Human *Escherichia coli* O157:H7 Genetic Marker in Isolates of Bovine Origin

Jeffrey T. LeJeune, * Stephen T. Abedon,**
Kaori Takemura, * Nicholas P. Christie,**
and Srinand Sreevatsan**

The antiterminator Q gene of bacteriophage 933W (Q933) was identified upstream of the stx2 gene in 90% of human disease–origin *Escherichia coli* O157:H7 isolates and in 44.5% of bovine isolates. Shiga toxin production was higher in Q933-positive isolates than Q933-negative isolates. This genetic marker may provide a useful molecular tool for epidemiologic studies.

Escherichia coli O157 is recognized worldwide as an important cause of diarrheal disease, which in some patients is followed by hemolytic uremic syndrome and death (1). A primary virulence factor of this pathogen is the prophage-encoded Shiga toxin (2). Greater Shiga toxin production per bacterium is associated with increasing severity of human disease (3,4). Because of its location in the phage genome, the stx2-gene variant dubbed stx2 is under similar regulatory control as other phage late-genes, as it is governed by the interaction of the transcription antiterminator Q with the late promoter P^R (5).

Although cattle and other ruminants appear to be the natural reservoir for *E. coli* O157 and other Shiga toxin–producing *E. coli* (STEC), only a small fraction of STEC serotypes routinely present in cattle are frequently isolated from human patients. Mounting evidence suggests that considerable genetic, phenotypic, and pathogenic diversity exists among these pathogens (6–8). Furthermore, genetic subtypes or lineages of *E. coli* O157 do not appear to be equally distributed among isolates of bovine and human origin (7). The purpose of this study was to examine the distribution of specific sequences upstream of the stx2 gene among *E. coli* O157:H7 of human and bovine origin, along with corresponding magnitudes of Shiga toxin production.

The Study

A total of 158 stx2-encoding *E. coli* O157:H7 isolates were assayed, 91 isolates of bovine origin and 67 originally isolated from ill persons (see online Appendixes 1 and 2; http://www.cdc.gov/ncidod/EID/vol10no8/03-0784_app1.htm and http://www.cdc.gov/ncidod/EID/vol10no8/03-0784_app2.htm). All isolates demonstrated unique banding patterns on pulsed-field gel electrophoresis (PFGE). For polymerase chain reaction (PCR) analysis, 5 µL of DNA obtained from boiled stationary-phase bacteria was added to a 50-µL PCR master mix containing a final concentration of 1.5 (Q₉₃₃) or 2.5 (Q₂₁) mmol MgCl₂, 200 µmol/L each deoxynucleoside triphosphate, 1 U *Taq* polymerase, 0.6 pg/µL of primer 595 (5′-CCGAGGAAAAACCCAGTAACAG-3′) (9), and 0.6 pg/µL of either primer Q₉₃₃ (5′-CGGAGGGATTGTGAAGGC-3′; sense) (9) or primer Q₂₁ (5′-GAAATCTCTCAATGCTCGTTG-3′; antisense), 2.5 or 55°C (Q₂₁) for 1 min, and 72°C for 1 min; and a final 10-min extension step at 72°C. *E. coli* strain 933 or FAHRP88 was used as a positive control and master mix alone as a negative control. All PCR products were separated by gel electrophoresis (100 V) in 1% agarose gels, stained with ethidium bromide, and visualized by using UV illumination.

Shiga toxin production was determined by using a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Premiere EHEC, Meridian Diagnostics, Cincinnati, OH). Briefly, log-phase cells from Luria-Bertani broth enrichments were diluted to 0.6 optical density (OD) at 600 nm, subsequently pelleted, resuspended in phosphate-buffered saline, and induced by exposure to UV light (240 nm) for 3 s (10). A 1:9 volume of a 10x concentrate of brain heart infusion broth was added to each culture and shaken at 37°C for 2.5 h. Repeat cultures that were not exposed to UV light (noninduced controls) were maintained at 4°C. Two hundred microliters of each induced and noninduced enrichment was subsequently used as the specimen in the EHEC ELISA, as described (11). OD results were recorded for each isolate both with and without UV induction. The relative change in Shiga toxin production after induction was calculated for each isolate; (OD_{induced}−OD_{noninduced}). *E. coli* O157 (EDL933) and a toxin-negative control isolate were assayed as positive and negative controls each time the assay was repeated.

