Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role?

Linglin Yang 1†, Yunxiang Zhou 2†, Honglei Jia 3, Yadong Qi 4, Sheng Tu 5 and Anwen Shao 6*

1 Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 2 Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3 Department of Student Affairs, Zhejiang University School of Medicine, Hangzhou, China, 4 Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 5 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, 6 Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Emerging evidence demonstrates the critical role of the immune response in the mechanisms relating to mood disorders, such as major depression (MDD) and bipolar disorder (BD). This has cast a spotlight on a specialized branch committed to the research of dynamics of the fine interaction between emotion (or affection) and immune response, which has been termed as “affective immunology.” Inflammatory cytokines and gut microbiota are actively involved in affective immunology. Furthermore, abnormalities of the astrocytes and microglia have been observed in mood disorders from both postmortem and molecular imaging studies; however, the underlying mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia acts as a mutual and pivotal intermediary factor modulating the immune response posed by inflammatory cytokines and gut microbiota. In this study, we propose the “altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the astrocyte-microglia crosstalk regulates emotional alteration through mediating immune response, and thus, contributing to the development of mood disorders.

Keywords: astrocyte-microglia crosstalk, neuroinflammation, mood disorders, depression, bipolar disorder

INTRODUCTION

Almost a century ago, Julius Wagner-Jauregg first reported the impact of immunological disturbance on psychological function. This finding stirred up researchers’ enthusiasm about bidirectional communication between immunological dysfunction and mental disorders. To date, understanding the etiology of mental disorders, such as schizophrenia, autism spectrum disorder, anxiety disorder, as well as mood disorders, is one of the most actively explored topics in immunology (1, 2).
Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are a group of complex debilitating psychiatric illnesses identified by symptoms rather than biological markers. Both of these disorders remain serious health concerns worldwide, owing to their high prevalence, risk for recurrence, and suicide. Further, the mainstream pharmacological treatments—antidepressants and mood stabilizers—are unsatisfactory in treating such patients due to their delayed onset of action, limited efficacy, and vast array of adverse side effects (3, 4). The important reason behind this dilemma is frustratingly limited understanding of the pathological mechanism underlying mood disorders, including affective immunology (5, 6).

To understand the dynamics of the fine interaction between the emotion (or affection) and immune response, a specialized branch called “affection immunity” was recently introduced to distinguish it from “psycloneuroimmunology” which broadly studies the relationship between psychological processes, neuroendocrine activities, and immune systems (7). The high plasticity of the immune system significantly raises the exciting possibility of translational research. In the wake of rapidly accumulating evidence implying the critical role of affective immunity in the cellular and molecular mechanisms underlying the mood disorders, great efforts are ongoing to develop more immunomodulators targeting immune cells (especially microglia) (8, 9), inflammatory cytokines (10, 11), as well as gut microbiota (12, 13).

Microglia are widely known as innate sentinel immune cells that reside in the central nervous system (CNS). These cells respond dynamically to changes in the physical environment and are proven to be key players in affective immunology. Additionally, another common glia, astrocytes, also participate in neuroinflammation by re-sculpting blood-brain barrier (BBB) and releasing inflammatory cytokines. Interestingly, a unique bond between microglia and astrocytes exists, namely the astrocyte-microglia crosstalk, coordinate their functions in neuroinflammatory response (14). Collectively, the astrocyte-microglia crosstalk likely exerts an influence on emotion and affection by regulating the neuroinflammatory response. Hence, we speculate that the altered astrocyte-microglia crosstalk (AAMC) is a primary determinant of mood disorders, thereby a more specific and direct therapeutic target.

In this study, we integrate available data from both preclinical and translational studies regarding affective immunology and highlight the core role of the astrocyte-microglia crosstalk. Furthermore, we intend to discuss the dysregulated crosstalk between astrocytes and microglia and hope to shed some light on potential therapeutic opportunities for treating mood disorders.

AFFECTIVE IMMUNOLOGY

The Interaction Between Emotion and Immune System

Researchers have revealed that emotion and immune system mirror each other. However, the effect and causality between the two are debatable.

Mounting evidence has shown the beneficial impact of positive emotion (e.g., humor, happiness, and hope) on the immune system. For instance, people with positive emotions showed lower susceptibility to infection (15, 16) and greater immune response (17, 18). This role of “immune enhancer” is mediated by higher levels of antibodies (18) and T cells (19–21), and increased activity of natural killer (NK) cells (19, 22), as well as reduced inflammatory markers including interleukin-6 (IL-6) and C-reactive protein (CRP) (22, 23). In contrast, negative emotions (e.g., sadness, nervousness, worry, loneliness, and fear) and psychological stress are associated with poorer immunological function with lower NK cell cytotoxicity (8), fewer T cells (24), and increased inflammatory markers (25). Importantly, these immune alterations can persist up to 2 h following brief emotional turbulence like stress exposure (26), and it might be stored as immunological memory, thus shedding light on the development of emotional interventions (27).

Contrastingly, some researchers suggest that a dysfunctional immune system can induce emotional changes. For instance, immunotherapy using interferon-alpha (IFN-α) and vaccination can lead to negative emotion along with increased levels of inflammatory cytokines (10, 28, 29). Particularly, these cytokines are postulated to regulate BBB permeability and activity of the hypothalamic-pituitary-adrenal (HPA) axis (30, 31). This thus influences various neuronal events related to emotions including glia-neuron communication, neurotransmission, and synaptic pruning (32, 33). This finding leads to an interesting hypothesis that emotions can act as an “infection defense” to various environmental pathogens (34).

Taken together, bidirectional communication between emotions and the immune system exists, suggesting a striking role of inflammation in the immune response in the development of mood disorders.

The Compelling Role of Inflammation in Mood Disorders

Afferent inflammatory processes exert an influence on the progression of mood disorders and also mediate the treatment response. High levels of peripheral inflammatory cytokines and chemokines, including IL-1β, IL-6, IFN-γ, tumor necrosis factor alpha (TNF-α), are known to contribute to the progression of mood disorders (35). Moreover, chronic psychological stress has been shown to increase peripheral inflammatory markers (25). The exacerbation of inflammation in the CNS can lead to the development of mood disorders (36). For example, neuroinflammation has been implicated in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD) (37). Inflammation in the CNS can lead to the release of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), which can affect mood and behavior (38). These cytokines can alter the function of immune cells and neural circuits, contributing to the development and maintenance of mood disorders (39).

