Prognostic value of stromal cell-derived factor 1 expression in patients with gastric cancer after surgical resection

Xuefei Wang, Heng Zhang, Hongyong He, Zhenbin Shen, Zhaoqing Tang, Jiejie Xu and Yihong Sun

Department of General Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai; Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China

Key words
Gastric cancer, overall survival, predictive nomogram, prognostic biomarker, stromal cell-derived factor 1

Correspondence
Yihong Sun, Department of General Surgery, Zhongshan Hospital, 180 Feng Lin Road, Shanghai 200032, China. Tel: +86-21-64041990-2910; Fax: +86-21-64038472; E-mail: sun.yihong@zs-hospital.sh.cn.
and Jiejie Xu, Shanghai Medical College of Fudan University, 138 Xiyueyuan Road, Mailbox 103, Shanghai 200032, China. Tel: +86 21 54237332; Fax: +86 21 64437703; E-mail: jjxufdu@fudan.edu.cn.

These authors contributed equally to this work.

Funding information
National Key Projects for Infectious Diseases of China (2012ZX10002-012). National Natural Science Foundation of China (31100629). (31270863). (31300671). (31470794). (81471621). (81472227). Program for New Century Excellent Talents in University (NCET-13-0146). Shanghai Rising-Star Program (13QA1400300). Key Project of Science and Technology Commission of Shanghai Municipality (09DZ1950101). (11411951000). Research Fund for Outstanding Doctor of Shanghai Medical College of Fudan University (E2F152309).

Cancer Sci 105 (2014) 1447–1456

doi: 10.1111/cas.12531

Although the incidence and mortality of gastric cancer have declined over the past decades, it continues to be the fourth most common malignant neoplasia worldwide and ranked as the second leading cause of cancer-associated mortality.1–3 Surgical resection is the only possible curative method for gastric cancer, especially for patients in the early stage of the disease.2,4 However, many patients are diagnosed at an advanced stage due to atypical symptoms in the early stages. For patients with advanced-stage gastric cancer, the prognosis is dismal due to the high rate of metastasis or postsurgical relapse.5 Therefore, there is growing interest in gaining a better understanding of the molecular and cellular processes in gastric cancer to develop more reliable biomarkers to predict outcomes of patients with particularly aggressive disease for optimal medical treatment. However, the mechanisms underlying the molecular and cellular behaviors remain largely unknown and need to be further established.

Chemokines are small 8–12-kDa peptides that regulate chemotaxis.6 Stromal cell-derived factor 1 (SDF-1), also known as CXC-chemokine 12 (CXCL12), is a small (68 amino acids, 8 kDa) chemokine that has been identified as the ligand for cell-surface CXC-chemokine receptor 4 (CXCR4) and receptor 7 (CXCR7). First identified as a growth factor for B cell progenitor cells, SDF-1 is essential for lymphocyte trafficking and maintenance of immune balance.5 SDF-1 exerts its function by interacting with its physiological receptor, activating the downstream protein kinase B/MAPK pathway, leading to
alteration of gene expression, actin polymerization, cell skeleton rearrangement, and cell migration.\(^6\)

A growing number of studies have identified that SDF-1 is also expressed in many human tumor cells, such as ovarian cancer,\(^7\) breast cancer,\(^8\) glioblastoma,\(^9\) pancreatic cancer,\(^10\) prostate cancer,\(^11\) and thyroid cancer,\(^12\) and acts in an autocrine or paracrine manner. The constitutively activated CXCR4,\(^10\) prostate cancer,\(^11\) and thyroid cancer,\(^12\) and acts in an autocrine or paracrine manner. The constitutively activated CXCR4 axis has been shown to play a crucial role in promoting tumor growth through paracrine and/or autocrine stimulation of tumor cells, promoting tumor invasion and metastasis by stimulating expression of MMPs, and trafficking tumor cells to target organs or tissues along ligand gradients.\(^13\)

