The rs2619566, rs10260404, and rs79609816 Polymorphisms Are Associated With Sporadic Amyotrophic Lateral Sclerosis in Individuals of Han Ancestry From Mainland China

Jie Zhang¹, Weiwen Qiu², Fan Hu², Xiong Zhang³, Youqing Deng⁴, Hongbing Nie²*, and Renshi Xu²*

¹ Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China, ² Department of Neurology, The Affiliated People’s Hospital of Nanchang University, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, China, ³ Department of Neurology, Maoming People’s Hospital, Maoming, China, ⁴ Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang, China

The pathogenesis of sporadic amyotrophic lateral sclerosis (sALS) remains unknown; however, recent research suggests that genetic factors may play an important role. This study aimed at investigating possible genetic risk factors for the pathogenesis of sALS. In our previous study, we conducted a genome-wide association study (GWAS) in 250 sALS patients and 250 control participants of Han ancestry from mainland China (HACM) and retrospectively analyzed the previously reported candidate loci related with sALS including our GWAS investigated results. In this study, twenty-seven candidate loci that were most likely associated with sALS were selected for further analysis in an independent case/control population of 239 sALS patients and 261 control subjects of HACM ethnicity using sequenom massARRAY methodology and DNA sequencing. We discovered that the polymorphism rs2619566 located within the contactin-4 (CNTN4) gene, rs10260404 in the dipeptidyl-peptidase 6 (DPP6) gene, and rs79609816 in the inositol polyphosphate-5-phosphatase B (INPP5B) gene were strongly associated with sALS in subjects of HACM ethnicity. Subjects harboring the minor C allele of rs2619566 and the minor T allele of rs79609816 exhibited an increased risk for sALS development, while carriers of the minor C allele of rs10260404 showed a decreased risk of sALS development compared to the subjects of other genotypes. The polymorphisms of rs2619566, rs10260404, and rs79609816 may change or affect the splicing, transcription, and translation of CNTN4, DPP6, and INPP5B genes and may play roles in the pathogenesis of sALS.

Keywords: genetics, single nucleotide polymorphism, pathogenesis, amyotrophic lateral sclerosis, Chinese Han ancestry population

Abbreviations: sALS, Sporadic Amyotrophic Lateral Sclerosis; HACM, Han Ancestry of Chinese Mainland; CNS, Central Nervous System; fALS, Familial ALS; CNTN4, Contactin 4; DPP6, Dipeptidyl-Peptidase 6; INPP5B, Inositol Polyphosphate-5-Phosphatases B/2, SNPs, Single Nucleotide Polymorphisms; GWAS, Genome-Wide Association Study; PCR, Polymerase Chain Reaction; SAP, Shrimp Alkaline Phosphatase; MAF, Minor Allele Frequency; OR, Odds Ratios; CI, Confidence Intervals.
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is characterized by the progressive neuronal loss and degeneration of upper motor neurons and lower motor neurons. The death of motor neurons causes a loss of the ability of central nervous system (CNS) to control voluntary muscle movements, contributing to the development of progressive atrophy of voluntary muscles, eventually resulting in death of the patient due to respiratory failure in the later stages of the disease. Most ALS patients succumb to the disease within 3–5 years after disease onset. Although the patient may or may not present with a family history of the disease, ALS is divided into familial ALS (fALS) and sporadic ALS (sALS) (1). Several genes and/or loci associated with risk of fALS development have been identified in the recent years. Although certain genetic loci have been associated with sALS risk, the exact genetic mechanism for sALS has not been elucidated, and sALS is hypothesized to possess a more complex pathogenesis. The reasons for progressive and selective motor neuron death occurring in sALS remain elusive. The pathogenesis of sALS remains an enigma (Ludolph et al., 2012).

The recently acknowledged pathogenesis of sALS is mainly focused on environmental and genetic factors. Potential environmental factors predisposing to sALS development include viral and bacterial infections (Sher, 2017; Yu and Pamphlett, 2017; Xue et al., 2018), organophosphate, organochlorine (Su et al., 2016; Riancho et al., 2018; Lian et al., 2019), and heavy metal exposure (Callaghan et al., 2011; Garzillo et al., 2015; Peters et al., 2017; Riancho et al., 2018), intense physical activity (Tsitikanou et al., 2019), smoking, electromagnetic fields, electric shocks, cyanotoxins, and military service (Vinceti et al., 2017; Swash and Eisen, 2020). However, none of the known environmental risk factors has been conclusively determined, and no firm conclusions have been deduced thus far (Longinetti and Fang, 2019). If environmental factors are truly a causal risk factor in sALS development, the genetic susceptibility would be expected to increase the risk of sALS development due to exposure to environmental agents (Nowicka et al., 2019). Therefore, genetic factors have garnered considerable attention in the study of sALS pathogenesis since the discovery of SOD1 mutations in sALS. During the last decade, the evolution of molecular genetic technologies has rapidly advanced our knowledge concerning the genetic pathogenesis of sALS. The development of fALS has been attributed to mutations in at least 24 different genes. Certain mutations responsible for fALS development have been identified also in patients with sALS (Chia et al., 2018; Mathis et al., 2019). Recent large-scale parallel sequencing technologies have facilitated disease-gene discovery, rare variants in more than 50 genes have now been identified to be associated with sALS. Thus, sALS has been considered a complex gene-related disease (Van Doormaal et al., 2017).

Genetic testing may aid the exploration of mutations in ALS-related genes. However, the loci that are most likely to be affected in individual patients with sALS cannot be easily predicted (Yousefian-Jazi et al., 2020). Although a series of possible ALS-related genes and mutant loci have been successively reported in the literature, currently there is no single gene or mutant locus that can completely explain the pathogenesis of ALS (Morgan and Orrell, 2016; Yousefian-Jazi et al., 2020). Therefore, it has been suggested that the sALS pathogenesis is associated with multiple genes and/or mutant loci. To this end, the investigation of additional ALS-related genes and/or mutant loci is extremely important.

In this study, we selected the 27 loci that were most likely to be associated with sALS development based on the results of the present study including our GWAS study of 250 sALS and 250 controls as well as other related previous studies (Van Es et al., 2007, 2008; Laaksovirta et al., 2010; Fogh et al., 2014; Van Doormaal et al., 2014; Xie et al., 2014), and we further analyzed them in an independent cohort of the 239 individuals with sALS and the 261 controls of Han ancestry from mainland China (HACM). We discovered that the polymorphism of the rs2619566 in contactin 4 (CNTN4), the rs10260404 in dipeptidyl-peptidase 6 (DPP6), and the rs79609816 in inositol polyphosphate-5-phosphatases B (INPP5B) were markedly associated with sALS development in the subjects of HACM ethnicity. These results provide evidence to a certain extent for the further elucidation of the pathogenesis of sALS.

