Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
1 INTRODUCTION

The variant 1 of the human bocavirus (HBoV-1) that causes respiratory infections in primates and humans belongs to the family of Paroviridae, subfamily Parovirinae, genus Bocaparvovirus, was discovered originally in 2005 by Tobias Allander and his team and represents together with the strains HBoV-3 and the gorilla bocavirus the species Primate bocaparvovirus 1.

The discovery of HBoV-1 was one among a series of virus discoveries in the first decade of our millennium that was based on novel virus discovery systems developed in order to reduce the considerable number of cases in which a clinical diagnosis of a respiratory infection could not be confirmed by detection of a pathogen. Following the initial description of the virus, a huge number of clinical studies and case reports have been published which were supplemented by some basic research reports. Unfortunately, HBoV research still relies on clinical studies and case reports with accompanying cell culture studies as the major source of information on HBoV biology, as so far no animal model has been identified.

2 HBoV BIOLOGY

The human bocavirus (HBoV) was initially discovered in clinical samples from the respiratory tract of children suffering from respiratory infections of unknown etiology. To date, HBoV is the fourth most detected respiratory virus, but as there is still no animal model or a broadly convertible cell culture available, Koch’s modified postulates have not yet been completely fulfilled.

Nevertheless, HBoV is the second parvovirus that is capable of infecting humans with the potential to cause clinical disease. Until HBoV was discovered, parvovirus B19 was the sole human parvovirus, which can hardly be cultured in in vitro cell cultures, likely because it strongly depends on the optimal cell cycle phase. This latter fact hampered the development of potent and specific antivirals, tenacity studies, and the development of disinfectants active against human parvoviruses as surrogate pathogens with animal pathogenicity were used. The discovery of HBoV led to a couple of molecular findings that are of major general interest for the human parvovirus biology and clinics. Within a primary cell culture that productively replicated the human bocavirus, it was possible
to identify the HBoV transcriptome, including the splicing variant of viral RNA. This cell culture displayed for the first time a tool for the investigation of a human parvovirus in its natural infectious surrounding enabling follow up studies on the molecular biology of human parvoviruses in general, and HBoV in particular.

Unfortunately, the primary cell culture that enables HBoV growth in vitro is very expensive, requires a highly specialized laboratory, and is an error-prone cell culture, thus the availability of this technology is rather limited to a couple of laboratories worldwide, which in turn is a stumbling block for further research. In search for a broadly convertible replication system the group of Jian-ming Qiu from Kansas made a significant step forward: by establishing a plasmid based replicon-like system the group identified additional RNA species that are transcribed during the HBoV replication cycle. The system is based on plasmids that contain the complete published HBoV sequence but are flanked by ITR-regions of the adeno-associated virus (AAV); the ITR-regions are terminal repeats containing palindromic sequences that form hairpin-like structures, which in turn are required for the replication of parvoviruses according to the so-called rolling hairpin mechanisms of replication.

Although the hairpin-like structures of HBoV had yet not been described at that time, it was postulated that also the HBoV genome is flanked by such structures and that HBoV replicates its genome by the rolling hairpin mechanism, although this assumption is exclusively based on phylogenetic analogous conclusion rather than on experimental evidence. In theory, the rolling hairpin replication results in progeny genomes that occur in equal amounts of both polarities, while packaging of viral genomes is dependent on additional factors. For almost four decades, it was postulated that all paroviruses replicate according to this mechanism, although this replication model is solely based on experimental data obtained by the research on rodent parvoviruses. The model is characterized by a terminal hairpin dependent self-priming initiation of the viral genome replication and concatemeric replication intermediates of head-to-head or tail-to-tail replication intermediates. Based on an early publication of the postulated model in 1976 in Nature, this replication model became a dogma in the field of parvirology and was deemed to be true for all parvoviruses. Interestingly, it was impossible to identify both genome polarities in clinical samples containing HBoV infected cells. Thereby, NASBA analyses revealed that all HBoV strains package negative strand genome while only a minority also package the plus strand; this observation is compatible with another replication mechanism, known as rolling circle replication. A couple of systematic PCR-based analyses were performed to test the hypothesis if rolling circle replication may occur in HBoV infection and to decipher the unknown terminal hairpins.

This approach identified DNA sequences that contained head-to-tail genome fragments linked by a newly identified linker stretch that had a partial by high homology to the minute virus of canine (MVC) ITR and to the ITR of bovine parvovirus. Most recently, it was shown that these sequences most likely represent the missing terminal hairpin like structures, and it is likely that the virus was originally transmitted as a zoonosis (Fig. 5.1). Despite identifying the terminal sequences in clinical samples and also in cell cultures, not only a lack of self-priming activity of HBoV-genomes but also the lack of intermediates typical for rolling hairpin replication were observed. Instead, the samples contained head-to-tail structures. Several groups published similar observations, all tackling the dogma of parvovirus replication. It is therefore important to know that the head-to-tail episomal form of HBoV differs from formerly described circular parvoviral episomes that have been shown to consist of circular closed genome dimers of head-to-head and tail-to-tail orientation.
Although the role of the linker sequence and the head-to-tail junction remains unclear, these findings were surprising as they support the hypothesis that HBoV replicates differently from nonhuman parvoviruses by possibly initiating a rolling circle mechanism, at least as an alternative route of replication.

