A LOCALLY QUASI-CONVEX ABELIAN GROUP WITHOUT
MACKEY TOPOLOGY

SAAK GABRIYELYAN

Abstract. We give the first example of a locally quasi-convex (even countable reflexive and $k_ω$) abelian group G which does not admit the strongest compatible locally quasi-convex group topology. Our group G is the Graev free abelian group $A_G(s)$ over a convergent sequence s.

1. Introduction

Let $(E, τ)$ be a locally convex space. A locally convex vector topology $ν$ on E is called compatible with $τ$ if the spaces $(E, τ)$ and $(E, ν)$ have the same topological dual space. The famous Mackey–Arens theorem states the following

Theorem 1.1 (Mackey–Arens). Let $(E, τ)$ be a locally convex space. Then $(E, τ)$ is a pre-Mackey locally convex space in the sense that there is the finest locally convex vector space topology $µ$ on E compatible with $τ$. Moreover, the topology $µ$ is the topology of uniform convergence on absolutely convex weakly* compact subsets of the topological dual space E' of E.

The topology $µ$ is called the Mackey topology on E associated with $τ$, and if $µ = τ$, the space E is called a Mackey space.

For an abelian topological group $(G, τ)$ we denote by \hat{G} the group of all continuous characters of $(G, τ)$. Two topologies $µ$ and $ν$ on an abelian group G are said to be compatible if $(G, µ) = (G, ν)$. Being motivated by the Mackey–Arens Theorem the following notion was introduced and studied in [3] (for all relevant definitions see the next section):

Definition 1.2 ([3]). A locally quasi-convex abelian group $(G, µ)$ is called a Mackey group if for every locally quasi-convex group topology $ν$ on G compatible with $τ$ it follows that $ν ≤ µ$. In this case the topology $µ$ is called a Mackey topology on G. A locally quasi-convex abelian group $(G, τ)$ is called a pre-Mackey group and $τ$ is called a pre-Mackey topology on G if there is a Mackey topology $µ$ on G associated with $τ$.

Not every Mackey locally convex space is a Mackey group. Indeed, answering a question posed in [3], we proved in [5] that the metrizable locally convex space $(ℝ^{(N)}, p_0)$ of all finite sequences with the topology p_0 induced from the product space $ℝ^N$ is not a Mackey group. In [7] we show that the space $C_p(X)$, which is a Mackey space for every Tychonoff space X, is a Mackey group if and only it is barrelled.

2000 Mathematics Subject Classification. Primary 22A10; Secondary 54H11.
Key words and phrases. the Graev free abelian topological group, Mackey group topology.
A weaker notion than to be a Mackey group was introduced in [6]. Let \((G, \tau)\) be a locally quasi-convex abelian group. A locally quasi-convex group topology \(\mu\) on \(G\) is called quasi-Mackey if \(\mu\) is compatible with \(\tau\) and there is no locally quasi-convex group topology \(\nu\) on \(G\) compatible with \(\tau\) such that \(\mu < \nu\). The group \((G, \tau)\) is quasi-Mackey if \(\tau\) is a quasi-Mackey topology. Proposition 2.8 of [6] implies that every locally quasi-convex abelian group has quasi-Mackey topologies.

The Mackey–Arens theorem suggests the following general question posed in [3]: Does every locally quasi-convex abelian group is a pre-Mackey group? In the main result of the paper, Theorem 1.3, we answer this question in the negative.

Let \(s = \{0\} \cup \{1/n : n \in \mathbb{N}\}\) be the convergent sequence endowed with the topology induced from \(\mathbb{R}\). Denote by \(A_G(s)\) the (Graev) free abelian group over \(s\). Note that the group \(A_G(s)\) is a countable reflexive and \(k_\omega\)-group, see [5] and [8] respectively. In Question 4.4 of [6] we ask: Is it true that \(A_G(s)\) is a Mackey group? Below we answer this question negatively in a stronger form.

