Phenotypic and molecular characterisations of carbapenem-resistant *Acinetobacter baumannii* strains isolated in Madagascar

Pierrette Landrie Simo Tchuinte 1*, Mamitiana Alain Noah Rabenandrasana 1†, Carole Kowalewicz 1, Volasoa Herilalaina Andrianoeina 1, Andriniaina Rakotondrasa 1, Zaïtsara Zo Andrianirina 3, Vincent Enouf 2, Elisoa Hariniaina Ratsima 1, Frédérique Randrianirina 1 and Jean-Marc Collard 1

Abstract

Background: The present study aimed to perform a deep phenotypic and genotypic analysis of 15 clinical carbapenem-resistant *Acinetobacter baumannii* (CRAb) strains isolated in Madagascar between 2008 and 2016 from diverse sources.

Methods: CRAb isolates collected from the Clinical Biology Centre of the Institut Pasteur of Madagascar, from the neonatal unit of Antananarivo military hospital, and from intensive care units of Mahajanga Androva and Antananarivo Joseph Ravoahangy Andrianavalona (HJRA) hospitals were subjected to susceptibility testing. Whole-genome sequencing allowed us to assess the presence of antibiotic-resistance determinants, insertion sequences, integrons, genomic islands and potential virulence factors in all strains. The structure of the *carO* porin gene and deduced protein (CarO) were also assessed in CRAb isolates.

Results: All isolates were found to be multidrug-resistant strains. Antibiotic-resistance genes against six classes of antimicrobial agents were described. The four carbapenem-resistance genes: *bla*OXA-51-like, *bla*OXA-23, *bla*OXA-24, and *bla*OXA-58 genes were detected in 100, 53.3, 13.3, and 6.6% of the isolates, respectively. Additionally, an IS*Ab1* located upstream of *bla*OXA-23 and *bla*ADC-like genes was observed in 53.3 and 66.7% of isolates, respectively. Further, Tn2006 and Tn2008 were found associated to the IS*Ab1*-blaOXA-23 structure. An 8051-bp mobilizable plasmid harbouring the *bla*OXA-24 gene was isolated in two strains. In addition, 46.7% of isolates were positive for class 1 integrons. Overall, five sequences types (STs), with predominantly ST2, were detected. Several virulence genes were found in the CRAb isolates, among which two genes, *epsA* and *ptk*, responsible for the capsule-positive phenotype, were involved in *A. baumannii* pathogenesis.

Conclusions: This study revealed the presence of high-level carbapenem resistance in *A. baumannii* with the first description of OXA-24 and OXA-58 carbapenemases in Madagascar. This highlights the importance of better monitoring and controlling CRAb in Madagascan hospitals to avoid their spread.

Keywords: *Acinetobacter baumannii*, Carbapenem-resistance, Antimicrobial resistance
Background

Acinetobacter baumannii is a bacterial species that can survive on moist and dry surfaces. A. baumannii is widespread in clinical environments, colonizing a variety of surfaces (including medical instrumentation), surviving for instance also as a commensal on the skin or hair of hospital staff and patients. The ability of this organism to gain multiple virulence factors and survive in hospital environments for prolonged periods has led to it emerging as a successful worldwide opportunistic nosocomial pathogen. It is responsible for a wide range of infections, such as bacteremia, sepsis, meningitis and urinary tract infections, and is therefore challenging in terms of infection control by health personnel [1, 2]. This species also has a remarkable propensity for the rapid acquisition of resistance to an extensive range of antimicrobial agents. They can exhibit a major resistance profile, including carbapenems and other β-lactam antibiotics, leaving clinicians with limited therapeutic options. Carbapenem-resistant A. baumannii (CRAb) have arisen in recent decades. The most common mechanisms for resistance involve enzymatic degradation of the drugs, modification or protection of the target and decreased permeability to or active efflux of antibiotics, often working synergistically. The resistance to carbapenems in A. baumannii has been globally related to numerous enzymes, including OXA-type carbapenemases (OXA-51, OXA-23, OXA-24 and OXA-58) and metallo-β-lactamases (IMP and NDM) [3, 4]. Major expression of OXA genes might be facilitated by insertion sequences (ISs), such as ISAba1, ISAba4 and ISAba125, which provide an additionally strong promoter [5, 6]. Furthermore, overexpression of the adeB gene, tightly regulated by the adeRS genes (two-component regulatory system of AdeABC efflux pump family), has also been described implicated in carbapenem resistance in the Acinetobacter species [7, 8]. It has also been shown that variation in porins can provide a mechanism to escape from antibacterial pressure. A. baumannii intrinsically has a smaller number and size of porins compared with other Gram-negative bacteria (GNB). The loss of membrane permeability, owing to changes in primary structure, or loss of CarO (carbapenem-associated outer-membrane protein) porin currently are the best characterized causes of intrinsic A. baumannii carbapenem resistance [9, 10]. In most cases, these changes are the result of carO porin gene disruption by various ISs. Based on the variable domains of this porin, this channel is classified into two groups, CarOa and CarOb, where CarOb has been shown to be twice as specific for imipenem than CarOa [11].

