Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean

Wei Wei1,2,3, Xiaowei Chen2,4, Markus G. Weinbauer5, Nianzhi Jiao2,4,6 and Rui Zhang2,4,6✉

© The Author(s) 2022

Particle sinking is an important process in the ocean, influencing the biogeochemical cycle and driving the long-term preservation of carbon into the deep sea via the biological pump. However, as an important component of marine ecosystems, the role of viruses during sinking is still poorly understood. Therefore, we performed a series of transplantation experiments in the South China Sea to simulate environmental changes during sinking and investigate their effects on viral eco-dynamics and life strategy. Our study demonstrated increased viral production but decreased virus-mediated bacterial mortality after transplantation. A larger burst size and switch from the lysogenic to lytic strategy were shown to contribute to enhanced viral productivity. We provide experimental evidence that surface viral ecological characteristics changed dramatically after transplantation into deep-sea waters, indicating a potential importance of viruses during vertical sinking in the ocean. This effect probably provides positive feedback on the efficiency of the biological pump.

The ISME Journal (2022) 16:1668–1675; https://doi.org/10.1038/s41396-022-01224-9

INTRODUCTION
The vertical sinking of particles is one of the most important mechanisms driving oceanic dynamics throughout physical, chemical, and biological processes on a global scale. It is a major channel to transport and redistribute fixed carbon through photosynthesis from the surface to the deep ocean [1]. As a key component of the “biological pump” (BP) in the ocean, the particulate organic matter (POM) produced in the photic zone aggregates by a complex interplay among faecal pellets, carcasses of zooplankton, phytoplankton cells, and prokaryotic cells [2, 3] and regulates the global climate by long-term sequestration of atmospheric CO2 [4]. For instance, ca. 1–40% of the photosynthetically fixed CO2 flows into the dark zone of the ocean in the form of sinking POM [5]. Moreover, the sinking POM is continuously degraded and releases the dissolved organic matter (DOM) and nutrients, which are used by microbial communities and made available for recycling into the microbial loop [6]. As the main microbial communities on POM, colonizing bacteria have been revealed to harbor distinct features regarding diversity, structure, and dynamics, which are significantly different from those of the surrounding free-living bacterioplankton [7–9]. They are considered an important transformer in driving the disaggregation and remineralization of sinking POM to regulate the efficiency of the BP [10–13], and play a substantial role in global biogeochemical cycling [14, 15].

Over the past three decades, viruses have been found to be the most abundant “life forms” in global oceans, playing an important ecological role [16, 17]. They infected bacteria and are responsible for high bacterial mortality [18, 19]. Thus, the “viral shunt” could enhance the transformation of POM (e.g., host cells) into DOM (e.g., nucleic acid and protein) [20] and subsequently impact biogeochemical cycling in the global oceans [6, 17, 21, 22]. During sinking, viruses can be transplanted into the deep ocean directly through adsorption on POM or indirectly through infected cell hosts (e.g., viral particles in the infected bacterial cells) [23, 24]. However, up to present, the bacterium-virus interaction and the role of viruses in these processes are unclear. A recent study found that the transferred viral particles still retain infectivity for years in the deep-ocean environment [25], indicating that the vertical transportation of these viruses may continuously contribute to the activity of the deep-ocean viral population [26, 27]. Thus, we hypothesize that such direct and indirect vertical transportation in the ocean could impact the virus-host interaction, and subsequently influence the ecological role of microbes in the sinking process, as well as the efficiency of the BP.

To verify our hypothesis and better understand how the vertical transportation affects virus-host interactions by altering viral activity, dynamics and life strategy, we performed 18 transplantation experiments at 6 stations in the South China Sea (SCS) (Fig. 1). Our study for the first time reveals the effect of vertical transplantation on viral eco-dynamics and life strategies, such as the lytic and lysogenic viral production rate (VPR), viral decay rate (VD), burst size (BS), virus-mediated mortality (VMM) and fraction of lysogenic cells (FLC), and highlights the importance of viruses in vertical sinking in the ocean, which may influence the efficiency of the BP.
The abundances of picoeukaryotes, heterotrophic bacteria, and viruses were measured by using a flow cytometer (FCM, Epics Altra II, Beckman Coulter, USA) equipped with an air-cooled laser with a wavelength of 488 nm (Sapphire, Coherent, USA). The seawater samples were collected from the total 19 layers of the six stations (a, b, generated by Ocean Data View 4 software, https://odv.awi.de/). The transplantation experiments of surface bacterial/viral concentrate (5 m depth) mixed with virus-free seawater of each deeper layer were performed at the six stations (c, d). The schematic diagram of the transplantation experiments is shown (d) and detailed in the text. Abbreviations represent tangential flow filtration (TFF), incubation with mitomycin C (+MC), incubation without mitomycin C (−MC), viral production (VP) and viral decay (VD).

