Effect of customized mineral supplement on blood biochemical profile, antioxidant indices and immunity in kids

ROJITA YENGKHOM1, A K VERMA2, NARAYAN DUTTA3, S E JADHA V4 and A K PATTANAIK5

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 12 December 2018; Accepted: 10 April 2019

ABSTRACT

The study was carried out to examine the effects of customized mineral supplement on blood-biochemical profile, antioxidant indices and immunity in kids. Kids (18) were randomly divided into 3 groups with 6 kids in each group in a CRD. The kids were randomly allocated into CON, CMM and CMS groups. In CON group, kids were offered a concentrate mixture without mineral mixture; however, kids in CMM and CMS groups were provided concentrate mixture having commercial and customized mineral supplement, respectively. The feeding trial lasted for 135 days. Haematocrit and serum glucose levels were significantly lower in CON as compared to CMS and CMM groups. The mean Hb was significantly higher in CMS relative to CON. Total protein was significantly higher in CMS group as compared to CMM and CON, while serum urea, albumin, globulin, A:G, serum enzymes (ALT and AST) did not differ significantly among treatments. The LPO levels were decreased in CMS relative to CON. Total protein was significantly higher in CMS group as compared to CMM and CON, while serum urea, albumin, globulin, A:G, serum enzymes (ALT and AST) did not differ significantly among treatments. The CAT and GSH levels were comparable irrespective of treatments, however, SOD levels increased significantly in CMS followed by CMM and CON groups, respectively. The CMI response was significantly higher in CMS than CON and CMM groups. The mean antibody titer (log base2) against chicken RBC was significantly higher in CMS and CMM groups relative to CON. It may be concluded that the supplementation of customized mineral supplement considerably improved the haematological parameters, antioxidant indices and immune response in kids.

Key words: Antioxidant indices, Biochemical profile, Immunity, Kids, Metabolic profile, Mineral supplement

Minerals have a great impact on animal performance and its imbalance adversely affects growth, fertility, immunity and ultimately affecting production (Bhanderi et al. 2016). Health and production of livestock is thus greatly influenced by optimal level of essential and trace mineral in the body (Mohanta and Garg 2014, Yengkhom et al. 2018). Supplementation of all the elements in diet may not always be desirable, because many of them such as Mg, S, K, I, Co, Fe and Mn are present in required concentrations in feeds and fodders of specific areas. At present, commercial mineral mixtures are prepared and marketed without considering the actual deficiency or excess of minerals in animals of a specific region. Keeping this background in view, the proposed research work was planned to assess the effects of customized mineral supplement on blood-biochemical profile, antioxidant indices and immune response in kids.

MATERIALS AND METHODS

Experiment, animals and diets: The experiment was carried out at Animal Nutrition Research Shed of the Institute. Eighteen kids of about 6 months old with mean BW of 10.70±0.7 kg were randomly divided into 3 groups with 6 kids in each group in a completely randomized block design. The kids were randomly allocated into 3 dietary treatments, viz. control (CON) and 2 treatment groups (CMM and CMS). The experimental kids in CON group were offered a concentrate mixture without mineral mixture; however, kids in CMM and CMS groups were given concentrate mixture having commercial mineral mixture and customized mineral supplement, respectively. All the kids were dewormed at the onset of the experiment and reared under uniform managemental conditions for a period of 135 days. All the kids were housed in well ventilated shed having provision for individual feeding.

The kids were provided daily a weighed amount of respective concentrate mixture and wheat straw in the morning at 10.00 AM to meet their nutrient requirements for maintenance and 50 g daily growth (Kearl 1982). Wheat straw was offered ad lib. after ensuring complete consumption of the concentrate mixture. Wheat straw refusals were weighted daily on the next morning to estimate wheat straw consumption per day and sampled at weekly intervals for subsequent analysis of dry matter (DM) to assess the average DM intake during the experimental period. A small amount of green oats (200 g) was given to
all the experimental kids to satisfy the part of their respective nutrient requirements. The animals were provided with fresh and clean tap water free choice twice daily. The body weight of the individual kid was recorded at fortnightly intervals in the morning before feeding and watering for 135 d in order to assess the change in body weight.

