Application of metasurface-based low-pass filters for improving THz-TDS characteristics

N A Nikolaev¹, A A Rybak¹,², S A Kuznetsov²,³

¹Institute of Automation and Electrometry SB RAS, 1 Academician Koptyug ave., Novosibirsk, 630090, Russia
²Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
³Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk Branch “TDIAM”, 1/2 Academician Lavrentiev ave., Novosibirsk, 630090, Russia

nazar@iae.nsk.su

Abstract. We propose an approach to improve the technical characteristics of terahertz time-domain spectrometers at low-frequency measurements. The approach is based on applying low-pass THz filters to narrow the frequency band of the THz signal that allows increasing the sampling interval in accordance with the Nyquist–Shannon theorem. This concept was verified by studying the transmission spectra of low-frequency band-pass THz filters centered at 156 and 376 GHz. We confirm that the high-quality low-pass filters can improve accuracy of THz measurements and significantly reduce data acquisition time. The reduction up to 12 times was experimentally demonstrated in our case.

1. Introduction

Due to a progress in femtosecond laser technologies, terahertz (THz) time-domain spectroscopy (THz-TDS) has become a most frequently used method for studying dielectric properties of matter. THz-TDS utilizes a principle of probing a medium with a short electromagnetic pulse, which is a single-period oscillation of ~1 ps duration carrying a wide band of frequencies. The advantage of the method is a direct measurement of the electric field waveform that provides information about amplitude and phase of the THz radiation. The detection is based on discretization and analog-to-digital conversion (sampling) of the waveform. Further processing takes place in a digital domain, including Fourier transform of the time-domain signal. Thus, the Nyquist–Shannon sampling theorem is valid for THz-TDS, imposing a restriction on the maximum sampling interval defined by the device’s optical delay line step Δt.

It is worth noting that modern commercially available THz spectrometers are capable of covering a wide spectral band ranging from 50 GHz to 6 THz [1,2]. Meanwhile, there is a number of applications wherein only the low-frequency sub-range of the THz spectrum is relevant. These applications include, for example, studies of soft modes in ferroelectrics, which frequencies tend to zero at the phase transition temperature [3]; developing instrumentation for the future telecommunications range: 100–300 GHz [4–6]; studying solutions of highly absorbing liquids [7]; designing and testing metastructures, including sensors with characteristic resonances located in a limited low-frequency band of the THz spectrum [8,9], and many others. In all these tasks, the higher frequency part of the THz signal often contains no useful information, however, it requires a value of Δt small enough to satisfy the Nyquist theorem and to detect the THz signal without aliasing distortion.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
In this work we propose an approach that amends technical characteristics of THz-TDS at low-frequency measurements. It exploits an idea of applying high-performance low-pass filters (LPFs) to narrow the band of the THz signal that allows us to increase the sampling interval Δt. As a result, due to increased averaging time at each sampling point, significant reduction of the data acquisition time or augmentation of the signal-to-noise ratio (SNR) are feasible. The idea of applying LPFs is not fundamentally novel and was considered in Fourier transform far infrared spectroscopy to prevent the IR detector from saturating with high-intensity IR radiation. However, in THz-TDS this approach was not previously examined. We tested it by the example of our TDS system (full bandwidth up to 2.7 THz) using four different LPFs. Two band-pass filters (BPFs) centered at 156 and 376 GHz served as the references which transmission spectra were thoroughly measured. The results were compared with the data obtained by backward wave oscillator (BWO) based spectroscopy.

2. Methodology

All the filters used in this work were implemented as multi-layer plasmonic structures based on metasurfaces produced photolithographically [10–12].

BPFs with the center frequencies of 156 and 376 GHz and bandwidth of about 12% were assembled from three (156 GHz) and four (376 GHz) free-standing substrate-free patterned copper foils [12]. These multilayer structures had a multiplex (non-interference) configuration providing the out-of-band transmission at the level of −40–50 dB up to IR frequencies with no spurious transmission peaks.

The LPFs were represented by interference structures with 6 layers of capacitive patch-like metasurfaces patterned on polypropylene substrates and stacked together by means of a hot-pressing technique. The LPFs provided −30–40 dB of THz attenuation above their cutoff frequencies positioned between 0.2 and 2 THz (fig 1). A detailed description of LPFs will be published elsewhere.

