Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation

T. E. Thingholm1 · L. Rönnstrand2,3,4 · P. A. Rosenberg5,6

Received: 3 June 2019 / Revised: 13 January 2020 / Accepted: 28 January 2020 / Published online: 19 February 2020
© The Author(s) 2020

Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.

Keywords Zinc signaling · Protein phosphorylation · ZIP · ZnT

Introduction
Zinc has been implicated as a factor in the development and progression of many pathological conditions such as cancer, inflammation, diabetes as well as in neurological and psychiatric diseases [1–14]. An estimated 3000 proteins interact with zinc, representing 10% of the genome, and zinc is a known regulator of gene expression through metal-responsive transcription factor-1 [15–19]. Furthermore, zinc has been identified as an intracellular second messenger involved in regulating various pathways, adding an extra dimension to its role in cellular regulation [20–22]. The basal level varies in different cell types. It ranges from tens to hundreds of pM free zinc, and it is strictly controlled as deviations from the normal cellular level may be cytotoxic [23, 24]. As zinc flux is primarily controlled by zinc transporters, we expect zinc-related dysfunction is not likely to result from dietary zinc deficiency or abundance alone, but rather from deviations in the function of proteins regulating zinc homeostasis.
The review gives a brief introduction to the role of zinc transporters in human diseases as well as evidence linking protein phosphorylation of zinc transporters to zinc signaling. The case is made that quantitative phosphoproteomics is an important approach to now understand more fully the role of phosphorylation in regulating zinc homeostasis. Finally, different quantitative phosphoproteomic strategies are suggested. In addition to zinc ions, ZIP and ZnT transporter are capable of transporting other cations such as iron, manganese, and cadmium. The mechanisms for transport of these ions and their link to different diseases is described elsewhere, and will not be discussed in this review as our focus will be on zinc transport [25–33].

Zinc transporters

Four major zinc transporter families have been identified: (1) P-type ATPases; (2) RND (resistance, nodulation and division) multidrug efflux transporters; (3) the Zrt-, Irt-like protein (ZIP) family (Slc39A); and (4) the superfamily of cation diffusion facilitators (CDF) that includes the ZnT family of zinc transporters. The P-type ATPases are identified in bacteria and plants [34, 35], whereas the RND transporters only exist in a few Gram-negative bacteria [36]. In humans, the uptake of zinc is regulated by zinc transporters of the ZIP family (Slc39A) located in membranes such as the plasma membrane, the endoplasmic reticulum, and Golgi [37]. These transporter proteins import zinc from the extracellular environment or from organelles to increase the concentration of cytosolic zinc [37–39]. On the other hand, the mammalian CDF family and the Zn transporter (ZnT) family (Slc30A) mediate the export of zinc from the cytosol into organelles or out of the cell [37, 40]. ZnT transporters are found in membranes of intracellular organelles except for ZnT1 which is located in the plasma membrane [1, 41–43]. These two transporter families account for 14 human ZIP proteins and 10 human ZnT proteins and are responsible for controlling zinc homeostasis. In addition, zinc binding proteins such as metallothioneins assist in regulating the level of free zinc in the cell.

Zinc transporters in diseases

Changes in the expression and activity of different zinc transporters have been directly linked to both systemic and central nervous system diseases, and to rare diseases such as acrodermatitis enteropathica (AE) [44] as well as lifestyle diseases and conditions affecting large numbers of people worldwide [45–58].

Diabetes

ZnT8 is the zinc transporter best studied in diabetes. It is expressed in pancreatic beta cells and functions as target autoantigen in patients with type 1 diabetes [59]. A common W325R variant in the ZnT8 large C-terminal domain (CTD) has been associated with changed autoantibody specificity in type 1 diabetes as well as increased risk of developing type 2 diabetes [60]. ZIP14 and ZIP4 were also found to be involved in diabetes as altered zinc trafficking in Zip14−/− mice resulted in a phenotype with defects in glucose homeostasis [45], and in the murine pancreatic beta cell line MIN6, overexpression of ZIP4 leads to increased granular zinc content and glucose-stimulated insulin secretion [50].

Neurological and psychiatric diseases

In the nervous system, both transporters controlling zinc influx as well as zinc efflux play key roles in cellular regulation. The increase in cytosolic zinc mediated by ZIP12 leads to CREB phosphorylation and activation which is important for neuronal differentiation [61]. A mutation in the SLC39A8 gene encoding the zinc and manganese transporter ZIP8 results in low levels of both Zn2+ and Mn2+ in the blood and increased levels in urine due to increased renal wasting in the affected patients [62]. The resulting autosomal-recessive disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature [62]. ZnT3 has been identified as critical for transport of zinc into synaptic vesicles of a subset of glutamatergic neurons [63–65], and ZnT3 expression is reduced in patients with Alzheimer’s disease [66, 67] and Parkinson’s disease-related dementia [68]. Moreover, ZnT3 expression decreases with age suggesting a role in the prevention of aging-related cognitive loss [69]. Recently, Whitfield et al. proved a link between reduced ZnT3 protein level and depression in patients with dementia [14]. In a study in postmortem brain tissue, Rafalo-Ulinska et al. found a reduction in the ZnT3 protein level as well as a significant increase in the level of ZnT1, ZnT4, ZnT5 protein in the prefrontal cortex of subjects diagnosed with major depressive disorder (MDD) and in non-diagnosed suicide victims, relative to control subjects suggesting that zinc transporters are important in the pathophysiology of MDD and suicide [12]. ZnT3 is also inked to increased risk of febrile seizures [63, 70]. Changes in the level of ZnT transporters...
have also been identified in rats subjected to olfactory bullectomy (OB), which is a model of depression [13].

Cancer

Dysregulation of zinc homeostasis is critical in a variety of cancers. ZIP4 is found to be upregulated in several types of cancer cells [53, 54, 58]. ZIP6 also plays an important role in numerous cancers, particularly breast cancer [47, 49, 56, 57, 71]. Overexpression of ZnT2 is found to decrease invasive phenotypes of breast cancer cells [72]. In addition, reduced ZnT4 expression is observed in the progression from benign to invasive prostate cancer [73].

Immune response

ZIP10 is important for B-cell survival and function and along with ZIP6 is involved in antigen presentation to T cells [46, 52]. Dendritic cells are important for immune response as they are involved in antigen presentation to T cells [74]. When dendritic cells are exposed to lipopolysaccharides, it results in the fragmentation of a ligand for toll-like receptor 4 (TLR4) from the outer membrane of Gram-negative bacteria. The TLR4–TRIF (Toll/Il-1 receptor domain-containing adapter protein-inducing interferon β) axis is activated leading to the downregulation of ZIP6 and ZIP10, and upregulation of ZnT1 and ZnT6 resulting in a significant drop in the intracellular zinc level [52]. ZIP8 is highly involved in inflammation [55], and was recently reported to be central to the development of osteoarthritis [51]. ZnT5 is required for the mast cell-mediated delayed-type allergic response by playing a role in Fc epsilonRI-induced translocation of protein kinase C (PKC) to the plasma membrane and in the nuclear translocation of nuclear factor kappaB [75].

ZnT and ZIP structures

No three-dimensional structures of full-length human ZnT or ZIP proteins have been solved. Instead, most structural information on these transporters comes from sequence analysis and prediction studies as well as data on the crystal structures of prokaryotic homologs [76, 77]. The current knowledge on zinc transporter structure and function is described in detail in recent reviews [46, 69, 78].

ZnT transporters

Based on the three-dimensional structure of Escherichia coli homolog YiiP, the ZnT transporters have been predicted to contain six transmembrane domains (TMDs) with intracellular NH₂ and COOH termini (Fig. 1a). The exception is ZnT5, which contains seven TMDs [78]. The literature presents different predictions for the location of the TMDs but overall, the ZnTs are described with a histidine/serine-rich domain in a cytosolic loop of varying lengths between TMD4 and TMD5, and a large CTD with an overall structural similarity with the copper metallochaperone Hah1, although the ZnT CTDs do not share sequence homology with Hah1 [77] (Fig. 1a).

Based on studies of YiiP, TMD1, TMD2, TMD4, and TMD5 are thought to form a compact four-helix structure in which four conserved hydrophilic coordination residues in TMD2 and TDM5 form an intramembranous zinc-binding site [69]. Mutations of these conserved residues have been shown to inhibit zinc transport activity [80]. Three of these coordination residues are conserved between bacteria and human, whereas the fourth site is a histidine residue in ZnT but alternates between a histidine and an aspartate residue in YiiP [81]. This enables ZnT, in contrast to YiiP, to discriminate between Zn²⁺ and the toxic ion Cd²⁺ [81]. Other studies point to the cytoplasmic domain as important for transporter activity as described for ZnT8 [60], as well as in ZnT10 where a L349P missense mutation in the CTD affects transporter activity, and a synonymous mutation (M250P) in the prokaryotic CDF protein, MamM, was found to be critical for the CTD fold illustrating the importance of the CTD [82]. The identification of a CDF superfamily lacking the CTD, however, points to additional strategies for zinc transport by ZnT transporters [43]. Furthermore, a di-proline motif in the luminal loop 2 conserved in ZnT5 and ZnT7 was recently found to be important for activation of the secretory and membrane-bound zinc-requiring enzyme, tissue-non-specific alkaline phosphatase (TNAP) [83].

