Parameterized summation relations for the Stieltjes constants

Mark W. Coffey
Department of Physics
Colorado School of Mines
Golden, CO 80401

(Received 2010)

June 12, 2010

Abstract

The Stieltjes constants $\gamma_k(a)$ appear in the regular part of the Laurent expansion of the Hurwitz zeta function about its only polar singularity at $s = 1$. We present multi-parameter summation relations for these constants that result from identities for the Hurwitz zeta function. We also present multi-parameter summation relations for functions $A_k(x)$ that may be expressed as sums over the Stieltjes constants. Integral representations, especially including Mellin transforms, play an important role. As a byproduct, reciprocity and other summatory relations for polygamma functions and Bernoulli polynomials may be obtained.

Key words and phrases
Hurwitz zeta function, summation relation, Stieltjes constants, Mellin transform

2010 AMS codes
11M35, 11M06, 11Y60
Statement of results

Let \(\zeta(s,a)\) denote the Hurwitz zeta function and \(\gamma_k(a)\) the Stieltjes constant. We present multi-parameter summation relations for these constants. For background on the Stieltjes constants, one may see [2, 8, 9, 10, 11, 12, 14, 15]. For known summation relations [3, 4, 5] may be consulted. In the Laurent series about \(s = 1\),

\[
\zeta(s,a) = \frac{1}{s - 1} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \gamma_k(a)(s - 1)^k,
\]

(1.1)

\(\gamma_0(a) = -\psi(a)\), where \(\psi = \Gamma'/\Gamma\) is the digamma function and \(\Gamma\) is the Gamma function. For the coefficients corresponding to the Laurent expansion for the Riemann zeta function \(\zeta(s)\), one denotes \(\gamma_k(1) = \gamma_k\). The quantities \(\gamma_k(a)\) are of interest in analytic number theory, asymptotic analyses, and other areas.

We let \(\mathcal{P}\) denote the set of prime numbers.

We have

Proposition 1. Let \(p \geq 1\) and \(q \geq 1\) be integers, \(b \geq 0\), and \(\min(p/q, q/p) > b\). Then we have for integers \(k \geq 0\)

\[
\sum_{r=1}^{q} \gamma_k \left(\frac{pr}{q} - b \right) = q(-1)^k \frac{k \ln^{k+1}(q/p)}{k + 1} \gamma_k(a) + \frac{q}{p} \sum_{\ell=0}^{p-1} \sum_{j=0}^{k} (-1)^j \binom{k}{j} \ln^j \left(\frac{q}{p} \right) \gamma_{k-j} \left[1 + \left(\ell - b \right) q/p \right].
\]

(1.2)

Proposition 2. Let \(p \in \mathcal{P}\) and \(m, N \geq 0\) be integers. We have

\[
(p - 1)\gamma_m + \frac{\ln^{m+1}}{m+1} \frac{p^m}{m+1} \left(\sum_{k=0}^{m-1} \binom{m}{k} \ln^{m-k} p \gamma_k \right)
= (1 - p) \frac{\ln^{m+1}}{m+1} \frac{p^{N+1}}{m+1} + \frac{1}{p^N} \sum_{k=0}^{m} \binom{m}{k} \ln^{m-k} p^{N+1} \sum_{1 \leq j < p^{N+1}} \gamma_k \left(\frac{j}{p^{N+1}} \right).
\]

(1.3)
Proposition 3. Let $p \in \mathcal{P}$ and $m, N \geq 0$. Then for any positive integer k_p coprime to p and nonnegative integers α and β such that $\alpha + jk_p = p\beta$ for some j with $0 \leq j \leq p - 1$, we have

$$(p - 1)\gamma_m \left(\frac{\alpha}{k_p} \right) + \frac{\ln^{m+1} p}{m + 1} - \sum_{k=0}^{m-1} \binom{m}{k} \ln^{m-k} p \gamma_k \left(\frac{\beta}{k_p} \right)$$

$$= (1 - p)\frac{\ln^{m+1} p^{N+1}}{m + 1} + \frac{1}{p^N} \sum_{k=0}^{m} \binom{m}{k} \ln^{m-k} p^{N+1} \sum_{j=\alpha(k \mod k_p) \atop (j,p)=1}^{\alpha + k_p \ell} \gamma_k \left(\frac{j}{k_p p^{N+1}} \right).$$

(1.4)

On the right side, the sum is over all integers j of the form $\alpha + k_p \ell$ and $\alpha \leq j < \alpha + k_p p^{N+1}$.

