First identification of $\text{bla}_{\text{NDM-5}}$ producing Escherichia coli from neonates and a HIV infected adult in Tanzania

Joel Manyahi1,2,3,*, Sabrina J. Moyo1,2,4, Upendo Kibwana2, Richard N. Goodman4, Ellie Allman4, Alasdair T. M. Hubbard4,5, Bjørn Blomberg1,3, Nina Langeland1,3 and Adam P. Roberts4

Abstract

Introduction. Carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public-health threat and cause substantial challenges in clinical practice.

Gap Statement. There is a need for increased and continued genomic surveillance of antimicrobial resistance genes globally in order to detect outbreaks and dissemination of clinically important resistance genes and their associated mobile genetic elements in human pathogens.

Aim. To describe the resistance mechanisms of carbapenem-resistant Escherichia coli.

Methods. Rectal swabs from neonates and newly diagnosed human immunodeficiency virus (HIV) infected adults were collected between April 2017 and May 2018 and screened for faecal carriage of carbapenemases and OXA-48 producing members of the family Enterobacteriaceae. Bacterial isolates were identified using matrix assisted laser desorption ionization time of flight mass spectrometry. Antimicrobial susceptibility testing was performed by E-test. Whole genomes of carbapenem-resistant E. coli were investigated using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing reads.

Results. Three carbapenem-resistant E. coli were detected, two from neonates and one from an HIV infected adult. All three isolates carried $\text{bla}_{\text{NDM-5}}$. Two E. coli from neonates belonged to ST167 and $\text{bla}_{\text{NDM-5}}$ co-existed with $\text{bla}_{\text{CTX-M-15}}$ and $\text{bla}_{\text{OXA-01}}$, and all were carried on IncFIA type plasmids. The E. coli from the HIV infected adult belonged to ST2083, and carried $\text{bla}_{\text{NDM-5}}$, on an IncX3 type plasmid and $\text{bla}_{\text{OXA-01}}$, on an IncI type plasmid. All $\text{bla}_{\text{NDM-5}}$ carrying plasmids contained conjugation related genes. In addition, E. coli from the HIV infected adult carried three more plasmid types; IncFIA, IncFIB and Col(BS512). One E. coli from a neonate also carried one extra plasmid Col(BS512). All three E. coli harboured resistance genes to fluoroquinolone, aminoglycosides, sulfamethoxazole, trimethoprim, macrolides and tetracycline, carried on the IncFIA type plasmid. Furthermore, E. coli from the neonates carried a chloramphenicol resistance gene (catB3), also on the IncFIA plasmid. All three isolates were susceptible to colistin.

Conclusion. This is the first report, to our knowledge, from Tanzania detecting $\text{bla}_{\text{NDM-5}}$ producing E. coli. The carbapenemase gene was carried on an IncFIA and IncX3 type plasmids. Our findings highlight the urgent need for a robust antimicrobial resistance (AMR) surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania.
BACKGROUND
Infections caused by carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public health concern. These infections cause substantial challenges in clinical practice as they are associated with increased morbidity and mortality as well as health care costs [1]. Carbapenems are considered a last resort for treatment of infections with multidrug-resistant members of the family Enterobacteriaceae. The remaining alternative treatment options for infections by carbapenem-resistant members of the family Enterobacteriaceae are colistin and tigecycline [2–5], which are expensive, poorly tolerated and often unavailable in low- and middle-income countries.

Resistance to carbapenems in Enterobacteriaceae is mainly mediated by the production of carbapenemase enzymes, which hydrolyze carbapenems and all other β-lactam antibiotics. Currently, three classes of carbapenemase enzymes of clinical importance have been identified in pathogenic bacteria. These are Ambler class A (KPC, IMI), class B (NDM, IMP, VIM) and class D (OXA-48) [2, 6].

Previously, carbapenem resistance in Gram-negative bacteria was mainly mediated by production of KPC, IMP, VIM and OXA-48 carbapenemases [6, 7]. In recent years, New Delhi metallo-β-lactamase has received global attention due to its world-wide dissemination, rapid evolution, and high levels of resistance to β-lactam antibiotics [5]. Since the first report of blaNDM-1 in 2008 [8], 24 variants of NDM have been discovered in Gram-negative bacteria [5]. Of the NDM variants, blaNDM-5, which was first detected in Escherichia coli in the United Kingdom in 2011 [9], is notable for its elevated resistance to carbapenems compared with other variants [10]. NDM-5 differs from NDM-1 by substitution of two amino acids (Val88Leu and Met154Leu) [11].

The blaNDM-5 is mostly carried on plasmids, which also may carry resistance genes to other antibiotics [12, 13] and catalyse their transfer between bacteria. Several plasmids have been reported to carry blaNDM-5 [5], with IncX3 type plasmid being the most commonly reported [4, 14, 15]. Since its discovery, blaNDM-5 producing E. coli has been reported in Asia, mainly PR China [16, 17], Europe [18, 19] and Africa [20, 21].

