Active trachoma cases in the Solomon Islands have varied polymicrobial community structures but do not associate with individual non-chlamydial pathogens of the eye.

Robert M R Butcher¹*, Oliver Sokana², Kelvin Jack², Eric Kalae³, Leslie Sui³, Charles Russell⁴, Joanna Houghton¹, Christine Palmer¹, Martin J Holland¹, Richard T Le Mesurier⁵, Anthony W Solomon¹, David C W Mabey¹, Chrissy h. Roberts¹.

Author contact details:

¹ Clinical Research Department, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK

² Eye Department, Solomon Island Ministry of Health and Medical Services, Honiara, Solomon Islands

³ Primary Care Department, Lata Hospital, Lata, Santa Cruz, Solomon Islands

⁴ Bellona Rural Health Centre, Bellona, Solomon Islands

⁵ The Fred Hollows Foundation, Carlton, Victoria, Australia

*Corresponding author:

robert.butcher@lshtm.ac.uk, +44 207 927 2419

Keywords

Adenoviruses, droplet digital PCR, Haemophilus influenzae, Moraxella catarrhalis, Solomon Islands, Staphylococcus aureus, coagulase-negative Staphylococcus, Streptococcus pneumoniae, 16S rRNA gene sequencing, trachoma.
Abstract

Background
Several non-chlamydial microbial pathogens are associated with clinical signs of active trachoma in trachoma-endemic communities with a low prevalence of ocular Chlamydia trachomatis (Ct) infection. In the Solomon Islands, the prevalence of Ct among children is low despite the prevalence of active trachoma being moderate. We therefore set out to investigate whether active trachoma was associated with a common non-chlamydial infection or with a dominant polymicrobial community dysbiosis in the Solomon Islands.

Methods
We studied DNA from conjunctival swabs collected from 257 Solomon Islanders with active trachoma and matched controls. Droplet digital PCR was used to test for pathogens suspected to be able to induce follicular conjunctivitis. Polymicrobial community diversity and composition were studied by sequencing of hypervariable regions of the 16S ribosomal ribonucleic acid gene in a subset of 54 cases and 53 controls.

Results
Although Ct was associated with active trachoma, the number of infections was low (cases: 3.9%, controls: 0.4%). Estimated prevalence (cases, controls) of each non-chlamydial infection was as follows: S. aureus (1.9%, 1.9%), Adenoviridae (1.2%, 1.2%), coagulase-negative Staphylococcus (5.8%, 4.3%), H. influenzae (7.4%, 11.7%), M. catarrhalis (2.3%, 4.7%) and S. pneumoniae (7.0%, 6.2%). There was no statistically significant association between clinical signs of trachoma and presence or load of any of the non-Ct infections that were assayed. Inter-individual variations in the conjunctival microbiome were characterised by differences in the levels of Corynebacterium, Propionibacterium, Helicobacter and Paracoccus, but diversity and relative abundance of these specific genera did not differ significantly between cases and controls.

Discussion
It is unlikely that the prevalent trachoma-like follicular conjunctivitis in the Solomon Islands has a dominant bacterial aetiology. Before implementing community-wide azithromycin distribution for trachoma, policy makers should consider that clinical signs of trachoma can be observed in the absence of any detectable azithromycin-susceptible organism.
Introduction

Trachoma, caused by *Chlamydia trachomatis* (*Ct*), is the leading infectious cause of preventable blindness (1), and is targeted for elimination as a public health problem by 2020 through the SAFE strategy (Surgery, Antibiotics, Facial cleanliness and Environmental improvement). The decision to implement community-wide trachoma control interventions, which include mass drug administration (MDA) with azithromycin, is based on population prevalence estimates of one clinical sign of active trachoma (trachomatous inflammation–follicular [TF]) in the 1–9-year-old age group (2). In the Solomon Islands, the prevalence of TF is sufficient to warrant MDA but the prevalence of trachomatous trichiasis (TT) suggests trachoma may not pose a significant public health problem. A recent trachoma survey in a treatment-naïve population of the Solomon Islands estimated 26% of 1–9-year-olds to have TF but, surprisingly, conjunctival *Ct* infection was detected in only 1.3% of that age group (3). Whilst *Ct* infection is not always detectable in TF cases (4, 5), infection prevalence in the Solomon Islands is far lower than is seen in other countries with similar TF prevalence (3).

Ct is not the only pathogen to associate with signs of TF. A number of differential diagnoses for follicular conjunctivitis are described (6), some of which are rare and distinguishable by patient history (such as Parinaud’s oculoglandular syndrome). Other causes of conjunctivitis which can present with follicles are *Streptococcus pneumoniae*, *Haemophilus influenzae* (7), and adenovirus (8). Non-ocular *Chlamydia* serotypes (9) and non-*trachomatis* *Chlamydia* species (10) have also been suggested as possible causes of TF. A number of studies have examined conjunctival microbiology in trachoma-endemic settings. A greater diversity of pathogens can be cultured from the conjunctivae of people with TF compared to counterparts without TF (7). Among bacterial species isolated during a study in Tanzanian children, *Streptococcus pneumoniae*, *Haemophilus influenzae* B and *Haemophilus influenzae* non-type B associated more strongly than *Ct* with clinical signs of active trachoma (7). In The Gambia, *S. pneumoniae* and *H. influenzae* type B infection correlated closely with signs of active trachoma in communities which had received MDA, whereas *Moraxella catarrhalis* and *Staphylococcus aureus* did not (11). Common non-chlamydial pathogens have associated with trachomatous scarring (TS) (12) and recurrence of TT after surgery (13) in some, but not all (14, 15), studies.

Although traditionally thought to be ‘sterile’, several studies have now described polymicrobial communities colonising the conjunctival epithelium (16, 17). *Staphylococcus*, *Streptococcus*, *Haemophilus* and *Moraxella* genera can be readily cultured from swabs taken from the inferior fornix (7, 11, 12). Attempts to detect bacteria from the conjunctiva have shown community diversity and composition to vary significantly between individuals. It is unclear whether a ‘core’ microbiota persists at the conjunctiva, but profiles closely related to that of the skin have been reported (18). *Corynebacterium*, *Propionibacterium*, *Staphylococcus* and *Streptococcus* have been consistently dominant, whereas other genera such as *Acinetobacter*, *Brevundimonas*, *Pseudomonas*, *Bradyrhizobium*, *Sphingomonas*, *Bacillus*, *Simonsiella* and *Elizabethkingia* have been identified more sporadically (19–21). Conjunctival polymicrobial community composition is known to vary with age and season (22) and appears to be responsive to external stimuli such as regular contact lens wear (23). The conjunctival microbiome varies significantly between people with trachomatous scarring and those without, however, significant associations between microbiome and follicular conjunctival inflammation or microbiome and other diseases have yet to be described (22, 24).

