A note on singular two-dimensional fractional coupled Burgers’ equation and triple Laplace Adomian decomposition method

Hassan Eltayeb¹*, and Imed Bachar¹

¹Correspondence: hgdain@ksu.edu.sa
¹Mathematics Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia

Abstract

The present article focuses on how to find the exact solutions of the time-fractional regular and singular coupled Burgers’ equations by applying a new method that is called triple Laplace and Adomian decomposition method. Furthermore, the proposed method is a strong tool for solving many problems. The accuracy of the method is considered through the use of some examples, and the results obtained are compared with those of the existing methods in the literature.

Keywords: Double and triple Laplace transform; Inversed double and triple Laplace transform; Singular fractional coupled Burgers’ equation; Mittag-Leffler function; Single Laplace transform; Decomposition methods

1 Introduction

Fractional Burgers’ equation has received significant attention. The solution of this equation becomes very important for mathematical and physical phenomena. This equation has been discovered to explain different kinds of events, for example, it is a mathematical model of turbulence and approximate theory of a flow over a shock wave traveling in a viscous fluid [1, 2]. Local fractional homotopy analysis method has been explained in [3, 4]. The authors in [5] applied the new semianalytical method which is called the homotopy analysis Shehu transform method to solve multidimensional fractional diffusion equations. The researchers in [6, 7] examined the numerical solutions of three-dimensional Burger’s equation and Riccati differential equations by applying Laplace decomposition methods. From a recent couple of years, important dedication has been given to Laplace decomposition method and its modifications for studying mathematical model [8, 9]. In the literature several authors have suggested different types of approximation and exact methods for solving fractional Burger’s equation [10–12]. The authors in [13] applied the variational iteration method to obtain Burger’s equation. In [14] the Laplace decomposition method (LDM) is suggested to solve the two-dimensional nonlinear Burgers’ equations. The authors in [15] used the double Laplace decomposition methods to solve sin-
regular Burgers’ equation and coupled Burgers’ equations. In this study, we propose a new hybrid triple Laplace Adomian decomposition method to obtain exact solutions of the time-fractional regular and singular coupled Burgers’ equations. Finally, two examples are provided to illustrate the suggested approach.

Here we recall some definitions, notation of Laplace transform, and fractional calculus facts which are useful in this article.

Definition 1 ([16]) Let \(f \) be a function of three variables \(x, y, \) and \(t \), where \(x, y, t > 0 \). The triple Laplace transform of \(f \) is defined by

\[
L_x L_y L_t [f(x, y, t)] = F(p, q, s) = \int_0^\infty \int_0^\infty \int_0^\infty e^{-px-ay-st} f(x, y, t) \, dt \, dy \, dx,
\]

where \(p, q, s \) are Laplace variables. Further, the triple Laplace transform of the partial derivatives is denoted by

\[
L_x L_y L_t [u_c(x, y, t)] = pU(p, q, s) - U(0, q, s),
\]

\[
L_x L_y L_t [u_l(x, y, t)] = sU(p, q, s) - U(p, q, 0).
\]

Similarly, the triple Laplace transform for the second partial derivatives with respect to \(x, y, \) and \(t \) are defined as follows:

\[
L_x L_y L_t [u_{xx}(x, y, t)] = p^2 U(p, q, s) - pU(0, q, s) - \frac{\partial U(0, q, s)}{\partial x},
\]

\[
L_x L_y L_t [u_{yy}(x, y, t)] = q^2 U(p, q, s) - qU(0, q, s) - \frac{\partial U(p, 0, s)}{\partial y},
\]

\[
L_x L_y L_t [u_{tt}(x, y, t)] = s^2 U(p, q, s) - sU(p, q, 0) - \frac{\partial U(p, q, 0)}{\partial t}.
\]

The inverse triple Laplace transform \(L_p^{-1} L_q^{-1} L_t^{-1} [F(p, q, s)] = f(x, y, t) \) is defined as in [16] by the complex triple integral formula

\[
f(x, y, t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{pt} \, dp \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{qs} \, dq \frac{1}{2\pi i} \int_{d-i\infty}^{d+i\infty} e^{st} \, ds.
\]

Definition 2 ([17–19]) The Caputo time-fractional derivative operator of order \(\alpha > 0 \) is defined by

\[
D_t^\alpha u(r, t) = \begin{cases} \frac{\partial^m u(r,t)}{\partial r^m} & \text{for } m = \alpha \in \mathbb{N}; \\ \frac{1}{\Gamma(m-\alpha)} \int_0^t (t-\tau)^{m-\alpha-1} \frac{\partial^m u(r, \tau)}{\partial \tau^m} \, d\tau, & m-1 < \alpha < m. \end{cases}
\]

In the following theorem, we present the triple Laplace transforms of the partial fractional Caputo derivatives.

