Impact of chronic kidney disease on outcomes after total joint arthroplasty: A meta-analysis & systematic review.

CURRENT STATUS: POSTED

Jiang Chen
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Fan Zhang
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Chu-Yin Liu
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Qiao-Mei Yuan
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Xue-Shi Di
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Shui-Wen Long
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Hong-Cai Shang
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Yu-Song Jia
Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital

Corresponding Author

cjdzmhp@163.com

DOI:
10.21203/rs.2.14747/v1

SUBJECT AREAS
Health Economics and Outcomes Research

KEYWORDS
Total joint arthroplasty, Chronic kidney disease, Total knee replacement, Hip replacement, Complications
Abstract

Background Comorbidities in patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) may compromise outcomes with increased hospital stays, readmission and mortality rates. We aimed to determine whether chronic kidney disease (CKD) affects postoperative outcomes of patients undergoing total joint arthroplasty (TJA).

Methods To identify studies for this review and meta-analysis, two independent reviewers searched PubMed, Cochrane, EMBASE and Google Scholar until April 1, 2019, and identified additional studies by manual search of reference lists. Prospective or retrospective studies with quantitative outcomes for patients undergoing TJA were selected. Outcomes were compared between patients with underlying CKD stage >=3 or eGFR< 60 mL/min/1.73 m² versus mild/non-CKD as controls. Main endpoints were mortality, re-operation and re-admission rates.

Results Among 59 studies reviewed, 19 meeting the eligibility criteria were included, providing data of 2,141,393 patients. After THA or TKA, CKD was associated with higher mortality risk than non-CKD (pooled OR 2.20, 95%CI = 1.90 to 2.54; P < 0.001); no significant differences were seen in re-operation between CKD and non-CKD patients (pooled OR 1.26, 95%CI = 0.84 to 1.88; P=0.266); and CKD patients had higher any-cause re-admission rates (pooled OR= 1.57, 95%CI = 1.27 to 1.94, P<0.001).

Conclusion Underlying CKD predicts adverse outcomes after elective TJA with increased risk of mortality, re-admission, surgical site infection, and perioperative transfusion. Findings of this review and meta-analysis highlight CKD as a critical contributor to complications after TJA and may be helpful to surgeons when advising patients about associated risks of TJA.

Background

Comorbidities in patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) are known to result in poor outcomes with longer hospital stays, increased hospital readmission rates and higher mortality rates [1]. Comorbidities previously reported for poor surgical outcomes in the setting of joint replacement surgery include obesity [2], cardiovascular disease [3], depression and other mental health disorders [4-6], diabetes mellitus [7-9], hepatic disease [10-12], and frailty [13]. Studies on joint replacement also show variations in the definitions and severity of comorbid disease [1], which may yield conflicting results, and consensus is still lacking among clinicians about the
clinical indications for joint replacement surgeries [14], which may lead to differences in outcomes based on severity levels of associated comorbidities.

Chronic kidney disease (CKD) is associated with age-related decline in renal function and more rapid decline in the presence of hypertension, diabetes, obesity and primary renal disorders [15]. It is also an established independent predictor of mortality and cardiovascular events in the nonsurgical setting [16-18]. Previous studies have also shown that CKD is an independent risk factor for postoperative death and cardiovascular events in elective noncardiac surgeries, including elective orthopedic surgeries [19, 20]. Patients undergoing total joint arthroplasty (TJA) are commonly affected by CKD; reported incidence is 17% in TJA patients, which is higher than that of the general population [21]. Among TJA patients, risk was markedly higher for overall complications and mortality in patients with moderate to severe CKD than in those without CKD [21].

To date, the influence of CKD on postoperative outcomes after hip or knee replacement is still not well characterized. Although the medical literature has focused increasingly on the potential impact of CKD and various postoperative outcomes, no comprehensive systematic review and meta-analysis has yet been published. In addition, given that interest in elective TJA is growing and the volume of these surgeries is rising correspondingly [22], orthopedic surgeons need to recognize the healthcare burden of this population and must assess outcomes of TJA in patients with CKD or other comorbid conditions in order to optimize treatment strategies and improve outcomes [1].

We hypothesized that underlying CKD would negatively influence the outcomes of patients undergoing TJA. Therefore, the purpose of this systematic review and meta-analysis was to determine whether and how CKD impacts postoperative outcomes in patients undergoing TJA.

Methods
This meta-analysis and systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Search strategy
To find timely and appropriate studies for review and meta-analysis, we searched the following databases: PubMed, Cochrane, EMBASE and Google Scholar until April 1, 2019. Additional studies were identified by hand-search of reference lists from the relevant studies. The following combinations of keywords were used to maximize the search results: (arthroplasty) AND ((chronic kidney disease) OR renal).
Study selection and data extraction
Studies were identified by two independent reviewers. Where there was uncertainty regarding eligibility, a third reviewer was consulted. Inclusion criteria were: prospective or retrospective studies comparing outcomes after TJA between patients with underlying CKD (defined as CKD stage \(\geq 3 \) or eGFR < 60 mL/min/1.73 m\(^2\)) as case group versus mild/non-CKD as control group; quantitative outcomes; and patients undergoing total joint arthroplasty (TJA) of lower-extremities, including total hip arthroplasty (THA) or total knee arthroplasty (TKA). Studies designed only for comparing outcomes between dialysis-dependent versus non-dialysis-dependent patients were excluded. Letters, comments, editorials, case reports, proceedings and personal communications were also excluded as well as studies with no quantitative outcomes. The following data were extracted from studies that met the inclusion criteria: the name of the first author, year of publication, data source, CKD stage and eGFR level, type of arthroplasty (THA or TKA), number of patients, major comorbidities, length of follow-up and major outcomes.

Quality assessment
The Quality In Prognosis Studies (QUIPS) tool was used to assess bias in any of the included studies, as previously described [23]. This tool evaluates bias in any of six domains within a study, including: study participants; study attrition; prognostic factor measurement; outcome measurement; study confounding; and statistical analysis and reporting. Assessed outcomes for the included studies are shown in Figure 4.

