Inflation With Realistic Supersymmetric SO(10)

(a)Bumseok Kyae1 and (b)Qaisar Shafi2

(a) School of Physics, Korea Institute for Advanced Study, 207-43, Cheongnyangni-Dong, Dongdaemun-Gu, Seoul 130-722, Korea
(b) Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

Abstract

We implement inflation within a realistic supersymmetric $SO(10)$ model in which the doublet-triplet splitting is realized through the Dimopoulos-Wilczek mechanism, the MSSM μ problem is resolved, and higgsino mediated dimension five nucleon decay is heavily suppressed. The cosmologically unwanted topological defects are inflated away, and from $\delta T/T$, the $B - L$ breaking scale is estimated to be of order $10^{16} - 10^{17}$ GeV. Including supergravity corrections, the scalar spectral index $n_s = 0.99 \pm 0.01$, with $|dn_s/d\ln k| \lesssim 10^{-3}$.

1bkyae@kias.re.kr
2shafi@bartol.udel.edu
In an attractive class of supersymmetric (SUSY) models inflation is associated with spontaneous breaking of a gauge symmetry, such that $\delta T/T$ is proportional to $(M/M_{\text{Planck}})^2$, where M denotes the symmetry breaking scale and $M_{\text{Planck}} (\equiv 1.2 \times 10^{19}$ GeV) denotes the Planck mass [1, 2]. Thus, from measurements of $\delta T/T$, M is estimated to be of order 10^{16} GeV [1, 3, 4]. The scalar spectral index n_s in these models is very close to unity3 in excellent agreement with recent fits to the data [5].4

A $U(1)$ R-symmetry plays an essential role in the construction of these inflationary models. These models possess another important property, namely with the minimal Kähler potential, the supergravity (SUGRA) corrections do not spoil the inflationary scenario [2, 8], which has been realized with a variety of attractive gauge groups including $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} (\equiv G_{LR})$ [9], $SU(4)_c \times SU(2)_L \times SU(2)_R \times SU(2)_R (\equiv G_{422})$ [10] and $SU(5)$ [11]. [The gauge symmetries G_{LR} and G_{422} were first introduced in Refs. [12, 13].] Our goal in this paper is to implement inflation in a realistic $SO(10)$ model.

$SO(10)$ [14] has two attractive features that it shares with G_{422}, namely, it predicts the existence of right handed neutrinos as well as the seesaw mechanism. These two features are very helpful in understanding neutrino oscillations [15] and also in generating a baryon asymmetry via leptogenesis [16]. Furthermore, at least within a four dimensional setting, it seems easier to realize doublet-triplet (DT) splitting without fine tuning in $SO(10)$ (say via the Dimopoulos-Wilczek mechanism [17]) than in $SU(5)$.

To implement $SO(10)$ inflation we would like to work with a realistic model with the following properties: DT splitting is realized without fine tuning, and the low energy theory coincides with the minimal supersymmetric standard model (MSSM).

3Following Ref. [4], that including supergravity corrections, these model can yield a spectral index somewhat larger than unity. It is in our current model that $n_s = 0.99 \pm 0.01$, as we emphasize in the abstract.

4Earlier there was some (weak) evidence for a running spectral index with $dn_s/d\ln k \approx -5 \times 10^{-2}$. But this is not confirmed by a more recent analysis [6]. We will consider the simplest models which yield $dn_s/d\ln k \lesssim 10^{-3}$. However, more complicated scenarios with two or more inflationary epoch can yield a significantly larger $dn_s/d\ln k$ [7].
[For $SO(10)$ inflation in a five dimensional setting, see Ref. [18].] The MSSM μ problem should also be resolved, and higgsino mediated dimension five nucleon decay should be adequately suppressed. Gauge boson mediated nucleon decay is still present with a predicted nucleon lifetime of order $10^{34} - 10^{36}$ yrs. Finally, matter parity is unbroken, so that the LSP is stable and makes up the dark matter in the universe.

To achieve natural DT splitting and the MSSM at low energies with $SO(10)$, one is led to consider a non-minimal set of Higgs superfields. This is to be contrasted with the subgroups of $SO(10)$, such as G_{LR} or G_{422} above, in which the DT splitting problem is absent. Many authors have previously addressed the DT splitting and the dimension five nucleon decay problem in $SO(10)$ [19, 20, 21], and the proposed solutions are not necessarily straightforward. In this paper we will follow Refs. [20, 21], with suitable modifications needed to make the scheme consistent with the desired inflationary scenario, and also to avoid potential cosmological problems (monopoles, moduli, etc). While doing this we would like to also ensure that the SUGRA corrections also do not disrupt the inflationary scenario.

A minimal set of Higgs required to break $SO(10)$ to the MSSM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y (\equiv G_{SM})$ is $45_H, 16_H, \overline{16}_H$. A non-zero vacuum expectation value (VEV) of 45_H along the $B-L$ (I_{3R}) direction breaks $SO(10)$ to $G_{LR} (SU(4)_c \times SU(2)_L \times U(1)_R)$ and produces magnetic monopoles. The $16_H, \overline{16}_H$ VEVs break $SO(10)$ to $SU(5)$ and induce masses for the right handed neutrinos via dimension five operators. [Note that breaking of $SO(10)$ with $16_H + \overline{16}_H$, in contrast to $126_H + \overline{126}_H$, does not produce Z_2 cosmic strings [22].] One of our goals, of course, is to make sure that the topological defects do not pose cosmological difficulties. Thus, it would be helpful if during inflation $SO(10)$ is, for instance, broken to G_{LR} [23], $SU(4)_c \times SU(2)_L \times U(1)_R$, or G_{SM}.