Theorem 1 ([20]) Let \(\alpha, \beta, \gamma > 0, \) \(n-1 < \alpha \leq n, \) \(m-1 < \beta \leq m, \) \(r-1 < \gamma \leq r, \) and \(n, m, p \in \mathbb{N}, \) so that \(f \in C^l(\mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+), \) \(l = \max\{n, m, p\}, f^{(l)} \in L_1([0,a] \times (0,b) \times (0,c]) \) for any \(a, b, c > 0, \) \(|f(x, y, t)| \leq we^{ax+by+ct}, \) \(x > a > 0, y > b > 0, \) and \(t > c > 0. \) Then the triple
Laplace transform of Caputo’s fractional derivatives $D^\alpha_t u(x, y, t)$, $D^\beta_y u(x, y, t)$ and $D^\gamma_x u(x, y, t)$ are given by

\[L_x L_y L_t [D^\alpha_t u(x, y, t)] = s^\alpha U(p, q, s) - \sum_{j=0}^{n-1} s^{\alpha-j-1} L_y L_t [D^j_y u(x, y, 0)], \quad n - 1 < \alpha < n, \] (1.1)

\[L_x L_y L_t [D^\beta_y u(x, y, t)] = q^\beta U(p, q, s) - \sum_{j=0}^{m-1} q^{\beta-j-1} L_y L_t [D^j_y u(x, 0, t)], \quad m - 1 < \beta < m, \] (1.2)

\[L_x L_y L_t [D^\gamma_x u(x, y, t)] = p^\gamma U(p, q, s) - \sum_{k=0}^{r-1} p^{\gamma-k-1} L_y L_t [D^k_x u(0, y, t)], \quad r - 1 < \gamma < r. \] (1.3)

Below, we establish the relation between Mittag-Leffler function and Laplace transform, which will be useful in this paper. The Mittag-Leffler function is defined by the following series representation:

\[E^\beta(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta k + 1)}, \quad z \in \mathbb{C}, \Re(\beta) > 0, \] (1.4)

the Mittag-Leffler function with two parameters is defined by

\[E^{\beta, \gamma}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta k + \gamma)}, \quad z \in \mathbb{C}, \Re(\alpha) > 0, \] (1.5)

see [21]. If we put $\beta = 1$ in Eq. (1.5), we obtain Eq. (1.4). It follows from Eq. (1.5) that

\[E_{1,1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k + 1)} = \sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z, \] (1.6)

\[E_{1,2}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k + 2)} = \sum_{k=0}^{\infty} \frac{z^k}{(k + 1)!} = \frac{1}{z} \sum_{k=0}^{\infty} \frac{z^{k+1}}{(k + 1) k!} = \frac{e^z - 1}{z}, \] (1.7)

and

\[E_{1,3}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k + 3)} = \sum_{k=0}^{\infty} \frac{z^k}{(k + 2)!} = \frac{1}{z^2} \sum_{k=0}^{\infty} \frac{z^{k+2}}{(k + 2) (k + 1) k!} = \frac{e^z - 1 - 1}{z^2}, \] (1.8)

in general,

\[E_{1,m}(z) = \frac{1}{z^{m-1}} \left[e^z - \sum_{k=0}^{m-2} \frac{z^k}{k!} \right]. \] (1.9)
In the following, we introduce the Laplace transforms of some Mittag-Leffler functions which are useful in this work:

\[
L_x L_y L_t \left[x^2 t^\alpha E_{1,\alpha+1}(t) \right] = \frac{2!}{p^3 q^s (s-1)},
\]

\[
L_x L_y L_t \left[t^\alpha E_{1,\alpha+1}(t) \right] = \frac{1}{pq s^\alpha (s-1)},
\]

\[
L_x L_y L_t \left[t^{2\alpha} E_{1,2\alpha+1}(t) \right] = \frac{1}{pq s^{2\alpha} (s-1)}.
\]

2 Analysis of the triple Laplace decomposition method

The main objective of this section is to address the use of triple Laplace Adomian decomposition method (TLADM) for solving two-dimensional time-fractional coupled Burger’s equation. We consider two-dimensional time-fractional coupled Burger’s equation in the form:

\[
\begin{align*}
D_\alpha^n u + uu_x + vu_y &= \frac{1}{\Re}(u_{xx} + u_{yy}), & x, y, t > 0, \\
D_\alpha^n v + uv_x + vv_y &= \frac{1}{\Re}(v_{xx} + v_{yy}), & x, y, t > 0,
\end{align*}
\]

\[\text{n–1}<\alpha<n;\] \hspace{1cm} (2.1)

with the initial condition

\[u(x, y, 0) = f_1(x, y), \quad v(x, y, 0) = g_1(x, y),\]

where \(D_\alpha^n = \frac{\partial^n}{\partial t^n}\) is the fractional Caputo derivative, \(\Re\) is the Reynolds number, and the velocity components are given by \(u(x, y, t)\) and \(v(x, y, t)\) in the \(x\) and \(y\) direction, respectively.

For the purpose of finding the solution of Eq. (2.1), we apply triple Laplace Adomian decomposition method as follows:

Step 1. Taking the triple Laplace transform for Eq. (2.1), we obtain

\[
\begin{align*}
L_x L_y L_t \left[u(x, y, t) \right] - s^{\alpha-1} U(p, q, 0) &= -L_x L_y L_t \left(uu_x + vu_y \right) \\
&+ L_x L_y L_t \left(\frac{1}{\Re}(u_{xx} + u_{yy}) \right),
\end{align*}
\]

\[
\begin{align*}
L_x L_y L_t \left[v(x, y, t) \right] - s^{\alpha-1} U(p, q, 0) &= -L_x L_y L_t \left(uv_x + vv_y \right) \\
&+ L_x L_y L_t \left(\frac{1}{\Re}(v_{xx} + v_{yy}) \right).
\end{align*}
\] \hspace{1cm} (2.2)

