High-flow Oxygen Therapy via Tracheostomy to Liberate COVID-19-induced ARDS from Invasive Ventilation: A Case Series

Sonali Vadi, Sourabh Phadtare, Kiran Shetty

Abstract

Lung involvement with differing phenotypes characterizes COVID-19-induced acute respiratory distress syndrome (ARDS). The liberation of these patients from mechanical ventilation has been challenging. Excessive stress and strain following increased respiratory efforts spiral their vulnerable lung tissue into ventilator-induced lung injury vortex. The use of high-flow oxygen therapy via tracheostomy (HFOT\textsubscript{Tracheal}) eases weaning process. As a safe option for both patient and healthcare workers, HFOT\textsubscript{Tracheal} was successfully employed to wean two COVID-19-induced ARDS patients from the mechanical ventilator.

Keywords: COVID-19-associated ARDS, High-flow oxygen therapy via tracheostomy, Patient–ventilator interaction, Ventilator-induced lung injury, Weaning from mechanical ventilation.

Introduction

COVID-19 patient with acute respiratory distress syndrome (ARDS) are on a spectrum of a characteristic high compliance lung initially, with lower lung weight on CT scan, the type L, or phenotype 12 who may evolve to a type H, or phenotype 32 characterized by low compliance, extensive consolidations on CT scan. Although severely hypoxemic, their lung mechanics are generally preserved. Interactions between ventilator and the injured lung impact lung injury and its repair. Consequently, the shrunken and vulnerable baby lung incur damage, ventilator-induced lung injury (VILI). Tidal cycling, cycling frequency, and airway pressures influence VILI. Each phenotype benefits from personalized ventilator and weaning strategies.

Lung protective ventilation may not necessarily be “protective” for those breathing spontaneously on mechanical ventilator. Tachypnea and in-coordinated respiratory efforts lead to a nonhomogeneous distribution of the stress and strain in the healthy regions of the lung. This is patient self-inflicted lung injury (P-SILI).3 P-SILI is associated with high respiratory rates and irregular tidal volumes. Spontaneous efforts may lead to heart-lung imbalances. These patients benefit from customized weaning.

High-flow oxygen therapy (HFOT) has been studied in tracheostomized (HFOT\textsubscript{Tracheal}) patients who are at high risk of weaning failure.4 Reduced inspiratory effort with HFOT\textsubscript{Tracheal} facilitated weaning from prolonged mechanical ventilation in two patients with restrictive pulmonary function.5 Herein is discussed the use of HFOT\textsubscript{Tracheal} to successfully wean off two patients with ARDS.

Case Description

Patient 1

A 50-year-old male, hypertensive with type II diabetes mellitus, was transferred to the COVID-19 unit on 15 L oxygen via the nonrebreather mask (7.45/31.9/55.8/23). Five days later following desaturation, he was switched to high-flow oxygen therapy via nasal cannula (HFOT\textsubscript{Nasal}): 60 L flow rate, 0.65. Oxygen requirements on HFOT\textsubscript{Nasal} progressively increased and on day 10 of COVID-19 unit stay he had to be invasively ventilated. HRCT chest (noncontrast) revealed >75% of lung involvement (Fig. 1). Methylprednisolone, Remdesivir, Tocilizumab, and Enoxaparin were administered at the outset. Chest X-ray revealed a progressive increase in pulmonary infiltrates. Fivedays later he was tracheostomized. The following day he was transferred to the regular ICU. He required 0.6/+5 (pH 7.47/PaCO\textsubscript{2} 47.5/PaO\textsubscript{2} 73.3/HCO\textsubscript{3}− 35.9). Weaning attempts were commenced 72 hours later (Table 1). His pulse oximeter saturations would drop to <90% with a reduction in FiO\textsubscript{2} to <0.6. Ventilatory need was associated with anxiety and fear leading to patient–ventilator dyssynchrony. This required sedation. Opioid use resulted in bowel dilatation mandating its stoppage. Dexmedetomidine use was associated with consequent bradycardia requiring discontinuation. Subsequently, small dose of Midazolam infusion was prescribed. These prolonged his time on the ventilator.
On ICU day 13, he was switched from the ventilator to HFOT\textsubscript{Tracheal} (Table 1). AIRVO™ 2 system (Fisher and Paykel Healthcare) with an HFO interface, Optiflow™(Fisher and Paykel Healthcare) for tracheostomy was employed. HFOT\textsubscript{Tracheal} was weaned off in 4 days, FiO\textsubscript{2} first followed by the flow. T-piece was weaned off over next 5 days with SpO\textsubscript{2} ranging from 97 to 98% on room air. Respiratory physiotherapy was continued daily throughout the weaning efforts.