Based on the newly identified sequences, the structure of the putative terminal repeats of the HBoV genome were predicted in silico. Beyond that, the Kansas group developed a true full-length vector clone of HBoV which can be transfected to HEK-293 cells and produces a “recombinant wild type” human bocavirus that in turn is infectious for differentiated CuFi-8 cells. CuFi-8 cells are derived from a patient with cystic fibrosis and can be grown as monolayer cultures that by change of the culturing media can be differentiated into a polarized respiratory epithelial structure that in turn supports HBoV replication. This novel cell culture gives rise to the hypothesis that HBoV is a true serious pathogen because it induced a remarkable cytopathic effect in the polarized CuFi-8 cell line, which in turn is compatible with the assumption that clinical symptoms of an HBoV infection are caused by tissue
damages due to the viral replication. Thereby, this infection model harbors a surprising feature that is a further hint for an alternative replication of the human bocavirus—if the full-length HBoV plasmid containing the hairpin sequences is transfected into HEK293 cells, then infectious progeny virions are produced, although based on the rolling hairpin model this process must be impossible because the free (!) hairpin sequences are believed to be essential for the replication. In contrast, in the plasmid they are flanked by the vector’s backbone sequence, replication is possible although no helper plasmids are required as known for the dependoviruses. This simple observation strongly contradicts the model of rolling hairpin replication but in turn favors other replication models known for circular DNA, for example the rolling circle replication, which in the natural infection would produce head-to-tail concatemers.

Furthermore, clinical observations give raise to the hypothesis that the HBoV replication can be triggered or influenced by human herpesviruses, such as HHV-6, CMV, and Herpes simplex Virus. In this context, it is noteworthy that herpesviruses, especially HSV, are capable of initiating a rolling circle replication mechanism of replication in trans, as shown for SV40, which has a circular double stranded genome. These viruses (eg, AAV) in turn are able to act as helper viruses for the parvoviral subclass dependoviruses, that require those helper viruses for their replication. Recently, a clinical case was observed in which the HBoV infection appeared to depend on coinfection and coreplication of human herpesvirus type 6. In this case, the HBoV infection persisted because of an immune disease but was terminated by antiviral therapy with cidofovir which is directed against HHV6. This was the key observation leading to the assumption that HBoV is either sensitive to cidofovir or that a possible rolling circle HBoV replication is triggered by HHV6, which in turn would explain the high frequency of coinfections observed in case of HBoV.

In 2011, two severe cases of respiratory failure in adults associated with HBoV infection, herpesvirus coinfection, and a history of lung fibrosis likely dedicated to the presence of chronic HBoV infection indicate that the head-to-tail structures could have been episomal reservoirs enabling the virus’ persistence as postulated by Kapoor and coworkers. It may be speculated whether the persistence of HBoV episomes in the lung of the patients in analogy to a HBV infection, in which episomal cccDNA persists in the infected cell until the cell is targeted by the immune response or subjected to apoptosis, and in which this chronic state frequently goes ahead with a mild inflammation that is subclinical but finally could induce fibrosis, could have led to mild chronic inflammation eventually resulting in fibrosis of the lung, which could not be easily compensated as in the liver. In the context of a putative chronic HBoV infection or a persistence of HBoV at a subclinical level, it thus appears possible that HBoV could directly or indirectly, by interactions with the immune system, contribute to chronic lung disease such as idiopathic lung fibrosis.

Another recently detected novel feature of HBoV is the expression of more nonstructural proteins than concluded from our previous knowledge on parvovirus replication studies. Shen et al. have shown that besides NS1 three novel proteins named NS2, NS3, and NS4, are expressed during the viral replication, of which NS2 is believed to have a crucial role during the viral life cycle.
3 EPIDEMIOLOGY

Like all respiratory pathogens (except SARS- and MERS-coronavirus) that cause respiratory infections, HBoV-1 is distributed worldwide and has been detected in patients from several regions of each continent. However, unlike most other viruses that are known to peak seasonally in autumn and winter, HBoV infection peaks do not seem to be restricted to these seasons.

Although the route of transmission has not yet been systematically investigated, it is widely accepted that the transmission of HBoV most likely occurs by smear, or droplet infections or aerosols, and nasal or oral uptake, as described for the majority of “common cold viruses.” The transmission route passes through airway excretions but could also happen via the gastrointestinal route, as HBoV is also shedded by stool (Fig. 5.2).

The HBoV seroprevalence is high and reached 95%, and more in children up to the age of 5 years. This seroprevalence remains high in most adults, but decreases from 96% to 59% in European adults if antibodies against HBoV strains 2–4 were depleted. Thus, in 41% of patients no long term immunity could be generated, supporting the assumption that the virus is able to persist and could also reinfect elderly patients. Surprisingly, HBoV-1 DNA can also be detected in blood and blood products from healthy Chinese blood donors with a lower seropositivity compared to the afore mentioned cohorts.

4 CLINICAL FEATURES

The HBoV-1 infection is clinically indistinguishable from other respiratory infections and can solely be proven by molecular assays. The spectrum of HBoV infections ranges from asymptomatic to mild upper respiratory infections in all age groups. The immune response against HBoV starts with an IgM response followed by the formation of IgG, but no life long immunity is generated in at least 40% of patients due to the original antigenic sin.

HBoV-1 is able to infect the central nervous system and it has been identified as a putative cause of idiopathic lung fibrosis supported by the fact that a set of profibrotic cytokines were upregulated during HBoV infection in adults and their HBoV dependent upregulation was confirmed in cell culture. Whereas, HBoV does not induce a clear Th1 or Th2 response. Furthermore, the HBoV dependent regulated cytokines include a subset of cytokines which are known to be involved in several cancer-associated pathways, supporting the hypothesis that HBoV may be associated with long term diseases or even cancerogenesis. Although this hypothesis requires further prospective studies, HBoV DNA was detected in lung- and colorectal tumors. Detection of HBoV DNA, eventually combined with persistence, was described besides detection in normal lung tissue and in lung- and colorectal tumors, in other tissues such as, tonsils and myocardium, and may affect further tissues that have not yet been tested for HBoV-positivity.

