Phytochemical properties and antibacterial activity of *Ageratum conyzoides*, *Piper betle*, *Muntinga calabura* and *Curcuma domestica* against mastitis bacteria isolates

Dian Wahyu Harjanti1*, Rizke Ciptaningtyas2, Fajar Wahyono1

1Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia

2Faculty of Medicine, Diponegoro University, Indonesia

*Email: dianharjanti@undip.ac.id

Abstract. Mastitis also known as inflammation of the mammary gland. It is a costly disease, which often caused by bacterial infection. Antibiotic have been use in mastitis treatment for decades, however it potentially caused an antibiotic residue in milk. This study was aimed to evaluate the potency of local resources as natural remedies for mastitis. The ethanol extract of *Ageratum conyzoides* leaves, *Piper betle* leaves, *Muntinga calabura* leaves and *Curcuma domestica* were screened for their phytochemical properties and antibacterial activity against mastitis causing bacteria. The bacteria were isolated from sub-clinical mastitis milk in small-holder dairy farms in Central Java, then identified by VITEK. Antibacterial activity of seven extracts were determined by agar well diffusion method. Experimental findings revealed that high proportion of test organisms were all susceptible to *Piper betle*, *Ageratum conyzoides* and *Curcuma domestica*. However, for *Muntinga calabura*, only *S. simulans*, *S. chromogens*, *S. dysgalactiae* and *S. sanguinis* were able to be inhibited, whereas *S. mitis*, *S. agalactiae* and *S. uberis* were resistant. The minimum inhibitory concentrations of all extracts were 12.5 mg/ml. Phytochemical screening revealed the presence of alkaloid, flavonoid, tannin and saponin with various concentration in all extracts. In conclusions, *Ageratum conyzoides* leaves, *Piper betle* leaves, *Muntinga calabura* leaves and *Curcuma domestica* rhizomes are potential sources of antibacterial agents for mastitis treatment.

1. Introduction

Antibiotic therapy for dairy cows has caused public concern worldwide due to the potential of antibiotic residues in milk. In another hand, dairy industry facing an economically devastating disease named mastitis. Economic losses due to mastitis are reduction of milk, veterinary treatment, animal culling and an increase in mortality rate. A study has been done to isolate pathogens from infected udders and found *Staphylococcus simulans*, *Staphylococcus chromogens*, *Streptococcus uberis*, *Streptococcus sanguinis*, *Streptococcus dysgalactiae* ssp *dysgalactiae*, *Streptococcus mitis* and *Streptococcus agalactiae* [1]. Previously, Salasia et al. [2] isolated *Staphylococcus aureus* from mastitis cows and Sudarwanto et al. [3] isolated *Klebsiella pneumonia* from bulk tank milk in West Java region of Indonesia. The use of antibiotic for mastitis treatment is not only causing residue in milk, but also associated with the problem of antibiotic resistance [4,5].
There is a need to explore alternative approaches for the treatment of mastitis. Recently, an interest in discovering new natural antimicrobials from plants is rising. Phytochemical analysis of ethnomedical plants for secondary metabolites is an important area of fundamental research because of its relevance for the discovery of therapeutic agents. Evidence found through research in human showed that *Piper betle*, *Ageratum conyzoides*, *Muntinga calabura* and *Curcuma domestica* are useful for various disease treatments, such as fever, respiratory disease, gastritis and inflammation by injuries due to their bioactive compounds, such as saponin, flavonoid, tannin, alkaloid and essential oils [6,7]. In line with above evidence, current study was aimed to determine the phytochemical compounds and to investigate the antibacterial effectiveness of *Piper betle*, *Ageratum conyzoides*, *Muntinga calabura* and *Curcuma domestica* against Mastitis causing pathogens as an alternative treatment to mastitis infection.