Meanwhile, in Tanzania, unpublished data shows increased use of carbapenems, but it is unknown whether this has led to an increased incidence of carbapenem resistance. Three Tanzanian studies have described resistance to carbapenems in clinical isolates, documenting the presence of VIM, IMP, NDM-1 and KPC type carbapenemases [22–24], but only one of these studies found NDM-1 carbapenemases in members of the family Enterobacteriaceae [24]. We performed this study to assess the faecal carriage of carbapenem-resistant members of the family Enterobacteriaceae among newly diagnosed HIV infected adults and children hospitalized with fever in Dar es Salaam, Tanzania. We also identified resistance mechanisms to carbapenems and their genetic context using a whole genome sequencing approach.

METHODS

Study sites and study participants
Newly diagnosed HIV infected adults were recruited consecutively from six HIV care and treatment centres in Dar es Salaam, Tanzania, namely Amana hospital, Mwananyamala hospital, Temekte hospital, PASADA, Mbagala hospital and Mnazi Mmoja hospital, as part of the double blinded randomized clinical trial, CoTrimResist (ClinicalTrials.gov identifier: NCT03087890) between April 2017 to May 2018. At the same time, children admitted with fever were enrolled in a febrile illness study at four hospitals in Dar es Salaam (Amana, Temekte and Mwananyamala Regional hospitals and Muhimbili National Hospital).

Screening for carbapenemase producing Enterobacteriaceae
Rectal swabs were collected from each participant and transported in liquid Cary–Blair medium (Faecal transwab, MWE). Screening for faecal carriage of carbapenemases and OXA-48 producing members of the family Enterobacteriaceae was carried out on CHROMID CARBA SMART (BioMérieux) using two drops (0.1 ml) from an overnight culture in brain–heart infusion broth.

Bacterial identification and antimicrobial susceptibility testing
Carbapenem resistant bacterial isolates which grew on the selective media were identified by matrix assisted laser desorption ionization time of flight mass spectrometry using the Microflex LT instrument and matrix assisted laser desorption ionization Biotype 3.1 software (Bruker Daltonics).

Antibiotic susceptibility testing was determined by E-test (when available), following guidelines from the Clinical and Laboratory Standards Institute [25]. The antimicrobial agents tested were cefotaxime, imipenem, tetracycline, ciprofloxacin, gentamicin and colistin. When E-tests were not available disc diffusion was used to determine meropenem susceptibility according to Clinical and Laboratory Standards Institute guidelines.
Whole genome sequencing

Genomic DNA isolation for short read sequencing was carried out at MicrobesNG (Birmingham, UK). Short read whole genome sequencing was performed using HiSeq X10 (Illumina) by MicrobesNG, which also performed quality filtering and sequencing read trimming.

Genomic DNA for long read sequencing was extracted using a Fire Monkey High Molecular Weight DNA Extraction Kit (RevoluGen). Long read sequencing was carried out using a R9.4.1 flow cell (Oxford Nanopore Technologies) on a MinION sequencer. Base calling of the reads was performed with MinKNOW software (v20.06.4) using the Guppy algorithm (v4.0.9). The long-read sequences were trimmed using Porechop (https://github.com/rrwick/Porechop) and filtered using Filtlong (https://github.com/rrwick/Filtlong) with a minimum length threshold of 1000bp, keeping 90% of the best reads up to a total of 500000000 bp.

Long and short read sequences were assembled using Unicycler (v0.4.8.0) [26], running in ‘normal’ mode and the genome was annotated with Prokka (v0.14.6) [27] and the RAST annotation server [28]. Genomes were aligned using both Clinker (v0.0.12) [29] and BRIG (v0.95) [30]. The genomes were visualized using Snapgene (https://www.snapgene.com/). All genome assemblies from this study have been deposited in GenBank under the BioProject numbers PRJNA756167 (strain PC-NDM34), PRJNA756168 (strain NDM_12_14482) and PRJNA756169 (strain NDM_11.16372).

Identification of resistance genes and sequence types

For identification of acquired antimicrobial resistance genes, and detection of virulence genes, we used ResFinder v4.1 [31] and virulence Finder 2.0 [32], respectively, from the Centre for Genomic Epidemiology GEE server (http://www.genomic epidemiology.org/). For identification of mobile genetic elements and their relation to antimicrobial resistance genes and virulence factors we used Center of Genomic Epidemiology Mobile Element Finder v1.0.3 [33]. For assignment of multilocus sequence typing (MLST) and clonal complexes we used an online MLST database website (https://pubmlst.org/).

Phylogenetic analysis

Phylogenetic analysis of E. coli ST167 whole genomic sequence single nucleotide polymorphisms (SNPs) was performed using CSI phylogeny 1.4 [34]. For comparison, two E. coli ST167 from this study were compared with 22 globally available complete whole genome sequences of E. coli ST167 (blaNDM-5-positive and blaNDM-5-negative) downloaded from NCBI nucleotide GenBank and the European nucleotide archive (NEA). The phylogenetic tree was visualized using the Fig Tree programme version 1.4.4 (https://github.com/rambaut/figtree/releases).

Comparative analysis of IncFIA and IncX3 carrying blaNDM-5 plasmids

For comparison of the genetic environments surrounding blaNDM-5 on IncFIA and IncX3 plasmids, approximately 20 kb segments were selected including the blaNDM-5 gene from each strain, and annotated using Prokka (v1.14.6) [27] and aligned using Clinker (v0.0.12) [29].

