Naive Bayes Method for Classification of Student Interest Based on Website Accessed

Alwis Nazir, Amany Akhyar, Muhammad Ramadhani, Herlina
Informatics Engineering Department, Faculty of Science and Technology
Universitas Islam Negeri Sultan Syarif Kasim Riau
Jl. HR. Soebrantas, Km. 15, Pekanbaru, 28293, Indonesia
alwis.nazir@uin-suska.ac.id

Abstract. Interest is a feeling of liking a thing or activity without any coercion. Students' interest in a certain subject will maintain students' learning abilities, thus they could master it and get good learning outcomes. Interest can be known from the website accessed. The aim of this study is to build a web-based application that could classify student interest using Naïve Bayes based on the website accessed. In this study, the data used are 17,265 student internet history data. The application was tested using Black Box and the method was tested using Confusion Matrix. The result from the application testing met the expectation, and the method (Naïve Bayes) reached 99.81% accuracy using 70:30 data percentage. The top five classes obtained are Social Networking, Educational Institution, Streaming Video, Search Engines, and Web-Based Mail. The “Develop” class was also found, thus the study group related to application development is recommended to be formed.

1. Introduction
Interest is a feeling of liking a thing or activity without any coercion. Researches show that there is a relationship between learning interest and learning outcomes in various subjects [1–6]. Student interest in a certain subject will maintain students' learning abilities, thus students could master the subject and get good learning outcomes [7,8]. It’s also shown that if a student is interested in what they learn, the results to be obtained will be satisfying.

Interest can be determines and categorizes based on the user’s browsing history [9,10]. According to Google and Facebook, interest-based advertising makes the ads displayed more targeted [11,12]. For example, ads that sell soccer equipment are displayed to users in sports interest categories, even if they are on sites without soccer-specific content at that moment. It means, only users who interested in sports (have ever accessed website about sports) would see soccer equipment ads. At the Islamic State University of Sultan Syarif Kasim Riau, the student's browsing/internet history data has not used for any purpose, thus the data stored is useless and consuming space of hard disk only.

Based on the things mentioned above, the authors will classify student interests based on the website accessed. The application which implements Naïve Bayes method would be developed to classify the data (website accessed from the student’s internet history). From the classified data, we could know what student really interest about. This could be a recommendation for university to form the study group. Besides get to know what student really interest about, this study also would be calculating the accuracy and error rate of Naïve Bayes in classifying student interest.
2. Research Method

Workflows of this study can be seen in the following picture:

![Workflow Diagram]

Figure 1. The details of the workflow

The workflows start from data collection. The data used in this study obtained from several student laptops and laboratory computers. The data collected then will be cleaned to obtain the subdomain and website name, and then the classes will be formed. The classes will be formed based on the website categorization, zvelo.com.

The next step is to do classification with Naïve Bayes algorithm. Naïve Bayes will be used in this study because of its simplicity, fast computing time, high accuracy [13–15], and it is also known as one of the top 10 algorithms [16]. The Naïve Bayes method proved better than the K-Nearest Neighbor method in classifying Indonesian journal articles [17] and movie reviews [18]. The Naïve Bayes method also has better accuracy than the Support Vector Machine in classifying short story categories [19].

The percentage of training data and testing data used were 40:60, 50:50, 60:40, 70:30, and 80:20. The classification is done by calculating the class probability, calculating the attribute probability, and performing the class determination. The evaluation step was done by measuring the method performance using the Confusion Matrix to calculate the accuracy and error rate. The application testing was done by using the Black Box method. The last step is the interpretation which the student interest would be displayed in the form of graphics and tables.

2.1. Data Collection

The data used in this study are internet history data collected from several student laptops and several computers in the laboratory. This study only uses internet history data which is accessed from the Science and Technology faculty building, assuming that students who access from one of the faculty’s buildings are students of the faculty. The total data used is 17,265 data. Table 1 shows sample data.

Table 1. Samples data
URL
https://yankesriau.wordpress.com/penyakit/fluburung/
https://www2.facebook.com/repvblikan18?fref=nf&pnref=story
http://www.developer.facebook.com
https://www.youtube.com/watch?v=Zutnu5Dta3A
2.2. Pre-processing
The data will be cleaned by separating the protocol, subdomain, website name, and path from the URL. The subdomain and website name would be used for further process. The following is the result of cleaning data.

