Mircowave-Assisted Extraction of Phytochemical Constituents in Roselle (Hibiscus sabdariffa L.)

Minh Phuoc Nguyen¹*

¹Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i230397

(1) Dr. Vasudevan Mani, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia.

Reviewers:

(1) Ochieng O. Anthony, Sumait University, Tanzania.

(2) Md. Afjals Siraj, University of Hawai’i at Hilo, USA.

Complete Peer review History: http://www.sdiarticle.com/review-history/55233

ABSTRACT

Roselle (Hibiscus sabdariffa L.) is natural source of valuable components such as phenolics, flavonoids and anthocyanins. Anthocyanin is normally used in the food technology to replace synthetic pigments as well as medicinal properties due to antioxidants. Microwave irradiation is a feasible green solvent extraction method receiving great attention as it utilizes solvent at elevated temperature and controlled pressure conditions. Microwave extraction emerges as a promising inexpensive, simple and efficient technique. In our research, various variable like microwave power (20, 40, 60, 80, 100 W), microwave frequency (10, 20, 30, 40, 50 GHz), the microwave irradiation duration (5, 10, 15, 20, 25 min), liquid to solid ratio (water: material, 2:1, 3:1, 4:1, 5:1, 6:1), extraction temperature (50, 55, 60, 65, 70°C), number of extraction cycles (1, 2, 3, 4, 5) influencing to the microwave-assisted extraction of phytochemicals in roselle (Hibiscus sabdariffa L.) calyx were thoroughly examined. Total total phenolic (mg GAE/ 100 g), total flavonoid (mg GE/ 100 g), anthocyanin (mg/100 g) were key indicators to define the optimal variable. Our results revealed that microwave power at 80 W, frequency 40 GHz, duration 15 min, liquid to solid ratio 4:1, temperature 55°C, 4 cycles of extraction were appropriate for extraction of phytochemical components inside roselle (Hibiscus sabdariffa L.) calyx.

Keywords: Roselle calyx; Hibiscus sabdariffa L.; microwave extraction; phenolic; flavonoid; anthocyanin.
1. INTRODUCTION

Roselle (*Hibiscus sabdariffa* L.) is an ideal crop for developing countries. Rain or high humidity during the harvest time and drying process can downgrade the quality of the calyces and reduce the yield. It can be used as food and fibre [1]. Roselle contains protein, fat, carbohydrate, fiber, and mineral, vitamin. The chemical components contained in *Hibiscus sabdariffa* calyx include anthocyanins, flavonoids, polyphenols polysaccharides and organic acids having different modern therapeutic applications [2-6]. Phenolic derivatives and flavonoids natural compounds in plants and play several roles in the plant’s life such as general growth, reproduction, and defence against parasites and pests [7]. Flavonoids themselves are a group of hydroxylated phenolic compounds having a benzo-γ-pyrene structure and are ubiquitously occurring in plants [8]. Anthocyanins are steroid or triterpenoid glycosides, common in a large number of herbs. According to the structure of the aglycone or sapogenin, anthocyanins are classified as neutral and acid type, the so-called neutral anthocyanins are derivatives of steroids with spiroketal side chains which are almost exclusively present in the monocotyledonous angiosperms and the acid anthocyanins that possess triterpenoid structure type, which is the most common and occur mainly in the dicotyledonous angiosperms. It has effect on cold blooded animals, also to have the analgesic, anti-nociceptive, antioxidant activity, to impair the digestion of protein, to cause hypoglycemia and to act as anti-fungal and antiviral agents [9]. The amount of L-ascorbic acid extracted was 83.1 mg/100 g [10]. *Hibiscus sabdariffa* L. calyx contained polyphenols of the flavonol and flavanone type in simple or polymerised form [11].

Extracts of dried calyces were able to decrease low-density lipoprotein cholesterol, triglyceride, total cholesterol and lipid peroxidation [12-14]. According to one report, the total phenolic content was found to be 41.07 mg GAE/g [15]. According to another research, roselle had total phenols 29.178 mg/kg [16]. Meanwhile, flavonoid was observed in calyx extracts 148.35 mg/g [17]. Fresh or dried calyces of *Hibiscus sabdariffa* L. are utilized to convert into herbal tea, hot and cold beverage, fermented drink, soft drink, wine, jam, jellied confectionary, sauce, marmalade, ice cream, chocolate, flavouring agent, pudding and cake [18-26]. Aqueous extracts of roselle (*Hibiscus sabdariffa* L.) calyces have characteristic intense red colouration due to the presence of anthocyanins which could be utilised as colouring agent in pharmaceutical products [27,28]. It has been utilized to cure different degenerative diseases like hypertension, hyperlipidemia, cancer and other inflammatory diseases of liver and kidney [29]. It’s also proven to treat cardiac, diuretic, sore throat and cough, cholerectic, febrifugal and hypotensive effect, liver disorder, decrease the viscosity of the blood, induce lactation and stimulate intestinal peristalsis [30-33].

