Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative

Muhammad Arfana, Hussam Alrabaiahb,c, Mati Ur Rahmand, Yu-Liang Sune,x, Ahmad Sobri Hashimf, Bruno A. Panserag, Ali Ahmadianb,i, Soheil Salahshourb,n

a Department of Mathematics, University of Malakand, Chakdara Dir (L), KPK, Pakistan
b Al Ain University, Al Ain, United Arab Emirates
c Mathematics Department, Tafila Technical University, Tafila, Jordan
d Department of Mathematics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, PR China
e School of Science, Huzhou University, Huzhou 313000, PR China
f Computer & Information Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
g Department of Law, Economics and Human Sciences & Decisions Lab, Mediterranean University of Reggio Calabria, Reggio Calabria 89125, Italy
h Institute of IR 4.0, The National University of Malaysia, Bangi, 43600 UKM, Selangor, Malaysia
i School of Mathematical Sciences, College of Science and Technology Wenzhou-Kean University, Wenzhou, PR China
j Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

ARTICLE INFO

Keywords:
COVID-19
Existence result
Fractal-fractional ABC operator
Numerical results

Mathematics Subject Classification 2020:
37A25
34D20
37M01

ABSTRACT

This manuscript addressing the dynamics of fractal-fractional type modified SEIR model under Atangana-Baleanu Caputo (ABC) derivative of fractional order γ and fractal dimension r for the available data in Pakistan. The proposed model has been investigated for qualitative analysis by applying the theory of non-linear functional analysis along with fixed point theory. The fractional Adams-bashforth iterative techniques have been applied for the numerical solution of the said model. The Ulam-Hyers (UH) stability techniques have been derived for the stability of the considered model. The simulation of all compartments has been drawn against the available data of covid-19 in Pakistan. The whole study of this manuscript illustrates that control of the effective transmission rate is necessary for stopping the transmission of the outbreak. This means that everyone in the society must change their behavior towards self-protection by keeping most of the precautionary measures sufficient for controlling covid-19.

Introduction

Recently, the world is meeting with an outbreak of COVID-19 which has been tested firstly from a large city Wuhan in China. Nearly more than fifteen hundred thousand people (1.5 million) have died from this outbreak and about forty-four hundred thousand people have got the infection [1]. Much more of the human population has been recovered from the said disease. The death and recovery ratio is different in different countries of the world depending on the health situation and care measures taken by countries. In Pakistan, about 11514 people have died from this disease and nearly up to now 0.54 million people have been infected of which 4.9 million were recovered [2]. Every country and its government are trying to make different policies for controlling and reducing this outbreak. One important factor behind the spread of this disease is the interaction of infected people with uninfected ones in society. Such type of immigration and interaction will increase the rate of spreading this pandemic. Therefore, since the beginning of the said pandemic up to now various steps like banned on air traffic, immigration, non-quarantine and social gathering in different areas, have been taken. This is in addition to enforcing some precautionary measures to minimize the much more loss of people. Every country in the world is trying to reduce the unneeded mobility of humans to minimize the rate of infections [3].

Much of the human population are afraid of Covid-19 because such pandemic in the past has become the cause of death for more than a hundred thousand humans. For every terrible outbreak different scientists and researchers trying to implement some precautionary measures and to discover their vaccine from the very beginning which may be applied in the future. Knowing the basic reasons for the pandemic need statistical data and some concepts of mathematical modeling. Such a
We have to analyze the Eq. (2) by using the derivative of fractal-fractional order in sense of ABC because it gives a much realistic result having a greater degree of freedom than integer-order. We consider the (2) having fractional-order ρ and fractal dimension μ describing the situation lies between two integer values. The result will be achieved by having the whole density of every compartment converging quickly at low order.

The analysis of fractional order with fractal dimension describes the fractional order of the independent variables. Therefore, the fractal-fractional order differential equation converts both the order and dimension of the system to rational order. Due to this property, we can generalize the DE to any order of derivative and dimension. In [21], Atangana presented the fractal-fractional operators and showed the relation between Fractal and fractional calculus. For applications of fractal-fractional operators, see [22–25]. Because of this, modern calculus has gained more attraction as compared to classical calculus. Fractional calculus in which fractional global operators can model physical and biological problems relating to real-world phenomena with a very well degree of freedom. So for a large number of documents and research articles have been proposed by the scholars of fractional calculus. Various qualities of solution like qualitative and numerical analysis of non-integer order differential and integral equations have been presented in different books and monographs [26–47]. Some analysis of the recently pandemic covid-19 has been presented by several researchers in the form of fractional order differential equations, see [48].

