The effect of galaxy mass ratio on merger–driven starbursts

T. J. Cox1, Patrik Jonsson2, Rachel S. Somerville3, Joel R. Primack2, and Avishai Dekel4

1Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2Department of Physics, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
3Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
4Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel

ABSTRACT
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger–driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger–driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger–driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger–driven star formation for large mass ratio mergers. Direct, co–planar merging orbits produce the largest tidal disturbance and yield that most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of SPH employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.

Key words: galaxies: interactions – galaxies: evolution – galaxies: starburst – galaxies: formation – methods: numerical.

1 INTRODUCTION
While mergers between galaxies of approximately equal mass, so called major mergers, garner a significant amount of observational and theoretical interest, it is likely that galaxies accreting much smaller objects are also important drivers of galaxy evolution. This possibility is a natural consequence of the hierarchical growth of structure predicted by the Lambda cold dark matter (ΛCDM; a.k.a., “Double Dark”) cosmology (see, e.g., Somerville et al. 2001). In this scenario every dark matter halo, and presumably the galaxy it hosts, is assembled through a continuous and varied merger history comprised of many small accretion events and a few “major” ones (see, e.g., Lacey & Cole 1993, Wechsler et al. 2002).

The transformation of galactic systems by major mergers has been well studied. Numerical simulations demonstrate that major mergers between spiral galaxies produce remnants that generally resemble elliptical galaxies, whose shapes are determined by random motions, i.e., they are pressure-supported, and which possess projected mass distributions that scale approximately as $r^{1/4}$ (e.g., Barnes & Hernquist 1991, 1992, Hernquist 1992, 1993b, Naab & Burkert 2003, Cox et al. 2006). Observations of fine structure, kinematic subsystems, the bimodal distributions of global clusters in elliptical galaxies, and the light profiles of merger remnants lend support to the assertion that elliptical galaxies are the byproduct of major galaxy mergers - in what is commonly termed the “merger hypothesis” (Toomre 1977). For further information regarding the observational and theoretical evidence supporting the merger hypothesis, or the general dynamics of galaxy interactions, we refer the interested reader to reviews by Barnes & Hernquist (1992), Schweizer (1998), and Struck (2006).

While major mergers are likely to be the most dramatic events in a galaxy’s assembly history, it is likely that the more prevalent minor mergers give rise to the wide variety of galaxy morphology that defines many classification systems (Hubble 1926, de Vaucouleurs 1977, van den Bergh...
The morphological transformation owing to the effects of minor merger has been studied via numerous numerical simulations, which demonstrate that galactic disks become warped and heated as a result of the accretion of a satellite (Quinn & Goodman 1984; Toth & Ostriker 1992; Quinn et al. 1993; Walker et al. 1996; Huang & Carlberg 1997; Velazquez & White 1999; Font et al. 2001), that the satellite itself is tidally stripped to produce stellar streams throughout the galactic halo (Johnston et al. 1999; Helmi & White 2001; Mayer et al. 2002; Bowyán-Kočichin & Mi 2007), and that the remnant galaxy will be a systematically earlier Hubble type (Aguerri et al. 2003; Naab & Burkert 2003; Bournaud et al. 2004, 2005; Eliche-Moral et al. 2006; Maller et al. 2006). Furthermore, there is an increasing amount of evidence that these theoretical expectations are consistent with observations in the local universe (e.g., Ibata et al. 2001; Dalcanton & Bernstein 2002; Navarro et al. 2004; Bullock & Johnston 2005).

While both major and minor mergers are expected to produce some degree of morphological evolution, it is still unclear whether all mergers will lead to a merger–driven starburst and therefore drive spectrophotometric evolution. There is mounting evidence that near equal mass (major) mergers trigger the most vigorous star-forming galaxies in the local Universe, the ultraluminous infrared galaxies (ULIRGs) with bolometric luminosities greater than $10^{12} L_{\odot}$ (see, e.g., Sanders & Mirabel 1996; Borne et al. 2000). More generally, large statistical samples consistently indicate a clear anticorrelation between projected galaxy pair separation and star formation indicators in the optical (Barton et al. 2000; Nikolic et al. 2004; Lambas et al. 2006; Sol Alonso et al. 2006). Barton et al. 2007; Ellison et al. 2007) and the infrared (Geller et al. 2006; Smith et al. 2007). Moreover, numerical simulations naturally explain these observations as centrally concentrated starbursts triggered by tidal forces that attend the galaxy interaction (see, e.g., Barnes & Hernquist 1991; Mihos & Hernquist 1994; 1996; Springel 2006; Kapferer et al. 2005; Cox et al. 2006; di Matteo et al. 2007).

In contrast, relatively little is known about the resulting starbursts during interactions between galaxies of unequal mass. Observationally, statistical studies are hampered by magnitude limits and confusion with background sources, but preliminarily indicate that enhanced star formation (as measured by Hα) is strongly dependent upon the relative mass (or magnitude) of the interacting galaxies. Initial results using the CfA2 Redshift Survey indicated no correlation between galaxy pair separation and equivalent width of Hα (Woods et al. 2006), suggesting that minor mergers do not lead to merger–driven star formation. More recent studies using the Sloan Digital Sky Survey (SDSS; Ellison et al. 2005; Woods & Geller 2007) and the infrared (Geller et al. 2006; Smith et al. 2007) find that minor mergers indeed lead to enhanced star formation, however the data also suggest that the enhancement is primarily observed in the satellite galaxy while the larger primary galaxy has star forming properties similar to non–interacting field galaxies (Woods & Geller 2007). More locally, detailed observations of individual galaxies in the nearby Universe suggest that minor mergers may be responsible for some degree of star formation enhancement, e.g., NGC 278 (Knapen et al. 2004), NGC 3310 (Smith et al. 1996), NGC 4064 and NGC 4424 (Cortés et al. 2006), NGC 7742 (Mazzuca et al. 2006), and the M81 group (Walter et al. 2002; Förster Schreiber et al. 2003).

While numerical simulations have been used extensively in the study of star formation in major mergers, there exist only a handful of previous simulations that have specifically quantified the star formation history of unequal mass galaxy mergers. These works have established that tidal perturbations can induce bar formation, inflows of gas, and subsequent bursts of star formation when the primary disks are susceptible to instabilities, such as when they do not contain a stellar bulge (Hernquist 1985; Mihos & Hernquist 1994; Hernquist & Mihos 1995). However, because these studies performed only a limited number of simulations, and did not include some important physical processes, our understanding of the relationship between mergers of unequal mass galaxies and the resulting star formation is still highly incomplete.

In this paper we fill in this gap by describing a large set of numerical simulations of unequal mass disk-galaxy mergers. In particular, we seek to extend and improve the pioneering work of Mihos & Hernquist (1994a) and provide a more complete picture of merger–driven star formation, including its dependence upon the merging orbit and the structure of the primary galaxy. We will also take advantage of recent improvements in the treatment of supernovae feedback (Springel 2005; Springel & Hernquist 2003; Cox et al. 2006) and smoothed–particle hydrodynamics (SPH) methodology (Springel & Hernquist 2002) which allow us to follow the evolution of galaxies with larger gas fraction than was possible previously.

The results of our simulations are relevant for a number of related studies. Many models of galaxy formation often employ merger–driven star formation as a necessary ingredient to produce bright galaxies throughout cosmic time (Guiderdoni et al. 1993; Somerville et al. 2004; Baugh et al. 2004). Our results will serve as a useful input to such models. In addition, our models will be a valuable tool for interpreting observations. By comparison to the observed star formation in pairs of galaxies (Barton et al. 2000; Woods et al. 2003; Woods & Geller 2007; Lin et al. 2003), we can constrain our models and infer the contribution of mergers to the universal star formation rate. The numerical models have also been used to generate “simulated observations” of the merging galaxies through radiative transfer modeling (Jonsson et al. 2004; Jonsson et al. 2006; Jonsson 2006), to study dust attenuation in spiral galaxies (Rocha et al. 2007), to understand the size, shape, and scaling relations of merger remnants (Dekel & Cox 2006; Novak et al. 2006; Covington et al. 2007), and to calibrate non-parametric indicators of galaxy morphology (Lotz et al., in preparation), which can then be used to quantify the merger rate over cosmic time.

We organize this paper as follows: Our numerical techniques are summarized in §2 and the galaxy models used for our galaxy interactions are described in §3. A general description of the mergers is provided in §4 including a discussion about the possible methods to quantify the merger–driven star formation. Some additional models are explored in §5. Finally, we discuss our results and conclude in §6.
2 NUMERICAL SIMULATIONS

All of the numerical simulations performed in this work use the N-Body/SPH code GADGET (Springel et al. 2001). In general, our methodology is similar to Cox (2004) and Cox et al. (2003), and thus, in this section we will only review selected aspects of our techniques and methodology that are relevant to this work. We use the first version of GADGET, however the smoothed particle hydrodynamics (SPH) modules are upgraded (with the aid of V. Springel) to use the “conservative entropy” version that is detailed in Springel & Hernquist (2002). The radiative cooling rate \(\Lambda_{\text{net}}(\rho, u) \) is computed for a primordial plasma as described in Katz et al. (1996). Stars are formed at a rate determined by the local SPH density normalized to match observed star formation rates (Kennicutt 1998). Furthermore, we employ a threshold density \(\rho_{\text{th}} \), below which stars do not form. Finally, star formation occurs within individual SPH particles and each particle can stochastically spawn two stellar particles.

One of the largest uncertainties associated with current numerical simulations including star formation is the implementation of supernova feedback. Because of the limited resolution achievable in state-of-the-art numerical simulations, most work performed to date adopts a “sub-grid” approach where the physical processes associated with feedback are included in a simple, yet flexible manner with free parameters that can be tuned to match observations. Unfortunately, there are often a range of acceptable free parameters which produce distinct star formation histories or remnant morphologies (see, e.g., Thacker & Couchman 2004; Kay et al. 2002; Springel et al. 2005; Cox et al. 2008). For many of the simulations performed in this work, we have run two different feedback models, either the nmed or n2med models as introduced in Cox et al. (2006). Both models are termed “medium” because they dissipate feedback energy on a 8 Myr timescale. The n2med model treats star-forming gas with a stiff equation of state while nmed assumes this gas is isothermal with an effective temperature \(\sim 10^4 \) K. We will compare these two feedback models in 4.3.2 in order to determine how these assumptions influence the resulting star-formation history.