Moreover, tumor cells may use CXCR4 to access the SDF-1-rich niche microenvironment to favor their survival and resistance to chemotherapy.\(^13,14\) SDF-1 can also upregulate the expression of vascular endothelial growth factor and recruit vasculature-supporting bone marrow-derived progenitor cells to the tumor site to promote angiogenesis and vasculogenesis.\(^15,16\) Tumor cells may take advantage of these chemokine-mediated mechanisms during the process of progression and organ selective metastasis. Recent studies have identified that CXCR4, the SDF-1 receptor, was overexpressed in gastric cancer cells and correlated with tumor progression and metastasis.\(^17,18\) However, the role of SDF-1 in gastric cancer is still controversial because reports reveal that SDF-1 expression and protein levels in gastric cancer were reduced compared with non-tumor tissues.\(^19,20\) Thus, studies aimed to elucidate the prognostic values of SDF-1 expression in patients with gastric cancer were urgently needed.

At present, the TNM staging system provides the major prognostic variables used in clinical management of patients with gastric cancer. However, these clinicopathological parameters do not provide complete prognostic information. For example, patients with similar disease morphologies may display different biological phenotypes and prognosis. Some patients in the early tumor stage may progress rapidly, whereas others in the advanced stage may stay stable for years. This is partly owing to tumor heterogeneity.\(^21\) The SDF-1 expression signature in patients with gastric cancer may be a potential mechanism underlying tumor heterogeneity. Therefore, incorporation of the prognostic information derived from the SDF-1 expression signature with the traditional TNM staging system may refine a risk stratification system for clinical outcomes and provide more specific treatment advice.

In this study, we investigated the expression of SDF-1 in patients with gastric cancer, and explored its relation with clinicopathological factors and clinical outcomes. A predictive nomogram was generated to evaluate the risk for overall survival (OS) of gastric cancer patients. The prognostic accuracy was examined by calibration curve and time-dependent receiver operating characteristic (ROC) curve analysis.

Materials and Methods

Patients and specimens. A total of 180 consecutive gastric cancer patients who received standard gastrectomy with D2 lymph node resection from the same surgical team in Zhongshan Hospital of Fudan University (Shanghai, China) between May 2002 and April 2006 were enrolled in the study. We retrospectively collected the baseline demographic and clinicopathological factors of these patients, including age, gender, tumor location, tumor size, tumor differentiation, Lauren classification, and tumor stage. Tumor stage and tumor differentiation were reassessed by two independent gastrointestinal pathologists according to the 2010 International Union Against Cancer TNM classification system. The median age of this cohort was 63 years (range, 32–83), of which 68.9% were men. Patients with intestinal type disease made up 66.1% of the group, and the remainder had diffuse type. Lymph node involvement was evident in 68.9% of patients; six patients (3.3%) had resectable synchronous single liver metastases at the time of surgery. All patients were followed up until July 2012, with a median follow-up time of 59 months. Overall survival was defined as the time between the dates of surgery and death or last visit. An additional 40 patients were recruited between January and April, 2013, and their resected samples were subjected to RNA extraction for quantitative RT-PCR and ELISA examination. The use of human specimens was approved by the Clinical Research Ethics Committee of Zhongshan Hospital with informed consent from each patient. No patients received any preoperative anticancer treatment.

RNA extraction and RT-PCR. Total RNA from gastric cancer samples was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. Two micrograms of total RNA was converted to cDNA using a Reverse Transcription System kit (Takara Bio Inc., Otsu, Japan). Real-time PCR was carried out using a StepOne Real-Time PCR system (Applied Biosystems, Carlsbad, CA, USA) with SYBR Green PCR Master Mix. The primer sequences used in this study were: GTC AAG CAT CTC AAA ATT CTC AAC AC (sense) and CAC TTT AGC TTC GGG TCA ATG C (antisense), for SDF-1; and CAT GAG AAG TAT GAC AAC AGC CT (sense) and AGT CCT TCC ACG AT A CCA AAG T (antisense), for GAPDH.\(^20\)