MATERIALS AND METHODS

Subjects

The sALS dataset was developed based on the data obtained by combining the participants from two affiliated university hospitals, namely The First Affiliated Hospital of Nanchang University and the Affiliated Guangdong General Hospital of Nanfang Medical University. All sALS and control subjects were recruited from HACM in the southern regions of China (Jiangxi and Guangdong Province). A signed informed consent was obtained from all participants in the study. sALS diagnosis was performed according to the El Escorial criteria of the World Federation of Neurology (Brooks et al., 2000). All subjects were subjected to the same evaluation, which included a medical history, a Mini Mental State Exam, a review of the family history of ALS, related disorders in first-degree relatives, toxicant exposure associated with sALS development, biochemical tests, and brain and spinal magnetic resonance imaging to exclude the presence of other neurological diseases that might mimic the clinical presentation of ALS (e.g., tumors, demyelination disorders, hydrocephalus, cervical myelopathy, and others).

The studied populations were composed of a total of 489 sALS cases and 511 controls, of which 250 sALS cases and 250 controls were included in the genome-wide association study (GWAS) analysis (Xie et al., 2014), and 239 sALS cases and 261 controls were included in the polymorphism analysis of the 27 most likely candidate loci for sALS development. The male/female ratio was 143/96 for the sALS cases, and was 148/113 for the controls. The mean (range) age was 47 (45–65) years for the sALS cases, and was 65.7 (65–75) years for the controls. Gender was a significant variable because sALS seemed to affect more men than women, and our data exhibited a significant gender disparity. The control subjects were older than the patients, and this aspect was included in the study design to minimize the chance that the control subjects were too young to have developed the
disease. Nevertheless, we controlled for age at enrollment to avoid confounding by age-related factors, and the early- and late-onset sALS patients were excluded. The entire clinical disease course spanned across 3–5 years, which precluded the development of rapid and slow progressive sALS, and the cases with atypical sALS clinical manifestations were removed. Thus, sALS patients with typical age, clinical course, and phenotype were enrolled in this study. Based on the current studied information, the genetic pathogenesis about sALS should be involved in some complex and multiple genes and mutations, isn’t sole gene or mutation to contribute to sALS. Therefore, we didn’t perform the genetic testing of the known ALS-related genes to exclude whether or not the presently known genes and mutations existed in our sALS patients and control subjects.

Selection of Single Nucleotide Polymorphisms (SNPs)

In our previous pooling GWAS performed by inclusion of 250 sALS patients and 250 control subjects from HACM, we revealed that the 7 loci, namely rs79609816 and rs62172104 in INPP5B, rs9825420 in ITGA9, rs2685056 in ALCAM, rs7117082 in OPCML, rs9329300 in PKP, and rs11061269 in GPR133, were strongly associated with sALS development in subjects of the HACM origin (the significance threshold was \(p < 5.8 \times 10^{-8} \)), and these loci were not reported previously (Xie et al., 2014). Moreover, we retrospectively analyzed the previously reported candidate loci related with pathogenesis of sALS, and found that 20 SNPs, namely rs62484656 in CSMD1, rs17722673 in HECW1, rs882467 in DPP6, rs3812208 in ATXN1, rs28461450 in LIPC, rs79591932 in RBMS1, rs9907321 in SCL39A11, rs4964009 in ITPR2, rs34517760 in SOD1, rs13065219 in CNTN4, rs10260404 in DPP6, rs697739 in ATXN1, rs3825776 in LIPC, rs10192369 in RBMS1, rs8066857 in SCL39A11, rs2306677 in ITTPR, rs13048019 in SOD1, rs2619566 in CNTN4, rs16856202 in DISC1, and rs34517613 in KRT18P55, were susceptibility loci for sALS, which were strongly associated with sALS development in the previous studies (Van Es et al., 2007, 2008; Laaksovirta et al., 2010; Fogh et al., 2014; Van Doormaal et al., 2014; Xie et al., 2014). Therefore, in this study, 27 SNPs were selected to further ascertain their association with the development of sALS (Table 1).

SNP Genotyping by Using the Sequenom MassARRAY Technology

Genotyping was performed using the sequenom MassARRAY platform (Sequenom, San Diego, California, United States) according to the manufacturer’s instructions. The selected 27 SNPs were genotyped as part of a sequenom plex, which enabled high-throughput multiplexing of the assays into a single well. For quality control, 5% of the samples were subjected to the repeated genotyping, and the results showed 100% consistency.

Main Apparatus and Reagent

Amplification instrument: ABI GeneAmp® 9700 384 dual, mechanical arm, massARRAY nanodispenser RS1000. Analyzer: massARRAY compact system. Reagents: The Complete genotyping reagent kit for massARRAY® compact 384.

Polymerase Chain Reaction (PCR) Using 384-Well Plates

A PCR cocktail solution was prepared by combining 1.8 µL ddH₂O, 0.5 µL 10 × PCR Buffer, 0.1 µL dNTPs, 0.2 µL PCR enzyme (5 U/µL), 1 µL primer mix (0.5 µM), 0.4 µL 25 mM MgCl₂, and 1 µL DNA template, to obtain a total volume of 5 µL. One-µL volume of the appropriate genomic DNA (5–10 ng/µL) was added into each well of a 384-well microtiter plate (Marsh Biomedical Products, Inc. #SP 0401 Sequenom). Four-µL volume of the PCR cocktail solution was dispensed into each well of the 384-well microtiter plate, followed by centrifugation of the microtiter plate at 1,000 RPM for 1 min. Subsequently, contents in the microtiter plate were gently mixed and were re- centrifuged before conduction of PCR. PCR was conducted using the 384-well microtiter plate as per the following amplification conditions: 94°C denaturation for 20 s, 56°C annealing for 30 s, 72°C extension for 1 min, for a total of 45 cycles. The primers described in Table 2 were used for conducting the PCR reactions for this study. This general PCR protocol using a 384-well microtiter plate was applied to the different PCR amplifications performed in this study.

Preparation of Shrimp Alkaline Phosphatase (SAP) Enzyme Solution and Conduction of the SAP Reaction of PCR Products

The SAP enzyme solution was prepared in a 1.5-mL tube as by combining 1.53 µL RNase-free ddH₂O, 0.3 µL SAP enzyme, and 0.17 µL SAP buffer, in a total volume of 2 µL. The 1.5-mL tube containing the SAP enzyme solution was subjected to vortexing for 5 s, and was then subjected to centrifugation for 10 s at 5,000 RPM. Subsequently, 2 µL of the SAP enzyme solution was added to each well in the 384-well sample microtiter plate containing the PCR products, and the plate was sealed using a plate-sealing film. The 384-well microtiter plate was then subjected to centrifugation at 1,000 RPM for 1 min and incubated at 37°C for 40 min and at 85°C for 5 min.