All simulations presented throughout this work use a gravitational softening length of 0.1 kpc for all baryonic particles, and 0.4 kpc for dark matter particles. The SPH smoothing length is required to be greater than half the gravitational softening length, or > 50 pc. We have performed a few tests with both smaller and larger softening lengths and found little or no differences in the star-formation history, suggesting that we have achieved numerical convergence (see Cox et al. 2008, for similar tests).

3 GALAXY MODELS

Because our primary motivation is to investigate collisions between unequal mass galaxies, we wish to construct galaxies with a range of different masses. Furthermore, because the properties of galactic disks depend on mass, we also need to design galaxy models that are physically plausible. To begin, we select the largest galaxy model to have a total stellar mass of \(M_\star \sim 5.0 \times 10^{10} \, M_\odot \), slightly above the transitional mass of \(3.0 \times 10^{10} \, M_\odot \) found to divide large galaxies with old stellar populations from smaller star forming ones (Kaufmann et al. 2003). Three smaller galaxy models are included that have \(M_\star \) equal to \(1.5 \times 10^{10} \, M_\odot \), \(0.5 \times 10^{10} \, M_\odot \) and \(0.1 \times 10^{10} \, M_\odot \), making the total stellar mass span a range of 50. We label the largest of these models G3, and the rest G2, G1, and, finally, the smallest G0.

Once the stellar masses are fixed, we next determine the stellar size using the late-type galaxy size-mass relationship found by Shen et al. (2003, eq. 18), from the analysis of 140,000 galaxies in the Sloan Digital Sky Survey. This relation fixes the half-light radius \(R_{25} \) for each model, which we assume is equivalent to the stellar half-mass radius.

Because each model is assumed to be a late-type galaxy, they consist of a stellar and gaseous exponential disk, a stellar Hernquist (1990) bulge, all embedded in a dark matter halo. A general description of the methods employed to construct model disk galaxies, including the assumed profiles, can be found in Cox et al. (2006), however, those models are not identical to the ones used here. The model parameters used for this work, which are listed in Table 1, are selected such that each model galaxy is statistically average, as opposed to Cox et al. (2006) who specifically modeled a gas-rich Sbc galaxy.

To ensure that the models are statistically average, the mass of the stellar disk and bulge are constrained by the half-mass radius \(R_{50} \) and the observed bulge-to-disk ratio of local late-type galaxies (de Jong 1996). To quantify the latter constraint, we assume a K-band mass-to-light ratio of 0.7 and 0.5 for the bulge and disk, respectively, and fit a line to the de Jong (1996) data, finding

\[
\log(M_{\text{bulge}}) = 1.6 \log(M_{\text{disk}}) - 1.03, \tag{1}
\]

where the masses are in units of \(10^{10} \, M_\odot \). Using this formula, along with the fixed total stellar mass for each model, both the stellar bulge and stellar disk masses are determined. To determine the size of these components (the exponential disk scale radius \(R_d \) and the bulge scale radius \(R_b \)) an iterative approach is used where the first step is to guess an initial disk scale radius \(R_d \). The bulge scale radius \(R_b \) is then fixed by the empirical correlation between disk and bulge sizes found by de Jong (1996, see his Eq. 5). This initial guess for the disk and bulge mass distributions is then compared to the desired half-mass radius \(R_{50} \) and corrected until the two are within 1% of each other.

In addition to the stellar component, each galaxy model contains gas, the fuel for star formation. Motivated by observations of local late-type galaxies (e.g., Broeils & van Woerden 1994), gas is distributed in an extended exponential disk with a scale radius proportional to that of the stellar disk, \(r_{\text{gas}} = \alpha r_{\text{star}} \). In our default model we assume \(\alpha = 3.0 \). To determine the mass of gas, we use the observed trend that systems with lower total/stellar mass have a higher gas fraction (Bell et al. 2003; Geba et al. 2006). Using data from Bell et al. (2003, kindly provided in electronic form by E. Bell), we parameterize this relationship as

\[
\log(M_{\text{gas}}) = 0.78 \log(M_\star) + 1.74, \tag{2}
\]

where both masses are in units of \(10^{10} \, M_\odot \). Because this relation is derived from the mean gas content as a function of total baryonic mass, the model disks will contain only moderate quantities of gas, and are therefore unlikely to produce large bursts of star formation. In 4.3 we will perform a small
The final component of the galactic system is the massive dark-matter halo. Each model contains a dark halo with a Navarro et al. (1996) NFW profile whose properties are selected so that the rotation curve satisfies the baryonic Tully-Fisher relation (Bell & de Jong 2001; Bell et al. 2003). Because most of the models require very little non-baryonic mass in order to satisfy the Tully-Fisher relation, we do not include adiabatic contraction. Still, the resultants of the total disk mass which is gaseous. Finally, each system is represented by N particles, which represent the dark matter, stellar disk, bulge and gaseous galaxy.

The construction of these galaxy models is based upon Hernquist (1993a) and its more recent incarnation to include a NFW halo (Springel & White 1999; Springel 2000). We note that because the spatial distribution of baryons is fixed by the galaxy model, the halo spin does not determine the size of the gaseous and stellar disk, as in many popular models for disk formation (see, e.g., Mo et al. 1998). However, we feel that our procedure is adequate since it produces stable disks, provided that the velocity dispersion of the disks is chosen such that the Toomre stability parameter Q is greater than 1 at all radii and the feedback model can provide adequate pressure support to the gas.

Table 1. Properties of galaxy models used in this study.

	G3	G2	G1	G0	
M_* ($10^{10} M_\odot$)	5.0	1.5	0.5	0.1	
R_{50} (kpc)	3.86	2.88	2.35	1.83	
Total Mass, M_{tot} ($10^{10} M_\odot$)	116.0	51.0	20.0	5.0	
Concentration, $c=R_{\text{vir}}/r_s$	6	9	12	14	
Spin Parameter, λ	0.05	0.05	0.05	0.05	
Disk Mass, M_{disk} ($10^9 M_\odot$)	4.11	1.35	0.47	0.098	
Disk Mass Fraction, m_d	0.035	0.026	0.024	0.019	
Disk Scale Length, R_d (kpc)	2.85	1.91	1.48	1.12	
Disk Scale Height, z_0 (kpc)	0.40	0.38	0.30	0.22	
Disk Spin Fraction, j_d	0.015	0.010	0.010	0.010	
Bulge Mass, M_{bulge} ($10^9 M_\odot$)	8.9	1.5	0.3	0.02	
Bulge-to-disk ratio, B/D	0.22	0.11	0.06	0.02	
Bulge Mass Fraction, m_b	0.008	0.003	0.002	<0.001	
Bulge Radial Scale Length, R_b (kpc)	0.37	0.26	0.20	0.15	
Gas Mass, M_{gas} ($10^9 M_\odot$)	1.22	0.48	0.20	0.06	
Gas Mass Fraction, m_g	0.011	0.009	0.010	0.012	
Gas Fraction, f	0.196	0.242	0.286	0.375	
Gas Scale Multiplier, α	3.0	3.0	3.0	3.0	
Gas Spin Fraction, j_g	0.012	0.010	0.013	0.019	
N	240,000	150,000	95,000	51,000	
N_{dm}	120,000	80,000	50,000	30,000	
N_{gas}	50,000	30,000	50,000	10,000	
N_{disk}	50,000	30,000	50,000	10,000	
N_{bulge}	10,000	10,000	5,000	1,000	

The number of additional mergers using galaxies with higher gas fractions.

The stability of our model galaxies is also reflected by a constant star-formation rate (SFR), regardless of the feedback model employed, as shown in Figure 2. The average SFR is 0.95, 0.25, 0.06 and 0.001 M_\odot yr$^{-1}$ for models G3,

Cox et al. 2003.
The effect of galaxy mass ratio on merger-driven starbursts

Figure 1. Projected mass density for each galaxy model, G0 (left column), G1, G2, and G3 (right column) when simulated in isolation for ~ 1 Gyr, which is greater than 5 orbital periods at the half-mass radius in all models. Each row shows the projected stellar or gaseous mass as specified in the lower-left of each panel. The top two rows show the galaxies face-on, while the bottom two rows show the edge-on view. Each panel measures 80 kpc on a side. A color bar in the upper-left panel indicates the stellar surface density scale that is used for all panels, and the color bar in the one below indicates the gaseous surface density scale that is used in all panels.

G2, G1, and G0, respectively, during the 1 Gyr period shown in Figure 2. The average SFR scales as $M_{\text{gas}}^{3/2}$, as is expected from our Schmidt-type star-formation law (see Cox et al. 2006). The SFR of the smaller galaxies, G1 and G0, display increased fluctuations owing to the more significant impact of feedback, decreasing resolution, and the fixed star-formation threshold density ρ_{th}. The SFRs shown in Figure 2 are constant for ~ 2 Gyr. After this, galaxies G3 and G2 begin to consume a significant fraction of their high-density ($> \rho_{\text{th}}$) gas and their SFR eventually drops to approximately one-tenth its initial value at 6 Gyr. Another consequence of the adopted star-formation law is that the star-formation timescale scales with gas density, viz., $\tau_{\text{SF}} \approx M_{\text{gas}}/\text{SFR} \sim \rho^{-1/2}$, in other words, more massive galaxies, with higher gas densities, have shorter gas consumption timescales. As a result, the more massive galaxy models consume a larger fraction of their initial gas mass than the smaller ones. During the entire 6 Gyr evolution, model G3 converts 26% of its original gas to stars, G2 converts 22%, G1 converts 11%, and G0 converts 3%.

4 GALAXY MERGERS

The previous section defined four galaxy models G3-G0 and established the stability of these models by simulating them in isolation. In this section we discuss the outcome of binary mergers between these models on a single merging orbit. Performing a single merger between all combinations of the four models yields four equal-mass major mergers and six unequal-mass mergers. In the following section (§5), we discuss a number of additional merger simulations to determine systematic dependencies.