From these Propositions we obtain many Corollaries. As an illustration we give some of those resulting from Proposition 1. For this purpose, we let $B_n(x)$ be the Bernoulli polynomial of degree n (e.g., [1], Ch. 23.1) and $\psi^{(j)}$ the polygamma function (e.g., [1], Ch. 6.4). We have the following.

Corollary 1. For $p, q \geq 1$ integers, $b \geq 0$, and $\min(p/q, q/p) > b$, we have

$$\ln q + \frac{1}{q} \sum_{r=0}^{q-1} \psi \left(\frac{pr}{q} - b \right) = \ln p + \frac{1}{p} \sum_{\ell=0}^{p-1} \psi \left(\ell - b \right) \frac{q}{p}. \quad (1.5)$$

Corollary 2. For $p, q \geq 1$, $n > 1$ integers, $b \geq 0$, and $\min(p/q, q/p) > b$, we have

$$\frac{1}{q} \sum_{r=0}^{q-1} \psi^{(n-1)} \left(\frac{pr}{q} - b \right) = \frac{1}{p} \left(\frac{q}{p} \right)^{n-1} \sum_{\ell=0}^{p-1} \psi^{(n-1)} \left(\ell - b \right) \frac{q}{p}. \quad (1.6)$$

Corollary 3. For $p, q \geq 1$, $m \geq 0$ integers, $b \geq 0$, and $\min(p/q, q/p) > b$, we have

$$\sum_{r=1}^{q} B_m \left(\frac{pr}{q} - b \right) = \left(\frac{q}{p} \right)^{1-m} \sum_{\ell=0}^{p-1} B_m \left[1 + (\ell - b) \frac{q}{p} \right]. \quad (1.7)$$
The functions for integers k

\[A_k(q) \equiv k \frac{\partial}{\partial z} \zeta(z, q) \bigg|_{z=1-k}, \] \hspace{1cm} (1.8)

are very useful in evaluating integrals over the Hurwitz zeta function ζ. They may be written in terms of the Stieltjes constants as

\[A_k(q) = -\frac{1}{k} - k \sum_{n=0}^{\infty} \frac{\gamma_{n+1}(q)}{n!} k^n. \] \hspace{1cm} (1.9)

We present representative summation relations for the functions $A_k(q)$. We have

Proposition 4. Let $p \geq 1$ and $q \geq 1$ be integers, $b \geq 0$, and $\min(p/q, q/p) > b$. Then we have

\[\sum_{r=1}^{q} \left[A_k \left(\frac{pr}{q} - b \right) + \ln \left(\frac{q}{p} \right) B_k \left(\frac{pr}{q} - b \right) \right] = \left(\frac{q}{p} \right)^{1-k-1} \sum_{\ell=0}^{p-1} A_k \left(1 + \frac{(\ell - b)q}{p} \right). \] \hspace{1cm} (1.10)

Proposition 5. For $p \in \mathcal{P}$ and integer $N \geq 0$ we have

\[(1 - p^{k-1})A_k(1) - (-1)^k (\ln p) B_k[N(1 - p^{k-1}) + 1] = p^{(N+1)(k-1)} \sum_{\frac{1}{p^{N+1}} \leq j < \frac{1}{p^{N+1}}} A_k \left(\frac{j}{p^{N+1}} \right). \] \hspace{1cm} (1.11)

Here, $B_k = B_k(0) = (-1)^k B_k(1)$, $k \geq 0$ are the Bernoulli numbers.

Proof of Propositions

Proposition 1. We apply Lemma 1 and then proceed as in the proof of Proposition 5 of [5].

We first have the following.

