Supplementary Table 2. Characteristics of studies included in the meta-analysis of vitamin C intake and breast cancer survival.

Author	Country	Study type	Follow-up period (year)	Age (year)	No. of cases/deaths/recurrence	Estimation target	Vitamin C Intake (mg/day)	Adjusted HR(95%CI)	Adjustment factors
Harris 2013	Sweden	Cohort	7.8	Mean	3405/1055	>92.5 vs <42.9 Highest / Lowest	0.84 (0.71–1.00)	0.75 (0.57–0.99)	Age, energy intake, education level, marital status, menopausal status at diagnosis, body mass index, alcohol intake and calendar year of diagnosis.
Poole 2013	USA	Cohort	5	Mean, 54.8	10222/659	Death From All Causes	Highest/Lowest	0.87 (0.73–1.03)	Age at diagnosis, exercise, stage, treatment, BMI, smoking, menopausal status, race
Greenlee 2012	USA	Cohort	10	18-79	2264/214	Death From All Causes	Highest/Lowest	0.71 (0.54–0.92)	Age at diagnosis, race/ethnicity, education, breast cancer stage at diagnosis, number positive lymph nodes, tumor hormone receptor status, chemotherapy received, radiation therapy received, hormone therapy received, body mass index 1 year before diagnosis, smoking history at enrollment, alcohol consumption at enrollment, physical activity at enrollment, daily servings of fruits and vegetables at enrollment, and comorbidity score at enrollment
Nechuta 2011	China	Cohort	4.1	20-75	4877/444	Death From All Causes	Highest / Lowest	0.81 (0.61–1.07)	Age, ER/PR status, TNM stage, chemotherapy, radiotherapy, tamoxifen use, education, income, BMI, regular tea consumption, regular exercise participation, daily cruciferous vegetable intake, daily soy protein intake, and other vitamin variables
Saquib 2011	USA	Cohort	9	53	3081/412	Death From All Causes	Highest/Lowest	1.1 (0.79–1.6)	Age at randomization, tumor stage, tumor grade, time since diagnosis, BMI, smoking, randomization group, hot flashes, group by hot flash interaction, and physical health
Rohan 2009	Australia	Case-control	-	20-74	412/412	Death From Breast Cancer	>234 vs ≤71	0.74 (0.42–1.30)	Age at menarche, Quetelet index, age at 1st live birth, energy, education, history of benign breast disease, menopausal status, height, weight, ER/PR status
McEligot 2006	USA	Cohort	1	Mean, 65	516/96	Death From All Causes	Q3 vs Q1	0.45 (0.25–0.78)	Age at diagnosis, stage of disease, body mass index, parity, hormone replacement therapy use, alcohol use, multivitamin use, and energy intake, micronutrients
Study	Country	Cohort	Cases/Deaths	Death From	Analysis	HR (95% CI)	Risk Factors		
-----------	---------	--------	--------------	------------	----------	-------------	--		
Maynard	UK	2002	8 NA 101/36	Death From Breast Cancer	Highest/Lowest	0.58 (0.19–1.84)	Age, and energy intake, BMI, family history of breast cancer, smoking status		
Holmes	USA	1999	13 Mean 1.54	Death From All Causes	Q5 vs Q1	0.80 (0.58–1.10)	Age, diet interval, calendar year of diagnosis, body mass index, oral contraceptive use, menopausal status, postmenopausal hormone use, smoking, age at first birth and parity, number of metastatic lymph nodes, and tumor size		
Jain	Canada	1994	5 40-59 673/76	Death From Breast Cancer	>201.3 vs ≤10.7	0.43 (0.21–0.86)	Total energy, age at diagnosis, smoking, and body weight		

Abbreviations: HR, hazard risk; CI=confidence interval; Ref, reference; NO. of cases/deaths/recurrence, number of cases/deaths/recurrence; BMI=body mass index (kg/m^2); ER, estrogen receptor; PR, progesterone receptor; TNM, tumor, Node, Metastasis.

The HRs of all studies used the lowest category of vitamin C intake levels as a reference in the meta-analysis.