2. Material and method

2.1. Herbal collection and extraction.

Piper betle, Ageratum conyzoides and Muntinga calabura leaves, also *Cucuma domestica* rhizome were collected from Central Java region Indonesia. The medicinal plants were dried in oven 50°C for 24-48 h, then finely ground into powder. Ethanol 96% was then added to each herbal separately and homogenize for 1 h. Maceration for each herbal was done for 24 h, following method described by Harjanti et al. [8]. Ethanol extract of each herbal was dissolve in 10% dimethyl sulphoxide (DMSO) (Merck) just before use to make concentration of 100, 50, 25 and 12.5 mg/ml.

2.2. Bacterial isolates.

Bacterial isolates used in this study were the pathogens isolated from sub-clinical cases of bovine mastitis which have been identified by VITEK 2 compact (bioMérieux, UK) as *Staphylococcus simulans*, *Staphylococcus chromogens*, *Streptococcus uberis*, *Streptococcus sanguinis*, *Streptococcus dysgalactiae ssp dysgalactiae*, *Streptococcus mitis* and *Streptococcus agalactiae*. All isolates were obtained from Diponegoro University National Hospital. The isolates were maintained on nutrient agar slants at 4°C and subcultured onto nutrient broth for 24 h prior to testing. These bacteria served as test pathogens for antibacterial activity assay.

2.3. Antibacterial activity assay

Antibacterial activity of seven extracts were determined by agar well diffusion method [9]. Inoculum from each bacterial tested which containing 10^6 cfu/ml each isolate was spread on the Mueller Hinton agar plates for *Staphylococcus simulans* and *Staphylococcus chromogens*, and on the Mueller Hinton Blood agar plates for *Streptococcus uberis*, *Streptococcus sanguinis*, **Streptococcus dysgalactiae ssp dysgalactiae**, *Streptococcus mitis* and *Streptococcus agalactiae*. Subsequently, wells with diameters of 8 mm were punched into the agar medium and filled with each extract, then allowed to diffuse at room temperature for 2 h. Each extract with different concentration (100, 50, 25 and 12.5 mg/ml) were analyzed with five replications. All plates were then incubated in the upright position at 37°C for 24 h. Wells containing the same volume of 10% DMSO and 96% ethanol were served as negative control, while Mastilak (Procaine penicillin and dihydrostreptomycin, SANBE, Indonesia) was selected to be use as positive control because it is commonly used by veterinarian to cure mastitis in dairy farms. Minimum inhibitory concentrations (MICs) were determined after 24 h incubation and measured in mm. Five replicates were carried out for each extract with each concentration against each of the tested bacteria. Data were expressed as mean±standard deviation.

2.4. Phytocemical properties analysis

Ethanol extract of *Piper betle*, *Ageratum conyzoides* and *Muntinga calabura* leaves, also *Cucuma domestica* rhizome were subjected to phytochemical analysis to ascertain the presence metabolites such as saponin, alkaloid, steroid, flavonoid, tannin, phenol.
3. Result and discussion

Table 1 shows the results of the zones inhibition diameter produced by each extract on the various test organisms. The result of antibacterial activity assay indicated that high proportion of test organisms were all susceptible to *Piper betle*, *Ageratum conyzoides* and *Curcuma domestica*. However, for *Muntinga calabura*, only *S. simulans*, *S. chromogens*, *S. dysagalactiae* and *S. sanguinis* were able to be inhibited, whereas *S. mitis*, *S. agalactiae* and *S. uberis* were resistant (table 1). Ethanol extract of *Piper betle* had inhibition zones ranging from 14.2 to 28.7 mm, *Ageratum conyzoides* extract had inhibition zones ranging from 10.4 to 21.5 mm, *Curcuma domestica* extract had inhibition zones ranging from 7.0 to 21.0 mm, whereas *Muntinga calabura* extract had inhibition zone ranging from 8.0 to 17.4 mm. The minimum inhibitory concentrations of all extracts were 12.5 mg/ml.