Furthermore, A. baumannii exhibits resistance to biocides commonly used in hospitals and laboratories. In addition to the resistance issue, virulence factors have been discovered in A. baumannii and a list of virulence factors has been reported by Abbott et al. (2013) [12].

Although a huge number of studies in industrialized countries have reported on the molecular epidemiology and antimicrobial resistance profiles of A. baumannii, clinical isolates and, to a lesser extent, virulence factors of individual strains, data on resistance and virulence factors from strains isolated in sub-Saharan countries are scarce. This is especially true for Madagascar where only one study described 53 multidrug-resistant (MDR) OXA-23-producing A. baumannii strains collected from various hospitals between 2006 to 2009 [13]. The present study aimed to perform a deep phenotypic and genotypic analysis of 15 clinical CRAb strains isolated in Madagascar between 2008 and 2016. The genetic environment surrounding all carbapenem-resistance determinants, the structure of the gene encoding the CarO porin and the presence of virulence genes have been also investigated.

Methods

Bacterial isolates and identification

All CRAb (n = 15) isolates collected from clinical samples originating from different studies in Madagascar during the period 2008–2016 (Table 1) and conserved in the biobank of the Institut Pasteur of Madagascar were included in this study. The first identifications were carried out by API 20NE gallery tests and confirmation was conducted by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS, Bruker Daltomics, Bremen, Germany).

Antimicrobial susceptibility testing

Antimicrobial susceptibilities of the isolates were determined by the disk diffusion method on Mueller-Hinton agar (Bio-Rad, France), as recommended by the Antibiotic Committee of the French Microbiology Society (ACFMS 2015). The following antimicrobial agents were tested: ticarcillin; ticarcillin/clavulanic acid; piperacillin; piperacillin/tazobactam; ceftazidime; cefotaxime; cefepime; meropenem; nalidixic acid; levofloxacin; ciprofloxacin; gentamicin; tobramycin; amikacin; and trimethoprim/sulfamethoxazole. Resistance (Minimum Inhibitory Concentrations, (MICs)) to imipenem and meropenem was determined by Etests (BioMerieux, Marcy l’Etoile, France) according to the manufacturer’s instructions and ACFMS breakpoints (strains displaying MICs > 8 mg/L for imipenem and meropenem were considered resistant).

DNA extraction and whole-genome sequencing (WGS)

DNA was extracted with the cador Pathogen 96 QIAcube HT Extraction Kit (Qiagen, Paris, France) on a Qiacube HT from 5 mL of liquid cultures grown overnight at 37°C in Luria-Bertani infusion medium following the manufacturer’s protocol. Purity and DNA quantity were assessed using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA was sequenced and assembled with CLC Genomics Workbench (CLC bio, Aarhus, Denmark) and genetic variations were determined with Phrap (University of Wisconsin, Madison, WI, USA) and ANGEL (Department of Computer Science, University of Aarhus, Aarhus, Denmark).
Scientific, Waltham, USA). Illumina sequencing libraries were prepared by with the Nextera XT DNA Sample Kit (Illumina, San Diego, USA) featuring indexed-encoded adapters from Illumina based on the manufacturer’s instructions. The libraries were pooled for sequencing on a NextSeq 500 platform (Illumina) using 2 × 150-bp runs. FqCleaner (version 3.0) was employed to eliminate adaptor sequences (1), reduce redundant or over-represented reads (2), correct sequencing errors (3), merge overlapping paired reads (4) and discard reads with Phred scores (measure of the quality of identification of nucleobases generated by automated DNA sequencing) < 20. Sequences with < 40 times average coverage after trimming were resequenced to avoid artefacts with respect to allele calling. The Illumina sequence data were assembled using Spades software (version 3.9.0).

Genome annotation and molecular analyses

All assembled genomes obtained were analysed and annotated with online tools and/or open-access databases and manual examinations. A Rapid Annotations using Subsystems Technology (RAST) server was applied for genome annotation [14]. The antimicrobial resistance gene profile was determined via KmerResistance 2.2 from the Centre for Genomic Epidemiology (CGE) [15]. Mobile elements, including ISs and class 1 integrons, were identified using the software’s ISsaga from ISFinder and Geneious 11.0.5, respectively [16, 17]. The prediction of number and visualization of genomic islands (GIs) were performed through the webserver, IslandViewer4 [18].