Table 2. Samples data after cleaning process
Subdomain

Yankesriau
Developer

Next, the class attributes are added to the data. Classes are obtained from zvelo.com by inputting the data (subdomain and website name) into zvelo.com. The authors only input the 100 most accessed websites, as shown in Table 3. Zvelo.com is a service provider of web categorization and also could do web filtering, content categorization, and dangerous detection [20]. This study will use 39 interest classes based on zvelo.com. The class would be formed manually if zvelo.com cannot assign the class. These classes would later be used to describe students’ interests.

Table 3. 100 most accessed websites
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
After the process at zvelo.com is complete, the class of data obtained as shown in the following table.

Table 4. 100 most accessed websites

No.	Website	No.	Website
28	soundcloud.com	78	esiontelraes.appspot.com
29	8share.com	79	blogger.com
30	games.co.id	80	scholar.google.com
31	lazada.co.id	81	m.facebook.com
32	subscene.com	82	wardhanim.net
33	apps.facebook.com	83	accounts.youtube.com
34	ad.directrev.com	84	feedburner.google.com
35	my.myplaycity.com	85	sql11.id.hostinger.com
36	github.com	86	codeproject.com
37	w3lessons.info	87	id.search.yahoo.com
38	meme.com	88	codeigniter.com
39	sireg.uin-suska.ac.id	89	edmodo.com
40	idhostinger.com	90	members.phpmu.com
41	ho.lazada.co.id	91	lp.ilividnewtab.com
42	tif.uin-suska.ac.id	92	mozilla.org
43	demos.9lessons.info	93	goal.com
44	l.facebook.com	94	adcash.com
45	uin-suska.ac.id	95	mozilla.com
46	searchpeack.com	96	idup.in
47	scholar.google.co.id	97	indonesia-community.net
48	goo.gl	98	animekompi.web.id
49	safelinkreview.com	99	support.google.com
50	afd.ly	100	otz5.com

After the process at zvelo.com is complete, the class of data obtained as shown in the following table.

Table 5. Samples data with class

No.	Subdomain	Website Name	Class
1		Facebook.com	Social Networking
2	Developers	Facebook.com	Social Networking
3		Youtube.com	Streaming Video
4		Soundcloud.com	Streaming Audio

2.3. *Naïve Bayes Classification*

Naïve Bayes is one of the classification algorithms. The Naïve Bayes algorithm (by British Scientist, Thomas Bayes) utilizes probabilities and statistics to predict future probabilities based on the past
(known as the Bayes Theorem) [21,22]. Naive Bayes proved to have high accuracy and high speed when applied to a large database [23]. The explanation of the Naive Bayes algorithm is as follows:

2.3.1. Class Probability
The prior class probability of this study was not known, thus each class will be assumed to have the same value. Therefore, the class probability calculation was done using the following formula, with \(D \) is training data and \(C_{iD} \) is the number of \(C_{i} \) training data classes on \(D \).

\[
P(C_i) = \frac{|C_{iD}|}{|D|} \tag{1}
\]

The following are the results of probability calculations for each class that is obtained.

No.	Class	Probability P(Y)
1	Computer Games	2/200 = 0.010
2	Educational Institutions	37/200 = 0.185
3	Educational Materials	1/200 = 0.005
4	Finance	1/200 = 0.005
5	Hobbies And Interest	1/200 = 0.005
6	Marketing Services	1/200 = 0.005
7	Movies	1/200 = 0.005
8	News	1/200 = 0.005
9	Online Ads	3/200 = 0.015
10	Online Information Management	2/200 = 0.001
11	Online Shopping	2/200 = 0.001
12	Parked & For Sale Domains	2/200 = 0.001
13	Personal Storage	3/200 = 0.015
14	Piracy & Copyright Theft	1/200 = 0.005
15	Redirect	1/200 = 0.005
16	Search Engines	21/200 = 0.105
17	Social Networking	47/200 = 0.235
18	Streaming Audio	4/200 = 0.020
19	Streaming Video	42/200 = 0.210
20	Technology	3/200 = 0.015
21	Web Hosting	12/200 = 0.060
22	Web-Based Email	12/200 = 0.060

2.3.2. Attribute Probability
After the probability value of each class is obtained, the next step is to calculate the probability of each attribute in each class.

\[
P(X|C_i) = \prod_{k=1}^{n} P(Xk|Ci) = P(X1|Ci) \times P(X2|Ci) \times ... \times P(X3|Ci) \tag{2}
\]

Since all types of attributes are categorical, then \(P(Xk|Ci) \) is the number of \(C_{i} \) class data in \(D \) that has an \(x_k \) value for \(A_k \) (attribute), divided by \(|C_{i,D}| \). \(A_k \) is attribute, while \(x_k \) is \(A_k \) attribute value for \(X \) data.
2.3.3. Class Determination
The final stage of the classification process is class determination. To determine the class label of X data, it needs the highest \(P(X|C_i) P(C_i) \), that is by taking the highest value from the multiplication results of class probability \(P(C_i) \) and attributes probability \(P(X|C_i) \).