Step 2. Now, employing the differentiation property of the Laplace transform, we have

\[
\begin{align*}
L_x L_y L_t \left[u(x, y, t) \right] &= \frac{1}{s} F_1(p, q) - \frac{1}{s^\alpha} L_x L_y L_t \left(uu_x + vu_y \right) \\
&+ \frac{1}{s^\alpha} L_x L_y L_t \left(\frac{1}{\Re}(u_{xx} + u_{yy}) \right),
\end{align*}
\] \hspace{1cm} (2.3)
\[L_x L_y L_t [v(x, y, t)] = \frac{1}{s} G_1(p, q) - \frac{1}{s q} L_x L_y L_t (uv_x + vv_y) + \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} (v_{xx} + v_{yy}) \right). \]

Step 3. By implementing the triple inverse Laplace transformation of Eq. (2.3), we obtain

\[
\begin{align*}
u(x, y, t) &= \frac{1}{s} F_1(p, q) - \frac{1}{s q} L_x L_y L_t (uv_x + vv_y) \\
&+ \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} (u_{xx} + u_{yy}) \right),
\end{align*}
\]

(2.4)

Step 4. The Laplace Adomian decomposition solution functions \(u(x, y, t) \) and \(v(x, y, t) \) are given by the infinite series

\[
\begin{align*}
u(x, y, t) &= \sum_{n=0}^{\infty} u_n (x, y, t), \\
v(x, y, t) &= \sum_{n=0}^{\infty} v_n (x, y, t),
\end{align*}
\]

(2.5)

Further, the nonlinear terms \(uu_x, v_y v_{yy}, u_x v_x, \) and \(v_{yy} \) are given by:

\[
\begin{align*}
u &= \sum_{n=0}^{\infty} A_n, \\
v &= \sum_{n=0}^{\infty} B_n, \\
u &= \sum_{n=0}^{\infty} C_n, \\
v &= \sum_{n=0}^{\infty} D_n,
\end{align*}
\]

(2.6)

and, by substituting Eqs. (2.5) and (2.6) into Eq. (2.4), we get

\[
\begin{align*}
\sum_{n=0}^{\infty} u_n (x, y, t) &= \frac{1}{s} F_1(p, q) \\
&- \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} \sum_{n=0}^{\infty} (A_n + B_n) \right) \\
&+ \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} \sum_{n=0}^{\infty} (u_{xx} + u_{yy}) \right),
\end{align*}
\]

(2.7)

and

\[
\begin{align*}
\sum_{n=0}^{\infty} v_n (x, y, t) &= \frac{1}{s} G_1(p, q) \\
&- \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} \sum_{n=0}^{\infty} (C_n + D_n) \right) \\
&+ \frac{1}{s q} L_x L_y L_t \left(\frac{1}{s R} \sum_{n=0}^{\infty} (v_{xx} + v_{yy}) \right),
\end{align*}
\]

(2.8)
Step 5. Using Laplace Adomian decomposition method, we introduce the recursive relations and get:

\[
\begin{align*}
 u_0(x,y,t) &= L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s}F_1(p,q)\right), \\
 v_0(x,y,t) &= L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s}G_1(p,q)\right),
\end{align*}
\]

and the remainder components \(u_{n+1}\) and \(v_{n+1}\), for \(n \geq 0\), are given by

\[
\begin{align*}
 u_{n+1}(x,y,t) &= -L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s^2}L_xL_yL_t\left((A_n + B_n)\right)\right) \\
 &\quad + L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s^2}L_xL_yL_t\left(\frac{1}{s^3}(u_{xxx} + u_{yy})\right)\right) \tag{2.10}
\end{align*}
\]

and

\[
\begin{align*}
 v_{n+1}(x,y,t) &= -L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s^2}L_xL_yL_t\left((C_n + D_n)\right)\right) \\
 &\quad + L_p^{-1}L_q^{-1}L_t^{-1}\left(\frac{1}{s^2}L_xL_yL_t\left(\frac{1}{s^3}(v_{xxx} + v_{yy})\right)\right), \tag{2.11}
\end{align*}
\]

where a few first terms of the Adomian polynomials \(A_n, B_n, C_n,\) and \(D_n\) are given by

\[
\begin{align*}
 A_0 &= u_0u_{0x}, & A_1 &= u_0u_{1x} + u_1u_{0x}, \\
 A_2 &= u_0u_{2x} + u_1u_{1x} + u_2u_{0x}, \\
 A_3 &= u_0u_{3x} + u_1u_{2x} + u_2u_{1x} + u_3u_{0x}, \\
 B_0 &= v_0v_{0y}, & B_1 &= v_0v_{1y} + v_1v_{0y}, \\
 B_2 &= v_0v_{2y} + v_1v_{1y} + v_2v_{0y}, \\
 B_3 &= v_0v_{3y} + v_1v_{2y} + v_2v_{1y} + v_3v_{0y}, \\
 C_0 &= u_0v_{0x}, & C_1 &= u_0v_{1x} + u_1v_{0x}, \\
 C_2 &= u_0v_{2x} + u_1v_{1x} + u_2v_{0x}, \\
 C_3 &= u_0v_{3x} + u_1v_{2x} + u_2v_{1x} + u_3v_{0x}, \\
 D_0 &= v_0v_{0y}, & D_1 &= v_0v_{1y} + v_1v_{0y}, \\
 D_2 &= v_0v_{2y} + v_1v_{1y} + v_2v_{0y}, \\
 D_3 &= v_0v_{3y} + v_1v_{2y} + v_2v_{1y} + v_3v_{0y}, \tag{2.14} \tag{2.15}
\end{align*}
\]

and where \(L_xL_yL_t\) is the triple Laplace transform with respect to \(x, y, t\) and the triple inverse Laplace transform with respect to \(p, q, s\) is denoted by \(L_p^{-1}L_q^{-1}L_s^{-1}\). We supposed that the triple inverse Laplace transform with respect to \(p, q,\) and \(s\) exists in Eqs. (2.9), (2.10), and (2.11).

