Research Paper
Comparing Enamel Microhardness in Decidous Teeth With Primary Carious Lesions After Applying Three Fluoride Containing Materials in Vitro

Puran Azadi1, Hamid Sarlak1, *Shima Nourmohammadi1

1. Department of Pediatric Dentistry, Faculty of Dentistry, Arak University of Medical Science, Arak, Iran.

ABSTRACT

Background and Aim: For decades, using fluoride has been introduced to prevent the development and progression of primary carious lesions. Increased surface microhardness of primary caries is among the essential factors in preventing lesion progression and cavity formation. The present study aimed to compare the microhardness changes of primary caries treated with 3 products, containing fluoride (varnish, toothpaste, & mouthwash) in dental teeth.

Methods & Material: In this study, 45 extracted human deciduous molars were used. Using a diamond-winning disc, enamel blocks with a dimension of 1 x 4 x 4 mm were prepared from the buccal surface of the teeth, i.e., healthy and without structural defects; they were mounted in acrylic self-adhesive. Initial microhardness test (Vicker’s test) with a force of 300 gr and Dwell time for 15 seconds was applied on samples. Next, artificial caries with the standard solution were created in all samples and the microhardness of samples was recorded at this stage. The study samples were randomly divided into 3 groups of 15, treated with fluoride varnish, mouthwash, and toothpaste. Then, the microhardness of samples was re-measured. The mean surface microhardness was compared between the study groups by Independent Samples t-test and Bonferroni test. All analyses were performed using SPSS at the significance level of P<0.05.

Ethical Considerations: This study was approved by the Ethics Committee of the Arak University of Medical Science (Code: IR.ARAKMU.REC.1397.264).

Result: Increase in surface microhardness of primary caries in fluoride varnish group was statistically significant; in GC MI paste plus toothpaste and Oral B mouthwash was non-significant. The research samples treated by fluoride varnish had a higher surface microhardness, compared to toothpaste and mouthwash.

Conclusion: According to the present research results, fluoride varnish was superior to fluoride mouthwash and toothpaste in improving the microhardness of primary dental caries.

Extended Abstract

1. Introduction

Treating deciduous teeth in children, especially at a young age when their cooperation in receiving treatment is poor, is always a challenge for dentists. Due to the different structure of deciduous teeth, compared to permanent teeth and the rapid progression of caries as a result of pulp involvement, always early and non-invasive treatment methods are of high priority to prevent caries or stop the process of caries in the early stages (Early/
White spot lesions) in children [12]. Numerous laboratory studies compared the effects of different substances on the enhancement of enamel microhardness; however, most studies were performed on permanent human or animal teeth. Deciduous enamel is different from permanent teeth concerning microscopic structure. Thus, the present study aimed to compare the effects of three fluoride-containing substances on microhardness changes in primary decay enamel of deciduous teeth artificially and under laboratory conditions.

2. Materials and Methods

In this study, 45 extracted human deciduous molars were used. The maximum storage time of the samples was less than 3 months. The collected samples were immersed in 0.1% thymol solution for 24 hours for disinfection. Using a brush with a slow handpiece, they were cleaned of any debris and washed with distilled water, and remained at room temperature until studied in normal saline solution. Using a diamond cutting disc, enamel blocks with dimensions of 1 x 4 x 4 mm were prepared from the buccal surface and mounted on Acropars self-healing acrylic. The obtained samples were divided into 3 groups of 15 (first group: treated with fluoride varnish, second group: treated with fluoride mouthwash, & the third group was treated with fluoride toothpaste) and the microhardness of each group was taken in 3 steps, as follows:

Step 1: Measure the initial microhardness of the samples

Step 2: Measure the microhardness of the samples of all three groups after causing artificial caries

Step 3: Measure the microhardness of the samples in each group after exposure to fluoride-containing materials

3. Results

Based on the present study findings, the mean microhardness (in all 3 groups), significantly decreased after artificial caries, compared to healthy enamel (P<0.05).

The mean microhardness of healthy enamel in the first group was measured to be 347 VH89 and VH37/257 after artificial rot. It was found to indicate an increase in microhardness in this group. There was a significant difference between the mean microhardness of the first and second stages of measurement as well as the second and third stages of measurement; however, there was no significant difference between the mean value of the first and third stages of measurement, highlighting the positive effect of fluoride varnish in increasing enamel remineralization. Artificial decay was to such an extent that it was not significantly different from healthy enamel (P=0.126).

