ABSTRACT

Background A EULAR taskforce was convened to develop recommendations for lifestyle behaviours in rheumatic and musculoskeletal diseases (RMDs). In this paper, the literature on the effect of diet on the progression of RMDs is reviewed.

Methods Systematic reviews and meta-analyses were performed of studies related to diet and disease outcomes in seven RMDs: osteoarthritis (OA); rheumatoid arthritis (RA); systemic lupus erythematosus, axial spondyloarthritis, psoriatic arthritis, systemic sclerosis, and gout. In the first phase, existing relevant systematic reviews and meta-analyses, published from 2013 to 2018, were identified. In the second phase, the review was expanded to include published original studies on diet in RMDs, with no restriction on publication date. Systematic reviews or original studies were included if they assessed a dietary exposure in one of the above RMDs, and reported results regarding progression of disease (eg, pain, function, joint damage).

Results In total, 24 systematic reviews and 150 original articles were included. Many dietary exposures have been studied (n=83), although the majority of studies addressed people with OA and RA. Most dietary exposures were assessed by relatively few studies. Exposures that have been assessed by multiple, well conducted studies (eg, OA: vitamin D, chondroitin, glucosamine; RA: omega-3) were classified as moderate evidence of small effects on disease progression.

Conclusion The current literature suggests that there is moderate evidence for a small benefit for certain dietary components. High-level evidence of clinically meaningful effect sizes from individual dietary exposures on outcomes in RMDs is missing.

Key messages

What is already known about this subject?
⇒ People’s diet can influence health related outcomes, such as cardiovascular outcomes and mental health.
⇒ It is unclear whether dietary factors influence rheumatic and musculoskeletal disease (RMD) specific outcomes.

What does this study add?
⇒ This study brings together the literature on diet and progression of seven RMDs, concluding that research on diet has largely focused on osteoarthritis and rheumatoid arthritis, and there is little evidence suggesting dietary factors can make large differences to the outcomes of people with RMDs.

How might this impact on clinical practice or further developments?
⇒ Based on the current literature, health professionals can advise people with RMDs that consuming specific dietary components is unlikely to influence the progression of their RMD, but that it is important to maintain a healthy diet and healthy weight for general health reasons.

Rheumatic and musculoskeletal diseases (RMDs) are a diverse range of conditions that primarily affect people’s joints, causing pain, disability and reductions in health-related quality of life (HR-QoL). 1-3 According to the Global Burden of Disease study, RMDs are one
of the leading causes of global disability. Some RMDs have effective pharmacological treatments that limit disease progression (e.g., rheumatoid arthritis (RA)), whereas others have no effective disease modifying treatment options (e.g., osteoarthritis (OA)). However, in all RMDs there is room for additional improvement in outcomes. In the general population, lifestyle modifications have been shown to improve non-RMD related outcomes. For instance, diet (i.e., specific food stuffs ingested as part of daily living, and supplements or nutrients ingested to improve health) has a significant impact on the risk of chronic disease and benefits to mental health. However, it is unclear whether lifestyle modifications, such as changes to diet, have a beneficial impact on RMD related outcomes (including disease activity, pain, function, HR-QoL, radiographic damage, fatigue and depression).

In 2018, a EULAR Taskforce was convened to develop recommendations for lifestyle improvements in people with RMDs with regards to RMD progression (including both modifiable (e.g., pain, fatigue) and irreversible (e.g., joint damage) outcomes). The taskforce decided to focus on six lifestyle factors: diet, exercise, weight, alcohol, smoking and paid work, and seven diseases: RA, OA, axial spondyloarthritis (axSpA), psoriatic arthritis (PsA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and gout (henceforth referred to collectively as RMDs). For each of these lifestyle factors, systematic reviews were performed, aiming to collate all relevant literature on each factor in order to formulate evidence based recommendations. This article reports the results of systematic reviews on the effect of diet on progression of RMDs.

METHODS

Design

This study was performed in accordance with the EULAR standard operating procedure for EULAR endorsed recommendations and is reported following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

Search strategy

The articles included in this review were identified in two steps. First, a systematic search was conducted aiming to identify published systematic reviews and meta-analyses on any of the included exposures and RMDs (listed below; online supplemental tables 1 and 2) published between 1 January 2013 and 18 September 2018, using the Medline, Embase and Cochrane Library databases. Two reviewers screened the titles and abstracts (JMG, MW) and then a team of four reviewers screened the eligible full texts (JMG, MW, JRC, GC; two reviewers per full text). Only systematic reviews and meta-analyses related to diet are presented in this report.

Then a systematic review of original articles of dietary interventions for people with RMDs was conducted. Where the research team agreed that sufficient systematic reviews and meta-analyses had been published on a given exposure in a given disease, these exposures were excluded from the systematic review of original articles (OA: vitamin E, bromelain, glucosamine, willow bark extract, chondroitin, Artemisia annua extract, green lipped muscle extract, methylsulfonylmethane, avocado/soybean unsaponifiables, L-carnitine, curcumin, pycnogenol, Boswellia serrata extract, Curcuma longa extract, passion fruit peel extract, collagen hydrolysate; RA: marine oils, omega-3, probiotics, vitamin D). The search strategy was developed based on a predefined PICO (PICO=participants, intervention/exposure, comparison, outcome (online supplemental table 3 for search strategy)) and implemented in the Medline, Embase and CENTRAL databases on 8 March 2019. Titles and abstracts followed by full texts were screened by two reviewers (JMG, JRC).

Inclusion and exclusion criteria

For the review to identify relevant published systematic reviews and meta-analyses, the following inclusion criteria were used:

- Systematic reviews or meta-analyses of randomised controlled trials (RCTs) or observational studies.
- Including people with an RMD (OA, RA, SLE, axSpA, PsA, SSc, gout).
- Studying the relationship between diet and outcomes (see online supplemental table 4 for a list of included outcomes).

For the review identifying original studies of dietary exposures in RMDs, the following inclusion criteria were used:

- Longitudinal study design (randomised trials, non-randomised trials, single-arm intervention studies, longitudinal observational studies).
- Including adults with an RMD (OA, RA, SLE, axSpA, PsA, SSc, gout).
- Studying the relationship between dietary exposures and outcomes (see online supplemental table 4 for a list of included outcomes).

Conference abstracts were excluded.

Risk of bias assessment

The AMSTAR-2 tool was used to assess the risk of bias in published systematic reviews and meta-analyses. Each review was graded as critically low, low, moderate or high quality. The Cochrane Risk of Bias tool was used to assess methodological quality of included RCTs, rating the reporting of four criteria: randomisation procedure, allocation concealment procedure, blinding of participants and blinding of assessors. Each aspect was graded as either low risk of bias, or high/unclear risk of bias. The process was aided by a machine-learning algorithm that identifies passages and estimates a grade for each category. This has been demonstrated to speed up the quality assessment process. A reviewer (JMG) checked each of the algorithm’s estimates and the passages that
the algorithm was using to make these estimates, and made any changes to grades where the algorithm did not identify suitable passages. The QUIPS tool was used to assess the quality of observational studies of diet.16

Synthesis of data
Due to the heterogeneity of the studies, the findings from the included studies are presented in the form of a narrative summary, sorted by RMD and then by category of diet exposure (animal products; experimental diets; food components; fruits, vegetables and other plant-based interventions; minerals and supplements; vitamins). For each exposure, results from systematic reviews are presented first where available, followed by results from individual studies published after the reviews. Where no reviews were identified, results from individual studies are presented.

If possible, the results of RCTs were pooled using random effects meta-analysis. Standardised mean differences (SMDs) were calculated if possible for individual studies and combined in meta-analyses as this allows results measured on different instruments to be combined (SMDs in online supplemental tables). An SMD is estimated as the difference between the scores of the intervention and control group at follow-up divided by the pooled SD.17 The means and SDs were extracted from each RCT, or effect estimates (e.g., ORs, relative risk ratios, adjusted where available) from observational studies. SDs were estimated from 95% confidence intervals or standard errors when not reported. Means and SDs were estimated from medians and ranges or IQRs when only these summary statistics were presented using a published formula.18 Overall, a SMD ≥0.2 was considered a small effect, ≥0.5 as a medium sized effect, and ≥0.8 as a large effect.19 Heterogeneity was quantified using the I² statistic. All statistical analyses were performed using Stata version 14 (StataCorp, College Station, TX).

The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system defines high quality evidence as evidence where further research is very unlikely to change our confidence in the estimate of effect.20 Therefore, evidence was rated as high quality if supported by meta-analyses of at least five RCTs at low-medium risk of bias, reporting consistent results without important limitations.21 GRADE defines moderate quality evidence as evidence where further research is likely to have an important impact on the confidence of the estimate of effect, or may change the estimate.20 Evidence was rated as moderate if supported by meta-analyses of at least three RCTs or supported by a single RCT with a sample size ≥100 and at low-medium risk of bias or multiple large observational studies. GRADE defines low quality evidence as evidence where further research is very likely to have an important influence on our confidence in the estimates, or is likely to change the estimate.20 Evidence was rated as low if supported by multiple RCTs of small sample size or high risk of bias, or by single observational studies only. GRADE defines very low quality of evidence as evidence where the estimate of the effect is very uncertain.20 Evidence was rated as very low if supported by single small RCTs, or non-randomised trials or single arm intervention studies. Evidence could be downgraded in the event of other potential biases (such as study limitations, inconsistency of results, imprecision, publication bias21 or conflicts of interest).