Abbreviations: AAMC, altered astrocyte-microglia crosstalk; CNS, central nervous system; BBB, blood-brain barrier; MCP, monocyte chemoattractant protein; IL, interleukin; TGF, transforming growth factor; NK, nature killer; CRP, C-reactive protein; HPA, hypothalamic-pituitary-adrenal; MDD, major depression disorder; BD, bipolar disorder; IFN, interferon; TNF, tumor necrosis factor; SCFA, short-chain fatty acids; MIF, migration inhibitory factor; VEGF, vascular endothelial growth factor; CCL, C-C motif chemokine ligand; GDNF, glial cell line-derived neurotrophic factor; PTX3, Pentraxin 3; AHR, aryl hydrocarbon receptor; PFC, prefrontal cortex; ACC, anterior cingulate cortex; TSPO, translocator protein; GFAP, Glial fibrillary acidic protein; TMS, transcranial magnetic stimulation; CSF, cerebrospinal fluid; BA, Brodmann area; ATP, adenosine triphosphate; IGF-1, insulin-like growth factor 1; LCN2, lipocalin-2; ORM2, orosomucoid-2; IP-10, IFN-γ inducible protein 10; CXCL10, C-X-C motif chemokine ligand 10; PAI-1, plasminogen activator inhibitor type 1; HLA-DR, Human leukocyte antigen D-related; AQP-4, aquaporin-4; CH3L1, chitinase-3-like protein 1; NMDA, N-methyl-D-aspartate; EAAT2, excitatory amino acid transporters 2.
factor-alpha (TNF-α), and CRP, have been reported in patients with depression (35). In addition, the levels of these cytokines are reduced following an effective antidepressant therapy (36). Conversely, anti-inflammatory treatment results in improvement of depressive symptoms (37). Furthermore, immune-related genes encoding these cytokines have recently been found to be associated with depression (38), thus strongly supporting postulation that inflammatory cytokines are the active regulator of depression. Therefore, inflammatory cytokines are considered as "biomarkers" for diagnosis, susceptibility, and treatment responsiveness for MDD (36). With regards to BD, inflammatory cytokines have been found to be upregulated in both the depressive and manic episodes and return to normal levels in the euthymic state (9, 39). In addition to circulating cytokines, transmembrane TNF-α has also been shown to significantly increase in Brodmann area (BA) 46 for MDD and BA24 for BD (40).

Other than cytokines, the emerging evidence shows altered composition of gut microbiota in both MDD and BD (13, 41, 42). Specifically, Allstipes and Klebiella are increased in MDD patients, while bacteria belonging to the Lachnospiraceae family are decreased (12, 43). Likewise, an abundance of Lachnospira was reported in the gut of BD patients (44). The altered gut microbiome can not only influence peripheral immune response (45) but can also regulate the neuroinflammation via the vagus nerve and microbial metabolites such as short-chain fatty acids (SCFA), secondary bile acids, serotonin, tryptophan metabolites (46), and neurotransmitter production (e.g., gamma-aminobutyric acid, noradrenaline, dopamine, and acetylcholine) (47, 48). However, since there is large variability in the composition and diversity of gut microbiota between individuals and emotional states, it remains difficult to identify an optimal microbiome profile. A major challenge lies in translating these observations into interventions that could be used to treat mood disorders.

Taken together, the inflammatory cytokines and gut microbiota play compelling roles in the etiology of mood disorders (Figure 1). Particularly, both have profound impacts on the neuroinflammatory response by boosting the activity of microglia and astrocytes (46, 49, 50). In the next section, we present pathological alterations of both microglia and astrocytes in depression and BD, respectively.

DYSFUNCTION OF MICROGLIA AND ASTROCYTES IN MOOD DISORDERS

Dysfunctional astrocytes and microglia are inextricably intertwined in mood disorders. To date, a growing body of evidence from human autopsy and serum/CSF/imaging biomarkers indicates their abnormalities underlying mood disorders (Table 1). Additionally, distinct gene profiling patterns of these cells have been reported. For instance, the CD206 gene expression pattern of microglia varies between depressive and manic states of BD, suggesting the genetic evidence of microglial dysfunction in BD and the potential of microglial CD206 as a state marker (73).

Dysfunction of Microglia and Astrocytes in Depression

Postmortem brain tissue of suicide victims has provided evidence suggesting enhanced microglial activation in the depressive episode (32, 71, 81). Steiner et al. observed greater human leukocyte antigen, D related (HLA-DR) staining in the dorsolateral prefrontal cortex (PFC) and anterior cingulate cortex (ACC) (71). Subsequently, an increased density of microglial quinolinic acid within ACC was reported in both unipolar and bipolar depression (32). Strikingly, it was found that primed microglia, rather than resting phenotype, were increased in ACC (81). These findings are consistent with the findings of recent molecular imaging studies using translocator protein (TSPO) as a marker of microglial activation (77, 78). Elevated TSPO density was found in PFC, ACC, and insula of patients experiencing major depressive episode (77, 79), especially in those with a longer duration of untreated MDD (78). However, an earlier positron emission tomography (PET) imaging studies showed no significant difference in TSPO density between depressive patients and matched controls (76). The discrepancies may be related to the relatively small sample size and high heterogeneity of severity, onset age, and antidepressants used. Collectively, enhanced microglial activation in specific brain regions is a core constituent of depression pathology. Accordingly, inhibition of microglial activation by minocycline administration can lead to an improvement in depressive symptoms in various animal and human studies (31, 82–85). Similarly, blocking the adenosine triphosphate (ATP)-gated P2X7 ion channel of microglia was shown to be a potential, new, and effective antidepressant therapy (86).
TABLE 1 | Astrocyte-microglial markers in mood disorders.

