SNELL’S LAW AND REFRACTION OF ELECTRON WORLD LINES BY INTENSE LASER FIELDS

Ulrich H. Gerlach†
Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

Linn Van Woerkom‡
Department of Physics, Ohio State University, Columbus, OH 43210 USA

Kiam H. Kwa§
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
(Dated: May 11, 2014)

The dynamics of an electron driven by arbitrary plane wave laser radiation is reformulated as a relativistically and mathematically exact refraction process based on an exact index of refraction. This reformulation leads to that index as an indicator of the energy transfer between the electron and the radiation. It also leads to the dynamics of the electron as being governed (i) by the Lorentzian version of what in Euclidean space is Snell’s law, (ii) by an eikonal equation with the corresponding index of refraction, (iii) by geodesics on a spacetime manifold with in-general non-zero curvature (“geometrization of the laser radiation”) (iv) by the spacetime version of Fermat’s principle of least time, and (v) by a Lorentzian stability criterion for the circumstance which in Euclidean space corresponds to the propagation of rays passing through a periodic wave guide of lenses which all have the same focal length. That criterion demands that the laser intensity satisfy

\[I_{\text{aver}} < .56 \cdot (10,000 \text{Å}/\lambda)^2 \times 10^{18} \text{watts/cm}^2. \]

PACS numbers: 41.75.Jv, 45.05.-a, 45.05.+x, 52.20.-j

When a particle of charge \(q \) and mass \(m \) is placed into a laser beam whose radiation frequency \(\omega/2\pi \) has electric field amplitude \(E_0 \), then the particle executes oscillatory motion. The magnitude of the this effect is expressed by the dimensionless impulse factor

\[\frac{qE_0}{mc\omega} \equiv \eta. \]

In light of (a) the simultaneous presence of an oscillating magnetic field, and (b) the possibility of the motion being relativistic, it is not surprising that the resulting complexity in the actual motion of the particle implies a corresponding complexity of the mathematical description.

However, it has turned out that, hidden behind this complexity, there often exists a readily identifiable simplicity, which physicists have expressed in terms of what is known as the “ponderomotive potential” and its gradient, the “ponderomotive force”. These quantities arise from the fact that quite often the full motion of a particle is characterized by two time scales. One characterizes the rapid quivering/oscillatory (fine-grained) aspect of the full motion. The other characterizes a slower “guiding center” (coarse-grained) motion around which the particle executes its fast quivering oscillations. The ponderomotive force/potential, a slowly varying function of space and time, determines the slow motion of the particle. It is the result of performing a one-cycle average over the complex motion of the particle. There are a number of ways of doing this, but their common drawback is that one not only loses potentially useful information about the particle’s motion but, more importantly, misrepresents it, when the laser radiation becomes so intense that the ponderomotive force varies as rapidly as the one due to the “rapid” quiverings/oscillations. Under such a circumstance, which includes a charge in a standing plane wave, an assumed decomposition into oscillatory plus averaged motion along the direction of the laser beam, does not apply. For one thing, an \textit{ab initio} averaging hides the possibility of resonance, where the frequency of the oscillatory motion is a multiple of that of the averaged motion.

Furthermore, femtosecond pulsed laser radiation makes any averaging scheme meaningless. There is not enough time to establish an average which changes slowly. Neither does averaging apply to charges located in, and hence scattered by, the transient overlap region of two counter propagating few cycle pulses.

The ponderomotive force/potential, a slowly varying function of space and time, determines the slow motion dynamics of the particle. It is the result of performing a one-cycle average over the complex motion of the particle. There are a number of ways of doing this, but their common drawback is that one not only loses potentially useful information about the particle’s motion but, more importantly, misrepresents it, when the laser radiation becomes so intense that the ponderomotive force varies as rapidly as the one due to the “rapid” quiverings/oscillations. Under such a circumstance, which includes a charge in a standing plane wave, an assumed decomposition into oscillatory plus averaged motion along the direction of the laser beam, does not apply. For one thing, an \textit{ab initio} averaging hides the possibility of resonance, where the frequency of the oscillatory motion is a multiple of that of the averaged motion.

