Supporting Information

Supporting information for *Repeatability of IVIM biomarkers from diffusion-weighted MR imaging in head and neck: Bayesian probability versus neural network.*

Contents

Examples of regions of interest..2
P-values of comparison wCV..3
Neural network inconsistencies in parametric maps. ...4
Parametric IVIM maps – 100 instances of IVIM-NET...5
Parametric IVIM maps – 100 instances of IVIM-NET$_{mod}$..106
Examples of regions of interest

Supporting Information Figure 1S: ADC maps with examples of the regions of interest indicated.
Supporting Information

Table 1: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for D_t.

	PTERGID	TONSIL	PTERGID	TONSIL	PTERGID	TONSIL	Bayesian	p-value
Nonlinear Least Squares	0.004	0.131	0.002	0.020	0.004	0.002	Intra-Session	0.05
Bayesian	0.004	0.193	0.010	0.049	0.037	0.084	Inter-Session	p-value
IVIM-NET	0.275	0.160	0.027	0.193	0.160	0.557	Intra-Session	0.00
	0.770	0.193	0.064	0.492	0.492	0.010	Inter-Session	p-value

Table 2: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for D_p.

	PTERGID	TONSIL	PTERGID	TONSIL	PTERGID	TONSIL	Bayesian	p-value
Nonlinear Least Squares	0.105	0.004	0.002	0.002	0.002	0.002	Intra-Session	0.05
Bayesian	0.014	0.002	0.002	0.002	0.002	0.002	Inter-Session	p-value
IVIM-NET	0.064	0.625	0.375	0.020	0.014	0.695	Intra-Session	0.00
	0.105	0.131	0.020	0.105	0.049	0.084	Inter-Session	p-value

Table 3: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for f_p.

	PTERGID	TONSIL	PTERGID	TONSIL	PTERGID	TONSIL	Bayesian	p-value
Nonlinear Least Squares	0.625	0.006	0.922	0.002	0.006	0.064	Intra-Session	0.05
Bayesian	0.006	0.002	1.000	0.002	0.006	0.846	Inter-Session	p-value
IVIM-NET	0.064	0.020	0.002	0.014	0.695	0.002	Intra-Session	0.00
	0.695	0.375	0.006	0.002	0.002	0.492	Inter-Session	p-value

Supporting Information

Table 15: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for D_t.

Table 25: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for D_p.

*Table 35: Wilcoxon signed-rank test p-values, comparing paired wCV values of the methods for f_p.***
Neural network inconsistencies in parametric maps.

Below are some notable examples of visual differences between instances of the neural networks. Maps of all instances for both IVIM-NET and IVIM-NET\textsubscript{mod} have also been included.

Supporting Information Figure 2S: Example of D_t maps from three instances of IVIM-NET with similar distribution but different absolute values.

Supporting Information Figure 3S: Example of D_p maps from four instances of IVIM-NET: two with similar distribution but different values (instance 1 and 2) and two with a different distribution (instance 5 and 11).

Supporting Information Figure 4S: Example of D_p maps from three instances of IVIM-NET\textsubscript{mod} with different values.
Parametric IVIM maps

100 instances of IVIM-NET

(Set your PDF viewer to single page view for easy comparison.)
Network instance 1
Network instance 5

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 6
Network instance 10
Network instance 13

Images show different parameters:
- **D_p (mm^2/s)**
- **D_t (mm^2/s)**
- **f_p**
- **S_0**
Network instance 15

- $D_p \text{ (mm}^2/\text{s})$
- $D_t \text{ (mm}^2/\text{s})$
- f_p
- S_o
Network instance 19

- **D_p (mm^2/s)**
 - Range: 0.000 to 0.150

- **D_t (mm^2/s)**
 - Range: 0.000 to 0.002

- **f_p**
 - Range: 0.0 to 0.7

- **S_0**
 - Range: 0.0
Network instance 20
Network instance 21
Network instance 24

Dp (mm²/s)

