Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments

Zhimin Liu†, Zhifeng Zhang†, Mei Huang†, Xiaoping Sun‡, Bojia Liu†, Qiyang Guo†, Qingshan Chang‡ and Zhijun Duan*†

Abstract

Background: Previous studies have indicated that bile acid is associated with progression of liver cirrhosis. However, the particular role of specific bile acid in the development of liver cirrhosis is not definite. The present study aims to identify the specific bile acid and explore its possible mechanisms in promoting liver cirrhosis.

Methods: Thirty-two cirrhotic patients and 27 healthy volunteers were enrolled. Age, gender, Child-Pugh classification and serum of patients and volunteers were collected. Liquid chromatography tandem mass spectrometry (LC-MS) was utilized to determine concentrations of 12 bile acids in serum. Principal component analysis, fold change analysis and heatmap analysis were used to identify the most changed bile acid. And pathway analysis was used to identify the most affected pathway in bile acid metabolism. Spearman rank correlation analysis was employed to assess correlation between concentrations of bile acids and Child-Pugh classification. Hepatic stellate cells (LX-2) were cultured in DMEM. LX-2 cells were also co-cultured with HepG2 cells in the transwell chambers. LX-2 cells were treated with Na+/taurocholate in different concentrations. Western blot was used to evaluate the expression of alpha smooth muscle actin (α-SMA), type I collagen, and Toll-like receptor 4 (TLR4) in LX-2 cells.

Results: Concentrations of 12 bile acids in serum of patients and healthy volunteers were determined with LC-MS successively. Principal component analysis, fold change analysis and heatmap analysis identified taurocholic acid (TCA) to be the most changed bile acid. Pathway analysis showed that TCA biosynthesis increased significantly. Spearman rank correlation analysis showed that concentration of TCA in serum of cirrhotic patients was positively associated with Child-Pugh classification. TCA increased the expression of α-SMA, type I collagen, and TLR4 in LX-2 cells. Moreover, the above effect was strengthened when LX-2 cells were co-cultured with HepG2 cells.

Conclusions: Increased TCA concentration in serum of liver cirrhotic patients is mainly due to increased bile acid biosynthesis. TCA is an active promoter of the progression of liver cirrhosis. TCA promoting liver cirrhosis is likely through activating hepatic stellate cells via upregulating TLR4 expression. TCA is a potential therapeutic target for the prevention and treatment of liver cirrhosis.

Keywords: Taurocholic acid, Liver cirrhosis, Hepatic stellate cell, Metabolomics
Background

Liver cirrhosis is the end stage liver disease resulting from continuous intrahepatic inflammation and extracellular matrix (ECM) accumulation caused by uncontrolled chronic liver diseases. Liver cirrhosis is a global health problem. One epidemiological study conducted in US veterans showed that the prevalence of liver cirrhosis in 2013 was 1.06%, and the prevalence of liver cirrhosis had doubled from 2001 to 2013 [1]. Due to high prevalence of hepatitis B virus (HBV) infections, liver cirrhosis is also a common disease in China [2]. Moreover, liver cirrhosis can cause complications including variceal bleeding, hepatic encephalopathy and hepatorenal syndrome, which are life-threatening to cirrhotic patients. One systemic analysis estimated that global death attributed to liver cirrhosis was over 1 million [3]. Thus liver cirrhosis has rendered a great burden on health care system globally. To date, the optimal prevention and treatment of liver cirrhosis mainly depends on curing or controlling the primary diseases including hepatitis B, hepatitis C, alcoholic liver disease (ALD), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH). Moreover, most chronic liver diseases can only be controlled but not cured. Risk factors affecting the development and progression of liver cirrhosis are multifactorial. Treatment of liver cirrhosis should be comprehensive. So identifying novel risk factors and potential therapeutic targets for prevention and treatment of liver cirrhosis is of great significance to both clinicians and drug developers.

