POINCARÉ-BIRKHOFF-WITT EXPANSIONS OF THE CANONICAL ELLIPTIC DIFFERENTIAL FORM

G. FELDER, R. RIMÁNYI, AND A. VARCHENKO

Abstract. We study the canonical $U(n)$-valued elliptic differential form, whose projections to different Kac-Moody algebras are key ingredients of the hypergeometric integral solutions of elliptic KZ differential equations and Bethe ansatz constructions. We explicitly determine the coefficients of the projections in the simple Lie algebras A_r, B_r, C_r, D_r in a conveniently chosen Poincaré-Birkhoff-Witt basis. As an application we give a new formula for eigenfunctions of Hamiltonians of the Calogero-Moser model.

1. Introduction

Let \mathfrak{g} be a simple Lie algebra with Cartan decomposition $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. Let V be the tensor product $V_{\Lambda_1} \otimes \ldots \otimes V_{\Lambda_n}$ of highest weight \mathfrak{g}-modules. The V-valued hypergeometric solutions of the elliptic Knizhnik-Zamolodchikov differential equations have the form ([FV1], cf. [SV])

$$I(z, \lambda, \tau) = \int_{\gamma(z, \lambda, \tau)} \Phi(t, z, \tau) \cdot \Omega^V(t, z, \lambda, \tau).$$

Here $t = (t_1, \ldots, t_N), z = (z_1, \ldots, z_n), \tau \in \mathbb{C}$ with $\text{Im} \tau > 0, \lambda \in \mathfrak{h}$, Φ is an explicit scalar-valued master function, γ is a suitable cycle in t-space, and Ω^V is a V-valued differential k-form in t-space.

The same Φ and Ω^V have applications to the Bethe Ansatz method. It is known [RV, EK1, EK2, FV1, FV2] that the values of Ω^V at the critical points of Φ (with respect to t) give eigenfunctions of the Hamiltonians of the quantum elliptic Calogero-Moser model [GH] (in the $\mathfrak{g} = sl_{r+1}$ case).

For every $V = V_{\Lambda_1} \otimes \ldots \otimes V_{\Lambda_n}$, the V-valued differential form Ω^V can be constructed out of a single $U(\mathfrak{n})$-valued differential form Θ^θ, where $U(\cdot)$ denotes the universal enveloping algebra. The form Θ^θ is called the canonical elliptic differential form. In applications it is important to have convenient formulas for Θ^θ, and this is the goal of the present paper.

The form Θ^θ (depending also on a vector $k \in \mathbb{N}^r$) is defined as the projection of the ‘canonical element’ Ω_k according to the scheme

$$ \Omega_k \in A(k) \otimes U[k] \rightarrow A(k) \otimes U(\mathfrak{n})[k] \quad \downarrow \quad W \otimes U[k] \rightarrow W \otimes U(\mathfrak{n})[k] \ni \Theta^\theta_k.$$

Here $A(k)$ is a homogeneous component of an Orlik-Solomon algebra; $U[k]$ is its dual, and W is a space of certain differential forms written in terms of theta functions.

Supported by NSF grants DMS-0405723 (2nd author), DMS-0244579 (3rd author)
Keywords: canonical differential form, KZ equation, Bethe ansatz, PBW-expansion
AMS Subject classification 33C67.
In Section 2 we define and study $\mathcal{A}(k) \otimes U[k]$, and its canonical element Ω_k. In Sections 3 and 4 we find Poincaré-Birkhoff-Witt formulas for the projection of Ω_k in $\mathcal{A}(k) \otimes U(n)[k]$. In Section 5 we define representations of $\mathcal{A}(k)$ in spaces W of suitable differential forms. In Section 6 we use the PBW expansion of $\Theta^{{\mathfrak{sl}}_r}^{\mathfrak{r}+1}$ to find a new formula for eigenfunctions of the Hamiltonian of the Calogero-Moser model. In the Appendix we describe the image of the faithful representation $\mathcal{A}(k) \to W$.

2. COHOMOLOGY OF THE COMPLEMENT OF THE DISCRIMINANTAL ARRANGEMENT.

COMBINATORIAL CODES AND OPERATIONS.

2.1. An **ordered p-forest** is a graph with no cycles, with p edges, and a numbering of its edges by the numbers $1, 2, \ldots, p$. Let \mathcal{A}_n^p be the complex vector space generated by the ordered p-forests on the vertex set \{z, t_1, \ldots, t_n\} (a set of symbols now), modulo the following two kinds of relations:

R1: $T_1 = -T_2$ if T_1 and T_2 have the same underlying graph, and the order of their edges differ by a transposition;

R2:

\[
\begin{array}{cc}
& a \\ a & b \\
\end{array} + \begin{array}{ccc}
& a \\
 b & & \\
\end{array} + \begin{array}{cc}
& b \\
 a & \\
\end{array} = 0 \quad (a, b \in \{1, \ldots, p\}),
\]

that is, the sum of three p-forests that locally (i.e. their subgraphs spanned by 3 vertices) differ as above, but are otherwise identical, is 0.

Let z be a complex number, and consider \mathbb{C}^n with coordinates t_1, \ldots, t_n. The discriminantal arrangement $\mathcal{C}^n = \mathcal{C}^n(z)$ in the space \mathbb{C}^n is the collection of hyperplanes $t_i = t_j$ ($1 \leq i < j \leq n$) and $t_i = z$ ($1 \leq i \leq n$). Let \mathcal{U}_n denote the complement of \mathcal{C}^n, i.e. $\mathcal{U}_n = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{C}^n} H$.

Proposition 2.1. The cohomology group $H^p(\mathcal{U}_n; \mathbb{C})$ is isomorphic to \mathcal{A}_n^p.

Proof. The definition of $\mathcal{A}(k)$ is a combinatorial code for the description of $H^p(\mathcal{U}_n; \mathbb{C})$ by Arnold in [A].

Now let us fix $r \in \mathbb{N}$, and r non-negative integers $k = (k_1, k_2, \ldots, k_r)$ with $\sum k_i = |k|$. The set of coordinates

\[
(t^{(1)}_1, \ldots, t^{(1)}_{k_1}, t^{(2)}_1, \ldots, t^{(2)}_{k_2}, \ldots, t^{(r)}_1, \ldots, t^{(r)}_{k_r}).
\]

will be denoted by $\mathcal{T}(k)$. We will consider $\mathbb{C}^{|k|}$ with coordinates $\mathcal{T}(k)$, and the space $\mathcal{A}_n^{|k|}$ with vertex set $\mathcal{T}(k) \cup \{z\}$. The group $G_k = \prod \Sigma_{k_i}$ acts on $\mathbb{C}^{|k|}$ (by permuting the coordinates with the same upper indices) which then induces an action of G_k on $\mathcal{A}_n^{|k|}$. The skew-invariant subspace (i.e. the collection of x’s for which $\pi \cdot x = \text{sgn}(\pi)x, \forall \pi \in G_k$) of $\mathcal{A}_n^{|k|}$ will be denoted by $\mathcal{A}(k)$.

Example 2.2. In the $r \leq 2$ examples (in the whole paper) we will use t_j for $t_j^{(1)}$ and s_j for $t_j^{(2)}$. The vector space $\mathcal{A}((1, 1))$ is two-dimensional with a basis $\{z - \frac{1}{2} t_1 - s_1, z - \frac{1}{2} s_1 - t_1\}$. The vector space $\mathcal{A}((2))$ is one-dimensional with a basis $\{t_1 - z - t_2\}$.

2.2. The star-product.

Definition 2.3. Let \(e_1, e_2, \ldots, e_{|k|} \) be the edges (in order) of an ordered \(|k|\)-tree \(T \) on the vertex set \(\mathcal{T}(k) \cup \{z\} \). The sign \(\varepsilon(T) \) of \(T \) is defined by

\[
\bigwedge_{i=1}^{|k|} d h(e_i) = \varepsilon(T) \cdot \bigwedge_{i=1}^{|k|} d t_j^{(i)},
\]

where \(h(e) \) is the ‘head’ of the edge \(e \), i.e. the end vertex of \(e \) farther from the root \(z \).

For example the signs of the three trees of Example 2.2 are +1, -1, +1, respectively.

Definition 2.4. For an element \(x \) in a vector space acted upon by \(G_k \), let \(\text{ASym}_k(x) = \text{ASym}(x) \) be the anti-symmetrization of \(x \): \(\sum_{\pi \in G_k} \text{sgn}(\pi) \pi(x) \). Let \(\text{Sym}_k(x) = \text{Sym}(x) \) be the symmetrization of \(x \): \(\sum_{\pi \in G_k} \pi(x) \).

