Transporters in AMS and LRS symbioses

Corresponding author: Michał Jasiński, jasinski@ibch.poznan.pl

A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses

Joanna Banasiak\(^1\), Tomasz Jamruszka\(^1\), Jeremy Murray\(^{b,c}\), Michał Jasiński\(^{a,d,2}\)

\(^{a}\)Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.

\(^{b}\)Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

\(^{c}\)National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

\(^{d}\)Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland.

\(^1\)These authors contributed equally to the article

\(^2\)Author for contact: jasinski@ibch.poznan.pl

One-sentence summary: The membrane transport system functions in establishing and maintaining arbuscular mycorrhiza and legume-rhizobium symbioses.

Author contributions: J.B. and M.J. conceived the article, J.B. and T.J. wrote the first draft, J.B. prepared figures, J.M. and M.J. revised the final version and approved it for submission.

ORCID IDs:

Joanna Banasiak: 0000-0002-2834-7116

Tomasz Jamruszka: 0000-0003-4445-5624

Jeremy Murray: 0000-0003-3000-9199

Michał Jasiński: 0000-0003-0904-5873

Keywords: arbuscular mycorrhiza, legume-rhizobium symbiosis, membrane transporters, signaling molecules, nutrients, phytohormones.

Funding information: This work was supported by the Polish National Science Centre grants number: UMO-2015/19/B/NZ9/03548 and UMO-2015/17/D/NZ3/03625. J.M. was supported by The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27040209), and National Key R&D Program of China (2016YFA0500500).

Abstract

Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third...
largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.

Nitrogen (N) and phosphorus (P) are limiting nutrients in most natural soils (Du et al., 2020). A high input of N-fertilizers is required for optimal crop yields in conventional agriculture, which leads to contamination of groundwater and contributes markedly to the release of greenhouse gases (Fowler et al., 2013; Chai et al., 2019). Mutualistic fungal and bacterial symbionts are striking examples of soil microorganisms that have successfully coevolved with their hosts, allowing plants to better adapt to terrestrial ecosystems, and promoting their own success by gaining access to photosynthetic carbon (Chen et al., 2018). The most widespread plant-fungal symbiosis is the arbuscular mycorrhizal symbiosis (AMS), and the majority of land-plant species engage in an interaction with fungi of the subphylum Glomeromycotina (Wang and Qiu, 2006; Parniske, 2008; Spatafora et al., 2016), which has origins probably coinciding with the terrestrialization of plants (Pirozynski and Malloch, 1975). Subsequently, around 100 million years ago (MYA), certain angiosperms, the so-called nitrogen-fixing root nodule clade, evolved nodulation, a symbiosis with nitrogen-fixing soil bacteria (Griesmann et al., 2018; van Velzen et al., 2018). Among all nodulating plants, legumes, which are able to establish the extensively studied legume-rhizobium symbiosis (LRS), are most prominent (Huisman and Geurts, 2020). By forming endosymbiotic associations, plants obtain mineral nutrients and in turn supply the symbiont with organic and, in the case of LRS, also inorganic nutrients. LRS and AMS are intricate and finely tuned interactions that use host membrane transporters for the movement of a wide range of metabolites, including phytohormones, secondary metabolites, and nutrients, throughout the entire symbiotic process (Bapaume and Reinhardt, 2012). Specialized plant membrane transporters represent a promising target to increase crop yields and quality, as well as to improve sustainable production of nutritious foods (Schroeder et al., 2013). In this review, we synthesize current knowledge related to the
host membrane transporters that participate in subsequent stages of AMS and LRS. We aim to: (1) demonstrate the importance of transporters in the establishment and maintenance of these symbioses; (2) highlight recent discoveries of long-sought-after transporters involved in translocation of crucial symbiotic molecules; and (3) suggest avenues worthy of future research.

PRE-SYMBIOTIC and PRE-CONTACT STAGES – HOST-SYMBIONT ‘CHEMICAL DIALOGUE’ IN THE RHIZOSPHERE

AMS and LRS can be categorized into several stages: the pre-symbiotic stage, where the plant signals to prospective symbionts that it is a receptive host; the pre-contact stage, where the signals between host and symbiont are first exchanged; the colonization stage, where the symbiont contacts and penetrates host cells; and the nutrient exchange stage.

Signal release during nutrient stress

Nutrient shortage in the host plant results in the production of specific metabolites that serve as signals to facilitate symbiotic interactions. This process occurs in the absence of symbionts but is nonetheless essential for symbiotic interactions, as it signals host receptivity and, in the case of LRS, host-symbiont specificity. Among these signals, carotenoid-based phytohormones, strigolactones (SLs), serve as primary pre-colonization signals that affect arbuscular mycorrhizal (AM) fungi through stimulation of fungal metabolism and the induction of extensive hyphal branching (Akiyama et al., 2005; Besserer et al., 2006; Besserer et al., 2008). The first report of active SL secretion came from research on Petunia hybrida. In this species, the release of SLs into the rhizosphere occurs through suberin-free hypodermal passage cells (HPCs) located in the root exodermis and is a consequence of PDR1 (Pleiotropic Drug Resistance 1) exporter action (Kretzschmar et al., 2012) (Fig. 1). PDR1 is a member of the ancient and omnipresent ATP-binding cassette (ABC) protein family, and belongs to the G-type ABC (ABCG) subfamily (reviewed in Kang et al., 2011; Hwang et al., 2016). Pdr1 mutants secrete less SL (orobanchol) and exhibit reduced mycorrhizal colonization compared to wild type (WT) plants (Kretzschmar et al., 2012). Further studies have revealed that the orthologous protein from Petunia axillaris, PaPDR1, has an asymmetric cellular localization and is present in the outer-lateral membrane of HPCs, facing the external environment (Sasse et al., 2015). Thus, it has been proposed that PDR1 is responsible for SL release into the rhizosphere and participates in the formation of a steep concentration gradient of SLs in the
soil (Kretzschmar et al., 2012; Sasse et al., 2015). The latter, also being a result of SL instability, likely indicates the presence and proximity of a host, and serves to attract fungal hyphae to the HPCs, which accordingly act as gates for the entry of mycorrhizal fungi (Sbrana and Giovannetti, 2005; Akiyama and Hayashi, 2006; Sharda and Koide, 2008; Nadal and Paszkowski, 2013). PDR-mediated SL secretion appears to be conserved across species regardless of root anatomy. ABCG59 (also called PDR23) from the non-exodermal legume plant Medicago truncatula has recently been described as a potential SL exporter that promotes AMS. Notably, given the absence of an apoplastic hydrophobic diffusion barrier in M. truncatula roots, SLs can likely passively enter the rhizosphere, and are not dependent solely on MtABCG59 action (Banasiak et al., 2020) (Supplementary Table 1).

SLs may not be the only signal molecules affecting the pre-contact stage of AMS. Characterization of the rice (Oryza sativa) and maize (Zea mays) no perception 1 (npe1) mutants, which do not form AMS, has allowed the identification of the Major Facilitator Superfamily (MFS) protein, NOPE1. It has been proposed that NOPE1 mediates the secretion of N-acetylglucosamine (GlcNAc)-like compounds, thereby affecting presymbiotic AM fungal transcriptional reprogramming associated with signaling functions, most notably kinases. However, the actual nature of the NOPE1 substrate and the precise function of this protein remain open questions (Nadal et al., 2017) (Fig. 1, Supplementary Table 1).

The AM fungal hyphal growth pattern in the rhizosphere can be also altered by the presence of 2-hydroxy fatty acids (2-OH-FA) and some flavonoids present in root exudates, which promote hyphal tip elongation and hyphal branching (Scervino et al., 2007; Nagahashi and Douds, 2011). Additionally, flavonoids extend asymbiotic fungal growth, increasing the chance of contact between AM fungi and the host (Becard et al., 1992). The transporters responsible for flavonoid secretion during AMS have not yet been identified.

Legume-rhizobia signal exchange

While the importance of flavonoids in AMS establishment is debated (Becard et al., 1992; Becard et al., 1995; Scervino et al., 2007; Steinkellner et al., 2007), these secondary metabolites are undoubtedly the main pre-colonization signals, and ensure specific partner recognition during LRS (reviewed in Liu and Murray, 2016; Wang et al., 2018). It is thought that a flavonoid transporter must be present in the plasma membrane of root cells to release these compounds into the rhizosphere in order to induce the expression of nodulation genes of rhizobia, thus initiating LRS (Redmond et al., 1986). The production of nodulation factor (NF) signals derived from the bacteria, as a consequence of host flavonoid secretion, is...
subsequently required throughout root hair and nodule infection (Sharma and Signer, 1990; Liu and Murray, 2016), but it is not known whether different flavonoids are important at different stages of nodulation. Surprisingly, despite the importance of this very initial step, the identity of the flavonoid transporters remains unknown. In soybean (*Glycine max*), the isoflavones daidzein and genistein were identified as being required for LRS (Subramanian et al., 2006), while in *M. truncatula*, the flavone (7,4’-dihydroxyflavone) was shown to be essential for nodulation (Zhang et al., 2009). Interestingly, a full-size ABCG transporter from *M. truncatula* was found to be involved in the translocation of liquiritigenin, a precursor of both daidzein and 7,4’-dihydroxyflavone (Biala et al., 2017). Additionally, biochemical studies have suggested that ABCG transporters mediate genistein secretion from *G. max* roots, but the specific proteins have not been confirmed (Sugiyama et al., 2007, 2008). It has been proposed that members of the Multidrug and Toxic Compound Extrusion (MATE) family are involved in the exudation of signaling flavonoids; however, this remains to be validated (Chen et al., 2015) (Fig. 1). The biosynthesis and secretion of flavonoids are stimulated by nitrogen (N) deprivation, analogous to the elevated exudation of SLs preceding AMS formation under phosphate limiting conditions (Yoneyama et al., 2007; Sugiyama et al., 2016). Thus, the identity of transporters of “pre-infection flavonoids” may be revealed based on their root-specific expression and induction under nitrogen starvation. A body of evidence, discussed by Liu and Murray (2016), suggests that different legumes use different flavonoids for nodulation, raising the interesting possibility of variations in transporter specificity or expression across legumes. Additionally, transport of phenylpropanoid intermediates was proposed to have an influence on plant-microbe interactions (Banasiak et al., 2013; Biala et al., 2017; Bassard and Halkier, 2018; Biala and Jasinski, 2018). More information concerning this issue can be found in Box 1.

COLONIZATION – CONTACT and ROOT PENETRATION

Hyphopodium formation during AMS

Aliphatic compounds associated with the plant polyester cutin have been proposed to be another class of signaling molecules that are important for promoting mycorrhizal colonization. It has been reported that RAM2/GPAT protein (Required for Arbuscular Mycorrhization/Glycerol-3-Phosphate Acyl-Transferase), which is involved in cutin monomer biosynthesis, is necessary for both appropriate hyphopodium formation on the root surface and arbuscule development (Wang et al., 2012). However, it should be noted that the most
recent studies point to a nutritional, rather than signaling, function of cutin-like molecules (Bravo et al., 2017; Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017; Brands et al., 2018). Several ABCG transporters were shown to be involved in the translocation of apoplastic lipid precursors associated with cutin (Panikashvili et al., 2007; McFarlane et al., 2010; Panikashvili et al., 2010; Bessire et al., 2011; Panikashvili et al., 2011). Therefore, it is reasonable to hypothesize that ABCG proteins are responsible for translocation of cutin monomers, regardless of their function in AMS (see Lipid transporters section). It is worth noting that defects in the formation of fungal attachment structures have also been detected in *O. sativa* and *Z. mays nope1* mutants (Nadal et al., 2017) and *O. sativa* SL biosynthetic mutants (Kobae et al., 2018).

Hypodermal Passage Cell distribution

Once fungal hyphae cross the epidermis, they face another barrier; the outer cortical cell layer (Sharda and Koide, 2008). In most angiosperms, this layer is suberized and is referred to as the exodermis (Peterson and Perumalla, 1990). Most of the cells within the exodermis are impenetrable to AM fungi, except for the suberin-free HPCs, which are access points for further fungal colonization of the outer cortex (Sharda and Koide, 2008; Rich et al., 2014). HPC distribution may influence root penetration by AM fungi and is controlled by hormonal signaling and environmental conditions (Sharda and Koide, 2008; Liu et al., 2019a). Recent studies have revealed that SLs cause an increase HPC density in petunia, and dysfunction of the SL transporter PaPDR1 leads to a decrease in HPC number. Conversely, abscisic acid (ABA) was observed to promote suberization of root tissues, causing a reduction in HPC number in petunia roots (Liu et al., 2019a). An important question is whether/which ABA and/or suberin monomer transporters determine the distribution of HPCs and thus affect mycorrhization efficiency. Notably, both ABA and suberin monomers in different plant species can be translocated by half-size ABCG proteins (Kuromori et al., 2010; Landgraf et al., 2014; Yadav et al., 2014; Kang et al., 2015; Fedi et al., 2017; Pawela et al., 2019; Shanmugarajah et al., 2019). Moreover, Reduced Culm Number 1 (RCN1)/OsABCG5 and OsABCG25 were proposed to be involved in hypodermal suberization of roots in *O. sativa* (Shiono et al., 2014; Hinrichs et al., 2017).

Rhizodermal invasion and infection thread formation during LRS

Perception of NFs initiates early symbiotic responses in host plants, such as changes in ion fluxes through the nuclear envelope (reviewed in Roy et al., 2020; Tian et al., 2020). In
addition to transporters and channels involved in NF signaling, a large number of transporters are likely required to sustain the growth of enclosed bacteria inside the infection thread (IT); rhizobia within the IT are entirely cut-off from the rhizosphere and thus are completely dependent on the host for macro- and micro-nutrients. However, other than transporters involved in NF signaling, no transporters have yet been shown to be required for IT formation, although numerous candidates have been identified from root hair transcriptomic studies aimed at detecting rhizobia-induced genes. Among the candidates identified were three ABCB transporters, which are also induced in mycorrhizal roots, and the sucrose transporter MtSWEET11 (Sugars Will Eventually be Exported Transporter 11), which could play a role in carbon supply in cells forming ITs (Breakspear et al., 2014; Kryvoruchko et al., 2016; Roy et al., 2021).

