Temocillin use as a carbapenem-sparing option in a UK teaching hospital for treating serious Gram-negative bacterial infections

D. A. Enoch1*, M. E. Murphy2, T. Gouliouris3, R. Santos3 and C. Micallef3

1Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QW, UK; 2Department of Microbiology, UK NHS GGC Glasgow Royal Infirmary, New Lister Building, Alexandra Parade, Glasgow G31 2ER, UK; 3Department of Pharmacy, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QW, UK

*Corresponding author. E-mail: david.enoch@nhs.net

We read the article about temocillin for the treatment of invasive Enterobacterales infections with interest.1 Temocillin is a narrow-spectrum penicillin with activity against ESBL-producing Enterobacterales (ESBL-PE). It could be used in place of carbapenams for some infections due to these infections (i.e. bacteraemia, pneumonia, urinary tract infection but not meningitis).2 This option is becoming increasingly important in the era of emerging carbapenem resistance. Temocillin has also been shown to have less of an impact on the intestinal microbiota than cephalosporins3 or piperacillin/tazobactam.4

We sought to determine the appropriateness, effectiveness and tolerability of temocillin prescribing in Cambridge University Hospitals (CUH) NHS Foundation Trust. This was considered a service evaluation and ethical approval was not required.

We performed a single-centre retrospective data review of all adult inpatients who received temocillin between 1 October 2016 and 31 July 2017 at CUH. Temocillin was approved for use in CUH when a urine or blood culture isolate was confirmed to be an ESBL-PE and susceptible to temocillin (by BSAC methodology) and resistant to oral agents, in order to preserve carbapenems and piperacillin/tazobactam. Its use was therefore restricted to be only recommended by a microbiology consultant. As part of the formulary submission we were required to analyse its use to confirm it was used appropriately. It was used as monotherapy unless the microbiologist was concerned about polymicrobial infection.

Epidemiological data, duration of therapy and duration of carbapenem-sparing were recorded and analysed. Temocillin was dosed at 4 g/day (2 g IV q12h), except in cases of reduced renal function where dosing followed local guidance.

A total of 24 patients (14 male; 58%) were included. Two patients required two courses of therapy (total 26 courses) due to recurrence (one due to inadequate source control). The age of the patients ranged from 23–96 years (mean 69 years). Sixteen patients were cared by medicine/medicine for elderly, four by urology and two each by transplant and neurosurgery (Table 1).

Two patients (8%) had a rapidly fatal underlying condition, 7 (29%) had an ultimately fatal condition and 15 (63%) had a non-fatal underlying condition. The Charlson comorbidity score ranged from 1 to 12 (median 3). Three required intensive care.

Twenty-one episodes (81%) were bacteraemic; 19 of these were due to an ESBL-PE, whilst one had an AmpC-producing Escherichia coli and one had an E. coli with no ESBL or AmpC identified; three grew ESBL-PE in urine and two were commenced on temocillin as they had previously had ESBL-PE identified from urine/blood cultures.

Fourteen of 21 (67%) bacteraemic episodes were related to a urinary source, three (14%) had a bowel source (who received concomitant metronidazole), three (14%) had healthcare-associated pneumonia and one (5%) had cholangitis.

Duration of therapy varied between 1 and 15 days (mean 6 days). Reasons for stopping temocillin included completion of course (13; 50%), 7 (27%) episodes of switching to ertapenem to facilitate outpatient parenteral antimicrobial therapy, one patient died and 5 (19%) episodes had other explanations. None of the discontinuations were due to intolerance/toxicity and there were no reported side effects. Renal function at the time of commencing temocillin varied greatly during the study, with glomerular filtration rate ranging from 5 to 218 mL/min (median 53 mL/min). There was, therefore, a wide range of doses given. Overall, 19 (73%) had the correct dose, with 6 being underdosed and one being overdosed.

Two patients (8%) had recurrence of disease and one patient died. Patients had received 0–37 g (median 4 g) of meropenem prior to switching. Twenty-five (96%) of the episodes were improving on their previous regimen prior to switching to temocillin; they showed improvement 1 week after switch and 24 (92%) of these episodes showed improvement 1 month after switch. One patient was deteriorating prior to switching to temocillin and continued to deteriorate. Source control and switching back to meropenem occurred in this patient. One hundred and forty-eight days of total carbapenem-sparing was achieved.