We hypothesised that clinical signs of active trachoma in the Solomon Islands where ocular *Ct* is uncommon could be explained by a common non-chlamydial infection or by a dominant polymicrobial community dysbiosis.
Methods

Study ethics

A parent or guardian gave written informed consent for each child to take part in the survey in accordance with the Declaration of Helsinki. The protocol was approved by the London School of Hygiene & Tropical Medicine (6319/6360) and the Solomon Islands National Health Research (HRC13/18) Ethics Committees.

Study population

The samples tested during this study were a sub-set of specimens from a population-based trachoma prevalence survey of 3674 people (1135 children aged 1–9 years) in 32 clusters from Temotu and Rennell & Bellona Provinces, Solomon Islands; data from that survey are presented elsewhere (3). At the time of the survey, no trachoma interventions had been implemented in the Solomon Islands. Sterile swabs were passed three times over the right conjunctiva of every child before storage in 300 μL RNALater® (Life Technologies). Swabs were kept cool in the field for up to 24hrs then frozen (3). Inclusion criteria for cases (n = 257) were age 1–9 years, detectable human DNA in the conjunctival swab and a field grade of TF or trachomatous inflammation—intense (TI) in the right eye. An equal number (n = 257) of age-, gender- and island-matched controls without TF or TI were selected using the ‘e1071’ R package. A random subset of cases (n = 54) and controls (n = 53) were further characterized using V1–V3 16S rRNA gene sequencing. Field controls (clean swabs passed within 20 cm of seated participants, without touching them, and then treated identically to subjects’ specimens), extraction controls (extraction carried out in the absence of a specimen and PCR carried out on the eluate) and PCR controls (PCR carried out in the absence of any added material) were used to determine background levels of microbial contamination in the 16S rRNA gene sequencing protocol.

Droplet digital PCR

DNA was extracted from conjunctival swabs using the Qiagen AllPrep DNA/RNA kit. We chose not to use mechanical lysis on these low biomass specimens due to the reported lower yields compared to chemical lysis (25). All specimens have previously been tested for Ct and Homo sapiens Ribonuclease P protein subunit p30 (RPP30, acting as endogenous control) using a validated assay (26); the community prevalence of ocular Ct infection is described elsewhere (3).

Duplex ddPCR assays were developed for (1) Adenoviridae (27) and S. pneumoniae (28), (2) H. influenzae (29) and M. catarrhalis (30, 31), and (3) S. aureus and coagulase-negative Staphylococcus (32, 33) based on published assays. Each assay contained 10 μL 2X ddPCR Supermix for probes (Bio-rad, Hemel Hempstead, UK), primers and probes at custom concentrations (Table 1) and 8 μL of template DNA. Thermal cycling was 10’00” at 95°C then 40x (0’15” at 95°C | 1’00” at 60°C) then 12’00” at 98°C (26). A positive result for a clinical specimen was defined as >95% confidence of non-zero target load, as described previously (26). Assay performance was assessed by repeat testing of PCR product dilution series’ and cultured pathogen material before rolling out to clinical samples. The reproducibility, linearity and limits of detection of each assay were considered appropriate (Supplementary Table 1) and were also similar to published performance of the Ct assay used (26).

16S rRNA gene sequencing
An approximately 530-bp region of the 16S ribosomal RNA (rRNA) gene (variable regions 1-3) was amplified using forward (modified 27F; 5′-[adaptor]-AGAGTTTGGATCCTGGCTCAG-3′) and custom barcoded reverse primers (534R; 5′-[adaptor]-[barcode]-AGTCAGTCAGCCATTACCGCGGCTGCTGG-3′). Each 15 μL reaction contained 7.5 μL 2x Phusion High Fidelity Master Mix (New England Biosciences, MA, USA), 0.45 μL DMSO, 0.1 μM primers and 5.55 μL DNA. The thermal cycling conditions were 0′30″ at 98°C then 31x (0′10″ at 98°C | 0′30″ at 62°C | 0′15″ at 72°C) then 7′00″ at 72°C. Amplicons were cleaned using 0.6 v/v AMPure XP beads (Beckman Coulter, CA, USA), quantified using Qubit (Thermo Fisher Scientific, MA, USA) then pooled at equimolar concentrations. The 4 nM sequencing library was mixed 0.75 v/v with a 4 nM Phi-X control library (Illumina, CA, USA). 3 μL of 100 μM custom read primers were mixed in to wells 12 (Read 1; CTACACTATGGTAATTGTAGAGTTTGGATCCTGGCTCAG), 13 (Index; CCAGCAGCGGGTAATGGCTGACTGACT) and 14 (Read 2; AGTCAGTCAGCCATTACCGCGGCTGCTGG) of the MiSeq reagents cartridge before 2 x 300 bp paired-end sequencing with the 600-cycle MiSeq v3 sequencing reagent kit on the MiSeq platform using a standard protocol (Illumina, CA, USA). 96 uniquely barcoded specimens were run in multiplex on each MiSeq run.

Data analysis

ddPCR data were analysed using R version 3.2.2 (34). Binomial univariate regression was used to test the relationship between each individual infection and active trachoma. The most accurate final multivariate model, determined by lowest Akaike Information Criterion (AIC) value, was determined by step-wise removal of variables from a binomial multivariate regression model incorporating all tested pathogens. The chance of the \(\text{Ct} \) association occurring due to chance was assessed by counting the number of significant results obtained from randomly re-ordering the \(\text{Ct} \) data 1000 times.

