Abstract

Inversion of Radon transforms is the mathematical foundation of many modern tomographic imaging modalities. In this paper, we study a conical Radon transform, which is important for computed tomography taking Compton scattering into account. This transform integrates a function in \mathbb{R}^d over all conical surfaces having vertices on a hyperplane and symmetry axis orthogonal to this plane. As the main result, we derive exact reconstruction formulas of the filtered back-projection type for inverting this transform. Further, a Fourier slice identity is established.

Keywords: Radon transform, conical projections, computed tomography, inversion formula, filtered back-projection

1. Introduction

Suppose that $f : \mathbb{R}^d \to \mathbb{R}$, with $d \geq 2$, is a smooth function supported in the half-space $\mathbb{R}^{d-1} \times (0, \infty)$, and let p be some real number. We study the problem of reconstructing the function f from the integrals

$$(\mathcal{R}^{(p)} f)(u, \theta) := \frac{1}{s^p} \int_0^{\infty} \int_{S^{d-2}} f(u + s \sin(\theta)n, s \cos(\theta))(s \sin(\theta))^{d-2} \, dn \, ds$$

for $u \in \mathbb{R}^{d-1}$ and $\theta \in (0, \pi/2)$. (Here S^{d-2} is the unit sphere in \mathbb{R}^{d-1} and dn is the surface measure on S^{d-2}.) We call the function $\mathcal{R}^{(p)} f : \mathbb{R}^{d-1} \times (0, \pi/2) \to \mathbb{R}$ the conical Radon transform of f. As illustrated in figure 1, $\mathcal{R}^{(p)} f(u, \theta)$ is the integral of f over the one-sided conical surface $C(u, \theta)$ having the vertex $(u, 0)$ on the plane $\mathbb{R}^{d-1} \times \{0\}$, symmetry axis $e_d := (0, \ldots, 0, 1)$ and half-opening angle $\theta \in (0, \pi/2)$. The product $(s \sin(\theta))^{d-2} \, dn \, ds$ is the standard surface measure on $C(u, \theta)$, and $1/s^p$ is an additional radial weight that can...
be adapted to the particular application at hand. For \(\theta \in (0, \pi/2) \), the function \((R^p f)(\cdot, \theta)\) may be considered as a conical projection of \(f \) onto \(\mathbb{R}^{d-1} \times \{0\} \).

Inversion of the conical Radon transform in the three spatial dimension is important for computed tomography, taking Compton-scattered photons into account [BZG97, CB94, Par00]. In [CB94, NTG05], Fourier reconstruction formulas have been derived for the cases \(p \in \{0, 2\} \). For two spatial dimensions, \(R^p \) has been studied with \(p \in \{0, 2\} \) in [BZG97, TN11], where reconstruction formulas of the back-projection type have been derived. In dimensions \(d > 3 \), the conical Radon transform has, to the best of our knowledge, not so far been studied. In this paper, we study \(R^p \) for any \(d \geq 2 \) and any \(p \in \mathbb{R} \). We derive explicit reconstruction formulas of the back-projection type (see theorem 1.1) as well as a Fourier slice identity (see theorem 1.3) similar to the one of the classical Radon transforms. The Fourier slice identity is a new result for \(d \geq 4 \), whereas the derived reconstruction formula is new for \(d \geq 3 \).

1.1. Statement of the main results

Before we present our main results, we introduce some notation. By \(C^\infty_c(\mathbb{R}^{d-1} \times (0, \infty)) \), we denote the space of all functions defined on \(\mathbb{R}^d \) that are \(C^\infty \) and have compact support in \(\mathbb{R}^{d-1} \times (0, \infty) \). Likewise \(C^\infty_c(\mathbb{R}^{d-1} \times (0, \pi/2)) \) denotes the space of all infinitely smooth functions defined on \(\mathbb{R}^{d-1} \times (0, \pi/2) \). As can easily be seen, the conical Radon transform defined by (1.1) is well defined as an operator \(R^p : C^\infty_c(\mathbb{R}^{d-1} \times (0, \infty)) \rightarrow C^\infty(\mathbb{R}^{d-1} \times (0, \pi/2)) \).