MATERIALS AND METHODS

Study area, sampling, and environmental parameters

Seawater samples were obtained at six stations along the Pearl River Estuary to the pelagic area of the SCS during a research cruise from August to September 2014 (Fig. 1a, b). The sampling covered three typical pelagic zones: upper epipelagic (0–75 m), lower epipelagic (75–200 m), and mesopelagic ocean (200–1000 m). At each station, water samples were collected with a CTD (SBE9/11 plus, Sea-Bird Electronics, Inc., USA) rosette sampler equipped with 12 Niskin bottles (12 l each) and then prefiltred with 20-µm mesh filters to remove zooplankton. Although this operation removed particles larger than 20 µm, previous investigations showed that these large POM aggregates occupy relatively small fraction (ca. 0.1%) in total particles in surface ocean [28, 29]. The prefiltred water was prepared for the determinations of picoplankton and viroplankton abundances and the following viral dynamics and life strategy experiment. The CTD was also equipped with sensors for measuring in situ data of depth, temperature, and salinity in each water layer of the stations. In addition, samples (500 ml) for nutrient analysis were stored at −20 °C, and then the concentrations of NO$_3^-$, NO$_2^-$, SiO$_4^{4-}$, and PO$_4^{3-}$ were determined by an Auto Analysis III, AA3 instrument (Bran-Luebbe, Germany) in the laboratory.

Picoplankton and viroplankton abundance

The subsamples (1.98 ml of seawater) for picoplankton and viroplankton abundance measurement were fixed with glutaraldehyde (20 µl, Sangon) at a final concentration of 0.5%. After incubation at 4 °C for 15 min in the dark, they were flash-frozen in liquid nitrogen and then stored at −80 °C until analysis [30]. The abundances of picoeukaryotes, Synechococcus, Prochlorococcus, heterotrophic bacteria, and viruses were measured by using a flow cytometer (FCM, Epics Altra II, Beckman Coulter, USA) equipped with an air-cooled laser with a wavelength of 488 nm (Sapphire, Coherent, USA).

Seawater samples were obtained at six stations along the Pearl River Estuary to the pelagic area of the SCS during a research cruise from August to September 2014. The sampling covered three typical pelagic zones: upper epipelagic (0–75 m), lower epipelagic (75–200 m), and mesopelagic ocean (200–1000 m). At each station, water samples were collected with a CTD (SBE9/11 plus, Sea-Bird Electronics, Inc., USA) rosette sampler equipped with 12 Niskin bottles (12 l each) and then prefiltred with 20-µm mesh filters to remove zooplankton. Although this operation removed particles larger than 20 µm, previous investigations showed that these large POM aggregates occupy a relatively small fraction (ca. 0.1%) in total particles in surface ocean [28, 29]. The prefiltred water was prepared for the determinations of picoplankton and vireoplankton abundances and the following viral dynamics and life strategy experiment. The CTD was also equipped with sensors for measuring in situ data of depth, temperature, and salinity in each water layer of the stations. In addition, samples (500 ml) for nutrient analysis were stored at −20 °C, and then the concentrations of NO$_3^-$, NO$_2^-$, SiO$_4^{4-}$, and PO$_4^{3-}$ were determined by an Auto Analysis III, AA3 instrument (Bran-Luebbe, Germany) in the laboratory.

Specifically, the samples for virus counting were diluted in Tris–EDTA buffer (pH: 8; Sigma), stained with SYBR Green I (0.5 × 10$^{-4}$ dilution of the commercial stock solution; Molecular Probes), incubated for 10 min at 80 °C in a thermostat water bath (DK8-501A, Shanghai Jinghong, China), and then cooled to room temperature for FCM analysis [31, 32]. Heterotrophic bacterial counting was performed on samples that were incubated with SYBR Green I (1 × 10$^{-4}$ dilution of the commercial stock solution) for 15 min in the dark. In addition, the abundances of picoeukaryotes, Synechococcus, and Prochlorococcus were directly determined by FCM without staining [33]. For all these samples, a suspension of yellow-green fluorescent beads (1 µm in diameter; Molecular Probes) was added as an internal standard, and all data were analysed with FCS Express V3 software (De Novo Software, http://www.denvosoft.com/). The typical scatter plots of each microbial group were shown in Fig. S1 and additional details about the FCM analysis and data treatment can be found in the previous reports [34, 35].

