Adjuvant treatment in biliary tract cancer: To treat or not to treat?

Stefano Cereda, Carmen Belli, Michele Reni

Stefano Cereda, Carmen Belli, Michele Reni, Department of Oncology, San Raffaele Scientific Institute, 20132 Milan, Italy

Author contributions: Reni M conceived the paper and critically reviewed the data and the final version; Belli C contributed to the analysis and interpretation of data; Cereda S drafted the article and revised it critically for important intellectual content; all authors approved the final version.

Correspondence to: Michele Reni, MD, Department of Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy. reni.michele@hsr.it

Telephone: +39-2-26437644 Fax: +39-2-26437625

Received: October 29, 2011 Revised: April 5, 2012

Accepted: April 12, 2012

Published online: June 7, 2012

Abstract

Biliary tract cancer is a rare malignant tumor. There is limited knowledge about biology and natural history of this disease and considerable uncertainty remains regarding its optimal diagnostic and therapeutic management. The role of adjuvant therapy is object of debate and controversy. Although resection is identified as the most effective and the only potentially curative treatment, there is no consensus on the impact of adjuvant chemotherapy and/or radiotherapy on the high incidence of disease recurrence and on survival. This is mainly due to the rarity of this disease and the consequent difficulty in performing randomized trials. The only two prospectively controlled trials concluded that adjuvant chemotherapy did not improve survival. Most of the retrospective trials, which had limited sample size and included heterogeneous patients population and non-standardized therapies, suggested a marginal benefit of chemoradiotherapy in reducing locoregional recurrence and an uncertain impact on survival. Well-designed multi-institutional randomized trials are necessary to clarify the role of adjuvant therapy. Two ongoing phase III trials may provide relevant information.

Key words: Biliary tract cancer; Adjuvant therapy; Chemotherapy; Chemoradiation; Surgery

Peer reviewer: Yu Katayose, Professor, Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai 9808574, Japan

Cereda S, Belli C, Reni M. Adjuvant treatment in biliary tract cancer: To treat or not to treat? World J Gastroenterol 2012; 18(21): 2591-2596 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i21/2591.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i21.2591

INTRODUCTION

Biliary tract cancer (BTC) is a rare tumor accounting for approximately 4% of all malignant neoplasms of the gastrointestinal tract. Marked gender, ethnical and geographical variations exist and, in certain regions of the world, like Chile or North India, BTC is one of the most common causes of cancer mortality. The median age at presentation is the seventh decade of life with a male to female ratio of 1.5:1.

Surgical resection is the only potentially curative treatment for BTC. However, the resectability rate has been reported to range between 30% and 70%, with large variability based on tumor location (70% for ampullary cancer, 40%-50% for gallbladder, intrahepatic and distal extrahepatic cancer and 30% for hilar BTC[6-7]). The type of resection and prognosis vary with anatomical location with a 5-year overall survival (OS) rate of 20%-40% for intrahepatic adenocarcinoma, 50%-70% for ampullary cancer, 25%-50% for distal cholangiocarcinoma and for gallbladder cancer and 15%-35% for hilar BTC[8].

Due to the rarity of this disease, in which patients with curatively resected tumors are in the minority, prospective trials have been rarely performed and, sometimes, eligibility criteria allowed the enrolment of both patients with pancreatic cancer and BTC, thus hampering
the interpretation of results. Accordingly, information with a high level of evidence is lacking and wide areas of debate and controversy on optimal adjuvant therapeutic management exist.

PROGNOSTIC FACTORS

The 5-year OS rate with surgery alone is disappointing, ranging from 15% to 70%[10]. Complete surgical resection with histologically negative (R0) surgical margins has been reported to be the most important prognostic factor[10]. Since prognosis varies also with anatomical location, the heterogeneity of patient population of the reported studies may affect the interpretation of the data[11]. Other prognostic factors such as tumor stage, nodal status, vascular and perineural invasion, elevated baseline CA 19-9 level and histologic grade have been identified in many reports[10-13,19]. Among those, the prognostic relevance of tumor stage, nodal status, histologic grade and resection margin is almost universally accepted and should be taken into account for the stratification of the patients in prospective trials and for the interpretation of the results in non-randomized series; while the prognostic role of elevated baseline CA 19-9 level and vascular and perineural invasion is still controversial[14-48].

