MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects?

Nazari-Shafti, Timo Z; Neuber, Sebastian; Duran, Ana G; Exarchos, Vasileios; Beez, Christien M; Meyborg, Heike; Krüger, Katrin; Wolint, Petra; Buschmann, Johanna; Böni, Roland; Seifert, Martina; Falk, Volkmar; Emmert, Maximilian Y

Abstract: The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT). The identified miRNAs were then compared to known targets from the literature to discover possible adverse effects prior to clinical use. Our data show that while many cardioprotective miRNAs such as miR-22-3p, miR-26a-5p, miR-29c-3p, and miR-125b-5p were present in CB- and AT-MSC-derived EVs, a large number of known oncogenic and tumor suppressor miRNAs such as miR-16-5p, miR-23a-3p, and miR-191-5p were also detected. These findings highlight the importance of quality assessment for therapeutically applied EV preparations.

DOI: https://doi.org/10.3390/biom10091353

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Nazari-Shafti, Timo Z; Neuber, Sebastian; Duran, Ana G; Exarchos, Vasileios; Beez, Christien M; Meyborg, Heike; Krüger, Katrin; Wolint, Petra; Buschmann, Johanna; Böni, Roland; Seifert, Martina; Falk, Volkmar; Emmert, Maximilian Y (2020). MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects? Biomolecules, 10(9):1353. DOI: https://doi.org/10.3390/biom10091353
MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects?

Timo Z. Nazari-Shafti, Sebastian Neuber, Ana G. Duran, Vasileios Exarchos, Christien M. Beez, Heike Meyborg, Katrin Krüger, Petra Wolint, Johanna Buschmann, Roland Böni, Martina Seifert, Volkmar Falk and Maximilian Y. Emmert

Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; neuber@dhzb.de (S.N.); ana.garcia-duran@charite.de (A.G.D.); exarchos@dhzb.de (V.E.); hmyeyborg@dhzb.de (H.M.); falk@dhzb.de (V.F.)

German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany

Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; christien.beez@charite.de (C.M.B.); martina.seifert@charite.de (M.S.)

Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany

Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland

Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; k.krueger@charite.de

Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; petra.wolint@usz.ch (P.W.); johanna.buschmann@usz.ch (J.B.)

White House Center for Liposuction, 8044 Zurich, Switzerland; info@whitehousecenter.ch

Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany

Institute for Regenerative Medicine, University of Zurich, 8044 Zurich, Switzerland

Wyss Zurich, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland

Correspondence: nazari@dhzb.de (T.Z.N.-S.); emmert@dhzb.de (M.Y.E.); Tel.: +49-30-593-2024 (T.Z.N.-S.); +49-30-593-2030 (M.Y.E.)

† These authors contributed equally to this work.

Received: 5 August 2020; Accepted: 16 September 2020; Published: 22 September 2020

Abstract: The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT). The identified miRNAs were then compared to known targets from the literature to discover possible adverse effects prior to clinical use. Our data show that while many cardioprotective miRNAs such as miR-22-3p, miR-26a-5p, miR-29c-3p, and miR-125b-5p were present in CB- and AT-MSC-derived EVs, a large number of known oncogenic and tumor suppressor miRNAs such as miR-16-5p, miR-23a-3p, and miR-191-5p were also detected. These findings highlight the importance of quality assessment for therapeutically applied EV preparations.

Keywords: mesenchymal stromal cells; extracellular vesicles; microRNA; oncomiR; tumor suppressor; cardioprotection; adipose tissue; cord blood
1. Introduction

Mesenchymal stromal cells (MSCs) have been extensively studied in preclinical and clinical trials over the past few decades for their promising capabilities in regenerative medicine [1]. There is consensus that MSCs cannot regenerate damaged human heart tissue. However, preclinical studies showed that MSCs may provide cardioprotective effects after myocardial damage by modulating the immune response, promoting neoangiogenesis, and reducing fibrosis in the myocardial scar [2]. The therapeutic efficacy of MSCs is mainly attributed to their paracrine secretion of various growth factors, chemokines, cytokines, and extracellular vehicles (EVs) [3]. Studies in rodents and pigs showed a reduction in scar size after a single injection of MSCs after myocardial injury [4,5]. In clinical trials, the results regarding the therapeutic effect of MSCs after single treatments in patients with myocardial infarction are more inconsistent [6]. Potential issues associated with the use of MSCs include:

(i) the difficulty in generating a consistent source of cells with a stable phenotype,
(ii) a significant first-pass effect due to entrapment of large cells in the lung and liver microvasculature, and
(iii) patient-specific comorbidities in autologous applications [7].

In addition, less than 2% of the injected human cells remain at the target site after 60 min [8]. In a porcine model of acute myocardial ischemia, intramyocardial injections resulted in a retention rate of just over 10% after 60 min [9]. Furthermore, the same study showed that less than 1% of the engrafted cells were still present four weeks after transplantation. This, in turn, means that the release time of the cardioprotective MSC secretome at the site of injury is significantly shorter than the overall process of myocardial remodeling, which prompted scientists to further investigate the secretome of MSCs, specifically MSC-derived EVs. In general, EVs are membranous nanoparticles produced by cells that are divided into three categories based on their biosynthesis: apoptotic bodies, microvesicles, and exosomes [10]. All of them are considered intercellular messengers that, when stimulated, can transmit biological signals through the blood and lymphatic system to neighboring cells and distant tissues. Proteins, messengerRNAs (mRNAs), and microRNAs (miRNAs) partially encapsulated and protected by the lipid membrane of EVs act as the biological mediators between cells. In fact, gain-of-function and loss-of-function assays have demonstrated that miRNAs transported by EVs are primarily responsible for the cardioprotective effect of MSCs [11]. MiRNAs are short nucleotide sequences of 18–22 base pairs that can bind to the 3′ untranslated region of their target mRNAs, either to interfere with their transport to the ribosome or to prevent their translation at the ribosomal site [12]. Because of their short length, miRNAs usually target more than one mRNA, making specific target prediction difficult. To date, more than 150 miRNAs have been identified in MSC-derived EVs [13]. Although there are some differences in the miRNA profile depending on the source of MSCs, a number of cardioprotective miRNAs have been identified that are commonly transported by EVs from various MSC tissue origins [14]. MiRNAs encapsulated in EVs have several functions including regulation of cell physiology, proliferation, cell differentiation, and apoptosis. For example, they can regulate the expression of members of the hypoxia-inducible factor family, which are important for the modulation of vascular sprouting in the setting of hypoxia, via the RNA interference pathway [15]. Furthermore, miRNAs can also target mRNAs that regulate fibrosis and fibroblast activation, such as tissue growth factor-beta (TGF-beta) and members of the SMAD family [16].

Since it was shown that EVs isolated from MSCs can recapitulate the cardioprotective effects of their parent cells, it was hypothesized that the use of EVs may offer significant advantages over their cellular counterparts due to a higher safety profile, lower immunogenicity, and the inability to directly induce tumors [17]. However, whereas many preclinical studies use multiple direct myocardial injections to deliver EVs, this strategy may not be optimal for many patients in clinical practice. Direct access to the heart (i.e., intracoronary or intramyocardial) is achieved either through catheter-based techniques or by cardiovascular surgery, and both methods are associated with a risk of complications. In turn, a single intramyocardial injection may not be sufficient to improve tissue remodeling after
a myocardial injury due to the short half-life of EVs and patient-associated comorbidities that can reduce the intrinsic wound healing capacity seen in healthy animal subjects. As a result, several groups are currently investigating methods for intravenous application of EVs that would allow for sufficient titers of therapeutic EVs in myocardial tissues [18,19]. Despite their small size, EVs, like other lipid-based nanoparticles, undergo a significant first-pass effect with accumulation in the liver and lung tissue [19]. While several teams are currently working on targeted delivery strategies for EVs, another pharmacological component must also be considered: application of EVs over long periods translates into the systemic application of a considerable amount of miRNAs, despite their short half-life of less than 24 h [20]. In the field of cancer biology, a multitude of studies describe the role of miRNAs in cancer progression, transformation, and metastasis. In this context, miRNAs are divided into three classes:

(i) oncogenic miRNAs,
(ii) tumor suppressor miRNAs, and
(iii) miRNAs with a dual role in cancer progression.

However, to the best of our knowledge, likely due to the limited number of preclinical trials with systemic EV applications, their miRNA cargo was not analyzed in connection with possible off-target effects. In particular, the presence or absence of pro-oncogenic miRNAs in EV preparations has not been conclusively proven. These potential risks need to be assessed for the clinical use of EVs, especially when treating patients with undetected tumors or predispositions to tumor development. The aim of the present study was therefore to characterize the miRNA cargo of EVs isolated from two clinically relevant MSC sources (i.e., cord blood (CB) and adipose tissue (AT)) and then to compare the EV miRNA cargo to well-known miRNAs involved in cancer biology.

2. Materials and Methods

2.1. Cell Isolation and Cell Culture

Human AT-derived MSCs were isolated from patients undergoing liposuction, as described previously [21]. Four donors (three female, one male, mean age 41.8 ± 9.3 years) were included in this study. None of the lipoaspirate donors were obese (body mass index was below 25 for all donors) and none of the donors reported any medical conditions at the time of liposuction. CB-derived MSCs were isolated from CB of four healthy newborns (two female, two male) at the Charité University Hospital Berlin, as described elsewhere [22]. Neither mother nor infant suffered from any medical conditions at the time of donation. All procedures were approved by the local medical ethics committees (Charité University Hospital Ethics Committee, registration number EA2/178/13; Cantonal Ethics Committee Zurich, registration number KEK-ZH 2010-0476/0) and written consent was obtained from patients or relatives. All MSCs were cultured in MesenPRO RS medium (Life Technologies, Grand Island, NY, USA, catalog no. 12747-010) containing 10% fetal bovine serum (FBS; Life Technologies, Carlsbad, CA, USA, catalog no. 10270106), 1% penicillin/streptomycin (P/S; Merck Millipore, Burlington, MA, USA, catalog no. A2213), and 2 ng/mL recombinant human fibroblast growth factor-basic (FGF-b; PeproTech, Hamburg, Germany, catalog no. 100-18C) in a humidified atmosphere of 5% carbon dioxide at 37 °C.

2.2. EV Isolation

EVs were isolated from MSC-conditioned medium using (i) sequential ultracentrifugation (UC) or (ii) the exoEasy Maxi Kit (Qiagen, Hilden, Germany, catalog no. 76064) according to the manufacturer’s instructions. Briefly, MSCs were expanded to a confluence of about 80% and washed once with Dulbecco’s phosphate-buffered saline (DPBS, Dulbecco’s phosphate-buffered saline; Life Technologies, Bleiswijk, The Netherlands, catalog no. 14190-144). The cells were switched to Dulbecco’s modified eagle medium (DMEM 1X)-GlutaMAX (Life Technologies, Paisley, United Kingdom, catalog no. 21885-025) containing 10% exosome-depleted FBS (Life Technologies, Bleiswijk, The Netherlands,
catalog no. A2720803), 1% P/S, and 2 ng/mL FGF-b for 48 h, followed by a transfer to starvation medium (DMEM 1X-GlutaMAX supplemented with 1% P/S and 2 ng/mL FGF-b) for 24 h. For the isolation of EVs using sequential UC, the supernatant of approximately 3×10^7 cells at early passages (passages 5–7) was processed according to the protocol of Beez et al. [23]. For the isolation of EVs using the Qiagen kit, an MSC-conditioned medium of approximately 3×10^6 cells at early passages was collected and centrifuged at 2000\timesg for 15 min at 4 °C (Allegra X-15R Centrifuge, Beckman Coulter, Indianapolis, IN, USA). The supernatant was decanted and filtered using a 0.2 µm syringe filter (Sartorius, Hanover, Germany, catalog no. 16534) to remove any remaining cell debris and large aggregates. Thereafter, 8 mL of the filtered solution were mixed with 8 mL XBP buffer by gently inverting the tube. The mixture was transferred to the exoEasy spin column, centrifuged at 500\timesg for 1 min at room temperature (R.T) and the flow-through was discarded. Then, the bound EVs were washed with 10 mL XWP buffer and centrifuged at 5000\timesg for 5 min to remove residual buffer from the column. To elute EVs, 0.5 mL XE buffer was added and the column was centrifuged at 500\timesg for 5 min to collect the eluate, which was re-applied to the same column and centrifuged at 5000\timesg for 5 min. Final EV preparations were transferred to low-binding tubes (Sarstedt, Numbrecht, Germany, catalog no. 72.706.600) and stored at $−80^\circ$C until further use.

2.3. Nanoparticle Tracking Analysis (NTA) and Total Protein Analysis

Particle concentration and size distribution of EV preparations were examined using the ZetaView instrument (Particle Metrix, Inning, Germany). Particles were automatically tracked and sized based on Brownian motion and the diffusion coefficient. The NTA measurement conditions were as follows: temperature = 26.6 ± 2.2 °C, viscosity = 0.87 ± 0.04 cP, frames per second = 30, and measurement time = 75 s. Sample videos were analyzed using NTA software (ZetaView, Particle Metrix, Inning, Germany, version 8.04.02).

Total protein content of EV preparations was determined using the commercially available Bicinchoninic Acid (BCA) Protein Assay Kit with bovine serum albumin as a standard (Thermo Scientific, catalog no. 23227). Briefly, 20 µL of samples or standards were mixed with 200 µL of freshly made BCA working reagent and incubated for 30 min at 50 °C. Absorbance was measured at 560 nm with a Mithras LB940 plate reader (Berthold Technologies, Pforzheim, Germany) and analyzed with MikroWin 2000 software (Mikrotek Laborsysteme, Overath, Germany, version 4.41).

2.4. Transmission Electron Microscopy (TEM)

Isolated EV preparations were stained according to the protocol of Théry et al. [24] and morphologically evaluated at the electron microscopy (EM,) facility of the Charité—Universitätsmedizin Berlin. Briefly, 20 µL of MSC-derived EVs were first placed on formvar carbon-coated copper EM grids (Plano, Wetzlar, Germany, catalog no. G2430N) for 20 min. Then, the samples were incubated for 20 min in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA, catalog no. 15714), followed by 5 min in 1% glutaraldehyde (Serva, Heidelberg, Germany, catalog no. 23114). After several washing steps with water, the samples were stained for 10 min in a freshly prepared solution of 4% uranyl acetate (Serva, Heidelberg, Germany, catalog no. 77870) and 2% methylcellulose (Sigma-Aldrich, St. Louis, MO, USA, catalog no. M-6385). Imaging was performed using the Leo 906 microscope (Carl Zeiss, Oberkochen, Germany), equipped with ImageSP Viewer software (SYS-PROG, Minsk, Belarus, version 1.2.7.11).

2.5. Immunofluorescence Staining and Flow Cytometry

Expression of surface molecules was measured as described before [23]. Briefly, 2 µg of MSC-derived EV protein were incubated with 15 µL of 4 µm aldehyde/sulfate latex beads (Thermo Fisher, catalog no. A37304) for 15 min at R.T. The sample volume was filled up to 1 mL with DPBS and incubated for 1 h at R.T with gentle shaking. Thereafter, samples were centrifuged for 10 min at 300\timesg, and after discarding the supernatant, samples were washed once with 1% fetal calf...
serum in DPBS (flow cytometry buffer). Next, the beads loaded with EVs were incubated with the following fluorescence-conjugated antibodies: anti-CD9/FITC (BioLegend, San Diego, CA, USA, catalog no. 312104), anti-CD63/PE (BioLegend, San Diego, CA, USA, catalog no. 353004), anti-CD73/APC (BioLegend, San Diego, CA, USA, catalog no. 349504), anti-CD81/FITC (BioLegend, San Diego, CA, USA, catalog no. 344006), anti-HLA-ABC/PE (BioLegend, San Diego, CA, USA, catalog no. 311405), or anti-HLA-DR/APC (BioLegend, San Diego, CA, USA, catalog no. 307610), each at a dilution of 1:25 in flow cytometry buffer. After 30 min at 4 °C, the beads were washed twice with flow cytometry buffer, fixed with flow cytometry buffer supplemented with 0.5% PFA, and stored at 4 °C until measurement using a MACSQuant VYB flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). Beads incubated with antibodies but no EVs served as negative controls, respectively. Analysis was performed using FlowJo software (Tree Star, Ashland, OR, USA, version 10.6.1).

