Effectiveness of direct-acting antivirals in maintenance hemodialysis patients complicated with chronic hepatitis C

Chunhong Li, MS\(^a,b\), Jing Liang, MS\(^a,b\), Huiling Xiang, MS\(^b\), Haiyan Chen, MD\(^c\), Jie Tian, MS\(^b,*\)

Abstract

Hepatitis C virus (HCV) infection is very common in maintenance hemodialysis patients, causing high morbidity and mortality. This study aimed to evaluate the effectiveness and adverse events of direct-acting antivirals (DAAs) in maintenance hemodialysis patients complicated with chronic hepatitis C in real-world clinical practice.

In this retrospective observational study, hemodialysis patients with chronic hepatitis C infection in the Third Central Hospital of Tianjin outpatient were screened, and appropriate treatment plans were selected accordingly. Totally 25 patients diagnosed with chronic hepatitis C and treated with DAAs for 12 weeks or 24 weeks were included. The sustained virologic response (SVR) rate obtained 12 weeks post-treatment (SVR12) was evaluated. Laboratory indexes and adverse reactions during the treatment process were also assessed.

A total of 25 cases met the eligibility criteria and provided informed consent. Except for 1 patient who discontinued the treatment due to gastrointestinal bleeding, the remaining 24 cases completed the treatment cycle with 100% rapid virologic response (RVR) and 100% SVR12, with no serious adverse reactions recorded.

Maintenance hemodialysis patients complicated with chronic hepatitis C in Chinese real-world setting tolerate DAAs very well, with a viral response rate reaching 100%.

Abbreviations: AFP = alfa-fetoprotein, ALT = alanine aminotransferase, AST = aspartate transaminase, CKD = Chronic kidney disease, DAAs = direct-acting antivirals, DOPPS = Dialysis Outcomes and Practice Patterns Study, ELISA = enzyme-linked immunosorbent assay, HCV = Hepatitis C virus, KDIGO = Kidney Disease: Improving Global Outcomes, PCR = polymerase chain reaction, RBV = ribavirin, RVR = rapid virologic response.

Keywords: chronic hepatitis C, direct-acting antivirals, hemodialysis

1. Introduction

Hepatitis C virus (HCV) infection represents a major cause of chronic liver disorders worldwide, and affects nearly 3% of the world population.\(^{[1,2]}\) The vast majority of patients are infected with HCV by blood transmission.\(^{[3]}\) Chronic kidney disease (CKD) patients are prone to HCV infection due to treatment methods such as hemodialysis and kidney transplantation.\(^{[4]}\)

Hepatitis C virus infection is very common in maintenance hemodialysis patients, causing high morbidity and mortality. This study aimed to evaluate the effectiveness and adverse events of direct-acting antivirals (DAAs) in maintenance hemodialysis patients complicated with chronic hepatitis C in real-world clinical practice.

In this retrospective observational study, hemodialysis patients with chronic hepatitis C infection in the Third Central Hospital of Tianjin outpatient were screened, and appropriate treatment plans were selected accordingly. Totally 25 patients diagnosed with chronic hepatitis C and treated with DAAs for 12 weeks or 24 weeks were included. The sustained virologic response (SVR) rate obtained 12 weeks post-treatment (SVR12) was evaluated. Laboratory indexes and adverse reactions during the treatment process were also assessed.

A total of 25 cases met the eligibility criteria and provided informed consent. Except for 1 patient who discontinued the treatment due to gastrointestinal bleeding, the remaining 24 cases completed the treatment cycle with 100% rapid virologic response (RVR) and 100% SVR12, with no serious adverse reactions recorded.

Maintenance hemodialysis patients complicated with chronic hepatitis C in Chinese real-world setting tolerate DAAs very well, with a viral response rate reaching 100%.

