Microstructure Characteristics of the Ni-Si Composites

Chunjuan Cui¹,²,⁎, Chiqiang Ren¹, Lulu Tian¹, Pei Wang¹ and Songyuan Wang¹

¹School of Metallurgical engineering, Xi’an University of Architecture and Technology, Xi’an, China
² Shaanxi Engineering Technology Research Center for Wear-resisting Materials, Xi’an, China

⁎Corresponding author e-mail: cuichunjuan@xauat.edu.cn

Abstract. A hypoeutectic alloy is a metallic alloy which has a composition less the eutectic point, and a hypereutectic alloy is a metallic alloy which has a composition beyond the eutectic point. As the temperature of a non-eutectic composition is lowered, the liquid mixture will precipitate one component of the mixture before the other. In a non-eutectic solution, there will be a proeutectoid phase, so microstructure is of importance to understand the crystal growth mechanism. In the present paper microstructure characteristics of Ni-Si composites were investigated and the crystal growth mechanism was revealed.

1. Introduction

Ni₃Si is an Ll 2 structured (ordered face-centered-cubic) intermetallic compound, possesses anomalous yield strength as a function of temperature, and shows excellent strength at temperatures up to 973K [1]. Ni₃Si has been paid more attentions because of the low density, high melting point, high strength, excellent oxidation resistance and magnificent corrosion resistance in acid environments, particularly in sulfuric acid solutions [2-4]. However, the engineering application of this material is limited by the brittleness at the ambient temperature. Many achievements that tried to improve the brittleness have been obtained [5-7]. Cui prepared Ni-Ni₃Si eutectic with a modified Bridgman directional solidification technology [8] and Electron beam floating zone melting [9], respectively. The Ni-Si hypoeutectic and Ni-Si hypereutectic are prepared with a modified Bridgman directional solidification technique in order to expand the alloy composition range. Microstructures of the Ni-Si eutectic and non-eutectic were systematically compared in the present paper, and the crystal growth mechanisms of the Ni-Si composite were obtained.

2. Experiments

The master alloys were obtained by cutting the middle of the Ni-11wt% Si, Ni-11.5wt%Si and Ni-12wt% Si alloys into Φ6×120mm slices, which were produced with vacuum induction melting technique by homogenously mixing 99.99% purity Ni and 99.99% purity Si together. The Ni-Si composites were prepared by modified Bridgman directional solidification equipment at different solidification rates. The directionally solidified Ni-Si composites were cut along the longitudinal direction and, subsequently ground and mechanically polished, followed by etching in a 5%HCl+H₂O+FeCl₃ solution. Microstructure and phase distributions are observed with OLYMPUS GX51 optical microscope (OM).
3. Results and discussions
Fig.1, Fig.2 and Fig.3 are the microstructures of Ni-Si hypoeutectic, Ni-Si eutectic and Ni-Si hypereutectic, respectively. It can be seen that Ni-Si hypoeutectic is composed of α-Ni phase and Ni$_3$Si phase, which is a kind of pseudo-eutectic structure. While both Ni-Si eutectic and Ni-Si hypereutectic is composed of three phases: α-Ni phase, Ni-Ni$_3$Si eutectic, and metastable Ni$_{31}$Si$_{12}$ phase.

Figure 1. Microstructure of the Ni-11wt% Si hypoeutectic composite at solidification rate of 3μm/s (a) Transverse section; (b) Longitudinal section.

Figure 2. Microstructure of the Ni-11.5wt% Si eutectic composite at solidification rate of 6μm/s (a) Transverse section; (b) Longitudinal section.
Figure 3. Microstructure of the Ni-12wt% Si hypereutectic composite at solidification rate of 9μm/s (a) Transverse section; (b) Longitudinal section.

The Nickel-rich part of Ni-Si equilibrium phase diagram is shown in Fig.4 [10]. It can be seen from Fig.1 that there is no metastable Ni$_3$Si$_{12}$ phase formed in Ni-Si hypoeutectic, and hypoeutectic reaction produced the regular broken-lamellar structure. This is a kind of pseudo eutectic structure. When the temperature drops to T_E, the eutectic reaction will continue to occur in the pseudo-eutectic region, and pseudo-eutectic structure is formed.