Lung fibrosis, especially the idiopathic lung fibrosis (IPF) is characterized by a Th2-type dominated immune response in the affected tissue (as reviewed by). The Th2 response in the lung is accompanied by increased expression levels of IL-4, IL-5, IL-10, and IL-13 and is followed by increased levels—besides others—of CCL17 (TARC) and CCL5 (RANTES). Moreover, fibrosis is related to expression of TNF and IL-8, and it is worth mentioning that the neutralization of TARC leads to a
FIGURE 5.2 Schematic Overview of the HBoV Life Cycle

1, entry through the nasopharyngeal space; 2, infection of the lung; 3 and 4, swallowing of the expectorated infectious secretion; 5, infection of the gastrointestinal tract. Additionally, the virus spreads via the bloodstream and causes classical viraemia (not indicated).
reduction of fibrosis in the animal model. In addition, an elevation of the TARC/IP-10 ratio is also characteristic for fibrosis and was previously discussed as a marker for IPF.

Moreover, a so far unique follow up case in which the infection/reactivation of HBoV occurred between two episodes of BAL sampling, and in which the fibrosis associated cytokines were expressed in association with the HBoV infection but not before, supports the previously obtained data. This leads to the conclusion, that HBoV colonisation/chronic infection may be at least one trigger that could stimulate airway remodelling. However, it could be argued that in vivo not only the resident airway epithelial cells are involved in the immune response but also additional patient specific factors will contribute to altered profibrotic cytokine profiles. To address this problem, experiments in an air-liquid-interface culture of human airway epithelial cells were performed. These experiments confirmed that the profibrotic cytokines were expressed by the infected cell cultures but were hardly or not at all expressed in mock-infected cells and they reveal that the identified cytokines belong to the initial immune response after HBoV infection.

According to the literature the two HBoV proteins VP2 and NP1 seem to influence the regulation of the Interferon beta pathway but the data appear controversially as VP2 upregulates the pathway while NP1 inhibits the IFN-beta production when overexpressed.

5 COINFECTIONS AND PERSISTENCE

Simultaneously with the discovery of HBoV in 2005, multiplexing methods started to become an accepted diagnostic tool and as a consequence detection of multiple infections, especially in respiratory tract diseases, has become a common phenomenon. Nowadays, multiple infections with up to six pathogens being simultaneously present in a single respiratory sample are frequent and have misled some researchers to the statement that the human bocavirus, also occurring in asymptomatic patients, is a harmless bystander rather than a pathogen. This hypothesis seems to be supported by the fact that for HBoV a formal fulfilment of Koch’s modified postulates was not yet possible because no animal model exists so far and also because volunteer transmission trials cannot be recommended based on our current knowledge.

On the contrary, although there is a cohort of asymptomatic carriers, several studies have shown that HBoV induces clinical symptoms. The asymptomatic viral shedding is meanwhile believed to originate from a long term shedding after an acute infection or from persisting viruses, most recently confirmed by a long term prospective cohort study. Thereby, it was shown that the rate of asymptomatic HBoV infections is similar to the rate of rhinovirus infections, and no one would doubt that rhinoviruses are true pathogens.

Moreover, HBoV induces a serious cytopathic effect in infected cell cultures, which is a typical feature of a pathogen.

6 DIAGNOSTICS

Besides several published homebrew PCRs and real-time PCRs (as reviewed by), numerous commercial assays, such as the Luminex RVP–Assay, the Idaho FilmArray, or the RespiFinder assay have been developed and released to the market enabling the detection of HBoV from clinical samples. However, multiplexing solely allows us to detect the viral DNA in a respiratory sample.
without providing the essential information if an active replicative infection underlies the currently clinical episode requiring laboratory testing. As HBoV can be shed for longer than 3 months after the acute symptomatic phase, a proper diagnostics of human bocavirus requires the proof of active replication, which can be done either by detection of a viremia in the peripheral blood, or by detection of spliced viral RNA transcripts that were shown to be present exclusively during the active phase of the replication.

7 SUMMARY AND PERSPECTIVE

There is an increasing body of evidence showing that the human bocavirus is a serious pathogen that on the one hand is associated with acute respiratory infections, sometimes with life threatening complications, and on the other hand also could contribute to long term diseases of the airways resulting in lung carcinoma or lung fibrosis. Therefore, it remains crucial to analyze the long-term effects of HBoV infections to identify the mechanisms of HBoV persistence and to determine the host factors for asymptomatic infections, as well as to test the hypothesis that HBoV could trigger the development of lung cancer and fibrosis. In any cases, the proper diagnostics of HBoV require attention and need to be evaluated regarding its interaction with other respiratory viruses that may simultaneously be detected in clinical episodes.