Theorem 1.3. The group \(A_G(s)\) is neither a pre-Mackey group nor a quasi-Mackey group.

This result gives the first example of a locally quasi-convex group which is not pre-Mackey additionally showing a big difference between the case of locally quasi-convex groups and the case of locally convex spaces.

2. **Proof of Theorem 1.3**

Set \(\mathbb{N} := \{1, 2, \ldots\}\). Denote by \(S\) the unit circle group and set \(S_+ := \{z \in S : \text{Re}(z) \geq 0\}\). Let \(G\) be an abelian topological group. If \(\chi \in \hat{G}\), it is considered as a homomorphism from \(G\) into \(S\). A subset \(A\) of \(G\) is called quasi-convex if for every \(g \in G \setminus A\) there exists \(\chi \in \hat{G}\) such that \(\chi(x) \notin S_+\) and \(\chi(A) \subseteq S_+\). An abelian topological group \(G\) is called locally quasi-convex if it admits a neighborhood base at the neutral element 0 consisting of quasi-convex sets. It is well known that the class of locally quasi-convex abelian groups is closed under taking products and subgroups. The dual group \(\hat{G}\) of \(G\) endowed with the compact-open topology is denoted by \(G^\wedge\). The homomorphism \(\alpha_G : G \to G^\wedge, g \mapsto (\chi \mapsto \chi(g))\), is called the canonical homomorphism. If \(\alpha_G\) is a topological isomorphism the group \(G\) is called reflexive. Any reflexive group is locally quasi-convex.

Let \(X\) be a Tychonoff space with a distinguished point \(e\). Following [8], an abelian topological group \(A_G(X)\) is called the Graev free abelian topological group over \(X\) if \(A_G(X)\) satisfies the following conditions:

(i) \(X\) is a subspace of \(A_G(X)\);

(ii) any continuous map \(f\) from \(X\) into any abelian topological group \(H\), sending \(e\) to the identity of \(H\), extends uniquely to a continuous homomorphism \(\tilde{f} : A_G(X) \to H\).

For every Tychonoff space \(X\), the Graev free abelian topological group \(A_G(X)\) exists, is unique up to isomorphism of abelian topological groups, and is independent of the choice of \(e\) in \(X\), see [8]. Further, \(A_G(X)\) is algebraically the free abelian group on \(X \setminus \{e\}\).

We denote by \(\tau\) the topology of the group \(A_G(s)\). For every \(n \in \mathbb{N}\), set \(e_n := (0, \ldots, 0, 1, 0, \ldots) \in \mathbb{Z}^{(\mathbb{N})}\),
where 1 is placed in position \(n \) and \(\mathbb{Z}^{(N)} \) is the direct sum \(\bigoplus_{n \in \mathbb{N}} \mathbb{Z} \). Now the map \(i(1/n) := e_n, n \in \mathbb{N} \), defines an algebraic isomorphism of \(A_G(s) \) onto \(\mathbb{Z}^{(N)} \). So we can identify algebraically \(A_G(s) \) and \(\mathbb{Z}^{(N)} \).

Let \(g_n \) be a sequence in \(A_G(s) \) of the form
\[
g_n = (0, \ldots, 0, r^n_{i_n}, r^n_{i_n+1}, r^n_{i_n+2}, \ldots),
\]
where \(i_n \to \infty \) and there is a \(C > 0 \) such that \(\sum_j |r^n_j| \leq C \) for every \(n \in \mathbb{N} \). Since \(e_n \to 0 \) in \(\tau \) we obtain
\[
g_n \to 0 \quad \text{in } \tau.
\]