Molecular markers	Cell type	Human cohort studied	Sample studied	Main findings	References
GFAP	Astrocyte	MDD	Human postmortem tissue	Decreased in amygdala, cerebellum, hippocampus, PFC (including BA10), cingulate cortex, thalamus and caudate	(51–56)
		BD	Human postmortem tissue	Increased in basal ganglia	(57)
		BD (manic state)	Serum	No significant difference in ACC, PFC, entorhinal cortex, hippocampus and corpus callosum	(58–61)
S100β	Astrocyte	MDD	Human postmortem tissue	Decreased in amygdala	(60)
		BD	Human postmortem tissue	Decreased in hippocampus and BA 9	(61, 68)
ALDH1L1	Astrocyte	MDD	Human postmortem tissue	No significant difference in amygdala	(60)
		BD	Human postmortem tissue	Decreased in hippocampus	(61)
		BD (manic state)	Serum	Increased in amygdala	(69)
HLA-D	Microglia	MDD	Human postmortem tissue	No significant difference in PFC, ACC, mediodorsal thalamus, hippocampus and amygdala	(69, 71)
		BD	Human postmortem tissue	No significant difference in PFC, ACC, mediodorsal thalamus, hippocampus and amygdala	(69, 71)
		Unipolar and bipolar depression	Human postmortem tissue	Decreased in dorsal raphe nucleus (non-suicidal subgroup)	(72)
CD206	Microglia	BD	Peripheral blood	Downregulated in the manic state	(73)
MCP-1/CCL-2	Microglia and astrocytes	BD (euthymic state)	Serum, CSF	Increased in both serum and CSF	(74)
YKL-40/CHI3L1	Microglia	BD (euthymic state)	Serum, CSF	Increased in both serum and CSF	(74)
sCD14	Microglia	BD (euthymic state)	Serum, CSF	Increased in serum while no significant difference in CSF	(74)
CD11B	Microglia and astrocytes	BD	Human postmortem tissue	Decreased in ACC	(75)
		BD	Human postmortem tissue	No significant difference in frontal cortex	(40)
		BD	Human postmortem tissue	No significant difference in BA9	(64)
IBA-1	Microglia	BD	Human postmortem tissue	No significant difference in PFC	(65)
		BD	Human postmortem tissue	No significant difference in BA9	(64)
TSPO	Microglia	MDD (mild to moderate depression)	[11C] PBR28 PET	No significant difference	(76)
		MDD (severe depression)	[3F] FEPPA PET	Increased in PFC, ACC and insula	(77, 78)
		MDD (late-life)	[11C] PK11195 PET	Increased in ACC and hippocampus	(79)
		BD (euthymic state)	[11C] PK11195 PET	Increased in hippocampus	(80)
Quinolinic acid	Microglia	Unipolar and bipolar depression	Human postmortem tissue	Increased in cingulate cortex	(32)

MCP, monocyte chemoattractant protein; CCL, C-C motif chemokine ligand; MDD, major depression disorder; BD, bipolar disorder; PFC, prefrontal cortex; ACC, anterior cingulate cortex; TSPO, translocator protein; GFAP, Glial fibrillary acidic protein; CSF, cerebrospinal fluid; BA, Brodmann area; HLA-D, Human leukocyte antigen D; CHI3L1, chitinase-3-like protein 1; IBA-1, ionized calcium-binding adapter molecule-1; PET, positron emission tomography.
Morphological and functional abnormalities of astrocytes have also been seen in patients with depressive episode. A histological study using Golgi-staining found hypertrophic astrocytes with more intricate processes and longer projections within ACC of depressed suicide cases (87), suggesting local low-grade inflammation with reactive astrogliosis. These findings were further confirmed by the observation of weakened BBB with reduced astrocytic endfeet (88) and gap junction proteins (89, 90), which facilitates the recruitment of immune cell and diffusion of pro-inflammatory cytokines (30). In parallel, mounting evidence of astrocyte-specific biomarkers demonstrates the dysfunction of astrocytes in depressive episode. Glial fibrillary acidic protein (GFAP), involved in astrocytic structure and movement, is thought to be upregulated during neuroinflammation (91). However, decreased density of GFAP-positive astrocytes was consistently found in depression-related brain regions, such as PFC, cingulate cortex (55, 58), hippocampus (54), amygdala (51), thalamus, and caudate nuclei (56). Although less astrocyte-specificity, other markers such as calcium-binding protein S100β (92) and the water channel aquaporin-4 (AQP-4) (93) provided supporting evidence of astrocytic damage (especially neuroprotective phenotype) during dysregulated neuroinflammatory response induced by depressive episode (61, 88). Importantly, possibly due to epigenetic mechanism, maternal depression can result in a profound reduction of astrocyte density in the offspring, as shown in an animal model (94). In summary, the pathological alterations in astrocytes represent a prominent characteristic of depression, which can be reversed using effective antidepressant therapy. Fluoxetine (63, 95, 96), mirtazapine (97), ketamine (98, 99), as well as repetitive high-frequency transcranial magnetic stimulation (TMS) (100) have been shown to have a beneficial impact on astrocytes, paralleled by improvement of depressive symptoms. Additional support for the critical role of astrocytes in depression is derived from recent studies suggesting the therapeutic option for depression via the regulating the activity of astrocytes (101, 102).

Dysfunction of Microglia and Astrocytes in Bipolar Disorder

Although the dysfunction of microglia and astrocytes has also been implicated in the development of BD (103, 104), the picture appears to be more complicated compared to MDD. Human postmortem studies in BD have not yielded consistent results. The majority of them showed an unchanged density of astrocytes and microglia in the frontal cortex (40, 64, 105, 106), ACC (60), amygdala (51, 67, 69), hippocampus (107), entorhinal cortex (59, 67), basal ganglia (57), dorsal raphe nucleus (72), and cerebellum (52). On the contrary, several studies showed positive results. For instance, the level of GFAP has been reported to be increased in BA9 (66) and decreased in BA10 (53), BA24 (63), BA11, and 47 (62). The level of S100β has been reported to be increased in BA40 and decreased in BA9 (68). The expression of CD11b protein, a marker of astrogliosis and microglial activation, has been reported to be upregulated in PFC (65) and downregulated in ACC (75).

Obviously, the heterogeneity in terms of brain regions studied (62, 68) and methodology used (40, 66, 107) contributes to the discrepancy in these findings. Additionally, the mixed perimortem states are conceivably confounding factors that cannot be neglected. Some brain tissues were from depressive suicide cases, while most were from patients that died due to physical disease including pneumonia, pulmonary embolism, myocardial infarction, and cerebral hemorrhage which might affect acid-base balance and neuroinflammatory response (64, 72, 107). Also, substance abuse is common in BD and it can influence microglial activity (75). For each subject, the diagnosis of BD was based on the retrospective review of medical records and extensive telephone interviews with relatives, but their comorbidity and phenotype (depressive episode, manic episode or remission state) remain unclear (108). Due to the complexity of BD, studies regarding its diverse phenotypes are requisite to identify trait- or state-related alterations of astrocytes and microglia (5). Similar to unipolar depression, bipolar depression has been found to be related to reduced S100β positive astrocytes in the bilateral hippocampus (CA1 subregion) (61). Nevertheless, no significant difference in GFAP positive astrocyte and HLA-DR positive microglia were found in bipolar depression, which might be ascribed to the relatively small sample size (61, 71). With regards to manic episode, higher levels of peripheral S100β have been observed, implying astrogliosis activation (70). Likewise, astrogliosis and microglial activation are involved in euthymic patients (74, 80). Jakobsson et al. found increased cerebrospinal fluid (CSF) and serum levels of MCP-1/CCL2 and YKL-40/chitinase-3-like protein 1 (CHI3L1) in patients with mood-stabilized BD (74). Moreover, a PET study revealed microglial activation in hippocampus (80), which is positively related to neuronal integrity (109). Frustratingly, it remains difficult to conclude an absolute statement based on these limited studies.