Distribution of virulence genes

In silico investigation of certain genes known as virulence factors in A. baumannii (AC nb: CP018861), such as cvaC (encoding for colicin V production), ptk (encoding a putative protein tyrosine kinase) and epsA (encoding a putative polysaccharide export outer-membrane protein) was performed. The genes of csu (csuA, csuB, csuC, csuD and csuE, encoding the chaperone-usher Csu fimbriae) and pga loci (pgaA, pgaB, pgaC and pgaD, encoding the polysaccharide poly-N-acetylgalucosamine, PNAG), responsible for biofilm formation, were also investigated [19–21].

The complete manual annotation of all resistance and virulence determinants and their genetic environments was performed via Geneious software 11.0.5 (Biomatters, Auckland, New Zealand).

CarO amino acid sequence alignment and in silico analyses

The presence of the carO porin (AC nb: FJ652396) gene was screened for in all our CRAb isolates.
predicted amino acid sequences of CarO isom protein
were determined to type the CarO (CarOa or CarOb) and
evaluate gene disruption by ISs. The typing was conducted
by sequence alignment of predicted CarO proteins with
those already described in the NCBI database (CarOa, AC
nb: ZP_05828783 and CarOb, AC nb: ADQ277977) using
Geneious software. The amino acid changes observed were
analysed with PROVEAN (http://provean.jcvi.org/) soft-
ware, which predicts whether an amino acid substitution,
insertion or deletion has any impact on the biological func-
tion of a protein.

In silico multilocus sequence typing (MLST)
The MLST scheme described by Bartual et al. [22] was per-
fomed according to the Acinetobacter baumannii MLST
(Pasteur) database (https://pubmlst.org/abaumannii/). The
assembled sequences of seven housekeeping genes (cnp62,
fusA, gltA, pyrG, recA, rplB and rpoB) were aligned through
BLAST (Basic Local Alignment Search Tool), and the
aligned sequences were then extracted by comparing them
to allele profiles from the A. baumannii MLST (Pasteur)
database.

Core genome phylogeny analysis
To investigate genetic relatedness of the CRAb isolates eval-
uated in this study with those described in the literature,
core genome phylogeny was performed with Harvest Suite
version v1.1.2 [23]. In addition to the local CRAb panel, a
set of five genomes geographically unrelated was included in
the analysis. Genomic data utilised in the phylogenetic tree
were downloaded from the NCBI (National Centre for Bio-
technology Information) database, including the complete
genome sequences of the A. baumannii isolates ATCC1778
(CP000521), ACICU (CP000863), MDR-ZJ06 (CP001937),
A388 (CP024418) and AB0057 (CP001182) [24].

Nucleotide sequence accession numbers
The 6302-bp, 5551-bp and 6486-bp A. baumannii genomic
sequences containing Tn62, Tn65, Tn66 and Tn67 were aligned through
BLAST (Basic Local Alignment Search Tool), and the
aligned sequences were then extracted by comparing them
to allele profiles from the A. baumannii MLST (Pasteur)
database.

Results
Antimicrobial susceptibility testing
Table 1 summarizes the source, year of isolation and resist-
ance phenotype of all CRAb isolates studied. The clinical
sources from which the strains were isolated were wounded
26.7% (n = 4); rectal swabs/faeces 26.7% (n = 4); bronchoal-
veolar lavage fluids 13.3% (n = 2) and urine, pleural fluid,
urethral pus, superficial pus and blood culture (one sample
representing each at 6.7%). All isolates (100%) demon-
strated resistance to at least three classes of antibiotics,
including the MDR criteria [21]. The disk
diffusion method indicated that all strains (100%) were re-
sistant to ticarcillin, ticarcillin/clavulanic acid, piperacillin,
piperacillin/tazobactam, ceftoxime, ceftazidime, cefepime,
gentamicin and meropenem. The rate of other resistances
was as follows: 93.3% (n = 14) for nalidixic acid and cipro-
foxacin, 80% (n = 12) for levofloxacin, 66.6% (n = 10) for
tobramycin, 40% (n = 6) for amikacin and 60% (n = 9) for
trimethoprim/sulfamethoxazole. The studied isolates were
resistant to imipenem and meropenem with MIC values
above 32 mg/L (except AB1784, MIC to IPM = 12 mg/L).

