Supplementary Material to: Realization of Three-port Spring Networks with Inerter for Effective Mechanical Control

Michael Z. Q. Chen†,* , Kai Wang‡, Yun Zou‡, and Guanrong Chen§

Abstract—This is a supplementary material to “Realization of three-port spring networks with inerter for effective mechanical control” [1], which provides the detailed proofs of some results. For more background information, refer to [2]–[32] and references therein.

Keywords: Passive network synthesis, mechanical network, inerter, positive-real function, three-port resistive network.

I. INTRODUCTION

This report presents the proofs of some results as well as several other supplementary discussions of the note “Realization of three-port spring networks with inerter for effective mechanical control” [1]. One assumes that the numbering of lemmas, theorems, corollaries, and figures in this report agrees with that in the original note.

II. PROOF OF THEOREM 1

A. Preliminary Lemmas

Definition II.1: Considering a mechanical (electrical) network N_n without levers (transformers), a graph G named augmented graph is formulated by letting each port or each element correspond to an edge [36, pg. 9] and letting each node of the network correspond to a vertex [36, pg. 9]. The subgraph G_p that consists of all the edges corresponding to the ports is defined as port graph. The subgraph G_e that consists of all the edges corresponding to the elements is defined as network graph.

It is assumed that G is connected [36, pg. 15], which does not affect the results by the knowledge of circuit theory and which guarantees the existence of a tree [36, pg. 24]. The basic knowledge of graph theory can be referred to [36].

Lemma II.1: An n-port resistive network with a connected augmented graph G has a well-defined admittance if and only if its port graph G_p is made part of a tree of G.

Proof: Necessity. Suppose that the admittance of the n-port resistive network exists. By [33, pg. 192], the voltages of the n ports are independent. Therefore, there is no circuit [36, pg. 15] for port graph G_p; otherwise, it would contradict with Kirchhoff’s Voltage Law. It immediately follows from [36, pg. 27] that G_p must be part of a tree of the augmented graph G.

Sufficiency. $\hat{B} = [B, F]$ denotes the fundamental circuit matrix [36, pg. 91] of the augmented graph G, where the columns of B correspond to the elements, and the columns of F correspond to the ports. It is obvious that the dimension of B is $(n_e + n - n_v + 1) \times n_e$ and the dimension of F is $(n_e + n - n_v + 1) \times n$, where n_e and n_v denote respectively the number of edges and vertices of G. R denotes an $n_e \times n_e$ diagonal matrix, whose diagonal entries are impedances of the elements corresponding to the columns of B. Since the port graph G_p is part of a tree \mathcal{T} of the augmented graph G, all the chords [36, pg. 26] of \mathcal{T} must be the edges of the network graph G_e. Then, it follows from [36, pg. 93] that B must contain a non-singular submatrix of order $(n_e + n - n_v + 1)$, implying that the rank of B is $(n_e + n - n_v + 1)$. Therefore, BRB^T is non-singular. Consequently, based on the discussion in [33], the admittance must be well-defined (exist) and must be equal to $F^T(\hat{B}RB^T)^{-1}F$.

Definition II.2: A tree with all branches incident to a common vertex is named an L-tree (Lagrangian-tree); a tree whose branches constitute a path is named a P-tree (Path-tree).

Lemma II.2: A real symmetric $n \times n$ matrix $A = [a_{ij}]_{n \times n}$ is realizable as the admittance of an n-port resistive network, whose augmented graph contains $n + 1$ vertices and whose port graph is an L-tree, if and only if the following conditions hold simultaneously: 1) The sign pattern of A must be such that after a finite number of cross-sign changes [34, pg. 33] all the off-diagonal entries of A are non-positive; 2) $2a_{ii} \geq \sum_{k=1}^{n} |a_{ik}|$ for all $i \in 1, 2, \ldots, n$.

From the discussion in [34, pp. 34–35], the following lemma can be easily obtained:

Lemma II.3: If $A = [a_{ij}]_{n \times n}$ satisfies the conditions of Lemma II.2 then the values of conductances between each pair of vertices (totally $n(n+1)/2$ pairs) are $|a_{ij}|$ for $i, j \in 1, 2, \ldots, n$ with $i < j$, and $(2a_{ii} - \sum_{k=1}^{n} |a_{ik}|)$ for all $i \in 1, 2, \ldots, n$, which must be uniquely determined.

Lemma II.4: A real symmetric $n \times n$ matrix $A = [a_{ij}]_{n \times n}$ is realizable as the admittance of an n-port resistive network, whose augmented graph contains $n + 1$

1Lemma III.3 is also given in Page 303 of “E. A. Guillemin,” “On the analysis and synthesis of single-element-kind networks,” IRE Trans. Circuit Theory, vol. 7, no. 3, pp. 303–312, 1960.”
vertices and whose port graph is an P-tree, if and only if after a finite number of cross-sign changes and a proper rearrangement of rows and corresponding columns the entries satisfy
\[a_{i,j} - a_{i,j} \geq a_{i-1,j-1} - a_{i-1,j}, \] for \(i, j \in 1, 2, \ldots, n + 1 \) with \(i < j \).

Lemma II.5: If \(A = [a_{ij}]_{n \times n} \) satisfies \(a_{i,j} - a_{i,j} \geq a_{i-1,j-1} - a_{i-1,j} \), where \(a_{ii} = a_{j,n+1} = 0 \), for \(i, j \in 1, 2, \ldots, n + 1 \) with \(i < j \).

Proof: Sufficiency. There must exist a finite number of cross-sign changes and a proper rearrangement of rows and corresponding columns such that
\[y_{11} - y_{12} \leq 0, y_{12} - y_{13} \leq 0, y_{13} \leq 0, \]
\[(y_{22} - y_{23}) - (y_{12} - y_{13}) \geq 0, y_{23} - y_{13} \leq 0, y_{33} - y_{23} \geq 0 \]
with at least three of the six inequality signs being equality. Therefore, the condition of Lemma II.4 must hold for \(n = 3 \) together with Lemma II.5 if \(Y_N \) is realizable by the three-port resistive network with at most three elements, whose augmented graph \(G \) contains four vertices and whose port graph \(G_p \) is a P-tree of \(G \), then \(Y_N \) satisfies the conditions of Lemma II.4.

Lemma II.7: A third-order real symmetric matrix \(Y_N \) in the form of \((I.1) \) can be realized as the admittance of a three-port resistive network with at most three elements, whose augmented graph \(G \) contains four vertices and whose port graph \(G_p \) is an L-tree of \(G \). If and only if the following conditions hold simultaneously:
1) \(y_{12}y_{13}y_{23} \leq 0 \),
2) \(y_{11} - y_{12} - y_{13} \geq 0, y_{22} - y_{12} - y_{23} \geq 0, y_{33} - y_{13} - y_{23} \geq 0 \), and \(y_{33} - y_{13} - y_{23} \geq 0 \);
3) at least three of \(y_{12}, y_{13}, y_{23}, y_{11} - y_{12}, y_{12} - y_{13}, y_{22} - y_{12}, y_{12} - y_{13}, y_{23} \) are zero.