Lytic and lysogenic viral production

Lytic and lysogenic VP was measured through the dilution approach [36] for samples from the different depth layers and transplant experiments. Fifty milliliters of the bacterial concentrate obtained through tangential flow filtration (TFF) with a 0.22-µm polyvinylidene difluoride (PVDF) cartridge (Labscale, Millipore) from 600 ml of in situ seawater was mixed with 250 ml of virus-free filtrate produced from the same water sample obtained through TFF with a 30 kDa molecular weight polysulfone cartridge (Labscale, Millipore). This operation made viral abundance decline to ca. 10–20% of the initial abundance, and the bacterial concentration was similar to the in situ status [37]. Finally, the experiments measuring lytic and lysogenic VP were performed in 50 ml aseptic tubes (duplicate) with and without adding 1 µg ml$^{-1}$ mitomycin C (final concentration; Roche) [20, 38], which were then incubated in dry bath incubators (MK-20, Hangzhou Laboratories, China). The viral abundance at each concentration was determined through FCM analysis [31, 32]. Heterotrophic bacterial counting was performed on samples that were incubated with SYBR Green I (1 × 10$^{-4}$ dilution of the commercial stock solution) for 15 min in the dark. In addition, the abundances of picoeukaryotes, Synechococcus, and Prochlorococcus were directly determined by FCM without staining [33]. For all these samples, a suspension of yellow-green fluorescent beads (1 µm in diameter; Molecular Probes) was added as an internal standard, and all data were analysed with FCS Express V3 software (De Novo Software, http://www.denvosoft.com/). The typical scatter plots of each microbial group were shown in Fig. S1 and additional details about the FCM analysis and data treatment can be found in the previous reports [34, 35].

Lytic and lysogenic VP was measured through the dilution approach [36] for samples from the different depth layers and transplant experiments. Fifty milliliters of the bacterial concentrate obtained through tangential flow filtration (TFF) with a 0.22-µm polyvinylidene difluoride (PVDF) cartridge (Labscale, Millipore) from 600 ml of in situ seawater was mixed with 250 ml of virus-free filtrate produced from the same water sample obtained through TFF with a 30 kDa molecular weight polysulfone cartridge (Labscale, Millipore). This operation made viral abundance decline to ca. 10–20% of the initial abundance, and the bacterial concentration was similar to the in situ status [37]. Finally, the experiments measuring lytic and lysogenic VP were performed in 50 ml aseptic tubes (duplicate) with and without adding 1 µg ml$^{-1}$ mitomycin C (final concentration; Roche) [20, 38], which were then incubated in dry bath incubators (MK-20, Hangzhou Laboratories, China).
Allsheng, China) at in situ temperature in the dark. Subsamples (1 ml) were collected to enumerate the viral abundance at 0, 3, 6, 9, and 12 h of incubation. The lytic and lysogenic VP (viruses ml⁻¹ h⁻¹) was estimated through viral accumulation in each 12 h incubation with the VIPCAL online program (http://www.univie.ac.at/nuhag-php/vipcalc/) [39]. Furthermore, the VPR was calculated as \(VPR = \frac{\text{VP}_{\text{t}} \left(\text{cells ml}^{-1} \right)}{\text{BS}_{\text{t}} \left(\text{cells ml}^{-1} \right) \times 1000} \), where \(\text{VP}_{\text{t}} \) represents the viral abundance at \(t \) h in the VP experiment. The BS was defined as \(\text{BS} = \frac{\text{VP}_{\text{t}} \left(\text{cells ml}^{-1} \right)}{\Delta \text{BA}} \), where \(\Delta \text{BA} \) represents the amount of bacterial death determined from the reduction in bacterial abundance per hour during the incubation of the VP experiments, and is calculated by using the equation \(\Delta \text{BA} = \frac{\text{BA}_{\text{min n}} \left(\text{cells ml}^{-1} \right) - \text{BA}_{\text{max n}} \left(\text{cells ml}^{-1} \right)}{n} \). This formula for BS calculation is an improved method according to prior studies [40, 41], where \(\text{BA}_{\text{max n}} \) and \(\text{BA}_{\text{min n}} \) represent the maximum and minimum bacterial abundance at the \(n \)th peak of the polyline with bacterial abundance versus time (i.e., 0, 3, 6, 9, and 12 h) in the VP experiment, and \(n \) and \(t \) are the corresponding times. Since grazers were destroyed or inactivated by tangential flow filtration [37], the bacterial mortality in the incubation system is mainly due to viral lysis in our study. Therefore, the VMM was calculated by using the equation \(\text{VMM} = \frac{\Delta \text{BA} \times 12h}{\text{BA}_0} \), where \(\text{BA}_0 \) represents the 0 h bacterial abundance in the incubation of the VP experiment. In addition, FLC, i.e., the percent of lysogenic cells, was estimated by using the formula reported in the VIPCAL online program (http://www.univie.ac.at/nuhag-php/vipcalc/) [39].

