Nitric oxide production is stimulated by bitter taste receptors ubiquitously expressed in the sinonasal cavity

Carol H. Yan, M.D.,¹ Samuel Hahn, M.D.,¹ Derek McMahon, Ph.D.,¹ David Bonislawski, B.A.,¹ David W. Kennedy, M.D.,¹ Nithin D. Adappa, M.D.,¹ James N. Palmer, M.D.,¹ Peihua Jiang, Ph.D.,² Robert J. Lee, Ph.D.,¹ and Noam A. Cohen, M.D., Ph.D.¹³

ABSTRACT

Background: Bitter taste receptors (T2R) have recently been demonstrated to contribute to sinonasal innate immunity. One T2R, T2R38, regulates mucosal defense against gram-negative organisms through nitric oxide (NO) production, which enhances mucociliary clearance and directly kills bacteria. To determine whether additional T2Rs contribute to this innate defense, we evaluated two other sinonasal T2Rs (T2R4 and T2R16) for regulation of NO production and expression within the human sinonasal cavity.

Methods: Primary human sinonasal cultures were stimulated with ligands specific to T2R4 and T2R16, colchicine and D-salicin, respectively. Cellular NO production was measured by intracellular 4-amino-5-methylamino-2',7'-difluorofluorescin diacetate fluorescence. For T2R expression mapping, sinonasal tissue was obtained from patients who underwent sinus surgery of the middle turbinate, maxillary sinus, ethmoid sinus, or sphenoid sinus. The expression of T2R4, T2R16, and T2R38 was evaluated by using immunofluorescence with validated antibodies.

Results: Similar to T2R38, T2R4 and T2R16 trigger NO production in a dose-dependent manner by using the canonical taste signaling pathway in response to stimulation with their respective ligands. All three receptors were expressed in the cilia of human epithelial cells of all regions in the sinonasal cavity.

Conclusion: These three T2Rs signaled through the same NO-mediated antimicrobial pathway and were ubiquitously expressed in the sinonasal epithelium. Additional T2Rs besides T2R38 may play a role in sinonasal immune defense. Mapping of T2R expression demonstrated the potential widespread role of T2Rs in sinonasal defense, whereas the genetics of these T2Rs may contribute to our understanding of specific endotypes of chronic rhinosinusitis and develop into novel therapeutic targets.

(Bitter taste receptors (T2R) have recently been identified as novel “players” in sinonasal innate immunity and in chronic rhinosinusitis (CRS). One human T2R isoform, T2R38, has been shown to regulate sinonasal defense against gram-negative organisms, e.g., Pseudomonas aeruginosa, through detection of quorum-sensing molecules secreted by the pathogens. This activation triggers the production of nitric oxide (NO), a potent antimicrobial defense molecule, in a calcium-dependent manner, which results in increased ciliary beat frequency and acceleration of sinonasal mucociliary clearance. NO also diffuses into the mucous and directly targets bacteria and viruses. The clinical importance of T2R38 as a biomarker for CRS has been further elucidated by studying polymorphisms in T2R38 that produce decreased receptor functionality and lead to an increased susceptibility to gram-negative infection and recalcitrant CRS. Furthermore, the genotype of T2R38 can predict surgical outcomes of patients with nonpolyplosis CRS and even biofilm formation.

T2R38 is known to be expressed in the ciliated epithelial cells of the upper airway. However, the specific expression pattern of T2R38 in the sinonasal cavity has not been previously evaluated. Mapping the expression of this receptor within the sinonasal cavity would further our understanding of the contribution that this receptor plays in sinonasal antimicrobial defense as well as determine its viability as a novel therapeutic target (e.g., if the receptor is only discretely expressed in a small part of the upper airway, it may not be an ideal drug-development target). Additional T2R isoforms are expressed throughout the respiratory epithelium, and the evolving roles for other T2Rs found on sinonasal chemosensory cells are being investigated. However, the clinical relevance of other T2R isoforms in CRS and their roles in sinonasal immunity still need to be elucidated. To determine whether additional T2Rs contribute to this innate defense, we further evaluated additional sinonasal T2Rs for regulation of NO production and their expression within the human sinonasal cavity.