E. coli O157 isolates were classified on the basis of the presence or absence of bands of the predicted size on the Q₉₃₃-595 and Q₂₁-595 PCR reactions (Figure). A chi-square test was used to determine whether different PCR genotypes were equally distributed among isolates of bovine and human origin. Likewise, a chi-square test was used to assess the equality of distribution of PCR genotypes among bovine isolates from different countries. One-way analysis of variance for nonparametric data (Kruskal-Wallis test) was used to identify differences in
from diverse geographic areas is consistent with the variable incidences of human disease in different countries (Table 1). For example, six (75%) of eight Scottish bovine isolates examined amplified the Q₉₃₃ target, the same target that is frequently present in human isolates of human disease origin. Scotland reports some of the highest incidence rates of human E. coli O157–related diseases and hemolytic uremic syndrome (13). In contrast, none of the seven Australian E. coli O157 bovine isolates amplified the 1750-bp fragment. Contrary to the situation in Scotland and the United States, E. coli O157 infection of humans is rarely reported in Australia (14).

Conclusions

The Q₉₃₃ gene target was more commonly identified in human disease–associated strains of E. coli O157 than from strains of bovine origin. Amplification of the Q₉₃₃ target, either alone or in combination with amplification of the Q₂₁ target from the same isolate, was identified in 60 (9%) of 66 (55/66 alone and 5/66 in combination with Q₂₁; 1 isolate amplified neither target) compared to 40 (44%) of 91 (32/91 alone, and 8/91 in combination with Q₂₁) of bovine isolates (p < 0.001). Furthermore, these genetic subtypes were nonrandomly distributed among the E. coli O157 isolates of bovine origin obtained from different countries (p < 0.05) (Table 1).

These limited data suggest that the distribution of E. coli O157 strains in cattle may differ between countries or regions, thereby providing an explanation for geographic differences in the incidence of human E. coli O157 infection. More isolates from cattle need to be analyzed with these methods to better characterize the E. coli O157 in the bovine reservoir of each country.

A positive reaction with the Q₉₃₃ target was significantly associated with higher OD results on the Shiga toxin ELISA (both noninduced and induced) and higher-fold increases in toxin production following induction than isolates amplifying the Q₂₁ target alone (p < 0.0001) (Table 2). Despite these differences, we did not identify any clinical associations between the magnitude of Shiga toxin production and severity of human disease could be identified in this study. Other, non–Shiga toxin–related virulence factors and host susceptibility are also believed to play

Table 1. Distribution of polymerase chain reaction results from bovine Escherichia coli O157 isolates based on geographic origin

Country of origin	No. tested	Q₉₃₃	Q₂₁	Both
USA	46	20 (44)	25 (54)	1 (2)
Scotland	8	– (0)	2 (25)	6 (75)
Australia	7	– (0)	7 (100)	– (0)
Japan	17	3 (18)	14 (82)	– (0)
Total	78	23 (29)	48 (62)	7 (9)

a – not detected. Percentages are read across rows, not down columns. Significant difference in proportion of Q alleles isolated from different countries (p < 0.05, chi-square test for homogeneity).
Table 2. Shiga toxin production by *Escherichia coli* O157:H7 by Q allele

Assay	Q allele	Response
OD_{600nm} noninduced	Q_{933}	0.442
	Q_{21}	0.170
OD_{600nm} induced	Q_{933}	1.228
	Q_{21}	0.165
Fold increase in OD	Q_{933}	2.2
600nm after induction	Q_{21}	0.9

(OD_{induced})/(OD_{noninduced}). The maximum and minimum optical density readings at 600 nm listed in each row are not necessarily from the same isolate; therefore, the maximum - and minimum-fold increase cannot be calculated directly from the table.

essential roles in the outcome of clinical STEC infections. The Q_{933}-negative isolates obtained from human disease might have lost this Q_{933}-containing prophage by the time of isolation, or these isolates might have been recovered from patients also infected with STEC containing Q_{933} type prophage (15). Whether specific Q-gene alleles directly correlate with the magnitude of Shiga-toxin production or whether other (unstudied) factors within the phage lytic cascade genetically linked to specific Q alleles instead are responsible for the magnitude of toxin production is not known.