Outcome measures
For this meta-analysis, the endpoints were all-cause mortality (at the end of follow-up), re-operation rate, re-admission rate, surgical site infection, deep vein thrombosis (DVT) and perioperative blood transfusion rate. Re-operation was defined as any revision surgery after the primary THA/TKA during which an implant was removed or replaced during the following period. Re-admission was defined as any subsequent hospital inpatient visit due to any cause within 90 days. Surgical site infection was defined as any superficial or deep surgical site infection using the Centers for Disease Control and Prevention (CDC)/National Healthcare Safety Network definitions [24].

Statistical analysis
Odds ratios (OR) with 95% confidence intervals (CI) were extracted from the selected publications. In addition, ORs were calculated from the 2 x 2 table if OR was not otherwise available. A \(\chi^2 \)-based test of homogeneity was performed and the inconsistency index \((I^2) \) and Q statistics were determined. If \(I^2 \) statistic was > 50%, a random-effects model (DerSimonian–Laird method) was used. Otherwise, fixed-
effects models (Mantel-Haenszel method) were employed. Pooled effects were calculated and a 2-sided P value < 0.05 was established as statistical significance. Sensitivity analysis was carried out using the leave-one-out approach to determine the robustness of outcomes data. Publication bias was assessed by constructing funnel plots using Egger’s test. The absence of publication bias was indicated by the data points forming a symmetric funnel-shaped distribution and one-tailed significance level P > 0.05. Analysis of publication bias was not performed because the number of studies was too few (less than 10 studies) to detect an asymmetric funnel, as described previously [25]. All analyses were performed using Comprehensive Meta-Analysis statistical software, version 2.0 (Biostat, Englewood, NJ, USA).

Results

Selected studies Among 59 research articles that underwent full-text review, 40 were excluded and 19 retrospective studies that met the eligibility criteria were included in this review and meta-analysis [21, 26-39]. The full search results and presentation of the characteristics of the included 19 studies are summarized in Table 1. Overall, the eligible studies reported data of 2,141,393 patients (range 270 to 1,016,686) who underwent either THA or TKA. The mean age of patients ranged from 65 to 76 years and the percentage of males ranged from 14% to 77%. Meta-analyses Mortality Four studies [26, 28, 30, 36] provided ORs, and eight studies [21, 27, 29, 31-35] provided simple 2 x 2 tables and were included in the meta-analysis to determine whether CKD was associated with mortality. Evidence of heterogeneity was found among the 12 studies (Q statistic = 25.878, I² = 53.63%, P =0.011), therefore, a random-effects model of analysis was used. The pooled OR (2.20, 95%CI = 1.90 to 2.54) indicated that CKD was associated with higher risk of mortality than non-CKD patients (P < 0.001) after THA or TKA (Figure 2A). Re-operation Six studies [21, 28, 31, 33, 34, 37] provided enough data to calculate ORs and were included in the meta-analysis. Evidence of heterogeneity was found among the studies (Q statistic = 27.939, I² = 78.53%, P < 0.001), therefore, a random-effects model of analysis was used. The pooled OR (1.26, 95%CI = 0.84 to 1.88, P=0.266) indicated that no significant differences were seen in re-operation between non-CKD patients and CKD patients after THA or TKA (Figure 2B). Re-admission Eight studies [29, 31, 33, 34, 37, 38, 40, 41] provided enough information to calculate pooled ORs and were included in the meta-analysis. Evidence of heterogeneity was found among the studies (Q statistic = 154.130, I² = 95.46%, P < 0.001), therefore, a random-effects model
of analysis was used. The result of meta-analysis indicated that the CKD group had a higher re-admission rate due to any cause after THA or TKA (pooled OR= 1.57, 95%CI = 1.27 to 1.94, P<0.001) (Figure 2C). Deep Vein Thrombosis Six studies 21, 26, 29, 33, 34, 42 provided enough information to calculate ORs and were included in the meta-analysis. Evidence of heterogeneity was found among the studies (Q statistic = 10.325, I2 = 51.57%, P =0.067), therefore, a random-effects model of analysis was used. The pooled OR (1.29, 95%CI = 0.99 to 1.68) demonstrated no significant differences in DVT between patients with and without CKD (P = 0.057, Figure 2D). Transfusion Seven studies 21, 26, 28, 32, 37, 43, 44 were included in the meta-analysis. The random-effects model was applied to calculate ORs since evidence of heterogeneity was found among the studies (Q statistic = 118.678, I2 = 94.10%, P < 0.001). The pooled ORs (2.41, 95%CI = 1.90 to 3.06, P < 0.001) indicated that CKD was significantly associated with blood transfusion (Figure 2E). Surgical site infection Nine studies 21, 26, 28-31, 33, 36, 38 provided enough information to calculate ORs and were included in the meta-analysis. Moderate heterogeneity was noted among the studies (Q statistic = 17.558, I2 = 48.74%, P =0.041), therefore, a fixed-effect model of analysis was used. The pooled OR (1.32, 95%CI = 1.21 to 1.44) indicated that CKD patients had higher odds of surgical site infection than non-CKD patients (P < 0.001) after THA or TKA (Figure 2F).

Sensitivity analysis and publication bias Sensitivity analyses were performed using the leave-one-out approach in which the meta-analysis was performed with each study removed in turn (Table 2). The direction of combined estimates did not vary markedly with the removal of the studies, indicating that the meta-analysis was robust and the data were not overly influenced by any single study except for DVT results of Kuo (2017) 29, Li (2017) 42 and Miric (2014b) 34. Pooled ORs of DVT remained > 1 after each study was removed in turn; although results of Kuo (2017) 29, Li (2017) 42 and Miric (2014b) 34 studies became significant (P values were borderline) and most remained non-significant, indicating no obvious influence of any individual study on the pooled estimate. In addition, no publication bias was found for mortality (t = 0.545, one-tailed, P= 0.298, Figure 3).