THERAPEUTIC MANAGEMENT

Most patients with BTC are not suitable for curative surgery at diagnosis, and the rate of microscopically positive resection margins (R1) has been reported to be up to 74%[14]. In addition, locoregional failure occurs in more than half of the patients, even after R0 resection[9-11,19]. Isolated locoregional disease was reported in approximately 15% of patients with gallbladder cancer, 20% with periampullary cancer and 60% with hilar cholangiocarcinoma. In contrast, systemic disease, with or without concomitant locoregional recurrence, occurred in 85% of patients with gallbladder cancer, 75% with periampullary cancer and 41% with hilar cholangiocarcinoma[10,19]. Because of poor survival after curative resection due to frequent local relapse and distant metastases[9,11,34], the role of adjuvant therapy has been widely explored[9,15,32,38,41-50].

Chemoradiation

Previous studies, mainly focusing on adjuvant chemoradiation therapy (CRT) with a variety of regimens, led to conflicting results and the role of this therapeutic strategy remains controversial. No large randomized trial of adjuvant CRT has ever been performed. A small phase III European Organization for Research and Treatment of Cancer trial, including 92 eligible patients with periampullary adenocarcinoma, demonstrated no statistically significant difference in survival between adjuvant CRT following resection vs observation[35]. However, since this trial included a limited number of patients and an outdated chemoradiation in terms of imaging, techniques, planning, dose and concomitant radiosensitizing chemo-

therapy, definitive conclusions on the role of modern chemoradiation are impossible to draw.

Conversely, a retrospective series of 73 patients with gallbladder cancer treated between 1985 and 2004 at Mayo Clinic[38] suggested that adjuvant CRT may obtain a statistically significant improvement in OS only for patients with lymph node involvement. Similarly, two retrospective series of fluoropyrimidine-based post-operative chemoradiation from MD Anderson Cancer Center[39] and from South Korea[40], including 96 patients affected by ampullary adenocarcinoma and 91 patients with extrahepatic bile duct cancer, respectively, suggested an improved OS only in patients with locally advanced tumor (T3/T4)[39] or with R1 resection[40]. A few other smaller retrospective series also reported a modest potential OS benefit with adjuvant CRT (Table 1)[39,40,41-50].

Apart from the controversial impact on OS, CRT may have a role in improving local control, especially in patients at higher risk of local failure, such as those with R1 margins and positive lymph nodes. In fact, 5-year local control rate raised from 40%-50% in patients with ampullary cancer treated with surgery alone to 65%-80% in those who received post-operative CRT[39,40,41-50].

Unfortunately, the retrospective nature of most of these studies, the small sample size, the lack of correction for multiple comparisons, patient selection bias; heterogeneity in terms of patients' characteristics, treatment regimens, tumor site and stage; long-lasting accrual periods, different surgical, radiotherapy and radiological techniques in different historical periods and other confounding factors do not allow to draw any firm conclusion on the role of CRT. In fact, younger and healthier patients were more likely to be offered adjuvant CRT. On the other hand, patients with high risk features were more likely to receive adjuvant therapy than those with favorable features.

Chemotherapy

A few studies evaluated the role of adjuvant chemotherapy in BTC. A retrospective single centre analysis on 42 patients suggested that postoperative gemcitabine-based chemotherapy may be a promising strategy to improve OS after surgical resection for hilar cholangiocarcinoma[38].

Table 1 Survival outcome for adjuvant chemoradiation

Ref.	No. of patients	Site	Therapy	OS (median)
[38]	73	GB	No	58
[39]	96	PV	Yes	35.2
[41]	49	All	No	16.4
[42]	48	EHBD	Yes	44%
[43]	84	All	No	42
[44]	125	PV	Yes	67
[45]	34	EHBD	No	35%

1Statistically significant; 5-year overall survival (OS). CRT: Chemoradiation; Obs: Observation; PV: Papilla of vater; GB: Gallbladder; EHBD: Extrahepatic bile duct; All: PV + GB + EHBD + intrahepatic bile duct; NA: Not applicable.
Consistently, the addition of fluorouracil-based chemotherapy to adjuvant CRT seemed to improve disease-free survival (3-year DFS 45% vs 27%) and OS (3-year OS 63% vs 31%) compared to CRT alone in another retrospective series of 120 patients with radically resected extrahepatic BTC.

