Somatic Mutations, Viral Integration and Epigenetic Modification in the Evolution of Hepatitis B Virus-Induced Hepatocellular Carcinoma

Xiaowei Ji+, Qi Zhang+, Yan Du, Wenbin Liu, Zixiong Li, Xiaomei Hou and Guangwen Cao*,#

Department of Epidemiology, Second Military Medical University, Shanghai 200433, China

Abstract: Liver cancer in men is the second leading cause of cancer death and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer worldwide. Chronic infection with hepatitis B virus (HBV) is the major cause of HCC. Chronic, intermittently active inflammation provides “fertile field” for “mutation, selection, and adaptation” of HBV and the infected hepatocytes, a long-term evolutionary process during HBV-induced carcinogenesis. HBV mutations, which are positively selected by insufficient immunity, can promote and predict the occurrence of HCC. Recently, advanced sequencing technologies including whole genome sequencing, exome sequencing, and RNA sequencing provide opportunities to better understand the insight of how somatic mutations, structure variations, HBV integrations, and epigenetic modifications contribute to HCC development. Genomic variations of HCC caused by various etiological factors may be different, but the common driver mutations are important to elucidate the HCC evolutionary process. Genome-wide analyses of HBV integrations are helpful in clarifying the targeted genes of HBV in carcinogenesis and disease progression. RNA sequencing can identify key molecules whose expressions are epigenetically modified during HCC evolution. In this review, we summarized the current findings of next generation sequencings for HBV-HCC and proposed a theory framework of Cancer Evolution and Development based on the current knowledge of HBV-induced HCC to characterize and interpret evolutionary mechanisms of HCC and possible other cancers. Understanding the key viral and genomic variations involved in HCC evolution is essential for generating effective diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for the interventions of HBV-HCC.

Keywords: Hepatitis B virus, Hepatocellular carcinoma, Somatic mutation, Integration, Epigenetic modification, Deep sequencing.

INTRODUCTION

Liver cancer in males is the fifth most frequently diagnosed cancer and the second most frequent cause of cancer-related death worldwide; in females, it is the seventh most commonly diagnosed cancer and the sixth leading cause of cancer-related death. Hepatocellular carcinoma (HCC) represents the major histotype, accounting for 70% to 85% of the total liver cancer burden worldwide [1]. Annually, over 600,000 new HCC cases are diagnosed worldwide [2]. Chronic infection with hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is the major cause of this malignancy. Chronic HBV infection accounts for about 60% of the total liver cancer in developing countries and for about 23% in developed countries [3]. Other factors such as alcohol consumption, smoking, aflatoxin B exposure, diabetes, obesity, and non-alcoholic fatty liver disease may be also associated with an increased risk of HCC [4]. Somatic mutations, such as p53 mutation, HBV integration to the fragile sites of host genome, and epigenetic silencing of tumor suppressor genes are possible molecular mechanisms underlining hepatocarcinogenesis [5]. Deregulation of non-coding RNAs is also involved in HCC development [6, 7]. Genomic variations of HCC caused by various etiological factors might be different, but the common genomic variations should be important to elucidate the HCC evolutionary process. Understanding genetic and epigenetic etiological factors of HBV-induced HCC (HBV-HCC) may pave the way for the development of efficient prophylactic and therapeutic interventions to reduce HCC burden.

To elucidate the role of molecules and genetic alterations in hepatocarcinogenesis, research methods and techniques are important. The traditional biological methods such as PCR and southern blot [8, 9] are constantly used to identify genetic predisposition, mutations, and HBV integrations, which present a lot to understand the association of certain genes or their modifications with cancers. However, these methods are less cost-effective. Neither traditional PCR-based methods nor microarray is technically sufficient to identify and quantify key molecular events such as HBV integration sites in a genome-wide scale. In the recent decade, with the emergence of advanced high throughput platforms such as next-generation sequencing (NGS) technol-
ogy, cancer research has stepped into a new era. NGS, also named deep sequencing, high throughput sequencing, brings striking impacts for genetic and biological research by the unbiased and comprehensive sequencing capacity. Just as Roukos mentioned, the era of NGS has provided a comprehensive and integral view of cancer genome architecture [10]. High throughput and sharp decrease in reagent volume needed for each sample, which greatly reduces the cost per nucleotide, are the advantage of NGS. NGS including whole genome sequencing (WGS), whole exome sequencing (WES), and RNA sequencing can be used to sequence human genomes and transcriptomes, thus establishing a mutation catalog for many diseases. These new technologies have enabled us to screen for cancer-related molecules or events in a more comprehensive and unbiased way, providing a higher success rate to identify key mutations involved in the crucial evolutionary process of carcinogenesis. In the current review, we updated somatic mutations of HCC caused by various etiological factors, the integrations of HBV into host genome, the deregulation of non-coding RNAs, and epigenetic modifications identified by NGS to interpret the molecular mechanisms of HCC development. Based on the current knowledge of HBV-induced HCC, we propose a theory framework of Cancer Evolution and Development or termed as “Evo-Dev of Cancer” to characterize evolutionary regulation of cancers.

HBV MUTATIONS AND HCC EVOLUTION

HBV genotype/subgenotype and insufficient antiviral immunity contribute to the establishment of chronic HBV infection in adults and early children, respectively [11, 12]. Human liver is a rich source of innate and adaptive immune cells, which constitute the framework of immunity combined with cytokines/chemokines. Tumor microenvironment is a dynamic system, which is largely orchestrated by inflammatory molecules, stromal cells, immune cells, and extracellular matrix. The imbalance of inflammatory molecules in the inflammatory microenvironment may promote the progression of HBV-related diseases [13]. Chronic inflammation caused by insufficient immunity to HBV antigens is indispensable for the occurrence of HCC. Human leukocyte antigens (HLAs) are essential for immune recognition and response, while their genetic predispositions may contribute to immune imbalance upon HBV infection, leading to chronic HBV infection, immune selection of HCC-risk HBV mutations, and subsequent HCC [14]. HBV evolution promoted by chronic inflammation can be considered as a process of “mutation-selection-adaptation” during hepatocarcinogenesis. Cytokines storm induced by chronic inflammation or antiviral cytokines such as interferon can up-regulate the expression of activation-induced cytokine deaminase (AID) and apolipoprotein B mRNA editing enzyme, catalytic polypeptides (APOBECs), while these enzymes can specifically catalyze the irreversible cytidine and deoxyctydine deamination to convert bases from cytosine (C) to uracil (U) on RNA and DNA, respectively [15]. HBV DNA can be easily degraded by the endogenous enzymes when viral DNA forms single stranded DNA (ssDNA) during viral replication [16-20]. Viral mutations facilitate immune escape of HBV in immunocompromised microenvironment and promote hepatocarcinogenesis. The HCC-related HBV mutations may up-regulate HBV expression and increase its virulence. It has been shown that HBV mutations in the S genes, especially a substitution mutation of glycine to arginine at site 145 (G145R), are associated with immune escape [21, 22]. The HBV A1762T/G1764A-based mutations have been suggested to be independently associated with HCC development, and effectively predict poor prognosis of HCC [15, 23, 24]. HBx mutants with A1762T/G1764A, T1753A, and T1768A in primary human hepatocytes and HCC cells significantly up-regulate S-phase kinase-associated protein 2 (SKP2), and then down-regulate p21, which have been demonstrated to be associated with cell cycle progression and proliferation [25]; the full-length HBV genome with the corresponding mutations is also able to enhance SKP2 transcription by activating the E2F1 transcription factor in primary human hepatocytes and HCC cells, down-regulate cell cycle inhibitors, and accelerate cellular proliferation [26]. Thus, HBV mutation should be an important cause of HBV-HCC. These HCC-related HBV mutations are positively selected by incomplete immunity in the microenvironment and in turn promote the growth and aggressiveness of HCC. Thus, we believe that HBV mutations are generated during the evolutionary process of hepatocarcinogenesis, and APOBECs play important roles in the evolution of HBV genome via promoting the HBV mutations. AID, APOBECs, and their unrevealed analogues not only promote the mutations of HBV genome, but also promote somatic mutations of key genes in human genome.