Modern calculus has generalized the integer order calculus of differentiation and integration to rational or complex numbers, describing the situation between two integer values as in [49–51]. Up to now, various real-world problems have been modeled by integer-order differential equations, like population model, logistic population model, HIV, SEIR, TB, Cancer model, Predator–prey model, etc. Next, the researchers converted these equations to arbitrary order of differential equations which give much more real solution as in [52–62,61,63]. They have investigated these equations for existence and uniqueness by using properties and theorems of fixed point theory which may be seen in [64–67]. Some scholars use the Banach contraction theorem, topological degree theory and Leray–Shaudar theorem [68]. The fractional differential equation has also very interesting for obtaining analytical as well as the numerical solution for different scholars and researchers. Finding the exact solution is very difficult, therefore, most of the scholars investigating FDEs for optimizing and approximate solution applying the pre-existing techniques. For numerical solution they applied Modified Euler techniques, Taylor’s series method, Adams Bash-Forth techniques, predictor–corrector method and different integral transforms along with wave-lets methods as in [26,53,69–72]. Because of the aforementioned facts, we will investigate our considered problem for qualitative and some numerical analysis using the concepts of fixed point theory and fractal-fractional Adams–Bashforth techniques.

This paper is organized as follows. In Section (1) we give some fundamental results. In Section (3) we give the theoretical results. Analytical and Numerical results are provided by applying the proposed techniques via Matlab in Section (4). Finally, a brief conclusion is given as (see Table 1 and 2)
presented in Section (6). References are given at the end of the manuscript.

Fundamental results

Definition 1. [23] A continuous function \(z(t) \) in \((a, b)\) with fractal dimension \(0 < \rho \leq 1 \) and fractional order \(0 < \eta \leq 1 \) can be defined in ABC sense as

\[
\text{ABC}^\rho \text{D}_t^\eta z(t) = \frac{\text{ABC}(\rho)}{1 - \rho} \frac{d}{dt} \int_0^t (t-s)^{\rho-1} z(s) ds \left[-\eta (t-s)^{\rho-1} \right] ds,
\]

where \(\text{ABC}(0) = \text{ABC}(1) = 1 \) is called the normalization constant.

Definition 2. [23] Consider a continuous function \(z(t) \) in \((a, b)\) with fractal dimension \(0 < \rho \leq 1 \) and fractional order \(0 < \eta \leq 1 \) in ABC sense can be defined as

\[
\text{ABC}^\rho \text{D}_t^\eta z(t) = \frac{1 - \rho}{\text{ABC}(\rho)} (t-s)^{\rho-1} z(t) + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

Lemma 1. [73] Let us define the solution for the given problem in view of \(0 < \rho, \eta \leq 1 \)

\[
\text{ABC}^\rho \text{D}_t^\eta z(t) = \frac{(1 - \rho)}{\text{ABC}(\rho)} (t-s)^{\rho-1} z(t) + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

is provided by

\[
z(t) = z_0 + \frac{(1 - \rho)}{\text{ABC}(\rho)} (t-s)^{\rho-1} z(t) + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

Note: To show the existence and uniqueness for the considered system, a Banach space can be defined as

\[
Z = Y = H(0, T] \times \mathbb{R}^n, \mathbb{R},
\]

where \(Y = H(0, T] \) and the space norm is

\[
\|W\| = \|z\| = \max_{t \in [0, T]} |S(t)| + |E(t)| + |R(t)| + |M(t)| + |D(t)|.
\]

For showing our next results, we are going to present a fixed point theorem.

Theorem 1. [74] statement: A subset of \(Z \) be \(A \) which is convex and consider that the two operators \(F_1 \) and \(F_2 \) with

1. \(F_1(w) + F_2(w) \in A \) for each \(w \in A \);
2. \(F_1 \) is contraction;
3. \(F_2 \) is continuous and compact.

having the operator equation \(F_1w + F_2w = w \), has one or more than one solution.

Existence and uniqueness of model (2)

In this section, we will find the existence and uniqueness and stability results, by using the fixed point theorem for the considered system (2). In this regard, the aforesaid need as the integral is differentiable, here we can rewrite the considered model (2) as

\[
\text{ABC}^\rho \text{D}_t^\eta \left(S(t) \right) = \lambda + \omega + \theta + \mu S(t),
\]

where

\[
\text{ABC}^\rho \text{D}_t^\eta \left(E(t) \right) = \lambda + \omega + \theta + \mu E(t),
\]

\[
\text{ABC}^\rho \text{D}_t^\eta \left(R(t) \right) = \lambda + \omega + \theta + \mu R(t),
\]

\[
\text{ABC}^\rho \text{D}_t^\eta \left(M(t) \right) = \lambda + \omega + \theta + \mu M(t).
\]

In view of (4) and for \(t \in z \), then one can write

\[
z(t) = z_0 + \frac{1 - \rho}{\text{ABC}(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds,
\]

with solution

\[
z(t) = z_0 + \frac{1 - \rho}{\text{ABC}(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

Now, change the system (2) into the fixed point. Let us define mapping \(\mathcal{J} : V \mapsto V \) given as

\[
\mathcal{J} z(t) = z_0 + \frac{1 - \rho}{\text{ABC}(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

Assume

\[
\mathcal{J} = F + G,
\]

where

\[
F(z) = z_0 + \frac{1 - \rho}{\text{ABC}(\rho)} \int_0^t (t-s)^{\rho-1} z(s) ds.
\]

Now, we will show the qualitative analysis for the considered system by applying fixed point theory:

(U1) There will be a constants \(\mathcal{J}_y, \mathcal{J}_\gamma, \exists \)

\[
|\gamma(t, z(t))| \leq \mathcal{J}_\gamma |z| + \mathcal{J}_y.
\]

(U2) \(\exists \) a constants \(L_\gamma > 0 \) for every \(z, \tau \in z \) as

\[
|\gamma(t, z) - \gamma(t, \tau)| \leq L_\gamma ||z| - |\tau||.
\]

Theorem 2. The system (6) has at least one solution if (U1, U2) holds, then the system (2) has the same number of solution if \(\frac{(1 - \rho)}{\text{ABC}(\rho)} r^{-1} < 1 \).

