIYDN-UHFFFAOYSA-N.4

The synthesis of this compound has been previously described in literature [9].
3-Propan-2-yl-1H-quinoxalin-2-one (S2c)

![Chemical structure](image)

Name {P1|S2c}: 3-propan-2-yl-1H-quinoxalin-2-one; Formula: C_{11}H_{12}N_{2}O; Molecular Mass: 188.2258; Exact Mass: 188.0950; Smiles: CC(c1nc2ccccc2[nH]c1=O)C; InChIKey: CWFPSKVBKAPBPV-UHFFFAOYSA-N

To a solution of benzene-1,2-diamine (1.00 g, 9.25 mmol, 1.00 equiv) in THF (10.0 mL) was added ethyl 3-methyl-2-oxobutanoate (1.47 g, 1.48 mL, 10.2 mmol, 1.10 equiv) and the solution was heated to 70 °C for 3 h. After cooling down to 25 °C, the formed precipitate was filtered; the remaining solution was reduced by half and filtered again (3x). The solid was then washed 3x with water, transferred to a flask and traces of solvent were removed under reduced pressure. The product 3-propan-2-yl-1H-quinoxalin-2-one (1.54 g, 8.16 mmol, 88% yield) was obtained as a white-yellow solid.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-CWFPSKVBKA-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/CWFPSKVBKAPBPV-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the NMR data corresponds with the literature [10].
3-(Trifluoromethyl)-1H-quinoxalin-2-one (S2d)

Name (P1|S2d): 3-(trifluoromethyl)-1H-quinoxalin-2-one; Formula: C₉H₅F₃N₂O; Molecular Mass: 214.1440; Exact Mass: 214.0354; Smiles: O=c1[nH]c2ccccc2nc1C(F)(F)F; InChIKey: NOGLKXWLUDJZDQ-UHFFFAOYSA-N

To a solution of 1.40 g of 1,2-phenylenediamine (13.0 mmol, 1.2 equiv) in 20 mL of THF, 1.10 mL of methyl-3,3,3-trifluoro-2-oxopropanoate (1.68 g, 11.0 mmol, 1.0 equiv) and 0.19 g of p-TsOH (1.10 mmol, 0.10 equiv) was added. The solution was then heated to 80 °C for 2.5 h and subsequently stopped via addition of distilled water. The organic phase was separated and the aqueous phase was extracted 3x with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent cHex/EtOAc 2:1) and 2.19 g (10.2 mmol, 95% yield) of a colourless solid were obtained.

Rᵥ = 0.34 (cyclohexane/ethyl acetate 2:1). ¹H NMR (400 MHz, DMSO-d₆, ppm) δ = 13.05 (bs, 1H, NH), 7.91–7.89 (m, 1H, CH₅N), 7.73–7.69 (m, 1H, CH₅N), 7.42–7.38 (m, 2H, C₆H₄); ¹³C NMR (100 MHz, DMSO-d₆, ppm) δ = 151.7 (1C, NCO), 144.0 (q, J = 32.4 Hz, 1C, CCF₃), 133.7 (1C, NCC₅H₄), 133.5 (1C, CH₅), 129.9 (1C, CH₅), 129.1 (1C, CH₅), 119.4 (q, J = 276.2 Hz, 1C, CF₃), 115.8 (1C, CH₅). ¹⁹F NMR (376 MHz, DMSO-d₆, ppm) δ = -68.5; MS (EI, m/z, 70 eV, 90 °C): 215 (11) [M+H]+, 214 (100) [M]+, 186 (30), 166 (67), 90 (21). HRMS (C₉H₅O₁N₂F₃): calcd 214.0354, found 214.0353; IR (ATR, ṽ) = 2962, 2893, 2836, 2718, 1666, 1609, 1560, 1502, 1485, 1438, 1367, 1312, 1258, 1222, 1181, 1137, 1129, 1052, 1021, 994, 965, 925, 905, 841, 800, 764, 742, 725, 643, 591, 579, 557, 523, 482, 470, 460 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-NOGLKXWLUD-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/NOGLKXWLUDJZDQ-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described [11].
3-Phenyl-1H-quinoxalin-2-one (S2e)

![Chemical structure](image)

Name {P1|S2e}: 3-phenyl-1H-quinoxalin-2-one; Formula: C_{14}H_{10}N_{2}O; Molecular Mass: 222.2420 g/mol; Exact Mass: 222.0793 g/mol; Smiles: O=c1[nH]c2ccccc2nc1c1ccccc1; InChIKey: ZBBQSGVRBQKLL-E-UHFFFAOYSA-N

To a solution of benzene-1,2-diamine (1.00 g, 9.2 mmol, 1.00 equiv) in THF (20.0 mL) was added methyl 2-oxo-2-phenylacetate (1.67 g, 1.44 mL, 10 mmol, 1.10 equiv). The solution was then heated to reflux for 2 h. The solution is allowed to reach 21 °C. The formed precipitate was then filtrate. The remaining solution was reduced by half and filtered again (2x). The solid was then washed with methylene chloride, dried under high vacuum and 3-phenyl-1H-quinoxalin-2-one was obtained in 97% yield (1.989 g, 8.950 mmol).

1H NMR (400 MHz, DMSO-d_6, ppm) δ = 7.33 (m, 2H), 7.63–7.41 (m, 4H), 7.84 (m, 1H), 8.41–8.20 (m, 2H), 12.57 (s, 1H, -NH); 13C NMR (100 MHz, DMSO-d_6, ppm) δ = 115.1, 123.4, 127.8 (2C), 128.8, 129.2 (2C), 130.2, 130.3, 132.0, 132.1, 135.6, 154.1, 154.6; EI (m/z, 70 eV, 140 °C): 223 (11) [M+H]^+, 222 (62) [M+], 195 (16), 194 (100), 193 (19), 90 (12), 63 (11). HRMS–EI (m/z): [M]+ Calcd for C_{14}H_{10}O_{1}N_{2}, 222.0793; Found, 222.0739; IR (ATR, ν) = 401, 422, 469, 526, 551, 588, 616, 632, 687, 732, 755, 764, 806, 834, 850, 861, 905, 928, 948, 993, 1006, 1021, 1040, 1074, 1101, 1122, 1146, 1179, 1188, 1213, 1227, 1245, 1278, 1283, 1309, 1337, 1391, 1429, 1445, 1476, 1489, 1531, 1594, 1606, 1656, 1888, 1932, 1960, 2677, 2715, 2735, 2768, 2817, 2876, 2936, 2959, 2975, 2992, 3054, 3071, 3091, 3150, 3305 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-ZBBQSGVRBQ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/ZBBQSGVRBQKLL-E-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described [10].
1,4-Dihydroquinoxaline-2,3-dione (S1)

![Chemical structure](image)

Name \{P1\|S1\}: 1,4-dihydroquinoxaline-2,3-dione; Formula: C₈H₆N₂O₂; Molecular Mass: 162.1454; Exact Mass: 162.0429; Smiles: O=c1[nH]c2cccccc2[nH]c1=O, InChIKey: ABJFBJGGLJVMQA-UHFFFAOYSA-N

The starting materials benzene-1,2-diamine (1.03 g, 9.50 mmol, 1.0 equiv) and 1.32 g of oxalic acid dihydrate (10.0 mmol, 1.1 equiv) were dissolved in 20 mL of 4 M aqueous HCl and stirred at 110 °C for 2 h. The reaction mixture was cooled to 25 °C. The resulting precipitate was isolated by filtration, washed with distilled water, and dried. The product 1,4-dihydroquinoxaline-2,3-dione (1.19 g, 7.32 mmol, 77% yield) was obtained in form of a colorless solid. Additional information: A yield of 92% was obtained when repeating the reaction.

Rᵣ = 0.3 (DCM/Methanol 10:1). 1H NMR (400 MHz, DMSO-\textit{d}_{6}, ppm) δ = 11.90 (s, 2H, NH₂), 7.14–7.06 (m, 4H, C₆H₄); 13C NMR (100 MHz, DMSO-\textit{d}_{6}, ppm) δ = 155.1 (2C, NHCO), 125.6 (2C, NC₂C₄H₄), 123.0 (2C, CH₆arom), 115.1 (2C, CH₆arom); El (m/z, 70 eV, 220 °C): 181 (21) [M+H₂O+H]^⁺, 162 (100) [M]^⁺, 134 (43), 131 (19), 106 (32), 105 (15), 79 (19), 69 (33). HRMS (El, C₈H₆O₂N₂): Calcd 162.0429, Found 162.0430; IR (ATR, \textit{v}) = 3108, 3077, 3037, 3024, 2961, 2922, 2870, 2775, 2735, 2674, 1669, 1608, 1592, 1499, 1470, 1418, 1388, 1332, 1310, 1245, 1162, 1125, 1031, 943, 928, 898, 853, 751, 721, 700, 637, 578, 459, 391 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-ABJFBJGGLJ-UHFFADPSC-NUHFF-NUHF-NUHF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/ABJFBJGGLJVMQA-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described in literature [12].

2-Chloroquinoxaline (10a)
Name {P1|10a}: 2-chloroquinoxaline; Formula: C₈H₅ClN₂; Molecular Mass: 164.5917; Exact Mass: 164.0141; Smiles: Clc1cnc2(n1)ccc2c; InChIKey: BYHGQHIAFURIL-UHFFFAOYSA-N

The starting material 1H-quinoxalin-2-one (2.00 g, 13.7 mmol, 1.00 equiv) was dissolved in phosphoryl chloride (41.0 g, 25.0 mL, 267 mmol, 19.5 equiv) and heated to 100 °C for 3.5 h. The reaction was cooled to room temperature, slowly poured on ice and rested for 16 h. The organic phase was separated and the aqueous phase was extracted with 3x DCM. The organic layers were combined, dried over Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent chHex/EtOAc 10:1) and 2-chloroquinoxaline (1.67 g, 10.1 mmol, 74% yield) was obtained as a white solid.

Comment: The product 2-chloroquinoxaline was obtained in 82% yield when the reaction was repeated with a reaction time of 4.5 h.

\[R_f = 0.48 \text{ (cyclohexane/ethyl acetate 10:1)}. \]

\[^1\text{H NMR (400 MHz, CDCl₃, ppm)} \delta = 8.77 \text{ (s, 1H, C_HCCl), 8.02–7.99 (m, 1H, C_Har), 7.81–7.74 (m, 2H, C_Har);} \]

\[^1^3\text{C NMR (100 MHz, CDCl₃, ppm)} \delta = 147.3 \text{ (1C, C_q), 144.9 \text{ (1C, CHCCI), 141.9 \text{ (1C, C_q), 141.0 \text{ (1C, C_q), 131.2 \text{ (1C, CHCCI), 130.1 \text{ (1C, CHCCI), 129.3 \text{ (1C, CHCCI), 128.5 \text{ (1C, CHCCI);}}} \]

\[\text{MS (EI, m/z, 70 eV, 20 °C): 164/166 [M]\text{+} (100/35), 129 (88), 102 (34), 76 (13), 75 (11)}. \]

HRMS (EI, C₈H₅N₂Cl): calcld 164.0136, found 164.0136; IR (ATR, \(\tilde{\nu} \)) = 3047 (m), 1541 (m), 1486 (m), 1459 (w), 1248 (m), 1153 (s), 1128 (m), 1091 (vs), 1057 (m), 958 (vs), 918 (s), 864 (m), 789 (w), 755 (vs), 708 (w), 594 (s), 518 (w), 448 (m), 408 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository:
https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-BYHGQHIAF-UHFFADPSCNUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/BYHGQHIAFURIL-UHFFFAOYSA-N.2

The synthesis of this compound has been previously described and the NMR data corresponds with the literature [13].

2-Chloro-3-methylquinoxaline (10b)

\[\begin{align*}
\text{N} & \quad \text{CH₃} \\
\text{O} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\text{O=P−Cl} & \quad \text{Cl'} \\
\text{100 °C, 2 h} & \quad \text{100 °C, 2 h}
\end{align*} \]

Name {P1|10b}: 2-chloro-3-methylquinoxaline; Formula: C₉H₇ClN₂; Molecular Mass: 178.6183; Exact Mass: 178.0298; Smiles: Cc1nc2ccccc2nc1Cl; InChIKey: PXDLUYLWPJMGJA-UHFFFAOYSA-N

To 4.30 g of 3-methylquinoxalin-2(1H)-one (27 mmol, 1.0 equiv), 55.0 mL of phosphoryl chloride (90.2 g, 0.59 mol, 21.9 equiv) were added and heated to 100 °C.
for 2 h. The reaction was cooled to room temperature, poured on ice and was kept for 30 min on ice. The organic phase was separated and the aqueous phase was extracted with 3x DCM. The organic layers were combined, dried over Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude product was purified via flash chromatography (dryload on Celite, eluent cHex/EtOAc 10:1). The product was obtained as a red solid (4.21 g, 24 mmol, 88% yield).

\[R_f = 0.28 \text{ (cyclohexane/ethyl acetate 1:1)}. \]

\[^1H \text{ NMR (400 MHz, CDCl}_3, ppm) \delta = 8.04–8.01 \text{ (m, 1H, C}_6\text{H}_4), 8.00–7.97 \text{ (m, 1H, C}_6\text{H}_4), 7.76–7.70 \text{ (m, 2H, C}_6\text{H}_4), 2.84 \text{ (s, 3H, CH}_3); \]

\[^13\text{C NMR (400 MHz, CDCl}_3, ppm) \delta = 152.8 \text{ (1C, C}_N\text{Cl), 147.8 \text{ (1C, C}_6\text{H}_4), 140.9 \text{ (1C, C}_6\text{H}_4), 140.9 \text{ (1C, C}_6\text{H}_4), 130.1 \text{ (1C, C}_6\text{H}_4), 130.0 \text{ (1C, C}_6\text{H}_4), 128.4 \text{ (1C, }} \]

Additional information on the chemical synthesis is available via Chemotion repository:
https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-PXDLUYLWPJ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/PXDLUYLWPJMGJA-UHFFAOYSA-N.1

The synthesis of this compound has been previously described in literature [14].

2-Chloro-3-propan-2-ylquinoxaline (10c)

\[
\begin{array}{c}
\text{Cl} \\
\text{O} = \text{P} \quad \text{Cl} \\
\text{Cl}
\end{array}
\xrightarrow{100 \degree C, 2 h}
\begin{array}{c}
\text{Cl} \\
\text{O} = \text{P} \quad \text{Cl} \\
\text{Cl}
\end{array}
\]

Name \{P1|10c\}: 2-chloro-3-propan-2-ylquinoxaline; Formula: \(\text{C}_{11}\text{H}_{11}\text{ClN}_{2} \); Molecular Mass: 206.6714; Exact Mass: 206.0611; Smiles: \(\text{CC(c1nc2ccccc2nc1Cl)}\); InChIKey: ZRDHYUMEEJHJN-UHFFAOYSA-N

The starting material 3-propan-2-yl-1H-quinoxalin-2-one (363 mg, 1.93 mmol, 1.00 equiv) was dissolved in phosphoryl chloride (6.56 g, 4.00 mL, 42.8 mmol, 22.2 equiv) and heated to 100 °C for 2 h. The reaction was cooled to 25 °C, slowly poured on ice and rested for 1 h. The organic phase was separated and the aqueous phase was extracted with 3x DCM. The organic layers were combined, dried over Na₂SO₄ and filtered, the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent cHex/EtOAc 20:1); 2-
Chloro-3-propan-2-ylquinoxaline (320 mg, 1.55 mmol, 80% yield) was obtained as a colorless solid.

$R_f = 0.32$ (cyclohexane/ethyl acetate 20:1). 1H NMR (400 MHz, CDCl$_3$, ppm) δ = 8.07–8.05 (m, 1H, CH$_{ar}$), 7.99–7.96 (m, 1H, CH$_{ar}$), 7.75–7.68 (m, 2H, CH$_{ar}$), 3.71 (hept, 3J = 6.7 Hz, 6H, 2x CH$_3$); 13C NMR (100 MHz, CDCl$_3$, ppm) δ = 159.9 (1C, Cq), 147.3 (1C, Cq), 141.1 (1C, Cq), 140.7 (1C, Cq), 129.9 (1C, Car), 129.8 (1C, Car), 128.8 (1C, Car), 128.0 (1C, Car), 32.6 (1C, CH(CH$_3$)$_2$), 21.0 (2C, CH$_3$); MS (El, 70 eV, 20 °C), m/z (%): 206/208 [M]$^+$ (48/17), 205 (16), 191/193 (100/33), 178 (36), 171 (25), 155 (17), 129 (47), 102 (41). HRMS (El, C$_{11}$H$_11$N$_2$Cl$_1$): calcld 206.0605, found 206.0604; IR (ATR, $\tilde{\nu}$) = 3044 (vw), 2965 (m), 2927 (w), 2868 (w), 1561 (w), 1550 (w), 1483 (w), 1466 (w), 1456 (m), 1442 (w), 1380 (w), 1358 (w), 1310 (w), 1265 (s), 1194 (w), 1180 (w), 1157 (m), 1130 (m), 1116 (m), 1092 (vs), 1018 (vs), 965 (m), 926 (w), 874 (w), 798 (w), 764 (vs), 687 (m), 649 (w), 616 (vw), 592 (s), 494 (w), 459 (m), 436 (w), 412 (w) cm$^{-1}$.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-ZRDHYUMEEX-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/ZRDHYUMEEXJHJN-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described in literature [15].

2-Chloro-3-(trifluoromethyl)quinoxaline (10d)

![Reaction Diagram]

Name {P1|10d}: 2-chloro-3-(trifluoromethyl)quinoxaline; Formula: C$_9$H$_4$ClF$_3$N$_2$; Molecular Mass: 232.5897; Exact Mass: 232.0015; Smiles: Clc1nc2ccccc2nc1C(F)(F)F; InChIKey: DSMMAQWRRJQVTQ-UHFFFAOYSA-N

To 1.10 g of 3-(trifluoromethyl)quinoxalin-2(1H)-one (5.10 mmol, 1.0 equiv), 10.0 mL of phosphoryl chloride (16.4 g, 0.10 mol, 21 equiv) were added and the reaction mixture was heated to 100 °C for 4 h. The reaction was cooled to room temperature, poured on ice and rested for 30 min. The aqueous phase 3x with DCM, the organic layers were combined, dried over Na$_2$SO$_4$ and filtered. The solvent was removed under reduced pressure. The remaining solid was purified by column chromatography (dryload on Celite, eluent cHex/ETOAc 4:1) and the product 2-chloro-3-(trifluoromethyl)quinoxaline (1.04 g, 4.49 mmol, 87% yield) was obtained as a colorless solid. Note: This reaction was repeated with a yield of 91%.
$R_f = 0.51$ (cyclohexane/ethyl acetate 10:1). 1H NMR (400 MHz, ppm) δ = 8.25–8.22 (m, 1H, CH_{arom}N), 8.13–8.11 (m, 1H, CH_{arom}N), 7.98–7.89 (m, 2H, CH_{arom}); 13C NMR (100 MHz, CDCl$_3$, ppm) δ = 143.3 (1C, NCl), 142.7 (1C, NCClH), 140.2 (q, $^2J = 36.2$ Hz, 1C, CCF$_3$), 138.8 (1C, NCClH), 133.6 (1C, CH_{arom}), 131.5 (1C, CH_{arom}), 129.9 (1C, CH_{arom}), 128.3 (1C, CH_{arom}), 120.3 (q, $^1J =$ 275.5 Hz, 1C, CCF$_3$); 13C NMR (100 MHz, CDCl$_3$, ppm) δ = 133.6 (1C, CH_{arom}), 131.5 (1C, CH_{arom}), 129.9 (1C, CH_{arom}), 128.3 (1C, CH_{arom}); 19F NMR (376 MHz, CDCl$_3$, ppm) δ = -66.7; ESI: 233/235 (100/32) $[M+1]^+$, 234 (10), 231 (25). HRMS (C$_9$H$_6$ClF$_3$N$_2$+H): calcd 233.0088, found 233.0086; IR (ATR, $\tilde{\nu}$) = 3044, 1561, 1547, 1487, 1468, 1394, 1364, 1344, 1334, 1305, 1293, 1256, 1244, 1181, 1166, 1132, 1109, 1030, 997, 979, 945, 898, 884, 798, 773, 744, 650, 605, 589, 575, 527, 499, 458 cm$^{-1}$.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-DSMMAQWRJ-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/DSMMAQWRRJQVTQ-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the NMR data corresponds with the literature [16].

2-Chloro-3-phenylquinoxaline (10e)

![2-Chloro-3-phenylquinoxaline](image)

Name {P1|10e}: 2-chloro-3-phenylquinoxaline; Formula: C$_{14}$H$_9$ClN$_2$; Molecular Mass: 240.6877; Exact Mass: 240.0454; Smiles: Clc1nc2ccccc2nc1c1ccccc1; InChIKey: KPGPIQKEKAEAHM-UHFFFAOYSA-N

In a 100 mL pear-shaped flask, phosphoryl chloride (46.4 mL, 496.8 mmol, 60 eq), was added to 3-phenylquinoxalin-2(1H)-one (1840 mg, 8.33 mmol, 1 eq) and heated to 100 °C for 2 h. The reaction was cooled to 21 °C and poured on ice and rested for overnight. The remaining aqueous layer was extracted with DCM (3x) and the organic layers were combined, dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using Cyclohexane/EtOAc (10:1) as the eluent to afford 2-chloro-3-phenylquinoxaline (1598 mg, 6.6 mmol, 80% yield) as a white solid.

$R_f = 0.49$ (cyclohexane/ethyl acetate 10:1). 1H NMR (400 MHz, CDCl$_3$, ppm) δ = 7.59–7.48 (m, 3H), 7.83–7.77 (m, 2H), 7.90–7.84 (m, 2H), 8.11–8.03 (m, 1H), 8.20–8.12 (m, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ = 128.3, 128.5 (2C), 129.4, 129.8 (2C), 129.9, 130.6, 131.0, 136.9, 141.2, 141.2, 146.3, 153.2; El (m/z, 70 eV, 40 °C): 242/241/240 [M]+ (21/10/61), 206 (16), 205 (100), 102 (25), 77 (36), 76 (16), 75 (14), 51 (16) HRMS (C$_{14}$H$_9$N$_2$Cl): calcd 240.0454, found 240.0454; IR (ATR, $\tilde{\nu}$) = 436, 483, 492, 552, 575, 597, 633, 685, 695, 719, 762, 876, 885, 910, 978, 1001, 1029, 1086, 1133, 1147.39,
1158, 1219.63, 1243, 1276, 1322, 1385, 1443, 1460, 1481, 1497, 1535, 1559, 1610, 3034, 3061 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-KPGPIQKEKA-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/KPGPIQKEKAEAHM-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described in literature [17].

2,3-Dichloroquinoxaline (10f)

![Chemical structure of 2,3-dichloroquinoxaline](image)

Name {P1|10f}: 2,3-dichloroquinoxaline; Formula: C₈H₄Cl₂N₂; Molecular Mass: 199.0368; Exact Mass: 197.9752; Smiles: Clc1nc2ccccc2nc1Cl; InChIKey: SPSSDDOTEZKOOV-UHFFFAOYSA-N

Phosphoryl chloride (21.6 g, 13.1 mL, 141 mmol, 20.0 equiv) and 5 mL of DMF were added to the quinoxalinone (1.14 g, 7.0 mmol, 1.00 equiv) and heated to 100 °C for 2 h. The reaction was cooled to 21 °C, poured on ice and rested overnight. The organic phase was separated and the aqueous phase was extracted 3x with ethyl acetate; the combined organic layers were combined were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The remaining solid was purified by column chromatography (dHex/ethyl acetate 10:1). 1.32 g (6.65 mmol, 95%) of a colorless solid were obtained.

\(R_f = 0.59 \) (cyclohexane/ethyl acetate 4:1). \(^1H \) NMR (400 MHz, CDCl₃, ppm) \(\delta = 8.07–8.02 \) (m, 2H, \(CH_l \)), 7.84–7.80 (m, 2H, \(CH_l \)); \(^13C \) NMR (100 MHz, CDCl₃, ppm) \(\delta = 145.4 \) (2C, \(C_2N_2Cl_2 \)), 140.6 (2C, \(C_l \)), 131.3 (2C, \(C_l \)), 128.3 (2C, \(C_l \)); El (m/z, 70 eV, 20 °C): 200/198 (66/100) \([M]^+\), 165 (21), 163 (65), 102 (46); HRMS (El, C₈H₄N₂Cl₂): calcd 197.9752, found 197.9752; IR (ATR, \(\tilde{\nu} \)) = 3104, 3063, 3041, 3041, 3002, 2944, 1955, 1846, 1645, 1608, 1555, 1530, 1482, 1458, 1343, 1266, 1242, 1176, 1116, 1069, 1018, 1006, 987, 969, 885, 785, 764, 647, 596, 558, 524, 500, 492, 477, 456, 435, 377 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-SPSSDDOTEZ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/SPSSDDOTEZKOOV-UHFFFAOYSA-N.2
The synthesis of this compound has been previously described and the NMR data corresponds with the literature [13].

Tetrazolo[1,5-a]quinoxaline (11a)

Sodium azide (434 mg, 6.68 mmol, 1.08 equiv) was added to the starting material 2-chloroquinoxaline (1.01 g, 6.16 mmol, 1.00 equiv) in 15 ml of DMF, stirred at 60 °C for 2.5 h and subsequently stirred at 25 °C for 16 h. Water was added and the aqueous phase was extracted with 3× EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on celite, eluent cHex/EtOAc 1:1) and tetrazolo[1,5-a]quinoxaline (960 mg, 5.61 mmol, 91% yield) was obtained as a light yellow solid.

$R_f = 0.2$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, CDCl₃, ppm) δ = 9.57 (s, 1H, NC₃H₃CNN), 8.65 (dd, 3J = 8.2 Hz, 4J = 1.3 Hz, 1H, CH₃CN), 8.32 (dd, 3J = 8.1 Hz, 4J = 1.4 Hz, 1H, CH₃CHCN), 7.94 (td, 3J = 7.9 Hz, 4J = 1.5 Hz, 1H, CH₃CHCN); 13C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 142.3 (1C, N-CN), 141.2 (1C, NHCN), 136.7 (1C, CH₃CN), 131.7 (1C, CH₃), 130.8 (1C, CH₃), 129.8 (1C, CH₃), 125.0 (1C, CH₂CN), 116.4 (1C, CH₃); MS (EI, 70 eV, 50 °C), m/z (%): 171 [M]+ (6), 144 (10), 143 (100), 116 (32), 89 (10), 63 (11). HRMS (EI, C₈H₅N₅S): Calcd 171.0539, Found 171.0540; IR (ATR, \tilde{v}) = 3063 (w), 3040 (vw), 3021 (w), 1551 (w), 1509 (w), 1458 (w), 1443 (w), 1408 (w), 1354 (w), 1329 (w), 1310 (w), 1269 (w), 1222 (w), 1193 (w), 1140 (w), 1102 (w), 1078 (s), 1035 (w), 1018 (w), 997 (m), 963 (w), 916 (s), 871 (s), 843 (w), 782 (vs), 766 (vs), 713 (w), 701 (w), 690 (m), 620 (m), 579 (w), 520 (w), 469 (w), 453 (m), 429 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-LGMVEBQKPY-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/LGMVEBQKPYIMMI-UHFFFAOYSA-N.2

The synthesis of this compound has been previously described and the NMR data corresponds with the literature [6].
4-Methyltetrazolo[1,5-a]quinoxaline (11b)

![Chemical Structure](image)

Name \{P1|11b\}: 4-methyltetrazolo[1,5-a]quinoxaline; Formula: C₉H₇N₅; Molecular Mass: 185.1854; Exact Mass: 185.0701; Smiles: Cc1nc2ccccc2n2c1nnn2; InChIKey: BVEPTXWZDNARLY-UHFFFAOYSA-N

Sodium azide (0.55 g, 8.40 mmol, 1.5 equiv) was added to 1.0 g of 2-chloro-3-methylquinoxaline (5.60 mmol, 1.0 equiv) in 25 mL of DMF and stirred at 80 °C for 2 h. Distilled water was added and the organic phase was separated. The aqueous phase was extracted 3x with EtOAc, the combined organic phases were dried over Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent chHex/EtOAc 10:1). The product was obtained as a yellow solid (0.98 g, 5.26 mmol, 94% yield).

Rᵥ = 0.22 (cyclohexane/ethyl acetate 4:1). §H NMR (400 MHz, CDCl₃, ppm) δ = 8.59–8.57 (m, 1H, C₆H₄), 8.22–8.20 (m, 1H, C₆H₄), 7.87–7.80 (m, 2H, C₆H₄), 3.13 (s, 3H, CH₃); §C NMR (100 MHz, CDCl₃, ppm) δ = 151.0 (1C, NCN), 142.9 (1C, NCC₅H₄), 136.8 (1C, NCC₅H₄), 130.3 (1C, CH₉arom), 129.8 (1C, CH₉arom), 129.7 (1C, CH₉arom), 124.6 (1C, CCH₂), 116.3 (1C, CH₉arom), 21.7 (1C, CH₃); MS (ESI): 187 (10) [M+2]⁺, 186 (100) [M+1]⁺, 158 (16). HRMS [ESI, C₉H₇N₅+H]⁺: Calcd 186.0774, Found 186.0774. IR (ATR, v) = 3081 (w), 3016 (w), 1510 (m), 1477 (m), 1446 (w), 1428 (m), 1411 (m), 1373 (m), 1337 (s), 1290 (w), 1255 (w), 1218 (w), 1177 (s), 1154 (w), 1102 (m), 1055 (w), 1017 (w), 993 (s), 970 (m), 854 (s), 781 (s), 768 (vs), 730 (w), 697 (m), 650 (m), 618 (m), 543 (w), 534 (w), 469 (m), 460 (m), 446 (m) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-BVEPTXWZDN-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/BVEPTXWZDNARLY-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the §H NMR data corresponds with the literature [18].
4-Isopropyltetrazolo[1,5-a]quinoxaline (11c)

Na⁺ N=N⁺·N⁺

60 °C, DMF, 1 d

Name {P1|11c}: 4-isopropyltetrazolo[1,5-a]quinoxaline; Formula: C₁₁H₁₁N₅; Molecular Mass: 213.2385; Exact Mass: 213.1014; Smiles: CC(c1nc2ccccc2nc1nnn2)C

InChIKey: UEHBPGWWVJRPTJ-UHFFFAOYSA

Sodium azide (97.6 mg, 1.50 mmol, 1.10 equiv) was added to the starting material 2-chloro-3-propan-2-ylquinoxaline (282 mg, 1.36 mmol, 1.00 equiv) in 5 mL of DMF and stirred at 60 °C for 26 h. Water was added and the aqueous phase was extracted with 3× EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on celite, cHex -> cHex/EtOAc 1:1) and 4-isopropyltetrazolo[1,5-a]quinoxaline (202 mg, 947 μmol, 69% yield) was obtained as a colorless solid.