ARBUSCULE NUTRIENT EXCHANGE

Mineral nutrient transporters

The major benefit of establishing AMS for the plant is improved acquisition of mineral nutrients, especially phosphate and ammonium (Wang et al., 2017). The periarbuscular membrane (PAM), which surrounds arbuscules, hosts a range of specific proteins responsible for nutrient uptake, with inorganic phosphate (Pi) transporters being the most extensively investigated.

Inorganic phosphate transporters

AMS-related Pi uptake in different plant species is mediated by proton-coupled Phosphate Transporter 1 (PHT1) family members belonging to mycorrhizal-specific clade I and mycorrhizal-inducible clade III (Rausch et al., 2001; Harrison et al., 2002; Paszkowski et al., 2002; Glassop et al., 2005; Nagy et al., 2005; Maeda et al., 2006; Wegmueller et al., 2008; Breuillin et al., 2010; Xie et al., 2013) (Supplementary Table 1). Transporters from the first clade (e.g. PT4 from *M. truncatula* and PT11 from *Oryza sativa*) are exclusively found in arbusculated cells, and their expression increases as mycorrhizal colonization proceeds (Harrison et al., 2002; Paszkowski et al., 2002) (Fig. 2). Furthermore, analyses of transgenic plants overexpressing MtPT4 or OsPT11 fused to the green fluorescent protein (GFP) reporter, under the control of their native promoters, revealed that both proteins were located solely in the PAM domain around the arbuscule branches active in nutrient exchange (Pumplin and Harrison, 2009; Kobae and Hata, 2010; Pumplin et al., 2012). Interestingly, the
polar targeting of MtPT4 to the PAM appears to be determined by its precise temporal expression, which is coordinated with arbuscule development, and involves transient changes in the secretory system (Pumplin et al., 2012). An intriguing question is whether the temporal control of MtPT4 localization to the PAM is a special case, or can it be generalized. Phenotypic characterization of mtpt4 loss-of-function mutants and RNAi-silenced lines have provided unequivocal evidence for the pivotal role of MtPT4 in AMS maintenance (Javot et al., 2007). The mtpt4 mutants exhibited a lower rate of mycorrhizal colonization, manifested by reduced intra- and extracellular growth of the AM fungus. Moreover, in plants with non-functional MtPT4, the infection units consisted of many septate hyphae and displayed premature arbuscule collapse. All these defects were related to the disturbance of Pi transport and led to untimely termination of the symbiosis (Javot et al., 2007). Comparable changes in arbuscule morphology and reduction of mycorrhizal colonization have also been observed in the case of the ospt11 mutant. Tracer studies have shown that Pi is not delivered via the AM fungus to the plant in the absence of OsPT11 (Yang et al., 2012). Further studies with WT nurse plants, which act as a feeding source for the AM fungi, have revealed that premature arbuscule degeneration in mtpt4 mutants is not associated with host carbon restriction, as previously suggested (Javot et al., 2011). Surprisingly, the low nitrogen status of the plant was sufficient to restore the WT phenotype in mtpt4 mutants in an Ammonium Transporter 2;3 (AMT2;3)-dependent manner. It is plausible that AMT2;3 functions as a transporter involved in ammonium sensing. This observation indicates the importance of an interplay between phosphorus and nitrogen in the regulation of arbuscule lifespan (Breuillin-Sessoms et al., 2015). Additionally, recent studies suggest that PT13 from O. sativa can function as a non-transporting sensor related to nutrient transporter adjustment during arbuscule development to regulate Pi acquisition (Yang et al., 2012), while AsPT1 from Astragalus sinicus was suggested to function as a nutrient sensor with Pi transport activity (Xie et al., 2013). Moreover, mycorrhizal-inducible Pi transporters belonging to clade III (e.g. PT3 from potato [Solanum tuberosum] and PT3 from Lotus japonicus), while clearly recruited for AM functions, are not essential for symbiotic Pi acquisition (Rausch et al., 2001; Maeda et al., 2006) (Supplementary Table 1).

Pi transporters located within the PAM were shown to use the H\(^+\) electrochemical gradient generated by plasma membrane H\(^+\)-ATPases. The H\(^+\)-ATPases Os-HA1 in O. sativa, Mt-HA1 of M. truncatula, and SlHA8 from tomato (Solanum lycopersicum) are specifically expressed in arbuscule-containing cells and are required for appropriate nutrient uptake and a fully
functional AMS (Krajinski et al., 2014; Wang et al., 2014; Liu et al., 2020a) (Fig. 2, Supplementary Table 1).

Ammonium transporters

Whilst Pi flux during AMS is well studied, much less is known about the transporters involved in symbiotic nitrogen acquisition. Members of two protein families: i) ammonium transporters (AMT) and ii) Nitrate Transporter 1/Peptide Transporter family (NPF), have been found to be transcriptionally induced in different plant species upon AM inoculation (Gomez et al., 2009; Kobae et al., 2010; Koegel et al., 2013; Perez-Tienda et al., 2014; Drechsler et al., 2018) (Supplementary Table 1). Some of them, such as AMT2;2 from *L. japonicus*, are exclusively expressed in mycorrhizal roots. AMT2;2 has been recognized as a high-affinity \(\text{NH}_3/\text{NH}_4^+ \) transporter that acts in an acidic pH-dependent manner (Guether et al., 2009b). Its putative ortholog, AMT4.1, from *G. max* complemented an ammonium uptake-deficient yeast mutant and localized to the PAM around branched arbuscules (Kobae et al., 2010). Likewise, AMT3;1 proteins from *O. sativa* and sorghum (*Sorghum bicolor*) have been described as potential transporters involved in ammonium uptake from the periarbuscular space. Downregulation of *OsAMT3;1* and *SbAMT3;1* caused a reduction of nutrient fluxes from the AM fungus to the host and arrested the promotion of plant growth after fungal inoculation (Koegel et al., 2013; Koegel et al., 2017). Additionally, it has been proposed that aquaporins (AQPs), besides being water channels, can also support \(\text{NH}_3/\text{NH}_4^+ \) permeation across membranes during AMS (Uehlein et al., 2007) (Fig. 2, Supplementary Table 1).

It has long been thought that transfer of ammonium through the PAM is a main route of symbiotic N acquisition. However, recent studies have revealed the existence of a conserved mycorrhizal pathway for nitrate uptake, at least in gramineous species. OsNPF4.5, with demonstrated nitrate transport ability, as well as its putative orthologs from *Z. mays* and *S. bicolor*, has been shown to be transcriptionally upregulated during AM colonization. Moreover, *osnpf4.5* knockout mutants were reported to exhibit lower rates of fungal colonization and reduced growth promotion under symbiotic conditions (Wang et al., 2020b) (Fig. 2, Supplementary Table 1). Further work is needed to determine whether this nitrate route operates in plants other than grasses.

Other mineral nutrient transporters

The improvement of plant nutrition through AM interactions is not limited to phosphorus and nitrogen supplementation (Sieh et al., 2013; Garcia et al., 2017). Sultr1;2 from *L. japonicus*,
the transcript of which strongly accumulates upon sulphate starvation and in arbusculated cells, has been proposed to mediate both direct and symbiotic sulphur acquisition (Giovannetti et al., 2014). High-affinity Potassium Transporter 10 (SIHAK10) from *S. lycopersicum* was found to be expressed exclusively in arbuscule-containing cells, participating in mycorrhizal K\(^+\) uptake. It has been proposed that SIHAK10 action may increase carbohydrate accumulation in roots and therefore facilitate AM fungal colonization (Liu et al., 2019b). Its putative ortholog from *L. japonicus*, LjHAK, was also shown to be AM-induced (Guether et al., 2009a). Moreover, transcriptional analysis of mycorrhizal *M. truncatula* plants grown under K\(^+\) deprivation showed the upregulation of a gene encoding a putative K\(^+\)/H\(^+\) exchanger (Garcia et al., 2017) (Fig. 2, Supplementary Table 1). Uptake of metals such as zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe), in addition to direct routes, seems to be provided by mycorrhizal pathways (Lehmann and Rillig, 2015; Coccina et al., 2019). However, our knowledge about AMS-related metal transporters is minimal. ZIP13, a member of the ZRT, IRT-like Protein family from barley (*Hordeum vulgare*), which encodes a potential zinc (Zn) transporter, has been shown to be up-regulated by mycorrhizal colonization (Watts-Williams and Cavagnaro, 2018), as has ZIP5 from *M. truncatula* (Nguyen et al., 2019) (Fig. 2, Supplementary Table 1). Identification of metal transporters will help elucidate the role of AMS in plant tolerance to metal stress deficiency or toxicity, and may have an impact on designing new strategies for phytoremediation.

Carbon supply during AMS

AM fungi are obligate biotrophs that require plant-sourced carbon for completion of their life cycle. For a long time, carbohydrates have been considered as the main nutrient delivered to the fungus (Pfeffer et al., 1999). However, recent findings revealed that lipids are additional, and perhaps the principle, carbon sources supplied by the host (Bravo et al., 2017; Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017; Brands et al., 2018).

Sugar transporters

Early reports demonstrated that sugars can be transported from the plant host to the AM fungus (Solaiman and Saito, 1997; Pfeffer et al., 1999). However, our knowledge of the underlying mechanism of carbohydrate delivery to the apoplastic compartment during AMS is surprisingly limited. Proteins from the SWEET family have been proposed as good candidates for symbiotic sugar transfer. Transcriptional characterization of *S. tuberosum* SWEET genes...
revealed that at least three of them (SWEET2c, SWEET7a, and SWEET12a) are symbiotically upregulated and highly expressed in arbuscule-containing cells (Manck-Gotzenberger and Requena, 2016). Similarly, the expression levels of several SWEET genes from M. truncatula and G. max were found to be elevated during AMS (Kafle et al., 2019; Zhao et al., 2019). Finally, MtSWEET1b was shown to be a glucose transporter that localizes to the PAM surrounding the trunk and fine branches of arbuscules. It is worth mentioning here that the lack of defective AMS in mtsweet1b might be explained by redundancy with other AM-induced MtSWEET genes (An et al., 2019). Another group of sugar transporters associated with AM is the sucrose transporter (SUT) family, which utilizes the proton motive force present across the plasma membrane. These proteins have been proposed to contribute to carbohydrate positioning/redirection during AMS by the long-distance flow of sucrose towards the AM fungi. In M. truncatula, SUT4-1 and SUT1-1 were found to be upregulated after AM fungal colonization in leaves and roots, respectively, and both proteins were shown to import sucrose (Doidy et al., 2012). Furthermore, overexpression of SoSUT1 from Spinacia oleracea in S. tuberosum increases AM root colonization under high Pi fertilization levels (Gabriel-Neumann et al., 2011). Interestingly, downregulation of SISUT2 expression in S. lycopersicum increases AM colonization but has a negative effect on plant growth. SISUT2 is localized to the PAM and is probably responsible for carbohydrate retrieval by the plant, thereby limiting excessive and detrimental AM fungal expansion (Bitterlich et al., 2014). Additionally, transcripts of the Monosaccharide Transporter 1 (Mtst1/MST1) from M. truncatula were found to preferentially accumulate in cortical cells containing fungal structures (Harrison, 1996) (Fig. 2, Supplementary Table 1).

Lipid transporters

The induction of plant lipid metabolism upon AMS was originally attributed to increased demand for lipids for *de novo* synthesis of PAMs (Gaude et al., 2012b). However, new findings point to the essential role of these compounds in AM fungal nutrition (Bravo et al., 2016; Bravo et al., 2017; Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017; Brands et al., 2018; Malar et al., 2021). For a long time, AM fungi were thought to use host-derived carbohydrates for the production of lipids, which are the main form of carbon storage and movement in the mycobiont (Bago et al., 2002). Surprisingly, analyses of the *Rhizophagus irregularis* genome and the *Gigaspora rosea* transcriptome revealed the absence of the cytoplasmic type I fatty acid synthase (FAS-I) complex required for (FA) synthesis (Tisserant et al., 2013; Wewer et al., 2014; Tang et al., 2016). Nonetheless, FA elongation and
desaturation, as well as the production of complex lipids occurs in AM fungi (Wewer et al., 2014). It has been proposed that C16:0 sn2-monoacyl glycerol (sn2-MAG) compounds, which are structurally analogous to cutin-precursors, are transferred from plants to fungi prior to conversion to other lipids (Bravo et al., 2017). It was shown that mutation of the mycorrhizal-inducible FatM (acyl-ACP thioesterase-like protein) or RAM2/GPAT from *M. truncatula* leads to abnormal arbuscule development as a consequence of disturbance in FA and MAG biosynthesis during AMS (Wang et al., 2012; Bravo et al., 2016; Bravo et al., 2017). Half-size ABCG transporters (also known as white-brown complex [WBC] transporters) appear to be promising candidates for lipid export to the symbiotic interface. There is a range of experimental evidence that many ABCG proteins are involved in the transport of precursors of apoplastic lipids such as cutin and suberin (Panikashvili et al., 2007; McFarlane et al., 2010; Panikashvili et al., 2010; Panikashvili et al., 2011). Notably, STR (Stunted Arbuscule) and STR2, which belong to the ABCG subfamily and are unique to mycorrhizal plants (Radhakrishnan et al., 2020), were found to be essential for arbuscule formation in *M. truncatula* and *O. sativa*. It has been shown that they function as heterodimers and localize specifically to the PAM. Moreover, their dysfunction contributes to a stunted arbuscule phenotype (Zhang et al., 2010; Gutjahr et al., 2012). It is tempting to speculate that sn2-MAG compounds or MAG derivatives are STR/STR2 substrates; however, direct proof has not yet been provided (Bravo et al., 2017). The nature of the molecules transported by STR/STR2 remains one of the most exciting questions in AMS research. Another transporter recruited for AMS function, and likely associated with lipid transport, is *M. truncatula* ABCG3/WBC5. The latter has been proposed to be a part of the RAM1-regulated lipid export pathway, which is indispensable for mycorrhiza formation (Luginbuehl et al., 2017). It has been shown that the expression of *MtABCG3*, together with *RAM2/GPAT*, is strongly induced after AM fungal inoculation, and their induction requires the GRAS-domain transcription factor RAM1 (Required for Arbuscular Mycorrhization 1) (Hogekamp et al., 2011; Luginbuehl et al., 2017). Moreover, *MtABCG3* is expressed predominantly in arbuscule-containing cells (Hogekamp et al., 2011; Luginbuehl et al., 2017). Further, functional and mutant plant studies are needed to clarify the role of *MtABCG3* in AMS (Fig. 2, Supplementary Table 1).