A phase III trial addressed the role of adjuvant chemotherapy with 5-fluorouracil and mitomycin-C in a series of 508 patients with surgically treated pancreaticobiliary malignancies including 335 patients with BTC. OS was significantly increased when compared to observation arm only in the unplanned subset analysis of 61 resected patients with macroscopically positive resection margins (R2) affected by gallbladder cancer. Similarly, a more recent phase III trial exploring the role of single agent adjuvant chemotherapy with either gemcitabine or 5-fluorouracil, in 304 patients with ampullary adenocarcinoma submitted to curative resection did not demonstrate a survival benefit for any of the adjuvant therapy arms when compared to surgery alone.

GUIDELINES AND CURRENT CLINICAL PRACTICE

The National Comprehensive Cancer Network (NCCN) guidelines recommend only observation or adjuvant CRT with concomitant fluoropyrimidine for patients with R0 margins or negative lymph-nodes and adjuvant therapy with concurrent 5-fluorouracil-based CRT followed or not by additional fluoropyrimidine- or gemcitabine-based regimens in patients with R1 margins or metastatic lymph nodes. The use of chemotherapy is recommended due to the high incidence of systemic relapse and to the results observed in the therapeutic management of advanced disease. The European Clinical Practice guidelines are more vague, only suggesting CRT as a possible therapeutic option after surgery for BTC. More restrictive indications derive from a modified and implemented version of NCCN guidelines proposed by a committee of specialists of the Middle East and North Africa Region, which recommend only observation or enrolment into a clinical trial after an R0 and/or a negative regional nodes resection, because of conflicting data regarding adjuvant CRT.

Given the lack of guidelines based on high level of evidence, it is not surprising that patients submitted to curative surgery for biliary tract tumors receive heterogeneous management around the world. A survey of therapeutic strategies recommended in the clinical practice in 2001-2002, reported that adjuvant CRT was widely adopted in the majority of American centers (71%), followed by Asian/Pacific centers (55%), but only by 29% of European institutions. This scenario may have changed in more recent years with a trend towards possibly increasing use of adjuvant treatment due to the numerous positive experiences reported in the literature in the last decade. However, eighty-eight percent of the interviewed physicians recognized the unmet need for achieving higher levels of evidence from large prospective trials to support the routine use of adjuvant treatment.

FUTURE DIRECTIONS

Altogether, the available data do not allow to answer the question whether patients submitted to curative resection for BTC should receive an adjuvant therapy and which treatment strategy may provide the largest benefit.

In fact, neither adjuvant CRT nor adjuvant chemotherapy with either single agent or a 5-fluorouracil-mitomycin doublet improved OS when compared to observation alone in phase III trials, while only a modest benefit in loco-regional control rather than on OS was suggested with CRT by retrospective series that, in any case, suffer from previously mentioned methodological limitations.

