ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY

MAXWELL LEVINE

Abstract. Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at \aleph_ω, meaning that it is consistent that \Box_{\aleph_n} holds for all $n < \omega$ while \Box_{\aleph_ω} fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild PCF-theoretic hypotheses, the weak square principle \Box^*_{κ} is in fact compact at singulars of uncountable cofinality.

1. Introduction and Background

The properties of singulars of uncountable cofinality are notoriously different from those of countable cofinality. A prime example is Silver’s theorem that GCH cannot fail for the first time at a singular of uncountable cofinality. In contrast, Magidor showed that GCH can fail for the first time at \aleph_ω. There is therefore a natural question of whether this phenomenon generalizes to more complex structures.

Here we focus on the combinatorial properties of inner models, notably square principles. Jensen originally distilled the principle \Box_κ (where κ is some given cardinal) to study the properties of Gödel’s Constructible Universe L. Many variations of \Box_κ have been studied since then. (Precise definitions will be given below, but Cummings-Foreman-Magidor is the canonical reference for this area.) There is in general a tension between square principles and large cardinals, one instance of which is that \Box_κ fails if κ is larger than a supercompact cardinal. Moreover, the failure of \Box_κ at a singular cardinal κ requires considerable consistency strength from large cardinals. The models of interest in this area realize some compatibility of both square principles and the compactness properties exhibited by large cardinals.

In this paper we will address the compactness of square principles themselves: whether or not \Box_κ necessarily holds for some cardinal κ if \Box_δ holds for sufficiently many cardinals $\delta < \kappa$. Cummings, Foreman, and Magidor proved that it is consistent that \Box_{\aleph_ω} holds for $1 \leq n < \omega$ but that \Box_{\aleph_ω} fails. Later, Krueger improved the result by obtaining a bad scale on \aleph_ω in a similar model. But such results can also go in the other direction: Cummings, Foreman, and Magidor also proved that if \Box_{κ_δ} holds for all $n < \omega$, there is an object that to some extent resembles a \Box_{\aleph_ω}-sequence but with a weaker coherence property. The main result of this paper is along these lines:

1See [9] and [10] for recent examples.
Theorem 1.1. Suppose that κ is a singular strong limit of cofinality $\lambda > \omega$ such that for some stationary set $S \subseteq \kappa$, \Box^*_δ holds for all $\delta \in S$ and $\prod_{\delta \in S} \delta^+$ carries a good scale. Then \Box^*_κ holds.

This represents some progress on a question raised by Golshani online regarding a supposed Silver’s Theorem for special Aronszajn trees [6]: at any cardinal δ, \Box^*_δ is equivalent to the existence of a special δ^+-Aronszajn tree [2].

The difference between the results of Cummings-Foreman-Magidor and Theorem 1.1 is that the resulting sequence is fully coherent—not just coherent at points of uncountable cofinality. In other words, we are able to obtain some compactness for a canonical object by obtaining exactly that canonical object in the end. We nonetheless depend on the goodness of scales, as do Cummings-Foreman-Magidor.

Note that the use of stationarity in Theorem 1.1 is necessary:

Proposition 1.2. Assuming the consistency of a supercompact cardinal, it is consistent that \Box^*_ω holds for all double successor ordinals $\alpha < \omega_1$ and that there is a bad scale on \aleph_ω, hence $\Box^*_{\omega_1}$ fails.

Proof. We work in $V[\text{Col}(\aleph_1, < \kappa)]$ and force with a product of square-adding posets $\prod_{\alpha = \beta + 1 < \omega_1} S_{\aleph_\alpha}$ to get a model W. This model has a bad scale carried by \aleph_ω for the following reason: the added squares could be threaded by a product $\prod_{\alpha = \beta + 1 < \omega_1} T_{\aleph_\alpha, \aleph_\alpha}$ (where the threads added to the squares originally of length $\aleph_{\alpha+1}$ have length \aleph_α). This will preserve regularity of \aleph_ω^W using the fact that if τ is a regular cardinal such that \mathbb{P} has size $\leq \tau$ and \mathbb{Q} is τ^+-distributive, then $\mathbb{P} \upharpoonright \mathbb{Q}$ is τ^+-distributive”. Standard lifting arguments then show that there is a bad scale on \aleph_ω^W in the extension by the product of threads, but this implies that there is already a bad scale in W, and hence that $\Box^*_{\aleph_1}$ fails. \qed

We also note that there exists in the literature a contrast to Theorem 1.1 in the case of \aleph_ω, even with good scales:

Fact 1.3. It is consistent that \Box^*_n holds for all $n < \omega$, all scales are good, and $\Box^*_{\aleph_1}$ fails.

If $\kappa_0 = \aleph_0$ and $\langle \kappa_n : 1 < n < \omega \rangle$ is a sequence of supercompact cardinals in some ground model, then Fact 1.3 is witnessed in an extension by $\prod_{n < \omega} \text{Col}(\kappa_n, < \kappa_n)$: Magidor and Shelah showed that all scales on \aleph_ω are good in this model [11], $\Box^*_{\aleph_\omega}$ fails because the strong reflection property holds (see Section 4 of [3]), and $\Box^*_{\aleph_\omega}$ holds for all $n < \omega$ because of GCH by a theorem of Specker.

For the remainder of the introduction, we will focus on definitions. In Section 2 we will prove Theorem 1.1. At the end of the paper we will prove that a result similar to Theorem 1.1 holds for partial squares:

Theorem 1.4. Let κ be a singular strong limit cardinal of cofinality $\lambda > \omega$. Suppose there is a stationary set $S \subseteq \kappa$ such that \Box^*_δ holds for all $\delta \in S$ and such that $\prod_{\delta \in S} \delta^+$ carries a good scale. Then there is a partial square sequence on $\kappa^+ \cap \text{col}(> \lambda)$.