RESULTS
Study selection and study characteristics
The search of systematic reviews and meta-analyses yielded 1507 abstracts, of which 16 were duplicates. Of these, 125 full manuscripts were screened, of which 103 were included (figure 1). Only 24 assessed diet and progression of RMDs, and are included in this review (other references assessed other exposures within the taskforce; e.g., exercise, smoking).

The search for original studies identified 4910 abstracts. After removal of 657 duplicates, 4253 titles and abstracts were screened. Of these, 203 full manuscripts were screened, of which 150 are included in this article (figure 2).

Osteoarthritis
Animal products
In total, two systematic reviews,22 23 10 RCTs,24–33 one single-arm intervention34 and one prospective cohort study35 assessed animal products in OA. One meta-analysis22 reported moderate effects of undenatured type II collagen on pain and function (pain: SMD −0.67, 95% CI −1.01 to −0.33; function: SMD −0.55, 95% CI −0.94 to −0.17). Milk consumption was studied by one prospective cohort study, which reported a reduction in joint space narrowing as milk consumption increased.35 One small RCT reported moderate effects on pain, function and stiffness following egg-shell membrane consumption.36 An RCT studying *Channa striatus* extract (common name: striped snakehead fish) reported moderate sized effects for pain, function and stiffness.24 One meta-analysis26 and four RCTs studying fish oil supplements were included. The meta-analysis reported small, non-significant effects of fish oil on pain (SMD −0.16, 95% CI −0.57 to 0.24) and function (SMD 0.11, 95% CI −0.13 to 0.35) in OA.23 One meta-analysis of one RCT22 reported a small effect of green-lipped mussel extract on pain that was not significant (SMD −0.37, 95% CI −0.81 to 0.08). Promerim was assessed by one single-arm intervention study.34 Pain improved after receiving promerim and exercise (online supplemental tables 5–13).

Experimental diets
One meta-analysis36 three RCTs37–39 and one single arm intervention study40 assessed experimental diets for OA. One meta-analysis compared dietary restriction plus exercise versus exercise controls, reporting small benefits in favour of pain (SMD −0.24, 95% CI −0.50 to 0.02) and function (SMD −0.34, 95% CI −0.59 to −0.08).36 One RCT reported no difference in pain or function between...
low and very low calorie diets. A single arm intervention study reported reductions in pain, functional limitations and stiffness when following a low calorie diet, and a small scale RCT reported improvements on several subscales of the SF36 from a whole-food, plant based diet in OA. Another small scale RCT reported no benefit of the Mediterranean diet for physical function in people with OA (online supplemental tables 14–18).

Food components

Two prospective cohort studies using data from the Osteoarthritis Initiative assessed the association between specific food components and OA progression. One large prospective study reported that higher fibre intake was associated with lower odds of being in high pain trajectories. The other reported that higher fat intake was associated with faster joint space narrowing progression (online supplemental tables 19 and 20).

Fruits, vegetables and other plant based interventions

In total, three meta-analyses, two systematic reviews, and 20 RCTs assessing fruit and vegetables were identified. *Artemisia annua* extract was included in one meta-analysis, reporting no significant benefit on pain (SMD −0.37, 95% CI −1.03 to 0.29) and function (SMD −0.15, 95% CI −0.81 to 0.50). Avocado and soybean unsaponifiables were assessed by two meta-analyses and two systematic reviews. One meta-analysis reported moderate sized effects of ASUs on pain (SMD −0.57, 95% CI −0.95 to −0.19) and function (SMD −0.48, 95% CI −0.69 to −0.28), whereas the other reported small effects.
effects (pain: 8% reduction, 95% CI 1% to 16%; function: 7% reduction, 95% CI 2% to 12%).44 One systematic review45 reported that only one out of four RCTs reported a significant effect on pain, the other identified a meta-analysis reporting a small effect on pain. Two meta-analyses22,44 assessed Boswellia serrata extract, both reporting significant effects on pain and function, one reporting large effects (pain: SMD −1.61, 95% CI −2.10 to −1.13; function: SMD −1.15, 95% CI −1.63 to −0.68), the other moderate effects (pain, 100 point scale: −17, 95% CI −26 to −8; function, 100 point scale: −8, 95% CI −14 to −2). Bromelain was included in one meta-analysis, which reported no significant effect on pain (SMD −0.05, 95% CI −0.75 to 0.64) and a small, non-significant effect on function (SMD −0.34, 95% CI −1.04 to 0.36).22 One meta-analysis22 including one RCT68 assessing Curcuma longa reported large effects on pain (SMD −1.63, 95% CI −2.22 to −1.03) and function (SMD −1.27, 95% CI −1.83 to −0.70). The same meta-analysis22 included two RCTs assessing curcumin, again reporting large effects on pain (SMD −1.19, 95% CI −1.93 to −0.45) and function (SMD −1.13, 95% CI −1.80 to −0.46). Two RCTs assessed fruit powders of Elaeagnus angustifolia (Russian olive), reporting small to moderate sized effects on pain and function.50,65 Passion fruit was included in one meta-analysis,22 which identified one RCT59 reporting large effects on pain (SMD −1.65, 95% CI −2.44 to −0.86) and function (SMD −1.55, 95% CI −2.33 to −0.77). Rosa canina mix was studied by three RCTs. Two64,66 reported moderate to large effects of Rosa canina mix on pain and function. The third was a crossover study59 and reported the effects only when the placebo was taken first, indicating crossover effects. All three studies were funded by companies producing the intervention. Two papers reported on the same RCT assessing sesamoid powder, reporting a medium sized significant effect on pain.49,51 One meta-analysis22 and three RCTs63-65 assessed various tree bark extracts. The meta-analysis reported large effects of pine tree extract on pain (SMD −1.21, 95% CI −1.53 to −0.89) and function (SMD −1.84, 95% CI −2.32 to −1.35). One RCT reported a large effect of Phelloden- dron on pain in normal weight people with OA, but not overweight people.64 One meta-analysis43 reported a moderate sized effect of turmeric on pain (pooled mean difference −15.36, 95% CI −26.94 to −3.77). One RCT reported no effect on C-reactive protein (CRP) and 6 min walk test of Scutellaria baicalensis and Aesculus cathena.61 RCTs tested aquamin,55-57 argan oil,56 cherry juice,53,54 garlic capsules,46 ginger,46 green tea extract,53 pomegranate,74,76 seaweed extract,62 and Elaeagnus angustifolia and Boswellia Thurifera,63 reporting no consistent effects on pain and function (online supplemental tables 21–43).

Minerals and supplements

Two meta-analyses22,70 and three systematic reviews,45,71 four RCTs72-75 and one single arm study76 assessed various minerals and supplements for OA. Two meta-analyses studied chondroitin for OA, one including nine studies22 and the other 12,70 and reported a small effect of chondroitin on pain (SMD −0.34, 95% CI −0.49 to −0.19,22 SMD −0.51, 95% CI −0.74 to −0.28)70 and an inconsistent effect on function (SMD −0.36, 95% CI −0.58 to −0.13,22 SMD 0.11, 95% CI −0.47 to 0.68).70 However, two systematic reviews concluded that chondroitin was not associated with reductions in pain.45,71 A third cited a range of meta-analyses reporting a wide range of effect sizes.7

One meta-analysis and two systematic reviews included glucosamine for OA. The meta-analysis22 reported small effect sizes for pain (SMD −0.28, 95% CI −0.52 to −0.04) and function (SMD −0.45, 95% CI −0.73 to −0.17). The systematic reviews45,75 identified a Cochrane review72 that reported a moderate sized benefit for pain as well as a large scale RCT78 that reported a null effect. One meta-analysis included three RCTs assessing methlysulfonylmethane supplementation, reporting a small effect on pain (SMD −0.47, 95% CI −0.80 to −0.14) and a large effect on function (SMD −1.10, 95% CI −1.81 to −0.38).22 RCTs reported large effects on CRP and erythrocyte sedimentation rate from calcium fructobate,74 and medium-large effects on pain and function from creatine.73,75 L-carnitine22 and Lactobacillus casei shiratai.22 One single arm intervention tested a multi-mineral containing 72 natural minerals, reporting improvements in pain and function following the intervention76 (online supplemental tables 44–53).

Vitamins

In total, three meta-analyses22,79,80 three systematic reviews,71,81,82 eight RCTs83-86 and three prospective cohort studies81-83 were identified studying vitamin supplementation for OA. RCTs testing multi-vitamins,88 vitamin B389 and vitamin B1290 reported small non-significant effects on pain. One prospective cohort study reported that self-reported vitamin C supplementation was not associated with lower risk of radiographic progression.9 One RCT compared vitamin E+ versus placebo and reported a small effect on pain after 8 weeks.74 Three meta-analyses22,79,80 three systematic reviews,71,81,82 four RCTs83-86 and one prospective cohort study93 were identified that studied the effect of vitamin D. The meta-analyses reported small effects on pain and function as a result of vitamin D (pain: SMD −0.19, 95% CI −0.31 to −0.06,22 SMD −0.32, 95% CI −0.63 to −0.02,79 mean difference in The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) −1.65, 95% CI −2.16 to −1.1480; function: SMD −0.36, 95% CI −0.61 to −0.11,22 mean difference WOMAC −1.87, 95% CI −2.58 to −1.17).80 The systematic reviews reported no effect on pain, but a small effect on function. Three out of six observational studies included in a systematic review reported an inverse relationship between vitamin D and radiographic progression.82 The latest RCT not included in the meta-analyses reported no difference in pain between high and low doses of vitamin D after participants underwent total knee replacement.73 One meta-analysis22 and one systematic review71 studied vitamin E.