To sum up, it is widely speculated that RAM1, FatM, RAM2, and STR/STR2 form an AM-specific operational unit for lipid biosynthesis and transport in arbusculated cells (Bravo et al., 2017; Jiang et al., 2017; Keymer et al., 2017; Luginbuehl and Oldroyd, 2017; Rich et al., 2017). Additionally, AP2-Domain Transcription Factor WR5 and CBX1 from *M. truncatula* and *L. japonicas*, respectively, as well as conserved WRINKLED (WRI)
transcription factor from the liverwort *Marchantia paleacea*, have been shown to be regulators of lipid metabolism during AMS (Jiang et al., 2018; Xue et al., 2018; Rich et al., 2021). Moreover, it is conceivable that other ABCG proteins, besides STR/STR2, may also be involved in this scenario. Notably, phylogenetic analysis has shown that MtABCG3 clusters with AtABCG11/12/13, which are involved in the secretion of cutin-like compounds (Panikashvili et al., 2007; Panikashvili et al., 2011; Banasiak and Jasinski, 2014), while STR/STR2 are more closely related to AtABCG1/2/6/20 transporters associated with deposition of suberin monomers, which are generally composed of longer carbon chains than those of cutin precursors (Banasiak and Jasinski, 2014; Yadav et al., 2014; Fedi et al., 2017; Shanmugarajah et al., 2019). Despite the fact that str and str2 mutants form defective arbuscules, similar to plants lacking FatM and RAM2, the observed accumulation of 16:0 sn2-MAGs in str and str2 was comparable to the WT plants (Bravo et al., 2017). This raises the intriguing question of possible alternative molecules delivered by STR/STR2 to the fungi. Additional experiments are necessary to define the substrates of STR/STR2 and MtABCG3. Direct measurement of the transport of hydrophobic molecules is technically very difficult and requires non-conventional approaches (Lefevre and Boutry, 2018). A recent report, showing ABC-mediated sn2-MAG transport, may set a path for establishing the biochemical action of STR/STR2 (Elejalde-Palmett et al., 2021). Given the central role of AM fungal lipid auxotrophy in explaining the obligate nature of the symbiosis, it is critical to fully understand how lipids are transferred in the PAM.

THE NUTRIENT EXCHANGE BETWEEN THE HOST PLANT AND BACTEROIDS

After release from infection threads, rhizobia differentiate into large nitrogen-fixing bacteroids, which are enclosed by a host-derived membrane called the peribacteroidal membrane (symbiosome membrane, SM). SM creates a physical barrier for any fluxes of components between the symbiotic partners (Clarke et al., 2014).

Transport of fixed nitrogen

Bacteroids in nodules convert nitrogen to ammonia (NH$_3$) (Halbleib and Ludden, 2000), some of which is then reduced to ammonium (NH$_4^+$) in the acidic symbiosome space (SS) after its translocation from the bacteroid cytoplasm (Udvardi et al., 1991). The acidification of SS, as well as proton gradient generation, which is known to drive many transport processes across SM, is possible due to H$^+$-ATPase activity in the membrane (Udvardi and Day, 1989; Pierre et al., 2013). Ammonia translocation across the SM is mediated by a member of the AQP
family, nodulin 26 (NOD26), which is exclusively and abundantly present in the SM (Hwang et al., 2010). Nonetheless, a more important contribution of NOD26 to nitrogen homeostasis in nodules appears to be its function as a docking station for plant cytosolic glutamine synthetase. The latter enables the rapid assimilation of NH$_3$ into amino acids and creates a sink for further outward movement of ammonia (Masalkar et al., 2010). Up to now, ammonium transporters in the SM have not been identified, but the presence of a voltage-activated nonselective cation channel (NSCC) that is permeable to monovalent cations (NH$_4^+$, K$^+$, Na$^+$) has been predicted for *G. max* and *L. japonicus* using patch clamp analyses (Roberts and Tyerman, 2002) (Fig. 3, Supplementary Table 2).

Transport of nitrate

Nitrate acts as a negative regulator of nodulation at every stage, repressing infection, nodule formation and, in mature nodules, nitrogen fixation (Streeter, 1985; Murray et al., 2017). Nitrate responses in plants, including the expression of many nitrate transporters, are regulated by NIN-Like Protein (NLP) transcription factors, and loss of either of two NLPs in legumes results in nitrate-tolerant nodulation (Lin et al., 2018; Nishida et al., 2018). Remarkably, the nitrate transporters involved in this suppression have not been identified. Putative orthologs of Nitrate Transporter 1.1 (*AtNRT1.1*), considered to be the primary low-affinity nitrate transporter in *Arabidopsis* (*Arabidopsis thaliana*), are good candidates for this role. The role of nitrate in the suppression of nodulation is well-established, but recently an unexpected role for nitrate transport in supporting nodulation at low external concentrations through a nitrate-NO respiration pathway was discovered (Valkov et al., 2020). This provides potential insight into several previous reports that link nitrate transporters of the NPF family to nodule nitrogen fixation. The high-affinity nitrate transporter from *M. truncatula*, NPF7.6, is expressed in vascular nodule transfer cells (NTCs) upon rhizobia and nitrate treatment. Mutant nodules exhibit defects in vasculature and nitrogenase activity (Wang et al., 2020a). A low-affinity nitrate transporter, NPF8.6, was recently characterized in *L. japonicus*, and the strongest expression of *LjNPF8.6* was found to occur in mature nodules (Valkov et al., 2017). Loss of the transporter reduces nitrogen fixation efficiency, but does not affect nodule number or contribute to nitrogen-dependent inhibition of nodulation (Streeter, 1985; Valkov et al., 2017) (Fig. 3, Supplementary Table 2). Interestingly, a closely related protein from *G. max*, GmNPF8.6, localizes to the SM (Clarke et al., 2015). A *L. japonicus* chlorate-tolerant mutant with decreased nitrate uptake ability was reported to have strongly decreased nodulation (Pal'ove-Balang et al., 2015). In addition to having a role in nitrogen fixation, NPF proteins...
may also be involved in other nodulation processes. A notable NPF identified with a role in nodulation was the *M. truncatula* high-affinity nitrate transporter MtNPF1.7, originally called NIP/LATD (Numerous Infections and Polyphenolics/Lateral root-organ Defective) (Yendrek et al., 2010; Bagchi et al., 2012). Severely affected *latd* mutants display nodule growth suppression and IT arrest in root hairs, with almost no rhizobia housed in the primordium (Veereshlingam et al., 2004; Yendrek et al., 2010) (Supplementary Table 2). This suggests that either nitrate, or some yet unidentified MtNPF1.7 substrate, plays an important role in rhizobial infection.

Besides NPF family members, in *L. japonicus* and *G. max*, nodulin-70 (N70) transporters from the MFS superfamily are also SM proteins. They transport nitrate and nitrite, presumably as a part of ion and membrane potential regulation in response to external nitrate availability, which is known to affect symbiosis (Streeter, 1985; Vincill et al., 2005) (Fig. 3, Supplementary Table 2).

Nutrient transport in nodules

Ureides (e.g. allantoin and allantoic acid) represent one of the major reduced nitrogen transport forms in tropical nodulating legumes such as French bean (*Phaseolus vulgaris*) or *G. max*. PvUPS1 and GmUPS1 transporters, a members of Ureide Permease (UPS) family, contribute to ureide export from nodules via their translocation from the nodule cortex and vascular endodermis to the lumen of nodule xylem. RNAi silencing of GmUPS1 expression negatively affects nodule development (Pelissier et al., 2004; Collier and Tegeder, 2012).

Nitrogen-fixing cells in nodules exhibit high levels of protein biosynthesis, which increases the demand for sulphur (Noel et al., 1982; Gaude et al., 2004). A nodule-specific SO$_4^{2-}$ transporter has been identified in *L. japonicus*. LjSST1 (Symbiotic Sulfate Transporter 1) localizes to the SM and translocates sulphur into the SS. LjSS1 mutants exhibit lower nitrogen fixation rates and, as a consequence, have reduced growth in symbiotic conditions (Krusell et al., 2005) (Fig. 3). Nitrogen fixation rates also rely on the activity of nitrogenase, which requires molybdenum as a cofactor (Bulen and Lecomte, 1966). MtMOT1.3 (Molybdate Transporter type 1) imports molybdate into cells of the nodule interzone and nitrogen fixation zone, and MtMOT1.3 knockout mutant plants exhibit impaired growth under N-deficiency, which is associated with a reduction in nitrogenase activity (Tejada-Jimenez et al., 2017) (Fig. 3). Another cofactor and an element crucial for protein structure is zinc. At least three nodule-specific zinc transporters have been characterized: GmZIP1 in *G. max* localizes specifically to the SM, while *M. truncatula* MtMTP2 and MtZIP6 localize to the endomembrane
compartment or plasma membrane of cells in the nodule infection and differentiation zones, respectively. Analyses of plants with disrupted zinc transporter function revealed reduced nitrogenase activity under symbiotic conditions and growth defects (Moreau et al., 2002; Abreu et al., 2017; Leon-Mediavilla et al., 2018) (Fig. 3). Another nodule-specific metal transporter is *M. truncatula* Copper Transporter 1 (MtCOPT1), which is expressed in the late differentiation zone, interzone and early nitrogen fixation zone. Its mutation could have an indirect effect on nitrogen fixation and plant physiology in symbiotic conditions, likely caused by defective copper-dependent functions in bacteroids (Senovilla et al., 2018) (Fig. 3, Supplementary Table 2).

Iron is a key cofactor of nitrogenase, leghemoglobin, and other proteins crucial for cell homeostasis, such as cytochromes (reviewed in Brear et al., 2013). Nodules, which can contain as much as 45% of the total plant iron (Burton et al., 1998), are capable of taking up iron as a ferrous ion (Fe^{2+}) directly from the soil (Slatni et al., 2009), or as Fe^{3+}-chelates (e.g. citrate, nicotianamine) from xylem vessels (Tiffin, 1966; Cline et al., 1982). Our knowledge about transporters facilitating iron flow within nodules was gradually increasing throughout the years (Kaiser et al., 2003; Hakoyama et al., 2012; Takanashi et al., 2013; Shen et al., 2014; Tejada-Jimenez et al., 2015), but has recently substantially expanded (Kryvoruchko et al., 2018; Escudero et al., 2020; Liu et al., 2020b; Walton et al., 2020). Some key discoveries in the field are described in Box 2.

Symbiotic exchange of reduced carbon/carbon compounds

It is generally accepted that dicarboxylates are the primary source of reduced carbon delivered directly from the host plant to the bacteroids. Dicarboxylates (mainly malate) provide the energy for symbiotic nitrogen fixation and are used as the carbon skeletons for the synthesis of amino acids (Udvardi et al., 1988; Rosendahl et al., 1990; Mitsch et al., 2018). LjALMT4, a member of the Aluminum-Activated Malate Transporter (ALMT) family, has been shown to be expressed in parenchyma cells of nodule vascular bundles and is proposed to be involved in dicarboxylate supply to the nodule. The transporter efflux activity of malate, succinate, and fumarate, but not tricarboxylates such as citrate, was demonstrated using a *Xenopus* oocyte heterologous expression system. Additionally, LjALMT4 translocates inorganic anions, such as chloride and nitrate, in the opposite direction (Takanashi et al., 2016).

As in mycorrhization, members of the SWEET family appear to be involved in sucrose transfer during nodulation. Notably, *L. japonicus* SWEET3 was found to be highly expressed in the vasculature of mature nodules, as well as in mycorrhizal roots. This PM-localized
protein was observed to exhibit moderate sucrose influx activity; however, functional
analyses using an RNAi approach did not reveal phenotypic differences between control and
silenced roots (Sugiyama et al., 2017). In *M. truncatula*, a nodule-specific sucrose transporter,
SWEET11, was found to be expressed, *inter alia*, in nodule vascular bundles, and constitutes
a part of SM of infected cells. Loss of function of this transporter had no impact on nodule
formation and nitrogen fixation (Kryvoruchko et al., 2016). The lack of a clear phenotype in
knock-down and knock-out SWEET mutants in different plant species can be explained by
functional redundancy among sucrose transporters and/or the existence of alternative routes of
carbon supply to nodules (Fig. 3, Supplementary Table 2). Interestingly, a member of the
NPF family, Dicarboxylate Transporter (DCAT1), was located to the SM of the non-legume
common alder (*Alnus glutinosa*), which establishes a symbiotic interaction with the nitrogen-
fixing actinomycete *Frankia* (Jeong et al., 2004). Since the expression of NPF genes is
induced in *M. truncatula* and *L. japonicus* during nodule development, it is tempting to
speculate that certain members of this family are involved in supplying dicarboxylates to
bacteroids (Colebatch et al., 2004; Benedito et al., 2008).