Dysfunctional astrocytes and microglia reflect abnormal neuroinflammatory response in mood disorders. Below, we will discuss the astrocyte-microglia crosstalk and its pivotal role in affective immunology.

THE ASTROCYTE-MICROGLIA Crosstalk in Neuroinflammation

Overview of the Astrocyte-Microglia Crosstalk

Although both microglia and astrocytes belong to glia cells, they have very different origins; the former are CNS resident macrophages, while the latter are derived from neuroepithelial progenitors and serve as stromal cells (110, 111). To date, numerous cellular and molecular mechanisms of bidirectional communication between them have been shown (49, 112).

Astrocyte-derived IL-1 could activate microglia via permeabilizing the BBB. Besides, astrocytes can release inflammatory cytokines and chemokines, such as IL-15 (113), IL-33 (114), migration inhibitory factor (MIF) (115), and ATP (116), to directly enhance microglial abilities like migration, engulfing apoptotic cells, phagocytosing extracellular matrix, and
pruning synapses. Similarly, microglia could influence astrocytic activity by releasing ATP (33), complement factor C1q, IL-1α, TNF (49), transforming growth factor-beta (TGF-β), vascular endothelial growth factor-β (VEGF-β) (50), and insulin-like growth factor 1 (IGF-1) (14). Moreover, astrocytes and microglia communicate by coordinated response using common soluble factors [including norepinephrine (117, 118), purines (119), and circulating bacterial metabolites from gut microbiome (47, 50)], consistently impacting the neuronal activity. Last but not least, there is limited evidence to explain the relatively stable proportions of astrocytes and microglia. Researchers have hypothesized that communication between astrocytes and microglia performs an essential role in balancing their proportionate numbers (120, 121).

Taken together, the microglia and astrocytes function synchronously and complementarily during various physiological and pathological processes (14, 122), including synaptic formation and remodeling, BBB regulation, homeostasis, and immune response (123). Once the astrocyte-microglia crosstalk is perturbed, pathological events occur.

The Astrocyte–Microglia Crosstalk During Innate Immune Response

Both astrocytes and microglia actively participate in neuroinflammation by regulating the innate immune system (124). When the microglia sense danger signals with their motile protrusions, they immediately release cytokines and chemokines that lead to reactive astrocytosis. Interestingly, the phenotypes of reactive astrocytes, whether they are neuroprotective or neurotoxic, are determined by microglia-derived pro-inflammatory cytokines according to diverse pathological conditions (49, 119, 125). The neuroprotective reactive astrocytes are induced via purinergic signaling (119). They can release neurotrophic factors and secret proteins, resulting in synaptogenesis and scar formation (119). The scar protects brain tissue from invading of excessive inflammation response. Conversely, the neurotoxic reactive astrocytes increase the expression of multiple genes that are related to tissue damage and induction of proinflammatory mediators (112, 126). Astrocyte-derived proinflammatory molecules can increase BBB permeability, which contributes to the recruitment of immune cells and increased migration and phagocytosis of microglia (30). This thereby amplifies the inflammatory response. Many researches have shown the pivotal nature of lipocalin-2 (LCN2) (127), as well as monocyte chemoattractant protein 1/C-C motif chemokine ligand 2 (MCP-1/CCL2), IFN-γ inducible protein 10/C-X-C motif chemokine ligand 10 (IP-10/CXCL10) (128), complement factor C3 (129), and plasminogen activator inhibitor type 1 (PAI-1) (130) in enhancing microglial activity. Contrarily, at the late stage of inflammation, the reactive astrocytes attenuate microglial activation by orosomucoid-2 (ORM2) (131), TGF-β (132), and glial cell line-derived neurotrophic factor (GDNF) (133), and inhibits the microglial phagocytosis by pentraxin 3 (PTX3) (134), thereby limiting the neuroinflammation. Above all, the astrocyte-microglia crosstalk is crucial for moderating innate immune response; otherwise, the neuroinflammatory response would get out of control (Figure 2).

Blood-Brain Barrier, Gut Microbiota, and the Astrocyte-Microglia Crosstalk

As stated earlier, the alteration in BBB permeability is a key mechanism of regulating neuroinflammatory response. This allows or restricts the entry of immune cells and peripheral inflammatory mediators into the parenchyma of CNS at different stages. As one of the essential components of BBB, astrocytes dynamically regulate its permeability through inflammatory cytokines and connexins on endothelium (135–137). For instance, reactive astrocytes become hypertrophic with a reduced number of connexins to weaken BBB during neuroinflammatory conditions (90). Besides, resting microglia is beneficial for relatively intact BBB, while reactive microglia tend to migrate and induce BBB breakdown (138). Meanwhile, the gut microbiota is essential for the integrity of BBB (139). Once barriers are breached, blood-derived signals, including circulating microbial metabolites from the gut microbiota, can enter the brain and act back on the astrocyte-microglia crosstalk (47, 50).

Specifically, both astrocytes and microglia express the aryl hydrocarbon receptors (AHRs) (50) and can sense tryptophan metabolites (46) and SCFA, respectively (47). The AHRs signaling creates an anti-inflammatory state by balancing the gene expression of TGF-α and VEGF-β (50). Moreover, the normal development of microglia is strongly associated with a full repertoire of gut microbiota in early life (47, 140, 141). Reciprocally, the astrocyte-microglia crosstalk has been found to influence intestinal permeability and microbiome profile (142).

As for mood disorders, overactive astrocyte-microglia crosstalk can increase the permeability of BBB and intestine, which facilitate the diffusion of various inflammatory cytokines and microbial metabolites, and further activate the astrocyte-microglia crosstalk. In this context, the feedforward mechanism amplifies the neuroinflammatory response. Therefore, we postulate AAMC at the heart of affective immunology.