In the second group, the mean microhardness of healthy enamel equaled 313.89 VH, which decreased to 254.69 VH after artificial caries; after receiving mouthwash twice a week for 3 weeks, the mean microhardness of samples increased to 267/67VH. There was a significant difference between the microhardness measured in the first and third stages of measurements.

Table 1. Mean microhardness value in the fluoride varnish group in the stages of healthy enamel, artificial decay, and fluoride varnish (VH)

Group	Mean±SD
Healthy enamel	347.85±48.98
Artificial cavity	257.37±42.87
VH	329.30±42.84

Table 2. Mean microhardness value in the mouthwash group in the stages of healthy enamel, artificial decay, and fluoride varnish (VH)

Group	Mean±SD
Healthy enamel	313.89±43.58
Artificial cavity	254.69±56.64
Fluoride mouthwash	267.67±40.73
second, as well as first and third stages; however, despite the increase in microhardness after the effect of Oral B 0.12% mouthwash, no significant difference was observed between the microhardness measured in the second and third stages. In the third study group, measurements were performed as per the previous two groups and the average microhardness of healthy enamel was computed as 331.45 VH, which decreased to 255.90 VH after artificial caries; after using toothpaste, the average microhardness of the study samples reached 263.27 VH daily for 20 days. In this group, as in the second group, there was a significant difference between the microhardness measured in the first and second, as well as first and third stages; however, despite the increase in microhardness after the effect of 0.2% GC MI Paste plus 0.2% toothpaste between the measured microhardness, there were no significant differences between the second and third stages. The effect of V-Varnish fluoride 5% on increasing the microhardness of enamel with artificial decay was significant i.e., higher than Oral B mouthwash 0.12% and GC MI Paste plus toothpaste 0.2%. Microhardness changes between toothpaste and mouthwash groups were not statistically significant.

4. Discussion

In this laboratory study, microhardness changes in the primary enamel of deciduous teeth (artificially created) were investigated after the application of V-varnish fluoride varnish, Oral B Complete mouthwash, and GC MI Paste plus toothpaste. The purpose of the demineralization and remineralization cycle in vitro is to evaluate the effectiveness of fluoride-containing compounds to protect the demineralized enamel against acid [14]. The process used in this study was a standard formula to simulate the condition of the mouth that acidic substances and the activity of cariogenic bacteria that cause the demineralization of tooth enamel and primary caries (White Spot Lesion).

Due to the desirable properties of fluoride varnish, including its simple use for young children (even before the age of one year), the small volume of the material used, reducing the possibility of swallowing and no need to maintain isolation after application on the teeth and due to the higher concentration of fluoride in the varnish than toothpaste and mouthwash, its use is recommended three times a year for children at high risk of caries or a three-course diet with 10-day intervals within a month. Also, due to the increased microhardness of enamel with primary decay after using mouthwash, it is recommended to use mouthwashes containing fluoride after the age of 6 years. According to the present study, the least improvement in microhardness was observed in the group of toothpaste. However, due to the increase in microhardness of enamel with primary decay and the use of a toothbrush with toothpaste is the most common method of plaque control and oral hygiene at home. It is also recommended to use a regular fluoride toothpaste in children after 2-3 years of age.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Arak University of Medical Science (Code: IR.ARAKMU.REC.1397.264).

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflicts of interest.

Table 3. Mean microhardness value in the toothpaste group in the stages of healthy enamel, artificial decay, and fluoride varnish (VH)

Group	Mean±SD
Healthy enamel	331.45±68.44
Artificial cavity	255.90±55.78
Fluoride mouthwash	263.27±42.35
مقایسه تغییرات میکروهارتن سطحی ضایعه پوسیدگی اولیه پس از کاربرد سه محصول حاوی فلوراید (خمیر دندان، وارنیش و دهانشویه) در شرایط آزمایشگاهی

پوران آزادی 1، حمید سرلک 1، شیما نورمحمدی 1

1. گروه دندانپزشکی کودکان دانلشکه دانلشکه دانلشکه طومار پزشکی اراک، اراک، ایران

املاات مقاله:
تاریخ دریافت: 1399/10/14
تاریخ پذیرش: 1399/12/14
تاریخ انتشار: 1399/3/14

مقدمه
پوسیدگی دندان یکی از شایع‌ترین بیماری‌های مزمن جهان است. یوپسیدگی دندان علت پایداری ایجاد ملکه‌ای است و توجه به یاکنترهای میکروبی‌های پوسیدگی، روی غذا، میزان و زمان است [1].

