Argonaute2 Is Essential for Mammalian Gastrulation and Proper Mesoderm Formation

Reid S. Alisch1, Peng Jin1, Michael Epstein1, Tamara Caspary1, Stephen T. Warren1,2,3*

1 Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America, 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America, 3 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America

Mammalian Argonaute proteins (EIF2C1–4) play an essential role in RNA-induced silencing. Here, we show that the loss of eIF2C2 (Argonaute2 or Ago2) results in gastrulation arrest, ectopic expression of Brachyury (T), and mesoderm expansion. We identify a genetic interaction between Ago2 and T, as Ago2 haploinsufficiency partially rescues the classic T/+ short-tail phenotype. Finally, we demonstrate that the ectopic T expression and concomitant mesoderm expansion result from disrupted fibroblast growth factor signaling, likely due to aberrant expression of Eomesodermin. Together, these data indicate that a factor best known as a key component of the RNA-induced silencing complex is required for proper fibroblast growth factor signaling during gastrulation, suggesting a possible micro-RNA function in the formation of a mammalian germ layer.

Results/Discussion

Introduction

Argonaute proteins comprise a highly conserved gene family necessary for a range of physiological and developmental processes. These proteins are defined by the presence of PAZ and PIWI domains, which modulate protein–protein interactions, nucleic acid binding, and, in some cases, mRNA cleavage [1–5]. Argonaute proteins serve as scaffolds for target-mRNA recognition by short regulatory guide RNAs during cleavage [1–5]. Argonaute actions, nucleic acid binding, and, in some cases, mRNA/C0 processes. These proteins are defined by the presence of PAZ domain and results in an apparent functional null allele [11] (Figure 1A and 1B). This disruption deletes most of the PIWI domain and results in an apparent functional null allele [11] (Figure 1A and 1C). Full-term litters from heterozygous intercrosses did not yield homozygous (Ago2T−/−) offspring. At embryonic day 9.5 (e9.5), we observed two classes of null embryo: intact embryos with assorted morphological phenotypes, such as the neural tube and cardiac malformations that are consistent with the earlier findings of Liu and colleagues ([11]; unpublished data), and embryonic remnants (Figure 1D). Unexpectedly, however, intact e9.5 null embryos were observed in numbers significantly lower than predicted based on genetic ratios (12/134; p < 0.0001; Table 1). Because intact null embryos were recovered in the appropriate genetic ratios during gastrulation (i.e., at e7.5; Table 1), Ago2 plays an important role at an earlier stage of development than previously reported [11].

Vertebrate gastrulation initiates at e6.5 and establishes the three germ layers of the developing embryo (reviewed in [14]). During gastrulation, embryonic ectoderm (epiblast) cells are recruited to a transient embryonic structure known as the primitive streak, located on the posterior side of the embryo. At the primitive streak, the epiblast cells undergo an

Results/Discussion

We explored the role of AGO2 in early mammalian development using gene-trapped embryonic stem cells to generate a mouse line that transmits an interrupted Ago2 allele without an obvious heterozygous phenotype. The interrupted Ago2 allele was characterized, and primers were designed to distinguish wild-type from mutants by genotype (Figure 1A and 1B). This disruption deletes most of the PIWI domain and results in an apparent functional null allele [11] (Figure 1A and 1C). Full-term litters from heterozygous intercrosses did not yield homozygous (Ago2T−/−) offspring. At embryonic day 9.5 (e9.5), we observed two classes of null embryo: intact embryos with assorted morphological phenotypes, such as the neural tube and cardiac malformations that are consistent with the earlier findings of Liu and colleagues ([11]; unpublished data), and embryonic remnants (Figure 1D). Unexpectedly, however, intact e9.5 null embryos were observed in numbers significantly lower than predicted based on genetic ratios (12/134; p < 0.0001; Table 1). Because intact null embryos were recovered in the appropriate genetic ratios during gastrulation (i.e., at e7.5; Table 1), Ago2 plays an important role at an earlier stage of development than previously reported [11].

