Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry

Ana M. H. Vázquez1*, Nely Rodríguez-Zhurbenko1 and Ana M. V. López2

1 Tumor Immunology Direction, Center of Molecular Immunology, Habana, Cuba
2 Innovation Division, Center of Molecular Immunology, Habana, Cuba

Edited by:
Daniel F. Alonso, Qualmes National University, Argentina

Reviewed by:
Daniel F. Alonso, Qualmes National University, Argentina
Leonard Fainboim, Buenos Aires University, Argentina

*Correspondence:
Ana M. H Vázquez, Tumor Immunology Direction, Center of Molecular Immunology, Habana, Cuba.
e-mail: anita@cim.sld.cu

Surgery, chemotherapry, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypics repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotypic could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascade related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

Keywords: idiotypic network, anti-idiotypic antibody, ganglioside, vaccine, natural antibodies

GANGLIOSIDES

Gangliosides are glycosphingolipids present in the outer leaflet of the plasma membranes, where significantly contribute to the surface properties of cells (Storice et al., 1997). These glycolipids are involved in various cellular functions, including signal transduction (Bremer et al., 1986; Fujitani et al., 2005), regulation of cell proliferation and differentiation (Hakomori, 1970; Sakiyama et al., 1972; Critchley and Macpherson, 1973; Yogeeswaran and Hakomori, 1973), cell-cell recognition (Feitz, 1983), adhesion (Cheresh et al., 1986), and cell death (De Maria et al., 1997, 1998; Kirschnek et al., 2000; Colell et al., 2001). Gangliosides function as the Ca++ binding co-factor in synaptic transmission (Bremer et al., 1989), and as the co-factor of membrane adenylyl cyclase (Parmenting and Daly, 1979). Furthermore, they interact with, or are the receptors of different bioactive molecules, such as bacterial toxins (Simpson and Rapport, 1971), Van Heyningen et al., 1971; Holmgren et al., 1973, 1980a; Kato and Naiki, 1976; Portoukalian et al., 1976). Normal melanocytes express predominantly GM3, while GD3 increases when these cells suffer an oncogenic process (Ravindranath et al., 1995). GD3 plays a role in the regulation of cell growth and the induction of angiogenesis by the tumor cells (Heidberg et al., 2000; Zeng et al., 2000; Friedman et al., 2003). Melanoma GD3 carries a ceramide portion with a long chain fatty acid, in contrast with the GD3 expressed in the normal tissues that carries a shorter chain fatty acid (Nudelman et al., 1982). Fucosyl GM1 is a unique structure that is found in small cell lung cancers (SCLC) with a very limited expression in normal tissues (Krug et al., 2004; Tokuada et al., 2006). GD2 is highly expressed on neuro-ectodermal tumors (Heimbürger-Molinaro et al., 2001) and in sarcomas (Kailayangiri et al., 2012). This ganglioside is also a cancer stem cells marker and promotes tumorigenesis (Battula et al., 2012).

A very interesting case is the one of N-glycolylated (NeuGc) gangliosides, since these glycolipids are not naturally expressed in humans due to a genetic deletion in the gene that codes for N-acetyl hydrolase, enzyme that catalyzes the conversion of N-acetyl to N-glycolyl sialic acid (Irie et al., 1998; Irie and
Vázquez et al. Anti-ganglioside anti-idiotypic vaccination

Fredman et al., 2003). However, both direct and indirect studies have indicated that NeuGc is overexpressed in several human tumors (Devine et al., 1991; Kawii et al., 1991; Marquina et al., 1996; Malykh et al., 2001). The most accepted theory for this phenomenon is the incorporation of NeuGc from dietary sources. Free sialic acids from the medium can be taken up into cells via pinocytosis. The content of the resulting pinocytic vesicles and endosomes would eventually be delivered to the lysosome, where a sialic acid transporter then delivers the molecules into the cytosol (Burdor et al., 2005). Also, endogenous synthesis from glycolyl-CoA is a possibility (Malykh et al., 2001). The explanation for the differential expression of these antigens (Ag) in human normal and tumor tissues is that the rapidly growing tumor tissues might be more efficient at scavenging NeuGc. Furthermore, hypoxia induces the expression of sialin, a sialic acid transporter on tumor cells, and enhances the incorporation of the non-human sialic acid from the external milieu (Yin et al., 2006).

The gangliosides are not only attractive targets due to their over-expression on tumor cells membranes but also because of their importance for tumor biology. The metastatic capacity of the cells is strongly affected by the gangliosides expressed on the cell membranes: disialogangliosides GD2 and GD3 participate in the anchoring of the melanoma and neuroblastoma metastatic cells to the extracellular matrix proteins (Cheresh et al., 1986; Fredman et al., 2003). Comparing the ganglioside pattern expressed by the primary tumor or the metastatic cells of a melanoma patient, gangliosides expression was higher in the last ones, especially GD1. There were also abundant O-acetylation of GM2, GD3, and GD2, which were absent in the primary tumor. GM2 is also strongly expressed in prostate metastasis (Zhang et al., 1998), where is found in the areas of tumor cell-to-tumor cell contact indicating a role in cellular interactions and adhesion (Fredman et al., 2003).

Furthermore, gangliosides actively shed from tumors are inserted into the plasmatic membrane of surrounding cells, affecting the function of lymphocytes (Miller and Esselman, 1975; Lengle et al., 1978; Whaler and Yates, 1980; Ladisch et al., 1983; Gomes et al., 1984), monocytes (Ladisch et al., 1984), natural killer cells (Dziolowskaia et al., 1985), and antigen-presenting cells (Caldwell et al., 2003; Bennacere et al., 2006). Gangliosides have been found to shift the cytokine profile from Th1 toward the Th2 in affected cells (Crespo et al., 2006). Negative modulation of CD4 molecule on T lymphocytes has been described for both the N-acetylated (Sorico et al., 1995) and the N-glycolylated variants (de Leon et al., 2006) of GM3 ganglioside. Gangliosides have been reported to block the nuclear translocation of NF-kB in human monocytes and dendritic cells (Caldwell et al., 2003). GD3, isolated from the polar lipid fraction of ovarian cancer-associated ascites, was shown to be an inhibitory factor that prevents innate immune activation of natural killer T cells (Webb et al., 2012). GM2 inhibits immunoglobulin production by B cells (Kimata and Yoshida, 1996). In this way tumor released gangliosides reinforce tumor evasion by blocking the immunological surveillance.