For \(k, l \in \mathbb{N}^r \) let \(T_1 \) and \(T_2 \) be ordered \(|k|\)- and \(|l|\)-trees on the vertex set \(\mathcal{T}(k) \cup \{z\} \) and \(\mathcal{T}(l) \cup \{z\} \) respectively. We will define their star-product \(T_1 \ast T_2 \) by the following procedure. We replace the vertices \(t_i^{(j)} \) of \(T_2 \) with \(t_{k_i+j}^{(i)} \), add \(|k| \) to the numbers on the edges of \(T_2 \), and identify the \(z \)-vertices of the two trees—thus we obtain a tree \(T \) with \(|k|+|l|+1 \) vertices. The product \(T_1 \ast T_2 \) is defined as

\[
\varepsilon(T_1) \varepsilon(T_2) \varepsilon(T) / \prod_{i=1}^{|k|+|l|} (k_i!l_i!) \cdot \text{ASym}_{k+l},
\]

i.e. \(T_1 \ast T_2 = T \).

The star-product induces a product (that we will also call star-product) \(\mathcal{A}(k) \otimes \mathcal{A}(l) \to \mathcal{A}(k+l) \). The vector space \(\bigoplus_{k \in \mathbb{N}^r} \mathcal{A}(k) \) with the star-product is an associative and commutative algebra.

Example 2.5.

\[
(z \frac{1}{1} t_1) \ast (z \frac{1}{1} s_1) = (t_1 \frac{1}{1} z \frac{2}{2} s_1) = (z \frac{1}{1} t_1 \frac{2}{2} s_1) - (z \frac{1}{1} s_1 \frac{2}{2} t_1).
\]

Computation shows that

\[
(z \frac{1}{1} t_1)^n = n! \text{ASym}(z \frac{1}{1} t_1 \frac{2}{2} t_2 \frac{3}{3} \ldots \frac{n}{n} t_n).
\]
2.3. Residue. Let T be a p-tree on the vertex set $\mathcal{T}(k) \cup \{z\}$, and choose a coordinate $t_j^{(i)}$. We will define the $t_j^{(i)}$-residue $\text{Res}_j^{(i)} T$ of the tree T as a $p-1$-tree on the vertex set $\mathcal{T}(k) \cup \{z\} \setminus \{t_j^{(i)}\}$, constructed as follows.

- If $t_j^{(i)}$ and z are connected by an edge with number a, then we contract that edge (i.e. delete the edge, and identify its vertices), and label this contracted vertex by z. Then, if the number of an edge is greater than a, we decrease it by 1. $\text{Res}_j^{(i)}$ is defined as $(-1)^{a-1}$ times this modified tree. See Figure 1.

$$\text{Res}_j^{(i)}$$

edges: $a + 1 \mapsto a$
$a + 2 \mapsto a + 1$
\ldots

- If $t_j^{(i)}$ is not an edge of T, $\text{Res}_j^{(i)} T$ is defined to be 0.

This operation is consistent with relations R1 and R2, hence they are defined for $A(k)$. Observe that $\text{Res}_k^{(i)}$ is a map $A(k) \to A(k - 1_i)$. (Here, and in the sequel, 1_i denotes a vector, whose coordinates are 0 except the i’th coordinate, which is 1.)

2.4. The dual space of the cohomology of the complement. Let U_r denote the free associative complex algebra generated by the r symbols $\tilde{f}_1, \ldots, \tilde{f}_r$. It is multigraded by $\mathbb{N}_r \setminus (\deg \tilde{f}_i = 1)$, the degree k subspace will be denoted by $U[k]$. In [SV] $U[k]$ is shown to be isomorphic to the G_k skew-invariant part of the dual space of $H^{|k|}(\mathcal{U}[k]; \mathbb{C})$. In this section we recall this isomorphism in our combinatorial language.

Definition 2.6. Let $r \in \mathbb{N}$ and $k \in \mathbb{N}'$.

- Maps $J : \{1, \ldots, |k|\} \to \{1, \ldots, r\}$ with $\# J^{-1}(i) = k_i$ will be called (k, \cdot)-multiindices.
- For a multiindex J, let \tilde{f}_J be the monomial $\tilde{f}_{J(|k|)} \tilde{f}_{J(|k|-1)} \cdots \tilde{f}_{J(1)}$ in $U[k]$.
- For a multiindex J let c be the unique map $\{1, \ldots, |k|\} \to \mathbb{N}$ that restricted to $J^{-1}(i)$ is the increasing function onto $\{1, \ldots, k_i\}$.
- The sign $\text{sgn}(J)$ of a multiindex J is $(-1)^m$ where m is the minimal number of transpositions to be applied to the list $J(1), J(2), \ldots, J(|k|)$ to get $1, \ldots, 1, 2, \ldots, 2, \ldots, r, \ldots, r$.

Let T_0 be the graph with a single vertex z and with no edge. For $T \in A(k)$ and J a k-multiindex, the expression

$$\text{sgn}(J) \cdot \text{Res}_c^{(J(|k|))} \left(\text{Res}_c^{(J(|k|-1))} \left(\ldots \text{Res}_c^{(J(1))} (T) \ldots \right) \right)$$

is equal to a constant times T_0. Let this constant be denoted by $< \tilde{f}_J, T >$.

Figure 1
Theorem 2.7. [SV, Th. 2.4] The map \(\tilde{f}_J \mapsto \tilde{f}_J \) is an isomorphism between \(U[k] \) and the dual space \(\mathcal{A}(k)^* \) of \(\mathcal{A}(k) \).

Corollary 2.8. For the basis \(\{ \tilde{f}_J \} \) of \(U_r \) the dual basis is

\[
\hat{f}_J^* = \text{sgn}(J) \cdot \text{ASym} \left(z \frac{t_{c(1)}^{(J(1))}}{1} \frac{t_{c(2)}^{(J(2))}}{2} \cdots \frac{t_{c(|k|)}^{(J(|k|))}}{|k|} \right).
\]

2.5. **Product on** \(\sum \mathcal{A}(k) \), **coproduct on** \(\sum U[k] \). Recall that \(U_r \) is equipped with its standard Hopf algebra structure. The comultiplication \(\Delta : U_r \to U_r \otimes U_r \) is defined by \(\Delta(x) = 1 \otimes x + x \otimes 1 \) for degree 1 elements.

Theorem 2.9. Under the duality between \(\sum_{k \in \mathbb{N}} \mathcal{A}(k) \) and \(U_r \) the coproduct \(\Delta \) corresponds to the star-multiplication.

Proof. We need the following notion: a triple

\[
(S_1 \subset \{ 1, \ldots, |k + l| \}, S_2 \subset \{ 1, \ldots, |k + l| \}, J : \{ 1, \ldots, |k + l| \} \to \{ 1, \ldots, r \})
\]

is called a shuffle of \(J_1 : \{ 1, \ldots, |k| \} \to \{ 1, \ldots, r \} \) and \(J_2 : \{ 1, \ldots, |l| \} \to \{ 1, \ldots, r \} \) if

- \#\(S_1 = k \), \#\(S_2 = l \), \(S_1 \cup S_2 = \{ 1, \ldots, |k + l| \} \),
- for the increasing bijections \(s_1 : S_1 \to \{ 1, \ldots, k \} \), \(s_2 : S_2 \to \{ 1, \ldots, l \} \) we have

\[
J(i) = \begin{cases}
J_1 \circ s_1(i) & i \in S_1 \\
J_2 \circ s_2(i) & i \in S_2.
\end{cases}
\]

The definition of \(\Delta \) implies that \(\Delta^*(\tilde{f}_{J_1}^* \otimes \tilde{f}_{J_2}^*) = \sum \tilde{f}_J^* \), where the sum runs over all the shuffles of \(J_1 \) and \(J_2 \). On the other hand \(\tilde{f}_{J_1}^* \cdot \tilde{f}_{J_2}^* =

\[
\pm \text{ASym}(z \frac{t_{c(1)}^{(J(1))}}{1} \frac{t_{c(2)}^{(J(2))}}{2} \cdots \frac{t_{c(|k|)}^{(J(|k|))}}{|k|}) \ast \text{ASym}(z \frac{t_{c(1)}^{(J(1))}}{1} \frac{t_{c(2)}^{(J(2))}}{2} \cdots \frac{t_{c(|k|)}^{(J(|k|))}}{|k|}).
\]