Vertebrate gastrulation initiates at e6.5 and establishes the three germ layers of the developing embryo (reviewed in [14]). During gastrulation, embryonic ectoderm (epiblast) cells are recruited to a transient embryonic structure known as the primitive streak, located on the posterior side of the embryo. At the primitive streak, the epiblast cells undergo an
epithelial-to-mesenchymal transition (EMT), before migrating away from the streak and being specified as either the mesoderm or the definitive endoderm germ layers [15,16]. By e7.5, a complete mesoderm layer is formed. Brachyury (T), a T-box transcription factor, is expressed in the primitive streak and in the epiblast cells near the primitive streak [17,18]. To determine whether a proper primitive streak is formed in the Ago2 mutants, we examined the expression of T in Ago2 null embryos by whole-mount in situ hybridization. We found that homozygous disruption of Ago2 results in expanded expression of T compared to its expression in wild-type e7.5 embryos, indicating an abnormal primitive streak in Ago2 mutants (Figure 2A and 2B and insets). Notably, the Ago2 mutants exhibit a variability in the expansion of T expression (Figure S1B and S1C), which may account for the ability of some Ago2 mutants to escape gastrulation arrest and develop until midgestation [11]. Also consistent with previous studies is the reduced extraembryonic region in the e7.5 Ago2 mutant embryos; this finding further suggests embryos that survive to later stages have generalized nutritional deficiencies caused by yolk sac and placental defects [11].

Previous experiments have shown that ectopic expression of T is sufficient to induce mesoderm formation [19], leading us to hypothesize that Ago2 plays a role in mesoderm development. To explore this possibility, we assessed the expression pattern of another known mesoderm marker, Tbx6 [20], and found that homozygous disruption of Ago2 also results in an expansion of Tbx6 expression compared with its expression in wild-type e7.5 embryos (Figure S2A and S2B). These findings, paired with the expanded T expression, argue for an Ago2 function in mesoderm development.

To determine the spatial localization of Ago2 during gastrulation, we examined its wild-type expression pattern in sectioned heterozygous Ago2 e7.5 embryos by using antibodies against β-galactosidase (from the gene trap’s lacZ insertion driven by the endogenous Ago2 promoter) and BRACHURY. We found that wild-type Ago2 expression is restricted to the apical side of the epithelial cell layer and does not overlap with T in the mesenchymal cells of the primitive streak (Figure 2C, 2E, and 2G). Coupled with the fact that homozygous loss of Ago2 results in expanded T

Figure 1. Characterization of the Ago2 Disruption in ES Cell Clone RRE192
(A) Insertion of the gene-trap vector into intron 12 of the mouse Ago2 locus. Exons 1, 12, and 18 are labeled. Exons encoding the PAZ domain are shown in yellow, and exons encoding the PIWI domain are shown in orange. The insertion cassette contains a splice acceptor (SA), a fusion of the β-galactosidase and neomycin phosphotransferase coding sequences (βgeo), and a polyadenylation signal (pA). FRT and loxP sites are denoted as black triangles. The relative location of primers used for genotyping are shown as half-arrows and are labeled a, b, and c.
(B) The genotypes of embryos from heterozygous intercrosses. Shown is a gel displaying PCR products using primers a and b, identifying the normal allele, and primers a and c, identifying the normal allele, and primers a and b, identifying the interrupted allele. The PCR loaded into the water lane lacked template DNA and acts as a negative control. +/- represents wild-type; +/- represents Ago2 heterozygote; +/- represents Ago2 homozygous mutant.
(C) Western blot analysis of AGO2 in e7.5 wild-type (+/+), and Ago2 homozygous mutant (–/–) embryos. EIF4E was used as a loading control.
(D) Variable phenotype of Ago2 homozygous (Ago2–/–) mutant embryos at e9.5. Shown here are three littersmates. The variable Ago2–/– phenotypes included deciduas containing only embryonic remnants (ii) and iii. This phenotype also was variable as either remnants of embryoid structures (ii) or as cell masses lacking obvious embryonic development (iii). Note the size magnification of the embryonic remnants, as they are much smaller than the wild-type (WT) littermate (i).

doi:10.1371/journal.pgen.0030227.g001
expression into the epithelial cell layer (Figure 2F and 2H), these data suggest that Ago2 could play a role in defining the primitive streak. The attenuation of Ago2 expression as cells enter the primitive streak also raises the possibility that AGO2 plays a role in EMT. Indeed, failure to undergo proper EMT is a phenotype observed in embryos with defects in mesoderm development [21]. By contrast, because T is expressed throughout the epiblast of the Ago2 mutants (Figure 2B [inset], 2F, and 2H), these mutants likely exhibit aberrant EMT because an excess of epithelial cells are being fated to become mesoderm, which ultimately could result in expanded mesoderm at the expense of the epithelial cell layer.