IncFIA and IncX3 plasmids were compared with other available plasmids. A total of 17 IncX3 and 25 IncFI carrying blaNDM-5 plasmids’ genome sequences available globally were downloaded from the NCBI ‘nuccore’ database using Entrez Direct as assembled genomes in fasta file format. BRIG v0.95 [30] was used for genomic comparison and to produce the visualisations. For the IncF comparisons, the 1446 NDM-5 plasmid sequence was used as reference and for the IncX3 comparisons the PC34 NDM-5 plasmid sequence was used as a reference. ResFinder v4 [31]. was used to annotate the reference genomes with acquired antimicrobial resistance (AMR) genes.

RESULTS

Bacterial isolates

Three carbapenem resistant E. coli designated as PC-NDM34 (from a HIV infected adult), NDM_12_14482, and NDM_11.16372 (both from neonates) were isolated from screening of 737 rectal swabs (537 HIV infected outpatient adults and 200 under five years old inpatient children). Isolate PC-NDM34 was from a 49-year-old individual, an outpatient newly diagnosed with HIV at PASADA HIV care and treatment center in May 2018. The patient had a CD4 count of 132 cell µl⁻¹ with no recent history of hospitalization or antibiotic use. Isolates NDM_12_14482 (22 Jan, 2018) and NDM_11.16372 (05 Feb 2018) were isolated from two neonate patients aged three days from the same ward (Temeke Hospital) two weeks apart in February 2018.

Antimicrobial susceptibility pattern

Table 1 shows the minimum inhibitory concentrations (MICs) of different antimicrobial agents tested against the three isolates. The MICs for all the three isolates to cefotaxime, gentamicin, ciprofloxacin and tetracycline were more than 256 µg ml⁻¹. Meropenem susceptibility was checked for isolates NDM_11.16372 and NDM_12_14482 by disc diffusion, revealing
zones of inhibition of 13 mm and 12 mm respectively. For isolate PC-NDM34 meropenem susceptibility was determined by E-test and shown to be 6 µg ml\(^{-1}\). Subsequently, the MICs of these three isolates PC-NDM34, NDM_11.16372 and NDM_12_14482 to imipenem were determined to be 3 µg ml\(^{-1}\), 3 µg ml\(^{-1}\) and 1.5 µg ml\(^{-1}\) respectively. The three isolates were susceptible to colistin at different MIC values as follows; 0.125 µg ml\(^{-1}\) for isolate PC-NDM34, 0.25 µg ml\(^{-1}\) for isolate NDM_11.16372 and 0.19 µg ml\(^{-1}\) for isolate NDM_12_14482.

Resistance determinant genes and association with plasmids

Isolate PC-NDM34 contained six plasmids, IncFIA (109 kb), IncFIB (108 kb), IncI (49 kb), IncX3 (46 kb), Col (BS512) (2 kb), and another unknown plasmid with an approximate size of 5 kb. Isolate NDM_11.16372 contained three plasmids, IncFIA (137 kb), Col (BS512) (2 kb), and another of about 4 kb, and isolate NDM_12_14482 contained one IncFIA plasmid of approximately 137 kb. All three carbapenem resistant \textit{E. coli} carried plasmid-located \textit{bla}\(_{NDM-5}\). For isolate PC-NDM34, \textit{bla}\(_{NDM-5}\) was located on an IncX3 type plasmid, while for both isolates NDM_11.16372 and NDM_12_14482 it was located on the IncFIA plasmid. All the \textit{bla}\(_{NDM-5}\)-carrying plasmids also carried genes whose products are predicted to be involved in conjugation.

Other \(\beta\)-lactam resistance genes carried by PC-NDM34 were \textit{bla}\(_{TEM-1b}\) and \textit{bla}\(_{CMY-42}\) located on IncI and IncFIA type plasmids, respectively. The IncFIA type plasmid from P34 harboured other resistance genes including fluoroquinolone-aminoglycosides (\textit{aac(6')}-Ib-cr); sulfamethoxazole (\textit{sul}2); trimethoprim (\textit{dfr}17); aminoglycoside (\textit{aadA}2, \textit{rmtB}); sulfamethoxazole (\textit{sul}1); trimethoprim (\textit{dfr}12); chloramphenicol (\textit{catB}3); tetracycline (\textit{tet}A); and macrolides \textit{mph}(A). While \textit{bla}\(_{NDM-5}\) on IncFIA plasmid from both NDM_11.16372 and NDM_12_14482 co-existed with other \(\beta\)-lactam resistance genes (\textit{bla}\(_{TEM-1}\)-\textit{bla}\(_{CTX-M-15}\)), other resistance genes present on the IncFIA plasmid from both NDM_11.16372 and NDM_12_14482 conferred resistance to fluoroquinolone-aminoglycosides (\textit{aac(6')}-Ib-cr); aminoglycosides (\textit{aadA}2, \textit{rmtB}); sulfamethoxazole (\textit{sul}1); trimethoprim (\textit{dfr}12); chloramphenicol (\textit{catB}3); tetracycline (\textit{tet}A); and macrolides \textit{mph}(A). Table 2 shows resistance genes present in the three isolates.

Multi-locus sequence typing (MLST)

MLST analysis revealed that both NDM_12_14482 and NDM_11.16372, the isolates from neonates, harbouring \textit{bla}\(_{NDM-5}\) belonged to ST167 (ST10 clonal complex). In contrast, PC-NDM34 \textit{bla}\(_{NDM-5}\) isolated from an adult HIV infected patient, belonged to ST2083.