HCC-RELATED SOMATIC MUTATIONS IDENTIFIED BY DEEP SEQUENCING

The advent and rapid development of NGS enabled more convenient and accurate discoveries of cancer-related somatic mutations in an unbiased and comprehensive way. Genomic deep sequencing of blood samples from hematological cancers, such as acute myeloid leukemia (AML) [27, 28], has been proven to be a big success. However, the applications of this technology are questioned for solid tumors because solid tumor tissues contain “normal” cells such as fibroblasts, blood vessels, and immune cells. Normal DNAs in tumor tissues may introduce biases in DNA genomic analysis, leading to inaccurate identification of genetic information in tumor cells [29]. Despite these shortcomings of NGS studies in solid tumors like HCC, many genes and related signaling pathways involved in hepatocarcinogenesis have been identified by this method. Important HCC-related somatic mutations are found in critical genes such as RNA editing genes (ADAR1, ADAR2, KDHRBS2, and RTL1) [30-33], chromatin remodeling genes (ARID1A, ARID1B, and ARID2) [34-38], DNA binding genes (HOX1) [36], growth factor signaling pathway genes (CDH8, CDK14, CNT2, ERRFI1, RPS6KA3, P62, and PROKR2) [34-36, 39, 40], transcriptional regulation genes (AXIN1, CCNG1, CTNNB1, IRF2, NFE2L2, PARP4, PAX5, ST18, TP53, TRRAP, and ZNF717) [30, 35-39, 41-44], cell structure modification genes (FLNA and VCA1) [36, 39], and epigenetic modification genes (MLL3) [34, 41], JAK/STAT pathway genes (JAK1 and JAK2) [30, 41], and other unknown functional genes. (Table 1) summarizes...
the characteristics of major mutated genes (mutation frequencies of >3%) that have been found to be associated with HCC by NGS platforms.

However, several important scientific issues concerning cancer-related somatic mutations remain to be addressed: first, as cancer-related somatic mutations are revealed via comparing to the adjacent, pathologically normal non-cancerous tissues, it remains unknown if these identified somatic mutations are the causes or consequences of hepatocarcinogenesis. Somatic mutations in cancers can be generally classified as driver and passenger mutations. Driver mutations are positively selected during cancer evolution and indispensible for cancer development. Most somatic mutations are passenger mutations that are not subject to positive selection and are not directly associated with carcinogenesis. A series of functional experiments are needed to identify the nature of a given somatic mutation. Second, the mutations usually appear inconsistently in coding or non-coding regions of a given gene; furthermore, the frequencies of some HCC-related somatic mutations may vary greatly in HBV-HCC tissues, ranging from 1.8%-5.8% of ARID2 to 71.7% of ADARI [31, 34, 36]. The unstable frequencies of a given somatic mutation and generally low frequencies of cancer-related somatic mutations make them unsuitable to serve as direct biomarkers for the diagnosis and prognosis prediction of HBV-HCC. Future of their application in clinical settings should be the targeted therapy for HBV-HCC, as the HCC-related somatic mutations clearly affect some important signaling pathways, such as Wnt/β-catenin signaling and ras/mitogen-activated protein kinase (MAPK) pathways [35]. Some of these signaling pathways are indispensable for HCC progression. The functional interpretations of these genes can be found via the ‘GO’ (Gene Ontology) annotations (http://geneecards.org/). It remains to be clarified if HBV-HCC with specific somatic mutations is quite suitable for a targeted therapy to retard HCC progression via blocking a given pathway or more.

HBV INTEGRATION REVEALED BY DEEP SEQUENCING

Chronic infections with HBV and/or HCV are the well-established causes of HCC [45]. HCV, a positive-sense single-stranded RNA virus, cannot integrate to human genomes. No viral-human genomic integration has been detected in HCV-related HCC so far. HBV is a DNA virus with a relaxed circular, partially double-stranded genome, which contains 4 overlapping open reading frames (ORFs) encoding surface (S), core (C), polymerase (P) and X proteins. It was firstly proposed in 1981 that HBV integration into the human genome occurred in the infected hepatocytes since early stage of HBV infection [46]. HBV integration is considered as an important mechanism for virus-induced hepatocarcinogenesis, especially in younger HCC patients without cirrhosis [47]. Some studies also indicate that the number of HBV integrations is significantly associated with patient survival [48]. In HBV-HCC patients, 85% - 90% integration events can be found in liver cancer tissues [49]. Therefore, it is reasonable to hypothesize that HBV integrations play important roles in the process of hepatocarcinogenesis.

Previous studies have shown that HBV integration can be detected from tumor and adjacent non-tumor tissues of HBV-positive HCC patients, but not HBV-negative samples. However, the HBV integrations in cancer tissues or adjacent tissues are different. A study has shown that HBV integration is more frequent in tumors (86.4%) than in adjacent liver tissues (30.7%) [48]. On the contrary, another study claimed that the occurrence of HBV integration in adjacent tissues (254/296, 85.8%) was more often than those in tumor tissues (42/296, about 14.2%) [50]. The cause of this discrepancy is unknown. Preferable clonal expansion of some hepatocytes in a suitable microenvironment may explain this disparity of HBV integration in normal and HCC tissues [51].

It is traditionally believed that HBV randomly integrates into the human genome [47, 49]. However, this standpoint has been recently challenged by large-scale analyses of HBV insertion sites, such as Alu-PCR or NGS. According to recent findings, HBV integration prefers to occur in actively transcribed chromosomal regions and the repetitive sequences, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and Alu sequences [44, 48, 49, 52]. Recently, high-throughput technologies using different platforms have discovered that HBV integration favors chromosome 10 [52] and chromosome 17 [50]. Alternations in chromosomal stability and changes in copy numbers are considered to be the characteristics of HBV integration events in HCC. For example, copy number loss is present at a locus adjacent to the cluster of caspase genes on chromosome 11 [44], whereas copy number variations are present in HBV integration breakpoints [48]. The variations of copy number located within or near the integration sites suggest that HBV integration may induce chromosomal instability, one of the major mechanisms of hepatocarcinogenesis. Another possible mechanism of HCC development is that some oncogenes or tumor suppressor genes may be affected by chimeric HBV-human fusion genes [48]. The characteristics of HBV integration in HCC identified by deep sequencing are listed in (Table 2).