Among the mesoderm cell types induced by T expression are the axial and paraxial mesoderms, both of which derive the skeletal tissues that contribute to tail development in vertebrates (reviewed in [22]). In fact, the level of T expression correlates directly with tail length, as evidenced by the short-tail phenotype long recognized in heterozygous T (T+/+) mice [12]. Remarkably, previous mapping of T modifier loci defined a small interval on chromosome 15 that includes the Ago2 locus [13]. In order to genetically test whether Ago2 could be the gene responsible for modifying the tail length in T/+ mice, we crossed mice heterozygous for the T deletion with mice heterozygous for the Ago2 disruption (Ago2+/−). We plotted the ratio of tail length to body length for a quantitative comparison of heterozygous mice with double heterozygotes (Figure 3A). While the average tail-to-body ratio in both wild-type and Ago2+/− mice is approximately

Table 1. Full-term and Embryonic Litter Numbers From Ago2 Heterozygous Crosses

Stage	Wild-type	Heterozygote	Homozygote	p-Value
Full-term births	17	33	0	<0.0001
e7.5 Embryo	17	48	15	0.1920
e9.5 Embryo	27	82	12 (intact embryos)	0.0001*
			13 (embryonic remnants)	

Full-term litters were genotyped from mouse line RRE192, revealing that homozygous disruption of Ago2 was embryonic lethal. At e7.5, homozygous embryos were recovered at the appropriate genetic ratios. In contrast, e9.5 embryos were significantly lacking at the expected genetic ratio. The p-values were calculated using a χ² test. *Indicates this p-value was calculated without the addition of the embryonic remnants.

doi:10.1371/journal.pgen.0030227.t001

Figure 2. The Homozygous Disruption of Ago2 Results in an Expansion of T Expression and Mesoderm Formation

(A, B) Whole-mount in situ hybridization using an antisense probe against T on e7.5 wild-type (A) and Ago2−/− (B) embryo littermates. The Ago2−/− embryos exhibit an expansion of the primitive streak (block-arrow). Note that Ago2−/− e7.5 embryos are smaller and rounder than wild-type, suggesting aberrant growth. The scale bar represents 200 μm. (A, B, insets) Sections from whole-mount in situ hybridized e7.5 embryos. Shown are representative wild-type (A, inset) and Ago2−/− embryos (B, inset). The scale bar represents 50 μm.

(C–H) Paraffin sections from Ago2−/− (C, E, G) and Ago2−/− (D, F, H) e7.5 embryos were stained with antibodies against β-galactosidase (C, D, G, H; green) and BRACHYURY (E, F, G, H; red). Coexpression of the proteins will appear yellow (G, H; merge). At this stage, wild-type Ago2 expression is restricted to the epithelial cell layer, and it does not overlap with BRACHYURY in the primitive streak. The scale bar represents 50 μm. The arrows denote the relative location of the primitive streak. The brackets indicate the approximate region of the mesoderm layer and/or the epithelial cell layer. m = mesoderm layer; ec = epithelial cell layer.

doi:10.1371/journal.pgen.0030227.g002

PLoS Genetics | www.plosgenetics.org December 2007 | Volume 3 | Issue 12 | e227
Dicer expressed in the epithelial cell layer. However, in micro-RNA pathway [11] to cleave and degrade T (upper) quartiles of the scatter plot data. The of the notches are located at the median confidence intervals. The extreme endpoints of the notched-box plot represent the 25% (lower) and the 75% (upper) quartiles of the scatter plot data. The x-axis shows each genotype name, and n is the number of mice. The y-axis shows the ratio of tail-to-body length. The asterisks denote that the double heterozygotes had significantly greater tail-to-body length ratios relative to single T heterozygotes (p = 0.007).

Ago2 is Essential During Mammalian Gastrulation

Figure 3. The Distribution of Tail Length for Each Genotype

(A) Shown are four mice from the same litter. While the tail lengths are indistinguishable between wild-type (WT) and Ago2 heterozygote (Ago2+/−) mice, the T heterozygote (T+/−) tail is reduced to approximately 30% of wild-type. In contrast, double heterozygous (Ago2+/− T+/−) mice have tail lengths that are approximately 60% of wild-type.