HORMONE TRANSPORT DURING SYMBIOSES

The involvement of plant hormones, such as auxin and cytokinin, in the regulation of
nodulation and AM interactions is well established, although reports of hormone translocation
in nodulation are more extensive and detailed than those for AM (Foo et al., 2014; Bedini et
al., 2018; Liao et al., 2018). Notably, the molecular identity of the hormone transporters
involved often remains unknown, even in the case of nodulation. The role of strigolactones as
inter-kingdom signals in the rhizosphere has been mentioned earlier (see Pre-symbiotic stage
section).

Auxin

Auxin plays a crucial role as a mobile signal that is translocated from shoots towards the root
tips, in a polar manner, and is responsible for the initiation of new lateral roots and, nodules in
legumes (Libbenga et al., 1973; Benkova et al., 2003; Friml, 2003).

Auxin transport is controlled by at least four classes of transport proteins: PIN (PIN-
FORMED), AUX1/LAX (AUXIN1/LIKE-AUX1), PGP/MDR/ABCB (P-
Glycoprotein/Multidrug resistance/ATP-Binding Cassette B) and PILS (PIN-LIKES) proteins.
All of them are members of multigene families (reviewed in Mohanta et al., 2018). In the
experimental model plant *A. thaliana*, eight PIN proteins have been extensively studied for
their role in auxin export, most of which have well described functions in roots (Blilou et al., 2005; Paponov et al., 2005; Krecek et al., 2009). Phylogenetic analyses and sequence comparison with A. thaliana PIN proteins have provided clues about the putative legume PIN proteins through their assignment to orthologous groups (Schnabel and Frugoli, 2004; Kohlen et al., 2018). Interestingly, Sinorhizobium meliloti infection appears to modulate the expression of M. truncatula PIN genes both in shoots and roots (Shen et al., 2015). Disruption of MtPIN2, MtPIN3, and MtPIN4 expression through RNAi leads to a reduction in the number of nodules, suggesting that these components of the auxin-transport machinery play a role in nodule development (Huo et al., 2006).

It is known that the action of PIN proteins mediates multiple developmental processes, including organ development (Vieten et al., 2005). Thus, the PIN-dependent transport network might enable the stabilization of auxin gradients and the development of adaptive organs, such as the nodule. There are large overlaps in the signaling components and developmental processes involved in the formation of lateral roots and nodules, making them an interesting model to study plant organ development (Schiessl et al., 2019; Soyano et al., 2019). It is worth noting that PIN gene expression profiles in the developing and mature nodule can vary considerably, as is the case with MtPIN2, which encodes the first PIN transporter described in legumes (Huo et al., 2006; Sanko-Sawczenko et al., 2016). MtPIN2 expression in nodules starts within peripheral cells, which give birth to vascular elements. This is followed by an expression pattern covering the entire nodule at its emerging stage. Subsequently, MtPIN2 is expressed exclusively at the base of the organ, and its expression is no longer detected when the nodule is mature (Huo et al., 2006). This may be a case of nodule-associated specialization. Moreover, MtPIN2-mediated basipetal auxin transport in roots appears to be less important for successful initiation of nodulation than it is for early nodule development (Ng et al., 2020).

Studies of auxin distribution in root nodules also showed the involvement of auxin in the formation of vascular bundles (Takanashi et al., 2011). Developing vascular tissue is characterized by relatively high auxin levels and sink strength in such a system primarily depends on PIN-dependent auxin flux rates. Identification of auxin transporters, as well as other factors that influence auxin canalization during nodule vascularization, will be important to gain insights into the evolution of nodule architecture. Interestingly, it has been shown that SLs influence PIN-dependent auxin canalization in pea (Pisum sativum), thereby affecting vasculature formation (Zhang et al., 2020). An open question is whether, in addition to functioning as a signal in the rhizosphere, SLs and their transporters are involved in
symbioses by modulating auxin distribution in roots and root-associated organs. Notably, in
Arabidopsis thaliana, it has been shown that molecular pathways coordinating root growth in response
to distinct nitrogen sources involve nitrate-dependent dephosphorylation of the PIN auxin
efflux carrier (Otvos et al., 2021). This provides a flexible means to regulate auxin activity in
response to varying sources of N, which is an interesting area of exploration in legumes.

The export of auxin is also enabled by ABC transporters from the B subfamily. Their
function overlaps partially with PIN transporters, but the flow of auxin generated by ABCB
proteins is not polar (Mravec et al., 2008; Lane et al., 2016). The involvement of ABCB
members in nodulation and symbiotic nitrogen fixation within *Fabaceae* still has to be
determined in more detail (Molesini et al., 2014; Shen et al., 2015; Sanko-Sawczenko et al.,
2016). For instance, the auxin transporter LjABCB1 from *L. japonicus* is expressed
exclusively in developing nodules, and the activity of its promoter has been detected in
uninfected cells neighboring the infection zone (Takanashi et al., 2012). Three ABCB
transporters that are induced during both LRS and AMS were recently described, but no
substrates were identified, and a triple mutant showed no overt effect on mycorrhiza, and only
a slight increase in nodule formation (Roy et al., 2021).

In addition to efflux, auxin transport requires cellular influx. This occurs in part by
diffusion but is also facilitated by a small multigene family of high-affinity auxin influx
carriers (AUX1/LAX). In legumes, AUX/LAX transporters are ubiquitously expressed in root
tissues including nodules (Shen et al., 2015; Sanko-Sawczenko et al., 2016; Roy et al., 2017).
LAX2 from *M. truncatula* is one of the best characterized auxin importers. Its expression is
widely detected in shoots and underground tissues of uninfected plants, but also in nodulating
roots, and both developing and mature nodules (Schnabel and Frugoli, 2004; Shen et al.,
2015; Sanko-Sawczenko et al., 2016). MtLAX2 plays an important role in the formation of
root nodules and lateral roots in legumes, indicating a common requirement for auxin influx
activity for both forms of lateral organs (Roy et al., 2017) (Supplementary Table 2).

Auxin involvement in AMS has been widely discussed (Ludwig-Muller et al., 1997;
Hanlon and Coenen, 2011; Ng et al., 2015; Bedini et al., 2018; Liao et al., 2018). It has been
postulated that mycorrhizal fungi use auxin as a means to stimulate root growth and new
lateral root development in an infection area (Bonfante and Genre, 2010). However,
knowledge of the changes in auxin distribution and role of auxin transporters in arbuscule
development is limited. Interestingly, expression of one *M. truncatula* full-size transporter,
ABCB1, is induced in cells hosting arbuscules and adjacent cortical cells. The encoded
transporter may be involved in transport of auxin between cells during AMS (Gaude et al., 2012a).

Cytokinins

Cytokinins are involved in many important developmental processes, including a central role in LRS (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007). They are considered to be signaling molecules, conveying information from symbiotic bacteria to the inner parts of the root, where they are required for cortical cell divisions (Timmers et al., 1999; Reid et al., 2017). Moreover, cytokinins act as a negative regulator of infection within the rhizodermis and as a part of systemic autoregulatory mechanisms, controlling the number of nodules (Sasaki et al., 2014; Miri et al., 2019).

In A. thaliana, three kinds of cytokinin transporters have been reported to date: Purine Permeases (PUP), Equilibrative Nucleoside Transporters (ENT), and ABCG transporters (Kudo et al., 2010; Girke et al., 2014; Borghi et al., 2015). Less is known about cytokinin distribution in legumes, although some transcriptome data have demonstrated that ABC and ENT family members are expressed in the rhizodermis and are upregulated by NF treatment (Damiani et al., 2016; Jardinaud et al., 2016). Recently, Jarzyniak et al. (2021) identified a full-size ABCG protein in M. truncatula as a cytokinin transporter. MtABCG56 is expressed in roots and nodules, and it was proposed to be responsible for efflux of cytokinins from the epidermis upon infection. Such export may have a cell-autonomous function and may also affect distal cortical responses and nodule organogenesis. Thus, ABCG-driven cytokinin transport may be a part of scenario of early symbiotic communication between the epidermis and cortex (Supplementary Table 2). Given that genes encoding 30 full-size ABCG proteins are present in the M. truncatula genome and that transcriptomic analyses suggest that several of them are induced under symbiotic conditions (Jardinaud et al., 2016), other roles in LRS may be attributed to the action of ABCG transporters. Other LRS processes involving cytokinins, such as the suppression of nodulation and lateral root formation, may use ABCG proteins as hormone flow facilitators.

The role of cytokinins in AMS is not as well understood as in LRS (Bedini et al., 2018; Liao et al., 2018). This is mostly caused by the diversity of fungi and plants that take part in symbioses, and the ability of some fungi to produce cytokinins themselves, which complicates analyses of the source and function of this class of phytohormones (Barea and Azcon-Aguilar, 1982; Pons et al., 2020). The identification of cytokinin transport and/or transporters that participate in AMS would constitute an important milestone in the field.
Abscisic acid

Levels of abscisic acid (ABA) in legumes are affected by soil moisture and influence root morphology and nodulation efficiency. Upon water shortage, ABA promotes the growth of lateral roots and simultaneously modulates the nodulation process, acting as a negative regulator of the early nodulation stages by affecting epidermal NF signaling and cytokinin-activated cortical cell division (Ding et al., 2008; Gonzalez et al., 2015). ABA in roots is synthesized within vascular tissues and has to be translocated to external parts of the root (i.e. pericycle, endodermis, and inner cortex) in order to suppress nodule morphogenesis (Phillips, 1971; Endo et al., 2008; Xiao et al., 2014). The molecular basis of ABA transport has been defined, and transmembrane ABA translocation, based on diffusion and the presence of primary and secondary transporters, has been extensively studied in *A. thaliana* (Boursiac et al., 2013; Borghi et al., 2015; Kuromori et al., 2018). Several ABCG transporters, namely *AtABCG25*, *-30*, *-31*, and *-40*, have been implicated in the transport of ABA, promoting plant resistance to pathogens or modulating root architecture, seed development, and stomatal movement (Kang et al., 2010; Kuromori et al., 2010; Kang et al., 2015). It was recently shown that a *M. truncatula* half-size ABCG transporter, *MtABCG20*, is involved in ABA translocation from the root vasculature. Interestingly, nodulation tests have shown that a knock-out of *MtABCG20* results in increased nodule number compared to WT, consistent with the function of ABA as a negative regulator of infection events in the epidermis and nodule primordium formation in the root cortex tissue. The increase in nodule numbers in *mtabcg20* is likely due to reduced export of ABA from its site of biosynthesis (Ding et al., 2008; Ding and Oldroyd, 2009; Pawela et al., 2019).

Mutation of *M. truncatula* *MtNPF1.7/LATD/NIP*, mentioned above as a nitrate transporter, results in defects in rhizobial infection structures and non-functional nodule meristems (Yendrek et al., 2010). Interestingly, these phenotypes are rescued by the exogenous application of ABA (Zhang et al., 2014). Therefore, it has been speculated that *M. truncatula* LATD/NIP may also be involved in ABA transport (Harris and Dickstein, 2010) (Supplementary Table 2).

ABA also modulates AMS. Low ABA concentrations promote AM colonization, development and maintenance, as in the case of mild water stress. This suggests that the fungal supply of water and mineral compounds has a net benefit to the plant, despite the increased costs of the symbiosis. In contrast, high concentrations of ABA may have a negative influence on AM fungi-host plant relations, as in the case of severe drought
conditions (Charpentier et al., 2014; Stec et al., 2016). The role of ABA transport, and transporters facilitating its distribution in plants during AMS, seems to be of key importance, but is not well understood at present.

CONCLUSION

Despite the obvious importance of transporters in symbioses and considerable recent progress, knowledge in this area is surprisingly sporadic (see Outstanding questions). Classical genetic approaches coupled with thorough biochemical characterization have enabled the discovery of the physiological functions of many such proteins. However, deciphering the functions of members of multigene families is not an easy task due to apparent functional redundancy. The source of such redundancy can be difficult to predict since small variations in protein sequence can greatly alter transport properties. However, symbiotic studies provide particular opportunities for transport research, including: (i) organ-driven specialization (e.g. legumes and nodules); (ii) process specialization (e.g. nodulation and hormone interplay); (iii) dedicated transport of species-specific compounds (isoflavonoids and legumes), and new functionality (e.g. ABCGs and specialized metabolite intermediates distribution/channeling). Equally important are identifying the molecules that are translocated, determining which are biologically relevant, and generating direct transport data. The latter is often technically challenging (e.g. lipid provision during AMS) but is crucial for characterizing the carriers as additional transport-driven processes are uncovered.

Supplemental Data

Supplemental Table S1. Comprehensive overview of transporters involved in arbuscular mycorrhiza formation.

Supplemental Table S2. Comprehensive overview of transporters involved in legume – rhizobium symbiosis

Figure Legends

Figure 1. Schematic representation of plant membrane transporters involved in the secretion of signaling molecules during the pre-symbiotic stage of AM symbiosis and LRS. The strigolactone exporter PDR1 specifically localizes to the outer-lateral membrane of HPCs, while other transporters responsible for translocation of signaling molecules are found on the PM of root epidermal cells. NOPE1 secretes GlcNAc-like compounds that affect presymbiotic AM fungal transcriptional reprogramming. No transporters that are involved in the extrusion of flavonoids and 2-OH fatty acids during AM have yet been identified. It has been proposed that release of flavonoids (e.g. genistein) into the rhizosphere during LRS is driven by members of ABCG and MATE families. (AM, arbuscular mycorrhiza; LRS,
legume-rhizobium symbiosis; PDR1, Pleiotropic Drug Resistance 1; HPC, hypodermal passage cell; PM, plasma membrane, NOPE1, No Perception 1; GlcNAc, N-acetylglucosamine, ABCG, G-type ATP-Binding Cassette transporter; MATE, Multidrug and Toxic Compound Extrusion transporter). Orange structures around the exodermis cell perimeters represent suberin lamellae, maroon cells in the stele indicate phloem. Dashed lines and questions marks indicate inferred/proposed subcellular localization or substrate/transporter, respectively.