ZIP transporters

Based on sequence similarity, the ZIP family is divided into subfamily ZIP I, ZIP II, gufA, and LIV-1 (Liverpool-1) [84–86]. The ZIP1, ZIP2, and ZIP3 proteins belong to the ZIP II subfamily, ZIP9 to the ZIP I subfamily and ZIP11 to the gufA subfamily. The remaining nine ZIP proteins are part of the LIV-1 subfamily. These transporters are related to the estrogen-regulated gene, LIV-1 and have primarily been identified in mammals [85]. The ZIP transporters contain eight putative transmembrane domains (TMDs) with extracellular NH₂ and COOH termini (Fig. 1b) [38, 69, 78, 79, 87]. They all have a very short COOH terminus and a large cytoplasmic loop between TMD3 and TMD4 [46, 85, 88]. The cytoplasmic loop contains a histidine-rich motif with metal-binding properties [85]. In addition, members of the LIV-1 subfamily have a HEXXXH motif in their TMD5 expected to function as a metal binding site and their sequences include a large NH₂-terminal extracellular domain (ECD) not found in other ZIP subfamilies [85]. The ECD contains a highly conserved proline–alanine–leucine (PAL)
motif, and for several of the LIV-1 subfamily members, these highly variable ECDs contain a high degree of histidine residues [69, 78, 85]. The expression of ZIP transporters at the cell surface is generally found to be upregulated upon dietary zinc deficiency (except for ZIP5) underscoring the tight connection between expression/function of the transporters and zinc signaling [89–91]. However, limited experimental data hamper our understanding of the regulation of zinc transport and zinc signaling in humans.

The ZIP4 protein is the best characterized of the ZIP transporters. ZIP4 is the ZIP transporter responsible for dietary zinc uptake as it is the exclusive transporter expressed on the apical surface of the intestinal epithelium [89]. Reduced zinc uptake caused by mutations in the ZIP4 gene results in the rare autosomal recessive disorder acrodermatitis enteropathica (AE) [44]. Fifteen missense mutations in ZIP4 cause AE, of these, seven are found in the ECD emphasizing the central role of this domain [92, 93]. Recently, the first crystal structure of a mammalian ZIP4-ECD was reported [94]. The study revealed two independent subdomains; a helix-rich domain and a PAL motif containing domain connected by a short loop and stabilized by four disulfide bonds. The study showed how two ECDs form a dimer centered at the PAL motif. As some of the AE-causing mutations eliminate the first and the fourth disulfide bond and downregulate ZIP4 glycosylation in mice, the two disulfide bonds are found to be critical for ZIP4 folding [94].

ZIP4 is found to be important for zinc transport activity, transporter processing and trafficking [94–96]. During zinc deficiency, the ZIP4-ECD is cleaved to form a ~35 kDa ZIP4
peptide. This peptide accumulates as a peripheral membrane protein, whereas the remaining ~37-kDa ZIP4 COOH-terminal processed peptide accumulates as an integral membrane protein [96]. Two AE mutations are found to block ECD cleavage and other mutations have been shown to diminish cleavage suggesting that proteolytic processing of ECD is important for ZIP4 function in regulating zinc homeostasis [96]. ECD cleavage has been found to occur in both ZIP4, ZIP6, and ZIP10 [97].

Dempski and co-workers investigated the function of the large human ZIP4 (hZIP4) cytoplasmic loop between TMD3 and TMD4 (M3M4) [98]. Combining site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy demonstrated how two Zn$^{2+}$ ions bind sequentially to two different sites in the cytosolic loop due to different zinc affinities [98]. First, one Zn$^{2+}$ ion binds to a CysHis3 site with a nanomolar binding affinity. Then a second Zn$^{2+}$ ion binds to a His4 site with a weaker affinity, suggesting a form of zinc sensing role of the M3M4 domain, perhaps involved in the regulation of the ZIP4 level at the plasma membrane according to the need for cytosolic zinc [98].

Studies of hZIP4 and the mouse homologue (mZIP4) have shown how the cytosolic concentration of zinc ions regulate ZIP4 surface expression [88]. The level of murine ZIP4 mRNA in enterocytes and yolk sac is increased upon zinc limitation and suppressed upon zinc repletion [89, 99], and mZIP4 protein expression at the plasma membrane is reduced when zinc-deficient mice are fed a zinc-replete diet [89]. High-cytosolic Zn$^{2+}$ concentrations were found to reduce mZIP4 expression at the plasma membrane through Zn$^{2+}$-dependent endocytosis [100]. Kim et al. demonstrated that both mZIP4 and hZIP4 protein accumulate at the plasma membrane during zinc deficiency and undergo endocytosis when cells are exposed to low zinc concentrations (~1 µM Zn) leading to reduced zinc uptake through ZIP4 [100]. Furthermore, Mao and co-workers showed how a histidine-rich cluster in the cytoplasmic loop mediates ubiquitination and proteasomal degradation of hZIP4 at higher concentrations of zinc to protect against zinc cytotoxicity [101].

It is clear that the regulation of cellular zinc is both stringent and complex and that various strategies are used to control the level and activity of ZIP4, and other zinc transporters as well [102].

General overview of protein phosphorylation

Protein phosphorylation is another post-translational modification (PTM) involved in zinc transport and signaling. It is a transient PTM that enables the cell to change the conformation, activity, and interaction of target proteins within a very short timeframe. It is a reversible modification, and a complex interplay between specific protein kinases and protein phosphatases keeps a strict temporal and spatial control of the phosphorylation and dephosphorylation of target proteins at specific sites. This enables the cell to quickly transduce extracellular signals into intracellular signals through signal transduction pathways in which a large range of target proteins are affected (Fig. 2). Protein phosphorylation is one of the most widespread regulatory mechanisms in nature, acting as an important modulator of intracellular biological processes such as proliferation, differentiation, cell survival, transcription, and translation [103–107]. Genomic sequencing indicates that 2–3% of all eukaryotic genes are likely to code for protein kinases [105], and at present, protein phosphorylation is the most studied and best understood post-translational modification [108, 109].

Protein phosphorylation is linked to zinc transporters and zinc signaling

Zinc and protein tyrosine phosphatases

A strong collaboration between zinc signaling and protein phosphorylation is clear from the actions of zinc as a second messenger in different cell types leading to the activation of various phosphorylation cascades, and the inhibition of protein tyrosine phosphatase (PTP) activity [20, 21]. PTPs play central roles in cellular function as key regulators of protein phosphorylation, directly affecting the activity of a great number of phosphoproteins and tyrosine kinase pathways [110–114]. PTPs contain a substrate binding site (in the P-loop) binding the phosphate ester group of the substrate and an active site (in the protein loop known as the WPD-loop) binding the phosphate ester group of the substrate [115, 116]. The WPD-loop exists in an open conformation in which the conserved aspartic acid is positioned 8–10 Å from the active site [115]. Upon binding of a substrate, the nucleophilic Cys215 thiol in the P-loop attacks the substrate phosphate ester group. The leaving group is protonated by Asp181 in the WPD-loop forming a phospho-enzyme intermediate and releasing peptidyl tyrosine [115, 116]. Subsequent hydrolysis of the phospho-enzyme intermediate releases inorganic phosphate and regenerates the PTP enzyme with the WPD-loop in the open conformation [117, 118]. PTPs are regulated by protein phosphorylation, redox signaling, dimerization, and proteolysis. We suspect that zinc may inhibit PTP activity by affecting these processes directly or using other mechanisms. The PTP regulating the
insulin and leptin signaling pathway, PTP1B (PTPN1) is one of the most extensively studied PTPs. Bellomo et al. optimised an assay for investigating zinc inhibition of PTPs using PTP1B [118]. They found the binding of zinc to PTP1B to require activation in the presence of a substrate as it only binds to the catalytic pocket of the closed PTP1B phospho-intermediate [118]. The analysis of three PTP1B 3D structures (PDB id: 2CM2, 3I80, and 1A5Y) revealed putative zinc binding sites and supported the hypothesis of inhibition only of the phospho-intermediate. Furthermore, they showed how PTP1B inhibition can also result from an alternative mechanism possibly initiated by the binding of zinc to the PTP1B surface. As PTP1B and the zinc transporter ZIP7 are both localized on the ER membrane, zinc influx through ZIP7 may play an important role in the regulation of PTP1B activity [118].

Zinc and receptor tyrosine kinases

Zinc is found to induce phosphorylation of a variety of receptor tyrosine kinases including the insulin receptor (IR), IGF-1R, and EGFR resulting in the activation of the PI3K/Akt and Erk signaling cascades [119, 120]. This affects insulin-stimulated glucose metabolism and cell survival. Zinc also initiates phosphorylation and activation of Erk1/2 in neurons leading to neurotoxicity [121–124]. In 2002, Du et al. showed that a brief exposure to methylisothiazolinone, a widely used industrial and household biocide, resulted in a zinc-dependent activation of Erk1/2 via a 12-lipoxygenase-mediated pathway leading to neuronal death in neurons in culture [122, 123]. Later, Ho and co-workers found zinc accumulation resulting from oxidative stress to selectively inhibit Erk1/2-directed phosphatases either by increased degradation or reduced enzyme activity leading to increased death.
kinase activity in the murine hippocampal neuronal cell line, HT22 cells, and immature neurons [121].