Proof: Necessity. It is obvious that if a third-order real symmetric matrix \(Y_N \) is realizable by the three-port resistive network with at most three elements, whose augmented graph \(G \) contains four vertices and whose port graph \(G_p \) is an L-tree of \(G \), then \(Y_N \) satisfies the conditions of Lemma II.2 for \(n = 3 \), and at least three of conductances between each of vertices are zero. From the latter constraint, Condition 3 of this lemma is directly obtained based on Lemma II.3. Moreover, it is easy to check that a finite number of cross-sign changes does not change the fact that \(a_{12}a_{13}a_{23} \leq 0 \) when \(n = 3 \). Therefore, Conditions 1 and 2 of this lemma are obtained.

Lemma II.8: If a third-order real paramount matrix \(Y_N \) in the form of \((II.1) \) is a diagonal matrix, then the conditions of Lemma II.6 must hold.

Proof: If \(Y_N \) is a diagonal matrix, then \(||Y_N|| = 0 \). Similarly, the case of \(y_{11} = 0 \) or \(y_{22} = 0 \) can be proved.

Lemma II.9: For a third-order real paramount matrix \(Y_N \) in the form of \((I.1) \), if any one of the diagonal entries \(y_{11}, y_{22}, \) and \(y_{33} \) is zero, then the conditions of Lemma II.6 must hold.

Proof: Assuming that \(y_{33} = 0 \), the paramounty of \(Y_N \) implies that \(y_{13} = y_{23} = 0 \) and \(y_{11} \geq |y_{12}| \geq 0 \). Hence, one obtains that \(y_{12}y_{13}y_{23} = 0 = y_{13} = y_{23} \).
\[0 \leq y_{12} - y_{13} \leq 0, y_{22} - y_{13} \leq 0, y_{23} - y_{13} \leq 0, y_{33} - y_{13} \leq 0, \]
and \(y_{33} - y_{13} \leq 0 \). Thus, the conditions of Lemma II.6 hold. Similarly, the case of \(y_{11} = 0 \) or \(y_{22} = 0 \) can be proved.

Lemma II.10: For a third-order real paramount matrix \(Y_N \) in the form of \((I.1) \), if there exist two equal rows or two rows for which one row is the negative of the other, then the conditions of Lemma II.7 must hold.

Proof: First, consider the case with two equal rows. If they are assumed to be the first and second rows, together with the symmetry, \(Y_N \) can be written as
\[Y_N = \begin{bmatrix} y_{11} & y_{11} & y_{13} \\ y_{11} & y_{11} & y_{13} \\ y_{13} & y_{13} & y_{33} \end{bmatrix}. \]
Since \(Y_N \) is paramount, it follows that \(y_{12}y_{13}y_{23} = y_{11}y_{23} \geq 0 \). \(-y_{13} \leq 0, |y_{11} - |y_{12}| \leq 0, |y_{12} - |y_{13}| \leq 0, |y_{13} - |y_{23}| \leq 0, \]
\(-y_{33} - |y_{23}| \leq 0, |y_{23} - |y_{13}| \leq 0, \)
and \(y_{23} + y_{13} - (|y_{12} + |y_{23}|) = y_{11} + |y_{13} - (y_{11} + |y_{13}|) = 0. \)
Hence, the conditions of Lemma II.7 must hold.
be the first and second rows, together with the symmetry, Y_N can be written as

$$Y_N = \begin{bmatrix} y_{11} & -y_{11} & y_{13} \\ -y_{11} & y_{11} & -y_{13} \\ y_{13} & -y_{13} & y_{33} \end{bmatrix}.$$

Since Y_N is paramount, it follows that $y_{12}y_{13}y_{23} = y_{11}y_{13}^2 \geq 0$, $-|y_{13}| \leq 0$, $y_{11} - |y_{12}| = 0$, $y_{12} - |y_{13}| = y_{11} - |y_{13}| \geq 0$, $y_{33} - |y_{23}| = y_{33} - |y_{13}| \geq 0$, $|y_{23}| - |y_{13}| = 0$, and $y_{22} + |y_{13}| - (|y_{12}| + |y_{23}|) = y_{11} + |y_{13}| - (y_{11} + |y_{13}|) = 0$. Hence, the conditions of Lemma II.7 must hold. When it comes to other two rows, arranging them properly such that they become the first two rows can prove this.

B. Main Proof

Theorem 1: A third-order real symmetric matrix Y_N in the form of (11.1) can be realized as the admittance of a three-port resistive network with at most three elements if and only if it satisfies the conditions of Lemma II.6 or Lemma II.7 that is, if and only if one of the following two conditions holds:

1. $y_{12}y_{13}y_{23} \leq 0$, $y_{11} - |y_{12}| - |y_{13}| \geq 0$, $y_{22} - |y_{12}| - |y_{23}| \geq 0$, $y_{33} - |y_{13}| - |y_{23}| \geq 0$, and at least three of y_{12}, y_{13}, y_{23}, $y_{11} - |y_{12}| - |y_{13}|$, $y_{22} - |y_{12}| - |y_{23}|$, and $y_{33} - |y_{13}| - |y_{23}|$ are zero.

2. $y_{12}y_{13}y_{23} \geq 0$ and at least one of the following three conditions holds with at least three of the six inequality signs being equality: a) $-|y_{13}| \leq 0$, $|y_{13}| \leq |y_{12}| \leq y_{11}$, $|y_{13}| \leq |y_{23}| \leq y_{33}$, and $|y_{12}| + |y_{23}| - |y_{13}| \leq y_{22}$; b) $-|y_{12}| \leq 0$, $y_{12} \leq |y_{13}| \leq y_{11}$, $|y_{13}| \leq |y_{23}| \leq y_{22}$, and $y_{13} + |y_{23}| - |y_{12}| \leq y_{33}$; c) $-|y_{12}| \leq 0$, $y_{12} \leq |y_{13}| \leq y_{11}$, $|y_{13}| \leq |y_{23}| \leq y_{22}$, and $|y_{12}| + |y_{23}| - |y_{13}| \leq y_{33}$.

Proof: Sufficiency. Lemmas II.6 and II.7 together imply the sufficiency.

Necessity. Since the augmented graph G contains at most six edges and the port graph G_p must be made part of a tree, the number of vertices ranges from four to seven. If G contains four vertices, then G_p is either an L-tree or a P-tree, which implies the conditions of Lemma II.6 or Lemma II.7. If G contains seven vertices, then all the edges of G constitute a tree. Hence, currents of the ports must be zero, which implies that the conditions of Lemma II.6 hold due to Lemma II.9. Hence, it remains to consider networks whose augmented graphs contain five or six vertices, and to show none of their admittances can simultaneously contradict the conditions of Lemmas II.6 and II.7.

