Observation of the Ξ_0^{0} Baryon

T. Aaltonen, E. Brucken, F. Devoto, P. Mehtala, and R. Orava

Division of High Energy Physics, Department of Physics,
University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

B. Álvarez González, B. Casal, J. Cuevas, G. Gomez, E. Palencia,
T. Rodrigo, A. Ruiz, L. Scodellaro, I. Vila, R. Vilar, and J. Vizán
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

S. Amerio, M. Bause, D. Bisello, G. Busetto, G. Compostella,
M. d’Errico, T. Dorigo, D. Lucchesi, S. Pagan Griso, and P. Totaro
Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento,
University of Padova, I-35131 Padova, Italy

D. Amidei, M. Campbell, A. Eppig, D. Mietlicki,
G.L. Strycker, M. Tecchio, A. Varganov, and T. Wright
University of Michigan, Ann Arbor, Michigan 48109, USA

A. Anastassov, M. Schmitt, and D. Stentz
Northwestern University, Evanston, Illinois 60208, USA

A. Annovi, M. Cordelli, P. Giromini, F. Happacher, M.J. Kim, F. Ptohos, and S. Torre
Laboratori Nazionali di Frascati, Istituto Nazionale
di Fisica Nucleare, I-00044 Frascati, Italy

J. Antos, P. Bartos, A. Brisuda, R. Lysak, and S. Tokar
Comenius University, 842 48 Bratislava,
Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

G. Apollinari, J.A. Appel, W. Ashmanskas, W. Badgett, A. Beretvas, M. Binkley*

* Deceased
K. Burkett, F. Canelli, S. Carron, M. Casarsa, G. Chlachidze, F. Chlebana, M.E. Convery, R. Culbertson, D. Dagenhart, M. Datta, P. Dong, J.C. Freeman, E. Gerchtein, C.M. Ginsburg, D. Glensinski, A. Golossanov, R.C. Group, S.R. Hahn, A. Hocker, W. Hopkins, E. James, S. Jindariani, T.R. Junk, B. Kilminster, M. Kirby, S. Lammel, J.D. Lewis, M. Lindgren, D.O. Litvintsev, T. Liu, P. Lukens, R. Madrak, K. Maeshima, T. Miao, M.N. Mondragon, R. Moore, M.J. Morello, P. Movilla Fernandez, A. Mukherjee, P. Murat, J. Nachtman, V. Papadimitriou, J. Patrick, A. Pronko, L. Ristori, R. Roser, F. Rubbo, V. Rusu, P. Schlabach, E.E. Schmidt, F.D. Snider, A. Soha, M. Stancari, J. Thom, S. Tkaczyk, D. Tonelli, D. Torretta, G. Velev, R.L. Wagner, W.C. Wester III, E. Wicklund, P. Wilson, P. Wittich, S. Wolbers, T. Yang, G.P. Yeh, K. Yi, J. Yoh, S.S. Yu, and J.C. Yun

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

A. Apresyan, V.E. Barnes, D. Bortoletto, G. Flanagan, A.F. Garfinkel, M. Jones, A.T. Laasanen, Q. Liu, F. Margaroli, K. Potamianos, N. Ranjan, and A. Sedov

Purdue University, West Lafayette, Indiana 47907, USA

T. Arisawa, K. Ebina, Y. Funakoshi, N. Kimura, K. Kondo, J. Naganoma, Y. Sakurai, and K. Yorita

Waseda University, Tokyo 169, Japan

A. Artikov, J. Budagov, D. Chokheli, V. Glagolev, O. Poukhov, F. Prokoshin, A. Semenov, A. Simonenko, A. Sissakian, and I. Suslov

Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

J. Asaadi, A. Aurisano, A. Elagin, R. Eusebi, D. Goldin, T. Kamon, V. Khotilovich, V. Krutelyov, E. Lee, S.W. Lee, P. McIntyre, J. Nett, A. Safonov, D. Toback, and M. Weinberger

Texas A&M University, College Station, Texas 77843, USA

B. Auerbach, C. Cuenca Almenar, U. Husemann, S. Lockwitz, A. Loginov, M.P. Schmidt, and M. Stanitzki

Yale University, New Haven, Connecticut 06520, USA
Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