Microwave-extracted extraction is a method that utilizes a solvent to extract the phytochemical components from herbs. In this process, the improved extraction happens as a result of change in the herbal cell texture created by electromagnetic waves [34]. Microwaves are electromagnetic radiations having frequency from 0.3 to 300 GHz. The combination of thermal and mass gradients contribute to the high yield and short extraction duration of micro-extracted extraction. The variables that affect the extraction recovery of this extraction process are the power and frequency of the microwaves, the duration of the microwave irradiation, the moisture content and particle sizes of the herbs, the kind and concentration of the solvent, the ratio of solid to liquid, the extraction temperature, the extraction pressure, and the number of extraction cycles [35]. Microwave-assisted extraction (MAE) has been recognized as a technique with several advantages over other extraction methods, such as reduction of costs, extraction time, energy consumption, and CO₂ emissions. However, there was not many research mentioned to the application of microwave-assisted extraction to extract phytochemicals in roselle. Maceration and ultrasound-assisted techniques were compared in assessing the extraction performance of anthocyanin in roselle [36]. Objective of our study focused on various variables such as microwave power, microwave frequency, the microwave irradiation duration, liquid to solid ratio, extraction temperature, number of extraction cycles affecting to the microwave-assisted extraction of phytochemicals in roselle (*Hibiscus sabdariffa* L.) calyx.

2. MATERIALS AND METHODS

2.1 Materials

Roselle (*Hibiscus sabdariffa* L.) calyxs were naturally collected from Hau Giang province, Vietnam. After collecting, they must be kept in dry cool box and quickly conveyed to laboratory for experiments. They were subjected to washing
and treatment. These calyxs were treated by different parameters such as microwave power (20, 40, 60, 80, 100 W), microwave frequency (10, 20, 30, 40, 50 GHz), the microwave irradiation duration (5, 10, 15, 20, 25 min), liquid to solid ratio (water: material, 2:1, 3:1, 4:1, 5:1, 6:1), extraction temperature (50, 55, 60, 65, 70°C), number of extraction cycles (1, 2, 3, 4, 5). At the end each treatment, samples were analyzed total phenolic (mg GAE/100 g), flavonoid (mg GE/100 g), anthocyanin (mg/100 g) content to define the optimal value.

2.2 Researching Methods

2.2.1 Effect of microwave power in phytochemical extraction of Hibiscus sabdariffa L. calyx

Raw Hibiscus sabdariffa L. calyx was extracted by various microwave power values (20, 40, 60, 80, 100 W). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were key indicators so they were chosen to define the optimal microwave power.

2.2.2 Effect of microwave frequency in phytochemical extraction of Hibiscus sabdariffa L. calyx

Raw Hibiscus sabdariffa L. calyx was extracted by different microwave frequency values (10, 20, 30, 40, 50 GHz). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were major indicators so they were chosen to determine the optimal microwave frequency.

2.2.3 Effect of microwave irradiation duration in phytochemical extraction of Hibiscus sabdariffa L. calyx

Raw Hibiscus sabdariffa L. calyx was extracted by different microwave irradiation duration values (5, 10, 15, 20, 25 min). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were main indicators so they were chosen to select the optimal microwave irradiation duration.

2.2.4 Effect of liquid to solid ratio (water: Hibiscus sabdariffa L. calyx) in phytochemical extraction

Raw Hibiscus sabdariffa L. calyx was extracted by different liquid to solid ratio (water: Hibiscus sabdariffa L. calyx, 2:1, 3:1, 4:1, 5:1, 6:1). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were key indicators so they were chosen to estimate the optimal liquid to solid ratio.

2.2.5 Effect of extraction temperature (°C) in phytochemical extraction of Hibiscus sabdariffa L. calyx

Raw Hibiscus sabdariffa L. calyx was extracted by different extraction temperature values (50, 55, 60, 65, 70°C). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were major indicators so they were chosen to identify the optimal extraction temperature.

2.2.6 Effect of the number of extraction cycles in phytochemical extraction of Hibiscus sabdariffa L. calyx

Raw Hibiscus sabdariffa L. calyx was extracted by different numbers of extraction cycles (1, 2, 3, 4, 5). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were important indicators so they were chosen to identify the optimal number of extraction cycles.

2.3 Chemical and Statistical Analysis

Total polyphenol content (mg GAE/100 g) was determined by FolinCiocalteu reagent method [37]. Aluminum chloride colorimetric method was used for flavonoids (mg QE/100 g) determination [38]. Total anthocyanin content (mg) was quantified by spectrophotometry [39]. The experiments were run in triplicate with three different lots of samples. Statistical analysis was performed by the Statgraphics Centurion XVI.