Figure 2. Schematic representation of plant membrane transporters involved in nutrient exchange across the PAM. Members of the SWEET, MST, and SUT families are responsible for carbohydrate translocation. Sucrose delivered to the periarbuscular space can be converted to hexoses by apoplastic invertase. In addition, the cytoplasmic sucrose-cleaving enzymes invertase (INV) and sucrose synthase (Suc) deliver hexoses as substrates for plant monosaccharide transporters localized to the PAM (Schaarschmidt et al., 2006; Manck-Gotzenberger and Requena, 2016). ABCG proteins have been proposed to mediate lipid delivery to the symbiotic fungus. Inorganic phosphate (Pi) symbiotic uptake is facilitated by PHT1 family members belonging to mycorrhizal-specific clade I (e.g. MtPT4 and OsPT11), which use the H⁺ electrochemical gradient generated by plasma membrane H⁺-ATPases. Members of the AMT and NPF protein families were proposed to take part in NH₃/NH₄⁺ translocation towards the cytoplasm of arbusculated cells. Additionally, aquaporins (AQPs) can support NH₃/NH₄⁺ permeation across the PAM. A flux of sulphate and potassium out of the periarbuscular space is enabled by LjSULTR and SIHAK10 transporters. K⁺/H⁺ exchangers may also function in the PAM. (PAM, periarbuscular membrane; SWEET, Sugars Will Eventually be Exported Transporter; MST, Monosaccharide Transporter; SUT, Sucrose transporter; ABCG, G-type ATP-Binding Cassette transporters; PHT1, Phosphate Transporter 1 family; PT, Phosphate Transporter, AMT, Ammonium Transporter family; NPF, Nitrate Transporter 1/Peptide Transporter family; SULTR, Sulfate transporter; HAK, High-affinity Potassium transporter; Al, apoplastic invertase; cINV, cytoplasmic sucrose-cleaving enzymes invertase; β-MAGs, β-monoacyl glycerols). Dashed lines and questions marks indicate inferred/proposed subcellular localization or substrate, respectively.

Figure 3. Schematic representation of plant membrane transporters involved in nutrient exchange across the PM of infected cells and the SM. Iron uptake into the infected cell is mediated by members of the NRAMP family and is supported by MATE proteins that release citrate into the apoplasm of surrounding infected cells to support iron uptake. Other ions, such as Cu²⁺, Zn²⁺, and MoO₄²⁻, are translocated across the cytoplasm of the infected cell by members of the COPT, ZIP, and MOT families, respectively. Nitrate uptake by infected cells may be facilitated by NPF family members. Rhizobia in infected cells are enclosed in a plant-derived SM, forming organelle-like structures called symbiosomes. The SM hosts a range of transporters involved in nutrient exchange. The existence of a dicarboxylate transport in the SM has been demonstrated, but detailed characterization is limited to the MtSWEET11 transporter. Transport of nitrate into the symbiosome through the SM is mediated by N70 transporters. Zinc, sulphate, and iron ions are translocated across SM by ZIP, SST, VIT, and FPN family members, respectively. MtMATE67 may transport citrate into the SS to increase iron availability to bacteroids. Ammonia flux out of the symbiosome is facilitated by the aquaporin NOD26, but there is no identified transport protein for ammonium. H⁺-ATPases contribute to SS acidification and NH₃ to NH₄⁺ conversion. GS on the cytoplasmic side of the SM enables rapid assimilation of NH₃ to amino acids. (PM, plasma membrane; SM,
symbiosome membrane; NRAMP, Natural Resistance-Associated Macrophage Protein; MATE, Multidrug and Toxic Compound Extrusion family; COPT, Copper Transporter; ZIP, ZRT and the IRT-like protein; MOT, Molybdate Transporter; NPF, Nitrate Transporter 1/Peptide Transporter family; SWEET, Sugars Will Eventually be Exported Transporter; SST, Symbiotic Sulfate Transporter; VIT, Vacuolar Iron Transporter; FPN, Ferroportin; SS, symbiosome space; GS, glutamine synthetase; PHB, Poly-3-Hydroxybutyrate). Dashed lines and questions marks indicate inferred/proposed subcellular localization or substrate/transporter, respectively.
Abreu I, Saez A, Castro-Rodriguez R, Escudero V, Rodriguez-Haas B, Senovilla M, Larue C, Grolimund D, Tejada-Jimenez M, Imperial J, Gonzalez-Guerrero M (2017) Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells. Plant Cell Environ 40: 2706-2719

Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97: 925-931

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827

An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao TT, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z (2019) A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol 224: 396-408

Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R (2012) Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter. Plant Physiology 160: 906-916

Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology 128: 108-124

Banasiak J, Biala W, Staszkow A, Swarcewicz B, Kepczynska E, Figlerowicz M, Jasinski M (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64: 1005-1015

Banasiak J, Borghi L, Stec N, Martinioa E, Jasinski M (2020) The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Front Plant Sci 11: 18

Banasiak J, Jasinski M (2014) Defence, Symbiosis and ABCG Transporters. Plant Abc Transporters: 163-184

Bapaume L, Reinhardt D (2012) How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Frontiers in Plant Science 3

Barea JM, Azcon-Aguilar C (1982) Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae. Appl Environ Microbiol 43: 810-813

Bassard JE, Halkier BA (2018) How to prove the existence of metabolons? Phytochem Rev 17: 211-227

Becard G, Douds DD, Pfeffer PE (1992) Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO(2) and Flavonols. Appl Environ Microbiol 58: 821-825

Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids Are Not Necessary Plant Signal Compounds in Arbuscular Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions 8: 252-258

Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E (2018) Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science 9

Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai XB, Zhao PX, Tang YH, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504-513

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602
Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiology 148: 402-413

Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4: e226

Bessire M, Borel S, Fabre G, Carraca L, Efremova N, Yephremov A, Cao Y, Jetter R, Jacquot AC, Metraux JP, Nawrath C (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23: 1958-1970

Biala W, Banasiak J, Jarzyniak K, Pawela A, Jasinski M (2017) Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway. J Exp Bot 68: 3231-3241

Biala W, Jasinski M (2018) The Phenylpropanoid Case - It Is Transport That Matters. Front Plant Sci 9: 1610

Bitterlich M, Krugel U, Boldt-Burisch K, Franken P, Kuhn C (2014) The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Plant J 78: 877-889

Bilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44

Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1: 48

Borghi L, Kang J, Ko D, Lee Y, Martinoia E (2015) The role of ABCG-type ABC transporters in phytohormone transport. Biochem Soc Trans 43: 924-930

Boursiac Y, Leran S, Corratge-Faillic C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18: 325-333

Brands M, Wewer V, Keymer A, Gutjahr C, Dormann P (2018) The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Plant Journal 95: 219-232

Bravo A, Brands M, Wewer V, Dormann P, Harrison MJ (2017) Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214: 1631-1645

Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ (2016) Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants 2

Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Myssore KS, Wen J, Oldroyd GE, Downie JA, Murray JD (2014) The root hair ‘infectome’ of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. Plant Cell 26: 4680-4701

Brear EM, Bedon F, Gavrin A, Kryvoruchko IS, Torres-Jerez I, Udvardi MK, Day DA, Smith PMC (2020) GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist

Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Frontiers in Plant Science 4

Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrison MJ (2015) Suppression of Arbuscule Degeneration in Medicago truncatula phosphate transporter4 Mutants is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. Plant Cell 27: 1352-1366

Breuillin F, Schramm J, Hajirezaei M, Akhami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010)
Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64: 1002-1017

Bulen WA, Lecomte JR (1966) Nitrogenase System from Azotobacter - 2-Enzyme Requirement for N2 Reduction Atp-Dependent H2 Evolution and Atp Hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 56: 979-&

Burton JW, Harlow C, Theil EC (1998) Evidence for reutilization of nodule iron in soybean seed development. Journal of Plant Nutrition 21: 913-927

Chai RS, Ye XX, Ma C, Wang QY, Tu RF, Zhang LG, Gao HJ (2019) Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management 14

Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GE (2014) Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol 166: 2077-2090

Chen L, Liu YS, Liu HD, Kang LM, Geng JM, Gai YZ, Ding YL, Sun HY, Li YD (2015) Identification and Expression Analysis of MATE Genes Involved in Flavonoid Transport in Blueberry Plants. Plos One 10

Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. Frontiers in Plant Science 9

Clarke VC, Loughlin PC, Day DA, Smith PM (2014) Transport processes of the legume symbiosome membrane. Front Plant Sci 5: 699

Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC (2015) Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins. Molecular & Cellular Proteomics 14: 1301-1322

Cline GR, Powell PE, Szaniszlo PJ, Reid CPP (1982) Comparison of the Abilities of Hydroxamic, Synthetic, and Other Natural Organic-Acids to Chelate Iron and Other Ions in Nutrient Solution. Soil Science Society of America Journal 46: 1158-1164

Coccina A, Cavagnaro TR, Pellegrino E, Ercoli L, McLaughlin MJ, Watts-Williams SJ (2019) The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. Bmc Plant Biology 19

Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39: 487-512

Collier R, Tegeder M (2012) Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72: 355-367

Damiani I, Drain A, Guichard M, Balzergue S, Boscari A, Boyer JC, Brunaud V, Cottaz S, Rancurel C, Da Rocha M, Fizez C, Fort S, Gaillard I, Maillot V, Danchin EG, Rouached H, Samain E, Su YH, Thouin J, Touraine B, Puppo A, Franchisse JM, Pauly N, Sentenac H (2016) Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks. Front Plant Sci 7: 794

Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20: 2681-2695

Ding Y, Oldroyd GE (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4: 89-93

Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D (2012) The Medicago truncatula Sucrose Transporter Family: Characterization and Implication of Key Members in Carbon Partitioning towards Arbuscular Mycorrhizal Fungi. Molecular Plant 5: 1346-1358

Drechsler N, Courty PE, Brule D, Kunze R (2018) Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Mycorrhiza 28: 93-100

Du EZ, Terrer C, Pellegrini AFA, Ahlstrom A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020) Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience 13: 221+
Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, Mucciolo A, Guerault A, Liu J, Zeisler-Diehl V, Aharoni A, Schreiber L, Bakan B, Clausen MH, Geisler M, Nawrath C (2021) ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr Biol

Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Kiowai H, Seo M, Toyomasu T, Mitsushashi W, Shinozaki K, Nakazono M, Kama Y, Koshita T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology 147: 1984-1993

Escudero V, Abreu I, Tejada-Jimenez M, Rosa-Nunez E, Quintana J, Prieto RI, Larue C, Wen JQ, Villanova J, Mysore KS, Arguello JVM, Castillo-Michel H, Imperial J, Gonzalez-Guerrero M (2020) Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist 228: 194-209

Fedi F, O'Neill CM, Menard G, Trick M, Dechirico S, Corbineau F, Bailly C, Eastmond PJ, Penfield S (2017) Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology 174: 276-283

Foo E, Ferguson BJ, Reid JB (2014) Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. Plant Signal Behav 9: e29593

Fowler D, Pyle JA, Raven JA, Sutton MA (2013) The global nitrogen cycle in the twenty-first century: introduction. Philosophical Transactions of the Royal Society B-Biological Sciences 368

Friml J (2003) Auxin transport - shaping the plant. Curr Opin Plant Biol 6: 7-12

Gabriel-Neumann E, Neumann G, Leggewie G, George E (2011) Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. Journal of Plant Physiology 168: 911-919

Girke C, Daumann M, Niophek-Witz S, Mohlmann T (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Frontiers in Plant Science 5

Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688-698

Gomez SK, Jawot H, Deewatthanawong P, Torres-Jerez I, Tang YH, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology 9

Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18: 2680-2693

Gonzalez AA, Agbevenou K, Herrbach V, Gough C, Bensmihen S (2015) Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. Plant Signaling & Behavior 10
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ane JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GK, Parniske M, Delaux PM, Cheng S (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361

Guether M, Balestrini R, Hannahs M, He J, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182: 200-212

Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology 150: 73-83

Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscle formation in rice. Plant J 69: 906-920

Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K, Petersen TR, Sandal N, Stougaard J, Udvardi MK, Tamaoki M, Kawaguchi M, Kouchi H, Sugaruna N (2012) The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology 53: 225-236

Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. Journal of Nutrition 130: 1081-1084

Hanlon MT, Coenen C (2011) Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist 189: 701-709

Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signal Behav 5: 1365-1369

Harrison MJ (1996) A sugar transporter from Medicago truncatula: Altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant Journal 9: 491-503

Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413-2429

Hinrichs M, Fleck AT, Biedermann E, Ngo NS, Schreiber L, Schenk MK (2017) An ABC Transporter Is Involved in the Silicon-Induced Formation of Casparian Bands in the Exodermis of Rice. Frontiers in Plant Science 8

Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H (2011) Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread. Plant Physiology 157: 2023-2043

Huisman R, Geurts R (2020) A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. Plant Commun 1: 100019

Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation. J Plant Growth Regul 25: 156-165

Hwang JH, Ellington SR, Roberts DM (2010) Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett 584: 4339-4343

Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinhoia E, Lee Y (2016) Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol Plant 9: 338-355

Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Crottet L, Sallet E, Brault M, Emery RJ, Gouzy J, Frugier F, Gamas P (2016) A Laser Dissection-RNAseq
Kohlen W, Ng JLP, Deinum EE, Mathesius U (2018) Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. Journal of Experimental Botany 69: 229-244