The neurotrophin receptor, TrkB, is required for neuronal survival and differentiation as well as synaptic structure, function, and plasticity [125, 126]. As a consequence, dysregulation of TrkB activity and signaling is involved in various neurological and psychiatric disorders [127–129]. TrkB is a receptor tyrosine kinase activated by the binding of neurotrophins leading to dimerization, increased kinase activity, and autophosphorylation of the receptor resulting in the activation of downstream phosphorylation cascades [130]. Zinc, however, is found to activate TrkB in a neurotrophin-independent manner [131, 132]. Activation results from increased activity of the Src family of protein tyrosine kinases. The TrkB activation by zinc has been shown to potentiate the hippocampal mossy fiber-CAl pyramid synapse [132]. Also, Zn2+ induces the activation of the Trk signaling pathways leading to multi-phosphorylation of the striatal-enriched phosphatase (STEP) as well as phosphorylation and activation of Erk2, a STEP substrate involved in Zn2+-dependent neurotoxicity [133].

Zinc and NF\kappa B

NF\kappa B (NF-kappa B, nuclear factor kappa-light-chain-enhancer of activated B cells) is a major transcription factor also regulating immune responses to infection, stress, free radicals etc. NF\kappa B is also important for synaptic signaling is NF\kappa B [134]. In unstimulated cells, NF\kappa B is located in the cytosol inactivated by the binding to inhibitory protein I\kappa B (inhibitory proteins of NF\kappa B). As a response to infection, the binding of pro-inflammatory cytokines stimulates the phosphorylation of I\kappa B proteins by specific kinases such as I\kappa B kinase (IKK). This leads to the ubiquitination and degradation of I\kappa B. NF\kappa B is subsequently released and free to translocate to the nucleus to stimulate the transcription of specific target genes by binding to their promoter regions [135–137]. The research group of Sarkar found zinc to activate NF\kappa B in HUT-78 cells [138]. They also found zinc to be required for gene expression of both interleukin-2 (IL-2) and interleukin-2 receptor alpha and beta (IL-R2\alpha and IL-R2\beta) which was also seen in vivo [139, 140]. Subsequently they showed that the upregulation of NF\kappa B activity was a result of zinc stimulating I\kappa B phosphorylation [141]. Increased protein tyrosine kinase (PTK) activity and reduced PTP activity caused by increased oxidative stress during aging was found to result in the phosphorylation of NF\kappa B, NIK/IKK, and MAPKs (Erk, p38, and JNK) leading to NF\kappa B activation [142, 143]. As a general point, zinc appears to play a key role in the regulation of PTK/PTP balance, by the activation of phosphorylation as a result of inhibition of PTPs or by direct activation of kinases.

Zinc signaling in cancer cells

Zinc transporters have also been linked to protein phosphorylation and signaling in cancer cells. In MDA-MB-468 breast cancer cells and PC-3 prostate cancer cells transfected with ZIP9 (PC3-ZIP9) cells, ZIP9 was found to act as a specific Gi-coupled membrane androgen receptor (mAR) binding testosterone and initiating MAPK and zinc signaling leading to apoptosis [144, 145].

In the estrogen receptor-positive human breast cancer cell line MCF-7, the ability of cells to spread to the lymph nodes was found to be a result of ZIP6-mediated zinc influx [71]. Signal transducer and activator of transcription 3 (STAT3) and oestrogen induce transcription of ZIP6. Upon transcription, ZIP6 is proteolytically cleaved at the N-terminus to translocate to the plasma membrane where it mediates Zn2+ influx. The increase in cellular zinc then results in the phosphorylation and inactivation of glycogen synthase kinase-3beta (GSK-3\beta) possibly through insulin-mimetic actions of zinc or indirectly through activation of Akt [71, 146, 147]. The inhibition of GSK-3\beta prevents it from phosphorylating transcription factor Snail, which is then retained in the nucleus acting as a transcriptional repressor of the E-cadherin gene, CDH1 (epithelial cadherin), CDH1, causing cell rounding, and detachment [71].

In 2012, it was shown in MCF-7 cells that the activity of human endoplasmic reticulum zinc channel hZIP7 was regulated by protein phosphorylation at Ser275 and Ser276 upon zinc stimulation [20]. Phosphorylation of hZIP7 was linked to the release of Zn2+ ions from intracellular stores which further led to the phosphorylation of tyrosine kinases such as Erk1/2 and Akt, and the subsequent activation of signaling pathways within the cell [20, 148]. Two additional phosphorylation sites at S294 and T294 have also been found to be important for maximal hZIP7 activity [113].

Besides being important for the regulation of cell signaling as mentioned above, protein phosphorylation is also likely to be central to the regulation of zinc transporter activity and regulation as in silico analysis predict all human ZnT and ZIP transporter proteins to be phosphorylated (Table 1 and Table 2). This underscores the importance of characterizing protein phosphorylation in zinc transporter proteins.

Mass spectrometry and quantitative phosphoproteomics for studying zinc signaling

Despite the ubiquitous role of protein phosphorylation, phosphoproteins have low abundance within the cell due to the transient nature of phosphorylation. In addition, phosphate groups are easily lost during sample handling. These problems make the identification and characterization of
phosphorylated proteins challenging, and for years, the study of protein phosphorylation was hampered by the lack of efficient and specific methods. Traditional molecular approaches frequently focus on the analysis of a single phosphoprotein and entire signaling pathways are studied protein by protein. One often has to work from the assumption or prior knowledge that specific proteins are phosphorylated and investigate this using approaches such as cloning, 1D or 2D gel electrophoresis combined with Pro-Q Diamond staining [182–190], radioactive labelling using 32P or 33P [182, 183], or directed antibody-based strategies limited by their low specificity and high cost.

Table 1: Phosphorylation sites in human ZnT transporter proteins

Zinc transporter	#P-sites (predicted)	#P-sites (published)	P-sites (published)	References
ZnT1	39	15	S29, S167, S172, S173, T196, S426, S429, T439, T449, T462, S466, S468, S473, S505, S506	[149–156]
ZnT2	22	2	T239, S247	
ZnT3	34	3	S32, S38, T66, S311	[157]
ZnT4	40	4	S12, S75, S313, S412	
ZnT5	59	12	Y5, T30, Y32, T39, T88, S364, S378, T382, Y385, Y757, T762, Y763	[153, 158]
ZnT6	38	6	S122, T376, S381, S382, S388, T391,	[152, 159, 160]
ZnT7	29	2	Y11, S31	
ZnT8	25	2	T7, Y8,	
ZnT9	53	3	T222, S230, S355	
ZnT10	36	7	S187, S189, T192, S197, S402, S469, Y479	[161]

Number of predicted phosphorylation sites (#P-sites) in human ZnT transport proteins according to the NetPhos 3.1 Server is listed along with phosphorylation sites that have been experimentally identified and published according to UniProt and PhosphoSitePlus [162, 163]. Phosphorylation sites listed in the NetPhos 3.1 Server with a prediction score above 0.5 are included. References listed in the table only account for research articles. References for phosphorylation sites found on curated info pages are not listed in the table.

Table 2: Phosphorylation sites in human ZIP transporter proteins

Zinc transporter	#P-sites (predicted)	#P-sites (published)	P-sites (published)	References
ZIP1	14	0		
ZIP2	23	0		
ZIP3	26	3	S125, S129, Y147	[150, 159, 164]
ZIP4	57	2	T137, S490	[165, 166]
ZIP5	4	1	S336	[167]
ZIP6	34	11	S471, Y473, S475, S478, T479, T486, T490, Y493, Y528, Y531, S583	[152, 160, 168–172]
ZIP7	8	4	S275, S276, S293, T294	[113, 154, 173]
ZIP8	4	2	S275, S278, S288, T424	[172–174]
ZIP9	1	1		
ZIP10	20	12	S323, T536, S539, T540, S546, T553, S556, S570, S573, T583, S591, Y596	[149, 152, 155, 158, 159, 174–179]
ZIP11	4	2	S125, S153	[152, 153]
ZIP12	5	0		
ZIP13	3	3	S39, T42, T44	
ZIP14	9	5	S256, Y258, S260, S309, S311	[167, 169, 180, 181]

Number of predicted phosphorylation sites (#P-sites) in human ZIP transport proteins according to the NetPhos 3.1 Server is listed along with phosphorylation sites that have been experimentally identified and published according to UniProt and PhosphoSitePlus [162, 163]. Phosphorylation sites listed in the NetPhos 3.1 Server with a prediction score above 0.5 are included. References listed in the table only account for research articles. References for phosphorylation sites found on curated info pages are not listed in the table.
Furthermore, detection provides no information of the specific sites of phosphorylation unless antibodies have been generated against specific phosphorylation sites.