کلیدواژه‌ها:
میکروهارتن‌سازی، فلوراید، مایع‌های درمانی، پوسیدگی دندان

فهرست منابع:
1. Yowell ND, Smith JS, Miller JH, et al. V-Flour A randomized clinical trial comparing the efficacy of a new fluoride varnish with a marketed fluoride varnish in reducing the incidence of early caries. J Clin Pediatr Dent. 2005;29(2):89-96.

خلاصه مقدمه:
پوسیدگی دندان یکی از شایع‌ترین بیماری‌های مزمن جهان است. یوپسیدگی دندان علت پایداری ایجاد ملکه‌ای است و توجه به یاکنترهای میکروبی‌های پوسیدگی، روی غذا، میزان و زمان است [1].

کلیدواژه‌ها:
میکروهارتن‌سازی، فلوراید، مایع‌های درمانی، پوسیدگی دندان

فهرست منابع:
1. Yowell ND, Smith JS, Miller JH, et al. V-Flour A randomized clinical trial comparing the efficacy of a new fluoride varnish with a marketed fluoride varnish in reducing the incidence of early caries. J Clin Pediatr Dent. 2005;29(2):89-96.
روند ایجاد پوسیدگی فرایندی پویا است که باعث شدن دندان نشان داده اند. این روند شامل چرخه‌های دمینرالیزاسیون و رمینرالیزاسیون است.

در روند پوسیدگی، بافت سخت دندان (مینا و سپس عاج) در اثر اسید تولید شده توسط باکتری‌های پوسیدگی‌زا (همچون استرپتوکوک موتای) مواد معدنی کلسیم و فسفر را از حلال تشکیل دهنده باکتری‌ها تا حدی که این پلاک از بین برود و باعث شکسته شدن شرایط محیطی به تدریج از بین می‌روند.

omatical نمونه‌ها تا زمانان دندان‌های ثابت و دائمی دندان‌های ثابت و دائمی پستانداران بالا در دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا در افراد بالای ده سالگی به روند آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های ثابت و دائمی پستانداران بالا
درمان دندان‌های شیری در کودکان، به خصوص در سنین پایین گزینه‌های مهمی ارائه نمی‌کند و برای نمونه‌های ضعیف است، همبستگی‌هایی که ممکن است درمان‌های سطحی به شمار می‌رود.

با توجه به تحقیقات متعدد دندان‌های شیری نسبت به دندان‌های دائمی و پیشرفت سریع پوسیدگی و در نتیجه درگیری پالپ، همواره درمان‌های زودرس و غیرتهاجمی در جلوگیری از پوسیدگی یا متوقف کردن روند پوسیدگی در کودکان از (Early/White spot lesions) اولویت بالایی برخوردار بوده است.

تا کنون مطالعات آزمایشگاهی بسیار جهت مقایسه تأثیر مواد مختلف بر افزایش میکروهاردنس مینای دندان انجام داده شده است، اما اغلب روی دندان‌های دائمی انسان و یا دندان‌های حیوانات صورت گرفته است.

از آنجا که مینای دندان‌های شیری از لحاظ ساختار میکروسکوپی تفاوتی با دندان‌های دائمی دارد، در مطالعه حاضر به مقایسه تأثیر سه ماده حاوی فلوراید بر تغییرات میکروهاردنس مینای دندان‌های شیری دچار پوسیدگی بود که به صورت مصنوعی و در شرایط آزمایشگاهی ایجاد شدند. ظرفیت برجاگذاشتن مواد متفاوت بر روی دندان‌های دائمی انسان در نمونه‌های صورت گرفته از این نظر مهم است.

مواد و روش‌ها

در این مطالعه آزمایشگاهی از 65 دندان مولار شیری کسب شده است. با در نظر گرفتن مواد مختلف به‌صورت حاوی فلوراید، اقدامات دندانپزشکی انجام شده است. این اقدامات می‌تواند تأثیر بر روی دندان‌های دائمی انسان و یا دندان‌های حیوانات صورت گرفته است.