Enzyme-linked immunosorbent assay. Frozen gastric tissues were ground to a powder in liquid nitrogen and stored at –80°C. For protein preparation, 250 µL lysis buffer (1% CHAPS, 50 mM DTT, 10 mM EDTA, 1 mM PMSF, 1 µg/mL pepstatin A, and 1 µg/mL leupeptin in PBS [pH 7.2]) were added to 0.1 g tissue powder and mixed vigorously. Ultrasoni-
cation (100 W for 5 s, repeated 5–7 times) was used to further break the mixture into small particles. Finally, insoluble sub-
stances were removed by centrifugation (20 000g for 50 min at 4°C) and the supernatants harvested. The protein concentra-
tion was determined using the Bradford method. The expres-
sion of SDF-1 levels was detected by ELISA according to the manufacturer’s instructions. Two micrograms of total RNA was converted to cDNA using a Reverse Transcription System kit (Takara Bio Inc., Otsu, Japan). Real-time PCR was carried out using a StepOne Real-Time PCR system (Applied Biosystems, Carlsbad, CA, USA) with SYBR Green PCR Master Mix. The primer sequences used in this study were: GTC AAG CAT CTC AAA ATT CTC AAC AC (sense) and CAC TTT AGC TTC GGG TCA ATG C (antisense), for SDF-1; and CAT GAG AAG TAT GAC AAC AGC CT (sense) and AGT CCT TCC ACG AT A CCA AAG T (antisense), for GAPDH.\(^20\)

Immunohistochemistry and evaluation. The construction of tissue microarray and the immunohistochemistry (IHC) protocols were as described previously.\(^23\) Collectively, two cores were taken from the center area of each representative tumor tissue and from normal gastric tissue adjacent to the invasive tumor front within a distance of 10 mm to construct tissue microarray slides. Cylinders from the two different areas, intratumoral and peritumoral, were obtained for each patient. Then, tissue microarray sections with 180 pairs of tumors and matched peritumoral samples were constructed. The primary antibody was mouse mAb against SDF-1 (10 µg/mL MAB350; R&D Systems). The density of the positive staining was evaluated by a computerized imaging system composed of an Olympus CCD camera (Olympus Corporation, Tokyo, Japan) connected to a Nikon Eclipse Ti-S microscope (Nikon Instruments Inc., Melville, NY, USA). The IHC sections were scanned at low power (×100) magnification by NIS-Elements F3.2 software (Nikon) to identify the five areas with the greatest positive staining. Then the mean density was estimated at...
high power (×200) magnification from these five areas per case. Identical settings were used for each photograph. The density of positive staining was counted by Image-Pro plus version 6.0 software (Media Cybernetics, Bethesda, MD, USA) by two pathologists who were blind to the characteristics of the patients. Integrated optical density of all the positive staining in each photograph was measured, and its ratio to total area of each photograph was calculated as relative density. The cut-off value for the definition of high/low expression subgroups was the median density value; 77.75 was defined as the cut-off for peritumor tissues and 34.38 was defined as the cut-off for tumor tissues.

Statistical analysis. Statistical analysis was carried out with SPSS 19.0 (SPSS Inc., Chicago, IL, USA) and R software (http://www.r-project.org/). Differences between scatter plots for density of IHC staining were determined by the non-parametric Mann–Whitney U-test. Pearson’s chi-square-test or Fisher’s exact test was used to compare qualitative variables. Kaplan–Meier analysis was used to determine survival. The log-rank test was used to compare patients’ survival between subgroups; the stepwise Cox regression model was used to carry out the multivariate analysis. Only factors demonstrating an association with OS ($P < 0.010$) were included in the multivariate analysis. Numbers at risk were calculated for the beginning of each time period. Nomograms were created by R software using the “rms” package. A calibration plot was generated to examine the performance characteristics of nomograms. The time-dependent ROC curve analysis and bootstrap-corrected concordance index (C-index) were used to compare the discrimination power for OS between different models. All statistical analyses were two-sided and $P < 0.05$ was considered statistically significant. Results are reported according to Reporting Recommendations for Tumor Marker Prognostic Studies guidelines.