Abbreviations: AFP = alfa-fetoprotein, ALT = alanine aminotransferase, AST = aspartate transaminase, CKD = Chronic kidney disease, DAAs = direct-acting antivirals, DOPPS = Dialysis Outcomes and Practice Patterns Study, ELISA = enzyme-linked immunosorbent assay, HCV = Hepatitis C virus, KDIGO = Kidney Disease: Improving Global Outcomes, PCR = polymerase chain reaction, RBV = ribavirin, RVR = rapid virologic response.

Keywords: chronic hepatitis C, direct-acting antivirals, hemodialysis

The Dialysis Outcomes and Practice Patterns Study (DOPPS) included 8615 hemodialysis patients in 308 hemodialysis centers, and found an average of 13.5% cases complicated with HCV infection.\(^{[3]}\) In this trial, the incidence rates differed by hemodialysis center and country, which might be related to the centers level of care and the country’s economic and healthcare situations.\(^{[5]}\) Our previous survey showed an HCV infection rate in maintenance hemodialysis patients of 5.26%, which was significantly higher than that of the general population; in addition, HCV was most prevalent in individuals with bloodborne diseases.\(^{[6]}\)

The above findings demonstrate that individuals undergoing hemodialysis are vulnerable to hepatitis C infection. This is compounded by the fact that hemodialysis patients are generally susceptible to infection.\(^{[7]}\) Therefore, nephrologists and nurses specialized in hemodialysis should pay increasing attention to such patients, which would improve their welfare. Previously, treatment of individuals infected with HCV was limited to interferon- and ribavirin (RBV)-containing regimens, with low cure rates and serious and unpleasant side effects.\(^{[8]}\) Due to high efficiency, low drug resistance and high safety, direct-acting antivirals (DAAs) have become the first-line treatment option for chronic HCV as recommended by international guidelines.\(^{[9,10]}\) Currently, it was shown that DAAs demonstrate good safety and efficacy in patients with renal impairment infected by HCV.\(^{[11,12]}\) However, reports assessing the application of DAAs in hemodialysis patients complicated with hepatitis C in Chinese real-world setting are scare. Therefore, the present study aimed to assess the effectiveness and adverse event of DAAs in maintenance hemodialysis patients complicated with chronic hepatitis C in China.
2. Patients and methods

2.1. Patients

Patients who visited the outpatient department of hepatology of our hospital for “chronic hepatitis C” from June 2018 to February 2020 for antiviral treatment were screened, and those with hemodialysis were enrolled. Chronic hepatitis C virus infection was defined as detectable hepatitis C virus antibodies and quantifiable serum HCV RNA by using the COBAS TaqMan HCV Kit (Mannheim, Germany, detection limit [LLOD]: 15 IU/ml), which lasted for more than 6 months. All the enrolled patients underwent HCV antibody and HCV RNA PCR tests, and further genotyping was performed. HCV antibody was detected by enzyme-linked immunosorbent assay (ELISA).

Inclusion criteria were:
1. hepatitis C diagnosis based on current guidelines; and quantification of HCV RNA by PCR,
2. current hemodialysis administration.

Exclusion criteria were:
1. decompensated cirrhosis,
2. serious heart disease,
3. hepatitis B,
4. HIV and hepatitis D infection was detected by enzyme-linked immunosorbent assay (ELISA).
5. malignant tumors.

This observational study was approved by the Ethics Committee of the Third Central Hospital of Tianjin. Informed consent was obtained from all patients prior to study initiation.

2.2. Treatment plan and follow-up

Before treatment, all the patients included had undergone blood biochemistry, blood routine, coagulation function examination, alfa-fetoprotein (AFP) test, abdominal B ultrasound and liver stiffness examination. Blood samples from all patients were collected before hemodialysis on the same day. The instantaneous elastic imaging technique was performed for liver stiffness examination. Blood samples from all patients were collected before hemodialysis on the same day. The instantaneous elastic imaging technique was performed for liver stiffness examination, and cirrhosis was considered with liver stiffness ≥12.5 kPa. Appropriate treatment plans were selected according to genotyping results, cirrhosis presence or not and economic factors, following AASLD guidelines.