In the next numerical example, the suggested method is applied to a two-dimensional time-fractional coupled Burger’s equation when \(\Re = 1\) as follows:
Example 1 Consider a two-dimensional nonlinear Burger’s differential equation

\[D_\alpha^t u + uu_x + vu_y = u_{xx} + u_{yy}, \quad x, y, t > 0, \]

\[D_\alpha^t v + uv_x + vv_y = v_{xx} + v_{yy}, \quad x, y, t > 0, \]

\(n - 1 < \alpha < n; \quad (2.16) \)

subject to the condition

\[u(x, y, 0) = x + y, \quad v(x, y, 0) = x - y. \]

As reported by the above steps, we have

\[u(x, y, t) = x + y - L_p^{-1}L_q^{-1}L_{L_t}(u_0 + v_0), \]

\[+ L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(uu_x + vu_y)\right), \]

\[v(x, y, t) = x - y - L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(uv_x + vv_y)\right), \]

\[+ L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(vu_x + v_yy)\right). \quad (2.17) \]

The zeroth components \(u_0 \) and \(v_0 \), recommended by Adomian method, always contain initial condition and the source term, so we set

\[u_0 = x + y, \quad v_0 = x - y. \]

The other components \(u_{n+1}, v_{n+1}, n \geq 0 \) are given by the relations

\[u_{n+1} = -L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t((A_n + B_n))\right) \]

\[+ L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(u_{xxn} + u_{yy})\right) \]

\[\quad (2.18) \]

and

\[v_{n+1} = -L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t((C_n + D_n))\right) \]

\[+ L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(v_{xxn} + v_{yy})\right). \]

\[\quad (2.19) \]

By taking \(n = 0 \) in Eqs. (2.18) and (2.19), we get

\[u_1 = -L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t((A_0 + B_0))\right) \]

\[+ L_p^{-1}L_q^{-1}L_{L_t}\left(\frac{1}{s^2}L_xL_yL_t(u_{0xx} + u_{0yy})\right) \]
\[= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (2x) \right)\]
\[= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{2}{p^2 s^a + 1} \right)\]
\[= -2 \alpha t^\alpha \Gamma(\alpha + 1)\]

and

\[v_1 = -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (C_0 + D_0) \right)\]
\[\quad + L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (v_{0xx} + v_{0yy}) \right)\]
\[= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (2y) \right)\]
\[= -2 \alpha t^\alpha \Gamma(\alpha + 1),\]

similarly, when \(n = 1\), we have

\[u_2 = -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z ((u_0 u_{1x} + u_1 u_{0x} + v_0 u_{1y} + v_1 u_{0y})) \right)\]
\[\quad + L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z \left(\frac{1}{2} (u_{1xx} + u_{1yy}) \right) \right)\]
\[= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z \left(\frac{-t^\alpha}{\Gamma(\alpha + 1)} (2x + 2y) \right) \right)\]
\[= L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{4}{s^{2a+1}} \left(\frac{4}{p^2 q^2} \right) \right)\]
\[= 4(\alpha + 1) t^{2\alpha} \Gamma(2\alpha + 1)\]

and

\[v_2 = -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (D_1 + E_1) \right)\]
\[\quad + L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z (v_{1xx} + v_{1yy}) \right)\]
\[= L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^a} L_x L_y L_z \left(\frac{-t^\alpha}{\Gamma(\alpha + 1)} (-4x + 4y) \right) \right)\]
\[= L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{4}{s^{2a+1}} \left(\frac{4}{p^2 q^2} \right) \right)\]
\[= 4(\alpha + 1) t^{2\alpha} \Gamma(2\alpha + 1),\]
when \(n = 2 \), we have

\[
\begin{align*}
 u_3 &= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z (u_0 u_{2x} + u_1 u_{1x} + u_2 u_{0x} + v_0 u_{2y} + v_1 u_{1y} + v_2 u_{0y}) \right) \\
 &\quad + L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z \left(\frac{1}{2} (u_{2xx} + u_{2yy}) \right) \right) \\
 &= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z \left(16x + \frac{4 y \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \frac{t^{2\alpha}}{\Gamma(2 \alpha + 1)} \right) \right) \\
 &= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{16}{s^2} L_x L_y L_z \left(16x + \frac{4 y \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \frac{t^{2\alpha}}{\Gamma(2 \alpha + 1)} \right) \right) \\
 &= \left(-16x - \frac{4 x \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \right) \frac{t^{2\alpha}}{\Gamma(3 \alpha + 1)},
\end{align*}
\]

similarly,

\[
\begin{align*}
 v_3 &= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z (D_2 + E_2) \right) \\
 &\quad + L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z \left(\frac{1}{2} (v_{2xx} + v_{2yy}) \right) \right) \\
 &= -L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} L_x L_y L_z \left(16y + \frac{4 y \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \frac{t^{2\alpha}}{\Gamma(2 \alpha + 1)} \right) \right) \\
 &= \left(-16y - \frac{4 y \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \right) \frac{t^{2\alpha}}{\Gamma(3 \alpha + 1)},
\end{align*}
\]