Proof. We have proven the theorem into two steps as:

Step E Suppose \(T \in A \) and \(A = \{z \in z : \|z\| < \phi, \phi > 0\} \) is convex closed set. So the operator \(F \) defined in (9), we have

\[
\|F(z) - F(\tau)\| = \frac{(1 - \rho)}{\text{ABC}(\rho)} \max_{t \in [0, T]} |\gamma(t, z(t)) - \gamma(t, \tau(t))|
\]

\[
\leq \frac{(1 - \rho)}{\text{ABC}(\rho)} r^{-1} L_\gamma ||z - \tau||.
\]

Thus, the operator \(F \) is closed and hence contraction.
Step-II: Now we will prove the G is compact in comparison form, also we have to prove that G is continuous and bounded. It is clear that the operator G is defined on the whole domain as \mathcal{Y} is continuous, also for $z \in A$, as follows

$$
\|G(z)\| = \max_{t \in [0, t]} \frac{\int_{0}^{t} (t - s)^{\gamma - 1} \mathcal{V}(s, z(s))ds}{ABC(\gamma) \Gamma(\gamma)}
$$

$$
\leq \frac{1}{ABC(\gamma) \Gamma(\gamma)} \int_{0}^{t} (s)^{\gamma - 1} (1 - s)^{\gamma - 1} |\mathcal{V}(s, z(s))| ds
$$

(11)

\[\leq \rho |G_{\gamma}[z]| + \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)}.\]

$$
\|
\mathcal{J} z - \mathcal{J} \bar{z}
\| \leq \frac{(1 - \rho)^{\gamma - 1}}{ABC(\gamma) \Gamma(\gamma)} \max_{t \in [0, t]} |\mathcal{Y}(t, z(t)) - \mathcal{Y}(t, \bar{z}(t))|
$$

$$
+ \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \int_{0}^{t} (t - s)^{\gamma - 1} \mathcal{V}(s, x(s))ds - \int_{0}^{t} (t - s)^{\gamma - 1} \mathcal{V}(s, \bar{z}(s))ds
$$

$$
\leq \Theta \| z - \bar{z} \|.
$$

(14)

Hence in view of (11) the operator G is bounded, for “equi-continuity” let $t_{1} \to t_{2} \in [0, \tau]$, we have

$$
|G(z(t_{2})) - G(z(t_{1}))| = \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \int_{0}^{t_{1}} (t_{1} - s)^{\gamma - 1} \mathcal{V}(s, x(s))ds - \int_{0}^{t_{1}} (t_{1} - s)^{\gamma - 1} \mathcal{V}(s, \bar{z}(s))ds,
$$

$$
\leq \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} (t_{1} - t_{2})^{\gamma - 1}.
$$

(12)

As $t_{2} \to t_{1}$, R.H.S. of (11) goes to zero. Also by continuous operator G so

$$
|G(z(t_{2})) - G(z(t_{1}))| \to 0, \quad as \quad t_{2} \to t_{1}.
$$

Hence, we showed that the operator G is bounded and continuous, so G is bounded and uniformly continuous. By “Azreli-Ascoli theorem a subset $z \in A$ of G is compact if and only if it is closed, bounded, and equicontinuous.” As G is relatively compact and uniformly continuous. From (2) and (6) we conclude that the system has at least one solution. □

Proof. Suppose the operator $\mathcal{J} : z \to z$ by

$$
\mathcal{J} z(t) = z_{0}(t) + [\mathcal{Y}(t, z(t)) - \mathcal{Y}(t, \bar{z}(t))] \frac{(1 - \rho)^{\gamma - 1}}{ABC(\gamma) \Gamma(\gamma)}
$$

$$
+ \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \int_{0}^{t} (t - s)^{\gamma - 1} \mathcal{V}(s, x(s))ds, \quad t \in [0, \tau].
$$

(13)

Let $z, \bar{z} \in z$, then

\[\Theta = \frac{(1 - \rho)^{\gamma - 1} \mathcal{Y}}{ABC(\gamma) \Gamma(\gamma)} + \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \mathcal{Y} + \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \mathcal{Y}.
\]

From (14) the operator \mathcal{J} is a contraction. So Eq. (6) has a unique solution. Thus the considered system (2) has a unique solution. □

Ulam-Hyers stability

Here, we will find the stability for the proposed system (2), let take a small change $\Psi(t) \in C[0, \tau]$ and only satisfy, $0 = \Phi(0)$ as.

- $|\Psi(t)| \leq \mathfrak{e}$ for $\mathfrak{e} > 0$;
- $ABC(\gamma)^{\rho} \mathcal{Y} = \mathcal{Y}(t, \z(t)) + \Psi(t)$.