2.3. Study outcomes

Virologic response, defined as undetectable HCV RNA, was assessed at Week 4 of treatment (rapid viral response [RVR]), at the end of treatment (EOT) and at week 12 (SVR) post-treatment. The primary efficacy endpoint was SVR12. Patients whose course of treatment had not yet reached 12 weeks after discontinuation were assessed as achieving SVR at EOT. Safety was primarily assessed by the proportion of patients who discontinued the treatment because of adverse drug reactions; in addition, patient safety over the course of treatment (drug-related or suspected adverse reactions reported by patients or their families) was assessed.

2.4. Data collection

Demography data, including gender, age, HCV RNA, HCV genotype, and comorbidities, were collected from medical records or interviews (patients and/or family members).

2.5. Statistical methods

The SPSS 25.0 software (SPSS, USA) was used for statistical analysis. Baseline and endpoint data were summarized by descriptive statistics. The t-test was performed for comparing changes in laboratory indicators. \(P < 0.05 \) was considered statistically significant.

3. Results

3.1. Baseline characteristics

There were 25 maintenance hemodialysis patients complicated with hepatitis C, including 15 males and 10 females, with an average age of 50.54 ± 11.27 years. Among them, 22 and 1 cases were genotypes 1b and 2a, respectively, and 2 were of unclear genotypes. Average viral load in HCV RNA positive patients \((\text{log}_{10} \text{HCV RNA}) = 5.53 ± 0.61 (4.36–6.91)\) (Table 1).

Three patients with a history of kidney transplantation had lost function requiring dialysis, and were under anti-rejection drugs. In addition, 15 cases were concurrently complicated with hypertension, diabetes and cardiovascular disease. Only 2 patients had previously received interferon plus ribavirin treatment, but discontinued the medication because of significant side effects, with HCV RNA not becoming negative during the treatment. The remaining 23 patients had received no previous treatment against HCV. (Table 1).

3.2. Treatment plans

The initial treatment plan in the genotype 2a infected patient was Sofosbuvir 400 mg once daily/Ribavirin 400 mg twice daily; the patient showed reduced platelet levels in the fourth week of treatment, and was switched to sofosbuvir 400 mg once daily/daclatasvir 60 mg once daily for the remaining 8 weeks. The initial treatment plan in the 2 cases with unclear genotypes was Sofosbuvir 400 mg once daily/Velpatasvir 100 mg once daily for 12 weeks. Treatment plans in the remaining 22 genotype 1b infected patients were:

1. daclatasvir 60 mg once daily/asunaprevir 100 mg twice daily for 24 weeks (3 patients);
2. sofosbuvir 400 mg once daily/daclatasvir 60 mg once daily for 12 weeks (3 patients);
3. elbasvir 50 mg once daily/grazoprevir 100 mg once daily for 12 weeks (16 patients).

Table 1
Basic features of the enrolled patients.
Variables
Sex
Male
Female
Age
HCV genotype
1b
2a
unclear genotyping
Average viral load of HCV-RNA (log_{10} IU/ml)
Treatment history of hepatitis C
History of renal transplantation
Cirrhosis
complicated with hypertension / diabetes / cardiovascular disease
Table 2
Negative conversion of HCV RNA in patients who completed the treatment.

Treatment plan	Number of cases	Negative conversion rate		
	RVR	EOT	SVR	
SOF+DCV	4	4 (100%)	4 (100%)	4 (100%)
DDI+ASV	3	3 (100%)	3 (100%)	3 (100%)
EBR+GZR	15	15 (100%)	15 (100%)	15 (100%)
SOF+VEL	2	2 (100%)	2 (100%)	2 (100%)
Total	24	24 (100%)	24 (100%)	24 (100%)

ASV = asunaprevir, DCV = daclatasvir, EBR = elbasvir, GZR = grazoprevir, SOF = sofosbuvir, VEL = velpatasvir.