4.1 Fiducial Encounters

For reference, we list the merger mass ratios in Table 2. Mass ratios are given for the total, stellar and baryonic masses. In what follows we will label a simulated mergers by its two merging constituents. For example, G3G1 is a merger between our largest galaxy G3 and the second-smallest G1. The total mass ratio is 5.8 to 1, i.e., model G1 is 5.8 times smaller than G3. When referring to the interacting galaxies, the less massive galaxy will be termed the satellite and the more massive galaxy the primary. We note that some galaxy
was still not fully merged after the system was evolved for mass ratio we simulate. In this case, the fiducial interaction $G3G0$, where the total mass ratio is 22.7 to 1, the largest 2005). The only exception to the above orbits is the merger matter halos in cosmological simulations (Vitvitska et al. 2002; Khochfar & Burkert 2006; Benson 2005; Zentner et al. 2002). The pericentric distance is fixed to be slightly less than the virial radius of the primary and is 250, 100, 80, and 50 kpc for $G3$, $G2$, $G1$, and $G0$ models, respectively. The resulting interactions are set to be 13.6, 3.8, 2.96, and 2.24 when the primary is $G3$, $G2$, $G1$, and $G0$, respectively. The initial velocity of the satellite by 0.2 so that the merger occurred during the 6 Gyrs we followed each interaction.

Finally, the fiducial series of orbits are all prograde, i.e., the angular momentum of the orbit is (nearly) aligned with the spin of the primary. A slight tilt of 30° to the primary is introduced such that the interaction is not entirely co-planar. In section 5.1 we resimulate the $G3G2$ and $G3G1$ mergers with a variety of orbits to determine the dependence of merger–driven star formation on orbital angular momentum (R_{peri}) and merger alignment.

4.2 Merger Evolution

The evolution of a typical merger event is shown in Figures 3 and 4 for the $G3G2$ merger, and Figures 5 and 6 for the $G3G1$ merger. In both cases, the projected stellar surface density is first shown, followed by the projected gaseous surface density. The images shown in these figures are typical of the remaining mergers that are not shown, and are also consistent with what has been discussed in studies of equal mass mergers (e.g., Barnes & Hernquist 1991; Mihos & Hernquist 1996; Springel 2000; Cox et al. 2006), and unequal mass mergers (e.g., Hernquist 1989; Hernquist & Mihos 1993). For completeness, the following provides a brief outline of the merger process, and the resulting star formation.

In both of the mergers shown the satellite galaxy ($G2$ and $G1$) first makes a fast, direct approach toward the primary galaxy ($G3$). This close passage tidally distorts the disks and generates symmetric tails in both. Owing to the energetic orbit, the satellite separates again for several orbital periods (>1 Gyr) before returning for its second encounter with the disk of the primary. A generic feature of all the interactions simulated here is the efficient loss of angular momentum by the satellite. In particular, even for large mass ratio encounters the orbits become almost entirely radial after the first or second close passage.

The loss of orbital angular momentum and eventual radial nature of the final merger limits the coupling between orbital and spin angular momentum, and therefore the tidal response. Most of the induced star formation during the final coalescence is a result of the collisional nature of the gas and the rapid fluctuations in the potential as the satellite oscillates through the center and the system finally relaxes. The collisional nature of the gas also produces several other features distinct from the stellar disk. During the first close passage, the satellite creates a snow–plow effect, as it clears out gas from the primary’s extended gas disk. This effect continues during each close passage until eventually the majority of the gas in the satellite has been stripped off, leaving a predominantly stellar satellite. However, by this point the orbit has decreased such that it is difficult to disentangle the two galaxies.

While it is beyond the scope of the current paper to provide a detailed analysis of the structure of the merger remnants, there are several qualitative features present in Figures 5 and 6 that motivate future inquiry. First, it is evident that the stellar disks have been thickened and dynamically heated during the accretion event, consistent with a number of previous numerical studies (e.g., Quinn & Goodman 1984; Quinn et al. 1993; Toth & Ostriker 1992; Walker et al. 1995; Velazquez & White 1999; Benson et al. 2004).
Figure 3. Projected stellar mass density during the G3G2 merger simulation as viewed in the orbital plane. Each panel measures 200 kpc on a side and the time, in Gyr, is displayed in the upper left of each panel. The orbit of the satellite galaxy G2 is denoted by a dotted line until it has completely merged with the primary galaxy. The bottom-right panel shows a side view of the final merger remnant, and clearly indicates the initial 30° inclination of the progenitor disk. The top-left panel indicates the color scale used in all panels.
Figure 4. Similar to Figure 3 but for the gaseous component.
Figure 5. Similar to Figure 3, but the G3G1 merger is now shown.
Figure 6. Similar to Figure 4 but for the gaseous component.
4.3 Star Formation

The star formation history for all of our fiducial galaxy mergers is displayed in Figure 7. There are four plots in this figure, one for each of the four primary galaxy models. The upper-left panel shows the star–formation rate (SFR) for all interactions that involve the most massive galaxy G3. The remaining panels show all the remaining mergers, grouped by the largest participant galaxy. Thus each panels shows the SFR for one major merger and one or more minor mergers, except for the G0 panel which only has the G0G0 major merger.

The SFRs shown in Figure 7 are clearly enhanced compared to the quiescent SFRs shown in Figure 2. For example, the maximum SFR during the G3G1 interaction (∼26 M☉ yr⁻¹) is 13 times larger than the summed SFR of two isolated G3 disks (∼1 M☉ yr⁻¹), the maximum SFR during the G2G1 interaction (∼27 M☉ yr⁻¹) is 21 times larger than an isolated G3 (∼1 M☉ yr⁻¹) plus an isolated G2 (∼0.25 M☉ yr⁻¹), and the maximum SFR during the G0G0 interaction (∼3.8 M☉ yr⁻¹) is 3.8 times larger than two isolated G0 disks (∼10⁻³ M☉ yr⁻¹), however 4.3.2 demonstrates that these factors depend upon the feedback model.

In 4.3.2 we will quantify the relationship between the mass ratio of the interacting galaxies and the enhanced star formation in more detail, but we note that this trend fits naturally within a merger–driven scenario for star formation. In particular, during an interaction gas is stripped of its gaseous disks, and the structure of the participating galaxies, and the abundant collisions and a growing potential well during the messy coalescence. In both cases the resulting central concentration of gas fuels a burst of star formation. Since the tidal forces associated with the merger generate these effects, their magnitude is expected to scale with the size of the perturbation. While this general picture has been studied in great detail for collisions between equal mass galaxies (e.g., Mihos & Hernquist 1994a, 1995; Springel, Hernquist, & Phinney 2000; Cox et al. 2006), we demonstrate here that the star formation clearly depends on the mass ratio of the interacting galaxies.

We caution that the global SFR, as is shown in Figure 7, will be dominated by the largest galaxy when the interacting galaxy mass ratio is large, as in the G3G1 and G3G0 mergers. In this case, the small enhancement in the SFR is only an indication that the primary, G3, is not tidally disturbed enough to induce radial inflows of gas and additional star formation. The less massive satellite, however, is expected to experience significant tidal forces and may have a large enhancement of star formation that is hidden within the global rate. Such is the case for G3G1, as shown in Figure 8 where the global SFR is shown as well as the contributions from both the primary and the satellite. While G3, the larger galaxy, constitutes the majority of the overall star formation, its rate is largely unchanged from the initial stages and eventually decays as a result of gas depletion. There is a small enhancement of star formation above the quiescent G3 from T ≈ 3 – 5 Gyr coincident with the final coalescence. In contrast, the satellite galaxy G1 experiences several bursts of star formation that are >3 times its quiescent rate, consistent with merger–driven star formation.

The exact relationship between merger mass ratio and enhanced star formation is complicated by the fact that the star formation history also depends upon the nature of the interaction, the structure of the participating galaxies, and the “sub–grid” model for star formation and feedback. The first two dependencies are inherently physical assumptions and will be investigated further in 5. The last dependency, however, is determined by numerical free parameters that are not well constrained. In 4.3.2 this issue will be considered further, with the specific goal of determining which features of the star–formation history provide a measure of the merger–driven star formation that are insensitive to assumptions about the feedback model.

4.3.1 Location of Starburst

One result of merger–driven star formation is a concentration of newly formed stars in the galactic center. Figure 9
Figure 7. Star formation for our fiducial minor merger series. The total mass ratio is listed next to each run label. The line thickness increases with decreasing mass ratio, e.g., the thickest line in each panel is the 1:1 major merger, while the thinnest line is the large mass ratio minor merger. Note that the vertical axis changes from panel to panel, based upon the maximum star formation rate for the major merger. All runs shown here used the $n_{0\text{med}}$ feedback model.

demonstrates that this is a generic outcome of our interactions by showing the surface mass density of “new stars,” i.e., stars that form during the interaction, for the remnants of the G3Gx set of interactions. Numerous numerical simulations have previously found similar profiles (though often plotted versus $r^{1/4}$) for remnants of major mergers (e.g., Mihos & Hernquist 1996, Springel 2000, Cox et al. 2006). The central concentrations of new stars are often disjoint from the outer, old-star profiles, in apparent conflict with the $r^{1/4}$ profile that most ellipticals are assumed to have. While this was once considered a problem for the merger hypothesis, recent high-resolution observations now indicate that such features exist in nearly all merger remnants (Rothberg & Joseph 2004) and many low-luminosity elliptical galaxies (Kormendy et al. 2007).

Because the gaseous inflows that produce these central concentrations of new stars are produced by the gravitational forces arising from the interaction, we expect the amount of new stellar mass in the galactic center to correlate with the merger mass ratio. Indeed, Figure 9 demonstrates that the new star profile within ~ 4 kpc becomes monotonically steeper with decreasing merger mass ratio. The least disruptive mergers, G3G1 and G3G0, have profiles that are essentially exponential beyond ~ 1 kpc, while the smaller mass ratio mergers G3G3 and G3G2 have profiles that are better fit by $r^{1/4}$-type distributions.