Dt (mm²/s)

fp

So
Network instance 25
Network instance 26

![Images of network instance 26 with different parameters: Dp (mm²/s), Dt (mm²/s), fp, and So.](image)
Network instance 27
Network instance 28
Network instance 29

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 31

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 33

![Four images showing different metrics: D_p (mm2/s), D_t (mm2/s), f_p, and S_0.](Image)
Network instance 34
Network instance 35

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 36

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 37

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 39

- **D_p (mm²/s)**: Scale from 0.000 to 0.150
- **D_t (mm²/s)**: Scale from 0.000 to 0.002
- **f_p**: Scale from 0.0 to 0.7
- **S_0**: Scale from 0.0 to 0.0
Network instance 40

- $D_p (\text{mm}^2/\text{s})$ with values from 0.000 to 0.150
- $D_t (\text{mm}^2/\text{s})$ with values from 0.000 to 0.002
- f_p with values from 0.0 to 0.7
- S_0, scaled from 0.0 to x
Network instance 42

![Images showing diffusion properties](image-url)
Network instance 44

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 47

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 49

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 50

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 51

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 52

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 53

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 55

- D_p (mm2/s) scale: 0.000 to 0.150
- D_t (mm2/s) scale: 0.000 to 0.002
- f_p scale: 0.0 to 0.7
- S_0 scale: 0.0 to x
Network instance 56

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 58

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 59

- D_p (mm²/s)
- D_t (mm²/s)
- f_p
- S_0
Network instance 60

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 61

![Images showing D_p and D_t with scale bars for each parameter.]

- D_p (mm2/s)
- D_t (mm2/s)
Network instance 63

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 64

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 66

$D_p \text{ (mm}^2/\text{s})$

$D_t \text{ (mm}^2/\text{s})$

f_p

S_0
Network instance 68
Network instance 69

![Image of network instance 69 with different parameters: D_p (mm²/s), D_t (mm²/s), f_p, and S_0.](image-url)
Network instance 70

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 71
Network instance 73

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 75

D_p (mm^2/s)

D_t (mm^2/s)

f_p

S_0
Network instance 76

![Image of network instances](image-url)
Network instance 77
Network instance 78
Network instance 79

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 80

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 82

- $D_p (\text{mm}^2/\text{s})$
- $D_t (\text{mm}^2/\text{s})$
- f_p
- S_0
Network instance 85
Network instance 86

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 87

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 90

- D_p (mm²/s)
- D_t (mm²/s)
- f_p
- S_0
Network instance 91

[Images of MR scans with color bars for D_p (mm^2/s) and D_t (mm^2/s)]
Network instance 92

\(D_p \text{ (mm}^2/\text{s})\)

\(D_t \text{ (mm}^2/\text{s})\)

\(f_p\)

\(S_0\)
Network instance 93

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 94
Network instance 95
Network instance 97

![Images showing diffusion coefficient maps]
Parametric IVIM maps

100 instances of IVIM-NET_{mod}

(Set your PDF viewer to single page view for easy comparison.)
Network instance 1

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 2
Network instance 3

- D_p (mm2/s) scale
- D_t (mm2/s) scale
- f_p scale
- S_0 scale
Network instance 4
Network instance 5

Graph showing diffusion images with scales for D_p (mm²/s) and D_t (mm²/s) along with labels for f_p and S_0. The images display different patterns, indicating variations in diffusion properties.
Network instance 10

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 11

![Images of flow and diffusion tensors with labels Dp (mm^2/s), Dt (mm^2/s), fp, and S0.](image-url)
Network instance 14

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 15

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 16
Network instance 19

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 20

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 21
Network instance 22

Images:
- Upper left: Map of D_p (mm2/s)
- Upper right: Map of D_t (mm2/s)
- Lower left: Map of f_p
- Lower right: Map of S_0