Rᵣ = 0.19 (cyclohexane/ethyl acetate 2:1). ¹H NMR (400 MHz, DMSO-ᴅ₆, ppm) δ = 8.54 (dd, ³J = 7.8 Hz, ⁴J = 1.9 Hz, 1H, CH₉), 8.23 (dd, ³J = 8.0 Hz, ⁴J = 1.7 Hz, 1H, CH₉), 7.94–7.86 (m, 2H, CH₉), 3.80 (hept, ³J = 6.9 Hz, 1H, CH(CH₃)₂), 1.49 (d, ³J = 7.0 Hz, 6H, CH₃); ¹³C NMR (100 MHz, DMSO-ᴅ₆) δ = 158.2 (1C, C₁q), 142.0 (1C, C₁q), 136.2 (1C, C₁1), 130.4 (1C, CH₉), 129.6 (1C, CH₉), 129.5 (1C, CH₉), 124.3 (1C, C₁q), 116.0 (1C, CH₉), 33.5 (1C, CH(CH₃)₂), 20.2 (2C, CH₃); MS (EI, 70 eV, 50 °C), m/z (%): 213 [M⁺]⁺ (6), 185 (29), 184 (61), 170 (100), 157 (15), 145 (80), 143 (53), 131 (20), 116 (31), 90 (21). HRMS (EI, C₁₁H₁₁N₅): Calcd 213.1009, Found 213.1011; IR (ATR, ᴣ) = 2975 (w), 2921 (w), 2876 (w), 1561 (w), 1506 (s), 1465 (m), 1459 (m), 1422 (w), 1412 (w), 1383 (w), 1360 (w), 1339 (w), 1324 (w), 1248 (w), 1217 (w), 1183 (w), 1140 (w), 1133 (w), 1094 (m), 1072 (m), 994 (w), 984 (w), 959 (w), 976 (vs), 766 (vs), 703 (w), 680 (w), 659 (w), 632 (w), 613 (w), 552 (w), 479 (w), 455 (w) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-UEHBPGWWVJ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/UEHBPGWWVJRPTJ-UHFFFAOYSA-N.1

4-(Trifluoromethyl)tetrazolo[1,5-a]quinoxaline (11d)

Na⁺ N=N⁺·N⁺

80 °C, DMF, 2 h
Sodium azide (0.40 g, 6.10 mmol, 1.5 equiv) was added to 0.95 g of 2-chloro-3-(trifluoromethyl)quinoxaline (4.10 mmol, 1.0 equiv) in 25 mL of DMF and stirred at 80 °C for 2 h. Distilled water was added, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent cHex/EtOAc 10:1) and 0.93 g (3.87 mmol, 95% yield) of a colourless solid were obtained. \(R_f = 0.32 \) (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl₃, ppm) \(\delta = 8.74 \) (dd, \(^3\)J = 8.3 Hz, \(^2\)J = 1.1 Hz, 1H, CHarN), 8.46 (dd, \(^3\)J = 8.2 Hz, \(^2\)J = 1.1 Hz, 1H, CHarN), 8.13–8.08 (m, 1H, CHar), 8.00 (ddd, \(^3\)J = 8.6 Hz, \(^3\)J = 7.4 Hz, \(^2\)J = 1.3 Hz, 1H, CHar); \(^1\)C NMR (100 MHz, CDCl₃, ppm) \(\delta = 139.7 \) (1C, N-CN), 138.9 (q, \(^3\)J = 40.3 Hz, 1C, CCF₃), 134.9 (1C, NCC₅H₄), 134.1 (1C, CHar), 131.6 (1C, CHar), 130.7 (1C, CHar), 125.6 (1C, NCC₅H₄), 119.3 (q, \(^1\)J = 276 Hz, 1C, CF₃), 116.6 (1C, CHar); \(^1\)F NMR (376 MHz, CDCl₃, ppm) \(\delta = -67.7 \); ESI: 241 (10) [M+1]^+, 240 (100), 231 (13), 212 (33). HRMS [C₉H₄F₃N₅]+: Calcd 240.0492, Found 240.0488; IR (ATR, \(\tilde{\nu} \)) = 3091 (w), 1571 (w), 1517 (w), 1475 (w), 1417 (w), 1356 (s), 1299 (s), 1271 (w), 1262 (m), 1249 (w), 1213 (s), 1186 (vs), 1154 (vs), 1137 (vs), 1103 (vs), 1088 (vs), 993 (w), 969 (vs), 853 (w), 773 (vs), 732 (vs), 704 (m), 669 (w), 660 (w), 588 (s), 534 (w), 501 (w), 477 (s), 456 (m) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-ALUDOBBDYF-UHFFADPSC-NUHFF-NUHFF-ZZZ
Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/ALUDOBBDYFOFJP-UHFFFAOYSA-N.1

4-Phenyltetrazolo[1,5-a]quinoxaline (11e)
The starting material 2-chloro-3-phenylquinoxaline (899 mg, 3.74 mmol, 1.00 equiv) was dissolved in 10 mL of DMF and sodium azide (271 mg, 4.17 mmol, 1.12 equiv) was added; the reaction mixture was stirred at 80 °C for 2 h. The reaction mixture was cooled to 25 °C and distilled water was added, then the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, CHex -> eluent CHex/ethyl acetate 1:1) and 4-phenyltetrazolo[1,5-a]quinoxaline (865 mg, 3.50 mmol, 94% yield) was obtained as a colorless solid.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-AOUCPYFCRA-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/AOUCPYFCRAWRNU-UHFFFAOYSA-N.1

The use of this compound has been previously described in literature [19].

4-Chlorotetrazolo[1,5-a]quinoxaline (11f)

Sodium nitrite (53 mg in 0.5 mL of water, 771 μmol, 3.00 equiv) was added dropwise over a period of 30 min to 50.0 mg (257 μmol, 1.00 equiv) of (3-chloroquinoxalin-2-yl)hydrazine in a 3:1 mixture of acetic acid (1.5 mL) and water (0.5 mL) at 0 °C. The reaction was stirred at 0 °C for 2.5 h and subsequently neutralized with solid Na₂CO₃.
while cooled in an ice bath to 0 °C. Ethyl acetate and water was added and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified via flash chromatography (dryload on Celite, eluent cHex/EtOAc 4:1) and 4-chlorotetrazolo[1,5-a]quinoxaline (44.6 mg, 217 μmol, 84% yield) was obtained as a yellow-beige solid.

\[R_f = 0.43 \text{ (cyclohexane/ethyl acetate 4:1).} \]

\[^1H \text{ NMR (400 MHz, ppm) } \delta = 8.62 \text{ (dd, } ^3J = 8.2 \text{ Hz, } ^4J = 1.2 \text{ Hz, 1H, CHNCl), } 8.23 \text{ (dd, } ^3J = 8.1 \text{ Hz, } ^4J = 1.2 \text{ Hz, 1H, CHNN), } 7.95 \text{ (td, } ^3J = 7.8 \text{ Hz, } ^4J = 1.5 \text{ Hz, 1H, CHarCH), } 7.89 \text{ (td, } ^3J = 7.8 \text{ Hz, } ^4J = 1.5 \text{ Hz, 1H, CHarCH); } \]

\[^13C \text{ NMR (100 MHz, CDCl}_3[77.0 \text{ ppm}, \text{ ppm}) \delta = 142.1 \text{ (1C, Cq), } 140.3 \text{ (1C, Cq), } 136.0 \text{ (1C, Cq), } 131.7 \text{ (1C, CHarCH), } 130.5 \text{ (1C, CHarCH), } 129.8 \text{ (1C, CHarNN), } 124.6 \text{ (1C, Cq), } 116.5 \text{ (1C, CHarNCI); EI (m/z, 70 eV, 80 °C): 205/207 } [M]^+ \text{ (9/3), 179 (34), } 177 \text{ (100), } 142 \text{ (14), } 116 \text{ (16), } 90 \text{ (20), } 89 \text{ (16), } 63 \text{ (14). HRMS (EI, C}_8\text{H}_4\text{N}_5\text{Cl}_1): calcld 205.0155, found 205.0155; IR (ATR, } v = 3082 \text{ (w), 3023 \text{ (w), 1973 (w), 1846 (w), 1662 (w), 1609 (w), 1547 (w), 1506 (s), 1477 (w), 1456 (s), 1412 (w), 1322 (m), 1315 (m), 1217 (w), 1208 (w), 1142 (s), 1111 (m), 1098 (vs), 1045 (w), 975 (vs), 962 (s), 932 (w), 878 (w), 841 (w), 778 (vs), 701 (w), 694 (m), 639 (m) cm}^{-1}; \]

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-KOWYBYDSUF-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/KOWYBYDSUFDMGG-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described in literature [7].

4-Methoxytetrazolo[1,5-a]quinoxaline (11g), 5H-tetrazolo[1,5-a]quinoxalin-4-one (11h)

![Chemical Structure](image)

Name {P1|11g}: 4-methoxytetrazolo[1,5-a]quinoxaline; Formula: C₉H₇N₅O; Molecular Mass: 201.1848; Exact Mass: 201.0651; Smiles: COc1nc2ccccc2n2c1nnn2; InChIKey: VEKBUDDBMJFNK-UHFFFAOYSA-N

Name {P2|11h}: 5H-tetrazolo[1,5-a]quinoxalin-4-one; Formula: C₈H₅N₅O; Molecular Mass: 187.1582; Exact Mass: 187.0494; Smiles: O=c1[nH]c2ccccc2n2c1nnn2; InChIKey: SECOVEPEJIEBPV-UHFFFAOYSA-N

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (90.0 mg, 438 μmol, 1.00 equiv) and sodium; methanolate (68.0 mg, 1.26 mmol, 2.88 equiv) were added to a crimp vial and methanol (2.00 mL) was added. The reaction mixture was stirred at 25 °C for 20 h, then water and EtOAc were added and the aqueous phase was extracted.
3× with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent cHex/ EtOAc 4:1); 4-methoxytetrazolo[1,5-a]quinoxaline (64.0 mg, 318 μmol, 73% yield) and 5H-tetrazolo[1,5-a]quinoxalin-4-one (12.0 mg, 64.1 μmol, 15% yield) were obtained as colourless solids.

\[R_f = 0.36 \] (cyclohexane/ethyl acetate 2:1).

\[^1H \text{ NMR (400 MHz, DMSO-}d_6, \text{ ppm) } \delta = 8.46–8.44 \text{ (m, 1H, C}_\text{H}_\text{ar}), 7.99–7.97 \text{ (m, 1H, C}_\text{H}_\text{ar}), 7.82–7.73 \text{ (m, 2H, C}_\text{H}_\text{ar}), 4.25 \text{ (s, 3H, C}_\text{H}_3; \]

\[^{13}C \text{ NMR (100 MHz, DMSO-}d_6, \text{ ppm) } \delta = 151.3 \text{ (1C, C}_q, 138.9 \text{ (1C, C}_q, 135.2 \text{ (1C, C}_q, 129.8 \text{ (1C, C}_\text{H}_\text{ar}), 127.8 \text{ (1C, C}_\text{H}_\text{ar}), 127.6 \text{ (1C, C}_\text{H}_\text{ar}), 123.6 \text{ (1C, C}_\text{H}_\text{ar}), 116.0 \text{ (1C, C}_\text{H}_\text{ar}), 54.9 \text{ (1C, C}_3; \]

\[\text{MS (EI, 70 eV, 90 °C), m/z (%): 201 [M]+ (10), 173 (60), 158 (100), 106 (49), 90 (19), 78 (20). HRMS (EI, C}_9\text{H}_7\text{O}_1\text{N}_5: calcd 201.0645, found 201.0646; IR (ATR, } \tilde{\nu} \text{) = 3092 (w), 2955 (w), 2166 (vw), 1578 (vs), 1523 (vs), 1486 (m), 1432 (s), 1346 (vs), 1322 (m), 1293 (m), 1245 (vs), 1215 (w), 1200 (vs), 1133 (m), 1106 (m), 1016 (w), 992 (w), 955 (vs), 901 (w), 771 (vs), 735 (w), 718 (m), 705 (w), 632 (s), 477 (m), 469 (vs), 414 (w) cm}^{-1}. \]

10\[^1H \text{ NMR (400 MHz, DMSO-}d_6, \text{ ppm) } \delta = 12.56 \text{ (bs, 1H, N}_\text{H}), 8.27 \text{ (d, } ^3J = 7.9 \text{ Hz, 1H, NCC}_\text{H}_\text{ar}), 7.63 \text{ (t, } ^3J = 7.8 \text{ Hz, 1H, C}_\text{H}_\text{ar}), 7.50 \text{ (d, } ^3J = 7.9 \text{ Hz, 1H, NCC}_\text{H}_\text{ar}), 7.45 \text{ (t, } ^3J = 7.8 \text{ Hz, 1H, C}_\text{H}_\text{ar}). \]

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHF-UFHFADPS-DJDCNOUVOP-UHFFADPS-NUHF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/VEKBUDDBMJNFNK-UHFFFAOYSA-N.1 https://doi.org/10.14272/SECOVEPJEIBBPV-UHFFAOYSA-N.2

The synthesis of the target compound 4-methoxytetrazolo[1,5-a]quinoxaline has been previously described in literature [20].

5H-tetrazolo[1,5-a]quinoxalin-4-one (11h)

\[
\begin{align*}
\text{Cl} & \quad \text{KOH} \\
25 \degree \text{C, DMSO/H}_2\text{O,} & \quad 45 \text{ min}
\end{align*}
\]

Name {P1|11h}: 5H-tetrazolo[1,5-a]quinoxalin-4-one; Formula: C₈H₅N₅O; Molecular Mass: 187.1582; Exact Mass: 187.0494; Smiles: O=c1[nH]c2cccccc2c1nnn2; InChIKey: SECOVEPJEIBBPV-UHFFAOYSA-N

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (198 mg, 963 μmol, 1.00 equiv) was dissolved in DMSO (6.00 mL); then 2 mL of water and potassium hydroxide (273 mg, 4.86 mmol, 5.00 equiv) were added. The dark red reaction mixture was stirred at 25 °C for 45 min, then a 1 M solution of HCl was added until the pH was acidic. The precipitated product was collected via filtration and washed 3× with water;
5H-tetrazolo[1,5-a]quinoxalin-4-one (174 mg, 930 μmol, 97% yield) was obtained as a light yellow solid.

\[R_t = 0.11 \text{ (cyclohexane/ethyl acetate 1:1)}. \]

\[^1H \text{ NMR (400 MHz, DMSO-}d_6, \text{ ppm) } \delta = 12.56 \text{ (bs, 1H, NH), 8.26 (dd, } ^3J = 8.3 \text{ Hz, } ^4J = 1.4 \text{ Hz, 1H, C_Har), 7.64–7.60 (m, 1H, C_Har), 7.49 (dd, } ^3J = 8.3 \text{ Hz, } ^4J = 1.4 \text{ Hz, 1H, C_Har), 7.46–7.42 (m, 1H, C_Har); } ^13C \text{ NMR (100 MHz, DMSO-}d_6, \text{ ppm) } \delta = 151.2 \text{ (1C, N-CO), 144.4 (1C, N-CN), 129.9 (1C, C_Har), 129.6 (1C, C_Hq), 124.0 (1C, C_Har), 120.0 (1C, C_q), 129.9 (1C, C_Har), 116.9 (1C, C_Har), 116.5 (1C, C_Har); MS (ESI, negative Mode), m/z (%): 186 [M-1] (100), 158 (34), 111 (27). HRMS (ESI, C_8H_5N_5O): calcd 186.0415, found 186.0412; IR (ATR, } \nu = 3174 \text{ (w), 3104 (m), 3051 (w), 3016 (w), 2959 (w), 2928 (w), 2863 (w), 1704 (m), 1666 (vs), 1622 (s), 1519 (m), 1472 (s), 1453 (s), 1418 (m), 1336 (vs), 1323 (s), 1264 (m), 1245 (s), 1210 (s), 1156 (w), 1139 (w), 1113 (w), 1069 (m), 1017 (w), 993 (w), 943 (w), 864 (w), 792 (m), 761 (vs), 728 (m), 704 (vs), 677 (vs), 652 (vs), 540 (w), 459 (vs), 446 (s) cm}^{-1}. \]

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-SECOVEPJEUHFFADPSCNUHFFNUHFFNUHFFZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/SECOVEPJIEIBBPV-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the \(^1H\) NMR data corresponds with the literature \[21\].

N,N-dimethyltetrazolo[1,5-a]quinoxalin-4-amine (11i)

![chemical structure]

Name \{P1\[11i\]: N,N-dimethyltetrazolo[1,5-a]quinoxalin-4-amine; Formula: C_{10}H_{10}N_{6}; Molecular Mass: 214.2266; Exact Mass: 214.0967; Smiles: CN(c1nc2ccc2n2c1nnn2)C; InChIKey: MKRBRLWZSN4AOKA-UHFFFAOYSA-N]

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (50.0 mg, 243 μmol, 1.00 equiv) was added to a crimp vial and dissolved in N,N-dimethylformamide (1.00 mL), then dimethylaniline (137 mg, 154 μL, 1.22 mmol, 5.00 equiv) and N,N-diethylethanamine (246 mg, 339 μL, 2.43 mmol, 10.0 equiv) were added. The reaction mixture was stirred at 100 °C for 1.5 h, water and ETOAc were added and the aqueous phase was extracted 3× with ETOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent chex/ETOAc 2:1) and N,N-dimethyltetrazolo[1,5-a]quinoxalin-4-amine (49.0 mg, 229 μmol, 94% yield) was obtained as a yellow solid.
$R_I = 0.36$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, DMSO-d_6, ppm) $\delta = 8.29 (d, ^3J = 8.2$ Hz, 1H, CHar), 7.71 (d, ^3J = 8.3 Hz, 1H, CHar), 7.65–7.61 (m, 1H, CHar), 7.47–7.43 (m, 1H, CHar), 3.58 (bs, 6H, CH$_3$); 13C NMR (100 MHz, DMSO-d_6, ppm) $\delta = 145.9$ (1C, NCCqN), 139.2 (1C, Cq), 137.5 (1C, Cq), 129.6 (1C, CHar), 126.0 (1C, CHar), 124.1 (1C, CHar), 121.4 (1C, CHar), 115.6 (1C, CHar). Missing C (2C, CH$_3$) due to overlap with solvent peak at 39.5 ppm; confirmed via HSQC; MS (EI, 70 eV, 80 °C), m/z (%): 214 [M]+ (17), 186 (18), 185 (100), 171 (26), 146 (20), 144 (35), 118 (15). HRMS (EI, C$_{10}$H$_{10}$N$_6$): calcld 214.0961, found 214.0960; IR (ATR, \tilde{v}) = 3085 (w), 3067 (w), 2922 (w), 2891 (w), 2851 (w), 1585 (s), 1565 (vs), 1511 (m), 1493 (m), 1448 (m), 1435 (m), 1417 (s), 1400 (s), 1385 (s), 1320 (m), 1305 (m), 1268 (m), 1230 (m), 1163 (m), 1129 (m), 1105 (s), 1058 (m), 1038 (m), 1014 (m), 952 (m), 931 (m), 867 (w), 849 (s), 768 (vs), 734 (m), 670 (m), 630 (s), 484 (w), 469 (s), 452 (m), 375 (m) cm$^{-1}$; EA (C$_{10}$H$_{10}$N$_6$): Calcd C 56.07; H 4.70; N 39.23. Found C 56.06; H 4.67; N 38.51.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-MKRBRRLWZSN-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/MKRBRRLWZSNAOKA-UHFFFFAOS-YSA-N.1

1-[4-(Tetrazolo[1,5-a]quinoxalin-4-ylamino)phenyl]ethanone (11j)

![Chemical structure](attachment:image.png)

Name {P1|11j}: 1-[4-(tetrazolo[1,5-a]quinoxalin-4-ylamino)phenyl]ethanone; Formula: C$_{16}$H$_{12}$N$_6$O; Molecular Mass: 304.3061; Exact Mass: 304.1073; Smiles: CC(=O)c1ccc(cc1)Nc1nc2ccccc2n2c1nnn2; InChIKey: OIHNAVUWMWBKPA-UHFFFFAOYSA-N.1

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (100 mg, 486 μmol, 1.00 equiv), 1-(4-aminophenyl)ethanone (78.9 mg, 584 μmol, 1.20 equiv) and aluminum trichloride (97.3 mg, 730 μmol, 1.50 equiv) were suspended in 2 mL of dry THF. The orange reaction mixture was heated under nitrogen to 70 °C and stirred for 5 hours. Water was added to the reaction mixture and the aqueous phase was extracted 3x with EtOAc. The combined organic phases were dried over Na$_2$SO$_4$ and filtered; the solvent was removed under reduced pressure. The crude product was purified twice using column chromatography (dryload on Celite, eluent CH$_3$Cl/ethyl acetate 2:1, then CH$_3$Cl + 0.5% Et$_3$N/ethyl acetate 2:1) and 1-[4-(tetrazolo[1,5-a]quinoxalin-4-ylamino)phenyl]ethanone (141 mg, 463 μmol, 95% yield) was isolated.
as a yellow solid. 20 mg of the product could be obtained in pure form; the remaining 121 mg contained minor impurities.

\[R_f = 0.56 \text{ (cyclohexane/ethyl acetate 2:1).} \]

\[^1H \text{ NMR (400 MHz, DMSO-}d_6, \text{ ppm) } \delta = 10.99 (s, 1H, NH), 8.40–8.35 \text{ (m, 3H, 2x NH}_2\text{Ar, 1x CH}_2\text{CN}), 8.01–7.99 \text{ (m, 2H, CH}_2\text{CCO), 7.95–7.93 \text{ (d, } ^3J = 7.6 \text{ Hz, 1H, CH}_2\text{CN), 7.76–7.72 \text{ (m, 1H, CH}_2\text{CHCN), 7.66–7.62 \text{ (m, 1H, CH}_2\text{CHCN), 2.57 \text{ (s, 3H, CH}_3\text{).} } ^{13}C \text{ NMR (100 MHz, DMSO-}d_6, \text{ ppm) } \delta = 196.4 \text{ (1C, CO), 143.7 \text{ (1C, NH}}} \text{Ar}, \text{ 142.3 \text{ (1C, NCN), 138.9 \text{ (1C, NCN), 136.7 \text{ (1C, CArN), 131.5 \text{ (1C, CArCO), 129.6 \text{ (1C, CH}_2\text{CHCN), 129.2 \text{ (2C, CArCCO), 127.2 \text{ (CH}_2\text{CN), 126.3 \text{ (1C, CH}_2\text{CHCN), 122.7 \text{ (1C, CArN), 119.7 \text{ (2C, NHCHAr), 115.8 \text{ (CH}_2\text{CN), 26.4 \text{ (1C, CH}_3\text{).} })}} \text{ MS (EI, m/z, 70 eV, 170 °C): 304 (42) [M]+, 262 (19), 261 (100), 234 (62), 233 (21), 206 (20), 179 (16), 163 (19), 91 (34), 90 (16), 85 (15), 73 (27), 71 (51), 69 (15), 58 (23), 27 (26), 55 (38). HRMS (C}_{16}H_{12}O_{4}N_6): \text{ calcd 304.1073, found 304.1071.}} \]

IR (ATR, \text{ } \nu) = 3312 \text{ (m), 3200 \text{ (w), 1663 \text{ (s), 1602 \text{ (s), 1565 \text{ (vs), 1538 \text{ (vs), 1502 \text{ (vs), 1482 \text{ (vs), 1431 \text{ (m), 1408 \text{ (vs), 1360 \text{ (s), 1349 \text{ (vs), 1329 \text{ (s), 1316 \text{ (s), 1273 \text{ (vs), 1244 \text{ (vs), 1184 \text{ (vs), 1132 \text{ (s), 1103 \text{ (s), 1016 \text{ (m), 992 \text{ (s), 962 \text{ (s), 946 \text{ (m), 925 \text{ (m), 844 \text{ (vs), 827 \text{ (vs), 764 \text{ (vs), 731 \text{ (m), 717 \text{ (m), 637 \text{ (s), 628 \text{ (s), 620 \text{ (vs), 591 \text{ (vs), 579 \text{ (vs), 527 \text{ (s), 517 \text{ (s), 497 \text{ (s), 469 \text{ (vs), 411 \text{ (m)).} }}}} \text{ Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-OIHNAUWMW-UHFFADPSC-NUHFF-NUHFF-ZZZ}} \]

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/OIHNAUWMWBKPA-UHFFFAQYSA-N.1

The synthesis of this compound has been previously in literature [22].

4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)oxy)tetrazolo[1,5-a]quinoxaline (11k)

\[
\text{Name: } 4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)tetrazolo[1,5-a]quinoxaline; \text{ Formula: C}_{18}H_{8}F_{17}N_{5}O; \text{ Molecular Mass: 633.2619; Exact Mass: 633.0457; Smiles: FC(C(C(C(C(C(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(CCOc1nc2ccccc2n2c1nnn2)F; InChIKey: GAIYTCZAQRWQIX-UHFFFAOYSA-N.} \]

\[
N,N\text{-Dimethylformamide (8.0 mL), potassium hydroxide (81.9 mg, 1.46 mmol, 1.50 equiv), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluoro-1-decanol (497 mg, 1.07 mmol, 1.10 equiv) and 4-chloranyl-[1,2,3,4]tetrazolo[1,5-a]quinoxaline (200 mg, 973 μmol, 1.00 equiv) were mixed together under N_2 atmosphere at 21 °C. The mixture} \]
was stirred at 21 °C for 12 h. N,N-Dimethylformamide was evaporated under strong reduced pressure (55 °C waterbath). Then methylene chloride (50 mL) and brine (50 mL) were added. The aqueous layer was extracted 3× with methylene chloride (50 mL). The combined organic layers were dried over Na₂SO₄, filtered and solvent was removed under reduced pressure. The obtained crude product was purified via flash-chromatography on silica gel using cyclohexane/ethyl acetate 1:0 to 6:1 to afford 4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)tetrazolo[1,5-a]quinoxaline (430 mg, 679 μmol, 70% yield) as a colorless solid.

Rf = 0.46 (cyclohexane/ethyl acetate 4:1).

1H NMR (400 MHz, CDCl₃, ppm) δ = 8.51 (dd, J = 7.8 Hz, J = 1.8 Hz, 1H, -CHCN), 8.00 (dd, J = 7.6 Hz, J = 1.7 Hz, 1H, -CHCN), 7.74 (dtd, J = 16.6 Hz, J = 1.6 Hz, 2H, -CH2CHCN), 5.05 (t, J = 6.9 Hz, 2H, -OCH₂), 2.75 – 3.01 (m, 2H, -OCH₂CH₂); 13C NMR (100 MHz, CDCl₃, ppm) δ = 150.2 (Cq), 138.5 (Cq), 135.3 (Cq), 130.2 (Cq), 128.5 (Cq), 128.4 (Cq), 124.0 (Cq), 116.6 (Cq), 60.3 (t, J = 5.0 Hz), 30.8 (t, J = 21.8 Hz). Missing signals (8C, CF₂ and CF₃).

19F NMR (377 MHz, CDCl₃, ppm) δ = -80.82 (t, J = 10.0 Hz, CF₃), -113.12 – -113.73 (m, CF₂), -121.30 – -121.74 (m, CF₂), -121.74 – -122.10 (m, 2 x CF₂), -122.51 – -122.97 (m, CF₂), -123.17 – -123.74 (m, CF₂), -125.82 – -126.45 (m, CF₂). MS (FAB m/z, Matrix: 3-NBA): 635 (23) [M+H]+, 634 (100) [M]+, 177 (13), 133 (45), 89 (89), 87 (37). HRMS – FAB (m/z): [M+H]+ calcd for C₁₈H₉O₁N₅F₁₇, 634.0531; found, 634.0530. IR (ATR, ν) = 1616, 1591, 1577, 1523, 1486, 1473, 1459, 1434, 1402, 1370, 1351, 1326, 1295, 1196, 1145, 1135, 1135, 1084, 1068, 1037, 1016, 1009, 984, 962, 952, 912, 902, 877, 857, 844, 824, 806, 782, 764, 738, 725, 704, 688, 654, 639, 620, 606 cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHHF-UHFFADPSC-GAIYTCZAQR-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/GAIYTCZAQRWQIX-UHFFFAOYSA-N.1

4-((Trimethylsilyl)ethynyl)tetrazolo[1,5-a]quinoxaline (11)

4(((Trimethylsilyl)ethynyl)tetrazolo[1,5-a]quinoxaline; Formula: C₁₃H₁₃N₅Si; Molecular Mass: 267.3613; Exact Mass: 267.0940; Smiles: C[Si](C#Cc1nc2ccccc2n2c1nnn2)(C)C; InChIKey: RRWJGDBWTOAAFG-UHFFFAOYSA-N

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (49.0 mg, 238 μmol, 1.00 equiv), copper(1+);iodide (20.0 mg, 105 μmol, 0.441 equiv) and dichloropalladium;triphenylphosphane (17.1 mg, 24.3 μmol, 0.102 equiv) were dissolved in 1 mL of dry acetonitrile. Then trimethylsilylacetylene (71.7 mg, 103 μL,
730 μmol, 3.06 equiv) and triethylamine (0.25 mL) were added and the reaction was stirred at 25 °C for 2.5 h under argon. The reaction mixture was filtered over Celite and water and EtOAc were added. The organic phase was separated, the aqueous phase was extracted 3× with EtOAc and the combined organic phases were dried over Na₂SO₄. The combined organic phases were filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, cHex -> cHex/EtOAc 2:1) and 4-(((trimethylsilyl)ethynyl)tetrazolo[1,5-a]quinoxaline (54.0 mg, 202 μmol, 85% yield) was obtained as a brown solid.

Rᵋ = 0.52 (cyclohexane/ethyl acetate 2:1). ^1H NMR (400 MHz, CDCl₃, ppm) δ = 8.61 (dd, ^3J = 8.0 Hz, ^4J = 1.8 Hz, 1H, NCC₇H₄), 8.28 (dd, ^3J = 8.2 Hz, ^4J = 1.6 Hz, 1H, NCC₇H₄), 7.93–7.84 (m, 2H, CH₃), 0.39 (s, 9H, CH₃); ^13C NMR (100 MHz, CDCl₃, ppm) δ = 143.2 (1C, N CN), 136.9 (1C, C₈), 134.3 (1C, C₉), 131.9 (1C, CH₃), 130.5 (1C, NC₇H₄), 130.1 (1C, CH₃), 124.5 (1C, C₁₀), 116.3 (1C, NC₇H₄), 107.6 (1C, C₈H₃), 97.4 (1C, CSI), -0.59 (3C, CH₃); MS (EI, 70 eV, 90 °C), m/z (%): 267 [M⁺]+ (4), 225 (20), 224 (100), 108 (13). HRMS (EI, C₁₃H₁₁N₅Si₂): Calcd 267.0935, Found 267.0934; IR (ATR, ᶦ) = 2963 (w), 2902 (vw), 1611 (vw), 1509 (s), 1465 (w), 1402 (w), 1339 (w), 1324 (w), 1290 (w), 1248 (s), 1228 (m), 1214 (w), 1171 (s), 1156 (w), 1125 (w), 1095 (w), 1044 (w), 1010 (w), 986 (w), 881 (w), 840 (vs), 772 (vs), 762 (vs), 711 (m), 697 (m), 657 (w) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-RRWJGDBWTO-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/RRWJGDBWTOAAG-UHFFFAOYSA-N.1

(3-Chloroquinoxalin-2-yl)hydrazine (12)

![Chemical structure](image)

Name {P1|12}: (3-chloroquinoxalin-2-yl)hydrazine; Formula: C₈H₇ClN₄; Molecular Mass: 194.6210; Exact Mass: 194.0359; Smiles: NNc1nc2ccccc2nc1Cl; InChIKey: RODNZCIFICALV-UHFFFAOYSA-N

The starting material 2,3-dichloroquinoxaline (500 mg, 2.51 mmol, 1.00 equiv) was dissolved in 15 mL of ethanol, hydrazine hydrate (252 mg, 244 μL, 5.02 mmol, 2.00 equiv) was added and the yellow solution was stirred at 25 °C for 21 hours. Water was added and the aqueous phase was extracted 3× with EtOAc. The aqueous phase was quenched with an aqueous solution of 3% H₂O₂ in order to remove any remaining hydrazine; then a saturated solution of Na₂S₂O₃ was added to quench remaining hydrogen peroxide. The combined organic phases were dried over Na₂SO₄ and filtered, the solvent was removed under reduced pressure. The crude product was purified using column chromatography (dryload on Celite, eluent cHex/EtOAc 1:1).
The product was obtained as a yellow solid in 88% yield (432 mg, 2.22 mmol) that turns orange after contact with air for some days.

\[R_f = 0.13 \] (cyclohexane/ethyl acetate 4:1). \(^1\)H NMR (400 MHz, DMSO-\(d_6\), ppm) \(\delta = 8.86 \) (bs, 1H, NH), 7.74 (d, \(^3\)J = 8.1 Hz, 1H, CH\(_{arom}\)N), 7.68–7.60 (m, 2H, CH\(_{arom}\)), 7.40 (t, \(^3\)J = 7.2 Hz, 1H, CH\(_{arom}\)), 4.61 (bs, 2H, NH\(_2\)); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\), ppm) \(\delta = 149.4 \) (1C, C\(_{NHNH_2}\)), 140.7 (1C, NCCl), 136.8 (1C, C\(_{arom}\)N), 135.6 (1C, C\(_{arom}\)), 130.3 (1C, CH\(_{arom}\)), 127.5 (1C, CH\(_{arom}\)), 124.5 (1C, CH\(_{arom}\)); EI (m/z, 70 eV, 60 °C): 194/196 (100/33) [M]\(^+\), 158 (16), 130 (27), 129 (62), 103 (25), 102 (44), 90 (18). HRMS (C\(_8\)H\(_7\)N\(_4\)35Cl): calcd 194.0359, found 194.0361; IR (ATR, \(\tilde{\nu}\)) = 3310 (w), 3224 (m), 1629 (w), 1571 (w), 1554 (m), 1503 (s), 1493 (s), 1459 (m), 1411 (m), 1350 (w), 1339 (m), 1298 (m), 1248 (w), 1123 (m), 1069 (vs), 1017 (w), 962 (s), 932 (m), 871 (w), 826 (w), 765 (vs), 653 (s), 606 (s), 588 (vs), 558 (s), 486 (m), 445 (vs) cm\(^{-1}\).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-RODNZCIFRI-UHFFADPSC-NUHF-NUHFF-NUHFF-ZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/RODNZCIFRICALV-UHFFAOYSA-N.2

The synthesis of this compound has been previously in literature [7].