Lemma 2. The changed problem solution can be

$$
\mathcal{Y}_{\rho} \z(t) = \z(t, \z(t)) + \Phi(t),
$$

satisfies the given relation

(16)

$$
|z(t) - (z_{0}(t) + [\mathcal{Y}(t, z(t)) - \Phi_{0}(t)] \frac{(1 - \rho)^{\gamma - 1}}{ABC(\gamma) \Gamma(\gamma)}
$$

$$
+ \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \int_{0}^{t} (t - s)^{\gamma - 1} \mathcal{V}(s, x(s))ds)|
$$

$$
\leq \frac{\Gamma(\rho)^{\gamma - 1} + \rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \mathcal{Y} = \mathfrak{e}. \rho \mathfrak{e}.
$$

(17)

Uniqueness

Theorem 3. With assumption (U2) and (6) has a unique solution so that consider the system (2) also has a unique solution if

$$
\left[\frac{(1 - \rho)^{\gamma - 1} \mathcal{Y}_{\rho}}{ABC(\gamma)} + \frac{\rho \mathcal{V}_{\gamma} T^{\gamma - 1} B(\gamma, \rho)}{ABC(\gamma) \Gamma(\gamma)} \right] \leq 1.
$$

Theorem 4. With the assumption (C2) together with Eq. (17), solution of the Eq. (6) is UH stable and consequently, the analytical solution for the proposed system is UH stable if $\Theta < 1$.

Proof. Suppose a unique solution be $z \in z$ and $\bar{z} \in z$ be any solution of Eq. (6), then
For this, we have to use the fractal-fractional scheme, we obtain the approximate solution for the considered model. Consequently, generalized Ulam-Hyers stable by using

\[z(t) = \int_0^t (t-s)^{\gamma-1} \gamma(x,\tau(x)) \, ds \]

\[\leq |z(t) - \left[z_0(t) + \left((1 - \gamma) \frac{ABC(\gamma)^{\gamma-1}}{\Gamma(\gamma)} \right) \right] \frac{ABC(\gamma)^{\gamma-1}}{\Gamma(\gamma)} \int_0^t (t-s)^{\gamma-1} \gamma(x,\tau(x)) \, ds \]

\[\leq \frac{y_{\gamma,\gamma}}{1 - \theta} \| z - \tau \|_{1, \gamma, \gamma} \]

From (18), we can write as

\[\| z - \tau \|_{1, \gamma, \gamma} \leq \frac{y_{\gamma,\gamma}}{1 - \theta} \| z - \tau \| \] \hspace{1cm} (19)

From (19), we concluded that the solution of (6) is UH stable and consequently generalized Ulam-Hyers stable by using \(Y_1(x) = y_{\gamma,\gamma} \), \(Y_1(0) = 0 \), which shows that the solution of the proposed problem is Ulam-Hyers stable and also generalized Ulam-Hyers stable. \(\square \)

Numerical solution

In this section, we will find the numerical solutions for fractal-arbitrary order of the system (2), by using ABC derivative due to famous fractal-fractional AB technique. With the help of some iterative scheme, we obtain the approximate solution for the considered model. For this, we have to use the fractal-fractional AB techniques [58] for obtaining an approximate solution for the plotting of the system (2).

Thus, we go further with (4) can be write as:

\[S(t_{i+1}) = S(t_i) + \frac{(1 - \gamma)}{ABC(\gamma)} \left[\tau_1(S(t_i), t_i) \right] + \frac{\rho_{\gamma}}{ABC(\gamma)} \int_0^{t_i} (t_i - s)^{\gamma-1} \Delta \tau_1(S(s), x) \, ds \]

\[\approx \frac{(1 - \gamma)}{ABC(\gamma)} \left[\tau_1(S(t_i), t_i) \right] + \frac{\rho_{\gamma}}{ABC(\gamma)} \sum_{n=0}^{t_i} (t_i - s)^{\gamma-1} \Delta \tau_1(S(s), x) \, ds \]

obtaining an approximate solution for \(t = t_{i+1} \) for \(i = 0, 1, 2, \ldots \).

The approximate function be \(\tau_1 \) on the interval \([t_i, t_{i+1}]\) through the interpolation polynomial as follows

\[\tau_1 \approx \frac{\tau_1(t_{i+1}) - R^t(t - t_i)}{\Delta} \]

which implies that

\[S(t_{i+1}) = S(t_i) + \frac{(1 - \gamma)}{ABC(\gamma)} \left[\tau_1(S(t_i), t_i) \right] + \frac{\rho_{\gamma}}{ABC(\gamma)} \sum_{n=0}^{t_i} \left(\frac{\tau_1(S(s), x)}{\Delta} \right) \int_{t_i}^{t_{i+1}} (t_{i+1} - t)^{\gamma-1} \, dt \]
\[S(t_{i+1}) = S(0) + \frac{(1 - \rho)}{\text{ABC}(\rho)} C_{i+1}^{-1} \left[\mathcal{G}_i(S(t_i), t_i) \right] + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \sum_{r=0}^{i} \left(\frac{\Delta t}{\Delta} \right)^r r^{-1} S_i(S(t_i), t_i) \Delta_{r} \].