Points in \(\mathbb{R}^d \) will be written in the form \((x, y)\) with \(x \in \mathbb{R}^{d-1} \) and \(y \in \mathbb{R} \). The Fourier transform of a function \(f : \mathbb{R}^{d-1} \times \mathbb{R} \rightarrow \mathbb{C} \) with respect to the first component is denoted by \((\mathcal{F}f)(k, y) := \int_{\mathbb{R}^{d-1}} e^{-ikx}f(x, y) \, dx\) for \((k, y) \in \mathbb{R}^{d-1} \times \mathbb{R} \). The Hankel transform of order \((d - 3)/2 \) in the second argument is denoted by \((\mathcal{H}_{(d-3)/2}f)(x, \lambda) := \int_0^{\infty} J_{(d-3)/2}(\lambda y) f(x, y) \, dy\) for \((x, \lambda) \in \mathbb{R}^{d-1} \times (0, \infty) \), where \(J_{(d-3)/2} \) is the Bessel function of the first kind of order \((d - 3)/2 \). Note that for \(d = 2 \), we have \(J_{-1/2}(y) = \sqrt{2/\pi} \cos(y) \) and hence \(\mathcal{H}_{-1/2} \) is closely related to the cosine transform.

Similarly, we denote by \(\mathcal{F}g \) the Fourier transform of a function \(g : \mathbb{R}^{d-1} \times (0, \pi/2) \rightarrow \mathbb{C} \) with respect to the first argument. Finally, we denote by \(T^{1-d}g : \mathbb{R}^{d-1} \times (0, \pi/2) \rightarrow \mathbb{C} \) the Riesz potential of \(g \), defined by
\[(\mathcal{F}^{(1-d)} g)(\mathbf{k}, \theta) := |\mathbf{k}|^{d-1} (\mathcal{F} g)(\mathbf{k}, \theta) \quad \text{for } (\mathbf{k}, \theta) \in \mathbb{R}^{d-1} \times (0, \pi/2). \quad (1.2)\]

The Riesz potential is well defined if \((\mathcal{F} g)(\cdot, \theta) \in L^1(\mathbb{R}^{d-1})\) for every \(\theta \in (0, \pi/2)\), which will always be the case in our considerations.

Explicit reconstruction formulas. The central results of this paper are the following explicit reconstruction formulas for inverting the conical Radon transform.

Theorem 1.1 (Reconstruction formulas for the conical Radon transform). For every \(p \in \mathbb{R}\), every \(f \in C^\infty_c(\mathbb{R}^{d-1} \times (0, \infty))\) and every \((\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{d-1} \times (0, \infty)\), we have

\[
f(\mathbf{x}, \mathbf{y}) = \frac{yp}{(2\pi)^{d-1}} \int_0^{\pi/2} \frac{1}{\cos(\theta)^{1+p}} \int_{\mathbb{S}^{d-2}} (\mathcal{I}^{(1-d)} R(\theta) f)(\mathbf{x} + y \tan(\theta) \mathbf{n}, \theta) \, d\mathbf{n} \, d\theta, \quad (1.3)\]

\[
f(\mathbf{x}, \mathbf{y}) = \frac{1}{(2\pi)^{d-1}} \int_{\mathbb{S}^{d-1}} \frac{(|\mathbf{u} - \mathbf{x}|^2 + y^2)^{(d-1)/2}}{|\mathbf{u} - \mathbf{x}|^{d-2}} (\mathcal{I}^{(1-d)} R(\theta) f)(\mathbf{u}, \arctan(|\mathbf{u} - \mathbf{x}|/y)) \, d\mathbf{u}. \quad (1.4)\]

Here, \(\mathcal{I}^{(1-d)}\) is the Riesz potential defined by \((1.2)\).

Proof. See sections 2.2 and 2.3.

The reconstruction formulas \((1.3)\) and \((1.4)\) are of the filtered back-projection type. The Riesz potential can be interpreted as a filtration step in the first argument and the integrations actually sum over all conical surfaces that pass through the reconstruction point \((\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{d-1} \times (0, \infty)\). In analogy to the classical Radon transform, the integration process may therefore be called *conical back-projection*. Note that \((1.3)\) and \((1.4)\) only differ up to a different parametrization of the set of all conical surfaces passing through the reconstruction point.