Suppose that G contains five vertices. Then, any tree of G must contain four edges (totally three possibilities as in Fig. II.1), and the number of chords is at most two. Suppose that T is a tree of G containing G_p. If neither the conditions of Lemma II.6 nor those of Lemma II.7 hold, then G, G_p, and T must satisfy the following four properties:

1. If G is separable [36], pg. 35, then each component [36] pg. 38 contains at least one edge belonging to G_p;

2. G is either nonseparable or only contains two cyclically connected [36] pg. 37) components;

3. all end vertices (such as a, d, e of Fig. II.1(b)) of T must be incident with at least one chord;

4. G has at most one pair of series edges both belonging to T and G_p.

The reason is as follows. If Property 1 does not hold, then it is obvious that the network can be equivalent to another one containing fewer nodes and elements because of zero currents, whose admittance must satisfy the conditions of Lemma II.6 or Lemma II.7. Property 1 further implies that the number of components cannot be more than three. If there are three components, then the admittance of the network must be diagonal, which must satisfy the conditions of Lemma II.6 by Lemma II.8. If Property 1 does not hold and there exists a component that is not cyclically connected, then G contains at least one end branch belonging to G_p, which implies the conditions of Lemma II.6 due to Lemma II.9. This proves Property 2. Similarly, Property 3 can be verified. By Lemma II.10 the admittance of the required networks with two ports in series must satisfy the conditions of Lemma II.7 which implies Property 4.

![Fig. II.1.](image-url) The trees T containing port graph G_p, when the number of vertices is five.

Then, the above four properties are utilized to eliminate cases when the conditions of Lemma II.6 or Lemma II.7 hold, which simplifies the discussion. By Properties 3–4, one can verify that the number of chords should not be less than two. It is not difficult to find the augmented graphs G that satisfy Properties 1–4. It is known that if the corresponding networks can be equivalent to the one with four nodes and at most three elements, then the conditions of Lemma II.6 or Lemma II.7 must hold. As a consequence, by making use of the equivalence of two series (or parallel) elements or the generalized star-mesh transformation, one can show that none of the networks corresponding to these graphs can simultaneously contradict the conditions of Lemma II.6 and Lemma II.7.

Suppose that G contains six vertices. Then, any tree of G must contain five edges, and the number of chords is at most one. For such a network that cannot be equivalent to the one whose augmented graph contains fewer vertices, G, G_p, and T must also satisfy Properties 1–4 as discussed above. Then, Property 3 implies that the only possible port graph must be the P-tree since there is at most one chord. Together with Property 4, one implies that no such a network exists.

The necessity is thus proved.
III. PROOF OF THEOREM 5

A. Previous Lemmas

Lemma III.1: A matrix G as defined in

$$G := \begin{bmatrix} G_1 & G_4 & G_5 \\ G_4 & G_2 & G_6 \\ G_5 & G_6 & G_3 \end{bmatrix}$$ \hspace{1cm} (III.1)

is non-negative definite if and only if $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \geq 0$ as defined in

$$\alpha_0 = \det(G), \beta_0 = G_2 - G_4^2, \alpha_1 = G_1G_3 - G_4^2, \beta_1 = G_2G_3 - G_6^2.$$

Hence, this lemma is proved.

Lemma III.2: Consider any function $Y(s)$ in the form of

$$Y(s) = \frac{\alpha_0 s^3 + \alpha_1 s^2 + \alpha_2 s + \alpha_3}{s^4 + \beta_0 s^3 + \beta_1 s^2 + \beta_2 s + \beta_3}.$$

where $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_0, \beta_1, \beta_2, \beta_3 \geq 0$, $Y(s)$ can also be expressed as

$$Y(s) = \frac{G_1s^3 + (G_1G_2 - G_4^2)s^2 + (G_1G_3 - G_4^2)s + \det(G)}{s(s^3 + G_2s^2 + G_3s + (G_2G_3 - G_6^2))}.$$ \hspace{1cm} (III.4)

with non-negative definite G defined in (III.1) and the entries of G satisfying (III.2) if and only if $W_1, W_2, W_3 \geq 0$ and $W^2 = 4W_1W_2W_3$.

Proof: Sufficiency. It suffices to show that one can always find a non-negative G as defined in (III.1) such that admittance (III.4) concerned with the entries of G equals the given admittance with non-negative coefficients. Let $G_1 = \alpha_3, G_2 = \beta_3, G_3 = \beta_2$. Furthermore, $W_1, W_2, W_3 \geq 0$ guarantees that one can always find $G_2^2, G_3^2,$ and G_6^2 such that

$$G_2^2 = W_1 = \alpha_3 \beta_3 - \alpha_2 \Rightarrow \alpha_2 = G_1G_2 - G_4^2, \quad G_3^2 = W_2 = \alpha_3 \beta_2 - \alpha_1 \Rightarrow \alpha_1 = G_1G_3 - G_4^2, \quad G_6^2 = W_3 = \beta_2 \beta_3 - \beta_1 \Rightarrow \beta_1 = G_2G_3 - G_6^2.$$

It is seen that the signs of $G_4, G_5,$ and G_6 have not yet been fixed, and $G_4G_5G_6 = \pm \sqrt{W_1W_2W_3}$. Since $W^2 = 4W_1W_2W_3$ holds, one has $W = \pm 2\sqrt{W_1W_2W_3}$. If $W = 2\sqrt{W_1W_2W_3}$, then choose the signs of $G_1, G_5,$ and G_6 to make $G_4G_5G_6 = \sqrt{W_1W_2W_3}$; otherwise let $G_4G_5G_6 = -\sqrt{W_1W_2W_3}$. Hence, one obtains $2G_4G_5G_6 = W$, which implies

$$\alpha_0 = \frac{2G_4G_5G_6 - 6\alpha_3 \beta_2 \beta_3 + 3\alpha_3 \beta_1 + 2\alpha_2 \beta_2 + \alpha_1 \beta_3}{2G_4G_5G_6 + \alpha_3 \beta_2 \beta_3 - 3\alpha_1 \beta_2 \beta_3 - \beta_1} = \frac{2G_4G_5G_6 - 3\alpha_3 \beta_2 \beta_3 - \alpha_1 \beta_2 \beta_3 - \alpha_1 \beta_3}{2G_4G_5G_6 + \alpha_3 \beta_2 \beta_3 - \alpha_1 \beta_2 \beta_3 - \alpha_1 \beta_3} = \det(G) \text{ holds.} \quad (1) W < 0 \text{ and } \alpha_0 = 0; \quad (2) \ W > 0 \text{ and } \alpha_0 + \alpha_3 \beta_1 +
αβ2−α1β3 = 0; 3) W > 0 and α0 + α3β1 + α1β3 − α2β2 = 0; 4) W > 0 and α0 + α1β3 + α2β2 − α3β1 = 0.