The causes of this disappointing scenario and of the lack of a convincing answer are manifold. First, when compared to trials on advanced disease, trials on adjuvant therapy are more demanding, also due to the involvement of different specialists (surgeon, radiologist, oncologist and radiotherapist); more resource- and time-consuming, due to the longer patient’s life expectancy and to the inferior number of patients; and require a more selective choice of centers to be involved. Second, evidence-based information on the most active and effective chemotherapy regimen against unresectable or metastatic disease is limited as well. Accordingly, the selection of promising regimens that may have a relevant impact on disease natural history is challenging. Only recently, cisplatin and gemcitabine regimen became the new standard of treatment in advanced BTC providing a rational for investigating the role of this combination in the adjuvant setting. Additionally, two ongoing phase III trials are currently exploring the role of capcitabine (NCT00363584) and of GEMOX regimen (NCT01313377) in the adjuvant setting and may provide further information in the next future. Third, the rarity of disease limits the interest of pharmaceutical companies while investigator initiated trials are hindered by the restricted availability of agents already registered and authorized for the treatment of the disease. Fourth, the choice of the most promising therapeutic strategy is crucial in this disease that has a very high rate of both local and systemic recurrence. Systemic chemotherapy and CRT, rather than being taken as alternative therapies, should be combined taken into account in the design of post-operative management. However, the role of sequential therapy with CRT followed by systemic chemotherapy or the inverse sequence was rarely addressed in prospective trials. Fifth, the knowledge on tumor biology is limited and, at the moment, does not allow to identify new agents that may contribute to improve the outcome of the disease. Last but not least, the interpretation of trials result is often challenging due to the heterogeneity of enrolled patients population. Stratification based on tumor location, extent of resection, lymph node...
status and resection margin status will be crucial to the success of future studies.

CONCLUSION

A multi-institutional worldwide effort to conduct well designed phase III trial and to expand biological knowledge of the disease is necessary to clarify the role of adjuvant therapy in BTC.

REFERENCES

1 Alijiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990-2009. World J Gastroenterol 2009; 15: 4240-4262

2 de Groen PF, Wiggers CJ, Jansen BF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med 1999; 341: 1368-1378

3 Andreotti G, Liu E, Gao YT, Safaeian M, Rashid A, Shen MC, Wang BS, Deng J, Han TQ, Zhang BH, Hsing AW. Medical history and the risk of biliary tract cancers in Shanghai, China: implications for a role of inflammation. Cancer Causes Control 2011; 22: 1289-1296

4 von Hahn T, Ciesek S, Plentz RR, Weismuller G, Liu E, Gao YT, Safaeian M, Rashid A, Shen MC, Moesinger RC, Pitt HA, Sohn TA, Hruban RH, Adsay NV, de Jong MC, Aldrich EF, Marques H, Pulitano C, Barroso E, Clary BM, van Gulik TM. Metastatic lymph nodes in hilar cholangiocarcinoma: does size matter? HPB (Oxford) 2011; 13: 881-886

5 Farges O, Fuks D, Le Treut YP, Azoulay D, Laurent A, Baillieul P, Nuzzo G, Belghiti J, Pruvo FR, Regimbeau JM. AJCC 7th edition of TNM staging accurately discriminates outcomes of patients with resectable intrahepatic cholangiocarcinoma: By the AFC-IHCC-2009 study group. Cancer 2011; 117: 2170-2177

6 Talamini MA, Moesinger RC, Pitt HA, Sond AH, Hruban RH, Lillemoe KD, Yeo CJ, Cameron JL. Adenocarcinoma of the ampulla of Vater. A 28-year experience. Ann Surg 1997; 225: 590-599; discussion 599-600

7 Nagakawa T, Kayahara M, Ikeda S, Futakawa S, Kakita A, Kawarada H, Matsuno M, Takada T, Takasaki K, Tamiruna H, Tashiro S, Yamaoka Y. Biliary tract cancer treatment: surgical outcomes and long-term survival in patients with gallbladder cancer. J Hepatobiliary Pancreat Surg 2011; 18: 1092-1098

8 Heron DE, Stein DE, Eschelman DJ, Topkham AK, Waterman FM, Rosato EL, Alden M, Anne PR. Cholangiocarcinoma: the impact of tumor location and treatment strategy on outcome. Am J Clin Oncol 2003; 26: 422-428

9 Jan YY, Yeih CN, Yeih TS, Chen TC. Prognostic analysis of surgical treatment of peripheral cholangiocarcinoma: two decades of experience at Chang Gung Memorial Hospital. World J Gastroenterol 2005; 11: 1779-1784

10 Jarnagin WR, Ruo L, Little SA, Klimstra D, Angellis M, DeMatteo RP, Wagman R, Blumgart LH, Fong Y. Patterns of initial disease recurrence after resection of gallbladder carcinoma and hilar cholangiocarcinoma: implications for adjuvant therapeutic strategies. Cancer 2003; 98: 1689-1700