4,5-Dihydrotetrazolo[1,5-a]quinoxaline (S3)

![Chemical structure of 4,5-Dihydrotetrazolo[1,5-a]quinoxaline (S3)](image)

\[\text{Name } \{P1|S3\}: \text{4,5-dihydrotetrazolo[1,5-a]quinoxaline; Formula: C}_8\text{H}_7\text{N}_5; \text{Molecular Mass: 173.1747; Exact Mass: 173.0701; Smiles: c1ccc2c(-n3nnnc3CN2)c1; InChIKey: JJCQHCJBVSOFTM-UHFFFAOYSA-N} \]

The starting material tetrazolo[1,5-a]quinoxaline (50.0 mg, 292 \(\mu\)mol, 1.00 equiv) and palladium (10% on active charcoal, 31.1 mg, 29.2 \(\mu\)mol, 0.100 equiv) were added to a flame-dried flask and the flask was evacuated. Then 2.5 mL of DMF was added and the reaction mixture was stirred under a hydrogen gas atmosphere for 19 h. Water and EtOAc were added and the aqueous phase was extracted 3× with ethyl acetate. The combined organic layers were dried over Na\(_2\)SO\(_4\) and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, CH\(_6\) --> ethyl acetate) and 4,5-dihydrotetrazolo[1,5-a]quinoxaline (44.0 mg, 254 \(\mu\)mol, 87% yield) was obtained as a colourless solid.

\[R_f = 0.13 \] (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 7.89 \) (dd, \(^3\)J = 8.0 Hz, \(^4\)J = 1.4 Hz, 1H, CH\(_{arom}\)), 7.21 (td, \(^3\)J = 7.8 Hz, \(^4\)J = 1.8 Hz, 1H, CH\(_{arom}\)), 6.95 (td, \(^3\)J = 7.6 Hz, \(^4\)J = 1.2 Hz, 1H, CH\(_{arom}\)), 6.85 (dd, \(^3\)J = 8.1 Hz, \(^4\)J = 1.2 Hz, 1H, CH\(_{arom}\)), 4.96 (s, 2H, CH\(_2\)), 3.11 (bs, 1H, NH); \(^{13}\)C NMR (100 MHz, CDCl\(_3\) [77.0 ppm],
ppm) δ = 146.7 (1C, C_q), 135.3 (1C, C_q), 129.5 (1C, CH_ar), 120.1 (1C, C_q), 119.9 (1C, CH_ar), 117.3 (1C, CH_ar), 115.2 (1C, CH_ar), 39.5 (1C, CH_ar); MS (EI, 70 eV, 90 °C), m/z (%): 173 [M]+ (48), 145 (55), 144 (100), 119 (22), 118 (88), 91 (26), 90 (19). HRMS (EI, C_8H_7N_5): calcd 173.0696, found 173.0695; IR (ATR, ṽ) = 3327 (s), 3064 (w), 1622 (m), 1509 (m), 1489 (s), 1475 (s), 1465 (s), 1434 (m), 1350 (w), 1323 (s), 1309 (m), 1265 (s), 1245 (s), 1159 (m), 1145 (m), 1112 (m), 1088 (s), 1060 (m), 1040 (m), 1018 (m), 1000 (m), 980 (m), 921 (w), 864 (w), 850 (w), 747 (vs), 732 (vs), 705 (m), 690 (w), 681 (s), 628 (s), 569 (s), 554 (s), 514 (s), 459 (m), 441 (vs), 435 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-JJCQHCJBVS-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/JJCQHCJBVSOTFM-UHFFFAOYSA-N.1

The synthesis of this compound has been previously in literature [23].

5-Methyl-4H-tetrazolo[1,5-a]quinoxaline (S4)

![Chemical structure of 5-Methyl-4H-tetrazolo[1,5-a]quinoxaline](image)

Name {P1|S4}: 5-methyl-4H-tetrazolo[1,5-a]quinoxaline; Formula: C_9H_9N_5; Molecular Mass: 187.2013; Exact Mass: 187.0858; Smiles: CN1Cc2nnnn2-c2c1cccc2; InChIKey: VJXDMNNLLZYTRN-UHFFFAOYSA-N

The starting material 4,5-dihydrotetrazolo[1,5-a]quinoxaline (51.0 mg, 295 μmol, 1.00 equiv) was dissolved in 2 mL of dry DMF and sodium hydride (24.0 mg, 600 μmol, 2.04 equiv) was added. Then iodomethane (123 mg, 53.9 μL, 866 μmol, 3.00 equiv) was introduced into the solution and the reaction mixture was stirred for 18 h at 25 °C. Subsequently, a solution of 10% ammonia in water was added to quench the reaction. The aqueous phase was extracted 3× with EtOAc; the combined organic phases were dried over Na_2SO_4, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent CHex/EtOAc 1:4) and 5-methyl-4H-tetrazolo[1,5-a]quinoxaline (39.0 mg, 208 μmol, 71% yield) was obtained as a beige solid.

R_t = 0.39 (cyclohexane/ethyl acetate 1:1). ¹H NMR (400 MHz, CDCl_3, ppm) δ = 7.94 (dd, 3 J = 7.9 Hz, 4 J = 1.5 Hz, 1H, CH_ar), 7.35–7.31 (m, 1H, CH_ar), 6.98 (td, 3 J = 7.7 Hz, 4 J = 1.2 Hz, 1H, CH_ar), 6.85 (d, 3 J = 8.3 Hz, 1H, CH_ar), 4.77 (s, 2H, NCH_2), 3.04 (s, 3H, CH_3); ¹³C NMR (100 MHz, CDCl_3 [77.0 pp], ppm) δ = 146.7 (1C, NCN), 137.0 (1C, C_q), 129.7 (1C, CH_ar), 120.8 (1C, C_q), 119.3 (1C, CH_ar), 117.1 (1C, CH_ar), 113.1 (1C, CH_ar), 47.0 (1C, NCH_2), 38.0 (1C, CH_3); MS (EI, 70 eV, 70 °C), m/z (%): 187 (15) [M]+, 159
(24), 158 (100), 90 (9). HRMS (EI, C₉H₉N₅): calcd 187.0852, found 187.0851; IR (ATR, ν) = 2823 (w), 2802 (w), 1621 (m), 1509 (s), 1486 (s), 1459 (m), 1428 (m), 1387 (m), 1324 (s), 1272 (m), 1248 (m), 1214 (m), 1164 (w), 1143 (m), 1113 (s), 1078 (m), 1041 (w), 1020 (m), 1003 (s), 967 (m), 919 (w), 849 (w), 796 (w), 745 (vs), 704 (m), 676 (s), 571 (w), 554 (w), 524 (w), 463 (m), 422 (w) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-VJXDMNNLLZ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/VJXDMNNLLZYTRN-UHFFFAOYSA-N.1

The synthesis of this compound has been previously in literature [23].

2-(4-Phenyl-1H-1,2,3-triazol-1-yl)quinoxaline (14a)

The starting material tetrazolo[1,5-a]quinoxaline (51.0 mg, 298 µmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (15.0 mg, 29.8 µmol, 0.100 equiv) were dissolved in 1 mL of dry toluene under nitrogen, followed by ethynylbenzene (59.7 mg, 64.2 µL, 584 µmol, 1.96 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (113 mg, 149 µL, 876 µmol, 2.94 equiv). The reaction mixture was stirred at 100 °C for 42 h and subsequently stirred at 21 °C for 2 days. Then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3× with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (cHex+2% Et₃N/EtOAc 10:1) and the product 2-(4-phenyl-1H-1,2,3-triazol-1-yl)quinoxaline (54.0 mg, 198 µmol, 66% yield) was obtained as an orange solid.

\[R_f = 0.59 \] (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl₃, ppm) δ = 9.88 (s, 1H, NC\textsubscript{H}CN), 8.95 (s, 1H, CH₃\textsubscript{triazole}), 8.23–8.21 (m, 1H, CH₃CN), 8.11–8.08 (m, 1H, CH₃CN), 8.01–7.99 (m, 2H, CH₃Phenyl), 7.89–7.81 (m, 2H, CH₃CHCN), 7.52–7.48 (m, 2H, CH₃Phenyl), 7.43–7.39 (m, 1H, CH₃Phenyl). \(^{13}\)C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 148.5 (1C, C₆), 142.9 (1C, C₆), 142.3 (1C, C₆), 140.0 (1C, C₆), 137.7 (1C, CHCN), 131.5 (1C, CH₃CHCN), 130.2 (1C, CH₃CHCN), 129.7 (1C, C₆), 129.6 (1C, CH₃CN), 129.0 (2C, CH₃Phenyl), 128.8 (1C, CH₃Phenyl), 128.7 (1C, CH₃CN), 126.1 (2C,
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-QYOUUXWQIV-UHFFADPSC NUHFF-NHUHF-NHUHF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/QYOUUXWQIVRDNZ-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the 1H NMR data corresponds with the literature [6].

2-(4-(4-Methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline (14b)

Name \{P114b\}: 2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline; Formula: C$_{17}$H$_{13}$N$_5$O; Molecular Mass: 303.3180; Exact Mass: 303.1120; Smiles: COc1ccc(cc1)c1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: SJCZTVUAGLTCCV-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (49.9 mg, 292 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (14.4 mg, 28.6 μmol, 0.0981 equiv) were dissolved in 1 mL of dry toluene under argon, followed by 1-ethynyl-4-methoxybenzene (81.5 mg, 80.0 μL, 617 μmol, 2.12 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (76.0 mg, 100 μL, 588 μmol, 2.02 equiv). The green reaction mixture was stirred at 100 °C for 4 days until the TLC showed complete conversion of the starting material. Then water and DCM were added and the aqueous phase was extracted 3 times with DCM. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified twice via flash-chromatography on silica gel using cHex/EtOAc 20:1 to cHex/EtOAc 4:1 and the expected product 2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline (42.9 mg, 141 μmol, 49% yield) was obtained as a brown solid.

$R_f = 0.3$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.87 (s, 1H, CH), 8.85 (s, 1H, CH), 8.22–8.20 (m, 1H, CH$_A$), 8.10–8.07 (m,
1H, CHAr), 7.92 (d, J = 8.8 Hz, 2H, CHAr), 7.88–7.80 (m, 2H, CHAr), 7.02 (d, J = 8.8 Hz, 2H, CHAr), 3.88 (s, 3H, CH3); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 160.2 (1C, Cq), 148.4 (1C, Cq), 148.2 (1C, Cq), 143.1 (1C, Cq), 142.2 (1C, Cq), 137.8 (1C, CHAr), 131.5 (1C, CHAr), 130.2 (1C, CHAr), 129.6 (1C, CHAr), 128.7 (1C, CHAr), 127.5 (2C, CHAr), 122.4 (1C, Cq), 115.8 (1C, CHAr), 114.4 (2C, CHAr), 55.4 (1C, CH3); MS (EI, m/z, 70 eV, 160 °C): 303 [M]+ (11), 275 (100), 261 (12), 260 (63), 231 (20), 146 (30), 148 (18), 102 (26), 75 (26). HRMS (C17H13ClN6): Calcd 303.1116, Found 303.1115; IR (ATR, ν) = 3163 (w), 2918 (m), 2840 (w), 1615 (m), 1567 (s), 1497 (vs), 1482 (m), 1473 (s), 1448 (vs), 1419 (m), 1356 (m), 1303 (m), 1289 (w), 1248 (vs), 1232 (vs), 1213 (vs), 1180 (vs), 1142 (m), 1123 (m), 1109 (m), 1092 (w), 1028 (s), 1016 (vs), 1003 (vs), 965 (m), 949 (vs), 919 (s), 833 (vs), 795 (vs), 768 (vs), 673 (s), 642 (m), 608 (vs), 589 (m), 540 (s), 516 (m), 487 (m), 442 (w), 416 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADVPS-SJCFVUAGL-UHFFADVPS-NUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/SJCFVUAGLTCV-UHFFAOYSA-N.2

4-(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium chloride (14c)

![Chemical structure of 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium chloride](image)

Name {P1|14c}: 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium chloride; Formula: C16H13ClN6; Molecular Mass: 324.7676; Exact Mass: 324.0890; Smiles: [NH3+]c1ccc(cc1)c1nnn(c1)c1cn2c(n1)c2cc2.[Cl-]; InChIKey: GRLFMIQVULKIR-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (99.7 mg, 576 μmol, 1.00 equiv), 4-ethynylaniline (131 mg, 119 μL, 1.12 mmol, 1.94 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (27.1 mg, 53.8 μmol, 0.0935 equiv) were dissolved in 2 mL of dry toluene, under nitrogen, followed by the addition of N-ethyl-N-propan-2-ylpropan-2-amine (152 mg, 200 μL, 1.17 mmol, 2.04 equiv). The brown reaction mixture was stirred at 100 °C for 3 days. The TLC showed that starting materials were consumed. Then water and DCM were added and the aqueous phase was extracted 3 times with DCM. The combined organic phases were dried over Na2SO4, filtered and the solvents were removed under reduced pressure. The crude brown product was coated on Celite. After dry loading, the crude product was purified via column chromatography using CHex/EtOAc 20:1 to EtOAc. A second purification was necessary: A solution of HCl (20 mL, 0.5 M) was added to the product with a small amount of EtOAc. The product precipitated as a salt and the residue of the precipitation was filtered. The expected product 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium chloride (14c) was obtained.
yl)benzenaminium chloride (69.2 mg, 213 μmol) was obtained as a green solid with 37% yield. Moreover, an unknown product (20 mg) was obtained.

$R_f = 0.17$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, DMSO-d_6 [2.50 ppm], ppm) $\delta = 9.77$ (s, 1H, CH), 9.59 (s, 1H, CH), 8.25 (d, $J = 7.8$ Hz, 1H, CH$_{Ar}$), 8.15 (d, $J = 8.1$ Hz, 2H, CH$_{Ar}$), 7.41 (d, $J = 8.1$ Hz, 2H, CH$_{Ar}$), 3.73 (s, 3H, NH$_3$). 13C NMR (100 MHz, DMSO-d_6 [2.50 ppm], ppm) $\delta = 147.4$ (1C, Cq), 143.4 (1C, Cq), 142.1 (1C, Cq), 139.8 (1C, Cq), 138.7 (1C, CH), 135.5 (1C, Cq), 132.4 (1C, CH$_{Ar}$), 131.1 (1C, CH$_{Ar}$), 130.4 (1C, Cq), 129.7 (1C, CH$_{Ar}$), 128.9 (1C, CH$_{Ar}$), 127.5 (2C, CH$_{Ar}$), 122.8 (2C, CH$_{Ar}$), 119.1 (1C, CH); IR (ATR, $\tilde{\nu}$) = 3336 (w), 2817 (w), 2591 (w), 1611 (w), 1564 (m), 1500 (vs), 1472 (s), 1449 (vs), 1428 (m), 1373 (w), 1357 (w), 1235 (m), 1215 (s), 1181 (w), 1140 (w), 1126 (m), 1094 (m), 1043 (w), 1004 (vs), 966 (m), 950 (s), 926 (w), 860 (w), 827 (w), 805 (vs), 764 (vs), 677 (w), 636 (w), 588 (s), 544 (s), 516 (vs), 460 (s), 418 (s), 390 (vs) cm$^{-1}$; HRMS (C$_{16}$H$_{12}$N$_6$): Calcd 288.1118, Found 288.1119. MS (EI, m/z, 70 eV, 200 °C): 288 [M]$^+$ (15), 260 (100), 259 (21), 132 (8), 131 (59), 129 (12), 102 (13).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-GRLFMIQVCU-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/GRLFMIQVCULKIR-UHFFFAOYSA-N.1

N,N-dimethyl-4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)aniline (14d)

![Chemical structure of 14d](image)

Name {P1|14d}: N,N-dimethyl-4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)aniline; Formula: C$_{18}$H$_{16}$N$_6$; Molecular Mass: 316.3598; Exact Mass: 316.1436; Smiles: CN(c1ccc(cc1)c1nnn(c1)c1cnc2c(n1)ccc2)C; InChIKey: TXQZSMLFWOHBGXM-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (101 mg, 588 μmol, 1.00 equiv), (4-ethynylphenyl)-dimethyl-amine (169 mg, 173 μL, 1.16 mmol, 1.98 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (28.3 mg, 56.2 μmol, 0.0957 equiv) were dissolved in 2 mL of dry toluene under argon, followed by N-ethyl-N-propan-2-ylpropan-2-amine (152 mg, 200 μL, 1.18 mmol, 2.00 equiv). The brown reaction mixture was stirred at 100 °C for 22 hours. Then water and DCM were added and the brown aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvents were removed under reduced pressure. The obtained crude product was twice purified via flash-chromatography (Interchim devices puriFLASH 5.125) on silica gel (PF-15SIHP-
F0012) using cHex to cHex/EtOAc 2:1 in 10 column volumes. The impure fraction was purified again via flash chromatography (Interchim devices puriFLASH 5.125) on silica gel (PF-15SIL-F0012) using DCM to EtOAc in 20 column volumes. The expected product N,N-dimethyl-4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)aniline (89.0 mg, 281 μmol) was obtained as an orange solid in 48% yield. Note: The reaction was repeated in larger scale with a yield of 63%.

Rf = 0.52 (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.87 (s, 1H, CH), 8.79 (s, 1H, CH), 8.22–8.19 (m, 1H, CHAr), 8.09 (d, J = 8.8 Hz, 2H, CHAr), 3.03 (s, 6H, CH3); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 150.8 (1C, Cq), 149.0 (1C, Cq), 143.1 (1C, Cq), 142.1 (1C, Cq), 140.1 (1C, Cq), 137.9 (1C, CH), 131.4 (1C, CHAr), 129.9 (1C, CHAr), 129.5 (1C, CHAr), 128.7 (1C, CHAr), 127.0 (2C, CHAr), 117.6 (1C, Cq), 114.8 (1C, CH), 112.4 (2C, CHAr), 40.4 (2C, CH3); HRMS (C18H16N6): Calcd 316.1431, Found 316.1429 MS (EI, m/z, 70 eV, 150 °C): 316 [M]+ (24), 289 (22), 288 (100), 287 (23), 159 (18), 144 (18), 143 (30), 102 (13); IR (ATR, ν) = 2885 (w), 2809 (w), 1612 (s), 1571 (s), 1557 (w), 1500 (vs), 1479 (vs), 1448 (vs), 1429 (s), 1356 (vs), 1281 (m), 1213 (vs), 1193 (vs), 1166 (s), 1143 (s), 1128 (s), 1089 (m), 1061 (m), 1037 (m), 1010 (vs), 999 (vs), 963 (s), 948 (vs), 915 (s), 822 (vs), 799 (vs), 788 (vs), 758 (vs), 671 (s), 601 (vs), 582 (m), 541 (s), 528 (s), 516 (s), 487 (s), 416 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-TXQZSMLFWO-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/TXQZSMLFWOWBGL-UHFFFAOYSA-N.1

Methyl 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzoate (14e), quinoxalin-2-amine (S10)

![Chemical structure of Methyl 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzoate](image)

Name {P1|14e}: methyl 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzoate; Formula: C18H16N6O2; Molecular Mass: 331.3281; Exact Mass: 331.1069; Smiles: COC(=O)c1ccc(cc1)c1nnn(c1)c1cn2c(n1)ccc2; InChIKey: FEZUXVAXRREZEP-UHFFFAOYSA-N

Name {P2|S10}: quinoxalin-2-amine; Formula: C8H7N3; Molecular Mass: 145.1613; Exact Mass: 145.0640; Smiles: Nc1cnc2c(n1)ccc2; InChIKey: YOWAEEWQQFSEJD-UHFFFAOYSA-N
The starting material tetrazolo[1,5-a]quinoxaline (99.3 mg, 573 μmol, 1.00 equiv), methyl 4-ethynylbenzoate (169 mg, 154 μL, 1.05 mmol, 1.82 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (29.1 mg, 57.8 μmol, 0.0997 equiv) were dissolved in 2 mL of dry toluene under argon, followed by N-ethyl-N-propan-2-ylpropan-2-amine (153 mg, 201 μL, 1.18 mmol, 2.04 equiv). The green reaction mixture was stirred at 100 °C for 4 days. Then water and EtOAc were added and the aqueous phase was extracted 3 times with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The crude brown product was purified via column chromatography cHex -> cHex/EtOAc 2:1 (dryload on Celite). The expected product methyl 4-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzoate (21.1 mg, 63.7 μmol) was obtained as a brown solid in 11% yield and quinoxalin-2-amine (24.3 mg, 167 μmol, 29% yield) was obtained as an impure side product. Moreover, an unknown product (24.0 mg) was obtained.

$R_t = 0.21$ (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.89 (s, 1H, CH), 9.05 (s, 1H, CH), 8.25–8.22 (m, 3H, CHAr), 8.18–8.16 (m, 2H, CHAr), 8.12–8.07 (m, 3H, CHAr), 7.87 (m, 2H, CHAr), 3.96 (s, 3H, CH₃); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 166.6 (1C, COOCH₃), 147.4 (1C, C₆), 144.6 (1C, C₆), 142.4 (1C, C₆), 140.0 (1C, C₆), 137.6 (1C, CH), 139.0 (1C, C₆), 131.6 (1C, CHAr), 130.4 (1C, C₆), 130.3 (2C, CHAr), 130.3 (1C, CHAr), 129.6 (1C, CHAr), 128.7 (1C, CHAr), 125.9 (2C, CHAr), 117.7 (1C, CH), 52.2 (1C, CH₃); MS (EI, m/z, 70 eV, 150 °C): 331 [M]+ (4), 318 (39), 306 (22), 304 (26), 303 (100), 302 (13), 287 (22), 272 (16), 244 (19), 243 (10), 145 (20), 130 (10), 129 (90), 102 (41). HRMS (C₁₈H₁₃O₂N₅): Calcd 331.1064, Found 331.1063; IR (ATR, ν) = 3138 (w), 2949 (w), 1717 (vs), 1612 (w), 1561 (w), 1502 (m), 1475 (w), 1451 (m), 1438 (m), 1414 (m), 1276 (vs), 1239 (s), 1215 (s), 1198 (m), 1188 (m), 1145 (m), 1111 (s), 1041 (m), 1006 (vs), 966 (m), 950 (s), 932 (m), 860 (s), 822 (s), 768 (vs), 713 (s), 696 (s), 679 (m), 649 (w), 630 (w), 595 (m), 535 (m), 510 (m), 499 (m), 470 (w), 415 (s) cm⁻¹.

1H NMR (400 MHz, CDCl₃, ppm) δ = 8.83 (s, 1H, NCHAr), 7.92 (d, 3J = 8.2 Hz, 1H, CHAr), 7.68–7.59 (m, 2H, CHAr), 7.47–7.42 (m, 1H, CHAr), 5.05 (bs, 2H, NH₂).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-ZKYSXYLHQL-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/FEZUXVAXRREZEP-UHFFFAOYSA-N.2
https://doi.org/10.14272/YOWAEZWWQFSEJD-UHFFFAOYSA-N.2

The synthesis of the side product quinoxalin-2-amine has been previously reported in literature [24].
2-(4-(4-Ethynylphenyl)-1H,1,2,3-triazol-1-yl)quinoxaline (14f)

Name (P1|14f): 2-(4-(4-ethynylphenyl)-1H,1,2,3-triazol-1-yl)quinoxaline; Formula: C\textsubscript{18}H\textsubscript{11}N\textsubscript{5}; Molecular Mass: 297.3134; Exact Mass: 297.1014; Smiles: C#Cc1ccc(cc1)c1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: UFXVPOPCEVYKQB-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (50.0 mg, 292 μmol, 1.00 equiv), 1,4-diethynylbenzene (77.0 mg, 610 μmol, 2.09 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (14.7 mg, 29.2 μmol, 0.100 equiv) were dissolved in 1.5 mL of dry toluene under nitrogen, followed by N-ethyl-N-propan-2-ylpropan-2-amine (113 mg, 153 μL, 876 μmol, 3.00 equiv). The reaction mixture was stirred at 100 °C for 3 d. Then water and ethyl acetate were added, the organic phase was separated and the aqueous phase was extracted 3x with ~30 mL of DCM each. The combined organic phases were dried over Na\textsubscript{2}SO\textsubscript{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, cHex -> cHex/EtOAc 1:1) and 2-(4-(4-ethynylphenyl)-1H,1,2,3-triazol-1-yl)quinoxaline (28.0 mg, 94.2 μmol, 32% yield) was obtained as a light yellow solid.

R\textsubscript{f} = 0.43 (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm) δ = 9.86 (s, 1H, NCH\textsubscript{ar}), 8.95 (s, 1H, CH\textsubscript{triazole}), 8.23–8.20 (m, 1H, C\textsubscript{H}ar), 8.10–8.07 (m, 1H, C\textsubscript{H}ar), 7.95 (m, 2H, C\textsubscript{H}phenyl), 7.89–7.81 (m, 2H, C\textsubscript{H}ar), 7.61 (m, 2H, C\textsubscript{H}phenyl), 3.17 (s, 1H, C\textsubscript{H}alkyne); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm) δ = 147.7 (1C, C\textsubscript{triazole}), 142.8 (1C, C\textsubscript{q}), 142.3 (1C, C\textsubscript{q}), 140.0 (1C, C\textsubscript{q}), 137.6 (1C, N\textsubscript{CH}ar), 132.7 (2C, C\textsubscript{phenyl}), 131.6 (1C, C\textsubscript{ar}), 130.3 (1C, C\textsubscript{ar}), 130.0 (1C, C\textsubscript{q}), 129.6 (1C, C\textsubscript{ar}), 128.7 (1C, C\textsubscript{ar}), 125.9 (2C, C\textsubscript{phenyl}), 122.5 (1C, C\textsubscript{q}), 117.1 (1C, C\textsubscript{triazole}), 83.3 (1C, C\textsubscript{alkyne}), 78.3 (1C, C\textsubscript{alkyne}); MS (EI, 70 eV, 120 °C), m/z (%): 297 [M+] (11), 270 (24), 269 (100), 268 (31), 141 (12), 129 (52), 102 (35). HRMS (EI, C\textsubscript{18}H\textsubscript{11}N\textsubscript{5}): calcd 297.1009, found 297.1010. IR (ATR, \textup{\textnu}) = 3268 (m), 3128 (w), 3047 (w), 2922 (w), 1561 (m), 1499 (vs), 1472 (s), 1449 (vs), 1417 (w), 1388 (w), 1361 (w), 1326 (w), 1286 (w), 1272 (w), 1238 (vs), 1217 (s), 1188 (m), 1142 (w), 1128 (w), 1091 (m), 1047 (w), 1007 (vs), 966 (m), 949 (vs), 919 (m), 840 (m), 824 (vs), 761 (vs), 734 (w), 703 (s), 676 (m), 635 (s), 599 (s), 543 (vs), 531 (m), 511 (w), 442 (m), 411 (s) cm-1.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-UFXVPOPCEV-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/UFXVPOPCEVYKQB-UHFFFAOYSA-N.1
2-(4-(3-Methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline (14g)

Name {P1|14g}: 2-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline; Formula: C_{17}H_{13}N_{5}O; Molecular Mass: 303.3180; Exact Mass: 303.1120; Smiles: COc1cccc(c1)c1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: MXGSQRZNSJHGEP-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (102 mg, 587 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (28.5 mg, 56.6 μmol, 0.0965 equiv) were dissolved in 2 mL of dry toluene under argon, followed by 1-ethynyl-3-methoxybenzene (150 mg, 150 μL, 1.13 mmol, 1.93 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (153 mg, 201 μL, 1.18 mmol, 2.06 equiv). The green reaction mixture was stirred at 100 °C for 2 days. Then water and EtOAc were added and the brown solution was extracted 3 times with EtOAc. The combined organic phases were dried over Na_{2}SO_{4}, filtered and the solvents were removed under reduced pressure. The crude brown product was purified via column chromatography using cHex to EtOAc (dry load on Celite) and the expected product 2-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)quinoxaline (65.5 mg, 216 μmol) was obtained as a white solid in 36% yield. Note: This reaction was repeated with a yield of 70%.

R_{f} = 0.43 (cyclohexane/ethyl acetate 2:1). ^{1}H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.89 (s, 1H, CH), 8.95 (s, 1H, CH), 8.24–8.22 (m, 1H, CH_{Ar}), 8.12–8.09 (m, 1H, CH_{Ar}), 7.60–7.59 (m, 1H, CH_{Ar}), 7.66 (m, 1H, CH_{Ar}), 7.41 (t, J = 7.8 Hz, 1H, CH_{Ar}), 6.96 (ddd, J = 1.0 Hz, J = 2.7 Hz, J = 8.3 Hz, 1H, CH_{Ar}), 3.92 (s, 3H, CH_{3}). ^{13}C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 160.1 (1C, C_{q}), 148.4 (1C, C_{q}), 142.2 (1C, C_{q}), 140.0 (1C, C_{q}), 138.4 (1C, C_{q}), 137.7 (1C, C_{q}), 131.5 (1C, C_{Ar}), 130.9 (1C, C_{q}), 130.2 (1C, C_{Ar}), 130.0 (1C, C_{Ar}), 129.6 (1C, C_{Ar}), 128.7 (1C, C_{Ar}), 118.5 (1C, C_{Ar}), 116.9 (1C, C_{Ar}), 114.9 (1C, C_{Ar}), 111.1 (1C, C_{Ar}), 55.4 (1C, CH_{3}); MS (EI, m/z, 70 eV, 130 °C): 303 [M]^{+} (11), 276 (27), 275 (98), 274 (43), 245 (10), 244 (11), 232 (11), 231 (11), 147 (21), 130 (17), 129 (100), 116 (10), 103 (15), 102 (80), 89 (15), 86 (10). HRMS (C_{17}H_{13}O_{3}N_{5}): Calcd 303.1114, Found 303.1114; IR (ATR, v) = 3150 (w), 2961 (w), 1615 (w), 1581 (s), 1567 (m), 1496 (vs), 1475 (vs), 1451 (vs), 1439 (s), 1428 (s), 1364 (m), 1327 (w), 1288 (m), 1245 (vs), 1208 (vs), 1171 (vs), 1133 (s), 1082 (m), 1047 (vs), 1009 (vs), 977 (s), 950 (vs), 918 (s), 887 (s), 833 (s), 809 (m), 785 (vs), 764 (vs), 714 (m), 688 (vs), 647 (m), 626 (m), 588 (s), 569 (s), 483 (s), 460 (s), 412 (vs) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-MXGSQRZNSJ-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/MXGSQRZNSJHGE-P-UHFFAOYSA-N.1
3-(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium (14h)

Name [P1|14h]: 3-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium; Formula: C_{16}H_{13}ClN_{6}; Molecular Mass: 324.7676; Exact Mass: 324.0890; Smiles: [NH3+](c1ccc(c1)c1nn(c1)c1cnc2(c(n1)c1cc2)[Cl]); InChIKey: KUVSJEDELBLMP-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (100 mg, 584 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (25.6 mg, 50.9 μmol, 0.0871 equiv) were dissolved in 2 mL of dry toluene under argon, followed by 3-ethynylaniline (137 mg, 130 μL, 1.17 mmol, 2.00 equiv) and N-ethyl-N-propylamine (152 mg, 200 μL, 1.18 mmol, 2.01 equiv). The dark reaction mixture was stirred at 100 °C for 4 days. Then water and DMC were added and the brown aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified via flash-chromatography on silica gel using CHex to EtOAc. An unknown product (12 mg) as well as a mixture of the reduced product quinoxalin-2-amine and the starting material (44 mg) were obtained. The product 3-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)aniline (66 mg) was obtained with impurities and further precipitated as a salt via addition of an aqueous solution of HCl (40 mL, 0.5 M) together with a small amount of DCM. The formed solid residue of the precipitation was filtered and 3-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)benzenaminium (62.1 mg, 191 μmol) was obtained as a white-yellow solid in 33% yield.