Blood collection and estimation of blood biochemical profile: Blood samples (6 ml) were collected from all the experimental kids early in the morning before feeding at 0, 60 and 135 d, post-feeding, aseptically by jugular vein puncture. Out of 6 ml, 2 ml was added with EDTA for haematological parameters and the remaining was taken in a well cleaned sterilized centrifuge tubes to collect sera. Serum was separated and preserved at −20°C for further analysis. The metabolic profile was estimated by using diagnostic kits. Haemoglobin (Hb) and hematocrit were estimated in whole blood immediately after blood collection by cyanometahemoglobin method and Wintrobe’s tube, respectively. Serum glucose concentration was determined colorimetrically. The serum protein and albumin content were measured as per Vatzidis (1977) and Doumas et al. (1971), respectively. Serum urea and serum glucose was estimated as per Hallett and Cook (1971). Activity of serum enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined as per standard methods described by Thefeld et al. (1974) whereas alkaline phosphatase (ALP) was determined as per Bretaudiere et al. (1977).

Antioxidant indices and immune response: On each collection, blood samples were collected aseptically from jugular vein of every kid in 3.0 ml wintrobe tube with acid citrate dextrose buffer @ 1.5 ml/10.0 ml of blood. The collected samples were processed to prepare haemolysate and kept at −20°C and used for antioxidant assays. The superoxide dismutase (SOD) activity of RBC haemolysate samples was measured using nitro blue tetrazolium (NBT) as a substrate after suitable dilution according to the method of Marklund and Marklund (1974), with certain modifications as suggested by Minami and Yoshikawa (1979). Lipid peroxidation (LPO) was determined by estimating the concentration of malonaldialdehyde (MDA) in Hb. The reduced glutathione (GSH) and catalase (CAT) were estimated by Dithio-bis-2 nitrobenzoic acid (DTNB) method of Prins and Loos (1969) and Bergmeyer (1983), respectively. Non-protein thiol (NP-SH) group in the erythrocytes was estimated following the method of Sedlak and Lindsay (1968).

The cell mediated immune (CMI) response was assessed by delayed-type hypersensitivity (DTH) response to intradermal inoculation of phytohaemagglutinin-P (PHA-P) as described by Dey et al. (2015). Humoral immune response was assessed by challenging the animals with intravascular single dose of chicken red blood cells (CRBC, 20% suspension in phosphate-buffered saline; PBS) following the method of Dutta et al. (2012).

Statistical analysis: Data obtained were subjected to analysis of variance using SPSS software (v11.0) and treatment means were ranked using Duncan’s multiple range tests. Significant variance between treatments were measured at P<0.05. Statistical analyses were carried as per the procedures of Snedecor and Cochran (1994).

RESULTS AND DISCUSSION

Chemical composition of feeds: The chemical composition of concentrate mixtures CON, CMM and CMS offered to experimental kids was analogous with the values reported for goats in previous reports (Patra et al. 2006, Dey et al. 2015). All the supplements were isonitrogenous and isocaloric (Table 1). The chemical composition of green oats and wheat straw was also found to be in normal range of Indian feeds (Dey et al. 2015).