Quality assessment The results of quality assessment for the included studies are shown in Figure 4. All 19 included studies had low risk of bias in study attrition, outcome measurement, and statistical
analysis and reporting. Most studies had low risk of bias for study participation, prognostic factor measurement and study confounding.

Discussion

This review and meta-analysis investigated whether CKD has an adverse impact on the outcomes of TJA based on recently published evidence with data of over two million patients. Our analysis determined that patients with baseline moderate to severe CKD had a significantly increased risk of mortality (two-fold or more) compared to those with mild/non-CKD. CKD was also significantly associated with more than twice the increased risk of receiving blood transfusion and was significantly associated with increased risk of re-admission and surgical site infection compared to those without CKD. No significant associations were found between CKD and reoperation or DVT in patients undergoing TJA.

Studies included in the present meta-analysis were selected based on inclusion of patients with a range of severity from stage 3, or “moderate,” to severe, defining CKD as stage >=3 or eGFR < 60 mL/min/1.73 m². Studies designed only for comparing outcomes between dialysis-dependent versus non-dialysis-dependent patients were excluded. Our selection strategy was to extend the range of investigation to cover patients with less advanced CKD who were more likely to undergo TJA compared to those with end-stage renal disease (ESRD) and/or were on maintenance dialysis who may not be candidates for surgery. Multiple previous studies have examined outcomes of TJA specifically in patients who were either dialysis-dependent or renal transplant recipients, which led to noticeably higher risk of increased length of stay, readmission and mortality in those study populations [45-48]. In one such study [45], the results revealed that kidney transplant increased risk of surgical site infection and wound infections, systemic infection, deep venous thrombosis, acute renal failure, respiratory, and cardiac complications in patients undergoing TJA. And dialysis dependence was found to be independently associated with higher risk for 30-day adverse events [46, 48], ICU care, longer admission, rehabilitation needs [46], and inpatient mortality [47, 48].

Mortality

In the present review and meta-analysis, CKD was associated with a significantly higher risk of mortality than that among non-CKD patients who had undergone THA or TKA. CKD is a known risk factor for mortality in the nonsurgical setting [16-18], and in the setting of noncardiac surgeries, CKD is also predictive of postoperative death as reported in the previous studies [19, 20]. In elective primary total knee and hip arthroplasty, dialysis-dependent patients present with inpatient mortality rates 10-20 times greater than in non-dialysis-dependent patients [47]. Given our findings and those of other studies reporting higher mortality risk among patients with varying stages of CKD, this risk
should be of the main concern in the selection of TJA candidates who had underlying CKD, even if not yet considered ESRD.

Reoperation and readmission
Results of the present meta-analysis found no significant differences in the occurrence of re-operation between CKD and non-CKD patients undergoing TJA; however, CKD patients who received TJA had higher any-cause readmission rates than non-CKD patients. Although outcomes of TJA are generally reported to be excellent, implant failure and increased risk of revision surgery continues to be of concern [49-51]. Revision surgery may be the result of infection, dislocation, osteolysis or loosening of the component; after THA, dislocation and mechanical loosening are the main risk factors reported for revision surgery [49]. For TKA, the main etiology reported for re-operation are infection and mechanical loosening [50]. A scoping review determined that risk of revision surgery was associated mainly with demographic factors such as age and African-American ethnicity, as well as surgical factors such as uncemented procedure, implant malalignment and longer operative times [51]. A systematic review evaluating results of 86 studies reported that risk factors for revision surgery included younger age, more comorbidities, avascular necrosis as an indication (rather than osteoarthritis) and larger femoral head size in revision performed due to dislocation [52]. However, in that study, younger age was associated with fewer dislocations. Perhaps not all studies had adjusted for confounders when determining risk factors, and clearly, not enough is known about the causes of revision surgery. Further study is needed to identify modifiable and non-modifiable risk factors related to the need for revision.

As mentioned above, readmission rates after TJA in the present meta-analysis were significantly higher among CKD patients than among those without CKD. Another review and meta-analysis reported that the overall readmission rates after THA were 5.6% at 30 days and 7.7% at 90 days, and for TKA were 3.3% at 30 days and 9.7% at 90 days; the leading reason for readmission were joint-specific for THA and surgical site infection for TKA, followed by DVT, pulmonary embolism, and cardiac dysrhythmia [53]. The early successes commonly associated with TJA are compromised by such postoperative complications, and readmission is often considered an indictment of surgical management; however, no consensus has been reached on the main reasons for readmission after primary TJA [53], and further research is essential to determine trends in readmission rates and reasons for readmission.

Deep vein thrombosis (DVT)
In the present study, no significant differences were found in the presence of DVT between patients with and without CKD who underwent TJA. Although DVT has been shown to occur commonly after
joint replacement surgeries, and has been reported to cause unfavorable outcomes after TJA, a recent study of national trends in the United States showed that DVT incidence actually declined for TKA (0.86% to 0.45%) and THA (0.55% to 0.24%) over a 10-year period from 2001 to 2011 [54]. The explanation for this trend is that DVT prophylaxis has been the focus of surgeons performing TJA, along with the recognition of higher risk for DVT among older patients, African Americans and patients with comorbidities [54]. This may, at least in part, explain our result in conjunction with the characteristics of our CKD patient population. A systematic review and meta-analysis conducted in 2015 examined evidence from 54 studies across ten previous years and identified several potential factors associated with venous thromboembolism (VTE) occurring after THA and TKA including older age, female, history of VTE, higher body mass index (BMI), longer surgeries and bilateral surgeries [55]. Decreased kidney function is associated with an increased risk of venous thrombosis and, in particular, in combination with arterial thrombosis, is increased additionally in patients with moderate and severe reduction in kidney function undergoing surgery [56], however, the types of surgical setting were not specified. In the present study, the database lacked information about DVT prophylaxis, therefore, our estimation of associations between CKD and DVT may include bias. Nevertheless, continued focus on DVT prophylaxis and perhaps applying more aggressive management strategies may help to reduce the rate of DVT among those at increased risk [54].

