Temperate holomorphic solutions and regularity of holonomic D-modules on curves

Ana Rita Martins

August 1, 2018

Abstract

Let X be a complex manifold. In [7] M. Kashiwara and P. Schapira made the conjecture that a holonomic \mathcal{D}_X-module M is regular holonomic if and only if $RIhom_{\beta X\mathcal{D}_X}(\beta X M, \mathcal{O}_X)$ is regular (in the sense of [7]), the “only if” part of this conjecture following immediately from [7]. Our aim is to prove this conjecture in dimension one.

1 Introduction

Let X be a complex manifold. In [7] the authors defined the notions of microsupport and regularity for ind-sheaves and applied the results to

$$Sol^t(M) := RHom_{\beta X\mathcal{D}_X}(\beta X M, \mathcal{O}_X),$$

the ind-sheaves of tempered holomorphic solutions of \mathcal{D}_X-modules. They proved that

$$SS(Sol^t(M)) = Char(M),$$

The research of the author was supported by Fundação para a Ciência e Tecnologia and FEDER (project POCTI-ISFL-1-143 of Centro de Algebra da Universidade de Lisboa) and by Fundação Calouste Gulbenkian (Programa Estímulo à Investigação).
where $\text{Char}(\mathcal{M})$ denotes the characteristic variety of \mathcal{M}, and that $\text{Sol}^t(\mathcal{M})$ is regular if \mathcal{M} is regular holonomic. In fact, M. Kashiwara and P. Schapira made the following conjecture:

(K-S)-Conjecture. Let \mathcal{M} be a holonomic \mathcal{D}_X-module. Then \mathcal{M} is regular holonomic if and only if $R\text{Hom}_{\mathcal{D}_X}(\beta_X \mathcal{M}, \mathcal{O}_X^t)$ is regular.

In this paper, we prove that, in dimension one, the regularity of $\text{Sol}^t(\mathcal{M})$ implies the regularity of the holonomic \mathcal{D}_X-module \mathcal{M}.

We start, in Section 2, with a quick review on sheaves, ind-sheaves, microsupport and regularity for ind-sheaves and we recall the results on the microsupport and regularity of $\text{Sol}^t(\mathcal{M})$, proved in [7]. We include an unpublished Lemma of M. Kashiwara and P. Schapira that will be essential in our proof (see the (K-S)-Lemma).

Section 3 is dedicated to the proof of the irregularity of $\text{Sol}^t(\mathcal{M})$, when \mathcal{M} is an irregular holonomic \mathcal{D}-module on \mathbb{C}. We may reduce our proof to the case $\mathcal{M} = \mathcal{D}_X^m / \mathcal{D}_X^m P$, where P is a matrix of differential operators of the form $z^N \partial_z I_m + A(z)$, with $m, N \in \mathbb{N}$, I_m the identity matrix of order m and A a $m \times m$ matrix of holomorphic functions on a neighborhood of the origin. We also show that it is enough to prove the irregularity of $\mathcal{S}^t := \text{H}^0(\text{Sol}^t(\mathcal{M}))$ and we prove that \mathcal{S}^t is irregular at $(0; 0) \in T^*\mathbb{C}$.

As an essential step we recall a classical result that gives the characterization of the holomorphic solutions of the differential operator $z^N \partial_z I_m + A(z)$ in some open sectors (see Theorem 3.2). As a consequence of this result we obtain a characterization of \mathcal{S}^t, the ind-sheaf of temperate holomorphic solutions of the differential operator $z^N \partial_z I_m + A(z)$, in some open sectors (see Corollary 3.4).

Using the characterization above we find an open sector S, with $0 \in \overline{S}$, a small and filtrant category I and a functor $I \to D([a,b]; k_S); i \mapsto F_i$ such that

$$\text{“lim}_{i \to} F_i \simeq \mathcal{S}^t|_S.$$
Moreover, we prove that for each open neighborhood V of $(0; 0)$ there exist a morphism $i \rightarrow i'$ in I and a section u of $\text{H}^0(\mu_{\text{hom}}(F_i, F_{i'}))$ such that for any morphism $i' \rightarrow i''$ in I, denoting by u' the image of u in $\text{H}^0(\mu_{\text{hom}}(F_i, F_{i''}))$, one has $\text{supp}(u') \cap V \not\subset SS(S^t)$. By the (K-S)-Lemma, this is enough to conclude the irregularity of S^t at $(0; 0)$.

Acknowledgements. We thank P. Schapira who suggest us to solve the (K-S)-conjecture in dimension one, using the tools of [11], and made useful comments during the preparation of this manuscript. We also thank M. Kashiwara and P. Schapira for communicating us what we call the (K-S)-Lemma in Section 2. Finally, we thank T. Monteiro Fernandes for useful advises and constant encouragement.

2 Notations and review

We will follow the notations in [7].

Sheaves. Let X be a real n-dimensional manifold. We denote by $\pi : T^*X \rightarrow X$ the cotangent bundle to X. We identify X with the zero section of T^*X and we denote by \check{T}^*X the set $T^*X \setminus X$.

Let k be a field. We denote by $\text{Mod}(k_X)$ the abelian category of sheaves of k-vector spaces on X and by $D^b(k_X)$ its bounded derived category.

We denote by $\mathbb{R} - C(k_X)$ the abelian category of \mathbb{R}-constructible sheaves of k-vector spaces on X and by $D^b_{\mathbb{R} - c}(k_X)$ the full subcategory of $D^b(k_X)$ consisting of objects with \mathbb{R}-constructible cohomology.

For an object $F \in D^b(k_X)$, we denote by $SS(F)$ the *microsupport of F*, a closed \mathbb{R}^+-conic involutive subset of T^*X. We refer [3] for details.

Ind-sheaves on real manifolds. Let X be a real analytic manifold. We denote by $I(k_X)$ the abelian category of ind-sheaves on X, that is, the category of ind-objects of the category $\text{Mod}^c(k_X)$ of sheaves with compact
support on X (see [6]).

Recall the natural faithful exact functor

$$\iota_X : \text{Mod}(k_X) \to \text{I}(k_X); F \mapsto \lim_{U \subset X} F_U.$$

We usually don’t write this functor and identify $\text{Mod}(k_X)$ with a full abelian subcategory of $\text{I}(k_X)$ and $D^b(k_X)$ with a full subcategory of $D^b(\text{I}(k_X))$.

The category $\text{I}(k_X)$ admits an internal hom denoted by $\text{I}hom$ and this functor admits a left adjoint, denoted by \otimes. If $F \simeq \lim_i F_i$ and $G \simeq \lim_j G_j$, then:

$$\text{I}hom(G, F) \simeq \lim_j \lim_i \text{Hom}(G_j, F_i),$$

$$G \otimes F \simeq \lim_j \lim_i (G_j \otimes F_i).$$

The functor ι_X admits a left adjoint

$$\alpha_X : \text{I}(k_X) \to \text{Mod}(k_X); F = \lim_i F_i \mapsto \lim_i F_i.$$

This functor also admits a left adjoint $\beta_X : \text{Mod}(k_X) \to \text{I}(k_X)$. Both functors α_X and β_X are exact. We refer [6] for the description of β_X.