Krajinski F, Courty PE, Sieh D, Franken P, Zhang HQ, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B (2014) The H+-ATPase HA1 of Medicago truncatula Is Essential for Phosphate Transport and Plant Growth during Arbuscular Mycorrhizal Symbiosis. Plant Cell 26: 1808-1817

Krecek P, Skupa P, Libus J, Naramoto S, Tejros R, Friml J, Zazimalova E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology 10

Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341-344

Krusell L, Krause K, Ott T, Desbrosses G, Kramer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Suganuma N, Udvardi MK (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17: 1625-1636

Kryvoruchko IS, Routray P, Sinharoy S, Torres-Jerez I, Tejada-Jimenez M, Finney LA, Nakashima J, Pislariu CI, Benedito VA, Gonzalez-Guerrero M, Kryvoruchko I, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK (2016) MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula. Plant Physiology 171: 554-565

Kudo T, Kiba T, Sakakibara H (2010) Metabolism and Long-distance Translocation of Cytokinins. Journal of Integrative Plant Biology 52: 53-60

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107: 2361-2366

Kuromori T, Seo M, Shinozaki K (2018) ABA Transport and Plant Water Stress Responses. Trends Plant Sci 23: 513-522

Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Weigel B, Frolova N, Strehmel N, Hause G, Scheel D, Bottcher C, Rosahl S (2014) The ABC Transporter ABCG1 Is Required for Suberin Formation in Potato Tuber Periderm. Plant Cell 26: 3403-3415

Lane TS, Rempe CS, Davitt J, Staton ME, Peng YH, Soltis DE, Melkonian M, Leebens-Mack JH, Chase M, Rothfels CJ, Stevenson D, Graham SW, Yu J, Liu T, Pires JC, Edger PP, Zhang Y, Xie YL, Zhu Y, Carpenter E, Wong GKS, Stewart CN (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. Bmc Biotechnology 16

Lefevre F, Boutry M (2018) Towards Identification of the Substrates of ATP-Binding Cassette Transporters. Plant Physiol 178: 18-39

Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - A meta-analysis. Soil Biology & Biochemistry 81: 147-158

Leon-Mediavilla J, Senovilla M, Montiel J, Gil-Diez P, Saez A, Kryvoruchko IS, Reguera M, Udvardi MK, Imperial J, Gonzalez-Guerrero M (2018) MtMTP2-Facilitated Zinc Transport Into Intracellular Compartments Is Essential for Nodule Development in Medicago truncatula. Frontiers in Plant Science 9

Liao DH, Wang SS, Cui MM, Liu JH, Chen AQ, Xu GH (2018) Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences 19

Libbenga KR, van Iren F, Bogers RJ, Schraag-Lamers MF (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29-39
Lin JS, Li XL, Luo ZP, Mysore KS, Wen JQ, Xie F (2018) NIN interacts with NLps to mediate nitrate inhibition of noduleation in Medicago truncatula. Nature Plants 4: 942–948
Liu CW, Murray JD (2016) The Role of Flavonoids in Noduleation Host-Range Specificity: An Update. Plants-Basel 5
Liu GW, Stirnemann M, Gubeli C, Egloff S, Courty PE, Aubry S, Vandenbussche M, Morel P, Reinhardt D, Martinova E, Borghi L (2019a) Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. Iscience 17: 144–156
Liu JL, Chen JD, Xie K, Tian Y, Yan AN, Liu JJ, Huang YJ, Wang SS, Zhu YY, Chen AQ, Xu GH (2020a) A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell and Environment 43: 1069–1083
Liu S, Liao LL, Nie MM, Peng WT, Zhang MS, Lei JN, Zhong YJ, Liao H, Chen ZC (2020b) A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytologist 226: 153-162
Ludwig-Muller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Science 125: 153-162
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356: 1175-1178
Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Frontiers in Plant Science 7
Masalkar P, Wallace IS, Hwang JH, Roberts DM (2010) Interaction of Cytosolic Glutamine Synthetase of Soybean Root Nodules with the C-terminal Domain of the Symbiosome Membrane Nodulin 26 Aquaglyceroporin. Journal of Biological Chemistry 285: 23880-23888
McFarlane HE, Shin JH, Bird DA, Samuels AL (2010) Arabidopsis ABCG Transporters, Which Are Required for Export of Diverse Cuticular Lipids, Dimerize in Different Combinations. Plant Cell 22: 3066-3075
Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz L, McDowell T, K, Markmann K, Szczylgowski K (2019) Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. New Phytologist 222: 1523-1537
Mitsch MJ, deCenzo GC, Cowie A, Finan TM (2018) Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium melliloti or Rhizobium leguminosarum. Appl Environ Microbiol 84
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Khan AL, Al-Harrasi AS (2018) Molecular players of auxin transport systems: advances in genomic and molecular events. Journal of Plant Interactions 13: 483-495
Molesini B, Cecconi D, Pili Y, Pandolfini T (2014) Local and systemic proteomic changes in medicago truncatula at an early phase of Sinorhizobium melliloti infection. J Proteome Res 13: 408-421
Moreau S, Thomson RM, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry 277: 4738-4746

Mravec J, Kubes M, Bielach A, Gaykova V, Petrasek J, Skupa P, Chand S, Benkova E, Zazimalova E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345-3354

Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczylowsk K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315: 101-104

Murray JD, Liu CW, Chen Y, Miller AJ (2017) Nitrogen sensing in legumes. Journal of Experimental Botany 68: 1919-1926

Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16: 473-479

Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K, Ahern KR, Romag A, Brutnell TP, Gutjahr C, Geldner N, Roux C, Martinoia E, Konopka JB, Paszkowski U (2017) An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat Plants 3: 17073

Nagahashi G, Douds DD, Jr. (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115: 351-358

Nagy R, Karandashov V, Chague W, Kalinichev K, Tamasloukht M, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal 42: 236-250

Ng JL, Perrine-Walker F, Wasson AP, Mathesius U (2015) The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. Plants (Basel) 4: 606-643

Ng JLP, Welvaert A, Chen RJ, Mathesius U (2020) The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. Journal of Experimental Botany 71: 1562-1573

Nguyen TD, Cavagnaro TR, Watts-Williams S (2019) The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Scientific Reports 9

Nishida H, Tanaka S, Haneda Y, Ito M, Sakamoto Y, Matsunaga S, Betsuyaku S, Miura K, Soyano T, Kawaguchi M, Suzuki T (2018) A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nature Communications 9

Noel KD, Carneol M, Brill WJ (1982) Nodule Protein-Synthesis and Nitrogenase Activity of Soybeans Exposed to Fixed Nitrogen. Plant Physiology 70: 1236-1241

Otves K, Marconi M, Vega A, O'Brien J, Johnson A, Abualia R, Antonielli L, Montesinos JC, Zhang YZ, Tan ST, Cuesta C, Artner C, Bouguyun E, Gojon A, Friml J, Gutiérrez RA, Wabnik K, Benkova E (2021) Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. Embo Journal 40

Pal'ove-Balang P, Garcia-Calderon M, Perez-Delgado CM, Pavlovkin J, Betti M, Marquez AJ (2015) A Lotus japonicus mutant defective in nitrate uptake is also affected in the nitrate response to nodulation. Plant Biology 17: 16-25

Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Hofer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology 145: 1345-1360

Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A (2010) The Arabidopsis DSO/ABC111 Transporter Affects Cutin Metabolism in Reproductive Organs and Suberin in Roots. Molecular Plant 3: 563-575

Panikashvili D, Shi JX, Schreiber L, Aharoni A (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytologist 190: 113-124
Paponov IA, Teale WD, Trebar M, Bilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10: 170-177

Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6: 763-775

Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99: 13324-13329

Pawela A, Banasiak J, Biala W, Martinoia E, Jasinski M (2019) MtABCG20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula. Plant J 98: 511-523

Pelisser HC, Flerich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiology 134: 664-675

Perez-Tienda J, Correa A, Azcon-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry 75: 1-8

Peterson CA, Perumalla CJ (1990) A Survey of Angiosperm Species to Detect Hypodermal Casparian Bands .2. Roots with a Multiseriate Hypodermis or Epidermis. Botanical Journal of the Linnean Society 103: 113-125

Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology 120: 587-598

Phillips DA (1971) Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100: 181-190

Pierre O, Engler G, Hopkins J, Brau F, Boncompagni E, Herouart D (2013) Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell and Environment 36: 2059-2070

Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6: 153-164

Pons S, Fournier S, Chervin C, Becard G, Rochange S, Frei Dit Frey N, Puech Pages V (2020) Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. ePloS One 15: e0240886

Pumplin N, Harrison MJ (2009) Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis. Plant Physiology 151: 809-819

Pumplin N, Zhang XC, Noar RD, Harrison MJ (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America 109: E665-E672

Radhakrishnan GV, Keller J, Rich MK, Vernie T, Mbadinga Mbadinga DL, Vigneron N, Coutret L, Clemente HS, Liboureil C, Cheema J, Linde AM, Eklund DM, Cheng S, Wong GKS, Lagercrantz U, Li FW, Oldroyd GED, Delaux PM (2020) An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat Plants 6: 280-289

Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Buccher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462-466

Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones Induce Expression of Nodulation Genes in Rhizobium. Nature 323: 632-635

Reid D, Nadzieja M, Novak O, Heckmann AB, Sandal N, Stougaard J (2017) Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. Plant Physiology 175: 361-375

Rich MK, Nouri E, Courty PE, Reinhardt D (2017) Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Trends Plant Sci 22: 652-660
Sharda JN, Koide RT (2008) Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol 180: 696-701

Sharma SB, Signer ER (1990) Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev 4: 344-356

Shen CJ, Yue RQ, Bai YH, Feng R, Sun T, Wang XF, Yang YJ, Tie SG, Wang HZ (2015) Identification and analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection. Plant and Cell Physiology 56: 1930-1943

Shen H, Xiong H, Guo X, Wang P, Duan P, Zhang L, Zhang F, Zuo Y (2014) AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils. Planta 239: 1065-1077

Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takahashi H, Ranathunge K, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant Journal 80: 40-51

Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol 197: 606-616

Slatni T, Krouma A, Gouia H, Abdelly C (2009) Importance of ferric chelate reductase activity and acidification capacity in root nodules of N2-fixing common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Symbiosis 47: 35-42

Soyano T, Shimoda Y, Kawaguchi M, Hayashi M (2019) A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science 366: 1021-1024

Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12: 1290-1306

Streeter JG (1985) Nitrate Inhibition of Legume Nodule Growth and Activity. 1. Long-Term Studies with a Continuous Supply of Nitrate. Plant Physiology 77: 321-324

Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant Journal 48: 261-273

Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K (2017) Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus. Plant and Cell Physiology 58: 298-306

Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette - Type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium Symbiosis(1). Plant Physiology 144: 2000-2008

Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: An ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3: 38-40

Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K (2016) Developmental and nutritional regulation of isoflavone secretion from soybean roots. Bioscience Biotechnology and Biochemistry 80: 89-94

Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K (2016) A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus. Molecular Plant-Microbe Interactions 29: 584-592
Takanashi K, Sugiyama A, Tabata S, Yazaki K (2012) LjABC1, an ATP-binding cassette protein specifically induced in uninfected cells of Lotus japonicus nodules. J Plant Physiol 169: 322-326

Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234: 73-81

Takanashi K, Yokosho K, Saeki K, Sugiyama A, Sato S, Tabata S, Ma JF, Yazaki K (2013) LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus. Plant Cell Physiol 54: 585-594

Tang NW, San Clemente H, Roy S, Becard G, Zhao B, Roux C (2016) A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology 7

Tejada-Jimenez M, Castro-Rodriguez R, Kryvoruchko I, Lucas MM, Udvardi M, Imperial J, Gonzalez-Guerrero M (2015) Medicago truncatula Natural Resistance-Associated Macrophage Protein1 Is Required for Iron Uptake by Rhizobia-Infected Nodule Cells. Plant Physiology 168: 258-U473

Tejada-Jimenez M, Gil-Diez P, Leon-Mediavilla J, Wen J, Mysore KS, Imperial J, Gonzalez-Guerrero M (2017) Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. 216: 1223-1235

Tian W, Wang C, Gao Q, Li L, Luan S (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat Plants 6: 750-759

Tiffin LO (1966) Iron Translocation. I. Plant Culture Exudate Sampling Iron-Citrate Analysis. Plant Physiology 41: 510-

Timmers ACJ, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126: 3617-3628

Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315: 104-107

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NFD, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndkumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, Van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young PW, Sanders IR, Henrissat B, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America 110: 20117-20122

Udvardi MK, Day DA (1989) Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol 90: 982-987

Udvardi MK, Lister DL, Day DA (1991) Atpase Activity and Anion Transport across the Peribacteroid Membrane of Isolated Soybean Symbiosomes. Archives of Microbiology 156: 362-366

Udvardi MK, Price GD, Gresshoff PM, Day DA (1988) A Dicarboxylate Transporter on the Peribacteroid Membrane of Soybean Nodules. Febs Letters 231: 36-40

Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68: 122-129

Valkov VT, Rogato A, Alves LM, Sol S, Noguero M, Leran S, Lacombe B, Chiurazzi M (2017) The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology 175: 1269-1282

Valkov VT, Sol S, Rogato A, Chiurazzi M (2020) The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N2-fixation activity. New Phytol 228: 682-696
van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor MS, Jansen J, van den Hoogen J, Gungor B, Hartog M, Hontelez J, Verver J, Yang WC, Schijlen E, Repin R, Schilthuizen M, Schranz ME, Heidstra R, Miyata K, Fedorova E, Kohlen W, Bisseling T, Smit S, Geurts R (2018) Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci U S A 115: E4700-E4709

Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiology 136: 3692-3702

Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132: 4521-4531

Vincill ED, Szczyslawski K, Roberts DM (2005) GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate. Plant Physiology 137: 1435-1444