Transfusion
CKD was found significantly associated with perioperative blood transfusion in the present review and meta-analysis. A previous study analyzing a large statewide database from the year 2006 to 2011 reported that overall utilization of blood transfusion in TJA remained high over time, with nearly 25% of their study cohort [57]. It is also found that hip arthroplasty more often required transfusion during surgery than knee arthroplasty, and risk was even greater in bilateral procedures. Transfusion was more common among females, older patients and those with a higher burden of comorbidities [57]. CKD is commonly associated with both lower hemoglobin levels and elevated risks of bleeding, which may explain the greater risk of blood transfusion in CKD after TJA.

Surgical site infection
The result in this review and meta-analysis indicated that CKD patients had higher risk of surgical site infection than non-CKD patients after TJA. Surgical site infection is previously estimated to occur in 1% to 2.5% of cases annually after TJA [58]. It is thought to pose a great challenge on the joint replacement, and also place a substantial burden on the healthcare system. A recent review documented that advances in surgical technique, sterile protocol, and operative procedures have been instrumental in minimizing surgical site infections and may account for the recent plateau in
rising rates after TKA and THA [59]. In the present review and meta-analysis, CKD group might contain ESRD patients who are susceptible to infections, thus explains the excess risk of surgical site infection compared to non-CKD. Also, the fact that CKD patients are more prone to surgical site infections might attribute to increased related conditions such as diabetes or poor nutrition.

Cardiovascular complications

Strengths And Limitations

The present review and meta-analysis are the first to be conducted on comorbid CKD and outcomes after elective TJA. The analysis was strengthened by using the data of a large number of patients (2,141,393) from the 19 included studies. In addition, the analyses in this meta-analysis were based on the most recent studies; the clinical reports included were all published within last 10 years and most were within the recent three years, which may avoid the possible influence of progress in aftercare or surgical technique.

Nevertheless, this study still has several limitations, including that the data of all included studies had been analyzed retrospectively, which means that the level of evidence is moderate, as noted in guidelines for systematic reviews [68], and also that causation cannot be inferred. Although CKD might impact the outcomes differently in TKA and THA, the majority of included studies reported findings without separating TKA from THA, so they were not analyzed separately in the present meta-analysis. Also, CKD is often associated with multiple comorbid conditions such as obesity, diabetes mellitus, cardiovascular disease, etc., each of which is known as an independent risk factor in patients undergoing TJA. However, not all included studies were controlled for such factors and therefore possible confounding cannot be fully excluded. Consequently, the potential interaction of these factors may over-emphasize our results. Future prospective study is highly warranted to more accurately investigate the impact of CKD on each total arthroplasty procedure separately, and to also address the prognostic roles of different CKD stages.

Conclusions

Underlying CKD predicts adverse outcomes after elective TJA with increased risk of mortality, re-admission, surgical site infection and blood transfusion. The findings of this review and meta-analysis highlight CKD as a critical contributor to complications after TJA and may be helpful to surgeons when advising patients about associated risks of TJA.

Declarations

List of Abbreviations

hip arthroplasty (THA)
total knee arthroplasty (TKA)
chronic kidney disease (CKD)
total joint arthroplasty (TJA)
deep vein thrombosis (DVT)
Centers for Disease Control
confidence intervals (CI)

Ethics approval and Patient consent
Ethical approval and patient consent are not required for the meta-analysis.

Consent for publication
Not applicable

Availability of data and materials
All data relevant to the study are included in the article.

Conflict of interests
The authors declare they have no conflicts of interest associated with this study.

Funding source: The National Key Research and Development Program of China (No. 2017YFC1700402); Program of National Natural Science Foundation of China (No. 81603638); the Fundamental Research Funds for the Central Universities (No. 2018-JYB-XJQ010); Young Scientist Development Program, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine (No. DZMYS-201702)

Author contributions: JC is responsible for study design, clinical studies, experimental studies, manuscript preparation and manuscript editing. FZ is responsible for the definition of intellectual content. CYL is responsible for clinical studies. QMY is responsible for literature research and statistical analysis. XSD is responsible for literature research, experimental studies, data acquisition and data analysis. SWL is responsible for data acquisition, data analysis and statistical analysis. HCS is responsible for the integrity of the entire study, study concepts, study design and manuscript review. YSJ is responsible for the integrity of the entire study, study concepts, study design and manuscript review.

Acknowledgements: None.
References

1. Podmore B, Hutchings A, van der Meulen J, Aggarwal A, Konan S: Impact of comorbid conditions on outcomes of hip and knee replacement surgery: a systematic review and meta-analysis. BMJ Open 2018, 8(7):e021784.

2. Haynes J, Nam D, Barrack RL: Obesity in total hip arthroplasty: does it make a difference? Bone Joint J 2017, 99-b(1 Supple A):31-36.

3. Curtis GL, Newman JM, George J, Klika AK, Barsoum WK, Higuera CA: Perioperative Outcomes and Complications in Patients With Heart Failure Following Total Knee Arthroplasty. J Arthroplasty 2018, 33(1):36-40.

4. Gold HT, Slover JD, Joo L, Bosco J, Iorio R, Oh C: Association of Depression With 90-Day Hospital Readmission After Total Joint Arthroplasty. J Arthroplasty 2016, 31(11):2385-2388.

5. Rasouli MR, Menendez ME, Sayadipour A, Purtill JJ, Parvizi J: Direct Cost and Complications Associated With Total Joint Arthroplasty in Patients With Preoperative Anxiety and Depression. J Arthroplasty 2016, 31(2):533-536.

6. Klement MR, Nickel BT, Penrose CT, Bala A, Green CL, Wellman SS, Bolognesi MP, Seyler TM: Psychiatric disorders increase complication rate after primary total knee arthroplasty. Knee 2016, 23(5):883-886.