Lemma 1. Let $p \geq 1$ and $q \geq 1$ be integers, $b \geq 0$, and $\min(p/q, q/p) > b$. Then we
have
\[\sum_{r=1}^{q} \zeta \left(s, \frac{pr}{q} - b \right) = \left(\frac{q}{p} \right)^{s} \sum_{\ell=0}^{p-1} \zeta \left(s, \frac{\ell q + p - qb}{p} \right). \]
\hspace{1cm} (2.1)

Proof. The Lemma may be proved in three different ways: (i) interchange of a
double sum, (ii) use of an integral representation for the Hurwitz zeta function, and
(iii) evaluating the zeta functions associated with a certain rational function. The
Lemma is first demonstrated for \(\text{Re} \ s > 1 \), and then by analytic continuation it holds
for all \(s \in C \).

First method. We have for \(\text{Re} \ s > 1 \),
\[\sum_{r=1}^{q} \zeta \left(s, \frac{pr}{q} - b \right) = \sum_{r=1}^{q} \sum_{n=0}^{\infty} \frac{1}{(n + \frac{pr}{q} - b)^{s}} = \left(\frac{q}{p} \right)^{s} \sum_{n=0}^{\infty} \left[\zeta \left(s, \frac{(n-b)q}{p} + 1 \right) - \zeta \left(s, \frac{(n+p-b)q}{p} + 1 \right) \right]. \]
\hspace{1cm} (2.2)
Successive terms of the summand in blocks of length \(p \) are then taken to find (2.1).
Indeed, (2.1) follows as the \(u \to \infty \) limit of the relation
\[\sum_{n=0}^{u} \left[\zeta \left(s, \frac{(n-b)q}{p} + 1 \right) - \zeta \left(s, \frac{(n+p-b)q}{p} + 1 \right) \right] = \sum_{\ell=0}^{p-1} \left[\zeta \left(s, \frac{\ell q + p - qb}{p} \right) - \zeta \left(s, \frac{uq + (\ell + 1)q + p - qb}{p} \right) \right]. \]
\hspace{1cm} (2.3)

Second method. We use a standard integral representation for \(\text{Re} \ s > 1 \) and \(\text{Re} \ a > 0 \),
\[\zeta(s, a) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1} e^{-(a-1)x}}{e^{x} - 1} \, dx, \]
\hspace{1cm} (2.4)

and, to obtain
\[\sum_{r=1}^{q} \zeta \left(s, \frac{pr}{q} - b \right) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1} \frac{e^{(b+1-p)x}(e^{px} - 1)}{(e^{x} - 1)(e^{px/q} - 1)} \, dx. \]
\hspace{1cm} (2.5)
Similarly, we have
\[
\left(\frac{q}{p} \right)^{s-1} \sum_{\ell=0}^{p-1} \zeta \left(s, \frac{\ell q + p}{p} - \frac{qb}{p} \right) = \left(\frac{q}{p} \right)^s \frac{1}{\Gamma(s)} \int_0^\infty x^{s-1} \frac{(e^{qx} - 1)e^{(b+1-p)qx/p}}{(e^x - 1)(e^{qx/p} - 1)} \, dx
\]
\[
= \frac{1}{\Gamma(s)} \int_0^\infty u^{s-1} \frac{e^{(b+1-p)u}(e^{pu} - 1)}{(e^u - 1)(e^{pu/q} - 1)} \, du,
\]
(2.6)
where we used the scaling \(u = qx/p \).