Raw 16S amplicon sequences were directly assigned to genera using Illumina BaseSpace ‘16S Metagenomics’ app version 1.0.1.0, which uses algorithms from Wang and colleagues (35). Two clinical specimens yielded fewer than 1000 reads in total and were removed from the analysis. Amplicons were sequenced from six no-template control (NTC) specimens (two ‘field’ controls, two ‘extraction’ controls, two ‘PCR’ controls, defined above) to identify any contaminants endogenous to the collection, PCR or sequencing process. Any genera represented by more than 600 reads in the six combined NTCs (average 100 reads per NTC) were eliminated from the clinical specimen analysis. This resulted in the removal of 21 genera, which accounted for 95.1% of the reads from NTCs and 88.3% of the reads from clinical specimens. The genera removed included common contaminants of reagent kits (36) such as \(\text{Pelomonas} \), as well as some previously described conjunctival microbiota constituents such as \(\text{Brevundimonas} \), \(\text{Staphylococcus} \) and \(\text{Streptococcus} \) (19, 22).

Between-group differences in the Shannon Diversity Index (a measure of diversity which increases with increasing species abundance and evenness) and Inverse Simpson Index (another measure of diversity where 1 is infinite diversity and 0 is no diversity) were compared using a t-test. Discriminant Analysis of Principal Components (DAPC), a multivariate clustering method to analyse highly dimensional datasets, was performed using the ‘adegenet’ package in R (37) and cross-validation was used to determine the optimal number of principal components to include in a discriminant function aimed at separating cases from controls on the basis of their polymicrobial community structures.
Results

Specimen set demographics

A total of 257 cases and 257 controls (n = 514) were tested. All 257 cases had TF, and one also had TI. Case status was defined by clinical signs in the right eye but respectively 236/257 (91.8%) and 8/257 (3.1%) of the cases and controls had TF in the left eye. Both case and control groups were 38% female. Mean age was 5.6 years (cases) and 5.5 years (controls, student’s t test p = 0.76). There was no significant difference between cases and controls in terms of the clusters represented (Kolmogorov-Smirnov test p = 0.97) and all 32 clusters were represented. The case specimens had higher loads of human DNA than the controls (18030 versus 9354 copies/swab; p = 0.00003). There were no significant differences in age, gender or location within the subset selected for 16S-amplicon sequencing.

Quantitative PCR tests for ocular pathogens

In this study, 19.8% of children had evidence of infection with at least one of the targeted organisms (Table 2). We considered the prevalence of Ct in this sample set to be too low (96.1% of TF cases were Ct-infection negative) to account for the level of active disease. The prevalence of Adenoviridae (1.2%) and S. aureus (1.9%) were both very low. There was no association between active trachoma and infection with H. influenzae, S. pneumoniae, S. aureus, coagulase-negative Staphylococcus or M. catarrhalis. Ct infection was associated with active trachoma (logistic regression p = 0.026; odds ratio: 10.4). The association between Ct and active trachoma was still significant in a multivariate analysis (p = 0.025). The permuted p-value for the association between Ct and active trachoma was highly significant (p = 0.001). Active disease was neither associated with infection with at least one pathogen (any pathogen, p = 0.185) nor the number of concurrent infections in the same eye (number of concurrent pathogens, p = 0.207). Infection loads of those who tested positive are shown Figure 1. Despite some numerical differences between groups, none of the differences were statistically significant.

16S rRNA gene sequencing

The total number of genera identified across all clinical specimens and NTCs was 659, however, 125/659 (19%) had a cumulative total of ten reads or fewer. The median number of reads per clinical specimen was 55,104 (IQR: 40,705 – 89,541) and the median percentage of reads mapped to genus level was 51.9%. The median number of genera identified was 151 (IQR: 117 – 212) per clinical specimen. Following removal of presumed contaminants, approximately 40% of cleaned reads were assigned to genera that each constituted less than 1% of the total polymicrobial community. 40 genera were represented by at least 1% of remaining reads in clinical samples.

The diversity of bacterial communities was in general low; the mean Inverse Simpsons Diversity index over all specimens was 0.061 (IQR: 0.046 – 0.092). The median Inverse Simpson’s Diversity index in cases was 0.061 [IQR: 0.048 – 0.095] versus controls 0.060 [IQR: 0.044 – 0.078] (Student’s t-test p = 0.56). The median Shannon Diversity Index was 3.38 in cases and 3.37 in controls (Student’s t-test p = 0.96). There was no significant difference in alpha-diversity between cases and controls by either measure of diversity. In cases of active trachoma, the most dominant bacterial genera were Corynebacterium (12.0% of total reads), Propionibacterium (6.2%) and Helicobacter (4.8%). In controls, the most dominant genera were Corynebacterium (13.9%), Paracoccus (5.2%), Propionibacterium (4.7%), and Neisseria (4.1%) (Supplementary Figure 1). The genus level membership of the bacterial community varied between cases and controls. Of 21 genera found in...
specimens from those with active trachoma, 10 were not found in controls, including *Helicobacter*, *Mesoplasma*, *Brachybacterium* and *Haemophilus*. Of 23 genera found in controls, 12 were not found in cases, including *Neisseria*, *Prevotella*, *Rhodococcus* and *Porphyromonas*.

Principal Components (PC) Analysis (Figure 2, Supplementary Figure 2) revealed that *Corynebacterium* (PC1), *Paracoccus* (PC2), *Propionibacterium* (PC2, PC3) and *Helicobacter* (PC3) are major contributors to the variation in the conjunctival microbiomes of children in the Solomon Islands. While individual cases or controls have distinctive profiles dominated by these genera, the majority of cases and controls are indistinguishable (Figure 2) using the first three PCs (explaining 45% of total variation). We condensed PCs 1-20 into a single discriminant function, which explained 87% of variation in the data. In this analysis, the genus-level polymicrobial community structure is significantly different between cases and controls (logistic regression p = 0.0000062) (Figure 3). That discriminant function was dominated by a number of genera such as *Curvibacterium* and *Mesoplasma* (Supplementary Figure 3). Cross validation to predict group membership using discriminant functions of between 10 and 90 PCs had a low success rate (median 53.3% success, range: 50.1 – 62.3%). This suggests that while differences do exist between the polymicrobial communities in cases and controls, they are too subtle and varied to be predictive of phenotype, at least when working with this number of specimens.
Follicular conjunctivitis meeting criteria for the trachoma phenotype TF is highly prevalent in the Solomon Islands, but the prevalence of Ct infection is curiously low. Although Ct was the only pathogen to associate with TF in this study, the prevalence was much lower than may be expected of a population with this level of TF (3). Both S. pneumoniae and H. influenzae were detected at moderate prevalence in our population, whilst we found very few cases of Adenoviridae and M. catarrhalis infection. Comparator data from other populations are scarce, but it is clear that staphylococcal species were detected in the conjunctivae in the Solomon Islands at a substantially lower prevalence (7%) than in children in either Tanzania (14.8% S. epidermidis) (7), Sierra Leone (20% S. aureus, 29% coagulase-negative Staphylococcus) (38) or The Gambia (post MDA, 14.7% S. aureus) (11). By ddPCR testing for a number of bacteria and viruses that have previously been linked to TF, we can discount the possibility that any of them can account either singly or en masse for the high TF prevalence.