3.3. Treatment effects

Of all cases, 1 patient administered elbasvir/grazoprevir discontinued the medication because of gastrointestinal bleeding at week 9, and another treated with sofosbuvir + ribavirin was switched to sofosbuvir + daclatasvir for the last 8 weeks because of thrombocytopenia at week 4. The remaining 23 patients completed the treatment cycle as planned. HCV RNA was re-tested at 4 weeks during the treatment and 12 weeks post-treatment, respectively, and the levels were <15 IU/mL in all patients (Table 2).

3.4. Safety

Adverse reactions from treatment initiation to end were recorded, and their possible associations with the drugs were evaluated. During the treatment, 3 patients had asthenia, 2 had nausea, and 1 showed skin pruritus, which were mainly mild or moderate and well-tolerated; the planned treatment was completely applied. Only 1 patient with a history of gastric ulcer had gastrointestinal bleeding during the treatment period. Although the relationship between recurrent gastrointestinal bleeding and direct antiviral drugs could not be determined, antiviral treatment was stopped for safety reasons in this case. There were no deaths during the treatment. The data are summarized in Table 3.

Changes of laboratory examination indexes during treatment and follow-up were as follows. Transaminase (aspartate transaminase [AST] and alanine aminotransferase [ALT]) levels were increased in 2 patients (2 times higher than the upper limit of respective normal values). Hemoglobin fluctuation occurred in 3 patients, indicating the possibility of renal anemia, but showing a recovery trend after iron supplementation and erythropoietin dose increase. During the treatment, no significant platelet decrease was observed (Table 4).

Table 4
Changes of laboratory indexes during treatment.

Index	Baseline	Week 4	EOT	P1	P1	P2	P2
ALT	16.12±5.78	12.46±5.71	13.00±6.57	2.020	.053	−0.630	.535
AST	14.21±6.02	11.21±5.64	12.33±6.35	3.050	.006	−0.876	.570
HGB	117.67±20.12	113.63±19.52	112.17±17.74	1.728	.097	0.754	.459
PLT	162.46±10.58	160.46±8.83	165.21±10.44	0.235	.816	−0.926	.363

ALT = alanine aminotransferase, AST = aspartate transaminase. P1 and P2: baseline levels vs Week 4, P1 and P2: Week 4 vs week 12.

4. Discussion

HCV infection is very common in maintenance hemodialysis patients, causing high morbidity and mortality, and DAAs have demonstrated efficacy and safety in these patients. However, to the best of our knowledge, there is still a lack of reports assessing DAAs in Chinese Patients. Thus, this study aimed to evaluate the effectiveness and adverse events of DAAs in maintenance hemodialysis patients complicated with chronic hepatitis C in China. We found that DAAs could be successfully applied to treat maintenance hemodialysis patients complicated with chronic hepatitis C, with an impressive viral response rate of 100% (both RVR and SVR) and no overt adverse reactions.

Chronic hepatitis C represents a common bloodborne disease, and the HCV infection rate is higher in hemodialysis patients compared with the general patient population due to factors such as blood transfusion and hemodialysis treatment. As an additional source of infection, HCV in hemodialysis patients not only further increases the exposure risk of other patients and medical workers, but also causes kidney deterioration and liver diseases in the patients themselves, significantly increasing all-cause mortality. Indeed, liver disease-related mortality, cardiovascular mortality and infection-related mortality are all significantly increased in hemodialysis patients complicated with HCV infection. Therefore, antiviral treatment must be timely administered to hemodialysis patients with HCV infection. The Clinical Guidelines for Hepatitis C in CKD Patients published by Kidney Disease: Improving Global Outcomes (KIDIGO) in 2018 proposed that new infections should be detected and treated as early as possible. Previously, the serious side effects of interferon-based anti-HCV treatment has limited its application in end-Stage Renal Disease (ESRD) patients. DAAs are effective in hemodialysis patients with chronic hepatitis C. The availability of safe and efficient DAAs provides novel opportunities, including the transplantation of kidneys from HCV-infected kidney donors, which could significantly affect patient care with favorable long-term outcomes. However, related studies carried out in Chinese patients are rare.