Let X be a real analytic manifold. We denote by $\mathbb{R} - C^c(k_X)$ the full abelian subcategory of $\mathbb{R} - C(k_X)$ consisting of \mathbb{R}-constructible sheaves with compact support. We denote by $\mathbb{I}\mathbb{R} - c(k_X)$ the category $\text{Ind}(\mathbb{R} - C^c(k_X))$ and by $D^b_{\mathbb{I}\mathbb{R} - c}(\text{I}(k_X))$ the full subcategory of $D^b(\text{I}(k_X))$ consisting of objects with cohomology in $\mathbb{I}\mathbb{R} - c(k_X)$.

Theorem 2.1 ([6]). The natural functor $D^b(\mathbb{I}\mathbb{R} - c(k_X)) \to D^b_{\mathbb{I}\mathbb{R} - c}(\text{I}(k_X))$ is an equivalence.

Recall that there is an alternative construction of $\mathbb{I}\mathbb{R} - c(k_X)$, using Grothendieck topologies. Denote by $\text{Op}_{X_{sa}}$ the category of open subanalytic subsets of X. We may endow this category with a Grothendieck topology by
deciding that a family \(\{ U_i \}_i \) in Op\(_{X_{sa}} \) is a covering of \(U \in \text{Op}_{X_{sa}} \) if for any compact subset \(K \) of \(X \), there exists a finite subfamily which covers \(U \cap K \).

One denotes by \(X_{sa} \) the site defined by this topology and by Mod\((\mathbb{k}_{X_{sa}})\) the category of sheaves on \(X_{sa} \) (see [6]). We denote by Op\(_{X_{sa}}^c \) the subcategory of Op\(_{X_{sa}} \) consisting of relatively compact open subanalytic subsets of \(X \).

Let \(\rho : X \to X_{sa} \) be the natural morphism of sites. We have functors

\[
\text{Mod}(\mathbb{k}_X) \xrightarrow{\rho_*} \text{Mod}(\mathbb{k}_{X_{sa}}),
\]

and we still denote by \(\rho_* \) the restriction of \(\rho_* \) to \(\mathbb{R} - c(\mathbb{k}_X) \) and to \(\mathbb{R} - C^c(\mathbb{k}_X) \).

We may extend the functor \(\rho_* : \mathbb{R} - C^c(\mathbb{k}_X) \to \text{Mod}(\mathbb{k}_{X_{sa}}) \) to \(\mathbb{R} - c(\mathbb{k}_X) \), by setting:

\[
\lambda : \mathbb{R} - c(\mathbb{k}_X) \to \text{Mod}(\mathbb{k}_{X_{sa}})
\]

\[
\text{"lim"}_i F_i \mapsto \lim_{i} \rho_* F_i.
\]

For \(F \in \mathbb{R} - c(\mathbb{k}_X) \), an alternative definition of \(\lambda(F) \) is given by the formula

\[
\lambda(F)(U) = \text{Hom}_{\mathbb{R} - c(\mathbb{k}_X)}(\mathbb{k}_U, F).
\]

Theorem 2.2 ([6]). The functor \(\lambda \) is an equivalence of abelian categories.

Most of the time, thanks to \(\lambda \), we identify \(\mathbb{R} - c(\mathbb{k}_X) \) with \(\text{Mod}(\mathbb{k}_{X_{sa}}) \).

We denote by \(C_X^\infty \) the sheaf of complex-valued functions of class \(C^\infty \) and by \(D_X \) the sheaf of Schwartz’s distributions.

Let \(U \) be an open subset of \(X \) and let us denote \(\Gamma(U, C_X^\infty) \) by \(C_X^\infty(U) \).

Definition 2.3. Let \(f \in C_X^\infty(U) \). One says \(f \) has polynomial growth at \(p \in X \) if for a local coordinate system \((x_1, ..., x_n) \) around \(p \), there exist a sufficiently small compact neighborhood \(K \) of \(p \) and a positive integer \(N \) such that

\[
\sup_{x \in K \cap U} (\text{dist}(x, K \setminus U))^N |f(x)| < \infty.
\]

We say that \(f \) is tempered at \(p \) if all its derivatives have polynomial growth at \(p \). We say that \(f \) is tempered if it is tempered at any point.
For each open subanalytic subset $U \subset X$, we denote by $\mathcal{C}^\infty_{X,t}(U)$ the subspace of $\mathcal{C}^\infty_X(U)$ consisting of tempered functions and by $\mathcal{D}^b_{X}(U)$ the sheaf of tempered distributions on U. Recall that $\mathcal{D}^b_{X}(U)$ is defined by the exact sequence

$$0 \to \Gamma_{X\setminus U}(X; \mathcal{D}b_X) \to \Gamma(X; \mathcal{D}b_X) \to \mathcal{D}^b_{X}(U) \to 0.$$

It follows from the results of Lojasiewicz [10] that $U \mapsto \mathcal{C}^\infty_{X,t}(U)$ and $U \mapsto \mathcal{D}^b_{X}(U)$ are sheaves on the subanalytic site X_{sa}, hence define ind-sheaves. We call $\mathcal{C}^\infty_{X,t}(U)$ (resp. $\mathcal{D}^b_{X}(U)$) the ind-sheaf of tempered \mathcal{C}^∞-functions (resp. tempered distributions). These ind-sheaves are well-defined in the category $\operatorname{Mod}(\beta_X \mathcal{D}_X)$, where \mathcal{D}_X now denotes the sheaf of analytic finite-order differential operators.

Let us now recall the definition of the ind-sheaf \mathcal{O}^l_X of tempered holomorphic functions in a complex manifold X. By definition,

$$\mathcal{O}^l_X := R\mathcal{I}hom_{\mathcal{D}_{\overline{X}}}(\beta\mathcal{O}_{\overline{X}}, \mathcal{D}^b_{X_R}),$$

where \overline{X} denotes the complex conjugate manifold, X_R the underlying real analytic manifold, identified with the diagonal of $X \times \overline{X}$ and $\mathcal{D}_{\overline{X}}$ the sheaf of rings of holomorphic differential operators of finite order over \overline{X}. \mathcal{O}^l_X is actually an object of $D^b(\beta_X \mathcal{D}_X)$ and it is not concentrated in degree 0 if $\dim X > 1$. When X is a complex analytic curve, \mathcal{O}^l_X is concentrated in degree 0. Moreover, \mathcal{O}^l_X is ρ_*-acyclic and \mathcal{O}^l_X is a sub-ind-sheaf of $\rho_* \mathcal{O}_X$.

We end this section by recalling two results of G. Morando, which will be useful in our proof.

Theorem 2.4 ([1]). Let X be an open subset of \mathbb{C}, $f \in \mathcal{O}_C(X)$, $f(X) \subset Y \subset \mathbb{C}$. Let $U \in \text{Op}_{X_{sa}}$ such that $f|_U$ is an injective map. Let $h \in \mathcal{O}_X(f(U))$. Then $h \circ f \in \mathcal{O}_X^l(U)$ if and only if $h \in \mathcal{O}_X^l(f(U))$.

Proposition 2.5 ([1]). Let $p \in z^{-1}\mathbb{C}[z^{-1}]$ and $U \in \text{Op}_{X_{sa}}$ with $0 \notin U$. The conditions below are equivalent.

1. $\exp(p(z)) \in \mathcal{O}^l_X(U)$.
2. There exists $A > 0$ such that $\operatorname{Re}(p(z)) < A$, for all $z \in U$.