C. Calancha, J.P. Fernandez, O. González, R. Martínez-Ballarín, I. Redondo, P. Ttito-Guzmán, and M. Vidal

Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

S. Camarda, M. Cavalli-Sforza, G. De Lorenzo, C. Deluca, S. Grinstein, M. Martínez, L. Ortolan, and V. Sorin

Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

S. Carrillo, R. Field, I. Furic, N. Goldschmidt, S. Klimenko, J. Konigsberg, A. Sukhanov, and F. Vázquez

University of Florida, Gainesville, Florida 32611, USA

P. Catastini, J.P. Chou, M. Franklin, J. Guimaraes da Costa, and S. Moed

Harvard University, Cambridge, Massachusetts 02138, USA

D. Cauz, M. Dorigo, C. Pagliarone, G. Pauletta, A. Penzo, M. Rossi, L. Santi, and A. Zanetti

Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, Italia

Y.C. Chen, S. Hou, A. Mitra, P.K. Teng, and S.M. Wang

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

M. Chertok, J. Conway, C.A. Cox, D.J. Cox, R. Erbacher, R. Forrest, A. Ivanov, W. Johnson, R.L. Lander, D.E. Pellett, T. Schwarz, S.Z. Shalhout, and J.R. Smith
University of California, Davis, Davis, California 95616, USA

K. Cho, E.J. Jeon, K.K. Joo, D.H. Kim, H.S. Kim, H.W. Kim, J.E. Kim, S.B. Kim, D.J. Kong, J.S. Lee, C.S. Moon, Y.D. Oh, S. Uozumi, Y.C. Yang, and I. Yu

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea

C.I. Ciobanu, M. Corbo, N. d’Ascenzo, N. Ershaidat, V. Saveliev, and A. Savoy-Navarro

LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

A. Clark, J.E. Garcia, A. Lister, and X. Wu

University of Geneva, CH-1211 Geneva 4, Switzerland

C. Clarke, R.F. Harr, P.E. Karchin, and M.E. Mattson

Wayne State University, Detroit, Michigan 48201, USA

S. De Cecco, S. Giagu, M. Iori, P. Mastrandrea, and M. Rescigno

Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy

M. D’Onofrio, G. Manca, R. McNulty, A. Mehta, and T. Shears

University of Liverpool, Liverpool L69 7ZE, United Kingdom

M. Feindt, M. Heck, D. Horn, M. Kreps, T. Kuhr, J. Lueck, C. Marino, J. Morlock, Th. Muller, A. Schmidt, and F. Wick

Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany

J. Galyardt, D. Jang, S.Y. Jun, M. Paulini, E. Pueschel, J. Russ, and J. Thome

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
V. Giakoumopoulou, N. Giokaris, A. Manousakis-Katsikakis, and C. Vellidis
University of Athens, 157 71 Athens, Greece

M. Gold, I. Gorelov, S. Seidel, J. Strologas, and M. Vogel
University of New Mexico, Albuquerque, New Mexico 87131, USA

E. Halkiadakis, D. Hare, D. Hidas, A. Lath, and S. Somalwar
Rutgers University, Piscataway, New Jersey 08855, USA

A. Hamaguchi, Y. Katoa, T. Okusawa, Y. Seiya,
T. Wakisaka, K. Yamamoto, and T. Yoshidaj
Osaka City University, Osaka 588, Japan

K. Hara, S.H. Kim, M. Kurata, H. Miyake, Y. Nagai, K. Sato, M. Shimojimat,
Y. Sudo, K. Takemasa, Y. Takeuchi, T. Tomura, and F. Ukegawa
University of Tsukuba, Tsukuba, Ibaraki 305, Japan

M. Hare, A. Napier, S. Rollih, K. Sliwa, and B. Whitehouse
Tufts University, Medford, Massachusetts 02155, USA

J. Heinrich, J. Keung, J. Kroll, E. Lipeles, E. Pianori, T. Rodriguez,
E. Thomson, Y. Tu, P. Wagner, D. Whitesonb, and H.H. Williams
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

R.E. Hughes, K. Lannonv, J. Pilot, J.S. Wilson, B.L. Winer, and H. Wolfe
The Ohio State University, Columbus, Ohio 43210, USA