Mass spectrometry (MS) is a powerful tool for discovery-based analysis of proteins and phosphoproteins where no prior knowledge is required. In MS, the protein or peptide samples are ionized, separated according to their mass-to-charge ratios before the ions are registered by a detector. The measurement of the mass-to-charge ratio of a sample molecule provides exact details on the mass, sequence and PTMs which in turn can give useful information about the structure, interaction and regulation of the particular molecule. The analysis of protein phosphorylation by MS, termed phosphoproteomics, requires selective phospho-specific enrichment methods in combination with MS strategies. Phosphorylation-specific antibodies have been used at both the protein and peptide levels. However, the poor specificity and sensitivity of anti-phosphoserine and anti-phosphothreonine antibodies have limited their use leaving the more specific anti-phosphotyrosine antibodies as the preferred method for antibody-based enrichment [191–198]. In nature, however, the vast majority of protein phosphorylation is on serine and threonine residues [199].

For many years, the primary method for phosphopeptide enrichment prior to MS analysis was immobilized metal ion affinity chromatography (IMAC) using the affinity of negatively charged phosphate groups on proteins and peptides towards positively charged metal ions (Fe3+, Al3+, Ga3+; or Co2+) chelated to nitriiloacetic acid (NTA) or iminodiacetic acid (IDA)-coated beads [125, 200–208]. IMAC, however, has a limited selectivity when used on complex samples, and requires an O-methylesterification step for improved selectivity adding more complexity to the sample [209]. Titanium dioxide (TiO2) was found to have affinity for phosphate ions in aqueous solutions [210–216]. This initiated great progress in the development of new and highly sensitive strategies for phospho-specific enrichment before MS analysis [214, 217–220], and TiO2 chromatography quickly replaced all other strategies as the method of choice for large-scale phosphoproteomic studies [176, 179, 214, 217–228]. The reason for the popularity of the method is the high selectivity toward phosphopeptides but also due to the setup being simple and fast, and that TiO2 beads, unlike IMAC, are extremely tolerant toward most buffers and salts used in cell biology laboratories [229]. Later, the strengths of both IMAC and TiO2 chromatography were combined in the SIMAC method (sequential elution from IMAC) improving not only the number of phosphorylation sites detected from complex samples, but also significantly increasing the detection of multiply phosphorylated peptides from low amounts of material [230, 231]. These strategies allow for large-scale phosphoproteomic screening of various cell lines and tissues [214, 217–220, 230]. Indeed, all but one phosphorylation site identified in human ZnT and ZIP transporters have been identified in large-scale phosphoproteomic studies (Tables 1, 2).

The use of phosphoproteomic strategies can be very powerful. By combining these methods with quantitation strategies and highly efficient MS technology the comparison of proteins and PTMs in different cells, disease stages, treatments etc. is possible. Common quantitative strategies include the introduction of different isotopic labels to proteins or peptides from samples to be compared. Subsequent MS analysis then reveals differences in the abundance of labelled species originating from the different samples. Labelling can be introduced at the protein level using metabolic labelling such as 14/15 N-labeling or stable isotope labelling by amino acids in cell culture (SILAC) where different isotopic tags are added to the media and incorporated into proteins during cell culturing [232]. Chemical modification is introduced either during protein digestion (O18-labelling) or at peptide level using isobaric peptide tags for relative and absolute quantification (iTRAQ), tandem mass tags (TMT) or dimethyl labelling introduced during sample preparation [233–238]. In addition, MS offers the use of label-free strategies where quantitation is performed by the comparison of liquid chromatography (LC)-MS or MS/MS data obtained in sequential experiments [239, 240]. The different strategies within phosphoproteomics and quantitative phosphoproteomics are described in various reviews [241–244].

Conclusions and future perspectives

Despite the power of these strategies, phosphoproteomic approaches have barely been used in the study of zinc homeostasis and zinc signaling. Except for one phosphorylation site, all sites identified in the ZnT and ZIP transporters were discovered in large-scale screenings to characterize phosphorylation profiles of different cell types or conditions or during the development of new MS strategies to identify even more phosphorylation sites [149–161, 164–181]. None of the studies were designed to investigate zinc homeostasis or zinc signaling. Instead the ZnT and ZIP protein phosphorylation sites were all identified by chance. The time is ripe for using these sensitive strategies to specifically target zinc transporters and proteins involved in zinc signaling. Quantitative phosphoproteomic approaches have already proven their potential in biological studies [245–249].

The low-abundance and highly hydrophobic nature of membrane proteins adds additional challenge to the identification of phosphorylation sites in zinc transporter proteins which could explain why the sites identified primarily come from large-scale studies using large amounts of starting material. Over-expression of specific zinc transporters
combined with membrane enrichment strategies would improve identification in discovery-based studies. The identification of novel phosphorylation sites in ZnT and ZIP proteins will enable the investigation of possible cytosolic binding partners in pull-down experiments using phosphospecific antibodies directed against these novel sites.

In addition, these approaches will be useful for understanding zinc physiology from studies of over-expressing or knocking out zinc transporters, time and dose dependent zinc stimulation, or studying specific diseases linked to aberrant zinc homeostasis. Combining such data with molecular methodology will lead to a deeper understanding of the molecular mechanisms regulating zinc homeostasis and shed light on the signaling pathways affected by zinc stimulation.