Another way to characterize the distribution of star for-
The effect of galaxy mass ratio on merger–driven starbursts

13

Figure 9. Mass surface density of “new stars,” i.e., stars that are forming during the interaction, for mergers G3G3, G3G2, G3G1, and G3G0.

Figure 11. Comparison of the gas consumption during equivalent simulations performed with two different parameterizations for feedback, n0med and n2med. The label for the merger simulations are grouped by the primary. The isolated galaxies are identical to the simulations presented in Figures 1 and 2.

formation as a result of the interaction is by simply quantifying the fraction of gas that is driven to within the central several hundred pc of the primary. This quantity was an especially relevant measure of the potential starburst event when numerical simulations did not include star formation (e.g., Hernquist 1989; Hernquist & Mihos 1995). In these works it was always found that >35% of the gas in the primary was driven to within the central several hundred pc. The only exception was when Hernquist & Mihos (1995) adopted a model in which the interstellar medium was isothermal with a temperature >3 × 10^5 K. We note that we always find that <35% of the gas in the primary is driven to within 500 pc, even during the G3G3 major merger. For the large mass ratio mergers this percentage is closer to 10%, which is similar to the G3 galaxy evolved in isolation. This trend toward smaller inflows of gas is another manifestation of the differences between our modeling and what was performed previously (see more extensive discussion in §6.1).

While it is beyond the scope of the present work, analysis of the remnant profiles uncovers two interesting avenues for future study. First, it is intriguing that the new–star profiles of the remnants of very large mass-ratio mergers are well fitted by a bulge plus exponential disk profile, suggesting that such minor mergers may be an efficient mechanism for growing galactic bulges. Second, at large (∼10 kpc) radii the profiles of the large mass ratio remnants differ from the G3 evolved in isolation owing to induced star formation and angular momentum transfer during the early stages of the interaction (see also Younger et al. 2007).

4.3.2 Dependence on Star Formation and Feedback Parameters

As mentioned previously (§2 and §4.3), and shown explicitly by Cox et al. (2006) using numerical simulations of major mergers, the star-formation history during an interaction depends upon the adopted feedback model. This is in contrast to the star-formation history of an isolated spiral, which, as shown in Figure 2 (and in Cox et al. 2006), is independent of the feedback model. As a result, it is unclear what measure of the star-formation history will provide a robust characterization of the merger–driven star formation. To investigate this further, we resimulated our fiducial set of mergers using the n2med feedback model in addition to the n0med that was presented in §4.3. As shown in Cox et al. (2006), the “medium” feedback models are slightly favored because they can maintain a stable gas disk in an isolated gas–rich Sbc galaxy model and also produce merger–driven starbursts. The n0med model treats star–forming gas with an isothermal (∼10^5 K) equation of state while the n2med has a stiff equation of state that restricts the quantity of gas at very high densities.

Figure 11 shows the SFR and gas consumption during the G3G2, G3G1, and G3G0 unequal mass mergers for both the n0med and n2med feedback models. For all interactions the peak of star formation begins sooner, has a much larger maximum, and a shorter duration in the n0med feedback model as opposed to n2med. However, regardless of the differences in the star-formation history, the gas consumption is very similar, as shown for the full series of merger simulations in Figure 11. This result motivates us to focus our analysis upon quantities that use the gas consumption rather than details of the time–dependent star-formation history, since the gas consumption is invariant to assumptions about the feedback model. We also note that the non–equivalence in gas consumption between the two feedback models that is present in Figure 11 can be used to estimate our errors owing to adopting a single feedback model. From the standard deviation in discrepancies we estimate an error of ∼0.04 in the gas consumption owing to the choice of feedback model.
However, we also caution that 3 out of the 4 major mergers have slightly (< 0.1) higher gas consumption when adopting the $n0med$ feedback model, and the 2 minor mergers with the largest mass ratios have higher gas consumption when adopting the $n2med$ feedback model. Therefore, it is possible that subtle, yet systematic, trends exist between alternate feedback models.

As a final comment we note that Figure 10 demonstrates that the feedback model can drastically affect the time–dependent star–formation rate, and therefore the luminosity of the system, even though the total gas consumption is similar. The varying luminosity evolution admits the possibility to better constrain the feedback model through a comparison to the observed distribution of star–formation rates (see, e.g., Noeske & al. 2007).

4.3.3 The Star–Formation Timescale

The previous section demonstrates that each feedback model yields a unique star formation history, and noted that one difference between the histories is the star–formation timescale. Because differences in the star–formation timescale directly affect the predicted color, line–strength, and nuclear activity of the interacting pair, future work may have the ability to discriminate between feedback models based upon comparisons with observations (e.g., Barton et al. 2000, Nikolic et al. 2004, Woods et al. 2006, Geller et al. 2006, Woods & Geller 2007, Ellison et al. 2007).

As a preliminary step toward this goal, we quantify the starburst timescale for the mergers simulated here from three different fits to the starburst events. The first fit is motivated by the intrinsic shape of the starburst events as exemplified in Figures 7 and 10, namely they appear Gaussian in shape and their timescale can be characterized by the width σ. The second fit is motivated by many models of galaxy evolution that describe star formation as a decay-
and FWHM) scaled to the exponential decay timescale τ timescale is the average of the three fits (Gaussian, exponential, decaying exponential to one side of a Gaussian yields an exponential with a timescale τ_n). The solid lines are fits to the simulated data using Equation 3.

The star formation timescale (τ_{SF}) as a function of merger mass ratio for our fiducial series of mergers when simulated with both the $n0med$ and $n2med$ feedback models. The timescale is the average of the three fits (Gaussian, exponential, and FWHM) scaled to the exponential decay timescale τ and the errors are estimated by the dispersion between the three fit parameters. The solid lines are fits to the simulated data using Equation 3.

Figure 13. The star formation timescale (τ_{SF}) as a function of merger mass ratio for our fiducial series of mergers when simulated with both the $n0med$ and $n2med$ feedback models. The timescale is the average of the three fits (Gaussian, exponential, and FWHM) scaled to the exponential decay timescale τ and the errors are estimated by the dispersion between the three fit parameters. The solid lines are fits to the simulated data using Equation 3.

Confirming our visual inspection of the SFRs shown in Figure 14, the $n2med$ model has a much longer star–formation timescale than the $n0med$ model. In additional, both models display a trend for the star–formation timescale to increase with increasing mass ratio, however the uncertainties are large enough that this trend is not definitive. In particular, the goodness of fit is only slightly reduced if the fit is fixed to have no mass-ratio dependence at all ($\alpha = 0$).

4.4 Parameterizing Star Formation Enhancements During Galaxy Interactions

The star-formation histories shown in Figure 7 demonstrate clear signs of enhanced star formation during the merger. Furthermore, [4,3,2] argues that this enhanced star formation is more robustly characterized by the amount of gas consumed, rather than time–dependent quantities such as the maximum star formation rate, owing to uncertainties in the adopted feedback model. However, we must also consider that the two galaxies which participate in the interaction would have converted some of their available gas into stars even in isolation, and therefore the gas consumption itself does not provide a complete characterization of the merger–driven star formation.

A more explicit comparison between the merger–driven star formation and that of the isolated disks is presented in Figure 11 which shows several measures of star formation for the G3G3, G3G2, G3G1, and G3G0 mergers, in each column, from left to right, respectively. The top row presents the star–formation rate (SFR) for the merger as well as the summed SFR of the primary and satellite galaxies when evolved in isolation. For clarity, the difference between the two SFRs is shaded. The second row shows the ratio of the merger SFR to the combined SFR of the isolated galaxies, clearly delineating when the rate is enhanced owing to the merger. The third row plots both SFRs divided by the stellar mass, which is also the inverse of the stellar–mass doubling time, and is sometimes termed the “specific SFR.” The fourth row plots the SFRs divided by the gas mass, which is the inverse of the gas consumption timescale. Finally, the bottom row presents the gas consumption of both the merger and the combined isolated galaxies with the difference shaded.

There are several features present in Figure 14 that deserve more discussion. First, reinforcing the notion first presented in Figure 7 there is a clear correlation between interacting galaxy mass ratio and merger–driven star formation. Significant episodes of star formation only occur for mergers...
between galaxies of nearly equal mass. For mergers between galaxies with a large mass ratio, such as G3G0, the cumulative star-formation history is nearly indistinguishable from the primary G3 evolved in isolation.

By comparing the star-formation history of G3G3 to that of G3G2, we uncover another interesting feature of Figure 14. Namely, these two interactions have similar peak levels of star formation, even though the total amount of gas consumed is much less for the higher mass ratio G3G2 interaction. This feature of the star-formation history emphasizes that caution needs to be exercised when attempting to quantify the merger-driven star formation.

As a final comment, we note that all models except G3G0 show elevated star formation at the end of the interaction ($T \approx 6$ Gyr) compared to the primary G3 evolved in isolation, as indicated by the normalized SFR shown in the second row of Figure 14. Therefore, most measures of the merger-driven star formation are subject to uncertainties that depend upon the duration over which the simulations follow the merger (if the simulation was run for long enough, all galaxies would consume essentially all of their initial allotment of gas). In practice, these errors are quite small, which we estimate to be ~ 0.03 from the differential gas consumption (bottom row of Figure 14) if the simulation is followed for 1 Gyr prior to, or later than, the current 6 Gyr we adopt as a standard.