Blood-biochemical parameters: The haematocrit (%) was significantly (P<0.05) lower in CON group as compared to CMM and CMS groups. Mean Hb (g/dL) values were significantly (P<0.05) higher in CMS relative to CON, while CMM has an intermediate position between CMS and CON groups (Table 2). Serum glucose (mg/dL) was significantly (P<0.01) lower in CON as compared to CMM and CMS. Several previous reports (Satapathy et al. 2016, Kimuhrasi et al. 2011, Godara et al. 2015, Khan et al. 2015) support the fact that supplementation of mineral mixture/area specific mineral mixture improved serum/plasma glucose levels in goats and buffaloes. This might be attributed to the effect of minerals eitheras the cofactors and/or activators of many enzymatic systems associated with the metabolism of nutrients and again Zn is known to alter molar proportion of VFA in the rumen with an increase in propionate (Arelovich et al. 2000) resulting in increased glucose level in the plasma (Aliarabi and Chhabra 2006). Total protein (g/dL) was significantly (P<0.01) higher in CMS group as compared to CMM and CON groups, while serum urea (mg/dL), albumin (g/dL), globulin (g/dL) and A/G ratio did not differ significantly (P>0.05) among the treatment groups. The present research findings are supported by earlier workers (Huert et al. 2002, Kinal et al. 2007), who reported no change in plasma/serum urea level after mineral supplementation. Satapathy et al. (2016) also observed no

Attribute	Concentrate supplements	Green oats	Wheat straw
	CON	CMM	CMS
OM	90.96	91.03	91.27
CP	22.32	22.36	22.40
EE	3.10	3.22	3.15
Total Ash	9.80	8.81	8.73
NDF	84.89	85.16	84.62
ADF	25.18	25.10	25.09
Ca	0.88	1.16	1.39
P	0.32	0.58	0.69

CON: Maize–30, Wheat bran–37, DSBM–30, Salt–1.0; CMM: Maize–30, Wheat bran–37, DSBM–30, CMM–2.0, Salt–1.0; CMS: Maize–30, Wheat bran–37, DSBM–30, CMS–2.0, Salt–1.0.
Table 2. Effect of various mineral supplements on metabolic profile in kids