Preparation of High Plex iPLEX Gold Reaction Cocktail (Same Multiplexed Assays Performed for Different DNA Samples) and Conduction of the High Plex iPLEX Gold Reaction

The high plex iPLEX gold reaction cocktail solution was prepared in a 1.5-mL tube by combining 0.619 µL RNase-free ddH₂O, 0.2 µL iPLEX Buffer Plus, 0.2 µL iPLEX termination mix, 0.94 µL iPLEX extend primer mix, and 0.041 µL iPLEX enzyme. A 384-well sample microtiter plate was centrifuged at 1,000 RPM for 1 min, after which 2 µL of high Plex iLEX gold reaction solution was added to each well, followed by the addition of 7 µL of PCR/SAP reaction solution, for a total of 9 µL volume per well. The 384-well sample microtiter plate with plate was
Gene	Chro	SNP ID	Position	OR (95%CI)	P-value
INPP5B	1	kgp15327256 (rs79609816)	38348765	0.057347 (0.115019–0.028593)	2.24×10^{-8}
ITGA9	3	rs9825420	37604012	3.033502 (4.049382–2.272478)	2.55×10^{-8}
ALCAM	3	rs2685056	104418573	2.581274 (3.434586–1.939965)	4.00×10^{-8}
OPCML	11	rs7117082	133392294	0.358089 (0.489104–0.262168)	8.43×10^{-9}
PKP	10	rs9329300	2789594	0.322536 (0.444649–0.233959)	2.46×10^{-9}
GPR133	12	rs11061269	13145649	0.264827 (0.402259–0.17435)	8.45×10^{-10}
INPP5B	2	kgp8851185 (rs62172104)	77015974 MD	2.06×10^{-8}	
CSMD1	8	kgp12078483 (rs62484656)	4754792 MD	2.42×10^{-7}	
HECW1	7	kgp12304308 (rs17722673)	43178332 MD	3.50×10^{-3}	
DPP6	7	rs882467	154701338 MD	5.25×10^{-4}	
ATXN1	6	kgp8327591 (rs38122208)	16704445 MD	7.00×10^{-4}	
LIPC	15	kgp8216028 (rs28461450)	58693661 MD	7.45×10^{-4}	
RBMS1	2	kgp14738211 (rs79591932)	161428820 MD	4.94×10^{-5}	
SLC39A1T7	17	kgp13969888 (rs9907321)	70977240 MD	2.12×10^{-5}	
ITPR2	12	kgp3041552 (rs4964009)	26798905 MD	1.75×10^{-4}	
SOD1	21	kgp10760302 (rs34517760)	32985381 MD	1.02×10^{-4}	
CNTN4	3	kgp11325216 (rs13065219)	2146841 MD	7.50×10^{-4}	
DSC1	1				
KRT18P55	17				

Previous researches

SNP ID	Position	OR (95%CI)	P-value
rs10260404	154210798	1.3 (1.18–1.43)	5.00×10^{-8}
rs697739	16742033	2.04 (1.18–2.90)	4.00×10^{-6}
rs3825776	58746830	1.34 (1.20–1.46)	9.00×10^{-6}
rs10192369	161380888	1.17 MD	9.00×10^{-6}
rs8066887	70696103	1.48 MD	8.00×10^{-6}
rs2308677	26636388	1.58 (1.30–1.91)	3.00×10^{-6}
rs13048019	32918294	2.02 (1.61–2.53)	3.00×10^{-8}
rs2619566	2624938	3.03 (1.71–4.35)	7.00×10^{-6}

Chro, Chromosome; SNP, Single nucleotide polymorphism; GWAS, Genome wide association study; OR, Odds ratio; CI, Confidence interval; MD, Missing Data. *Van Es et al. (2008), ^Van Es et al. (2007), †Laaksovirta et al. (2010), ‡Fogh et al. (2014).
SNP ID	Forward primer	Reverse primer	Unextended primer	Unextended Direction	Forward
rs28461450	ACGTTGGATGCAATACTTCTAGTGCAAGCGTG	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	CCACCCCATCAAGGT	Forward	
rs8066857	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	CCACCCCATCAAGGT	Reverse	
rs11061269	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs3812208	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs882467	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs34517613	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs382577	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs2685056	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs91591932	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs4964009	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs16856202	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs11772673	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs62484656	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs7171092	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs9825420	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs34517780	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs2306677	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs9329300	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs13065219	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs2619566	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs697739	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs79608816	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs10260404	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs9907321	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs62172104	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
rs10192369	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Reverse	
rs13048019	ACGTTGGATGCAAGAAGCGACACAGACGACGAGT	ACGTTGGATGCAAGAAACAGAAACGACACTGTTG	GCACCCCATCAAGGT	Forward	
sealed with sealing film, and centrifuged at 1,000 RPM for 1 min. The 384-well microtiter plate containing the samples was then subjected to a thermocycling reaction according to the following conditions: 94°C for 30 s, 94°C for 5 s, 52°C for 5 s, 80°C for 5 s, for 5 cycles, a total of 45 cycles, followed by incubation at 72°C for 3 min.

Cleanup of the High Plex iPLEX Gold Reaction Products
The cleanup of high plex iPLEX gold reaction products involved the spreading of clean resin onto the 384-well plate containing the iPLEX products, addition of nanopure water to each well, rotation of the plate, and centrifugation of the 384-well plate.

Spectra Acquisition for Genotyping Analysis
The ACQUIRE module controlled the massARRAY analyzer to acquire spectra from each SpectroCHIP.

DNA Sequencing
For each SNPs, Sanger sequencing of a subset of samples was performed using ABI3500 (ABI3730xl; Applied Biosystems,
Functional Prediction

The functional predictions for the intronic C/T polymorphism in the CNTN4 gene (SNP rs2619566), the intronic C/T polymorphism in the DPP6 gene (SNP rs10260404), and the intronic T/A polymorphism in the INPP5B gene (SNP rs79609816) were further analyzed. The prediction of binding sites and transcription factor binding sites was performed using Mfold (Zuker, 2003), and the prediction of secondary sites and transcription factor binding sites was performed using NHRscan (Sandelin and Wasserman, 2005) and Mscan (Alkema et al., 2004), respectively, the prediction of secondary DNA sequence information obtained from NCBI GenBank.

Statistical Analysis

Statistical analysis was performed using the SPSS (Version 19.0) statistical software (SPSS, Chicago, IL, United States). The Hardy-Weinberg equilibrium (HWE) was first evaluated in the healthy controls. Pearson chi-square tests were used to compare the frequencies of alleles and genotypes in cases and controls. Minor allele frequency (MAF) and odds ratios (OR) with 95% confidence intervals (95% CI) were estimated to determine the role of each SNP in sALS risk. Two-tailed \(p < 0.05 \) were considered as statistically significant.