The following group plays an essential role in the proof of Theorem 2.2. Set
\[
c_0(S) := \{(z_n) \in S^\mathbb{N} : z_n \to 1\},
\]
and denote by \(\mathfrak{S}_0(S) \) the group \(c_0(S) \) endowed with the metric \(d((z_n^1), (z_n^2)) = \sup\{|z_n^1 - z_n^2|, n \in \mathbb{N}\} \). Then \(\mathfrak{S}_0(S) \) is a Polish group, and the sets of the form \(V^\mathbb{N} \cap c_0(S) \), where \(V \) is an open neighborhood at the identity \(1 \) of \(S \), form a base at 1 in \(\mathfrak{S}_0(S) \). Actually \(\mathfrak{S}_0(S) \) is isomorphic to \(c_0/\mathbb{Z}^{(N)} \) (see [3]). In [5] we proved that the group \(\mathfrak{S}_0(S) \) is reflexive and \(\mathfrak{S}_0(S)/\mathfrak{S}_0(s) = A_G(s) \).

If \(g \) is an element of an abelian group \(G \), we denote by \(\langle g \rangle \) the subgroup of \(G \) generated by \(g \). We need the following lemma.

Lemma 2.1. Let \(z, w \in S \) and let \(z \) have infinite order. Let \(V \) be a neighborhood of 1 in \(S \). If \(w^l = 1 \) for every \(l \in \mathbb{N} \) such that \(z^l \in V \), then \(w = 1 \).

Proof. The main result of [2] applied to \(\langle z \rangle \) states the following: there exists a sequence \(A = \{a_n\}_{n \in \mathbb{N}} \) in \(\mathbb{N} \) such that if \(v \in S \), then
\[
\lim_n v^{a_n} = 1 \quad \text{if and only if } \quad v \in \langle z \rangle.
\]

Now suppose for a contradiction that \(w \neq 1 \). Since \(\langle z \rangle \) is dense in \(S \), there is an \(l \in \mathbb{N} \) such that \(z^l \in V \). So \(w \) has finite order, say \(q \). Observe that \(w \notin \langle z \rangle \). Then, by assumption, for every \(l \in \mathbb{N} \) such that \(z^l \in V \) we have \(w^l = 1 \), and hence there is a \(c(l) \in \mathbb{N} \) such that \(l = c(l) \cdot q \). Since \(\lim_n z^{a_n} = 1 \), there exists an \(N \in \mathbb{N} \) such that \(z^{a_n} \in V \) for every \(n > N \). So \(a_n = c(a_n) \cdot q \) for every \(n > N \). But in this case we trivially have \(\lim_n w^{a_n} = 1 \) which contradicts the choice of the sequence \(A \) since \(w \notin \langle z \rangle \). Thus \(w = 1 \). \(\square \)

In the proof of Theorem 2.2 we use the following result, see Theorem 2.7 of [6].

Theorem 2.2 ([6]). For a locally quasi-convex abelian group \((G, \tau)\) the following assertions are equivalent:

(i) the group \((G, \tau)\) is pre-Mackey;

(ii) \(\tau_1 \lor \tau_2 \) is compatible with \(\tau \) for every locally quasi-convex group topologies \(\tau_1 \) and \(\tau_2 \) on \(G \) compatible with \(\tau \).

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. First we construct a family
\[
\{T_z : z \in S \text{ has infinite order}\}
\]
of topologies on \(\mathbb{Z}^{(N)} \) compatible with the topology \(\tau \) of \(A_G(s) \). To this end, we use the idea described in Proposition 4.1 of [6].
Let \(z \in \mathcal{S} \) be of infinite order. For every \(i \in \mathbb{N} \), set
\[
\chi_i := (0, \ldots, 0, z, 0, \ldots) \in \mathfrak{F}_0(\mathcal{S}) = A_G(\mathcal{S})^\wedge,
\]
where \(z \) is placed in position \(i \). For every \((n_k) \in A_G(\mathcal{S}) \), it is clear that \(\chi_i((n_k)) = 1 \) for all sufficiently large \(i \in \mathbb{N} \) (i.e., \(\chi_i \to 1 \) in the pointwise topology on \(\mathfrak{F}_0(\mathcal{S}) \)). So we can define the following algebraic monomorphism \(T_z : \mathbb{Z}^{(N)} \to A_G(\mathcal{S}) \times \mathfrak{F}_0(\mathcal{S}) \) by
\[
(2.2) \quad T_z((n_k)) := \left((n_k), (\chi_i((n_k)))\right) = \left((n_k), (z^{n_k})\right), \quad \forall (n_k) \in \mathbb{Z}^{(N)}.
\]
Denote by \(\mathcal{T}_z \) the locally quasi-convex topology on \(\mathbb{Z}^{(N)} \) induced from \(A_G(\mathcal{S}) \times \mathfrak{F}_0(\mathcal{S}) \).