Proof: Since (III.2) holds, it can be calculated that

\[G_1G_2G_3 + G_4G_5G_6 = W \]

\[G_1G_2G_3 + G_4G_5G_6 - G_1G_6^2 - G_3G_4^2 = \alpha_0 + \alpha_3\beta_1 + \alpha_1\beta_3 - \alpha_2\beta_2, \]

\[G_1G_2G_3 + G_4G_5G_6 - G_1G_6^2 - G_2G_5^2 = \alpha_0 + \alpha_3\beta_1 + \alpha_1\beta_3 - \alpha_2\beta_2, \]

\[G_1G_2G_3 + G_4G_5G_6 - G_2G_5^2 - G_3G_4^2 = \alpha_0 + \alpha_1\beta_3 + \alpha_2\beta_2 - \alpha_3\beta_1. \]

Now, the lemma can be proved.

B. Main Proof

Theorem 5: A positive-real function Y(s) can be realized as the driving-point admittance of a one-port network, consisting of one damper, one inerter, and at most three springs, and satisfying Assumption 1, if and only if Y(s) can be written in the form of (III.4), with the coefficients satisfying (III.2). Due to Lemma III.2, one has α0, α1, α2, α3, β1, β2, β3 ≥ 0. After calculations based on (III.2), it is obtained that W1, W2, W3 ≥ 0 and W^2 = 4W1W2W3. Since G as defined in (III.1) satisfies the conditions of Lemma 2 or Lemma 3, it then follows that α0, α1, α2, α3, β1, β2, β3 must satisfy the conditions of Lemma III.3 or Lemma III.4 (Condition 1 or Condition 2 of this theorem). Hence, the necessity part is proved.

Sufficiency. From Lemma III.2, Y(s) can also be expressed as (III.4), with non-negative definite G defined in (III.1). Furthermore, coefficients α0, α1, α2, α3, β1, β2, β3 satisfy (III.2). If the conditions of Lemma III.3 (Condition 1 of this theorem) hold, then there must exist at least one of the first-order minors or second-order minors of G being zero due to that Lemma, which is the conditions of Lemma 2. If the conditions of Lemma III.4 hold and the conditions of Lemma III.3 do not hold (Condition 2 of this theorem), then G must satisfy the conditions of Lemma 3. Finally, based on Theorem 2, Y(s) is realizable by the network with one damper, one inerter, and an arbitrary number of springs. For the case when Lemma 2 holds, based on Theorem 3, Y(s) is realizable by series-parallel networks containing at most three springs, one damper, and one inerter, through the Foster Preamble. For the case when Lemma 3 holds, Y(s) is realizable by one of four networks shown in Fig. III.1. The expressions of values of elements can be converted from those in Theorem 4 through relations (III.2). Since it is calculated that G_2^2 = W_1, G_5^2 = W_2, G_6^2 = W_3, 2G_4G_5G_6 = W, G_1 - G_4G_5/G_6 = α_3 - W/(2W_3), G_2 - G_4G_6/G_5 = β_3 - W/(2W_3), and G_3 - G_5G_6/G_4 = β_2 - W/(2W_1), the values can be easily obtained as follows.

![Fig. III.1. The configurations covering all cases that satisfy the conditions of Lemma 3 (Condition 2 of Theorem 5).](image)

a) If W < 0 and α_0 = 0, then Y(s) can be realized in the form of Fig. III.1(a), with

\[k_1 = \frac{\alpha_2}{\beta_3 - \frac{W}{2W_2}}, \quad (III.5) \]

\[k_2 = \frac{W_3(\alpha_3 - \frac{W}{2W_2})\alpha_2}{W_2(\beta_3 - \frac{W}{2W_2})^2}, \quad (III.6) \]

\[k_3 = \frac{W(\frac{W}{2W_2} - \alpha_3)}{2W_2(\beta_3 - \frac{W}{2W_2})}, \quad (III.7) \]

\[b = \frac{\alpha_2^2}{W_2(\beta_3 - \frac{W}{2W_2})^2}, \quad (III.8) \]

\[c = \frac{W_3(\alpha_3 - \frac{W}{2W_2})^2}{W_2(\beta_3 - \frac{W}{2W_2})^2}. \quad (III.9) \]

b) If W > 0 and α_0 + α_3β_1 + α_2β_2 - α_1β_3 = 0, then Y(s) can be realized in the form of Fig. III.1(b), with

\[k_1 = \frac{\alpha_3W_3(\alpha_3 - \frac{W}{2W_2})}{\beta_2W_1}, \quad (III.10) \]

\[k_2 = \frac{\alpha_3W}{\beta_2W_1}, \quad (III.11) \]

\[k_3 = \frac{\alpha_3(\beta_2 - \frac{W}{2W_2})}{\beta_2}, \quad (III.12) \]

\[b = \frac{\alpha_3^2W_3}{\beta_2^2W_1}, \quad (III.13) \]

\[c = \frac{\alpha_3^2}{W_1}. \quad (III.14) \]

c) If W > 0 and α_0 + α_3β_1 + α_1β_3 - α_2β_2 = 0, then Y(s)
can be realized in the form of Fig. III.1(c), with
\[k_1 = \frac{\alpha_3 W_3(\alpha_3 - \frac{W}{2b_3})}{\beta_3 W_2}, \]
(III.15)
\[k_2 = \frac{\alpha_3 W}{2\beta_3 W_2}, \]
(III.16)
\[k_3 = \frac{\alpha_3(\beta_3 - \frac{W}{2b_3})}{b_3}, \]
(III.17)
\[b = \frac{\alpha_3^2}{W_2}, \]
(III.18)
\[c = \frac{\alpha_3^2 W_3}{\beta_3^2 W_2}. \]
(III.19)

d) If \(W > 0 \) and \(\alpha_0 + \alpha_1 \beta_1 + \alpha_2 \beta_2 - \alpha_3 \beta_3 = 0 \), then \(Y(s) \) can be realized in the form of Fig. III.1(d), with
\[k_1 = \frac{W_1(\beta_2 - \frac{W}{2b_3})}{b_2 \beta_3}, \]
(III.20)
\[k_2 = \frac{W}{2b_2 \beta_3}, \]
(III.21)
\[k_3 = \frac{W_2(\beta_3 - \frac{W}{2b_2})}{\beta_2 \beta_3}, \]
(III.22)
\[b = \frac{W_2}{\beta_2}, \]
(III.23)
\[c = \frac{W_1}{\beta_3}. \]
(III.24)

IV. PROOF OF THEOREM 6

A. A Previous Lemma

Lemma IV.1: If the admittance of a two-port network consisting of only springs is well-defined, then it must be realizable as shown in Fig. IV.1 with \(k_1, k_2, k_3 \geq 0 \) or the one by switching the polarity of any one of the two ports.