Despite the fact that gangliosides are poorly immunogenic, due to their self and glycolipidic nature, several reports show the presence of naturally occurring antibodies, not only in cancer patients, but also in healthy individuals, suggesting that anti-ganglioside reactivity is fixed in the natural antibodies repertoire.

NATURALLY OCCURRING ANTI-GANGLIOSIDE ANTIBODIES

Natural antibodies are considered humoral mediators of innate immunity and recognize antigens highly conserved throughout evolution (Cojocaru et al., 2009). It has been proposed that natural auto-antibodies and auto-reactive T cells in healthy individuals may be directed to a specific and limited set of self-molecules; this selective autoimmunity has been termed the immunological homunculus (Cohen, 2007). Due to the limited number of mutations in the genes encoding the variable region of these antibodies, the repertoire of these immunoglobulins is highly conserved within species (Cojocaru et al., 2009). Several authors have described their capacity to bind foreign antigens but also self and altered self-antigens, which may be or not of protein nature (Cohen, 2007). These antibodies recognize epitopes associated with pathogens, such as phosphorylcholine of Gram-positive bacteria, lipopolysaccharide (LPS) of Gram-negative bacteria, and various molecules expressed by parasites (Ochsenbein et al., 1999; Baumgarth et al., 2005). For this reason they are considered as a first, quick anti-infection barrier that helps to guarantee the survival since the very beginning of the organisms’ life. Among their targets have also been identified intracellular molecules, such as some nuclear (e.g., histones) and cytoskeleton (e.g., actin) proteins (Costantino et al., 1999) and single-stranded DNA (Schwartz-Albiez et al., 2009). They also recognize peptides (e.g., amyloid beta peptide), plasma membrane glycoproteins (e.g., CD90; Schwartz-Albiez et al., 2009), oxidized lipids (e.g., phosphatidylcholine), and antigens expressed by apoptotic cells (Annexin IV; Chou et al., 2009; Baumgarth, 2011). Mounting evidence suggest that natural IgM antibodies, through this self-reactivity might contribute to critical innate immune functions involved in the maintenance of tissue homeostasis, like the clearance of apoptotic cells (Chou et al., 2009), reduction of atherosclerotic lesions (Harrvigsen et al., 2009; Cesena et al., 2012), and the reinforcement of mechanisms involved in the protection from the development of autoimmune disease (Wierzbie et al., 2005; Chen et al., 2009a,b; Silverman et al., 2009; Jiang et al., 2011; Steeher et al., 2013).

Recently it has been described the existence of autobody antibodies against tumor-associated antigens, which can arise in the patients even before the symptoms become evident and that can be detected also in healthy donors (Zhang et al., 2003; Stoett et al., 2006; Chapman et al., 2008). Some of these IgM isotype, germine antibodies have been isolated from cancer patients and have proved to be able not only to recognize tumor cells, but also to kill them by different mechanisms (Bohn, 1999; Hensel et al., 2001; Jakobsen et al., 2003; Vollmers and Brandl, 2005, 2006; Lutz et al., 2009). Many of the detected anti-tumor antibodies bind to carbohydrate repeated motifs, including sequences of sugars contained in gangliosides (Lutz and Miescher, 2008; Cojocaru et al., 2009). Naturally occurring antibodies reacting with tumor-associated gangliosides have been detected in cancer patients but also in healthy donors. Antibodies against GM2 and GD2 were detected
Anti-ganglioside anti-idiotypic vaccination

in the sera of both melanoma patients and healthy individuals (Watanabe et al., 1982; Tai et al., 1983). Other authors have reported the existence in healthy donors of naturally occurring antibodies with reactivity against gangliosides like GM1, GD1a, GD1b, and GT1b (Minutamari et al., 1994; Ravindranath et al., 1997; Lardone et al., 2006). Silent auto-reactive B clones have also been identified in cancer patients, from which human monoclonal antibodies (mAb) against gangliosides were generated. The mAb GM1a reacted with the gangliosides GD3, GM3, and GD2 from melanoma and neuroblastoma cell lines and not normal tissues (Mukerjee et al., 1998). The human monoclonal IgM antibody 7c11.e8, also generated by fusing lymph node cells isolated from a surgical specimen of malignant melanoma reacted with GM4, GM3, and GD3. In the presence of human serum the antibody initiated a strong lysis of melanoma tumor cells in complement-dependent cellular cytotoxicity (CDCC) assays (Abdel-Wahab et al., 1993).

The presence of naturally occurring antibodies that recognize NeuGc acid present in tumor-associated glycoconjugates has also been described. It has been shown that normal human serum contains high levels of NeuGc-specific antibodies, which attract complement molecules to the surface of leukemic cells expressing NeuGc, but not other normal cells (Zhu and Hurst, 2002; Tangvo-ranantakul et al., 2003; Nguyen et al., 2005; Padler Karavani et al., 2008). Ravindranath et al. (2007), examining the sera of healthy volunteers between the ages of 18 and 90, reported that anti-ganglioside antibodies occurred naturally and that their levels decline after 50 years, which could be relevant since the cancer incidence increases with age.