1.1. Definitions. We define square sequences in terms of a hierarchy introduced by Schimmerling [14].

Definition 1.5. We say that $\langle C_\alpha : \alpha \in \text{lim}(\kappa^+) \rangle$ is a $\Box^*_{\kappa, \lambda}$-sequence if for all limit $\alpha < \kappa^+$:
Continuity is trivial if cf(\(\alpha\)) = \(\lambda\); for every \(C \in \mathcal{C}_\alpha\), if \(\beta \in \text{lim}(C)\), then \(C \cap \beta \in \mathcal{C}_\beta\); then we sketch an analogous theorem for partial squares in Subsection 2.3.

In this section we will prove the main results of the paper. We clarify notions of continuity by Cummings, Foreman, and Magidor for scales on a singular cardinal \(\kappa\) of cofinality \(\lambda\). The material concerning points \(\alpha\) such that cf(\(\alpha\)) > \(\lambda\) is the same as theirs, but we want to consider some issues that arise when cf(\(\alpha\)) \(\leq \lambda\). Specifically, continuity is trivial if cf(\(\alpha\)) < \(\lambda\), and we would like to modify the concept of

2. ZFC Results

In this section we will prove the main results of the paper. We clarify notions of continuity in Subsection 2.1 then we prove Theorem 1.1 in Subsection 2.2 and then we sketch an analogous theorem for partial squares in Subsection 2.3.

2.1. Continuity. Our goal in this section is to obtain a strong concept of the continuity used by Cummings, Foreman, and Magidor for scales on a singular cardinal \(\kappa\) of cofinality \(\lambda\). The material concerning points \(\alpha\) such that cf(\(\alpha\)) > \(\lambda\) is the same as theirs, but we want to consider some issues that arise when cf(\(\alpha\)) \(\leq \lambda\). Specifically, continuity is trivial if cf(\(\alpha\)) < \(\lambda\), and we would like to modify the concept of

The principle \(\Box_{\kappa,1}\) is the original \(\Box_{\kappa}\), and \(\Box_{\kappa,\kappa}\) is the weak square, denoted \(\Box_{\kappa}\).

Definition 1.6. If \(\mu\) is a cardinal and \(S \subseteq \text{lim}(\mu^+)\) is stationary, then we say that \(\langle C_\alpha : \alpha \in S \rangle\) is a partial square sequence if for all \(\alpha \in S\):

1. \(C_\alpha\) is closed and unbounded in \(\alpha\);
2. ot(\(C_\alpha\)) \(\leq \mu\);
3. if \(\beta \in S\) and \(\gamma \in \text{lim} C_\alpha \cap \text{lim} C_\beta\), then \(C_\alpha \cap \gamma = C_\beta \cap \gamma\).

Definition 1.7.

1. If \(\tau\) is a cardinal and \(f, g : \tau \to \text{ON}\), then \(f <^* g\) if there is some \(j < \tau\) such that \(f(i) < g(i)\) for all \(i \geq j\). The analogous definitions hold for \(>^*\) and \(\equiv^*\).
2. Given a singular cardinal \(\kappa\), we say that a strictly increasing sequence \(\vec{\kappa} = \langle \mu_i : i < \text{cf} \kappa \rangle\) of regular cardinals converging to \(\kappa\) is a product when we regard \(\prod_{i < \text{cf} \kappa} \mu_i\) as a space.
3. Given a product \(\vec{\kappa} = \prod_{i < \text{cf} \kappa} \mu_i\), a sequence \(\langle f_\alpha : \alpha < \kappa^+ \rangle\) is a scale on \(\vec{\kappa}\) if:
 a. for all \(\alpha < \kappa^+\), \(f_\alpha \in \vec{\kappa}\), i.e. \(f_\alpha(i) < \mu_i\) for all \(i < \text{cf} \kappa\);
 b. for all \(\beta < \alpha < \kappa^+\), \(f_\alpha <^* f_\beta\);
 c. for all \(g \in \vec{\kappa}\), there is some \(\alpha < \kappa^+\) such that \(g <^* f_\alpha\) (i.e. \(f_\alpha : \alpha < \kappa^+\)) is cofinal in the product \(\vec{\kappa}\).
 We also say that the product \(\vec{\kappa}\) carries \(\vec{f}\).
4. We will use the term pseudo-scale for an object resembling a scale that is not necessarily cofinal in the product \(\vec{\kappa}\), i.e. it satisfies (a) and (b) of the previous item. (However, since pseudo-scales are exact upper bounds, they are cofinal in some product, see \(\prod\).)
5. Given a scale (or pseudo-scale) \(\vec{f} = \langle f_\alpha : \alpha < \kappa^+ \rangle\), \(\alpha < \kappa^+\) is good if there is some unbounded \(A \subseteq \alpha\) with ot(\(A\) = cf \(\alpha\) and some \(j < \text{cf} \kappa\) such that for all \(i \geq j\), \(\langle f_\beta(i) : \beta \in A \rangle\) is strictly increasing.
6. If there is a club \(D \subseteq \kappa^+\) such that every \(\alpha \in D\) with cf \(\alpha\) > cf \(\kappa\) is a good point of \(\vec{f}\), then \(\vec{f}\) is a good scale. An analogous definition applies for good pseudo-scales.

The reason for defining pseudo-scales is that the cofinality clause of the definition of a scale will be largely irrelevant for our purposes.

2. ZFC Results
continuity for the situation where $\text{cf}(\alpha) = \lambda$ so that the square sequences we define are coherent.

Fix a singular κ of cofinality $\lambda > \omega$. We will consider some fixed stationary $S \subseteq \lambda$ and a product $\mathcal{R} = \prod_{i \in S} \mu_i$. This formulation will be important when we are considering $\alpha \in \kappa^+ \cap \text{cof}(\lambda)$. Fix a pseudo-scale \bar{f} on \mathcal{R}.