Proof: For a two-port network consisting of only springs, its admittance \(Y_L \) must be in the form of
\[Y_L = \frac{1}{s} \left[\frac{K_{11}}{K_{12}} \frac{K_{12}}{K_{22}} \right] = \frac{1}{s} K. \]
(IV.1)

According to the analogy to one-element-kind networks, \(K \) as defined in (IV.1) is necessarily paramount [37], that is, \(K_{11} \geq |K_{12}| \) and \(K_{22} \geq |K_{12}| \).

If \(K_{12} \geq 0 \), then \(Y_L \) as in (IV.1) must be realizable as shown in Fig. IV.1 where \(k_1 = K_{11} - K_{12} \geq 0, k_2 = K_{12} \geq 0, \) and \(k_3 = K_{22} - K_{12} \geq 0 \).

If \(K_{12} < 0 \), then \(Y_L \) as in (IV.1) must be realizable as shown in Fig. IV.1 by switching the polarity of any one of the two ports, where \(k_1 = K_{11} - |K_{12}| \geq 0, k_2 = |K_{12}| > 0, \) and \(k_3 = K_{22} - |K_{12}| \geq 0 \).

B. Main Proof

Theorem 6: A positive-real function \(Y(s) \) can be realized as the driving-point admittance of a one-port network, consisting of one damper, one inerter, and at most three springs, and not satisfying Assumption 1, if and only if \(Y(s) \) can be written in the form of
\[Y(s) = \frac{\alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0}{\beta_3 s^3 + \beta_2 s^2 + \beta_1 s}, \]
(IV.2)

where \(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \geq 0 \), and one of the following five conditions holds: 1) \(\alpha_3 = \beta_2 = \beta_3 = 0, \alpha_1, \alpha_2, \beta_1 > 0 \); 2) \(\alpha_3 = 0, \beta_2, \beta_3 > 0, \alpha_1 \beta_1 - \alpha_0 \beta_2 \geq 0, \alpha_1^2 + \alpha_0 \beta_2^2 \geq \alpha_1 \beta_1 \beta_2, \alpha_0 \beta_2 + \beta_2 \beta_3^2 \geq \alpha_1 \beta_1 \beta_3, \alpha_1 \beta_2^2 + \beta_2 \beta_3^2 \geq \alpha_1 \beta_1 \beta_3; \) 3) \(\beta_2 = 0, \alpha_3, \beta_3 > 0, \alpha_2 \beta_1 - \alpha_0 \beta_3 \geq 0, \alpha_2^2 + \alpha_0 \beta_3^2 \geq \alpha_2 \beta_1 \beta_3, \alpha_0 \beta_3 + \beta_3 \beta_3^2 \geq \alpha_2 \beta_1 \beta_3; \) 4) \(\beta_3 = 0, \alpha_3, \beta_2 > 0, \alpha_1 \beta_2 - \alpha_0 \beta_2 \geq 0, \alpha_1^2 + \alpha_0 \beta_2^2 \geq \alpha_1 \beta_1 \beta_2, \alpha_0 \beta_2 + \beta_2 \beta_3^2 \geq \alpha_1 \beta_1 \beta_3, \alpha_1 \beta_2 \beta_2 + \alpha_2 \beta_3 \beta_3 + \alpha_2 \beta_2 \beta_3 \geq 4 \alpha_0 \alpha_3^3 = 2(\alpha_1 \beta_2 \beta_3 + \alpha_2 \beta_2 \beta_3 + \alpha_1 \beta_3 \beta_3 + \alpha_3 \beta_3 \beta_3).

Furthermore, networks in Fig. IV.2 with \(b, c > 0 \) and \(k_1, k_2, k_3 \geq 0 \) can realize each of the five conditions above, respectively.

Fig. IV.1. The two-port configuration consisting only of springs.

Fig. IV.2. The networks used to cover the condition of Theorem 6, (a) for Condition 1; (b) for Condition 2; (c) for Condition 3; (d) for Condition 4; (e) for Condition 5.

Proof: Based on Lemma III.1 and [36, pg. 27], for the augmented graph \(G \), the edges corresponding to the inerter, the damper, and the port must form at least one circuit when the admittance of \(X \) is not well-defined. Denote \(e_i \) as the edge corresponding to the inerter, \(e_d \) to the damper, and \(e_p \) to the port. Then, all the possible cases are as follows. If each pair of the three edges constitute a circuit, then the possible network must be equivalent to Fig. IV.2(a), where \(b, c > 0 \).
and $k_1 \geq 0$, because any other nodes can be eliminated by the generalized star-mesh transformation \[38\]. If there is only one circuit constituted by two edges of e_i, e_a, and e_j, then the other part of the network can be regarded as a two-port network which consists of only springs and obtains a well-defined admittance. Therefore, based on Lemma IV.1, one obtains the networks shown in Fig. IV.2(a), IV.2(b), and IV.2(d), where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$. If the three edges together form one circuit, then an equivalent configuration is shown in Fig. IV.2(c), where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$, by using the generalized star-mesh transformation \[38\]. Now, it remains to derive the realizability conditions for the networks in Fig. IV.2 each of which corresponds to one of the five conditions of this theorem.

The realizability condition of Fig. IV.2(a): It is calculated that the admittance of the network shown in Fig. IV.2(a) is expressed as

$$Y(s) = \frac{bs^2 + cs + k_1}{s}, \quad \text{(IV.3)}$$

where b, $c > 0$ and $k_1 \geq 0$. If $Y(s)$ is realizable as in Fig. IV.2(a), then it can also be expressed as \(\text{IV.2}\), with $\alpha_3 = 0$, $\alpha_2 = b$, $\alpha_1 = c$, $\alpha_0 = k_1$, $\beta_3 = 0$, $\beta_2 = 0$, and $\beta_1 = 1$. It is obvious that they are all non-negative and satisfy Condition 1. Conversely, if α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$ and they satisfy Condition 1, then letting $b = \alpha_2/\beta_1$, $c = \alpha_1/\beta_1$, and $k_1 = \alpha_0/\beta_1$ yields that b, $c > 0$, $k_1 \geq 0$, and \(\text{IV.3}\) equals \(\text{IV.2}\).