3. RESULTS AND DISCUSSION

3.1 Effect of Microwave Power (W) in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

Extract of roselle calyces has shown the presence of biochemicals such as anthocyanins, protocatechuic acid, flavonoids, and anthocyanin [12,40-43]. According to one report, Roselle calyces contained ascorbic acid (140.13 mg/100 g), total anthocyanins (622.91 mg/100 g) and total phenolics (37.42 mg/g) [44]. Meanwhile the anthocyanin was detected at 1.8% in red roselle calyx [45]. Polyphenols in roselle included delphinidin and cyanidin having antioxidant activities beneficial for human body [46-49].
Aqueous extracts of roselle (Hibiscus sabdariffa L.) calyces have characteristic intense red colouration due to the presence of anthocyanins, which are flavonoids are water-soluble natural pigments [50]. In our research, raw Hibiscus sabdariffa L. calyx was extracted by different microwave power values (20, 40, 60, 80, 100 W). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100g) were important indicators so they were chosen to identify the optimal microwave power. Our result showed that when microwave power increased from 20 W to 80 W, the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx increased. There was no significant difference at microwave power 80 W and 100 W so the optimal microwave power should be 80 W to maintain the highest content of total phenolic, flavonoid and anthocyanin. In one report, variable of power had no important effects on the yield of flavonoids [51]. One studied microwave extraction of cardamom. When the glands were subjected to more severe thermal stresses and localized high pressures, pressure build-up happens within the glands which results in accelerated capacity for expansion and leading to cell rupture more rapidly than in traditional extraction [52].

3.2 Effect of Microwave Frequency (GHz) in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

Microwaves are non-ionizing electromagnetic waves of frequency between 300 MHz to 300 GHz or between wavelengths of 1 cm and 1m [53]. Microwave energy is transferred directly to the herbal tissue through molecular interaction the electromagnetic field via conversions of electromagnetic energy into thermal energy [35,54]. In our research, raw Hibiscus sabdariffa L. calyx was extracted by different microwave frequency values (10, 20, 30, 40, 50 GHz). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100g) were main indicators so they were chosen to define the optimal microwave frequency. Our result showed that when microwave frequency increased from 10 GHz to 40 GHz, the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx increased also. There was no significant difference at microwave frequency 40 GHz and 50 GHz so the optimal microwave frequency should be conducted at 40 GHz to preserve the highest content of total phenolic, flavonoid and anthocyanin.

3.3 Effect of Microwave Irradiation Duration (min) in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

The microwave power and irradiation times influence each other to a great extent [53]. In our research, raw Hibiscus sabdariffa L. calyx was extracted by different microwave irradiation duration values (5, 10, 15, 20, 25 min). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were key variables to identify the optimal microwave irradiation duration. Our result showed that when microwave irradiation duration increased from 5 minutes to 15 minutes, the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx increased also. However if microwave irradiation duration extended over 15 minutes, these phytochemical constituents decreased gradually. So the optimal irradiation duration should be 15 min to extract the highest content of total phenolic, flavonoid and anthocyanin. Total phenolic content was extracted from aromatic plants such as Rosmarinus officinalis using microwave-assisted extraction. Compared with traditional reflux extraction, microwave-assisted extraction reduced extraction duration, limited solvent volume and increased extraction yield of total phenolics [55]. The yield of analyte extracted can be enhanced with an accelerate in the extraction time; however, there is a related risk of degradation of sensitive components [56]. One study confirmed that extraction duration in microwave assisted process was found to decrease with increase in temperature. This decrease could be realized to the fact that with increase in temperature, the vapour pressure of water present inside the celery seeds increased leading to leaching out and evaporation of volatile oil along with moisture [57]. Extended extraction durations increased the yield of total flavonoid, while progressively decreased flavonoids and antiradical power [58].

3.4 Effect of Ratio of Liquid to Solid (Water: Hibiscus sabdariffa L. Calyx) in Phytochemical Extraction

Another critical factor in microwave-assisted extraction is the ratio of the solid herbs to the amount of solvent. The bioactive ingredients in the herbs can effectively dissolve when large amounts of solvent are used, thereby leading to improved extraction yields. Solvent specification
is the most vital variable because the solvent affects the absorbance of the microwave energy, as determined by the dissipation factor [59,60]. The solvent must have an affinity for the target component and an capability to absorb microwave energy [61]. In a higher contact surface area, the extraction efficiency rises. Similarly, finer particles permit enhanced penetration of the microwave. Fine particles may stance some technical difficulties; filtration is applied to prepare the matrix. In our research, raw Hibiscus sabdariffa L. calyx was extracted by different liquid to solid ratios (water: Hibiscus sabdariffa L. calyx, 2:1, 3:1, 4:1, 5:1, 6:1). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were major variables to identify the optimal liquid to solid ratio. Our result showed that when liquid to solid ratio increased, the phytochemical contents decreased afterward. The optimal liquid to solid ratio should be 4:1 to receive the highest content of total phenolic, flavonoid and anthocyanin. In another report, the effect of solvent types and solute to solvent ratios were also evaluated by maceration and ultrasound-assisted to extract anthocyanin. Water was a better choice of solvent as compared to ethanol [36]. The optimum conditions for fresh roselle calyxes, fresh calyxes to water ratio was 1:2. For dried roselle calyxes, the optimum conditions were 1:10 ratio of dried calyxes to water. The total anthocyanin, total phenolic contents in fresh roselle calyxes were 37.67±0.02 mg/100 g, 31.26±0.75 mg gallic acid/g. The total anthocyanin, total phenolic contents in dried roselle calyxes were 340.97±0.15 mg/100 g, 31.18±0.62 mg gallic acid/g [62]. Anthocyanin from roselle has been previously extracted using various solvents such as water [63-68], methanol [63], ethanol acidified by HCl [69] and in the instant pressure drop system solvent [70]. A high solvent ratio with microwave-assisted extraction showed consistent results [71,72]. When large quantities of solvent were utilized, the extraction yield initially increased and then decreased as the solid-to-liquid ratio decreased [72,73]. When the amount of solvent was reduced (high-solid herbal materials), microwave energy may have been absorbed and dispersed by the large amount of plant materials [71], thereby increasing the solid mass, and decreasing the surface area available for solvent to penetrate the plant materials and solubilize the target molecules [74].