6
Microsupport and regularity for ind-sheaves. We refer [7] for the equivalent definitions for the microsupport $SS(F)$ of an object $F \in D^b(I(k_X))$. We shall only recall the following useful properties of this closed conic subset of T^*X.

Proposition 2.6. (i) For $F \in D^b(I(k_X))$, one has $SS(F) \cap T^*_X X = \text{supp}(F)$.

(ii) Let $F \in D^b(k_X)$. Then $SS(\iota_X F) = SS(F)$.

(iii) Let $F \in D^b(I(k_X))$. Then $SS(\alpha_X(F)) \subset SS(F)$.

(iv) Let $F_1 \to F_2 \to F_3 \xrightarrow{+1} \to$ be a distinguished triangle in $D^b(I(k_X))$. Then $SS(F_i) \subset SS(F_j) \cup SS(F_k)$, for $i, j, k \in \{1, 2, 3\}$.

Let J denotes the functor $J : D^b(I(k_X)) \to (D^b(\text{Mod}^c(k_X)))^\wedge$ (where $(D^b(\text{Mod}^c(k_X)))^\wedge$ denotes the category of functors from the $D^b(\text{Mod}^c(k_X))^\text{op}$ to Set) defined by:

$$J(F)(G) = \text{Hom}_{D^b(I(k_X))}(G, F),$$

for every $F \in D^b(I(k_X))$ and $G \in D^b(\text{Mod}^c(k_X))$.

Definition 2.7 ([7]). Let $F \in D^b(I(k_X))$, $\Lambda \subset T^*X$ be a locally closed conic subset and $p \in T^*X$. We say that F is regular along Λ at p if there exists F' isomorphic to F in a neighborhood of $\pi(p)$, an open neighborhood U of p with $\Lambda \cap U$ closed in U, a small and filtrant category I and a functor $I \to D^{[a,b]}(k_X); i \mapsto F_i$ such that $J(F') \simeq \underset{i \in I}{\text{lim}} J(F_i)$ and $SS(F_i) \cap U \subset \Lambda$. Otherwise, we say that F is irregular along Λ at p.

We say that F is regular at p if F is regular along $SS(F)$ at p. If F is regular at each $p \in SS(F)$, we say that F is regular.

Proposition 2.8 ([7]). (i) Let $F \in D^b(I(k_X))$. Then F is regular along any locally closed set S at each $p \notin SS(F)$.

(ii) Let $F_1 \to F_2 \to F_3 \xrightarrow{+1} \to$ be a distinguished triangle in $D^b(I(k_X))$. If F_j and F_k are regular along S, so is F_i, for $i, j, k \in \{1, 2, 3\}, j \neq k$.

(iii) Let $F \in D^b(k_X)$. Then $\iota_X F$ is regular.
The next result is an unpublished Lemma of M. Kashiwara and P. Schapira and it is very useful in the study of regularity in $D^b(I(k_X))$.

K-S-Lemma. Let $F \in D^b(I(k_X))$, $\Lambda \subset T^*X$ be a locally closed conic subset and $p \in T^*X$. Assume that there exist an open subset S of X, with $\pi(p) \in S$, a small and filtrant category I and a functor $F : I \to D^{[a,b]}(k_S); i \mapsto F_i$ such that $J(F|_S) \simeq \lim_{i} J(F_i)$ and, for all open neighborhood V of p, with $\Lambda \cap V$ closed in V, there exist a morphism $i \to i'$ in I and a section u of $H^0(\muhom(F_i,F_{i'}))$ such that, for any morphism $i' \to i''$ in I, denoting by u' the image of u in $H^0(\muhom(F_i,F_{i''}))$, one has $\text{supp}(u') \cap V \not\subset \Lambda$. Then F is irregular along Λ at p.

Proof. We argue by contradiction. Assume that the hypothesis are satisfied and also that F is regular along Λ at p. Then there exist an open neighborhood U of p with $\Lambda \cap U$ closed in U, a small and filtrant category L and a functor $G : L \to D^{[a,b]}(k_X); l \mapsto G_l$ such that $J(F|_{\pi(U)}) \simeq \lim_{i} G_l|_{\pi(U)}$ and $SS(G_l) \cap U \subset \Lambda$, for all $l \in L$.

Since, by hypothesis, one has the following isomorphism on $\pi(U) \cap S$:

$$\lim_{i} F_i \simeq \lim_{i} G_l,$$

for each $i \in I$, there exists $l(i) \in L$ and a morphism $\rho_i : F_i \to G_{l(i)}$ on $\pi(U) \cap S$ and, for each $l \in L$, there exist $i(l) \in I$ and a morphism $\sigma_l : G_l \to F_{i(l)}$ on $\pi(U) \cap S$. Moreover, for each $i \in I$ there exist $k \in I$ and morphisms $f : i \to k$ and $g : i(l(i)) \to k$ in I such that $F(g) \circ \sigma_{l(i)} \circ \rho_i = F(f)$.

Let $i \to i'$ be a morphism in I and u a section of $H^0(\muhom(F_i,F_{i'}))$ such that for any morphism $i' \to i''$ in I, denoting by u' the image of u in $H^0(\muhom(F_i,F_{i''}))$, one has $\text{supp}(u') \cap U \not\subset \Lambda$. Let $k \in I$ and $f : i' \to k$, $g : i(l(i')) \to k$ morphisms in I such that $F(g) \circ \sigma_{l(i')} \circ \rho_{i'} = F(f)$. Then $\rho_{i'}$ and $F(g) \circ \sigma_{l(i')}$ induce, respectively, the following morphisms

$$H^0(\muhom(F_i,F_{i'})) \to H^0(\muhom(F_i,G_{l(i')})) \to H^0(\muhom(F_i,F_k)),$$

8
that send the section u of $H^0(\mu hom(F_i, F_{i'}))$ to a section u' of $H^0(\mu hom(F_i, F_k))$.

Since $\text{supp}(H^0(\mu hom(F_i, G_{l(i')}) \cap U \subset \Lambda$, one has $\text{supp}(u') \cap U \subset \Lambda$, which is a contradiction. \[\text{q.e.d.} \]

Temperate holomorphic solutions of a \mathcal{D}-module. Let X be a complex manifold and let \mathcal{M} be a coherent \mathcal{D}_X-module. Set

$$Sol(\mathcal{M}) = Rp_* R\text{Hom}_{\mathcal{D}_X} (\mathcal{M}, \mathcal{O}_X),$$

$$Sol^t(\mathcal{M}) = R\text{IHom}_{\beta_X, \mathcal{D}_X} (\beta_X \mathcal{M}, \mathcal{O}_X).$$

It is proved in [7] the equality:

$$SS(Sol^t(\mathcal{M})) = \text{Char}(\mathcal{M}), \quad (3)$$

and that the natural morphism $Sol^t(\mathcal{M}) \to Sol(\mathcal{M})$ is an isomorphism, when \mathcal{M} is a regular holonomic \mathcal{D}_X-module, which proves the “only if” part of the (K-S)-Conjecture.

3 Proof of (K-S)-Conjecture in dimension one

In this section, we consider $X = \mathbb{C}$ endowed with the holomorphic coordinate z and we shall prove that, for every irregular holonomic \mathcal{D}_X-module \mathcal{M}, $Sol^t(\mathcal{M})$ is irregular.