Figure 14. The rows from top to bottom show the star-formation rate (SFR), SFR normalized by the combined SFR of both isolated galaxies, the SFR divided by the total stellar mass, the SFR divided by the total gas mass, and the gas consumption for mergers G3G3, G3G2, G3G1, and G3G0, from left to right. Panels show quantities during the interaction with a solid (red) line and for the combined isolated galaxies with a dotted (green) line. The difference between the two lines is shaded to emphasize the merger-driven star formation. All simulations shown employ the n_0med feedback model. The burst efficiency (see §4.4.1) is printed in the bottom row for each interaction.
In order to quantify the merger-driven star formation, we wish to define a simple, useful, and robust parameterization of the star formation owing solely to the interaction. To this end, we are motivated by the discussion of §4.3.2 to introduce the “burst efficiency”\(e \), as

\[
e = \frac{(\text{fraction of gas consumed during interaction}) - (\text{fraction of gas consumed by constituent galaxies evolved in isolation, during the same time period})}{M_{\text{sat}}/M_{\text{primary}}}.
\]

The burst efficiency is the fractional amount of stars that are formed (or equivalently, the gas that is consumed) during the merger that would not have formed in isolation. Figure 15 shows the burst efficiency for our fiducial merger series and reaffirms what was implicit in Figures 7 and 14; namely, merger-driven star formation is only significant during mergers where the participating galaxies are comparable in mass.

The burst efficiency appears to be a smoothly decreasing function of the merger mass ratio and its parameterization may be useful for future studies of galaxy formation. In fact, such a parameterization has already been introduced by Somerville, Primack & Faber (2001) based upon a much smaller set of data (the simulations of Mihos & Hernquist 1994a, 1996), and used in their semi-analytic models. Following Somerville et al. (2001), we adopt the following form for the burst efficiency:

\[
e = e_{1:1} \left(\frac{M_{\text{sat}}}{M_{\text{primary}}} \right)^{\gamma},
\]

where \(e_{1:1} \) is the burst efficiency for equal mass mergers, \(M_{\text{sat}} \) and \(M_{\text{primary}} \) are the mass of the satellite and primary, respectively, and \(\gamma \) fixes the mass ratio dependence. Performing a least-squares fit to our entire set of fiducial mergers we find \(e_{1:1}=0.55 \) and \(\gamma=0.69 \). This fit is shown as a solid line in Figure 15.

Owing to the relatively small star-formation enhancement in large mass ratio mergers \((M_{\text{sat}}/M_{\text{primary}} < 0.2) \), and the systematic overestimate in the regime provided by the best-fit Eq. 5 we also consider an alternate form for the burst efficiency that is fixed to zero when the mass ratio \(M_{\text{sat}}/M_{\text{primary}} \) is below \(e_0 \) and is

\[
e = \left(\frac{M_{\text{sat}}}{M_{\text{primary}}} - e_0 \right)^{\gamma},
\]

when the mass ratio \(M_{\text{sat}}/M_{\text{primary}} \) is greater than \(e_0 \). Performing a least squares fit to our fiducial mergers yields \(e_{1:1}=0.56, \gamma=0.50, \) and \(e_0=0.09 \), although the reduced \(\chi^2 \) is nearly unchanged if \(e_0 \) is manually set to anything less than 0.11 (including 0, in which case the fit is identical to Eq. 5). In other words, our fiducial set of mergers are consistent with there being no enhancement of star formation below a mass ratio of 9:1, although the data doesn’t necessarily require this. The best fit to Eq. 6 is shown in Figure 15 as a dotted line.

A number of other fitting formula are also possible for the burst efficiency, such as single and broken power-laws, and various polynomials, however with the small number of data points and the associated uncertainties in calculating the burst efficiency, no one formula was statistically better than any other formula. Hence, we adopt Eq. 5 to describe the burst efficiency.
5.1 Variations in Orbit

As outlined previously (§1 and §4.3), the enhancement of star formation during galaxy interactions originates from tidal forces that attend the merger. In particular, the close passage between the interacting galaxies produces bar–like structures in the stellar disk that torque gas into the galaxy center. Figure 8 shows that this occurs in both the primary and the satellite. The nearly prograde mergers that we have tracked up to this point produce a relatively strong bar owing to resonances between the orbits of stars in the primary disk and the passage of the satellite galaxy. However, alternative orbits and orientations of the interaction will affect the strength of the tidal force as well as the resonances excited within the disk, and therefore the resulting starburst.

To determine how the star-formation history depends upon the orbital angular momentum and disk orientation of the merging galaxies we have run two series of interactions using the G3G2 and G3G1 mergers. In the first series, we systematically change the orbital angular momentum which, in practice, is modulated by the pericentric distance R_{peri}. All other parameters are identical to the fiducial mergers. The star-formation histories and gas consumption fractions resulting from this set of mergers are shown in Figure 16. For both the G3G2 and G3G1 interactions the maximum gas consumption occurs when $R_{\text{peri}} = 6.8$ kpc, or roughly $(6.8/2.85 \approx) 2.4$ times the stellar scale radius of G3. The increasing gas consumption for more direct interactions supports the connection between tidal forces and merger-driven star formation. We also note that the two interactions with R_{peri} less than 6.8 kpc consume slightly less gas than orbits with larger R_{peri}. This trend is likely a result of the disruptive nature of nearly head–on collisions as well the difficulty of capturing shock–induced star formation within SPH (although recent star formation models have been formulated to address this shortcoming; Barnes (see, e.g., 2004)).

The second series of runs systematically alters the satellite orientation. While the fiducial set of mergers assumes that the orbital plane was inclined by 30° with respect to the disk of the primary galaxy, this series varied the inclination. A range of mergers are performed in which the incli-
The effect of galaxy mass ratio on merger–driven starbursts

Figure 17. Star–formation history and gas consumption for the G3G2 (top) and G3G1 (bottom) unequal mass interactions when merged on orbits that have varying satellite orientations, from 0° (a perfectly prograde encounter) to 180° (a perfectly retrograde encounter). The other parameters of the merging orbits are similar to the fiducial case, i.e., they are nearly parabolic (eccentricity 0.95) and have moderate angular momentum ($R_{peri} = 13.6$ kpc). Note that the fiducial set of mergers were inclined by 30°. The burst efficiency is listed in the bottom of each column. All mergers use the n2med feedback model.

5.2 Variations in the Extent of Gaseous Disk

Motivated by observations (see, e.g., Broeils & van Woerden 1994), the galaxy models that form the basis for this work assume that the distribution of gas in the disk is more extended than the stars. Specifically, the gas has an exponential scale radius $\alpha = 3$ times that of the stellar disk. As a result, there is a significant quantity of gas at large radii. This extended gas does not significantly contribute to the nuclear starburst. Instead, the merger remnant contains a large quantity of gas in both a shock–heated hot phase (Struck 1997; Cox et al. 2004, 2006) as well as in a cold star-forming disk.

In order to discern how the assumed distribution of gas influences the burst efficiency, we have run a number of tests that alter the distribution of cold gas in the primary G3 galaxy. Figure 18 shows an example of our typical result, namely, the extended gas distribution leads to an increased estimate of the burst efficiency. For the case shown in Figure 18 the fiducial G3 galaxy model has been altered to have...
Figure 18. Star formation and gas consumption for two G3G2 mergers. The case on the left is similar to the fiducial interaction except the primary G3 galaxy model now has $\alpha = 1$, where α is the multiplicative factor that sets the scale radius of the gaseous disk with respect to the stellar disk (see $\S 3$). The case on the right is also similar to the fiducial interaction except the primary G3 galaxy model has $\alpha = 3$ and all gas beyond 20 kpc has been removed from the initial disk. The burst efficiency is indicated in the bottom panel for each case. Both mergers are run using the n_0med feedback model.

$\alpha = 1$, while keeping the remaining parameters, including the total gas mass, unchanged. In short, the vigorous star formation in the isolated primary consumes a larger fraction of the available gas and results in a lower burst efficiency.

In additional experiments we merged models with the fiducial G3 distribution of gas ($\alpha = 3$), however all gas beyond a cutoff radius (R_{cutoff}) is removed. In essence, these galaxy models have much less gas, yet the inner, star–forming gas distribution is unchanged. As shown in Figure 18, the resulting star–formation histories are unchanged. Even though the fractional gas consumption increases markedly (compared to the second column in Figure 14), owing to a corresponding increase in the gas consumption of the isolated system, the resulting burst efficiencies are nearly identical. These experiments indicate that the burst efficiency is predominantly a function of the density distribution of gas in the progenitor systems rather than purely the spatial distribution of gas.

5.3 Variations in Bulge-to-Disk Ratio

One of the most significant results from the work of Mihos & Hernquist (1994a, 1996) was the discovery that the internal structure of the primary galaxy can strongly influence the efficiency of the starburst. Specifically, these works showed that a massive stellar bulge stabilizes the disk against tidal perturbations and suppress strong inflows of gas that lead to starbursts. In the case of minor mergers, the presence of a bulge may eliminate the merger–driven starburst completely, while during a major merger the bulge may simply delay the starburst until the final coalescence of the two galaxies.

Figure 19. Similar to Figure 15 except here the burst efficiency is shown for three series of runs with different values of the bulge–to–disk ratio (B/D) in the primary G3 galaxy.

The absence of any discernible burst of star–formation for the G3G1 and G3G0 minor mergers presented in $\S 4$ support the notion that the presence of a stellar bulge can suppress merger–driven star formation when the mass ratio is large. Furthermore, this burst suppression persists even though the bulge adopted for the fiducial G3 model is only 20% the mass of the stellar disk, i.e., the bulge–to–disk ratio (B/D) is 0.2, or about 50% smaller than in the models of Mihos & Hernquist where B/D = 0.33. In order to provide a more direct comparison to their work and further assess the effects of bulge mass on the merger–driven starburst, we have run a number of additional interactions where the bulge mass of the fiducial G3 model is varied such that there is no bulge at all (B/D = 0.0), or where the bulge mass is increased by a factor of 2.5 (B/D = 0.5). All other parameters, including the fiducial merging orbits and the satellite galaxies (G2, G1, and G0), are left unchanged.

Figure 19 shows the burst efficiency as a function of merger mass ratio for our series of mergers in which the bulge mass of the G3 primary is varied. As expected, there is a systematic correlation for large mass ratio mergers to have smaller burst efficiencies when the bulge mass increases. For example, the bulgeless G3G1 (5.8:1) merger has a burst efficiency of 0.16, which is three times larger than the burst efficiency for the model with the most massive bulge (B/D = 0.5). We also note that the burst efficiency is insensitive to the bulge mass when the merger mass ratio is near unity, in agreement with Mihos & Hernquist (1996).

