Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato

Géraldine A. Van der Auwera,a,b Michael Feldgarden,b Roberto Kolter,c Jacques Mahillonaproducts and/or services for Genome Announcements. The authors declare that they have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Received 5 May 2013 Accepted 28 August 2013 Published 3 October 2013

Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins.

We have shown previously that select sequences of the shared pXO1 and pXO2 backbones can be found widely in environmental isolates of B. cereus sensu lato (10). We postulated that these are found in plasmids that are genetically related to the pXO1 and pXO2 plasmids (hence called pXO1-like and pXO2-like, respectively) and may play an important role in the ecotypic and pathotypic differentiation of B. cereus sensu lato organisms.

In order to gain deeper insight into the ecological distribution and genomic diversity of the pXO1-like and pXO2-like plasmids, we sequenced a panel of 94 isolates of B. cereus sensu lato organisms containing a variety of plasmids and having diverse environmental origins. This adds to the ~60 whole or draft genomes of B. cereus of various origins already available in GenBank.

De novo assemblies were generated from Illumina 101-base paired-end reads generated with two libraries, one from 180-bp fragments and one from 3-kb jumping libraries. The assemblies were constructed using AllPaths-LG (11). The protein-coding genes were predicted with Prodigal (12) and filtered to remove genes with ≥70% overlap to the tRNAs or rRNAs. The tRNAs were identified by tRNAscan-SE (13). The rRNA genes were predicted using RNAScanner (14). The gene product names were assigned based on top BLAST hits against the Swiss-Prot protein database (≥70% identity and ≥70% query coverage) and a protein family profile search against the TIGRFam HMMER equivalogs.

Nucleotide sequence accession numbers. All 94 draft genome sequences have been deposited at GenBank under the accession numbers.

ACKNOWLEDGMENTS

This project was funded in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract no. HHSN272200900018C. G.A.V.D.A. was supported by postdoctoral fellowships from the Belgian American Educational Foundation (BAEF) and from the Fonds National pour la Recherche Scientifique (FNRS) of Belgium.

G.A.V.D.A. and J.M. thank the many collaborators at UCL Louvain-la-Neuve, Harvard Medical School, and Huazhong Agricultural University who contributed environmental isolates to this study.
Sample source	Strain name	GenBank accession no.	Predicted plasmid(s)	Reference
Soil, Greenland	VD048	AHEU010000000	pXO1	10
	VD078	AHVE010000000	pXO1	10
	VD045	AHEI010000000	pXO2	10
	VDM022	AHFP010000000	pXO2	10
	VDM021	AHFU010000000	Neither	10
	VDM019	AHFO010000000	Neither	10
Soil, Spain	VD014	AHER010000000	pXO1	10
	VDM006	AHFT010000000	pXO2	10
	VDM034	AHFO010000000	Neither	10
Soil, Scotland	VD142	AHCL010000000	pXO2	10
	VD148	AHFP010000000	pXO2	10
	VDM062	AHSF010000000	pXO2	10
	VD136	AHFC010000000	Neither	10
	VD140	AHD010000000	Neither	10
	VD146	AHEF010000000	Neither	10
Water, Scotland	VD200	AHFM010000000	pXO1	10
	VD214	AHFN010000000	Neither	10
Soil, Martinique	VD133	AHFB010000000	pXO1	10
	VD131	AHFA010000000	Neither	10
Soil, Guadeloupe	VD107	AHEX010000000	pXO2	10
	VD115	AHEY010000000	pXO2	10
	VD102	AHEW010000000	Neither	10
	VD118	AHEZ010000000	Neither	10
Soil, Abu Dhabi, UAE	VD156	AHFH010000000	pXO1	10
	VD154	AHFG010000000	Neither	10
Soil, Dubai, UAE	VD169	AHFO100000000	pXO1	10
	VD196	AHFL010000000	pXO1	10
	VD166	AHFI010000000	Neither	10
	VD184	AHFK010000000	Neither	10
Water, Belgium (small pond site)	VD021	AHE100000000	pXO2	10
	VD022	AHG010000000	pXO1, pXO2	10
	VDM053	AHFR010000000	Neither	10
Soil, Belgium (site A)	HuA2-1	AHDV010000000	pXO1	10
	HuA2-3	AHDW010000000	Neither	10
	HuA2-4	AHDX010000000	pXO2	10
	HuA2-9	AHDY010000000	Neither	10
	HuA3-9	AHDZ010000000	pXO1	10
	HuA4-10	AHEA010000000	pXO2	10
Soil, Belgium (site B)	HuB1-1	AHEB010000000	Neither	10
	HuB2-9	AHEG010000000	pXO2	10
	HuB4-4	AHEC010000000	Neither	10
	HuB4-10	AHEG010000000	pXO2	10
	HuB5-5	AHEC010000000	pXO2	10
	HuB13-1	AHEF010000000	Neither	10
Soil, Massachusetts (Boston site AG)	BAG10-1	AHCN010000000	Neither	This study
	BAG10-2	AHCN010000000	Neither	This study
	BAG10-3	AHCN010000000	Neither	This study
	BAG1X1-1	AHCN010000000	pXO1	This study
	BAG1X1-2	AHCN010000000	pXO1	This study
	BAG1X1-3	AHCN010000000	pXO1	This study
	BAG1X2-1	AHCN010000000	pXO1, pXO2	This study
	BAG1X2-2	AHCN010000000	pXO2	This study
	BAG1X2-3	AHCN010000000	pXO2	This study