We shall first reduce the proof to the case where $\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X P$, for some $P \in \mathcal{D}_X$.

Let \mathcal{M} be an irregular holonomic \mathcal{D}_X-module. Since \mathcal{M} is holonomic it is locally generated by one element and we may assume \mathcal{M} is of the form $\mathcal{D}_X/\mathcal{I}$, for some coherent left ideal \mathcal{I} of \mathcal{D}_X. We may also assume that $\text{Char}(\mathcal{M}) \subset T^*_X \times T^*_0 X.$ Moreover, we may find $P \in \mathcal{I}$ such that the kernel of the surjective morphism

$$\mathcal{D}_X/\mathcal{D}_X P \to \mathcal{M} \to 0,$$
is isomorphic to a regular holonomic \mathcal{D}_X-module \mathcal{N} (see, for example, Chapter VI of [9]). Therefore, we have an exact sequence

$$0 \to \mathcal{N} \to \mathcal{D}_X/\mathcal{D}_X P \to \mathcal{M} \to 0,$$

and we get the distinguished triangle

$$\text{Sol}^t(\mathcal{M}) \to \text{Sol}^t(\mathcal{D}_X/\mathcal{D}_X P) \to \text{Sol}^t(\mathcal{N}) \overset{+1}{\to}.$$

Since $\text{Sol}^t(\mathcal{N})$ is regular, by Proposition 2.8, $\text{Sol}^t(\mathcal{M})$ will be regular if and only if $\text{Sol}^t(\mathcal{D}_X/\mathcal{D}_X P)$ is.

Let us now recall the following result, due to G. Morando:

Theorem 3.1 ([1]). Let \mathcal{M} be a holonomic \mathcal{D}_X-module. The natural morphism

$$H^1(\text{Sol}^t(\mathcal{M})) \to H^1(\text{Sol}(\mathcal{M})),$$

is an isomorphism.

Let $\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X P$, with $P \in \mathcal{D}_X$, with an irregular singularity at the origin. The Theorem above together with the results in [3] entails that:

$$H^1(\text{Sol}^t(\mathcal{M})) \simeq H^1(\text{Sol}(\mathcal{M})) \simeq \mathbb{C}^m_{\{0\}},$$

for some $m \in \mathbb{N}$. Then $H^1(\text{Sol}^t(\mathcal{M}))$ is regular and $SS(H^1(\text{Sol}^t(\mathcal{M}))) = T^*_{\{0\}} X$.

As in [7], let us set for short

$$\mathcal{S}^t := H^0(\text{Sol}^t(\mathcal{M})) \simeq \mathcal{I}hom_{\mathcal{D}_X}(\beta_X \mathcal{M}, \mathcal{O}_X^t),$$

$$\mathcal{S} := H^0(\text{Sol}(\mathcal{M})) \simeq \rho_*\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X) \simeq \ker(\rho_*\mathcal{O}_X \overset{P}{\to} \rho_*\mathcal{O}_X).$$

Remark that, since $\dim X = 1$, one has a monomorphism $\mathcal{S}^t \to \mathcal{S}$. Moreover, we have the following distinguished triangle:

$$\mathcal{S}^t \to \text{Sol}^t(\mathcal{M}) \to H^1(\text{Sol}^t(\mathcal{M}))[−1] \overset{+1}{\to}.$$
Therefore, one has
\[SS(S^t) \subset \text{Char}(M) \cup T^*_\{0\}X \subset T^*_XX \cup T^*_\{0\}X, \]
and \(S^t \) will be irregular if and only if \(\text{Sol}^t(M) \) is.

The problem is then reduced to study the irregularity of \(S^t \), for an irregular holonomic \(D_X \)-module of the form \(M = D_X/D_XP \), with \(P \in D_X \), with an irregular singularity at the origin.

We shall prove that \(S^t \) is not regular at \(p = (0; 0) \). The plan of the proof is to find an open subset \(S \) of \(\mathbb{C}\{0\} \), with \(0 \in S \), a small and filtrant category \(I \) and a functor \(I \to D^\\{a,b\}(k_S); i \mapsto F_i \) such that

\[\text{"lim}_{i} F_i \simeq S^t|_S, \]

and for all open neighborhood \(V \) of \(p \) there exist a morphism \(i \to i' \) in \(I \) and a section \(u \) of \(H^0(\mu\text{hom}(F_i, F_{i'})) \) such that for any morphism \(i' \to i'' \) in \(I \), denoting by \(u' \) the image of \(u \) in \(H^0(\mu\text{hom}(F_{i'}, F_{i''})) \), one has \(\text{supp}(u') \cap V \not\subset SS(S^t) \). This proves that we may apply the (K-S)-Lemma to conclude that \(S^t \) is irregular at \(p \).

Let \(U \) be an open neighborhood of the origin in \(\mathbb{C} \). The problem of finding the solutions of the differential equation \(Pu = 0 \) in \(O_X(U) \) is equivalent to the one of finding the solutions in \(O_X(U)^m \) of a system of ordinary differential equations defined by a matrix of differential operators of the form

\[z^N\partial_z I_m + A(z), \]

where \(m, N \in \mathbb{N}, I_m \) is the identity matrix of order \(m \) and \(A \in M_m(O_X(U))^1 \).

In fact, setting

\[P = z^N\partial_z I_m + A(z), \tag{4} \]

we have

\[S \simeq \rho_*\text{Hom}_{D_X}(D^\mathbb{R}_X/D^\mathbb{R}_XP, O_X), \]

\(^{1}\text{For a ring } R \text{ we denote by } M_m(R) \text{ the ring of } m \times m \text{ matrices and by } \text{GL}_m(R) \text{ the group of invertible } m \times m \text{ matrices.} \)
\[S^t \simeq \text{Thom}_{\beta_X} \mathcal{D}_X (\beta_X (\mathcal{D}_X^m / \mathcal{D}_X^m P), \mathcal{O}_X), \]

and we may replace \(\mathcal{M} \) by \(\mathcal{D}_X^m / \mathcal{D}_X^m P \).

Let \(\theta_0, \theta_1, R \in \mathbb{R} \), with \(\theta_0 < \theta_1 \) and \(R > 0 \). We denote the open set

\[\{ z \in \mathbb{C}; \theta_0 < \arg z < \theta_1, 0 < |z| < R \}, \]

by \(S(\theta_0, \theta_1, R) \) and call it open sector of amplitude \(\theta_1 - \theta_0 \) and radius \(R \).

Let \(l \in \mathbb{N} \). We consider \(z_{1/l} \) as a holomorphic function on subsets of open sectors of amplitude smaller than \(2\pi \), by choosing the branch of \(z_{1/l} \) which has positive real values on \(\arg z = 0 \).

The next Theorem will be fundamental in our proof. It gives a characterization of the holomorphic solutions of the differential system \(Pu = 0 \), where \(P \) is the operator \(\mathcal{H} \).