می‌توان چهار نوع از دندان‌های شیری را در نظر بگیریم: 1) دندان‌های مولار، 2) دندان‌های فرماندار، 3) دندان‌های انتهایی و 4) دندان‌های وسیعی.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پرداخته می‌گردد.

در این مطالعه به تحقیق بر روی دندان‌های مولار شیری پردار
مرحله سوم: سنجش میکروهاردنس: در این مرحله در یک سوم سمت راست، مشابه مرحله قبلی میکروهاردنس در سه نقطه فروکلی، میانی و تحتانی اندازه‌گیری شد و میانگین به صورت مانند یک عدلان میکروهاردنس در نمونه‌های جدید حوزه الپاسیون ثبت شد.

یافته‌ها

تعداد 45 دندان مولار شیری انسان جمع‌آوری شده، در سه گروه یا گروه‌های مورد مطالعه قرار گرفتند. با توجه به توزیع تحلیل نمونه‌ها از شاخص میانگین جهت رتبه‌بندی نتایج پرداخته‌امد. در این مطالعه استفاده شد.

میانگین‌ها: میکروهاردنس بین سه گروه متفاوت، میکروهاردنس با درمان‌های منابع خنثی کامل گیر نسبت به میکروهاردنس نمونه‌های دیگر میکروهاردنس میانگین‌ها دارد. در این مطالعه، میکروهاردنس در سه گروه متفاوت از دندان‌های مولار شیری انسان مورد بررسی قرار گرفت.

گروه دوم: مصرف نمونه‌ها از میکروهاردنس با آب مقطر بر مسیر کارگاه‌های سازنده و دهانشویه (Complete, America) هر هفته دو ماهه، ۰.۱۲٪ OralB مرتبه به مدت سه ماهه دهانشویه شده و این عمل طی سه هفته انجام شد و در آب مقطر غوطه ور و در انکوباتور با دمای ۳۷ درجه سانتی‌گراد نگهداری شد.

گروه سوم: روی سطح نمونه‌ها پس از شست وشو با آب مقطر بر مسیر کارگاه‌های سازنده و دهانشویه (Complete, America) هر هفته دو ماهه، ۰.۱۲٪ OralB مرتبه به مدت سه ماهه دهانشویه شده و این عمل طی سه هفته انجام شد و در آب مقطر غوطه ور و در انکوباتور با دمای ۳۷ درجه سانتی‌گراد نگهداری شد.

جدول 1. نتایج آنالیز واریانس میکروهاردنس در میان بین سه گروه پس از اعمال فلوراید

گروه‌ها	اختلاف میانگین	P
فلوراید وارنیش	0.0127	0.346
فلوراید وارنیش و دهانشویه	0.0127	0.346
دهانشویه وارنیش	0.0127	0.346

پوران آزمایشگاهی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های شیری مولار، پس از کاربرد سه الماسی از دسترسی، میکروهاردنس نمونه‌هایی با هم مقایسه یافته شد و مشابه گروه دوم و گروه سوم، در اکتوبترین با دمای ۳۷ درجه سانتی‌گراد نگهداری شدند.

گروه نونهایی: مصرف نمونه‌ها از میکروهاردنس با آب مقطر بر مسیر کارگاه‌های سازنده و دهانشویه (Complete, America) هر هفته دو ماهه، ۰.۱۲٪ OralB مرتبه به مدت سه ماهه دهانشویه شده و این عمل طی سه هفته انجام شد و در آب مقطر غوطه ور و در انکوباتور با دمای ۳۷ درجه سانتی‌گراد نگهداری شد.