Proposition 2.1. If $\text{cf} \alpha > \text{cf} \kappa$ and α is a good point, then for any cofinal $B \subset \alpha$ with $\text{ot} B = \text{cf} \alpha$, there is some $B^* \subseteq B$ such that B^* witnesses goodness of α.

This follows from what is known as “The Sandwich Argument.”

Proof. Suppose $A \subset \alpha$ witnesses goodness. Let $\tau = \text{cf} \alpha$ and enumerate $A' := \langle \alpha_\xi : \xi < \tau \rangle \subset A$ and $B' := \langle \beta_\xi : \xi < \tau \rangle \subset B$ in such a way that for all $\xi < \tau$, $f_{\alpha_\xi} \leq^* f_{\beta_\xi} <^* f_{\alpha_{\xi+1}}$. Observe that A' also witnesses goodness of α with respect to some j'. For each $\xi < \tau$, let $j_\xi \geq j'$ be such that $i \geq j_\xi$ implies $f_{\alpha_\xi}(i) \leq f_{\beta_\xi}(i) < f_{\alpha_{\xi+1}}(i)$. Then there is some unbounded $X \subset \tau$ and some $j < \lambda$ such that for all $\xi < \tau$, $j_\xi = j$. Since j also witnesses goodness with respect to A', this means that if $\xi, \eta \in X$ and $\xi < \eta$, then for all $i \geq j$, we have $f_{\beta_\xi}(i) < f_{\alpha_{\xi+1}}(i) \leq f_{\alpha_\eta}(i) \leq f_{\beta_\eta}(i)$. We have proved the proposition with $B^* = \langle \beta_\xi : \xi \in X \rangle$.

Modulo a short argument, this implies:

Proposition 2.2 (See Remark 11.1 in [2]). If a product \mathcal{R} carries a good scale \bar{f}, then there is a scale \bar{g} such that every α with $\text{cf} \alpha > \text{cf} \kappa$ is a good point of \bar{g}.

Definition 2.3. Suppose $\bar{f} = \langle f_\alpha : \beta < \alpha \rangle$ is a $<^*$-increasing sequence on the product $\mathcal{R} = \prod_{i \in S} \mu_i$, and that $A \subset \alpha$ is unbounded for some $\alpha < \kappa^+$ with $\text{ot} A = \text{cf} \alpha$.

- f_A^α denotes the function $i \mapsto \sup_{\beta \in A} f_\beta(i)$;
- if $\text{cf} \alpha = \text{cf} \kappa$ and $A = \langle \beta_\xi : i < \text{cf} \kappa \rangle$, f_A^α denotes the function $i \mapsto \sup_{\beta_\xi < i} f_\beta(i)$.

Definition 2.4. If f and g are functions on a product \mathcal{R}, we write $f =_\Delta g$ if there is a club $C \subseteq \lambda$ such that for all $i \in C \cap S$, $f(i) = g(i)$. The definition for $f <_\Delta^* g$ is analogous.

Definition 2.5. A scale $\bar{f} = \langle f_\alpha : \alpha < \kappa^+ \rangle$ is **totally continuous** if the following hold:

- if $\text{cf} \alpha < \text{cf} \kappa$, then for all cofinal $A \subset \alpha$ with $\text{ot} A = \text{cf} \alpha$, $(\bar{f} \restriction \alpha)_A = f_\alpha$,
- if $\text{cf} \alpha = \text{cf} \kappa$, then for all clubs $A \subset \alpha$ such that $\text{ot} A = \text{cf} \alpha$, we have $f_\alpha =_\Delta (\bar{f} \restriction \alpha)_A$,
- if $\text{cf} \alpha > \text{cf} \kappa$, then α is a good point, f_α is an exact upper bound of $\langle f_\beta : \beta < \alpha \rangle$, and for all cofinal $A \subset \alpha$ witnessing goodness of α, we have $(\bar{f} \restriction \alpha)_A = f_\alpha$.

Even though these cases are different, we will say by continuity if we invoke any of them.

Now we work towards:

Lemma 2.6. If $\text{cf} \kappa = \lambda > \omega$, $S \subset \lambda$ is stationary, and $\mathcal{R} = \prod_{i \in S} \mu_i$ is a product of regular cardinals on κ that carries a good scale, then it carries a totally continuous good scale.
Fix a $<^\ast$-increasing sequence $\vec{f} = \langle f_\alpha : \beta < \alpha \rangle$ on a product $\prod_{\lambda < \cf \kappa} \mu_\lambda$. The following is straightforward:

Proposition 2.7. Suppose $\alpha < \kappa^+$, $\cf \alpha < \cf \kappa$, $A, B \subset \alpha$ are unbounded and $\ot A = \ot B = \cf \alpha$. Then $f_\alpha^A = f_\beta^B$.

Proposition 2.8. If $\cf \alpha > \cf \kappa$ and $A \subset \alpha$ witnesses goodness, then f_α^A is an exact upper bound of $(f_\beta : \beta \in A)$.

Proof. It is straightforward that f_α^A is an upper bound. For exactness, suppose that $g <^\ast f_\alpha^A$. Let $j < \lambda$ witness goodness with respect to A as well as $g <^\ast f_\alpha^A$, and for all i with $j \leq i < \lambda$, let $\beta_i \in A$ be such that $g(i) < f_{\beta_i}(i)$. If $\beta = \sup_{j \leq i < \lambda} \beta_i$, then by goodness we have $g <^\ast f_\beta$. \hfill \square

Remark. If $\cf \alpha \leq \cf \kappa$, then $\langle f_\beta : \beta < \alpha \rangle$ has no exact upper bound: Let $\langle \beta_\xi : \xi < \cf \alpha \rangle$ be increasing and cofinal in α and let $\langle S_\xi : \xi < \cf \alpha \rangle$ be a partition of $\cf \kappa$ into disjoint unbounded sets. Define g such that $g(i) = f_{\beta_\xi}(i)$ if and only if $i \in S_\xi$. Then $g <^\ast f_\alpha$, but there is no $\beta < \alpha$ such that $g <^\ast f_\beta$.