CROSSTALK BETWEEN ASTROCYTES AND MICROGLIA IN THE AFFECTIVE IMMUNOLOGY: DOES IT PLAY KEY ROLE?

Given the abundant evidence indicating the significant role of neuroinflammation in affective immunology, including inflammatory cytokines and gut microbiota (38, 42, 43), postmortem studies and molecular imaging researches have revealed that AAMC participates in the development of mood disorders (Figure 1) (56, 72, 78, 80). Despite recent progress, the underlying mechanisms remain elusive. Given that recent data has shown that AAMC serves as an essential mediator of both inflammatory cytokines and gut microbiota (114, 142, 143), we propose the hypothesis that astrocyte-microglia crosstalk triggers emotional alteration through regulating neuroinflammatory response, and thus contributes to mood disorders. In this section, we summarize data from present literature and discuss the crosstalk between astrocytes and microglia, aiming to support
FIGURE 2 | Schematic illustration of the fine interaction between astrocytes and microglia during neuroinflammation. Reactive microglia activate and determine the phenotypes of astrocytes, ranging from neurotoxic to neuroprotective. The reactive neurotoxic astrocytes promote the capacity of microglial activation, motility, and phagocytosis, while weakening the blood-brain barrier (BBB) and prune synapses. Increased BBB permeability facilitates the recruitment of immune cells and diffusion of inflammatory cytokines, amplifying neuroinflammatory response. The reactive neuroprotective astrocyte can lead to microglial inactivation, synaptogenesis, and scar formation.

our hypothesis. However, the limitations of this hypothesis are also presented, and the suggestions for future research are offered.

As mentioned above, reactive astrocytes and microglia have been reported in mood disorders. Their presence is strongly suggesting of increased neuroinflammatory response (32, 81, 87). Reactive astrocytes become hypertrophic with reduced gap junction proteins, and they release cytokines and chemokines (such as IL-1, VEGF-A, TGF-β, and MIF), which drives BBB disruption and enhances microglial activation, migration, and phagocytosis (88, 90, 112, 135, 137). The reactive microglia make a significant impact on the astrocytic transformation (neuroprotective or neurotoxic phenotypes) and capacity mediating by purine signaling and inflammatory cytokines (40, 49, 119). Moreover, the increased BBB permeability facilitates the infiltration of peripheral immune cells, circulating cytokines and microbial metabolic (30). This can promote astrocytic and microglial activity, thereby amplifying the neuroinflammatory response (46, 50). Indeed, the studies regarding upregulated cortical inflammatory cytokine further support the neuroinflammatory cascade in mood disorders (2, 40). The excessive neuroinflammatory response in mood disorders reflects AAMC, which results in detrimental impacts on the downstream processes of the astrocyte-microglia crosstalk, such as neurotransmission and synaptic remolding (33, 123).

To our knowledge, astrocytes express glutamate receptors and regulate glutamate homeostasis through exocytosis (clearance of excess glutamate) and endocytosis (glutamate re-storage and transportation) (144). Dysfunctional astrocytes account for the imbalanced glutamatergic neurotransmission and hence excitotoxicity seen in mood disorders (65, 116). Arguably, microglia serve as a coordinator of astrocytes in regulating neurotransmission (33). Reactive microglia derive ATP and recruit astrocytes, resulting in an increase of glutamic release (33). In addition to ATP pathway, microglia-derived quinolinic acid known as an N-methyl-D-aspartate (NMDA) receptor agonist has been found to be upregulated, thereby contributing to the high-level glutamate in mood disorders (32). More importantly, inflammatory cytokines derived from AAMC (IL-1β, IL-6, and TNF-α) leads to downregulated expression and functionality of the excitatory amino-acid transporters 2 (EAAT2). This further attenuates the astrocytic ability of buffering and clearing the excessive glutamate (145). Conversely, the NMDA receptor antagonist ketamine can reverse the AAMC in mood disorders and alleviate excitotoxicity during the neuroinflammatory response, and hence exert rapid antidepressant effect (98, 99).
On the other hand, the anti-depressive effect of ketamine should ascribe to a reversal of another downstream process of AAMC-triggered neuroinflammation, the synaptic remodeling in mood disorders (63, 123, 146). Inflammatory cytokines produced by astrocytes and microglia, especially IL-1β, TNF-α, and IFN-α, can detrimentally affect the synaptogenesis by regulating the expression of genes involved in synaptic plasticity (123). In addition, complement factors C1q and C3, as well as anti-inflammatory cytokine– TGF-β, are critical mediators of synaptic pruning and refinement (147). The neuroinflammation-driven synaptic remodeling results in abnormal neurocircuits in mood disorders (14).

Taken together, these findings suggest the exciting possibility that AAMC can be a promising target for preventing and treating mood disorders. However, there are several limitations to the hypothesis. For example, the other components of BBB, such as endothelial cells and pericytes, are crucial for homeostatic brain and neuroinflammation (30). Besides, the fine interaction between neurons and the astrocyte-microglia crosstalk is vital for mental health (118, 148). Further discussion should take these factors into account to improve the hypothesis.

CONCLUSION

This study highlights the vital role of the astrocyte-microglia crosstalk in affective immunology and posits that AAMC triggers emotional changes by modulating neuroinflammatory response. This thus contributes to the development of mood disorders. Most of the supporting evidence discussed here comes from human studies. Few animal experiments are cited as proof to elucidate the cellular and molecular mechanism, bearing in mind that animal models are insufficient to reflect the pathophysiology of mood disorders. However, postmortem studies might omit transient pathological alterations of astrocyte-microglia crosstalk seen in mood disorders, due to small sample size and confounding factors including age, disease duration, phenotype, medication use, postmortem interval, and duration of tissue storage. Fortunately, molecular imaging can detect the transient abnormalities of the astrocyte-microglia crosstalk in vivo and hopefully be applied to the individualized treatment of disorders.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LY, YZ, HJ, and ST wrote the paper and made the original figures. AS, LY, and YQ critically revised the texts and figures. All authors read and approved the final manuscript.

FUNDING

This work was funded by China Postdoctoral Science Foundation (2017M612010), National Natural Science Foundation of China (81701144 and 81901319), and Zhejiang Province Natural Science Foundation (LQ17H090003).