Results

Frequently decreased expression levels of SDF-1 in gastric cancer tissues. To clarify the underlying role of SDF-1 in gastric cancer, we first examined the expression levels of SDF-1...
Table 1. Relation between peritumoral stromal cell-derived factor 1 (SDF-1) expression or intratumoral SDF-1 expression and clinical characteristics in patients with gastric cancer (n = 180)

Factors	Patients	Peritumoral SDF-1 expression	Intratumoral SDF-1 expression	Peritumoral/intratumoral SDF-1 expression						
	No. %	Low High	P-value	Low High	P-value	Low/High	High/High	Low/High	High/High	P-value
All patients	180 100	90 90	42 48 48 42	42 48 48 42						
Age, years†	100 55.6	48 52	0.549 47 53	0.368 23 30 25	0.716					
>63	80 44.4	42 38	43 37	19 18 23	20	0.716				
Gender	56 31.1	30 26	0.520 29 27	0.747 13 14 17	12	0.890				
Male	124 68.9	60 64	61 63	29 34 31	30	0.890				
Localization	30 16.7	11 19	0.091 16 14	0.279 4 10 7	9	0.118				
Proximal	58 32.2	35 23	24 34	17 17 18	6	0.118				
Middle	92 51.1	44 48	50 42	21 21 23	27	0.118				
Distal	93 51.7	42 51	0.179 38 55	0.011 23 32 19	19	0.046				
Tumor size†	87 48.3	48 39	52 35	19 16 29	23	0.046				
<4 cm	6 3.3	4 2	0.682 3 3	0.030 2 1 2	1	0.220				
≥4 cm	67 37.2	34 33	25 42	21 21 13	12	0.220				
Differentiation	107 59.5	52 55	62 45	19 26 33	29	0.220				
Lauren classification	119 66.1	56 63	0.270 57 62	0.431 28 34 28	29	0.585				
Intestinal type	61 33.9	34 27	33 28	14 14 20	13	0.585				
Diffuse type	32 17.8	19 13	0.041 8 24	0.007 13 11 6	2	0.010				
T classification	15 8.3	9 6	6 9	5 4 4	2	0.010				
T2	11 6.1	9 2	5 6	5 1 4	1	0.010				
T4	122 67.8	53 69	71 51	19 32 34	37	0.010				
N classification	56 31.1	33 23	0.036 18 38	0.008 21 17 12	6	0.006				
N0	43 23.9	20 23	22 21	7 14 13	9	0.006				
N2	28 15.6	18 10	18 10	7 3 11	7	0.006				
N3	53 29.4	19 34	32 21	7 14 12	20	0.006				
Distant metastasis	174 96.7	87 87	1.000 86 88	0.682 41 47 46	40	0.868				
Yes	6 3.3	3 3	4 2	1 1 2	2	0.868				
mRNA in 40 paired gastric cancer samples using quantitative real-time PCR. We found that SDF-1 expression was significantly decreased in tumor tissues compared with matched adjacent non-tumor gastric mucosa for 80% of the gastric samples (Fig. 1a). The protein levels of SDF-1 expression detected by ELISA from tumor tissues were also lower than expression from peritumoral tissues for 87.5% of gastric samples (Fig. S1a), and showed concordance with mRNA levels ($r = 0.78$, $P < 0.001$; Fig. S1b). We then carried out IHC analyses of SDF-1 expression using a gastric cancer tissue microarray containing 180 paired gastric cancer samples. The IHC staining intensity varied greatly in gastric cancer tissues and matched non-tumor tissues (Fig. 1b). The staining intensity of SDF-1 protein in the peritumor group was stronger than that observed in the tumor group (Fig. 1c). High intratumoral SDF-1 expression was more easily seen in patients with early stage tumor (Fig. 1d), whereas peritumoral SDF-1 expression did not show such a phenomenon.