Experimental setup of transplantation

The bacterial/viral concentrate obtained from the 5 m depth was mixed with virus-free seawater of each deeper layer at the six stations (Fig. 1c), for example, in Station J4 with four experiments (Fig. 1d): (1) 5 m bacterial concentrate + 5 m virus-free seawater with/without mitomycin C (in situ lysogenic bacilli VP); (2) 5 m virus concentrate + 5 m virus-free seawater (in situ VD); (3) 5 m bacterial concentrate + 90 m virus-free seawater with/without mitomycin C (transplanted lysogenic/vyotic VP); and (4) 5 m viral concentrate + 90 m virus-free seawater (transplanted VD). Each sample was added into a 50 ml aseptic tube (duplicate) and incubated in a dry bath incubator for 12 h with the in situ temperature of each layer and in the dark to measure the (lytic and lysogenic) VP and VD as described above. Similar to the dilution approach for measuring VP [36], the mixture of viral concentrate (50 ml) with each deeper layer of virus-free water (250 ml) was used to determine the VDB of in the transplant experiments.

Statistical analysis

Using the SPSS (19.0) software package (SPSS Inc., Chicago, IL, USA), Pearson’s correlation analysis was applied to assess the degree of correlation among the biotic or abiotic parameters investigated, and Student’s t-test (paired design) was performed to assess the significant difference in the (lytic and lysogenic) VP, VDB, BS, FLC and VMM between surface water and transplantation treatments. A P value < 0.05 was used to indicate statistical significance. In addition, distance-based multivariate analysis for a linear model using forward selection (DISTLM-forward) was used to test the relationships between viral and environmental parameters in Primer & software with the PERMANOVA + package (Primer-E, Plymouth, United Kingdom).

RESULTS AND DISCUSSION

In situ environmental and microbial parameters

The in situ environmental variables at the six stations of the SCS with a total of 19 layers were investigated, covering the typical regions of the SCS, from coastal to offshore sea. The temperature ranged from 4.4 to 29.8 °C and dropped sharply with increasing depth (Fig. S2 and Table S1). The salinity content tended to increase rapidly from the surface of the coastal sea to the deep layer of the offshore sea, varying from 29.6 to 34.6 (Fig. S2 and Table S1). Similarly, the concentrations of NO₃⁻ → NO₂⁻, SiO₂, and PO₄³⁻ in the SCS displayed a trend showing that the deep water contained higher nutrient versus surface water, with mean values of 12.10 ± 16.32 mmol l⁻¹, 22.38 ± 34.23 mmol l⁻¹ and 1.26 ± 2.15 mmol l⁻¹, respectively (Fig. S3 and Table S1).

The autotrophic microbes decrease in abundance with depth at three stations at open sea. Specifically, the Synechococcus, Prochlorococcus and eukaryotic abundances varied from 3.31 ± 0.25 × 10⁵ cells ml⁻¹ to 1.04 ± 0.09 × 10⁵ cells ml⁻¹, 1.08 ± 0.03 × 10⁵ cells ml⁻¹ to 9.10 ± 4.30 × 10⁴ cells ml⁻¹ and 6.54 ± 0.69 × 10³ cells ml⁻¹ to 1.50 ± 3.60 × 10³ cells ml⁻¹, respectively (Table S1). The heterotrophic bacterial and viral abundances were 7.23 ± 5.44 × 10⁵ cells ml⁻¹ and 6.41 ± 4.24 × 10⁴ viruses ml⁻¹ on average, respectively, and tended to increase with depth at Stations A9 and J2 and decrease with depth at the other four stations. Horizontally, the heterotrophic bacterial abundance decreased from the coastal (1.77 ± 0.07 × 10⁵ cells ml⁻¹) to the offshore area (7.21 ± 0.02 × 10⁵ cells ml⁻¹) at the surface, while the viral abundance showed a maximum of 1.01 ± 0.01 × 10⁵ viruses ml⁻¹ at Station J4.