REFERENCES

1. Drexhage RC, Kniff EM, Padmos RC, Heul-Nieuwenhuijzen LVD, Beumer W, Versnel MA, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. (2010) 10:59–76. doi: 10.1586/ern.09.144
2. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, et al. Effects of IL1B on the expression of genes involved in synaptic plasticity (147). AAMC-triggered neuroinflammation, the synaptic remolding in mood disorders (63, 123, 146). Inflammatory cytokines produced by astrocytes and microglia, especially IL-1β, TNF-α, and IFN-α, can detrimentally affect the synaptogenesis by regulating the expression of genes involved in synaptic plasticity (123). In addition, complement factors C1q and C3, as well as anti-inflammatory cytokine– TGF-β, are critical mediators of synaptic pruning and refinement (147). The neuroinflammation-driven synaptic remodeling results in abnormal neurocircuits in mood disorders (14).

Taken together, these findings suggest the exciting possibility that AAMC can be a promising target for preventing and treating mood disorders. However, there are several limitations to the hypothesis. For example, the other components of BBB, such as endothelial cells and pericytes, are crucial for homeostatic brain and neuroinflammation (30). Besides, the fine interaction between neurons and the astrocyte-microglia crosstalk is vital for mental health (118, 148). Further discussion should take these factors into account to improve the hypothesis.

CONCLUSION

This study highlights the vital role of the astrocyte-microglia crosstalk in affective immunology and posits that AAMC triggers emotional changes by modulating neuroinflammatory response. This thus contributes to the development of mood disorders. Most of the supporting evidence discussed here comes from human studies. Few animal experiments are cited as proof to elucidate the cellular and molecular mechanism, bearing in mind that animal models are insufficient to reflect the pathophysiology of mood disorders. However, postmortem studies might omit transient pathological alterations of astrocyte-microglia crosstalk seen in mood disorders, due to small sample size and confounding factors including age, disease duration, phenotype, medication use, postmortem interval, and duration of tissue storage. Fortunately, molecular imaging can detect the transient abnormalities of the astrocyte-microglia crosstalk in vivo and hopefully be applied to the individualized treatment of disorders.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LY, YZ, HJ, and ST wrote the paper and made the original figures. AS, LY, and YQ critically revised the texts and figures. All authors read and approved the final manuscript.

FUNDING

This work was funded by China Postdoctoral Science Foundation (2017M612010), National Natural Science Foundation of China (81701144 and 81901319), and Zhejiang Province Natural Science Foundation (LQ17H090003).

REFERENCES

1. Drexhage RC, Kniff EM, Padmos RC, Heul-Nieuwenhuijzen LVD, Beumer W, Versnel MA, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. (2010) 10:59–76. doi: 10.1586/ern.09.144
2. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, et al. Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun. (2016) 56:96–104. doi: 10.1016/j.bbi.2016.02.012
3. O’Leary OF, Dinan TG, Cryan JF. Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol. (2015) 753:32–50. doi: 10.1016/j.ejphar.2014.07.046
4. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet (London, England). (2016) 387:1561–72. doi: 10.1016/S0140-6736(15)0241-X
5. Harrison PI, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends Neurosci. (2018) 41:18–30. doi: 10.1016/j.tins.2017.10.006
6. Cruz-Pereira JS, Rea K, Nolan YM, O’Leary OF, Dinan TG, Cryan JF. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome. Annu Rev Psychol. (2020) 71:49–78. doi: 10.1146/annurev-psych-122216-011613
7. D’Acquisto F. Affective immunology: where emotions and the immune system meet. Dialogues Clin Neurosci. (2018) 20:55–71. doi: 10.31334/DCNS.32
8. Lutgendorf SK, Reimer TT, Harvey JH, Marks G, Hong SY, Hills SL, et al. Effects of housing relocation on immunocompetence and psychosocial functioning in older adults. J Gerontol A Biol Sci Med Sci. (2001) 56:M97–M105. doi: 10.1093/gerona/56.2.M97
9. Furlan R, Melloni E, Finardi A, Vai B, Di Toro S, Aggio V, et al. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun. (2019) 81:410–21. doi: 10.1016/j.bbi.2019.06.037
10. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. (2004) 56:819–24. doi: 10.1016/j.biopsych.2004.02.009
11. Kohler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. (2018) 55:4195–206. doi: 10.1007/s12035-017-0863-1
12. Naseribafrouei A, Hestad K, Avershina E, Sekela M, Linckkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. (2014) 26:1155–62. doi: 10.1111/nmo.12378
13. Painold A, Mörkl S, Kashafoer K, Halwachs B, Dalkner N, Bengesser S, et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord. (2019) 21:40–9. doi: 10.1111/bdi.12682
14. Vainchtein ID, Molosky AV. Astrocytes and microglia: in sickness and in health. Trends Neurosci. (2020) 43:144–54. doi: 10.1016/j.tins.2020.01.003
15. Cohen S, Doyle WJ, Turner RB, Alper CM, Skoner DP. Emotional style predicts resistance to illness after experimental exposure and susceptibility to the common cold. Psychosom Med. (2006) 68:809–15. doi: 10.1097/01.psy.0000245867.92364.3c

Frontiers in Immunology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 1818

Yang et al. Astrocyte-Microglia Crosstalk in Mood Disorders
26. Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory factors in humans: a review and meta-analysis. *Mol Psychiatry.* (2017) 64:208–19. doi: 10.1038/j.bbi.2017.09.002

27. Lewitus GM, Schwartz M. Behavioral immunization: immunity to self-antigens contributes to psychological stress resilience. *Mol Psychiatry.* (2009) 14:532–6. doi: 10.1038/mp.2008.103

28. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. *Biol Psychiatry.* (2008) 63:1022–9. doi: 10.1016/j.biopsych.2007.12.007

29. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. *Biol Psychiatry.* (2010) 68:748–54. doi: 10.1016/j.biopsych.2010.06.010

30. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. *Neurobiol Dis.* (2010) 37:13–25. doi: 10.1016/j.nbd.2009.07.030

31. Majidi J, Kosari-Nasab M, Salari A-A. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. *Brain Res Bull.* (2016) 120:1–13. doi: 10.1016/j.brainresbull.2015.10.009

32. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? *Neurology Brain Res.* (2011) 8:94. doi: 10.1016/j.nbr.2012.02.043

33. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. *Proc Natl Acad Sci USA.* (2012) 109:E197–205. doi: 10.1073/pnas.1111098109