Bile acids are synthesized in hepatocytes by cytochrome P450 (CYP) from cholesterol through classical and alternative pathways [4, 5]. In the classical pathway, cholesterol is hydroxylated by CYP7A1, CYP8B1, and CYP27A1 and converted to cholic acid (CA) and chenodeoxycholic acid (CDCA). In the alternative pathway, cholesterol is hydroxylated by CYP7A1 to produce 27-hydroxycholesterol, 27-hydroxycholesterol is then converted to CDCA through 7α-hydroxylation by CYP7B1. Bile acyl-CoA synthetase (BACS) and bile acid-CoA:aminino acid Nacyltransferase (BAAT) subsequently conjugate taurine or glycine to CA or CDCA to produce taurochenodeoxycholic acid (TCDCA), glycocholic acid (GCA), taurocholic acid (TCA) and glycochenodeoxycholic acid (GCDC). Because CA, CDCA, TCDCA, GCA, TCA and GCDC are all synthesized in hepatocytes, these bile acids are termed primary bile acids. Primary bile acids are secreted by hepatocytes into intestinal lumen, and metabolized by enzymes of intestinal bacteria to form secondary bile acids.

Because cholestasis is very common in end stage liver cirrhosis, researchers postulated that serum bile acids might be associated with progression of liver cirrhosis. Metabolomic study can reveal difference of the profiling of bile acids between patients and healthy controls. One metabolomic study indicated that TCA, TCDCA, GCA and glycoursoodeoxycholic acid (GUDCA) were the most elevated bile acids in serum of liver cirrhotic patients, and concentrations of these bile acids were positively correlated with Child–Pugh scores [6]. Another metabolomic study showed that TCA, TCDCA, GCDCA, GCA, GUDCA and CDCA in the serum of acute decompensated cirrhotic patients were significantly higher than those in the serum of patients with compensated cirrhosis, and bile acids could serve as makers for risk stratification of cirrhotic patients to develop new onset acute decomposition [7]. However, previous metabolomic studies only evaluated diagnostic and prediction value of specific bile acid in progression of liver cirrhosis, and did not explore and verify specific bile acid to be a potential therapeutic target for liver cirrhosis. The present study aims to identify the specific bile acid and explore its possible mechanisms in promoting liver cirrhosis, and to find a potential therapeutic target for liver cirrhosis.

Methods

Clinical samples

Blood samples were collected from 32 patients with liver cirrhosis in the First Affiliated Hospital of Dalian Medical University from March 2013 to March 2015. Blood samples were also collected from 27 healthy volunteers in healthy examination center of the First Affiliated Hospital of Dalian Medical University during the same period. Before blood collection, all the patients and healthy volunteers fasted overnight. Venous blood was collected in the morning, then serum was collected through centrifugation of venous blood. All serum samples were stored at –80 °C. Diagnosis of cirrhosis was based on a combination of clinical manifestations, laboratory tests and imaging presentations (typical cirrhotic morphological changes, splenomegaly and portal hypertension) in CT scanning or MRI scanning. Hepatocellular carcinoma, intrahepatic cholangiocarcinoma, carcinomas outside of liver, heart failure, renal diseases and metabolic diseases were excluded from our study. All the healthy volunteers were free of liver diseases, heart diseases, renal diseases and metabolic diseases as verified by laboratory tests and ultrasonography. Age, gender, clinical data, laboratory data and imaging data were retrieved from medical records.

Ethics, consent and permissions

The collections of human serum samples were approved by the Ethics Committee of First Affiliated Hospital of Dalian Medical University (No.LCKY2016–34). And written informed consent was obtained from each cirrhotic patient and healthy volunteer.

Target bile acid detection

Bile acid standards including lithocholic acid (LCA), hydoxycolic acid (HDCA), CDCA, deoxycholic acid
(DCA), ursodeoxycholic acid (UDCA), CA, GCA, tauro-
liothocholic acid (TLCA), TCDDCA, taurodeoxycholic acid
(TDCA), taoursodeoxycholic acid (TUDCA) and TCA
were purchased from Sigma. Bile acid standards were
diluted to different gradient concentrations. The collected
serum samples stored at −80 °C were thawed at 4 °C.
Each 50 μL serum sample mixed with 10 μL internal
standard solution and 300 μL cold protein precipitation
liquid (a methanol solution containing 0.1% ammonia)
was centrifuged, and 200 μL supernatant was collected
dried under nitrogen. Each dried bile acid extract
was dissolved with 50 μL methanol, and then was fil-
tered. Liquid chromatography of Waters I-Class coupled
to Waters Xevo TQ-S (IVD) mass spectrometer with an
ESI source was used to analyze each bile acid extract
and the diluted bile acid standards. Chromatographic
separation was performed using ACQUITY UPLC BEH
Phenyl Column (2.1 × 50 mm, 2.5 μm). The injection
volume of sample was 5 μL. Quality control samples were
preared by mixing all of the dissolved bile acid extracts.
During LC-MS analysis, one quality control sample
was utilized to ensure data quality every 30 injections.
Multiple reaction monitor (MRM) was used to collect
data. Standard reference curves were depicted with diluted
gradient concentrations of bile acid standards and the
responding peak areas. The quantitative determination
of 12 bile acids in human serum samples was calculated
from the corresponding standard reference curves.