Rᵣ = 0.33 (CH₂Cl₂:MeOH 20:1). ¹H NMR (400 MHz, DMSO-d₆ [2.50 ppm], ppm) δ = 9.78 (s, 1H, CH), 9.66 (s, 1H, CH), 8.26 (dd, J = 1.3 Hz, J = 8.1 Hz, 1H, CH₅), 8.18 (dd, J = 1.3 Hz, J = 8.3 Hz, 1H, CH₅), 8.04–7.95 (m, 4H, CHAr), 7.59 (t, J = 7.8 Hz, 1H, CH₅), 7.34 (d, J = 7.7 Hz, 1H, CH₅), 3.81 (bs, 3H, NH₃); 13C NMR (100 MHz, DMSO-d₆, [39.5 ppm], ppm) δ = 146.5 (1C, C₅), 142.8 (1C, C₅), 141.6 (1C, C₅), 139.27 (1C, C₅), 138.18 (1C, C₅a), 134.19 (1C, C₅a), 131.95 (1C, C₅a), 130.96 (1C, C₅a), 130.68 (1C, C₅a), 130.48 (1C, C₅a), 129.16 (1C, C₅a), 128.45 (1C, C₅a), 124.50 (1C, C₅a), 122.59 (1C, C₅a), 119.29 (2C, C₅a); HRMS (C₁₆H₁₂N₆): calcd 288.1118, found 288.1119 (Counterion Cl not observed due to positive ionization mode) MS (EI, 70 eV, m/z, 160 °C): 289 [M]+ (7), 288 (31), 261 (14), 260 (100), 259 (58), 234 (7), 233 (10), 132 (24), 131 (18), 130 (11), 129 (50), 104 (11), 102 (41); IR (ATR, \̅ν) = 2850 (m), 2601 (w), 1598 (w), 1568 (m), 1502 (vs), 1473 (s), 1446 (vs), 1373 (w), 1244 (w), 1225 (s), 1174 (w), 1140 (m), 1103 (w), 1045 (w), 1016 (vs), 977 (m), 950 (s), 919 (w), 861 (w), 839 (w), 792 (m), 768 (vs), 715 (w), 686 (m), 674 (m), 647 (w), 594 (m), 544 (w), 531 (w), 517 (w), 469 (w), 441 (s), 412 (s) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-KUVSJEDELB-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ
Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/KUVSJEDEBLMHP-UHFFFAOYSA-N.1

2-((1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)isoindoline-1,3-dione (14i)

The starting material tetrazolo[1,5-a]quinoxaline (101 mg, 592 μmol, 1.00 equiv), 2-prop-2-ynilsoindole-1,3-dione (214 mg, 161 μL, 1.16 mmol, 1.95 equiv) and the catalyst benzene; copper(1+): trifluoromethanesulfonate (29.6 mg, 58.8 μmol, 0.0993 equiv) were dissolved in 2 mL of dry toluene under argon, followed by N-ethyl-N-propan-2-ylpropan-2-amine (153 mg, 201 μL, 1.18 mmol, 1.99 equiv). The brown reaction mixture was stirred at 100 °C for 4 days until TLC indicated complete conversion of the starting material. Then water and EtOAc were added and the brown solution was extracted 3 times with EtOAc. The combined organic phases were dried over Na2SO4, filtered and the solvent was removed under reduced pressure. The crude brown product was purified thrice using column chromatography (dry load on Celite, cHex -> cHex/EtOAc 2:1, DCM -> DCM/MeOH 50:1, DCM -> DCM/MeOH 10:1). The expected product 2-((1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)isoindoline-1,3-dione (68.7 mg, 193 μmol) was obtained as a brown solid in 33% yield.

Rf = 0.23 (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.80 (s, 1H, CH), 8.78 (s, 1H, CH), 8.21–8.19 (m, 1H, CHAr), 7.84 (ddd, J = 1.7 Hz, J = 6.3 Hz, J = 7.5 Hz, 2H, CHAr), 7.77–7.73 (m, 2H, CHAr), 5.16 (s, 2H, CH2); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 167.6 (2C, CO), 143.8 (2C, Cq), 142.7 (1C, Cq), 142.2 (1C, Cq), 139.9 (1C, Cq), 137.6 (1C, CH), 134.2 (1C, CHAr), 132.0 (1C, Cq), 131.5 (1C, CHAr), 130.3 (1C, CHAr), 129.5 (1C, CHAr), 128.7 (2C, CHAr), 123.5 (2C, CHAr), 120.5 (1C, CH), 33.0 (1C, CH2); HRMS (C19H13O2N6): Calcd 357.1095, Found 357.1095. MS (FAB, 3-NBA, m/z): 358 [M]+ (18), 357 (62), 307 (16), 289 (14), 182 (15), 160 (15), 156 (10), 155 (36), 154 (100), 153 (12), 152 (13), 139 (23), 138 (45), 137 (76), 136 (87), 129 (24), 121 (17), 120 (17), 119 (16), 109 (16), 107 (33), 105 (18), 97 (24), 95 (29), 91 (32), 90 (18), 89 (25); IR (ATR, v) = 3131 (w), 1772 (w), 1713 (vs), 1612 (w), 1561 (w), 1496 (m), 1466 (w), 1448 (w), 1415 (s), 1395 (s), 1371 (m), 1305 (m), 1234 (s), 1177 (m), 1136 (w), 1126 (w), 1098 (m), 1085 (m), 1035 (s), 1016 (w), 997 (m), 949 (m), 931 (vs), 846 (w), 836 (w), 789 (w), 762 (vs), 713 (vs), 676 (s), 649 (s), 618 (m), 591 (m), 548 (w), 530 (vs), 409 (vs), 382 (m) cm⁻¹.
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-GCJJKVPZVS-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/GCJJKVPZVSPCQI-UHFFFAOYSAN.1

But-3-ynyl 4-methylbenzenesulfonate (4j)

```
O=S

CH3

H3C

CH3

0 °C, DCM, 3 h

```

Name [P1|4j]: but-3-ynyl 4-methylbenzenesulfonate; Formula: C_{11}H_{12}O_3S; Molecular Mass: 224.2762; Exact Mass: 224.0507; Smiles: C#CCCOS(=O)(=O)c1ccc(cc1)C; InChIKey: STOASOOVADOKH-UHFFFAOYSAN

The starting material 4-methylbenzenesulfonyl chloride (1.38 g, 7.22 mmol, 1.00 equiv) as well as but-3-yn-1-ol (509 mg, 550 μL, 7.27 mmol, 1.01 equiv), N,N-dimethylpyridin-4-amine (87.2 mg, 713 μmol, 0.100 equiv) and triethylamine (722 mg, 994 μL, 7.13 mmol, 1.00 equiv) were dissolved in 10 mL of DCM and stirred at 0 °C for 3 h. Water and DCM were added and the reaction was extracted 3x with DCM. The combined organic phases were dried over Na_2SO_4, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on celite, eluent cHex/EtOAc 4:1) and but-3-ynyl 4-methylbenzenesulfonate (1.37 g, 6.13 mmol, 85% yield) was obtained as a colourless oil.

R_f = 0.63 (cyclohexane/ethyl acetate 2:1). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.81–7.79 (m, 2H, CH₅), 7.36–7.34 (m, 2H, CH₅), 4.10 (t, ³J = 7.0 Hz, 2H, OCH₂), 2.55 (td, ³J = 7.0 Hz, ⁴J = 2.7 Hz, 2H, CH₂C₉H₅), 2.45 (2, 3H, CH₃), 1.97 (t, ⁴J = 2.7 Hz, 1H, CH₃C₉H₅); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 145.0 (1C, C₉H₅), 132.9 (1C, C₉H₅), 129.9 (2C, CH₅), 128.0 (2C, CH₅), 78.3 (1C, C₉H₅), 70.7 (1C, CH₉H₅), 67.4 (1C, OCH₂), 21.6 (1C, CH₃), 19.4 (1C, CH₂C₉H₅). MS (EI, 70 eV, 40 °C), m/z (%): 224 [M]⁺ (12), 185 (14), 172 (11), 155 (100), 91 (78), 65 (15). HRMS (EI, C_{11}H_{12}O_3S): calcd 224.0502, found 224.0501. IR (ATR, ν) = 3288 (w), 1598 (w), 1494 (w), 1459 (w), 1356 (vs), 1307 (w), 1292 (w), 1220 (w), 1188 (s), 1173 (vs), 1120 (w), 1096 (s), 1071 (w), 1020 (m), 976 (vs), 902 (vs), 815 (vs), 765 (vs), 686 (s), 662 (vs), 585 (m), 554 (vs), 490 (m) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-STOASOOVVA-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ
Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/STOASOOVVADOKH-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the 1H NMR data corresponds with the literature [25].

2-(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethyl 4-methylbenzenesulfonate (14)

The starting material tetrazolo[1,5-a]quinoxaline (51.0 mg, 298 μmol, 1.00 equiv), but-3-ynyl 4-methylbenzenesulfonate (131 mg, 584 μmol, 1.96 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (15.0 mg, 29.8 μmol, 0.100 equiv) were dissolved in 1 mL of dry toluene under argon, followed by addition of disopropylamine (88.7 mg, 123 μL, 876 μmol, 2.94 equiv). The reaction mixture was stirred at 100 °C for 20 h; then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Cellite, eluent cHex/EtOAc 1:2) and 2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethyl 4-methylbenzenesulfonate (88.0 mg, 223 μmol, 75% yield) was obtained as a light brown solid. $R_f = 0.27$ (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, CDCl$_3$, ppm) δ = 9.79 (s, 1H, NC$_H$ar), 8.56 (s, 1H, NCH$_{\text{triazole}}$), 8.21 (dd, $^3J = 8.3$ Hz, $^4J = 1.7$ Hz, 1H, CH$_{\text{ar}}$), 8.09 (dd, $^3J = 8.3$ Hz, $^4J = 1.7$ Hz, 1H, CH$_{\text{ar}}$), 7.90–7.82 (m, 2H, CH$_{\text{ar}}$), 7.77–7.75 (m, 2H, CH$_{\text{tosyl}}$), 7.29–7.27 (m, 2H, CH$_{\text{tosyl}}$), 4.41 (t, $^3J = 6.4$ Hz, 2H, CH$_2$), 3.24 (t, $^3J = 6.3$ Hz, 2H, CH$_2$), 2.38 (s, 3H, CH$_3$); 13C NMR (100 MHz, CDCl$_3$ [77.0 ppm], ppm) δ = 144.9 (1C, CH$_{\text{tosyl}}$CH$_3$), 143.8 (1C, NCH$_{\text{triazole}}$), 142.8, 142.2, 140.0, 137.6 (1C, NCH$_{\text{ar}}$), 132.7 (1C, O$_3$SC$_3$), 131.6 (1C, CH$_{\text{ar}}$), 130.3 (1C, CH$_{\text{ar}}$), 129.9 (2C, CH$_{\text{tosyl}}$), 129.6 (1C, CH$_{\text{ar}}$), 128.8 (1C, CH$_{\text{ar}}$), 127.9 (2C, CH$_{\text{tosyl}}$), 119.8 (1C, NCH$_{\text{triazole}}$), 68.6 (1C, CH$_2$), 25.9 (1C, CH$_2$), 21.6 (1C, CH$_3$); MS (FAB, 3-NBA), m/z (%): 397 (29), 396 (100) [M]$^+$, 155 (22), 154 (68), 138 (24), 137 (46), 136 (50), 129 (18). HRMS (FAB, C$_{19}$H$_{18}$O$_3$N$_5$S$_2$: Calcd 396.1125, Found 396.1126; IR (ATR, $\tilde{\nu}$) = 3139 (w), 1596 (w), 1568 (w), 1500 (s), 1473 (w), 1451 (s), 1349 (vs), 1309 (m), 1235 (s), 1168 (s), 1164 (vs), 1136 (m), 1128 (w), 1096 (m), 1065 (w), 1054 (w), 1034 (s), 1016 (w), 1004 (s), 984 (s), 964 (m), 943 (m), 923 (m), 893 (m), 873 (m), 853 (m), 833 (s), 813 (s), 793 (s), 773 (m), 753 (m), 733 (m), 713 (m), 693 (m), 673 (m), 653 (m), 633 (m), 613 (m), 593 (m), 573 (m), 553 (m), 533 (m), 513 (m), 493 (m), 473 (m), 453 (m), 433 (m), 413 (m), 393 (m), 373 (m), 353 (m), 333 (m), 313 (m), 293 (m), 273 (m), 253 (m), 233 (m), 213 (m), 193 (m), 173 (s), 153 (s), 133 (s), 113 (s), 93 (s), 73 (s), 53 (s), 33 (s), 13 (s).
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-UTQXOLZOCM-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/UTQXOLZOCMOFPG-UHFFFAOYSA-N.1

N,N-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine (14j*)

![Chemical structure](image)

Name {P1|14j*}: N,N-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine; **Formula**: C_{16}H_{20}N_{6}; **Molecular Mass**: 296.3702; **Exact Mass**: 296.1749; **Smiles**: CCN(CCc1nnn(c1)c1cnc2c(n1)cccc2)CC; **InChIKey**: CGUDGUUWCJKDIE-UHFFFAOYSA-N

The starting material 2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethyl 4-methylbenzenesulfonate (66.0 mg, 167 μmol, 1.00 equiv) was dissolved in 2 mL of THF and dipotassium carbonate (24.0 mg, 174 μmol, 1.04 equiv) and diethylamine (48.1 mg, 658 μmol, 4.00 equiv) were added. The reaction mixture was heated to 70 °C for 25 h, then water and EtOAc were added and the organic phase was separated. The aqueous phase was extracted 3x with EtOAc, the combined organic phases were dried over Na_{2}SO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, eluent cHex/EtOAc 1:1 +2% Et_{3}N) and N,N-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine (38.0 mg, 128 μmol, 77% yield) was obtained as a yellow solid.

R_{t} = 0.16 (CH_{2}Cl_{2}/MeOH 10:1). ^1H NMR (400 MHz, CDCl_{3}, ppm) δ = 9.81 (s, 1H, NHCN), 8.54 (s, 1H, CH_{triazole}), 8.20–8.17 (m, 1H, CH_{ar}), 8.06–8.04 (m, 1H, CH_{ar}), 7.86–7.78 (m, 2H, CH_{ar}), 3.03–3.00 (m, 2H, CH_{2}), 2.91–2.87 (m, 2H, CH_{2}), 2.64 (q, ^3J = 7.2 Hz, 4H, CH_{2}CH_{3}), 1.08 (t, ^3J = 7.2 Hz, 6H, CH_{3}); ^13C NMR (100 MHz, CDCl_{3} [77.0 ppm], ppm) δ = 147.6 (1C, C_{q}), 143.1 (1C, C_{q}), 142.1 (1C, C_{q}), 140.0 (1C, C_{q}), 137.8 (1C, NHCN), 131.4 (1C, CH_{ar}), 130.0 (1C, CH_{ar}), 129.5 (1C, CH_{ar}), 128.7 (1C, CH_{ar}), 118.8 (1C, CH_{triazole}), 52.1 (1C, CH_{3}), 46.9 (2C, CH_{2}CH_{3}), 39.3 (2C, CH_{3}), 11.8 (2C, CH_{3}); MS (EI, 70 eV, 100 °C), m/z (%): 296 (2) [M]^+; 129 (4), 102 (3), 86 (100), 58 (4). HRMS (EI, C_{16}H_{20}N_{6}): calc 296.1744, found 296.1742; IR (ATR, μ) = 3452 (vw), 3142 (w), 2966 (m), 2931 (w), 2873 (w), 2787 (w), 2798 (w), 1612 (vw), 1561 (w), 1499 (s), 1475 (m), 1449 (s), 1373 (m), 1357 (m), 1330 (w), 1289 (w), 1237 (m), 1218 (m), 1204 (m), 1181 (s), 1137 (w), 1125 (w), 1065 (m), 1037 (s), 1016 (m), 992 (s), 949 (vs), 921 (m), 870 (w), 863 (w), 826 (m), 790 (m), 758 (vs), 737 (m), 698 (w), 676 (m), 643 (m), 543 (m), 534 (m), 525 (m), 516 (m), 506 (m), 477 (s), 462 (m), 416 (vs), 392 (m), 383 (w), 365 (m), 356 (m), 337 (m), 328 (m), 319 (m), 310 (m), 291 (m), 282 (m), 273 (m), 228 (s), 215 (m), 206 (m), 197 (m), 188 (s), 185 (s), 176 (s), 167 (s), 158 (s), 149 (s), 134 (s), 125 (s), 116 (s), 107 (s), 98 (s), 91 (s), 82 (s), 73 (s), 64 (s), 55 (s), 46 (s), 37 (s), 28 (s), 20 (s), 12 (s), 9 (s), 8 (s), 7 (s), 6 (s), 5 (s), 4 (s), 3 (s), 2 (s), 1 (s), 0 (s).
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-CGUDGUUWCJ-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/CGUDGUUWCJKDIE-UHFFFAOYSA-N.1

2-(4-Butyl-1H,2,3-triazol-1-yl)quinoxaline (14k)

The starting material tetrazolo[1,5-a]quinoxaline (50.0 mg, 292 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (14.7 mg, 29.2 μmol, 0.100 equiv) were dissolved in 1 mL of dry toluene under nitrogen, followed by hex-1-yne (48.0 mg, 67.1 μL, 584 μmol, 2.00 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (91.2 mg, 120 μL, 706 μmol, 2.42 equiv). The reaction mixture was stirred at 100 °C for 16 h. Then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3× with DCM. The combined organic phases were dried over Na2SO4, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (cHex > cHex/EtOAc 4:1) and 2-(4-butyl-1H,2,3-triazol-1-yl)quinoxaline (55.0 mg, 217 μmol, 74% yield) was obtained as a light brown solid.

Rf = 0.52 (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, CDCl3, ppm) δ = 9.82 (s, 1H, CH), 8.46 (s, 1H, CH), 8.18 (dd, 3J = 8.1 Hz, 4J = 1.8 Hz, 1H, CHarCN), 7.85–7.77 (m, 2H, CHar), 2.86 (t, 3J = 7.6 Hz, 2H, NCCCH2), 1.82–1.75 (m, 2H, NCCCH2CH2), 1.46 (sext, 3J = 7.4 Hz, 2H, CH2CH3), 0.98 (t, 3J = 7.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3 [77.0 ppm], ppm) δ = 149.5 (1C, Cq), 143.1 (1C, Cq), 142.0 (1C, Cq), 140.0 (1C, Cq), 137.8 (1C, CH), 131.4 (1C, CHq), 130.0 (1C, CHar), 129.5 (1C, CHar), 128.7 (1C, CHar), 118.2 (1C, CH), 31.3 (1C, NCCCH2CH2), 25.3 (1C, NCCCH2), 22.3 (1C, CH2CH3), 13.8 (1C, CH3); MS (EI, m/z, 70 eV, 60 °C): 253 [M]+ (2), 224 (13), 210 (13), 197 (34), 196 (37), 182 (38), 157 (10), 130 (27), 129 (100), 103 (11), 102 (39). HRMS (EI, C14H15N5): Calcd 253.1322, Found 253.1323; IR (ATR, ν) = 3146 (w), 3080 (w), 2951 (m), 2924 (m), 2859 (m), 1568 (m), 1555 (w), 1499 (s), 1479 (m), 1469 (m), 1451 (s), 1357 (m), 1334 (w), 1262 (w), 1237 (s), 1210 (m), 1198 (m), 1174 (m), 1136 (m), 1129 (m), 1105 (w), 1079 (w), 1030 (s), 1013 (w), 987 (s), 980 (s), 952 (vs), 922 (s), 918 (s), 827 (m), 759 (vs), 728 (m), 674 (s), 646 (m), 619 (w), 613 (w), 588 (w), 541 (w), 409 (vs), 388 (m) cm−1; λ = 340 (0.93), 328 (1.03), 252 (2.13) nm.
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-AHSWENVYXH-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/AHSWENVYXHLEHF-UHFFFAOYSA-N.1

(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acetate (14l)

![Chemical structure of (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acetate (14l)]

Name {P1|14l}: (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acetate; Formula: C_{13}H_{11}N_{5}O_{2}; Molecular Mass: 269.2587; Exact Mass: 269.0913; Smiles: CC(=O)OCc1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: DGJCBVQEVQILV-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (49.8 mg, 291 μmol, 1.00 equiv), the catalyst benzene; copper(1+); trifluoromethanesulfonate (14.4 mg, 28.6 μmol, 0.0983 equiv) and prop-2-ynyl acetate (59.3 mg, 60.0 μL, 605 μmol, 2.08 equiv) were dissolved in 1 mL of dry toluene under argon, followed by N-ethyl-N-propan-2-ylpropan-2-amine (76.0 mg, 100 μL, 588 μmol, 2.03 equiv). The green reaction mixture was stirred at 100 °C for 5 days. Then water and DCM were added and the aqueous phase was extracted 3 times with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The crude product was purified via column chromatography on silica gel (cHex/EtOAc 20:1 to EtOAc). The brown product was applied using dry loading on celite. The product (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acetate (69.3 mg, 257 μmol) was obtained as a white solid in 89% yield.

R_{f} = 0.30 (cyclohexane/ethyl acetate 2:1). ¹H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.83 (s, 1H, NCHAr), 8.80 (s, 1H, NCHtriazole), 8.23–8.21 (m, 1H, CHAr), 8.09–8.07 (m, 1H, CHAr), 7.89–7.82 (m, 2H, CHAr), 5.37 (s, 2H, CH₂), 2.14 (s, 3H, CH₃); ¹³C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 170.8 (1C, COOCH₃), 143.8 (1C, CIV), 142.7 (1C, CIV), 142.3 (1C, CIV), 139.9 (1C, CIV), 137.6 (1C, CIV), 131.6 (1C, CHAr), 130.4 (1C, CHAr), 129.6 (1C, CHAr), 128.8 (1C, CHAr), 121.4 (1C, NCHtriazole), 57.4 (1C, CH₂), 20.9 (1C, CH₃); HRMS (EI, C_{13}H_{11}N_{5}O_{2}): calcd 269.0907, found 269.0910. MS (EI, m/z, 70 eV, 90 °C): 269 [M⁺] (9), 199 (59), 198 (52), 182 (21), 170 (31), 144 (12), 130 (49), 129 (100), 103 (13), 102 (48); IR (ATR, v) = 3165 (w), 1747 (s), 1735 (vs), 1562 (w), 1500 (s), 1475 (w), 1451 (m), 1390 (w), 1368 (m), 1357 (w), 1297 (m), 1220 (vs), 1181 (s), 1137 (m), 1052 (w), 1037 (m), 1023 (s), 1000 (s), 986 (vs), 969 (s), 950 (vs), 921 (s), 880 (w), 858 (w), 823 (s), 796 (w), 764 (vs), 697 (w), 676 (m), 645 (w), 611 (m), 588 (m), 540 (w), 483 (w), 415 (vs), 385 (w) cm⁻¹.
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-DGJBVVQE-VUHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/DGJBVVQEVQILV-UHFFAOYSA-N.1

(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acrylate (14m)

![Chemical Structure](image)

Name {P1|14m}: (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acrylate; Formula: C_{14}H_{11}N_{5}O_{2}; Molecular Mass: 281.2694; Exact Mass: 281.0913; Smiles: C=CC(=O)OCc1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: XJPHMMLSCVFADTT-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (100 mg, 585 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (28.6 mg, 56.8 μmol, 0.0972 equiv) were dissolved in 2 mL of dry toluene under argon, followed by acrylic acid propargyl ester (133 mg, 133 μL, 1.21 mmol, 2.07 equiv) and N-ethyl-N-prop2-ylpropan-2-amine (76.0 mg, 100 μL, 588 μmol, 2.03 equiv). The brown reaction mixture was stirred at 100 °C for 4 days. Then water was added and the brown aqueous phase was extracted 4 times with EtOAc. The combined organic phases were dried over Na_{2}SO_{4}, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified via flash-chromatography (dryload on celite, Interchim devices puriFLASH 5.125) on silica gel (PF-15SIHP-F0012) using cHex to EtOAc in 16 column volumes. The expected product (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl acrylate (79.8 mg, 284 μmol) was obtained as a yellow solid in 49% yield.

R_{f} = 0.37 (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.83 (s, 1H, CH), 8.83 (s, 1H, CH), 8.23–8.20 (m, 1H, CHAr), 8.09–8.07 (m, 1H, CHAr), 7.89–7.82 (m, 2H, CHAr), 6.50 (dd, J = 1.3 Hz, J = 17.4 Hz, 1H, CHq), 6.23–6.16 (m, 1H, CHCOO), 5.90 (dd, J = 1.3 Hz, J = 10.5 Hz, 1H, CHq), 5.47 (s, 2H, CH_{2}); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 165.9 (1C, Cq), 143.7 (1C, Cq), 142.7 (1C, Cq), 142.3 (1C, Cq), 139.9 (1C, Cq), 137.6 (1C, CH), 131.8 (1C, CH), 131.6 (1C, CHAr), 130.4 (1C, CHAr), 129.6 (1C, CHAr), 128.8 (1C, CHAr), 127.8 (1C, CH), 121.6 (1C, CH), 57.4 (1C, CH_{2}); MS (El, m/z, 70 eV, 100 °C): 281 (10), 199 (34), 198 (72), 182 (20), 170 (28), 130 (36), 129 (100), 103 (12), 102 (46), 55 (39). HRMS (C_{14}H_{11}O_{2}N_{5}): Calcd 281.0907, Found 281.0907; IR (ATR, ν) = 3162 (w), 1720 (vs), 1619 (w), 1565 (w), 1500 (s), 1476 (m), 1451 (m), 1408 (s), 1368 (w), 1351 (w), 1283 (w), 1254 (vs), 1169 (vs), 1139 (m), 1054 (s), 1031 (vs), 963 (vs),
The starting material tetrazolo[1,5-a]quinoxaline (97.6 mg, 564 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (28.5 mg, 56.6 μmol, 0.100 equiv) were dissolved in 2 mL of dry toluene, under argon, followed by 1,1'-bis(prop-2-ynyl)prop-2-yn-1-amine (148 mg, 160 μL, 1.13 mmol, 2.01 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (153 mg, 201 μL, 1.18 mmol, 2.10 equiv). The brown reaction mixture was stirred at 100 °C for 6 days. Formation of the desired product was confirmed via LC-MS. Then water and EtOAc were added and the aqueous phase was extracted 3 times with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The crude brown product was purified via column chromatography (dry load on Celite). The expected product N-(prop-2-yn-1-yl)-N-((1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)prop-2-yn-1-amine (35.7 mg, 118 μmol) was obtained as a brown solid in 21% yield.

\[R_t = 0.1 \text{ (cyclohexane/ethyl acetate 2:1).} \] \(^1\)H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) \(\delta = 9.84 \) (d, \(J = 1.6 \) Hz, 1H, \(CH_2 \)), 8.74 (d, \(J = 0.7 \) Hz, 1H, \(CH_2 \)), 8.22 (d, \(J = 7.6 \) Hz, 1H, \(CH_2 \)), 8.07 (d, \(J = 7.6 \) Hz, 1H, \(CHAr \)), 7.88–7.81 (m, 2H, \(CHAr \)), 4.04 (d, \(J = 0.9 \) Hz, 2H, \(CH_2 \)), 3.57 (s, 4H, \(NCH_2 \)), 2.32 (d, \(J = 1.8 \) Hz, 2H, \(CH_{\text{allyne}} \)). \(^{13}\)C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) \(\delta = 145.6 \) (1C, \(C_9 \)), 142.9 (1C, \(C_8 \)), 142.2 (1C, \(C_7 \)), 140.0 (1C, \(C_6 \)), 137.7 (1C, \(CH \)), 131.5 (1C, \(CHAr \)), 130.2 (1C, \(CHAr \)), 129.5 (1C, \(CHAr \)), 128.7 (1C, \(CHAr \)), 120.6 (1C, \(CH \)), 78.3 (2C, \(C_4 \)), 73.6 (2C, \(CH_{\text{allyne}} \)), 47.9 (1C, \(CH_2 \)), 42.4 (2C, \(CH_2 \)).

HRMS (C₇H₁₄N₆): calc 302.1274, found 302.1275 MS (EI, m/z, 70 eV, 130 °C): 302 \([M]^+ \) (8), 274 (32), 273 (100), 264 (18), 263 (100), 211 (11), 182 (12), 129 (32), 106 (10), 102 (18); IR (ATR, \(\nu \)) = 3293 (w), 3244 (w), 3163 (w), 2819 (w), 1561 (w), 1500 (s), 1476 (w), 1449 (s), 1436 (m), 1400 (w), 1364 (w), 1350 (w).
1327 (m), 1298 (m), 1251 (w), 1183 (m), 1140 (w), 1118 (s), 1035 (vs), 1003 (s), 993 (s), 952 (vs), 904 (m), 839 (m), 820 (m), 766 (vs), 637 (vs), 626 (vs), 585 (vs), 418 (vs), 377 (vs)

cm−1.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction-SA-FUHFF-UHFFADPSC-FDGHOWIPSI-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/FDGHOWIPSINAHA-UHFFFAOYSA-N.1

(1-(Quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methanol (14o), quinoxalin-2-ylamine

Name {P1|14o}: (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methanol; Formula: C11H9N5O; Molecular Mass: 227.2221; Exact Mass: 227.0807; Smiles: OCc1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: YEBFONFGCJEMAG-UHFFFAOYSA-N

Name {P2}: quinoxalin-2-ylamine; Formula: C8H7N3; Molecular Mass: 145.1613; Exact Mass: 145.0640; Smiles: Nc1cnc2c(n1)cccc2; InChIKey: YOWAEZWWQFSEJD-UHFFFAOYSA-N

The starting material tetrazolo[1,5-a]quinoxaline (150 mg, 876 μmol, 1.00 equiv) and the catalyst benzene;copper(1+);trifluoromethanesulfonate (44.0 mg, 87.4 μmol, 0.0998 equiv) were dissolved in 3 mL of dry toluene under argon, followed by prop-2-yn-1-ol (94.8 mg, 100 μL, 1.69 mmol, 1.92 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (342 mg, 450 μL, 2.65 mmol, 3.00 equiv). The green reaction mixture was stirred at 100 °C for 4 days. Then water was added and the brown aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over Na2SO4, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified via flash-chromatography (dryload on Celite, Interchim devices puriFLASH XS420) on silica gel (PF-15SIHP-F0025) using cHex to EtOAc in 12 column volumes. The expected product (1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)methanol (47.7 mg, 210 μmol) was obtained as a brown solid in 24% yield; quinoxalin-2-ylamine (39.8 mg, 274 μmol, 31% yield) was obtained as a slightly impure side product and 25 mg of starting material were reisolated.