Through 16S amplicon sequencing and community profiling, we have shown that there is apparently no dominant bacterial genus associated with this disease. The dominant features of variation in conjunctival bacterial communities in Solomon Islands children (Corynebacterium, Propionibacterium) have consistently been identified in other studies. Other genera (e.g., Paracoccus, Helicobacter, Haemophilus) have not previously been identified in 16S studies, whilst some reported in other studies (e.g., Simonsella, Pseudomonas) were not found in these specimens (19–22). Many studies have sequenced the V3-4 region of the 16S gene whereas we targeted V1-3. V region choice has been shown to have an impact on the genera identified at other mucosal sites (39) and, while no data have yet emerged on how this affects profiles from the eye, it is possible this could account for some of the differences. Consistent with previous studies (36), we found a background of genera that amplified in NTCs that also appeared in clinical specimens. The microbiological biomass at the conjunctiva is known to be very low, even compared with other nearby sites such as skin or oral mucosa (20). When true resident bacteria are scarce, 16S rRNA gene PCR readily amplifies reagent contaminants. We took stringent measures to exclude reagent contaminants, but this resulted in the removal of some important genera such as Staphylococcus and Streptococcus. Among the biggest contributors to between-conjunctiva variation were Corynebacterium and Propionibacterium, but these genera did not differentiate TF cases from controls (Figure 2). Previous investigations of the role of the conjunctival microbiome in ocular disease have also not shown significant differences. In The Gambia, there was an increased abundance of Haemophilus in cases of TF, as compared to controls, although this difference was not significant (22). People with ocular manifestations of rosacea, Sjögren’s syndrome and healthy controls did not have significant differences in diversity or relative abundance of key phyla identified across all three groups (24). However, other disease associations have been identified. For example, the abundance of Corynebacterium and Streptococcus varied significantly between individuals with and without conjunctival scarring (22).

The microbiota of these children were heterogeneous and had subtle variations that appeared to reach significant association with TF when the full community structure was considered in comparative statistical models. It remains possible (though perhaps unlikely) that a multitude of factors, operating at the level of single bacterial species, polymicrobial communities or viral species, all contribute to the presentation of the phenotype. It is perhaps more likely that as yet unidentified viral or allergic causes could explain the prevalence of TF in the Solomon Islands.

There are some limitations to our study. Firstly, although the ddPCR assays are based on validated assays and appear to be accurate (Supplementary Table 1), they have not been formally evaluated in
this format. Secondly, by not using mechanical lysis in our extraction process, the absolute prevalence of some difficult-to-lyse Gram positive genera (e.g., *Staphylococcus*) may have been under-estimated. This would not impair the comparison of cases to controls, between which protocols were consistent. Thirdly, 16S amplicon sequencing of low biomass samples is known to result in amplification of reagent and environmental contaminants (36). This study focused on gross differences in community structure between those with and without disease and these should be independent of contaminating reads. We also employed stringent quality control measures to ensure data were not confused by artefacts of the sequencing process.

Given the current international commitment to trachoma elimination, further characterisation of the role of non-*Ct* stimuli in TF is important. We might expect those with TF in the absence of *Ct* to be at lower risk of progression to TS and TT than those with repeated *Ct* infection and inflammation (40), however, such individuals have not been studied longitudinally to assess outcomes therefore it is unclear how these cases should be managed. Furthermore, years after MDA has been administered, TF persists at levels above the threshold for elimination (>5%) in communities where *Ct* infection is not readily detectable (41, 42). The public health risk of trachoma in these communities is also unclear.

Public health scenarios such as the one in the Solomon Islands will become increasingly common as trachoma elimination programmes reduce the global prevalence of *Ct*, and the positive predictive value of TF for ocular *Ct* infection declines as a result (43). MDA might be inappropriately delivered when clinical signs of trachoma are the only indicator used for programmatic decision making. While MDA is effective for the treatment of trachoma (44), mass antibiotic exposure may increase macrolide resistance in nonchlamydial bacteria (45) and theoretically could make the population more susceptible to later infections by preventing accumulation of acquired immunity to *Ct* (46). Decisions to undertake such a program should therefore be carefully considered. The case for using tests for *Ct* infection during trachoma surveys is strengthened by our data. The value of nucleic acid amplification tests for detecting non-chlamydial infection remains questionable, as multiple infectious agents might be important, and these are likely to differ between populations.
Acknowledgements

We thank Victoria Miari and Emma Cobb (Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, UK) for providing bacterial culture isolates for PCR assay validation; and David Nelson (Indiana University, Indianapolis, US) for the provision of 16S sequencing primers and protocols. We would also like to thank the residents of the communities who took part in this study.

Financial statement

Fieldwork was jointly funded by the United Kingdom’s Department for International Development Global Trachoma Mapping Project grant (ARIES: 203145) to Sightsavers, and by the Fred Hollows Foundation, Australia (1041). Laboratory costs were funded by the Fred Hollows Foundation, Australia (1041).

RMRB and AWS were funded by a Wellcome Trust Intermediate Fellowship to AWS (098521).

OS, KJ, EK, LS and CR were seconded by the Solomon Islands Ministry of Health and Medical Services for the duration of the survey.

MJH is supported by the Wellcome Trust (093368/Z/10/Z).

ChR is supported by the Wellcome Trust Institutional Strategic Support Fund (105609/Z/14/Z).

Author Contributions

Conceived and designed the study: RMRB, OS, RTLM, AWS, DCWM, ChR.