Cell culture
Hepatic stellate cell line LX-2 was purchased from the
Cell Bank of the Xiangya Central Experiment Laboratory
of Central South University (Changsha, China). Human
hepatoma cell line HepG2 was purchased from American
Type Culture Collection (ATCC, Manassas, VA). Cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Gibco) supplemented with 10% fetal bovine serum (FBS)
(Gibco) and antibiotics (100 IU/ml penicillin and 100 mg/ml
streptomycin) in an incubator with humidified air contain-
ing 5% CO2 at 37 °C. Co-culture of the LX-2 and HepG2
cells in the transwell chambers was according to the method
in a previous study [8].

Cell proliferation assay
LX-2 cells were plated into 96-well plates at a density
of 2 × 10^4 cells/ml per well and incubated for 24 h, then
incubated with Na+/taurocholate (Sigma) in different
concentrations (50 μM, 75 μM, 100 μM and 150 μM)
for another 24 h. Phosphate buffered saline (PBS) was
as the control solution in cell proliferation assay. Cell
proliferation was analyzed with Cell Counting Kit (Dojindo)
according to the manufacturer’s protocols.

Western blotting assay
LX-2 cells were treated with Na+/taurocholate (Sigma)
(50 μM and100μM) dissolved in DMEM without FBS
for 24 h. LX-2 cells co-cultured with HepG2 cells were
also treated with Na+/taurocholate (Sigma) (50 μM
and 100 μM) dissolved in DMEM without FBS for 24 h.
Total cellular proteins were extracted with a protein
exection kit (Beyotime Biotechnology) according to the
manufacturer’s protocols. BCA Protein Assay Kit
(Beyotime Biotechnology) was used for quantification
of exacted proteins. After separated with SDS-PAGE,
the proteins were transferred to a PVDF membrane.
The PVDF membrane was blocked with 5% skim milk
in Tris-buffered saline containing 0.05% Tween-20
(TTBS). The membranes were then incubated with the
primary antibodies against Toll-like receptor4 (TLR4)
(Santa Cruz Biotechnology), alpha Tubulin (α-Tubulin)
(Proteintech), Collagen Type I (Proteintech) and smooth
muscle actin (α-SMA) (Proteintech) overnight at 4 °C, and
subsequently incubated with the secondary antibody for
2 h at 37 °C. Protein band was detected with the enhanced
chemiluminescence (Advansta) method and imaged with
a Bio-Rad ChemiDoc MP imaging system. Intensity of the
α-Tubulin band was as the internal reference.

Statistical analyses
Principal component analysis (PCA), fold change analysis,
partial least squares discriminant analysis (PLS-DA), heat-
map analysis and pathway analysis were used to analyze bile
acid metobolomic data of human serum samples. PCA, fold
change analysis, PLS-DA, heatmap analysis and pathway
analysis were conducted with MetaboAnalyst (http://
www.metaboanalyst.ca/) according to the manual of analysis
provided in the website [9]. Unpaired t test was employed
to determine the difference of ages between cirrhotic
patients and healthy controls. Chi-square test was utilized
to determine the difference of gender between cirrhotic
patients and healthy controls. Spearman correlation analysis
was used to evaluate the association between concentrations
of bile acids and Child-Pugh classification. Cell experimental
data were presented as mean and standard deviation (SD).
One-way ANOVA analysis and least significant difference
(LSD) test were employed to determine the difference of
means among three groups. Unpaired t test was employed
to determine the difference of means between two groups.
P < 0.05 was considered statistically significant. One-way
ANOVA analysis, Chi-square test, Spearman correlation
and unpaired t test were performed with the SPSS16.0 stat-
istical software package (SPSS Inc., Chicago, IL, USA).