Calculating \(I_{r, y} \) and \(I_{r, x} \), we get

\[I_{r, x} = \int_{t_{i-1}}^{t_{i+1}} (t - t_{i+1})(t_{i+1} - t)^{-1} dt, \]

\[= \frac{1}{\rho} \left[(t_{i+1} - t_{i-1})(t_{i+1} - t_{i+1})(t_{i+1} - t)^{r+1} \right] \]

and

\[= \frac{1}{\rho} \left[(t_{i+1} - t_{i-1})(t_{i+1} - t_{i+1})(t_{i+1} - t)^{r+1} \right], \]

putting the values of (22) and (23) in (21), we get

\[I_{r, x} = \int_{t_{i-1}}^{t_{i+1}} (t - t_{i+1})(t_{i+1} - t)^{-1} dt, \]

\[= \frac{1}{\rho} \left[(t_{i+1} - t_{i-1})(t_{i+1} - t_{i+1})(t_{i+1} - t)^{r+1} \right], \]

and

\[= \frac{1}{\rho} \left[(t_{i+1} - t_{i-1})(t_{i+1} - t_{i+1})(t_{i+1} - t)^{r+1} \right], \]

putting the values of (22) and (23) in (21), we get

\[I_{r, x} = \int_{t_{i-1}}^{t_{i+1}} (t - t_{i+1})(t_{i+1} - t)^{-1} dt, \]

\[= \frac{1}{\rho} \left[(t_{i+1} - t_{i-1})(t_{i+1} - t_{i+1})(t_{i+1} - t)^{r+1} \right]. \]
Similarly the rest of the classes E, I, R, D and M we can find the same numerical scheme as

\[
E_{(t_{n+1})} = \begin{cases}
E(0) + \frac{(1 - \rho)}{\text{ABC}(\rho)} \left[\mathcal{G}_E(E(t_n), t_n) \right] + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \sum_{r=0}^{\infty} \left(\frac{\mathcal{G}_E(E(t_n), t_n)}{\Delta} \right) \\
\times \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \\
- \left[\frac{\mathcal{G}_E(E(t_{n-1}), t_{n-1})}{\Delta} \right] \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \right)
\end{cases}
\] (25)

\[
I_{(t_{n+1})} = \begin{cases}
I(0) + \frac{(1 - \rho)}{\text{ABC}(\rho)} \left[\mathcal{G}_I(I(t_n), t_n) \right] + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \sum_{r=0}^{\infty} \left(\frac{\mathcal{G}_I(I(t_n), t_n)}{\Delta} \right) \\
\times \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \\
- \left[\frac{\mathcal{G}_I(I(t_{n-1}), t_{n-1})}{\Delta} \right] \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \right)
\end{cases}
\] (26)

\[
R_{(t_{n+1})} = \begin{cases}
R(0) + \frac{(1 - \rho)}{\text{ABC}(\rho)} \left[\mathcal{G}_R(R(t_n), t_n) \right] + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \sum_{r=0}^{\infty} \left(\frac{\mathcal{G}_R(R(t_n), t_n)}{\Delta} \right) \\
\times \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \\
- \left[\frac{\mathcal{G}_R(R(t_{n-1}), t_{n-1})}{\Delta} \right] \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \right)
\end{cases}
\] (27)

\[
D_{(t_{n+1})} = \begin{cases}
D(0) + \frac{(1 - \rho)}{\text{ABC}(\rho)} \left[\mathcal{G}_D(D(t_n), t_n) \right] + \frac{\rho}{\text{ABC}(\rho) \Gamma(\rho)} \sum_{r=0}^{\infty} \left(\frac{\mathcal{G}_D(D(t_n), t_n)}{\Delta} \right) \\
\times \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \\
- \left[\frac{\mathcal{G}_D(D(t_{n-1}), t_{n-1})}{\Delta} \right] \left[\frac{\Delta^{r+1}}{\rho^{(r+1)}} \left[(c+1 - r)^{\rho}(c-r+2+\rho) - (c-r)^{\rho}(c-r+2+2\rho) \right] \right] \right)
\end{cases}
\] (28)
\begin{equation}
M(t_{c+1}) = \begin{cases}
M(0) + \frac{(1 - \rho)}{ABC(\rho)}(\zeta_{c+1}^{\prime})[\mathcal{S}_d(M(t_c), t_c)] + \frac{\rho}{ABC(\rho)\Gamma(\rho)} \sum_{r=0}^{\infty} \left(\frac{\Delta^{r+1}}{(\rho - 1)} [\zeta_{c+r}^{\prime}] \left(c+1-r \right) \right) \end{cases}
\end{equation}

Fig. 1. Dynamical simulation of $S(t)$ and $E(t)$ at different arbitrary order of derivatives for data-I.

Fig. 2. Dynamical simulation of $I(t)$ and $R(t)$ at different arbitrary order of derivatives for data-I.