Theorem 3.2 (see [11]). Let \(P \) be the matrix of differential operators \(\mathcal{H} \). There exist \(l \in \mathbb{N} \) and a diagonal matrix \(\Lambda(z) \in M_m(z^{-1/l} \mathbb{C}[z^{-1/l}]) \) such that, for any real number \(\theta \), there exist \(R > 0, \theta_1 > \theta > \theta_0 \) and \(F_\theta \in \text{GL}_m(\mathcal{O}_X(S(\theta_0, \theta_1, R)) \cap C^0(S(\theta_0, \theta_1, R) \setminus \{0\})) \), such that the \(m \)-columns of the matrix \(F_\theta(z) \exp(-\Lambda(z)) \) are \(\mathbb{C} \)-linearly independent holomorphic solutions of the system \(Pu = 0 \). Moreover, for each \(\theta \) there exist constants \(C, M > 0 \) so that \(F_\theta \) has the estimate

\[C^{-1}|z|^M < |F_\theta(z)| < C|z|^{-M}, \text{ for any } z \in S(\theta_0, \theta_1, R). \quad (5) \]

If there is no risk of confusion we shall write \(F(z) \) instead of \(F_\theta \).

Definition 3.3. We call the matrix \(F(z) \exp(-\Lambda(z)) \), given in Theorem 3.2, a fundamental solution of \(P \) on \(S(\theta_0, \theta_1, R) \).

Let \(l \in \mathbb{N} \) and \(\Lambda(z) \) be the diagonal matrix given in Theorem 3.2. For each \(1 \leq j \leq m \), let \(\Lambda_j(z) = \sum_{k=1}^{n_j} a_{kj}^j z^{-k/l} \) be the \((j, j) \) entry of \(\Lambda(z) \), with \(n_j \in \mathbb{N}, a_{1j}^j, ..., a_{nj}^j \in \mathbb{C} \).
Corollary 3.4. Let \(V \in \text{Op}_{X_{sa}} \) and let us suppose \(P \) has a fundamental solution \(F(z) \exp(-\Lambda(z)) \) on \(V \). Then, \(\Gamma(V; S^t) \simeq \mathbb{C}^n(V) \), where \(n(V) \) is the cardinality of the set:

\[
J(V) := \{ j \in \{ 1, \ldots, m \}; \exp(-\Lambda_j(z))|_V \in \mathcal{O}_X^t(V) \}.
\]

Proof. By hypothesis, \(\Gamma(V; S) \) is the \(m \)-dimensional \(\mathbb{C} \)-vector space generated by the \(m \)-columns of the matrix \(F(z) \exp(-\Lambda(z)) \). For each \(j = 1, \ldots, m \), let us denote by \(e_j \) the \(j \)-th column of the matrix \(F(z) \exp(-\Lambda(z)) \). We have:

\[
\Gamma(V; S^t) = \Gamma(V; S) \cap \Gamma(V; \mathcal{O}_X^{t,m}) = \{ u \in \Gamma(V; \mathcal{O}_X^{t,m}); \}
\]

\[
\quad u = F(z) \exp(-\Lambda(z)) C, \text{ for some scalar column matrix } C \}.
\]

Let \(k \) be the dimension of the \(\mathbb{C} \)-vector space \(\Gamma(V; S^t) \) and let us prove that \(k = n(V) \).

For each \(j = 1, \ldots, m \), we have \(e_j = F(z) \exp(-\Lambda(z)) C_j \), where \(C_j \) is the scalar column matrix with the \(j \)-th entry equal to 1 and all the other entries equal to zero. Since \(F(z) \) is a matrix of tempered holomorphic functions on \(V \), we get \(e_j \in \Gamma(V; S^t) \), for each \(j \in J(V) \), and the \(\mathbb{C} \)-vector space generated by the family \(\{ e_j \}_{j \in J(V)} \) is a vector subspace of \(\Gamma(V; S^t) \). It follows that \(n(V) \leq k \). On the other hand, we may find a subset \(K \) of \(\{ 1, \ldots, m \} \), with cardinality \(k \), such that \(e_j \in \Gamma(V; S^t) \), for all \(j \in K \). Since \(F^{-1}(z) \) is a matrix of tempered holomorphic functions on \(V \), we get \(\exp(-\Lambda_j(z)) \in \mathcal{O}_X^{t}(V) \), for each \(j \in K \). This entails that \(n(V) \geq k \) and completes our proof. q.e.d.

Lemma 3.5. Let \(S \) be an open sector of amplitude smaller than \(2\pi \), \(p \in z^{-1}\mathbb{C}[z^{-1}] \), \(l \in \mathbb{N} \) and \(V \in \text{Op}_{X_{sa}} \), with \(V \subset S \). Then \(\exp(p(z^{1/l})) \in \mathcal{O}_X^{t}(V) \) if and only if there exists \(A > 0 \) such that \(\text{Re}(p(z^{1/l})) < A \), for all \(x \in V \).

Proof. Let \(\theta_0, \theta_1, R \in \mathbb{R} \) such that \(0 < \theta_1 - \theta_0 < R \) and \(S = S(\theta_1, \theta_0, R) \), and let us denote by \(U \) the open sector \(S(\frac{\theta_0}{R}, \frac{\theta_1}{R}, R^{1/l}) \). Let \(f : X \rightarrow X \) be the holomorphic function defined by \(f(z) = z^l \). Since \(\theta_1 - \theta_0 < 2\pi \), we may easily check that \(f|\mathcal{D} \) is an injective map. Moreover, \(f(U) = S \) and
\(f \mid_U : U \to S \) is bijective. Set \(V' = f^{-1}(V) \cap U \) and let \(h \) denotes the holomorphic function defined for each \(z \in S \) by \(h(z) = \exp(p(z^{1/l})) \). By Theorem 2.4 we have \(h \circ f \in O_X(V') \) if and only if \(h \in O_X(V) \). On the other hand, one has \(p \mid_{V'} = h \circ f \mid_{V'} \) and, by Proposition 2.6 \(h \circ f \in O_X(V') \) if and only if there exists \(A > 0 \) such that \(\Re(p(z)) < A \), for all \(z \in V' \). Combining these two facts, we conclude that \(\exp(p(z^{1/l})) \in O_X(V') \) if and only if there exists \(A > 0 \) such that \(\Re(p(z^{1/l})) < A \), for all \(z \in V' \), as desired. q.e.d.

Proposition 3.6. With the notation above, there exist an open sector \(S \), with amplitude smaller than \(2\pi \) and radius \(R > 0 \), and a non-empty subset \(I \) of \(\{1, ..., m\} \) such that, for each \(j \in I \) and each open subanalytic subset \(V \subset S \), the conditions below are equivalent:

(i) there exists \(A > 0 \) such that \(\Re(-\Lambda_j(z)) < A \) for all \(z \in V \),

(ii) there exists \(0 < \delta < R \) such that \(V \subset \{ z \in S; |z| > \delta \} \).

Moreover, for each \(j \in \{1, ..., m\} \setminus I \), there exists \(A > 0 \) such that, for every \(z \in S \), \(\Re(-\Lambda_j(z)) < A \).