Gwinnutt JM, et al. RMD Open 2022;8:e002167. doi:10.1136/rmdopen-2021-002167
Both reported no effect of vitamin E on pain (SMD 0.01, 95% CI −0.44 to 0.45) and the meta-analysis reported no effect of vitamin E on function (SMD −0.10, 95% CI −0.55 to 0.35) (online supplemental tables 54–62).

Summary
There were only relatively few studies for most dietary exposures in OA, meaning that the evidence for these exposures was graded as low or very low (table 1). For diets that had moderate evidence (fish oil, chondroitin, glucosamine, vitamin D, ASU), the effect sizes for outcomes were generally small and therefore not clinically relevant.

Rheumatoid arthritis
Animal products
In total, three meta-analyses,23 94 95 one systematic review,96 12 RCTs97–107 and one non-randomised trial108 assessed products derived from animals for RA. One RCT compared collagen extracted from pigskins with placebo, reporting no significant effect on pain, function and disease activity.99 Three meta-analyses,23 94 95 one systematic review,96 eight RCTs97 98 100–105 and one non-randomised trial108 studied the effect of fish oils and omega-3 on RA progression. The meta-analyses reported small effects of fish oils on pain (SMD −0.32, 95% CI −0.59 to −0.054; SMD −0.21, 95% CI −0.42 to −0.00),23 with the same results from the meta-analysis of identified RCTs (SMD −0.27, 95% CI −0.54 to 0.00) (online supplemental figure 3). One meta-analysis reported a small, significant effect on function (SMD −0.26, 95% CI −0.46 to −0.06),94 whereas another reported no effect (SMD 0.05, 95% CI −0.11 to 0.21).25 One RCT reported an improvement in disease activity,27 whereas another reported no effect.98 Two RCTs studied the effect of mussel extracts,106 107 reporting small non-significant effects on pain and function (online supplemental tables 63–67).

Experimental diets
One meta-analysis95 12 RCTs,109–120 five non-randomised trials,121–125 one single arm study126 and one extension to

Quality/effect size	None	Small	Medium	Large
Very low	Artemisia annua (function), bromelain (pain), ginger (pain), green tea extract (pain, function), Mediterranean diet (function), Scutellaria baicalensis and Acacia catechu (6MWT, CRP), Uncaria guianensis extract (pain), WFPB diet (pain), vitamin B12 (pain)	Aquamin (pain), Artemisia annua (pain), bromelain (function), vitamin B3 (pain), vitamin C+E (pain)	Aquamin (function), creatine (pain, function), egg-shell membrane (pain, function, stiffness), multi-mineral (pain, function), promerim (pain), seaweed extract (pain, function), sesame powder (pain), turmeric (pain)	Calcium fructobate (CRP, ESR), L-carnitine (pain, function), passion fruit extract (pain, function), Phellodendron amurense extract (pain)
Low	Cherry juice (pain, function), Elaeagnus angustifolii extract + Boswellia thurifera (pain, function), garlic (pain, function), pomegranate (pain, function), vitamin C (radiographic progression), vitamin E (pain, function)	Argan oil (pain), Channa striatus (pain), Elaeagnus angustifolii extract (pain, function), fruit powder (pain, function), green lipped mussel extract (pain, function), low calorie diet (pain, function), methylsulfonylmethane (pain), multi-vitamins (pain), vitamin D (radiographic progression)	Argan oil (function), Boswellia Serrata (pain, function), Channa striatus (function), collagen (pain, function), fibre (pain), fat (JSW), Lactobacillus casei shirota (stiffness), milk (JSW), Curcuma longa (pain, function), curcumin (pain, function), Lactobacillus casei shirota (function), methylsulfonylmethane (function), pine tree extract (pain, function), Rosa canina mix (pain, function)	
Moderate	Fish oil (pain, function)	ASU (pain, function), chondroitin (pain, function), glucosamine (pain, function), vitamin D (pain, function)	–	–
High	–	–	–	–

ASU, avocado and soybean unsaponifiable; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; JSW, joint space width; 6MWT, 6 min walk test; WFPB, whole food plant based.
an RCT comparing responders with non-responders.127 studied experimental diets in RA. Multiple RCTs and non-randomised trials studied liquid elemental diets,109 113 115–116 hypoallergenic diets,112 117 125 ketogenic diets124, and vegetarian or vegan diets,111 114 118–120 123 126 127 reporting no effect on the majority of outcomes assessed, including pain, function, joint counts, acute phase reactants, and morning stiffness. One meta-analysis,95 one RCT110 and two non-randomised trials121 122 studied the Mediterranean diet for RA. The meta-analysis reported no significant effect of the Mediterranean diet on fatigue124 and non-significant effects on E on acute phase reactants (online supplemental tables 86–98).

Fruits, vegetables and other plant based interventions

One meta-analysis,95 eight RCTs,128–135 one non-randomised trial136 and three single arm studies137–139 assessed plant based interventions for RA. RCTs tested microalgae oil,129 herbal medicine,130 pomegranate extract,131 quercetin132 133 and rose hip powder,134 reporting no consistent effects on outcomes, including pain, function, disease activity, joint counts and QoL. *Andrographis paniculata* was included in one meta-analysis, which reported no effect on fatigue.95 One RCT131 investigated a combination of ginger, curcumin and black pepper for RA and reported large effects on the Disease Activity Score 28 (DAS28) and its components. One single arm intervention study assessed gum arabic powder, concluding that DAS28 and its components fell after administration.137 However, there was no control group. One non-randomised trial of *Nigella sativa* oil reported moderate benefits in terms of pain, disease activity, tender and swollen joints and morning stiffness136 (online supplemental tables 75–85).

Minerals and supplements

Two meta-analyses,140 141 14 RCTs,134 142–153 and one single arm study154 assessed minerals and supplements for RA. Two meta-analyses140 141 assessed studies on probiotics in RA, both reporting either small non-significant effects or no effects on function (SMD -0.30, 95% CI -0.89 to 0.29;140 MD -0.11, 95% CI -0.23 to 0.01),141 swollen joint count (SMD -0.30, 95% CI -0.62 to 0.02;140 MD 0.17, 95% CI -0.39 to 0.73)141 and CRP (SMD -0.32, 95% CI -0.65 to 0.00; MD -1.40, 95% CI -4.06, 1.26)141 and an inconsistent effect on disease activity (SMD -0.58, 95% CI -0.97 to -0.19;140 MD 0.02, 95% CI -0.58 to 0.63).141 RCTs tested alpha lipoic acid,143 creatine,145 glucosamine,148 linoleic acid,147 manganese,132 and zinc,150 reporting no effects on outcomes including pain, function and acute phase reactants.153 An RCT assessing a combination of supplements (beta-hydroxy-beta-methylbutyrate, glutamine and arginine) reported moderate effects on disease activity, function and fatigue149 (online supplemental tables 86–98).

Vitamins

One meta-analysis,155 six RCTs,147 156–160 one non-randomised trial161 and two single arm studies162 163 assessed vitamin supplementation in RA. One meta-analysis,155 reported no significant effect of vitamin D supplementation on pain (MD 2.79, 95% CI -1.87 to 7.44) and disease activity (MD -0.31, 95% CI -0.86 to 0.25). Two RCTs reported inconsistent effects on pain, function and disease activity.156 158 Two RCTs studied vitamin B6, with one157 reporting no significant effect on disease activity, swollen/tender joint count and acute phase reactants, and the other158 reporting no effect on CRP. One RCT160 assessing vitamin E reported a large effect on pain, but no effect on swollen/tender joint counts and morning stiffness. Another RCT147 reported no effect of vitamin E on acute phase reactants (online supplemental tables 99–104).

Systemic lupus erythematosus

Animal products

One systematic review,164 six RCTs165–170 and one non-randomised trial171 assessed fish oil/omega-3 for SLE. Two out of three studies included in the systematic review,164 reported reductions in disease activity following omega-3 intervention. The largest RCT reported no difference in disease activity between omega-3 and placebo.167 Another RCT reported reductions in disease activity in the fish group from baseline and no reduction in the placebo group, but did not compare the two groups.168 One other RCT166 reported large effects on pain and function following omega-3 intervention, but no effect on fatigue. Two RCTs reported no effect of omega-3 on CRP165 168 (online supplemental tables 105–107).

Experimental diets

Three systematic reviews164 172 173 identified one RCT174 comparing a low glycemic diet with a low calorie diet, concluding no effect on disease activity or fatigue. An RCT175 reported a large effect of a cholesterol lowering educational programme on QoL compared with no advice (online supplemental tables 108–110).

Food components

Three observational cohort studies176 178 assessed the association between food components and outcomes in SLE. Two cohort studies176 177 assessed the association...
between consumption of various food elements and risk of active disease and atherosclerotic vascular events. High consumption of vitamin B6, fibre and vitamin C was associated with lower risk of developing active disease. None of the food components investigated were associated with reduced risk of atherosclerotic vascular events. Another cohort study investigated poor nutrition in SLE, reporting that lower calorie intake was associated with more organ damage and lower percentage of protein was associated with worse mental health (online supplemental tables 111–113).

Fruits, vegetables and other plant based interventions

Two RCTs studied plant based interventions for SLE. One RCT reported no effect of curcumin on disease activity, and the other RCT reported no effect of green tea extract on disease activity, but significant benefit in terms of fatigue (median (IQR) at 3 months, green tea: 81 (63.1–95.5); placebo: 56.2 (28.1–84.3), p=0.006) (online supplemental tables 114–116).

