INTRODUCTION

Natural products, useful in treating or preventing various diseases, have been sought throughout the history of mankind. Most of these natural products are plagued with a common problem, i.e., the fact that they often represent a complex mixture of individual ingredients each of which can contribute to their biological activity. Natural (1,3)-beta-D-glucans from yeast, grain and mushrooms are well-established biological response modifiers, representing highly conserved structural components of cell walls in yeast, fungi, seaweed or grain seeds. (1,3)-Glucan’s role as a biologically active immunomodulator has been well documented for over 40 years. Interest in the immunomodulatory properties of polysaccharides was initially raised after experiments showing that a crude yeast cell preparation stimulated macrophages via activation of the complement system.

Numerous types of glucans have been isolated from almost every species of yeast, grain, and fungi. (1,3)-beta-D-glucans have been extensively studied for their immunological and pharmacological effects. More than 2,000 papers describing the mostly immunological activities of glucans exist in the literature (for review see 4). Numerous types of glucans have been isolated from almost every species of yeast, grain, and fungi. (1,3)-beta-D-glucans have been extensively studied for their immunological and pharmacological effects. More than 2,000 papers describing the mostly immunological activities of glucans exist in the literature (for review see 4).

However, multiple reports established additional effects of glucans. Nearly 50 years ago the possible effects of dietary fiber were first suggested by Keys and these effects were later found to be associated with glucans7. The cholesterol-lowering effects of fibers are routinely associated with beta-glucans. Due to the high consumption of oats or oat bran, most of the attention has been focused on the relationship of oat-derived glucan to cholesterol levels. These glucans were shown to reduce serum cholesterol in both hypercholesterolemic animals and humans, however there are some studies that found no such effects.

In addition, fiber-containing glucans, particularly the ones in human food, gained attention for their role in the metabolic control of diabetes. However, most of these studies were accomplished using only partly purified glucans, making evaluation of the glucan role rather difficult.

Despite extensive investigations, no consensus on the source, size and other biochemical or physicochemical properties of beta-1,3-glucan has been achieved. In addition, numerous concentrations and routes of administration have been tested – including oral, intraperitoneal, subcutaneous and intravenous applications. Besides, there are probably more than a hundred of different samples on the U.S. market alone, which leads to a confusion about the quality, biological effects and overall efficiency of glucan. Therefore, we decided to compare the basic biological and immunological activities of a group of glucans.

The collection of techniques including phagocytosis and stimulation of IL-2 synthesis effects on cholesterol and blood sugar levels represents a general approach to the biological characteristics of tested glucans thus offering insight as to their biological activities.
MATERIAL AND METHODS

Animals. Female, 8 weeks old BALB/c mice were purchased from the Jackson Laboratory (Bar Harbor, ME). All animal work was done according to the University of Louisville IACUC protocol. Animals were sacrificed by CO2 asphyxiation.

Materials. RPMI 1640 medium, sodium citrate, Wright stain, Limulus lysate test E-TOXATE, Concanavalin A, cholesterol, streptozotocin and were obtained from Sigma Chemical Co. (St. Louis, MO). Fetal calf serum (FCS) was from Hyclone Laboratories (Logan, UT).

Diet. All diets (Laboratory Rodent Diet 5001 enhanced with glucan and/or cholesterol) were formulated and prepared by Purina (Richmond, IN). Diet ingredients for all groups were identical except for the proportion of glucan and/or cholesterol. Glucan-enhanced diet contained various doses of individual glucan, cholesterol-enhanced diet contained cholesterol. The beta-glucans were quantified by using a Megazyme kit.

Beta-1,3 glucans. Yeast-derived insoluble glucan #300 were purchased from Transfer Point (Columbia, SC), mushroom-derived Krestin from (Kureha Chemical Industries, Tokyo, Japan), yeast-derived NOW BETA glucan from Now Foods (Bloomingdale, IL), and grain-derived ImmunoFiber was purchased from (Whole Control, Arvada, CO).