Third method. We use the method of finding a zeta function \(Z_f \) associated with a rational function, (see the Appendix for a brief description), and express \(Z_f \) in two different ways. We employ the rational function
\[
f(T) = \sum_{r=1}^q \frac{T^{pr-bq}}{1 - T^q} = \sum_{r=1}^q \sum_{n=0}^\infty T^{pr+(n-b)q}.
\]
(2.7)
By relation (A.3) of the Appendix, we have
\[
Z_f(s)\Gamma(s) = \Gamma(s)q^{-s} \sum_{r=1}^q \zeta \left(s, \frac{pr}{q} - b \right).
\]
(2.8)
We also recognize that
\[
f(T) = \sum_{\ell=0}^{p-1} \frac{T^{p-bq}}{1 - T^p} T^{\ell q} = \sum_{\ell=0}^{p-1} T^\ell \frac{T^{(\ell-b)q}}{1 - T^p}.
\]
(2.9)
The Mellin transform representation corresponding to this equation is given by
\[
Z_f(s)\Gamma(s) = 1 \left(\frac{1}{p^s} \sum_{\ell=0}^{p-1} \int_0^\infty v^{s-1} \frac{e^{-(\ell-b)v/p}e^{-v}}{e^v - 1} \, dv = p^{-s}\Gamma(s)\sum_{\ell=0}^{p-1} \zeta \left(s, 1 + (\ell - b)\frac{q}{p} \right) \right.
\]
(2.10)
Comparing (2.8) and (2.10), we have the Proposition.

Corollary 1 follows by putting \(k = 0 \) in Proposition 1, and using the functional equation of the digamma function \(\psi(x+1) = \psi(x) + 1/x \). For instance, an intermediate
form is
\[\ln q + \frac{1}{q} \sum_{r=1}^{q} \psi \left(\frac{pr}{q} - b \right) = \ln p + \frac{1}{q} \sum_{\ell=0}^{p-1} \frac{1}{\ell - b} + \frac{1}{p} \sum_{\ell=0}^{p-1} \psi \left[(\ell - b) \frac{q}{p} \right]. \] (2.11)

Corollary 2 follows by differentiating (2.11) with respect to \(-b\) \((n-1)\) times. Alternatively, it follows by taking \(s = n\), \(n > 1\) an integer, in Lemma 1, using the relation
\[\psi^{(n)}(x) = (-1)^{n+1} n! \zeta(n+1, x), \] (2.12)
and manipulating with the functional equation of the polygamma function, \(\psi^{(n-1)}(x+1) = \psi^{(n-1)}(x) + (-1)^{n-1}(n-1)!/x^n\).

Corollary 3 obtains from Lemma 1 since we have the relation \(B_n(x) = -n\zeta(1-n, x)\) for \(n > 0\).

Remarks. Equation (2.1) reduces properly at \(p = 1\).

In relation (2.1), there is cancellation of polar \(q/(s-1)\) terms.

Of course, the \(j = k\) term on the right side of (1.2) may be separated.

In [5] (5.1) and (5.2), the summand factor \((-1)^k\) should read \((-1)^j\).

We see that (2.6) corresponds to the following form of the function \(f(T)\) used in the third method:
\[f(T) = \sum_{n=0}^{\infty} T^p \frac{1 - T^{pq}}{1 - T^p} T^{(n-b)q} = \frac{T^{p-bq}(1 - T^{pq})}{(1 - T^q)(1 - T^p)}. \] (2.13)

Corollaries 1 and 2 correspond to successively differentiating Schobloch’s relatively little known reciprocity formula of 1884 for the function \(\ln \Gamma\). For a proof of this formula, see Theorem 3.7 in [13].
Owing to the many functional properties of the Bernoulli polynomials (e.g., [1], Ch. 23.1), such as
\[B_m \left(1 - q \frac{b}{p} \right) = (-1)^m \frac{b}{p} \right) = (-1)^m q^{m-1} \sum_{k=0}^{q-1} B_m \left(\frac{b}{p} + \frac{k}{q} \right), \] (2.14)

Corollary 3 may be written in many equivalent ways. Corollary 3 is probably a new reciprocity relation for the Bernoulli polynomials.

Proposition 2. We use

Lemma 2. For \(p \in \mathcal{P} \) and \(N \geq 0 \), we have
\[(1 - p^{-s})\zeta(s) = p^{-(N+1)s} \sum_{1 \leq j < \frac{p^{N+1}}{p}} \zeta \left(s, \frac{j}{p^{N+1}} \right). \] (2.15)

Lemma 2 initially holds for \(\text{Re} \ s > 1 \), and then by analytic continuation for all of \(\mathbb{C} \). We have found that Lemma 2 and Lemma 3 below overlap with Proposition 1 in [6] as used in connection with a study of congruences of Bernoulli numbers. As shown above for Lemma 1, there are alternative means of determining such identities.