34. Anders S, Tanaka M, Kinney DK. Depression as an evolutionary strategy for defense against infection. *Brain Behav Immun.* (2013) 31:9–22. doi: 10.1016/j.bbi.2012.02.002

35. Dowlat Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. *Biol Psychiatry.* (2010) 67:446–57. doi: 10.1016/j.biopsych.2009.09.033

36. Wang L, Wang R, Liu L, Qiao D, Baldwin DS, Hou R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: a systematic review and meta-analysis. *Brain Behav Immun.* (2019) 79:24–38. doi: 10.1016/j.bbi.2019.02.021

37. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. *JAMA Psychiatry.* (2013) 70:31–41. doi: 10.1001/2013.jamapsychiatry.4

38. Barnes J, Mondelli V, Pariente CM. Genetic contributions of inflammation to depression. *Neuropsychopharmacology.* (2017) 42:81–98. doi: 10.1038/npp.2016.169

39. Maletic V, Raison C. Integrated neurobiology of bipolar disorder. *Front Psychiatry.* (2014) 5:98. doi: 10.3389/fspst.2014.00098

40. Dean B, Gibbons AS, Tawadros N, Brooks L, Everall IP, Scarr E. Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders. *Mol Psychiatry.* (2013) 18:767–73. doi: 10.1038/mp.2012.95

41. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. *J Affect Disord.* (2016) 202:254–7. doi: 10.1016/j.jad.2015.06.038

42. Collo C, Hansen TH, Sørensen N, Munkholm K, Kessing LV, Pedersen O, et al. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. *Brain Behav Immun.* (2019) 75:112–8. doi: 10.1016/j.bbi.2018.09.026

43. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. *Brain Behav Immun.* (2015) 48:186–94. doi: 10.1016/j.bbi.2015.03.016

44. Flowers SA, Evans SJ, Ward KM, McInnis MG, Ellingrod VL. Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. *Pharmacotherapy.* (2017) 37:261–7. doi: 10.1002/phar.1890

45. El Aidy S, Dinan TG, Cryan JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. *Clin Ther.* (2015) 37:954–67. doi: 10.1016/j.clinthera.2013.03.002

46. Rothhammer V, Mascarenhas ID, Busse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. *Nat Med.* (2016) 22:586–97. doi: 10.1038/nm.4106

47. Erny D, Hrade de Angelis AL, Jatin D, Wieghofer R, Stashevski O, David E, et al. Host microbiota constantly control maturation function of microglia in the CNS. *Nat Neurosci.* (2015) 18:965–7. doi: 10.1038/nn.4030

48. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burtner PW, Psychobiotics and the manipulation of bacteria-gut-brain signals. *Trends Neurosci.* (2016) 39:763–81. doi: 10.1016/j.tre Neurosci.2016.08.002

49. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. *Nature.* (2017) 541:481–7. doi: 10.1038/nature21029

50. Rothhammer V, Borucci DM, Tjon EC, Takenaka MC, Chao CC, Ardurina-Fabregat A, et al. Microglial control of astrocytes in response to microbial metabolites. *Nature.* (2018) 557:724–8. doi: 10.1038/s41586-018-0119-x

51. Altschuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. *Bipolar Disord.* (2010) 12:541–9. doi: 10.1111/j.1399-5618.2010.00838.x

52. Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, et al. Gliarial fibrillary acidic protein is reduced in cerebellum of subjects with major depressive disorder and their unaffected first-degree relatives. *Bipolar Disord.* (2015) 17:727–36. doi: 10.1111/bdi.12209

53. Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, et al. Gliarial fibrillary acidic protein is reduced in cerebellum of subjects with major depressive disorder, but not schizophrenia. *Schizophr Res.* (2004) 69:317–23. doi: 10.1016/j.schres.2003.08.014

54. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. *Stanley Neuropathol Consortium Mol Psychiatry.* (2000) 5:142–9. doi: 10.1038/sj.mp.4000696

55. Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May VL, et al. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. *Neuroscience.* (2016) 316:209–20. doi: 10.1016/j.neuroscience.2015.12.044
Barley K, Dracheva S, Byne W. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res. (2009) 112:54–64. doi: 10.1016/j.schres.2009.04.019

Webster MJ, O’Grady J, Kleinman JE, Weickert CS. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience. (2005) 133:453–61. doi: 10.1016/j.neuroscience.2005.02.037

Damasdric R, Bigelow LB, Krimer LS, Goldenson DA, Saunders RC, Kleinman JE, et al. A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res Bull. (2001) 55:611–8. doi: 10.1016/S0361-9230(01)00529-9

Williams MR, Hampton T, Pearce RK, Hirsch SR, Anсорge O, Thom M, et al. Astrocyte decrease in the subgenual cingulate and caudate nucleus of depressed suicides. J Affect Disord. (2011) 133:328–32. doi: 10.1016/j.jad.2011.03.042

Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations of glial fibrillary acidic protein in patients with bipolar disorder and major depression. J Psychiatr Res. (2015) 70:286–95. doi: 10.1016/j.jpsychires.2015.06.001

Brisch R, Steiner J, Mawrin C, Krzyzanowska M, Jankowski Z, Gos T. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci. (2017) 267:403–15. doi: 10.1007/s00430-017-1077-4
prefrontal cortex of suicide completers. *Biol Psychiatry.* (2011) 70:312–9. doi: 10.1016/j.biopsych.2011.03.038

90. Ezan P, André P, Cistermino S, Saubamé B, Boulay A-C, Doutrtreme S, et al. Deletion of astroglial connexins weakens the blood-brain barrier. *J Cerebellum Cerebellum Mol Neurobiol.* (2010) 32:1457–67. doi: 10.1016/j.jcmn.2012.04.101

91. Middeldorp J, Hol EM, GEAP in health and disease. *Progress Neurobiol.* (2011) 93:421–43. doi: 10.1016/j.pneurobio.2011.01.005

92. Steiner J, Bernstein H-G, Bielau H, Berndt R, Brisch R, Mawrin C, et al. Evidence for a wide extra-astrocytic distribution of SO1000 in human brain. *BMC Neurosci.* (2007) 8:2–2. doi: 10.1186/1471-2202-8-2

93. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport factors for major psychiatric disorders. *Int J Neuropsychopharmacol.* (2014) 17:pyu015. doi: 10.1093/ijnp/pyu015

94. Gong Y, Sun X-L, Wu F-F, Su C-J, Ding J-H, Hu G. Female early adult depression results in detrimental impacts on the behavioral performance and brain development in offspring. *CNS Neurosci Ther.* (2012) 18:461–70. doi: 10.1111/j.1755-5949.2012.00324.x