We shall need the following Lemma:

Lemma 3.7. Let \(m, l \in \mathbb{N} \), \(\phi_1, ..., \phi_m \in [0, 2\pi[\) and \(n_1, ..., n_m \in \mathbb{N} \). For each \(j = 1, ..., m \), \(0 < C < 1 \) and \(\theta \in \mathbb{R} \), let us consider the following two conditions:

(i) \(j, C, \theta \)
\[1 \geq \cos(\phi_j - n_j/l\theta) \geq C, \]

(ii) \(j, C, \theta \)
\[-C \geq \cos(\phi_j - n_j/l\theta) \geq -1. \]

Then we may find \(\theta_0, \theta_1 \in \mathbb{R} \), with \(0 < \theta_1 - \theta_0 < 2\pi \), and positive real numbers \(C_1, ..., C_m \) such that, for each \(j = 1, ..., m \), one of the two conditions (i)\(j, C, \theta \) or (ii)\(j, C, \theta \) holds, for every \(\theta_0 \leq \theta \leq \theta_1 \). Moreover, condition (i)\(j, C, \theta \) is satisfied, for every \(\theta_0 \leq \theta \leq \theta_1 \), for some \(j = 1, ..., m \).

Proof. Let us prove the result by induction on \(m \). If \(m = 1 \), set \(C_1 = 1/2 \), \(\theta_0 = 0 \) and \(\theta'_1 = \frac{\theta_0}{n_1} \) if \(\phi_1 = 0 \), and \(\theta_0 = \max\{0, \frac{\phi_1}{n_1} - \frac{\pi}{4}\} \), \(\theta'_1 = \frac{\theta_0}{n_1} \) if \(\phi_1 \neq 0 \). Then, for every \(\theta_0 \leq \theta \leq \theta'_1 \), we have \(1 \geq \cos(\phi_1 - n_1/l\theta) \geq C_1 \).
Since $0 \leq \theta_0 < 2l\pi$, we may find $0 \leq k < l$ such that $2k\pi \leq \theta_0 < 2(k+1)\pi$ and $\theta_1 \in \mathbb{R}$ such that $\theta_0 < \theta_1 < \theta_1'$ and $\theta_1 < 2(k+1)\pi$. Therefore, condition $(i)_{1,C_1,\theta}$ is satisfied, for every $\theta_0 \leq \theta \leq \theta_1$, where $0 < \theta_1 - \theta_0 < 2\pi$.

Let us now assume that the result is true for some $m \geq 1$ and let us consider $\phi_1, ..., \phi_{m+1} \in [0, 2\pi]$ and $n_1, ..., n_{m+1} \in \mathbb{N}$. By hypothesis, there exist $\theta_0', \theta_1' \in \mathbb{R}$, with $0 < \theta_1' - \theta_0' < 2\pi$, and positive real numbers $C_1, ..., C_m$ such that, for each $j = 1, ..., m$, one of the two conditions $(i)_{j,C_j,\theta}$ or $(ii)_{j,C_j,\theta}$ holds, for every $\theta_0' \leq \theta \leq \theta_1'$. Moreover, condition $(i)_{j,C_j,\theta}$ is satisfied, for every $\theta_0 \leq \theta \leq \theta_1'$, for some $j = 1, ..., m$. Let us prove that there exist $\theta_0, \theta_1 \in \mathbb{R}$, with $\theta_0' < \theta_0 < \theta_1 < \theta_1'$, and $0 < C_{m+1} < 1$ such that one of the two conditions $(i)_{m+1,C_{m+1},\theta}$ or $(ii)_{m+1,C_{m+1},\theta}$ holds, for every $\theta_0 \leq \theta \leq \theta_1$.

For each $j \in \mathbb{Z}$, set:

\[I_j = [2j\pi, \pi/2 + 2j\pi[, \quad J_j =]3\pi/2 + 2j\pi, 2\pi(1 + j)[, \]

\[K_j =]\pi/2 + 2j\pi, \pi + 2j\pi[, \quad L_j =]\pi + 2j\pi, 3\pi/2 + 2j\pi[, \]

If $[\phi_{m+1} - n_{m+1}/l\theta_1', \phi_{m+1} - n_{m+1}/i\theta_0'] \subset A_j$, for some $A \in \{I, J, K, L\}$ and $j \in \mathbb{Z}$, set:

\[C_{m+1} = \begin{cases}
\cos(\phi_{m+1} - n_{m+1}/l\theta_0'), & A = I, \\
\cos(\phi_{m+1} - n_{m+1}/l\theta_1'), & A = J, \\
-\cos(\phi_{m+1} - n_{m+1}/l\theta_1'), & A = K, \\
-\cos(\phi_{m+1} - n_{m+1}/l\theta_0'), & A = L,
\end{cases} \]

Then condition $(i)_{m+1,C_{m+1},\theta}$ holds, for all $\theta_0' \leq \theta \leq \theta_1'$, if $A \in \{I, J\}$ and condition $(ii)_{m+1,C_{m+1},\theta}$ holds, for all $\theta_0' \leq \theta \leq \theta_1'$, if $A \in \{K, L\}$.

If $[\phi_{m+1} - n_{m+1}/l\theta_1', \phi_{m+1} - n_{m+1}/l\theta_0'] \not\subset A_j$, for every $A \in \{I, J, K, L\}$ and $j \in \mathbb{Z}$, we may choose $\theta_0, \theta_1 \in \mathbb{R}$ such that $\theta_0' < \theta_0 < \theta_1 < \theta_1'$ and $[\phi_{m+1} - n_{m+1}/l\theta_1, \phi_{m+1} - n_{m+1}/l\theta_0] \subset A_j$, for some $A \in \{I, J, K, L\}$ and $j \in \mathbb{Z}$. Then the result follows from the previous cases. \(\text{q.e.d.} \)

Proof of Proposition 3.6 For each $j = 1, ..., m$, if $z = \rho \exp(i\theta)$, one
has:
\[
\text{Re}(-\Lambda_j(z)) = \sum_{k=1}^{n_j} \alpha_k^j \rho^{-k/l} \cos(\phi_k^j - k/l\theta),
\]
where \(\alpha_k^j = |a_k^j|\) and \(\phi_k^j = \arg(-a_k^j)\), for every \(k = 1, \ldots, n_j\).

For each \(j = 1, \ldots, m\), \(1 > C > 0\) and \(\theta \in \mathbb{R}\), let us consider the following two conditions:
\[
(i)_{j,C,\theta} \quad 1 \geq \cos(\phi_{n_j}^j - n_j/l\theta) \geq C,
(ii)_{j,C,\theta} \quad -C \geq \cos(\phi_{n_j}^j - n_j/l\theta) \geq -1.
\]

By Lemma 3.7, we may find \(\theta_0, \theta_1 /in \mathbb{R}\), with \(0 < \theta_1 - \theta_0 < 2\pi\), and positive real numbers \(C_1, \ldots, C_m\) such that, for each \(j = 1, \ldots, m\), one of the two conditions \((i)_{j,C,\theta}\) or \((ii)_{j,C,\theta}\) holds, for every \(\theta_0 \leq \theta \leq \theta_1\). Moreover, condition \((i)_{j,C,\theta}\) is satisfied, for every \(\theta_0 \leq \theta \leq \theta_1\), for some \(j = 1, \ldots, m\).