RESULTS

Screening for Polymorphic Loci Associated With sALS by GWAS

In this study, we first performed a pooling GWAS for 250 sALS and 250 controls selected from the HACM population to screen for possible variant loci associated with the pathogenesis of sALS. The results showed that 7 novel SNPs (the rs79609816 and rs62172104 in INPP5B, the rs9825420 in ITGA9, the rs2685056 in ALCAM, the rs7117082 in OPCML, the rs9329300 in PFKP, and the rs11061269 in GPR133) were strongly associated with sALS in the HACM population (Xie et al., 2014). Secondly, we explored previously reported candidate loci associated with the pathogenesis of sALS, and revealed that 20 SNPs (the rs62484656 in CSMD1, the rs17722673 in HECW1, the rs882467 in DPP6, the rs3812208 in ATXNI, the rs28461450 in LIPC, the rs79591932 in RBMS1, the rs9907321 in SLC39A11, the rs4964009 in ITPR2, the rs34517760 in SOD1, the rs13056219 in CNTN4, the rs10260404 in DPP6, the rs697739 in ATXNI, the rs3825776 in LIPC, the rs10192369 in RBMS1, the rs8066857 in SLC39A11, the rs2306677 in ITPR2, the rs34517760 in SOD1, the rs13056219 in CNTN4, the rs10260404 in DPP6, the rs697739 in ATXNI, the rs3825776 in LIPC, the rs10192369 in RBMS1, the rs8066857 in SLC39A11, the rs2306677 in ITPR2, the rs13048019 in SOD1, the rs2619566 in CNTN4, the rs16856202 in DISC1, and the rs34517613 in KRT18P5S) were potentially associated with sALS (Table 1; Van Es et al., 2007, 2008; Laaksovirta et al., 2010; Fogh et al., 2014; Van Doormaal et al., 2014).

Table 3 | Three SNPs shown the nominal significance at \(P < 0.05 \) in this study.

SNP	Group	Genotypes	Genotype	MAF	\(\beta \)	Allelic \(P \)-value	Allelic OR (95%CI)	Hap-Map HCB MAF	
CNTN4	CNTN4	CC	TT	CT		C Allele	0.003	C Allele: 1.476 (1.143–1.906)	
	rs2619566	37	61	139	16.41	0.0003	0.449	0.389	C = 0.395
	Controls	(n = 257)	36	110	111	0.356	–0.389	T Allele: 0.677 (0.525–0.875)	
DPP6	DPP6	CC	TT	CT		C Allele	0.009	C Allele: 0.635 (0.450–0.895)	
	rs10260404	3	178	57	7.12	0.0284	0.132	–0.455	C = 0.209
	Controls	(n = 258)	10	168	80	0.194	0.455	T Allele: 1.576 (1.118–2.222)	
INPP5B	INPP5B	TT	AA	TA		T Allele	0.0003	T Allele: 2.981 (1.649–5.387)	
	rs79609816	5	202	31	12.89	0.0016	0.086	1.092	T = 0.025
	Controls	(n = 261)	0	245	16	0.031	–1.092	A Allele: 0.335 (0.186–0.606)	

SNP: Single nucleotide polymorphism; MAF: Minor allele frequency; OR: Odds ratio; CI: Confidence interval; HCB: Han Chinese in Beijing; \(P \)-value significance < 0.05.

Table 4 | Information of three SNPs associated with sALS.

Gene and description	SNP ID	Position	Function and SNP Type	Minor/Major allele
CNTN4, contactin 4	rs2619566	Chr 3: 2583254	Intron, Transition Substitution	C/T
DPP6, dipeptidyl-peptidase 6	rs10260404	Chr 7: 154513713	Intron, Transition Substitution	C/T
INPP5B, inositol polyphosphate-5-phosphatase B	rs79609816	Chr 1: 37883093	Intron, Transversion Substitution	T/A
Identification of the Genetic Association Between 27 SNPs and sALS Using the Sequenom MassARRAY Technology

To further assess the association with sALS for the 27 candidate loci identified by GWAS, we performed sequenom massARRAY and DNA sequencing analyses using an independent cohort of 239 sALS cases and the 261 controls of Chinese ethnicity (Table 1). The following three novel SNPs were identified: the rs2619566 in the CNTN4 gene (Chr 3:2583254) (Figure 1A), rs10260404 in the DPP6 gene (Chr 7:154513713) (Figure 1B), and rs79609816 in INPP5B gene (Chr 1:37883093) (Figure 1C). The information of the 3 SNPs has been summarized in Tables 3, 4. All 3 SNPs were intronic polymorphisms. The minor allele frequencies (MAFs) of rs2619566 in the CNTN4 gene and rs79609816 in the INPP5B gene were higher in the sALS patients (44.9 and 8.6%, respectively) than those in the controls (35.6 and 3.1%, respectively). The minor allele of rs2619566 (OR = 1.476, 95% CI = 1.143–1.906, \(p = 0.003 \)) and rs79609816 (OR = 2.981, 95% CI = 1.649–5.387, \(p = 0.0003 \)) significantly increased the risk of sALS development in HACM, suggesting these two polymorphisms might represent genetic susceptibility factors. Subjects harboring the minor C allele (CC + CT) of rs2619566 (\(p = 0.0003 \)) and the minor T allele (TT + TA) of rs79609816 (\(p = 0.0016 \)) exhibited an increased risk of developing sALS in comparison with the other genotypes (Table 3). The MAFs of rs10260404 in the DPP6 gene were lower in the sALS patients (13.2%) than those in the controls (19.4%). The minor allele of rs10260404 (OR = 0.635, 95% CI = 0.450–0.895, \(p = 0.009 \)) significantly decreased the risk of developing sALS in HACM, which represented a protective genetic factor. The carriers with the minor C allele (CC + CT) (\(p = 0.0284 \)) had a significantly decreased risk of developing sALS in the HACM population (Table 3).