Anti-ganglioside antibodies have shown to have anti-tumor cytotoxic capacities. It has been reported the ability of a murine anti-GM2 to induce apoptosis through caspase activation in lymphoma, melanoma, and lung cancer cells expressing the antigen (Ritter et al., 2003). The binding of an anti-GD2 antibody to the ganglioside expressed in lung cancer cells induced apoptosis by the reduction in the levels of phosphorylation of FAK and activation of mitogen-activated kinase p38. Immunoprecipitation experiments showed a physical association of GD2 with integrins, which were associated with FAK inside the membrane. Antibody binding to ganglioside caused conformational changes in this complex, inducing the transmission of intracellular signals that mediated the apoptosis (Aizumishio et al., 2005). It has been also proved that anti-GD2 antibodies of healthy donors have cytotoxic capacity against neuroblastoma cells (Ullert et al., 1997).

The capacity of the mAb 1A4F, a murine IgG highly specific for NeuGcGM3, to induce oncoytic cell death to tumor cells expressing this antigen has been reported. This antibody induced a tumor cell death that was accompanied by cellular swelling, membrane lesion formation, and cytoskeleton activation (Carr et al., 2000; Rosque-Navarro et al., 2008). Another antibody specific for N-glycolylated gangliosides is P3 mAb. This is an IgM, germline encoded that is able to induce complement-mediated cytotoxicity to NeuGc expressing tumor cells (Vázquez et al., 1995; Carr et al., 2002). It has been reported that naturally occurring anti-NeuGc in healthy humans were able to kill human leukemic cells that were generation fed with NeuGc by a complement-mediated mechanism (Nguyen et al., 2005).

These evidences suggest that the evolution has fixed an innate immunity against gangliosides in the natural antibodies repertoire, which could play an important role for tumor immune surveillance. Since the natural antibodies secreting B cells arise in the neonatal period, they could be connected and regulated by anti-Id interactions, according to Jerne’s idiotypic network theory.

THE IDIOTYPIC NETWORK THEORY

In 1974, Neils Jerne published the Idiotypic Network theory, which gave a different view of the immune system organization and the recognition of the “self.” According to classical clonal selection theory, the immune system was “antigen driven” and in the absence of an external antigen challenge the system should be passively inactive. In contrast, according to the network theory, the immune system consists of lymphocyte clones which are stimulated and regulated by the immunoglobulins produced by other clones within the network. Since a huge diversity of idiotypes (Id) is generated by random somatic rearrangements of genes, idiotype’s complementary structures can be found not only on antigens but also on antibodies of different idiotypes. In Jerne’s own words “the immune system of a single animal, after producing specific antibodies to an antigen, continues to produce antibodies to the idiotopes of the antibodies which it has itself made. The latter anti-Id antibodies likewise display new idiotypic profiles, and the immune system turns out to represent a network of idiotypic interactions” (Jerne, 1974, 1985).

This phenomena was extensively proved firstly by Kunkel and Oudin, who showed that ordinary antibody molecules that arise in an immunized animal are antigenic and induce the formation of specific anti-antibodies (Kunkel et al., 1963; Oudin and Michel, 1963). Later experiments further demonstrated that the recognition of self-idiotopes by B or T cells is an active physiological process controlling the suppression or expansion of the immune response (Eichmann and Rajewsky, 1975; Caenave, 1977; Urban et al., 1977; Bona et al., 1981).

This immune network is established in the neonatal period, thus this theory predicts that the immune system has an autonomous activity, manifested by the presence of activated lymphocytes and antibody secretion, before any external immunization. This prediction was confirmed by studies on “antigen-free” animals, which contain in their spleen and peritoneal cavity activated B cells that secret IgM antibodies and T lymphocytes that perform as effector cells, help or suppress the antibody production (Hooijkaas et al., 1984; Perera et al., 1986).

Thus, a network of idiotypically interacting immune cells is formed, that has a dynamic equilibrium between the idiotypes, anti-Id, and the normal self-constituents of our body, influencing the shaping of the B- and T cell repertoires, and controlling auto-reactive clones.

In the 1980s, there was an interesting debate between the proponents of the network paradigm and those of the clonal selection theory and several experiments were performed that provided evidences about both ideas (Cohn, 1981, 1986; Langman and Cohn, 1986; Caenave, 1988; Behn, 2007).

The establishment of collections of antibody producing hybridomas, derived from normal, unimmunized mice at different stages of ontogeny, provided proof for the existence of idiotypic
connectivity (Holmberg et al., 1984a). Matrices of idiotypic complementarities were established, that allowed to estimate the degree of connectivity within different B cell populations (Holmberg et al., 1984a,b; Kearney and Vakil, 1986). High levels of connectivity were observed within collections of fetal or neonatal origin (Holmberg et al., 1984b). However, within collections from the adult lymphocyte population the degree of connectivity was 10- to 100-fold lower (Holmberg et al., 1986c). These experiments suggested that high idiotypic connectivity is not an intrinsic property of any collection of IgM antibodies, but a distinctive property of part of the perinatal antibody repertoire.

Then, Varela and Coutinho formulated the concept of second-generation immune networks (Coutinho, 1989; Varela and Coutinho, 1991), which tried to combine the two competing paradigms. They adopted the view that the immune system is formed by two compartments of B and T lymphocytes: a majority of small resting cells constituting 80-85% of the total population and a set of large activated cells making up the other 15-20% (Pereira et al., 1985, 1986), this last being the predominant in the neonatal period. The specific response to a foreign antigen would be mainly caused by the activation of resting lymphocyte clones, which are only poorly connected to the network, thus forming the peripheral part of the system. The fraction of highly connected cells forms the actual network, a compartment of naturally activated lymphocytes. The immune network includes, in addition to V-regions, all other molecules of the somatic self. This pool of connected cells may be responsible for maintenance of normal network dynamics and prevention of auto-aggression.

The idiotypic network hypothesis predicts that due to the huge diversity of immunoglobulin variable regions, and since each antibody will bind its nominal antigen and also other immunoglobulins, within the immune network the universe of external antigens is mimicked by idiotypes. According to this concept, immunization with a given antigen will generate the production of antibodies against this antigen termed Ab1. This Ab1 can generate a series of anti-Id antibodies against Ab1 termed Ab2. The particular anti-Id which fit into the antigen binding site of the Ab1, can induce a specific immune response against the nominal antigen. Then, a practical consequence of the idiotypic network theory was that the idiotopes could be used to mimic any existing antigen and used as surrogate antigens. Immunization with Ab2 can lead to the generation of anti-anti-Id antibodies (Ab3) that recognize the corresponding original antigen identified by the Ab1 (Figure 1). Several such Ab2 have been used to trigger the immune system to induce specific and protective immunity against tumor antigens (Miller et al., 1982; Jerne, 1985; Lee et al., 1985; Raychaudhuri et al., 1986).