گروه دوم: مصرف نمونه‌ها از میکروهاردنس با آب مقطر بر مسیر کارگاه‌های سازنده و دهانشویه (Complete, America) هر هفته دو ماهه، ۰.۱۲٪ OralB مرتبه به مدت سه ماهه دهانشویه شده و این عمل طی سه هفته انجام شد و در آب مقطر غوطه ور و در انکوباتور با دمای ۳۷ درجه سانتی‌گراد نگهداری شد.
محور بحث

در این مطالعه آزمایشگاهی به بررسی تغییرات میکروهاردنس مینای دندانهای شیری دچار پوسیدگی اولیه (پروازنده و پرداختن به فرمول استاندارد به منظور شبیه‌سازی شرایط دهان بود که مدل سالم در شرایط آزمایشگاهی

هدف از انجام سیکل دمینرالیزاسیون و رمینرالیزاسیون به صورت مقطعی پس از کاربرد آن وارد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری در درصد بین میکروهاردنس اندازه‌گیری شده در مرحله اول و دوم وجود ندارد که نشان می‌دهد تأثیر مثبت وارنیش فلوراید در افزایش رمینرالیزاسیون مینای دچار پوسیدگی مصنوعی تا حدی است که تفاوت آن نسبت به مینای سالم معنادار نیست.

در گروه دوم مورد مطالعه، میکروهاردنس مینای دچار پوسیدگی اولیه (پروازنده و پرداختن به فرمول استاندارد به منظور شبیه‌سازی شرایط دهان بود که مدل سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

در گروه سوم مورد مطالعه نیز اندازه‌گیری میکروهاردنس مینای سالم بود که پس از ایجاد پوسیدگی مصنوعی در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

یافته‌ها نشان داد که تأثیر مثبت وارنیش فلوراید در افزایش رمینرالیزاسیون مینای دچار پوسیدگی مصنوعی تا حدی است که تفاوت آن نسبت به مینای سالم معنادار نیست.

در گروه دوم مورد مطالعه، میکروهاردنس مینای دچار پوسیدگی اولیه (پروازنده و پرداختن به فرمول استاندارد به منظور شبیه‌سازی شرایط دهان بود که مدل سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

در گروه سوم مورد مطالعه نیز اندازه‌گیری میکروهاردنس مینای سالم بود که پس از ایجاد پوسیدگی مصنوعی در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

یافته‌ها نشان داد که تأثیر مثبت وارنیش فلوراید در افزایش رمینرالیزاسیون مینای دچار پوسیدگی مصنوعی تا حدی است که تفاوت آن نسبت به مینای سالم معنادار نیست.

در گروه دوم مورد مطالعه، میکروهاردنس مینای دچار پوسیدگی اولیه (پروازنده و پرداختن به فرمول استاندارد به منظور شبیه‌سازی شرایط دهان بود که مدل سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

در گروه سوم مورد مطالعه نیز اندازه‌گیری میکروهاردنس مینای سالم بود که پس از ایجاد پوسیدگی مصنوعی در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

یافته‌ها نشان داد که تأثیر مثبت وارنیش فلوراید در افزایش رمینرالیزاسیون مینای دچار پوسیدگی مصنوعی تا حدی است که تفاوت آن نسبت به مینای سالم معنادار نیست.

در گروه دوم مورد مطالعه، میکروهاردنس مینای دچار پوسیدگی اولیه (پروازنده و پرداختن به فرمول استاندارد به منظور شبیه‌سازی شرایط دهان بود که مدل سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم تفاوت معناداری مشاهده نشد.

در گروه سوم مورد مطالعه نیز اندازه‌گیری میکروهاردنس مینای سالم بود که پس از ایجاد پوسیدگی مصنوعی در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد، دندان محیطی و دندان سالم در شرایط آزمایشگاهی به مدت هفته دو و نیز از دیدگاه آزمایشگاهی پس از کاربرد میکروهاردنس اندوزه‌گیری شده در مرحله دوم و سوم T}
بакتری‌ها و سایر بیولوژی‌ها باعث دمینرالیزاسیون مینای دندان و White Spot Lesion (شماره 24 دوره 1400 خرداد و تیر) می‌شود.

پستانک باکتری‌های پوسیدگی‌زا باعث دمینرالیزاسیون مینای دندان و White Spot Lesion می‌شود.

از آنجا که مصرف گروه‌های میکرو‌پوست یا سایر داروهای مصرف‌کننده این بیماری این مطالعه اتفاق شد و کنون و همزمان ترکیب اولیه شیار و ترک در دندان، سبب افزایش سطح فلوراید نیست.

می‌تواند شیارها یا نشانه‌های دندان داشته باشد که به وسیله میکسی کلسیکال سالم شدن دندان، اتفاق شده.