Phylogenetic analysis

A total of 22 \textit{E. coli} ST167 (\textit{bla}\(_{NDM-5}\)-positive and \textit{bla}\(_{NDM-5}\)-negative) globally available from GenBank and the European nucleotide archive (see Supplementary file 1, available with the online version of this article, for accession numbers) were compared with two ST167 strains from this study. The SNP analysis of all \textit{E. coli} ST167 differed by between 2 and 3410 SNPs, revealing the high genetic diversity of this high-risk clone. The phylogenetic analysis revealed that \textit{E. coli} ST167 was clustered into two distinct clades with multiple subclades (Fig. 1). The two \textit{E. coli} ST167 from this study had a SNP difference of two SNPs and were clustered in clades with other ST167 from PR China, Italy and Myanmar and two with undetermined origins. In this clade, the SNP difference between this study's ST167 and other ST 167 ranged between 880 and 1312 SNPs. This analysis reveals that the two isolates (NDM_12_14482 and NDM_11.16372 \textit{E. coli}) which were isolated from neonates, were closely related and probably arose from the same source. Furthermore, this revealed that the isolates from neonates were more distantly related to the ST167 isolates from other part of the world.

Antimicrobial agent	PC-NDM34	NDM_11.16372	NDM_12_14482
Meropenem	6 µg ml\(^{-1}\)†	13 mm*	12 mm*
Imipenem	3 µg ml\(^{-1}\)†	3 µg ml\(^{-1}\)†	1.5 µg ml\(^{-1}\)†
Colistin	0.125 µg ml\(^{-1}\)†	0.25 µg ml\(^{-1}\)†	0.19 µg ml\(^{-1}\)†
Cefotaxime	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†
Tetracycline	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†
Ciprofloxacin	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†
Gentamicin	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†	>256 µg ml\(^{-1}\)†

* Meropenem E-tests were unavailable; therefore meropenem disc diffusion assays were used for isolates NDM_11.16372 and NDM_12_14482.
† AST by E-tests.
Comparative analysis of plasmids carrying \(\text{bla}_{\text{NDM-5}} \), revealed the IncFIA type plasmids from NDM_12_14482 and NDM_11.16372 harboured 100% identical sequences and \(\text{bla}_{\text{NDM-5}} \) co-existed with several resistance determinant genes (Fig. 2). Comparative analysis of the genetic environments of \(\text{bla}_{\text{NDM-5}} \) in IncX3 and IncFIA type plasmids revealed similar genetic context downstream of \(\text{bla}_{\text{NDM-5}} \) flanked by conserved \(\text{ble}_{\text{MBL}}-\text{trpF}-\text{DsbD} \). In the IncX3 plasmid \(\text{bla}_{\text{NDM-5}} \) was flanked upstream by IS5, and in the IncFIA type plasmid it was flanked upstream by IS26 interrupted by a gene predicted to encode a conserved hypothetical protein (Fig. 3). In the IncX3 type plasmid, \(\text{ble}_{\text{MBL}}-\text{trpF}-\text{DsbD} \) was flanked by IS5 upstream and IS26 downstream (Fig. 4).

Table 2. Genotypic characteristics of the three \(\text{bla}_{\text{NDM-5}} \) containing E. coli

Genotypic characteristics	PC-NDM34	NDM_11.16372	NDM_12_14482
Resistance genes			
Beta-lactams			
\(\text{bla}_{\text{TEM-1B}} \)	\(\text{bla}_{\text{TEM-1B}} \)	\(\text{bla}_{\text{TEM-1B}} \)	
\(\text{bla}_{\text{NDM-5}} \)	\(\text{bla}_{\text{NDM-5}} \)	\(\text{bla}_{\text{NDM-5}} \)	
\(\text{bla}_{\text{CMY-42}} \)	–	\(\text{bla}_{\text{CTX-M-15}} \)	
\(\text{bla}_{\text{CTX-M-15}} \)	–	\(\text{bla}_{\text{CTX-M-15}} \)	
\(\text{bla}_{\text{OXA-1}} \)	–	\(\text{bla}_{\text{OXA-1}} \)	
Fluoroquinolone-aminoglycosides			
\(\text{aac(6')-Ib-cr} \)	\(\text{aac(6')-Ib-cr} \)	\(\text{aac(6')-Ib-cr} \)	
Sulfamethoxazole	\(\text{sul}2 \)	\(\text{sul}1 \)	\(\text{sul}1 \)
Trimethoprim	\(\text{dfr}17 \)	\(\text{dfr}12 \)	\(\text{dfr}12 \)
Aminoglycosides	\(\text{aadA2}, \text{rmtB} \)	\(\text{aadA2}, \text{rmtB} \)	\(\text{aadA2}, \text{rmtB} \)
Chloramphenicol	\(\text{catB3} \)	\(\text{catB3} \)	\(\text{catB3} \)
Tetracycline gene	\(\text{tetB} \)	\(\text{tetB} \)	\(\text{tetB} \)
Mdf	\(\text{MdfA} \)	\(\text{MdfA} \)	\(\text{MdfA} \)
Macrolide	\(\text{mph(A)} \)	\(\text{mph(A)} \)	\(\text{mph(A)} \)
Sequence type (ST)			
	2083	167	167
Plasmid replicon types			
	IncFIA, IncFIA	IncFIA, IncFIA	
	IncI	–	–
	IncIB	–	–
	IncX3	–	–
	Unknown	Unknown	–
Virulence gene			
Fimbrial protein	\(\text{yfcV} \)	–	–
EAST-1 heat-stable toxin	\(\text{astA} \)	–	–
Long polar fimbriae	\(\text{lpfA} \)	–	–
Glutamate decarboxylase	\(\text{gad} \)	\(\text{gad} \)	\(\text{gad} \)
Increased serum survival	–	\(\text{iss} \)	\(\text{iss} \)
OMP complement resistance	\(\text{trat} \)	\(\text{trat} \)	\(\text{trat} \)
Heat resistant agglutinin	–	\(\text{hra} \)	\(\text{hra} \)
Hexosyltransferase homology	–	\(\text{capU} \)	\(\text{capU} \)
Tellurium ion resistance protein	\(\text{terC} \)	\(\text{terC} \)	\(\text{terC} \)