(Continued on following page)
REFERENCES

1. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. J. Bacteriol. 182:2627–2630.

2. Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186:7959–7970.

3. Rasko DA, Altherr MR, Han CS, Ravel J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29:303–329.

4. Tourasse NJ, Helgason E, Okstad OA, Hegna IK, Kolsto AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J. Appl. Microbiol. 101:579–593.

5. Maughan H, Van der Auwera G. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect. Genet. Evol. 11:789–797.

6. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, Willner K, Nolan N, Lentz S, Thomason MK, Sozhamannan S, Mateczun AJ, Du L, Read TD. 2012. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 22:1512–1524.

7. Koehler TM. 2009. Bacillus anthracis physiology and genetics. Mol. Aspects Med. 30:386–396.

8. Hoton FM, Andrup L, Swiecicka I, Mahillon J. 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. 151: 2121–2124.

Table 1 (Continued)

Sample source	Strain name	GenBank accession no.	Predicted plasmid(s)	Reference
Soil, Massachusetts (Boston site ES)	BAG6O-1	AHDW010000000	Neither	This study
	BAG6O-2	AHDW01000000	Neither	This study
	BAG6X1-1	AHDW01000000	pXO1	This study
	BAG6X1-2	AHDW01000000	pXO1	This study
Food	AND1407	AHCW01000000000	pXO1	15
	K-5975c	AHCW01000000	pXO1	19
	TIA2C19	AHCW01000000	pXO1	20
	Schrouff	AHCW01000000	pXO1, pXO2	Mahillon et al., unpublished
	ISP3191	AHCW01000000	pXO1, pXO2	Dierick et al., unpublished
	ISP2954	AHCW01000000	pXO1	Dierick et al., unpublished
Soil, China	B5-2	AHDW01000000	pXO1, pXO2	Sun et al., unpublished
	IS075	AHCW01000000	pXO1, pXO2	21
	IS195	AHCW01000000	pXO1, pXO2	21
	IS845/00	AHCW01000000	pXO1	21
Insect^a	HD73	AHDW01000000	pXO2	22
Various origins^b	MG67	AHCW01000000	Other	17
	MC118	AHCW01000000	Other	17
	MSX-A1	AHCW01000000	Other	16
	MSX-A12	AHCW01000000	Other	16
	MSX-D12	AHCW01000000	Other	16
	BMG1.7	AHCW01000000	Other	18
Various origins^c	CER057	AHDW01000000	Other	15
	CER074	AHDW01000000	Other	15
	BtB2-4	AHDW01000000	Other	15

^a Reference strain for the pXO2-like plasmid pAW63.

^b Strains predicted to carry other plasmids of interest.

^c Strains predicted to carry plasmid fragments on the chromosome.

^d Neither, neither pXO1 nor pXO2; other, plasmids other than pXO1 or pXO2.
9. Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. 6:20.

10. Hu X, Van der Auwera G, Timmery S, Zhu L, Mahillon J. 2009. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 75:3016–3028.

11. Gneerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gussie A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. 108:1513–1518.

12. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119.

13. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.

14. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108.

15. Hoton FM, Formelos N, N’Guessan E, Hu X, Swiecicka I, Dierick K, Jääskeläinen E, Salkinoja-Salonen M, Mahillon J. 2009. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ. Microbiol. Rep 1:177–183.

16. Timmery S, Hu X, Mahillon J. 2011. Characterization of bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. Astrobiology 11:323–334.

17. Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72:5118–5121.

18. Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, Jaoua S, Boudabous A. 2001. Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32:243–247.

19. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie I, Heyndrickx M, Mahillon J. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 43:4277–4279.

20. Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Wegenere E, Sirtaine N, Driesen RB, Sipido KR, Mahillon J, Dierick K. 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 49:4379–4381.

21. Swiecicka I, De Vos P. 2003. Properties of Bacillus thuringiensis isolated from bank voles. J. Appl. Microbiol. 94:60–64.

22. Wilcks A, Jayaswal N, Lereclus D, Andrup L. 1998. Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144(Pt 5):1263–1270.