Vertically, the lytic VP R tended to increase with depth at five of the six stations, and the lysogenic VP R increased with depth at Stations J2, K3, and SEATS but tended to decrease with depth at Stations A9, J4, and I1. Horizontally, the lytic VP R tended to increase from the coast to the offshore area at the surface, while the lysogenic VP R did not show a clear trend. The VDB showed a downward trend with depth at each station and a weak rising trend from the coastal to the offshore area at the surface, with a range from 0.58 ± 0.10% h⁻¹ (30 m at Station A9) to 4.14 ± 0.50% h⁻¹ (5 m at Station I1). Overall, the distribution of microbial parameters was consistent with previous studies in the SCS and other marine systems [31, 32, 42-48].

The virus-to-bacterium ratio (VBR) is an index to represent the relationship between viruses and bacteria and usually reflects the balance of VP and VD [49, 50]. In our investigation, the VBR ranged from 4.78 to 23.97 and was higher in the deeper layers of water than in the surface water (9.45 ± 1.35 vs. 9.15 ± 1.10 on average). However, there was no significant correlation between VBR and lytic VP R, lysogenic VP R and VDB in our investigation (Pearson’s correlation analysis, data not shown). We further found that only 57% of the total variation in the VBR was explained by viral abundance. PO₄³⁻ concentration and Synechococcus abundance (DISTLM analysis, Table S2). These suggest that additional environmental processes may strongly regulate the distribution of the VBR. In addition to viral particles originating from the in situ deep ocean, they can be continuously transported from surface water through several potential mechanisms. First, viral particles are transported into the deep ocean through adsorption on POM [23]. Second, infected cells were inevitably adsorbed by POM to transfer into the deep ocean, indirectly resulting in the sinking of numerous viral particles [24, 51]. Additionally, internal waves, mesoscale eddies, and other processes promote the mixing of water masses [52-54], driving the potentially vertical mixing of bacterioplankton and viroplankton. Therefore, the relatively high VBR in the deep ocean may be explained by viruses sinking from surface water [50, 55, 56]. Other factors influencing VBR are discussed further down.

Vertical transplantation affecting viral production and viral decay rates

The lytic VP R of the transplantation treatments (i.e., the surface bacterial concentrate transplanted into virus-free seawater of each deeper layer) at each station was significantly higher than that of the surface water (\(n = 12, P < 0.05 \)), at 9.21 ± 4.92% h⁻¹ vs. 3.81 ± 1.66% h⁻¹ on average (Fig. 2a, b). This increasing trend was most obvious at Station I1, where the lytic VP R increased with ca. an
of the latent period and a decline in VMM [57]. Interestingly, the intracellular viral replication in bacterial cells thus causing a delay likely due to a decrease in temperature, which slows down the surface water (Fig.3b), which was consistent with the increase BS was 3.89-fold higher in the transplantation treatments than in control treatments. Error bars indicate the standard deviations calculated from all measurements in control or in transplantation experiments. ns, no significant difference; *p < 0.05; **p < 0.01.

Three possible reasons could result in an increase in lytic VPR in the transplantation treatments: (1) increased host infection rate, (2) increased BS, and (3) switch from the lysogenic to lytic strategy. In the VP experiments, the production rate was estimated by the reduction and reoccurrence assay [36]. This dilution approach resulted in ca. an order of magnitude reduction in viral abundance, thus greatly decreasing the virus-host contact rate (i.e., blocking new infections) [37]. Therefore, the production of progeny viruses was likely not due to an enhanced host infection rate; rather it was due to the lysis of already infected cells. In fact, the VMM was lower in the transplantation treatments than in the surface water (n = 12, p < 0.01; Fig. 3a). This observation is most likely due to a decrease in temperature, which slows down intracellular viral replication in bacterial cells thus causing a delay of the latent period and a decline in VMM [57]. Interestingly, the BS was 3.89-fold higher in the transplantation treatments than in the surface water (Fig. 3b), which was consistent with the increase of BS in natural environment with depth [20]. An increase in BS implied that the host had increased metabolic activity during transplantation, which provided additional substances and energy for virus replication [51]. The composition of the viral particles is relatively rich in the elements of N and P [22], so viral replication in infected cells often is limited by the scarcity of P and N in oligotrophic surface oceans [58]. Inhibition of viral production was considered as an important factor in the lysis-lysogeny switch by previous studies. For example, salt stress was found to shock the stability of bacteriophage λimm434 lysogens [70]. PO₄³⁻ was increased by surrounding sufficient nutrients, which in turn could facilitate the synthesis of progeny viruses in infected cells and increased VP [62]. In addition, our data showed that the increased BS offset the decline in VP due to reduced VMM and caused a general increase in lytic VPR.

