Genome Sequences of Livestock-Associated Methicillin-Resistant \textit{Staphylococcus aureus} \textit{spa} Type t899 Strains Belonging to Three Different Sequence Types (ST398, ST9, and ST4034)

Henok Ayalew Tegegne,a,b,c Ivana Koláčková,a Martina Florianová,a Tereza Gelbičová,a Pierre Wattiau,c Cécile Boland,c Renáta Karpíšková

aDepartment of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
bFaculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
cVeterinary Bacteriology, Sciensano, Brussels, Belgium

ABSTRACT Livestock-associated methicillin-resistant \textit{Staphylococcus aureus} (LA-MRSA) is an emerging MRSA lineage rapidly evolving in the community. In this report, we present the draft genome sequences of nine LA-MRSA strains. These strains were isolated from meat and a human nasal swab sample and belong to one unique \textit{spa} type (t899), but to three different sequence types, ST398, ST9, and ST4034.

Livestock-associated methicillin-resistant \textit{Staphylococcus aureus} (LA-MRSA) is the largest MRSA pool in humans outside the hospital setting, with livestock as a primary reservoir (1, 2). This lineage is predominantly represented by clonal complex 398 (CC398), but it also comprises other clonal complexes, including CC9 and CCS (2–4).

\textit{Staphylococcus aureus} protein A (\textit{spa}) typing has a remarkable predictive power over clonal relatedness (5, 6). In most instances, a single \textit{spa} type is strictly associated with a specific multilocus sequence type (MLST). However, some exceptions do exist, such as \textit{spa} type t899, which is reported in multiple sequence types, namely, ST398 and ST9. In this report, we present the draft genome sequences of nine LA-MRSA strains, all belonging to \textit{spa} type t899 but clustering in three different sequence types, ST398 (3), ST9 (5), and ST4034 (1) (Table 1).

Isolates were obtained from meat samples collected in retail markets and from a nasal swab sample from a dialysis patient that was taken during hospital screening in the Czech Republic. The meat from which the samples were drawn was produced in different countries and sold in the Czech Republic. The samples were primarily enriched in buffered peptone water and cultured on Baird-Parker agar. Presumptive \textit{S. aureus} colonies were transferred to blood agar and confirmed using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (7). All MRSA isolates were identified using PCR detection of the \textit{S. aureus}-specific fragment SA442 and the \textit{mecA} gene (8). MLST (https://cge.cbs.dtu.dk/services/MLST) (9) and \textit{spa} typing (https://www.spaserver.ridom.de) (10) were performed prior to the whole-genome sequence run.

Total genomic DNA was extracted using a DNeasy blood and tissue kit (Qiagen, Valencia, CA) from pure culture colonies cultivated on Columbia sheep blood agar (Bio-Rad Laboratories, Temse, Belgium). Whole-genome sequencing was performed with a MiSeq sequencing platform (Illumina, San Diego, CA). Library preparation was performed with the Nextera XT DNA sample preparation kit (Illumina). The libraries were then sequenced using a 250-bp paired-end protocol (MiSeq reagent kit v3, Illumina) according to the manufacturer’s instructions. Data analysis was performed...
TABLE 1 Livestock-associated methicillin-resistant *Staphylococcus aureus* type 1899 isolates

Isolate IDa	Isolate source	Sample originb	Year of isolation	STc	No. of raw reads	Genome coverage (x)	No. of contigs	N_{50} (bp)d	GC content (%)d	Genome size (bp)	GenBank accession no.
SAV0154	Pork	CZ	2013	103	772,052	64.34	178	39,112	32.91	2,781,027	QYAQ00000000
SAV0987	Human	CZ	2017	398	1,109,012	92.42	196	37,830	32.79	2,922,579	QYAX00000000
SAV1035	Poultry meat	PO	2017	9	1,062,670	88.56	123	85,312	32.71	2,783,450	QYAW00000000
SAV1109	Poultry meat	PO	2017	398	699,934	58.33	303	20,030	32.82	2,857,636	QYAV00000000
SAV1146	Poultry meat	DE	2017	9	675,512	56.29	131	55,180	32.85	2,756,154	QYAS00000000
SAV1149	Poultry meat	DE	2017	9	893,060	74.42	277	21,660	32.79	2,749,354	QYAT00000000
SAV1150	Poultry meat	DE	2017	9	808,170	67.35	99	78,511	32.75	2,896,873	QYAV00000000
SAV1158	Poultry meat	DE	2017	9	1,231,020	102.58	64	135,732	32.73	2,896,873	QYAV00000000
SAV1228	Pork	CZ	2017	9	2,321,580	193.47	116	80,797	32.71	2,730,307	QYAQ00000000

#D. Identification.
#C. CZ, Czech Republic; DE, Germany; PO, Poland.
#ST. Sequence type.
#N50 value and GC percentage were calculated based on contigs of ≥500 bp.

using an in-house instance of the Galaxy workflow management system (11). Sequencing yielded a total of 9,573,010 reads with 35- to 251-bp read lengths. Raw reads were quality checked with FastQC v.0.65, and low-quality reads were trimmed using Trimmomatic v.0.36.4 (12). Subsequently, assemblies were generated using the SPAdes v.3.1.3 algorithm (13). Contigs ≥200 bp long were retained in the assembly. The genome sizes ranged from 2,730,307 to 2,922,579 bp. The average GC content and the N_{50} value were 32.8% and 61,574 bp, respectively. Final assemblies consisted of 64 to 303 contigs with an average coverage of 88.64× (Table 1). Annotation was carried out using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/) (14).