Genetic environment for the \(\text{bla}_{\text{NDM-5}} \) carrying plasmids

Comparative analysis of plasmids carrying \(\text{bla}_{\text{NDM-5}} \) revealed the IncFIA type plasmids from NDM_12_14482 and NDM_11.16372 harboured 100% identical sequences and \(\text{bla}_{\text{NDM-5}} \) co-existed with several resistance determinant genes (Fig. 2). Comparative analysis of the genetic environments of \(\text{bla}_{\text{NDM-5}} \) in IncX3 and IncFIA type plasmids revealed similar genetic context downstream of \(\text{bla}_{\text{NDM-5}} \) flanked by conserved \(\text{ble}_{\text{MBL}}-\text{trpF}-\text{DsbD} \). In the IncX3 plasmid \(\text{bla}_{\text{NDM-5}} \) was flanked upstream by IS5, and in the IncFIA type plasmid it was flanked upstream by IS26 interrupted by a gene predicted to encode a conserved hypothetical protein (Fig. 3). In the IncX3 type plasmid, \(\text{ble}_{\text{MBL}}-\text{trpF}-\text{DsbD} \) was flanked by IS5 upstream and IS26 downstream (Fig. 4).
In the IncFIA plasmid, further downstream of \(\text{bla}_{\text{NDM5}}–\text{ble}\)-MBL–\(\text{trpF}–\text{DsbD}\) were a set of several genes including \(\text{sul}-2\), \(\text{ant}(3')-\text{Ia}\), \(\text{dfrA}12\) and \(\text{IntI}1\). The \(\text{bla}_{\text{NDM5}}–\text{IntI}1\) genetic complex was flanked on both ends by IS\(26\) (Fig. 3).

Fig. 5 shows the results of the comparative analysis of the fully sequenced \(\text{bla}_{\text{NDM5}}\) carrying IncFIA plasmids from this study (NDM_12_14482 and NDM_11_16372) and the IncF plasmids (\(\text{bla}_{\text{NDM5}}\)-positive and \(\text{bla}_{\text{NDM5}}\)-negative) of global representatives (see Supplementary file 1 for accession numbers). Structural similarities (downstream) were observed within the genetic environment surrounding \(\text{bla}_{\text{NDM5}}\) (Fig. 5). The NDM_12_14482 and NDM_11_16372 plasmid sequences differ slightly compared with other global IncF plasmids.

Comparative analysis of \(\text{bla}_{\text{NDM5}}\) carrying IncX3 plasmids is depicted in Fig. 6, comparing PC-NDM34 from this study with globally identified IncX3 plasmids (see Supplementary file 1 for accession numbers). The genetic context of \(\text{bla}_{\text{NDM5}}\) on IncX3 plasmids was similar downstream. The genetic sequence of PC-NDM34 IncX3 was almost identical to those of most other global IncX3 plasmids, with slight differences observed (Fig. 6).

DISCUSSION

This is the first report from Tanzania and East Africa, to our knowledge, on the detection of \(\text{bla}_{\text{NDM5}}\) producing \(E.\ coli\). We found three \(E.\ coli\) carrying \(\text{bla}_{\text{NDM5}}\) one from a newly diagnosed HIV infected patient and two from admitted neonates.

The comparative genomic analysis of \(\text{bla}_{\text{NDM5}}\) producing \(E.\ coli\) revealed that the carbapenemase gene was plasmid located and that these plasmids also carried resistance gene determinants to other antibiotics, including aminoglycosides, fluoroquinolones, macrolides, tetracycline, trimethoprim, sulfamethoxazole and chloramphenicol. The finding of carbapenem resistance conferred by the \(\text{bla}_{\text{NDM5}}\) gene in Tanzania is of the great concern, since these isolates also were resistant to virtually all other antibiotics commonly used in Tanzania. Carbapenems have been used as the last alternative for treatment of severe infections caused by multi-drug resistant Gram-negative bacteria infection, the emergence of carbapenem resistance severely
limits treatment options for these patients. Lately, the use of carbapenems in Tanzania has been frequent [35], and increased use is anticipated in the future due to increased extended spectrum beta-lactamase (ESBL) producing bacterial infections [36]. Increasing carbapenem use will increase selection for horizontal gene transfer events and, therefore, the movement of the gene and human movement will increase dissemination of carbapenem resistant bacteria around the country.