Results
Characteristics of liver cirrhotic patients and healthy controls
Thirty two liver cirrhotic patients and 27 healthy controls
were enrolled in this study. Age and gender distributions
between cirrhotic patients and healthy controls were not statistically significant. The causes of liver cirrhosis included HBV infection (13 patients), ALD (six patients), PBC (seven patients). And six patients were diagnosed with cryptogenic cirrhosis. Twelve cirrhotic patients were classified as Child-Pugh A, 17 cirrhotic patients were classified as Child-Pugh B, and three cirrhotic patients were classified as Child-Pugh C. The detailed characteristics of liver cirrhotic patients and healthy controls were presented in Table 1.

Table 1 Characteristics of liver cirrhotic patients and healthy controls

	Liver cirrhosis	Healthy control	P
Male/Female	18/14	9/18	0.134
Age(years)	59.00 ± 12.92	51.78 ± 18.99	0.089
Child Pugh class A	12	–	–
Child Pugh class B	17	–	–
Child Pugh class C	3	–	–
Hepatitis B virus infection	13	–	–
Alcoholic liver disease	6	–	–
Primary biliary cholangitis	7	–	–
Cryptogenic cirrhosis	6	–	–

Target bile acid metabolomic analysis
Qualification and quantification of 12 bile acids in serum of liver cirrhotic patients and healthy controls were performed with LC-MS successively. Data normalization was recommended by MetaboAnalyst to reduce any systematic bias within a given data set and to improve overall data consistency so that meaningful biological comparisons can be made, and bell-shaped distribution of the appearance of characteristic graphical summary indicated the proper normalization [9]. In our study, the appearance of characteristic graphical summary of data became bell-shaped distribution after a log transformation (Fig. 1a).

PCA was used to visualize general clustering and trend of bile acids between groups. Both two dimension scores plot and three dimension scores plot showed that there was a distinguished classification between the observation clustering of liver cirrhosis group and that of healthy control group (Fig. 1b and c). PLS-DA was able to identify the most important biomarker between groups. PLS-DA also discriminated the observation clustering of liver cirrhosis group from that of healthy control group (Fig. 1d and e). PLS-DA showed that two components model was the optimal model (Fig. 1h). Importance in projection (VIP) analysis of PLS-DA indicated that TCA was the most important metabolite in component one and component two (Fig. 1f and g).

Heatmap analysis showed that TCA, TCDCA, TUDCA, GCA, UDCA, CDCA, CA, TLCA, TDCA, HDCA and LCA were increased in liver cirrhotic patients as compared with healthy controls (Fig. 2a). Fold change analysis indicated that TCA was the most changed bile acid in liver cirrhotic patients, and DCA was the least changed bile acid in liver cirrhotic patients, as illustrated in Table 2. Unpaired t test showed that all the 12 bile acids in the liver cirrhosis group were significantly changed as compared with those in the control group, as illustrated in Table 3.

Pathway analysis was also used to identify the significantly changed metabolic pathway in bile acid metabolism according to the KEGG pathway database. Impact value more than 0.1 and hits value more 3 were used as the threshold to identify the significantly changed metabolic pathway [10]. Pathway analysis showed that primary bile acid synthesis was increased in liver cirrhosis (Fig. 2b and Table 4). Moreover, TCA was the most important metabolite in the increased primary bile acid synthesis in liver cirrhosis (Fig. 2c).

Spearman correlation analysis between child-Pugh classification and concentrations of twelve bile acids
Spearman correlation analysis showed that concentrations of TCA, GCA and TCDCA were significantly positively correlated with Child-Pugh classification (P < 0.0001) (Fig. 2d). Spearman correlation analysis indicated that concentrations of LCA, HDCA, CDCA, UDCA, CA, TLCA, TDCA and TUDCA were not correlated with Child-Pugh classification (P > 0.05) (Fig. 2d).

Effects of TCA on proliferation of hepatic stellate cell
In order to evaluate the effect of TCA on liver cirrhosis, we evaluated the effect of TCA on proliferation of LX-2 cells. Proliferation assay showed that TCA (50 μM, 75 μM, 100 μM and 150 μM) increased proliferation of LX-2 cells significantly (Fig. 3a). Moreover, the effect of TCA on proliferation of LX-2 was dose-dependent (Fig. 3a).