Various publications have documented the antimicrobial activity of *Ageratum conyzoides*, *Piper betle* and *Muntinga calabura* leaves extracts, also *Curcuma domestica* rhizome extract. Previous publications showed that ethanol, ethyl acetate, methanol and supercritical CO₂ extract of four varieties of *Piper betle* had significant activities against *Vibrio cholera*, *Staphylococcus aureus* and *Streptococcus pneumoniae* and methicillin-resistant *Staphylococcus aureus* (MRSA) [10,11].

Ageratum conyzoides leaves was reported to possess antimicrobial activity, anti-inflammatory activity, analgesic activity, anti-cancer and radical scavenging activity [6]. Regarding to *Muntinga calabura* leaves, we found that *S. simulans*, *S. chromogens*, *S. dysagalactiae* and *S. sanguinis* could be inhibited by 12.5 mg/ml of *Muntinga calabura* ethanol extract. Another study using aqueous, petroleum ether and ethyl acetate extracts of *Muntinga calabura* leaves reported antibacterial activity against *Staphylococcus aureus* [12] and MRSA [13] by micro-broth dilution method. The antibacterial activity of curcumin as bioactive compound of *Curcuma domestica* also have been investigated previously by Mun et al. [14] against MRSA and by de Oliveira [15] against *Escherichia coli* and *Listeria innocua*. The antibacterial activity in both studies were assessed by broth microdilution method. Curcumin is a natural polyphenolic flavonoid from the Curcuma rhizome [14].

Furthermore, phytochemical investigations in this study revealed that *Ageratum conyzoides*, *Piper betle* and *Muntinga calabura* leaves extracts, also *Curcuma domestica* rhizome extract possessed active compounds such as saponin, alkaloid, steroid, flavonoid, tannin and phenol in various concentration. Phytochemical profiles of each extract presented in Table 2. *Ageratum conyzoides* extract had the highest flavonoid (6.15 %w/v) and phenol (3.86%w/v) contents. Alkaloid, steroid and tannin contents in *Muntinga calabura* extract (0.56, 2.48 and 53.98%w/v) were the highest, whereas saponin content in *Piper betle* extract (4.80%w/v) was the highest among plant extracts. Saponins have a soapy characteristic and characterized as glycosides, which could facilitate the absorption of food and medicine. Tannins have been reported to prevent the development of bacteria by precipitating microbial protein and making the bacteria could not able to use the nutritional protein for their growth [16]. Tannins also could disturb the extracellular microbial enzymes and oxidative phosphorylation which in turn initiate iron deprivation, the most important material for bacterial growth [17]. Flavonoid from plant extract may inhibit the cytoplasmic membrane function and energy metabolism of bacteria [18].

Comparison of the data of antibacterial activity and phytochemical property obtained from current study with previously published are problematic. The composition of plant extract is known to vary according to local climatic, environmental conditions and different regions [19]. Some plants with the same common name may be derived from different plant species. Furthermore, the method used to evaluate antibacterial activity varies between publications. Agar disc diffusion, agar dilution and broth dilution methods are commonly used. The results obtained by each of these methods may differ as many factors vary between assay. These include the microbial growth differences, the exposure of bacteria to plants extracts, solubility of plant extract, and the use and quantity of an emulsifier.
Table 1. Antibacterial activity of five herbals against Mastitis causing bacteria

