Abstract

We show that a “constructive derivation” of the AdS/CFT correspondence based on the quantum local renormalization group in large $N$ quantum field theories consistently provides the $a - c$ holographic Weyl anomaly in $d = 4$ at the curvature squared order in the bulk action. The consistency of the construction further predicts the form of the metric beta function.
S. S. Lee recently proposed a constructive way to obtain the $d + 1$ dimensional bulk action from the quantum local renormalization group in large $N$ quantum field theories in $d$ dimension to aim at the derivation of the AdS/CFT correspondence \[1\] [2] (see also the related idea in \[3\] [4]). In this short article, we would like to give a modest but concrete consistency check of his proposal by comparing unambiguously computable quantities both in field theory and gravity.

Let us consider a (hypothetical) large $N$ quantum field theory in $d = 4$ dimension, where the single-trace energy-momentum tensor and its multi-trace cousins are the only operators with finite scaling dimension. We also assume that the theory is “strongly coupled” in the sense that the higher derivative terms beyond the background curvature squared are suppressed in the local renormalization group. The existence of the other operators would not change the following story as long as they can be consistently “decoupled” within the computations of the energy-momentum tensor correlation functions (e.g. strongly coupled $\mathcal{N} = 4$ super Yang-Mills theory).

By using the recipe proposed by Lee [2], we can formally rewrite the Schwinger functional, which is identified as the GKP/W partition function, in terms of the bulk $d + 1 = 5$ dimensional path-integral

$$e^{-W[g_{\mu\nu}]} = \int \mathcal{D}X e^{-\int d^4x\sqrt{g_L}(X;g_{\mu\nu})} = \int \mathcal{D}g_{\mu\nu} \mathcal{D}n^\mu \mathcal{D}n^\nu \mathcal{D}\pi^{\mu\nu} \mathcal{D}\pi^{\nu\rho} \mathcal{D}H \mathcal{D}n = e^{-N^2S_B},$$

(1)

where the bulk action in the Hamiltonian formulation takes the form

$$S_B = \int d^4xz (\pi^{\mu\nu}\partial_z g_{\mu\nu} - n^\mu H_\mu - nH)$$

(2)

with the 4 + 1 dimensional metric $ds^2 = G_{MN}dx^Mdx^N = n^2dz^2 + g_{\mu\nu}(dx^\mu + n^\mu dz)(dx^\nu + n^\nu dz)$. The GKP-W boundary condition naturally follows from the construction of [2] in the asymptotic AdS case.

After varying the action with the shift vector $n^\mu$, $H_\mu = -2D^\nu\pi^{\mu\nu} = 0$ gives the momentum constraint. The Hamiltonian density $H$ is determined by the renormalization group properties of the dual field theory

$$H = \sqrt{g}\Lambda[g_{\mu\nu}] - \beta_{\mu\nu}[g_{\mu\nu}]\pi^{\mu\nu} - G_{\mu\nu;\rho\sigma}[g_{\mu\nu}]\pi^{\mu\nu}\pi^{\rho\sigma}.$$  \hspace{1cm} (3)

Here $\Lambda[g_{\mu\nu}]$ is determined from the renormalization of the “cosmological constant” in the dual field theory. $\beta_{\mu\nu}[g_{\mu\nu}]$ is the beta function for the single trace energy-momentum
tensor : $T_{\mu \nu}$, and $\mathcal{G}_{\mu \nu ; \rho \sigma} [g_{\mu \nu}]$ is the beta function for the double trace energy-momentum tensor : $T_{\mu \nu} T_{\rho \sigma}$ : of the dual field theory respectively. Our normalization is such that the single trace operator is $O(1)$. Note that the Hamiltonian constraint $H = 0$ from the variation of the Lapse function $n$ is the local Callan-Symanzik equation (with Weyl anomaly included).