2.6. MiRNA Analysis

MiRNA was extracted from 200 µL of isolated EVs using the miRNeasy Mini Kit (Qiagen, Hilden, Germany, catalog no. 74104) according to the manufacturer’s instructions. The RNA quantity and purity were assessed with the Agilent 2100 Bioanalyzer system (Agilent Technologies, Waldbroon, Germany). Reverse transcription (RT) was performed using the miRCURY LNA Universal cDNA Synthesis Kit II (Exiqon-Qiagen, Hilden, Germany, catalog no. 203301). RT thermocycling parameters were as follows: 42 °C for 60 min and 95 °C for 5 min. Quantitative polymerase chain reaction (qPCR) was performed using the miRCURY LNA Universal RT microRNA PCR system (Exiqon-Qiagen, catalog no. 339340) with 752 known human miRNAs and 3 interplate calibrators and 1 spike-in miRNA as an internal control. All primer/probe sets for miRNAs were custom designed by the supplier. Three extraction controls and two cDNA synthesis controls were additionally used as indicated by the provider. Two real-time qPCR amplifications were performed for each RT reaction. Reactions were performed according to the manufacturers’ instructions using a LightCycler 480 II system (Roche, Rotkreuz, Switzerland). QPCR thermocycling conditions were as follows: 95 °C for 10 min, followed by 40 cycles at 95 °C for 10 s and 60 °C for 1 min. Melt curve analysis was performed between 60 and 95 °C at a ramp rate of 0.11 °C/s. After interpolation calibration, the examined miRNAs were classified into three categories:

(i) miRNAs with mean corrected CT (CTcorr) values below 30.00 were considered as detected with certainty,
(ii) miRNAs with mean CTcorr values between 30.00 and 32.99 were considered as detected with uncertainty, and
(iii) miRNAs with mean CTcorr values equal or greater than 33.00 were considered as not detected.

All analyzed miRNAs and their expression values are listed in Supplementary Materials Table S1. The obtained CT values of miRNAs were normalized using the geNorm method, which calculates a normalization factor based on multiple reference miRNAs [25]. In brief, the arithmetic mean of the CT values of miRNAs that were stably expressed across all samples, namely hsa-miR-1260a, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-24-3p, hsa-miR-221-3p, hsa-let-7i-5p, hsa-miR-199a-3p, and hsa-miR-100-5p, were subtracted from CTcorr values to calculate delta CT (dCT) values for every sample. In order to plot miRNA expression on heatmaps, Z-scores were determined from logarithmically transformed dCT values for each miRNA. The Z-scores were calculated as a numerical measurement of the mean value group with \(z = (x - \mu)/\sigma \), where \(x \) is the raw score, \(\mu \) is the population mean, and \(\sigma \) is the population standard deviation. Finally, heatmaps of miRNAs were created with the gplots package of RStudio (version 1.3.959).

2.7. Literature Search for miRNAs

A systematic literature search was conducted for all miRNAs with a low mean CTcorr value (\(\leq 29.99 \)) in both CB- and AT-MSC-derived EVs. Pubmed, Medline, and Scopus were used as search
engines with the following search terms: “name of miRNA”, “name of miRNA” AND “heart”, “name of miRNA” AND “fibrosis”, “name of miRNA” AND “cancer”, “name of miRNA” AND “fibroblasts”, “name of miRNA” AND “endothelial cells”, “name of miRNA” AND “angiogenesis”, “name of miRNA” AND “immunomodulation”, “name of miRNA” AND “macrophages”, “name of miRNA” AND “t-cells”, and “name of miRNA” AND “immune cells”. For published miRNA targets, only studies were considered that confirmed miRNA targets by luciferase reporter assays or gain- and loss-of-function experiments. The findings are summarized in Appendix A Tables A1–A3.

2.8. Statistical Analysis

GraphPad Prism (GraphPad Software, San Diego, CA, USA, versions 6.0 and 8.3.0) was used for performing data analysis and generating graphs. The statistical significance of differences in EV particle concentration, total protein amount, and surface marker expression was determined by the Mann–Whitney test; a p-value of less than 0.05 was considered significant. All miRNA data are shown as median with interquartile range, if not indicated otherwise. Data were tested with Shapiro–Wilk test for normal distribution. Statistical differences between two groups with only one variable in paired observations were determined either with the Wilcoxon matched-pairs signed rank test for non-parametric samples or with the unpaired t-test for parametric samples. Results were considered significant with *p* < 0.05, **p** < 0.01, and ***p*** < 0.001.

3. Results

3.1. Characterization of EVs

All EVs were harvested from the supernatants of in vitro-cultured CB- and AT-MSCs, which were derived from tissues of four healthy subjects each. Although isolated from different sources, both MSC lines showed a typical spindle-shaped cell morphology under EV biogenesis conditions (Figure 1). The mean number of EV particles obtained was $7.1 \pm 1.2 \times 10^{10}$ per mL for CB-MSC-derived EVs and $5.5 \pm 0.5 \times 10^{10}$ per mL for AT-MSC-derived EVs (Figure 2A), but this difference was not significant ($p = 0.057$). Similarly, protein concentrations between EVs from CB- and AT-MSCs were not statistically significant ($p = 0.343$), with mean values of 27.9 \pm 7.4 and 35.0 \pm 8.7 µg/mL protein (Figure 2B). Quantitative analysis of EV diameters demonstrated an asymmetrical distribution, with a mean diameter of 132.7 \pm 12.1 nm for EVs from CB-MSCs and a mean diameter of 123.9 \pm 6.6 nm for EVs from AT-MSCs (Figure 2C), indicating the presence of exosomes, which are typically 40 to 150 nm in diameter [26]. Furthermore, both EV variants, which were isolated with the Qiagen kit, exhibited typical cup-like shapes as observed by TEM (Figure 3A,B). In comparison, EVs isolated by sequential UC showed a similar shape (Figure 3C,D). However, in contrast to the EVs isolated by UC, the EVs isolated by Qiagen membrane affinity columns were covered by a corona that bound larger amounts of uranyl acetate (Figure 3A,B, red triangles). EVs isolated by sequential UC have not been further examined because this manuscript focuses on EVs isolated by the Qiagen exoEasy Maxi Kit due to its excellent scalability, which is needed for the production of large EV amounts for clinical application. Next, we analyzed the isolated EV preparations for selected membrane proteins that have been associated with EVs in the past. Regardless of the cell source, it was possible to detect on all EV preparations CD9, CD63, and CD81, with CD9 exhibiting the highest normalized mean fluorescence intensities (MFIs) (Figure 4). Interestingly, all of the aforementioned markers tended to have higher values in AT-MSC-derived EVs than in CB-MSC-derived EVs, while only CD63 levels were significantly higher ($p = 0.029$). Figure 4 also shows that CD73 was only detected in EVs from AT-MSCs, but not from CB-MSCs. Since it was hypothesized that MSC-derived EVs do not carry human leukocyte antigens (HLAs) and are therefore less immunogenic [23], we also included HLA-ABC and HLA-DR in the flow cytometry analysis. Our data indicate that EVs from CB-MSCs did not exhibit a signal for HLA-ABC and HLA-DR (Figure 4). For EVs from AT-MSCs, HLA-ABC was also not present, while
HLA-DR was detected in small amounts (Figure 4). In sum, these results indicated that the isolated EVs contained exosomes.

Figure 1. Cord blood (CB)- and adipose tissue mesenchymal stromal cells (AT-MSCs) maintain their spindle-shaped morphology under extracellular vesicles (EV) biogenesis conditions. MSCs were expanded to a confluence of about 80%, washed with Dulbecco’s phosphate-buffered saline and cultivated for 48 h in exosome-depleted medium. Then, the cells were switched to starvation medium for 24 h to derive the conditioned medium for EV isolation. Representative bright-field images of cell morphology of CB-MSCs (A) and AT-MSCs (B) were taken by phase-contrast microscopy at the time of EV isolation. Bars, 200 µm.

Figure 2. Particle number, protein amount and size distribution of EVs isolated from CB- and AT-MSCs. Particle concentration (A) and size distribution (C) of EV preparations were measured by nanoparticle tracking analysis. Protein content (B) was determined by the bicinchoninic acid assay. In (A–C), the results are mean values ± standard deviation (SD) obtained from four different donors per cell type.
3.2. MiRNA Profile of CB- and AT-MSC-Derived EVs

Of the 752 miRNAs examined in this study, 117 were detected with certainty according to the guidelines of the Qiagen-Exiqon miRCURY LNA Universal RT microRNA PCR system. Based on these miRNAs, a heatmap was created (Figure 5). The grouping of donors shows a consistent clustering with only one outlier per group (CB_MSC_4 and AT-MSC_4). Interestingly, the expression profile of EV surface markers for these donors also differed from the other donors in the same group. For further analysis, all miRNAs with mean CTcorr values below 33.00 in at least one group were included. Following this, 205 miRNAs were detected in EV samples, while the majority of miRNAs (547) were not detected (Figure 6). From our analysis, 76 miRNAs were highly expressed in CB-MSC-derived EVs and 80 miRNAs were strongly expressed in AT-MSC-derived EVs with mean CTcorr values of less than 30.00. Intriguingly, among them, 66 miRNAs were found in EVs from both MSC sources. Only 10
were uniquely highly expressed in CB-MSC-derived EVs, namely let-7d-5p, miR-30a-5p, miR-106b-5p, miR-107, miR-136-5p, miR-140-3p, miR-181b-5p, miR-320b, and miR-320c, and miR-342-3p, and 14 were uniquely highly expressed in AT-MSC-derived EVs, namely miR-10b-5p, miR-29b-3p, miR-138-5p, miR-148a-3p, miR-185-5p, miR-210-3p, miR-424-3p, miR-424-5p, miR-433-3p, miR-484, miR-503-5p, miR-663b, miR-874-3p, and miR-940. Furthermore, 100 and 103 miRNAs in CB-MSC-derived EVs and AT-MSC-derived EVs, respectively, which showed mean CTcorr values of 30.00 to 32.99, were considered to be low expressed. To visualize differential miRNA expression profiles, a heatmap of all miRNAs that were significantly different in expression between CB- and AT-MSC-derived EVs was created, showing a clear clustering of CB-MSC-EV-miRNAs and AT-MSC-EV-miRNAs (Figure 7, 44 miRNAs). Overall, the differences in expression after normalization did not exceed a two-fold increase or decrease for almost all miRNAs, except for miR-10b-5p (8.23-fold higher in AT-MSC-derived EVs), miR-103a-3p (3.35-fold higher in CB-MSC-derived EVs), miR-222-5p (8.28-fold higher in AT-MSC-derived EVs), miR-376a-3p (2.45-fold higher in CB-MSC-derived EVs), miR-663a (7.68-fold higher in AT-MSC-derived EVs), and miR-1260a (2.87-fold higher in AT-MSC-derived EVs). Three miRNAs were only found to be highly expressed in AT-MSC-derived EVs, but were absent in CB-MSC-derived EVs, namely miR-148a-3p, miR-424-3p, miR-503-5p. In sum, CB- and AT-MSC-derived EVs are similar in their miRNA composition, with the exception of a small number of miRNAs.

![Figure 4](image1.png)

Figure 4. CB- and AT-MSC-derived EVs display a distinct surface marker profile. Detection of the surface marker proteins CD9, CD63, CD73, CD81, HLA-ABC, and HLA-DR using flow cytometry on EV preparations. The data are presented as means ± SD of normalized mean fluorescence intensities (MFIs), which were calculated as the ratio of the geometric MFI of EV samples (beads + EVs + antibodies) to control samples (beads + antibodies). Statistical analysis was performed by the Mann-Whitney test with *p < 0.05. ND indicates not detected. EVs from four different donors per cell type were included.
Figure 5. Heatmap and dendrograms of all microRNAs (miRNAs) detected with certainty according to the guidelines of the Qiagen-Exiqon miRCURY LNA Universal RT microRNA PCR system. Sample IDs are shown on the x-axis. Samples with similar miRNA expression are clustered together. The heatmap was generated by RStudio and $2^{\Delta\text{CT}}$ was used for data input. Z-scores of more than zero indicate a higher expression of miRNAs in one sample compared to the others; Z-scores of less than zero indicate the opposite.
Figure 6. Venn diagram of miRNAs found in CB- and AT-MSC-derived EVs. In total, 752 miRNAs were analyzed and categorized according to mean CTcorr values. High miRNA expression means CTcorr value ≤ 29.99; low miRNA expression means CTcorr value = 30.00–32.99. Five hundred and forty-seven miRNAs were not detected in EVs from CB-MSCs or in EVs from AT-MSCs (mean CTcorr value ≥ 33.00).

Figure 7. Heatmap and dendrograms of miRNAs that were significantly changed in AT-MSC-derived EVs compared to CB-MSC-derived EVs. Sample IDs are shown on the x-axis. Samples with similar miRNA expression are clustered together. The heatmap was generated by RStudio and 2\text{ΔCT} was used for data input. Z-scores of more than zero indicate a higher expression of miRNAs in one sample compared to the others; Z-scores of less than zero indicate the opposite.
3.3. Classification of miRNAs: Tumor Suppressor miRNAs, Oncogenic miRNAs, and Cardioprotective miRNAs

We then conducted a literature research (Figure 8) to group all 66 miRNAs found at high levels in both CB- and AT-MSC-derived EVs based on their function. As indicated in Figure 9, the majority of identified miRNAs have a well-known role as tumor suppressor. We also found many miRNAs, such as miR-103a-3p, miR-151a-5p, and miR-191-5p, which are known oncogenic miRNAs (oncomiRs). Interestingly, we also identified a large number of miRNAs (26) known to act both as oncomiRs and as tumor suppressor. The EV samples examined in this study also showed positive hits for well-known cardioprotective miRNAs, such as miR-21-3p, miR-22-3p, miR-26a-5p, and miR-125b-5p. While having cardioprotective properties, most of them are also associated with oncogenic and tumor suppressor properties. In summary, these data indicate that both CB- and AT-MSC-derived EVs not only transfer a certain set of miRNAs that are involved in one particular mechanism, but rather a multitude of miRNAs that are linked to several biochemical processes, including tumor suppression, tumorigenesis, and cardioprotection.

![Diagram of literature search rules applied for all miRNAs with a low mean CTcorr value (< 29.99) in both CB- and AT-MSC-derived EVs. Search terms were “name of miRNA”, “name of miRNA” AND “heart”, “name of miRNA” AND “cancer”, “name of miRNA” AND “fibrosis”, “name of miRNA” AND “endothelial cells”, “name of miRNA” AND “angiogenesis”, “name of miRNA” AND “immunomodulation”, “name of miRNA” AND “macrophages”, “name of miRNA” AND “t-cells”, and “name of miRNA” AND “immune cells”.

Figure 8. Diagram of literature search rules applied for all miRNAs with a low mean CTcorr value (< 29.99) in both CB- and AT-MSC-derived EVs. Search terms were “name of miRNA”, “name of miRNA” AND “heart”, “name of miRNA” AND “cancer”, “name of miRNA” AND “fibrosis”, “name of miRNA” AND “endothelial cells”, “name of miRNA” AND “angiogenesis”, “name of miRNA” AND “immunomodulation”, “name of miRNA” AND “macrophages”, “name of miRNA” AND “t-cells”, and “name of miRNA” AND “immune cells”.
Figure 9. Venn diagram of selected miRNAs based on their function. Gray, tumor suppressor miRNAs; yellow, oncogenic miRNAs; red, cardioprotective miRNAs. With the exception of miR-1260a, all miRNAs with a low mean CTcorr value (≤ 29.99) in both CB- and AT-MSC-derived EVs were included. MiR-1260a could not be included, as no targets were described in the literature so far. Further details on these miRNAs are given in Tables A1–A3.