Treatment	Periods (d)	Treatment mean±SE	P value	G	P	G×P	
	0	60	135				
Haematocrit (%)							
CON	33.80a	35.60b	37.17bcd	35.60A±0.33	0.028	0.00	0.000
CMM	36.00b	36.40bc	38.00cd	36.80B±0.33	0.028	0.00	0.000
CMS	35.40ab	36.00b	38.60d	36.67B±0.33	0.028	0.00	0.000
Period mean±SE	35.07±0.33	36.00±0.33	38.00±0.33				
Haemoglobin (g/dL)							
CON	9.11a	10.74bcd	10.55bc	10.13A±0.20	0.051	0.00	0.000
CMM	9.88ab	11.11cd	11.69d	10.81AB±0.20	0.051	0.00	0.000
CMS	10.22abc	11.03bcd	11.73d	11.03B±0.20	0.051	0.00	0.000
Period mean±SE	9.74±0.21	11.00±0.21	11.32±0.21				
Serum glucose (mg/dL)							
CON	62.17a	62.97a	63.63ab	62.91A±1.38	0.000	0.749	0.010
CMM	68.64abc	69.45abc	69.53abc	69.20B±1.38	0.000	0.749	0.010
CMS	71.62c	71.09bc	72.97c	71.41B±1.38	0.000	0.749	0.010
Period mean±SE	67.74±1.38	67.36±1.38	68.70±1.38				
Total protein (g/dL)							
CON	6.49	6.52	6.72	6.53A±0.01	0.918	0.923	1.000
CMM	6.53	6.59	6.65	6.59B±0.01	0.918	0.923	1.000
CMS	6.86	6.87	7.08	6.70B±0.01	0.918	0.923	1.000
Period mean±SE	6.62±0.09	6.70±0.09	6.77±0.09				
Albumin (g/dL)							
CON	3.66	3.58	3.63	3.63±0.05	0.918	0.923	1.000
CMM	3.63	3.64	3.65	3.64±0.05	0.918	0.923	1.000
CMS	6.66	3.73	3.70	3.68±0.05	0.918	0.923	1.000
Period mean±SE	3.65±0.05	3.63±0.05	3.67±0.05				
Globulin (g/dL)							
CON	2.84	2.95	2.92	2.90A±0.13	0.918	0.923	1.000
CMM	2.91	2.96	3.00	2.96AB±0.13	0.918	0.923	1.000
CMS	3.20	3.30	3.38	3.29B±0.13	0.918	0.923	1.000
Period mean±SE	2.98±0.13	3.07±0.13	3.10±0.13				
A:G ratio							
CON	1.31	1.24	1.27	1.27±0.06	0.918	0.923	1.000
CMM	1.29	1.27	1.26	1.27±0.06	0.918	0.923	1.000
CMS	1.18	1.14	1.12	1.15±0.06	0.918	0.923	1.000
Period mean±SE	1.26±0.06	1.22±0.06	1.22±0.06				
Serum urea (mg/dL)							
CON	15.30a	16.56bc	17.09bc	16.32B±0.31	0.104	0.003	0.024
CMM	16.85abc	16.73abc	17.81bc	17.13±0.31	0.104	0.003	0.024
CMS	16.08ab	17.25bc	18.14c	17.16±0.31	0.104	0.003	0.024
Period mean±SE	16.08±0.31	16.85±0.31	17.68±0.31				
ALP (IU/L)							
CON	142.47	122.83	123.97	123.09±2.77	0.918	0.923	1.000
CMM	120.74	121.72	122.08	122.17±2.77	0.918	0.923	1.000
CMS	121.08	121.96	122.94	121.99±2.77	0.918	0.923	1.000
Period mean±SE	121.43±2.77	122.17±2.77	123.00±2.77				
AST (IU/L)							
CON	82.81	82.94	82.81	82.85±4.34	0.996	0.999	1.000
CMM	82.69	82.06	82.81	82.52±4.34	0.996	0.999	1.000
CMS	82.19	82.31	82.44	82.31±4.34	0.996	0.999	1.000
Period mean±SE	82.58±4.34	82.44±4.34	82.69±4.34				
ALT (IU/L)							
CON	19.59	21.69	22.18	21.16B±0.99	0.040	0.190	0.260
CMM	16.06	18.10	19.02	17.73A±0.99	0.040	0.190	0.260
CMS	17.00	18.72	18.88	18.20A±0.99	0.040	0.190	0.260
Period mean±SE	17.55±0.99	19.50±0.99	20.03±0.99				

abcd, AB Means with different superscripts within a row and column differ significantly.
significant changes in serum urea, albumin, globulin, A:G after supplementing area specific mineral mixture. Serum protein level depends on various factors including extent, duration and nature of hepatic disorders and the presence of the other pathological conditions (Kaneko 1997). No significant (P>0.05) difference was observed in serum enzymes irrespective of treatment groups except ALT which is significantly higher (P<0.05) in CON group as compared to CMM and CMS groups. Pandey et al. (2018) also reported no effect of organic form of minerals (Mn, Cu and Zn and Se) on AST level. ALP concentration was similar before and after the treatment. Godara et al. (2015) also support the fact that supplementation of commercial/area specific mineral mixture did not make any change in the AST and ALT levels in goats. Interestingly, normal levels of AST and ALT indicate no adverse on liver and muscle functions.

Antioxidant indices: Antioxidant enzymes, viz. GSH, CAT, SOD, LPO and NPSH levels play a significant role in body defense mechanism by scavenging reactive oxygen species (ROS). Antioxidants comprising of an array of endogenous and exogenous substances serve to stabilize these highly reactive free radicals, thereby remaining the structural and functional integrity of cells including important immune cells (Bisla et al. 2002, Han et al. 2004). The LPO is used as an indicator of oxidative stress in cells and tissues. The LPO levels were decreased (P<0.06) in CMS group as compared to CON, while CMM has the intermediate position. Similarly, LPO level was significantly (P<0.05) reduced at IIIrd period as compared to Ird period (Table 3). The present research findings are supported by previous report (Spears and Weiss 2008), that the essential trace minerals, viz. Zn, Cu, Mn and Se are involved in the antioxidant defense system.