7. Bolognesi MP, Marchant MH, Jr., Viens NA, Cook C, Pietrobon R, Vail TP: The impact of diabetes on perioperative patient outcomes after total hip and total knee arthroplasty in the United States. J Arthroplasty 2008, 23(6 Suppl 1):92-98.

8. Yang Z, Liu H, Xie X, Tan Z, Qin T, Kang P: The influence of diabetes mellitus on the post-operative outcome of elective primary total knee replacement: a systematic review and meta-analysis. Bone Joint J 2014, 96-b(12):1637-1643.
9. Maradit Kremers H, Lewallen LW, Mabry TM, Berry DJ, Berbari EF, Osmon DR:
Diabetes mellitus, hyperglycemia, hemoglobin A1C and the risk of prosthetic
joint infections in total hip and knee arthroplasty. J Arthroplasty 2015,
30(3):439-443.

10. Issa K, Boylan MR, Naziri Q, Perfetti DC, Maheshwari AV, Mont MA: The Impact of
Hepatitis C on Short-Term Outcomes of Total Joint Arthroplasty. J Bone Joint
Surg Am 2015, 97(23):1952-1957.

11. Jiang SL, Schairer WW, Bozic KJ: Increased rates of periprosthetic joint infection
in patients with cirrhosis undergoing total joint arthroplasty. Clin Orthop
Relat Res 2014, 472(8):2483-2491.

12. Deleuran T, Vilstrup H, Overgaard S, Jepsen P: Cirrhosis patients have increased
risk of complications after hip or knee arthroplasty. Acta Orthop 2015,
86(1):108-113.

13. Bellamy JL, Runner RP, Vu CCL, Schenker ML, Bradbury TL, Roberson JR: Modified
Frailty Index Is an Effective Risk Assessment Tool in Primary Total Hip
Arthroplasty. J Arthroplasty 2017, 32(10):2963-2968.

14. Cobos R, Latorre A, Aizpuru F, Guenaga JL, Sarasqueta C, Escobar A, Garcia L,
Herrera-Espineira C: Variability of indication criteria in knee and hip
replacement: an observational study. BMC Musculoskelet Disord 2010, 11:249.

15. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJL, Mann JF,
Matsushita K, Wen CP: Chronic kidney disease and cardiovascular risk:
epidemiology, mechanisms, and prevention. The Lancet 2013, 382(9889):339-
352.

16. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX:
Chronic kidney disease and mortality risk: a systematic review. J Am Soc
17. Ryan TP, Fisher SG, Elder JL, Winters PC, Beckett W, Tacci J, Sloand JA: Increased cardiovascular risk associated with reduced kidney function. *Am J Nephrol* 2009, 29(6):620-625.

18. Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, van Veldhuisen DJ, Hilleges HL: Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. *J Card Fail* 2007, 13(8):599-608.

19. Mathew A, Devereaux PJ, O'Hare A, Tonelli M, Thiessen-Philbrook H, Nevis IF, Iansavichus AV, Garg AX: Chronic kidney disease and postoperative mortality: a systematic review and meta-analysis. *Kidney Int* 2008, 73(9):1069-1081.

20. Ackland GL, Moran N, Cone S, Grocott MP, Mythen MG: Chronic kidney disease and postoperative morbidity after elective orthopedic surgery. *Anesth Analg* 2011, 112(6):1375-1381.

21. Warth LC, Pugely AJ, Martin CT, Gao Y, Callaghan JJ: Total Joint Arthroplasty in Patients with Chronic Renal Disease: Is It Worth the Risk? *J Arthroplasty* 2015, 30(9 Suppl):51-54.

22. Sloan M, Premkumar A, Sheth NP: Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. *J Bone Joint Surg Am* 2018, 100(17):1455-1460.

23. Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C: Assessing bias in studies of prognostic factors. *Ann Intern Med* 2013, 158(4):280-286.

24. Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. *American journal of infection control* 2008, 36(5):309-332.

25. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rucker G,
Harbord RM, Schmid CH et al: Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343:d4002.

26. Cavanaugh PK, Chen AF, Rasouli MR, Post ZD, Orozco FR, Ong AC: Complications and Mortality in Chronic Renal Failure Patients Undergoing Total Joint Arthroplasty: A Comparison Between Dialysis and Renal Transplant Patients. J Arthroplasty 2016, 31(2):465-472.

27. Jamsa P, Jamsen E, Huhtala H, Eskelinen A, Oksala N: Moderate to Severe Renal Insufficiency Is Associated With High Mortality After Hip and Knee Replacement. Clin Orthop Relat Res 2018, 476(6):1284-1292.

28. Rhee C, Lethbridge L, Richardson G, Dunbar M: Risk factors for infection, revision, death, blood transfusion and longer hospital stay 3 months and 1 year after primary total hip or knee arthroplasty. Can J Surg 2018, 61(3):165-176.

29. Kuo LT, Lin SJ, Chen CL, Yu PA, Hsu WH, Chen TH: Chronic kidney disease is associated with a risk of higher mortality following total knee arthroplasty in diabetic patients: a nationwide population-based study. Oncotarget 2017, 8(59):100288-100295.

30. Erkocak OF, Yoo JY, Restrepo C, Maltenfort MG, Parvizi J: Incidence of Infection and Inhospital Mortality in Patients With Chronic Renal Failure After Total Joint Arthroplasty. J Arthroplasty 2016, 31(11):2437-2441.

31. Deegan BF, Richard RD, Bowen TR, Perkins RM, Graham JH, Foltzer MA: Impact of chronic kidney disease stage on lower-extremity arthroplasty. Orthopedics 2014, 37(7):e613-618.

32. Graves A, Yates P, Hofmann AO, Farmer S, Ferrari P: Predictors of perioperative
blood transfusions in patients with chronic kidney disease undergoing elective knee and hip arthroplasty. *Nephrology (Carlton)* 2014, 19(7):404-409.

33. Miric A, Inacio MC, Namba RS: **The effect of chronic kidney disease on total hip arthroplasty.** *J Arthroplasty* 2014, 29(6):1225-1230.