4. Discussion

4.1. EV Phenotype

Overall, the EVs analyzed in our study showed the expected proteins to be present in both CB- and AT-MSCs, such as the tetraspanins CD9, CD63, and CD81. The latter was present in significantly lower amounts in EVs from CB-MSCs than in EVs from AT-MSCs, an observation that was not made in other comparative studies before. The phenomenon that EVs from MSCs have only little or no HLAs present on their surface and therefore have a low immunogenicity [23] was confirmed in our study, since HLA-ABC was not found in both CB- and AT-MSC-derived EVs. Furthermore, HLA-DR was not detected in CB-MSC-derived EVs and it was only slightly above the detection level for the flow cytometry assay in AT-MSC-derived EVs. Consequently, the phenotype of the EVs might reflect the low expression of HLA molecules of the parent CB- and AT-MSCs.

It is known that the isolation method can significantly influence the composition of miRNAs in EV preparations [26,27]. To date, there is a multitude of different EVs isolation protocols available [28], and an ideal isolation method for clinical use remains to be determined. In this study, EVs were isolated using a commercially available EV isolation kit from Qiagen. In contrast to protocols using...
sequential UC to isolate EVs, this kit is more appropriate for scaling up the production of EVs. Initially, we performed side-to-side comparisons for the isolation of EVs using sequential UC and Qiagen membrane affinity columns. A similar comparison reported by the group of Streanska et al. [29] demonstrated that both methods lead to EVs with encapsulated miRNAs. However, they found differences in EV size and surface protein expression depending on the isolation method. While in their study, they were not able to detect the tetraspanins CD63 and CD81 using the Qiagen kit for EV isolation, we were able to detect tetraspanins such as CD9, CD63 and CD81, considered as typical EV markers. It should be noted, however, that we performed flow cytometry analysis, whereas the others used the Western blot. Furthermore, TEM analysis revealed that EVs isolated by the Qiagen kit were coated with either proteins or nucleic acids. For this experiment, EVs were incubated with uranyl acetate to stain phosphate groups of the lipid membrane. However, the presence of phosphate-rich proteins or nucleic acids in the so-called EV corona can also result in strong staining. We therefore hypothesize that the structures surrounding the EVs are most likely a mixture of proteins and nucleic acids. In line with this, the group of Varga et al. [30] has recently shown that EVs in vivo are also surrounded by a variety of different proteins that are not integrated in their own membrane. Furthermore, Jeppesen et al. [26] were able to separate a protein fraction from a pure vesicle fraction and they demonstrated that different EV isolation methods impact the EV-miRNA composition. Our data suggest that the Qiagen membrane affinity method produces EVs with an intact corona, indicating that miRNAs may also be bound to proteins in the corona. However, it cannot be conclusively determined whether the analyzed miRNAs were encapsulated, bound to co-isolated proteins, or bound within the EV protein corona. Studies that have so far investigated the therapeutic potential of EVs did not purify the EVs in their in vivo models prior to injection. Therefore, regardless of the isolation method, co-purified miRNAs will be injected together with the EV fraction. However, when EVs are used clinically, it is expected that additionally administered miRNAs could also play a role in the cardioprotective mechanism. It is therefore of importance to validate the miRNA profiles for each isolation method before conducting downstream experiments or even clinical studies. A more in depth analysis of the isolated EVs might have answered this question, but would be beyond the scope of this project.

4.2. MiRNA Profile

As mentioned above, miRNA analysis of EVs derived from CB- and AT-MSCs showed that a large number of detected miRNAs play an important role in tumor biology. Due to the multiple targets a miRNA can have, it is difficult to predict all possible targets of each miRNA. In this study, we therefore only reviewed targets that were confirmed already by other groups through in vitro assays. Since the PCR array used in our experiment focused on cellular miRNAs, which play a well-known role in cancer biology, it is not surprising that most miRNAs (547 out of 752) were not detected in the EV samples. Our data show a biological variability that is expected from human-derived samples [31]: EV samples derived from both CB- and AT-MSCs contain one outlier in terms of their surface marker configuration and their miRNA profiles (Figures 4 and 7). Due to the small number of donors examined in this study, the effect of donor-specific confounding factors (e.g., gender, age, or race) on the miRNA profiles cannot be determined. Our literature search revealed that most studies focused on the therapeutic aspect of miRNAs of MSC-derived EVs. Only a few studies made the data of their miRNA arrays publicly available [32–34]. Additionally, the role of MSC-derived miRNAs in cancer biology has been discussed and investigated by other groups. Even here, however, only few groups made all collected data available for secondary analysis. In the case of AT-MSCs, one group has investigated the role of AT-MSC-derived EVs in the development and treatment of osteoarthritis [32,33]. In both publications, the raw data of the miRNA array were made available by the authors. A side-to-side comparison revealed that 71.0% and 73.3% of the 65 highest expressed miRNAs in both data sets were identical to the miRNAs found in our EV samples. The discrepancy could be explained by the difference in treatment of AT-MSCs at time of isolation and the isolation method itself.
4.2.1. Anti-fibrotic Signaling via Suppression of the TGF-Beta Pathway

MiRNAs were initially examined in the context of cancer biology. Target search was therefore biased and provided a greater number of miRNAs related to cancer than, for instance, to cardioprotection. However, some miRNAs with cardioprotective properties often interfere with proteins that are also regulated in cancer cells. For instance, miRNAs that advantageously modulate fibrosis and activation of fibroblasts usually target either the mRNA of proteins in the TGF-beta/SMAD-axis or promoter and receptor mRNAs that modulate cell cycle activation. Typically, miRNA-mediated suppression of TGF-beta signaling leads to decreased fibrosis in different tissues [35]. Both CB- and AT-MSC-derived EVs contain sets of miRNAs that target TGF-beta receptors directly or downstream signaling proteins such as SMAD proteins. In the context of TGF-beta signaling, SMAD2, 3, and 4 are the downstream promoters that can activate pro-fibrotic gene expression in multiple tissues including the heart [36]. MiR-16-5p (−1.03-fold change, \(p = 0.84 \)), miR-23a-3p (−1.14-fold change, \(p = 0.99 \)), and miR-130a-3p (−1.11-fold change, \(p = 0.75 \)), which showed no difference in relative amounts for the comparison of CB-MSC-derived EVs to AT-MSC-derived EVs, all target the SMAD mRNA directly and exhibit an anti-fibrotic, and in most cancers, a tumor suppressor effect [37–39]. At the same time, miR-130a-3p can also act as an oncomiR in esophageal cancer by inhibiting the expression of SMAD4 [40], which incidentally leads to a tumor suppressor effect in hepatoma cells [38]. This dual role of miRNAs in cancer biology is well known and shows the complexity of gene expression regulation via RNA interference [41]. Similarly, while miR-130a-3p suppresses fibrosis in hepatic steatosis by suppressing the TGF-beta receptors 1 and 2 [37], the suppression of TGF-beta receptor 3 by miR-23b-3p and miR-27b-3p in atrial fibroblasts leads to increased fibrosis in the context of atrial fibrillation [42]. This underlines that, similar to the effect of miRNAs in cancer, a dual role of miRNAs and thus potential off-target effects can be hypothesized. It also highlights that adverse effects, such as increased fibrosis, may depend on the presence of miRNA clusters. For the EV samples investigated in the present study, both miR-23b-3p and miR-27b-3p were found with mean CT corr values of 25.2 ± 1.4 and 25.5 ± 1.1 versus 27.4 ± 0.9 and 27.2 ± 1.1 in CB- and AT-MSC-derived EVs, respectively.

4.2.2. Role of miRNA-Mediated Mammalian Target of Rapamycin (mTOR) Suppression

The miRNA target analysis also revealed that some miRNAs found in CB- and AT-MSC-derived EVs target mTOR or mTOR-associated proteins, including miR-99b/a, miR-100-5p, miR-143-3p, miR-199a-5p/3p, and miR-199b-5p. mTOR is a protein kinase that regulates cell growth, autophagy, and cell survival [43]. Since activation of mTOR plays a crucial role in maintaining growth and inducing metastasis in many cancers, it has been intensively studied as a potential target for cancer therapy [44]. For all of the miRNAs mentioned, overexpression in cancer cell lines led to the induction of apoptosis and autophagy. Interestingly, miR-100-5p can also suppress angiogenesis by preventing cell proliferation in vascular smooth muscle cells, an effect that could counteract a potential cardioprotective effect [45]. Similarly, both miR-143-3p and miR-199a-3p can increase apoptosis during hypoxic or inflammatory injury in kidney and synovial cells, respectively [46,47]. One could therefore postulate that miRNAs that inhibit mTOR signaling are unproblematic in the context of promoting preexisting tumors at the time of EV therapy. However, further studies are needed to elucidate whether MSC-derived EVs suppress mTOR signaling and how this affects the injured heart. There is some evidence that mTOR plays an important role in the activation of cell autophagy in myocardial injuries, which can prevent cell apoptosis and necrosis in the myocardial scar [48]. In the EV samples examined in this work, at least six miRNAs were found that can target mTOR or mTOR signaling related protein mRNAs (Tables A1–A3). A prolonged exposure to EVs containing these miRNAs may therefore either aggravate myocardial injury by increasing apoptosis in the early stages of myocardial infarction or improve wound healing and remodeling via autophagy.
4.2.3. OncomiRs in MSC-Derived EVs

At least six MSC-EV-miRNAs found in the present study are known oncomiRs, namely miR-24-3p, miR-92a-3p, miR-103a-3p, 151a-5p, miR-191-5p, and miR-423-3p. Remarkably, miR-24-3p and miR-423-3p were also associated with cardioprotective properties. Most of these miRNAs target proteins of the Wnt signaling pathway and/or the phosphatase and tensin homolog deleted from chromosome ten (PTEN) protein (Tables A1–A3). PTEN is an intracellular membrane-bound phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-trisphosphate to phosphatidylinositol (4,5)-bisphosphate and therefore reduces phosphoinositide-dependent kinase-1- and AKT-mediated activation of cell cycle progression and anti-apoptotic signaling [49]. It is a well-described tumor suppressor and often affected by mutations in various cancers. MiR-103a, for example, targets PTEN in endothelial cells and promotes proliferation and thus angiogenesis [50]. At the same time, miRNA-103a acts as an inhibitor of Wnt signaling in squamous cell carcinoma and promotes cell proliferation [51]. Similarly, the inhibition of Wnt signaling is also promoted by miR-92a and miR-221-3p, which in turn also inhibits PTEN expression in esophageal, gastric, and pancreatic cancer [52–54]. While Wnt signaling inhibition and PTEN inhibition are desirable targets for miR-10b-5p, miR-27b-3p, and miR-103a-3p in the context of cardioprotection [50,55,56], this may also promote progression of undetected tumors in recipients of EVs containing miRNAs.

5. Conclusions

The administration of MSC-derived EVs containing miRNAs offers a promising therapeutic approach for cardiovascular disease due to their proposed cardioprotective effects. In the present work, we have isolated EVs from two clinically relevant MSC sources, i.e., CB and AT, using membrane affinity columns and analyzed their miRNA cargo by qRT-PCR. Our data show that EVs from CB- and AT-MSCs are similar in their miRNA composition. Although a large number of miRNAs found in EVs from both MSC sources have been associated with cardioprotective properties, our literature research for known miRNA targets has revealed that they may also play a critical role in the tumor biology of various cancers. Given that EVs and miRNAs have a half-life of less than 24 h, a single administration of EVs may not be sufficient to improve tissue remodeling after a myocardial injury and multiple EV administrations would be required. However, this procedure, in turn, could lead to the accumulation of miRNAs in patients with early-stage cancers that may not have been recognized prior to treatment. Therefore, careful screening of patients for preexisting neoplasms prior to EV administration is important to reduce the risk of potential side effects that could facilitate or even worsen existing tumors. Further reports and functional studies are needed to evaluate both the therapeutic and adverse effects of EVs and their transported miRNAs, depending on the dose and duration of treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/9/1353/s1, Table S1: Analyzed miRNAs and their expression values.

Author Contributions: T.Z.N.-S.: conceptualization, investigation, formal analysis, writing—original draft, writing—review and editing, supervision. S.N.: investigation, formal analysis, writing—original draft, writing—review & editing. A.G.D.: investigation, formal analysis, writing—original draft. V.E.: investigation, formal analysis. H.M.: investigation. K.K.: investigation. C.M.B.: investigation, formal Analysis. P.W.: investigation. J.B.: investigation. R.B.: investigation. M.S.: writing—review and editing. V.F.: writing—review and editing, funding acquisition. M.Y.E.: conceptualization, writing—review and editing, supervision, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by institutional funds. Nazari-Shafti is a scholar in the BIH Charité Clinician Scientist Program funded by the Charité—Universitätsmedizin Berlin and the Berlin Institute of Health. Neuber was funded by the German Centre for Cardiovascular Research (FKZ 81Z0100302).

Acknowledgments: We thank the Core Facility for Electron Microscopy of the Charité—Universitätsmedizin Berlin for support in acquisition and analysis of the data.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Table A1. MiRNAs that are known tumor suppressors (TS). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no DOI numbers are available.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS, CP miR-30c-5p	4.01 ± 0.5	4.84 ± 0.38	-1.7	0.04						
TS miR-99a-5p	4.45 ± 0.46	5.45 ± 0.18	-2.01	0.02						
TS miR-376a-3p	3.76 ± 0.47	5.05 ± 0.51	-2.45	0.01						
TS miR-376c-3p	3.98 ± 0.35	4.85 ± 0.57	-1.81	0.03						
TS let-7b-5p	3.05 ± 0.8	1.98 ± 0.36	2.07	0.04						
Table A1. Cont.