Testing was carried out at room temperature using a manufactured in-house THz-TDS system: spectral range 0.1–2.7 THz, dynamic range more than 60 dB @ 0.3 THz. A detailed description of the installation can be found in [6]. The measurements were performed in a collimated beam shaped by a 16 mm round diaphragm which diameter was limited by the aperture of the manufactured LPFs. The clear aperture diameter of the BPFs was 75 mm. The sampling range of the spectrometer was 120 ps, which corresponds to a spectral resolution of about 10 GHz. An averaging time at each point is 0.7 s with 100 ms lock-in amplifier time constant. So, a typical single scan took about 11 minutes 12 s.

LPFs characteristics were previously investigated on the same THz-TDS system (fig. 1). Table 1 presents estimated values of the cutoff frequencies for the signal level of 0.5 ($f_{0.5}$) and 0.01 ($f_{0.01}$). In accordance with the Nyquist–Shannon theorem the sampling step Δt was selected for each filter. The Nyquist frequency (f_{ns}) for the corresponding sampling step and acquisition time reduction ratio are listed in the last columns of table 1.

Filter No.	$f_{0.5}$ (GHz)	$f_{0.01}$ (GHz)	Δt (fs)	f_{ns} (GHz)	Ratio
1	208	248	1500	333	12
2	434	503	750	666	6
3	845	1018	375	1333	3
4	1466	1682	250	2000	2
No filter	-	-	125	4000	1

3. Results and discussion

The measurement results for BPFs are presented in fig. 2 (156 GHz) and fig. 3 (376 GHz). The obtained discrete spectra are interpolated by a cubic spline in order to accurately determine the BPF peak transmittance, the frequency (f_{max}) of transmission maximum, and the bandwidth (FWHM). The
extracted numbers are shown in Table 2 and 3. Since the pass-band of the 376-GHz-BPF lies above the cutoff frequency of the LPF 1, this data is not presented.

Figure 1. LPFs transmission spectra.
Figure 2. Transmission of the 156 GHz BPF.
Figure 3. Transmission of the 376 GHz BPF.

LPF No.	156-GHz-BPF	376-GHz-BPF						
	f_{max} (GHz)	T @ f_{max} (%)	FWHM (GHz)	f_{max} (GHz)	T @ f_{max} (%)	FWHM (GHz)		
w/o LPF	155.52	95.09	18.42	11.85	376.37	89.1	43.41	11.54
1	156.29	93.13	18.97	12.14	-	-	-	-
2	156.00	93.33	17.92	11.49	376.47	88.6	43.26	11.49
3	155.75	93.38	18.77	12.05	376.45	88.5	43.53	11.56
4	156.11	91.56	18.76	12.02	376.67	88.0	43.47	11.54
Mean	155.93	93.3	18.57	11.91	376.49	88.54	43.42	11.53
SD	0.3	1.25	0.47	0.26	0.13	0.45	0.12	0.03

In general, the obtained results satisfy our expectations, however some details require explanation. Dispersion of f_{max} is consistent with the absolute resolution value of uncalibrated THz-TDS systems, which is not better than 1 GHz. The accuracy of the transmission maximum is related to the SNR of the THz generator, which is approximately 2.5 times greater for 376 GHz than for 156 GHz.

In both cases measured without LPFs the peak transmittance of the BPF exceeds the other values. This can be attributed to the long-term drift of the THz signal in our system as the data acquisition time without LPFs is longer (2 times relative to the closest measurement with LPF 4) and, therefore, most susceptible to this effect. For the same reason we were not able to show measurement noise reduction due to increased averaging time at each sampling point. Apparently, it is necessary to accurately control the ambient humidity and temperature to track this effect, that wasn’t done in these experiments.

In general, a larger dispersion of the obtained values for the 156 GHz filter is probably related with the spectral dependence of the system dynamic range and SNR. The frequency of 376 GHz is closer to the maximum dynamic range of the spectrometer than 156 GHz, which is located near the low-frequency edge. The noticeable deviation of the measurement with LPF 1 for the 156-GHz-BPF can be explained by more pronounced diffraction effects for longer waves.