34. Miric A, Inacio MC, Namba RS: **Can total knee arthroplasty be safely performed in patients with chronic renal disease?** *Acta Orthop* 2014, 85(1):71-78.

35. Jamsen E, Puolakka T, Eskelinen A, Jantti P, Kalliovalkama J, Nieminen J, Valvanne J: **Predictors of mortality following primary hip and knee replacement in the aged. A single-center analysis of 1,998 primary hip and knee replacements for primary osteoarthritis.** *Acta Orthop* 2013, 84(1):44-53.

36. Bozic KJ, Lau E, Kurtz S, Ong K, Rubash H, Vail TP, Berry DJ: **Patient-related risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in Medicare patients.** *J Bone Joint Surg Am* 2012, 94(9):794-800.

37. Kuo FC, Lin PC, Lu YD, Lee MS, Wang JW: **Chronic Kidney Disease Is an Independent Risk Factor for Transfusion, Cardiovascular Complication, and Thirty-Day Readmission in Minimally Invasive Total Knee Arthroplasty.** *J Arthroplasty* 2017, 32(5):1630-1634.

38. Urish KL, Qin Y, Li BY, Borza T, Sessine M, Kirk P, Hollenbeck BK, Helm JE, Lavieri MS, Skolarus TA et al: **Predictors and Cost of Readmission in Total Knee Arthroplasty.** *J Arthroplasty* 2018, 33(9):2759-2763.

39. !!! INVALID CITATION !!! .

40. Siracuse BL, Chamberlain RS: **A Preoperative Scale for Determining Surgical Readmission Risk After Total Hip Replacement.** *JAMA Surg* 2016, 151(8):701-709.
41. Siracuse BL, Ippolito JA, Gibson PD, Ohman-Strickland PA, Beebe KS: A Preoperative Scale for Determining Surgical Readmission Risk After Total Knee Arthroplasty. *J Bone Joint Surg Am* 2017, 99(21):e112.

42. Li Q, Dai B, Yao Y, Song K, Chen D, Jiang Q: Chronic Kidney Dysfunction Can Increase the Risk of Deep Vein Thrombosis after Total Hip and Knee Arthroplasty. *Biomed Res Int* 2017, 2017:8260487.

43. Kaiser C, Tillmann FP, Lochter J, Landgraebet S, Jager M: The influence of chronic kidney disease on the duration of hospitalisation and transfusion rate after elective hip and knee arthroplasty. *Int Urol Nephrol* 2019, 51(1):147-153.

44. Augustin ID, Yeoh TY, Sprung J, Berry DJ, Schroeder DR, Weingarten TN: Association between chronic kidney disease and blood transfusions for knee and hip arthroplasty surgery. *J Arthroplasty* 2013, 28(6):928-931.

45. Cavanaugh PK, Chen AF, Rasouli MR, Post ZD, Orozco FR, Ong AC: Total joint arthroplasty in transplant recipients: in-hospital adverse outcomes. *J Arthroplasty* 2015, 30(5):840-845.

46. Patterson JT, Tillinghast K, Ward D: Dialysis Dependence Predicts Complications, Intensive Care Unit Care, Length of Stay, and Skilled Nursing Needs in Elective Primary Total Knee and Hip Arthroplasty. *J Arthroplasty* 2018, 33(7):2263-2267.

47. Ponnusamy KE, Jain A, Thakkar SC, Sterling RS, Skolasky RL, Khanuja HS: Inpatient Mortality and Morbidity for Dialysis-Dependent Patients Undergoing Primary Total Hip or Knee Arthroplasty. *J Bone Joint Surg Am* 2015, 97(16):1326-1332.

48. Ottesen TD, Zogg CK, Haynes MS, Malpani R, Bellamkonda KS, Grauer JN: Dialysis Patients Undergoing Total Knee Arthroplasty Have Significantly Increased Odds of Perioperative Adverse Events Independent of Demographic and
Comorbidity Factors. *J Arthroplasty* 2018, **33**(9):2827-2834.

49. Gwam CU, Mistry JB, Mohamed NS, Thomas M, Bigart KC, Mont MA, Delanois RE: **Current Epidemiology of Revision Total Hip Arthroplasty in the United States: National Inpatient Sample 2009 to 2013.** *J Arthroplasty* 2017, **32**(7):2088-2092.

50. Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA: **Current Epidemiology of Revision Total Knee Arthroplasty in the United States.** *J Arthroplasty* 2017, **32**(9):2663-2668.

51. Jasper LL, Jones CA, Mollins J, Pohar SL, Beaupre LA: **Risk factors for revision of total knee arthroplasty: a scoping review.** *BMC Musculoskelet Disord* 2016, **17**:182.

52. Prokopetz JJ, Losina E, Bliss RL, Wright J, Baron JA, Katz JN: **Risk factors for revision of primary total hip arthroplasty: a systematic review.** *BMC Musculoskelet Disord* 2012, **13**:251.

53. Ramkumar PN, Chu CT, Harris JD, Athiviraham A, Harrington MA, White DL, Berger DH, Naik AD, Li LT: **Causes and Rates of Unplanned Readmissions After Elective Primary Total Joint Arthroplasty: A Systematic Review and Meta-Analysis.** *American journal of orthopedics (Belle Mead, NJ)* 2015, **44**(9):397-405.

54. Dua A, Desai SS, Lee CJ, Heller JA: **National Trends in Deep Vein Thrombosis following Total Knee and Total Hip Replacement in the United States.** *Ann Vasc Surg* 2017, **38**:310-314.

55. Zhang ZH, Shen B, Yang J, Zhou ZK, Kang PD, Pei FX: **Risk factors for venous thromboembolism of total hip arthroplasty and total knee arthroplasty: a systematic review of evidences in ten years.** *BMC Musculoskelet Disord* 2015, **16**:24.
56. Ocak G, Lijfering WM, Verduijn M, Dekker FW, Rosendaal FR, Cannegieter SC, Vossen CY: Risk of venous thrombosis in patients with chronic kidney disease: identification of high-risk groups. J Thromb Haemost 2013, 11(4):627-633.