11 Smeenk HG, van Eijck CH, Hop WC, Erdmann J, Tran KC, Deboss M, van Cutsen E, van Dekken H, Klinkenbijl JH, Jeeck L. Long-term survival and metastatic pattern of pancreatic and periampullary cancer after adjuvant chemoradiation or observation: long-term results of EORTC trial 40891. Ann Surg 2007; 246: 734-740

12 Iacono C, Verlato G, Zamboni G, Scarpa A, Monteser G, Capelli P, Bortolasi L, Serio G. Adenocarcinoma of the ampulla of Vater: T-stage, chromosome 17p allelic loss, and extended pancreaticoduodenectomy are relevant prognostic factors. J Gastrointest Surg 2007; 11: 578-588

13 Balachandran P, Agarwal S, Krishnani N, Pandey CM, Kumar A, Sikora SS, Saxena R, Kapoor VK. Predictors of long-term survival in patients with gallbladder cancer. J Gastrointest Surg 2006; 10: 848-854

14 Qiao QL, Zhang TP, Guo JC, Zhan HX, Zhao JX, Liu YC, Wan YL, Leng XS, Zhao YP. Prognostic factors after pancreato-duodenectomy for distal bile duct cancer. Am Surg 2011; 77: 1445-1448

15 Ruys AT, Kate FJ, Busch OR, Engelbrecht MR, Gouma DJ, van Gulik TM. Metastatic lymph nodes in hilar cholangiocarcinoma: does size matter? HPB (Oxford) 2011; 13: 881-886

16 Tugba Kos F, Aksoy S, Odabas H, Ozdemir N, Oksuzoglu B, Uncu D, Zengin N. Adjuvant therapy for gallbladder and bile duct cancers: retrospective comparative study. J BUON 2011; 16: 464-468

17 Yao X, Zhou L, Han S, Chen Y. High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer. J Int Med Res 2011; 39: 1253-1264

18 Sun XN, Cao WG, Wang X, Wang Q, Gu BX, Yang QC, Hu JB, Liu H, Zheng S. Prognostic impact of vascular endothelial growth factor-A expression in resected gallbladder carcinoma. Tumour Biol 2011; 32: 1183-1190

19 Clark CJ, Red-Wood-Wentz CM, Red-L-Damando KM, Kendrick ML, Huebner M, Que FG. Lymphadenectomy in the staging and treatment of intrahepatic cholangiocarcinoma: a population-based study using the National Cancer Institute SEER database. HPB (Oxford) 2011; 13: 612-620

20 Patel SH, Kooby DA, Staley CA, Sarmiento JM, Maithel SK. The prognostic importance of lymphovascular invasion in cholangiocarcinoma above the cystic duct: a new selection criterion for adjuvant therapy? HPB (Oxford) 2011; 13: 605-611

21 Du X, Wang S, Lu J, Cao Y, Song N, Yang T, Dong R, Zang L, Yang Y, Wu T, Li J. Correlation between MMP1-PAR1 axis and clinical outcome of primary gallbladder carcinoma. Jpn J Clin Oncol 2011; 41: 1086-1093

22 Qureshi A, Hassan U, Azam M. Morphology, TNM staging and survival with Pancreatico-duodenectomy specimens received at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Pakistan. Asian Pac J Cancer Prev 2011; 12: 953-956

23 Kaki K, Kohya N, Kitahara K, Masuda M, Miyoshi A, Ide T, Tokunaga O, Miyazaki K, Noshiro H. Tumor budding and dedifferentiation in gallbladder carcinoma: potential for the prognostic factors in T2 lesions. Virchows Arch 2011; 459: 449-456

24 Choi SB, Kim WB, Song TJ, Suh SO, Kim YC, Choi SY. Surgical outcomes and prognostic factors for ampulla of Vater cancer. Scand J Gastroenterol 2011; 46: 92-98