To implement DT splitting without fine tuning and eliminate dimension five proton decay, and to recover the MSSM at low energies with the μ problem resolved, we need an additional 45-plet ($45'_H$), two additional $16 + \overline{16}$ pairs, two 10-plets (10_h, 10_h
and \(10\), and several singlets \([20, 21]\). One more 45-plet is also required by \(U(1)\) \(R\)-symmetry. This symmetry, among other things, plays an essential role in realizing inflation, and its \(Z_2\) subgroup coincides with the MSSM matter parity. The \(SO(10)\) singlet superfields are denoted as \(S, X, X', Y, P, \overline{P}, Q, \overline{Q}\), whose roles will be described below. Table I displays the quantum numbers (under the global \(U(1)\) \(R\) and \(U(1)_A\) symmetries) of all the Higgs sector superfields and the third family matter field (\(16\)). Following standard practice, we employ the same notation for the superfields and their scalar components.

\(\)	\(S\)	\(X\)	\(X'\)	\(Y\)	\(P\)	\(\overline{P}\)	\(Q\)	\(\overline{Q}\)	\(10\)	\(10_h\)
\(R\)	1	-1	-1	0	0	0	-2	2	1	0
\(A\)	0	-2/3	-2/3	-1/3	-1/4	1/4	-1/2	1/2	1/6	0
\(\)	16	16'	16	16_H	16_H	16_3	45	45_H	45_H'	
\(R\)	1	3	2	2	0	0	1/2	1	0	-1
\(A\)	1/2	2/3	2/3	2/3	0	0	0	1/2	-1/6	-1/3

Table I

To break \(SO(10)\) to \(G_{LR}\), consider the superpotential,

\[W_{45} = \frac{\alpha}{6M_*} X^{(\prime)} Y \text{Tr}(4545) - \frac{\beta}{6} Y \text{Tr}(4545_H) + \frac{\gamma_1}{36M_*} \text{Tr}(4545_H) \text{Tr}(45_H 45_H) + \frac{\gamma_2}{6M_*} \text{Tr}(4545_H 45_H 45_H), \]

where \(\alpha, \beta, \gamma_{1,2}\) are dimensionless parameters, and \(M_* (\sim 10^{18} \text{ GeV})\) denotes the cutoff scale. As will be explained, \(X, X', Y\) can develop non-zero VEVs, \(\langle X \rangle \sim \langle X' \rangle \sim \langle Y \rangle \sim 10^{16} \text{ GeV}\). Due to non-zero \(\langle Y \rangle\), \(45_H\) can also obtain a VEV in the \(B-L\) direction from the \(\beta\) and \(\gamma_{1,2}\) terms of Eq. (1),

\[\langle 45_H \rangle = \begin{pmatrix} v \\ v \\ 0 \\ 0 \end{pmatrix} \otimes i\sigma_2, \quad \text{and} \quad \langle 45 \rangle = 0, \]

where \(v = \sqrt{\gamma} \langle Y \rangle M_* \equiv M_{GUT} (\approx 3 \times 10^{16} \text{ GeV})\), with \(\gamma \equiv \gamma_1 + \gamma_2\). The 3 \(\times\) 3 block corresponds to \(SU(3)_c\) and the 2 \(\times\) 2 block to \(SU(2)_L\) of the MSSM gauge group.
Hence, the $SO(10)$ gauge symmetry is broken to G_{LR}. Note that from the ‘α term,’ the 45 multiplet becomes superheavy. It acquires a VEV of order $(m_{3/2}M_{GUT})/M_*$ after SUSY breaking, where $m_{3/2}$ (\sim TeV) denotes the scale of the soft parameters.

The next step in the breaking to the MSSM gauge group G_{SM} ($= G_{LR} \cap SU(5)$) is achieved with the following superpotential,

\[
W_{16} = S \left[\frac{\lambda_1}{M_*} \cdot 45_H Y - \frac{\lambda_2}{M_*} P^2 \right] \bar{16}_H + \bar{16} \left[\frac{\lambda_3}{M_*} \cdot 45_H Q - \frac{\lambda_4}{M_*} (45_H')^2 \right] 16_H \\
+ 16' \left[\frac{\lambda_5}{M_*} \cdot 45'_H Y - \frac{\lambda_6}{M_*} X \right] \bar{16}_H + \bar{16}' \left[\frac{\lambda_7}{M_*} \cdot 45'_H Y - \frac{\lambda_8}{M_*} X' \right] 16_H ,
\]

where ρ is a dimensionless coupling constant. The dimensionful parameter M_{B-L}, as determined from inflation ($\delta T/T$), turns out to be of order $10^{16} - 10^{17}$ GeV. The superfield 10_h includes the two MSSM Higgs doublets. As previously mentioned, additional 16, $\bar{16}$ are essential to stabilize the VEV of 45_H in Eq. (2). From the κ and ρ terms, 16_H and $\bar{16}_H$ develop VEVs of order M_{B-L}, breaking $SO(10)$ to $SU(5)$,

\[|\langle 16_H \rangle|^2 = |\langle \bar{16}_H \rangle|^2 = \frac{M_{B-L}^2}{2\zeta} \left[1 - \sqrt{1 - 4\zeta} \right], \tag{4}\]

where $\zeta \equiv \rho M_{B-L}^2/(\kappa M_*^2)$, while $\langle S \rangle = \langle 10_h \rangle = 0$ up to corrections of $O(m_{3/2})$ by including soft SUSY breaking terms in the scalar potential. The “D-term” scalar potential vanishes along the (D-flat) direction $|\langle 16_H \rangle| = |\langle \bar{16}_H \rangle| = |\langle \bar{16}_H \rangle|$. Together with Eq. (2), the $SO(10)$ gauge symmetry is broken to the MSSM gauge symmetry. The MSSM Higgs doublets arise from 10_h. With $\langle S \rangle \approx -m_{3/2}/\kappa$, the μ term from Eq. (3) is of order $(\lambda/\kappa)m_{3/2} \sim$ TeV, for $\kappa \approx \lambda$. Similarly the soft term $B\mu$ ($\approx -2(\lambda/\kappa)m_{3/2}^2$) is generated.