2.4. Evaluation
Confusion matrix is a tool for analysing and measuring how well the classifier works [23–25]. Table 6 shows confusion matrix for two classes.

Actual Class	Predicted Class	
Yes	Yes	No
No	FP	FN

The value of accuracy and error rate based on the confusion matrix can be calculated using the following equations.

\[
Accuracy = \frac{(TP+TN)}{(TP+TN+FP+FN)} \tag{3}
\]

\[
Error \ Rate = \frac{(FP+FN)}{(TP+TN+FP+FN)} \tag{4}
\]

The explanation about Table 6 and the formulas above are:
- TP (True Positive): the amount of correctly classified data (actual class (yes) = predicted class (yes))
- FN (False Negative): the amount of incorrectly classified data (actual class (yes) = predicted class (no))
- FP (False Positive): the amount of incorrectly classified data (actual class (no) = predicted class (yes))
- TN (True Negative): the amount of correctly classified data (actual class (no) = predicted class (no))

2.5. Interpretation
The interpretation step in this study is the process of visualizing and presenting information about student interest based on the website accessed/internet history. The visualization itself is in the form of graphics (bar charts) and tables to see the percentage of student interest classes. These graphics and tables will be available in the application built. The application built is a web-based application. The flowchart of an application built can be seen in the following figure.
3. Result and Analysis
The application which implements the Naïve Bayes method to classify student's interest based on internet history has successfully built. Figure 3 is the login page of the application that has been built. Figure 4 is the page that shows the users who have access rights to use the system. In this page, add new users as well as edit the user data can also be done.
Figure 5 shows the page to determine the percentage of training data and testing data for further process (applying classifier). After the percentage was set, then it will show the training data page (Figure 6) and testing data page (Figure 7). Training data page show the list of the training data, and testing data page show the list of the testing data. Both based on the percentage that have been set before. Figure 8 shows the page of classification result (classification was done using Naïve Bayes algorithm), based on the data that previously set.
Figure 5. Data Percentage Settings Page

Figure 6. Training Data Page

Figure 7. Testing Data Page
Figure 8. Testing Page (Classification Result)

Figure 9 shows a confusion matrix based on the classification that has been done before. Figure 10 shows a graphic/bar chart of the interests’ classification that has been done.

Figure 9. Testing Page (Confusion Matrix)
The application testing was performed using the Black Box method. Based on the application testing, it can be concluded that the application runs as expected and all components/elements in this system can be run well. Then, the method testing was performed using the Confusion Matrix. The result of method testing using different percentages of training data and testing data can be seen in the table below.

Table 8. The Method Testing Result

No.	Data Percentage	Result		
	Training Data	Testing Data	Accuracy	Error Rate
1	40	60	99,62%	0,38%
2	50	50	99,65%	0,35%
3	60	40	99,80%	0,20%
4	70	30	99,81%	0,19%
5	80	20	99,77%	0,23%

Based on Table 7, the best results achieved are in the 70:30 percentage of training data and testing data with 99.81% accuracy and 0.19% error rate.

4. Conclusion
Based on the workflows that has been done, the conclusions from this study are as follows:
1. Naive Bayes can be used to classify student interests based on the websites they accessed (internet history).
2. Based on the method testing using confusion matrix, the highest accuracy was found in the 70:30 percentage of training data and testing data, with the 99.81% accuracy and 0.19% error rate.
3. The top five interest classes are “Social Networking”, “Educational Institutions”, “Streaming Video”, “Search Engines”, and “Web-Based mail”.
4. Numerous classes obtained from zvelo.com (web categorization service provider) cannot show the student’s interests. For example, “Search Engines” and “Educational Institutions”.

Figure 10. Student Interest Graphic
The classification results show that there is a "Develop" student interest class. Thus, the study groups related to the application development should be formed to facilitate the interested students to more mastering that subject.