Associations between SDF-1 expression and clinicopathological factors. The relationship between SDF-1 expression and clinicopathological factors are shown in Table 1. Peritumoral SDF-1 expression and intratumoral SDF-1 expression were positively and negatively correlated with T classification ($P = 0.041$ and $P = 0.007$, respectively) and N classification ($P = 0.036$ and $P = 0.008$, respectively). Moreover, intratumoral SDF-1 expression was also negatively associated with tumor size ($P = 0.011$), tumor differentiation ($P = 0.030$), and TNM stage ($P = 0.002$). Combined analysis of peritumoral and intratumoral SDF-1 signatures showed significant correlations with tumor size ($P = 0.046$), T classification ($P = 0.010$), N classification ($P = 0.006$), and TNM stage ($P = 0.019$). These data suggested the significance of SDF-1 expression in tumor biological phenotypes.

Associations of SDF-1 expression and clinical outcomes. To further explore the prognostic significance of SDF-1 expression and clinical outcomes, Kaplan–Meier analysis was used to determine OS and the log–rank test was used to compare differences between subgroups. Using their respective median values as the cut-off for high and low expression, high SDF-1 in peritumor tissue was associated with reduced OS ($P = 0.0034$; Fig. 2a), whereas high SDF-1 in tumor tissue was correlated with elevated OS ($P < 0.0001$; Fig. 2b). We then compared low and high expression of SDF-1 by tumor invasion depth (Fig. S2). Although the SDF-1 expression had no significant correlation with OS in patients with T1 to T3, we found peritumor and intratumoral SDF-1 expression negatively and positively correlated with OS in patients with T4 disease ($P = 0.0147$ and $P = 0.0008$, respectively). To further discriminate patients with different prognoses, we carried out a combined analysis of peritumoral and intratumoral SDF-1 expression (Fig. 2c). Significant differences in OS ($P < 0.0001$) were found among the four groups. In the peritumoral high/intratumoral high group and peritumoral low/intratumoral low group, the influence of intratumoral SDF-1, low or high, on prognosis was probably counteracted by simultaneously low or high peritumoral SDF-1 expression, and vice versa. Therefore, irrespective of the absolute intensity of peritumoral and intratumoral SDF-1 expression, the two groups had similar data for survival (hazard ratio $= 0.701$; 95% confidence interval, 0.397–1.238; $P = 0.221$). Based on these results, we classified patients into three risk groups (Fig. 2d) according to their peritumoral/intratumoral SDF-1 expression signature: low risk group, peritumoral low/intratumoral high ($n = 42$); intermediate risk group, peritumoral high/intratumoral high and pe-
ritumoral low/intratumoral low (n = 96); and high risk group, peritumoral high/intratumoral low (n = 42). The OS among the three risk groups was significantly different (P < 0.0001). The SDF-1 risk stratification system has better discriminative power for clinical outcomes, the bootstrapped C-index was 0.668 compared with 0.640 for intratumoral SDF-1 or 0.577 for peritumoral SDF-1.

Univariate and multivariate Cox analysis. In order to identify the prognostic significance of clinicopathological factors for OS, univariate Cox regression analysis was carried out. Tumor
Table 2. Univariate and multivariate cox regression analyses for overall survival in patients with gastric cancer (n = 180)