Proposition 2.9. If $\cf \alpha > \cf \kappa$, $A \subset \alpha$ witnesses goodness of α, and $A' \subset A$ is unbounded in α, then $f_\alpha^A = f_\alpha^{A'}$.

Proof. It is immediate that $f_\alpha^{A'} \leq^\ast f_\alpha^A$. Suppose for contradiction that $f_\alpha^{A'} <^\ast f_\alpha^A$ as witnessed by $j < \lambda$. Assume that j is also large enough to witnesses goodness with respect to A, which implies that it witnesses goodness with respect to A' as well. Then for all i with $j \leq i < \lambda$, there is some $\beta_i \in A$ such that $f_\alpha^{A'}(i) < f_{\beta_i}(i) < f_\alpha^A(i)$. Let β be an element of A' greater or equal to $\sup_{j \leq i < \lambda} \beta_i < \alpha$. By goodness of A', $i \geq j$ implies that $f_{\beta_i}(i) \leq f_\beta(i)$, and so we have $f_\beta(i) < f_\alpha^{A'}(i) < f_{\beta_i}(i)$, a contradiction. \hfill \square

Proposition 2.10. Suppose $\alpha < \kappa^+$, $\cf \alpha > \cf \kappa$ and $A, B \subset \alpha$ both witness goodness of α. Then $f_\alpha^A =^\ast f_\beta^B$.

Proof. Assume that j is large enough to witness goodness with respect to both A and B. Use the Sandwich Argument from **Proposition 2.1** to find $A' \subset A$ and $B' \subset B$ such that $f_\alpha^{A'} =^\ast f_\beta^{B'}$. Our result then follows from **Proposition 2.9**. \hfill \square

Proposition 2.11. Suppose $\alpha < \kappa^+$, $\cf \alpha = \cf \kappa$, and C, D are both clubs in α such that $\ot C = \ot D = \cf \alpha$. Then $f_\alpha^C =^\ast f_\alpha^D$.

Proof. Suppose otherwise. Enumerate $C = \langle \beta_i : i < \cf \kappa \rangle$ and $D = \langle \gamma_i : i < \cf \kappa \rangle$. Then without loss of generality, $\{ i < \cf \kappa : f_\alpha^C(i) < f_\alpha^D(i) \}$ is stationary in $\cf \kappa$. Let E be the club $\{ i < \cf \kappa : \forall j_1, j_2 < i, \exists j^* < i \text{ witnessing } f_{\gamma_{j_1}} <^* f_{\gamma_{j_2}} \}$. Observe that if $i \in \lim E$, then $\langle f_{\gamma_j}(i) : j < i \rangle$ is strictly increasing, so for all $\delta < \sup_{j < i} f_{\gamma_j}(i)$, there is some $j^* < i$ such that $\delta < f_{\gamma_{j^*}}(i)$. Let $S := \lim E \cap \{ i < \cf \kappa : f_\alpha^C(i) < f_\alpha^D(i) \}$.

Then for all $i \in S$, there is some $j < i$ such that $f_\alpha^C(i) < f_{\gamma_j}(i)$. By Fodor’s Lemma, there is a stationary $T \subset S$ and some $k < \cf \kappa$ such that for all $i \in T$, $f_\alpha^C(i) < f_{\gamma_k}(i)$. If ℓ is large enough that $\gamma_k < \beta_\ell$, then there is some m such that for all $i \geq m$, $f_{\gamma_k}(i) < f_{\beta_\ell}(i)$. If $i > m, \ell$, then $f_{\gamma_k}(i) < f_{\beta_\ell}(i) < f_\alpha^C(i)$. But T is of course unbounded, so this implies that we can find an i such that $f_{\gamma_k}(i) < f_\alpha^C(i) < f_{\gamma_k}(i)$, a contradiction. \hfill \square
Proof of Lemma 2.6. We are working with a product \(\vec{\kappa} := \prod_{\alpha < \lambda} \mu_i \). Let \(\vec{g} = (g_\alpha : \alpha < \kappa^+) \) be a good scale on this product. Then we define a totally continuous scale \(\vec{f} = (f_\alpha : \alpha < \kappa^+) \) by induction as follows using the propositions from this section: If \(\alpha = \beta + 1 \), choose \(\gamma < \kappa^+ \) large enough that \(f_\beta <^* g_\gamma \). Then let \(f_\alpha \) be such that \(g_\gamma <^* f_\alpha \). If \(\alpha \) is a limit and \(\text{cf} \alpha < \lambda \), choose any \(A \), a cofinal subset of \(\alpha \) of order-type \(\text{cf} \alpha \). Then let \(f_\alpha := f_A^\gamma \). (Proposition 2.7) If \(\alpha \) is a limit and \(\text{cf} \alpha = \lambda \), choose \(A \) to be any club subset of \(\alpha \) of order-type \(\text{cf} \alpha \). Then let \(f_\alpha := f_A^\gamma \). (Proposition 2.11) Lastly, suppose \(\alpha \) is a limit and \(\text{cf} \alpha > \lambda \). Then \(\alpha \) is a good point in terms of \((f_\beta : \beta < \alpha) \) because it is cofinally interleaved with \((g_\beta : \beta < \alpha) \).