There is a superior way of understanding the dynamics of an electron driven by arbitrary plane wave laser radiation. We shall introduce an index of refraction which is exact for arbitrarily relativistic motion and/or arbitrarily short laser pulses and then reformulate the dynamics as a Lorentzian refraction process, as compared to its well
Dynamics of a Charge in a Generic Plane Wave Field

Consider an electron born at a generic location of the electromagnetic plane wave field of a laser directed along the \(z \)-direction. The four components of the vector potential are

\[
\{ A_0, A_1, A_2, A_3 \} = \{ 0, 0, A_x(t, z), A_y(t, z) \}. \tag{1}
\]

The dynamics of the particle is governed by the four Lorentz (force law) equations of motion\(^{[8, 10]}\)

\[
\begin{align*}
md^2 t \frac{dx}{d\tau} &= + \frac{\partial}{\partial t} \Phi(t, z) \tag{2} \\
md^2 z \frac{dx}{d\tau} &= - \frac{\partial}{\partial z} \Phi(t, z) \tag{3} \\
md \frac{dx}{d\tau} &= p_y - q A_y(t, z) \tag{4} \\
m \frac{dx}{d\tau} &= p_x - q A_x(t, z). \tag{5}
\end{align*}
\]

They are invariant under gauge changes having plane wave symmetry. Here time is measured in light traveling distance, \((p_x, p_y)\) is the particle’s conserved (“canonical”) transverse momentum, and

\[
\Phi(t, z) = \frac{m}{2} \left\{ \left(\frac{p_x}{m} - \frac{q}{m} A_x(t, z) \right)^2 + \left(\frac{p_y}{m} - \frac{q}{m} A_y(t, z) \right)^2 \right\}.
\]

is the scalar potential which characterizes the longitudinal dynamics in the \((t, z)\)-plane.

The dynamics of the laser-accelerated charge is controlled entirely by Eqs. (2) and (3). We therefore refer to them as the master system of equations. By contrast, Eqs. (4) and (5) are merely slave equations. In relation to the longitudinal degrees of freedom these equations are dynamically passive. They have no effect on the particle dynamics in the \((t, z)\)-plane. Instead, they identify a physical measurable property, the transverse \(x \) and \(y \)-velocity components.

The master system of equations implies that

\[
\frac{1}{2} m \left(\frac{dt}{d\tau} \right)^2 - \frac{1}{2} m \left(\frac{dz}{d\tau} \right)^2 - \Phi(t, z) \equiv \mathcal{H} = \frac{m}{2} \tag{7}
\]

is an integral of motion. The integration constant \(\frac{m}{2} \) has been chosen such that the laboratory clock and a clock co-moving with the particle remain synchronized whenever the particle is at rest \(\left(\frac{dt}{d\tau} = \frac{dz}{d\tau} = \frac{dy}{d\tau} = 0 \right) \) in the lab frame.

Dynamics Mathematized in Terms of Geometry – The two master equations lend themselves to being blended into a new mental unit, a geodesic on a Lorentzian manifold with a metric whose curvature is a geometrization of the electromagnetic field of the laser. This blending process is achieved in two steps:

1. Note that these master equations,

\[
md^2 x^A + \eta^{AB} \frac{\partial \Phi}{\partial x^B} = 0; \quad \{ x^A : x^0 = t, x^1 = z \}
\]

follow from the standard dynamical variational principle

\[
I = \int \left\{ \left(\frac{m}{2} \eta_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} + q A_\mu \frac{dx^\mu}{d\tau} \right) \right\} d\tau \tag{9}
\]

\[
= \int \left\{ \frac{m}{2} \eta_{AB} \frac{dx^A}{d\tau} \frac{dx^B}{d\tau} + \frac{m}{2} \eta_{ab} \frac{dx^a}{d\tau} \frac{dx^b}{d\tau} + q A_\alpha \frac{dx^\alpha}{d\tau} \right\} d\tau. \tag{10}
\]

Here upper case and lower case indices refer to the longitudinal \(\{ x^A : x^0 = t, 1 = z \} \) and transverse coordinates \(\{ x^a : x^2 = x, x^3 = y \} \) coordinates respectively.