Rf = 0.38 (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, DMSO-d6 [2.50 ppm, ppm] δ = 9.73 (s, 1H, CH), 8.88 (s, 1H, CH), 8.25–8.22 (m, 1H, CHAr), 8.16–8.13 (m, 1H, CHAr), 8.01–7.93 (m, 2H, CHAr), 5.44 (t, J = 5.7 Hz, 1H, OH), 4.70 (d, J = 5.6 Hz, 2H, CH2); 13C NMR (100 MHz, DMSO-d6 [39.5 ppm, ppm] δ = 150.1 (C, Cq), 143.4 (1C, Cq), 142.0 (1C, Cq), 139.8 (1C, Cq), 138.6 (1C, CH), 132.3 (1C, CHAr), 131.0 (1C, CHAr), 129.6 (1C, CHAr), 129.1 (1C, CHAr), 120.6 (1C, CH), 55.3 (1C, CH2); MS (EI, 70
eV, 100 °C), m/z (%): 227 (9) [M]+, 202 (63), 199 (23), 198 (55), 185 (67), 172 (16), 171 (45), 170 (31), 159 (18), 147 (56), 146 (27), 145 (43), 143 (20), 130 (32), 129 (100), 118 (48), 103 (20), 102 (76), 90 (17), 76 (18), 75 (15). HRMS (C₁₁H₉O₁N₅): calcd 227.0802, found 227.0802; IR (ATR, \(\tilde{\nu} \)) = 3293 (s), 3116 (m), 3084 (m), 2970 (w), 2935 (w), 2861 (w), 1649 (w), 1602 (w), 1572 (m), 1499 (vs), 1477 (s), 1451 (vs), 1392 (m), 1375 (m), 1350 (s), 1336 (m), 1264 (w), 1244 (s), 1224 (s), 1200 (vs), 1180 (s), 1143 (s), 1130 (s), 1055 (vs), 1017 (vs), 997 (vs), 972 (s), 953 (vs), 908 (s), 867 (vs), 795 (w), 765 (vs), 696 (s), 643 (vs), 618 (vs), 589 (vs), 537 (vs), 487 (s), 446 (s), 416 (vs), 378 (vs) cm⁻¹.

\(^{1}\)H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) \(\delta = 8.35–8.33 \) (m, 1H), 7.92 (d, \(J = 8.1 \) Hz, 1H), 7.67–7.59 (m, 2H), 7.46–7.42 (m, 1H), 5.07 (s, 2H).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-RICHEZCOLF-UHFFADPSC-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/YEBFONFGCJEMAG-UHFFFAOYSA-N.1
https://doi.org/10.14272/YOWAEZWWQFSEJD-UHFFFAOYSA-N.1

The synthesis of the side product quinoxalin-2-amine has been previously reported in literature [24].

4-Ethynylbenzoic acid (4p)

![4-Ethynylbenzoic acid](image)

Name \{P1|4p\}: 4-ethynylbenzoic acid; Formula: C₉H₆O₂; Molecular Mass: 146.1427; Exact Mass: 146.0368; Smiles: C#Cc1ccc(cc1)C(=O)O; InChIKey: SJXHLZCPDZPBWP-UHFFFAOYSA-N

The starting material 4-(2-trimethylsilylthethyl)benzoic acid (420 mg, 1.92 mmol, 1.00 equiv) was dissolved in dry THF (24 mL) and tetrabutylazanium;fluoride (575 mg, 2.20 mL, 2.20 mmol, 1.00M, 1.14 equiv) was added at 0 °C under argon. The reaction was stirred for 1 hour and quenched via addition of distilled water. The aqueous phase was extracted 3x with ethyl acetate; the combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The obtained crude product was purified via flash-chromatography on silica gel using DCM to DCM/MeOH.
10:1 and 4-ethynylbenzoic acid 4-ethynylbenzoic acid (175 mg, 1.20 mmol) was obtained as a white solid in 62% yield. Note: This reaction was repeated with a yield of 92%.

$$R_t = 0.19 \ (\text{CH}_2\text{Cl}_2/\text{MeOH} \ 10:1).$$
1H NMR (400 MHz, DMSO-d_6, ppm) $\delta = 7.94-7.92$ (m, 2H, CH_2), 7.60-7.58 (m, 2H, CH_2), 4.42 (s, 1H, CCH). Missing 1H (1H, OH) due to overlapping with water peak (broad signal at 3.41 ppm).

$$13C \text{ NMR (100 MHz, DMSO-}d_6, \text{ ppm) } \delta = 166.7 \ (1\text{C, }\text{COOH}), 131.2 \ (2\text{C, }\text{CH}_2\text{ar}), 131.0 \ (1\text{C, }\text{C}_q\text{COOH}), 129.5 \ (2\text{C, }\text{CH}_2\text{ar}), 126.0 \ (1\text{C, }\text{C}_d), 83.5 \ (1\text{C, }\text{CH}), 82.8 \ (1\text{C, }\text{CH}); \text{ MS (EI, m/z, 70 eV, 40 °C): 146 } (100) \ [\text{M}]^+, 129 \ (56), 101 \ (33), 75 \ (16). \text{ HRMS (C}_9\text{H}_6\text{O}_2): \text{ calcd } 146.0362, \text{ found } 146.0361; \text{ IR (ATR, }\tilde{\nu}) = 3265 \ (s), 2809 \ (m), 2660 \ (m), 2550 \ (m), 1673 \ (vs), 1605 \ (s), 1560 \ (s), 1425 \ (s), 1404 \ (s), 1319 \ (vs), 1298 \ (vs), 1282 \ (vs), 1177 \ (vs), 1126 \ (s), 1113 \ (s), 1065 \ (m), 1017 \ (m), 1010 \ (m), 979 \ (m), 922 \ (vs), 858 \ (vs), 827 \ (vs), 745 \ (s), 694 \ (s), 670 \ (vs), 635 \ (vs), 571 \ (s), 551 \ (vs), 524 \ (vs), 507 \ (vs), 378 \ (s) \text{ cm}^{-1}.$$

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHHF-UHFFADPSC-SJXHLZCPDZ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/SJXHLZCPDZPBPW-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the 1H NMR data corresponds with the literature [26].

2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline (15a), 3-methylquinoxalin-2-amine (17a)

```
Name {P1|15a}: 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline; Formula: C_{15}H_{17}N_{5}; \text{ Molecular Mass: } 267.3290; \text{ Exact Mass: } 267.1484; \text{ Smiles: } \text{CCCCc1nnn(c1)c1nc2ccccc2nc1C}; \text{ InChIKey: } MGHMBCSNZLEULM-UHFFFAOYSA-N
```

```
Name {P2|17a}: 3-methylquinoxalin-2-amine; Formula: C_{9}H_{9}N_{3}; \text{ Molecular Mass: } 159.1879; \text{ Exact Mass: } 159.0796; \text{ Smiles: } \text{Cc1nc2ccccc2nc1N}; \text{ InChIKey: } WGHZDFAULZNZJE-UHFFFAOYSA-N
```

The starting material 4-methyltetrazolo[1,5-a]quinoxaline (51.0 mg, 275 μmol, 1.00 equiv) and the catalyst benzene;copper(1+);trifluoromethanesulfonate (13.6 mg, 27.0 μmol, 0.0980 equiv) were dissolved in 1 mL of dry toluene in a crimp vial under argon, followed by hex-1-yne (111 mg, 155 μL, 1.35 mmol, 4.90 equiv). The reaction mixture was stirred at 100 °C for 3 days. Then water and ethyl acetate were added to the black
solution, the organic phase was separated and the aqueous phase was extracted 3x with ethyl acetate. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude mixture was purified via column chromatography (dryload on Celite, cHex -> EtOAc). 2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline (23.0 mg, 86.0 μmol, 31% yield) was eluted with cHex/ethyl acetate (3:1), 3-methylquinoxalin-2-amine (8.00 mg, 50.3 μmol, 18% yield) was eluted with pure ethyl acetate. Both compounds were obtained as brown solids.

Further analysis available at https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-MGHMBCSNZL-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ; EA (C₁₅H₁₇N₅): Calcd C 67.39; H 6.41; N 26.20. Found C 67.19; H 6.41; N 24.81; UV/VIS (acetonitrile), λ = 326 (1.54), 248 (2.60) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-UAPOWWNEVS-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/MGHMBCSNZLEULM-UHFFAOYSA-N.2
https://doi.org/10.14272/WGHZDFAULZNZJE-UHFFAOYSA-N.2

The use of the side product 3-methylquinoxalin-2-amine has been previously reported in literature [27].
2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline (15a)

Name {P1|15a}: 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline; Formula: C_{15}H_{17}N_{5}; Molecular Mass: 267.3290; Exact Mass: 267.1484; Smiles: CCCc1nnn(c1)c1nc2ccccc2nc1C; InChIKey: MGHMBCSNZLEULM-UHFFFAOYSA-N

The starting material 4-methyl-[1,2,3,4]tetrazolo[1,5-a]quinoxaline (101 mg, 544 μmol, 1.00 equiv) and the catalyst benzene;copper(1+);trifluoromethanesulfonate (29.1 mg, 57.8 μmol, 0.106 equiv) were dissolved in 2 mL of dry toluene, under argon, followed by 1-hexyne (85.9 mg, 120 μL, 1.05 mmol, 1.92 equiv). The brown reaction mixture was stirred at 100 °C for 3 days. Then water was added and the aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified via flash-chromatography (dryload on celite, Interchim devices puriFLASH XS420) on silica gel (PF-15SIHP F0025) using cHex to cHex/ EtOAc 2:1 in 12 column volumes. The expected product 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline (24.1 mg, 90.2 μmol) was obtained as a brown solid in 17% yield and 20 mg of starting material were reisolated.

Rᵋ = 0.48 (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 8.29 (s, 1H, CH), 8.12–8.10 (m, 1H, CH₆), 8.04–8.02 (m, 1H, CH₆), 7.83–7.77 (m, 2H, CH₆), 2.87 (t, J = 7.7 Hz, 2H, CH₂), 1.79 (quint, J = 7.6 Hz, 2H, CH₂), 1.48 (quint, J = 7.3 Hz, 2H, CH₂), 0.99 (t, J = 7.3 Hz, 3H, CH₃); \(^1^3\)C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 148.7 (1C, C₆), 148.3 (1C, C₆), 143.1 (1C, C₆), 141.5 (1C, C₆), 139.0 (1C, C₆), 130.5 (1C, C₆), 130.3 (1C, C₆), 128.5 (1C, C₆), 128.5 (1C, C₆), 121.0 (1C, CH), 31.3 (1C, CH₂), 25.3 (1C, CH₂), 24.6 (1C, CH₃), 22.3 (1C, CH₂), 13.8 (1C, CH₃); HRMS (C_{15}H_{17}N_{5}): calcld 267.1478, found 267.1479. MS (EI, m/z, 70 eV, 100 °C): 267 [M]+ (6), 239 (46), 238 (100), 224 (18), 211 (16), 210 (14), 196 (27), 144 (26), 143 (100), 102 (29); IR (ATR, v) = 3190 (w), 3055 (v), 3012 (w), 2953 (m), 2931 (m), 2870 (w), 2853 (w), 1611 (vw), 1561 (w), 1492 (s), 1466 (w), 1435 (vs), 1375 (m), 1356 (w), 1312 (m), 1292 (w), 1244 (w), 1214 (vs), 1156 (s), 1139 (w), 1033 (vs), 1010 (s), 973 (vs), 895 (m), 807 (s), 783 (m), 769 (vs), 728 (m), 708 (s), 635 (m), 615 (m), 589 (m), 551 (w), 492 (w), 475 (w), 455 (s) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHH-UHFFADPSC-MGHMBCSNZL-UHFFFAOYSA-N.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/MGHMBCSNZLEULM-UHFFFAOYSA-N.1
2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-isopropylquinoxaline (15b), 1-butyl-4-isopropylimidazo[1,2-a]quinoxaline (16b), 3-propan-2-ylquinoxalin-2-amine (17b)

![Chemical Structure]

Name \{P1|15b\}: 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-isopropylquinoxaline; Formula: C_{17}H_{21}N_{5}; Molecular Mass: 295.3821; Exact Mass: 295.1797; Smiles: CCCc1ccnc2ccccc2nc1C(C)C; InChIKey: YKTZEDKRYOMU-UHFFFAOYSA-N

Name \{P2|16b\}: 1-butyl-4-isopropylimidazo[1,2-a]quinoxaline; Formula: C_{17}H_{21}N_{3}; Molecular Mass: 267.3687; Exact Mass: 267.1735; Smiles: CCCc1ccnc2nccccc1cCC(C)C; InChIKey: AFQHYVRVPQNN-UHFFFAOYSA-N

Name \{P3|17b\}: 3-propan-2-ylquinoxalin-2-amine; Formula: C_{11}H_{13}N_{3}; Molecular Mass: 187.2410; Exact Mass: 187.1109; Smiles: CC(cnc2ccccc2nc1C(C)C; InChIKey: IRSRPTQGLZTLGL-UHFFFAOYSA-N

The starting material 4-isopropyltetrazolo[1,5-a]quinoxaline (51.0 mg, 239 μmol, 1.00 equiv) and the catalyst benzene; copper(I); trifluoromethanesulfonate (11.8 mg, 23.4 μmol, 0.0980 equiv) were dissolved in 1 mL of dry toluene in a crimp vial under argon, followed by addition of hex-1-yne (96.3 mg, 135 μL, 1.17 mmol, 4.90 equiv). The reaction mixture was stirred at 100 °C for 3 d; then water and EtOAc were added to the brown-black reaction mixture, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na_{2}SO_{4}, filtered and the solvent was removed under reduced pressure. The crude product mixture was purified via column chromatography (dryload on Celite, CHex -> ethyl acetate) and 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-isopropylquinoxaline (elution at 4:1 CHex/ethyl acetate, 6.00 mg, 20.3 μmol, 8% yield), 3-propan-2-ylquinoxalin-2-amine (elution with ethyl acetate, 5.00 mg, 26.7 μmol, 11% yield) and 1-butyl-4-isopropylimidazo[1,2-a]quinoxaline (elution at 3:1 CHex/ethyl acetate, further purified using DCM -> DCM/ethyl acetate 3:1, 11.0 mg, 41.1 μmol, 17% yield) were obtained; 13 mg (elution at 3:1 CHex/ethyl acetate, 25% yield) of starting material were reisolated.

\[R_f = 0.72 \text{ (triazole product) (cyclohexane/ethyl acetate 2:1).} \]

\[^1H \text{ NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta = 8.18-8.15 \text{ (m, 1H, } CH_{ar}, \text{ 8.14 (s, 1H, } CH_{triazole}, \text{ 8.05-8.02 \text{ (m, 1H, } CH_{ar}, \text{ 7.84-7.76 \text{ (m, 2H, } CH_{ar}, \text{ 4.02 (hept, } 3^J = 6.7 \text{ Hz, 1H, } CH(CH_3)_2, \text{ 2.88 (t, } 3^J = 7.6 \text{ Hz, 2H, } C_3CH_2, \text{ 1.80 (p, } 3^J = 7.6 \text{ Hz, 2H, } CH_2CH_2, \text{ 1.49 (h, } 3^J = 7.5 \text{ Hz, 2H, } CH_2CH_3, \text{ 1.40 (d, } 3^J = 6.7 \text{ Hz, 6H, } CH_3, \text{ 1.00 (t, } 3^J = 7.4 \text{ Hz, 3H, } CH_2CH_3; \text{ 13^C \text{ NMR (10 MHz, CDCl}_3 [77.0 ppm), ppm) } \delta = 157.2 \text{ (1C, } C_6, \text{ 148.3 (1C, } CH_{triazole}, \text{ 142.6 (1C, } C_5, \text{ 142.1 (1C, } C_6, \text{ 138.9 (1C, } C_6, \text{ 130.5 (1C, } CH_{ar}, \text{ 130.2 (1C, } CH_{ar}, \text{ 128.9 (1C, } CH_{ar}, \text{ 128.6 (1C, } CH_{ar}, \text{ 121.6 (1C, } CH_{triazole}, \text{ 31.5 (1C, } CH(CH_3)_2, \text{ 31.3 (1C, } CH_2CH_2, \text{ 25.3 (1C, } C_3CH_2, \text{ 22.4 (1C, } CH_2CH_3, \text{ 21.9 (2C, } CH_3, \text{ 13.8 (1C, } CH_2CH_3. \text{ MS (FAB, 3-NBA), m/z (%): } 297 [M+1]^+ (23), 296 [M]^+ (100), 268 (13), 171 (30), 129 (21). \text{ HRMS (FAB, C}_{17}H_{22}N_5): \text{ calcd 296.1870, found 296.1871. IR (ATR, } \tilde{\nu} = 3189 (w), 2956 (m), 2922 (w), 1600 (w).} \]
(s), 2871 (w), 2856 (m), 1557 (w), 1487 (m), 1460 (m), 1438 (s), 1426 (vs), 1375 (m), 1354 (m), 1302 (m), 1273 (w), 1242 (w), 1213 (vs), 1193 (m), 1170 (w), 1142 (m), 1132 (m), 1105 (w), 1085 (m), 1031 (vs), 1013 (s), 973 (vs), 932 (w), 898 (w), 877 (w), 805 (m), 779 (m), 766 (vs), 745 (m), 731 (m), 684 (w), 642 (m), 612 (s), 588 (m), 560 (w), 530 (m), 492 (w), 470 (w), 426 (w), 378 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.21–8.17 (m, 1H, CH₃), 8.12–8.10 (m, 1H, CH₃), 7.57–7.53 (m, 2H, CH₃), 7.50 (s, 1H, CH₃imidazolyl), 4.03 (p, ³J = 6.9 Hz, 1H, CH(CH₃)₂), 3.29 (t, ²J = 7.8 Hz, 2H, CqCH₂), 1.91 (p, ³J = 7.6 Hz, 2H, CH₃CH₂), 1.58 (h, ²J = 7.4 Hz, 2H, CH₂CH₃), 1.50 (d, ³J = 6.8 Hz, 6H, CH(CH₃)₂); MS (EI), m/z (%): 269 [M+2]+ (30), 268 [M+1]+ (19), 267 [M]+ (100), 266 (16), 252 (71), 239 (55), 231 (22), 225 (16), 224 (50), 219 (37), 209 (23), 208 (20), 196 (20), 181 (36), 169 (56), 131 (41), 119 (42), 84 (15), 69 (96). HRMS (EI, C₁₇H₁₂N₃): calcd 267.1730, found 267.1732; IR (ATR, ν) = 2959 (s), 2928 (s), 2864 (m), 1707 (w), 1659 (w), 1606 (w), 1585 (w), 1536 (w), 1493 (s), 1465 (s), 1412 (s), 1378 (m), 1355 (m), 1319 (m), 1289 (m), 1184 (w), 1169 (w), 1156 (m), 1136 (m), 1081 (s), 1037 (w), 975 (w), 952 (m), 933 (w), 882 (w), 847 (w), 829 (m), 809 (w), 744 (vs), 700 (w), 640 (m), 632 (m), 606 (w), 584 (m), 531 (w), 479 (w), 455 (m), 416 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.91 (d, ³J = 7.5 Hz, 1H, CH₃), 7.54 (t, ²J = 8.3 Hz, 1H, CH₃), 7.42 (d, ²J = 15.2 Hz, 1H, CH₃), 5.12 (bs, 2H, NH₃), 3.09 (hept, ³J = 6.7 Hz, 1H, CH(CH₃)₂), 1.42 (d, ³J = 6.8 Hz, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 151.8 (1C, Cq), 150.2 (1C, Cq), 140.2 (1C, Cq), 137.9 (1C, Cq), 130.5 (1C, Cq), 129.0 (1C, CH₃), 126.8 (1C, CH₃), 125.4 (1C, CH₃), 124.8 (1C, CH₃), 31.4 (1C, CH(CH₃)₂), 20.3 (2C, CH₃); MS (ESI), m/z (%): 189 [M+1]⁺ (11), 188.1181 [M⁺]¹ (100). HRMS (C₁₁H₇N₄): calcd 188.1182, found 188.1181; IR (ATR, ν) = 3482 (m), 3303 (w), 3257 (w), 3216 (w), 3106 (w), 3031 (w), 2973 (m), 2961 (m), 2929 (m), 2870 (w), 2737 (w), 1643 (vs), 1606 (m), 1562 (s), 1494 (w), 1463 (s), 1431 (vs), 1381 (s), 1316 (m), 1251 (m), 1232 (m), 1193 (w), 1130 (s), 1072 (vs), 1041 (m), 1016 (m), 962 (w), 949 (m), 914 (m), 866 (w), 756 (vs), 722 (s), 704 (s), 657 (s), 611 (vs), 585 (m), 472 (m), 422 (w), 377 (s) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-OHPQSKQMZH-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/YKTZEDKROYIMNU-UHFFFAOYSA-N.1 https://doi.org/10.14272/AFOHYVRQQPQNN-UHFFFAOYSA-N.1 https://doi.org/10.14272/IRSRPTQGLZTGL-UHFFFAOYSA-N.1
1-Butyl-4-(trifluoromethyl)imidazo[1,2-a]quinoxaline (16c), 3-(trifluoromethyl)quinoxalin-2-amine (17c)

Name {P1|16c}: 1-butyl-4-(trifluoromethyl)imidazo[1,2-a]quinoxaline; Formula: C_{15}H_{14}F_{3}N_{3}; Molecular Mass: 293.2870; Exact Mass: 293.1140; Smiles: CCCCCc1cnc2n1c1ccccc1nc2C(F)(F)F; InChIKey: YXJMMYJFBYEEBUHFFFAOYSA-N

Name {P2|17c}: 3-(trifluoromethyl)quinoxalin-2-amine; Formula: C_{9}H_{6}F_{3}N_{3}; Molecular Mass: 213.1592; Exact Mass: 213.0514; Smiles: Nc1nc2ccccc2nc1C(F)(F)F; InChIKey: STMGCUUVVSSYBMUHFFFAOYSA-N

The starting material 4-(trifluoromethyl)tetrazolo[1,5-a]quinoxaline (49.0 mg, 205 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (10.0 mg, 19.9 μmol, 0.0970 equiv) were dissolved in 1 mL of dry toluene in a 5 mL crimp vial under argon, followed by hex-1-yne (34.3 mg, 48.0 μL, 418 μmol, 2.00 equiv). The reaction mixture was stirred at 100 °C for 2.5 days; then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na_{2}SO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, cHex > cHex/EtOAc 4:1) and 1-butyl-4-(trifluoromethyl)imidazo[1,2-a]quinoxaline (10.5 mg, 35.8 μmol, 17% yield) as well as 3-(trifluoromethyl)quinoxalin-2-amine (29.0 mg, 136 μmol, 66% yield) were obtained as brown solids.

\[R_I = 0.63 \text{ (cyclohexane/ethyl acetate 2:1).} \]

\[\text{^1H NMR (400 MHz, CDCl}_3, \text{ ppm)} \delta = 8.28 \text{ (d, } 3J = 8.6 \text{ Hz, 1H, CH}_	ext{ar}), 8.23 \text{ (dd, } 3J = 8.2 \text{ Hz, } 4J = 1.7 \text{ Hz, 1H, CH}_	ext{ar}), 7.78–7.73 \text{ (m, 1H, CH}_	ext{ar}), 7.68–7.63 \text{ (m, 1H, CH}_	ext{ar}), 3.34 \text{ (t, } 3J = 7.5 \text{ Hz, 2H, } C\text{qC}_2\text{H}_2), 1.92 \text{ (p, } 3J = 7.5 \text{ Hz, 2H, CH}_2\text{C}_2\text{H}_2), 1.59 \text{ (h, } 3J = 7.4 \text{ Hz, 2H, CH}_2\text{C}_2\text{H}_3), 1.06 \text{ (t, } 3J = 7.4 \text{ Hz, 3H, CH}_3); ^{13}C \text{ NMR (100 MHz, CDCl}_3, \text{ ppm)} \delta = 140.5 \text{ (q, } 2J = 36.0 \text{ Hz, 1C, CCF}_3), 135.5 \text{ (1C, C}_	ext{q}), 134.8 \text{ (1C, C}_	ext{q}), 133.9 \text{ (1C, CH}_	ext{imidazole}), 132.2 \text{ (1C, C}_	ext{imidazole}), 131.9 \text{ (1C, CH}_	ext{ar}), 130.4 \text{ (1C, CH}_	ext{ar}), 130.0 \text{ (1C, C}_	ext{q}), 126.7 \text{ (1C, CH}_	ext{ar}), 120.4 \text{ (q, } 1J = 276.6 \text{ Hz, CF}_3), 115.6 \text{ (1C, CH}_	ext{ar}), 29.9 \text{ (1C, CH}_2), 27.7 \text{ (1C, CH}_2\text{C}_2\text{H}_2), 22.5 \text{ (1C, CH}_2\text{C}_2\text{H}_3), 13.8 \text{ (1C, CH}_3); ^{19}F \text{ NMR (376 MHz, CDCl}_3, \text{ ppm)} \delta = -67.38; \text{ MS (EI, 70 eV, } 40 \text{ °C, m/z): 294 (62 [M+1]^+), 266 (11), 253 (18), 252 (100), 251 (12), 238 (40), 232 (11), 213 (16).} \]

HRMS (C_{15}H_{14}F_{3}N_{3}): calcld 294.1213, found 294.1214; IR (ATR, v) = 3037 (vw), 2962 (w), 2929 (w), 2867 (w), 1578 (w), 1551 (m), 1536 (w), 1494 (w), 1468 (m), 1458 (w), 1429 (w), 1408 (m), 1377 (m), 1316 (m), 1303 (m), 1258 (m), 1237 (m), 1230 (m), 1201 (s), 1183 (vs), 1129 (vs), 1072 (vs), 1055 (vs), 1035 (m), 926 (s), 871 (w), 850 (m), 809 (w), 761 (vs), 741 (vs), 718 (s), 659 (m), 633 (m), 591 (s), 569 (w), 528 (w), 476 (m), 452 (m) cm^{-1}; EA (C_{15}H_{14}F_{3}Na): Calcld C 61.43; H 4.81; N 14.33. Found C 61.44; H 4.77; N 14.05.
1H NMR (400 MHz, CDCl$_3$, ppm) $\delta = 8.02$ (d, $^3J = 7.9$ Hz, 1H, CH$_{ar}$), 7.76–7.52 (m, 1H, CH$_{ar}$), 5.32 (bs, 2H, NH$_2$); 13C NMR (100 MHz, CDCl$_3$, ppm) $\delta = 148.5$ (1C, C$_{q}$), 142.9 (1C, C$_{q}$), 135.9 (1C, C$_{q}$), 132.7 (1C, CH$_{ar}$), 131.5 (q, $^2J_{CCF_3} = 35.4$ Hz, C$_{CF_3}$), 129.8 (1C, CH$_{ar}$), 126.3 (1C, CH$_{ar}$), 125.9 (1C, CH$_{ar}$), 122.8 (q, $^1J_{CF_3} = 275.4$ Hz, CF$_3$); 19F NMR (376 MHz, CDCl$_3$, ppm) $\delta = -67.98$; MS (EI, m/z, 70 eV, 20 °C): 214 [M+1]$^+$ (11), 213 [M]$^+$ (100), 166 (15), 144 (21), 117 (11), 90 (15).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADVSC-LFFREMWXTJ-UHFFADVSC-NUHFF-NHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/YXIJMYJFBYEEB-UHFFFAOYSA-N.1

The synthesis of side product 3-(trifluoromethyl)quinoxalin-2-amine has been previously reported and the NMR spectra are corresponding with literature [28].

2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-phenylquinoxaline (15d), 3-phenylquinoxalin-2-amine (17d)

The starting material 4-phenyl-[1,2,3,4]tetrazolo[1,5-a]quinoxaline (50.0 mg, 202 μmol, 1.00 equiv) and the catalyst benzene; copper(+); trifluoromethanesulfonate (12.6 mg, 25.0 μmol, 0.124 equiv) were dissolved in 1 mL of dry toluene under argon, followed by 1-hexyne (42.9 mg, 60.0 μL, 523 μmol, 2.58 equiv). The green reaction mixture was stirred at 100 °C for 3 days. Then water was added and the brown aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvents were removed under reduced pressure. The obtained crude product was purified twice via flash-chromatography (Interchim...
R_{l} = 0.48 \text{ (cyclohexane/ethyl acetate 2:1).} ^{1} \text{H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm)} \delta = 7.88–8.26 \text{ (m, 1H, CHAr), 8.28–8.18 } \text{ (m, 1H, CHAr), 7.93–7.86 \text{ (m, 2H, CHAr), 7.66 } \text{s (1H, CH} \text{)}, \text{ 7.46–7.38 (m, 5H, CHAr), 2.78 (t, J = 7.6 Hz, 2H, CH}_2 \text{), 1.72–} \text{1.66 (m, 2H, CH}_2 \text{), 1.40–1.34 (m, 2H, CH}_2 \text{), 0.96–0.91 (m, 3H, CH}_3 \text{);} ^{13} \text{C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm)} \delta = 149.6 \text{ (1C, C} \text{q), 148.6 \text{ (1C, C} \text{q), 142.5 (1C, C} \text{q), 142.4 (1C, C} \text{q), 139.8 (1C, C} \text{q), 136.2 (1C, C} \text{q), 131.5 (1C, CHAr), 131.2 (1C, CHAr), 129.8 (1C, CHAr), 129.4 (1C, CHAr), 129.1 (1C, CHAr), 128.7 (2C, CHAr), 128.5 (2C, CHAr), 121.6 (1C, CHAr), 31.3 (1C, CH}_2 \text{), 25.2 (1C, CH}_2 \text{), 22.1 (1C, CH}_2 \text{), 13.8 (1C, CH}_3 \text{); MS (EI, 70 eV, 130 °C), m/z (%): 329 [M]^{+} \text{ (1), 301 (17), 300 (31), 273 (26), 272 (23), 258 (29), 220 (19), 219 (20), 206 (24), 205 (100). HRMS (EI, C}_{20} \text{H}_{19} \text{N}_5 \text{): calcd 329.1635, found 329.1635; IR (ATR, } \nu = 3146 \text{ (w), 3057 (vw), 2956 (m), 2924 (m), 2851 (m), 1725 (vw), 1599 (w), 1548 (w), 1486 (m), 1468 (m), 1449 (s), 1443 (s), 1377 (w), 1346 (m), 1286 (w), 1214 (m), 1179 (m), 1140 (w), 1130 (w), 1077 (w), 1060 (w), 1033 (vs), 1011 (s), 966 (vs), 929 (w), 919 (w), 885 (w), 819 (w), 803 (w), 793 (w), 764 (vs), 734 (m), 696 (vs), 670 (m), 620 (w), 609 (m), 589 (m), 562 (m), 537 (s), 492 (w), 449 (w), 387 (m) cm}^{-1} \text{ EA (C}_{20} \text{H}_{19} \text{N}_5 \text{): Calcd C 72.93; H 5.81; N 21.26. Found C 72.86; H 5.99; N 19.65; UV/VIS (acetonitrile), } \lambda = 340 \text{ (2.06), 258 (2.96) nm.}

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-BKLKYSKWAG-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/XJGYBMKEUQIRGA-UHFFFAOYSA-N.1
https://doi.org/10.14272/ABTZHDQWMUXIFW-UHFFFAOYSA-N.4

The synthesis of side product 3-phenylquinoxalin-2-amine has been previously reported and the NMR spectra are corresponding with literature [29].
1-Butyl-4-chloroimidazo[1,2-a]quinoxaline (16e), 3-chloroquinoxalin-2-amine (17e)

The starting material 4-chlorotetrazolo[1,5-a]quinoxaline (150 mg, 730 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (73.4 mg, 146 μmol, 0.200 equiv) were dissolved in 5 mL of dry toluene in a two-necked flask under argon, followed by hex-1-yne (120 mg, 168 μL, 1.46 mmol, 2.00 equiv). The reaction mixture was stirred at 100 °C for 3 days; then water and ethyl acetate were added, the organic phase was separated and the aqueous phase was extracted 3× with ethyl acetate. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude mixture was purified twice via column chromatography (cHex/EtOAc+2% Et₃N, then DCM/EtOAc) and 1-butyl-4-chloroimidazo[1,2-a]quinoxaline (11.0 mg, 42.4 μmol, 6% yield) and 3-chloroquinoxalin-2-amine (8.00 mg, 44.5 μmol, 6% yield) were obtained; 28 mg of starting material were reisolated (19%). Note: This reaction was conducted in a two-necked flask using 0.2 equiv. of catalyst. Under standard conditions (50 mg of starting material, crim vial, 0.1 equiv. of catalyst), the desired product was isolated in mixture with the amine product; respective yields were calculated from the NMR ratios and gave a yield of 4% of 1-butyl-4-chloroimidazo[1,2-a]quinoxaline and 23% of 3-chloroquinoxalin-2-amine; 34% of the starting material were reisolated.

