Exploration of ethnomedicinal plants and their practices in human and livestock healthcare in Haripur District, Khyber Pakhtunkhwa, Pakistan

Zeeshan Siddique1†, Nasir Shad2,3†, Ghulam Mujtaba Shah3, Abid Naeem4, Liu Yali5,6, Muhammad Hasnain7, Arshad Mahmood6, Muhammad Sajid5, Muhammad Idrees1 and Ilyas Khan10*

Abstract

Background: The utilization of plants and plant resources for various ethnobotanical purposes is a common practice in local towns and villages of developing countries, especially in regard to human and veterinary healthcare. For this reason, it is important to unveil and document ethnomedicinal plants and their traditional/folk usage for human and livestock healthcare from unexplored areas. Here we advance our findings on ethnomedicinal plants from Haripur District, Pakistan, not only for conservation purposes, but also for further pharmacological screenings and applied research.

Methodology: Information of ethnomedicinal plants was obtained using a carefully planned questionnaire and interviews from 80 local people and traditional healers (Hakims) in Haripur District, Pakistan, from 2015 to 2017. Informed consent was obtained from each participant before conducting the interview process. Quantitative ethnobotanical indices, such as relative frequency of citation (RFC), use value (UV) and Jaccard index (JI), were calculated for each recorded species. Correlation analysis between the RFC and UV was tested by Pearson’s correlation, SPSS (ver. 16).

Results: A total of 80 plant species (33 herbs, 24 trees, 21 shrubs and 2 climbers) belonging to 50 families were being used in the study area to treat livestock and human diseases. Lamiaceae was the most dominant family with 7 species (8.7%), followed by Fabaceae with 6 species (7.5%), and Moraceae with 5 species (6.2%). Local people used different methods of preparation for different plant parts; among them, decoction/tea (22 species) was the popular method, followed by powder/grained (20 species) and paste/poultice (14 species). It was observed that most of the species (~12 to 16 species) were utilized to treat human and livestock digestive system-related problems, respectively. The Jaccard index found that plant usage in two studies (District Abbottabad and Sulaiman Range) was more comparable. Local people mainly relied on folk medicines due to their rich accessibility, low cost and higher efficacy against diseases. Unfortunately, this important traditional knowledge is vanishing fast, and many medicinal plants are under severe threat. The most threats associated to species observed in the study area include Dehri, Garmthun, Baghpur, Najafpur and Pharala.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

†Zeeshan Siddique and Nasir Shad have contributed equally to this work
*Correspondence: i.said@mu.edu.sa
10 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
Full list of author information is available at the end of the article
Introduction

Humans have a long history of utilizing plants to fulfill various daily requirements. Plants are used as medicines, food, fodder for livestock and materials to construct houses [1]. The application of medicinal plants and herbs for therapeutic purposes is a global practice, and almost every country has benefited from their useful therapeutic and medicinal elements [2]. Herbal medicines play a distinctive role from the primitive period until today in healthcare systems. The first ethnomedicinal plant in sub-continent history was recorded in Rigveda during 4500–1600 BC and Ayurveda 2500–600 BC [3]. The concepts of ethnobotanical medicines are thought to have originated from Greece and adopted by Arabs, thereafter learned and spread by Indians and Europeans [4–6]. Medicinal plants are an important part of the conventional healthcare system, as various allopathic drugs are extracted or derived from medicinal plants [7, 8]. The utilization of alternative medicine may increase due to its low costs, higher efficacy and increased faith in herbal remedies. Although allopathic medicines can treat several diseases, they are often more expensive and may have adverse effects, which forces common people to take advantage of herbal medicines, which may have fewer side effects [9]. Scientific investigations on medicinal plants have been underway in various countries due to their vast therapeutic potential and are also used as an alternative therapy in various healthcare systems [10].

Traditional veterinary medicine was first practiced around 1800 B.C. during the age of King Hammurabi of Babylon, who formulated laws and introduced a veterinary fee structure for treating animals [11]. Ethnoveterinary medicine (EVM) is the major source for the treatment of diseases in livestock throughout the world, even today. Humans have used herbal remedies to treat different diseases in domesticated animals since the advent of civilization. It is estimated that medicinal plants, for several centuries, have been widely used as a primary source of prevention and control of livestock diseases [12, 13]. Many studies have been carried out on treating specific ailments in livestock with herbal medicines and their derivatives [14]. Traditional EVM provides affordable therapy and easy accessibility in comparison to western medicines [15].

Pakistan is an agricultural country, and about 80% of its population depends on farming and livestock. Pakistan is the world’s fifth-largest milk-producing country because of its high reliance on farming and livestock [16]. About 84% of Pakistan’s population depended on traditional medicine in the early 1950s, and a rapid decrease was recorded in recent years from traditional knowledge, now limited only to remote areas of Pakistan [17, 18]. Resource-poor farmers of Pakistan substantially depend upon traditional medicine because of their minimal access to modern-day healthcare systems and lack of well-developed basic healthcare units in their areas [3]. While much work has been done worldwide on documenting ethnoveterinary practices, in Pakistan, very little attention has been given to documentation of plants used as EVM, and there is an immense need to document this knowledge [19].

While literature has revealed that many ethnoveterinary researchers have visited most parts of Pakistan in recent years, but no/less areas has been thoroughly explored regarding the EVM [20]. A similar trend is evident in human medicinal plant inventories, where many researchers and ethnobotanists have visited most parts of Pakistan and contributed to the records [20–26]. Still, much information and traditional knowledge remain to be recorded. The main aim of this study was (1) to document the traditional knowledge of ethnomedicinal plants from Haripur District, Khyber Pakhtunkhwa (Pakistan), an unexplored area which lacks such documentation, (2) to report the traditional folk knowledge, ethnomedicinal plant utilization along with recipes, mode of preparation, parts used, used form in veterinary and human healthcare by local and ethnic communities, (3) to identify potential conservation threats, (4) to compile the data of traditional knowledge of ethnomedicinal plants by using quantitative ethnomedicinal indices like UV, RFC and JI in order to evaluate the most frequently used species and access their matching with other studies published from Pakistan in traditional ethnomedicinal plant utilization. It is hypothesized that studies conducted in surrounding areas may more similar to present study which can be
evaluated by JI value; and (5) to provide further research baseline to pharmacologists, phytochemists and conservationists for further research studies.

Materials and methods

This study was authorized by the Department of Biosciences and Office of Research, Innovation and Commercialization University of Wah (ORIC-UW), Wah Cantt, Pakistan. Informed consent was obtained from each informant before conducting the semi-structured interview process.

The research study was completed in four phases as follows, (1) description of the study area, (2) ethnomedicinal field survey (primary data), (3) plant's identification and statistical analysis (secondary data) and (4) data compilation/documentation.

Study area

Haripur District is under the Khyber Pakhtunkhwa province of Pakistan, situated between 33° 44’–34° 22’ N latitude and 72°–35’ to 73°–15’ E longitude, at approximately 610 m above the sea level (Fig. 1). The district’s total area is 1725 km², divided into sub-districts (Haripur, Khanpur and Ghazi) and subdivided into 44 Union Councils. Haripur District has distinct geographical significance as its boundaries touch Districts Abbottabad, Mansehra, Attock, Torgarh, Swabi, Buner, Rawalpindi (Punjab province) and the capital of Pakistan (Islamabad) [27]. According to the National Institute of Population Studies (NIPS), the district’s estimated population was 1,003,031 in 2017, having a population density of 580 residents per square kilometer. The dominant caste or tribe of District is Awan followed by Gujjar and Tanoli. The Haripur is largely a rural district, and about only 12% of the population resides in urban areas. The temperature in the area ranges from almost 39 °C in summer to less than 10 °C in winter. Agriculture is the primary source of livelihood of the rural population of the study area. The area’s economic growth depends on pastures, crop diversity, cultivation of fodder species and the development of medicinal plants and livestock diversity.

Field survey and data collection

The entire study area was regularly and seasonally (spring, summer, winter and autumn) visited from January 2015 to January 2017. In the study area, the primary
target sites were Muslimabad, Barkot, Jatti Pind, Tofkian, Khanpur, Kalinjar, Barella, Hattar, Qazipur, Ghazi, Najafpur, Jabri, Nara Amazai, Rehana, Teer, Syria, Sirikot, Bagra, Beer and Dingi. The field survey aimed to gather field data and activities, such as (1) plant’s collection, (2) local knowledge concerning plants, (3) identifying associated consequences to plants through personal observation and interviews, (4) photography and (5) medicinal plant uses along with recipes, through semi-structured questionnaires, interviews, keen observations and group discussions. The questionnaire and interview method helped to document indigenous folk knowledge by involving knowledgeable persons, traditional healers (Hakims) and local people (Table 1). Respondents were chosen by random selection of residents who were considerably connected to plants and were interested in traditional healthcare. Interviews were conducted mostly in fields, and photographs were shown for identification with local plant name. Women were interviewed indirectly through male family members. Participants were briefed about the research objectives and were allowed to discontinue the interview at any time. Each informant was interviewed regularly every season. The national language of Pakistan (Urdu) and the native language of the study area (Hindko) were used as a medium of communication. Thereafter, an English language questionnaire was filled for each informant (Additional file 1).