Table 1. Effect of microwave power to the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx

Microwave power (W)	20	40	60	80	100
Total phenolic (mg GAE/100 g)	51.38±0.03^c	54.04±0.00^b	55.17±0.02^ab	56.83±0.03^a	56.90±0.01^a
Total flavonoid (mg GE/100 g)	10.27±0.01^c	13.54±0.00^b	13.91±0.01^ab	14.23±0.00^a	14.26±0.02^a
Anthocyanin (mg/100 g)	18.53±0.02^c	20.97±0.01^b	21.29±0.00^ab	21.86±0.02^a	21.90±0.03^a

*Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%)

Table 2. Effect of microwave frequency (GHz) to the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx

Microwave frequency (GHz)	10	20	30	40	50
Total phenolic (mg GAE/100 g)	56.83±0.03^c	57.41±0.00^b	58.63±0.03^a	59.52±0.02^a	59.59±0.03^a
Total flavonoid (mg GE/100 g)	14.23±0.00^b	14.45±0.01^ab	14.68±0.00^ab	14.87±0.01^a	14.90±0.01^a
Anthocyanin (mg/100 g)	21.86±0.02^b	22.14±0.01^ab	22.59±0.02^ab	22.84±0.03^a	22.87±0.00^a

*Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%)
3. Effect of the Number of Extraction Cycles in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

The outcome of stirring is related to the mass transfer manner in the solvent phase. Therefore, balance between the aqueous and vapor phases can be achieved more rapidly. The use of agitation in MAE quickens the extraction by enhancing desorption and dissolution of active compounds bound to the sample matrix. Through stirring, the disadvantages of the use of low solvent-to-solid ratio can be reduced, together

Table 3. Effect of microwave irradiation duration (min) to the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx

Microwave irradiation duration (min)	5	10	15	20	25
Total phenolic (mg GAE/100 g)	59.52±0.02				
	64.29±0.00	67.15±0.03	66.49±0.02	62.37±0.00	
Total flavonoid (mg GE/100 g)	14.87±0.01				
	17.75±0.03	18.62±0.02	18.25±0.01	17.13±0.02	
Anthocyanin (mg/100 g)	22.84±0.03				
	23.27±0.01	24.01±0.00	23.81±0.01	23.54±0.00	

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%)

Table 4. Effect of liquid to solid ratio to the total phenolic, flavonoid and anthocyanin extracted from Hibiscus sabdariffa L. calyx

Liquid to solid ratio	2:1	3:1	4:1	5:1	6:1
Total phenolic (mg GAE/100 g)	67.15±0.03	57.25±0.00	50.49±0.03	29.42±0.00	11.63±0.02
Total flavonoid (mg GE/100 g)	18.62±0.02	14.34±0.03	12.18±0.01	8.33±0.03	5.47±0.01
Anthocyanin (mg/100 g)	24.01±0.00	21.84±0.01	18.53±0.02	16.72±0.01	14.85±0.03

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%)

3.5 Effect of Extraction Temperature (°C) in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

High-temperature extraction can be gainful with the resulting increase in solubility. This is because higher temperature causes increased intermolecular interactions within the solvent, giving increase to higher molecular motion which raises the solubility. The accelerating temperature may cause a cellular pressure build up which may create cell rupture and opening of the cell matrix, and as a result, increased accessibility to be extracted into the solution. When the temperature of water is raised, there is a steady decrease in its permittivity, viscosity and surface tension but an increase in its diffusivity characteristics. The increased temperature can overcome the solute–matrix interaction caused by van der Waals forces, hydrogen bonding, dipole attraction of the solutes molecules and active sites in the matrix [75]. However, thermally labile compounds are degraded at elevated temperatures. Sufficient temperature is necessary to optimize the extraction efficiency, avoid thermal degradation of the target analytes, and to supply reproducible processing conditions [48,53]. Raw Hibiscus sabdariffa L. calyx was extracted by different extraction temperature values (50, 55, 60, 65, 70°C). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were important indicators so they were chosen to identify the optimal extraction temperature. Our result showed that accelerated temperature from 50°C to 70°C can hampered the phytochemicals. There was not significant difference at extraction temperature 50°C and 55°C. Therefore the optimal extraction temperature should be 55°C to receive the highest content of total phenolic, flavonoid and anthocyanin to save duration of extraction. The optimum conditions for fresh and dried roselle calyces, the extraction temperature of 50°C for 30 min [62]. Dried roselle calyces at a ratio of 1:10 (dried roselle calyces: water) were extracted at 50°C for 30 minutes [32].