Fig. 3. Dynamical simulation of $D(t)$ and $M(t)$ at different arbitrary order of derivatives for data-I.
Simulations results

We now take the values for the considered system (2) in the following table. The data have been taken for Pakistan. The initial compartment cases of the given system for Pakistan are about $S(t) = 220.892$, $E(t) = 220.81857$, $I(t) = 0.03208$, $R(t) = 0.008555$, $D(t) = 0.000706$, $M(t) = 80.7777$ millions.

Figs. 1–3 are the numerical simulation for the Data-I while Figs. 4–6 are for data-II respectively. The left panel of Fig. 1 shows rapid decay with time as different contaminated materials of covid-19 are faced by the susceptible individuals to move to the exposed and infected classes. Up to the 100 days they decline and after that they become stable at different fractional order γ and fractal dimension ρ. In the right panel of Fig. 1 is the representation of Exposed class for various fractional-order γ and fractal dimensions ρ. This class also declines as they transfer to other classes. In the left panel of Fig. 2 one can see that the infection reaches its peak value of about 2.25 and then become slightly decreased to reach the field of stability at different fractional-order and fractal dimension. The declines and stability lie in the infection because of the self-protection terms included in the model. As the Infection increases the recovery also increases with the passage of time and reaches up to the maximum value of 1.7 and then becomes stable as shown in the right
panel of Fig. 5. We can also see in all the simulations that increasing the fractional-order values will converges to the integer-order values 1. In the left panel of Fig. 6 is the simulation death occurs due to the covid-19 which also reached to its peak value of 0.01 and the become declines towards stability at different fractal dimension and fractional order. The decrease and stability occur in the death cases because of declines in infection and other precautionary measures for clean environment which declines the contaminated material $M(t)$ as shown in the right panel of Fig. 3.

Figs. 4-6 are the simulation for data-II showing the similar situation as for data-I. The simulation of data-II shows more infection and more recovery as compared to data-I.

Conclusion

In this manuscript, the dynamical behaviour of fractal-fractional modified non-linear SEIR type system has been discussed having non-integer order and fractal dimension under ABC derivative. The investigation of the model shown that how the covid-19 infection may be controlled and stabilized. The Qualitative analysis has been achieved with the help of some well-known theorems of non-linear functional analysis. The simulation of the model by fractal-fractional Adams–Bashforth techniques have been shown the dynamical behavior for each compartment of both sets of data at different fractional-order and fractal dimension. The graphical representation of the consider model gives the whole density of each compartment lying between two different integer values. The memory time for stability and convergency is short for low fraction order and fractal dimension. From the study we recommend for every individual to change their behavior for facing covid-19 by following WHO SOP’s such as keeping face masks, keeping social distance, washing their hands with soap and an alcohol-based sanitizer, and disinfecting the surface. These mechanisms will decline and stop the spread of the virus from the contaminated environment to uninfected individuals and from infected individuals to the surrounding. It is also essential to create awareness and disseminate information for societies to keep themselves from the virus, which can reduce the pandemic threshold of the infections. As a whole, we conclude that the manuscript deals with the covid-19 situation in Pakistan at any stage for both sets of data at different fractional-order and fractal dimensions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work for Ahmad Sobri Hashim (fifth author) is supported by Universiti Teknologi PETRONAS Foundation (YUTP) with Ref. No. 015LC0-290.