Our next step is to ensure that the low energy theory coincides precisely with the MSSM. With $SO(10)$ broken to G_{LR} by $\langle 45_H \rangle$ via Eq. (1), the goldstone modes

\[y_{\mu} \cdot 1010_h \langle 16_H 45_H \bar{16}_H \rangle / M_*^2, \] the doublets in 10_h obtains a “seesaw mass” $y_{\mu}^2 (\langle 16_H 45_H \bar{16}_H \rangle)^2 / (M_*^4(45_H)) \sim$ TeV with $y_{\mu} \sim 10^{-3}$, which modifies the μ parameter at low energies.

\[5 \text{From the non-renormalizable term } y_{\mu} \cdot 1010_h \langle 16_H 45_H \bar{16}_H \rangle / M_*^2, \] the doublets in 10_h obtains a “seesaw mass” $y_{\mu}^2 (\langle 16_H 45_H \bar{16}_H \rangle)^2 / (M_*^4(45_H)) \sim$ TeV with $y_{\mu} \sim 10^{-3}$, which modifies the μ parameter at low energies.
from 45_H, $\{(3, \overline{2})_{-5/6}, (3, 2)_{1/6}, (\overline{3}, 1)_{-2/3}\} + \text{h.c.}$ in terms of G_{SM}, are absorbed by the gauge sector. The states of $(8, 1)_0$, $(1, 3)_0$, $(1, 1)_0$, $(1, 1)_1$, and $(1, 1)_{-1}$ contained in 45_H acquire superheavy masses through the quartic couplings. On the other hand, when $SO(10)$ breaks to $SU(5)$ by $\langle 16_H \rangle$ and $\langle \overline{16}_H \rangle$, the states $\{(3, 1)_{1/3}, (1, 2)_{-1/2}\} + \text{h.c.}$ remain massless (or light). Note that $\{(3, 2)_{1/6}, (\overline{3}, 1)_{-2/3}\} + \text{h.c.}$ are common between 45_H and 16_H, $\overline{16}_H$. Thus, when $SO(10)$ breaks to G_{SM} by an adjoint and a vector-like pair of spinorial Higgs, the superfields associated with $\{(3, 2)_{1/6}, (\overline{3}, 1)_{-2/3}\} + \text{h.c.}$ are pseudo-goldstone modes. The extra light multiplets would spoil the unification of the MSSM gauge couplings, and therefore must be eliminated.

The simplest way to remove them from the low energy spectrum is to introduce couplings such as $16_H 45_H \overline{16}_H$. However, the presence of such a term in the superpotential destabilizes the form of $\langle 45_H \rangle$ given in Eq. (2), in such a way that at the SUSY minimum, $v = 0$ is required. It was shown in Ref. [20] that with the ‘λ_i’ couplings ($i = 1, 2, 3, 4$) and an additional $16-\overline{16}$ pair in Eq. (3), the unwanted pseudo-goldstone modes all become superheavy, keeping intact the form of Eq. (2) at the SUSY minimum.

From the “F-flat conditions” with 16_H and $\overline{16}_H$ acquiring non-zero VEVs, one finds

$$\langle 45_H \rangle \langle Y \rangle = \frac{\lambda_2}{\lambda_1} \langle P^2 \rangle, \quad \langle 45_H \rangle \langle Q \rangle = \frac{\lambda_4}{\lambda_3} \text{Tr} \langle 45'_H \rangle^2.$$

Thus, if P and Q develop VEVs, $\langle 45_H \rangle$, $\langle 45'_H \rangle$, and $\langle Y \rangle$ should also appear. We will soon explain how $\langle P \rangle$ and $\langle Q \rangle$ arise. Since $\langle Y \rangle$ is related to $\langle 45_H \rangle$ via Eq. (2), both are uniquely determined. We assume that $\langle 45'_H \rangle$ points in the I_{3R} direction,

$$\langle 45'_H \rangle = \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & v' \\ \hline v' & 0 \end{array} \right) \otimes i\sigma_2.$$

Recall that $\langle 45'H \rangle$ is employed to suppress higgsino mediated dimension five nucleon decay [21]. Similarly, due to the presence of the ‘λ_i’ ($i = 5, 6, 7, 8$) couplings in Eq. (3), the low energy spectrum is protected even with the $45'H$ present [21]. With non-zero VEVs for $45'H$ and Y, X and X' slide to values satisfying

$$\frac{\lambda_{5,7}}{M_*} \langle 45'H \rangle \langle Y \rangle - \lambda_{6,8} \langle X'^{(i)} \rangle = 0,$$

with $|\langle 16'\rangle| = |\langle 16 \rangle| \sim O(m_{3/2})$. In order to guarantee the ‘λ_i’ couplings in Eq. (3) and to forbid $16H45H16H$, the $U(1)$ symmetries in Table I are essential.

To obtain non-vanishing VEVs for P and Q, one could, as a simple example, consider the following superpotential,

$$W_{PQ} = S \left[\kappa_1 P\overline{P} + \kappa_2 Q\overline{Q} \right] - \frac{S}{M_*^2} \left[\rho_1 (P\overline{P})^2 + \rho_2 (Q\overline{Q})^2 \right],$$

such that

$$\langle P\overline{P} \rangle = \frac{\kappa_1}{\rho_1} M_*^2 \sim M^2_{\text{GUT}}, \quad \langle Q\overline{Q} \rangle = \frac{\kappa_2}{\rho_2} M_*^2 \sim M^2_{\text{GUT}}.$$

The $\lambda_{2,3}$ terms in Eq. (3) just determine $\langle 45H \rangle$, $\langle Y \rangle$, and $\langle 45'H \rangle$. With the inclusion of soft SUSY breaking terms, the VEVs $\langle P \rangle$, $\langle \overline{P} \rangle$, $\langle Q \rangle$, and $\langle \overline{Q} \rangle$ would be completely fixed. To avoid potential cosmological problems associated with moduli fields, we make the important assumption that the VEVs satisfy the constraints $\langle P \rangle = \langle \overline{P} \rangle$ and $\langle Q \rangle = \langle \overline{Q} \rangle$. This could be made plausible by assuming universal soft scalar masses, and that the SUSY breaking “A-terms” asymmetric under $P \leftrightarrow \overline{P}$ and $Q \leftrightarrow \overline{Q}$ are plausibly small enough.\(^6\)\(^7\) Note that even with the soft SUSY breaking terms in the Lagrangian, the GUT scale results Eqs. (3) and (9) should be still effectively valid.

