Morphism of $T^*$-Representations

Aleks Kleyn

Abstract. Importance of theorem dedicated to isomorphisms consist in state-
ment that they allow to identify different mathematical objects which have
something common from the point of view of certain model. This paper consi-
deris morphisms of $T^*$-representation of $\mathfrak{F}$-algebra and morphisms of $T^*$-
representation of fibered $\mathfrak{F}$-algebra.

This paper appeared on intersection of two researches which I make at the same
time. First half of paper is dedicated to morphisms of $T^*$-representations of $\mathfrak{F}$-alge-
bra. In second half I consider morphisms of $T^*$-representations of fibered $\mathfrak{F}$-algebra.
Considered constructions appeared as result of study of $D_{**}^*$-linear mappings which
are morphisms of $T^*$-representations of skew field in Abelian group. Therefore I
use $D_{**}^*$-linear mappings for the purposes of illustration of stated theory.

1. Representation of $\mathfrak{F}$-Algebra

Definition 1.1. We call the map
$t : M \rightarrow M$
transformation of set $M$.

Definition 1.2. Transformations is left-side transformation or $T^*$-transfor-
mation if it acts from left
$u' = tu$
We denote $*M$ the set of $T^*$-transformations of set $M$.
Suppose we defined the structure of $\mathfrak{F}$-algebra on the set $M$ ([2]). Then the set
$*M$ consists from $T^*$-transformations which are homomorphisms of $\mathfrak{F}$-algebra.

Definition 1.3. Transformations is right-side transformations or $*T$-transfor-
mation if it acts from right
$u' = ut$
We denote $M^*$ the set of nonsingular $*T$-transformations of set $M$.
Suppose we defined the structure of $\mathfrak{F}$-algebra on the set $M$ ([2]). Then the set
$M^*$ consists from $*T$-transformations which are homomorphisms of $\mathfrak{F}$-algebra.

We denote $\delta$ identical transformation.

Definition 1.4. Suppose we defined the structure of $\mathfrak{F}$-algebra on the set $*M$ ([2]).
Let $A$ be $\mathfrak{F}$-algebra. We call homomorphism
$(1.1) \quad f : A \rightarrow *M$
left-side or $T^*$-representation of $\mathfrak{F}$-algebra $A$ in set $M$

AleksKleyn@MailAPS.org.
Definition 1.5. Suppose we defined the structure of $\mathfrak{F}$-algebra on the set $M^*$ ([2]). Let $A$ be $\mathfrak{F}$-algebra. We call homomorphism
$$f : A \rightarrow M^*$$
right-side or $\ast T$-representation of $\mathfrak{F}$-algebra $A$ in set $M$.

We extend to representation theory convention described in remark [5]-2.2.14. We can write duality principle in the following form:

**Theorem 1.6 (duality principle).** Any statement which holds for $T^\ast$-representation of $\mathfrak{F}$-algebra $A$ holds also for $\ast T$-representation of $\mathfrak{F}$-algebra $A$.

Diagram
$$
\begin{array}{ccc}
M & \xrightarrow{f(a)} & M \\
\downarrow f & & \downarrow f \\
A & & A
\end{array}
$$
means that we consider the representation of $\mathfrak{F}$-algebra $A$. The map $f(a)$ is image of $a \in A$.

**Definition 1.7.** Suppose map (1.1) is an isomorphism of the $\mathfrak{F}$-algebra $A$ into $\ast M$. Then the $T^\ast$-representation of the $\mathfrak{F}$-algebra $A$ is called effective.

**Remark 1.8.** Suppose the $T^\ast$-representation of $\mathfrak{F}$-algebra is effective. Then we identify an element of $\mathfrak{F}$-algebra and its image and write $T^\ast$-transormation caused by element $a \in A$ as $v' = av$.

Suppose the $\ast T$-representation of $\mathfrak{F}$-algebra is effective. Then we identify an element of $\mathfrak{F}$-algebra and its image and write $\ast T$-transormation caused by element $a \in A$ as $v' = va$.

**Definition 1.9.** We call a $T^\ast$-representation of $\mathfrak{F}$-algebra transitive if for any $a, b \in V$ exists such $g$ that $a = f(g)b$.

We call a $T^\ast$-representation of $\mathfrak{F}$-algebra single transitive if it is transitive and effective.

**Theorem 1.10.** $T^\ast$-representation is single transitive if and only if for any $a, b \in M$ exists one and only one $g \in A$ such that $a = f(g)b$.

**Proof.** Corollary of definitions 1.7 and 1.9.

Suppose we introduce additional structure on set $M$. Then we create an additional requirement for the representation of $\mathfrak{F}$-algebra.

Since we defined the structure of algebra of type $\mathfrak{H}$ on the set $M$, we suppose that $T^\ast$-transformation $u' = f(a)u$ is automorphism of algebra of type $\mathfrak{H}$. We also study $T^\ast$-representations which reflects symmetry of algebra of type $\mathfrak{H}$.
Since we introduce continuity on set $M$, we suppose that $T_\star$-transformation
$$u' = f(a)u$$
is continuous in $u$. Therefore, we get
$$\left| \frac{\partial u'}{\partial u} \right| \neq 0$$

2. Morphism of $T_\star$-Representations of $\mathfrak{F}$-Algebra

**Theorem 2.1.** Let $A$ and $B$ be $\mathfrak{F}$-algebras. $T_\star$-representation of $\mathfrak{F}$-algebra $B$
$$f : B \rightarrow \ast M$$
and homomorphism of $\mathfrak{F}$-algebra
$$h : A \rightarrow B$$
define $T_\star$-representation of $\mathfrak{F}$-algebra $A$

\[
\begin{array}{ccc}
A & \xrightarrow{f} & \ast M \\
\downarrow{h} & & \downarrow{g} \\
B & \xrightarrow{r} & \ast M
\end{array}
\]

**Proof.** Since mapping $f$ is homomorphism of $\mathfrak{F}$-algebra $B$ into $\mathfrak{F}$-algebra $\ast M$, the mapping $h$ is homomorphism of $\mathfrak{F}$-algebra $A$ into $\mathfrak{F}$-algebra $\ast M$. □

Considering representations of $\mathfrak{F}$-algebra in sets $M$ and $N$, we are interested in a mapping that preserves the structure of representation.

**Definition 2.2.** Let us consider $T_\star$-representation
$$f : A \rightarrow \ast M$$
of $\mathfrak{F}$-algebra $A$ in $M$ and $T_\star$-representation
$$g : B \rightarrow \ast N$$
of $\mathfrak{F}$-algebra $B$ in $N$. Tuple of mapping $(r, R)$

\[
\begin{array}{ccc}
A & \xrightarrow{r} & B \\
\downarrow{R} & & \downarrow{R} \\
M & \xrightarrow{R} & N
\end{array}
\]
such that $r$ is homomorphism of $\mathfrak{F}$-algebra and

$$R(f(a)m) = g(r(a))R(m)$$
is called **morphism of $T_\star$-representations from $f$ into $g$**. We also say that **morphism of $T_\star$-representations of $\mathfrak{F}$-algebra** is defined. □

**Remark 2.3.** Let us consider morphism of $T_\star$-representations (2.2). We denote elements of the set $B$ by letter using pattern $b \in B$. However if we want to show that $b$ is image of element $a \in A$, we use notation $r(a)$. Thus equation

$$r(a) = r(a)$$

means that $f(a)$ (in left part of equation) is image $a \in A$ (in right part of equation). Using such considerations, we denote element of set $N$ as $R(m)$. We will follow this convention when we consider correspondences between homomorphisms of $\mathfrak{F}$-algebra and mappings between sets where we defined corresponding $T_\star$-representations.

There are two ways to interpret (2.3)
Let $T^*$-transformation $f(a)$ map $m \in M$ into $f(a)m$. Then $T^*$-transformation $g(r(a))$ maps $R(m) \in N$ into $R(f(a)m)$.

We represent morphism of representations from $f$ into $g$ using diagram

From (2.3) it follows that diagram (1) is commutative.

\[ \begin{array}{ccc}
M & \xrightarrow{R} & N \\
\downarrow{f(a)} & & \downarrow{g(r(a))} \\
M & \xrightarrow{R} & N \\
\downarrow{f} & & \downarrow{g} \\
A & \xrightarrow{r} & B
\end{array} \]

\[ H(\omega(f(a_1),...,f(a_n))m) = \omega(g(h(a_1)),...,g(h(a_n)))H(m) \]
for any $n$-ary operation $\omega$ of $\mathfrak{H}$-algebra.

Proof. Since $f$ is homomorphism, we have

\[ H(\omega(f(a_1),...,f(a_n))m) = H(f(\omega(a_1,...,a_n))m) \]
From (2.3) and (2.5) it follows that

\[ H(\omega(f(a_1),...,f(a_n))m) = g(h(\omega(a_1,...,a_n)))H(m) \]
Since $h$ is homomorphism, from (2.6) it follows that

\[ H(\omega(f(a_1),...,f(a_n))m) = g(\omega(h(a_1),...,h(a_n)))H(m) \]
Since $g$ is homomorphism, (2.4) follows from (2.7).

\[ \square \]

Theorem 2.5. Given single transitive $T^*$-representation

\[ f : A \rightarrow *M \]

of $\mathfrak{H}$-algebra $A$ and single transitive $T^*$-representation

\[ g : B \rightarrow *N \]

of $\mathfrak{H}$-algebra $B$, there exists morphism

\[ p : A \rightarrow B \quad P : M \rightarrow N \]

of $T^*$-representations from $f$ into $g$. 
**Proof.** Let us choose homomorphism \( h \). Let us choose element \( m \in M \) and element \( n \in N \). To define mapping \( H \), let us consider following diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{H} & N \\
\downarrow{\scriptstyle a} & & \downarrow{\scriptstyle p(a)} \\
M & \xrightarrow{H} & N \\
\downarrow{\scriptstyle f} & & \downarrow{\scriptstyle \phi} \\
A & \xrightarrow{p} & B
\end{array}
\]

From commutativity of diagram (1), it follows that

\[ H(am) = p(a)H(m) \]

For arbitrary \( m' \in M \), we defined unambiguously \( a \in A \) such that \( m' = am \). Therefore, we defined mapping \( H \) which satisfies to equation (2.3). \( \Box \)

**Theorem 2.6.** Given single transitive \( T\star \)-representation

\[ f : A \to *M \]

of \( \mathfrak{F} \)-algebra \( A \), for any automorphism of \( \mathfrak{F} \)-algebra \( A \) there exists morphism

\[
\begin{array}{ccc}
P : A & \longrightarrow & A \\
\downarrow{\scriptstyle p} & & \downarrow{\scriptstyle p} \\
M & \longrightarrow & M
\end{array}
\]

of \( T\star \)-representations from \( f \) into \( f \).

**Proof.** Let us consider following diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{H} & N \\
\downarrow{\scriptstyle a} & & \downarrow{\scriptstyle p(a)} \\
M & \xrightarrow{H} & N \\
\downarrow{\scriptstyle f} & & \downarrow{\scriptstyle \phi} \\
A & \xrightarrow{p} & B
\end{array}
\]

Statement of theorem is corollary of theorem 2.5. \( \Box \)

**Theorem 2.7.** Let

\[ f : A \to *M \]

be \( T\star \)-representation of \( \mathfrak{F} \)-algebra \( A \),

\[ g : B \to *N \]

be \( T\star \)-representation of \( \mathfrak{F} \)-algebra \( B \),

\[ h : C \to *L \]

be \( T\star \)-representation of \( \mathfrak{F} \)-algebra \( C \). Given morphisms of \( T\star \)-representations of \( \mathfrak{F} \)-algebra

\[
\begin{array}{ccc}
P : A & \longrightarrow & B \\
\downarrow{\scriptstyle p} & & \downarrow{\scriptstyle p} \\
M & \longrightarrow & N
\end{array}
\]

...
Aleks Kleyn  
Morphism of $T^\ast$-Representations

\[
q : B \longrightarrow C \quad Q : N \longrightarrow L
\]

There exists morphism of $T^\ast$-representations of $F$-algebra

\[
r : A \longrightarrow C \quad R : M \longrightarrow L
\]

where $r = qp, \ R = QP$. We call morphism $(r, R)$ of $T^\ast$-representations from $f$ into $h$ product of morphisms $(p, P)$ and $(q, Q)$ of $T^\ast$-representations of $F$-algebra.

Proof. Map $r$ is homomorphism of $F$-algebra $A$ into $F$-algebra $C$. We need to show that tuple of maps $(r, R)$ satisfies to (2.3):

\[
R(f(a)m) = QP(f(a)m) = Q(g(p(a))P(m)) = h(qp(a))QP(m) = h(r(a))R(m)
\]

□

Representations and morphisms of representations of $F$-algebra create category of representations of $F$-algebra.

**Definition 2.8.** Let us define equivalence $S$ on the set $M$. $T^\ast$-transformation $f$ is called **coordinated with equivalence** $S$, when $fm_1 \equiv fm_2 (\mod S)$ follows from condition $m_1 \equiv m_2 (\mod S)$.

**Theorem 2.9.** Let us consider equivalence $S$ on set $M$. Let us consider $F$-algebra on set $^\ast M$. Since $T^\ast$-transformations are coordinated with equivalence $S$, we can define the structure of $F$-algebra on the set $^\ast (M/S)$.

Proof. Let $h = \text{nat} S$. If $m_1 \equiv m_2 (\mod S)$, then $h(m_1) = h(m_2)$. Since $f \in ^\ast M$ is coordinated with equivalence $S$, then $h(f(m_1)) = h(f(m_2))$. This allows to define $T^\ast$-transformation $F$ according to rule

\[
F([m]) = h(f(m))
\]

Let $\omega$ be n-ary operation of $F$-algebra. Suppose $f_1, \ldots, f_n \in ^\ast M$ and

\[
F_1([m]) = h(f_1(m)) \quad \ldots \quad F_n([m]) = h(f_n(m))
\]

We define operation on the set $^\ast (M/S)$ according to rule

\[
\omega(F_1, \ldots, F_n)[m] = h(\omega(f_1, \ldots, f_n)m)
\]

This definition is proper because $\omega(f_1, \ldots, f_n) \in ^\ast M$ and is coordinated with equivalence $S$. □

**Theorem 2.10.** Let

\[
f : A \rightarrow ^\ast M
\]

be $T^\ast$-representation of $F$-algebra $A$,

\[
g : B \rightarrow ^\ast N
\]

be $T^\ast$-representation of $F$-algebra $B$. Let

\[
r : A \longrightarrow B \quad R : M \longrightarrow N
\]

be morphism of representations from $f$ into $g$. Suppose

\[
s = rP^{-1} \quad S = RR^{-1}
\]
Then there exist decompositions of $r$ and $R$, which we describe using diagram

- $s = \ker r$ is a congruence on $A$. There exists decompositions of homomorphism $r$
  (2.8) $r = itj$
  (2.9) $j = \text{nat } s$ is the natural homomorphism
  (2.10) $r(a) = t(j(a))$
  (2.11) $i$ is the inclusion mapping
  (2.12) $r(a) = i(r(a))$
- $S = \ker R$ is an equivalence on $M$. There exists decompositions of homomorphism $R$
  (2.13) $R = ITJ$
  (2.14) $J(m) = J(m)$
  (2.15) $T$ is bijection
  (2.16) $I$ is the inclusion mapping
  (2.17) $R(m) = I(R(m))$
- $F$ is $T\star$-representation of $\mathcal{A}/s$ in $M/S$
- $G$ is $T\star$-representation of $\mathcal{A}s$ in $RM$
- There exists decompositions of morphism of representations
  $(r, R) = (i, I)(t, T)(j, J)$
Proof. Existence of diagram (1) follows from theorem II.3.7 ([8], p. 60). Existence of diagram (2) follows from theorem I.3.1 ([8], p. 15).

We start from diagram (4).

Let \( m_1 \equiv m_2 \pmod{S} \). Then

\[
R(m_1) = R(m_2)
\]

Since \( a_1 \equiv a_2 \pmod{S} \), then

\[
r(a_1) = r(a_2)
\]

Therefore, \( j(a_1) = j(a_2) \). Since \((r, R)\) is morphism of representations, then

\[
R(f(a_1)m_1) = g(r(a_1))R(m_1)
\]

\[
R(f(a_2)m_2) = g(r(a_2))R(m_2)
\]

From (2.16), (2.17), (2.18), (2.19), it follows that

\[
R(f(a_1)m_1) = R(f(a_2)m_2)
\]

From (2.20) it follows

\[
f(a_1)m_1 \equiv f(a_2)m_2 \pmod{S}
\]

and, therefore,

\[
J(f(a_1)m_1) = J(f(a_2)m_2)
\]

From (2.22) it follows that we defined map

\[
F(j(a))(J(m)) = J(f(a)m)
\]

reasonably and this map is \( T^* \)-transformation of set \( M/S \).

From equation (2.21) (in case \( a_1 = a_2 \)) it follows that for any \( a T^* \)-transformation is coordinated with equivalence \( S \). From theorem 2.9 it follows that we defined structure of \( \mathfrak{A} \)-algebra on the set \( ^*(M/S) \). Let us consider \( n \)-ary operation \( \omega \) and \( n T^* \)-transformations

\[
F(j(a_i))J(m) = J(f(a_i)m)
\]

\( i = 1, \ldots, n \)

of the set \( M/S \). We assume

\[
\omega(F(j(a_1)), \ldots, F(j(a_n)))J(m) = J(\omega(f(a_1), \ldots, f(a_n)))m
\]

Therefore, map \( F \) is representations of \( \mathfrak{A} \)-algebra \( A/s \).

From (2.23) it follows that \((j, J)\) is morphism of representations \( f \) and \( F \).

Let us consider diagram (5).

Since \( T \) is bijection, then we identify elements of the set \( M/S \) and the set \( MR \), and this identification has form

\[
T(J(m)) = R(m)
\]

We can write \( T^* \)-transformation \( F(j(a)) \) of the set \( M/S \) as

\[
F(j(a)) : J(m) \to F(j(a))J(m)
\]

Since \( T \) is bijection, we define \( T^* \)-transformation

\[
T(J(m)) \to T(F(j(a))J(m))
\]
of the set $RM$. $T\ast$-transformation (2.26) depends on $j(a) \in A/s$. Since $t$ is bijection, we identify elements of the set $A/s$ and the set $rA$, and this identification has form 

$$t(j(a)) = r(a)$$

Therefore, we defined map

$$G : rA \rightarrow ^\ast RM$$

according to equation (2.27)

$$G(t(j(a)))T(J(m)) = T(F(j(a))J(m))$$

Let us consider $n$-ary operation $\omega$ and $n T\ast$-transformations

$$G(r(a_i))R(m) = T(F(j(a_i))J(m)) \quad i = 1, \ldots, n$$

of space $RM$. We assume

$$\omega(G(r(a_1)), \ldots, G(r(a_n)))R(m) = T(\omega(F(j(a_1)), \ldots, F(j(a_n))))J(m)$$

According to (2.27) operation $\omega$ is defined reasonably on the set $^\ast RM$. Therefore, the map $G$ is representations of $\mathfrak{g}$-algebra.

From (2.27) it follows that $(t, T)$ is morphism of representations $F$ and $G$.

Diagram (6) is the most simple case in our prove. Since map $I$ is immersion and diagram (2) is commutative, we identify $n \in N$ and $R(m)$ when $n \in \text{Im}R$.

Similarly, we identify corresponding $T\ast$-transformations.

(2.28)

$$g'(i(r(a)))I(R(m)) = I(G(r(a))R(m))$$

$$\omega(g'(r(a_1)), \ldots, g'(r(a_n)))R(m) = I(\omega(G(r(a_1)), \ldots, G(r(a_n))))R(m)$$

Therefore, $(i, I)$ is morphism of representations $G$ and $g$.

To prove the theorem we need to show that defined in the proof $T\ast$-representation $g'$ is congruent with representation $g$, and operations over transformations are congruent with corresponding operations over $^\ast N$.

$$g'(i(r(a)))I(R(m)) = I(G(r(a))R(m)) \quad \text{by (2.28)}$$

$$= I(G(t(j(a)))T(J(m))) \quad \text{by (2.10), (2.14)}$$

$$= IT(F(j(a))J(m)) \quad \text{by (2.27)}$$

$$= ITJ(f(a)m) \quad \text{by (2.23)}$$

$$= R(f(a)m) \quad \text{by (2.12)}$$

$$= g(r(a))R(m) \quad \text{by (2.3)}$$

$$\omega(G(r(a_1)), \ldots, G(r(a_n)))R(m) = T(\omega(F(j(a_1)), \ldots, F(j(a_n))))J(m))$$

$$= T(F(\omega(j(a_1), \ldots, j(a_n))))J(m))$$

$$= T(F(j(\omega(a_1, \ldots, a_n))))J(m))$$

$$= T(J(f(\omega(a_1, \ldots, a_n)m))$$

□
From theorem 2.10 it follows that we can reduce the problem of studying of morphism of $T^\star$-representations of $F$-algebra to the case described by diagram (2.29)

$$
\begin{array}{c}
M \\
\downarrow f(a) \\
A
\end{array} \xrightarrow{J} \begin{array}{c}
M/S \\
\downarrow F(j(a)) \\
A/s
\end{array}
$$

**Theorem 2.11.** We can supplement diagram (2.29) with $T^\star$-representation $F_1$ of $\mathfrak{F}$-algebra $A$ into set $M/S$ such that diagram (2.30)

$$
\begin{array}{c}
M \\
\downarrow f(a) \\
A
\end{array} \xrightarrow{J} \begin{array}{c}
M/S \\
\downarrow F(j(a)) \\
A/s
\end{array}
$$

is commutative. The set of $T^\star$-transformations of $T^\star$-representation $F$ and the set of $T^\star$-transformations of $T^\star$-representation $F_1$ coincide.

**Proof.** To prove theorem it is enough to assume

$$F_1(a) = F(j(a))$$

Since map $j$ is surjection, then $\text{Im} F_1 = \text{Im} F$. Since $j$ and $F$ are homomorphisms of $\mathfrak{F}$-algebra, then $F_1$ is also homomorphism of $\mathfrak{F}$-algebra. \(\square\)

Theorem 2.11 completes the series of theorems dedicated to the structure of morphism of $T^\star$-representations $\mathfrak{F}$-algebra. From these theorems it follows that we can simplify task of studying of morphism of $T^\star$-representations $\mathfrak{F}$-algebra and not go beyond morphism of $T^\star$-representations of form

$$id : A \longrightarrow A \quad \quad R : M \longrightarrow N$$

In this case we identify morphism of $(id, R)$ $T^\star$-representations of $\mathfrak{F}$-algebra and map $R$.

**Definition 2.12.** Let $f : A \to {}^*M$ be $T^\star$-representation of $\mathfrak{F}$-algebra $A$ in $\mathfrak{F}$-algebra $M$ and $T^\star$-representation $g : B \to {}^*N$
be \( \mathcal{T}\)-representation of \( \mathfrak{S}\)-algebra \( B \) in \( \mathfrak{H}\)-algebra \( N \). Morphism \((h, H)\) of \( \mathcal{T}\)-representations of algebra of type \( \mathfrak{S}\) is called \textit{morphism of } \( \mathcal{T}\)-\textit{representations of } \( \mathfrak{S}\)-algebra in \( \mathfrak{H}\)-algebra. □

3. \( D^{*_*}\)-Linear Map of Vector Spaces

**Definition 3.1.** Suppose \( A \) is \( S^{*_*}\)-vector space. Suppose \( B \) is \( T^{*_*}\)-vector space. Morphism
\[
f : S \longrightarrow T \quad \overline{A} : A \longrightarrow B
\]
of \( \mathcal{T}\)-representations of skew field in Abelian group is called \( (S^{*_*}, T^{*_*})\)-\textbf{linear map of vector spaces}. □

By theorem 2.10 studying \( (S^{*_*}, T^{*_*})\)-linear map we can consider case \( S = T \).

**Definition 3.2.** Suppose \( A \) and \( B \) are \( D^{*_*}\)-vector spaces. We call map
(3.1)
\[
\overline{A} : A \rightarrow B
\]
\( D^{*_*}\)-\textbf{linear map of vector spaces if} \(^1\)
(3.2)
\[
\overline{A}(a^* \overline{m}) = a^* \overline{A(m)}
\]
for any \( a^a \in D, \ a^m \in A \). □

**Theorem 3.3.** Let \( \overline{f} = (a^a_f, a \in I) \) be a \( D^{*_*}\)-basis of vector space \( A \) and \( \overline{e} = (b^b_e, b \in J) \) be a \( D^{*_*}\)-basis of vector space \( B \). Then \( D^{*_*}\)-linear map (3.1) of vector spaces has presentation
(3.3)
\[
b = a^* A
\]
relative to selected bases. Here
\begin{itemize}
  \item \( a \) is coordinate matrix of vector \( \overline{a} \) relative the \( D^{*_*}\)-basis \( \overline{f} \)
  \item \( b \) is coordinate matrix of vector \( \overline{b} = \overline{A}(\overline{a}) \)
\end{itemize}
relative the \( D^{*_*}\)-basis \( \overline{e} \)
\begin{itemize}
  \item \( A \) is coordinate matrix of set of vectors \( \overline{A}(a^a_f) \) in \( D^{*_*}\)-basis \( \overline{e} \) called \textbf{matrix of } \( D^{*_*}\)-\textbf{linear map relative bases} \( \overline{f} \) and \( \overline{e} \)
\end{itemize}

\textbf{Proof.} Vector \( \overline{a} \in A \) has expansion
(3.4)
\[
\overline{a} = a^* \overline{f}
\]
relative to \( D^{*_*}\)-basis \( \overline{f} \). Vector \( \overline{b} = f(\overline{a}) \in B \) has expansion
\[
\overline{b} = b^* \overline{e}
\]
relative to \( D^{*_*}\)-basis \( \overline{e} \).