Phagocytosis. The technique employing phagocytosis of synthetic polymeric microspheres was described earlier.15,16 Briefly: peripheral blood cells were incubated with 0.05 ml of 2-hydroxyethyl methacrylate particles (HEMA; 5×10^9/ml). The test tubes were incubated at 37 °C for 60 min., with intermittent shaking. Smears were stained with Wright stain. The cells with three or more HEMA particles were considered positive. The same smears were also used for evaluation of cell types.

Evaluation of IL-2 production. Purified spleen cells (2x10^6/ml in RPMI 1640 medium with 5% FCS) were added into wells of a 24-well tissue culture plate. After addition of 1 μg of Concanavalin A into positive-control wells, cells were incubated for 72 hrs in a humidified incubator (37 °C, 5 % CO2). At the endpoint of incubation, supernatants were collected, filtered through 0.45 μm filters and tested for the presence of IL-2. Levels of the IL-2 were measured using a Quantikine mouse IL-2 kit (R&D Systems, Minneapolis, MN).

Table 1.

	Control	#300	Krestin	ImmunoFibre	WGP	Now Yeast
Total weight	23.33 ± 1.06	24.34 ± 1.27	24.11 ± 1.48	24.99 ± 4.11	25.87 ± 3.38	26.99 ± 2.77
Liver	1.77 ± 0.23	1.49 ± 0.31	1.55 ± 0.19	1.54 ± 0.38	1.66 ± 0.35	1.47 ± 0.35
Spleen	0.16 ± 0.09	0.17 ± 0.06	0.14 ± 0.05	0.17 ± 0.07	0.15 ± 0.04	0.16 ± 0.03
Thymus	0.05 ± 0.02	0.06 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	0.05 ± 0.05	0.08 ± 0.02
Heart	0.16 ± 0.06	0.17 ± 0.10	0.18 ± 0.08	0.16 ± 0.03	0.16 ± 0.05	0.17 ± 0.03
Kidneys	0.41 ± 0.10	0.38 ± 0.07	0.40 ± 0.12	0.40 ± 0.15	0.36 ± 0.08	0.42 ± 0.05
Lung	0.16 ± 0.02	0.17 ± 0.02	0.15 ± 0.02	0.18 ± 0.03	0.16 ± 0.04	0.18 ± 0.05

RESULTS

Glucose evaluation. The mice were given drinking water freely and were not fed 24 hr prior to measurement of blood glucose level. In some experiments, blood glucose was determined in hyperglycaemic mice which were pre-treated with streptozotocin (250 mg/kg ip.) 12 days before the start of feeding with glucan17.

Biochemical Analysis. Mice were deprived of food for 24 hr and sacrificed. Serum was collected via the retro-orbital sinus and stored at about 80 °C for less than a week. Biochemical analyses were performed by Antech Diagnostics (Indianapolis, IN).

Statistics. Student's t-test was used to statistically analyze the data.

For cholesterol and blood sugar experiments we used the Laboratory Rodent Diet 5001 consisting of 23.9 % protein, 4.6 % fat, 5.5 % fiber, with 75.5 % total digestible nutrients. This diet was supplemented with either glucan or cholesterol corresponding to the final daily doses of
Physiological effects of different types of β-glucan

Fig. 1. Effect of long-term feeding with individual glucans (see Materials and Methods) on phagocytosis of HEMA particles by peripheral blood neutrophils. Each value represents the mean of three independent experiments ± SD.

*Represents significant differences between control (PBS) and glucan samples at P ≤ 0.05 level.

Fig. 2. Effects of glucan feeding on Con A-stimulated secretion of IL-2 by spleen cells.

*Represents significant differences between control (PBS) and samples at P ≤ 0.05 level.

100 μg of glucan or 16 μg of cholesterol, respectively. The mice adapted well to all diets and all survived the dietary treatment. Body weights and individual organ weights did not differ among the groups at each time point (Table 1).