Proof. First method. We use the method of finding a zeta function \(Z_f \) associated with a rational function, (see the Appendix), expressing \(Z_f \) in two different ways. Associated with the function
\[f(T) = \frac{1}{1 - T} - \frac{1}{1 - T^p}, \] (2.16)
we first have for \(\text{Re} \ s > 1 \),
\[Z_f(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} - \sum_{n=1}^{\infty} \frac{1}{(pn)^s} = (1 - p^{-s})\zeta(s). \] (2.17)
Alternatively, we have

\[f(T) = \frac{T + T^2 + \ldots + T^{p-1}}{1 - T^p} = \frac{(T + T^2 + \ldots + T^{p-1})(1 + T^p + T^{2p} + \ldots + T^{p(p^N-1)})}{1 - T^{pN+1}} \]

\[= \sum_{1 \leq j < p^{N+1}} \sum_{k=0}^{\infty} T^{j+kp^{N+1}}. \] \hfill (2.18)

Then for Re \(s > 1 \),

\[Z_f(s) = p^{-(N+1)s} \sum_{1 \leq j < p^{N+1}} \zeta \left(s, \frac{j}{p^{N+1}} \right), \] \hfill (2.19)

and the Lemma follows.

Second method for Lemma 2, using the integral representation (2.4). We have

\[p^{-(N+1)s} \Gamma(s) \sum_{1 \leq j < p^{N+1}} \frac{1}{(j,p) = 1} \zeta \left(s, \frac{j}{p^{N+1}} \right) = p^{-(N+1)s} \sum_{1 \leq j < p^{N+1}} \int_0^{\infty} \frac{t^{s-1}}{e^t - 1} e^{-(j/p^{N+1}-1)t} dt \]

\[= p^{-(N+1)s} \sum_{k=1}^{p-1} \sum_{\ell=0}^{p^{N-1}} \int_0^{\infty} \frac{t^{s-1}}{e^t - 1} e^{-(\ell\ell+k)/p^{N+1}-1]t} dt \]

\[= p^{-(N+1)s} \int_0^{\infty} \frac{t^{s-1}}{(e^{p^{N}t} - e^{p^{N}-1})} dt \]

\[= p^{-(N+1)s} \int_0^{\infty} \frac{u^{s-1}}{(e^{u/p} - 1)(e^u - 1)} du \]

\[= p^{-(N+1)s} \int_0^{\infty} u^{s-1} \left[\frac{1}{e^{u/p} - 1} - \frac{1}{e^u - 1} \right] du \]

\[= \Gamma(s)(1 - p^{-s})\zeta(s). \] \hfill (2.20)

In Lemma 2, the polar term that cancels on each side is \((1 - 1/p)/(s - 1)\). This is confirmed by the sum from the right side,

\[\sum_{1 \leq j < p^{N+1}} 1 = \varphi(p^{N+1}) = p^{N+1} - p^N, \] \hfill (2.21)
where \(\varphi \) is the Euler totient function. By using the expansion (1.1), the left side is
\[
(1 - p^{-s})\zeta(s) = \left[1 - \frac{1}{p} \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} \ln^j p \ (s - 1)^j\right] \left[\frac{1}{s-1} + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \gamma_k(a)(s - 1)^k \right],
\]
and the right side is given by
\[
p^{-(N+1)s} \sum_{\substack{j \leq pN+1 \ \text{(mod \ } kp)} \ \gamma_k \left(\frac{j}{p^{N+1}}\right)(s-1)^k.
\]
Manipulating the series in (2.22) and (2.23), identifying the coefficients of \((s - 1)^m\) on both sides, and multiplying by \(p\) gives Proposition 2.