Since \( \overline{A} \) is a \( D^{*_*}\)-linear map, from (3.2) it follows that
(3.5)
\[
\overline{b} = \overline{A}(\overline{a}) = \overline{A}(a^* \overline{f}) = a^* \overline{A(f)}
\]
\( \overline{A}(a^a_f) \) is also a vector of \( B \) and has expansion
(3.6)
\[
\overline{A}(a^a_f) = a^A^f \overline{e} = a^b \overline{e}
\]
relative to basis \( \overline{e} \). Combining (3.5) and (3.6) we get
(3.7)
\[
\overline{b} = a^* A^* \overline{e}
\]
\(^1\)Expression \( a^*_e \overline{A}(\overline{m}) \) means expression \( a^m \overline{A(a^m)} \)
(3.3) follows from comparison of (3.4) and (3.7) and theorem [5]-4.3.3. □

On the basis of theorem 3.3 we identify the \( D^*\)-linear map (3.1) of vector spaces and the matrix of its presentation (3.3).

**Theorem 3.4.** Let 
\[
\overline{\mathbf{f}} = (a\mathbf{f}, a \in I)
\]
be a \( D^*\)-basis of vector space \( A\),
\[
\overline{\mathbf{e}} = (b\mathbf{e}, b \in J)
\]
be a \( D^*\)-basis of vector space \( B\), and
\[
\overline{\mathbf{g}} = (c\mathbf{g}, c \in L)
\]
be a \( D^*\)-basis of vector space \( C\). Suppose diagram of \( D^*\)-linear maps
\[
\begin{array}{ccc}
A & \rightarrow & C \\
\downarrow & & \downarrow \\
B & \rightarrow & C
\end{array}
\]
is commutative diagram where \( D^*\)-linear map \( A\) has presentation
\[
b = a^*A
\]
relative to selected bases and \( D^*\)-linear map \( B\) has presentation
\[
c = b^*B
\]
relative to selected bases. Then \( D^*\)-linear map \( C\) has presentation
\[
c = a^*A^*B
\]
relative to selected bases.

**Proof.** Proof of the statement follows from substituting (3.8) into (3.9). □

Presenting \( D^*\)-linear map as \(-\_\)-product we can rewrite (3.2) as
\[
(k\mathbf{a})^*A = k(a^*A)
\]
We can express the statement of the theorem 3.4 in the next form
\[
(a^*A)^*B = a^*(A^*B)
\]
Equations (3.11) and (3.12) represent the **associative law for \( D^*\)-linear maps of vector spaces**. This allows us writing of such expressions without using of brackets.

Equation (3.3) is coordinate notation for \( D^*\)-linear map. Based theorem 3.3 non coordinate notation also can be expressed using \(-\_\)-product
\[
\overline{\mathbf{b}} = a^*A = a^*\overline{\mathbf{f}}^*A = a^*A^*\overline{\mathbf{e}}
\]
If we substitute equation (3.13) into theorem 3.4, then we get chain of equations
\[
\overline{\mathbf{c}} = \overline{\mathbf{b}}^*\overline{\mathbf{B}} = b^*\overline{\mathbf{e}}^*\overline{\mathbf{B}} = b^*B^*\overline{\mathbf{g}}
\]
\[
\overline{\mathbf{c}} = \overline{\mathbf{a}}^*\overline{\mathbf{A}}^*\overline{\mathbf{B}} = a^*\overline{\mathbf{f}}^*\overline{\mathbf{A}}^*\overline{\mathbf{B}} = a^*A^*B^*\overline{\mathbf{g}}
\]
Remark 3.5. One can easily see from the example of $D^*$-linear map how theorem 2.10 makes our reasoning simpler in study of the morphism of $T^*$-representations of $\mathfrak{g}$-algebra. In the framework of this remark, we agree to call the theory of $D^*$-linear mappings reduced theory, and theory stated in this remark is called enhanced theory.

Suppose $A$ is $S^*$-vector space. Suppose $B$ is $T^*$-vector space. Suppose $f : S \to T$ is a $S^*$-linear map of vector spaces. Let $f = (a_f, a \in I)$ be a $S^*$-basis of vector space $A$ and $e = (b_e, b \in J)$ be a $T^*$-basis of vector space $B$.

From definitions 3.1 and 2.2 it follows
\[ (3.14) \quad b = A(a^*_f) = f(a^*_f)A(f) \]
$A(a_f)$ is also a vector of $B$ and has expansion
\[ (3.15) \quad A(a_f) = a A^* e = a A b b e \]
relative to basis $e$. Combining (3.14) and (3.15), we get
\[ (3.16) \quad b = f(a^* A^* e) \]

Suppose $C$ is $D^*$-vector space. Suppose $g : T \to D$ is a $T^*$-linear map of vector spaces. Let $h = (a h, a \in K)$ be a $D^*$-basis of vector space $C$. Then, according to (3.16), the product of $(S^*, T^*)$-linear map $(f, A)$ and $(T^*, D^*)$-linear map $(g, B)$ has form
\[ (3.17) \quad e = g f(a^*) A^* B^* h \]

Comparison of equations (3.10) and (3.17) that extended theory of linear maps is more complicated than reduced theory.

If we need we can use extended theory, however we will not get new results comparing with reduced theory. At the same time plenty of details makes picture less clear and demands permanent attention. ☐

4. Bundle

Let $M$ be a manifold and
\[ (4.1) \quad p[E] : E \to M \]
be a bundle over $M$ with fiber $E$.\(^2\) The symbol $p[E]$ means that $E$ is a typical fiber of the bundle. Set $E$ is domain of map $p[E]$. Set $M$ is range of map $p[E]$. We identify the smooth map $p[E]$ and the bundle (4.1). Mapping $p$ is called \textbf{projection of bundle $E$ along fiber $E$}. Denote by $\Gamma(p[E])$ the set of sections of bundle $p[E]$.

**Definition 4.1.** A space is said to be \textbf{locally compact at point $p$} if there exists open set $U$, $p \in U$, whose closure $\overline{U}$ is compact. A space is said to be \textbf{locally compact} if it is locally compact at each of its points.\(^3\)

\(^2\)Since I have dealt with different bundles I follow next agreement. I use the same letter in different alphabets for notation of bundle and fiber.

\(^3\)I follow to definition from [4], p. 71.
Definition 4.2. Given topologies $T_1, T_2$ on the set $X$, we say that $T_1$ is finer than $T_2$ and that $T_2$ is coarser than $T_1$ if, denoting by $X_i$ the set $X$ with the topology $T_i$, $i = 1, 2$, the identity mapping $X_1 \to X_2$, is continuous. If $T_1 \neq T_2$, we say that $T_1$ is strictly finer than $T_2$ and that $T_2$ is strictly coarser than $T_1$. \[\Box\]

Let topology $T_1$ in the set $X$ be finer than topology $T_2$. Let us consider diagram

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y \\
\downarrow{g_1} & \downarrow{id} & \downarrow{g_2} \\
X_2 & \xleftarrow{f_2} & Z
\end{array}
\]

According to definition 4.2, if mapping $f_1$ is continuous, than mapping $f_2$ is continuous. Similarly, if mapping $g_2$ is continuous, than mapping $g_1$ is continuous.

Let $p[E] : E \to M$ be bundle. Let us consider an open set $U \subset M$ such, that there exists chart $\varphi$ over $U$ such that

\[
\begin{array}{ccc}
U \times E & \xrightarrow{\varphi} & E[U] \\
\downarrow{p} & & \downarrow{p[E]} \\
U & & 
\end{array}
\]

Since $\varphi$ is homeomorphism, then topology in $U \times E$ and $E[U]$ are comparable. Since $U \times E$ is Cartesian product of topological spaces $U$ and $E$, then in $E[U]$, we define coarsest topology for which projection $p[E]$ is continuous ([11], p. 31).

Let us consider relation $r$ in $E$ such that $(p, q) \in r$ iff $p$ and $q$ belong to the same fiber. Relation $r$ is equivalence. $p[E]$ is natural mapping. Let us consider diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{q} & N \\
\downarrow{p[E]} & & \downarrow{f} \\
M & & 
\end{array}
\]

Continuity of mapping $g$ follows from continuity of mapping $f$. Hence, we can define in $M$ quotient topology which is the finest topology for which $p[E]$ is continuous ([11], p. 39).

**Cartesian power A of set** $B$ is the set $B^A$ of mappings $f : A \to B$ ([8], page 5). Let us consider subsets of $B^A$ of the form

\[
W_{K,U} = \{ f : A \to B | f(K) \subset U \}
\]

where $K$ is compact subset of space $A$, $U$ is open subset of space $B$. Sets $W_{K,U}$ form base of topology on space $B^A$. This topology is called **compact-open topology**. Cartesian power $A$ of set $B$ equipped by compact-open topology is called **mapping space** ([9], page 213).

According to [9], page 214, given spaces $A$, $B$, $C$, $D$ and mappings $f : A \to C$, $g : D \to B$ we define morphism of mapping spaces

$$g^f : D^C \to B^A$$
by law
\[ g^f(h) = fhg \quad h : C \to D \quad g^f(h) : A \to B \]
Thus, we can represent the morphism of mapping spaces using diagram
\[
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
g^f(h) & \downarrow & \downarrow h \\
B & \leftarrow g & D
\end{array}
\]

**Remark 4.3.** Set \( \Gamma(\mathcal{E}) \) is subset of set \( \mathcal{E}^M \). This is why for set of sections we can use definitions established for mapping set. We define sets \( W_{K,U} \) by law
\[ W_{K,U} = \{ f \in \Gamma(\mathcal{E}) | f(K) \subset U \} \]
where \( K \) is compact subset of space \( M \), \( U \) is open subset of space \( \mathcal{E} \). □

**Remark 4.4.** I use arrow \( \rightarrow \) to represent projection of bundle on diagram. □

**Remark 4.5.** I use arrow \( \rightarrow \) to represent section of bundle on diagram. □

**Definition 4.6.** Let us consider bundles
\[ p[A] : A \to M \]
and
\[ q[B] : B \to N \]
Tuple of mapping
\[ (\mathcal{F} : A \to B, f : M \to N) \]
such, that diagram
\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{F}} & B \\
\downarrow p[A] & & \downarrow q[B] \\
M & \xrightarrow{f} & N
\end{array}
\]
is commutative, is called **fibered morphism from bundle** \( A \) **into** \( B \). The map \( f \) is the **base of map** \( \mathcal{F} \). The map \( \mathcal{F} \) is the **lift of map** \( f \). □

**Theorem 4.7.** Suppose map \( f \) is bijection. Then the map \( \mathcal{F} \) defines morphism \( \mathcal{F}f^{-1} \) of spaces of sections \( \Gamma(p[A]) \) to \( \Gamma(q[B]) \)
\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{F}} & B \\
\downarrow \mathcal{F}^{-1} & & \downarrow \mathcal{F}f^{-1} \\
M & \xrightarrow{f} & N
\end{array}
\]
\[ u' = \mathcal{F}f^{-1}(u) = \mathcal{F}u'f^{-1} \]

**Proof.** It is enough to prove continuity of \( f^{-1} \) to prove continuity of \( u' \). However this is evident, because \( f \) is continuous bijection.

We assume that we defined topology on the set \( \Gamma(p[A]) \) and \( \Gamma(q[B]) \) according to remark 4.3. Let us consider sections \( u, v \in \Gamma(p[A]) \), \( u' = \mathcal{F}f^{-1}(u), v' = \mathcal{F}f^{-1}(u') \) such that there exists \( W_{L,V} \subset \Gamma(q[B]) \) where \( L \) is compact subset of space \( N \), \( V \) is open subset of space \( B \), \( u', v' \in W_{L,V} \). Since \( f \) is continuous bijection, \( K = f^{-1}(L) \)
is compact subset of space \(M\). Since \(F\) is continuous, \(U = F^{-1}(V)\) is open subset of space \(A\).

According to our design

\[(4.3) \quad u'f = Fu\]

From (4.3) it follows that

\[(4.4) \quad Fu(K) = u'f(K) = u'(L) \subset V\]

From (4.4) it follows that

\[(4.5) \quad u(K) \subset F^{-1}V = U\]

From (4.5) it follows that \(u \in W_{K,U}\). Similarly we prove that \(u' \in W_{K,U}\). Therefore, for open set \(W_{L,V}\) we found open set \(W_{K,U}\) such that \(Ff^{-1}(W_{K,U}) \subset W_{L,V}\). This proves continuity of map \(Ff^{-1}\). \(\square\)

Since \(f = id\), then \(id^{-1} = id\). In this case we use notation \(Fid\) for morphism of spaces of sections. It is evident, that

\[Fid(u) = Fu\]

**Definition 4.8.** Let \(a[A] : A \rightarrow N\) and \(b[B] : B \rightarrow M\) be bundles. Suppose fibered morphism \((F : A \rightarrow B, \quad f : M \rightarrow N)\) is defined by diagram

\[
\begin{array}{ccc}
A & \xrightarrow{F} & B \\
\downarrow \scriptsize{a[A]} & & \downarrow \scriptsize{b[B]} \\
N & \xrightarrow{f} & M
\end{array}
\]

where maps \(F\) and \(f\) are injections. Then bundle \(a[A]\) is called fibered subset or subbundle of \(b[B]\). We also use notation \(a[A] \subseteq b[B]\) or \(A \subseteq B\).

Without loss of generality we assume that \(A \subseteq B, \ N \subseteq M\). \(\square\)

Let us consider bundles

\[p[A] : A \rightarrow M\]

and

\[q[B] : B \rightarrow N\]

**Cartesian power** \(B\) of bundle \(B\) is the set \(p[A]q[B]\) of fibered morphisms

\[(F : A \rightarrow B, \quad f : M \rightarrow N)\]

At this time I do not see how we can define structure of bundle in Cartesian power of bundle. Although for given \(m \in M, \ n \in N\) I can consider Cartesian power \(B_n^{A_m}\). Based on theorem 4.7, we can define map

\[f : q[B]^p[A] \rightarrow \Gamma(B)^q(A)\]

Let us consider subsets \(W_{K,U} \subset \Gamma(B)^p(A)\) where \(K\) is compact subset of sections of bundle \(A\), \(U\) is open subset of sections of bundle \(B\). Sets \(W_{K,U}\) form base of topology on space \(\Gamma(B)^p(A)\). We choose coarsest topology in \(q[B]^p[A]\), for which mapping \(f\) is continuous.

We considered the structure of open set of sections of bundle \(B\) in remark 4.3. Since a set of sections of bundle \(A\) is set of mappings, we can look for theorem
similar to Arzelà’s theorem in calculus ([3], p. 54), to answer the question when this set is compact. At this time I leave this question open.

According to [9], p. 214, given spaces $A$, $B$, $C$, $D$ and mappings $f : A \to C$, $g : D \to B$ we define morphism of mapping spaces

$$ g^f : D^C \to B^A $$

by law

$$ g^f(h) = fhg \quad h : C \to D \quad g^f(h) : A \to B $$

Thus, we can represent the morphism of mapping spaces using diagram

\[
\begin{array}{ccc}
Y & A & C \\
\| & f & \downarrow \\
Y^f(h) & B & D \\
\leftarrow & g & \leftarrow \\
\end{array}
\]

5. Fibered $\mathcal{F}$-Algebra

**Definition 5.1.** An n-ary operation on bundle $p[E]$ is a fibered morphism

$$ \mathcal{F} : \mathcal{E}^n \to \mathcal{E} $$

$n$ is arity of operation. 0-arity operation is a section of $\mathcal{E}$.

We can represent the operation using the diagram

\[
\begin{array}{ccc}
\mathcal{E}^n & \mathcal{E} \\
\downarrow & | \\
\bigcirc & \mathcal{E}_{p} & \mathcal{E}_{p} \\
\downarrow & | \\
M & \mathcal{E} & M \\
\downarrow & | \\
\bigcirc & \mathcal{E}_{x} & \mathcal{E}_{x} \\
\downarrow & | \\
\bigcirc & \mathcal{E}_{x'} & \mathcal{E}_{x'} \\
\end{array}
\]

**Theorem 5.2.** Let $U$ be an open set of base $M$. Suppose there exist trivialization of bundle $p[E]$ over $U$. Let $x \in M$. Let $\omega$ be n-ary operation on bundle $p[E]$ and

$$ \omega(p_1, ..., p_n) = p $$

in the fiber $E_x$. Then there exist open sets $V \subseteq U$, $W \subseteq E$, $W_1 \subseteq E_1$, ..., $W_n \subseteq E_n$ such, that $x \in V$, $p \in W$, $p_1 \in W_1$, ..., $p_n \in W_n$, and for any $x' \in V$, $p' \in W \cap \omega V$ there exist $p'_1 \in W_1$, ..., $p'_n \in W_n$ such, that

$$ \omega(p'_1, ..., p'_n) = p' $$

in the fiber $E_{x'}$.

**Proof.** According to [11], page 44, since $V$ belongs to the base of topology of space $U$ and $W$ belongs to the base of topology of space $E$, then set $V \times W$ belongs the base of topology of space $\mathcal{E}$. Similarly, since $V$ belongs to the base of topology of space $U$ and $W_1$, ..., $W_n$ belong to the base of topology of space $E$, set $V \times W_1 \times \ldots \times W_n$ belongs the base of topology of space $\mathcal{E}^n$. 

17
Aleks Kleyn

Morphism of $T^\ast$-Representations

Since mapping $\omega$ is continuous, then for an open set $V \times W$ there exists an open set $S \subseteq \mathcal{E}^n$ such, that $\omega S \subseteq V \times W$. Suppose $x' \in V$. Let $(x', p') \in \omega S$ be an arbitrary point. Then there exist such $p'_1 \in E_{x'}, ..., p'_n \in E_{x'}$, that

$$\omega(p'_1, ..., p'_n) = p'$$

in fiber $E_{x'}$. According to this there exist sets $R, R'$ from base of topology of space $U$, and sets $T_1, ..., T_n, T'_1, ..., T'_n$ from base of topology of space $E$, such that $x \in R, x' \in R', p_1 \in T_1, p'_1 \in T'_1, ..., p_n \in T_n, p'_n \in T'_n, R \times T_1 \times ... \times T_n \subseteq S, R' \times T'_1 \times ... \times T'_n \subseteq S$. We proved the theorem since $W_1 = T_1 \cup T'_1, ..., W_n = T_n \cup T'_n$ are open sets.

\[ \square \]

Theorem 5.2 tells about continuity of operation $\omega$, however this theorem tells nothing regarding sets $W_1, ..., W_n$. In particular, it is possible that these sets are not connected.

We suppose $W = \{p\}, W_1 = \{p_1\}, ..., W_n = \{p_n\}$, if topology on fiber $A$ is discrete. This leads one to assume that in the neighborhood $V$ the operation does not depend on a fiber. We call the operation $\omega$ locally constant. However, it is possible that a condition of constancy is broken on bundle in general. Thus the covering space $R \rightarrow S^1$ of the circle $S^1$ defined by $p(t) = (\sin t, \cos t)$ for any $t \in R$ is bundle over circle with fiber of group of integers.

Let us consider the alternative point of view on the continuity of operation $\omega$ to get a better understanding of role of continuity. Let us consider the continuity of operation $\omega$ to better see what does it mean. We need to consider sections, if we want to show that infinitesimal change of operand when moving along base causes infinitesimal change of operation. This change is legal, because we defined operation on bundle in fiber.

**Theorem 5.3.** An $n$-ary operation on bundle maps sections into section.

**Proof.** Suppose $f_1, ..., f_n$ are sections and we define map

(5.1) \[ f = \omega^{id}(f_1, ..., f_n) : M \rightarrow \mathcal{E} \]

as

(5.2) \[ f(x) = \omega(f_1(x), ..., f_n(x)) \]

Let $x \in M$ and $u = f(x)$. Let $U$ be a neighborhood of the point $u$ in the range of the map $f$.

Since $\omega$ is smooth map, then according to [11], page 44, for any $i, 1 \leq i \leq n$ the set $U_i$ is defined in the range of section $f_i$ such, that $\prod_{i=1}^{n} U_i$ is open in the range of section $(f_1, ..., f_n)$ of the bundle $\mathcal{E}^n$ and

$$\omega(\prod_{i=1}^{n} U_i) \subseteq U$$

Let $u' \in U$. Since $f$ is a map, then there exist $x' \in M$ such that $f(x') = u'$. From equation (5.2) it follows that there exist $u'_i \in U_i, p(u'_i) = x'$ such, that $\omega(u'_1, ..., u'_n) = u'$. Since $f_i$ is a section, then there exist a set $V_i \subseteq M$ such, that $f_i(V_i) \subseteq U_i$ and $x \in V_i, x' \in V_i$. Therefore, the set

$$V = \cap_{i=1}^{n} V_i$$

is not empty, it is open in $M$ and $x \in V, x' \in V$. Thus the map $f$ is smooth and $f$ is the section. \[ \square \]
We can represent the operation using the diagram

\[
\begin{array}{c}
\mathcal{E}^n \\
\downarrow \omega \\
\mathcal{E}
\end{array}
\]

\[
\begin{array}{c}
M \\
\downarrow \text{id} \\
M
\end{array}
\]

**Theorem 5.4.** \(\omega^{id}\) is continuous on \(\Gamma(\mathcal{E})\).

**Proof.** Let us consider a set \(W_{K,U}\), where \(K\) is compact set of space \(M\), \(U\) is open set of space \(E\). We can represent set \(U\) as \(V \times E\), where \(V\) is open set of space \(M\), \(K \subset V\). \(\omega^{-1}(V \times E) = V \times E^n\) is open set. Therefore,

\[
(\omega^{id})^{-1}W_{K,V \times E} = W_{K,V \times E^n}
\]

From (5.3) continuity of \(\omega^{id}\) follows. \(\square\)

**Definition 5.5.** Let \(A\) be \(\mathfrak{F}\)-algebra ([2]). We can extend \(\mathfrak{F}\)-algebraic structure from fiber \(A\) to bundle \(p[A] : A \rightarrow M\). If operation \(\omega\) is defined on \(\mathfrak{F}\)-algebra \(A\)

\[
a = \omega(a_1, \ldots, a_n)
\]

then operation \(\omega\) is defined on bundle

\[
a(x) = \omega(a_1, \ldots, a_n)(x) = \omega(a_1(x), \ldots, a_n(x))
\]

We say that \(p[A]\) is a **fibred \(\mathfrak{F}\)-algebra**. \(\square\)

Depending on the structure we talk for instance about **fibred group**, **fibred ring**, or **vector bundle**.

Main properties of \(\mathfrak{F}\)-algebra hold for fibred \(\mathfrak{F}\)-algebra as well. Proving appropriate theorems we can refer on this statement. However in certain cases the proof itself may be of deep interest, allowing a better view of the structure of the fibred \(\mathfrak{F}\)-algebra. However properties of \(\mathfrak{F}\)-algebra on the set of sections are different from properties of \(\mathfrak{F}\)-algebra in fiber. For instance, if the product in fiber has inverse element, it does not mean that the product of sections has inverse element. Therefore, fibred continuous field generates ring on the set of sections. This is the advantage when we consider fibred algebra. I want also to stress that the operation on bundle is not defined for elements from different fibers.

Let transition functions \(g_{\alpha\delta}\) determine bundle \(\mathcal{B}\) over base \(N\). Let us consider maps \(V_\epsilon \subset N\) and \(V_\delta \subset N\), \(V_\epsilon \cap V_\delta \neq \emptyset\). Point \(q \in \mathcal{B}\) has representation \((y, q_\epsilon)\) in map \(V_\epsilon\) and representation \((y, q_\delta)\) in map \(V_\delta\). Therefore,

\[
p_\alpha = f_{\alpha\beta}(p_\beta)
\]

\[
q_\epsilon = g_{\epsilon\delta}(q_\delta)
\]

When we move from map \(U_\alpha\) to map \(U_\beta\) and from map \(V_\epsilon\) to map \(V_\delta\), representation of correspondence changes according to the law

\[
(x, y, p_\alpha, q_\epsilon) = (x, y, f_{\alpha\beta}(p_\beta), g_{\epsilon\delta}(q_\delta))
\]

This is consistent with the transformation when we move from map \(U_\alpha \times V_\epsilon\) to map \(U_\beta \times V_\delta\) in the bundle \(A \times \mathcal{B}\).
Theorem 5.6. Let transition functions \( f_{\alpha\beta} \) determine fibered \( \mathfrak{F} \)-algebra \( p[A] : A \rightarrow \rightarrow M \) over base \( M \). Then transition functions \( f_{\alpha\beta} \) are homomorphisms of \( \mathfrak{F} \)-algebra \( A \).