\(^6\)In gravity mediated SUSY breaking scenario with the minimal Kähler potential, “A-terms” are given by $m_{3/2} \times [(A-3)W + \sum_i \phi_i \frac{\partial Y}{\partial \phi_i} + \text{h.c.}]$, where A is a dimensionless number associated with hidden sector dynamics [23]. Since dimensions of the operators associated with the λ_k’s ($k = 1, 2, 3, 4$) in Eq. (3) are all the same, the “A-term” coefficients ($\equiv A_{\lambda_k}$) corresponding to λ_k should be $m_{3/2}(A+1)\lambda_k$, and so satisfy $A_{\lambda_{j+1}}/A_{\lambda_j} = \lambda_{j+1}/\lambda_j$ ($j = 1, 3$). Hence, at the minimum, the “A-terms” corresponding to λ_k are cancelled by each other with the VEVs in Eq. (3). Since the other soft terms are symmetric under $P \leftrightarrow \overline{P}$ and $Q \leftrightarrow \overline{Q}$, we have $\langle P \rangle = \langle \overline{P} \rangle$ and $\langle Q \rangle = \langle \overline{Q} \rangle$ at the minimum of the scalar potential.

\(^7\)In gauge mediated SUSY breaking scenario, “A-terms” are generally suppressed.
Since the fields that couple to P, \overline{P}, Q and \overline{Q} are all superheavy, the soft parameters are expected to be radiatively stable at low energies. Thus, at the minimum of the scalar potential, we have four mass eigen states, $(P \pm \overline{P})/\sqrt{2}$ ($\equiv P_{\pm}$) and $(Q \pm \overline{Q})/\sqrt{2}$ ($\equiv Q_{\pm}$). While P_{+} and Q_{+} obtain superheavy masses of order M_{GUT} and large VEVs ($=\sqrt{\kappa_{1,2}/\rho_{1,2}}M_{s}+O(m_{3/2}) \sim M_{\text{GUT}}$, respectively), P_{-} and Q_{-} remain light ($\sim m_{3/2}$) with vanishing VEVs.

With $\langle 45_{H} \rangle$ in Eq. (2), the “DT splitting problem” resolves itself through the mechanism in [17]. Consider the superpotential:

$$W_{10} = y_{1}1045_{H}^{t}10 + y_{2}1045_{H}10_{h}.$$ (10)

From the first term in Eq. (10), only the doublets contained in 10 become superheavy [21], and from the second term only the color triplet fields included in 10 and 10_{h} acquire superheavy masses [17] [20] [21]. Since the two color triplets contained in 10_{h} do not couple in Eq. (10), dimension five nucleon decay which may be in conflict with the Superkamiokande observations [15] is eliminated in the SUSY limit [21]. Note that operators such as $1010_{h}, 10_{h}10_{h}$, $[1010_{h}]\text{Tr}(45_{H}45_{H})$ and so on are allowed by $SO(10)$ and, unless forbidden, would destroy the gauge hierarchy. The $U(1)$ symmetries in Table I are once again crucial in achieving this.

Although the superpotential coupling $\langle S \rangle 10_{h}10_{h}$ induces higgsino mediated dimension five nucleon decay, there is a huge suppression factor of $m_{3/2}/M_{\text{GUT}}$. Thus, we expect that nucleon decay is dominated by the exchange of the superheavy gauge bosons with an estimated lifetime $\tau_{p} \rightarrow e^{+}\pi^{0}$ of order $10^{34} - 10^{36}$ yrs. Note that we have assumed that dimension five operators such as $16_{i}16_{j}16_{k}16_{l}, 16_{i}16_{j}16_{k}16_{H}$ and so on, where the subscripts are family indices of the matter, are adequately suppressed by assigning suitable R and A charges to these matter superfields. This is closely tied to the flavor problem, which we will not address here.

Consider next the superpotential couplings involving the third generation matter
superfields,

$$W_m = y_3 16_3 16_3 10_h + \frac{y_\nu}{M_*} 16_3 16_3 \overline{16}_H \overline{16}_H.$$ \hspace{1cm} (11)

The first term yields Yukawa unification so that the MSSM parameter $\tan \beta \approx m_t/m_b$ \cite{27}. For a realistic construction of the fermion’s mass matrices in $SO(10)$, refer to e.g. Ref. \cite{28}. From the y_ν term, the right handed neutrino masses are $\lesssim y_\nu M^2_{B-L}/M_* \sim 10^{14}$ GeV. Right handed neutrino masses of order 10^{14} GeV and smaller can yield a mass spectrum for the light neutrinos through the seesaw mechanism, that is suitable for neutrino oscillations. These masses are also appropriate for realizing leptogenesis after inflation \cite{29,7}. Finally let us note that the $16_H, \overline{16}_H$ VEVs break the center Z_4 of $SO(10)$ completely \cite{22}. The role of ‘matter parity’ is played by the unbroken Z_2 subgroup of the $U(1)$ R-symmetry \cite{9}. Thus the LSP in our model is expected to be stable and contribute to the dark matter in the universe.