25 de Jong MC, Nathan H, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H, Pullano T, Barroso E, Clary BM, Aldrich EF, Ferrone CR, Zhu AX, Bauer TW, Walters DM, Gamblin TC, Nguyen KT, Turley R, Popescu I, Hubert C, Meyer S, Schulick RD, Choi MA, Gigot JF, Mentha G, Pauwlik TM. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol 2011; 29: 3140-3145

26 Sakata J, Shirai Y, Wakai T, Ajioka Y, Akazawa K, Hatakeyama K. Assessment of the nodal status in ampullary carcinoma: the number of positive lymph nodes versus the lymph node ratio. World J Surg 2011; 35: 2118-2124

27 Miyamoto M, Ojima H, Iwasaki M, Shimizu H, Kobuku A, Hiraoka N, Kose E, Yoshikawa D, Kono T, Furukawa H, Shibata T. Prognostic significance of overexpression of c-Met oncprotein in cholangiocarcinoma. Br J Cancer 2011; 105: 131-138

28 Wakai T, Shirai Y, Sakata J, Matsuda Y, Korita PV, Takanura M, Ajioka Y, Hatakeyama K. Prognostic significance of NQO1 expression in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol 2011; 4: 363-370

29 Ito H, Ito K, D’Angelica M, Gonen M, Klimstra D, Allen P, DeMatteo RP, Fong Y, Blumgart LH, Jarnagin WR. Accurate
staging for gallbladder cancer: implications for surgical therapy and pathological assessment. Ann Surg 2011; 254: 320-325

30 Murakami Y, Uemura K, Sudo T, Hashimoto Y, Nakashima A, Kondo N, Sakabe R, Kobayashi H, Sueda T. Prognostic factors of patients with advanced gallbladder carcinoma following aggressive surgical resection. J Gastrointest Surg 2012; 16: 1411-1416

31 Li H, Qin Y, Cai Y, Chen H, Hao X, Li Q. Analysis of the surgical outcome and prognostic factors for hilar cholangiocarcinoma: a Chinese experience. Dig Surg 2011; 28: 226-231

32 Showalter TN, Zhan T, Anne PR, Chervoneva I, Mitchell EP, Yeo CJ, Rosato EL, Kennedy EP, Berger AC. The influence of prognostic factors and adjuvant chemoradiation on survival after pancreaticoduodenectomy for ampullary carcinoma. Gastrointest Surg 2011; 15: 1411-1416

33 Kawaguchi T, Ochiai T, Ikoma H, Inoue K, Morimura R, Murayama Y, Komatsu S, Shiozaki K, Kuriyama K, Nakashima T, Ichikawa D, Okamoto K, Fujihara H, Kokuba Y, Sonoyama T, Otsui E. Prognostic impact of histological blood vessel invasion in patients with ampullary adenocarcinoma. Hepatogastroenterology 2010; 57: 1347-1350

34 Guglielmi F, Puzzone E, Campagnaro T, Pachera S, Conci S, Valdegamberi A, Sandri M, Iacono C. Prognostic significance of lymph node ratio after resection of peri-hilar cholangiocarcinoma. HPB (Oxford) 2011; 13: 240-245

35 Anderson C, Kim R. Adjuvant therapy for resected extra-hepatic cholangiocarcinoma: a review of the literature and future directions. Cancer Treat Rev 2009; 35: 322-327

36 Murakami Y, Uemura K, Hayashishani Y, Sun T, Hashimoto Y, Ohge H, Sueda T. Indication for postoperative adjuvant therapy in biliary carcinoma based on analysis of recurrence and survival after surgical resection. Dig Dis Sci 2009; 54: 1360-1364

37 Klinkenbijl JH, Jeekeel J, Sahmoud T, van Pel R, Couvreur ML, Veenhof CH, Arnaud JP, Gonzalez DG, de Wit LT, Henningman A, Wils J. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal testicular cancer cooperative group. Ann Surg 1999; 230: 776-782; discussion 782-784

38 Gold DG, Miller RC, Haddock MG, Gunderson LL, Quevedo F, Donohue JH, Bhatia S, Nagorney DM. Adjuvant therapy for gallbladder carcinoma: the Mayo Clinic Experience. Int J Radiat Oncol Biol Phys 2009; 75: 150-155