Although Jerne, in his original network hypothesis, and later Coutinho with the second generation networks outlined the importance of naturally occurring idiotypic complementarities, most of the studies using anti-Id as vaccines are focused on the great mimetic capacity of idiotypes, no in activating network related properties, like immune regulation and natural immune surveillance. Beyond the functional mimetic capacity, those anti-Id antibodies related with antigens connected and regulated though networks due to their importance for organisms’ homeostasis, could be able to activate natural antibodies secreting B cells. Their antigens, especially self-antigens, could be the suited ones to get targeted through the idiotypic vaccination. This could be the case of gangliosides.

Anti-ganglioside idiotypic vaccines

Anti-Idotype antibodies that mimic ganglioside have been utilized as active specific immunotherapy in patients with different tumors. Chapman and Houghton (1991) generated in syngeneic mice the anti-Id antibody BEC2 against the anti-GD3 mAb R24. In studies in rabbits this antibody demonstrated its ability to mimic GD3, inducing a specific antibody response of IgG and IgM isotypes. In clinical trials in melanoma patients treated by surgery and with high risk of recurrence (McCaffery et al., 1996) and in patients with SCLC with limited disease (Grant et al., 1999) BEC2 demonstrated to be immunogenic and to induce anti-anti-Id response when administered with the adjuvant BCG. However, it induced specific anti-GD3 antibodies only in a low percentage of patients (Chapman and Houghton, 1991; McCaffery et al., 1996; Grant et al., 1999). The conjugation of BEC2 to KLH did not increase but reduced the magnitude and frequency of the anti-GD3 response. When anti-GD3 antibodies were induced, they were detected only by ELISA, not by TLC immunostaining (Ritter et al., 1991) or by flow cytometry against GD3-positive melanoma cell lines, suggesting that these anti-GD3 antibodies had a relatively low avidity for cell surface GD3. A phase III trial with s15 patients with limited-disease SCLC after a major response to chemotherapy and chest radiation was performed with BEC2/BCG. This trial failed to show any survival advantage for vaccinated patients. Only one-third of the patients elicited an anti-GD3 response. Among vaccinated patients, a trend toward prolonged survival was observed in those who developed the humoral response (P = 0.083), so that it was suggested that the induction of higher titers of antibodies in a larger proportion of patients could make an impact on median survival (Giaccone et al., 2005).

Another trial that targeted a ganglioside, utilized a vaccine composed of an anti-Id mimicking GD2 injected with the adjuvant QS21, a preparation called TriGem. The anti-Id mAb, called 1A7 is a functional mimic of a specific epitope in the ganglioside GD2. In preclinical studies in mice, rabbits, and monkeys the immunization with 1A7 antibody induced a specific IgG response in the ganglioside GD2. In a clinical trial in patients with advanced melanoma, which were given anti-Id mAb 1A7 with the adjuvant QS21. All sera showed an anti-anti-Id response mainly of the IgG1 isotype. The purified Ab3 from all patients inhibited the binding of the Ab1 to a GD2-positive cell line and to purified GD2. In addition, sera specifically reacted with tumor cells expressing GD2 and were positive in ADCC studies. One patient had a complete clinical response and 6 patients, of a total of 12 enrolled in the trial were stable from 9 to 23 months. In a similar trial, 47 patients with advanced melanoma received 1, 2, 4, or 8 mg doses of TriGem. Hyperimmune sera from 40 of the 47 patients showed an anti-anti-Id response of IgG isotype that specifically bound purified GD2. One patient had a complete response that persisted at 24 months, and 12 patients were stable...
FIGURE 1 | According to the idiotypic network theory, idiotype’s complementary structures can be found not only on antigens but also on antibodies of different idiotypes. The immune system after producing specific antibodies to an antigen (Ab1), continues to produce antibodies to the Ab1 idiotopes (Ab2). The particular Ab2 which fit into the antigen binding site of the Ab1, can induce a specific immune responses against the nominal antigen. Thus, the idiotopes could be used as surrogates of any existing antigen. Immunization with Ab2 can lead to the generation of anti-anti-Id antibodies (Ab3) that recognize the corresponding original antigen identified by the Ab1. Several Ab2 have been used to induce specific and protective immunity against tumor antigens.

from 14 to 37 months (median, 18 months). These results showed that this vaccine had minimal toxicity, induced a strong response against GD2 and seemed to have a favorable impact on the reduction of disease progression and survival of patients (Foon et al., 1998, 2000).

In 2003, Basak and colleagues generated Ab2 against the anti-GD2 mAb ME361. These Ab2s induced a specific DTH response in mice against melanoma cell lines that express this ganglioside. Furthermore, these antibodies were able to induce proliferative responses in cells from a melanoma patient confronted with human melanoma cells expressing GD2 in vitro, demonstrating the ability of these antibodies to induce cellular responses against carbohydrate antigens (Basak et al., 2003).