Genes and Pathways Associated with HBV Integration Identified by Deep Sequencing

The first report using PCR to study HBV integration in human HCCs has demonstrated that a gene encoding telomerase reverse transcriptase (TERT) located at chromosome 5p15.33 is a HBV integration breakpoint [46]. Since then, more and more targeted genes have been detected by PCR. TERT and myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4) are the most preferential targets of HBV integration. TERT plays an important role in overriding cellular senescence, which is often up-regulated in most cancer cells [53]. MLL4 encodes a histone methyltransferase, which has critical roles in epigenetic modification of cancer genome [54]. As traditional methods are not sufficient to identify and quantify HBV integration sites in a comprehensive scale, NGS has been used to screen for HBV integrated sites/genes in HCC patients. Recently, a WGS study has confirmed TERT gene as a breakpoint of HBV integration. It has also identified one...
Table 1. Genes associated with hepatocellular carcinoma identified by next generation sequencing.

| Gene   | ‘GO’ Annotations                                                        | Location | Technology | Etiology of HCC               | Ref.   |
|--------|------------------------------------------------------------------------|----------|------------|------------------------------|--------|
| ADAR1  | Double-stranded RNA binding and double-stranded RNA adenosine deaminase activity | 1q21.3   | RNA-Seq    | Unknown                      | [31, 32]|
| ADAR2  | Double-stranded RNA binding and double-stranded RNA adenosine deaminase activity | 1q21.3   | RNA-Seq    | Unknown                      | [31]   |
| ADCY2  | Adenylate cyclase activity and protein heterodimerization activity     | 5p15.31  | WGS        | HBV                         | [41]   |
| AMPH   | Protein binding and protein domain specific binding                     | 7p14.1   | WES        | HBV                         | [36]   |
| ARID1A | Transcription coactivator activity and ligand-dependent nuclear receptor binding | 1p36.11  | WGS, WES, RNA-Seq | HBV, HCV, alcohol, other causes | [34-36]|
| ARID1B | Transcription coactivator activity and DNA binding                     | 6q25.3   | WGS        | HBV, HCV, other causes       | [34]   |
| ARID2  | DNA binding and zinc ion binding                                        | 12q12    | WGS, WES   | HBV, HCV, other causes       | [34, 37]|
| ATM    | Protein serine/threonine kinase activity and protein complex binding    | 11q22.3  | WGS        | HBV, HCV, other causes       | [34]   |
| AXIN1  | Protein kinase binding and protein homodimerization activity            | 16p13.3  | WGS, WES   | HCV                         | [30, 35, 41]|
| C18orf34 | Unknown                                                                       | unknown  | WES        | HBV                         | [36]   |
| CACNA2D4| Voltage-gated ion channel activity and calcium channel activity         | 12p13.33 | WGS        | HBV                         | [41]   |
| CCNG1  | Protein binding and protein domain specific binding                     | 5q34     | WGS, WES   | HBV                         | [40]   |
| CDH8   | Calcium ion binding                                                     | 16q21    | WGS, WES   | alcohol                      | [35]   |
| CDK14  | Cyclin binding and cyclin-dependent protein serine/threonine kinase activity | 7q21.13  | WES        | HBV                         | [36]   |
| CNTN2  | Glycoprotein binding and identical protein binding                      | 1q32.1   | WGS, WES   | HBV                         | [39]   |
| COL11A1| Extracellular matrix binding                                             | 1p21.1   | WGS        | HBV                         | [41]   |
| CSMD3  | Unknown                                                                   | 8q23.3   | WES        | HBV                         | [36]   |
| CTNNB1 | Protein kinase binding and sequence-specific DNA binding transcription factor activity | 3p22.1   | WGS, WES   | HBV                         | [35, 37, 38, 41]|
| DMXL1  | Unknown                                                                   | 5q23.1   | WES        | HBV                         | [37, 38]|
| DSE    | Chondroitin-glucuronate 5-epimerase activity                            | 6q22.1   | WES        | HBV                         | [36]   |
| ELL    | Protein binding                                                          | 19p13.11 | WES        | HBV                         | [36]   |
| ELMO1  | Phospholipid binding and SH3 domain binding                             | 7p14.1   | WES        | HBV                         | [36]   |
| EPS15  | SH3 domain binding and calcium ion binding                              | 1p32.3   | WGS        | HBV                         | [41]   |
| ERRF11 | Rho gtpase activator activity and protein kinase binding                | 1p36.23  | WGS        | HBV, HCV, other causes       | [34]   |
| FAM5C  | Unknown                                                                   | unknown  | WGS        | HBV                         | [41]   |
| FLNA   | Protein homodimerization activity and signal transducer activity         | Xq28     | WGS, WES   | HBV                         | [39]   |
| HOXA1  | Sequence-specific DNA binding and sequence-specific DNA binding transcription factor activity | 7p15.2   | WES        | HBV                         | [36]   |
| IGFSF10| Unknown                                                                  | 3q25.1   | WGS        | HBV, HCV, other causes       | [34]   |
| IRF2   | Regulatory region DNA binding and sequence-specific DNA binding transcription factor activity | 4q35.1   | WES        | alcohol                      | [35]   |
| Gene      | ‘GO’ Annotations                                                                 | Location | Technology | Etiology of HCC | Ref.      |
|-----------|-----------------------------------------------------------------------------------|----------|------------|-----------------|-----------|
| JAK1      | Growth hormone receptor binding and protein tyrosine kinase activity               | 1p31.3   | WGS        | HBV             | [41]      |
| JAK2      | Protein kinase activity and receptor binding                                      | 9p24.1   | WGS, WES   | HCV             | [30]      |
| KHDRBS2   | EH2 domain binding and protein heterodimerization activity                         | 6q11.1   | WGS, WES   | HCV             | [30]      |
| LRP1B     | Low-density lipoprotein receptor activity and calcium ion binding                  | 2q22.2   | WGS        | HBV             | [41]      |
| MLL3      | Unknown                                                                           | 7q36.1   | WGS        | HBV, HCV, other causes | [34, 41] |
| NEK8      | Protein serine/threonine kinase activity and metal ion binding                     | 17q11.2  | WGS, WES   | HCV             | [30]      |
| NFE2L2    | Sequence-specific DNA binding transcription factor activity and protein domain specific binding | 2q31.2   | WES        | alcohol         | [35]      |
| NLRP1     | Cysteine-type endopeptidase activator activity involved in apoptotic process and enzyme binding | 17p13.2  | WES        | HBV             | [37, 38] |
| P62(DCTN4) | Protein N-terminus binding                                                       | 5q33.1   | WGS, WES   | HBV             | [40]      |
| PARP4     | NAD+ADP-ribosyltransferase activity and enzyme binding                            | 13q12.12 | WGS, WES   | HBV             | [39]      |
| PAX5      | DNA binding and sequence-specific DNA binding transcription factor activity        | 9p13.2   | BGS        | Unknown         | [42]      |
| PROKR2    | Neuropeptide Y receptor activity                                                   | 20p12.3  | WGS, WES   | alcohol         | [35]      |
| RPS6KA3   | Protein serine/threonine kinase activity and protein kinase activity               | Xp22.12  | WES        | alcohol         | [35]      |
| RALT1     | Unknown                                                                           | 14q32.2  | WES, RNA-Seq | SB induced HCC | [33]      |
| SAMD9L    | Unknown                                                                           | 7q21.2   | WES        | HBV             | [36]      |
| SLC10A1   | Bile acid:sodium symporter activity                                               | 14q24.2  | WGS        | HBV             | [41]      |
| SPAG17    | Unknown                                                                           | 1p12     | WES        | HBV             | [36]      |
| ST18      | DNA binding and sequence-specific DNA binding transcription factor activity        | 8q11.23  | RC-seq     | Unknown         | [43]      |
| TMEM2     | Unknown                                                                           | 9q21.13  | WES        | HBV             | [36]      |
| TMEM35    | Molecular_function                                                               | Xq22.1   | WES        | HBV             | [36]      |
| TP53      | Identical protein binding and sequence-specific DNA binding transcription factor activity | 17p13.1  | WGS, WES   | HBV, HCV        | [35, 37, 41, 44] |
| TRRAP     | Transcription coactivator activity and phosphotransferase activity, alcohol group as acceptor | 7q22.1   | WGS, WES   | HCV             | [30]      |
| VCAM1     | Integrin binding and cell adhesion molecule binding                               | 1p21.2   | WES        | HBV             | [36]      |
| WWP1      | Ubiquitin-protein ligase activity and protein binding                             | 8q21.3   | WGS        | HBV, HCV, other causes | [34]      |
| ZIC3      | Sequence-specific DNA binding and sequence-Specific DNA binding transcription factor activity | Xq26.3   | WGS        | HBV, HCV, other causes | [34]      |
| ZNF226    | DNA binding and zinc ion binding                                                  | 19q13.31 | WGS        | HBV, HCV, other causes | [34]      |
| ZNF717    | DNA binding and zinc ion binding                                                  | 3p12.3   | WGS, WES   | HBV             | [39]      |