2. With the introduction of the transverse components Eq. (11) and the addition of the consequential term \(-p_a \frac{dx^a}{d\tau} \) the variational principle for the master equations becomes

\[
I = \int \left\{ \frac{m}{2} \eta_{AB} \frac{dx^A}{d\tau} \frac{dx^B}{d\tau} - \Phi \right\} d\tau. \tag{11}
\]

In this variational principle with its two degrees of freedom, the conserved transverse momentum components, \(\{ p_a : p_x, p_y \} \), are merely parameters, the transverse momentum components of the particle. The dynamics of this system is governed by its Hamiltonian-Jacobi (H-J) equation

\[
\frac{1}{2m} \eta^{AB} \frac{\partial S}{dx^A} \frac{\partial S}{dx^B} + \Phi = -\frac{m}{2}. \tag{12}
\]

In geometrical optics the equivalent equation

\[
\eta^{AB} \frac{\partial S}{dx^A} \frac{\partial S}{dx^B} = -m^2 n^2, \tag{13}
\]

with \(n^2 \) given by Eq. (25) below, is called the eikonal equation\(^{[11]}\) having index of refraction \(n \).
The dynamics of our system on the 2-d (flat) Minkowski spacetime is a study of those particles having rest mass which varies with spacetime location as specified by the e.m. field on the right side of the H-J equation. However, such a study is mathematically equivalent to the one of particles with fixed rest mass but on a manifold with a metric which is location dependent. This statement is expressed mathematically by the H-J equation

\[g^{AB} \frac{\partial S}{\partial x^A} \frac{\partial S}{\partial x^B} + m^2 = 0 \]

whose inverse metric

\[g^{AB} = \frac{\eta^{AB}}{1 + \eta^{ab} \left(\frac{p_a}{m} - \frac{q}{m} A_a \right) \left(\frac{p_b}{m} - \frac{q}{m} A_b \right)} \]

is location dependent, and whose corresponding metric is

\[g_{AB} = \eta_{AB} \left[1 + \eta^{ab} \left(\frac{p_a}{m} - \frac{q}{m} A_a \right) \left(\frac{p_b}{m} - \frac{q}{m} A_b \right) \right] \]

\(\equiv \eta_{AB} e^{2\sigma} \).

Its curvature is

\[R^{A}_{BCD} = \mathcal{R} \left(\delta^A_B \eta_{BD} - \delta^A_B \eta_{BC} \right) \]

This means, among other things, that the curvature vanishes whenever the laser radiation \(\{A_x, A_y\} \) is such as to satisfy

\[\mathcal{R} \equiv \frac{\partial^2 \sigma}{\partial t^2} - \frac{\partial^2 \sigma}{\partial z^2} = 0 \],

which is to say, the radiation propagates into the \(+z\) or the \(−z\) direction, while any mixture of the two will result in non-zero curvature. In the first case the system is integrable; the H-J equation can be solved by the method of separation of variables. In the second case the laser-particle system is one which is non-integrable.

Laser Driven Dynamics in a Longitudinal Electric Field A grasp of laser-induced charge dynamics on a fundamental level requires taking cognizance of strong Coulomb (“space charge”) fields. Although their forces are strictly longitudinal, their indirect cause is the strong charge separation due to the ultra-intense laser interaction with the target environment.

With such fields present, instead of Eq. (1), the components of the vector potential are

\[\{A_0, A_1, A_2, A_3\} = \{A_t(t, z), A_x(t, z), A_y(t, z)\}, \]

while the master Eqs. (8) with its additional Coulomb field

\[F_{BC} = \partial_B A_C - \partial_C A_B \]

are

\[m \frac{d^2 x^A}{d\tau^2} + \eta^{AB} \frac{\partial \Phi}{\partial x^B} = q \eta^{AB} F_{BC} \frac{dx^C}{d\tau} . \]

The reduced variational principle giving rise to them is

\[I = \int \left(\frac{m}{2} \eta^{AB} \frac{dx^A}{d\tau} \frac{dx^B}{d\tau} + q A_B \frac{dx^B}{d\tau} - \Phi \right) d\tau . \]

and the corresponding geometric H-J equation is

\[g^{AB} \left(\frac{\partial S}{dx^A} - q A_A \right) \left(\frac{\partial S}{dx^B} - q A_B \right) + m^2 = 0 \]

Its inverse metric is still given by Eq. (15).