First, we studied the effect of long-term feeding with glucan-added diet. Our data showed strong time-dependent effects of #300 and Krestin glucans on lowering cholesterol. Effects of other glucans were less pronounced and in the case of ImmunoFiber we found almost no effects (except after 50 days of feeding) – (Fig. 3)

The mice were then given a diet with added cholesterol. The blood cholesterol levels obtained after two weeks of cholesterol feeding were used as positive control. The cholesterol-rich diet was followed by 40 days of feeding with glucan-rich diet. Individual groups of mice were sacrificed in 10-day-intervals and cholesterol levels were evaluated. Results summarized in Fig. 4 showed that during short time intervals all glucans lowered the cholesterol levels in hypercholesterolemic animals, but in the long term only #300 glucan retained this activity.
The final part of our project was focused on effects of glucan administration on levels of blood sugar. Feeding with glucan did not significantly affect the sugar levels (Fig. 5). However, a different situation was found when we used mice with experimentally induced hyperglycaemia. After two weeks of feeding, #300 glucan significantly lowered the sugar levels to almost a normal (compare Figures 5 and 6). A longer application of glucan resulted in additional significant activity of ImmunoFibre glucan.

DISCUSSION

β-Glucans show notable physiological effects. This is the main reason they are of such great interest. They belong to a group of physiologically active compounds, collectively termed biological response modifiers. Thus far, among many known and tested immunomodulators of the first order, polysaccharides isolated from different microorganisms and plants hold a formidable place.
Physiological effects of different types of β-glucan

A large number of such polysaccharides, that act only as immunopotentiators, are well known.

Binding of β-glucan to specific receptors (either CR3 or Dectin-) activates macrophages. The activation consists of several interconnected processes including increased chemokinesis, chemotaxis, migration of macrophages, degranulation leading to increased expression of adhesive molecules, and adhesion to the endothelium. In addition, β-glucan binding triggers intracellular processes, characterized by the respiratory burst after phagocytosis of invading cells (formation of reactive oxygen species and free radicals), the increase of content and activity of hydrolytic enzymes, and signaling processes leading to activation of other cells and secretion of cytokines. For an excellent review regarding interaction of glucans with macrophages see.

The rationale for the choice of glucans parallels what was explained in our previous paper. We chose four glucans widely sold and available in the US, Europe and the Far East, representing grain-, mushroom- and yeast-derived glucans in soluble and insoluble form. Briefly, #300 is insoluble yeast-derived glucan; Krestin is soluble...
mushroom-derived glucan; ImmunoFiber represents soluble grain-derived glucan; and NOW is a mixture of both insoluble glucans from yeast and soluble glucans from mushrooms.

There are very few comprehensive reviews focused on biological properties of glucans from various sources that exist. The comparative reviews focus mainly toward the reflection of chemical characteristics of glucans on their biological and immunological properties\(^2\)\(^\text{,}3\). In this paper, we continued the comparison of several commercially important glucans. Glucans are well known for their ability to stimulate the innate immunity and the cellular branch of immune reaction\(^4\)\(^\text{,}5\). Therefore, our initial focus was phagocytic activity with the use of peripheral blood neutrophils and synthetic microspheres as a model. Our results confirmed our previous studies showing that glucan \#300 was one of the most active glucans available.

It is assumed that glucan application results in signaling processes leading to activation of macrophages and other cells and subsequent secretion of cytokines and other substances initiating inflammation reactions (e.g., interleukins IL-1, IL-2, IL-6, TNF-α)\(^6\)\(^\text{,}7\). We found that all tested glucans stimulated splenocytes to produce IL-2, with \#300 and Krestin showing the strongest and longest effects.