The shift from lysogeny to lysis could have been an alternative or additional reason for increased lytic VPᵣ in the deeper-layer transplanted incubation. Lysogeny is a viral life strategy in which the viral genome integrates into the host’s genome to form prophages and initiate a symbiotic relationship with its host until the lytic cycle is induced [63]. Previous studies found that a high stability of bacteriophage λimm434 lysogens [70]. PO₄³⁻ was increased by surrounding sufficient nutrients, which in turn could facilitate the synthesis of progeny viruses in infected cells and increased VP [62]. In addition, our data showed that the increased BS offset the decline in VP due to reduced VMM and caused a general increase in lytic VPR.

In the VP experiments, the production rate was estimated by the reduction and reoccurrence assay [36]. This dilution approach resulted in ca. an order of magnitude reduction in viral abundance, thus greatly decreasing the virus-host contact rate (i.e., blocking new infections) [37]. Therefore, the production of progeny viruses was likely not due to an enhanced host infection rate; rather it was due to the lysis of already infected cells. In fact, the VMM was lower in the transplantation treatments than in the surface water (n = 12, p < 0.01; Fig. 3a). This observation is most likely due to a decrease in temperature, which slows down intracellular viral replication in bacterial cells thus causing a delay of the latent period and a decline in VMM [57]. Interestingly, the BS was 3.89-fold higher in the transplantation treatments than in the surface water (Fig. 3b), which was consistent with the increase of BS in natural environment with depth [20]. An increase in BS implied that the host had increased metabolic activity during transplantation, which provided additional substances and energy for virus replication [51]. The composition of the viral particles is relatively rich in the elements of N and P [22], so viral replication in infected cells often is limited by the scarcity of P and N in oligotrophic surface oceans [58]. Inhibition of viral production was found during the incubation of both isolates and natural communities under the condition of nutrient limitation [59, 60]. Another study showed that the addition of inorganic nutrients increased the production rate of viral community by 14–52% in dark incubation [61]. Motegi and colleagues also suggested that addition of inorganic P and N can enhance prokaryotic growth and viral production in the surface ocean [38, 60]. Indeed, in 5 of 6 stations, the concentrations of NO₃⁻+NO₂⁻, SiO₂, and PO₄³⁻ clearly increased with depth (Fig. S3). Therefore, when the surface bacteria were transplanted into the deep ocean, the bacterial activity could have been increased by surrounding sufficient nutrients, which in turn could facilitate the synthesis of progeny viruses in infected cells and increased VP [62]. In addition, our data showed that the increased BS offset the decline in VP due to reduced VMM and caused a general increase in lytic VPR.

The shift from lysogeny to lysis could have been an alternative or additional reason for increased lytic VPᵣ in the deeper-layer transplanted incubation. Lysogeny is a viral life strategy in which the viral genome integrates into the host’s genome to form prophages and initiate a symbiotic relationship with its host until the lytic cycle is induced [63]. Previous studies found that a high stability of bacteriophage λimm434 lysogens [70]. PO₄³⁻ was increased by surrounding sufficient nutrients, which in turn could facilitate the synthesis of progeny viruses in infected cells and increased VP [62]. In addition, our data showed that the increased BS offset the decline in VP due to reduced VMM and caused a general increase in lytic VPR.

The shift from lysogeny to lysis could have been an alternative or additional reason for increased lytic VPᵣ in the deeper-layer transplanted incubation. Lysogeny is a viral life strategy in which the viral genome integrates into the host’s genome to form prophages and initiate a symbiotic relationship with its host until the lytic cycle is induced [63]. Previous studies found that a high stability of bacteriophage λimm434 lysogens [70]. PO₄³⁻ was increased by surrounding sufficient nutrients, which in turn could facilitate the synthesis of progeny viruses in infected cells and increased VP [62]. In addition, our data showed that the increased BS offset the decline in VP due to reduced VMM and caused a general increase in lytic VPR.

The ISME Journal (2022) 16:1668 – 1675
Fig. 3c), suggesting that environmental changes due to transplantation can trigger the switch from lysogeny to lysis and cause lysis afterward to release more viral particles. Furthermore, the lysogenic VPR was significantly higher in transplantation treatments than in surface water \((n = 12, p < 0.05)\), with a range of increase from 28.0 to 180.7\% (Fig. 2a, b), which was also probably due to the increased BS when the lysogenic strategy switched to the lytic strategy in the transplantation treatments \((n = 12, p < 0.05); \text{Fig. } 3d)\). Altogether, the results suggested that vertical sinking may enhance both lytic and lysogenic VPR via the promotion of BS, probably due to additional nutrient supply, and trigger the switch from the lysogenic to lytic strategy, probably due to environmental changes.