Plant identification

Collected plant species were identified with the help of Flora of Pakistan, Flora of West Pakistan [28] and Flora of Punjab [29], and online Flora (www.efloras.org). Plants names were also identified through literature, plant list (www.theplantlist.org), Medicinal plant names services (https://mpns.science.kew.org/mpns-portal/) [30]. The system proposed by Raunkier [31, 32], and modified by Brown [33], was followed to categorize the collected plant specimens into their habits and life forms. Plants were submitted to the Herbarium, Department of Botany, Hazara University Mansehra (Pakistan), and vouchers were issued. For voucher specimen, standard herbarium techniques [34, 35] were strictly followed.

Quantitative and correlative analysis of ethnomedicinal data

The collected ethnomedicinal data were analyzed using different quantitative analyses, including relative frequency citation (RFC), use value (UV) of medicinal plant and Jaccard index (JI) analysis by comparing the present study with published work to access knowledge variation among different communities. The obtained data were presented in percentages and proportions.

Relative frequency citation (RFC)

The RFC was calculated without taking into account the use categories by following the formula [36].

$$RFC = \frac{FC}{N} \text{ (0 > RFC > 1)}$$

RFC shows the importance of each species in the study area given by the FC (FC is the number of local informants reported the uses of plant species) divided by the total number of informants (N).

Use value (UV) of plant species

Use value (UV) determines the relative importance of plant species uses. It was calculated using the following formula [37].

$$UV = \frac{\sum Ui}{N}$$

where “UV” indicates the use value of individual species, “Ui” is the number of uses recoded for a given species by each informant and “N” represents the number of total informants.

Pearson’s correlation

Pearson’s correlation, SPSS (ver. 16), tested correlation analysis between the RFC and UV.

Jaccard index (JI)

To compare the study with published literature and to access the similarity and dissimilarity of traditional knowledge among different communities and areas, the Jaccard index was calculated using the following formula [38].

| Table 1 Demographic data about informants of the study area |
|-----------------|-----------------|-------|-------|
| Variable | Demographic categories | Numbers | Percentage |
| Gender | Male | 70 | 87.5 |
| | Women | 10 | 12.5 |
| Experience | Traditional healer | 5 | 6 |
| | Herdsmen | 17 | 21 |
| | Farmer | 52 | 65 |
| | Local people | 6 | 8 |
| Age groups | 20–40 | 15 | 19 |
| | 41–60 | 40 | 50 |
| | Above 60 | 25 | 31 |
| Education | Illiterate | 21 | 26 |
| | Primary | 21 | 26 |
| | Middle | 16 | 20 |
| | Matric and above | 22 | 28 |
where 'a' represents the total number of species in area A (our study area), 'b' represents the number of species from other published area B and 'c' represents the number of common species in both A and B.

Results

Description of medicinal plant families
The high diversity of plant families in the study area can be deduced from the presence of 50 different families. Among them, Lamiaceae was the largest family having 7 species, followed by Fabaceae (6 species), Moraceae (5 species), Apocynaceae (4 species), Asteraceae, Euphorbiaceae, Rhamnaceae and Solanaceae (3 species each), Amaranthaceae, Apiaceae, Brassicaceae, Malvaceae, Meliaceae, Menispermaceae (2 species each) (Fig. 2) and remaining families with one species each.

Medicinal plant enumerations
Eighty plants were recorded covered in this study; herbs (33, 41.2%) were dominant, followed by shrubs (21, 26.2%), trees (24, 30%) and climbers (2, 2.5%). Furthermore, life spans for the majority of plants were recorded as perennial (62, 77.5%), followed by annual (16, 20%) and biennial (2, 2.5%) (Fig. 3). Among these, 40 plant species were used for livestock healthcare, and 49 plant species were used to treat human diseases, including 9 plant species which were commonly used for both (human and livestock). Complete information about each plant species includes botanical name, family, local name, voucher number, habit, life span, locality, part used, either utilized to treat human or animal diseases or both, and their recipes are listed with RFC and UV in Tables 2, 3 and 4.

Plant part(s) used
Locals utilized different plant parts (either in combination or separately) in the study area for the management of livestock and human diseases. Among them, leaves (47.9%) were the most commonly used part in herbal preparations, followed by fruits (16%), whole plant (8.5%), roots (4.3%), bark (3.2%), gum, bulb, twigs, flower, resin (2.1%) each, spines and pods (1.1% each) (Fig. 4A). In combination, leaves were the most common plant parts combined/utilized with fruits (3), flower, roots, seed and gum, twigs and stem (1 each). The
combination of gum with the spine was utilized only one time (Fig. 4B).

Mode of preparation, administration and application

The remedies/recipes preparations of the 80 plant species are categorized according to their type of preparation, which revealed that decoction/tea (22 species) was a widely used preparation method by locals, followed by powdered/grinded (20 species), paste/poulitce (14 species), directly eaten (12 species), juice/extract (09 species), roasted/cooked (07 species), crushed (04 species) and chewed (one species) (Fig. 5). It was also recorded that the local people use preparations/recipes of ethnomedicinal plant, both as externally (25%) and internally (75%) application.

Species richness for the management of human and livestock diseases

Local people of the study area used 49 medicinal plants to treat 42 different ailments related to humans. These 42 ailments were further categorized into 12 major diseases categories. It was found that single medicinal plant species can treat several human ailments, and several medicinal plant species can treat single disease. In the study area, 34 livestock ailments were identified to be treated by 40 medicinal plants. These 34 ailments were further categorized into 07 major disease categories (Table 5). The ethnoveterinary medicinal plants were utilized mostly for cows (35%), followed by buffaloes (34%) and goats (31%).

Quantitative analysis

To analyze ethnomedicinal data, quantitative value indices were determined in this study. The RFC value ranges from 0.07 to 0.81 for the recorded species, and the highest value of RFC was recorded for Melia azedarach, Dodonaea viscosa, Grewia optiva and Mallotus philippensis (0.81, 0.77, 0.71 and 0.7), respectively.

The UV of plant species determines the relative importance of plants in the study area. The UV values for Curcuma longa, Adhatoda vasica, Viola odorata, Berberis lycium, Achyranthus aspera, Melia azedarach and Chenopodium album were 1.06, 1.01, 1.03, 0.98, 0.93, 0.91, 0.88, 0.87, 0.87 and 0.85, respectively, Phyllanthus emblica and Catharanthus roseus (0.82 each), Amaranthus viridis, Cannabis sativa, and Cynodon dactylon (0.81 each), and Ailanthus altissima and Solanum surattense (0.8 each). The other remaining plant species were recorded with a UV value of <0.81, which indicated that they were less exploited by local people (Table 2). RFC and UV were significantly correlated (Pearson’s test; \(p=0.01\)), and the correlated values explained approximately 31% of the data (Additional file 2: Table S1).