For completeness, we need to present also the other possible terms in the superpotential that were not discussed in Eqs. (1), (3), (8), (10), and (11). Indeed, we have more quartic couplings: $104510_h X, 16_{16}XQ, 16_1610_X, 16'16_H10_h X, 16_H16_H10_h S, 16_H16_H1045_H, 16\overline{16}_H10_h X, 16_H\overline{16}_H10_h S, 16_H\overline{16}_H1045_H$, and so on, which also are consistent with the charge assignment in Table I. But they just provide sub-dominant effects in this model. For instance, $16_{16}(XQ)$ can not change the symmetry breaking pattern discussed above, because $\langle 16 \rangle = \langle \overline{16} \rangle = 0$. Thus, with keeping massless goldstones, it just modifies the masses of the pseudo-goldstone modes contained in 16 and $\overline{16}$. Due to $\langle 16_H \rangle \neq 0$ and $\langle 45_H \rangle \neq 0$, $16_H16_H1045_H$ slightly changes masses of the $SU(2)_L$ doublets contained in 16_H and 10. We also have over forty extra penta-couplings except those considered in Eqs. (3) and (8), but we will neglect them.

Let us now discuss how inflation is implemented in the model described so far. In particular, we aim to show that the SUGRA corrections do not significantly affect the inflationary scenario, which is a non-trivial result in inflationary model building.
The “F-term” scalar potential in SUGRA is given by

\[V_F = e^{K/M_P^2} \left[\sum_{i,j} (K^{-1})^i_j (D_{\phi_i} W)(D_{\phi_j} W)^* - \frac{3|W|^2}{M_P^2} \right], \]

(12)

where \(M_P \) \((\equiv M_{\text{Planck}}/\sqrt{8\pi} = 2.4 \times 10^{18} \text{ GeV})\) denotes the reduced Planck mass. \(K (= K(\phi_i, \phi_j^*) = K^*) \) and \(W (= W(\phi_i)) \) are the Kähler potential and the superpotential, respectively. \((K^{-1})^i_j \) in Eq. (12) denotes the inverse of \(\partial^2 K/\partial \phi_i \partial \phi_j^* \). In our case, \(W \) is composed of Eqs. (1), (3), (8), (10), and (11). \(D_{\phi_i} W \) in Eq. (12) is defined as

\[D_{\phi_i} W \equiv \frac{\partial W}{\partial \phi_i} + \frac{\partial K}{\partial \phi_i} \frac{W}{M_P^2}. \]

(13)

The Kähler potential can be expanded as

\[K = |\phi|^2 + c_4 |\phi|^4/M_P^2 + \cdots \]

For simplicity, we consider the minimal case with \(\partial^2 K/\partial \phi_i \partial \phi_j^* = \delta^i_j \). Indeed, as explained in [2], higher order terms in \(K \) (with a coefficient \(\lesssim 10^{-2} \) for the quartic term) do not seriously affect inflation. For simplicity, we will also ignore the TeV scale electroweak symmetry breaking effects when discussing inflation.

In this paper, we aim to employ the ‘shifted’ hybrid inflationary scenario proposed in Ref [10], in which symmetries can be broken during inflation unlike the simple “hybrid inflation” model [11]. An inflationary scenario is realized in the early universe with the scalar fields \(S, 16_H, \overline{16}_H, P, \overline{P}, Q, \) and \(\overline{Q} \) displaced from the present values. We suppose that initially \(|\langle S \rangle|^2 \gtrsim M_{B-L}^2[1/(4\zeta) - 1]/2 \) with \(1/4 < \zeta < 1/7.2 \) [10], and \(\langle 16_H \rangle, \langle \overline{16}_H \rangle, \langle P \rangle, \langle \overline{P} \rangle, \langle Q \rangle, \langle \overline{Q} \rangle \neq 0 \) with the inflationary superpotential given by [10],

\[W_{\text{infl}} \approx -\kappa S \left[M_{B-L}^2 - 16_H \overline{16}_H + \frac{\rho}{\kappa M_s^2} (16_H \overline{16}_H)^2 \right] - \frac{\kappa_1}{\rho} \overline{P} P + \frac{\kappa_1}{\rho} (P \overline{P})^2 - \frac{\kappa_2}{\rho} Q \overline{Q} + \frac{\kappa_2}{\rho} (Q \overline{Q})^2 \]

\[\equiv -\kappa SM_{\text{eff}}^2, \]

(14)

where \(M_{\text{eff}}^2 \) turns out to be of order \(M_{B-L}^2 \). With \(D_S W \approx -\kappa M_{\text{eff}}^2 (1 + |S|^2/M_P^2) \), one can see that the “F-term” scalar potential becomes

\[V_F \approx \left(1 + \sum_k \frac{|\phi_k|^2}{M_P^2} + \cdots \right) \left[\kappa_2^4 M_{\text{eff}}^4 \left(1 + \frac{|S|^4}{2M_P^2} \right) + \left(1 + \frac{|S|^2}{2M_P^2} + \frac{|S|^4}{2M_P^2} \right) \sum_k |D_{\phi_k} W|^2 \right], \]

(15)
where all scalar fields except S contribute to ϕ_k. The factor $(1 + \sum_k |\phi_k|^2/M_p^2 + \cdots)$ in front originates from e^{K/M_p^2} in Eq. (12). In Eq. (15) the quadratic term in S from $|D_S W|^2$, which is of order $(\kappa^2 M_{\text{eff}}^4/M_p^2)|S|^2 \approx H^2 |S|^2$, has canceled out with the factor $-3 |W|^2/M_p^2$ ($\approx -3 \kappa^2 M_{\text{eff}}^2 |S|^2/M_p^2$) and the quadratic term in S from e^{K/M_p^2} ($= 1 + |S|^2/M_p^2 + \cdots$). It is a common feature in this class of models [2]. Thus, only if $|D_{\phi_k} W|/M_p$’s are much smaller than the Hubble scale ($\approx \kappa M_{\text{eff}}^2/M_p$), the flatness of S will be guaranteed even with the SUGRA corrections included. Note that the $U(1)$ R-symmetry ensures the absence of terms proportional to S^2, S^3, etc. in the superpotential, which otherwise could spoil the slow-roll conditions.