The CAT and GSH levels were comparable (P>0.05) irrespective of treatments, however, SOD levels increased significantly (P<0.05) in CMS followed by CMM and CON groups, respectively. Correspondingly, SOD levels increased significantly (P<0.01) from Ird period onwards. Our results are in conformity with the finding of Jing et al. (2007), who fed rats on different Zn levels for 6 weeks and reported that rats fed on Zn deficient diet had reduced activities of copper-zinc superoxide dismutase (Cu-Zn SOD) and CAT; and increased malondialdehyde as well as hydrogen peroxide concentrations in liver. Similarly, Muhammad (2012) found that supplementation of antioxidant minerals to the albino rats increased the activities of CAT, Gpx, and SOD as compared with hypertensive control. Nevertheless, CAT activity in the present study was comparable among treatment groups. Prohaska and Brokate (2001) reported that rats fed a low copper diet had lower Cu, Zn-SOD activity in the liver, heart, and kidney. In addition, there was a significant reduction in Cu, Zn-SOD protein detected by Western

Treatments	Period (d)	Treatment mean±SE	Period (d)				
LPO (μmol/mgHb)	0	60	135				
CON	3.34±d	2.83abc	2.72abc	2.97A±0.08	0.066	0.000	0.004
CMM	3.14	2.84abc	2.71abc	2.90AB±0.08	2.71B±0.08		
CMS	2.94bcd	2.69ab	2.49a	2.71A±0.08			
Period mean±SE	3.14±a±0.08	2.79±0.08	2.64±0.08				
CAT (U/mgHb)	0	60	135				
CON	77.08b	81.03b	64.74a	74.28±1.97	0.321	0.018	0.031
CMM	78.88b	73.39ab	75.49b	75.92±1.97			
CMS	83.62b	77.07b	74.82ab	78.51±1.97			
Period mean±SE	79.86b±1.97	77.16ab±1.97	71.69c±1.97				
SOD (U/mgHb)	0	60	135				
CON	52.45a	60.27ab	63.59bc	58.77A±1.21	58.77A±1.21		
CMM	55.97ab	59.45bc	66.21bc	60.54b±1.21			
CMS	55.99ab	61.07ab	71.92c	63.00c±1.21			
Period mean±SE	54.80a±1.81	60.26b±1.81	67.24c±1.81				
GSH (μmol/mgHb)	0	60	135				
CON	21.96b	18.29a	17.09a	19.11±0.54	0.234	0.000	0.007
CMM	19.64ab	17.40b	16.92a	17.87±0.54			
CMS	19.24ab	17.91a	16.60a	16.87±0.54			
Period mean±SE	20.28±0.54	17.87±0.54	16.87±0.54				
NPSH (μmol/ml)	0	60	135				
CON	0.84a	0.85bc	0.86abc	0.85A±0.00	0.001	0.000	0.000
CMM	0.85ab	0.87bc	0.88cd	0.87B±0.00			
CMS	0.85ab	0.88cd	0.90d	0.88B±0.00			
Period mean±SE	0.85d±0.00	0.86d±0.00	0.88d±0.00				

abcd,ABMeans with different superscripts within a row and column differ significantly.
immunoblotting that was proportional (r=0.96) to the reduction in Cu, Zn-SOD activity. The NPSH (µmol/ml) level was significantly (P<0.05) higher in CMS group as compared to CMM and CON. The increased NPSH levels in mineral supplemented groups as compared to control indicate better antioxidant status of kids. Thiols groups act as intracellular antioxidants by scavenging free radicals and through enzymatic reactions. The water soluble thiol group protects biological membrane (Moscio et al. 1994, Dey 2005, Dubey 2007).