Minerals and supplements

One RCT and one non-randomised trial studied mineral supplementation for SLE. The non-randomised trial assessed calcium+vitamin D supplementation compared with no treatment or steroid treatment. The supplements had a large effect compared with no treatment on disease activity and a moderate effect on erythrocyte sedimentation rate, but no effect compared with steroids. Another RCT assessed copper supplementation, reporting no effect on disease activity (online supplemental tables 117–119).

Vitamins

One meta-analysis, one systematic review and two RCTs studied vitamins in SLE. All studies assessed vitamin D, with all studies reporting no significant effect of vitamin D on disease activity, fatigue and anti-dsDNA level (online supplemental tables 120–122).

Quality/effect size	None	Small	Medium	Large
Very low	Collagen (pain, function, disease activity), creatine (function, disease activity), elemental diets (pain, function, TJC, SJC, MS), glucosamine (CRP, ESR), herbal medicine (function, TJC, SJC), hypoallergenic diets (pain, TJC, SJC, MS), ketogenic diets (TJC, CRP, ESR), Linoleic acid (CRP, ESR), manganese (disease activity), Mediterranean diet (disease activity), microalgae oil (SJC), pomegranate (pain, function, TJC, SJC), vitamin B6 (SJC), vitamin E (TJC, SJC, MS, CRP, ESR)	Gum arabic (disease activity), herbal medicine (pain), Mediterranean diet (fatigue, function), microalgae oil (function, disease activity, TJC), mussel extracts (pain, function), quercetin (disease activity, TJC, SJC), vitamin B6 (disease activity, TJC, CRP, ESR)	Nigella sativa oil (pain, disease activity, TJC, SJC, morning stiffness)	Ginger+curcumin + black pepper (disease activity), Mediterranean diet (pain), potassium (pain, disease activity, TJC, SJC, CRP, ESR), vitamin E (pain)
Low	Alpha-lipoic acid (pain, CRP), ambrotose complex (function), Andrographis Paniculata (fatigue), rose hip powder (function, QoL), vegetarian/vegan diet (pain, function),	Alpha-lipoic acid (function), ambrotose complex (pain), antioxidant combinations (disease activity), co-enzyme Q10 (CRP), rose hip powder (pain, disease activity), zinc (pain, function)	Beta-hydroxy-beta-methylbutyrate+glutamine + arginine (disease activity, function, fatigue), quercetin (pain, function)	Antioxidant combinations (pain, function)
Moderate	Fish oil/omega-3 (function, disease activity), probiotics (function, SJC, CRP, disease activity), vitamin D (pain, disease activity)	Fish oil/omega-3 (pain)	–	–
High	–	–	–	–

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; MS, morning stiffness; QoL, quality of life; SJC, swollen joint count; TJC, tender joint count.
Summary
The evidence for fish oil/omega-3 for SLE was rated as moderate but showed no effect on outcomes (table 3). The evidence for all other studies was rated as low or very low.

Axial spondyloarthritis
Food components
One systematic review 184 of 16 studies assessed various food components in axSpA. There was no association between the consumption of alpha-linoleic acid, carbohydrates, linoleic acid, long-chain omega-3 fatty acids, fibre, polyunsaturated fatty acids, protein or saturated fatty acids and disease activity or acute phase reactant levels. There was no association between fat consumption and acute phase reactant level. (online supplemental tables 123 and 124).

Minerals and supplements
One RCT 185 assessed probiotic supplementation versus placebo, reporting no significant effect on pain, function, disease activity, tender/swollen joints and spinal mobility (online supplemental tables 125 and 126).

Summary
The evidence for dietary exposures in axSpA was rated as very low (table 4).

Psoriatic arthritis
Animal products
Three RCTs 186-188 assessed marine animal oil/omega-3 for PsA. The studies reported no significant effect on pain, 186 function, 187 disease activity, 187 tender joints, 186-188 swollen joints, 186 enthesitis, 186 psoriasis severity, 186 patient global 187 and acute phase reactants 187 188 (online supplemental tables 127 and 128).

Minerals and supplements
One RCT 189 studied supplementation of selenium, co-enzyme Q10 and vitamin E for psoriasis with joint involvement and radiographic erosion, reporting a large effect on disease severity but no effect on psoriasis severity (online supplemental tables 129 and 130).

Systemic sclerosis
Experimental diets
Two single arm studies 190-191 assessed medical nutrition therapy for SSc. One single arm study 190 assessed a diet and lifestyle plan, reporting improvements in patient global assessment but not in QoL. Another single arm study 191 provided supplements for vitamin and mineral deficiencies and encouraged healthy eating. There were no significant changes on any of the SF36 dimensions (online supplemental tables 131 and 132).

Vitamins
Three RCTs 192-194 studied vitamin supplementation in SSc. Two RCTs tested vitamins C and E (one also included selenium and beta-carotene) for SSc, one reporting better Rodnan Skin score at 1 month, 192 the other reporting no difference in frequency of Raynaud’s attacks. 193 The final RCT 194 assessed vitamin D supplementation, reporting a large effect on Rodnan skin score at 9 months (online supplemental tables 133–135).

Summary
The evidence for dietary exposures in SSc was rated as low or very low (table 5).

Table 3 Systemic lupus erythematosus results summary

Quality/effect size	None	Small	Medium	Large
Very low	Copper (disease activity), curcumin (disease activity), fish oil/omega-3 (CRP), green tea extract (disease activity), low glycaemic (disease activity, fatigue)	Fish oil/omega-3 (ESR)	Calcium+vitamin D (ESR), green tea extract (fatigue)	Calcium+vitamin D (disease activity), cholesterol lowering education (QoL), fish oil/omega-3 (pain, function)
Low	Vitamin D (disease activity, fatigue, anti-dsDNA)	Fish oil/omega-3 (disease activity), fibre (disease activity), poor nutrition (organ damage), vitamin B6 (disease activity), vitamin C (disease activity)	–	–
Moderate	–	–	–	–
High	–	–	–	–

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; QoL, quality of life.
Gout

Animal products

Two systematic reviews\(^{195}\)\(^{196}\) identified one RCT\(^{197}\) which assessed enriched milk powder for gout. Pain scores were significantly lower in the intervention group, but this was judged not to be clinically significant. There was no difference between the groups in terms of function, uric acid level and gout flares (online supplemental tables 136 and 137).

Fruits, vegetables and other plant based interventions

One RCT\(^{198}\) studied Chinese herbal medicine and concluded it had no significant hypouricemic effect (online supplemental tables 138 and 139).

Table 4	Axial spondyloarthritis and psoriatic arthritis results summary			
Quality/effect size	axSpA	Small	Medium	Large
Very low	Alpha-linoleic acid (disease activity, ESR, CRP), carbohydrates (disease activity, ESR, CRP), lipids (disease activity), linoleic acid (disease activity, ESR, CRP), long-chain omega-3 fatty acids (disease activity, CRP), polyunsaturated fatty acids (disease activity, CRP), probiotics (pain, function, SJC, spinal mobility), protein (disease activity, ESR, CRP), saturated fatty acids (disease activity, ESR, CRP)	axSpA	Long-chain omega-3 fatty acids (ESR), polyunsaturated fatty acids (ESR), probiotics (disease activity, TJC)	PsA Selenium+coenzyme Q10+vitamin E (psoriasis severity)
Low	PsA Marine animal oil/omega-3 (CRP)	PsA Marine animal oil/omega-3 (ESR)	PsA Marine animal oil/omega-3 (function, SJC)	–
Moderate	PsA Marine animal oil/omega-3 (pain, disease activity, TJC, enthesitis, patient global, psoriasis severity,	–	–	–
High	–	–	–	–

Gout

Table 5	Systemic sclerosis and gout results summary			
Quality/effect size	SSc	Small	Medium	Large
Very low	Nutrition therapy (QoL, pain, mental health, physical health, fatigue), vitamin C+E (Raynaud's attacks)	SSc Nutrition therapy (patient global)	Gout Herbal medicine (uric acid)	SSc Vitamin C+E (Rodnan skin score), vitamin D (Rodnan skin score)
Low	Gout Enriched milk powder (function, uric acid, gout flare)	Gout Enriched milk powder (pain)	–	–
Moderate	–	–	–	–
High	–	–	–	–

QoL, quality of life; SSc, systemic sclerosis.
Vitamins
One RCT \(^{199}\) and one single arm study \(^{200}\) assessed vitamin C supplementation for gout. The control arm was treated with allopurinol in the RCT, and demonstrated greater reductions in uric acid. The single arm study reported no changes in uric acid (online supplemental tables 140 and 141).

Summary
The evidence for dietary exposures in gout was rated as low or very low (table 5).

Studies of more than one RMD
One single arm study \(^{201}\) of a powdered meal replacement included people with OA and people with RA, reporting a slight improvement in the 50 foot walk test. A non-randomised trial \(^{202}\) assessing linoleic acid included people with RA and people with axSpA and reported no effect on tender or swollen joint count, morning stiffness, grip strength and ESR (online supplemental tables 142 and 143).