Let us consider the inflationary trajectory on which $\langle 10 \rangle = \langle 10_h \rangle = \langle 16 \rangle = \langle 16' \rangle = \langle 16'' \rangle = \langle 16_\lambda \rangle = \langle 45 \rangle = 0$, with $D_{10} W = D_{10_h} W = D_{16} W = D_{16_h} W = D_{16''} W = D_{16'} W = D_{16''} W = D_{16_h} W = D_{45} W = 0$. On the other hand,

$$D_{16_h} W = \kappa S \left[\frac{2 \rho}{\kappa M_p^2} \left(16_h \bar{16}_h \right)^2 \right] - \frac{M_{\text{eff}}^2}{M_p^2} \right],$$

$$D_P W = \kappa S \left[\frac{\rho_k}{\kappa M_p^2} \left(\frac{P}{P^2} \right)^2 \right] - \frac{M_{\text{eff}}^2}{M_p^2} \right],$$

$$D_Q W = \kappa S \left[\frac{\rho_k}{\kappa M_p^2} \left(\frac{Q}{Q^2} \right)^2 \right] - \frac{M_{\text{eff}}^2}{M_p^2} \right],$$

and similarly $D_{16_h} W = D_{16_h} W(16_h \leftrightarrow \bar{16}_h), D_P W = D_P W(P \leftrightarrow \bar{P}),$ and $D_Q W = D_Q W(Q \leftrightarrow \bar{Q}).$ The other $D_{\phi_i} W$’s ($\phi_i = X^{(i)}, Y, 45_H, 45'_H$) are approximately given by $-s(\phi_i^*)$, where $s \equiv -W/M_p^2 \approx \kappa (S) M_{\text{eff}}^2/M_p^2 (< < M_{\text{GUT}})$. At one of the local minima, $\langle 16_H \rangle, \langle 16_H \rangle, \langle P \rangle, \langle \bar{P} \rangle, \langle Q \rangle, \langle \bar{Q} \rangle,$ and the vacuum energy $V_0^{1/4}$ acquire the following values,

$$|\langle 16_H \rangle|^2 \approx \frac{\kappa M_p^2}{2 \rho} \left[1 - \frac{M_{B-L}^2}{M_p^2} \right] + \frac{\kappa M_p^2}{2 \rho} \left(1 - \frac{M_{B-L}^2}{4 S^2} + \frac{O(\kappa_{1/2}^2)}{\kappa^2} \right),$$

$$|\langle P \rangle|^2 \approx \frac{\kappa M_p^2}{2 \rho} \left[1 - \frac{M_{B-L}^2}{\kappa_1 M_p^2} \right] + \frac{\kappa M_p^2}{4 \kappa_1 \rho M_p^2} \left(1 + \frac{O(\kappa_{1/2}^2)}{\kappa^2} \right),$$

$$|\langle Q \rangle|^2 \approx \frac{\kappa M_p^2}{2 \rho} \left[1 - \frac{M_{B-L}^2}{\kappa_2 M_p^2} \right] + \frac{\kappa M_p^2}{4 \kappa_2 \rho M_p^2} \left(1 + \frac{O(\kappa_{1/2}^2)}{\kappa^2} \right),$$

$$V_0 \approx \kappa^2 M_0^2 \left[1 + \frac{M^2}{M_p^2} \left(\frac{\kappa}{\rho} + \frac{\kappa_1}{\rho_1} + \frac{\kappa_2}{\rho_2} + O(\kappa^2, \kappa M_{B-L}/M_p^2) \right) + \sum_l \frac{\langle |\phi_l| \rangle^2}{M_p^2} \right],$$

where we assumed $\frac{\kappa}{\rho} \gtrsim \frac{\kappa}{m_1}, \frac{\kappa}{\rho}^2$ with $\kappa << 1$ and $\rho \sim \rho_1 \sim \rho_2 \sim O(1)$. In Eq. (22), $M_0^S \equiv M_{B-L}^2[1/(4\zeta_1) + 1/(4\zeta_2) - 1]^2 \approx M_{B-L}^2[1/(4\zeta) - 1]^2$, where $\zeta_1 \equiv \rho_1 M_{B-L}/(\kappa_1 M_0^S)$, and $\zeta_2 \equiv \rho_2 M_{B-L}/(\kappa_2 M_0^S)$. Eqs. (19)–(22) are valid only when $M_{B-L}/(4\zeta) - 1/2 \lesssim |\langle S \rangle|^2 << M_P^2$. In the limit $M_P \to \infty$, the above results approach the values in global SUSY [10].

Since P and Q develop VEVs, $X(\zeta), Y, 45_H$, and $45'_H$ should also achieve VEVs from $D_{16''} W = D_{16''} W = 0$ even during inflation. Consequently, $SO(10)$ and $U(1)_A$ are broken to G_{SM} during inflation. Note that $\langle P \rangle = \langle \overline{P} \rangle$ and $\langle Q \rangle = \langle \overline{Q} \rangle$ in Eqs. (20) and (21) lead to $\langle P_- \rangle = \langle Q_- \rangle = 0$. A non-zero vacuum energy from the “F-term” potential induces universal “Hubble induced scalar mass terms” $(\kappa^2 M_0^S M_P^2 \times |\phi|^2)$, which are read off from Eq. (15). But such small masses $(\kappa M_0^S M_P << M_{B-L})$ cannot much affect the VEVs of the superheavy scalars of order M_{GUT}.