Confirmation of Results (SNP Positions in the CNTN4, DPP6, and INPP5B Genes) Based on the Sequenom MassARRAY Technology Using DNA Sanger Sequencing

After performing experiments based on the sequenom technology, we randomly selected a few samples from
Zhang et al. rs2619566, rs10260404, and rs79609816 Polymorphisms in sALS

FIGURE 3 | The rs2619566 variants in the CNTN4 gene, rs10260404 variants in the DPP6 gene, and rs79609816 variants in the INPP5B gene. (A) The rs2619566 T > C SNP site is shown in the CNTN4 gene. (B) The rs10260404 T > C SNP site is shown in the DPP6 gene. (C) The rs79609816 A > T SNP site is shown in the INPP5B gene. The variant loci are marked by using a green column.

the selected samples to confirm the genotypes for each positive SNP using sanger sequencing performed using ABI3500. The finding exactly coincided with the results obtained from analysis using the sequenom massARRAY technology (Figure 2). The rs2619566 polymorphism in the CNTN4 gene was a T > C variation (Figure 3A). The rs10260404 polymorphism in the DPP6 gene was a T > C variation (Figure 3B). The rs79609816 polymorphism in the INPP5B gene was an A > T variation (Figure 3C).
Functional Prediction of Binding Sites and Transcription Factor Binding Sites, Secondary Structure, miRNA and lncRNA Binding for the SNPs Associated With sALS, and Identification of the Genetic Association Between 27 SNPs and sALS Using the Sequenom MassARRAY Technology

The IR0 element with the sequence CAGATATGTTAC at positions 99–110 of the CNTN4 gene (Figures 4A,B), the IR0 element with the sequence GGGTCTGGGCCT at positions 89–100, the ER6 element with the sequence GTATGTCAACACAGCAAG at positions 102–119 of the DPP6 gene (Figures 4C,D), and the ER8 element with the sequence GCATCACATTAGATTATTAA at positions 98–117 of the INPP5B gene (Figures 4E,F) were predicted to be binding fragments. The SNP in the CNTN4 gene associated with sALS was located at the third nucleotide position in the binding fragment of the CNTN4 gene (Figures 4A,B). The SNP for the DPP6 gene was located in the middle of the two binding fragments identified in the DPP6 gene (Figures 4C,D), while the SNP for INPP5B was located at the fourth nucleotide position of the binding fragment (Figures 4E,F).

The sites between 793 and 800 bp, and between 751 and 758 bp in the CNTN4 gene (Figure 5A), the sites between 440 and 421 bp, and between 312 and 293 bp in the DPP6 gene (Figure 5B), and the sites between 338 and 323 bp, and between 163 and 156 bp in the INPP5B gene (Figure 5C) away from the upstream of binding site were hypothesized to be binding sites for transcription factors.

As shown in Figures 6A–C, all secondary structures of the binding site regions in the CNTN4, DPP6, and INPP5B genes formed a hairpin-like structure. No binding sites for miRNA were found after conduction of the miRNA analysis. During the analysis for lncRNA-binding site, the following three sites were predicted to be the possible candidates for lncRNA binding: the ENST00000562617 site between 25 and 38 bp upstream of the SNP site, the ENST00000432505 site between 16 and 28 bp away from the downstream, and the ENST00000436078 site between 20 and 32 bp from the SNP in the CNTN4 gene (Table 5). The ENST00000450077 element between 9 and 21 bp downstream of the SNP site, ENST00000453348 between 7 and 5 bp away from the upstream, the ENST00000452622 between 21 and 10 bp at the upstream, ENST00000577700 between 7 and 5 bp at the upstream, and ENST00000418297 between 5 and 21 bp at the downstream in DPP6 were predicted to be the possible binding candidates of lncRNAs (Table 6). The ENST00000451362 element between 11 and 23 bp downstream of the SNP site, ENST00000401018 and ENST00000433505 between 45 and 32 bp away from the upstream of the variation site in INPP5B were predicted to be the possible binding candidates for lncRNAs (Table 7).

DISCUSSION

Presently, the pathogenesis of sALS is not well understood, while the results of recent investigations suggest that genetic factors may play an important role. To better understand the extent by which genetic factors contribute to the risk of sALS development, it is important to find possible genes or loci that contribute to sALS susceptibility. We conducted a two-stage study in the
FIGURE 5 | Transcription factor prediction using Mscan. The prediction based on NHRSscan and Mscan provided consistent results. (A) Transcription factor binding site located between 793 and 800 bp, and between 751 and 758 bp away from the upstream of binding site in CNTN4. (B) Transcription factor binding site located between 440 and 421 bp, and between 312 and 293 bp away from the upstream of binding site in DPP6. (C) Transcription factor binding site located between 338 and 323 bp, and between 163 and 156 bp away from the upstream of the binding site in the INPP5B gene.

HACM population consisting of a total of 489 sALS cases and 511 controls, excluding the rapid and slow progressing sALS cases, the early- and late-onset cases, and the sALS cases of atypical clinical manifestations. In the first stage, we performed a pooling GWAS involving 250 sALS cases and 250 controls from the HACM population to screen for possible loci associated with sALS and identified 7 SNPs that showed the most remarkable association with sALS in the HACM population (Xie et al., 2014). Furthermore, we explored previously reported candidate loci associated with the pathogenesis of sALS, and revealed that 20 SNPs were potentially associated with sALS (Table 1; Van Es et al., 2007, 2008; Laaksovirta et al., 2010; Fogh et al., 2014; Van Doormaal et al., 2014). In the second stage, we performed a sequenom massARRAY and DNA sequencing analysis using samples of an independent cohort of 239 sALS cases and 261 controls of HACM ethnicity in order to further identify the relationship with sALS risk for the above-mentioned 27 candidate loci in this study. The results revealed that the rs2619566 in
Zhang et al. rs2619566, rs10260404, and rs79609816 Polymorphisms in sALS

FIGURE 6 | Prediction of secondary structures. The red line represents the predicted binding sites for proteins. The red frames indicate the positions of the SNPs. (A) Secondary structure for the rs2619566 T > C variation in the CNTN4 gene. (B) Secondary structure for the rs10260404 T > C variation in the DPP6 gene. (C) Secondary structure for the rs79609816 A > T variation in the INPP5B gene. All secondary structures of the binding regions in the CNTN4, DPP6, and INPP5B genes were predicted as hairpin-like structures.

CNTN4, the rs10260404 in DPP6, and the rs79609816 in INPP5B were markedly associated with sALS in the HACM population.

Furthermore, we analyzed the allele and genotype frequencies in sALS cases and controls for the 3 SNPs associated with sALS in the HACM population. All 3 SNPs were intronic polymorphisms. The MAFs of the rs2619566 in the CNTN4 gene and the rs79609816 in the INPP5B gene were significantly higher in the sALS patients than those in the controls. The minor allele frequency of the rs2619566 and the rs79609816 significantly increased the risk of sALS development in the HACM population; the subjects harboring the minor allele C (CC + CT) of rs2619566 and the minor allele T (TT + TA) of rs79609816 exhibited an increased risk of sALS development in comparison with subjects of other genotypes, which indicated that these genotypes were susceptibility factors. The minor allele of rs10260404 in the DPP6 gene significantly decreased the risk of sALS development in HACM, and the carriers with the minor C allele (CC + CT) of rs10260404 showed a decreased risk of sALS development, thus indicating that the minor allele might be a protective factor (Table 3).