Effects of TCA on expression of collagen type I, α-SMA and TLR4
Collagen Type I expression and α-SMA expression were indicators of the activation level of stellate cells [11]. According to the concentrations of TCA in proliferation assay of LX-2 cells, we selected 50 μM and 100 μM TCA to treat LX-2 cells. Western blot showed that expression of Collagen Type I and α-SMA was increased by TCA treatment as compared with the control (Fig. 3b and Fig. 3c). Moreover, effect of TCA on the expression of Collagen Type I and α-SMA was also dose-dependent (Fig. 3b and c).

Accumulating evidences showed that TLR4 promoted hepatic stellate cell activation by down-regulating the TGF-β pseudoreceptor BAMBI in order to render hepatic stellate cell sensitive to TGF-β signaling [12, 13]. So we
evaluated the effect of TCA on expression of TLR4 of LX-2 cells. Western blot showed that expression of TLR4 was increased by TCA treatment as compared with the control, and the effect was dose-dependent (Fig. 3d and e).

In order to mimic the interaction between hepatocytes and hepatic stellate cells in liver. We co-cultured LX-2 cells with HepG2 cells. Western blot showed that the effect of TCA on Collagen Type I and TLR4 expressions in co-culture group was more significant than that in mono-culture group (Fig. 3d and e).

Discussion

Cholestasis especially intra-hepatic cholestasis is very common in various liver diseases [14]. The mechanism of cholestasis including inflammatory damaging of biliary canaliculi and downregulation of critical bile acid transporters of hepatocytes [14–16]. As liver cirrhosis is the end stage of chronic liver diseases, cholestasis is also a prominent manifestation of liver cirrhosis. Moreover, regenerative nodules surrounded by fibrous septa in liver cirrhosis can compress intrahepatic biliary trees to further aggravate cholestasis. Bile acid is an important component of bile and cholestasis can cause serum bile acid elevation [14]. So researchers postulate that bile acid might be associated with progression of liver cirrhosis, and have diagnostic value in classification of stages of liver cirrhosis.

A study conducted in 1986 showed that total serum-conjugated primary bile acids were more sensitive than conventional liver function test in evaluating prognosis of liver cirrhosis [17]. However, this study did not evaluate specific bile acid in diagnosis and prognosis of liver cirrhosis because of technology limitations. Recently, bile acid profiling method was used to study bile acid. One urinary metabolomic study showed that glycocholate 3-glucuronide, taurohyocholate, TCA, glycolithocholate 3-sulfate, and GUDCA were markedly elevated in hepatitis.
B-induced liver cirrhosis compared with healthy controls [18]. Another metabolomic study revealed that TCA, TCDCA, GCA, UDCA, CDCA, CA, TLCA, TDCA, HDCA and LCA were increased in liver cirrhosis as compared with healthy controls. Pathway analysis showed that primary bile acid biosynthesis was increased in liver cirrhosis. 1: taurine and hypotaurine metabolism. Compound impact analysis implied that TCA impacted most in the increased primary bile acid biosynthesis in liver cirrhosis. Spearman correlation analysis indicated that concentrations of TCA, GCA and TCDCA were significantly positively correlated with Child-Pugh classification (P < 0.0001). And concentrations of LCA, HDCA, CDCA, UDCA, CA, TLCA, TDCA and TUDCA were not correlated with Child-Pugh classification (P > 0.05).

Our study indicated that TCA, TCDCA, TUDCA and GCA were the four most changed bile acids in liver cirrhosis and TCA, TCDCA and GCA were positively correlated with Child-Pugh classification. Correspondingly, CA and DCA were the least changed bile acids, and were not correlated with Child-Pugh classification. The results of our study confirm the findings of previous studies. Moreover, when we observe results of the previous study and the present study, we find that TCA is the most changed bile acid in liver cirrhosis. Furthermore, previous studies did not conduct pathway analysis of bile acids. So we conducted a metabolomic pathway analysis of bile acid

Table 2: Fold change of bile acid in liver cirrhosis

	TCA	TCDCA	TUDCA	GCA	UDCA	CDCA	CA	TLCA	TDCA	HDCA	LCA	DCA
Fold Change(FC)	76.343	47.358	32.897	27.335	12.131	6.1778	5.714	4.9992	4.7731	3.4723	2.3062	1.1365
log2(FC)	6.2544	5.5655	5.0399	4.7727	3.6006	2.6271	2.5145	2.3217	2.2549	1.7959	1.2055	0.1846
in our study, the results showed that primary bile acid biosynthesis was increased and TCA was the most important metabolite in the increased primary bile acid synthesis in liver cirrhosis. As one study revealed that fecal bile acids were decreased in liver cirrhosis, the attenuated feedback of bile acid enterohepatic circulation on primary bile acid biosynthesis might account for this phenomenon [19].