Dynamics as Geometrical Optics – The integral of motion, Eq. (11), has a property that leads directly to a geometrical optics formulation of the dynamics of the particle: Rewrite the integral in the form

\[\left(\frac{dt}{d\tau} \right)^2 - \left(\frac{dz}{d\tau} \right)^2 = n^2(t, z) \]

where

\[n(t, z) = \sqrt{1 + \left(\frac{p_x}{m} - \frac{q}{m} A_x(t, z) \right)^2 + \left(\frac{p_y}{m} - \frac{q}{m} A_y(t, z) \right)^2} \]

The integral, Eq. (23), holds along every spacetime trajectory. This suggests that one should replace the proper time \(\tau \) of the charge with its *longitudinal* proper time\(^1\)

\[\int d\tilde{\tau} = \int n(t(\tau), z(\tau)) d\tau \]

as the world line parameter. Such a replacement yields \(\frac{d}{d\tau} = n > 0 \). Consequently, the integral of motion becomes

\[\left(\frac{dt}{d\tau} \right)^2 - \left(\frac{dz}{d\tau} \right)^2 = 1 \]

and Eqs. (2)-(3) become the *optical master equations*

\[\frac{d}{d\tau} n^A \frac{dt}{d\tau} = \frac{\partial n}{\partial t} ; \quad \frac{d}{d\tau} n^A \frac{dz}{d\tau} = -\frac{\partial n}{\partial z} , \]

or more succinctly,

\[\frac{d}{d\tau} n^A \frac{dx^A}{d\tau} = \eta^{AB} \frac{\partial n}{\partial x^B} ; \quad \eta^{AB} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = 0, 1 . \]

\(^1\) This time is measured by a clock moving along fixed \(x \) and \(y \) coordinates, but co-moving (and accelerating) with the charge strictly along the \(z \)-direction.
Compare these equations with those for a light ray through a medium with refractive index \(n(x^1, x^2, x^3) \) in geometrical optics\(^{[18]} \),

\[
\frac{d}{ds} n \frac{dx^i}{ds} = \delta^{ij} \frac{\partial n}{\partial x^j}, \quad i \neq j
\]

where \(\delta^{ij} \) is the Kronecker delta, a sum over repeated indices is understood, and \(s \) is the geodesic length parameter along the ray. One sees that if \(n(x^1, x^2, x^3) \) is the familiar Euclidean index of refraction for a medium in Euclidean space, then Eq. (25) is the Lorentzian index of refraction for the e.m.-induced medium in Lorentzian spacetime. The former determines the ray trajectories \(x^i(s) \); the latter determines the world lines \(x^A(\tau) \).

One of the properties of a spacetime trajectory is how it gets bent (a.k.a. accelerated) by the refractive index gradient. The right hand side of Eq. (22) is proportional to the directional derivative along the co-moving \(z \)-axis. Indeed, given that, in light of Eq. (27), the unit tangent to the 2-d world line is \(\left(\frac{dx}{d\tau}, \frac{dz}{d\tau} \right) \), the unit vector along the co-moving \(z \)-axis is \(\left(\frac{dx}{d\tau}, \frac{dz}{d\tau} \right) \equiv \hat{z} \). It follows that

\[
\frac{d}{d\tau} \left(\frac{dz}{d\tau} \right) = - 1 \left[1 - \left(\frac{dz}{d\tau} \right)^2 \right] \hat{z} \ln n
\]

where \(\hat{z} \ln n = \frac{d}{d\tau} \hat{z} \ln n + \frac{d}{d\tau} \hat{z} \ln n \). Thus, if \(n \) increases along the positive (resp. negative) \(z \)-direction, the charge will accelerate into the negative (resp. positive) \(z \)-direction. In other words, opposite to the Euclidean circumstance, regions of higher Lorentzian index of refraction accelerate charges into a direction where the index is smaller. A charge gets expelled.

One manifests an instance of particular interest by stipulating the vanishing of the particle’s conserved transverse momentum: \((p_x, p_y) = (0, 0) \). Under this stipulation, Eq. (25) indicates that the square of the Lorentzian index is proportional to the field intensity. Hence one may conclude that charges drift away from regions of locally higher intensity regardless of the signs of the charges, a well-known phenomenon which is usually attributed to the presence of the so-called ponderomotive force.