In contrast to lytic and lysogenic VPR, the VDR in the surface water was significantly higher than that in the transplantation treatments \((n = 12, p < 0.01)\) and tended to decrease with the depth of transplantation (Fig. 2a, b). Comparing the data between surface water and deepest layer transplantation treatments, the
addition, viral lysis occurring during particle sinking will regulate bacterial diversity and community structure and, subsequently, impact the biological utilization and transformation of both particular and dissolved organic matters. This indirect influence of viruses on quantity and quality of organic matters can be revealed by monitoring bacterial and viral community with molecular ecological techniques, distinguishing group-specific responses with cell sorting techniques [80, 81], and detecting taxon-specific lysis with polony and ipolony techniques [82].Viruses have been found to be beneficial for increasing the abundance, size, and stability of aggregates [83]. Attributed to lysis products and cell residues that acted as biological glue, causing the particles to stick together [65, 84], the release of cell contents by viral lysis could enhance aggregate formation [65, 85]. For example, an investigation suggested that aggregate formation and vertical carbon fluxes were enhanced by the Coccolithovirus infections of coccolithophore, *Emiliania huxleyi*, blooms in the North Atlantic [86]. These indicate that viral infection can “shuttle” surface organic particles into deep waters, and may promote the efficiency of BP in the ocean [87]. In this study, for the first time, we revealed that environmental changes caused by vertical transplantation decreased the VMM, but significantly increased lytic and lysogenic VP by increasing BS and triggering the switch from the lysogenic to lytic strategy, which was confirmed by the decline in the FLC. However, the VMM and VD_{BR} decreased obviously, probably due to cooling inhibition.

strongest reduction was 59.1% at Station K3 and that the weakest reduction was 28.6% at Station J2. These results suggested that the VD_{BR} was inhibited by sinking into the deep ocean, which may be mainly caused by the low temperature and low activity of extracellular enzymes [32, 42, 72]. Low temperature contributes to the stability of membrane lipids and the protein capsids of viral particles, e.g., it protects the biomolecular elasticity and molecular structure of proteins, thus reducing the degradation of viral particles [73]. In addition, when the surface viroplankton were transplanted into the deeper seawater, fewer extracellular enzymes due to less biomass produced and low temperature in the transplanted incubation could have decreased their activity [47, 74, 75], resulting in a reduction in VD_{BR}.

Biogeochemical significance

Both bacteria colonized on POM and surrounding free-living bacteria are considered important drivers causing rapid degradation of the sinking POM [15, 76, 77]. Our study shows that viral particles continued to be produced by the lysis of infected bacteria in vertical transplantations, probably resulting in new infection and lysis events. Together with the low VD_{BR} in the deep ocean, these viruses indirectly transmitted from surface water are an underlying mechanism contributing to the high VBR, a common phenomenon observed in deep-ocean environments, such as the North Atlantic Ocean [55], South Atlantic Ocean [78], and Pacific Ocean [79].
11. Buesseler KO. The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycles. 1998;12:297–310.

12. Schlitzer R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhatla P, editor. Inverse Methods in Global biogeochemical Cycles. Washington, DC: American Geophysical Union; 2000. p. 114–107–24.

13. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, KobaT, Karl DM. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr. 2008;53:1327–38.

14. Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.

15. Herndl GJ, Reinhartler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.

16. Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2011;12:850–1.

17. Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay, and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.

18. Zhang R, Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of vioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.

19. Noble RT, Fuhrman JA. Virus decay and its causes in coastal waters. Appl Environ Microbiol. 1997;63:77–83.

20. Suttle CA. Viruses in the sea. Nature. 2005;437:356–8.

21. Fuhrman JA, Reinhartler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.

22. White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.

23. Chen X, Liu H, Weinbauer M, Chen B, Jiao N. Viral dynamics in the surface water of subtropical gyre (Station ALOHA). J Geophys Res. 2010;115:C08027.

24. Marie D, Partensky F, Vaulot D, Brussaard C. Numeration of phytoplankton, diversity of bacterioplankton in the deep sea. Commun Biol. 2020;3:256.

25. Rowe JI, Burton T, NATO, Kappes JM, Westa J, et al. The impact of viral burst size on herbivorous phytoplankton. Limnol Oceanogr. 2011;56:300–17.

26. Bratbak G, Egge JK, Gravemo J, Smestad J, Molvik A, Gravemo J, et al. Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Appl Environ Microbiol. 1997;63:77–89.