Factors	Univariate	Multivariate			
	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	
Age, years†	0.360		0.322		
≤63	1 (reference)		1 (reference)		
>63	1.212 (0.803 to 1.830)	0.570	1.246 (0.806 to 1.928)	0.006	
Gender					
Female	1 (reference)		1 (reference)		0.001
Male	0.878 (0.559 to 1.377)		1.246 (0.806 to 1.928)	0.006	
Localization					
Middle versus proximal	0.594 (0.320 to 1.101)	0.098	0.662 (0.346 to 1.270)	0.322	
Distal versus proximal	0.957 (0.558 to 1.642)	0.875	0.662 (0.346 to 1.270)	0.322	
Differentiation					
Moderate versus well	3.382 (0.463 to 24.731)	0.230	0.737 (0.358 to 1.513)	0.412	
Poor versus well	4.015 (0.555 to 29.035)	0.169	0.737 (0.358 to 1.513)	0.412	
Lauren classification					
Intestinal	1 (reference)		1 (reference)		0.011
Diffuse	1.314 (0.859 to 2.010)	0.002	1.314 (0.859 to 2.010)	0.002	
Tumor size, cm†					
<4	1 (reference)		1 (reference)		0.001
≥4	1.969 (1.290-3.006)	0.009	1.969 (1.290-3.006)	0.009	
T classification					
T2 versus T1	1.073 (0.097-11.839)	0.954	0.628 (0.055-7.159)	0.708	
T3 versus T1	8.964 (1.736-46.274)	0.009	8.219 (1.555-43.429)	0.013	
T4 versus T1	18.170 (4.459-74.042)	<0.001	7.037 (1.589-31.161)	0.010	
N classification					
N1 versus N0	3.071 (1.437-6.566)	0.004	1.460 (0.647-3.297)	0.362	
N2 versus N0	6.289 (2.945-13.429)	<0.001	3.413 (1.488-7.831)	0.004	
N3 versus N0	7.982 (3.966-16.066)	<0.001	2.933 (1.320-6.513)	0.008	
Distant metastasis					
No	1 (reference)		1 (reference)		0.001
Yes	5.746 (2.424-13.617)	0.004	5.746 (2.424-13.617)	0.004	
SDF-1 risk					
Intermediate versus low	2.634 (1.332-5.209)	0.036	2.350 (1.169-4.723)	0.016	
High versus low	6.416 (3.150-13.067)	<0.001	5.004 (2.395-10.453)	<0.001	

CI, confidence interval; N, lymph node; T, tumor depth. †Split at median. Patients were categorized into three risk groups according to peritumoral/intratumoral stromal cell-derived factor 1 (SDF-1) expression signature: low, peritumoral low/intratumoral high; intermediate, peritumoral high/intratumoral high, and peritumoral low/intratumoral low; and high, peritumoral high and intratumoral low. Bold values indicate significance.

Thus, the hazard ratio of lymph node metastasis for reduced OS may be adjusted by tumor invasion depth, making the corresponding scores relatively lower in the nomogram. The theory was applied to all the selected prognostic factors. In the nomogram, a higher total score indicates worse survival probability. The calibration curve for predicted 5-year OS performed well with the ideal model (Fig. 3b). The bootstrapped C-index for the prognostic accuracy of the nomogram was 0.780 compared with 0.679 for TNM staging system. The time-dependent ROC curve showed higher sensitivity and specificity for predicting OS (Fig. 3c). All these results showed that the nomogram has better performance for predicting OS.

Discussion

Numerous studies have suggested that many epithelial tumor cells may exploit the chemokine systems that normally regulate leukocyte trafficking to metastasize to distant organs.\(^{25-27}\) However, the prognostic values of chemokine expression in malignant tumors, especially in gastric cancer,
have not been well-defined. In the present study, we have
demonstrated the prognostic power of SDF-1 expression in
patients with gastric cancer, and categorized patients into
three risk groups according to peritumoral intratumoral SDF-
1 expression signature. The SDF-1 risk stratification system
was proved to be an independent prognostic factor that can
be incorporated with TNM staging variables to generate a
predictive nomogram for OS. The established nomogram
showed better performance in predicting clinical outcomes
for patients with gastric cancer after surgical resection. How-
ever, these results need a larger, multicentered dataset to be
validated.