Performed the fieldwork: RMRB, OS, KJ, EK, LS, CR.

Performed the experiments: RMRB, MJH, JH, CP, ChR.

Analysed the data: RMRB, ChR.

Wrote the manuscript: RMRB, ChR.

Revised and approved the manuscript: RMRB, OS, KJ, EK, LS, CR, JH, CP, MJH, RTLM, AWS, DCWM, ChR.
References

1. Bourne RA, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Resnikoff S, Taylor HR. Vision Loss Expert G. 2013. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Heal 1:e339-49.

2. World Health Organization. 2003. Report of the 2nd Global Scientific Meeting on Trachoma. 25-27 August. Geneva, Switzerland.

3. Butcher RMR, Sokana O, Jack K, Macleod CK, Marks ME, Kalae E, Sui L, Russell C, Tutill HJ, Williams RJ, Breuer J, Willis R, Le Mesurier RT, Mabey DCW, Solomon AW, Roberts CH. 2016. Low Prevalence of Conjunctival Infection with Chlamydia trachomatis in a Treatment-Naïve Trachoma-Endemic Region of the Solomon Islands. PLoS Negl Trop Dis 10:e0004863.

4. Thein J, Zhao PN, Liu HS, Xu JJ, Jha HC, Miao YH, Pizzarello LD, Tapert L, Schachter J, Mabon M, Osaki-Holm S, Lietman T, Paxton A. 2002. Does clinical diagnosis indicate ocular chlamydial infection in areas with a low prevalence of trachoma? Ophthalmic Epidemiol 9:263–269.

5. Grassly NC, Ward ME, Ferris S, Mabey DC, Bailey RL. 2008. The natural history of trachoma infection and disease in a Gambian cohort with frequent follow-up. PLoS Negl Trop Dis 2:e341.

6. Dawson CR, Jones BR, Tarizzo ML, World Health Organization. 1981. Guide to trachoma control in programmes for the prevention of blindness. Geneva, Switzerland: World Health Organization.

7. Burton MJ, Hu VH, Massae P, Burr SE, Chevallier C, Afwamba IA, Courtright P, Weiss HA, Mabey DCW, Bailey RL. 2011. What is causing active trachoma? The role of nonchlamydial bacterial pathogens in a low prevalence setting. Invest Ophthalmol Vis Sci 52:6012–7.

8. Jhanji V, Chan TCYY, Li EYMM, Agarwal K, Vajpayee RB. 2015. Adenoviral keratoconjunctivitis. Surv Ophthalmol 60:435–443.

9. Andersson P, Harris SR, Smith HMBS, Hadfield J, O’Neill C, Cutcliffe LT, Douglas FP, Asche LV, Mathews JD, Hutton SI, Sarovich DS, Tong SYC, Clarke IN, Thomson NR, Giffard PM. 2016. Chlamydia trachomatis from Australian Aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages. Nat Commun 7:10688.

10. Lietman T, Brooks D, Moncada J, Schachter J, Dawson C, Dean D. 1998. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis 26:1335–40.

11. Burr SE, Hart JD, Edwards T, Baldeh I, Bojang E, Harding-Esch EM, Holland MJ, Lietman TM, West SK, Mabey DCW, Sillah A, Bailey RL. 2013. Association between ocular bacterial carriage and follicular trachoma following mass azithromycin distribution in The Gambia. PLoS Negl Trop Dis 7:e2347.

12. Hu VH, Massae P, Weiss HA, Chevallier C, Onyango JJ, Afwamba IA, Mabey DCW, Bailey RL, Burton MJ. 2011. Bacterial infection in scarring trachoma. Invest Ophthalmol Vis Sci 52:2181–6.

13. Burton MJ, Adegbola RA, Kinteh F, Ikumapayi UN, Foster A, Mabey DCW, Bailey RL. 2007. Bacterial infection and trachoma in the gambia: a case control study. Invest Ophthalmol Vis Sci 48:4440–4.

14. Cox JT, Kasubi MJ, Mu BE, Zambrano AI, Greene GS, Mkocha H, Wolle MA, West SK. 2017. Trachomatous Scarring and Infection With Non–Chlamydia Trachomatis Bacteria in wmoen in Kongwa, Tanzania. Investig Ophthalmol Vis Sci 58:3249–3253.

15. Burton MJ, Adegbola RA, Kinteh F, Ikumapayi UN, Foster A, Mabey DCW, Bailey RL. 2007. Bacterial infection and trachoma in the gambia: A case-control study. Invest
16. Kugadas A, Gadjeva M. 2016. Impact of Microbiome on Ocular Health. Ocul Surf 14:342–9.
17. Lu LJ, Liu J. 2016. Focus: Microbiome: Human Microbiota and Ophthalmic Disease. Yale J Biol Med 89:325.
18. Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM, Vishnivetskaya T, Podar M, Warner B, Tarr PI, Nelson DE, Fortenberry JD, Holland MJ, Burr SE, Shannon WD, Sodergren E, Weinstock GM. 2013. Biogeography of the ecosystems of the healthy human body. Genome Biol 14:R1.
19. Dong Q, Brulc JM, Iovieno A, Bates B, Garoute A, Miller D, Revanna K V, Gao X, Antonopoulos DA, Slepak VZ, Shrestha A, Shrestopalov V, Lee CS, Lee AY, Van Gelder RN. 2016. Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Investig Ophthalmology Vis Sci 57:5116.
20. Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, Shrestopalov V, Lee CS, Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, Mabey D, Bailey RL, Burton MJ, Weinstock GM, Burr SE. 2014. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med 6:99.
21. Heim A, Ebnet C, Harste G, Pring-Akerblom P. 2003. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70:228–39.
22. Greiner O, Day PJR, Altwegg M, Nadal D. 2003. Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR. J Clin Microbiol 41:1386–90.
23. Kais M, Spindler C, Kalin M, Ortwqvist A, Giske CG. 2006. Quantitative detection of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR. Diagn Microbiol Infect Dis 55:169–78.
24. Nakagawa S, Taneike I, Mimura D, Iwakura N, Nakayama T, Emura T, Kitatsuji M, Fujimoto A, Yamamoto T. 2005. Gene sequences and specific detection for Panton-Valentine leukocidin. Biochem Biophys Res Commun 328:995–1002.
25. Okolie CE, Woolridge KG, Turner DP, Cockayne A, James R. 2015. Development of a new pentaplex real-time PCR assay for the identification of poly-microbial specimens containing.
Staphylococcus aureus and other staphylococci, with simultaneous detection of staphylococcal virulence and methicillin resistance markers. Mol Cell Probes 29:144–50.

34. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73:5261–5267.

35. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW, Kunin V, Engelbrektson A, Ochman H, Hugenholtz P, Fy W, Göbel U, Stackebrandt E, Kulakov L, McAlister M, Ogden K, Larkin M, O’Hanlon J, McAlister M, Kulakov L, O’Hanlon J, Larkin M, Ogden K, Kéki Z, Grébner K, Bohus V, Márialigeti K, Tóth E, Bohus V, Kéki Z, Márialigeti K, Baranyi K, Patek G, Schunk J, Tóth E, McFeters G, Broadaway S, Pyle B, Egozy Y, Nogami T, Ohto T, Kawaguchi O, Zaisu Y, Sasaki S, Shen H, Rogelj S, Kieft R, Rand K, Houck H, Maiwald M, Ditton H, Sonntag H, Doebertiz M von K, Tanner M, Goebel B, Dojka M, Pace N, Corless C, Guiver M, Borrow R, Edwards-Jones V, Kaczmarski E, Fox A, Grahn N, Olofsson M, Ellnevo-Svedlund K, Monstein H, Jonasson J, Newsome T, Li B, Zou N, Lo S, Mohammadi T, Reesink H, Vandenbroucke-Grauls C, Savelkoul P, Barton H, Taylor N, Lubbers B, Pemberton A, Laurence M, Hatzie C, Brash D, Oberauner L, Zachow C, Lackner S, Högenauer C, Smolle K, Berg G, Duc M La, Kern R, Venkateswaran K, Ling Z, Liu X, Luo Y, Yuan L, Nelson K, Wang Y, Xiang C, Li L, Benítez-Páez A, Álvarez M, Belda-Ferre P, Rubido S, Mira A, Tom I, Amar J, Senno M, Lange C, Chabo I, Iacovoni J, Mondot S, Lepage P, Kloppe C, Mariette J, Bouchez O, Perez L, Courtney M, Marre M, Kloppe P, Lantier O, Doré J, Charles M, Balkau B, Burklin R, Branton W, Elleslad K, Maingat F, Wheatley B, Rud E, Warren R, Holt R, Surette M, Power C, Borewicz K, Pragman A, Kim H, Herz M, Wendt C, Isaacson R, Dong Q, Brulc J, Iovino A, Bates B, Garoutte A, Miller D, Revanna K, Gao X, Antonopoulos D, Slepak V, Shestopalov V, Xuan C, Shamonki J, Chung A, DiNome M, Chung M, Sieling P, Lee D, Kuehn J, Gorden P, Munro D, Rong Q, Plummer P, Wong C, Phillips G, Srinivas G, Möller S, Wang J, Künzel S, Zillikens D, Baines J, Ibrahimi S, Boissière A, Tchiroff M, Bachar D, Abate L, Marie A, Nsango S, Shahbazkia H, Awono-Ambene P, Levashina E, Christen R, Morlais I, McKenzie V, Bowers R, Fierer N, Knight R, Lauber C, Carlos C, Torres T, Ottoboni L, Cheng X, Tian X, Wang Y, Lin R, Mao Z, Chen N, Xie B, Davidson S, Powell R, James S, Lowlondon K, Veerapaneni R, D’Elinga T, Rogers S, Shitarkman Y, Kočer Z, Edgar R, Veerapaneni R, D’Elia T, Morris P, Rogers S, DeLeon-Rodriguez N, Latham T, Rodriguez-R L, Barazesh J, Anderson B, Beyersdorf A, Ziemba L, Bergin M, Nenes A, Konstantinidis K, Turner P, Turner C, Jankhot A, Helen N, Lee S, Day N, White N, Nosten F, Goldblatt L, Williams E, Hansen A, Poinar H, Kearney M, Spindler J, Wiegand A, Shao W, Anderson E, Moldarelli F, Ruscetti F, Mellors J, Hughes S, Grice S Le, Coffin J, Cooper A, Poinar H, Roberts C, Ingham S, Segal L, Alekseyenko A, Clemente J, Kulkarni R, Wu B, Chen H, Berger K, Goldring R, Rom W, Blaser M, Weiden M, Bhatt A, Freeman S, Herrera A, Pedamallu C, Gevers D, Duke F, Jung J, Michaud M, Walker B, Young S, Earl A, Kostic A, Ojesina A, Hasserjian R, Ballen K, Chen Y, Hobbs G, Antin J, Soiffer R, Baden L, Garrett W, Hornick J, Marty F, Meyerson M, Deragon J, Sinnett D, Mitchell G, Potier M, Labuda D, Sarkar G, Sommer S, Klaschik S, Lehmann L, Raadts A, Hoeft A, Stuber F, Tamariz J, Voinarowska K, Prinz M, Caragine T, Silial F, Saulnier P, Chachaty E, Andremont A, Heininger A, Binder M, Ellinger A, Botzenhart K, Unertl K, Döring G, Silkie S, Tolcher M, Nelson K, Carroll N, Adamson P, Okhravi N, Mohammadi T, Reesink H, Vandenbroucke-Grauls C, Savelkoul P, Hughes M, Beck L, Skuce R, Vaishampayan P, Probst A, Duc M La, Bargoma E, Benardini J, Andersen G, Venkateswaran K, Rueckert A, Morgan H, Patel P, Garson J, Tettmar K, Ancliff S, McDonald C, Pitt T, Coelho J, Tedder R, Champlot S,
Berthelot C, Pruvost M, Bennett E, Grange T, Geigl E, Chang S, Hsu H, Cheng J, Tseng C, Bonfert T, Csaba G, Zimmer R, Friedel C, Knights D, Kuczynski J, Charlson E, Zaneveld J, Mozer M, Collman R, Bushman F, Knight R, Kelley S, Eren A, Maignen L, Sul W, Murphy L, Grim S, Morrison H, Sogin M, Beck J, Schloss P, Campbell T, Crothers K, Curtis J, Flores S, Fontenot A, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch S, Sodergren E, Twigg H, Young V, Bassis C, Venkataraman A, Schmidt T, Weinstock G, Lane D, Klimowski D, Pruesse E, Schweer T, Peeples J, Quast C, Horn M, Gil’Ckner F, Cooper P, Walker A, Reyes J, Chico M, Salter S, Vaca M, Parkhill J, Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, Thallinger G, Horn D Van, Weber C, Kozich J, Westcott S, Baxter N, Highlander S, Schloss P, Quince C, Lanzen A, Davenport R, Turnbaugh P, Bolger A, Lohse M, Usadel B, Kielbaso S, Wan S, Sato K, Horton P, Frith M, Huson D, Mitra S, Rucheweyh H, Weber N, Schuster S, Schloss P, Gevers D, Westcott S, White J, Nagarajan N, Pop M. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87.