27. Tian Y, Cai Y, Xu Y, Luo T, Zhao Z, Wang Q, et al. Stability and infectivity of allochthonous viruses in deep sea: A long-term high pressure simulation experiment. Deep-Sea Res Part I-Oceanogr Res Pap. 2020;161:103302.

28. Hao A, Vaque P, Sá EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.

29. Zhang R, Li Y, Yao Y, Wang Y, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2011;12:850–1.

30. White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.

31. Evans C, Pearce I, Brussaard CP. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol. 2009;11:2924–34.

32. De Corte D, Sintes E, Winter C, Yokokawa T, Reinhartler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.

33. Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.

34. Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes in aquatic systems. J Mar Biol Assoc UK. 2006;86:613–21.

35. Brussaard CP. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 1978;24:321–4.

36. Bratbak G, Egghe JK, Heldal M. Viral mortality of the marine alga Emiliana huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Progr Ser. 1993;93:39–48.

37. Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.

38. Bratbak G, Egghe JK, Heldal M. Viral mortality of the marine alga Emiliana huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Progr Ser. 1993;93:39–48.

39. Luef B, Luef F, Peduzzi P. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ Microbiol Rep. 2009;1:78–85.

40. Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ. Repeating patterns of vioplankton production within an estuarine ecosystem. Proc Natl Acad Sci USA. 2011;108:11506–11.

41. Wei W, Wang N, Cai L, Wang J, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of vioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.
68. Ciszkó M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y. Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol. 2008;53:1154–62.

69. Bettarel Y, Bouvier T, Agis M, Bouvier C, Van Chu T, Combe M, et al. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam. Micro Ecol. 2011;62:143–54.

70. Shklinjy P, Koudelka GB. Effect of salt shock on stability of λsph-infected lysogens. J Bacteriol. 2007;189:3115–23.

71. Tuomi P, Fagerbakke KM, Bratbak G, Heldal M. Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol Ecol. 1995;16:23–134.

72. Dell'Anno A, Corinaldesi C, Danovaro R. Virus deposition provides an important contribution to benthic deep-sea ecosystem functioning. Prog Natl Acad Sci USA. 2015;112:E2014–E2019.

73. Mojica KD, Brussaard CP. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.

74. Zweifel UL. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga, Estuar Shelf Sci. 1999;48:357–70.

75. Pomeroy LR, Wiebe WJ. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Micro Ecol. 2002;23:187–204.

76. Ploug H, Grossart H, Azam F, Jørgensen BB. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol-Prog Ser. 1999;179:1–11.

77. Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature. 2007;447:782–91.

78. De Corte D, Sintes E, Yokokawa T, Lekunberri I, Herndl GJ. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ Microbiol Rep. 2016;8:305–15.

79. Yang YH, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.

80. Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386.

81. Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the open ocean. ISME J. 2019;13:232–6.

82. Mruwat N, Carlson MCG, Golden S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanobacteria abundances. ISME J. 2021;15:41–54.

83. Peduzzi P, Weinbauer MG. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol Oceanogr. 1993;38:1562–5.

84. Uitz J, Stramski D, Baudoux A, Reynolds RA, Wright VM, Dubranna J, et al. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol Oceanogr. 2010;55:2317–30.

85. Sullivan MB, Wett JS, Wilhelm SW. Viral ecology comes of age. Environ Microbiol Rep. 2017;9:33–35.

86. Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schierer BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.

87. Kranzler CF, Brzezinski MA, Cohen NR, Lampé RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;4:231–7.

88. Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Farooq Azam of University of California San Diego for his constructive reviews to improve the manuscript and Prof. Jun Sun of Tianjin University of Science and Technology for providing some environmental data. This work was supported by the National Natural Science Foundation of China (42188102, 91951209, 41906085, 41861144018) and the China Postdoctoral Science Foundation (2019M662236, 2020T130066XZ). Markus Weinbauer was supported by the international collaborative project on “Marine Biogeochemistry and Ecotoxicology” funded by the Program of Introducing Talents of Discipline to Universities (BP0719030).

AUTHOR CONTRIBUTIONS

WW, NJ and RZ conceived and designed the study. WW and XC carried out the experiments. WW, XC and RZ performed the data analysis and figure drawing. MGW and RZ provided critical biological interpretations of the data. NJ and RZ supervised this work. WW wrote the original draft and all authors reviewed and edited the draft manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-022-01224-9.

Correspondence and requests for materials should be addressed to Nianzhi Jiao or Rui Zhang.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.