Using Eq. 5 the best fit to each series of B/D mergers is determined and overplotted in Figure 19. All fits have the identical value of $e_{\gamma} = 0.49$, a result of the constant burst efficiency during major mergers. The value of γ, which sets the mass ratio dependence, is 0.61, 0.74, and 1.02 for the series with B/D = 0.0, 0.2 (the fiducial), and 0.5, respectively. It should be pointed out that the best fit for the fiducial se-
The effect of galaxy mass ratio on merger–driven starbursts

ries is slightly different than that reported in §4.4.1 because here only the G3Gx series is analyzed.

Even though the qualitative relationship between bulge mass and burst efficiency is in agreement with Mihos & Hernquist (1994a), their bulgeless minor merger produced a significant burst of star formation. The result is a burst efficiency (∼ 0.7) that is much larger than our bulgeless series. Actually, this value is larger than any of our interactions, major or minor. This discrepancy was also noted in §4.4.1 and is likely a result of three differences between their modeling and ours.

First, the feedback model and the newer entropy–conserving version of SPH employed here both result in less intense episodes of merger–driven star formation (Cox et al. 2006). Second, the models employed by Mihos & Hernquist adopt a circular orbit for the satellite, which increases the tidal coupling to stars in the disk and produces a larger response. Lastly, the large burst efficiency found by Mihos & Hernquist is inflated by the very inefficient star formation assumed to occur in their quiescent disk. Such levels of star formation appear to be insufficient to match more recent observations (Kennicutt 1998).

While these three arguments outline why our burst efficiencies are more modest — and we believe, more accurate — than prior calculations, the previous sections of this paper suggest that a number of the parameters for our fiducial encounters are sub–optimal at producing the largest merger–driven star formation event (and hence burst efficiency). We therefore performed a small number of additional simulations using a bulgeless version of our fiducial G3G1 merger, only we placed the satellite G1 on a co–planar (0°), close passage (Rperi = 6.8 kpc) orbit in order to maximize the merger–induced starburst (this orbit was motivated by the results of §5.1).

The star–formation history during the interaction with the maximum burst efficiency, as determined from our small G3G1 parameter search, is shown in Figure 20. We have also shown corresponding interactions when the modified bulgeless G3 model has bulge–to–disk ratios of 0.2, similar to the fiducial G3 model, and 0.5. Even with the large degree of parameter manipulation the maximum burst efficiency for the bulgeless run is only 0.19. While this is ∼ 20% larger than the the bulgeless G3G1 in the fiducial encounter, and about ∼ 4 times the fiducial G3G1 merger, it is still far below the ∼ 0.7 found by Mihos & Hernquist (1994a).

5.4 Variations in Gas Fraction

In our final set of additional merger simulations, we vary the gas fraction of our fiducial G3 galaxy model. To this end, the total mass in the disk is kept fixed, yet the distribution of mass, i.e. the amount in the gaseous versus the stellar disk, is varied for each model. All other parameters, including the interaction orbit and the satellite galaxies (G2, G1, and G0) remain unchanged from their fiducial values. Figure 21 presents the star formation history, the gas consumption, and the burst efficiency for the fiducial G3G2 interaction plus two additional mergers when the G3 primary has a larger gas fraction, f, defined as the mass of the gas disk divided by the total (gas plus stars) disk mass.

Figure 21 exemplifies the generic outcome of all interactions that test the gas fraction of the primary, namely, increasing the primary’s gas fraction decreases the burst efficiency. In effect, the result is similar to that presented in §5.2 for the distribution of gas and follows from a similar cause — the increased gas consumption in the isolated primary. In both scenarios, the initial disk converts a large fraction its gas into stars regardless of whether the interaction occurs or not.

6 DISCUSSION

In this paper we perform a series of numerical simulations that follow the interaction and merger of binary galaxies with various mass ratios. Our analysis quantifies the starbursts that result from the tidal forces that attend the merger. As expected, mergers between galaxies with nearly equal mass generate the largest tidal forces, and therefore produce the most intense bursts of star formation. Mergers between galaxies with a large mass ratio produce relatively little, if any, enhancement in star formation above quiescent...
evolution, yielding a correlation between merger-driven star formation and decreasing merging galaxy mass ratio.

To quantify the relationship between merging galaxy mass ratio and merger-driven starburst, we introduce the burst efficiency (Eq. 5) as the fraction of gas that is converted into stars. The burst efficiency is demonstrated to be robust to uncertainties in the feedback parameterization unlike the strength or duration of the starburst.

While the burst efficiency resulting from collisions between galaxies of equivalent mass is relatively insensitive to the details of the merging event such as the orbit, the galaxy orientation, and the properties of the merging galaxies (Mihos & Hernquist 1996; Springel 2000; Cox 2004), this is not the case when the participating galaxies are unequal in mass.

By performing a large number of additional merger simulations, we have quantified the effects of merging orbit and orientation, as well as properties of the progenitor disk. We find that close passage, co-planar orbits produce the most significant bursts of star formation, consistent with the expectations of the tidally induced origin for the starburst. We also find that the structure of the progenitor disk strongly influences the merger-driven star formation. In particular, the presence of a centrally-concentrated stellar bulge stabilizes the disk and suppresses merger-driven star formation. The distribution and mass of the gaseous disk also influences the starburst. In general, increasing the amount of gas at densities above ρ_{crit}, the threshold density for star formation to commence, decreases the burst efficiency.

These results lead us to conclude the following two facts about merger-driven starburst during an unequal mass galaxy merger: (1) significant starbursts occur for only specialized scenarios, e.g., close passage, co-planar orientations, when the primary disk does not contain a bulge, and (2) even in this extreme scenario, the burst efficiency is still only $\lesssim 0.25$, i.e., a single unequal mass merger does not convert a large fraction of gas into stars.

6.1 Comparison to Previous Simulations

Our work is closely related to, and consistent with, a number of prior studies of the gas dynamics during the interaction and merger of unequal mass galaxies (e.g., Hernquist 1989; Mihos & Hernquist 1994a; Hernquist & Mihos 1995). While all work performed to date demonstrates that minor mergers can induce radial inflows of gas that result in periods of enhanced star formation, our models typically result in smaller burst efficiencies (see §4.3.1 and §4.4.1) owing to three key differences in the studies.

First, as shown in Cox et al. (2006) using simulations of major mergers, the more complex treatment of the interstellar medium produces more hot gas, and suppresses star formation. In particular, relaxing the isothermal gas assumption commonly employed in the work of Mihos & Hernquist, including the “conservative–entropy” (Springel & Hernquist 2002) version of SPH, and the more efficient feedback models of Cox et al. (2006) all serve to suppress the merger–induced starburst, and lower the burst efficiency.

Second, the set of simulations employed by Mihos & Hernquist (1994a) and Hernquist & Mihos (1995) followed satellite galaxies that were initially placed on a circular orbit. In contrast, we follow parabolic orbits which are motivated by cosmological expectations (see §3). These more energetic orbits lead to less direct coupling between the orbital angular momentum of the satellite and the disk of the primary, and therefore are less conducive to an intense inflow of disk gas.

Lastly, as noted in §5.3 and in Cox et al. (2006), the star formation model employed by Mihos & Hernquist is less efficient than current observations suggest (e.g., Kennicutt 1998). The primary result of this assumption is that the quiescent galaxy consumes much less gas when evolved in isolation and the merger burst efficiency is overestimated.

While there are additional differences between the galaxy models employed by these previous studies, namely they use less massive and less concentrated dark matter halos, and the baryonic components are not as faithful a representation of observed galaxies in the local Universe, the tests performed in §5 indicate that these differences play a secondary role to the three items outlined above. Even when we modified every possible parameter to maximize the burst efficiency, our value was still only one–third as large as the previous results.

6.2 Comparison to Observations

While observational studies have already established a clear link between star formation and galaxy interactions (as measured by close pairs or morphology, e.g., Larson & Tinsley 1978; Joseph & Wright 1982; Kennicutt et al. 1987; Barton Gillespie et al. 2003; Lambas et al. 2003; Nikolic et al. 2004), only recently...
6.4 The Mass–Dependence of Star Formation

episodes of star formation may also have implications for Walter et al. 2002; Ott et al. 2003). These tidally–induced formation after recent close passages to M81 (Yun et al. 1994; and also in the nearby Universe, e.g., both M82 and NGC sample of SDSS galaxies studied by Woods & Geller (2007)

such a scenario appears to be observed in the large (as measured by Hα) and close galaxy pairs in the CfA2 Redshift Survey when the magnitude difference is greater than 2, and a more recent study using a larger sample from SDSS found that the satellite galaxy indeed shows enhanced star formation while the primary did not (Woods & Geller 2007).

Assuming that luminosity traces mass (and modulo any systematic affects owing to merger–driven star formation), the studies by Woods et al. imply that there is no observational evidence for induced star formation in the primary galaxy when the merger mass ratio is greater than ~ 6:1, while the satellite is more likely to experience a starburst. Taken at face value, our results naturally recover this observed trend. Our merger models produce little, if any, globally enhanced star formation for merger mass ratios below 5:1, and when they do, it requires very specific circumstances (bulgless primary, co–planar, close–passage orbit). It is also intriguing that Figure 8 hints that the satellite is much more susceptible to enhanced star–formation during the interaction, which also seems consistent with the observations.

In contrast to the statistical studies, there are a multitude of observations that suggest that individual systems are currently undergoing minor merger induced episodes of star formation (see the list in §). To determine whether these specific galaxies are consistent with the statistical studies requires more extensive modeling of individual systems, as has been performed in a few cases already (see, e.g., Mihos &bothun 1997; Laine & Heller 1999; Salo & Laurikainen 2000). It is possible that many of these systems have unique satellite orbits, or that the effects of multiple minor mergers which occur simultaneously is more dramatic than the binary mergers that we have followed here. Models of individual galaxies, and their direct comparison to observations across many wavebands may also yield important constraints to the star formation and feedback models.