Previous studies into the relationship between intratumoral
SDF-1 expression and clinical features in gastric cancer have
generated diametrically opposite results. Zhi et al. found that
decreased SDF-1 expression in gastric cancer was significantly
associated with aggressive lymph node metastasis and histological
grade, whereas Ishigami et al. showed relatively higher
SDF-1 expression in gastric cancer tissues correlated with
aggravated lymph node metastasis, tumor invasion, lymphatic
invasion, tumor diameter, and clinical stage. These differences
may arise from the antibody and method used in defining
SDF-1 positive staining. Here, in this study, we used a specific
antibody for SDF-1 staining confirmed by peptide competition,
and we used quantitative methods to define staining intensity
to minimize the information loss derived from semiquantitative
methods. In the present study, we found that SDF-1 expression
was significantly downregulated in tumor tissues compared
with peritumor tissues. Low intratumoral SDF-1 expression and
high peritumoral SDF-1 expression were both correlated with
tumor invasion and lymph node metastasis; low intratu-
mosal SDF-1 expression also correlated with tumor size, tumor

Fig. 3. Prognostic nomogram generated for predicting overall survival in patients with gastric cancer. (a) Predictive nomogram for overall sur-
vival was generated by combining proven independent prognostic factors including tumor invasion depth (1 = T1, 2 = T2, 3 = T3, 4 = T4), lymph
node involvement (0 = N0, 1 = N1, 2 = N2, 3 = N3), distant metastasis (0 = M0, 1 = M1), and stromal cell-derived factor 1 (SDF-1) risk (1, low risk;
2, intermediate risk; 3, high risk). (b) Calibration plot for nomogram predicted 5-year survival and observed survival. The nomogram performed
well with the ideal model. (c) Time-dependent receiver operating characteristic curves by nomogram, TNM stage, and SDF-1 risk for 5-year over-
all survival probability.
differentiation, and clinical stage. The SDF-1 risk stratification system derived from peritumoral/intratumoral SDF-1 expression signatures applied well in discriminating patients with different prognoses compared with intratumoral SDF-1 or peritumoral SDF-1 alone. It appears that SDF-1 is secreted by peritumor tissues and flows through lymphatic or venous routes to gastric tumor cells. This paracrine mechanism would result in favorable conditions for CXCR4-expressing gastric cancer cells to metastasize to the SDF-1 gradient. These results suggested that gastric cancer cells with low SDF-1 expression may have a selective advantage to receive paracrine SDF-1 signals, promoting their growth, and driving more active metastasis to ectopic sources of the CXCR4 ligand, therefore, participating in regulating tumor cell biological phenotypes.

Although our study found that intratumoral SDF-1 expression correlated with patient outcomes, the exact mechanisms underlying this phenomenon are still unknown. Previous studies pointed out that the endogenous SDF-1 derived from epithelial cells was in marked contrast to exogenous ligand, which inhibits tumor metastasis through increased anoikis. Loss of SDF-1 with maintained expression of CXCR4 confers tumor cells a phenotype similar to that of circulating highly migratory leukocytes and lymphocytes, facilitating the receipt of the paracrine SDF-1 signal. Aberrant methylation of the CpG island of the SDF-1 gene may be a possible mechanism for the downregulation, and treatment with demethylating agent 5-aza-2′-deoxycytidine partly restored SDF-1 expression in gastric cancer cell lines, and suppressed cell invasion. Consistent with previous studies, our study showed that the endogenous SDF-1 expressed in tumor tissues was downregulated compared with peritumor tissues, and correlated with tumor progression. These results may shed light on the establishment of a metastasis model of gastric cancer.