Acknowledgements This work was supported by a research grant (10115) from Villum Foundation (TF; Project no. 10115); National Institutes of Health (US) (EY024481, EY027881, HD018655).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Costello LC, Fenselau CC, Franklin RB (2011) Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem 105(5):589–599. https://doi.org/10.1016/j.jinorgbio.2011.02.002
2. Haase H, Rink L (2009) The immune system and the impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28(3):257–265
3. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28(3):257–265
4. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10(11):780–791. https://doi.org/10.1038/nrn2734
5. Sladek RRG, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Bolding DJ, Meyre D, Polychronakos C, Froguel P (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885. https://doi.org/10.1038/nature05616
6. Taylor KMVP, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antimorphic-resistant breast cancer Cells. Endocrinology 149(10):4912–4920. https://doi.org/10.1210/en.2008-0351
7. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118. https://doi.org/10.1152/physrev.1993.73.1.79
8. Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53(2):403–412. https://doi.org/10.1093/ajcn/53.2.403
9. Hambidge M (1349) Human zinc deficiency. J Nutr 130(5S Suppl):1344S–1349S. https://doi.org/10.1093/jn/130.5S.1344S
10. Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24:277–298. https://doi.org/10.1146/annurev.nutr.24.010303.132454
11. Devirgilis C, Zalewski PD, Porozzi G, Murgia C (2007) Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res 622(1–2):84–93. https://doi.org/10.1016/j.mrfmmm.2007.01.013
12. Rafalo-Ulinska A, Piotrowska J, Kryczyk A, Opoka W, Sowa-Kucma M, Misztak P, Rajkowska G, Stockmeier CA, Datka W, Nowak G, Szewczyk B (2016) Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims. J Psychiatr Res 83:220–229. https://doi.org/10.1016/j.jpsychires.2016.09.008
13. Rafalo A, Zadrozna M, Nowak B, Kotarska K, Wiartowska K, Pochwat B, Sowa-Kucma M, Misztak P, Nowak G, Szewczyk B (2017) The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression. Prog Neuropsychopharmacol Biol Psychiatry 72:36–48. https://doi.org/10.1016/j.pnpbp.2016.08.009
14. Whitfield DR, Vailortigara J, Alghamdi A, Hortobagyi T, Ballard C, Thomas AJ, O’Brien JT, Aarsland D, Francis PT (2015) Depression and synaptic zinc regulation in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia. Am J Geriatr Psychiatry 23(2):141–148. https://doi.org/10.1016/j.jagp.2014.05.001
15. Hogstrand C, Zheng D, Feeney G, Cunningham P, Kille P (2008) Zinc-confidence gene expression by metal-regulatory transcription factor 1 (MTERF1) in a model vertebrate, the zebrafish. Biochem Soc Trans 36(Pt 6):1252–1257. https://doi.org/10.1042/BST0361252
16. Laity JH, Andrews GK (2007) Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTERF-1). Arch Biochem Biophys 463(2):201–210. https://doi.org/10.1016/j.abb.2007.03.019
17. Giedroc DP, Chen X, Apuy JL (2001) Metal response element (MRE)-binding transcription factor-1 (MTERF-1): structure, function, and regulation. Antioxid Redox Signal 3(4):577–596. https://doi.org/10.1089/15230800015254943
18. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j
19. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P (2007) Predicting zinc binding at the proteome level. BMC Bioinform 8:39. https://doi.org/10.1186/1471-2105-8-39
20. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11. https://doi.org/10.1126/scisignal.2002585
21. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177(4):637–645. https://doi.org/10.1083/jcb.200702081
22. Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin-insulin-like growth factor-1 signaling. Exp Cell Res 291(2):289–298. https://doi.org/10.1016/s0014-4827(03)00406-3
23. Maret W (2017) Zinc in cellular regulation: the nature and significance of "zinc signals". Int J Mol Sci. https://doi.org/10.3390/ijms18112285
24. Har T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukuda T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67(2):283–301. https://doi.org/10.1007/s12576-017-0521-4
25. Taylor CA, Hutchens S, Liu C, Jursa T, Shiwot L, Aschner M, Smith DR, Mukhopadhay S (2019) SLC30A10 transporter in the digestive system regulates brain manganese under basal conditions while brain SLC30A10 protects against neurotoxicity. J Biol Chem 294(6):1860–1876. https://doi.org/10.1074/jbc.RA118.005628
26. Mukhopadhay S (2018) Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. Neurotoxicology 64:278–283. https://doi.org/10.1016/j.neurotox.2017.07.030
27. Levy M, Elkoshi N, Barber-Zucker S, Hoch E, Zarivach R, Hantke K, Maret W (2017) Zinc in cellular regulation: the nature and mechanism of zinc transporters. Biochimie 91(10):1218–1222. https://doi.org/10.1016/j.bioch.2009.04.0588
28. Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the tests. Proc Natl Acad Sci USA 102(9):3401–3406. https://doi.org/10.1073/pnas.0406085102
29. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) SLC39A14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73(5):1413–1423. https://doi.org/10.1124/mol.107.043588
30. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70(1):171–180. https://doi.org/10.1124/mol.105.042541
31. Zogzas CE, Aschner M, Mukhopadhay S (2016) Structural elements in the transmembrane and cytoplasmic domains of the metal transporter SLC30A10 are required for its manganese efflux activity. J Biol Chem 291(31):15940–15957. https://doi.org/10.1074/jbc.M115.6726935
32. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) SLC39A14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73(5):1413–1423. https://doi.org/10.1124/mol.107.043588
33. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70(1):171–180. https://doi.org/10.1124/mol.105.042541
34. Zogzas CE, Aschner M, Mukhopadhay S (2016) Structural elements in the transmembrane and cytoplasmic domains of the metal transporter SLC30A10 are required for its manganese efflux activity. J Biol Chem 291(31):15940–15957. https://doi.org/10.1074/jbc.M115.6726935
35. Hantke K (2001) Bacterial zinc transporters and regulators. Bio-metals 14(3–4):239–249
36. Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13(7–8):337–343. https://doi.org/10.2119/2007-00037.Sekler
37. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. https://doi.org/10.1146/annurev-nutr-033009-083312
38. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71(17):3281–3295. https://doi.org/10.1007/s00018-014-1617-0
39. Kimura T, Kambe T (2016) The functions of metallothioinein and ZIP and ZnT Transporters: an overview and perspective. Int J Mol Sci 17(3):336. http://doi.org/10.3390/ijms17030336
40. Yu YY, Kirschke CP, Huang L (2007) Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem 55(3):223–234. https://doi.org/10.1369/jhc.6A7032.2006
41. Qin Y, Thomas D, Fontaine CP, Colvin RA (2009) Silencing of ZnT1 reduces Zn2+ efflux in cultured cortical neurons. Neurosci Lett 450(2):206–210. https://doi.org/10.1016/j.neulet.2008.11.069
42. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulamine T (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589(12):1283–1295. https://doi.org/10.1016/j.febslet.2015.04.007
43. Sely AV, Selye HV, Giraudet S, Kharfi M, Kamoun R, Moisan JP (2002) Identification of SLC39A4, a gene involved in acrodentati congressopathia. Nat Genet 31(3):239–240. https://doi.org/10.1038/ng913
44. Aydemir TB, Chang SM, Guhrrie GJ, Maki AB, Ryu MS, Karabiyik A, Cousins RJ (2012) Zinc transporter ZnT14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS ONE 7(10):e48679. https://doi.org/10.1371/journal.pone.0048679
45. Bin BH, Seo J, Kim ST (2018) Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res 2018:9365747. https://doi.org/10.1155/2018/9365747
46. Chawanadisai W, Lonnerdal B, Kelleher SL (2008) ZIP6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res 1199:10–19. https://doi.org/10.1016/j.bbr.2008.01.015
47. Costello LC, Franklin RB, Zou J, Naslund MJ (2015) Evidence that human prostate cancer is a ZIP1-deficient malignancy that could be effectively treated with a zinc ionophore (cilioquinol) approach. Chemotherapy (Los Angel). https://doi.org/10.4172/2167-7700.1000152
48. Grattan BJ, Frawe HC (2012) Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 4(7):648–675. https://doi.org/10.3390/nu4070648
49. Hardy AB, Prentice KJ, Froese S, Liu Y, Andrews GK, Wheeler MB (2015) ZIP4 mediated zinc influx stimulates insulin secretion in pancreatic beta cells. PLoS ONE 10(3):e0119136. https://doi.org/10.1371/journal.pone.0119136
50. Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH, Chun JS (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743. https://doi.org/10.1016/j.cell.2014.01.007
51. Kitamura H, Morikawa H, Kamon H, Iuchi M, Hoyo S, Fukuda T, Yamashita S, Kaisho T, Akira S, Murakami M, Hirano T (2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 7(9):971–977. https://doi.org/10.1038/nii1373
52. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuizzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA 104(47):18636–18641
54. Lin Y, Chen Y, Wang Y, Yang J, Zhu VF, Liu Y, Cui X, Chen L, Yan W, Jiang T, Hergenroeder GW, Fletcher SA, Levine JM, Kim DH, Tandon N, Zhu JJ, Li M (2013) ZP4 is a novel molecular marker for glioma. Neuro Oncol 15(8):1008–1016. https://doi.org/10.1093/neuonc/not442

55. Liu MJ, Bao S, Galvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, Killilea DW, Li C, Nebert DW, Wewers MD, Knoell DL (2013) ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB/p65. Cell Rep 3(2):386–400. https://doi.org/10.1016/j.celrep.2013.01.009

56. Lee HW, Yang X, Wang R, Qian W, Xu RZ, Lyles R, Osunkoya AO, Zhou BP, Vessella RL, Zayzafoon M, LiuZR, Zhai HE, Chung LW (2011) LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS ONE 6(11):e27720. https://doi.org/10.1371/journal.pone.0027720

57. Unno J, Sato K, Hirota M, Kanno A, Hamada S, Ito H, Masa- mune A, Tsukamoto N, Motoi F, Egawa S, Unno M, Horii A, Shimosegawa T (2009) LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol 35(4):813–821

58. Weaver BP, Zhang Y, Hiscox S, Guo GL, Apte U, Taylor KM, Sheline CT, Wang L, Andrews GK (2010) Zip4 (Slc39a4) expression is activated in hepatocellular carcinomas and functions to repress apoptosis, enhance cell cycle and increase migration. PLoS ONE. https://doi.org/10.1371/journal.pone.0013158

59. Kawasaki E (2012) ZnT8 and type 1 diabetes. Endocr J 59(7):531–537

60. Parsons DS, Hogstrand C, Maret W (2018) The C-terminal cytosolic domain of the human zinc transporter ZnT8 and its diabetes risk variant. FEBS J 285(7):1237–1250. https://doi.org/10.1111/febs.14402

61. Chownadisai W, Graham DM, Keen CL, Rucker RB, Mesmer KM, Puffenberger EG, Scott JN, Bezieau S, Reis A, Uebe S, Schuickers A, T, E. Thingholm et al.
62. Gene SLC39A8. Am J Hum Genet 97(6):886–893. https://doi.org/10.1016/j.ajhg.2015.11.002

62. McAllister BB, Dyck RH (2017) Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 80:329–350. https://doi.org/10.1016/j.neubi rev.2017.06.006

63. Palmerit RD, Cole TB, Quaife CJ, Findley SD (1996) Znt-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93(25):14934–14939. https://doi.org/10.1073/pnas.93.25.14934

64. Cole TB, Wenzel HJ, Kafri KE, Schwartzkrion PA, Palmerit RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96(4):1716–1721. https://doi.org/10.1073/pnas.96.4.1716

65. Adlard PA, Parnall JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30(5):1631–1636. https://doi.org/10.1523/JNEUROSCI.5255-09.2010

66. Bjorklund NL, Reese LC, Sadagoparananumaj VM, Ghirardi V, Woltjer RL, Tagiallatela G (2012) Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology. Mol Neurodegener 7:23. https://doi.org/10.1186/1750-1262-7-23

67. Whitfield DR, Vallortigara J, Alghami A, Howlett D, Hortobagyi T, Johnson M, Attems J, Newhouse S, Ballard C, Thomas AJ, O’Brien JT, Aarsland D, Francis PT (2014) Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer’s disease: association with cognitive impairment. Neurobiol Aging 35(12):2386–2384. https://doi.org/10.1016/j.neurobiolaging.2014.06.015

68. Kambe T, Touji T, Hashimoto A, Itsunura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. https://doi.org/10.1152/physrev.00035.2014

69. Hildebrand MS, Phillips AM, Mullen SA, Adlard PA, Hardies KD, Damiano JA, Wimmer V, Bellowes ST, McMahon JM, Burgess R, Hendricks R, Weckhuyysen S, Suls A, De Jonghe P, Scheffer IE, Petrov S, Berkovic SF, Reid CA (2015) Loss of synaptic Zn2+ transporter function increases risk of febrile seizures. Sci Rep 5:17816. https://doi.org/10.1038/srep17816