Although TCA is elevated in serum of liver cirrhotic patients, whether elevated TCA in liver cirrhosis is a promoting factor in progression of liver cirrhosis needs to be elucidated. So we conducted cell experiments to study the effect of TCA on hepatic stellate cell. Cell experiment showed that TCA increased proliferation of LX-2 cells and upregulated the expression of α-SMA and type I collagen of LX-2 cells, which implied that TCA was able to activate hepatic stellate cell to promote progression of liver cirrhosis. Moreover, the effect of TCA on hepatic stellate cell is dose-dependent. Furthermore, in order to mimic the environment of hepatocyte and hepatic stellate cell interaction, LX-2 cells were co-cultured with HepG2 cells and the results showed that co-culture increased the effect of TCA on the expressions of TLR4 of LX-2 cells. We found that TCA increased the expression of TLR4 of LX-2 cells. We evaluated the effect of TCA on expression of TLR4 of LX-2 cells. We found that TCA increased the expression of TLR4 of LX-2 cells and the effect was dose-dependent. Furthermore, in order to mimic the environment of hepatocyte and hepatic stellate cell interaction, LX-2 cells were co-cultured with HepG2 cells and the results showed that co-culture increased the effect of TCA on the expressions of TLR4 of LX-2 cells. Thus, TCA activates hepatic stellate cell via upregulating TLR4 signaling.

However, when evaluating the findings of our study we should be cautious. Our study has some limitations. First, we did not estimate the sample size in our metabolomic study, so the possibility of lack of power to come to a definite conclusion could not be ruled out. So future studies with large sample size are needed to validate the findings of our study. Second, in vitro study only evaluated the effect of TCA on expression of TLR4 of

Pathway name	Hit	P	-log10(P)	FDR	Impact
Primary bile acid biosynthesis	5	5.72 × 10−10	21.281	1.05 × 10−9	0.10527
Taurine and hypotaurine metabolism	1	1.05 × 10−9	20.677	1.05 × 10−9	0

Hit means the matched number of bile acid in metabolization pathway; The P value is calculated from the enrichment analysis; Impact value is calculate from pathway topography analysis; FDR value is the false discovery rate adjusted P value.
LX-2 cells. Future studies can evaluate the detailed mechanism of TCA activating hepatic stellate cell via TLR4 signaling with transgenic animal studies.

Conclusion
The present study provides evidence of TCA as an active promoter in liver cirrhosis. Increased TCA concentration in cirrhosis is mainly due to increased bile acid biosynthesis. TCA is an active promoter of the progression of liver cirrhosis not just a bystander. The mechanisms of TCA promoting liver cirrhosis are likely through activating hepatic stellate cell via TLR4 pathways. TCA is a potential therapeutic target for the prevention and treatment of liver cirrhosis.

Abbreviations
AIH: Autoimmune hepatitis; ALD: Alcoholic liver disease; BAAT: Bile acid-CoA; BACS: Bile acyl-CoA synthetase; CA: Cholic acid; CDCA: Chenodeoxycholic acid; CYP: Cytochrome P450; DCA: Deoxycholic acid; DME: Dulbecco’s Modified Eagle’s Medium; ECM: Extracellular matrix; FBS: Fetal bovine serum; GCA: Glycocholic acid; GCDC: Glycchoenodeoxycholic acid; HBV: Hepatitis B virus; HDCA: Hyodeoxycholic acid; HSC: Hepatic stellate cell; LCA: Lithocholic acid; LSD: Least significant difference; MRM: Multiple reaction monitor; PBC: Primary biliary cholangitis; PBS: Phosphate buffered saline; PCA: Principal component analysis; PLS-DA: Partial least squares discriminant analysis; PSC: Primary sclerosing cholangitis; SD: Standard deviation; TCA: Taurocholic acid; TCDCA: Taurochenodeoxycholic acid; TDCA: Taurodeoxycholic acid.