Most of experimental studies dealing with cholesterol-lowering effects of glucans used oats- or barley-derived glucans\(^8\)\(^\text{,}9\), without finding significant differences between these glucans. The cholesterol-lowering effects of glucans are well-established on numerous models, including humans\(^9\)\(^\text{,}10\). Without any direct proof, these effects are usually described as the result of fiber intake and subsequent decreased absorption of bile acids\(^11\). However, most of these studies suffer from the fact that they did not evaluate the effects of isolated glucans. They only used crude extracts\(^12\) without any knowledge if these glucans are even digested.

The current study is not only the first to directly compare the cholesterol-lowering activity of two different yeast-derived β-glucans, but also the first to compare normal animals and mice with experimentally induced cholesterolemia.

The effects if glucans on blood sugar levels are less known. Some studies showed hypoglycemic activity of natural glucans\(^13\)\(^\text{,}20\), additional studies demonstrated strong hypoglycemic activity of synthetic polysaccharides\(^17\)\(^\text{,}20\). The mechanisms remain, however, unknown. Some groups suggested similar mechanisms as in lowering cholesterol, i.e., changes in the increase of viscosity of the alimentary bolus and changes in the gastric emptying\(^7\). Our data found no correlation between these effects and source of the glucan or its solubility.

The present paper represents yet additional proof of the vast differences among commercially available glucans. Based on the presented data, it is clear that the individual glucans are either active in all tested areas or their activity is only mediocre. It is most likely that this yes-or-no effect suggests there are no glucans that can be tailor-made for stimulation of one particular reaction.
Physiological effects of different types of β-glucan

20. Vetvicka V, Vetvickova J. An evaluation of the immunological activities of commercially available beta-1,3-glucans. JANA 2007; 10:25–31.

21. Yadomae T. Structure and biological activities of fungal beta-1,3-glucans. Yakugaku Zasshi 2000; 120:413–431.

22. Kogan G. (1→3,1→6)-beta-D-glucans of yeast and fungi and their biological activity; in: Atta-ur-Rahman, (ed): Studies in Natural Products Chemistry. Amsterdam, Elsevier, 2000, pp 107–152.

23. Abel G, Czop JK. Stimulation of human monocyte beta-glucan receptors by glucan particles induces production of TNF-α and IL-1β. Int J Immunopharmacol 1992; 14:1363–1373.

24. Adachi Y, Okazaki M, Ohno N, Yadomae T. Enhancement of cytokine production by macrophages stimulated with (1→3)-beta-D-glucan, Grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull 1994; 17:1554–1560.

25. Vetvicka V, Terayama K, Mandeville R, Brousseau P, Kournikakis B, Ostroff G. Pilot study: orally-administered yeast beta-1,3-glucan prophylactically protects against anthrax infection and cancer in mice. JANA 2002; 5:1–6.

26. Reyna-Villasmil N, Bermudez-Pirela V, Mengual-Moreno E, Arias N, Cano-Ponce C, Leal-Gonzales E, et al. Oat-derived beta-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. Am J Therapeut 2007; 14:203–212.

27. Malkki Y. Oat fiber; in: Cho SS, Dreher ML, (eds): Handbook of Dietary Fiber. New York, Marcel Dekker, 2001, pp 497–512.

28. Wang L, Behr SR, Newman RK, Newman CW: Comparative cholesterol-lowering effects of barley beta-glucan and barley oil in golden syrian hamsters. Nutr Res 1997; 17:77–88.

29. Battilana P, Ornstein K, Minehire J, Schwarz JM, Acheson K, Scheniter P, et al., Mechanisms of action of beta-glucan in post-prandial glucose metabolism in healthy men. Eur J Clin Nutr 2001; 55:327–333.

30. Sone, Y., Makino,C., Misaki, A. Inhibitory effects of oligosaccharides derived from plant xyloglucan on intestinal glucose absorption in rat. J Nutr Sci Vitaminol 1992; 38: 391–395.

31. Wood PJ. Physicochemical properties and physiological effects of the (1→4) (1→4)-beta-D-glucan from oats. Adv Exp Med Bio. 1990; 270: 119–127.