For practical applications, the two- and three-dimensional situations are the most relevant ones. In these cases, the formulas of theorem 1.1 read as follows.

Corollary 1.2 (Reconstruction formulas for \(d = 2, 3\)).

(a) Suppose \(d = 2\). Then, for every \(f \in C^\infty_c(\mathbb{R} \times (0, \infty))\) and every \((\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times (0, \infty)\),

\[
f(\mathbf{x}, \mathbf{y}) = \frac{yp}{2\pi} \int_0^{\pi/2} \left(\frac{\partial_\mathbf{n} H_{\mathbf{n}} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} + \mathbf{y} \tan(\theta)) + \frac{\partial_\mathbf{n} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} - \mathbf{y} \tan(\theta)) \right) \, d\theta,
\]

\[
= \frac{1}{2\pi} \int_\mathbb{R} \frac{(|u - x|^2 + y^2)^{(d-1)/2}}{|u - x|^{d-2}} \left(\frac{\partial_\mathbf{n} H_{\mathbf{n}} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} + \mathbf{y} \tan(\theta) \mathbf{n}) + \frac{\partial_\mathbf{n} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} - \mathbf{y} \tan(\theta) \mathbf{n}) \right) \, d\mathbf{n} \, d\theta.
\]

Here, \(\partial_\mathbf{n}\) and \(H_{\mathbf{n}}\) denote the derivative and the Hilbert transform in the first argument.

(b) Suppose \(d = 3\). Then, for every \(f \in C^\infty_c(\mathbb{R}^2 \times (0, \infty))\) and every \((\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times (0, \infty)\),

\[
f(\mathbf{x}, \mathbf{y}) = \frac{yp}{4\pi^2} \int_0^{\pi/2} \left(\frac{\partial_\mathbf{n} H_{\mathbf{n}} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} + \mathbf{y} \tan(\theta) \mathbf{n}) + \frac{\partial_\mathbf{n} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} - \mathbf{y} \tan(\theta) \mathbf{n}) \right) \, d\mathbf{n} \, d\theta
\]

\[
= \frac{1}{4\pi^2} \int_\mathbb{R}^2 \frac{(|u - x|^2 + y^2)^{(d-1)/2}}{|u - x|^{d-2}} \left(\frac{\partial_\mathbf{n} H_{\mathbf{n}} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} + \mathbf{y} \tan(\theta) \mathbf{n}) + \frac{\partial_\mathbf{n} R(\theta) f}{\cos(\theta)^{1+p}} (\mathbf{x} - \mathbf{y} \tan(\theta) \mathbf{n}) \right) \, d\mathbf{n} \, d\theta
\]

Here, \(\Delta_\mathbf{n}\) denotes the Laplacian in the first component.
respectively. This shows finally performing an inverse (1.5) by means of a (1.5) reconstruction of spatial dimensions, the reconstruction formulas are particularly simple and further local. The theorem1.1 are new. One notes that in three passing through an arbitrarily small neighbourhood of (x, y) only requires the integrals over cones passing through an arbitrarily small neighbourhood of (x, y). Since for any odd d, the Riesz potential satisfies I(1−d) = (−1)(d−1)/2Dd(d−1)/2, the reconstruction formulas (1.3) and (1.4) are in fact local for every odd space dimensions. In contrast, in even space dimension (1.3), and (1.4) are non-local. Recovering a function at a single point requires the knowledge of the integrals over all conical surfaces. This behaviour is similar to the one of the classical Radon transforms, where also the inversion is local in odd and non-local in even dimensions (see, for example, [Nat01, p 20]).

A Fourier slice identity. Theorem 1.1 will be established using theorem1.3, which an analogon of the well-known Fourier slice identity [Nat01, chapter 1, theorem 1.1] satisfied by the classical Radon transform.