miRNA Function	miRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	MiRNA Cluster	Cell/Tissue/Cancer Type	Biological Effect	Reference
TS	miR-193b-3p	3.16 ± 0.45	2.21 ± 0.16	1.93	0.003	MORC4 breast cancer	—	tumor suppressor (cell proliferation, enhances apoptosis)	doi:10.1002/jcb.27791	
						p21-AK2 ovarian carcinoma	—	tumor suppressor (cell autophagy)	doi:10.1016/j.tcb.2017.11.086	
						HDAC3 brain	—	suppression of NFκB signaling, reduction of inflammation in brain injury	doi:10.1186/s12974-020-01745-0	
						CKD1, AJUBA, HEG1 lung cancer	—	tumor suppressor (cell proliferation, metastasis)	doi:10.1042/BSR20190634	
						TGFβ1 liver	—	decreases fibrosis	doi:10.1111/j.mmm.14210	
						LIMK1 breast cancer	—	tumor suppressor (tumor progression)	PMID: 28559978	
						FOSS2 osteosarcoma	—	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1038/s41598-017-0179-3	
						BMP2R2 bone marrow-derived MSCs	—	promotes cartilage differentiation	doi:10.26355/eurrev_201812_16649	
						IGFR1, IGFBP5 synovial cells	—	promotes inflammation and increases apoptosis in RA	doi:10.3892/etm.2018.5907	
						RCL2, IGF1R squamous cell carcinoma	—	tumor suppressor (tumor progression)	doi:10.1016/j.bmc.2019.08.075	
						ITGB8 ovarian carcinoma	—	tumor suppressor (chemoresistance)	doi:10.3892/oncotarget.2018.6259	
						GRP78 non-small cell lung carcinoma	miR-495 (low detection)	tumor suppressor (tumor progression)	doi:10.1016/j.gene.2017.03.032	
						DDH4, ING4 cardiomyocytes	miR-214	cardioprotective (inhibit cardiomyocyte apoptosis during injury)	doi:10.1132/ajpheart.09007.2015	
TS, CP	miR-199a-3p	1.92 ± 0.96	1.1 ± 0.45	1.82	0.16	mTOR kidney	—	induces injury induced apoptosis	doi:10.1002/jcb.29030	
						AXL osteosarcoma	—	tumor suppressor (tumor progression)	PMID: 29520864	
						mTOR endometrial endometrioid adenocarcinoma	—	tumor suppressor (cell autophagy)	PMID: 3196978	
						KL kidney	—	activation of NFκB signaling in lupus nephritis	doi:10.1016/j.molimm.2018.10.003	
						SMAD1 prostate cancer	—	tumor suppressor (cell proliferation, invasion)	doi:10.18632/oncotarget.17191	
						mTOR hepatocellular carcinoma	—	tumor suppressor (chemosensitivity)	doi:10.1186/s13046-019-1512-5	
						AGAP2 glioma cells	—	tumor suppressor (tumor progression)	doi:10.18632/aging.102092	
						FTG5 endothelial cells	miR-199a-5p	inhibitor of cell proliferation resistance	doi:10.1186/CRICULARTRINAJHA.117.029206	
						CD46 hepatocellular carcinoma	—	tumor suppressor (cell proliferation)	doi:10.1016/j.bmc.2010.10.130	
						SOCS7, STAT3 kidney	—	suppress renal fibrosis	doi:10.1136/resp43469	
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	GeneGLOBE ID	Reference				
----------------	------------	-----------------------	----------------------	-----------------	--------------	-----------				
T, CP miR-199a-5p	2.63 ± 0.92	2.35 ± 0.65	1.22	0.68831	A1B	monocytes	—	inhibits differentiation	doi:10.1189/jlb.1A0514-240R	
					MAP3K1	non-small cell lung carcinoma	—	tumor suppressor (tumor progression)	doi:10.7150/ctc.29426	
					SNAI	papillary thyroid carcinoma	—	tumor suppressor (tumor progression)	doi:10.1101/12989-016-0181-3	
					HIF1A	hemangiomma cells	—	tumor suppressor (cell proliferation, autophagy)	doi:10.1177/0394630217749357	
					CCR7	bladder cancer	—	tumor suppressor (metastasis)	doi:10.1186/s12994-016-0181-3	
					ETS1	breast cancer	—	tumor suppressor (cell invasion)	doi:10.1111/cas.12952	
					CLTC	hepatocellular carcinoma	—	tumor suppressor (tumorigenesis)	doi:10.1002/cjt.3252	
					PIAS5	cervical cancer	—	tumor suppressor (metastasis, suppresses epithelial–mesenchymal transition)	doi:10.1002/jcb.28631	
					ROCK1	colorectal carcinoma	—	tumor suppressor (cell proliferation, metastasis)	doi:10.1177/1533044815597509	
					ECE1	spinal cord nerves	—	inhibition of ischemia-reperfusion injury	doi:10.1007/j10571-018-0997-2	
					TET2	osteoblasts	—	promote differentiation	doi:10.1101/gene.2019.144193	
					DDR1	brain	—	protect against ischemia-reperfusion injury	doi:10.1016/j svens.2019.07.283	
					DRAM1	acute myeloid leukemia	—	tumor suppressor (chemosensitivity)	doi:10.11155(2019)/633417	
					CDH1	squamous cell carcinoma	—	tumor suppressor (cell invasion)	doi:10.3892/ol.2016.4402	
					MAP4K3	hepatocellular carcinoma	let-7c	tumor suppressor (invasion, metastasis)	doi:10.18632/oncotarget.14623	
					ATRX, GRF76	cardiomyocytes	—	downregulation in myocardial hypoxic preconditioning	doi:10.1007/s13105-018-0657-6	
					MAP3K1	esophageal cancer	—	tumor suppressor (cell proliferation)	doi:10.18632/oncotarget.6752	
					ZEB1	ovarian endometrial stromal cell	—	inhibition of epithelial–mesenchymal transition	doi:10.1007/s43032-019-00016-5	
					HIF1A, OSGIN2	sarcoma	—	tumor suppressor (tumor progression)	doi:10.3959/jl.2016.5320	
					PHLF1	colorectal carcinoma	—	tumor suppressor (chemosensitivity)	doi:10.15171/14728222.2015.1057569	
					RIP	kidney	—	protect against ischemia-reperfusion injury	doi:10.1096/j.20180351R	
					WNT2	urothelial cells	—	inhibiting smooth muscle cell proliferation	doi:10.1074/jbc.M114.68694	
					MAGT1	glioma cells	—	tumor suppressor (tumor progression)	doi:10.1002/je.28793	
					CD4K	squamous cell carcinoma	—	tumor suppressor (repress stemness)	doi:10.1080/15394410.2019.1689482	
					KL	gastric cancer	—	oncomiR (promotes tumor progression)	doi:10.1186/s13046-013-0018-8	
					Mtz 08	glioma cells	—	tumor suppressor (tumor progression)	doi:10.26355/journal.2019.08.18958	
					JunB	cardiomyocytes	—	promotes apoptosis in the failing heart	doi:10.1038/s41598-018-24932-9	
					CAV1	lung	—	promotes lung fibrosis	doi:10.1371/journal.pgen.1003291	
					NFKB	ovarian carcinoma	—	tumor suppressor (cell proliferation, invasion)	doi:10.3892/ol.2018.9170	
					SIRT1, ENOS	endothelial cells	—	promotes migration and tube formation	doi:10.1002/20070-013-1744-1	
					HIF1A	prostate adenocarcinoma	—	tumor suppressor (tumor progression)	doi:10.18632/oncotarget.18315	
Table A1. Cont.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster Biological Effect	Reference		
TS, CP	miR-99a-5p	4.11 ± 0.87	4.32 ± 0.33	−1.15	0.49			mTOR	tumor suppressor (cell autophagy)	doi:10.2147/BTTS114276	
TS	miR-16-5p	1.76 ± 0.43	1.81 ± 0.33	−1.03	0.84			mTOR	tumor suppressor (cell proliferation)	doi:10.1042/BSR20191894	
								HOXA1	cardioprotective (inhibits smooth muscle cell proliferation and atherosclerosis)	doi:10.1159/000480212	
								VEGF A	suppresses osteogenic potential of MSCs	doi:10.1002/jcb.27318	
								SMAD3	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1038/jsc.2020.20398	
								VEGF A	tumor suppressor (cell proliferation, invasion, autophagy)	doi:10.1016/j.omtn.2020.03.006	
								PTP1	promotes differentiation	doi:10.1016/jbc.2019.04.179	
								HMG1B	inhibits atherosclerosis	doi:10.1159/000488212	
								MAFK14	prevents Alzheimer’s disease	doi:10.2147/13816282166635099094712	
								WBNP1	tumor suppressor (radio sensitivity)	doi:10.1002/jcb.29032	
								AE1	tumor suppressor (cell proliferation)	doi:10.1016/jbcpxa.2018.08.038	
								EFGF3	oncomiR (tumorigenesis)	doi:10.7750/jims.21645	
								PTEN	suppresses sepsis-induced kidney injury	doi:10.1042/BSR20200527	
								AKT3	tumor suppressor (cell growth)	doi:10.26355/surgery_202006_21493	
								SPTI	tumor suppressor (cell proliferation, invasion, metastasis)	PMID: 27944959	
								PITA	cardiac fibroblasts	cardioprotective (increases activation of cardiac fibroblasts)	doi:10.26355/surgery_202004_20869
								NFIH	tumor suppressor (tumor progression)	doi:10.1016/jneclincancer.2020.134896	
								SIRT1	enhances proliferation and invasion	doi:10.26355/surgery_202001_20033	
								FTO	promotes osteogenic differentiation	doi:10.1038/jbc.2017.0170-7	

TS Mandibular condylar hyperplasia

CP Osteoarthritis
miRNA Function	miRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target Gene / Tissue	Cell / Tissue / Cancer Type	miRNA Cluster	Biological Effect	Reference
TS	miR-152-3p	4.42 ± 0.66	5.16 ± 0.62	–1.9	0.09	SOS1 glioblastoma	tumor suppressor (chemosensitivity)	doi:10.2147/OTT.521072		
						p27 chronic myeloid leukemia	oncomiR (tumorigenesis)	doi:10.26355/syrzv_201812_16646		
						KLF4 prostate cancer	tumor suppressor (tumor progression)	doi:10.1002/jcb.29894		
						FOXF1 fibroblasts	promotes cell proliferation, invasion and extracellular matrix production	doi:10.1016/j.bj.2019.116779		
						CDK5 hepatocellular carcinoma	tumor suppressor (cell proliferation)	doi:10.26355/prp.2019.03.034		
						TMEF prostate cancer	tumor suppressor (tumor progression)	doi:10.1186/s13148-018-0475-2		
						SPIN1 breast cancer	miR-148 tumor suppressor (chemosensitivity)	doi:10.1002/jbm.2018.0748-9		
						PIK3CA breast cancer	tumor suppressor (tumor progression)	doi:10.3722/0905.0017x1487853697357		
	miR-152-3p	4.42 ± 0.66	5.16 ± 0.62	–1.9	0.09	FLI1 trophoblast	promote cell proliferation, invasion	doi:10.1016/j.bj.2019.117008		
						KLF4 lung	promotes chronic obstructive pulmonary disease	doi:10.1016/j.ch.2019.01.01		
						CD40 cardiomyocytes	cardioprotection (in ischemia-reperfusion injury)	doi:10.1077/a11010-07-2892-4		
						KLF5 gastric cancer	tumor suppressor (tumor progression)	doi:10.1002/jp.27525		
						TAGLN2 bladder cancer	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.3992/j.2018.9436		
	miR-145-5p	1.55 ± 0.65	1.90 ± 0.37	–1.28	0.3	RHBDL1 colorectal carcinoma	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1016/j.bjoc.2019.10641		
						FSCN1 amoebous cell carcinoma	tumor suppressor (tumor progression)	doi:10.1016/j.ymhe.2018.09.018		
						TPT1 prediactoma	tumor suppressor (chemosensitivity)	doi:10.1007/40018-018-0963-4		
						TGFBI vascular smooth muscle cells	inhibits proliferation	doi:10.12659/BBM.919896		
						TLR4 melanoma	tumor suppressor (cell autophagy)	doi:10.1002/jich.28388		
						SEMA3A AT-MSCs	suppresses otoeogenic potential of MSCs	doi:10.1007/s11626-019-00318-7		
						AKAP12 prostate cancer	tumor suppressor (chemosensitivity)	doi:10.1111/jomm.13604		
						SMAD2/3 hepatocellular carcinoma	reduces extracellular matrix production	doi:10.1016/j.bj.2019.11.040		
						MTDH amoebous cell carcinoma	tumor suppressor (tumor progression)	doi:10.1175/1533038198980189		
						NRAS melanoma	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1002/cam.1030		
						MTDH non-small cell lung cancer	tumor suppressor (tumor progression)	doi:10.1106/j.201712378R		
						CTK8 leukemia	tumor suppressor (cell proliferation, apoptosis)	doi:10.3892/ijmm.2020.4671		
						COL1A1 colorectal carcinoma	tumor suppressor (inhibits epithelial–mesenchymal transition)	doi:10.2147/OTT.525485		
						COL1A1 colorectal carcinoma	tumor suppressor (inhibits epithelial–mesenchymal transition)	doi:10.3389/fonc.2020.006850		
						HOX1A1 breast cancer	tumor suppressor (tumor progression)	doi:10.18032/ag101323		
						HOX1A7 ovarian carcinoma	tumor suppressor (cell proliferation, apoptosis)	doi:10.4149/necr_2020_1907010887		
						CCNE1 esophageal cancer	tumor suppressor (tumor progression)	doi:10.1007/s13402-019-00495-5		
						EBRB2 colorectal carcinoma	tumor suppressor (tumor progression)	doi:10.2147/CMAR.S234620		
						SRSF6 pancreatic cancer	oncomiR (metastasis)	PMID: 32044152		
						DPEP1 hepatoblastoma	tumor suppressor (tumor progression)	doi:10.1038/44149-019-1943-0		
Table A1. Cont.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS, CP	miR-20a-5p	4.83 ± 0.27	4.72 ± 0.93	1.08	0.58	ABC1 artery smooth muscle cells	—	—	promotes cell proliferation and migration	doi:10.1002/jbt.22589
						PTEN endothelial cells	—	—	pro-angiogenic, inhibits autophagy and apoptosis	doi:10.1038/s41419-020-02745-x
						ERBB2 hepatocellular carcinoma	miR-17-5p	—	tumor suppressor (metastasis)	doi:10.7158/embr.2019.41395
						TGFB2R liver	—	anti-fibrotic		doi:10.3389/fonc.2020.00107
						STAT3 endometrial carcinoma	—	tumor suppressor (inhibits epithelial–mesenchymal transition, invasion)	PMID: 31949637	
						STAT3 bronchial epithelial cells	—	suppresses apoptosis	doi:10.1016/j.mcp.2019.101499	
						SRCN1 osteoclasts	—	promote proliferation and differentiation	doi:10.1002/cam4.2454	
						TGFB1 endothelial cells	—	anti-angiogenic		doi:10.1002/jb.25911
						STAT3 cardiac fibroblasts	—	cardioprotection (inhibits cell proliferation)	doi:10.23736/S0031-0808.20.03975-0	
						TNFAIP1 neuroblastoma cells	—	oncomiR (inhibits apoptosis)	doi:10.1007/s11064-020-03096-x	
						FOS lens epithelial cells	—	inhibits epithelial–mesenchymal transition	doi:10.1016/j.bjophtha.2020.110290	
						VEGFA colorectal carcinoma	—	tumor suppressor (inhibits angiogenesis)	doi:10.1186/s13046-020-01594-y	
						TFAP2C T-cell acute lymphoblastic leukemia	miR-29b-3p	tumor suppressor (cell proliferation)	doi:10.1016/j.bbrc.2020.03.170. Epub 2020	
						NFAT brain	—	inhibit inflammation in Parkinson’s disease	doi:10.1111/gtx.12764	
						CCNA2 esophageal cancer	—	tumor suppressor (cell proliferation, migration, and invasion)	doi:10.3389/био.2020.00075	
						TRIM21 hepatocellular carcinoma	—	tumor suppressor (tumor progression)	doi:10.3892/mt.2020.7469	
						FOXP1 ovarian carcinoma	—	tumor suppressor (chemosensitivity)	doi:10.1136/mt.2019.22559	
						SIRT1 cardiomyocytes	—	cardioprotection (inhibits hyperoxia induced apoptosis)	PMID: 3209921	
						SMAD2 ovarian granulosa cells	—	promotes apoptosis	doi:10.3892/etm.2019.8184	
						NT5E prostate cancer	—	tumor suppressor (cell proliferation, migration)	doi:10.1089/br.2018.2457	
						RUNX2 colon cancer	—	tumor suppressor (tumor progression)	PMID: 20952759	
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster Biological Effect	Reference	
---------------	------------	----------------------	----------------------	-----------------	----------	-----------------------------	-------------------------	---------------------------	------------	
TS	miR-320a	2.51 ± 0.58	2.64 ± 0.20	-1.09	0.60	TS miR-320a	CXCL9 — synovial cells	suppress cell proliferation	doi:10.3389/fphys.2020.00441	
							SIRT4 — ovaries	prevent premature ovarian insufficiency	doi:10.1016/j.endm.2020.05.013	
							HIF1A — endometrial carcinoma	tumor suppressor (anti-angiogenic)	doi:10.1016/j.yexcr.2020.112113	
							SMAD5 — bone marrow-derived MSCs	promote osteogenic differentiation	doi:10.26355/survey_202003_20648	
							ANRIL — papillary thyroid carcinoma	tumor suppressor (tumorigenesis)	doi:10.1016/j.prp.2020.152856	
							LOX1 — endothelial cells	inhibit apoptosis upon low-density lipoprotein exposure	doi:10.1007/j1010-020-0888-9	
							CPEB1 — osteosarcoma	tumor suppressor (invasion, migration)	doi:10.1002/canm.2919	
							TXNRD1 — osteosarcoma	tumor suppressor (cell proliferation, migration)	doi:10.1088/15584447.2019.1702405	
							FOXM1 — hepatocellular carcinoma	tumor suppressor (inhibits epithelial–mesenchymal transition, tumor progression)	doi:10.3399/biom1010820	
							PBX1 — gastric cancer	tumor suppressor (tumor progression)	doi:10.4251/wjg.v11.i0.842	
							PKCγ — cancer	tumor suppressor (cell invasion)	doi:10.1038/441419-191-1921-6	
							MAFB — retina	promotes diabetic retinopathy	doi:10.18632/aging.101862	
							MAFK — synovial cells	promote apoptosis, inhibit proliferation	doi:10.26355/survey_201903_17228	
							IGFR1 — endometrial carcinoma	tumor suppressor (tumor progression)	doi:10.3892/jimm.2019.4051	
							AFG — cervical cancer	tumor suppressor (cell proliferation)	doi:10.1007/s43052-019-00008-3	
							FOXO1 — chondrocytes	promotes apoptosis and inhibits cell proliferation	doi:10.1186/s12870-019-0649-6	
							SOCS8 — gastric cancer	tumor suppressor (tumor progression)	doi:10.1097/CA000000000000846	
							WT1 — hepatocellular carcinoma	tumor suppressor (tumor progression)	doi:10.26355/survey_201910_19227	
							ABCA1 — vascular smooth muscle cells	promotes hepatosteatosis	doi:10.26355/survey_201910_19227	
							CLDN8 — retinoblastoma	tumor suppressor (cell proliferation, promotes apoptosis)	doi:10.1007/a0381-019-04199-9	
							VEGFA — hemangiomatous cells	tumor suppressor (anti-angiogenic)	doi:10.1016/j.bjhep.2019.03.084	
							FOXM1 — cervical cancer	tumor suppressor (tumor progression)	doi:10.1088/1691-9040/2019/3577983	
							FOXM1 — osteosarcoma	tumor suppressor (tumor progression)	doi:10.1002/jp.2826	
							SIRT1 — liver	promotes hepatosteatosis	doi:10.1016/j.metabol.2018.08.007	
							SND1 — glioma cells	tumor suppressor (invasion, migration)	doi:10.2147/OTT.3131270	
							MMP3, MMP9, VEGF — gastric cancer	tumor suppressor (inhibits epithelial–mesenchymal transition, tumor progression)	doi:10.1016/j.gene.2018.06.095	
							RQCD1 — breast cancer	tumor suppressor (invasion, migration)	doi:10.17305/jpmrs.2018.3399	
							ROCK1 — papillary thyroid carcinoma	tumor suppressor (tumor progression)	doi:10.1016/j.biopba.2018.03.122	
							RPL22.1 — ovarian carcinoma	tumor suppressor (tumorigenesis)	PMID: 3193572	
							FOXM1 — gastric cancer	tumor suppressor (tumor progression)	doi:10.18632/oncotarget.23513	
							FGFR1, MMP1 — breast cancer	tumor suppressor (cell proliferation, metastasis, metabolism)	doi:10.1186/s13046-017-0630-1	
							FOXM1 — lung cancer	tumor suppressor (tumor progression)	doi:10.4149/neo_2017_406	
							TWIST1 — glioma cells	tumor suppressor (inhibits epithelial–mesenchymal transition)	doi:10.3892/or.2017.5426	