Patient 2

A 67-year-old male was transferred to the COVID unit requiring 15 L oxygen via nonrebreather mask. This had to be escalated to high-flow oxygen via nasal cannula at 0.9/60 L in less than 24 hours and invasive ventilation soon thereafter (Table 2). Methylprednisolone, Remdesivir, Tocilizumab, and Enoxaparin were administered from the day of admission given the severity of pneumonia.

Table 1: Patient 1—ventilator parameters and high-flow oxygen therapy via tracheostomy

ICU day	Cumulative duration of T-piece trials	Maximum FiO\textsubscript{2}, PEEP	Maximum respiratory rate (breaths/min)	SpO\textsubscript{2} (min–max)	Arterial blood gas: pH/PaCO\textsubscript{2} (mm Hg)/PaO\textsubscript{2} (mm Hg)/HCO\textsubscript{3} (mEq/L)	P/F ratio
ICU day 1	None	0.6, +6	32	93–100%	7.35/67/79.2/35.7	132
ICU day 3	None	0.4, +5	36	93–100%	7.47/44.1/66.2/32.9	165
ICU day 4	7 hours	0.4, +5	40	88–99%	7.48/46/104.5/35.1	361
ICU day 5	9 hours	0.6, +5	34	88–98%	7.50/46.7/55.2/37	92
ICU day 6	2 hours	0.6, +5	31	90–99%	7.31/70.2/64.2/36.9	107
ICU day 7	10 hours	0.6, +5	38	86–94%	7.47/47.7/45.5/35.6	75.8
ICU day 9	6 hours	0.6, +6	32	90–100%	7.50/38.2/53.3/30.4	88.8
ICU day 11	9 hours	0.6, +6	32	90–100%	—	—

HFOT\textsubscript{Tracheal}

ICU day	HFOT\textsubscript{Tracheal}: FiO2	HFOT\textsubscript{Tracheal}: Flow (L/min)	Maximum respiratory rate (breaths/min)	SpO\textsubscript{2}	Arterial blood gas: pH/PaCO\textsubscript{2} (mm Hg)/PaO\textsubscript{2} (mm Hg)/HCO\textsubscript{3} (mEq/L)	P/F ratio
ICU day 13	0.4	50 L	38	94–99%	—	—
ICU day 14	0.3	40 L	36	90–98%	—	—
ICU day 15	0.3	30 L	39	92–100%	—	—
ICU day 16	0.3	25 L	30	93–99%	7.49/36.4/64.7/28.4	215
ICU day 17	HFOT\textsubscript{Tracheal} switched to T-piece with 4 L oxygen	24	94–100%	—	—	

High-flow oxygen therapy via tracheostomy (HFOT\textsubscript{Tracheal}), inspired fraction of oxygen (FiO\textsubscript{2}), positive end-expiratory pressure (PEEP), PaO\textsubscript{2}/FiO\textsubscript{2} (P/F) ratio
Tracheostomized, he was transferred out to the regular ICU on day 20. The following day, he was switched to HFOT\textsubscript{Tracheal} and weaned off the same over the next 5 days (Table 2), FiO\textsubscript{2} first followed by the flow. His lung involvement on HRCT chest was at 60% (Fig. 2).

Table 2: Patient 2—ventilator parameters and high-flow oxygen therapy via tracheostomy

Patient 2: ventilator settings and respiratory parameters	Arterial blood gas: pH/ PaCO\textsubscript{2} (mm Hg)/PaO\textsubscript{2} (mm Hg)/HCO\textsubscript{3} (mEq/L)	P/F ratio			
COVID ICU day 3	1.0, +10	22	93–99%	7.39/49/77.2/31	77
COVID ICU day 5	0.6, +7	20	91–97%	7.46/42/77.8/31.3	129
COVID ICU day 7	0.75, +6	20	93–97%	7.42/45.4/55.6/30.7	74
COVID ICU day 9	0.8, +8	20	90–98%	7.41/54.9/56.2/35.7	70
COVID ICU day 11	0.7, +8	20	93–98%	7.45/53.5/70.9/38.7	101
COVID ICU day 13	0.8, +8	20	90–97%	7.48/54/69.8/41.4	87
COVID ICU day 15	1.0, +12	20	88–95%	7.48/46.7/63.5/36	63
COVID ICU day 17	0.6, +10	24	92–98%	7.51/43/55.9/35	93
COVID ICU day 19	0.6, +10	24	90–95%	7.45/44/75.2/31.3	125