Indeed, as seen earlier, in the SUSY limit the VEVs of $P, \overline{P}, Q, \overline{Q}$ are not determined, even though $\langle P \overline{P} \rangle$ and $\langle Q \overline{Q} \rangle$ are fixed. But by including the SUSY breaking soft terms of order $m_{3/2}$ in the scalar potential, they are completely determined. Thus, one might expect that the non-vanishing VEV of S and the “Hubble induced masses” $(\gg m_{3/2})$ during inflation cause the VEVs of $P, \overline{P}, Q, \overline{Q}$ to significantly deviate from their values at low energies. Such differences, if true, would result in oscillations by $P, \overline{P}, Q, \overline{Q}$ (or P_\pm and Q_\pm) after inflation. As explained earlier, with universal soft masses, $\langle P_- \rangle = \langle Q_- \rangle = 0$. Since the VEVs of P_- and Q_- vanish both during and after inflation, oscillations by such light ($\sim m_{3/2}$) scalars would not arise after inflation has ended.

A mass term for S is induced by SUGRA corrections, such that the “F-term potential” contains

\[V_F \supset \sum_i |D\phi_i W|^2 \sim \left(\frac{M_{GUT}}{M_P} \right)^2 \times H^2 |S|^2, \tag{23} \]

where $H (\equiv \kappa M_{eff}^2/M_P \approx \kappa M_0^2/M_P)$ denotes the “Hubble induced mass.” Such a
small mass term of $S (<< H^2|S|^2)$ does not spoil the slow roll conditions. The correction term in Eq. [23] has a small impact on the inflationary predictions.

With SUSY broken during inflation ($F_S \neq 0$), there are radiative corrections from the $16_H, \overline{16}_H$ supermultiplets, which provide logarithmic corrections to the tree level potential $V_F \approx \kappa^2 M^4_0$, and thereby drive inflation \cite{1}. In our model, the scalar spectral index turns out to be $n_s = 0.99 \pm 0.01$ for $\kappa < 10^{-2}$. (See FIG. 1.) The symmetry breaking scale M_{B-L} is estimated to be around $10^{16} - 10^{17}$ GeV (FIG. 2).

Before concluding, some remarks about the reheat temperature T_r, leptogenesis, and right handed neutrino masses are in order. When inflation is over, the inflatons decay into handed neutrinos. Following Refs. \cite{4} and \cite{30}, a lower bound on T_r is obtained for $\kappa = \lambda$, and the results are summarized in FIG.3. (To obtain FIG.1-3, we set $M_* = M_P$ and $\rho = \rho_{1,2} = 1 \gg \frac{\kappa^2}{\kappa^2}$.) We see that $T_r \lesssim 10^9$ GeV for $\kappa \lesssim 10^{-2}$. The inflaton decay into right handed neutrinos yields the observed baryon asymmetry via leptogenesis. Assuming non-thermal leptogenesis and hierarchical right handed neutrinos, we estimate the three right handed neutrinos masses to be of order 10^{14} GeV, $(10 - 20) \times T_r$ and few $\times T_r$. Note that with $\kappa < 10^{-2}$ the inflaton (with mass $\sim \sqrt{\kappa M^2_{B-L}}$) can not decay into the heaviest right handed neutrino (of mass $\sim 10^{14}$ GeV). Thus, the latter does not play a direct role in leptogenesis.

In summary, our goal here was to realize inflation in a realistic SUSY $SO(10)$ model. A global $U(1)_A$ and the $U(1)_R$-symmetry play essential roles in the analysis. Several testable predictions emerge. In particular, the scalar spectral index $n_s = 0.99 \pm 0.01$, which will be tested by several ongoing experiments. Proton decay proceeds via $e^+\pi^0$, with an estimated lifetime of order $10^{34} - 10^{36}$ yrs. The LSP is stable and the MSSM parameter $\tan\beta$ is large, of order m_t/m_η. Two of the three right handed neutrino masses are fairly well determined. The heaviest one weighs around 10^{14} GeV, and the one primarily responsible for non-thermal leptogenesis has mass of order $10^8 - 10^9$ GeV.
Acknowledgments

We thank Nefer Senoguz for helpful discussions and for providing us with the figures. This work is partially supported by the DOE under contract No. DE-FG02-91ER40626 (Q.S.).

References

[1] G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys. Rev. Lett. 73 (1994) 1886 [arXiv:hep-ph/9406319].

[2] For a review and additional references, see G. Lazarides, Lect. Notes Phys. 592 (2002) 351 [arXiv:hep-ph/0111328]. See also D. H. Lyth and A. Riotto, Phys. Rept. 314 (1999) 1 [arXiv:hep-ph/9807278].

[3] V. N. Senoguz and Q. Shafi, Phys. Lett. B 567 (2003) 79 [arXiv:hep-ph/0305089].

[4] V. N. Senoguz and Q. Shafi, Phys. Rev. D 71 (2005) 043514 [arXiv:hep-ph/0412102].

[5] D. N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175 [arXiv:astro-ph/0302209]; C. L. Bennett et al., Astrophys. J. Suppl. 148 (2003) 1 [arXiv:astro-ph/0302207]; H. V. Peiris et al., Astrophys. J. Suppl. 148 (2003) 213 [arXiv:astro-ph/0302225]. See also G. F. Smoot et al., Astrophys. J. 396 (1992) L1; C. L. Bennett et al., Astrophys. J. 464 (1996) L1 [arXiv:astro-ph/9601067].

[6] U. Seljak et al., Phys. Rev. D 71 (2005) 103515 [arXiv:astro-ph/0407372].

[7] V. N. Senoguz and Q. Shafi, Phys. Lett. B 596 (2004) 8 [arXiv:hep-ph/0403294]; L. Boubekeur and D. H. Lyth, JCAP 0507 (2005) 010 [arXiv:hep-ph/0502047].