To date, reports on \(\text{bla}_{NDM-5} \) producing Gram-negative bacteria from Africa have been uncommon. In Africa, \(\text{bla}_{NDM-5} \) was first reported in Algeria in three \(\text{E. coli} \) recovered from urine and blood in 2012 [20]. Since then, \(\text{bla}_{NDM-5} \) in humans has been reported in Egypt [37], Angola [38], South Africa [39], Nigeria [40], Chad [15] and Malawi [41, 42]. Recently, \(\text{bla}_{NDM-5} \) producing \(\text{E. coli} \) have been detected in Mali from one outpatient [21] and in Mozambique in a patient with a bloodstream infection.

Fig. 2. Comparative analysis of the three plasmids carrying \(\text{bla}_{NDM-5} \), image produced using BRIG. A comparison between the three \(\text{bla}_{NDM-5} \) positive plasmids across the three strains, each coloured accordingly. The reference genome was the plasmid of the isolate 14482. The inner black ring represents GC content of the reference sequence. AMR genes are labelled. 14482= NDM_12_14482, 16372= NDM_11.16372 and PC34= PC-NDM34.

Fig. 3. Comparison of \(\text{bla}_{NDM-5} \) genetic context on 16372 (IncFIA), 14482 (IncFIA) and PC34 (IncX3) plasmids. A sequence comparison between the genetic environments surrounding \(\text{bla}_{NDM-5} \) in the three strains. Approximately 20 kb segments were selected including the \(\text{bla}_{NDM-5} \) gene from each strain, these were annotated using Prokka and aligned using clinker. Unique sequences are coloured according to feature. Those features which are homologous across all three strains are highlighted with asterisks. 14482= NDM_12_14482, 16372= NDM_11.16372 and PC34= PC-NDM34.
infection [12]. The reason for increased detection of blaNDM-5-producing Gram-negative bacteria in Africa is not known, it could be independent introduction from the rest of the world. Our three blaNDM-5 E. coli were isolated from patients with no history of travel beyond Tanzania. It is therefore likely that the patients have acquired the blaNDM-5 producing E. coli in Tanzania or their resident E. coli had acquired blaNDM-5 from a transient donor also in Tanzania.

In analysing mobile genetic elements and their relationship with resistance genes, we found that the blaNDM-5-producing E. coli ST2085 from the HIV infected patient was located on an IncX3 type plasmid. Similarly, a recent published study from Malawi reported detection of blaNDM-5 contained in an IncX3 plasmid from E. coli ST2085 isolated from the stool of an HIV-infected adult [42]. The results of previous studies have demonstrated that blaNDM-5 is commonly carried on IncX3 type plasmid [13, 15, 43–45]. In addition, the results of previous studies have indicated that the IncX3 type plasmid plays an important role in dissemination of blaNDM-5 in members of the family Enterobacteriaceae [13, 14, 21]. This hypothesis has been supported by the results of several experimental conjugation studies, where blaNDM-5 E. coli carrying IncX3 type plasmids were able to be successfully transferred amongst, and between, different species of the family Enterobacteriaceae [14, 43]. The blaNDM-5-carrying IncX3 plasmid from this study revealed almost identical plasmid sequence to globally identified IncX3 plasmid. Our finding of an IncX3 type plasmid associated with blaNDM-5 in a newly diagnosed HIV patient from the community setting in Tanzania is concerning, since this plasmid is epidemic and has been shown to carry multiple carbapenemase genes,

Fig. 4. Genetic context of blaNDM-5 on the IncX3 plasmid (PC-NDM34).

Fig. 5. A comparative analysis of the two IncFIA plasmids (16372 and 14482) containing blaNDM-5 against IncF plasmids identified globally. BRIG was used for genomic comparison and visualization. Plasmid (137 Kb) from isolate NDM_12.14482 containing blaNDM-5 was used as the reference. Sequences are named using their accession numbers. (16372=NDM_11.16372 and 14482=NDM_12.14482).
including bla_{NDM-5}, and has a high potential to efficiently disseminate globally. Spread of bla_{NDM-5} in the community has serious implication since bla_{NDM-5} carrying isolates also display multidrug resistance [13].

IncF type plasmids have also been shown to contribute to the dissemination of bla_{NDM-5} among *E. coli* [17, 18, 46]. In this study, we observed that the bla_{NDM-5} in *E. coli* from neonates was carried on IncFIA type plasmids. The bla_{NDM-5} from these isolates co-existed with bla_{CTX-M-15}, bla_{TEM-1B} and bla_{OXA-1} located on the IncFIA plasmid. Other recent studies in Africa and elsewhere have observed co-harboring of bla_{NDM-5} and bla_{CTX-15}, bla_{TEM-1B}, bla_{OXA-1} in the same plasmid type in *E. coli* [3, 12, 46]. Co-localization of bla_{NDM-5} and extended spectrum β-lactamase (bla_{CTX-M-15}) plus other resistance genes in the same plasmid could increase the dissemination of multiple resistances in a single gene transfer event.