BGS, Bisulfate genomic sequencing; ‘GO’, Gene Ontology (http://www.genecards.org/); HBV, hepatitis B virus; HCV, hepatitis C virus; RC-seq, retrotransposon capture sequencing; RNA-seq, RNA sequencing; SB, Sleeping Beauty; WES, whole exome sequencing; WGS, whole genome sequencing.
Table 2. Characters of HBV integrations analysis by next generation sequencing.

| Major Genes | Sample Type | T/Total Integ-rated sites | Platforms | Preferred Human Integrated Chr. | Preferred Breakpoints on HBV Genome | Ref. |
|-------------|-------------|--------------------------|----------|---------------------------------|-----------------------------------|------|
| *TERT, FAS, MSMB* | T vs. NT (48 pairs of HBV+) | Total: 97 | WGS | Chr10 | 3’-end of HBx region (nt.1600 – nt.1900) and 5’-end of the Precore/Core region | [52] |
| *MLL4, ANGPT1* | T vs. NT (3 of HBV+, 1 of HBV-) | 148/255 | WGS, RNA-Seq | Unknown | A region between nt.1500-nt.2000 | [44] |
| *TERT, MLL4, CCNE1, SENP5, ROCK1, FN1* | T vs. NT (81 of HBV+, 7 of HBV-) | 344/399 | WGS, RNA-Seq | Unknown | Over 40% located at about nt.1800 | [48] |
| *CCNG1, P62* | T vs. NT (1 of HBV+) | 18/18 | WGS, WES | Unknown | Unknown | [40] |
| *TERT, MLL4, CCNE1* | T (28 of HBV+) | 246/246 | HIVID, WGS | Unknown | 33.5% located at nt.1500-nt.2000, 38.9% located at pre-S1 region | [55] |
| *FN1, PHACTR4, RBFOX, SMAD5, TERT* | T vs. NT (40 pairs of HBV+) | 42/296 | MAPS | Chr17 | Half of chimeric-human-HBV DNA truncated between nt.1500-nt.2000 | [50] |
| *TERT* | T vs. lymphocytes (11 of HBV+, 2 of HBV-) | Total: 23 | WGS | Unknown | The downstream region of the HBx region | [34] |

bp, base pairs; Chr., chromosome; HBV+, HBV positive; HBV-, HBV negative; HBx, HBV X protein; HIVID, high throughput viral integration detection; MAPS: massive anchored parallel sequencing; NT, non-tumor tissues; RNA-Seq, RNA sequencing; T, tumor tissues; WES, whole exome sequencing; WGS, whole genome sequencing.

The C-terminal Truncated HBx Plays an Important Role in HCC

The most frequent integrated HBV sequence related to hepatocarcinogenesis is HBV X gene. HBV X gene is a fraction of HBV DNA located from nt.1374 to nt.1835. HBx protein (HBx) encoded by the X gene is a polypeptide of 154 amino acids, which express at low levels in acute and chronic infections [56]. HBx acts as a transcriptional activator that is involved in the development of HBV-HCC. It also plays important roles in initiating and maintaining HBV replication / transcription during natural HBV infection [57], and takes part in epigenetic regulations of the HBV mini-chromosome [58, 59]. Integration of HBV DNA into the patient’s genome is common in HBV-HCC, leading to the truncation of the HBV genome, particularly at the C terminus of HBx (Ct-HBx) [60]. A recent study has demonstrated that Ct-HBx influences the stability of HBx and the ability of stimulating HBV replication [61]. Recent NGS studies have shown that preferential chimeric sites on HBV genome are usually between nt.1500-nt.2000 [44, 50, 52], and a more precise chimeric site is an approximate nt.1800 region where viral enhancer and ORF replication sites are located [48].
cleaves at the 3’-end of HBx gene [48, 52, 62-64]. Ct-HBx translated by the integrated HBx gene can regulate the expression of WNT-5a after modification by the miRNAs [65, 66], resulting in the activation of cell proliferation in vitro and in vivo [67]. Compared with the full-length HBx, Ct-HBx loses the inhibitory effect on cell proliferation and transformation, via abrogating p53-mediated apoptosis and cell proliferation [68, 69]. HBx is also involved in oxidative stress reaction. The C-terminal fragment of HBx (with 34 amino acids at the C-terminal end) is important for 8-oxoG (8-oxoguanine) formation via affecting reactive oxygen species (ROS) production. 8-oxoG functions as a key biomarker of oxidative DNA damage. Furthermore, the full-length HBx protein can induce mitochondrial DNA (mtDNA) damage via ROS production, while Ct-HBx loses its ability to induce ROS production or mtDNA damage. Although the role of Ct-HBx in the carcinogenesis and malignancy of HCC remains to be clarified, the effect of the C-terminal region of HBx on ROS production and mtDNA damage is ascertained [70]. A Ct-HBx (cleaved at around 130 amino acids of HBx gene) can enhance cell invasiveness and metastasis of HCC through C-Jun/AP-1 pathway, thus activating matrix metalloproteinase protein 10 (MMP10) [71], and influencing its binding to p53 regulators [52]. Epithelial-mesenchymal transition (EMT) is important as it promotes tumor progression and metastasis. A recent functional study based on the transcriptome sequencing of HBV-positive HCC cell lines has shown that a HBV-human fusion transcript long interspersed nuclear element 1 (HBx-LINE1) drives the migration and invasion of tumor cell lines via the induction of EMT [49].

Our previous clinical study has shown that the expression of Ct-HBx is more frequent in HCCs than in adjacent hepatic tissues (65.6% vs. 8.7%; P<0.001); furthermore, in the HBV-HCC patients who received antiviral treatment after curative surgery, the expression of Ct-HBx in adjacent hepatic tissues is significantly associated with a reduced recurrence-free survival [72]. Thus, we summarize that Ct-HBx integration in the host genome facilitates the development and progression of HCC.