Immune response: The kids under CON, CMM and CMS groups exhibited an increased in skin thickness following the intra dermal injection of PHA-p. The mean values for skin thickness were significantly (P<0.01) higher in CMS as compared to CON and CMM groups (Table 4). The increased CMI response in CMS supplemented kids may be attributed to the higher bioavailability of essential trace minerals like Zn, Cu, I and Mn. The mean antibody titre (log base 2) against chicken RBC was significantly (P<0.01) higher in CMS and CMM groups relative to CON. The mean antibody titre differed significantly (P<0.01) among different periods and being significantly (P<0.01) higher at 14th day as compared to comparable values between 7th and 21st day of post inoculation (Fig 1). The interaction between period and treatment was also significant (P<0.01).

Trace minerals Zn, Cu, Mn and Se are important for the immune system and their deficiency can cause immune dysfunction because minerals are essential to cell function, cell development, and metabolic reactions. Zn is an important cofactor for numerous enzymes involved in cell metabolism and Zn deficiency can result in a profoundly immune deficient state (Saker, 2006). Cu plays a role in the development and maintenance of the immune system and Cu status alerts several aspects of neutrophil, monocyte, and T cell function (Wintergerst et al. 2007). Cu deficiency exerts deleterious effects on cell-mediated as well as the humoral response (Łukaszewycz et al. 1989) in mixed-lymphocyte reaction, which is an in vitro assay of T cell proliferation in a cell-mediated response, the proliferative response of lymphocytes from Cu-deficient mice was diminished and Cu deficiency led to an impairment of the in vivo antibody response in mice to sheep red blood cell antigens. Ceruloplasmin (Cp), the major Cu-containing protein in serum, reflects Cu status. In Cu-deficient cattle, serum Cp activity decreased along with reduced SOD and cytochrome c oxidase activities in leukocyte, which may impair the cell immune function (Cerone et al. 2000). In the present study higher humoral immune response in CMS supplemented kids may be attributed to higher bioavailability of macro and micro minerals in CMS group as indicated by higher nutrient balances and serum levels of Ca, P, Zn, Cu and Mn in kids. On the basis of above results, it may be concluded that the supplementation of customized mineral supplement @ 2% in the concentrate mixture, substantially improved the haematological parameters, serum glucose and total protein, antioxidant indices, cell mediated and humoral immune response in kids as compared to control.

ACKNOWLEDGEMENTS

This study was financially supported by funds provided by the Indian Council of Agriculture Research, New Delhi, India.

REFERENCES

Aliarabi H and Chhabra A. 2006. Effect of inorganic and chelated zinc supplementation on the performance of crossbred calves. *Indian Journal of Animal Nutrition* **23**: 141–45.

Arelovich H M, Owens F N, Horn G W and Vizcarra J A. 2000. Effect of supplemental zinc and manganese on ruminal fermentation, forage intake and digestion by cattle fed prairie hay and urea. *Journal of Animal Science* **78**: 2972–79.

Bergmeyer H U. 1983. *Methods of Enzymatic Analysis*. 2nd edn. Verlag Chemie, Weinheim, pp 273–86.

Bhandari B M, Goswami A, Garg M R and Samanta A. 2016. Study on minerals status of dairy cows and their

Table 4. Effect of mineral supplements on DTH response (skin thickness in mm) of kids to PHA–p

Treatment	Periods (h post inoculation)	Treatment mean±SE	G	P	G*P
CON	0 12 24 48 72 96				
CMM	2.32a 3.90d 3.60d 3.42b	3.13±0.09	0.001	0.000	
CMS	2.49b 4.56b 4.41f 3.81e	3.41±0.09	3.26±0.09		
Period	0 12 24 48 72 96				
mean±SE	2.38±0.13 4.22±0.01 4.00±0.13 3.54±0.13 3.12±0.13 2.83±0.13				
supplementation through area specific mineral mixture in the state of Jharkhand. Journal of Animal Science and Technology 58: 42.