3.6 Effect of the Number of Extraction Cycles in Phytochemical Extraction of Hibiscus sabdariffa L. Calyx

The outcome of stirring is related to the mass transfer manner in the solvent phase. Therefore, balance between the aqueous and vapor phases can be achieved more rapidly. The use of agitation in MAE quickens the extraction by enhancing desorption and dissolution of active compounds bound to the sample matrix. Through stirring, the disadvantages of the use of low solvent-to-solid ratio can be reduced, together
with the minimization of the mass transfer barrier created by the concentrated solute in a localized region resulting from insufficient solvent. It is possible to observe the difference between suspensions with and without stirring [76]. The microwave cycle used must be carefully monitored, because microwave-assisted extraction offers quick release of the target components in the surrounding extraction solvent and longer extraction durations could accelerate the decomposition of extracted phenolics for extended extraction under these harsh conditions [77]. In our research, raw *Hibiscus sabdariffa* L. calyx was extracted by different numbers of extraction cycles (1, 2, 3, 4, 5). Total phenolic (mg GAE/100 g), total flavonoid (mg GE/100 g), total anthocyanin (mg/100 g) were important indicators so they were chosen to identify the optimal number of extraction cycles. Our result showed that when the number of extraction cycles increased from 1 to 4 cycles, the phytochemical stability increased respectively. However there was not significant difference if we prolonged the extraction cycle over 4 units. Therefore the optimal number of extraction cycles should be four to receive the highest content of total phenolic, flavonoid and anthocyanin.

4. CONCLUSION

Roselle (*Hibiscus sabdariffa*) is a good source of phytochemical constituents such as dietary antioxidant, phenolic, ascorbic acid, carotenoid providing high antioxidant activity with potential health benefits. The application of microwave extraction of functional constituents from roselle calyx results in effective manner. Electromagnetic waves are indeed absorbed selectively by media possessing a high dielectric constant resulting in more effective heating. In this research, we have successfully identified major variables influencing to the phytochemical extraction inside roselle calyx under microwave.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Inês Da-Costa-Rocha, Bernd Bonlaender, Hartwig Sievers, Ivo Pischel, Michael...
Heinrich. *Hibiscus sabdariffa* L. A phytochemical and pharmacological review. Food Chemistry. 2014;165:424–443.

2. Tzu-Lilin, Lin HH, Chen CC, Lin MC, Chou MC, Wang CJ. *Hibiscus sabdariffa* extract reduces serum cholesterol in men and women. Nutrition Research. 2007;27:140–145.

3. Ajiboye TO, Salawu NA, Yakubu MY, Oladjji AT. Antioxidant and drug detoxification potentials of *Hibiscus sabdariffa* anthocyanin extract. J. Drug and Chem. Toxicol. 2011;34:109-115.

4. Sarwono AT, Suniarti DF. Roselle calyx ethanol extract stimulates oral mucosal wound healing. International Journal of Applied Pharmaceutics. 2017;9:36-40.

5. Kekungu-u Puro, Chubasenla Aochen, Sandeep Ghatak, Samir Das, Rajkumari Sanjukta, Kamal Prasad Mahapatra, Anjani Kumar Jha, Ingudam Shakuntala, Arnab Sen. Studies on the therapeutic properties of Roselle (*Hibiscus sabdariffa*) calyx: A popular ingredient in the cuisine of North East India. International Journal of Food Science and Nutrition. 2017;2:1-6.

6. Diego Archaina, Franco Vasile, Jaime Jiménez-Guzmán, Liliana Alamilla-Beltrán, Carolina Schebor. Physical and functional properties of roselle (*Hibiscus sabdariffa* L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation. 2019;43:14065.

7. Mgaya Kilima B, Remberg SF, Chove BE and T Wicklund. Physio-chemical, mineral composition and antioxidant properties of roselle (*Hibiscus sabdariffa* L.) fruit blended with tropical fruit juices. African Journal of Food, Agriculture, Nutrition and Development. 2014;14:8963-8978.

8. Tungmuinthum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 2018;5:93.

9. Sapna Desai D, Dhruv Desai G, Harmeet Kaur. Anthocyanins and their biological activities. Pharma Times. 2009;41:13-16.