METHODS

Human Mucosal Tissue and Sinonasal Air–Liquid Interface Cultures

Sino nasal mucosal tissue specimens were acquired from patients who underwent sinonasal surgery at the Hospital of the University of Pennsylvania and the Philadelphia Veterans Affairs Medical Center, with full approval from the institutional review boards at both institutions. Exclusion criteria included a history of systemic diseases as previously described. Air–liquid interface (ALI) cultures were established from human sinonasal epithelial cells from enzymatically dissociated human tissue, as previously described.

Immunofluorescence and Confocal Microscopy

Human mucosal tissue specimens and ALI cultures were selected for immunostaining as previously described. Two primary antibodies raised from different hosts were chosen for double immunofluorescent staining: mouse monoclonal anti–β-tubulin intravenous (IV) (1:1,000) (ab7792; Abcam, Cambridge, United Kingdom) and either rabbit polyclonal anti-T2R38 (1:500) (sc-67108; Santa Cruz Biotechnol-
eties, Inc., Dallas, TX), which was previously validated;1 rabbit polyclonal anti-T2R4 (1:1000) (NB110-74890; Novus Biologicals, Littleton, CO), or rabbit polyclonal anti-T2R16 (1:500) (ab57106; Abcam). Visualization was achieved by using Alex Fluor 488-conjugated (green) donkey antimouse immunoglobulin G for tubulin IV andAlex Fluor 594 (red) conjugated donkey antirabbit immunoglobulin G for T2R38, T2R4, and T2R16. Both secondary antibodies (Invitro-gent, Carlsbad, CA) were diluted at 1:1000. The incubation time was overnight at 4°C for primary antibodies and 60 minutes at room temperature for secondary antibodies, respectively. Counterstaining was done using Hoechst (blue), a nuclear dye. Confocal images were acquired using an Olympus (Center Valley, PA) Fluoview system. A sequential scanning module was used to prevent bleed-through of fluorophores into other channels.

Heterologous Expression

Constructs for three bitter taste receptor genes (hTAS2R38, hTAS2R4 and hTAS2R16) were generated and inserted into a pCDNA3.1 vector according to But et al.13 and were verified by sequencing. HEK293 cells were obtained from American Type Culture Collection, Manassas, VA (CRL-2828) and cultured at 37°C in opti-MEM (Invitrogen) supplemented with 5% fetal bovine serum and 1000 DMSO stock solutions. The nitric oxide synthase inhibitor, L-NAME-nitrogarginine methyl ester (Cayman Chemical), was used at 100 μM and was prepared fresh daily from a 1000 mM stock solution. The apical side of the cultures was incubated in the inactive analogs or inhibitors for 15 minutes before DAF-FM imaging.

Statistics

Statistical analyses were performed by using GraphPad Prism (Graph Pad Software, La Jolla, CA) (mean, standard error of mean, Student’s t-test, analysis of variance [ANOVA], and Bonferroni post-tests). ANOVA was used for comparing multiple data sets. When ANOVA denoted significant differences, Bonferroni posttests were used to determine individual significance. A p < 0.05 was considered statistically significant.

RESULTS

T2R38 Was Ubiquitously Expressed in the Sinonasal Cavity

In this study, we evaluated the expression pattern of T2R38 in human sinonasal tissue explants from different regions of the nasal cavity and sinuses, including the middle turbinate, inferior turbinate, maxillary sinus, ethmoid sinus, and sphenoid sinus. Tissues were obtained regardless of the presence of CRS, with the goal of the study to produce a qualitative analysis of T2R staining patterns. β-tubulin IV, a cilia marker (green), and T2R38 (red) fluorescence expression patterns were analyzed, and colocalization was noted in the ciliated cells of all sinonasal tissue regions (Fig. 1). T2R38 expression was found along the entire length of the cilia in our human sinonasal biopsy samples. In certain samples, there was a gradient of red fluorescence noted below the base of the cilia, previously shown to reflect T2R38 in the process of trafficking to the plasma membrane.1 The specificity of our T2R38 expression was confirmed by staining similar samples for T2R4 (previously shown to not be present in ciliated cells14), which did not colocalize with β-tubulin (data not shown). Analysis of our mapping data indicated that T2R38 was expressed on ciliated epithelial cells throughout all regions of the sinonasal cavity.