Proof. Let \( U_\alpha \subseteq M \) and \( U_\beta \subseteq M \), \( U_\alpha \cap U_\beta \neq \emptyset \) be neighborhoods where fibered \( \mathfrak{F} \)-algebra \( p[A] \) is trivial. Let

\[
(5.4) \quad a_\beta = f_{\beta\alpha}(a_\alpha)
\]

be map from bundle \( p[A]|_{U_\alpha} \) into bundle \( p[A]|_{U_\beta} \). Let \( \omega \) be \( n \)-ary operation and points \( e_1, \ldots, e_n \) belong to fiber \( A_x, x \in U_1 \cap U_2 \). Suppose

\[
(5.5) \quad e = \omega(e_1, \ldots, e_n)
\]

We represent point \( e \in p[A]|_{U_\alpha} \) as \( (x, e_\alpha) \) and point \( e_i p[A]|_{U_\alpha} \) as \( (x, e_{i\alpha}) \). We represent point \( e \in p[A]|_{U_\beta} \) as \( (x, e_\beta) \) and point \( e_i \in p[A]|_{U_\beta} \) as \( (x, e_{i\beta}) \). According to (5.4)

\[
(5.6) \quad e_\beta = f_{\beta\alpha}(e_\alpha)
\]

\[
(5.7) \quad e_{i\beta} = f_{\beta\alpha}(e_{i\alpha})
\]

According to (5.5), the operation in the bundle \( A_x \) over neighborhood \( U_\beta \) is

\[
(5.8) \quad e_\beta = \omega(e_{1\beta}, \ldots, e_{n\beta})
\]

Substituting (5.6), (5.7) into (5.8) we get

\[
f_{\beta\alpha}(e_\alpha) = \omega(f_{\beta\alpha}(e_{1\alpha}), \ldots, f_{\beta\alpha}(e_{n\alpha}))
\]

This proves that \( f_{\beta\alpha} \) is homomorphism of \( \mathfrak{F} \)-algebra.

Definition 5.7. Let \( p[A] : A \rightarrow \rightarrow M \) and \( p'[A'] : A' \rightarrow \rightarrow M' \) be two fibered \( \mathfrak{F} \)-algebras. Fibered morphism

\[
f : A \rightarrow A'
\]

is called homomorphism of fibered \( \mathfrak{F} \)-algebra if respective fiber map

\[
f_x : A_x \rightarrow A'_x
\]

is homomorphism of \( \mathfrak{F} \)-algebra \( A \).

Definition 5.8. Let \( p[A] : A \rightarrow \rightarrow M \) and \( p'[A'] : A' \rightarrow \rightarrow M' \) be two fibered \( \mathfrak{F} \)-algebras. Homomorphism of fibered \( \mathfrak{F} \)-algebras \( f \) is called isomorphism of fibered \( \mathfrak{F} \)-algebras if respective fiber map

\[
f_x : A_x \rightarrow A'_x
\]

is isomorphism of \( \mathfrak{F} \)-algebra \( A \).

Definition 5.9. Let \( p[A] : A \rightarrow \rightarrow M \) be an \( \mathfrak{F} \)-fibered F-algebra and \( A' \) be \( \mathfrak{F} \)-subalgebra of the \( \mathfrak{F} \)-algebra \( A \). An fibered \( \mathfrak{F} \)-algebra \( p[A'] : A' \rightarrow \rightarrow M \) is a fibered \( \mathfrak{F} \)-subalgebra of the fibered \( \mathfrak{F} \)-algebra \( p[A] \) if homomorphism of fibered \( \mathfrak{F} \)-algebras \( A' \rightarrow A \) is fiber embedding.

The homomorphism of fibered \( \mathfrak{F} \)-algebra is essential part of this definition. We can break continuity, if we just limit ourselves to the fact of the existence of \( \mathfrak{F} \)-subalgebra in each fiber.

We defined an operation based reduced Cartesian product of bundles. Suppose we defined an operation based Cartesian product of bundles. Then the operation is defined for any elements of the bundle. However, since \( p(a_i) = p(b_i), \ i = 1, \ldots, n \),
... n, then \( p(\omega(a_1, ..., a_n)) = p(\omega(b_1, ..., b_n)) \). Therefore, the operation is defined between fibers. We can map this operation to base using projection. This structure is not different from quotient \( \mathfrak{g} \)-algebra and does not create new element in bundle theory. The same time mapping between different maps of bundle and opportunity to define an operation over sections create problems for this structure.

6. Representation of Fibered \( \mathfrak{g} \)-Algebra

**Definition 6.1.** We call the fibered map \( T : E \to E \) transformation of bundle, if respective fiber map \( t_x : E_x \to E_x \) is transformation of a fiber.

**Theorem 6.2.** Let \( U \) be open set of base \( M \) such that there exists a local chart of the bundle \( p[E] \). Let \( t \) be transformation of bundle \( p[E] \). Let \( x \in M \) and \( p' = t_x(p) \) in fiber \( E_x \). Then for an open set \( V \subseteq M \), \( x \in V \) and for an open set \( W' \subseteq E \), \( p' \in W' \) there exists an open set \( W \subseteq E \), \( p \in W \) such that if \( x_1 \in V \), \( p_1 \in W \), then \( p_1' = t_{x_1}(p_1) \in W' \).

**Proof.** According to [11], page 44, sets \( V \times W \), where \( V \) forms base of topology of space \( U \) and \( W \) forms base of topology of space \( E \), form base of topology of space \( \mathcal{E} \).

Since map \( t \) is continuous, then for open set \( V \times W \) there exists open set \( V' \times W' \) such that \( t(V' \times W') \subseteq V \times W' \). This is the statement of theorem. □

**Theorem 6.3.** Transformation of bundle \( p[E] \) maps section into section.

**Proof.** We define the image of section \( s \) over transformation \( t \) using commutative diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{t} & \mathcal{E} \\
\downarrow{s} & & \downarrow{s'} \\
M & \xrightarrow{t_x} & M
\end{array}
\]

Continuity of map \( s' \) follows from theorem 6.2. □

**Definition 6.4.** Transformation of bundle is left-side transformation or \( T^* \)-transformation of bundle if it acts from left

\( u' = tu \)

We denote \( *\mathcal{E} \) or \( *p[E] \) or the set of nonsingular \( T^* \)-transformations of bundle \( p[E] \). □

**Definition 6.5.** Transformations is right-side transformations or \( *T \)-transformation of bundle if it acts from right

\( u' = ut \)

We denote \( \mathcal{E}^* \) or \( p[A]^* \) the set of nonsingular \( *T \)-transformations of bundle \( p[E] \). □

We denote \( e \) identical transformation of bundle.
Remark 6.6. Since we define $T*$-transformation of bundle by fiber, then set $*p[E]$ is bundle isomorphic to the bundle $p[*E]$. Since $*E = E^*$, we can define compact-open topology in fiber. This gives us an ability to answer on question: how close are transformations, arising in neighboring fibers. Let us assume that transformations $t(x)$, $t(x_1)$ are close if there exists open set $W_{K,U} \subset E^E$, $t(x) \in W_{K,U}$, $t(x_1) \in W_{K,U}$.

Definition 6.7. Suppose we defined the structure of fibered $\mathfrak{g}$-algebra on the set $*p[A]$ (2). Let $p[B]$ be fibered $\mathfrak{g}$-algebra. We call homomorphism of fibered $\mathfrak{g}$-algebras

$$f : p[B] \to *p[A]$$

left-side representation or $T*$-representation of fibered $\mathfrak{g}$-algebra $p[B]$. □

Definition 6.8. Suppose we defined the structure of fibered $\mathfrak{g}$-algebra on the set $p[A]^*$ (2). Let $p[B]$ be fibered $\mathfrak{g}$-algebra. We call homomorphism of fibered $\mathfrak{g}$-algebras

$$f : p[B] \to p[A]^*$$

right-side representation or $*T$-representation of fibered $\mathfrak{g}$-algebra $p[B]$. □

We extend to bundle representation theory convention described in remark 5-2.2.14. We can write duality principle in the following form

Theorem 6.9 (duality principle). Any statement which holds for $T*$-representation of fibered $\mathfrak{g}$-algebra $p[A]$ holds also for $*T$-representation of fibered $\mathfrak{g}$-algebra $p[A]$.

There are two ways to define a $T*$-representation of $\mathfrak{g}$-algebra $B$ in the bundle $p[A]$. We can define or $T*$-representation in the fiber, either define $T*$-representation in the set $\Gamma(p[A])$. In the former case the representation defines the same transformation in all fibers. In the later case the picture is less restrictive, however we do not have the whole picture of the diversity of representations in the bundle. Studying the representation of the fibered $\mathfrak{g}$-algebra, we point out that representations in different fibers are independent. Demand of smooth dependence of transformation on fiber put additional constrains for $T*$-representation of fibered $\mathfrak{g}$-algebra. The same time this constrain allows learn $T*$-representation of the fibered $\mathfrak{g}$-algebra when in the fiber there defined $\mathfrak{g}$-algebra with parameters (for instance, the structure constants of Lie group) smooth dependent on fiber.

Remark 6.10. Using diagrams we can express definition 6.7 the following way.

Map $F$ is injection. Because we expect that representation of fibered $\mathfrak{g}$-algebra acts in each fiber, then we see that map $F$ is bijection. Without loss of generality, we assume that $M = M'$ and map $F$ is the identity map. We tell that we define the representation of the fibered $\mathfrak{g}$-algebra $p[B]$ in the bundle $p[A]$ over the set $M$. 

---

Aleks Kleyn

*Morphism of $T*$-Representations*
Since we know the base of the bundle, then to reduce details on the diagram we will describe the representation using the following diagram

\[ \begin{array}{ccc}
\mathcal{E} & \xrightarrow{\varphi} & \mathcal{E}' \\
\downarrow^\alpha & & \uparrow_{\mathcal{E}'} \\
M & & 
\end{array} \]

**Theorem 6.11.** Let \( \mathcal{F} \) be \( T^\star \)-representation of fibered \( \mathfrak{F} \)-algebra \( \mathcal{A} \) in bundle \( q[E] \). Then for open set \( V \subset M \), \( x \in V \) and for open set \( W_{K,U} \subset E^E \), \( \mathcal{F}(x,p) \in W_{K,U} \) there exists open set \( W \subset A \), \( p \in W \) such that \( x_1 \in V \), \( p_1 \in W \) as soon as \( \mathcal{F}(x_1,p_1) \in W_{K,U} \).

**Proof.** The statement of theorem is corollary of continuity of map \( \mathcal{F} \) and definition of topology of bundle \( \mathcal{A} \). □

**Theorem 6.12.** Let \( \mathcal{F} \) be \( T^\star \)-representation of fibered \( \mathfrak{F} \)-algebra \( \mathcal{A} \) in bundle \( q[E] \). Let \( a \) be section of bundle \( \mathcal{A} \). Then for open set \( V \subset M \), \( x \in V \) and for open set \( W_{K,U} \subset E^E \), \( \mathcal{F}^id(a)(x) \in W_{K,U} \) there exists open set \( W \subset A \), \( a(x) \in W \) such that \( x_1 \in V \), \( a(x_1) \in W \) as soon as \( \mathcal{F}^id(a)(x_1) \in W_{K,U} \).

**Proof.** This is corollary of theorem 6.11. □

**Definition 6.13.** Suppose map (6.1) is an isomorphism of the fibered \( \mathfrak{F} \)-algebra \( p[B] \) into \( *p[A] \). Then the \( T^\star \)-representation of the fibered \( \mathfrak{F} \)-algebra \( p[B] \) is called effective. □

**Remark 6.14.** Suppose the \( T^\star \)-representation of fibered \( \mathfrak{F} \)-algebra \( \mathcal{A} \) is effective. Then we identify a section of fibered \( \mathfrak{F} \)-algebra \( \mathcal{A} \) and its image and write \( T^\star \)-transformation caused by section \( a \in \Gamma(A) \) as

\[ v' = av \]

Suppose the \( *T \)-representation of \( \mathfrak{F} \)-algebra \( \mathcal{A} \) is effective. Then we identify a section of fibered \( \mathfrak{F} \)-algebra \( \mathcal{A} \) and its image and write \( *T \)-transformation caused by section \( a \in \Gamma(A) \) as

\[ v' = va \]

**Definition 6.15.** We call a \( T^\star \)-representation \( \mathcal{F} \) of fibered \( \mathfrak{F} \)-algebra \( p[A] \) transitive if \( T^\star \)-representation \( F_x \) of \( \mathfrak{F} \)-algebra \( A_x \) is transitive for any \( x \). We call a \( T^\star \)-representation of fibered \( \mathfrak{F} \)-algebra single transitive if it is transitive and effective. □

**Theorem 6.16.** Let set \( E \) be locally compact. A \( T^\star \)-representation \( \mathcal{F} \) of fibered \( \mathfrak{F} \)-algebra

\[ r[A] : \mathcal{A} \twoheadrightarrow M \]

in the bundle

\[ p[E] : \mathcal{E} \twoheadrightarrow M \]

23
is transitive if for any sections \(a, b \in \Gamma(E)\) exists such section \(g \in \Gamma(A)\) that
\[
b = \mathcal{F}^{id}(g)a
\]

**Proof.** Let \(a, b \in \Gamma(E)\) be sections. In fiber \(E(x)\), these sections define elements \(a(x), b(x) \in E(x)\). According to definition 6.15 \(g(x) \in A(x)\) is defined such that
\[
b(x) = \mathcal{F}^{id}(g(x))a(x)
\]

Let \(U_M\) be open set of base \(M\) such that there exists a local chart of the bundle \(p[E]\), \(x \in U_M\). Let \(W' \subseteq E\) is an open set, \(b(x) \in W'\). Then according to theorem 6.2 there exists an open set \(W \subseteq E\), \(a(x) \in W\) such that if \(x_1 \in U_M\), \(a(x_1) \in W\), then \(b(x_1) = \mathcal{F}^{id}(g(x_1))(a(x_1)) \in W'\).

If closure \(W\) is compact, then let us assume \(K = W\). Assume that closure \(W\) is not compact. Then there exists open set \(W(x)\), \(a(x) \in W(x)\) such that \(W(x)\) is compact. Similarly there exists open set \(W(x_1), a(x_1) \in W(x_1)\) such that \(W(x_1)\) is compact. Set \(V = W \cap (W(x) \cup W(x_1))\) is open, \(a(x) \in V\), \(a(x_1) \in V\), closure \(V\) is compact. Assume that \(K = V\).

Let \(U(x)\) be neighborhood of the set \(g(x)K\). Let \(U(x_1)\) be neighborhood of the set \(g(x_1)K\). Assume that \(U = W' \cup U(x) \cup U(x_1)\). Then \(W_{K,U} \subset E^E\) is open set, \(\mathcal{F}^{id}(g(x)) \in W_{K,U}\), \(\mathcal{F}^{id}(g(x_1)) \in W_{K,U}\).

According to theorem 6.12 there exists open set \(S \subset A\), \(g(x) \in S\), \(g(x_1) \in S\). □

**Theorem 6.17.** Let set \(E\) be locally compact. A \(T^*\)-representation \(F\) of fibered \(S\)-algebra
\[
r[A] : A \rightarrow M
\]
in the bundle
\[
p[E] : E \rightarrow M
\]
is single transitive if and only if for any sections \(a, b \in \Gamma(E)\) exists one and only one section \(g \in \Gamma(A)\) such that
\[
b = \mathcal{F}^{id}(g)a
\]

**Proof.** Corollary of definitions 6.13, 6.15 and theorem 6.16. □

7. Fibered Morphism

**Theorem 7.1.** Let us consider fibered equivalence \(s[S] : S \rightarrow M\) on the bundle \(p[E] : E \rightarrow M\). Then there exists bundle
\[
t[E/S] : E/S \rightarrow M
\]
called quotient bundle of bundle \(E\) by the equivalence \(S\). Fibered morphism
\[
natS : E \rightarrow E/S
\]
is called fibered natural morphism or fibered identification morphism.

**Proof.** Let us consider the commutative diagram
\[
\begin{array}{ccc}
E & \xrightarrow{\text{nat}S} & E/S \\
p[E] & \searrow & \searrow t[E/S] \\
& M & \\
\end{array}
\]
We introduce in \( \mathcal{E}/\mathcal{S} \) quotient topology ([11], page 33), demanding continuity of mapping \( \text{nat}\mathcal{S} \). According to proposition [11]-I.3.6 mapping \( t[E/\mathcal{S}] \) is continuous.

Because we defined equivalence \( \mathcal{S} \) only between points of the same fiber \( E \), equivalence classes belong to the same fiber \( E/\mathcal{S} \) (compare with the remark to proposition [11]-I.3.6).

Let \( f : A \to B \) be fibered morphism, base of which is identity mapping. According to definition [7]-4.8 there exists inverse reduced fibered correspondence \( f^{-1} \). According to theorems [7]-4.7 and [7]-5.2 \( f^{-1} \circ f \) is 2-ary fibered relation.

**Theorem 7.2.** Fibered relation \( S = f^{-1} \circ f \) is fibered equivalence on the bundle \( A \). There exists decomposition of fibered morphism \( f \) into product of fibered morphisms

\[
\begin{array}{ccc}
A/\mathcal{S} & \xrightarrow{t} & f(A) \\
\downarrow{j} & & \downarrow{i} \\
A & \xrightarrow{f} & B
\end{array}
\]

\( j = \text{nat}\mathcal{S} \) is the natural homomorphism

\( j(a) = j(a) \)

\( t \) is isomorphism

\( r(a) = t(j(a)) \)

\( i \) is the inclusion mapping

\( r(a) = i(r(a)) \)

**Proof.** We verify the statement of theorem in fiber. We need also to check that equivalence depends continuously on fiber. \( \square \)

8. **Free \( T^* \)-Representation of Fibered Group**

Mapping \( \text{nat}\mathcal{S} \) does not create bundle, because different equivalence classes are not homeomorphic in general. However the proof of theorem 7.1 suggests to the construction which reminds the construction designed in [12], pages 16 - 17.

**Definition 8.1.** Consider \( T^* \)-representation \( f \) of fibered group \( p[G] \) in bundle \( \mathcal{M} \). A fibered little group or fibered stability group of \( h \in \Gamma(\mathcal{M}) \) is the set

\[
\mathcal{G}_h = \{ g \in \Gamma(\mathcal{G}) : f(g)h = h \}
\]

**Definition 8.2.** \( T^* \)-representation \( f \) of group \( G \) is said to be free, if for any \( x \in M \) stability group \( G_x = \{ e \} \).

**Theorem 8.3.** Given free \( T^* \)-representation \( f \) of group \( G \) in the set \( A \), there exist \( 1-1 \) correspondence between orbits of representation, as well between orbit of representation and group \( G \).

**Proof.**
Aleks Kleyn  
*Morphism of T*-Representations*

Let us consider covariant free $T^*$-representation $f$ of fibered group $p[G]$ in fiber $p[E]$. This $T^*$-representation determines fibered equivalence $S$ on $a[E]$, $(p, q) \in S$ when $p$ and $q$ belong to common orbit. Since the representation in every fiber is free, all equivalence classes are homeomorphic to group $G$. Therefore, the mapping $\text{nat}S$ is projection of the bundle $\text{nat}S[G] : E \to E/S$. We also use notation $S = G^*$. We may represent diagram (7.1) in the following form

![Diagram](image)

Bundle $\text{nat}S[G]$ is called **bundle of level** 2.

**Example 8.4.** Let us consider the representation of rotation group $SO(2)$ in $R^2$. All points except the point $(0, 0)$ have trivial little group. Hence, we defined free representation of group $SO(2)$ in set $R^2 \setminus \{(0, 0)\}$.

We cannot use this idea in case of bundle $p[R^2]$ and representation of fibered group $t[SO(2)]$. Let $S$ be relation of fibered equivalence. The bundle $p[R^2 \setminus \{(0, 0)\}]/t[SO(2)]^*$ is not complete. As a consequence passage to the limit may bring into non-existent fiber. Therefore we prefer to consider bundle $p[R^2]/t[SO(2)]^*$, keeping in mind, that fiber over point $(x, 0, 0)$ is degenerate. □

We simplify the notation and represent this construction as

\[ p[E_2, E_1] : \mathcal{E}_2 \to \mathcal{E}_1 \to M \]

where we consider bundles

\[ p_2[E_2] : \mathcal{E}_2 \to \mathcal{E}_1 \quad p_1[E_1] : \mathcal{E}_1 \to M \]

Similarly we consider **bundle of level** $n$

\[ p[E_n, \ldots, E_1] : \mathcal{E}_n \to \ldots \to \mathcal{E}_1 \to M \]  

(8.1)

The sequence of bundles (8.1) is called **tower of bundles**. I made this definition by analogy with Postnikov tower ([13]). Postnikov tower is the tower of bundles. Fiber of bundle of level $n$ is homotopy group of order $n$. Such definitions are well known, however I gave definition of tower of bundles, because it follows in a natural way from the text above.

One more example of tower of bundles attracted my attention ([14], [15], chapter 2). We consider the set $J^n(n, m)$ of 0-jets of functions from $R^n$ to $R^m$ as base. We consider the set $J^p(n, m)$ of $p$-jets of functions from $R^n$ to $R^m$ as bundle of level $p$.

**9. Morphism of T*-Representations of Fibered $\mathfrak{g}$-Algebra**

**Definition 9.1.** Let us consider $T^*$-representation

\[ \mathcal{F} : \mathcal{A} \to \mathcal{P} \]
Morphism of $T\star$-Representations

of fibered $\mathcal{F}$-algebra $a[A] : A \to M$ in bundle $p[P] : P \to M$ and $T\star$-representation $G : b[B] \to q[Q]$ of fibered $\mathcal{G}$-algebra $b[B]$ in bundle $q[Q]$. Tuple of mappings

\[(C : A \to B, \ R : P \to Q)\]

such that $C$ is homomorphism of fibered $\mathcal{F}$-algebra and

\[(9.2) \quad R(F(a)m) = G(C(a))R(m)\]

is called morphism of fibered $T\star$-representations from $\mathcal{F}$ into $\mathcal{G}$. We also say that morphism of $T\star$-representations of fibered $\mathcal{F}$-algebra is defined. □

We represent morphism of $T\star$-representations of fibered $\mathcal{F}$-algebra as diagram

Therefore morphism of $T\star$-representations of fibered $\mathcal{F}$-algebra is morphism of $T\star$-representations of $\mathcal{F}$-algebra in fiber.

**Theorem 9.2.** Given single transitive $T\star$-representation $\mathcal{F} : A \to ^*P$ of fibered $\mathcal{F}$-algebra $a[A] : A \to M$ in bundle $p[P] : P \to M$ and single transitive $T\star$-representation $G : b[B] \to q[Q]$ of fibered $\mathcal{G}$-algebra $b[B]$ in bundle $q[Q]$, there exists morphism

\[(C : A \to B, \ R : P \to Q)\]

of fibered $T\star$-representations from $\mathcal{F}$ into $\mathcal{G}$.

**Proof.** Corollary of theorem 2.5 and definition 9.1. □

**Theorem 9.3.** Let $\mathcal{F} : A \to ^*M$ be $T\star$-representation of fibered $\mathcal{F}$-algebra $A$,

$\mathcal{G} : B \to ^*N$


be $T^\ast$-representation of fibered $F$-algebra $B$,  
$\mathcal{H} : \mathcal{C} \to ^*\mathcal{L}$

be $T^\ast$-representation of fibered $F$-algebra $C$. Given morphisms of $T^\ast$-representations of fibered $F$-algebra 
( $U : A \to B$,  $P : M \to N$ ) 
( $V : B \to C$,  $Q : N \to \mathcal{L}$ )

There exists morphism of $T^\ast$-representations of $F$-algebra  
( $W : A \to C$,  $R : M \to \mathcal{L}$ )

where $W = UV$,  $R = PQ$. We call morphism $(W, R)$ of fibered $T^\ast$-representations from $F$ into $\mathcal{H}$ product of morphisms $(U, P)$ and $(V, Q)$ of $T^\ast$-representations of fibered $F$-algebra.