T. LeCompte, L. Nodulman, A.A. Paramonov, and A.B. Wicklund
Argonne National Laboratory, Argonne, Illinois 60439, USA

I. Nakano
Okayama University, Okayama 700-8530, Japan

C. Neu and I. Oksuzian
University of Virginia, Charlottesville, Virginia 22906, USA
C. Plager and R. Wallny

University of California, Los Angeles,

Los Angeles, California 90024, USA

I. Shreyber

Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

Abstract

The observation of the bottom, strange baryon Ξ^0_b through the decay chain $\Xi^0_b \rightarrow \Xi^+_c \pi^-$, where $\Xi^+_c \rightarrow \Xi^- \pi^+ \pi^+$, $\Xi^- \rightarrow \Lambda \pi^-$, and $\Lambda \rightarrow p \pi^-$, is reported using data corresponding to an integrated luminosity of 4.2 fb$^{-1}$ from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded with the Collider Detector at Fermilab. A signal of $25.3^{+5.6}_{-5.4} \pm 6.6$ candidates is observed whose probability of arising from a background fluctuation is 3.6×10^{-12}, corresponding to 6.8 Gaussian standard deviations. The Ξ^0_b mass is measured to be 5787.8 ± 5.0 (stat) ± 1.3 (syst) MeV/c^2. In addition, the Ξ^-_b baryon is observed through the process $\Xi^-_b \rightarrow \Xi^0_c \pi^-$, where $\Xi^0_c \rightarrow \Xi^- \pi^+$, $\Xi^- \rightarrow \Lambda \pi^-$, and $\Lambda \rightarrow p \pi^-$.

PACS numbers: 13.30.Eg, 13.60.Rj, 14.20.Mr
The quark model has had great success in describing the spectroscopy of hadrons. For the c and b mesons, all of the ground states have been observed \[1\]. The spectroscopy of c baryons also agrees well with the quark model, and a rich spectrum of baryons containing b quarks is predicted \[2\]. Until recently, direct observation of b baryons has been limited to a single state, the Λ^0_b (quark content $|udb\rangle$) \[1\]. The accumulation of large data sets from the Tevatron has improved this situation and made possible the observation of the Ξ_b^- ($|dsb\rangle$) \[3, 4\], the $\Sigma^{(*)}_b$ states ($|uub\rangle, |ddb\rangle$) \[5\], and the Ω_b ($|ssb\rangle$) \[6, 7\].

In this paper, we report the observation of an additional heavy baryon and the measurement of its mass. The decay properties of this state are consistent with the weak decay of a b baryon. We interpret the result as the observation of the Ξ^0_b baryon ($|usb\rangle$). This measurement is made in $p\bar{p}$ collisions at a center of mass energy of 1.96 TeV using the Collider Detector at Fermilab (CDF II), by fully reconstructing the decay chain $\Xi^0_b \to \Xi^+_c \pi^-$, where $\Xi^+_c \to \Xi^- \pi^+ \pi^+$, $\Xi^- \to \Lambda \pi^-$, and $\Lambda \to p \pi^-$. Charge conjugate modes are included implicitly. In addition, we observe the Ξ_b^- through the similar decay chain $\Xi_b^- \to \Xi^0_c \pi^-$, where $\Xi^0_c \to \Xi^- \pi^+$, $\Xi^- \to \Lambda \pi^-$, and $\Lambda \to p \pi^-$. These studies use a data sample corresponding to an integrated luminosity of 4.2 fb$^{-1}$ and constitute the first exclusive reconstruction of the Ξ^0_b and the first for the Ξ_b^- in this decay channel.

The CDF II detector has been described in detail elsewhere \[8\]. This analysis relies upon the tracking system that operates inside a 1.4 T solenoidal magnetic field. A five-layer silicon detector (SVX II) measures track positions at radii of 2.5 to 10.6 cm to provide high precision impact parameter measurements. Each of these layers provides a transverse measurement and a stereo measurement of 90° (three layers) or $\pm 1.2^\circ$ (two layers) with respect to the beam direction. An open-cell drift chamber (COT) covers the radial region from 43 cm to 132 cm and provides track momentum measurement.