39 Krishnan S, Rana V, Evans DB, Varadhachary G, Das P, Bhatia S, Delcos ME, Janan JA, Wolfl RA, Crane CH, Pisters PW. Role of adjuvant chemoradiation therapy in adenocarcinomas of the ampulla of vater. Int J Radiat Oncol Biol Phys 2008; 70: 735-743

40 Kim S, Kim SW, Bang YJ, Heo DS, Ha SW. Role of postoperative radiotherapy in the management of extrahepatic bile duct cancer. Int J Radiat Oncol Biol Phys 2002; 54: 414-419

41 Nakeeb A, Tran KQ, Black MJ, Erickson BA, Ritch PS, Quebbeman EJ, Wilson SD, Demure MJ, Rilling WS, Dua KS, Pitt HA. Improved survival in resected biliary malignancies. Surgery 2002; 132: 555-563; discussion 563-564

42 Kim K, Chie EK, Jang JY, Kim SW, Han SW, Oh DY, Im SA, Kim TY, Bang YJ, Ha SW. Adjuvant Chemoradiation After Curative Resection for Extrahepatic Bile Duct Cancer: A Long-term Single Center Experience. Am J Clin Oncol 2012; 35: 136-140

43 Serafini FM, Sachs D, Bloomston M, Carey LC, Karl RC, Murr MM, Rosemurgy AS. Location, not staging, of cholangiocarcinoma determines the role for adjuvant chemoradiation therapy. Ann Surg 2001; 233: 839-844

44 Bhatia S, Miller RC, Haddock MG, Donohue JH, Krishnan S. Adjuvant therapy for ampullary carcinomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 2006; 66: 514-519

45 Hughes MA, Frassica DA, Yeo CJ, Riall TS, Lillemoe KD, Cameron JL, Donehower RC, Lahera DU, Hruban RH, Abrams RA. Adjuvant concurrent chemoradiation for adenocarcinoma of the distal common bile duct. Int J Radiat Oncol Biol Phys 2007; 68: 178-182

46 Konishi M. Adjuvant chemotherapy for resectable biliary tract cancer: current status and future direction. J Hepatobiliary Pancreas Sci 2012

47 Narang AK, Miller RC, Hsu CC, Bhatia S, Pawlik TM, Laheru D, Hruban RH, Zhou J, Winter JM, Haddock MG, Donohue JH, Schullik RD, Wolfgang CL, Cameron JL, Herman JM. Evaluation of adjuvant chemoradiation therapy for ampullary adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Radiat Oncol 2011; 6: 126

48 Gonzalez ME, Giannini OH, Gonzalez P, Saldarri A. Adjuvant radio-chemotherapy after extended or simple cholecystectomy in gallbladder cancer. Clin Transl Oncol 2011; 13: 480-484

49 Bonet Beltrán M, Roth AD, Menth G, Allal AS. Adjuvant radio-chemotherapy for extrahepatic biliary tract cancers. BMC Cancer 2011; 11: 267

50 Park HS, Lim JY, Yoon DS, Park JS, Lee DK, Lee SJ, Choi HJ, Song SY, Lee WJ, Cho YJ. Outcome of adjuvant therapy for gallbladder cancer. Oncol Lett 2011; 2: 599-603

51 Vern-Gross TZ, Shivnani AT, Chen K, Lee CM, Tward JD, MacDonald OK, Crane CH, Talamonti MS, Munoz L, Small W. Survival outcomes in resected extrahepatic cholangiocarcinoma: effect of adjuvant radiotherapy in a surveillance, epidemiology, and end results analysis. Int J Radiat Oncol Biol Phys 2011; 81: 189-198

52 Cho SY, Kim SH, Park SJ, Han SS, Kim YK, Lee KW, Lee WJ, Woo SM, Kim TH. Adjuvant chemoradiation therapy in gallbladder cancer. J Surg Oncol 2011; 102: 87-93