REFERENCES

1. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 2005;102:12891–6.
2. Cotmore SF, Agbandje-McKenna M, Chiorini JA, et al. Arch Virol. The family Paroviridae 2014; 159:1239–47.
3. Schildgen O, Muller A, Allander T, et al. Clin Microbiol Rev. Human bocavirus: passenger or pathogen in acute respiratory tract infections? 2008;21:291–304.
4. Morita E, Sugamura K. Human parvovirus B19-induced cell cycle arrest and apoptosis. Springer Semin Immunopathol 2002;24:187–99.
5. Morita E, Tada K, Chisaka H, et al. Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol 2001;75:7555–63.
6. Bashir T, Rommelaere J, Cziepluch C. In vivo accumulation of cyclin A and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J Virol 2001;75:4394–8.
7. Bashir T, Horlein R, Rommelaere J, Willwand K. Cyclin A activates the DNA polymerase delta-dependent elongation machinery in vitro: a parvovirus DNA replication model. Proc Natl Acad Sci USA 2000;97:5522–7.
8. Op De Beeck A, Caillet-Fauquet P. The NS1 protein of the autonomous parvovirus minute virus of mice blocks cellular DNA replication: a consequence of lesions to the chromatin? J Virol 1997;71:5323–9.
9. Oleksiewicz MB, Alexandersen S. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parovirus. J Virol 1997;71:1386–96.
10. Op De Beeck A, Anouja F, Mouset S, Rommelaere J, Caillet-Fauquet P. The nonstructural proteins of the autonomous parvovirus minute virus of mice interfere with the cell cycle, inducing accumulation in G2. Cell Growth Differ 1995;6:781–7.
11. Bantel-Schaal U, Stohr M. Influence of adeno-associated virus on adherence and growth properties of normal cells. J Virol 1992;66:773–9.
12. Metcalf JB, Bates RC, Lederman M. Interaction of virally coded protein and a cell cycle-regulated cellular protein with the bovine parvovirus left terminus ori. *J Virol* 1990;64:5485–90.

13. Siegl G. Molecular biology and pathogenicity of human and animal paroviruses. *Behring Inst Mitt* 1990;85:6–13.

14. Dijkman R, Koekkoek SM, Molenkamp R, Schildgen O, van der Hoek L. Human bocavirus can be cultured in differentiated human airway epithelial cells. *J Virol* 2009;83:7739–48.

15. Chen AY, Cheng F, Lou S, et al. Characterization of the gene expression profile of human bocavirus. *Virology* 2010;403:145–54.

16. Tattersall P, Ward DC. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. *Nature* 1976;263:106–9.

17. Cotmore SF, Gottlieb RL, Tattersall P. Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. *J Virol* 2007;81:13015–27.

18. Cotmore SF, Tattersall P. Encapsulation of minute virus of mice DNA: aspects of the translocation mechanism revealed by the structure of partially packaged genomes. *Virology* 2005;336:100–12.

19. Cotmore SF, Tattersall P. Genome packaging sense is controlled by the efficiency of the nick site in the right-end replication origin of parvoviruses minute virus of mice and LulIII. *J Virol* 2005;79:2287–300.

20. Corsini J, Cotmore SF, Tattersall P, Winocour E. The left-end and right-end origins of minute virus of mice DNA differ in their capacity to direct episomal amplification and integration in vivo. *Virology* 2001;288:154–63.

21. Cotmore SF, Tattersall P. An asymmetric nucleotide in the parvoviral 3’ hairpin directs segregation of a single active origin of DNA replication. *EMBO J* 1994;13:4145–52.

22. Cotmore SF, Nuesch JP, Tattersall P. Asymmetric resolution of a parvovirus palindrome in vitro. *J Virol* 1993;67:1579–89.

23. Cotmore SF, Nuesch JP, Tattersall P. In vitro excision and replication of 5’ telomeres of minute virus of mice DNA from cloned palindromic concatemer junctions. *Virology* 1992;190:365–77.

24. Bohmer A, Schildgen V, Lusebrink J, et al. Novel application for isothermal nucleic acid sequence-based amplification (NASBA). *J Virol Methods* 2009;158:199–201.

25. Lusebrink J, Schildgen V, Tillmann RL, et al. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples. *PLoS One* 2011;6:e19457.

26. Schildgen O, Qiu J, Soderlund-Venermo M. Genomic features of the human bocaviruses. *Future Virol* 2012;7:31–9.

27. Kapoor A, Hornig M, Asokan A, Williams B, Henriquez JA, Lipkin WI. Bocavirus episome in infected human tissue contains non-identical termini. *PLoS One* 2011;6:e21362.

28. Li L, Pesavento PA, Leutenegger CM, et al. A novel bocavirus in canine liver. *Virol J* 2013;10:54.

29. Zhao H, Zhao L, Sun Y, et al. Detection of a bocavirus circular genome in fecal specimens from children with acute diarrhea in Beijing, China. *PLoS One* 2012;7:e48980.

30. Yang WZ, Huang CP, Duan ZJ. Identification and characterization of porcine bocavirus episomes. *Bing Du Xue Bao* 2012;28:418–23.

31. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. *J Virol* 2003;77:3495–504.

32. Huang Q, Deng X, Yan Z, et al. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. *PLoS Pathog* 2012;8:e1002899.

33. Gerspach R, Matz B. Herpes simplex virus-induced “rolling circle” amplification of SV40 DNA sequences in a transformed hamster cell line correlates with tandem integration of the SV40 genome. *Virology* 1989;173:723–7.