Bisla R S, Singh J and Krishnamurthy D. 2002. Assessment of oxidative stress in buffaloes suffering from diaphragmatic hernia. Indian Journal of Veterinary Surgery 23: 77–80.

Bretaudiere J P, Vassault A, Amelsem L, Pouciri M L, Thieec-Phung H and Bailly M. 1977. Criteria for establishing a standardized method for determining alkaline phosphatase activity in human serum. Clinical Chemistry 23: 2263–74.

Cerone S I, Sansinanea A S, Streitenberg S A, Garcia M C and Auzen J N. 2000. Cytochrome c-oxidase, Cu, Zn-superoxide dismutase and ceruloplasmin activities in copper-deficient bovines. Biological Trace Element Research 73: 269–78.

Dey A, Narayan Dutta, Pattanaik A K and Sharma K. 2015. Antioxidant status, metabolic profile and immune response of lambs supplemented with tannin rich Ficus infectoria leaf meal. Japanese Journal of Veterinary Research 63: 15–24.

Godara R S, Naskar S, Das B C, Godara A S, Ghosh M K, Mondal M and Bhat S A. 2015. Effect of area specific mineral supplementation on growth and reproductive performance of female black bengal goats. Journal of Animal Research 6: 155.

Doumas B T, Watson W A and Biggs H G. 1971. Albumin separation and the measurements of serum albumin with bromocresol green. Clinica Chemica Acta 31: 87–96.

Duby M. 2007. ‘Strategic use of tanniferous tree leaves on nutrient utilization, growth and GI parasites in goats.’ MVSc Thesis, Deemed University, IVRI, Izatnagar, UP, India.

Dutta N, Dubey M, Banerjee PS, Pattanaik A K, Sharma K, Kumar P and Narang A. 2012. Effect of supplementing tanniferous tree leaves mixture on immune response and GI nematodes in kids. Livestock Research for Rural Development. http://www.lrrd.org/lrrd24/2/dutt24035.htm

Hallett C J and Cook J G H. 1971. Produced nicotinamide adenine dinucleotide-coupled reaction for emergency blood urea estimation. Clinica Chemica Acta 35: 33–37.

Han B, Yoon S, Su J, Han H R, Wang M, Qu W and Zhong D. 2004. Effects of selenium, copper and magnesium on antioxidant enzymes and lipid peroxidation in bovines fed flours. Asian Australasian Journal of Animal Sciences 17: 1695–99.

Huert M, Kincaid R L, Cronrath J D, Busboom J, Johnson A B and Swenson C K. 2002. Interaction of dietary zinc and growth implants on weight gain, carcass traits and zinc in tissues of growing beef steers and heifers. Animal Feed Science Technology 95: 15–32.

Jain N, Tiwari S P and Singh P. 2005. Effect of urea molasses mineral granule on rumen fermentation pattern and blood biochemical constituents in goat kids fed sola grass based diet. Veterinärschi Arhiv 75: 521–30.

Jing M Y, Sun J Y and Weng X Y. 2007. Insights on zinc regulation of food intake and macronutrient selection. Biological Trace Element Research 115: 197–94.

Kaneko J J. 1997. Serum proteins and the dysproteinemias. Clinical Biochemistry of Domestic Animals. 5th edn. Academic Press, London. pp 117–38.

Kearl L C. 1982. Nutrient Requirements of Ruminants in Developing Countries. International Feedstuffs Institute, Utah State University, Logan, UT, USA, pp 45–81.

Khan H M, Mohanty T K, Bhakat M, Gupta A K, Tyagi A K and Mondal G. 2015. Effect of Vitamin E and mineral supplementation on biochemical profile and reproductive performance of buffaloes. Buffalo Bulletin 34: 63–78.