T2R4 and T2R16 Were Ubiquitously Expressed in the Sinonasal Cavity

No previous studies evaluated the protein expression of other T2R isoforms in human sinonasal tissue. In this study, we evaluated, by immunofluorescence, the expression of T2R4 and T2R16, two receptors located closely to T2R38 on chromosome 7 and also found on ciliated cells of the lower airway.8 Commercially available T2R4 and T2R16 antibodies were validated in HEK293 cells through heterologous expression (Supplemental Fig. 1). T2R16 antibody specificity was demonstrated by the specific staining of only T2R16-transfected HEK293 cells with no cross-reactivity with other T2Rs (Supplemental Fig. 2). T2R4 was previously validated by Shah et al.9 Again, there was colocalization of both T2R4 and T2R16 with β-tubulin in all the regions of the sinonasal cavity, which indicated that these receptors were ubiquitously expressed in the ciliated cells of the nose (Figs. 2 and 3). Thus, sinonasal ciliated cells may coexpress multiple T2R receptors.

T2R4 and T2R16 Activation Trigger Ca2+-mediated NO Production

T2Rs are G-protein–coupled receptors that activate an intracellular Ca2+ signaling cascade that involves PLCβ-2 and the transient receptor potential M5 ion channel.15-17 T2R38 interacts with gram-negative acyl-homoserine lactone molecules to increase intracellular Ca2+ levels and mediate NO production.1 Because T2R4 and T2R16 are expressed in ciliated sinonasal epithelial cells, we were interested to see if they too promote Ca2+ signaling to trigger an NO response. As previously described, the fluorescence calcium indicator Fluo-4 was used to detect elevated Ca2+ levels in sinonasal cells in response to the T2R agonist, colchicine (depicted as the change in Fluo-4 fluorescence from baseline [Fluo-4 F/F]).18 Apical (air side) stimulation with colchicine (100 μM and 1 mM) induced low-level, sustained intracel-
lular Ca2+ elevations in a dose-dependent manner (Fig. 4A). The addition of TPPO, an inhibitor of the downstream signaling ion channel, transient receptor potential M5, subsequently reduced Ca2+ signaling.

We then evaluated the potential of T2R4 and T2R16 to individually activate the antimicrobial NO pathway in response to the low-level increases in intracellular Ca2+. By using the fluorescent probe, DAF-FM19, which reacts with NO-derived reactive nitrogen species to form

Figure 1. T2R38 is ubiquitously expressed in the cilia of human sinonasal passages. Representative images of β-tubulin (green [a ciliary marker]), T2R38 (red), and Hoechst (blue [a nuclear stain]) in a human sinonasal air–liquid interface (ALI) culture (A) and in primary human sinonasal tissue from different regions of the nasal cavity and sinuses (B–F), with colocalization of β-tubulin and T2R38 staining.
a fluorescent benzotriazole, we measured the cellular production of NO after treatment with known T2R4 and T2R16 agonists (Figs. 4 B and 5 A). Stimulation with T2R4 agonists colchicine (10 μM, 100 μM, 1 mM) and dapsone (100 μM, 1 mM) resulted in NO-derived reactive species production (DAF-FM fluorescence) (Fig. 4 B). Treatment with T2R16-specific agonists D-salicin (4 mM) and phenyl β-D-glucopyra-

Figure 2. T2R4 is ubiquitously expressed in the cilia of human sinonasal passages. Representative images of β-tubulin (green [a ciliary marker]), T2R4 (red), and Hoechst (blue [a nuclear stain]) in a human sinonasal air–liquid interface (ALI) culture (A) and in primary human sinonasal tissue from different regions of the nasal cavity and sinuses (B–F) with colocalization of β-tubulin and T2R4 staining.
noside (4 mM) also showed an increase in NO production (Fig. 5A). Next, we assessed the T2R dependence of the NO response by blocking components of the T2R canonical signal transduction pathway. We found that NO stimulation by colchicine was attenuated with the addition of TPPO. Similarly, the PLCβ-2 inhibitor, U73122, blocks T2R4-mediated NO production, an effect not seen with its inactive

Figure 3. T2R16 is ubiquitously expressed in the cilia of human sinonasal passages. Representative images of β-tubulin (green [a ciliary marker]), T2R16 (red), and Hoechst (blue [a nuclear stain]) in a human sinonasal air–liquid interface (ALI) culture (A) and in primary human sinonasal tissue from different regions of the nasal cavity and sinuses (B–F), with colocalization of β-tubulin and T2R16 staining.
analog U73343 (Fig. 4 B). The dapsone-T2R4–activated NO response was similarly diminished by NOS inhibitor L-N ω-nitroarginine methyl ester and U73122 but not by U73343. We also demonstrated that NO production by T2R16 agonists D-salicin and /H9252-D-glucopyranoside was attenuated after blocking the T2R signaling pathway with U73122 (Fig. 5, A and B).