HFOT\textsubscript{Tracheal}

HFOT\textsubscript{Tracheal}: FiO\textsubscript{2}	HFOT\textsubscript{Tracheal}: Flow (L/min)	Maximum respiratory rate (breaths/min)	SpO\textsubscript{2}	Arterial blood gas: pH/ PaCO\textsubscript{2} (mm Hg)/PaO\textsubscript{2} (mm Hg)/HCO\textsubscript{3} (mEq/L)	P/F ratio	
ICU day 20	0.6	60 L	23	90–95%	—	
ICU day 22	0.55	60 L	32	88–100%	7.47/37.3/71.4/27	130
ICU day 24	0.7	60 L	25	89–100%	—	
ICU day 26	0.50	60 L	29	89–98%	7.51/28.6/69.8/23.2	140
ICU day 30	0.45	60 L	26	90–95%	—	
ICU day 32	0.45	60 L	26	90–95%	—	

High-flow oxygen therapy via tracheostomy (HFOT\textsubscript{Tracheal}), inspired fraction of oxygen (FiO\textsubscript{2}), positive end-expiratory pressure (PEEP), PaO\textsubscript{2}/FiO\textsubscript{2} (P/F) ratio

Discussion

Patient 1

Temporal chest X-ray findings worsened in parallel to his clinical deterioration prior to his requiring intubation, reflecting pulmonary progression of primary COVID-19 infection. Ventilator weaning was a slow and laborious process for the patient. This patient was hypoxic. He tired out easily during T-piece trials with ensuing tachypnea and dyspnea. Weaning attempts were associated with patient–ventilator dyssynchrony. Re-ventilation took time to abate these respiratory derangements. Following COVID-19 pulmonary infection, this patient developed restrictive pulmonary function as seen by fibrosis on his HRCT chest. Exertion of respiratory muscles with an excess negative force may have contributed to SILI of his CARDS lung in patient 1. Sedation with its subsequent side-effects prolonged his time on the ventilator.

On switching to HFOT\textsubscript{Tracheal}, his oxygen requirements were lower (Table 2). Subjective dyspnea lessened and soon abated. Patient comfort improved.

Patient 2

Bearing in mind the experience of the previous patient, he was switched to HFOT\textsubscript{Tracheal} after a day of weaning attempt that was rapidly weaned off. Subjective dyspnea on T-piece during mobilization was managed temporarily with HFOT\textsubscript{Tracheal}.

Risk factors of prolonged weaning are VILI, the need for sedation, deconditioning, and cost. Pulmonary physiology is dynamic. Irrespective of the ventilator mode, the respiratory rate, local inflammation caused by volutrauma, repeated exposures to tidal cycles coupled with their duration, and stresses within vessels contribute to VILI. Patient–ventilator dyssynchrony associated with irregular and dynamic spontaneous efforts teamed with erratic tidal volumes were contributors to VILI in this patient. Inhomogeneous involvement of the lung by the primary pathology acts as a stress raiser. The hampered endogenous capacity of the COVID lung to prevent or repair this injury and contribute to VILI and its progression. These airspace stresses reinforce each other spiraling...
down into the “VILI vortex.” High driving pressures secondary to spontaneous efforts in severe ARDS add to lung injury, P-SILI. HFOT nasal reduces inspiratory efforts, generates positive airway pressure, decreases anatomical dead space, decreases minute ventilation, reduces driving transpulmonary pressure, decreases expiratory diaphragm loading, and improves oxygenation. Consequential stress and strain are reduced in the injured lungs.

HFOT tracheal is associated with a better matching of the delivered flow with the patient's spontaneous inspiratory flow, a positive end-expiratory pressure effect, with resultant recruitment of more alveoli. Other physiological effects of HFOT tracheal include reduced PaCO2, patient-ventilator dyssynchrony, and an increase in P/F ratio. These were the likely mechanisms to the success of HFOT tracheal in these patients. Ability to breathe spontaneously with HFOT tracheal without any evidence of respiratory distress and without the necessity for reconnection to the ventilator for at least 48 hours was considered successful weaning (Table 3 and 4).

Other features of consequence for healthcare workers managing CARDS include inflated cuff, in-line suction catheter, and the use of filter to reduce the chances of aerosol generation with the use of HFOT tracheal.

Conclusion

VILI necessitates weaning from mechanical ventilation in CARDS. Worsening of lung injury as a result of spontaneous efforts during weaning leading to P-SILI requires customized weaning. Ability to wean off mechanical ventilation without any respiratory distress employing HFOT tracheal merits further studies to wean CARDS from mechanical ventilation.