53 Park JH, Choi EK, Ahn SD, Lee SW, Song SY, Yoon SM, Kim YS, Lee YS, Lee SG, Hwang S, Lee YJ, Park KM, Kim TW, Chang HM, Lee JL, Kim JH. Postoperative chemoradiotherapy for extrahepatic bile duct cancer. Int J Radiat Oncol Biol Phys 2011; 79: 696-704

54 Murakami Y, Uemura K, Sudo T, Hayashishani Y, Hashimoto Y, Nakamura H, Nakashima A, Sueda T. Adjuvant gemcitabine plus S-1 chemotherapy improves survival after aggressive surgical resection for advanced biliary carcinoma. Ann Surg 2009; 250: 950-956

55 Lim KH, Oh DY, Chie EK, Jang JY, Im SA, Kim TY, Kim SW, Ha SW, Bang YJ. Adjuvant concurrent chemoradiation therapy (CCRT) alone versus CCRT followed by adjuvant chemotherapy: which is better in patients with radically resected extrahepatic biliary tract cancer?: a non-randomized, single center study. BMC Cancer 2009; 9: 345

56 Gwak HK, Kim WC, Kim HJ, Park JH. Extrahepatic bile duct cancers: surgery alone versus surgery plus postoperative radiation therapy. Int J Radiat Oncol Biol Phys 2010; 79: 194-198

57 Murakami Y, Uemura K, Sudo T, Hayashishani Y, Hashimoto Y, Nakamura H, Nakashima A, Sueda T. Gemcitabine-based adjuvant chemotherapy improves survival after aggressive surgical resection for hilar cholangiocarcinoma. J Gastrointest Surg 2009; 13: 1470-1479

58 Takada T, Amano H, Yasuda Y, Nimura Y, Matsushiro T, Kato H, Nagakura T, Nakayama T. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer 2002; 95: 1685-1695

59 Neoportoleso PM, Moore MJ, Cox TF, Valle JW, Palmer DH, Mdonald A, Carter R, Tebbutt NC, Derervis C, Smith D, Gilmelus B, Cornejo C, Lacaine F, Middleton MR, Ghanem B, Plass C, Halloran C, Olah A, RaveUlife CL, Buchler MW. Ampullary cancer ESPAC-3 (v2) trial: A multicenter, international, open-label, randomized controlled phase III trial of adjuvant chemotherapy versus observation in patients with...
adenocarcinoma of the ampulla of vater. J Clin Oncol 2011; 29: abstr LBA4006

Available from: URL: http://www.nccn.org/professionals/physician_gls/l_guidelines.asp

Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281

Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281

Glimelius B, Hoffman K, Sjödén PO, Jacobsson G, Sellström H, Enander LK, Linné T, Svensson C. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol 1996; 7: 593-600

Eckel F, Brunner T, Jelic S. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 Suppl 5: v65-v69

Yusuf MA, Kapoor VK, Kamel RR, Kazmi A, Uddin N, Masood N, Al-Abdulkareem A. Modification and implementation of NCCN guidelines on hepatobiliary cancers in the Middle East and North Africa region. J Natl Compr Canc Netw 2010; 8 Suppl 3: S36-S40

Nakeeb A, Pitt HA. Radiation therapy, chemotherapy and chemoradiation in hilar cholangiocarcinoma. HPB (Oxford) 2005; 7: 278-282

Borghini Y, Crane CH, Szklaruk J, Oyarzo M, Curley S, Pisters PW, Evans D, Abdalla EK, Thomas MB, Das P, Wistuba II, Krishnan S, Vauthey JN. Extrahepatic bile duct adenocarcinoma: patients at high-risk for local recurrence treated with surgery and adjuvant chemoradiation have an equivalent overall survival to patients with standard-risk treated with surgery alone. Ann Surg Oncol 2008; 15: 3147-3156

Wang SJ, Fuller CD, Kim JS, Sittig DF, Thomas CR, Ravdin PM. Prediction model for estimating the survival benefit of adjuvant radiotherapy for gallbladder cancer. J Clin Oncol 2008; 26: 2112-2117

Yang J, Yan LN. Current status of intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14: 6289-6297

S- Editor Gou SX L- Editor A E- Editor Xiong L