We provide data on the use of temocillin as a carbapenem-sparing agent in the management of serious ESBL-PE infections including 21 bacteraemic patients. Safe and effective alternatives are required in order to preserve carbapenems for seriously
Patient	New/recurrence	Age (y)	Sex	Specialty	Sample	Source	Dose	GFR (mL/min)	Appropriate dose?	Duration of therapy (days)	Reason for stopping Previous antibiotics	McCabe	COMS	Albumin (g/L)	CRP (mg/L)	Peak temperature (°C)	Trends before switch	Outcome at 1 week	Outcome at discharge	Breakthrough infection Organism
1	New	53	F	Renal transplant	blood	urinary	1 g twice daily	36	y	5	completion of course piperacillin/tazobactam, meropenem	non-fatal	3	32	45	38.5	improving improving alive	y	source control	E. coli
2	Recurrence	58	F	Renal transplant	blood	urinary	1 g twice daily	47	y	4	switch to entepenem piperacillin/tazobactam, meropenem	non-fatal	—	—	29	98	39.7	improving improving alive	n	E. coli
3	New	83	F	Medicine	blood	urinary	500 mg once daily	5	y	10	completion of course piperacillin/tazobactam, meropenem	non-fatal	4	21	289	35.9	improving improving alive	n	E. coli	
4	New	47	M	Medicine	blood	urinary	2 g twice daily	62	y	1	switch to entepenem co-amoxiclav, gentamicin	non-fatal	1	no	115	39.2	improving improving alive	n	E. coli	
5	New	23	M	Medicine	blood	bowel	1 g twice daily	60	y	9	completion of course meropenem	ultimately fatal	7	15	50	40.3	improving improving alive	n	E. coli	
6	Recurrence	70	M	Medicine	blood	urinary	1 g once daily	50	y	2	switch to entepenem co-amoxiclav, meropenem	ultimately fatal	11	25	174	39.0	improving improving alive	n	E. coli	
7	New	77	M	Medicine	blood	urinary	1 g once daily	20	y	9	completion of course piperacillin/tazobactam, meropenem	ultimately fatal	6	36	93	39.1	improving improving alive	n	E. coli	
8	New	87	F	DME	urine	urinary	1 g twice daily	80	no, underdose	2	switch to entepenem co-amoxiclav, meropenem	non-fatal	1	25	120	38.6	improving improving alive	n	E. coli	
9	New	96	F	Neuro-surgery	blood	urinary	1 g twice daily	74	no, underdose	8	completion of course piperacillin/tazobactam, meropenem	rapidly fatal	7	28	95	38.0	improving improving alive	n	E. coli	
10	New	60	F	Urology	urine	urinary	1 g twice daily	72	no, underdose	4	switch to entepenem co-amoxiclav, meropenem	non-fatal	2	na	38	36.0	improving improving alive	n	E. coli	
11	New	69	M	Medicine	blood	urinary	2 g twice daily	76	y	4	switch to entepenem co-amoxiclav, meropenem	non-fatal	10	34	53	38.5	improving improving alive	n	E. coli	
12	New	62	M	Urology	blood	urinary	1 g twice daily	57	y	2	switch to entepenem co-amoxiclav, meropenem	non-fatal	3	19	49	38.7	improving improving alive	n	E. coli	
13	New	80	M	Medicine	blood	HAP	1 g twice daily	53	y	6	completion of course piperacillin/tazobactam, meropenem	non-fatal	3	na	70	37.8	improving improving alive	n	E. coli	
14	New	74	M	Medicine	blood	urinary	1 g twice daily	59	y	9	completion of course co-amoxiclav, meropenem	ultimately fatal	2	38	73	39.2	improving improving alive	n	E. coli	
15	New	65	F	Medicine	blood	HAP	1 g twice daily	86	no, underdose	10	completion of course co-amoxiclav, meropenem	ultimately fatal	2	na	64	37.0	improving improving alive	n	E. coli	
16	New	94	M	DME	blood	urinary	1 g once daily	26	y	10	completion of course piperacillin/tazobactam, meropenem	ultimately fatal	12	20	78	37.4	improving improving alive	n	E. coli	
CCMS, Charlson comorbidity score; CRP, C-reactive protein; DME, Department of Medicine for the Elderly; F, female; GFR, glomerular filtration rate; HAP, hospital-associated pneumonia; M, male; n, no; na, not applicable; y, yes.

References

1. Heard KL, Killington K, Murphy NJ et al. Clinical outcomes of temocillin use for invasive Enterobacterales infections: a single-centre retrospective study. J Antimicrob Chemother 2011; 67: 1693–9.

2. Belknap-Heard KL, Tofts TD. Antibiotic treatment of invasive infections in adults with female genital tract infection. J Antimicrob Chemother 2011; 66: 2018–31.

3. Edlund T, Terming A, Soog S. Temocillin and its effect on the intestinal microbiota: a case series. J Antimicrob Chemother 2013; 68: 1053–7.

4. Halbauer H, Gonski B, Patik M. Amoxicillin: a potential alternative to vancomycin for the treatment of severe Gram-negative infections. J Clin Microbiol Infect 2015; 3: 1693–9.

5. Halbauer H, Gonski B, Patik M. Amoxicillin: a potential alternative to vancomycin for the treatment of severe Gram-negative infections. J Clin Microbiol Infect 2015; 3: 1693–9.

6. Halbauer H, Gonski B, Patik M. Amoxicillin: a potential alternative to vancomycin for the treatment of severe Gram-negative infections. J Clin Microbiol Infect 2015; 3: 1693–9.

Funding

This work was carried out as part of our routine work. This study was carried out as part of our routine work. This study was carried out as part of our routine work. This study was carried out as part of our routine work.
5 Delory T, Gravier S, Le Pluart D et al. Temocillin versus carbapenems for urinary tract infection due to ESBL-producing Enterobacteriaceae: a multicenter matched case-control study. *Int J Antimicrob Agents* 2021; **58**: 106361. https://doi.org/10.1016/j.ijantimicag.2021.106361

6 Marín-Candón A, Rosso-Fernández CM, de Godoy N B et al. Temocillin versus meropenem for the targeted treatment of bacteraemia due to third-generation cephalosporin-resistant Enterobacteriales (ASTARTE): protocol for a randomised, pragmatic trial. *BMJ Open* 2021; **11**: e049481. https://doi.org/10.1136/bmjopen-2021-049481