Detection of drug-resistance genes and related ISs
The natural intrinsic blaOXA-51like (blaOXA-65, blaOXA-66,
blaOXA-67 and blaOXA-69) gene, as well as three acquired
oxacillinases genes, blaOXA-23, blaOXA-24 and blaOXA-58,
were present in 100, 53.3% (n = 8), 13.3% (n = 2) and
6.7% (n = 1) of our CRAb isolates, respectively (Table 2).
ISAba1 was detected upstream all blaOXA-23 genes, and
this was later embedded in Tn2006 and Tn2008 transpos-
sons, all chromosomally located (Fig. 1).

The two blaOXA-24 genes flanked by the XerC/XerD
recombination sites were located on a small plasmid
(8Kb) designated pOXA-24_AB334. This harboured nine
open-reading frames (Fig. 3), among which two replicon
genes (repA and repB) and two plasmid mobilization
genes (mobil and mobS) were found. Comparative analysis
revealed that pOXA-24_AB334 was 99.1% identical with
pABUH3a-8.2 (NZ_AYFH0100048.1) detected in the clini-
cal A. baumannii UH 7607 strain isolated in the USA.
Further, these two plasmids belong to the small Rep-3
superfamily usually described in A. baumannii [25] (Fig. 2).

The KmerResistance 2.2 results revealed the presence of
several others antibiotic-resistance genes (Table 2). The
ampC Acinetobacter-derived cephalosporinase blaADC-like
gene was established in all CRAb isolates. Sixty-six percent
(n = 10) of the blaADC-positive isolates were associated
with ISAba1 upstream of the blaADC genes. The variants identi-
fied were exhibiting more than 98% identity with blaADC-10
blaADC-11, blaADC-25, blaADC-52, blaADC-81 and blaADC-106
genes. All strains harboured at least one gene involved
in aminoglycoside resistance (aac(3)-Ia, aac(3)-IId, aph(3′)-Ia;
aph(3′)-Ic; aph(3′)-la; aph(3′)-Ib; aph(6)-Id, ant(3′)-Ia). Genes
encoding resistance to tetracycline and/or minocy-
cline (tetB, tet39), sulphonamides (sul1, sul2), macrolides
(msrE, mphE), β-lactams (blaTEM1β) and chloramphenicol
(cmlA1) resistance were also detected.

Mobile genetic elements
Investigation of mobile genetic elements showed that
46.7% (n = 7) of isolates were positive for class 1 integrons
(Table 2), which were all embedded in chromosomal gen-
omic resistance island, AbGRI2-1. Gene cassette (GC) ar-
rays encoded for resistance to aminoglycosides (aac(3)-Ia,
ant(3′)-la) and for proteins with unknown functions
Table 2 Genetic features of the carbapenem-resistant *Acinetobacter baumannii* isolates described in this study

Isolate reference number	ST	Antimicrobial resistance genes	ISAb1 + blaOXA-23	ISAb1 + blaADC	Number of IS	Transposon distribution
AB 346	2	blaOXA-66; blaADC-25; aph(3″)-la aadA; aac(3)-la; aph(8)-Id; aph(3*)-lb; sul1; sul2; tet(R)	–	+	17	–
AB 285	1195	blaOXA-67/23/58; tet(39); blaADC-106; aac(3)-Id; sul2; aph(6)ld	+	–	16	Tn2008
AB 79	1196	blaOXA-66/24; blaADC-52; aac(3)-lla; aph(3*)-lb; sul2; aph(6)ld; blatem1b	–	+	13	–
AB 116	79	blaOXA-65/23; blatem-16; aac(3)-lla; blaADC-52; sul2; mppE; aph(3*)-lb; aph(6)ld; msr(E)	+	+	20	Tn2006
AB 184	1	blaOXA-66; blam-11; ant(3*)-la	–	–	7	–
AB 4066	2	blaOXA-66/23; blaADC-25; tet8; aac(3)-la; aph(3*)-lc; ant(3*)-la; sul2; sul1; aph(3*)-lb; aph(6)ld	+	+	5	Tn2006
AB 334	1196	blaOXA-66/24; blatem-16; aac(3)-lla; blam-25; sul2; aph(3*)-lb; sul; aph(6)ld	–	+	7	–
AB 4046	2	blaOXA-66; blam-23; tet8; aac(3)-la; aph(3*)-la; aph(3)-IC; aph(6)-ld; tet8; ant(3*)-la; sul2; sul1; aph(3*)-lb	–	+	5	–
AB 141	2	blaOXA-66/23; blaADC-25; aac(3)-lla; ant(3*)-la; aph(3)-IC; sul2; sul1; tet32; aph(3*)-lb; cmA1; aph(6)ld	+	+	5	Tn2006
AB 006	1	blaOXA-66/23; blam-81; ant(3*)-la	+	–	2	Tn2006
AB 153	1	blaOXA-66/23; blaADC-10; ant(3*)-la	+	–	4	Tn2006
AB 142	2	blaOXA-66/23; blaADC-25; aac(3)-lla; ant(3*)-la; aph(3)-la; aph(3*)-lb; sul1; sul2; tet32; aph(6)ld; msr(E)	+	+	5	Tn2006
AB 187	1	blaOXA-66; blam-81; ant(3*)-la	–	–	2	–
AB 1784	2	blaOXA-66; blam-23; tet8; aac(3)-la; aph(3)-IC; ant(3*)-la; sul2; sul1; aph(3*)-lb; aph(6)ld	–	+	4	–
AB 176	2	blaOXA-66/23; blaADC-25; aac(3)-la; ant(3*)-la; aph(3*)-la; aph(3*)-lb; aph(6)ld; sul1; sul2; tetB	+	+	4	Tn2006