Claim 1. The topology \(\mathcal{T}_z \) is compatible with \(\tau \). Indeed, set \(G := (\mathbb{Z}^{(N)}, \mathcal{T}_z) \). Since \(\mathcal{T}_z \) is weaker than the discrete topology \(\tau_d \) on \(\mathbb{Z}^{(N)} \), we obtain \(G^\wedge \subseteq (\mathbb{Z}^{(N)}, \tau_d)^\wedge = \mathbb{S}^N \).

Fix arbitrarily \(\chi = (y_n) \in G^\wedge \). To prove the claim we have to show that \(y_n \to 1 \).

Suppose for a contradiction that \(y_n \not\to 1 \). As \(\mathbb{S} \) is compact we can find a sequence \(0 < m_1 < m_2 < \ldots \) of indices such that \(y_{m_i} \to w \neq 1 \) at \(i \to \infty \). Since \(\chi \) is \(\mathcal{T}_z \)-continuous, there exists a standard neighborhood \(W = T_z^{-1}(U \times \mathbb{V}^N) \) of zero in \(G \), where \(U \) is a \(\tau \)-neighborhood of zero in \(A_G(\mathcal{S}) \) and \(\mathbb{V}^N \) is a neighborhood of 1 in \(\mathcal{S} \), such that \(\chi(W) \subseteq \mathbb{S}^+ \). Observe that, by (2.2), \((n_k) \in W \) if and only if
\[
(2.3) \quad (n_k) \in U \text{ and } z^{n_k} \in V \text{ for every } k \in \mathbb{N},
\]
and, the inclusion \(\chi(W) \subseteq \mathbb{S}^+ \) means that
\[
(2.4) \quad \chi((n_k)) = \prod_k y_{n_k}^k \in \mathbb{S}^+, \quad \text{for every } (n_k) \in W.
\]
We assume additionally that \(w \not\in \mathbb{V} \). Since \(\langle z \rangle \) is dense in \(\mathbb{S} \), choose arbitrarily an \(l \in \mathbb{N} \) such that \(z^l \in \mathcal{V} \). Fix arbitrarily a \(t \in \mathbb{N} \). Now, by (2.1), there is an \(N(t) \in \mathbb{N} \) such that every \(x_{it} := (n_k) \in \mathbb{Z}^{(N)} \) of the form
\[
(2.5) \quad x_{it} = (0, \ldots, 0, \overbrace{l, 0, \ldots, 0}^{m_{i+1}}, l, 0, \ldots, 0, \overbrace{l, 0, \ldots}^{m_{i+t}}),
\]
belongs to \(W \) for every \(i \geq N(t) \). For every \(x_{it} \in W \) of the form (2.5), (2.4) implies
\[
(2.6) \quad \chi(x_{it}) = \left(y_{m_{i+1}} \cdots y_{m_{i+t}} \right)^i \to w^t, \quad \text{at } i \to \infty.
\]
Now, if \(w^t \neq 1 \) for some \(l \in \mathbb{N} \) such that \(z^l \in \mathcal{V} \), then there exists a \(t \in \mathbb{N} \) such that \(w^t \not\in \mathbb{S}^+ \). Therefore, by (2.3), \(\chi(W) \not\subseteq \mathbb{S}^+ \), a contradiction. Assume that \(w^t = 1 \) for every \(l \in \mathbb{N} \) such that \(z^l \in \mathcal{V} \). Then Lemma (2.1) implies \(w = 1 \) that is impossible. So our assumption that \(y_n \not\to 1 \) is wrong. Therefore \(y_n \to 1 \) and \(\bar{G} = c_0(\mathcal{S}) \). Thus \(\mathcal{T}_z \) is compatible with \(\tau \).