Data acquisition is triggered by a system designed to collect particle candidates that decay with lifetimes characteristic of heavy flavor hadrons. The first level of the trigger system requires two tracks in the COT with transverse momentum $p_T > 2.0$ GeV/c. In the second level of the trigger, the silicon vertex trigger \[9\] is used to associate SVX II data with the tracks found in the COT and provides precise impact parameter resolution (typically 40 μm) for these tracks. The silicon vertex trigger requires two tracks with impact parameters in the range 0.1-1.0 mm with respect to the beam and a point of intersection that is measured with at least a 200 μm displacement transverse to the beam.
This analysis combines the trajectories of charged particles to infer the presence of several different hadrons in the decay chains. The decay point for each weak decay process in the decay chain is reconstructed and used to identify the corresponding hadron. Consequently, it is useful to define two quantities that are used frequently throughout the analysis that relate the paths of weakly decaying objects to their points of origin. Both quantities are defined in the transverse view and make use of the point of closest approach \vec{r}_c of the particle trajectory to a point of origin \vec{r}_o and of the measured particle decay position \vec{r}_d. The first quantity used here is transverse flight distance $f(h)$ of hadron h, which is the distance a particle has traveled in the transverse view. For neutral particles, flight distance is given by $f(h) \equiv (\vec{r}_d - \vec{r}_o) \cdot \vec{p}_T(h)/|\vec{p}_T(h)|$, where $\vec{p}_T(h)$ is the transverse momentum of the hadron candidate. For charged particles, the flight distance is calculated as the arc length in the transverse view from \vec{r}_c to \vec{r}_d. Flight distance is used to calculate the proper decay time of weakly decaying states, where the decay time is given by $t \equiv f(h)M(h)/(c|\vec{p}_T(h)|)$, where $M(h)$ is the reconstructed mass.

A complementary quantity used in this analysis is transverse impact distance $d(h)$, which is the distance of the point of closest approach to the point of origin. For neutral particles, transverse impact distance is given by $d(h) \equiv |(\vec{r}_d - \vec{r}_o) \times \vec{p}_T(h)|/|\vec{p}_T(h)|$. The impact distance of charged particles is simply the distance from \vec{r}_c to the point of origin.

The reconstruction of Λ candidates uses all tracks with $p_T > 0.4$ GeV/c found in the COT. Pairs of oppositely charged tracks are combined to identify these neutral decay candidates, and silicon detector information is not used due to the large transverse displacement of the Λ decay. Candidate selection is based upon the mass calculated for each track pair, which has a resolution of 1.5-2.0 MeV/c2 and is required to fall within 9 MeV/c2 of the nominal Λ mass [1] after the appropriate mass assignment for each track. The proton (pion) mass is assigned to the track with the higher (lower) momentum. This mass assignment is always correct for the Λ candidates used in this analysis because of the kinematics of Λ decay and the lower limit in the transverse momentum acceptance of the tracking system. Background to the Λ ($c\tau = 7.9$ cm) [1] is reduced by requiring the transverse flight distance of the Λ from the beam position to be greater than 1.0 cm, which corresponds to typically 0.6 σ_f, where σ_f is the flight distance resolution.

For events that contain a Λ candidate, the remaining tracks reconstructed in the COT, again without additional silicon information, are assigned the pion mass, and $\Lambda \pi^-$ combina-
A search for weak decays of the hyperons \(\Xi^- \) is conducted, focusing on the decay process \(\Xi^- \rightarrow \Lambda \pi^- \). Several features of the track topology are used to reduce the background to this process. In order to obtain the best possible mass resolution for \(\Xi^- \) candidates, the reconstruction requires a convergent fit of the three tracks that simultaneously constrains the \(\Lambda \) decay products to the \(\Lambda \) mass and the \(\Lambda \) trajectory to intersect with the helix of the \(\pi^- \) originating from the \(\Xi^- \) candidate. The \(\Lambda \pi^- \) mass obtained from this fit has a resolution comparable to the \(\Lambda \) and is required to fall within 9 MeV/c\(^2\) of the nominal \(\Xi^- \) mass [1]. In addition, the flight distance of the \(\Lambda \) candidate with respect to the reconstructed decay point of the \(\Xi^- \) candidate is required to exceed 1.0 cm. Similarly, due to the long lifetime of the weakly decaying \(\Xi^- \) (\(c\tau = 4.9 \) cm) [1], a transverse flight distance of at least 1.0 cm (which typically corresponds to 1.0 \(\sigma_f \)) with respect to the beam position is required.

In some instances, the intersection of the \(\pi^- \) helix with the \(\Lambda \) trajectory produces a situation where two \(\Lambda \pi^- \) vertices satisfy the constrained fit and displacement requirements. In addition, the complexity of the \(\Xi^- \) and \(\Lambda \) decays allows for occasional combinations where the proper identity of the three tracks is ambiguous. A single, preferred candidate is chosen by retaining only the fit combination with the highest probability of satisfying the constrained fit.