$R_f = 0.41$ (CH₂Cl₂/ethyl acetate 20:1). 1H NMR (400 MHz, CDCl₃, ppm) δ = 8.20 (dd, $^3J = 8.3$ Hz, $^4J = 1.6$ Hz, 1H, CH_ar), 8.04 (dd, $^3J = 7.9$ Hz, $^4J = 1.7$ Hz, 1H, CH_ar), 7.66–7.58 (m, 2H, CH_ar), 7.57 (m, 1H, $CH_imidazole$), 3.29 (t, $^3J = 7.6$ Hz, 2H, CH_2CH_2), 1.90 (p, $^3J = 7.5$ Hz, 2H, CH_2CH_2), 1.58 (h, $^3J = 7.3$ Hz, 2H, CH_2CH_3), 1.05 (t, $^3J = 7.4$ Hz, 3H, CH_3); ^{13}C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 143.7 (1C, C_q), 136.6 (1C, C_q), 135.7 (1C, C_q), 133.2 (1C, C_q), 133.1 (1C, $C_htriazole$), 130.1 (1C, CH_ar), 129.1 (1C, C_q), 128.5 (1C, CH_ar), 126.6 (1C, CH_ar), 115.6 (1C, CH_ar), 29.9 (1C, CH_2CH_2), 27.8 (1C, CH_2CH_3), 22.5 (1C, CH_2CH_3), 13.8 (1C, CH_3). MS (EI, 70 eV, 90 °C), m/z (%): 259/261 [M]+ (35/12), 218 (37), 217 (19), 216 (100), 204 (16), 102 (11). HRMS (EI, C₁₄H₁₄N₃Cl₃): calcld 259.0871, found 259.0870. IR (ATR, δ) = 2953 (w), 2917 (vs), 2849 (vs), 1737 (m), 1718 (w), 1526 (w), 1479 (m), 1465 (s), 1398 (w), 1370 (m), 1347 (m), 1303 (w), 1285 (w), 1241 (s), 1169 (m), 1153 (m), 1130 (m), 1101 (w), 1077 (s), 1055 (m), 1018 (s), 962 (w), 919 (vs), 867 (w), 839 (m), 806 (m), 766 (vs), 744 (s), 730 (m), 720 (m), 688 (w), 636 (m), 592 (m), 582 (m), 470 (m), 453 (s) cm⁻¹.
1H NMR (400 MHz, CDCl₃, ppm) δ = 7.86 (dd, 3J = 8.3 Hz, 4J = 1.6 Hz, 1H, C₆H₅), 7.69 (dd, 3J = 8.4 Hz, 4J = 1.7 Hz, 1H, C₆H₅), 7.65–7.61 (m, 1H, C₆H₅), 7.49–7.45 (m, 1H, C₆H₅), 5.50 (bs, 2H, NH₂). Pure spectrum and further analysis available at https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-NOFJFBOKP-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-SAOWBEPSEQ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/CWXIXBIIISVJRL-UHFFFAOYSA-N.1
https://doi.org/10.14272/NOFJFBOKPHILH-UHFFFAOYSA-N.3

The synthesis of side product 3-chloroquinoxalin-2-amine has been previously reported and the NMR spectra are corresponding with literature [30].

2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-methoxyquinoxaline (15f)

```
\[\begin{align*}
\text{N} = &\text{N} \\
\text{O} &\text{O} \\
\text{CH₃} &\text{Cu}^+ \\
\text{CF₃-S-O} &\text{CH₃} \\
\end{align*}\]
```

1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 8.19 (s, 1H, CH), 8.08 (d, J = 8.2 Hz, 1H, CH₆), 7.92 (d, J = 8.3 Hz, 1H, CH₆), 7.74 (t, J = 7.5 Hz, 1H, CH₆), 7.64 (t, J = 7.6 Hz, 1H, CH₆), 4.24 (s, 3H, OCH₃), 2.86 (t, J = 7.8 Hz, 2H, CH₂), 1.76 (quint, J = 7.6 Hz, 2H, CH₂), 1.45 (q, J = 7.5 Hz, 2H, CH₂), 0.97 (t, J = 7.3 Hz, 3H, CH₃); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 150.5 (1C, C₆), 148.2 (1C, C₆), 140.3 (1C, C₆), 137.0 (1C, C₆), 135.6 (1C, C₆), 130.9
(1C, CH₃), 128.9 (1C, CH₂), 127.9 (1C, CH₃), 126.8 (1C, CH₂), 121.7 (1C, CH), 54.9 (1C, OCH₃), 31.5 (1C, CH₂), 25.3 (1C, CH₂), 22.3 (1C, CH₂), 13.9 (1C, CH₃); MS (EI, 70 eV, 100 °C), m/z (%): 283 [M⁺] (1), 255 (19), 254 (23), 240 (26), 227 (69), 226 (65), 213 (23), 212 (94), 187 (29), 159 (38), 158 (25), 144 (26), 131 (18), 130 (25), 129 (100), 116 (18), 90 (25). HRMS (EI, C₁₅H₁₇O₁N₅): calcd 283.1428, found 283.1427; IR (ATR, ν) = 3166 (w), 3061 (w), 2956 (m), 2927 (m), 2857 (m), 1611 (w), 1581 (w), 1568 (w), 1460 (vs), 1421 (s), 1412 (s), 1390 (s), 1378 (s), 1332 (vs), 1298 (s), 1227 (s), 1208 (s), 1190 (s), 1167 (vs), 1139 (s), 1038 (vs), 1003 (s), 987 (vs), 973 (vs), 919 (m), 904 (w), 873 (w), 822 (m), 807 (m), 788 (w), 768 (vs), 742 (s), 730 (m), 714 (m), 687 (w), 662 (w), 649 (w), 628 (w), 603 (m), 591 (w), 567 (s), 497 (s), 476 (s), 397 (w) cm⁻¹; EA (C₁₅H₁₇N₅O): Calcd C 63.59; H 6.05; N 24.72. Found C 63.57; H 6.16; N 23.70.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-LDJGUGHGVW-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/LDJGUGHGVWKPPC-UHFFFAOYSA-N.2

1-(4-((3-(4-Butyl-1H,1,2,3-triazol-1-yl)quinoxalin-2-yl)amino)phenyl)ethan-1-one (15g), 1-(4-((3-aminoquinoxalin-2-yl)amino)phenyl)ethan-1-one (17g)

![Chemical Structure](image)

Name {P1|15g}: 1-(4-((3-(4-butyl-1H,1,2,3-triazol-1-yl)quinoxalin-2-yl)amino)phenyl)ethan-1-one; Formula: C₂₂H₂₂N₆O; Molecular Mass: 386.4497; Exact Mass: 386.1855; Smiles: CCCc1nnn(c1)c1nc2ccccc2nc1Nc1ccc(cc1)C(=O)C; InChIKey: WGMOCILRUYTMIIW-UHFFFAOYSA-N

Name {P2|17g}: 1-(4-((3-aminoquinoxalin-2-yl)amino)phenyl)ethan-1-one; Formula: C₁₆H₁₄N₄O; Molecular Mass: 278.3086; Exact Mass: 278.1168; Smiles: Nc1nc2ccccc2nc1Nc1ccc(cc1)C(=O)C; InChIKey: BLJPCFCXXBZYPN-UHFFFAOYSA-N
was obtained as a yellow solid. 1-((3-aminoquinoxalin-2-yl)amino)phenyl)ethan-1-one (4.00 mg, 14.4 μmol, 9% yield) was obtained as a yellow-brown colored solid and 29 mg of the starting material were re-isolated.

\[R_t = 0.52 \text{ (cyclohexane/ethyl acetate 2:1).} \]

\[^1H \text{ NMR (400 MHz, CDCl}_3, \text{ ppm}) \delta = 11.15 (s, 1H, NH), 8.70 (s, 1H, CH}_\text{Ntriazol}, 8.14–8.12 (m, 2H, CH}_\text{ar}, 8.06–8.03 (m, 2H, CH}_\text{ar}, 7.95–7.90 (m, 2H, CH}_\text{ar}, 7.75–7.71 (m, 1H, CH}_\text{ar}, 7.60–7.56 (m, 1H, CH}_\text{ar}, 2.91 (t, \text{ }^3J = 7.5 \text{ Hz, } 2H, C}_3CH_2)); 2.63 (s, 3H, COCH_3); 1.82 (p, \text{ }^3J = 7.5 \text{ Hz, } 2H, CH}_2CH_2CH_2); 1.50 (h, \text{ }^3J = 7.3 \text{ Hz, } 2H, CH}_2CH_3); 1.01 (t, \text{ }^3J = 7.4 \text{ Hz, } 3H, CH}_3); \]

\[^13C \text{ NMR (100 MHz, CDCl}_3, \text{ ppm}) \delta = 196.8 (1C, CO), 143.8 (1C, C_q), 141.3 (1C, C_q), 140.2 (1C, C_q), 134.9 (1C, C_q), 132.8 (1C, C_q), 132.0 (1C, C_q), 130.8 (1C, CH}_ar), 129.8 (2C, CH}_ar), 128.1 (1C, CH}_ar), 127.1 (1C, CH}_ar), 126.6 (1C, CH}_ar), 120.6 (1C, CH}_triazole), 119.4 (2C, CH}_ar), 31.2 (1C, CH}_2CH_2CH_2); 26.4 (1C, COCH_3); 25.2 (C_3CH_2); 22.3 (1C, CH}_2CH_3); 13.8 (1C, CH}_3). \]

Missing 1C (1C, CH}_triazole) due to low intensity; MS (EI, 70 eV, 200 °C), m/z (%): 386 [M+]+ (6), 316 (24), 315 (100), 271 (11), 221 (15), 220 (80), 219 (14), 90 (21).

HRMS (EI, C_22H_22O_1N_6): calcld 386.1850, found 386.1851. IR (ATR, ν) = 3262 (w), 3179 (w), 3140 (w), 3118 (w), 3070 (w), 2959 (m), 2919 (m), 2851 (m), 1674 (s), 1621 (m), 1601 (vs), 1572 (m), 1536 (vs), 1507 (s), 1483 (s), 1472 (m), 1439 (ns), 1407 (s), 1356 (vs), 1305 (m), 1268 (vs), 1251 (vs), 1234 (vs), 1214 (vs), 1173 (vs), 1137 (vs), 1123 (s), 1030 (vs), 1018 (vs), 989 (vs), 959 (vs), 939 (s), 902 (m), 866 (m), 834 (vs), 823 (vs), 793 (m), 756 (vs), 730 (s), 722 (s), 696 (vs), 684 (vs), 635 (vs), 622 (s), 602 (vs), 589 (vs), 564 (vs), 506 (m), 490 (vs), 479 (vs), 465 (vs), 388 (s) cm⁻¹.

\[^1H \text{ NMR (400 MHz, DMSO-d}_6, \text{ ppm}) \delta = 9.20 (bs, 1H, NH), 8.14–8.12 (m, 2H, CH}_ar), 8.00–7.98 (m, 2H, CH}_ar), 7.60 (dd, \text{ }^3J = 7.8 \text{ Hz, } \text{ }^3J = 1.7 \text{ Hz, } 1H, CH}_ar), 7.48–7.46 (m, 1H, CH}_ar), 7.39–7.29 (m, 2H, CH}_ar), 3.36 (bs, 2H, NH_2); 2.55 (s, 3H, CH}_3); \]

\[^13C \text{ NMR (100 MHz, DMSO-d}_6, \text{ ppm}) \delta = 196.3 (1C, CO), 130.6 (1C, C_q), 129.4 (2C, CH}_ar), 125.9 (1C, CH}_ar), 125.8 (1C, CH}_ar), 124.2 (1C, CH}_ar), 118.7 (2C, CH}_ar), 26.4 (1C, CH}_3). \]

Missing C (6C, C_3/CH}_ar) due to low intensity. MS (EI, 70 eV, 170 °C), m/z (%): 279 [M+1]+ (20), 278 [M]+ (100), 277 (69), 271 (16), 263 (40), 255 (16), 246 (15), 235 (31), 144 (21), 133 (15), 109 (78), 105 (28), 102 (20), 90 (31), 84 (15), 83 (15), 66 (20), 59 (22), 57 (59), 55 (21). HRMS (EI, C_16H_14O_4N_4): calcld 278.1162, found 278.1163. IR (ATR, ν) = 3289 (w), 3116 (m), 3064 (m), 2959 (w), 2922 (w), 2853 (w), 2806 (w), 1687 (w), 1670 (s), 1657 (s), 1601 (vs), 1562 (m), 1534 (vs), 1510 (vs), 1496 (vs), 1476 (vs), 1465 (vs), 1409 (s), 1387 (m), 1357 (s), 1339 (vs), 1307 (m), 1264 (vs), 1244 (vs), 1201 (s), 1174 (vs), 1146 (s), 1044 (s), 1020 (vs), 990 (vs), 958 (vs), 911 (s), 832 (vs), 748 (vs), 720 (vs), 632 (vs), 606 (vs), 589 (vs), 560 (vs), 528 (vs), 476 (vs), 456 (vs), 426 (vs), 387 (s) cm⁻¹.

Additional information on the chemical synthesis is available via Chemoteron repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-XXYVKQPHIB-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemoteron repository: https://doi.org/10.14272/WGMOCILRUYTMW-UHFFFAYOSA-N.1
2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)oxy)quinoxaline (15h), 3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)quinoxalin-2-amine (17h), 1-butyl-4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)imidazo[1,2-a]quinoxaline (16h)

Name \{P1\(15h\): 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)oxy)quinoxaline; Formula: C\(_{24}\)H\(_{18}\)F\(_{17}\)N\(_5\)O; Molecular Mass: 715.4055; Exact Mass: 715.1240; Smiles: CCCCCc1nnn(c1)c1nc2ccccc2nc1OCCC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F;

InChIKey: HZQOUMBELHPHLV-UHFFFAOYSA-N

Name \{P2\(17h\): 3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)quinoxalin-2-amine; Formula: C\(_{18}\)H\(_{10}\)F\(_{17}\)N\(_3\)O; Molecular Mass: 607.2644; Exact Mass: 607.0552; Smiles: Nc1nc2ccccc2nc1OCCC(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F);

InChIKey: VVNPRYRWMNIXCI-UHFFFAOYSA-N

Name \{P3\(16h\): 1-butyl-4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)imidazo[1,2-a]quinoxaline; Formula: C\(_{24}\)H\(_{18}\)F\(_{17}\)N\(_3\)O; Molecular Mass: 687.3921; Exact Mass: 687.1178; Smiles: CCCCCc1cnc2n1c1ccccc1nc2OCCC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F);

InChIKey: ICMDLGQTBHAPKS-UHFFFAOYSA-N

The starting material 4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)tetrazolo[1,5-a]quinoxaline (50.0 mg, 79.0 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (5.50 mg, 10.9 μmol, 0.138 equiv) were dissolved in 1 mL of dry toluene in a crimp vial under argon, followed by hex-1-yne (32.4 mg, 45.3 μL, 395 μmol, 5.00 equiv). The reaction mixture was stirred at 100 °C for 3 days; then water and ethyl acetate were added, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na\(_2\)SO\(_4\), filtered and the solvent was removed under reduced pressure. The crude mixture was purified via column chromatography (dryload on Celite, cHex -> cHex/EtOAc 4:1) and 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)quinoxaline (28.0 mg, 39.1 μmol, 50% yield), 3-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)quinoxalin-2-amine (10.0 mg, 16.5 μmol, 21% yield, minor impurities) and 1-butyl-4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)oxy)imidazo[1,2-a]quinoxaline (8.00 mg, 11.6 μmol, 15% yield) were obtained as white to yellow solids.

R\(_f\) = 0.68 (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) δ = 8.17 (s, 1H, CH\(_{\text{triazole}}\)), 8.13 (dd, \(^3\)J = 8.3 Hz, \(^4\)J = 1.7 Hz, 1H, CH\(_{\text{ar}}\)), 7.94 (dd, \(^3\)J = 8.3 Hz, \(^4\)J = 1.6 Hz, 1H, CH\(_{\text{ar}}\)), 7.81–7.77 (m, 1H, CH\(_{\text{ar}}\)), 7.72–7.68 (m, 1H, CH\(_{\text{ar}}\)), 4.97 (t, \(^3\)J =
1H NMR (400 MHz, CDCl₃, ppm) δ = 7.71 (d, 3J = 8.1 Hz, 1H, CHar), 7.63 (d, 3J = 8.4 Hz, 1H, CHar), 7.47 (t, 3J = 6.7 Hz, 1H, CHar), 7.41–7.37 (m, 1H, CHar), 5.31 (bs, 2H, NH₆), 4.88 (t, 3J = 6.3 Hz, 2H, OCH₂), 2.80–2.67 (m, 2H, CH₂CH₂); 13C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 127.4 (1C, CHar), 125.3 (1C, CHar), 58.8 (1C, OCH₃), 30.6 (t, 3J = 22.3 Hz, 1C, CH₂CF₂). Missing C (14C, CF₂CF₃ and C₆H₁₃O₇N₆F₁₇):

19F NMR (376 MHz, CDCl₃, ppm) δ = -80.75 (t, 3J = 9.9 Hz, 3F, CF₃), -113.2 (m, CF₂), -121.4 (m, CF₂), -121.9 (m, CF₂), -122.7 (m, CF₂), -123.4 (m, CF₂), -126.1 (m, CF₂), 7.41 (dd, 3J = 7.7 Hz, 2H, CH₂CH₂), 7.35 (qd, 3J = 7.6 Hz, 4J = 1.7 Hz, 2H, CHar), 7.47 (s, 1H, CH₃midazole), 4.97 (t, 3J = 7.1 Hz, 2H, OCH₂), 3.28 (t, 3J = 7.6 Hz, 2H, C₂H₃), 2.96–2.70 (m, 2H, OCH₂CH₂), 1.90 (p, 3J = 7.7 Hz, 2H, CH₂CH₂), 1.58 (h, 3J = 7.3 Hz, 2H, CH₂CH₂), 1.04 (t, 3J = 7.3 Hz, 3H, CH₃) 15C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 152.12 (1C, C₆H₁₃), 135.27 (1C, C₆H₁₃), 134.72 (1C, C₆H₁₃), 132.21 (1C, C₆H₁₃), 131.72 (1C, CH₃midazole), 128.70 (1C, CHar), 128.23 (1C, C₆H₁₃), 126.20 (1C, CHar), 125.70 (1C, CHar), 115.40 (1C, CHar), 58.65 (1C, OCH₂), 30.8 (t, 3J = 21.6 Hz, 1C, OCH₂CH₂CF₂), 29.99 (1C, CH₂CH₂), 27.70 (1C, C₂H₃), 22.48 (1C, CH₂CH₂), 13.83 (1C, CH₃). Missing C (8C, CF₂/CF₃) due to C-F coupling and resulting low intensity; 19F NMR (376 MHz, CDCl₃, ppm) δ = -80.8 (t, 3J = 9.9 Hz, 3F, CF₃), -113.3 (p, J = 18.1 Hz, 2F, CF₂), -121.6 (m, CF₂), -121.9 (m, CF₂), -122.7 (m, CF₂), -123.4 (m, CF₂), -126.1 (m, CF₂), MS (FAB, 3-NBA), m/z (%): 689 [M⁺] (27), 688 [M⁺] (100), 242 (17).

HRMS (C₉₂H₁₃F₁₁N₆O₇): calcld 688.1251, found 688.1249; IR (ATR, ν̃) = 2959 (vw), 2932 (w), 2860 (vw), 1619 (vw), 1561 (w), 1540 (w), 1509 (s), 1463 (w), 1418 (w), 1357 (m), 1330 (w), 1316 (w), 1295 (w), 1248 (s), 1198 (vs), 1143 (vs), 1130 (vs), 1082 (m), 1055 (m), 1043 (m), 994 (m), 963 (m), 929 (w), 873 (w), 820 (w), 789 (w), 769 (s), 730 (w), 703 (m), 656 (s), 622 (m), 605 (m), 577 (m), 560 (m), 531 (m), 511 (s), 397 (m), 381 (w) cm⁻¹.
1113 (vs), 1082 (s), 1021 (w), 984 (m), 959 (w), 935 (w), 908 (vw), 857 (w), 839 (w), 807 (w), 762 (s), 747 (m), 717 (w), 701 (w), 650 (s), 639 (vs), 606 (w), 575 (w), 558 (m), 530 (m), 513 (s), 473 (w), 453 (w), 397 (m) cm\(^{-1}\).

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-GODAPXMMMY-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/HZQOUMBELPHLV-UHFFFAOYSA-N.1
https://doi.org/10.14272/VVNPRYRWMNIXCI-UHFFFAOYSA-N.1
https://doi.org/10.14272/ICMDLGQTBHAPKS-UHFFFAOYSA-N.1

\[1,2,3,4\]Tetrazolo[1,5-a]quinoxaline (11a), 2-(4-butyl-1H-1,2,3-triazol-1-yl)quinoxaline (14k)

\[
\begin{align*}
\text{CF}_3\text{SO}_3^- & \quad \text{Cu}^+ \\
\text{N} & \quad \text{N} \\
\text{C}_8\text{H}_5\text{N}_5 & \quad \text{C}_{14}\text{H}_{15}\text{N}_{5}
\end{align*}
\]

100 °C, toluene, 3 d

The starting material 4,5-dihydrotetrazolo[1,5-a]quinoxaline (49.7 mg, 287 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (15.4 mg, 30.6 μmol, 0.107 equiv) were dissolved in 1 mL of dry toluene under argon, followed by 1-hexyne (57.2 mg, 80.0 μL, 697 μmol, 2.41 equiv) and N-ethyl-N-propan-2-ylpropan-2-amine (76.0 mg, 100 μL, 588 μmol, 2.04 equiv). The orange reaction mixture was stirred at 100 °C for 3 days. Then water was added and the dark aqueous phase was extracted 4 times with DCM. The combined organic phases were dried over \(\text{Na}_2\text{SO}_4\), filtered and the solvents were removed under reduced pressure. The obtained crude mixture was purified via flash-chromatography (Interchim devices puriFLASH XS420) on silica gel (PF-155SIHP-F0012) using cHex to cHex/ethyl acetate 2:1 in 12 column volumes. The products \([1,2,3,4]\)tetrazolo[1,5-a]quinoxaline (9.50 mg, 55.5 μmol, 19% yield) and 2-(4-butyl-1H-1,2,3-triazol-1-yl)quinoxaline (16.4 mg, 64.7 μmol, 23% yield) were obtained as brown solids. Moreover, 7 mg of an impure compound (presumably 3,4-dihydroquinoxalin-2-amine) were obtained, but not analyzed further.

\(^{1}\text{H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm)}\) δ = 9.58 (s, 1H, CH), 8.67 (dd, \(^{3}\text{J} = 8.2\text{ Hz}, \quad ^{4}\text{J} = 1.5\text{ Hz}, 1\text{H, CH}_\text{ar})\), 8.34 (dd, \(\text{J} = 8.2\text{ Hz}, \quad ^{4}\text{J} = 1.5\text{ Hz}, 1\text{H, CH}_\text{ar})\), 7.98–
1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.83 (s, 1H, CH), 8.48 (s, 1H, CH), 8.21–8.19 (m, 1H, CHAr), 8.07–8.05 (m, 1H, CHAr), 7.87–7.79 (m, 2H, CHAr), 2.88 (t, $^3J = 7.7$ Hz, 2H, CH$_2$), 1.79 (quint, $^3J = 7.6$ Hz, 2H, CH$_2$), 1.52–1.43 (m, 2H, CH$_2$), 0.99 (t, $^3J = 7.4$ Hz, 3H, CH$_3$). Further analysis can be found at https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-LGMVEBQKPY-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ.1.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-LPPUONCCTY-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/LGMVEBQKPYIMMI-UHFFFAOYSA-N.3 https://doi.org/10.14272/AHSWENVYXHLEHF-UHFFFAOYSA-N.2

1-phenyl-4-(trifluoromethyl)imidazo[1,2-a]quinoxaline (S9)

The starting material 4-(trifluoromethyl)tetrazolo[1,5-a]quinoxaline (49.0 mg, 205 μmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonate (10.5 mg, 20.9 μmol, 0.102 equiv) were dissolved in 1 mL of dry toluene under nitrogen, followed by ethynylbenzene (42.7 mg, 45.9 μL, 418 μmol, 2.04 equiv). The reaction mixture was stirred at 100 °C for 6 days. Then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3× with EtOAc. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (dryload on Celite, CHex -> CHex/EtOAc 10:1) and 1-phenyl-4-(trifluoromethyl)imidazo[1,2-a]quinoxaline (12.0 mg, 38.3 μmol, 19% yield) was obtained as a yellow-brown solid.
$R_f = 0.37$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, CDCl$_3$, ppm) $\delta = 8.22$ (dd, 3J = 8.1 Hz, 4J = 1.5 Hz, 1H, C$_{ar}$), 7.81 (s, 1H, C$_{imidazole}$), 7.62–7.56 (m, 7H, C$_{ar}$), 7.42 (ddd, 3J = 8.8 Hz, 3J = 7.1 Hz, 4J = 1.8 Hz, 1H, C$_{ar}$); 13C NMR (100 MHz, CDCl$_3$ [77.0 ppm], ppm) $\delta = 140.6$ (d, 2J = 36.6 Hz, 1C, C$_{CF_3}$), 135.8 (1C, C$_{imidazole}$), 135.5 (1C, C$_{q}$), 135.8 (1C, C$_{q}$), 134.8 (1C, C$_{q}$), 131.8 (1C, CH), 131.0 (1C, C$_{q}$), 130.2 (2C, CH), 130.1 (CH), 130.0 (CH), 129.7 (1C, C$_{q}$), 129.2 (2C, CH), 126.9 (CH), 120.5 (q, 1J = 275.9 Hz, 1C, CF$_3$), 116.2 (1C, CH). Missing 1C (1C, C$_{q}$), probably due to overlapping with the signal at 129.2; MS (EI, 70 eV, 80 °C), m/z (%): 314 [M+1]$^+$ (24), 313 [M]$^+$ (100), 312 (28), 292 (24), 102 (23), 69 (17). HRMS (EI, C$_{17}$H$_{10}$N$_3$F$_3$): calcd 313.0821, found 313.0819; IR (ATR, $\tilde{\nu}$) = 3055 (vw), 2921 (w), 2859 (vw), 1553 (w), 1462 (w), 1446 (w), 1395 (m), 1370 (w), 1312 (w), 1264 (w), 1228 (m), 1187 (s), 1180 (s), 1164 (m), 1145 (vs), 1137 (vs), 1088 (m), 1054 (s), 1030 (m), 969 (w), 921 (s), 885 (w), 860 (w), 849 (w), 758 (vs), 734 (vs), 701 (vs), 690 (s), 656 (m), 615 (w), 591 (m), 572 (m), 526 (w), 501 (w), 480 (m), 455 (cm$^{-1}$).

Bis(tetrazolo)[1,5-a:5',1'-c]quinoxaline (24)

![Chemical structure](attachment:image)

Name {P1|24}: Bis(tetrazolo)[1,5-a:5',1'-c]quinoxaline; Formula: C$_8$H$_4$N$_8$; Molecular Mass: 212.1710; Exact Mass: 212.0559; Smiles: c1ccc2c(c1)n1nnnc1n2nnn1; InChIKey: CXZSDEGQLBZWC-UEHFFAOSYA-N

Sodium azide (0.19 g, 3.00 mmol, 3.0 equiv) was added to 0.20 g of 2,3-dichloroquinoxaline (1.00 mmol, 1.0 equiv) in 5 mL of DMF and stirred at 60 °C for 2 h. Distilled water was added, the organic phase was separated and the aqueous phase was extracted 3x with EtOAc. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvent was removed under reduced pressure. A small portion of EtOAc was added to transfer the solid crude product into a funnel and the product was filtered and washed with water. The product was obtained in form of a colorless solid (0.20 g, 0.94 mmol, 93% yield). Note: This reaction was repeated with a yield of 98%. Hereby, the reaction mixture was cooled to 25 °C after 2 h of stirring at 60 °C, then water was added; the precipitated product was collected via filtration and washed 3x with water.

$R_f = 0.26$ (cyclohexane/ethyl acetate 4:1). 1H NMR (400 MHz, DMSO-d$_6$, ppm) $\delta = 8.79–8.74$ (m, 2H, C$_{ar}$), 8.09–8.04 (m, 2H, C$_{ar}$); 13C NMR (100 MHz, DMSO-d$_6$, ppm) $\delta = 140.4$ (2C, NCN), 130.9 (2C, C$_{ar}$), 122.7 (2C, C$_{ar}$), 117.7 (2C, C$_{ar}$); MS (EI, m/z, 70 eV, 170 °C): 212 (6) [M]$^+$, 156 (33), 104 (100), 77 (18), 52 (11). HRMS (EI, C$_{8}$H$_{4}$N$_{8}$): Calcd 212.0559, Found 212.0560; IR (ATR, $\tilde{\nu}$) = 3077 (w), 3057 (w), 1645 (w), 1581 (m), 1482 (vs), 1460 (w), 1404 (m), 1392 (m), 1353 (w), 1326 (w), 1289 (s), 1262 (w), 1198 (s), 1173 (w), 1145 (w), 1129 (s), 1111 (m), 1092 (w), 1018 (w), 987 (w), 972 (s), 778 (vs), 722 (m), 707 (m), 666 (s), 463 (vs), 458 (s), 438 (m) cm$^{-1}$.

S72
Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-CXZSDEGQLB-UHFFADPSC-NUHFF-NUHFF-NUHFF-LLL

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/CXZSDEGQLBZWEC-UHFFFAOYSA-N.1

The synthesis of this compound has been previously described and the 1H NMR data corresponds with the literature [31].

1-Phenyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline (25a), 1-phenylimidazo[1,2-a]quinoxalin-4-amine (S5a), 3-(4-phenyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine (S6a)

![Chemical structure](image)

Name {P1|25a}: 1-phenyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline; Formula: C$_{24}$H$_{18}$N$_{6}$; Molecular Mass: 388.4240; Exact Mass: 388.1436; Smiles: c1ccc(cc1)c1nnn(c1)c1nc2ccccc2n2c1nc2c1ccccc1; InChIKey: DHVXGDPBGBTTOC-UHFFFAOYSA-N

Name {P2|S5a}: 1-phenylimidazo[1,2-a]quinoxalin-4-amine; Formula: C$_{16}$H$_{12}$N$_{4}$; Molecular Mass: 260.2933; Exact Mass: 260.1062; Smiles: Nc1nc2ccccc2n2c1nc2c1ccccc1; InChIKey: LDKDBUVLGOHXSC-UHFFFAOYSA-N

Name {P3|S6a}: 3-(4-phenyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine; Formula: C$_{16}$H$_{12}$N$_{6}$; Molecular Mass: 288.3067; Exact Mass: 288.1123; Smiles: Nc1nc2ccccc2nc1nnc(c1)c1ccccc1; InChIKey: XAKPOUMBAWIAJL-UHFFFAOYSA-N

The starting material bis(tetrazolo)[1,5-a:5',1'-c]quinoxaline and the catalyst benzene; copper(1+); trifluoromethanesulphonate (29.0 mg, 57.6 μmol, 0.121 equiv) were dissolved in 2 mL of dry toluene under argon, followed by ethynylbenzene (120 mg, 129 μL, 1.18 mmol, 2.48 equiv). The yellow-brown reaction mixture was stirred at 100 °C for 2 days. Then water and EtOAc were added, the organic phase was separated and the aqueous phase was extracted 3x with EtOAc. The combined organic phases were dried over Na$_2$SO$_4$, filtered and the solvent was removed under reduced pressure. The crude mixture was separated multiple times via column chromatography (cHex/EtOAc+2% Et$_3$N, DCM/EtOAc+2% Et$_3$N). Moreover, part of the product was isolated via filtration; impure fractions were combined and the solvent was evaporated under reduced pressure until pure product precipitated. The precipitate was washed 2x with 2-3 mL of EtOAc. The desired product 1-phenyl-4-(4-phenyl-1H-
1,2,3-triazol-1-ylimidazo[1,2-a]quinoxaline (37.0 mg, 95.3 μm, 20% yield) was obtained as a beige solid; 1-phenylimidazo[1,2-a]quinoxalin-4-amine (10.0 mg, 38.4 μm, 8% yield) and 3-(4-phenyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine (4.00 mg, 13.9 μm, 3% yield) were obtained both as yellow solids.