Theorem 1.3 (Fourier slice identity for the conical Radon transform). For every p ∈ R, every f ∈ C∞(Rd−1×(0, ∞)) and every (k, θ) ∈ R × (0, π/2), we have

\[
(H_\alpha F^y)(\mathbf{k}, |\mathbf{k}| \tan(\theta)) = \frac{(2\pi)^{\frac{d-1}{2}}}{\cos(\theta)^{1-p}} |\mathbf{k}|^{\frac{d-1}{2}} (F\mathcal{R}^{\alpha}(p) f)(\mathbf{k}, \theta). \tag{1.5}
\]

Here, y(d−3)/2−p f is the function (x, y) → y(d−3)/2−p f(x, y), F is the Fourier transform in the first argument and H(d−3)/2 is the Hankel transform of order (d−3)/2 in the second argument.

Proof. See section 2.1. □

The Fourier slice identity is of course of interest on its own. The argument (\mathbf{k}, |\mathbf{k}| \tan(\theta)), for \mathbf{k} ∈ Rd−1 and α ∈ (0, π/2), appearing on the left-hand side of (1.5), fills in the whole upper half-space, which is required to invert the Fourier–Hankel transform using well-known explicit and stable inversion formulas. Hence, the function f can be reconstructed based on (1.5) by means of a (d − 1)-dimensional Fourier transform, followed by an interpolation, and finally performing an inverse d-dimensional Fourier–Hankel transform.

1.2. Outline

The remainder of the paper is mainly devoted to the proofs of theorems 1.1 and 1.3 that we will establish in section 2. We will first derive the Fourier slice identity of theorem 1.3, which will then be used to proof the reconstruction formulas of theorem 1.1. The paper ends with a discussion in section 3.

2. Proofs of the main results

In this section, we derive theorems 1.1 and 1.3. The following elementary lemma shows that it suffices to derive these results for the special case p = 0.
Lemma 2.1 (Relation between \(\mathcal{R}^{(p)} \) and \(\mathcal{R}^{(0)} \)). For every \(p \in \mathbb{R} \), every \(f \in C_c^\infty(\mathbb{R}^{d-1} \times (0, \infty)) \) and every \((\mathbf{k}, \theta) \in \mathbb{R}^{d-1} \times (0, \pi/2) \), we have
\[
(\mathcal{R}^{(p)} f)(\mathbf{u}, \theta) = (\cos(\theta)^p \mathcal{R}^{(0)} y^{-p} f)(\mathbf{u}, \theta).
\] (2.1)

Here, \(y^{-p} \) stands for the operator that multiplies a function \(f(x, y) \) by \(y^{-p} \) and likewise \(\cos(\theta)^p \) stands for the operator that multiplies \(g(\mathbf{u}, \theta) \) by \(\cos(\theta)^p \).

Proof. The definition of \(\mathcal{R}^{(p)} \) and the substitution \(s = y/\cos(\theta) \) yield
\[
(\mathcal{R}^{(p)} f)(\mathbf{u}, \theta) = \int_0^\infty \frac{1}{s^p} \int_{\mathbb{R}^{d-2}} f(\mathbf{u} + s \sin(\theta) \mathbf{n}, s \cos(\theta)(s \sin(\theta))^{d-2} \, d\mathbf{n} \, ds
\]
\[
= \cos(\theta)^{p-1} \int_0^\infty \int_{\mathbb{R}^{d-2}} y^{-p} f(\mathbf{u} + y \tan(\theta) \mathbf{n}, y)(y \tan(\theta))^{d-2} \, d\mathbf{n} \, dy.
\]
Comparing the last expression for \(\mathcal{R}^{(p)} f \) with the corresponding expression for \(\mathcal{R}^{(0)} f \) obviously shows (2.1).

\[\Box\]

2.1. Proof of theorem 1.3 (the Fourier slice identity)

We start by showing (1.5) for the special case \(p = 0 \). The general case will then be a consequence of lemma 2.1.