+: presence of the indicated structure; −: absence of the indicated structure; ST, sequence type; IS, insertion sequence

Fig. 1 a and b Schematic representation of two transposons described in this study: (a) Tn2006; (b) Tn2008 and their genetic environment. The nine-bp target site duplication of Tn2006 and Tn2008 are represented underlined. Insertion elements are represented by ISAb1 and ISAb2. P_out: ISAb1 promoter; orf1: orf encoding for a hypothetical protein; ATPase: gene encoding the putative AAA ATPase; DEAD, gene encoding the putative DEAD helicase.

Table 2 Genetic features of the carbapenem-resistant *Acinetobacter baumannii* isolates described in this study

Isolate reference number	ST	Antimicrobial resistance genes	ISAb1 + blaOXA-23	ISAb1 + blaADC	Number of IS	Transposon distribution
AB 346	2	blaOXA-66; blaADC-25; aph(3″)-la aadA; aac(3)-la; aph(8)-Id; aph(3*)-lb; sul1; sul2; tet(R)	–	+	17	–
AB 285	1195	blaOXA-67/23/58; tet(39); blaADC-106; aac(3)-Id; sul2; aph(6)ld	+	–	16	Tn2008
AB 79	1196	blaOXA-66/24; blaADC-52; aac(3)-lla; aph(3*)-lb; sul2; aph(6)ld; blatem1b	–	+	13	–
AB 116	79	blaOXA-65/23; blatem-16; aac(3)-lla; blaADC-52; sul2; mppE; aph(3*)-lb; aph(6)ld; msr(E)	+	+	20	Tn2006
AB 184	1	blaOXA-66; blam-11; ant(3*)-la	–	–	7	–
AB 4066	2	blaOXA-66/23; blaADC-25; tet8; aac(3)-la; aph(3*)-lc; ant(3*)-la; sul2; sul1; aph(3*)-lb; aph(6)ld	+	+	5	Tn2006
AB 334	1196	blaOXA-66/24; blatem-16; aac(3)-lla; blam-25; sul2; aph(3*)-lb; sul; aph(6)ld	–	+	7	–
AB 4046	2	blaOXA-66; blam-23; tet8; aac(3)-la; aph(3*)-la; aph(3)-IC; aph(6)-ld; tet8; ant(3*)-la; sul2; sul1; aph(3*)-lb	–	+	5	–
AB 141	2	blaOXA-66/23; blaADC-25; aac(3)-lla; ant(3*)-la; aph(3)-IC; sul2; sul1; tet32; aph(3*)-lb; cmA1; aph(6)ld	+	+	5	Tn2006
AB 006	1	blaOXA-66/23; blam-81; ant(3*)-la	+	–	2	Tn2006
AB 153	1	blaOXA-66/23; blaADC-10; ant(3*)-la	+	–	4	Tn2006
AB 142	2	blaOXA-66/23; blaADC-25; aac(3)-lla; ant(3*)-la; aph(3)-la; aph(3*)-lb; sul1; sul2; tet32; aph(6)ld; msr(E)	+	+	5	Tn2006
AB 187	1	blaOXA-66; blam-81; ant(3*)-la	–	–	2	–
AB 1784	2	blaOXA-66; blam-23; tet8; aac(3)-la; aph(3)-IC; ant(3*)-la; sul2; sul1; aph(3*)-lb; aph(6)ld	–	+	4	–
AB 176	2	blaOXA-66/23; blaADC-25; aac(3)-la; ant(3*)-la; aph(3*)-la; aph(3*)-lb; aph(6)ld; sul1; sul2; tetB	+	+	4	Tn2006

+: presence of the indicated structure; −: absence of the indicated structure; ST, sequence type; IS, insertion sequence

Fig. 1 a and b Schematic representation of two transposons described in this study: (a) Tn2006; (b) Tn2008 and their genetic environment. The nine-bp target site duplication of Tn2006 and Tn2008 are represented underlined. Insertion elements are represented by ISAb1 and ISAb2. P_out: ISAb1 promoter; orf1: orf encoding for a hypothetical protein; ATPase: gene encoding the putative AAA ATPase; DEAD, gene encoding the putative DEAD helicase.
(orfP1–orfP2–orfQ). ISs screening in all genomes analysed demonstrated a large diversity present, mainly of the IS3, IS4, IS30, IS256 and ISL3 families.