Walton JH, Kontra-Kovats G, Green RT, Domonkos A, Horvath B, Brear EM, Franceschetti M, Kalo P, Balk J (2020) TheMedicago truncatulavacuolar iron Transporter-Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process. New Phytologist 226: 1818-1830

Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-363

Wang ET, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultzme, Kamoun S, Oldroyd GED (2012) A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology 22: 2242-2246

Wang ET, Yu N, Bano SA, Liu CW, Miller AJ, Cousins D, Zhang XW, Ratet P, Tadege M, Mysore KS, Downie JA, Murray JD, Oldroyd GED, Schultzme (2014) A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and Medicago truncatula. Plant Cell 26: 1818-1830

Wang Q, Huang YG, Ren ZJ, Zhang XX, Ren J, Su JQ, Zhang C, Tian J, Yu YJ, Gao GGF, Li LG, Kong ZS (2020a) Transfer cells mediate nitrate uptake to control root nodule symbiosis. Nature Plants 6: 800+

Wang Q, Liu JE, Zhu HY (2018) Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science 9

Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, Lopez-Arredondo DL, Herrera-Estrella LR, Xu G (2020b) Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci U S A 117: 16649-16659

Wang WX, Shi JC, Xie QJ, Jiang YN, Yu N, Wang ET (2017) Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant 10: 1147-1158

Watts-Williams SJ, Cavagnaro TR (2018) Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci 274: 163-170

Wegmueller S, Svistoonoff S, Reinhardt D, Stuurman J, Amrhein N, Bucher M (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant Journal 54: 1115-1127

Wewer V, Brands M, Dormann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant Journal 79: 398-412

Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Fransen H, Kulikova O, Niebel A, Bisseling T (2014) Fate map of Medicago truncatula root nodules. Development 141: 3517-3528
Xie XA, Huang W, Liu FC, Tang NW, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist 198: 836-852

Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dormann P, Gigolashvili T, Turck F, Bucher M (2018) AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America 115: E9239-E9246

Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis. Plant Cell 26: 3569-3588

Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catcusan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24: 4236-4251

Yendrek CR, Lee YC, Morris V, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62: 100-112

Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulating for root parasites. Planta 225: 1031-1038

Zhang C, Bousquet A, Harris JM (2014) Abscisic acid and lateral root organ defective/NUMEROUS INFECTIONS AND POLYPHENOLICS modulate root elongation via reactive oxygen species in Medicago truncatula. Plant Physiol 166: 644-658

Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, Medvedova Z, Li Y, Wang Y, Prat T, Vasileva M, Reinhoil V, Prochazka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J (2020) Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 11: 3508

Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant Journal 57: 171-183

Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22: 1483-1497

Zhao SP, Chen A, Chen CJ, Li CC, Xia R, Wang XR (2019) Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiologia Plantarum 166: 712-728
ADVANCES

• A cytokinin transporter functions in LRS.
• Transporters participate in the uptake and distribution of iron and other mineral ions in LRS.
• Candidate transporters for plant lipid provision to the AM symbiont have been identified.
• Nitrate plays a role in N-fixation involving NPF transporters.
• A conserved mycorrhizal pathway of nitrogen acquisition in plants, based on nitrate uptake, was recently discovered.
OUTSTANDING QUESTIONS

• Which host transporters are responsible for flavonoid secretion during LRS, and do they vary between legume taxa?
• During LRS, which host transporters are required to sustain growth of bacteria enclosed within infection threads?
• Is the temporal control of MtPT4 localization to the PAM a special case, or can it be generalized?
• What is the substrate(s)/function of NOPE1?
• How does lipid transport influence AM formation?
• What is the nature of the substrate transported by STR and STR2?
• Does the mycorrhizal nitrate pathway operate in plants other than grasses?
• What is the range and potential interplay/cooperation of auxin and cytokinin transporters during nodule development?
The role of phenylpropanoids in LRS is not limited to signaling to compatible rhizobia. Various compounds belonging to this class of secondary metabolites protect plants against pathogens and act to reinforce symbiosis specificity. For instance, the *M. truncatula* symbiont *Sinorhizobium melliloti* is resistant to pterocarpan medicarpin, the main phytoalexin of this plant, while *Bradyrhizobium japonicum* and *Mesorhizobium loti* are susceptible to this molecule. For further reading see Liu and Murray (2016) and Wang et al. (2018). Interestingly, it has been shown that a full-size ABCG transporter from *M. truncatula* is involved in the translocation of medicarpin precursors (4-coumarate and liquiritigenin) (Biala et al., 2017), and its silencing affects *de novo* biosynthesis of this phytoalexin in *M. truncatula* (Banasiak et al., 2013). The role of ABCG transporters in symbioses likely extends beyond release of signaling molecules into the rhizosphere, and in the context of phenylpropanoid metabolism, is also reflected in the distribution of intermediates, joining different biosynthetic branches. Upon sensing metabolic status/external stimuli, the presence/action of such transporters, and especially those that transport the intermediates from the earlier steps in the phenylpropanoid biosynthetic pathway, offers a useful switching mechanism in different scenarios. Notably, it has been proposed that enzymes in the phenylpropanoid pathway are organized into complexes called metabolons (Bassard and Halkier, 2018), and various metabolons are spatially separated, suggesting the need for mechanisms that mediate transport between cells (for further reading see Biala and Jasinski, 2018). The channeling of intermediates by various transport mechanisms, notably membrane transporters, may provide a meaningful tool that ensures defined metabolite production. Apart from medicarpin production, the targeted distribution of phenylpropanoid intermediates during symbioses has yet to be experimentally demonstrated, and dedicated transporters remain to be identified. Such information will bridge the knowledge gaps regarding spatiotemporal details of phenylpropanoid production under various conditions, including LRS.
The fate of iron within nodules strictly depends on transporters located in the plasma membranes (PMs) of nodule cells, the SM, and bacterial membranes. Two citrate exporters from the MATE family were found to localize to the PMs of infected cells. LjMATE1 and MtMATE67, through citrate translocation, contribute to Fe³⁺ chelation within the apoplast to solubilize iron and mitigate its transport into infected cells (Takanashi et al., 2013; Kryvoruchko et al., 2018). As the authors postulate, MtMATE67 may also transport citrate into the SS, increasing iron availability to bacteroids (Kryvoruchko et al., 2018).

MtNRAMP1 (Natural Resistance-Associated Macrophage Protein1) is a transporter facilitating iron uptake from the apoplast to infected cells in nodule zone II, which harbors intracellular ITs. Plants with a loss-of-function nramp1 mutation exhibit nodule growth impairment and have a decreased N-fixing potential (Tejada-Jimenez et al., 2015). An interesting iron transporter is SM-localized GmDMT1 (Divalent Metal Transporter1), which belongs to the NRAMP family and translocates ferrous iron, as demonstrated by yeast mutant complementation assays. Due to the orientation of the SM, it is postulated that the protein could also transport Fe²⁺ out of the symbiosome or work bidirectionally. GmDMT1 expression in the nodule is highest at the onset of nitrogen fixation, later declining with nodule senescence (Kaiser et al., 2003). Its putative ortholog is also present in Arachis hypogaea and is important for nodule iron supply (Shen et al., 2014).

A potential iron transporter in L. japonicus nodules is LjSEN1 (Stationary Endosymbiont Nodule1). Its sequence similarity to known iron transporters (e.g. AtVIT1), suggests it functions in iron transport (Brear et al., 2020). The LjSEN1 mutant develops highly vacuolated infected cells and abnormal symbiosomes with smaller bacteroids. Moreover, mutations in LjSEN1 negatively influence nitrogen fixation (Hakoyama et al., 2012). Interestingly, the discovery that GmVTL1a (Vacuolar iron Transporter-Like 1a), a G. max SM iron transporter, can complement the LjSEN1 phenotype is consistent with the proposed role of LjSEN1 as an iron transporter in the SM (Brear et al., 2020; Liu et al., 2020b); however, its SM localization awaits confirmation. Recently, the number of characterized iron transporters (e.g. GmVTL1a, MtVTL4/8, MtFPN2) that are confirmed as essential for proper nodule functioning has increased substantially (Brear et al., 2020; Escudero et al., 2020; Liu et al., 2020b; Walton et al., 2020). This is considerably important for our understanding of iron distribution in nodules and its role in nitrogen fixation (Fig. 3, Supplementary Table S2).
A breu I, Saez A, Castro-Rodriguez R, Escudero V, Rodriguez-Haas B, Senovilla M, Larue C, Grolimund D, Tejada-Jimenez M, Imperial J, Gonzalez-Guerrero M (2017) Medicago truncatula Zinc-Iron Permase6 provides zinc to rhizobia-infected nodule cells. Plant Cell Environ 40: 2706-2719

Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97: 925-931

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827

An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao TT, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z (2019) A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol 224: 396-408

Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R (2012) Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter. Plant Physiology 160: 906-916

Banasiak J, Biala W, Staszkow A, Swarcewicz B, Kepczynska E, Figlerowicz M, Jasinski M (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64: 1005-1015

Banasiak J, Borghi L, Stec N, Martinoia E, Jasinski M (2020) The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Front Plant Sci 11: 18

Banasiak J, Jasinski M (2014) Defence, Symbiosis and ABCG Transporters. Plant ABC Transporters: 163-184

Bapaume L, Reinhardt D (2018) How to prove the existence of metabolons? Phytochem Rev 17: 211-227

Becard G, Douds DD, Pfeffer PE (1992) Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO(2) and Flavonoids. Appl Environ Microbiol 58: 821-825

Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids Are Not Necessary Plant Signal Compounds in Arbuscular Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions 8: 252-258

Bedini A, Mercy L, Schneider C, Franken P, Lucio-Mercy E (2018) Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggers the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science 9

Benkova E, Torres-Jerez I, Murray JD, Andreiankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai XB, Zhao PX, Tang YH, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504-513

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602

Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiology 148: 402-413
Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koii H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshita T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology 147: 1984-1993

Escudero V, Abreu I, Tejada-Jimenez M, Rosa-Nunez E, Quintana J, Prieto RI, Larue C, Wen QJ, Villanova J, Mysore KS, Arguello JM, Castillo-Michel H, Imperial J, Gonzalez-Guerrero M (2020) Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist 228: 194-209

Fedi F, O’Neill CM, Menard G, trick M, Dechirico S, Corbineau F, Bailly C, Eastmond PJ, Penfield S (2017) Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology 174: 276-283

Foo E, Ferguson BJ, Reid JB (2014) Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. Plant Signal Behav 9: e29593

Fowler D, Pyle JA, Raven JA, Sutton MA (2013) The global nitrogen cycle in the twenty-first century: introduction. Philosophical Transactions of the Royal Society B-Biological Sciences 368

Friml J (2003) Auxin transport - shaping the plant. Curr Opin Plant Biol 6: 7-12

Gabriel-Neumann E, Neumann G, Leggewie G, George E (2011) Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. Journal of Plant Physiology 168: 911-919

Garcia K, Chasman D, Roy S, Ane JM (2017) Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K+ Deprivation. Plant Physiology 173: 1811-1823

Gaude N, Bortfeld S, Duensing N, Lohse M, Krajiinski F (2012a) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant Journal 69: 510-528

Gaude N, Schulze WX, Franken P, Krajiinski F (2012b) Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Plant Signal Behav 7: 461-464

Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18: 2680-2693

Gonzalez AA, Augevenou K, Herrbach V, Gough C, Bensmihen S (2015) Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. Plant Signaling & Behavior 10

Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S,
Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ane JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KF, Wong GK, Parniske M, Delaux PM, Cheng S (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361

Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182: 200-212

Guether M, Neuhauer B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology 150: 73-83

Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegher H, Chiapello J, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69: 906-920

Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K, Petersen TR, Sandal N, Stougaard J, Udvardi MK, Tamaoki M, Kawaguchi M, Kouchi H, Suganuma N (2012) The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology 53: 225-236

Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. Journal of Nutrition 130: 1081-1084

Hanlon MT, Coenen C (2011) Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist 189: 701-709

Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signal Behav 5: 1365-1369

Harrison MJ (1996) A sugar transporter from Medicago truncatula: Altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant Journal 9: 491-503

Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413-2429

Hinrichs M, Fleck AT, Biedermann E, Ngo NS, Schreiber L, Schenk MK (2017) An ABC Transporter Is Involved in the Silicon-Induced Formation of Casparian Bands in the Exodermis of Rice. Frontiers in Plant Science 8

Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H (2011) Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread. Plant Physiology 157: 2023-2043

Huisman R, Geurts R (2020) A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. Plant Commun 1: 100019

Huox, Schnabel E, Hughes K, Frugoli J (2006) RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation. J Plant Growth Regul 25: 156-165

Hwang JH, Ellingson SR, Roberts DM (2010) Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett 584: 4339-4343

Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinova E, Lee Y (2016) Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol Plant 9: 338-355

Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiali A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJ, Gouzy J, Frugier F, Gomex SK, Zhang Q, Cook DR, Harrison MJ (2011) Medicago truncatula mpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal
Javot H, Pennetau RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 104: 1720-1725

Jeong JY, Suh S, Guan CH, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiology 134: 969-978

Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356: 1172-1175

Jiang YN, Xie QJ, Wang WX, Yang J, Zhang XW, Yu N, Zhou Y, Wang ET (2018) Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. Molecular Plant 11: 1344-1359

Kafle A, Garcia K, Wang XR, Pfeffer PE, Strahan GD, Bucking H (2019) Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. Plant Cell and Environment 42: 270-284

Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divergent metal transporter capable of ferrous iron transport. Plant Journal 35: 295-304

Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinioa E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107: 2355-2360

Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinioa E (2011) Plant ABC Transporters. Arabidopsis Book 9: e0153

Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinioa E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6: 8113

Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Ropenack-Lahaye E, Wang TL, Eisenreich W, Dormann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6