دیلی اینجا پوسیدگی مصنوعی در این مطالعه این بود که شرایط مناسبی تا حد امکان مشابه بشد تا میزان پورپریپاراسیون و گویی فلوراید قبل و بعد از مداخله کننده، میزان دندان دانه ای اینگونه که محتوای خاصی از فلوراید در شیارهای پوسیدگی اولیه داشتند دلن و فرخ.

این پوسته به توجه به مصرف منظم خمیر دندان فلوراید در دندان‌های شیری اولیه داشتند دلن و فرخ.

نتیجه گیری

با توجه به ویژگی‌های معیار نازک برای کودکان، حجم کمی و عدم نیاز به تغییر منظم فلوراید و همچنین برخی از دندان‌های به روش خداوند خوراکی، توصیه می‌شود که استفاده از فلوراید برای کودکان در مرحله نوزادی و پسر، برای درمان پوسیدگی اولیه مورد استفاده قرار گیرد.

نتایج حاصل از این مطالعه فرض می‌تواند بر عدم وجود تفاوت میان مطالعات محلی و بین‌المللی در مورد مطالعات قبلی این موضوع پرداخته اند. مطالعه حاضر به مقایسه مواد متفاوت نسبت به مطالعات قبلی پرداخته است.

نتایج حاصل از این مطالعه نشان داد که در گروه وارنیش فلوراید بیشتر از سایر گروه‌ها افزایش میکروهاردنس گروه وارنیش نسبت به دو گروه دیگر تأثیرگذار بوده است.

نتایج حاصل از این مطالعه نشان داد که میانگین تغییرات میکروهاردنس بین گروه وارنیش، دهانشویه و خمیر دندان را نمی‌کند.

ملاحظات اخلاقی

از اصول اخلاقی و روشنایی

IR.ARAKMU.REC.1397.264

این مطالعه با کد اخلاقی 264 در کمیته اخلاق وزارت بهداشت هم‌آفرینی دارد.

در نهایت این مطالعه با کد اخلاقی 264 در کمیته اخلاق وزارت بهداشت وزارت بهداشت و پژوهشی به ترتیب را ثبت کرد.

پوران آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان شیری در کودکان اولیه داده می‌شود.

خودینرالیزاسیون دندان و شیری در کودکان اولیه داده می‌شود.

مدیریت دندان و پستانک

پوران آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان شیری در کودکان اولیه داده می‌شود.

عوامل فیزیولوژیک میکروهاردنس مینای دندان شیری در کودکان اولیه داده می‌شود.

برخی از عوامل فیزیولوژیک میکروهاردنس مینای دندان شیری در کودکان اولیه داده می‌شود.

اکثری از عوامل فیزیولوژیک میکروهاردنس مینای دندان شیری در کودکان اولیه داده می‌شود.
حامي مالي

این تحقیق هیچ گونه کمک مالی از سازمان‌های تأمین مالی در بخش‌های عمومی، تجاری یا غیرانتفاعی دریافت نکرد.

مشارکت نویسندگان

تمام نویسندگان ممکن است سیگنال‌گذاری داشته باشند و از استاندارد تویسدگی بر اساس پیشنهادات کمیته ملی ناشران مجلات پزشکی (ICMJE) داری نداشتند.

تعارض منافع

بتدری اظهار نویسندگان این مقاله تعارض منافع ندارد.

پوران آزادی و همکاران. مقایسه تغییرات میکروهاردنس مینای دندان‌های شیری دچار پوسیدگی اولیه پس از کاربرد سه ماده متفاوت حاوی فلوراید (خمیر دندان، وارنیش و دهانشویه) در شرایط آزمایشگاهی
References:

[1] Taher NM, Alkhamsi HA, Dowaidi SM. The influence of resin infiltration system on enamel microhardness and surface roughness: An in vitro study. Saudi Dent J. 2012; 24(2):79-84. [DOI:10.1016/j.sdent.2011.10.003]

[2] Robinson C, Shore RC, Brookes SJ, Strafford S, Wood S, Kirkham J. The chemistry of enamel caries. Critical Reviews in Oral Biology & Medicine. 2000; 11(4):481-95 [DOI:10.1177/10454411000110040601]

[3] Wang YL, Chang HH, Chiang YC, Lu YC, Lin CP. Effects of fluoride and epigallocatechin gallate on soft-drink-induced dental erosion of enamel and root dentin. J Formos Med Assoc. 2018; 117(4):276-82 [DOI:10.1016/j.jfma.2018.01.020][PMID]