We would like to keep $O(R^2)$ term in $\Lambda [g_{\mu \nu}]$ and $O(R)$ term in $\beta_{\mu \nu} [g_{\mu \nu}]$ and $\mathcal{G}_{\mu \nu ; \rho \sigma} [g_{\mu \nu}]$ because the comparison with the holographic Weyl anomaly we would like to perform assumes that the bulk action is $O(R^2)$ in the Lagrangian formulation after integrating out $\pi^{\mu \nu}$. Explicitly, we have

$$
\begin{align*}
\Lambda [g_{\mu \nu}] &= \Lambda_0 + R + \alpha_1 R^2 + \alpha_2 R_{\mu \nu}^2 + \alpha_3 R_{\mu \nu \rho \sigma}^2 + \alpha_4 \Box R \\
\beta_{\mu \nu} &= 2 g_{\mu \nu} + \beta_1 R g_{\mu \nu} + \beta_2 R_{\mu \nu} \\
\mathcal{G}_{\mu \nu ; \rho \sigma} &= \frac{1}{\sqrt{g}} (g_{\mu \rho} g_{\nu \sigma} - \lambda g_{\mu \nu} g_{\rho \sigma}) + O(R) .
\end{align*}
$$

The crucial point we will employ in the following is that $R_{\mu \nu \rho \sigma}^2$ contribution to the bulk action only comes from $\Lambda [g_{\mu \nu}]$ within the order we are interested in. In particular, $O(R)$ term of $\mathcal{G}_{\mu \nu ; \rho \sigma}$ suppressed in (4) should not contribute to the $R_{\mu \nu \rho \sigma}^2$ term. It is also important to realize that the field redefinition of the type $g_{\mu \nu} \rightarrow g_{\mu \nu} + \zeta_1 R_{\mu \nu} + \zeta_2 R g_{\mu \nu}$ associated with the renormalization group scheme ambiguity cannot affect the $R_{\mu \nu \rho \sigma}^2$ term. There should be additional consistency conditions so that the bulk action is $d + 1$ dimensional diffeomorphism invariant. This gives various relations and fixes some parameters such as $\lambda = \frac{1}{3}$ in the last line of (4).

Most of these coefficients in (4) cannot be computed in the power-counting renormalization scheme of the dual field theory (while it should be done in Wilsonian framework), but the exception is $\alpha_1, \alpha_2, \alpha_3$ and $\alpha_4$. These dimensionless terms are fixed by the Weyl anomaly up to local counterterms so that the two particular combinations (so-called $a$ and $c$) do not depend on the renormalization scheme and they are universal (see e.g. [5] and reference therein for the local renormalization group within the power-counting renormalization scheme). Let us assume that the dual field theory (at the fixed point) is a conformal field theory. The conformal fixed point is characterized by the central charges

\footnote{If we considered $R^2$ order in (the inverse of) $\mathcal{G}_{\mu \nu ; \rho \sigma}$, we could encounter the additional $R_{\mu \nu \rho \sigma}^2$ term, which is not originated from $\Lambda [g_{\mu \nu}]$. However, it should necessarily accompany higher derivative curvature terms, and it would be beyond our scope of $O(R^2)$ test of the holographic Weyl anomaly.}
\( a \) and \( c \), and the Weyl anomaly gives the renormalization of the cosmological constant term in the Schwinger functional as

\[
\Lambda_{\text{anomaly}}[g_{\mu\nu}] = c_{\text{Weyl}}^2 - a_{\text{Euler}} \\
= \left( \frac{c}{3} - a \right) R^2 + (-2c + 4a) R^2_{\mu\nu} + (c - a) R^2_{\mu\nu\rho\sigma},
\]

which determines a part of the bulk action \([3]\) according to the quantum local renormalization group recipe. We have used the local counterterm to get rid of \( \Box R \) term, but it does not affect the following argument. Since the part of the bulk action is fixed by the Weyl anomaly, we would like to check if the so-constructed bulk action gives back the holographic Weyl anomaly in a consistent manner.

