Heterogeneity of colorectal adenomas, the serrated adenoma, and implications for screening and surveillance

Hugh James Freeman

Abstract

Current algorithms for screening and surveillance for colon cancer are valuable, but may be limited by the underlying nature of the targeted neoplastic lesions. Although part of the success of adenoma removal relates to interruption of so-called “adenoma-carcinoma sequence”, an alternate serrated pathway to colon cancer may pose difficulties with the ultimate results achieved by traditional colonoscopic methods. The endpoint carcinoma in this unique pathway may be derived from a dysplastic serrated adenoma. These tend to be located primarily in the right colon, especially in females, and are frequently associated with co-existent colon cancer. Unfortunately, however, there are few, if any, other identifiable risk factors, including age or family history of colon polyps or colon cancer. Moreover, this alternate serrated pathway may itself also be quite biologically heterogeneous as reflected in sessile serrated adenomas (SSA) with virtually exclusive molecular signatures defined by the presence of either BRAF or KRAS mutations. Screening algorithms in the future may need to be modified and individualized, depending on new information that likely will emerge on the natural history of these biologically heterogeneous lesions that differ from traditional adenomatous polyps.

© 2008 The WJG Press. All rights reserved.

Key words: Colorectal adenomas; Serrated polyps; Polyp heterogeneity; Colonoscopy screening; Colorectal cancer

INTRODUCTION

Clinician endoscopists have witnessed an evolution in the application of the colonoscope. Initially, it was used primarily as an investigative modality to explore patient symptoms (abdominal pain, diarrhea, bleeding). Later, it also became widely applied as a therapeutic tool, particularly for removal of colorectal neoplasms. Now, colonoscopy has increasingly been used to screen for colon polyps and cancer in those with few or no symptoms demanding peace of mind. As a result, various agencies have developed (and promoted) guidelines for use that might aid in this endeavour, largely based on various risk factors, including familial colon polyps and cancers. For some, these are described as “evidence-based” with the goal of being “cost-effective” for an increasingly scarce service resource. These guidelines have also been based, at least in part, on the “Vogelstein” hypothesis that colon cancer results from a multistage and sequential series of mutational events that proceed from a benign adenomatous proliferation of altered epithelial cells to an increasingly larger and more complex invasive neoplastic (and even metastatic) lesion or lesions, the so-called “polyp-cancer sequence”[1]. Reasonably, interruption of this sequence could be accomplished by an intervening polypectomy and reduce the individual's risk for colon cancer. Recent information emphasizing the heterogeneous nature of these precursor colon epithelial polyps has suggested that this perspective may be an oversimplification of a more difficult problem.

TRADITIONAL ADENOMAS AND SCREENING

Although different degrees of altered cytological
differentiation and atypia have often been described for individual polyps, recognition that colon polyp heterogeneity might have some prognostic clinical significance has traditionally been limited to discerning the degree of villous architectural change in the resected polyp (as opposed to tubular change), estimating polyp size (or more precisely, dimension) along with the number of colon polyps (albeit macroscopically visible). Any one (or more) of these has been considered by some to warrant alteration in the general guideline leading to shortened intervals of screening and/or surveillance, particularly if there were multiple polyps of large size that were histologically complex, primarily with villous architecture. Other factors may have also been entered into the equation in the mind of the practicing clinician including a background of chronic inflammatory bowel disease, certain ethnic or racial backgrounds, and, likely, individual financial means to facilitate performance of the actual screening procedure.

ALTERNATE SERRATED PATHWAY

More recently, there has also been increased recognition that the serrated polyp (including the hyperplastic polyp (HP) with its serrated morphological features) may be more than a simple clinically innocuous bystander in the process of cancer development[3].

These polyps appear quite distinct from traditional adenomatous polyps and may also exhibit morphological and molecular heterogeneity. Recent evidence suggests that some subtypes may pose a substantive potential risk for eventual malignant transformation. As such, it appears that this serrated pathway may represent an alternate road to development of colon cancer with potentially important implications for the “guideline approach” to screening and surveillance for colon neoplastic lesions.