Kinal S, Korniewicz A, Słupczynska M, Bodarski R, Korniewicz D and Cermak B. 2007. Effect of the application of bioplexes of zinc, copper and manganese on milk quality and composition of milk and Colostrum and some indices of the blood metabolic profile of cows. Czech Journal of Animal Science 52: 423–29.

Kumarshr H, Yahaya I S and Rahman A W. 2011. The effect of molasses/mineral feed blocks along with the use of medicated blocks on haematological and biochemical blood parameters in Boer goats. Asian Journal of Animal and Veterinary Advances 6: 1683–91.

Luksawecyz O A and Prohaska J R. 1989. Increased interleukin-1 (IL-1) production and decreased interleukin 2 (IL-2) production in copper deficient mice. FASEB Journal 3: A665.

Marklund S and Marklund G. 1974. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 649–74.

Minami M and Yoshikawa H. 1979. A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta 92: 337–42.

Mohanta R K and Garg A K. 2014. Organic trace minerals: immunity, health, production and reproduction in farm animals. Indian Journal of Animal Nutrition 31: 203–12.

Moscio A, Bufano G, Sevi A, Manchisi A, Martemucci G, Casamassima D, Dijanegara A and Sukmawati A. 1994. Effect of slaughtering age and dietary energy level on productive performance of fattening lambs. Proceedings of the 7th AAAP Animal Science Congress, Bali, Indonesia, pp. 75–76.

Muhammad S A, Bilbisi L S, Saıdı Y and Adamu Y. 2012. Effect of antioxidiant mineral elements supplementation in the treatment of hypertension in albino rats. Oxidative Medicine and Cellular Longevity 2012: 1–8.

Pandey V K, Gendley M K, Tiwari S P and Prusty S. 2018. Effect of area specific mineral mixture on serum biochemical parameters and milk yield in dairy cattle. International Journal of Agriculture Sciences 10: 4965–68.

Patra R C, Swarup D, Sharma M C and Naresh R. 2006. Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. Journal of Veterinary Medicine A 53: 511–17.

Prins A and Loos G. 1969. Biochemical Methods in Red Cell Genetics. Academic Press, pp 127–29.

Prohaska J R and Brokate B. 2001. Dietary copper deficiency alter protein levels of dopamine beta monooxygenase and tyrosine monoxygenase. Experimental Biology and Medicine 226: 199–07.

Saker K E. 2006. Nutrition and immune function. Veterinary Clinics of North America: Small Animal Practice 36: 1199–24.

Satapathy D, Mishra S K, Swain R K, Sethy K and Sahoo G R. 2016. Effect of supplementation of area specific mineral mixture on performance of crossbred cows with reproductive disorders in kakatur block. Indian Journal of Animal Nutrition 33: 279–84.

Sedlak J and Lindsay R. 1968. Estimation of total protein bound and non-protein sulphhydril groups in tissue with Ellman’s reagent. Biophysicsica Acta 25: 92–105.

Snedecor G W and Cochran W G. 1994. Statistical Methods. 8th edn. East West Press Pvt. Ltd., New Delhi, India.

Spears J W and Weiss W P. 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Veterinary Journal 176: 70–76.
Thefeld W, Hoffmeister H, Busch E W, Koller P U and Vollmar J. 1974. Referenzwerte für die Bestimmungen der Transaminasen GOT und GPT sowie der alkalischen phosphatase im serum mit optimierten standardmethoden. *Deutsche. Medizinische. Wochenschrift* 99: 343–51.

Vatidis H. 1977. An improved biuret reagent. *Clinical Chemistry* 23: 908.

Wintergerst E A, Maggini S and Hornig D H. 2007. Contribution of selected vitamins and trace elements to immune function. *Annals of Nutrition and Metabolism* 51: 301–23.

Yengkhom R, Verma A K, Dutta N, Jadhav S E and Pattanaik A K. 2018. Effect of a customized mineral supplement on nutrient metabolism, serum mineral profile and growth performance of kids. *Animal Nutrition and Feed Technology* 18: 177–87.