Funding
The present study was supported by the grants from the National Natural Science Foundation of China (No. 81670479) and Liaoning Provincial Research Program (No. 2016010223–301).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
Conceived and designed the experiments: ZJL. Performed the experiments: ZML and MH. Analyzed the data: ZML, ZFZ, MH, XPS, BJL, QYG and QSC. Wrote the paper: ZML, ZFZ and MH. All authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was approved by the Ethics Committee of First Affiliated Hospital of Dalian Medical University (No. LCKY2016–34). And written informed consent was obtained from each cirrhotic patient and healthy volunteer.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
References

1. Beste LA, Leipertz SL, Green PK, Dominitz JA, Ross D, Ioannou GN. Trends in burden of cirrhosis and hepatocellular carcinoma by underlying liver disease in US veterans, 2001–2013. Gastroenterology. 2015;149(6):1471–82.

2. Yonghao G, Jin X, Jun L, Pumeli D, Ying Y, Xiuhong F, Yanyang Z, Wanxhen G. An epidemiological seroepidemiology of hepatitis B virus shows evidence of declining prevalence due to hepatitis B vaccination in Central China. Int J Infect Dis. 2015;40:755–8.

3. Mokdad AA, Lopez AD, Shamsaz S, Lozano R, Mokdad AH, Stanaway J, Murray CJ, Naghavi M. Liver cirrhosis mortality in 187 countries between 1990 and 2010: a systematic analysis. BMC Med. 2014;12:145.

4. Axelsson M, Ellis E, Mörk B, Garmark K, Abrahamsson A, Björkhem I, Ericzon BG, Einansson C. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. Hepatology. 2000; 31(6):105–12.

5. Jia W, Xie G, Zhao A, Zheng X, Huang F, Wang Y, Yao C, Jia W, Liu P. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 2016;15(4):1112–34.

6. Horváth T, Drolz A, Roedl K, Rutter F, Fehr C, Stöckler G, Trauner M, Fuhrmann V. Serum bile acids as marker for acute decompensation and acute-on-chronic liver failure in patients with non-cholestatic cirrhosis. Liver Int. 2017;37(2):234–31.

7. Ram G, Shepherd RW, Hoskins AC, Greco SA, Nye AD, Pereira TN, Brule KD, Doehne JD, Meikle PJ, Turlin B, Lewindon PJ. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemoattractant protein-1 in hepatic stellate cell recruitment. Hepatology. 2009;49(2):534–44.

8. Xia J, Wachtman DS. Using MetaboAnalyt 3.0 for comprehensive metabolomics data analysis. Curr Protec Biotechnol. 2015;16(4):141–149.

9. Chen Z, Zhu Y, Zhao X, Ma X, Niu M, Wang J, Su H, Wang R, Li J, Liu L, Wei Z, Zhao Q, Chen H, Xiao X. Serum Metabolomic profiling in a rat model reveals protective function of Paeoniflorin against ANIT induced cholestasis. Mol Cell Biochem. 2021;464:367–79.

10. Chen Z, Zhu Y, Zhao X, Ma X, Niu M, Wang J, Su H, Wang R, Li J, Liu L, Wei Z, Zhao Q, Chen H, Xiao X. Serum Metabolomic profiling in a rat model reveals protective function of Paeoniflorin against ANIT induced cholestasis. Mol Cell Biochem. 2021;464:367–79.

11. Xia J, Wishart DS. Using MetaboAnalyt 3.0 for comprehensive metabolomics data analysis. Curr Protec Biotechnol. 2015;16(4):141–149.

12. Chen Z, Zhu Y, Zhao X, Ma X, Niu M, Wang J, Su H, Wang R, Li J, Liu L, Wei Z, Zhao Q, Chen H, Xiao X. Serum Metabolomic profiling in a rat model reveals protective function of Paeoniflorin against ANIT induced cholestasis. Mol Cell Biochem. 2021;464:367–79.

13. Xia J, Wishart DS. Using MetaboAnalyt 3.0 for comprehensive metabolomics data analysis. Curr Protec Biotechnol. 2015;16(4):141–149.

14. Jüngst C, Berg T, Cheng J, Green RM, Jia J, Mason AL, Lammert F. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 2016;15(4):1112–34.