(B) Shown are the raw data (vertical scatterplot) overlaid with a notched-box plot. The center of the notched-box plot is the median, and the endpoints of the notches are located at the median confidence intervals. The extreme endpoints of the notched-box plot represent the 25% (lower) and the 75% (upper) quartiles of the scatter plot data. The x-axis shows each genotype name, and n is the number of mice. The y-axis shows the ratio of tail-to-body length. The asterisks denote that the double heterozygotes had significantly greater tail-to-body length ratios relative to single T heterozygotes (p = 0.007).

doi:10.1371/journal.pgen.0030227.g003

0.85, the average ratio in T+/ mice is 0.35 (Figure 3B). By contrast, the average tail-to-body ratio in double heterozygote mice is 0.58; the double heterozygotes have significantly longer tails than the T+/ mice (p < 0.01). Thus, haploinsufficiency of Ago2 results in a partial rescue of the short-tail T+/ phenotype, demonstrating that Ago2 is a genetic modifier of T expression. As an initial investigation to determine whether Ago2 is one of the previously mapped modifiers of T expression [13], we searched the entire Ago2 genomic locus (approximately 80 kb) for single nucleotide polymorphisms (SNPs) [23] and analyzed Ago2 expression between the previously reported background strains. Remarkably, we found only one intronic SNP and that the Ago2 expression levels are indistinguishable between the strains (unpublished data). While this might be interpreted to rule out Ago2 as one of the previously mapped modifiers, this is a gross analysis of Ago2 expression in whole embryos and at only a single stage of development. Indeed, our genetic data clearly show that Ago2 is a modifier of T expression.

These studies reveal a genetic interaction between Ago2 and T and demonstrate that AGO2 mediates mesoderm development. The loss of AGO2 is known to disrupt RISC activity [11], suggesting AGO2 influences T expression via the micro-RNA pathway. Because the homozygous loss of Ago2 results in expanded T expression into the epithelial cell layer (Figure 2F and 2H), AGO2 may utilize its “slicer” activity within the micro-RNA pathway [11] to cleave and degrade T transcripts expressed in the epithelial cell layer. However, in Dicer−/− mutants, RISC activity is disrupted upstream of Ago2, and these mice do not express T at all [24], indicating that either AGO2 is more restricted than DICER for RISC activity or the other Argonauta protein family members might retain a low level of functional redundancy to partially compensate for the loss of AGO2. Alternatively, AGO2 might regulate upstream inducers of T, such as Bmp4, Eomesodermin, Fgf1, or Wnt5a [25–28]. Studies conducted in Xenopus laevis have demonstrated that both transforming growth factor (TGF) and FGF signaling are required to initiate T expression as gastrulation commences [18,29,30]. In mice, mutational analysis of the known FGF genes established that only Fgf4 and Fgf8 are required during gastrulation [31,32], Fgf4 and Fgf8 are coexpressed throughout the primitive streak in an opposing gradient, with Fgf8 expression highest at the posterior end of the streak and barely detectable at the anterior end. Subsequent genetic studies determined that FGF receptor 1 (Fgfr1) is required for the initiation of T expression in the posterior end of the primitive streak, suggesting that Fgf8 is the likely ligand in this region [33]. We examined the expression of Fgf8 in Ago2 null embryos by whole-mount in situ hybridization and found that homozygous disruption of Ago2 results in expanded expression of Fgf8 compared to its expression in wild-type e7.5 embryos (Figure 4A and 4B), reminiscent of the expanded T expression pattern (Figure 2A and 2B). These data suggest abnormal FGF signaling causes the expanded T expression in Ago2−/− embryos.

In the mouse, direct upstream inducers of Fgf8 are not precisely characterized, but the homozygous loss of either Bmp4 or Eomesodermin (Eomes) results in failure to express both Fgf8 and T [27,28]. We therefore examined the expression of Bmp4 and Eomes in Ago2-null embryos by whole-mount in situ hybridization and found that homozygous disruption of Ago2 results in expanded expression of Eomes compared to its expression in wild-type e7.5 embryos (Figure 4C and 4D), which is consistent with previous data suggesting that Eomes and Fgf8 function similarly during gastrulation [28,34]. By
contrast, despite the morphological differences, the localization of Bmp4 expression is indistinguishable between Ago2 mutants and their wild-type littermates, in that Bmp4 expression in Ago2 mutants remains restricted to the extraembryonic ectoderm and the proximal embryonic tissue (Figure 4E and 4F). Taken together, these data suggest that Eomes is an upstream inducer of Fgf8 and that Bmp4 is either upstream of Eomes or in a parallel pathway to induce Fgf8 and T gene expression. Finally, as with T, the expansion of both Fgf8 and Eomes expression in the Ago2 mutants is varied, which again suggests a plausible explanation for those Ago2 mutants that escape gastrulation arrest and develop until midgestation ([11]; unpublished data).