The realizability condition of Fig. IV.2(b): It is calculated that the admittance of the network shown in Fig. IV.2(b) is expressed as

$$Y(s) = \frac{b(k_1 + k_2)s^2 + c(k_1 + k_2)s + (k_1 k_2 + k_2 k_3 + k_3 k_1)}{s(bs^2 + cs + (k_2 + k_3))}, \quad \text{(IV.4)}$$

where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$. If $Y(s)$ is realizable as in Fig. IV.2(b), then it can also be expressed as \(\text{IV.2}\), with $\alpha_3 = 0$, $\alpha_2 = b(k_1 + k_2)$, $\alpha_1 = c(k_1 + k_2)$, $\alpha_0 = k_1 k_2 + k_2 k_3 + k_3 k_1$, $\beta_3 = b$, $\beta_2 = c$, and $\beta_1 = k_2 + k_3$. It is obvious that they are all non-negative and satisfy Condition 2. Conversely, if α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$ and they satisfy Condition 2, then letting $b = \beta_3$, $c = \beta_2$, $k_1 = \alpha_1/\beta_2 - k_2$, $k_3 = \beta_1 - k_2$, and $k_2 = \sqrt{(\alpha_1 \beta_2 - \alpha_0 \beta_2)/\beta_2}$ yields that b, $c > 0$, k_1, k_2, $k_3 \geq 0$, and \(\text{IV.3}\) equals \(\text{IV.2}\).

The realizability condition of Fig. IV.2(c): It is calculated that the admittance of the network shown in Fig. IV.2(c) is expressed as

$$Y(s) = \frac{bcs^3 + b(k_1 + k_2)s^2 + c(k_1 + k_2)s + (k_1 k_2 + k_2 k_3 + k_3 k_1)}{s(bs^2 + cs + (k_2 + k_3))}, \quad \text{(IV.5)}$$

where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$. If $Y(s)$ is realizable as in Fig. IV.2(c), then it can also be expressed as \(\text{IV.2}\), with $\alpha_3 = bc$, $\alpha_2 = b(k_1 + k_2)$, $\alpha_1 = c(k_2 + k_3)$, $\alpha_0 = k_1 k_2 + k_2 k_3 + k_3 k_1$, $\beta_3 = b$, $\beta_2 = 0$, and $\beta_1 = k_2 + k_3$. It is obvious that they are all non-negative and satisfy Condition 3. Conversely, if α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$ and they satisfy Condition 3, then letting $b = \beta_3$, $c = \alpha_3/\beta_3$, $k_1 = \alpha_2/\beta_3 - k_2$, $k_3 = \beta_1 - k_2$, and $k_2 = \sqrt{(\alpha_2 \beta_3 - \alpha_0 \beta_3)/\beta_3}$ yields that b, $c > 0$, k_1, k_2, $k_3 \geq 0$, and \(\text{IV.3}\) equals \(\text{IV.2}\).

The realizability condition of Fig. IV.2(d): It is calculated that the admittance of the network shown in Fig. IV.2(d) is expressed as

$$Y(s) = \frac{bc^3 + b(k_2 + k_3)s^2 + c(k_1 + k_2)s + (k_1 k_2 + k_2 k_3 + k_1 k_3)}{s (bs^2 + cs + (k_2 + k_3))}, \quad \text{(IV.6)}$$

where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$. If $Y(s)$ is realizable as in Fig. IV.2(d), then it can also be expressed as \(\text{IV.2}\), with $\alpha_3 = bc$, $\alpha_2 = b(k_2 + k_3)$, $\alpha_1 = c(k_1 + k_2)$, $\alpha_0 = k_1 k_2 + k_2 k_3 + k_1 k_3$, $\beta_3 = 0$, $\beta_2 = c$, and $\beta_1 = k_2 + k_3$. It is obvious that they are all non-negative and satisfy Condition 4. Conversely, if α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$ and they satisfy Condition 4, then letting $b = \alpha_3/\beta_2$, $c = \beta_2$, $k_1 = \alpha_1/\beta_2 - k_2$, $k_3 = \beta_1 - k_2$, and $k_2 = \sqrt{(\alpha_1 \beta_2 - \alpha_0 \beta_2)/\beta_2}$ yields that b, $c > 0$, k_1, k_2, $k_3 \geq 0$, and \(\text{IV.6}\) equals \(\text{IV.2}\).

The realizability condition of Fig. IV.2(e): It is calculated that the admittance of the network shown in Fig. IV.2(e) is expressed as

$$Y(s) = \frac{bc^3 + b(k_1 + k_2)s^2 + c(k_1 + k_2)s + (k_1 k_2 + k_2 k_3 + k_1 k_3)}{s (bs^2 + cs + (k_2 + k_3))}, \quad \text{(IV.7)}$$

where b, $c > 0$ and k_1, k_2, $k_3 \geq 0$. If $Y(s)$ is realizable as in Fig. IV.2(e), then it can also be expressed as \(\text{IV.2}\), with $\alpha_3 = bc$, $\alpha_2 = b(k_1 + k_2)$, $\alpha_1 = c(k_1 + k_2)$, $\alpha_0 = k_1 k_2 + k_2 k_3 + k_1 k_3$, $\beta_3 = 0$, $\beta_2 = c$, and $\beta_1 = k_2 + k_3$. It is obvious that they are all non-negative and satisfy Condition 5. Conversely, if α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$ and they satisfy Condition 5, then letting $b = \beta_3$, $c = \beta_2$, $k_1 = (\alpha_1 \beta_3 + \alpha_3 \beta_3)/(\alpha_0 \beta_3)$, $k_2 = (\alpha_2 \beta_3 - \alpha_0 \beta_3)/(\alpha_3 \beta_3)$, and $k_3 = (\alpha_1 \beta_3 - \alpha_0 \beta_3)/(\alpha_3 \beta_3)$ yields that b, $c > 0$, k_1, k_2, $k_3 \geq 0$, and \(\text{IV.5}\) equals \(\text{IV.2}\).

V. REALIZABILITY CONDITIONS OF ONE-PORT NETWORKS WITH ONE DAMPER, ONE INERTER, AND AN ARBITRARY NUMBER OF SPRINGS IN TERMS OF IV.1

In \[35\], a necessary and sufficient condition has been derived for any positive-real function to be realizable as the admittance of the one-port network consisting of one damper, one inerter, and an arbitrary number of springs as shown in \[35\] Fig. 5 where X has a well-defined impedance. If, instead of the impedance, it is the admittance of the three-port network X that is assumed to be well-defined (Assumption 1), then the obtained necessary and sufficient condition for the realizability of the one-port network consisting of one damper, one inerter, and an arbitrary number of springs becomes that $Y(s)$ can be written in the form of \(\text{III.4}\), where G is non-negative definite and satisfies the conditions of either \[35\] Lemma 3 or \[35\] Lemma 4 with R being replaced by G, the detail of which is listed as follows.