37. Jombart T, Devillard S, Balloux F, Falush D, Stephens M, Pritchard J, Pritchard J, Stephens M, Donnelly P, Corander J, Waldmann P, Sillanpaa M, Tang J, Hanage W, Fraser C, Corander J, Lee A, Abdoul A, Huang C, Jombart T, Devillard S, Dufour A, Pontier D, Jombart T, Pontier D, Dufour A, McVean G, Novembre J, Stephens M, Patterson N, Price A, Reich D, Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D, Hotelling H, Hotelling H, Pearson K, Liu N, Zhao H, Fisher R, Lachenbruch P, Goldstein M, Aitchison J, Reyment R, Beharav A, Nevo E, Fraley C, Raftery A, Cann H, Toma C, de Cazes L, Legrand M, Morel V, Pioufriere L, Bodmer J, Bodmer W, Bonne-Tamir B, Cambon-Thomsen A, Ramachandran S, Deshpande O, Roseman C, Rosenberg N, Feldman M, Cavalli-Sforza L, Rosenberg N, Pritchard J, Weber J, Cann H, Kidd K, Zhivotovsky L, Feldman M, Wang S, Lewis C, Jakobsson M, Ramachandran S, Ray N, Bedoya G, Rojas W, Parra M, Molina J, Gallo C, Balloux F, Rosenberg N, Mahajan S, Ramachandran S, Zhao C, Pritchard J, Feldman M, Rambaut A, Pybus O, Nelson M, Viboud C, Taubenberger J, Holmes E, Russell C, Jones T, Barr I, Cox N, Garten R, Gregory V, Gust I, Hampson A, Hay A, Hurt A, Smith D, Lapedes A, Jong J de, Bestebroer T, Rimmelzwaan G, Osterhaus A, Foucher R, Holmes E, Ghedin E, Miller N, Taylor J, Bao Y, George KS, Grenfell B, Salzberg S, Fraser C, Lipman D, Young J, Palese P, Benson D, Karsch-Mizrachi A, Lipman D, Ostell J, Wheeler D, Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Waterhouse A, Procter J, Martin D, Clamp M, Barton G, Paradis E, Claude J, Strimmer K, Handley L, Manica A, Goudet J, Balloux F, Serre D, Paabo S, Corander J, Marttinen P, Siren J, Tang J, Francois O, Ancelet S, Guillet G, Hunley K, Healy M, Long J, Kittles R, Weiss K, Manica A, Prugnolle F, Balloux F, Prugnolle F, Manica A, Balloux F, Romero I, Manica A, Handley L, Balloux F, Amos W, Hoffman J, Fraley C, Raftery A, Peres-Neto P, Jackson D, Somers K, Saporta G, Paradis E, Dray S, Dufour A, Schwarz G, Evanno G, Regnaut S, Goudet J, Jakobsson M, Rosenberg N, Chessel D, Dufour A, Thioulouse J, Dray S, Dufour A, Chessel D, Venables W, Ripley B, Nei M. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94.

38. Capriotti JA, Pelletier JS, Shah M, Caivano DM, Ritterband DC. 2009. Normal ocular flora in healthy eyes from a rural population in Sierra Leone. Int Ophthalmol 29:81–4.

39. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 2015. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26.

40. Wolle MA, Muñoz BE, Mkocha H, West SK. 2009. Constant ocular infection with Chlamydia trachomatis predicts risk of scarring in children in Tanzania. Ophthalmology 116:243–7.
41. Martin DL, Bid R, Sandi F, Goodhew EB, Massae PA, Lasway A, Philippin H, Makupa W, Molina S, Holland MJ, Mabey DCW, Drakeley C, Lammie PJ, Solomon AW. 2015. Serology for Trachoma Surveillance after Cessation of Mass Drug Administration. PLoS Negl Trop Dis 9:e0003555.

42. Bird M, Dawson CR, Schachter JS, Miao Y, Shama A, Osman A, Bassem A, Lietman TM. 2003. Does the diagnosis of trachoma adequately identify ocular chlamydial infection in trachoma-endemic areas? J Infect Dis 187:1669–73.

43. Ramadhani AM, Derrick T, Macleod D, Holland MJ, Burton MJ. 2016. The Relationship between Active Trachoma and Ocular Chlamydia trachomatis Infection before and after Mass Antibiotic Treatment. PLoS Negl Trop Dis 10.

44. Solomon AW, Holland MJ, Alexander NDE, Massae PA, Aguirre A, Natividad-Sancho A, Molina S, Safari S, Shao JF, Courtright P, Peeling RW, West SK, Bailey RL, Foster A, Mabey DCW. 2004. Mass treatment with single-dose azithromycin for trachoma. N Engl J Med 351:1962–1971.

45. Seidman JC, Coles CL, Silbergeld EK, Levens J, Mkocha H, Johnson LB, Muñoz B, West SK, Munoz B, West SK. 2014. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol 43:1105–1113.

46. Brunham RC, Rekart ML. 2008. The Arrested Immunity Hypothesis and the Epidemiology of Chlamydia Control. Sex Transm Dis 35:53–54.

47. Last AR, Roberts CH, Cassama E, Nabicassa M, Molina-Gonzalez S, Burr SE, Mabey DCW, Bailey RL, Holland MJ. 2013. Plasmid copy number and disease severity in naturally occurring ocular Chlamydia trachomatis infection. J Clin Microbiol 52:324.
Table 1. Oligonucleotides used in this study, with assay concentrations derived from *in vitro* optimisation.