Using relation (2), this is equal to the sum of terms

\[
\pm \text{ASym}(z \frac{t_{c(1)}^{(J(1))}}{1} \frac{t_{c(2)}^{(J(2))}}{2} \cdots \frac{t_{c(|k+l|)}^{(J(|k+l|))}}{|k+l|}),
\]

where \(J \) is a shuffle of \(J_1 \) and \(J_2 \). We illustrate this argument with the following example:

\[
(\tilde{f}_2 \tilde{f}_1)^* \ast \tilde{f}_1^* = (z \frac{t_1}{1} \frac{t_2}{2} s) \ast (z \frac{t_1}{1} \frac{s}{t_1}) =
\]

\[
- \text{ASym} \left(z \frac{t_1}{t_2} \frac{t_1}{t_2} s \right) = - \text{ASym} \left(z \frac{t_1}{t_2} \frac{t_1}{t_2} s \right) =
\]

\[
- \text{ASym} \left(z \frac{t_1}{t_2} \frac{t_1}{t_2} s \right) + z \frac{t_1}{t_2} \frac{t_1}{t_2} s + z \frac{t_1}{t_2} \frac{t_1}{t_2} s =
\]

\[
2 \text{ASym}(z \frac{t_1}{t_2} \frac{t_2}{3} s) - \text{ASym}(z \frac{t_1}{t_2} \frac{t_1}{2} s \frac{t_2}{3} s) = 2(\tilde{f}_2 \tilde{f}_1)^* + (\tilde{f}_1 \tilde{f}_2 \tilde{f}_1)^*.
\]

A careful examination of signs shows that \(\Delta^* \) and the star-product agree on the basis \(\tilde{f}_J^* \), hence the Theorem is proved. □
26. The canonical element. We obtained that the spaces $\mathcal{A}(k)$ and $U[k]$ are dual vector spaces, and hence there is a canonical element in $\mathcal{A}(k) \otimes U[k]$. It is defined by $\sum b_i^* \otimes b_i$ for a basis b_i in $U[k]$ and its dual basis b_i^* in $\mathcal{A}(k)$. This definition does not depend on the choice of the basis. Equivalently, the canonical element is the identity in $\mathcal{A}(k) \otimes U[k]$ = Hom($\mathcal{A}(k)^*, U[k]$) = Hom($U[k], U[k]$).

Definition 2.10. The canonical element in $\mathcal{A}(k) \otimes U[k]$ will be denoted by Ω_k.

Using Corollary 2.8 we obtain an explicit form for Ω_k.

Theorem 2.11. We have

$$\Omega_k = \sum_J \text{sgn}(J) \cdot \text{ASym} \left(z \frac{t^{(J(1))}}{1} \frac{t^{(J(2))}}{2} \cdots \frac{t^{(J(|J|))}}{|J|} \right) \otimes \tilde{f}_J,$$

where the summation runs over all k-multiindices.

Example 2.12. $\Omega_{(1,1)} = (z \frac{t}{1} \frac{s}{2} t) \otimes \tilde{f}_2 \tilde{f}_1 + (z \frac{s}{1} \frac{t}{2} t) \otimes \tilde{f}_2 \tilde{f}_1$.

$$\Omega_{(2,1)} = \left((z \frac{t_1}{1} \frac{s}{2} t_2) - (z \frac{t_1}{1} \frac{s}{2} t_1) \right) \otimes \tilde{f}_1 \tilde{f}_2 \tilde{f}_1 + \left((z \frac{s}{1} \frac{t_1}{2} t_2) - (z \frac{s}{1} \frac{t_1}{2} t_1) \right) \otimes \tilde{f}_2 \tilde{f}_1.$$

3. Canonical elements associated with simple Lie algebras

Let \mathfrak{g} be a simple Lie algebra of rank r with Cartan decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. The \mathbb{N}^r-multigraded universal enveloping algebra $U(\mathfrak{n}_-)$ of \mathfrak{n}_- is generated by r elements f_1, \ldots, f_r (the standard Chevalley generators), subject to the Serre relations. The degree k part of $U(\mathfrak{n}_-)$ $(\deg f_i = 1)$ is denoted by $U(\mathfrak{n}_-)[k]$. We have the quotient map $q : U_r \rightarrow U(\mathfrak{n}_-)$ by mapping f_i to f_i.

Definition 3.1. The canonical element $\Omega_k^\mathfrak{g}$ associated with the simple Lie algebra \mathfrak{g} is defined as the image of the canonical element Ω_k under the map

$$\text{id} \otimes q : \mathcal{A}(k) \otimes U[k] \rightarrow \mathcal{A}(k) \otimes U(\mathfrak{n}_-)[k].$$

3.1. PBW expansion of the canonical element. The Lie algebra \mathfrak{n}_- is the direct sum of 1-dimensional weight spaces \mathfrak{n}_β labeled by the positive roots: $\mathfrak{n}_- = \oplus_\beta \mathfrak{n}_\beta$. Now let us make the following choices:

* (C1) a linear ordering $\beta_1 < \cdots < \beta_m$ of the positive roots (thus $m = \dim \mathfrak{n}_-$),
* (C2) a generator F_{β_j} in \mathfrak{n}_β_j.

When considering F_{β_j} in $U(\mathfrak{n}_-)$, let its degree be $k^{(j)} \in \mathbb{N}^r$. Equivalently, $k^{(j)}_i$ is the coefficient of the i’th simple root (i.e. the simple root corresponding to f_i) in the decomposition of β_j. According to the Poincaré-Birkhoff-Witt theorem, a \mathbb{C}-basis of the algebra $U(\mathfrak{n}_-)$ is given by the collection of elements $F_{\beta_1}^{p_1} F_{\beta_2}^{p_2} \cdots F_{\beta_m}^{p_m}$ where $p = (p_1, \ldots, p_m) \in \mathbb{N}^m$.

Hence, the canonical element associated with \mathfrak{g} can be written (depending on the choices (C1,C2)) as

$$\Omega_k^\mathfrak{g} = \sum_p T_p \otimes F_{\beta_1}^{p_1} F_{\beta_2}^{p_2} \cdots F_{\beta_m}^{p_m}.$$
where the summation runs over those $p \in \mathbb{N}^m$ for which $\sum_j p_j k^{(j)} = k \in \mathbb{N}^r$. Here $T_p \in \mathcal{A}(k)$ is a linear combination of ordered spanning trees on the vertex set $\mathcal{T}(k) \cup \{z\}$.

Example 3.2. In the Lie algebra $sl_3(\mathbb{C})$ of traceless 3×3 matrices let $f_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $f_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Let α_1 and α_2 be the simple roots corresponding to f_1 and f_2 respectively. The positive roots are $\alpha_1, \alpha_2,$ and $\alpha_1 + \alpha_2$. Let us choose the ordering

• $\beta_1 = \alpha_1 < \beta_2 = \alpha_1 + \alpha_2 < \beta_3 = \alpha_2$,

and the elements

• $F_{\alpha_1} = f_1$, $F_{\alpha_1+\alpha_2} = [f_2, f_1]$, $F_{\alpha_2} = f_2$,

with $k^{(1)} = (1, 0)$, $k^{(2)} = (1, 1)$, $k^{(3)} = (0, 1)$. Then for example $\Omega^{sl_3}_{(1,1)}$ can be written as $T_{(1,0,1)} \otimes f_1 f_2 + T_{(0,1,0)} \otimes [f_2, f_1]$. Using Theorem 2.11 we obtain

$$\Omega^{sl_3}_{(1,1)} = (z \frac{1}{1} t \frac{2}{2} s) \otimes f_2 f_1 - (z \frac{1}{1} s \frac{2}{2} t) \otimes f_1 f_2 =$$

$$((z \frac{1}{1} t \frac{2}{2} s) - (z \frac{1}{1} s \frac{2}{2} t)) \otimes f_1 f_2 + (z \frac{1}{1} t \frac{2}{2} s) \otimes [f_2, f_1].$$

Observe that $T_{(1,0,1)}$ (the coefficient of $f_1 f_2$) is equal to $(z \frac{1}{1} t) \ast (z \frac{1}{1} s)$. In general we have the following formula.