References

[1] World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report-62. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200322-sitrep-62-covid-19.pdf?sfvrsn=77f74e4c62, 2020.
[2] www.worldometers.info, Current update in pakistan about COVID-19, on 16 June 2020.
[3] Lu H, Stratton CW, Tang TW. Outbreak of pneumonia of unknown etiology in wuhan china: the mystery and the miracle. J Med Virol 2020;92(4):401–2.
[4] Goyal M, Baskonus HM, Prakash A. An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women. Eur Phys J Plus 2019;134(8):1–10.
[5] Gao W, Veeresha P, Prakashas DG, Baskounas HM, Yel G. New approach for the model describing the deadly disease in pregnant women using Mittag-Leffler function. Chaos, Solitons Fract 2020;134:109666.
[6] Kumar D, Singh J, Al-Qurashi M, Baleanu D. A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying. Adv Diff Eq 2019;2019:278:1–15.
[7] Shah K, Alqudah MA, Jarad F, Abdeljawad T. Semi-analytical study of pine wilt disease model with convex rate under Caputo-Febrizio fractional order derivative. Chaos, Solitons Fract 2020;135:109754.
[8] Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9(1):382–5.
[9] Ge X, Li J, Yang XL, Chum MT, ZHU G, Epstein JH, Mazer JK, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503(7477):535–4.
[10] Chan JFW, Kok KI, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020;9(1):221–36.
[11] ur Rahman M, Arfan M, Shah K, Gómez-Aguilar JF. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fract 2014;60:102–22.
[12] Rino J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 2020;25(4):200058.
[13] Jain Nikita, Jhunthra Srishti, Garg Harshit, Gupta Vedika, Mohd Senthilkumar, Ahmad Ali, Salashour Soheil, Ferrara Massimiliano. Prediction modelling of COVID using machine learning methods from B-cell dataset. Result Phys 2021;21:103813.
[14] Ghorai Neha, Ghosh Arijit, Prasad Mondal Sankar, Yazid Bajuri Mohd, Ahmad Ali, Salashour Soheil, Ferrara Massimiliano. Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Result Phys 2021;21:103811.
[15] Zamir Muhammad, Shah Kamal, Nadeem Fawad. Mohd Yazid Bajuri, Ali Ahmadian, Soheil Salashour, Massimiliano Ferrara. Threshold conditions for global stability of disease free state of COVID-19. Result Phys 2021;21:103784.
[16] Zamir Muhammad, Shah Kamal, Nadeem Fawad. Mohd Yazid Bajuri, Ali Ahmadian, Soheil Salashour, Massimiliano Ferrara. Fractional order mathematical modeling of novel corona virus (COVID-19). Math Meth Appl Sci 2021. https://doi.org/10.1002/mma.7241.
[17] Shah Kamal, Arfan Muhammad, Mahajir Ibrahim, Ahmadian Ali, Salashour Soheil, Ferrara Massimiliano. Fractal-fractional mathematical model addressing the situation of corona virus in Pakistan. Result Phys 2020;19:103560.
[18] Ahmad S, Ullah A, Shah K, Salashour S, Ahmadian A, Ghanbarzadeh A, Cetin T. Fractional-integer order model of the novel coronavirus. Adv Diff Eq 2020;2020:472.
[19] Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis 93:2020;211–6.
[20] Mekonnen KG, Habtemichael TG, Balcha SF. Modeling the effect of contaminated objects for the transmission dynamics of COVID-19 pandemic with self protection behavior changes. Result Appl Math 2020;9:100134.
[21] Atangana A. Fractional-fractal differentiation and integration: connecting fractional calculus and fractional calculus to predict complex system. Chaos, Solitons Fract 2017;102:396–406.
[22] Ali Z, Rabiei F, Shah K, Khodadadi T. Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia. Fractals 2021;9:120020.
[23] Atangana A. Modelling the spread of COVID-19 with new fractal-fractal operators: Can the lockdown save mankind before vaccination? Chaos Solitons Fract 2020;136:109860.
[24] Qureshi S. Ahdon Atangana. Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data. Chaos Solitons Fract 2020;136:109812.
[25] Ali Z, Rabiei F, Shah K, Khodadadi T. Qualitative analysis of fractional-fractal order COVID-19 mathematical model with case study of Wuhan. Alex Eng J 2021;60(1):477–89.
[26] Lakshmankatham V, Leela S. Naguma-type uniqueness result for fractional differential equations. Non-linear Anal 2009;71:2886–9.
[27] Podhuby I. Fractional differential equations, Mathematics in Science and Engineering. New York: Academic Press; 1999.
[28] Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000.
[29] Atangana A. S. ılgıt Araz. Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications. Adv Differ Eq 2020;2020(1):1–89.
[30] Gao W, Veeresha P, Prakashas DG, Baskounas HM, Yel G. New approach for the model describing the deadly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fract 2020;134:109696.
[31] Atangana A. Fractional discretization: the African tortoise walk. Chaos Solitons Fract 2020;134:109299.
[32] Gao W, Veeresha P, Prakashas DG, Baskounas HM, Kumar P. A new study of unreported cases of 2019-nCOV epidemic outbreaks. Chaos Solitons Fract 2020;138:109929.
[33] Akbar MA, Tahier F, Inc M. Chaos control and solutions of fractional-order Mulkas waterwheel model. Chaos Solitons Fract 2020;135:109746.
[34] Hashemi MS, Inc M, Yusuf A. On three-dimensional variable order time fractional chaotic system with nonisling kernel. Chaos Solitons Fract 2020;133:109628.
[35] Qureshi S, Yusuf A, Shah M, Inc M, Baskounas H. Mathematical modeling for process of dye removal in nonlinear equation using power law and
exponentially decaying kernels, Chaos: An Interdisciplinary. J Nonlinear Sci 2020; 30(4):3843106.

[36] Ajdak M, Alem M, Ahmadian A, Salahshour S, Ferrara M. New trends of fractional modeling and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions. Chin J Phys 2020;66:497–516.

[37] Salahshour S, Ali Ahmadian S, Abbassandy Dumitru Baleanu. M-fractional derivative under interval uncertainty: Theory, properties and applications. Chaos Solitons Fract 2018;117:84–93.

[38] Rahman Mustafijur, Sankar Prasad Mondal, Ali Akbar Shaikh, Ali Ahmadian, Norsak Semu, Soheil Salahshour. Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. Adv Differ Eq 2020;2020:1–30.

[39] Senol Mehmet, Atipinar Sevda, Zararsiz Zarife, Salahshour Soheil, Ahmadian Ali. Approximate solution of time-fractional fuzzy partial differential equations. Comput Appl Math 2019;38:1–18.

[40] Senol Mehmet, Atipinar Sevda, Zararsiz Zarife, Salahshour Soheil, Ahmadian Ali, Asjad MI, Aleem M, Ahmadian A, Salahshour S, Ferrara M. New trends of fractional differential equations. Abstract and Applied Analysis 2013. Article ID 50590.

[41] Salahshour S, Ali Ahmadian M, Salimi M Ferrara, Dumitru Baleanu, Chee Seng Chan. Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications. IEEE Trans Fuzzy Syst 2016;29:218–36.