Proof. The mapping $W$ is homomorphism of fibered $F$-algebra $A$ into fibered $F$-algebra $C$. We need to show that tuple of mappings $(W, R)$ satisfies (2.3):

$$
R(F(a)m) = QP(F(a)m) \\
= Q(G(U(a))P(m)) \\
= H((VU(a))QP(m)) \\
= H(W(a))R(m)
$$

□

Theorem 9.4. Let 
$F : A \to ^*D$

be $T^\ast$-representation of fibered $F$-algebra $A$,  
$G : B \to ^*E$

be $T^\ast$-representation of fibered $F$-algebra $B$. Let  
( $R_1 : A \to B$,  $R_2 : D \to E$ )

be morphism of fibered representations from $F$ into $G$. Suppose  
$S_1 = R_1R_1^{-1}$  $S_2 = R_2R_2^{-1}$

28
Then there exist decompositions of $R_1$ and $R_2$, which we describe using diagram

- $s = \ker R_1$ is a congruence on $A$. There exists decompositions of homomorphism $R_1$

  \[ R_1 = I_1 T_1 J_1 \]
  \[ J_1 = \text{nat } s \text{ is the natural homomorphism} \]
  \[ J_1(a) = J_1(a) \]
  \[ T_1 \text{ is isomorphism} \]
  \[ R_1(a) = T_1(J_1(a)) \]
  \[ I_1 \text{ is the inclusion mapping} \]
  \[ R_1(a) = I_1(R_1(a)) \]

- $S_2 = \ker R_2$ is an equivalence on $D$. There exists decompositions of homomorphism $R_2$

  \[ R_2 = I_2 T_2 J_2 \]
  \[ J_2 = \text{nat } S_2 \text{ is surjection} \]
  \[ J_2(m) = J_2(m) \]
  \[ T_2 \text{ is bijection} \]
  \[ R_2(m) = T_2(J_2(m)) \]
  \[ I_2 \text{ is the inclusion mapping} \]
  \[ R_2(m) = I_2(R_2(m)) \]

- $\mathcal{F}_1$ is $T^*$-representation of $\mathcal{F}$-algebra $A/S_1$ in $D/S_2$
- $\mathcal{G}_1$ is $T^*$-representation of $\mathcal{F}$-algebra $R_1A$ in $R_2D$
There exists decompositions of morphism of representations
\((R_1, R_2) = (I_1, I_2)(T_1, T_2)(J_1, J_2)\)

Proof. From theorem 7.2 it follows the validity of diagrams (1), (2). We check the statement of theorem in fiber and it follows from theorem 2.10. □

10. Vector Bundle over Skew-Field

To define \(T\)-representation \(F: R \rightarrow \ast V\) of fibered ring \(R\) on the bundle \(V\) we need to define the structure of the fibered ring on the bundle \(\ast V\).

**Theorem 10.1.** \(T\)-representation \(F\) of the fibered ring \(R\) on the bundle \(V\) is defined iff \(T\)-representations of fibered multiplicative and additive groups of the fibered ring \(R\) are defined and these fibered \(T\)-representations hold relationship
\[ F(ab + c) = F(a)F(b) + F(a)F(c)\]

Proof. Theorem follows from definition 6.7. □

**Theorem 10.2.** \(T\)-representation of the fibered skew field \(D\) is effective iff \(T\)-representation of its fibered multiplicative group is effective.

Proof. According to definitions 6.13 and 5.8 we check the statement of theorem in fiber. The statement of theorem in fiber is corollary of theorem [5]-4.1.3. □

According to the remark 6.14, since the representation of the fibered skew field is effective, we identify a section of the fibered skew field and \(T\)-transformation corresponding to this section.

**Definition 10.3.** \(V\) is a \(D\)-vector bundle over a fibered skew field \(D\) if \(V\) is a fibered Abelian group and there exists effective \(T\)-representation of fibered skew field \(D\). Section of \(D\)-vector bundle is called a \(D\)-vector field. □

**Theorem 10.4.** Following conditions hold for \(D\)-vector fields:

- **associative law**
  \[(ab)m = a(bm)\]  

- **distributive law**
  \[a(m + n) = am + an\]
  \[(a + b)m = am + bm\]

- **unitarity law**
  \[1m = m\]

for any \(a, b \in \Gamma(D), m, n \in \Gamma(V)\). We call \(T\)-representation \(D\)-product of vector field over scalar.

Proof. We check the statement of theorem in fiber and this statement is corollary of theorem [5]-4.1.5. □

**Definition 10.5.** Let \(V\) be a \(D\)-vector bundle over a fibered skew field \(D\). Subbundle \(N \subset V\) is a subbundle of \(D\)-vector space \(V\) if \(\overline{a} + \overline{b} \in \Gamma(N)\) and \(k\overline{m} \in \Gamma(N)\) for any \(\overline{a}, \overline{b} \in \Gamma(N)\) and for any \(k \in \Gamma(D)\). □
Definition 10.6. Suppose $\pi, \varphi \in \Gamma(V)$ are $D^*$-vector fields. We call vector field $\pi D^*$-linear composition of vector fields $\pi$ and $\varphi$ when we can write $\pi = a\pi + b\varphi$ where $a$ and $b$ are scalars. □

Remark 10.7. We extend to vector bundle and its type convention described in remark [5]-4.2.6. We assume that the fiber of $D^*$-vector bundle is $D^*$-vector space. □

11. $D^*$-Basis of Vector Bundle

Definition 11.1. Vector fields $\varphi_a, \varphi \in I$ of $D^*$-vector bundle $V$ are $D^*$-linearly independent if $c = 0$ follows from the equation $c^*\varphi = 0$. Otherwise vector fields $\varphi_a$ are $D^*$-linearly dependent. □

Definition 11.2. We call set of vector fields $\varphi = (\varphi_a, \varphi \in I)$ a $D^*$-basis for vector bundle if vectors $\varphi_a$ are $D^*$-linearly independent and adding to this system any other vector we get a new system which is $D^*$-linearly dependent. □

Theorem 11.3. If $\varphi$ is a $D^*$-basis of vector space $V$ then any vector field $\varphi \in V$ has one and only one expansion
\begin{equation}
\varphi = v^*\varphi
\end{equation}
relative to this $D^*$-basis.

Proof. We check the statement of theorem in fiber and this statement is corollary of theorem [5]-4.3.3. □

Definition 11.4. We call the matrix $v$ in expansion (11.1) coordinate matrix of vector field $\varphi$ in $D^*$-basis $\varphi$ and we call its elements coordinates of vector field $\varphi$ in $D^*$-basis $\varphi$.

According to construction we execute all operation over vector field in fiber. Therefore we can use methods of theory of $D^*$-vector space in most cases. However there is difference. Coordinate matrix as well coordinates of vector field is function of coordinates of point on the base. This leads to different circumstances. For instance, $D^*$-linear dependence of vector fields in fiber is conditioned by the singularity of coordinate matrix of corresponding vectors. This is one of the reason why we have problem to define dimention when we consider $D^*$-vector bundle over ring of sections $\Gamma(D)$. Considering $D^*$-vector bundle as fibered representation, we get more flexibility in definition of $D^*$-basis.

Theorem 11.5. Set of coordinates $a$ of vector field $\varphi$ relative $D^*$-basis $\varphi$ forms $D^*$-vector bundle $D^*$ isomorphic $D^*$-vector bundle $V$. This $D^*$-vector bundle is called coordinate $D^*$-vector bundle. This isomorphism is called fibered coordinate $D^*$-isomorphism.

Proof. Suppose vectors $\pi$ and $\varphi \in V$ have expansion
\begin{align*}
\pi &= a^*\varphi \\
\varphi &= b^*\varphi
\end{align*}

However I keep open the question about continuity of this function.
relative basis $\overline{e}$. Then
\[
\begin{align*}
\overline{a} + \overline{b} &= a^*\overline{e} + b^*\overline{e} = (a + b)^*\overline{e} \\
m\overline{a} &= m(a^*\overline{e}) = (ma)^*\overline{e}
\end{align*}
\]
for any $m \in D$. Thus, operations in a vector bundle are defined by coordinates
\[
(a + b)^a = a^a + b^a \\
(ma)^a = ma^a
\]
This completes the proof. □

Since we defined linear composition in fiber the duality principle stated in theorems [5]-4.3.8, [5]-4.3.9 holds for vector bundles.

12. $\mathcal{D}^*_{\ast}$-LINEAR MAP OF VECTOR BUNDLES

Definition 12.1. Suppose $A$ is $\mathcal{S}^*_{\ast}$-vector bundle. Suppose $B$ is $\mathcal{T}^*_{\ast}$-vector bundle. Morphism
\[
\mathcal{F} : \mathcal{S} \longrightarrow \mathcal{T} \quad \mathcal{H} : A \longrightarrow B
\]
of $T\ast$-representations of fibered skew field in fibered Abelian group is called $(\mathcal{S}^*_{\ast}, \mathcal{T}^*_{\ast})$-linear map of vector bundles.

By theorem 9.4 studying $(\mathcal{S}^*_{\ast}, \mathcal{T}^*_{\ast})$-linear map we can consider case $\mathcal{S} = \mathcal{T}$.

Definition 12.2. Suppose $A$ and $B$ are $\mathcal{D}^*_{\ast}$-vector bundles. We call map
\[
(12.1) \quad \overline{H} : A \rightarrow B
\]
$\mathcal{D}^*_{\ast}$-linear map of vector bundles if
\[
(12.2) \quad \overline{H}(a^*\overline{m}) = a^*\overline{H(\overline{m})}
\]
for any $a^a \in \Gamma(D), \ a\overline{m} \in \Gamma(A)$. □

Theorem 12.3. Let $\overline{f} = (a^f, a \in I)$ be a $\mathcal{D}^*_{\ast}$-basis of vector bundle $A$ and $\overline{e} = (b^e, b \in J)$ be a $\mathcal{D}^*_{\ast}$-basis of vector bundle $B$. Then $\mathcal{D}^*_{\ast}$-linear map $(12.1)$ of vector bundles has presentation
\[
(12.3) \quad b = a^*\overline{H}
\]
relative to selected bases. Here
\begin{itemize}
  \item $a$ is coordinate matrix of vector field $\overline{a}$ relative the $\mathcal{D}^*_{\ast}$-basis $\overline{f}$
  \item $b$ is coordinate matrix of vector field $\overline{b} = \overline{H(\overline{a})}$ relative the $\mathcal{D}^*_{\ast}$-basis $\overline{f}$
  \item $\overline{H}$ is coordinate matrix of set of vectors fields $\overline{H(\overline{a}f)}$ in $\mathcal{D}^*_{\ast}$-basis $\overline{e}$ called matrix of fibered $\mathcal{D}^*_{\ast}$-linear map relative bases $\overline{f}$ and $\overline{e}$
\end{itemize}

Proof. Vector field $\overline{a} \in \Gamma(A)$ has expansion
\[
\overline{a} = a^f \overline{f}
\]
relative to $\mathcal{D}^*_{\ast}$-basis $\overline{f}$. Vector field $\overline{b} = f(\overline{a}) \in \Gamma(B)$ has expansion
\[
(12.4) \quad \overline{b} = b^e \overline{e}
\]
relative to $\mathcal{D}^*_{\ast}$-basis $\overline{e}$. 32
Since $\mathcal{H}$ is a $D^*$-linear map, from (12.2) it follows that
\begin{equation}
\overline{b} = \mathcal{H}(\overline{a}) = \mathcal{H}(a^* \overline{f}) = a^* \mathcal{H}(\overline{f})
\end{equation}
$\mathcal{H}(\overline{a} \overline{f})$ is also a vector field of vector bundle $\mathcal{B}$ and has expansion
\begin{equation}
\mathcal{H}(\overline{a} \overline{f}) = a \mathcal{H}^* \overline{v} = a \mathcal{H}^* b \overline{v}
\end{equation}
relative to basis $\overline{v}$. Combining (12.5) and (12.6) we get
\begin{equation}
\overline{b} = a^* \mathcal{H}^* \overline{v}
\end{equation}
(12.3) follows from comparison of (12.4) and (12.7) and theorem 11.3. \qed

On the basis of theorem 12.3 we identify the fibered $D^*$-linear map (12.1) of vector spaces and the matrix of its presentation (12.3).

**Theorem 12.4.** Let
\begin{equation}
\overline{f} = (a \overline{f}, a \in I)
\end{equation}
be a $D^*$-basis of vector bundles $\mathcal{A}$,
\begin{equation}
\overline{v} = (b \overline{v}, b \in J)
\end{equation}
be a $D^*$-basis of vector bundles $\mathcal{B}$, and
\begin{equation}
\overline{g} = (c \overline{g}, c \in L)
\end{equation}
be a $D^*$-basis of vector bundles $\mathcal{C}$. Suppose diagram of $D^*$-linear maps
\begin{equation}
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\mathcal{H}} & \mathcal{C} \\
\mathcal{F} & \downarrow \quad \mathcal{G} & \\
\mathcal{B} & \quad & \\
\end{array}
\end{equation}
is commutative diagram where $D^*$-linear map $\mathcal{F}$ has presentation
\begin{equation}
b = a^* \mathcal{F}
\end{equation}
relative to selected bases and $D^*$-linear map $\mathcal{G}$ has presentation
\begin{equation}
c = b^* \mathcal{G}
\end{equation}
relative to selected bases. Then $D^*$-linear map $\mathcal{H}$ has presentation
\begin{equation}
c = a^* \mathcal{F}^* \mathcal{G}
\end{equation}
relative to selected bases.

**Proof.** Proof of the statement follows from substituting (12.8) into (12.9). \qed

Presenting $D^*$-linear map as $^*$-product we can rewrite (12.2) as
\begin{equation}
(k a)^* \mathcal{F} = k (a^* \mathcal{F})
\end{equation}
We can expres the statement of the theorem 12.4 in the next form
\begin{equation}
(a^* \mathcal{F})^* \mathcal{G} = a^* (\mathcal{F}^* \mathcal{G})
\end{equation}
Equations (12.11) and (12.12) represent the **associative law for $D^*$-linear maps of vector bundles.** This allows us writing of such expressions without using of brackets.

Equation (12.3) is coordinate notation for fibered $D^*$-linear map. Based theorem 12.3 non coordinate notation also can be expressed using $^*$-product
\begin{equation}
\overline{b} = a^* \overline{f} = a^* \overline{f}^* \overline{F} = a^* \overline{F}^* \overline{v}
\end{equation}
If we substitute equation (12.13) into theorem 3.4, then we get chain of equations
\[
\overline{c} = \overline{b} \cdot \overline{g} = b^* \cdot c^\circ \overline{g} = b^* \cdot g^* \cdot \overline{g} \\
\overline{c} = \overline{a^*} \cdot \overline{f}^* \cdot \overline{g} = a^* \cdot f^* \cdot \overline{f}^* \cdot \overline{g} = a^* \cdot f^* \cdot g^* \cdot \overline{g}
\]

13. References

[1] Serge Lang, Algebra, Springer, 2002
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982), eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html (The Millennium Edition)
[3] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Courier Dover Publication, 1999
[4] John G. Hocking, Gail S. Young, Topology, Courier Dover Publications, 1988
[5] Aleks Kleyn, Lectures on Linear Algebra over Skew Field, eprint arXiv:math.GM/0701238 (2007)
[6] Aleks Kleyn, Birring of Matrices, eprint arXiv:math.OA/0612111 (2006)
[7] Aleks Kleyn, Fibered Correspondence, eprint arXiv:0707.2246 (2007)
[8] Paul M. Cohn, Universal Algebra, Springer, 1981
[9] C. R. F. Maunder, Algebraic Topology, Dover Publications, Inc, Mineola, New York, 1996
[10] J.-F. Pommaret, Partial Differential Equations and Group Theory, Springer, 1994
[11] N. Bourbaki, General Topology, Chapters 1 - 4, Springer, 1989
[12] Postnikov M. M., Geometry IV: Differential geometry, Moscow, Nauka, 1983
[13] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
[14] Vinogradov, A. M., Krasil’shchik, I. S., and Lychagin, V. V., Introduction to geometry of nonlinear differential equations, Nauka, Moscow, 1986
[15] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, American Mathematical Society, 2001
14. **Index**

arity of operation 17
associative law for $D^\star_\ast$-linear maps of vector bundles 33
associative law for $D^\star_\ast$-linear maps of vector spaces 12
associative law for $D^\star_\ast$-vector fields 30
base of map 15
bundle of level 2 26
bundle of level $n$ 26
Cartesian power $A$ of bundle $B$ 16
Cartesian power $A$ of set $B$ 14
compact-open topology 14
coordinate $D^\star_\ast$-vector bundle 31
coordinate matrix of vector field in $D^\star_\ast$-basis 31
coordinates of vector field in $D^\star_\ast$-basis 31
distributive law for $D^\star_\ast$-fields 30
$D^\star_\ast$-basis for vector bundle 31
$D^\star_\ast$-linear map of vector bundles 32
$D^\star_\ast$-linear map of vector spaces 11
$D^\star_\ast$-linearly dependent vector fields 31
$D^\star_\ast$-linearly independent vector fields 31
$D^\star_\ast$-vector bundle 30
$D^\star_\ast$-vector field 30
$D^\star_\ast$-linear composition of vector fields 31
$D^\star_\ast$-product of vector field over scalar 30
effective representation of fibered $\mathcal{F}$-algebra $A$ 2
effective representation of fibered skew $\mathcal{F}$-algebra 23
effective $T^\star$-representation of fibered skew field 30
fibered coordinate $D^\star_\ast$-isomorphism 31
fibered $\mathcal{F}$-algebra 19
fibered $\mathcal{F}$-subalgebra 20
fibered group 19
fibered identification morphism 24
fibered little group 25
fibered morphism from bundle $A$ into $B$ 15
fibered natural morphism 24
fibered ring 19
fibered stability group 25
fibered subset 16
free $T^\star$-representation of fibered group 25
homomorphism of fibered $\mathcal{F}$-algebras 20
isomorphism of fibered $\mathcal{F}$-algebras 20
left-side representation of $\mathcal{F}$-algebra $A$ in set $M$ 1
left-side representation of fibered $\mathcal{F}$-algebra 22
left-side transformation 1
left-side transformation on bundle 21
lift of map 15
locally compact at point $p$ space 13
locally compact space 13
matrix of $D^\star_\ast$-linear map 11
matrix of fibered $D^\star_\ast$-linear map 32
morphism of fibered $T^\star$-representations from $\mathcal{F}$ into $\mathcal{G}$ 27
morphism of $T^\star$-representations from $f$ into $g$ 3
morphism of $T^\star$-representations of $\mathcal{F}$-algebra 3
morphism of $T^\star$-representations of fibered $\mathcal{F}$-algebra 11
morphism of $T^\star$-representations of fibered $\mathcal{F}$-algebra 27
operation on bundle 17
product of morphisms of $T^\star$-representations of $\mathcal{F}$-algebra 6
product of morphisms of $T^\star$-representations of fibered $\mathcal{F}$-algebra 28
projection of bundle $E$ along fiber $E$ 13
quotient bundle 24
right-side representation of $\mathcal{F}$-algebra $A$ in set $M$ 2
right-side representation of fibered $\mathcal{F}$-algebra 22
right-side transformation 1
single transitive representation of $\mathcal{F}$-algebra $A$ 2
single transitive representation of fibered $\mathcal{F}$-algebra 23
$(S^\star_\ast, T^\star_\ast)$-linear map of vector bundles 32
$(S^\star_\ast, T^\star_\ast)$-linear map of vector spaces 11
$\ast T$-representation of $\mathcal{F}$-algebra $A$ in set $M$ 2
$\ast T$-representation of fibered $\mathcal{F}$-algebra 22
$\ast T$-transformation 1
$\ast T$-transformation on bundle 21
subbundle 16
subbundle of $D^\star_\ast$-vector space 30
tower of bundles 26
transformation of set 1
transformation on bundle 21
transitive representation of $\mathfrak{F}$-algebra $A$ 2
transitive representation of fibered $\mathfrak{F}$-algebra 23
$T^*$-transformation coordinated with equivalence 6
$T^*$-representation of $\mathfrak{F}$-algebra $A$ in set $M$ 1
$T^*$-representation of fibered $\mathfrak{F}$-algebra 22
$T^*$-transformation 1
$T^*$-transformation on bundle 21
unitarity law for $\mathcal{D}^*$-vector fields 30
vector bundle 19
15. SPECIAL SYMBOLS AND NOTATIONS

$p[A]q[B]$ Cartesian power $A$ of bundle $B$ 16

$B^A$ Cartesian power $A$ of set $B$ 14

$D^n$ coordinate $D^*$-vector bundle 31

$\mathfrak{e} = (e^a, a \in I)$ basis for $D^*$-vector bundle 31

e identical transformation of bundle 21

$E^*$ set of nonsingular $*T$-transformations of bundle $E$ 21

$^*E$ set of nonsingular $T^*$-transformations of bundle $E$ 21

$(F : A \to B, \ f : M \to N)$ fibered morphism from bundle $A$ into $B$ 15

$f$ homomorphism of fibered $\mathfrak{g}$-algebras 20

$\mathcal{G}_h$ fibered little group of section $h$ 25

$\mathcal{G}_h$ fibered stability group of section $h$ 25

$M^*$ set of $*T$-transformations of set $M$ 1

$^*M$ set of $T^*$-transformations of set $M$ 1

$p[E] : E \to M$ bundle 13

$p[E_2, E_1]$ bundle of level 2 26

$p[E_n, \ldots, E_1]$ bundle of level $n$ 26

$p[A]^*$ set of nonsingular $*T$-transformations of bundle $p[E]$ 21

$^*p[E]$ set of nonsingular $T^*$-transformations of bundle $p[E]$ 21

$\delta$ identical transformation 1

$\Gamma(p[E])$ set of sections of bundle 13

$a[A] \subseteq b[B]$ fibered subset 16

$A \subseteq B$ subbundle 16
Морфизм $T^*$-представлений

Александр Клейн

Аннотация. Значительность теорем об изоморфизмах состоит в том, что они позволяют отождествлять различные математические объекты, имея в виду нечто общее с точки зрения некоторой модели. Эта статья изучает морфизмы $T^*$-представлений $\mathfrak{g}$-алгебры и морфизмы $T^*$-представлений расслоенной $\mathfrak{g}$-алгебры.

Эта статья возникла на пересечении двух исследований, которые я веду параллельно. Первая половина статьи посвящена морфизмам $T^*$-представлений $\mathfrak{g}$-алгебры. Вторая половина статьи рассматривает морфизмы $T^*$-представлений расслоенной $\mathfrak{g}$-алгебры. Рассматриваемые конструкции возникли в результате изучения $D^*$-линейных отображений, которые являются морфизмами $T^*$-представлений тела в абелевой группе. Поэтому я использую $D^*$-линейные отображения в качестве иллюстрации излагаемой теории.

1. ПРЕДСТАВЛЕНИЕ $\mathfrak{g}$-АЛГЕБРЫ

Определение 1.1. Мы будем называть отображение $t : M \rightarrow M$ преобразованием множества $M$.

Определение 1.2. Преобразование называется левосторонним преобразованием или $T^*$-преобразованием, если оно действует слева

$$u' = tu$$

Мы будем обозначать $^*M$ множество $T^*$-преобразований множества $M$.

Если на множестве $M$ определена структура $\mathfrak{g}$-алгебры ([1]), то множество $^*M$ состоит из $T^*$-преобразований, являющихся гомоморфизмами $\mathfrak{g}$-алгебры.

Определение 1.3. Преобразование называется правосторонним преобразованием или $^*T$-преобразованием, если оно действует справа

$$u' = ut$$

Мы будем обозначать $M^*$ множество $^*T$-преобразований множества $M$.

Если на множестве $M$ определена структура $\mathfrak{g}$-алгебры ([1]), то множество $M^*$ состоит из $^*T$-преобразований, являющихся гомоморфизмами $\mathfrak{g}$-алгебры.

Мы будем обозначать $\delta$ тождественное преобразование.

Aleks_Kleyn@Mail.ru
Определение 1.4. Пусть на множестве $^*M$ определена структура $\mathfrak{g}$-алгебры ([2]). Пусть $A$ является $\mathfrak{g}$-алгеброй. Мы будем называть гомоморфизм

$$(1.1) \quad f : A \to ^*M$$

левосторонним или $T^*$-представлением $\mathfrak{g}$-алгебры $A$ в множестве $M$. 

Определение 1.5. Пусть на множестве $M^*$ определена структура $\mathfrak{g}$-алгебры ([2]). Пусть $A$ является $\mathfrak{g}$-алгеброй. Мы будем называть гомоморфизм

$$f : A \to M^*$$

правосторонним или $^*T$-представлением $\mathfrak{g}$-алгебры $A$ в множестве $M$. 

Мы распространя на теорию представлений соглашение, описанное в замечании [5]-2.2.14. Мы можем записать принцип двойственности в следующей форме.

Теорема 1.6 (принцип двойственности). Любое утверждение, справедливое для $T^*$-представления $\mathfrak{g}$-алгебры $A$, будет справедливо для $^*T$-представления $\mathfrak{g}$-алгебры $A$.

Диаграмма

$$
\begin{array}{c}
M \\
\downarrow f \\
A \\
\end{array}
\quad
\begin{array}{c}
f(a) \\
\downarrow f \\
M \\
\end{array}
$$

означает, что мы рассматриваем представление $\mathfrak{g}$-алгебры $A$. Отображение $f(a)$ является образом $a \in A$.

Определение 1.7. Мы будем называть $T^*$-представление $\mathfrak{g}$-алгебры $A$ эффективным, если отображение (1.1) - изоморфизм $\mathfrak{g}$-алгебры $A$ в $^*M$. 

Замечание 1.8. Если $T^*$-представление $\mathfrak{g}$-алгебры эффективно, мы можем отождествлять элемент $\mathfrak{g}$-алгебры с его образом и записывать $T^*$-преобразование, порождённое элементом $a \in A$, в форме

$$v' = av$$

Если $^*T$-представление $\mathfrak{g}$-алгебры эффективно, мы можем отождествлять элемент $\mathfrak{g}$-алгебры с его образом и записывать $^*T$-преобразование, порождённое элементом $a \in A$, в форме

$$v' = va$$

Определение 1.9. Мы будем называть $T^*$-представление $\mathfrak{g}$-алгебры транзитивным, если для любых $a, b \in V$ существует такое $g$, что

$$a = f(g)b$$

Мы будем называть $T^*$-представление $\mathfrak{g}$-алгебры однотранзитивным, если оно транзитивно и эффективно.
Алекса́ндър Клейн
Морфизм $T^*$-представлений

**Теорема 1.10.** $T^*$-представление однотуриптивно тогда и только тогда, когда для любых $a, b \in M$ существует одно и только одно $g \in A$ такое, что $a = f(g)b$.

