Multiple Instance Learning for ECG Risk Stratification
Divya Shanmugam, Davis Blalock, John Guttag
Task: How can we use a patient’s ECG signal to predict their risk of cardiovascular death after an acute coronary event?
Task: How can we use a patient’s ECG signal to predict their risk of cardiovascular death after an acute coronary event?
Task: How can we use a patient’s ECG signal to predict their risk of cardiovascular death after an acute coronary event?

Feed in the whole signal?
- High sampling rate (11 million samples per patient)
Task: How can we use a patient’s ECG signal to predict their risk of cardiovascular death after an acute coronary event?

Feed in the whole signal?
- High sampling rate (11 million samples per patient)

Use statistical features?
- Typical of existing work
- Approximates characteristics of risk signals
Task: How can we use a patient’s ECG signal to predict their risk of cardiovascular death after an acute coronary event?

Feed in the whole signal?
- High sampling rate (11 million samples per patient)

Use statistical features?
- Typical of existing work
- Approximates characteristics of risky signals

Learn what a risky set of heartbeats look like!
We reframe the risk stratification task as a **multiple instance learning** problem.

* Labels of collections of instances are available, but labels of instances are not
* Assumption: patients at higher risk of cardiovascular death have *more* risky instances than those at lower risk
Our method consists of three steps: instance extraction, classification, and aggregation.
Produces a **state-of-the-art ECG-based risk score for cardiovascular death**
Takeaways

* We propose a general-purpose method for incorporating very long time series into risk models
* Using this method, we produce a state-of-the-art ECG-based risk score!

Thanks!