70. Hogstrand C, Kille P, Ackland ML, Hiscox S, Taylor KM (2013) A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J 455(2):229–237. https://doi.org/10.1042/BJO20130483

71. Bostanci Z, Alam S, Soybel DI, Kelleher SL (2014) Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells. Exp Cell Res 321(2):190–200. https://doi.org/10.1016/j.yexcr.2013.12.005

72. Henshall SM, Afar DE, Rashiah KK, Horvath LG, Gish K, Caras I, Ramakrishnan V, Wong M, Jeffry U, Kench JG, Quinn DI, Turner JJ, Delprado W, Lee CS, Golovsky D, Brenner PC, O’Neill GF, Kooner R, Stricker PD, Grygiej JJ, Mack DH, Sutherland RL (2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22(38):6005–6012. https://doi.org/10.1038/sj.onc.1206797

73. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):253–258

74. Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H, Yamasaki M, Hirano T (2009) Zinc transporter Zn5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206(6):1351–1364. https://doi.org/10.1084/jem.20082533

75. Zhang T, Liu J, Fellner M, Zhang C, Sui D, Hu J (2017) Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci Adv 3(8):e1700344. https://doi.org/10.1126/sciadv.1700344

76. Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317(5845):1746–1748. https://doi.org/10.1126/science.1143748

77. Fukuda T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metalloomics 3(7):662–674. https://doi.org/10.1084/jemt.00011j

78. Kambe T (2012) Molecular architecture and function of ZnT transporters. Curr Top Membr 69:199–220. https://doi.org/10.1007/978-1-4614-3277-7_3

79. Wei Y, Fu D (2006) Binding and transport of metal ions at the metallochaperone YiiP. Neuron 50(4):609–622. https://doi.org/10.1016/j.neuron.2006.04.011

80. Chung LW (2011) LIV-1 promotes prostate cancer epithelial- to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS ONE. https://doi.org/10.1371/journal.pone.0027720
USA 109(19):7202–7207. https://doi.org/10.1073/pnas.1200362109
82. Barber-Zucker S, Uebe R, Davidov G, Navyon Y, Sherf D, Chill JH, Kass I, Bitron R, Schuler D, Zarivach R (2016) Disease-homologous mutation in the cation diffusion facilitator protein MamM causes single-domain structural loss and signifies its importance. Sci Rep 6:31933. https://doi.org/10.1038/srep31933
83. Fujimoto S, Tsuji T, Fujiwara T, Takeda TA, Merriman C, Fukunaka A, Nishito Y, Fu D, Hoch E, Sekler I, Fukue K, Miyamae Y, Masuda S, Nagao M, Kambe T (2016) The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNP4 activation. Biochem J 473(17):2611–2621. https://doi.org/10.1042/BCJ20160324
84. Taylor KM (2000) LIV-1 breast cancer protein belongs to new family of histidine-rich membrane proteins with potential to control intracellular Zn2+ homeostasis. IUBMB Life 49(4):249–253. https://doi.org/10.1080/152165400050033087
85. Taylor KM, Nicholson RI (2003) The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta 1611(1–2):16–30
86. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14(3–4):251–270
87. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34(2–3):612–619. https://doi.org/10.1016/j.mam.2012.05.011
88. Kasana S, Din J, Maret W (2015) Genetic causes and gene-nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol 29:47–62. https://doi.org/10.1016/j.jtemb.2014.10.003
89. Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278(35):33474–33481. https://doi.org/10.1074/jbc.M305000200
90. Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275(8):5560–5564
91. Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ (2011) MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction. PLoS ONE 6(6):e21526. https://doi.org/10.1371/journal.pone.0021526
92. Kury S, Kharfi M, Schmitt S, Giraud M, Dreno B, Kharfi M, Bezieau S (2012) Clinical utility of the ectodomain of the zinc transporter ZIP4 and ZIP5. J Biol Chem 279(47):49082–49090. https://doi.org/10.1074/jbc.M409962000
93. Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ (2011) Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem 279(6):4523–4530. https://doi.org/10.1074/jbc.M310799200
94. Zhang T, Sui D, Hu J (2016) Structural insights of ZIP4 extra-cellular domain critical for optimal zinc transport. Nat Commun 7:11979. https://doi.org/10.1038/ncomms11979
95. Dufner-Beattie J, Kem BE, Petris MJ, Andrews G, Eide DJ (2004) Zinc-stimulated endocytosis controls activity of the cellular domain critical for optimal zinc transport. Nat Commun 5(1):129–139. https://doi.org/10.1038/ncomms11289
96. Masuda S, Nagao M, Kambe T (2016) The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNP4 activation. Biochem J 473(17):2611–2621. https://doi.org/10.1042/BCJ20160324
97. Zhang T, Sui D, Hu J (2016) Structural insights of ZIP4 extra-cellular domain critical for optimal zinc transport. Nat Commun 7:11979. https://doi.org/10.1038/ncomms11979
98. Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, DEMPski RE (2015) The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Metallomics 7(9):1319–1330. https://doi.org/10.1039/c5mt0066a
99. Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279(47):49082–49090. https://doi.org/10.1074/jbc.M409962000
100. Kim BE, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ (2004) Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem 279(6):4523–4530. https://doi.org/10.1074/jbc.M310799200
101. Mao X, Kim BE, Wang F, Eide DJ, Petris MJ (2007) A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem 282(10):6992–7000. https://doi.org/10.1074/jbc.M610552000
102. Bowers K, Srai SKS (2018) The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 19(11):813–822. https://doi.org/10.1111/tra.12602
103. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225
104. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711. https://doi.org/10.1016/j.cell.2004.05.018
105. Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE (2015) The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Metallomics 7(9):1319–1330. https://doi.org/10.1039/c5mt0066a
106. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225
107. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711. https://doi.org/10.1016/j.cell.2004.05.018
108. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5(16):4052–4061. https://doi.org/10.1002/pmic.200501289
109. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5(16):4052–4061. https://doi.org/10.1002/pmic.200501289
110. Pan E, Zhang YA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71(6):1116–1126. https://doi.org/10.1016/j.neuron.2011.07.019
111. SinTreutu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108(8):3366–3370. https://doi.org/10.1073/pnas.1019166108
112. Brautigan DL, Bornstein P, Gallis B (1981) Phosphoseryl-protein phosphatase. Specific inhibition by Zn. J Biol Chem 256(13):6519–6522
113. Nimmanon T, Ziliootto S, Morris S, Flanagan L, Taylor KM (2017) Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signaling. Metallomics 9(5):471–481. https://doi.org/10.1039/c6mt00286b
114. Wilson M, Hogstrand C, Maret W (2012) Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase beta activity. J Biol Chem 287(12):9322–9326. https://doi.org/10.1074/jbc.M409962000
115. Hengge AC (2002) Isotope effects in the study of phosphoryl and sulfuryl transfer reactions. Acc Chem Res 35(2):105–112
116. Brandao TA, Johnson SJ, Hengge AC (2012) The molecular details of WPD-loop movement differ in the protein-tyrosine phosphatases YopH and PTP1B. Arch Biochem Biophys 525(1):53–59. https://doi.org/10.1016/j.abb.2012.06.002

117. Brandao TA, Hengge AC, Johnson SJ (2010) Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 285(21):15874–15883. https://doi.org/10.1074/jbc.M109.066951

118. Bellomo E, Massarotti A, Hogstrand C, Maret W (2014) Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6(7):1229–1239. https://doi.org/10.1039/c4mt00086b

119. Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R (2015) Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 333(2):228–237. https://doi.org/10.1016/j.yexcr.2015.03.003

120. Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L (2018) The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 46:117–127. https://doi.org/10.1016/j.jtemb.2017.12.005

121. Ho Y, Samarasinghe R, Knoch ME, Lewis M, Aizenman E, DeFranco DB (2008) Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol Pharmacol 74(4):1141–1151. https://doi.org/10.1124/mol.108.049064

122. Du S, McLaughlin B, Pal S, Aizenman E (2002) In vitro neurotoxicity of methylisothiozolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase-mitogen-activated protein kinase-dependent pathway. J Neurosci 22(17):7408–7416

123. Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA (2007) Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 13(7–8):350–355. https://doi.org/10.2119/2007-00042.Zhang

124. He K, Aizenman E (2010) ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity. J Neurochem 114(2):452–461. https://doi.org/10.1111/j.1471-4159.2010.06762.x

125. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318. https://doi.org/10.1146/annurev.neuro.22.1.295

126. Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32. https://doi.org/10.1038/35049004

127. Coul J, Begg S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Saltzer MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021. https://doi.org/10.1038/nature034223

128. McNamara JO, Huang YZ (2006) Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 356:re12. https://doi.org/10.1126/stke.3562006re12

129. Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signaling in health and disease. Clin Sci (Lond) 110(2):167–173. https://doi.org/10.1042/CS20050163

130. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:699–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629

131. Hwang JJ, Park MH, Choi SY, Koh JY (2005) Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J Biol Chem 280(12):11995–12001. https://doi.org/10.1074/jbc.M403172200

132. Huang YZ, Pan E, Xiong QZ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57(4):546–558. https://doi.org/10.1016/j.neuron.2007.11.026