**Доказательство.** Следствие определений 1.7 и 1.9.

Если на множестве $M$ определена дополнительная структура, мы переходим к представлению $\mathfrak{H}$-алгебры дополнительные требования.

Пусть на множестве $M$ определена структура алгебры типа $\mathfrak{B}$. Тогда мы полагаем, что $T^*$-преобразование

$$u' = f(a)u$$

является автоморфизмом алгебры типа $\mathfrak{B}$ либо отражает симметрии алгебры типа $\mathfrak{B}$.

Если на множестве $M$ определено понятие непрерывности, то мы полагаем, что $T^*$-преобразование

$$u' = f(a)u$$

непрерывно по $a$ и $u$, следовательно,

$$\left| \frac{\partial u'}{\partial u} \right| \neq 0$$

2. Морфизм $T^*$-представлений $\mathfrak{H}$-алгебры

**Теорема 2.1.** Пусть $A$ и $B$ - $\mathfrak{H}$-алгебры, $T^*$-представление $\mathfrak{H}$-алгебры $B$

$$f : B \to {}^* M$$

и гомоморфизм $\mathfrak{H}$-алгебры

$$h : A \to B$$

(2.1)

определяют $T^*$-представление $\mathfrak{H}$-алгебры $A$

$$A \xrightarrow{f} {}^* M$$

$$\xrightarrow{h} B$$

**Доказательство.** Отображение $h$ является гомоморфизмом $\mathfrak{H}$-алгебры $A$ в $\mathfrak{H}$-алгебру $^* M$, так как отображение $f$ является гомоморфизмом $\mathfrak{H}$-алгебры $B$ в $\mathfrak{H}$-алгебру $^* M$.

Если мы изучаем представление $\mathfrak{H}$-алгебры в множествах $M$ и $N$, то нас интересуют отображения из $M$ в $N$, сохраняющие структуру представления.

**Определение 2.2.** Рассмотрим $T^*$-представление

$$f : A \to {}^* M$$

$\mathfrak{H}$-алгебры $A$ в $M$ и $T^*$-представление

$$g : B \to {}^* N$$

$\mathfrak{H}$-алгебры $B$ в $N$. Пара отображений $(r, R)$

(2.2)

$$r : A \to B$$

$$R : M \to N$$
таких, что $r$ - гомоморфизм $\mathfrak{F}$-алгебры и

\[(2.3) \quad R(f(a)m) = g(r(a))R(m)\]

называется морфизмом $T^{\ast}$-представлений из $f$ в $g$. Мы также будем говорить, что определён морфизм $T^{\ast}$-представлений $\mathfrak{F}$-алгебры.

Замечание 2.3. Рассмотрим морфизм $T^{\ast}$-представлений (2.2). Мы можем обозначать элементы множества $B$, пользуясь буквой по образу $b \in B$. Но если мы хотим показать, что $b$ является образом элемента $a \in A$, мы будем пользоваться обозначением $r(a)$. Таким образом, равенство

$$r(a) = r(a)$$

означает, что $f(a)$ (в левой части равенства) является образом $a \in A$ (в правой части равенства). Пользуясь подобными соображениями, мы будем обозначать элемент множества $N$ в виде $R(m)$. Мы будем следовать этому соглашению, изучая соотношения между гомоморфизмами $\mathfrak{F}$-алгебр и отображениями между множествами, где определены соответствующие $T^{\ast}$-представления.

Мы можем интерпретировать (2.3) двумя способами:

- Пусть $T^{\ast}$-преобразование $f(a)$ отображает $m \in M$ в $f(a)m$. Тогда $T^{\ast}$-преобразование $g(r(a))$ отображает $R(m) \in N$ в $R(f(a)m)$.

- Мы можем представить морфизм представлений из $f$ в $g$, пользуясь диаграммой

![Diagram](image)

Из (2.3) следует, что диаграмма (1) коммутативна.

Теорема 2.4. Рассмотрим $T^{\ast}$-представление

$$f : A \rightarrow ^{\ast}M$$

$\mathfrak{F}$-алгебры $A$ и $T^{\ast}$-представление

$$g : B \rightarrow ^{\ast}N$$

$\mathfrak{F}$-алгебры $B$. Морфизм

$$h : A \rightarrow B \quad H : M \rightarrow N$$

$T^{\ast}$-представлений из $f$ в $g$ удовлетворяет соотношению

\[(2.4) \quad H(\omega(f(a_1),...,f(a_n))m) = \omega(g(h(a_1)),...,g(h(a_n)))H(m)\]

для произвольной $n$-арной операции $\omega$ $\mathfrak{F}$-алгебры.
Доказательство. Так как $f$ - гомоморфизм, мы имеем

\[(2.5) \quad H(\omega(f(a_1), ..., f(a_n))m) = H(\omega(a_1, ..., a_n))H(m)\]

Из (2.3) и (2.5) следует

\[(2.6) \quad H(\omega(f(a_1), ..., f(a_n))m) = g(h(\omega(a_1, ..., a_n)))H(m)\]

Так как $h$ - гомоморфизм, из (2.6) следует

\[(2.7) \quad H(\omega(f(a_1), ..., f(a_n))m) = g(h(a_1), ..., h(a_n)))H(m)\]

Так как $g$ - гомоморфизм, из (2.7) следует (2.4).

**Теорема 2.5.** Если $T*$-представление

$\rho : A \rightarrow ^*M$

$\mathfrak{F}$-алгебры $A$ однотранслятивно и $T*$-представление

$\rho : B \rightarrow ^*N$

$\mathfrak{F}$-алгебры $B$ однотранслятивно, то существует морфизм

$\rho : A \rightarrow B \quad P : M \rightarrow N$

$T*$-представления из $\rho$ в $\rho$.

Доказательство. Выберем гомоморфизм $h$. Выберем элемент $m \in M$ и элемент $n \in N$. Чтобы построить отображение $H$, рассмотрим следующую диаграмму

\[
\begin{array}{c}
M \xrightarrow{H} N \\
\downarrow \quad \downarrow \rho(a) \\
A \xrightarrow{f} B
\end{array}
\]

Из коммутативности диаграммы (1) следует

$H(am) = \rho(a)H(m)$

Для произвольного $m' \in M$ однозначно определён $a \in A$ такой, что $m' = am$. Следовательно, мы построили отображение $H$, которое удовлетворяет равенству (2.3).

**Теорема 2.6.** Если $T*$-представление

$\rho : A \rightarrow ^*M$

$\mathfrak{F}$-алгебры $A$ однотранслятивно, то для любого автоморфизма $\mathfrak{F}$-алгебры $A$ существует морфизм

$\rho : A \rightarrow \mathfrak{F}A \quad P : M \rightarrow M$

$T*$-представления из $\rho$ в $\rho$. 

5
Александр Клейн
Морфизм $T^\star$-представлений

Доказательство. Рассмотрим следующую диаграмму

\[
\begin{array}{ccc}
M & \xrightarrow{H} & N \\
\downarrow^a & & \downarrow^{p(a)} \\
\downarrow^f & & \downarrow^g \\
A & \xrightarrow{p} & A
\end{array}
\]

Утверждение теоремы является следствием теоремы 2.5. □

Теорема 2.7. Пусть

$f : A \to ^\star M$

$T^\star$-представление $\mathfrak{F}$-алгебры $A$,

$g : B \to ^\star N$

$T^\star$-представление $\mathfrak{F}$-алгебры $B$,

$h : C \to ^\star L$

$T^\star$-представление $\mathfrak{F}$-алгебры $C$. Пусть определены морфизмы $T^\star$-представлений $\mathfrak{F}$-алгебры

\[
p : A \to B \\
p : M \to N
\]

\[
q : B \to C \\
q : N \to L
\]

Тогда определён морфизм $T^\star$-представлений $\mathfrak{F}$-алгебры

\[
r : A \to C \\
r : M \to L
\]

где $r = qp$, $R = QP$. Мы будем называть морфизм $(r, R)$ $T^\star$-представлений из $f$ в $h$ произведением морфизмов $(p, P)$ и $(q, Q)$ $T^\star$-представлений $\mathfrak{F}$-алгебры.

Доказательство. Отображение $r$ является гомоморфизмом $\mathfrak{F}$-алгебры $A$ в $\mathfrak{F}$-алгебру $C$. Нам надо показать, что пара отображений $(r, R)$ удовлетворяет (2.3):

\[
R(f(m)) = QP(f(m))
\]

\[
= Q(g(p(m)))P(m))
\]

\[
= h(qp(m))Q(m))
\]

\[
= h(r(m))R(m)
\]

Представления и морфизмы представлений $\mathfrak{F}$-алгебры порождают категорию представлений $\mathfrak{F}$-алгебры.

Определение 2.8. Пусть на множестве $M$ определена эквивалентность $S$. $T^\star$-преобразование $f$ называется согласованным с эквивалентностью $S$, если из условия $m_1 \equiv m_2 (\text{mod} S)$ следует $f(m_1) \equiv f(m_2) (\text{mod} S)$.  

6
Теорема 2.9. Пусть на множестве $M$ определена эквивалентность $S$. Пусть на множестве $^*M$ определена $\mathfrak{F}$-алгебра. Если $T^*$-преобразования согласованы с эквивалентностью $S$, то мы можем определить структуру $\mathfrak{F}$-алгебры на множестве $^*(M/S)$.

Доказательство. Пусть $h = \text{nat } S$. Если $m_1 \equiv m_2 \pmod{S}$, то $h(m_1) = h(m_2)$. Поскольку $f \in ^*M$ согласовано с эквивалентностью $S$, то $h(f(m_1)) = h(f(m_2))$. Это позволяет определить $T^*$-преобразование $F$ согласно правилу

$$F([m]) = h(f(m))$$

Пусть $\omega$ - $n$-арная операция $\mathfrak{F}$-алгебры. Пусть $f_1, \ldots, f_\ell \in ^*M$ и

$$F_1([m]) = h(f_1(m)) \quad \cdots \quad F_\ell([m]) = h(f_\ell(m))$$

Мы определим операцию на множестве $^*(M/S)$ по правилу

$$\omega(F_1, \ldots, F_\ell)[m] = h(\omega(f_1, \ldots, f_\ell)m)$$

Это определение корректно, так как $\omega(f_1, \ldots, f_\ell) \in ^*M$ и согласовано с эквивалентностью $S$. $\square$

Теорема 2.10. Пусть

$$f : A \rightarrow ^*M$$

$T^*$-представление $\mathfrak{F}$-алгебры $A,$

$$g : B \rightarrow ^*N$$

$T^*$-представление $\mathfrak{F}$-алгебры $B.$ Пусть

$$r : A \longrightarrow B \quad R : M \longrightarrow N$$

мorphism представлений из $f$ в $g$. Положим

$$s = r^{-1} \quad S = RR^{-1}$$

Тогда для отображений $r, R$ существуют разложения, которые можно описать диаграммой

\begin{diagram}
\begin{array}{c}
A/s & \xrightarrow{i} & rA \\
\downarrow & \searrow & \downarrow \scriptstyle j \\
A & \xrightarrow{r} & B \\
\end{array}
\quad
\begin{array}{c}
M/S & \xrightarrow{T} & RM \\
\downarrow & \searrow & \downarrow \scriptstyle t \\
M & \xrightarrow{R} & N \\
\end{array}
\end{diagram}
• $s = \ker r$ является конгруэнцией на $A$. Существует разложение гомоморфизма $r$

\[(2.8)\quad r = itj\]
\[(2.9)\quad j(a) = j(a)\]
\[(2.10)\quad r(a) = t(j(a))\]
\[(2.11)\quad r(a) = i(r(a))\]

• $S = \ker R$ является эквивалентностью на $M$. Существует разложение отображения $R$

\[(2.12)\quad R = ITJ\]
\[(2.13)\quad J(m) = J(m)\]
\[(2.14)\quad R(m) = T(J(m))\]
\[(2.15)\quad R(m) = I(R(m))\]

– $F$ - $T*$-представление $\mathfrak{g}$-алгебры $A/s$ в $M/S$

– $G$ - $T*$-представление $\mathfrak{g}$-алгебры $rA$ в $RM$

– Существует разложение морфизм представлений

\[(r, R) = (i, I)(t, T)(j, J)\]

Доказательство. Существование диаграммы (1) следует из теоремы П.3.7 [8], с. 74. Существование диаграммы (2) следует из теоремы I.3.1 [8], с. 28.

Мы начнём с диаграммы (4).

Пусть $m_1 \equiv m_2 (\text{mod } S)$. Следовательно,

\[(2.16)\quad R(m_1) = R(m_2)\]

Если $a_1 \equiv a_2 (\text{mod}s)$, то

\[(2.17)\quad r(a_1) = r(a_2)\]

Следовательно, $j(a_1) = j(a_2)$. Так как $(r, R)$ - морфизм представлений, то

\[(2.18)\quad R(f(a_1)m_1) = g(r(a_1))R(m_1)\]
\[(2.19)\quad R(f(a_2)m_2) = g(r(a_2))R(m_2)\]

Из (2.16), (2.17), (2.18), (2.19) следует

\[(2.20)\quad R(f(a_1)m_1) = R(f(a_2)m_2)\]

Из (2.20) следует

\[(2.21)\quad f(a_1)m_1 \equiv f(a_2)m_2 (\text{mod } S)\]
и, следовательно,  
\[(2.22) \quad J(f(a_1)m_1) = J(f(a_2)m_2)\]

Из (2.22) следует, что отображение  
\[(2.23) \quad F(j(a))(J(m)) = J(f(a)m))\]
opределено корректно и является $T^*$-преобразованием множества $M/S$.

Из равенства (2.21) (в случае $a_1 = a_2$) следует, что для любого а $T^*$-преобразование согласовано с эквивалентностью $S$. Из теоремы 2.9 следует, что на множестве $^*(M/S)$ определена структура $\mathfrak{g}$-алгебры. Рассмотрим $n$-арную операцию $\omega$ и $n$ $T^*$-преобразований  
\[F(j(a_i))J(m) = J(f(a_i)m)) \quad i = 1, ..., n\]
пространства $M/S$. Мы положим  
\[\omega(F(j(a_1)), ..., F(j(a_n)))J(m) = J(\omega(f(a_1), ..., f(a_n)))m)\]
Следовательно, отображение $F$ является преобразованием $\mathfrak{g}$-алгебры $A/s$.

Из (2.23) следует, что $(j, J)$ является морфизмом преобразований $f$ и $F$.

Рассмотрим диаграмму (5).

Так как $T$ - биекция, то мы можем отождествить элементы множества $M/S$ и множества $MR$, причём это отождествление имеет вид  
\[(2.24) \quad T(J(m)) = R(m)\]
Мы можем записать $T^*$-преобразование $F(j(a))$ множества $M/S$ в виде  
\[(2.25) \quad F(j(a)) : J(m) \to F(j(a))J(m)\]
Так как $T$ - биекция, то мы можем определить $T^*$-преобразование  
\[(2.26) \quad T(J(m)) \to T(F(j(a))J(m))\]
множества $RM$. $T^*$-преобразование (2.26) зависит от $j(a) \in A/s$. Так как $T$ - биекция, то мы можем отождествить элементы множества $A/s$ и множества $rA$, причём это отождествление имеет вид  
\[t(j(a)) = r(a)\]
Следовательно, мы определили отображение  
\[G : rA \to ^*RM\]
согласно равенству  
\[(2.27) \quad G(t(j(a)))T(J(m)) = T(F(j(a))J(m))\]
Рассмотрим $n$-арную операцию $\omega$ и $n$ $T^*$-преобразований  
\[G(r(a_i))R(m) = T(F(j(a_i))J(m)) \quad i = 1, ..., n\]
пространства $RM$. Мы положим  
\[\omega(G(r(a_1)), ..., G(r(a_n)))R(m) = T(\omega(F(j(a_1)), ..., F(j(a_n))))J(m))\]
Согласно (2.27) операцию $\omega$ корректно определена на множестве $^*RM$. Следовательно, отображение $G$ является преобразованием $\mathfrak{g}$-алгебры.

Из (2.27) следует, что $(t, T)$ является морфизмом представлений $F$ и $G$.

Диаграмма (6) является самым простым случаем в нашем доказательстве. Поскольку отображение $I$ является вложением и диаграмма (2) коммутативна,
мы можем отождествить \( n \in N \) и \( R(m) \), если \( n \in \text{Im} R \). Аналогично, мы можем отождествить соответствующие \( T* \)-преобразования.

(2.28) \[
g'(i(r(a)))I(R(m)) = I(G(r(a))R(m))
\]

\[
\omega(g'(r(a_1)),...,g'(r(a_n)))R(m) = I(\omega(G(r(a_1)),...,G(r(a_n))))R(m)
\]

Следовательно, \((i, I)\) является морфизмом представлений \( G \) и \( g \).

Для доказательства теоремы осталось показать, что определённое в процессе доказательства \( T* \)-представление \( g' \) совпадает с представлением \( g \), а операции над преобразованиями совпадают с соответствующими операциями на \(*N^*\).

\[
g'(i(r(a)))I(R(m)) = I(G(r(a))R(m)) \quad \text{согласно (2.28)}
\]

\[
= I(G(t(j(a)))T(J(m))) \quad \text{согласно (2.10), (2.14)}
\]

\[
= IT(F(j(a)))J(m) \quad \text{согласно (2.27)}
\]

\[
= ITJ(f(a)m) \quad \text{согласно (2.23)}
\]

\[
= R(f(a)m) \quad \text{согласно (2.12)}
\]

\[
= g(r(a))R(m) \quad \text{согласно (2.3)}
\]

\[
\omega(G(r(a_1)),...,G(r(a_n)))R(m) = T(\omega(F(j(a_1)),...,F(j(a_n))))J(m))
\]

\[
= T(F(\omega(j(a_1),...,j(a_n))))J(m))
\]

\[
= T(F(j(\omega(a_1),...,a_n)))J(m))
\]

\[
= T(J(f(\omega(a_1),...,a_n)m))
\]

\[
\square
\]

Из теоремы 2.10 следует, что мы можем свести задачу изучения морфизма \( T* \)-представлений \( \mathfrak{g} \)-алгебры к случаю, описываемому диаграммой

(2.29)

\[
\begin{array}{ccc}
M & J & M/S \\
\downarrow f(a) & & \downarrow F(j(a)) \\
M & J & M/S
\end{array}
\]

\[
\begin{array}{ccc}
& & \\
& & \\
A & J & A/s
\end{array}
\]
Теорема 2.11. Диаграмма (2.29) может быть дополнена $T^\ast$-представлением $F_1$ $\mathfrak{g}$-алгебры $A$ в множество $M/S$ так, что диаграмма

\begin{equation}
\begin{array}{c}
\begin{array}{c}
M \xrightarrow{f(a)} M/S \\
\downarrow \quad \downarrow F(j(a)) \\
A \xrightarrow{j} A/S
\end{array}
\end{array}
\end{equation}

коммутативна. При этом множество $T^\ast$-представлений $T^\ast$-представлений $F$ и множество $T^\ast$-представлений $T^\ast$-представлений $F_1$ совпадают.

Доказательство. Для доказательства теоремы достаточно положить $F_1(a) = F(j(a))$.

Так как отображение $j$ - сюржектия, то $\text{Im} F_1 = \text{Im} F$. Так как $j$ и $F$ - гомоморфизм $\mathfrak{g}$-алгебры, то $F_1$ - также гомоморфизм $\mathfrak{g}$-алгебры.

Теорема 2.11 завершает цикл теорем, посвящённых структуре морфизма $T^\ast$-представлений $\mathfrak{g}$-алгебры. Из этих теорем следует, что мы можем упростить задачу изучения морфизма $T^\ast$-представлений $\mathfrak{g}$-алгебры и ограничиться морфизмом $T^\ast$-представлений видом

\[ id : A \longrightarrow A \quad R : M \longrightarrow N \]

В этом случае мы можем отождествить морфизм $(id, R)$ $T^\ast$-представлений $\mathfrak{g}$-алгебры и отображение $R$.

Определение 2.12. Пусть

\[ f : A \to ^*M \]

$T^\ast$-представление $\mathfrak{g}$-алгебры $A$ в $\mathfrak{g}$-алгебре $M$ и

\[ g : B \to ^*N \]

$T^\ast$-представление $\mathfrak{g}$-алгебры $B$ в $\mathfrak{g}$-алгебре $N$. Морфизм $(h, H)$ $T^\ast$-представлений алгебры типа $\mathfrak{g}$ называется морфизмом $T^\ast$-представлений $\mathfrak{g}$-алгебры в $\mathfrak{g}$-алгебре.

3. $D^\ast$-линейное отображение векторных пространств

Определение 3.1. Пусть $A - S^\ast_*$-векторное пространство. Пусть $B - T^\ast_*$-векторное пространство. Мы будем называть морфизм

\[ f : S \to T \quad \overline{\lambda} : A \to B \]

$T^\ast$-представлений тела в абелявской группе $(S^\ast_*, T^\ast_*)$-линейным отображением векторных пространств.

Согласно теореме 2.10 при изучении $(S^\ast_*, T^\ast_*)$-линейного отображения мы можем ограничиться случаем $S = T$.  

Александр Клейн

Морфизм $T^\ast$-представлений
Определение 3.2. Пусть $A$ и $B$ - $D^{*,}$-векторные пространства. Мы будем называть отображение

$\bar{A}: A \rightarrow B$

$D^{*,}$-линейным отображением векторных пространств, если

$\bar{A}(a^*, \overline{m}) = a^* \bar{A}(\overline{m})$

dля любых $a^* \in D, \overline{m} \in A$. □

Теорема 3.3. Пусть $\bar{f} = (a_f, a \in I) - D^{*,}$-базис в векторном пространстве $A$ и $\bar{e} = (b_e, b \in J) - D^{*,}$-базис в векторном пространстве $B$. Тогда $D^{*,}$-линейное отображение (3.1) векторных пространств имеет представление

$\bar{b} = a^* \bar{A}$ относительно заданных базисов. Здесь

- $a$ - координатная матрица вектора $\overline{a}$ относительно $D^{*,}$-базиса $\bar{f}$
- $b$ - координатная матрица вектора

$\overline{b} = \bar{A}(\overline{a})$

относительно $D^{*,}$-базиса $\bar{e}$.
- $A$ - координатная матрица множества векторов $\bar{A}(a_f)$ в $D^{*,}$-базисе $\bar{e}$, которую мы будем называть матрицей $D^{*,}$-линейного отображения относительно базисов $\bar{f}$ и $\bar{e}$.

Доказательство. Вектор $\overline{a} \in A$ имеет разложение

$\overline{a} = a^* \bar{f}$

относительно $D^{*,}$-базиса $\bar{f}$. Вектор $\overline{b} = f(\overline{a}) \in B$ имеет разложение

$\overline{b} = b^* \bar{e}$

относительно $D^{*,}$-базиса $\bar{e}$.

Так как $\bar{A} - D^{*,}$-линейное отображение, то на основании (3.2) следует, что

$\overline{b} = \bar{A}(\overline{a}) = \bar{A}(a^* \bar{f}) = a^* \bar{A}(\bar{f})$

$\bar{A}(a_f)$ также вектор векторного пространства $B$ и имеет разложение

$\bar{A}(a_f) = a A^* \overline{e} = a A^* b^* \overline{e}$

относительно базиса $\bar{e}$. Комбинируя (3.5) и (3.6), мы получаем

$\overline{b} = a^* A^* \overline{e}$

(3.3) следует из сравнения (3.4) и (3.7) и теоремы [5]-4.3.3. □

На основании теоремы 3.3 мы идентифицируем $D^{*,}$-линейное отображение (3.1) векторных пространств и матрицу его представления (3.3).

Теорема 3.4. Пусть

$\bar{f} = (a_f, a \in I)$

$D^{*,}$-базис в векторном пространстве $A$,

$\bar{e} = (b_e, b \in J)$

$^1$Выражение $a^* \bar{A}(\overline{m})$ означает выражение $a^* \bar{A}(a_f)$.
$D^*_*$-базис в векторном пространстве $B$, и

$$\overline{g} = (c, c \in L)$$

$D^*_*$-базис в векторном пространстве $C$. Предположим, что мы имеем коммутативную диаграмму $D^*_*$-линейных отображений

$$
\begin{array}{ccc}
A & -& C \\
\downarrow & & \downarrow \\
B & -& C
\end{array}
$$

где $D^*_*$-линейное отображение $A$ имеет представление

(3.8) $b = a^*_*A$

относительно заданных базисов и $D^*_*$-линейное отображение $B$ имеет представление

(3.9) $c = b^*_*B$

относительно заданных базисов. Тогда $D^*_*$-линейное отображение $C$ имеет представление

(3.10) $c = a^*_*A^*_*B$

относительно заданных базисов.

Доказательство. Доказательство утверждения следует из подстановки (3.8) в (3.9).