Let us set:
\[
J := \{j \in \{1, \ldots, m\} \mid \text{condition \((ii)_{j,C,\theta}\) is satisfied, for every } \theta_0 \leq \theta \leq \theta_1\}.
\]

For each \(j \in J\), \(\theta_0 \leq \theta \leq \theta_1\) and \(\rho > 0\), one has:
\[
\text{Re}(-\Lambda_j(\rho \exp(i\theta))) = \rho^{-n_j/l}[\sum_{k=1}^{n_j-1} \alpha_k^j \rho^{(n_j-k)/l} \cos(\phi_k^j - k/l\theta) + \alpha_{n_j}^j \cos(\phi_{n_j}^j - n_j/l\theta)] \leq \rho^{-n_j/l} \sum_{k=1}^{n_j-1} \alpha_k^j \rho^{(n_j-k)/l} - \alpha_{n_j}^j C_j,
\]
and
\[
\lim_{\rho \to 0^+} \rho^{-n_j/l}[\sum_{k=1}^{n_j-1} \alpha_k^j \rho^{(n_j-k)/l} - \alpha_{n_j}^j C_j] = -\infty.
\]

It follows that there exists \(0 < R_j\) such that \(\text{Re}(-\Lambda_j(\rho \exp(i\theta))) < 0\), for every \(0 < \rho < R_j\) and \(\theta_0 \leq \theta \leq \theta_1\). Therefore, setting \(R = \min\{R_j; j \in J\}\), one gets that \(\text{Re}(-\Lambda_j(z)) < A\), for every \(A > 0\), \(z \in S(\theta_0, \theta_1, R)\) and \(j \in J\).

Let us now set
\[
I := \{j \in \{1, \ldots, m\} \mid \text{condition \((i)_{j,C,\theta}\) is satisfied, for every } \theta_0 \leq \theta \leq \theta_1\}.
\]
Let \(j \in I \) and \(V \) be an open subanalytic subset of the sector \(S(\theta_0, \theta_1, R) \). Suppose that there exists \(A > 0 \) such that \(\text{Re}(-\Lambda_j(z)) < A \) for every \(z \in V \) and that, for each \(0 < \delta < R \), there exists \(z_{\delta} \in V \) with \(|z_{\delta}| \leq \delta \). For each \(0 < \delta < R \), let us denote: \(\rho_{\delta} = |z_{\delta}| \) and \(\theta_{\delta} = \text{arg}(z_{\delta}) \). The sequence \(\{\rho_{\delta}\}_{\delta} \) converges to 0 and since \(\{\theta_{\delta}\}_{\delta} \) is a bounded sequence it admits a convergent subsequence. Replacing these two sequences by convenient subsequences, we may assume that \(\{\theta_{\delta}\}_{\delta} \) converges to some \(\theta_2 \in [\theta_0, \theta_1] \). Then:

\[
\lim_{\delta \to 0^+} \text{Re}(-\Lambda_j(\rho_{\delta} \exp(i\theta_{\delta}))) = \lim_{\delta \to 0^+} \rho_{\delta}^{-n_j/l} \left[\sum_{k=1}^{n_j-1} \alpha_k^j \rho_{\delta}^{(n_j-k)/l} \cos(\phi_k^j - k/l\theta_{\delta}) + \alpha_{n_j}^j \cos(\phi_{n_j}^j - n_j/l\theta_{\delta}) \right] \geq \lim_{\delta \to 0^+} \rho_{\delta}^{-n_j/l} \left[- \sum_{k=1}^{n_j-1} \alpha_k^j \rho_{\delta}^{(n_j-k)/l} + \alpha_{n_j}^j C_j \right] = +\infty,
\]

which contradicts the fact that \(\text{Re}(-\Lambda_j(\rho_{\delta} \exp(i\theta_{\delta}))) < A \), for every \(0 < \delta < R \). Conversely, if \(V \) is an open subanalytic subset of \(\{z \in S(\theta_0, \theta_1, R) ; |z| > \delta \} \), for some \(0 < \delta < R \), then \(V \) is contained on the compact set \(\{z \in \mathbb{C} ; \theta_0 \leq \text{arg} z \leq \theta_1, \delta \leq |z| \leq R \} \), and \(\text{Re}(-\Lambda_j(z)) \) is obviously bounded on \(V \). We conclude that \(I \) is the desired subset of \(\{1, \ldots, m\} \), with \(\{1, \ldots, m\} \setminus I = J \).

q.e.d.

Let \(S(\theta_0', \theta_1', R') \) and \(I \) be, respectively, the open sector and the subset of \(\{1, \ldots, m\} \) given by Proposition 3.6 and let us choose \(\theta_0, \theta_1, R \in \mathbb{R} \), with \(\theta_0' < \theta_0 < \theta_1 < \theta_1' \) and \(R > 0 \), such that the matrix of differential operators \(P \) admits a fundamental solution \(F(z) \exp(-\Lambda(z)) \) on the open sector \(S(\theta_0, \theta_1, R) \). Let us denote \(S = S(\theta_0, \theta_1, R) \), \(S_{\delta} = \{z \in S ; |z| > \delta\} \), for each \(0 < \delta < R \), and let \(n \) be the cardinality of the set \(I \). Remark that, \(I \neq \emptyset \) and so, \(n > 0 \).

Proposition 3.8. One has the following isomorphism on \(S \),

\[
\lim_{R \to 0^+} \lim_{\delta \to 0^+} (\mathbb{C}^n_{S_{\delta}} \oplus \mathbb{C}^{m-n}_{S}) \to \mathcal{I} \text{hom}_{\beta_X \mathcal{D}_X}(\mathcal{O}_X, \mathcal{O}_X)_{|S}. \quad (6)
\]
Proof. By Lemma 3.5, for each \(j = 1, \ldots, m \) and \(V \in \text{Op}_{X_{sa}} \), with \(V \subset S \), \(\exp(-\Lambda_j(z)) \in O_X^k(V) \) if and only if there exists \(A > 0 \) such that \(\text{Re}(\Lambda_j(z)) < A \) for each \(z \in V \). Let \(V \in \text{Op}_{X_{sa}} \), with \(V \subset S \). Thus, by Proposition 3.6, for all \(j \in \{1, \ldots, m\} \setminus I \), one has \(\exp(-\Lambda_j(z)) \in O_X^k(V) \) and, for \(j \in I \) one has \(\exp(-\Lambda_j(z)) \in O_X^k(V) \) if and only if \(V \subset S_\delta \), for some \(0 < \delta < R \). Therefore, by Corollary 3.4, either \(V \subset S_\delta \), for some \(0 < \delta < R \), and in this case \(\Gamma(V; S_X) \simeq \mathbb{C}^m \), or else \(\Gamma(V; S_X) \simeq \mathbb{C}^{m-n} \). By Theorem 2.2, we get the desired isomorphism. q.e.d.

For each \(0 < \delta < R \), set \(F_\delta = \mathbb{C}^n_{S_\delta} \oplus \mathbb{C}^{m-n}_{S} \) and let us prove that, for every open neighborhood \(U \) of \(p = (0;0) \), \(SS(F_\delta) \cap U \not\subset SS(S^l) \).

Let us set \(z = x + iy \). For each \(0 < \delta < R \), we have,

\[
SS(F_\delta) = SS(\mathbb{C}_{S_\delta}) \cup T^*_S S = \{ (x, y; 0) \in T^*S; x^2 + y^2 \geq \delta^2 \} \cup \{ (x, y; \lambda x, \lambda y) \in T^*S; \lambda < 0, x^2 + y^2 = \delta^2 \} \cup T^*_S S.
\]

Hence, for each open neighborhood \(U \) of \(p \), we may find \(0 < \delta < R \) and \((x, y) \in S \) such that \(x^2 + y^2 = \delta^2 \) and \((x, y; -x, -y) \in (SS(F_\delta) \cap U) \setminus SS(S^l) \).