Theorem 3.3. (Product formula.) There exist unique elements $\eta_{\beta_j} \in \mathcal{A}(k^{(j)})$ ($j = 1, \ldots, m$) such that

$$T_p = \frac{1}{\prod_i p_i!} \cdot \eta_{\beta_1} \ast \ldots \ast \eta_{\beta_1} \ast \eta_{\beta_2} \ast \ldots \ast \eta_{\beta_2} \ast \ldots \ast \eta_{\beta_m} \ast \ldots \ast \eta_{\beta_m}.$$

Proof. Let $F^p = F_{\beta_1}^{p_1} F_{\beta_2}^{p_2} \ldots F_{\beta_m}^{p_m}$. The key observation is that in a PBW-basis the co-multiplication is given by

$$\Delta(F^p) = \sum_{p' + p'' = p} \left(\prod_{i=1}^m \frac{p_i!}{p_i'! p_i''!} \right) F^{p'} \otimes F^{p''}.$$

Hence, for its dual we get

$$\Delta^*(F^{p' \ast} \otimes F^{p'' \ast}) = \prod_{i=1}^m \frac{p_i!}{p_i'! p_i''!} \cdot F^{(p' + p'') \ast}.$$

Using Theorem 2.9 this is equivalent to $T_{p' \ast} T_{p''} = \prod_i (p_i! / p_i'! p_i''!) \cdot T_{p' + p''}$, from which the theorem follows (put $\eta_{\beta_j} = T_{\beta_j}$).

Example 3.4. The computation in Example 3.2 shows that (with the choices made there) $\eta_{\alpha_1} = (z \frac{1}{1} t)$, $\eta_{\alpha_1+\alpha_2} = (z \frac{1}{1} t \frac{2}{2} s)$, $\eta_{\alpha_2} = (z \frac{1}{1} s)$. Then for example the coefficient of $f_1^2 f_2 [f_2, f_1] f_2$ in $\Omega^{sl_3}_{(3,2)}$ is

$$T_{(2,1,1)} = \frac{1}{2} \text{ASym}_{(3,2)} \left(\begin{array}{cc} t_1 & t_2 \\ \frac{2}{5} & f_3 \cdot s_1 \end{array} \right).$$
3.2. The residues of η_β.

Lemma 3.5. The map $\psi : U[k^{-1}] \to U[k]$; $x \mapsto (-1)^{k_1+...+k_i-1}x \cdot \tilde{f}_i$ is dual to the map $\text{Res}^{(i)}_{\bar{k}_i} : \mathcal{A}(k) \to \mathcal{A}(k-1)$.

Proof. Let $T \in \mathcal{A}(k)$, $f_i \in U[k-1]$. We need to check that $\langle (-1)^{k_1+...+k_i-1}f_i, T \rangle = \langle \tilde{f}_i, \text{Res}^{(i)}_{\bar{k}_i} T \rangle$. Writing out definition (4) we obtain an identity. \hfill \Box

Theorem 3.6. We have

$$\text{Res}^{(i)}_{\bar{k}_i} \Omega = (-1)^{k_1+...+k_i-1} \Omega_{k-1} \cdot (1 \otimes \tilde{f}_i).$$

Proof. Let $\{b_u\}$ be a basis of $U_r[k^{-1}]$, hence $\Omega_{k-1} = \sum b_u^* \otimes b_u$. Since the map ψ in Lemma 3.5 is an embedding, the ψ images of b_u can be extended to a basis $\{\psi(b_u), c_v\}$ of $U_r[k]$. Then $\Omega_k = \sum \psi(b_u)^* \otimes \psi(b_u) + \sum c_v^* \otimes c_v$. We have $\text{Res}^{(i)}_{\bar{k}_i} \Omega_k = \sum \text{Res}^{(i)}_{\bar{k}_i} (\psi(b_u))^* \otimes \psi(b_u) + \sum \text{Res}^{(i)}_{\bar{k}_i} (c_v^*) \otimes c_v$, which, according to the lemma, is $\sum b_u^* \otimes \psi(b_u) = (1 \otimes \psi)\Omega_{k-1}$, what we wanted to prove. \hfill \Box

Recall that after making the choices (C1), (C2), any element in $U(n_{-})$ can be written in the basis $\{F^p : p \in N^n\}$ (recall $F^p = F^p_{\beta_1} F^p_{\beta_2} \cdots F^p_{\beta_m}$). If the element x is expanded in this basis, let the coefficient of F^p be denoted by $\text{coeff}(x,F^p)$. Then Theorem 3.6 has the following direct corollary.

Corollary 3.7. We have

$$(-1)^{k^{(i)}_1+...+k^{(i)}_i-1} \text{Res}^{(i)}_{\bar{k}_i} \eta_{\beta_j} = \sum_p \text{coeff}(F^p \cdot f_i, F_{\beta_j}) \cdot T_p.$$

Since the residues of η_β's will play a crucial role in our argument below, we will make our choices so that the coefficients on the right-hand side are easily computable.

4. Computing η_β's

We reduced the computation of T_p's to the computation of η_β's for the positive roots β. In this section we compute the elements η_β (with suitable choices (C1), (C2)) for the simple Lie algebras of type A, B, C, D.

Theorem 4.1. Let \mathfrak{g} be a simple Lie algebra of rank r, with positive roots β_1, \ldots, β_m and let choices (C1), (C2) be made. Suppose $\tilde{\eta}_{\beta_j} \in \mathcal{A}(k^{(j)})$ ($j = 1, \ldots, m$) satisfy

(i): $< \tilde{F}, \tilde{\eta}_{\beta_j} >= 0$ if $\tilde{F} \in U[k^{(j)}]$ belongs to the ideal of Serre relations;

(ii): $\text{Res}^{(i)}_{\bar{k}_i} \tilde{\eta}_{\beta_j} = \text{Res}^{(i)}_{\bar{k}_i} \eta_{\beta_j}$ for all $i = 1, \ldots, r$.

Then $\tilde{\eta}_{\beta_j} = \eta_{\beta_j}$.

Proof. Let us choose an index j. Let $F^p \in U(n_{-})[k^{(j)}]$, and let $\tilde{F}^p \in U[k^{(j)}]$ be a preimage of F^p under the map $g : U_r \to U(n_{-})$. First we show that

(iii): $< \tilde{F}^{1j}, \tilde{\eta}_{\beta_j} >= 1$;

(iv): $< \tilde{F}^p, \tilde{\eta}_{\beta_j} >= 0$ if $p \neq 1_j$.

For this let Ω^q_k be obtained from Ω^q_k by replacing η_{β_j} with η_{β_j}. Using (ii) and definition (i) of $<,>$, we have $(<\tilde{F}^p, >\otimes 1)\Omega^q_k = (0 <\tilde{F}^p, >\otimes 1)\Omega^q_k$. This latter is equal to

$$(1 \otimes q)(<\tilde{F}^p, >\otimes 1)\Omega^q_k = (1 \otimes q)(1 \otimes \tilde{F}^p) = 1 \otimes F^p,$$

which proves (iii) and (iv).

Conditions (i), (iii), and (iv), together with Theorem 2.7 imply $\eta_{\beta_j} = \eta_{\beta_j}$.

Notations. Root systems will be considered in a space with an orthonormal basis $\{e_1, \ldots, e_r\}$. For a sequence of integers $I = (i_1, i_2, \ldots, i_n)$ let $[f_I]$ denote the following multiple commutator $[\ldots [f_{i_1}, f_{i_2}], f_{i_3}] \ldots , f_{i_n}]$. Let $\text{String}(u_1, u_2, \ldots, u_n)$ denote the following tree

$z \quad u_1 \quad u_2 \quad \ldots \quad u_n$.

Theorem 4.2. The elements given in the following list are the η_{β_j}’s of Theorem 3.3 for the simple Lie algebras of type A, B, C, D and the choices given.

A. $r - 1$: For the positive roots $e_i - e_j (1 \leq i < j \leq r)$ and simple roots $\alpha_i = e_i - e_{i+1} (i = 1, \ldots, r - 1)$, we make the following choices.

- $e_i - e_j < e_{i'} - e_{j'}$ if either $i < i'$ or $i = i'$ and $j < j'$.
- $F_{e_i - e_j} = [f_{j-i-2, \ldots, i}]$.

Then we have $\eta_{e_i - e_j} = \text{String}(t_1^{(i)}, t_1^{(i+1)}, \ldots, t_1^{(j-1)})$.

B. For the positive roots $e_i (1 \leq i \leq r)$, $e_i - e_j (1 \leq i < j \leq r)$, and simple roots $\alpha_i = e_i - e_{i+1} (1 \leq i < r)$ and $\alpha_r = e_r$, we make the following choices.