DISCUSSION
Many studies have been published assessing diet in OA and RA, with relatively fewer studies in the other RMDs. However, the majority of exposures in all RMDs have only been assessed by a handful of studies, which were often underpowered and at moderate to high risk of bias. Typically, these studies reported low effect sizes for outcomes, although some reported large effects. This could be due to publication bias \(^{203}\) or influence of commercial sponsors. When many studies have been performed (eg, chondroitin for OA \(^{76}\) or RCTs with large sample sizes have been conducted (eg, vitamin D for OA) \(^{81,85}\) the effect sizes on outcomes are small and not clinically meaningful. Therefore, based on the current evidence, there is no single dietary intervention which has substantial benefits on the outcomes of people with OA and RA. \(^{204}\) While there have been far fewer research studies published for the other included RMDs, again there is no consistent evidence that any dietary exposure significantly improves outcomes in these conditions. Despite this, people with RMDs should still aim for a healthy, balanced diet given the literature demonstrating the benefits in terms of non-RMD outcomes and lack of harms. \(^{8,9}\) Furthermore, the impact of a healthy diet on weight and body composition (ie, calorie balance) is likely important for determining outcomes. This was the focus of a separate review as part of this project. \(^{205}\)

Alongside the influence of publication bias on these results, many studies were rated as having moderate or high risk of bias (see online supplementary material). Studies often failed to report on the randomisation or allocation concealment process as well as steps taken to ensure participants and assessors were blinded to group allocation. These factors could also influence the results, potentially inflating reported effect sizes. Furthermore, there was limited reporting of adverse events.

This review has a number of strengths. Its broad scope allows us to gain a global understanding of the effect of diet in RMDs. The review was conducted with rigour, with multiple assessors screening the titles, abstracts and full texts. Furthermore, appropriate quality assessment tools were utilised to assess the quality of all included studies. However, given the scope of the research question it is possible that some studies were missed in the review. This was limited as much as possible by designing and testing an extensive search strategy as well as including other published systematic reviews and meta-analyses, increasing the likelihood of including as many relevant studies as possible. Furthermore, some exposures were deemed to be sufficiently covered in previous reviews and were not included in the search of original articles. However, this may mean some articles were not included (eg, due to when they were published). Lastly, while the research team included a range of experts in rheumatology research and evidence synthesis, no specific nutritionists or dietitians were included in the authorship team.

Future research on diet in RMDs should aim for higher methodological and reporting standards. Some studies did not report data in sufficient detail for extraction and thus inclusion in this review. For example, an RCT by Kjeldsen-Kragh and colleagues from 1991 tested a vegetarian diet and fasting and reported a significant improvement in many patient reported outcomes (eg, pain, disability), but only presented data in the form of line-graphs meaning no precise data could be extracted. \(^{206}\) Furthermore, studies should be sufficiently powered with long-term follow-up. Standardised definitions for different diet exposures should be formulated to allow comparison across studies, and standard outcomes assessed. Finally, research into the additive or synergistic effect of different dietary components should be researched, given the complex and interrelated nature of people’s diets.

In conclusion, this broad systematic review of 174 published articles shows there is large heterogeneity in the literature on the effects of diet on RMD outcomes, both within and across RMDs. There are many published research studies on RA and OA, investigating a range of dietary exposures. For the other included RMDs, the current evidence base is limited. From the current evidence, there appears to be no single dietary factor which leads to meaningful improvements in RMD outcomes.

Author affiliations
1Centre for Epidemiology Versus Arthritis, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
2EA 4360 Apemac, Université de Lorraine, Nancy, France
3Center on Aging and Mobility, University of Zurich, Zurich, Switzerland
4Area of Immunology, Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain
5Department of Metabolism, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain

Gwinnutt JM, et al. RMD Open 2022;8:e002167. doi:10.1136/rmdopen-2021-002167
Supplemental material

Data availability statement

No data are available.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 United Kingdom (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers 2018;4:18001.
2. Hartling L, Ball AJ, Guittoni FM, et al. Osteoarthritis. Nat Rev Dis Primers 2016;2:16072.
3. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers 2016;2:16039.
4. March L, Smith EUR, Hoy DG, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol 2014;28:533–66.
5. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 2020;396:1204–22.
6. Singh JA, Christensen R, Wiblen J, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014;22:363–88.
7. Schulze MB, Martinez-González MA, Fung TT, et al. Food based dietary patterns and chronic disease prevention. BMJ 2015;351:e3396.
8. Stranges S, Samaraweera PC, Taggart F, et al. Major health-related behaviours and mental well-being in the general population: the health survey for England. BMJ Open 2014;4:e005878.
9. Gwinnutt JM, Wieczorek M, Balanescu A, et al. 2021 EULAR recommendations: lifestyle behaviours and work participation to prevent progression of rheumatic and musculoskeletal diseases. Ann Rheum Dis 2022 doi:10.1136/annrheumdis-2021-222020. [Epub ahead of print: 08 Mar 2022].
10. van der Heijde D, Aletaha D, Carmona L, et al. 2014 update of the EULAR standardised operating procedures for EULAR-endorsed recommendations. Ann Rheum Dis 2015;74:8–13.
11. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
12. Shea BJA, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised controlled trials. PLoS Med 2011;8:e1000908.
13. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
14. Sobczenski F, Trikalinos TA, Kuiper J, et al. Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study. BMC Med Inform Decis Mak 2019;19:96.
15. Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med 2013;158:280–6.
16. Cochrane. Cochrane Handbook: 9.2.3.2 the standardized mean difference. Available: https://handbook-5.1.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm [Accessed 20 Jan 2021].
17. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
18. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum, 1988.
19. Guyatt GH, Oxman AD, Vist GE, et al. Grade: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
20. Guyatt GH, Oxman AD, Kunz R, et al. What is “quality of evidence” and why is it important to clinicians? BMJ 2008;336:995–8.

Gwinnutt JM, et al. RMD Open 2022;8:e002167. doi:10.1136/rmdopen-2021-002167

Downloaded from http://rmdopen.bmj.com/ on October 7, 2023 by guest. Protected by copyright.
Senftleber NK, Nielsen SM, Andersen JR, 2017;17:345–54.

Azidah AK, Arifah AK, Roslida AH, fish oil has no effect on bone mineral density in adults with knee osteoarthritis. J Sci Food Agric 2018;52:167–75.

Kalman DS, Heimer M, Vasko MR, nonsteroidal anti-inflammatory drug (NSAID) and anti-inflammatory dietary patterns and impact on inflammation biomarkers in patients with knee osteoarthritis. Arthritis Care Res 2018;70:1258–66.

Kumar S, Sugihara F, preliminary findings: a randomized, double-blind, placebo-controlled clinical trial. Osteoprotis Int 2017;21:1879–90.

27 Kumar S, Sugihara F, Suzuki K, et al. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptides on osteoarthritis. J Sci Food Agric 2015;95:702–7.

28 Chausa AG, Stenehjem J, Park J, et al. Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell collagen, on improving osteoarthritis-related symptoms: A randomized, double-blind, placebo-controlled trial. J Agirc Food Chem 2012;60:4096–101.

29 Nagaoka I, Nabeshima K, Murakami S, et al. The effect of argan oil supplementation on clinical signs and symptoms in patients with knee osteoarthritis. Int J Rheum Dis 2013;16:578–82.

30 Parmadeep G. Efficacy and tolerability of ginger (Zingiber officinale) in patients of osteoarthritis. Indian J Physiol Pharmacol 2013;57:177–83.

31 Schumacher HP, Pullman-Moosar S, Gupta SR, et al. Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (oa) of the knee. Eur J Rheumatol 2013;2:1035–41.

32 Kuehl KS, Elliot DL, Sleigh AE, et al. Efficacy of Tart cherry juice to reduce pain and stiffness in those with osteoarthritis and knee OA. Nutr J 2015:6:672–9.

33 Frestedt JL, Kuskowski MA, Zenk JL. A natural seaweed derived mineral supplement (Aquamin F) for knee osteoarthritis: a randomized, placebo controlled pilot study. Nutr J 2009;8:7.

34 Essoui J, Hardy J, Collet JY, et al. Effect of cod liver oil consumption on knee osteoarthritis symptoms: a randomized controlled clinical trial. Curr Rheumatol Rep 2017;19:323–51.

35 Hashempar MH, Sadrehossein M, Mosavat SH, et al. Green tea (Camelia sinensis) for patients with knee osteoarthritis: a randomized open-label active-controlled clinical trial. Clin Nutr 2018;37:85–90.

36 More M, Gruenwald J, Pohl U, et al. A Rosa canina - Urtica dioica - Harpagophytum procumbens/zevyheri Combination Significantly Reduces Gonarthrosis Symptoms in a Randomized, Placebo-controlled Double-blind Clinical Study. Planta Med 2013;79:1384–91.

37 Rein I, Kharazmi A, Winther K. A herbal remedy, Hyben Vital (stand. powder of a subspecies of Rosa canina fruits), reduces pain and improves general wellbeing in patients with osteoarthritis—a double-blind, placebo-controlled, randomised trial. Phytotherapy 2004;21:38–49.

38 Warholm O, Skaar S, Hedman E, et al. The effects of a standardized herbal remedy made from a subtype of Rosa canina in patients with osteoarthritis: a double-blind, randomized, placebo-controlled clinical trial. Curr Ther Res Clin Exp 2003;64:21–31.

39 Arjmandi BH, Ormsbee LT, Elam ML, et al. A combination of Scutellaria baicalensis and Acacia catechu extracts for short-term symptomatic relief of joint discomfort associated with osteoarthritis of the knee. J Med Food 2014;17:707–13.

40 Myers SP, O’Connor JH, et al. A combination phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biologics 2010;4:33–44.

41 Karimifar M, Soilani R, Hajhashemi V, et al. Evaluation of the effect of Elaeagnus angustifolia L. whole fruit and medulla powder on women with osteoarthritis of the knee: a randomized controlled trial. Clin Integ Med 2014;6:672–9.