6.3 Implications for Dwarf Galaxies

While the focus of our analysis has been on the global properties of merger–driven star formation, Figure 8 clearly demonstrates that the star formation history of the satellite galaxy can be enhanced far more dramatically than that of the primary galaxy (which dominates the global star formation). Such a scenario appears to be observed in the large sample of SDSS galaxies studied by Woods & Geller (2007) and also in the nearby Universe, e.g., both M82 and NGC 3077 are currently experiencing periods of intense star formation after recent close passages to M81 (Yun et al. 1994; Walter et al. 2002; Ott et al. 2003). These tidally–induced episodes of star formation may also have implications for the detection of satellite galaxies and the inferred cosmological merger rate (see, e.g., Berrier et al. 2006).

6.4 The Mass–Dependence of Star Formation

One interesting feature present in Figure 11 is the systematic dependence of ε1.1, the burst efficiency for an equal–mass major merger, on primary galaxy mass. Specifically, the burst efficiency is 0.46 for the G3G3 major merger and steadily increases to 0.61 for the G0G0 major merger.

The increasing burst efficiency ε1.1 with decreasing system mass is a direct byproduct of systematic changes in the merger–induced star formation compared to that in the isolated disks. One possibility for this trend is the systematic increase in gas fraction with decreasing galaxy mass that is assumed for our galaxy models. However, the results of Brinchmann & Ellis 2006; Kauffmann et al. 2003, may elucidate the physical mechanisms responsible.

6.5 Input for Future Studies

Quantifying the merger–driven star formation as a function of merger mass ratio is useful for a variety of further studies. In particular, semi-analytic models of galaxy formation (SAMs) often find that merger–driven star formation is necessary to reproduce the luminosity function and number counts of Lyman-break galaxies (Somerville et al. 2001) and sub-millimeter galaxies (Guiderdoni et al. 1998; Baugh et al. 2004). To this end, we have followed the methodology of Somerville et al. (2001) and introduced the burst efficiency (see 4.4.1 and Eq. 9) in order to parameterize the star formation enhancement that occurs during galaxy interactions as a function of participant mass ratio.

In Table 9 we list the best fit parameters to Eq. 9 for all models explored in this paper, including the fiducial series of runs (1111), and all additional models (orbits in 55, bulge–to–disk ratios in 33, and gas fractions of the progenitor disk in 67) that use the G3 primary galaxy. A quick inspection of Table 9 indicates that the parameter ε1.1, which normalizes Eq. 9 to the burst efficiency of a major merger, changes relatively little across this wide range of tests, although it may depend on galaxy mass (see the discussion of 67). On the other hand, the parameter γ, which determines the mass ratio scaling, has a significant dependence on orbital inclination and bulge–to–disk ratio, a mild dependence on the orbital angular momentum, and a negligible dependence upon gas fraction.
Table 3. Compilation of best fit burst efficiency (see 4.4.1) and Eq. 5 parameters for various sets of simulations employed in this paper. All simulations analyzed for these fits used the n2med feedback model.

Section	$\epsilon_{1.1}$	γ	Comment
4.4.1	0.55	0.69	fiducial series
5.1	0.49	0.94	$R_{\text{peri}} = 1.7$ kpc
5.1	0.49	0.82	$R_{\text{peri}} = 3.4$ kpc
5.1	0.49	0.66	$R_{\text{peri}} = 6.8$ kpc
5.1	0.50	0.74	$R_{\text{peri}} = 13.6$ kpc
5.1	0.51	0.87	$R_{\text{peri}} = 27.2$ kpc
5.1	0.50	0.96	$R_{\text{peri}} = 64.4$ kpc
5.1	0.50	0.47	$\theta = 0^\circ$
5.1	0.50	0.74	$\theta = 30^\circ$
5.1	0.50	0.96	$\theta = 60^\circ$
5.1	0.49	1.25	$\theta = 90^\circ$
5.1	0.49	0.99	$\theta = 150^\circ$
5.1	0.51	0.73	$\theta = 180^\circ$
5.2	0.50	0.61	B/D = 0.0
5.2	0.50	0.74	B/D = 0.2
5.2	0.50	1.02	B/D = 0.5
5.3	0.50	0.74	$f = 0.20$
5.3	0.49	0.74	$f = 0.50$
5.3	0.44	0.72	$f = 0.78$

While the burst efficiency is a useful quantification of the star-formation induced by a galaxy merger, a better understanding of the star-formation timescale is necessary to completely describe merger-induced star formation. Unfortunately, as shown in 4.3.3, uncertainties in the feedback model do not permit an unambiguous characterization of the star-formation timescale. There is hope, however, that better constraints can be placed on the feedback model through more detailed modeling of individual systems systems or by comparison to the observed distribution of star formation rates.

Finally, we emphasize that the accretion events followed in this study drive structural evolution which is also an interesting and relevant input parameter to future studies of galaxy formation and evolution. In particular, the morphology of the merger remnants (see Figs. 5, 6) suggests that the stellar and gaseous components react differently to the dynamical perturbation and that the remnant appears to be a systematically earlier Hubble type than the original disk. This is also consistent with the surface density profile shown in Figure 10 which shows an excess of mass at small radii indicative of the formation of a stellar bulge.

6.6 Other Considerations

As a final comment, we note that the present simulations lack several physical processes that may play a role in the results we have presented. First, we have not included the recycling of gas from stellar winds and supernovae, an omission that would increase the gas fraction as a function of time. Another process that may increase the gas content on long timescales is the accretion of gas from the cosmological growth of structure. While we eventually intend to incorporate these effects into our modeling (as has been done by several authors already, see, e.g., Tornatore et al. 2004, Scannapieco et al. 2003, Stinson et al. 2006), the relatively small difference (∼ 15%) in the burst efficiency for runs of different initial gas fractions (see 5.3) supports the notion that this omission has a relatively minor effect on the star formation that results from a single merger. However, for the long-term evolution, and for the absolute star-formation rate, these effects are likely to be important.

It should also be pointed out that our galaxy models are calibrated to match low redshift observations of disk galaxies. While we have surveyed a small portion of the parameter space that might correspond to properties of disks at higher redshift, e.g., higher gas fractions and more compact initial disks, and therefore have some indication of the changes that may occur, future studies will need to investigate these dependencies in more depth.

We have also not included accreting black holes and their associated feedback into the models presented here. Recent work has shown that these processes may play a significant role during major mergers, resulting in the formation of quasars (Hopkins et al. 2006), and leading to remnants that reside on the $M_{\text{BH}} - \sigma$ relation (Di Matteo et al. 2005, Springel et al. 2005b, Robertson et al. 2006) and have the colors (Springel et al. 2005a) and other properties (Cox et al. 2006, Robertson et al. 2006) appropriate for present day elliptical galaxies. While the minor interactions we discuss here are a likely fueling mechanism for many forms of nuclear activity (see, e.g., Hopkins & Hernquist 2006), because significant black hole growth requires large quantities of gas (approximately the entire content of the initial disks) to be driven to the galactic center, it is likely that black hole growth and feedback play a relatively minor part during most of the unequal mass interactions we follow here. Of course, the existence of a correlation between the black hole mass and the bulge mass (see, e.g., Magorrian et al. 1998) suggests that at the very minimum the black hole imparts enough feedback to regulate its own growth.

ACKNOWLEDGMENTS

We thank Gurtina Besla, Suvendra Dutta, Lars Hernquist, Phil Hopkins, Jennifer Lotz, Greg Novak, Brant Robertson, and Josh Younger for helpful discussions, and Eric Bell for providing his data in electronic form. This research used the Beowulf UpsAnd at UCSC and computational resources at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy, TJIC, AD, and JRP acknowledge support from NASA and NSF grants at UCSC. PJ was supported by a UC/LLNL cooperative grant from IGPP to Wil van Breugel, and by program numbers HST-AR-10678 and HST-AR-10958, provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

REFERENCES

Aguerri J. A. L., Balcells M., Peletier R. F., 2001, A&A,
The effect of galaxy mass ratio on merger-driven starbursts