- Let β be one of $e_i^r - e_j^r$, or $e_i - e_{i+1}$, and let β' be one of $e_{i'} - e_{j'}$, $e_{i'} - e_{j'}$ or $e_{i'} - e_{j'}$. Then we set $\beta < \beta'$ if $i > i'$. If $i < j < j'$ we set $e_j + e_{i'} - e_{j'} < e_i < e_{i'} - e_{j'} < e_i + e_j$.
- $F_{e_i - e_j} = [f_{j-i-1, \ldots, i}]$, $F_{e_i} = [f_{(r, \ldots, r), i}]$, $F_{e_i + e_j} = (-1)^{j+i+1} (r+i+1) [f_{(r, \ldots, r, i, \ldots, i)}]$.

Then we have $\eta_{e_i - e_j} = \text{String}(t_1^{(i)}, t_1^{(i-1)}, \ldots, t_1^{(r-1)})$, $\eta_{e_i} = \text{String}(t_1^{(r)}, t_1^{(r-1)}, \ldots, t_1^{(i)})$ and $\eta_{e_i + e_j} = \text{ASym} \left(\text{String}(t_1^{(j)}, t_2^{(r-1)}, \ldots, t_1^{(i)}) \right)$.

C. For the positive roots $e_i - e_j, e_i + e_j (1 \leq i < j \leq r)$ and $2e_i (1 \leq i \leq r)$ and simple roots $\alpha_i = e_i - e_{i+1} (1 \leq i < r)$ and $\alpha_r = 2e_r$, we make the following choices.

- Let β be one of $e_i - e_j, e_i + e_j$, or $2e_i$, and let β' be one of $e_{i'} - e_{j'}$, $e_{i'} + e_{j'}$, or $2e_{i'}$. Then we set $\beta < \beta'$ if $i > i'$. For $i < j < j'$ we set $e_i^r + e_{i'} < e_i < e_{i'} - e_{j'} < e_i - e_{j'}$.
- $F_{e_i - e_j} = [f_{j-i-j-2, \ldots, i}]$, $F_{e_i + e_j} = (-1)^{r-j} [f_{(r+1, \ldots, r, r-1, \ldots, i)}]$, $F_{2e_i} = (-1)^{r-i}/2 \cdot [f_{(i, i+1, \ldots, r, r-1, \ldots, i)}]$.

Then we have $\eta_{e_i - e_j} = \text{String}(t_1^{(i)}, t_1^{(i-1)}, \ldots, t_1^{(r-1)})$, $\eta_{e_i + e_j} = \text{ASym} \left(\text{String}(t_1^{(j)}, t_2^{(r-1)}, t_1^{(i)}, \ldots, t_1^{(i)}) \right)$, and

$\eta_{2e_i} = \text{ASym} \left(z = \text{String} \left(t_1^{(r-1)}, t_1^{(r-2)}, \ldots, t_1^{(i)} \right) \right)$.

D. For the positive roots $e_j - e_i, e_j + e_i (1 \leq i < j \leq r)$, and simple roots $\alpha_1 = e_1 + e_2$, $\alpha_j = e_j - e_{j-1} (1 < j \leq r)$, we make the following choices.
• Let β be one of $e_j - e_i$, $e_j + e_i$, and let β' be one of $e_j' - e_i$, $e_j' + e_i$. Then we set $\beta < \beta'$ if $j < j'$. For $i' < i < j$ we also set $e_j + e_i < e_j + e_i' < e_j - e_i < e_j - e_i'$.

• $F_{e_j - e_i} = [f_{(j,i+1)}], F_{e_j + e_i} = [f_{(j,i-1)}], F_{e_j + e_i'} = [f_{(j,i-1,3,\ldots,i)}]$ $(i > 1)$. Then we have $\eta_{e_j - e_i} = \text{String}(t_1^{i+1}, \ldots, t_1^{j})$, $\eta_{e_j + e_i} = \text{String}(t_1^{i}, t_1^{i+1}, \ldots, t_1^{j})$, and for $i > 1$ we have $\eta_{e_j + e_i} = \text{ASym} \left(\text{String}(t_2^{i}, t_2^{i+1}, t_2^{i+2}, t_1^{i+1}, t_1^{i+2}, \ldots, t_1^{j}) \right) + \text{ASym} \left(\text{String}(t_2^{i}, t_2^{i+1}, t_2^{i+2}, t_1^{i+1}, t_1^{i+2}, \ldots, t_1^{j}) \right)$.

Proof. Simple combinatorics shows that for our choices of F_{β} and the order of the β’s, Corollary 3.7 implies

$$\text{Res}_{k^{(j)}} \eta_{\beta_j} = \begin{cases}
\eta_{\beta_j - \alpha_i} & \text{if } \beta_j - \alpha_i \text{ is a positive root, } \beta_j - \alpha_i > \beta_j \\
\eta_{\beta_j - \alpha_i} \ast \eta_{\beta_j - \alpha_i} & \text{if } \frac{\beta_j - \beta_i}{2} - \frac{\alpha_i}{2} \text{ is a positive root, } \frac{\beta_j - \beta_i}{2} > \beta_j \\
0 & \text{otherwise.}
\end{cases}$$

One can check case by case that the same residue identities hold for the η_{β_j}’s given in the Theorem, hence condition (ii) of Theorem 4.1 is satisfied.

To prove property (i) of Theorem 4.1 recall that the relevant Serre relations are

1. $[f_{(i,j)}]$ if $(\alpha_i, \alpha_j) = 0$,
2. $[f_{(i,j,j)}]$ if $(\alpha_i, \alpha_j) = -1$,
3. $[f_{(i,j,j,j)}]$ if $(\alpha_i, \alpha_j) = -2$, $|\alpha_i| < |\alpha_j|$.

If $(\alpha_i, \alpha_j) = 0$, then the value of $(f_1 f_j f_j f_j - f_1 f_j f_j f_j)$ on the $A(k)$-elements given in the Theorem are all 0. Indeed, our sign conventions yield that in the T-variable t, for which the canonical g-elements associated with simple Lie algebras play an important role in hypergeometric solutions of KZ-type differential equations. Theorem 3.3 together with Theorem 4.2 give convenient forms of these canonical elements. An example of application will be shown in Section 6.

Suppose we are given a vector space W, and a vector $\phi(T) \in W$ for every ordered $|k|$-tree T on the vertex set $T(k) \cup \{z\}$. This data induces a representation $\phi : A(k) \rightarrow W$ if the assignment $T \mapsto \phi(T)$ respects relations R1 and R2 (see Section 2.2).

Notation. For an edge e of a spanning tree on the vertex set $T(k) \cup \{z\}$, $h(e)$ and $t(e)$ denote the head and tail of the edge e, i.e. the vertices adjacent to e, farther resp. closer to z.

5. Differential form representations of $A(k)$

A linear map $\phi : A(k) \rightarrow W$ to a vector space W will be called a representation of $A(k)$. For a representation ϕ we call $(\phi \otimes 1)\Omega_k$ the canonical ϕ-element, and $(\phi \otimes q)\Omega_k$ the canonical ϕ-element associated with the Lie algebra g. In this section we consider ϕ’s for which the canonical ϕ-elements associated with simple Lie algebras play an important role in hypergeometric solutions of KZ-type differential equations. Theorem 3.3 together with Theorem 4.2 give convenient forms of these canonical elements. An example of application will be shown in Section 6.

Suppose we are given a vector space W, and a vector $\phi(T) \in W$ for every ordered $|k|$-tree T on the vertex set $T(k) \cup \{z\}$. This data induces a representation $\phi : A(k) \rightarrow W$ if the assignment $T \mapsto \phi(T)$ respects relations R1 and R2 (see Section 2.2).

Notation. For an edge e of a spanning tree on the vertex set $T(k) \cup \{z\}$, $h(e)$ and $t(e)$ denote the head and tail of the edge e, i.e. the vertices adjacent to e, farther resp. closer to z.
Theorem 5.1. Let the edges of an ordered $|k|$-tree be $e_1, \ldots, e_{|k|}$ (in order). The map

$$T \mapsto \phi(T) = \bigwedge_{i=1}^{|k|} d \log(h(e_i) - t(e_i))$$

defines a representation $\phi_{\text{rat}} : A(k) \to W(t_i^{(j)}, z)$.

Proof. We need to check the consistency of the definition with relations R1 and R2 from Section 2.1. Relation R1 follows from the antisymmetry of the \wedge-product. In view of R1 it is enough to check R2 for $a = 1, b = 2$. Let the three distinguished vertices be t, s, and u. Then we need to check

$$\left(\frac{d(t-u)}{t-u} \wedge \frac{d(s-t)}{s-t} + \frac{d(s-u)}{s-u} \wedge \frac{d(t-u)}{t-u} + \frac{d(t-s)}{t-s} \wedge \frac{d(s-u)}{s-u} \right) \wedge R = 0,$$

where R is the ‘rest’ of the formula (i.e. $R = \bigwedge_{i=3}^{|k|} d \log(h(e_i) - t(e_i)))$, but the first factor is 0.