T2R4-mediated NO Production Was Independent of T2R38

T2R38 has two well-studied polymorphisms that encode either a functional (PAV) or a nonfunctional (AVI) receptor, which lead to differing antibacterial NO responses. The NO response stimulated by a T2R4 agonist (colchicine) was evaluated in primary ALI cultures from patients with PAV/PAV and patients with AVI/AVI. The T2R4-mediated NO production (DAF-FM fluorescence) was not a function of the T2R38 genotype because cultures from patients with PAV/PAV and those with AVI/AVI exhibited the same levels of response (Fig. 4 C), which indicated that T2R4 independently mediated NO production in a dose-dependent manner. A similar T2R38-independent mechanism is hypothesized for T2R16.

DISCUSSION

As the contribution of T2Rs to sinonasal innate immunity becomes more evident, mapping of their expression patterns adds important pieces of information. T2R38 expression has been observed in the apical membrane and cilia of sinonasal respiratory epithelial cells.¹ Our findings revealed that T2R38 was ubiquitously expressed among the ciliated cells of the human sinonasal cavity, along with two other T2Rs, T2R4 and, most likely, T2R16. Our study was a qualitative study and not designed to quantify levels of T2R expression. We also could not make conclusions in this study about differences in receptor expression among patients with and those without CRS. These results demonstrated widespread expression of T2R38, T2R4, and T2R16 throughout the sinonasal cavity.
The ability of T2R38 to mediate the antimicrobial NO pathway makes it an attractive therapeutic target to promote endogenous immune responses in patients with upper respiratory infections. However, patients with polymorphisms that render a nonfunctional T2R38 (i.e., individuals with AVI/AVI) would be less responsive to the treatments with T2R38 agonists. It, thus, still is important to identify other T2Rs that activate similar responses. Although their clinical roles in sinonasal innate defense have yet to be elucidated, other T2R isoforms have been hypothesized to play important roles in upper respiratory innate immunity.20,21 Our findings revealed that T2R4 and T2R16 signal through the same NO pathway, independent of T2R38 and thus may be additional targets for novel therapeutic interventions.

These results supported further investigation into other T2R-mediated responses in addition to the T2R38-mediated defense against gram-negative bacteria. Gram-positive pathogens such as Streptococcus and Staphylococcus species are commonly implicated in CRS and can signal through quorum-sensing molecules that may also be endogenous ligands for certain T2Rs.22,23 We hypothesized that the upper-airway epithelium is able to detect gram-positive bacteria and mount an NO response. Further T2R studies, including that of T2R4 and T2R16, are warranted to explore any potential candidates that may pair with gram-positive ligand or other microbial class to stimulate an NO-dependent immune defense in sinonasal cells.

Although analysis of the current data indicated that T2R38, T2R4, and T2R16 were ubiquitously expressed in ciliated cells of the sinonasal cavity, analysis of our data was not able to resolve whether multiple T2Rs are expressed within the same ciliated cells or whether it is one cell–one receptor. In the human oral cavity, a single taste receptor cell can express multiple taste receptors.8,24,25 Ongoing work by using direct conjugation of primary antibodies to different dyes as well as single-cell transcriptome analysis, it is hoped, will directly address this question in sinonasal cells. T2R38 has recently been indicated as a genetic marker for CRS with loss of function polymorphisms of T2R38, which results in decreased defensive response to bitter compounds and serve as a predictor of increased susceptibility to gram-negative infections.5 The same loss of function polymorphism (AVI) of T2R38 has been linked to increased nicotine and alcohol dependence in African Americans.26 There have also been polymorphisms found in T2R4 and T2R16 that alter receptor sensitivity to bitter compounds. In particular, the K172N variant of T2R16 affects a patient’s response to \(\beta \)-D-glucopyranoside and is associated with increased alcohol dependence in the African American population.27 These known functional polymorphisms of T2R4 and T2R16 may be potential targets in assessing genetic variability and one’s predisposition to specific upper respiratory infections if these receptors do indeed contribute to our innate sinonasal defense.