Remark. From Proposition 2 with \(m = 0\) we have

Corollary 4. For \(p \in \mathcal{P}\) and \(N \geq 0\) an integer, we have
\[
(p-1)\gamma + \ln p = (1-p)\ln p^{N+1} - \frac{1}{p^N} \sum_{\substack{1 \leq j < pN+1 \ \text{(mod \ } kp)} \ \gamma_k \left(\frac{j}{p^{N+1}}\right)}.
\]

Proposition 3. We use

Lemma 3. For \(p \in \mathcal{P}, \ N \geq 0, \ \alpha \geq 0, \ \beta \geq 0, \) and \((kp, p) = 1\) as in the Proposition, we have
\[
\zeta\left(s, \frac{\alpha}{kp}\right) - p^{-s} \zeta\left(s, \frac{\beta}{kp}\right) = p^{-(N+1)s} \sum_{\substack{j \equiv \alpha \text{ (mod } kp)} \ \text{ (mod } kp)} \zeta\left(s, \frac{j}{kp^{N+1}}\right).
\]

Proof. We find zeta functions \(Z_f\) associated with the rational function
\[
f(T) = \frac{T^\alpha}{1 - T^{kp}} - \frac{T^{p\beta}}{1 - T^{kp}}.
\]
We have the series for $|T| < 1$,

$$f(T) = \sum_{n=0}^{\infty} T^{\alpha+k_pn} - \sum_{n=0}^{\infty} T^{p\beta+k_pn}. \tag{2.26}$$

By (A.3) of the Appendix, we have

$$Z_f(s)\Gamma(s) = \int_0^{\infty} t^{s-1} f(e^{-t}) dt = \Gamma(s) \left[k_p^{-s} \zeta \left(s, \frac{\alpha}{k_p} \right) - (k_p)^{-s} \zeta \left(s, \frac{\beta}{k_p} \right) \right]. \tag{2.27}$$

Also expressing $f(T)$ as a rational function with denominator $1 - T^{k_pN+1}$, we find

$$f(T) = \sum_{j=\alpha \mod k_p} \sum_{n=0}^{\infty} T^{j+nk_pN+1}. \tag{2.28}$$

Then we also have for $\Re s > 1$,

$$Z_f(s)\Gamma(s) = \int_0^{\infty} t^{s-1} f(e^{-t}) dt = \Gamma(s) (k_pN+1)^{-s} \sum_{j=\alpha \mod k_p} \zeta \left(s, \frac{j}{k_pN+1} \right). \tag{2.29}$$

Equating (2.27) and (2.29), we obtain the Lemma.

The result of the Lemma extends to all of C by analytic continuation. There is again cancellation of polar terms $(1 - 1/p)/(s - 1)$. Proceeding as in the proof of Proposition 2, we obtain Proposition 3.

Proposition 4. We first differentiate (2.1) with respect to s,

$$k \sum_{r=1}^{q} \zeta' \left(s, \frac{pr}{q} - b \right) = \left(\frac{q}{p} \right)^s k \ln \left(\frac{q}{p} \right) \sum_{\ell=0}^{p-1} \zeta \left(s, \frac{\ell q + p}{p} - \frac{q b}{p} \right) + \left(\frac{q}{p} \right)^s k \sum_{\ell=0}^{p-1} \zeta' \left(s, \frac{\ell q + p}{p} - \frac{q b}{p} \right). \tag{2.30}$$

We then put $s = 1 - k$ and use the definition (1.8), so that

$$\sum_{r=1}^{q} A_k \left(\frac{pr}{q} - b \right) = -\left(\frac{q}{p} \right)^{1-k} k \ln \left(\frac{q}{p} \right) \sum_{\ell=0}^{p-1} B_k \left(\frac{\ell q + p}{p} - \frac{q b}{p} \right) + \left(\frac{q}{p} \right)^{1-k} k \sum_{\ell=0}^{p-1} A_k \left(\frac{\ell q + p}{p} - \frac{q b}{p} \right). \tag{2.31}$$
We now apply Corollary 3 for the Bernoulli polynomials to arrive at the Proposition.