42 Rahaf M, Hemmati S, Jafarabadi M. Pomegranate (Punica granatum L.) peel hydroalcoholic extract supplementation reduces pain and improves clinical symptoms of knee osteoarthritis: a randomized double-blind placebo controlled study. Iran Red Crescent Med J 2017;19.

43 Ghochani N, Karandish M, Mowla K, et al. The effect of pomegranate juice on clinical signs, matrix metalloproteinases and antioxidant status in patients with knee osteoarthritis. J Sci Food Agric 2016;96:4377–81.

44 Khadem Haghighian M, Alipoor B, Malek Madhavi A, et al. Effects of sesame seed supplementation on inflammatory factors and oxidative stress biomarkers in patients with knee osteoarthritis. Acta Med Iran 2015;53:207–13.

45 Ebrahim AA, Nikiasz Z, Ostadrahi A, et al. The effect of Elaeagnus angustifolia L. whole fruit and medulla powder on women with osteoarthritis of the knee: a randomized controlled trial. Ann Rheum Dis 2002;61:129–35.

46 lu Jin, Machado GC, Eyles JP, et al. Dietary supplements for treating osteoarthritis: a systematic review and meta-analysis. Br J Sports Med 2018;52:167–75.

47 Sentilheber NK, Nielsen SM, Andersen JR, et al. Marine oil supplements for arthritis pain: a systematic review and meta-analysis of randomized trials. Nutrients 2017;9:42.

48 Azidah AK, Arifah AK, Roslida AH, et al. A randomized, double-blind study comparing multiple doses of Channa striatus supplementation for knee osteoarthritis. Orient Pharm Exp Med 2017;17:345–54.

49 Hill CL, March LM, Altenk D, et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann Rheum Dis 2016;75:23–9.

50 Chen JS, Hill CL, Lister S, et al. Supplementation with omega-3 fish oil has no effect on bone mineral density in adults with knee osteoarthritis. A 2-year randomized controlled trial. Osteoprotis Int 2016;27:1897–905.

51 Kumar S, Sugihara F, Murakami S, et al. Evaluation of the effects of a supplementary diet containing chicken comb extract on symptoms and cartilage metabolism in patients with knee osteoarthritis. Exp Ther Med 2010;1:817–27.

52 Ruff KJ, Wilson MM, Jackson RW, et al. Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study. Clin Rheumatol 2009;28:907–14.

53 Kalman DS, Heimer M, Valdean A, et al. Effect of a natural extract of chicken comb with a high content of hyaluronic acid (Hyal-Joint) on pain relief and quality of life in subjects with knee osteoarthritis: a pilot randomized double-blind placebo-controlled trial. Nutr J 2008;7:3.

54 Hesselink R, Armstrong D, Nagendran MV, et al. Cetylated fatty acids improve function in patients with osteoarthritis. J Rheumatol 2002;29:1708–12.

55 Stammers T, Bibbald B, Freeing P. Efficacy of cod liver oil as an adjunct to non-steroidal anti-inflammatory drug treatment in the management of osteoarthritis in general practice. Ann Rheum Dis 1992;51:129–53.

56 Klicic BE, Oc Y, Albakan G, et al. An observational 1-Month trial on the efficacy and safety of Promicrin for improving knee joint. Clin Med Insights Arthritis Musculoskelet Disord 2018;11:1179544118754749.

57 Lu B, Driban JB, Xu C, et al. Milk consumption and progression of osteoarthritis in patients with osteoarthritis. J Nut Health Agric 2017;21:562–6.

58 Clinton CM, O’Brien S, Law J, et al. Whole-foods, plant-based diet alleviates the symptoms of osteoarthritis. Arthritis 2015;2015:1–9.

59 Riecke BF, Christensen R, Christensen P, et al. Comparing two low-energy diets for the treatment of knee osteoarthritis symptoms in obese patients: a pragmatic randomized clinical trial. Osteoarthr Cartilage 2010;18:746–54.

60 López-Gómez JJ, Izazola-Jáuregui O, Torres-Torres B, et al. Influence of a meal-replacement diet on quality of life in women with obesity and knee osteoarthritis before orthopedic surgery. Nutr Hosp 2018;35:71–7.

61 Dai Z, Lu N, Ji J, et al. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res 2017;69:1331–9.

62 Lu B, Driban JB, Xu C, et al. Dietary fat intake and radiographic progression of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res 2017;69:368–75.

63 Daily JW, Man L, Park S. Efficacy of Turmeric extracts and curcumin for alleviating the symptoms of joint arthritics: a systematic review and meta-analysis of randomized clinical trials. J Med Food 2016;19:717–29.

64 Cameron M, Chhrbasik S. Oral herbal therapies for treating osteoarthritis. Cochrane Database Syst Rev 2014;5:CD002947.
limitation associated with osteoarthritis of the hip and knee. N Z Med J 2016;129:97–102.

67 Christensen R, Bartels EM, Astrap A, et al. Symptomatic efficacy of avocado-soybean unsaponifiables (ASU) in osteoarthritis (OA) patients: a randomized analysis of randomized controlled trials. Osteoarthritis Cartilage 2008;16:399–408.

68 Madhu K, Chanda K, Saji MJ. Safety and efficacy of Curcuma longa extract in the treatment of painful knee osteoarthritis: a randomized placebo-controlled trial. Inflammopharmacology 2013;21:129–36.

69 Farid R, Rezaieyazdi Z, Mirfeizi Z, et al. Oral intake of purple passion fruit peel extract reduces pain and stiffness and improves physical function in adult patients with knee osteoarthritis. Nutr Res 2010;30:601–6.

70 Singh JA, Nicolaiolo S, MacDonald R, et al. Chondroitin for osteoarthritis. Cochrane Database Syst Rev 2015;1:CD005614.

71 Gallagher B, Tjoumakaris FP, Harwood MI, et al. Chondroprotection and the prevention of osteoarthritis progression of the knee: a systematic review of treatment agents. Am J Sports Med 2015;43:734–44.

72 Leil M, Guo C, Wang D, et al. The effect of probiotic Lactobacillus casei Shirotia on knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial. Benef Microbes 2017;8:697–703.

73 Neves M, Gualano B, Roschel H, et al. Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 2011;43:1538–43.

74 Scorei R, Mitru P, Petrisor I, et al. A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis. Bio Trace Elem Res 2011;144:253–63.

75 Roy BD, de Beer J, Harvey D, et al. The effect of purple passion fruit peel extract on knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial. J Orthop Res 2015;33:793–801.

76 Diao N, Yang B, Yu F. Effect of vitamin D supplementation on knee osteoarthritis: a systematic review and meta-analysis of randomized clinical trials. Clin Biochem 2017;50:1312–6.

77 Gao X-R, Chen Y-S, Deng W. The effect of vitamin D supplementation on knee osteoarthritis: a meta-analysis of randomized controlled trials. Int J Surg 2017;48:14–20.

78 Hussain S, Singh A, Akhtar M, et al. Vitamin D supplementation for the management of knee osteoarthritis: a systematic review of randomized controlled trials. Rheumatol Int 2017;37:1489–98.

79 Bastick AN, Belo JN, Runhar J, et al. What are the prognostic factors for radiographic progression of degenerative osteoarthritis? A meta-analysis. Clin Orthop Relat Res 2015;473:2969–89.

80 Bischoff-Ferrari HA, Orav EJ, Egli A, et al. Recovery after unilateral knee replacement due to severe osteoarthritis and progression in the contralateral knee: a randomised clinical trial comparing daily 2000 IU versus 800 IU vitamin D. RMD Open 2018;4:e000678.

81 Arden NK, Cro S, Sheard S, et al. The effect of vitamin D supplementation on knee osteoarthritis, the video study: a randomised controlled trial. Osteoarthritis Cartilage 2016;24:1858–68.

82 Jin X, Jones G, Cicuttini F, et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomised controlled clinical trial. JAMA 2016;315:1005–13.

83 McLaindon T, LaValley M, Schneider E, et al. Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 2013;309:155–62.

84 Medhi B, Mansouri S, Deonis X. Comparative clinical trial of paracetamol alone and vitamin C and E as an add on therapy in patients suffering from primary knee osteoarthritis. Jk Science 2012;14:38–42.

85 Colker CM, Swain M, Lynch L, et al. Effects of a milk-based bioactive microencapsulated beverage on pain symptoms and activity of adults with osteoarthritis: a double-blind, placebo-controlled clinical evaluation. Nutrition 2002;18:388–92.

86 Jonas WB, Rapoza CP, Blair WM. The effect of niacinamide on osteoarthritis: a pilot study. InflammRes 1996;45:330–4.

87 Flynn MA, Irwin V, Krause G. The effect of folate and cobalamin on osteoarthritic hands. J Am Coll Nutr 1994;13:351–6.

88 Teregowda J, Wilder PJ. The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Public Health Nutr 2011;14:709–15.

89 Wilder FV, Leaverton PE, Rogers MW, et al. Vitamin supplements and radiographic knee osteoarthritis: the Clearwater osteoarthritis study. J Musculoskeletal Res 2009;12:85–93.

90 McAilinon TE, Felson DT, Zhang Y, et al. Relation of dietary intake and serum levels of vitamin D progression of the knee among participants in the Framingham study. Ann Intern Med 1996;125:353–9.

91 Giovari A, Kalora AC, Marantidou F, et al. Intake of ω-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a systematic review and meta-analysis. Nutrition 2018;45:114–24.