57. Slover J, Lavery JA, Schwarzkopf R, Iorio R, Bosco J, Gold HT: Incidence and Risk Factors for Blood Transfusion in Total Joint Arthroplasty: Analysis of a Statewide Database. J Arthroplasty 2017, 32(9):2684-2687 e2681.

58. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. American journal of infection control 2004, 32(8):470-485.

59. Mistry JB, Naqvi A, Chughtai M, Gwam C, Thomas M, Higuera CA, Mont MA, Delanois RE: Decreasing the Incidence of Surgical-Site Infections After Total Joint Arthroplasty. American journal of orthopedics (Belle Mead, NJ) 2017, 46(6):E374-e387.

60. Elsiwy Y, Jovanovic I, Doma K, Hazratwala K, Letson H: Risk factors associated with cardiac complication after total joint arthroplasty of the hip and knee: a systematic review. J Orthop Surg Res 2019, 14(1):15.

61. Pedersen AB, Mehnert F, Sorensen HT, Emmeluth C, Overgaard S, Johnsen SP: The risk of venous thromboembolism, myocardial infarction, stroke, major bleeding and death in patients undergoing total hip and knee replacement: a 15-year retrospective cohort study of routine clinical practice. Bone Joint J 2014, 96-b(4):479-485.

62. Rasouli MR, Tabatabaee RM, Maltenfort MG, Chen AF: Acute stroke after total joint arthroplasty: a population-based trend analysis. J Clin Anesth 2016, 34:15-20.

63. Basilico FC, Sweeney G, Losina E, Gaydos J, Skoniecki D, Wright EA, Katz JN: Risk factors for cardiovascular complications following total joint replacement
surgery. *Arthritis Rheum* 2008, **58**(7):1915-1920.

64. Belmont PJ, Jr., Goodman GP, Kusnezov NA, Magee C, Bader JO, Waterman BR, Schoenfeld AJ: **Postoperative myocardial infarction and cardiac arrest following primary total knee and hip arthroplasty: rates, risk factors, and time of occurrence.** *J Bone Joint Surg Am* 2014, **96**(24):2025-2031.

65. Lu N, Misra D, Neogi T, Choi HK, Zhang Y: **Total joint arthroplasty and the risk of myocardial infarction: a general population, propensity score-matched cohort study.** *Arthritis Rheumatol* 2015, **67**(10):2771-2779.

66. Menendez ME, Memtsoudis SG, Opperman M, Boettner F, Gonzalez Della Valle A: A **nationwide analysis of risk factors for in-hospital myocardial infarction after total joint arthroplasty.** *Int Orthop* 2015, **39**(4):777-786.

67. Petersen PB, Kehlet H, Jorgensen CC, Lundbeck Foundation Center for Fast-track H, Knee Replacement Collaborative G: **Myocardial infarction following fast-track total hip and knee arthroplasty-incidence, time course, and risk factors: a prospective cohort study of 24,862 procedures.** *Acta Orthop* 2018, **89**(6):603-609.

68. van Tulder M, Furlan A, Bombardier C, Bouter L: **Updated method guidelines for systematic reviews in the cochrane collaboration back review group.** *Spine (Phila Pa 1976)* 2003, **28**(12):1290-1299.

Tables

Table 1. The characteristics of the studies included in this study

First author (year) Data Source	Total no. of pts	Group	CKD stage	Criteria	No. of pts Type of arthroplasty (THA/TKA)
Jamsa Institutional database	18575	Severe CKD	5	eGFR < 15	35 47.5%

20
Study	Data Source	Sample Size	CKD Stages	eGFR Ranges	Event Rate	Rate Difference			
Kaiser (2018)	Institutional data	3301	Moderate to Severe CKD	eGFR 15-45	166	61.9%			
	Control	3135	Control	eGFR > 45					
Rhee (2018)	CIHI-DAD 2000-2014	10123	CKD	NA	217	10%			
	Control	370	Control	NA		0%			
Urish (2018)	Nationwide Readmission Database 2014	224465	CKD	NA	10959	0%			
	Control	213506	Control	NA					
Kuo (2017)	NHIRD of Taiwan	13844	CKD	3-5	1459	10%			
	Control	12385	Control	1-2		0%			
Li (2017)	Institutional data	1274	Moderate to Severe CKD	eGFR <60	32	61.4%			
	Mild CKD	103	eGFR 60-89						
	Normal	1139	eGFR >90						
Siracuse (2017)	State Inpatient Database, 2006-2011	433638	CKD	NA	14756	0%			
	Control	418882	Control	NA					
Cavanaugh (2016)	NIS 2007 -2011	1016686	CKD	3-5	38308	THA			
	Control	978378	Control	1-2		THA			
Erkocak (2016)	Institutional database	1077	CKD	3-5	359	52.9%			
	Control	718	Control	1-2		52.9%			
Author	Source	Study Population	Number	CKD Stage	eGFR Range	Number	1-2 Stage	eGFR Range	Number
--------------	-------------------------------	------------------	--------	-----------	------------	--------	-----------	------------	--------
Kuo (2016)	Institutional registry	615	CKD	3-5	eGFR <60	205	1-2	eGFR >=60	410
Siracuse (2016)	State Inpatient Database, 2006-2011	268518	CKD	NA	NA	9828	Control	NA	258690
Warth (2015)	ACS NSQIP 2006-2012	25116	CKD	3-5	eGFR <60	12558	Control	NA	12558
Deegan (2014)	Institutional database	779	CKD	3	eGFR 30-59	377	Control	1-2 eGFR >=60 with proteinuria	402
Graves (2014)	Institutional database	380	Severe CKD	4-5	eGFR <30	13	Control	1-2	295
			Moderate CKD	3	eGFR 30-59	73	Control	1-2	63.3%
Miric (2014)a	TJRR	20720	CKD	3-5	eGFR <60	1269	Control	1-2	17394
Miric (2014)b	TJRR	41852	CKD	3-5	eGFR <60	2686	Control	1-2	34196
Augustin (2013)	Institutional Total Joint Registry	270	Severe CKD	4-5	eGFR <30	90	Control	1-2	38.9%
Jamsen (2013)	Institutional database	1998	Severe CKD	4-5	eGFR <30	9	Control	1-2	38.9%
			Moderate CKD	3	eGFR 30-59	304			
			Mild CKD	2	eGFR 60-89	467			
			Normal	1	eGFR >=60	106			
Bozic (2012)	Medicare 1998-2007	40919	CKD	NA	NA	NA	Control	NA	NA