Genome annotation and GIs
The genome length for our *A. baumannii* isolates were approximately 4 million bp with an annotation average coverage of 50%, and the number of coding DNA sequences per genome was approximately 3500. The GIs of all genomes were detected by IslandPath-DIMOB software and their number varied from 3 to 8. The visualization of the genetic structures of these GIs revealed the presence of antibiotic resistance genes (aph(6)-Id, aph(3′)-Ib, aac(3)-Ia, sul1, blaTEM); genes encoding multidrug transporters (tetA and qacEΔ1); mercuric- and arsenic-resistance determinants; transposable elements, including IS (ISaba1, IS26, ISVsa3 and IS1006); and the Tn7 transposon.

Distribution of virulence genes
Additional file 1: Table S1 summarizes the distribution of virulence genes described in all CRAb isolates described herein. The distribution of virulence genes revealed the presence of *cvaC, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC* and *pgaD* genes in all isolates assessed. The *csuA* was detected in 86% of strains. Interestingly, the two genes, *epsA* and *ptk*, responsible for the capsule-positive phenotype involved in the pathogenesis of *A. baumannii* [19] were found in all CRAb strains analysed.

Analysis of the carO porin gene and CarO isoform proteins
All strains harboured an intact structure of the carO porin gene. The predicted amino acid sequence showed that CarOa and CarOb were distributed among 20% (n = 3) and 53.3% (n = 8) of our CRAb isolates, respectively (Table 1, Additional file 1). However, a point mutation in the CarOb protein (S214 T) in AB184, AB006, AB 153 and AB 187 isolates was detected. PROVEAN analysis uncovered that this amino acid substitution had a neutral impact in terms of protein function. No disruption of the carO porin gene by an IS suggests that the CarO porin transporter was not implicated in carbenem resistance within our isolates.

Genotype analysis and phylogenetic tree construction
In order to elucidate the different genotypes of CRAb isolates circulating in Madagascar, an MLST scheme based on the Pasteur database was employed. The results revealed that the isolates were clustered into five different genotypes or STs, mostly represented by ST2 (n = 7) followed by ST1 (n = 4). Three strains had new allelic profiles and novel ST
numbers (ST1195 for AB285 and ST1196 for AB79/AB334) assigned (Table 2).

The phylogenetic tree analysis indicated that all strains belonging to the same ST (ST1, ST2 or ST1196) clustered together. The strains belonging to ST1 (n = 4) clustered with AB00057 isolated from the USA in 2004. These four strains recovered in 2015 and 2016 all originated from Antananarivo. Strains belonging to ST2 (n = 7) isolated from Antananarivo and Majunga between 2008 and 2016 clustered with MDR-ZJ06, widespread throughout China [26]. Antananarivo and Majunga are separated by 565 km and our results suggest a permanent circulation of ST2 genotype in Madagascar. The strains belonging to the new ST (ST1195 and ST1196) were phylogenetically distinct from the others belonging to ST1 and ST2 (Fig. 3).

Discussion
Carbapenem resistance in *A. baumannii* is based on the production of carbapenemases or synergistic effects between carbapenemases, porin modifications or loss or modification of the penicillin-binding proteins [26, 27]. In this study, 53.3, 13.3 and 6.7% of 15 CRAb isolates harboured the carbapenemases *bla*OXA-23, *bla*OXA-24 and *bla*OXA-58 genes, respectively (Table 2). The carbapenemases (OXA-23, OXA-24 and OXA-58, respectively) encoded by these genes have been described to confer a reduced susceptibility to carbapenems [28, 29]. Like reported elsewhere, the *bla*OXA-23 gene in our CRAb isolates was upregulated by an IS*Aba1*, which provides a strong promoter [21, 30, 31]. This is the first report of OXA-24 and OXA-58 carbapenemase-producing *A. baumannii* in Madagascar. This latter was co-expressed with OXA-23 in the AB285 isolate.