It was shown that the most common HCV genotype in China is type 1, followed by types 2, 3 and 6; in terms of subtypes, genotype 1b is most common in Chinese individuals, accounting for 56.8% of all HCV infections. As shown above, genotype 1b accounted for 88% of all enrolled patients, which was overly

Table 3
Adverse events occurring during treatment of patients treated with DAAs.

Adverse events	Patients, n (%)	N = 25
Interruption during treatment	1 (4.0)	
Any adverse event	6 (24.0)	
Nausea	2 (8.0)	
Itchy skin	1 (4.0)	
Asthenia	3 (12.0)	
Serious adverse events	0	
Death	0	
higher than the above figure, but confirming its predominance. The discrepancy may be due to the small sample of this trial.

DAA s directly act on the protease and RNA polymerase of HCV as well as other important mediators of viral replication, effectively inhibiting viral replication. The Guidelines for the prevention and treatment of hepatitis C (2015 version) pointed out that the first therapeutic choice for hepatitis C patients with renal damage should be interferon-free oral antiviral drugs. In the present study, one patient was initially treated with ribavirin-containing antiviral regimen, but thrombocytopenia occurred during the treatment, which was switched to a DAA regimen, and SVR was achieved. These findings support the application of DAAs in Chinese hemodialysis patients complicated with HCV. Due to the limited sample size, further studies are warranted to confirm the present findings.

Author contributions

References

[1] Manns MP, Buti M, Gane E, et al. Hepatitis C virus infection. Nat Rev Dis Primers 2017;3:17006.

[2] Moosavy SH, Davoodian P, Nazareznahad MA, et al. Epidemiology, transmission, diagnosis, and outcome of Hepatitis C virus infection. Electron Physician 2017;9:5646–56.

[3] Pozzetto B, Memmi M, Garraud O, et al. Health care-associated hepatitis C virus infection. World J Gastroenterol 2014;20:7265–78.

[4] Corson M, Moch A, Saab S. Hepatitis C virus treatment in patients with chronic kidney disease and in kidney transplant recipients. Gastroenterol Hepatol (N Y) 2018;14:280–5.

[5] Fissell RB, Bragg-Gresham JL, Woods JD, et al. Patterns of hepatitis C prevalence and seroconversion in hemodialysis units from three continents: the DOPPS. Kidney Int 2004;65:2335–42.

[6] Wong LH, Wei F, Jiang EL, et al. Investigation on the status of blood transmissible diseases in hemodialysis patients in Tianjin. Chin J Nephrol 2016;11:857–8.

[7] Collier S, Davenport A. Reducing the risk of infection in end-stage kidney failure patients treated by dialysis. Nephrol Dial Transplant 2014;29:2138–41.

[8] Burstow NJ, Mohamed Z, Gomaa AI, et al. Hepatitis C treatment: where are we now? Int J Gen Med 2017;10:39–52.

[9] Khaliq S, Raza SM. Current status of direct acting antiviral agents against hepatitis C virus infection in Pakistan. Medica (Kaunas) 2018;54:80.

[10] Frisk P, Aggefors K, Cars T, et al. Introduction of the second-generation direct-acting antivirals (DAAs) in chronic hepatitis C: a register-based study in Sweden. Eur J Clin Pharmacol 2018;74:971–8.

[11] Toyota H, Kumeida T, Tada T, et al. Safety and efficacy of dual direct-acting antiviral therapy (daclatasvir and asunaprevir) for chronic hepatitis C virus genotypes 1 infection in patients on hemodialysis. J Gastroenterol 2016;51:741–7.

[12] Ilescu EL, Mucen-Stanciu A, Toma L. Safety and efficacy of direct-acting antivirals for chronic hepatitis C in patients with renal disease. BMC Nephrol 2020;21:21.

[13] Easterbrook PJ, Roberts T, Sands A, et al. Diagnosis of viral hepatitis. Curr Opin HIV AIDS 2017;12:302–14.