133. Poddar R, Rajagopal S, Shuttleworth CW, Paul S (2016) Zn2+-dependent activation of the Trk signaling pathway induces phosphorylation of the brain-enriched tyrosine phosphatase STEP: molecular basis for Zn2+-induced ERK MAPK activation. J Biol Chem 291(2):813–825. https://doi.org/10.1074/jbc.M115.663468

134. Mefert MK, Chang JM, Wiltgen BJ, Fanselau MS, Baltimore D (2003) NF-kappaB functions in synaptic signaling and behavior. Nat Neurosci 6(10):1072–1078. https://doi.org/10.1038/nn1110

135. Chang TP, Vancurova I (2013) NF-kappaB function and regulation in cutaneous T-cell lymphoma. Am J Cancer Res 3(5):433–445

136. Henkel TMT, Alkalay I, Krönke M, Ben-Neriah Y, Baue- erle PA (1993) Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365(6442):182–185

137. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

138. Prasad AS, Bao B, Beck FW, Sarkar FH (2001) Zinc activates NF-kappaB in HUT-78 cells. J Lab Clin Med 138(4):250–256. https://doi.org/10.1067/mlc.2001.118108

139. Prasad AS, Bao B, Beck FW, Sarkar FH (2002) Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-kappaB activation. J Lab Clin Med 140(4):272–289

140. Prasad AS, Bao B, Beck FW, Sarkar FH (2006) Correction of interleukin-2 gene expression by in vitro zinc addition to monocellular cells from zinc-deficient human subjects: a specific test for zinc deficiency in humans. Transl Res 148(6):325–333. https://doi.org/10.1016/j.trsl.2006.07.008

141. Bao Y, Prasad AS, Beck FW, Sarkar FH (2007) Zinc up-regulates NF-kappaB activation via phosphorylation of IkappaB in HUT-78 (Th0) cells. FEBS Lett 581(23):4507–4511. https://doi.org/10.1016/j.febslet.2007.08.030

142. Jung KJ, Lee EK, Yu BP, Chung HY (2009) Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappaB signaling in the inflammatory process and aging. Free Radic Biol Med 47(7):983–991. https://doi.org/10.1016/j.freeradbiomed.2009.07.009

143. Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S (1997) Regulation of NF-kappaB activation by MAP kinase cascades. Immunobiology 198(1–3):35–49

144. Thomas P, Pang Y, Dong J (2017) Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling. Mol Cell Endocrinol 447:23–34. https://doi.org/10.1016/j.mce.2017.02.025

145. Thomas P, Pang Y, Dong J, Berg AH (2014) Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology 155(11):4250–4265. https://doi.org/10.1210/en.2014-1201

146. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycosgen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295(1):102–106. https://doi.org/10.1016/s0006-291x(02)00636-8

147. Lee S, Chanot G, McIntosh R, Zvara DA, Xu Z (2009) Molecular mechanism underlying Akt activation in zinc-induced...
cardioprotection. Am J Physiol Heart Circ Physiol 297(2):H569–757. https://doi.org/10.1152/ajpheart.00293.2009

148. Taylor KM, Kille P, Hugstrand C (2012) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11(10):1863–1864. https://doi.org/10.4166/cc.20141

149. Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46(2):212–225. https://doi.org/10.1016/j.molcel.2012.01.026

150. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Eldledge SJ, Gyi GP (2006) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 103(31):10762–10767. https://doi.org/10.1073/pnas.0508139105

151. Huang H, Harer Petersen M, Ibáñez-Veá M, Lassen PS, Larsen MR, Palmisano G (2016) Simultaneous enrichment of cysteine-containing peptides and phosphopeptides using a cysteine-specific phosphonate adaptable tag (CysPAT) in combination with titanium dioxide (TiO2) chromatography. Mol Cell Proteom 15(10):3282–3296. https://doi.org/10.1074/mcp.M115.054551

152. Kettenbach AN, Scheppeke DK, Faherty BK, Pechnick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4(179):rs5. https://doi.org/10.1126/scisignal.2001497

153. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, Kuehn ED, Wang P, Zhang J, Young LC, Lai R, Li L (2010) Studying a human cancer cell phosphoproteome. J Proteome Res 9(7):253–262. https://doi.org/10.1021/pr100147v

154. Ruse CI, McClatchy DB, Lu B, Cociorva D, Motoyama A, Park JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based stress kinase pathways but does not affect global protein levels. Mol Cell Proteom 13(7):1690–1704. https://doi.org/10.1074/mcp.M113.036392

155. Palacios-Moreno J, Foltz L, Grynspan A, Farnsbrough SJ, Loesch J, Caporaso JG, Conaway RC, Stewart A, Howell M, Snijders AP, Slijper M, Krijgsveld J, Heck AJ, Mohammed S (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12(1):260–270. https://doi.org/10.1021/pr300630k

156. Buising L, Williamson L, Encheva V, Gori I, Saunders RE, Instrell R, Aygun O, Rodriguez-Martinez M, Weems JC, Kelly GP, Conaway JW, Conaway RC, Stewart A, Howell M, Snijders AP, Svejstrup QJ (2016) Multimomic analysis of the UV-induced DNA damage response. Cell Rep 15(7):1597–1610. https://doi.org/10.1016/j.celrep.2016.04.047

157. Hornbeck PV, Kornhauer JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–270. https://doi.org/10.1093/nar/gkr1122

158. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362. https://doi.org/10.1006/jmbi.1999.3310

159. Tsuzou M, Golling S, Avila D, Lamerz R, Herrera M, Ebeling M, Langen H, Augustin A (2013) Development of a 5-plex SILAC method tuned for the quantification of tyrosine phosphorylation dynamics. Mol Cell Proteom 12(11):3339–3349. https://doi.org/10.1074.mcp.O113.027342

160. Tian G, Bal T, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteome Res 13(11):253–262. https://doi.org/10.1021/pr4007722

161. Chen RQ, Yang QK, Lu BW, Yi W, Cantin G, Chen YL, Fearsns C, Yates JR 3rd, Lee JD (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69(6):2663–2668. https://doi.org/10.1158/0008-5472.CAN-08-3222

162. Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, Gillette MA, Clauser KR, Qiao JW, Gritsenko MA, Moore RJ, Levine DA, Townsend R, Erdmann-Gilmore P, Snider JE, Davies SR, Ruggles KV, Fenyo D, Kitchens RT, Li S, Olivera N, Dao F, Rodriguez H, Chan DW, Liebler D, White F, Rodland KD, Mills GB, Smith RD, Paulovich AG, Ellis M, Carr SA (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteom 13(7):1690–1704. https://doi.org/10.1074/mcp.M113.036392

163. Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML (2015) Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 11(4):e1004130. https://doi.org/10.1371/journal.pcbi.1004130

164. Wu F, Wang P, Zhang J, Young LC, Lai R, Li L (2010) Studies of phosphoproteomic changes induced by nucleoplasmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteom 9(7):1616–1632. https://doi.org/10.1074/mcp.M000153-MCP201

165. Gau C, Helbig AO, Slipker M, Krijgsveld J, Heck AJ, Mohammed S (2009) Lys-N and trypsin cover complementary parts of...
the phosphoproteome in a refined SCX-based approach. Anal Chem 81(11):4493–4501. https://doi.org/10.1021/ac9004309

173. Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4(4):1339–1346. https://doi.org/10.1021/pr050048h

174. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA (2013) Integrated proteomic analysis of post-translational modiﬁcations by serial enrichment. Nat Methods 10(7):634–637. https://doi.org/10.1038/nmeth.2518

175. Moritz A, Li Y, Guo A, Villen J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren JM, Hornbeck P, Canley LC, Gygi SP, Rush J, Comb MJ (2010) Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3(136):ra64. https://doi.org/10.1126/scisignal.2000998

176. Olsen JV, Blagoev B, Gnad F, Macek B, Kummar C, Mortensen P, Mann M (2006) Global, in vivo, and site-speciﬁc phosphorylation dynamics in signaling networks. Cell 127(3):635–648. https://doi.org/10.1016/j.cell.2006.09.026

177. Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8(12):2796–2808. https://doi.org/10.1074/mcp.M900285-MCP200

178. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3. https://doi.org/10.1126/scisignal.2001570

179. Thingholm TE, Larsen MR, Ingrell CR, Kassem M, Jensen ON (2008) TiO2-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J Proteome Res 7(8):3304–3313. https://doi.org/10.1021/pr80099y

180. Klammer M, Kaminski M, Zedler A, Oppermann F, Blenecke S, Marx S, Muller S, Tebbe A, Godl K, Schaab C (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteome 11(9):651–668. https://doi.org/10.1074/mcp.M111.016410

181. Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etkorn M, Seo HC, Nagiec M, Luna RE, Reinherz EL, Blenis J, Gygi SP, Wagner G (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci USA 111(21):E2182–2190. https://doi.org/10.1073/pnas.14094311

182. Su HC, Hutchison CA 3rd, Giddings MC (2007) Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. BMC Microbiol 7:63. https://doi.org/10.1186/1471-2180-7-63

183. Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Becker M (2007) Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 7(19):3509–3526. https://doi.org/10.1002/pmic.200700232

184. Chinteti BR, Peng Z (2007) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7(9):1473–1500. https://doi.org/10.1002/pmic.200600871