$R_t = 0.41$ (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, CDCl$_3$, ppm) δ = 9.67 (s, 1H, NCH$_{\text{triazole}}$), 8.27 (dd, 3J = 8.2 Hz, 4J = 1.6 Hz, 1H, CH$_{\text{ar}}$), 8.08–8.06 (m, 2H, CH$_{\text{ar}}$), 7.81 (s, 1H, NCH$_{\text{imidazole}}$), 7.62–7.61 (m, 5H, CH$_{\text{ar}}$), 7.59–7.56 (m, 2H, CH$_{\text{ar}}$), 7.52–7.48 (m, 2H, CH$_{\text{ar}}$), 7.42–7.34 (m, 2H, CH$_{\text{ar}}$); 13C NMR (100 MHz, CDCl$_3$ [77.0 ppm], ppm) δ = 147.8 (1C, C$_q$), 139.1 (1C, C$_q$), 135.2 (1C, CH$_{\text{imidazole}}$), 134.8 (1C, C$_q$), 132.6 (1C, C$_q$), 132.0 (1C, C$_q$), 131.0 (1C, CH$_{\text{ar}}$), 130.3 (2C, CH$_{\text{ar}}$), 130.1 (1C, C$_q$), 130.0 (1C, CH$_{\text{ar}}$), 129.6 (1C, C$_q$), 129.2 (2C, CH$_{\text{ar}}$), 128.8 (2C, CH$_{\text{ar}}$), 128.5 (1C, CH$_{\text{ar}}$), 128.5 (1C, CH$_{\text{ar}}$), 128.3 (1C, C$_q$), 127.1 (1C, CH$_{\text{ar}}$), 126.2 (2C, CH$_{\text{ar}}$), 121.6 (1C, CH$_{\text{triazole}}$), 116.1 (1C, CH$_{\text{ar}}$); MS (FAB, 3-NBA), m/z (%): 390 [M+1]$^+$ (10), 389 [M]$^+$ (29), 361 (32), 360 (16), 307 (15), 156 (36), 154 (100), 136 (80), 107 (35), 97 (41), 95 (42), 91 (51). HRMS (C$_{28}$H$_{17}$N$_5$): calcld 389.1509, found 389.1511; IR (ATR, v) = 3140 (w), 3101 (w), 3072 (w), 3059 (w), 3041 (w), 2956 (w), 2851 (w), 1638 (s), 1543 (w), 1504 (w). Missing 13C (1C, C$_q$) due to low intensity/overlapping with other signals. MS (EI, 70 eV, 130 °C), m/z (%): 261 [M+1]$^+$ (19), 260 [M]$^+$ (100), 259 (42), 90 (17). HRMS (EI, C$_{18}$H$_{12}$N$_4$): calcld 260.1056, found 260.1058. IR (ATR, v) = 3350 (w), 3286 (w), 3248 (w), 3165 (w), 3146 (w), 3060 (w), 2953 (w), 2919 (w), 2850 (w), 1638 (s), 1608 (m), 1537 (w), 1520 (w), 1479 (m), 1469 (m), 1448 (m), 1422 (s), 1373 (w), 1344 (w), 1302 (w), 1273 (w), 1242 (w), 1170 (w), 1133 (w), 1103 (w), 1079 (w), 1026 (w), 1001 (w), 979 (w), 955 (w), 919 (w), 877 (w), 856 (m), 768 (m), 755 (vs), 724 (m), 701 (vs), 622 (m), 585 (vs), 569 (s), 541 (vs), 518 (vs), 477 (vs), 459 (s) cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$, ppm) δ = 9.09 (s, 1H, CH$_{\text{triazole}}$), 8.02–8.00 (m, 2H, CH$_{\text{ar}}$), 7.95 (d, 3J = 9.8 Hz, 1H, CH$_{\text{ar}}$), 7.80 (d, 3J = 8.3 Hz, 1H, CH$_{\text{ar}}$), 7.74–7.70 (m, 1H, CH$_{\text{ar}}$), 7.61–7.43 (m, 4H, CH$_{\text{ar}}$). Missing 2H (2H, NH$_2$) due to H-D exchange in CDCls; 13C NMR (100 MHz, CDCl$_3$ [77.0 ppm], ppm) δ = 131.8 (1H, CH$_{\text{ar}}$), 129.2 (1C, CH$_{\text{ar}}$), 129.1 (2C, CH$_{\text{ar}}$), 128.5 (1C, CH$_{\text{ar}}$), 126.8 (1C, CH$_{\text{ar}}$), 126.2 (2C, CH$_{\text{ar}}$), 123.5 (1C, CH$_{\text{ar}}$), 118.4 (1C, CH$_{\text{triazole}}$). Missing 6C (6C, C$_q$) due to low amount of compound and resulting low intensity; 13C NMR (101 MHz, CDCl$_3$) δ 126.13, 128.30, 123.61, 131.91, 126.86, 129.02, 129.02 1H NMR (400 MHz, CDCl$_3$) δ 7.92, 7.88, 7.75, 7.65, 7.50, 7.44, 7.37; MS (EI, 70 eV, 160 °C), m/z (%): 288 [M]$^+$ (4), 261 (21), 260 (100), 259 (34), 144 (98), 117 (36), 102 (16), 90 (37). HRMS (EI, C$_{18}$H$_{12}$N$_4$): calcld 288.1118, found 288.1116; IR (ATR, v) = 3398 (w), 3289 (w), 3173 (w), 3129 (w), 3060 (w), 2956 (w), 2922 (w), 2851 (w), 1667 (w), 1640 (s), 1605 (w), 1582 (w), 1557 (m), 1496 (w), 1480 (m), 1460 (vs), 1448 (s), 1409 (m), 1354 (m), 1323 (w), 1305 (w), 1285 (w), 1239 (s), 1211 (m), 1180 (m), 1154 (w), 1133 (w), 1072 (w), 1030 (s), 1020 (s), 993 (vs).
962 (m), 914 (m), 863 (w), 809 (m), 758 (vs), 725 (s), 691 (vs), 613 (s), 594 (s), 511 (m), 456 (vs), 402 (s) cm⁻¹.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-XIPNBMHBNZ-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/DHVXGDPBGBTTOC-UHFFFAOYSA-N.1
https://doi.org/10.14272/LDKDBUVLGOHXSC-UHFFFAOYSA-N.1
https://doi.org/10.14272/XAKPOUMBAWIAJL-UHFFFAOYSA-N.1

The synthesis of side product 1-phenylimidazo[1,2-a]quinoxalin-4-amine has been previously reported in literature [32].

1-Butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline (25b), 1-butylimidazo[1,2-a]quinoxalin-4-amine (S5b), 2,3-bis(4-butyl-1H-1,2,3-triazol-1-yl)quinoxaline (S7b), 3,10-dibutylimidazo[1,2-a:2',1'-c]quinoxaline (S8b), 3-(4-butyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine (S6b)

Name {P1|25b}: 1-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline; Formula: C₂₀H₂₄N₆; Molecular Mass: 348.4448; Exact Mass: 348.2062; Smiles: CCCCc1nnn(c1)c1nc2ccccc2n2c1ncc2CCCC; InChIKey: OGPROMCIIIGIFPL-UHFFFAOYSA-N

Name {P2|S5b}: 1-butylimidazo[1,2-a]quinoxalin-4-amine; Formula: C₁₄H₁₆N₄; Molecular Mass: 240.3036; Exact Mass: 240.1375; Smiles: CCCCc1nc2n1c1ccccc1nc2N; InChIKey: IMOCGYGQTYCGDY-UHFFFAOYSA-N

Name {P3|S7b}: 2,3-bis(4-butyl-1H-1,2,3-triazol-1-yl)quinoxaline; Formula: C₂₀H₂₄N₆; Molecular Mass: 376.4582; Exact Mass: 376.2124; Smiles: CCCCc1nnn(c1)c1nc2ccccc2nc1nnc1ccc1ccc1nc2CCCC; InChIKey: BUADUCGXDAGNQ-UHFFFAOYSA-N

Name {P4|S8b}: 3,10-dibutylimidazo[1,2-a:2',1'-c]quinoxaline; Formula: C₂₀H₂₄N₄; Molecular Mass: 320.4314; Exact Mass: 320.2001; Smiles: CCCCc1nc2n1c1ccccc1nc2nnc1ccc1ccc1nc2CCCC; InChIKey: NSBRVZPRPYVSJO-UHFFFAOYSA-N

Name {P5|S6b}: 3-(4-butyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine; Formula: C₁₄H₁₆N₆; Molecular Mass: 268.3170; Exact Mass: 268.1436; Smiles: CCCCc1nnn(c1)c1nc2ccccc2nc1N; InChIKey: HPWSELBHSNTVDQ-UHFFFAOYSA-N
The starting material bis(tetrazolo)[1,5-a:5',1'-c]quinoxaline (300 mg, 1.41 mmol, 1.00 equiv) and the catalyst benzene; copper(1+); trifluoromethanesulfonylate (68.9 mg, 137 μmol, 0.0968 equiv) were dissolved in 5 mL of dry toluene under argon, followed by hex-1-ylene (232 mg, 325 μL, 2.83 mmol, 2.00 equiv). The reaction mixture was stirred at 100 °C for 3 days; then 0.1 mL of hexyne were added again and the reaction was stirred at 100 °C for another 3 hours. Subsequently water and ethyl acetate were added, the organic phase was separated and the aqueous phase was extracted 3× with DCM. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude mixture was separated twice via column chromatography (dryload on Celite, DCM/ EtOAc+2%Et₂N); a mixed fraction was further purified via HPLC (acetonitrile/water). 1-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline (107 mg, 307 μmol, 22% yield) was isolated as a white to light brown solid. 1-butylimidazo[1,2-a]quinoxalin-4-amine (28.0 mg, 117 μmol, 8% yield) was obtained as a light brown solid, 2,3-bis(4-butyl-1H-1,2,3-triazol-1-yl)quinoxaline (13.0 mg, 34.5 μmol, 2% yield) was obtained as a yellow solid and 3-(4-butyl-1H-1,2,3-triazol-1-yl)quinoxalin-2-amine (13.0 mg, 48.5 μmol, 3% yield) was obtained as a white to light yellow solid. Moreover, impure traces of 3,10-dibutylimidazo[1,2-a:2',1'-c]quinoxaline (12.0 mg, 37.4 μmol, 3% yield) were presumably obtained. Note: This reaction was repeated with a reaction time of 3.5 h and a yield of 20% for the main product 1-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline (no other fractions isolated).

\(R_t = 0.24 \) (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl₃, ppm) δ = 9.07 (s, 1H, \(CH_{\text{triazoI}} \)), 8.31–8.26 (m, 2H, \(CH_{ar} \)), 7.72–7.64 (m, 3H, \(CH_{ar}+CH_{\text{imidazoI}} \)), 3.38 (t, \(^3\)J = 7.6 Hz, 2H, \(C_2 CH_2 \)), 2.91 (t, \(^3\)J = 7.7 Hz, 2H, \(C_2 CH_2 \)), 1.95 (p, \(^3\)J = 7.5 Hz, 2H, \(CH_2 CH_2 \)), 1.80 (p, \(^3\)J = 7.5 Hz, 2H, \(CH_2 CH_2 \)), 1.61 (h, \(^3\)J = 7.3 Hz, 2H, \(CH_2 CH_3 \)), 1.47 (h, \(^3\)J = 7.4 Hz, 2H, \(CH_2 CH_3 \)), 1.07 (t, \(^3\)J = 7.4 Hz, 3H, \(CH_3 \)), 0.98 (h, \(^3\)J = 7.4 Hz, 3H, \(CH_3 \)); \(^1\)C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 148.4 (1C, \(CH_{\text{triazoI}} \)), 139.3 (1C, \(C_6 \)), 134.9 (1C, \(C_6 \)), 133.2 (1C, \(C_6 \)), 133.1 (1C, \(CH_{\text{imidazoI}} \)), 132.6 (1C, \(C_6 \)), 131.1 (1C, \(CH_{ar} \)), 129.1 (1C, \(C_6 \)), 128.6 (1C, \(CH_{ar} \)), 126.9 (1C, \(CH_{ar} \)), 122.7 (1C, \(CH_{\text{triazoI}} \)), 115.5 (1C, \(CH_{ar} \)), 31.5 (1C, \(CH_2 CH_2 \)), 29.1 (1C, \(CH_2 CH_2 \)), 27.4 (1C, \(CH_2 CH_2 \)), 25.4 (1C, \(CH_2 CH_2 \)), 22.2 (1C, \(CH_2 CH_3 \)), 23.3 (1C, \(CH_2 CH_3 \)), 13.8 (2C, \(CH_3 \)). MS (EI, 70 eV, 170 °C), m/z (%): 348 [M]⁺ (2), 320 (40), 319 (20), 305 (38), 293 (23), 292 (82), 291 (100), 279 (32), 278 (82), 277 (100), 265 (26), 240 (28), 225 (44), 224 (41), 197 (51), 196 (54), 183 (18), 182 (44), 181 (30), 129 (28). HRMS (El, \(C_{20}H_{22}N_6 \)): calcd 348.2057, found 348.2057. IR (ATR, ν) = 3153 (w), 2951 (m), 1534 (w), 1492 (vs), 1462 (vs), 1438 (m), 1417 (vs), 1398 (m), 1373 (m), 1361 (m), 1341 (m), 1313 (m), 1279 (w), 1258 (w), 1232 (s), 1207 (m), 1196 (m), 1174 (s), 1157 (s), 1126 (m), 1103 (m), 1034 (vs), 977 (s), 925 (m), 911 (m), 866 (w), 844 (s), 834 (s), 810 (m), 761 (vs), 742 (vs), 660 (m), 643 (m), 635 (vs), 615 (w), 588 (m), 476 (m), 450 (s), 405 (w), 398 (w) cm⁻¹. Crystals suitable for Single Crystal X-Ray Diffraction Analysis obtained via slow evaporation of a solution in MeOH under ambient conditions. Crystal Data for \(C_{20}H_{22}N_6 \) (M = 348.45 g/mol): triclinic, space group P-1 (no. 2), a = 7.2494(4) Å, b = 9.0176(5) Å, c = 14.3850(8) Å, α = 75.4014(4)°, β = 85.8054(4)°, γ = 79.4313(4)°, V = 894.22(9) Å³, Z = 2, T = 150.0 K, μ(GaKα) = 0.410 mm⁻¹, Dcalc = 1.294 g/cm³, 10270 reflections measured (5.526° ≤ 2θ ≤ 124.996°), 4123 unique (Rint = 0.0447, Rsigma = 0.0456) which were used in all calculations. The final R1 was 0.0944 (I > 2σ(I)) and wR2 was 0.3021 (all data). UV/VIS (acetonitrile), λ = 332 (1.66), 262 (2.24), 234 (2.13), 226 (1.89) nm.
\[^1H\text{ NMR (400 MHz, CDCl}_3, \text{ppm}) \delta = 8.07 (d, ^3J = 7.5 Hz, 1H, CH}_ar), 7.75 (d, ^3J = 8.8 Hz, 1H, CH}_ar), 7.47 (t, ^3J = 7.2 Hz, 1H, CH}_ar), 7.39–7.34 (m, 2H, CH}_ar+CH}_imidazole), 6.19, (bs, 2H, NH}_2), 3.26 (t, ^3J = 7.6 Hz, 2H, C}_qCH}_2), 1.89 (p, ^3J = 7.5 Hz, 2H, CH}_2CH}_2), 1.58 (h, ^3J = 7.4 Hz, 2H, CH}_2CH}_2), 1.05 (t, ^3J = 7.3 Hz, 3H, CH}_3); ^13C\text{ NMR (100 MHz, CDCl}_3 [77.0 ppm], ppm) \delta = 148.3, 136.1, 132.6, 132.5, 131.1 (1C, CH}_imidazole), 126.4 (1C, CH}_ar), 126.3 (1C, CH}_ar), 123.7 (1C, CH}_ar), 115.5 (1C, CH}_ar), 30.0 (1C, CH}_2CH}_2), 27.6 (1C, CH}_2CH}_2), 22.5 (1C, CH}_2CH}_2), 13.9 (1C, CH}_3).\]

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-WFIEKHKQM-UHFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ
Additional information on the analysis of the target compound is available via Chemotion repository:
https://doi.org/10.14272/OGPHMCIIIGIFPL-UHFFFAOYSA-N.1
https://doi.org/10.14272/IMOCGYQTYCGDY-UHFFFAOYSA-N.1
https://doi.org/10.14272/BZUADUCXDGANQ-UHFFFAOYSA-N.1
https://doi.org/10.14272/HPWSELBNSNTVDQ-UHFFFAOYSA-N.1

2-(4-Butyl-1H,1,2,3-triazol-1-yl)quinoxalinetricarbonylrhenium(I)-bromide (27a)

Name {P1|27a}: 2-(4-butyl-1H,1,2,3-triazol-1-yl)quinoxalinetricarbonylrhenium(I)-bromide; Formula: C_{17}H_{15}BrN_{5}O_{3}Re; Molecular Mass: 603.4437; Exact Mass: 602.9916; Smiles: [O](#C)([Re](#C)(#O)(#O)(Re))(Br)CCCC1nnn(c1)c1cnc2c(n1)cccc2; InChIKey: CCAUEKYEPREEHO-UHFFFAOYSA-M

The ligand 2-(4-butyl-1H,1,2,3-triazol-1-yl)quinoxaline (49.8 mg, 197 μmol, 1.00 equiv) was dissolved in anhydrous toluene (3.00 mL) and heated to 110 °C under argon. Then bromorheniumcarbon monoxide (80.0 mg, 197 μmol, 1.00 equiv), and another 0.5 mL of dry toluene were added. The solution was stirred at 110 °C under argon for 6 h and subsequently, the red mixture was cooled to 25 °C and stirred for 16 h; then the solvent was evaporated under reduced pressure. The obtained crude product was purified via flash chromatography on silica gel using CHex to EtOAc and 2-(4-butyl-1H,1,2,3-triazol-1-yl)quinoxalinetricarbonylrhenium(I)-bromide (87.5 mg, 145 μmol) was obtained as a red solid in 74% yield. Note: This reaction was repeated with a yield of 87%.

$R_f = 0.1$ (cyclohexane/ethyl acetate 2:1). 1H NMR (400 MHz, Chloroform-d [7.27 ppm], ppm) δ = 9.37 (s, 1H, CH), 8.75 (d, $J = 8.8$ Hz, 1H, CH$_{ar}$), 8.48 (s, 1H, CH$_{f}$), 8.35 (dd, $J = 1.2$ Hz, $J = 8.3$ Hz, 1H, CH$_{ar}$), 8.20–8.16 (m, 1H, CH$_{ar}$), 8.09–8.05 (m, 1H, CH$_{ar}$), 2.96 (dt, $J = 4.0$ Hz, $J = 7.6$ Hz, 2H, CH$_{f}$), 1.85–1.81 (m, 2H, CH$_{f}$), 1.50 (q, $J = 7.3$ Hz, 2H, CH$_{f}$), 1.02 (t, $J = 7.3$ Hz, 3H, CH$_{3}$); 13C NMR (100 MHz, Chloroform-d [77.0 ppm], ppm) δ = 195.7 (1C, C=O), 192.5 (1C, C=O), 186.2 (1C, C=O), 153.6 (1C, C$_{q}$), 143.0 (1C, C$_{q}$), 141.6 (1C, C$_{q}$), 139.2 (1C, C$_{q}$), 135.0 (1C, C$_{q}$), 134.4 (1C, C$_{q}$), 132.7 (1C, C$_{q}$), 130.9 (1C, C$_{q}$), 129.8 (1C, C$_{q}$), 120.2 (1C, C, 30.6 (1C, C$_{q}$), 25.4 (1C, C$_{q}$), 22.3 (1C, C$_{q}$), 13.7 (1C, C$_{q}$); MS (FAB, 3-NBA), m/z (%): 603 [M]$^+$ (67), 586 (100), 584 (87), 542 (21), 524 (50), 519 (24), 307 (23), 155 (30), 154 (100), 136 (73). HRMS (C$_{17}$H$_{15}$O$_{3}$N$_{5}$Br$_{187}$Re$_{1}$): calcld 602.9910, found 602.9909; IR (ATR, ν) = 3115 (w), 2961 (w), 2935 (w), 2861 (w), 2024 (vs), 1929 (vs), 1895 (vs), 1608 (w), 1551 (m), 1499 (s), 1445 (m), 1360 (s), 1273 (m), 1205 (m), 1139 (m), 1065 (m), 1041 (s), 1010 (m), 1000 (m), 966 (m), 902 (s), 871 (m), 799 (m), 765 (vs), 694 (w), 670 (w), 632 (vs), 565 (w), 535 (m), 506 (m), 479 (s), 419 (s), 384 (m) cm$^{-1}$; EA (C$_{17}$H$_{15}$BrN$_{5}$O$_{3}$Re): Calcd C 33.84; H 2.51; N 11.61. Found C 34.58; H 2.47; N 11.61;
Crystals suitable for Single Crystal X-ray Diffraction Analysis obtained via slow evaporation of a solution in DCM under ambient conditions. Crystal Data for C_{17}H_{15}BrN_{5}O_{3}Re (M = 603.45 g/mol): triclinic, space group P-1 (no. 2), a = 8.1736(3) Å, b = 9.8940(3) Å, c = 12.3886(4) Å, α = 68.789(3)°, β = 81.703(3)°, γ = 85.226(3)°, V = 923.69(6) Å³, Z = 2, T = 180.0 K, μ(MoKα) = 8.769 mm⁻¹, Dcalc = 2.170 g/cm³, 12981 reflections measured (3.554° ≤ 2θ ≤ 59.994°), 5361 unique (Rint = 0.0216, Rsigma = 0.0214) which were used in all calculations. The final R1 was 0.0313 (I > 2σ(I)) and wR2 was 0.0833 (all data); Data taken from another reaction with the same product compound UV/VIS (acetonitrile, 18 μM solution), λ = 424 (0.06), 354 (0.18), 344 (0.18), 300 (0.14), 254 (0.44) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-CCAUEKYEPRE-UHFFADPSC-NUHFF-MUHFF-NUHFF-ZZZ.2

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/CCAUEKYEPREEHO-UHFFFAOYSA-M.2

\[
\begin{align*}
[(2-(4-Phenyl-1H,1,2,3-triazol-1-yl)quinoxaline)] & \text{bromotricarbonylrhenium(I)} (27b) \\
\end{align*}
\]

The ligand 2-(4-phenyl-1H,1,2,3-triazol-1-yl)quinoxaline (39.0 mg, 143 μmol, 1.00 equiv) was dissolved in dry toluene (2.00 mL) and heated to 110 °C under argon, then bromorhenium;carbon monoxide (66.0 mg, 162 μmol, 1.14 equiv) was added and another 0.50 mL of toluene was added to rinse the walls of the flask. The solution was stirred at 110 °C under argon for 5 h and subsequently the red mixture was cooled to 25 °C and stirred for 16 h; then the solvent was pipetted off and the red precipitate was dried under high vacuum. The rhenium complex [(2-(4-phenyl-1H,1,2,3-triazol-1-yl)quinoxaline)]bromotricarbonylrhenium(I) (56.0 mg, 89.8 μmol, 63% yield) was obtained as a red solid.

\(^{1}\)H NMR (400 MHz, DMSO-\text{d}_{6}, ppm) \(\delta = 10.51 (s, 1H, NH)\), 10.04 (s, 1H, CH\text{triazole}), 8.56 (d, \(^3\)J = 8.8 Hz, 1H, CH\text{ar}), 8.47 (dd, \(^3\)J = 8.3 Hz, \(^4\)J = 1.6 Hz, 1H, CH\text{ar}), 8.37–8.32 (m, 1H, CH\text{ar}), 8.06 (d, \(^3\)J = 7.1 Hz, 2H), 7.66 (t, \(^3\)J = 7.5 Hz, 2H, CH\text{ar}), 7.59–7.57 (m, 1H, CH\text{ar}), 7.26–7.12 (m, 1H, CH\text{ar}). Signals at 9.78, 9.60, 8.27–8.11, 8.03–7.94, 7.55–
7.41 ppm belong to the free ligand due to dissociation of the complex (spectrum of free ligand in DMSO-d₆: https://dx.doi.org/10.14272/QYOUUXWQIVRDNZ-UHFFFAOYSA-N.2); ¹³C NMR (100 MHz, DMSO-d₆, ppm) δ = 196.5 (1C, CO), 194.3 (1C, CO), 186.7 (1C, CO), 150.0, 142.6, 142.0, 138.5, 137.4, 134.5, 132.6, 130.5, 130.2, 129.6 (2C), 128.4, 127.2, 125.8 (2C), 123.2 Signals from free ligand: 147.5, 142.9, 141.6, 139.2, 138.2, 131.9, 130.6, 129.6, 129.2, 129.0, 128.6, 128.5, 125.8, 118.9; IR (ATR, v) = 3067 (m), 3053 (m), 3019 (m), 2955 (m), 2921 (m), 2851 (m), 2027 (vs), 1951 (vs), 1918 (vs), 1883 (vs), 1863 (vs), 1732 (m), 1667 (m), 1553 (m), 1502 (s), 1476 (s), 1455 (s), 1438 (s), 1370 (s), 1290 (s), 1268 (s), 1242 (m), 1183 (m), 1160 (m), 1135 (s), 1082 (s), 1037 (vs), 1027 (s), 969 (s), 959 (s), 925 (m), 911 (s), 834 (s), 772 (s), 761 (vs), 703 (s), 694 (vs), 640 (vs), 635 (s), 623 (s), 569 (m), 530 (s), 507 (s), 490 (vs), 482 (vs), 465 (s), 416 (s) cm⁻¹; EA (C₁₉H₁₁BrN₅O₃Re): Calcd C 36.60; H 1.78; N 11.23. Found C 38.10; H 2.16; N 10.54; Crystals suitable for Single Crystal X-Ray Diffraction Analysis obtained via slow evaporation of a diluted solution in EtOAc under ambient conditions. Crystal Data for C₁₉H₁₁BrN₅O₃Re (M =623.44 g/mol): monoclinic, space group P2₁/n (no. 14), a = 11.5453(4) Å, b = 14.0610(5) Å, c = 12.4364(4) Å, β = 110.258(3)°, V = 1894.02(12) Å³, Z = 4, T = 180.0 K, μ(GaKα) = 10.489 mm⁻¹, Dcalc = 2.186 g/cm³, 12569 reflections measured (8.568° ≤ 2Θ ≤ 124.984°), 4465 unique (Rint = 0.0138, Rsigma = 0.0131) which were used in all calculations. The final R1 was 0.0251 (I > 2σ(I)) and wR2 was 0.0630 (all data); UV/VIS (acetonitrile, 18 µM solution) = 428 (0.05), 358 (0.15), 316 (0.13), 260 (0.63) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-JFQQXHCZLV-UHFFADPSC-NUHFF-MUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/JFQQXHCZLVWKOL-UHFFFAOYSA-M.1

[2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline]bromotricarbonylrhenium(I) (27c)

![Chemical Structure of 27c](https://example.com/structure_image.png)

Name {P1|27c}: [2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-methylquinoxaline]bromotricarbonylrhenium(I); Formula: C₁₈H₁₇BrN₅O₃Re; Molecular Mass: 617.4703; Exact Mass: 617.0072; Smiles: CCCc1nnn(c1)c1nc2ccccc2nc1C.[C·][O+].[C·][O+]Br[Re]; InChIKey: DDQBGZVUDRTHAOU-UHFFFAOYSA-M
The ligand 2-(4-butyl-1H,1,2,3-triazol-1-yl)-3-methylquinoxaline (29.0 mg, 108 µmol, 1.00 equiv) was dissolved in dry toluene (1.50 mL) and heated to 110 °C under argon, then bromorhenium; carbon monoxide (54.0 mg, 133 µmol, 1.23 equiv) was added; another 0.50 mL of toluene was added to rinse the walls of the flask. The solution was stirred at 110 °C under argon for 4.5 h and subsequently the red mixture was cooled to 25 °C and then stored for 16 h at 25 °C. Then the solvent was evaporated under reduced pressure. The obtained crude product was purified via flash chromatography (dryload on Celite, chHex -> EtOAc) and the rhenium complex [2-(4-butyl-1H,1,2,3-triazol-1-yl)-3-methylquinoxaline]bromotricarbonylrhenium(I) (22.0 mg, 35.6 µmol, 33% yield) was obtained as a red solid. 25 mg of an unknown product were isolated.

\[R_f = 0.39 \text{ (cyclohexane/ethyl acetate 1:2).} \]

\[^{1} \text{H NMR (400 MHz, CDCl}_3, \text{ ppm}} \delta = 8.78 \text{ (dd, } ^{3} J = 8.6 \text{ Hz, } ^{4} J = 1.5 \text{ Hz, } 1\text{H, CH}_n), 8.59 \text{ (s, 1H, CH}_n\text{triazole}), 8.23 \text{ (dd, } ^{3} J = 8.2 \text{ Hz, } ^{4} J = 1.7 \text{ Hz, 1H, CH}_n\text{ar}), 8.11-8.00 \text{ (m, 2H, CH}_n\text{ar}), 3.28 \text{ (s, 3H, CH}_3\text{), 2.99-2.94 \text{ (m, 2H, CH}_2\text{), 1.88-1.79 \text{ (m, 2H, CH}_2\text{), 1.54-1.46 \text{ (m, 2H, CH}_2\text{), 1.02 \text{ (t, } ^{3} J = 7.3 \text{ Hz, 3H, CH}_2\text{CH}_3\text{);}}\]

\[^{13} \text{C NMR (100 MHz, CDCl}_3[77.0 \text{ ppm}], \text{ ppm}} \delta = 195.9 \text{ (1C, CO), 192.9 (1C, CO), 186.8 (1C, CO), 152.8 (1C, C}_q\text{), 143.1 (1C, C}_q\text{), 142.9 (1C, C}_q\text{), 141.8 (1C, C}_q\text{), 138.4 (1C, C}_q\text{), 133.8 (1C, CH}_n\text{ar}, 132.6 (1C, CH}_n\text{ar}, 130.3 (1C, CH}_n\text{ar, 129.7 (1C, CH}_n\text{ar, 123.2 (1C, CH}_n\text{triazole), 30.8 (1C, CH}_2\text{), 25.9 (1C, CH}_3\text{), 25.4 (1C, CH}_2\text{), 22.3 (1C, CH}_2\text{, 13.7 (1C, CH}_3\text{).}}\]

MS (FAB, 3-NBA), m/z (%): 617 (1), 530 (17), 417 (17), 191 (17), 154 (18), 147 (27), 136 (19), 131 (17), 129 (15), 128 (17), 115 (21), 105 (18). IR (ATR, v): 3172 (w), 2951 (w), 2932 (m), 2921 (w), 2901 (w), 2856 (w), 2024 (vs), 1924 (vs), 1858 (vs), 1606 (w), 1570 (w), 1561 (w), 1537 (m), 1487 (m), 1462 (m), 1436 (m), 1426 (m), 1392 (w), 1375 (m), 1363 (s), 1326 (m), 1292 (m), 1265 (m), 1242 (m), 1204 (m), 1173 (m), 1133 (s), 1101 (w), 1067 (s), 1055 (m), 1034 (w), 1017 (m), 990 (s), 967 (m), 925 (w), 901 (m), 878 (m), 805 (m), 782 (m), 768 (vs), 731 (m), 704 (m), 688 (w), 639 (s), 626 (vs), 535 (m), 517 (m), 511 (m), 486 (vs), 470 (s), 459 (m) cm⁻¹. Crystals suitable for Single Crystal X-Ray Diffraction Analysis obtained via slow evaporation of a solution in DCM under ambient conditions. Crystal Data for C₁₅H₁₇BrN₂O₃Re (M = 617.47 g/mol): triclinic, space group P-1 (no. 2), a = 8.1070(3) Å, b = 9.9680(3) Å, c = 12.8159(4) Å, α = 105.330(3)°, β = 101.878(3)°, γ = 94.429(3)°, V = 967.87(6) Å³, Z = 2, T = 150 K, μ(GaKα) = 10.252 mm⁻¹, Dcalc = 2.119 g/cm³, 10723 reflections measured (6.402° ≤ 2θ ≤ 124.97°), 4524 unique (Rint = 0.0160, Rsigma = 0.0122) which were used in all calculations. The final R1 was 0.0224 (I > 2σ(I)) and wR2 was 0.0604 (all data). UV/VIS (acetonitrile, 18 µM solution), λ = 422 (0.06), 358 (0.19), 344 (0.17), 296 (0.14), 248 (0.44) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-DDQBGZVUDR-UHFFFADPSC-NUHFF-MUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/DDQBGZVUDRTHAU-UHFFFAOYSA-M.1
[2-(4-Butyl-1H-1,2,3-triazol-1-yl)-3-phenylquinoxaline]bromotricarbonylrhenium(I) (27d)

Name: \([P1|27d]\); \([2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-phenylquinoxaline]bromotricarbonylrhenium(I); Formula: C\(_\text{23}\)H\(_\text{19}\)BrN\(_\text{5}\)O\(_\text{3}\)Re; Molecular Mass: 679.5397; Exact Mass: 679.0229; Smiles: CCCCc1nnn(c1)c1nc2ccccc2nc1c1ccccc1.[C-]\#[O+].[C-]\#[O+].[C-]\#[O+].Br[Re]; InChIKey: BKFBOTQHKAJKOY-UHFFFAOYSA-M

The ligand 2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-phenylquinoxaline (22.0 mg, 66.8 μmol, 1.00 equiv) was dissolved in dry toluene (1.00 mL) and heated to 110 °C under argon, then bromorhenium;carbon monoxide (29.8 mg, 73.5 μmol, 1.10 equiv) was added. Another 0.50 mL of toluene was added to rinse the walls of the flask. The solution was stirred at 110 °C under argon for 2 h and subsequently the red mixture was cooled to 25 °C; then the solvent was evaporated under reduced pressure. The obtained mixture was purified twice via flash chromatography (eluent chHex/EtOAc 2:1) and the desired metal complex \([2-(4-butyl-1H-1,2,3-triazol-1-yl)-3-phenylquinoxaline]bromotricarbonylrhenium(I)\) (15.0 mg, 22.1 μmol, 33% yield) was obtained as a red solid.