CKD: chronic kidney disease; DM: diabetes mellitus; CAD: coronary artery disease; MI: myocardial infarction; CHF: congestive heart failure
TKA: total knee arthroplasty; THA: total hip arthroplasty

CIHI-DAD: Canadian Institute for Health Information Discharge Abstract Database

NHIRD: National Health Insurance Research Database

NIS: National Inpatient Sample

TJRR: Total Joint Replacement Registry

ACS NSQIP: American College of Surgeons National Surgical Quality Improvement Program

Table 2

First author (year)	Statistics with study removed				
	Points	Lower limit	Upper limit	Z-Value	P-Value
Mortality					
Jamsa (2018)	2.13	1.83	2.49	9.68	<0.001
Rhee (2018)	2.21	1.90	2.56	10.33	<0.001
Rhee (2018)	2.18	1.87	2.54	10.06	<0.001
Kuo (2017)	2.18	1.84	2.58	9.07	<0.001
Cavanaugh (2016)	2.20	1.84	2.62	8.79	<0.001
Erkocak (2016)	2.21	1.91	2.56	10.59	<0.001
Warth (2015)	2.22	1.91	2.59	10.17	<0.001
Deegan (2014)	2.19	1.88	2.55	10.03	<0.001
Graves (2014)	2.20	1.90	2.56	10.37	<0.001
Miric (2014)a	2.30	2.01	2.64	11.98	<0.001
Miric (2014)b	2.23	1.89	2.63	9.52	<0.001
Jamsen (2013)	2.20	1.90	2.56	10.32	<0.001
Bozic (2012)	2.08	1.90	2.27	16.26	<0.001
Re-operation					
Rhee (2018)	1.27	0.81	1.98	1.05	0.295
Rhee (2018)	1.26	0.80	1.97	0.99	0.322
Kuo (2016)	1.07	0.91	1.26	0.85	0.396
Warth (2015)	1.29	0.73	2.30	0.88	0.380
Deegan (2014)	1.35	0.85	2.13	1.27	0.202
Study	Odds Ratio	95% CI Lower	95% CI Upper	P-value	
-----------------	------------	--------------	--------------	---------	
Re-admission					
Urish (2018)	1.44	1.24	1.67	<0.001	
Kuo (2017)	1.54	1.22	1.95	<0.001	
Siracuse (2017)	1.63	1.25	2.13	<0.001	
Kuo (2016)	1.45	1.18	1.79	<0.001	
Siracuse (2016)	1.64	1.28	2.11	<0.001	
Deegan (2014)	1.66	1.33	2.06	<0.001	
Miric (2014)a	1.61	1.28	2.02	<0.001	
Miric (2014)b	1.62	1.28	2.04	<0.001	
Deep Vein Thrombosis					
Kuo (2017)	1.35	1.00	1.82	0.049	
Li (2017)	1.19	1.01	1.41	0.043	
Cavanaugh (2016)	1.28	0.90	1.84	0.169	
Warth (2015)	1.36	0.96	1.94	0.085	
Miric (2014)a	1.30	0.96	1.78	0.092	
Miric (2014)b	1.36	1.01	1.82	0.041	
Transfusion					
Kaiser (2018)	2.18	1.73	2.74	<0.001	
Rhee (2018)	2.48	1.92	3.21	<0.001	
Rhee (2018)	2.48	1.92	3.21	<0.001	
Cavanaugh (2016)	3.03	1.74	5.27	<0.001	
Kuo (2016)	1.98	1.61	2.42	<0.001	
Warth (2015)	3.06	1.82	5.14	<0.001	
Graves (2014)	2.19	1.73	2.76	<0.001	
Augustin (2013)	2.38	1.87	3.03	<0.001	
Surgical Site Infection					
Rhee (2018)	1.32	1.21	1.44	<0.001	
Rhee (2018)	1.33	1.21	1.45	<0.001	
Urish (2018)	1.32	1.21	1.44	<0.001	
Kuo (2017)	1.32	1.21	1.45	<0.001	
Study	Value 1	Value 2	Value 3	Value 4	Value 5
-------------------	---------	---------	---------	---------	---------
Cavanaugh (2016)	1.21	1.05	1.39	2.65	0.008
Erkocak (2016)	1.32	1.21	1.44	6.21	<0.001
Warth (2015)	1.38	1.26	1.52	6.73	<0.001
Deegan (2014)	1.34	1.23	1.46	6.57	<0.001
Miric (2014)a	1.33	1.22	1.45	6.31	<0.001
Bozic (2012)	1.31	1.20	1.43	5.81	<0.001

Figures
Figure 1. PRISMA 2009 Flow Diagram

Records identified through a database search (n = 651)

Records after duplicates removed (n = 613)

Records screened (n = 613)

Full-text articles assessed for eligibility (n = 59)

Studies included in qualitative assessment (n = 19)

Studies included in quantitative assessment (meta-analysis) (n = 19)

Records excluded after screening the titles and abstracts (n = 554)

Full-text articles excluded, (n = 40)

Reasons:
- Study objective not consistent with purpose of meta-analysis (n = 29)
- No outcome of interest (n = 11)
Figure 2

Meta-analysis for outcomes

Figure 3

Analysis of publication bias for mortality
Quality Assessment

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

PRISMA-2009-Checklist-r.doc