185. Clarke SJ, Khalilin I, Das M, Parker JE, Heesom KJ, Halestrap AP (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102(9):1082–1090. https://doi.org/10.1161/CIRCRESAHA.107.167072

186. Park SH, Kim JW, Yun SH, Leem SH, Kahng HY, Kim SJ (2006) Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach. J Microbiol 44(6):632–640

187. Baik JY, Joo EJ, Kim YH, Lee GM (2008) Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate. J Biotechnol 133(4):461–468. https://doi.org/10.1016/j.jbiotec.2007.11.008

188. Masaki S, Yamada T, Hirasawa T, Todaka D, Kanekatsu M (2008) Proteomic analysis of RNA-binding proteins in dry seeds of rice after fractionation by ssDNA affinity column chromatography. Biotechnol Lett 30(5):955–960. https://doi.org/10.1007/s10529-007-9619-8

189. Cole JN, Aquilina JA, Hains PG, Henningham A, Sriprakash KS, Caparon MG, Nizet V, Kob M, Cordwell SJ, Djordjevic SP, Walker MJ (2007) Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 7(24):4488–4498. https://doi.org/10.1002/pmic.2007000626

190. Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA (2008) Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol Cell Proteom 7(5):949–961. https://doi.org/10.1074/mcp.M700259-MCP200

191. Gronborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identiﬁcation of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteom 1(7):517–527

192. Pandey A, Fernandez MM, Steen H, Blagoev B, Nielsen MM, Roche S, Mann M, Lodish HF (2000) Identiﬁcation of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J Biol Chem 275(49):38633–38639. https://doi.org/10.1074/jbc.M007849200

193. Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7(16):2751–2768. https://doi.org/10.1002/pmic.200700145

194. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoafﬁnity proﬁling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. https://doi.org/10.1038/nbt1046

195. Kasyapa C, Gu TL, Nagarajan L, Polakiewicz R, Cowell JK (2009) Phosphorylation of the SSBP2 and ABL proteins by the ZNF198-FGR1 fusion kinase seen in atypical myeloproliferative disorders as revealed by phosphopeptide-speciﬁc MS. Proteomics 9(16):3979–3988. https://doi.org/10.1002/pmic.200800852

196. Zhang Y, Yoshida Y, Nameta M, Xu B, Taguchi I, Ikeda T, Fujinaka H, Magderlind S, Tsukaguchi H, Harita Y, Yaoita E, Yamamoto T (2010) Glomerular proteins related to slit diaphragm and matrix adhesion in the foot processes are highly tyrosine phosphorylated in the normal rat kidney. Nephrol Dial Transplant 25(6):1785–1795. https://doi.org/10.1093/ndt/gfp697

197. Shomori K, Ochiai A, Akimoto S, Ino Y, Shudo K, Ito H, Hirohashi S (2009) Tyrosine-phosphorylation of the 12th armadillo-repeat of beta-catenin is associated with cadherin dysfunction in human cancer. Int J Oncol 35(3):517–524

198. Duran MC, Chan HL, Timms JF (2009) Identiﬁcation of oxidative stress-induced tyrosine phosphorylated proteins by ...
immunoprecipitation and mass spectrometry. Methods Mol Biol 527(33–45):ix. https://doi.org/10.1007/978-1-60327-834-8_3

199. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(13):1311–1315

200. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254

201. Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6(11):2436–2445. https://doi.org/10.1021/pr.5560061117

202. Nuhse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51(5):931–940. https://doi.org/10.1111/j.1365-313X.2007.03192.x

203. Michel HP, Bennett J (1987) Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. FEBS Lett 212:103–108

204. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteom 4(3):310–327. https://doi.org/10.1074/mcp.M400219-MCP200

205. Figgeys D, Gygi SP, Aebsheld R (1998) An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem 70(18):3728–3734

206. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteom 2(11):1234–1243. https://doi.org/10.1074/mcp.T300006-MCP200

207. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892

208. Li S, Dass C (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 270(1):9–14. https://doi.org/10.1006/abio.1999.4060

209. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross M, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305. https://doi.org/10.1038/nbt0302-301

210. Ikeguchi Y, Nakamura H (1997) Determination of organic phosphates by column-switching high performance anionexchange chromatography using on-line preconcentration on titania. Anal Sci 13:479–483

211. Ikeguchi Y, Nakamura H (2000) Selective enrichment of phospholipids by titania. Anal Sci 16:541

212. Jiang ZT, Zuo YM (2001) Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA). Anal Chem 73(3):686–688

213. Kawahara M, Nakamura H, Nakajima T (1990) Titania and zirconia: possible new ceramic microparticulates for high-performance liquid chromatography. J Chromatogr A 515:149–158

214. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20(3):565–566

215. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA 104(14):5860–5865. https://doi.org/10.1073/pnas.0608638104

216. Connor PA, McQuillan AJ (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infraredspectroscopic study. Langmuir 15:2916–2921

217. Larsen MR, Thoengholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteom 4(7):873–886. https://doi.org/10.1074/mcp.T500007-MCP200

218. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC–ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943. https://doi.org/10.1021/ac0498617

219. Sano A, Nakamura H (2004) Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci 20(5):861–864

220. Thoengholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935. https://doi.org/10.1038/nprot.2006.185

221. Olsen JV, Macke B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712. https://doi.org/10.1038/nmeth1060

222. Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Sliper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteom 6(7):1198–1214. https://doi.org/10.1074/mcp.M600429-MCP200

223. Bodenmiller B, Mueller LN, Mueller D, Aebsheld R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237. https://doi.org/10.1038/nmeth1005

224. Dengjel J, Akimov V, Olsen JV, Bunckenborg J, Mann M, Blagoev B, Andersen JS (2007) Quantitative proteomic assessment of very early cellular signaling events. Nat Biotechnol 25(5):566–568. https://doi.org/10.1038/nbt1301

225. Hopf C, Bantscheff M, Drewes G (2007) Pathway proteomics and chemical proteomics team up in drug discovery. Neurodegener Dis 4(2–3):270–280. https://doi.org/10.1159/000101851

226. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104(7):2199–2204. https://doi.org/10.1073/pnas.0611121704

227. Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J Proteome Res 7(2):687–697. https://doi.org/10.1021/pr7006052

228. Wilson-Grady JT, Villen J, Gygi SP (2008) Phosphoproteome analysis of fission yeast. J Proteome Res 7(3):1088–1097. https://doi.org/10.1021/pr7006335

229. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21(22):3635–3645. https://doi.org/10.1002/rcm.3254

230. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteom 7(4):661–671. https://doi.org/10.1074/mcp.M700362-MCP200

231. Thingholm TE, Larsen MR (2016) Sequential elution from IMAC (SIMAC): an efficient method for enrichment and separation of
mono- and multi-phosphorylated peptides. Methods Mol Biol 1355:147–160. https://doi.org/10.1007/978-1-4939-3049-4_10

232. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1(5):376–386

233. Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrum 14(14):1226–1232. https://doi.org/10.1002/1097-0231(20000730)14:14%3c1226:AID-RCM14%3e3.0.CO;2-V

234. Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrum 15(24):2456–2465. https://doi.org/10.1002/rcm.525

235. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

236. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisae using amine-reactive isobaric tagging reagents. Mol Cell Proteom 3(12):1154–1169. https://doi.org/10.1074/mcp.M400129-MCP200

237. Choe L, D’Ascenzo M, Relkin NR, Pappin D, Williamson B, Guertin S, Pribil P, Lee KH (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunogloubulin treatment for Alzheimer’s disease. Proteomics 7(20):3651–3660. https://doi.org/10.1002/pmic.200700316

238. Thompson A, Schaler J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

239. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201. https://doi.org/10.1021/ac0498563

240. Steen H, Jebananthirajah JA, Springer M, Kirschner MW (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci USA 102(11):3953–3955. https://doi.org/10.1073/pnas.0409536102

241. Palmisano G, Thingholm TE (2010) Strategies for quantitation of phosphoproteomic data. Expert Rev Proteom 7(3):439–456. https://doi.org/10.1586/erp.10.19

242. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9(6):1451–1468. https://doi.org/10.1002/pmic.200800454

243. von Stechow L, Francavilia C, Olsen JV (2015) Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteome 12(5):469–487. https://doi.org/10.1586/14789450.2015.1078730

244. Chan CY, Gritsenko MA, Smith RD, Qian WJ (2016) The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteome 13(4):421–433. https://doi.org/10.1586/14789450.2016.1164604

245. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2(84):rs46. https://doi.org/10.1126/scisignal.2000007

246. Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, Prescianotto-Baschong C, Sauer U, Jenoe P, Hall MN (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339(6125):1320–1323. https://doi.org/10.1126/science.1228771

247. Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S (2016) Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuro-inflammation induced by Japanese encephalitis virus. Sci Signal 9(ra48):98. https://doi.org/10.1126/scisignal.aaf5132

248. Rusin SF, Schlosser KA, Adamo ME, Kettenbach AN (2015) Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells. Sci Signal 8(398):rs12. https://doi.org/10.1126/scisignal.aab3138

249. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326. https://doi.org/10.1126/science.1199484