Furthermore, the two bla_{NDM-5} producing *E. coli* from neonates had similar resistance gene determinants, virulence genes and ST167, indicating that the isolates were likely to be clonal. Chromosomal DNA SNP analysis of the two isolates also revealed a pairwise distance of two SNPs. This finding indicates that these two isolates were closely related and the source of spread was likely to be the same. It implies there was probably local transmission of bla_{NDM-5} producing *E. coli* ST167 carrying bla_{NDM-5} has been reported in South Africa in one inpatient with nosocomial infection [39]. Recently, *E. coli* ST167 has been regarded as a high-risk and successful epidemic clone involved in transmission of the bla_{NDM-5} gene [19, 43]. Furthermore, bla_{NDM-5} producing *E. coli* ST167 has the potential for global dissemination due its combination of resistance and virulence genes [43]. The bla_{NDM-5} producing *E. coli* ST167 has been reported in neonatal and adult infections in PR China [3, 16, 17, 47], the USA [48], Europe [18] and Africa [39]. Similar to our finding, an *E. coli* ST167 strain co-producing bla_{NDM-5}, bla_{CTX-M-15} and bla_{OXA-1} has been reported in bacteria causing infection in PR China [3]. Phylogenetic analysis revealed the *E. coli* ST167 strains are clonally diverse and our study isolates were phylogenetically distant from global circulating *E. coli* ST167, (Fig. 1).

Our study revealed in all three *E. coli*, that the bla_{NDM-5} on each plasmid was flanked by highly a conserved region (ble_{MBL}–trpF–DsbD) downstream, indicating that the region is very probably transferring between replicons (plasmids) and between bacteria as a single unit. The upstream genetic environment of bla_{NDM-5} in two plasmids were different. Previous in-depth analysis of the genetic environment of bla_{NDM-5} genes revealed that the bla_{NDM-5} is flanked upstream by ISAb125 and downstream by ble_{MBL}–trpF–DsbD (IS3000–IS5–ΔISAb125–bla_{NDM-5}–ble_{MBL}–trpT–DsbD) [21, 49, 50]. In this study we found complete deletion of IS3000–IS5–ΔISAb125 upstream
of blaNDM-5 in the IncFIA plasmid from the neonates. In the IncX3 plasmid, complete deletion of ΔISAba125 was observed and the IS3000–IS5 element was interrupted by IS30.

CONCLUSION

This is the first detection of blaNDM-5 producing E. coli in Tanzania, to our knowledge. We found blaNDM-5 in E. coli ST167 located on an IncFIA plasmid colonizing the gut of two neonates and blaNDM-5 producing E. coli ST2083 located on an IncX3 plasmid colonizing the gut of an outpatient newly diagnosed with HIV. Our findings highlight the urgent need for a robust AMR surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania. In addition, long-term infection prevention and control procedures and antimicrobial stewardship policies need to be introduced, optimized and maintained to curb the spread of resistant bacteria within healthcare environments.

Funding information

This research was supported by the Helse Bergen HF, Haukeland University Hospital, Norway, under project number 912132, as well as the Haukeland University Hospital’s National Advisory Unit on Tropical Infectious Diseases. The funders had no say in the study’s design, data collection and analysis, publication decision, or manuscript preparation. R. N. G. is supported by the Medical Research Council via the LSTM-Lancaster Doctoral Training Partnership (Grant number MR/N013514/1).

Acknowledgements

This research was supported by the Helse Bergen HF, Haukeland University Hospital, Norway, under project number 912132, as well as the Haukeland University Hospital’s National Advisory Unit on Tropical Infectious Diseases. The funders had no say in the study’s design, data collection and analysis, publication decision, or manuscript preparation. R. N. G. is supported by the Medical Research Council via the LSTM-Lancaster Doctoral Training Partnership (Grant number MR/N013514/1).

Author contributions

B. B., N. L. and A. P. R., revised the manuscript. All authors approved the final version.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

Approvals to conduct this study were obtained from Muhibbili University of Health and Allied Sciences Senate Research and Publications Committee (reference number 2015-10-27/AEC/Vol.X/54), National Health Research Ethics Committee (reference number. NIMRlHQ/R. SaJVol. 1X12144), Tanzania Medicines and Medical Devices Authority (reference number TZ16CT007) in Tanzania and Regional Committee for Medical and Health Research Ethics of Western Norway (Ref. No. REK2015/540). Written informed consent were obtained from the patients or parents/guardians or legally authorized persons for participation in the study.