Organism / target	Oligo	Sequence (5’-3’)	Concentration in final assay (nM)	Amplicon size	Ref
C. trachomatis / Plasmid open reading frame 2 (*pORF2*)	F	CAG CTT GTA GTC CTG CTT GAG AGA	900	109	(3, 26, 47)
	R	CAA GAG TAC ATC GGT CAA CGA AGA	900		
	Probe	[FAM] CCC CAC CAT TTT TCC GGA GCG A [BHQ1]	200		
S. aureus / Staphylococcal protein A (*SpA*)	F	CAG CAA ACC ATG CAG ATG CTA	900	101	(32, 33)
	R	CGC TAA TGA TAA TCC ACC AAA TAC A	900		
	Probe	[VIC] TCA AGC ATT ACC AGA AAC [MGBNFQ]	250		
Coagulase-negative *Staphylococcus* / translation elongation factor (*tuf*)	F	TAT CCA CGA AAC TTC TAA AAC AAC TGT TAC T	450	204	(33)
	R	TCT TTA GAT AAT ACG TAT ACT TCA GCT TTG AAT TT	450		
	Probe	[FAM] TAT TAG ACT ACG CTG AAG CTG GTG ACA ACA T [BHQ1]	125		
S. pneumoniae / N-acetylmuramoyl-L-alanine amidase (*lytA*)	F	ACG CAA TCT AGC AGA TGA AGC A	500	75	(28)
	R	TCG TGC GTT TTA ATT CCA GCT	500		
	Probe	[FAM] GCC GAA AAC GCT TGA TAC AGG GAG [BHQ1]	150		
H. influenzae / L-fuculokinase (*fucK*)†	F	ATG GCG GGA ACA TCA ATG A	900	102	(29)
	R	ACG CAT AGG AGG GAA ATG GTT	900		
	Probe *	[FAM] CGg TAA TTg GGa TCc AT [BHQ1]	125		
Adenoviridae / capsid assembly protein (hexon)	F	GCC AGC GTG GGG TTT CTA AAC TT	500	132	(27)
	R	GCC CCA GTG GTC TTA CAT GCA CAT C	500		
	Probe	[HEX] TGC ACC AGA CCC GGG CTC AGG TAC TCC GA [BHQ1]	125		
M. catarrhalis / outer membrane protein (*copB*)	F	GTG AGT GCC GCT TTT ACA ACC	900	72	(30, 31)
	R	TGT ATC GCC TGC CAA GAC AA	900		
	Probe	[HEX] TGC TTT TGC AGG TGT TAG CCA GCC TAA [BHQ1]	250		

* Lower case symbols denote locked nucleic acid bases
† These primers do not differentiate between encapsulated and noncapsulated subtype
Table 2. Cases of infection in specimens from children with and without active disease. The relationship of those infections to trachoma has been tested with univariate logistic regression, and then stepwise removal of variables from multivariate regression model was used to determine the final multivariate regression model that provided the best fit for the data.

Pathogen	ddPCR result	No TF/TI (%)	TF/TI (%)	Total (%)	Univariate odds ratio (95% CI)	Univariate p-value	Multivariate odds ratio (95% CI)	Multivariate p-value
Adenoviridae								
Positive	3 (1.2)	3 (1.2)	6 (1.2)	1.00 (0.67 – 1.50)	1.000			
Negative	254 (98.8)	254 (98.8)	508 (98.8)	-	-	-		
Chlamydia trachomatis*								
Positive	1 (0.4)	10 (3.9)	11 (2.1)	10.36 (1.96 - 190.92)	**0.026**	0.026	10.64 (2.15 – 196.00)	**0.025**
Negative	256 (99.6)	247 (96.1)	503 (97.9)	-	-	-		
Coagulase-negative Staphylococcus								
Positive	15 (5.8)	11 (4.3)	26 (5.1)	0.72 (0.32 – 1.59)	0.423		-	
Negative	242 (94.2)	246 (95.7)	488 (94.9)	-	-	-		
Haemophilus influenzae								
Positive	19 (7.4)	30 (11.7)	49 (9.5)	1.66 (0.91 – 3.07)	0.423		-	
Negative	238 (92.6)	227 (88.3)	465 (90.4)	-	-	-		
Moraxella catarrhalis								
Positive	6 (2.3)	12 (4.7)	18 (3.5)	2.05 (0.78 – 5.96)	0.158	2.13 (0.81 – 6.20)	0.137	
Negative	251 (97.7)	245 (95.3)	496 (96.5)	-	-	-		
Staphylococcus aureus								
Positive	5 (1.9)	5 (1.9)	10 (1.9)	1.00 (0.28 – 3.64)	0.423		-	
Negative	252 (98.1)	252 (98.1)	504 (98.1)	-	-	-		
Streptococcus pneumoniae								
Positive	18 (7.0)	16 (6.2)	34 (6.6)	0.88 (0.43 – 1.77)	0.723		-	
Negative	239 (93.0)	241 (93.8)	480 (93.4)	-	-	-		
Any pathogen								
Positive	45 (17.5)	57 (22.2)	102 (19.8)	0.75 (0.48 – 1.15)	0.815		Not included	
Negative	212 (82.4)	200 (77.8)	412 (80.2)	-	-	-		
Different pathogen species in same eye								
0	212 (82.4)	200 (77.8)	412 (80.2)	1.21 (0.90 – 1.63)	0.207		Not included	
1	28 (10.9)	35 (13.6)	63 (12.3)	-	-	-		
>1	17 (6.6)	22 (8.6)	39 (7.6)	-	-	-		

Data taken from Butcher et al.(3)
Figures

Figure 1. Target copies per swab of each pathogen identified in conjunctival swabs collected from children with and without active trachoma in the Solomon Islands. Numbers show p-values for logistic regression comparison between active trachoma case and control groups for each pathogen. None of the differences observed were statistically significant.
Figure 2. (A) First and second and (B) second and third principal components describing variation between the 16S sequences identified in Solomon Island children with and without active trachoma. Dark blue spots indicate controls. Light blue spots indicate cases. Red arrows show principal component loadings.
Figure 3: Discriminant analysis of the association of 20 combined principal components with active trachoma, showing a significant discrimination of phenotype groups ($p = 0.000006$).