Several evidences have shown that tumor antigen-specific antibodies Ab1, used in preclinical experiments or for diagnostic and/or therapeutic purposes, may contribute to anti-tumor effects by triggering the idiotypic cascade and inducing a tumor antigen-specific immune response. The triggering of the idiotypic cascade has been reported to be associated with a favorable clinical response to antibody-based therapy in patients with neuroblastoma, colorectal carcinoma, ovarian carcinoma, and non-Hodgkin lymphoma (Koprowski et al., 1984; Saleh et al., 1993; Cheung et al., 1994, 2000; Schultes et al., 1998). GD2 ganglioside-specific antibodies have been induced in patients with neuroblastoma treated with anti-GD2 ganglioside antibodies. Treatment with the anti-GD2 monoclonal antibody 3F8 (Ab1) at the time of remission prolonged the survival of children with stage 4 neuroblastoma. Among 34 patients treated with this antibody at the end of chemotherapy 14 were alive, and 13 (1.8–7.4 years at diagnosis) were progression-free (53–143 months from the initiation of 3F8 treatment) without further systemic therapy at the moment of the report. This long-term progression-free survival and survival correlated significantly with the induction of Ab3 anti-GD2 response (Cheung et al., 2000). These results reinforce
the importance of GD2 as a tumor target, and the connectivity capacity of anti-ganglioside antibodies.

Our group has developed a vaccine preparation featuring a murine anti-Id mAb related to the NeuGc-containing ganglioside antigen model. This Ab2, named 1E10 (Vázquez et al., 1998), was generated from the immunization of BALB/c mice with P3, an idiotypic antibody (Ab1) that recognizes NeuGc-containing gangliosides, sulfated glycolipids, and antigens present in different human tumors including those from the lung. This Ab1 is highly immunogenic in the syngeneic model, inducing an anti-Id response in the absence of adjuvant or carrier protein. Furthermore, the Ab1 P3 was able to activate NeuGcGM3 related idiotypic cascade, since antibodies against NeuGcGM3 (Ab3, Ab1 like) were detected in chickens immunized with this Ab1. The detection of Abs with this specificity in animals immunized with an Ab1 suggested that the elicited Ab3s behaved as a ganglioside surrogate inducing a specific Ab3 response against this antigen.

Preclinical data published by our group suggest that P3 and 1E10 mAb could be able to activate idiotypic networks, involving both B and T cells. Lymph node cells from BALB/c mice immunized with P3 mAb proliferated in vitro, in a dose-dependent manner, not only in response to P3 mAb but also to 1E10 mAb, suggesting the existence of a naturally occurring B/T cell idiotypic network (Perez et al., 2002). Phase I clinical trials have proven the safety and immunogenicity of 1E10 Id vaccination in melanoma, breast, and lung cancer patients (Alfonso et al., 2002, 2007; Diaz et al., 2003; Neninger et al., 2007; Hernandez et al., 2008). In all the cases, 1E10 idiotype proved to be immunodominant, since the induced anti-anti-Id response was significantly higher than the anti-isotypic response. Similar results were obtained when monkeys and chickens were immunized with 1E10 mAb (Hernandez et al., 2005), suggesting that 1E10 mAb Id immunodominance is not a species-depending property. High titer antibody responses to NeuGc-containing gangliosides were measured in the sera of cancer patients and were confirmed by TLC immunostaining. Interestingly, a fraction of non-suppressible anti-NeuGc-containing ganglioside Abs was demonstrated after the adsorption of the patients’ sera with 1E10 mAb, suggesting that 1E10 Id vaccination was activating natural anti-NeuGcGM3 responses (Hernandez et al., 2008). The antibodies that recognize both 1E10 and the ganglioside (Id+Ag−) and the ones that recognize the ganglioside but not the immunizing Ab3 (Id−Ag+), recognized and induced the death of tumor cells expressing NeuGcGM3 by an oncotic necrosis mechanism. Those patients who developed IgG and/or IgM Abs against NeuGcGM3 showed a longer survival time. We hypothesize that 1E10 Id vaccination could be activating an existing idiotypic cascade related with N-glycolylated gangliosides, which would amplify...
Vázquez et al. Anti-ganglioside anti-idiotypic vaccination

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.

CONCLUDING REMARKS

REFERENCES

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.

CONCLUDING REMARKS

REFERENCES

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.

CONCLUDING REMARKS

REFERENCES

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.

CONCLUDING REMARKS

REFERENCES

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.

CONCLUDING REMARKS

REFERENCES

At present, most of the anti-Id vaccine approaches are based and study the mimetic capacity of the anti-Id antibodies, without searching for their immunoregulatory or natural anti-tumor potential. The use of anti-Id antibodies as immunogens could offer the possibility not only to generate Ab3 antibodies against their own idiotopes, but also to inducing a cascade of Id-anti-Id interactions leading to an amplified and long lasting immune response against the nominal antigen. This immunization could also involve T cells in the response against glycolipidic antigens. Idiotype-natural antibody interaction could even participate in the lysis of tumor cells by the activation of evolutionarily fixed anti-tumor mechanisms. A naturally occurring antibody response against ganglioside, which has shown to carry anti-tumor properties, exists in healthy individuals and cancer patients. The idiotype vaccine could be an optimum way to activate the idiotype B and T cell cascades involving the natural responses against those antigens.
inhibits inflammatory arthritis. J. Immunol. 145, 1348–1354.
Chen, Y., Park, Y. B., Patel, E., and Silverman, G. J. (2008). Idiotypic antibodies to autoantigens associated with diabetic retinopathy. J. Clin. Invest. 118, 1556–1566.

Chen, M. K., Kao, H. P., Heber, G., and Cheung, I. Y. (2000). Induction of Ahb and Ahb anti-body was associated with long-term survival after anti-GD2 idiotype vaccination of stage 4 neuroblastoma. Clin Cancer Res. 6, 2553–2560.

Chen, M. K., Fregni, L. L., Harrington, K., Hanlon, L. F. W., Woulfe, D., Shaw, P. X., et al. (2008). Ossalization-specific epitopes are dominant targets of immune natural antibodies in mice and humans. J. Clin. Invest. 118, 1355–1359.

de Leon, J., Fernandez, A., Mesa, C., Clas, M., and Hidalgo, E. I. (2008). Role of tumour-associated N-glycolyl gangliosides in cancer progression: effect over GD2 expression on T cells Cancer Immunol. Immunother. 57, 443–450.

De Maria, R., Lenti, L., Maloni, F., D’Agostino, F., Tomassini, B., Zunati, A., et al. (1997). Requirement for GM1 ganglioside and ceramide-induced apoptosis. Science 276, 1652–1655.