The kinematics of hyperon decay and the lower \(p_T \) limit of 0.4 GeV/c on the decay daughter tracks force the majority of \(\Xi^- \) candidates to have \(p_T > 1.5 \) GeV/c. This fact, along with the long lifetime of the \(\Xi^- \), results in a significant fraction of the hyperon candidates having decay points located several centimeters radially outward from the beam position. Therefore, we are able to refine the \(\Xi^- \) reconstruction by making use of the improved determination of the trajectory that can be obtained by tracking these particles in the silicon detector. The \(\Xi^- \) candidates have an additional fit performed with the three tracks that simultaneously constrains both the \(\Lambda \) and \(\Xi^- \) masses of the appropriate track combinations and provides the best possible estimate of the hyperon momentum and decay position. The result of this fit is used to define a helix that serves as the seed for an algorithm that associates silicon detector hits with the \(\Xi^- \) track. Candidates with track measurements in at least one layer of the silicon detector have excellent impact distance resolution (typically 60 \(\mu \)m).

The samples of \(\Xi_c^- \) and \(\Xi_c^+ \) candidates used in this analysis are obtained by combining the \(\Xi^- \) candidates that have SVX II information with additional \(\pi^+ \) candidates. The \(\pi^+ \)}
candidates are tracks that have been reconstructed with data from at least three SVX II layers. The \(\pi^+ \) used for the \(\Xi^0_c \) reconstruction is required to be consistent with the trigger requirements. The \(\Xi^+_c \) candidates are required to have at least one \(\pi^+ \) track consistent with the trigger requirements. All \(\Xi^- \pi^+(\pi^+) \) combinations are required to satisfy a constrained fit that includes mass constraints on the \(\Lambda \) and \(\Xi^- \) candidates. The mass distributions of the combinations that also satisfy \(ct > 100 \mu m \) and \(p_T > 4.0 \text{ GeV/c} \) requirements are shown in Fig. 1. Candidates with a reconstructed mass within 30(25) MeV/c\(^2\) of the nominal \(\Xi^0_c(\Xi^+_c) \) mass are used for \(b \) baryon reconstruction.

The \(\Xi_b^{(-,0)} \) candidates are reconstructed by combining the \(\Xi_c^{(0,+)} \) candidates with \(\pi^- \) candidates that satisfy the trigger requirements. The \(\Xi_b \) candidates are required to have \(p_T > 6.0 \text{ GeV/c} \), restricting the sample to candidates that are within the kinematic range where our acceptance is well modeled \[7\]. All \(\Xi_c \pi^- \) combinations are required to satisfy a constrained fit that includes mass constraints on the \(\Lambda, \Xi^-, \) and \(\Xi_c \) candidates. Combinations that are inconsistent with having originated from the collision are rejected by imposing an upper limit on the impact distance \(d_{PV} \) of the \(\Xi_b \) candidate measured with respect to the primary vertex. In addition, the full reconstruction of the \(\Xi_b \) decay chain provides an opportunity to impose a requirement on the decay time of the \(\Xi_c \) candidate since both its point of creation and decay are reconstructed.

The mean life of the charm baryons varies over a wide range and is large compared to the typical decay time resolution of 20 - 60 \(\mu m/c \) that we measure. Therefore, we have chosen a selection on the \(\Xi_c \) decay time that uses the decay time resolution \(\sigma_t \) calculated for each candidate and the mean life of the decaying state. The selection is developed by using \(\Lambda^0_b \) as a reference signal. A sample of \(\Lambda^0_b \rightarrow \Lambda^+_c \pi^- \) candidates \[10\] is used to optimize selection criteria for \(\Lambda^+_c \) decay time based on the mean life of the \(\Lambda^+_c \) and its decay time resolution. As a result of this study, we require that the measured decay time of the \(\Xi_c \) candidate falls within the range \(-2\sigma_t < t < 3\tau + 2\sigma_t \) where \(\tau \) is the mean life of the \(\Xi^0_c(cT = 33 \mu m) \) and \(\Xi^+_c(cT = 132 \mu m) \) candidates. This requirement is found to be approximately 95% efficient on our \(\Lambda^0_b \) (\(cT = 60 \mu m \)) sample and to reduce the background substantially.