92 Cramp F, Hewlett S, Almeida C, et al. Non-Pharmacological interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst Rev 2013;6:CD008322.

93 Abdulrazzaq M, Innes JK, Calder PC. Effect of ω-3 polyunsaturated fatty acids on arthritic pain: A systematic review. Nutrition 2017;39-40:57–66.

94 Rajale R, Mowla K, Ghorbani A, et al. The effect of omega-3 fatty acids in patients with active rheumatoid arthritis receiving DMARDs therapy: double-blind randomized controlled trial. Glob J Health Sci 2015;8:18–25.

95 Reed GW, Leung K, Rossetti RG, et al. Treatment of rheumatoid arthritis with marine and botanical oils: an 18-month, randomized, and double-blind trial. Evid Based Complement Alternat Med 2014;2014:857456.

96 Arborelius M, Konttinen YT, Nordström DC, et al. Gly-X-Y repeat sequences in the treatment of active rheumatoid arthritis. Rheumatol Int 1999;19:129–35.

97 Sköldstam L, Åberg O, Källman A, et al. Effect of six months of fish oil supplementation in stable rheumatoid arthritis. A double-blind, controlled study. Scand J Rheumatol 1992;21:178–85.

98 Tulleken JE, Limburg PC, Muskiet FA, et al. Vitamin E status during dietary fish oil supplementation in rheumatoid arthritis. Arthritis Rheum 1990;33:1316–9.

99 van der Tempel H, Tulleken JE, Limburg PC, et al. Effects of fish oil supplementation in rheumatoid arthritis. Ann Rheum Dis 1990;49:76–80.

100 Cleland LG, French JK, Betts WH, et al. Clinical and biochemical effects of dietary fish oil supplements in rheumatoid arthritis. J Rheumatol 1988;15:1471–5.

101 Magaro M, Altomonte L, Zoli A, et al. Influence of diet with different lipid composition on neutrophil chemiluminescence and disease activity in patients with rheumatoid arthritis. Ann Rheum Dis 1988;47:79–89.

102 Kremer JM, Jusbiz M, Michalek A, et al. Fish-Oil fatty acid supplementation in active rheumatoid arthritis. A double-blind, controlled crossover study. Ann Intern Med 1987;106:497–503.

103 Lindqvist HM, Garden J, Eneljung T, et al. The effect of dietary fish oil supplementation in rheumatoid arthritis. The MRA Randomised Cross-Over Dietary Intervention. Nutrients 2018;10:481.

104 Fu Y, Li G, Zhang X, et al. Lipid extract from hard-shelled mussel (Mytilus coruscus) improves clinical conditions of patients with rheumatoid arthritis: a randomized controlled trial. Nutrients 2015;7:625–45.

105 Cleland LG, Caughley GE, James MJ. Reduction of cardiovascular risk factors with longterm fish oil treatment in early rheumatoid arthritis. J Rheumatol 2006;33:1793–9.

106 Podas T, Nightingale JMD, Oldham R, et al. Is rheumatoid arthritis a disease that starts in the intestine? A pilot study comparing an elemental diet with oral prednisolone. Postgrad Med J 2007;83:128–31.

107 Sköldstam L, Hafors L, Johansson G. An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann Rheum Dis 2003;62:208–14.

108 Hafström I, Ringertz B, Ånggren M, et al. A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: the effects on arthritis correlate with a reduction in antibodies to food antigens. Rheumatology 2001;40:1175–9.

109 Sarzi-Puttini P, Comi D, Bocassini L, et al. Diet therapy for rheumatoid arthritis. A controlled double-blind study of two different dietary regimens. Scand J Rheumatol 2000;29:302–7.

110 Hoist-Jensen SE, Spekker-Jensen M, Mortensen M, et al. Treatment of rheumatoid arthritis with a peptide diet: a randomized, controlled trial. Scand J Rheumatol 1998;27:329–36.
Kavanagh R, Workman E, Nash P, et al. The effects of elemental diet and sucrose food reintroduction on rheumatoid arthritis. Br J Rheumatol. 1995;34:270–3.

Haugen MA, Kjeldseng-Kragh J, Forre O. A pilot study of the effect of an elemental diet in the management of rheumatoid arthritis. Clin Exp Rheumatol. 1994;12:275–9.

van de Laar MA, van der Korst JK. Food intolerance in rheumatoid arthritis. I. A double blind, controlled trial of the clinical effects of elimination of milk allergens and azo dyes. Ann Rheum Dis. 1992;51:298–302.

Panush RS, Carter RL, Katz P, et al. Diet therapy for rheumatoid arthritis. Arthritis Rheum. 1983;26:462–71.

Sundqvist T, Lindström F, Magnusson KE, et al. Influence of fasting on intestinal permeability and disease activity in patients with rheumatoid arthritis. Scand J Rheumatol. 1982;11:33–8.

Skoldstam L, Larsson L, Lindström FD. Effect of fasting and lactovegetarian diet on rheumatoid arthritis. Scand J Rheumatol. 1979;8:249–55.

Abendroth A, Michalsen A, Lüdtke R, et al. Changes of intestinal microflora in patients with rheumatoid arthritis during fasting or a Mediterranean diet. Forsch Komplementmed. 2015;22:196–201.

Dawczynski C, Dittrich M, Neumann T, et al. Randomized study to explore the efficacy of a dietary plant-based intervention on disease activity in patients with rheumatoid arthritis living in ar

Bae S, Kim H, Park J, et al. Protective effect of glutamine and arginine: a randomised controlled trial. Health Risk Manag. 2015;13:124–30.

Mirtaheri E, Gargari BP, Kolahi S, et al. Effects of alpha-lipoic acid supplementation on inflammatory biomarkers and matrix metalloproteinase-3 in rheumatoid arthritis patients. J Am Coll Nutr. 2015;34:310–7.

Alavi A, Goodfellow L, Fraser O, et al. A double-blind, randomized, placebo-controlled study to explore the efficacy of a dietary plant-derived polyphenol supplement in patients with rheumatoid arthritis. Rheumatology. 2011;50:1111–9.

Arayaein N, Shahram F, Djatali M, et al. Effect of conjugated linoleic acid, vitamin E and their combination on lipid profiles and blood pressure of Iranian adults with active rheumatoid arthritis. Vasc Health Risk Manag. 2014;10:521–8.

Nakamura H, Nakamura H, Katayama K, et al. Changes of intestinal microflora with fasting and a Mediterranean diet. Forsch Komplementmed. 2005;12:511–4.

Kumar G, Srivastava A, Sharma SK, et al. Efficacy & safety evaluation of Ayurvedic treatment (Ashwagandha powder & Siddh Makardhwaj) in rheumatoid arthritis patients: a pilot prospective study. Indian J Med Res. 2015;141:100–6.

Matsuno H, Nakamichi M, Katayama K, et al. Effects of an oral administration of glucosamine-chondroitin-glucosamine on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis. Biosci Biotechnol Biochem. 2009;73:288–92.

Kragh J, Haugen M, Børdal A, Kenawy SA. Effectiveness of Nigella sativa oil in the treatment of rheumatoid arthritis: a double-blind, placebo-controlled trial. J Biol Sci. 2010;17:87–93.

Kumar A, Pradhan P, Rana S, et al. Effect of turmeric and curcumin in the treatment of rheumatoid arthritis: a randomized controlled trial. Phytomedicine. 2018;26:67–76.

Lancet. 2005;365:310–7.

Huang S, Chang C, Wu DJ, et al. Vitamin B6 supplementation and disease activity in patients with immunemediated rheumatic diseases: a systematic review and meta-analysis. Medicine. 2019;98:e15740.

Batooei M, Tabatabaei M, Ebrahimi T, et al. The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in patients with rheumatoid arthritis. J Pain. 2008;9:722–31.

Rasker JJ, Kardaun SH. Lack of beneficial effect of zinc sulphate in rheumatoid arthritis. Scand J Rheumatol. 1982;11:168–70.

Franco AS, Freitas TQ, Bernardo WM, et al. Vitamin D supplementation and disease activity in patients with immunemediated rheumatic diseases: a systematic review and metaanalysis. Medicine. 2016;95:e542.

Batoeei M, Tahamoli-Roudsani A, Basiri Z, et al. Evaluating the effect of oral N-acetylcysteine as an adjuvant treatment on clinical outcomes of patients with rheumatoid arthritis: a randomized, double-blind clinical trial. Rev Recent Clin Trials. 2018;13:132–8.

Huang S-C, Wei JC-C, Wu DJ, et al. Vitamin B6 supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur J Clin Nutr. 2010;64:1007–13.

Noumorrowham I, Athari-Nik S, Vafa MR, et al. Effects of antioxidant supplements on oxidative stress in rheumatoid arthritis patients. J Biol Sci. 2009;10:63–6.

Chiang E-PI, Selhub J, Bagley PJ, et al. Pyridoxine supplementation corrects vitamin B6 deficiency but does not improve inflammation in patients with rheumatoid arthritis. Arthritis Rheum. 2007;57:781–9.

Edmonds SE, Winyard PG, Guo R, et al. Putative anabolic activity of repeated oral doses of vitamin E in the treatment of rheumatoid
arthritides. Results of a prospective placebo controlled double blind trial. *Ann Rheum Dis* 1997;56:649–55.

161 Helmy M, Shohayeb M, Helmy MH, et al. Antioxidants as adjuvant therapy in rheumatoid disease. A preliminary study. *Arzneimittelforschung* 2001;51:293–8.