Hence we can choose any cofinal \(A \subset \alpha \) and let \(f_\alpha := f_A^{\gamma} \). (Proposition 2.8 and Proposition 2.10)

2.2. The Construction for Weak Square. Commencing with the proof of Theorem 1.1, fix a singular \(\kappa \) with cofinality \(\lambda > \omega \) such that \(S^\kappa := \{ \delta < \kappa : \square^*_\delta \text{ holds} \} \) is stationary (and of order-type \(\lambda \)). It will be sufficient to assume that for all \(\tau < \kappa \), \(\tau^\lambda < \kappa \), and to assume that \(\prod_{\delta \in S^\kappa} \delta^\tau \) carries a good pseudo-scale.

An easy argument using Fodor’s Lemma yields:

Proposition 2.12. There is a club \(E \subset \kappa \) consisting of singular cardinals.

Using Proposition 2.12 let \((\kappa_i : i < \lambda) \) be a continuous, cofinal, and strictly increasing sequence of singular cardinals in \(\kappa \). It follows that \(S := \{ i < \lambda : \kappa_i \in \text{lim}(S^\kappa) \} \) is stationary in \(\kappa \). Note that \(\prod_{\delta \in \kappa_i} \delta^\kappa \) also carries a good pseudo-scale, so we can use Lemma 2.6 to find a totally continuous pseudo-scale \(\vec{f} = (f_\alpha : \alpha < \kappa^+) \) on the same product.

Let \(\vec{C}_i = (C^i_\xi : \xi < \kappa^+_i) \) witness \(\square^*_\kappa \) for all \(i \in S \). Since \(\kappa_i \) is a limit cardinal for all \(i \), we can assume that for all such \(i \) these \(\square^*_\kappa \)-sequences have the property that \(\text{ot} \ C < \kappa_i \) for all \(C \in C^i_\xi \), \(\xi < \kappa^+_i \) (see [2]). If \(\alpha < \kappa^+ \), we define \(\mathcal{F}_\alpha \) as follows:

- If \(\text{cf} (\alpha) \neq \lambda \), we let \(\mathcal{F}_\alpha \) be the set of functions \(F \) such that \(\text{dom} \ F = S \) and such that \(\forall i \in S, F(i) \in C^i_{\text{f}_\alpha^{(i)}} \).
- If \(\text{cf} (\alpha) = \lambda \), we let \(\mathcal{F}_\alpha \) be the set of functions \(F \) such that \(\text{dom} \ F = S \) and such that for some \(h = \Delta \text{f}_\alpha, \forall i \in S, F(i) \in C^i_{\text{h}^{(i)}} \).

Regardless of whether or not \(\text{cf} (\alpha) = \lambda \), we will say that some \(h \in \prod_{\delta \in \kappa_i} \delta^\kappa \) witnesses \(F \in \mathcal{F}_\alpha \) if for all \(i \in S, F(i) \in C^i_{\text{h}^{(i)}} \).

For each \(\alpha < \kappa^+ \) and \(F \in \mathcal{F}_\alpha \), we define \(C_F \subset \alpha \) as follows:

- If \(\beta < \alpha \) and \(\text{cf} \beta \neq \lambda \), then \(\beta \in C_F \) if and only if there is some \(j < \lambda \) such that for all \(i \in S \setminus j, f_\beta(i) \in \text{lim} F(i) \).
- If \(\beta < \alpha \) and \(\text{cf} \beta = \lambda \), then \(\beta \in C_F \) if and only if the set of limit ordinals \(\gamma \in C_F \) with \(\text{cf} (\gamma) < \lambda \) is unbounded in \(\beta \).

Now we define our \(\square^*_\kappa \)-sequence at \(\alpha \) depending on the cofinality:

- If \(\text{cf} \alpha < \lambda \), let \(\mathcal{C}_\alpha := \{ C_F : F \in \mathcal{F}_\alpha \text{ and } C_F \text{ is unbounded in } \alpha \} \cup \{ C \subset \alpha : C \text{ is a club in } \alpha \text{ and } \text{ot } C < \lambda \} \).
- If \(\text{cf} \alpha = \lambda \), choose a club \(C \subset \alpha \) such that \(\text{ot } C = \lambda \) and let \(\mathcal{C}_\alpha := \{ C_F : F \in \mathcal{F}_\alpha \text{ and } C_F \text{ is unbounded in } \alpha \} \cup \{ C \} \).
- If \(\text{cf} \alpha > \lambda \), let \(\mathcal{C}_\alpha := \{ C_F : F \in \mathcal{F}_\alpha \} \).

Lemma 2.13. For all \(\alpha \in \text{lim}(\kappa^+) \) and \(C \in \mathcal{C}_\alpha \), \(C \) is closed.
Proof. It is enough to show that for all α ∈ lim(κ⁺) and F ∈ 𝒢α, C_F is closed. The proof of this lemma does not depend on whether or not cf(α) = λ; that is, it does not depend on whether F ∈ 𝒢α is witnessed specifically by fα or some h =_* fα. Let ⟨βξ : ξ < τ⟩ ⊆ C_F be a strictly increasing sequence with supremum β < α where τ is regular. For each ξ < τ, let jξ witness that βξ ∈ C_F, i.e. for all i ≥ j, fβξ(i) ∈ lim F(i).

Case 1: τ < λ. If j' = supξ<τ jξ, then for all i ≥ j', we have supξ<τ fβξ(i) ∈ lim F(i). By continuity, there is also some j'' such that for all i ≥ j'', fβ(i) = supξ<τ fβξ(i). Hence, if j is larger than j' and j'', then j witnesses that β ∈ C_F by closure of F(i) for i ∈ S.

Case 2: τ > λ. By the Pigeonhole Principle there is some unbounded Z ⊆ τ and some j' < λ such that jξ = j' for all ξ ∈ Z. By [Proposition 2.1] there is some j'' and some Z' ⊆ Z such that {βξ : ξ ∈ Z'} and j'' witness goodness. It then follows by continuity that for all i ≥ j'', fβ(i) = supξ∈Z' fβξ(i). If j ≥ j', j'', then j witnesses that β ∈ C_F as in the previous case.