The definition of the conical Radon transform, the definition of the Fourier transform and some basic manipulations yield
\[
(\mathcal{F} \mathcal{R}^{(0)} f)(\mathbf{k}, \theta) = \int_{\mathbb{R}^{d-1}} e^{-i\mathbf{k} \cdot \mathbf{u}} (\mathcal{R}^{(0)} f)(\mathbf{u}, \theta) \, d\mathbf{u}
\]
\[
= \int_0^\infty \int_{\mathbb{R}^{d-2}} \int_{\mathbb{R}^{d-1}} e^{-i\mathbf{k} \cdot \mathbf{u}} f(\mathbf{u} + s \sin(\theta) \mathbf{n}, s \cos(\theta)(s \sin(\theta))^{d-2} \, d\mathbf{n} \, ds \, d\mathbf{u}
\]
\[
= \int_0^\infty (s \sin(\theta))^{d-2} \int_{\mathbb{R}^{d-2}} \int_{\mathbb{R}^{d-1}} e^{-i\mathbf{k} \cdot \mathbf{u}} f(\mathbf{u}, s \cos(\theta)) \, d\mathbf{u} \, d\mathbf{n} \, ds
\]
\[
= \int_0^\infty (s \sin(\theta))^{d-2} (\mathcal{F} f)(\mathbf{k}, s \cos(\theta)) \left[\int_{\mathbb{R}^{d-2}} e^{i\mathbf{k} \cdot \mathbf{n}} \, d\mathbf{n} \right] \, ds.
\]
Now we use the identity (see, for example, [Nat01, p 198]),
\[
\int_{\mathbb{R}^{d-2}} e^{-i\mathbf{k} \cdot \mathbf{n}} \, d\mathbf{n} = (2\pi)^{\frac{d-1}{2}} |\mathbf{k}|^{\frac{d-1}{2}} r^{\frac{d-1}{2}} J_{\frac{d-1}{2}} (|\mathbf{k}| r) \quad \text{for all } (\mathbf{k}, r) \in \mathbb{R}^{d-1} \times (0, \infty).
\] (2.2)

Application of (2.2) with \(r = s \sin(\theta) \) followed by the substitution \(s = y/\cos(\theta) \) yields
\[
(\mathcal{F} \mathcal{R}^{(0)} f)(\mathbf{k}, \theta) = (2\pi)^{\frac{d-1}{2}} \int_0^\infty (s \sin(\theta))^{d-2} (\mathcal{F} f)(\mathbf{k}, s \cos(\theta)) |\mathbf{k}|^{\frac{d-1}{2}} (s \sin(\theta))^{\frac{d-1}{2}} \times J_{\frac{d-1}{2}} (|\mathbf{k}| s \sin(\theta)) \, ds
\]
\[
= (2\pi)^{\frac{d-1}{2}} \int_0^\infty (s \sin(\theta))^{\frac{d-1}{2}} (\mathcal{F} f)(\mathbf{k}, s \cos(\theta)) |\mathbf{k}|^{\frac{d-1}{2}} J_{\frac{d-1}{2}} (|\mathbf{k}| s \sin(\theta)) \, ds
\]
\[
= (2\pi)^{\frac{d-1}{2}} \int_0^\infty (y \tan(\theta))^{\frac{d-1}{2}} (\mathcal{F} f)(\mathbf{k}, y) |\mathbf{k}|^{\frac{d-1}{2}} J_{\frac{d-1}{2}} (|\mathbf{k}| y \tan(\theta)) \frac{dy}{\cos(\theta)}
\]
\[
= (2\pi)^{\frac{d-1}{2}} \tan(\theta)^{\frac{d-1}{2}} |\mathbf{k}|^{\frac{d-1}{2}} (H_{\frac{d-3}{2}} F y^\frac{d-3}{2} f)(\mathbf{k}, |\mathbf{k}| \tan(\theta)).
\] (2.3)