Table A1. Cont.
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target Gene	GLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS	miR-708-5p	5.32 ± 0.62	5.41 ± 0.72	-1.06	0.94	FGF2	—	lung cancer	—	tumor suppressor (tumorigenesis)	doi:10.18632/oncotarget.27614
						CTNNB1	—	colon cancer	—	tumor suppressor (tumor progression)	doi:10.1016/j.biopharm.2020.110292
						TLR4	—	macrophages	—	immunomodulation of controlling inflammatory factors	doi:10.2635/swerve.201909.19019
						ZEB1	osteosarcoma	—	tumor suppressor (cell proliferation, invasion)	doi:10.2892/mmr.2019.18013	
						URGCP	pancreas ductal adenocarcinoma	—	tumor suppressor (tumor progression)	doi:10.1016/j.prp.2019.01.026	
						TGFBR1	kidney	—	chronic kidney disease	doi:10.11155/2020/0969094	
	let-7c-5p	3.67 ± 1.01	3.94 ± 0.38	-1.21	0.43	PBX3	squamous cell carcinoma	—	tumor suppressor (tumor progression)	doi:10.1186/s12943-020-01215-4	
						CMYC	hepatocellular carcinoma	—	tumor suppressor (cell proliferation)	doi:10.1016/j.biorec.2019.09.091	
						HMGAI2	dental pulp stem cells	—	promotes osteogenic differentiation	doi:10.1111/1440-1681.13059	
						DMP1:MNF	dental pulp stem cells	—	inhibits inflammation	doi:10.12699/mnr.909093	
	NAFL1	hepatocellular carcinoma	—	tumor suppressor (cell proliferation, migration)	doi:10.1016/j.carld.2019.08.024						
						CCR7	squamous cell carcinoma	—	tumor suppressor (cell proliferation, metastasis)	doi:10.7150/jca.29536	
						FASLG	endothelial progenitors	—	prevents deep vein thrombosis	doi:10.1016/j.thromres.2015.12.020	
						RCNI	nasopharyngeal carcinoma	—	tumor suppressor (cell autophagy)	doi:10.1152/japplphysiol.00352.2019	
						HMGAI2	glioblastoma	—	tumor suppressor (tumor progression)	doi:10.1111/jcmn.14884	
						IGF1R	nasopharyngeal carcinoma	—	tumor suppressor (cell migration, invasion)	doi:10.12699/mnr.914350	
						PRKCA	mammary cells	—	regulates differentiation	doi:10.1002/jcp.27676	
						VSIG4	glioblastoma	—	tumor suppressor (inhibits epithelial-mesenchymal transition)	doi:10.3892/or.2016.5098	
						GALE	glioblastoma	—	tumor suppressor (cell proliferation, metastasis)	doi:10.2147/MAR.S221385	
						HMGAI1	bladder cancer	—	tumor suppressor (cell proliferation, metastasis)	doi:10.1186/s12944-019-0485-1	
						CCN2, E2F2	cardiomyocytes	—	cardioprotection (promotes proliferation after injury)	doi:10.1042/CS20181002	
						KLK6	colon cancer	—	tumor suppressor (cell proliferation, metastasis)	doi:10.3892/or.2018.6577	
Table A2. MiRNAs that are known oncomiRs (O). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no doi numbers are available.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GenGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
O, CP	miR-100-5p	1.11 ± 0.67	2.05 ± 0.28	-1.9	0.05				suppression of angiogenesis	doi:10.1002/path.4804
						ANGPT2	hepatocellular carcinoma			
						p53	pancreatic ductal adenocarcinoma		oncomiR (promotes cell growth)	doi:10.1038/s41467-018-0962-x
						mTOR	endometrial carcinoma	miR-199a-3p, miR-198-5p	tumor suppressor (cell autophagy)	PMID: 3196798
						mTOR	breast cancer		tumor suppressor (anti-angiogenic)	doi:10.1007/s13402-017-0335-7
						mTOR	osteosarcoma		tumor suppressor (cell autophagy)	doi:10.26355/eurrev_201809_15913
						mTOR	vascular smooth muscle cells		suppression of angiogenesis	doi:10.1161/CIRCULATIONAHA.110.000323
O	miR-151a-5p	4.0 ± 0.38	5.09 ± 0.2	-2.14	0.007					
						p53	non-small cell lung carcinoma		oncomiR (promotes epithelial–mesenchymal transition, proliferation, invasion)	doi:10.1038/oncsis.2017.66
						miR-1872	colorectal carcinoma	miR-107	oncomiR (promotes cell proliferation, invasion)	doi:10.1038/emmm.2015.39
						miR-103	bladder cancer	AT-MSCs	inhibit proliferation	doi:10.1038/owp30919
						miR-103	prostate cancer		oncomiR, tumor suppressor (depending on cancer type)	doi:10.1261/jma.045757.114
						miR-103	squamous cell carcinoma	miR-130a	oncomiR (promotes cell proliferation)	doi:10.26355/eurrev_202006_21305
						miR-103	endothelial progenitor cells		promotes migration and angiogenesis	doi:10.1016/j.agg.2019.10.048
						SNRK	glomerular endothelial cells		promotes NFκB/p65 activation, renal inflammation and fibrosis	doi:10.1038/s41467-019-11515-x
O	miR-191-5p	3.25 ± 0.42	4.26 ± 0.42	-0.8	0.02					
						EGRI, UBE2D3	hepatocellular carcinoma		oncomiR (promotes cell proliferation)	PMID: 3193596
						miR-103	osteosarcoma		oncomiR (activates PI3K/AKT pathway, proliferation, invasion)	doi:10.26355/eurrev_201905_27763
						miR-103	endodermal cells		enhance chondrogenesis	doi:10.1186/ijmbe.2014.2638
						miR-103	chondrocytes		oncomiR (promotes cell proliferation, metastasis)	doi:10.3982/ijmm.2019.4258
						miR-103	glioma cells		oncomiR (promotes tumor progression)	doi:10.3390/ijms17111799
						miR-103	pancreatic cancer		oncomiR (promotes cell proliferation, invasion)	doi:10.1187/jamnet.1707.2020.180459
O, CP	miR-423-3p	4.49 ± 0.12	4.47 ± 0.14	1.01	0.83					
						miR-103	cardiomyocytes		mediates myocardial protection (in ischemic postconditioning secreted by cardiac fibroblast-EVs)	doi:10.1093/abc/abc221
						miR-103	colorectal carcinoma		oncomiR (promotes cell growth)	doi:10.1159/000440230
						miR-103	glioma cells		oncomiR (promotes tumor progression)	PMID: 2928399
						ADIPOR2	laryngeal cancer		oncomiR (promotes tumor progression)	PMID: 2537209
Table A2. Cont.

MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGlobe ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
miR-21-5p	O, CP	-0.90 ± 0.52	-0.78 ± 0.82	-1.09	0.98				
FASLG	hepatocellular carcinoma —	oncomiR (chemoresistance)			doi:10.1089/dna.2018.4529				
CCR7	chondrosarcoma —	tumor suppressor (tumor progression)			doi:10.1080/00068027.2019.1702630				
TIA1	colon cancer —	tumor suppressor (cell proliferation, invasion, metastasis)			doi:10.1159/000493457				
PDCD4	breast cancer —	oncomiR (chemoresistance)			doi:10.1149/res.2018183270v950				
RCL2, TRK	macrophages —	regulates mycobacterial survival			doi:10.1021/bi203464y				
SET, TAF-1A	lung adenocarcinoma —	oncomiR (promotes tumor progression)			doi:10.1016/j.iss.2019.06.014				
RAB1A	neurons —	neuroprotection during traumatic brain injury			doi:10.12659/MSM.915272				
PTEN, PDCD4	lung —	anti-apoptotic during ischemia-reperfusion injury			doi:10.1016/j.abbar.2019.01.022				
SOX7	non-small cell lung carcinoma —	oncomiR (chemoresistance)			doi:10.2147/OTTIS46423				
TGFBR1	non-small cell lung carcinoma —	oncomiR (promotes cell proliferation)			doi:10.3892/etm.2018.6792				
CHL1	colon adenocarcinoma —	oncomiR (promotes cell proliferation, invasion)			doi:10.1186/s12020-018-0034-5				
PTEN, PDCD4	lung cancer —	oncomiR (promotes cell proliferation, metastasis m2 polarization)			doi:10.1186/s13046-019-1027-0				
SMAD7	non-small cell lung carcinoma —	oncomiR (promotes tumor progression)			doi:10.2147/OTTIS72393				
PI3K	cardiomyocytes —	cardioprotection (improves contractility)			doi:10.1161/CIRCRESAHA.118.312420				
SPRY1	joints —	suppresses angiogenesis and matrix degeneration			doi:10.1186/s13375-020-2145-y				
PDCD4	squamous cell carcinoma —	oncomiR (anti-apoptotic)			doi:10.3892/etm.2019.7970				
MASP2	endothelial cells —	suppresses angiogenesis and proliferation			doi:10.1309/2015-174917				
CDKN2C	melanoma —	oncomiR (promotes cell proliferation)			doi:10.1002/2211-5463.12853				
CCL5, TIMP3	neurons —	inhibits neuroapoptotic pathway development			doi:10.1002/jn.28920				
SMAD7	fibroblasts —	promotes fibrosis in tendons			doi:10.1186/s12020-018-1196-0				
FASLG	cardiomyocytes —	cardioprotection (in ischemia-reperfusion injury)			doi:10.3142/BSR20190757				
WWC2	lung adenocarcinoma —	oncomiR (promotes cell proliferation, metastasis)			doi:10.3233/CBM-201489				
PTEN, mTOR	brain —	protects against seizure damage			doi:10.1016/j.eplepsyres.2018.05.001				
SMAD7	fibroblasts —	activation of spiral fibers			doi:10.7150/jca.org.24474				
PDCD4	osteosarcoma —	oncomiR (promotes cell proliferation, metastasis)			doi:10.3892/oo.2017.4127				
HMO1H2	non-small cell lung carcinoma —	oncomiR (chemoresistance)			doi:10.1159/000481839				
PTEN	smooth muscle cells —	promotes proliferation and remodeling			doi:10.3390/jms2040875				
MAP1K1	breast cancer —	oncomiR (promotes tumor progression)			doi:10.1042/BSR20181000				
PTEN	fibroblasts —	prevents radiation-induced autophagy			doi:10.1038/s41374-019-0323-9				
CADM1	tongue cancer —	oncomiR (chemoresistance)			doi:10.1007/s00109-016-1417-0				
Table A2. Cont.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target Gene/GLOBE ID	Cell/Tissue/Cancer Type	Cell Cluster Biological Effect	Reference	
O, CP	miR-34a-5p	3.49 ± 1.45	2.09 ± 0.84	2.65	0.23	NOTCH1 cardiomyocytes	—	—	cardiotoxic	doi:10.31083/j.rcm.2019.03.545
						BCL2 endothelial cells	—	—	hypoxia induced autophagy	doi:10.1002/jb-29207
						ZEB1 cardiomyocytes	—	—	aggravates hypoxia induced apoptosis	doi:10.1515/bio-2018-0195
						ACSL1 hepatocytes	—	—	increases hepatic triglyceride and cholesterol levels	doi:10.3399/jpm.2018.4420
						SIRT1 kidney	—	—	promotes injury induced fibrosis	doi:10.1038/s41419-018-0257-8
						SIRT1 kidney	—	—	promotes injury induced fibrosis	doi:10.1016/j.bbre.2017.12.048
						DL1L osteosarcoma	—	oncomiR (chemoresistance)	—	doi:10.1108/rrsp.2018.44218
						AGTR1 osteosarcoma	—	oncomiR (chemoresistance)	—	doi:10.1186/s12885-016-3002-x
						CD117 osteosarcoma	—	oncomiR (chemoresistance)	—	doi:10.3802/oncotarget.8546
						PD-L1 ovariian carcinoma	—	oncomiR (chemoresistance)	—	doi:10.4149/nco.2019_192020N106
						BCL2 ovariian carcinoma	—	oncomiR (promotes cell proliferation)	—	doi:10.2147/OTT.142446
						AKT3 arteries	—	inhibits atherosogenesis, angiogenesis	—	doi:10.1161/ATVBAHA.116.308905
						PAQR3 gastric cancer	—	oncomiR (promotes metastasis)	—	doi:10.3892/cr.2017.5675
						AXIN2 hepatocellular carcinoma	—	oncomiR (promotes cell proliferation, invasion)	—	doi:10.3892/ol.2019.11056
						RFX5 prostate cancer	—	oncomiR (promotes metastasis)	—	doi:10.3892/ol.2019.11056
						SEMA3A podocytes	—	repressing apoptosis and inflammation in high glucose injury	—	doi:10.1002/jpb.28091
						PDG4 osteosarcoma	—	oncomiR (promotes cell proliferation)	—	doi:10.1016/j.bbre.2018.08.035
						BMPRIA cardiomyocytes	—	promotes doxorubicin induced injury	—	doi:10.1007/s12012-018-9494-6
						HPSE2 breast cancer	—	oncomiR (promotes cell proliferation, metastasis)	—	doi:10.3389/fonc.2020.003108

miR-15b-5p	4.41 ± 0.46	4.88 ± 1.04	–1.38	0.69				—	—	doi:10.1161/ATVBAHA.116.308905
						AKT3 arteries	—	inhibits atherosogenesis, angiogenesis	—	doi:10.1161/ATVBAHA.116.308905
						PAQR3 gastric cancer	—	oncomiR (promotes metastasis)	—	doi:10.3892/cr.2017.5675
						AXIN2 hepatocellular carcinoma	—	oncomiR (promotes cell proliferation, invasion)	—	doi:10.3892/ol.2019.11056
						RFX5 prostate cancer	—	oncomiR (promotes metastasis)	—	doi:10.3892/ol.2019.11056
						SEMA3A podocytes	—	repressing apoptosis and inflammation in high glucose injury	—	doi:10.1002/jpb.28091
						PDG4 osteosarcoma	—	oncomiR (promotes cell proliferation)	—	doi:10.1016/j.bbre.2018.08.035
						BMPRIA cardiomyocytes	—	promotes doxorubicin induced injury	—	doi:10.1007/s12012-018-9494-6
						HPSE2 breast cancer	—	oncomiR (promotes cell proliferation, metastasis)	—	doi:10.3389/fonc.2020.003108
MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Target GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference	
O miR-17-5p	5.57 ± 0.15	5.34 ± 0.62	1.10	0.57						