Comparison and Jaccard index

The comparative analysis exhibited a significant difference in the medicinal plant utilization among different communities of Pakistan. Twenty national studies from different areas of Pakistan were compared with the present study. Overall, 49 species were reportedly used to manage human diseases. Similarity percentages ranged
S. no	Taxonomic name/ family, voucher no	Local name	Locality	Life habit/ life span	Part used	Diseases treated	Ethnomedicinal recipes	Quantitative indices	
								FC RFC UV	
1	Achyranthus aspera L. (Amaranthaceae), 04-Z	Puth-Kanda, Leehndi Booti	Choi	H P RT	Tonsillitis	External application of fresh root paste for one week twice a day	12 0.15 70 0.87		
2	Ailanthus altissima (Mill) Swingle (Simaroubaceae), 06-Z	Darawa	Dartian	T P BA	Dysentery and Diarrhea	Bark Juice (½ cup) mixed with milk and taken	13 0.16 64 0.8		
3	Allium sativum L. (Alliaceae), 07-Z	Thoom	Khanpur	H B BB	High blood pressure	Two bulbs are eaten with a meal	15 0.18 42 0.52		
4	Althaea officinalis L. (Malvaceae), 10-Z	Khatmi	Jabri	H A LE	Cough and tonsillitis	One cup of seed or leaf tea is used thrice a day	23 0.28 45 0.56		
5	Artemisia vulgaris L. (Asteraceae), 12-Z	Afsanteen	Joulian	H P TW	Hepatitis	10-g twigs powdered with water are taken thrice times a day	22 0.27 25 0.31		
6	Azadirachta indica A. Juss. (Meliaceae), 13-Z	Nim	Pakhai	T P FR	Diabetes	Powder (1 spoon) form of fruit with water, orally everyday	13 0.16 35 0.43		
7	Bauhinia variegata L. (Fabaceae; subfamily Caesalpinioidea), 14-Z	Kalyarh, Kachnar	Garam thoon	T P FL	Stomach Tonic	Young flowers are cooked as a vegetable and eaten	14 0.17 62 0.77		
8	Boerhavia diffusa L. (Nyctaginaceae), 17-Z	It-sit	Barkot	H P LE	Diabetes and jaundice	Decoction of leaves is taken	16 0.2 17 0.21		
9	Caralluma edulis (Edgew) Benth. ex Hook.f (Apocynaceae), 23-Z	Chong	Karwali	H P ST	Diabetes	One cup of stem juice is taken thrice times a day	29 0.36 65 0.81		
10	Catharanthus roseus (L.) G.Don (Apocynaceae), 29-Z	Sadabahar	Bagra	H P LE	Wasp-sting	Leaf juice is applied	12 0.15 66 0.82		
11	Celtis australis auct. non L. (Ulmaceae), 30-Z	Batkhar	Najafpur	T P FR	Stomach problems	10 g of fruit powdered is taken with water	13 0.16 24 0.3		
12	Cichorium intybus L. (Asteraceae), 37-Z	Kasni	Kotla	H P RT	Stomach problem	Grinded root is taken	12 0.15 15 0.18		
13	Cissampelos pareira L. (Menispermaceae), 42-Z	Phalaan jarhi, Ghora-sum	Dhuniya	C P LE	Wounds	Leaves are crushed and applied	14 0.17 36 0.45		
14	Colebrookia oppositifolia Sm. (Lamiaceae), 44-Z	Shakardana	Dhuniya	S P LE	Cough	Leaves are chewed	13 0.16 34 0.42		
15	Datura stramonium L. (Solanaceae), 58-Z	Datura	Dara	H A FL, LE	Bleeding piles	Powdered flowers and leaves are used as an ointment	12 0.15 35 0.43		
16	Diospyros lotus L. (Ebenaceae), 60-Z	Amlok	Shah kabul	T P FR	Chest phlegm	Fruit is eaten	16 0.2 19 0.23		
17	Eucalyptus globulus Labill (Myrtaceae), 67-Z	Gond	Khanpur	T P RE	Cuts and wounds	Resin is applied externally	13 0.16 25 0.31		
18	Ficus carica L. (Moraceae), 78-Z	Anjeer	Ranjha	T P FR	Blood deficiency	Fruit is eaten	25 0.31 32 0.4		
S. no	Taxonomic name/ family, voucher no	Local name	Locality	Life habit/ life span	Part used	Diseases treated	Ethnomedicinal recipes	Quantitative indices	
-------	----------------------------------	------------	----------	-----------------------	-----------	-----------------	-----------------------	-----------------------	
								FC RFC ΣUI UV	
19	*Ficus palmata* Forssk. (Moraceae), 79-Z	Phagwari	Ranjha	T P FR	Blood deficiency and abdominal problems	The fruit is left in the water overnight and eaten as a first food in the morning	13 0.16 45 0.56		
20	*Malva sylvestris* L. (Malvaceae), 120-Z	Khabazi	Kohala	H B LE	Chest infection and asthma	One cup of leaf tea is taken 2–3 times a day	13 0.16 32 0.40		
21	*Mentha longifolia* L. (Lamiaceae), 131-Z	Chita podna	Bhamala	H P LE	Fever, dysentery and vomiting	Leaf tea is used	13 0.16 24 0.30		
22	*Myrsine africana* L. (Primulaceae), 148-Z	khokonr	Najafpur	S P FR	Anthelmintic	Fruit is eaten	13 0.16 35 0.43		
23	*Nasturtium officinale* W.T.Aiton (Brassicaceae), 155-Z	Tara meera	Chaskalawaan	H P LE	Constipation, diuretic and obesity	Cooked vegetable of leaves is eaten	6 0.07 62 0.77		
24	*Ocimum basilicum* L. (Lamiaceae), 174-Z	Niaz-bo	Desra	H A LE	Skin care	Leaf juice is applied	16 0.2 32 0.40		
25	*Olea ferruginea* Royle (Oleaceae), 186-Z	Kaho	Garam thoon	T P LE	Skin pimples	Leaf tea is used	23 0.28 45 0.56		
26	*Oxalis corniculata* L. (Oxalidaceae), 197-Z	Khat-matra	Halli	H A LE	Skin inflammations	Powdered leaves are applied as a poultice	12 0.15 34 0.42		
27	*Papaver somniferum* L. (Papaveraceae), 202-Z	Khashkhash	Halli	H A FR	Chest infection and cough	Tea of dried fruit is taken	11 0.13 45 0.56		
28	*Pinus roxburghii* Sarg. (Pinaceae), 212-Z	Chir	Bagla	T P RE	Skin problems	Resin is applied externally	13 0.16 25 0.31		
29	*Pistacia chinensis* subsp. integerrima (J.L. Stewart) Rech.f. (Anacardiaceae), 218-Z	Kangur	Chaskalawaan	T P BA	Jaundice	½ cup of bark decoction is taken daily	13 0.16 39 0.48		
30	*Rubus fruticosus* L. (Rosaceae), 235-Z	Garacha	Ranjha	S P FR	Carminative	Fruit is eaten	15 0.18 42 0.52		
31	*Rydiniga limbata* (Benth.) Scheen & V.A. Albert (Lamiaceae), 192-Z	Chita Kanda, Bamboli	Old Khanpur	S P WP	Wounds	The powder of whole plant mixed with butter before being applied	24 0.3 36 0.45		
32	*Sageretia thea* Osbeck M.C. Johnst. (Rhamnaceae), 252-Z	Gangeeri	Rajdhani	S P FR	Diabetes and kidney stones	Dried powdered (½ spoon) of fruit, taken in the morning and evening with water	10 0.12 42 0.52		
33	*Sisymbrium irio* L. (Brassicaceae), 267-Z	Khub kalan	Kot-jandaan	H A LE	Chest infection	Leaves infusion is given	8 0.1 26 0.32		
34	*Solanum nigrum* L. (Solanaceae), 260-Z	Kach mach	Najafpur	H A LE	Asthma	Tea of shade dried leaves is taken	16 0.2 43 0.53		
S. no	Taxonomic name/ family, voucher no	Local name	Locality	Life habit/ life span	Part used	Diseases treated	Ethnomedicinal recipes	Quantitative indices	
-------	----------------------------------	------------	----------	-----------------------	-----------	------------------	------------------------	---------------------	
	Tamarindus indica L. (Fabaceae), 268-Z	Imli	Bees ban	T P PP	Fever and liver tonic	Juice of pulp is drunk daily	23 0.28 50 0.62		
36	**Tribulus terrestris L. (Zygophyllaceae), 274-Z**	Gokhru	Neelan bhoto	H A LE	Male sexual weakness	A few leaves are soaked for a while in a glass of water and taken three times daily	13 0.16 33 0.41		
37	**Viola odorata L. (Violaceae), 277-Z**	Ba-nafsha	Kharian	H A LE	Cough, cold and flu	Leaf tea is taken	27 0.33 73 0.91		
38	**Woodfordia fruticosa (L.) Kurz (Lythraceae), 279-Z**	Taawi, Dhawli	Shah Kabul	S LE	Skin diseases	A poultice of leaves is applied externally	9 0.11 45 0.56		
39	**Zanthoxylum armatum DC. (Rutaceae), 280-Z**	Timber	Halli	S/T P SD	Jaundice	One spoon of dried or fresh seeds powdered is taken daily	32 0.4 60 0.75		
40	**Ziziphus nummularia (Burm.f.) Wight & Arn. (Rhamnaceae), 281-Z**	Beri	Sarhadna	S P LE	Wounds	Paste of grinded leaves are applied	13 0.16 38 0.47		
S. no	Taxonomic name/ family, voucher no	Local name	Locality	Life habit/ life span	Part used	Animal treated	Animal disease treated	Ethnoveterinary recipes	Quantitative indices
-------	-----------------------------------	------------	----------	-----------------------	-----------	----------------	-----------------------	------------------------	---------------------