Записывая $D^*_*$-линейное отображение в форме $^*$-произведения, мы можем переписать (3.2) в виде

(3.11) $\overline{(ka)} = k(a^*_*)$ $A = k(a^*_*)$

Утверждение теоремы 3.4 мы можем записать в виде

(3.12) $(a^*_*)^*B = a^*_*(A^*_*)$

Равенства (3.11) и (3.12) представляют собой закон ассоциативности для $D^*_*$-линейных отображений векторных пространств. Это позволяет нам писать подобные выражения не пользуясь скобками.

Равенство (3.3) является координатной записью $D^*_*$-линейного отображения. На основе теоремы 3.3 бескоординатная запись также может быть представлена с помощью $^*$-произведения

(3.13) $\overline{b} = \overline{a^*} \overline{A} = a^* \overline{f^*} \overline{A} = a^* A^* \overline{c}$

Если подставить равенство (3.13) в теорему 3.4, то мы получим цепочку равенств

$$
\overline{c} = \overline{b} \overline{B} = b^* \overline{c} \overline{B} = b^* B^* \overline{g}
$$

$$
\overline{c} = a^* \overline{f^*} \overline{A} \overline{B} = a^* A^* B^* \overline{g}
$$

Замечание 3.5. На примере $D^*_*$-линейных отображений легко видеть, что теорема 2.10 облегчает наши рассуждения при изучении морфизмов $T^*$-представлений $\mathfrak{g}$-алгебры. Договорившись в рамках этого замечания теорию $D^*_*$-линейных отображений называть сокращённой теорией, а теорию, излагаемую в этом замечании, называть расширенной теорией.
Пусть $A - \mathbb{S}^*$-векторное пространство. Пусть $B - \mathbb{T}^*$-векторное пространство. Пусть
\[
f : S \rightarrow T \quad \overline{A} : A \rightarrow B
\]
$(\mathbb{S}^*, \mathbb{T}^*)$-линейное отображение векторных пространств. Пусть $\overline{f} = (a_{\overline{f}}, a \in I)$ - $\mathbb{S}^*$-базис в векторном пространстве $A$ и $\overline{b} = (b_{\overline{b}}, b \in J)$ - $\mathbb{T}^*$-базис в векторном пространстве $B$.

Из определений 3.1 и 2.2 следует
\[
\overline{b} = \overline{A}(\overline{a}) = \overline{A}(a^*, f) = f(a)^*, \overline{A}(f)
\]
$\overline{A}(a_{\overline{f}})$ также вектор векторного пространства $B$ и имеет разложение
\[
\overline{A}(a_{\overline{f}}) = a^*, \overline{c} = a^* b_{\overline{b}}
\]
относительно базиса $\overline{c}$. Кombинируя (3.14) и (3.15), мы получаем
\[
\overline{b} = f(a)^* A^*, \overline{c}
\]
Пусть $C - \mathbb{T}^*$-векторное пространство. Пусть
\[
g : T \rightarrow D \quad \overline{B} : B \rightarrow C
\]
$(\mathbb{T}^*, \mathbb{D}^*)$-линейное отображение векторных пространств. Пусть $\overline{h} = (a_{\overline{h}}, a \in K)$ - $\mathbb{T}^*$-базис в векторном пространстве $C$. Тогда, согласно (3.16), произведение $(\mathbb{S}^*, \mathbb{T}^*)$-линейного отображения $(f, \overline{A})$ и $(\mathbb{T}^*, \mathbb{D}^*)$-линейного отображения $(g, \overline{B})$ имеет вид
\[
\overline{c} = gf(a)^* g(A)^* B^* \overline{h}
\]
Сопоставление равенств (3.10) и (3.17) показывает насколько расширенна теория линейных отображений сложнее сокращённой теории.

При необходимости мы можем пользоваться расширенной теорией, но мы не получим новых результатов по сравнению со случаем сокращённой теорией. В то же время обилие деталей делает картину менее ясной и требует постоянного внимания. 

4. Расслоение

Допустим $M$ - многообразие и
\[
p[E] : \mathcal{E} \rightarrow \rightarrow M
\]
расслоение над $M$ со слоем $E$. Символ $p[E]$ означает, что $E$ является типичным слоем расслоения. Множество $\mathcal{E}$ является областью определения отображения $p[E]$. Множество $M$ является областью значений отображения $p[E]$.

Мы будем отождествлять непрерывное отображение $p[E]$ и расслоение (4.1). Отображение $p$ называется проекцией расслоения $\mathcal{E}$ вдоль слоя $E$. Обозначим через $\Gamma(p[E])$ множество оценений расслоения $p[E]$. 

Так как мне придётся иметь дело с различными расслоениями, я буду пользоваться следующим соглашением. Для обозначения расслоения и слоя я буду пользоваться одной и той же буквой в разных алфавитах.
Определение 4.1. Пространство называется локально компактным в точке $p$, если существует открытое множество $U$, $p \in U$, замыкание которого $\overline{U}$ компактно. Пространство называется локально компактным, если оно локально компактно в каждой своей точке.3

Определение 4.2. Пусть даны топологии $T_1, T_2$ в множестве $X$. Говорят, что $T_1$ мажорирует $T_2$ и что $T_2$ мажорируется $T_1$, если тождественное отображение $X_1 \to X_2$, где $X_1$ множество $X$, наследственное топологией $T_i$, $i = 1, 2$, непрерывно. Если $T_1 \neq T_2$, то говорят, что $T_1$ сильнее $T_2$ и $T_2$ слабее $T_1$.

Пусть топология $T_1$ в множестве $X$ мажорирует топологию $T_2$. Рассмотрим диаграмму

\[
\begin{array}{ccc}
Y & \xrightarrow{f_1} & X_1 \\
\downarrow{f_2} & & \downarrow{g_1} \\
X_2 & \xrightarrow{id} & Z \\
\downarrow{g_2} & & \\
& X_2 & \\
\end{array}
\]

Согласно определению 4.2, если отображение $f_1$ - непрерывно, то непрерывно отображение $f_2$. Аналогично, если отображение $g_2$ - непрерывно, то непрерывно отображение $g_1$.

Пусть $p[E] : \mathcal{E} \to M$ - расслоение. Рассмотрим открытое множество $U \subset M$ такое, что существует локальная тривиализация $\varphi$

\[
U \times E \xrightarrow{\varphi} \mathcal{E}|U
\]

Так как $\varphi$ гомеоморфизм, то топологии в $U \times E$ и $\mathcal{E}|U$ равны. Так как $U \times E$ - декартово произведение топологических пространств $U$ и $E$, то мы определим в $\mathcal{E}|U$ слабейшую из топологий, при которых непрерывна проекция $p[E]$ ([11], стр. 37).

Отношение $r$ в $\mathcal{E}$ такое, что $(p, q) \in r$ тогда и только тогда, когда $p$ и $q$ принадлежат одному слою, является отношением эквивалентности. $p[E]$ - естественное отображение. Рассмотрим диаграмму

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{g} & N \\
\downarrow{p[E]} & & \\
M & \xrightarrow{f} & N
\end{array}
\]

Из непрерывности отображения $f$ следует непрерывность отображения $g$. Следовательно, мы можем определить в $M$ фактортопологию, сильнейшую из топологий, при которых $p[E]$ непрерывно ([11], стр. 39).

Декартова степень. $A$ множество $B$ - это множество $B^A$ отображений $f : A \to B$ ([8], стр. 18). Рассмотрим подмножества $B^A$ вида

\[W_{K, U} = \{ f : A \to B | f(K) \subset U \}\]

3Я следую определению из [4], с. 71.
Александр Клейн
Морфизм $T^*$-представлений

где $K$ - компактное подмножество пространства $A$, $U$ - открытое подмножество пространства $B$. Множества $W_{K,U}$ образуют базис топологии пространства $B^A$. Эта топология называется **компактно-открытой топологией**. Декартова степень $A$ множества $B$, снабжённая компактно-открытой топологией называется, **пространством отображений** ([9], стр. 213).

Согласно [9], стр. 214 для данных пространств $A$, $B$, $C$, $D$ и отображений $f : A \to C$, $g : D \to B$ мы определим морфизм пространства отображений

$$g^f : D^C \to B^A$$

равенством

$$g^f(h) = fh, \quad h : C \to D \quad g^f(h) : A \to B$$

Таким образом, морфизм пространства отображений можно представить с помощью диаграммы

$$\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{g^f} & & \downarrow{h} \\
B & \leftarrow & D
\end{array}$$

**Замечание 4.3.** Множество $\Gamma(\mathcal{E})$ является подмножеством множества $\mathcal{E}^M$. Поэтому мы можем перенести на множество сечений понятия, определёные для пространства отображений. Множества $W_{K,U}$ мы определим следующим образом

$$W_{K,U} = \{ f \in \Gamma(\mathcal{E}) | f(K) \subset U \}$$

где $K$ - компактное подмножество пространства $M$, $U$ - открытое подмножество пространства $\mathcal{E}$. $\square$

**Замечания 4.4.** Я пользуюсь стрелкой $\rightarrow$ на диаграмме для обозначения проекции расслоения. $\square$

**Замечания 4.5.** Я пользуюсь стрелкой $\longrightarrow$ на диаграмме для обозначения сечения расслоения. $\square$

**Определение 4.6.** Рассмотрим расслоение

$$p[A] : A \to M$$

и

$$q[B] : B \to N$$

Пара отображений

(4.2) \quad (\mathcal{F} : A \to B, \quad f : M \to N )

таких, что диаграмма

$$\begin{array}{ccc}
A & \xrightarrow{\mathcal{F}} & B \\
p[A] & & q[B] \\
\downarrow & & \downarrow \\
M & \xrightarrow{f} & N
\end{array}$$

коммутативна, называется **расслоенным морфизмом из расслоения $A$ в $B$». Отображение $f$ называется **базой отображения $\mathcal{F}$.** Отображение $\mathcal{F}$ называется **лифтом отображения $f$**. $\square$
Теорема 4.7. Если отображение \( f \) - биекция, то отображение \( \mathcal{F} \) определяет морфизм \( \mathcal{F} f^{-1} \) пространств сечений \( \Gamma(p[A]) \) и \( \Gamma(q[B]) \):

\[
\begin{array}{c}
A \xrightarrow{\mathcal{F}} B \\
\downarrow f \quad \downarrow f^{-1} \\
M \xrightarrow{u} N
\end{array}
\]

\( u = \mathcal{F} f^{-1}(u) = \mathcal{F} u f^{-1} \)

Доказательство. Чтобы доказать непрерывность \( u' \), достаточно доказать непрерывность \( f^{-1} \). Но это очевидно, так как \( f \) непрерывная биекция.

Мы будем полагать, что на множествах \( \Gamma(p[A]) \) и \( \Gamma(q[B]) \) определена топология согласно замечанию 4.3. Рассмотрим сечения \( u, v \in \Gamma(p[A]) \), \( u' = \mathcal{F}^{-1}(u) \), \( v' = \mathcal{F}^{-1}(u') \) такие, что существует \( W_{L,V} \subseteq \Gamma(q[B]) \), где \( L \) - компактное подмножество пространства \( V \), \( V \) - открытое подмножество пространства \( B \), \( u', v' \in W_{L,V} \). Так как \( f \) - непрерывная биекция, то \( K = f^{-1}(L) \) - компактное подмножество пространства \( M \). Так как \( \mathcal{F} \) - непрерывно, то \( U = \mathcal{F}^{-1}(V) \) - открытое подмножество пространства \( A \).

Согласно построению

(4.3) \[ u' f = \mathcal{F} u \]

Из (4.3) следует

(4.4) \[ \mathcal{F} u(K) = u' f(K) = u'(L) \subseteq V \]

Из (4.4) следует

(4.5) \[ u(K) \subseteq \mathcal{F}^{-1} V = U \]

Из (4.5) следует \( u \in W_{K,U} \). Аналогично доказывается, что \( u' \in W_{K,U} \). Следовательно, для открытого множества \( W_{L,V} \) мы нашли открытое множество \( W_{K,U} \) такое, что \( \mathcal{F}^{-1}(W_{K,U}) \subseteq W_{L,V} \). Это доказывает непрерывность отображения \( \mathcal{F}^{-1} \).

Если \( f = \text{id} \), то \( \text{id}^{-1} = \text{id} \). Поэтому морфизм пространств сечений мы будем обозначать \( \mathcal{F} \text{id} \). Очевидно

\[ \mathcal{F} \text{id}(u) = \mathcal{F} u \]

Определение 4.8. Пусть \( a[A] : A \rightarrow N \) и \( b[B] : B \rightarrow M \) - расслоения. Пусть расслоенный морфизм \( ( \mathcal{F} : A \rightarrow B, \ f : M \rightarrow N ) \) определён диаграммой

\[
\begin{array}{c}
A \xrightarrow{\mathcal{F}} B \\
\downarrow a[A] \quad \downarrow b[B] \\
N \xrightarrow{f} M
\end{array}
\]

где отображения \( \mathcal{F} \) и \( f \) инъективны. Тогда мы называем расслоение \( a[A] \) расслоенным подмножеством или подрасслоением расслоения \( b[B] \). Мы будем также пользоваться записью \( a[A] \subseteq b[B] \) либо \( A \subseteq B \).

Не нарушая общенности, мы можем полагать \( A \subseteq B, N \subseteq M \).

Рассмотрим расслоение \( p[A] : A \rightarrow M \)
и

\[ q | B | : \mathcal{B} \to N \]

Декартова степень \( A \) расслоения \( B \) - это множество \( q | B |^p [A] \) расслоенных морфизмов

\[ \mathcal{F} : A \to \mathcal{B}, \quad f : M \to N \]

В данный момент я не вижу как определить структуру расслоения в декартовой степени расслоения. Хотя для заданных \( m \in M, n \in N \) я могу рассмотреть декартову степень \( B_n^A \). Опираясь на теорему 4.7, мы можем определить отображение

\[ f : q | B |^p [A] \to \Gamma (\mathcal{B})^{\Gamma (A)} \]

Рассмотрим подмножество \( W_{K,U} \subset \Gamma (\mathcal{B})^{\Gamma (A)} \), где \( K \) - компактное подмножество сечений расслоения \( A, U \) - открытое подмножество сечений расслоения \( B \). Множества \( W_{K,U} \) образуют базис топологии пространства \( \Gamma (\mathcal{B})^{\Gamma (A)} \). Мы выберем самую слабую топологию в \( q | B |^p [A] \), при которой отображение \( f \) непрерывно.

Мы рассмотрели структуру открытого множества сечений расслоения \( B \) в замечании 4.3. Так как множество сечений расслоения \( A \) является множеством отображений, то мы можем искать подобные теоремы Арцела для анализа, ([3], стр. 110), чтобы ответить на вопрос, когда это множество является компактным. На данном этапе я этот вопрос оставлю открытым.

Согласно [9], стр. 214 для данных пространств \( A, B, C, D \) и отображений \( f : A \to C, g : D \to B \) мы определим морфизм пространства отображений

\[ g ( \mathcal{F} : A \to \mathcal{B}, \quad f : M \to N ) : D^C \to B^A \]

равенством

\[ g^f (h) = fhg \quad \quad h : C \to D \quad \quad g^f (h) : A \to B \]

Таким образом, морфизм пространства отображений можно представить с помощью диаграммы

\[ \begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{g^f (h)} & & \\
B & \xleftarrow{g} & D
\end{array} \]

5. Расслоенная Г-алgebra

Определение 5.1. П-арная операция на расслоении \( p | E | \) - это расслоенный морфизм

\[ \mathcal{F} : \mathcal{E}^n \to \mathcal{E} \]

\( n \) - это арность операции. 0-арная операция - это сечение расслоения \( p | A | \). \( \square \)
Операция на расслоении может быть представлена диаграммой

\[
\xymatrix{ 
\mathcal{E}^n \ar[r]^-\omega \ar@{->>}[d] & \mathcal{E} \ar@/^/[drr]^-p \\
M \ar[r]_-{id} & M 
}
\]

**Теорема 5.2.** Пусть \( U \) - открытое множество базы \( M \), и на \( U \) существует тривиализация расслоения \( p[E] \). Пусть \( x \in M \). Пусть \( \omega \) - \( n \)-арная операция на расслоении \( p[E] \) и

\[
\omega(p_1, \ldots, p_n) = p
\]

в слое \( E_x \). Тогда существует открытие множества \( V \subseteq U \), \( W \subseteq E \), \( W_1 \subseteq E_1 \), \( \ldots \), \( W_n \subseteq E_n \) такие, что \( x \in V \), \( p \in W \), \( p_1 \in W_1 \), \( \ldots \), \( p_n \in W_n \), и для любых \( x' \in V \), \( p' \in W \cap \omega V \) существует \( p'_1 \in W_1 \), \( \ldots \), \( p'_n \in W_n \) такие, что

\[
\omega(p'_1, \ldots, p'_n) = p'
\]

в слое \( E_{x'} \). Согласно [11], стр. 58, множество вида \( V \times W \), где \( V \) принадлежит базису топологии пространства \( U \) и \( W \) принадлежит базису топологии пространства \( E \), образуют базис топологии пространства \( E \). Аналогично множества вида \( V \times W_1 \times \ldots \times W_n \), где \( V \) принадлежит базису топологии пространства \( U \) и \( W_1 \), \( \ldots \), \( W_n \) принадлежат базису топологии пространства \( E \), образуют базис топологии пространства \( E^n \).

Так как отображение \( \omega \) непрерывно, то для открытоого множества \( V \times W \) существует открытое множество \( S \subseteq E^n \) такое, что \( \omega S \subseteq V \times W \). Пусть \( x' \in V \). Выберем произвольную точку \( (x', p') \in \omega S \). Тогда существуют такие \( p'_1 \in E_{x'} \), \( \ldots \), \( p'_n \in E_{x'} \), что

\[
\omega(p'_1, \ldots, p'_n) = p'
\]

в слое \( E_{x'} \). Согласно сказанному выше существуют множества \( R_1, R_2 \), принадлежащие базису топологии пространства \( U \), и множества \( T_1, \ldots, T_n, T'_1, \ldots, T'_n \), принадлежащие базису топологии пространства \( E \), такие, что \( x \in R \), \( x' \in R' \), \( p_1 \in T_1 \), \( p'_1 \in T'_1 \), \( \ldots \), \( p_n \in T_n \), \( p'_n \in T'_n \), \( R \times T_1 \times \ldots \times T_n \subseteq S \), \( R' \times T'_1 \times \ldots \times T'_n \subseteq S \).

Теорема доказана, так как \( W_1 = T_1 \cup T'_1 \), \( \ldots \), \( W_n = T_n \cup T'_n \) - открытие множества. \( \square \)

Теорема 5.2 говорит о непрерывности операции \( \omega \), однако эта теорема ничего не говорит о множествах \( W_1 \), \( \ldots \), \( W_n \). В частности, эти множества могут быть не связными.

Если топология на слое \( A \) - дискретна, то мы можем положить \( W = \{p\} \), \( W_1 = \{p_1\} \), \( \ldots \), \( W_n = \{p_n\} \). Возникает ощущение, что в окрестности \( V \) операция не зависит от слоя. Мы будем говорить, что операция \( \omega \) локально постоянна.

Однако на расслоении в целом условие постоянства может быть нарушено. Так расслоение над окружностью со слоем группы целых чисел может оказаться накрытием окружности \( R \to S^1 \) действительной прямой, определённой формулой \( p(t) = (\sin t, \cos t) \) для любого \( t \in R \).
Александр Клейн
Морфизм \( T^* \)-представлений

Рассмотрим альтернативную точку зрения на непрерывность операции \( \omega \), чтобы лучше понять значение непрерывности. Если мы хотим показать, что бесконечно малые изменения операций при движении вдоль базы приводят к бесконечно малому изменению операции, нам надо перейти к сечениям. Этот переход допустим, так как операция на расслоении определена послойно.

**Теорема 5.3.** \( n \)-арная операция на расслоении отображает сечения в сечение.

**Доказательство.** Допустим \( f_1, \ldots, f_n \) - сечения и отображение

\[
(1) \quad f = \omega id(f_1, \ldots, f_n) : M \to \mathcal{E}
\]

определенное равенством

\[
(2) \quad f(x) = \omega(f_1(x), \ldots, f_n(x))
\]

Пусть \( x \in M \) и \( u = f(x) \). Пусть \( U \) - окрестность точки \( u \) в области значений отображения \( f \).

Так как \( \omega \) непрерывное отображение, то согласно [11], стр. 58, для любого значения \( i, 1 \leq i \leq n \) в области значений сечения \( f_i \) определено открытое множество \( U_i \) таким образом, что \( \prod_{i=1}^{n} U_i \) открыто в области значений сечения \( (f_1, \ldots, f_n) \) расслоения \( \mathcal{E}^n \) и

\[
\omega\left(\prod_{i=1}^{n} U_i\right) \subseteq U
\]

Пусть \( u' \in U \). Поскольку \( f \) - отображение, существует \( x' \in M \) такая, что \( f(x') = u' \). На основании равенства (5.2) существуют \( u_i' \in U_i, p(u_i') = x' \), такие, что \( \omega(u_1', \ldots, u_n') = u' \). Так как \( f_i \) сечение, то существует открытое в \( M \) множество \( V_i \) такое, что \( f_i(V_i) \subseteq U_i \) и \( x' \in V_i \). Следовательно, множество

\[
V = \cap_{i=1}^{n} V_i
\]

непусто, открытно в \( M \) и \( x \in V \), \( x' \in V \). Следовательно отображение \( f \) непрерывно и является сечением.

Операция на расслоении может быть представлена диаграммой

![Diagram](image)

**Теорема 5.4.** \( \omega id \) непрерывна на \( \Gamma(\mathcal{E}) \).

**Доказательство.** Рассмотрим множество \( W_{K,U} \), где \( K \) - компактное подмножество пространства \( M \), \( U \) - открытое подмножество пространства \( \mathcal{E} \). Множество \( U \) мы можем представить в виде \( V \times E \), где \( V \) - открытое множество пространства \( M \), \( K \subset V \). \( \omega^{-1}(V \times E) = V \times E^n \) является открытым множеством. Следовательно,

\[
(3) \quad (\omega id)^{-1} W_{K,V \times E} = W_{K,V \times E^n}
\]

Из (3) следует непрерывность \( \omega id \).
Определение 5.5. Пусть $A$ является $\mathfrak{g}$-алгеброй ([2]). Мы можем перенести $\mathfrak{g}$-алгебрическую структуру со слоя $A$ на расслоение $p[A] : A \rightarrow M$. Если на $\mathfrak{g}$-алгебре $A$ определена операция $\omega$

$$a = \omega(a_1, ..., a_n)$$

то на расслоении определена операция $\omega$

$$a(x) = \omega(a_1(x), ..., a_n(x))$$

Мы будем говорить, что $p[A]$ - это расслоенная $\mathfrak{g}$-алгебра. 

В зависимости от структуры мы будем говорить, например, о расслоенной группе, расслоенном кольце, векторном расслоении.

Основные свойства $\mathfrak{g}$-алгебры сохраняются и для расслоенной $\mathfrak{g}$-алгебры. При доказательстве соответствующих теорем, мы можем ссылаться на это утверждение. Однако в некоторых случаях доказательство может представить самостоятельный интерес, так как позволяет лучше увидеть структуру расслоенной $\mathfrak{g}$-алгебры. Однако свойства $\mathfrak{g}$-алгебры, возникших из множества сечений, могут отличаться от свойств $\mathfrak{g}$-алгебры в слое. Например, умножение в слое может иметь обратный элемент. В тоже время умножение сечений может не иметь обратного элемента. Следовательно, расслоенное непрерывное поле порождает кольцо на множестве сечений. Это является преимуществом при изучении расслоенной алгебры. Я хочу также обратить внимание на то, что операция в расслоении не определена для элементов, принадлежащих разным слоям.

Точка $p \in A$ имеет представление $(x, p_\alpha)$ в карте $U_\alpha$ и представление $(x, p_\beta)$ в карте $U_\beta$. Допустим функции перехода $g_{\alpha\beta}$ определяют расслоение $B$ над базой $N$. Рассмотрим карты $V_\alpha \subset N$ и $V_\beta \subset N$, $V_\alpha \cap V_\beta \neq \emptyset$. Точка $q \in B$ имеет представление $(y, q_\epsilon)$ в карте $V_\epsilon$ и представление $(y, q_\delta)$ в карте $V_\delta$. Следовательно,

$$p_\alpha = f_{\alpha\beta}(p_\beta)$$

$$q_\epsilon = g_{\epsilon\delta}(q_\delta)$$

Представление соответствия при переходе от карты $U_\alpha$ к карте $U_\beta$ и от карты $V_\epsilon$ к карте $V_\delta$ изменяется согласно закону

$$(x, y, p_\alpha, q_\epsilon) = (x, y, f_{\alpha\beta}(p_\beta), g_{\epsilon\delta}(q_\delta))$$

Это согласуется с преобразованием при переходе от карты $U_\alpha \times V_\epsilon$ к карте $U_\beta \times V_\delta$ в расслоении $A \times B$.

Теорема 5.6. Допустим функции перехода $f_{\alpha\beta}$ определяют расслоенную $\mathfrak{g}$-алгебру $p[A] : A \rightarrow M$ над базой $M$. Тогда функции перехода $f_{\alpha\beta}$ являются гомоморфизмами $\mathfrak{g}$-алгебры $A$.