The induction of T expression has been studied extensively in the 15 years since the gene was cloned. These studies attribute the restricted initiation of T expression to morphogenetic movements and cell signaling cascades by showing that disruption of these processes ultimately results in aberrant T expression and mesoderm development [27,28]. Coupled with earlier work in X. laevis demonstrating that Bmp4 induces Eomes transcription [35], our data suggest a T induction working model in which Bmp4 is also an upstream inducer of Eomes in mouse (Figure 5). At the commencement of gastrulation in wild-type embryos, Ago2 may regulate the proper level of Eomes gene expression, which ultimately induces the downstream expression of Fgf8 and T. In the absence of Ago2, Eomes may not be regulated properly, leading to its overexpression and a resultant downstream overinduction of Fgf8 and T. Alternatively, Ago2 may regulate an as-yet-unknown upstream inducer of Eomes, or Ago2 may simultaneously have a direct influence on Fgf8 and T gene expression. Because AGO2 is best known to associate with micro-RNA, it might be notable that we find computational algorithms have predicted micro-RNA binding sites in Eomesodermin, Fgf8, and T (http://microrna.sanger.ac.uk/targets/v3), suggesting the modifying influence of Ago2 is mediated by the micro-RNA pathway, although experimental validation of these micro-RNA binding sites awaits further study. In this case, AGO2 may utilize its "slicer" activity within the micro-RNA pathway [11] to cleave and degrade Eomesodermin, Fgf8, and/or T transcripts expressed outside the primitive streak. Distinguishing among these models will

Figure 4. The Homozygous Disruption of Ago2 Results in a Disruption of FGF Signaling
(A–F) Whole-mount in situ hybridization using an antisense probe against Fgf8, Eomesodermin, or Bmp4 on e7.5 wild-type (A, C, E) and Ago2+/− (B, D, F) embryo littermates. The Ago2+/− embryos exhibit a lateral expansion of Fgf8 and Eomesodermin expression away from the primitive streak (B, D; block-arrow). In contrast, the localization of Bmp4 expression is indistinguishable between wild-type (E) and Ago2+/− (F) embryo littermates. (A–D) Embryos imaged with reflective light. (E, F) Embryos imaged with reflective and transmitted light. The scale bar represents 200 µm.
doi:10.1371/journal.pgen.0030227.g004
branes were blocked with 1% milk in PBS/C0. washed in Blotto and incubated with horseradish peroxidase and incubated with antibodies against AGO2 (Abnova) and EIF4E (BD CAGGTTG-3

require further analysis of Ago2-null mice that are also null for potential upstream inducers of T. These possibilities notwithstanding, our findings demonstrate that AGO2 is a key factor both in the regulation of T expression and in mesoderm formation, placing a known component of the RNAi machinery in mammalian germ layer development.

Materials and Methods

Genotype and phenotype analysis. Genomic DNA from tail or ear tissue was isolated according to standard procedures. Embryonic and full-term litters were genotyped for the Ago2 disruption via a standard PCR procedure and the following primers: (a) 5'-CAGTGGGTCACAGTAGGAAACG-3'; (b) 5'-CCCGGAAAGATGAACAGTGGTG-3'; and (c) 5'-GTGTCCCTCGTACACGAGGTG-3'.

The heterozygous T mice (B10:1FlE-ult T if+/ iff) were purchased from The Jackson Laboratory. The Ago2−/− mice are on a congenic C57Bl/6 background, as all the mice used have been backcrossed at least ten generations onto a C57Bl/6 background. While it has been demonstrated that the background strain can affect the heterozygous T tail phenotype, this phenotype is not affected in strains on C57 backgrounds (e.g., C57Bl/6 and C57Bl/10). Heterozygote crosses (T+/− × Ago2+/−) were set up, and the offspring (on a mix of C57Bl/6 and C57Bl/10 backgrounds) were aged 6 to 8 wk to allow for the completion of tail development. At this time, ear tissue was taken, hydrated by standard procedures, before blocking endogenous peroxidases with water and PBS prior to antigen retrieval using a standard procedure (Dako). Following PBS washes, sections were blocked in 5% donkey serum and incubated with primary antibodies against T (Santa Cruz) and β-galactosidase (Cappel) at 4 °C. Sections were then rinsed in PBS and incubated for 1 h with the corresponding secondary antibodies (Invitrogen) at room temperature. Sections were rinsed in PBS and cover slips were mounted with n-propyl gallate (Sigma). Confocal imaging was performed using the ×20 objective lens and a Zeiss LSM 510 confocal microscope system (Figure 2).