[8] A. D. Linde and A. Riotto, Phys. Rev. D 56 (1997) 1841 [arXiv:hep-ph/9703209].
[9] G. R. Dvali, G. Lazarides and Q. Shafi, Phys. Lett. B 424 (1998) 259 [arXiv:hep-ph/9710314].

[10] R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi, JHEP 0010 (2000) 012 [arXiv:hep-ph/0002151].

[11] B. Kyae and Q. Shafi, Phys. Lett. B 597 (2004) 321 [arXiv:hep-ph/0404168]. For an earlier discussion see L. Covi, G. Mangano, A. Masiero and G. Miele, Phys. Lett. B 424 (1998) 253 [arXiv:hep-ph/9707405]. The $U(1)$ R-symmetry was not fully exploited in this paper. See also T. Watari and T. Yanagida, Phys. Lett. B 589 (2004) 71 [arXiv:hep-ph/0402125].

[12] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11 (1975) 566; G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12 (1975) 1502; M. Magg, Q. Shafi and C. Wetterich, Phys. Lett. B 87 (1979) 227.

[13] J. C. Pati and A. Salam, Phys. Rev. D 8 (1973) 1240; Phys. Rev. D 10 (1974) 275.

[14] H. Georgi, AIP Conf. Proc. 23 (1975) 575; H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975) 193.

[15] S. Fukuda et. al. [Superkamiokande Collaboration], Phys. Rev. Lett. 85, 3999 (2000); S. Fukuda et. al., Phys. Lett. B 539 (2002) 179.

[16] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45; For non-thermal leptogenesis, G. Lazarides and Q. Shafi, Phys. Lett. B 258 (1991) 305.

[17] S. Dimopoulos and F. Wilczek, Preprint NSF-ITP-82-07 (1982).

[18] B. Kyae and Q. Shafi, Phys. Lett. B 556 (2003) 97 [arXiv:hep-ph/0211059]; B. Kyae and Q. Shafi, Phys. Rev. D 69 (2004) 046004 [arXiv:hep-ph/0212331]; B. Kyae and Q. Shafi, arXiv:hep-ph/0312257; B. Kyae and Q. Shafi, JHEP 0311 (2003) 036 [arXiv:astro-ph/0302504].

14
[19] K. S. Babu and S. M. Barr, Phys. Rev. D 48 (1993) 5354 [arXiv:hep-ph/9306242]; ibid. D 50 (1994) 3529 [arXiv:hep-ph/9402291]; V. Lucas and S. Raby, Phys. Rev. D 54 (1996) 2261 [arXiv:hep-ph/9601303]; ibid. D 55 (1997) 6986 [arXiv:hep-ph/9610293]; Z. Berezhiani and Z. Tavartkiladze, Phys. Lett. B 409 (1997) 220 [arXiv:hep-ph/9612232]; Z. Chacko and R. N. Mohapatra, Phys. Rev. D 59 (1999) 011702 [arXiv:hep-ph/9808458]; Z. Chacko and R. N. Mohapatra, Phys. Rev. Lett. 82 (1999) 2836 [arXiv:hep-ph/9810315]; N. Maekawa, Prog. Theor. Phys. 106 (2001) 401 [arXiv:hep-ph/0104200].

[20] S. M. Barr and S. Raby, Phys. Rev. Lett. 79 (1997) 4748 [arXiv:hep-ph/9705366].

[21] K. S. Babu and S. M. Barr, Phys. Rev. D 65 (2002) 095009 [arXiv:hep-ph/0201130].

[22] T. W. B. Kibble, G. Lazarides and Q. Shafi, Phys. Lett. B 113 (1982) 237.

[23] R. Jeannerot, Phys. Rev. D 53 (1996) 5426 [arXiv:hep-ph/9509365].

[24] H. P. Nilles, Phys. Rept. 110 (1984) 1.

[25] S. F. King and Q. Shafi, Phys. Lett. B 422 (1998) 135 [arXiv:hep-ph/9711288].

[26] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, Phys. Rev. D 49 (1994) 6410 [arXiv:astro-ph/9401011].

[27] B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D 44 (1991) 1613; B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Lett. B 300 (1993) 245; G. W. Anderson, S. Raby, S. Dimopoulos and L. J. Hall, Phys. Rev. D 47 (1993) 3702 [arXiv:hep-ph/9209250].

[28] C. H. Albright and S. M. Barr, Phys. Rev. D 58 (1998) 013002 [arXiv:hep-ph/9712488]; C. H. Albright, K. S. Babu and S. M. Barr, Phys. Rev. Lett. 81 (1998) 1167 [arXiv:hep-ph/9802314]; C. H. Albright and S. M. Barr, Phys. Lett. B 452 (1999) 287 [arXiv:hep-ph/9901318]; S. M. Barr, Phys. Rev.
Lett. 92 (2004) 101601 [arXiv:hep-ph/0309152]; S. M. Barr and B. Kyae, Phys. Rev. D 70 (2004) 075005 [arXiv:hep-ph/0407154].

[29] G. Lazarides, R. K. Schaefer and Q. Shafi, Phys. Rev. D 56 (1997) 1324 [arXiv:hep-ph/9608256]; V. N. Senoguz and Q. Shafi, Phys. Lett. B 582 (2004) 6 [arXiv:hep-ph/0309134]; J. C. Pati, Phys. Rev. D 68 (2003) 072002.

[30] G. Lazarides and N. D. Vlachos, Phys. Lett. B 441 (1998) 46 [arXiv:hep-ph/9807253].
FIG. 1: The spectral index n_s vs κ. κ is < 0.01 so that the reheat temperature does not exceed 10^9 GeV. See FIG. 3.

FIG. 2: The symmetry breaking scale M_{B-L} (solid) and magnitude of the inflaton $|S|$ (dashed) vs κ.

17
FIG. 3: Reheat temperature T_r and inflaton mass (dashed) vs κ.