HCC-ASSOCIATED NON-CODING RNAs IDENTIFIED BY RNA SEQUENCING

MicroRNA

MicroRNAs (miRNAs) are a group of functional small non-coding RNAs with a length of 18-25 nucleotides that regulate the gene expression at the transcriptional and post-transcriptional levels [7]. miRNAs function via base-pairing with complementary sequences within mRNA molecules, usually resulting in gene silencing by translational repression or target degradation. NGS is an effective approach to clarify the complete sequence of the miRNAs involved in the pathogenesis and development of cancers. Previous studies using PCR or microarrays have identified a series of miRNAs, such as pri-miR-371-373 [73], hsa-miR-191 [74], miR-27a, and miR-21 [75], which are associated with HBV- or HCV-related HCC. Recent studies using cloning technologies have indicated that deep sequencing is useful for detecting novel miRNAs, mRNA modifications, and miRNA compositions. Several studies using deep sequencing have shown that miR-122, miR-21 [76, 77], miR-34a [78], and miR-1323 [79] are aberrantly expressed in liver cancer, and sequencing-based miRNA clusters, rather than individual ones, and may serve as potential markers of early tumor recurrence after curative surgery [77]. Serum miRNAs including miR-25, miR-275, and let-7f can separate HCC from the controls, and serve as biomarkers for the diagnosis of HBV-HCC [79]. miRNAs can also function as tumor suppressor genes or oncogenes. A NGS study using Illumina platform has shown that miR-99a significantly inhibits tumor growth, suggesting that it is a potential tumor suppressor for HCC [80]. A study assessing the association of miRNA expression with doxorubicin (DOX) resistance has profiled that 22 miRNAs are helpful to overcome DOX resistance in HCC therapy [81]. These miRNAs identified using different platforms need to be cross-validated before further applications.

Long Non-coding RNA

Long non-coding RNAs (lncRNAs), with the length of > 200 nucleotides, have the capacity of transcribing into RNA but without protein-coding ability. LncRNAs may exert its gene-regulatory functions via epigenetic silencing, splicing regulation, translational control, and regulating apoptosis and cell cycle. Two models have been proposed to explain how lncRNAs regulate gene expression: first, lncRNAs directly affect the host genome via binding to the polycomb proteins [82]; second, lncRNAs alter gene expression via altering the chromatin such as antisense transcripts [83]. Alterations in their primary and secondary structure, expression levels of lncRNAs, and their cognate RNA-binding proteins may be related to human diseases. Their aberrant expression in cancers can influence cell growth, invasion, and metastasis. LncRNA-ATB, a microarray assay-identified lncRNA that can mediate TGF-β signaling, can predispose HCC patients to metastases and serve as a potential target for antimetastatic therapy [84]. An HBx down-regulated lncRNA, termed as LncRNA-Dreh, can inhibit HCC growth and metastasis in vitro and in vivo and act as a tumor suppressor for HBV-HCC [85]. Since some HCC-related lncRNAs can be detected in body fluid and are specific for HCC, they are suggested to be novel potential biomarkers for HCC diagnosis [86]. Some lncRNAs expressed in removed HCC and adjacent liver tissues can be developed as potent biomarkers with prognostic and predictive values or as novel therapeutic targets for HCC.

THE METHYLATION MODIFICATION IDENTIFIED BY DEEP SEQUENCING

Genetic diversity in individuals can explain the various phenotypes in life. However, individuals with similar DNAs such as monozygotic twins have different phenotypes [87]. One possible mechanism is epigenetic modification on genome. The phenotypes can be changed by epigenetic modification imposed by environmental exposure. Epigenetic modification models including DNA methylation, histone modification, chromatin remodeling, and aberrant non-coding RNA contribute to genetic changes that may drive cancer evolution. Actually, HCC-related somatic mutations frequently affect the critical genes that are responsible for chromatin modification [31, 34, 36]. Of various epigenetic modifications, DNA methylation is well characterized in cancers. Compared with normal tissues, DNA methyltransferases are more active in tumors [88, 89]. The roles of epi-
genic modifications on HBV-HCC have been previously summarized [86, 90]. Epigenetic silencing of some important genes represents some mechanism of HBV-induced hepatocarcinogenesis and also reflects that HCC evolution trend can go into reverse via targeting reversible epigenetic modifications.

**FRAMEWORK OF “CANCER EVOLUTION AND DEVELOPMENT”**

Based on the current advances of HBV-HCC, we propose a theory framework of Cancer Evolution and Development (Cancer Evo-Dev) to characterize evolutionary regulation of HCC. Chronic hepatic inflammation, either clinical apparent or inapparent, promotes precancerous conditions, subsequently hepatocarcinogenesis, and HCC progression. Genetic predispositions of HLAs and other inflammatory factors may contribute to immune imbalance upon HBV infection, leading to persistent infection and chronic inflammation in liver. HBV mutations promoted by inflammation demonstrate an evolutionary process of “mutation-selection-adaptation”. Inflammatory factors promote HBV mutations, at least partially, via activating AID and its analogues APOBECs. Insufficient immune responses in the immunocompromised hosts select the HCC-related HBV mutations during the long-term evolutionary process. Only the HBV strains/variants best adapted to the host immune system will survive and thrive in liver. HBV accumulates its mutations via minimizing the total number of epitopes recognized by CD8+ T cells, particularly in the HBx and the pre-S1/pre-S2/S regions of HBV genome, to avoid immune clearances. These HBV mutations are selected via virus-immune interactions in the inflammatory microenvironment and in turn promote the development of HCC. AID and its analogues APOBECs, whose expressions and activities can be activated by proinflammatory cytokines generated during the inflammation, not only promote HBV mutagenesis but also facilitate somatic mutations [91]. The same explanations can be implicated in somatic mutation. Most of the mutated hepatocytes may be immunologically eliminated in the inflammatory microenvironment. Very small percentage of the mutated cell populations with survival potentials and specific growth advantages survive in the hostile environment, gradually evolve, and eventually become the major clones of cancer-initiating cells. During this relative long-term evolutionary process, somatic mutagenesis, viral integration/selection, and epigenetic modification are key elements driving the processes of hepatocarcinogenesis. Chronic inflammation in liver is often associated with aberrant DNA methylation. Activation of a natural kill cell-dependent innate immune response might contribute to the induction and accumulation of aberrant DNA methylation in human hepatocytes. This framework of Cancer Evo-Dev will be helpful in understanding the mechanisms by which chronic HBV infection causes HCC or some environmental exposures cause cancers of other histological types. Furthermore, it will be helpful in identifying the nodule molecules of inflammation-induced carcinogenesis which can be used as diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for effective interventions of HBV-HCC and possible other malignancies.

**CONCLUSION AND FUTURE DIRECTION**

Chronic inflammation, elicited by immune imbalance predisposed by HLAs and other immune molecules, facilitates the evolutionary process of HBV-induced hepatocarcinogenesis. Besides HBV factors including HBV mutations, somatic mutations, HBV integrations, and epigenetic modifications play key roles in HBV-induced hepatocarcinogenesis. High throughput technologies including NGS provide great opportunities for us to better understand the viral and genetic factors that drive hepatocarcinogenesis. Comprehensive functional experiments carried out in cell lines and animal models are essential to further characterize the roles of somatic mutations, HBV integrations, and epigenetic modifications on the HBV-HCC. Furthermore, well-designed epidemiological studies, especially prospective cohort studies are needed to evaluate and interpret the etiological roles of these molecules with HBV-HCC outcome in HBV-infected subjects. The theory framework of Cancer Evo-Dev proposed in HBV-HCC should be helpful to handle cancers of other histological types.