The TNM staging system has been used for decades to predict clinical outcomes for patients with gastric cancer. However, controversies exist about whether additional risk factors, other than the TNM factors, are important parameters to predicting clinical outcomes. In this study, we have proved the prognostic significance of SDF-1 expression. Based on these results, a predictive model that integrated SDF-1 risk and TNM staging variables was constructed. In the constructed nomogram, the predictive power for OS was stronger compared with TNM stage or SDF-1 risk alone. These results implied that incorporation of additional risk factors into the well-established TNM staging system may add some prognostic information to better predict clinical outcomes. However, we did not evaluate the SDF-1 receptor, CXCR4, in the present study. Numerous studies, including our previous study, have shown that CXCR4 overexpression was negatively correlated with clinical outcomes of gastric cancer patients. Thus, combined analysis of the SDF-1/CXCR4 axis may add more prognostic information to the current TNM staging model. In addition, detailed information about recurrence was not available, which is a defect of this study, making the investigation of the relation between SDF-1 expression and recurrence unachievable. Further investigation about the relation between SDF-1 and recurrence and underlying molecular mechanisms will be investigated in our ongoing study.

Along with the prognostic significance for predicting clinical outcomes, targeting chemokine-mediated tumor cell microenvironment interaction has been proved to play a crucial role in sensitizing malignant tumors to chemotherapy. Gastric cancer may use the paracrine SDF-1/CXCR4 axis to confer tumor cells the ability to survive and resist apoptosis induced by cytotoxic drugs. Therefore, targeting the SDF-1/CXCR4 axis by specific inhibitors, such as AMD3100, may sensitize gastric cancer to chemotherapy.

In conclusion, our present study has proved the prognostic values of peritumoral and intratumoral SDF-1 expression, identifying SDF-1 risk as an important prognostic factor for OS. Incorporation of SDF-1 risk into the current TNM staging system could refine the risk stratification system for predicting OS in patients with gastric cancer, and targeting the SDF-1/CXCR4 axis may open a new avenue for treatment of gastric cancer in combination with traditional cytotoxic drugs, especially in patients with higher metastasis potential.

Acknowledgments

This work was supported by grants from National Key Projects for Infectious Diseases of China (Grant No. 2012ZX10002-012), the National Natural Science Foundation of China (Grant Nos. 31100629, 31270863, 31300671, 31470794, and 81472227), and the Program for New Century Excellent Talents in University (Grant No. NCET-13-0146), the Shanghai Rising-Star Program (Grant No. 13QA1400300), the Key Project of Science and Technology Commission of Shanghai Municipality (Grant Nos. 09DZ1950101, 11411951000, and 12140902000) and the Research Fund for Excellent Doctor of Shanghai Medical College of Fudan University (Grant No. EZF152509).

Disclosure Statement

The authors have no conflict of interest.

References

1 Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet 2009; 374: 7–9.

2 Fuchs CS, Mayer RJ. Gastric carcinoma. Cancer Treat Rev 2007; 33: 315–24.

3 Rivero F, Vega-Villegas ME, Lopez-Brea MF. Chemotherapy of advanced gastric cancer. Cancer Treat Rev 2007; 33: 315–24.

4 Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–45.

5 Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–7.

6 Domanska UM, Krzizanging RA, Nangengast WB et al. A review on CXCR4 CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49: 219–30.

7 Scotton CJ, Wilson JL, Scott K et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 2002; 62: 5930–8.

8 Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 2005; 7: R402–10.

9 Rempel SA, Dudas S, Ge S, Gutierrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 2000; 6: 102–11.

10 Koshiba T, Hosotani R, Miyoamto Y et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 2000; 6: 8530–5.

11 Sun YX, Wang J, Shelburne CE et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003; 89: 462–73.

12 Hwang JH, Chung HK, Kim DW et al. CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrino Metab 2003; 88: 408–16.
Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Relationship between mRNA and protein expression levels of stromal cell-derived factor 1 (SDF-1) in patients with gastric cancer (n = 40).

Fig. S2. Association between stromal cell-derived factor 1 (SDF-1) expression and overall survival of patients with gastric cancer according to tumor invasion depth.