1	*Allium cepa* L. (Amaryllidaceae), 08-Z	Payaz	Khanpur	H P BB	Goat, buffalo and cow	Mouth infections	Grinded bulb mixed with black salt is given with water	FC 13 RFC 0.16 ΣUi35 UV 0.43	
2	*Amaranthus vindis* L. (Amaranthaceae), 11-Z	Chaleray	Jabri	H A LE	Buffalo and cow	Milk Production	A decoction of leaves is given with a small amount of salt	FC 13 RFC 0.16 ΣUi65 UV 0.81	
3	*Berberis lyction Royle* (Berberidaceae), 16-Z	Simbulu	Dartian	S P RT	Goat, buffalo and cow	Wounds and internal injury	The powdered root bark is applied to wounds. It is also given for internal injury	FC 35 RFC 0.43 ΣUi71 UV 0.88	
4	*Bombax ceiba* L. (Bombiacaceae), 19-Z	Sambal	Darbula	T P ST, BA	Goat, buffalo and cow	Dislocated bones	Paste of stem bark mixed with turmeric (haldi) and applied	FC 11 RFC 0.13 ΣUi39 UV 0.48	
5	*Calotropis procera* W. T. Aiton (Asclepiadaceae), 20-Z	Akk	Ghazi	S P LA	Cow, buffalo and goat	Wounds	Latex is applied externally	FC 13 RFC 0.16 ΣUi81 UV 1.01	
6	*Cannabis sativa* L. (Cannabaceae), 22-Z	Pang, bhang	Hattar	S A LE	Cow, buffalo and goat	Loss of appetite	Fresh leaves are fed	FC 12 RFC 0.15 ΣUi45 UV 0.56	
7	*Carissa opaca* Stapf ex Haines (Apocynaceae), 26-Z	Garinda	Choi	S P LE	Cow, buffalo and goat	Foot and mouth disease	Leaves are crushed and fed	FC 31 RFC 0.38 ΣUi25 UV 0.31	
8	*Cassia fistula* L. (Fabaceae; subfamily Caesalpinioidea), 28-Z	Kinjal, Amaltas	Ranja	T P PD	Cow, buffalo and goat	Asthma and pneumonia	Dried pod powder is given orally	FC 30 RFC 0.37 ΣUi45 UV 0.56	
9	*Chenopodium album* L. (Chenopodiaceae), 34-Z	Bthawa	Kohala	H A WP	Goat and cow	Wound healing	The paste is applied to wounds	FC 13 RFC 0.16 ΣUi68 UV 0.85	
10	*Coriandrum sativum* L. (Apiaceae), 46-Z	Dhania	Beer	H A LE, RT	Buffaloes	Antidiuretic	Root and leaves decocion is given for 5 days	FC 13 RFC 0.16 ΣUi19 UV 0.23	
11	*Curcuma longa* L. (Wild) (Zingiberaceae), 49-Z	Haldi	Khanpur	H P LE	Cow and goat	Wound healing	A decoction of leaves is given for 3 days	FC 37 RFC 0.46 ΣUi79 UV 0.98	
12	*Cynodon dactylon* (L.) Pers. (Poaceae), 54-Z	Khabal	Nara Amzai	H P WP	Buffaloes, cow and goat	Hematuria	Plant juice is given twice a day for a week	FC 41 RFC 0.51 ΣUi65 UV 0.81	
13	*Dalbergia sissoo* Roxb. ex DC. (Fabaceae), 55-Z	Taali, Sheesham	Bareela	T P LE	Cow, buffalo and goat	Diarrhea	Leaf paste with a little amount of salt is given	FC 12 RFC 0.15 ΣUi25 UV 0.31	
14	*Dodonea viscosa* (L.) Jacq. (Sapindaceae), 65-Z	Sanatha	Garam Thoon	S P LE	Cow, buffalo and goat	Bone fracture	Leaves are heated and mixed with soil, then tied over the fracture	FC 62 RFC 0.77 ΣUi34 UV 0.42	
15	*Euphorbia helioscopia* L. (Euphorbiaceae), 70-Z	Chhatri Dodak	Kotorajullah	H A LE and SD	Goat, buffalo and cow	Food poisoning	Powdered leaves and seeds are given with water	FC 12 RFC 0.15 ΣUi19 UV 0.23	
16	*Ficus benghelensis* L. (Moraceae), 76-Z	Bohr	Bandi	T P RT	Goat, buffalo and cow	Diarrhea and dysentry	A paste of prop root along with honey is given	FC 18 RFC 0.22 ΣUi55 UV 0.68	
S. no	Taxonomic name/ family, voucher no	Local name	Locality	Life habit/ life span	Part used	Animal treated	Animal disease treated	Ethnoveterinary recipes	Quantitative indices
-------	-----------------------------------	------------	----------	-----------------------	-----------	----------------	------------------------	------------------------	---------------------
17	Grewia optiva J.R. Drumm. ex Burret (Tiliaceae), 90-Z	Dhaman Babootri	T P LE	Buffalo	Easy delivery	Leaves are fed	57 0.71 85 1.06		
18	Lantana camara L. (Verbenaceae), 102-Z	Chandni Hattar	S P LE and TW	Goat, buffalo and cow	Joint pains	Decoction is given	10 0.12 29 0.36		
19	Mallotus philippensis (Lam.) Müll. Arg. (Euphorbiaceae), 114-Z	Kamila Noopur	S P FR	Goat, buffalo and cow	Intestinal worms	Dried powdered fruit is given for 3 days	56 0.7 52 0.65		
20	Mentha arvensis L. (Lamiaceae), 130-Z	Podina Bhamala	H P LE	Cow, buffalo and goat	Dysentery	Fresh leaves along with black salt are given	52 0.65 36 0.45		
21	Morus alba (L.) Roxb. (Moraceae), 144-Z	Chita toot Dara	T P FR and LE	Goat, cow and buffalo	Mastitis	Decoction is given	23 0.28 35 0.43		
22	Nerium oleander L. (Apocynaceae), 162-Z	Kundair Najafpur	S P WP	Goat	Stomachache	The dried powdered plant is given with water in a small quantity	8 0.1 55 0.68		
23	Punica granatum L. (Punicaceae), 221-Z	Daruna Barkot	S P LE and FR	Goat, cow and buffalos	Anthelmintic	Decoction is given	45 0.56 83 1.03		
24	Ricinus communis L. (Euphorbiaceae), 230-Z	Arand Mang	Sb P SD	Cow, buffalo and goat	Constipation	Seed oil is given along with fodder	16 0.2 40 0.5		
25	Salvia moccroftiana Wall. ex Benth (Lamiaceae), 254-Z	Kalli Jari Kohala	H P RT	Goat, buffalo and cow	Internal injuries	Decoction is given	11 0.13 46 0.57		
26	Solanum surattense Burm. f. (Solanaceae), 264-Z	Mohree Khoi Kaman	H A WP	Goat, buffalo and cow	Fever	Crushed plant mixed with flour is given	17 0.21 64 0.8		
27	Taraxacum officinale F.H. Wigg. (Asteraceae), 270-Z	Hand Dara	H P WP	Goat, buffalo and cow	Milk deficiency	The whole plant is fed	6 0.07 9 0.11		
28	Tinospora cordifolia (Willd.) Miers. (Menispermaceae), 271-Z	Gulo Kotla	C P ST and LE	Goat, buffalo and cow	Fever	decoction form is used continuously for 4 days	9 0.11 13 0.16		
29	Trichodesma indicum (L.) R. Br (Boraginaceae), 275-Z	Kali booti Halli	H A LE	Cow, buffalo and goat	Inflammation and swellings	Leaves poultice is applied externally	11 0.13 28 0.35		
30	Vitex negundo L. (Lamiaceae), 278-Z	Somali, Marvanl	Choi S P LE	Cow, buffalo and goat	Fractured bones	Warmed leaves are tied over the fractured bones	13 0.16 38 0.47		
31	Ziziphus jujuba Mill. (Rhamnaceae), 283-Z	Bari Kanwali	T P LE	Cow, buffalo and goat	Dysentery	Decoction is given	19 0.23 41 0.51		
S. no	Taxonomic name/family, voucher no	Local name	Locality	Life habit/ life span*	Part usedb	Organism treated	Disease treated	Ethnomedicinal recipes	
-------	----------------------------------	-------------	-----------	------------------------	-----------	------------------	--------------------------	--	
1	Acacia modesta Wall (Fabaceae; subfamily Mimosoideae), 03-Z	Phulai	Dartian	T P LE, SD	LE, SD	Cow and buffalo	Delivery	A decoction of leaves and seeds is given for 3 days. Gum is fried with wheat flour in "desi ghee." This is known as "Halwa" in the local community and given especially to women after delivery	
2	Acacia nilotica (L.) Delile M. (Fabaceae; subfamily Mimosoideae), 02-Z	Kikar	Najafpur	T P SP,	Cow and buffalo	Colic pain	A decoction of spines is given for 3 days. Powdered gum at 10-g with milk/water is taken externally application of leaves poultice		
3	Adhatoda vasica Nees. (Acanthaceae), 05-Z	Bhaikur, Aroosa	Halli	S P LE	Cow, buffalo and goat	Wounds and inflammations	One cup of leaves juice is taken in a day.		
4	Aloe barbadensis Mill. (Liliaceae), 09-Z	Kanwar-ghandal	Dara	H P RT	Cow, buffalo and goat	Gastro-intestinal	Powdered roots are given with water for 4 days. Leaf gel is burnt over the frypan and applied externally		
5	Centella asiatica (L.) Urb. (Apiaceae), 33-Z	Barhami	Neelan bho	H P LE	Goat, buffalo and cow	Diarrhea	Leaves are roasted and cooled, fed twice a day for 3 days.		
6	Melia azedarach (L.) Pers (Meliaceae), 124-Z	Daraik, Bakain	Sarhadna	T P LE	LE	Human	Throat problems	Crushed leaves are fed along with bamboo leaves 1 spoon of powdered fruit is taken at night with water	
7	Morus nigra L. (Moraceae), 145-Z	Kala toot, She-toot	Dara	T P LE	LE	Human	Intestinal worm and stomach flatulence	Dried powdered fruit is given	
8	Phyllanthus emblica L. (Phyl- lanthaceae), 208-Z	Amla	Daboola	T P FR	FR	Human	Cough and throat infection	Powdered fruit with Ocimum basilicum leaves is given orally	