The antiterminator Q, the protein product of the Q gene, and P_{R}, the late promoter, are reputed to be involved in regulating phage late-genes and, because of the location of P_{R} in prophage genome, of Shiga toxin production as well (5). In *E. coli* O157 phage 933W (GenBank no. 9632466) and *E. coli* O157 stx_{2vhd} (GenBank no. 15718404), the 359-bp sequence immediately upstream of the stx_{2} gene is nearly identical (>95% nucleotide identity). However, further upstream of this area of identity, DNA sequences differ significantly. In *E. coli* O157 933W, this gene is identified as the antiterminator Q gene. In contrast, in *E. coli* O157 stx_{2vd} this area is occupied by a gene with >95% sequence identity with the antiterminator Q gene of bacteriophage 21 (gi 4539472). The Q gene of bacteriophage 21 does not share DNA sequence homology with the Q gene of bacteriophage 933W, and only 36% predicted amino acid homology. Since the Q gene is reputed to play an important role in regulating toxin production, our results provide a plausible explanation (differential regulation of Shiga toxin production) of why certain *E. coli* O157 genotypes are more commonly isolated from human patients (7).

Acknowledgments

We thank the state departments of health of Ohio, Washington, and Idaho for many of the human isolates used in this study and the SETC Center, Michigan State University, for providing two of the strains we tested.

This project was funded by beef and veal producers and importers through their $1-per-head checkoff and was produced for the Cattlemen’s Beef Board and state beef councils by the National Cattlemen’s Beef Association. Research in S.S. and J.T.L. laboratories is also supported by state and federal funds appropriated to the Ohio Agricultural Research and Development Center.

Dr. LeJeune is an assistant professor in the Food Animal Health Research Program in the Department of Veterinary Preventive Medicine, Ohio State University. His research interests include the epidemiology and ecology of foodborne pathogens in the preharvest stages of food production.

References

1. Karmali MA, Arbus GS, Petric M, Patrick ML, Roscoe M, Shaw J, et al. Hospital-acquired *Escherichia coli* O157:H7 associated haemolytic uraemic syndrome in a nurse [letter]. Lancet. 1988;1:526.

2. O’Loughlin EV, Robins-Browne RM. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect. 2001;3:493–507.

3. Kimura N, Watanabe M, Komatsubara A. [Verotoxin producing ability of verotoxin-producing *Escherichia coli* strains isolated from fecal specimens of healthy persons is lower than that of patients]. Kansenshogaku Zasshi. 2000;74:849–51.

4. Pradel N, Boukhors K, Berin Y, Forestier C, Martin C, Livrelli V. Heterogeneity of Shiga toxin-producing *Escherichia coli* strains isolated from hemolytic-uremic syndrome patients, cattle, and food samples in central France. Appl Environ Microbiol. 2001;67:2460–8.

5. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK, Friedman DL. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic *Escherichia coli* strain. J Bacteriol. 2001;183:2081–5.

6. Baker DR, Moxley RA, Francis DH. Variation in virulence in the gnotobiotic pig model of O157:H7 *Escherichia coli* strains of bovine and human origin. Adv Exp Med Biol. 1997;412:53–8.

7. Kim J, Niefeldt J, Benson AK. Octamer-based genome scanning distinguishes a unique subpopulation of *Escherichia coli* O157:H7 strains in cattle. Proc Natl Acad Sci U S A. 1999;96:13288–93.

8. McNally A, Roe AJ, Simpson S, Thomson-Carter FM, Hoey DE, Currie C, et al. Differences in levels of secreted locus of enterocyte effacement proteins between human disease-associated and bovine *Escherichia coli* O157. Infect Immun. 2001;69:5107–14.

9. Unkmeir A, Schmidt H. Structural analysis of phage-borne stx genes and their flanking sequences in shiga toxin-producing *Escherichia coli* and *Shigella dysenteriae* type 1 strains. Infect Immun. 2000;68:4856–64.