References

1. Bartsch SM, McKinnell JA, Mueller LE, Miller LG, Gohil SK, et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin Microbiol Infect 2017;23:48.
2. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014;2014:249856.
3. Sun L, Xu J, He F. Draft genome sequence of an NDM-5, CTX-M-15 and OXA-1 co-producing Escherichia coli ST167 clinical strain isolated from a urine sample. J Glob Antimicrob Resist 2018;14:284–286.
4. Sun P, Xia W, Liu G, Huang X, Tang C, et al. Characterization of blaNDM-5-positive Escherichia coli prevalent in a university hospital in eastern China. Infect Drug Resist 2019;12:3029–3038.
5. Wu W, Feng Y, Tang G, Qiao F, McNally A, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 2019;32:00115–18.
6. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017;8:460–469.
7. Partridge SR, Ginn AN, Wikendt AM, Ellem J, Wong JSJ, et al. Emergence of blaNDM-5 carbapenemase genes in Australia. Int J Antimicrob Agents 2015;45:130–136.
8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;53:5044–5054.
9. Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother 2011;55:5952–5954.
10. Tian X, Zheng X, Sun Y, Fang R, Zhang S, et al. Molecular mechanisms and epidemiology of carbapenem-resistant Escherichia coli isolated from Chinese patients between 2002–2017. Infect Drug Resist 2020;13:501–512.
11. Soliman AM, Khalifa HD, Ahmed AM, Shimamoto T, Shimamoto T. Emergence of an NDM-5-producing clinical Escherichia coli isolate in Egypt. Int J Infect Dis 2016;48:46–48.
12. Sumbana JJ, Santona A, Fiamma M, Taviani E, Deligios M, et al. Extraintestinal pathogenic Escherichia coli ST405 isolates coharboring blaNDM-5 and blaCTX-M-15: a new threat in Mozambique. Microb Drug Resist 2021;27:1633–1640.
13. Yang P, Xie Y, Feng P, Zong Z. blaNDM-5 carried by an IncX3 plasmid in Escherichia coli sequence type 167. Antimicrob Agents Chemother 2014;58:7548–7552.
14. Li X, Fu Y, Shen M, Huang D, Du X, et al. Dissemination of blaNDM-5 gene via an IncX3-type plasmid among non-clonal Escherichia coli in China. Antimicrob Resist Infect Control 2018;7:59.
15. Ouchar Mahamat O, Lounnas M, Hide M, Tidjani A, Benavides J, et al. Spread of NDM-5 and OXA-181 carbapenemase-producing Escherichia coli in Chad. Antimicrob Agents Chemother 2019;63:11.
16. Zhang LP, Xue WC, Meng DY. First report of New Delhi metallo-β-lactamase 5 (NDM-5)-producing Escherichia coli from blood cultures of three leukemia patients. Int J Infect Dis 2016;42:45–46.
17. Xu L, Wang P, Cheng J, Qin S, Xie W. Characterization of a novel blaNDM-5 harboring IncFII plasmid and an mcr-1-bearing IncI2
plasmid in a single Escherichia coli st167 clinical isolate. Infect Drug Resist 2019;12:511–519.

18. Giusfè M, Errico G, Accogli M, Monaco M, Villa L, et al. Emergence of NDM-5-producing Escherichia coli sequence type 167 clone in Italy. Int J Antimicrob Agents 2018;52:76–81.

19. Garcia-Fernandez A, Villa L, Bibbono G, Bressan A, Tranccassini M, et al. Novel insights and features of the NDM-5-producing Escherichia coli sequence type 167 high-risk clone. mSphere 2020;5:e00269-20.

20. Sassi A, Loucil F, Gupta SK, Dekhil M, Chettibi H, et al. NDM-5 carbapenemase-encoding gene in multidrug-resistant clinical isolates of Escherichia coli from Algeria. Antimicrob Agents Chemother 2014;58:5606–5609.

21. Mugeo G, Maiga A, Maiga I, Brasme L, Dicko OA, et al. First description of IncX3 NDM-5-producing plasmid within Escherichia coli ST448 in Mali. J Med Microbiol 2020;69:685–698.

22. Moyo S, Haldorsen B, Aboud S, Blomberg B, Maselle SY, et al. Identification of VIM-2-producing Pseudomonas aeruginosa from Tanzania is associated with sequence types 244 and 640 and the location of blaNDM in a TnIC integron. Antimicrob Agents Chemother 2015;59:682–685.

23. Mushir MF, Mshana SE, Imirzaliougli C, Kwanga F. Carbapenemase genes among multidrug resistant Gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. Biomed Res Int 2014;2014:303104.

24. Moyo SJ, Manyahi J, Hubbard ATM, Byrne RL, Masoud NS, et al. Molecular characterisation of the first New Delhi metallo-β-lactamase 1-producing Acinetobacter baumannii from Tanzania. Trans R Soc Trop Med Hyg 2021;115:1080–1085.

25. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Twentieth Informal Supplement CLSI Document M100-S20. Wayne PA: Clinical and Laboratory Standards Institute; 2019.

26. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017;13:e1005595.

27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069.

28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.

29. Gilchrist CLM, Chooi YH, Clincker & clustermapi.js Automatic generation of gene cluster comparison figures. Bioinformatics 2021:blab007.

30. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402.

31. Bortolai V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020;75:3491–3500.

32. Joensen KG, Schuetz F, Lund O, Hasman H, Kaas RS, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014;52:1501–1510.

33. Johansson MKH, Bortolai V, Tansirichaiya S, Aarestrup FM, Roberts AP, et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 2021;76:101–109.

34. Kaas RS, Leekitcharoensophon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014;9:e104984.

35. Manyahi J, Kibwana U, Mgimba E, Majigo M. Multi-drug resistant bacteria predict mortality in bloodstream infection in a tertiary setting in Tanzania. PLoS One 2020;15:e0220424.

36. Horumpende PG, Mshana SE, Mouw EF, Mmbaga BT, Chilongola JO, et al. Point prevalence survey of antimicrobial use in three hospitals in North-Eastern Tanzania. Antimicrob Resist Infect Control 2020;9:149.

37. Gamal D, Fernandez-Martinez M, El-Defrawy I, Ocampo-Sosa AA, Martinez-Martinez L. First identification of NDM-5 associated with OXA-181 in Escherichia coli from Egypt. Emerg Infect Dis 2016;21:30.