Let us first recall that the holographic Weyl anomaly predicts that the field theory dual to Einstein gravity must have \( a = c \). At the second order in the bulk curvature, the most general possibility of the bulk action in the Lagrangian formulation is

\[
S_2 = \int d^4x dz \sqrt{G}(\lambda_1(R^{(5)})^2 + \lambda_2(R^{(5)}_{MN})^2 + \lambda_3(R^{(5)}_{IJKL})^2).
\]

The computation of the holographic Weyl anomaly with these curvature squared terms are done in \([7][8]\), and the salient feature of their result is that the difference \( a - c \) in the holographic Weyl anomaly is only induced by \( \lambda_3(R^{(5)}_{IJKL})^2 \) term as \( a - c \sim N^2 \lambda_3 \) and does not depend on \( \lambda_1 \) and \( \lambda_2 \) except through the change of the overall AdS radius. However, this is exactly what is proposed by the quantum local renormalization group construction because \( (R^{(5)}_{IJKL})^2 \) term in the bulk action is in one to one correspondence with \( R^2_{\mu\nu\rho\sigma} \) term in \( \Lambda[g_{\mu\nu}] \) within \( O(R^2) \) gravity we have discussed, and they are precisely given by \( a - c \) in \([5]\) with no other way to adjust the parameter.\(^2\) Therefore, the quantum renormalization group construction of the bulk action proposed in \([2]\) is completely consistent with the holographic Weyl anomaly, and it has provided a non-trivial check of the quantum renormalization group origin of the AdS/CFT correspondence.

We have a couple of comments about the agreement.

- The recipe based on the quantum renormalization group gives only one way to deviate from \( a = c \) condition at the curvature squared order from \([5]\). In contrast, the bulk action can contain additional two numbers \( \lambda_1 \) and \( \lambda_2 \) in \([5]\). Presumably,

\( ^2 \)The precise proportional factor is beyond our scope because it depends on other terms such as \( \Lambda_0 \) so they cannot be computed in the power-counting renormalization scheme.
the so-obtained action from the quantum renormalization group is Gauss-Bonnet gravity because it would provide the second order evolution in the radial direction without ghost. Indeed, the holographic renormalization group is best formulated in the quasi-topological gravity, in which the Gauss-Bonnet term is the leading correction, and the inclusion of the other term may require additional care (e.g. how to determine the boundary condition). See [9] and reference therein for further discussions.

- The combination $a - c$ is very special in nature. It is the combination that the perturbative string theory can unambiguously compute [10] and it is related to the holomorphic anomaly in topological string theory. Also, there is a very interesting observation in [11] about the geometric origin of this particular combination in string compactification.

- It is possible to generalize the computation with the inclusion of scalars and vectors so that the holographic anomaly for these operators are consistently reproduced from the quantum local renormalization group approach whenever they are not contaminated by the non-universal terms in the power-counting renormalization scheme. The current central charge in $d = 4$ and Zamolodchikov metric for the marginal deformations in $d = 2$ are good examples.

To conclude the article, we present one simple application. Although it is not directly calculated from the local renormalization group within power-counting renormalization scheme, the consistency of the entire formalism gives a prediction for the metric beta function $\beta_{\mu\nu}$ at $O(R)$ by assuming the theory is dual to the Einstein gravity. When $a = c$, the cosmological constant term $\Lambda[g_{\mu\nu}]$ is proportional to $R^2_{\mu\nu} - \frac{1}{3}R^2$ from the Weyl anomaly [5]. If the theory is dual to the Einstein gravity without higher derivative terms, these must be cancelled by the term $\beta_{\mu\nu}\beta_{\rho\sigma}G^{\mu\nu;\rho\sigma}$ that appears after integrating out $\pi^{\mu\nu}$. The minimal solution of the cancellation is

$$\beta_{\mu\nu} = 2g_{\mu\nu} + \sqrt{a}\left(R_{\mu\nu} - \frac{R}{6}g_{\mu\nu}\right)$$

$$G^{\mu\nu;\rho\sigma} = g^{\mu\rho}g^{\nu\sigma} - g^{\mu\nu}g^{\rho\sigma},$$

(7)