Kobae Y, Hata S (2010) Dynamics of Periarbuscular Membranes Visualized with a Fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice. Plant and Cell Physiology 51: 341-353

Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J (2018) Strigolactone Biosynthesis Genes of Rice are Required for the Punctual Entry of Arbuscular Mycorrhiza Fungi into the Roots. Plant Cell Physiol 59: 544-553

Kobae Y, Tanura Y, Takai S, Banba M, Hata S (2010) Localized Expression of Arbuscular Mycorrhiza-Inducible Ammonium Transporters in Soybean. Plant and Cell Physiology 51: 1411-1415

Koegel S, Lahmdi NA, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wemken A, Courty PE (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytologist 198: 853-865

Koegel S, Mieulet D, Baday S, Chatagnier O, Lehmann MF, Wemken A, Boller T, Wipf D, Berneche S, Guiderdoni E, Courty PE (2017) Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza 27: 695-708

Kohlen W, Ng JLP, Deinum EE, Mathesius U (2018) Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. Journal of Experimental Botany 69: 229-244

Krajinski F, Courty PE, Sieh D, Franken P, Zhang HQ, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B (2014) The H+-ATPase HA1 of Medicago truncatula Is Essential for Phosphate Transport and Plant Growth during Arbuscular Mycorrhizal Symbiosis. Plant Cell 26: 1808-1817
Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G (2019b) The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Plant Physiol 180: 465-479

Google Scholar: Author Only Title Only Author and Title

Liu JL, Chen JD, Xie K, Tian Y, Yan AN, Liu JJ, Huang YJ, Wang SS, Zhu YY, Chen AQ, Xu GH (2020a) Arbuscular mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell and Environment 43: 1069-1083

Google Scholar: Author Only Title Only Author and Title

Liu S, Liao LL, Nie MM, Peng WT, Zhang MS, Lei JN, Zhong YJ, Liao H, Chen ZC (2020b) A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytologist 226: 1413-1428

Google Scholar: Author Only Title Only Author and Title

LudwigMuller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Science 125: 153-162

Google Scholar: Author Only Title Only Author and Title

Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356: 1175-1178

Google Scholar: Author Only Title Only Author and Title

Luginbuehl LH, Oldroyd GED (2017) Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology 27: R952-R963

Google Scholar: Author Only Title Only Author and Title

Maeda D, Ashida K, Iguchi K, Chechetka SA, Hiji kata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology 47: 807-817

Google Scholar: Author Only Title Only Author and Title

Malar CM, Kruger M, Kruger C, Wang Y, Stajich JE, Keller J, Chen ECH, Yildirir G, Villeneuve-Laroche M, Roux C, Delaux PM, Corradi N (2021) The genome of Geosiphon pyriforme reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 31: 1578-1580

Google Scholar: Author Only Title Only Author and Title

Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Frontiers in Plant Science 7

Google Scholar: Author Only Title Only Author and Title

Masalkar P, Wallace IS, Hwang JH, Roberts DM (2010) Interaction of Cytosolic Glutamine Synthetase of Soybean Root Nodules with the C-terminal Domain of the Symbiosome Membrane Nodulin 26 Aquaglyceroporin. Journal of Biological Chemistry 285: 23880-23888

Google Scholar: Author Only Title Only Author and Title

McFarlane HE, Shin JH, Bird DA, Samuels AL (2010) Arabidopsis ABCG Transporters, Which Are Required for Export of Diverse Cuticular Lipids, Dimerize in Different Combinations. Plant Cell 22: 3066-3075

Google Scholar: Author Only Title Only Author and Title

Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz K, Markmann K, Szczynowski K (2019) Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. New Phytologist 222: 1523-1537

Google Scholar: Author Only Title Only Author and Title

Mitsch MJ, diCenzo GC, Cowie A, Finan TM (2018) Sucinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum. Appl Environ Microbiol 84

Google Scholar: Author Only Title Only Author and Title

Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Khan AL, Al-Harrasi AS (2018) Molecular players of auxin transport systems: advances in genomic and molecular events. Journal of Plant Interactions 13: 483-495

Google Scholar: Author Only Title Only Author and Title

Molesini B, Cecconi D, Pii Y, Pandolfini T (2014) Local and systemic proteomic changes in medicago truncatula at an early phase of Sinorhizobium meliloti infection. J Proteome Res 13: 408-421

Google Scholar: Author Only Title Only Author and Title

Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry 277: 4738-4746

Google Scholar: Author Only Title Only Author and Title

Mravec J, Kubes M, Bielach A, Gaykova V, Petrasek J, Skupa P, Chand S, Benkova E, Zazimalova E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345-3354

Google Scholar: Author Only Title Only Author and Title

Murray JD, Karas BJ, Sato S, Tabata S, Amiot L, Szczynowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315: 101-104

Google Scholar: Author Only Title Only Author and Title
Murray JD, Liu CW, Chen Y, Miller AJ (2017) Nitrogen sensing in legumes. Journal of Experimental Botany 68: 1919-1926

Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16: 473-479

Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K, Ahern KR, Romag A, Brutnell TP, Gutjahr C, Geldner N, Roux C, Martinova E, Konopka JB, Paszkowski U (2017) An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat Plants 3: 17073

Nagahashi G, Douds DD, Jr. (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115: 351-358

Ng JLP, Welvaert A, Wen JQ, Chen RJ, Mathesius U (2020) The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. Journal of Experimental Botany 71: 1562-1573

Nguyen TD, Cavagnaro TR, Watts-Williams SJ (2019) The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Scientific Reports 9

Nishida H, Tanaka S, Handa Y, Ito M, Sakamoto Y, Matsunaga S, Betsuyaku S, Miura K, Soyano T, Kawaguchi M, Suzuki T (2018) A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nature Communications 9

Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6: 763-775

Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99: 13324-13329
Pawela A, Banasiak J, Biala W, Martinoia E, Jasinski M (2019) MtABC20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula. Plant J 98: 511-523

Google Scholar: Author Only Title Only Author and Title

Pelissier HC, Ferrich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiology 134: 664-675

Google Scholar: Author Only Title Only Author and Title

Perez-Tienda J, Correa A, Azcon-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry 75: 1-8

Google Scholar: Author Only Title Only Author and Title

Peterson CA, Perumalla CJ (1990) A Survey of Angiosperm Species to Detect Hypodermal Casparian Bands .2. Roots with a Multiseriate Hypodermis or Epidermis. Botanical Journal of the Linnean Society 103: 113-125

Google Scholar: Author Only Title Only Author and Title

Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology 120: 587-598

Google Scholar: Author Only Title Only Author and Title

Phillips DA (1971) Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100: 181-190

Google Scholar: Author Only Title Only Author and Title

Pierre O, Engler G, Hopkins J, Brau F, Boncompagni E, Herouart D (2013) Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell and Environment 36: 2059-2070

Google Scholar: Author Only Title Only Author and Title

Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6: 153-164

Google Scholar: Author Only Title Only Author and Title

Pons S, Fournier S, Chervin C, Becard G, Rochange S, Frei Dit Frey N, Puech Pages V (2020) Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 15: e0240886

Google Scholar: Author Only Title Only Author and Title

Pumplin N, Harrison MJ (2009) Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis. Plant Physiology 151: 809-819

Google Scholar: Author Only Title Only Author and Title

Pumplin N, Zhang XC, Noar RD, Harrison MJ (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America 109: E665-E672

Google Scholar: Author Only Title Only Author and Title

Radhakrishnan GV, Keller J, Rich MK, Vernie T, Mbadinga Mbadinga DL, Vigneron N, Cottret L, Clemente HS, Libourel C, Cheemara J, Linde AM, Eklund DM, Cheng S, Wong GKS, Lagercrantz U, Li FW, Oldroyd GED, Delaux PM (2020) An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat Plants 6: 280-289

Google Scholar: Author Only Title Only Author and Title

Rausch C, Daram P, Brunner S, Jansa J, Laloí M, Leggewie G, Ahrlein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462-466

Google Scholar: Author Only Title Only Author and Title

Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones Induce Expression of Nodulation Genes in Rhizobium. Nature 323: 632-635

Google Scholar: Author Only Title Only Author and Title

Reid D, Nadzieja M, Novak O, Heckmann AB, Sandal N, Stougaard J (2017) Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. Plant Physiology 175: 361-375

Google Scholar: Author Only Title Only Author and Title

Rich MK, Nouri E, Courty PE, Reinhardt D (2017) Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Trends Plant Sci 22: 652-660

Google Scholar: Author Only Title Only Author and Title

Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Frontiers in Plant Science 5

Google Scholar: Author Only Title Only Author and Title

Rich MK, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, Radhakrishnan GV, Le Ru A, Diop SI, Potente G, Conti E, Duijings D, Batut A, Le Faouder P, Kodama K, Kyozuaka J, Sallet E, Becard G, Rodriguez-Franco M, Ott T, Bertrand-Michel J, Oldroyd GED, Szovenyi P, Bucher M, Delaux PM (2021) Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 372: 864-868

Google Scholar: Author Only Title Only Author and Title

Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH4+, K+, and Ca2+ in the symbiosome membrane

Google Scholar: Author Only Title Only Author and Title
uninfected cells of Lotus japonicus nodules. J Plant Physiol 169: 322-326

Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234: 73-81

Takanashi K, Yokosho K, Saeki K, Sugiyama A, Sato S, Tabata S, Ma JF, Yazaki K (2013) LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus. Plant Cell Physiol 54: 585-594

Tang NW, San Clemente H, Roy S, Becard G, Zhao B, Roux C (2016) A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology 7

Tejada-Jiménez M, Castro-Rodríguez R, Kryvoruchko I, Lucas MM, Udvardi M, Imperial J, Gonzalez-Guerrero M (2015) Medicago truncatula Natural Resistance-Associated Macrophage Protein1 Is Required for Iron Uptake by Rhizobia-Infected Nodule Cells. Plant Physiology 168: 258-U473

Tejada-Jiménez M, Gil-Diez P, Leon-Mediavilla J, Wen J, Mysore KS, Imperial J, Gonzalez-Guerrero M (2017) Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. 216: 1223-1235

Tian W, Wang C, Gao Q, Li L, Luan S (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat Plants 6: 750-759

Tiffin LO (1966) Iron Translocation. I. Plant Culture Exudate Sampling Iron-Citrate Analysis. Plant Physiology 41: 510-

Timmers ACJ, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126: 3617-3628

Tirichine L, Sandal N, Madsen LH, Radutoiu S, Abrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315: 104-107

Udvardi MK, Day DA (1989) Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol 90: 982-987

Udvardi MK, Lister DL, Day DA (1991) Atpase Activity and Anion Transport across the Peribacteroid Membrane of Isolated Soybean Symbiosomes. Archives of Microbiology 156: 362-366

Udvardi MK, Price GD, Gresshoff PM, Day DA (1988) A Dicarboxylate Transporter on the Peribacteroid Membrane of Soybean Nodules. Fabs Letters 231: 36-40

Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68: 122-129

Valkov VT, Rogato A, Alves LM, Sol S, Nogueiro M, Leran S, Lacombe B, Chiurazzi M (2017) The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology 175: 1269-1282

Valkov VT, Sol S, Rogato A, Chiurazzi M (2020) The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N2-fixation activity. New Phytol 228: 682-696

van Velzen R, Holmer R, Bu F, Ruten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor
Wang ET, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schulze M, Kamoun S, Oldroyd GED (2012) A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology 22: 2242-2246

Wang ET, Yu N, Bano SA, Liu CW, Miller AJ, Cousins D, Zhang XW, Ratet P, Tadege M, Mysore KS, Downie JA, Murray JD, Oldroyd GED, Schulze M (2014) A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and Medicago truncatula. Plant Cell 26: 1818-1830

Wang Q, Huang YG, Ren JZ, Zhang XX, Ren J, Su QJ, Zhang C, Tian J, Yu YJ, Gao GGF, Li LG, Kong ZS (2020a) Transfer cells mediate nitrate uptake to control root nodule symbiosis. Nature Plants 6: 800+

Wang Q, Liu JE, Zhu HY (2018) Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science 9

Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, Lopez-Arredondo DL, Herrera-Estrella LR, Xu G (2020b) Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci U S A 117: 16649-16659

Wang WX, Shi JC, Xie QJ, Jiang YN, Yu N, Wang ET (2017) Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant 10: 1147-1158

Watts-Williams SJ, Cavagnaro TR (2018) Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci 274: 163-170

Wegmueller S, Svistoonoff S, Reinhardt D, Stuurman J, Amrhein N, Bucher M (2008) A transgenic dTph1 insertion mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant Journal 54: 1115-1127

Wewer V, Brands M, Dormann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant Journal 79: 398-412

Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T (2014) Fate map of Medicago truncatula root nodules. Development 141: 3517-3528

Xie XA, Huang W, Liu FC, Tang NW, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist 198: 836-852

Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dormann P, Gigolashvili T, Turck F, Bucher M (2018) AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National
Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis. Plant Cell 26: 3569-3588

Yang SY, Gronlund M, Jakobsen I, Grottemeyer MS, Rentsch D, Miyao A, Hirochiika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24: 4236-4251

Yendrek CR, Lee YC, Morris V, Liang Y, Pislaru CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62: 100-112

Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031-1038

Zhang C, Bousquet A, Harris JM (2014) Abscisic acid and lateral root organ defective/NUMEROUS INFECTIONS AND POLYPHENOLICS modulate root elongation via reactive oxygen species in Medicago truncatula. Plant Physiol 166: 644-658

Zhang J, Mazur E, Balla J, Galei M, Kalousek P, Medvedova Z, Li Y, Wang Y, Prat T, Vasileva M, Reinohl V, Prochazka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J (2020) Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 11: 3508

Zhao SP, Chen A, Chen CJ, Li CC, Xia R, Wang XR (2019) Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiologia Plantarum 166: 712-728