Theorem VI.1: A positive-real function $Y(s)$ is realizable as the driving-point admittance of the one-port network, consisting of one damper, one inerter, and an arbitrary number of
springs, and satisfying Assumption 1, if and only if $Y(s)$ can be written in the form of (III.4), where G as defined in (III.1) is non-negative definite and satisfies the conditions of Lemma 2 or one of the following five conditions:

1. $G_4G_5G_6 < 0$;
2. $G_4G_5G_6 > 0$, $G_2 > (G_4G_5/G_6)$, and $G_3 > (G_5G_6/G_4)$;
3. $G_4G_5G_6 > 0$, $G_2 < (G_4G_5/G_6)$, and $G_3 > (G_5G_6/G_4)$;
4. $G_4G_5G_6 > 0$, $G_2 < (G_4G_5/G_6)$, and $G_3 > (G_5G_6/G_4)$;
5. $G_4G_5G_6 > 0$, $G_1 < (G_4G_5/G_6)$, and $G_1G_2G_3 + G_4G_5G_6 - G_1G_6 - G_2G_4 - G_3G_4^2 - G_3^2G_4^2 \geq 0$.

It can be checked that $G_1G_2G_3 + G_1G_5G_6 - G_1G_6 - G_2G_4 - G_3G_4^2 = 0$, $G_4G_5G_6 - G_2G_4 - G_3G_4^2 = 0$, and $G_1G_2G_3 + G_1G_5G_6 - G_2G_4 - G_3G_4^2 = 0$ imply $G_3 < (G_5G_6/G_4)$, $G_2 < (G_4G_5/G_6)$, and $G_1 < (G_4G_5/G_6)$, respectively. Hence, the condition of Theorem 2 is a proper subset of that of Theorem V.1.

Let $m_1 = G_6$, $m_1^* = G_5$, $m_2 = G_2 - G_4G_6/G_5$, $m_2^* = G_1 - G_4G_5/G_6$, and $m_3 = G_3 - G_5G_6/G_4$. Let $\lambda_1 = G_1G_2G_3G_4G_5G_6 - G_1G_6 - G_2G_4 - G_3G_4^2$, $\lambda_2 = G_1G_2G_3 + G_4G_5G_6 - G_1G_6 - G_2G_4 - G_3G_4^2$, $\lambda_3 = G_1G_2G_3 + G_4G_5G_6 - G_2G_4 - G_3G_4^2$, and $\lambda_4 = \det(G)$. For the admittance as in (III.4), a G_5G_6 graph is as in Fig. V.1 by letting $G_1 = G_2 = 1$ and $G_4 = 0.5$ to show realizable sets when Assumption 1 holds. The shaded region represents the realizable condition for the networks with one damper, one inerter, and an arbitrary number of springs; the boundaries of the shaded region (λ_1, λ_2, $\lambda_3 = 0$, and $\lambda_4 = 0$ for $G_4G_5 < 0$), and the line segments inside the shaded region (m_1, m_1^*, m_2, m_2^*, $m_3 = 0$) constitute the realizable condition for networks with one damper, one inerter, and at most three springs.

![Fig. V.1. The G_5G_6 graph showing realizable sets assuming Assumption 1 holds, where $G_1 = G_2 = G_3 = 1$ and $G_4 = 0.5$.](image)

Using the coefficient transformation, one can further derive the following conclusion.

Theorem V.2: A positive-real function $Y(s)$ can be realized as the driving-point admittance of a one-port network, consisting of one damper, one inerter, and an arbitrary number of springs, and satisfying Assumption 1, if and only if $Y(s)$ can be written in the form of (III.3), where the coefficients satisfy α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$, and $Y_0 W_2 W_3 \geq W^2 = 4W_1 W_2 W_3$ and also satisfy the condition of Lemma III.3 or one of the following five conditions:

1. $W < 0$;
2. $W > 0$, $\alpha_3 - W/(2W_3) > 0$, $\beta_3 - W/(2W_2)$, and $\beta_1 - W/(2W_1)$;
3. $W > 0$, $\beta_2 - W/(2W_1) < 0$, and $\alpha_0 + \alpha_3 \beta_1 + \alpha_1 \beta_3 - \alpha_2 \beta_2 \geq 0$;
4. $W > 0$, $\beta_3 - W/(2W_2) < 0$, and $\alpha_0 + \alpha_3 \beta_1 + \alpha_2 \beta_2 - \alpha_1 \beta_3 \geq 0$;
5. $W > 0$, $\alpha_3 - W/(2W_3) < 0$, and $\alpha_0 + \alpha_1 \beta_3 + \alpha_2 \beta_2 - \alpha_3 \beta_1 \geq 0$.

Since $\beta_2 - W/(2W_1) = -\alpha_0/W_1$ when $\alpha_0 + \alpha_3 \beta_1 + \alpha_1 \beta_3 - \alpha_2 \beta_2 = 0$, $\beta_3 - W/(2W_2) = -\alpha_0/W_2$ when $\alpha_0 + \alpha_3 \beta_1 + \alpha_2 \beta_2 - \alpha_1 \beta_3 = 0$, and $\alpha_3 - W/(2W_3) = -\alpha_0/W_3$ when $\alpha_0 + \alpha_1 \beta_3 + \alpha_2 \beta_2 - \alpha_3 \beta_1 = 0$, the condition of Theorem 5 is a proper subset of that of Theorem V.2.

From the proof of Theorem 6, one can also see that if $Y(s)$ is realizable as a one-port network with one damper, one inerter, and an arbitrary number of springs, where X does not have a well-defined admittance, then the number of springs can be at most three. Hence, the result is obtained as follows.

Theorem V.3: A positive-real function $Y(s)$ can be realized as the driving-point admittance of a one-port network consisting of one inerter, one damper, and an arbitrary number of springs, if and only if $Y(s)$ can be written in the form of

$$Y(s) = \frac{\alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0}{\beta_4 s^4 + \beta_3 s^3 + \beta_2 s^2 + \beta_1 s}$$ (V.1)

where α_0, α_1, α_2, α_3, β_1, β_2, $\beta_3 \geq 0$, and they satisfy the condition of Theorem V.2 when $\beta_4 = 1$ or the condition of Theorem 6 when $\beta_4 = 0$.

References

[1] M. Z. Q. Chen, K. Wang, Y. Zou, and G. Chen, “Realization of three-port spring networks with inerter for effective mechanical control,” IEEE Trans. Automatic Control, vol. 60, no. 10, pp. 2722-2727, 2015.

[2] M. Z. Q. Chen, Passive Network Synthesis of Restricted Complexity, Ph.D. Thesis, Cambridge Univ. Eng. Dept., U.K., 2007.

[3] M. Z. Q. Chen and M. C. Smith, “Electrical and mechanical passive network synthesis,” in Recent Advances in Learning and Control, V. D. Blondel, S. P. Boyd, and H. Kimura (Eds.), New York: Springer-Verlag, 2008, LNCIS, vol. 371, pp. 35-50.