Proposition 5. By evaluating (2.15) at $s = 1 - k$ we have

Corollary 5. We have

$$(-1)^k (1 - p^{k-1}) B_k = p^{(N+1)(k-1)} \sum_{1 \leq j < p^{N+1}} B_k \left(\frac{j}{p^{N+1}} \right). \quad (2.32)$$

We now differentiate (2.15) with respect to s,

$$k(1 - p^{-s})(\ln p)\zeta(s) + k(1 - p^{-s})\zeta'(s) = -p^{-(N+1)s} (N + 1)(\ln p)k \sum_{1 \leq j < p^{N+1}} \zeta \left(s, \frac{j}{p^{N+1}} \right)$$

$$+ p^{-(N+1)s} k \sum_{1 \leq j < p^{N+1}} \zeta' \left(s, \frac{j}{p^{N+1}} \right). \quad (2.33)$$

Putting $s = 1 - k$, using (1.8), we have

$$-p^{k-1}(\ln p)B_k(1) + (1 - p^{k-1})A_k(1) = (N + 1)p^{(N+1)(k-1)}(\ln p) \sum_{1 \leq j < p^{N+1}} B_k \left(\frac{j}{p^{N+1}} \right)$$

$$+ p^{(N+1)(k-1)} \sum_{1 \leq j < p^{N+1}} A_k \left(\frac{j}{p^{N+1}} \right). \quad (2.34)$$

Applying Corollary 5 leads to (1.11).

Acknowledgement

I thank H. Alzer for an inquiry that lead to Proposition 1.
Appendix: Zeta functions associated with a rational function

Suppose that \(p(T) \) is a polynomial in \(T \) and \(n_1, n_2, \ldots, n_r \) are positive integers.

We consider the rational function

\[
f(T) = \frac{p(T)}{(1 - T^{n_1})(1 - T^{n_2}) \cdots (1 - T^{n_r})}.
\]

We assume that about \(T = 0 \) there is a power series expansion \(f(T) = \sum_{n=0}^\infty a_n T^n, \) \(|T| < 1\). Then the zeta function associated with \(f(T) \) is given by

\[
Z_f(s) = \sum_{n=1}^\infty \frac{a_n}{n^s}, \quad \text{Re} \ s > r.
\]

In addition, \(Z_f \) is given by the Mellin transform

\[
Z_f(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1}[f(e^{-t}) - f(0)]dt.
\]

So \(Z_f \) is initially defined in a right half plane and has an analytic continuation.
References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Washington, National Bureau of Standards (1964).

[2] W. E. Briggs, Some constants associated with the Riemann zeta-function, Mich. Math. J. 3, 117-121 (1955).

[3] M. W. Coffey, New results on the Stieltjes constants: Asymptotic and exact evaluation, J. Math. Anal. Appl. 317, 603-612 (2006); arXiv:math-ph/0506061

[4] M. W. Coffey, On representations and differences of Stieltjes coefficients, and other relations, arXiv/math-ph/0809.3277v2 (2008), to appear in Rocky Mtn. J. Math.

[5] M. W. Coffey, New summation relations for the Stieltjes constants, Proc. Royal Soc. A 462, 2563-2573 (2006).

[6] M. Eie and Y. L. Ong, A generalization of Kummer’s congruences, Abh. Math. Sem. Univ. Hamburg 67, 149-157 (1997).

[7] O. Espinosa and V. Moll, On some integrals involving the Hurwitz zeta function: part 2, Ramanujan J. 6, 449-468 (2002).

[8] A. Ivić, The Riemann Zeta-Function, Wiley New York (1985).

[9] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp. 72, 1379-1397 (2003).
[10] Y. Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. **12**, 49-58 (1989).

[11] Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, in: Number Theory and Combinatorics, ed. by J. Akiyama et al., World Scientific, pp. 279-295 (1985).

[12] D. Mitrović, The signs of some constants associated with the Riemann zeta function, Mich. Math. J. **9**, 395-397 (1962).

[13] G. K. Srinivasan, The Gamma function: An eclectic tour, Amer. Math. Monthly **114**, 297-314 (2007).

[14] T. J. Stieltjes, Correspondance d’Hermite et de Stieltjes, Volumes 1 and 2, Gauthier-Villars, Paris (1905).

[15] J. R. Wilton, A note on the coefficients in the expansion of $\zeta(s, x)$ in powers of $s - 1$, Quart. J. Pure Appl. Math. **50**, 329-332 (1927).