10. Emanuel Peter, Kijakazi O, Mashoto, Susan F, Rumisha, Hamisi M, Malebo, Angela Shija, Ndeyka Oriyo. Iron and ascorbic acid content in *Hibiscus sabdariffa* calyces in Tanzania: Modeling and optimization of extraction conditions. International Journal of Food Science and Nutrition Engineering. 2014;4:27-35.

11. McKay DL, Chen CY, Saltzman E, Blumberg JB. *Hibiscus sabdariffa* L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. Journal of Nutrition. 2010;140:298–303.

12. Ochaní PC, D’Mello P. Antioxidant and antihyperlipidemic activity of *Hibiscus sabdariffa* Linn. leaves and calyces extracts in rats. Indian Journal of Experimental Biology. 2009;47:276–282.

13. Yang MY, Peng CH, Chan KC, Yang YS, Huang CN, Wang CJ. The hypolipidemic effect of *Hibiscus sabdariffa* polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. Journal of Agricultural and Food Chemistry. 2010;58:850–859.

14. Farombi EO, Ige OO. Hypolipidemic and antioxidant effects of ethanolic extract from dried calyx of *Hibiscus sabdariffa* in allloxan-induced diabetic rats. Fundamental and Clinical Pharmacology. 2007;21:601–609.

15. Nizar Sirag, Elhadi MM, Algaili M Algaili, Hozeifa Mohamed Hassan and Mohamed Ohaj. Determination of total phenolic content and antioxidant activity of roselle (*Hibiscus sabdariffa* L.) calyx ethanolic extract. Standard Research Journal of Pharmacy and Pharmacology. 2014;1:034-039.

16. Jény Hinojosa-Gómez, César San Martín-Hermández, José B. Heredia, Josefinna León-Félix, Tomás Osuna-Enciso, María Muy-Range D. Roselle (*Hibiscus sabdariffa* L.) cultivars calyx produced hydroponically: Physicochemical and nutritional quality. Chilean Journal of Agricultural Research. 2018;78:478-485.

17. Formaggio ASN, Ramos DD, Vieira MC, Ramalho SR, Silva MM, Zárate NAH, Foglio MA, Carvalho JE. Phenolic compounds of *Hibiscus sabdariffa* and influence of organic residues on its antioxidant and antitumoral properties. Braz. J. Biol. 2015;75:69-76.

18. Vincenzo Lattanzio, Veronica M, Lattanzio T, Angela Cardinali. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects.
Phytochemistry: Advances in Research. 2006;23:67.

19. Bolade MK, Oluwalana IB, Ojo O. Commercial practice of roselle (Hibiscus sabdariffa L.) beverage production: Optimization of hot water extraction and sweetness level. World Journal of Agricultural Sciences. 2009;5:126–131.

20. Ismail A, Ikram EHK, Nazri HSM. Roselle (Hibiscus sabdariffa L.) seeds nutritional composition protein quality and health benefits. Food. 2008;2:1–16.

21. Okoro EC. Production of red wine from roselle (Hibiscus sabdariffa) and pawpaw (Carica papaya) using palm-wine yeast (Saccharomyces cerevisiae). Nigerian Food Journal. 2007;25:158–164.

22. Tsai PJ, McIntosh J, Pearce P, Camden B, Jordan BR. Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract. Food Research International. 2002;35:351–356.

23. Bahaeldeen Babiker Mohamed, Abdelatif Ahmed Sulaiman, Abdelhafiz Adam Dahab. Roselle (Hibiscus sabdariffa L.) in Sudan, cultivation and their uses. Bulletin of Environment, Pharmacology and Life Sciences. 2012;1:48-54.

24. Ochoa-Velasco CE, Salazar-González C, Cid-Ortega S, Guerrero-Beltrán JA. Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. J Food Sci Technol. 2017;54:1747–1756.

25. Thongam Chanu Anel, Rocky Thokchom, M. Sylvia Subapriya, Jenita Thokchom and Sanasam Sanjay Singh. Hibiscus sabdariffa - A natural micro nutrient source. International Journal of Advanced Research in Biological Sciences. 2016;3:243-248.

26. Singo TM, Beswa D. Effect of roselle extracts on the selected quality characteristics of ice cream. International Journal of Food Properties. 2019;22:42-53.

27. Grace Frimpong, Joseph Adotey, Kwabena Ofori-Kwakye, Samuel Lugrie Kipo, Yaw Dwomo-Fokuo. Potential of aqueous extract of Hibiscus sabdariffa calyces as coloring agent in three pediatric oral pharmaceutical formulations. Journal of Applied Pharmaceutical Science. 2014;4:001-007.

28. Manjula GS, Krishna HC, Chirag Reddy M, Karan M, Mohan Kumar M. Effect of storage temperature on various parameters of extracted pigment from roselle (Hibiscus sabdariffa L.) calyces for edible colour. International Journal of Current Microbiology and Applied Sciences. 2018;7:3382-3390.