The \(\Xi^0_c \pi^- \) and \(\Xi^+_c \pi^- \) mass distributions with \(d_{PV} < 100 \mu m \) and \(ct > 100 \mu m \) are shown in Fig. 2. These distributions show clear evidence of an excess near a mass of 5.8 GeV/c\(^2\) with a width consistent with our expected mass measurement resolution. The mass, yield, and significance of the \(\Xi_b^{(-,0)} \) signals are obtained by performing an unbinned likelihood
fit on the mass distribution of candidates. The likelihood function that is maximized has
the form \(\mathcal{L} = \prod_i^N (f_s G(m_i, m_0, s_m \sigma_i^m) + (1 - f_s)(a_0 + a_1 m_i)) \), where \(N \) is the number of
candidates in the sample, \(G(m_i, m_0, s_m \sigma_i^m) \) is a Gaussian distribution with average \(m_0 \) and
characteristic width \(s_m \sigma_i^m \) to describe the signal, \(m_i \) is the mass obtained for a single \(\Xi(0,+) \pi^- \) candidate, \(\sigma_i^m \) is the calculated uncertainty on
\(m_i \), and the \(a_n \) terms model the background. The quantities obtained from the fitting procedure include the fraction \(f_s \) of the candidates identified as signal, the best average mass value \(m_0 \), a scale factor on the mass resolution
\(s_m \) to allow for inaccuracy of the resolution estimate, and the values of \(a_0 \) and \(a_1 \).

For this data sample, several variations of the fit were used to test the significance. The
first of these fits corresponds to the null signal hypothesis, and fixes \(f_s = 0.0 \), \(s_m = 1.0 \),
and \(m_0 \) to the nominal mass of the \(\Xi^- \). Additional applications allow \(f_s \) to float, retain the
constraints on \(s_m \), and fix \(m_0 \) to values within 5 MeV/\(c^2 \) of the nominal mass of the \(\Xi^- \). The
value of \(-2 \ln \mathcal{L} \) for the null hypothesis exceeds the values for the fits with variable \(f_s \) by at
least 48.2 units for the \(\Xi^- \) candidate sample and by 48.3 units for the \(\Xi^0 \) candidate sample. We
interpret these as equivalent to a \(\chi^2 \) with one degree of freedom whose probability of
occurrence is \(3.9 \times 10^{-12} \) and \(3.6 \times 10^{-12} \), corresponding to a significance that exceeds 6.8\(\sigma \)
for both the \(\Xi^- \) and \(\Xi^0 \). We therefore interpret these results as observations of the processes
\(\Xi^- \rightarrow \Xi_c^0 \pi^- \) and \(\Xi^0 \rightarrow \Xi_c^+ \pi^- \).

Masses are obtained from the unbinned likelihood fit with the mass and resolution parameters allowed to vary. In addition, the mass fit was used on the \(\Xi^- \pi^+ \) and \(\Xi^- \pi^+ \pi^+ \) to obtain mass measurements for the \(\Xi_c^0 \) and \(\Xi_c^+ \), which are seen to be consistent with the
nominal values \([1]\). The results of these fits are listed in Table I.

Resonance	Yield	Mass (MeV/\(c^2 \))	Resolution Scale
\(\Xi^0 \)	2110 ± 70	2470.4 ± 0.3	1.16 ± 0.04
\(\Xi^+ \)	3048 ± 67	2467.3 ± 0.2	1.24 ± 0.03
\(\Xi^- \)	25.8±5.5	5796.7 ± 5.1	1.3 ± 0.2
\(\Xi^0_b \)	25.3±5.6	5787.8 ± 5.0	1.2 ± 0.2

The accuracy of our mass measurement scale is established by our measurements of the
\(J/\psi \), \(\psi(2S) \), and \(\Upsilon \) masses. These calibration points imply an accuracy of 0.5 MeV/\(c^2 \) on
the mass measurements of the \(\Xi^- \) and \(\Xi^- \). Our fitting technique finds that our estimate of
the mass resolution on each candidate is low, as listed in Table I. Fits where this scale factor
was fixed at 1.0 or 1.4 introduced shifts in our Ξ^0_b mass result by as much as 1.0 MeV/c². A
fit with a fixed 20 MeV/c² Gaussian width, as implied by the simulation, introduced a shift
of only 0.2 MeV/c². These effects are added in quadrature with the larger of the asymmetric
nominal $\Xi_c^{(0, +)}$ mass uncertainties [1] to yield systematic uncertainties of 1.4 GeV/c² for the
Ξ_b^- and 1.3 GeV/c² for the Ξ^0_b mass measurements.