- **OmiR-17-5p**
 - nasopharyngeal carcinoma
 - oncomiR (promotes angiogenesis)
 - doi:10.7150/jca.30757

- **ETV1**
 - breast cancer
 - tumor suppressor (cell proliferation)
 - doi:10.1186/s12885-017-3674-x

- **RBL2, E2F4**
 - pancreatic cancer
 - oncomiR (promotes cell proliferation)
 - doi:10.1016/j.camet.2017.09.044

- **ANR1**
 - fibroblasts
 - decreased angiogenesis
 - doi:10.1016/j.stem.2019.10.003

- **BRCC2**
 - fibroblasts
 - oncomiR (promotes cell growth)
 - doi:10.3922/jre.2016.4542

- **NAN1**
 - breast cancer
 - oncomiR (promotes metastasis, invasion)
 - PMID: 31933985

- **SKBH1**
 - osteosarcoma
 - oncomiR (promotes epithelial–mesenchymal transition)
 - doi:10.1002/jbcb.27832

- **SMAD7**
 - fibroblasts
 - promotes liver fibrosis
 - doi:10.1111/jpmn.14432

- **TGFR2**
 - cervical cancer
 - oncomiR (promotes cell proliferation)
 - doi:10.26355/eurrev_201804_14712

- **E2F1**
 - granulosa cells
 - promotes cell proliferation
 - doi:10.1111/ndr.13951

- **SMAD5**
 - myofibroblasts
 - miR-106b-5p promotes osteogenic differentiation
 - doi:10.1016/j.eurrev_201804_14712

- **MFN2**
 - satellite cells
 - promotes mitochondrial function
 - PMID: 31918013

- **F21**
 - nasopharyngeal carcinoma
 - oncomiR (promotes cell proliferation)
 - doi:10.1082/canet.863

- **H3X5L3**
 - prostate cancer
 - oncomiR (promotes tumor proliferation)
 - doi:10.1186/s12955-019-0994-8

- **F21**
 - astrocytes
 - inhibits apoptosis during hypoxia
 - doi:10.1186/s12935-019-1116-4

- **CMYC**
 - hepatocellular carcinoma
 - tumor suppressor (cell proliferation, invasion, metastasis)
 - doi:10.1007/s12777-015-3585-5

- **VEGF1**
 - endothelial cells
 - mitigates endometriosis
 - doi:10.1074/jcb.201302-030042

- **TMOD1**
 - gastric cancer
 - oncomiR (tumorigenesis)
 - doi:10.26355/eurrev_201907_18430

- **SMAD7**
 - osteoblasts
 - promotes osteogenic differentiation
 - doi:10.1038/omm.2014.43

- **RUNX3**
 - gastric cancer
 - oncomiR (promotes cell proliferation, metastasis)
 - doi:10.1016/j.biophap.2020.110246

- **SOC56**
 - gastric cancer
 - oncomiR (promotes cell proliferation)
 - doi:10.1016/j.ab.2014.04.036

- **PTEN**
 - thyroid cancer
 - oncomiR (promotes cell proliferation)
 - doi:10.14199/neco._2019_190110N29

- **PTEN, GAIN7**
 - hepatocellular carcinoma
 - oncomiR (tumorigenesis)
 - doi:10.1242/jcs.122895

- **TSHR**
 - squamous cell carcinoma
 - tumor suppressor (cell autophagy)
 - doi:10.1007/s10549-012-2400-4

- **FZ1PTEN**
 - smooth muscle cells
 - promotes hypoxia induced proliferation
 - doi:10.1186/s12861-018-0355-5

- **SMAD7**
 - nasal epithelial cells
 - suppresses inflammatory response
 - doi:10.1186/s12865-018-0355-5

- **TGFBR2**
 - gastric cancer
 - oncomiR (promotes cell proliferation)
 - doi:10.3863/oncotarget.8846

- **HBP1**
 - breast cancer
 - oncomiR (promotes metastasis, invasion)
 - doi:10.1007/s10549-010-0954-4

- **SMAD7**
 - hepatic stellate cells
 - activates stellate cells
 - doi:10.1038/labinvest.2015.58
| MiRNA Function | MiRNA Name | CB-MSC-EV [dCT ± SD] | AT-MSC-EV [dCT ± SD] | Fold Difference | p-Value | Confirmed Target GeneGLOBE ID | Cell/Tissue/Cancer Type | MiRNA Cluster | Biological Effect | Reference |
|----------------|------------|-----------------------|-----------------------|-----------------|---------|-------------------------------|------------------------|----------------|------------------|-----------|
| O, CP | miR-21-3p | 5.28 ± 1.27 | 3.89 ± 1.01 | 2.26 | 0.26 | SPRY1 fibroblasts | — | — | promotes wound healing | doi:10.18632/aging.103610 |
| | | | | | | MAT2B brain | — | — | attenuates ischemia-reperfusion injury | doi:10.3325/cmj.2019.60.439 |
| | | | | | | PTEN vascular smooth muscle cells | — | — | promote migration and proliferation (pro-atherogenic) | doi:10.7150/thno.37357 |
| | | | | | | VEGFA granulosa cells | — | — | inhibits autophagy | doi:10.1550/REJ-19-0265 |
| | | | | | | TGS4 retinal pigment epithelial cells | — | — | modulates apoptosis and inflammation | doi:10.1111/1440-1681.13142 |
| | | | | | | AKT CDC2 kidney | — | — | regulates metabolic alterations in acute kidney injury | doi:10.1155/2019/2823731 |
| | | | | | | PTEN multiple cancers | — | — | oncomiR (inhibit apoptosis) | doi:10.1016/j.ab.2019.05.026 |
| | | | | | | HDAC1 epithelium | — | — | oncomiR (inhibit apoptosis) | doi:10.2147/CMAJ.S183328 |
| | | | | | | SOX9 osteosarcoma | — | — | inhibited myeloma virus replication | doi:10.3389/fonc.2018.00174 |
| | | | | | | PTEN liver cancer | — | — | promoted myocardial dysfunction in sepsis | doi:10.1016/j.yjmcc.2016.03.014 |
| | | | | | | HDAC1 cardiomyocytes | — | — | cardioprotection (suppression of myocardial hypertrophy) | doi:10.1093/cvr/vu254 |
| | | | | | | MYL9 osteosarcoma | — | — | oncomiR (tumorigenesis) | doi:10.1177/0960327120937330 |
| O | miR-663a | 4.43 ± 0.38 | 1.49 ± 1.06 | 7.68 | 0.02 | TGFB1 liver | — | — | reduces hepatic stellate cell activation | doi:10.1155/2020/3156267 |
| | | | | | | ZEB1A osteosarcoma | — | — | oncomiR (inhibit apoptosis) | doi:10.1016/j.canlet.2019.01.046 |
| | | | | | | TGFB1 hepatocellular carcinoma | — | — | tumor suppressor (cell proliferation, invasion) | doi:10.1186/s12885-018-5016-z |
| | | | | | | NFIX spermatogonial stem cells | — | — | promote proliferation and inhibit apoptosis | doi:10.1016/j.mcm.2018.05.015 |
| | | | | | | EMY3 gallbladder cancer | — | — | oncomiR (tumor progression) | doi:10.1016/j.canlet.2018.05.022 |
| O | miR-664a-3p| 4.67 ± 1.55 | 4.77 ± 0.54 | -1.07 | 0.44 | FHL1 lung | — | — | Progression of chronic obstructive pulmonary disease | doi:10.2147/OPPD.S24763 |
| | | | | | | FOXF3 gastric cancer | — | — | oncomiR (tumorigenesis) | doi:10.1111/ope.12567 |
Table A3. MiRNAs that are known for their tumor suppressor and oncogenic potential (TS/O). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no doi numbers are available.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS/O	miR-31-3p	4.93 ± 0.56	5.08 ± 0.49	-1.11	0.64	RASA1 colorectal carcinoma	—	—	oncomiR (promotes cell proliferation, tumor progression)	doi:10.1074/jbc.M112.37763
						STON2 papillary thyroid carcinoma	—	—	tumor suppressor (metastasis, suppresses epithelial–mesenchymal transition)	doi:10.1002/mbio.1889
						JAG1, NOTCH1, JAG1, DDR1 colorectal carcinoma	—	—	tumor suppressor (cell proliferation, invasion)	doi:10.1002/path.5238
						PODXL, DDR1 acute myeloid leukemia	—	—	tumor suppressor (cell proliferation, invasion)	doi:10.1002/ajh.23129
						RB1 pancreatic cancer	—	—	oncomiR (tumor progression)	doi:10.1007/12307-016-0009
	mTOR	4.39 ± 1.5	3.73 ± 0.43	1.58	0.53	mTOR endometrial endometrial adenocarcinoma	miR-100-5p, miR-199a-3p	—	tumor suppressor (cell autophagy)	PMID: 3196798
						GSK3B monocytes	—	—	inhibition of NFκB signaling, anti-inflammatory	doi:10.1007/s10753-014-0799-2
						JAG1 ligamentum florum cells	—	—	inhibition of osteogenic differentiation	doi:10.1111/jmm.13047
						CAV1 non-small cell lung carcinoma	—	—	oncomiR (promotes cell proliferation)	doi:10.1038/ai41419-019-17409
						AKI breast cancer	—	—	tumor suppressor (angiogenesis)	doi:10.3389/geom.2019.01397
	DDR1	breast cancer	—	—		DDR1 breast cancer	—	—	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.3892/cr.2018.2555
	BCC1	oral cancer	miR-101-3p (not detected)	—		BCC1 breast cancer	—	—	tumor suppressor (cell autophagy)	doi:10.1016/j.mcp.2020.101567
	MLK	pancreatic beta cells	—	—		MLK pancreatic beta cells	—	—	tumor suppressor (increases cell proliferation)	doi:10.2174/2211536006616600782114
	JAG1, DDR1	colorectal carcinoma	—	—		JAG1, DDR1 colorectal carcinoma	—	—	tumor suppressor (cell proliferation, invasion)	doi:10.1002/path.5239
	POXL, DDR1	acute myeloid leukemia	—	—		POXL, DDR1 acute myeloid leukemia	—	—	tumor suppressor (cell proliferation)	doi:10.1002/ajh.23129
	HES1	medulloblastoma	—	—		HES1 medulloblastoma	—	—	tumor suppressor (impairs cancer stem cell function)	doi:10.1371/journal.pone.0004998
	ITGA3	squamous cell carcinoma	miR-199a-3p/5p	—		ITGA3 squamous cell carcinoma	—	—	tumor suppressor (cell proliferation)	doi:10.1111/cas.12398
	AXIN2	-	miR-185-5p	—		AXIN2 squamous cell carcinoma	—	—	oncomiR (promotes cell proliferation, invasion)	doi:10.3892/cj.2019.18556
	THBS2	squamous cell carcinoma	—	—		THBS2 squamous cell carcinoma	—	—	oncomiR (promotes angiogenesis)	doi:10.1038/00475-0006509
	SOF1	cartilage	—	—		SOF1 cartilage	—	—	prevent cartilage degradation in osteoarthritis	doi:10.1038/00169-0015260
	VASH1	squamous cell carcinoma	—	—		VASH1 squamous cell carcinoma	—	—	oncomiR (promotes metastasis)	doi:10.1038/s41488-018-0511-x
	THBS1	microblastolet	—	—		THBS1 microblastolet	—	—	promotes invasion and proliferation	doi:10.1016/j.bcp.2018.10.089
	JAK3	macrophages	—	—		JAK3 macrophages	—	—	regulates M1 to M2 transition	doi:10.3389/fimmu.2019.03087
	AKF4	epithelial ovarian cancer	—	—		AKF4 epithelial ovarian cancer	—	—	tumor suppressor (cell proliferation, metastasis)	doi:10.1016/j.mrc.2017.07.002
	THBS2	squamous cell carcinoma	—	—		THBS2 squamous cell carcinoma	—	—	oncomiR (promotes metastasis)	doi:10.1038/01419-017-0077-5
	MMP22	macrophages	—	—		MMP22 macrophages	—	—	prevent low-density lipoprotein-induced oxidative stress	doi:10.1002/hjch.27917
	EBF5A2	medulloblastoma	—	—		EBF5A2 medulloblastoma	—	—	tumor suppressor (cell proliferation, enhances apoptosis)	doi:10.1087/0018541-2018-155804
	PTPN	gastric cancer	—	—		PTPN gastric cancer	—	—	oncomiR (promotes tumor progression)	doi:10.3727/00040416.1473628319365
	TIMP3	retina	—	—		TIMP3 retina	—	—	promotes microvascular dysfunction	doi:10.1007/60424-020-0243-y
	PARP1	breast cancer	—	—		PARP1 breast cancer	—	—	tumor suppressor (tumor progression)	doi:10.18652/oncotarget.21561
	RB1	pancreatic cancer	—	—		RB1 pancreatic cancer	—	—	oncomiR (chemosensitivity)	doi:10.1007/s10182-016-4494-8
	JNK1, TGFBR1, ETS-1	cardiac fibroblasts	—	—		JNK1, TGFBR1, ETS-1 cardiac fibroblasts	—	—	cardioprotective (inhibits fibroblast activation)	doi:10.1111/HYPERTENSIONAHA.117.10094
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GenoGlobe ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
----------------	------------	----------------------	----------------------	------------------	---------	--------------------------------	------------------------	---------------	------------------	-----------
TS/O, CP	miR-25-3p	4.52 ± 0.53	4.8 ± 0.13	-1.21	0.33		breast cancer	—	tumor suppressor (cell proliferation)	doi:10.1186/s12943-017-0754-0
							retinoblastoma	oncomiR (promotes tumor progression)	doi:10.1016/j.biopha.2019.109111	
							glioma cells	oncomiR (promotes cell proliferation, metastasis)	doi:10.3892/etm.2019.7963	
							breast cancer	oncomiR (promotes cell proliferation, metastasis)	doi:10.1139/2019-702467	
							cervical cancer	tumor suppressor (suppresses EMT)	doi:10.1111/cas.13104	
							endothelial cells	inhibit NFκB signaling and reduces inflammation	doi:10.3389/fmmu.2019.00205	
							cardiomyocytes	cardioprotective (inhibit cardiomyocyte apoptosis during injury)	doi:10.1089/0896622X.2020.1745286	
							lens epithelial cells	reduces apoptosis in oxidative stress	doi:10.1002/jcb.29270	
							CB1R gastric cancer	miR-130a-5p (not detected)	tumor suppressor (cell proliferation)	doi:10.1155/2019/7024675
							pancreatic ductal adenocarcinoma	tumor suppressor (cell proliferation)	doi:10.1159/000494468	
							hepatocytes	downregulate Apaf-1 expression	doi:10.1012/jbm.10896	
							osteosarcoma	oncomiR (promotes cell proliferation)	doi:10.1038/s41419-019-0641-1	
							squamous cell carcinoma	oncomiR (promotes cell proliferation, metastasis)	doi:10.1093/ajmgd/gyn049	
							hepatocellular carcinoma	tumor suppressor (suppresses epithelial–mesenchymal transition)	doi:10.1016/j.gene.2018.05.061	
							cervical cancer	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1036/s41598-020-00143-x	
							gastric cancer	tumor suppressor (chemoresistance)	doi:10.1038/edcs.2015.123	
							chondrocytes	enhance matrix degradation in osteoarthritis	doi:10.1038/s41419-018-0729-0	
							keratinocytes	regulation of keratinocyte differentiation	doi:10.1111/exd.13119	
							renal cancer	oncomiR (promotes cell proliferation)	doi:10.1371/journal.pone.0050203	
							atrial fibroblasts	miR-27b-3p promote atrial fibrosis in atrial fibrillation	doi:10.1111/jcem.14211	
							colon cancer	oncomiR (promotes cell invasion, metastasis)	doi:10.1042/BSR20191087	
							breast cancer	tumor suppressor (cell proliferation, chemoresistance)	doi:10.1038/s41419-017-0211-4	
							atrial fibroblasts	cardioprotection (reduces atrial fibrosis during atrial fibrillation)	doi:10.1139/2019-555596	
							endometrial carcinoma	tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1093/abbs/gmz030	
							endodontal cells	suppresses endodontal cell proliferation and migration in Kawasaki disease	doi:10.1159/000349235	
							chondrocytes	inhibits apoptosis in rheumatoid arthritis	doi:10.1086/2169401.2019.1607562	
							thyroid cancer	oncomiR (chemoresistance)	doi:10.1111/bpt.13076	
							lung cancer	tumor suppressor (tumor progression)	PMID: 2920308	
							maxillary sinus membrane stem cells	suppress osteogenic differentiation	doi:10.1097/ID.0000000000006837	
							colorectal cancer	tumor suppressor (cell proliferation, invasion, metastasis)	PMID: 3196697	
							gastric cancer	tumor suppressor (tumor progression)	doi:10.1016/j.biopha.2019.109617	
							glioma cells	tumor suppressor (tumorigenesis)	doi:10.1139/meds-2019-0008	
							gastric cancer	tumor suppressor (cell proliferation)	doi:10.1186/s10496-015-0253-3	
							oocytes	maturation	doi:10.1016/j.mce.2016.09.046	