Доказательство. Пусть $U_\alpha \subset M$ и $U_\beta \subset M$, $U_\alpha \cap U_\beta \neq \emptyset$ - окрестности, в которых расслоенная $\mathfrak{g}$-алгебра $p[A]$ тривиальна. Пусть

(5.4)  $a_\beta = f_{\beta\alpha}(a_\alpha)$

функция перехода из расслоения $p[A]|_{U_\alpha}$ в расслоение $p[A]|_{U_\beta}$. Пусть $\omega$ - н-арная операция и точки $e_1, ..., e_n$ принадлежат слою $A_x$, $x \in U_1 \cap U_2$. Положим

(5.5)  $e = \omega(e_1, ..., e_n)$
Александр Клейн
Морфизм $T^*$-представлений

Мы можем представить точку $e \in p[A]|_{U_\alpha}$ в виде $(x, e_\alpha)$ и точку $e_i \in p[A]|_{U_\alpha}$ в виде $(x, e_{i\alpha})$. Мы можем представить точку $e \in p[A]|_{U_\beta}$ в виде $(x, e_{\beta})$ и точку $e_i \in p[A]|_{U_\beta}$ в виде $(x, e_{i\beta})$. Согласно (5.4)

(5.6) 
$$e_\beta = f_{\beta \alpha}(e_\alpha)$$
(5.7) 
$$e_{i\beta} = f_{\beta \alpha}(e_{i\alpha})$$

Согласно (5.5), операция в слое $A_x$ над окрестностью $U_\beta$ имеет вид

(5.8) 
$$e_\beta = \omega(e_{1\beta}, ..., e_{n\beta})$$

Подставив (5.6), (5.7) в (5.8) мы получим

$$f_{\beta \alpha}(e_\alpha) = \omega(f_{\beta \alpha}(e_{1\alpha}), ..., f_{\beta \alpha}(e_{n\alpha}))$$

Это доказывает, что $f_{\beta \alpha}$ является гомоморфизмом $\mathfrak{g}$-алгебры. □

Определение 5.7. Пусть $p[A] : A \to M$ и $p'[A'] : A' \to M'$ - две расслоенные $\mathfrak{g}$-алгебры. Мы будем называть расслоенный морфизм

$$f : A \to A'$$
гомоморфизмом расслоенных $\mathfrak{g}$-алгебр, если соответствующее отображение слоёв

$$f_x : A_x \to A'_x$$
является гомоморфизмом $\mathfrak{g}$-алгебры $A$. □

Определение 5.8. Пусть $p[A] : A \to M$ и $p'[A'] : A' \to M'$ - две расслоенные $\mathfrak{g}$-алгебры. Мы будем называть гомоморфизмом расслоенных $\mathfrak{g}$-алгебр

$$f : A \to A'$$
изоморфизмом расслоенных $\mathfrak{g}$-алгебр, если соответствующее отображение слоёв

$$f_x : A_x \to A'_x$$
является изоморфизмом $\mathfrak{g}$-алгебры $A$. □

Определение 5.9. Пусть $p[A] : A \to M$ - рассложенная $\mathfrak{g}$-алгебра и $A' - \mathfrak{g}$-подалгебра $\mathfrak{g}$-алгебры $A$. Рассложенная $\mathfrak{g}$-алгебра $p[A'] : A' \to M$ является расслоенной $\mathfrak{g}$-подалгеброй рассложенной $\mathfrak{g}$-алгебры $p[A]$, если гомоморфизм расслоенных $\mathfrak{g}$-алгебр $A' \to A$ является вложением слоёв. □

Важным обстоятельством в этом определении является гомоморфизм расслоенных $\mathfrak{g}$-алгебр. Если мы просто ограничимся фактом существования $\mathfrak{g}$-подалгебры в каждом слое, то мы можем разрушить непрерывность.

Мы определили операцию на базе приведенного декартова произведения расслоений. Если мы определим операцию на базе декартова произведения расслоений, то операция будет определена для любых элементов расслоения. Однако, если $p(a_i) = p(b_i), i = 1, ..., n$, то $p(\omega(a_1, ..., a_n)) = p(\omega(b_1, ..., b_n))$. Следовательно, операция определена между слоями и постепенно проекции переносятся на базу. Эта конструкция не отличается от факторизации $\mathfrak{g}$-алгебры и не создает новый элемент в теории расслоений. В то же время эта конструкция довольно проблематична с точки зрения перехода между различными картами расслоения и возможности определения операции над сечениями.

22
6. ПРЕДСТАВЛЕНИЕ РАССЛОЕННОЙ Г-АЛГЕРБЫ

Определение 6.1. Мы будем называть морфизм расслоений

$$T : \mathcal{E} \rightarrow \mathcal{E}$$

преобразованием расслоения, если соответствующее отображение слоёв

$$t_x : E_x \rightarrow E_x$$

является преобразованием слоя.

Теорема 6.2. Пусть $$U$$ - открытое множество базы $$M$$, на котором существует тривиализация расслоения $$p[E]$$. Пусть $$t$$ - преобразование расслоения $$p[E]$$. Пусть $$x \in M$$ и $$p' = t_x(p)$$ в слое $$E_x$$. Тогда для открытого множества $$V \subseteq M,$$ $$x \in V$$ и для открытого множества $$W' \subseteq E,$$ $$p \in W$$ существует открытое множество $$W \subseteq E,$$ $$p \in W$$, такое, что если $$x_1 \in V,$$ $$p_1 \in W,$$ то $$p'_1 = t_{x_1}(p_1) \in W'.$$

Доказательство. Согласно [11], стр. 58, множество вида $$V \times W,$$ где $$V$$ принадлежит базису топологии пространства $$U$$ и $$W$$ принадлежит базису топологии пространства $$E,$$ образует базис топологии пространства $$E.$$

Так как отображение $$t$$ непрерывно, то для открытого множества $$V \times W$$ существует открытое множество $$V \times W$$ такое, что $$t(V \times W) \subseteq V \times W'.$$ Это и есть содержание теоремы.

Теорема 6.3. Преобразование расслоения $$p[E]$$ отображает сечение в сечение.

Доказательство. Образ сечения $$s$$ при преобразовании $$t$$ определён из коммутативности диаграммы

$$\begin{array}{ccc}
\mathcal{E} & \xrightarrow{t} & \mathcal{E} \\
| & \downarrow{s} & | \\
M & \xrightarrow{s'} & \mathcal{E}
\end{array}$$

Непрерывность отображения $$s'$$ следует из теоремы 6.2.

Определение 6.4. Преобразование расслоения называется левосторонним преобразованием или $$T^-$$-преобразованием расслоения, если оно действует слева

$$u'_1 = tu'_1$$

Мы будем обозначать $$^*\mathcal{E}$$ или $$^*p[E]$$ множество невырожденных $$T^-$$-преобразований расслоения $$p[E].$$

Определение 6.5. Преобразование называется правосторонним преобразованием или $$*T$$-преобразованием расслоения, если оно действует справа

$$u'_1 = ut$$

Мы будем обозначать $$\mathcal{E}^*$$ или $$p[E]^*$$ множество $$*T$$-невырожденных преобразований расслоения $$p[A]$$.

Мы будем обозначать $$e$$ тождественное преобразование расслоения.
Александр Клейн
Морфизм $T^*$-представлений

Замечание 6.6. Так как $T^*$-преобразование расслоения определено послойно, то множество $p[E]$ является расслоением, изоморфным расслоению $p[E]$. Так как $E = E^E$, то мы можем определить в слое компактно-открытую топологию. Это даёт возможность ответить на вопрос: насколько близки преобразования, возникающие в соседних слоях. Мы будем полагать, что преобразования $t(x), t(x_1)$ близки, если существует открытое множество $W_{K,U} \subset E^E, t(x) \in W_{K,U}, t(x_1) \in W_{K,U}$.

Определение 6.7. Пусть на множестве $p[A]$ определена структура расслоенной 3-алгебры (2). Пусть $p[B]$ является расслоенной 3-алгеброй. Мы будем называть гомоморфизм расслоенных 3-алгебр

$$f : p[B] \to p[A]$$

левосторонним представлением или $T^*$-представлением расслоенной 3-алгебры $p[B]$.

Определение 6.8. Пусть на множестве $p[A]^*$ определена структура расслоенной 3-алгебры (2). Пусть $p[B]$ является расслоенной 3-алгеброй. Мы будем называть гомоморфизм расслоенных 3-алгебр

$$f : p[B] \to p[A]^*$$

правосторонним представлением или $\ast T$-представлением расслоенной 3-алгебры $p[B]$.

Мы распространяем на теорию расслоенных представлений соглашение, описанное в замечании [5]-2.2.14. Мы можем записать принцип двойственности в следующей форме

Теорема 6.9 (принцип двойственности). Любое утверждение, справедливое для $T^*$-представления расслоенной 3-алгебры $p[A]$, будет справедливо для $\ast T$-представления расслоенной 3-алгебры $p[A]$.

Существует два способа определить $T^*$-представление 3-алгебры $B$ в расслоении $p[A]$. Мы можем определить $T^*$-представление в слое, либо определить $T^*$-представление на множестве $\Gamma(p[A])$. В первом случае представление определяется одно и то же преобразование во всех слоях. Во втором случае картина менее ограничена, однако она не даёт полной картины разнообразия представлений в расслоении. Когда мы рассматриваем представление расслоенной 3-алгебры, мы сразу оговорим, что преобразования в разных слоях независимы. Требование непрерывной зависимости преобразования от слоя налагает дополнительные ограничения на $T^*$-представление расслоенной 3-алгебры. В то же время это ограничение позволяет изучать представления расслоенных 3-алгебр, когда в слое определена 3-алгебра, параметры которой (например, структурные константы группы $\text{Lie}$) непрерывно зависят от слоя.

Замечание 6.10. На языке диаграмм определение 6.7 означает следующее.

![Diagram](https://via.placeholder.com/150)

24
Отображение $F$ - инъекция. Так как мы ожидаем, что представление расслоенной $\mathcal{A}$-алгебры действует в каждом слое, то мы видим, что отображение $F$ - биекция. Не нарушая общности, мы можем положить, что $M = M'$ и отображение $F$ - тождественное отображение. Мы будем говорить, что задано представление расслоенной $\mathcal{A}$-алгебры $p[B]$ в расслоении $p[A]$ над множеством $M$. Поскольку база расслоения известна, то, чтобы не перегружать диаграмму деталями, мы будем описывать представление с помощью диаграммы

$$
\begin{array}{c}
\mathcal{E} \\
\downarrow \phi \\
\mathcal{E}'
\end{array}
\quad \begin{array}{c}
\text{M}
\end{array}

\text{Пусть задано $T^*$-представление $F$ расслоенной $\mathcal{A}$-алгебры $A$ в расслоении $q[E]$. Тогда для открытого множества $V \subset M$, $x \in V$ и для открытого множества $W_{K,U} \subset E^E$, $F(x,p) \in W_{K,U}$ существует открытое множество $W \subset A$, $p \in W$ такое, что $x_1 \in V$, $p_1 \in W$ как только $F(x_1,p_1) \in W_{K,U}$.}

\text{Доказательство. Утверждение теоремы является следствием непрерывности отображения $F$ и определения топологии расслоения $A$.}

\text{Пусть задано $T^*$-представление $F$ расслоенной $\mathcal{A}$-алгебры $A$ в расслоении $q[E]$. Пусть $a$ - сечение расслоения $A$. Тогда для открытого множества $V \subset M$, $x \in V$ и для открытого множества $W_{K,U} \subset E^E$, $F^d(a)(x) \in W_{K,U}$ существует открытое множество $W \subset A$, $a(x) \in W$ такое, что $x_1 \in V$, $a(x_1) \in W$ как только $F^d(a)(x_1) \in W_{K,U}$.}

\text{Доказательство. Следствие теоремы 6.11.}

\text{Определение 6.13. Мы будем называть $T^*$-представление расслоенной $\mathcal{A}$-алгебры $p[B]$ эффективным, если отображение (6.1) - изоморфизм расслоенной $\mathcal{A}$-алгебры $p[B]$ в $p[A]$.}

\text{Замечание 6.14. Если $T^*$-представление расслоенной $\mathcal{A}$-алгебры $A$ эффективно, мы можем отождествить сечение расслоенной $\mathcal{A}$-алгебры $A$ с его образом и записывать $T^*$-преобразование, порождённое сечением $a \in \Gamma(A)$, в форме}

$$
v' = av
$$

Если $T^*$-представление расслоенной $\mathcal{A}$-алгебры $A$ эффективно, мы можем отождествить сечение расслоенной $\mathcal{A}$-алгебры $A$ с его образом и записывать $T^*$-преобразование, порождённое сечением $a \in \Gamma(A)$, в форме

$$
v' = va
$$

\text{Определение 6.15. Мы будем называть $T^*$-представление $F$ расслоенной $\mathcal{A}$-алгебры $p[A]$ транзитивным, если $T^*$-представление $F_x$ $\mathcal{A}$-алгебры $A_x$ транзитивно для любого $x$. Мы будем называть $T^*$-представление расслоенной $\mathcal{A}$-алгебры однотранзитивным, если оно транзитивно и эффективно.}

25
Теорема 6.16. Допустим множество $E$ локально компактно. $T^*$-представление $\mathcal{F}$ расслоенной $\mathbb{S}$-алгебры

$$r[A]: A \rightarrow M$$

в расслоении

$$p[E]: E \rightarrow M$$

тривиально, если для любых сечений $a, b \in \Gamma(E)$ существует такое сечение $g \in \Gamma(A)$, что

$$b = \mathcal{F}^\text{id}(g)a$$

Доказательство. Рассмотрим сечения $a, b \in \Gamma(E)$. В слое $E(x)$ эти сечения определяют элементы $a(x), b(x) \in E(x)$. Согласно определению 6.15 определён $g(x) \in A(x)$ такой, что

$$b(x) = \mathcal{F}^\text{id}(g(x))a(x)$$

Пусть $U_M$ - открытое множество базы $M$, на котором существует тривиализация расслоения $p[E], x \in U_M$. Пусть $W' \subseteq E$ - открытое множество, $b(x) \in W'$. Тогда согласно теореме 6.2 существует открытое множество $W \subseteq E$, $a(x) \in W$, такое, что если $x_1 \in U_M$, $a(x_1) \in W$, то $b(x_1) = \mathcal{F}^\text{id}(g(x_1))(a(x_1)) \in W'$.

Если замыкание $\overline{\mathbb{W}}$ компактно, то положим $K = \overline{\mathbb{W}}$. Допустим замыкание $\overline{\mathbb{W}}$ не компактно. Тогда существует открытое множество $W(x), a(x) \in W(x)$ такое, что $\overline{W(x)}$ компактно. Аналогично существует открытое множество $W(x_1)$, $a(x_1) \in W(x_1)$ такое, что $\overline{W(x_1)}$ компактно. Множество $V = W \cap (W(x) \cup W(x_1))$ открыто, $a(x) \in V$, $a(x_1) \in V$, замыкание $\overline{V}$ компактно. Положим $K = \overline{V}$.

Пусть $U(x)$ - окрестность множества $g(x)K$. Пусть $U(x_1)$ - окрестность множества $g(x_1)K$. Положим $U = W' \cup U(x) \cup U(x_1)$. Тогда $W_{K,U} \subseteq E^E$ - открытое множество, $\mathcal{F}^\text{id}(g(x)) \in W_{K,U}, \mathcal{F}^\text{id}(g(x_1)) \in W_{K,U}$.

Согласно теореме 6.12 существует открытое множество $S \subseteq A, g(x) \in S, g(x_1) \in S$.

Теорема 6.17. Допустим множество $E$ локально компактно. $T^*$-представление $\mathcal{F}$ расслоенной $\mathbb{S}$-алгебры

$$r[A]: A \rightarrow M$$

в расслоении

$$p[E]: E \rightarrow M$$

однотрансивительно тогда и только тогда, когда для любых сечений $a, b \in \Gamma(E)$ существует одно и только одно сечение $g \in \Gamma(A)$ такое, что

$$b = \mathcal{F}^\text{id}(g)a$$

Доказательство. Следствие определений 6.13, 6.15 и теоремы 6.16.

7. Расслоенный морфизм

Теорема 7.1. Пусть на расслоении $p[E]: E \rightarrow M$ определена расслоенная эквивалентность $s[S]: S \rightarrow M$. Тогда существует расслоение

$$t[E/S]: E/S \rightarrow M$$
называемое фактор расслоением расслоения $\mathcal{E}$ по эквивалентности $S$. Морфизм расслоений $\text{nat}_S : \mathcal{E} \rightarrow \mathcal{E}/S$ называется рассложенным естественным морфизмом или рассложенным морфизмом отождествления.

Доказательство. Рассмотрим коммутативную диаграмму

(7.1)

Мы определим в $\mathcal{E}/S$ фактортопологию ([11], стр. 39), требуя непрерывность отображения $\text{nat}_S$. Согласно предложению [11]-1.3.6 отображение $t[E/S]$ непрерывно.

Так как эквивалентность $S$ определена только между точками одного слоя $E$, то классы эквивалентности принадлежат одному и тому же слою $E/S$ (сравни с замечанием к предложению 11-1.3.6).

Пусть $f : A \rightarrow B$ - рассложенный морфизм, база которого является тождественным отображением. Согласно определению [7]-4.8 существует обратное приведённое рассложенное соответствие $f^{-1}$. Согласно теоремам [7]-4.7 и [7]-5.2 $f^{-1} \circ f$ является 2-арным рассложенным отношением.

**Теорема 7.2.** Рассложное отношение $S = f^{-1} \circ f$ является рассложенной эквивалентностью на расслоении $A$. Существует разложение рассложенного морфизма $f$ в произведение рассложенных морфизмов $f = i j$

$$
\begin{array}{c}
A/S \xrightarrow{i} f(A) \\
\downarrow j \quad \downarrow f \\
A \xrightarrow{i} B
\end{array}
$$

$j = \text{nat}_S$ - естественный гомоморфизм $j(a) = j(a)$

t - изоморфизм $r(a) = t(j(a))$

$i$ - вложение $r(a) = i(r(a))$

Доказательство. Утверждение теоремы проверяется в слое. Необходимо также проверить, что эквивалентность непрерывно зависит от слоя.
8. Свободное $T^*$-представление расслоенной группы

Отображение $\operatorname{nat}S$ не порождает расслоения, так как разные классы эквивалентности, вообще говоря, не гомоморфизмы. Однако доказательство теоремы 7.1 подразумевает конструкцию, очень напоминающую построение, предложенное в [12], стр. 16 - 17.

Определение 8.1. Рассмотрим $T^*$-представление $f$ расслоенной группы $p|G|$ в расслоении $M$. Расслоенная малая группа или расслоенная группа стабилизации сечения $h \in \Gamma(M)$ - это множество

\[ G_h = \{g \in \Gamma(G) : f(g)h = h\} \]

Теорема 8.2. Рассмотрим $T^*$-представление $f$ расслоенной группы $p|G|$ в расслоении $r[E] : E \to \to M$. Допустим $G_h$ - расслоенная малая группа сечения $h$. Для любого $x \in M$ слой $G_{h,x}$ расслоенной малой группы сечения $h$ является подгруппой малой группы $G_{h(x)}$ элемента $h(x) \in E_x$.

Доказательство. Выберем сечение $g \in \Gamma(G_h)$ так, что преобразование $f(g)$ оставляет неподвижным сечение $h \in \Gamma(E)$. Следовательно, преобразование $f(h(x))$ оставляет неподвижным $h(x) \in E_x$.

Определение 8.3. Мы будем называть $T^*$-представление $f$ расслоенной группы $p|G|$ свободным, если для любого $x \in M$ $T^*$-представление $f_x$ группы $G_x$ в слое $E_x$ свободно.

Теорема 8.4. Если определено свободное $T^*$-представление $f$ расслоенной группы $p|G|$ в расслоении $r[E] : E \to \to M$, то определено взаимно однозначное соответствие между орбитами представления в слое и группой $G$. Если группа $G$ - топологическая группа, то орбита представления в слое гомоморфна группе $G$.

Доказательство.

Рассмотрим ковариантное свободное $T^*$-представление $f$ расслоенной группы $p|G|$ на расслоении $p|E|$. Это $T^*$-представление определяет на $a|E|$ расслоенное отображение эквивалентности $S$, $(p, q) \in S$ если $p$ и $q$ принадлежат общей орбите. Так как представление в каждом слое свободно, все классы эквивалентности гомоморфны группе $G$. Следовательно, отображение $\operatorname{nat}S$ является проекцией расслоения $\operatorname{nat}S[G] : E \to \to E/S$. Мы также будем пользоваться символом $S = G^*$. Мы можем представить диаграмму (7.1) в виде конструкции

\[
\begin{align*}
\mathcal{E} & \xrightarrow{\operatorname{nat}S[G]} \mathcal{E}/S \\
\mathcal{E}/S & \xrightarrow{\mathcal{E}/S} M
\end{align*}
\]

Мы будем называть расслоение $\operatorname{nat}S[G]$ расслоением уровня 2.
Пример 8.5. Рассмотрим представление группы вращений $SO(2)$ в $R^2$. Все точки, кроме точки $(0, 0)$, имеют тривиальную малую группу. Таким образом, на множество $R^2 \setminus \{(0, 0)\}$ определено свободное представление группы $SO(2)$.

Мы не можем воспользоваться этой операцией в случае расслоения $p[R^2]$ и представления расслоенной группы $t[SO(2)]$. Пусть $S$ - отношение расслоенной эквивалентности. Расслоение $p[R^2 \setminus \{(0, 0)\}] / t[SO(2)]$ не является полным. В результате предельный переход может привести в несуществующий слой. Поэтому мы предпочитаем рассматривать расслоение $p[R^2] / t[SO(2)]$, имея в виду, что слой над точкой $(x, 0, 0)$ - вырожден.

Мы упростим обозначения и представим полученную конструкцию в виде

$$
p[E_2, E_1] : E_2 \to \to E_1 \to \to M
$$

где мы предполагаем расслоения

$$
p_2[E_2] : E_2 \to \to E_1 \quad p_1[E_1] : E_1 \to \to \to M
$$

Аналогичным образом мы можем рассматривать расслоение уровня $n$

$$
p[E_n, ..., E_1] : E_n \to \to \to ... \to \to E_1 \to \to \to M
$$

(8.1)

Последовательность расслоений (8.1) мы будем называть башней расслоений. Это определение я дал по аналогии с башней Постника (13]). Башня Постника - это башня расслоений. Слои расслоения уровня $n$ - это гомотопическая группа порядка $n$. Подобные конструкции известны, однако я привёл определение башни расслоений, поскольку оно естественным образом возникает из вышеизложенного текста.

Я хочу рассмотреть ещё один пример башни расслоений, который привлек моё внимание ([14], [15], часть 2). В качестве базы выберем множество $J^0(n, m)$ 0-джетов отображений из $R^n$ в $R^m$. В качестве расслоения уровня $p$ выберем множество $J^p(n, m)$ $p$-джетов отображений из $R^n$ в $R^m$.

9. Морфизм $T^\ast$-представлений расслоенной $\mathfrak{f}$-алгебры

Определение 9.1. Рассмотрим $T^\ast$-представление

$$
\mathcal{F} : A \to ^\ast \mathcal{P}
$$

расслоенной $\mathfrak{f}$-алгебры $a[A] : A \to \to M$ в расслоении $p[P] : P \to \to M$ и $T^\ast$-представление

$$
\mathcal{G} : B \to ^\ast \mathcal{Q}
$$

расслоенной $\mathfrak{f}$-алгебры $b[B] : B \to \to M$ в расслоении $q[Q] : Q \to \to M$. Пара отображений

$$
(\mathcal{C} : A \to B, \quad \mathcal{R} : \mathcal{P} \to \mathcal{Q})
$$

таких, что $\mathcal{C}$ - гомоморфизм расслоенной $\mathfrak{f}$-алгебры и

$$
\mathcal{R}(\mathcal{F}(a)m) = \mathcal{G}(\mathcal{C}(a))\mathcal{R}(m)
$$

называется морфизмом расслоенных $T^\ast$-представлений из $\mathcal{F}$ в $\mathcal{G}$. Мы также будем говорить, что определён морфизм $T^\ast$-представлений расслоенной $\mathfrak{f}$-алгебры.
Морфизм $T^*$-представлений расслоенной $\mathfrak{F}$-алгебры можно представить в виде диаграммы

Отсюда следует, что в слое морфизм $T^*$-представлений расслоенной $\mathfrak{F}$-алгебры является морфизмом $T^*$-представлений $\mathfrak{F}$-алгебры.

**Теорема 9.2.** Если $T^*$-представление
\[\mathcal{F}: A \rightarrow *\mathcal{P}\]
расслоенной $\mathfrak{F}$-алгебры $a[A]: A \rightarrow M$ в расслоении $p[P]: \mathcal{P} \rightarrow M$ одно-травитивно и $T^*$-представление
\[\mathcal{G}: B \rightarrow *\mathcal{Q}\]
расслоенной $\mathfrak{F}$-алгебры $b[B]: B \rightarrow M$ в расслоении $q[Q]: Q \rightarrow M$ одно-травитивно, то существует морфизм
\[(\mathcal{C}: A \rightarrow B, \quad \mathcal{R}: \mathcal{P} \rightarrow \mathcal{Q})\]
расслоенных $T^*$-представлений из $\mathcal{F}$ в $\mathcal{G}$.