This representation of the canonical element (as well as the theorems corresponding to our Theorems 3.3, 4.2) is explored in [RSV]. Observe that, according to [A], the rational representation is equivalent to the study of the canonical element of this paper.

5.2. Theta representation. For $z, \tau \in \mathbb{C}$, $\text{Im} \tau > 0$, the first Jacobi theta function is defined by the infinite product

$$\theta(z) = \theta(z, \tau) = i e^{\pi i (\tau/4 - z)}(x; q)(\frac{q}{x}; q)(q; q), \quad q = e^{2\pi i \tau}, x = e^{2\pi iz}, \quad (y; q) = \prod_{j=0}^{\infty} (1 - yq^j),$$

[WW]. It is an entire holomorphic function of z satisfying

$$\theta(z + 1, \tau) = -\theta(z, \tau), \quad \theta(z + \tau, \tau) = -e^{-\pi i \tau - 2\pi iz} \theta(z, \tau), \quad \theta(-z, \tau) = -\theta(z, \tau).$$

By $\theta'(z, \tau)$ we will mean the derivative in the z variable.

Definition 5.2.

$$\sigma_w(t) = \sigma_w(t, \tau) = \frac{\theta(w-t, \tau)}{\theta(w, \tau) \theta(t, \tau)} \cdot \theta'(0, \tau).$$

The listed properties of the theta function yield that the σ function—viewed as a function of t—has simple poles at the points of $\Lambda_\tau = \mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$, as well as the properties

$$\sigma_w(t + 1, \tau) = \sigma_w(t, \tau), \quad \sigma_w(t + \tau, \tau) = e^{2\pi i w} \sigma(t, \tau), \quad \text{Res}_{t=0} \sigma_w(t, \tau) = 1.$$

Theorem 5.3. We have

$$\sigma_{w_1 + w_2}(t - u)\sigma_{w_2}(s - t) - \sigma_{w_2}(s - u)\sigma_{w_1}(t - u) + \sigma_{w_1}(t - s)\sigma_{w_1 + w_2}(s - u) = 0.$$

Proof. Consider the left hand side of the equation as a function $f(t)$ of t. Then f is a function on $\mathbb{C} \setminus \{(u + \Lambda_\tau) \cup (s + \Lambda_\tau)\}$, satisfying $f(t + 1) = f(t)$, $f(t + \tau) = e^{2\pi i w} f(t)$. The above properties of σ also imply that

$$\text{Res}_{t=u} f(t) = 1 \cdot \sigma_{w_2}(s - u) - \sigma_{w_2}(s - u) \cdot 1 - 0 = 0$$

$$\text{Res}_{t=s} f(t) = \sigma_{w_1 + w_2}(s - u)(-1) + 0 + 1 \cdot \sigma_{w_1 + w_2}(s - u) = 0.$$
Therefore we have an entire function. According to \(f(t + 1) = f(t) \) this can be written in the form of \(\sum d_n e^{2\pi n it} \). Substituting \(f(t + \tau) = e^{2\pi i \omega} f(t) \) we obtain that \(d_n = 0 \) for all \(n \).

For \(k \in \mathbb{N}^+ \) we consider variables (weights) \(w_{j}^{(i)} \) \((i = 1, \ldots, i, j = 1, \ldots, k_i)\), and say that the weight of the coordinate \(t_j^{(i)} \in T(k) \) is \(w_j^{(i)} \). Let \(T \) be a rooted tree (with root \(z \)) and \(v \) a vertex of \(T \). We define the branch \(B(v) \) of \(v \) to be the collection of those vertices \(w \) for which the unique path connecting \(w \) with \(z \) contains \(v \). By definition \(v \in B(v) \). The load \(L(v) \) of a vertex \(v \) in a tree \(T \) is defined to be the sum of the weights of the vertices in \(B(v) \). Let \(W(t_j^{(i)}, z, w_j^{(i)}, \tau) \) be the vector space of differential forms in the variables \(T(k) \cup \{z\} \) depending on the parameters \(\{w_j^{(i)}\} \) and \(\tau \).

Theorem 5.4. Let the edges of an ordered \(|k|\)-tree be \(e_1, \ldots, e_{|k|} \) (in order). The map

\[
T \mapsto \phi(T) = \bigwedge_{i=1}^{|k|} \sigma_{L(h(e_i))}(h(e_i) - t(e_i)) \ d(h(e_i) - t(e_i))
\]

defines a representation \(\phi_\theta : \mathcal{A}(k) \rightarrow W(t_j^{(i)}, z, w_j^{(i)}, \tau) \).

Proof. We need to check the consistency of the definition with relations R1 and R2 from section [2.1]. Relation R1 follows from the antisymmetry of the \(\wedge \)-product.

In view of R1 it is enough to check R2 for \(a = 1, b = 2 \). In R2, let the three distinguished vertices be \(t \) (bottom), \(s \) (upper-right), \(u \) (upper-left). Because of symmetry, we can assume that among \(t, s, u \) it is \(u \) that is the closest to the vertex \(z \). Consider the first of the three graphs pictured in R2. Let \(L_1 \) be the total weight of the vertices in \(B(t) \setminus B(s) \), and let \(L_2 \) be the load of \(s \), as in the following picture.

\[
\begin{array}{c}
\text{z} \\
\downarrow 1 \\
\text{t} \\
\downarrow \\
\text{s} \\
\downarrow 2 \\
\text{u} \\
\text{L}_2
\end{array}
\]

With these notations we need to check

\[
(\sigma_{L_1+L_2}(t-u)d(t-u) \wedge \sigma_{L_2}(s-t)d(s-t) + \sigma_{L_2}(s-u)d(s-u) \wedge \sigma_{L_1}(t-u)d(t-u) +

\sigma_{L_1}(t-s)d(t-s) \wedge \sigma_{L_1+L_2}(s-u)d(s-u) \wedge R = 0,
\]

where \(R \) is the ‘rest’ of the formula, i.e. \(\wedge_{i=1}^{|k|} \sigma_{L(h(e_i))}(h(e_i) - t(e_i)) \ d(h(e_i) - t(e_i)) \). Considering the path connecting \(u \) with \(z \) one finds that \(R \) has a \(du \) factor, so our equation reduces to [11]. This proves the theorem.

Theorem 5.5. The representations \(\phi_{\text{rat}} \) and \(\phi_\theta \) are injective.

Proof. The representation \(\phi_{\text{rat}} \) is injective by [A]. The representation \(\phi_\theta \) is injective because \(\phi_{\text{rat}} \) is obtained from \(\phi_\theta \) by the following degeneration. As \(\tau \rightarrow i\infty \), the function \(\sigma_w(t, \tau) \) tends to \(\pi \sin(\pi(w - t))/\sin(\pi w) \sin(\pi t) \). This function tends to \(\pi/(e^{2\pi t} - 1) \) as \(w \) tends to \(+\infty\). For small \(t \), that function approximates \(2/t \).\]
5.3. The \(g \)-theta representation. Let \(g \) be a simple Lie algebra with Cartan decomposition \(g = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}_+ \) and simple roots \(\alpha_i \in \mathfrak{h}^* \). Consider the theta representation from Section \ref{sec:5.2} with the choices \(w_j^{(i)} = \alpha_i(\lambda) \), \(\lambda \in \mathfrak{h} \). Thus we obtain a representation \(\phi_{\mathfrak{g}, \theta} : \mathcal{A}(k) \to W(t_j^{(i)}, z, \lambda, \tau) \) to the space \(W(t_j^{(i)}, z, \lambda, \tau) \) of differential forms in the variables \(t_j^{(i)}, z \) depending on \(\lambda \in \mathfrak{h} \) and \(\tau \in \mathbb{C} \), \(\text{Im} \tau > 0 \). We call this the \(g \) theta-representation.

5.4. The canonical elliptic differential form. For the simple Lie algebra \(g \) we defined a map on both factors of \(\mathcal{A}(k) \otimes U[k] \), namely \(\phi_{\mathfrak{g}, \theta} : \mathcal{A}(k) \to W(t_j^{(i)}, z, \lambda, \tau) \) (Section \ref{sec:5.3}), and \(q : U[k] \to U(\mathfrak{u}_-)[k] \) (Definition \ref{def:5.1}). Let the canonical elliptic differential form \(\Theta_k^0 = \Theta_k^0(t_j^{(i)}, z, \lambda, \tau) \) be the image in \(W(t_j^{(i)}, z, \lambda, \tau) \otimes U(\mathfrak{u}_-)[k] \) of the canonical element \(\Omega_k \) under the map \(\phi_{\mathfrak{g}, \theta} \otimes q \).