Table A3. Cont.
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets	GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
GSPT1						non-small cell lung carcinoma — tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.2147/OTT.S196865				
NRF2						squamous cell carcinoma — tumor suppressor (tumor progression)	doi:10.1007/s13777-020-00329-7				
TRAF3						chondrocytes — inhibits IL1B-induced injury	doi:10.1016/j.intimp.2019.106052				
NRS5A, CREB1	breast cancer — tumor suppressor (chemosensitivity)	doi:10.1038/cddis.2016.361									
KEAP1	cardiomyocytes — cardioprotection (in ischemia-reperfusion injury)	doi:10.1155/2016/7042105									
FGFI1	T-cells — oncomiR (immune evasion)	doi:10.1002/path.4781									
SOCS6	prostate cancer — oncomiR (promotes metastasis, invasion), proliferation	PMID: 31938287									
p27KIP1	papillary thyroid carcinoma — oncomiR (promotes metastasis, invasion, proliferation)	doi:10.26355/journal.201902.18327									
BIM	breast cancer — oncomiR (chemosensitivity)	doi:10.1002/l.28568									
RIPK1	cardiomyocytes — cardioprotection (in ischemia-reperfusion injury)	doi:10.1159/000495181									
DEDD	bladder cancer — oncomiR (promotes tumor progression)	doi:10.3892/eurrev_201907_18327									
PRKCH	Lacrimal adenoid cystic carcinoma — tumor suppressor (tumor progression)	doi:10.1371/journal.pone.0158433									
MTTF	hepatocellular carcinoma — oncomiR (promotes cell proliferation)	doi:10.1002/bdi.3323									
SMA5D	periodontal stem cells — inhibit osteogenic differentiation	doi:10.1152/j.pub.2016.1031109									
JABUSN5	nasopharyngeal carcinoma — tumor suppressor (radioresistance)	doi:10.1038/onc.2016.147									
ATG4A	small cell lung cancer — tumor suppressor (chemosensitivity)	doi:10.11633/2016.onc2787									
KRBFS	intervertebrate discs — induces disc degeneration	doi:10.1016/j.bjc.2020.117288									
NOTCH1, DLL1	endothelial cells — inhibit angiogenesis after myocardial infarction	doi:10.3399/jnuco.2019.01449									
LAMB3	pancreatic ductal adenocarcinoma — tumor suppressor (tumor progression)	doi:10.1371/journal.pone.0157133									
CHD5	squamous cell carcinoma — oncomiR (promotes cell proliferation, chemoresistance)	doi:10.2217/hm-2016-0179									
FGFI1	fibroblasts — activation of fibrosis and proliferation in renal fibrosis	doi:10.1002/j.conf.2016.08.071									
PRKRC2	renal cell carcinoma — oncomiR (promotes tumor progression)	doi:10.1016/j.bjnp.2018.11.065									
KLFS3	melanoma — oncomiR (promotes tumor progression)	doi:10.1186/s13310-015-0262-6									
FGFI2	squamous cell carcinoma — tumor suppressor (cell proliferation)	doi:10.1016/j.ppr.2018.12.021									
CHD7	hepatocellular carcinoma — oncomiR (promotes cell proliferation)	doi:10.1037/ajot.2017.02.118									
SMA5D	chondrocytes — promotes osteoarthritis	doi:10.1016/j.bmcrev.2016.05.002									
PTEF	glioma cells — oncomiR (promotes cell proliferation)	doi:10.1002/cancer.24410									
Table A3. Cont.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS/O, CP	miR-130a-3p	4.86 ± 0.83	5.01 ± 0.74	-1.11	0.75	PDE4D cardiomyocytes —	cardioprotection (improves cardiac cell proliferation after myocardial infarction)			doi:10.1002/jcp.26327
TS/O	miR-15a-5p	5.52 ± 2.85	4.42 ± 1.07	2.14	0.73	MYCN neuroblastoma cells miR-13b-5p, miR-16-5p	tumor suppressor (tumor progression)			doi:10.1002/1878-0261.12588
TS/O, CP	miR-181a-5p	5.5 ± 0.68	6.54 ± 0.7	-1.09	0.9	E2F7 non-small cell lung cancer	oncomiR (tumor progression)			doi:10.1210/CMAR.S240964

Note: MiRNA clusters and biological effects are not specified for all entries.
MiRNA Name	Fold Difference	p-Value	Confirmed Targets	Biological Effect	Reference
miR-125a-5p	1.27 ± 0.23	0.27	FUT4, LIN2SB, MACC1	— tumor suppressor (tumorigenesis)	doi:10.18632/j归属10.7150/thno.28021, doi:10.3892/jmmi.2018.3496, doi:10.3233/etm.2019.8309
miR-125a-5p	1.27 ± 0.23	0.27	PAK3, NLRC5, BACE1	— tumor suppressor (tumorigenesis)	doi:10.1038/s41598-019-42601-3, doi:10.4149/eurrev_202004_20841, doi:10.1016/j.metabol.2020.154241

Table A3. Cont.

MiRNA	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets	Biological Effect	Reference
TS/O	miR-106a-5p	5.19 ± 0.76	5.42 ± 1.07	-1.17	0.97	HK2, STAT3, RBM24	squamous cell carcinoma — tumor suppressor (cell proliferation, invasion, metastasis)	doi:10.1007/s11010-020-03840-5, doi:10.3892/nmm.2020.2011147, doi:10.2147/OTT.S240274
TS/O	miR-125a-5p	2.3 ± 0.54	2.64 ± 0.22	-1.27	0.27	HK2, FUT4, TRAF6, RBM24	lung — tumor suppressor (tumor progression)	doi:10.18632/j归属10.7150/thno.28021, doi:10.3892/jmmi.2018.3496, doi:10.3233/etm.2019.8309

Additional references include doi:10.1016/j.metabol.2020.154241, doi:10.4149/eurrev_202004_20841, doi:10.1016/j.metabol.2020.154241.
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets	GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS/O, CP	miR-19a-3p	3.07 ± 0.62	3.29 ± 1.04	-1.16	0.99	PTEN	brain	—	alleviates ischemia-reperfusion injury-induced apoptosis	doi:10.1016/j.neuroscience.2020.04.020	
						KIF5B	brain	—	alleviates ischemia-reperfusion injury	doi:10.1186/46859-020-00286-9	
					FAS	retinal cancer	—	tumor suppressor (induced apoptosis)	doi:10.1177/1532033X8917978		
					TSK3P1	hepatocellular carcinoma	—	tumor suppressor (cell proliferation)	doi:10.7150/tyca.37148		
					FOXF2	colorectal carcinoma	—	tumor suppressor (inhibits epithelial-mesenchymal transition)	doi:10.3748/wig.v26.i6.627		
					KIF5B	ovarian carcinoma	—	oncomiR (tumor progression)	doi:10.1002/mc.23113		
					SOCS3	synovial cells	—	promote cell proliferation	doi:10.1002/tcb.28442		
					PTEN	osteosarcoma	—	uncomiR (chemoresistance)	doi:10.3922/jc.2018.992		
					PTEN	hepatocellular carcinoma	—	oncomiR (tumor progression)	doi:10.1016/prp.2018.12.012		
					PTEN	hepatocellular carcinoma	—	oncomiR (chemoresistance, metastasis)	doi:10.1016/j.incpa.2018.06.097		
					PTHX1	gastric cancer	—	oncomiR (tumor progression)	doi:10.1159/000489790		
					TNC1	osteoblasts	—	mediates dexamethasone resistance	doi:10.18632/oncotarget.23236		
					SMAD2/4	prostate cancer	—	tumor suppressor (invasion, metastasis)	doi:10.3892/otc.2017.6096		
					TC3B2R	cardiac fibroblasts	miR-19b-3p		cardioprotection: anti-fibrotic	doi:10.1038/tnp42474	
					NR1F1	gastric cancer	—	tumor suppressor (tumor progression)	doi:10.1186/s12935-020-1257-0		
					CCDC6	cholangiocarcinoma	—	uncomiR (promotes proliferation, epithelial-mesenchymal transition)	doi:10.1016/j.ab.2020.103867		
					HIF1A	endothelial cells	—	anti-angiogenic after hypoxia	doi:10.1096/fj.201902434R		
					BACE1	brain	miR-16-5p		prevent amyloid beta induced apoptosis	doi:10.1097/WNR.0000000000003739	
					TFFAIP3	endothelial cells	—	pro-inflammatory in the setting of meningitis	doi:10.3399/pathsms.040268		
					HOX49	non-small cell lung carcinoma	—	uncomiR (promotes proliferation, migration, invasion)	doi:10.2147/OTT.S216320		
					PTEN	pancreatic cancer	—	oncomiR (cell proliferation)	doi:10.21037/tam.2019.04.81		
					GSK6	chondrocytes	—	reduces inflammation and matrix degradation	doi:10.11070101419-00565-2		
					PTEN	muscle cells	—	osteogenic differentiation	doi:10.1023/ab.000000000000011333		
Table A3. Cont.

MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference	
PTEN	cardiomyocytes	—		2.19 ± 1.04	1.37	0.99					
ATM	lung	—		1.96 ± 0.59	1.61 ± 0.57	1.66	0.50				
LCN2	hepatocellular carcinoma	—		2.34 ± 1.60	1.61 ± 0.57	1.66	0.50				
PLAC2G	colorectal carcinoma	—		1.17		0.99					
LIVIN	colorectal carcinoma	—		1.66		0.50					

TS/O CP

miR-214-3p	2.19 ± 1.04	1.96 ± 0.59	1.37	0.99
miR-222-3p	2.34 ± 1.60	1.61 ± 0.57	1.66	0.50

- **TS/O**: Transsudative Oedema
- **miR-214-3p**: miR-214-3p
- **miR-222-3p**: miR-222-3p

For more information, please refer to the original publications listed in the reference column.
MiRNA	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
TS/O, CP miR-26a-5p	3.77 ± 0.54	4.46 ± 0.72	-1.24	0.53	RANBP9 brain — inhibit injury induced apoptosis	doi:10.1016/j.archbiol.2020.151571				
					TLR4 kidney — protect against diabetic nephropathy	doi:10.1074/jbc.RA220.012522				
					HMGAA2 hypostomal carcinoma — tumor suppressor (cell proliferation, promote apoptosis)	doi:10.2147/CMAR.S207752				
					CTSF macrophages — modulates TLR signaling upon activation	doi:10.14288/BMR20192598				
					CREB1 renal cell carcinoma miR-27a-3p, miR-221-3p tumor suppressor (cell proliferation, promote apoptosis)	doi:10.1056/ajr.08-4340-01-y				
					DYRK1A brain — inhibit development Alzheimer’s disease	doi:10.2174/1567204617666200419142637				
					WNT5A gastric cancer — tumor suppressor (cell proliferation)	doi:10.2147/OTT.S241159				
					ASAM3I cardiomyocytes — cardiprotection (inhibit apoptosis)	doi:10.1002/htj.22196				
					COL10A1 gastric cancer — tumor suppressor (cell proliferation, migration, and invasion)	doi:10.26355/eurrev_202002_20170				
					PTEN myoccardium — cardiprotection (inhibit apoptosis in ischemia-reperfusion injury)	doi:10.1390/j414-431×2019.0186				
					PTGS2 joints — alleviate osteoarthritis	doi:10.1016/j.intimp.2019.103946				
					AURKA hepatocellular carcinoma — tumor suppressor (chomosensitivity)	doi:10.1117/1567202617666200414142637				
					WNT5A papillary thyroid carcinoma — tumor suppressor (cell proliferation, migration, and invasion)	doi:10.2147/OTT.S205994				
					WNT5A myocardium — promote cell proliferation and inhibit apoptosis	doi:10.26355/eurrev_201908_18664				
					PTEN myocardium — promote cell proliferation and inhibit apoptosis	doi:10.1042/BSR20192598				
					PTEN myocardium — promote cell proliferation and inhibit apoptosis	doi:10.2807/1414-431×2019.0186				
					SLIT2 endothelial cells — promotes apoptosis, autophagy during inflammation	doi:10.1016/j.omtn.2020.09.012				
					PTEN myocardium — promote cell proliferation and inhibit apoptosis	doi:10.1042/BSR20192598				
					NOS2 macrophages — promote cell proliferation and inhibit apoptosis	doi:10.2807/1414-431×2019.0186				
					PTEN myocardium — promote cell proliferation and inhibit apoptosis	doi:10.1042/BSR20192598				
					SMURF2 lung — anti-fibrotic after bleomycin exposure	PMID: 32538751				
					TGFB1 cardiomyocytes — cardioprotection (inhibit apoptosis in ischemia-reperfusion injury)	doi:10.1115/2020.161429				
					FBXW7 cervical cancer — oncomiR (tumor progression)	doi:10.2147/CMAR.S224897				
					ICOS lung adenocarcinoma — tumor suppressor (promotes antitumor immunity)	doi:10.1111/j.1759-7714.2014.13411				
					NOV4 gastric cancer — oncomiR (promotes epithelial-mesenchymal transition)	doi:10.3892/omt.2020.10949				
					BNP3 pancreatic cancer — oncomiR (tumor progression)	doi:10.3892/omt.2020.10949				
					SMURF2 lung — anti-fibrotic after bleomycin exposure	PMID: 32538751				
					E2F1 ovarian carcinoma — oncomiR (promotes epithelial-mesenchymal transition)	doi:10.18632/aging.103888				
					PTEN aorta — promote development of aortic aneurysms	doi:10.1002/jp.29746				
					DRF1 myocardium — protect myocardial hypertrophy	doi:10.2174/09286657266662004161444459				
					C4LPSA2 hepatocellular carcinoma — tumor suppressor (cell proliferation, migration, and invasion)	doi:10.2147/OTT.S240266				
					COL5A1 breast cancer — tumor suppressor (cell proliferation, migration)	doi:10.2147/OTT.S240266				
					TNFR1 endothelial cells — reduces TNF-alpha injury response	doi:10.2147/OTT.S240266				
MiRNA Function	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
----------------	------------	----------------------	----------------------	-----------------	---------	-------------------------------	------------------------	----------------	------------------	-----------
TS/O, CP	miR-30b-5p	5.04 ± 1.10	4.56 ± 0.62	1.40	0.62					
						miR-30b-5p				doi:10.1089/cbr.2019.3538
						TS/O, CP				
						miR-31-5p				doi:10.1089/cbr.2019.3538
		1.42 ± 0.46	2.24 ± 0.74	-1.76	0.15					
						miR-31-5p				doi:10.1089/cbr.2019.3538
						TS/O, CP				
						miR-36a-5p				doi:10.1089/cbr.2019.3538
		3.99 ± 0.84	4.34 ± 0.67	-1.27	0.43					
						TS/O, CP				
						miR-93-5p				doi:10.1089/cbr.2019.3538
		5.04 ± 0.59	5.43 ± 0.62	-1.31	0.39					
						TS/O, CP				

Table A3. Cont.
Table A3. Cont.