Case 3: τ = λ. By Case 2, we can assume that cf(βξ) < λ for all ξ < λ. Then closure follows by definition.

Lemma 2.14. For all α ∈ lim(κ⁺), C ∈ 𝒢α is unbounded in α.

Proof. It is sufficient to show that if cf α > λ, then C_F is unbounded in α for an arbitrary F ∈ 𝒢α. We will use the fact that F ∈ 𝒢α can only be witnessed by fα. Consider some ̄α < α. We will find an element of C_F larger than ̄α. By induction we define a sequence of ordinals ⟨αn : n < ω⟩ in the interval (̄α, α), a <*-increasing sequence of functions ⟨gn : n < ω⟩ in ∏ᵣ∈S κᵣ, and an undirected list of ordinals ⟨jn : n < ω⟩ in λ.

Let α₀ ∈ (̄α, α) and g₀ < ϵ fα be arbitrary. Suppose that αn and gn are defined. Let g₁ be defined so that for all i < λ, g₁(i) is an element of F(i) larger than fα(i). Using the facts that gn+1 < ϵ fα and that fα is an exact upper bound of ⟨fβ : β < α⟩, find αn+1 so that gn+1 < ϵ fαn+1, and let jn+1 < λ witness this.

Let β = supn<ω αn, which in particular is larger than ̄α. We claim that β ∈ C_F as witnessed by j := supn<ω jn < λ. For each i < λ such that j ≥ j, ⟨gn(i) : i < ω⟩ and ⟨αn(i) : n < ω⟩ interleave each other, so supn<ω fαn(i) ∈ lim F(i) for such i. For sufficiently large i, fβ(i) = supn<ω fαn(i) by continuity, so this completes the proof.

Lemma 2.15. For all α ∈ lim(κ⁺) and C ∈ 𝒢α, if β ∈ lim C, then C ∩ β ∈ 𝒢β.

Proof. The lemma is only substantial if C = C_F for some F ∈ 𝒢α, and it does not depend on whether cf(α) = λ. By assumption C_F is unbounded in β, so Lemma 2.13 implies that β ∈ C_F.

Case 1: cf β ≠ λ: Let j < λ witness β ∈ C_F, meaning that if i ≥ j then fβ(i) ∈ lim F(i). By the coherence of Cβ for i ∈ S, it follows that F(i) ∩ fβ(i) ∈ Cβ for such i. Let F' be a function with domain S such that F'(i) ∈ Cβ for all i ∈ S and such that F'(i) = F(i) ∩ fβ(i) for i ≥ j in particular. Then F' ∈ 𝒢β and C_F is unbounded in β, so C_F ∈ 𝒢β. If γ < β, let j' < λ witness fγ < ϵ fβ. Then if i ≥ j, j', it follows that fγ(i) ∈ F(i) if and only if fγ(i) ∈ F'(i). We conclude that C_F ∩ β = C_F.

Case 2: cf β = λ: Choose a sequence ⟨βi : i < λ⟩ ⊆ C_F ∩ β; by closure (Lemma 2.13) Case 1) we can assume that ⟨βi : i < λ⟩ is closed and unbounded
in λ, and that $\text{cf}(\beta_i) < \lambda$ for all $i < \lambda$. By Proposition 2.11, we also know that $f_{\beta} = \Delta (f_{\bar{i}} \upharpoonright \beta)_{\beta, i < \lambda}$, i.e. that there is a club $E \subset \lambda$ such that for all $i \in E$, $f_{\beta}(i) = \sup_{j < i} f_{\beta_j}(i)$. Let D be a club such that $D \subseteq E$ and such that for all $i \in D$, $j < i$, there is some $j' < i$ witnessing that $\beta_j \in C_F$, and moreover such that for all $i \in D, j_1, j_2 < i$, there is some $j < i$ witnessing that $f_{\beta_{j_1}} <^* f_{\beta_{j_2}}$. It follows that for all $i \in D$ and $j < i$, $f_{\beta}(i) \in \text{lim}(F(i))$, and therefore that for all $i \in D$, $f_{\beta}(i) \in \text{lim}(F(i))$. Then let F' be defined so that $F'(i) = F(i) \cap f_{\beta}(i)$ for $i \in D \cap S$ and $F'(i) = F(i)$ for $i \in S \setminus D$. Then it follows that $C_F \cap \beta = C_{F'}$; in particular, if $\gamma \in C_{F'}$, then f_{γ} is dominated by f_{β} on a club, so it must be the case that $\gamma < \beta$. Hence we find that $F' \in F_{\beta}$ is witnessed by h such that $h(i) = f_{\beta}(i)$ for $i \in D$ and $h(i) = h'(i)$ for the h' witnessing $F \in F_{\alpha}$ (hence $h = \Delta f_{\beta}$). Therefore we have shown that $C_F \cap \beta = C_{\beta}$.

Lemma 2.16. For all $\alpha \in \text{lim}(\kappa^+)$ and $C \in C_{\alpha}$, $\text{ot}(C) < \kappa$.

Proof. It is sufficient to show that $\text{ot}(C_F) < \kappa$ for all $F \in F_{\alpha}$ and all $\alpha < \kappa^+$ (independently of whether $\text{cf}(\lambda) = \alpha$). Recall that we assumed that the \Box^{α}_{ξ}-sequences $\langle \xi^0 : i < \kappa^+ \rangle$ were defined so that for all $i < \lambda, \xi < \kappa^+, C \in C_{\xi}$, $\text{ot}(C) < \kappa_i$.