Scale:
- D_p (mm2/s) scale: 0.000 to 0.150
- D_t (mm2/s) scale: 0.000 to 0.002
- f_p scale: 0.0 to 0.7
- S_0 scale: 0.0
Network instance 29
Network instance 30

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 31
Network instance 32

![Images showing network instance 32 with color bars indicating values of D_p (mm2/s) and D_t (mm2/s).]
Network instance 33

D_p (mm2/s)

D_t (mm2/s)

f_p

S_0

x
Network instance 34
Network instance 35

- $D_p (\text{mm}^2/\text{s})$
- $D_t (\text{mm}^2/\text{s})$
- f_p
- S_0
Network instance 37

D_p (mm^2/s)

D_t (mm^2/s)

f_p

S_0
Network instance 38

![Images of two sets of images with scales for D_p (mm2/s) and D_t (mm2/s), along with scales for f_p and S_0.]
Network instance 39
Network instance 42

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 46

![Images showing different parameters: D_p (mm2/s), D_t (mm2/s), f_p, and S_0.](image_url)
Network instance 47
Network instance 48

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 49

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 51

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 55
Network instance 56

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 57

![Images showing different parameters: D_p, D_t, f_p, and S_0.]
Network instance 58

![Images of network instance 58 showing different parameters and data:]
- D_p (mm2/s) with a scale from 0.000 to 0.150
- D_t (mm2/s) with a scale from 0.000 to 0.002
- f_p with a scale from 0.0 to 0.7
- S_0 with a scale from 0.0 to x
Network instance 59

\[D_p \text{ (mm}^2/\text{s}) \]

\[D_t \text{ (mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 61

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 63
Network instance 64

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 66

\[D_p \text{ (mm}^2\text{/s)} \]

\[D_t \text{ (mm}^2\text{/s)} \]

\[f_p \]

\[S_0 \]
Network instance 69

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 70

D_p (mm^2/s)

D_t (mm^2/s)

f_p

S_o
Network instance 71

D_p (mm^2/s)

D_t (mm^2/s)

f_p

S_0
Network instance 74
Network instance 75

![Image of network instance 75 with two graphs showing diffusion and perfusion parameters. The graphs display values for D_p and D_t in mm2/s, and f_p and S_0.](image-url)
Network instance 76

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 78

- D_p (mm2/s)
 - Range: 0.000 to 0.150
- D_t (mm2/s)
 - Range: 0.000 to 0.002
- f_p
 - Range: 0.0 to 0.7
- S_0
 - Range: 0.0 to x
Network instance 79

![Image of network instance 79 with labeled components: D_p (mm2/s), D_t (mm2/s), f_p, S_0.](image-url)
Network instance 80

D_p (mm^2/s)

D_t (mm^2/s)

f_p

S_0
Network instance 82

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 84
Network instance 88

- D_p (mm2/s)
 - Range: 0.000 to 0.150

- D_t (mm2/s)
 - Range: 0.000 to 0.002

- f_p
 - Range: 0.0 to 0.7

- S_0
 - Range: 0.0
Network instance 89
Network instance 90

- D_p (mm2/s)
- D_t (mm2/s)
- f_p
- S_0
Network instance 91

- D_p (mm2/s)
 - Range: 0.000 to 0.150

- D_t (mm2/s)
 - Range: 0.000 to 0.002

- f_p
 - Range: 0.0 to 0.7

- S_0
 - Range: 0.0
Network instance 92
Network instance 94

- $D_p \text{ (mm}^2/\text{s})$
- $D_t \text{ (mm}^2/\text{s})$
- f_p
- S_0
Network instance 96

![Images of network instance 96 showing D_p (mm^2/s), D_t (mm^2/s), f_p, and S_0.]
Network instance 98

\[D_p (\text{mm}^2/\text{s}) \]

\[D_t (\text{mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]
Network instance 100

\[D_p \text{ (mm}^2/\text{s}) \]

\[D_t \text{ (mm}^2/\text{s}) \]

\[f_p \]

\[S_0 \]