10. Arber W, Enquist L, Hohn B, Murray K, Murray N. Experimental methods. In: Hendrix R, Roberts J, Stahl F, Weisberg R, editors. Lambda II. Cold Springs Harbor (NY): Cold Spring Harbor Laboratory; 1983.

11. Schmidt H, Scheef, J, Morabito S, Caprioli A, Wieler LH, Karch H. A new Shiga toxin 2 variant (Stx2f) from *Escherichia coli* isolated from pigeons. Appl Environ Microbiol. 2000;66:1205–8.
12. Dorn CR, Angrick E. Serotype O157:H7 *Escherichia coli* from bovine and meat sources. J Clin Microbiol. 1991;29:1225–31.

13. Locking M. HUS rates in Scotland. Glasgow: Scottish Centre for Infection & Environmental Health; 2002.

14. Elliott EJ, Robins-Browne RM, O’Loughlin EV, Bennett-Wood V, Bourke J, Henning P, et al. Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child. 2001;85:125–31.

15. Karch H, Russmann H, Schmidt H, Schwarzkopf A, Heesemann J. Long-term shedding and clonal turnover of enterohemorrhagic *Escherichia coli* O157 in diarrheal diseases. J Clin Microbiol. 1995;33:1602–5.

Address for correspondence: Jeffrey T. LeJeune, 1680 Madison Ave. Wooster, OH 44691, USA; fax: 330-263-3677; email: lejeune.3@osu.edu
Appendix 1. Source of human isolates used in this study

FAHRP ID	Source ID	Country	Year	Clinical signs and symptoms	References or source
6	FRIK 528	USA	1998	Diarrhea	1
7	FRIK 579	USA	1998	Diarrhea	1
8	93-001	USA	1999	Hemorrhagic colitis	2
9	ATCC 35150	USA	1999	Hemorrhagic colitis	2
16	91671	USA	1999	Hemorrhagic colitis	2
17	ATCC 43889	USA	1999	Hemorrhagic colitis	2
18	NE 037	USA	1999	Hemorrhagic colitis	2
19	NE 15	USA	1999	Hemorrhagic colitis	2
39	E29962	UK	1991	NR	3
54	CL56	Canada	1991	NR	3
60	E32511	USA	2002	HUS	4
58	EDL 933	USA	1982	Hemorrhagic colitis	5
126	02 5225	USA	2002	NR	Washington^b
127	02 4857	USA	2002	NR	Washington
128	02 6776	USA	2002	NR	Washington
129	02 6579	USA	2002	NR	Washington
130	02 6546	USA	2002	NR	Washington
131	02 6722	USA	2002	NR	Washington
132	02 6598	USA	2002	NR	Washington
133	02 6696	USA	2002	NR	Washington
134	02 6791	USA	2002	NR	Washington
135	02 6829	USA	2002	NR	Washington
136	02 6755	USA	2002	NR	Washington
137	02 6644	USA	2002	NR	Washington
138	06 781	USA	2002	Diarrhea	Idaho^c
139	06 852	USA	2002	NR	Idaho
140	06 854	USA	2002	Watery diarrhea, vomiting	Idaho
141	06 856	USA	2002	Diarrhea	Idaho
142	06 855	USA	2002	NR	Idaho
143	06 886	USA	2002	Diarrhea, abdominal pain	Idaho
144	06 889	USA	2002	Abdominal pain	Idaho
145	06 988	USA	2002	Gastrointestinal bleeding	Idaho
146	07 004	USA	2002	Bloody stool	Idaho
147	07 007	USA	2002	Bloody stool	Idaho
148	07 023	USA	2002	Bloody stool	Idaho
149	07 085	USA	2002	NR	Idaho
150	07 147	USA	2002	NR	Idaho
151	07 154	USA	2002	NR	Idaho
152	O2191230	USA	2002	Diarrhea	Ohio^d
153	O2191229	USA	2002	Diarrhea	Ohio
154	O2191231	USA	2002	Diarrhea	Ohio
155	O2191294	USA	2002	Diarrhea	Ohio
O157:H7 Genetic Marker, Appendix 1	CDC EID				
---	---				
156	O2190819 USA 2002 Diarrhea Ohio				
157	O2190864 USA 2002 Diarrhea Ohio				
158	O2191309 USA 2002 Diarrhea Ohio				
159	O2191311 USA 2002 Diarrhea Ohio				
160	O2191313 USA 2002 Diarrhea Ohio				
161	O2191361 USA 2002 Diarrhea Ohio				
162	O2191602 USA 2002 Diarrhea Ohio				
163	O2191624 USA 2002 Diarrhea Ohio				
164	O2191541 USA 2002 Diarrhea Ohio				
165	O2191546 USA 2002 Diarrhea Ohio				
166	O2191423 USA 2002 Diarrhea Ohio				
167	O2191509 USA 2002 Diarrhea Ohio				
168	O2191363 USA 2002 Diarrhea Ohio				
169	O2191364 USA 2002 Diarrhea Ohio				
170	O2191365 USA 2002 Diarrhea Ohio				
171	O2191366 USA 2002 Diarrhea Ohio				
172	O2190889 USA 2002 Diarrhea Ohio				
173	O2190893 USA 2002 Diarrhea Ohio				
174	O2191176 USA 2002 Diarrhea Ohio				
175	O2191177 USA 2002 Diarrhea Ohio				
176	O2191623 USA 2002 Diarrhea Ohio				
177	O2191625 USA 2002 Diarrhea Ohio				
178	O2191645 USA 2002 Diarrhea Ohio				
179	O2191675 USA 2002 Diarrhea Ohio				
180	O2191765 USA 2002 Diarrhea Ohio				
181	O2191831 USA 2002 Diarrhea Ohio				