Fix $\alpha < \kappa^+$. For every $i \in S$, there is some $j < i$ such that $\text{ot}(F(i)) < \kappa_j$. This means that there is a stationary $T \subseteq S$ and some k such that for all $i \in T$, $\text{ot}(F(i)) < \kappa_k$. If $\beta \in C_F$ and $i \in T$, let $g_{\beta}(i) = \text{ot}(F(i) \cap f_{\beta}(i))$ for all i such that $f_{\beta}(i) \in F(i)$ and 0 otherwise. The set $\{g_{\beta} : \beta \in C_F\}$ has size $\kappa^+_k < \kappa$ (we assumed this bit of cardinal arithmetic), so it is enough to observe that if $\beta, \beta' \in C_F$ and $\beta < \beta'$, then g_{β} and $g_{\beta'}$ are distinct.

Lemma 2.17. For all $\alpha \in \text{lim}(\kappa^+), |C_{\alpha}| \leq \kappa$.

Proof. Our assumption that $\tau^\lambda < \kappa$ for all $\tau < \kappa$ implies that $|\{C \subset \alpha : \text{ot}(C) < \lambda\}| = \kappa$, so it is enough to show that $|\{C_F : F \in F_{\alpha}\}| \leq \kappa$ for all $\alpha \in \text{lim}(\kappa^+)$.

Fix $\alpha \in \text{lim}(\kappa^+)$. We first argue for the case in which $\text{cf}(\alpha) \neq \lambda$. For all $i \in S$ enumerate $C^i_{\alpha} = \langle C^i_{\alpha} : \kappa < \kappa_i \rangle$. Given a stationary set $T \subseteq S$ and $\zeta < \kappa$, let $X^k_T = \{F \in F_{\alpha} \cap T \exists \zeta < \kappa_k : F(i) = C^i_{\zeta} \text{ and } \text{ot}(C^i_{\zeta}) < \kappa_k\}$. We claim that for all $F \in F_{\alpha}$, there are $T \subseteq S$ and $k < \lambda$ such that $C_F \in X^k_T$. Let $F \in F_{\alpha}$. For each F and $i \in S$, there is some $j < i$ such that we have $F(i) = C^i_{\zeta}$ for some $\zeta < \kappa_j$ and $\text{ot}(C^i_{\zeta}) < \kappa_j$ as well. It follows that there is a stationary $T \subseteq S$ and $k < \lambda$ such that for all $i \in T$, $F(i) = C^i_{\zeta}$ and $\text{ot}(C^i_{\zeta}) < \kappa_k$ for some $\zeta < \kappa_k$.

Because $2^\lambda = \lambda^+ < \kappa$, there are at most κ-many X^k_T's. Therefore it remains to show that for all such T, k, that $|\{C_F : F \in X^k_T\}| \leq \kappa$. Let G_F be the set of functions $g_{\beta} = f_{\beta} \downarrow T$ for all $\beta \in C_F$. If $\beta \neq \beta'$, then $g_{\beta} \neq g_{\beta'}$, so if $F' \neq F$, then $G_F \neq G_{F'}$. Now, for $i \in T$, let $R^i_T(i) = \bigcup_{\zeta < \kappa_k} C^i_{\zeta}$. Then for all $F \in F^k_T$, $G_F \subseteq \prod_{i \in T} R^i_T(i)$. Moreover, $\prod_{i \in T} R^i_T(i)$ has cardinality $\kappa^k_{\lambda} < \kappa$. It follows that $|\{C_F : F \in X^k_T\}| \leq \kappa$.

Now we comment on the case in which $\text{cf}(\alpha) = \lambda$. By intersecting with an appropriate club, we can see that for all $F \in F_{\alpha}$, there is some stationary $S' \subseteq S$ such that for all $i \in S'$, $F(i) \in C_{f_{\alpha}(i)}$. The argument above can be done for all $F \in F_{\alpha}$ such that there is an h witnessing $F \in F_{\alpha}$ where $h \upharpoonright S' = f_{\alpha} \upharpoonright S'$. Since $2^\lambda < \kappa$, and we only need to consider 2^λ-many possible S', this is sufficient. \qed
This finishes the proof of Theorem 1.1.

2.3. Sketching the Construction for Partial Square. Now we will sketch a proof of Theorem 1.4.

This can be proved with the same techniques as the previous theorem, and the setup is basically the same: We fix a singular strong limit \(\kappa \) with cofinality \(\lambda > \omega \) such that \(\{ \delta < \kappa : \square_\delta \text{ holds} \} \) is stationary (and of order-type \(\lambda \)). Let \(\langle \kappa_i : i < \lambda \rangle \) be continuous, cofinal, and strictly increasing in \(\kappa \). We find that \(S := \{ i < \lambda : \square_{\kappa_i} \text{ holds} \} \) is stationary in \(\lambda \), and we can construct a totally continuous scale \(\vec{f} = \langle f_\alpha : \alpha < \kappa^+ \rangle \) on \(\prod_{i \in S} \kappa_i^+ \). Let \(\bar{C}_i = \langle C_\xi^i : \xi < \kappa_i^+ \rangle \) witness \(\square_{\kappa_i} \) for all \(i \in S \). By Proposition 2.12, we can again assume that \(\text{ot} \, X_{\bar{C}_i} \) for all \(\xi < \kappa_i^+, i < \lambda \). Now we can define the clubs of which our square sequence will consist. For each \(\alpha \in \kappa^+ \cap \text{cof}(> \lambda) \), let:

\[
X_\alpha := \langle \beta < \alpha : \{ i < \lambda : C_{f_\beta(i)}(i) \in \text{lim} \} \in \text{co-bound} \rangle in \text{ of } S).\]

Then we have an analog of Lemma 2.13.

Lemma 2.18. For all \(\alpha \in \text{lim}(\kappa^+) \), if \(\langle \beta_\xi : \xi < \tau \rangle \subset X_\alpha \)'s and \(\tau \neq \lambda \), then \(\sup_{\xi < \tau} \beta_\xi \notin X_\alpha \).