[4] Nowak A, Christensen JR, Mabry TR, Townsend JA, Wells MH, editors. Pediatric Dentistry-E-Book: Infancy through adolescence. Elsevier Health Sciences; 2018. https://books.google.com/books?id=kXhaDwAAQBAJ&dq=

[5] Zakizade M, Davoudi A, Akhavan A, Shirban F. Effect of resin infiltration technique on improving surface hardness of enamel lesions: A systematic review and meta-analysis. J Evid Based Dent Pract. 2020; 20(2):101405. [DOI:10.1016/j.jebdp.2020.101405][PMID]

[6] Hossu Y, Marshall S, Watanabe L, Marshall G. Microhardness of carious deciduous dentin. Oper Dent. 2000; 25(2):81-9. [PMID]

[7] Dionysopoulos D, Toldis K, Sfeikos T. Effect of CPP-ACP and nanohydroxyapatite preventive treatments on the susceptibility of enamel to erosive challenge. Oral Health Prev Dent. 2019; 17(4):357-64. http://www.quintpub.com/journals/ohpd/abstract.php?article_id=19692

[8] Creeth JE, Parkinson CR, Burnett GR, et al. Effects of a sodium fluoride- and pyphate-containing dentifrice on remineralisation of enamel erosive lesions-an in situ randomised clinical study. Clin Oral Investig. 2018;22(7):2543-2552. [DOI:10.1007/s00784-018-2351-z]

[9] Kim MJ, Lee SH, Lee NY, Lee IH. Evaluation of the effect of PVA tape supplemented with %2.26 fluoride on enamel demineralization using microhardness assessment and scanning electron microscopy: In vitro study. Arch Oral Biol. 2013; 58(2):160-6. [DOI:10.1016/j.archoralbio.2012.06.015][PMID]

[10] Rošin-Grget K, Peroš K, Šutej I, Bašić K. The cariostatic mechanisms of fluoride. Acta medica academica. Acta Med Acad. 2013; 42(2):179-88. [DOI:10.5644/ama2006-124.85][PMID]

[11] Hiri A, Ahovuo-Saloranta A, Nordblad A, Mäkelä M. Pit and fissure sealants versus fluoride varnishes for preventing dental decay in children and adolescents. Cochrane Database Syst Rev. 2010; (3):CD003067. [DOI:10.1002/14651858.CD003067.pub3][PMID]

[12] Mohammad N, Farahmand Far MH. Effect of fluoridated varnish and silver diamine fluoride on enamel demineralization resistance in primary dentition. J Indian Soc Pedod Prev Dent. 2018; 36(3):257-61. [DOI:10.4103/JISPPD.JISPPD_4_18][PMID]

[13] Gatti A, Camargo LB, Imparato JC, Mendes FM, Raggio DP. Combination effect of fluoride dentifrices and varnish on deciduous enamel demineralization. Braz Oral Res. 2011; 25(5):433-8. [DOI:10.1590/1806-83242011000500010][PMID]

[14] Pancu G, Andrian S, Iovan G, Ghiorge A, Topolceanu C, Moldovanu A, et al. Study regarding the assessment of enamel microhardness in incipient carious lesions treated by Icon method. Rom J Oral Rehab. 2011; 3(4):94-100. https://www.rjor.ro/study-regarding-the-assessment-of-enamel-microhardness-in-incipient-carious-lesions-treated-by-icon-method/

[15] Huang GJ, Roloff-Chiang B, Mills BE, Shalchi S, Spiererman C, Korpak AM, et al. Effectiveness of MI Paste Plus and PreviDent fluoride varnish for treatment of white spot lesions: A randomized controlled trial. Am J Orthod Dentofacial Orthop. 2013; 143(1):31-41. [DOI:10.1016/j.adero.2012.09.007][PMID][PMCID]

[16] Cury JA, Andaló Tenuta LM. Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res. 2009; 23(Suppl 1):23-30. [DOI:10.1590/S1518-83242009000500005][PMID]

[17] Araf A. Synergetic remineralization effectiveness of calcium, phosphate and fluoride based systems in primary teeth. Pediat Dent J. 2017; 27(1):65-71. [DOI:10.1016/j.pdj.2016.12.003]