Some of the difficulty in this area relates to the pathological terminology along with evolution in methods of classification of serrated lesions that reflects the so-called “saw-tooth” architectural appearance of this polyp group[4]. Moreover, distinction between different forms of serrated polyps and interobserver agreement among expert pathologists may be limited[5]. It appears that HPs are the most common type and these have been further sub-divided into microvesicular, goblet-cell rich and mucin-poor types. Other kinds of serrated polyps include sessile serrated adenomas (SSA), traditional serrated adenomas (TSA) and mixed polyps containing components of sessile serrated and tubular adenomas. Significant differences in the expression of specific genetic and molecular markers have also been shown between SSA and TSA[6]. While HPs seem to remain small and localized to the distal colorectum, other serrated polyps may progress to cancer through an apparently unique pathway. An early recognized form of this entity, initially labeled “hyperplastic polyposis” or “serrated adenomatous polyposis”, consisted of larger sessile polyps developing mainly in the right colon. These were associated with synchronous colon cancer in over 50%[7]. For TSA, dysplasia or intramucosal carcinoma were also noted in almost 50%[8]. Of note, about 10% of all colon polyps may be SSA type and about 15% have multiple lesions, based on detection with magnification chromoendoscopy[9]. Most were located in the right colon, particularly in females, however, there was no correlation with age or personal or family history of colon polyps or colon cancer[10]. Other characteristics of SSA are listed in Tables 1 and 2.

MOLECULAR HETEROGENEITY OF SSA TYPE POLYPS

The molecular heterogeneity of lesions in this alternate serrated pathway has been nicely reviewed elsewhere by O’Brien[11]. The carcinomas that occur demonstrate microsatellite instability (MSI-high) due to hMLH1 inactivation and consequent DNA mismatch repair (MMR). In addition, heterogeneity is evident in that some carcinomas are also microsatellite stable (MSS or MSI-low). The pathway is believed to originate in a HP, or precursor aberrant crypt focus, and progresses through an intermediate disordered type of HP that eventually becomes dysplastic (dysplastic serrated polyp), and ultimately to a serrated adenocarcinoma[12]. Definition of the phenomenon of epigenetic mutagenesis by CpG-island methylation and its key role in sporadic MSI colorectal carcinomas have been stated to be at the molecular genetic core of this newly defined serrated

Table 1 Comparison of SSA and TSA to TA-TVA-VA polyps

Location	SSA	TSA	TA-TVA-VA
Right colon	Throughout, 60% left	Throughout, 60% left	
Shape	Flat	Pedunculated	Pedunculated
Cytodysplasia	Minimal	Present	Present
Growth	Bottom-up	Bottom-up	Top-down
Serration	Present	Present	Absent
Basal crypt	Dilation	Dilation absent	Dilation may
Horizontal crypts	Present	Absent	May be present
Branched crypts	Present	Absent	May be present
Basal serration	Present	Absent	Absent
Nuclear shape	Round or oval	Tall columnar	Tall columnar
Cytoplasm	Eosinophilic	Eosinophilic	Basophilic

Table 2 Comparison of SSA polyps and HP polyps

Location	SSA	HP
Right colon	SSA	Rectosigmoid
Shape	Flat	Pedunculated or flat
Size	> 5 mm	< 5 mm
Cytologic dysplasia	Minimal	Absent
Basal crypt dilation	Yes	No
Horizontal crypts	Yes	No
Branched crypts	Yes	No
Basal crypt serration	Yes	No
Nuclear shape	Round to oval	Flat or low columnar
Cytoplasmic eosinophilia	Prominent	Not prominent

SSA: Sessile serrated adenoma; TSA: Traditional serrated adenoma; TA: Tubular adenoma; TVA: Tubulovillous adenoma; VA: Villous adenoma. Adapted from Li and Burgart[10].
FUTURE SCREENING FOR COLON POLYPS

The high proportion of SSA is noteworthy as these are not exactly rare and most disconcerting is that routine colonoscopy may not be adequate for their detection[11,12].