Example 5.6. By Theorems \ref{thm:5.3} and \ref{thm:5.2} we have
\[
\Theta_{(2,1)}^{sl_3} = (\phi_{sl_3, \theta} \otimes q) \Omega_{(2,1)} =
\]
\[
= (\phi_{sl_3, \theta} \otimes 1) \left(\text{ASym} \left(\frac{1}{2} \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ s_1 \end{array} \right) \otimes f_1[f_2, f_1] + \frac{1}{2} \text{ASym} \left(\frac{1}{2} \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ s_1 \end{array} \right) \otimes f_1^2 f_2 \right)
\]
\[
= \left(\sigma_{\alpha_1(\lambda)}(t_1 - z)dt_1 \wedge \sigma_{\alpha_1(\lambda)+\alpha_2(\lambda)}(t_2 - z)dt_2 \wedge \sigma_{\alpha_1(\lambda)}(s_1 - t_2)ds_1 - \sigma_{\alpha_1(\lambda)}(t_2 - z)dt_2 \wedge \sigma_{\alpha_1(\lambda)+\alpha_2(\lambda)}(t_1 - z)dt_1 \wedge \sigma_{\alpha_2(\lambda)}(s_1 - t_1)ds_1 \right) \otimes f_1[f_2, f_1]
\[
+ \left(\sigma_{\alpha_1(\lambda)}(t_1 - z)dt_1 \wedge \sigma_{\alpha_1(\lambda)}(t_2 - z)dt_2 \wedge \sigma_{\alpha_2(\lambda)}(s_1 - z)ds_1 \right) \otimes f_1^2 f_2.
\]

6. Application: Eigenfunctions of Calogero-Moser Hamiltonian operator.

Let \(p \) and \(r \) be natural numbers, \(\tau \in \mathbb{C} \), \(\text{Im} \tau > 0 \). Consider the Hamilton operator of the Calogero-Moser quantum \(r + 1 \)-body system
\[
H = -\sum_{i=1}^{r+1} \frac{\partial^2}{\partial \lambda_i^2} - 2p(p+1) \sum_{1 \leq i < j \leq r+1} \rho'(\lambda_i - \lambda_j, \tau), \quad \rho(t, \tau) = \frac{\theta'(t, \tau)}{\theta(t, \tau)},
\]
acting on scalar functions of \(\lambda_1, \ldots, \lambda_{r+1} \), see \cite{f7}.

Theorem 6.1. Let \(\alpha_j(\lambda) = \lambda_j - \lambda_{j-1} \) and \(k = (rp, \ldots, 2p, p) \). Use the notation \(t_j^{(i)} = 0 \) for any \(j \). Let \(\xi \in \mathbb{C}^{r+1} \), and suppose that \(t_j^{(i)} \) obey the ‘Bethe ansatz’ equations of \cite{f7} Th.11. Then the function
\[
e^{2\pi i \sum_{j=1}^{r+1} \alpha_j(\lambda_j)} \text{Sym}_k \left(\prod_{l=1}^{p} \prod_{1 \leq i < j \leq r} \sigma(\alpha_i + \cdots + \alpha_j)(\lambda_j) (t_j^{(i)})(p+l - t_j^{(i-1)}(p+l)) \right)
\]
is an eigenfunction of \(H \).

Proof. Consider \(g = sl_{r+1}(\mathbb{C}) \) with its Cartan decomposition and simple roots as in Theorem \ref{thm:5.4} and the corresponding \(f_i \in \mathfrak{n} \). The \(p(r+1) \)th symmetric power of the standard representation of \(sl_{r+1}(\mathbb{C}) \) is the highest weight module \(V_\Lambda \) with highest weight \(\Lambda = \sum_i (r+1-i)p \alpha_i \).
The surjective map $U(n) \to V_A$, $x \mapsto x \cdot v_A$ induces the map
$$W(t_j^{(i)}, z, \lambda, \tau) \otimes U^\theta(n)[k] \to W(t_j^{(i)}, z, \lambda, \tau) \otimes V_A.$$ Let Θ_k^V be the image of Θ_k^θ under this map. Theorem 11 of [FV1] states that the function
$$\psi_\gamma(\lambda) = e^{2\pi i \sum \lambda_j \xi_j} \cdot \Theta_k^V(t, z, \lambda, \tau) / \prod_{i,j} dt_j^{(i)}$$
is an eigenfunction of the operator H, if $z = 0$, $\text{Im} \tau > 0$, and t satisfies the Bethe ansatz equations. We claim that
$$\Theta_k^V = \frac{1}{(p!)^r} \phi_\theta \left(\text{String}(z, t_1^{(1)}) \ast \text{String}(z, t_1^{(1)}, t_1^{(2)}) \ast \ldots \ast \text{String}(z, t_1^{(1)}, \ldots, t_1^{(r)}) \right) \otimes f_1^p [f_2, f_1] \ldots [f_{(r,r-1,\ldots,1)}]^p v_A.$$ To prove this, choose the ordering of positive roots β and the F_β's as in Theorem 4.2 and consider Θ_k^V in the induced PBW form:
$$\sum_p T_p \otimes F_{\beta_1}^{p_1} \ldots F_{\beta_m}^{p_m} v_A.$$ Observe that the $F_\beta v_A = 0$ unless $\beta = e_1 - e_j$. Hence in a non-zero term the powers of the factors F_{r+1}, F_{r+2}, \ldots have to be zero. Therefore there is only one non-zero term
$$\phi_\theta(T_{(p, \ldots, p)}) \otimes f_1^p [f_2, f_1] \ldots [f_{(r,r-1,\ldots,1)}]^p v_A.$$ According to Theorems 3.3 and 4.2 this term is equal to the right hand side of formula (14).

Tracing back the definitions of the star-product and ϕ_θ in (14), we obtain the theorem. \hfill \Box

For $sl_2(\mathbb{C})$ the Theorem is proved in [EK1]. A different Bethe ansatz formula is given in [FV1].

We used the elliptic version of the operator H. One can consider its trigonometric limit as in [FV2]. To obtain eigenfunctions in that case we need to replace the representation ϕ_θ with $\lim_{\tau \to i\infty}(\phi_\theta)$ in (14).

7. Appendix: Notes on the theta representation

7.1. The image of the theta representation. We give a description of the image of the representation $\phi_\theta : \mathcal{A}(k) \to W(t_j^{(i)}, z, w_j^{(i)}, \tau)$ for $z = 0$ and $k = (1, \ldots, 1) \in \mathbb{N}^r$ and fixed $\tau \in \mathbb{C}$ with $\text{Im} \tau > 0$. The general case can be derived from this special case.

Fix $k = (1, \ldots, 1) \in \mathbb{N}^r$, $z = 0$, and $\tau \in \mathbb{C}$ with $\text{Im} \tau > 0$. Let $\mathcal{A}(k)_{(z=0)}$ denote the space $\mathcal{A}(k)$ with the substitution $z = 0$. The space $\mathcal{A}(k)_{(z=0)}$ is spanned by ordered trees on the vertex set $\{t_1, \ldots, t_r, 0\}$ (we use the notation $t_i = t_i^{(1)}$). For such a tree T,

$$\phi_\theta(T) = \bigwedge_{i=1}^r \sigma_{L(h(e_i))}(h(e_i) - t(e_i)) \ d(h(e_i) - t(e_i))$$
is a meromorphic differential form in the variables t_1, \ldots, t_r and it depends meromorphically on the complex parameters w_1, \ldots, w_r. Consider the translates of the discriminantal arrangement
$C^r(0)$ by the points of the lattice $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ in each coordinates. Let M_r be the union of all these translates, i.e.

$$M_r = \left(\bigcup_{H \in C^r(0)} H \right) + \{(x_1, \ldots, x_r) : x_j \in \Lambda_{\tau}\}.$$

The differential form $\phi_{\theta}(T)$ has at most simple poles at points of M_r and it is holomorphic on $\mathbb{C}^r - M_r$.