A second property arises for a particularly interesting case, a charge driven by the laser field of a standing wave\(^{[4, 6, 7]} \) linearly polarized along, say, the \(x \)-axis. For such a wave the e.m. vector potential is

\[
A_x(t, z) = \frac{E_0}{\omega} \sin \omega t \sin \omega z, \quad A_y(t, z) = 0.
\]

and the squared index of refraction is

\[
n^2(t, z) = 1 + \frac{(p_z/m - \eta \sin \omega t \sin \omega z)^2}{2}.
\]

Such a refractive index \(n(t, z) \) forms a two-dimensional optical lattice of what in Euclidean space are convex and concave lenses. Referring to Figure 1, one infers from the depicted trajectory that there exists a linear stack of of convex “Lorentzian” lenses all localized around \(z = 0 \) half way between two adjacent maxima of the refractive index \(n(t, z) \). In Figure 1 they are separated (“vertically”) by an amount \(L = \pi \). These lenses guide the center of the oscillating trajectory. Moreover, each lender has a temporal focal length. For a laser beam having a standing wave field of frequency \(\omega \), this focal length is

\[
\frac{c \eta}{\pi \omega} \equiv F
\]
It is a property pertaining only to “paraxial” trajectories, i.e., those for which the lab velocity of the charge is non-relativistic: \((\frac{dz}{dt})^2 \ll 1\).

The mathematical reasoning that leads to Eq. (36) is taken directly from geometrical optics. It starts with Eq. (32) combined with Eq. (35). The idea is to calculate for a single lens

\[
\Delta \left(\frac{dz}{dt} \right) = \frac{\pi}{2} \frac{\partial^2}{\partial z^2} \frac{dz}{dt^2} dt,
\]

the change in particle velocity over time \(2\pi/\omega\) for trajectories near \(z = 0\) that start with \(\frac{dz}{dt} = 0\). The result for such paraxial spacetime trajectories is

\[
\Delta \left(\frac{dz}{dt} \right) = -\frac{z}{F},
\]

where \(F\), the temporal focal length, is given by Eq. (36).

Stable and Unstable Motion – The existence of a focal length and the periodic structure encountered by a paraxial particle trajectory direct attention to the possibility of parametric instability in its oscillatory motion. Recall that from geometrical optics one knows that if neighboring convex lenses of a periodic stack are separated by the same amount \(L\), then such a lens system accommodates linearly stable paraxial trajectories if and only if \([19, 20] \)

\[
0 < \frac{\text{(Separation length)}}{\text{(Focal length)}} \equiv \frac{L}{F} < 4
\]

From Figure 1 one sees that the separation between consecutive lenses is

\[
L = \pi \frac{c}{\omega}
\]

In light of Eq. (36), one finds that paraxial spacetime trajectories oscillate around \(z = 0\), i.e., are linearly stable if and only if the laser impulse parameter satisfies

\[
\eta^2 < \frac{4}{\pi^2}.
\]

which is to say, the laser intensity should satisfy \(I_{\text{aver}} \ll 0.56 \cdot (1000 \text{A/\lambda})^2 \times 10^{18} \text{watts/cm}^2\). If this inequality is violated one has a possible type of parametric resonance, which we alluded near the beginning of this article. For a differential geometric and more detailed analysis of how such a parametric resonance may lead to the breakdown of the ponderomotive approach, one is referred to \([12] \).

Snell’s Law \([13] \) – A fundamental manifestation of a refraction process is the manner in which a ray propagates across the boundary between two regions having different indices of refraction. In Euclidean space this propagation is expressed by Snell’s law. What is its form for a spacetime medium whose index of refraction varies (in the limit) discontinuously, as in Figure 2.

Consider the world line of a charge as it leaves a spacetime medium with index \(n_-\) and enters another one with index \(n_+\). Fig. 2 gives a close-up view. One introduces the “null” coordinates

\[
u = t - z \quad \text{“retarded time” coordinate} \quad (38)
\]

\[
u = t + z \quad \text{“advanced time” coordinate} \quad (39)
\]

and lets the boundary be the locus of events where

\[
u = 0 \quad \text{“history of pulse discontinuity”} \quad (40)
\]

It is along characteristics like this where solutions to the wave equation

\[
\frac{\partial^2}{\partial u \partial v} \left(A_x(u, v) \right) = 0 \quad (41)
\]

are allowed to be discontinuous, and hence where the index of refraction, Eq. (25), is allowed to be discontinuous.

A charge which crosses such a boundary will experience a refractive index of the form

\[
n(u, v) = \begin{cases} n_- & v < 0 \\ n_+ & 0 < v \end{cases} \quad (42)
\]

The indices are different but constant on either side of the boundary.