hence, the solution of Eq. (2.16) is given by

\[
\begin{align*}
 u(x, y, t) &= \sum_{n=0}^{\infty} u_n = u_0 + u_1 + u_2 + u_3 + \cdots, \\
 u(x, y, t) &= x + y - \frac{2 x t^\alpha}{\Gamma(\alpha + 1)} + \frac{4 (x + y) t^{2\alpha}}{\Gamma(2 \alpha + 1)} - \left(16x + \frac{4 x \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \right) \frac{t^{2\alpha}}{\Gamma(3 \alpha + 1)} + \cdots,
\end{align*}
\]

and

\[
\begin{align*}
 v(x, y, t) &= \sum_{n=0}^{\infty} v_n = v_0 + v_1 + v_2 + v_3 + \cdots, \\
 v(x, y, t) &= x - y - \frac{2 y t^\alpha}{\Gamma(\alpha + 1)} + \frac{4 (x - y) t^{2\alpha}}{\Gamma(2 \alpha + 1)} + \left(-16y - \frac{4 y \Gamma(2 \alpha + 1)}{(\Gamma(\alpha + 1))^2} \right) \frac{t^{2\alpha}}{\Gamma(3 \alpha + 1)} + \cdots,
\end{align*}
\]

at \(\alpha = 1 \) the solution of above equation becomes

\[
\begin{align*}
 u(x, y, t) &= x + y - 2xt + 2(x + y)t^2 - 4xt^3 + 4(x + y)t^4 - 8xt^5 \\
 &\quad + 8(x + y)t^6 - 16xt^7 + 16(x + y)t^8 + \cdots \\
 &= x \left(1 + 2t^2 + 4t^4 + 8t^6 + \cdots \right) + y \left(1 + 2t^2 + 4t^4 + 8t^6 + \cdots \right) \\
 &\quad - 2xt \left(1 + 2t^2 + 4t^4 + 8t^6 + \cdots \right), \\
 u(x, y, t) &= \frac{(x + y - 2xt)}{1 - 2t^2},
\end{align*}
\]
and
\[v(x, y, t) = x - y - \frac{2yt^\alpha}{\Gamma(\alpha + 1)} + \frac{4(x - y)t^{2\alpha}}{\Gamma(2\alpha + 1)} - \left(-16y - \frac{4y\Gamma(2\alpha + 1)}{\Gamma(\alpha + 1)^2}\right) \frac{t^{3\alpha}}{\Gamma(3\alpha + 1)} + \cdots \]
\[= (x - y) - 2yt + 2(x - y)t^2 - 4yt^3 + 4(x - y)t^4 - 8yt^5 + 8(x - y)t^6 \]
\[- 16yt^7 + 16(x - y)t^8 + \cdots \]
\[= x(1 + 2t^2 + 4t^4 + 8t^6 + \cdots) - y(1 + 2t^2 + 4t^4 + 8t^6 + \cdots) - 2yt(1 + 2t^2 + 4t^4 + 8t^6 + \cdots), \]
\[v(x, y, t) = \frac{(x - y - 2yt)}{1 - 2t^2}. \]

We obtained the same results as in [14].

3 Triple Laplace Adomian decomposition method and singular two-dimensional fractional coupled Burgers’ equation

The principal algorithm of the triple Laplace decomposition method will be applied to singular two-dimensional fractional coupled Burgers’ equation of the form

\[D^\alpha_t u + \frac{1}{x} uu_x + \frac{1}{y} uu_y - \frac{1}{x} (xu_x)_x - \frac{1}{y} (yu_y)_y = f(x, y, t), \]
\[D^\alpha_t v + \frac{1}{x} uv_x + \frac{1}{y} uv_y - \frac{1}{x} (xv_x)_x - \frac{1}{y} (yv_y)_y = g(x, y, t), \]
\[x, y, t > 0, \quad (3.1) \]

associated with the initial condition
\[u(x, y, 0) = f_1(x, y), \quad v(x, y, 0) = g_1(x, y), \]
\[(3.2) \]

where \(D^\alpha_t \) is the fractional Caputo derivative and \(\frac{1}{x} (xu_x)_x, \frac{1}{y} (yu_y)_y \) are called Bessel operators, \(u(x, y, t) \) and \(v(x, y, t) \) are the velocity components to be determined, \(f(x, y, t); g(x, y, t); f_1(x, y) \) and \(g_1(x, y) \) are known functions. In order to obtain the solution of Eq. (3.1), we use the following steps:

Step 1. Multiplying both sides of Eq. (3.1) by \(xy \), we have
\[xyD^\alpha_t u + yuu_x + xv u_y - y(xu_x)_x - x(yu_y)_y = xyf(x, y, t), \]
\[xyD^\alpha_t v + yuv_x + xv v_y - y(xv_x)_x - x(yv_y)_y = xyg(x, y, t), \]
\[x, y, t > 0, \quad (3.3) \]

Step 2. Applying the triple Laplace transform to both sides of Eq. (3.3), we obtain
\[\frac{\partial^2}{\partial p \partial q} s^\alpha U(p, q, s) - s^{\alpha-1} U(p, q, 0) = L_xL_yL_t \left(y(xu_x)_x + x(yu_y)_y \right) \]
\[- L_xL_yL_t (yuu_x + xv u_y) \]
\[+ L_xL_yL_t (xyf(x, y, t)), \quad (3.4) \]
and
\[
\frac{\partial^2}{\partial p \partial q} \left(s^a V(p, q, s) - s^{a-1} V(p, q, 0) \right) = L_x L_y L_z \left(y(xv_x)_x + x(yv_y)_y \right) - L_x L_y L_z (yuv_x + xvv_y) + L_x L_y L_z (xyg(x, y, t)). \tag{3.5}
\]