This shows (1.5) for the special case \(p = 0 \).
For general \(p \in \mathbb{R} \), we use the relation \(R^{(0)} y^{-p} f = \cos(\theta)^{-p} R^{(p)} f \) from lemma 2.1. Together with (2.3), this yields
\[
(\mathcal{H}_{k^x} \mathcal{F} y^{k^x} y^{-p} f)(k, |k| \tan(\theta)) = (\mathcal{H}_{k^x} \mathcal{F} y^{k^x} y^{-p} f)(k, |k| \tan(\theta)) \\
= (2\pi)^{\frac{d-1}{2}} \frac{\cos(\theta)}{\tan(\theta)^{\frac{d-1}{2}}} |k|^{\frac{d-1}{2}} (F R^{(0)} y^{-p} f)(k, \theta) \\
= (2\pi)^{\frac{d-1}{2}} \frac{\cos(\theta)^{-p}}{\tan(\theta)^{\frac{d-1}{2}}} |k|^{\frac{d-1}{2}} (F R^{(p)} f)(k, \theta).
\]
This is (1.5) for the case of general \(p \in \mathbb{R} \) and concludes the proof of theorem 1.3.

2.2. Proof of reconstruction formula (1.3)

We start with the proof of (1.3) for \(p = 0 \). Application of the inversion formulas for the Fourier and the Hankel transform followed by the substitution \(\lambda = |k| \tan(\theta) \) shows
\[
y^{k^x} f(x, y) = \frac{1}{(2\pi)^{d-1}} \int_{\mathbb{R}^{d-1}} \int_0^\infty (\mathcal{H}_{k^x} \mathcal{F} y^{k^x} f)(k, \lambda) J_{k^x}(\lambda y) e^{ikx} \lambda \ d\lambda \ dk \\
= \frac{1}{(2\pi)^{d-1}} \int_{\mathbb{R}^{d-1}} \int_0^{\pi/2} (\mathcal{H}_{k^x} \mathcal{F} y^{k^x} f)(k, \tan(\theta) y) J_{k^x}(|k| \tan(\theta) y) e^{ikx} \\
\times |k|^2 \tan(\theta) \ d\theta \ dk.
\]
Application of the Fourier slice identity (theorem 1.3) with \(p = 0 \) and interchanging the order of integration then yields
\[
y^{k^x} f(x, y) = (2\pi)^{\frac{d-1}{2}} \int_0^{\pi/2} (\tan(\theta))^{\frac{d-1}{2}} \int_{\mathbb{R}^{d-1}} |k|^{\frac{d-1}{2}} (F R^{(0)} f)(k, \theta) \\
\times J_{k^x}(|k| \tan(\theta) y) e^{ikx} \ d\theta \ dk.
\]
(2.4)

By (2.2), we have
\[
J_{k^x}(|k| \tan(\theta) y) = (2\pi)^{\frac{d-1}{2}} |k|^{\frac{d-1}{2}} (\tan(\theta) y)^{\frac{d-1}{2}} \int_{\mathbb{S}^d} e^{-i k \tan(\theta) \gamma} \ d\gamma.
\]
Therefore,
\[
\int_{\mathbb{R}^{d-1}} |k|^{\frac{d-1}{2}} (F R^{(0)} f)(k, \theta) J_{k^x}(|k| \tan(\theta) y) e^{ikx} \ d\theta \\
= (2\pi)^{\frac{d-1}{2}} \int_0^{\pi/2} (\tan(\theta) y)^{\frac{d-1}{2}} \left[\int_{\mathbb{R}^{d-1}} |k|^{d-1} (F R^{(0)} f)(k, \theta) e^{ik(x-\tan(\theta) \gamma)} \ d\theta \right] \\
= (2\pi)^{\frac{d-1}{2}} \int_0^{\pi/2} (\tan(\theta) y)^{\frac{d-1}{2}} (I^{(1-d)} R^{(0)} f)(x-\tan(\theta) y, \theta) \ d\theta.
\]
Together with (2.4) this further implies
\[
y^{k^x} f(x, y) = \frac{1}{(2\pi)^{d-1}} \int_0^{\pi/2} (\tan(\theta))^{\frac{d-1}{2}} \int_{\mathbb{R}^{d-1}} (\tan(\theta) y)^{\frac{d-1}{2}} (I^{(1-d)} R^{(0)} f) \\
\times (x-\tan(\theta) y, \theta) \ d\theta \ d\gamma \\
= \frac{1}{(2\pi)^{d-1}} \int_0^{\pi/2} \frac{1}{\cos(\theta)} \int_{\mathbb{S}^{d-1}} (I^{(1-d)} R^{(0)} f)(x-\tan(\theta) y, \theta) \ d\theta.
\]
This shows formula (1.3) for the special case \(p = 0 \).
Finally, we derive (1.4) as an easy consequence of (1.3). To that end, we first substitute
\[
y^{-p} f(x, y) = \frac{1}{(2\pi)^{d/2}} \int_0^{\pi/2} \frac{1}{\cos(\theta)^{1+p}} \int_{S^{d-2}} (I^{(1-d)} R^{(p)} f)(x - \tan(\theta) y n, \theta) \, d\mathbf{n} \, d\theta.
\]
This shows (1.3) in the general case \(\mu \in \mathbb{R}\).