\(R_t = 0.39\) (cyclohexane/ethyl acetate 2:1). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 8.76\) (d, \(^3\)J = 10.1 Hz, 1H, CH\(_\text{ar}\)), 8.32 (dd, \(^3\)J = 8.3 Hz, \(^4\)J = 1.6 Hz, 1H, CH\(_\text{ar}\)), 8.15–8.11 (m, 1H, CH\(_\text{ar}\)), 8.07–8.03 (m, 1H, CH\(_\text{ar}\)), 7.74–7.71 (m, 5H, CH\(_\text{ar}\)), 7.06 (s, 1H, CH\(_\text{tripazole}\)), 2.69 (t, \(^3\)J = 8.1 Hz, 2H, CH\(_2\)), 1.59–1.52 (m, 2H, CH\(_2\)), 1.34–1.26 (m, 2H, CH\(_2\)), 0.91 (t, \(^3\)J = 7.3 Hz, 3H, CH\(_3\)); \(^13\)C NMR (ppm) \(\delta = 195.8\) (1C, CO), 192.9 (1C, CO), 187.0 (1C, CO), 151.3 (1C, C\(_q\)), 145.9 (1C, C\(_q\)), 142.3 (1C, C\(_a\)), 141.6 (1C, C\(_a\)), 138.8 (1C, C\(_a\)), 135.0 (1C, C\(_a\)), 134.3 (1C, CH\(_\text{ar}\)), 132.8 (1C, CH\(_\text{ar}\)), 131.6 (1C, CH\(_\text{ar}\)), 130.4 (1C, CH\(_\text{ar}\)), 130.0 (3C, CH\(_\text{ar}\)), 129.2 (2C, CH\(_\text{ar}\)), 123.5 (1C, CH\(_\text{tripazole}\)), 30.2 (1C, CH\(_2\)), 25.0 (1C, CH\(_2\)), 21.9 (1C, CH\(_2\)), 13.6 (1C, CH\(_3\)). Assignment of the carbons between signals at 130.0 and 129.2 ambiguous: 130.0 (2C, CH\(_\text{ar}\)), 129.2 (3C, CH\(_\text{ar}\)) is also a possible constellation. MS (FAB, 3-NBA), m/z (%): 681 [M+2]: 24), 680 [M+1]: (15), 679 [M]: (37), 662 (20), 600 (33), 598 (22), 205 (33), 155 (31), 154 (100), 147 (20), 139 (23), 138 (43), 137 (57), 136 (86), 115 (21), 107 (37), 105 (24), 97 (21), 95 (34), 91 (49), 89 (27). HRMS (C\(_\text{23}\)H\(_\text{19}\)O\(_\text{3}\)N\(_\text{5}\)Br\(_\text{1}\)Re): calcld 679.0223, found 679.0225. IC (ATR, \(\bar{\nu}\) = 3160 (vw), 2956 (w), 2929 (w), 2864 (w), 2023 (vs), 1938 (s), 1902 (vs), 1568 (w), 1533 (w), 1483 (w), 1469 (w), 1441 (m), 1432 (m), 1395 (w), 1361 (m), 1339 (w), 1266 (w), 1217 (w), 1191 (w), 1139 (w), 1061 (w), 1045 (m), 1013 (w), 973 (w), 793 (w), 766 (m), 734 (w), 700 (m), 639 (m), 630 (m), 567 (w), 523 (w), 514 (w), 482 (m) cm\(^{-1}\). Crystals suitable for Single Crystal X-Ray Diffraction Analysis obtained via slow evaporation of a solution in CDCl\(_3\) under ambient conditions. Crystal Data for C\(_\text{23}H\(_\text{19}\)BrC\(_\text{3}\)N\(_\text{5}\)O\(_\text{3}\)Re (M = 798.91 g/mol): monoclinic, space group C2/c (no. 15), a = 26.7745(6) Å, b = 17.4882(5) Å, c = 12.7656(3) Å, \(\beta = 112.170(2)^{\circ}\), \(V = 5535.4(3)\) Å\(^3\), Z = 8, \(T = 180\) K, \(\mu(\text{GaK}\alpha) = 9.025\) mm\(^{-1}\), Dcalc = 1.917 g/cm\(^3\), 17394 reflections measured (7.488° ≤ 2\(\Theta\) ≤ 124.994°), 6505 unique (\(R_{int} = 0.0156\), \(R_{sigma} = 0.0120\)) which were used in all
calculations. The final R1 was 0.0306 (I > 2σ(I)) and wR2 was 0.0780 (all data). UV/VIS (acetonitrile, 18 μM solution), λ = 432 (0.06), 362 (0.16), 254 (0.51) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-BKFBOTQHKA-UHFFADPSC-NUHFF-MUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/BKFBOTQHKAJKOY-UHFFFAOYSA-M.1

\[N,N\text{-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine}]\text{bromotricarbonylrhenium(I)} \ (29)\]

\[
\text{Name } \{P1|29\} : \ [N,N\text{-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine}]\text{bromotricarbonylrhenium(I)}; \ \text{Formula: } C_{19}H_{20}\text{BrN}_{6}O_{3}\text{Re}; \ \text{Molecular Mass: } 646.5115; \ \text{Exact Mass: } 646.0338; \ \text{Smiles: } CCN(CCc1nnn(c1)c1cnc2c(n1)cccc2)CC.[C\#\#\#][O\#\#].\text{Br}[\text{Re}]; \ \text{InChIKey: } LHPVGPJSNAKQBR-UHFFFAOYSA-M
\]

The ligand \(N,N\text{-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine}\) (40.0 mg, 135 μmol, 1.00 equiv) was dissolved in dry toluene (1.50 mL) and heated to 110 °C under argon, then bromorhenium;carbon monoxide (60.0 mg, 148 μmol, 1.09 equiv) was added; another 0.50 mL of toluene was added to rinse the walls of the flask. The solution was stirred at 110 °C under argon for 6 h and subsequently the orange mixture was stirred for 16 h at 25 °C. Then the orange-brown solution was carefully pipetted off, the precipitated yellow solid was collected and dried under high vacuum. The rhenium complex \([N,N\text{-diethyl-2-(1-(quinoxalin-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1-amine}]\text{bromotricarbonylrhenium(I)} \) (84.0 mg, 130 μmol, 96% yield) was obtained as a yellow solid.

\(R_t = 0.35 \) (cyclohexane/ethyl acetate 1:2). \(^1\)H NMR (400 MHz, CDCl₃, ppm) δ = 9.81 (s, 1H, NCH₃), 8.67 (s, 1H, CH₃), 8.28–8.24 (m, 1H, CH₃), 7.93–7.88 (m, 2H, CH₃), 3.72–3.61 (m, 3H, CH₃), 3.58–3.49 (m, 1H, CH₃), 3.30–3.14 (m, 3H, CH₃), 3.00–2.94 (m, 1H, CH₂), 1.39 (t, \(^3\)J = 7.2 Hz, 3H, CH₃), 1.22 (t, \(^3\)J = 7.1 Hz, 3H, CH₃); \(^13\)C NMR (100 MHz, CDCl₃ [77.0 ppm], ppm) δ = 196.8 (1C, CO), 191.8 (1C, CO), 177.7 (1C, CO), 145.3 (1C, CO), 142.9 (1C, CO), 141.4 (1C, CO), 139.5 (1C, CO), 137.3 (1C, NCH₃), 132.0 (1C, CH₃), 131.2 (1C, CH₃), 129.9 (1C, CH₃), 128.8 (1C, CH₃), 119.5 (1C, CH₃), 55.7 (1C, CH₂), 53.5 (1C, CH₂), 52.6 (1C, CH₂), 21.0 (1C, CH₂), 10.6 (1C, CH₃), 9.1 (1C, CH₃). MS (FAB, 3-NBA), m/z (%): 646 [M]+ (4), 307 (36), 289 (16), 155 (35), 154 (100), 137 (70), 107 (20). HRMS (FAB, C₁₉H₂₀BrN₆O₃Re): calcd 646.0332, found 646.0331. IR (ATR, ν) = 3088 (w), 3002 (w), 2979 (w), 2946 (w), 2927 (w), 2878 (w), 2027 (vs), 1914 (vs), 1874 (vs), 1839 (vs), 1609 (w), 1561 (m), 1497 (s), 1472 (m), 1448 (s), 1432 (m), 1364 (m), 1347 (m), 1315 (w), 1291 (m).
(m), 1264 (m), 1248 (m), 1232 (m), 1207 (w), 1193 (m), 1170 (w), 1137 (m), 1123 (m),
1089 (m), 1075 (m), 1016 (s), 1007 (m), 950 (s), 915 (m), 871 (w), 864 (w), 822 (m),
792 (w), 772 (vs), 735 (s), 713 (m), 676 (w), 650 (s), 635 (m), 615 (w), 588 (m), 551
(w), 524 (s), 487 (s), 475 (m), 416 (s), 378 (m) cm$^{-1}$. Crystals suitable for Single Crystal
X-Ray Diffraction Analysis obtained via slow evaporation of a solution in DCM under
ambient conditions.

Crystal Data for C_{20.5}H_{21.5}BrCl_{4.5}N_{6}O_{3}Re (M = 825.57 g/mol):
monoclinic, space group C2/c (no. 15), a = 27.0130(7) Å, b = 16.1381(5) Å, c =
13.5743(3) Å, β = 106.059(2)°, V = 5686.6(3) Å³, Z = 8, T = 180 K, μ(Mo Kα) = 6.136
mm$^{-1}$, Dcalc = 1.929 g/cm3, 28083 reflections measured (2.972° ≤ 2θ ≤ 70.692°),
11833 unique (Rint = 0.0452, Rsigma = 0.0460) which were used in all calculations.
The final R1 was 0.0776 (I > 2σ(I)) and wR2 was 0.2302 (all data). UV/VIS (acetonitrile,
18 μM solution), λ = 340 (0.20), 256 (0.46) nm.

Additional information on the chemical synthesis is available via Chemotion repository:
https://doi.org/10.14272/reaction/SA-FUHFF-UHFFADPSC-LHPVGPSNA-UHFFADPSC-NUHFF-MUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via
Chemotion repository:
https://doi.org/10.14272/LHPVGPSNAKQBR-UHFFFAOYSA-M.1

[1-Butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline]bromotricarbonylrhenium(I) (30)

\[
\begin{align*}
\text{Name} & \quad \{\text{P1}\{30\}}: \quad [1\text{-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline}]\text{bromotricarbonylrhenium(I)}; \quad \text{Formula}: \quad C_{23}H_{24}BrN_{6}O_{3}\text{Re}; \quad \text{Molecular Mass}: \quad 698.5861; \quad \text{Exact Mass}: \quad 698.0651; \quad \text{Smiles}: \quad \text{CCCCc1nnn(c1)c1nc2cccccc2n2c1ncc2CCCC.[C-][O+].[C-][O+].[C-][O+].Br[Re]}; \quad \text{InChIKey}: \quad \text{IYHBIYJPQGBCO-UHFFFAOYSA-M}
\end{align*}
\]

In a two-necked flask, the ligand 1-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline (24.0 mg, 68.9 μmol, 1.00 equiv) was dissolved in dry toluene (1.50 mL)
and heated to 110 °C under argon, then bromorhenium;carbon monoxide (34.0 mg,
83.7 μmol, 1.22 equiv) was added. Another 0.50 mL of toluene was added and the
solution was stirred at 110 °C under argon for 4 h. Subsequently the red mixture was
cooled to 25 °C and the solvent was evaporated under reduced pressure. The
obtained crude product was purified twice via column chromatography (cHex/ethyl
acetate, then DCM -> DCM/EtOAc 50:1) and the rhenium complex [1-butyl-4-(4-butyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]quinoxaline]bromotricarbonylrhenium(I) (38.0 mg, 54.4 μmol, 79% yield) was obtained as an orange solid.

$R_t = 0.61$ (CH$_2$Cl$_2$). 1H NMR (400 MHz, CDC13, ppm) δ = 8.96 (s, 1H, CH$_{\text{triazole}}$), 8.35 (dd, 3J = 8.3 Hz, 4J = 1.6 Hz, 1H, CH$_{\text{ar}}$), 8.16 (dd, 3J = 7.9 Hz, 4J = 1.8 Hz, 1H, CH$_{\text{ar}}$), 7.91 (s, 1H, CH$_{\text{imidazole}}$), 7.86–7.66 (m, 2H, CH$_{\text{ar}}$), 3.39–3.35 (m, 2H, C$_2$CH$_2$), 2.94–2.90 (m, 2H, C$_2$CH$_2$), 2.03–1.96 (m, 2H, CH$_2$CH$_2$), 1.86–1.78 (m, 2H, CH$_2$CH$_2$), 1.66 (h, 3J = 7.3 Hz, 2H, CH$_2$CH$_2$), 1.51 (h, 3J = 7.5 Hz, 2H, CH$_2$CH$_3$), 1.10 (t, 3J = 7.3 Hz, 3H, CH$_3$), 1.02 (t, 3J = 7.4 Hz, 3H, CH$_3$); 13C NMR (100 MHz, CDC13 [77.0 ppm], ppm) δ = 195.7 (1C, CO), 193.8 (1C, CO), 191.6 (1C, CO), 150.7 (1C, C$_2$), 136.3 (1C, C$_5$), 136.2 (1C, CH$_{\text{ar}}$), 134.5 (1C, C$_3$), 134.4 (1C, C$_2$), 130.9 (1C, CH$_{\text{ar}}$), 130.6 (1C, CH$_{\text{ar}}$), 129.2 (1C, C$_3$), 128.6 (1C, CH$_{\text{ar}}$), 128.5 (1C, C$_4$), 121.5 (1C, CH$_{\text{imidazole}}$), 115.9 (1C, CH$_{\text{imidazole}}$), 30.6 (1C, CH$_2$CH$_2$), 29.5 (1C, CH$_2$CH$_2$), 27.9 (1C, C$_2$CH$_2$), 25.2 (1C, C$_2$CH$_2$), 22.6 (1C, CH$_2$CH$_3$), 22.3 (1C, CH$_2$CH$_3$), 13.8 (1C, CH$_3$), 13.8 (1C, CH$_3$). MS (FAB, 3-NBA), m/z (%): 700 [M+2]+ (16), 698 [M]+ (28), 664 (22), 663 (57), 662 (32), 648 (16), 647 (33), 619 (20), 319 (18), 307 (20), 155 (33), 154 (100), 139 (21), 138 (38), 137 (59), 136 (70), 109 (16), 107 (25), 105 (17), 97 (20), 95 (25), 91 (28), 89 (17). HRMS (FAB, C$_{23}$H$_{42}$O$_3$N$_5$Br$_{18}^+$Re$_1$): calc 698.0645, found 698.0643. IR (ATR, ν) = 3172 (w), 3119 (w), 2961 (w), 2868 (w), 2031 (vs), 1921 (vs), 1866 (vs), 1814 (w), 1594 (w), 1555 (w), 1506 (s), 1465 (s), 1443 (m), 1426 (m), 1395 (m), 1371 (m), 1364 (m), 1357 (m), 1323 (w), 1281 (w), 1252 (m), 1228 (m), 1183 (w), 1159 (w), 1132 (w), 1103 (w), 1045 (vs), 1010 (w), 938 (m), 898 (w), 868 (w), 843 (w), 813 (w), 800 (w), 772 (vs), 732 (m), 722 (w), 705 (w), 664 (w), 642 (m), 632 (m), 623 (m), 596 (m), 534 (w), 521 (m), 476 (s), 459 (m), 388 (w) cm$^{-1}$. Crystals suitable for Single Crystal X-Ray Diffraction Analysis obtained via slow evaporation of a solution in acetonitrile under ambient conditions. Crystal Data for C$_{26,3}$H$_{23}$Br$_7$O$_7$Re: $M = $767.01 g/mol; triclinic, space group P-1 (no. 2), $a = 12.6826(3)$ Å, $b = 19.0014(5)$ Å, $c = 21.4662(5)$ Å, $α = 64.742(2)^°$, $β = 74.174(2)^°$, $γ = 71.344(2)^°$, $V = 4376.3(2)$ Å3, $Z = 6$, $T = 180$ K, $μ(Mo Kα) = 5.576$ mm$^{-1}$, Dcalc = 1.746 g/cm3, 53827 reflections measured (2.124° ≤ 2θ ≤ 56°), 21092 unique (Rint = 0.1065, Rsigma = 0.0736) which were used in all calculations. The final R1 was 0.0665 (I > 2σ(I)) and wR2 was 0.1997 (all data). Asymmetric cell consists of three molecules of the complex and five molecules of acetonitrile. EA (C$_{23}$H$_{24}$Br$_7$O$_7$Re): Calc C 39.54; H 3.46; N 12.03. Found C 40.59; H 3.65; N 11.75. UV/VIS (acetonitrile), λ = 386 (0.16), 350 (0.17), 332 (0.18), 260 (0.42) nm.

Additional information on the chemical synthesis is available via Chemotion repository: https://doi.org/10.14272/reaction/SA-FUHFF-UHFFAFDPSC-IYHBIYUJPQ-UHFFAFDPSC-NUHFF-MUHFF-NUHFF-ZZZ

Additional information on the analysis of the target compound is available via Chemotion repository: https://doi.org/10.14272/IYHBIYUJPQGBCO-UHFFFAOYSA-M.1
3. Absorption measurements

![Absorption spectra](image)

Figure S4: Qualitative UV–vis absorption spectra of the ligands.

4. Electrochemical measurements

The following cyclic voltammetry traces were recorded under the following conditions: 0.5 mM of the compound in MeCN solution with 0.1 M Bu4NPF6 under nitrogen at 25 °C, recorded at 0.1 V/s at a glassy carbon electrode and referenced to the saturated calomel electrode (SCE, 0.46 V vs. SCE [2]) using Fc/Fc+ as an internal standard. For further information please see Section 1: General Remarks.

![Cyclic voltammetry traces](image)

Figure S5: Cyclic voltammetry traces for 27a (left) and 27b (right) when scanning to more positive and negative potentials.
5. Crystallographic data

Table S7: Crystal data and structure refinement details for 25b, 27a-d, 29 and 30.

Compound	25b	27a	27b	27c
Empirical formula	C$_{20}$H$_{24}$N$_{6}$	C$_{17}$H$_{15}$BrN$_{5}$O$_{3}$Re	C$_{19}$H$_{17}$BrN$_{5}$O$_{3}$Re	C$_{18}$H$_{17}$BrN$_{5}$O$_{3}$Re
Formula weight	348.45	603.45	623.44	617.47
Temperature/K	150.0	180.0	180.0	150.0
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P1	P1	P2$_1$/n	P1
a/Å	7.2494(4)	8.1736(3)	11.5453(4)	8.1070(3)
b/Å	9.0176(5)	9.8940(3)	14.0610(5)	9.9680(3)
c/Å	14.3850(8)	12.3886(4)	12.4364(4)	12.8159(4)
α/°	75.401(4)	68.789(3)	90	105.330(3)
β/°	85.805(4)	81.703(3)	110.258(3)	101.878(3)
γ/°	79.431(4)	85.226(3)	90	94.429(3)
Volume/Å3	894.22(9)	923.69(6)	1894.02(12)	967.87(6)
Z	2	2	4	2
------------	-----	-----	-----	-----
ρ_{calc} g/cm3	1.294	2.170	2.186	2.119
μ mm$^{-1}$	0.410	8.769	10.489	10.252
F(000)	372.0	572.0	1176.0	588.0
Radiation	GaK\alpha (\lambda = 1.34143)	MoK\alpha (\lambda = 0.71073)	GaK\alpha (\lambda = 1.34143)	GaK\alpha (\lambda = 1.34143)
2\theta range /°	5.53–125.0	3.55–60.0	8.57–125.0	6.40–125.0
Reflections collected	10270	12981	12569	10723
Independent reflections	4123 [R_{\text{int}} = 0.0447]	5361 [R_{\text{int}} = 0.0216]	4465 [R_{\text{int}} = 0.0138]	4524 [R_{\text{int}} = 0.0160]
Indep. refl. with $l \geq 2\sigma (I)$	2974	5104	4122	4509
Data/restraints/parameters	4123/0/235	5361/0/245	4465/0/262	4524/0/321
Goodness-of-fit on F^2	1.379	1.058	1.148	1.105
Final R indexes [$l \geq 2\sigma (I)$]	$R_1 = 0.0944, \text{w}R_2 = 0.2907$	$R_1 = 0.0313, \text{w}R_2 = 0.0822$	$R_1 = 0.0251, \text{w}R_2 = 0.0622$	$R_1 = 0.0224, \text{w}R_2 = 0.0603$
Final R indexes [all data]	$R_1 = 0.1171, \text{w}R_2 = 0.3021$	$R_1 = 0.0332, \text{w}R_2 = 0.0833$	$R_1 = 0.0278, \text{w}R_2 = 0.0630$	$R_1 = 0.0225, \text{w}R_2 = 0.0604$
Largest diff. peak/hole / eÅ$^{-3}$	0.96/–0.88	1.68/–2.65	0.92/–0.98	0.81/–1.31
CCDC number	2129160	2129161	2129162	2129163
Table S7 (continued)

Compound	27d	29	30
Compound	27d · CHCl₃	29 · 1.5 CHCl₃	30 · 1.667 CaH₂N
Empirical formula	C₂₄H₂₀BrCl₃N₅O₃Re	C₂₆.₉₂H₂₁.₅BrCl₄₅N₆O₃Re	C₂₆.₃₃H₂₉BrN₇.₆₆O₃Re
Formula weight	798.91	825.57	767.01
Temperature/K	180	180	180
Crystal system	monoclinic	monoclinic	triclinic
Space group	C₂/c	C₂/c	P₁
a/Å	26.7745(6)	27.0130(7)	12.6826(3)
b/Å	17.4882(5)	16.1381(5)	19.0014(5)
c/Å	12.7656(3)	13.5743(3)	21.4662(5)
α/°	90	90	64.742(2)
β/°	112.170(2)	106.059(2)	74.174(2)
γ/°	90	90	71.344(2)
Volume/Å³	5553.4(3)	5686.6(3)	4376.3(2)
Z	8	8	6
ρcalcg/cm³	1.917	1.929	1.746
μ/mm⁻¹	9.025	6.136	5.576
F(000)	3072.0	3176.0	2248.0
Radiation	GaKα (λ = 1.34143)	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)
2Θ range /°	7.49–125.0	2.97–70.7	2.12–56.0
Reflections collected	17394	28083	53827
Independent reflections	6505	11833	21092
Indep. refl. with I ≥ 2σ (I)	6401	9120	16718
Data/restraints/parameters	6505/0/332	11833/3/303	21092/0/1065
Goodness-of-fit on F²	1.149	1.048	1.030
Final R indexes [I ≥ 2σ (I)]	R₁ = 0.0306, wR₂ = 0.0775	R₁ = 0.0776, wR₂ = 0.2157	R₁ = 0.0665, wR₂ = 0.1857
Final R indexes [all data]	R₁ = 0.0312, wR₂ = 0.0780	R₁ = 0.0953, wR₂ = 0.2302	R₁ = 0.0835, wR₂ = 0.1997
Largest diff. peak/hole / eÅ⁻³	1.07/–1.23	4.26/–7.08	4.51/–3.39
CCDC number	2129164	2129165	2129166

6. References

1. Swinehart, D. F. J. Chem. Educ. 1962, 39, 333. doi:10.1021/ed039p333
2. Bertrand, H. C.; Clède, S.; Guillot, R.; Lambert, F.; Policar, C. Inorg. Chem. 2014, 53 (12), 6204–6223. doi:10.1021/ic5007007
3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J Appl Crystallogr 2009, 42, 339–341. doi:10.1107/S0021889808042726
4. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71 (Pt 1), 3–8. doi:10.1107/S2053273314026370
5. Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71 (Pt 1), 3–8. doi:10.1107/S2053229614024218
6. Chattopadhyay, B.; Vera, C. I. R.; Chuprakov, S.; Gevorgyan, V. Org. Lett. 2010, 12, 2166–2169. doi:10.1021/ol100745d
7. Roy, S.; Khatau, H.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2019, 58, 11439–11443. doi:10.1002/anie.201904702
8. Dhameliya, T. M.; Chourasiya, S. S.; Mishra, E.; Jadhav, P. S.; Bharatam, P. V.; Chakraborti, A. K. J. Org. Chem. 2017, 82, 10077–10091. doi:10.1021/acs.joc.7b01548
9. Dahn, H.; Leresche, J.-P.; Schlunke, H.-P. Helv. Chim. Acta 1966, 49, 26–30. doi:10.1002/hlca.660490106
10. Tian, M.; Liu, S.; Bu, X.; Yu, J.; Yang, X. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 369–373. doi:10.1002/chem.201903523
11. Murthy, S. N.; Madhav, B.; Nageswar, Y. V. D. Helv. Chim. Acta 2010, 93, 1216–1220. doi:10.1002/hlca.200900358
12. Tian, M.; Liu, S.; Bu, X.; Yu, J.; Yang, X. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 369–373. doi:10.1002/chem.201903523
13. Wang, H.; Wen, K.; Le Wang; Xiang, Y.; Xu, X.; Shen, Y.; Sun, Z. Molecules (Basel, Switzerland) 2012, 17, 4533–4544. doi:10.3390/molecules1704533
14. Xia, Q.-H.; Hu, W.; Li, C.; Wu, J.-F.; Yang, L.; Han, X.-M.; Shen, Y.-M.; Li, Z.-Y.; Li, X. Eur. J. Med. Chem. 2016, 124, 311–325. doi:10.1016/j.ejmech.2016.08.010
15. Wang, H.; Wen, K.; Le Wang; Xiang, Y.; Xu, X.; Shen, Y.; Sun, Z. Molecules (Basel, Switzerland) 2012, 17, 4533–4544. doi:10.3390/molecules1704533
16. Wei, Z.; Qi, S.; Xu, Y.; Liu, H.; Wu, J.; Li, H.; Xia, C.; Duan, G. Adv. Synth. Catal. 2019, 361, 5490–5498. doi:10.1002/adsc.201900885
17. Raghunadh, A.; Tadiparthi, K.; Meruva, S. B.; Murthy, V. N.; Rao, L. V.; Kumar, U. K. S. SynOpen 2020, 04, 55–61. doi:10.1055/s-0040-1707203
18. Wagle, S.; Adhikari, A. V.; Kumari, N. S. Eur. J. Med. Chem. 2009, 44, 1135–1143. doi:10.1016/j.ejmech.2008.06.006
19. Wentrup, C.; Thétaz, C.; Tagliaferri, E.; Lindner, H. J.; Kitschke, B.; Winter, H.-W.; Reisenauer, H. P. Angew. Chem. 1980, 92, 556–557. doi:10.1002/ange.19800290714
20. Lippmann, E.; Tober, E. J. Prakt. Chem. 1982, 324 (2), 329–334. doi:10.1002/prac.198232420217
21. Holzschneider, K.; Tong, M. L.; Mohr, F.; Kirsch, S. F. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 11725–11733. doi:10.1002/chem.201902131
22. Muelbaier, M.; Ramsden, N.; Thomson, D. Preparation of tetrazoloquinoxaline derivatives as tankyrase inhibitors, Sep 19, 2013.
23. Dreikorn, B. A.; Thibault, T. D. 4,5-Dihydrotetrazolo(1,5-a)quinoxalines, Jun 10, 1975.
24. Rauws, T. R.; Biancalani, C.; Schutter, J. W. de; Maes, B. U. Tetrahedron 2010, 66, 6958–6964. doi:10.1016/j.tet.2010.06.038
25. Falck, J. R.; He, A.; Fukui, H.; Tsutsui, H.; Radha, A. Angew. Chem., Int. Ed. 2007, 46, 4527–4529. doi:10.1002/anie.200700321
26. Alumasa, J. N.; Manzanillo, P. S.; Peterson, N. D.; Lundrigan, T.; Baughn, A. D.; Cox, J. S.; Keiler, K. C. ACS Infect. Dis. 2017, 3, 634–644. doi:10.1021/acsinfectdis.7b00028
27. Kawski, A.; Nowaczyk, K.; Kuklinski, B. Z. Naturforsch., A: Phys. Sci. 1991, 46, 700–702. doi:10.1515/zna-1991-0808
28. Didenko, A. V.; Vorobiev, M. V.; Sevenard, D. V.; Sosnovskikh, V. Y. Chem Heterocycl Comp 2015, 51, 259–268. doi:10.1007/s10593-015-1694-5
29. Krasavin, M.; Shkavrov, S.; Parchinsky, V.; Bukhryakov, K. J. Org. Chem. 2009, 74, 2627–2629. doi:10.1021/jo900050k
30. Adam, M. S. S.; Kindermann, M. K.; Köckerling, M.; Heinicke, J. W. Eur. J. Org. Chem. 2009, 2009 (27), 4655–4665. doi:10.1002/ejoc.200900698
31. Sun, D.; Watson, W. H. J. Org. Chem. 1997, 62, 4082–4084. doi:10.1021/jo970197m
32. Deleuze-Masquefa, C.; Moarbess, G.; Bonnet, P.-A.; Pinguet, F.; Bazarbachi, A.; Bressolle, F. Synthesis of imidazo[l,2-a]quinoxalines for treating cancers.