Now, using the differentiation property of the Laplace transform yields

\[
\frac{\partial^2}{\partial p \partial q} U(p, q, s) = \frac{1}{s} F_1(p, q) - \frac{1}{s^a} L_x L_y L_z (yuv_x + xvv_y) + \frac{1}{s^a} L_x L_y L_z (y(xu_x)_x + x(yu_y)_y) + \frac{1}{s^a} L_x L_y L_z (xyf(x, y, t)). \tag{3.6}
\]

\[
\frac{\partial^2}{\partial p \partial q} V(p, q, s) = \frac{1}{s} G_1(p, q) - \frac{1}{s^a} L_x L_y L_z (yuv_x + xvv_y) + \frac{1}{s^a} L_x L_y L_z (y(xv_x)_x + x(yv_y)_y) + \frac{1}{s^a} L_x L_y L_z (xyf(x, y, t)).
\]

Step 3. Integrating both sides of Eq. (3.6) from 0 to \(p \) and from 0 to \(q \) with respect to \(p \) and \(q \), respectively, we have

\[
U(p, q, s) = \frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial p \partial q} F_1(p, q) \right) dq dp + \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (y(xu_x)_x + x(yu_y)_y) \right) dq dp - \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (yuv_x + xvv_y) \right) dq dp + \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (xyf(x, y, t)) \right) dq dp. \tag{3.7}
\]

and

\[
V(p, q, s) = \frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial p \partial q} G_1(p, q) \right) dq dp + \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (y(xv_x)_x + x(yv_y)_y) \right) dq dp - \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (yuv_x + xvv_y) \right) dq dp + \frac{1}{s^a} \int_0^p \int_0^q \left(L_x L_y L_z (xyf(x, y, t)) \right) dq dp. \tag{3.8}
\]
Step 4. By taking the triple inverse Laplace transformation of Eqs. (3.7) and (3.8), we obtain

\[
u(x, y, t) = L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial \rho \partial q} F_1(p, q) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t\left(y(xu_x)_x + x(yu_y)_y\right) \right) \, dq \, dp \right)
- L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t(yuv_x + xv u_y) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t(xy f(x, y, t)) \right) \, dq \, dp \right)
\]

(3.9)

and

\[
v(x, y, t) = L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial \rho \partial q} G_1(p, q) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t\left(y(xv_x)_x + x(yv_y)_y\right) \right) \, dq \, dp \right)
- L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t(yuv_x + xv v_y) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t(xy g(x, y, t)) \right) \, dq \, dp \right).
\]

(3.10)

Step 5. Substituting Eqs. (2.5) and (2.6) into Eqs. (3.9) and (3.10), we get

\[
\sum_{n=0}^{\infty} u_n(x, y, t) = L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial \rho \partial q} F_1(p, q) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t\left(y\left(x \sum_{n=0}^{\infty} u_{nx}\right)_{n}\right) \right) \, dq \, dp \right)
+ x \left(y \sum_{n=0}^{\infty} u_{ny} \right) \right) \right) \, dq \, dp \right)
- L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t\left(y \left(A_n + x \sum_{n=0}^{\infty} B_n \right) \right) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t(xy f(x, y, t)) \right) \, dq \, dp \right)
\]

and

\[
\sum_{n=0}^{\infty} v_n(x, y, t) = L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s} \int_0^p \int_0^q \left(\frac{\partial^2}{\partial \rho \partial q} G_1(p, q) \right) \, dq \, dp \right)
+ L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^p \int_0^q \left(L_s L_y L_t\left(y\left(x \sum_{n=0}^{\infty} v_{nx}\right)_{n}\right) \right) \, dq \, dp \right)
+ x \left(y \sum_{n=0}^{\infty} v_{ny} \right) \right) \right) \, dq \, dp \right)
\]
\[-L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^q}\int_0^p\int_0^q\left(L_xL_yL_t\left(y\sum_{n=0}^{\infty}C_n + x\sum_{n=0}^{\infty}D_n\right)\right)\,dq\,dp\right)\]
\[+L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^p}\int_0^p\int_0^q\left(L_xL_yL_t(xyg(x,y,t))\right)\,dq\,dp\right)\]

\[\text{Step 6.} \] Using Laplace Adomian decomposition method, we introduce the recursive relations and get

\[u_0(x,y,t) = L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^q}\int_0^p\int_0^q\left(\frac{\partial^2}{\partial p\partial q}F_1(p,q)\right)\,dq\,dp\right)\]
\[+L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^p}\int_0^p\int_0^q\left(L_xL_yL_t(yg(x,y,t))\right)\,dq\,dp\right)\] \hspace{1cm} (3.11)

and

\[v_0(x,y,t) = L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^q}\int_0^p\int_0^q\left(\frac{\partial^2}{\partial p\partial q}G_1(p,q)\right)\,dq\,dp\right)\]
\[+L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^p}\int_0^p\int_0^q\left(L_xL_yL_t(xyf(x,y,t))\right)\,dq\,dp\right)\] \hspace{1cm} (3.12)