29. Ghazala Riaz, Rajni Chopra. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine and Pharmacotherapy. 2018;102:575-586.

30. Salleh N, Runnie I, Roach D, Mohamed S, Abeywardena Y. Inhibition of low-density lipoprotein oxidation and up-regulation of low-density lipoprotein receptor in HepG2 cells by tropical plant extracts. J. Agric. Food Chem. 2002;50: 3693-3697.

31. Ali-Bradeldin H, Al-Wabel N, Gerald B. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa: A review. J. Phytotherapy Res. 2005;19:369-375.

32. Gaya IB, Mohammad OMA, Suleiman AM, Maje MI, Adekunle AB. Toxicological and lactogenic studies on the seeds of Hibiscus Sabdariffa Linn (Malvaceae) extract on serum prolactin levels of albino wistar rats. The Internet Journal of Endocrinology. 2009;5:2.

33. Jamini TS, Aminul Islam AKM, Mohi-ud-Din M, Hasan Saikat MM. Phytochemical composition of calyx extract of roselle (Hibiscus sabdariffa) genotypes. Journal of Food Technology and Food Chemistry. 2019;2:1-6.

34. Camel V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls. Analyst. 2001;126:1182-1193.

35. Thostenson E, Chou TW. Microwave processing: Fundamentals and applications. Composites Part A: Applied Sci. Manufact. 1999;30:1055-1071.

36. Aryanti N, Nafiuinsa A, Wardhani DH. Conventional and ultrasound-assisted extraction of anthocyanin from red and purple roselle (Hibiscus sabdariffa L.) calyces and characterisation of its anthocyanin powder. International Food Research Journal. 2019;26:529-535.

37. Hossain MA, Raqmi KAS, Mijizy ZH, Weli AM, Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts
of locally grown Thymus vularis. Asian Pacific Journal of Tropical Biomedicine. 2013;3:705-710.

38. Eswari ML, Bharathi RV, Jayshree N. Preliminary phytochemical screening and heavy metal analysis of leaf extracts of Ziziphus oenopolia (L) Mill. Gard. International Journal of Pharmaceutical Sciences and Drug Research. 2013;5:38-40.

39. Kurkin VA, Ryazanova TK. Quantitative Determination of total saponins in Aralia mandshurica plant raw material. Pharmaceutical Chemistry Journal. 2018;52:455-458.

40. Builders PF, Kabele-Toje B, Builders M, Chindo BA, Anwunobi PA, Isimi YC. Wound healing potential of formulated extract from Hibiscus sabdariffa calyx. Indian J Pharm Sci. 2013;75:45-52.

41. Nurkhasanah, Yuwono T, Nurani LH, Rizki MI, Kraisintu K. The development of chitosan nanoparticles from Hibiscus sabdariffa L-calyx extract from Indonesia and Thailand. Int J Pham Sci Res. 2015;6:1855-1861.

42. Eltayeib AA, Hamade H. Phytochemical and chemical composition of water extract of Hibiscus sabdariffa (Red karkade calyces) in North Kordofan Sate-Sudan. Int J Adv Res Chem Sci. 2014;1:10-13.

43. Kouakou TH, Konkon NG, Ayolié K, Obouayeba AP, Abeda ZH, Koné M. Anthocyanin production in calyx and calyx of Roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. Journal of Pharmacognosy and Phytochemistry. 2015;4:09-15.

44. Azza Abou-Arab A, Ferial Abu-Salem M, Esmat Abou-Arab A. Physico-chemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus sabdariffa). Journal of American Science. 2011;7:445-456.

45. Fatima Abdallah Mohammed Ahmed, Nuha Mohammed Elhasan Satti, Sharaf Eldin Hussain Eltahir. A comparative study on some major constituents of karkade (Hibiscus sabdariffa L. – roselle plant). International Journal of Life science and Pharma Research. 2019;9:1-12.

46. Borras-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros-Suárez PA, Del Val-Díaz R, Andrade-Gonzáles. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican roselle (Hibiscus sabdariffa). Industrial Crops and Products. 2015;69: 385-394.

47. Jabeur I, Pereira E, Barros L, Calhelha RC, Soković M, Oliveira MBP. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International. 2017;100:717-723.

48. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends in food Science and Technology. 2006;17:300-312.

49. Wang SC, Lee SF, Wang CJ, Lee CH, Lee WC, Lee HJ. Aqueous extract from Hibiscus sabdariffa Linnaeus ameliorate diabetic nephropathy via regulating oxidative status and Akt/Bad/14-3-3y in an experimental animal model. Evidence-Based Complementary and Alternative Medicine. 2011;938126.

50. Shruthi VH, Ramachandra CT, Udaykumar Nidoni, Sharanagouda Hiregoudar, Nagaraj Naik, Kurubar AR. Roselle (Hibiscus sabdariffa L.) as a source of natural colour: A review. Plant Archives. 2016;2:515-522.