34. Gerspach R, Matz B. Herpes simplex virus-directed overreplication of chromosomal DNA physically linked to the simian virus 40 integration site of a transformed hamster cell line. *Virology* 1988;165:282–5.
35. Schildgen O, Graper S, Blumel J, Matz B. Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J Virol 2005; 79:7273–8.
36. Alazard-Dany N, Nicolas A, Ploquin A, et al. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events. PLoS Pathog 2009; 5:e1000340.
37. Johansson S, Buchmayer S, Harlid S, et al. Infection with Parvovirus B19 and Herpes viruses in early pregnancy and risk of second trimester miscarriage or very preterm birth. Reprod Toxicol 2008; 26:298–302.
38. Rollin R, Alvarez-Lafuente R, Marco F, et al. Human parvovirus B19, varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthritis Cartilage 2007; 15:475–8.
39. Rohayem J, Dinger J, Fischer R, Klingel K, Rethwilm A. Fatal myocarditis associated with acute parvovirus B19 and human herpesvirus 6 coinfection. J Clin Microbiol 2001; 39:4585–7.
40. Thomson BJ, Weindler FW, Gray D, Schwaab V, Heilbronn R. Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology 1994; 204:304–11.
41. Streiter M, Malecki M, Prokop A, et al. Does human bocavirus infection depend on helper viruses? A challenging case report. Virol J 2011; 8:417.
42. Asano Y, Yoshikawa T. Human herpesvirus-6 and parvovirus B19 infections in children. Curr Opin Pediatr 1993; 5:14–20.
43. Bauer HJ, Monreal G. Herpesviruses provide helper functions for avian adeno-associated parvovirus. J Gen Virol 1986; 67(Pt 1):181–5.
44. Windisch W, Schildgen V, Malecki M, et al. Detection of HBoV DNA in idiopathic lung fibrosis, Cologne, Germany. J Clin Virol 2013; 58:325–7.
45. Shen W, Deng X, Zou W, et al. Identification and functional analysis of novel non-structural proteins of human bocavirus 1. J Virol 2015; 89(19).
46. Akinloye OM, Ronkko E, Savolainen-Kopra C, et al. Specific viruses detected in nigerian children in association with acute respiratory disease. J Trop Med 2011; 2011:690286.
47. Albuquerque MC, Pena GP, Varella RB, Gallucci G, Erdman D, Santos N. Novel respiratory virus infections in children, Brazil. Emerg Infect Dis 2009; 15:806–8.
48. Al-Rousan HO, Meqdam MM, Alkhateeb A, Al-Shorman A, Qaisy LM, Al-Moqbel MS. Human bocavirus in Jordan: prevalence and clinical symptoms in hospitalised paediatric patients and molecular virus characterisation. Singapore Med J 2011; 52:365–9.
49. Bastien N, Brandt K, Dust K, Ward D, Li Y. Human Bocavirus infection, Canada. Emerg Infect Dis 2006; 12:848–50.
50. Bharaj P, Sullender WM, Kabra SK, Broor S. Human bocavirus infection in children with acute respiratory tract infection in India. J Med Virol 2010; 82:812–6.
51. Binks MJ, Cheng AC, Smith-Vaughan H, et al. Viral-bacterial co-infection in Australian Indigenous children with acute otitis media. BMC Infect Dis 2011; 11:161.
52. Bubshait DK, Albuali WH, Yousef AA, et al. Clinical description of human bocavirus viremia in children with LRTI, Eastern Province, Saudi Arabia. Ann Thorac Med 2015; 10:146–9.
53. Byington CL, Ampofo K, Stockmann C, et al. Community surveillance of respiratory viruses among families in the Utah Better identification of germs-longitudinal viral epidemiology (BIG-LoVE) study. Clin Infect Dis 2015; 61(8):1217–24.
54. Carrol ED, Mankhambo LA, Guiver M, et al. PCR improves diagnostic yield from lung aspiration in Malawian children with radiologically confirmed pneumonia. PLoS One 2011; 6:e21042.
55. Chieochansin T, Samransamruajkit R, Chutinimitkul S, et al. Human bocavirus (HBoV) in Thailand: clinical manifestations in a hospitalized pediatric patient and molecular virus characterization. J Infect 2008; 56:137–42.
76. Choi EH, Lee HJ, Kim SJ, et al. The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000-2005. Clin Infect Dis 2006;43:585–92.
77. Chow BD, Huang YT, Esper FP. Evidence of human bocavirus circulating in children and adults, Cleveland, Ohio. J Clin Virol 2008;43:302–6.
78. Chung JY, Han TH, Kim CK, Kim SW. Bocavirus infection in hospitalized children, South Korea. Emerg Infect Dis 2006;12:1254–6.
79. De Vos N, Vankeerberghen A, Vaeyens F, Van Vaerenbergh K, Boel A, De Beenhouwer H. Simultaneous detection of human bocavirus and adenovirus by multiplex real-time PCR in a Belgian paediatric population. Eur J Clin Microbiol Infect Dis 2009;28:1305–10.
80. Dina J, Vabret A, Gouarin S, et al. Detection of human bocavirus in hospitalised children. J Paediatr Child Health 2009;45:149–53.
81. Do AH, van Doorn HR, Nghiem MN, et al. Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008. PLoS One 2011;6:e18176.
82. Endo R, Ishiguro N, Kikuta H, et al. Seroepidemiology of human bocavirus in Hokkaido prefecture, Japan. J Clin Microbiol 2007;45:3218–23.
83. Esposito S, Bosis S, Niesters HG, et al. Impact of human bocavirus on children and their families. J Clin Microbiol 2008;46:1337–42.
84. Essa S, Owayed A, Altawalah H, Khadadah M, Behbehani N, Al-Nakib W. The prevalence of human bocavirus, human coronavirus-NL63, human metapneumovirus, human polyomavirus KI and WU in respiratory tract infections in Kuwait. Med Princ Pract 2015;24:382–7.
85. Fabbiani M, Terrosi C, Martorelli B, et al. Epidemiological and clinical study of viral respiratory tract infections in children from Italy. J Med Virol 2009;81:750–6.
86. Foulds N, Olejnik Y, Perez V, Elaerts S, Rodiere M, Segondy M. Human bocavirus in French children. Emerg Infect Dis 2006;12:1251–3.
87. Furuse Y, Suzuki A, Kishi M, et al. Detection of novel respiratory viruses from influenza-like illness in the Philippines. J Med Virol 2010;82:1071–4.
88. Guido M, Zizza A, Bredl S, et al. Seroepidemiology of human bocavirus in Apulia, Italy. Clin Microbiol Infect 2012;18:E74–6.