95. Kinoshita M, Hirayama Y, Fujiikawa K, Shibata K, Shinozaki Y, Shigetomi E, et al. Anti-depressant fluorescence reveals its therapeutic effect via astrocytes. *EBioMedicine.* (2018) 32:72–83. doi: 10.1016/j.ebiom.2018.05.036

96. Shu X, Sun Y, Sun X, Zhou Y, Tian Y, Shu Z, et al. The effect of fluorescent on astrocyte autofluorescence and injured mitochondria clearance in a mouse model of depression. *Cell Death Dis.* (2019) 10:577. doi: 10.1038/s41419-019-1813-9

97. Hissaoka-Nakashima K, Taki S, Watanabe S, Nakamura Y, Nakata Y, Moroisa N. Mirtazapine increases glia cell line-derived neurotrophic factor production through lysosphosphatic acid 1 receptor-mediated extracellular signal-regulated kinase signaling in astrocytes. *Eur J Pharmacol.* (2019) 860:172539. doi: 10.1016/j.ejphar.2019.172539

98. Wang Y, Xie L, Gao C, Zhai L, Zhang N, Guo L. Astrocyte activation contributes to the antidepressant-like effect of ketamine but not scopolamine. *Pharmacol Biochem Behav.* (2018) 170:1–8. doi: 10.1016/j.pbb.2018.05.001

99. Lasic E, Lijak M, Horvat A, Božič M, Sakanović A, Anderl G, et al. Astrocyte specific remodeling of plasmalosomal cholesterol composition by ketamine indicates a new mechanism of antidepressant action. *Sci Rep.* (2019) 9:190957. doi: 10.1038/s41598-019-47459-z

100. Xue S-S, Xue F, Ma Q-R, Wang S-Q, Wang Y, Tan Q-R, et al. Repetitive high-frequency transcranial magnetic stimulation reverses depressive-like behaviors and protein expression at hippocampal and neural circuit development. *Science (New York, NY).* (2018) 359:1269–73. doi: 10.1126/science.aal3589

101. Petralia MC, Mazon F, Fagone P, Basile MS, Lenzo V, Quattronci MC, et al. Pathogenic contribution of the Maphrophage migration inhibitory factor family to major depressive disorder and emerging targeted therapeutic approaches. *J Affect Disord.* (2020) 263:15–24. doi: 10.1016/j.jad.2019.11.127

102. Bennett MR, Farnell L, Gibson WG. P2X7 regenerative-loop potentiation of glutamate synaptic transmission by microglia and astrocytes. *J Theor Biol.* (2009) 261:1–16. doi: 10.1016/j.jtbi.2009.07.024

103. Paukert M, Agrawal A, Chakma V, Rothenberg M, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. *Nat Neurosci.* (2018) 93:421–43. doi: 10.1016/j.pneurobio.2011.01.005

104. Peng L, Li B, Verkhratsky A. Targeting astrocytes in bipolar disorder. *J Neural Transmission.* (2015) 122:1019–33. doi: 10.1007/s00702-014-1316-x

105. Malchow B, Stroock S, Frank F, Bernstein H-G, Steiner J, Schneider-Axmann T, et al. Stereological investigation of the posterior hippocampus in affective disorders. *J Neurotransmission.* (2015) 122:1019–33. doi: 10.1007/s00702-014-1316-x

106. Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. *PLoS Biol.* (2012) 10:e1001546. doi: 10.1371/journal.pbio.1001546

107. Yang et al. Astrocyte-Microglia Crosstalk in Mood Disorders
127. Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, et al. Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia. (2017) 65:1471–90. doi: 10.1002/glia.23174

128. Tanuma N, Sakuma H, Sasaki A, Matsumoto Y. Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol. (2006) 112:195–204. doi: 10.1007/s00401-006-0083-7

129. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. β2 modulates microglial activation and neuroinflammation. J Neuroimmunol. (2017) 303:128–38. doi: 10.1016/j.jneuroim.2017.03.004

130. Jeon H, Kim JH, Jung JK, Lee WH, Lee MS, Suk K. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation. (2012) 9:149. doi: 10.1186/1742-2094-9-149

131. Jo M, Kim J-H, Song GJ, Seo M, Hwang EM, Suk K. Astrocyte-microglia crosstalk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci. (2016) 36:577–89. doi: 10.1523/JNEUROSCI.2117-15.2016

132. Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. (2012) 122:2454–68. doi: 10.1172/JCI60842

133. Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-secreted lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia. (2017) 65:1471–90. doi: 10.1002/glia.23174

134. Jeon H, Lee S, Lee WH, Suk K. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation. (2012) 9:149. doi: 10.1186/1742-2094-9-149

135. Jo M, Kim J-H, Song GJ, Seo M, Hwang EM, Suk K. Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation. J Neurosci. (2017) 37:2878–94. doi: 10.1523/JNEUROSCI.2534-16.2017

136. Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, et al. Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. Acta Neuropathol. (2006) 112:195–204. doi: 10.1007/s00401-006-0083-7

137. Argaw AT, Asp L, Zhang J, Navrathina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. (2012) 122:2454–68. doi: 10.1172/JCI60842

138. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci USA. (2016) 113:1074–9. doi: 10.1073/pnas.1520398113

139. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. (2014) 6:263ra158. doi: 10.1126/scitranslmed.3009759

140. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. (2017) 20:145–55. doi: 10.1038/nn.4476

141. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. (2018) 172:500–16.e516. doi: 10.1016/j.cell.2017.11.042

142. Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res. (2019) 124:727–36. doi: 10.1161/CIRCRESAHA.118.313882

143. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. (2016) 64:300–16. doi: 10.1002/glia.22930

144. Verkhatsky A, Nedergraad MG. Physiology of Astroglia. Physiol Rev. (2018) 98:239–389. doi: 10.1152/physrev.00042.2016

145. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. (2017) 42:193–215. doi: 10.1038/npp.2016.199

146. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. miTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (New York, NY). (2010) 329:959–64. doi: 10.1126/science.1190287

147. Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. (2013) 16:1773–82. doi: 10.1038/nn.3560

148. Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, et al. Neuron-glia interaction as a possible pathophysiological mechanism of bipolar disorder. Curr Neuropharmacol. (2018) 16:519–32. doi: 10.2174/1570159X15666170828170921

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.