Conclusion

In this work, we investigated the relevance of using metasurface-based multilayer structures as low-pass (aliasing) filters in THz-TDS when studying the transmission spectra of low-frequency BPFs. As a result of cutting off the high-frequency components of the THz signal and increasing the sampling step in accordance with the Nyquist-Shannon theorem, the scanning time was reduced up to 12 times.
At the same time, the measured values remained within acceptable limits corresponding to the uncalibrated and unstabilized spectrometer. The characteristics of 376-GHz-BPF, which pass-band is located closer to the maximum dynamic range of the spectrometer, have a smaller dispersion than those of 156-GHz-BPF. Measurements carried out without low-pass filters deviate from all the others, that is probably related to the longest measurement time and, therefore, the contribution of the long-term drift of the THz signal. We confirm that a high-quality LPFs can significantly reduce the data acquisition time and improve measurement accuracy, at least by diminishing the long-term effects. In particular, for modern THz-TDS systems with a bandwidth of 5 THz and higher the time reduction factor of 20 can be achieved.

Acknowledgments
The studies were accomplished within the framework of the State Assignment Program of the Ministry of Science and Higher Education of the Russian Federation.

The authors gratefully acknowledge the Shared Equipment Centers of the Novosibirsk State University and the Institute of Automation and Electrometry SB RAS ("Spectroscopy and Optics").

References
[1] Vieweg N, Rettich F, Deninger A, Roehle H, Dietz R, Göbel T and Schell M 2014 Terahertz-time domain spectrometer with 90 dB peak dynamic range J. Infrared, Millim., Terahertz Waves 35 823–32
[2] Stehr D, Morris C M, Schmidt C and Sherwin M S 2010 High-performance fiber-laser-based terahertz spectrometer Opt. Lett. 35 3799
[3] Vlasov M Y, Losev V F, Nikolaev N A and Mamrashev A A 2016 Optical properties of lead germanate Pb5Ge3O11 in terahertz range Journal of Physics: Conference Series 737
[4] Kuznetsov S A, Arzhannikov A V, Fedorinin V N and Nikolaev N 2018 Ultra-THz Metasurface Absorbers for Subterahertz Band: Theoretical Aspects and Detector Applications 2018 48th European Microwave Conference, EuMC 2018
[5] Mamrashev A A, Nikolaev N A, Antsygin V D, Bekker T B, Kokh A E, Kokh K A, Lanskii G V, Svetlichny V A and Andreev Y M 2018 β-BBO: Optical Properties and Phase-Matching for THz Wave Generation International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz vol 2018–Sept
[6] Wang C-R, Pan Q-K, Chen F, Lanskii G, Nikolaev N, Mamrashev A, Andreev Y and Meshalkin A 2019 Phase-matching in KTP crystal for THz wave generation at room temperature and 81 K Infrared Phys. Technol. 97
[7] Nazarov M M, Cherkasova O P and Shkurinov A P 2018 A Comprehensive Study of Albumin Solutions in the Extended Terahertz Frequency Range J. Infrared, Millim., Terahertz Waves 39 840–53
[8] Nikolaev N, Kuznetsov S and Beruete M 2018 Angle-Susceptible Narrowband Terahertz Metasurface for Thin-Film Sensing 2018 48th European Microwave Conference, EuMC 2018
[9] Jáuregui-López I, Rodriguez-Ulibarri P, Kuznetsov S A, Nikolaev N A and Beruete M 2018 THz sensing with anomalous extraordinary optical transmission hole arrays Sensors 18
[10] Kuznetsov S A, Arzhannikov A V, Kubarev V V, Kalinin P V, Sorolla M, Navarro-Cia M, Aznabet M, Beruete M, Falcone F, Goncharov Y G, Gorshunov B P, Gelfand A V and Fedorinina N I 2010 Development and Characterization of Quasi-Optical Mesh Filters and Metastructures for Subterahertz and Terahertz Applications Key Eng. Mater. 437 276–80
[11] Navarro-Cia M, Kuznetsov S A, Aznabet M, Beruete M, Falcone F and Ayza M S 2011 Route for Bulk Millimeter Wave and Terahertz Metamaterial Design IEEE J. Quantum Electron. 47 375–85
[12] Kuznetsov S A, Astafyev M A, Gelfand A V and Arzhannikov A V 2014 Microstructured Frequency Selective Quasi-Optical Components for Submillimeter-Wave Applications 881–4