Then let \(C_\alpha \) be the closure of \(X_\alpha \) inside \(\alpha \). The partial square sequence will be the sequence \(\langle C_\alpha : \alpha \in \kappa^+ \cap \text{cof}(> \lambda) \rangle \). Proofs of the various lemmas are analogous. Coherence for the case \(\text{cf}(\beta) = \lambda \) is easier since no witness needs to be constructed.

Lemma 2.19. For all \(\alpha, \beta \in \text{lim}(\lambda^+) \), if \(\gamma \in \text{lim} C_\alpha, \text{lim} C_\beta \), then \(C_\alpha \cap \gamma = C_\beta \cap \gamma \).

Proof. Suppose \(\gamma \) has cofinality \(\tau \).

Case 1: \(\tau \neq \mu \). Then \(X_\alpha \) and \(X_\beta \) are both unbounded in \(\gamma \), so Lemma 2.18 implies that \(\gamma \in X_\alpha \cap X_\beta \). We argue as in Lemma 2.15 to show that \(X_\alpha \cap \gamma = X_\beta \cap \gamma \), so the result follows.

Case 2: \(\tau = \mu \). Let \(\langle \gamma_\xi : \xi < \tau \rangle \) be a strictly increasing and continuous sequence converging to \(\gamma \) such that for all \(\xi < \tau \), \(C_\alpha \cap (\gamma_\xi, \gamma_\xi + 1) \) and \(C_\beta \cap (\gamma_\xi, \gamma_\xi + 1) \) are both non-empty. For each limit \(\eta < \tau \), \(C_\alpha \cap \gamma_\eta = C_\beta \cap \gamma_\eta \) by Case 1. Therefore, \(C_\alpha \cap \gamma = C_\beta \cap \gamma \).

Lemma 2.20. For all \(\alpha \in \text{lim}(\lambda^+) \) such that \(\text{cf} \alpha > \text{cf} \lambda \), \(C_\alpha \) is unbounded in \(\alpha \).

It is sufficient to show that if \(\text{cf} \alpha > \text{cf} \lambda \), then \(X_\alpha \) is unbounded in \(\alpha \). We argue as in Lemma 2.14, but this version is easier.

Lemma 2.21. For all \(\alpha \in \text{lim}(\lambda^+) \), \(\text{ot} C_\alpha < \lambda \).

It is sufficient to show that if \(\text{ot} X_\alpha < \lambda \) for all \(\alpha \).

2.4. Further Directions. We conclude with the following:

Question 1. Suppose that \(\kappa \) is a singular strong limit of uncountable cofinality \(\lambda \) such that \(S := \{ \delta < \kappa : \square_\delta \text{ holds} \} \). Does \(\prod_{\delta \in S} \delta^+ \) carry a good pseudo-scale?

Note that we have:

Fact 2.22. If \(\kappa \) is singular, then \(\square^*_\kappa \) implies that all pseudo-scales on \(\kappa \) are good.\(^2\)

\(^2\)This is in Cummings’ survey [2], but without the distinction involving pseudo-scales.
By [Theorem 1.1] this question is almost equivalent (modulo a generalization and a strong limit assumption) to the question of Golshani mentioned above: a positive answer would mean that these hypotheses imply \square^*_κ, and a negative answer would mean that \square^*_κ consistently fails in conjunction with these hypotheses.

Acknowledgements. I proved an early version of [Theorem 1.4] while being supported by Sy-David Friedman’s FWF grant in Vienna, and I want to thank him for many helpful conversations. I also thank Dima Sinapova for many helpful conversations and critical readings of early versions of the paper. Also, I thank Chris Lambie-Hanson for catching mistakes in the original arXiv version and for referring me to a note that Assaf Rinot had written that built on this work [12]. Finally, I thank Sittinon Jirattikansakul for catching additional mistakes in the original version. Thanks also to the anonymous referee for improving the manuscript.

References

[1] Uri Abraham and Menachem Magidor. Cardinal arithmetic. In Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, pages 1149–1227. Springer, 2010.

[2] James Cummings. Notes on singular cardinal combinatorics. Notre Dame Journal of Formal Logic, 46(3), 2005.

[3] James Cummings, Matthew Foreman, and Menachem Magidor. Squares, scales, and stationary reflection. Journal of Mathematical Logic, 1:35–98, 2001.

[4] James Cummings, Matthew Foreman, and Menachem Magidor. The non-compactness of square. J. Symbolic Logic, 68(2):637–643, 2003.

[5] James Cummings, Matthew Foreman, and Menachem Magidor. Canonical structure in the universe of set theory I. Ann. Pure Appl. Logic, 129(1-3):211–243, 2004.

[6] Mohammad Golshani (https://mathoverflow.net/users/11115/mohammad golshani). Analogues of Silver’s theorem for tree property. MathOverflow. URL: https://mathoverflow.net/q/267270 (version: 2017-04-16).

[7] Ronald Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4:229–308, 1972.

[8] John Krueger. Namba forcing and no good scale. Journal of Symbolic Logic, 78(3):785–802, 2013.

[9] Chris Lambie-Hanson. A galvin–hajnal theorem for generalized cardinal characteristics. European Journal of Mathematics, 9(1):12, 2023.

[10] Maxwell Levine and Heike Mildenberger. Distributivity and minimality in perfect tree forcings for singular cardinals. To appear in Israel Journal of Mathematics.

[11] Menachem Magidor. Reflecting stationary sets. The Journal of Symbolic Logic, 47(4):775–771, 1982.

[12] Assaf Rinot. A note on the ideal $I[S; \lambda]$. Unpublished note, 2022.

[13] Grigor Sargsyan. Nontame mouse from the failure of square at a singular strong limit cardinal. Journal of Mathematical Logic, 14(1):47, 2014.

[14] Ernest Schimmerling. Combinatorial principles in the core model for one Woodin cardinal. Annals of Pure and Applied Logic, 74:153–201, 1995.