the other components \(u_{n+1}\) and \(v_{n+1}\), for \(n \geq 0\), are given by

\[u_{n+1}(x,y,t) = L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^q}\int_0^p\int_0^q\left(L_xL_yL_t\left(y\sum_{n=0}^{\infty}u_{nx}\right)\right)\,dq\,dp\right)\]
\[+x\left(y\sum_{n=0}^{\infty}u_{ny}\right)\) dq dp \]
\[= L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^p}\int_0^p\int_0^q\left(L_xL_yL_t\left(y\sum_{n=0}^{\infty}u_{nx}\right)\right)\,dq\,dp\right)\] \hspace{1cm} (3.13)

and

\[v_{n+1}(x,y,t) = L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^q}\int_0^p\int_0^q\left(L_xL_yL_t\left(y\sum_{n=0}^{\infty}v_{nx}\right)\right)\,dq\,dp\right)\]
\[+x\left(y\sum_{n=0}^{\infty}v_{ny}\right)\) dq dp \]
\[= L_p^{-1}L_q^{-1}L_s^{-1}\left(\frac{1}{s^p}\int_0^p\int_0^q\left(L_xL_yL_t\left(y\sum_{n=0}^{\infty}v_{nx}\right)\right)\,dq\,dp\right)\] \hspace{1cm} (3.14)

where \(L_xL_yL_t\) is the triple Laplace transform with respect to \(x, y, t\) and the triple inverse Laplace transform with respect to \(p, q, s\) is denoted by \(L_p^{-1}L_q^{-1}L_s^{-1}\). We assumed that the triple inverse Laplace transform with respect to \(p, q, s\) exists for Eqs. (3.11), (3.12), (3.13), and (3.14). In the following example we apply the triple Laplace Adomian decomposition method to solve singular two-dimensional time-fractional coupled Burgers’ equations.
Example 2 Consider singular two-dimensional time-fractional coupled Burgers’ equations given by

\[
\begin{align*}
D_\alpha^t u + \frac{1}{x} uu_x + \frac{1}{y} vu_y - \frac{1}{x} (xu_x)_x - \frac{1}{y} (yu_y)_y &= \left(x^2 - y^2\right)e^t, \\
D_\alpha^t v + \frac{1}{x} uv_x + \frac{1}{y} vv_y - \frac{1}{x} (xv_x)_x - \frac{1}{y} (yv_y)_y &= \left(x^2 - y^2\right)e^t,
\end{align*}
\]

(3.15)

\[x, y, t > 0,
\]

with the initial condition

\[
\begin{align*}
u(x, y, 0) &= x^2 - y^2, & v(x, y, 0) &= x^2 - y^2.
\end{align*}
\]

As stated by the above steps, we have

\[
\begin{align*}
u(x, y, t) &= x^2 - y^2 + \frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (y(xu_x)_x + x(yu_y)_y) \right) dq dp \\
&\quad - \frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yu_y) + xvu_y) \right) dq dp \\
&\quad + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t)
\end{align*}
\]

(3.16)

and

\[
\begin{align*}
v(x, y, t) &= x^2 - y^2 + \frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yv_x)_x + xvy_y) \right) dq dp \\
&\quad - \frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yu_y) + xvu_y) \right) dq dp \\
&\quad + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t).
\end{align*}
\]

(3.17)

By applying Eqs. (3.11), (3.12), (3.13), and (3.14), we obtain

\[
\begin{align*}
u_0(x, y, t) &= x^2 - y^2 + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t), \\
v_0(x, y, t) &= x^2 - y^2 + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t),
\end{align*}
\]

(3.18)

and the other components \(u_{n+1}\) and \(v_{n+1}\), for \(n \geq 0\), are given by

\[
\begin{align*}
u_{n+1}(x, y, t) &= L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (y(xu_x)_x + x(yu_y)_y) \right) dq dp \right) \\
&\quad - L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yu_y) + xvu_y) \right) dq dp \right)
\end{align*}
\]

(3.19)

and

\[
\begin{align*}
u_{n+1}(x, y, t) &= L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yv_x)_x + xvy_y) \right) dq dp \right) \\
&\quad - L_p^{-1} L_q^{-1} L_s^{-1} \left(\frac{1}{s^\alpha} \int_0^\infty \int_0^\infty \left(L_x L_t (yu_y) + xvu_y) \right) dq dp \right),
\end{align*}
\]

(3.20)
where a few first terms of the Adomian polynomials A_n, B_n, C_n, and D_n are given by Eqs. (2.12), (2.13), (2.14), and (2.15), respectively.

By substituting $n = 0$ into Eqs. (3.19) and (3.20), we get

\[u_1(x, y, t) = L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (y(xu_0)_x + x(yu_0)_y) \right) dq dp \right) - L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (yA_0 + xB_0) \right) dq dp \right), \]

\[u_1(x, y, t) = 0, \]

and

\[v_1(x, y, t) = L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (y(xv_0)_x + x(yv_0)_y) \right) dq dp \right) - L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (yC_0 + xD_0) \right) dq dp \right), \]

\[v_1(x, y, t) = 0. \]

In the same manner for $n = 1$, we obtain that

\[u_2(x, y, t) = L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (y(xu_1)_x + x(yu_1)_y) \right) dq dp \right) - L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (yA_1 + xB_1) \right) dq dp \right), \]

\[u_2(x, y, t) = 0, \]

and

\[v_2(x, y, t) = L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (y(xv_1)_x + x(yv_1)_y) \right) dq dp \right) - L_p^{-1} L_q^{-1} L_t^{-1} \left(\frac{1}{s^\alpha} \int_0^p \int_0^q \left(L_x L_y L_z (yC_1 + xD_1) \right) dq dp \right), \]

\[v_2(x, y, t) = 0. \]