Theorem 7.1. Let $k = (1, \ldots, 1) \in \mathbb{N}^r$ and fix $\tau \in \mathbb{C}$ with $\text{Im} \, \tau > 0$. A meromorphic differential r-form ψ in the variables t_1, \ldots, t_r, which depends meromorphically on the complex parameters w_j, is in the image of $\phi_{\theta} : A(k)_{(z=0)} \to W(t_j, 0, w_j, \tau)$ if and only if the following conditions hold.

1. $\psi(\ldots, t_j + 1, \ldots) = \psi(\ldots, t_j, \ldots)$ for all $j = 1, \ldots, r$.
2. $\psi(\ldots, t_j + \tau, \ldots) = e^{2\pi i w_j} \psi(\ldots, t_j, \ldots)$ for all $j = 1, \ldots, r$.
3. For any subset $\{u_1, \ldots, u_n\} \subset \{t_1, \ldots, t_r\}$, the differential form

$$\text{Res}_{u_1=0} \left(\text{Res}_{u_2=0} \left(\ldots \text{Res}_{u_n=0}(\psi) \ldots \right) \right)$$

has at most simple poles at the points of M_{r-n}, and it is holomorphic on $\mathbb{C}^{r-n} - M_{r-n}$.

Proof. First we show that Properties (1)–(3) hold for $\psi \in \text{Im}(\phi_{\theta})$. Property (1) follows from the first formula in (10). To prove Property (2) let T be an ordered spanning tree on the vertex set $\{t_1, \ldots, t_r, 0\}$, and let v_0, \ldots, v_n be the neighbors of t_j, among which v_0 is the closest to 0 in T.

Let L_i be the load of v_i. The only factors of $\phi_{\theta}(T)$ that contain t_j are

$$\sigma_{w_j + \sum L_i(t_j - v_0)d(t_j - v_0)} \cdot \prod_{l=1}^{n} \sigma_{L_i(v_l - t_j)d(v_l - t_j)}.$$

According to the second formula from (10), after substituting $t_j^{(i)} + \tau$ these factors get multiplied by

$$e^{2\pi i (w_j + \sum L_i)} \cdot \prod_{l=1}^{n} e^{2\pi i(-L_i)} = e^{2\pi i w_j},$$

what we needed to prove. To prove Property (3) observe that $\text{Res}_{t_j=0} \phi_{\theta}(T) = \phi_{\theta}(\text{Res}_{t_j=0}^{(j)} T)$. Here Res on the left hand side means residue of differential forms, and on the right hand side it is the one defined in Section 2.3. Therefore the multiple residue in Property (3) is the ϕ_{θ} image of a certain tree; therefore ψ satisfies Property (3).
We will prove the other direction by induction on \(r\). For \(k = 1\) let \(\psi(t)\) satisfy the properties of the Theorem. If its residue at \(t = 0\) is \(c\), then the differential form

\[
\psi - c \cdot \sigma_w(t) dt = \psi - \phi_\theta(c \cdot (0 - t))
\]

satisfies Properties (1), (2) and it is a holomorphic form; thus it has to be \(0\) (see the argument at the end of the proof of Theorem 5.3).

Now let \(\psi\) be a differential form in the variables \(t_1, \ldots, t_r\) satisfying the conditions of the theorem. By the induction hypotheses we have \(\text{Res}_{t_j=0} \psi = \phi_\theta(T_j)\). Consider

\[
\psi - \phi_\theta\left(\sum_j 0 - t_j \quad T_j\right).
\]

Here the root vertex \(0\) of \(T_j\) is glued to the vertex \(t_j\) (and the name \(t_j\) is kept for it); the numbers on the edges of \(T_j\) are increased by \(1\). This form has Properties (1), (2), and its residues at the hyperplanes \(t_j = 0\) are \(0\). Therefore this form is \(0\) (consider the new variable \(\sum t_j\), and the argument at the end of the Proof of Theorem 5.3). Therefore \(\psi\) is in the image of \(\phi_\theta\). □

7.2. Differential forms depending on \(\tau\)

We will define a modification of the representation \(\phi_\theta\) that takes into account the dependence on the modular parameter \(\tau\) more naturally. Let

\[
\omega_w(t) = \sigma_w(t, \tau) dt - \frac{1}{2\pi i} \partial_t \sigma_w(t, \tau) d\tau.
\]

This form is used to construct hypergeometric solutions for elliptic KZ differential equations in [FV1].

Theorem 7.2. The differential form \(\omega_w(t, \tau)\) is closed in \((t, \tau)\)-space.

Proof. We need to show that

\[
(\partial_\tau + \frac{1}{2\pi i} \partial_t \partial_w) \sigma_w(t, \tau) = 0.
\]

Differentiating the functional relation \(\sigma_w(t + \tau, \tau) = \exp(2\pi iw) \sigma_w(t, \tau)\) with respect to \(\tau\) and then with respect to \(t, w\), we see that the left-hand side \(L(t)\) of (15) obeys \(L(t + \tau) = \exp(2\pi iw) L(t)\) (the main point is that the inhomogeneous term cancels). Also trivially \(L(t + 1) = L(t)\). The residue at the pole of \(\sigma_w\) at \(t = 0\) is independent of \(w, \tau\) (it is \(1\)) so \(L(t)\) is an entire function of \(t\) and must thus vanish. □

Theorem 7.3. The form \(\omega\) satisfies the following functional relation

\[
\omega_{w_1+w_2}(t-u) \wedge \omega_{w_2}(s-t) + \omega_{w_2}(s-u) \wedge \omega_{w_1}(t-u) + \omega_{w_1}(t-s) \wedge \omega_{w_1+w_2}(s-u) = 0.
\]

Proof. The left hand side of the formula is \((f_1 dt \wedge ds + f_2 ds \wedge du + f_3 du \wedge dt) + (g_1 dt + g_2 ds + g_3 du) \wedge d\tau\). The first term vanishes by the formula in Theorem 5.3. The vanishing of the second term reduces to the vanishing of \(\partial_{w_1}\) and \(\partial_{w_2}\) of the formula in Theorem 5.3. □

Corollary 7.4. Let the edges of an ordered \(|k|\)-tree be \(e_1, \ldots, e_{|k|}\) (in order). The map

\[
T \mapsto \phi(T) = \bigwedge_{i=1}^{|k|} \omega_{L(h(e_i))}(h(e_i) - t(e_i)) \ d(h(e_i) - t(e_i))
\]
defines an injective representation of $A(k)$ to the space of closed differential forms in the variables $T(k) \cup \{z\} \cup \{\tau\}$, depending on the parameters $\{w^{(i)}_j\}$.

References

[A] V. I. Arnold. The cohomology ring of the colored braid group. Mat. Zametki 5 (1969), 227-231, Math. Notes 5 (1969) 138–140.

[EK1] Etingof, Pavel I., Kirillov, Alexander A., Jr. Representations of affine Lie algebras, parabolic differential equations, and Lamé functions. Duke Math. J. 74 (1994), no. 3, 585–614.

[EK2] Etingof, Pavel I., Kirillov, Alexander A., Jr. On the affine analogue of Jack’s and Macdonald’s polynomials, Duke Math. J. 78 (1995), no. 2, 229–256.

[FV1] G. Felder and A. Varchenko. Integral representation of solutions of the elliptic Knizhnik-Zamolodchikov-Bernard equations. Int. Math. Res. Notices (N. 5):221–233, 1995.

[FV2] G. Felder and A. Varchenko. Three formulae for eigenfunctions of integrable Schrödinger operators Compositio Math., 107: 143–175, 1997.

[GH] Gibbons, John, Hermsen, Theo. A generalisation of the Calogero-Moser system. Phys. D 11 (1984), no. 3, 337–348.

[RV] N. Reshetikhin and A. Varchenko. Quasiclassical asymptotics of solutions to the KZ equations. In Geometry, Topology and Physics for R. Bott, pages 293–322, 1995.

[RSV] R. Rimányi, L. Stevens, A. Varchenko. Combinatorics of rational functions and Poincare-Birkhoff-Witt expansions of the canonical $U(n_-)$-valued differential form. To appear in Ann. Combinatorics

[SV] V. Schechtman and A. Varchenko. Arrangements of hyperplanes and Lie algebra homology. Invent. Math., 106(1):139–194, 1991.

[WW] E. T. Whittaker, G. N. Watson. A Course of Modern Analysis. Reprint of the fourth (1927) edition. Cambridge University Press (September 1996).

Département Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland

E-mail address: felder@math.ethz.ch

Department of Mathematics, University of North Carolina at Chapel Hill, USA

E-mail address: rimanyi@email.unc.edu

Department of Mathematics, University of North Carolina at Chapel Hill, USA

E-mail address: anv@email.unc.edu