Additionally, we conducted functional predictions for the 3 SNPs in the CNTN4, DPP6, and INPP5B genes. The results of this functional prediction analysis showed that the CNTN4, DPP6, and INPP5B polymorphic regions (3 SNPs) might be binding sites for transcription factors. Possible binding sites for transcription factors were identified at regions more than 700 bp upstream of the CNTN4 SNPs, more than 400 bp upstream of the DPP6 SNPs, and more than 300 bp upstream of the INPP5B SNPs. The region in the vicinity of more than 20 bp of the CNTN4 and DPP6 SNPs, and the vicinity of more than 30 bp of the INPP5B SNPs were predicted to be IncRNA non-coding regions, which might play an important role in the regulation of binding proteins (Figures 4–6 and Tables 5–7). These alterations in the CNTN4, DPP6, and INPP5B genes might change or affect their splicing, transcription, and translation, might lead to the generation of abnormal functional and/or structural proteins, and might affect the development of sALS.

CNTN4 is also known as the AXCAM or BIG-2 gene, and the gene encodes a member of the contactin family of immunoglobulins. CNTNs are axon-associated cell adhesion

TABLE 5	List of CNTN4 possible binding candidates of IncRNAs.		
ID	Strand	Identity	Alignment
ENST00000962617	Plus	14/14 (100%)	Query: 12 agatctggccatgg 25
IncRNA			Sbjct: 525 agatctggccatgg 538
ENST00000432505	Plus	13/13 (100%)	Query: 66 agggagcatttca 78
IncRNA			Sbjct: 1769 agggagcatttca 1781
ENST00000436078	Plus	13/13 (100%)	Query: 70 agcattccacaga 82
IncRNA			Sbjct: 814 agcattccacaga 826
molecules that demonstrate certain important functions in neuronal network formation and plasticity. The encoded protein is a glycosylphosphatidylinositol-anchored neuronal membrane protein that may play a role in the formation of axon connections in the developing nervous system. The alternative splice results in the generation of multiple transcript variants (Cottrell et al., 2011; Cuoco et al., 2011; Mikuliska et al., 2011; Guo et al., 2012; Kaurani et al., 2014). Additionally, the encoded protein of the gene also participates in the function of axon guidance, axonal fasciculation, axonogenesis, brain development, negative regulation of neuronal differentiation, nervous system development, neuronal cell-cell adhesion, neuronal projection development, and regulation of synaptic plasticity (Fernandez et al., 2004; Oguro-Ando et al., 2017).

Table 6 | List of DPP6 possible binding candidates of lncRNAs.

ID	Strand	Identity	Alignment
ENST0000	Plus/	13/13	Query: 59 acacacgaagat 71
0450077	Minus	(100%)	
lincRNA			
ENST0001	Plus/	13/13	Query: 22 accacaggctccc 34
0453548	Minus	(100%)	
lincRNA			
ENST0001	Plus/	13/13	Query: 29 gcttccaggtgg 40
0455622	Minus	(100%)	
lincRNA			
ENST0000	Plus/	13/13	Query: 43 ctgggctttgtat 55
0577700	Minus	(100%)	
lincRNA			
ENST0000	Plus/	13/13	Query: 59 acacacgaagat 71
0418297	Minus	(100%)	
lincRNA			

Table 7 | List of INPP5B possible binding candidates of lncRNAs.

ID	Strand	Identity	Alignment
ENST0000	Plus/	14/14	Query: 61 ttatattaatgga 73
0451362	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
05951702	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0401018	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0433550	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0515586	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0451362	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0418297	Minus	(100%)	
lincRNA			
ENST0000	Plus/	14/14	Query: 5 acaaggtgtttaat 18
0418297	Minus	(100%)	
lincRNA			
FIGURE 7 | The schematic diagram about the mechanisms that the polymorphisms of rs2619566 in CNTN4, rs10260404 in DPP6 and rs79609816 in INPP5B might result in sALS from HACM. The pathogenesis of sALS might be a mechanism of multiple genes and loci participation through a series of complex pathophysiologic pathways. (A) The polymorphisms of rs2619566 in CNTN4 might be associated with destroy of neuronal network formation and plasticity. (B) The polymorphisms of rs10260404 in DPP6 might be related to damaging synaptic integration and excitation of neuron. (C) The polymorphisms of rs79609816 in INPP5B might induce the calcium disorder in cytosol and mitochondria, contributed to neuron death through a series of pathophysiologic processes.

potassium ion transmembrane transport, and proteolysis (Soh and Goldstein, 2008). Our results revealed that carriers of the minor allele C (CC + CT) of the rs10260404 polymorphism in the DPP6 gene had an decreased risk of developing sALS, suggesting that presence of the minor C allele might change or affect the splicing, transcription, or translation of the DPP6
gene, which might be responsible for an decreased risk of sALS development. According to the existing knowledge on the DPP6 function, the protective pathogenesis associated with sALS might be attributable to an abnormal alteration of the protein activity due to the rs10260404 polymorphism-associated changes improving the synaptic integration and excitation of motor neurons. Meanwhile, the known functions of DPP6 might be involved in the process, subsequently contributing to the decreased risk of sALS (Figure 7B).

INPP5B is also known as 5Ptase. This gene encodes a member of a family of inositol polyphosphate-5-phosphatases (5-phosphatases) (Ross et al., 1991). The enzyme functions in the regulation of calcium signaling by inactivating inositol phosphates (IPs). The encoded protein is localized in the cytosol and mitochondria, and establishes association with membranes through an isoprenyl modification near the C-terminus. Cellular calcium signaling is controlled by the production of IPs and by phospholipase C in response to extracellular signals. The IPs signaling molecules are inactivated by activities of a family of 5-phosphatases. Several alternatively spliced transcript variants of this gene have been described, but the full-length transcript features of a few of these variants have not been determined. The main functions of INPP5B include inositol-1,4,5-trisphosphate 5-phosphatase activity, metal ion binding, phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity, and protein binding (Jefferson and Majerus, 1995; Noakes et al., 2011). In the results of the present study, the MAFs for the rs79609816 polymorphism in the INPP5B gene were higher in the sALS patients than those in the controls, and subjects harboring the minor allele T (TT + TA) had a significantly higher risk of developing sALS. We hypothesize that the minor allele T of the INPP5B rs79609816 polymorphism may affect the splicing, transcription, or translation of the INPP5B gene, that may further generate an abnormal INPP5B protein, which results in an increased risk for sALS development and represents a susceptibility factor for this disease. The alteration due to the INPP5B rs79609816 variant might change the function of 5-phosphatases, affect cellular calcium signaling in the cytosol and mitochondria, induce an imbalance in the intracellular and extracellular calcium levels, contribute to calcium overload in the cytosol and mitochondria, and ultimately result in the death of motor neurons (Figure 7C).