DeMaria, R., Ripp, M. R., Schuchman, E. H., and Testi, R. (1999). Acidic phosphoinositides (AIPs) is necessary for fas-induced GD3 ganglioside ganglioside accumulation and ceramide apoptosis of lymphoid cells. J. Exp. Med. 187, 891–893.

Devaux, P. L., Clark, A. B., Berdell, G. W., Leighton, G. W., Gady, B., Abouder, P. R., et al. (1991). The breast tumor-associated protein defined by monoclonal antibody SE2.2 is an U-linked mucin carbohydrate containing N-glycolosylsarcosine acid. Cancer Res. 51, 5826–5836.

Diatloffinova, E. V., Klíšička, E. V., Matuška, V. A., Šimtová, E. V., and Akhmed-Zade, A. (1985). Effect of gangliosides on the erythroid activity of natural killers from Syrian hamsters. Biokimia 50, 1516–1518.

Dai, A., Altmann, M., Akini, B., Sauter, G., Trochu, M., Catála, M., et al. (2003). Immune responses in breast cancer patients immunized with an anti-idiotypic antibody mimicking NeuGc-containing gangliosides. Clin. Immunol. 107, 80–90.

Eichmann, K., and Rozakis, J. (1975). Induction of T and B cell immunity by anti-idiotypic antibody. Eur. J. Immunol. 5, 601–666.

Fein, T. (1985). Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are non-divergent antigens. Nature 314, 53–57.

Furman, P. H. (1974). Normal and abnormal biochemicals of gangliosides. Cleve. Phys. Lipids 13, 505–512.

Foon, K. A., Ludsky, J., Baral, R. N., Yamada, J. R., Hatchins, L., Testi, R., et al. (2005). Clinical and immune responses in advanced melanoma patients immunized with an anti-idiotypic antibody mimicking disialoganglioside GD2. J. Clin. Oncol. 23, 375–384.

Foon, K. A., Sen, G., Hatchins, L., Kite, L., Kasahal, O. L., Baral, R., Bussey, M., et al. (1998). Autoimmune responses in melanoma patients immunized with an anti-idiotypic antibody mimicking disialoganglioside GD2. Cancer Immunol. Immunother. 47, 1114–1120.

Fredman, P., Halberg, K., and Benencia, T. (2002). Gangliosides as therapeutic targets for cancer. Biochim. Biophys. Acta 15866–15871.

Fredman, P., Hafstrom, O., and Freeland, B. E., et al. (2004). Malignancy-associated glycolipid antibodies by germ-free mice fed chemically modified disialoganglioside GD2. Clin. Cancer Res. 10, 576–580.

Fredman, P., Halberg, K., and Benencia, T. (2002). Gangliosides as therapeutic targets for cancer. Biochim. Biophys. Acta 15866–15871.

Fredman, P., Halberg, K., and Benencia, T. (2002). Gangliosides as therapeutic targets for cancer. Biochim. Biophys. Acta 15866–15871.

Fredman, P., Hafstrom, O., and Freeland, B. E., et al. (2004). Malignancy-associated glycolipid antibodies by germ-free mice fed chemically modified disialoganglioside GD2. Clin. Cancer Res. 10, 576–580.

Fredman, P., Halberg, K., and Benencia, T. (2002). Gangliosides as therapeutic targets for cancer. Biochim. Biophys. Acta 15866–15871.

Fredman, P., Hafstrom, O., and Freeland, B. E., et al. (2004). Malignancy-associated glycolipid antibodies by germ-free mice fed chemically modified disialoganglioside GD2. Clin. Cancer Res. 10, 576–580.
Ag-ganglioside anti-idiotypic vaccination

with small cell lung cancer: report of a phase I trial. Cancer Res. 66, 145–150.

Nijgh, D. H., Taipaleenmaki, P., and Yurkiw, A. (2003). Effects of natural human antibodies against a nonhuman saccharide that metabolically
inhibits oncogenic and malignant immune cells. J. Immunol. 173, 228–236.

Ochsner, A. F., Feifei, T., Lutz, C., Suter, M., Bromberg, F., Hengartner, H., et al. (1999). Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159.

Olson, M. V., and Yurkiw, A. (2003). Sequencing the chimpanzees' immune system insights into human evolution and disease. Nat. Rev. Genet. 4, 20–28.

Ollert, M. W., Durand, K., Vollmert, C., Juhl, H., Erttmann, R., Bredehorst, R., et al. (1997). Mechanisms of in vivo anti-neuroblastoma activity of human/natural-idiotype Vacc. J. 55, 1942–1948.

Ottlin, J., and Michal, M. (1983). Une nouvelle forme d’idiotie des globulines gamma du serum lapin apparemment liée à la fonction et à la spécificité antigénique when combined with adjuvant. Clin. Cancer Res. 2, 679–688.

Miller, H. C., and Esserman, W. J. (1975). Modulation of the immune response by antigen-reactive lymphocytes after elevation with gangliosides. J. Immunol. 113, 843–849.

Miller, R. A., Maloney, D. G., Wuirke, R., and Levy, R. (1982). Characterization of B-lymphoma with monoclonal anti-idiotypic antibody. N. Engl. J. Med. 306, 517–522.

Mitsui, T., Handa, S., and Yamakawa, T. (1979). Specific inhibition of macrophage migration inhibition factor by fucosylated globoside EM. J. Biochem. 86, 773–776.

Miragatti, R. K., Wiegand, H., and Neres, G. A. (1994). Characterization of anti-ganglioside antibodies present in normal human plasma. J. Neuroimmunol. 50, 215–220.

Mujic, M., Nazakov, M., Miller, G., and Malykh, Y. N. (1998). Characterization of human IgG monoclonal antibody against gangliosides expressed on tumor cells. Biochimie 80, 1275–1279.

Mullin, R. B., Fishman, P. H., Lee, G., Aloy, S. M., Lefly, D. F., Winant, B. J., et al. (1976). Thyroid-stimulating hormone receptor and the relationship to the structure and function of thyrotropin receptors. Proc. Natl. Acad. Sci. U.S.A. 73, 842–846.