\(^a\)FAHRP, Food Animal Health Research Program, Ohio State University; NR, not reported; HUS, hemolytic uremic syndrome.

\(^b\)Washington State Department of Health isolates.

\(^c\)Idaho Department of Health and Welfare isolates.

\(^d\)Ohio Department of Health isolates.

Appendix 1 References

1. Gouveia S, Proctor ME, Lee M-S, Luchansky JB, Kaspar CW. Genomic comparisons and Shiga toxin production among *Escherichia coli* O157:H7 Isolates from a day care center outbreak and sporadic cases in southeastern Wisconsin. *J Clin Microbiol.* 1998;36:727–33.

2. Kim J, Nietfeldt J, Benson A. Octamer-based genome scanning distinguishes a unique subpopulation of *Escherichia coli* O157:H7 strains in cattle. *PNAS.* 1999;96:13288–93.

3. Dorn CR, Angrick E. Serotype O157:H7 *Escherichia coli* from bovine and meat sources. *J Clin Microbiol.* 1991;29:1225–31.

4. Schmitt CK, McKee ML, O'Brien AD. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic *Escherichia coli* strains are responsible for the antigenic heterogeneity of the O157:H- strain E32511. *Infect Immun.* 1991;59:1065–73. Obtained from the STEC Center, Michigan State University.

5. Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, Kaper JB, et al. Genome sequence of enterohemorrhagic *Escherichia coli* O157:H7. *Nature.* 2001;409:529–33.
Appendix 2. Source of bovine isolates used in this study