The solution of Eq. (3.15) is given by

\[u(x, y, t) = u_0 + u_1 + u_2 + \cdots + u_n, \]

\[v(x, y, t) = v_0 + v_1 + v_2 + \cdots + v_n. \]

Hence, the exact solution is given by

\[u(x, y, t) = x^2 - y^2 + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t), \]

\[v(x, y, t) = x^2 - y^2 + x^2 t^\alpha E_{1,\alpha+1}(t) - y^2 t^\alpha E_{1,\alpha+1}(t), \]
where E denotes Mittag-Leffler function. Setting $\alpha = 1$ in Eq. (3.15), we get that the exact solution of the singular two-dimensional coupled Burgers’ equation

$$
D_t u + \frac{1}{x} u_x + \frac{1}{y} v_y - \frac{1}{x} (xu_x)_x - \frac{1}{y} (yu_y)_y = (x^2 - y^2)e^t, \\
D_t v + \frac{1}{x} u_x + \frac{1}{y} v_y - \frac{1}{x} (xv_x)_x - \frac{1}{y} (yv_y)_y = (x^2 - y^2)e^t,
$$

$x, y, t > 0$,

with the initial condition

$$
u(x, y, 0) = x^2 - y^2, \quad v(x, y, 0) = x^2 - y^2,$$

is given by

$$
\begin{align*}
\phantom{\text{is given by}}
u(x, y, t) &= (x^2 - y^2)e^t, \\
u(x, y, t) &= (x^2 - y^2)e^t.
\end{align*}
$$

4 Conclusion

In this study, the triple Laplace transform and Adomian decomposition have been successfully combined to obtain a new powerful method named a hybrid triple Laplace Adomian decomposition method (TLADM). This method has been used to solve regular and singular coupled Burgers’ equations. By applying this method on some examples, we have obtained new efficient relations to solve our problems. It allows more realistic series solution that converges very quickly to the true solution.

Acknowledgements

Not applicable.

Funding

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this Research group No. RC-1440-030.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 May 2020 Accepted: 14 July 2020 Published online: 23 July 2020

References

1. Burger, J.: A Mathematical Model Illustrating the Theory of Turbulence. Academic Press, New York (1948)
2. Cole, J.: On a quasilinear parabolic equations occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)
3. Maitama, S., Zhao, W.: Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. Adv. Differ. Equ. (2019). https://doi.org/10.1186/s13662-019-2068-6
4. Maitama, S., Zhao, W.: Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. Comput. Appl. Math. (2019). https://doi.org/10.1007/s40314-019-0825-5
5. Maitama, S., Zhao, W.: New homotopy analysis transform method for solving multidimensional fractional diffusion equations. Arab J. Basic Appl. Sci. (2020). https://doi.org/10.1080/25765299.2019.1706234
6. Alhendi, F., Alderremy, A.: Numerical solutions of three-dimensional coupled Burgers’ equations by using some numerical methods. J. Appl. Math. Phys. 4, 2011–2030 (2016)

7. Mishra, V., Rani, D.: Newton–Raphson based modified Laplace Adomian decomposition method for solving quadratic Ricatti differential equations. In: Proceedings of the 4th International Conference on Advancements in Engineering & Technology, Punjab, India, vol. 57, pp. 18–19 (2016)

8. Hussain, M., Khan, M.: Modified Laplace decomposition method. Appl. Math. Sci. 4, 1769–1783 (2010)

9. Khan, M.: A new algorithm for higher order integro-differential equations. Afr. Mat. (2013). https://doi.org/10.1007/s13370-013-0200-4

10. Fletcher, C.A.J.: Generating exact solutions of the two dimensional Burgers’ equation. Int. J. Numer. Methods Fluids 3, 213–216 (1983)

11. Abazari, R., Borhanifar, A.: A numerical study of solution of the Burgers’ equations by a differential transformation method. Comput. Math. Appl. 59, 2711–2722 (2010)

12. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equation and Inverse Scattering. Cambridge University Press, Cambridge (1991)

13. Bazar, J., Aminikhah, H.: Exact and numerical solutions for non-linear Burgers’ equation by VM. Math. Comput. Model. 49, 1394–1400 (2009)

14. Khan, M.: A novel solution technique for two dimensional Burgers’ equation. Alex. Eng. J. 53, 485–490 (2014)

15. Eltayeb, H., Mesloub, S., Kılıcman, A.: A note on a singular coupled Burgers’ equation and double Laplace transform method. J. Nonlinear Sci. Appl. 11, 635–643 (2018)

16. Atangana, A.: A note on the triple Laplace transform and its applications to some kind of third-order differential equation. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/769102

17. Ghandehari, M., Ranjbar, M.: A numerical method for solving a fractional partial differential equation through converting it into an NLP problem. Comput. Math. Appl. 65, 975–982 (2013)

18. Bayrak, M., Demir, A.: A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 336, 215–230 (2018)

19. Thabet, H., Kendre, S.: Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Solitons Fractals 109, 238–245 (2018)

20. Khan, A., Khan, A., Khan, T., Zaman, G.: Extension of triple Laplace transform for solving fractional differential equations. Discrete Contin. Dyn. Syst., Ser. S 13, 755–768 (2020)

21. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)