FIG. 2: Refraction of the world line of a charge

The problem is indicated in Figure 2. One must establish the relationship between the slopes

\[
\frac{dv}{du} = \frac{d(t + z)}{d(t - z)} = \frac{1 + dz/dt}{1 - dz/dt} \quad (43)
\]

on either side of the “null” boundary (“characteristic” of the wave equation) \(v = 0\). The solution consists of the statement that

\[
\frac{dv}{du} \bigg|_+ = \frac{dv}{du} \bigg|_-, \quad (44)
\]

where the “+” and “−” refer to \(0 < v\) and \(v < 0\) respectively. This is the Lorentzian version of what is Snell’s law in Euclidean space.

The slope \(dv/du\) is well known. It is the square of the Doppler factor (“rapidity factor”) \(e^\theta\) for a particle with \(z\)-velocity \(\frac{dz}{dt} = \tanh \theta \equiv (e^\theta - e^{-\theta})/(e^\theta + e^{-\theta})\). The quantity \(\theta\) is generally known as the particle’s rapidity. The differences and similarities between the Lorentzian and the Euclidean versions of Snell’s law become particularly
perspicuous when one introduces this Doppler factor. In terms of it Snell’s law takes the form \[e^θ n|_{v>0} = e^θ n|_{v<0} \] across a left-traveling pulse \((v = 0)\). This is to be contrasted with the Euclidean version of Snell’s law, which, we recall, is \(n_1 \sin θ_1 = n_2 \sin θ_2 \) (46).

The validity of Eq. (44), and hence of Eq. (45), follows only on, say, the advanced time coordinate \(τ\) by stipulating that \(\frac{du}{dτ} = 0\) as in Figure 2, one can replace \(dτ\) with \(\partial u\) as a worldline parameter. With the help of the second equation of Eq. (48), Eq. (47) leads directly to Eq. (44).

Refractive Index as a Measure of Kinetic Energy Gain

Recall that the charge kinetic energy is given by

\[K(τ) = m \left(\frac{dt}{dτ} - 1 \right). \] (49)

Thus, along a given trajectory,

\[\frac{dK}{dτ} = \frac{m}{2} \frac{∂}{∂τ} n^2(t, z) \] (50)

by Eqs. (4), (9), and (20). This equation implies that a charge gains kinetic energy as it enters a region of higher refractive index from one where the index is smaller. Conversely, the charge loses kinetic energy as it leaves a region of higher refractive index and enters one where the index is smaller. In other words, a *change in the Lorentzian refractive index is an indicator of energy exchange between the charge and the e.m. field*.

Furthermore, since regions of higher index accelerate charges into a direction where the index is smaller, it follows that *charges are inclined to lose their kinetic energy in response to the e.m. field*.

The relation between the kinetic energy gain and the refractive index is most transparent for charges responding to a traveling wave whose vector potential depends only on, say, the advanced time coordinate \(u = t - z\). In this case, Eq. (50) becomes

\[\frac{dK}{du} = \frac{m}{2p_u} \frac{d}{du} n^2, \] (51)

where \(p_u\) is the conserved value of \(du/dτ\). Consequently, the kinetic energy gain changes linearly with the increase in the square of the refractive index. That is,

\[ΔK = \frac{mΔn^2}{2p_u}. \] (52)

Energy Gain from Interaction with a Chirped Traveling Pulse

As an application, consider the particle dynamics in the chirped plane e.m. field which is polarized along the \(x\)-axis \((A_y ≡ 0)\) and whose field function is given by

\[\frac{dA_x}{du} = -E \cos (φ_0 + \tilde{u} + b\tilde{u}^2) g(\tilde{u}) \] (53)

as in [21, 22]. Here \(E, φ_0, b, \) and \(\tilde{u}\) are the field amplitude, a constant initial phase, and a dimensionless chirp parameter, and the dimensionless retarded time coordinate \(\tilde{u} = ω_0 u\), where \(ω_0\) is the frequency of the field at \((t, z) = (0, 0)\). Also,

\[g(\tilde{u}) = \exp \left[-\frac{(\tilde{u} - 4σ)^2}{2σ^2}\right] \] (54)

is a pulse-shape function, where \(σ\) is related to the pulse duration \(τ\) (full-width at half-maximum) via \(σ = ω_0 τ/(2√2 ln 2)\). From (52), one deduces immediately the evolution of the particle kinetic energy in \(\tilde{u}\):

\[ΔK = \frac{q^2 c^2}{2mp_u} \left[\cos (φ_0 + \tilde{u} + b\tilde{u}^2) g(\tilde{u}) d\tilde{u} \right]^2, \] (55)

which matches the calculation in [21, 22]. Specifically, one sees that the particle energy gain scales linearly with the field intensity as a consequence of the linear relation between the energy gain and the change in the refractive index squared.