Statistical analysis. We initially applied a Shapiro-Wilk test to our data to determine whether tail-to-body length ratios followed a normal distribution. When results indicated that the distribution was not normally distributed (p = 0.0043), we applied a nonparametric test of independent samples (Wilcoxon rank-sum) to assess differences in the tail-to-body length ratios between single (T+/−; n = 29) and double (T+/−×Ago2−/−; n = 33) heterozygotes. The double heterozygotes were found to have significantly greater tail-to-body length ratios compared with single heterozygotes (p = 0.007). The endpoints of notches on the notched-box plot are located at the median ± 1.58 (IQR) square root of n, where IQR represents the interquartile range and n is the subgroup sample size [38].

Supporting Information

Figure S1. The Homozygous Disruption of Ago2 Results in a Variable Expansion of T Expression

(A–C) Whole-mount in situ hybridization using an antisense probe against T on e7.5 wild-type (A) and Ago2−/− (B, C) embryos. The Ago2−/− embryos exhibit an expansion of the primitive streak (block arrow). The expansion can be classified as either partial [(B); 9/17 Ago2−/− mutants] or profound [(C); 8/17 Ago2−/− mutants]. The scale bar represents 200 μm. Found at doi:10.1371/journal.pgen.0030227.sg001 (1.4 MB PDF).

Figure S2. The Homozygous Disruption of Ago2 Results in an Expansion of Th6b Expression

(A, B) Whole-mount in situ hybridization using an antisense probe against Th6b on e7.5 wild-type (A) and Ago2−/− (B) embryos. The Ago2−/− embryos exhibit an expansion throughout the embryo. The scale bar represents 150 μm. Found at doi:10.1371/journal.pgen.0030227.sg002 (57 KB PDF).

Acknowledgments

We are grateful to Brigid Hogan and Deidre Mattiske for introducing us to early embryo methodology. We appreciate the gifts of Brachyury antibody and the immunohistochemistry protocol from Yina Li and Chin Chiang. We thank Robert Baul, Anne Dodd, Tamika Malone, and Julie Mowrey for technical assistance, as well as Karen Artzt, and Julie Mowrey for technical assistance, as well as Karen Artzt.
References

1. Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23: 4727–4737.

2. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434–1437.

3. Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426: 465–469.

4. Yan KS, Yan S, Farooq A, Han A, Zeng L, et al. (2003) Structure and conserved RNA binding of the PAZ domain [erratum appears in Nature. 2004 Jan 15;427(6971):265]. Nature 426: 468–474.

5. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, et al. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10: 1026–1032.

6. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293: 1146–1150.

7. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123–132.

8. Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9: 315–327.

9. Fagard M, Vacheret H (2000) Systemic silencing signal(s). Plant Mol Biol 43: 285–293.

10. Volpe TA, Kidner C, Hall BM, Teng G, Grewal SI, et al. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.

11. Liu J, Carmell MA, Rivas FV, Marsden CG, Thompson JM, et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441.

12. Dobrovolskaia-Zavadskia N, Scances CR (1927) Sur la mortification spontanée de la chez la souris nouveau-née et sur l’existence d’un caracité (facteur) hereditaire. Sco Biol 97: 114–116.

13. Agulnik II, Agulnik SI, Saatkamp BD, Silver LM (1998) Sex-specific modifiers of tail development in mice heterozygous for the brachyury (T) mutation. Mamm Genome 9: 107–110.

14. Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68: 3–25.

15. Hashimoto K, Nakatsuji N (1989) Formation of the primitive streak and anterior primitive endoderm of the mouse gastrula. Mech Dev 68: 45–57.

16. Bellairs R (1986) The primitive streak. Anat Embryol (Berl) 174: 1–14.

17. Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657–659.

18. Smith JC, Price BM, Green JB, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67: 79–87.

19. Canliffe V, Smith JC (1992) Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue. Nature 358: 427–430.

Funding. This work was supported, in part, by National Institutes of Health grants HD20582 and HD24064 (STW) and the FRAXA Research Foundation (RSA).

Competing interests. The authors have declared that no competing interests exist.

Maria Garcia-Garcia, Gail Martin, and Olga Peñagarikano for their comments.

Author contributions. RSA, PJ, and TC conceived and designed the experiments. RSA performed the experiments. RSA, ME, TC, and STW analyzed the data. RSA and STW contributed reagents/materials/analysis tools. RSA, TC, and STW wrote the paper.