The momentum scale uncertainty is common to all of our mass measurements, and can
be dropped as a systematic uncertainty of a measurement of the mass difference between
the Ξ_b^- and Ξ^0_b. Our best Ξ_b^- mass measurement of 5790.9 ± 2.6(stat) ± 0.8(syst) MeV/c²
[7] is obtained from the $J/\psi\Xi^-$ final state and has a systematic uncertainty that would
be reduced to 0.6 MeV/c² without this effect. Therefore, we measure the mass difference
$M(\Xi^0_{-b}) - M(\Xi^0_{b}) = 3.1 ± 5.6$(stat) ± 1.3(syst) MeV/c², where the statistical and systematic
uncertainties of the individual measurements have been added in quadrature.

In conclusion, we have analyzed data collected with the CDF II detector at the Tevatron
to observe the bottom, strange baryon Ξ^0_b. The reconstruction technique is used on the Ξ^0_b
as well, and the observation of this state provides a cross check for the analysis. A signal
of 25.3^{+5.6}_{-5.4} Ξ^0_b candidates, with a significance greater than 6σ, is seen in the decay channel
$\Xi^0_{b} \rightarrow \Xi^+_c \pi^-$ where $\Xi^+_c \rightarrow \Xi^- \pi^+ \pi^+, \Xi^- \rightarrow \Lambda \pi^-, \Lambda \rightarrow p \pi^-$. The mass of this baryon is
measured to be 5787.8 ± 5.0(stat) ± 1.3(syst) MeV/c², which is consistent with theoretical
expectations [2]. In addition, we observe 25.8^{+5.5}_{-5.2} candidates in the process $\Xi^0_{b} \rightarrow \Xi^0_c \pi^-$
where $\Xi^0_c \rightarrow \Xi^- \pi^+$. The mass measured for the Ξ^0_{b} is 5796.7 ± 5.1(stat) ± 1.4(syst) MeV/c²,
which is consistent with our earlier result [7] but does not improve upon it. Neither of these
decay channels has been reported previously, and the reconstruction of the Ξ^0_b is the first
observation of this baryon in any channel.

We thank the Fermilab staff and the technical staffs of the participating institutions for
their vital contributions. This work was supported by the U.S. Department of Energy and
National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry
of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and
Engineering Research Council of Canada; the National Science Council of the Republic of
China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesmin-
isterium für Bildung und Forschung, Germany; the Korean World Class University Program,
the National Research Foundation of Korea; the Science and Technology Facilities Council
and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des
Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

[1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[2] E. Jenkins, Phys. Rev D 77, 034012 (2008); R. Lewis and R. M. Woloshyn, ibid. 79, 014502 (2009); D. Ebert, R. N. Faustov and V. O. Galkin, ibid. 72, 034026 (2005); M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner, Ann. Phys. (N.Y.) 324, 2 (2009); A. Valcarce, H. Garcilazo, and J. Vijande, Eur. Phys. J. A 37, 217 (2008).

[3] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 99, 052001 (2007).

[4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 052002 (2007).

[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 202001 (2007).

[6] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 232002 (2008).

[7] T. Aaltonen, et al. (D0 Collaboration) Phys. Rev D 80, 072003 (2009).

[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Sill et al., Nucl. Instrum. Methods, Sec. A 447, 1 (2000); F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 2966 (1994).

[9] L. Ristori and G. Punzi, Ann. Rev. Nucl. Sci. 60, 595 (2010).

[10] T. Aaltonen, et al. (CDF Collaboration) Phys. Rev. Lett. 104, 102002 (2010).
FIG. 1: (a) The \(\Xi^- \pi^+ \) and (b) the \(\Xi^- \pi^+ \pi^+ \) mass distributions. The mass ranges used for the \(\Xi^0_c \) and \(\Xi^+_c \) samples are indicated by the shaded areas.

FIG. 2: (a) The \(\Xi^0_c \pi^- \) and (b) the \(\Xi^+_c \pi^- \) mass distributions. A projection of the likelihood fit is overlaid as a dashed line.