Quantitative indices:

- FC: Frequency of citation
- RFC: Relative frequency of citation
- ∑Ui: Sum of frequency
- UV: Uniformity value
Table 4 (continued)

S. no	Taxonomic name/family, voucher no	Local name	Locality	Life habit/ life span^a	Part used^b	Organism treated	Disease treated	Ethnomedicinal recipes	Quantitative indices^c	
9	*Rumex hastatus* D.Don (Polygonaceae), 238-Z	Katmal, Tehtur	Najafpur	S P WP	WP WP	Cow, buffalo and goat	Appetite	The whole plant is fed	Powdered roots are given with water	9 0.11 31 0.38

^a Life Habit/Life span; S, Shrubs; H, Herbs; C, Climbers; T, Trees; A, Annual; B, Biennial; P, Perennial

^b Plant Part(s); RT, Root; LE, Leaf; ST, Stem; FR, Fruit; SH, Shoot; WP, Whole Plant; BA, Bark; SD, Seed; RH, Rhizome; FL, Flower; GM, Gum; RE, Resin; BB, Bulb; TW, Twigs; PP, Pulp; SP, Spine

^c Quantitative Indices; RFC = Relative frequency of citation, FC = Frequency citation, $\sum U_i = \text{sum of uses, \ UV = Use values}$
from 0 to 57.1%. The similarity index (JI) value ranges from 1.76 to 16.85 (Table 6).

Furthermore, 25 national studies from the different areas of Pakistan were compared with the present 40 reported species for management of veterinary diseases. The similarity percentage ranges from 0 to 60%. The degree of similarity index (JI) value ranges from 1.17 to 32.78 (Table 7).

Major threats to plant diversity
Plant resources are under severe threats; the major threats (fires, overgrazing, overexploitation and mining activities) were observed in the visited localities of the study area. Among them, the plant diversity of Garmtun, Najafour, Dartian, Baghpur dehri and Jabri was exposed to all these major threats. Moreover, Sarae Nehmat Khan and Ghazi were less/non exposed to the threat activities except only overgrazing (Table 8).

Discussion
The utilization of medicinal plant species belonging to the dominant plant families (Lamiaceae, Moraceae, Apocynaceae, Asteraceae, etc.) in the study area suggests that the families may have wide distribution, or the plant species are well known to communities for their medicinal purpose. The traditional knowledge of various plant families had been published around the world; among them, Asteraceae, Lamiaceae and Moraceae are well known for their medicinal purpose among the people of Pakistan [20], and other parts of the world [3, 80–82]; this knowledge may be transferred over many different communities. In the traditional medicine system, herbaceous medicinal plant have been commonly used on a large scale compared to other types of plants [83–86]. The medicinal plant or their parts are collected in different seasons depending upon their availability or frequency of active constituent deposition. The accessibility and availability of plant species may also involve their utilization rate, such as perennial plants having longer life cycles than other plant life cycles [1, 87–89]. Thus, indigenous communities in the present study area were more likely to prefer perennial plants due to their long life-cycle and availability.

Plant parts, modes of preparation and application play a significant role in herbal medicine [90]. Most herbalists believe that plant leaves have various bioactive chemical compounds which can be easily extracted [5, 91]. Leaves were the most exploited part for medicinal purposes in the present study and several other studies [92, 93]. Furthermore, the collection of leaves may not threaten the plant survival compared to the collection of the whole plant, stem, or roots, which can drive the plant species to extinction if over-collected [94]. While extraction from fresh material would be considered more useful to avoid microbial fermentation [95], previous studies demonstrated that decoction is the most commonly used preparation method for ethnomedical medicines by traditional healers in herbal recipes [96, 97]. This method may be commonly used due to its simplicity [98], or due to the heating process which speeds up biological reaction and results in higher availability of bioactive compounds [99–101]. In our study area, other areas of Pakistan [5, 82, 102, 103] and a few other countries [104–108], the most frequently used method of preparation is decoction. In regard to the various preparation methods documented in our study, other studies have also revealed similar findings; the most frequently used method of preparation in Azad Jammu and
Kashmir, Pakistan was decoction (18%), followed by powder and juice (17%), paste (15.5%), chewing (11%), extract (8%), infusion (7%) and poultice (5.5%) [97].

The traditional knowledge of herbal remedies for the management of various diseases may vary due to cultural differences, areas and communities. However, it is also believed that one plant species/part can treat various types of disease due to its diverse chemical constituents. Likewise, the present study demonstrated the traditional uses of *Achyranthus aspera* roots for tonsillitis, while its leaves were previously practiced for wound healing [109], *Datura stramonium* for bleeding piles, while in Haramosh and Bugrote Valleys, Pakistan, its leaves are practiced for injuries, wounds, bleedings and pains [52], *Zanthoxylum armatum* for jaundice, while in southern Himalayan regions of Pakistan, its branches are employed for toothache and edible fruits in cardiac disorders [110]. Moreover, in comparison with other studies revealed that some species have similar uses, and some plant species are exploited for different diseases [111–113], in addition to the folk herbal medicinal literature.

Likewise, some plant species we recorded in our study area reflect similar traditional veterinary uses compared to other traditional knowledge of ethnomedicinal plant studies. For example, *Mallotus philippensis* seed powder is used in abdominal worms to remove the threadworms [73], and *Melia azedarach* is used to reduce intestinal worm load in cattle, recoded with high a (100%) fidelity level [114]. In contrast, some studies reflect dissimilar traditional uses of plants, such as *Grewia optiva* for wound healing [58], leaves paste of *Dodonaea viscosa* is used as tonic and for wound healing [62, 115], fruits of *Solanum surattense* are used for pregnancy improvement [115], and in curing myiasis [31], the leaves and shoot of *Carissa opaca* are fed to increase the milk yield in goats [116], *Berberis lycium* root and stem powder for treat trauma in livestock in Afghanistan [117], *Punica granatum* is used in foot infection [118], fever, dehydration,
Table 6: Comparative analysis between this study and other studies from Pakistan of medicinal plant used for human diseases management