**CONFLICT OF INTEREST**

The author(s) confirm that this article content has no conflict of interest.

**ACKNOWLEDGEMENTS**

This work was supported by grants from the National Key Basic Research Program (973 project) (2015CB554000) from the Ministry of Science and Technology of China and the National Natural Scientific Foundation of China (Grant No. 81025015, 81221061, 81302492, and 91129301). The study sponsors had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript and in the decision to submit the manuscript for publication.

**LIST OF ABBREVIATIONS**

| Abbreviation | Definition |
|--------------|------------|
| AID          | Activation-Induced Cytidine Deaminase |
| AML          | Acute Myeloid Leukemia |
| APOBECs      | Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptides |
| C-terminal   | COOH-Terminal |
| Ct-HBx       | C Terminus of HBx |
| DOX          | Todoxorubicin |
| EMT          | Epithelial-Mesenchymal Transition |
| HBV          | Hepatitis B Virus |
| HBx          | HBV X Protein |
| HCC          | Hepatocellular Carcinoma |
| HCV          | Hepatitis C Virus |
| HIVID         | High-Throughput Viral Integration Detection |
| HLA          | Human Leukocyte Antigen |
| LINE         | Interspersed Nuclear Element |
| IncRNA       | Long non-coding RNA |
MAPK = Mitogen-activated Protein Kinase
MAPS = Massive Anchored Parallel Sequencing
miRNAs = microRNAs
MLL4 = Myeloid/lymphoid or Mixed-lineage Leukemia 4
mtDNA = Mitochondrial DNA
NGS = Next Generation Sequencing
nt. = Nucleotide
ORF = Open Reading Frame
PCR = Polymerase Chain Reaction
RNA-seq = RNA Sequencing
ROS = Reactive Oxygen Species
SINE = Short Interspersed Nuclear Elements
ssDNA = Single Stranded DNA
TERT = Telomerase Reverse Transcriptase
WES = Whole Exome Sequencing
WGS = Whole Genome Sequencing
8-oxoG = 8-oxoguanine

REFERENCES

[1] Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61 (2), 69-90.
[2] Yang, J.D.; Roberts, J.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol., 2010, 7 (8), 448-458.
[3] Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer, 2006, 118 (12), 3030-3044.
[4] Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6 (9), 674-687.
[5] Xu, C.; Zhou, W.; Wang, Y.; Qiao, L. Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett., 2014, 345 (2), 216-222.
[6] He, Y.; Meng, X.M.; Huang, C.; Wu, B.M.; Zhang, L.; Lv, X.W.; Li, J. Long noncoding RNAs: Novel insights into hepatocellular carcinoma. Cancer Lett., 2014, 344 (1), 20-27.
[7] Zhang, Q.; Pu, R.; Du, Y.; Han, Y.; Su, T.; Wang, H.; Cao, G. Noncoding RNAs in hepatitis B or C-associated hepatocellular carcinoma: potential diagnostic and prognostic markers and therapeutic targets. Cancer Lett., 2012, 321 (1), 1-12.
[8] Murakami, Y.; Saigo, K.; Takashima, H.; Minami, M.; Okanoue, T.; Brechot, C.; Paterlini-Brechot, P., Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut, 2005, 54 (8), 1162-1168.
[9] Roukos, D.; Batsis, C.; Baltogiannis, G., Assessing tumor heterogeneity and emergence mutations using next-generation sequencing for overcoming cancer drugs resistance. Expert Rev. Anticancer Ther., 2012, 12 (10), 1245-1248.
[10] Li, Z.; Xie, Z.; Ni, H.; Zhang, Q.; Lu, W.; Yin, J.; Liu, W.; Ding, Y.; Zhao, Y.; Zhu, Y.; Pu, R.; Zhang, H.; Dong, H.; Fu, Y.; Sun, Q.; Xu, G.; Cao, G., Mother-to-child transmission of hepatitis B virus: Evolution of hepatocellular carcinoma-related viral mutations in the post-infection era. J. Clin. Virol., 2014, 61 (1), 47-54.
[11] Zhang, H.W.; Yin, J.H.; Li, Y.T.; Li, C.Z.; Ren, H.; Gu, C.Y.; Wu, H.Y.; Liang, X.S.; Zhang, P.; Zhao, J.F.; Tan, X.J.; Lu, W.; Schaefer, S.; Cao, G.W. Risk factors for acute hepatitis B and its progression to chronic hepatitis in Shanghai, China. Gut, 2008, 57 (12), 1713-20.
[12] Witz, I.P.; Levy-Nissenbaum, O. The tumor microenvironment in the post-PAGET era. Cancer Lett., 2006, 242 (1), 1-10.
[13] Zhang, Q.; Yin, J.; Zhang, Y.; Deng, Y.; Ji, X.; Du, Y.; Pu, R.; Han, Y.; Zhao, J.; Han, X.; Zhang, H.; Cao, G. HLA-DP polymorphisms affect the outcomes of chronic hepatitis B virus infections, possibly through interacting with viral mutations. J. Virol., 2013, 87 (22), 12176-86.
[14] Deng, Y.; Du, Y.; Zhang, Q.; Han, X.; Cao, G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett., 2014, 343 (2), 161-171.
[15] Varratian, J.P.; Henry, M.; Marchio, A.; suspene, R.; Aynaud, M.M.; Gutard, D.; Cervantes-Gonzalez, M.; Battiston, C.; Mazzaferro, V.; Pineau, P.; Dejean, A.; Wain-Hobson, S. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PloS Pathog., 2010, 6 (5), e1000928.
[16] suspene, R.; Gutard, D.; Henry, M.; Sommer, P.; Wain-Hobson, S.; Varratian, J.P., Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A., 2013, 110 (6), 2246-2251.
[17] Liang, G.; Kitamura, K.; Wang, Z.; Liu, G.; Chowdhury, S.; Fu, W.; Koura, M.; Wakae, K.; Honjo, T.; Muramatsu, M., RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc. Natl. Acad. Sci. U.S.A., 2005, 102 (23), 8321-8326.
[18] González, M.C.; suspene, R.; Henry, M.; Gutard, D.; Wain-Hobson, S.; Varratian, J.P., Human APOBEC1 cytidine deaminase edits HBV DNA. Retrovirology, 2009, 6, 96.
[19] Janahi, E.M.; McGavern, M.J., The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J. Viral. Hepat., 2013, 20 (12), 821-828.
[20] Kedive, A.; Sanée-Moghaddam, I.; Alavian, S.M.; Saberfar, E.; Norouzi, M.; Judaki, M.; Ghahari, S.; Jazayeri, S.M., Hepatitis B virus surface antigen (HBsAg) mutations are rare but clustered in immune epitopes in chronic carriers from Sistan-Baluchestan Province, Iran. Arch. Iran Med., 2013, 16 (7), 385-389.
[21] Cao, G.W. Clinical relevance and public health significance of hepatitis B virus genome variations. World J. Gastroenterol., 2009, 15 (46), 5761-5769.
[22] Yang, H.I.; Yeh, S.H.; Chen, P.J.; Iloeje, U.H.; Jen, C.L.; Su, J.; Wang, L.Y.; Lu, S.N.; You, S.L.; Chen, D.S.; Liaw, Y.F.; Chen, C.J. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J. Natl. Cancer Inst., 2008, 100 (16), 1134-1143.
[23] Fang, Z.L.; Sabin, C.A.; Dong, B.Q.; Ge, L.Y.; Wei, S.C.; Chen, Q.Y.; Fang, K.X.; Yang, J.Y.; Wang, H.Y.; Harrison, T.J., HBV A1762T, G145A mutations are a valuable biomarker for identifying a subset of male HBsAg carriers at extremely high risk of hepatocellular carcinoma: a prospective study. Am. J. Gastroenterol., 2008, 103 (9), 2254-2262.
[24] Huang, Y.; Tong, S.; Tai, A.W.; Hussain, M.; Lok, A.S. Hepatitis B virus core promoter mutations contribute to hepatocarcinogenesis by deregulating SKP2 and its target, p21. Gastroenterology, 2011, 141 (4), 1412-1421.
[25] Huang, Y.; Tai, A.W.; Tong, S.; Lok, A.S. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription. J. Hepatol., 2013, 58 (6), 1068-1073.
[26] Welch, J.S.; Link, D.C. Genomics of AML: clinical applications of next-generation sequencing. Hematology Am. Soc. Hematol. Educ. Program, 2011, 2011, 30-35.
[27] Ding, L.; Ley, T.J.; Larson, D.E.; Miller, C.A.; Koboldt, D.C.; Welch, J.S.; Ritchey, J.K.; Young, M.A.; Lamprecht, M.; McLellan, M.D.; McMichael, J.F.; Wallis, J.W.; Lu, C.; Shen, D.; Harris, C.C.; Dooling, D.I.; Fulton, R.S.; Fulton, L.S.; Chen, K.; Schmidt, H.; Kalicki-Weizer, J.; Magrini, V.J.; Cook, L.; McGrath, S.D.; Vickery, T.L.; Wendel, M.C.; Heath, S.; Watson, M.A.; Link, D.C.; Tomasson, M.H.; Shannon, W.D.; Payton, J.E.; Kulkarni, S.; Westervelt, P.; Walter, M.J.; Graubert, T.A.; Mardis, E.R.; Wilson, R.K.; Derosier, J.F., Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature, 2012, 481, 506-510.
[28] Mardis, E.R. Genome sequencing and cancer. Curr. Opin. Genet. Dev., 2012, 22, 245-250.
[29] Totoki, Y.; Tatsuno, K.; Yamamoto, S.; Ariai, Y.; Hosoda, F.; Ishikawa, S.; Tsutsumi, S.; Sonoda, K.; Totsuka, H.; Shirakihara, T.; Sakamoto, H.; Wang, L.; Ojima, H.; Shimada, K.; Kosuge, T.; Okusaka, T.; Kato, K.; Kusuda, J.; Yoshida, T.; Aburatani, H.; Shibata, T., High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet., 2011, 43, 464-469.
Chen, T.H.; Lin, C.H.; Qi, L.; Fei, J.; Li, Y.; Kong, K.L.; Liu, M.; Song, Y.; Chow, E.S.; Zhao, G.; Li, L.; Dai, N.; Si, J.; Tao, Q.; Sun, J.; Ju, Y. Paired box gene 5 is a novel tumor suppressor in hepatocellular carcinoma through interaction with p53 signaling pathway. Hepatology, 2011, 53, 843-853.