Claim 2. For every element \(a \in \mathcal{S} \) of finite order, the topology \(\mathcal{T}_z \lor \mathcal{T}_{az} \) is not compatible with \(\tau \). Let \(r \) be the order of \(a \). Consider standard neighborhoods
\[
W_z = T_z^{-1}(U \times \mathbb{V}^N) \in \mathcal{T}_z \quad \text{and} \quad W_{az} = T_{az}^{-1}(U \times \mathbb{V}^N) \in \mathcal{T}_{az},
\]
where \(U \in \tau \) and a symmetric neighborhood \(V \) of 1 in \(\mathcal{S} \) is chosen such that \(V \cdot V \cap \langle a \rangle = \{1\} \). Then, by (2.3), we have
\[
W_z \cap W_{az} = \left\{(n_k) \in \mathbb{Z}^{(N)} : (n_k) \in U \text{ and } z^{n_k}, (az)^{n_k} \in V \text{ for every } k \in \mathbb{N}\right\}.
\]
In particular, \(a^{n_k} \in V \cdot V \), and hence \(a^{n_k} = 1 \) for every \(k \in \mathbb{N} \). Therefore, for every \(k \in \mathbb{N} \), there is an \(s_k \in \mathbb{N} \) such that \(n_k = s_k \cdot r \). Set \(\eta := (a, a, \ldots) \in \mathbb{S}^N \). Then
As $W_z \cap W_{az} = \{1\}$. As $W_z \cap W_{az} \in T_z \vee T_{az}$ it follows that η is $T_z \vee T_{az}$-continuous.

Since $\eta \notin c_0(S)$ we obtain that $T_z \vee T_{az}$ is not compatible with τ.

Claim 3. $\tau < T_z$, so τ is not quasi-Mackey. By (2.2), it is clear that $\tau \leq T_z$.

To show that $\tau \neq T_z$, suppose for a contradiction that $T_z = \tau$. Then, by Claim 1, $T_z \vee T_{az} = \tau \vee T_{az} = T_{az}$ is compatible with τ. But this contradicts Claim 2.

Claim 4. The group $A_G(s)$ is not pre-Mackey. This immediately follows from Claim 2 and Theorem 2.2.

Remark 2.3. Just before submission of the preprint, Prof. Lydia Außenhofer informed the author that she had also solved the problem posed by me: namely if the group $A_G(s)$ is a Mackey group and proved Theorem 1.3; see [1]. It is worth mentioning that my proof totally differs from hers, being much simpler and shorter.

References

1. L. Außenhofer, On the non-existence of the Mackey topology for locally quasi-convex groups, preprint.
2. A. Biró, J.-M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of \mathbb{R}/\mathbb{Z}, Studia Sci. Math. Hungar. 38 (2001), 97–113.
3. M.J. Chasco, E. Martín-Peinador, V. Tarieladze, On Mackey topology for groups, Studia Math. 132 (1999), 257–284.
4. D. Dikranjan, E. Martín-Peinador, V. Tarieladze, Group valued null sequences and metrizable non-Mackey groups, Forum Math. 26 (2014), 723–757.
5. S. Gabriyelyan, Groups of quasi-invariance and the Pontryagin duality, Topology Appl. 157 (2010), 2786–2802.
6. S. Gabriyelyan, On the Mackey topology for abelian topological groups and locally convex spaces, Topology Appl. 211 (2016), 11–23.
7. S. Gabriyelyan, A characterization of barrelledness of $C_p(X)$, J. Math. Anal. Appl. 439 (2016), 364–369.
8. M. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278–324 (In Russian). Topology and Topological Algebra. Translation Series 1, 8 (1962), 305–364.