[4] M. Z. Q. Chen, “A note on PIN polynomials and PRIN rational functions,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 55, no. 5, pp. 462-463, 2008.

[5] M. Z. Q. Chen and M. C. Smith, “Restricted complexity network realizations for passive mechanical control,” IEEE Trans. Automatic Control, vol. 54, no. 10, pp. 2390-2391, 2009.

[6] M. Z. Q. Chen and M. C. Smith, “A note on tests for positive-real functions,” IEEE Trans. Automatic Control, vol. 54, no. 2, pp. 390-393, 2009.

[7] M. Z. Q. Chen, C. Papageorgiou, F. Scheibe, F.-C. Wang, and M. C. Smith, “The missing mechanical circuit element,” IEEE Circuits Syst. Mag., vol. 9, no. 1, pp. 10-26, 2009.

[8] M. Z. Q. Chen, K. Wang, Y. Zou, and J. Lam, “Realization of a special class of admittances with one damper and one inerter,” in Proceedings of the 51st IEEE Conference on Decision and Control, 2012, pp. 3845-3850.
[9] M. Z. Q. Chen, K. Wang, Y. Zou, and J. Lam, “Realization of a special class of admittances with one damper and one inerter for mechanical control,” IEEE Trans. Automatic Control, vol. 58, no. 7, pp. 1800–1805, 2013.

[10] M. Z. Q. Chen, K. Wang, M. Yin, C. Li, Z. Zuo, and G. Chen, “Realizability of n-port resistive networks with 2n terminals,” in Proceedings of the 9th Asian Control Conference, 2013, pp. 1–6.

[11] M. Z. Q. Chen, K. Wang, M. Yin, C. Li, Z. Zuo, and G. Chen, “Synthesis of n-port resistive networks containing 2n terminals,” International Journal of Circuit Theory and Applications, vol. 43, no. 4, pp. 427–437, 2015.

[12] M. Z. Q. Chen, K. Wang, C. Li, and G. Chen, “Realizations of biquadratic impedances as five-element bridge networks containing one inductor and one capacitor,” in Proceedings of 33rd Chinese Control Conference, 2014, pp. 7498–7503.

[13] M. Z. Q. Chen, “The classical n-port resistive synthesis problem,” in Workshop on “Dynamics and Control in Networks”, Lund University, 2014 (http://www.lccc.lth.se/media/2014/malcolm3.pdf, last accessed on 19/01/2015).

[14] M. Z. Q. Chen, Y. Hu, and B. Du, “Suspension performance with one damper and one inerter,” in Proceedings of the 24th Chinese Control Conference and Decision Conference, Taiyuan, China, 2012, pp. 3534–3539.

[15] M. Z. Q. Chen, Y. Hu, L. Huang, and G. Chen, “Influence of inerter on natural frequencies of vibration systems,” Journal of Sound and Vibration, vol. 333, no. 7, pp. 1874–1887, 2014.

[16] M. Z. Q. Chen, Y. Hu, C. Li, and G. Chen, “Performance benefits of using inerter in semiactive suspensions,” IEEE Trans. Control Systems Technology, vol. 23, no. 4, pp. 1571–1577, 2015.

[17] M. Z. Q. Chen, Y. Hu, F.-C. Wang, “Passive mechanical control with a special class of positive real controllers: application to passive vehicle suspensions,” Journal of Dynamic Systems, Measurement, and Control, vol. 137, no. 12, pp. 121013-1–121013-11, 2015.

[18] Y. Hu, M. Z. Q. Chen, and Z. Shu, “Passive vehicle suspensions employing inerters with multiple performance requirements,” Journal of Sound and Vibration, vol. 333, no. 8, pp. 2212–2225, 2014.

[19] Y. Hu, M. Z. Q. Chen, Z. Shu, and L. Huang, “Vibration analysis for isolation system with inerter,” in Proceedings of the 33rd Chinese Control Conference, 2014, pp. 6687–6692.

[20] Y. Hu, K. Wang, and M. Z. Q. Chen, “Semi-active suspensions with lower-order mechanical admittances incorporating inerters,” in Proceedings of the 27th Chinese Control and Decision Conference, 2015, pp. 79–84.

[21] Y. Hu and M. Z. Q. Chen, “Performance evaluation for inerter-based dynamic vibration absorbers,” International Journal of Mechanical Sciences, vol. 99, pp. 297–307, 2015.

[22] Y. Hu, H. Du, M. Z. Q. Chen, “An inerter-based electromagnetic device and its application in vehicle suspensions,” in Proceedings of the 34th Chinese Control Conference, 2015, pp. 2060–2065.

[23] Y. Hu, K. Wang, and M. Z. Q. Chen, “Performance optimization for passive suspensions with one damper one inerter and three springs,” in Proceeding of the 2015 IEEE International Conference on Information and Automation, 2015, pp. 1349–1354.

[24] Y. Liu, Y. Hu, and M. Z. Q. Chen, “Effect of play in inerter on vehicle suspension system,” in Proceedings of the 27th Chinese Control and Decision Conference, 2015, pp. 2497–2502.

[25] Y. Liu, Y. Hu, and M. Z. Q. Chen, “Effect of play in inerter on vehicle suspension system,” in Proceedings of the 34th Chinese Control Conference, 2015, pp. 2497–2502.

[26] Y. Liu, M. Z. Q. Chen, Y. Tian, “Nonlinearities in landing gear model incorporating inerter,” in Proceeding of the 2015 IEEE International Conference on Information and Automation, 2015, pp. 696–701.

[27] K. Wang and M. Z. Q. Chen, “Realization of biquadratic impedances with at most four elements,” in Proceedings of the 24th Chinese Control and Decision Conference, 2012, pp. 2900–2905.

[28] K. Wang and M. Z. Q. Chen, “Generalized series-parallel RLC synthesis without minimization for biquadratic impedances,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 59, no. 11, pp. 766–770, 2012.

[29] K. Wang, M. Z. Q. Chen, and Y. Hu, “Synthesis of biquadratic impedances with at most four passive elements,” Journal of the Franklin Institute, vol. 351, no. 3, pp. 1251–1267, 2014.

[30] K. Wang and M. Z. Q. Chen, “Minimal realizations of three-port resistive networks,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 62, no. 4, pp. 986–994, 2015.

[31] K. Wang and M. Z. Q. Chen, “Synthesis of transfer functions as two-port RC ladder networks with specified gains,” in Proceedings of the 27th Chinese Control and Decision Conference, 2015, pp. 101–106.

[32] M. C. Smith, “Synthesis of mechanical networks: the inerter,” IEEE Trans. Automatic Control, vol. 47, no. 10, pp. 1648–1662, 2002.