Nenninger, L., Diaz, R. M., De La Torre, A., Brown, D., Aune, C., et al. (2007). Active immunotherapy with IL-10 anti-idiotypic vaccine in patients protecting against cancer. Immunol. Lett. 90, 105–122.

Jernm, N. K. (1974). Towards a network theory of the immune system. Ann. Immunol. (Paris) 128C, 373–380.

Jernm, N. K. (1985). The generative grammar of the immune system. Scienc. 228, 1057–1059.

Jiang, C., Zhao, M. L., Scarcia, R. M., and Daci, M. (2011). Activation-induced deaminase-deficient Mice display severe low levels of protective antibodies against lupus nephritis. Ann. Immunol. 203, 1049–1060.

Kalajzic, S., Albrecht, B., Mellitzer, J., Pechstein, S., Lasaia, A., Douzou, C., et al. (2012). The ganglioside anti-idiotypic response is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br. J. Cancer 106, 1215–1223.

Kato, J., and Naki, M. (1976). Ganglioside and rabbit erythrocyte membrane receptor for staphylococcal alpha-toxin. J. Immunol. 133, 269–281.

Kawai, K., Kato, A., Higashin, H., Kato, S., and Naiki, M. (1991). Quantitative determination of N-glycolysoseuramic acid expression in human carcinomas and avian lymphoma cell lines as a tumor-associated saccharide by gas chromatography-mass spectrometry. Cancer Res. 51, 1242–1246.

Kearney, J. P., and Lees, E. L., Gohn, L. D., Hubbard, W. H., and Hanagoe, M. C. (1977). Tumor-tissue interactions with thy- roplasm membranes. Implications for structure and function of tumor tissue receptors: ganglioside interactions with thyroplasm membranes. J. Biol. Chem. 252, 4049–4055.

Lee, G., Aloy, S. M., Bradey, R. O., and Kohl, L. D. (1970). The structure and function of carbohydrate receptors: ganglioside receptors in rat renal glomerular basement membranes. Biochim. Biophys. Acta Rev. 173, 370–377.

Lee, G., Aloy, S. M., and Kohl, L. D. (1977). The structure and function of glucocorticoid receptor: ganglioside interactions with haptotrophic hormone. Biochem. Biophys. Res. Commun. 77, 645–649.

Lee, K. V., Hartlurt, E. G., Reichos, V. K., Halkin, W. I., Hellstrom, L., and Mellitzer, R. E. (1985). Monoclonal anti-idiotypic antibodies related to a marine oncornavirus blood tumor antigen induce specific cell-mediated immune response. Immunol. Rev. 84, 882–889.

Knecht, H., Herlyn, D., Lubeck, M., Kailayangiri, S., Altvater, B., Meltzer, J., Jiang, C., Zhao, M. L., Scearce, J., and Jerne, N. K. (1974). Towards a network theory of the immune system. Ann. Immunol. (Paris) 128C, 373–380.

Koprowski, H., Herlyn, D., Lubeck, M., Kailayangiri, S., Altvater, B., Meltzer, J., Jiang, C., Zhao, M. L., Scearce, J., and Jerne, N. K. (1974). Towards a network theory of the immune system. Ann. Immunol. (Paris) 128C, 373–380.
involved in the interaction with B cells. J. Immunol. 199, 103–112.

Posth, P., Brouillet, C., Deva, J. F., and Beausage, J. I. (1976). Studies of a ganglioside fraction extracted from human malignant melanoma. Biochem. 58, 1285–1287.

Posth, G., Kreh, R., and Foeller, I. J. (1979). Cell surface receptors for lymphocytes 1. The possible role of glycolipids as receptors for macrophage migration inhibitory factor (MIF) and macrophage activation factor (MAF). Cell. Immunol. 44, 71–88.

Ravindranath, M. H., Touchard, T., Morten, D. L., and Io, R. F. (1991). Ganglioside GM1/GD2 ratio as an index for the management of melanoma. Cancer 67, 3203–3205.

Ravindranath, M. H., Yewowitch, P., Namboor, C., and Morten, D. L. (2007). Glycoimmunomics of human cancer: current concepts and future perspectives. Front. Oncol. 3, 201–214.

Ravindranath, R. M., Ravindranath, M. H., and Grins, C. (1997). Augmentation of natural anti-ganglioside IgM antibodies in lower motor neuron disease (LMND) and role of CD8+ T cells. Cell. Mol. Life Sci. 53, 750–758.

Ravindranath, S., Takki, H., and Kohler, H. (1986). Tumor-specific idiotypic vaccines. I. Generation and evaluation of a monoclonal antibody against a tumor image antigen. J. Immunol. 137, 1743–1749.

Ratter, M. W., Johnson, J. C., Pekkan, D. W., Bannink, J. E., Bangar, C. S., Dore, J. B., and Schwartz-Albiez, R. (1986). Tumor antigen AH is an autoantigenic ganglioside that also recognizes sulfated glycolipids. Cancer Res. 46, 6425–6434.

Reina, J., Boord, E., Adair, B., Calman, C., Otvos, H. F., Old, L. I., et al. (1991). Antibody response to immunization with ganglioside GD3 and GD2 cogeners (fucose, arabinose and gangliosides) in human malignant melanoma. Int. J. Cancer 46, 373–383.

Roque-Núñez, L., Chakrabarti, K., De Leon, J., Rodriguez, S., Tokis, C., Cant, A., et al. (2008). Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol. Cell. Thor. 2013, 2044.

Sakumizu, H., Gross, S. K., and Roberts, P. W. (1972). Glycolipid synthesis in normal and xerotoxemic newborn human cell lines. Proc. Natl. Acad. Sci. U.S.A. 69, 872–876.

Salih, M. N., Stapleton, D. J., Kharaz, M. B., and Lebloug, A. E. (1998). Generation of a human anti-idiotypic antibody that mimics the GD2 antigen. J. Immunol. 155, 3398–3400.