Shukla, R.; Upton, K.R.; Munoz-Lopez, M.; Gerhardt, D.J.; Fisher, M.E.; Nguyen, T.; Brennan, P.M.; Bailie, J.K.; Collino, A.; Filletti, S.; Singh, P.; Radson, M.; Bos Santos, A.; Rapoud, D.; Guettier, C.; Samuel, D.; Nolati, G.; Carinci, P.; Ciccarelli, F.D.; Garcia-Perez, J.L.; Faivre, J.; Faulkner, G.J. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell, 2013, 153, 101-111.

Jiang, Z.; Shunjunwu, M.; Liu, J.; Haverty, P.M.; Kenmmer, M.; Lee, N.P.; Zhou, W.; Lin, Z.; Peng, Z.; Yi, K.; Chen, S.; Li, L.; Harding, J.; Yeung, S.; Jubb, A.; Yew, W.; Wu, T.D.; Kapadia, S.B.; de Sauvage, F.J.; Gentleman, R.C.; Stern, H.M.; Seshagiri, S.; Pant, K.P.; Modrusan, Z.; Ballinger, D.G.; Zhang, Z. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res., 2012, 22, 593-601.

Donato, F.; Boffetta, P.; Puoti, M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int. J. Cancer, 1998, 73(5), 347-354.

Shafritz, D.A.; Shouval, D.; Shemer, H.I.; Hadziyannis, S.J.; Kew, M.C. Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsy and post-mortem tissue specimens. J. Clin. Pathol., 2007, 60(11), 1157-1161.

Murakami, Y.; Saigo, K.; Takashima, H.; Minami, M.; Okanoue, T.; Brechot, C.; Paterlini-Brechot, P. Large scale analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut, 2005, 54, 1162-1168.

Sung, W.K.; Zheng, H.; Li, S.; Chen, R.; Liu, X.; Li, Y.; Lee, N.P.; Lee, W.H.; Arijaratne, P.P.; Nennakoon, C.; Mulwadi, F.H.; Wong, K.F.; Liu, A.M.; Poon, R.T.; Fan, S.T.; Chan, K.L.; Gong, Z.; Hu, Y.; Lin, Z.; Wang, G.; Zhang, Q.; Barber, T.D.; Chow, W.C.; Adegawa, A.; Hao, K.; Zhou, W.; Zhang, C.; Hardwick, J.; Buser, C.; Xu, J.; Kan, Z.; Dai, H.; Mao, M.; Reinhard, C.; Wang, J.; Luk, J.M. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet., 2012, 44, 766-769.

Liu, C.C.; Sun, T.; Ching, A.K.; He, M.; Li, J.W.; Wong, A.M.; Co, N.N.; Chan, A.W.; Li, P.S.; Lung, R.W.; Tong, J.H.; Lai, P.B.; Chan, H.L.; To, K.F.; Chan, T.F.; Wong, N. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell, 2014, 25, 335-349.

Ding, D.; Lou, X.; Hua, D.; Yu, W.; Li, L.; Wang, J.; Gao, F.; Zhao, N.; Ren, G.; Lin, B. Recurrent targetted genes of hepatitis B virus in the liver cancer genome database revealed by integrative gene-expression sequencing-based approach. PLoS Genet., 2012, 8, e1003065.

Mason, W.S.; Liu, C.; Aldrich, C.E.; Liwim, S.; Yeh, M.M. Clonal expansion of normal-apparent hepatocyte populations during chronic hepatitis B virus infection. J. Virol., 2010, 84, 8308-8315.