FAHRPa ID	Source ID	Country	Year	References or source
1	FRIK 1986	USA	1991	1
2	FRIK 1997	USA	1991	1
3	FRIK 1994	USA	1991	1
4	FRIK 2002	USA	1991	1
5	FRIK 1987	USA	1991	1
10	FRIK 920	USA	1998	2
11	FRIK 1054	USA	1998	2
12	FRIK 1540	USA	1998	2
13	FRIK 1988	USA	1998	1
22	LCDC 87-2930	Canada	1991	3
27	OARDC1	USA	2002	FAHRP
29	OARDC2	USA	2002	FAHRP
31	OARDC3	USA	2002	FAHRP
35	P673	UK	1987	4
37	P277	UK	1987	4
47	c1526-77	Argentina	1991	3
50	CDC B9253-DMS1	USA	1991	3
51	A39	Canada	1991	3
52	A43	Canada	1991	3
56	LCDC 87-2924	Canada	1991	3
57	LCDC 87-1799	Canada	1991	3
62	CDC B6830-MS1/0	USA	1991	3
63	CDCB7205-MS1/0	USA	1991	3
64	CDC B8038-MS1/0	USA	1991	3
65	8832	USA	2002	5
66	EC66	USA	2002	FAHRP
67	EC 67	USA	2002	FAHRP
82	8833	USA	2002	5
83	EC 83	USA	2002	FAHRP
84	EC 84	USA	2002	FAHRP
85	8834	USA	2002	5
87	EC87	USA	2002	FAHRP
88	EC88	USA	2002	FAHRP
93	EC 93	USA	2002	FAHRP
94	EC94	USA	2002	FAHRP
95	EC95	USA	2002	FAHRP
96	EC96	USA	2002	FAHRP
97	EC97	USA	2002	FAHRP
98	EC98	USA	2002	FAHRP
99	EC99	USA	2002	FAHRP
100	EC100	USA	2002	FAHRP
102	EC102	USA	2002	FAHRP
103	EC103	USA	2002	FAHRP
No.	Origin	Country	Year	Marker
-----	------------	---------	------	--------
104	EC104	USA	2002	FAHRP
113	8837	USA	2002	FAHRP
115	EC115	USA	2002	FAHRP
116	EC116	USA	2002	FAHRP
117	EC117	USA	2002	FAHRP
120	EC120	USA	2002	FAHRP
122	EC122	USA	2002	FAHRP
182	757	USA	1994	FAHRP
183	817	USA	1994	FAHRP
185	1104	USA	1994	FAHRP
186	1119	USA	1994	FAHRP
187	1124	USA	1994	FAHRP
188	1136	USA	1994	FAHRP
189	1273	USA	1996	FAHRP
190	3735	USA	1996	FAHRP
191	4048	USA	1996	FAHRP
192	7407	Japan	1996	FAHRP
193	7409	Japan	1996	FAHRP
194	7416	Japan	1996	FAHRP
195	7420	Japan	1996	FAHRP
196	7421	Japan	1996	FAHRP
197	7423	Japan	1996	FAHRP
198	7433	Japan	1996	FAHRP
199	7436	Japan	1996	FAHRP
200	7439	Japan	1996	FAHRP
201	7460	Japan	1996	FAHRP
202	7469	Japan	1996	FAHRP
203	7478	Japan	1996	FAHRP
204	7484	Japan	1996	FAHRP
205	7488	Japan	1996	FAHRP
206	7495	Japan	1996	FAHRP
207	7500	Japan	1996	FAHRP
208	7505	Japan	1996	FAHRP
209	7622	Scotland	1996	FAHRP
210	7630	Scotland	1999	FAHRP
211	7632	Scotland	1999	FAHRP
213	7637	Scotland	1999	FAHRP
214	7638	Scotland	1999	FAHRP
217	7648	Scotland	1999	FAHRP
218	7649	Scotland	1999	FAHRP
219	7653	Scotland	1999	FAHRP
220	8176	Australia	1999	FAHRP
221	8177	Australia	1996	FAHRP
222	8179	Australia	1997	FAHRP
223	8182	Australia	1997	FAHRP
224	8183	Australia	1997	FAHRP
225	8184	Australia	1998	FAHRP
226	8185	Australia	1999	FAHRP
Appendix 2 References

1. Kim J, Nietfeldt J, Benson A. *Octomer-based genome scanning distinguishes a unique subpopulation of* *Escherichia coli* *O157:H7 strains in cattle.* PNAS. 1999;96:13288–93.
2. Shere JA, Bartlett KJ, Kaspar CW. *Longitudinal study of* *Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin.* Appl Environ Microbiol. 1998;64:1390–9.
3. Dorn CR, Angrick E. *Serotype O157:H7 Escherichia coli from bovine and meat sources.* J Clin Microbiol. 1991;29:1225–31.
4. Huck LG, Dorn CR, Angrick EJ. *DNA probe for detection of serogroup O157 enterohemorrhagic Escherichia coli.* Int J Food Microbiol. 1995;25:277–87.
5. Davis MA, Hancock DD, Besser TE, Rice DH, Hovde CJ, Digiacomo R, et al. *Correlation between geographic distance and genetic similarity in an international collection of bovine faecal Escherichia coli O157:H7 isolates.* Epidemiol Infect. 2003;131:923–30.