References

1. Mariini, J.J, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020;323(22):2329–2330. DOI: 10.1001/jama.2020.6825.
2. Robba, C, Battaglini D, Ball L, Patroniti N, Locomte M, Brunetti I, et al. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir Physiol Neurobiol 2020;279:103455. DOI: 10.1016/j.resp.2020.103455.
3. Wawrzyeniak IC, Regina Rios Vieira S, Almeida Victorino J. Weaning from mechanical ventilation in ARDS: aspects to think about for better understanding, evaluation, and management. Biomed Res Int 2018;2018:5423639. DOI: 10.1155/2018/5423639.
4. Stripoli, T, SpadaroS, DiMussiR, Volta CA, Tretololi P, De Carlo F, et al. High-flow oxygen therapy in tracheostomized patients at high risk of weaning failure. Ann Intensive Care 2019;9(1):4. DOI: 10.1186/s13613-019-0482-2.
5. Mitaka C, Odoh M, Satoh D, Hashiguchi T, Inada E. High-flow oxygen via tracheostomy facilitates weaning from prolonged mechanical ventilation in patients with restrictive pulmonary dysfunction: two case reports. J Med Case Rep 2018;12(1):292. DOI: 10.1186/s13256-018-1832-7.
6. Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 1998;110(6):482–488. PMID: 9824530.
7. Mariini, J.J, Gattinoni L. Time course of evolving ventilator-induced lung injury: the “Shrinking Baby Lung”. Crit Care Med 2020;48(8):1203–1209. DOI: 10.1097/C.CM.0000000000004416.

ORCID

Sonali Vadi @ https://orcid.org/0000-0002-7341-2407
Souabh Phadtare @ https://orcid.org/0000-0002-1554-2932
Kiran Shetty @ https://orcid.org/0000-0002-7676-7174

Table 3: Ventilator: oxygen supplied, and respiratory parameters

Patient 2	Maximum FiO2, PEEP	Maximum respiratory rate (breaths/min)	SpO2 (min–max)	Arterial blood gas: pH/PaCO2 (mm Hg)/PaO2 (mm Hg)/HCO3 (mEq/L)	P/F ratio	
ICU day 1	0.6	60 L	23	90–95%	—	
ICU day 3	0.55	60 L	32	88–100%	7.47/37.3/71.4/27	130
ICU day 5	0.7	60 L	25	89–100%	—	
ICU day 7	0.50	60 L	29	89–98%	7.51/28.6/69.8/23.2	140
ICU day 11	0.45	60 L	26	90–95%	—	
ICU day 13	HFO tracheal	Switched to T-piece with 6 L oxygen	29	91–98%	—	

Table 4: (Patient 2) High-flow oxygen therapy via tracheostomy (HFOT tracheal): settings and respiratory parameters

Patient 2	HFOT (Tracheal): FiO2	HFOT (Tracheal): Flow (L/min)	Maximum respiratory rate (breaths/min)	SpO2	Arterial blood gas: pH/PaCO2 (mm Hg)/PaO2 (mm Hg)/HCO3 (mEq/L)	P/F ratio
ICU day 1	0.6	60 L	23	90–95%	—	—
ICU day 3	0.55	60 L	32	88–100%	7.47/37.3/71.4/27	130
ICU day 5	0.7	60 L	25	89–100%	—	—
ICU day 7	0.50	60 L	29	89–98%	7.51/28.6/69.8/23.2	140
ICU day 11	0.45	60 L	26	90–95%	—	—
ICU day 13	HFO tracheal	Switched to T-piece with 6 L oxygen	29	91–98%	—	—
8. Marini JJ. How I optimize power to avoid VILI. Crit Care 2019;23(1):326. DOI: 10.1186/s13054-019-2638-8.
9. Cressoni M, Chiurazzi C, Gotti M, Amini M, Brioni M, Algieri I, et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. J Am Soc Anesthesiol 2015;123(3):618–627. DOI: 10.1097/ALN.0000000000000727.
10. Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty years of research in ARDS: spontaneous breathing during mechanical ventilation: risks, mechanisms, and management. Am J Respir Crit Care Med 2017;195(8):985–992. DOI: 10.1164/rccm.201604-0748CP.
11. Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care 2013;58(10):1621–1624. DOI: 10.4187/respcare.02358.
12. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2017;195(9):1207–1215. DOI: 10.1164/rccm.201605-0916OC.
13. Corley A, Edwards M, Spooner AJ, Dunster KR, Anstey C, Fraser JF. High-flow oxygen via tracheostomy improves oxygenation in patients weaning from mechanical ventilation: a randomized crossover study. Intensive Care Med 2017;43(3):465–467. DOI: 10.1007/s00134-016-4634-7.
14. Ischaki E, Pantazopoulos I. “Blow with the high flow” an updated algorithm. J Emerg Crit Care Med 2019;3. DOI: 10.21037/jeccm.2019.10.03.