Moreover, there does not appear to be a definite profile of high risk for this SSA type that might actually lead to initiation of the screening process, particularly family history[3]. Thus, current screening algorithms may not be adequate for detection. Moreover, hyperplastic/serrated polyposis has also been observed in patients with chronic inflammatory bowel disease[14]. A prudent approach has been suggested to include complete resection and surveillance examinations as often as the intervals defined for the more traditional adenomatous polyps but this approach is not necessarily reflective of the natural biological history of these lesions. A prudent colonoscopist will also emphasize prior to embarking on a screening procedure with the patient that small lesions may not be readily detectable. While still the gold standard for polyp detection, colonoscopic procedures have a definitive “miss rate” so that it can come close to, but does not appear able to reach perfection. Recent comparative and prospective studies using pan-colonic narrow-band imaging suggest that its use for surveillance of even small adenomas may be superior to conventional colonoscopy and equivalent to chromoendoscopy[15-18]. More widespread application of these evolving technologies in the future may also impact on the detection of serrated adenomas and current screening and surveillance guidelines.

REFERENCES

1. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525-532
2. Lauwers GY, Chang DC. The serrated polypl comes of age. Gastroenterology 2006; 131: 1631-1634
3. O’Brien MJ. Hyperplastic and serrated polyps of the colorectum. Gastroenterol Clin North Am 2007; 36: 947-968, viii
4. Snover DC, Jass JR, Fenoglio-Preiser C, Batts KP. Serrated polyps of the large intestine: a morphologic and molecular review of an evolving concept. Am J Clin Pathol 2005; 124: 380-391
5. Farris AB, Misraji J, Srivastava A, Muzikansky A, Deshpande V, Lauwers GY, Mino-Kenudson M. Sessile serrated adenoma: a challenging discrimination from other serrated colonic polyps. Am J Surg Pathol 2008; 32: 30-35
6. Torlakovic EE, Gomez JD, Driman DK, Parfitt JR, Wang C, Benerjee T, Snover DC. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol 2008; 32: 21-29
7. Torlakovic E, Snover DC. Serrated adenomatous polyposis in humans. Gastroenterology 1996; 110: 748-755
8. Leggett BA, Devereaux B, Biden K, Searle J, Young J, Jass J. Hyperplastic polyposis: association with colorectal cancer. Am J Surg Pathol 2001; 25: 177-184
9. Longacre TA, Fenoglio-Preiser CM. Mixed hyperplastic adenomatous polyps/serrated adenomas. A distinct form of colorectal neoplasia. Am J Surg Pathol 1990; 14: 524-537
10. Spring KJ, Zhao ZZ, Karamatic R, Walsh MD, Whitehall VL, Pike T, Sinms LA, Young J, James M, Montgomery GW, Appleyard M, Hewett D, Togashi K, Jass JR, Leggett BA. High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 2006; 131: 1400-1407
11. Li SC, Burtga L. Histopathology of serrated adenoma, its variants, and differentiation from conventional adenomatous and hyperplastic polyps. Arch Pathol Lab Med 2007; 131: 440-445
12. O’Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 2006; 30: 1491-1501
13. Cappell MS. Reducing the incidence and mortality of colon cancer: mass screening and colonoscopic polypcctomy. Gastroenterol Clin North Am 2008; 37: 129-160, vii-viii
14. Srivastava A, Redston M, Farraye FA, Yantis RK, Odze RD. Hyperplastic/serrated polyposis in inflammatory bowel disease: a case series of a previously undescribed entity. Am J Surg Pathol 2008; 32: 296-303
15. Su MY, Hsu CM, Ho YP, Chen PC, Lin CJ, Chiu CT. Comparative study of conventional colonoscopy, chromendooscopy, and narrow-band imaging systems in differential diagnosis of neoplastic and nonneoplastic colonic polyps. Am J Gastroenterol 2006; 101: 2711-2716
16. Chiu HM, Chang CY, Chen CC, Lee YC, Wu MS, Lin JT, Shun CT, Wang HP. A prospective comparative study of narrow-band imaging, chromoendooscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. Gut 2007; 56: 373-379
17. Inoue T, Murano M, Murano N, Kuramoto T, Kawakami K, Abe Y, Morita E, Toshina K, Hoshiro H, Egashira Y, Umemagi E, Higuchi K. Comparative study of conventional colonoscopy and pan-colonic narrow-band imaging system in the detection of neoplastic colonic polyps: a randomized, controlled trial. J Gastroenterol 2008; 43: 45-50
18. Adler A, Pohl H, Papananikos I, Soubi-Relbehen H, Schachschal G, Veitze-Schlieker W, Khalifa AC, Setka E, Koch M, Wiedenmann B, Rosch T. A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect? Gut 2008; 57: 59-64