To finish the proof that \(S^l \) is irregular at \(p \), let us recall that, for each \(0 < \delta < R \), one has the following natural morphisms:

\[\text{Hom}(F_\delta, F_\delta) \simeq H^0(X; R\text{Hom}(F_\delta, F_\delta)) \simeq H^0(T^*X; \mu\text{hom}(F_\delta, F_\delta)) \to \Gamma(T^*X; H^0(\mu\text{hom}(F_\delta, F_\delta))),\]

and we shall denote by \(u_\delta \) the image of \(\text{id}_{F_\delta} \in \text{Hom}(F_\delta, F_\delta) \) in \(\Gamma(T^*X; H^0(\mu\text{hom}(F_\delta, F_\delta))) \).

For each \(0 < \epsilon < \delta < R \), \(S_\delta \) is an open subset of \(S_\epsilon \) and we have an exact sequence

\[0 \to F_\delta \to F_\epsilon \to F_{\delta, \epsilon} \to 0,\]

where \(F_{\delta, \epsilon} \) denotes the sheaf \(\mathbb{C}^{m-n}_{S_\delta \setminus S_\delta} \oplus \mathbb{C}^n_{S} \).

Applying the functor \(\mu\text{hom}(F_\delta, \cdot) \) to the exact sequence \(\text{1} \), we obtain the distinguished triangle:

\[\mu\text{hom}(F_\delta, F_\delta) \to \mu\text{hom}(F_\delta, F_\epsilon) \to \mu\text{hom}(F_{\delta, \epsilon}) \xrightarrow{+1}.\]
Since $\mu_{hom}(F_\delta, F_\delta), \mu_{hom}(F_\delta, F_{\varepsilon}), \mu_{hom}(F_\delta, F_{\delta, \varepsilon}) \in D^{\geq 0}(k_T, X)$, it follows from (8) that we have the exact sequence

$$0 \to H^0(\mu_{hom}(F_\delta, F_\delta)) \to H^0(\mu_{hom}(F_\delta, F_{\varepsilon})).$$

Hence, $\text{supp}(u_\delta) = \text{supp}(u')$, where u' is the image of u_δ in $H^0(\mu_{hom}(F_\delta, F_{\varepsilon}))$. Moreover, by Corollary 6.1.3 of [8], one has $\text{supp}(u_\delta) = \text{SS}(F_\delta)$. This proves that we may apply the (K-S)-Lemma to conclude that S^l is irregular at p.

We finish with an example.

Example 3.9. Let us consider the \mathcal{D}_X-module

$$\mathcal{M} = \mathcal{D}_X / \mathcal{D}_X (z^2 \partial_z + 1).$$

In this case, $\exp(1/z)$ is a fundamental solution of the differential operator $z^2 \partial_z + 1$ in $X \setminus \{0\}$. Arguing as in the proof of Proposition 3.6, we find $R > 0$ with the following property: given an open subanalytic subset V of the sector $S = S(0, \pi/4, R)$, then there exists $A > 0$ such that $\text{Re}(-1/z) < A$, for every $z \in V$, if and only if there exists $0 < \delta < R$ such that $V \subset \{z \in S; |z| > \delta\}$. Moreover, by Proposition 3.8, one has the isomorphism below:

$$\text{"lim"}_{R > \delta > 0} C_{S_\delta} \simeq \text{"lim"}_{\varepsilon > 0} C_{U_\varepsilon \cap S}.$$

In [7], M. Kashiwara and P. Schapira proved the following isomorphism on X,

$$\text{"lim"}_{\varepsilon > 0} C_{U_\varepsilon} \simeq \text{Hom}_{\mathcal{D}_X} (\beta_X \mathcal{M}, \mathcal{O}_X^l)|_S,$$

where $U_\varepsilon = X \setminus B_\varepsilon(0, \varepsilon)$, and $B_\varepsilon(0, \varepsilon)$ denotes the open ball with center at $(0, \varepsilon)$ and radius ε, for every $\varepsilon > 0$.

Let us check that

$$\text{"lim"}_{R > \delta > 0} C_{S_\delta} \simeq \text{"lim"}_{\varepsilon > 0} C_{U_\varepsilon \cap S}.$$

It is enough to prove that for every $0 < \delta < R$, there exists $\varepsilon > 0$ such that $S_\delta \subset U_\varepsilon \cap S$ and that for every $\varepsilon > 0$ there exists $0 < \delta < R$ such that $U_\varepsilon \cap S \subset S_\delta$.

19
For each $0 < \delta < R$, we have $S_\delta \subset U_{\delta/4} \cap S$. In fact, given $x + iy \in S_\delta$ we have $x^2 + y^2 > \delta^2$ and $x > y > 0$. It follows that $2x^2 > \delta^2$ and hence, $x^2 + y^2 > x^2 > 2x(\delta/4)$, i.e., $(x - \delta/4)^2 + y^2 > (\delta/4)^2$. Conversely, given $\varepsilon > 0$ and $x + iy \in U_\varepsilon \cap S$, we have $x^2 + y^2 > 2\varepsilon x$ and $x > y > 0$. This gives $x > \varepsilon$. Hence, $x^2 + y^2 > \varepsilon^2$ and $x + iy \in S_\varepsilon$.

References

[1] G. Morando, *Tempered holomorphic solutions of D-modules on a complex curve*, PHD Thesis, University Paris 6 (2006).

[2] N. Honda, *On the solvability of ordinary differential equations in the space of distributions*, Jour. Fac. Sci. Univ. Tokyo IA, Vol. 39, No. 2, pp. 207-232 (1992).

[3] M. Kashiwara, *Algebraic study of systems of partial differential equations*, (Thesis, Tokyo 1970) translated and published in Memoires Soc. Math. Fr. 63, chapter 4 (1995)

[4] M. Kashiwara, *D-modules and microlocal calculus*, Translations of Mathematical monographs, Vol. 217 (2000).

[5] M. Kashiwara, *The Riemann-Hilbert problem for holonomic systems*, Publ. RIMS, Kyoto Univ., Vol. 20, No.2, pp. 319-365 (1984).

[6] M. Kashiwara and P. Schapira, *Ind-sheaves*, Astérisque, Soc. Math. France 271 (2001).

[7] M. Kashiwara and P. Schapira, *Microlocal study of Ind-sheaves I: microsupport and regularity*, Astérisque 284, Soc. Math. France (2003).

[8] M. Kashiwara and P. Schapira, *Sheaves on manifolds*, Grundlehren der Math. Wiss., 292, Springer Verlag (1990).
[9] M. Kashiwara and T. Kawai, *On holonomic systems of microdifferential equations III - Systems with regular singularities*, Publications of the research institute for mathematical sciences, Kyoto University, Vol. 17, No. 3 (1981).

[10] S. Lojasiewicz, *Sur le problème de la division*, Studia Mathematica 18, pp. 87-136 (1959).

[11] W. Wasow, *Asymptotic expansions of ordinary differential equations*, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney (1965).

Ana Rita Martins
Centro de Álgebra da Universidade de Lisboa, Complexo 2,
Avenida Prof. Gama Pinto,
1699 Lisboa Portugal
arita@mat.fc.ul.pt