Доказательство. Следствие теоремы 2.5 и определения 9.1. \qed

**Теорема 9.3.** Пусть
\[\mathcal{F}: A \rightarrow *\mathcal{M}\]
$T^*$-представление расслоенной $\mathfrak{F}$-алгебры $A$,
\[\mathcal{G}: B \rightarrow *\mathcal{N}\]
$T^*$-представление расслоенной $\mathfrak{F}$-алгебры $B$,
\[\mathcal{H}: C \rightarrow *\mathcal{L}\]
$T^*$-представление расслоенной $\mathfrak{F}$-алгебры $C$. Пусть определены морфизмы $T^*$-представлений расслоенной $\mathfrak{F}$-алгебры
\[(\mathcal{U}: A \rightarrow B, \quad \mathcal{P}: \mathcal{M} \rightarrow \mathcal{N})\]
\[(\mathcal{V}: B \rightarrow C, \quad \mathcal{Q}: \mathcal{N} \rightarrow \mathcal{L})\]
Тогда определён морфизм $T^\star$-представлений $\mathfrak{g}$-алгебры

$$( W : \mathfrak{a} \to \mathfrak{c}, \ R : \mathfrak{m} \to \mathfrak{e} )$$

где $W = U \mathfrak{v}$, $R = P Q$. Мы будем называть морфизм $(W, R)$ расслоенных $T^\star$-представлений из $F$ в $\mathcal{H}$ произведением морфизмов $(U, P)$ и $(V, Q)$ $T^\star$-представлений расслоенной $\mathfrak{g}$-алгебры.

Доказательство. Отображение $W$ является гомоморфизмом расслоенной $\mathfrak{g}$-алгебры $A$ в расслоенную $\mathfrak{g}$-алгебру $C$. Нам надо показать, что пара отображений $(W, R)$ удовлетворяет (23):

$$R(F(a)m) = QP(F(a)m)$$
$$= Q(G(U(a))P(m))$$
$$= \mathcal{H}(U(a))QP(m))$$
$$= \mathcal{H}(W(a))R(m)$$

\[ \square \]

\[ \text{Теорема 9.4. Пусть} \]

$F : \mathfrak{a} \to ^{\ast}D$

$T^\star$-представление расслоенной $\mathfrak{g}$-алгебры $A$,

$G : B \to ^{\ast}E$

$T^\star$-представление расслоенной $\mathfrak{g}$-алгебры $B$. Пусть

$( R_1 : \mathfrak{a} \to B, \ R_2 : D \to E )$

морфизм расслоенных представлений из $F$ в $G$. Положим

$$S_1 = R_1 R_1^{-1} \quad S_2 = R_2 R_2^{-1}$$

Тогда для отображений $R_1$, $R_2$ существуют разложения, которые можно описать диаграммой...
Александр Клейн
Морфизм $T^\ast$-представлений

• $s = \ker R_1$ является конгруэнцией на $A$. Существует разложение гомоморфизма $R_1$

(9.3) $R_1 = \mathcal{I}_1 \mathcal{I}_1 \mathcal{I}_1$

$\mathcal{J}_1 = \text{nat } s$ - естественный гомоморфизм

(9.4) $\mathcal{J}_1(a) = \mathcal{J}_1(a)$

$\mathcal{I}_1$ - изоморфизм

(9.5) $R_1(a) = T_1(\mathcal{J}_1(a))$

$\mathcal{I}_1$ - вложение

(9.6) $R_1(a) = T_1(R_1(a))$

• $S_2 = \ker R_2$ является эквивалентностью на $D$. Существует разложение отображения $R_2$

(9.7) $R_2 = \mathcal{I}_2 \mathcal{I}_2 \mathcal{I}_2$

$\mathcal{J}_2 = \text{nat } S_2$ - сюръекция

(9.8) $\mathcal{J}_2(m) = \mathcal{J}_2(m)$

$\mathcal{I}_2$ - биекция

(9.9) $R_2(m) = T_2(\mathcal{J}_2(m))$

$\mathcal{I}_2$ - вложение

(9.10) $R_2(m) = T_2(R_2(m))$

• $F_1 - T^\ast$-представление $\mathfrak{g}$-алгебры $A/S_1$ в $D/S_2$

• $G_1 - T^\ast$-представление $\mathfrak{g}$-алгебры $R_1A$ в $R_2D$

• Существует разложение морфизма представлений

$(R_1, R_2) = (\mathcal{I}_1, T_1) (\mathcal{I}_2, T_2) (\mathcal{J}_1, \mathcal{J}_2)$

Доказательство. Справедливость диаграмм (1), (2) следует из теоремы 7.2. Остальные утверждения теоремы проверяются в слое и следуют из теоремы 2.10.

10. Векторное расслоение над телом

Чтобы определить $T^\ast$-представление

$F : R \to \ast V$

рассложенного кольца $R$ на расслоении $V$ мы должны определить структуру рассложенного кольца на расслоении $\ast V$.

Теорема 10.1. $T^\ast$-представление $F$ рассложенного кольца $R$ на расслоении $V$ определено тогда и только тогда, когда определены $T^\ast$-представления рассложенных мультипликативной и аддитивной групп рассложенного кольца $R$ и эти рассложенные $T^\ast$-представления удовлетворяют соотношению

$F(a(b + c)) = F(a)F(b) + F(a)F(c)$

Доказательство. Теорема следует из определения 6.7.
Теорема 10.2. $T^*$-представление расслоенного тела $D$ эффективно, если эффективно $T^*$-представление расслоенной мультипликативной группы тела $D$.

Доказательство. Согласно определениям 6.13 и 5.8 утверждение теоремы проверяется в слое. В слое утверждение теоремы является следствием теоремы [5]-1.1.3.

Согласно замечанию 6.14, если представление расслоенного тела эффективно, мы отождествляем сечение расслоенного тела и соответствующее ему $T^*$-преобразование.

Определение 10.3. $\mathcal{V}$ - $D^*$-векторное расслоение над расслоенным телом $D$, если $\mathcal{V}$ - расслоенная абелева группа и определено эффективное $T^*$-представление расслоенного тела $D$. Сечение $D^*$-векторного расслоения называется $D^*$-векторным полем.

Теорема 10.4. $D^*$-векторные поля $\mathcal{V}$ удовлетворяют соотношениям

- закону ассоциативности

\[(ab)m = a(bm)\]

- закону дистрибутивности

\[a(m + n) = am + an\]

\[(a + b)m = am + bm\]

- закону унитарности

\[1m = m\]

dля любых $a, b \in \Gamma(D)$, $m, n \in \Gamma(\mathcal{V})$. Мы будем называть $T^*$-представление $D^*$-произведением векторного поля на скаляр.

Доказательство. Утверждение теоремы проверяется в слое и является следствием теоремы [5]-1.1.5.

Определение 10.5. Пусть $\mathcal{V}$ - $D^*$-векторное расслоение над расслоенным телом $D$. Подрасслоение $\mathcal{N} \subset \mathcal{V}$ - подрасслоение $D^*$-векторного расслоения $\mathcal{V}$, если $\pi, \sigma \in \Gamma(\mathcal{N})$ и $k\pi \in \Gamma(\mathcal{N})$ для любых $\pi, \sigma \in \Gamma(\mathcal{N})$ и для любого $k \in \Gamma(D)$.

Определение 10.6. Допустим $\pi, \sigma \in \Gamma(\mathcal{V})$ - $D^*$-векторные поля. Мы будем говорить, что векторное поле $\pi \sigma$ является $D^*$-линейной комбинацией векторных полей $\pi$ и $\sigma$, если мы можем записать $\pi \sigma = a\pi + b\sigma$, где $a$ и $b$ - скаляры.

Замечание 10.7. Мы распространяем на векторное расслоение и его тип соглашение, описанное в замечании [5]-1.2.6. Предполагается, что слоем $D^*$-векторного расслоения является $D^*$-векторное пространство.
11. $D^*$-базис векторного расслоения

Определение 11.1. Векторные поля $a\overline{\varphi}, \ a \in I \ D^*$-векторного расслоения $V$ $D^*$-линейно независимы, если $c = 0$ следует из уравнения

$$e^*\overline{\varphi} = 0$$

В противном случае, векторные поля $a\overline{\varphi} D^*$-линейно зависимы. □

Определение 11.2. Множеству векторных полей $\overline{\varphi} = (a\overline{\varphi}, a \in I)$ - $D^*$-базис векторного расслоения, если векторы $a\overline{\varphi} D^*$-линейно независимы и добавление любого вектора к этой системе делает эту систему $D^*$-линейно зависимой.

Теорема 11.3. Если $\overline{\varphi} - D^*$-базис векторного расслоения $V$, то любое векторное поле $\overline{\varphi} \in V$ имеет одно и только одно разложение

$$(11.1) \quad \overline{\varphi} = v^*\overline{\varphi}$$

относительно этого $D^*$-базиса.

Доказательство. Утверждение теоремы проверяется в слое и является следствием теоремы [3]-1.3.3. □

Определение 11.4. Мы будем называть матрицу в разложении (11.1) координатной матрицей векторного поля $\overline{\varphi}$ в $D^*$-базисе $\overline{\varphi}$ и её элементы координатами векторного поля $\overline{\varphi}$ в $D^*$-базисе $\overline{\varphi}$. □

Согласно построению все операции над векторными полями выполняются в слое и поэтому в большинстве случаев мы можем применять методы теории $D^*$-векторных пространств. Однако существуют особенности. Координатная матрица, так же как и координаты векторного поля, является функцией координат точки на базе.4 Это может привести к различным ситуациям. Например, $D^*$-линейная зависимость векторных полей в слое зависит от того, выражена или нет координатная матрица соответствующих векторов. Это одна из причин, почему мы имеем проблему определения размерности, если мы рассматриваем $D^*$-векторное расслоение над кольцом сечений $\Gamma(D)$. Рассматривая $D^*$-векторное расслоение как расслоенное представление, мы получаем большую гибкость в определении $D^*$-базиса.

Теорема 11.5. Множество координат векторного поля $\overline{\varphi}$ в $D^*$-базисе $\overline{\varphi}$ порождают $D^*$-векторное расслоение $D^\alpha$, изоморфное $D^*$-векторному расслоению $V$. Это $D^*$-векторное расслоение называется координатным, $D^*$-векторным расслоением, а изоморфизм расслоенными координатным $D^*$-изоморфизмом.

Доказательство. Допустим векторы $\overline{\varphi}$ и $\overline{\psi} \in V$ имеют разложение

$$\overline{\varphi} = a^*\overline{\varphi}$$

$$\overline{\psi} = b^*\overline{\varphi}$$

в базисе $\overline{\varphi}$. Тогда

$$\overline{\varphi} + \overline{\psi} = a^*\overline{\varphi} + b^*\overline{\varphi} = (a + b)^*\overline{\varphi}$$

$$m\overline{\varphi} = m(a^*\overline{\varphi}) = (ma)^*\overline{\varphi}$$

4Однако вопрос о непрерывности этой функции вновь остался открытым.
для любого \( m \in D \). Таким образом, определения в векторном расслоении определены по координатно

\[
(a + b)^a = a^a + b^a \\
(ma)^a = ma^a
\]

Это доказывает теорему. \( \square \)

Так как мы линейная комбинация определена в слое, принцип двойственности, сформулированный в теоремах [3]-4.3.8, [5]-4.3.9, сохраняется для векторных расслоений.

12. \( D^*\)-линейное отображение векторных расслоений

**Определение 12.1.** Пусть \( A - S^*\)-векторное расслоение. Пусть \( B - T^*\)-векторное расслоение. Мы будем называть морфизм

\[
\mathcal{F} : S \longrightarrow T \\
\mathcal{H} : A \longrightarrow B
\]

\( T\)-представлений рассложенного тела в рассложенной апериодичной группе \((S^*, T^*)\)-линейным отображением векторных расслоений. \( \square \)

Согласно теореме 9.4 при изучении \((S^*, T^*)\)-линейного отображения мы можем ограничиться случаем \( S = T \).

**Определение 12.2.** Пусть \( A \) и \( B - D^*\)-векторные расслоения. Мы будем называть отображение

\[
(12.1) \\
\mathcal{H} : A \rightarrow B
\]

\( D^*\)-линейным отображением векторных расслоений, если

\[
(12.2) \\
\mathcal{H}(a^* \cdot m) = a^* \cdot \mathcal{H}(m)
\]

для любых \( a^a \in \Gamma(D) \), \( a \cdot m \in \Gamma(A) \). \( \square \)

**Teorema 12.3.** Пусть \( \vec{f} = (a^a \cdot a \in I) - D^*\)-базис в векторном рассложении \( A \) и \( \vec{\pi} = (b, b \in J) - D^*\)-базис в векторном рассложении \( B \). Тогда \( D^*\)-линейное отображение (12.1) векторных расслоений имеет представление

\[
(12.3) \\
b = a^* \cdot \mathcal{H}
\]

относительно заданных базисов. Здесь

- \( a \) - координатная матрица векторного поля \( \vec{f} \) относительно \( D^*\)-базиса \( \vec{f} \)
- \( b \) - координатная матрица векторного поля \( \vec{b} = \mathcal{H}(\vec{\pi}) \)

относительно \( D^*\)-базиса \( \vec{f} \)
- \( \mathcal{H} \) - координатная матрица множества векторных полей \( \mathcal{H}(\vec{a} \cdot \vec{f}) \) в \( D^*\)-базисе \( \vec{f} \), которую мы будем называть матрицей рассложенного \( D^*\)-линейного отображения относительно базисов \( \vec{f} \) и \( \vec{\pi} \)

**Доказательство.** Векторное поле \( \vec{\pi} \in \Gamma(A) \) имеет разложение

\[
\vec{\pi} = a^* \cdot \vec{f}
\]

относительно \( D^*\)-базиса \( \vec{f} \). Векторное поле \( \vec{b} = f(\vec{\pi}) \in \Gamma(B) \) имеет разложение

\[
(12.4) \\
\vec{b} = b^* \cdot \vec{e}
\]

35
Александр Клейн  
Морфизм $T^*$-представлений

относительно $D^*$-базиса $\overline{e}$.

Так как $\overline{H} - D^*$-линейное отображение, то на основании (12.2) следует, что

(12.5) \[ \overline{b} = \overline{H}(\overline{a}) = \overline{H}(a^* \overline{f}) = a^* \overline{H}(\overline{f}) \]

$\overline{H}(a \overline{f})$ также векторное поле векторного расслоения $B$ и имеет разложение

(12.6) \[ \overline{H}(a \overline{f}) = a^* H^* \overline{\pi} = a^* H^* \overline{\pi} \]

относительно базиса $\overline{e}$. Комбинируя (12.5) и (12.6), мы получаем

(12.7) \[ \overline{b} = a^* H^* \overline{\pi} \]

(12.3) следует из сравнения (12.4) и (12.7) и теоремы 11.3. \[ \square \]

На основании теоремы 12.3 мы идентифицируем расслоенное $D^*$-линейное отображение (12.1) векторных пространств и матрицу его представления (12.3).

**Теорема 12.4.** Пусть

$\overline{f} = (a \overline{f}, a \in I)$

$D^*$-базис в векторном расслоении $A$, $\overline{\pi} = (b \overline{e}, b \in J)$

$D^*$-базис в векторном расслоении $B$, и

$\overline{g} = (c \overline{e}, c \in L)$

$D^*$-базис в векторном расслоении $C$. Предположим, что мы имеем коммутативную диаграмму $D^*$-линейных отображений

$A \xrightarrow{\pi} B \xrightarrow{\overline{\pi}} C$

где $D^*$-линейное отображение $F$ имеет представление

(12.8) \[ b = a^* F \]

относительно заданных базисов и $D^*$-линейное отображение $G$ имеет представление

(12.9) \[ c = b^* G \]

относительно заданных базисов. Тогда $D^*$-линейное отображение $H$ имеет представление

(12.10) \[ c = a^* F^* G \]

относительно заданных базисов.

**Доказательство.** Доказательство утверждения следует из подстановки (12.8) в (12.9). \[ \square \]

Записывая $D^*$-линейное отображение в форме $^*-$произведения, мы можем переписать (12.2) в виде

(12.11) \[ (ka)^* F = k(a^* F) \]

Утверждение теоремы 12.4 мы можем записать в виде

(12.12) \[ (a^* F)^* G = a^* (F^* G) \]
Равенства (12.11) и (12.12) представляют собой закон ассоциативности для $D^*$-линейных отображений векторных расслоений. Это позволяет нам писать подобные выражения не пользуясь скобками.

Равенство (12.3) является координатной записью расслоенного $D^*$-линейного отображения. На основе теоремы 12.3 бескоординатная запись также может быть представлена с помощью $\ast$-произведения

$\overline{b} = \overline{a} \ast \overline{\mathcal{F}} = a^\ast \mathcal{F}^\ast \mathcal{F} = a^\ast \mathcal{F}^\ast \overline{\mathcal{F}}$

Если подставить равенство (12.13) в теорему 3.4, то мы получим цепочку равенств

$\overline{e} = \overline{b} \ast \overline{g} = b^\ast \overline{e} \ast \overline{g} = b^\ast \mathcal{G}^\ast \overline{g}$
$\overline{e} = \overline{a} \ast \overline{\mathcal{F}} \ast \overline{\mathcal{G}} = a^\ast \mathcal{F}^\ast \mathcal{G}^\ast \mathcal{G}$

13. Список литературы

[1] Сергей Ленин, Алгебра, М., Мир, 1968
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982),
eprint http://www.math.uwaterloo.ca/~suburris/htdocs/ualg.html
(The Millennium Edition)
[3] А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, М., Наука, 1976
[4] John G. Hocking, Gail S. Young, Topology, Courier Dover Publications, 1988
[5] Александр Клейн, Лекции по линейной алгебре над телом,
eprint arXiv:math.GM/0701238 (2007)
[6] Александр Клейн, Викобильную матрицу,
eprint arXiv:math.OA/0612111 (2006)
[7] Александр Клейн, Расслоенное соответствие,
eprint arXiv:0707.2246 (2007)
[8] П. Кёйн, Универсальная алгебра, М., Мир, 1968
[9] C. R. F. Maunder, Algebraic Topology, Dover Publications, Inc, Mineola, New York, 1996
[10] Ж. Поммере, Системы уравнений с частными производными и псевдогруппы Ли, М., Мир, 1983
[11] Н. Бирбаки, Общая топология, основные структуры, перевод с французского Д. А. Райкова, М. Наука, 1968
[12] Постников М. М., Лекции по геометрии, семестр IV, Дифференциальная геометрия, М. Наука, 1983
[13] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
[14] А. М. Виноградов, И. С. Крышельницкий, В. В. Лычагин, Введение в геометрию нелинейных дифференциальных уравнений, М. Наука, 1986
[15] А. М. Виноградов, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, American Mathematical Society, 2001
14. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

$D^*$-, линейно зависящие векторные поля 34
$D^*$-, близкие векторные расслоения 34
$D^*$-, линейно независимые векторные поля 34
$D^*$-, линейное отображение векторных пространств 12
$D^*$-, линейное отображение векторных расслоений 35
$D^*$-, векторное поле 33
$D^*$-, векторное расслоение 33
$D^*$-, линейная комбинация векторных полей 33
$D^*$-, произведение векторного поля на скаляр 33

$(S^*, T^*)$-, линейное отображение векторных пространств 11
$(S^*, T^*)$-, линейное отображение векторных расслоений 35
*$T$-представление $\mathfrak{F}$-алгебры $A$ в множестве $M^2$ 24
*$T$-представление расслоенной $\mathfrak{F}$-алгебры 24
*$T$-представление 1
*$T$-представление расслоения 23
*T$-представление, согласованное с эквивалентностью 6
*T$-представление $\mathfrak{F}$-алгебры $A$ в множестве $M^2$ 24
*T$-представление расслоенной $\mathfrak{F}$-алгебры 24
*T$-представление 1
*T$-представление расслоения 23

деривация операции 18
база отображения 16
база расслоения 29
векторное расслоение 21
гомоморфизм расслоенной $\mathfrak{F}$-алгебры 22
dекартова степень $A$ множества $B$ 15
dекартова степень $A$ расслоения $B$ 18
закон ассоциативности для $D^*$-, линейных отображений векторных пространств 13
закон ассоциативности для $D^*$-, линейных отображений векторных расслоений 37
закон ассоциативности для $D^*$-, линейных отображений векторных полей 33
закон дистрибутивности для $D^*$-, линейных отображений векторных расслоений 35
закон унитарности для $D^*$-, линейных отображений векторных расслоений 35
изоморфизм расслоенной $\mathfrak{F}$-алгебры 22
компактно-открытая топология 16
координатная матрица векторного поля в $D^*$-, базисе 34
координатное $D^*$-, векторное расслоение 34
координаты векторного поля в $D^*$-, базисе 34
левостороннее представление $\mathfrak{F}$-алгебры $A$ в множестве $M^2$ 2
левостороннее представление расслоенной $\mathfrak{F}$-алгебры 24
левостороннее представление 1
левостороннее представление расслоения 23
лифт отображения 16
локально компактное в точке $p$ пространство 15
локально компактное пространство 15
матрица $D^*$-, линейного отображения 12
матрица расслоенной $D^*$-, линейного отображения 35
модуль $T$-, представление расслоенной $\mathfrak{F}$-алгебры 29
модуль $T$-, представление $\mathfrak{F}$-алгебры 4
модуль $T$-, представление $\mathfrak{F}$-алгебры в $\mathfrak{F}$-алгебре 11
модуль $T$-, представлений из $f$ в г 4
модуль расслоенных $T$-, представлений из $f$ в г 29
однородное интегрирование 2
однородное интегрирование расслоенной $\mathfrak{F}$-алгебры 25
ограниченная операция на расслоении 18
ограничение 17
ограниченное $D^*$-, векторное расслоение 33
правостороннее представление $\mathfrak{F}$-алгебры $A$ в множестве $M^2$ 2
правостороннее представление расслоенной $\mathfrak{F}$-алгебры 24
пространство преобразования 1
пространство множества 1
пространство расслоения 23
проекция расслоения $E$ над слоем $E$ 14
произведение морфизмов $T^*$-представлений $\mathfrak{g}$-алгебры 6
произведение морфизмов $T^*$-представлений расслоенной $\mathfrak{g}$-алгебры 31
расслоение уровня $v$ 29
расслоение уровня 2 28
расслоенная $\mathfrak{g}$-алгебра 21
расслоенная $\mathfrak{g}$-подалгебра 22
расслоенная группа 21
расслоенная группа стабилизации 28
расслоенная малая группа 28
расслоенное кольцо 21
расслоенное подмножество 17
расслоенный естественный морфизм 27
расслоенный координатный $D^*$-*морфизм 31
расслоенный морфизм из расслоения $A$ в $B$ 16
расслоенный морфизм огридиеренности 27
свободное $T^*$-представление расслоенной группы 28
tранзитивное представление $\mathfrak{g}$-алгебры $A$ 2
tранзитивное представление расслоенной $\mathfrak{g}$-алгебры 25
фактор расслоение 27
eффективное $T^*$-представление расслоенного тела 33
eффективное представление $\mathfrak{g}$-алгебры $A$ 2
eффективное представление расслоенной $\mathfrak{g}$-алгебры 25
15. Специальные символы и обозначения

$q[B]^{|A|}$ декартова степень $A$ расслоения $B$ 18
$B^{|A|}$ декартова степень $A$ множества $B$ 15
$D^n$ координатное $D^*$-векторное расслоение 31

$\mathcal{F} = (\alpha, a \in I)$ базис в $D^*$-векторного расслоения 31
e тождественное преобразование расслоения 23
$\mathcal{E}^*$ множество невырожденных $T^*$-преобразований расслоения $\mathcal{E}$ 23
$\mathcal{E}^*$ множество невырожденных $T^*$-преобразований расслоения $\mathcal{E}$ 23

$(\mathcal{F} : A \to B, f : M \to N)$ расслоенный морфизм из расслоения $A$ в $B$ 16
$f$ гомоморфизм расслоённых алгебр 22
$\mathcal{G}_h$ расслоенная малая группа сечения $h$ 28
$\mathcal{G}_h$ расслоенная группа стабилизации сечения $h$ 28

$M^*$ множество $T$-преобразований множества $M$ 1
$\mathcal{M}$ множество $T^*$-преобразований множества $M$ 1
$p[\mathcal{E}] : \mathcal{E} \to M$ расслоение 14
$p[\mathcal{E}_2, E_1]$ расслоение уровня 2 29
$p[\mathcal{E}_2, \ldots, E_1]$ расслоение уровня $n$ 29
$p[\mathcal{E}]^*$ множество невырожденных $T^*$-преобразований расслоения $p[\mathcal{E}]$ 23
$\mathcal{M}^*$ множество невырожденных $T^*$-преобразований расслоения $p[\mathcal{E}]$ 23
d тождественное преобразование 1
$\Gamma(p[\mathcal{E}])$ множество сечений расслоения 14
$a[A] \subseteq b[B]$ расслоенное подмножество 17
$A \subseteq B$ подрасслоение 17