Additionally, the OXA-51-like gene was determined in all CRAb isolates. The derived oxacillinase (OXA-51-like) confers a high level of resistance to carbapenems only when it is overexpressed [32]. Nevertheless, high-level MICs of imipenem and meropenem was exhibited by some of strains in which the OXA-51 gene was not upregulated (Table 2), and this could be explained by other mechanisms, such as the reduced expression of penicillin-binding protein (PBP2) or the loss of the particular outer-membrane proteins related to carbapenem resistance, like those highlighted by the results of Fernández-Cuenca et al. [26].

The acquisition and dissemination of the resistance genes are largely owing to the actions of mobile genetic elements (MGEs) [33]. This study described MGEs, such as transposable elements (IS*Aba1*, Tn2006 and Tn2008), class 1 integrons, AbaR-type genomic resistance islands (AbGRI2–1) and plasmids [34]. In accordance with several others reports, these genetic structures could disseminate antibiotic resistance determinants between bacteria cell and thus compromise antibiotic treatment, including those with clinical relevance [34–36].

A striking feature of this study is the large number of antibiotic-resistance genes found (Table 2). The resistance to third-generation cephalosporins and quinolones observed was associated with the presence of an ampC gene [21] and the S83 L substitution in the *gyrA* gene, respectively.

Typing and phylogenetic analysis have shown that the majority of strains (11/15) assigned to ST1 and ST2 were
closest to isolates belonging to globally disseminated clonal complexes I and II (CC1 and CC2), respectively. A previous study conducted in Antananarivo by Andriamantena et al. (2010) demonstrated the circulation of two A. baumannii genotypes (A and B typed by rep-PCR) in clinical settings between 2006 and 2009 [13] but the sequence types of these two genotypes were not investigated and could therefore not be correlated with those of our isolates.

The presence of the most important virulence genes (Table 1, Additional file 1) in almost all CRAB isolates is in agreement with their clinical importance and moreover confirmed they are all potential biofilm producers.

Conclusions
The deep molecular analysis of our clinical CRAB strains allowed for the description of the newly acquired carbapenemases (OXA-24, OXA-58) not previously described in Madagascar and highlighted the potential role of mobile elements, such as transposons and plasmids, in the dissemination of carbapenem resistance. Different studies, including ours, have provided evidence for the circulation of carbapenemase-producing strains (OXA23/24/58; NDM-1/4) in Madagascar [37]. Such circulation, both in Madagascar and the Indian Ocean region, is becoming worrisome and should be better monitored and controlled in order to avoid a rise in the incidence of untreatable nosocomial infections, especially within intensive care units.

Acknowledgements
We would like to thank Andriamantena Tahiry Sylviane for providing the Acinetobacter baumannii AB176 strain. All authors would like to thank Astrid Knoblauch for her help in proofreading the article.

Funding
This study is based upon a postdoctoral internship supported by Postdoctoral Grant CALMETTE and YERSIN from Institut Pasteur Department of International Affairs.

Availability of data and materials
All data generated or included during this study are featured in this published article.

Authors’ contributions
PLST, MANR and CK carried out the molecular genetic analysis. PLST drafted and wrote the manuscript. VA, AR, ERH, ZZA and FR provided the strains. VE performed whole-genome sequencing. JMC designed the study and revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Institut Pasteur de Madagascar, Antananarivo, Madagascar. 2Institut Pasteur, Pasteur International Bioresources Network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Paris, France. 3Service de Pédiatrie et Neonatologie, Centre Hospitalier de Soavinandriana, Antananarivo, Madagascar.

Received: 7 November 2018 Accepted: 3 February 2019

Published online: 11 February 2019

References
1. Molina L, Udaondo Z, Duque E, Fernández M, Molina-Santiago C, Roca A, et al. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital. PLoS One. 2014;9(1):e81664.
2. Vijayakumar S, S BA, Kanthan K, Veeraraghavan B. Whole-genome shotgun sequences of seven colistin-resistant Acinetobacter baumannii isolates from bacteriaemia. J Glob Antimicrob Resist. 2018;12155–6.
3. Hujer KM, Hujer AM, Endimiani A, Thomson JM, Adams MD, Goglin K, et al. Rapid determination of quinolone resistance in Acinetobacter spp. J Clin Microbiol. 2009;47(5):1436–42.
4. Horii T, Muramatsu H, Inumaa Y. Mechanisms of resistance to fluoroquinolones and carbapenems in Pseudomonas putida. J Antimicrob Chemother. 2005;56(4):643–7.
5. Mugnier PO, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the blaOXA-58 gene in Acinetobacter baumannii strains. Emerg Infect Dis. 2010;16(1):35–40.
6. Lopes BS, Amyes S. Role of ISAba1 and ISAba125 in governing the expression of blaox-a. J Bacteriol. 2005;187(10):3434–43.
7. Hornsey M, Ellington MJ, Doumith M, Thomas CP, Gordon NC, Wareham DW, et al. AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.
8. Yoon EJ, Chabane YN, Gousaud S, Nersesed S, Courvalin P, Delé E, Grillot-Courvalin C. Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance in Biofilm Formation in Acinetobacter baumannii. MBio. 2015;6(2):1–13.
9. Mussi MA, Limansky AS, Vale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother. 2005;49(4):1432–40.