References
[1] Siagian R E F 2012 Pengaruh minat dan kebiasaan belajar siswa terhadap prestasi belajar matematika J Form J Ilm Pendidik MIPA 2(2) 122–31
[2] Sirait E D 2016 Pengaruh minat belajar terhadap prestasi belajar matematika J Form J Ilm Pendidik MIPA 6(1) 35–43
[3] Yusliyantoro S and Samidjo 2017 Hubungan minat belajar kejuruan dan prestasi belajar kewirausahaan dengan minat berwirausaha pada siswa kelas xi jurusan teknik pemesinan smk Kristen 1 klaten tahun ajaran 2014/2015 J Taman Vokasi 5(1) 17–30
[4] Putri D T N and Isnani G 2015 Pengaruh minat dan motivasi terhadap hasil belajar pada mata pelajaran pengantar administrasi perkantoran J Pendidik Bisnis dan Manaj 1(2) 118–24
[5] Nurhasanah S and Sobandi A 2016 Minat belajar sebagai determinan hasil belajar siswa J Pendidik Manaj Perkantoran 1(1) 128–35
[6] Karina R M, Syafirina A and Habibah S 2017 Hubungan antara minat belajar dengan hasil belajar siswa dalam mata pelajaran ipa pada kelas v sd negeri garot geuceu aceh besar J Ilm Pendidik Guru Sekol Dasar FKIP Unsyiah 2(1) 61–77
[7] Ratiana R S, Pramudiyanti P and Yolida B 2014 Hubungan antara minat dan motivasi belajar dengan hasil belajar biologi J Bioterdidik 2(4)
[8] Linvill D 2019 Student interest and engagement in the classroom : relationships with student personality and developmental variables South Commun J 79(3) 201–14
[9] Abdallah W K, Asem A S and Senousy M B 2016 User intent discovery using analysis of browsing history Int J Adv Comput Sci Appl 7(10) 114–20
[10] Wang S, Liu Z, She L and Fu Y 2009 Algorithm research on user interests extracting via web log data. Int Conf Web Inf Syst Min 93–7
[11] Facebook 2015 Facebook business (core targeting) https://www.facebook.com/business/help/63474486707199#interests
[12] Google 2019 Google ads help (about audience targeting) https://support.google.com/google-ads/answer/2497941?hl=en
[13] Setiawan A, Astuti I F and Kridalaksana A H 2015 Klasifikasi dan pencarian buku referensi akademik menggunakan metode naïve bayes classifier (nbc) (studi kasus : perpustakaan daerah provinsi kalimantan timur) J Inform Mulawarman 10(1) 1–10
[14] Riziqiyan V, Mulwinda A and Putri R D M 2017 Klasifikasi judul buku dengan algoritma naïve bayes dan pencarian buku pada perpustakaan jurusan teknik elektro J Tek Elektra 9(2) 60–5
[15] Wijaya A P and Santoso H A 2016 Naïve bayes classification pada klasifikasi dokumen untuk identifikasi konten e-government J Appl Intell Syst 1(1) 48–55
[16] Wang S, Jiang L and Li C 2015 Adapting naïve bayes tree for text classification Knowl Inf Syst 44(1) 77–89
[17] Devita R N, Herwanto H W and Wibawa A P 2018 Perbandingan kinerja metode naïve bayes dan k-nearest neighbor untuk klasifikasi artikel berbahasa indonesia J Teknol Inf dan Ilmu Komput 5(4) 427–34
[18] Dey L, Chakraborty S, Biswas A, Bose B and Tiwari S 2016 Sentiment analysis of review datasets using naïve bayes and k-nn classifier Int J Inf Eng Electron Bus 8(4) 54–62
[19] Somantri O 2017 Text mining untuk klasifikasi kategori cerita pendek menggunakan naïve bayes (nb) J Telemat 12(1)
[20] Zvelo 2019 About zvelo | we categorize the web https://zvelo.com/about/
[21] Zhang H, Kang Y, Zhu Y, Zhao K, Liang J and Ding L 2017 Novel naïve bayes classification models for predicting the chemical ames mutagenicity Toxicol Vitr
[22] Zhang H, Ding L, Zou Y and Huang S H H 2016 Predicting drug-induced liver injury in human
with naive bayes classifier approach *J Comput Aided Mol Des*

[23] Han J, Kamber M and Pei J 2012 Data mining concepts and techniques (Waltham: Elsevier)

[24] Tripathy A, Agrawal A, Rath S K 2016 Classification of sentiment reviews using n-gram machine learning approach *Expert Syst Appl*

[25] Dsouza K J, Ansari Z A 2018 Big data science in building medical data classifier using naïve bayes model *IEEE Int Conf Cloud Comput Emerg Mark* 76–80