Schultes, B. C., Beam, R. P., Niswagen, A., Noszlopi, A. A., and Mahalankalin, R. (1988). Anti-idiotypic induction therapy: anti-CA25 antibodies (Anti) mediated tumor killing in patients treated with Ovaex multib. J. Clin. Oncol. 6, 202–212.

Sakiyama, H., Gross, S. K., and Robbins, R. H., Eiglmeier, S., Holecska, V., Karlsson, K. A., Carr, A., Barroso, O., et al. (2006). Generation of a human anti-idiotypic antibody that mimics the GD2 antigen. Expert. Opin. Biol. Ther. 6, 872–876.

Saxton, R. E., Irie, R. F., and Morgan, B. H. (2007). Syngeneic anti-idiotypic antibodies. Exp. Mol. Biol. 151, 3390–3413.

Schroer, A. T., Schlossman, F. S., Kusunoki, S., Urano, T., and Furukawa, K. (2006). Genetic mechanisms for the synthesis of fucosyl gangliosides that also recognize sulfated glycolipids. Glycomics 16, 916–925.

Shimizu, Y., Juker, M., Barres, O. J., and Collignon, C. (1977). Idiotype regulation of the immune system by the induction of antibodies against anti-idiotypic antibodies. Proc. Natl. Acad. Sci. U.S.A. 74, 5128–5130.

Shimizu, R., Sugimoto, Y., Irie, R. F., and Morde, D. W., Bannink, J. E., Bangar, C. S., Dore, J. B., and Schwartz-Albiez, R. (1986). Tumor antigen AH is an autoantigenic ganglioside that also recognizes sulfated glycolipids. Cancer Res. 46, 1341–1345.

Simpson, L. L., and Rapport, M. M. (1979). Cell surface receptors of a ganglioside fraction extracted from human malignant melanoma. J. Neuroimmunol. 6, 151–156.

Small, M. A., Alfero, L., Sancesario, F., Garofalo, T., Dolci, V., Stanga, M., et al. (1997). Evidence for the presence of ganglioside-enriched plasma membrane domains in human peripheral blood T lymphocytes. Scand J. Immunol. 45, 148–153.

Sorcer, M., Farsky, L., Samolin, T., Garofalo, T., Dolci, V., Stanga, M., et al. (1997). Evidence for the presence of ganglioside-enriched plasma membrane domains in human peripheral blood T lymphocytes. Scand J. Immunol. 45, 148–153.

Steele, A. D., Schous, C. T., Martin, M. M., Righetti, S., Hockstra, V., Lorenzo, A. K., et al. (2011). TLR9 in peritumoral B1 cells is essential for production of protective self-reactive IgM to control CD4+ T cells and enhance anti-tumor immunity. J. Immunol. 177, 2975–2985.

Stelzer, S. I., Chakrabarti, K., Barnes, A., Murray, A., Chapman, C. J., and Robertson, J. F. (2006). Use of autostimulants in breast cancer screening and diagnosis. Expert. Rev. Anticancer Ther. 6, 1215–1223.

Smeets, M. (1990). Gangliosides and synaptic transmission. Adv. Exp. Med. Biol. 295, 335–344.

Srivastava, A., Lu, E., Nihal, K. I. I., and Loper, P. S., Hanes, C., Schwarz, R. L., et al. (2012). Molecular identification of GD2 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 72, 3592–3598.

Srivastava, A., Dix, D., Kamino, K., Matthias, T., Kandala, S., Schlegelberger, B., et al. (2005). Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the NZB×NZW F1 mouse. Arthritis Rheum. 52, 3629–3638.

Steffler, R. L., and Yoes, J. A. 3rd. (1980). Regulation of lymphocyte responsiveness by human gangliosides. 1. Characteristics of salivary effects and the induction of impaired activation. J. Immunol. 125, 2106–2112.

Stewart, D. W., and Gosse, B. W. (1985). Serricone receptors, VII. Activities of various purine gangliosides as the receptors. Proc. Natl. Acad. Sci. U.S.A. 82, 959–963.

Sun, C. K., Haribabu, A., Iwaz, M., Muniyak, K. C. Y., Takeuchi, Y., Hara, H., Fujino, S., Ungecola, H., and Nakanishi, K. (1998). Hypolipidemic culture induces expression of sialin, a sialic acid transporter, and cancer- associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 66, 2927–2945.

Tanigawara, G., and Hakomori, S. (1975). Cell-contact dependent ganglioside changes in mouse ST3 cells with a simultaneous suppressive activity on cell contact. Biochemistry 14, 2135–2138.

Zeng, G., Gao, L., Brikke, S., and Yu, B. E. (2008). Suppression of ganglioside GD3 expression in a rat F11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res. 68, 6707–6717.

Zhang, J. Y., Casiano, C. A., Pong, X. K., Korne, J. A., Chau, E. K., and Tan, E. M. (2005). Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidermol. Biomarkers Prev. 12, 136–145.

Zhang, S., Zhang, H. S., Bener, V. E., Smolin, S. F., Scher, H. L., and Livingston, P. O. (1998). Expression of potential target antigens for immunotherapy on primary
Vázquez AMH, Rodríguez-Zhurbenko N and López AMV (2012) Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry. Front. Oncol. 2:170. doi: 10.3389/fonc.2012.00170

Conflict of Interest Statement: Dr. Ana M. H. Vázquez is an inventor of patents related with P3 mAb and its anti-idiotypies, however, she has signed the assignment of her rights to the assignee Center of Molecular Immunology. The other authors have no conflicts to report.

Citation: Vázquez AMH, Rodríguez-Zhurbenko N and López AMV (2012) Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry. Front. Oncol. 2:170. doi: 10.3389/fonc.2012.00170

This article was submitted to Frontiers in Tumor Immunity, a specialty of Frontiers in Oncology.

Copyright © 2012 Vázquez, Rodríguez-Zhurbenko and López. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.