10. Catel-Ferreira M, Casadou G, Molle V, Mugnier P, Nordmann P, Siry A, et al. Structure-function relationships of CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. J Antimicrob Chemother. 2011;66(9):2053–6.

11. Siry A, Molle V, Lemaître-guiller C, Valenet D, Pestel-caron M, Cozzone AJ, et al. Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. Channel formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. 2005;49(12):4876–83.

12. Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti-Infect Ther. 2013;11(4):395–409.

13. Andriamanantena TS, Ratsima E, Rakotonirina HC, Randrianirina F, Ramparany L, Carol JF, et al. Dissemination of multidrug resistant Acinetobacter baumannii in various hospitals of Antananarivo Madagascar. Ann Clin Microbiol Antimicrob. 2010;9:2–7.

14. Aziz RK, Bartels D, Best A, DeLongh M, Dizé T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:1–15.

15. Clausen PTLC, Zankari E, Aarestrup FM, Lund O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother. 2016;71(9):2484–8.

16. Varani AM, Sigueri P, Gourbeyre E, Chameau V, Chandler M. IsaGsa is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12(3):R30.

17. Kearse M, Moir R, Wilson A, Stoenes-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.

18. Bertelli C, Laird MR, Williams KP, Lau BY, Hoag D, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45(W1):W30–3.

19. Russo TA, Luke NR, Beanan JM, Olson R, Sauberan SL, MacDonald U, et al. The X1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect Immun. 2010;78(9):3993–4000.

20. Davishi M. Virulence factors profile and antimicrobial resistance of Acinetobacter baumannii strains isolated from various infections recovered from immunosuppressive patients. Biomed Pharmacol J. 2016;49(1):305–12.

21. Hujer KM, Hujer AM, Halten EA, Bajaksouzian S, Adams JM, Donnelly CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army medical. Antimicrob Agents Chemother. 2006;50(12):4114–23.

22. Burtal SG, Seifert H, Hippler C, Rodríguez-Valera F, Domí DA. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol. 2005;43(9):4382–90.

23. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite for rapid core-genome alignment and visualization of thousands of interspecific microbial genomes. Genome Biol. 2014;15(1):1–15.

24. Li P, Huang Y, Yu L, Liu Y, Niu W, Zou D, et al. Isoolation and whole-genome sequence analysis of the imipenem Heteroresistant Acinetobacter baumannii clinical isolate HRAB-85. Int J Infect Dis. 2017;62:94–100.

25. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect (Internet). 2006;12(9):826–36.

26. Poirel L, Bonnin RA, Nordmann P. Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. ISMBE Life. 2011;63(12):1061–7.

27. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother. 2005;49(4):1432–40.

28. Zhou H, Pi BR, Yang Q, Yu YS, Chen YG, Li LJ, et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1–blaOXA-23 genes in a Chinese hospital. J Med Microbiol. 2007;56(8):1076–80.

29. Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect. 2006;12(2):123–30.

30. Zhou H, Pi BR, Yang Q, Yu YS, Chen YG, Li LJ, et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1–blaOXA-23 genes in a Chinese hospital. J Med Microbiol. 2007;56(8):1076–80.

31. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72–7.

32. Héritier C, Poirel L, Fourrier P, Claverie J, Raoult D, Nordmann P, et al. Characterization of the naturally occurring Oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(10):4174–9.

33. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):1–61.

34. Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Brazilian J Microbiol. 2016;47(4):785–92.

35. Nigro SJ, Farrugia DN, Paulsen IT, Hall RM. A novel family of genomic resistance islands, AbuGRI-2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. J Antimicrob Chemother. 2013;68(3):544–7.

36. Chen Y, Gao J, Zhang H, Ying C. Spread of the blaOXA-23-containing Tn2008 in carbapenem-resistant Acinetobacter baumannii isolates grouped in CC92 from China. Front Microbiol. 2017;8:1–6.

37. Holman AM, Alyn J, Miltgen G, Lugagne N, Traversier N, Picot S, et al. Surveillance of carbapenemase-producing Enterobacteriaceae in the Indian Ocean region between January 2010 and December 2015. Med Mal Infect. 2017;47(5):333–9.