Data availability. The genome sequences reported here have been deposited at DDBJ/ENA/GenBank under the accession numbers QYAQ00000000 to QYAY00000000. The versions described in this paper are the first versions, QYAQ01000000 to QYAY01000000 (Table 1). Raw sequences are available under the SRA study accession number SRP161670.

ACKNOWLEDGMENTS

We thank the service Transversal Activities in Applied Genomics from Sciensano for the paired-end sequencing reactions and for the development and maintenance of the in-house instance of the Galaxy workflow management system.

This study was supported by projects of the Ministry of Agriculture of the Czech Republic, NAZV KUS QJ1510216, and project LO1218 from MEYS of the Czech Republic under the NPU I program. Funding sources did not affect the design of this study, data collection, data analysis, decisions on publication, or preparation of the manuscript.

REFERENCES

1. Hau SJ, Bayles DO, Aft DP, Frana TS, Nicholson TL. 2017. Complete genome sequence of a livestock-associated methicillin-resistant *Staphylococcus aureus* sequence type 5 isolate from the United States. Genome Announc 5:e00791-17. https://doi.org/10.1128/genomeA.00791-17.

2. Lekkerkerk WS, Van Wamel WJ, Snijders SV, Willems RJ, van Duijkeren E, Broens EM, Wagenaar JA, Lindsay JA, Vos MC. 2015. What is the origin of *Staphylococcus aureus* clonal complex 398 isolates from humans without livestock contact? An epidemiological and genetic analysis. J Clin Microbiol 53:1836–1841. https://doi.org/10.1128/JCM.02702-14.

3. European Food Safety Authority. 2009. Analysis of the baseline survey on the prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) in holdings with breeding pigs, in the EU, 2008. Part A: MRSA prevalence estimates. EFSA J 7:1376. https://doi.org/10.2903/j.efsa.2009.1376.

4. Graveland H, Duim B, Van Duijkeren E, Heederik D, Wagenaar JA. 2011. Livestock-associated methicillin-resistant *Staphylococcus aureus* in animals and humans. Int J Med Microbiol 301:630–634. https://doi.org/10.1016/j.ijmm.2011.09.004.

5. Faria NA, Carrico JA, Oliveira DC, Ramirez M, de Lencastre H. 2008. Analysis of typing methods for epidemiological surveillance of both methicillin-resistant and methicillin-susceptible *Staphylococcus aureus* strains. J Clin Microbiol 46:136–144. https://doi.org/10.1128/JCM.01684-07.

6. Satta G, Ling CL, Cunningham ES, McHugh TD, Hopkins S. 2013. Utility and limitations of Spa-typing in understanding the epidemiology of *Staphylococcus aureus* bacteraemia isolates in a single university hospital. BMC Res Notes 6:398. https://doi.org/10.1186/1756-0500-6-398.

7. Szabados F, Woloszyn J, Richter C, Kaase M, Gatermann S. 2010. Identification of molecularly defined *Staphylococcus aureus* strains using matrix-assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. J Med Microbiol 59:787–790. https://doi.org/10.1099/jmm.0.016733-0.

8. Oliveira DC, de Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant *Staphylococcus aureus* spa type t899 isolates. J Med Microbiol 51:1561–1568. https://doi.org/10.1099/jmm.0.016733-0.

9. Oliveira DC, de Lencastre H. 2008. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant *Staphylococcus aureus* spa type t899 isolates. J Med Microbiol 51:1561–1568. https://doi.org/10.1099/jmm.0.016733-0.
resistant Staphylococcus aureus. Antimicrob Agents Chemother 46: 2155–2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002.

9. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015.

10. Friedrich AW, Witte W, Lencastre HD, Hryniewicz W, Scheres J, Westh H. 2008. A European laboratory network for sequence-based typing of methicillin-resistant Staphylococcus aureus (MRSA) as a communication platform between human and veterinary medicine: an update on SeqNet.org. Euro Surveill 13:18862.

11. Goecks J, Nekrutenko A, Taylor J, The Galaxy Team. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86. https://doi.org/10.1186/gb-2010-11-8-r86.

12. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

14. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta) genomic annotation. OMICS 12:137–141. https://doi.org/10.1089/omi.2008.0017.