Conclusion

With a Lorentzian index of refraction at its foundation, relativistic particle dynamics driven by generic plane wave laser radiation of arbitrary intensity has been mathematized in terms

1. of the Lorentzian (“spacetime”) version of the optical master equations,
2. of geodesics on a spacetime manifold with general non-zero curvature (“geometrization of laser radiation”),
3. of Fermat’s principle of least time,
4. of Snell’s law,
5. of the focal lengths of Lorentzian lenses, which make up the periodic spacetime lattice of a standing wave, and
6. of the associated stability criterion for particles moving through this lattice, the first four of which are mathematically equivalent. Last, but not least, the Lorentzian index of refraction is shown to be an indicator of energy transfer between the radiation and the particle.
[1] L. Landau and E. Lifshitz, *Mechanics* (Pergamon Press Inc., Elmsford, NY, 1969), pp. 93–95, 2nd ed.
[2] T. Kibble, Phys. Rev. Lett. **16**, 1054 (1966), URL http://link.aps.org/doi/10.1103/PhysRevLett.16.1054
[3] T. Kibble, Phys. Rev. **150**, 1060 (1966), URL http://link.aps.org/doi/10.1103/PhysRev.150.1060
[4] D. Bauer, P. Mulser, and W. H. Steeb, Phys. Rev. Lett. **75**, 4622 (1995), URL http://link.aps.org/doi/10.1103/PhysRevLett.75.4622
[5] E. A. Startsev and C. J. McKinstrie, Phys. Rev. E **55**, 7527 (1997), URL http://link.aps.org/doi/10.1103/PhysRevE.55.7527
[6] A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett. **95**, 053601 (2005), URL http://link.aps.org/doi/10.1103/PhysRevLett.95.053601
[7] A. L. Pokrovsky and A. E. Kaplan, Phys. Rev. A **72**, 043401 (2005), URL http://link.aps.org/doi/10.1103/PhysRevA.72.043401
[8] V. I. Arnold and A. Avez, *Ergodic Problems of Classical Mechanics* (W.A. Benjamin, Inc., New York, NY, 1968), pp. 81–109.
[9] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation* (W.H. Freeman and Company, San Francisco, 1973), chap. 3.1.
[10] J. Jackson, *Classical Electrodynamics* (John Wiley and Sons, Inc., New York, NY, 1975), pp. 551,572, 2nd ed.
[11] M. Born and E. Wolf, *Principles of Optics* (Pergamon Press Inc., Elmsford, NY, 1980), p. 112, sixth ed.
[12] K. H. Kwa, J. Phys. A-Math. Theor. **45**, 105203 (2012).
[13] K. H. Kwa, Ph.D. thesis, Dept. of Mathematics, O.S.U., Dept. of Mathematics, O.S.U., Columbus, OH (2009), URL http://rave.ohiolink.edu/etdc/view?acc_num=osu1250103994
[14] F. Brunel, Phys. Rev. Lett. **59**, 52 (1987).
[15] F. Brunel, Phys. Fluids **31**, 2714 (1988).
[16] J. P. Geindre, R. S. Marjoribanks, and P. Audebert, Phys. Rev. Lett. **104**, 135001 (2010).
[17] M. Veltcheva, A. Borot, C. Thaury, A. Malvache, E. Lefebvre, A. Flacco, R. Lopez-Martens, and V. Malka, Phys. Rev. Lett. **108**, 075004 (2012).
[18] M. Born and E. Wolf, *Principles of Optics* (Pergamon Press, Inc., Elmsford, NY, 1980), chap. 3.2, 6th ed.
[19] D. Marcuse, *Light Transmission Optics* (Van Nostrand Reinhold Inc., New York, 1972), pp. 174–184.
[20] A. Yariv, *Quantum Electronics* (John Wiley and Sons, Inc., New York, 1975), pp. 99–104, 2nd ed.
[21] B. J. Galow, Y. I. Salamin, T. V. Liseykina, Z. Harman, and C. H. Keitel, Phys. Rev. Lett. **107**, 185002 (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.185002
[22] Y. I. Salamin, Phys. Lett. A **376**, 2442 (2012), URL http://dx.doi.org/10.1016/j.physleta.2012.06.020