CONCLUSION

This study sheds light on the ubiquitous expression of T2R38 and two other T2Rs, T2R4 and T2R16, in the ciliated cells of the human sinonasal epithelium. This information supports an innate defensive role for respiratory T2Rs throughout the sinonasal cavity as well as putative targets for novel topical therapeutic interventions in the treatment of CRS. Moreover, we showed that T2R4 and T2R16 also signaled through an NO-mediated pathway, independent of T2R38. NO production and increased ciliary beat frequency are not unique defenses against gram-negative bacteria, and there is much to be elucidated in the role of T2R signaling against other pathogens. These
results pave the way for further investigation into other T2Rs, such as T2R4 and T2R16, and the clinical implications of their similar NO-mediated pathways in sinonasal defense.

REFERENCES

1. Lee RJ, Xiong G, Kofonow JM, et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122:4145–4159, 2012.

2. Maniscalco M, Sofia M, and Pelaia G. Nitric oxide in upper airways inflammatory diseases. Inflamm Res 56:58–69, 2007.

3. Hariri BM, Payne SJ, Chen B, et al. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology. Am J Rhinol Allergy 30:261–268, 2016.

4. Adappa ND, Howland TJ, Palmer JN, et al. Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. Int Forum Allergy Rhinol 3:184–187, 2013.

5. Adappa ND, Zhang Z, Palmer JN, et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol 4:3–7, 2014.

6. Adappa ND, Farquhar D, Palmer JN, et al. TAS2R38 genotype predicts surgical outcome in nonpolyoid chronic rhinosinusitis. Int Forum Allergy Rhinol 6:25–33, 2016.

7. Adappa ND, Truesdale CM, Workman AD, et al. Correlation of T2R38 taste phenotype and in vitro biofilm formation from nonpolyoid chronic rhinosinusitis patients. Int Forum Allergy Rhinol 6:783–791, 2016.

8. Shah AS, Ben-Shahar Y, Moninger TO, et al. Motile cilia of human airway epithelia are chemosensory. Science 325:1131–1134, 2009.

9. Barham HP, Cooper SE, Anderson CB, et al. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol 3:450–457, 2013.

10. Lee RJ, and Cohen NA. Sinonasal solitary chemosensory cells “taste” the upper respiratory environment to regulate innate immunity. Am J Rhinol Allergy 28:366–373, 2014.

11. Lai Y, Chen B, Shi J, et al. Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol 128:1207–1215.e1, 2011.

12. Ramanathan M Jr, and Lane AP. A comparison of experimental methods in molecular chronic rhinosinusitis research. Am J Rhinol 21:373–377, 2007.

13. Bufe B, Breolin PA, Kuhn C, et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15:322–327, 2005.

14. Lee RJ, Kofonow JM, Rosen PL, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393–1405, 2014.

15. Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112:293–301, 2003.

16. Zhang Z, Zhao Z, Margolskee R, and Liman E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27:5777–5786, 2007.

17. Yan W, Sunavala G, Rosenzweig S, et al. Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides. Am J Physiol Cell Physiol 280:C742–C751, 2001.

18. Gee KR, Brown KA, Chen WN, et al. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106, 2000.

19. Itoh Y, Ma FH, Hoshi H, et al. Determination and bioimaging method for nitric oxide in biological specimens by diaminofluorescein fluorometry. Anal Biochem 287:203–209, 2000.

20. Lee RJ, and Cohen NA. Bitter taste bodyguards. Sci Am 314:38–43, 2016.

21. Stevens WW, Lee RJ, Schleimer RP, and Cohen NA. Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol 136:1442–1453, 2015.

22. Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol 133:640–653.e4, 2014.

23. Ng WL, and Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222, 2009.

24. Meyerhof W. Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154:37–72, 2005.

25. Chandrashekar J, Hoon MA, Ryba NJ, and Zuker CS, et al. The receptors and cells for mammalian taste. Nature 444:288–294, 2006.

26. Wang JC, Hinrichs AL, Bertelsen S, et al. Functional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol Clin Exp Res 31:209–215, 2007.

27. Hinrichs AL, Wang JC, Bufe B, et al. Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol dependence. Am J Hum Genet 78:103–111, 2006.