Area	Study year	Number of recorded plant species	Plants with similar use	Plants with dis-similar use	Total species common in both areas	Species enlisted only in aligned areas	Species enlisted only in study area	% of plants with a similar use	% of plants with dis-similar use	JI Citation
Chitral	2017	36	01	05	06	30	74	16.6	83.3	6.12
District Charsadda	2016	60	04	03	07	53	73	57.1	42.8	5.88
Indus river	2014	70	04	07	11	59	69	36.3	63.6	9.40
District Abbottabad	2013	67	03	08	11	56	69	27.2	72.7	9.64
Hingol national park	2012	39	0	03	03	36	77	0	100	2.72
Neelum valley (AJK)	2012	39	0	02	02	37	78	0	100	1.76
Khushab	2012	14	0	04	04	10	76	0	100	4.87
District Attock	2011	43	01	03	04	39	76	25	75	3.60
District Sallot	2011	48	02	04	06	42	74	33.3	66.6	5.45
Kalat and Khuzdar	2010	61	01	02	03	58	77	33.3	66.6	2.27
District Bannu	2010	27	01	04	05	22	75	20	80	5.43
District Abbottabad	2010	54	05	10	15	39	65	33.3	66.6	16.85
Northern Pakistan	2009	27	0	02	02	25	78	0	100	1.98
Tehsil Chakwal	2009	29	01	03	04	25	76	25	75	4.12
Gilgit	2008	98	02	06	08	90	72	25	75	5.19
District Mianwali	2007	21	01	01	02	19	78	50	50	2.10
Bagh (AK)	2007	33	0	3	3	30	77	0	100	2.88
Mahal (Kohistan)	2007	50	02	02	04	46	76	50	50	3.38
M2 motorway	2007	81	04	09	13	68	67	30.7	69.2	10.65
Siran valley	2006	80	01	13	14	66	66	7.1	92.8	11.86
Area	Study year	Total species recorded	Plants with similar uses	Plants with dis-similar uses	Total species common in both area	Species enlisted only in aligned areas	Species enlisted only in study area	% of plants with a similar use	% of plants with dis-similar use	JI Citation
-----------------------------	------------	------------------------	--------------------------	-------------------------------	-----------------------------------	--	----------------------------------	-------------------------------	---------------------------------	-------------
FATA, Pakistan	2018	94	02	14	16	78	64	12.5	87.5	12.69
Bajaur Agency, Pakistan	2018	73	02	13	15	58	65	13.3	86.6	13.88
District Jhang, Pakistan	2017	46	01	11	12	34	68	8.3	91.6	13.33
Neelum Valley, Pakistan	2017	50	00	04	04	46	76	00	100	3.38
Chail valley, Pakistan	2017	55	02	05	07	48	73	28.5	71.4	6.14
Hangu, Pakistan	2016	24	01	07	08	16	72	12.5	87.5	10
Karak, Pakistan	2015	46	02	09	11	35	69	18.1	81.8	11.82
Peshawar, KPK, Pakistan	2015	83	02	09	11	72	69	18.1	81.8	8.46
Sulaiman Range, Pakistan	2014	41	12	08	20	21	60	60	40	32.78
DI Khan, Pakistan	2014	43	01	07	08	35	72	12.5	87.5	8.08
Tharparkar, Pakistan	2014	22	00	02	02	20	78	00	100	2.08
Malakand valley, Pakistan	2014	28	04	05	09	19	71	44.4	55.5	11.11
Lesser Himalaya, Pakistan	2013	89	06	13	19	70	61	31.5	68.4	16.9
Baffa, Pakistan	2012	30	08	06	14	16	66	57.1	42.8	20.5
Allai, Pakistan	2012	24	00	03	03	21	77	00	100	3.15
Jhang, Pakistan	2012	35	05	05	05	30	75	00	100	5
Northern Pakistan	2012	54	03	08	11	43	69	27.2	72.7	10.8
Poonch valley, Azad Kashmir	2012	19	04	03	07	12	73	57.1	42.8	8.97
Hilly area, Pakistan	2010	35	01	04	05	30	75	20	80	5
Suleiman region, Pakistan	2010	08	01	01	01	7	79	00	100	1.17
Sargodha Pakistan	2009	25	00	01	01	01	24	79	00	100
Cholistan desert, Pakistan	2009	35	01	02	03	32	77	33.3	66.6	2.83
Faisalabad, Pakistan	2009	39	01	05	06	33	74	16.6	83.3	5.94
Kashmir Himalaya, Pakistan	2007	24	00	02	02	22	78	00	100	2.04
Samahni valley, Pakistan	2006	54	03	12	15	39	65	20	80	16.85
Indigenous knowledge of the people may vary greatly due to discrepancies in their origins and cultures. Documenting and comparing this knowledge may reveal a considerable depth of knowledge among communities, resulting in novel sources for drug development [124]. Such studies also illustrate the value of indigenous medicinal plant information, with disparities between areas arising as a result of ecological [125], historical [126], phytochemical and even organoleptic differences [127]. Similar in terms of their cultural values and climatic conditions to the study area, the Jaccard index showed significant results; the highest degree of similarity index was with studies by Abbasi et al. [49], Shah and Khan [57], Ahmad [56], Mussarat et al. [13], with JI values 16.85, 11.86, 10.65 and 9.40, respectively, for the management of human diseases. Likewise, Tariq et al. [66], Abbasi et al. [69], Ch et al. [79], Badar et al. [60] had JI values of 32.78, 16.9, 16.85, 13.88 and 13.33, respectively, for ethnoveterinary medicinal plant. The studies might have a cross-cultural exchange of knowledge between the communities through any means, historical and ecological factors, common ethnic values and similar vegetation types. The lowest JI values were for the studies conducted by Ahmad et al. [43], Afzal et al. [50], with JI values 1.76 and 1.98, respectively, for human disease management. Likewise, Dilshad et al. [27], Raziq et al. [75], Khuroo et al. [69], Ch et al. [79], Badar et al. [60] had JI values of 0.98, 1.17, 2.04 and 2.08, respectively, for ethnoveterinary medicinal plant. These findings are in agreement with studies carried out by Kayani et al. [128]. This might be due to a greater difference in ethnobotanical knowledge due to differences in population size, species diversity, habitat structure, or less chance of exchanging cultural knowledge between the areas. The Jaccard index analysis may strengthen the value of reported medicinal plant species with their matching uses to other studies, which may provide a baseline for phytochemical, and pharmacognostic studies.

On the other hand, the JI analysis may reflect the novel uses of medicinal plant from the present study area, which may be due to the areas: (1) unique phytogeography, (2) distinguished indigenous culture and history, (3) remarkable phytodiversity, (4) existence of different tribes and castes, (5) differences in methods of medicinal plant collection, their processing, preparations, usage and storage, (6) ethnobotanical knowledge variations, (7) less chance of the exchange of cultural knowledge between the study area to other areas may be due to restricted movement of people because of their residences in remote and hilly areas, (8) absence of a proper system of documentation, sharing and conservation of

Locality/threat	Mining activities	Over exploitation	Over grazing	Fire
Khanpur	+	−	+	+
Beer	−	+	+	+
Garmthun	+	+	+	+
Najafpur	+	+	+	+
Hattar	−	−	+	+
Jabri	+	−	+	+
Baghpur dehri	+	+	+	+
Dartian	+	+	+	+
Nilan Bhoto	−	+	+	+
Babotri	−	−	−	+
Pharala	+	+	−	+
Ghazi	−	−	+	+
Kohala	+	−	+	+
Sarae Nehmat Khan	−	−	+	+
Nara Amazai	−	+	+	+

Data: + presence, − absence
folk knowledge, (9) least interest of the younger generation in folk knowledge and practices, (10) differences in plant parts used, diseases treated and recipes, such as our study area's preparation methods, are different from other areas of Pakistan for the same plant part and treated disease, and (11) ethnomedicinal use of plant in our study area may not be documented or published from other study areas.

During surveys, it was observed that local plant resources are severely threatened by forest fires in summer, overgrazing (nomadic and normal), overexploitation and mining activities. People living in the far-flung mountains of the area have no or less modern healthcare system, so most people rely on medicinal plant, and unsustainable collection may drive the flora to extinction [129–131]. During our study, it was also unveiled that over time, important folk indigenous knowledge about plants was limited to older people only, as the younger people have less interest in folk knowledge and traditional practices due to transforming lifestyle and culture; this can be inferred from the informant’s knowledge by age, which showed informants 6.2%, ≤ 30 years of age.

Conclusion

In summary, the current study reported the important ethnomedicinal plant practiced in veterinary and human healthcare by the local people of District Haripur, Pakistan. Like the rural population of other countries, the local people also rely on medicinal plant to treat livestock and human diseases may due to traditional culture, easy availability and cheaper sources. Comparative analysis of the present study and their matching with other studies from Pakistan may reflect the novel use of these plants, which can provide a base line for pharmacognostic studies. Scientific and experimental validation of traditional knowledge is necessary to ensure safety and efficacy; therefore, the phytochemical, toxicological and clinical studies on the documented flora are recommended for a better understanding. In the study area, ethnomedicinal plant are also under severe threats, and combined efforts should be made to secure both the plant resources and folk knowledge. In this regard, awareness campaigns, conservation efforts and pharmacological and applied research studies are required.

Abbreviations

EVM: ethnoveterinary medicine; RFC: relative frequency of citation; FC: frequency citation, ∑U: sum of uses; UV: use values; S: shrubs; H: herbs; C: climbers; T: trees; A: annual; B: biennial; P: perennial; RT: root; LE: leaf; ST: stem; FR: fruit; SH: shoot; WP: whole plant; BA: bark; SD: seed; RH: rhizome; FL: flower; GM: gum; RE: resin; BB: bulb; TW: twigs; PP: pulp; SP: spine.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13002-021-00480-x.