89. Heydari H, Mamishi S, Khotaeei GT, Moradi S. Fatal type 7 adenovirus associated with human bocavirus infection in a healthy child. J Med Virol 2011;83:1762–3.
90. Hindiyeh MY, Keller N, Mandelboim M, et al. High rate of human bocavirus and adenovirus coinfection in hospitalized Israeli children. J Clin Microbiol 2008;46:334–7.
91. Hustedt JW, Christie C, Hustedt MM, Esposito D, Vazquez M. Seroepidemiology of human bocavirus infection in Jamaica. PLoS One 2012;7:e38206.
92. IP M, Nelson EA, Cheuk ES, Leung E, Sung R, Chan PK. Pediatric hospitalization of acute respiratory tract infections with Human Bovavirus in Hong Kong. J Clin Virol 2008;42:72–4.
93. Jacques J, Moret H, Renois F, Leveque N, Motte J, Andreoletti L. Human Bovavirus quantitative DNA detection in French children hospitalized for acute bronchiolitis. J Clin Virol 2008;43:142–7.
94. Kaplan NM, Dove W, Abu-Zeid AF, Shamoon HE, Abd-Eldayem SA, Hart CA. Human bocavirus infection among children, Jordan. Emerg Infect Dis 2006;12:1418–20.
95. Kesebir D, Vazquez M, Weibel C, et al. Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis 2006;194:1276–82.
96. Klinkenberg D, Blohm M, Hoehne M, et al. Risk of rotavirus vaccination for children with SCID. Pediatr Infect Dis J 2015;34:114–5.
97. Korner RW, Soderlund-Venermo M, van Koningsbruggen-Rietschel S, Kaiser R, Malecki M, Schildgen O. Severe human bocavirus infection, Germany. Emerg Infect Dis 2011;17:2303–5.
98. Krakau M, Brockmann M, Titius B, et al. Acute human bocavirus infection in MDS patient, Cologne, Germany. J Clin Virol 2015;69:44–77.
79. Lin F, Zeng A, Yang N, et al. Quantification of human bocavirus in lower respiratory tract infections in China. *Infect Agent Cancer* 2007;2:3.
80. Medici MC, Tumolo F, Albetti V, Abelli LA, Chezzi C, Calderaro A. Molecular detection and epidemiology of astrovirus, bocavirus, and sapovirus in Italian children admitted to hospital with acute gastroenteritis, 2008–2009. *J Med Virol* 2012;84:643–50.
81. Meriluoto M, Hedman L, Tanner L, et al. Association of human bocavirus 1 infection with respiratory disease in childhood follow-up study, Finland. *Emerg Infect Dis* 2012;18:264–71.
82. Mitui MT, Tabib SM, Matsumoto T, et al. Detection of human bocavirus in the cerebrospinal fluid of children with encephalitis. *Clin Infect Dis* 2012;54:964–7.
83. Monteny M, Niesters HG, Moll HA, Berger MY. Human bocavirus in febrile children, The Netherlands. *Emerg Infect Dis* 2007;13:180–2.
84. Mori D, Ranawaka U, Yamada K, et al. Human bocavirus in patients with encephalitis, Sri Lanka, 2009-2010. *Emerg Infect Dis* 2013;19:1859–62.
85. Niang MN, Diop OM, Sarr FD, et al. Viral etiology of respiratory infections in children under 5 years old living in tropical rural areas of Senegal: The EVIRA project. *J Med Virol* 2010;82:866–72.
86. Obuchi M, Yagi S, Oguri A, Takizawa T, Kimura H, Sata T. Outbreak of human bocavirus 1 infection in young children in Toyama, Japan. *Jpn J Infect Dis* 2015;68:259–61.
87. Pierangeli A, Scagnolari C, Trombetti S, et al. Human bocavirus infection in hospitalized children in Italy. *Influenza Other Respi Viruses* 2008;2:175–9.
88. Pozo F, Garcia-Garcia ML, Calvo C, Cuesta I, Perez-Brena P, Casas I. High incidence of human bocavirus infection in children in Spain. *J Clin Virol* 2007;40:224–8.
89. Qu XW, Duan ZJ, Qi ZY, et al. Human bocavirus infection, People’s Republic of China. *Emerg Infect Dis* 2007;13:165–8.
90. Redshaw N, Wood C, Rich F, Grimwood K, Kirman JR. Human bocavirus in infants, New Zealand. *Emerg Infect Dis* 2007;13:1797–9.
91. Santos N, Peret TC, Humphrey CD, et al. Human bocavirus species 2 and 3 in Brazil. *J Clin Virol* 2010;48:127–30.
92. Smuts H, Hardie D. Human bocavirus in hospitalized children, South Africa. *Emerg Infect Dis* 2006;12:1457–8.
93. Soderlund-Venermo M, Lahtinen A, Jartti T, et al. Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. *Emerg Infect Dis* 2009;15:1423–30.
94. Souza EL, Ramos JG, Proenca-Modena JL, et al. Human bocavirus in very young infants hospitalized with acute respiratory infection in northeast Brazil. *J Trop Pediatr* 2010;56:125–7.
95. Sung CC, Chi H, Chiu NC, et al. Viral etiology of acute lower respiratory tract infections in hospitalized young children in Northern Taiwan. *J Microbiol Immunol Infect* 2011;44:184–90.
96. Tan BH, Lim EA, Seah SG, et al. The incidence of human bocavirus infection among children admitted to hospital in Singapore. *J Med Virol* 2009;81:82–9.
97. Volz S, Schildgen O, Klinkenberg D, et al. Prospective study of Human Bocavirus (HBoV) infection in a pediatric university hospital in Germany 2005/2006. *J Clin Virol* 2007;40:229–35.
98. Weissbrich B, Neske F, Schubert J, et al. Frequent detection of bocavirus DNA in German children with respiratory tract infections. *BMC Infect Dis* 2006;6:109.
99. Zhao LQ, Qian Y, Zhu RN, et al. Seroprevalence of antibody against human bocavirus in Beijing, China. *Zhonghua Er Ke Za Zhi* 2008;46:111–4.
100. Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S. Prevalence and clinical aspects of human bocavirus infection in children. *Clin Microbiol Infect* 2010;16:633–9.
101. Kantola K, Hedman L, Arthur J, et al. Seroepidemiology of human bocaviruses 1-4. *J Infect Dis* 2011;204:1403–12.
102. Li H, He M, Zeng P, et al. The genomic and seroprevalence of human bocavirus in healthy Chinese plasma donors and plasma derivatives. *Transfusion* 2015;55:154–63.
103. Chonmaitree T, Alvarez-Fernandez P, Jennings K, et al. Symptomatic and asymptomatic respiratory viral infections in the first year of life: association with acute otitis media development. *Clin Infect Dis* 2015;60:1–9.