	Minumitory concentration (cm)	Positive control			
	100 mg/ml	50 mg/ml	25 mg/ml	12.5 mg/ml	
Piper betle					
Staph. simulans	26.5 ± 1.6	25.8 ± 1.5	24.5 ± 1.5	22.0 ± 1.4	40.0 ± 0
Staph. chromogenes	28.7 ± 1.6	28.0 ± 1.5	25.3 ± 0.9	24.3 ± 0.9	48.0 ± 0
Staph. mitis	24.5 ± 0.5	22.7 ± 0.7	21.0 ± 0.3	19.5 ± 0.4	40.0 ± 0
Strep. dysagalactiae	23.8 ± 1.2	21.6 ± 1.3	19.4 ± 1.4	18.2 ± 1.0	38.0 ± 0
Strep. agalactiae	17.7 ± 1.8	17.3 ± 1.5	16.0 ± 1.4	14.2 ± 1.7	32.0 ± 0
Strep. uberis	20.0 ± 2.0	19.0 ± 1.6	17.4 ± 1.6	16.0 ± 1.3	29.8 ± 0.3
Strep. sanguinis	19.6 ± 1.8	18.2 ± 1.7	16.4 ± 1.7	14.8 ± 1.8	29.5 ± 0.6
Ageratum conyzoides					
Staph. simulans	18.0 ± 0	16.2 ± 0.2	16.0 ± 0	14.2 ± 1.4	40.0 ± 0.0
Staph. chromogenes	20.3 ± 1.0	18.7 ± 0.9	16.5 ± 0.7	15.0 ± 0.8	48.0 ± 0.0
Staph. mitis	21.5 ± 0.8	20.3 ± 0.6	19.2 ± 0.4	17.8 ± 0.4	37.0 ± 0.0
Strep. dysagalactiae	17.4 ± 2.3	16.0 ± 2.3	14.8 ± 2.1	14.0 ± 2.1	36.0 ± 0.0
Strep. agalactiae	17.7 ± 1.8	17.3 ± 1.5	13.7 ± 1.8	13.5 ± 1.6	32.0 ± 0.0
Strep. uberis	13.2 ± 3.3	10.4 ± 3.8	12.6 ± 2.6	12.2 ± 2.2	29.0 ± 0.0
Strep. sanguinis	19.4 ± 1.6	18.4 ± 1.6	17.0 ± 1.4	15.2 ± 1.3	28.7 ± 0.2
Muntinga calabura					
Staph. simulans	17.0 ± 0.9	16.0 ± 0.9	14.8 ± 0.9	13.6 ± 0.9	42 ± 0.4
Staph. chromogenes	17.4 ± 1.0	16.2 ± 0.9	15.2 ± 0.8	14.2 ± 0.9	45.4 ± 1.3
Staph. mitis	0	0	0	0	44.3 ± 0.9
Strep. dysagalactiae	12.2 ± 0.9	11.6 ± 0.8	10.6 ± 0.7	10.6 ± 0.7	38.2 ± 0.2
Strep. agalactiae	0	0	0	0	37.3 ± 0.5
Strep. uberis	0	0	0	0	35.2 ± 0.2
Strep. sanguinis	13.0 ± 1.0	12.0 ± 0	10 ± 0	8.0 ± 0	34.7 ± 1.3
Curcuma domestica					
Staph. simulans	17.4 ± 1.6	15.2 ± 1.6	12.8 ± 1.5	12.4 ± 1.9	40.0 ± 0
Staph. chromogenes	20.6 ± 0.7	20.0 ± 0	18.0 ± 0.7	16.4 ± 0.4	47.6 ± 0.4
Staph. mitis	15.0 ± 0	13.2 ± 0.2	11.8 ± 0.4	10.6 ± 0.2	36.0 ± 1.1
Strep. dysagalactiae	21.0 ± 0.4	20.0 ± 0.4	19.2 ± 0.4	18.0 ± 0.5	36.4 ± 0.4
Strep. agalactiae	12.7 ± 0.7	12.7 ± 0.7	10.7 ± 0.7	9.0 ± 1.1	33.6 ± 1.8
Strep. uberis	12.8 ± 1.0	14.0 ± 0	11.0 ± 1	10.0 ± 0	30.7 ± 0.7
Strep. sanguinis	11.0 ± 0.9	13.0 ± 0	9.0 ± 0	7.0 ± 0	30.8 ± 0.8

Although in this study Muntinga calabura extracts were resistant to some organism (S. mitis, S. agalactiae and S. uberis), our previous in vivo study in sub-clinical mastitis cows showed an antibacterial potency. In vivo experiment using the aqueous extract of Muntinga calabura leaves as the main ingredient of teat dip antiseptic for sub-clinical mastitis cows showed that the concentration of 3% (w/v) could inhibit the penetration and the growth of bacteria into teat canals of mammary gland and reduce the somatic cell counts in milk [20].