\footnote{The metric beta function was first discussed in [3] from the AdS/CFT correspondence.}
where $G^{\mu\nu;\rho\sigma}$ is the inverse of the de-Wit metric $G_{\mu\nu;\rho\sigma} = (g_{\mu\rho}g_{\nu\sigma} - \frac{1}{3}g_{\mu\nu}g_{\rho\sigma})$ so that
\[ \sqrt{g} G_{\mu\nu;\rho\sigma} G^{\rho\sigma;\eta\kappa} = \delta^\eta_\mu \delta^\kappa_\nu. \]
As a further consistency check, we remark that the metric beta function (7) is a gradient
\[ \beta_{\mu\nu} = G_{\mu\nu;\rho\sigma} \frac{\delta S_{\text{EH}}}{\delta g^{\rho\sigma}}, \]
where $S_{\text{EH}} = \int d^4x \sqrt{g}(12 + \sqrt{aR})$ is nothing but the Einstein-Hilbert action. This gradient property is necessary to get rid of the first order derivative in $z$ direction \footnote{We have learned that the scheme dependence will be studied in the updated version of \cite{13} in more detail.} from the bulk action.

The metric beta function was recently studied from the holographic perspective in \cite{12} \cite{13} but the relative coefficient may look different from ours. It might be attributed to the scheme choice \footnote{We have learned that the scheme dependence will be studied in the updated version of \cite{13} in more detail.}. Our expression agrees with $\dot{g}_{\mu\nu}$ in \cite{12}. One difference from $\beta_{\mu\nu}$ in \cite{12} is that we use the de-Wit metric to lower the indices in (8). In \cite{13}, the tracelessness condition has been imposed to fix the scaling dimension of the volume element out of $g_{\mu\nu}$. Our principle, instead, is the consistency of the quantum local renormalization group and the gradient property, which is naturally imposed in the prescription of \cite{2}.

The above argument implies that if there were additional $bR^2$ term in the Weyl anomaly \footnote{We have learned that the scheme dependence will be studied in the updated version of \cite{13} in more detail.}, the cancellation in the higher derivative term would be inconsistent with the gradient property. This in turn means that the bulk theory, if any, would not be invariant under $d + 1$ diffeomorphism transformation within pure gravity. Of course, we know that the $bR^2$ term in the Weyl anomaly does not satisfy the Wess-Zumino consistency condition when the theory is conformal invariant. We also know that when the bulk theory has the full $d + 1$ dimensional diffeomorphism, the scale invariant geometry should imply AdS space-time with the full conformal symmetry within pure gravity \cite{14}. In this manner, the whole discussion is mutually consistent. With the inclusion of the additional matter sector, possibly at the sacrifice of unitarity, we may be able to relax the condition, however. The detailed discussion with the matter will be presented elsewhere.

Acknowledgements

I would like to thank S. S. Lee for the discussions and his kind hospitality at Perimeter Institute. I also would like to thank F. Nitti, E. Kiritsis and H. Verlinde for the corre-
spondence. This work is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

References

[1] S. -S. Lee, JHEP 1210, 160 (2012) [arXiv:1204.1780 [hep-th]].

[2] S. -S. Lee, arXiv:1305.3903 [hep-th].

[3] E. P. Verlinde and H. L. Verlinde, JHEP 0005, 034 (2000) [hep-th/9912018].

[4] E. Kiritsis, JHEP 1301, 030 (2013) [arXiv:1207.2325 [hep-th]].

[5] H. Osborn, Nucl. Phys. B 363, 486 (1991).

[6] Y. Nakayama, arXiv:1302.0884 [hep-th].

[7] S. 'i. Nojiri and S. D. Odintsov, Int. J. Mod. Phys. A 15, 413 (2000) [hep-th/9903033].

[8] M. Blau, K. S. Narain and E. Gava, JHEP 9909, 018 (1999) [hep-th/9904179].

[9] R. C. Myers and A. Sinha, JHEP 1101, 125 (2011) [arXiv:1011.5819 [hep-th]].

[10] I. Antoniadis, E. Gava and K. S. Narain, Phys. Lett. B 283, 209 (1992) [hep-th/9203071].

[11] M. J. Duff and S. Ferrara, Class. Quant. Grav. 28, 065005 (2011) [arXiv:1009.4439 [hep-th]].

[12] S. Jackson, R. Pourhasan and H. Verlinde, arXiv:1312.6914 [hep-th].

[13] E. Kiritsis, W. Li and F. Nitti, arXiv:1401.0888 [hep-th].

[14] Y. Nakayama, Eur. Phys. J. C 72, 1870 (2012) [arXiv:1009.0491 [hep-th]].