[42] Khil LM, Fitouhi A, Salahshour S, Dailami F, Soheil D. Solving fractional differential equations of arbitrary order using an optimization technique based on training artificial neural network. Appl Math Comput 2017;293:81–95.

[43] Ahmadian Ali, Ismail F, Salahshour S, Dumitru Baleanu, Ghaemi F. Uncertain viscostatic models with fractional order: a new spectral tau method to study the numerical simulations of the solution. Commun Nonlinear Sci Numer Simul 2017;53:44–64.

[44] Ahmadian Ali, Salahshour Soheil, Dumitru Baleanu H, Amirkhani R Yunus. Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. J Comput Phys 2015;294:562–64.

[45] Ahmadian Ali, Soleiman Mohamed, Salahshour Soheil. An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations. Abstract and Applied Analysis 2013. Article ID 50590.

[46] Ahmadian Ali, Soleiman Mohamed, Salahshour Soheil. A novel approach to approximate fractional derivative with uncertain conditions. Chaos Solitons Fract 2017;104:68–76.

[47] Khan MA, Atangana A. Modeling the dynamics of novel coronavirus (2019-nCoV) with fractional derivative. Alex Eng J 2020;59(4):2279–89.

[48] Singh H, Pandey R, Srivastava H. Solving non-linear fractional variational problems using jacobi polynomials. Mathematics 2019(7):224.

[49] Singh H, Srivastava HM. Numerical investigation of the fractional-order liénard and duffing equations arising in oscillating circuit theory. Front Phys 2020.

[50] Singh H, Sahoo MR, Singh OP. Numerical method based on Galerkin approximation for the fractional advection-dispersion equation. Int J Appl Comput Math 2017;3(3):2171–87.

[51] Zhang Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm Sci 2014;18(2):677–81.

[52] Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley; 1993.

[53] Elsayeh H, Hassan A, Kilicman. A note on solutions of wave, Laplace’s and heat equations with convolution terms by using a double Laplace transform. Appl Math Lett 2008;21(12):1324–9.

[54] Spiga G, Spiga M. Two-dimensional transient solutions for crossflow heat exchangers with neither gas mixed. J Heat Transfer-Trans Aste 1987;109(2):281–6.

[55] Khan T, Shah K, Khan RA, Khan A. Solution of fractional order heat equation via triple Laplace transform in 2 dimensions. Math Meth Appl Sci 2018;41(2):818–25.

[56] Shah K, Khalil H, Khan RA. Analytical solutions of fractional order diffusion equations by natural transform method. Iran J Sci Technol Trans A: Sci 2018;42(3):1479–90.

[57] Singh J, Jassim HK, Kumar D. An efficient computational technique for local fractional Fokker Planck equation. Physica A 2020;555(1):124525.

[58] Akyüz B, Khan A, Yusuf A. Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator. J Appl Math Comput 2021:1–29.

[59] Yusuf A, Akyüz B, Mustapha UT, Inc M, Baleanu D. Mathematical modeling of pine wilt disease with Caputo fractional operator. Chaos Solitons Fract 2021:143:110569.

[60] Gao W, Veeresha P, Prakasha DG, Baskonus HM. Novel dynamic structures of 2019-nCoV with nonlocal operator via powerful computational technique. Biology 2020;9(3):107.

[61] Atangana A. Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fract 2018;114:347–63.

[62] Gao W, Baskonus HM, Shi L. New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system. Adv Differ Eq 2020;2020(1):1–11.

[63] Ahmad B, Sivasundaram S. On four-point nonlocal boundary value problems for nonlinear integro-differential equations of fractional order. Appl Math Comput 2010;217:480–7.

[64] Bai Z. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal 2010;72:916–24.

[65] Khan RA, Shah K. Existence and uniqueness of solutions to fractional order multipoint boundary value problems. Commun Nonlinear Sci 2015;20:2129–47.

[66] Shah K, Ali N, Khan RA. Existence of positive solution to a class of fractional differential equations with three point boundary conditions. Math Sci Lett 2016;5(3):121–6.

[67] Wang J, Zhou Y, Wei W. Study in fractional differential equations by means of topological Degree methods. Numer Funct Anal Optim 2012;33(2):216–38.

[68] Kilbas AA, Srivastava H, Trujillo J. Theory and application of fractional differential equations. Elsevier 2006;294.

[69] ur Rahman M, Arfan M, Shah M, Shaz K, Kumam P, Shataywi M. Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative. Alex Eng J 2021.

[70] Singh J, Ahmadian A, Rathore S, Kumar D, Baleanu D, Salimi M, Salahshour S. An efficient computational approach for local fractional poisson equation in fractal media. Numer Meth Partial Diff Eq 2020. https://doi.org/10.1002/num.22589.

[71] Dobey VP, Dobey S, Kumar D, Singh J. A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos Solitons Fract 2020;110375.

[72] Abdeljawad T, Baleanu D. Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv Differ Eq 2016;1:1–18.

[73] Burton TA. Krasnoselskii K-n-tupled fixed point theorem with applications to fractional nonlinear dynamical system. Adv Math Phys 2019.