25

367, 428
Alam S. M. K., Bullock J. S., Weinberg D. H., 2002, ApJ, 572, 34
Barnes J. E., 2004, MNRAS, 350, 798
Barnes J. E., Hernquist L., 1992, ARA&A, 30, 705
Barnes J. E., Hernquist L. E., 1991, ApJL, 370, L65
Barton E. J., Arnold J. A., Zentner A. R., Bullock J. S., Wechsler R. H., 2007, submitted to ApJ
Barton E. J., Geller M. J., Kenyon S. J., 2000, ApJ, 530, 660
Barton Gillespie E., Geller M. J., Kenyon S. J., 2003, ApJ, 582, 668
Baugh C. M., Lacey C. G., Frenk C. S., Granato G. L., Silva L., Bressan A., Benson A. J., Cole S., 2005, MNRAS, 356, 1191
Bell E. F., de Jong R. S., 2001, ApJ, 550, 212
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJL, 585, L117
Benson A. J., 2005, MNRAS, 358, 551
Benson A. J., Lacey C. G., Frenk C. S., Baugh C. M., Cole S., 2004, MNRAS, 351, 1215
Berger J. C., Bullock J. S., Barton E. J., Guenter H. D., Zentner A. R., Wechsler R. H., 2006, ApJ, 652, 56
Borne K. D., Bushouse H., Lucas R. A., Colina L., 2000, ApJL, 536, L77
Bournaud F., Combes F., Jog C. J., 2005, A&A, 437, 69
Bournaud F., Combes F., Jog C. J., 2004, A&A, 418, L27
Broeils A. H., van Woerden H., 1994, A&AS, 107, 129
Brinchmann J., Ellis R. S., 2000, ApJL, 536, L77
Brodie J. P., van Woerden H., 1994, A&AS, 107, 129
Bullock J. S., Johnston K. V., 2005, ApJ, 635, 931
Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559
Cortés J. R., Kenney J. D. P., Hardy E., 2006, AJ, 131, 747
Covington M., Dekel A., Cox T. J., Primack J. R., Jonsson P., 2007, MNRAS submitted, 000, L0
Cowie L. L., Tissera P. B., Alonso M. S., Coldwell G., 2006, ApJL, 607, L87
Dalcanton J. J., Bernstein R. A., 2002, AJ, 124, 1328
de Jong R. S., 1996, A&A, 313, 45
de Vaucouleurs G., 1977, in Tinsley B. M., Larson R. B., eds, Evolution of Galaxies and Stellar Populations Qualitative and Quantitative Classifications of Galaxies. pp 43—+
Dekel A., Cox T. J., 2006, MNRAS, 370, 1445
Di Matteo T., Combes F., Melchior A.-L., Semelin B., 2007, A&A, 468, 61
Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
Eliche-Moral M. C., Balcells M., Aguerri J. A. L., González-García A. C., 2006, A&A, 457, 91
Ellison S. L., Patton D. R., Simard L., McConnachie A. W., 2007, submitted to ApJ
Font A. S., Navarro J. F., Stadel J., Quinn T., 2001, ApJL, 563, L1
Förster Schreiber N. M., Genzel R., Lutz D., Sternberg A., 2003, ApJ, 599, 193
Geha M., Blanton M. R., Majeski M., West A. A., 2006, ApJ, 653, 240
Geller M. J., Kenyon S. J., Barton E. J., Jarrett T. H., Kewley L. J., 2006, AJ, 132, 2243
Guiderdoni B., Hivon E., Bouchet F. R., Maffeis B., 1998, MNRAS, 295, 877
Harker J. J., Schiavon R. P., Weiner B. J., Faber S. M., 2006, ApJL, 647, L103
Helmi A., White S. D. M., 2001, MNRAS, 323, 529
Hernquist L., 1989, Nature, 340, 687
Hernquist L., 1990, ApJ, 356, 359
Hernquist L., 1992, ApJ, 400, 460
Hernquist L., 1993a, ApJS, 86, 389
Hernquist L., 1993b, ApJ, 409, 548
Hernquist L., Mihos J. C., 1995, ApJ, 448, 41
Hopkins P. F., Hernquist L., 2006, ApJS, 163, 1
Hopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2006, ApJS, 163, 1
Hopkins P. F., Somerville R. S., Hernquist L., Cox T. J., Robertson B., Li Y., 2006, ApJ, 652, 864
Huang S., Carlborg R. G., 1997, ApJ, 480, 503
Hubbell J. E., 1926, ApJ, 64, 321
Ibata R., Irwin M., Lewis G., Ferguson A. M. N., Tanvir N., 2001, Nature, 412, 49
Johnston K. V., Zhao H., Spergel D. N., Hernquist L., 1999, ApJL, 512, L109
Jonsson P., 2004, PhD thesis, UC Santa Cruz, http://sunrise.familjenjonsson.org/thesis
Jonsson P., 2006, MNRAS, 372, 2
Jonsson P., Cox T. J., Primack J. R., Somerville R. S., 2006, ApJ, 637, 255
Joseph R. D., Wright G. S., 1985, MNRAS, 214, 87
Kapferer W., Knapp G., Schindler S., Kimeswenger S., van Kampen E., 2005, A&A, 438, 87
Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
Kaufmann G., Beckman T. M., White S. D. M., Charlot S., Tremonti C., Peng E. W., Seibert M., Brinkmann J., Nichol R. C., SubbaRao M., York D., 2003, MNRAS, 341, 54
Kay S. T., Pearce F. R., Frenk C. S., Jenkins A., 2002, MNRAS, 330, 113
Kennicutt R. C., 1998, ApJ, 498, 541
Kennicutt R. C., Roettiger K. A., Keel W. C., van der Hulst J. M., Hummel E., 1987, AJ, 93, 1011
Khochfar S., Burkert A., 2006, A&A, 445, 403
Knappen J. H., Whyte L. F., de Blok W. J. G., van der Hulst J. M., 2004, A&A, 423, 481
Kormendy J., Fischer D. B., Cornell M. E., Bender R., 2007, submitted to ApJ
Lacey C., Cole S., 1993, MNRAS, 262, 627
Laine S., Heller C. H., 1999, MNRAS, 308, 557
Lambas D. G., Tissera P. B., Alonso M. S., Coldwell G., 2003, MNRAS, 346, 1189
Larson R. B., Tinsley B. M., 1978, ApJ, 219, 46
Lin L., Koo D. C., Weiner B. J., Chiueh T., Coil A. L., Lotz J., Conselice C. J., Willner S. P., Smith H. A., Guhathakurta P., Huang J.-S., Le Floc’h E., Noeske K. G., Willmer C. N. A., Cooper M. C., Phillips A. C., 2007, ApJL, 660, L51
Magorrian J., Tremaine S., Richstone D., Bender R., Bower G., Dressler A., Faber S. M., Gebhardt K., Green R., Grillmair C., Kormendy J., Lauer T., 1998, AJ, 115, 2285
Maller A. H., Katz N., Kereš D., Dave R., Weinberg D. H., 2006, ApJ, 647, 763
Mayer L., Moore B., Quinn T., Governato F., Stadel J., 2002, MNRAS, 336, 119
Mazzuca L. M., Sarzi M., Knapen J. H., Veilleux S., Swaters R., 2006, ApJL, 649, L79
Mihos J. C., Bothun G. D., 1997, ApJ, 481, 741
Mihos J. C., Hernquist L., 1994a, ApJL, 425, L13
Mihos J. C., Hernquist L., 1994b, ApJL, 431, L9
Mihos J. C., Hernquist L., 1996, ApJ, 464, 641
Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
Naab T., Burkert A., 2003, ApJ, 597, 893
Navarro J., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Helmi A., Freeman K. C., 2004, ApJL, 601, L43
Nikolic B., Cullen H., Alexander P., 2004, MNRAS, 355, 874
Noeske K. G., al. e., 2007, ApJL, 660, L43
Novak G. S., Cox T. J., Primack J. R., Jonsson P., Dekel A., 2006, ApJL, 646, L9
Ott J., Martin C. L., Walter F., 2003, ApJ, 594, 776
Quinn P. J., Goodman J., 1986, ApJ, 309, 472
Quinn P. J., Hernquist L., Fullagar D. P., 1993, ApJ, 403, 74
Robertson B., Cox T. J., Hernquist L., Fraux M., Hopkins P. F., Martini P., Springel V., 2006, ApJL, 461, 21
Robertson B., Hernquist L., Cox T. J., Di Matteo T., Hopkins P. F., Martini P., Springel V., 2006, ApJ, 461, 90
Rocha M., Jonsson P., Primack J. R., Cox T. J., 2007, MNRAS, submitted (astro-ph/0702513), 000, 000
Rothenberg M., Joseph R. D., 2004, AJ, 128, 2098
Salo H., Laurikainen E., 2000, MNRAS, 319, 377
Sagade A., 1975, Classification and Stellar Content of Galaxies Obtained from Photography. Galaxies and the Universe, pp 1–+
Sanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749
Scannapieco C., Tissera P. B., White S. D. M., Springel V., 2005, MNRAS, 364, 552
Schweizer F., 1998, in Friedli D., Martinet L., Pfenniger D., eds, Saas-Fee Advanced Course 26: Galaxies: Interactions and Induced Star Formation: Galaxies: Interactions and Induced Star Formation
Shen S., Mo H. J., White S. D. M., Blanton M. R., Kauffmann G., Voges W., Brinkmann J., Csabai I., 2003, MNRAS, 343, 978
Smith B. J., Struck C., Hancock M., Appleton P. N., Charmandaris V., Reach W. T., 2007, AJ, 133, 791
Smith D. A., Neff S. G., Bothun G. D., Fanelli M. N., Offenberg J. D., Waller W. H., Bohlin R. C., O’Connell R. W., Roberts M. S., Smith A. M., Stecher T. P., 1996, ApJL, 473, L21+
Sol Alonso M., Lambas D. G., Tissera P., Coldwell G., 2006, MNRAS, 367, 1029
Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087
Somerville R. S., Primack J. R., Faber S. M., 2001, MNRAS, 320, 504
Springel V., 2000, MNRAS, 312, 859
Springel V., Di Matteo T., Hernquist L., 2005a, ApJL, 620, L79
Springel V., Di Matteo T., Hernquist L., 2005b, MNRAS, 361, 776
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V., White S. D. M., 1999, MNRAS, 307, 162
Springel V., Yoshida N., White S. D. M., 2001, New Astronomy, 6, 79
Stinson G., Seth A., Katz N., Wadsley J., Governato F., Quinn T., 2006, MNRAS, 373, 1074
Struck C., 1997, ApJS, 113, 269
Struck C., 2006, Galaxy Collisions - Dawn of a New Era. Astrophysics Update 2, pp 115–+
Thacker R. J., Couchman H. M. P., 2000, ApJ, 545, 728
Toomre A., 1977, in Evolution of Galaxies and Stellar Populations Mergers and Some Consequences. p. p.401
Tornatore L., Borgani S., Matteucci F., Recchi S., Tozzi P., 2004, MNRAS, 349, L19
Toth G., Ostriker J. P., 1992, ApJ, 389, 5
van den Bergh S., 1960, ApJ, 131, 215
Velazquez H., White S. D. M., 1999, MNRAS, 304, 254
Vitvitska M., Klypin A. A., Kravtsov A. V., Wechsler R. H., Primack J. R., Bullock J. S., 2002, ApJ, 581, 799
Walker I. R., Mihos J. C., Hernquist L., 1996, ApJ, 460, 121
Walter F., Weiss A., Martin C., Scoville N., 2002, AJ, 123, 225
Wechsler R. H., Bullock J. S., Primack J. R., Kravtsov A. V., Dekel A., 2002, ApJ, 568, 52
Woods D. F., Geller M. J., 2007, AJ, 134, 527
Woods D. F., Geller M. J., Barton E. J., 2006, AJ, 132, 197
Younger J. D., Cox T. J., Seth A. C., Hernquist L., 2007, ApJ, accepted (astro-ph/0707.4481), 707
Yun M. S., Ho P. T. P., Lo K. Y., 1994, Nature, 372, 530
Zentner A. R., Berlind A. A., Bullock J. S., Kravtsov A. V., Wechsler R. H., 2005, ApJ, 624, 505

© 0000 RAS, MNRAS 000, 000–000