104. Kaur J, Schildgen V, Tillmann R, et al. Low copy number detection of HBoV DNA in BAL of asymptomatic adult patients. *Future Virol* 2014;9:715–20.

105. Costa E, Rodriguez-Dominguez M, Clari MA, Gimenez E, Galan JC, Navarro D. Comparison of the performance of 2 commercial multiplex PCR platforms for detection of respiratory viruses in upper and lower tract respiratory specimens. *Diagn Microbiol Infect Dis* 2015;82:40–3.

106. Chen KF, Blyn L, Rothman RE, et al. Reverse transcription polymerase chain reaction and electrospray ionization mass spectrometry for identifying acute viral upper respiratory tract infections. *Diagn Microbiol Infect Dis* 2011;69:179–86.

107. Cotton M, Innes S, Jaspan H, Madide A, Rabie H. Management of upper respiratory tract infections in children. *S Afr Fam Pract* 2008;50:6–12.

108. Zeng SZ, Xiao NG, Zhong LL, Yu T, Zhang B, Duan ZJ. Clinical features of human metapneumovirus genotypes in children with acute lower respiratory tract infection in Changsha, China. *J Med Virol* 2015;87(11):1839–45.

109. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

110. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

111. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

112. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

113. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

114. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

115. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

116. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

117. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

118. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

119. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

120. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

121. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

122. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.

123. Li L, Chen ZR, Yan YD, et al. Detection of human bocavirus in nasopharyngeal aspirates versus in bronchoalveolar lavage fluids in children with lower respiratory tract infections. *J Med Virol* 2015;87(11):1839–45.
124. Khalfaoui S, Eichhorn V, Karagiannidis C, et al. Lung infection by human bocavirus induces the release of profibrotic mediator cytokines in vivo and in vitro. *PLoS ONE* 2015;11(1):e0147010. doi: 10.1371/journal.pone.0147010.

125. Kumar A, Filippone C, Lahtinen A, et al. Comparison of Th-cell immunity against human bocavirus and parvovirus B19: proliferation and cytokine responses are similar in magnitude but more closely interrelated with human bocavirus. *Scand J Immunol* 2011;73:135–40.

126. Chen H, Chen XZ, Waterboer T, Castro FA, Brenner H. Viral infections and colorectal cancer: a systematic review of epidemiological studies. *Int J Cancer* 2015;137:12–24.

127. Schildgen V, Khalfaoui S, Schildgen O. Human Bocavirus: from common cold to cancer? Speculations on the importance of an episomal genomic form of human bocavirus. *Rev Med Microbiol* 2014;25:113–8.

128. Schildgen V, Malecki M, Tillmann RL, Brockmann M, Schildgen O. The human bocavirus is associated with some lung and colorectal cancers and persists in solid tumors. *PLoS One* 2013;8:e68020.

129. Gunel C, Kirdar S, Omurlu IK, Agdas F. Detection of the Epstein–Barr virus, human bocavirus and novel KI and KU polyomaviruses in adenotonsillar tissues. *Int J Pediatr Otorhinolaryngol* 2015;79:423–7.

130. Clement N, Battaglioli G, Jensen RL, et al. Prevalence of human bocavirus in human tonsils and adenoids. *Emerg Infect Dis* 2009;15:1149–50.

131. Lu X, Gooding LR, Erdman DD. Human bocavirus in tonsillar lymphocytes. *Emerg Infect Dis* 2008;14:1332–4.

132. Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. *Eur Respir Rev* 2015;24:102–14.

133. Keane MP. The role of chemokines and cytokines in lung fibrosis. *Eur Respir Rev* 2008;17:151–6.

134. Gauldie J, Jordana M, Cox G. Cytokines and pulmonary fibrosis. *Thorax* 1993;48:931–5.

135. Belperio JA, Dy M, Murray L, et al. The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. *J Immunol* 2004;173:4692–8.

136. Kishi M, Miyazaki Y, Jinta T, et al. Pathogenesis of cBFL in common with IPF? Correlation of IP-10/TARC ratio with histological patterns. *Thorax* 2008;63:810–6.

137. Luo H, Zhang Z, Zheng Z, et al. Human bocavirus VP2 upregulates IFN-beta pathway by inhibiting ring finger protein 125-mediated ubiquitination of retinoic acid-inducible gene-I. *J Immunol* 2013;191:660–9.

138. Zhang Z, Zheng Z, Luo H, et al. Human bocavirus NP1 inhibits IFN-beta production by blocking association of IFN regulatory factor 3 with IFNB promoter. *J Immunol* 2012;189:4453.

139. Martin ET, Kuypers J, McRoberts JP, Englund JA, Zerr DM. Human bocavirus 1 primary infection and shedding in infants. *J Infect Dis* 2015;212:516–24.