Additional file 1: File S1. Sample of questionnaire used during field survey for obtaining ethnobotanical information.

Additional file 2: Fig. S1. Description of the study area, Haripur District, Khyber Pakhtunkhwa, Pakistan. Fig. S2. Images of some ethnoveterinary medicinal plant of District Haripur. Table S1. Relationship between Relative frequency of citation (RFC) and Use Value (UV)

Acknowledgements

The authors thankfully acknowledge the free participation of the traditional healers and other local respondents who provided relevant information about the medicinal plant and made this survey possible. The authors also extend their thanks to Russell Gray (Wildlife Ecology & Conservation Consultant) for the English language editing of the manuscript.

Authors’ contributions

N.S. and A.N. contributed to conceptualization; G.M.S., Z.S. and N.S. provided methodology; N.S. provided software; Z.S., M.H. and A.M. performed validation; N.S. and Z.S. carried out formal analysis and investigation; A.N., M.S. and L.Y. performed data curation; Z.S. and N.S. performed writing—original draft preparation; N.S., G.M.S. and A.N. performed writing—review and editing; G.M.S. and M.I. done supervision; I.K. contributed to funding acquisition. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Availability of data and materials

All the data are in manuscript and supporting documents.

Declarations

Ethics approval and consent to participate

This study was authorized by the Department of Bioscience and Office of Research, Innovation and Commercialization University of Wah (ORIC-UW), Wah Cantt, Pakistan.

Consent for publication

All authors read and approved the final manuscript for publication.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Biosciences, University of Wah, Wah Cantt, Pakistan. 2 Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China. 3 Department of Botany, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan. 4 Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, People’s Republic of China. 5 Jiangxi University of Traditional Chinese Medicine, 818 Meiling Road, Nanchang 330006, People’s Republic of China. 6 Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 818 Meiling Road, Nanchang 330006, People’s Republic of China. 7 State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China. 8 Soil Science and Plant nutrient Unit, Brunei Agricultural Research Center, Kilanas, BG 1121, Brunei Darussalam. 9 Department of Agriculture, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan. 10 Department
References

1. Shinwari MI, Khan MA. Folk use of medicinal herbs of Margalla hills national park, Islamabad. J Ethnopharmacol. 2000;69:45–56.
2. Serrentino J. How natural remedies work. Point Roberts: Hartley & Marks Publishers, 1991. p. 224–7.
3. Abbasi AM, Khan MA, Shah NH, Shah NM, Pervez A, Ahmad M. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan. J Ethnobiol Ethnomed. 2013;9:66.
4. Ahmad H. Issues regarding medicinal plants of Pakistan. Udyana Today. 1999;6:67–7.
5. Ahmad M, Sultana S, Fazl-i-Hadi S, Ben Hadda T, Rashid S, Zafar M, Khan MA, Khan MPZ, Yaseen G. An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). J Ethnobiol Ethnomed. 2014;10:36.
6. Khan M, Mosharaf S. Ethnobotanical studies on plant resources of Shekh Maltoon, District Mardan, Pakistan. Med Plant Res. 2014;8:35–45.
7. Rashid A, Arshad M. Medicinal plant diversity, threat imposition and interaction of a mountain people community. In: Proceedings of workshop on curriculum development in applied ethnobotany. Published by the Ethnobotany Project, WWF Pakistan; p. 84–90.
8. Maroju A. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. J Ethnobiol Ethnomed. 2013;9:83.
9. Kala CP. Current status of medicinal plants used by traditional Vaidyas in Uttarakhand state of India. Ethnobot Res Appl. 2005;3:267–78.
10. Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-resistant human pathogens. J Ethnopharmacol. 2001;74:113–23.
11. Schillhorn van Veen TW. Sense or nonsense? Traditional methods of animal disease prevention and control in the African savannah. London: Ethnoveterinary Research and Development Intermediate Technology Publications; 1996. p. 25–36.
12. Hoareau L, DaSilva EJ. Medicinal plants: a re-emerging health aid. Electron J Biotechnol. 1999;2:3–4.
13. Musrarat S, AbdEl-Salam NM, Tariq A, Wazir SM, Adnan M. Use of ethnobotanical plants by the people living around Indus River. Evid Based Complement Alternat Med. 2014;2014:14.
14. McGavv JJ, Van der Merwe D, Elloff J. In vitro anticholinergic, antibacterial and cytotoxic effects of extracts from plants used in South African ethnobotanical medicine. Vet J 2007;173:366–72.
15. Ganesan S, Chandhrasekaran M, Selvaraj A. Ethnoveterinary healthcare practices in southern districts of Tamil Nadu, Indian. J Tradit Knowl. 2008;7(2):347–435.
16. Ul Hassan H, Murad W, Tanig A, Ahmad M. Ethnoveterinary study of medicinal plants in Malakand Valley, District Dir (Lower), Khyber Pakhtunkhwa, Pakistan. Ir Vet J. 2014;67:6.
17. Baloch M, Marri M, Qaismani M. Plants treasures, traditional knowledge and Baloch society. Bi-Annu Res J Balochistan Rev. 2013;17:1–8.
18. Ahmad KS, Habib S. Indigenous knowledge of some medicinal plants of Himalaya Region, Darawan village, Neelum valley, Azad Jammu and Kashmir, Pakistan. Univ J Plant Sci. 2014;2:40–7.
19. Shah G, Ahmad M, Arshad M, Khan M, Zafar M, Sultana S. Ethnophyto-veterinary medicines in northern Pakistan. J Anim Plant Sci. 2012;22:791–7.
20. Sharif A, Asif H, Yousif W, Riaz H, Bukhari IA, Assiri AM. Indigenous medicinal plants of Pakistan used to treat skin diseases: a review. Chin Med. 2018;13:52.
21. Aftab R, Bhatti K, Mirza S, Ajab M, Ishiq M. Ethnoveterinary Study of Tehsil Wazirabad Gujranwala Punjab Pakistan. Pak J of Sci. 2019;71:260.
22. Ishthaq M, Mahmood A, Maqbool M. Indigenous knowledge of medici- nal plants from Sudhanoti district (AJK) Pakistan. J Ethnopharmacol. 2015;168:201–7.
23. Ishthaq M, Maqbool M, Ajab M, Ahmed M, Hussain I, Khanam H, Mushtaq W, Hussain T, Azam S, Hayat Bhatti K. Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Shangahi, District Bhimber Azad Jammu and Kashmir, Pakistan. PLoS ONE. 2021;16:e0243151.
24. Ishthaq M, Maqbool M, Hussain T, Shah A. Role of indigenous knowl- edge in biodiversity conservation of an area: a case study on tree ethnobotany of Soona Valley, District Bhimber Azad Jammu, Pakistan. Pak J Bot. 2013;45:245–56.
25. Ishthaq M, Mumtaz AS, Hussain T, Ghani A. Medicinal plant diversity in the flora of Leepa Valley, Muzaffarabad (AK), Pakistan. Afr J Biotechnol. 2012;11:3087–98.
26. Maqbool M, Ajab M, Ishthaq M, Azam S, Hussain T. Ethnoveterinary study of plants used in phytotherapeutics among indigenous com- munities of District Bhimber, Azad Kashmir and migrants to United Kingdom. Proc Pak Acad Sci B Life Environ Sci. 2019;2019(56):55–74.
27. Dilshad SR, Rehman N, Ahmad N, Iqbal A. Documentation of ethnovet- erinary practices for mastitis in dairy animals in Pakistan. Pak Vet J. 2010;30:167–71.
28. Jabbar A, Raza MA, Iqbal Z, Khan MN. An inventory of the ethnobo- tanicals used as anthelmintics in the southern Punjab (Pakistan). J Ethnopharmacol. 2006;108:152–4.
29. Farooque NA. Indigenous ethnobotanical knowledge and livestock management amongst transhumant pastoralists of Central Himalaya. J Hum Ecol. 2000;11:319–22.
30. Youusufl SA, Khan N, Wahab M, Ajab M. Ethnoveterinary study of Marghazar valley, Pakistan. Int J Biol Technol. 2010;7:409–16.
31. Farooq Z, Iqbal Z, Mushtaq S, Muhammad G, Iqbal MZ, Arshad M. Ethnoveterinary practices for the treatment of parasitic diseases in live- stock in Cholistan desert (Pakistan). J Ethnopharmacol. 2008;118:213–9.
32. Dilshad SMR, Iqbal Z, Muhammad G, Iqbal A, Ahmed N. An inven- tory of the ethnobotanical practices for reproductive disorders in cattle and buffaloes, Sargodha district of Pakistan. J Ethnopharmacol. 2008;117:393–402.
33. Hussain A, Khan MN, Iqbal Z, Sajid MS. An account of the botanical anthelmintics used in traditional veterinary practices in Sahiwal district of Punjab, Pakistan. J Ethnopharmacol. 2008;119:185–90.
34. Jain SK. Handbook of field and herbarium methods. Delhi: Today and Tomorrow Printers and Publishers; 1977.
35. Alexiades MN, Sheldon JW. Selected guidelines for ethnobotanical research: a field manual, advances in economic botany, vol. 10. Bronx: The New York Botanical Garden; 1996.
36. Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy): an alpine ethnobotanical study. J Ethnopharmacol. 2013;145:517–29.
37. Tardio J, Pardo-de-Santayana M. Cultural importance indices: a com- parative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ Bot. 2008;62:24–39.
38. González-Tejerizo M, Casares-Porcel M, Sánchez-Rojas C, Ramiro-Gutiérrez J, Moler-Mesa J, Périoni A, Giusti M, Censoni E, De Pascale C, Della A. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. J Ethnopharmacol. 2008;116:341–57.
39. Jan H, Jan S, Ahmad N, Aysia M. Ethno-medicinal survey of indigenous medicinal plants used by the local population of Goleen Valley, Chitral, Pakistan. SM J Med Plant Stud. 2017;1:1–8.
40. Ullah Z, Ullah R, Ullah J, Majed A, Hussain M, Ullah H. Ethnobotanical plants of district charsadda Khyber Pakhtunkhwa, Pakistan. J Biodiv- ers Environ Sci. 2016;6(2):254–64.
41. Shah GM, Jamal Z, Hussain M. Phytotherapy among the rural women of district Abbottabad. Pak J Bot. 2013;45:253–61.
42. Qureshi R. Indigenous flora of hingol national park, Baluchistan, Pakistan. Pak J Bot. 2012;44:725–32.
43. Ahmad KS, Qureshi R, Hameed M, Ahmad F, Nawaz T. Conservation assessment and medicinal importance of some plants resources from Sharda, Neelum valley, Azad Jammu and Kashmir, Pakistan. Int J Agric. Biol. 2012;14:997–1000.
44. Ghani A, Batoool M. Folk recipes of some medicinal plants used by the inhabitants of soon valley khyab (Pakistan). Int J Curr Pharm Res. 2012;4:60–3.
45. Noor MJ, Kalsoom U. Ethnobotanical studies of selected plant species of Ratwali village, district Attock, Pakistan. Pak J Bot. 2011;43:781–6.