2.3. Proof of the reconstruction formula (1.4)

Finally, we derive (1.4) as an easy consequence of (1.3). To that end, we first substitute \(\theta = \arctan(r/y)\) with \(r \in (0, \infty)\). Then, \(d\theta = y^{-1} \cos(\theta)^2 \, dr\) and \(\cos(\theta) = 1/\sqrt{1 + r^2/y^2}\). Consequently, (1.3) implies
\[
f(x, y) = \frac{y^{p-1}}{(2\pi)^{d/2}} \int_0^{\infty} \int_{S^{d-2}} (1 + r^2/y^2)^{d/2} (I^{(1-d)} R^{(0)} f) \left(x - r n, \arctan \left(\frac{r}{y} \right) \right) \, d\mathbf{n} \, dr
\]
\[
= \frac{1}{(2\pi)^{d/2}} \int_0^{\infty} \int_{S^{d-2}} (r^2 + y^2)^{d/2} (I^{(1-d)} R^{(0)} f) \left(x + r n, \arctan \left(\frac{r}{y} \right) \right) \, d\mathbf{n} \, dr.
\]
Now, we substitute \(x + r n = u\) (polar coordinates in the plane \(\mathbb{R}^{d-1}\) around the centre \(x\)). Then, \(d\mathbf{u} = r^{d-1} \, d\mathbf{r} \, dr\) and \(r = |u - x|\). Consequently,
\[
f(x, y) = \frac{1}{(2\pi)^{d/2}} \int_{S^{d-1}} \frac{(|u - x|^2 + y^2)^{d/2}}{|u - x|^{d-2}} (I^{(1-d)} R^{(0)} f) \left(x, \arctan \left(\frac{|u - x|}{y} \right) \right) \, d\mathbf{x}.
\]
This is the reconstruction formula (1.4).

3. Discussion

In this paper, we derived explicit reconstruction formulas for the conical Radon transform, which integrates a function in \(d\) spatial variables over all cones with vertices on a hyperplane and symmetry axis orthogonal to this plane. The derived formulas are of the back-projection type and are theoretically exact. Furthermore, they are local for odd \(d\), and non-local for even \(d\). Among others, the inversion of the conical Radon transform is relevant for emission tomography using Compton cameras as proposed in [EFTN77, Sin83, TNE74]. Such a device measures the direction as well as the scattering angle of an incoming photon at the front of the camera. The location of the photon emission can therefore be traced back to the surface of a cone. Recovering the density of the photon source therefore yields to the inversion of the conical Radon transform in a natural manner.

Radon transforms are the theoretical foundation of many medical imaging and remote sensing application. Certainly, the most well-known instance is the classical Radon transform, which integrates a function over hyperplanes. Among others, the inversion of the classical Radon transform is important for classical transmission computed tomography and has been studied in many textbooks (see, for example, [Hel99, Nat01]). Closed form reconstruction formulas have been known for a long time and were first derived in 1917 by Radon [Rad17]. Another Radon transform that has been studied in detail more recently is the spherical Radon transform. This transform integrates a function over spherical surfaces (for some restricted centres of integration) and is, among others, important for photo- and thermoacoustic tomography [KK08]. Closed form reconstruction formulas for planar and spherical centre sets have been found in [And88, Kun07, Faw85, FHR07, FPR04]. The conical Radon transform, on the other hand, have been studied much less. In particular, closed form reconstruction formulas have only been known for the case \(d = 2\), see [BZG97, TN11]. In this paper, we
derived such reconstruction formulas for arbitrary dimension $d \geq 2$. Different conical Radon transforms, where a function is integrated over conical surfaces having the fixed opening angle and variable symmetry axis have recently been studied in [AM13, FMS11, GZA13].