At the eutectic composition, the eutectic reaction is in thermal equilibrium. Liquid, α-Ni phase and β_2-Ni$_3$Si all coexist at the same time and are in chemical equilibrium. When the temperature is decreased, the β_3-Ni$_3$Si phase transforms to β_2-Ni$_3$Si phase. Then the eutectoid decomposition is taken place as Formula (1) shows

$$\beta_2$-Ni$_3$Si $\rightarrow \beta_1$-Ni$_3$Si + $\gamma$$ \tag{1}$$

where β_1-Ni$_3$Si is a Silicon-rich phase. γ has the formula Ni$_{31}$Si$_{12}$ and a complex hexagonal crystal structure. It can be seen from Fig.2 that microstructure of the Ni-Si eutectic is regular broken-lamellar eutectic structure, and the phase interface is at the state of the lowest energy state.

Figure 4. The nickel-rich part of Ni-Si equilibrium phase diagram.
Hypereutectic solutions are characterized as those with a higher composition of species β and a lower composition of species α than the eutectic composition. It can be seen from Fig. 4 that the liquid mixture will precipitate β₃Ni₃Si phase of the mixture before the α-Ni phase. Then the transformation β₃-Ni₃Si phase to β₂-Ni₃Si phase occurs, and the eutectoid decomposition is taken place as Formula (1) shows in the next moment. It can be seen from Fig. 3 that the microstructure of the Ni-Si hypereutectic is also pseudo-eutectic structure.

Moreover, the amount of the Ni₁₃Si₁₂ phase is increased with the increase of the silicon content. Ni₁₃Si₁₂ phase is a kind of metastable phase, and it is not beneficial to the mechanical properties of the Ni-Si alloy. But it can easily transform to stable Ni₃Si phase after annealing [11], thus the comprehensive properties of the Ni-Si composites can be improved as a result.

4. Conclusion
Ni-Si hypoeutectic, eutectic and hypereutectic composites were successfully prepared. The pseudo-eutectic structures are obtained at the pseudo-eutectic region. The microstructure of the Ni-Si composites, which contain both metallic solution matrix and hard intermetallic compounds, indicates a hopeful prospect for the enhancement of the properties of the composites.

Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (51201121), Science and Technology Foundation for Selected Overseas Chinese Scholars of Shaanxi Province (2015), International Science and Technology cooperation and exchange program of Shaanxi Province (2016KW-055), and Research Project of Shaanxi Engineering Technology Research Center for Wear-resisting Materials (2016NMZX03).

References
[1] K.S. Kumar: in Intermetallic Compounds—Principles and Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., Chichester, United Kingdom, 1995, vol. 2, pp. 211.
[2] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
[3] K. Ohira, Y. Kaneno, T. Takasugi. Microstructure, mechanical property and oxidation property in Ni₃Si–Ni₃Ti–Ni₃Nb multi-phase intermetallic alloys. Materials Science and Engineering: A, 399(2005)332-343.
[4] J.H Zhu, C.T Liu. Intermediate-temperature mechanical properties of Ni–Si alloys: oxygen embrittlement and its remedies. Intermetallics, 10(2002)309-316.
[5] T. Takasugi, M. Nagashima, O. Izumi. Strengthening and ductilization of Ni₃Si by the addition of Ti elements. Acta Metallurgica et Materialia, 38(1990)747-755.
[6] M.Y. Niu, Q.L. Bi, J. Yang, W.M. Liu. Tribological performances of Ni₃Si–Cr7C3 composite coatings under water and acid environments. Tribology International, 48(2012)216-225.
[7] C.T. Liu, E.P. George, W.C. Oliver. Grain-boundary fracture and boron effect in Ni₃Si alloys. Intermetallics, 4(1996)77-83.
[8] C.J. Cui, J. Zhang, K. Wu, Y.P. Ma, L. Liu, H.Z. Fu. Microstructure and properties of Ni–Ni₃Si composites by directional solidification. Physica B: Condensed Matter, 407(2012)3566–3569.
[9] C.J. Cui, J. Zhang, K. Wu, D.N. Zou, Y.P. Ma, L. Liu, H.Z. Fu. Directional solidification of Ni–Ni₃Si eutectic in situ composites by electron beam floating zone melting. Physica B: Condensed Matter, 412(2013)70-73.
[10] T.B. Massalski, L. Bennett, and L.H. Murray: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Metal Park, OH, 1986.
[11] X. Guo, X.F. Lu, Q. Ma, et al. Microstructure investigation of In-situ synthesis Ni₃Si/Ni composites, New Technology & new Process, 12(2009), pp.96-98.