162 Jalali M, Kolahi S, Aref-Hosseini S-R, et al. Beneficial role of antioxidants on clinical outcomes and erythrocyte antioxidant parameters in rheumatoid arthritis patients. *Int J Prev Med* 2014;5:835–40.

163 van Vugt RM, Bijnen PJ, Rietveld AV, et al. Antioxidant intervention in rheumatoid arthritis: results of an open pilot study. *Clin Rheumatol* 2008;27:771–5.

164 Rodríguez Huerta MD, Trujillo-Martin MM, Rúa-Figueroa Ilígo, et al. Healthy lifestyle habits for patients with systemic lupus erythematosus: a systematic review. *Sem Arthritis Rheum* 2016;45:463–70.

165 Curado Borges M, de Miranda Moura Dos Santos F, Weiss Telles R, et al. Omega-3 fatty acids, inflammatory status and biochemical markers of patients with systemic lupus erythematosus: a pilot study. *Rev Bras Reumatol Engl Ed* 2017;57:526–34.

166 Arriens C, Hynan LS, Lerman RH, et al. Placebo-Controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in systemic lupus erythematosus. *Nuut J* 2015;14:82.

167 Belio KJ, Fang H, Fazeli P, et al. Omega-3 in SLE: a double-blind, placebo-controlled randomized clinical trial of endothelial dysfunction and disease activity in systemic lupus erythematosus. *Rheumatol Int* 2013;33:2788–96.

168 Wright SA, O’Prey FM, McHenry MT, et al. A randomised intervention study of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. *Ann Rheum Dis* 2008;67:841–8.

169 Duffy EM, Meenagh GK, McMillan SA, et al. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in patients with systemic lupus erythematosus. *J Rheumatol* 2003;30:1551–6.

170 Westberg G, Tarkowski A. Effect of MaxEPA in patients with SLE. A double-blind, crossover study. *Scand J Rheumatol* 1990;19:137–43.

171 Lovozy MAB, Simão ANC, Morimoto HK, et al. Fish oil n-3 fatty acids increase adrenocorticotropin and decrease leptin levels in patients with systemic lupus erythematosus. *Mar Drugs* 2015;13:1071–83.

172 del Pino-Sedeño T, Trujillo-Martin MM, Ruiz-Irazorza G, et al. Effectiveness of nonpharmacologic interventions for decreasing fatigue in adults with systemic lupus erythematosus: a systematic review. *Arthritis Care Res* 2016;68:141–8.

173 Yuek HK, Cunningham MA. Optimal management of fatigue in patients with systemic lupus erythematosus: a systematic review. *Ther Clin Risk Manag* 2014;10:775–86.

174 Davies RJ, Lomer MCE, Yeo SL, et al. Weight loss and improvements in fatigue in patients with systemic lupus erythematosus: a controlled trial of a low glycaemic index diet versus a calorie restricted diet in patients treated with corticosteroids. *Lupus* 2012;21:649–55.

175 Shah M, Kavanagh A, Coyle Y, et al. Effect of a culturally sensitive cholecystokinin lowering diet program on lipid and lipoproteins, body weight, nutrient intakes, and quality of life in patients with systemic lupus erythematosus. *J Rheumatol* 2002;29:2122–8.

176 Murk M, Krabbe-Dahi, Nagata G, et al. Intakes of vitamin B6 and dietary fiber and clinical course of systemic lupus erythematosus: a prospective study of Japanese female patients. *J Epidemiol* 2011;21:246–54.

177 Minami Y, Sasaki T, Arai Y, et al. Diet and systemic lupus erythematosus: a 4 year prospective study of Japanese patients. *J Rheumatol* 2003;30:1447–54.

178 Karlson EW, Daltroy LH, Lew RA, et al. The relationship of socioeconomic status, race, and modifiable risk factors to outcomes in patients with systemic lupus erythematosus. *Arthritis Rheum* 1997;40:74–8.

179 Shemekhi Z, Amani R, Habibagahi Z, et al. A randomized, double-blind, placebo-controlled clinical trial examining the effects of green tea extract on systemic lupus erythematosus disease activity and quality of life. *Phytother Res* 2017;31:1063–71.

180 Singh Rajpurohit C, Diah Setyorni C, Kalm H, et al. Effect of *Curcuma xanthorrhiza* Supplementation on Systemic Lupus Erythematosus Patients with Hypovitamin D Which Were Given Vitamin D, towards Disease Activity (SLEDAI), IL-6, and TGF-β1. *J. Int. J. Rheumat* 2017;2017:7687053.

181 Al-Kushhi AG, Food, Head EA, et al. Effect of vitamin D and calcium supplementation in patients with systemic lupus erythematosus. *Saudi J Med Med Sci* 2018;6:137–42.

182 Karimzadeh H, Shirzadi M, Karimirad M. The effect of vitamin D supplementation in disease activity of systemic lupus erythematosus patients with vitamin D deficiency: a randomized controlled trial. *J Res Med Sci* 2017;22:4.

183 Andreoli L, Dall’Al F, Piantoni S, et al. A 24-month prospective study on the efficacy and safety of two different monthly regimens of vitamin D supplementation in pre-menopausal women with systemic lupus erythematosus. *Lupus* 2015;24:499–506.

184 Macfarlane TY, Abbood HM, Pathan E, et al. Relationship between diet and ankylosing spondylitis: a systematic review. *Eur J Rheumatol* 2018:5:45–22.

185 Jenks K, Stebbings S, Burton J, et al. Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. *J Rheumatol* 2010;37:2118–25.

186 Kristensen S, Schmidt EB, Schlemmer A, et al. Beneficial effect of n-3 polyunsaturated fatty acids on inflammation and analgesic use in psoriatic arthritis: a randomized, double blind, placebo-controlled trial. *Scand J Rheumatol* 2018;47:27–36.

187 Martin TM, Björkjjäer T, Brünborg LA, et al. Subjective improvement in patients with psoriatic arthritis after short-term oral treatment with seal oil. A pilot study with double blind comparison to soy oil. *J Rheumatol* 2006;33:367–10.

188 Veale DJ, Torley HI, Richards IM, et al. A double-blind placebo controlled trial of Efamol marine on skin and joint symptoms of psoriatic arthritis. *Br J Rheumatol* 1994;33:954–8.

189 Kharaeva Z, Gostova E, De Luca C, et al. Clinical and biochemical effects of coenzyme Q10, vitamin E, and selenium supplementation to psoriasis patients. *Nutrition* 2009;25:295–302.

190 Dall’Al F, Allen TS, Southwood C, et al. Medical nutrition therapy for patients with advanced systemic sclerosis (Mmpt): a pilot intervention study. *JPEN J Parenter Enteral Nutr* 2017;41:678–84.

191 Ortiz-Santamaria V, Puig C, Soldevilla C, et al. Nutritional support in patients with systemic sclerosis. *Reumatol Clin* 2014;10:283–7.

192 Ostojic S, Janzan K. Effect of selenium and antioxidants (alpha-tocopherol and ascorbic acid) on skin thickening and lung function in patients with early diffuse systemic sclerosis. *Rheumatol Int* 2011;31:1051–4.

193 Herrick AL, Hollis S, Schofield D, et al. Effect of a culturally controlled trial of fish oil on morning stiffness and predictors of hand function in patients with systemic sclerosis. *Psoriatic Arthritis* 2017;10:1551–6.

194 Dalbeth N, Ames R, Gamble GD, et al. Effects of skim milk powder enriched with glycomacropeptide and G600 milk fat extract on frequency of gout flares: a proof-of-concept randomised controlled trial. *Ann Rheum Dis* 2012;71:129–34.

195 Yu KN, Wu HY, Deng YP, et al. “Yellow-dragon Wonderful-seed Formula” for hyperuricemia in gout patients with dampness-heat pouring downward pattern: a pilot randomized controlled trial. *Trials* 2018;19:551.

196 Shimp DK, O’Donnell JL, Frampton C, et al. Clinically insignificant effect of supplemental vitamin C on serum urate in patients with gout: a pilot randomized controlled trial. *Arthritis Rheumat* 2013;65:1636–42.

197 Azeez FS, Al-Hebsi AH, Al-Essimi HD, et al. Vitamin C supplementation and serum uric acid, a reaction to hyperuricemia and gout disease. *Diabetes Metab Syndr* 2017;11:75–8.

198 Bradley M, Golden E. Powdered meal replacement - can they benefit overweight patients with concomitant conditions exacerbated by obesity? *Current Therapeutic Research* 2000;64:407–26.

199 Jäänti J, Isomäki H, Laitinen O, et al. Linoleic acid treatment in inflammatory arthritis. *Int J Clin Pharmacol Ther Toxicol* 1985;23:89–91.

200 Sutton AJ, Duval SJ, Tweedie RL, et al. Empirical assessment of the effect of publication bias on meta-analyses. *BMJ* 2000;320:15–7.

201 Thomas S, Browne H, Mobasher A, et al. What is the evidence for a role for diet and nutrition in osteoarthritis? *Rheumatology* 2018;57:iv81–74.

202 Gwinnett JM, Wieczorek M, Cavalli G, et al. Effects of physical exercise and body weight on disease severity and health outcomes in people with rheumatic and musculoskeletal diseases (RMDs): systematic reviews and meta-analyses Informing the 2021 EULAR Trial.
recommendations for lifestyle improvements in people with RMDs. *RMD Open* 2022;8:e002168.

206 Kjeldsen-Kragh J, Haugen M, Borchgrevink CF, et al. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. *Lancet* 1991;338:899–902.