[14] Cardoso AC, Carvalho-Filho RJ, Stern C, et al. Direct comparison of diagnostic performance of transient elastography in patients with chronic hepatitis B and chronic hepatitis C. Liver Int 2012;32:612–21.

[15] Koh C, Zhao X, Samala N, et al. AASLD clinical practice guidelines: a critical review of scientific evidence and evolving recommendations. Hepatology 2013;58:2142–52.

[16] Iwasa Y, Otsuji S, Sugi O, et al. Patterns in the prevalence of hepatitis C virus infection at the start of hemodialysis in Japan. Clin Exp Nephrol 2008;12:53–7.

[17] Bergman S, Accort N, Turner A, et al. Hepatitis C infection is acquired in hemodialysis patients. Current evidence and evolving recommendations. Curr Opin HIV AIDS 2012;52:2142–52.

[18] Iwasa Y, Otsuji S, Sugi O, et al. Patterns in the prevalence of hepatitis C virus infection at the start of hemodialysis in Japan. Clin Exp Nephrol 2008;12:53–7.

[19] Bergman S, Accort N, Turner A, et al. Hepatitis C infection is acquired pre-ESRD. Am J Kidney Dis 2005;45:684–9.

[20] Fabrizi F, Dixit V, Messa P. Impact of hepatitis C on survival in dialysis patients: a link with cardiovascular mortality. J Viral Hepat 2012;19:601–7.

[21] EASL recommendations on treatment of hepatitis C 2016. J Hepatol 2017;66:153–94.
[20] Gordon CE, Balk EM, Francis JM. Summary of the 2018 Kidney Disease Improving Global Outcomes (KDIGO): Guideline on hepatitis C in chronic kidney disease. Semin Dial 2019;32:187–93.
[21] Kikuchi K. Treatment of hepatitis C virus infection in dialysis patients. Contrib Nephrol 2018;196:119–22.
[22] Roth D, Bloom RD, Molnar MZ, et al. KDOQI US Commentary on the 2018 KDIGO clinical practice guideline for the prevention, diagnosis, evaluation, and treatment of hepatitis C. Am J Kidney Dis 2020;75:665–83.
[23] Rao H, Wei L, Lopez-Talavera JC, et al. Distribution and clinical correlates of viral and host genotypes in Chinese patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 2014;29:545–53.
[24] Hepatology CSo, Association IDBoCM Guidelines for the prevention and treatment of hepatitis C (2015 Version). Infect Dis Inform 2016;29:1–9.
[25] Bhamidimarri KR, Martin P. Finally, safe and effective treatment options for hepatitis C in hemodialysis patients. J Hepatol 2016;65:7–10.
[26] Kawakami Y, Inamura M, Ikeda H, et al. Pharmacokinetics, efficacy and safety of daclatasvir plus asunaprevir in dialysis patients with chronic hepatitis C: pilot study. J Viral Hepat 2016;23:830–6.
[27] Suda G, Hasebe C, Abe M, et al. Safety and efficacy of glecaprevir and pibrentasvir in Japanese hemodialysis patients with genotype 2 hepatitis C virus infection. J Gastroenterol 2019;54:641–9.
[28] Carrier P, Essig M, Debetze-Gratien M, et al. Anti-hepatitis C virus drugs and kidney. World J Hepatol 2016;8:1343–53.
[29] Saxena V, Korashy FM, Sise ME, et al. Safety and efficacy of sofosbuvir-containing regimens in hepatitis C-infected patients with impaired renal function. Liver Int 2016;36:807–16.
[30] Charlton M, Gane E, Manns MP, et al. Sofosbuvir and ribavirin for treatment of compensated recurrent hepatitis C virus infection after liver transplantation. Gastroenterology 2015;148:108–17.
[31] Hepatology CSo, Association IDBoCM. Guidelines for the Prevention and Treatment of Hepatitis C (2015 Version). Chin J Hepatol 2019;27:962–79.