46. Arshad M, Nsar M, Majeed A, Ismail S, Ahmed M. Ethnomedicinal flora in district Sialkot, Punjab, Pakistan. Middle East J Sci Res. 2011;9:209–14.

47. Tareen RB, Bibi T, Khan MA, Ahmad M, Zafar M, Hina S. Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan. Pak J Bot. 2010;42:1465–85.

48. Waiz SM, Farooq A. Ethnobotanical survey of plants of Kurrum river beds of district Bannu, Pakistan. Pak J Plant Sci. 2010;16:22–5.

49. Abbasi AM, Khan MA, Ahmed M, Zafar M. Herbal medicines used to cure various ailments by the inhabitants of Abbottabad district, North West Frontier Province, Pakistan. Ansanandh Bharan: Council of Scientific and Industrial Research, 2010. p. 175–83.

50. Afzal S, Afzal N, Khan MA, Ali M, Ahmad M, Zafar M, Hina S. Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan. Pak J Bot. 2010;42:1465–85.

51. Qureshi RA, Gilani SA, Ghufran MA. Ethnobotanical studies of plants of Cholistan desert, Punjab Province, Pakistan. J Ethnopharmacol. 2014;155:495–507.

52. Siddiqui ZUd, Ullah S, Rao ZA, Iqbal Z, Hameed M. Inventory of ethnobotanical practices used for the control of parasitic infections in district Jhang. Pakistan. Int J Agric Biol. 2012;14:922–8.

53. Khan MA, Khan MA, Hussain M. Ethno veterinary medicinal uses of plants of Poonch Valley Azad Kashmir. Pak J Weed Sci Res. 2012;18:495–507.

54. Zia-ud-Din S, Zafar M, Khan MA, Khan MA. Ethnomedicinal knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan. Pak J Bot. 2010;42:1465–85.

55. Khan MA, Khan MA, Hussain M. Ethno veterinary medicinal uses of plants of Poonch Valley Azad Kashmir. Pak J Weed Sci Res. 2012;18:495–507.

56. Razia A, de Verdier K, Younas M. Ethnobotanical treatments by dromedary camel herders in the Suleiman Mountainous Region in Pakistan: an observation and questionnaire study. J Ethnobiol Ethnomed. 2010;6:16.

57. Khan FA. Ethno-veterinary medicinal usage of flora of Greater Cholistan desert (Pakistan). Pak J Vet. 2009;29:75–80.

58. Abbasi AM, Khan MA, Ahmed M, Zafar M. Herbal medicines used to cure various ailments by the inhabitants of Abbottabad district, North West Frontier Province, Pakistan. Ansanandh Bharan: Council of Scientific and Industrial Research, 2010. p. 175–83.

59. Deeba F, Muhammad G, Iqbal Z, Hussain I. Appraisal of ethno-veterinary practices used for different ailments in dairy animals in peri-urban areas of Faisalabad (Pakistan). Int J Agric Biol. 2009;11:535–41.

60. Khurooo AA, Malik AH, Dar A, Dar G, Khan Z. Ethnobotanical medicinal uses of some plant species by the Gujjar tribe of the Kashmir Himalaya. Asian J Plant Sci. 2007;6:148–52.

61. Ch M, Khan M, Hanif W. Ethno veterinary medicinal uses of plants from Samahni valley dist. Bhamber, (Azad Kashmir) Pakistan. Asian J Plant Sci. 2006;5:390–6.

62. Ahmed N, Mahmood A, Tahir S, Bano A, Malik RN, Hassan S, Ashraf A. Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan. J Ethnopharmacol. 2014;155:1263–75.

63. Kadir MF, Sayeed MSB, Seto IA, Mustafa A, Mia M. Ethnopharmacological survey of medicinal plants used by traditional health practitioners in Thanchi, Bandarban Hill Tracts, Bangladesh. J Ethnopharmacol. 2014;155:495–508.

64. Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabere R, Rehman S-U, Sultana S, Zafar M, Yaseen G. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J Ethnopharmacol. 2014;157:79–89.

65. Giday M, Asfaw Z, Woldu Z. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J Ethnopharmacol. 2010;132:75–85.

66. Raguopathy S, Steven NG, Maruthakkutty M, Velusamy B, Ul-Huda MM. Consensus of the Malasars’ traditional aboriginal knowledge of medicinal plants in the Vellangari holy hills, India. J Ethnobiol Ethnomed. 2008;4:8.

67. Uniyal SK, Singh K, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed. 2013;2:14.

68. Singh G, Joyce EM, Beddow J, Mason TJ. Evaluation of antibacterial activity of ZnO nanoparticles coated sonographically onto textile fabrics. J Microbiol Biotechnol Food Sci. 2020;9:106–20.

69. Ahmed E, Arshad M, Saboor A, Qureshi R, Mustafa G, Sadiq S, Chaudhari SK. Ethnobotanical appraisal and medicinal use of plants in Patriata, New Murree, evidence from Pakistan. J Ethnobot Med. 2013;9:13.

70. Moerman DE. An analysis of the food plants and drug plants of native North America. J Ethnobot Med. 1996:52:1–22.

71. Andriamparany JN, Brinkmann K, Jeannoda V, Buerkert A. Effects of socio-economic household characteristics on traditional knowledge and usage of wild yams and medicinal plants in the Mahafaly region of south-western Madagascar. J Ethnobiol Ethnomed. 2014;10:82.

72. Shoaib G, Shah GM, Shad N, Dogan Y, Siddique Z, Shah AH, Farooq M, Khan KR, Nedelcheva A. Traditional practices of the ethnobotanical plants in the Kaghan Valley, Western Himalayas-Pakistan. Rev Biol Trop. 2020;69(1):1–11.

73. Bano A, Ahmad M, Zafar M, Sultana S, Rashid S, Khan MA. Ethnomedicinal knowledge of the most commonly used plants from Deosai Plateau, Western Himalayas, Gilgit Baltistan, Pakistan. J Ethnopharmacol. 2014;155:1046–52.

74. Šavikin K, Ždunić G, Menković N, Živković J, Ćujić N, Tereščenko M, Bigović D. Ethnobotanical study on traditional use of medicinal