51. Raner KD, Strauss CR, Vyskoc F, Mokbel L. A comparison of reaction kinetics observed under microwave irradiation and conventional heating. The Journal of Organic Chemistry. 1993;58:950-953.

52. Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F (2007). Solvent free microwave extraction of Elettaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering. 2007;79:1079-1086.

53. Farah Al-Mamoori and Reem Al-Janabi. Recent advances in microwave-assisted extraction (MAE) of medicinal plants: A review. International Research Journal of Pharmacy. 2018;9:22-29.

54. Ma CH, Yang L, Zu YG, Liu TT. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chemistry. 2012;134:2532-2539.

55. Proestos C, Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-Food Science and Technology. 2008; 41:652-659.
56. Routray W, Orsat V. Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology. 2012;5:409-424.

57. Chemat F, Lucchesi ME, Smadja J, Favretto L, Colnaghi G, Visinoni F. Microwave accelerated steam distillation of essential oil from lavender: A rapid, clean and environmentally friendly approach. Analytica Chimica Acta. 2006;555:157-160.

58. Casazza AA, Aliakbarian B, Mantegna S, Cravotto G, Perego P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. Journal of Food Engineering. 2010;100:50-55.

59. Chen L, Jin H, Ding L, Zhang H, Li J, Qu C, Zhang H. Dynamic microwave-assisted extraction of flavonoids from Herba epimedi. Sep. Purif. Technol. 2008;59:50-57.

60. Azmin SNHM, Yunus NA, Mustaffa AA, Wan Alwi SR, Chua LS. A framework for solvent selection based on herbal extraction process design. J. Eng. Sci. Technol. 2015;1:25-34.

61. Zhang HF, Yang XH, Zhao LD, Wang Y. Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Sci. Emerg. Technol. 2009;10:54-60.

62. Paramee Chumsri, Anchalee Sirichote, Arunporn Itharat. Studies on the optimum conditions for the extraction and concentration of roselle (Hibiscus sabdariffa Linn.) extract. Songklanakarin J. Sci. Technol. 2008;30:133-139.

63. Mohd-Esa N, Hern FS, Ismail A, Yee CL. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chemistry. 2010;122:1055–1060.

64. Cissé M, Bohuon P, Sambe F, Kane C, Sakho M, Dornier M. Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering. 2012;109:16–21.

65. Cissé M, Vaillant F, Pallet D, Dornier M. Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from Roselle extract (Hibiscus sabdariffa L.). Food Research International. 2011;44:2607–2614.

66. Aishah B, Nursabrina M, Norham A, Norizzah AR, Mohamad SH. Anthocyanins from Hibiscus sabdariffa, Melastoma malabathricum and Ipomoea batatas and its colour properties. International Food Research Journal. 2013;20:827–834.

67. Serrano-Cruz MR, Villanueva-Carvajal A, Rosales EJM, Dávila JFR, Domínguez-Lopez A. Controlled release and antioxidant activity of Roselle (Hibiscus sabdariffa L.) extract encapsulated in mixtures of carboxymethyl cellulose, whey protein, and pectin. LWT - Food Science and Technology. 2013;50:554–561.

68. Zaidel DNA, Sahat NS, Jusoh YMM, Muhamad II. Encapsulation of anthocyanin from roselle and red cabbage for stabilization of water-in-oil emulsion. Agriculture and Agricultural Science Procedia. 2014;2:82–89.

69. Duangmal K, Saicheua B, Sueeprasun S. Colour evaluation of freeze-dried roselle extracts as a natural food colorant in a model system of a drink. LWT-Food Science and Technology. 2008;41:1437–1445.

70. Amor BB, Allaf K. Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from Malaysian Roselle (Hibiscus sabdariffa). Food Chemistry. 2009;115:820–825.

71. Gao M, Huang W, Roy Chowdhury M, Liu C. Microwave-assisted extraction of scutellarin from Erigeron breviscapus Hand-Mazz and its determination by high-performance liquid chromatography. Anal. Chim. Acta. 2007;591:161-166.

72. Li H, Pordesimo L, Weiss J, Wilhelm L. Microwave and ultrasound assisted extraction of soybean oil. Transactions of the ASAE. 2004;47:1187-1194.

73. Guo Z, Jin Q, Fan G, Duan Y, Qin C, Wen M. Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae. Anal. Chim. Acta. 2001;436:41-47.

74. Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 2010;120:1185-1192.

75. Ani Alupului, Ioan Călinescu, Vasile Lavric. Microwave extraction of active principles from medicinal plants. UPB Scientific
76. Khajeh M, Moghaddam AR, Sanchooli E. Application of Doehlert design in the optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Analytical Methods. 2010;3:133-137.

77. Saleh IA, Vinatoru M, Mason TJ, Abdel-Azim NS, Shams KA, Aboutabl E, Hammouda FM. Extraction of silymarin from milk thistle (Silybum marianum) seeds—A comparison of conventional and microwave-assisted extraction methods. Journal of Microwave Power and Electromagnetic Energy. 2017;51:124-133.