Toh, S.T.; Jin, Y.; Liu, L.; Wang, J.; Babrzadeh, F.; Gharizadeh, B.; Ronaghi, M.; Tob, H.C.; Chow, P.K.; Chung, A.Y.; Ooi, L.L.; Lee, C.G. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis, 2013, 34, 787-798.

Cao, Y.; Bryian, T.M.; Reddel, R.R. Increased copy number of the TERT and TERc telomerum subunit genes in cancer cells. Cancer Res., 2008, 69, 99-106.

Saigo, K.; Yoshida, K.; Ikeda, R.; Sakamoto, Y.; Murakami, Y.; Urashima, T.; Asano, T.; Kennaouch, I.; Inoue, I. Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat., 2008, 29(5), 703-708.

Cao, Y.; Bryian, T.M.; Reddel, R.R. Increased copy number of the TERT and TERc telomerum subunit genes in cancer cells. Cancer Res., 2008, 69, 99-106.

Lee, N.P.; Zhou, W.; Lin, Z.; Peng, Z.; Yi, K.; Chen, S.; Li, L.; Harding, J.; Yeung, S.; Jubb, A.; Yew, W.; Wu, T.D.; Kapadia, S.B.; de Sauvage, F.J.; Gentleman, R.C.; Stern, H.M.; Seshagiri, S.; Pant, K.P.; Modrusan, Z.; Ballinger, D.G.; Zhang, Z. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res., 2012, 22, 1117-1212.

Lucifora, J.; Arzberger, S.; Durante, D.; Belloni, L.; Strubin, M.;
Leviero, M.; Zoulim, F.; Hantz, O.; Protzer, U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol., 2011, 55, 996-1003.

Belloni, L.; Pollicino, T.; De Nicola, F.; Guerrieri, F.; Raffa, G.; Fanciulli, M.; Raimondo, G.; Leviero, M. Nuclear HBV binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 19975-19979.

Cougot, D.; Allemand, E.; Riviere, L.; Benhenda, S.; Duroue, K.; Levillayer, F.; Muchardt, C.; Buendia, M. A.; Neveut, C. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci. Signal., 2012, 5, ra1.

Wang, Y.; Lau, S. H.; Shams, J. S.; Wu, M. C.; Wang, T.; Guan, X. Y. Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinoma. Oncogene, 2004, 23 (1), 142-148.

Lizzano, R.A.; Yang, B.; Clippinger, A.J.; Bouchard, M.J. The C-terminal region of the hepatitis B virus X protein is essential for its stability and function. Virus Res., 2011, 155, 231-239.

Khattar, E.; Mukherji, A.; Kumar, V. Akt augments the oncogenic potential of the HBx protein of hepatitis B virus by phosphorylation. FEBS J., 2012, 279, 1220-1230.

Pollicino, T.; Veggetti, A.; Saiata, C.; Ferrara, F.; Corradini, E.; Raffa, G.; Pietrangelo, A.; Raimondo, G. Hepatitis B virus DNA integration in tumour tissue of a non-cirrhotic HFE-9797 heterozygote patient with hepatocellular carcinoma. J. Hepatol., 2013, 58, 190-193.

Zhang, X.; You, X.; Li, N.; Zhang, W.; Gagos, S.; Wang, Q.; Nos, A.; Cai, N.; Zhang, H.; Chan, S.; Qu, L.; Zhang, S.; Lv, N.; Chen, M.; Du, Y.; Xia, J.; Ye, L. Involvement of hepatitis B virus X gene (HBx) integration in hepatocarcinogenesis via a recombination of HBx/Alu core sequence/subtelomeric DNA. FEBS Lett., 2012, 586, 3215-3221.

Liu, X.; Wang, L.; Zhang, S.; Lin, J.; Feitelson, M. A.; Gao, H.; Zhu, M. Mutations in the C-terminus of the X protein of hepatitis B virus regulate Wnt-5a expression in hepatoma Huh7 cells: cDNA microarray and proteomic analyses. Carcinogenesis, 2008, 29, 1207-1214.

Yip, W.K.; Cheng, A.S.; Zhu, R.; Lung, R.W.; Tsang, D. P.; Lau, S. S.; Chen, Y.; Sung, J.G.; Lai, P. B.; Ng, E.K.; Yu, J.; Wong, N.; Yoon, J. H.; Lee, H. S.; Kim, C. Y.; Cheong, J.Y.; Cho, S. W.; H.; Wang, H.; Cheng, S.; Cao, G. Effect of antiviral treatment with nucleotide/nucleoside analogs on postoperative prognosis of hepatocellular carcinoma. J. Hepatol., 2011, 55, 984-993.

Li, L. M.; Hu, Z.B.; Zhou, Z.X.; Chen, X.; Liu, F. Y.; Zhang, J. F.; Shen, H. B.; Zhang, C. Y.; Zen, K. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res., 2010, 70, 7979-7987.

Yuan, J.; Lee, L.; Lin, L.; Hou, J.; Li, N.; Wang, C.; Zhang, P.; Zhang, Q.; Zhang, P.; Zhou, W.; Zhang, Z.; Ding, G.; Zhuang, S. M.; Zheng, L.; Tao, W.; Cao. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J. Biol. Chem., 2011, 286, 36677-36685.

Chen, C.; Du, Y.; Xia, J.; Ye, L. Involvement of hepatitis B virus x protein is associated with metastasis and expression of hepatitis B virus transcription. Oncogene, 2011, 30, 142-148.

Jung, S.Y.; Kim, Y. J. C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett., 2013, 333, 76-83.

Sze, K. M.; Chu, G. K.; Lee, J. M.; Ng, I. O. C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by C-Jun/matrix metalloproteinase 10 activation in hepatocellular carcinoma. Hepatology, 2013, 57, 131-139.

Sun, J.; Li, N.; Han, Y.; Xue, J.; Deng, Y.; Shi, J.; Guo, W.; Zhang, H.; Wang, H.; Cheng, S.; Cao, G. Effect of antiviral treatment with nucleotide/nucleoside analogs on postoperative prognosis of hepatitis B virus-related hepatocellular carcinoma: a two-stage longitudinal clinical study. J. Clin. Oncol., 2013, 31 (29), 3647-3655.

Kwak, M.S.; Lee, D.H.; Cho, Y.; Cho, E.J.; Lee, J. H.; Yu, S. J.; Yoon, J. H.; Lee, H. S.; Kim, C. Y.; Cheong, J.Y.; Cho, S. W.; Shi, H. D.; Kim, Y. J. Association of polymorphism in plasma miRNAs-371-372-373 with the occurrence of hepatocellular carcinoma in hepatitis B virus infected patients. Plos ONE, 2012, 7, e41983.
[90] Morisawa, T.; Marusawa, H.; Ueda, Y.; Iwai, A.; Okazaki, I.M.; Honjo, T.; Chiba, T. Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. *Int. J. Cancer*, **2008**, *123*(12), 2735-2740.

[91] Okamoto, Y.; Shinjo, K.; Shimizu, Y.; Sano, T.; Yamao, K.; Gao, W.; Fujii, M.; Osada, H.; Sekido, Y.; Murakami, S.; Tanaka, Y.; Joh, T.; Sato, S.; Takahashi, S.; Wakita, T.; Zhu, J.; Issa, J. P.; Kondo, Y. Hepatitis virus infection affects DNA methylation in mice with humanized livers. *Gastroenterology*, **2014**, *146*(2), 562-572.