MiRNA Function	MiRNA Name	MiRNA Name	CB-MSC-EV [dCT ± SD]	AT-MSC-EV [dCT ± SD]	Fold Difference	p-Value	Confirmed Targets GeneGLOBE ID	Cell/Tissue/Cancer Type	MiRNA Cluster	Biological Effect	Reference
T/S/O	let-7a-5p		2.46 ± 0.96	2.79 ± 0.46	–1.26	0.40	SMAD2 chondrocytes	—	—	promotes hypertrophic differentiation	doi:10.1152/ajpcell.00039.2020
							SAMD2 lens epithelial cells	—	—	inhibits proliferation, migration and invasion	PMID: 32345785
							DLC1F breast cancer	—	—	tumor suppressor (chemoresistance)	doi:10.2147/CAMAR.228542
							BCLXL lung cancer	—	—	tumor suppressor (cell autophagy)	doi:10.1016/j.enbi.2019.08.010
							BCL2L1 lung cancer	—	—	tumor suppressor (induce apoptosis)	doi:10.3389/fonc.2019.00308
							EGFR breast cancer	—	—	oncomiR (chemoresistance)	doi:10.1002/ijm.22075
							HMGA2 kidney	—	—	promotes diabetic nephropathy	doi:10.3892/mmr.2019.10957
References

1. Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal stem cells for regenerative medicine. *Cells* 2019, 8, 886. [CrossRef] [PubMed]

2. Karantalis, V.; Hare, J.M. Use of mesenchymal stem cells for therapy of cardiac disease. *Circ. Res.* 2015, 116, 1413–1430. [CrossRef] [PubMed]

3. Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. *Curr. Stem Cell Res.* 2016, 7, 1–3. [CrossRef] [PubMed]

4. van der Spoel, T.I.; Jansen of Lorkeers, S.J.; Agostoni, P.; van Belle, E.; Gyöngyösi, M.; Sluijter, J.P.; Cramer, M.J.; Doevendans, P.A.; Chamuleau, S.A. Human relevance of pre-clinical studies in stem cell therapy: Systematic review and meta-analysis of large animal models of ischaemic heart disease. *Cardiovasc. Res.* 2011, 91, 649–658. [CrossRef] [PubMed]

5. Jansen of Lorkeers, S.J.; Eding, J.E.; Vesterinen, H.M.; van der Spoel, T.I.; Sena, E.S.; Duckers, H.J.; Doevendans, P.A.; Macleod, M.R.; Chamuleau, S.A. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: Systematic review and meta-analysis of large animal studies. *Circ. Res.* 2015, 116, 80–86. [CrossRef]

6. Cambria, E.; Pasqualini, F.S.; Wolint, P.; Günter, J.; Steiger, J.; Bopp, A.; Hoerstrup, S.P.; Emmert, M.Y. Translational cardiac stem cell therapy: Advancing from first-generation to next-generation cell types. *NPJ Regen. Med.* 2017, 2, 1–10. [CrossRef]

7. Mendt, M.; Rezvani, K.; Shpall, E. Mesenchymal stem cell-derived exosomes for clinical use. *Bone Marrow Transplant.* 2019, 54, 789–792. [CrossRef]

8. Hofmann, M.; Wollert, K.C.; Meyer, G.P.; Menke, A.; Arseniev, L.; Hertenstein, B.; Ganser, A.; Knapp, W.H.; Drexler, H. Monitoring of bone marrow cell homing into the infarcted human myocardium. *Circulation* 2005, 111, 2198–2202. [CrossRef]

9. Zeng, L.; Hu, Q.; Wang, X.; Mansoor, A.; Lee, J.; Feygin, J.; Zhang, G.; Suntharalingam, P.; Boozer, S.; Mhashilkar, A.; et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. *Circulation* 2007, 115, 1866–1875. [CrossRef]

10. Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. *Cells* 2019, 8, 727. [CrossRef]

11. Moghaddam, A.S.; Afshari, J.T.; Esmaeili, S.A.; Saburi, E.; Joneidi, Z.; Montazi-Borojeni, A.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. *Atherosclerosis.* 2019, 285, 1–9. [CrossRef] [PubMed]

12. Felekkis, K.; Touvana, E.; Stefanou, C.H.; Deltas, C. microRNAs: A newly described class of encoded molecules that play a role in health and disease. *Hippokratia* 2010, 14, 236. [PubMed]

13. Latysheva, N.S.; Babu, M.M. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. *Nucleic Acids Res.* 2016, 44, 4487–4503. [CrossRef]

14. Nazari-Shafti, T.Z.; Exarchos, V.; Biefer, H.R.; Cesarovic, N.; Meybog, H.; Falk, V.; Emmert, M.Y. MicroRNA Mediated Cardioprotection–Is There a Path to Clinical Translation? *Front. Bioeng. Biotechnol.* 2020, 8. [CrossRef]

15. Serocki, M.; Bartoszewska, S.; Janaszak-Jasiecka, A.; Ochocka, R.J.; Collawn, J.F.; Bartoszewski, R. miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. *Angiogenesis* 2018, 21, 183–202. [CrossRef] [PubMed]

16. Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. *Nat. Rev. Nephrol.* 2016, 12, 325–338. [CrossRef]

17. Gowen, A.; Shahjin, F.; Chand, S.; Odegaard, K.E.; Yelamanchili, S.V. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications. *Front. Cell Dev. Biol.* 2020, 8. [CrossRef]

18. Vandergriff, A.; Huang, K.E.; Shen, D.; Hu, S.; Hensley, M.T.; Caranasos, T.G.; Qian, L.; Cheng, K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. *Theranostics* 2018, 8, 1869. [CrossRef]
19. Wang, X.; Chen, Y.; Zhao, Z.; Meng, Q.; Yu, Y.; Sun, J.; Yang, Z.; Chen, Y.; Li, J.; Ma, T.; et al. Engineered Exosomes with Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction. *J. Am. Heart Assoc.* 2018, 7, e008737. [CrossRef]

20. Marzi, M.J.; Ghini, F.; Cerruti, B.; De Pretis, S.; Bonetti, P.; Giacomelli, C.; Gorski, M.M.; Kress, T.; Pelizzola, M.; Muller, H.; et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. *Genome Res.* 2016, 26, 554–565. [CrossRef]

21. Zük, P.A.; Zhu, M.I.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. *Tissue Eng.* 2001, 7, 211–228. [CrossRef] [PubMed]

22. Bieback, K.; Netsch, P. Isolation, Culture, and Characterization of Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells in Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1416, pp. 245–258.

23. Beez, C.M.; Haag, M.; Klein, O.; Van Linthout, S.; Sittering, M.; Seifert, M. Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes. *J. Nanobiotechnol.* 2019, 17, 1–8. [CrossRef] [PubMed]

24. Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. *Curr. Protoc. Cell Biol.* 2006, 30, 3–22. [CrossRef]

25. Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* 2002, 3. [CrossRef]

26. Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmermann, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; et al. Reassessment of exosome composition. *Cell* 2019, 177, 428–445. [CrossRef] [PubMed]

27. Buschmann, D.; Kirchner, B.; Hermann, S.; Märté, M.; Wurmser, C.; Brandes, F.; Kotschote, S.; Bonin, M.; Steinlein, O.K.; Pfaffl, M.W.; et al. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. *J. Extracell. Vesicles* 2018, 7, 148321. [CrossRef]

28. Russell, A.E.; Sneider, A.; Witwer, K.W.; Bergese, P.; Bhattacharyya, S.N.; Cocks, A.; Cocucci, E.; Erdbrügger, U.; Falcon-Perez, J.M.; Freeman, D.W.; et al. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer. An ISEV position paper arising from the ISEV membranes and EVs workshop. *J. Extracell. Vesicles*. 2019, 8, 1684862. [CrossRef] [PubMed]

29. Stranska, R.; Gysbrechts, L.; Wouters, J.; Vermeersch, P.; Bloch, K.; Dierickx, D.; Andrei, G.; Snoeck, R. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. *J. Transl. Med.* 2016, 18, 1–9. [CrossRef]

30. Varga, Z.; Fehér, B.; Kitka, D.; Wacha, A.; Bota, A.; Berényi, S.; Pipich, V.; Fraikin, J.L. Size Measurement of Extracellular Vesicles and Synthetic Liposomes: The Impact of the Hydration Shell and the Protein Corona. *Colloids Surf. B Biointerfaces* 2020, 19, 11083. [CrossRef]

31. Wiklander, O.P.; Bostancioglu, R.B.; Welsh, J.A.; Zickler, A.M.; Murke, F.; Corso, G.; Felldin, U.; Hagey, D.W.; Evertsson, B.; Liang, X.M.; et al. Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. *Front. Immunol.* 2018, 9, 1326. [CrossRef]

32. Ragni, E.; Orfei, C.P.; De Luca, P.; Luçano, G.; Viganò, M.; Colombini, A.; Valli, F.; Zacchetti, D.; Bollati, V.; De Girolamo, L. Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. *Stem Cell Res. Therapy.* 2019, 10, 109. [CrossRef]

33. Ragni, E.; Perucca, O.C.; De Luca, P.; Colombini, A.; Viganò, M.; de Girolamo, L. Secreted Factors and EV-miRNAs orchestrate the healing capacity of adipose mesenchymal stem cells for the treatment of Knee Osteoarthritis. *Int. J. Mol. Sci.* 2020, 21, 1582. [CrossRef] [PubMed]

34. Reis, M.; Mavin, E.; Nicholson, L.; Green, K.; Dickinson, A.M.; Wang, X.N. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. *Front. Immunol.* 2018, 2538. [CrossRef] [PubMed]
35. Patel, V.; Noureddine, L. MicroRNAs and fibrosis. *Curr. Opin. Nephrol. Hypertens.* 2012, 21, 410. [CrossRef] [PubMed]
36. Khalil, H.; Kanisicak, O.; Prasad, V.; Correll, R.N.; Fu, X.; Schips, T.; Vagnozzi, R.J.; Liu, R.; Huynh, T.; Lee, S.J.; et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. *J. Clin. Investig.* 2017, 127, 3770–3783. [CrossRef]
37. Wang, Y.; Du, J.; Niu, X.; Fu, N.; Wang, R.; Zhang, Y.; Zhao, S.; Sun, D.; Nan, Y. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. *Cell Death Dis.* 2017, 8, e2792. [CrossRef]
38. Liu, Y.; Li, Y.; Wang, R.; Qin, S.; Liu, J.; Su, F.; Yang, Y.; Zhao, F.; Wang, Z.; Wu, Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. *J. Exp. Clin. Cancer Res.* 2016, 35, 1. [CrossRef]
39. Zhang, H.; Yang, K.; Ren, T.; Huang, Y.; Tang, X.; Guo, W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. *Cell Death Dis.* 2018, 9, 1–3. [CrossRef]
40. Tian, X.; Fei, Q.; Du, M.; Zhu, H.; Ye, J.; Qian, L.; Lu, Z.; Zhang, W.; Peng, F.; et al. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. *Cancer Med.* 2019, 8, 1197–1208. [CrossRef]
41. Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. *Cancer Res.* 2016, 76, 3666–3670. [CrossRef]
42. Yang, Z.; Xiao, Z.; Guo, H.; Fang, X.; Liang, J.; Zhu, J.; Yang, J.; Li, H.; Pan, R.; Yuan, S.; et al. Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts. *J. Cell Mol. Med.* 2019, 23, 3246–3256. [CrossRef] [PubMed]
43. Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting mTOR for cancer therapy. *J. Hematol. Oncol.* 2019, 12, 71. [CrossRef] [PubMed]
44. Easton, J.B.; Houghton, P.J. mTOR and cancer therapy. *Oncogene* 2006, 25, 6436–6446. [CrossRef] [PubMed]
45. Grundmann, S.; Hans, F.P.; Kinniry, S.; Heinke, J.; Helbing, T.; Bluhm, F.; Sluijter, J.P.; Hoefer, I.; Pasterkamp, G.; Bode, C.; et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. *Circulation* 2011, 123, 999–1009. [CrossRef]
46. Yang, A.; Liu, F.; Guan, B.; Luo, Z.; Lin, J.; Fang, W.; Liu, L.; Zuo, W. p53 induces miR-199a-3p to suppress mechanistic target of rapamycin activation in cisplatin-induced acute kidney injury. *J. Cell. Biochem.* 2019, 120, 17625–17634. [CrossRef]
47. Yang, Z.; Wang, J.; Pan, Z.; Zhang, Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGFR1 and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. *Exp. Ther. Med.* 2018, 15, 3781–3790. [CrossRef]
48. Shi, B.; Ma, M.; Zheng, Y.; Pan, Y.; Lin, X. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. *J. Cell. Physiol.* 2019, 234, 12562–12568. [CrossRef]
49. Chalhoub, N.; Baker, S.J. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology. *Mech. Dis.* 2009, 4, 127–150. [CrossRef]
50. Zhang, P.; Zhao, Q.; Gong, K.; Long, Y.; Zhang, J.; Li, Y.; Guo, X. Downregulation of miR-103a-3p Contributes to Endothelial Progenitor Cell Dysfunction in Deep Vein Thrombosis Through PTEN Targeting. *Ann. Vasc. Surg.* 2020, 64, 339–346. [CrossRef]
51. Gao, D.C.; Hou, B.; Zhou, D.; Liu, Q.X.; Zhang, K.; Lu, X.; Zhang, J.; Zheng, H.; Dai, J.G. Tumor-derived exosomal miR-103a-2-5p facilitates esophageal squamous cell carcinoma cell proliferation and migration. *Eur. Rev. Med. Pharmacol. Sci.* 2020, 24, 6097–6110. [CrossRef]
52. Shi, J.; Zhang, Y.; Jin, N.; Li, Y.; Wu, S.; Xu, L. MicroRNA-221-3p plays an oncogenic role in gastric carcinoma by inhibiting PTEN expression. *Oncol. Res.* 2017, 25, 523–536. [CrossRef] [PubMed]
53. Li, X.; Guo, S.; Min, L.; Guo, Q.; Zhang, S. miR-92a-3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. *Int. J. Mol. Med.* 2019, 44, 973–981. [CrossRef] [PubMed]
54. Liu, Y.; Hu, Q.; Ao, J.; Li, H.; Li, M. Role of miR-92a-3p/PTEN Axis in Regulation of Pancreatic Cancer Cell Proliferation and Metastasis. J. Cent. South Univ. Med. Sci. 2020, 45, 280–289. [CrossRef]

55. Wu, L.; Chen, Y.; Chen, Y.; Yang, W.; Han, Y.; Lu, L.; Yang, K.; Cao, J. Effect of HIF-1α/miR-10b-5p/PTEN on Hypoxia-Induced Cardiomyocyte Apoptosis. J. Am. Heart Assoc. 2019, 8, e011948. [CrossRef]

56. Lv, X.; Li, J.; Hu, Y.; Wang, S.; Yang, C.; Li, C.; Zhong, G. Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid. Med. Cell. Longev. 2019, 2019, 5703764. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).