In conclusion, our study found that 3 polymorphisms, namely the CNTN4 rs2619566, the DPP6 rs10260404, and the rs79609816, were significantly associated with sALS development in the HACM population (Figure 7).

Based on the currently known functions of the CNTN4, DPP6, and INPP5B genes, it is possible to postulate that CNTN4 rs2619566 variants may inflict damage on the neuronal network formation and plasticity of motor neurons, that DPP6 rs10260404 variants may improve the synaptic integration and excitation of motor neurons, and that INPP5B rs79609816 variants may destroy cellular calcium signaling of the cytosol and mitochondria in motor neurons, ultimately influence the sALS development. In the process, the function of axon guidance, axonal fascilitation, axonogenesis, negative regulation of neuron differentiation, nervous system development, neuron cell-cell adhesion, neuron projection development, regulation of synaptic plasticity, not dipeptidyl-peptidase activity, potassium channel regulator activity, serine-type peptidase activity, neuronal action potential, positive regulation of potassium ion transmembrane transport, proteolysis, inositol-1,4,5-trisphosphate-5-phosphatase activity, metal ion binding, phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity, and protein binding may all directly or indirectly participate in the development of sALS (Figure 7).

Our data are consistent with those obtained using a model of sALS pathogenesis that involves a series of complex pathophysiologic processes attributed to the presence of multiple genes and loci. These polymorphisms might change or affect splicing, transcription, and translation, resulting in the production of abnormal CNTN4, DPP6, and INPP5B proteins, which might inflict damage or disrupt or improve neuronal network formation and plasticity, the synaptic integration and excitation, and the cellular calcium signaling of the cytosol and mitochondria of motor neurons, ultimately influencing the development of sALS. Our study further suggests that multiple genes and loci participate in the susceptibility to sALS. Our results provide valuable data for conducting further studies on the elucidation of the pathogenesis of sALS.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

ETHICS STATEMENT

The study was approved by the Institutional Review Board of the Hospital Human Ethics Committee of The First Affiliated Hospital of Nanchang University and was conducted in accordance with the approved guidelines and regulations. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

JZ and RX conceived, designed, and performed the experiments, analyzed the data, and wrote the manuscript. XZ, YD, and HN conceived and designed the experiments. JZ, WQ, and FH performed the experiments, analyzed the data, and were the jointed first authors. XZ, YD, HN, and RX contributed reagents, materials, tools, and services and were the co-corresponding authors. RX was the corresponding author. All authors were involved in the drafting, critical revision, read, and final approval of the manuscript for publication and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved and contributed significantly to this research and in the preparation of the manuscript.
FUNDING
We thank the National Natural Science Foundation of China (81960244, 81160161, and 81360198), Education Department of Jiangxi Province (GJJ170042, GJJ13198, and GJJ170021), Jiangxi Provincial Department of Science and Technology [20192BAB205044, (2014)-47, 20142BBG70062, and 20171BAB215022], Health and Family Planning Commission of Jiangxi Province (20191018 and 20181019), Jiangxi Provincial Department of Science and Technology Gan Po Elite 555 [Jiangxi Finance Elite Education Refers to (2015) 108], and the Natural Science Foundation of Guangdong Province (2019A1515011341) for extending financial support for this study.

ACKNOWLEDGMENTS
We are grateful to the patients who generously contributed their samples and their time necessary for execution of this study. We are also thankful to Gene for Health Biotech (Shanghai) Co., Ltd. for providing assistance for the bioinformatics analysis. We would like to thank Editage for English language editing.

REFERENCES
Alkema, W. B., Johansson, O., Lagergren, J., and Wasserman, W. W. (2004). MSCAN: identification of functional clusters of transcription factor binding sites. Nucleic Acids Res. 32, W195–W198.
Brooks, B. R., Miller, R. G., Swash, M., Muntau, T. L., and World Federation of Neurology Research Group on Motor Neuron Diseases. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 293–299. doi: 10.1080/1468020030079536
Callaghan, B., Feldman, D., Gruijs, K., and Feldman, E. (2011). The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener. Dis. 8, 1–8. doi: 10.1159/0003151405
Chen, Y., Zeng, Y., Huang, R., Yang, Y., Chen, K., Song, W., et al. (2012). No association of five candidate genetic variants with amyotrophic lateral sclerosis in a Chinese population. Neurobiol. Aging 33, 2721.e3–5.
Chia, R., Chio, A., and Traynor, B. J. (2018). Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94–102.
Chio, A., Schymick, J. C., Restagno, G., Scholz, S. W., Lombardo, F., Lai, S. L., et al. (2009). A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, 1524–1532.
Cottrell, C. E., Bir, N., Alvarez, C. E., Bouyain, S., and Zernzach, R. (2011). Contactin 4 as an autism susceptibility locus. Autism Res. 4, 189–199. doi: 10.1002/aur.184
Cronin, S., Tomik, B., Bradley, D. G., Slowik, A., and Hardiman, O. (2009). Screening for replication of genome-wide SNP associations in sporadic ALS. Eur. J. Hum. Genet. 17, 213–218. doi: 10.1038/ejhg.2008.194
Cuoco, C., Ronchetto, P., Gimelli, S., Béna, F., Divizia, M. T., Lerone, M., et al. (2011). Microarray-based analysis of an inherited terminal 3p26.3 deletion, containing only the CHLI gene, from a normal father to his two affected children. Orphanet. J. Rare Dis. 6, 12. doi: 10.1186/1750-1172-6-12
Daoud, H., Valtaguo, L., Vishal, M., Kumar, D., Sharma, A., Mehani, B., Sharma, C., et al. (2014). Gene-rich large deletions are overrepresented in POAG patients of Indian and Caucasian origins. Invest. Ophthalmol. Vis. Sci. 55, 3258–3264. doi: 10.1167/iovs.14-13439
Kwee, L. C., Liu, Y., Haynes, C., Gibson, J. R., Stone, A., Schichman, S. A., et al. (2012). A high-density genome-wide association screen of sporadic ALS in US veterans. PLoS One 7,e32768. doi: 10.1371/journal.pone.0032768
Laaksovirta, H., Peuralinna, T., Schymick, I. C., Scholz, S. W., Lai, S. L., Myllynkangas, L., et al. (2010). Chromosome 9p21 in amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol. 9, 978–985. doi: 10.1016/s1474-4422(10)70184-8
Landers, J. E., Melki, J., Meininguer, V., Glass, J. D., van den Berg, L. H., van Es, M. A., et al. (2009). Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U.S.A. 106, 9004–9009. doi: 10.1073/pnas.0812937106
Li, X. G., Zhang, J. H., Xie, M. Q., Liu, M. S., Li, B. H., Zhao, Y. H., et al. (2009). Association between DPP6 polymorphism and the risk of sporadic amyotrophic lateral sclerosis in Chinese patients. Chin. Med. J. 122, 2989–2992.
Lian, L., Liu, M., Cui, L., Guan, Y., Liu, T., Cui, B., et al. (2019). Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J. Clin. Neurosci. 66, 12–18. doi: 10.1016/j.jocn.2019.05.036
Lin, L., Long, L. K., Hatch, M. M., and Hoffman, D. A. (2014). DPP6 domains responsible for its localization and function. J. Biol. Chem. 289, 32153–32165. doi: 10.1074/jbc.m114.578070
Longinetti, E., and Fang, F. (2019). Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurolog. 32, 771–776. doi: 10.1097/ wco.000000000000730
Ludolph, A. C., Brichtsneider, J., and Weishaupt, J. H. (2012). Amyotrophic lateral sclerosis. Curr. Opin. Neurol. 25, 330–535.
Mathis, S., Goizet, C., Soulages, A., Vallat, J. M., Le, and Masson, G. (2019). Genetics of amyotrophic lateral sclerosis: a review. J. Neurol. Sci. 399, 217–226.
Mikułska, K., Pępolowski, L., and Nowak, W. (2011). Nanomechanics of Ig-like domains of human contactin (BIG-2). J. Mol. Model. 17, 2133–2133. doi: 10.1007/s10937-011-0101-y
Morgan, S., and Orrell, R. W. (2016). Pathogenesis of amyotrophic lateral sclerosis. Br. Med. Bull. 119, 87–98.
Noakes, C. J., Lee, G., and Lowe, M. (2011). The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway. Mol. Biol. Cell. 22, 606–623. doi: 10.1091/mbc.e10-08-0730
Notwicka, N., Jurukiewicz, N., Jurukiewicz, J., and Wojtkiewicz, J. (2019). Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 20:2616. doi: 10.3390/ijms20112166
Oguro-Ando, A., Zuko, A., Kleijer, K. T. E., and Burbach, J. P. H. (2017). A current view on contactin-4, -5, and -6: implications in neurodevelopmental disorders. Mol. Cell Neurosci. 81, 72–83. doi: 10.1016/j.mcn.2016.12.004