For computed tomography with Compton cameras [BZG98, CB94], the three-dimensional case is of course the most relevant. In this case, our reconstruction formulas have a particularly simple structure and consist of an application of the Laplacian followed by a conical back-projection. The numerical implementation seems quite straightforward following the ones of the classical or the spherical Radon transform (see, for example, [FHR07, Nat01]). Numerical studies, however, will be the subject of future research.

References

[AM13] Ambartsoumian G and Moon S 2013 A series formula for inversion of the V-line Radon transform in a disc Comput. Math. Appl. 66 1567–72
[And88] Andersson L E 1988 On the determination of a function from spherical averages SIAM J. Math. Anal. 19 214–32
[BZG97] Basko R, Zeng G L and Gullberg G T 1997 Analytical reconstruction formula for one-dimensional Compton camera IEEE Trans. Nucl. Sci. 44 1342–46
[BZG98] Basko R, Zeng G L and Gullberg G T 1998 Application of spherical harmonics to image reconstruction for the Compton camera Phys. Med. Biol. 43 887
[CB94] Cree M J and Bones P J 1994 Towards direct reconstruction from a gamma camera based on Compton scattering IEEE Trans. Med. Imaging 13 398–407
[EFTN77] Everett D B, Fleming J S, Todd R W and Nightingale J M 1977 Gamma-radiation imaging system based on the Compton effect Proc. IEEE 124 995–1000
[Faw85] Fawcett J A 1985 Inversion of n-dimensional spherical averages SIAM J. Appl. Math. 45 336–41
[FHR07] Finch D, Haltmeier M and Rakesh 2007 Inversion of the spherical mean and the wave equation in even dimensions SIAM J. Appl. Math. 68 392–412
[FMS11] Florescu L, Markel V and Schotland J 2011 Inversion formulas for the broken-ray Radon transform Inverse Problems 27 025002
[FPR04] Finch D, Patch S and Rakesh 2004 Determining a function from its mean values over a family of spheres SIAM J. Math. Anal. 35 1213–40
[GZA13] Gouia-Zarrad R and Ambartsoumian G 2013 Exact inversion of the conical radon transform with a fixed opening angle arXiv:1309.6581 [math.NA]
[Hel99] Helgason S 1999 The Radon Transform (Progress in Mathematics vol 5) 2nd edn (Boston, MA: Birkhäuser)
[KK08] Kuchment P and Kunyansky L A 2008 Mathematics of thermoacoustic and photoacoustic tomography Eur. J. Appl. Math. 19 191–224
[Kun07] Kunyansky L A 2007 Explicit inversion formulae for the spherical mean Radon transform Inverse Problems 23 737–83
[Nat01] Natterer F 2001 The Mathematics of Computerized Tomography (Classics in Applied Mathematics vol 32) (Philadelphia, PA: SIAM)
[NTG05] Nguyen M K, Truong T T and Grangeat P 2005 Radon transforms on a class of cones with fixed axis direction J. Phys. A: Math. Gen. 38 8003–15
[Par00] Parra L C 2000 Reconstruction of cone-beam projections from Compton scattered data IEEE Trans. Nucl. Sci. 47 1543–50
[Rad17] Radon J 1917 Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten Ber. Verh. Kön. Sächs. Ges. Wiss. Leipz. Math. Phys. Kl. 69 262–77
[Sin83] Singh M 1983 An electronically collimated gamma camera for single photon emission computed tomography: part I. Theoretical considerations and design criteria Med. Phys. 10 421–7
[TN11] Truong T T and Nguyen M K 2011 On new V-line Radon transforms in \mathbb{R}^2 and their inversion J. Phys. A: Math. Theor. 44 075206
[TNE74] Todd R W, Nightingale J M and Everett D B 1974 A proposed gamma camera Nature 251 132–4