140. Balada-Llasat JM, LaRue H, Kelly C, Rigali L, Pancholi P. Evaluation of commercial ResPlex II v2.0, MultiCode-PLx, and xTAG respiratory viral panels for the diagnosis of respiratory viral infections in adults. *J Clin Virol* 2011;50:42–5.

141. Pham NT, Trinh QD, Chan-It W, et al. A novel RT-multiplex PCR for detection of Aichi virus, human parechovirus, enteroviruses, and human bocavirus among infants and children with acute gastroenteritis. *J Virol Methods* 2010;169:193–7.

142. Spyridaki IS, Christodoulou I, de Beer L, et al. Comparison of four nasal sampling methods for the detection of viral pathogens by RT-PCR-A GA(2)LEN project. *J Virol Methods* 2009;156:102–6.

143. Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronavirus, and bocavirus during acute respiratory tract infections. *J Med Virol* 2006;78:1232–40.

144. Loeffelholz MJ, Pong DL, Pyles RB, et al. Comparison of the film array respiratory panel and prodesse real-time PCR assays for detection of respiratory pathogens. *J Clin Microbiol* 2011;49:4083–8.

145. Nawaz S, Allen DJ, Aladin F, Gallimore C, Iturriza-Gomara M. Human bocaviruses are not significantly associated with gastroenteritis: results of retesting archive DNA from a case control study in the UK. *PLoS One* 2012;7:e41346.
REFERENCES

146. Martin ET, Taylor J, Kuypers J, et al. Detection of bocavirus in saliva of children with and without respiratory illness. J Clin Microbiol 2009;47:4131–2.

147. Williams JV. Deja vu all over again: Koch’s postulates and virology in the 21st century. J Infect Dis 2010;201:1611–4.

148. von Linstow ML, Hogh M, Hogh B. Clinical and epidemiologic characteristics of human bocavirus in Danish infants: results from a prospective birth cohort study. Pediatr Infect Dis J 2008;27:897–902.

149. Garcia-Garcia ML, Calvo C, Pozo F, et al. Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection. Pediatr Infect Dis J 2008;27:358–60.

150. Ursic T, Krivec U, Kalan G, Petrovec M. Fatal human bocavirus infection in an 18-month-old child with chronic lung disease of prematurity. Pediatr Infect Dis J 2015;34:111–2.

151. Ghietto LM, Majul D, Ferreyra Soaje P, et al. Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection. Arch Virol 2015;160:117–27.

152. Campbell AP, Guthrie KA, Englund JA, et al. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis 2015;61:192–202.

153. Akturk H, Sik G, Salman N, et al. Atypical presentation of human bocavirus: severe respiratory tract infection complicated with encephalopathy. J Med Virol 2015;87:1831–8.

154. Kim JS, Lim CS, Kim YK, Lee KN, Lee CK. Human bocavirus in patients with respiratory tract infection. Korean J Lab Med 2011;31:179–84.

155. Haidopoulou K, Goutaki M, Damianidou L, Eboriadou M, Antoniadis A, Papa A. Human bocavirus infections in hospitalized Greek children. Arch Med Sci 2010;6:100–3.

156. Beder LB, Hotomi M, Ogami M, et al. Clinical and microbiological impact of human bocavirus on children with acute otitis media. Eur J Pediatr 2009;168:1365–72.

157. Deng X, Li Y, Qiu J. Human bocavirus 1 infects commercially available primary human airway epithelium cultures productively. J Virol Methods 2014;195:112–9.

158. Lehtoranta L, Soderlund-Venermo M, Nokso-Koivisto J, et al. Human bocavirus in the nasopharynx of otitis-prone children. Int J Pediatr Otorhinolaryngol 2012;76:206–11.

159. Don M, Soderlund-Venermo M, Valent F, et al. Serologically verified human bocavirus pneumonia in children. Pediatr Pulmonol 2010;45:120–6.

160. Martin ET, Fairchok MP, Kuypers J, et al. Frequent and prolonged shedding of bocavirus in young children attending daycare. J Infect Dis 2010;201:1625–32.

161. Storch GA. Plethora of respiratory viruses and respiratory virus data. Clin Infect Dis 2015;61(8):1225–7.

162. Babady NE, Mead P, Stiles J, et al. Comparison of the Luminex xTAG RVP fast assay and the Idaho Technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital. J Clin Microbiol 2012;50:2282–8.

163. Nascimento-Carvalho CM, Cardoso MR, Meriluoto M, et al. Human bocavirus infection diagnosed serologically among children admitted to hospital with community-acquired pneumonia in a tropical region. J Med Virol 2012;84:253–8.

164. Don M, Soderlund-Venermo M, Hedman K, Ruuskanen O, Allander T, Korppi M. Don’t forget serum in the diagnosis of human bocavirus infection. J Infect Dis 2011;203:1031–2 author reply 2-3.

165. Hedman L, Soderlund-Venermo M, Jartti T, Ruuskanen O, Hedman K. Dating of human bocavirus infection with protein-denaturing IgG-avidity assays-Secondary immune activations are ubiquitous in immunocompetent adults. J Clin Virol 2010;48:44–8.

166. Don M, Soderlund-Venermo M, Valent F, et al. Serologically verified human bocavirus pneumonia in children. Pediatr Pulmonol 2010;45:120–6.

167. Kantola K, Hedman L, Allander T, et al. Serodiagnosis of human bocavirus infection. Clin Infect Dis 2008;46:540–6.

168. Christensen A, Dollner H, Skanke LH, Krokstad S, Moe N, Nordbo SA. Detection of spliced mRNA from human bocavirus 1 in clinical samples from children with respiratory tract infections. Emerg Infect Dis 2013;19:574–80.