Peters, T. L., Kamel, F., Lundholm, C., Maria, F., Weibull, C. E., Dale, P. S., et al. (2017). Occupational exposures and the risk of amyotrophic lateral sclerosis. Occup. Environ. Med. 74, 87–92.

Riancho, J., Bosque-Varela, P., Perez-Pereda, S., Povedano, M., de Munain, A. L., and Santurtun, A. (2018). The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int. J. Biometeorol. 62, 1361–1374.

Ross, T. S., Jefferson, A. B., Mitchell, C. A., and Majerus, P. W. (1991). Cloning and expression of human 75-kDa inositol polyphosphate-5-phosphatase. J. Biol. Chem. 266, 20283–20289. doi: 10.1016/s0021-9258(18)54920-6

Sandelin, A., and Wasserman, W. W. (2005). Prediction of nuclear hormone receptor response elements. Mol. Endocrinol. 19, 595–606. doi: 10.1210/me.2004-0101

Sher, R. B. (2017). The interaction of genetics and environmental toxicants in amyotrophic lateral sclerosis: results from animal models. Neural. Regen. Res. 12, 902–905. doi: 10.4103/1673-5374.208564

Soh, H., and Goldstein, S. A. (2008). ISA channel complexes include four subunits each of DPP6 and Kv4.2. J. Biol. Chem. 283, 15072–15077. doi: 10.1074/jbc.m706964200

Su, F. C., Goutman, S. A., Chernyak, S., Mukherjee, B., Callaghan, B. C., Batterman, S., et al. (2016). Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol. 73, 803–811. doi: 10.1001/jamaneurol.2016.0594

Swash, M., and Eisen, A. (2020). Hypothesis: amyotrophic lateral sclerosis and environmental pollutants. Muscle Nerve 62, 187–191. doi: 10.1002/mus.26855

Tsitkanou, S., Della Gatta, P., Foletta, V., and Russell, A. (2019). The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front. Neurol. 10:783.

Van Doormaal, P. T. C., Ticozzi, N., Weishaupt, J. H., Kenna, K., Diekstra, F. P., Verde, F., et al. (2017). The role of de novo mutations in the development of amyotrophic lateral sclerosis. Hum. Mutat. 38, 1534–1541.

Van Doormaal, P. T., Ticozzi, N., and Gellera, C. (2014). Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiol. Aging 35, 2420.e13–14.

Van Es, M. A., Van Vught, P. W., Blauw, H. M., Franke, L., Saris, C. G., Andersen, P. M., et al. (2007). ITTPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol. 6, 869–877.

Van Es, M. A., Van Vught, P. W., Blauw, H. M., Franke, L., Saris, C. G., and Van den Bosch, L. (2008). Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 40, 29–31.

Vinceti, M., Filippini, T., Violi, F., Rothman, K. J., Costanzini, S., Malagoli, C., et al. (2017). Pesticide exposure assessed through agricultural crop proximity and risk of amyotrophic lateral sclerosis. Environ. Health 16:91.

Wolf, E. J., Rasmusson, A. M., Mitchell, K. S., Logue, M. W., Baldwin, C. T., and Miller, M. W. (2014). A genome-wide association study of clinical symptoms of dissociation in a trauma-exposed sample. Depress. Anxiety 31, 352–360. doi: 10.1002/da.22260

Xie, T., Deng, L., Mei, P., Zhou, Y., Wang, B., and Zhang, J. (2014). Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol. Aging 35, 1778.e9–1778.e23.

Xue, Y. C., Feuer, R., Cashman, N., and Luo, H. (2018). Enteroviral infection: the forgotten link to amyotrophic lateral sclerosis? Front. Mol. Neurosci. 11:63.

Yokotani, N., Doi, K., Wenthold, R. J., and Wada, K. (1993). Non-conservation of a catalytic residue in a dipeptidyl aminopeptidase IV-related protein encoded by a gene on human chromosome 7. Hum. Mol. Genet. 2, 1037–1039. doi: 10.1093/hmg/2.7.1037

Yousefian-Jazi, A., Seol, Y. H., Kim, J., Ryu, H. L., Lee, J., and Ryu, H. (2020). Pathogenic genome signatures that damage motor neurons in amyotrophic lateral sclerosis. Cells 9:2687. doi: 10.3390/cells9122687

Yu, B., and Pamphlett, R. (2017). Environmental insults: critical triggers for amyotrophic lateral sclerosis. Transl. Neurodegener. 6:15.

Zuiker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415. doi: 10.1093/nar/gkg595

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Zhang, Qiu, Hu, Zhang, Nie and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.