4. Conclusion
In conclusions, Ageratum conyzoides leaves, Piper betle leaves, Muntinga calabura leaves and Curcuma domestica rhizomes are potential sources of antibacterial agents for mastitis treatment.
Table 2. Phytochemical profile of plants extracts

Phytochemicals	Ageratum conyzoides	Piper betle	Curcuma domestica	Muntinga calabura
Saponin (% w/v)	3.47	4.80	3.73	3.42
Alkaloid (% w/v)	0.14	0.42	0.24	0.56
Steroid (% w/v)	1.72	1.21	1.55	2.48
Flavonoid (% w/v)	6.15	4.97	1.92	4.69
Tannin (% w/v)	42.0	36.85	41.33	53.98
Fenol (% w/v)	3.86	3.70	1.71	3.62

References

[1] Harjanti DW, Ciptaningtyas R, Wahyono FW 2018 *IOP Conf. Ser: Earth Environ. Sci.* **102**: 012076.
[2] Salasia SIO, Khusnan Z Lämmler C, Zschöck 2004 *J. Vet. Sci.* **5**(2):103-109
[3] Sudarwanto M, Akineden Ö, Odenthal S, Gross M and Uslieber E 2015 *Foodborne Pathogens Disease* **12**(7):1-7.
[4] Harini H and Sumathi BR 2011 *Vet. World* **4**(8):358-359.
[5] Mushtaq S, AM Shah, A Syah, SA Lone, A Hussain, QP Hassan, MN Ali 2018. *Microbial Pathogenesis* **114**:357-361.
[6] Singh SB, Devi WR, Marina A, Devi WA, Swapana N and Singh CB 2013 *J. Medicinal Plants Res.* **7**(8): 371-385.
[7] Dutta B 2014 *J. Medicinal Plants Studies* **2**(5):116-119.
[8] Harjanti DW, Ciptaningtyas R, and Wahyono F 2017. *Proc. Int. Conf. on Sustainable Anim. Agric. for Developing Countries* **801**: 1454-1567.
[9] NCCLS (National Committee for Clinical Laboratory Standards).1993. Performance Standarads for Antimicrobial Disc Suspectibility Tests. *Approved Standard NCCLS Publication M2-A5*, Villanova, PA, USA.
[10] Agarwal T, Singh R, Shukla AD, Waris I, Gujrati A 2012 *Adv. Appl. Sci. Res.* **3**(8):698–705.
[11] Valle DL, Jr. Cabrera RC, Puzon JMJ, Rivera WL 2016 *PLoS ONE* **11**(1): e0146349. doi:10.1371/journal.pone.0146349.
[12] Zakaria ZA, Sufian AS, Ramasamy K , Ahmat N , Sulaiman MR, Arifah AK, Zuraiini A and Somchit MN 2010 *Afr. J. Microbiol. Res.* **4**(4): 304-308.
[13] Sufian S, Ramasamy K, Ahmat N 2013 *J. Ethnopharmacy* **146**(1):198-204
[14] Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT Kwon DY 2013. *Phytomedicine* **20**(8): 714-718.
[15] de Oliveira, Tosati JV, Tikekar RV, Monteiro AR, Nitin N 2018 *Postharvest Biol. Tech* **137**:86-94.
[16] Banso A 2009 *J. Medicinal Plants Res.* **3**(2): 82-85.
[17] Naumann HD, Tedeschi LO, Zeller WE, Huntley NF 2017 *R. Bras. Zootec* **46**(12):929-949.
[18] Kumar S and Pandey AK 2013 *The Scientific World J.* **1**:1-16
[19] Szakiel A, Paczkoski C, Henry M 2011 *Phytochem. Rev* **10**:471-491.
[20] Prasetyanti DR, Budiiarti C, and Harjanti DW 2016 *Indon. J. Anim. Sci* **19**(1):10-16.